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Abstract

We study the max-min paths problem, which represents a
game version of the shortest and the longest paths problem in a
weighted directed graph. In this problem the vertex set V of the
weighted directed graph G = (V, E) is divided into two disjoint
subsets VA and VB which are regarded as positional sets of two
players. The players are seeking for a directed path from the
given starting position v0 to the final position vf , where the first
player intends to maximize the integral cost of the path while the
second one has aim to minimize it. Polynomial-time algorithm
for determining max-min path in networks is proposed and its
application for solving zero value cyclic games is developed.
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1 Introduction and Problem Formulation

In this paper we consider the max-min paths problem on networks,
which generalizes classical combinatorial problems of the shortest and
the longest paths in weighted directed graphs. This max-min paths
problem arose as an auxiliary one when searching optimal stationary
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strategies of players in cyclic games [1-3]. The main results are con-
cerned with the existence of polynomial-time algorithms for determin-
ing max-min paths in networks and elaboration of such algorithms.
The application of the proposed algorithms for studying and solving
zero value cyclic games is shown.

The statement of the considered problem is the following.
Let G = (V, E) be a directed graph with vertex set V , |V | = n, and

edge set E, |E| = m. Assume that G contains a vertex vf ∈ V such
that it is attainable from each vertex v ∈ V , i.e. vf is a sink in G. On
edge set E it is given a function c : E → R, which assigns a cost c(e) to
each edge e ∈ E. In addition the vertex set is divided into two disjoint
subsets VA and VB (V = VA

⋃
VB, VA

⋂
VB = Ø), which we regard as

position sets of two players.
On G we consider a game of two players. The game starts at po-

sition v0 ∈ V . If v0 ∈ VA, then the move is done by the first player,
otherwise it is done by the second one. The move means the pas-
sage from a position v0 to a neighbour position v1 through the edge
e1 = (v0, v1) ∈ E. After that if v1 ∈ VA, then the move is done by the
first player, otherwise it is done by the second one and so on. As soon
as the final position is reached the game is over. The game can be finite
or infinite. If the final position vf is reached in finite time, then the
game is finite. In the case when the final position vf is not reached, the
game is infinite. The first player in this game has the aim to maximize∑

i c(ei) while the second one has the aim to minimize
∑

i c(ei).
Strictly the considered game in normal form can be defined as fol-

lows. We identify the strategies sA and sB of players with the maps

sA : u → v ∈ VG(u) for u ∈ VA;

sB : u → v ∈ VG(u) for u ∈ VB,

where VG(u) represents the set of extremities of edges e = (u, v) ∈ E,
i.e. VG(u) = {v ∈ V |e = (u, v) ∈ E}. Since G is a finite graph then the
set of strategies of players

SA = {sA : u → v ∈ VG(u) for u ∈ VA};
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SB = {sB : u → v ∈ VG(u) for u ∈ VB}
are finite sets. The payoff function Fv0(sA, sB) on SA × SB is defined
in the following way.

Let be in G a subgraph Gs = (V, Es) generated by edges of form
(u, sA(u)) for u ∈ VA and (u, sB(u)) for u ∈ VB. Then either a unique
directed path Ps(v0, vf ) from v0 to vf exists in Gs or such a path does
not exist in Gs. In the second case in Gs there exists a unique directed
cycle Cs, which can be reached from v0.

For given sA and sB we set

Fv0(sA, sB) =
∑

e∈E(Ps(v0,vf ))

c(e),

if in Gs there exists a directed path Ps(v0, vf ) from v0 to vf , where
E(Ps(v0, vf )) is a set of edges of the directed path Ps(v0, vf ). If in G
there are no directed paths from v0 to vf , then we define Fv0(sA, sB)
as follows. Let P ′

s(v0, u0) be a directed path, which connects the vertex
v0 with the cycle Cs and Ps(v0, u0) has no other common vertices with
Cs except u0. Then we put

Fv0(sA, sB) =





+∞, if
∑

e∈E(Cs)

c(e) > 0;

∑

e∈E(P ′s(v0,u0))

c(e), if
∑

e∈E(Cs)

c(e) = 0;

−∞, if
∑

e∈E(Cs)

c(e) < 0.

This game is related to zero-sum positional games of two players and
it is determined by the graph G with the sink vertex vf , the partition
V = VA

⋃
VB, the cost function c : E → R and the starting position v0.

We denote the network, which determines this game, by (G,VA, VB, c).
In [4] it is shown that if G does not contain directed cycles, then

for every v ∈ V the following equality holds

p(v) = max
sA∈SA

min
sB∈SB

Fv(sA, sB) = min
sB∈SB

max
sA∈SA

Fv(sA, sB), (1)
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which means the existence of optimal strategies of players in the con-
sidered game. Moreover, in [4] it is shown that in G there exists a tree
T ∗ = (V,E∗) with sink vertex vf , which gives the optimal strategies
of players in the game for an arbitrary starting position v0 ∈ V . The
strategies of players are obtained by fixing

s∗A(u) = v, if (u, v) ∈ E∗ and u ∈ VA \ {vf};

s∗B(u) = v, if (u, v) ∈ E∗ and u ∈ VB \ {vf}.
In general case for an arbitrary graph G equality (1) may fail to hold.
Therefore we formulate necessary and sufficient conditions for the ex-
istence of optimal strategies of players in this game and a polynomial-
time algorithm for determining the tree of max-min paths from every
v ∈ V to vf . Furthermore we show that our max-min paths problem
on the network can be regarded as an zero value ergodic cycle game.
Therefore the proposed algorithm can be used for solving such games.

The formulated game on network (G, VA, VB, c) in [4] is named the
dynamic c-game. Some preliminary results related to this problem
have been obtained in [4-7]. More general models of positional games
on networks with p players have been studied in [8,9].

2 Algorithm for solving the problem on acyclic
networks

The formulated problem for acyclic networks has been studied in [4].
Let G = (V, E) be a finite directed graph without directed cycles

and given sink vertex vf . The partition V = VA
⋃

VB (VA
⋂

VB = Ø)
of vertex set of G is given and the cost function c : E → R on edges
is defined. We consider the dynamic c-game on G with given starting
position v ∈ V .

It is easy to observe that for fixed strategies of players sA ∈ SA

and sB ∈ SB the subgraph Gs = (V, Es) has a structure of directed
tree with sink vertex vf ∈ V . This means that the value Fv0(sA, sB)
is determined uniquely by the sum of edge costs of the unique directed
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path Ps(v0, vf ) from v0 to vf . In [5,6] it is proved that for acyclic c-
game on network (G,VA, VB, c) there exist the strategies of players s∗A,
s∗B such that

p(v) = Fv(s∗A, s∗B) = max
sA∈SA

min
sB∈SB

Fv(sA, sB) =

= min
sB∈SB

max
sA∈SA

Fv(sA, sB) (2)

and s∗A, s∗B do not depend on starting position v ∈ V , i.e. (2) holds for
every v ∈ V .

The equality (2) is evident in the case when ext(c, u) = 0, ∀u ∈
V \ {vf}, where

ext(c, u) =





max
v∈VG(u)

{c(u, v)}, u ∈ VA;

min
v∈VG(u)

{c(u, v)}, u ∈ VB.

In this case p(u) = 0, ∀u ∈ U and the optimal strategies of players can
be obtained by fixing the maps s∗A : VA\{vf} → V and s∗B : VB\{vf} →
V such that s∗A ∈ VEXT(c, u) for u ∈ VA \ {vf} and s∗B ∈ VEXT(c, u)
for u ∈ VB \ {vf}, where

VEXT(c, u) = {v ∈ VG(u)|c(u, v) = ext(c, u)}.

If the network (G,VA, VB, c) has the property ext(c, u) = 0, ∀u ∈ V \
{vf}, then it is named the network in canonic form. So, for the acyclic
c-game on network in canonic form equality (2) holds and p(v) = 0,
∀v ∈ V .

In general case equality (2) can be proved using properties of the
potential transformation c′(u, v) = c(u, v) + ε(v) − ε(u) on edges e =
(u, v) of the network, where ε : V → R is an arbitrary real function on V
(the potential transformation for positional games has been introduced
in [2]). The fact is that such transformation of the costs on edges of
the acyclic network in c-game does not change the optimal strategies
of players, although values p(v) of positions v ∈ V are changed by
p(v) + ε(vf )− ε(v). It means that for an arbitrary function ε : V → R
the optimal strategies of the players in acyclic c-games on the networks
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(G,VA, VB, c) and (G,VA, VB, c′) are the same. Using such property in
[4,5] the following theorem is proved.

Theorem 1. For an arbitrary acyclic network (G,VA, VB, c) with
a sink vertex vf there exists a function ε : V → R which determines
the potential transformation c′(u, v) = c(u, v) + ε(v) − ε(u) on edges
e = (u, v) such that the network (G,VA, VB, c) has the canonic form.
The values ε(v), v ∈ V , which determine ε : V → R, can be found by
using the following recursive formula

ε(vf ) = 0

ε(u) =





max
v∈VG(u)

{c(u, v) + ε(v)} for u ∈ VA \ {vf};
min

v∈VG(u)
{c(u, v) + ε(v)} for u ∈ VB \ {vf}. (3)

On the basis of this theorem the following algorithm for determining
optimal strategies of players in c-game is proposed in [4,5].

Algorithm 1.

1. Find the values ε(u), u ∈ V , according to recursive formula
(3) and the corresponding potential transformation c′(u, v) = c(u, v) +
ε(v)− ε(u) on edges (u, v) ∈ E.

2. Fix arbitrary maps s∗A : VA\{vf} → V and s∗B(u) ∈ VEXT(c′, u)
for u ∈ VB \ {vf}. ¤

Remark 1. The values ε(u), u ∈ V , represent the values of the
acyclic c-game on (G,VA, VB, c) with starting position u, i.e. ε(u) =
p(u), ∀u ∈ V . Algorithm 1 needs O(n2) elementary operations because
the tabulation of the values ε(u), u ∈ V , using formula (3) for acyclic
networks needs such number of operations.
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3 The main results for the problem on an ar-
bitrary network

First of all we give an example which shows that equality (1) may fails
to hold. In fig.1 it is given the network with starting position v0 = 1 and
final position vf = 4, where positions of the first player are represented
by cycles and positions of the second player are represented by squares;
values of cost functions on edges are given alongside them.
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It is easy to observe that

max
sA∈SA

min
sB∈SB

F12(sA, sB) = 1, min
sB∈SB

max
sA∈SA

F12(sA, sB) = 2.

The following theorem gives conditions for the existence of settle
values p(v) for each v ∈ V in the c-game.

Theorem 2. Let (G,VA, VB, c) be an arbitrary network with sink
vertex vf ∈ V . Moreover let us consider that

∑
e∈E(Cs)

c(e) 6= 0 for ev-
ery directed cycle Cs from Gs. Then for c-game on (G,VA, VB, c) con-
dition (1) holds if and only if there exists a function ε : V → R, which
determines a potential transformation c′(u, v) = c(u, v)+ε(v)−ε(u) on
edges (u, v) ∈ E such that ext(c′, u) = 0, ∀v ∈ V . If

∑
e∈E(Cs)

c(e) 6= 0
for every directed cycle and in G there exists the potential transforma-
tion c′(u, v) = c(u, v)+ε(v)−ε(u) on edges (u, v) ∈ E, then ε(v) = p(v),
∀v ∈ V .
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Proof. =⇒ Let us consider that
∑

e∈E(Cs)
c(e) 6= 0 for every di-

rected cycle Cs in G and condition (1) holds for every v ∈ V . More-
over, we consider that p(v) is a finite value for every v ∈ V . Taking
into account that the potential transformation does not change the cost
of cycles, we have that such transformation does not change optimal
strategies of players although values p(v) of positions v ∈ V are changed
by p(v)− ε(v) + ε(vf ). It is easy to observe that if we put ε(v) = p(v)
for v ∈ V , then the function ε : E → R determines the potential trans-
formation c′(u, v) = c(u, v) + ε(v)− ε(u) on edges (u, v) ∈ E such that
ext(c′, u) = 0, ∀v ∈ V .

⇐= Let us consider that there exists a potential transforma-
tion c′(u, v) = c(u, v) + ε(v) − ε(u) on edges (u, v) ∈ E such that
ext(c′, u) = 0, ∀v ∈ V . The value p(v) of the game after the potential
transformation is zero for every v ∈ V and optimal strategies of players
can be found by fixing s∗A and s∗B such that s∗A(u) ∈ VEXT(c′, u) for
u ∈ VA \ {vf} and s∗B(u) ∈ VEXT(c′, u) for u ∈ VB \ {vf}. Since the
potential transformation does not change optimal strategies of players
we put p(v) = ε(v)− ε(vf ) and obtain (1).

Corollary 1. The values p(v), v ∈ V , can be found as follows
p(v) = ε(v)− ε(vf ), i.e. the difference ε(v)− ε(vf ) is equal to the cost
of the max-min path from v to vf . If ε(vf ) = 0, then p(v) = ε(v),
∀v ∈ V .

Corollary 2. If for every directed cycle Cs in G the condition∑
e c(e) 6= 0 holds then the existence of the potential transformation

c′(u, v) = c(u, v) + ε(v)− ε(u) on edges (u, v) ∈ E such that

ext(c′, u) = 0, ∀v ∈ V (4)

represents necessary and sufficient conditions for validity of equality
(1) for every u ∈ V . In the case when in G there exists cycle Cs with∑

e∈E(Cs)
c(e) = 0 condition (4) becomes only necessary one for validity

(1) for every v ∈ V .

Corollary 3. If in c-game there exist the strategies s∗A and s∗B,
for which (1) holds for every v ∈ V and these strategies generate in G
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a tree Ts∗ = (V,Es∗) with sink vertex vf , then there exists the potential
transformation c′(u, v) = c(u, v) + ε(v) − ε(u) on edges (u, v) ∈ E
such that the graph G0 = (V, E0), generated by the set of edges E0 =
{(u, v) ∈ E | c′(u, v) = 0}, contains the tree Ts∗ as a subgraph.

Taking into account the mentioned above results we may propose
the following algorithm for determining the optimal strategies of players
in c-game based on the constructing of the tree of min-max paths.

Algorithm 2.

Preliminary step (step 0) Set V ∗ = {vf}, ε(vf ) = 0.
General step (step k) Find the set of vertices

V ′ = {u ∈ V \ V ∗ | (u, v) ∈ E, v ∈ V ∗}.

For each u ∈ V ′ we calculate

ε(u) =





max
v∈OV ∗ (u)

{ε(v) + c(u, v)}, u ∈ VA

⋂
V ′;

min
v∈OV ∗ (u)

{ε(v) + c(u, v)}, u ∈ VB

⋂
V ′,

(5)

where OV ∗(u) = {v ∈ V ∗ | (u, v) ∈ E}. Then in V ∗⋃
V ′ we find the

subset

Uk =
{

u ∈ V ∗⋃
V ′

∣∣∣ extr
v∈OV ∗∪V ′ (u)

{ε(v)− ε(u) + c(u, v) = 0}
}

and change V ∗ by Uk, i.e. V ∗ = Uk. After that we check if V ∗ = V . If
V ∗ 6= V , then go to the next step. If V ∗ = V , then define the potential
transformation c′(u, v) = c(u, v) + ε(v) − ε(u) on edges (u, v) ∈ E
and find the graph G0 = (V,E0), generated by the set of edges E0 =
{(u, v) ∈ E|c′(u, v) = 0}. In G0 fix an arbitrary tree T ∗ = (V,E∗),
which determines the optimal strategies of players as follows:

s∗A(u) = v, if (u, v) ∈ E∗ and u ∈ VA \ {vf};
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s∗B(u) = v, if (u, v) ∈ E∗ and u ∈ VB \ {vf}.

Now let us show that this algorithm finds the tree of max-min paths
T ∗ = (V, E∗) if such tree exists in G. ¤

Denote by V i the subset of V , where v ∈ V i if in T ∗ there exists
the directed path PT (v, v0) from v to v0 which contains i edges, i. e.
V i = {v ∈ V

∣∣∣ |PT ∗(v, v0)| = i}. So, V = V 0
⋃

V 1
⋃

V 2
⋃ · · ·⋃V r

(V i
⋂

V j = Ø), where V 0 = {vf} and V i, i ∈ {1, 2, . . . , r}, represents
the level i of vertex set of T ∗. If in G there exists several max-min
trees T ∗1 = (V, E∗

1), T ∗2 = (V, E∗
2), . . . , T ∗q = (V, E∗

q ) then we will select
the one which has number of levels r = min

1≤i≤q
{ri}.

Theorem 3. If in G there exists a tree of max-min path
T ∗ = (V, E∗) with sink vertex vf then Algorithm 2 finds it using k = r
iterations. The running time of the algorithm is O(n3).

Proof. We prove the theorem by using the induction principle on
number of levels of max-min tree. If r = 1 the theorem is evident.
Assume that the theorem is true for any r ≤ p and let us show that it
is true for r = p + 1.

Denote by V 0, V 1, . . . , V r the level sets of the tree T ∗ = (V,E∗),
V = V 0

⋃
V 1

⋃
V 2

⋃ · · ·⋃V r (V i
⋂

V j = Ø). It is easy to observe that
if we delete from T ∗ the vertex set V r and corresponding pendant edges
e = (u, v), v ∈ V r, then we obtain a tree T

∗ = (V , E
∗), V = V \ V r.

This tree T
∗ represents the tree of max-min paths for the subgraph

G = (V , E) of G generated by vertex set V .
If we apply Algorithm 2 with respect to G then according to the

induction principle we find the tree of max-min paths T
∗, which de-

termines ε : V → R and the potential transformation c(u, v) =
c(u, v) + ε(u) − ε(v) on edges (u, v) ∈ E such that extr(c′, v) = 0,
∀v ∈ V . So, Algorithm 2 on G determines uniquely the values ε(u)
according to (5).
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It is easy to observe that in G for an arbitrary vertex u ∈ V r

calculated on the basis of formula (5) the following condition holds:

ε(u) =





max
v∈VG(u)

{ε(v) + c(u, v)}, u ∈ V r
⋂

VA;

min
v∈VG(u)

{ε(v) + c(u, v)}, u ∈ V r
⋂

VB.

This means that if we apply Algorithm 2 on G then after r−1 iterations
the vertex set U r−1 coincides with V \V r. So, Algorithm 2 determines
uniquely the values ε(v), v ∈ V . Nevertheless here we have to note
that in the process of the algorithm V k ⊂ Uk and V k may differ from
Uk for some k = 1, 2, . . . , r.

Taking into account that at the general step of the algorithm it
needs O(n2) elementary operations and k ≤ r(r ≤ n) we obtain that
the running time of the algorithm is O(n3).

4 An application of the algorithm for solving
zero value cyclic games

In this section we show that zero value ergodic cycle game can be
regarded as max-min paths problem and therefore the proposed algo-
rithm can be used for determining the optimal strategies of players in
such cyclic games.

At first we remind the formulations of cyclic games and some nec-
essary preliminary results.

4.1 Cyclic games: problem formulation

Let G = (V,E) be a finite directed graph in which every vertex u ∈ V
has at least one leaving edge e = (u, v) ∈ E. On edge set E a function
c: E → R is given which assigns a cost c(e) to each edge e ∈ E. In
addition the vertex set V is divided into two disjoint subsets VA and
VB (V = VA ∪ VB, VA ∩ VB = ∅) which we will regard as positions sets
of two players.
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On G we consider the following two-person game from [1,2]. The
game starts at position v0 ∈ V . If v0 ∈ VA then the move is done by
first player, otherwise it is done by second one. The move means the
passage from position v0 to the neighbour position v1 through the edge
e1 = (v0, v1) ∈ E. After that if v1 ∈ VA then the move is done by
first player, otherwise it is done by second one and so on indefinitely.

The first player has the aim to maximize lim
t→∞ inf

1
t

t∑

i=1

c(ei) while the

second player has the aim to minimize lim
t→∞ sup

1
t

t∑

i=1

c(ei).

In [1,2] it is proved that for this game there exists a value
p(v0) such that the first player has a strategy of moves that insures

lim
t→∞ inf

1
t

t∑

i=1

c(ei) ≥ p(v0) and the second player has a strategy of

moves that insures lim
t→∞ sup

1
t

t∑

i=1

c(ei) ≤ p(v0). Furthermore in [1,2]

it is shown that the players can achieve the value p(v0) applying the
strategies of moves which do not depend on t. This means that the con-
sidered game can be formulated in the terms of stationary strategies.
Such statement of the game in [2] is named cyclic game.

The strategies of players in cyclic game are defined as maps

sA: u → v ∈ VG(u) for u ∈ VA; sB: u → v ∈ VG(u) for u ∈ VB,

where VG(u) represents the set of extremities of edges e = (u, v) ∈ E,
i.e. VG(u) = {v ∈ V | e = (u, v) ∈ E}. Since G is a finite graph then
the sets of strategies of players

SA = {sA: u → v ∈ VG(u) for u ∈ VA};
SB = {sB: u → v ∈ VG(u) for u ∈ VB}

are finite sets. The payoff function Fv0 : SA × SB → R in cyclic game
is defined as follows.

Let sA ∈ SA and sB ∈ SB be fixed strategies of players. Denote by
Gs = (V, Es) the subgraph of G generated by edges of form (u, sA(u))
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for u ∈ VA and (u, sB(u)) for u ∈ VB. Then Gs contains a unique
directed cycle Cs which can be reached from v0 through the edges
e ∈ Es. The value Fv0(sA, sB) we consider equal to mean edges cost of
cycle Cs, i.e.

Fv0(sA, sB) =
1

n(Cs)

∑

e∈E(Cs)

c(e),

where E(Cs) represents the set of edges of cycle Cs and n(Cs) is a
number of the edges of Cs. So, the cyclic game is determined uniquely
by the network (G,VA, VB, c) and starting position v0. In [1,2] it is
proved that there exist the strategies s∗A ∈ SA and s∗B ∈ SB such that

p(v) = Fv(s∗A, s∗B) = maxsA∈SA
minsB∈SB

Fv(sA, sB) =
= minsB∈SB

maxsA∈SA
Fv(sA, sB), ∀ v ∈ V.

So, the optimal strategies s∗A, s∗B of players in cyclic games do not
depend on starting position v although for different positions u, v ∈ V
the values p(u) and p(v) may be different. It means that the positions
set V can be divided into several classes V = V 1 ∪ V 2 ∪ · · · ∪ V k

according to values of positions p1, p2, . . . , pk, i.e. u, v ∈ V i if and only
if pi = p(u) = p(v). In the case k = 1 the network (G,VA, VB, c) is
named the ergodic network [2]. In [5, 6] it is shown that every cyclic
game with arbitrary network (G,VA, VB, c) and given starting position
v0 can be reduced to an auxiliary cyclic game on auxiliary ergodic
network (G′, V ′

A, V ′
B, c′).

4.2 Some Preliminary Results

In [2] the following theorem is formulated and proved.

Theorem 4. Let (G,VA, VB, c) be an arbitrary network with
the properties described in section 1. Then there exists the value
p(v), v ∈ V and the function ε: V → R which determine a poten-
tial transformation c′(u, v) = c(u, v) + ε(v) − ε(u) for costs on edges
e = (u, v) ∈ E, such that the following properties hold

a) p(u) = ext(c′, u) for v ∈ V,
b) p(u) = p(v) for u ∈ VA ∪ VB and v ∈ VEXT(c′, u),
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c) p(u) ≥ p(v) for u ∈ VA and v ∈ VG(u),
d) p(u) ≤ p(v) for u ∈ VB and v ∈ VG(u),
e) max

e∈E
|c′(e)| ≤ 2|V |max

e∈E
|c(e)|.

The values p(v), v ∈ V on network (G,VA, VB, c) are determined
unequally and the optimal strategies of players can be found in the fol-
lowing way: fix the arbitrary strategies s∗A: VA → V and s∗B: VB → V
such that s∗A(u) ∈ VEXT(c′, u) for u ∈ VA and s∗B(u) ∈ VEXT(c′, u)
for u ∈ VB.

Further we shall use the theorem 4 in the case of the ergodic network
(G,V1, V2, c), i.e. we shall use the following corollary.

Corollary 4. Let (G,VA, VB, c) be an ergodic network. Then
there exist the value p and the function ε: V → R which determines
a potential transformation c′(u, v) = c(u, v) + ε(v) − ε(u) for costs of
edges e = (u, v) ∈ E such that p = ext(c′, u) for u ∈ V . The optimal
strategies of players can be found as follows: fix arbitrary strategies
s∗A: VA → V and s∗B: VB → V such that s∗A(u) ∈ VEXT(c′, u) for
u ∈ VA and s∗B(u) ∈ VEXT(c′, u) for u ∈ VB.

4.3 The reduction of cyclic games to ergodic ones

Let us consider an arbitrary network (G,VA, VB, c) with given start-
ing position v0 ∈ V which determines a cyclic game. In [5, 6] it is
shown that this game can be reduced to a cyclic game on auxiliary
ergodic network (G′,WA,WB, c), G′ = (W,F ) in which the value p(v0)
is preserving, v0 ∈ W = V ∪X ∪ Y .

The graph G′ = (W,F ) is obtained from G if each edge e = (u, v)
is changed by a triple of edges e1 = (u, x), e2 = (x, y), e3 = (y, v)
with the costs c(e1) = c(e2) = c(e3) = c(e). Here x ∈ X, y ∈ Y and
u, v ∈ V ; W = V ∪X ∪Y . In addition in G′ each vertex x is connected
with v0 by edge (x, v0) with the cost c(x, v0) = M (M is a great value)
and each edge (y, v0) is connected with v0 by edge (y, v0) with the cost
c = (y, v0) = −M . In (G′,WA,WB, c) the sets WA and WB are defined
as follows: WA = VA ∪ Y ; WB = VB ∪X.

It is easy to observe that this reduction can be done in linear time.
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4.4 The reduction of zero value ergodic cyclic games to
max-min paths problem

Let us consider a zero value cyclic game on ergodic network (G,VA, VB,
c), G = (V, E). Then according to Theorem 8 there exists the function
ε : V → R which determines the potential transformation c′(u, v) =
c(u, v) + ε(v)− ε(u) on edges (u, v) ∈ E such that

ext(c, u) = 0, ∀v ∈ V. (6)

This means that if vf is a vertex of the cycle Cs∗ determined by optimal
strategies s∗A and s∗B then the problem of finding the function ε : V → R
which determines the canonic potential transformation is equivalent to
the problem of finding the values ε(v), v ∈ V in max-min paths problem
on G with sink vertex vf where ε(vf ) = 0.

So, in order to solve zero value cyclic game we fix each time a
vertex v ∈ V as a sink vertex (vf = v) and solve a max-min paths
problem on G with sink vertex vf . If for given vf = v the obtained
function ε : V → R on the basis of Algorithm 2 determines the potential
transformation which satisfies (6) then we fix s∗A and s∗B such that
s∗A(u) ∈ VEXT(c′, u) for u ∈ VA and s∗B(u) ∈ VEXT(c′, u) for u ∈ VB.
If for given v the function ε : V → R does not satisfy (6) then we select
another vertex v ∈ V as a sink vertex and so on. This means that the
optimal strategies of players in zero value ergodic cyclic games can be
found in time O(n4).
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Note about the upper chromatic number of

mixed hypertrees

Kenneth Roblee, Vitaly Voloshin

Abstract

A mixed hypergraph is a triple H = (X, C,D), where X is
the vertex set and each of C, D is a family of subsets of X,
the C-edges and D-edges, respectively. A proper k-coloring of
H is a mapping c : X → [k] such that each C-edge has two
vertices with a common color and each D-edge has two vertices
with distinct colors. Upper chromatic number is the maximum
number of colors that can be used in a proper coloring. A mixed
hypergraph H is called a mixed hypertree if there exists a host
tree on the vertex set X such that every edge (C- or D-) induces
a connected subtree of this tree.

We show that if a mixed hypertree can be decomposed into
interval mixed hypergraphs then the upper chromatic number
can be computed using the same formula.

1 Introduction

In this paper, we use the terminology of [1, 2, 3, 4, 5, 6, 7]. A mixed
hypergraph H = (X, C,D) (each element of C∪D is of size at least 2) is
said to be a mixed hypertree if there exists a host tree T = (X, F ) such
that every C ∈ C and every D ∈ D induces a subtree in T [7]. An in-
terval mixed hypergraph represents a special case of a mixed hypertree,
namely, when the host graph is simply a path. In a mixed hypergraph
H = (X, C,D), a subfamily {Ci} of C-edges is said to be a sieve, if for
any x, y ∈ X and any j, k, j 6= k, the following implication holds (see
[1, 7]):

{x, y} ⊆ Cj ∩ Ck ⇒ {x, y} = D ∈ D for some D ∈ D.

c©2005 by K. Roblee, V. Voloshin
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In other words, a sieve represents a subfamily of C-edges with the
property that if two C-edges intersect, then every pair of vertices from
the intersection forms a D-edge. It appears that sieves play a role in
estimating the upper chromatic number. The maximum cardinality of
a sieve is the sieve number of H and is denoted by s(H). It is proved
(see [1, 7]) that ifH = (X, C,D) is a reduced interval mixed hypergraph
(the size of each C-edge is at least 3, the size of each D-edge is at least
2, and no included edges of any type), then

χ(H) = |X| − s(H).

A C-edge is called redundant if it contains no other C-edges and after
its removal no new coloring appears. This property never happens in
classic graph or hypergraph coloring. We call a mixed hypertree H =
(X, C,D) simple if it is reduced and has no redundant C-edges. In order
to generalize the result for the upper chromatic number from interval
mixed hypergraphs to mixed hypertrees, it is necessary to investigate
the following question: if H = (X, C,D) is a simple mixed hypertree
with |X| = n and sieve number s, when is χ(H) = n− s?

The equality holds for many classes of mixed hypertrees. In this
paper, we prove it for mixed hypertrees having uniquely colorable sepa-
rator with the respective subgraphs being interval mixed hypergraphs.
However, for general mixed hypertrees it is not true. We exhibit that
the difference between χ(H) and n−s can actually be made arbitrarily
large.

2 Results

Theorem 1. If H = (X, C,D) is a simple mixed hypertree that can be
decomposed into the union of interval mixed hypergraphs T1, T2, . . . , Tk,
where k ≥ 1, so that if any two of these hypergraphs meet, they meet
only at a single vertex, then we have

χ(H) = |X(H)| − s(H).
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Before we prove the theorem, we establish a lemma regarding the
sieve number for simple mixed hypertrees as described in the statement
of the theorem.

Lemma 1. If H = (X, C,D) is a simple mixed hypertree that can be
decomposed into the union of interval mixed hypergraphs T1, T2, . . . , Tk,
where k ≥ 1, so that if any two of these hypergraphs meet, they meet
only at a single vertex, then

s(H) = s(T1) + s(T2) + · · ·+ s(Tk).

Proof. Note that hyperedges in different maximum sieves in (say)
Ti, Tj , where i 6= j, will also be in a maximum sieve of H. For, if
they intersect, they may only intersect at a single point. ¤

Proof. We prove the theorem by induction on the number k of inter-
val mixed hypergraphs. For k = 1, the mixed hypertree is an interval
mixed hypergraph, in which case it is already known the result holds.
Let us assume the result is true if there are k = m interval mixed
hypergraphs, and establish that it is true when there are m + 1 inter-
val mixed hypergraphs. Remove any one of the (m + 1)-many interval
mixed hypergraphs Ti from H (except for the intersecting vertex), and
consider the resulting mixed hypertree H′. Note that H′ is the union of
m-many interval mixed hypergraphs, and so by the inductive hypoth-
esis and with obvious notation we have

χ(H′) = |X ′| − s(H′).
Now, for the removed interval mixed hypergraph Ti we have

χ(Ti) = |Xi| − s(Ti),

since it is an interval mixed hypergraph.
Now, we note that |X(H)| = |X(H′)| + |X(Ti)| − 1. Let v be the

common vertex. Before we re-insert Ti back intoH′ to form the original
mixed hypertree H, we re-color v (in Ti) and all vertices in Ti having
that color (in the maximum coloring) in the same color that v has in a
maximum coloring of H′. Thus, we have the following:
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χ(H) = χ(H′) + χ(Ti)− 1
= |X(H′)| − s(H′) + |X(Ti)| − s(Ti)− 1
= (|X(H′)|+ |X(Ti)| − 1)− (s(H′) + s(Ti))
= |X(H)| − s(H).

In the displayed equations above, the only item we have not yet es-
tablished is the first equality. To prove this, first note that giving both
H′ and Ti a maximum coloring, then merging back these mixed hyper-
trees with the necessary adjustment in the coloring common vertex v
will give a proper coloring of H; thus, χ(H) ≥ χ(H′) + χ(Ti).

On the other hand, suppose we have a maximum coloring of H with
χ(H) colors. Now decompose H into H′ and Ti, preserving the given
maximum coloring. Then this is a coloring of H′ and of Ti; thus, we
have χ(H) ≤ χ(H′) + χ(Ti)− 1.

¤

3 Examples

First, we exhibit a simple mixed hypertree H = (X, C,D) in which the
difference between χ(H) and n− s is 1, where n = |X| and s = s(H).

Example 1. Consider the mixed hypertree H = (X, C,D), where
X = {x0, x1, . . . , x5},
C={{x0, x1, x2}, {x0, x2, x3}, {x0, x3, x4}, {x0, x4, x5}, {x0, x5, x1}},

and D = ∅. Here, χ̄(H) = 3, |X| = n = 6, and the sieve number s = 2.
Thus,

χ̄(H) = 3 6= 4 = n− s.

This example can also be generalized to similar mixed hypergraphs
with an odd number of such “satellite vertices” (the vertices that are
not the central vertex) as to make the difference between χ(H) and
|X|−s as large as desired. Here is how: Start with the mixed hypertree
H in example 1 above. Then, pick any of the satellite vertices and make
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it the satellite vertex of an added-on copy of H. The resulting mixed
hypertree – call it H1 – will have χ(H) - ( |X| − s) = 2. To make the
difference equal to 3, one could pick one of the new satellite vertices
from H1 and make it the satellite vertex of an added-on copy of H.
Continuing in this fashion, one can see how to make the difference
arbitrarily large.
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Abstract

We describe the Nash equilibria set as an intersection of best
response graphs. The problem of Nash equilibria set construction
for two-person mixed extended 2× 3 games is studied.
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librium, Nash equilibria set, best response graph.

1 Introduction

We construct the Nash equilibria set as an intersection of best response
graphs [4, 5]. This paper may be considered a continuation of [5] and it
has to illustrate the practical opportunity of a mentioned characteristic.

Consider a noncooperative game:

Γ = 〈N, {Xi}i∈N , {fi(x)}i∈N 〉,

where N = {1, 2, ..., n} is a set of players, Xi is a set of strategies of
player i ∈ N and fi : X → R is a player’s i ∈ N payoff function defined
on the Cartesian product X = ×i∈NXi. Elements of X are named
outcomes of the game (situations or strategy profiles).

The outcome x∗ ∈ X of the game is the Nash equilibrium [3]
(shortly NE) of Γ if

fi(xi, x
∗
−i) ≤ fi(x∗i , x

∗
−i),∀xi ∈ Xi, ∀i ∈ N,

c©2005 by V. Ungureanu, A. Botnari
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where
x∗−i = (x∗1, x

∗
2, ..., x

∗
i−1, x

∗
i+1, ..., x

∗
n),

x∗−i ∈ X−i = X1 ×X2 × ...×Xi−1 ×Xi+1 × ...×Xn,

(xi, x
∗
−i) = (x∗1, x

∗
2, ..., x

∗
i−1, xi, x

∗
i+1, ..., x

∗
n) ∈ X.

There are diverse alternative formulations of a Nash equilibrium [1]:
as a fixed point of the best response correspondence, as a fixed point of
a function, as a solution of a non-linear complementarity problem, as
a solution of a stationary point problem, as a minimum of a function
on a polytope, as a semi-algebraic set. We study the Nash equilibria
set as an intersection of best response graphs [4, 5], i.e. intersection of
the sets:

Gri = {(xi, x−i) ∈ X : x−i ∈ X−i, xi ∈ Arg max
xi∈Xi

fi(xi, x−i)}, i ∈ N.

From the players views not all Nash equilibria are equally attractive.
They may be Pareto ranked. Therefore Nash equilibrium may domi-
nate or it may be dominated. There are also different other criteria for
Nash equilibria distinguishing such as perfect equilibria, proper equilib-
ria, sequential equilibria, stable sets etc. Thus the methods that found
only a sample of Nash equilibrium don’t guarantee that determined
Nash equilibrium complies all the players demands and refinement con-
ditions. Evidently, a method for all Nash equilibria determination is
useful and required. Other theoretical and practical factors that argue
for NE set determination exist [1].

This paper as the continuation of [5] investigates the problems of NE
set construction in the games that permit simple graphic illustrations
and that elucidate the usefulness of the interpretation of NE as an
intersection of best response graphs [4, 5].

2 Main results

Consider a two-person matrix game Γ with matrices:

A = (aij), B = (bij), i = 1, 2, j = 1, 3.
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The game Γm = 〈{1, 2}; X, Y ; f1, f2〉 is the mixed extension of Γ,
where

X = {x = (x1, x2) ∈ R2 : x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0},
Y = {y = (y1, y2, y3) ∈ R3 : y1+y2+y3 = 1, y1 ≥ 0, y2 ≥ 0, y3 ≥ 0},
f1(x,y) =

∑2
i=1

∑3
j=1 aijxiyj ,

f2(x,y) =
∑2

i=1

∑3
j=1 bijxiyj .

This game is reduced to the game on the unit prism. For the re-
duced game the class partition of the strategy sets is considered and
the NE set is determined for each possible ”subgame” (see the following
propositions).

2.1 Reduction to game on a prism

By substitutions:

x1 = x, x2 = 1− x, x ∈ [0, 1],

y3 = 1− y1 − y2, y3 ∈ [0, 1],

the game Γm is reduced to the equivalent game:

Γ′m = 〈{1, 2}; [0, 1],4; ϕ1, ϕ2〉,

where

4 = {y = (y1, y2) ∈ R2 : y1 + y2 ≤ 1, y1 ≥ 0, y2 ≥ 0},

ϕ1(x,y) = (a11y1 + a12y2 + a13(1− y1 − y2))x +
(a21y1 + a22y2 + a23(1− y1 − y2))(1− x) =

((a11−a21 +a23−a13)y1 +(a12−a22 +a23−a13)y2 +a13−a23)x+
(a21 − a23)y1 + (a22 − a23)y2 + a23 =

((a11 − a21)y1 + (a12 − a22)y2 + (a13 − a23)(1− y1 − y2))x +
nbb(a21 − a23)y1 + (a22 − a23)y2 + a23;
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ϕ2(x,y) = (b11y1 + b12y2 + b13(1− y1 − y2))x +
(b21y1 + b22y2 + b23(1− y1 − y2))(1− x) =
((b11 − b13 + b23 − b21)x + b21 − b23)y1 +
((b12 − b13 + b23 − b22)x + b22 − b23)y2 +
(b13 − b23)x + b23 =
((b11 − b13)x + (b21 − b23)(1− x))y1 +
((b12 − b13)x + (b22 − b23)(1− x))y2 +
(b13 − b23)x + b23.

Thus, Γm is reduced to the game Γ′m on the prism Π = [0, 1]×4.

If NE(Γ′m) is known, then it is easy to construct the set NE(Γm).
Basing on properties of strategies of each player of the initial pure

strategies game Γ, diverse classes of games are considered and for every
class the sets NE(Γ′m) are determined.

For commodity, we use notation:

4= = {y = (y1, y2) ∈ R2 : y1 + y2 = 1, y1 ≥ 0, y2 ≥ 0}.

2.2 Both players have either equivalent strategies or
dominant strategies

Proposition 1. If all the players have equivalent strategies, then
NE(Γ′m) = Π.

Proof. From the equivalence of strategies

ϕ1(x,y) = (a21 − a23)y1 + (a22 − a23)y2 + a23,

ϕ2(x,y) = (b13 − b23)x + b23.

From this the truth of the proposition results. ¤
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Proposition 2. If all the players have dominant strategies in Γ,
then:

NE(Γ′m) =





(0, 0, 0) if strategies (2,3) are dominant,
(0, 0, 1) if strategies (2,2) are dominant,
(0, 1, 0) if strategies (2,1) are dominant,
0×∆= if strategies (2,1 ∼ 2) are dominant,
0× [0, 1]× 0 if strategies (2,1 ∼ 3) are dominant,
0× 0× [0, 1] if strategies (2,2 ∼ 3) are dominant,
(1, 0, 0) if strategies (1,3) are dominant,
(1, 0, 1) if strategies (1,2) are dominant,
(1, 1, 0) if strategies (1,1) are dominant,
1×∆= if strategies (1,1 ∼ 2) are dominant,
1× [0, 1]× 0 if strategies (1,1 ∼ 3) are dominant,
1× 0× [0, 1] if strategies (1,2 ∼ 3) are dominant.

Proof. It is easy to observe that

Arg max
x∈[0,1]

ϕ1(x,y) =
{

1 if the 1-st strategy is dominant in Γ,
0 if the 2-nd strategy is dominant in Γ,

∀y ∈ 4. Hence,

Gr1 =
{

1×4 if the 1-st strategy is dominant,
0×4 if the 2-nd strategy is dominant.

For the second player:

Arg max
y∈4

ϕ2(x,y) =





(1, 0) if the 1-st strategy is dominant in Γ,
(0, 1) if the 2-nd strategy is dominant in Γ,
(0, 0) if the 3-rd strategy is dominant in Γ,
∆= if strategies 1 ∼ 2 dominate 3,
[0,1]×0 if strategies 1 ∼ 3 dominate 2,
0×[0,1] if strategies 2 ∼ 3 dominate 1,
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∀x ∈ [0, 1]. Hence,

Gr2 =





[0,1]×(1, 0) if the 1-st strategy is dominant,
[0,1]×(0, 1) if the 2-nd strategy is dominant,
[0,1]×(0, 0) if the 3-rd strategy is dominant.
[0,1]×∆= if strategies 1 ∼ 2 dominate 3,
[0,1]×[0,1]×0 if strategies 1 ∼ 3 dominate 2,
[0,1]×0×[0,1] if strategies 2 ∼ 3 dominate 1.

Thus, the NE set contains either only one vertex of a unit prism 4
as an intersection of one facet Gr1 with one edge Gr2 or only one edge
of a unit prism 4 as an intersection of one facet Gr1 with one edge
Gr2. ¤

2.3 One player has dominant strategy

Proposition 3A. If the 1-st strategy of the first player is dominant,
then

NE(Γ′m) =





(1, 1, 0) if b11 > max{b12, b13},
(1, 0, 1) if b12 > max{b11, b13},
(1, 0, 0) if b12 > max{b11, b13},
1×4= if b11 = b12 > b13,
1× [0, 1]× 0 if b11 = b13 > b12,
1× 0× [0, 1] if b12 = b13 > b11,
1×4 if b12 = b13 = b11,

if the 2-nd strategy of the first player is dominant, then

NE(Γ′m) =





(0, 1, 0) if b11 > max{b12, b13},
(0, 0, 1) if b12 > max{b11, b13},
(0, 0, 0) if b12 > max{b11, b13},
0×4= if b11 = b12 > b13,
0× [0, 1]× 0 if b11 = b13 > b12,
0× 0× [0, 1] if b12 = b13 > b11,
0×4 if b12 = b13 = b11.
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Proof. If the first player has dominant strategy, then

Gr1 =
{

1×4 if the 1-st strategy is dominant,
0×4 if the 2-nd strategy is dominant

is one triangle facet of the prism.

If the 1-st strategy of the first player is dominant, then

ϕ2(1,y) = (b11 − b13)y1 + (b12 − b13)y2 + b13 =

= b11y1 + b12y2 + b13(1− y1 − y2).

From this we obtain that

Arg max
y∈4

ϕ2(1,y) =





(1, 0) if b11 > max{b12, b13},
(0, 1) if b12 > max{b11, b13},
(0, 0) if b12 > max{b11, b13},
4= if b11 = b12 > b13,
[0,1]×0 if b11 = b13 > b12,
0× [0, 1] if b12 = b13 > b11,
4 if b12 = b13 = b11

and

Gr2 = 1×Arg max
y∈4

ϕ2(1,y)

is a vertex, edge or triangle facet of the prism Π. Hence, the truth of
the first part of proposition follows.

Analogically the proposition can be proved when the second stra-
tegy is dominant. ¤

Proposition 3B. If the second player has only one dominant strat-
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egy, then

NE(Γ′m) =





(0, 1, 0) if (·,1) is dominant and a11 < a21,
(1, 1, 0) if (·,1) is dominant and a11 > a21,
[0,1]×1× 0 if (·,1) is dominant and a11 = a21,
(0, 0, 1) if (·,2) is dominant and a12 < a22,
(1, 0, 1) if (·,2) is dominant and a12 > a22,
[0,1]×0× 1 if (·,2) is dominant and a12 = a22,
(0, 0, 0) if (·,3) is dominant and a13 < a23,
(1, 0, 0) if (·,3) is dominant and a13 > a23,
[0,1]×0× 0 if (·,3) is dominant and a13 = a23.

Proof. If the 3-rd strategy of the second player is dominant, then

Arg max
y∈4

ϕ2(x,y) = Arg max
y∈4

((b11 − b13)x + (b21 − b23)(1− x))y1+

((b12 − b13)x + (b22 − b23)(1− x))y2 + (b13 − b23)x + b23 = (0, 0),

and
Gr2 = [0, 1]× (0, 0)

is an edge of a prism Π.
For the first player, we obtain ϕ1(x,0) = a13x + a23(1− x) and

Gr1 =





(1, 0, 0) if a13 > a13,
(0, 0, 0) if a13 < a13,
[0,1]×0× 0 if a13 = a13.

Consequently, NE set is a vertex or edge of the prism Π.
Similarly, the remained part of the proposition can be proved in the

other two subcases. ¤

Proposition 3C. If the second player has two dominant strategies,
then

NE(Γ′m) = Gr1 ∩Gr2,

where:
Gr1 = 0× Y <

12 ∪ 1× Y >
12 ∪ [0, 1]× Y =

12
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Gr2 = [0, 1]×∆=

if the 1-st and 2-nd strategies are equivalent and they dominate the
3-rd strategy;

Gr1 = 0× Y <
1 ∪ 1× Y >

1 ∪ [0, 1]× Y =
1

Gr2 = [0, 1]× [0, 1]× 0

if the 1-st and 3-rd strategies are equivalent and they dominate the
2-nd strategy;

Gr1 = 0× Y <
2 ∪ 1× Y >

2 ∪ [0, 1]× Y =
2

Gr2 = [0, 1]× 0× [0, 1]

if the 2-nd and 3-rd strategies are equivalent and they dominate the
1-st strategy;

Y <
12 = {y ∈ 4= : (a11 − a21)y1 + (a12 − a22)y2 < 0},

Y >
12 = {y ∈ 4= : (a11 − a21)y1 + (a12 − a22)y2 > 0},

Y =
12 = {y ∈ 4= : (a11 − a21)y1 + (a12 − a22)y2 = 0},

Y <
1 = {y ∈ R2 : (a11 − a21 + a23 − a13)y1 + a13 − a23 < 0,

y1 ∈ [0, 1], y2 = 0},
Y >

1 = {y ∈ R2 : (a11 − a21 + a23 − a13)y1 + a13 − a23 > 0,
y1 ∈ [0, 1], y2 = 0},

Y =
1 = {y ∈ R2 : (a11 − a21 + a23 − a13)y1 + a13 − a23 = 0,

y1 ∈ [0, 1], y2 = 0},
Y <

2 = {y ∈ R2 : (a12 − a22 + a23 − a13)y2 + a13 − a23 < 0,
y2 ∈ [0, 1], y1 = 0},

Y >
2 = {y ∈ R2 : (a12 − a22 + a23 − a13)y2 + a13 − a23 > 0,

y2 ∈ [0, 1], y1 = 0},
Y =

2 = {y ∈ R2 : (a12 − a22 + a23 − a13)y2 + a13 − a23 = 0,
y2 ∈ [0, 1], y1 = 0}.

Proof. If the 1-st and 2-nd strategies of the second player are equiv-
alent and they dominate the third strategy, then

Arg max
y∈4

ϕ2(x,y) = Arg max
y∈4

((b11−b13)x+(b21−b23)(1−x))(y1 +y2)+
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+(b13 − b23)x + b23 = ∆=

and
Gr2 = [0, 1]×∆=

is a facet of a prism Π.
For the first player, we obtain

ϕ1(x,y) = ((a11 − a21)y1 + (a12 − a22)y2) x+
+ (a21 − a23)y1 + (a22 − a23)y2 + a23;

and
Gr1 = 0× Y <

12 ∪ 1× Y >
12 ∪ [0, 1]× Y =

12

where:

Y <
12 = {y ∈ 4= : (a11 − a21)y1 + (a12 − a22)y2 < 0},

Y >
12 = {y ∈ 4= : (a11 − a21)y1 + (a12 − a22)y2 > 0},

Y =
12 = {y ∈ 4= : (a11 − a21)y1 + (a12 − a22)y2 = 0}.

Similarly, the remained part of the proposition can be proved in the
other two subcases. ¤

Evidently, propositions 3A, 3B and 3C elucidate the case when
one player has dominant strategy (strategies) and the other player has
equivalent strategies.

2.4 One player has equivalent strategies

Proposition 4A. If the first player has equivalent strategies, then

NE(Γ′m) = Gr2,

Gr2 = X1 × (1, 0) ∪X2 × (0, 1) ∪X3 × (0, 0)∪
X12 ×4= ∪X13 × [0, 1]× 0 ∪X23 × 0× [0, 1]∪
X123 ×4,

where:

X1 =
{

x ∈ [0, 1] :
(b11 − b21)x + b21 > (b12 − b22)x + b22

(b11 − b21)x + b21 > (b13 − b23)x + b23

}
,
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X2 =
{

x ∈ [0, 1] :
(b12 − b22)x + b22 > (b11 − b21)x + b21

(b12 − b22)x + b22 > (b13 − b23)x + b23

}
,

X3 =
{

x ∈ [0, 1] :
(b13 − b23)x + b23 > (b11 − b21)x + b21

(b13 − b23)x + b23 > (b12 − b22)x + b22

}
,

X12 =
{

x ∈ [0, 1] :
(b11 − b21)x + b21 = (b12 − b22)x + b22

(b11 − b21)x + b21 > (b13 − b23)x + b23

}
,

X13 =
{

x ∈ [0, 1] :
(b11 − b21)x + b21 > (b12 − b22)x + b22

(b11 − b21)x + b21 = (b13 − b23)x + b23

}
,

X23 =
{

x ∈ [0, 1] :
(b12 − b22)x + b22 > (b11 − b21)x + b21

(b12 − b22)x + b22 = (b13 − b23)x + b23

}
,

X123 =
{

x ∈ [0, 1] :
(b11 − b21)x + b21 = (b12 − b22)x + b22

(b11 − b21)x + b21 = (b13 − b23)x + b23

}
.

Proof. If the strategies of the first player are equivalent, then
Gr1 = Π.

Suppose that x ∈ [0, 1] is fixed. The payoff function of the second
player can be represented in the form

ϕ2(x,y) = ((b11 − b21)x + b21)y1 + ((b12 − b22)x + b22)y2 +
((b13 − b23)x + b23)(1− y1 − y2).

It’s evident that for:

x ∈ X1 the minimum of the cost function is realized on (1, 0) ∈ 4,

x ∈ X2 the minimum is realized on (0, 1) ∈ 4,

x ∈ X3 the minimum is realized on (0, 0) ∈ 4,

x ∈ X12 the minimum is realized on 4=,

x ∈ X13 the minimum is realized on [0, 1]× 0 ∈ 4,

x ∈ X23 the minimum is realized on 0× [0, 1] ∈ 4,

x ∈ X123 the minimum is realized on 4.

146



Nash equilibria sets in mixed extended 2× 3 games

From the above the truth of the proposition follows. ¤

Proposition 4B. If all three strategies of the second player are
equivalent, then

NE(Γ′m) = Gr1 = 1× Y1 ∪ 0× Y2 ∪ [0, 1]× Y12,

where
Y1 = {y ∈ 4 : α1y1 + α2y2 + α3 > 0},
Y2 = {y ∈ 4 : α1y1 + α2y2 + α3 < 0},
Y12 = {y ∈ 4 : α1y1 + α2y2 + α3 = 0},
α1 = a11 − a13 + a23 − a21,
α2 = a12 − a13 + a23 − a22,
α3 = a13 − a23.

Proof. If all three strategies of the second player are equivalent,
then b11 = b12 = b13, b21 = b22 = b23 and Gr2 = Π.

The cost function of the first player can be represented in the fol-
lowing form

ϕ1(x,y) = ((a11 − a13)y1 + (a12 − a13)y2 + a13)x+
((a21 − a23)y1 + (a22 − a23)y2 + a23)(1− x).

It’s evident that for

y ∈ Y1 = {y ∈ 4 : a11y1 + a12y2 + a13(1− y1 − y2) >
> a21y1 + a22y2 + a23(1− y1 − y2) } =

= {y ∈ 4 : (a11 − a13 + a23 − a21)y1+
+ (a12 − a13 + a23 − a22)y2 + a13 − a23 > 0}

the 1-st strategy of the first player is optimal, for

y ∈ Y2 = {y ∈ 4 : a11y1 + a12y2 + a13(1− y1 − y2) <
< a21y1 + a22y2 + a23(1− y1 − y2) } =

= {y ∈ 4 : (a11 − a13 + a23 − a21)y1+
+ (a12 − a13 + a23 − a22)y2 + a13 − a23 < 0}
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the 2-nd strategy of the first player is optimal, and for

y ∈ Y12 = {y ∈ 4 : a11y1 + a12y2 + a13(1− y1 − y2) =
= a21y1 + a22y2 + a23(1− y1 − y2) } =

= {y ∈ 4 : (a11 − a13 + a23 − a21)y1+
+ (a12 − a13 + a23 − a22)y2 + a13 − a23 = 0}

every strategy x ∈ [0, 1] of the first player is optimal. From this, the
truth of the proposition follows. ¤

2.5 The players don’t have dominant strategies

Proposition 5. If the both players don’t have dominant strategies,
then

NE(Γ′m) = Gr1 ∩Gr2,

where Gr1, Gr2 are defined as in propositions 4A, 4B.

The truth of the proposition follows from the above.

2.6 Algorithm

From the above a simple solving procedure follows. In this procedure
only one step from 1◦ to 5◦ is executed.

0◦ The game Γ′m is considered (see subsection 2.1);

1◦ If the both players have equivalent strategies in Γ, then the NE
set in Γm is X × Y (see the proposition 1);

2◦ If the both players have dominant strategies in Γ, then the NE
set in Γm is constructed in compliance with proposition 2 and
substitutions of subsection 2.1;

3A◦ If only the first player has dominant strategy in Γ, then the NE
set in Γm is constructed in conformity with proposition 3A and
substitutions of subsection 2.1;
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3B◦ If only the second player has only one dominant strategy in Γ,
then the NE set in Γm is constructed in conformity with propo-
sition 3B and substitutions of subsection 2.1;

3C◦ If the second player has two dominant strategies that dominate
the other strategy in Γ, then the NE set in Γm is constructed in
conformity with proposition 3B and substitutions of subsection
2.1;

4A◦ If only the first player has equivalent strategies in Γ, then the NE
set in Γm is constructed in accordance with proposition 4A and
substitutions of subsection 2.1;

4B◦ If only the second player has equivalent strategies in Γ, then the
NE set in Γm is constructed in accordance with proposition 4B
and substitutions of subsection 2.1;

5◦ If the both players don’t have dominant strategies in Γ, then the
NE set in Γm is constructed in compliance with proposition 5 and
substitutions of subsection 2.1.
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Abstract

The game-theoretic formulation of the multiobjective multi-
commodity flow problem is considered. The dynamic version of
this problem is studied and an algorithm for its solving, based on
the concept of multiobjective games, is proposed.
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1 Introduction

In this paper we consider the game-theoretic formulation of the mul-
tiobjective multicommodity flow problem. This problem consists of
shipping a given set of commodities from their respective sources to
their sinks through a network in order to optimize different criteria so
that the total flow going through each edge does not exceed its ca-
pacity. The network is a collection of locations with directed edges
identifying feasible transportation operations. The planning problem
is to determine the amount to transport on each link in order to move
all the cargo respecting fixed criteria.

If we associate to each commodity a player, we can regard this prob-
lem as a game problem, where players interact between them and the
choices of one player influence the choices of the others. Each player
has a vector utility function, components of which are such factors as

c©2005 by M.A. Fonoberova, D.D. Lozovanu
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transportation cost, speed of transit time, quality of service and others.
Each player seeks to optimize his own utility function in response to
the actions of the other players and all the players perform this opti-
mization simultaneously and at the same time players are interested to
preserve Nash optimality principle when they interact between them.
The game theory fits perfectly in the realm of such a problem, and an
equilibrium or stable operating point of the system has to be found.
We study the dynamic version of the multiobjective multicommodity
flow problem and use the concept of multiobjective games from [1, 2].

2 The game-theoretic approach and some
preliminary results

In order to study our multiobjective multicommodity flow problem we
will use the game-theoretic concept from [1, 2].

The multiobjective game with p players is denoted by G = (X1, X2,
. . . , Xp, F 1, F 2, . . . , F p), where Xi is a set of strategies of player i, i =
1, p, and F i = (F 1

i , F 2
i , . . . , F r

i ) is a vector payoff function of player i,
defined on set of situations X = X1 ×X2 × · · · ×Xp:

F i : X1 ×X2 × · · · ×Xp → Rr, i = 1, p.

Each component F k
i of F i corresponds to a partial criterion of player

i and represents a real function defined on set of situations X = X1 ×
X2 × · · · ×Xp:

F k
i : X1 ×X2 × · · · ×Xp → R1, k = 1, r, i = 1, p.

We call the solution of the multiobjective game G = (X1, X2, . . . ,
Xp, F 1, F 2, . . . , F p) the Pareto-Nash equilibrium and define it in the
following way.

Definition. The situation x∗ = (x∗1, x
∗
2, . . . , x

∗
p) ∈ X is called

Pareto-Nash equilibrium for the multiobjective game G = (X1, X2,
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. . . , Xp, F 1, F 2, . . . , F p) if for every i ∈ {1, 2, . . . , p} the strategy x∗i
represents Pareto solution for the following multicriterion problem:

max
xi∈Xi

→ f
i
x∗(xi) = (f i1

x∗(xi), f i2
x∗(xi), . . . , f ir

x∗(xi)), i = 1, p,

where

f ik
x∗(xi) = F k

i (x∗1, x
∗
2, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
p), k = 1, r.

This definition generalizes well-known Nash equilibria notion for
classical noncooperative games (single objective games) and Pareto op-
timum for multicriterion problems. If r = 1, then G becomes classical
noncooperative game, where x∗ represents Nash equilibria solution; in
the case p = 1 the game G becomes Pareto multicriterion problem,
where x∗ is Pareto solution.

Further we formulate the main theorem which represents an exten-
sion of the Nash theorem for our multiobjective version of the game.

Theorem 1. Let G = (X1, X2, . . . , Xp, F 1, F 2, . . . , F p) be a multi-
objective game, where X1, X2, . . . , Xp are convex compact sets and
F 1, F 2, . . . , F p represent continuous vector payoff functions. More-
over, let us assume that for every i ∈ {1, 2, . . . , p} each component
F k

i (x1, x2, . . . , xi−1, xi, xi+1, . . . , xp), k ∈ {1, 2, . . . , r}, of the vector
function F i(x1, x2, . . . , xi−1, xi, xi+1, . . . , xp) represents a concave func-
tion with respect to xi on Xi for fixed x1, x2, . . . , xi−1, xi+1, . . . , xp.
Then for multiobjective game G = (X1, X2, . . . , Xp, F 1, F 2, . . . , F p)
there exists Pareto-Nash equilibria situation x∗ = (x∗1, x

∗
2, . . . , x

∗
p) ∈

X1 ×X2 × · · · ×Xp.

The proof of Theorem 1 is given in [2].

So, if conditions of Theorem 1 are satisfied then Pareto-Nash equi-
libria solution for multiobjective game can be found by using the fol-
lowing algorithm.

Algorithm
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1. Fix an arbitrary set of real numbers α11, α12, . . . , α1r, α21, α22,
. . . , α2r, . . . , αp1, αp2, . . . , αpr, which satisfy condition





r∑

k=1

αik = 1, i = 1, p;

αik > 0, k = 1, r, i = 1, p;

2. Form the single objective game G = (X1, X2, . . . , Xp, f1, f2, . . . ,
fp), where

fi(x1, x2, . . . , xp) =
r∑

k=1

αikF
k
i (x1, x2, . . . , xp), i = 1, p;

3. Find Nash equilibria x∗ = (x∗1, x
∗
2, . . . , x

∗
p) for noncooperative

game G = (X1, X2, . . . , Xp, f1, f2, . . . , fp) and fix x∗ as Pareto-Nash
equilibria solution for multiobjective game G = (X1, X2, . . . , Xp, F 1,
F 2, . . . , F p).

3 The multiobjective multicommodity flow
problem

3.1 The static model

We consider a network N = (V, E, K, c, d, ϕ) that contains a directed
graph G = (V, E), where V is a set of vertexes, E is a set of edges,
and K = {1, 2, . . . , p} is a set of commodities that must be routed
through the same network. Each edge e ∈ E has a nonnegative ca-
pacity ce

i which bounds the amount of flow of commodity i allowed on
arc e. There is a throughput demand dv

i defined on vertexes for each
commodity in the network. To model transit costs we define the cost
function ϕ: E × R+ → R+. In such a way the following restrictions
have to be verified for the flow xe

i of commodity i sent on edge e:

∑

e∈E+(v)

xe
i −

∑

e∈E−(v)

xe
i = dv

i , ∀ v ∈ V, ∀ i ∈ K;
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0 ≤ xe
i ≤ ce

i , ∀ e ∈ E, ∀ i ∈ K;

where E+(v) = {(u, v) | (u, v) ∈ E}, E−(v) = {(v, u) | (v, u) ∈ E}.
The flow has to be shipped through the network in such a way to

optimize the vector utility function F i = (F 1
i , F 2

i , . . . , F r
i ) for every

i ∈ K:
F i : X1 ×X2 × · · · ×Xp → Rr,

F k
i : X1 ×X2 × · · · ×Xp → R1, k = 1, r,

where Xi is a set of flows of commodity i, r is a number of criteria.

3.2 The dynamic model

The static flow can not properly consider the evolution of the system
under study over time. The time is an essential component, either
because the flows take time to pass from one location to another, or
because the structure of network changes over time. To tackle this
problem, we use dynamic network flow models instead of the static
ones.

We consider the discrete time model, in which all times are in-
tegral and bounded by time horizon T , which defines the makespan
T = {0, 1, . . . , T} of time moments we consider. Time is measured in
discrete steps, so that if one unit of flow leaves node u at time t on arc
e = (u, v), one unit of flow arrives at node v at time t + τ e, where τ e

is the transit time of arc e. Each commodity has its own time-interval
Ti ⊂ T.

A dynamic network N = (V,E, K, c, τ, d, ϕ) consists of a directed
graph G = (V, E), a set K = {1, 2, . . . , p} of commodities that must
be routed through the same network within the makespan T, capacity
function c: E×K×T→ R+, transit time function τ : E → R+, demand
function d: V ×K × T→ R and cost function ϕ: E × R+ × T→ R+.
In such a way, the following restrictions have to be verified for the flow
xe

i (t) of commodity i sent on link e at time t ∈ T:
∑

e∈E+(v)
t−τe≥0

xe
i (t− τe)−

∑

e∈E−(v)

xe
i (t) = dv

i (t), ∀ t ∈ Ti, ∀ v ∈ V, ∀ i ∈ K;
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0 ≤ xe
i (t) ≤ ce

i (t), ∀ t ∈ Ti, ∀ e ∈ E, ∀ i ∈ K;

xe
i (t) = 0, ∀ e ∈ E, t = T − τe + 1, T , ∀ i ∈ K.

The flow has to be shipped through the network in such a way to
optimize the vector utility function F i = (F 1

i , F 2
i , . . . , F r

i ) for every
i ∈ K, where

F i : (X1 × Ti)× (X2 × Ti)× · · · × (Xp × Ti) → Rr,

F k
i : (X1 × Ti)× (X2 × Ti)× · · · × (Xp × Ti) → R1, k = 1, r.

Using the apparatus from Section 2 we reduce the considered prob-
lem to single-objective multicommodity flow problem.

4 The game formulation of the multiobjective
multicommodity flow problem

In the framework of the game theory each commodity in the formulated
problem is associated with a player. We consider a general model with
p agents each of which wishes to optimize its own vector utility function
F i, i = 1, p, which is defined on the set of strategies of all players. Each
component F k

i , k = 1, r, of the vector utility function Fi of player i
corresponds to a partial criterion of player i. Control decisions are made
by each player according to its own individual performance objectives
and depending on the choices of the other players.

Each player competes in a Nash equilibrium manner so as to opti-
mize his own criteria in the task of transporting of flow from its origins
to its destinations. Let xi be strategy of user i and x−i be strate-
gies of all other agents. For fixed i we say that x∗ = (x∗1, . . . , x

∗
p) is a

Nash equilibrium if no user can improve his utility by unilateral devi-
ation. In our problem each player has several objectives, so we use the
Pareto-Nash equilibrium concept extended to networks.

In such a way, players intend to optimize their utility functions
in the sense of Pareto and at the same time players are interested to
preserve Nash optimality principle when they interact between them.
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The cost of transportation of a given resource, the time necessary to
transport it to its destination as well as the quality of the transportation
play the role of the components of the vector utility function of a player
in the game-theoretic formulation of the problem. If payoff functions
satisfy conditions of the above theorem then for solving such a problem
we apply the algorithm proposed above.

5 Applications

In real-life problems users have to make decision concerning routing
as well as type and amount of resources that they wish to transport.
Different sets of parameters may suit the service requirements of a
user. However, the performance measures depend not only on the user’s
choices, but also on the decisions of other connected users, where this
dependence is often described as a function of some network ”state”.
In this setting the game paradigm and the Pareto-Nash equilibrium
concept become the natural choice at the user level.

Game theoretic models are widely employed in the context of flow
control, routing, virtual path bandwidth allocation and pricing in mo-
dem networking. Flow problems in multimedia applications (telecon-
ferencing, digital libraries) over high-speed broadband networks can
serve a good example of this. In a multimedia network telecommunica-
tion companies carrying different traffic types (voice, data, and video)
may share the limited common network resources such as buffers or
transmission lines. These companies may have different objectives of
maximizing packet throughput or minimizing packet blocking proba-
bility. A Pareto-Nash equilibrium may be reached when companies
achieve their objectives in such a way that no company can improve
its own performance by unilaterally changing its traffic load admission
and routing strategies.

The problem of providing bandwidth which will be shared by many
users ([3, 4]) is one of the most important problems. As it is typical
for games in such a problem the interaction among the users on their
individual strategies has to be imposed. This can be done using a
utility function that depends on the availability of bandwidth and other
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factors in the network. The problem of consumer i consists in choosing
which network resource to use and how much to use it.

The game theoretic approach can be applied in a problem of power
control in radio systems ([5]). In cellular radio systems power is a
valuable commodity for the users, so a mobile user prefers to use less
power and at the same time to obtain better quality-of-service from
assigned base stations. In such a way, each mobile user wishes to
optimize his own personal objectives and choices of mobile user depend
on choices of other users.

At the end we want to mention that the network performance is a
very important factor for the improvement of the system work, which
can be achieved both during the phase, when the network parameters
are sized ([6]), and during the phase of the operation of the network.
In such a way, the network performance is not completely determined
by the technical characteristics of the network but also is a function
of system state, therefore the issue of optimal user strategies is a very
actual problem.
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Abstract
In this paper we consider a vector integer programming prob-

lem with Pareto principle of optimality for the case where partial
criteria belong to the class of separable piecewise linear functions.
The limit level of the initial data’s perturbations in the space
of vector criteria parameters with norms l1 and l∞, preserved
Pareto optimality of the solutions is investigated. Formulas of
the quasistability radius and of strong quasistability radius of
the considered problem are given as corollaries.
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1 Introduction

Because of the extensive application of discrete optimization models in
economics, management and design during past decades, much atten-
tion of many specialists has been given to the study of diverse aspects
of stability and other questions relating to parametric and postopti-
mal analisis of scalar (singlecriterion) and vector (multicriterion) dis-
crete optimization problems. Under stability of a problem in the wide
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sense we understand the existence of a neighborhood in the space of
the problem parameters such that any ”perturbed” problem with pa-
rameters from this neighborhood possesses a certain kind of invariance
with respect to the initial problem. Under the stability of solution we
understand the property of solution to keep corresponding efficiency
(optimality) under mentioned perturbations.

In this paper we consider a vector integer programming problem
consisted in finding Pareto set. We suppose that all partial criteria
of the problem are separable piecewise linear functions with fixed sur-
charges. The stability of the problem defined as the semicontinuity by
Hausdorff of the optimal mapping that assigns the Pareto function of
choice, was investigated earlier [1]. Lower and upper bounds of stability
radius of the problem in the l∞ metrics were obtained.

The purpose of this work is to obtain the limit level of perturbation
in the space of vector criteria parameters with l1 and l∞ metrics pre-
serving Pareto optimality (efficiency) of a given solution. Formulas of
the quasistability and strong quasistability radii of the problem were
also obtained.

2 Base definitions and properties

Let m be the number of criteria, n be the number of variables,
C = [cij ] ∈ Rm×n, D = [dij ] ∈ Rm×n, X be a finite subset of
Zn

+ = {x ∈ Zn : xj ≥ 0, j ∈ Nn}, Nn = {1, 2, . . . , n}, where |X| > 1.
We define the vector criterion on the set of (feasible) solutions X

f(x) = (f1(x), f2(x), . . . , fm(x)) → min
x∈X

,

The components (partial criteria) are piecewise linear discontinuous
functions with fixed surcharges

fi(x) =
n∑

j=1

cij(xj), i ∈ Nm,
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where

cij(xj) =

{
cijxj + dij , if xj > 0,

0, if xj = 0.

For any integer vector x ∈ X we define a boolean vector x̃ ∈ En =
{0, 1}n with the components

x̃j =

{
1, if xj > 0,

0, if xj = 0.

Then partial criteria are linear functions:

fi(x) = Cix + Dix̃, i ∈ Nm,

where x = (x1, x2, . . . , xn)T , x̃ = (x̃1, x̃2, . . . , x̃n)T , and the subscript
at the matrix points to the corresponding row of the matrix. For ex-
ample, Ci = (ci1, ci2, . . . , cin).

Changing the elements of the pair (C, D), we obtain different vector
criteria. Therefore the pair (C, D) can be used for indexing a vector
criterion. Its partial criteria are denoted by fi(x, Ci, Di).

Further under the vector (m-criteria) problem Zm(C, D) with fixed
surcharges we understand the problem of finding of the Pareto set (the
set of efficient solutions)

Pm(C, D) = {x ∈ X : Pm(x,C, D) = ∅},

where

Pm(x,C, D) = {x′ ∈ X : g(x, x′, C, D) ≤ 0(m), g(x, x′, C, D) 6= 0(m)},

g(x, x′, C, D) = (g1, g2, . . . , gm),

gi = gi(x, x′, Ci, Di) = fi(x′, Ci, Di)− fi(x,Ci, Di), i ∈ Nm,

0(m) = (0, 0, . . . , 0) ∈ Rm.

While the set X is finite, the Pareto set Pm(C, D) is nonempty for
any matrices C,D ∈ Rm×n and for any natural number m ≥ 1.

Further we need the following evident statements.
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Property 1. Let x ∈ X, x′ ∈ Pm(x,C, D). Then for any index
i ∈ Nm the following inequality is valid

gi(x, x′, Ci, Di) ≤ 0.

Property 2. The solution x is efficient if for any solution x′ 6= x
there exists an index i ∈ Nm, such that

gi(x, x′, Ci, Di) > 0.

Note, that the problem in the scalar case (m = 1) can be understood
as the problem of piecewise linear concave programming with separable
discontinuous function [2, 3]. It is obvious that in another particular
case, where D is the null matrix, the problem Zm(C,D) changes into
the m-criteria integer linear programming problem, different stability
types of which were investigated in [4].

For any natural number p we define two metrics l1 and l∞ in the
space Rp , i.e. under metrics of a vector y = (y1, y2, . . . , yp) we under-
stand correspondingly the numbers

||y||1 =
p∑

i=1

|yi|, ||y||∞ = max{|yi| : i ∈ Np}.

Under the norm of a matrix we understand the norm of the vector
composed from its elements.

The following properties are obvious for any index i ∈ Nm.

Property 3. gi(x, x′, Ci, Di) ≤ (||Ci||1 + ||Di||1)||x− x′||∞.

Property 4. gi(x, x′, Ci, Di) ≤ ||Ci||∞||x−x′||1 + ||Di||∞||x̃− x̃′||1.
Let ε > 0. According to the selected metric (l1 or l∞) in the

parameter space Rm×n × Rm×n we perturb the elements of the pair
(C, D) by addition this pair with a pairs (C ′, D′) from the set

Ω1(ε) = {(C ′, D′) ∈ Rm×n ×Rm×n : ||C ′||1 + ||D′||1 < ε},
if the metric is l1, and from the set

Ω∞(ε) = {(C ′, D′) ∈ Rm×n ×Rm×n : ||C ′||∞ < ε, ||D′||∞ < ε},
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if the metric is l∞.
The problem Zm(C +C ′, D+D′), obtained from Zm(C, D) by such

addition, is called perturbed. The pair (C ′, D′) is called perturbing.
By analogy with [5–8], under stability radius of the efficient solution

x ∈ Pm(C, D) of the problem Zm(C, D) we understand the number

ρm(x,C, D) =
{

supΞ, if Ξ 6= ∅,
0, otherwise,

where

Ξ = {ε > 0 : ∀ (C ′, D′) ∈ Ωk(ε) (x ∈ Pm(C + C ′, D + D′))}.

Here k = 1 or k = ∞ according to the above mentioned notation.
Hence, the stability radius of the efficient solution x ∈ Pm(C, D) is

the maximum level of perturbations of the vector criterion parameters
in space Rm×n (with one of the norms), which keep the efficiency of
the solution x.

3 Lemmas

By definition, put

g+
i (x, x′, Ci, Di) = max{0, gi(x, x′, Ci, Di)}.

Lemma 1. If the inequality

gi(x, x′, Ci + C ′
i, Di + D′

i) ≤ 0, (1)

holds for any index i ∈ Nm, then

g+
i (x, x′, Ci, Di) ≤ (||C ′

i||1 + ||D′
i||1)||x− x′||∞. (2)

Actually, when gi(x, x′, Ci, Di) ≤ 0 inequality (2) is evident. If
gi(x, x′, Ci, Di) > 0, then taking into account condition (1), linearity of
the function gi(x, x′, Ci, Di) and property 3 we deduce

g+
i (x, x′, Ci, Di) = gi(x, x′, Ci, Di) =
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= gi(x, x′, Ci + C ′
i, Di + D′

i)− gi(x, x′, C ′
i, D

′
i) ≤

≤ −gi(x, x′, C ′
i, D

′
i) ≤ (||C ′

i||1 + ||D′
i||1)||x− x′||∞.

Lemma 1 is proved.

Lemma 2. Let x, x′ ∈ X, x 6= x′. For any ϕ, satisfying the in-
equalities

0 < ϕ||x− x′||∞ ≤
∑

i∈Nm

g+
i (x, x′, Ci, Di), (3)

and for any perturbing pair (C ′, D′) ∈ Ω1(ϕ) the following ratio is valid

x′ 6∈ Pm(x,C + C ′, D + D′).

Proof. Suppose the opposite, i.e. there exists perturbing pair
(C ′, D′) ∈ Ω1(ϕ), such that x′ ∈ Pm(x, C+C ′, D+D′). Then according
to property 1 for any index i ∈ Nm the inequality (1) is true. Therefore
based on lemma 1 the inequality (2) is true. Hence, using inclusion
(C ′, D′) ∈ Ω1(ϕ), we conclude

∑

i∈Nm

g+
i (x, x′, Ci, Di) ≤

∑

i∈Nm

(||C ′
i||1 + ||D′

i||1)||x− x′||∞ ≤

≤ (||C ′||1 + ||D′||1)||x− x′||∞ < ϕ||x− x′||∞,

that contradicts to condition (3).
Lemma 2 is proved.

Lemma 3. Let x, x′ ∈ X, x 6= x′. For any number ε such that

ε >
∑

i∈Nm

ηi,

where
ηi||x− x′||∞ > g+

i (x, x′, Ci, Di), i ∈ Nm, (4)

there exists perturbing pair (C ′, D′) ∈ Ω1(ε), such that x′ ∈ Pm(x,C +
C ′, D + D′).
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Proof. At first note, that any number ε, under conditions of
the lemma, is positive since all the numbers ηi, i ∈ Nm. Obviously
that for proving our lemma it suffices to show the perturbing pair
(C ′, D′) ∈ Ω1(ε), such that following inequalities

gi(x, x′, Ci + C ′
i, Di + D′

i) < 0, i ∈ Nm (5)

are fulfilled. Let

q = arg max{|xj − x′j | : j ∈ Nn}

and define the elements of the perturbing pair (C ′, D′) by formulas

c′ij =
{

ηi · sign(xq − x′q), if i ∈ Nm, j = q,

0 otherwise,

d′ij = 0, i ∈ Nm, j ∈ Nn.

It is easy to see that (C ′, D′) ∈ Ω1(ε). By virtue of construction of the
pair (C ′, D′) the equalities

gi(x, x′, C ′
i, D

′
i) = −ηi||x− x′||∞, i ∈ Nm

are true. Thus, taking into account the linearity of gi(x, x′, Ci, Di) and
ratios (4), we make sure of correctness of inequality (5):

gi(x, x′, Ci + C ′
i, Di + D′

i) = gi(x, x′, Ci, Di) + gi(x, x′, C ′
i, D

′
i) =

= gi(x, x′, Ci, Di)− ηi||x− x′||∞ ≤
≤ g+

i (x, x′, Ci, Di)− ηi||x− x′||∞ < 0, i ∈ Nm.

Lemma 3 is proved.

Lemma 4. If for any index i ∈ Nm the inequality

gi(x, x′, Ci, Di) > max{||C ′
i||∞, ||D′

i||∞}(||x− x′||1 + ||x̃− x̃′||1),

holds, then
gi(x, x′, Ci + C ′

i, Di + D′
i) > 0.
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Proof, from property 4, combining it with the linearity of the func-
tion gi(x, x′, Ci, Di), and condition of the lemma we obtain

gi(x, x′, Ci + C ′
i, Di + D′

i) = gi(x, x′, Ci, Di) + gi(x, x′, C ′
i, D

′
i) ≥

≥ gi(x, x′, Ci, Di)− ||C ′
i||∞||x− x′||1 − ||D′

i||∞||x̃− x̃′||1 ≥
≥ gi(x, x′, Ci, Di)−max{||C ′

i||∞, ||D′
i||∞}(||x− x′||1 + ||x̃− x̃′||1) > 0.

Lemma 4 is proved.

Lemma 5. Let x, x′ ∈ X, x 6= x′. For any number ε such that

ε(||x−x′||1+||x̃−x̃′||1) > max{gi(x, x′, Ci, Di) : i ∈ Nm}, ε > 0 (6)

there exists a perturbing pair (C ′, D′) ∈ Ω∞(ε), such that x′ ∈
Pm(x,C + C ′, D + D′).

Proof. Obviously that for proving our lemma it suffices to show
the perturbing pair (C ′, D′) ∈ Ω∞(ε), such that following inequalities

gi(x, x′, Ci + C ′
i, Di + D′

i) < 0, i ∈ Nm (7)

are true.
By virtue of (6) there exists a number α, such that

0 < α < ε,

α(||x− x′||1 + ||x̃− x̃′||1) > max{gi(x, x′, Ci, Di) : i ∈ Nm}. (8)

We assign the elements of the perturbing pair (C ′, D′) ∈ Ω∞(ε) by the
rule:

c′ij = α · sign(xj − x′j), d′ij = α · sign(x̃j − x̃′j), i ∈ Nm, j ∈ Nn.

Then taking into account the linearity of the function gi(x, x′, Ci, Di),
combining it with evident inequalities

gi(x, x′, C ′
i, D

′
i) = −α(||x− x′||1 + ||x̃− x̃′||1), i ∈ Nm,

and inequality (8), we obtain:

gi(x, x′, Ci + C ′
i, Di + D′

i) = gi(x, x′, Ci, Di) + gi(x, x′, C ′
i, D

′
i) =

= gi(x, x′, Ci, Di)− α(||x− x′||1 + ||x̃− x̃′||1) < 0, i ∈ Nm.

Lemma 5 is proved.
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4 Formulas of the stability radius of an efficient
solution

Theorem. For any number m ≥ 1 the stability radius ρm(x,C, D)
of any efficient solution x ∈ Pm(C, D) of the problem Zm(C,D) is
expressed by the formula

ρm(x,C, D) =

= min
x′∈X\{x}





∑
i∈Nm

g+
i (x, x′, Ci, Di)
||x− x′||∞ , if the metric is l1,

max
i∈Nm

gi(x, x′, Ci, Di)
||x− x′||1 + ||x̃− x̃′||1 , if the metric is l∞.

(9)

Proof. It is evident that in the right part of the equation (9) we
have non-negative numbers.

1. The case of l1 metric. First let us prove the inequality
ρm(x,C, D) ≥ ϕ1. We see that it suffices to consider the case ϕ1 > 0.
By definition of the number ϕ1, for any solution x′ 6= x inequalities
(3) are correct. Hence based on lemma 2 for any perturbing pair
(C ′, D′) ∈ Ω1(ϕ1) solution x′ 6∈ Pm(x,C + C ′, D + D′). Therefore
the set Pm(x,C + C ′, D + D′) = ∅. Thus for any perturbing pair
(C ′, D′) ∈ Ω1(ϕ1) solution x ∈ Pm(C + C ′, D + D′). Consequently
ρm(x,C, D) ≥ ϕ1.

Now we show that ρm(x,C, D) ≤ ϕ1. Let ε > ϕ1. According to
definition of the number ϕ1 there exists a solution x∗ 6= x, such that

ϕ1||x− x∗||∞ =
∑

i∈Nm

g+
i (x, x∗, Ci, Di).

Therefore there exists such positive numbers ηi that

ηi||x− x∗||∞ > g+
i (x, x∗, Ci, Di), i ∈ Nm,

ε >
∑

i∈Nm

ηi > ϕ1.

Hence by lemma 3 there exists a perturbing pair (C ′, D′) ∈ Ω1(ε) such
that x∗ ∈ Pm(x,C +C ′, D +D′), i.e. the solution x 6∈ Pm(C +C ′, D +
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D′). Hence for any number ε > ϕ1 the inequality ρm(x, C, D) < ε
holds. Thus ρm(x,C, D) ≤ ϕ1.

2. The case of l∞ metric. First prove the inequality ρm(x,C, D) ≥
ϕ∞. Without loss of generality it can be assumed that ϕ∞ > 0. By
definition of value ϕ∞ for any perturbing pair (C ′, D′) ∈ Ω∞(ϕ∞) and
any solution x′ 6= x there exists index i ∈ Nm, such that

gi(x, x′, Ci, Di)
||x− x′||1 + ||x̃− x̃′||1 ≥ ϕ∞ > max{||C ′||∞, ||D′||∞}.

From this according to lemma 4 we have

gi(x, x′, Ci + C ′
i, Di + D′

i) > 0.

Thus, taking into account property 2, solution x belongs to the Pareto
set of the perturbed problem Zm(C + C ′, D + D′). Consequently
ρm(x,C, D) ≥ ϕ∞.

Further we prove that ρm(x,C, D) ≤ ϕ∞. According to the defini-
tion of number ϕ∞ there exists a solution x∗ 6= x, such that

ϕ∞(||x− x∗||1 + ||x̃− x̃∗||1) = max{gi(x, x∗, Ci, Di) : i ∈ Nm}.
Then for ε > ϕ∞ inequality (6) is fulfilled. Hence based on lemma
5 there exists a perturbing pair (C ′, D′) ∈ Ω∞(ε), such that x∗ ∈
Pm(x,C + C ′, D + D′), i.e. the solution x 6∈ Pm(C + C ′, D + D′).
Thereby it is proved that for any number ε > ϕ∞ the inequality
ρm(x,C, D) < ε is valid. Hence ρm(x,C, D) ≤ ϕ∞.

Theorem is proved.

5 Corollaries

Under the quasistability of a vector problem of discrete optimization
we usually understand [4, 9–12] the Hausdorff lower semicontinuity of
the set-valued (point-to-set) mapping determining the Pareto choice
function. In other words, the problem Zm(C, D) is called quasistabil-
ity if there exists a number ε > 0, such that for any perturbing pair
(C ′, D′) ∈ Ω(ε) the following conclusion is valid

Pm(C, D) ⊆ Pm(C + C ′, D + D′).
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Therefore quasistability radius of the problem is determined as follows:

ρm
1 (C, D) =

{
supΦ1, if Φ1 6= ∅,
0, otherwise,

where

Φ1 = {ε > 0 : ∀ (C ′, D′) ∈ Ωk(ε) (Pm(C,D) ⊆ Pm(C+C ′, D+D′))},

Ωk(ε) is the above mentioned set of perturbing pairs (C ′, D′). In other
words, quasistability radius of the problem Zm(C,D) is the maximum
level of perturbations of matrices C and D in the space of parameters
of the vector criterion with the corresponding norm such that Pareto
set can only expand.

Directly from the theorem we obtain

Corollary 1. For any m ≥ 1 for quasistability radius ρm
1 (C, D) of

the problem Zm(C, D) the following formula is valid

ρm
1 (C, D) =

= min
x∈P m(C,D)

min
x′∈X\{x}





∑
i∈Nm

g+
i (x, x′, Ci, Di)
||x− x′||∞ , if themetric is l1,

max
i∈Nm

gi(x, x′, Ci, Di)
||x− x′||1 + ||x̃− x̃′||1 , if themetric is l∞.

Therefore next corollary is true.

Corollary 2. For any m ≥ 1 the problem Zm(C,D) is quasistable
if and only if Pm(C, D) = Sm(C,D).

Here Sm(C, D) is the traditional Smale set, i.e. the set of strictly
efficient solutions of the problem Zm(C,D), which is a subset of the
Pareto set and defined in the following way [13]:

Sm(C,D) = {x ∈ X : Sm(x,C,D) = ∅},

where

Sm(x,C, D) = {x′ ∈ X\{x} : g(x, x′, C, D) ≤ 0(m)}.
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When we relax the demand of preservation of all the Pareto set
in definition of the quasistability of problem Zm(C,D), we get the
concept of the strong quasistability. This type of the stability means
the existence of neighborhood of vector criterion parameters such that
although disappearance of the old effective solutions is possible but
there exists at least one pareto-optimal solution of initial problem, that
preserves its efficiency under small perturbations of parameters. In
other words there exists at least one stable Pareto optimum. Thus
under the strong quasistability radius of the problem Zm(C, D) we
understand the number

ρm
2 (C, D) =

{
supΦ2, if Φ2 6= ∅,
0, otherwise,

where

Φ2 = {ε > 0 : ∃ x ∈ Pm(C,D) ∀ (C ′, D′) ∈ Ωk(ε)

(x ∈ Pm(C + C ′, D + D′))}.
Directly from the theorem we obtain

Corollary 3. For strong quasistability radius ρm
2 (C, D), m ≥ 1 of

the problem Zm(C, D) the following formula is valid

ρm
2 (C, D) =

= max
x∈P m(C,D)

min
x′∈X\{x}





∑
i∈Nm

g+
i (x, x′, Ci, Di)
||x− x′||∞ , if themetric is l1,

max
i∈Nm

gi(x, x′, Ci, Di)
||x− x′||1 + ||x̃− x̃′||1 , if themetric is l∞.

Hence we obtain

Corollary 4. For any m ≥ 1 the problem Zm(C, D) is strongly
quasistable problem if and only if Sm(C,D) 6= ∅.

The next two statements follow from corollaries 3 and 4.
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Corollary 5. Any quasistable problem Zm(C,D),m ≥ 1, is
strongly quasistable.

Corollary 6. For any scalar problem Z1(C,D), C ∈ Rn, D ∈ Rn

the next statements are equivalent:
a) Z1(C,D) is quasistable,
b) Z1(C, D) is strongly quasistable,
c) Z1(C, D) has a unique optimal solution.

6 Example

Let us give a simple example which illustrates stated results. Let us
consider a two-criterion problem. X = {x1, x2, x3, x4, x5}, where

x1 = (1, 0, 0, 0)T , x2 = (0, 1, 0, 0)T , x3 = (0, 0, 1, 0)T ,

x4 = (2, 3, 1, 1)T , x5 = (2, 4, 1, 1)T ,

the matrices C and D are

C =
[

2 5 5 3
7 1 1 2

]
, D =

[
1 3 3 0
2 1 1 4

]
.

Then
f(x1) = (3, 9), f(x2) = f(x3) = (8, 2),

f(x4) = (34, 28), f(x5) = (39, 29),

Pareto set consists of three solutions x1, x2, x3, Smale set contains
just one solution x1. Therefore the problem is quasistable (in virtue of
corollary 2), but is not strongly quasistable (in virtue of corollary 4).
By the theorem it is easy to calculate

ρ2(x1, C, D) =
{

5, if the metric is l1,
5
4 , if the metric is l∞,

(10)

ρ2(x2, C, D) = ρ2(x3, C, D) = 0 for any metric (l1 or l∞).
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Hence in virtue of corollaries 1 and 3 the quasistability and strong
quasistability radii take on the forms correspondingly

ρ2
1(C, D) = 0 for any metric (l1 or l∞),

ρ2
2(C,D) =

{
5, if the metric is l1,
5
4 , if the metric is l∞.

Now consider two new another variants of the problem changing
just the set of the admissible solutions X.

Variant 1. Let X ′ = X \ {x3} = {x1, x2, x4, x5}. Then the Pareto
set {x1, x2} and the Smale set are congruent. Therefore the problem is
quasistable and strong quasistable simultaneously. Using formula (9),
we make sure that the value ρ2(x1, C,D) is defined by formula (10)
too.

ρ2(x2, C, D) =
{

7, if the metric is l1,
7
4 , if the metric is l∞.

Taking into account corollaries 1 and 3, we get the quasistability and
strong quasistability radii:

ρ2
1(C,D) =

{
5, if the metric is l1,
5
4 , if the metric is l∞,

ρ2
2(C,D) =

{
7, if the metric is l1,
7
4 , if the metric is l∞.

Variant 2. Let X ′′ = X \ {x1} = {x2, x3, x4, x5}. Then {x2, x3} is
the Pareto set. The Smale set is empty. By the formula (9) we have

ρ2(x2, C,D) = ρ2(x3, C, D) = 0 for any metric.

Therefore in virtue of corollaries 2 and 4, the problem is neither qua-
sistable nor strongly quasistable.
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Approaches to Software Based Fault Tolerance

– A Review

Goutam Kumar Saha

Abstract

This paper presents a review work on various approaches to
software based fault tolerance. The aim of this paper is to cover
past and present approaches to software implemented fault tol-
erance that rely on both software design diversity and on single
but enhanced design.

1 Introduction

Fault tolerance is the ability of a system to perform its function cor-
rectly even in the presence of internal faults. The purpose of fault
tolerance is to increase the dependability of a system. The objective of
a fault-tolerant system is to mask faults (or to detect errors to switch
to an alternate module) and continue to provide service despite faults.
Fault tolerant systems must provide their specified services despite the
occurrence of faults in the systems’s components [1]. A failure occurs
when an actual running system deviates from the specified behaviour.
The cause of a failure is called an error. A fault is the root cause of
a failure. In other words, an error is merely the symptom of a fault.
A fault may not necessarily result in an error, but the same fault may
result in multiple errors. Similarly, a single error may lead to multiple
failures [116]. All fault tolerance techniques must use some form of
redundancy to tolerate faults. Depending on the class of faults [76]
redundant devices, networks, data or applications are used. Software
fault tolerance relies either on design diversity or on single design using
robust data structure. The only type of fault possible in software is
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a design fault introduced during the software development. Software
faults are what we commonly call “bugs”. According to [74], software
faults are the root cause in a high percentage of operational system fail-
ures. The consequences of these failures depend on the application and
the particular characteristic of the faults. The immediate effects can
range from minor inconveniences (e.g., having to restart a hung per-
sonal computer) to catastrophic events (e.g., software in an aircraft that
prevents the pilot from recovering from an input error) [75]. From a
business perspective, operational failures caused by software faults can
translate into loss of potential customers, lower sales, higher warranty
repair costs, and losses due to legal actions from the people affected
by the failures. There are four ways of dealing with software faults:
prevention, removal, fault tolerance, and input sequence workarounds.
Fault prevention is concerned with the use of design methodologies,
techniques, and technologies aimed at preventing the introduction of
faults into the design. Fault removal considers the use of techniques like
reviews, analyses, and testing to check an implementation and remove
any faults thereby exposed. The proper use of software engineering
during the development processes is a way of realizing fault prevention
and fault removal (i.e., fault avoidance). The use of fault avoidance is
the standard approach for dealing with software faults and the many
developments in the software field target the improvement of the fault
avoidance techniques. [74,76] states that the software development pro-
cess usually removes most of the deterministic design faults. This type
of fault is activated by the inputs independently of the internal state of
the software. A large number of the faults in operational software are
state-dependent faults activated by particular input sequences. Given
the lack of techniques that can guarantee that complex software de-
signs are free of design fault, fault tolerance is sometimes used as an
extra layer of protection. Software fault tolerance is the use of tech-
niques to enable the continued delivery of services at an acceptable
level of performance and safety after a design fault becomes active.
Single version technique aims to improve the fault tolerance of a sin-
gle piece of software by adding extra measures into the design aiming
the error detection, containment, and tolerating errors caused by the
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design faults. Multi-version fault tolerance technique uses multiple ver-
sions (or variants) of a piece of software in a structured way to ensure
that design faults in one version do not cause system failures. This
is based on masking the design bugs. A characteristic of the software
fault tolerance techniques is that they can be applied at any level in a
software system: procedure, process, full application program, or the
whole system including the operating system [4]. Such technique can
also be applied selectively to those components that are deemed to have
design faults due to their complexity [5]. Whatever measure we may
take to remove software design bugs, software cannot be made free of
design bugs. Though at present software errors have been attributed
to be the main cause of most system failures. Transient errors often
disrupt proper functioning (e.g., program hanging, wrong answer, false
branching, data and code errors etc.) of an application program during
the execution of an application system. But recent studies [2,3] have
suggested that soft errors or transient bit-errors are increasingly re-
sponsible for system malfunctioning. Nowadays, computer systems are
becoming more complex and are optimized for price and performance
and not for availability. This makes soft errors an even more common
case. Move towards denser, smaller, and low voltage transistors has
the potential to increase these transient errors. Most system software
architectures assume faith in underlying hardware, and software make
no provisions to deal with hardware faults. [101] predicts that soft error
rate (SER) per chip of logic circuits will increase nine orders of magni-
tude from 1992 to 2011 and at that point magnitude will be comparable
to the SER per chip of unprotected memory elements. Researches in
[104] have analyzed the effect of soft errors on system software. Soft-
ware fault tolerance techniques have also been proposed in [102,103]. In
this survey paper, we not only investigate various approaches to toler-
ate software design bugs but also we investigate the consequence of soft
error on the system as a whole and current research into proposed re-
covery mechanisms along with transient fault tolerance. Multi version
approach is basically on the assumption that software built differently
might fail differently and thus, if one of the redundant versions fails, at
least one of the others might provide an acceptable output. Recovery
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blocks, N-version programming, N self-checking programming, consen-
sus recovery blocks, and t/(n−1) techniques are also reviewed. Current
research in software engineering focuses on establishing patterns in the
software structure and trying to understand the practice of software
engineering. We expect that software based fault tolerance research
will be benefited by this research on enabling greater predictability of
the dependability of software.

2 Various Approaches to Software Fault Toler-
ance

In this section, we investigate various software based fault tolerant
approaches that rely on design diversity (multiple version) as well as
on single design.

2.1 Design Diversity Based Software Fault Tolerance

Design Diversity Based or Multiple version based software fault tol-
erance is based on the use of at least two versions (or “variants”) of
a piece of software, executed either in sequence or in parallel. The
versions are used as alternatives (with a separate means of error de-
tection), in pairs (to implement detection by replication checks) or in
larger groups (to enable masking through voting). The rationale for
the use of multiple versions is the expectation that components built
differently (i.e, different designers, different algorithms, different design
tools, etc) should fail differently [6,7]. Therefore, if one version fails on
a particular input, at least one of the alternate versions should be able
to provide an appropriate output. This section covers some of these
“design diversity” approaches to software reliability and safety. Basi-
cally multiple-version approach is to mask software design bugs. Two
critical issues in the use of multi-version software fault tolerance tech-
niques are the guaranteeing of independence of failure of the multiple
versions and the development of the output selection algorithms.

Design diversity is “protection against uncertainty” [16]. In the
case of software design, the uncertainty is in the presence of design
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faults and the failure modes due to those faults. The goal of design
diversity techniques applied to software design is to build program ver-
sions that fail independently and with low probability of coincidental
failures. If this goal is achieved, the probability of not being able to
select a good output at a particular point during program execution is
greatly reduced or eliminated. Due to the complexity of software, the
use of design diversity for software fault tolerance is today more of an
art rather than a science. The methodology of multiple-version soft-
ware design was carried out by Algirdas Avizienis and his colleagues
at UCLA starting in the 1970s [6,17,18,19,20,21,22,23,24]. Although
focused mainly on software, their research considered the use of de-
sign diversity concepts for other aspects of systems like the operating
system, the hardware, and the user interfaces. Assuming that the de-
velopment is rigorous and design diversity is adequately applied to the
product, there is still the common error source of the identical input
profile. [25] points out that experiments (e,g, [26,27,28]) have shown
that the probability of error manifestations are not equally distributed
over the input space and the probability of coincident errors is im-
pacted by the chosen inputs. Certainly data diversity techniques could
be used to reduce the impact of this error source, but the problem of
quantifying the effectiveness of the approach still remains. The cost of
using multi-version software is also an important issue. A direct repli-
cation of the full development effort, including testing, would certainly
be an expensive proposition. In some applications where only a small
part of the functionality is safety critical, development and production
cost can be reduced by applying design diversity only to those critical
parts [16].

• The Recovery Block Scheme
The Recovery Block Scheme (RBS) technique [8,9] combines the basics
of both the checkpoint and restart approach with multiple versions of
a software component such that a different version is tried after an
error is detected. Checkpoints are created before a version executes.
Checkpoints are needed to recover the state after a version fails to
provide a valid operational starting point for the next version if an
error is detected. The acceptance test need not be an output-only
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test and can be implemented by various embedded checks to increase
the effectiveness of the error detection. Also, because the primary
version will be executed successfully most of the time, the alternates
could be designed to provide degraded performance in some sense (e.g.,
by computing values to a lesser accuracy). Actual execution of the
multiple versions can be sequential or in parallel depending on the
available processing capability and performance requirements. If all
the alternates are tried unsuccessfully, the component must raise an
exception to communicate to the rest of the system its failure (or crash)
to complete its function. Note that such a failure occurrence does not
imply a permanent failure of the component, which may be reusable
after changes in its inputs or state. The much possibility of coincident
faults is the source of much controversy concerning all the multi-version
software fault tolerance techniques.

• The N-Version Programming Scheme
The N-Version programming Scheme (NVPS) [7] is a multiple-version
technique in which all the versions are designed to satisfy the same
basic requirements and the decision of output correctness is based on
the comparison of all the outputs. The use of a generic decision algo-
rithm (usually a voter) to select the correct output is the fundamental
difference of this approach from the Recovery Blocks approach, which
requires an application dependent acceptance test. Since all the ver-
sions are built to satisfy the same requirements, the use of N-version
programming requires considerable development effort but the com-
plexity (i.e., development difficulty) is not necessarily much greater
than the inherent complexity of building a single version. Design of the
voter can be complicated by the need to perform inexact voting. [43]
presents a generic two step structure for the output selection process.
The first step is a filtering process where individual version outputs
are analyzed by acceptance tests for likelihood of correctness, timing,
completeness, and other characteristics. [44] presents four generalized
voters for use in redundant systems: Formalized Majority Voter, Gen-
eralized Median Voter, Formalized Plurality Voter, and Weighted Av-
eraging Techniques. The Weighted Averaging Technique combines the
version outputs in a weighted average to produce a new output. The
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weights can be selected a-priori based on the characteristics of the in-
dividual versions and the application. When all the weights are equal
this technique becomes a mean selection technique. The weights can
also be selected dynamically based on the pair-wise distances of the
version outputs [48] or the success history of the versions measured by
some performance metric [44,47]. Other voting techniques have been
proposed. For example, [45] proposed a selection function that always
produces an acceptable output through the use of artificial intelligence
techniques. [49, 50, 51] discuss the voting or majority output problem
in some detail.

• The N Self-Checking Programming Scheme
The N Self-Checking Programming Scheme (NSCPS) [10,11,12] is the
use of multiple software versions combined with structural variations
of the Recovery Blocks and N-Version Programming. N Self-Checking
programming uses acceptance tests. Here the versions and the accep-
tance tests are developed independently from common requirements.
This use of separate acceptance tests for each version is the main differ-
ence of this N Self-Checking model from the Recovery Blocks approach.
Similar to N-Version Programming, this model has the advantage of us-
ing an application independent decision algorithm to select a correct
output.

• The Consensus Recovery Blocks Scheme
The Consensus Recovery Blocks Scheme (CRBS) [13] approach com-
bines N-Version Programming and Recovery Blocks to improve the re-
liability over that achievable by using just one of the approaches. The
acceptance tests in the Recovery Blocks suffer from lack of guidelines
for their development and a general proneness to design faults due to
the inherent difficulty in creating effective tests. The use of voters as
in N-Version Programming may not be appropriate in all situations,
especially when multiple correct outputs are possible. In that case a
voter, for example, would declare a failure in selecting an appropriate
output. Consensus Recovery Blocks uses a decision algorithm similar
to N-Version Programming as a first layer of decision. If this first layer
declares a failure, a second layer using acceptance tests similar to those
used in the Recovery Blocks approach is invoked. Although obviously
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much more complex than either of the individual techniques, the reli-
ability models indicate that this combined approach has the potential
of producing a more reliable piece of software.

• The t/(n− 1)-Variant Programming Scheme
The t/(n − 1)-Variant Programming Scheme (VPS) was proposed in
[14]. The main difference between this approach and the ones men-
tioned above is in the mechanism used to select the output from among
the multiple variants. The design of the selection logic is based on the
theory of system-level fault diagnosis [15], which is beyond the scope of
this paper. Basically, a t/(n − 1)-VPS architecture consists of n vari-
ants and uses the t/(n− 1) diagnosibility measure to isolate the faulty
units to a subset of size at most (n − 1) assuming there are at most
t faulty units [14]. Thus, at least one non-faulty unit exists such that
its output is correct and can be used as the result of computation for
the module. t/(n− 1)-VPS compares favorably with other approaches
in that the complexity of the selection mechanism grows with order
O(n) and it can potentially tolerate multiple dependent faults among
the versions. It also has a lower probability of failure than N Self-
Checking Programming and N-Version Programming when they use a
simple voter as selection logic.

2.2 Single-Design Software Fault Tolerance Approach

Single-design fault tolerance is based on the use of redundancy applied
to a single version of a piece of software to detect and recover from
faults. Among others, single-version software fault tolerance techniques
include considerations on program structure and actions, error detec-
tion, exception handling, checkpoint and restart, process pairs, and
data diversity [29].

• Software Engineering Aspects
Software architecture gives us the basis for implementation of fault tol-
erance. The use of modularizing techniques to decompose a problem
into manageable components is as important to the efficient applica-
tion of fault tolerance as it is to the design of a system. The modular
decomposition of a design should consider built-in protections to keep

200



Approaches to Software Based Fault Tolerance . . .

aberrant component behavior in one module from propagating to other
modules. Control hierarchy issues like visibility (i.e., the set of com-
ponents that may be invoked directly and indirectly by a particular
component) and connectivity (i.e., the set of components that may be
invoked directly or used by a given component) should be considered
in the context of error propagation for their potential to enable un-
controlled corruption of the system state. Partitioning is a technique
for providing isolation between functionally independent modules [31].
Advantages of using partitioning in a design include simplified testing,
easier maintenance, and lower propagation of side effects [30]. System
closure is a fault tolerance principle stating that no action is permissible
unless explicitly authorized [32]. An atomic action among a group of
components is an activity in which the components interact exclusively
with each other and there is no interaction with the rest of the system
for the duration of the activity [33]. The advantage of using atomic
actions in defining the interaction between system components is that
they provide a framework for error confinement and recovery. There
are only two possible outcomes of an atomic action: either it terminates
normally or it is aborted upon error detection. If an atomic action ter-
minates normally, its results are complete and committed. If a failure
is detected during an atomic action [76], it is known beforehand that
only the participating components can be affected.

• Error Detection Mechanisms
Effective application of fault tolerance techniques in single version
systems requires that the structural modules have two basic proper-
ties: self-protection and self-checking [34]. The self-protection property
means that a component must be able to protect itself from external
contamination by detecting errors in the information passed to it by
other interacting components. Self-checking means that a component
must be able to detect internal errors and take appropriate actions to
prevent the propagation of those errors to other components. The de-
gree (and coverage) to which error detection mechanisms are used in
a design is determined by the cost of the additional redundancy and
the run-time overhead. Note that the fault tolerance redundancy is not
intended to contribute to system functionality but rather to the quality
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of the product. Similarly, detection mechanisms detract from system
performance. Actual usage of fault tolerance in a design is based on
trade-offs of functionality, performance, complexity, and safety. Ander-
son [33] has proposed a classification of error detection checks, some of
which can be chosen for the implementation of the module properties
mentioned above. The location of the checks can be within the modules
or at their outputs, as needed. The checks include replication, timing,
reversal, coding, reasonableness, and structural checks.

• The use of Assertions [105] that is logic statements inserted
at different points in the program that reflects invariant relationships
between the variables of the program can also be used for fault toler-
ance. However it can lead to different problems, since assertions are not
transparent to the programmer and their effectiveness largely depends
on the nature of the application and on the programmers ability.

• Control Flow Checking [106] is to partition the application
program in basic blocks (that is, branch-free parts of code). For each
block a deterministic signature is computed and faults can be detected
by comparing the run-time signature with a precomputed one. In most
control-flow checking techniques one of the main problems is to tune
the test granularity that should be used.

• Replication checks make use of matching components with
error detection based on comparison of their outputs. This is applicable
to multi-version software fault tolerance.

• Timing checks are applicable to systems and modules whose
specifications include timing constraints, including deadlines. Based
on these constraints, checks can be developed to look for deviations
from the acceptable module behavior. Watchdog timers are a type of
timing check with general applicability that can be used to monitor for
satisfactory behavior and detect “lost or locked out” components.

• Reversal checks use the output of a module to compute the
corresponding inputs based on the function of the module. An error
is detected if the computed inputs do not match the actual inputs.
Reversal checks are applicable to modules whose inverse computation
is relatively straightforward.

• Coding checks use redundancy in the representation of infor-
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mation with fixed relationships between the actual and the redundant
information. Error detection [109, 110] is based on checking those rela-
tionships before and after operations. Checksums are a type of coding
check. Similarly, many techniques developed for hardware (e.g., Ham-
ming, M-out-of-N, cyclic codes) can be used in software, especially in
cases where the information is supposed to be merely referenced or
transported by a module from one point to another without chang-
ing its contents. Many arithmetic operations preserve some particular
properties between the actual and redundant information, and can thus
enable the use of this type of check to detect errors in their execution.

• Reasonableness checks use known semantic properties of data
(e.g., range, rate of change, and sequence) to detect errors. These
properties can be based on the requirements or the particular design
of a module.

• The Data Structural checks use known properties of data
structures. For example, queues, lists, and trees can be inspected
for number of elements in the structure, their links and pointers, and
any other particular information that could be articulated. Structural
checks could be made more effective by augmenting data structures
with redundant structural data like extra pointers, embedded counts
of the number of items on a particular structure, and individual iden-
tifiers for all the items [34, 35, 36, 37, 38]. Another fault detection tool
is run-time checks [15]. These are provided as standard error detec-
tion mechanisms in hardware systems (e.g., divide by zero, overflow,
underflow). Although they are not application specific, they do rep-
resent an effective means of detecting design errors. Error detection
strategies can be developed in an ad-hoc fashion or using structured
methodologies. Fault trees have been proposed as a design aid in the
development of fault detection strategies [39]. Fault trees can be used to
identify general classes of failures and conditions that can trigger those
failures. Fault trees represent a top-down approach which, although
not guaranteeing complete coverage, is very helpful in documenting
assumptions, simplifying design reviews, identifying omissions, and al-
lowing the designer to visualize component interactions and their con-
sequences through structured graphical means. Fault trees enable the
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designer to perform qualitative analysis of the complexity and degree of
independence in the error checks of a proposed fault tolerance strategy.

• The Exception Handling
The task exception handling is the interruption of normal operation
to handle abnormal responses. Exceptions are signaled by the imple-
mented error detection mechanisms as a request for initiation of an
appropriate recovery. The design of exception handlers requires that
consideration be given to the possible events triggering the exceptions,
the effects of those events on the system, and the selection of appropri-
ate mitigating actions [15]. [8] lists three classes of exception triggering
events for a software component: interface exceptions, internal local ex-
ceptions, and failure exceptions. This knowledge of error containment
is essential to the design of effective exception handlers.

• The Checkpoint and Restart
For single-design software there are few recovery mechanisms. The
most often mentioned is the checkpoint and restart mechanism (e.g.,
[15]). As mentioned in previous sections, most of the software faults
remaining after development are unanticipated, state-dependent faults
[76]. This type of fault behaves similarly to transient hardware faults:
they appear, do the damage, and then apparently just go away, leaving
behind no obvious reason for their activation in the first place [40].
Because of these characteristics, simply restarting a module is usually
enough to allow successful completion of its execution [40]. A restart,
or backward error recovery has the advantages of being independent
of the damage caused by a fault, applicable to unanticipated faults,
general enough that it can be used at multiple levels in a system, and
conceptually simple [33]. There exist two kinds of restart recovery:
static and dynamic. A static restart is based on returning the module
to a predetermined state. This can be a direct return to the initial reset
state, or to one of a set of possible states, with the selection being made
based on the operational situation at the moment the error detection
occurred. Dynamic restart uses dynamically created checkpoints that
are snapshots of the state at various points during the execution.

• The Process Pairs
A process pair uses two identical versions of the software that run on
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separate processors [15]. The recovery mechanism is checkpoint and
restart. Here the processors are labeled as primary and secondary. At
first the primary processor is actively processing the input and creating
the output while generating checkpoint information that is sent to the
backup or secondary processor. Upon error detection, the secondary
processor loads the last checkpoint as its starting state and takes over
the role of primary processor. As this happens, the faulty processor
goes offline and executes diagnostic checks. The main advantage of
this recovery technique is that the delivery of services continues unin-
terrupted after the occurrence of a failure in the system.

• The Data Diversity
The last line of defense against design faults is to use “input sequence
workarounds”. Data diversity can be seen as the automatic implemen-
tation of “input sequence workarounds” combined with checkpoint and
restart [76]. Again, the rationale for this technique is that faults in de-
ployed software are usually input sequence dependent. Data diversity
has the potential of increasing the effectiveness of the checkpoint and
restart by using different input re-expressions on each retry [41]. The
goal of each retry is to generate output results that are either exactly
the same or semantically equivalent in some way. In general, the notion
of equivalence is application dependent. [41, 42] presents three basic
data diversity models: (i) Input Data Re-Expression, where only the
input is changed; (ii) Input Re-Expression with Post-Execution Adjust-
ment, where the output is also processed as necessary to achieve the
required output value or format; (iii) Re-Expression via Decomposition
and Recombination, where the input is broken down into smaller ele-
ments and then recombined after processing to form the desired output.
Data diversity is compatible with the Process Pairs technique using dif-
ferent re-expressions of the input in the primary and secondary.

• Fault Tolerance in Operating Systems
Any application level software relies on the correct behavior of the
operating system. Software fault tolerance can be applied to the de-
sign of operating systems [32,76]. However, in general, designing and
building operating systems tends to be a rather complex, lengthy and
costly endeavor. For safety critical applications it may be necessary
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to develop custom operating systems through highly structured design
processes [31] including highly experienced programmers and advanced
verification techniques in order to gain a high degree of confidence on
the correctness of the software. Another approach to the development
of fault tolerant operating systems for mission critical applications is
the use of wrappers on off-the-shelf operating systems to boost their
robustness to faults. A problem with the use of off-the-shelf software
on dependable systems is that the system developers are not sure if the
off-the-shelf components are reliable enough for the application [52]. It
is known that the development process for commercial off-the-shelf soft-
ware does not consider de facto standards for safety or mission critical
applications and the available documentation for the design and vali-
dation activities tend to be rather weak [53]. A point in favor of using
commercial operating systems is that they often include the latest de-
velopments in operating system technology. Also, widely deployed com-
mercial operating systems could have fewer bugs overall than custom
developed software due to the corrective actions performed in response
to bug complaints from the users [54]. Because modifications to the
internals of the operating system could increase the risk of introducing
design faults, it is preferred to apply techniques that use the software as
is. A wrapper is a piece of software put around another component to
limit what that component can do without modifying the component’s
source code [52]. Wrappers monitor the flow of information into and
out of the component and try to keep undesirable values from being
propagated. In this manner, the wrapper limits the component’s input
and output spaces. Wrappers have been used as middleware located
between the operating system and the application software [55, 56, 57].
The wrappers (called “sentries” in the referenced work) encapsulate
operating system services to provide application-transparent fault tol-
erant functionality and can augment or change the characteristics of
the services as seen by the application layer. In this design the sen-
tries provide the mechanism to implement fault tolerance policies that
can be dynamically assigned to particular applications based on the
individual fault tolerance, cost and performance needs. [53] proposed
the use of wrappers at the microkernel level for off-the-shelf operating
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systems. The wrappers proposed by these researchers aim at verify-
ing consistency constraints at a semantic level by utilizing information
beyond what is available at the interface of the wrapped component.
Their approach uses abstractions [76] (i.e., models) of the expected
component functionality.

3 Assessment of Fault Tolerance by Fault In-
jection

Software fault injection (SFI) [76] is the process of testing software
under anomalous circumstances involving erroneous external inputs or
internal state information. The main reason for using software fault
injection is to assess the goodness of a design [65]. Basically, SFI tries
to measure the degree of confidence that can be placed on the proper
delivery of services. Since it is very hard to produce correct software,
SFI tries to show what could happen when faults are activated. The
collected information can be used to make code less likely to hide faults
and also less likely to propagate faults to the outputs either by rework-
ing the existing code or by augmenting its capabilities with additional
code as done with wrappers [65]. SFI can be used to target both objec-
tives of the dependability validation process: fault removal and fault
forecasting [62]. In the context of fault removal, SFI can be used as
part of the testing strategy during the software development process
to see if the designed algorithms and mechanisms work as intended. In
fault forecasting, SFI is used to assess the fault tolerance robustness of
a piece of software (e.g., an off-the-shelf operating system). The use of
SFI has two important advantages over the traditional input sequence
test cases [59]. First, by actively injecting faults into the software we
are in effect accelerating the failure rate and this allows a thorough
testing in a controlled environment within a limited time frame. Sec-
ond, by systematically injecting faults to target particular mechanisms
we are able to better understand the behavior of that mechanism in-
cluding error propagation and output response characteristics. There
exist two basic models of software injection: fault injection and error
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injection. Fault injection simulates software design faults by targeting
the code. Here the injection considers the syntax of the software to
modify it in various ways with the goal of replacing existing code with
new code that is semantically different [65]. This “code mutation” can
be performed at the source code level before compilation if the source
code is available. The mutation can also be done by modifying the
text segment of a program’s object code after compilation. Error in-
jection, called “data-state mutation” in [65], targets the state of the
program to simulate fault manifestations. Actual state injection can
be performed by modifying the data of a program using any of various
available mechanisms: high priority processes that modify lower prior-
ity processes with the support of the operating system; debuggers that
directly change the program state; message-based mechanisms where
one component corrupts the messages received by another component;
storage-based mechanisms by using storage (e.g., cache, primary, or
secondary memory) manipulation tools; or command-based approaches
that change the state by means of the system administration and main-
tenance interface commands [59]. An important aspect of both types
of fault injection is the operational profile of the software [65]. Fault in-
jection is a dynamic-type testing because it must be used in the context
of running software following a particular input sequence and internal
state profile. A large amount of work has been done in the area of as-
sessing software robustness by many researchers. Examples of reported
works include [54, 58, 60, 61, 63, 64].

4 Software and Hardware Fault Tolerance

System fault tolerance is a vast area of knowledge well beyond what
can be covered in a single paper. The concepts presented in this sec-
tion are purposely treated at a high level with details considered only
where regarded as appropriate. Readers interested in a more thorough
treatment of the concepts of computer system fault tolerance should
consult additional reference material [15, 66, 67].

• Fault Tolerance in Computer System
Computer fault tolerance is one of the means available to increase de-
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pendability of delivered computational services. Dependability is a
quality measure encompassing the concepts of reliability, availability,
safety, performability, maintainability and testability [68]. (i) Relia-
bility is the probability that a system continues to operate correctly
during a particular time interval given that it was operational at the
beginning of the interval. (ii) Availability is the probability that a sys-
tem is operating correctly at a given time instant. (iii) Safety is the
probability that the system will perform in a non-hazardous way. A
hazard is defined as “a state or condition of a system that, together
with other conditions in the environment of the system, will lead in-
evitably to an accident” [69]. (iv) Performability is the probability
that the system performance will be equal to or greater than some
particular level at a given instant of time. (v) Maintainability is the
probability that a failed system will be returned to operation within a
particular time period. Maintainability measures the ease with which
a system can be repaired. (vi) Testability is a measure of the ability
to characterize a system through testing. Testability includes the ease
of test development (i.e., controllability) and effect observation (i.e.,
observability).

The primary concern for fault tolerant designs is the ability to con-
tinue delivery of services in the presence of faults in the system. A
fault is an anomalous condition occurring in the system hardware or
software. [66,70] presents a general fault classification which is excel-
lent for understanding the types of faults that fault tolerant designs
are called upon to handle. A latent fault is a fault that is present in
the system but has not caused errors; after errors occur, the fault is
said to be active. Permanent faults are present in the system until
they are removed; transient faults appear and disappear on their own
with no explicit intervention from the system. Symmetric faults are
those perceived identically by all good subsystems; asymmetric faults
are perceived differently by the good subsystems. A random fault is
caused by the environment (e.g., heat, humidity, vibration, etc.) or
by component degradation; generic faults are built-in faults acciden-
tally introduced during design or manufacturing of the system. Benign
faults are detectable by all good subsystems; malicious faults are not
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directly detectable by all good subsystems. The fault count classifica-
tion is relative to the modularity of the system. A single fault is a fault
in a single system module; a group of multiple faults affects more than
one module.

The time classification is relative to the time granularity. Coinci-
dent multiple faults appear during the same time interval; distinct-time
faults appear in different time intervals. Independent faults are faults
originating from different causes or nature. Common mode faults, in
the context of multiple faults, are faults that have the same cause and
are present in multiple components.

The main use of fault tolerance in these systems is to provide added
value and prevent nuisance faults from affecting the perceived depend-
ability from a user perspective. The design of systems with fault tol-
erance capabilities to satisfy particular application requirements is a
complex process loaded with theoretical and experimental analysis in
order to find the most appropriate tradeoffs within the design space.
[66] offers a high-level design paradigm extracted from the more de-
tailed description presented in [70]. System properties to be considered
include dependability (i.e., reliability, availability, maintainability, etc),
performance, failure modes, environmental resilience, weight, cost, vol-
ume, power, design effort, and verification effort.

Every fault tolerant design must deal with one or more of the fol-
lowing aspects [33, 71,76]:

• Detection: A basic element of a fault tolerant design is error
detection. Error detection [96, 97, 98, 99, 100] is a critical pre-
requisite for other fault tolerant mechanisms.

• Containment: In order to be able to deal with the large number
of possible effects of faults in a complex computer system it is
necessary to define confinement boundaries for the propagation of
errors. Containment regions are usually arranged hierarchically
throughout the modular structure of the system. Each boundary
protects the rest of the system from errors occurred within it and
enables the designer to count on a certain number of correctly
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operating components by means of which the system can continue
to perform its function.

• Masking: For some applications, the timely flow of information is
a critical design issue. In such cases, it is not possible to just stop
the information processing to deal with detected errors. Masking
is the dynamic correction of errors. In general, masking errors is
difficult to perform inline with a complex component. Masking,
however, is much simpler when redundant copies of the data in
question are available.

• Diagnosis: After an error is detected, the system must assess its
health in order to decide how to proceed. If the containment
boundaries are highly secure, diagnosis is reduced to just identi-
fying the enclosed components. If the established boundaries are
not completely secure, then more involved diagnosis is required
to identify which other areas are affected by propagated errors.

• Repair/reconfiguration: In general, systems do not actually try
to repair component-level faults in order to continue operating.
Because faults are either physical or design-related, repair tech-
niques are based on finding ways to work around faults by either
effectively removing from operation the affected components or
by rearranging the activity within the system in order to prevent
the activation of the faults.

• Recovery and Continued Service: After an error is detected, a
system must be returned to proper service by ensuring an error-
free state. This usually involves the restoration to a previous or
predefined state, or rebuilding the state by means of known-good
external information.

Redundancy in computer systems is the use of resources beyond
the minimum needed to deliver the specified services. Fault tolerance
is achieved through the use of redundancy in the hardware, software,
information, or time domain [68,71,73]. In what follows we present
some basic concepts of hardware redundancy to achieve hardware fault
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tolerance. Good examples of information domain redundancy for hard-
ware fault tolerance are error detecting and correcting codes [72]. Time
redundancy is the repetition of computations in ways that allow faults
to be detected [68, 76].

5 Implemented Structures

Here, we present few examples of fault tolerant architectures that are
implemented in various important applications.

Fault-tolerance in Maintainable Real-Time System (MARS) [82,83]
is based on fail-silent components running in dual active redundancy
and on sending each message twice on the two actively redundant real-
time busses. MARS is a fault –tolerant distributed real-time architec-
ture for hard real-time application.

CRAK [84, 85, 86] is a kernel module that implements checkpoint /
restart for Linux. Checkpoint / restart is an operating system feature
that creates a file describing a running process. Checkpoint / restart
is a mechanism for fault tolerance. Applications may be checkpointed
periodically. Once the application state has been committed to stable
storage, the application may be restarted and reconfigured to work
around the fault.

Safety critical fault tolerant architectures are used on the flight
control computers of the fly-by-wire systems of two types of commer-
cial jet transport aircraft. The first computer is used on the Boe-
ing 777 airplane [76]. The second computer is used on the AIRBUS
A320/A330/A340 series aircraft. The fly-by-wire system of the Boeing
777 airplane departs from old-style mechanical systems that directly
connect the pilot’s control instruments to the external control surfaces.
A fly-by-wire system enables the creation of artificial airplane flight
characteristics that allow crew workload alleviation and flight safety
enhancement, as well as simplifying maintenance procedures through
modularization and automatic periodic self-inspection [77,78, 79, 80,
81]. Software diversity was to be achieved through the use of differ-
ent programming languages targeting different lane processors. The
final and current implementation uses only one programming language
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with the executable code being generated by three different compil-
ers still targeting dissimilar lane processors. The lane processors are
dissimilar because they are the single most complex hardware devices,
and thus there is a perceived risk of design faults associated with their
use. The requirements for the flight control computer on the Airbus
A320/A330/A340 [76] include many of the same considerations as in
the B777 fly-by-wire system [87, 88]. The selected architecture, how-
ever, is much different. The basic building block is the fail-stop control
and monitor module.

Active-stream / Redundancy-stream Simultaneous Multithreading
(AR SMT) [89, 90, 91] exploits several recent microarchitectural trends
(e.g., simultaneous multithreading [94, 95], control flow and data flow
prediction and hierarchical processors) to provide low-overhead, broad
coverage of transient faults and restricted coverage of some permanent
faults. Program-level time redundancy is used here. Time redundancy
[92, 93, 107, 108] is a fault tolerant technique in which a computation
is performed multiple times.

Self-stabilization [115] is an optimistic way of looking at system
fault tolerance, because it provides a built-in safeguard against tran-
sient failures that might corrupt the data in a distributed system. Al-
though the concept was introduced by Dijkstra in 1974 [111], and Lam-
port [112] showed its relevance to fault tolerance in distributed systems
in 1983, serious work only began in the late nineteen-eighties. A good
survey of self-stabilizing algorithms can be found in [113]. Herman’s
bibliography [114] also provides a fairly comprehensive listing of most
papers in this field. Because of the size and nature of many ad hoc and
geographically distributed systems, communication links are unreliable.
The system must therefore be able to adjust when faults occur. But
100% fault tolerance is not warranted. The promise of self-stabilization,
as opposed to fault masking, is to recover from failure in a reasonable
amount of time and without intervention by any external agency. Since
the faults are transient (eventual repair is assumed), it is no longer nec-
essary to assume a bound on the number of failures. A fundamental
idea of self-stabilizing algorithms is that the distributed system may be
started from an arbitrary global state. After a finite amount of time
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the system reaches a correct global state, called a legitimate or stable
state. An algorithm is self-stabilizing if (i) for any initial illegitimate
state it reaches a legitimate state after a finite number of node moves,
and (ii) for any legitimate state and for any move allowed by that state,
the next state is a legitimate state. A self-stabilizing system does not
guarantee that the system is able to operate properly when a node con-
tinuously injects faults in the system (Byzantine fault that generates
wrong and random answer) or when communication errors occur so
frequently that the new legitimate state cannot be reached. While the
system services are unavailable when the self-stabilizing system is in an
illegitimate state, the repair of a self-stabilizing system is simple; once
the offending equipment is removed or repaired the system provides its
service after a reasonable time.

[117] have proposed a transient fault tolerant design that takes good
advantage of the resource for parallel executions found in a superscalar
processor. The design in [117] delivers fault tolerance by carrying out
multiple executions of the same instruction in lower performance.

The approaches in [118-140] are all low-cost but effective soft-
ware fault tolerance tool that do not rely on software design diversity.
These approaches are all based on enhanced single-version program-
ming (ESVP) schemes for fault tolerance against operational faults,
transient and permanent errors etc. Replicated or transformed code
[118,119,125] and data have also been used. [120,121,126,127,129] pro-
pose other important single-version fault tolerance approaches to de-
sign reliable applications using robust data structure for tolerating er-
roneous control flow and program hanging. [122,136] propose various
low-cost software based fault tolerance approaches for designing micro-
processor based commodity applications on inserting NO-Operation
(NOP) instructions and run time consistency checking for those ex-
tra NO-Operation codes. The approaches in [123,124,128] describe
various self-checking and assertion based approaches for designing re-
liable computing by enhancing basic computing logic. The approaches
in [125,130] rely on code and data redundancy for detecting run-time
error detection and recovery thereof. [138] proposes a single version
software implemented transient fault tolerant approach for designing
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a reliable application using a multiprocessor with lower overhead on
execution time. [131, 132, 133, 134, 135, 137, 139,140] propose various
enhanced single-version software implemented transient fault tolerant
computing schemes using fault masking with an affordable time redun-
dancy (< 3) and program state verification. Specific knowledge of the
application allows the use of a suite of math, logic and heuristic checks
on the data, the data processing flow and the results. These techniques
also provide more efficient error handling, and system recovery.

The approaches in [118-140] are useful specifically for designing
low cost reliable computing applications against operational, transient
and permanent errors that might occur during the execution time of
applications. ESVP does not aim to tolerate software design bugs.
ESVP needs only one reliable machine to execute an application with
an enhanced processing logic. It does not rely on multiple versions
of software and machines. The designers also feel comfortable while
implementing these simple approaches to their applications without
any extra cost and hardware.

6 Conclusion

A review on software fault tolerance is presented in this paper. It
covers fault tolerant computing schemes that rely on the single-design
as well as on the multiple-design. Single version software fault tol-
erance techniques discussed include system structuring and closure,
atomic actions, inline fault detection, exception handling, assertion,
and checkpoint and restart. Process pairs exploit the state dependence
characteristic of most software faults to allow uninterrupted delivery
of services despite the activation of faults. Similarly, data diversity
aims at preventing the activation of design faults by trying multiple
alternate input sequences. Multiple-version techniques are based on
the assumption that software built differently should fail differently
and thus, if one of the redundant versions fails, at least one of the
others should provide an acceptable output. Because of our present
inability to produce error-free software, software fault tolerance is and
will continue to be an important consideration in software systems.
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The root cause of software design errors is the complexity of the sys-
tems. Compounding the problems in building correct software is the
difficulty in assessing the correctness of software for highly complex sys-
tems. Current research in software engineering focuses on establishing
patterns in the software structure and trying to understand the prac-
tice of software engineering aiming at better predicting the software
dependability. Multiple-version schemes are costlier (O(2.67)) than a
single-version software fault tolerance approach because of lower soft-
ware development cost.
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Abstract

The article is based on experience of implementation of com-
puter algebra system Bergman and on analysis of other symbolic
computation systems. It is noted that many symbolic computa-
tion systems meet similar interface problems. Necessity of strict
separation of calculation engine and interface shell, functions
of these components, and requirements to them are motivated.
The described approach will be used at future development of
Bergman.

1 Introduction

Bergman [8] is a computer algebra system for symbolic calculations
in non-commutative and commutative algebra. It calculates Gröbner
basis and related information. Bergman is written in Lisp, and the
users were to be communicate with the system through underlying
Lisp console. This was found unsuitable for most users, and a graphical
shell was developed in Java. The system and its interface shell were
described elsewhere [1, 4–7].

We present below some inferences from our experience with Bergman
and its shell. The article is organized as follows:

• General problems of interfaces to symbolic calculation systems
are discussed in Sec. 2. We refer to several existing systems to
illustrate our observations.

c©2005 by S. Cojocaru, L. Malahova, and A. Colesnicov
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• Some aspects of Bergman shell implementation and used tech-
niques are discussed in Sec. 3. We permitted here some technical
details.

• We try to describe and motivate desired features of interface to
a symbolic calculation system in Sec. 4.

2 General problem of interfaces to symbolic
calculation systems

We suppose the existence of a program executing symbolic computa-
tions (a symbolic computation engine, or, simply, an engine). Symbolic
computations are widely used in many areas, including pure and ap-
plied mathematics, theoretical physics, etc. Multitude of solved prob-
lems makes investigators to create specialized engines for symbolic com-
putations in the cases when use of general purpose systems is inefficient,
or the necessary functionality is not implemented even in commercial
systems. As a rule, the creator of such system has not enough time,
resources, and qualification to develop the interface for it. It is not
unusual that rich mathematical ideas implemented in an engine are en-
veloped in poorly designed interface. The absence of the user-friendly
standard interface do not permit the extensive usage of such system be-
cause of requiring special knowledge and skills, e.g., in programming, to
use it. Another problem of symbolic computation engines is multitude
of data formats and the implied difficulty in communication between
different engines.

We will divide all functionality of a symbolic computation system
(SCS) in two parts: the engine features (the computations that it can
execute) and the interface features. It is obvious that the latter are
external relative to the former and are almost independent of them.

Development of interfaces for SCS was and remains an object of
long-time investigations [2, 3].

The problem of SCS interface has the following aspects:
1. Interaction with text editors;
2. Graphics;
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3. Interaction with numerical calculation systems;
4. Interaction between different symbolic computation systems (in-

cluding interaction through computer networks);
5. Testing support;
6. Interaction with end users.
Investigations show that SCS interface development should solve

the following problems:
• 2-D presentation of mathematical expressions,
• Editing of mathematical expressions that includes sub-expression

manipulation,
• Windows that model sheets of paper and combine texts, formulas,

and graphics,
• Processing and presentation of long expressions,
• Simultaneous use of several SCS, which implies the necessity to

solve problems of data conversion, configuration management,
and communication protocols,

• Satisfaction of special needs for teaching systems, (in particular,
the possibility to show intermediate results and explications of
processes applied to obtain them; elaboration of electronic man-
uals, and especially interactive ones),

• Interface extensibility providing additions of new menus, new
fragments of on-line documentation, etc.,

• Guiding of the user during the whole period of his/her problem
solving,

• The system should be self-explanatory; its operational mode
should be understandable directly from the experience of inter-
action with the system,

• Control over problem formulation correctness and over informa-
tion necessary to solve it.

The primary scope of an interface is creation of a comfortable en-
vironment for a mathematician or another specialist that uses mathe-
matical apparatus. It would be preferable for these users to input data
and to obtain mathematical results in their natural 2-dimensional form.
The linear form of input can be used also as the input is faster but it
imposes additional conventions to enter powers, indices, fractions, etc.,
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or uses additional characters. It is necessary also to provide possibili-
ties to edit expressions, integrate them with a usual text, and obtain
results in a form suitable for publication of an article (e.g., LATEX) or
in Internet (e.g., MathML).

The syntactic check of entered mathematical expressions and the
spelling check of accompanying text would be also desired features.

The following three categories of SCS can be found analyzing SCS
interfaces:

1. Systems or packages that do not have a special interface,
2. Interfaces based on a (specialized) programming language,
3. Graphical interfaces.

This division is not strict: e.g., most systems with graphical interface
possess their own programming language also.

There are many systems that have command line interface only,
e.g., Singular [22], Bergman, and Yacas [24].

Absence of graphical interfaces is compensated partially by inte-
gration in an existing editor like Emacs or its derivatives (e.g., such
are Macaulay [13] and Singular), in Scientific Workplace [21], Scientific
Word, or Scientific Notebook (e.g., Maple [14] and MuPAD [17]). Mu-
PAD has the interface to Java but their approach is opposite to ours:
MuPAD itself is regarding as the shell, and Java programs are treated
as applets or plug-ins expanding MuPAD itself. Services provided from
these editors may be not too sophisticated but create much more com-
fortable environment than operating in ASCII from the command line.

We can mention also specialized editors developed to serve as inter-
faces to SCS. One such editor is TEXmacs by Joris van der Hoeven [23].
It combines elements of TeX and Emacs and was successfully applied
for Macaulay 2, Reduce [20], MuPAD, Maxima [16]. Another front-end
product with graphical interface is FrontMan [11]. It offers a small but
useful set of possibilities (transparent SSH sessions, syntactic coloring
of input information and results, export of sessions in HTML format,
integrated document visualization through a Web browser, multiple si-
multaneous sessions). An important fact is that these editors permit
creation of users own style. It is a kind of personalization created by a
user.
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Most of features mentioned above can be found in systems with
graphical interfaces. Examples of such systems are Derive [10], Math-
ematica [15], etc. In general, most of these systems provide:

• Visualization of mathematical formulae in 2-dimensional format,
• Sub-expression manipulation,
• Separate windows for data input and results output,
• Separate windows for graphical operations,
• Export of results in a printable format (RTF, PDF, LATEX, etc.)
• Comfortable navigation with on-line help,
• Integration with an existing or specially developed editor that

facilitates editing of mathematical texts,
• Demonstration of intermediate steps to explain processes of ex-

pression transformation.
In addition, so-called “notebooks” support operations over text,

mathematical formulae, and graphics. Most of them can be adapted
to user’s preferences individualizing menus and toolbars, and assigning
hot keys to actions.

Communication between different systems is to be supported by use
of specially developed unified formats for mathematical formulae, like
OpenMath [18] or OpenXM [19].

3 Inferences from development of Bergman and
its shell

Here we analyze and motivate several solutions taken by us in Bergman
implementations. We selected only less trivial aspects; big part of
design (e.g., main menu structure, toolbar, sliders, etc.) is usual for
graphical shells of any kind.

3.1 Implementation language

Bergman was designed under commercial PSL (Portable Standard Lisp).
It works also under Reduce [20] that is in its turn based on PSL. For
better dissemination of Bergman, we ported it to free CLISP [9] imple-
mentation of ANSI Common Lisp. We needed therefore for Bergman
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shell a programming system that was free and as portable as CLISP.
We selected Java [12] by obvious reasons. We developed the Bergman

shell in Intel PC under Linux and Windows, and in Sun Sparc under
Solaris, and tested CLISP port of Bergman and the shell in all these
machines.

The selection of Java should be classified as very successful. We
found only several small problems in porting the shell:

1. Under Windows, the execution thread with Bergman do not ter-
minates simultaneously with calculations as under Unix. It seems
to happen due to implementation of program run in terminal win-
dow: at first, the terminal itself is started in the thread, and then
CLISP Bergman is started under the terminal. The termination
of Bergman does not mean termination of terminal. We catch
the terminal output and stop the process after the corresponding
message. This solution seems to be not very perfect, and we need
some additional tuning of running Bergman from the shell under
Windows.

2. The screen font sizes and proportions are different in all three
systems: Linux, Solaris, and Windows. The design of screen
forms is to be made taking this into account. We were to redesign
several forms as we tested the shell under Solaris at the first
time. The problem is solved by careful form design and obligatory
testing under all available systems.

3.2 Adaptable user interface: sessions and environments

A session is a set of parameters that fully defines the problem to be
solved. Session is implemented as a directory where all data are saved,
Bergman input files are generated, and Bergman output files are pro-
duced. Sessions serve to return to previous Bergman calculations, mod-
ify them, and experiment with them.

Informally, sessions give to a mathematician the possibility to use
the previous experience of Bergman’s users (own or others) and to save
the current setup for the future calculations.

With sessions, it is possible:
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• select a session and load its data to panels, i.e., switch to the
saved problem;

• create a new session;
• save data in the selected session;
• save data in a different session (save as. . . );
• delete a session.
One can see also the session directory, comment, and statistics of

its usage.
The session mechanism is usual for dialog shells and IDEs (Inte-

grated Desktop Environments). For Bergman, we found it necessary
to generalize the notion of session. We called the new feature “envi-
ronments”.

An environment is a partial set of data common for several ses-
sions. It corresponds to the group of mathematical problems the user
investigates during different sessions. E.g., after the installation the
environments directory contains an environment called “commutative”
that fixes a single parameter, the commutativity.

All new sessions are created using the current default environment.
Inversely, when a new environment is created, it is based on the pa-
rameters of the current session. To save a session as an environment,
the user selects parameters that are to be fixed, and drops other pa-
rameters.

3.3 Dialog data input

Main data for Gröbner basis calculations are list of variables and list
of polynomials. They are entered in usual text areas. Other data may
be represented as switches (flags) and selections. There are approx. 30
input fields the user should set.

It was a serious problem to design these fields in comfortable and
reviewable manner. The first idea was to enter the session parameters
step by step (in wizard mode) but it was rejected. One of reasons for
it was the absence of suitable wizard implementation in Java, but the
main reason was that such mode is quite tedious. Next, we tried to
position input fields in five tabs but this was badly reviewable.
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The current solution permitted us to concentrate all information
in a relatively small panel. We use drop-down menus and labels that
show the current selection. The drop-down menu is activated when the
corresponding label is clicked. Let us revise an example to make the
situation more clear.

There is a possibility to select the field for polynomial coefficients.
The field characteristic can be 0, 2, or any odd prime number. In
characteristic 0, we use integers instead of rational numbers by reducing
all coefficients to a common denominator. The drop-down menu for
coefficient field contains the following items:

• Machine integers (16-bit)
• Machine integers (32-bit)
• Machine integers (64-bit)
• Lisp integers (arbitrary precision)
• Characteristic 2
• Odd prime characteristic
Suppose the user selects odd prime characteristic. Then an addi-

tional small dialog window appears and the user is asked to enter an
odd prime. The entered number is checked. Then the label shows:
“Odd prime characteristic = p”, where p is the entered odd prime.
Here we do not need the additional input field on the form for the odd
prime number, and all information is always visible.

We use menus and not combo boxes because of pure technical rea-
son. We can assign a program action to each menu item that is not the
case with combo boxes.Using actions, we can treat mutually dependent
parameters in a natural manner.

The equivalent set of radio buttons plus the input field (as in our
previous implementation) occupies, obviously, the bigger form surface.

3.4 Expanded consoles

When we start a calculation under the shell, Bergman run in a console
window we programmed for the case. Except of this, we have a possi-
bility to start a console Bergman session. We found that the console
features should be expanded. E.g., the calculation console has addi-
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tional buttons “Stop” and “Continue” and its input and output are
caught and come from/to files, but the session console has the feature
of keyboard input imitation from an arbitrary file selected by the user.

3.5 Internal Bergman hooks

We inserted into Lisp coded Bergman modules so-called “hooks” where
we call external programs supplied by the shell. “Stop” button can not
stop calculations in an arbitrary place; the process continues up to
some suitable point where the hook is inserted. The hook checks if
the stop button was pressed, and stops calculation, with the possibility
to continue it from the same point. There are many possible uses of
such hooks, e.g., progress indicator that moves forward in some point
of calculation.

4 Conclusion: desired features of interface to
symbolic calculation system

We can conclude from all aforementioned that SCS interfaces have a
lot of features and functions in common.

Discussion in Sec. 2 and 3 shows that all discussed problems can
be reviewed as general problems of graphical shells to SCSs. We can
look at Bergman as at the calculation engine which is called from
the dialog shell. Inversely, we can look from the shell side and treat
Bergman as the calculation plug-in for the shell.

The separation of calculation engine and interface shell means that
a system can be developed for semi-automatic generation of interface
shell for a SCS. Such system should contain ready made adaptable
interface modules in Java and an interface generator.

In implementation of such system, the following objectives must be
reached:

• To implement selected features of SCS interface at the general-
ized level permitting automated production of interface, taking
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into account specifics of this area. To implement cross-process
interaction with a symbolic computation engine.

• To elaborate, inside the interface, tools for smart user personal-
ization and intellectual adaptation to his/her preferences.

• To elaborate an interface generator that will produce interface
for a target symbolic computation engine.

• To elaborate programs and filters for interaction with other ex-
isting SCS.

• To elaborate and/or adapt and integrate tools for auxiliary de-
velopment tasks, e.g., help and documentation tools, extensibility
support, testing support, etc.

• To elaborate and/or adapt and integrate tools for visual presen-
tation of data and results.

• To produce, as the result, Java packages to be used in interface
generation, and Java application(s) for interface development.

Some preliminary research is necessary:

• Classification and technological description of features and func-
tions specific to interfaces for SCS;

• Clarification and classification of cross-process interactions be-
tween interface modules and symbolic computation engines;

• Generalization of selected features to the level permitting auto-
mated interface generation;

• Description of adaptive behavior of interface elements, and tech-
niques to implement it;

• As the result, the necessary scientific basis will be created to
automated development of interfaces for SCS.
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Interaction between different systems can be provided also.
SCS is a very useful tool that simplifies formula manipulation and

handling of mathematical models for engineering applications, for math-
ematical research, for education and for many other areas. Our ap-
proach can be applied in all these cases and these areas will gain time
and efforts for interface development. Universality of the proposed so-
lution will be guaranteed if we will use Java as the technology for its
implementation. The developed packages and applications will per-
mit investigators in different areas to concentrate efforts on symbolic
computation engines and to use ready-made interface solutions.

References

[1] A. Colesnicov. Implementation and usage of the Bergman package
shell. / Computer Science Journal of Moldova, vol. 4, nr. 2 (11),
1996, pp. 260–276.

[2] N. Kajler, N. Soiffer. A Survey of User Interfaces for Computer
Algebra Systems. / Journal of Symbolic Computation, vol. 25,
issue 2, February 1998, pp. 127-159.

[3] N. Kajler (ed.). Computer-Human Interaction in Symbolic Com-
putation. - Springer-Verlag: Wien, 1998. - ISBN 3–211–82843–5.

[4] J. Backelin, S. Cojocaru, V. Ufnarovski. BERGMAN. In: Com-
puter Algebra Handbook. J. Grabmeier, E. Kaltofen, V. Weispfen-
ning (eds.). – Springer-Verlag: 2003, pp. 349–352.

[5] J. Backelin, S. Cojocaru, V. Ufnarovski. The Computer Alge-
bra Project Bergman: Current State. In: “Commutative alge-
bra, Singularities and Computer Algebra”, eds. J. Herzog and
V. Vuletescu, 2003, pp. 75–101. – Series II. Mathematics, Physics
and Chemistry. Vol. 115, Kluwer Academic Publishers.

[6] J. Backelin, S. Cojocaru, A. Colesnicov, L. Malahova, V. Uf-
narovski. Problems in interaction with the Computer Algebra

242



Interfaces to symbolic computation systems . . .

System Bergman. In: “Computational Commutative and Non-
Commutative Algebraic Geometry”, vol. 196, NATO Science Se-
ries: Computer & Systems Sciences. S. Cojocaru et al. (eds.). –
IOS Press, 2005, pp. 185–198.

[7] J. Backelin, S. Cojocaru, V. Ufnarovski. Mathematical Computa-
tions Using Bergman. - Lund University, Centre for Mathematical
Science, ISBN 91–631–7203–8, 2005, 206 p.

Web references

[8] Bergman: http://www.math.su.se/bergman/

[9] CLISP: http://clisp.sourceforge.net/

[10] Derive: http://www.chartwellyorke.com/derive.html

[11] FrontMan:
http://rpmfind.net/linux/RPM/sourceforge/r/rp/rpmsforsuse/

frontman-0.3.4-1.i386.html
http://www.eleceng.ohio-state.edu/ ravi/kde/frontman.html

[12] Java: http://java.sun.com/

[13] Macaulay: http://www.math.uiuc.edu/Macaulay2/

[14] Maple: http://www.maplesoft.com/

[15] Mathematica:
http://www.wolfram.com/products/mathematica/index.html

[16] Maxima: http://maxima.sourceforge.net/

[17] MuPAD: http://www.mupad.de/

[18] OpenMath: http://www.openmath.org/

[19] OpenXM: http://www.math.kobe-u.ac.jp/OpenXM/

[20] Reduce: http://www.reduce-algebra.com/

243



S. Cojocaru, L. Malahova, A. Colesnicov

[21] Scientific Workplace, Scientific Word, Scientific Notebook:
http://www.mackichan.com/

[22] Singular: http://www.singular.uni-kl.de/

[23] TEXmacs:
http://www.math.upsud.fr/ anh/TeXmacs/TeXmacs.html

[24] Yacas: http://yacas.sourceforge.net/

S. Cojocaru, L. Malahova, A. Colesnicov, Received October 3, 2005

Institute of Mathematics and Computer Science,
5 Academiei str.
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