Computer Science Journal of Moldova, vol.13, no.3(39), 2005

A note on Computing SAGBI-Grobner bases in
a Polynomial Ring over a Field

Hans Ofverbeck

Abstract
In the paper [2] Miller has made concrete Sweedler’s theory
for ideal bases in commutative valuation rings (see [5]) to the
case of subalgebras of a polynomial ring over a field, the ideal
bases are called SAGBI-Grobner bases in this case. Miller proves
a concrete algorithm to construct and verify a SAGBI-Grobner
basis, given a set of generators for an ideal in the subalgebra.
The purpose of this note is to present an observation which jus-
tifies substantial shrinking of the so called syzygy family of a
pair of polynomials. Fewer elements in the syzygy family means
that fewer syzygy-polynomials need to be checked in the SAGBI-
Grobner basis construction/verification algorithm, thus decreas-

ing the time needed for computation.

1 Introduction

SAGBI-Grobner theory is a generalisation of Grébner theory to subal-
gebras of a polynomial ring. Thus we consider a fixed subalgebra A of
a polynomial ring k[X] = k[z1,...,x,) over a field k, and we want to
do Grobner theory in the subalgebra A.

In Grobner basis theory a so called S-polynomial of a pair (f, g) of
polynomials is defined as (see the next section for the exact definitions
of the notation):

S(f.0) = Lnf — Lng, @

where
I lem(Ip(f),1p(g))
b ()

(©2005 by H. Ofverbeck

I lem(Ip(f),1p(g))
2T 1t(g)

247

H. Ofverbeck

In SAGBI-Grobner basis theory the analogue of a S-polynomial of a
pair is the syzygy family of a pair (f,g). As the name indicates, the
syzygy family usually consists of more than one element, but all the
elements have the form (1) for some (L1, Ly) € A? such that 1t(L; f) =
1t(L2g). The purpose of this note is to prove that when constructing
the syzygy family we need only consider polynomials of the form (1)
where (L1, Ly) € A? are such that Ip(g) does not divide Ip(L;) and
Ip(f) does not divide Ip(L2) in Lp(A).

This yields a substantially smaller syzygy family than what is indi-
cated in [2].

2 Notation

Since the purpose of this note is to refine a result in the article [2]
we try to follow the notation there as closely as possible. Let k[X] =
klxi,...,zy] be multivariate polynomial ring over a field k. Suppose
we have a term order on k[X], then for a polynomial p € k[X], Ip(p)
denotes the leading X-power product of p, lc(p) the leading coefficient
of p, and 1t(p) = le(p)lp(p) the leading term of p. If S C k[X], then
Lp(S) denotes {Ip(s)|s € S}.

If w=2a{"25? ... 20" is an X power product then the multidegree,
mdeg(w), of w is defined as mdeg(w) = (a1, ag,...,a,) € N". For a
polynomial f € k[X] we define mdeg(f) = mdeg(Ip(f)).

For a vector v = (v1,...,vy) € N™ and a (implicitly ordered) set
S ={s1,...,8m} € k[X] with m elements we define:
m
v,
SY = H s;’
j=1

Let A be fixed subalgebra of k[X], then Lp(A) is a multiplicative
monoid. For an ideal I in A, Lp(I) is a monoid-ideal in Lp(4). A
SAGBI-Grébner basis for an ideal I in A is a subset G C I such that
Lp(G) generates Lp(I) as a monoid-ideal in Lp(A).

For an ideal J in k[X] an ordinary Grobner basis is a subset G’ C J
such that Lp(G’) generates J as a monoid ideal in Lp(k[X]). This

248

A note on Computing SAGBI-Grébner bases in . . .

corresponds to the special case A = k[X] for SAGBI-Grobner bases,
thus we can say that SAGBI-Grobner bases are a generalisation of
Grobner bases. On the other hand SAGBI-Grébner bases are a special
case of the even more general bases presented in [5] and [4].

Throughout this article we assume that we have a finite SAGBI
basis F' = {f1,..., fm} for the subalgebra A, i.e. FF C A and Lp(F)
generates Lp(A) as monoid.

When dealing with ideals in the subalgebra A we need an analogue
of ordinary reduction which takes into account the fact that we work
inside a subalgebra, the analogue is called SI-reduction.

Definition 1 (SI-reduction) Let G C A. A polynomial h € A SI-
reduces via G to h' € A in one step if there is a nonzero term cX® of
h for which there exists g € G and a € A such that 1t(ag) = cX“ and
W = h—ag. If there is a chain of one-step reductions from h to h'" via
G, then we say that h Sl-reduces to h” via G.

3 Shrinking the syzygy family

Consider the intersection, (Ip(g)) ({Ip(h)), of the monoid ideals gener-
ated by Ip(g) and Ip(h) in Lp(A). The intersection is again a monoid
ideal in Lp(A), which plays a central part in the definition of the syzygy
family:

Definition 2 (Definition 4.1 in [2]) Given g,h € A and a generat-

ing set Ty, in Lp(A) for (Ip(g)) N(Ip(h)), a syzygy family for g and
h is a set that contains, for each t € T, a polynomial of the form
arg — beh with 1t(arg) = 1t(bsh) = lt(cit) for some ¢, € k.

Consider Corollary 4.6 in [2]; there we are told that a syzygy family
for g and h can be constructed in the following way:
Let V be a finite generating set of the monoid of nonnegative integer

solutions v = (v1,vg,. .., Vomy2) of:
vlmdeg(g) + Z ijmdeg(fj) = Z vm+1+jmdeg(fj) + v2m+2mdeg(h)
j=1 j=1

(2)

249

H. Ofverbeck

where {f1,..., fm} = F is our SAGBI basis for A.

A minimal generating set of the nonnegative solutions of a dio-
phantine system such as (2) is sometimes called a Hilbert basis for the
solutions. There exist several algorithms to calculate the Hilbert basis,
e.g. those described in [1] and [3], this allows us to effectively compute

V.
For an element v of ¥V we let v! = (vy,...,vpm41) and v" =

(Um+2, - - - s Vam+2), then v is called the parent vector of vl and v". Let
Vi={veV|v =voypio =1}

and
V'={u+v|ueV,veW}

where V) = {u € V]u; = L,ugmyo = 0} and Vo = {v € V|v; =
0, vam+2 = 1}, and let
PY =V uV”.

Finally let G = {g, f1,...,fm} and H = {f1,..., fm,h}, (where
fi,.-., fm are the elements of our SAGBI basis F') then by Corollary 4.6
in [2] a syzygy family for g and h is formed by all polynomials of the
form

sp =1e(H") - G" —1e(G”) - HY

where v € PV.

The purpose of this note is to prove that in the definition of PV
we can remove the second set from the union and let PV =V’ and the
only price we have to pay for this reduction is to add 0 to the syzygy
family.

Theorem 1 (Refinement of Corollary 4.6 in [2])

Let G = {g, f1,..., fm} and H = {f1,..., fm,h}, let V be a finite
generating set for the monoid of nonnegative solutions of the system of
equations (2) and let PV =V'. Then the set S consisting of 0 and all
polynomials of the form s, = lc(H") - GY — lc(G”l) - H"", where the
parent vector v of v' and v" lies in V', is a syzygy family for g and h.

250

A note on Computing SAGBI-Grébner bases in . . .

Proof. According to Definition 2 a syzygy family for g and h is only
required to contain a polynomial a;g — bsh for each t € T, thus if
we can replace the polynomial a;g — bsh with a simpler one: a,g — bjh
still having 1t(ajg) = 1t(bjh) = ¢t for some ¢; € k, then we still have
a syzygy family for g and h. In view of Corollary 4.6 from [2] we
need only prove that for each power product ¢ appearing as the leading
power product of a polynomial le(H"") - G*', where v € V", there exist
ag, by € A, ¢; € k\{0} such that 1t(a;g) = lt(bh) = ¢;t and ayg—bih = 0.
Let v = u+w where u € V; and w € V> and let ¢ = lp(G”l) =Ip(H"").
Since u and w are solutions of (2) we know that:

Ip(G*) = Ip(H"),

l s

Ip(G*) = Ip(H"). (3)
Since u € V; and w € Vs their left and right halves have the form
ul = (1,ug, ..., Uns1) and W™ = (Wmi2, ..., Wams1,1), thus if we let
W = (ug, ..., Unpy1) and W' = (Wyt2, ..., Wopmt1) We get:
Gul — Fu”
w” _g w’ (4)
HY = F%Yh,

Let a; = F* F¥' I and b, = F“/Fw/g. Then a¢, b € A and:
It(arg) = 16(beh) = W(FY F™ gh) = 1t(gF* 6(F h) = 1t(G*)t (HY")

where the last equality follows from (4). Since Ip(HY") = lp(Gwl)
wl

according to (3), we can deduce that It(H"") = ¢]lt(G") for some
nonzero constant ¢; € k. Thus

(G E(HY") = et (G)H(G™) = et (GY ") = ¢t (G') = it

where ¢, € k\ {0}, the next last equality is due to v = u + w and the
last equality follows from our definition ¢ = lp(G”l). Hence ayzg — bih
is an element of the syzygy family corresponding to t. Finally we note
that

arg — bth = F¥F¥ hg — F* F* gh = 0.

251

H. Ofverbeck

O
The practical use of the syzygy family is to check if a given set is a
SAGBI-Grobner basis, much like S-polynomials are used to check if a
set is a Grobner basis. More precisely a set G C A is a SAGBI-Groébner
basis if and only if all polynomials in all syzygy families of pairs in G
SI-reduce to zero via G, cf. Theorem 5.1 and Algorithm 3 in [2]. A
zero Sl-reduced remainder indicates that no violation of the SAGBI-
Grobner condition is found for this particular syzygy-polynomial, thus
we can remove the extra zero indicated in Corollary 1 from the syzygy
family without making the syzygy family less useful. The refinement
of Algorithm 2 in [2] becomes:

Algorithm 1
Input: g,h € A, a finite SAGBI basis F for A
Output: A syzygy family SyzFam(g, h) for g and h
Initialisation: SyzFam(g,h) :==0, PV :=10
Compute a generating set V for the solutions of sys-
tem (2).
PVZZ{UEV:Cozd0:1}
For Fach v € PV:

sy i=lc(HY) - G¥' —1¢(GY") - HY
SyzFam(g, h) := U, epy{sv}

An implementation of this algorithm is included in the author’s
Maple package for SAGBI and SAGBI-Grobner computations, see [6].
For calculating the Hilbert bases the Maple package uses Dmitrii V.
Pasechnik’s implementation of the algorithm described in [3].

As an application of Algorithm 1 we consider example 4.7 and 5.2

in [2].
Example 1 Let A = Q[2?,zy] C Qz,y] and use the degree lexico-
graphical order with x > y. The set F = {z% xy} is a SAGBI basis for
A. Let g = 23y + 2% and h = 2% + 2%y? in A. A Hilbert basis for the
set of solutions of the equation (2) is:

v =(0,0,1,0,1,0), »® =(0,1,0,1,0,0), v =(0,2,0,0,0,1),
v =(1,0,0,1,1,0), »® =(1,1,0,0,1,1), »© =(2,0,0,0,2,1).

T

252

A note on Computing SAGBI-Grébner bases in . . .

Thus PV = {v®}, so by Algorithm 1 a syzygy family for (g,h) is
{G(Ll,()) _ H(O’l’l)} — {_$3y3 +$4}.

In the original version of this example (example 4.7 in [2]) the
syzygy family was {—x2y> + 28, —23y3 + 24} instead. It should however
be noted (as proved in example 5.2, [2]) that the extra syzygy polynomial
—a5y3 + 25 SI-reduces to zero over {g,h}. Thus this extra polynomial
does not affect the final result of the SAGBI-Grébner basis computa-
tions. That the extra syzygy polynomial does not effect the further
computations is a consequence of Theorem 1.

References

[1] Evelyne Contejean and Hervé Devie. An efficient incremental algo-
rithm for solving systems of linear Diophantine equations. Inform.
and Comput., 113(1):143-172, 1994.

[2] J. Lyn Miller. Effective algorithms for intrinsically computing
SAGBI-Groébner bases in a polynomial ring over a field. In Grébner
bases and applications (Linz, 1998), volume 251 of London Math.
Soc. Lecture Note Ser., pages 421-433. Cambridge Univ. Press,
Cambridge, 1998.

[3] Dmitrii V. Pasechnik. On computing Hilbert bases via the Elliot-
MacMahon algorithm. Theoret. Comput. Sci., 263(1-2):37-46,
2001. Combinatorics and computer science (Palaiseau, 1997).

[4] Lorenzo Robbiano. On the theory of graded structures. J. Symbolic

Comput., 2(2):139-170, 1986.

Moss Sweedler. Ideal bases and valuation rings. Manuscript, 1988.

Hans Ofverbeck. HilbertSagbiSg, Maple packages for Hilbert,

SAGBI and SAGBI-Grébner basis calculations., 2005.

http://www.maths.lth.se/matematiklu/personal/hans/maple.

ENE

Hans (“)fverbeck7 Received December 9, 2005

Centre for Mathematical Sciences
Lund University

Box 118, SE-221 00 Lund
Sweden

E-mail: hans@Qmaths.lth.se

253

Computer Science Journal of Moldova, vol.13, no.3(39), 2005

A Deterministic and Polynomial Modified
Perceptron Algorithm

Olof Barr

Abstract

We construct a modified perceptron algorithm that is deter-
ministic, polynomial and also as fast as previous known algo-
rithms. The algorithm runs in time O(mn?lognlog(1/p)), where
m is the number of examples, n the number of dimensions and
p is approximately the size of the margin. We also construct a
non-deterministic modified perceptron algorithm running in time
O(mn?lognlog(1/p)).

1 A Deterministic and Polynomial Modified
Perceptron Algorithm

1.1 Historical and Technological Exposition

The Perceptron Algorithm was introduced by Rosenblatt in [12] and
has been well-studied by mathematicians and computer scientists since
then. For convenience, we will in this paper discuss the version of the
algorithm that, given a set of points (constraints) A = U;a; from R”
finds, if any, a normal z to a hyperplane through origo such that z-a; > 0
for every i. (Note that we do not have any zero rows in the matrix A).
This is so to say, a hyperplane through origo such that all points are
on the very same side of the hyperplane.
The original algorithm can easily be described as follows:

Algorithm 1.1 The Perceptron Algorithm

Input: A set of points (constraints) A = U;a; from R™.

Output: A normal z to a hyperplane such that z - a; > 0 for every
t, if there is such a solution.

(©2005 by 0. Barr

254

A Deterministic and Polynomial Modified ...

1. Let z=0.
2. If there is a point a; € A such that z - a; <0, then z — z + a;
3. Repeat step 2 until no such point is found and output z.

Obviously this algorithm will never halt if there is no solution to the
problem. On the other hand Novikoff proved that if there is a solution
to the problem, the algorithm will halt in a finite number of steps, even
if the number of constraints is infinite.

Theorem 1.1 The number of mistakes made by the on-line perceptron
algorithm, on a set A that has a solulion to the problem, is at most
(2R/v)?, where R = max ||a;|| and v is the size of the margin.

Now, since the margin can be any positive number close to zero, this
upper bound of the performance does not say very much. And even
though there are many results showing that the algorithm runs much
faster in the "usual" case, there are constructions of constraint sets
such that the behaviour of the algorithm is exponential in terms of the
number of constraints [2].

1.1.1 Linear Programs

The problem solved by this Perceptron Algorithm is the homogenized
form of a feasible standard form of a linear program: Find z such
that Az > 0 and = # 0. Here, A is the matrix with a; as row ¢ and
x = 27, where z is the normal of the hyperplane described above. This
problem is of great importance, since it solves maxc’z, Az < b, x>0
by iterative solving the homogenized version and performing a binary
search.

Due to the importance of the problem, many different methods have
been evolved to find solutions to it. To mention here, those are the
simplex algorithm, the interior point method, ellipsoid methods, the
perceptron algorithm and the modified perceptron algorithm.

255

O. Barr

1.1.2 The Modified Perceptron Algorithm

The first polynomial algorithm using the perceptron algorithm was cre-
ated by Dunagan and Vempala in [7]. Even though the algorithm they
constructed was not as fast as other algorithms mentioned above, it
must be said it was a break through for the Perceptron Algorithm.
After this result, the algorithm could not be counted out, it could be
competitive.

Algorithm 1.2 The Modified Perceptron Algorithm (Dunagan & Vem-

pala)
Input: An m X n matriz A.

Output: A point x such that Ax >0 and x # 0.

1. Let B=1, 0 =1/(32n).

2. (Perceptron)
(a) Let x be the origin in R™.

(b) Repeat at most 16n? times: If there exists a row a such that
a-xr<0, sel x =x+a.

Here a denotes the normalized vector a/||al|.
3. If Az > 0, then output Bz as a feasible solution and stop.

4. (Perceptron Improvement)
(a) Let x be a random unit vector in R™.

(b) Repeat at most (Inn)/o? times: If there exists a row a such
that a -z < —o, set x «— x — (a-x)a. If x =0, go back to step
(a). (This is to assure us of not having the vector x set to zero)

(c) If there still exists a row a such that a - < —o, restart at
step (a). (This takes care of the situation of a bad choice of the
randomly chosen vector x)

5. If Az > 0, then output Bx as a feasible solution and stop.

256

A Deterministic and Polynomial Modified ...

6. (Rescaling)
Set A «— A(I +zz") and B «— B(I + zz7).

7. Go back to step 2.

It is not evident that this algorithm will terminate. But Dunagan and
Vempala prove that the margin of the Linear Program will increase in
mean, when many rescalings are made inside the algorithm. This will
in turn make the margin so large such that the Perceptron part of the
algorithm will return a solution to the problem of the Linear Program.

Beside the size of the running time (O(mn*lognlog(1/p), where p
is approximately the size of margin «), the algorithm they presented
was not deterministic. This meant that the result was given in the
mentioned time with very high probability. This is bad, since exceeding
the specified time will not always imply that no solution exists.

Dunagan and Vempala put an open question whether or not there
was a deterministic version of their algorithm.

1.2 A Deterministic and Polynomial Modified Percep-
tron Algorithm

In this paper, we answer the above stated question in the affirmative.
Also, the constructed algorithm presented has the a running time a
factor O(n)faster than the one by Dunagan and Vempala. As a conse-
quence of the construction, we also get a non-deterministic algorithm
running a factor O(n?) faster than the algorithm constructed by Duna-
gan and Vempala.

1.2.1 How to Make it Deterministic

First of all we can conclude that it is due to the random choice of a
unit vector inside the algorithm that makes the algorithm of Dunagan
and Vempala a non-deterministic one. The question to put is if there
is a way of choosing appropriate vectors so that we can keep control of
the number of iterations being made inside the algorithm.

257

O. Barr

What the algorithm wants to choose is a unit vector that has an
inner product of at least 1/y/n with a feasible solution z to the posed
problem. But since we do not know a solution to the problem, we can
ask us if we can have a set V of vectors, where at least one vector
v € V has the mentioned property. The answer to this is positive.
V =U"{e;, —e;}, where U} ;{e;} constitutes an ON-basis for R", will
do according to the following proposition.

Proposition 1.1 Let V = U {e;, —e;}, where U] {e;} constitutes
an ON-basis for R™. Now, for every unit vector w € R™,

1
maxw - v > ——

veV - \/ﬁ

Proof: First assume that e; is the vector with a 1 in the ith coordinate
and zero elsewhere. Now let w = (wy,...,wy,). At least one w; must
have an absolute value of at least 1/y/n, otherwise ||w|| < 1. This yields
that there exists at least one vector v € V such that w-v > 1/y/n as
stated above. To generalize this statement for any ON-basis, we only
have to consider the rotation symmetry of R". g

To make the algorithm deterministic, we will now run the algorithm
in 2n parallel tracks. And instead of using the origin in step 2(a) and
a random unit vector in step 4(a), we will use vectors from our set
V' and update them for each iteration in the algorithm. Since one of
parallel tracks will come closer and closer to a solution for each round,
this specific track will terminate in the time mentioned above. But, we
are running 2n tracks, and the total running time will be a factor 2n
greater than before.

In practice, this is an advantage since the algorithm will tell us how
to make use of paralell processors in a practical situation, making the
algorithm fast when implemented.

1.2.2 How to Speed Up the Algorithm

In order to speed up the algorithm, a deep analysis of all estimates
done by Dunagan and Venpala has been done. As a result of this o can

258

A Deterministic and Polynomial Modified ...

be enlarged to 1/(32y/n) and the 16n? in step 2(b) can be reduced to
4n. These alterations will speed up the process with a factor of order

O(n). New estimates in the margin growth causes another factor of
order O(n).

1.3 The Deterministic Modified Perceptron Algorithm

Now, we are ready to go into details with the topic of this paper.

Below we can study the general structure of the algorithm, breaking
it up into smaller parts that will be presented further on. Important is
though that we are running the algorithm in 2n parallel tracks. This
does not imply that we have to run the algorithm on parallel processors,
only that we do each step for every single track before going to the next
step.

Algorithm 1.3 The Modified Perceptron Algorithm

Input: An m x n matriz A.

Output: A wvector x such that Ax > 0 and x # 0 or "No solution
erists”.

1. Initials
Choose R = n (the dimension of the Linear Program) and put

0=

32/
Let B=1 and V = U}_,{e;, —e;}, where U'_1{e;} constitutes an
ON-basis for R™,

2. Wiggle Phase

Let U = 0. For each vector v € V, run the Wiggle Algorithm,
collecting aoll returned corresponding vectors v in U.

V «—U.

3. Check for no solution

If V =0, then output "No solution exists" and stop.

259

O. Barr

/.

Note that there are more things to show than only to describe the
smaller algorithms used inside the larger structure. We have to show
that they work, to calculate the complexity and to prove that the main
algorithm always will return a correct answer in the time mentioned

Rescaling Phase Normalize every vector in V. That is, for every

v
veV, letv«— ol

For each vector v in'V (at most 2n), together with its correspond-

ing matrices A and B, run the Rescaling Algorithm.

Perceptron Phase

For each vector v € V, run the Perceptron Algorithm for at most

R rounds with v as the initial vector.

If no feasible solution was obtained in the last iteration of the
algorithm, scale every vector v € V' such that ||v|| = 1 and go back

to step 2.

above.
First we describe the Wiggle Algorithm:

Algorithm 1.4 Wiggle Algorithm

Input: An m X n matriz A, a vector v € R" and a set of vectors U.
Output: One of the following three: A solution x to Az > 0, an
updated vector v that will be put in U or the empty set) (also to be put

inU).

1.

If m < —0o for some row a € A,

then v «— v — (Lv) o
llall [

all -
Repeat step 1 at most (logn)/o? times.

If %2 > —0 for every row a € A, then U — U Uwv

llalllloll =

. If Av > 0, then output Bv as a feasible solution and stop.

260

A Deterministic and Polynomial Modified ...

This algorithm is shown in [5], to output a vector v in at most (logn)/o?
steps, if the input vector v satisfies v-z > 1/4/n, where z is a unit vector
that solves Az > 0. Thus, we have to insure us that at least one of our
starting vectors in V' does have this property. But this was shown in
the earlier proposition presented above.

Also we must calculate the complexity of running through the Wig-
gle Algorithm once:

Proposition 1.2 The number of iterations inside the Wiggle Algo-
rithm is of order O(mn?logn).

Proof: The inner loop of the algorithm requires at most one matrix-
vector multiplication, time O(mn), and a constant number of vector
manipulations, time O(n). This is repeated at most (logn)/o? =
322nlogn times. So, the overall time bound is O(mn?logn). O

The following rescaling procedure is a simple matrix-matrix multi-
plication, being of order O(n?).

Algorithm 1.5 Rescaling Phase
Input: a vector v and its
corresponding matrices A and B.
Quitput: rescaled matrices A and B.

LA = AT+ ™)

[[]

2. B B(I+ g’

The important thing to prove for this part, is that for at least one of
our 2n parallel processes, the matrices will be stretched in a direction
such that the margin increases in the new problem Ax > 0. The proof of
this follows substantially the proof in 7], but using some other indata.
The reason for letting p < 1/(2y/n) in the following theorem is that if
p would be larger, the algorithin will halt later on in the Perceptron
phase.

261

O. Barr

Theorem 1.2 Suppose p < 1/(2y/n) and o = 1/(32y/n). Let A’ be
obtained from A by one iteration of the algorithm (where the problem
is not solved). Let p' and p be the margins of the problems A’z > 0
and Ax > 0 respectively. Also assume that we are studying one of
those processes running parallel, where v -z > 1/y/n and z is a feasible
solution, of length one, to Az > 0. Then p' > (1+ £)p.

Proof: Let a;, i = 1,...,m be the rows of A at the beginning of some
iteration, for one of the parallel processes having v -z > 1/y/n. (Below
we drop the index 4, and usually denote a row a; only with a). Let z be
the unit vector satisfying p = min; II%LH -z, and let o; = HZ—” -v. After the
wiggle phase, we get a vector v such that ﬁ -v = og; > —o for every i.

As described in the algorithm, let A’ be the matrix obtained after
the rescaling step, i.e. a, = a;+k(a;-v)v. Finally define 2’ = z4a(z-v)v,
where

200+ 1 = py/n

or to put it another way
o = (pv/n — 1)/2.

Even though 2’ might not be an optimal choice, it is enough to consider

this one element to lower bound p’. We have p’ > min; ﬁ T

We will first prove that ”Z:” - 2/ cannot be too small.

ad mar T (gag - 0)v _ , lyap + (ag - 0)ollz + alz - v)o]
! = a a z =)
[a'|| HW + (W -0)| 1 +3(H%H)2

since the vector v is normalized before the rescaling is done. Now,
in the case of a positive oy,

p—l—oi(z-v)(1—|—2a)> 1—|—Ji(z-v)\/ﬁ> l1-0
= =Zp Z P 9
\/1+ 302 \/1+ 30?2 V1+ 302

262

A Deterministic and Polynomial Modified ...

where the last inequality follows from that (z -v) > 1/y/n and o; €
[—0,1], with some hard work using the method of Lagrange. On the
other hand, if 0; is negative we get that the expression is at least

31
32v/1 + 302’

Now we are about to bound ||2’| from above, and for convenience
we study the square of it, ||2’[|?>. We know that

121> = ||z + a(z - v)[|* = L+ (o + 2a) (v - 2)?
Inserting our known a = (py/n — 1)/2 we get that

7 9
||Z/H2=1+((Oz+1)2—1)(v~z)2gl—ﬁzE
since a + 1 < 3/4.

Using the identity
g

>1—-=

VITAT 2

for § € (—1,1), we find that the total estimate for the new margin is

i 5t5) (-8 ()20

when o; is positive. Otherwise, when o; is negative we get that

()6 (=)

This estimate will be enough to fulfill the demand we have on the
margin to increase with a certain proportion, such that we also guar-
antee a convergence in the case of the non-deterministic algorithm. For
further details, see [3] and [7]. O

Now we describe the classical Perceptron Algorithm, but reduced

to at most n steps, being an important component of the modified
algorithm.

263

O. Barr

Algorithm 1.6 Perceptron Algorithm
Input: A starting vector v from V.
Output: A feasible solution Bv or a new updated vector v.

1. If there is a row a in A such that v-a <0, then v — v+ a/|al.
2. If Av > 0, then output Bv as a feasible solution and stop.

3. Repeat the two steps above at most R = 4n times.

The behaviour of this algorithm is well-studied, and we know from, for
example, [6] that it produces a feasible solution if the problem has a
margin p of size at least 1/v/R = 1/(2y/n). Also we can conclude that:

Proposition 1.3 The number of iterations inside the Perceptron Al-
gorithm is of order O(mn?).

Proof: The algorithm will perform at most one matrix-vector multipli-
cation in its inner loop (made at time O(mn)) and a constant number
of vector manipulations (in time O(n)). This is done at most 2n times.
So we get O(mn?). O

Lemma 1.1 The number of times we repeat step 2-5 in Algorithm 1.1
is at most of order O(nlog(1/p)).

Proof: As we have seen above, at least one of our 2n parallel processes
will start with a vector v satisfying v - 2 > 1/4/n where z is a feasible
unit vector. So, after the wiggling phase, the resulting vector will be a
proper direction for rescaling, this enlarges the radius p with a factor
of size at least (14 1/6). But since the perceptron stage will terminate,
yielding a feasible solution if p > 1/(24/n), we know that our algorithm
will terminate after k proper rescalings when

AN
P 6) = 2vn
This yields that £ = O(log(1/p)) O

264

A Deterministic and Polynomial Modified ...

Summing up the information we have got, we get the complexity of
the algorithm in total.

Theorem 1.3 The modified Perceptron Algorithm returns an answer
in time O(mn3lognlog(1/p)).

Proof: The algorithm runs in 2n parallel processes. The wiggle algo-
rithm runs for at most 2!%nlogn times, each round taking time O(mn).
The rescale process takes O(n?) and the Perceptron algorithm runs for
at most n times, each round taking time O(mn). All these three stages
are repeated at most O(log(1/p)) times. So we get that the total time

0] <2nO <log (;)) (2"%mn*logn + O(n?) + mn2)> -

=0 <mn3 log n log <;>>

1.3.1 A Fast Non-Deterministic Polynomial Modified Per-
ceptron

The results in the previous section can be used to strengthen the results
made by Dunagan and Vempala in [7]. In the non-deterministic case
we are not longer in need for our 2n parallel processes anymore. Now,
taking away the condition about having a deterministic process, we can
speed it up a factor 2n.

In general, one could follow the proof made by Dunagan and Vem-
pala in [7] to prove the behaviour of the non-deterministic algorithm.
The only changes made are the size of R, o and k inside the algorithm.

But we do want to point out a statement made in the article: a
statement that says that the probability of two random unit vectors
have inner product at least 1/y/n is at least 1/8 can be shown by a
standard computation. The statement is true, but we have not found a
standard argument proving this statement. A detailed analysis can be

265

O. Barr

found in [3] showing that the probability is at least (1 — erf(1/v/2)/2 >
1/8 where erf(x) is the errorfunction

2 x
erf(z) = ﬁ/(] e~ dt.

Anyhow, we get the following:

Corollary 1.1 There is a polynomial non-deterministic modified per-
ceptron algorithm that terminates in time O(mn?lognlog(1/p)).

References

1]

2]

3]

[4]

[5]

(6]

7]

N. Alon and A. Naor, Approximating the Cut-Norm
via Grothendieck’s Inequality, submitted. Available at
http://www.math.tau.ac.il/ nogaa/PDFS /publications.html

M. Anthony and J. Shawe-Taylor, Using the Perceptron Algo-
rithm to Find Consistent Hypotheses Combinatorics, Probability
and Computing (1993) 2:pp. 385-387.

O. Barr and O. Wigelius, New FEstimates Correcting an FEarlier
Proof of the Perceptron Algorithm to be Polynomial, ISSN 1403-
9338, LUTFMA-5041-2004.

A. Blum and J. Dunagan, Smoothed Analysis of the Perceptron
Algorithm for Linear Programming, in SODA 02, 2002; 905-914.

A. Blum, A. Frieze, R. Kannan and S. Vempala, A Polynomial-
time Algorithm for Learning Noisy Linear Threshold Functions
Algorithmica, 22(1/2):35-52, 1997.

N. Cristianini and J. Shawe-Taylor, Support Vector Machines,
Cambridge, 2000.

J. Dunagan and S. Vempala, A Polynomial-time Rescaling Algo-
rithm for Solving Linear Programs, Microsoft Research, Redmond.

266

A Deterministic and Polynomial Modified ...

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

M. Grotschel, L. Lovasz and A. Schrijver, Geometric Algorithms
and Combinatorial Optimization, Springer Verlag, Berlin Heidel-
berg, 1988.

D. G. Luenberger, Linear and Nonlinear Programming, Addison-
Wesley, Reading, Massachusetts, 1984.

M. E. Muller, A Note on a Method for Generating Points Uniformly
on N-Dimensional Spheres Comm. Assoc. Comput. Mach.2, 19-20,
1959.

Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algo-
rithms in Convex Programming Studies in Applied Mathematics,
Vol. 13, Philadelphia, 1994.

F. Rosenblatt, Principles of Neurodynamics. Spartan Books, 1962.

N. Z. Shor, Minimization Methods for Non-Differentiable Func-
tions, Springer-Verlag, Berlin, Heidelberg, 1985.

D. Spielman and S. Teng, Smoothed Analysis of Termination of
Linear Programming Algorithms, in Mathematical Programming,
Series B, Vol. 97, 2003

D. Spielman and S. Teng, Smoothed Analysis: Why The Simplex
Algorithm Usually Takes Polynomial Time, in Proc. of the 33rd
ACM Symposium on the Theory of Computing,, 296-305, 2001.

Olof Barr, Received December 9, 2005

Centre for Mathematical Sciences
Lund University

Sweden

E-mail: barr@Qmaths.lth.se

267

Computer Science Journal of Moldova, vol.13, no.3(39), 2005

DDP-Based Ciphers: Differential Analysis of
SPECTR-H64

A.V. Bodrov, A.A. Moldovyan, P.A. Moldovyanu

Abstract

Use of data-dependent (DD) permutations (DDP) appears to
be very efficient while designing fast ciphers suitable for cheap
hardware implementation, few papers devoted to security analy-
sis of the DDP-based cryptosystems have been published though.
This paper presents results of differential cryptanalysis (DCA)
of the twelve-round cipher SPECTR-H64 which is one of the
first examples of the fast block cryptosystems using DDP as
cryptographic primitive. It has been shown that structure of
SPECTR-H64 suits well for consideration of the differential char-
acteristics. Experiments have confirmed the theoretic estima-
tions. Performed investigation has shown that SPECTR-H64 is
secure against DCA, some elements of this cipher can be im-
proved though. In order to make the hardware implementation
faster and cheaper a modified version of this cipher with eight
rounds is proposed.

Key words: Fast ciphers, hardware encryption, controlled
operations, data-dependent permutations, differential analysis

1 Introduction

Data encryption is widely used to solve different problems of the in-
formation security. This defines importance of the design of the ci-
phers suitable for cheap hardware implementation. Recently the con-
trolled operations (CO) has been proposed as an attractive crypto-
graphic primitive suitable for the design of such ciphers [1, 2]. One of
early applications of the CO relates to [1], where the key-dependent

(©2005 by A.V. Bodrov, A.A. Moldovyan, P.A. Moldovyanu

268

DDP-Based Ciphers: Differential Analysis of SPECTR-H64

substitution boxes are used while designing a block cipher. A class
of CO suitable for cryptographic applications is proposed in [2]. Con-
trolled permutations (CP) attract much attention of cryptographers,
since they can be implemented in fast and cheap hardware using per-
mutation networks (PN) developed and investigated previously [3-5].
The PN are well suited for cryptographic applications, since they allow
one to specify and perform permutations at the same time. A variant
of the symmetric cryptosystem based on PN and Boolean functions is
presented in [6]. Another cryptographic application of PN is presented
by the cipher ICE [7] in which a very simple PN is used to specify a
key-dependent permutation. In such applications of CP the permu-
tation on data bit strings is a linear operation. Such use of CP has
been shown [8] to be not very effective against differential cryptanal-
ysis (DCA), very large number of different bit permutations can be
specified though.

Efficiency of CO as cryptographic primitive crucially increases while
using CO as data-dependent (DD) operations (DDO). A particular kind
of CP represented by DD rotations (DDR) are successfully used in
cryptosystems RC5 [9], RC6 [10], and MARS [11]. In spite of the fact
that DDR contain few different realizable modifications they thwart
well DCA and linear cryptanalysis (LCA). Use of CP in the form of
DD permutations (DDP) appears to be very suitable to design fast
ciphers oriented to cheap hardware implementation [12]. The iterative
64-bit block cipher SPECTR-H64 represents an example of DDP-based
ciphers [13]. It is interesting that the round transformation of this
cipher is not involution, the same algorithm performs encryption and
decryption though. Since the DDP-based design is oriented to drastic
decrease of the hardware implementation cost, the security estimation
of the DDP-based ciphers is of the great importance. If the detailed
cryptanalysis show the DDP-based ciphers are secure, then we will have
actually a very efficient approach to embed fast encryption algorithm
in cheap hardware.

The present paper is one of the first ones devoted to the security
analysis of the DDP-based ciphers.

The paper is organized in the following way: In the second section

269

A.V. Bodrov, A.A. Moldovyan, P.A. Moldovyanu

we describe briefly the algorithm SPECTR-H64 paying attention to the
design of the operational boxes performing DDP. Section 3 considers
differential characteristics of the primitives used in SPECTR-H64 and
presents security analysis of this cipher and experimental results con-
firming our estimations. In section 4 we propose some improvements
allowing one to reduce the number of rounds from 12 to 8 that results
in the performance increase and hardware cost decrease.

Notation. Let {0,1}" be the set of all binary vectors U =
(u1,...,upn), where Vi € {1,..,n} u; € {0,1}. Let us denote U, =
(T1, 0 Tpy2) and Xy = (Tpjoq1s e Tn), Lo X = (X, Xy) or
X = (X1|Xn), where 7|7 denotes the concatenation operation. Let
e € {0,1} denote encryption (e = 0) or decryption (e = 1).

Let Y = X>>k denote cyclic rotation of the word X by k bits,
where Y = (y1,...,yn) is the output vector and Vi € {1,...,n — k} we
have y; = x4, and Vie{n —k+1,....,n} we have y; = z;1f_p.

Let XY denote bit-wise AND operation of the two vectors X and
Y: X,Y €{0,1}". Let @ denote the XOR operation.

2 Design of the block cipher SPECTR-HG64

2.1 General encryption scheme

SPECTR-H64 is a new 12-round block cipher with 64-bit input. The
general encryption scheme (Fig. 1) is defined by the following formulas:
C = Encr(M, K) and M = Decr(C, K), where M is the plaintext, C
is the ciphertext (M, C € {0,1}%!), K is the secret key (K € {0,1}256),
Encr is the encryption function, and Decr is the decryption function.
In the block cipher SPECTR-H64 the encryption and decryption func-
tions are described by formula

Y =F(X,Q"),
where Q(¢) =H(K, e) is the extended key, the last being a function of

the secret key K = (K1, Ko, ..., Kg), K; € {0,1}32 for i = 1,2,...,8, and
of the transformation mode parameter e (e=0 defines encryption, e=1

270

DDP-Based Ciphers: Differential Analysis of SPECTR-H64

defines decryption). We have X =M, for e=0 and X =C for e=1.
Extended key is represented as follows:

Q© =@Q,Q\,...0\, Q%)

where Q{Y,Q\ € {0,1}%2 and Vj =1,..,12 @\ € {0,1}1%. Each

round key Q' =(Q{", ..., Q*), where Va=1,...,6 Q' € {0,1}%2,
is represented as concatenation of six subkeys which are selected from
the set {K7, Ko, ..., Kg} depending on the number of the current round
and the value e. Output value Y is the ciphertext C in the encryption
mode or the plaintext M in the decryption mode. The algorithm (func-
tion F) is designed as sequence of the following procedures: 1) initial
transformation I'T, 2) 12 rounds with procedure Crypt, and 3) final
transformation F'T. For detailed description of the key scheduling and
IT and FT one can see [13]. In our analysis we consider the round keys
to be uniformly distributed random values. This makes our security
estimate to be valid in the case of the more strong key scheduling. We
assume also that IT and FT do not contribute significantly to security.

Let consider the jth encryption round and denote Q;e) = (A,B, A,
B', A", B"). The round transformation of SPECTR-H64 is denoted as
procedure Crypt shown in Fig. 2. This procedure has the form: R =
Crypt(R,L,A,B,A’",B', A", B"), where L,R,A,B,A",B',A",B" ¢
{0,1}32. The procedure Crypt uses the following operations: cyclic
rotation ”>>>” by fixed number of bits, XOR operation ”®”, non-
linear operation G, DDP operations P339 and P?’_Q}SO, and extension
operation E.

2.2 Non-linear operation G

Realization of the operation Y = G(X, A, B) is defined in the vector
form by the following expression:

Y=WyaeW, @ WA WoWsB & W3Ws @ WiB,

where binary vectors W; for 57 = 0,1,...,5 are expressed as fol-
lows: W(] =X = ($1,$2,...,$32), W1 == (1,!131,.I2,...,.Z31),...., WJ ==

271

A.V. Bodrov, A.A. Moldovyan, P.A. Moldovyanu

Figure 1. General structure of SPECTR-H64

(1,...,1, 21,29, ...,232—;). The ith output bit of the operation G is the
following Boolean function:

Yi = T; D xi—1 D Ti—20; D Ti—2Ti—5b; © T;i_3Ti_5 D T;—4b;,

where x_4 =2_3=2_9=2_1=x9=1.

2.3 CP-boxes P35 and P?,_Q}SO

The CP boxes P3y /g and P?Eso are built up from switching elements
Py/1 in accordance with the layered structure shown in Fig. 3. Each

272

DDP-Based Ciphers: Differential Analysis of SPECTR-H64

R
U l
E,p | > Piyo

U’ v J,B

L Eus 2 Piogo

—> Ry

Figure 2. Structure of the procedure Crypt

box Py is controlled by one bit v: y1 = z14, and y2 = z2_, where
(z1,22) is input and (y1,y2) is output. In all figures in this paper
the solid lines indicate data movement, while dotted lines indicate the
controlling bits. Layered CP boxes we shall denote as P, ,,, where n
corresponds to the input/output size in bits and m indicates the size of
the controlling input that is equal to the number of the used Py/;-boxes.
Performing a CP operation can be denoted as Y = P, /() (X), where
X is input vector, Y is output vector, and V is controlling vector. For
fixed value V' the CP box performs fixed permutation that is called CP
modification. Let indexing the elementary P, /;-boxes in a CP box P, /,
from left to right and from top to bottom. The CP-box P;/%n is called
inverse of Py, /p,-box, if for all V' the corresponding CP modifications
Py and Py, are mutually inverse [12).

Let given a CP box P, /,. Then it is easy to construct Pn_/lm by
changing the direction of the bits moving. We shall enumerate the

P, /1-boxes of some Pn_ﬁn—box from left to right and from bottom to

top. Thus, in both P, /,;, and Pn_/lm boxes the controlling bit v; controls
the jth P2/1-bOX.

273

A.V. Bodrov, A.A. Moldovyan, P.A. Moldovyanu

X X X3 X4 Xo1 Xn
e o L]
Vi Va V2
Py,
Fixed permutation 7T,

Vel Vui+2 Vn
. : : T e e e I :
vy v Yy v v Vv

Fixed permutation 7T,

Vin-ni2+1 Vin-ni2+2 Vi
21 2

e o o

Yy » Y3 Vs Yn-1 Yn

Figure 3. A CP box with layered structure

The structure of the boxes Psy /g0 and P:,’_Qiso is explained in Fig. 4-
6. The fixed permutational involution between the third and fourth
layers of the elementary boxes Py 1 in the Ps;/50-box is described as
follows:

(1)(2,9)(3,17)(4,25)(5)(6,13)(7,21)(8,29)(10) (11,18)
(12,26)(14)(15,22)(16,30)(19)(20,27)(23)(24,31)(28)(32) *

2.4 Extension box E

The extension box E is used to form a 80-bit controlling vector, given
the 32-bit input vector. The formal representation of the extension
transformation is: V' = (Vi|Va|W3|V4|V5) = E(U, A", B") = E4 5 (U),
where V € {0,1}%: V;, V5, V3, V4, Vs € {0,116, U, A", B’ € {0,1}%2.
Actually the vectors Vi, Vs, V3, Vy, V5 are determined according to the

274

DDP-Based Ciphers: Differential Analysis of SPECTR-H64

a) Y ¥ ¥ ¥ ¥
| }’2/1 ” Py || Py, ” Py | Vi

I L r
|_P2/1 || Py || Pon || Pon |V2

Py | PZ”. ” P2/1I | | Pan || Pan | V3
v vy 3

1i ¥ ¥ Yiv v Vv ¥

P4/4 | P2/1 || l)2/1 || P2/1 || PZ/l | Vs

| .P2/1.|| lP2/1l|| Py, || Py, | V,

b) |
|P2/1 “ Py, || Py, ” Pyi | Vi
Yy V Y Y VvV VY

Figure 4. Structure of the boxes Pg/15 (a) and Pg/lu (b)

formulas:
Vi=Uy Vo=71(U®A)w); Viz= 71"((U 57 Bl)hi);

Vi=m' (U B)); Vis=n((UA)),

where fixed permutations 7 and 7’ are the following: =(Z) =
zZ77NZz22 and 7'(Z) = Z775|Z7°. Table 1 specifies which bit
u; € U controls which Py/;-box in the PN is presenting the P3;/59-box.
Number ¢ is indicated in the position of the correspondent Py/;-box.
In other words this distribution table shows correspondence between
bits of the vector U and bits of the vector V. For example, v = uq7,
V9 = U18y...y V16 = U32, V17 = k’l@u%,..., V3p = kiGGBUQG, where kll,..., 116
are fixed bits (actually they are some bits of the key). Designed distri-
bution provides that each input bit is affected by five different bits of
U for all possible values U, A’, and B’.

275

A.V. Bodrov, A.A. Moldovyan, P.A. Moldovyanu

.« 17 24 25

T T R T AR TR A TR}

P8/12 P8/12 P8/12 P8/12 V,

|
|
|
:
L] Vs
g — i
|
|
|
|
|
|

4] %

Pys | { Pus] | Pau][Pus| [Pa]| Pus] [Pan|[Pau] '
f* vy Hs wov o #}6 VWYY VYV YV VY VY *3*2

17 24 25

Figure 5. Structure of the box P33 /g9

Table 1. Distribution of bits of the vector U

Vil 17| 18| 19| 20| 21| 22| 23| 24| 25| 26| 27| 28| 29| 30| 31| 32

Vo| 26| 27| 28| 29| 30| 31| 32| 25| 18| 19| 20| 21| 22| 23| 24| 17

Vs | 30| 31| 32| 25| 26| 27| 28| 29| 22| 23| 24| 17| 18| 19| 20| 21

Vi| 14| 15016|9 | 10|11 12| 13|6 |7 |8 |1 |2 |3 |4 |5

V5110111112113 14|15/ 16|9 |2 |3 |4 |5 |6 |7 |8 |1

3 Differential Analysis of SPECTR-HG64

3.1 Some properties of the controlled operations

Let A}V be the difference with arbitrary ¢ active (non-zero) bits corre-
sponding to the vector W. Let Ag);, . ;. be the difference with g active
bits and 41, ..., 4, be the numbers of digits corresponding to active bits.
Note that A; corresponds to one of the differences Ay, Ayj, ...y Aqjz0.
We shall also denote the difference A, at the input or output of the

operation F as Aqu or AqF, respectively.
Differential properties of the CP boxes with the given structure are
defined by properties of the elementary switching element. Using the

276

DDP-Based Ciphers: Differential Analysis of SPECTR-H64

1 8 9 ... 16 17 L. 24025

|
| .. !
| |
: |
: i» i
l |
N = .
1 3
| |
| |
| |
| |

_ -1 -1
Pg1z Py Py P8/12

y vy H v H H A2 HH HH H H H H "

Figure 6. Structure of the box P32/80

main properties of the last (see Fig. 7) it is easy to find characteristics
of the P35 /59-box.

Figure 8 illustrates the case when some difference with one active
bit AqL passes the left branch of the cryptoscheme. The difference AqL
can cause generation or annihilation of w = 1,2, 3 pairs of active bits
in the CP box. Let consider the P3j/go-box in right branch in the case

q = 1. The difference Af‘z.

AY or AY (depending on i) at the controlling input of Py, /50, i.e. one
active bit in the left subblock influences two or three switching elements
P,/; permuting four or six different bits of the right data subblock.

is transformed by the extension box into

Depending on value of the permuted bits and input difference AqR of
the Pso/50-box the output differences A’f with different number of
active bits can be formed by this CP box.

Avalanche effect corresponding to the operations G is defined by
its structure that provides each input bit influences several output bits
(except the 32nd input bit influences only the 32nd output bit). Table 3
presents the formulas describing avalanche caused by inverting the bit
[;. One can see that alteration of the input bit z;, where 3 < i <
27, causes deterministic alteration of two output bits y; and 3,41 and
probabilistic alteration of the output bits y;yo, Yi+3, Yita, Yi+s which
change with probability p = 0.5. Note that for + = 1,2 alteration

277

A.V. Bodrov, A.A. Moldovyan, P.A. Moldovyanu

a) A (4o) 0 A
(ST et anal =y e e atyat oy
21

Ty 0 >0/A0)=1 TTF plo Ao/AT)=2"

A"y AL (M)

b) A
v n ‘p(A’é* Ay AT y=2"

0[P, |PAT FN/AG)=1 B[P,

@) g @ A= O AT =2
A AL (Ah)

Figure 7. Properties of the elementary box Py

of x; causes deterministic alteration of three output bits y;, y;+1, and
yi+3. When passing through the operation G the difference Af‘ ; can

be transformed with certain probability in the output differences AS,
AG, .. AG.

3.2 Security of SPECTR-H64

Trying different attacks against SPECTR-H64 we have found that the
differential analysis is the most efficient. Our best variant of the DCA
corresponds to two-round characteristic with difference (Af, Af). The
difference passes the first round with probability 1 and after swap-
ping subblocks it transforms in (A¥ Af) (see Fig. 9). In the second
round the active bit passing through the left branch of cryptoscheme
can form at the output of the operation G the difference AE, where
g€{1,2,3,4,5,6}. Ounly differences with even number of active bits
contribute to the probability of the two-round iterative characteristic.
The most contributing are the differences ASZZ 41+ The most contribut-
ing mechanisms of the formation of the two-round characteristic belong

278

DDP-Based Ciphers: Differential Analysis of SPECTR-H64

v b)

c)
ws3
p(AX —AL /ALY =27(3)

p(AX—AY InE) =27(})

d)

2
p(A% —nh /0h) =27 2

Figure 8. Some properties of the CP box: a - notation of the general
case; b - zero difference passes the CP box; c - formation of two active
bits; d - annihilation of two active bits.

279

A.V. Bodrov, A.A. Moldovyan, P.A. Moldovyanu

Table 2. Change of output bits caused by single bit alteration (Az; = 1)
at input of the operation G

Expression Probability
Ay; = Ax; PAy—1 =1
Ayiy1 = Aw; PAyy=1 = 1
Ayito = Azi(aiys) PAyiyo=1 = 1/2
Ayiys = Aaf’i($i72) PAyiy3=1 = 1/2
Ayits = Azi(bits) DAy =1 = 1/2
Ayivs = Azi(Ti12 © Tits D bits) | pay, =1 =1/2

to Cases la, 1b, lc, 2a, 2b, 3a, 3b, 4a, and 4b, where i € {1,...,32},
described below.

Case la includes the following elementary events:

1) The difference ASZ ;41 1s formed at the output of the operation

1

G with probability p(Z A = py (ASZ H—I/Al\z)

2) The difference AQ‘; i1 1s formed at the output of the CP box P’
with probability p(l A+ _ py <A2P|; H—l/AO l).

3) The difference AF" is formed at the output of the CP box P” with
” PII

probability p; =277 = Pr (AOP /AO l), where z = 2, 3, depending on
i.

4) After XORing differences AQ\zz—i—l’ AQP\;',z'—i—l’
zero difference AOP at the input of the P*-box. It passes this box with

* P*
probability ps = Pr <AOP /AU l) =27~

One can denote Case la as set of the following events:

(2\zz+1/A1|z) < 2|“+1/A)
N8 fas) (a5 fa7).

280

11
and Af" we have

DDP-Based Ciphers: Differential Analysis of SPECTR-H64

Using this form of the represention one can describe other cases as
follows (Vi,t: te€{1,2,...,32}, t#4, and t#i+1):

Case 1b: (AS .1 /AT N

N (/a5)N (aF /ast) N (a8 /457)
Case I (AF,1 /AT N

N (A%" / AUPIL> M (A??"/ Ao l) (AP /0 z+1>
Case 2 (AS .1, /AT) N

(N) (O) <A0P*/A0PI).
Case 2b: (AS ., /AT N

N (o5/a0) N a8/ aT) 1 (a8 /237).
Case 3 (AS 4. /AT)N

(s (s 0o)
Case 3b: (A1 /AT N

(o)
Case 4 (AF:,1 /A%)N

(88 /a5 1 (85000/ AT) N (28" /2TE).
Case 4b: (A /AT N

281

A.V. Bodrov, A.A. Moldovyan, P.A. Moldovyanu

p=27 1AG
N Crypt

L
0

\ R

0 A1Ii it

U 1% (Bi+1)
Al A3 /p3
P/

, 60 l P
Vv P/

‘ E 3 | P=Pago 2lii+1

y

p(i,i+1) AP” w9 AR
L G 2 G E/ ..
Alli 6 2iitl —\ JL 0) 2lii+1

o ‘G N

y

o , pa=2"

AU// v/ 1

1 E g > P*=I;312/80
— 0

L Y
v A A

0 11i

:

Figure 9. Formation of the two-round characteristic

282

DDP-Based Ciphers: Differential Analysis of SPECTR-H64

(a8 /a5) N (a8 /85) N (a8 /2y,)

There are possible some other mechanisms contributing to the prob-
ability of the two-round characteristic and corresponding to generation
the differences A at the output of the operation G. Variants of the
formation of the two-round characteristics connected with these mech-
anisms we shall attribute to the Case 5. Besides, due to the use of the
mutually inverse CP boxes Py /g5 and P3_2}80 there are possible signifi-
cantly contributing cases when the box Psy/50 generates an additional
pair of active bits and the box Psé}so annihilates this pair of active bits.
Let attribute variants connected with this mechanism to Case 6.

Values pgj’t), péj’t), and pfl ’t), where j € {1,2,...,32}, can be easy
calculated using the structure of the box Py /g9 and distribution of the
controlling bits over elementary switching boxes Py (this distribution
is defined by Table 1 and the respective bit-rotation operation (7>
117 or 7> 177).

For each value i € {1, 2, ...,32} we have performed the statistic test
1,000 keys and 100,000 pairs of plaintexts” including 10% experiments
in order to determine the experimental probability p(@) that A(If passes
the right branch of the procedure Crypt in the case when in the left
data subblock we have the difference Aﬁi. Let s be the number of
such events. Then we have p() = 10735, We have also calculated
the probabilities p(* taking into account the mechanisms of the for-
mation of the two-round characteristic described above. For all ¢ the
theoretic values p® match sufficiently well the experimental ones)
(see Table 4) demonstrating that the most important mechanisms of
the formation of the two-round differential characteristic correspond
to Cases 1-6. The values p)* correspond to the modified version of
SPECTR-H64+ (see section 3.4).

Probability P(2) of the two-round characteristic can be calculated
using the following formula:

P2) =Y plp(i) = 1.15- 273,
i
where p(i) = 279 is the probability that after the first round the active

283

A.V. Bodrov, A.A. Moldovyan, P.A. Moldovyanu

Table 3. Comparison of the theoretic calculation with experiment

i 1 2 3 4 5 6
392 26 117 255 59 50
p@ [1.03-2718 [1.09.2722 | 1.23.2720 [1.34.2719 | 1.24.2-21 | 1.05.2-21
pW] 1.082719 [1.43.-272% | 1.35-2721 [1.9-2720 | 1.13.2721 [1.39-2722
pW* 1.25-272 [1.5-2739] 0942720 [0 1.25-2721 | 1.25.2721
i 7 8 9 10 11 12
| 399 205 679 99 117 388
P 1.05-2718 | 1.07.2719 | 1.78-2718 | 1.04.2720 [1.23.2720 | 1.02.2718
p™ 1132718 [1.6-2720 | 1.13-2718 [1.31.2721 | 1.36-27 21 | 1.56-27 19
pD* 0.94.2-20 [2-21 1.3-2720 [15.2720 | 15.2722 [221
i 13,14,15 | 16 17 18 19,20 21
10 467 54054 158196 0 238520
D10 1222718 [1112711 [1622710 | 0 1.22-279
p@D |0 1.09-2-18 | 2-11 1.5-2719 [0 1.25.279
pW* 0 0 0 0 0 0
i] 22,..,27 28 29 30 31 32
0 820 33 141 1901 0
pD 0 1.07-2717 [1.38-2722 [1.48.2720 [1.25-2716 | ¢
p 0 1.56-2718 [1.25.2721 [125.2720 [1.19.-2716 | ¢
p(D* 0 0 0 0 0 0

284

DDP-Based Ciphers: Differential Analysis of SPECTR-H64

bit moves to ith digit. Thus, the performed analysis has shown that
the 21st and the 18th digits contribute to P(2) about 88% and the 17th
digit contributes to P(2) about 12%. Contribution of other digits is
very small. Such strongly non-uniform dependence of p() on i is caused
by several lacks in the distribution Table 1, nevertheless the ten-round
and twelve-round variants of SPECTR-H64 are secure against DCA.
Indeed, the difference (A}, A) passes ten and twelve rounds with
probability P(10) ~ 27%* and P(12) ~ 1.2-2777 (for random cipher we
have P = 25.2761 = 2759 5 2-64 5 9=77)

3.3 Modified version SPECTR-H64-+

Differential analysis has shown that the structure of the extension box
(i.e. the table describing distribution of the bits of the left data sub-
block over elementary switching elements of the CP boxes) is a critical
part in the design of SPECTR-H64. It is easy to see that small changes
in the extension box can cause significant decrease or increase of the
probability of two-round characteristic. Taking into account the results
of DCA one can easy change positions of the 17th, 18th, and 21st bits
and obtain value P(2) < 2718, More accurate modification of the ex-
tension box shown in Table 4 gives P(2) ~ 0.92-2722, We shall denote
SPECTR-like cryptosystem with extension box described in Table 4 as
SPECTR-H64+.

For SPECTR-H64+ the most efficient differential characteristic is
the three-round one. This characteristic corresponds to the difference
(AF, Aﬁ32). The peculiarity of the three-round characteristic consists
in that the active bit spreads in the second and third rounds through
the 32nd digit in the left data subblock (in this case the active bit in the
left data subblock generates the single active bit at the output of the
operation G with probability 1). The formation of this characteristic
is shown in Fig. 10. This characteristic does not depend on small
modifications of the distribution table. The probability of the tree-
round characteristic is P(3) = P, Py Ps.

Probability P; corresponds to the event that after the first round
and swapping the data subblocks we have the difference (A1L|32, Al).

285

A.V. Bodrov, A.A. Moldovyan, P.A. Moldovyanu

40

AL ¢>_< 7%

1132

Figure 10. Formation of the three-round characteristic

286

DDP-Based Ciphers: Differential Analysis of SPECTR-H64

Table 4. Modified structure of the extension box

Vi| 21| 26|27 24| 28| 27| 23| 24| 30| 26| 32| 22| 24| 30| 28| 22
Vo| 18| 19| 17| 29| 25| 20| 22| 25| 18| 19| 31| 23| 31| 21| 32| 17
Vs | 28120 32|25]26|29|30|29|27|20|21|17] 18| 19| 31| 23
Va| 6 |7 |16|9 | 10|11 12| 13| 14|15|8 |1 |2 |3 |4 |5
Vs 1011112131415/ 4 |9 |2 |3 |16]5 |6 |7 |8 |1

Since we consider the case when the difference Aﬁ32 passes the right
branch of the first round, it should be taken into account that the
first active layer in P39 g0-box and the fifth active layer in P3_2}80—b0x
are controlled with the same controlling vector. Because of the last
fact and symmetry of these CP boxes for odd (even) i the difference

A% transforms into A% where j # i and j # i+ 1 (j # i — 1),

1|4 1]5°
with probability 275. The difference Aﬁi transforms into Aﬁi with
probability 27%. It never transforms into Aﬁi 41 for odd i and Aﬁi_l

for even 7. Thus we have P, = 274,

The probability P corresponds to the event that at the output of
the second round we have difference (Afm, Aﬁ32). One can calculate
P, as P, = 27 9P'P"P* where P', P", and P* are the probabilities of
the events that CP boxes P/, P”, and P*, respectively, do not generate
active bits. Coefficient 277 corresponds to the probability that the
box P* moves the active bit in the 32nd digit. It is easy to see that
P =pP*=23 P'=2"2 and P, = 2713

The probability Ps corresponds to the event that after the third
round and swapping the data subblocks we have the difference (A},
Aﬁ32). One can calculate P3 as P3 = 275P'P"P*, where 27° corre-
sponds to probability that at the output of the CP box P’ we have the
difference Aﬁl?a which annihilates after XOR-ing with output difference
of the operation G: Aﬂlzﬂ &) Aﬁ’w = Al. Using value Py = Py = 2713
one can calculate P(3) = 2.

Taking into account the probability of the three-round characteris-

287

A.V. Bodrov, A.A. Moldovyan, P.A. Moldovyanu

tic one can calculate that six-round SPECTR-H64+ is undistinguish-
able from a random cipher and conservatively estimate that eight round
SPECTR-H64+ is secure against DCA. Thus, due to optimization of
the E-box structure we have reduced the number of rounds from 12
to 8. This significantly reduces the hardware implementation cost and
increases performance.

3.4 Comments on other attacks

Our preliminary study of the security of SPECTR-H64 against LCA
has shown that structure of this cipher is also suitable for calculation of
the biases of the linear characteristics in the case of few active bits, such
characteristics having the largest values of the bias. Our best linear
characteristic corresponding to one round has the bias b(1) < 271, A
rough estimation of SPECTR-H64 and SPECTR-H64+ for six rounds
gives b(6) < 2°5(1) ~ 2791, Thus, these ciphers with six and more
rounds are undistinguishable from a random cipher with LCA.

High degree of the algebraic normal form and the complexity of the
Boolean functions describing round transformation of SPECTR-H64
prevent the interpolation and high order differential attacks. In spite
of the use of very simple key scheduling the described ciphers are secure
against slide attack due to non-periodic use of the round subkeys and
data-dependent subkey transformation. Truncated differentials attack
is prevented, since (1) the data block is transformed as a single unit and
(2) each bit of the controlling data subblock influences the selection of
the current permutation operation.

3.5 Comments on key scheduling

In the case when encryption and decryption are performed with the
same algorithms the direct use of subkeys of the secret key produces
the problem of weak and semi-weak keys, the portion of such keys
is very low though. It is evident that for SPECTR-H64 the key
K = (X, X, X, X, X, X, X, X) is a weak one (probability to select at
random one of such keys is 27!92). One can easy avoid problem of the
weak and semi-weak keys introducing minor modification of the initial

288

DDP-Based Ciphers: Differential Analysis of SPECTR-H64

and final transformations in SPECTR-H64. For example, to imple-
ment this one can perform two XOR operations: 1) between subkey
A’ used in the initial transformation and the parameter E' € {0,1}%4,
where Vi € {1,2,...,64} : e, = e, and 2) between subkey A” used
in the final transformation and the parameter E” € {0,1}%!, where
Vie {1,2,..,64} : e/ = e® 1. After this modification we have e-
dependent initial and final transformations: ¥ = IT(X, A’ ® E') and
Y = FT(X,A” @ E"). Another way to prevent weak keys is the use
of the rotation operation by j bits, where j is the number of the cur-
rent round, performed, for example, on the output of the operation G.
For majority of the fast implementations this requires no additional
hardware resources. Yet another way is the use of some simple key
processing, however this requires the use of some additional NAND
gates. The use of the simple e-dependent and r-dependent procedures
or operations in the ciphers with simple key scheduling appears to be a
preferable way to avoid weak and semi-weak keys. The CP boxes suite
well to the design of different kinds of the e-dependent permutations.

4 Conclusion

Investigating security of SPECTR-H64 we have shown that security
of the DDP-based ciphers depends significantly on the structure of the
extension box. The performed analysis of SPECTR-H64 and SPECTR-
H64+ has shown that variable bit permutations suite well for calcula-
tion of the differential and linear characteristics. Comparative analysis
of different attacks against SPECTR-H64 shows that DCA is the most
efficient one. Differential analysis presented in this paper allows one
to conclude that twelve-round SPECTR-H64 is secure, some optimiza-
tion of its structure is possible though. Optimized eight-round version
SPECTR-H64+ has been proposed. Thus, due to performed security
analysis we have found significant reserves in the encryption mechanism
of SPECTR-H64 which can be easy used to design new SPECTR-like
cryptosystems free of weak keys that will be faster and cheaper in hard-
ware.

289

A.V. Bodrov, A.A. Moldovyan, P.A. Moldovyanu

References

[1]

2]

3]

[4]

[5]

7]

8]

[9]

J.B. Kam and G.I. Davida. Structured design of substitution-
permutation encryption networks, IEEE Transactions on comput-
ers, vol. C-28, no 10 (1979), pp. 747-753.

B.V. Izotov, A.A. Moldovyan, and N.A. Moldovyan, Controlled
operations as a cryptographic primitive, Proceedings of the Inter-
national workshop, Methods, Models, and Architectures for Net-
work Security. Lect. Notes Comput. Sci. Berlin: Springer-Verlag,
vol. 2052 (2001), pp. 230-241.

V.E. Benes, Mathematical theory of connecting networks and tele-
phone trafic, Academic Press, New York, 1965.

A.A.Waksman. Permutation Network, Journal of the ACM, vol.
15, no 1 (1968), pp. 159-163.

D.S. Parker. Notes on shuffle/exchange-type switching networks,
IEEE Transactions on computers, vol. C-29, no 3 (1980), pp. 213~
223.

M. Portz, A generallized description of DES-based and Benes-
based permutation generators, Lect. Notes Comput. Sci. Berlin:
Springer-Verlag, vol. 718 (1992), pp. 397-409.

M. Kwan, The design of the ICE encryption algorithm, Proceed-
ings of the 4th International Workshop, Fast Software Encryption
- FSE ’97, Lect. Notes Comput. Sci. Berlin: Springer-Verlag, vol.
1267 (1997), pp. 69-82.

B. Van Rompay, L.R. Knudsen, and V. Rijmen, Differential crypt-
analysis of the ICE encryption algorithm, Proceedings of the 6th
International Workshop, Fast Software Encryption - FSE’98, Lect.
Notes Comput. Sci. Berlin: Springer-Verlag, vol. 1372 (1998), pp.
270-283.

R.L. Rivest, The RC5 Encryption Algorithm, Proceedings of the
2nd International Workshop, Fast Software Encryption - FSE’94,

290

DDP-Based Ciphers: Differential Analysis of SPECTR-H64

[10]

[11]

[12]

[13]

Lect. Notes Comput. Sci. Berlin: Springer-Verlag, vol. 1008
(1995), pp. 86-96.

R.L. Rivest, M.J.B. Robshaw, R. Sidney, and Y.L. Yin, The RC6
Block Cipher, 1st Advanced Encryption Standard Candidate Con-
ference Proceedings, Venture, California, Aug. 20-22, 1998.

C.Burwick, D.Coppersmith, E.D’Avingnon et al. MARS - a Can-
didate Cipher for AES, 1st AES Candidate Conference Proc., Ven-
ture, California, Aug. 20-22, 1998.

A.A. Moldovyan, N.A. Moldovyan, A cipher based on data-
dependent permutations. Journal of Cryptology. 2002, vol. 15, no.
1, pp.61-72.

N.D. Goots, A.A. Moldovyan, N.A. Moldovyan, Fast encryption
algorithm SPECTR-H6/, Proceedings of the International work-
shop "Methods, Models, and Architectures for Network Security”.
LNCS, Springer-Verlag, vol. 2052 (2001) pp. 275-286.

A.V. Bodrov, A.A. Moldovyan, P.A. Moldovyanu, Received August 1, 2005

Specialized Center of Program Systems ”SPECTR?”,
Kantemirovskaya, 10, St.Petersburg 197342, Russia
ph./fax.7-812-2453743.

E-mail: moldQcobra.ru

291

Computer Science Journal of Moldova, vol.13, no.3(39), 2005

Concept as a Generalization of Class and
Principles of the Concept-Oriented
Programming

Alexandr Savinov

Abstract

In the paper we describe a new construct which is referred
to as concept and a new concept-oriented approach to program-
ming. Concept generalizes conventional classes and consists of
two parts: an objects class and a reference class. Each concept
has a parent concept specified via inclusion relation. Instances
of reference class are passed by value and are intended to rep-
resent instances of child object classes. The main role of con-
cepts consists in indirecting object representation and access. In
concept-oriented programming it is assumed that a system con-
sists of (i) conventional target business methods (BMs), and (ii)
hidden representation and access (RA) methods. If conventional
classes are used to describe only BMs then concepts allow the
programmer to describe both types of functionality including its
hidden intermediate functions which are automatically executed
when objects are being accessed.

1 Introduction

1.1 Object Representation and Access

Let us consider a conventional method call: myRef.myMethod(). In
OOP it is assumed that a reference stores a target object identifier. It
is allocated and managed by routines which are not directly controlled
by the programmer. For example, memory handles are allocated by
the operating system and Java references are provided by the runtime

(©2005 by A. Savinov

292

Coucept as a Generalization of Class and ...

environment. In such an approach the programmer is unaware of how
objects are represented and what intermediate actions are performed
behind the scenes after a method is called and before its first state-
ment starts. The traditional object-oriented program functionality is
concentrated in class methods. It is important that any function exe-
cuted in the program is the result of some explicit method invocation
written by the programmer somewhere in the source code. And any
object that appears in the program is the result of an explicit instanti-
ation. The program itself does not create any data structures and does
not perform any actions for its internal use in order to maintain user
defined classes.

Such an approach to programming is known to be very simple and
efficient for many types of systems because the compiler or runtime
takes care of all the object representation and access issues. However,
this full automation has its price: the programmer is not able to influ-
ence the object representation and access mechanism and is restricted
by the standard functionality. Indeed, in many cases the following ques-
tion arises: What if I want to define my own format of references and
access procedures which are developed specially for my system? For ex-
ample, I might want to develop my own memory manager because the
objects I am going to use have a very special format and properties.
Or, in addition, my system might need to carry out special security
checks whenever its objects are accessed. In all these and many other
cases the standard mechanisms of representation and access could be
too restrictive. In particular, main memory is only one possible loca-
tion for objects. In general case they may well be stored in some cache,
on disk or on remote computer. Even if a memory manager is very
general it cannot cover all the needs of an arbitrary program.

A new approach to programming described in this paper assumes
that we can define our own format of references and our own access
procedures which are adapted to the purposes of each individual pro-
gram. Custom references could be defined as integers, text strings or a
combination of any other fields. And the corresponding access proce-
dures may include any code because it is written by the programmer.
In this case the representation and access mechanism is an integral

293

A. Savinov

part of the program it is written for. However, these custom references
and access procedures are not used by the programmer anywhere in
the source code. It is the task of the compiler or runtime environment
to activate them. Thus the method myRef .myMethod () does not start
immediately because it is necessary to resolve the reference and to find
the target object. In this case some intermediate procedures are im-
plicitly activated and this code (which is part of the program) executes
after the method call and before its first statement.

1.2 Two Types of Functionality

One of the main general assumptions of the new approach is that there
exist two types of functionality:

e business methods (BMs) which are defined in classes and used
explicitly in the program, and

e representation and access (RA) functionality constituting a sep-
arate cross-cutting concern and activated implicitly

Business methods or target methods are explicitly used by the pro-
grammer in order to access applied functionality of object classes in
the traditional OO manner independent of how they are represented
and accessed. BMs are precisely what OOP is designed for: we can
easily define classes (with reuse via inheritance) and then call their
object methods in the program. RA functions (or intermediate func-
tions) introduced and studied in this paper determine how objects are
represented and accessed independent of the target BM.

In the described approach we assume that a great deal of program
functionality is activated and executed when objects need to be repre-
sented and accessed. It is a kind of invisible matter that cross-cuts any
program because these functions are hidden, they are not called explic-
itly in the source code and they are executed behind the scenes. In other
words, we assume that such a simple line of code as myRef .myMethod ()
may activate rather complex intermediate functions which are invisible
in traditional programs. A general goal of the described approach to

294

Coucept as a Generalization of Class and ...

programming consists in making this hidden level of functionality an
integral part of the program. We need to legalize these functions be-
cause they cannot be qualified as something auxiliary while the facilities
provided by the standard runtime environments are rather limited for
contemporary programs. The thing is that in large program systems
RA functions account for most of the program complexity. This is why
the level of RA functions should be an integral part of the program
that has to be dealt with and developed for this very program.

If we represent a program as consisting of internal spaces (scopes,
containers, layers) where objects live then RA functions can be thought
of as concentrated on this space borders and automatically executed
whenever a process intersects a border on its way to the target object
(Fig. 1). Target BMs are executed when the process reaches the target
object. According to this analogy each method call is a sequence of
steps leading to the target object. (In contrast, in the conventional
programming a method call is viewed as only one step leading from
the source context to the target.) The target business method speci-
fied explicitly in the program is only the last step while intermediate
steps involve various RA functions which are hidden and are executed
seamlessly behind the scenes. In particular, in such a program source
code it would be impossible to find any explicit invocation of an in-
termediate method. The program might consist of a relatively small
number of explicit method calls but be rather complex because of the
hidden functionality.

start

. target objects

A intermediate
" contexts

= Incoming method = QOutgoing method

Figure 1. Intermediate borders possess important functions

295

A. Savinov

One of our main assumptions is that the automatically triggered
border processes account for a great deal (and even most) of the whole
program complexity and reflect specific properties of this program just
like its BMs. Hence the programmer needs to be able to describe these
functions as an integral part of the program. In other words, a program
has to consist not only of BMs (normal classes with their methods)
but also include facilities for describing space borders, how objects are
represented within particular subspaces and how they are accessed. In
such an approach even if a program has little or no BMs at all, it may
well be rather complex because of its internal space structure and RA
functions associated with space borders and automatically executed
when they are intersected by interacting processes.

1.3 Design Goals

It is very important that RA functionality is not associated with any
target class but instead, it scatters the whole program. However, it
is important that one RA mechanism be described in one place rather
than distributed all over the program. This criterion is formulated as
the following design goal:

DG1 [Modularization] Representation and access functions have to
be described in a modular manner.

This means that if there are two custom RA methods as part of the
program then they need to be described in two places. Then these RA
functions can be automatically and implicitly injected in all appropriate
points in the program where we find it necessary. For example, one
custom reference format with its associated resolution methods should
be described in one place.

Although RA functions are described in a modular manner we do
not want to use them explicitly in all points in the program where they
are appropriate. We want only to somehow specify those points so that
the compiler could inject the necessary code automatically. It is im-
portant that all the method calls are described as usual by specifying
a target object and some method. The compiler then uses declara-
tive properties of the target class in order to choose what intermediate

296

Coucept as a Generalization of Class and ...

actions to execute. However, in the source we do not see those interme-
diate actions because they are hidden. So the next design goal consists
in ability to make normal method calls:

DG2 [Transparency] It is an illusion of instant access. Method calls
are made as usual by specifying only a reference and a method without
any explicit indication of the type of intermediate actions.

A consequence of this principle is that the use of objects and their
BM does not change when we change the underlying RA mechanism.
For example, we may have a huge number of BM calls like ref1.m1 (),
ref2.m2(), ref3.m3() all over the program. In OOP all these objects
use one and the same default mechanism of RA. However, in our ap-
proach objects of different classes may use different and rather complex
RA mechanisms assigned to them (and described in this very program
in a modular way). In particular, ref1 might be identified by a primary
key and accessed via JDBC protocol, ref2 might be represented by an
absolute offset in the local heap while ref3 might be an object on the
moon represented via some Universe Unique Identifier and accessed
via ISS. The transparency of access guarantees that we do not need
to know how objects are represented in order to access their BM. We
retain an illusion of instant access when using objects and it is the task
of compiler, interpreter or an execution environment to activate all the
necessary RA functionality. If we change the way how our objects are
represented then the source code where they are used does not change.

It is very important that one and the same RA mechanism could
be used to serve many target classes in the program. For example,
if we develop a complex hierarchical persistent memory manager with
special access rules then it is very natural to use it for any class of
object in the program. Thus the following design goal makes sense:

DG3 [Reuse| Many target classes should be able to use one RA
mechanism.

Each target class in the program can be assigned some appropriate
RA mechanism. And even for individual uses of classes (instantiations)
it is desirable to be able to specify how this concrete object should be
represented and accessed. However, we want to do it in a declarative
manner rather than to control this at run-time. The compiler then

297

A. Savinov

uses the declarations in order to activate the necessary intermediate
functionality:

DG4 [Declarativity] RA mechanism should be assigned to target
classes in a declarative manner.

Assume that there is a module with intermediate RA functionality
and a module with target BMs. We want these business methods be
accessed via this intermediate functions. There is a design alternative:
either (i) to indicate the target module in the context of the RA module,
or vice versa (ii) to indicate the RA mechanism in the context of the
target module. In other words, who knows whom: intermediate module
knows target module, or vice versa? We choose the second alternative:

DGS5 [Direction] RA modules do not know target classes they serve
and it is each individual target class that should declare what kind of
RA mechanism it needs.

The two types of functionality found in any system differ logically
rather than physically. This means that they always exist together,
cross-cut each other and in most cases cannot be separated. One and
the same piece of code can be considered an intermediate function that
is activated automatically and a normal business method that is used
explicitly. In particular, we do not have one programming construct for
business methods and another construct for intermediate functionality.
We want to have one mechanism that is able to express both types of
functionality:

DG6 [Integrity] A module should not have one dedicated purpose
but rather it should be able to express both types of functionality
simultaneously.

Assume that for our target classes we specified some concrete RA
mechanism. The functions of this RA module are then used before the
target methods will be executed. However, in many cases we want this
very RA mechanism to rely on some other RA mechanism. In this case
the structure of indirection will be nested.

DGY7 [Hierarchy] RA functionality described in a modular manner
should have a hierarchical structure where parent modules play a role of
intermediate layers for their child modules which play a role of targets.

298

Coucept as a Generalization of Class and ...

1.4 Concept

In this paper we propose a new approach, called concept-oriented pro-
gramming (COP), which is based on a special construct called concept.
Shortly, concept is a combination of one object class and one reference
class. Object class is the conventional class as defined in OOP. What
is new in this approach is the reference class which complements the
object class just like RA functions complement BMs. By combining ob-
ject class and reference class we make it possible to describe two sides of
any system: explicit BMs and implicit RA functions. Object class and
reference class have one name (concept name) and may define methods
with the same name (any method has a definition within object class
and within reference class). Instances of object class, called objects,
are passed by reference. Instances of reference class, called references,
are passed by value. Informally, the main idea is that references passed
by value can represent objects.

Coucepts are organized into a hierarchy by using inclusion relation,
i.e. any concept has one parent concept. Concepts cannot exist outside
an inclusion hierarchy — if a concept does not have a parent concept
then it is assumed to be some default concept. Concept hierarchy plays
an important role because its structure determines how objects in the
program are represented and accessed. In other words, the format
of reference and intermediate procedures used to access some target
object depend on its position in the concept inclusion hierarchy. Parent
concept always indirects representation and access to its child concepts.
In order to specify what RA mechanism to use we simply need to
include a concept into an appropriate parent concept.

Oune concept can be interpreted as a space with its own border
(Fig. 1). If a concept is included into another concept then it is placed
within this parent space. The external space is the root of the concept
hierarchy while internal spaces represent its child concepts. Instances of
the root concept are represented and accessed directly using some built-
in RA mechanism (as if they were OOP objects). Instances of internal
concepts are represented and accessed using their parent concepts.

Informally, the difference between classes and concepts is analogous

299

A. Savinov

to that between real numbers and complex numbers. Class reflects only
an explicit (real) side of software system while concept is able to de-
scribe both sides by combining in one construct one object class and
one reference class. Reference class of concept describes invisible hid-
den functionality of a software system like imaginable part of complex
numbers. In the same way as complex numbers are much more ex-
pressive and natural for mathematical tasks, concept is much more
expressive and natural for computer programming.

2 Concept Inclusion Hierarchy

Concept is a generalization of conventional classes defined as a pro-
gram element consisting of two parts: (i) an object class with instances
called objects and passed by references, and (ii) a reference class with
instances called references and passed by value. For example, Table
1 defines one concept with name MyConcept. Its object class has one
field referencing an instance of OtherConcept (line 2), and reference
class has one integer field (line 8) intended for identifying objects of
other classes. Both object class and reference class define myMethod
with different implementations (lines 3 and 9). Note that we do not
know here what is the format of field ref (line 2) because it depends on
how OtherConcept is declared. It is a general principle of the concept-
oriented programming that reference format and access methods de-
pend on the target class declaration. This reference could have any
structure appropriate for our task or we might choose to use the de-
fault reference format (OOP approach). However, we can call methods
of OtherConcept (line 4) as usual and all resolution and other inter-
mediate functions will be executed automatically.

Table 1. Concept is a pair of object class and reference class.

00 concept MyConcept in ParentConcept
01 class { // Object class
02 OtherConcept ref; // Indirect reference

300

Coucept as a Generalization of Class and ...

03 int myMethod() { // Incoming method
04 return ref.getInt();

05 b

06 }

07 reference { // Reference class

08 int id; // Identifies other objects
09 int myMethod() { // Outgoing method
10 return context.myMethod() + 5;

11 }

12 }

Objects are never accessible directly because they permanently exist
in some kind of storage. Their position is physical in the sense that
it cannot be changed. Objects are accessed via their representatives
in the form of references. References on the other hand do not have a
permanent position in space. They are travelling elements that move
between different points by value. This property reflects the existence
of two realities: (i) storage with its address system as a set of permanent
addresses, and (ii) a system of information transfer which allows for
interactions to be propagated all over the space of objects.

References are elements that exist and can be manipulated only by
value. In other words, references do not have their own references and
hence represent themselves. References are coordinates in some space
or elements of an address system where the address system is a space of
objects. For any space to exist two elements are needed: this space itself
as an object and its addresses as references. Normally for one object
there exist many references. An object can be thought of as a scope
or space instance while its references are concrete addresses within this
space. A concept then is aimed at describing both space structure
and its address structure. In other words, object class describes how
the space will look like and how it will function while reference class
describes the format of addresses within this space. For example, a
country could be viewed as a space where addresses are city names. Its
concept then could be written as follows:

301

A. Savinov

00 concept Country
01 class { String countryDescription; }
02 reference { String cityName; }

This concept means that there can be many country objects each
having some description. A country then defines its own internal coor-
dinate or address system in reference class. According to this address
system any object within one country is identified via some unique city
name. Note that here we do not know how countries themselves are
identified because concepts define only their internal coordinate system
for which they are responsible.

Another example is where we define our own memory manager
where objects of any type can be stored. Concepts allow us to de-
fine such a storage at high level as an abstract space with its own name
and then take responsibility for everything that happens inside this
space. In particular, we can define characteristics of the space itself
in object class and its address format in reference class. The current
number of internal objects is kept in a field of the concept object class.
Internal objects themselves are identified by unique integers:

00 concept MemoryManager
01 class { int objectCount; }
02 reference { int objectId; }

We may have many memory managers and then many objects of
this concept will be created. Each such memory manager may create
many references each of them representing some internal object. Note
again that references are not objects because they are passed by value
and hence do not have a position in space (their own reference). In
contrast, objects have a position in space which is represented by some
reference.

Using concepts we can define the format of objects and format of
references that are intended to represent objects. Then the question
is how do we determine what references represent what objects? For
example, what references are used to represent country objects and
what references are used to represent memory manager objects in the
previous examples?

302

Coucept as a Generalization of Class and ...

In order to solve this problem we use the mechanism of inclusion re-
lation which means that each concept is included into a parent concept.
Thus the whole program is not simply a number of concepts but rather
a hierarchy of concepts. In this hierarchy any concept has one parent
(explicitly defined) and a number of children (not directly known in
its declaration). For example, in Table 1 MyConcept is included into
ParentConcept using keyword ’in’.

In order to determine what references represent what objects we use
the following principle: an object is represented by its parent concept
reference. This means that there is one-to-one correspondence between
this concept objects and its parent concept references. Since references
are passed by value they can be used to represent objects in other
points of space. For example, in Table 1 all instances of MyConcept
will be represented by instances of ParentConcept reference class. If
we want countries to be represented by their country code then concept
Country has to be included into the following parent concept:

00 concept CountryCode

01 class { int countryCount; }

02 reference { String countryCode; }
03 concept Country in CountryCode;

This means that all country objects will be represented by means of
the corresponding country code. For example, variables that reference
Germany will store "DE” as their values. This value will be passed
to methods as parameters, returned from methods and stored in local
variables and object fields. If we want our memory managers to be
represented by long integers then concept MemoryManager has to be
included into a parent concept with the long integer field in its reference
class.

An advantage of such an approach is that the programmer specifies
and can change the parent concept declaratively. For example, if we
want to make a remote memory manager then we simply change its par-
ent concept which supports remote references. The memory manager
itself as well as all its uses in the program need not to be changed.

It is assumed that there exists one root concept provided by the

303

A. Savinov

compiler, interpreter or an execution environment while all program
concepts defined by the programmer are directly or indirectly included
into the root. There may be more than one root in the case the compiler
provides several standard RA mechanisms, for example, local heap,
global heap, managed objects, persistent objects, remote objects etc.
Classes and concepts included into the root concept are represented
using the system default RA mechanism like memory handles or Java
references. Conventional OO program can be viewed as consisting of
classes included into the root concept. The root is normally a static
concept with a single well known object instance. This is why it does
not need a (dynamic) reference and needs not to be resolved. If a
parent concept is not specified then by convention it is assumed to be
the root concept. The compiler however needs to know what default
RA mechanism to use for the root. For example, if we want all objects
to be finally represented by memory handles allocated by the operating
system in global heap then the root concept will look as follows:

00 concept Root
01 class { AllocationTable allocationTable; }
02 reference { long memoryHandle; }

This system level concept defines its reference class as consisting of
one long field and hence all objects at this level will be represented by
unique long integers. For example, assume that our custom memory
manager is included into such a root concept:

00 concept MemoryManager in Root
01 class { Map objectIdToMemoryHandle; }
02 reference { int objectId; }

This concept will represent all objects of its child concepts by means
of integer identifiers. However, each such custom identifier will replace
some root memory handle. The mapping between integer identifiers
and long memory handles is stored in the field of this concept object
class. If we want our target objects to be managed by this custom
memory manager then we simply include the target class or concept
into it:

304

Coucept as a Generalization of Class and ...

class MyTargetClass in MemoryMangaer

After that all instances of this child target class will be represented
indirectly by means of its parent references (integer identifiers). Let us
counsider the following code:

00 void myMethod(MyTargetClass param) {
01 param.targetMethod () ;
02 1}

Here the method parameter has a class that is included into the
custom memory manager concept. Hence this parameter will be passed
by using integer values. If we need to call some method of this object
then this reference (integer value) has to be resolved into its own parent
reference. In our case the integer value has to be resolved into some
long integer which is a memory handle allocated by the root. The root
reference is then used to make a direct method invocation. After that
the access procedure returns.

An object (instance of this concept object class) where a reference
was created is referred to as context. Context and its references belong
to the same concept. We say that references exist in some context
and one context may create many references. The current context is
available in the program via keyword ’context’. For example, line 10
in Table 1 accesses a method defined in the object class of this concept
(line 3).

If an object class is static with no instances (with a single instance
known at compile time) then such a concept is also said to be static.
If a concept has no reference class defined then it is a normal class.

A typical object run-time structure is shown in Fig. 2. Dashed
boxes represent contexts (objects of concepts) while black boxes are
references within these contexts. The outer most dashed box is the
root context, i.e., an instance of the root concept (such as the system
default memory manager). The root context has several root references
which represent internal child contexts at different depth (not neces-
sarily direct children). In this example there are two child contexts
belonging to one concept MemoryManager. (In general case there are

305

A. Savinov

many child concepts each crating many instances.) Thus there exist
two memory managers each managing its own set of objects. For exam-
ple, the first memory manager allocated two integer references in order
to represent two internal objects. However, these internal objects have
their own internal objects and so on.

|
Il
gl Il B! B |l
! || |
! || I
p—) |[p— — | p— p—
|__J|]|||__J |__J||| 1 i
______ | | | |_______1|
______________ T S M I T A
=== replaces = reference
—» Tepresents i_____lJ context (object)

Figure 2. Context structure

It is important that any reference (black rectangle) replaces some
parent reference (denoted by upward dot line pointing to a replaced
parent reference). At the same time a reference represents some child
object (denoted by downward line pointing to represented child object).
In both cases these relationships are not necessarily direct. That is, a

306

Coucept as a Generalization of Class and ...

reference may replace a parent reference of higher order including some
root reference. And a reference may represent a child object of higher
order including some target object.

3 A Sequence of Access

3.1 Reference Substitution and Resolution

The system root concept provides default format for object references
which are used to directly represent and access all objects in the pro-
gram. Here direct RA does not mean that the objects will be really
accessed instantly. Rather, by direct access we mean that the program-
mer is not able to influence this level of RA functionality. For example,
we say that Java references provide direct access because the program-
mer is unaware of the underlying RA mechanism which actually can
be rather complex. Even physical memory addresses do not provide
the ultimate direct access because they are processed at hardware level
and each access requires a number of hardware clock cycles. However,
in a program we can assume that such hardware addresses are used for
direct access because all the program objects are resolved into them.
Oune important use of concepts counsists in indirecting object rep-
resentation and access in the program by describing custom format of
references and custom access procedures. Program objects are still rep-
resented by the root references however these root references are not
stored and passed anywhere in the program as representatives. Instead,
objects are represented by means of custom references which replace
the corresponding root references. Since concepts are organized into a
hierarchy, the reference substitution has a nested nature. This means
that a child reference replaces some parent reference which in turn re-
places its own parent reference and so on till the root which provides
direct access to the target object. For example, a street within a city
might define its own local notation in order to identify houses. How-
ever, in order for the basic access mechanism to work we need to map
these local identifiers into the parent city-level identification format.
Thus each street-level local identifier will replace some city-level parent

307

A. Savinov

identifier for a house. The same substitution mechanism can be used
in custom memory managers which can introduce its own local format
for object identification. However, these local identifiers replace parent
system-level identifiers. Each memory manager is then responsible for
storing this mapping and resolving its identifiers.

Table 2. Reference resolution.

00 concept A in Root
01 class { static Map map; }

02 reference {

03 int id;

04 void continue() {

05 Object o = context.map.get(id);
06 o.continue();

o7 }

08 }

09 concept B in A
10 class { static Map map; }

11 reference {

12 String id;

13 void continue() {

14 A a = context.map.get(id);
15 a.continue();

16 }

17 }

For example, suppose that we want to develop a mechanism for rep-
resenting our program objects by means of integer values (that replace
the system default references). This means that all variables, method
parameters, return values and object fields will store integers for those
objects rather than the default references. These integer references will
live in their own context which is included into the root context. In

308

Coucept as a Generalization of Class and ...

Table 2 such a mechanism is described as concept A (line 0-8). Its ref-
erence class has only one integer field (line 3) that is used to identify
child objects. Thus if we include any class or concept into A then all
its instances will be represented by integers, which will be passed by
value as the object representatives. It is important that these integers
will replace parent references. In Table 2 integer references of concept
A replace references provided by Root which have unknown format be-
cause they are provided by the compiler. For example, in Java integer
reference of concept A would replace Java references.

i Direct call of target BM
Ine A

Root context | ref Roa

line 14 reference A is resolved to Root (line 4)

Context A ref A |
reference B is resolved to A (line 13)

=

ContextB| refB |

red
Start of resolution
Figure 3. A sequence of reference resolution

Such a substitution is shown in Fig. 3 where the root context has
one reference which directly represents some target object in a child
context. However, instead of this root reference the compiler will use its
substitute of integer type created in context A. Thus the root reference
is actually not used anywhere in the program. If we declare a new child
concept B and include it into A (line 9 in Table 2) then the substitution
will have a nested character. Concept B uses text strings to identify its
child objects, that is, any child object will have a text string assigned
to it, which is unique within this context. This text string replaces
some parent reference of integer type which in turn replaces some root
reference providing a direct access to the target object. This hierarchy
can be developed further by defining new concepts and including them
into the existing ones. The main idea however remains the same: any

309

A. Savinov

child object will be automatically represented by its parent concept
reference which replaces some root reference.

It should be noted that it is not necessary that a reference replaces
its direct parent reference. In particular, a reference can replace its root
reference. For example, in Table 2 and Fig. 3 concept B might well
be designed in such a way that string identifiers replace root references
(rather than integers of concept A which then replace root references).
It is important also that reference substitution is performed and makes
sense within some concrete context only. In particular, the context
stores all the information that is necessary to resolve indirect references
into their parent counterparts. In Table 2 such information is stored
in a field of the concept object class (lines 1 and 10 for concepts A and
B, respectively).

Councept hierarchy is intended to describe a reference substitution
order where child references replace their parent references. In this
way the programmer can describe internal space with its own local co-
ordinate system that indirects the parent coordinate system. However,
one of the design goals of the concept-oriented approach is that this
indirection mechanism has to be transparent when it is used (DG2). In
other words, when we use our target objects we do not need to know
how they are represented and what is necessary to do in order to ac-
cess them. In particular, we do not need to know the format of their
references and how these references are resolved. For example, if we
want objects of class C to be represented by text strings then we include
it into concept B. After that we use objects of class C as usual and it
is the parent concept that is responsible for the resolution of custom
references.

The mechanism of reference resolution is implemented at the level
of each concept that defines its own references. Thus each concept
that defines its references which replace parent references is also re-
sponsible for their resolution whenever some target object needs to be
accessed. Such a resolution is implemented in the special method of
reference class called continue (lines 4 and 13 in Table 2). The role
of this method consists in providing a door or portal between level.
In this sense it is not a normal method in the sense of object-oriented

310

Coucept as a Generalization of Class and ...

programming but rather a mechanism for border intersection and con-
text change. It is declared as a method because its implementation is
provided by the programmer who decides what should happen when
a process intersects this border (not necessarily only reference resolu-
tion). The continuation method takes no parameters and returns no
value. It is applied to a parent reference in order to continue the current
process in the parent context.

Whenever an indirectly represented object is going to be accessed,
its reference is automatically and transparently resolved by the contin-
uation method. Reference resolution (continuation) method is applied
to an instance of reference class and executes in the context of its object
class. For example, continuation method of reference A executes in the
context of an object of class A while continuation method of reference
B executes in the context of some object of class B. Let us assume that
class MyTargetClass is included into concept B and then its business
method targetMethod is called from somewhere in the program:

00 MyTargetClass in B {

01 void targetMethod() { ... }

02 }

03

04 void myMethod(MyTargetClass param) {
05 param.targetMethod () ;

06 }

Notice again that when we call the target method (line 5 above) we
do not know how this object is represented and how it will be accessed.
It is the task of compiler to find all the parent concept and use their
functionality to organize the resolution procedure. In our example the
target object is included into concept B and hence it will be represented
by a text string. When a method of this object is invoked the compiler
needs to resolve this text string into the corresponding root reference
and then make a direct method call. Thus the compiler applies contin-
uation method of reference B to the reference representing the target
object (start of resolution in Fig. 3). The continuation method (lines
13-16 in Table 2) has to decide how to resolve this reference (text

311

A. Savinov

string). In our example, it restores the replaced parent reference given
the value of this reference using information from the context (line 14).
When the parent reference is restored it simply passes the control by
invoking the parent continuation method (line 15). This means that
the process intersects the border and proceeds in the parent space (in
concept A). Continuation method of reference A is implemented in a
similar manner. Its task counsists in restoring a root reference given
some integer value as a key. When the root reference is found it again
proceeds by invoking the parent continuation method (line 6). How-
ever, in this case it is a root reference and hence its implementation is
provided by the compiler. We do not know what concretely happens
in the root continuation method however its task consists in calling the
target business method (direct call of target BM in Fig- 4). It is possi-
ble now to make a direct call because the object reference is completely
resolved and this is precisely what happens when we call a method in
OOP. When the target method finishes the whole procedure returns
and the continuation method can execute some clean up procedures.

It should be noted that the continuation method is provided by the
programmer and can use any resolution strategy or include any other
necessary code. It is important only that the compiler will follow the
councrete sequence of steps when an object is going to be accessed. In
particular, the continuation method may include more complex logic
then simply object resolution. Its general purpose counsists in providing
a mechanism for border intersection and code that will trigger auto-
matically whenever a process wants to intersect this border. This is
precisely the code that is hidden in the conventional object-oriented
programming.

3.2 Context Resolution

In the previous section we described how references are resolved in con-
tinuation method using information from the current context. However,
one problem is that contexts in most cases are not static. Rather, they
are normal objects with their own references as shown in Fig. 2. For
example, when an integer reference is being resolved we need to ac-

312

Coucept as a Generalization of Class and ...

cess information from its memory manager which itself is represented
by its parent reference. In particular, lines 5 and 14 (Table 2) cannot
be directly executed because each context is represented by its parent
reference (just like any other object).

An important conclusion is that it is not enough to store only an
object parent reference as has been described in the previous section.
For complete representation it is necessary to store also references to all
the parent contexts of the target object. For example, it is not enough
to store only a street name because it is specified relative to its city
(context) which in turn is specified relative to its country and so on till
the root context (which is static).

Such a hierarchical approach to object representation is imple-
mented via the mechanism of complex references. A complex refer-
ence is a sequence of several reference segments. Each segment is an
instance of one reference class. The very first (high) segment is of
root type and represents the first context within the root where all
child objects live. The next segment is of child concept type and so
on till the target class. For example, in Table 2 a target object of
MyTargetClass included in concept B would be represented by three
segments: high root segment representing context A, middle segment
of integer type representing child context B, and low string segment
representing the target object. Such a reference might be equal to
<0x123, 10, "objectUniqueName"> where 0x123 is the value of the
root (system default) reference, 10 is the value of reference A and
"objectUniqueName" is the value of reference B.

What happeuns if we get a reference of target class MyTargetClass
and then call some its method ¢.myMethod()? In the previous section
we described this process as a resolution of the target reference into
the corresponding root reference using information in the intermediate
contexts. However, now our object is represented by three segments
rather than only one low segment. The first two segments represent
the two intermediate contexts. Omne approach solving this problem
consists in resolving these intermediate contexts each time we need to
access them from the child context. However, this technique is rather
inefficient because context is supposed to be used very intensively. An

313

A. Savinov

alternative approach consists in changing the sequence of access. Now
high segments are resolved before low segments and the result of the
resolution is accessible from all child contexts. In other words, the
procedure described in the previous section is repeated for each segment
of the complex reference starting from the high segment and ending
with the last low segment representing the target object. The main
advantage is that parent contexts are guaranteed to be resolved and
directly accessible from any child context.

In our example shown in Table 2 the compiler determines that the
target object of MyTargetClass has three parent concepts and hence is
represented by three segments. Although only the last segment repre-
sents the target object, in order to resolve it, we need its two intermedi-
ate segments. So the compiler in this situation starts from resolving the
very first (high) segment. It is however of the root class and hence is
already in the default system format that can be used for direct access.
On the second step the compiler resolves the second integer segment
of concept A. When this segment is resolved, the corresponding root
reference represents the next child context. After that the next string
segment is resolved into the root reference which represents the target
object.

Table 3. A sequence of access.

01 concept A in Root
02 class {

03 Map map;

04 void continue() { // Incoming method

05 continue(); // Outgoing (reference) method
06 }

07 }

08 reference {

09 int id;

10 void continue() {

11 Object o = context.map.get(id);

314

Coucept as a Generalization of Class and ...

12 o.continue();
13 }

14 }

15

16 cconcept B in A

17 class {

18 Map map;

19 void continue() { // Incoming method
20 continue(); // Outgoing (reference) method
21 }

22 }

23 reference {

24 String id;

25 void continue() {

26 A a = context.map.get(id);

27 a.continue();

28 }

29 }

Such a sequence of access (from high to low segment) is supported
by a special method of object class called continue. Note that this
method has the same name as the method of reference class. In other
words, each concept has two continuation methods: one defined in
reference class used to resolve one segment (described in the previous
section), and another defined in object class used to enter just resolved
context. (The same is true for any other method of concept.) Object
continuation method takes no parameters and returns no value (line
4 and 19 in Table 3). It is called after this object is resolved and is
going to be accessed, that is, after the border intersection. Using this
continuation method the process enters the scope of the object after its
parent reference is resolved. In contrast, reference continuation method
(line 10 and 25 in Table 3) is applied to reference and its role consists in
resolving it to a system default reference that represents a child object
and can be used for direct access.

A generic sequence of access using two continuation methods is

315

A. Savinov

shown in Fig. 4. A target object of class C is represented by three
segments 1, 2 and 3 created in contexts Root, A and B respectively.
After entering the root context it is necessary to resolve segment 1
which represents the next context. However, it is already resolved
because all root references (1, 4 and 6 in this example) are direct and
have system default type. Therefore we follow a dash line and enter
the child context A using its continuation method (line 4 in Table 3 and
thick arrow in Fig. 4).

3 space border crossmg paints

Root context | (1) /lx (4)) (5) /I, y

Context A | @ H g 2 |
Ve
Context B ~{ .
| { 3),j = |ncoming method

=

' = Qutgoing method

Object C

Figure 4. A sequence of context resolution

This method does nothing in our example and simply proceeds by
resolving its own reference (line 5 and double arrow from 2 to 4). Root
reference 4 is a direct representation of the next child context B so we
again follow a dash line and get into the context B using its object
continuation method (line 19 and thick line). Here we need to resolve
the last segment 3 by applying continuation method of its reference
(called from line 20 and defined in line 25). This method resolves
reference 3 to reference 5 of its parent concept A using information in
the context (line 26) and then calls the parent resolution method (line
27) which resolves 5 to root reference 6 in the same way. Thus reference
6 is a direct representation of the target object and we can enter its

316

Coucept as a Generalization of Class and ...

scope and call its business method specified in the source access request.
Note that the sequence (reference 3, double arrow, reference 5, double
arrow, reference 6) is the resolution process described in the previous
section, which uses reference continuation method.

3.3 Dual Methods

In the previous sections we mentioned that both reference class and ob-
ject class of concept may define a method with the same name. How-
ever, in the concept-oriented program a method is invoked by using
only its main name with no indication whether it belongs to a refer-
ence class or an object class. Then the following question arises: which
of two versions has to be executed? One example has been considered
in the previous section. The special continuation method defined by
the programmer and used by the compiler to organize transparent ac-
cess is defined both in reference class and object class. The reference
continuation method is used to resolve the current reference while the
object continuation method is executed when the process enters the
current context. It is also possible to define any normal method of
a concept as consisting of two parts: one within reference class and
the other within object class. Methods of object class are referred to
as incoming because they are visible from outside and are executed
when any process enters this object scope (double line arrow in Fig.
5). Objects of reference class are referred to as outgoing because they
are visible from inside and are called when this object is used by its
child objects (thick arrow in Fig. 5). For example, MyConcept in Table
1 has incoming method (line 3) and outgoing method (line 9) which
have the same name.

One principle of the concept-oriented programming is that function-
ality is concentrated on space borders and is automatically triggered
whenever a process intersects it. The idea of dual methods is that we
want to separate this functionality depending on the direction in which
the process intersects the border. At the same time we want to have
only one method name for both functions. This allows us to call object
methods by specifying as usual only its method name while one of two

317

A. Savinov

versions will be automatically chosen depending on the relative posi-
tion of the source context. If we are calling the target object method
from outside then one version will be executed. If the method is called
from inside then the other version will be executed.

Using concept inclusion hierarchy this principle means that one of
two versions will be chosen depending on whether the target object
method is called from some its child object (inside) or from any other
object. Thus any object defines a border or scope and if a method call
comes from the side of its child object (lower part in Fig. 5) then the
version defined in reference class is executed. If a method call comes
from the side of its parent object (upper part in Fig. 5) then the version
defined in the object class will be executed. However, in the source
context the method call looks the same. We say that if an object is not
yet reached and its reference is not resolved then the process is outside.
As soon as the object reference is resolved the process intersects the
border and gets inside this scope.

object methods
1 One context (white)

has many
W ﬁ ﬁ references (black)

reference methods

Figure 5. Object methods and reference methods of concepts

Another important idea behind dual methods is that applying a
method to a reference is not considered a specification of concrete code
to be executed. Methods in the concept-oriented programming are
thought of as symbolic names for doors in space borders. Each inter-
mediate border (concept) can define several doors with their symbolic
names and one universal door via continuation method. Each door has
two directions, name and code assigned to it. This code will be auto-
matically executed whenever an access request with this method name
intersects it. Thus method invocation in COP is a way to specify a
door through which it is necessary to go rather than a concrete action

318

Coucept as a Generalization of Class and ...

or code. Reference in this case contains a path to the target.
Below some other properties and uses of dual methods are de-
scribed:

e Object methods are called from parent objects (from outside)
while reference methods are called from child object (from inside).

e Object method is called after complete resolution of its parent
reference, i.e., it is the first method to be executed after this
object reference has been completely resolved. Entering object
method means intersecting this object border.

e Object methods serve external objects while reference methods
serve internal (child) objects.

e Object method can delegate or forward its task to its internal
object and all requests to child objects pass through the parent
objects. This is analogous to intercepting methods of extensions
by base objects in OOP.

e Reference method implements functionality exposed to its child
objects. This is analogous to implementing methods of extensions
using base methods.

e An object accepts method calls from outside using methods of
object class and then serves its child objects by providing methods
of reference class.

One of the most important mechanisms that can be implemented
using dual methods is life-cycle management. At least two functions
are needed to implement this mechanism:

e object initialization/clean up, and
e reference initialization/clean up

Object initialization method is normally called constructor while
object clean up procedure is called destructor. Reference initialization

319

A. Savinov

and clean up procedures do not have their own conventional names be-
cause this mechanism is not part of OOP, which provides RA function-
ality as a default mechanism. In the concept-oriented programming
both types of life-cycle management methods are equally important:
object creation/deletion and reference creation/deletion. In this situa-
tion dual methods are precisely what we need to implement this mech-
anism. Namely, each object class has methods create and delete
which are responsible for construction and destruction (initialization
and cleaning up). On the other hand, each reference class has the
same pair of methods (line 6, 22 for creation and 11, 27 for deletion
in Table 4) that are responsible for reference allocation and deletion.
The reference creation method is applied to a new (empty) instance of
reference class. After return this reference has to contain some correct
value identifying the child object for which it has been created.

Object creation and deletion follow the standard sequence of access
described in the previous section (Fig. 4). An example of reference
creation and deletion is shown in Table 4 (object creation is a con-
structor which simply initializes object fields). Just like the method
of continuation, creation and deletion methods take no parameters
and return no values. Assume that the MyTargetClass is included
into concept B and we create its instance as follows: MyTargetClass
target.create(). This statement is equivalent to the conventional
MyTargetClass target = new MyTargetClass(). Variable target
will contain a reference of parent concept B, i.e., a string identifier as
last segment. In order to initialize this reference the compiler will ap-
ply creation method of B (line 22). This method will generate a unique
string in order to identify new object in the current context (line 23).
Then it allocates a parent reference and calls the same method of cre-
ation to initialize this new empty reference (line 24). Finally the cre-
ation method remembers an association between this id and the parent
reference within the current context (line 25). This information can be
then used whenever this object needs to be accessed, for example, from
reference continuation method.

Line 24 is a reference creation method which is applied to empty
reference of concept A. It is implemented in the same way. First, it

320

Coucept as a Generalization of Class and ...

generates a unique integer (line 7), then it creates a parent reference
(line 8) and finally it remembers an association between them in the
current context (line 9). Line 8 is the most important because here
we create a root reference which directly represents the target object
being created. When line 8 is being executed the target object is really
created at the system level. It is precisely the moment when the target
object constructor (its object creation method) is called. Notice that if
it were a normal business method call then at this moment the compiler
would call the target object method. So the target object constructor
plays the role of normal business method because it is the last method
that is executed in the sequence of access. It is important that object
constructor is executed after its root reference has been created and
before the creation procedure returns. In other words, lines 9 and 25
are executed after the target object constructor.

Reference deletion is performed analogously. If we need to
delete an object then deletion method is applied to its reference:
target.delete(). If the reference consists of several segments then
they need to be resolved as usual starting from high segment and end-
ing with the last low segment which represents the target object. When
the last segment (concept B) is reached, its reference deletion method
is called (line 27 in Table 4). Here we resolve this reference and find its
parent reference of concept A (line 28). Then this parent reference is
deleted by calling the same deletion method of parent concept (line 29).
And finally information about this identifier and the parent reference
is deleted from the context (line 30). After that this reference is invalid
and cannot be used to access the target object. Line 29 is a call of the
parent deletion method (line 11) which works similarly. Line 13 is the
most important here because it is where the root reference and hence
the target object is really deleted (after its destructor).

Table 4. Creation and deletion.

01 concept A in Root
02 class { static Map map; }

321

A. Savinov

03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

reference {
int id;
void continue() { ... }
void create() {
id = context.getUniquelnteger();
Object o.create();
context.map.add(id, o);
}
void delete() {
Object o = context.map.get(id);
Object o.delete();
context.map.remove (id) ;
}
}

concept B in A

class { static Map map; }
reference {
String id;
void continue() { ... }
void create() {
id = context.getUniqueString();
A a.create();
context.map.add(id, a);
}
void delete() {
A a = context.map.get(id);
A a.delete();
context.map.remove (id) ;
}
}

322

Coucept as a Generalization of Class and ...

4 Uses of Concepts

4.1 Concept as a Generalized Class

Coucept as a programming construct is a pair of one object class and
one reference class with special responsibilities described in the previ-
ous sections. In such a form it is a rather general instrument that has
many possible uses. In other words, concept can be applied in very
different forms in very different programming languages depending on
the goals. One possible application of concepts is interpreting them as
a generalized class. The idea is that the conventional object-oriented
programming languages can be then used as usual except that concepts
are used instead of classes. Concept inclusion is interpreted as a gener-
alized inheritance. Notice that if all concepts have only an object class
with empty reference class then we get the conventional object-oriented
case.

Oune important new property of the concept-oriented approach is
that each intermediate object in the hierarchy has its own reference
and life-cycle. In contrast, in OOP an object has always only one
reference independent of the number of its base objects. For example,
if class Circle inherits class Figure then in OOP all instances of class
Circle will have a reference which is also valid for its base object
of class Figure. In COP in general case it is not so. For example,
if concept Figure is included into concept Panel then all panels will
have their own unique references which are independent of references
allocated for figures. For each panel identified by some reference there
can be many figures with their own references allocated by its parent
panel. Within one concrete panel, figure objects are identified by their
short (local) references while outside in global scope figures need to
be identified by their long references consisting of two segments. In
larger scope we might need even more segments. For example, if panels
are included into windows then each figure reference consists of three
segments starting from window reference.

Internal objects have also their own independent life-cycle. We can
create and delete internal objects independent of their parent objects.
In OOP it is not so, and creating/deleting an object means creat-

323

A. Savinov

ing/deleting all instances starting from the root class and ending with
the last extension. Independent life-cycle is maintained by means of
dual creation and deletion methods. If a concept is being developed to
maintain its internal coordinate system then it should define the cor-
responding methods for reference creation and deletion that will serve
its child objects. Then its child objects will have references allocated
by the parent which will be also responsible for their resolution via
reference continuation method.

In the concept-oriented programming the role of concepts changes
significantly with respect to the role of classes. The main role of base
classes is object and functionality reuse. This means that base classes
are developed as pieces of generic functionality that can be then in-
herited and extended from child classes. The main role of concept in
COP cousists in implementing a scope or space border with associated
functionality. Then any object that is created within this concept in-
herits this behaviour and can use it at run time. Objects are created
and function within a hierarchical space which determines many their
properties. In OOP it is done statically at compile time while in COP
this inheritance of behaviour and influence of context is performed dy-
namically at run time. As a scope or space border any concept has
to behave like an intermediate environment rather than an end point
in OOP. The main goal of such an environment consists in processing
incoming and outgoing access requests (method calls). For example,
a concept might accept an incoming request from outside in its ob-
ject method and after some processing continue its execution in a child
object (delegation):

00 concept Intermediate
01 class {

02 int total=0;

03 int requestCount=0;

04 void someMethod(int amount) {
05 total += amount;

06 requestCount++;

07 continue() ;

08 requestCount—-;

324

Coucept as a Generalization of Class and ...

09 }
10 }
11 reference { ... }

Here we count the number of method calls which are currently be-
ing processed in variable requestCount (line 3) and also sum up all
the method parameters in variable total (line 2). Both variables are
stored in the current context (object class) so we always know how
many internal objects are being currently accessed via this method
(door in the border). Additionally we can determine the sum of all
parameters passed to this method. Line 7 is where we pass this re-
quest to the internal object for additional processing that is specific
to the extension. Here we clearly see that this method implements an
intermediate functionality that is however activated automatically.

4.2 Concept as an Active Namespace

Counventional namespaces are static and passive constructs that extend
class naming system. One interesting use of concepts consists in in-
terpreting concept hierarchy (without target classes) as an active and
dynamic naming system. In contrast to conventional namespaces which
are processed at compile time, active namespaces implemented via con-
cepts exist at run-time. The main idea of this mechanism is that there
exist two roles of concepts: concepts as target classes, and concepts
as namespaces. The former role has been considered in the previous
section while in this section we consider how concepts can be used as
active namespaces. For simplicity we will assume that target concepts
are normal classes (without reference class and other specific features of
concepts). Any target class is included into some active namespace de-
scribed as a concept. However, in contrast to conventional namespaces
this effectively changes their behaviour at run-time because access to
all class instances is intercepted and indirected by its parent names-
paces. Classes included into Root namespace will be accessed directly
without any intervention while each internal namespace will add its
own level of indirection and its own intermediate functionality.

The easiest way to implement active namespaces consists in using

325

A. Savinov

static concepts where object class has only static members and hence
does not produce run-time instances. In this case each namespace
can be declared as one reference class with static members belonging
to object class and non-static members belonging to reference class.
For example, in Table 5 we declare namespace Persistent (line 0).
Its static fields (lines 1) belong to object class while all other (non-
static) members belong to reference class. Any target object with the
class included in Persistent namespace will be identified by a unique
integer value which is supposed to correspond to this object primary
key in a database. Continuation method of this namespace (line 4) is
a reference method. Its task counsists in transforming this primary key
into the target object root reference. It has to load the target object
from the database before it can be accessed (line 4) and freeing this
object after the access has been finished (line 6).

Table 5. An example of active namespace.

00 namespace Persistent in Root {

01 static Map map; // Static member (object class)
02 int primaryKey; // Dynamic members (reference class)
03 void continue() {

04 Object o = context.restore(primaryKey);

05 o.continue();

06 context.free(primaryKey, o);

07 }

08 1

09

10 «class C in Persistent {

11 void create() { ... } // Constructor

12 void delete() { ... } // Destructor

13 }

Using the mechanism of active namespaces the programming is re-
duced to designing the structure of namespace and then including tar-
get classes into them. The namespace structure accounts for a great

326

Coucept as a Generalization of Class and ...

deal of the program functionality however its functions are used implic-
itly. A target class may change its behaviour depending on its parent
namespace.

4.3 Applications of Concepts

Concepts are useful in applications with complex structure character-
ized by a great deal of intermediate functionality cross-cutting the
whole system. This includes the following technologies and mecha-
nisms:

Access interception. Frequently we need to perform some actions
before the target object is reached. This can be done by defining an
object class method of parent concept which then will intercept all
calls. If it is necessary to intercept all calls then we define object class
continuation method.

Security and object protection. Before an internal child object is
reached we would like to perform some security checks. This can be
done in object methods of parent concepts.

Persistence. Before a target internal object can be accessed it might
need to be loaded from persistent storage or activated in some other
way. This can be done in object class methods as well as in the con-
tinuation method of reference.

Debugging, tracing and logging. Incoming methods can be used for
auxiliary purposes such as controlling access to objects. We can de-
fine special concepts in order to control access to internal classes by
intercepting specified method calls.

Internal services. Each object may define service functions to be
used exclusively from inside by internal objects by means of its outgoing
methods. If classes are included into such concepts then they can use
these services which are not visible from outside.

Memory and life-cycle management. We can use this mechanism to
implement custom memory managers. For example, it might be neces-
sary to create an efficient memory manager for special types of objects
like a hierarchical buffer or a local heap. Persistent storage can also be
viewed as a special type of memory manager.

327

A. Savinov

Layered structure of containers. Concepts effectively define space
borders and serve as run-time containers serving their internal child
objects. Such containers are environments for their objects providing
all the necessary services including life-cycle management.

Remote objects. This mechanism is very suitable for implementing
network protocols and remote method invocation mechanisms. Con-
cept can be responsible for network communication and reference reso-
lution. Its incoming methods accept remote calls while outgoing meth-
ods provide local services for internal objects as a local context.

Protocol stacks. The hierarchical structure of concepts can be used
to implement the mechanism of protocol stack which is especially useful
for distributed systems. In this case a reference class describes a packet
header with information about the target object position. A complex
reference is viewed as a nested structure of packet headers. The first
high segment of the complex reference is the first header of the external
packet. The body of this packet starts from the second segment of
the reference and so on. Each intermediate segment (internal packet
header) represents one intermediate context. Concepts allow us to
create custom protocol stack for each individual program and then use
it transparently.

Lazy creation and deletion. Here object reference is initialized with-
out the real object creation. For example, we could simply generate
a unique text string as object reference and exit. And only when this
object is really accessed (and we cannot resolve the string identifier)
the continuation method performs the rest of the creation procedure.

Transactionality. It is convenient to develop concepts which are re-
spousible for performing operations with internal objects as one trans-
action. In particular, such a concept will automatically and transpar-
ently begin a transaction for each incoming access request and end this
transaction after the access is finished.

Synchronization and multi-threading. Concepts can be used to im-
plement a complex mechanism of synchronized access to some internal
resources. For example, such a concept can guarantee that only one
process accesses one object. It will store a list of objects being cur-
rently accessed as well as a queue for processes waiting at the border

328

Coucept as a Generalization of Class and ...

(in front of the door).

5 Related Work

An approach described in this paper is being developed within a new
paradigm which covers several branches in computer science including
programming, data modelling [1,2,3] and system design. The concept-
oriented paradigm is based on several general principles that distinguish
it from the currently existing theories and approaches. In the context of
programming the most important concept-oriented assumption is that
system functionality is concentrated on space borders. In contrast,
in object-oriented paradigm it is assumed that most of functionality is
concentrated in objects themselves. Concept as the main programming
counstruct allows the programmer to describe effectively not only what
happens in objects but simultaneously what happens when they are
being accessed.

The concept-oriented programming can be considered a continua-
tion of a very general and deep principle of Separation of Concerns
formulated by Dijkstra [4]. The main idea of this principle is that any
problem or system functionality can be viewed from different points
of views or concerns. One specific feature of our approach is that we
distinguish two main concerns any program counsists of: BMs and RA.
Currently there exist different techniques for separating business meth-
ods from representation and access functionality but they can be broken
into two main categories: methods based on dedicated middleware and
approaches based on programming languages.

The idea of middleware-based approaches consists in creating spe-
cial software and hardware environments where a conventional program
will run. Such an environment offers a number of functions that are
intended to support custom RA functionality. This special environ-
ment can exist and be accessible to running programs in very different
forms, for example, as part of an operating system, an object container,
a service, a dynamically or statically linked library etc. However, the
main property of this approach is that the programming language re-
mains the same while the support is provided by developers of the

329

A. Savinov

middleware. In particular, it is not easy to develop a new custom en-
vironment or adapt the existing environment to the purposes of each
concrete program.

Oune wide-spread class of middleware is techniques for remote pro-
cedure calls. Examples of such middleware platforms are CORBA and
RMI/EJB [5,6]. Such an environment provides facilities for creating re-
mote references and then making transparent method calls. Although
such an approach provides much more flexibility in comparison with the
manual remote method invocation, they still have serious limitations.
First of all we are not able to change the format of remote references
and the underlying invocation protocol. Such middleware platforms
may fit well to the purposes of one system but may be inappropriate
for another system. Their adaptation possibilities are very limited and
such an environment is separated from the rest of the program.

A more flexible approach to separating two concerns consists in us-
ing reflective environments and metaobject protocols [7,8,9]. The idea
of this approach consists in providing a mechanism for changing the
behavior of the language from this very language. Normally program-
ming languages are defined in such a way that their behavior cannot be
changed. In particular, we cannot change how objects are represented
and accessed because it is defined at the level of the language envi-
ronment. The reflective approach allows the programmer to change
this environment and to influence its behavior. Such an approach can
be viewed as an intermediate between middleware and programming
languages because on one hand the programming language (reflective)
environment is separated from the language itself like in middleware
approaches. On the other hand, the programming language has special
constructs for influencing and changing the environment where it will
run.

In the approaches based on programming languages an environment
is created within the language itself and using this very language. In
other words, the program is responsible for creating and maintaining
its own run-time environment. The functionality, which is normally
implemented in some standard middleware, is now an integral part of
the program written in the same programming language as the rest of

330

Coucept as a Generalization of Class and ...

the system.

One wide-spread technique to automating intermediate RA func-
tions consists in using static or dynamic proxies [10]. Proxy is a special
class that emulates an interface of the corresponding target class but
inserts some intermediate functionality. These intermediate functions
of the proxy class are called before target methods and hence they ef-
fectively intercept all target object method invocations. The trick here
consists in using proxy class instead of the target class. Thus it is not a
real interception but rather a normal sequence of method calls. In other
words, in the source context a reference to the proxy instance is created
and hence its methods are called when it is used. Then it is the task
of the proxy to decide what to do if some its method has been called.
Normally, after some processing the corresponding target method is
called. One disadvantage of this approach is that it requires significant
manual support and is not very general. It is more a special technique
or programming pattern rather than a programming paradigm. Here
are other disadvantages of this approach:

e If a target class changes we need to manually change its proxy
class.

e For each target class we need to develop its own proxy while in
many cases proxy functions are rather general and can be used
by many target classes.

e It is difficult to impose behaviour in a nested manner (creating a
proxy for proxy).

e It is difficult to develop custom references which are stored by
value instead of native references.

An interesting solution to the problem of developing custom ref-
erences and intermediate behaviour consists in using smart pointers
in C++ [11]. However, it is also a specific technique rather than a
general programming approach. A more general solution consists in
using the mechanism of annotations. The idea of this approach (called
attribute-oriented programming) consists in marking places in code

331

A. Savinov

where some intervention is needed by special tags. Other related ap-
proaches that can be used to automate intermediate RA functionality
are mixins [12,13], subject oriented programming [14] and multidimen-
sional separation of concerns [15]. All these methods allow the pro-
grammer to specify how behavioural granules (concerns) have to be
distributed throughout the system.

Probably the most interesting approach to solving the problem of
separation of concerns is aspect-oriented programming (AOP) [16]. As-
pects describe intermediate functionality (and data) injected into the
points in the program which are specified by means of regular expres-
sion. Thus aspect can be viewed as a special programming construct
that modularize intermediate functionality. An important property of
this approach is that aspects know explicitly the points where the in-
termediate functions will be injected while the target classes do not
know what other code will modify their behaviour (Fig. 6). Such a
structure of relationships between the module with the code to be in-
jected and the modules where it has to be injected can be viewed as
declaring in an aspect all the target classes (the target classes being
unaware of this aspect). In this sense our approach is characterized
by the opposite direction of this relationship (see DG5). Namely, the
module with the code to be injected is unaware of the points where it
will be used (the target modules). These are the target modules that
declare the modifications they need.

6 Conclusions

In the paper we introduced a new programming construct called con-
cept. Concept is defined as a pair of one object class and one refer-
ence class having their own fields and methods (possibly with the same
name). Concepts are organized into a hierarchy using inclusion relation
with the main purpose to specify how objects have to be represented
and accessed. The main idea is that an object is represented by its par-
ent reference which replaces a system default reference. An approach
to programming based on this new construct is called concept-oriented
programming. This approach assumes that a system consists of two

332

Coucept as a Generalization of Class and ...

i Parent concept with

AOP I Ccop 71 intermediate code is
‘ > unaware of the target points
Aspect I | Parent Concept | where it will be used
Aspect sp@mﬁeS the e Child concepts declare their
EgeiionpiEe | A / \ / \L i parent concept and hence
the intermediate code ¢ the intermediate code and
has to be injected ; | Class | | Class Class | | Class | : data they are wrapped into
A

Target points are unaware of ,
the intermediate code they
will be injected into them

Figure 6. Aspect-oriented programming vs. concept-oriented program-
ming

types of functionality: target BMs and intermediate RA functional-
ity. Accordingly, it is important to be able to implement both types
as an integral part of one program using one programming language.
This new approach to programming can be applied to very different
complex problems such as access control and interception, security and
object protection, persistence, debugging, tracing and logging, mem-
ory and life-cycle management, containers, remote objects, distributed
computing, protocol stacks and many others.

References

[1] Savinov, A. Principles of the Concept-Oriented Database Model,
Institute of Mathematics and Informatics, Academy of Sciences of
Moldova, Technical Report, 54pp., November 2004.

[2] Savinov, A. Hierarchical Multidimensional Modelling in the
Concept-Oriented Data Model, Proc. the 3rd international con-
ference on Concept Lattices and Their Applications (CLA’05),
Olomouc, Czech Republic, September 7-9, 2005, 123-134.

333

A. Savinov

3]

[4]

[5]

7]

8]

[9]

[10]

[11]

[12]

[13]

Savinov, A. Grouping and Aggregation in the Concept-Oriented
Data Model, ACM Symposium on Applied Computing (SAC
2006), April 23-27, 2006, Dijon, France (accepted).

Dijkstra, E.W. A Discipline of Programming. Prentice Hall, 1976.

Roman, E., Sriganesh, R.P., Brose, G. Mastering Enterprise Java
Beans. Wiley; 3 edition.

Enterprise JavaBeans Technology,
http://java.sun.com/products/ejb/

Cazzola, W., Ancona, M. mChaRM: a Reflective Middleware for
Communication-Based Reflection. Technical Report DISI-TR-00-
09, DISI, Universita degli Studi di Genova, May 2000. 29 pages.

Kiczales, G., Rivieres, J., Bobrow, D.G. The Art of the Metaobject
Protocol. MIT Press, Cambridge, 1991.

Kiczales, G., Ashley, J.M., Rodriguez, L., Vahdat, A., Bobrow,
D.G. Metaobject protocols: Why we want them and what else
they can do. In: Paepcke, A. (ed.) Object-Oriented Programming:
The CLOS Perspective, 101-118, The MIT Press, Cambridge, MA,
1993.

Blosser, J. Explore the Dynamic Proxy
API, Java World, November 2000.
http://developer.java.sun.com/developer /technical Articles/
DataTypes/proxy

Stroustrup B. The C++ Programming Language, Second Edition,
Addison Wesley, 1991.

Smaragdakis, Y., Batory, D. Implementing layered designs with
mixin-layers. Proc. ECOOP’98, 550-570, 1998.

Bracha, G., Cook, W. Mixin-based inheritance. Proc. OOP-
SLA/ECOOP’90, ACM SIGPLAN Notices, 25(10), 303-311, 1990.

334

Coucept as a Generalization of Class and ...

[14] Subject-Oriented Programming, http://www.research.ibm.com/
sop

[15] Multi-Dimensional Separation of Concerns,
http://www.research.ibm.com/hyperspace/MDSOC.htm

[16] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.-M. and Irwin, J. Aspect-Oriented Programming,
Proc. ECOOP’97, LNCS 1241, 220-242, Jyvaskyla, Finalnd, 1997.

Alexandr Savinov, Received December 21, 2005
Institute of Mathematics and Informatics,

Academy of Sciences of Moldova

str. Academiei 5,

MD-2028 Chisinau, Moldova

E-mail: savinov@Qconceptoriented.com

Home page: hitp : //conceptoriented.com/savinov

335

Computer Science Journal of Moldova, vol.13, no.3(39), 2005

CGEM for Moldova with Factor Markets and
Intermediate Inputs

Elvira Naval

Abstract

In this article the attempt to examine the effects of tax policy
in the framework of two-sector model with factor markets and in-
termediate goods is considered. In this connection the difference
between intermediate and final goods is introduced. Model was
extended to introduce the imported and domestic intermediate
goods and production functions to produce domestic goods and
exports.

The basic model refers to one country with two producing sectors
and three goods. Two commodities that the country produces are an
export good, which is sold to foreigners and is not demanded at home,
and a domestic good, which is only sold domestically. The third good is
an import, which is not produced domestically. There is one consumer
who receives all income. The country is small in world markets, facing
fixed world prices for exports and imports. Three economic agents
operate in the model: a producer, a household, and the rest of the
world.

Adjustments in the real exchange rate in response to exogenous
shocks to the economy and three price-wedge government policy in-
struments: an import tariff, an export subsidy, and an indirect tax on
domestic sales are included. The single household saves a fraction of
its income. Real government expenditure is assumed fixed and the gov-
ernment deficit or surplus is subtracted or added to aggregate savings.
The balance of trade is assumed to represent foreign savings.

In order to estimate efficiency effects of tax policy, it is very im-
portant to distinguish between intermediate and final goods. In this

(©2005 by E. Naval

336

CGEM for Moldova with Factor Markets and Intermediate Inputs

scope the Calculated General Equilibrium Model (CGEM) is extended
to introduce the imported and domestic intermediate goods and also
production functions that use primary factors of production (capital
and labor) to produce domestic and exports goods.

The model contains most features of the basic model, although for
simplicity the savings and investment have been eliminated, and the
balance of trade is assumed fixed. The separate production functions
for exports and domestic goods with associated demand functions for
capital, labor, and intermediate goods as inputs are introduced. Equi-
librium conditions are included for each factor that induces an assump-
tion of full employment of fixed aggregate stocks of capital and labor.
There is the distinction of two types of imports (each with its own tar-
iff rate): consumption imports, which together with domestic output
provide the composite good, and intermediate imports, which in com-
bination with domestic output produce composite intermediate goods
required to produce domestic and exported goods. The domestically
produced and imported intermediate goods, as with consumption, are
assumed to be imperfect substitutes, so the demand for each depends
on its relative price and the elasticity of substitution. It is assumed
that all tax revenue is rebated to consumers in a lump-sum fashion,
so the government spending appears as a component of total income.
And the foreign capital inflow is also added to private income. Now
this model will be used to define the optimal structure of the tariff
rates.

Further the equations of the CGEM with factor markets and inter-
mediate inputs are presented. In the case of Republic of Moldova there
were examined: production functions for exported and domestically
fabricated goods which use primary factors of production (capital and
labor).

Presented model was used for the Moldova economy which is highly
depended on imported consumption and intermediate goods in order to
evaluate tariffs policy when composite consumption Q° is maximized.

Let’s describe briefly all equations of the model. First, two equa-
tions (eq.1-2) are the production functions for exports and domestic
goods. Equations (7-12) are the associated demand functions for cap-

337

E. Naval

ital, labor and intermediate goods as inputs. Equilibrium conditions
are included for each factor (eq. 26-28) supposing full employment of
fixed aggregate stocks of capital and labor.

Flows Prices
E =Kl (1 Pe=(1+4+1t°)-R- P (16)
D =K, * L5 (2) Pi1=(P"M,+P'D,)/Q% (17)
QS = Q(M,, Dy) (8) P"=(PIM,+P'D,)/N (18)
N = N(M,,D,) (4 Pl =Q1+13") - R- Py (19)
M,/D, = f(P;,PY) (5) Pr=(1+ir)-R-Pp (20)
M, /D, = fo(P™ P (6) P'=(1+td).P? (21)
Ne=ae. - E (7 PY =P°—a,-P" (22)
Ng=aq-D (8 Py =P —aq,- P (23)
Wy =0E/OK, - P! 9 Equilibrium Conditions
Wy =90D/0K, - PJ (10) D,+D,—D=0 (24)
Wy =0E/OL, - P? (11) QP -Q@%=0 (25)
W =0D/0L, - Py (12) N.—N;—N=0 (26)
Y =Wk -K+Wy- L+ K.+Ky—K=0 (27)
R-B+G (13) L.+Ls—L=0 (28)
QP =Y/Pt (14) P - Mg+ Py - My—
P¢-E=B (29)
T-G=0 (30)
R=1 (31)
Identities
F, - Q=Y

P E=Wg -K.+Wp-L,
P} =Wk -Kqg+Wr-Lg

P?-Q* =P -M,+P*- D,
P".N=P". M, + P! D,

338

CGEM for Moldova with Factor Markets and Intermediate Inputs

Table 1: Endogenous Variables

E Export good D Supply of domestic good
N, Interm. demand by F Ny Interm. demand by D

N Supply of comp. interm. input Q° Supply of comp. final good
QP Demand for comp. final good D, D used in consumption

D,, D used in interm. inputs K. Capital used to produce F
L. Labor used to produce FE K,; Capital used to produce D
Ly Labor used to produce D M, Imports used in consum.
M, Imports used in N demand P¢ Export price

pd Domestic producer price P! Domestic consumer price

P™ Price of consumption imports ~ P;* Price of interm. imports
P? Value added price of exports P7 Value added price of D
P" Price of interm. input P? Price of composite good
Wk Return to capital Wi Wage rate

R Exchange rate Y Total income

T G

Tax revenue Government transfers

Table 2: Exogenous Variables

L Total labor supply K Total capital stock
T Total tax accumulation B Balance of trade
P World price of E P]Ez World price of M,
Pyt World price of M, t¢ Export subsidy rate
tm Tariff on M, o Tariff on M,

t Indirect tax rate

There are two types of imports, each with its own tariff rate. Con-
sumption imports (M,) which in combination with domestic output
(D,) produce composite good (Q7). Intermediate imports (M,) in
combination with domestic output (D,,) produce composite intermedi-
ate goods (V) required to fabricate domestic and exported goods. The
domestically produced and imported intermediate goods (N) as well as
consumption are assumed to be imperfect substitutes, so the demand
for each depends on its relative price and the elasticity of substitution
(eq. 6).

339

E. Naval

The production structure may be represented as follows. Real value
added and intermediate inputs are combined in fixed proportions to
produce output. There are two CES functions: one for labor and cap-
ital to produce real value added and one for imported and domestic
intermediates to produce the composite intermediate input. Fixed co-
efficients are used for the demand for composite intermediate input and
allow to define value added price for each sector.

The year 2004 was selected as base year, and all macroeconomic
indicators are presented both in real and nominal prices. All prices are
equal to unity in this base. Using base year data and known values
for the elasticity of substitution between imports and domestic goods
(o) equal to 2 for consumer goods and 0.5 for intermediate goods there
are calculated the analytical expressions for export (E), demand for
domestic goods (D), supply of composite goods (Q7), volume of inter-
mediate goods (), ratios between imported consumption goods and
domestic consumption good and ratio between imported intermediate
inputs and domestic inputs. So, for six functions enumerated earlier the
explicit analytical expressions with constant coefficients are obtained.
The obtained expressions for these functions are annexed here:

_ 0.702 0,398 _ 0.66 0,4545
E=K0702. 0398 p_ 066, 04545

Q% =1,136- (0,5148 - M, %% + (1 - 0,5418) - D, %) ~1/0%,
N =2,001-(0,9854 - M, + (1—0,9854) - D))",
My/Dy = (0,5148 - P /((1 — 0,5418) - P%)?,

M, /D, = (0,9854 - P™/((1 — 0,9854) - P4)%5,

In order to evaluate efficiency resulting from taxation just as in
[1], it is assumed that all tax revenue is returned to consumers as a
unique sum, so that government spending appears as a component of
total income in (eq.13). Finally, foreign capital inflow is also added to
private income.

Further, this model is explored for answering the question about
optimality of the uniform tariff rates. It is well known view that differ-
ences among tariff rates create a distortion in the economy. Different

340

CGEM for Moldova with Factor Markets and Intermediate Inputs

Table 3: Optimal tariffs with fixed indirect tax

% BV 15% 10% 5% | Opt. -5% -10% -15%
td 13,5 12,9 12,3 | 11,7 11,1 10,5 10,0
Optimum tariff rates
td 13,5 14,7 17,0 | 18,0 19,7 23,5 24,0
tr, 28,4 25,9 22,6 | 18,0 15,6 8,8 9,2

Opt. quant.(Ratio(%) to base value)
640 [9920 | 99.19 | 99.17 | 100,0 | 99.12 | 99.10 | 99,08
51,0 | 101,31 | 101,33 | 101,36 | 100,0 | 101,40 | 101,42 | 101,44
52,0 99,10 99,08 99,06 | 100,0 99,01 98,99 98,97
28,0 | 100,31 | 100,31 | 100,31 | 100,0 | 100,31 | 100,31 | 100,31

100,0 | 100,77 | 98,39 96,28 | 100,0 96,28 98,39 | 100,77

3

SEEEE

sectors tariff rates imply that the relative domestic prices of two traded
goods are not equal to their relative world prices. If world prices are
viewed as the appropriate ”shadow prices” of this traded good, a varied
tariff structure represents a distortion.

As stabled in [2] there are other distorting taxes in the economy,
then the shadow prices of this traded good in this environment may
not equal to world prices. In particular, if the domestic indirect tax
structure is not optimal, the optimal tariff structure will generally not
be uniform. Starting with various assumptions about the level of do-
mestic indirect taxes the optimal patterns of tariffs will be determined.
The numerical solution of the formulated optimization problem using
statistical data for the year of 2004 will be obtained because the intro-
ducing of the intermediate goods complicates the model so much that
the model cannot be solved analytically.

Base year data for numerical application are presented in Table 4.
Here all data are calculated in % to GDP which is equal to 100%, and
with the exported national economy equal to 64%. The export sector is
capital-intensive and uses domestic and imported intermediates. The
domestic sector (D) also uses domestic and imported intermediates.

341

E. Naval

Table 4: SAM for Moldova Numerical Model

Moldova Expenditures
E D [Q [N L [K [C |Ruw
Export (E) 64
Domestic (D) 48 3
Final Good (Q) 100
Interm. Good (N) | 15 16
Labor (L) 10 |8
Capital(K) 39 | 43
Consumer 18 82
Rest of World 52 28
Total 64 67 100 | 31 18 82 100 | 64

The balance of trade is equal to 17% and the single consumer thus
demanded 100% units of composite consumer good Q. Since all prices
and wages are equal to one, the SAM (Social Accounting Matrix, see
Table 4) indicates real as well as nominal magnitude. The value added
production functions are assumed to be Cobb-Douglas.

It is supposed that government receives revenue from tariffs on final
and intermediate goods and on indirect tax on domestic sales. Export
subsidy is equal to zero. Government requires total tax revenue of 25%.
The base year data given in the Table 4 represent a unique solution of
the model with all tax rates set to zero. In the optimal tax experiments
tax rates are redefined as variables offering freedom of choice. Opti-
mal taxes are obtained by maximizing (), which satisfies the equations
of the model in examination plus the government revenue constraint.
Alternative scenario is obtained by fixing one tax, the indirect tax on
domestic goods (T'?), and solving for optimal level for remaining tax
rates.

The results of calculus are given in Table 2. The optimal pattern
of tariffs is uniform only in this case when all tariff rates including
the indirect tax on domestic goods is also set optimally. When the
indirect tax on domestic goods is set below its optimal value then op-
timal tariff structure consists in higher tariff on the final goods than

342

CGEM for Moldova with Factor Markets and Intermediate Inputs

on the intermediate goods. When the indirect tax is above its opti-
mal, the opposite is true. In this case when domestic indirect taxes are
too low rather than too high the appropriate policy rule is that tariff
rates on imported intermediate goods should be lower than the rates
for imported consumer goods.

So it is no reason to move toward equal rates by raising the lowest
tariffs and lowering the highest ones. Yet in our country tariffs on
intermediate goods are lower than those on final goods so in this circum-
stances moving toward equal rates would lower welfare.

Along with a highly variable tariff structure the second scenario
shows smaller variations in real variables. But in this case aggregate
welfare demonstrates small changes across both scenarios. This result
is consistent with results from a large number of empirical studies.

Given that, the model is solved as a nonlinear programming prob-
lem using SOLVER package from Excel. The solution generates dual
or shadow prices for all constrains. The solution value for the shadow
price on the government revenue constraint (eq. 30) directly measures
the welfare cost of raising an additional unit of tax revenue (7'). In
Table 3, there are presented these shadow prices for the cases in which
the indirect tax rate is set below its constrained optimal value. Re-
sults for two alternative models are calculated. One model is solved
for optimal changed tariffs - as in table two. And the other model in
which tariffs are constrained to be the same for both goods. In this
case, the single tariff rate is uniquely determined by the government
revenue constraint and the fixed indirect tax rate. There are no policy
degree of freedom.

Let’s comment the results obtained in Table 3. The results of cal-
culus show that in both scenario there are observed the diminishing of
the marginal welfare cost when additional government revenue is re-
ceived from increasing tax revenue. So in the case of Moldova there
exist reserves in rising indirect tax rate. Yet in the case of equal tariffs
there are more possibilities in reducing welfare cost by absolute value,
than in the case of differential tariffs.

These results, as mentioned in [1], are only suggestive because of the
stylized nature of the model, but they create some theoretical under-

343

E. Naval

Table 5: Welfare Cost of increasing Tax revenue

Marginal welfare cost of increasing

tax revenue as a % of additional revenue
Indirect tax Sc.I Sc.IT Ratio (%) of Sc.I
rate (%) (equal tariffs) | (differential tariffs) to Sc.II
11,7 (optimal) 0,0 0,0
11,1 (-5%) -6,42 -6,0 106,5
10,5 (-10%) -6,54 -5,3 123,4
9,9 (-15%) -6,67 -5,2 127,8

pinning for the common policy rule that countries should unify their

tariff structure.

And the results from this simple two sector model

appear vigorous in comparison with larger applied models [2].

References

1]

2]

3]

[4]

Elvira Naval,

Sh. Devarajan, J.D Lewis and Sh. Robinson, Policy lessons from
trade-focused, two-sector models. Journal of Policy Modeling, 1990,
12(4), pp.625-657.

Dahl H., Devarajan S., and Wijnbergen S., Revenue-Neutral Tar-
riff Reform: Theory and an Application to Camerun. Discussion
Paper No. 1986-25. Country Policy Department. The World Bank.
1986(May).

Harberger A., Reflections on Uniform Taxation. 44-th Congress
of the International Institute of Public Finance, Istambul, 1988,
(August).

Pyatt G. and Round J.T. Eds., Social Accounting Matrices: A
Basis for Planning. Washington, DC: World Bank. 1985. 1970,
p. 387-392 (in Russian).

Received December 3, 2005

Institute of Mathematics and Computer Sciences,
Academy of Sciences, Moldova

5, Academiei Str., Kishinev,

MD-28, Moldova

E-mail: nvelvira@Qmath.md

344

Computer Science Journal of Moldova, vol.13, no.3(39), 2005

An Interactive Web-based Environment using
Human Companion

Tahar Bouhadada Mohamed-Tayeb Laskri

Abstract

This paper describes the architecture of an Interactive Learn-
ing Environment (ILE) on internet using companions, one of
which is a human and geographically distant from the learning
site. The achieved system rests on a three-tier customer/server
architecture (customer, web server, data and applications server)
where human and software actors can communicate via the in-
ternet and use the DTL learning strategy. It contains five main
actors: a tutor actor in charge to guide the learner; a system
actor whose role is to manage and to control the accesses to the
system; a teacher actor in charge of the management and the
updating of the different bases; a learner actor who represents
the main actor of the system for whom is dedicated the teaching.
Also, a learning companion actor whose role can be sometimes
as an assistant, and other times as a troublemaker.

Keywords: Interactive learning environment, LCS, DTL
strategy, companion, distance learning, troublemaker.

1 Introduction

The distant teaching pedagogy differs from the teaching in a classroom.
Indeed, the absence of the teacher influences the incentive and the
concentration of the learner, what encourages the isolation feeling and
80, moves him away of the stimulating context as in a real classroom.
In a distant learning context, the pedagogical triangle [1],[2] must
take into account two elements that, in this case, take a particular
importance: the group and the mediation context (Figure 1).

(©2005 by T. Bouhadada, M.-T. Laskri

345

T. Bouhadada, M.-T. Laskri

Taathiar

Hinnwledige

Figure 1. The pedagogical triangle

The group is an instituted set of learners and teachers in interac-
tion, sharing some common objectives. The introduction of the group
element puts in evidence the social character of the knowledge con-
struction [3]. Indeed, the group constitutes a psychological support
factor [4]. The mediation context constitutes the material or a virtual
environment in which occurs the interactions.

In the present work, we describe an interactive learning environment
(ILE) in a distant-teaching context with learning companions and using
Internet as the environment of communication and interaction. The
achieved system is a software framework dedicated to the learning of
the relational databases whose customer /server architecture is based on
multi-agents approach. For the communication between the learners,
we used tools, more powerful, as the electronic mailing, the forums, that
have already been integrated in many distant-training frameworks as
support for collective learning activities [5],[6].

Several works showed that in a learning environment, the social
interaction and the cooperative work in a community of learners has
an influence on the intern structure of the learner’s cognitive form [7],
[8].

Our gait is based on the principle that the learning enriched also
itself through the exchanges, the confrontations, the negotiations, the
competition and the interactions between persous.

Indeed, in the learning psychosocial model, learner doesn’t learn

346

An Interactive Web-based Environment using . ..

ﬁ [j;m'i) %

LEARMNER _{‘:——} I COMPANION

Figure 2. General architecture of an LCS

alone, but with confronting his thought and his actions to the mate-
rial and social reality. The social psychology of the cognitive develop-
ment opposes to epistemic individualism and substitutes to the bipolar
centering ego-object of the cognitive psychology a tripolar relation ego-
alter-object. According to this approach, the interactions with others
play an essential role in trainings. In particular, they are going to
permit to disapprove the initial conceptions and to create some favor-
able dissonances for the construction of a new knowledge. It is the
socio-cognitive conflict mechanism [9],[10].

2 The Learning Systems Using Companions

The learning systems using companion rest on a software companion
where the behavior and reactions are entirely simulated and often, fol-
low a linear and recurrent structure. Several systems using software
companions showed the recurrence in a learning situations of the be-
havior of the companion in a cooperative and collaborative environment
[11],[12],[13],[14].

The structure of a Learning Companion System (LCS) described
by Chan [12] implies three basic actors (Figure 2):

A tutor actor (software teacher) whose role consists fundamentally
to provide matter to teach, to offer examples, indications, and com-
mentaries to the learner and the companion. A learning companion
actor whose objective is to stimulate the collaboration with the learner
through the competition. This actor can have several roles; he can
play the role of an assistant to whom the learner can ask for help and

347

T. Bouhadada, M.-T. Laskri

assistance, sometimes as a competitor. In other systems, he can be
a troublemaker. The third actor, a learner, who is a committed and
active person in an acquirement process or a knowledge perfection.

The approach adopted in the present work goes in the setting of
the CSCL context (Computer Supported Collaborative Learning) that
counstitutes an evolution from a distant interactive environment to en-
vironments supporting the collaboration to enrich the collective and
social construction of the knowledge [15],[16],[17].

In our system, we introduce three learning companions: A human
companion and two software companions.

e The human companion: He is a learner who follows his training in
the same title and at the same time as the system learner and to
whom he can bring assistance. This companion can be any other
learner connected on-line on the network and that the learner
can solicit him. In case of absence of a human companion, the
learner can solicit the machine companion which is created for
such situations.

e The machine companion: He takes the role of an assistant, and
other time, the role of a troublemaker, giving some erroneous
answers voluntarily to put the learner in a doubt situation and
so, to test his confidence and his convictions.

3 The DTL Strategy

A typical learning session that uses the Double Test Learning (DTL)
strategy [11], [13] starts with a Pre-Test phase in which an initial learner
model is created. In the second phase (Learning phase), the system
dispenses the teaching and the co-learners benefit of the same training
that the human learner, so, at the end of this phase, the three learners
have the same level of knowledge.

In the third phase (Post-Test1), the tutor tests the co-learners. The
human learner will be in the place of an active observer. He will follow
the questions/answers sequence between the tutor and the co-learners.

348

An Interactive Web-based Environment using . ..

The learner has in his possession a notebook on which he can mention
all useful observation. At anytime that the co-learners give the solution
of the given problem, the tutor values their answers. If their answers are
incorrect and that of the human learner is correct, this last must justify
and explain his answer to the co-learners. When the co-learners finish
the Post-Testl phase, the tutor turns then toward the human learner
and the last phase (Post-Test2) begins. Here the learner’s notebook
is withdrawn, and therefore, he has access to his memory only and
to the knowledge that he has acquired lately through the co-learners
answers. At the end of this phase, the tutor values his answers in order
to attribute to him a score and, determine his new profile.

4 The Society of Actors

An actor represents a set of coherent roles played by an external entities
(human user, device system), that interact directly with the studied
system.

Our system includes five main actors, implying human actors and
software actors:

e The system actor: It’s a software actor whose role is the man-
agement of the accesses to the system and the control of the
registration or the suppression of users (learners or teachers).

o The tutor actor: It’s a software actor; its role is to assure the
pedagogical progression of the learner during his training. It
puts to his disposition the courses, explanatory examples and
exercises with solutions and arguments. He has also the task
of the evaluation during the test phases (Pre-Test, Post-Testl,
Post-Test2).

e The teacher actor: He is a human actor who has in charge to
update courses and exercises. He is responsible of the choice and
the definition of the pedagogical strategy to be adopted. He can
also consult any registered learner’s profiles in the system.

349

T. Bouhadada, M.-T. Laskri

e The learner actor: He is a human actor, he represents the main
actor for whom the teaching is dedicated.

e The companion actor: It can be human or software :

o The human companion: He is a learner connected on-line
on the system whose learning is not the principal objective
for the system. His role is essentially to assist the learner
during the Post-Test1 phase. His presence is not certain. He
can be solicited by the learner at any moment.

o The machine companion: This companion is solicited in case
of absence of a human companion on the network. Its role is
to simulate the human behavior. The system introduces two
software companions whose behaviors are simulated; one of
them plays the role of an assistant and the other one a trou-
blemaker by introducing disruptions during the Post-Test1
phase in the goal to test the insurance and the conviction
of the learner. The answers provided by the troublemaker
companion are, in most time, incorrect voluntarily.

5 The Software Architecture

The DB-Tutor++ system has been conceived according to the three
levels customer/server architecture (Architecture 3-tiers): a customer
level, a data and applications server level and a web server level (Figure
3).

e (Clustomer level: 1t represents the different services asked by a
customer, learner or teacher.

o Web server level: 1t constitutes the interface between the cus-
tomer and the data server while transmitting the customer’s re-
quest toward the data server, and the achieved service by this
last toward the customer.

e Data and applications level: 1t represents the different services of
data management offered to the customers (teachers, learners).

350

An Interactive Web-based Environment using . ..

"é“"'“" E' '"'i::"' FE"-T-j E““Tﬁ T‘ﬁﬂﬂ"j ‘.‘.'.':'.'.'3;"

J".n-—’

: [Tutor AcToR _J*' -I_ SvETEMALTOR]

£ E MR M ‘Eiats sne c
Aclar Appiicaiions Sarrar:

{ MySaL)
Ths 'L

; i P i B ; HTMLEHE
- HTBLFHE

= Apashe WEE Se 2 2 S -
= = - ae Frar B

= M * > < 1E S > § E

=E A - PHF intarpratar =

ul

HTML
HTHL

B Accamen datshomes
- = Communicalion betvenn aciors

— e Dila darvd ervicens I et

Figure 3. General architecture of DB-Tutor++

In our data server, we distinguish two main actors that achieve
these services according to the customer’s request: the system actor
and the tutor actor. These two actors use a whole of databases for
managing their services:

e A learners’ base that contains the personal information about the
learners.

e A teachers’ base that contains information concerning the teach-
ers.

e A profiles’ base that contains the historic of the different learner’s
behavior during the different sessions.

e A courses’ base whose structure is hypertextual that contains the
whole of courses, structured in levels.

e An exercises’ base that contains the list of exercises for every test
phase and distributed in different levels.

351

T. Bouhadada, M.-T. Laskri

e A connected learners’ base that contains the list of learners on-
line on the system.

6 Teaching material

Databases are dispensed in all training programs in computing science.

Particularly, the relational databases constitute the most merchan-
dised database systems and the most used in the enterprise’s computer
systems. The courses base of the DB-Tutor++ system is organized in
levels. A level represents a state of knowledge acquired by the learner.
A level contents concepts and meta-concepts. A concept is a knowl-
edge element. A meta-concept is composed of a whole of concepts. A
course is constructed about meta-concept, and a whole of examples.
The passage from a level to a superior level requires the acquisition of
the concepts introduced in the lower levels. The courses are organized
as a hypertextual form.

In its present version, the system’s courses base includes 54 meta-
concepts, and 218 concepts distributed in 5 levels, numbered from 1 to
5 (Table 1).

7 The Evaluation

The evaluation is a process that consists in determining or to assign a
level to the learner in a learning session. For the learner evaluation,
we defined two categories of Multiple Choices Questions (MCQ). The
first category includes simple questions and the second, questions with
proof.

For simple questions, the learner must introduce the number of his
answer. For this kind of question two (02) tokens are assigned for a
correct answer, and zero (00) for an incorrect answer.

For questions with proof, the learner must answer by yes or by no,
and his answer must be justified by a proof.

e If the answer is correct, two (02) tokens are attributed.

352

An Interactive Web-based Environment using . ..

Level Meta-concepts Concepts

1. Database definition

2. Database management system
2.1. Instances and Schemes
2.1.1. The ohject type

Basic concepts
01 2.2, The ahstraction levels
2.2 . The conceptual level

1. The hierarchical madel
The logical data models 2. The netwoark model

1. The relational model
1.1 Domain

The relational model 2. The functional dependences

3. The normal forms
02

1. The relational algebra
1.1 .The operations

1.1 Union
The relational algehra
1.2.6. Projection

Table 1. Description of the contents of the levels

e If the proof is correct, the score will be increased of two (02) other

tokens.
e In the case where the learner does give an incorrect answer, no
token will be attributed (even if the proof is correct).

7.1 Acquisition of a Level

To every i phase a general score (ScoreG) equal to the sum of tokens
attributed to the n) questions of the phase is associated:

ScoreGphase; = (Ztokens@k), (1)
k=1

353

T. Bouhadada, M.-T. Laskri

where:

n: is the number of questions.

1 : Pre-Test phase, Post-Test1 phase, Post-Test2 phase.

The average score (ScoreM) for a learner in a session is calculated
as follows:

n
ScoreM = (ZScorerhasei)/Z (2)
i=1
The final score (Score ping) gotten by a learner is equal to the sum
of acquired tokens during every phase:

3
Scorepina = ZScorephasei. (3)

i=1
So, for a learner, to reach to the immediately superior level, it is
necessary that:
Scorepinqg >= ScoreM. (4)

For a new registered learner, the assigned level is determined by
the score gotten during the Pre-Test phase:

n
ScoreGpre—Test = ZTokenst. (5)
k=1

Questions of the Pre-Test phase concern the immediately lower
level.
So, for a learner, to be registered in a level L, it is necessary that:

Scorepre—Test >= SCOTeMPrefTestu (6)

where ScoreM pre— Test 1S the requisite average score for this phase:

ScoreMpyre—Test = (ScoreG pre—Test) /2. (7)

354

An Interactive Web-based Environment using . ..

8 The Implementation

The development of distance learning systems requires languages ded-
icated to the implementation of applications on Internet network. The
realization of an environment according to 3-tier architecture requires
navigation, interpretation and communication tools very powerful. DB-
Tutor++ has been achieved with a language oriented to customer and
a language oriented to server.

The system has been developed on the basis of the APACHE server
and uses its PHP interpreter for the interpretation of the different in-
teractions. For the realization of the courses base, we used the XML
language, more adapted for the development of hypertext systems. Fi-
nally, for the management of the different bases, we opted for MySQL
whose performances are especially indicated for this kind of application.

9 Users Scenarios

In order to fear the working and the global dynamic of the system, and
more particularly, the interactions between the different actors (human
and artificial), we present users scenarios of the application for a learner
user, a teacher user and for an administrator user (Figure 4).

““‘rlﬂlJ-ﬂ- E'I.I.-': e ..‘— 1 * iy | et | e :-:I'. _“i

Figure 4. Screen "Home Page”

355

T. Bouhadada, M.-T. Laskri

The learner, the teacher or the administrator introduces the user-
name and the password that have been assigned to him at their account
creation time. After verification of the identity by the system actor, the
interface of the corresponding user (learner, teacher or administrator)
is displayed.

9.1 A “Learner” Scenario

e Connection / disconnection of a learner: At the connection
of a learner, two actors, the companion actor and the trouble-
maker actor, are created and enter to the system.

The tutor actor is informed about his connection, via the system
actor, that goes to re-actualize the advancement state with taking
into account the profiles base, then, to present the companions
to the learner. After this, the learner lunchs the Pre-Test phase,
and the other phases (the Learning phase, the Post-Test1 phase,
and the Post-Test2 phase) according to the kind of learner.

For the disconnection, the learner must inform the system actor
about his exit so that it frees the occupied resources and com-
panions (Figure 5).

Fommutalae dinecriplion

R [[T
L o I | 3
Vi |I_—_;_"-'* |
Miea die pamer | [|
_h" 3

Fitewra = AT T L (O 0, o,
| 109) e |t e B | e || B]) i

Figure 5. Screen ”Connection / disconnection of a learner”

e Request for a companion: At the connection, the learner

356

An Interactive Web-based Environment using . ..

sends to the system actor a request for a learning companion.
This one verifies if there exists a human companion connected
on-line in the system, in the contrary case, he creates two soft-
ware companions, which one of both is a troublemaker (Figure
6).

e R e TS R TE

Figure 6. Screen "Request for a companion”

The learning: The learning starts at the end of the Pre-Test
phase. The learner signals to the tutor that he is ready to follow
the training. The tutor transmits to him courses corresponding
to the determined level in the Pre-Test phase

Post-Testl Phase: As soon as the training session is finished,
the learner attends the Post-Testl phase as an observer. He ob-
serves reactions of his companions during the questions/answers
sequence proposed by the tutor. He can also take notes and re-
marks on his notebook (Figure 7).

Post-Test2 Phase: In this phase, the human learner will be
tested. At this level, the notebook is not on his possession. He
is submitted to a set of questions and exercises to which he must
give answers. The tutor recovers answers, value them and assign
a score. At the end of this step, the tutor displays the final score
of the learner.

357

T. Bouhadada, M.-T. Laskri

9.2

Pussar Fexerroior A 41

1'5i | F'wi

Evmrs b vzl siion Fiucen !
gminlpei i AR AT i 1,*;':*";‘;;.
Hibepardarrs atre mamculo el ren metdio soire reposs FRILH ——
FIR le e viinl e i Ba ol e B el glion P sweoir o bonne
1 = pecogss ko metnouds ikdanmes lcram réporm s ol quHsr
e v b AT (i T i b o
S-parcoque b msinoaks pod mor plusi oo sam []

&

e e et
] 02 | | K I et bt it | w5 T

Figure 7. Screen ”Post-Testl phase”

A “Teacher” Scenario

Connection/disconnection of a teacher: When a teacher
connects himself to the system, the system actor asks him for his
identification in order to verify his access right. The disconnec-
tion is achieved by the teacher on his demand.

Courses/exercises updating: When the teacher wants to add
or to withdraw a course or an exercise that he judges useless,
or to modify it, the system puts to his disposition a list of the
available courses/exercises in the base, then the teacher will select
the number of the course or of the exercise to be deleted or to be
modified. In the case of a new exercise, the statement must be
joined by its solution (Figure 8).

The updating of the pedagogical strategies: The teacher
can at any time define or modify the educational rules accord-
ing to the learner’s profile and the previous definite pedagogical
objectives.

Consultation of learner’s profiles: At any moment, the
teacher can consult learner’s profiles by a demand to the sys-
tem. This last displays the list of learners and their individual

358

An Interactive Web-based Environment using . ..

Figure 8. Screen ”Courses / Exercises updating”

profiles as well as the historic of their behaviors in the different
situations of the learning sessions (Figure 9).

Figure 9. Screen ”Consultation of learner’s profile”

9.3 An “Administrator” Scenario

We mean by administration, the insertion and the deletion of teacher
account or learner account. The creation and the suppression of an
account are system procedures that permit to introduce or to suppress

359

T. Bouhadada, M.-T. Laskri

users from the system, as well as the updating of the base of the profiles
in the case of an inscription of a new learner.

10 Conclusion

We described an interactive learning environment dedicated to teaching
the relational databases on Internet. The system DB-Tutor++ that
uses the D'TL learning strategy, in its new version, implies a community
of learners, and human and machine companions.

The system adopts a three-tier customer/server architecture (web
server, data and applications server and customer), where human and
software actors can communicate through the Internet network.

The system adopts a collaborative pedagogical method that per-
mits a constant solicitation of the learner, a permanent evaluation, a
multiplication of paths, and multimedia tools that encourages using a
maximum of learning channels implying a community of human and
machine actors.

The ambition of the present project is to offer a collaborative
learning environment on Internet, what requires complementary pluri-
disciplinary contributions.

The gaits are undertaken currently to shelter the system on the
university web site in order to be able to experiment it with students
of the 3rd year of the engineers cycle.

References

[1] Meirieu, P. Apprendre... QOui, Mais Comment? ESF, Paris,
France. (1989)

[2] Doise, W., Mugny, G. Social Interaction and the Development of
Cognitive Operations. European Journal of Social Psychology, vol.
5, no. 3, pp.367-383. (1975)

[3] Houssaye, J. La Pédagogie: Une Encyclopédie pour Aujourd’hui,
ESF, Paris, France.(1993)

360

An Interactive Web-based Environment using . ..

[4]

[5]

[6]

7]

[8]

[9]

[10]

[11]

[12]

Mugny, G., Doise, W. Socio-Cognitive Conflict and Structure of
Individual and Collective Performances. European Journal of So-
cial Psychology, vol. 8, pp. 181-192.(1978)

Faerber, R. Apprentissage Collaboratif & Distance: Outils,
Méthodes, et Comportement Sociauz. In Proceedings of 5th Bien-
nale Internationale des Chercheurs et des Praticiens de I’éducation
et de la Formation. April. Paris, France.(2000)

Ecoutin, E. Etude Comparative Technique et Pédagogique des
Plates-Formes pour la Formation Quverte et a Distance. ORAVEP
Report. Ministry of Research (DT/SDTETIC), France (2000).

Chan, T. W., Baskin, A. B. Studying with Prince: The Computer
as a Learning Companion, in Proceedings of Intelligent Tutoring
Systems (ITS’88), June Montréal, Canada.(1988)

Zidane, A., Djoudi, M., Zidat, S., Talhi, S. CHELIA: Un Environ-
nement Coopératif pour Uapprentissage sur Internet. In Proceed-
ings of 10eme Colloque Africain sur la Recherche en Informatique
(CARI’02), October, Yaounde, Cameroon.(2002)

Bouhadada, T., Laskri, M. T. DB-TUTOR: Un Systéeme Tuteur
Utilisant un Compagnon Perturbateur. In Proceedings of 10th Col-
loque Africain sur la Recherche en Informatique, CARI’02, Octo-
ber, Yaounde, Cameroon.(2002)

Cerisier, J. F. Environnement d’apprentissage Collectif en Réseau.
Enseignement et Apprentissage en Réseauzr. CRDP Report,
Poitou-Charente, Mars, France.(1999)

Bouthry, A., Chevalier, P., Shaff, J. L. Choisir une Solution de
Téléformation. France.(2000)

Fahmi, M., Aimeur, E. RACSY: An Intelligent Tutoring System
Based on the Double Test Learning Strategy. In Proceedings of the
5th Maghrebian Conference on Software Engineering and Artificial
Intelligence (MCSEATI'98), December, Tunisia.(1992)

361

T. Bouhadada, M.-T. Laskri

[13]

[14]

[15]

[16]

[17]

Uresti, J.A.R., De Boulay, B. Ezpertise, Motivation and Teaching
in Learning Companion Systems. International Journal of Artifi-
cial Intelligence in Education, (14), pp.193-231.(2004)

Laperrousaz, C., Teutsch, P. Un compagnon logiciel capable de dia-
loguer. CLAVIE: Compagnon Logiciel d’aide aux Apprenants dans
I'enVIronnement croisierEs. Environnement Informatique pour 1
‘Apprentissage Humain, EIAH’03, Strasbourg, France.(2003)

Faraco, R. A., Rosatelli, M. C., Gauthier, F. A. O. Adaptivity in
a Learning Companion System. IEEE International Conference on
Advanced Learning Technologies, ICALT 04, pp.151-155.(2004)

Chou, C., Chan, T., Lin, C. Redefining the Learning Companion:
the past, the present and the future of educational agents. Com-
puters and Education, (40) , pp.255-269.(2003)

Jaillet, A. Apprentissage a Distance, une Révolution pour les En-
seignants. Louis-Pasteur University, Strasbourg, France,(1999).

T. Bouhadada, M.-T. Laskri Received December 13, 2005

Research Group on Artificial Intelligence (GRIA/LRI)
University of Annaba

Department of computing

BP:12 Annaba 23000 Algeria

Phone/Fax: +21338872436/+21338872756

E-mail: bouhadadatQyahoo. fr; mtlaskriQuwissal.dz

362

Computer Science Journal of Moldova, vol.13, no.3(39), 2005

The XIV Conference on Applied and
Industrial Mathematics dedicated to
the 60" anniversary of the foundation
of the Department of Mathematics and
Computer Science of Moldova State
University

Chisinau, Republic of Moldova, August, 2527, 2006

Organizers

e Romanian Society of Applied and Industrial Mathematics —

ROMALI

Mathematical Society of the Republic of Moldova;

State University of Moldova;

Tiraspol State University;

Institute of Mathematics and Computer Sciences of the Academy

of Sciences of the Republic of Moldova;

e Center for Education and Research in Mathematics and Com-
puter Science at Moldova State University.

THE ROMANIAN SOCIETY OF APPLIED AND INDUSTRIAL
MATHEMATICS (ROMAI) was founded in 1992. It is a non-profit
scientific association, whose members are mathematicians, physicists,
engineers, chemists, biologists, economists, and other users of math-
ematics. ROMAI encourages studies relating mathematics and non-
mathematical fields of knowledge.

The principal activities in ROMATI are the annual Conferences on
Applied and Industrial Mathematics (CAIMs) coorganised together
with an university or/and other institution. So far, ROMAI together

363

Chisinau, Republic of Moldova, August, 25-27, 2006

with University of Oradea, University of Pitesti, Tiraspol State Univer-
sity, Institute of Mathematics and Computer Sciences from Chisinau
and the City House and Local Council of Mioveni-Arges organized 13
editions of CAIM. Three CAIMs were held in Romania & Republic of
Moldova and the others only in Romania.

CAIM 2006 Objectives

CAIM 2006 provides a forum for the review of the recent trends in
theoretical, numerical, and experimental applied and industrial math-
ematics as well as in computer sciences.

The Conference is dedicated to the 60" anniversary of the foun-
dation of the Department of Mathematics and Computer Science of
Moldova State University.

Conference Sections

e Algebra, mathematical logic, topology.

e Ordinary differential equations and finite dimensional dynamical
systems.

e Functional analysis and partial differential equations.

e Analytical and numerical methods and applications. Industrial
mathematics.

e Theoretical and applied computer sciences.

e Education.

Contacts

e Prof. Mitrofan CIOBAN (Chairman of the Organizing Commit-
tee, Chisinau): mmchoban@Qmail.md

e Anca-Veronica ION (Member of the Scientific Committee, Pitesti):
anca_veronica_tonQyahoo.com

364

