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An Automatic Proof of Euler’s Formula

Jun Zhang

Abstract

In this information age, everything is digitalized. The encod-
ing of functions and the automatic proof of functions are impor-
tant. This paper will discuss the automatic calculation for Taylor
expansion coefficients, as an example, it can be applied to prove
Euler’s formula automatically.

Keywords: function, coefficient, automatic proof.

1 Introduction

The expansion of Taylor series is a very old topic in both pure and
applied mathematics that plays a crucial role in both fundamental the-
ory and applications. Computer algebra systems provide an interactive
environment to assist in solving many mathematical problems.

One way to define an analytic function f(z) is in terms of its Taylor
series expansion at z = 0,

f(Z):ao+alz—|—a222+-~~+anz”+---

Quite a few theorems exist about how to find the coefficient a,, of
a general term a,z" in the expansion, which we shall denote [2"]f(2).
Under some conditions, we have Taylor’s formula [1]:

_ ™)

n!

an = [2"]f(2)

This is a very nice formula and can be quite useful in finding a specific
term such as [23]f(z). However, for an arbitrary number n (usually

(©2005 by J. Zhang



J. Zhang

considered to be very large), we cannot use the formula directly to
determine [2"]f(z).

Ravenscroft implemented a Maple package called genfunc that can
calculate [2"]f(z) for any rational function f(z) [2]. Rational func-
tions, however, are very well structured and easy to handle. As shown
by Ravenscroft, every nontrivial rational generating function F'(z) en-
codes a sequence that is defined by a homogeneous linear recurrence
with constant coefficients [3]. So finding [2"]|f(z) reduces to solving
a linear homogeneous recurrence with constant coefficients which, in
turn, reduces to solving a corresponding polynomial equation.

If f(z) is not a rational function, it is difficult in practice to calculate
[2"]f(2). In many cases, an exact expansion of [2"] f(z) is impossible to
find or too complicated to be of practical value. In such instances, we
often have to settle for an asymptotic representation of [2"]f(z). Sadly
and perhaps surprisingly, as Bruno Salvy stated a decade ago, “Current
symbolic computation systems generally lack facilities for manipulating
asymptotic expansion computations of a form more complex than the
first terms of Taylor series or Puiseux expansions (involving fractional
powers)[4]”. This situation has not changed significantly since then.

This work is to provide an approach to calculate Taylor coefficients
of functions, as an example, it can be applied to prove Euler’s formula
automatically.

2 Laplace Method

Assume that the function f is defined for 0 < ¢t < oco. We write the
Laplace transform as

P = LU0} = [ e pin

We shall refer to f(t) as the original function and to F(s) as the Laplace
transform of the function f(¢). We also refer to f(¢) as the inverse
Laplace transform of F(s). The symbol L denotes the Laplace trans-
formation. The function e~ is called the kernel of the transformation.
In our work, we think of s as a real variable. If the integral converges
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for all s greater than some sp, then F(s) is well defined and we say
that the transform exists.

Now, let us look at some examples:

Example. Compute the Laplace transform of f(t) = e*.

/ e St f(t)dt = / eStetht:/ e~ =Dty
0 0 0

b —(s—2)t
= lim e~ =Dtgt — lim —[
b—oo J b—oo s—2

b

J

s—2  s5-—2

1 e*(S*Q)b
= lim[ }
b—oo

This limit exists only when s > 2. Hence,

/OO e St f(t)dt = ! 5> 2. &

0 S — 2,
Now, let us consider the integral

) =1 / T et (e,

T Jo
This is just the Laplace transform in which the variable x of the
generating function has been replaced by its reciprocal.
3 Expansion Theory

We present the main theorem for our work based on Laplace transfor-
mation. See [5] for a proof.

Theorem 3.1. If

1. f(t) is bounded and continuous for 0 < ¢ < oo,
2. f(

3. f(z)= Yoo anx™, 0<z<p,

]

)= J5T et (b, and
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then we have

o x”
:Zan—', 0 < <oo.
— n!

This theorem can serve as an alternate way to calculate the general
term of a Taylor series expansion. Let us look at several examples.

Example. Consider f(t) = sin(t).

fla) = 1 /OO e Y sin(t)dt

T Jo

o¢]
= / sin(t)de t/*
0

b
= — lim [et/‘r sin(t)

}-ﬁ—/ eV cos(t)dt
0

b—oo 0
o0
= — lim [ ¥ cos(t } — x/ e~ t/7 sin(t)dt
b—o00 0
= z—a*f(x)
so we have
f(a:):$2ilzx—x3+x5—~--, 0<z<l.
By Theorem 3.1
3 5
x x
f(.%‘) =T — y + y - 5
is the series expansion for sin(z), as predicted. &

4 Automatic Calculation

Based on the above discussion, we can implement a procedure in Maple
called ” coefficient” as following;:

with(inttrans);
with(genfunc);
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coefficient := proc (y, z)
local tem1, tem2;
tem] :=laplace(y, z, s);
teml := subs (s = 1/t,tem1);
teml := teml/t;
tem?2 := rgf_expand(teml,t,n));
tem?2 := (simplify(tem2))/n!;
return tem?2

end

Example 1. Consider f(t) = sin(¢). By applying the above ”coef-
ficient” procedure in Maple, we have an answer

[t"]f(t) = sin(nw/2)/n!.

Example 2. Consider f(t) = cos(at)sin(bt), where a and b are
nonzero real constants (a # b). Apply the ”coefficient” procedure in
Maple, we get an answer equivalent to

P110) = gy (1 = D)+ (<1 = D))
e+ D)+ T,
where I is the imaginary number such that 12 = —1.

Example 3. Consider f(t) = e/ — cos(z) — I'sin(x). By applying
the above ”coefficient” procedure in Maple, we have an answer

[t"]f(t) = 0.
Since f(x) is analytic, and all its Taylor’s expansion coefficients are 0,
we proved the Euler’s formula e/* = cos(z) + I sin(z).

5 Conclusion

This method provides a way to calculate the general coefficients of Tay-
lor’s expansion. It works for all the functions such that their Laplace
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transforms are rational. There is a wide range of functions satisfying
such a condition, including the examples above, e®, sin®(z), cos®(2),
etc, where k is an natural number.

More advanced algorithms were developed in [6]. The algorithms
developed in [6] can be used to calculate the coefficients for a much
wide range of functions beyond rational functions, and return exact
solutions. This paper provides an alternative solution with simpler
implementation.
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A generalization of the chromatic polynomial of
a cycle

Julian A. Allagan

Abstract

We prove that if an edge of a cycle on n vertices is extended
by adding k vertices, then the the chromatic polynomial of such
generalized cycle is:

k
P(Hp, A) = (A=1"Y N+ (=1)"(A-1).

=0

1 Introduction

We consider simple finite graphs and assume that the basic definitions
from graph and hypergraph theory (see, for example, [1, 3, 4]) are
familiar to the reader.

Proper coloring of a graph G = (V,€), is a mapping f : V(G) —
{1,2,...,\} which is defined as an assignment of distinct colors from
a finite set of colors [A] to the vertices of G in such a way that adjacent
vertices have different colors. Such notion has been extended in 1966
by P. Erdos and A. Hajnal to the coloring of a hypergraph [2]. Thus,
in general case, the proper coloring of a hypergraph H = (V,€) is the
labelling of the vertices of H in such a way that every hyperedge £ € £
has at least two vertices of distinct colors.

The function P(H,\) counts the mappings f : V(H) — [A] that
properly color H using colors from the set [A\] = {1,2,...,A}. Thus,
we define the chromatic polynomial of a hypergraph H as the number
of all proper colorings of H using at most A colors [3].

(©2005 by J.A. Allagan



J.A. Allagan

Let C, = (V,€) be a cycle on n vertices, n > 3, where V =
{v1,v9,...,v,}. Consider an edge F = {v1,v2} of C,. We sequentially
increase the size of E' by adding & pendant vertices (a vertex is called
pendant if its degree is one) from the set Sy = {x1,x2,x3,..., 2%},
k > 1. Notice that F becomes a hyperedge E’, containing k +2 > 3
vertices. We compute the chromatic polynomial of the obtained hyper-
graph Hp = (V U S, &), where k is the number of pendant vertices
added.

2 Proof of the formula

Theorem 1. The chromatic polynomial of the hypergraph Hj has
the following form:

k
P(Hp, ) =(A=1)" > N+ (-1)"(A=1).
i=0
Proof. Induction on the number of pendant vertices k. Observe
that

P(Hp,\) = (A=1)"204(=1)"(A=1) = A=1)"+(=1)"(A—=1) = P(Cp, \)

what is the chromatic polynomial of any cycle on n vertices, see [4,
p.229].

The idea of proof consists in the following procedure: we apply
to Hy, k > 1, the connection-contraction algorithm which is a special
case of the splitting-contraction algorithm for mixed hypergraphs, see
[3, p.30]. In any proper coloring of H, the vertices v1, and z either have
different colors or have the same color. In the first case, we connect x
and v; by an edge; in the second case, we contract the edge {z1,v1}
and in this way identify the vertices x1 and vy. After removing of an
exterior hyperedge containing vertices x1, v1, we obtain two graphs and
some isolated vertices and compute the chromatic polynomial as a sum
of two chromatic polynomials of the respective graphs.

Consider the case k = 1. We obtain that

P(Hy,\) = P(Th4+1,\) + P(Hyp, \),
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where 1), is a tree on n vertices; it is well known that
P(Tp, A\) = A\ —1)" L,
Since P(Hp,A) = P(Cp, A) = (A= 1)" + (—=1)"(A — 1) we obtain
PHi,N)=XA=-1)"+A-D"+(-1)"(A—-1) =

=A-1D"A+1)+(D"(A—1).

Consider the case k = 2. Using the same procedure we obtain a
tree, a cycle and one isolated vertex. Therefore

P(H27)\) = P(Tn-‘rlaA))‘—’_P(Hla)‘)

Notice that the chromatic polynomial of the independent vertex set
P(Sk,\) = AF because each isolated vertex can be assigned A colors.
Using P(Hi,A) = (A —1)"(A+ 1) + (=1)"(\ — 1) we establish the
following equality:

P(H2,\) = AXA-=1)" A+ A =1)"A+1)+(-1)"(A—1) =

=A=D"A+A+1)+ (=1)"(A—1).

Let us assume that our formula for the chromatic polynomial of
P(Hj, \) is true for any number j > 1 of pendant vertices. We now
prove that

P(Hji1,A) = A= D"V 4N 4+ 4 AP0 + (1) (A= 1).

Consider j + 1 number of pendant vertices from the set S;i1 =
{z1,29,..., 25,241} added to the edge E = {vi,va} of the cy-
cle C, = (V,€). The edge E = {v1,v2} becomes a hyperedge
E' = {vi,v2,21,29,...,25,xj41} € & of the new graph Hj1 =
(VU Sj11,€). Applying the algorithm as described in the previous
cases to Hjy1 yields the following chromatic polynomial equality:

P(Hj-l-la)‘) = P(Tn+17A)P(Sja)‘) +P(H]7)‘)
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By the induction hypothesis,
P(HjN)=A—=1D)"N + N+ M)+ (=) (A = 1);
also, P(Sj, \) = M. Therefore the following equality holds:
P(Hj1,A) =
=AD" N+ A =D "W AN AN ()" -1) =
=A=D"WH N+ A X))+ (-D)M(A - 1).

Consequently,
k
P(Hg, A) = (A=1" Y XN+ (=1)"(A-1)
i=0

holds for any number k£ > 1 of pendant vertices added to an edge of
Ch.
O
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Nash equilibria sets in mixed extension of
2 X 2 X 2 games

Valeriu Ungureanu, Ana Botnari

Abstract

We describe the Nash equilibria set as an intersection of
graphs of players’ best responses. The problem of Nash equi-
libria set construction for three-person extended 2 x 2 x 2 games

is studied.
Mathematics Subject Classification 2000: 90C05, 90C10,

90C29, 90C31.
Keywords and phrases: Noncooperative game; Nash equi-
librium, Nash equilibria set, graph of best responses.

1 Introduction and preliminary results

The problem of the Nash equilibria set construction is rarely encoun-
tered in literature. There are diverse explanations of this fact. The
main reason is the complexity of this problem [1].

We consider a noncooperative game:

['= (N, {Xi}ien, {fi(z) }ien),

where N = {1,2,...,n} is a set of players, X; is a set of strategies of
player i € N and f; : X — R is a player’s ¢ € N payoff function defined
on the Cartesian product X = X;enX;. Elements of X are named
outcomes of the game (situations or strategy profiles).

The outcome z* € X of the game is the Nash equilibrium [3]
(shortly NE) of T if

fi(zi,x™,) < fi(z],x%;),Va; € X;, Vi € N,

(©2005 by V. Ungureanu, A. Botnari
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where

% * % * * *
T, = (1’171}2, ...,xi,17xi+17 ceey xn)7

*
T, € X, =XixXogx..xX;_1X Xi+1 X oo X X,
* * * * k *
(@i, 2™ ;) = (27,25, o, @] _1, T4, ;1 1, -r Ty) € X,

There are diverse alternative formulations of a Nash equilibrium [1]
as:

a fixed point of the best response correspondence;

a fixed point of a function;

a solution of a non-linear complementarity problem;

a solution of a stationary point problem:;
e a minimum of a function on a polytope;
e a semi-algebraic set.

We study the Nash equilibria set as an intersection of graphs of players’
best responses [4], i.e. intersection of the sets:

Gri={(zi,z_;) e X :x_; € X_;,z; € Arg max fi(zi,x_;)}, i € N.
T, €EXG

Theorem 1. The outcome x* € X is a Nash equilibrium if and
only if z* € ﬂ Gr;.
1EN
The proof follows from the definition of the Nash equilibrium.
Corollary. NE(T') = ﬂ Gr;.
iEN

If all strategy sets X;,i € N, are finite, then a mixed extension of
I'is
Lo = (M, f{(p),i € N),

14
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where
[ = filw)p () pa(w2) - pin (),
zeX
po= (H1, f2s s fin) € M = Xien M;,
M; is a set of mixed strategies of the player i € N.

Theorem 2. If X is a finite set, then the set NE(I'y,) is a
nonempty compact subset of the M. Moreover, it contains the set
NE([):

NEI) C NE(T,,) # 0.

One of the simplest solvable problems of the NE set determination
is the similar problem in the mixed extension of two-person 2 x 2 game
[1, 2, 4]. In this paper the class partition of all three-person 2 x 2 x 2
games is considered and the NE set is determined for mixed extension
of the games of each class.

2 Main results

Consider a three-person matrix game I' with matrices:

A= (aijk), B = (bz‘jk), C = (Cijk)a = 1,2, ] = 1,2, k‘ = 1,2.

The game 'y, = ({1,2,3}; X, Y, Z; f1, fa, f3) is the mixed extension
of I, where

X ={x=(v1,22) € R? 111 + 13 = 1,21 > 0,29 > 0},
Y ={y=y) e R?:y1+y2=1,y > 0,3 >0},
Z={z=(21,2)€R?: 21 +20=1,20 > 0,20 >0},
filx,y,m) = S0 Y5 Yk aukiyizk,

fo(x,y,2) = 20y 35 Yk bk,

2 2 2
fs(x,y,2) = 3200 D250 Dok Cik @il 2k
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By substitutions:
r1=xz,10=1—x, 2 €l0,1];
y1=y,y2=1-y,yel0,1];
21=2,20=1—2,2€10,1],

the game '), is reduced to the equivalent normal form game:

Ty, = ({1,2,3};[0,1], [0, 1], [0, 1]; 1, 2, ¥3).-

where

#1 (:C, Y, Z) =

((a111 — a211)yz + (@112 — a212)y(1 — 2) + (@121 — az21)(1 —y)z +
(@122 — ag22)(1 —y)(1 — 2))x +

((a211 — a221)z + (@212 — a222)(1 — 2))y + (ag21 — a222)z + a292;

©2 (xv Y, Z) =

((b111 — bi21)zz + (b112 — big2)z (1 — 2) + (ba11 — bao1)(1 — z)z +
(b212 — baz2) (1 — 2)(1 — 2))y +

((b121 — bag21)z + (bi22 — b222)(1 — 2))z + (ba21 — b222)z + baga;

903(377 Y, Z) =

((e111 — cr12)zy + (c121 — c122)x(1 —y) + (c211 — e212) (1 — )y +
(c221 —c222)(1 —2)(1 — y))z +

((e112 — e212)y + (€122 — €222) (1 — y) ) + (c212 — €222)y + C200.

Thus, T, is reduced to the game I",, on the unit cube.

If NE(T,) is known, then it is easy to construct the set NFE(T,,).

Basing on properties of strategies of each player of the initial pure
strategies game I', diverse classes of games are considered and for every
class the set of NE(I'),) is determined.

Proposition 1. If all players have equivalent strategies, then
NE(T.,) = [0,1)°.
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Remark. In the case, considered in proposition 1, players have the
following linear payoff functions:

o1(z,y,2) = ((a211 — a221)z + (a212 — a222)(1 — 2))y + (a1 —
a222)z + a222,

w2(x,y, 2) = ((br21 —ba21) 2+ (b122 —b222) (1 —2) )z + (b221 —b222) 2+
ba22,

w3(z,y, 2) = ((cr1i2—c212)y+ (122 —c222) (1 —y) )+ (c212 — C222) Y+
€223.

Every player doesn’t influence on his payoff function, but his strategy
is essential for payoff values of the rest of the players.

Proposition 2. If all the players have dominant strategies in T,
then NE(I",)) contains only one point:

(0,0,0) if strategies (2,2,2) are dominant;

,1)  if strategies (2,2,1) are dominant;

1 0) if strategies (2,1,2) are dominant;

, 1,1)  if strategies (2,1,1) are dominant;
NE(I') = : ) .

0,0) if strategies (1,2,2) are dominant;

0,1) if strategies (1,2,1) are dominant;

1,0) if strategies (1,1,2) are dominant;

1,1)  if strategies (1,1,1) are dominant.

0,
(
(
(
(
(
(

=R R RO O«

\

Proof. 1t is easy to observe that graphs coincide with facets of unite
cube.
For first player:

{1} if the 1-st strategy is dominant in T',

Arg xrg[%,}i] Py, 2) = { {0} if the 2-nd strategy is dominant in T,
V(y,z) € [0,1]%. Hence,

Cre — x [0,1] x [0,1] if the 1-st strategy is dominant,
Y71 0x[0,1] x [0,1] if the 2-nd strategy is dominant.

17
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For second player:

Arg max pa(z,y, 2) =

{1} if the 1-st strategy is dominant in T,
y<[0,1]

{0} if the 2-nd strategy is dominant in T,
V(z, 2) € [0,1]2. So,

G — [0,1]x1 x [0,1] if the 1-st strategy is dominant,
270 [0,1]x0 x [0,1] if the 2-nd strategy is dominant.

For third player:

{1} if the 1-st strategy is dominant in T,

Arg zlg[%ﬁ} ol 2) = { {0} if the 2-nd strategy is dominant in T',
V(x,y) € [0, 1]%. Hence,

G — [0,1]x[0,1] x 1 if the 1-st strategy is dominant,
3 [0,1]x[0,1] x 0 if the 2-nd strategy is dominant.

Consequently, the NE set contains only one vertex of unit cube. [

Proposition 3. If the first and the second players have dominant
strategies and the third player has incomparable strategies, then:

;

(1,1,0) if (1,1,-) are dominant and c111 < ¢112,
(1,1,1) if (1,1,) are dominant and c¢111 > c112,
1x1x][0,1] if(1,1,-) are dominant and c111 = 112,
(0,0,0) if (2,2,-) are dominant and ca91 < ¢392,
(0,0,1) if (2,2,-) are dominant and ca21 > 292,
NE(T.) = 0x0x[0,1] 1:f (2,2,-) are dom1:11a11t and c991 = €999,
(1,0,0) if (1,2,-) are dominant and c121 < ¢122,
(1,0,1) if (1,2,-) are dominant and c121 > c122,
1x0x[0,1] if(1,2,-) are dominant and cj21 = 122,
(0,1,0) if (2,1,-) are dominant and ca11 < €212,
(0,1,1) if (2,1,) are dominant and ca11 > c212,
0x1x1[0,1] if(2,1,-) are dominant and ca11 = €212.

Similarly the NE set can be constructed in two other possible cases:

18
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- players 1 and 3 have dominant strategies, and player 2 has in-
comparable strategies;

- players 2 and 3 have dominant strategies, and player 1 has in-
comparable strategies.

So, the NE set is either one vertex of a unit cube or one edge of this
cube.

Proposition 4. If the first and the second players have dominant
strategies and the third one has equivalent strategies, then

[0,1] if (1,1,-) are dominant,

;) 0x0x]0,1] if (22, ) are dominant,
NE(Tm) = [0,1] if (1,2,-) are dominant,
[0,1] if (2,1,-) are dominant.

Similarly the NE set can be constructed in the following cases:

- players 1 and 3 have dominant strategies, and player 2 has equiv-
alent strategies;

- players 2 and 3 have dominant strategies, and player 1 has equiv-
alent strategies.

Thus, the NE set is an edge of unit cube.

Proposition 5. If the first and the second players have equivalent
strategies, and the third player has dominant strategy, then

NE(T.) = [0,1]x[0,1]x1 if the 1-st strategy is dominant,
ms = [0,1]x[0,1]x0  if the 2-nd strategy is dominant.

Similarly the NE set can be constructed in the following cases:

- players 1 and 3 have equivalent strategies, and player 2 has dom-
mant strategy;

- players 2 and 3 have equivalent strategies, and player 1 has dom-
nant strategy.

19
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In such a way, the NE set is a facet of a unit cube.

Proposition 6. If the first player has equivalent strategies, the
second player has dominant strategy and the third player has incom-
parable strategies, then

NE(T!))) = Grs,

where
[O;—%) x1x0U
—2x1x[0,1JU ify >0,
(—%;1] x1x1
{ [O;—%)XlxlU
Grs = 10,1 N —%xlx[O,I]U if y1 <0,
(—%;1] x1x0
[0,1]x1 x 0 ify1 =0, <0,
[0,1]x1 x 1 if y1=0,72 >0,
[ [0.1]x1 % [0,1] #fn=7=0

Y1 = €111 —C112 — €211 + €212, Y2 = C211 —C212, V3 = C112 — €212, V4 = €212

if the 1-st strategy of the second player is dominant,

and
([ 0;-22) x0x0U
—%XOX[O,I]U if 45 > 0,
(—%;1] x0x1
[0;—2) x0x1U
Grs =[0,1>n —2 % 0x[0,1]]U  ify5 <0
’ Y5 ? 75 )
(—%;1] x0x0
[0,1]><0 x 0 if’y5 =0, 7% <0,
[0,1]x0 x 1 ifv5 =0, v > 0,
[O,l]XO X [07 1] 1f75 =Y = 07

Y5 = €121 —C122 —C221 +C222, Y6 = €221 —C222, V7 = €122 —C222, Y8 = €222
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if the 2-nd strategy of the second player is dominant.

Proof. If the 1-st strategy of the second player is dominant, then
3(x,y,2) = (x(c111—cr12)+(1—2)(c211 —c212) ) 2+ (Ccr12— C212) T+ C212 =

= (M2 + 72)z + 132 +

From this the truth of proposition follows evidently.
If the 2-nd strategy of the second player is dominant, then

w3(z,y, 2) = (x(c121—c122) +(1—2)(c221 —C222) ) 2+ (C122— €222 ) T +C222 =

= (152 + ¥6)2 + v72 + 5.

From this the truth of the second part of the proposition results. [J
Similarly the NE set can be constructed in the following cases:

- player 1 has equivalent strategies, player 3 has dominant strategy,
and player 2 has incomparable strategies;

- player 2 has equivalent strategies, player 1 has dominant strategy,
and player 8 has incomparable strategies;

- player 2 has equivalent strategies, player 3 has dominant strategy,
and player 1 has incomparable strategies;

- player 3 has equivalent strategies, player 1 has dominant strategy,
and player 2 has incomparable strategies;

- player 3 has equivalent strategies, player 2 has dominant strategy,
and player 1 has incomparable strategies.

Proposition 7. If the first and the second players have incomparable
strategies and the third player has dominant strategy, then

NE(T) = Gri N Gra,
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where
0x[0;—52) x 1 U
[0,1]><—3‘—f><1u if aq > 0,
Ix (=531 x1
Ix[0;-52) x1U
Gry = 1[0,13n 01]x =2 x1U  ifa; <0,
0x (=31 x1
0x[0,1] x1 ifa; =0, ag <0,
1x1]0,1] x1 ifa1 =0, ag > 0,
[0,1][>< [0} 1] x 1 ifa1 = Qg = 0,
[;—%)x()xlu
%X[O,l]xlu if 31 >0,
(=331 x1x1
[O;—%)xlxlu
Gry = [0,1° N ~2 %[00 %10 iffi <0,
(=31 x0x1
[0,1]x0 x 1 if 1 =0, B2 <0,
0,1]x1 x 1 if 1 =0, B2 > 0,
\{0,1}x[0,1]><1 if B1 = B =0,

Q1 = a111—0211—0121+0221, A2 = A121—0221, O3 = A211—0221, 4 = 4221,
B1 = bi11 —b121 — ba11 +ba21, B2 = ba11 — bao1, B3 = b121 — bao1, B4 = baoy
if the 1-st strategy of the third player is dominant,

and

0x[0;—-52)x0U

01x =3¢ x0U  ifas >0,

Ix(=551] x0

1x[0;-58) x0U

Gri=[0,1]*>n 0,]]x =& x0U  ifas <0,
0x (=521 x0
0x[0,1] x1 ifas =0, ag <0,
1><[0,1]XO if()é5:0,()é6>0,
[0,1])([0, 1] X 0 ifOé5 = Qg = 0,
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[; %)XOXOU
><[() 1]x0U ifB5 >0,
( g1 x1x0
[, %)mxou
Gra =[0,1]> N ><[ 1]x0U ifB5 <0,
(ﬁ—6 1] x0x0
[0,1]x0 x 0 if B5 =0, B <0,
[0,1]x1 x O if Bs =0, B > 0,
[0,1]x[0,1] x if B5 = G5 = 0,

a5 = a112—0212—0122+0222, O = A122—0222, 07 = A212—0222, (/8 = 1222,
B5 = b112 — b122 — b212 + b222, B6 = ba12 — b222, B7 = b122 — b222, B = booo

if the 2-nd strategy of the third player is dominant.

Proof. If the 1-st strategy of the third player is dominant, then
o1(z,y,2) = (y(arn—az11)+(1-y)(a121 —a221))x+(az11 —aze1 )y+aze =
= (a1y + a2)z + azy + au,
w2(z,y,2) = (w(b111—b121)+(1—2)(b211—b221))y+(b121 —b221) T +b221 =

= (B1x + B2)y + Bzx + Sa.

From the above the truth of the proposition follows.
If the 2-nd strategy of the third player is dominant, then

v1(x,y, 2) = (y(ar12—a212)+(1—y)(a120—a292) ) x+(a212—a222)y+agee =
(asy + ag)x + ary + as,
w2(z,y, 2) = (x(br12—b122)+(1—2) (ba12—b222) ) y+ (b122—b222 ) +bo22 =

(Bsz + B6)y + Brx + Bs.

From this the truth of the second part of the proposition results. [J
Similarly the NE set can be constructed in the following cases:

- players 1 and 3 have incomparable strategies, player 2 has domi-
nant strateqy;
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- players 2 and 3 have incomparable strategies, player 1 has domi-
nant strategy.

Proposition 8. If the first and the second players have equivalent
strategies and the third player has incomparable strategies, then

NE(T},) = Grs,
where
Grz=1[0,1PN{Xo x Yo x0U X— x Y= x [0,1]U X> x Yo x 1},
Xe xYe={(z,y) : x €10,1], y € [0,1], mixy + y2x + v3y + 74 < 0},
Xox Yo ={(z,y) : z €[0,1], y € [0,1], mzy + 727 + 3y + 71 = 0},
Xs xYs ={(z,y) : z €10,1], y € [0,1], 1zy + y22 + Y3y + 74 > 0}.
Y1 = €111 — €112 — C121 + €122 — €211 + €212 + €221 — €222,

Y2 = €121 —C122 —C221 +C222, Y3 = C211 —C212 —C221 +C222, Y4 = €221 —C222.

Proof. The truth of the proposition results from the following rep-
resentation of the cost function:

e3(z,y,2) = (vy(cin1—criz) +o(1—y)(c11—c122) +(1—2)y(ca11 —c212) +
+(1—2)(1 —y)(ca21 — ca22))2z + (y(c112 — e212) + (1 — y) (c122 — c222) )T+
+(ca12 — C222)y + 222 =
= (M12Y + 722 + Y3y + Y1)z + 12Y + %67 + 7Y + 78,

where
V5 = C112 — €212 — €122 1+ €222, 76 = C122 — €222, Y7 = €212 — 222,78 = C222.

O
Similarly the NE set can be constructed in the following cases:

- players 1 and 8 have equivalent strategies, player 2 has incompa-
rable strategies;
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- players 2 and 8 have equivalent strategies, player 1 has incompa-
rable strategies.

Proposition 9. If the first and the second players have incomparable
strategies and the third player has equivalent strategies, then

NE(T,) = Gry N Gra,

where
Gri=10,1PN{0x Yo x ZoU[0,1] X Y= x Z_U1 x Y5 x Zs},

Gro=[0,1PN{X- x0x Zo UX_ x [0,1] x Z_U Xs x1x Z>},
Yo x Zo={(y,2) : y€[0,1], z € [0,1], a1yz + qoy + azz + oy < 0},
Yo x Z- ={(y,2) : y€[0,1], 2 € [0,1], a1yz + oy + a3z + ayq = 0},
Yo x Zs ={(y,2) : y€[0,1], z € [0,1], cqyz + a2y + a3z + ag > 0},
Xe xZe=A{(z,2) : x €]0,1], z € [0,1], B1xz + Box + P32 + P4 < 0},
XoxZ-={(x,2) : z€[0,1], 2 € [0,1], Braxz + Box + B3z + 4 = 0},
Xs xZs ={(z,2z) : x €0,1], z € [0,1], frzz + Pox + B3z + 1 > 0},
o1 = 0111 — @211 — G112 + G212 — Q121 + G221 + G122 — 4222,

Q2 = a112—0a212— 01220222, 3 = Q121 —A221 —A122HA222, 4 = A122— 0222,
B1 = bi11 — bio1 — b1z + bia2 — ba11 + baz1 + b212 — bago,

B2 = b112—b122 —ba12+ba22, B3 = ba11 —bao1 —b212+b222, B4 = ba1a —bago.

Proof. The truth of the proposition results from the following rep-
resentation of the payoff functions:

v1(z,y, 2) = (yz(ar1—a211)+y(1—2)(ar12—a212)+(1—y)z(a121 —ag1 )+

+(1 = y)(1 — 2)(a122 — agz2))a+

+(z(a211 — a221) + (1 — 2)(a212 — a222))y + (a221 — a222)z + ag22 =
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= (qyz + aoy + a3z + a4)T + asyz + agy + arz + as,
w2(z,y,2) = (v2(b111—b121)+2(1—2) (b112—b122) +(1—2)2(b211 —b221) +
+(1 = 2)(1 — 2)(b212 — bao2))y+
+(2(b121 — b221) + (1 — 2)(b122 — bao2))w + (baz1 — baza)2z + bage =

= (b1w2 + fox + P32 + Ba)y + Bsx2 + Box + Brz + Ps.
O
Similarly the NE set can be constructed in the following cases:

- players 1 and 3 have incomparable strategies, player 2 has equiv-
alent strategies;

- players 2 and 8 have incomparable strategies, player 1 has equiv-
alent strategies.

Proposition 10. If all players have incomparable strategies, then
NET,) = Gry N Gra N Grs,
where
Gri=10,1PN{0x Yo x Z-U[0,1] X Y= x Z_U1 x Y5 x Z},

Gro=[0,1PN{Xcx0x Zo UX_ x[0,1] x Z-UXs x 1 x Z>},
Grs=1[0,1N{Xc x Yo x 0UX_ x Y_ x [0,1] U X5 x Y5 x 1},
the components of the Gri, Gro, Grs are defined as above.

Proof. The truth of proposition results from the following repre-
sentation of the payoff functions:

o1(x,y,2) = (yz(a111 — az2n) + y(1 — 2)(ar12 — az212)+

+(1 —y)z(a2r — age1) + (1 — y)(1 — 2)(ar22 — age))z+

+(z(a211 — a221) + (1 — 2)(a212 — a222))y + (a221 — a222)z + a222 =
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= (1yz + aoy + a3z + au)x + asyz + agy + arz + asg,
©2(2,y, 2) = (v2(b111 — b121) + (1 — 2)(b112 — b122)+
+(1 = 2)2(ba11 — ba21) + (1 — 2)(1 — 2)(b212 — ba22))y+
+(2(b121 — b221) + (1 — 2)(b122 — bag2))w + (baz1 — baza)2z + bage =
= (Bizz + Box + B3z + Ba)y + Bswz + Bex + Brz + Ps,
@3(r,y,2) = (wy(cinn — c112) + (1 — y)(c121 — c122)+
+(1 = 2)y(can1 — e212) + (1 — 2)(1 — y)(caz1 — cazo))z+
+(y(cr12 — c212) + (1 — y)(c122 — c202))@ + (212 — €202)y + €222 =
= (Mmay + 720 + 73y + 74)2 + Y2y + V6T + 7Y + 8-
O

3 Conclusions

The NE set can be described as an intersection of graphs of players’
best responses.

The solution of the problem of NE set construction in the mixed
extension of the 2 x 2 x 2 game illustrates that the NE set is not neces-
sarily convex even in convex game. Moreover, the NE set is frequently
disconnected. Thus, new conceptual methods ”"which derive from the
theory of semi-algebraic sets are required for finding all equilibria” [1].
In this article we make an attempt to give an idea of such a method.
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The minimum cost multicommodity flow
problem in dynamic networks
and an algorithm for its solving

Maria A. Fonoberova, Dmitrii D. Lozovanu

Abstract

The dynamic version of the minimum cost multicommodity
flow problem that generalizes the static minimum cost multicom-
modity flow problem is formulated and studied. This dynamic
problem is considered on directed networks with a set of com-
modities, time-varying capacities, fixed transit times on arcs,
and a given time horizon. We assume that cost functions, de-
fined on edges, are nonlinear and depend on time and flow and
the demand function also depends on time. The corresponding
algorithm, based on reducing the dynamic problem to a static
problem on a time-expanded network, to solve the minimum cost
dynamic multicommodity flow problem is proposed and some de-
tails concerning its complexity are discussed.

Mathematics Subject Classification 2000: 90B10, 90C35,
90C27.

Keywords and phrases: dynamic networks, multicommod-
ity flows, dynamic flows, flows over time, minimum cost flows.

1 Introduction

Multicommodity flows are among the most important and challeng-
ing problems in network optimization, due to the large size of these
models in real world applications. Many product distribution, schedul-
ing planning, telecommunication, transportation, communication, and
management problems can be formulated and solved as multicommo-
dity flow problems (see, for example, [1]). The multicommodity flow

(©2005 by M.A. Fonoberova, D.D. Lozovanu
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problem consists of shipping several different commodities from their
respective sources to their sinks through a given network so that the
total flow going through each edge does not exceed its capacity. No
commodity ever transforms into another commodity, so that each one
has its own flow conservation constraints, but they compete for the re-
sources of the common network. Considered multicommodity network
flow problem requires to find the minimum cost flow of a set of com-
modities through a network, where the arcs have an individual capacity
for each commodity, and a mutual capacity for all the commodities.

While there is substantial literature on the static multicommodity
flow problem, hardly any results on multicommodity dynamic flows are
known, although the dynamic multicommodity flows are much more
closer to reality than the static ones. In considered dynamic models
the flow requires a certain amount of time to travel through each arc,
it can be delayed at nodes, flow values on arcs and the network para-
meters can change with time. Dynamic flows are widely used to model
different network-structured, decision-making problems over time (see,
for example, [2, 3]), but because of their complexity, dynamic flow
models have not been investigated as well as classical flow models.

In this paper we study the dynamic version of the minimum cost
multicommodity flow problem on networks with time-varying capacities
of edges. We assume that cost functions, defined on edges, are nonlinear
and depend on time and flow and the demand function also depends
on time. The minimum cost multicommodity dynamic flow problem
asks for a feasible flow over time with given time horizon, satisfying all
supplies and demands with minimum cost. We propose an algorithm for
solving this problem, which is based on reducing the dynamic problem
to the classical static problem on a time-expanded network.

2 Problem formulation

We consider a directed network N = (V. E, K,w,u,T,d, ) with set
of vertices V, set of edges F and set of commodities K that must be
routed through the same network. Each edge e € E has a nonnegative
time-varying capacity w”(t) which bounds the amount of flow of each
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commodity k € K allowed on each arc e € E in every moment of time
t € T. We also consider that every arc e € F has a nonnegative time-
varying capacity for all commodities, which is known as the mutual
capacity u(t). Moreover, each edge e € E has an associated positive
transit time 7, which determines the amount of time it takes for flow to
travel from the tail to the head of that edge. The underlying network
also consists of demand function d: V x K x T — R and cost function
o: Ex Ry x KxT— Ry, where T ={0,1,2,...,T}.
The demand function d¥(t) satisfies the following conditions:

a) there exists v € V for every k € K with d*(0) < 0;

b) if d¥(t) < 0 for a node v € V for commodity k& € K then
di(t)=0,t=1,2,...,T;

In order for the flow to exist we require that Z Z di(t) = 0,Vk €
teT veV
€ K. Nodes v € V with Zdﬁ(t) < 0, k € K are called sources for
teT
commodity k, nodes v € V with dej(t) >0, k € K are called sinks
teT
for commodity k and nodes v € V' with Z db(t) =0, k € K are called
teT

intermediate for commodity k. We denote by V¥, Vf and Vok the set
of sources, sinks and intermediate nodes for commodity k, respectively.
The sources are nodes through which flow enters the network and the
sinks are nodes through which flow leaves the network. The sources
and sinks are sometimes called terminal nodes, while the intermediate
nodes are called non-terminals.

To model transit costs, which may change over time, we define the
cost function ¢¥(2¥(t),t) with the meaning that flow of commodity k
of value ¢ = z¥(t) entering edge e at time ¢ will incur a transit cost of
©F(&,t). We consider the discrete time model, in which all times are
integral and bounded by horizon T'. Time is measured in discrete steps,
so that if one unit of flow leaves node u at time ¢ on arc e = (u,v),
then one unit of flow arrives at node v at time ¢ 4+ 7., where 7, is the
transit time of arc e. The time horizon (finite or infinite) is the time
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until which the flow can travel in the network and defines the makespan
T ={0,1,...,T} of time moments we consider.

We start with the definition of static multicommodity flows. A
static multicommodity flow z on N = (V, E, K, w,u,d, ¢) assigns to
every arc e € F for each commodity k£ € K a non-negative flow value
z¥ such that the following flow conservation constraints are obeyed:

Sooab— Y ab=df, vveV, VikeK,
ecEt(v) e€E~(v)
where ET(v) = {(u,v) | (u,v) € E}, E~(v) = {(v,u)|(v,u) € E}.
The multicommodity flow x satisfies the demands if one-commodity
flow x¥, Vk € K satisfies the demands d* for all v € V.
Multicommodity flow z is called feasible if it obeys the mutual
capacity constraints:

Zmljgue, Vee E (1)
keK

and individual capacities of every arc for each commodity:
0<azf <wh VeecE, Vk € K. (2)

Constraints (1) and (2) are called weak and strong forcing constraints,
respectively.
The total cost of the static multicommodity flow x is defined as

follows:
c(z) =D > pk(ak).

keK eeE

A feasible dynamic flow on N = (V, E, K, w, u, T, d, ¢) is a function
x: Ex K xT — Ry that satisfies the following conditions:

S akt-r)— > ab(t)=di(t), VteT,YveV, Vke K; (3)

cent(v) e€E~(v)
t—1e>0
> ab(t) Sue(t), VEET, Ve € E; (4)
keK

32



The minimum cost multicommodity flow problem in dynamic networks

0<aF(t)<wh(t), VteT, VecE, Vk € K; (5)
a¥t)=0,Vec B, t=T -1, +1,T, Vk € K. (6)

Here the function z defines the value z¥(t) of flow of commodity &
entering edge e at time t. It is easy to observe that the flow does not
enter edge e at time ¢ if it will have to leave the edge after time 7T'; this
is ensured by condition (6). Capacity constraints (5) mean that in a
feasible dynamic flow, at most w¥(t) units of flow of commodity k can
enter the arc e at time ¢. Mutual capacity constraints (4) mean that in
a feasible dynamic flow, at most u.(¢) units of flow can enter the arc e
at time ¢. Conditions (3) represent flow conservation constraints.

The total cost of the dynamic multicommodity flow x is defined as

follows:
T
c(w) =D > ok ak(),b). (7)

t=0 ke K ecE

The minimum-cost multicommodity dynamic flow problem is to find a
feasible flow that minimizes the objective function (7).

It is easy to observe that if 7. = 0, Ve € E and T = 0 then the
formulated problem becomes the static minimum cost multicommodity
flow problem.

3 The main results

In this paper we propose an approach for solving the formulated prob-
lem, which is based on its reduction to a static flow problem. We show
that the minimum cost multicommodity flow problem on dynamic net-
work N can be reduced to the minimum cost static flow problem on
auxiliary static network N7 we name it the time-expanded network.
In such a way, a dynamic flow problem in a given network with tran-
sit times on the arcs can be transformed into an equivalent static flow
problem in the corresponding time-expanded network. A discrete dy-
namic flow in the given network can be interpreted as a static flow in
the corresponding time-expanded network. The advantage of this ap-
proach is that it turns the problem of determining an optimal flow over
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time into a classical static network flow problem in the time-expanded
network.

The time-expanded network is a static representation of the dy-
namic network. Such a time-expanded network contains copies of the
node set of the underlying network for each discrete interval of time,
building a time layer. Copies of an arc of the considered network join
copies of its end-nodes in time layers whose distances equal the transit
time of that arc. We define this network as follows:

LVE ={w@)|veV, teT)
2. ET: ={e(t) = (v(t),w(t+7)) |e= (v,w) € B, 0 <t <T—7.};
3. ug(t): = uc(t) fore(t) € ET;

Tu
® -

T T
5. whyy (@l ) = wkae(t),t) for e(t) € BT, k € K;

4. wk =wk(t) for e(t) € ET, k€ K.

T
) -
The essence of the time-expanded network is that it contains a copy
of the vertices of the dynamic network for each time t € T, and the
transit times and flows are implicit in the edges linking those copies.
Let e(t) = (v(t),w(t +7.)) € ET and let z¥(t) be a flow of commo-
dity k¥ € K on the dynamic network N. The corresponding function
on the time-expanded network N7 is defined as follows:

6. dF =dF(t) forv(t) e VT, k€ K.

Using the method from [4, 5] it can be proved that the set of feasible
flows on the dynamic network N corresponds to the set of feasible
flows on the time-expanded network N7 and that any dynamic flow
corresponds to a static flow in the time-expanded network of equal
cost, and vice versa. In such a way, for each minimum-cost flow in the
dynamic network there is a corresponding minimum-cost flow in the
static network and vice-versa.
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Therefore, the minimum cost multicommodity flow problem on dy-
namic networks can be solved by static low computations in the cor-
responding time-expanded network. If the cost function of dynamic
network is linear with regard to flow, then the cost function of the time-
expanded network will be linear. In this case we can apply well-known
methods for minimum cost flow problems, including linear program-
ming algorithms, combinatorial algorithms, as well as other develop-
ments, like [6]. If there is exactly one source and the cost function of the
dynamic network is concave with regard to flow, then the cost function
of the time-expanded network will be concave. If the cost function of
dynamic network is convex with regard to flow, then the cost function
of the time-expanded network will be convex. In this case we can ap-
ply methods from convex programming and the specialization of such
methods for minimum cost flow problems.

4 The algorithm

Let the dynamic network N be given. Our object is to solve the min-
imum cost multicommodity flow problem on N. Proceedings are fol-
lowing:
1. Building the time-expanded network N7 for the given dynamic
network N.

2. Solving the classical minimum cost multicommodity flow problem
on the static network N7, using one of the known algorithms (see,
for example, [7, 8, 9, 10, 11]).

3. Reconstructing the solution of the static problem on N7 to the
dynamic problem on N. [J

The complexity of this algorithm depends on the complexity of the
algorithm used for the minimum cost multicommodity flow problem in
static networks.
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On a k-clique-join of a class of partitionable
graphs

Mihai Talmaciu

Abstract

We call a graph G O-graph if there is an optimal coloring of
the set of vertices and an optimal (disjoint) covering with cliques
such that any class of colors intersects any clique. In this paper,
it has been established the relation to [p, q, r]-partite graphs and
the fact that the O-graphs admit a k-clique-join.

Key Words: perfect graphs, (a,w)-partitionable graphs,
[p,q,r]-partite graphs, k-clique-join.

American Mathematical Society (2000): 05C17.

1 Introduction.

Throughout this paper G = (V, E) is a simple (i.e. finite, undirected,
without loops and multiple edges) graph with vertex set V' = V(G)
and edge set F = FE(G), with @ = a(G) > 2 and w = w(G) > 2. G
designates the complement of G. If e = zy € FE, we shall also write
x ~ y, and x 4 y whenever x, y are not adjacent in G. If A C V,
then G[A] (or [A], or [A]g) is the subgraph of G induced by A C V.
By G — W we mean the graph (V,E — W), whenever W C E. For
A,BCV,ANB =0, the set {abla € A,b € B,ab € E} will be denoted
by (A, B), and we write A ~ B whenever ab € FE holds for any a € A
and b € B.

By FP,, C, and K,, we mean a chordless path on n > 3 vertices, the
chordless cycle on n > 3 vertices, and the complete graph on n > 1
vertices. A hole is a chordless cycle of length at least four; an antihole
is the complement of such a cycle. A Berge graph is a graph which
contains no odd hole and no odd antihole.

(©2005 by M. Talmaciu
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A stable set in GG is a set of mutually non-adjacent vertices, and
the stability number of G, denoted by «(G), is the cardinality of a
maximum stable set.

By S(G) we shall denote the family of all maximal stable sets of
G, and S, (G) = {5|S € S(G),|S| = a(G)}. A clique in G is a subset
A of V(@) that induces a complete subgraph in G, and C(G) = S(G),
w(@) = a(G), while C,(G) = S4(G). Clearly, So(G) C S(G) and
Cy(G) C C(G) are true for any graph G.

The chromatic number and the clique covering number of G (i.e.
the chromatic number of G) will be denoted respectively, by x(G) and
0(G). The density of G is the size of a largest clique in G, i.e., w(G)=
a(G).

A graph G is perfect if a(H) = 6(H) (or, equivalently, x(H) =
w(H)) holds for any induced subgraph H of G.

Definition. A graph G is called (o,w )-partitionable (see Golumbic,
[6], Olaru, [8]), if for any v € V(G), G-v admits a partition of o w-
cliques and a partition of w «-stable sets.

Properties referring to the («,w)-partitionable graphs can be found
in (Chvatal, Graham, Perold, Whitesides, [4], also see Golumbic, [6],
Olaru, [8]) and are given by:

Theorem. Let G be a graph with n vertices, and o = «(G) and
w = w(G). If G is (aw)-partitionable then the following statements
hold:

(i) n=aw + 1;

(ii) G has exactly n w-cliques and n a-stable sets;

(iii) Each vertex of G belongs to exactly a w-cliques and to exactly
w a-stable sets;

(iv) Each w-clique intersects exactly n-1 a-stable sets and is disjoint
from exactly one and each a-stable set intersects exactly n-1 w-cliques
and is disjoint from exactly one.

From the previous Definition and Theorem a question is asked,
what properties do the graphs that admit an optimal coloring and
covering with cliques have, such that any clique intersects any class of
colors. We call this type of graphs, O-graphs (to be seen [10]). We hope
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that this class of graphs makes a step towards a well-characterization
of the graphs that admit a k-clique-join (][12]).

On the web page from [12] there are open problems concerning
Perfect Graphs.

Perfect graphs have proved to be one of the most stimulating and
fruitful concepts of modern graph theory: there are three books ([6],
[2], [9]) and nearly six hundred papers ([5]) on the subject. The origin
of this development was the Strong Perfect Graph Conjecture ([1]):

a graph is perfect if and only if neither it nor its complement
contains a chordless cycle whose length is odd and at least five.

There are theorems that elucidate the structure of objects in some
class C' by showing that every object in C has either a prescribed and
relatively transparent structure or one of prescribed structural faults,
along which it can be decomposed. M. Conforti, G. Cornuejols and K.
Vuskovic proved that

every square-free Berge

(meaning Berge graph containing no hole of length four)

either belongs to one of two basic classes

(bipartite graphs and line-graphs of bipartite graphs),

or else it has one of two structural faults (star-cutset or 2-join).

Therefore every square-free Berge graph is perfect.

In 2002, M. Chudnovsky and P. Seymour, as well as, N. Robertson
and R. Thomas announced that they had completed the proof of the
Strong Perfect Graphs Conjecture. Their structural theorem asserts
that

every Berge graph either belongs to one of five basic classes
(namely: bipartite graphs, their complements, line-graphs of
bipartite graphs, and their complements, double split graphs)
or else it has one of four structural faults

(namely: 2-join, 2-join in the complement, M-join,

a balanced skew partition).

Therefore every Berge graph is perfect (namely the Strong Perfect
Graph Conjecture became, in May 2002, the Strong Perfect Graph
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Theorem by Maria Chudnovsky, Neil Robertson, Paul Seymour, Robin
Thomas ([3]) ).

2 The Results.

In the beginning we show that any O-graph admits a partition of the
set of vertices in o w-cliques and one in w a-stable sets.

Definition 1. A graph G is called O-graph if there is an opti-
mal coloring (S1,...,Sp) of vertices and optimal covering with cliques
(Q1,...,Qr) such that any class of colors intersects any clique (i.e.
SiNQ;#0, 1<i<p 1<j<r)).

We specify that in an optimal covering (Q1, ..., Q,) with cliques of
an O-graph, S;NQ; #0 (1 <i<j<n).

If G is O-graph, we denote with Q(G) and, respectively, I(G) the
covering set with cliques, respectively colorings of G with the property
that any covering from Q(G) and any coloring from I(G) satisfies the
condition from Definition 1.

We remark that G is O-graph if and only if G is O-graph and any
even cycle is O-graph and any even chain is O-graph.

Lemma 1. If G=(V,E) is an O-graph with n vertices, then for
any p-coloration from I(G) and any r-covering from Q(G) the following
statements hold:

)p=w(G)(=w); r=0a(G)(=a) and

2)n=aw.

Proof. We denote with S = (S1,...,5,) and C = (Q1,...,Qr) a
p-coloration from I(G) and respectively a r-covering from Q(G). We
prove that |S;] = a and |Q;| =w, Vi =1,...,p,Vj =1,...,r. Let S; be
fixed. Because |S; N Q;| =1, Vj =1,..,r, we have |S;| > r, that means
that o > |S;| > r. Because (Q1,...,Q,) is a covering with cliques, it
results that |S;| < r. So we have |S;| = r. We have, for any stable set
S, |S| <r. If |S| = «, then, in particularly o < r. Because o > r, we
obtain 7 = «. As conclusion, we have |S;| = a, Vi = 1,...,p and we
prove |Q;| = w, Vj = 1,...,r the same way. Because S is a partition of

V(G), we obtain n = |V(G)| = D7, |Si] = aw.
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Corollary 1. A graph G is O-graph if and only if there is a parti-
tion of the set of vertices in w stable sets with o elements and a partition
mn a cliques with w elements.

Proof. The direct statement results from Lemma 1, and a graph
with the property from the Corollary is obviously an O-graph.

Corollary 2. If G is O-graph then:

for any clique Q from an optimal covering with cliques of G:
a(G-Q)=a(G)—-1;

for any stable set S from an optimal coloring of G:

w(G—=98)=w(G) - 1.

Corollary 3. For any O-graph G, any class of colors from any
optimal coloring intersects any clique from any optimal covering with
cliques.

Proof. We suppose that there exists a clique ; and a class of colors
Si, disjoint. Then |Q;] < w or [Sj| < a, but [V(G)| = 375, |Q;| =
>, 1Sil, so |[V(G)| < aw, contradicting Lemma 1.

Remark 1. If G is a (a,w)-partitionable graph of order n then for
any vertex v, G-v is O-graph.

Proof. G being (a,w)-partitionable, results that, for any v € V(G),
G-v admits a partition of a w-cliques and a partition of w a-stable
sets. If there is a clique (); from an optimal covering with cliques of
G-v disjoint of a class S; of colors from an optimal coloring of G-v
then Q] < w or |Si] < a, but V(@) — 1= X0, |Qy1 = 2, [Si, s0
|[V(G)| — 1 < aw, contradicting that G is (a,w)-partitionable.

Next, it is established a theorem of characterization of O-graphs, it
is given an example of non-perfection of an O-graph and is shown in
which condition an O-graph is perfect. For this it is given the definition
of [p, ¢, r]-partite graphs.

Definition 2. An [p,q,r]-partite graph ([11]) is a graph whose set
of vertices, V, is partitioned in p independent sets Si,...,Sp, each con-
taining exactly g vertices, and S; U S; contains exactly r independent
edges, for 1 <i < j <p.
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Theorem 1. Let G=(V,E) be a graph with a = a(G) and w =
w(@). G is O-graph if and only if G is [w,a, /- partite and G is
Jo, w, w]-partite.

Proof. Let G be an O-graph and (Si, ..., S,) a partition of G in w
a-stable sets, and (@1, ..., Q4) a partition in « w-cliques with S;NQy #
0,1 <i<w,1<k<a). We must show that Vi, j,i = 1,...,w,j =
1,...,wwith 7 # j 5;US; admits a maximum matching with o elements.
We denote with {xﬁc} =S5NQk (1 <i<wl<k<a) Forl<
kIl < a, k # 1 we have 2t # 2! (1 < i < w) because Q, N Q; = 0.
Therefore S; = {zt,...,28} (1 < i < w). For 1 < k < a, we have
:L‘}fl'i € E(G), because {x}c,x{c} - Qk’ Vi, j,i = 1,.w,j =1, w
with ¢ # j; so the set of edges {ziz]|k = 1,...,a} is a matching in
[S; U S;] Vi,j,i = 1,..,w,j = 1,...,w with i # j. Because G is O-
graph with a(G) = w, w(G) = a, it results that G is [a,w,w]-partite
graph. Let G be [w, a, a] -partite graph and G [, w, w]-partite graph.
It results that there is a partition of V in S = (51, ..., S,,) « -stable sets
and in C' = (Q1, ..., Q,) with Q; cliques and |Q;| = w, that means G is
O-graph.

An example of O-graph which is not perfect is the reunion of a four
disjoint four-cliques, adding four edges such that form an induced Cs.

Corollary 4. A graph G is perfect O-graph if and only if G is
lw, o, a]-partite, {Cory1,Cory1}-free (I > 2) and G is [o,w,w]-partite
graph.

Proof. We suppose that G is [w, a, a]-partite and G is [, w,w]-
partite graph. From Theorem 1 it results that G is O-graph. We
suppose, on the contrary, that a minimal contraexample is minimal
imperfect. Then G is unbreakable (Chvatal, to be seen [7]). So any
vertex = of G is in a disk ([7]) (ie. z € C, or & € C, k > 5).
Because G is {Co41,Cot1}-free (I > 2), it results that G = Cy, or
G = Cy(p > 3), a contradiction. So G is perfect O-graph. If G is
O-graph it results that G is [w, o, a]-partite and G is [a, w, w]-partite.
If G contains {Capt1,(p > 2) as an induced subgraph then G is not
perfect.

Next, it is shown that an O-graph admits a (k, a)-clique-join and
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the way in which an O-graph is obtained (built).
In [12] it is asked to be found a characterization for a k-clique-join.

Definition 3. Let k be positive integer. A k-clique-join ([12]) of
a graph G=(V,E) is a set of pairs {(Ao, Bo), (A1, B1), ..., (Ak, Bk) },
where { Ao, By} is a partition of V, both Ay and By contain at least one
w-clique, and A; C Ao, B; € Bo(i = 1,...,k) (not necessarily disjoint),
moreover

(i) If t € A; and y € By, then zy € E

(ii) If K is an w-clique of G that intersects both Ay and By then
there exists i so that K C A; U B;

Definition 4. Let k, s be positive integers. A k-clique-join
{(Ao, By), (A1, B1), ..., (Ak, Br)} of a graph G=(V,E) is called (k,s)-
clique-join if Ail U Bi1 ,...,Aisi2 U 31572,140 — Uls;fAil , Bg— U?:_fBil are
s disjoint w-cliques, for all i1, ...,is—2 of the set {1,...,k}.

Theorem 2. Let G be a graph with o = a(G), w = w(G) and
a > 2. G is O-graph if and only if there are k positive integers such
that G admits a (k, a)-clique-join.

Proof. Let G = (V, E) be an O-graph and (Si,...,S,) a partition
in w a-stable sets of G and (Q1,...,Q,) a disjoint covering with «
w-cliques of G with S;NQ; # ¢ (1 < i < w, 1 < j < a). Next,
we define a (k, a)-clique-join {(Ao, By), (A1, B1), ..., (Ak, Br) }. Because
a > 2, there are at least two disjoint w-cliques. Without restricting
the generality, we take Q1 C Ag, Q2 C By, Q1,Q2, the two w-cliques.
More, we consider Ag = Q1 U U sM;, By = Q2 U U 4(Q; — M),
where M; C Q;(M; # Qi)(3 < i < «). We denoted 4; = M9, B; =
Q2 — Mjio(1 <1 < a—2) and we obtained:

{Ap, By} is a partition of V, Ay (Bp) contains at least a w-clique
Q1 (Q2);

Ifze A and y € Bi(1 <i < a—2), then zy € E (because A; is
totally adjacent to B; (A; ~ By));

If K = Q; for some i (1 < i < «) then (ii) is hold from Definition
3. Because a disjoint reunion of o w-cliques is O-graph, it results that
k> a—2. {(Ao, Bo), (A1, B1), ..., (A, Bi)} is a k-clique-join for G with
k=a—2. If K'is an w-clique of G that intersects both Ay and By,
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but K/ = Q;, Vi =1, ..., o, then we denote A, = K'N Ay, Bs = K'N By
for some s. We have K’/ = A;U B; ((i4) holds from Definition 3), and if
x € As and y € B then xy € E ((4) holds from Definition 3). For each
such w-clique K’, we add the pair (A, Bs) to the previous k-clique-join
and add one to k.

So {(Ao, Bo), (A1, B1), ..., (Ak, Br)} is a (k, a)-clique -join of G.

Reverse, we suppose that {(Ao, Bo), (A41,B1),...,(Ak, Br)} is a
(k, a)-clique -join of G and we show that G is a [w, «, a]-partite graph
and G is a [o,w,w]-partite graph. Without restricting the general-
ity, we consider Ay U By, ..., Ag—2 U Ba—2, Ag — U}~ 2 A;, By — UX2B;
the a disjoint w-clique, and let Q;yo = A; U By be for 1 < [ <
a—2, Q1 = Ay — U?:_EAZ', Q2 = By — U?Z_IQBZ'. We denote Qj =
{le., e Y (1 <j<a). Because Q;(1 < j < «) is a w-clique, we have:
Ve e V—-Q;,Jy € Q; so that zy € E. For 1 < j,t < «a,j # t, we
suppose m;xi ¢ E. We denote S; = {z¢,...,2%}(1 < i < w). Because
z; € SiNQj,ry € S;NQ(1 < j,t < a,j #t), it results that S; is
a-stable. Because E([S; U Sg]) = {x;xj\l < j < a}, it results that
[S; U Sg] contains « independent edges (1 < i,s < w,i # s). G is a
[, w, w]-partite graph, because Q; (1 < j < «) is a stable set in G
with w elements, S; (1 < i < w) is a clique in G with a elements and

E(QjUQig) ={ziaill <i<w} (1<jt<a,j#t).

Proposition 1. Let G=(V,E) be a simple graph with a = «(Q)
and w = w(Q@). G is O-graph if and only if it can be obtained from a
disjoint reunion of a w-cliques adding an edge between each two vertices
non contained in any class of a partition of V in w «-stable sets and
in any class of a partition of V in a w-cliques.

Proof. Let G = (V,E) be a simple graph and S = {S1,...,S,}
(C ={Q1, ..., Qa}) apartition of V in w a-stable sets (a w-cliques). We
denote S; = {1, ..., 24 }(1 <i <w) and Q; = {z}, ..., 25}(1 < j < «).
Clearly, the graph H = [Uj,Q;], is O-graph with a(H) = o and
w(H) = w. Let H' be the graph obtained from H to which an edge
e=uay (z =1, y=2ah) of Gis added. Because z and y belong to
two distinct a-stable sets of S, it results that ¢ # p. If £ = ¢ then the
edge e would be added to a w-clique Qp, contradicting the fact that
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G is a simple graph. The graph H' has a(H') = «, w(H') = w and
the same S partition (respectively C') in w a-stable sets (respectively
a w-cliques) as H. So H' is O-graph. Repeating the above procedure
of adding edges from G, we obtain the graph G and the fact that G is
an O-graph.

Reverse, if we suppose that G = (V, E) is O-graph with a = a(G),
w = w(G) and we consider the disjoint covering with a w -cliques
C ={Q1, ..., Qua} and the covering with w a-stable sets S = {51, ..., S, }
and we apply the procedure:

begin
H:=G;
while (Je = xy € E with {z,y} Z Q; (1 <j <)) do
H:=H-e;
end,

we obtain that [Ujo-‘lej] o 18 an O-graph.

Indeed, the partition C' = {Q1, ..., Qo } With a w -cliques (and the
covering with w a-stable sets S = {51, ..., Su}) of G, by deleting edges
e=xy with {z,y} ¢ Q; (1 < j < a) (according to the above procedure)
remains the same also for H = [Uj_,Q;] ., that means that H is an
O-graph.
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generalizing Pareto and lexicographic principles®
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Abstract

A multicriterion linear combinatorial problem with a para-
metric principle of optimality is considered. This principle is de-
fined by a partitioning of partial criteria onto Pareto preference
relation groups within each group and the lexicographic prefer-
ence relation between them. Quasistability of the problem is
investigated. This type of stability is a discrete analog of Haus-
dorff lower semi-continuity of the multiple-valued mapping that
defines the choice function. A formula of quasistability radius is
derived for the case of the metric l,.. Some known results are
stated as corollaries.
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1 Introduction

Traditionally stability of an optimization problem is understood as con-
tinuous dependence of solutions on parameters of the problem. The
most general approaches to stability analysis of optimization problems
are based on properties of multiple-valued mappings that define opti-
mality principles [1-4].

(©2005 by S.E. Bukhtoyarov, V.A. Emelichev
This work was supported by Fundamental Research Foundation of the Republic
of Belarus ”Mathematical structures 29” (Grant 913/28)
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Mathematical analysis does not present methods sufficient to inves-
tigate stability of a discrete optimization problem. It is greatly due to
complexity of discrete models, which can behave unpredictably under
small variations of initial data [4, 5]. At the same time, if terminol-
ogy of general topology is not used, then the formulation of a stability
problem can be significantly simplified in the case of a space of ac-
nodes. There are different types of stability of discrete optimization
problems (e. g. [4-9]). Stability of a discrete problem in the broad
sense means that there exists a neighborhood of the initial data in the
space of problem parameters such that any problem with parameters
from this neighborhood possesses some invariance with respect to the
initial problem. In particular, upper (lower) semicontinuity of an op-
timal mapping is equivalent to nonappearance of new (preserving of
initial) optimal solutions under ”small” perturbations of the mapping
parameters. So concepts of stability [4-8] and quasistability [6-8, 10,
11] of discrete optimization problems arise.

In this article we consider an n-criterion trajectorial linear prob-
lem with partitioning of criteria into groups according to given Pareto
preference relation within each group and the lexicographic preference
relation between them. Two special cases of such partitioning corre-
spond to Pareto and lexicographic optimality principles. A formula for
quasistability radius of this problem is derived for the case of indepen-
dent perturbations of initial data in the metric .. Some known results
are stated as corollaries.

Note that similar formulas were derived earlier in [12-16] for sta-
bility and quasistability radii of vector trajectorial and game-theoretic
problems with other parametric principles of optimality (”from Con-
dorset to Pareto”, ”from Pareto to Slater”, ”from Pareto to Nash”).

2 Basic definitions and notations

Let a vector criterion

f(t,A) = (fl(t, Al), fg(t, Ag), ey fn(t,An)) — min

teT
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with partial criterion

fi(t,Ai) = Z g, 1€ Ny = {1,2, ...,n}, n>1,
JEN(t)

be defined on a system of subsets (trajectories) T C 2F |T| > 2,
E ={ei,ea,...,em}, m>2. Here N(t) = {j € Ny, : ¢j € t}, A; is the
i-th row of a matrix A = [a;;] € R"*™. Put f;(0, 4;) = 0.

Let s € Ny, Z = {I1,Is,...,Is} be a partitioning of the set IV,, into
s nonintersecting nonempty sets, i. e.

Nn = U Irv
r€Ns
where I, # 0, r € Ng; p # q = I, NI, = (. To any such partitioning
we put in correspondence the binary relation €7 of strict preference in
the space R™ between different vectors y = (y1,y2,...,yn) and 3/ =
(Yy, 95, -, y.,) as follows

y QY e yn -,

where k = min{i € N;s : yr, # yr.}; yr, and y7,_are the projections
of the vectors y and 3’ correspondingly onto the coordinate axes of
the space R™ with numbers from the group Ij; > is a relation, which
induces Pareto optimality principle in the space Rl :

yn, - yn, S yn #yn & yn >,

The introduced binary relation (27 determines ordering of the
formed groups of criteria such that any previous group is significantly
more important that any consequent group. This relation generates
the set of Z-optimal trajectories

TNAL)={teT: V' eT (f(t,A) Q% f(t',A))},

where ST% is the negation of the relation €)7.
It is evident that T™(A,Zp), Zp = {N,} (s = 1), is Pareto set, i. e.
the set of efficient trajectories

PYA)={teT: v eT (f(t,A) = f(t',A)},

49



S.E. Bukhtoyarov, V.A. Emelichev

and T"(A,Z1), Ir, = {{1},{2},...,{n}} (s = n), is the set of lexico-
graphically optimal trajectories

L"A)={teT: VW eT (f(t,A)F f(t' A)},

where I is the lexicographic order in the space R™. This order is defined
as follows

vEy e >,
k=min{i € Ny, : i # yi }.

So under the parametrization of optimality principle we understand
assigning the characteristic of binary relation that in special cases in-
duces well-known Pareto and lexicographic optimality principles.

It is easy to show that the binary relation €27 is antireflexive, asym-
metric, transitive, and hence it is acyclic. And since the set T is finite,
the set T™(A,Z) is non-empty for any matrix A and any partitioning
7 of the set N,,.

Hereinafter by Z"(A,Z) we denote the problem of finding the set
(A, 7).

Clearly, T'(A,{1}) is the set of optimal trajectories of the scalar
linear trajectorial problem Z'(A,{1}), where A € R™. Many extreme
combinatoric problems on graphs, boolean programming and schedul-
ing problems and others are reduced to Z'(A, {1}) [7, 9, 10, 17]).

The following properties follow directly from the above definitions.

Property 1. T"(A,T) C Pi(A) C T, where

P(A)={teT: vt'eT (f,t,A) = fr,(t',A)}.
Property 2. If f1,(t,A) = f1,(t', A), then f(t, A) Q2 f(t', A).
Property 3. If f(t,A) QF f(t', A), then fr,(t,A) > fr,(t', A:).

Property 4. A trajectory t ¢ T™(A,Z) if and only if there exists
a trajectory t' such that f(t, A) Q% f(t', A).

Property 5. A trajectory t € T"(A,Z) if and only if for any tra-
jectory t' the relation f(t,A) Q% f(t', A) holds.
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Denote
Sl(A) = {t € Pl(A) : Vt/ erT \ {t} (fll (taA) 7& fh(t,’A))}'
Property 6. S1(A) CT"(A, 7).

Proof. Assume the converse, i. e. t € S1(A) and t € T"(A,1).
Then according to property 4 there exists a trajectory ¢’ # t such that

f(t, A) Q7 f(t', A).
Hence due to property 3 we have
fr(t, A) > fr,(t', A).
Taking into account the inclusion ¢t € P;(A) we obtain

fh (ta A) = fh (tlv A)7
i. e. t ¢ S1(A), which contradicts the assumption.

Property 7. Vte€ S1(A) vt eT\{t} Jiel (fi(t,A) >
filt, 47)).

For any number ¢ > 0, define the set of perturbation matrixes
B(e) ={B € R"™: ||B|| <e},

where ||B|| = max{|b;;| : (i,5) € Np X N}, B = [bj).
As in [8, 10, 14, 17], under the quasistability radius of the problem
Z™(A,T) we understand the number

sup K"(A,T) if K”( 3;&

n _ 0,

)

where

K™A,T)={e>0:V B e B(e) (T"(A,T) C T"(A + B, T))}.
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3 Lemmas
For any trajectories ¢ and ¢’ we define the numbers
At t) = [(tU)\ (Nt

nie AN fi(t', Ay) — filt, As)
@0 A) = max =y

Lemma 1. Ifd"(t,t', A) > ¢ > 0, then the following relation holds
for any perturbation matriz B € B(y) :

f(t,A+B) QI f(t', A+ B).

Proof. Directly from the definition of the number d"(t,t', A) we
have

dk e b (fk(t/,Ak> — fk(t, Ak) > @A(t,t/)) . (1)

Further suppose that the assertion of the lemma is false, i. e. there
exists matrix B* = [b};] € B(p) such that f(t, A+B*) Q7 f(t', A+ B").
Then by virtue of property 3 and linearity of the functions f;(¢, A), i €
N,,, we derive

0> fi(t', A; + Bf) — fi(t, Ai + B}) =
= filt', Ai) — fi(t, As) + fi(t', Bf) — fi(t, Bf) >
> fi(t', As) — fi(t, Ai) — || Bil|A(¢,t) >
> filt', Ag) — fi(t, Ai) — pA(t,t), i€l

Vie L (fit Ai) — fit, Ai) < pA(t, 1)),
which contradicts (1).
Lemma 2. Let t € T"(A,Z), t' € T\ {t}. For any number o >

d"(t,t', A) there exists a matriz B* € R™™ with norm ||B*|| = « such
that

f(t,A+B*) QF f(t', A+ B"). (2)
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Proof. We construct the perturbation matrix B* = [b};] € R"™*™
by the formula

—a ifiel, ejet'\t,
b;}-: o ifi € I, ejEt\t’,
0 otherwise.

Then ||B*|| = a and
fi(t',Bf) — fi(t, Bf) = —aA(t, 1), i€l.
From here we get

1 / . ay _ Jilt Ai) — fi(t, Ad)

. . ) _ f. . *)) — —a <
A(t7t/)(fz(t7Al+Bz) fl(t?Al+BZ)) A(t,t,) =
<d"(t,t',A) —a <0, icl,

i e fr(t,A+ B*) = fr,(t', A+ B*). This implies (2) by virtue of
property 2.

4 Theorem

Theorem. For any partitioning T of the set N, n > 1, into s
groups, s € Ny, the quasistability radius p"(A,Z) of a problem Z™(A,T)
1s expressed by the formula

"(A,T) = i in d"(t,t,A). 3
D= i vBly T5Y @

Proof. Denote the right hand side of (3) by ¢ for short. Before
proving the theorem we note that since the sets T"(A,Z) and T\ {t}
are non-empty, the number ¢ is correctly defined and nonnegative.

First we prove the inequality

P"(A,Z) > . (4)

Without loss of generality assume that ¢ > 0 (otherwise inequality (4)
is obvious). From the definition of the number ¢, it follows that for
any trajectories t € T"(A,Z) and ¢’ # t the inequalities

d"(t,t',A) > p >0
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hold. Applying lemma 1 we get

VBeB(p) VteT"(AI) VteT (f(t,A+B)QL f(t',A+B)).

Therefore t € T"(A + B,Z) by virtue of property 5. Thus we conclude
V BeB(p) (T"AZI)CT"(A+ B,I)).

This formula proves (4).
It remains to show that

p*(AT) <o ()

Let € > o > ¢ and trajectories t € T"(A,Z), t' # t be such that
d"(t,t', A) = ¢. Then according to lemma 2 there exists a matrix B*
with norm ||B*|| = « such that (2) holds, i. e. ¢t € T"(A + B*, 7).

Hence we have
Ve >¢ 3IB*e€B(e) (T™AI)LT"(A+ B*,1)).

This proves inequality (5). Summarizing (4) and (5) we obtain (3).

5 Corollaries

Corollary 1 [10]. The quasistability radius of the problem
Z"(A,Ip), n > 1, of finding Pareto set P"(A) is expressed by the
formula

) . fi(t', Ag) — fi(t, Ag)
"(A, Ip) = )
pH(AZp)= min = min max IN(XD

Corollary 2 [18]. The quasistability radius of the problem
Z™(A,I1), n > 1, of finding the set of lexicographically optimal trajec-
tories L™(A) is expressd by the formula

. it Ar) — fi(t, Ar)
"(A.Zr) = .
(4, 1L) teIn(4) veT\it) A(t, 1)
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A problem Z"(A,T) is called quasistable if p"(A,Z) > 0. Thus
quasistability of a problem Z"(A,Z) is the property of preserving opti-
mality by all Z-efficient trajectories under small variation of matrix A.
In other words, quasistability is a discrete analog of Hausdorff lower
semi-continuity of the multiple-valued mapping that assigns the set of
T-efficient trajectories to each set of the problem parameters.

Corollary 3. For any partitioning Z of the set N,,, n > 1, into s
groups, s € Ny, the following statements are equivalent for a problem
Z"(A ), n>1:

(i) the problem Z"(A,TI) is quasistable,
(ii) Vte Tn(A,I) Vit e T\ {t} diely (fi(t,,Ai) > fl'(t,Ai)),
(iii) T™(A,Z) = S1(A).

Proof. Equivalence of statements (i) and (ii) follows directly from
the theorem.

The implication (ii) = (iii) is proved by contradiction. Suppose
that (ii) holds but (iii) does not.

From properties 1 and 6 we get

S1(A) C T"(A,T) C Pi(A).

Then (since T™(A,Z) # Si1(A) is assumed) there exists a trajectory
t € T"(A,Z) C Pi(A) such that t ¢ S1(A). It follows that there exists
trajectory t' € Pj(A) such that

t' 7£ t, f[l(th) = f]l(t,7A)'

This contradicts statement (ii).

The implication (iii) = (i) is obvious by virtue of property 7.

From corollary 3, we easily get the following known result (e. g.
see [10]).

Corollary 4. The problem Z"(A,Zp), n > 1, of finding Pareto set
P"(A) is quasistable if and only if P"(A) = S™(A).
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Here S™(A) is Smale set [19], i. e. the set of strictly efficient

trajectories:

S"(A)={te P"(A): V' e T\{t} (f(t,A)#f(t,A)}

Corollary 3 also implies
Corollary 5 [18]. The problem Z™(A,Zr), n > 1, of finding the

set L™(A) of lexicographically optimal trajectories is quasistable if and

only if
L*'(A)| = |A i A =1.
IL*(A)] = |Arg min fi(t, A1)
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The solution of problem of objects classification
as the method of restoration of objects images

Igor Mardare

Abstract

This paper deals with problems of restoration of images on
incomplete information of objects. In present paper the solu-
tion of the problem of restoration of defective images by using
classification of objects is suggested.

1 Introduction

An important property of human brain is the figurative perception of
the world. This property allows on the basis of acquaintance with fi-
nal number of objects to find out with the certain reliability an infinite
number of their variations, for example, by the incomplete, deformed or
defective images to restore the true image of object. Another interest-
ing property of human brain is the classification of input information.
This property means the ability of a brain to react to the infinite set
of conditions of external world by finite number of reactions. A person
breaks data into groups of similar, but not identical phenomena. Dif-
ferent persons, training on a various material of supervision, equally
and independently from each other classify the same objects. This is
the objective character of images.

2 Restoration of images with the help of Ko-
honen networks.

An image or class is considered to be the classification grouping, unit-
ing certain group of objects by some sign. Objects of the same image

(©2005 by I. Mardare
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can differ greatly enough from each other. For example, following por-
trayals can make the image of a coin: free of defects; with semieffaced
emblem; with semieffaced value of a coin; with semieffaced face of em-
peror; with scratches, etc. Other examples of images — triangular prism
A={a;,ay,..., a,} and rectangular triangle B={by,bs,..., b,,} — are
presented in fig.1.

Figure 1. Images of triangular prism and rectangular triangle.

On the basis of the specified properties it is supposed to reduce
problem of restoration of defective objects to problem of classification
of objects. Thus, the problem of objects classification is a method of
solution of the problem of restoration of defective images.

The problem of classification consists in division of objects into
classes on the basis of vector of object parameters. Objects within one
class are considered to be equivalent according to a criterion of division.
Frequently, classes are unknown beforehand, and formed dynamically
(for example, in Kohonen networks). In this case, classes depend on
shown objects and the consequent addition of a new one demands the
correction of system of classes.

Let objects be characterized by a vector of parameters x, €X,
which has K components: z,=(z1, z9, ..., x), where X is a space
of objects. Set of classes Cq={C1, C9, ..., Cq} is in the space of
classes C:{CUCyU ... U Cg}CC,. Let’s define nucleuses of classes
cq={ci1, ca2, ..., cg} in the space of classes C as true objects for its
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class. For example, if for the classification of geometrical figures the
following parameters are chosen:

{quantity of corners, types of corners and their number, quantity
of direct lines},
then the nucleus of the class ”triangular prism” will have the following
values of parameters:

{18 corners, 6 sharp corners, 12 right angles, 9 lines} (fig. 2).

# “
o H""'h.._

- - -
A ™ o+

Figure 2. Nucleus of the class “triangular prism”.

It is possible to relate to this class the defective object with the
following values of parameters:

{13 corners, 5 sharp corners, 9 right angles, 11 lines},
as from nucleuses ”cylinder”, ”parallelepiped”, ”pyramid”, ”triangular
prism” the parameters of considered object are most of all similar to

the nucleus “triangular prism” (fig. 3). The quantitative estimation

il
Hx_

‘;:J-_,u";__.-"

Figure 3. Defective object of class “triangular prism”.

of affinity of an object to a nucleus is defined by a measure of affinity
d(z,, ¢q) of the object and the nucleus of the class which is as less,
as more this object is similar to the nucleus of the class. Measure of
affinity of two nucleuses of classes is: d(e¢1, ¢2). The Euclid measure
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represents geometrical distance between objects in many-dimensional

space of attributes:
N
d(z,y) = (zi —vi)?.
i=1

A class is formed by group of vectors, the distance between which in-
side the group is less, than the distance up to the next groups. Inside
classes objects should be closely connected among themselves, but ob-
jects of different classes should be far from each other (the requirement
of compactness of classes). Distribution of objects inside classes should
be uniform (fig. 4).

Figure 4. Distances between object and a nucleus (1) and two nucleuses
(2).

The problem of classification for given number Q of classes is formu-
lated as: to find Q nucleuses of classes {¢,} and to break objects {z, }
into classes { C}, i.e. to construct the function g(n) so that to mini-
mize a total measure of affinity for the whole set of input objects{zy, }:

N K
min{D =3 > (#ni = i)} -

n=11=1

The function q(n), which determines the class number by index n of
set of objects {@,,}, sets the splitting into classes and is the solution of
the problem of classification. In the elementary case X=C, the space
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of objects X is broken into areas {C,}, and if x,, €C, , then q(n)=q
and the object is ascribed to the class g.

Presence of nucleuses of classes allows using the neural networks
trained without teacher (Kohonen networks) for restoration of defective
images. For input data the vector of parameters of object @, (the
defective image) is used. The vector values of nucleuses of classes are
given to synapse weights of neurons. Every neuron remembers one
nucleus of a class, being respousible for definition of the objects in its
class, and gives the sum y; on the output. The total number of classes
coincides with the number of Kohonen neurons. The neuron output
value is the greater, the closer object is to the given nucleus of the
class. The vector of defective image, input to the Kohonen network,
makes active one of the neurons. Neuron with maximal output defines
the class to which the object presented on input belongs.

Synapse weights of every neuron represent the n-dimensional vector-
column w = [wy, wa,..., wg]’, where K - is the dimension of input
vectors. Before the beginning of training a network it is required to
initialize weight coefficients of neurons. Usually to synapse weights of
neurons the normalized small uniformly distributed random numbers
are given initially.

The problem of training consists in teaching the network to activate
the same neuron for similar input vectors. If the number of input
vectors is equal to the number of nucleuses (neurons), then training
is not required. It is enough to give to nucleuses the values of input
vectors, and each vector will activate its own Kohonen neuron. If the
number of classes is less than the number of input vectors, then the
training will consist in consecutive correction of synapse weights of
neurons. On each step of the training one of the vectors is selected
randomly from initial data set, and then the search of the vector of
neuron coefficients, which is most similar to it, is carried out. The
most similar coefficient vector is defined by the neuron-winner which
has the maximal output value. Similarity is understood as distance
between vectors, calculated in Euklid space. For i-th neuron-winner
we have:
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|Ty —wi| = mjm{|a:n —wjl}.

Updating the weight coefficients is made according to the expres-

sion:

t+1 _ t t t t
w; = w; + hi(x, —w;)

where
wf“ - new value of weight which the i-th neuron has gained;
! - previous value of this weight;
ht - function of neuron neighborhood;
z!, - randomly chosen input vector on t-th iteration.
The training of Kohonen network with uniformly distributed ran-
dom vectors of weights (nucleuses of classes) is graphically presented

in fig. 5.

Figure 5. Training of Kohonen network: on the left - untrained network;
on the right - trained network.

In the fields of space X in which the nucleuses are far from all
training vectors, neuron c¢; will never win, and its weights will not be
corrected by training. In those areas where there are a lot of input
vectors, the density of nucleuses is small, and the unlike objects will
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activate the same neuron cg. These lacks are connected with the ini-
tial assignment of the uniformly distributed random numbers to the
synapse weights of neurons. The problem is solved by allocation of nu-
cleuses according to the density of input vectors. But the distribution
of input vectors frequently happens to be unknown beforehand. In this
case at training the method of convex combination is used, which al-
lows to distribute the nucleuses of classes (vectors of weights) according
to the density of input vectors in the space X. Method is realized as
follows:

- assignment of the identical initial value to all weights:

1
Vdim X’

where dim X - diameter of a class;

Wij =

- setting of training set {@,,} and carrying out the training with vectors:

1—p(t)
B(t)zn + JamX
where t — time of training;

B (t) — monotonously growing function in an interval [0,1].

In the beginning of training the function (¢) = 0 and all the vectors
of weights and of training set have the same value (fig. 6.1). In the
process of training the function 3(t) grows, the training vectors diverge
from a point with coordinates 1 / vdim X and approach to their true
values @, (fig. 6.2) which are reached at () = 1. Each vector of
weights grasps the group or one training vector and traces it in the
process of growth of the function §. As a result in the network remains
no untrained neuron and the density of weight vectors corresponds to
the density of vectors of training set (fig. 6.3). The process of increasing
of § demands many iterations that results in the increase of training
time.

Method of convex combination gives correct distribution of density
of nucleuses. And in network remain no untrained neurons which occur
at usual training.
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Figure 6. Training by a method of convex combination.

Kohonen Self Organizing Map is the competitive neural network in
which neurons compete with each other for the right to be combined
with the input vector in the best way. During self-organization the Ko-
honen map configures neurons according to topological representation
of initial data, and vectors similar in the initial space, appear beside
one another on the obtained map. Usually neurons are settled down
in nodes of bidimentional network. At that neurons interact with each
other. The value of interaction is defined by distance between neurons
on the map. The class structure can be reflected by visualization of the
distances between vectors of neuron weights. The values of distances
define colors by which the node will be painted. Using gradation of
gray color, the more is the distance, the darker the node is painted.
For color palette the distance is defined according to a color scale (fig.
7). On presented Kohonen map two classes of objects are determined.
By black points the vectors of defective images of objects, used at
training, are marked. Empty cells mean the vectors of all possible
defective images concerning given classes of objects. Thus, the analysis
of Kohonen map allows to specify a priori with which defects the images
can be restored.

3 Conclusions

From the point of view of the problem of restoration of defective images
the application of method of convex combinations gives the following
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Figure 7. Kohonen maps and display of vectors of two clusters.

advantages:

- The method does not need obligatory presence of nucleus of class
(true image). The nucleus of a class is formed during the network
training on the basis of available defective images of the object,
and can be specified in the process of appearance of new defective
images.

- When only defective images of the object are present it is possible
with sufficient degree of accuracy to specify a location of class
nucleus (the true image of the object) by calculation of the center
of gravity of the class. It is possible as, in the case of choice of
Euclid measure of closeness, the nucleus of a class, that minimizes
the sum of measures of closeness for objects of this class, coincides
with the center of gravity of objects:

1
Cq = F Z L,
9n:q(n)=q

where N, — number of objects @, in the class q.
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The carried out analysis of the problem of classification shows that

the problem of restoration of defective image consists only in definition
of belonging of an object to some class. The restored or true image will
be the nucleus of the class.
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Generic Interfaces for Managing Web Data

Oleg Burlaca

Abstract

This paper discusses a generic user interface for managing web
data that is incorporated in a content management system. The
interface is created at run-time from a set of XML documents
stored in database. We accentuate the importance of content
analysis phase that leads to a well formed data model. Another
important aspect is the use of context in the interface and the
hierarchical model to represent multiple relationships between hi-
erarchy items. The proposed event model acts like a glue between
data management and application logic.

Keywords: User Interface, Database Access, Conceptual
Modeling, Content Management System (CMS), XML.

1 Introduction

Significant research has addressed the conceptual modeling [1] and
declarative specification [2] of data-intensive websites. Frameworks and
paradigms are proposed to build websites from data sources with com-
plex structure, but do not offer means or propose methodologies for
managing the underlying data. In other words, there is a lack of tools
that offer generic interfaces for managing intertwined (complex) data
structures.

A practical implementation of methods and approaches described
in this article is NeoSite (http://cms.neonet.md): a CMS developed by
the author for structured web sites. Constantly been improved, it has
been in use for the last three years to manage web sites of different
complexity.

(©2005 by 0. Burlaca
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After the content analysis phase, we try to represent the data of
a web site using a lightweight version of the entity relationship model
introduced by Chen [3].

This article is structured as follows. The next section describes
what incited us to develop a CMS that offers a generic interface. Sec-
tion 3 explains why the content analysis phase is so important when
developing structured web sites. Section 4 highlights some advantages
of generic Ul, describes some of the problems with web interfaces, re-
veals our approach to building generic interfaces, and accentuate on
relationship and multirelations between entities. A brief outline of the
event model that allows to tie the interface to application logic is pro-
vided in Section 5.

Section 6 gives an overview of related research and tools.

2 Historical Background

Previous experience of creating specialized content management sys-
tems showed that the most tedious and time consuming task was to
develop handy user interfaces (UI) for content authors. Most database
systems (we used MySql) contains rudimentary tools for manipulating
and querying the data, that are usually insufficient for most users. For
this reason, a customized Ul to handle interaction between the user
and the database was required for each web project.

As the number of web projects grew up, there was an urgent need for
a generic Content Management System (CMS). Using our experience
of creating tools for web site management, we started to build our own
CMS that will encompass the most needed and reusable components.
From our point of view, as developers, at that time, a CMS that offers
a tight integration of WWW, DB and FTP services would be sufficient.
From a content author and designer perspective, a CMS is a system
that enables him to effectively and comfortably publish his content,
change the design of the site, notify other CMS users, generate some
reports for the administrative staff, etc.

In reality a CMS is a concept rather than a product. It is a concept
that embraces a set of processes that will stay at the foundation of
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the next generation of web sites where content authors will have more
privileges, duties and responsibility than designers and developers.

As we mentioned, developing custom Ul was (besides information
architecture process and conceptual modeling) the most time consum-
ing stage. The two key factors were:

1) complexity and uniqueness of UI being developed;

2) the ever changing requirements of web projects (a new field was
added to a DB table, the nature (attribute list) of a relation
between entities has changed).

We desperately needed a high level interface to database; a system that
will generate a Ul from a set of rules: which fields should be available
to the user, how relations are created between records etc. In other
words, a generic Ul to relational DB systems was needed.

We propose such a generic Ul engine, implemented in our NeoSite
CMS [4]. NeoSite is a web development environment where the data
management facilities play a central role. The system respousibility is
how the content is managed (created, updated, related) but not how it
is used.

3 Content Analysis

To make a successful CMS for a particular web project, a research
phase for content analysis is needed. It helps you reveal patterns and
relationships within content and metadata that can be used to better
structure, organize, and provide access to that content. The purpose
of content analysis is to provide data that’s critical to the development
of a solid information architecture [5].

In this work we are mainly concerned with Ul to structured web
data. Examples of such sites are bookstores, electronic catalogs, e-
news. These are sites that include pages composed of data whose
overall structure is naturally hierarchical, but exhibits a modest de-
gree of variation. In [6] such pages are called “data rich, ontological
narrow, multiple-record web pages”. Such sites are composed of index
and entity pages. Index pages will be automatically generated from
entity(leaf) pages. An entity page consists of:
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1. internal content: it mainly appears on this page (a long text, a
XML description of a product);

2. external content: attributes that are used to construct index
pages, feed search engines;

3. relationships with other entity pages and the specification (at-
tributes) of those relations.

Defining entity types, their relationships and organizing entity collec-
tions into a hierarchy that mimics the site structure is a creative pro-
cess and requires information architects intuition, programmers point
of view and customer involvement. After this work is carried out, a
XML specification of the Ul is elaborated and fed to NeoSite generic
UI engine.

Hierarchy is ubiquitous in our lives. Because of its pervasiveness,
users can easily understand web sites that use hierarchical organization
models. They are able to develop a mental model of the site’s structure
and their location within that structure. This provides context that
helps users feel comfortable.

4 Generic User Interfaces

Within the lifecycle of a software project there are often many changes
required to the initial design as it progresses, and the developer’s soft-
ware tools are not able to easily cope with these changes. The Ul needs
to interact with the database and is sensitive to any changes occurred
in the database. Such changes will cause the Ul to stop working unless
the same changes are also applied to the UL. Furthermore, the results
of major changes to the underlying database and user interface may
require substantial re-testing of the application.

The users desire is to view a multitude of data on a single complex
screen. It is usually indulged by the developer even though this may
not be desirable. Such complex screens are not scalable and difficult to
change.

When developing a database system there are well-established rules
of how data should be stored and accessed, called Relational Database
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Theory. Michelangelo said: “Form relieves.” What if there will be a
UI theory with strict rules? Maybe then, interfaces will be simpler
and more consistent than a traditional application, but able to pro-
vide much more powerful functionality? A few obvious advantages of
a generic interface are: reduced development time, scalability, no hand
coding, less testing, consistent look and feel, standardization, less train-
ing.

4.1 Client application vs. Web interface

Almost all commercial CMSs uses a web interface to interact with the
user. The central argument is that you don’t have to install special soft-
ware on the client side. You can administer the site from any computer
connected to the Internet that has a web browser installed. However,
browser interface controls have limited functionality, compared to desk-
top applications. But the main problem is the stateless editing. HTTP
is a stateless protocol and doesn’t support stateful interaction with a
server. This problem can partially be solved by using a mix of cookies
and server sessions imposed over the protocol, but in general, editing
content in a web browser is not so pleasant nowadays. The problem
becomes even worse when you have to edit a large collection of enti-
ties. For example, ERW — a system for handling complex databases
through a web browser [7], “solves” this issue by “simulating remote
procedure calls”. However, their todo list tells that the system will be
redesigned from scratch; the first step in this direction is the creation
of a working, independent framework for asynchronous remote-script
callback invocation.

As you have probably guessed, we are using a client application for
managing the site’s data. Besides installation issues (each user has to
install the software on his machine), there are a lot of advantages that
are evident when the site is managed by a few number of users.

4.2 The Hierarchy

After the content analysis phase, the identified entity types of the fu-
ture web site will be hierarchically organized and presented to the user
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as a treeview. The hierarchy provides user with a decent navigation
system, that simplifies the Ul by minimizing the number of facilities
used to find information. At the same time, the user will always have a
clear understanding of his location within that structure due to bread-
crumbs. In other words, the hierarchy provides context. Another fea-
ture is the implicit relationship (parent-child) between nodes. Instead
of displaying a grid with two columns:

1. product title,

2. category of the product, sometimes a tree with two levels: cate-
gory as parent with products as children is more appropriate.

However, hierarchies can be limiting from a navigation perspective.
You are forced to move up and down and can’t jump across branches
(lateral navigation) or between multiple levels (vertical navigation).
Additionally, some tasks, like editing multiple records with a single
operation, will be inconvenient and time consuming when the hierarchy.
Shortly, we must have the possibility to view the data from any angle.
We tried to address this issue by introducing a special type of entity
called “Data shortcut” described in 4.4.

4.3 Entity types

Entity type definitions are a set of XML documents that describe:

1) how an entity will be displayed in the treeview (icon, font); the
associated editor plugin;

2) which database fields are available, and which editors to use for
them;

3) which entity types can be related to each other and which at-
tributes describes those relations;

4) triggered events and available actions when working with an en-
tity.

Figure 1 illustrates a snippet from the XML definition of an entity type
that represents the db fields displayed. Figure 2 shows the generated
UL

75



O. Burlaca

Database fields that contain large texts and require specialized
editors with syntax highlighting are described in the <memos>
< /memos> section.

<memos>
<f>
<title> content </title> <lang>en</lang>
<db_field> content </db_field>
</f>
</memos>

<linkage mode="tree">
<types>
<tip id="1">
<fields>
<f name="content" height="70" />
</fields>
</tip>
</types>
</linkage>

<fields>
<f name="alt" />
<f name="idx2" caption="autor" editor="TreeDrag" />
<category caption="specialitate" />
<f name="grad" caption="grad" width="30" editor="ComboBox">
<items> <1i>D</1i> <1i>DH</1i> </items>
</f>
<f name="idx1" caption="denumire" editor="TreeDrag" />
<category caption="System" expanded="0" />
<f name="id" readonly="Y" />
<f name="add_date"> <default>NOW()</default> </f>
<f name="modified" readonly="Y" />
<f name="_tmpl" />
</fields>

Figure 1. A snippet from the XML definition of an entity

Besides standard visual editors (ComboBox, CheckBox, DateEdit,
TimeEdit. .. ) available in the previous version of NeoSite [4], we have
added two useful complex editors: Lookup and ImmgEdit. The ImgEdit
allows you to browse for an image on your computer for uploading via
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Content Data | Related (7)

alt
autor 2 Alb Daciana =
[l specialitate

DH -
@ Logica matematica, algebra si teoria r T4

1255
add_date 03/03/2005 -
modified 23/03/2005 11:52:21 B
Tmpl Tip = html

Figure 2. A piece of UI for db field editing

FTP. The uploading directory from the remote server can be obtained
by invoking a server side script with the id of the item being edited.
The resulting text written to db field is obtained by filling a template
like “ <img width="% w” height="% h” src="% src¢” alt="% filename”
/>

Such automatizations help a lot when dealing with lots of images. It
also relieves the content authors of burden. The Lookup editor displays
dataset records within a dropdown window in a column-based format.
These records are fetched based on a SQL Select. Figure 3 illustrates
the definition of a lookup db field.

NeoSite has a modular architercture based on plugins. A plugin is
a DLL library. Each entity type can have it’s own plugin for editing.

4.4 Data Shortcuts

It has been said that hierarchies can be limiting from a navigation
perspective and have the possibility to view the data from any angle.
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<f name="producer_id" editor="Lookup">
<sql>SELECT id, title FROM site_en
WHERE parent_id=5 ORDER BY title

</sql>
<columns show_header="1">
<col name="title" caption="" />
<col name="tel" caption="Phone" width="60" fixed="1" />
</columns>
</f>

Figure 3. Definition of a lookup db field

For this reason, a special editor plugin was developed, called EdSql.
It fetches a collection (described by a sql query) of entities from the
hierarchy and has two purposes:

1) additional navigation pathway
2) editing multiple records with a single operation (see Figure 4).

When double-clicking the ‘ShortCut’ node, a grid is displayed
containing live data, the user can use grid inplace editing or press
‘Ctrl+Enter’ to find& focus the selected item in the hierarchy.

4.5 Relationships

The basic idea of Entity-Relationship modeling, introduced by Chen
[3], is that using sets and relations we can model objects of the real
world and their inter-relationships.

At first, when designing the database structure for a website, ad-
justing it to a relational normal form was a priority. In practice the
theoretical model is often constrained by the way in which the data
will be used and speed of access; compromises are introduced into the
design.

Today we try to model site’s data using only hierarchies and re-
lations between hierarchy nodes. It greatly reduces and simplifies the
user interface. Instead of providing a highly customized interface, we
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Figure 4. Data Shortcuts

separate complex items into smaller parts, meaningfully organized in
the hierarchy. If the context provided by the hierarchy is not sufficient
to express the meaning of an item collection, explicit relations and re-
lationship attributes are additionally used to incorporate more “data
semantics”.

Relations are defined using drag&drop operations.

4.6 Multiple Relationship

Two entities can be related “more than once”. To store and display
relations, the hierarchy model was used again: in order to relate an
item multiple times, you’ll have to drag&drop it to different parent
nodes Figure 5. ‘Referenti Oficiali’ and ‘Membrii Consiliului’ items are
abstract entities, automatically related to entities of ‘thesis’ type on
their creation. Besides allowing multirelations, these abstract entities
provide context, helping the user to better understand what a given
relation means.

Previous version of NeoSite [4] was able to deal only with single
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Figure 5. Hierarchical multirelation management

relations, but allowed the user to manage backward references. The
practice showed that backward references are seldom used and only
bothers the user with additional information.

5 Talking to the Logic

A generic solution will offer only basic functionality. The attempt to
endow it with complex features that will encompass a large spectrum
of tasks will end up in a flexible (maybe) but hardly manageable soft-
ware creature. A generic framework should “connect”, not “imple-
ment” project specific or narrow features. To accomplish this objective,
NeoSite offers a high level event and action mechanism. As we have
mentioned in Section 4.3, an entity definition contains the description
of its events (see Figure 6) and actions.

Entity action definition is similar to events. Actions are directly
activated by the user through a run-time generated toolbar. Each of its
buttons have an associated action. Buttons may have an icon specified
in the entity definition.

Events are processed consecutively, the output of an event is one
of the input parameters of the next event. This model adds workflow
capabilities to our system.
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<events>
<OnCreate>
<e type="sql">INSERT INTO site_en_related
(from_id, to_id, from_tip, to_tip)
VALUES ($id, 444, 10, 1)
</e>
<e type="http">
<params>
<url>http://neonet.md/cgi/build.cgi</url>
<prms>id=$id</prms>
<urgent>0</urgent>
<method>get</method>
</params>
</e>
</0nCreate>

<OnCloseAfterCreate> ... </0OnCloseAfterCreate>
<OnOpen> ... </OnOpen>
<OnRelateNode> ... </OnRelateNode>

</events>

Figure 6. Entity events

6 Related Research and Tools

A generic query tool [8] that dynamically creates its user interface,
based on xml configuration files, enables the user to query a metadata
store through filters that impose search criteria on attributes. It can be
seen as a complementary tool for NeoSite CMS, that shares the same
metadata scheme described in a xml file.

Discovering a generic paradigm to manage complex data is a chal-
lenging task. The QSByE [6] interface for querying semistructured
data allows representing complex objects with arbitrary hierarchy lev-
els, presenting variations in their structure, as nested tables. Such
approach can be used to provide an insight of a complex structure, but
is not appropriate to edit it.

The Arepo Platform [9] is a set of development tools, used to gen-
erate a user interface directly from the database and supplementary
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metadata. Playing with the online demo, and investigating the docs
on their site, we didn’t find a way to specify relationships between
records.

The closest approach to our tool is ERW [7]: a set of specifications
and tools that makes it easy to create, modify and maintain via web
a database described by an entity-relationship schema. It has a stable
entity-relationship language (ERL) and the associated algorithm. ERW
has a well established theoretical foundation, but provides a modest
interface to the underlying gears. Because they use a web interface, it
makes impracticable to edit large databases. A common “limitation” of
both tools: ERW and NeoSite, is that it handles binary relations only.
If you really need n-ary relations, you’ll have to factor them. The main
reason for this limitation is that it is very difficult to design a generic
user interface for n-ary relations that will adapt to every situation.

7 Conclusions

This paper has discussed a hierarchical approach to manage entity mul-
tirelations in an intuitively clear and convenient way. It also proposed
the “Data Shortcut” paradigm as a facility for navigation deep hierar-
chies and view data from different angles.

Even the grandest project depends on the success of the smallest
components. Web projects that were implemented using the proposed
approach and software (NeoSite CMS [4]) demonstrate the effectiveness
of the proposed model for managing web data.

As future work, we intend to investigate how to build an interface
for managing n-ary relationship.
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Variable Bit Permutations: Linear
Characteristics and Pure VBP-Based Cipher

N.A. Moldovyan, A.A. Moldovyan, N.D. Goots

Abstract

This paper describes linear characteristics of the variable bit
permutations (VBP) that are used in the form of the data-
dependent permutations. This primitive suites well to the design
of fast cheap-hardware-oriented ciphers. Because of the existence
of one characteristic with bias 1/2 we discuss possibility to de-
sign a pure VBP-based block ciphers that are indistinguishable
from a random transformation. We present design of the cipher
which is based only on VBP, fixed permutations, and XOR op-
erations. Performed analysis has shown that the designed pure
VBP-based block cipher is secure against differential and linear
attacks confirming the efficiency of the VBP as cryptographic
primitive.

Key words: variable bit permutations, data-dependent per-
mutations, linear analysis, fast block cipher

1 Introduction

Permutation networks (PNs) have been widely studied in the field of
parallel processing and telephone switching systems [1] and they are
very interesting to be used as cryptographic primitives. The PNs are
well suited for cryptographic applications, since they allow one to spec-
ify and perform permutations at the same time. A variant of the
symmetric cryptosystem based on the key-controlled PNs and Boolean
functions is presented in [2]. Another cryptographic application of PNs
is presented by the cipher ICE [3] in which a very simple PN is used
to specify a key-dependent fixed permutation. Such use of PNs has

(©2005 by N.A. Moldovyan, A.A. Moldovyan, N.D. Goots
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been shown [4] to be not very effective against differential cryptanaly-
sis. A more attractive approach is the use of PNs to perform variable
bit permutations (VBP) implemented as data-dependent permutations
(DDP) [5]. Efficiency of the use of data-dependent operations has been
demonstrated by examples of ciphers RC5 [6], RC6 [7] and MARS [§],
which are based on data-dependent rotations with 32 different modifi-
cations. The PNs can be used as controlled permutation (CP) boxes to
perform DDP. It is easy to design CP boxes (CPBs) giving possibility
to specify 264 and more different modifications of the VBP performed
on data subblocks [5] and subkeys [9].

This paper counsiders the linear characteristics of VBP, design of
the pure VBP-based cipher oriented to cheap hardware implementa-
tion, and its security against differential and linear attacks. In section
2 we consider general design of the CP boxes. We also construct mu-
tually inverse CP boxes Psy/96 and P?;}% of the order h = 2, (see
Definition 3) both of them having the same topology. In section 3 we
counsider algebraic and probabilistic properties of CP. Linear character-
istics of the CP boxes are estimated in general case. In section 4 a pure
VBP-based cipher DDP-64 using simple key scheduling is described. In
section 5 the linear and differential analysis of DDP-64 is considered.
We also propose to use switchable operations to avoid weak keys and
homogeneity of the encryption in the case of simple key scheduling.

Notation

o Let {0,1}* denote the set of all binary vectors U = (uy,..., us),
where Vi € {1, ..., s} u; € {0,1}.

o The Hamming weight ¢(U) of U be defined as the number of

nonzero components of U and ¢'(U) denote the parity of o(U), i.e.

e(U) ] >.i—1 ui, where p(U) € {0,1, ..., s} and ¢'(U) = ©(U) mod 2.

o Let us fix 4, 1 € {1, ..., s}, and write E;, for which ¢(E;) = 1 and
e; = 1.

oLet By = (0,...,0) and Dy = (1,...,1), i.e. ¢(Ep) = 0 and ¢(Dy) =
S.

o Let X @Y denote the bit-wise XOR (EXCLUSIVE-OR) operation
of the two vectors X and Y : X,Y € {0,1}".

o Let X ® Y denote bit-wise AND operation of the two vectors
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X and Y: X,Y € {0,1}*. For ¢ € {0,1} and X € {0,1}* we define
Y=c-X, where y; =c-z; Vi € {1, ..., s}.

o U denotes bit-wise complement of U, i.e. U “y ® Dy YU €
{0,1}%.

© Let o denote the binary scalar product: ¢ = Ae X = ¢/(A®X) (c €
{0,1}).

o Let Y = X>>* denote rotation of the word X by k bits, where
Vie{l,...,n—k} we have y; = 2,1 and Vie{n —k+1,...,n} we have
Yi = Titk—n-

2 Design of fast CP boxes

Let Y = F(X,V) be the two-variable function F:{0,1}" x{0,1}"* —
{0,1}".

Definition 1. Function F(X,V) is called a CP box (or P, ,-box),
if for each fized V' the function F(X,V) is a bijective mapping defined
as bit permutation.

For fixed V we have fixed bit permutation operation called CP
modification or modification of VBP operation. We shall denote mod-
ifications as F'yy or Py. We shall also use notation PTE‘/QZ for CPB with
n-bit input, n-bit output, and m-bit control input . Thus, the notation
Y =Py (X, V) =P} (X) means Y =Py (X).

In section 3.2 we use the following statements:

1. Fv(A) =B = Fv(Z) = B.

2. Fy(A® B) =Fy(A) @ Fy(B).

3. Fy(A) =B = ¢(4) =¢(B) and ¢(A) # ¢(B) = Fy(A) #
B.

4. 9(A@B)=¢(A) +¢(B)—p(A®B). If A® B = Ey, then
©(A® B) = ¢(A) + ¢(B).

While constructing CPBs it is preferable to use the layered topology
of PNs, since it permits to design very fast CPBs. A layered CPB
P, /m (Fig. 1) can be represented as superposition of s = 2m/n active
layers separated with s — 1 fixed permutations that are implemented in
hardware as simple connections. Each active layer (Fig. 1b) in a CPB
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with n-bit input is represented by the set of n/2 elementary boxes P, /1
controlled with one bit v: y; = z14, and y2 = w2, (see Fig. la).
General structure of the layered CPB is shown in Fig. 1c.

In all figures in this paper the solid lines indicate data movement,
while dotted lines indicate the controlling bits. We assume that in a lay-
ered CP box all elementary switching elements are consecutively num-
bered from left to right and from top to bottom and the ith bit of vec-
tor V' controls the ith switching element Py/;. In accordance with the
number of layers the vector V' can be represented as concatenation of s
vectors Vi, Va, ..., Vi € {0,1}"2 ie. V = (Vi, Vo, ..., Vi) = V1| Va)...|Vs.

=S T Ty T T T Tt TA
|
: a) X1 X3 : b) X1 X2 X3 X4 Xn-1 Xn i
|
| | |u| V v Vs |
: l l v : 1:.2/1 1 I)2/1 : 2/1 /2i
i P2/1 < | * * * * ) * gl :
! l l L oy Y3 Ya Yn-1 Yn |
___________________ 4
: | C) X in :
| Y1 y2 I v !
R —
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! |
i X=X X) : Fixed permutation 7T, I
I n | :
! | nd . V2 I
i 5] Vi 2 active layer <!
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Figure 1. Notation of the Py/;- (a) and Pn_/1 boxes (d), structure of

-
one active layer (b) and general structure of the layered CP boxes (c)

The following two definitions we use according to [5].

Definition 2. The CP bozes Py, and P;lm are mutual inverses,
if for all possible values of the vector V the corresponding CP modifi-
cations Py and P(/l are mutual inverses.
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Definition 3. Suppose for arbitrary h < n input bits To,, Tay, -y Tay,
and arbitrary h output bits ys,,yg,, ..., ys, there is at least one value V
which specifies a permutation Py moving x,; to yg, for alli =1,2,..., h.
Such a P, ,,-boz is called a CP box of the order h.

One active layer can be considered as the single-layer CPB S,;. It is
evidently that Py/; = 2/1, therefore S,, = S;!. A layered CPB Po/m
can be represented as superposition of the blt permutation operatlons
(Vs)

Pn/m = S%Vl)omosgl‘/?)omo“. omg_10Sy °’. The respective box P /m has

the following structure P;1m:S£1 )ows 1oS(V5 )07r;120...o ) osgvl).

Thus, to construct inverse of the CP box P,, /,,, it is sufficient to number
the boxes Py from left to right and from bottom to top and to replace
m; by 7r5__1i. We shall assume that in the boxes P 1 the switching
elements Py, are consecutively numbered from left to rlght and from
bottom to top, i.e. in the both P,, /,;, and P;/lm the th bit of V' controls
the ith elementary box P,,;. Note that the vector V; corresponding
to the jth active layer in the box P, ,, controls the (s—j+1)th active
layer in Pn Jm

In the VBP-based ciphers described below there are used P33 /g6-
and P32 /96° -boxes. These boxes have the same structure compris-
ing two subsequent cascades. The upper one consists of four boxes
Ps/12 (Fig. 2a) and the lower one consists of four parallel boxes P8 /12
(Fig. 2b). The cascades are separated with fixed permutational invo-
lution described as follows:

(1)(2,9)(3,17)(4,25)(5)(6,13)(7,21)(8,29) (10)(11,18)
(12,26)(14)(15,22)(16,30)(19)(20,27)(23)(24,31)(28)(32) *

The structure of the boxes Py /6 and P32/96 is presented in Fig. 2c
and 2d. One can show that both of these CP boxes have the second

order and each of two superpositions (Pg/)%) OPgQ/.t))ﬁ and sz/)%

’ —1
(Pg/gﬁ) represent a twelve-layer CPB of the order h = 32.

88



Variable Bit Permutations: Linear Characteristics and ...

.. 89 .. 1617 .22 .32
Y

D Yy by bl od X !
:V1|P2/1||P2/1||P2/1|| 2/1|: i L 89, 16p 225 325 !
' 1, [ P | [P | Pr | [P |§V] L D T [ ||||§V61
! i ||| I ||:V2i Pyiz || Psnz || Psnz || Psma v
v V3| Pan || Pan || Pot || Pan |1V Vi
1 | J \ 1
R TS 28
:b)¢$¢¢$$¢ﬂi/ Lo
E V3| Py || Py ” Py || P |: mifas | g i
I 1V -1 1 -1 a1 [1V3a
1 ! P P P P ot
' Vi Py || Pyt || Po | [ Paa | E‘\jsi 8/12 8/12 8/12 8/12 i“;z:
| Vol i

|
Vi Pay || P2/1||P2/1||P2/1|E
YYVY VY |

Figure 2. The first-order boxes Py /15 (a) and P; . (b) and the second-

8/12
order boxes Pyy /96 (¢) and Pg,_g}g6 (d)

3 Properties of the controlled permutations

3.1 Terms of the linear cryptanalysis

Let F: {0,1}" — {0,1}",(r > n) be given. The resistance of the
function against linear cryptanalysis (LCA) [10,11] is determined by
the maximal value |p|, where
def 1
p =pr =pr(Lu,ly) = I(’Jr(UoFuGBYOFy=O)—§, (1)

U, lu € {0,1}", Y € {0,1}", Iy € {0,1}"\ Ep, and Lu, Iy are fixed
vectors, that we called masks, and the value p is called the deviation
(or bias). Similar to the notation used in [11] we describe linear char-
acteristic (LC) of the function F as the combination (Du, Ty, py).

Let Y= F(X, V) be the two-variable function F: {0, 1}"x{0,1}™ —
{0,1}". Then for U = X|V, and Tu = Tz|Tv (1) is transformed in
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pr (T, Ty, Tv) =
def

1
= pp(Lz|lv,Ty) = )lg]a(XoFxGBVOFv@YoFy =0) — 7" (2)
In particular, the value V' corresponds to a subkey. For fixed value V'
the deviation has the form

pr, Lz, Uy, Tv) =
1
= pp, (To|To,Ty) & PrX ele@Vel@Y ely=0) -2 (3)
Below we shall also use the LC with the value pg, . According to dif-
ferent papers that dealt with the case of the uniformly distributed in-
dependent variables X and V the resistance of the function F against
LCA can be estimated with the help of formulas using deviations pr, .

For example, in [11] it has been derived the following formula:

Y omax LPFMr Ty Y max — 3 LPFY(Iz - Ty)
T, Iy £0 Lz, Ly£0 2m veloym ’
where  LPTv(Dg — Iy) & (AXEAGU N eToo Iy (N)ely) _ )2
Actually LP*V (T — Ty) = (2pp, (Tz, Ty))?, (4)
1
where pr, (L, Ty) = P)’(r(XOI‘a:GBFV(X)OI‘y =0)— 7

(5)
The next section of the present paper considers the case of arbitrary
distribution of the variable V including the case V = const. In this
calculation of the deviation p it is necessary to use the total probability
formula:
pF(Fx7Fy7PU) = Zva(Fx7Fy7FU) : PV7 (6)
%
where Py is the probability of the given value V.
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3.2 Linear characteristics

Analyzing LC of CP boxes we assume, that X and V are independent

variables, and Px = ﬁ = 2%, secondly, for masks 'z, 'y, T'v we
will use identifications A, B, C, in accordance with [11]. Let
d
Ae(A,B) €S 05, (4,B) - Py, (7)
%

def 1a if Fy (A :B;
where 05, (A, B) = {0 othe‘;x(;vis)e.

Note that Ap(A, B) is the probability that F(A)=B, ie. Pp(A—
B) = Ar(A, B). Accordingly, let

)\F(AaBaC) défZGFV(AaBao)PVa (8)
|4

def {1, i Fy(A)=B, CeV =0;
where 0p, (4,B,C) = {0 othe‘;xSvis)e.

Below we use the following statements:

1. p(A)#@(B)=Fy(A) #BVYV = Ap(A,B) =0.

2. p(A) =p(B) = Ap(A,B) = A\p(A,B).

3. Ar(A,B) = Ar(A, B, Ey).

4. YC \p(A,B,C) < Ap(A, B).

These statements are quite evident and can be easy derived using
general properties of permutations. Let us counsider the function

1, fAe X @ BeFy(X)®CeV =0;

def
Pv(X) = {0, otherwise.

It is easy to see, that if Px = ﬁ, then

Prv(A.B.C) = i S W (X) — 5.
X
1

Lemma. Let X and V be independent variables and Px = ook Then

1 (08, (A,B,C), if Fy(A) = B;
H{X3 2. BvX) = { 1/2, if Fy(A)# B.

X

(10)
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Proof. Let us consider two variants: Fy (A) = B and Fy (A) # B.
Case 1. Fy(A)=B=VX: Ae X @ BeFy(X) =

— Ao X OF(A) s Fr(X) = ¢(A8 X) 0 ¢/ (Fy(4) @ Fy(X)) =

=¢(AeX)e¢(Fyv(Ae X)) =¢(U)® ¢ (Fy(U)) =0.

Hence, VX Uy (X)=CeV @1 and

(X3 2 \IIV(X):{O fCeV £0. 0r, (A, B, C).
X,Fv(A):B ’

Case 2. B # Fy(A). Let A': B = Fy(A'). It is obvious, that
A £ A Let AV = A/ @A A12 = A® A" and A® = A A"
Since A" = A2 g A@ and (12 @ A@ = E; are held, then
P(A'® X) = p(A1?) @ X @ A® ® X) = p(A1?) ® X) + p(A? ® X)
and (A ® X) = p(AD @ X) + p(A1?) @ X).
According to Case 1, VX the equation A’ ¢ X ® BeFy (X) = 0 is held,
ie. BeFy(X)=A'"eX. Then Ae X P BeFy(X)=AeXDA eX =
=0 (A X)® (A ®X)=
= ¢'(AD @ X) ® (A" @ X) & ¢' (A" @ X) @ ¢'(4® © X) =
= (AY ® X)® ¢' (AP ® X) =

- <Ziagl)_1 :z:z> mod 2 & (Z

@ _y x1> mod 2 =

ila;

y(X)=| Y z|mod2®| > x| mod2&CeVel.

ilaM=1 ila?=1

Let t = o(A®). The whole set of binary vectors {X} (|[{X}| = 2")
can be represented as an association of 2" disjoint subsets, each of
which contains 2! vectors differing only in the digits corresponding
to the active (non-zero) bits of the mask A(?). Note that for each

such subset <Zia(1)_1 :1:1> mod 2 and C' e V @ 1 are constants and

<Zia(2)_1 :1:1> mod 2 is even in exactly one-half cases, i.e. for 277t .

20-1 = 271 yalues X Uy (X) =0 and for remaining 2" ! values X
Uy (X) =1 are held. Therefore, for each permutations Fy: Fy (A) #
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B we have

! Y w(X) r 1 O
N e =

Theorem 1. (About deviations of controlled permutations). Let X

and 'V be independent variables and Py = ﬁ Then

2pr(A,B,C) =2\p(A,B,C) — Ar(A, B) (11)
Proof. In accordance with (6),(9) and (10) we have

2pF(A,B,C) = 2ZpFV(A,B,C) . PV =
1%

=2 Z PV'pFV(A7B70)+2 Z PV'pFV(Avac):

1 1 1
=2 > Pv-(GFV(A,B,C)—§>+z > pv.<§_§):
V,Fy (A)=B Vi ()28

=2 PyOp,(A,B,C)=> Py-0r, (A B) =2\, (A, B,C)-Ap, (A,B).
14 14

O
Corollary 1. 2pr(A,B) = 2pr(A, B, Ey) = Pr(A — B).
Indeed,
2pr(A,B) =2pr(A, B, Ey) = 2Ap, (A, B, Ey) — Ap, (A, B) =
:2)\FV(A,B)—)\FV(A,B) :)\FV(A;B) :pF(A—>B) O

Corollary 2. VA, B 0<2pp(A,B)<1.
Corollary 3. ¢(A) # ¢(B) = pr(A,B) =0.
Indeed,
w(A) Zp(B)=B#Fy(A) VYV = Ap(A,B)=0=pp(A,B)=0. O
Corollary 4. VC |pr(A,B,C)| <pr(4A,B).
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Indeed7 0< AF(AaBao) < )\F(A’B) = |2pF(AaBao)| =
= |2)\F(A,B,C) — )\F(A,B)| < )\F(A,B) = 2pF(A,B) ==

Corollary 5. VA,B ZB:QD(B):QO(A)2PF(A’B) = ].,
ZA:(p(A):np(B)2pF(Aa B) =1
Indeed, VA,V 3!B: B = Fy(A) = Y gAr(A,B) = 1. Since
ZB:«p(B);éga(A) AF(Aa B) =0, then ZB AF (A7 B) =
- ZB:@(B):QO(A) AR (A7 B) =1l= ZB:(p(B):Lp(A) 2pF(A7 B) =
= Y Bip(B)=p(4) AF(A, B) = 1. The second formula can be similarly
derived. O

Corollary 6. VA, B pp(A,B) = pr(A, B). This is obvious, since
Ar(A, B) = Ap(A, B). O

Corollary 7. Let A= B = Ey or A= B = Dy. Then 2pr(A,B) = 1.

Corollary 8. Let ¢(A) = 1. If Pp(A — B) = const VB €
{0,1}" : @(B) = 1, then 2pp(A,B) = Pp(A — B) = 1 ie
pr(4, B) = 5(Pr(A = B) = 4.

Indeed, there exist exactly n of vectors B € {0,1}": ¢(B) = 1,
therefore Pr(A — B) = const = 1/n. This result was obtained in
[12] for data-dependent rotations which are a particular case of the CP
operations. O

Conclusion The absolute value of the deviation of LC with a non-
zero mask of the controlling vector does not exceed the wvalue of the
deviation of LC with a zero mask of V, the last being equal to half of
the probability that a given input mask transforms into a given output
mask.

Since the theorem and its corollaries include the doubled value of
deviation, it is reasonable to use the parameter p’ = |2p| which for zero
mask of the controlling vector coincide with the probability Pr(A —
B), ie. p' =|2p| = 2pp(A,B) = Pr(A — B).

The practical significance of the derived theorem and its corollaries
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lies in simplification of the calculation of LC:

1. To estimate LC of the CP boxes one can analyze ounly linear
characteristics with zero mask of the controlling vector V.

2. The calculation of the deviation pyp (A, B) is equivalent to the
calculation of the probability Pr(A — B).

3. It is sufficient to analyze only deviations of LC for which p(A) <
n/2.

4. While designing CP boxes, the condition VA, B ¢ {Ey, Do}
Prp(A — B) < 1/n is to be satisfied.

Let us consider item 4. Let &(t) def maxy py(A)— Pr(A — B) be
the function of the maximum value Pr(A — B) for given weight ¢. It
is easy to see, that £(n —t) = &(t), therefore it is enough to analyze
this function only for ¢ = {1,...,n/2}. Since the number of different
vectors B with weight ¢(B) = 1 equals n, for ¢(A) = 1 from corollary
5 one can obtain £(t) > 1/n. If VA, B € 0,1": 9(A) = ¢(B) = 1 we
have Pp(A — B) = const, then &(t) = 1/n is held. This is the case of
the uniform CP boxes of the first order.

For arbitrary ¢ <n the number of different vectors B with weight ¢
equals (7;) . Thus, there are premises of the construction of CP boxes
with monotonically descending function &(t) for t = {1,...,n/2}. For
CP boxes of the hth order we have Pp(A — B) > 0 VA, B : p(A) =
©(B) = h. The approximately uniform CP boxes are characterized by
the condition Pp(A — B) = const [5], hence for them we have Pp(A —
B) = 1/q, where q = (Z) . A necessary condition for construction of
such CP boxes is the inequality 2™ > (}') , where m is the length of the
controlling vector. However for weight 1 it is impossible to design a CP
box with pp < % While designing ciphers the VBP operations should
be combined with other operations in order to thwart linear attacks
using the LC with masks A = B = (1,...,1) (see, for example, the use
of the special nonlinear operation G in the cipher SPECTR-H64 [13]).
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4 The block cipher DDP-64

While designing the single key cryptosystem DDP-64 our strategy was
oriented to the extensive use of the controlled operations in the form
of the CP box operations. This cryptographic primitive is fast and
inexpensive while implementing in hardware. Our design criteria were
the following:

1. The cryptosystem should be an iterated 64-bit cipher.

2. The cryptalgorithm should be able to perform encryption and
decryption with simple and fast change of the sequence of the used
subkeys.

3. The cipher should be fast in the case of frequent change of keys.
For this reason we do not use precomputations.

4. Round transformation of data subblocks should be characterized
by high parallelism.

5. The cipher should use only DDP as basic cryptographic primitive
(therefore it is called DDP-64).

When designing a cipher based only on XOR and bit permutations
(fixed and data-dependent ones) one of important problems is that
combination of these operations usually gives ciphers which have the
following property: ”the parity of the plaintext + the parity of the key
= the parity of the ciphertext”. Such ciphers are not pseudorandom.
To avoid this problem we have constructed a special operational box
F that is based on fixed and data-dependent permutations. Structure
of this box provides the arbitrary change of the oddness of the out-
put. General structure of the encryption round proposed in [14] and
implemented in the cipher SPECTR-H64 suites very well to satisfy our
design criteria, therefore we have used SPECTR-H64 as a prototype
when developing the pure VBP-based cipher DDP-64 having 64-bit in-
put. The general encryption scheme of DDP-64 is described by the
following formulas:

C =T (M, K) and M =TE(C K),

where M is the plaintext, C is the ciphertext (M,C € {0,1}%%), K is
the secrete key (K € {0,1}!2%), T is the transformation function, and
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S
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puiel P
96 32/96

Figure 3. General structure of DDP-64 (a) and procedure Crypt(® (b)

e € {0,1} is a parameter defining encryption (e = 0) or decryption
(e = 1) mode. The secrete key is considered as concatenation of four
32-bit subkeys K;, 1 =1,2,3,4: K = (K, Ky, K3, K4,). DDP-64 uses
no preprocessing to transform subkeys. Iterative structure of DDP-64
is shown in Fig. 3a and can be described as follows. First data block X
is divided into two 32-bit subblocks L and R and initial transformation
is performed as XORing subblocks with corresponding subkeys. Then
10 rounds with procedure Crypt(e) followed by final transformation
are performed. The structure of the procedure Crypt(e) is shown in
Fig. 3b.

4.1 Formation of the round keys

Each round key Q; = (Q;I),Q?),Q?),Q;@) € {0,1}3 is some e-
dependent transposition of the subkeys K, Ko, K3, K4. Figure 4 and

Table 1 specify round subkeys and their correspondence to the secret

97



N.A. Moldovyan, A.A. Moldovyan, N.D. Goots

key. Subkeys K; (i = 1,...,4) are used directly in each round avoiding
any processing them. The transposing subkeys K, Ko, K3, K, is per-
formed with two boxes PQ(??,Q e The box PQ(??,Q /1 is some single-layer
CPB in which all elementary switching elements are controlled with

the same bit e. The pairs (K7, K3) and (Ks, K) are inputs of the

corresponding boxes PQ(EX)32 e Four 32-bit outputs of two boxes P2(f<)32 /1
are the e-dependent subkeys O; (i = 1,2,3,4). Thus, we have O; =K,
if e = 0, and 01=K3, 02=K4, 03=K1, O4=K2, if e = 1. Be-
ing free of any precomputing subkeys and using the same algorithm to
perform encryption and decryption the cipher DDP-64 suites well to
cheap hardware implementation.

The left data subblock combined with subkeys @\ and Q| is
used to form the controlling vectors V and V' which specify the cur-
rent modifications of the VBP performed on the right data subblock

with boxes P35/96 and P:)T;/%, respectively. The left data subblock com-

bined with subkeys Q§2) and Q§4) is also transformed with two F-boxes
implementing special variant of VBP.

4.2 Switchable fixed permutations

Change of the ciphering mode is defined by swapping subkeys K; with
two single-layer boxes P2(f<)32 /I (see Fig. 4a) and by switching the e'-
dependent fixed permutation I1(¢), where ¢’ € {0,1} and ¢’ depends
on e and on the round number j. The e’-dependent fixed permutation
in the left branch of the cryptoscheme is used to prevent homogeneity
of the encryption procedure in the case of the key having structure
K = (X, X, X, X). For this reason the schedule of the switching bit €’ is
non-periodic (see Table 1). The structure of the switchable operations
T1(¢) is shown in Fig. 4b. Tt is easy to see that we have (0 = TI,
I =107, and IE®Y(Y) = X, if Y = II(¢)(X). The permutation
IT is specified as follows:

(1,4,7,2,5,8,3,6)(9,12,15,10,13,16,11,14)
(17,20,23,18,21,24,19,22)(25,28,31,26,29,32,27,30).
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Table 1. Specification of the round subkeys and switching bit €
j = 1 2 3 4 5 6 7 8 9 |10
QY= loslo|o]os]os|os]oi]oi|0:] 04
QP = o] 05| 0|0 0. |00 |0 05|04
Q()

)

W= 10,04 05]0,]0 01| 0, |05] 04| 0
QY= lo]o|oi|os|oi|oi|os|0i| 0|0
eO=11]o0o[1]1]0 1 1]0]1
eje=1= 1]o]Jo]oO 001

I X |

' 1 3 2 4 R S

a) 32 |3 2 3 b) i I T

ie A 4 y — e i M " i

Lefep \ e { ----- ! |

bl JELE e | —Y— !

32 324 \ / £ 32 320 . : '..‘:',\.','::‘ 1
v v v v : """"" :
0, O3 o 0, Oy (e,)/'/---- —————— .
| P2x32/1 EP2x32/1 vY :

Figure 4. Swapping subkeys (a) and structure of the switchable fixed
permutation (b)

4.3 Variable permutations

Variable permutations are performed with the CP boxes of the second

(V) v\t ;
order Py, o5 and (P32/96) (see section 2) and F-boxes. The F-boxes
represent special type of VBP. Construction of the F-boxes provides
arbitrary change of the output vector weight. Indeed, depending on L,
Q§2), and Q§4) eight of 32 input bits are replaced by bits of the constant
C = (10101010) while performing the operation F. Structure of the
F-box is presented in Fig. 5. The F-box comprises two three-layer CP
boxes P3,/,5 and P;;/ 4 Separated with fixed permutation II" which is
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described as follows:

(1,33)(2,9)(3,17)(4,25)(5)(6,13)(7,21)(8,34,29,40)(10,35)(11,18)
(12,26)(14)(15,36,22,38)(16,30)(19,37)(20,27)(23) (24,31)(28,39)(32).

The 80-bit controlling vector W = (Wy, Wy, W3, W4, W5), where
W; € {0,116, of the F-box is divided into 48-bit controlling vector
(W1, W2, W3) of the CP box Py 4s and 32-bit part (Wy, W) of the
controlling vector (Ws, Wy, W5) of the P;QI/ 15-Pox. The 16-bit vector
W is formed with the extension box ”Ext” (Fig. 5a) using eight of the
most significant bits of the output H = (Hy, Hy, H3, Hy, H5), where
H; € {0,1}8, of the permutation II': Ws = (Hj,Hs). The 80-bit
controlling vector W is formed with the extension box E’ input of
which is the vector Z’. Relation between Z' and W is the following:
W, = le’ Wy = le>>>5’ Wy = le>>>10’ W,y = lel’ W5 = Zilz>>>5‘

! 2
| i:
| ' 8 !
| W 8"Z1 8"22 "Z3 8"24 |
g Poio|  |Psia| |Psiz| |Psiz i |
| ’ a) | \3ID, 84D, siD, 51D,
i (D]7D25D37D4»C)/v40 ) i b) : _____ 1______‘{__2 ___IV_D_:i____‘__j_:
| Fixed permutation [1 i 32 iD = (D,,Dy,D3,Dy)
i AAAAAAAAA ' ‘: _1
S Xy (H,HyH H Hy)  Prus ) i(Hlsz»HsaHO
¥ 0t 3 3 . AR
f l 3 T H ! ' 8{H, 8 A
i IV o Sy 83Hy S EH.
o F oo LW Wy S T g i
1 80 - | Passeni 3 Wﬁv: Pyio|  [Psnz]| [Pona| [Piio]
Y I 16 e sty sty skr sy,
.......... 3 Wt

Figure 5. Structure of the F-box (a) and of the CP boxes P, /45 and
~1
P3s/as (b)
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The vectors Wi, Wy, and W3 control the 1st, 2nd, and 3d ac-
tive layers of the P3,/45-box and the vectors Wy, W5, and Ws control
the 1st, 2nd, and 3d active layers of the P?:Ql/ 15~box, correspondingly.
The vector D that is the output of P35/5 is concatenated with con-
stant C forming the vector (D;, D9, D3, Dy, C) at input of the fixed
permutation II'. At output of II' the vector (Hy, Ho, H3, Hy, Hs),
where H5 = (dl, dg, d107 d15, dlg, d22, dgg, dgg), is formed. Taklng nto
account the structure of the P3;/43-box one can see that superposi-
tion Pgy/g9011" moves arbitrary two bits of each byte Z; of the vector
Z =(4y,Zy,Z3, Zy) to Hs with the same probability. Arbitrary single
bit of each byte Z; moves to Hs with probability 272. Thus, the vector
Hj is composed of eight bits of Z = L & Q§4) which are replaced by 8
bits of C' at the output of the F-box. Depending on W different bits of
Z are replaced, therefore the oddness of the output vector of the F-box
changes arbitrarily.

4.4 Permutational involutions

Rotation operation ”>3> 16" performed on the left data subblock
is used as permutational involution saving the ”symmetric” use of
the most significant (Lj) and least significant (L;) halfs of L while
performing two F-box operations. The fixed permutation 11(¢) has
been selected to provide condition (II(¢)(L))>>16 = I1(¢)(L>>16) for
¢’ € {0,1} which is necessary for correct decryption. Permutational in-
volution I in the right branch provides each bit at the input of the box

P33/96 influences 31 bits at the output of the box P?:Zl/% even in the case

V = V' (without I in the case V = V' each input bit of P3;/g¢ influ-

g;/%). The involution I is described with

two rotations by eight bits: Y = I(X1,Xy) = (X778, X578), where
X1, X € {0,1}!6. This permutation improves the resultant VBP cor-

responding to subsequently performed operations P3y/96 and P?:Ql/%.

: vy tion V) (vt
Indeed, even in the case V =V the superposition P32/%o I O(P32/96)
forms an effective CP box permutation all modifications of which are

different permutational involutions. In general case we have V # V’,

ences only one output bit of P
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since the data are combined with different subkeys while forming the
controlling vectors corresponding to the operations Pgy /96 and P?,_Q}%.
Investigating the role of the fixed permutation between two mutually
inverse CP box operations we have performed many statistic experi-
ments which have shown that the use of such permutation significantly
improves the properties of the transformation performed with two mu-

tually inverse CP boxes.

4.5 Formation of the controlling vectors V' and V'’

Controlling vectors corresponding to the boxes P3s/96 and P;Q}% are
formed using the same extension box E implemented with simple con-
nections. The inputs of the E-boxes corresponding to the boxes P33 /g6
and P§21/96 are LV = L @ le) and L'®) = (L'>>19) @ Q§-3) (see

. ’ >>16 . .
Fig. 3b), where L' = (H(e )(L)) , respectively. Let the 96-bit vec-

tors V = (Vl, ‘/2, Vg, Vv4, V5, Vﬁ) and VI = (Vll, VvQI, Vg’, VZ, V5’, Vg) be the
outputs of the respective E-boxes. The extension box provides the
following relations:

Vi = Lgl)7 Vo = (Lgl))>>>67 Vs = (Lgl))>>>12,V4 _ Lgll)7
Vs = (LELI))>>>6, Ve = (Lg))>>>12,

V) = Ll(?’)a V) = (L§3))>>>6, V! = (Ll(3))>>>12,V4' _ L;f’),
Vi = (1—123))>>>67 V] = (LS’))»NQ-

The extension box provides each bit of L influences three elementary
boxes Py in the CP box P39 /96 and three Py i-boxes in P?TQI/%,. While
designing the box E we have used the following criterion: For all values
of the controlling vector the permutation of each input bit of CPB must
be defined by six different bits of L. Due to realization of this criterion
each bit of L influences exactly six bits of R while performing the CPB
operation. It is easy to see that such distribution of the controlling bits
provides that arbitrary input bit of the boxes P33 /96 and P?’E}%,
to each output position with the same probability if L is a uniformly
distributed random variable.

moves
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5 Discussion

Cipher DDP-64 presents an example of the pure VBP-based ciphers.
The CP are extensively used in three different ways: (1) as VBP that
are the basic cryptographic primitive, (2) as e-dependent swapping
subkeys to change ciphering mode, and (3) in the switching permuta-
tion I1¢). Analogously to the VBP-based cipher SPECTR-H64 [13]
the cryptosystem DDP-64 is fast in the case of frequent change of keys,
since it is free of the key preprocessing. Avalanche effect spreads mostly
when the changed bits are used as controlling ones, but not when they
are transformed with the CP box operations (some avalanche connected
with F-boxes is defined by the use of eight input bits as an internal con-
trolling vector denoted earlier as Ws). In comparison with SPECTR-
H64 the cipher DDP-64 has the following features:

1. It uses all secrete key in each round.

2. The DDP-64 is free of any additional nonlinear primirives (for
example, the operation G in SPECTR-H64 ) and uses two F-boxes
executed in parallel with the CP box operation P3j/96. Each of two
F-boxes is a special CP box generating at output the binary vector
with arbitrary weight.

3. Round transformation includes special permutational involutions
performed on the left and right data subblock and a switchable fixed
permutation.

5.1 Some properties of VBP

For operations F, P33 /g6, and P?;}% it is quite easy to calculate differ-
ential characteristics (DC) corresponding to differences with few num-
ber of active bits. Let A,L[ be the difference with arbitrary h active
(non-zero) bits corresponding to some vector U. Let Apjiy,...in, be the
difference with active bits corresponding to digits i1, ...,5.
Avalanche effect corresponding to the operations Py, /96, and P?;}%
is caused by the use of the data subblock L to define the values V' and
V'. Each bit of the left data subblock influences three bits of each of

these controlling vectors. Each controlling bit influences two bits of
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the right data subblock. Thus, due to VBP performed on the right
data subblock R with boxes Py /96, and P3_2}96 one bit of L influences
statistically about 12 bits of R. In the case when some difference with
one active bit A{“ ; asses the left branch of the cryptoscheme it influ-
ences three elementary switching elements permuting six different bits
of the right data subblock. For example, if the input difference of the
CP box P3y/96 has no active bits (the case of zero difference), then the
difference AlL/Z. can cause the generation at output of the Py /96—b0X the
following differences: (1) Aj with probability 273; (2) Al with proba-
bility 3 - 273; (3) A/, with probability 3 -273; (4) A} with probability
273, (Some other DC of the boxes Py /96 are presented in [15].)
Avalanche effect corresponding to the operations F relates to the
use of the left data subblock to specify controlling vectors W and W'.
Besides, avalanche spreads due to dependence of the output of ”Ext”-
box on L. Let consider the vector L = (L;, Ly) before the operation ” >
>> 16”. Each bit I;, where 1 <1 < 16, of L; influences three elementary
boxes Py /1 of the Psy/43-box in the lower F-box and two boxes Py/; of
the P:)E}48—box in the upper F-box. Besides, with probability 272 (this
probability corresponds to the event that [; is moved to Hs) the bit
l; influences two boxes Py/; of the P3_2} 45-Pox in the upper F-box and

with the same probability /; influences two boxes Py, of the P3_2} 1g~POx

in the lower F-box. Analogous properties have all bits of Ly, since after
the operation 7> 16” we have (L;, L)' = (L, L;).

5.2 Security estimation

We have considered different types of attacks against DDP-64. Our re-
sults show that the differential cryptanalysis (DCA) is the most power-
ful attack. The iterative two-round DCs with differences (AL, Af?) and
(AL, AR) have the highest probability: P(2) ~ P = 1.37-2717. The
difference (AL, Af) passes eight and ten rounds of DDP-64 with proba-
bilities P(8) = P*(2) =~ 1.79-2757 and P(10) = P5(2) ~ 1.23-27%. For
some random cipher we have P ((AlL, Al — (Af, AOR)’) =2764.25 =
275 > P(8) > P(10). Thus, DDP-64 with eight and ten rounds is
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undistinguishable from random cipher with differential attack using
the most efficient two-round iterative characteristic.

Linear cryptanalysis (LCA) seems to be less efficient to attack DDP-
64 as compared with DCA. Let denote the input mask as A = (A%, Af)
and the output mask as B = (B%, B®). Linear attacks using masks A =
B = (1,1,...,1) are prevented because of the use of two operations F
changing arbitrary the oddness of their output. Using results of section
3 it is easy to find that the bias (deviation) of the linear characteristics
(LC) with z < 31 active bits has value b < 275 for each of the boxes
P35/965 P§21/96, and F, the maximal value corresponding to z = 1. Our

linear analysis of DDP-64 has shown that among masks AL, A% BL,
and B% corresponding to individual subblocks and having weight less
than 31 the masks with weight 1 have the maximal bias.

Analogously to consideration of the LC of the CP boxes, the LCA
of the DDP-64 can be performed investigating the movement of the
active bits through one or several encryption rounds. For LC with in-
put mask A = (Aﬁi,Aﬁj) and output mask B = (Bﬁi,,Bﬁg), where
indices indicate that we consider 32-bit masks with one active bit cor-
responding to ith and i'th (jth and gth) digits in the left (right) data
subblocks at input and output respectively. It is easy to show that for
arbitrary digits 4, j, and g (digit i’ is defined by digit 7) the bias b(1) of
the one-round iterative LC (A, B, b(1)) is b(1) = 0.56 - 2716, The last
value is derived from the probability p = 0.56 - 271° that the jth bit
of R is XORed two times with ith bit of L and then is moved to the
gth digit at the output of the operation P?TQI/%. For r-round LC (A4, B,
b(r)) one can obtain b(r) < 277!, For the random cipher LCs have
bias b =~ 2732 > b(r) > 271 > b(3), therefore we can conclude that
three-round DDP-64 is secure against LCA.

In spite of the simplicity of the key schedule the ”symmetric” keys
K' =(X,Y,Y,X) and K" = (X, X, X, X) are not weak or semi-weak,
since decryption requires switching the fixed permutation in the left
branch of the cryptoscheme of DDP-64 (from Fig. 3 it is easy to see
that T(=9(C,K") # M, where C = T=0(M, K")). Tt seems to
be difficult to calculate a semi-weak key-pair for DDP-64, if it is still
possible. Slide attacks in the case of ”symmetric” keys are also ineffi-

105



N.A. Moldovyan, A.A. Moldovyan, N.D. Goots

cient, since the encryption with DDP-64 is free of homogeneity (in the
sense of [16]) due to the non-periodic schedule of the switching bit ¢’
specifying the fixed permutation 11(¢) performed on the left data sub-
block. This shows that the switchable operations can play sufficiently
important role in the block ciphers which are free of the key prepro-
cessing. For comparison one can remark that SPECTR-H64 which
uses no switchable operations has weak keys (for all X its 256-bit key
K = (X,X,...,X) is a weak one) and in the case of the weak key it
seems vulnarable to slide attack.

Use of some strong key scheduling is a standard way to prevent weak
keys and homogeneity in DDP-64, however this significantly encreases
the hardware implementation cost.

5.3 Conclusion

Theoretic analysis of LC of the VBP operations conserving the weight
of the transformed vector has shown that the principal problem in the
design of VBP-based ciphers is to prevent LCA using masks A = B =
(1,1,...,1). Examples of such attacks are proposed in [17,18]. In the
known VBP-based ciphers SPECTR-H64 [13], SPECTR-128 [19], and
Cobra-H64 [15] additional non-linear operations are used to thwart such
variants of LCA. When developing a pure VBP-based cipher we have
proposed a new type of the VBP operations (F-box operations) the
use of which allows one to solve the mentioned problem without using
additional non-linear operations.

The F-box operations have been used to design the cipher DDP-64.
Presented analysis of DDP-64 illustrates efficiency of the use of VBP in
the design of the block ciphers. The VBP thwarts well differential, lin-
ear, and other attacks allowing one to use comparatively small number
of the encryption rounds. The efficiency of hardware implementation
of the VBP-based ciphers is defined by the following factors: (1) VBP
are efficient as cryptographic primitive, (2) property of the controlla-
bility of this primitive allows designing new advanced cryptoschemes,
(3) VBP are fast and cheap in hardware [20]. Design of DDP-64 can
be characterized as a design at bit level that defines low hardware im-
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plementation cost and high performance including the case of frequent
change of keys.

Structure of DDP-64 suites well for detailed estimating DCs and
LGCs corresponding to differences and masks with few active bits. To
attack DDP-64 the DCA is significantly more efficient than LCA. The
DCA defines the minimum number of rounds for secure encryption with
DDP-64.

We have also shown that in the case of the simple key scheduling
the weak keys and homogeneity of the encryption can be prevented
using switchable operations. Development of the simple and efficient
switchable (e-dependent) operations is a new interesting item in the
design of the ciphers that are free of precomputing the round keys.
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The increasing interest for bioinformatics is not astonishing, because this
discipline might potentially explain the functioning of some natural processes.
One of relations between biology and computer science is the application of
methods of computer science in biology. But we can investigate another rela-
tion trying to apply biological methods to solve computer science problems.
This affirmation is based on the fact that a lot of biological processes, in
particular DNA manipulations, may be viewed as information transforma-
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tions. The study of biologically inspired systems is very exciting and can
bring colossal gains.

From one hand, the theory of formal languages is grounded on rewriting
operations. From the other hand, the nature uses different operations like copy
and paste as well as different data structures. This is why it is very important
to reconstruct old computational paradigms in this new framework.

The thesis is devoted to studying of H systems and their extensions.

H splicing systems were introduced by Thomas Head as a new language
generating device. This abstract notion is good motivated biologically.

We counsidered two possible definitions of the splicing: 1-splicing and 2-
splicing, and we studied for the first time the relation between classes of
languages based on 1-splicing and on 2-splicing. We showed that one family
is strictly included into another. We also found several non-trivial examples of
splicing languages, and of regular languages that cannot be splicing languages.

We cousidered time-varying distributed H systems (or TVDH systems)
that were introduced by Gh. Paun in 1998. Initially it was showed that 7
components are enough in order to generate all recursively enumerable lan-
guages. M. Margenstern and Yu. Rogozhin showed that TVDH systems with
2 components are able to do universal computations and that 2 components
are enough to generate all recursively enumerable languages. The same au-
thors showed that TVDH systems with one component are universal and that
it is possible to generate all recursively enumerable languages with only one
component in a sequential way.

We studied an extension of TVDH systems: enhanced time-varying dis-
tributed H systems, or ETVDH systems, which were introduced by M. Mar-
genstern and Yu. Rogozhin in 2000. This model is a small modification of
TVDH systems but it introduces more parallelism. Now one component is
not enough in order to obtain a big computational power and, in this case,
the generated language is limited by the family of regular languages. But two
components are sufficient to generate all recursively enumerable languages.
We studied the same problem in the parallel context and found solutions, at
first with 4 components, after that with 3 components, and, finally, with 2
components that is a minimum.

We considered another extension of H systems which is inspired simulta-
neously by H systems and distributed grammars: test tube systems (or TT
systems), introduced by E. Csuhaj-Varju, L. Kari and G. Paun. The computa-
tion in such system comnsists of two iteratively repeated steps: a computation
step and a communication step. The number of tubes necessary to obtain
the computational power of a Turing machine was established to two, while
systems having one tube can generate only regular languages.
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We proposed two variants of these systems: test tube systems with alter-
nating filters and modified test tube systems. These variants differ from the
original definition by the communication protocol. We showed that in the
first variant two tubes are enough in order to produce all recursively enumer-
able languages. Moreover, it is possible to formulate rules in such a way that
the second tube will be used as a garbage collector only having no associated
rules. Therefore the universality is obtained with “one tube and a half”! This
result shows also that H systems are already powerful enough and we can go
from the regularity to the universality after small modifications.

For most of the systems we showed their equivalence with a formal gram-
mar or a Turing machine. We analyzed previous proofs in the area of splicing
systems and developed a new method, the method of directing molecules,
which permits to decrease surprisingly the complexity of corresponding sys-
tems. We applied this method to TVDH systems, ETVDH systems, test
tube systems with alternating filters, modified test tube systems and splicing
membrane systems. In all these cases the new method permitted to simplify
considerably the proofs.

We studied membrane systems, or P systems, which are a model of com-
puting inspired by the structure and the functioning of a living cell. It was
introduced in 1998 by Gh. Paun. We considered several models of comput-
ing issued from the combination of these systems and the splicing operation.
We showed the structural aspect introduced by the presence of membranes
combined with the splicing operation, which gives big computational power
to systems.

We showed that the original definition of splicing P systems is not com-
plete, and we proposed several variants in order to improve this lack.

We considered other variants of splicing P systems, non-extended splicing
P systems and splicing P systems with immediate communication, and we
showed how it is possible to decrease the number of membranes. We pre-
sented a final solution, as we showed a frontier between the decidability and
undecidability for these systems.

We counsidered a variant of membrane systems where rules are assigned
to membranes. We considered two types of rules: splicing rules and cut-
ting/recombination rules. We showed that one membrane is sufficient in order
to generate all recursively enumerable languages.

The thesis was written in French and English. See additional details at
http://lita.sciences.univ-metz.fr/"verlan/.
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