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Convex graph covers

Radu Buzatu, Sergiu Cataranciuc

Abstract

We study some properties of minimum convex covers and min-
imum convex partitions of simple graphs. We establish existence
of graphs with fixed number of minimum convex covers and mini-
mum convex partitions. It is known that convex p-cover problem
is NP-complete for p ≥ 3 [5]. We prove that this problem is NP-
complete in the case p = 2. Also, we study covers and partitions
of graphs when respective sets are nontrivial convex.

Keywords: Convexity, graphs, convex covers, convex parti-
tions.

1 Introduction

We denote by G = (X; U) a simple graph with vertex set X and edge
set U . The set of all vertices adjacent to x ∈ X in G is denoted by
Γ(x).

Now we remind some notions defined in [1]: a) metric segment
〈x, y〉 is the set of all vertices lying on a shortest path between vertices
x, y ∈ X; b) a set S ⊆ X is called convex if 〈x, y〉 ⊆ S for all x, y ∈ S;
c) convex hull of S ⊆ X, denoted d − conv(S), is the smallest convex
set containing S.

A family of sets is called convex cover of G = (X; U) and is denoted
by P(G) if the following conditions hold:

1) every set of P(G) is convex in G;
2) X =

⋃
Y ∈P(G) Y ;

3) Y 6⊆
⋃
Z∈P(G)
Z 6=Y

Z for every Y ∈ P(G).
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If |P(G)| = p, then this family is called convex p-cover of G and is
denoted by Pp(G). The concept of convex p-cover of a graph was
defined in [5]. In particular, a family P(G) is called convex partition
of graph G if it is a convex cover of G and any two sets of P(G) are
disjoint. A convex p-cover is called convex p-partition if it is a convex
partition of a graph. Clearly, every graph G has convex 1-cover and
convex n-cover. By Claude Berge [3], a set S ⊆ X is a clique if every
pair of vertices of S is adjacent in G. If Pp(G) is a convex p-partition
and all the sets of Pp(G) are cliques, then Pp(G) is called clique p-
partition of graph G.

Definition 1. A convex cover P(G) of graph G = (X; U) is called
nontrivial convex cover if every set Y ∈ P(G) satisfies the inequalities:
3 ≤ |Y | ≤ |X| − 1. Consequently the elements of P(G) are called
nontrivial convex sets.

Likewise, if a nontrivial convex cover P(G) is a convex partition,
we say that P(G) is a nontrivial convex partition.

Definition 2. [5] Convex cover number ϕc(G) of a graph G is the
least integer p ≥ 2 for which G has a convex p-cover. Similarly, convex
partition number θc(G) of a graph G is the least integer p ≥ 2 for which
G has a convex p-partition.

Further, the least integer p ≥ 2 for which graph G has a nontrivial
convex p-cover is said to be nontrivial convex cover number ϕcn(G).
In the same way, the least integer p ≥ 2 for which graph G has a
nontrivial convex p-partition is said to be nontrivial convex partition
number θcn(G).

Indeed, there are graphs for which there are no nontrivial convex
p-covers or nontrivial convex p-partitions or both. For example, every
convex simple graph has no nontrivial convex covers. A graph G is
called convex simple if it does not contain nontrivial convex set [2].

Let us introduce the following notions.

Minimum convex cover Pϕc(G) is the convex p-cover of graph G
such that p = ϕc(G);
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Minimum convex partition Pθc(G) is the convex p-partition of
graph G such that p = θc(G);

Minimum nontrivial convex cover Pϕcn(G) is the nontrivial convex
p-cover of graph G such that p = ϕcn(G);

Minimum nontrivial convex partition Pθcn(G) is the nontrivial con-
vex p-partition of graph G such that p = θcn(G).

It is obvious that for any graph G we have ϕc(G) ≤ θc(X).
As above, if Pϕcn(G) and Pθcn(G) exist, then ϕcn(G) ≤ θcn(G).
If Pϕcn(G) exists, then ϕc(G) ≤ ϕcn(G). If Pθcn(G) exists, then
θc(G) ≤ θcn(G).

Also, we introduce the following concept.

Definition 3. A vertex x ∈ X is called resident in P(G) if x belongs
to only one set of P(G).

By definition, every set ofP(G) contains at least one resident vertex
in P(G). If P(G) is a convex partition of G, then all vertices of every
set of P(G) are resident in P(G).

This paper is organized as follows. In Section 2 we describe some
properties of minimum convex graph covers. In Section 3 we establish
conditions for existence of graph G with given numbers ϕc(G), θc(G)
and ϕcn(G), θcn(G). In Section 4 we prove that it is NP-complete to
decide if a graph has a convex 2-cover. Deciding if a graph has convex
2-cover was declared an open problem in [5]. In addition, we prove that
it is NP-complete to decide if a graph has nontrivial convex p-cover or
nontrivial convex p-partition for p ≥ 2.

2 Properties of minimum convex graph covers

Let Pϕc(G) be the minimum convex cover of a simple connected graph
G.

Theorem 1. If ϕc(G) ≥ 3, then for every two sets A,B ∈ Pϕc(G),
A 6= B, there exists C ∈ Pϕc(G)\{A,B} such that there exist a ∈ A,
b ∈ B, c ∈ C\(A ∪B), where c ∈ 〈a, b〉.
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Proof. Assume the converse. Suppose there exist sets A,B ∈
Pϕc(G), A 6= B, such that for all vertices a ∈ A, b ∈ B, we have
〈a, b〉 ⊆ A ∪ B. Thus, since d − conv(A ∪ B) = A ∪ B, we get the
reduced convex cover number ϕc(G). As ϕc(G) is the least integer for
which graph G has a convex p-cover, a contradiction follows. �

Theorem 2. If ϕc(G) ≥ 3, then for each set A ∈ Pϕc(G), there exist
B,C ∈ Pϕc(G)\{A}, B 6= C, such that there exist a ∈ A\(B ∪ C),
b ∈ B, c ∈ C, where a ∈ 〈b, c〉.

Proof. Assume the converse. Suppose there exists a set A ∈ Pϕc(G)
such that for every two sets B,C ∈ Pϕc(G)\{A}, B 6= C, we have
A ∩ (〈b, c〉\(B ∪ C)) = ∅ for all vertices b ∈ B, c ∈ C. This yields that

d− conv(
⋃

S∈Pϕc (G)\{A}

S) =
⋃

S∈Pϕc (G)\{A}

S.

We obtain the convex 2-cover

P2(G) = Pϕc(G) = {
⋃

S∈Pϕc (G)\{A}

S,A}.

Finally, ϕc(G) = 2. This contradicts the condition of the theorem that
ϕc(G) ≥ 3. �

Considering nontrivial convex cover as a particular case of convex
cover, Theorems 1 and 2 have two consequences.

Corollary 1. If ϕcn(G) ≥ 3, then for every two sets A,B ∈ Pϕcn(G),
A 6= B, there exists C ∈ Pϕcn(G)\{A,B} such that there exist a ∈ A,
b ∈ B, c ∈ C\(A ∪B), where c ∈ 〈a, b〉.

Corollary 2. If ϕcn(G) ≥ 3, then for each set A ∈ Pϕcn(G), there exist
B,C ∈ Pϕcn(G)\{A}, B 6= C, such that there exist a ∈ A\(B ∪ C),
b ∈ B, c ∈ C, where a ∈ 〈b, c〉.

Let α(G) be the vertex independence number of a graph G [3]. Next
theorem is true.
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Theorem 3. Let G = (X; U) be a simple connected graph and let S
be a family of subsets of X with properties:

a) |S| ≥ 2;

b) each Y ∈ S is a clique;

c) X\
⋃
Y ∈S Y is not a clique;

d) Y ∩ Z = ∅ for all Y, Z ∈ S;

e) for each set Y ∈ S, the equality Γ(y) = (Y \{y}) ∪ (X\
⋃
Z∈S Z)

is satisfied for every vertex y ∈ Y .

Then the following conditions hold:

a) ϕc(G) ≥ α(G), θc(G) ≥ α(G);

b) if Pϕcn(G) exists, then ϕcn(G) ≥ α(G);

c) if Pθcn(G) exists, then θcn(G) ≥ α(G);

d) every convex set of G is a clique.

Proof. Consider two nonadjacent vertices a, b of X\
⋃
Y ∈S Y and

two vertices y, z such that y ∈ Y , z ∈ Z, where Y,Z ∈ S, Y 6= Z. Note
that y, z are by definition nonadjacent.

From property e), it follows that
⋃
Y ∈S Y ⊆ 〈a, b〉 andX\

⋃
Y ∈S Y ⊆

〈y, z〉. Further, X\
⋃
Y ∈S Y ⊆ d − conv(

⋃
Y ∈S Y ) and

⋃
Y ∈S Y ⊆

d − conv(X\
⋃
Y ∈S Y ). Furthermore, we have d − conv(

⋃
Y ∈S Y ) =

d − conv(X\
⋃
Y ∈S Y ) = X. Thus, there is no convex set containing

vertices a, b or y, z. This means that every convex set is a clique.

Let M ⊆ X be the maximum independent set of G. In addition,
from property e) it follows that M ⊆ X\

⋃
Y ∈S Y , or M ⊆

⋃
Y ∈S Y

such that every element of M belongs to exactly one set of S. By the
above, every convex cover of graph G has at least |M | = α(G) sets.
This implies the inequalities:

ϕc(G) ≥ α(G), θc(G) ≥ α(G).

Moreover, if Pϕcn(G) exists, then ϕcn(G) ≥ α(G). Also, if Pθcn(G)
exists, then θcn(G) ≥ α(G). �
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3 Existence of graphs with minimum convex
covers

In this section several theorems regarding existence of simple connected
graphs with fixed number of minimum convex covers and minimum
convex partitions are proved.

For all n ∈ N , n ≥ 2, there exists a graph on n vertices, which has
a convex 2-cover or a convex 2-partition or both. For example, chain
graph on n ≥ 2 vertices has a convex 2-cover and a convex 2-partition.
In addition, for every graph that has a nontrivial convex 2-cover the
inequality n ≥ 4 holds, because every set belonging to a convex 2-cover
is nontrivial and has at least one resident vertex. On the other hand,
for every graph that has a nontrivial convex 2-partition the inequality
n ≥ 6 is satisfied, because its sets are nontrivial and disjoint.

It is clear that for every graph G on n vertices, where n = 2 or
n = 3, we have ϕc(G) = θc(G) = 2.

First, we prove theorems regarding existence of graphs with fixed
numbers ϕc(G) and θc(G).

Theorem 4. If G is a simple connected graph on n ≥ 4 vertices, then
ϕc(G) ≤ n− 2.

Proof. We distinguish two possible cases.
1) Let G be a graph that is not a convex simple graph. Suppose

G has a nontrivial convex set S. Then, since |S| ≥ 3, we obtain a
convex p-cover of G such that p = n − |S| + 1. This convex p-cover
consists of the set S and n − |S| singletons (sets consisting of exactly
one vertex). Substituting |S| = n+ 1− p in |S| ≥ 3, we get p ≤ n− 2.
So, ϕc(G) ≤ n− 2.

2) Let G be a convex simple graph.
If n = 4, then G is a cycle. In this case, G has a convex 2-cover

such that both convex sets consist of two adjacent vertices of G.
If n ≥ 5, then graph G contains vertices x, y, such that Γ(x) = Γ(y)

and |Γ(x)| ≥ 3 [2]. We choose two vertices u, v of Γ(x). It is clear that
u and v are nonadjacent, otherwise G is not a convex simple graph,
because {x, u, v} is a triangle, which is a nontrivial convex set. We get

256



Convex graph covers

xp x1x2

y2 y1
…

z1

z2

zn-p-2……

Figure 1. Graph G on n vertices such that 3 ≤ p ≤ n − 2, θc(G) =
ϕc(G) = p

a convex cover of G that consists of p = n− 2 sets: {x, v}, {y, u} and
p− 4 singletons.

By definition of ϕc(G), we have ϕc(G) ≤ n− 2. �

Corollary 3. If G is a simple connected graph on n ≥ 4 vertices, then
θc(G) ≤ n− 2.

Theorem 5. For any p, n ∈ N , 2 ≤ p ≤ n − 2, there exists a simple
connected graph G on n vertices such that ϕc(G) = p.

Proof. If p = 2, then take a chain graph G on n vertices for which
ϕc(G) = 2.

If p ≥ 3, we construct a graph G = (X; U) as follows:

Step 1. let X1 = {x1, x2, . . . , xp}, where any two vertices of X1 are
nonadjacent, i.e., X1 is an independent set;

Step 2. if p < n − 2, then define X2 = X1 ∪ Z, where Z =
{z1, z2, . . . , zn−p−2} such that Z ∪ {x1} is a clique. Otherwise,
X2 = X1 and Z = ∅;

Step 3. X = X2 ∪ {y1, y2}, where Γ(y1) = Γ(y2) = X2.

The resulted graph G is represented in Figure 1.

It is easy to verify that |X| = n.

Since X1 is a maximum independent set in G, the independence
number of this graph is α(G) = |X1| = p. The family {{y1}, {y2}}
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satisfies the conditions of Theorem 3 in G. Thus, ϕc(G) ≥ p and every
convex set of G is a clique.

It remains to show that there exists a convex p-cover of graph G.

Graph G has the convex p-cover Pp(G) that consists of cliques
{x1, y1} ∪ Z, {x2, y2}, {x3}, {x4},. . ., {xp}.

So, since Pp(G) is the convex p-cover of obtained graph G and
ϕc(G) ≥ p, it follows that Pp(G) is the minimum convex cover of G
and ϕc(G) = p. �

Corollary 4. For any p, n ∈ N , 2 ≤ p ≤ n − 2, there exists a simple
connected graph G on n vertices such that θc(G) = p.

Further, a few theorems regarding existence of graphs with fixed
numbers ϕcn(G) and θcn(G) are proposed.

Theorem 6. For any p, n ∈ N , 2 ≤ p ≤ bn3 c, there exists a simple
connected graph G on n vertices such that θcn(G) = p.

Proof. We construct a graph G = (X; U) as follows:

Step 1. let X1 = {x1,1, x1,2, x2,1, x2,2, . . . , xp,1, xp,2}, where xi,1 ∼ xi,2
for 1 ≤ i ≤ p;

Step 2. if 3p < n, then define X2 = X1 ∪ Z, where Z = {z1, z2, . . . ,
zn−3p} such that Z ∪{x1,1, x1,2} is a clique. Otherwise, X2 = X1

and Z = ∅;
Step 3. X = X2 ∪ Y , where Y = {y1, y2, . . . , yp} such that Γ(yi) = X2

for 1 ≤ i ≤ p.

The obtained graph G is represented in Figure 2.

It is easy to verify that |X| = n.

Since Y is a maximum independent set inG, the independence num-
ber of this graph is α(G) = |Y | = p. The family {{y1}, {y2}, . . . , {yp}}
satisfies the conditions of Theorem 3 in G. Thus, θc(G) ≥ p and if
there exists Pθcn(G), then θcn(G) ≥ p. Also, every convex set of G is
a clique.

It remains to show that there exists a nontrivial convex p-partition
of graph G.
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……

x1,2 x2,2x2,1

y1 y2 yp

z1

x1,1 xp,2xp,1……

…

zn-3p

Figure 2. Graph G on n vertices such that 2 ≤ p ≤ bn3 c, θcn(G) = p

Graph G has a nontrivial convex p-partition Pp(G) that con-
sists of cliques {x1,1, x1,2, y1} ∪ Z, {x2,1, x2,2, y2}, {x3,1, x3,2, y3},. . .,
{xp,1, xp,2, yp}.

So, since Pp(G) is a nontrivial convex p-partition of obtained graph
G and θcn(G) ≥ p, it follows that Pp(G) is the minimum nontrivial
convex partition of G and θcn(G) = p. �

Let C4 be a cycle on 4 vertices.

Theorem 7. If G is a simple connected graph on 4 vertices, then
ϕcn(G) = 2 if and only if G 6= C4.

Proof. By definition of nontrivial convex cover, G has a nontrivial
convex p-cover if and only if p = 2. In Figure 3 simple connected
graphs on 4 vertices are represented. It can be easily checked that
every graph from Figure 3, except the cycle C4, has a nontrivial convex
2-cover. Now, if we recall that nontrivial convex cover number is the
least integer p ≥ 2 for which graph G has a nontrivial convex p-cover,
we get ϕcn(G) = 2 for every simple connected graph G on 4 vertices,
where G 6= C4. �

Theorem 8. If G is a simple connected graph on n ≥ 5 vertices, then
ϕcn(G) < n− 2.

Proof. There is no a nontrivial convex n-cover or a nontrivial convex
(n− 1)-cover, because every convex set of nontrivial convex cover has
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:4C

Figure 3. All simple connected graphs on 4 vertices

at least one resident vertex in this convex cover and contains at least
three vertices.

Let us prove that for every graph G the inequality ϕcn(G) < n−2 is
satisfied. The proof is by reductio ad absurdum. We can assume with-
out loss of generality that there exists a graph G = (X ,U) such that
ϕcn(G) = n − 2. It is required that n ≥ 5, consequently ϕcn(G) ≥ 3.
Let Pϕcn(G) be the minimum nontrivial convex cover of G. In this
case, every set S ∈ Pϕcn(G) satisfies equality |S| = 3 and contains
exactly one resident vertex in Pϕcn(G). Further, there are two ver-
tices x, y ∈ X, which are common for all sets of Pϕcn(G). Notice that
x ∼ y, otherwise connectivity of nontrivial convex sets of Pϕcn(G) im-
plies Γ(x) = Γ(y) = X\{x, y} and furthermore d − conv({x, y}) = X.
According to Corollaries 1 and 2, all vertices of set X\{x, y} are
nonadjacent in G. Finally, we obtain a nontrivial convex 2-cover
P2(G) = Pϕcn(G) = {{x, y, z}, X\{z}}, where z ∈ X\{x, y}. Thus,
ϕcn(G) = 2. This contradiction concludes the proof. �

Theorem 9. For any p, n ∈ N , 2 ≤ p ≤ n − 3, there exists a simple
connected graph G on n vertices such that ϕcn(G) = p.

Proof. We construct a graph G = (X; U) as follows:

Step 1. let X1 = {x1, x2, . . . , xp}, where all vertices of X1 are nonad-
jacent, i.e., X1 is an independent set;
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……xp x1x2

y2 y3
…

y1 z1

z2

zn-p-3

Figure 4. Graph G on n vertices such that 2 ≤ p ≤ n− 3, ϕcn(G) = p

Step 2. if p < n − 3, then define X2 = X1 ∪ Z, where Z =
{z1, z2, . . . , zn−p−3} such that Z ∪ {x} is a clique for all x ∈ X1.
Otherwise, X2 = X1 and Z = ∅;

Step 3. X = X2 ∪ Y , where Y = {y1, y2, y3} such that Γ(y1) = X1 ∪
{y2}, Γ(y2) = X2 ∪ {y1, y3} and Γ(y3) = X2 ∪ {y2}.

The obtained graph G is represented in Figure 4.

It is easy to verify that |X| = n.

Since X1 is a maximum independent set in G, the indepen-
dence number of this graph is α(G) = |X1| = p. The family
{{x1}, {x2}, . . . , {xp}} satisfies the conditions of Theorem 3 inG. Thus,
ϕc(G) ≥ p and if there exists Pϕcn(G), then ϕcn(G) ≥ p. Also, every
convex set of G is a clique.

It remains to show that there exists a nontrivial convex p-cover of
graph G.

Graph G has a nontrivial convex p-cover Pp(G) that consist of
cliques {x1, y2, y3} ∪ Z, {x2, y1, y2}, {x3, y1, y2}, . . ., {xp, y1, y2}.

So, since Pp(G) is a nontrivial convex p-cover of obtained graph
G and ϕcn(G) ≥ p, it follows that Pp(G) is the minimum nontrivial
convex cover of G and ϕcn(G) = p. �

4 NP-completeness

Let us examine the complexity of convex cover problems.
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Deciding whether a graph G has a convex p-cover, for p ≥ 2, is said
to be convex p-cover problem. Similarly, deciding whether a graph G
has a convex p-partition, for p ≥ 2, is said to be convex p-partition
problem. In the same way, we introduce nontrivial convex p-cover and
nontrivial convex p-partition problems, where nontrivial convex covers
and nontrivial convex partitions are considered.

It was shown in [4], [6] that the convex p-partition problem is NP-
complete for p ≥ 2. Also, we know that the convex p-cover problem is
NP-complete for p ≥ 3 [5]. Deciding if a graph has a convex 2-cover
was declared an open problem in the paper [5].

We prove that the convex 2-cover problem is NP-complete.

The complexity of this case is proved by reducing the NP-complete
1-IN-3 3 SAT problem [8] to a convex 2-cover problem.

1-IN-3 3 SAT problem:

Instance: Set V = {v1, v2, . . . , vn} of variables, collection C =
{c1, c2, . . . , cm} of clauses over V such that each clause c ∈ C has
|c| = 3 and no negative literals.

Question: Is there a truth assignment for V such that each clause
in C has exactly one true literal?

We say that C is satisfiable if there exists a truth assignment for
V such that C is satisfiable and each clause in C has exactly one true
variable.

Theorem 10. The convex 2-cover problem is NP-complete.

Proof. We mention that this problem is in NP, because verifying if
a set is convex can be done in polynomial time [7]. Further, we reduce
1-IN-3 3 SAT to the convex 2-cover problem. First, we determine the
structure of a particular graph G = (X; U) for a convex 2-cover from
a generic instance (V,C) of 1-IN-3 3 SAT. Next, we prove that C is
satisfiable if and only if G has a convex 2-cover. For this purpose,
we prove that a convex 2-cover of G defines a truth assignment that
satisfies (V,C). At the same time, we prove that a truth assignment
that satisfies (V,C) defines a convex 2-cover of G.

Let graph G be given by vertex set X and edge set U .
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The vertex set X consists of:

a) V = {v1, v2, . . . , vn}, Y = {f, y1, y2, y3, y4, y5},
Z = {t, z1, z2, z3, z4, z5};

b) F = {fj |1 ≤ j ≤ m}, T = {tj |1 ≤ j ≤ m};
c) L = {lij |1 ≤ j ≤ m, 1 ≤ i ≤ 3}, L = {lij |1 ≤ j ≤ m, 1 ≤ i ≤ 3},

Q = {qij |1 ≤ j ≤ m, 1 ≤ i ≤ 3};

We get X = V ∪ Y ∪ Z ∪ F ∪ T ∪ L ∪ Q ∪L. Every variable vi ∈ V
corresponds to vertex vi ∈ V. Every clause cj ∈ C corresponds to
eleven vertices: fj , l

1
j , l

2
j , l

3
j , l

1
j , l

2
j , l

3
j , q

1
j , q

2
j , q

3
j , tj .

The edge set U satisfies conditions:

a) V ∪Q is a clique in G;

b) Γ(f) = V ∪Q ∪ F ∪ {y3, y4} and Γ(t) = V ∪Q ∪ T ∪ {z3, z4};
c) Γ(y5) = F ∪ {y3, y4} and Γ(z5) = T ∪ {z3, z4};
d) there exist the following edges: {y1, y3}, {y1, y4}, {y2, y3},
{y2, y4}, {z1, z3}, {z1, z4}, {z2, z3}, {z2, z4};

e) every clause cj = {va, vb, vc}, 1 ≤ j ≤ m, corresponds
to eighteen edges: {l1j , va}, {l2j , vb}, {l3j , vc}, {l1j , fj}, {l2j , fj},
{l3j , fj}, {l

1
j , tj}, {l

2
j , tj}, {l

3
j , tj}, {q1j , l

1
j}, {q2j , l

2
j}, {q3j , l

3
j},

{l1j , l
2
j}, {l1j , l

3
j}, {l2j , l

1
j}, {l2j , l

3
j}, {l3j , l

1
j}, {l3j , l

2
j}.

We skip the trivial case |C| = 1 of 1-IN-3 3 SAT problem. Let us
consider |C| ≥ 2.

If G = (X; U) has a convex 2-cover, then C is satisfiable.

Let P2(G) = {Sf , St} be a convex 2-cover of G. For every i, j ∈
{1, 2} we have d− conv({yi, zj}) = X.

Let y1, y2 ∈ Sf , z1, z2 ∈ St and let S1 = {y3, y4, y5, f} ∪ F , S2 =
{z3, z4, z5, t} ∪ T .

Let us enumerate some properties:

Property 1: S1 ∩ St = ∅ and S2 ∩ Sf = ∅.

We notice what S1 ⊆ d − conv({y1, y2}), S2 ⊆ d − conv({z1, z2}).
Consequently we have S1 ⊆ Sf , S2 ⊆ St.
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y1 y3

y2 y4
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z4 z2

z5
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1
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2
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3
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1
1l

2
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3
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1
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2
2l

3
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V L

Figure 5. The convex 2-cover of the graph G for the instance (V,C) =
({v1, v2, v3, v4}, {{v1, v2, v3}, {v2, v3, v4}})

Moreover, for each u ∈ F ∪ {f}, we get d − conv({u, t} ∪ T ) ⊆
d− conv({f} ∪ F ∪ S2) ⊆ d− conv(S1 ∪ S2) ⊆ d− conv(Sf ∪ St) = X.
This implies that u 6∈ St for each u ∈ F ∪ {f}. Similarly, for each
u ∈ T ∪ {t}, we get d − conv({u, f} ∪ F ) ⊆ d − conv({t} ∪ T ∪ S1) ⊆
d− conv(S1 ∪ S2) ⊆ d− conv(Sf ∪ St) = X. This implies that u 6∈ Sf
for each u ∈ T ∪ {t}. Thus, S1 ∩ St = ∅ and S2 ∩ Sf = ∅.

Property 2: Sets L,V, Q,L are uniquely interdependent.

If vertex lij belongs to St, then Γ(lij) ∩V ⊆ St and lkj belongs to St
for 1 ≤ k ≤ 3, k 6= i.

If vertex vi belongs to St, then Γ(vi) ∩ L ⊆ St and for all laj ∈
Γ(vi) ∩ L vertices lkj belong to St for 1 ≤ k ≤ 3, k 6= a.

Vertex lij belongs to Sf if and only if qij belongs to Sf . If vertex lij
belongs to Sf , then L′ = {lkj |1 ≤ k ≤ 3, k 6= i} ⊆ Sf and Γ(lkj ) ∩V is

contained in Sf for all lkj ∈ L′.

Property 3: Exactly one vertex of Lj = {l1j , l2j , l3j} belongs to St,

for 1 ≤ j ≤ m, and exactly one vertex of Lj = {l1j , l
2
j , l

3
j} belongs to

Sf , for 1 ≤ j ≤ m.
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Exactly one vertex of every set Lj = {l1j , l2j , l3j}, 1 ≤ j ≤ m, belongs

to St. In the converse case, if two vertices {laj , lbj} of Lj belong to
St, then fj belongs to St. By Property 1, we get a contradiction.
If no vertex of Lj = {l1j , l2j , l3j} belongs to St, then Lj ⊆ Sf , Lj =

{l1j , l
2
j , l

3
j} ⊆ Sf and tj belongs to Sf . Now by Property 1, we have a

contradiction.

In the same way, exactly one vertex of every set Lj = {l1j , l
2
j , l

3
j},

1 ≤ j ≤ m, belongs to Sf .

We associate V with V and L with C such that convex 2-cover
represents a truth assignment for V, where the variable vi is true if
and only if the vertex vi ∈ St.

It follows from Properties 1, 2 and 3 that if G has a convex 2-cover
P2(G) = {Sf , St}, then C is satisfiable. Let us remark that sets Sf ,
St are nontrivial and disjoint.

If C is satisfiable, then G = (X; U) has a 2-convex cover.

Suppose that there exists a truth assignment which satisfies (V,C).
We construct a convex 2-cover P2(G) = {Sf , St} as follows:

Step 1. Define St = {z1, z2, z3, z4, z5, t} ∪ T ;

Step 2. For each true variable vi of V we add vertex vi and the set
L′ = Γ(vi) ∩ L to St and for each laj ∈ L′ we add vertices qbj , l

b
j

to St such that lbj ∼ laj and qbj ∼ l
b
j ;

Step 3. Define Sf = X\St.

Clearly, for the resulting convex 2-cover P2(G) = {Sf , St} Prop-
erties 1, 2 and 3 are satisfied. Hence, if C is satisfiable, then G has
convex 2-cover. Note also that the sets Sf and St are nontrivial and
disjoint.

In Figure 5 the graph G, which corresponds to a particular instance
(V,C) = ({v1, v2, v3, v4}, {{v1, v2, v3}, {v2, v3, v4}}) is represented. Sets
Q ∪ V ∪ {f} and Q ∪ V ∪ {t} generate cliques in G. White vertices
belong to St and black vertices belong to Sf . The white vertices of V
represent the variables of V set to true. All edges between L and L
are represented in Figure 6. �
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Figure 6. Edges between L and L

Now if we recall that convex p-cover problem is NP-complete, for
p ≥ 3, we can affirm that convex p-cover problem is NP-complete for
p ≥ 2.

Corollary 5. Convex 2-partition problem, nontrivial convex 2-cover
problem and nontrivial convex 2-partition problem are NP-complete.

Proof. By construction in the previous theorem of a particular
graph G = (X; U) for convex 2-cover problem from a generic instance
(V,C) of 1-IN-3 3 SAT problem, we conclude that G can be covered
only by nontrivial disjoint convex sets. Hence, every convex 2-cover is a
convex 2-partition in G. Moreover, every convex 2-cover is a nontrivial
convex 2-cover in G. �

Taking into account Theorem 10 and Corollary 5, we affirm that
Theorem 10 is stronger than Theorem 4 in [6], which proves only NP-
completeness of convex 2-partition problem.

Furthermore, we prove that nontrivial convex p-cover problem, for
p ≥ 3, is NP-complete. We reduce NP-complete clique p-partition
problem, for p ≥ 3 [9], to a nontrivial convex p-cover problem.

Clique p-partition problem:
Instance: Graph G = (X; U) and p ∈ N , p ≥ 3.
Question: Is there a partition of X into p disjoint cliques?
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Theorem 11. The nontrivial convex p-partition problem is NP-
complete for p ≥ 3.

Proof. The problem is in NP, because determining if a set is convex
can be done in polynomial time [7].

Let G = (X; U) be a generic graph of clique p-partition problem.
Without loss of generality, it can be assumed that X is not a clique.
We obtain a particular graph G′ = (X ′; U ′) of nontrivial convex p-
partition problem from G by adding auxiliary sets Y = {y1, y2, . . . , yp}
and Z = {z1, z2, . . . , zp} to X such that X ′ = X ∪ Y ∪ Z, where
Γ(yi) = X ∪ {zi} and Γ(zi) = X ∪ {yi} for 1 ≤ i ≤ p.

Graph G′ satisfies the conditions of Theorem 3. Thus, every convex
set of G′ is a clique.

If Pp(G) is a clique p-partition of G, p ≥ 3, then we obtain a
nontrivial convex p-partition Pp(G′) of G′ by addition of set {yi, zi} to
Xi, where Xi ∈ Pp(G), for 1 ≤ i ≤ p.

On the other hand, a nontrivial convex p-partitionPp(G′) ofG′, p ≥
3, implies existence of a clique p-partition Pp(G) of G by subtraction
of set {yi, zi} from X ′i , where X ′i ∈ Pp(G′), for 1 ≤ i ≤ p. �

Corollary 6. The nontrivial convex p-cover problem is NP-complete
for p ≥ 3.

Proof. The problem is also in NP, because determining if a set is
convex can be done in polynomial time [7].

We know that any proper convex set of graph G′ constructed in
previous theorem, is a clique. Let Pp(G′) be a nontrivial convex p-
cover of G′. We get a family of sets P = {X1, X2, . . . , Xp} such that
Xi = X ′i\{yi, zi}, where X ′i ∈ Pp(G′) for 1 ≤ i ≤ p. Removing from
P all sets contained in the union of other sets of the family P we
obtain a convex k-partition Pk(G) of G such that k ≤ p, where G
is a graph of clique p-partition problem. Note also that if any graph
has a clique q-partition and there exists a set S of this partition that
is not a singleton, then dividing S into two cliques, we get a clique
(q + 1)-partition. Thus, G has a clique p-partition.

On the other hand, we know from previous theorem that every
clique p-partition of G, p ≥ 3, implies existence of nontrivial convex
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p-partition of G′. Now, if we recall that every nontrivial convex p-
partition is a nontrivial convex p-cover, we deduce that every clique
p-partition of G, p ≥ 3, implies existence of nontrivial convex p-cover
of G′. �

We affirm that nontrivial convex p-cover problem and nontrivial
convex p-partition problem are NP-complete for p ≥ 2. Indeed, this
follows from Theorems 11 and from Corollaries 5 and 6.

5 Conclusion

We prove that the problem of deciding if a graph has a convex 2-
cover is NP-complete. Since Theorem 10 proves NP-completeness of
convex 2-cover problem and Corollary 5, as consequence of Theorem
10, proves NP-completeness of convex 2-partition problem, we conclude
that Theorem 10 is stronger than Theorem 4 in [6], which proves only
NP-completeness of convex 2-partition problem. We affirm that convex
p-cover problem and convex p-partition problem are NP-complete for
p ≥ 2.

Also, we prove that it is NP-complete to decide if a graph has a
nontrivial convex p-cover or nontrivial convex p-partition for p ≥ 2.

We discover some properties of minimum convex covers and mini-
mum convex partitions of graphs. We establish conditions for existence
of graph G with given numbers ϕc(G), θc(G) and ϕcn(G), θcn(G).
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Set-theoretic Analysis of Nominative Data∗

Volodymyr G. Skobelev, Ievgen Ivanov, Mykola Nikitchenko

Abstract

In the paper we investigate the notion of nominative data
that can be considered as a general mathematical model of data
used in computing systems. The main attention is paid to flat
nominative data called nominative sets. The structure of the
partially-ordered set of nominative sets is investigated in terms
of set theory, lattice theory, and algebraic systems theory. To
achieve this aim the correct transferring of basic set-theoretic op-
erations to nominative sets is proposed. We investigate a lower
semilattice of nominative sets in terms of lower and upper cones,
closed and maximal closed intervals of nominative sets. The ob-
tained results can be used in formal software development.

Keywords: nominative set, nominative data, set theory, lat-
tice theory, algebraic system, lower semilattice, lower and upper
cones, closed intervals.

1 Introduction

The significance of the problem of elaborating the theory of program-
ming and linking it with software development practice was recognized
by many researchers [1–6], and in particular, it was mentioned as one
of the grand challenges in computing by T. Hoare in his influential talk
“The Verifying Compiler: a Grand Challenge for computing research
of the 21st century” [7]: “To build the link between the theory of pro-
gramming and the products of software engineering practice is still a
grand challenge for scientific research in computing; the development
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of a verifying compiler is an essential tool and target for this research;
it will make the results of the research available to software engineers
of the future, and so contribute to the quality and reliability of all the
programs that they produce.”

Currently there exist various approaches that try to deal with this
global problem [2–6,8–11], each of which has its own methodology. This
paper advocates the so-called composition-nominative approach to pro-
gram formalization [12–14]. The starting point of this approach is the
view of software as a data processor that must deal with many forms of
data used in computing systems (e.g. arrays, lists, dictionaries, tables,
trees, etc.). Thus for solving the mentioned grand problem, firstly one
needs to develop a unified, adequate, and tractable theoretical model
of data that can serve as a basis for building adequate semantic models
of programming language constructs and programs.

The unified data model proposed in the composition-nominative
approach is called nominative data [12, 15, 16] and is based on the
name-value relation. In the simplest case one can view a nominative
data as a collection of associations between names and values that
can be denoted as [name1 7→ value1, name2 7→ value2, ...], or, more
formally, as a partial function from the set of all possible names to the
set of all possible values.

The following simple example illustrates this notion. In most web
applications (e.g. online reservation systems, online stores, search en-
gines, etc.) the primary method of obtaining information from a user
is based on web forms. A typical web form consists of several named
mandatory and optional fields, e.g. Fig. 1.

A natural mathematical model of a user-supplied data in this case
is a partial function that maps field names to the corresponding filled
values, assuming that this function is undefined on all unfilled fields.
This partial function is a nominative data of a particular type called
a nominative set. For example, for a web form with mandatory fields
FirstName, LastName, Email, Country, Organization and an op-
tional field WebSite, a data instance provided by the user can be mod-
eled as a nominative set (partial function)

d : {FirstName,LastName,Email, Country,
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Organization,WebSite} → A,

where A denotes the set of all possible field values (strings).

Figure 1. A screenshot of the EasyChair conference management sys-
tem [17] (http://www.easychair.org). An example of a web form
with mandatory and optional fields.

If d(WebSite) is undefined, this means that the user left the cor-
responding field unfilled. The values of such a function can be conve-
niently specified using a notation of the form

[FieldName1 7→ FieldV alue1, F ieldName2 7→ FieldV alue2, ...],

e.g.,
[FirstName 7→ George, LastName 7→ Challenger,

Email 7→ challenger@lost-world.net , Country 7→ the UK,

Organization 7→ The University of Edinburgh].

Clearly, development of the composition-nominative approach re-
quires refinement of the idea of data as name-value relations. Very
basic questions concerning the nature of name-value relations already
give hints concerning the possible directions of this refinement:

• Are the names unstructured (simple) or structured (complex),
e.g. strings in a certain alphabet ?
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• Are the values unstructured (simple) or structured (complex),
e.g. can values be nominative data themselves ?

• Is only direct naming possible (i.e. values cannot be names) ? Or
indirect naming is also allowed (values can be names) ?

Different answers to these questions lead to different types of nom-
inative data (TND1–TND8) [15] illustrated in Fig. 2.

Figure 2. Types of nominative data

Although the idea behind nominative data is intuitively clear, the
absence of unique answers to even such basic questions makes the pro-
cess of their formalization and application to program semantics and
the problems of software specification and verification non-trivial. In
fact, one has to consider and investigate many formalizations of nomi-
native data and study their suitability for different classes of problems.
Another complication is that algebraic structures that arise from sets of
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nominative data of different types turn out to be different from struc-
tures traditionally considered in algebra and computer science (e.g.
rings, lattices, boolean algebras, etc.) and currently remain virtually
unstudied.

To deal effectively with complexity of data and program formaliza-
tion, composition-nominative approach proposes the following princi-
ples [12]:

• Development principle (from abstract to concrete): the process
of development of program notions must start from abstract un-
derstanding and proceed to more concrete considerations.

• Principle of integrity of intensional and extensional aspects: pro-
gram notions should be presented in the integrity of their inten-
sional and extensional aspects, but the intensional aspects play a
leading role.

• Principle of priority of semantics over syntax : semantic and syn-
tactical aspects of programs should be first studied separately,
and then in their integrity in which semantic aspects prevail over
syntactical aspects.

• Compositionality principle: programs are constructed from sim-
pler programs using operations called compositions which repre-
sent semantics of programming language constructs.

• Nominativity principle: naming relations are the basic ones in
constructing data and programs.

These principles are applied for constructing a hierarchy of program
models of various levels of abstraction and generality with the general
aim of providing a mathematical basis for development of formal meth-
ods of analysis and synthesis of reliable software systems.

Above mentioned principles are applied to program formalization
as follows:

• Data in computing systems are formalized as specific classes of
nominative data. A set of nominative data of a particular type

274



Set-theoretic Analysis of Nominative Data

together with the basic operations on these data forms an algebra
called a data algebra.

• Programs that operate on data are formalized as partial functions
that map nominative data to nominative data, also called (bi-)
nominative functions.

• Program combination operators (e.g. sequential execution,
branching, cycle, etc.) are formalized as operations (also
called compositions) that map (bi-)nominative functions to (bi-
)nominative function. A set of programs (modeled as nominative
functions) that can be obtained from basic operations on data
using compositions together with compositions forms an algebra
(program algebra) that represents compositional semantics of a
programming language. Proving program properties is done by
proving certain facts in a program algebra.

In this paper we will study the basic type of nominative data TND1,
or data with unstructured names and unstructured values, also called
nominative sets. In particular, we will investigate rich algebraic struc-
tures that arise from it.

This paper is organized as follows: in Section 2 we give rigorous
definitions of nominative sets and other associated notions; in Section
3 we define the basic operations on nominative sets by analogy with set-
theoretic operations and study algebraic systems that arise from these
definitions; in Section 4 we investigate a partial ordering on nominative
sets and the associated poset using lattice theory [18–20]; in Section 5
we give conclusions.

2 Basic notions

Let V and A be non-empty finite or countable sets of names and data
respectively. The set FV,A of all V -nominative sets over A is the set of
all (possibly, partial) mappings from V to A.

If |A| = 1, then FV,A can be considered as the set B(V ) of all subsets
of the set V , while if |V | = 1, then FV,A can be considered as the set
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consisting of the empty set and all 1-element subsets of the set A. Thus
in what follows it is supposed that |V | ≥ 2 and |A| ≥ 2.

We will deal with the set GV,A = {graph(f)|f ∈ FV,A}, where
graph(f) = {(v, a) ∈ Domf ×Valf |f(v) = a}.

The following partial ordering can be defined on the set FV,A:

f1 � f2 ⇔ graph(f1) ⊆ graph(f2) (f1, f2 ∈ FV,A). (1)

The least element of the poset FV,A is the V -nominative set 0V,A
with empty domain, while the set of all maximal elements of the poset

FV,A is the set F
(ttl)
V,A of all total V -nominative sets.

Since |A| ≥ 2, for any set of names V (|V | ≥ 2) the poset (FV,A,�)
does not have the largest element. Thus this poset is not isomorphic
to any Boolean algebra.

We write f1 ≺ f2 (f1, f2 ∈ FV,A) if and only if f1 � f2 and f1 6= f2.
By “�” (or, respectively, by “≻”) we denote the relation that is an
inverse of the relation ” � ” (or, respectively, of the relation “≺”).

3 Algebra of nominative sets

In this section we will transfer the basic set-theoretic operations to
the set FV,A with the purpose of providing correct operations on V -
nominative sets over A with perspectives of application in automation
of software development and analysis.

The unary set-theoretic operation of complement of a set cannot be
transferred to FV,A since this set does not contain the largest element.

Let us transfer binary set-theoretic operations to the set FV,A.
There are no difficulties with transferring the set-theoretic opera-

tions of intersection of two sets “∩” and the difference of two sets “\”
to the set FV,A. Indeed, for any f1, f2, f ∈ FV,A we can define:

f1 ∩ f2 = f ⇔ graph(f1) ∩ graph(f2) = graph(f), (2)

f1\f2 = f ⇔ graph(f1)\graph(f2) = graph(f).

Obviously, for any f1, f2 ∈ FV,A the following formulas hold:

Dom(f1 ∩ f2) ⊆ Domf1 ∩Domf2,
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f1|X ∩ f2|Y = (f1 ∩ f2)|X∩Y (X,Y ⊆ V ),

Domf1\Domf2 ⊆ Dom(f1\f2) ⊆ Domf1.

The following two propositions are true:

Proposition 1. Algebraic system (FV,A,∩) is a commutative semi-
group without neutral element, but with zero element which is the V -
nominative set 0V,A with empty domain.

Proposition 2. Algebraic system (FV,A, \) is a non-commutative non-
associative magma in which the V -nominative set 0V,A with the empty
domain is both the right identity element and the left zero element.

A different situation occurs with transferring of the operations of
the union of two sets “∪” and of the symmetric difference of two sets
”⊕ ” to the set FV,A. Indeed, for any f1, f2 ∈ FV,A we get:

graph(f1) ∪ graph(f2) ∈ GV,A ⇔ f1|Domf1∩Domf2 = f2|Domf1∩Domf2 ,

graph(f1)⊕ graph(f2) ∈ GV,A ⇔ f1|Domf1∩Domf2 = f2|Domf1∩Domf2 .

Thus the formulas

f1 ∪ f2 = f ⇔ graph(f1) ∪ graph(f2) = graph(f) (f1, f2, f ∈ FV,A),

f1 ⊕ f2 = f ⇔ graph(f1)⊕ graph(f2) = graph(f) (f1, f2, f ∈ FV,A)

can define only partial operations on the set FV,A.
In order to avoid such a situation we transfer the operations “∪”

and “⊕” to the set FV,A as follows: for any f1, f2, f ∈ FV,A we define:

f1 ⊲ f2 = f ⇔ graph(f1) ∪ graph(f2|Domf2\Domf1) = graph(f)

and
f1 ⊞ f2 = f ⇔

⇔ graph(f1|Domf1\Domf2) ∪ graph(f2|Domf2\Domf1) = graph(f).

It is worth noting that these two operations are intended to join
together any two V -nominative sets over A. The operation ” ⊲ ” is
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called overlapping (of the second nominative set by the first one), the
operation ” ⊞ ” can be called the exclusive compound. The following
proposition is true:

Proposition 3. For any f1, f2, f3 ∈ FV,A the following formulas hold:
(i) Dom(f1 ⊲ f2) = Domf1 ∪Domf2;
(ii) f1 � f1 ⊲ f2;
(iii) f1 � f2 ⇒ f1 ⊲ f2 = f2 ⊲ f1 = f2;
(iv) (f1 ⊲ f2) ∩ f3 � (f1 ∩ f6) ⊲ (f2 ∩ f3);
(v) f3 ∩ (f1 ⊲ f2) � (f1 ∩ f3) ⊲ (f2 ∩ f3);
(vi) (f1 ∩ f2) ⊲ f3 � (f1 ⊲ f3) ∩ (f2 ⊲ f3);
(vii) f1 ⊲ (f2 ∩ f3) = (f1 ⊲ f2) ∩ (f1 ⊲ f3).

It is not difficult to give examples showing that there may be strict
inequalities in the formulas (ii), (iv)-(vi).

The following theorem is true:

Theorem 1. The algebraic system (FV,A, ⊲) is a non-commutative
monoid with neutral element which is the V -nominative set 0V,A with
the empty domain.

Proposition 1 and Theorem 1 imply that the algebraic system
(FV,A, ⊲,∩) differs from well-known algebraic systems with two binary
operations (i.e. a field, a ring, a semi-ring, etc.). Thus the properties of
the set of all valid formulas in the algebraic system (FV,A, ⊲,∩) can sub-
stantially differ from the properties of the sets of all valid formulas in
standard algebraic systems with two binary operations. The following
proposition is true:

Proposition 4. The algebraic system (FV,A,⊞) is a commutative semi-
group with the neutral element which is the V -nominative set 0V,A with
empty domain.

Since (f1 ⊞ f2) ∩ f3 = (f1 ∩ f3)⊞ (f2 ∩ f3) for any f1, f2, f3 ∈ FV,A,
Propositions 1 and 4 imply that the following theorem is true:

Theorem 2. The algebraic system (FV,A,∩,⊞) is a semiring.
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Thus we have defined an algebraic system (FV,A,OV,A,RV,A), where
FV,A is the base, OV,A = {∩, \, ⊲,⊞} is the set of operations and
RV,A = {=,�} is the set of relations.

It is worth noting that since the operations ∩ and ⊞ are associative
and can be naturally extended to any finite (consisting of at least two
elements) or infinite sequence of elements of the set FV,A, so that the
notations of the form ∩i∈Ifi and ⊞i∈Ifi do not cause any misunder-
standing.

4 Analysis of the poset (FV,A,�) in terms of lat-

tice theory

The formulas (1) and (2) imply that the poset (FV,A,�) is a lower semi-
lattice such that inf{f1, f2} = f1 ∩ f2 (f1, f2 ∈ FV,A). Thus, all basic
set-theoretic structures defined on lower semilattices can be transferred
to the poset (FV,A,�). Let us analyze these structures.

For any non-empty set S ⊆ FV,A its lower and upper cones are
defined, respectively, using the identities

S▽ = {f ∈ FV,A|(∀f1 ∈ S)(f � f1)},

S△ = {f ∈ FV,A|(∀f1 ∈ S)(f � f1)}.

Lower cones of non-empty subsets of the poset (FV,A,�) can be
characterized via the following three propositions:

Proposition 5. For any non-empty subset S ⊆ FV,A:
1) the least element of the lower cone S▽ is the V -nominative set

0V,A with empty domain;
2) the largest element of the lower cone S▽ is ∩f∈Sf .

Proposition 6. For any non-empty subsets S1, S2 ⊆ FV,A the following
formulas hold:

(i) S1 ⊆ S2 ⇒ S
▽
1 ⊇ S

▽
2 ;

(ii) S1 ⊂ S2&∩f2∈S2\S1
f2 ≺ ∩f1∈S1f1 ⇒ S

▽
1 ⊃ S

▽
2 ;

(iii) S1 ∪ S2 ⊆ FV,A ⇒ (S1 ∪ S2)
▽ = S

▽
1 ∩ S

▽
2 .
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Proposition 7. For any f1, f2 ∈ FV,A the following formulas hold:
(i) {f1}

▽ 6= {f2}
▽ ⇔ f1 6= f2;

(ii) {f1}
▽ ⊆ {f2}

▽ ⇔ f1 � f2;
(iii) {f1 ∩ f2}

▽ = {f1}
▽ ∩ {f2}

▽;
(iv) f2 6� f1 ⇒ {f1 ⊲ f2}

▽ ⊇ {f1}
▽ ∩ {f2\f1}

▽;
(v) f1|Domf1∩Domf2 = f2|Domf1∩Domf2 ⇒

⇒ {f1 ⊲ f2}
▽ = {f1}

▽ ∩ {f2}
▽.

Upper cones of non-empty subsets of the poset (FV,A,�) can be
characterized in the following way:

for any 1-element subset S = {f} (f ∈ FV,A) the following inequal-
ity holds: S△ 6= ∅ (since f ∈ {f}△ for any f ∈ FV,A).

It is worth to note that {0V,A}
△ = FV,A. The following proposition

is true:

Proposition 8. For any (f1, f2 ∈ FV,A) the following formulas hold:
(i) {f1}

△ 6= {f2}
△ ⇔ f1 6= f2;

(ii) {f1}
△ ⊆ {f2}

△ ⇔ f1 � f2.

The next example illustrates that there exist subsets S ⊆ FV,A

(|S| ≥ 2), such that S△ = ∅.

Example 1. Let v ∈ V and a1, a2 ∈ A (a1 6= a2) be fixed elements.
We set S = {f1, f2}, where f1, f2 ∈ FV,A are V -nominative sets over A
such that Domf1 = Domf2 = {v}, f1(v) = a1 and f2(v) = a2.

The formula (1) implies that there does not exist any V -nominative
set f ∈ FV,A, such that f1 � f and f2 � f . Thus, S△ = ∅.

Now we extract subsets S ⊆ FV,A such that S△ 6= ∅.
We will say that elements f1, f2 ∈ FV,A are compatible, if the identity

f1|Domf1∩Domf2 = f2|Domf1∩Domf2 holds. It is evident that if elements
f1, f2 ∈ FV,A are compatible, then the following identity holds

graph(f1 ⊲ f2) = graph(f1) ∪ graph(f2).

Thus we get that for any compatible elements f1, f2 ∈ FV,A the fol-
lowing identities hold: f1 ⊲ f2 = f2 ⊲ f1 = f1 ∪ f2 and {f1 ∪ f2}

▽ =
{f1}

▽ ∩ {f2}
▽.
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A non-empty subset S ⊆ FV,A will be called compatible, if its ele-
ments are pairwise compatible. We denote Scmp

V,A the set of all compat-
ible subsets of the set FV,A. The following theorem is true:

Theorem 3. For any set FV,A the following formula holds:

(∀S ⊆ FV,A)(S 6= ∅ ⇒ (S△ 6= ∅ ⇔ S ∈ S
cmp
V,A )).

Upper cones of elements of the set S
cmp
V,A can be characterized in

the following way:

Proposition 9. For any S ∈ S
cmp
V,A the following formulas hold:

(i) g.l.b.(S△) = f ⇔ graph(f) = ∪f ′∈S graph(f ′);

(ii) (∀S1, S2 ⊆ S)(∅ 6= S1 ⊆ S2 ⇒ S
△
1 ⊇ S

△
2 );

(iii) (∀S1, S2 ⊆ S)(∅ 6= S1 ⊂ S2&

&∪f1∈S1 graph(f1) ⊂ ∪f2∈S2\S1
graph(f2) ⇒ S

△
1 ⊃ S

△
2 );

(iv) (∀S1, S2 ⊆ S)(S1 6= ∅&S2 6= ∅ ⇒ S1 ∪ S2 = S
△
1 ∩ S

△
2 ).

In the poset (FV,A,�) any two elements f1, f2 ∈ FV,A such that
f1 � f2 define a closed interval

[f1, f2] = {f ∈ FV,A|f1 � f � f2}.

It is evident that

[f1, f2] ∈ S
cmp
V,A (f1, f2 ∈ FV,A, f1 � f2).

The following theorem is true:

Theorem 4. The algebraic system ([f1, f2], {∪,∩}) (f1, f2 ∈ FV,A; f1 �
f2) is a complete distributive lattice.

On any closed interval

[f1, f2] (f1, f2 ∈ FV,A, f1 � f2)

the following unary operation C[f1,f2] can be defined:

C[f1,f2](f) = f ′ ⇔ graph(f ′) = graph(f2)\graph(f) ∪ graph(f1).

The following theorem is true:
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Theorem 5. The algebraic system

([f1, f2], {∪,∩,C[f1,f2]}) (f1, f2 ∈ FV,A; f1 � f2)

is a Boolean algebra.

Proof. By Theorem 4 the lattice ([f1, f2],∪,∩) is distributive.
From the definition of C[f1,f2](f) it follows that for each f ∈ [f1, f2]

graph(f) ∪ graphC[f1,f2](f) =

= graph(f) ∪ (graph(f2)\graph(f) ∪ graph(f1)) =

= (graph(f) ∪ graph(f2)\graph(f)) ∪ graph(f1) =

= graph(f2) ∪ graph(f1) = graph(f2),

i.e. f ∪ C[f1,f2](f) = f2, and also,

graph(f) ∩ graphC[f1,f2](f) =

= graph(f) ∩ (graph(f2)\graph(f)) ∪ graph(f1)) =

= (graph(f) ∩ (graph(f2)\graph(f))) ∪ (graphf ∩ graph(f1)) =

= ∅ ∪ graph(f1) = graph(f1),

i.e. f ∩ C[f1,f2](f) = f1.

Since f ∪ C[f1,f2](f) = f2 and f ∩ C[f1,f2](f) = f1, the element
C[f1,f2](f) ∈ [f1, f2] is a relative complement of the element f ∈ [f1, f2]
in the interval [f1, f2].

By the definition, a distributive lattice with a relative complement
is a Boolean algebra.

We will say that a mapping ϕ : FV,A → FV,A is isotonic on some
set S ⊆ FV,A (S 6= ∅), if the inequality ϕ(f1) � ϕ(f2) holds for all
f1, f2 ∈ S, such that f1 � f2. It is evident that if ϕ : FV,A → FV,A is
any mapping isotonic onto some closed interval

[f1, f2], (f1, f2 ∈ FV,A; f1 � f2)
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and the inclusion Valϕ|[f1,f2] ⊆ [f1, f2] holds, then the mapping ϕ|[f1,f2]
has at least one fixed point.

Let f
(i)
1 , f

(i)
2 ∈ FV,A (i = 1, 2) be elements such that f

(i)
1 � f

(i)
2 .

The closed intervals [f
(1)
1 , f

(1)
2 ] and [f

(2)
1 , f

(2)
2 ] are isomorphic, if there

exists a mapping ϕ : FV,A → FV,A such that ϕ|
[f

(1)
1 ,f

(1)
2 ]

is bijection of

[f
(1)
1 , f

(1)
2 ] onto [f

(2)
1 , f

(2)
2 ] for which the identities

ϕ|
[f

(1)
1 ,f

(1)
2 ]

(f ′ ∪ f ′′) = ϕ|
[f

(1)
1 ,f

(1)
2 ]

(f ′) ∪ ϕ|
[f

(1)
1 ,f

(1)
2 ]

(f ′′)

and

ϕ|
[f

(1)
1 ,f

(1)
2 ]

(f ′ ∩ f ′′) = ϕ|
[f

(1)
1 ,f

(1)
2 ]

(f ′) ∩ ϕ|
[f

(1)
1 ,f

(1)
2 ]

(f ′′)

hold for any f ′, f ′′ ∈ [f
(1)
1 , f

(1)
2 ].

It is evident that if closed intervals [f
(1)
1 , f

(1)
2 ] and [f

(2)
1 , f

(2)
2 ]

are isomorphic, then the algebraic systems ([f
(1)
1 , f

(1)
2 ], {∪,∩}) and

([f
(2)
1 , f

(2)
2 ], {∪,∩}), as well as Boolean algebras

([f
(1)
1 , f

(1)
2 ], {∪,∩,C

[f
(1)
1 ,f

(1)
2 ]

}),

([f
(2)
1 , f

(2)
2 ], {∪,∩,C

[f
(2)
1 ,f

(2)
2 ]

})

are isomorphic.
The following theorem is true:

Theorem 6. A closed interval [f1, f2] (f1, f2 ∈ FV,A; f1 � f2) is iso-
morphic to the closed interval [0V,A, f2\f1].

Proof. Let ϕ : FV,A → FV,A be any mapping such that ϕ(f) = f\f1
holds for all f ∈ [f1, f2].

Then ϕ(f1) = f1\f1 = 0V,A, ϕ(f2) = f2\f1, 0V,A � ϕ(f) � f2\f1
for all f ∈ [f1, f2], i.e. ϕ maps the interval [f1, f2] onto the interval
[0V,A, f2\f1].

If f ′ 6= f ′′ (f ′, f ′′ ∈ [f1, f2]), then

ϕ(f ′) = f2\f
′ 6= f2\f

′′ = ϕ(f ′′).
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Thus, ϕ|[f1,f2] is a bijection from [f1, f2] onto the interval [0V,A, f2\f1].
Since f1 � f ′ f1 � f ′′ for any elements f ′, f ′′ ∈ [f1, f2], we have

ϕ(f ′ ∪ f ′′) = (f ′ ∪ f ′′)\f1 = f ′\f1 ∪ f ′′\f1 = ϕ(f ′) ∪ ϕ(f ′′)

and

ϕ(f ′ ∩ f ′′) = (f ′ ∩ f ′′)\f1 = f ′\f1 ∩ f ′′\f1 = ϕ(f ′) ∩ ϕ(f ′′).

Thus ϕ|[f1,f2] is an isomorphism from [f1, f2] onto [0V,A, f2\f1].

We will say that a closed interval [0V,A, f ] is maximal in the poset

(FV,A,�), if f ∈ F
(ttl)
V,A . The following theorem is true:

Theorem 7. Any two maximal closed intervals in the poset (FV,A,�)
are isomorphic.

Proof. Let us fix any elements f (1), f (2) ∈ F
(ttl)
V,A (f (1) 6= f (2)) and con-

sider maximal intervals [0V,A, f
(1)] and [0V,A, f

(2)]. Let g = f (2)\f (1).
Let us define a mapping ϕ : FV,A → FV,A as follows:

ϕ(f) = g|Domf ⊲ f (f ∈ FV,A).

From this it follows that

ϕ(0V,A) = g|Dom0V,A
⊲ 0V,A = g|∅ ⊲ 0V,A = 0V,A ⊲ 0V,A = 0V,A,

ϕ(f (1)) = g|Domf(1) ⊲ f
(1) = g|V ⊲ f (1) = g ⊲ f (1) = f (2),

and also, 0V,A � ϕ(f) � f (2) for all f ∈ [0V,A, f
(1)], i.e. ϕ maps the

interval [0V,A, f
(1)] onto the interval [0V,A, f

(2)].
Since for any elements f ′, f ′′ ∈ [0V,A, f

(1)] (f ′ 6= f ′′) the inequality
Domf ′ 6= Domf ′′ holds, at least one of the inequalities

Domg ∩Domf ′ 6= Domg ∩Domf ′′

or
Domf ′\Domg 6= Domf ′′\Domg
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holds. From this it follows that if f ′ 6= f ′′ (f ′, f ′′ ∈ [0V,A, f
(1)]), then

ϕ(f ′) 6= ϕ(f ′′).
Thus ϕ|[0V,A ,f(1)] is a bijection from the interval [0V,A, f

(1)] onto the

interval [0V,A, f
(2)].

For each f ′, f ′′ ∈ [0V,A, f
(1)] we have

ϕ(f ′∪f ′′) = g|Dom(f ′∪f ′′)⊲(f
′∪f ′′) = g|Dom(f ′∪f ′′)⊲f

′∪g|Dom(f ′∪f ′′)⊲f
′′ =

= g|Domf ′ ⊲ f ′ ∪ g|Domf ′′ ⊲ f ′′ = ϕ(f ′) ∪ ϕ(f ′′).

From the definition of ϕ and Proposition 3(vii) it follows that for
each f ′, f ′′ ∈ [0V,A, f

(1)],

ϕ(f ′∩f ′′) = g|Dom(f ′∩f ′′)⊲(f
′∩f ′′) = g|Dom(f ′∩f ′′)⊲f

′∩g|Dom(f ′∩f ′′)⊲f
′′ =

= g|Domf ′ ⊲ f ′ ∪ g|Domf ′′ ⊲ f ′′ = ϕ(f ′) ∪ ϕ(f ′′).

Thus ϕ|[f1,f2] is an isomorphism from the interval [0V,A, f
(1)] onto

the interval [0V,A, f
(2)].

Thus the poset (FV,A,�) is a union of the set of overlapping isomor-
phic maximal closed intervals. At the same time, mappings defining
the isomorphism of two intervals differ significantly from each other.
Moreover, the structure of the family of these mappings is sufficiently
complicated. These circumstances, largely cause high internal com-
plexity of various structures defined on the poset (FV,A,�).

5 Conclusions

In the paper a mathematical (algebraic, in essence) formalism intended
for investigating the structure of nominative data sets has been pro-
posed. It forms a part of theoretical foundations for unified develop-
ment of formal methods for automated software design and verification.
In this context investigation of algebras of programs over nominative
data is essential.

In the given paper we restricted ourselves to basic (flat) nomina-
tive data called nominative sets. Nominative sets adequately represent
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such commonly used data structures as arrays, records, and dictionar-
ies. Hierarchical types of data can naturally represent a much larger
set of data structures used in programming, including multidimensional
arrays, lists, trees, algebraic data types, etc. The details of such rep-
resentation are given in [16]. These types of nominative data induce
sufficiently rich program algebras. We plan to investigate such algebras
in future papers.
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Admissibility, compatibility, and deducibility

in first-order sequent logics

Alexander Lyaletski

Abstract

The paper is about the notions of admissibility and compat-
ibility and their significance for deducibility in different sequent
logics including first-order classical and intuitionistic ones both
without and with equality and, possibly, with modal rules. Re-
sults on the coextensivity of the proposed sequent calculi with
usual Gentzen and Kanger sequent calculi as well as with their
equality and modal extensions are given.

Keywords: First-order classical logic, first-order intuition-
istic logic, first-order modal logic, sequent calculus, deducibility,
admissibility, compatibility, coextensivity, validity.

1 Introduction

There is a great impact of methods originally developed for deduction
in different logics on some branches of computer science. From the
beginning it was realized that logical inference tools have strong influ-
ence on the development of such fields as automated theorem proving,
knowledge management, data mining, etc. As a result, investigations in
computer-made reasoning gave rise to the appearance of various meth-
ods for proof search in the classical first-order logic. Thus, Gentzen’s se-
quent calculi [1] modified for their software implementation have found
many applications. But in the case of the classical logic their practical
usage as a logical engine of the intelligent systems has not received wide
use: preference is usually given to the resolution-type methods. This is
explained by higher efficiency of these methods as compared to sequent

c©2015 by Alexander Lyaletski
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calculi, which is mainly connected with different possible orders of the
quantifier rule applications in sequent calculi while the resolution-type
methods, due to skolemization, are free from this deficiency.

In its turn, the deduction process in sequent calculi reflects suf-
ficiently well natural theorem-proving methods which, as a rule, do
not include preliminary skolemization so that inferences are performed
within the scope of the signature of an initial theory. This feature
of sequent calculi becomes important when some interactive mode of
proof is developed since it is preferable to present the output infor-
mation concerning the proof search in the form comprehensive for a
man. Besides, preliminary skolemization is not a valid operation for
many non-classical logics including the intuitionistic one while many of
such logics are widely used in solving reasoning problems. That is the
problem of the efficient quantifier manipulation makes its appearance.

When quantifier rules are applied, some substitution of selected
terms for variables is made. For this step of deduction to be sound, cer-
tain restrictions are put on the substitution. A substitution, satisfying
these restrictions, is said to be admissible. Here we show how Gentzen’s
notion of an admissible substitution can be modified so that computer-
oriented sequent calculi can be finally obtained for both classical and
non-classical logics. For simplicity, we give a complete description of
our approach for the classical logic without equality and briefly discuss
a way (utilizing additionally a so-called compatibility) to use it for the
intuitionistic logic as well as for their equality and modal extensions.

We use modifications of the calculi LK and LJ without equality
from [1] denoting them by mLK and mLJ respectively. Moreover, we
convert mLK and mLJ in a certain way to logics with equality and/or
modal rules. At that, we don’t touch upon any procedure of selection
of propositional rules and terms substituted, focusing our attention on
quantifier handling only. Note that in contrary to [1], the antecedents
and succedents of all the sequents under consideration are assumed
to be multisets. As usual, the inference search in any calculus is of
the form of the so-called inference tree “growing” from bottom to top
in accordance with the order of counter-applying inference rules. An
inference tree all leaves of which are axioms is called a proof tree.

290



Admissibility, compatibility, and deducibility . . .

2 Genzen’s notion of admissibility

Classical quantifier rules, substituting arbitrary structure terms when
applied from bottom to top, are usually of the following form slightly
distinguished from that given in [1]:

Γ, A[t/x] → ∆

Γ,∀xA → ∆
(∀ : left)

Γ → A[t/x],∆

Γ → ∃xA,∆
(∃ : right)

where the term t is required to be free for the variable x in the formula
A and A[t/x] denotes the result of the simultaneous replacement in A

of x by t. This restriction of the substitution of t for x gives Gentzen’s
(classical) notion of an admissible substitution, which proves to be
sufficient for the needs of the proof theory. But it becomes useless from
the point of view of efficiency of computer-oriented theorem proving.
It is clear from the following example.

Consider a sequent A1, A2 → B, where A1 is ∀x1∃y1(R1(x1) ∨
R2(y1)), A2 is ∀x2∃y2(R1(y2) ⊃ R3(x2)), and B is ∃x3∀y3(R2(x3) ∨
R3(y3)). The provability of this sequent in LK will be established be-
low, while here we notice that the quantifier rules should be applied to
all the quantifiers occurring in A1, A2, and B. Therefore, the classical
notion of an admissible substitution yields 90 (= 6!/(2!·2!·2!)) different
orders of quantifier rule applications to A1, A2 → B. It is clear that
the resolution-type methods allow avoiding this redundant work.

3 Kanger’s notion of admissibility

To optimize the procedure of applying the quantifier rules, in [3]
S.Kanger suggested his Gentzen-type calculus, denoted here by K. In
calculus K a “pattern” of an inference tree is first constructed with
the help of special variables, the so called parameters and dummies.
At some instants of time, an attempt is made to convert a “pattern”
into a proof tree to complete the deduction process. In case of failure,
the process is continued. The main difference between K and LK con-
sists in a special modification of the above-given quantifier rules and
in a certain splitting (in K) of the process of the “pattern” construc-
tion into stages. The rules (∀ : left) and (∃ : right) of K are as follows:
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Γ, A[d/x] → ∆

Γ,∀xA → ∆
d/t1, ..., tn

Γ → A[d/x]∆

Γ → ∃xA,∆
d/t1, ..., tn

where t1, . . . , tn are terms occurring in the conclusion of the rules, d is
a dummy, and d/t1, . . . , tn denotes that when an attempt is made to
convert “pattern” into a proof tree, the dummy d must be replaced by
one of the terms t1, . . . , tn. The replacement of dummies by terms is
made in the end of every stage, and at every stage the rules are applied
in a certain order.

This scheme of the deduction construction in calculus K leads to the
notion of a Kanger-admissible substitution, which is more efficient than
of the Gentzen one. For example, in the above-given example it yields
only 6 (=3!) variants of different possible orders of the quantifier rule
applications (but none of these variants is preferable). Despite this,
the Kanger-admissible substitutions still do not allow achieving the
efficiency comparable with that when the skolemization is made. It is
due to the fact that, as in case of the Gentzen notion of admissibility,
it is required to select a certain order of the quantifier rule applications
when an initial sequent is deduced, and, if it proves to be unsuccessful,
the other order of applications is tried, and so on.

4 New notion of admissibility

For constructing the modification mLK of calculus LK from [1], let us
introduce a new notion of an admissible substitution in order to get
rid of the dependence of the deduction efficiency in sequent calculi on
different possible orders of quantifier rule applications. The main idea
is to determine, proceeding from the quantifier structures of formulas of
an initial sequent and a substitution under consideration, would there
exists a desired sequence of quantifier rules applications. (This notion
was used in [4] in slightly modified form for another purpose.)

We assume that besides usual variables there are two countable sets
of special variables, namely of parameters and dummies.

A substitution s is defined as a finite (maybe, empty) set of ordered
pairs [5], every of which consists of a variable, say, x, and a term, say,
t, and is written as t/x, where x is called a variable and t a term of
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s. For a sequent tree D, by D · s denote the result of the simultaneous
replacement of all the variables of s by the corresponding terms of s.

Let P be a set of sequences of parameters and dummies and s a
substitution. Put T (P, s) = {〈z, t, p〉: z is a variable of s, t a term of s,
p ∈ P , and z lies in p to the left of some parameter of t}. The substitu-
tion s is said to be admissible for P if and only if (1) the variables of
s are dummies and (2) there are no triples 〈z1, t1, p1〉, . . . , 〈zn, tn, pn〉 ∈
T (P, s) such that t2/z1 ∈ s, . . . , tn/zn−1 ∈ s, t1/zn ∈ s (n > 0).

5 Admissibility and classical deducibility

As in the case of calculus LK, its modification mLK deals with se-
quents consisting of formulas, except that in mLK, to every formula, a
(possibly, empty) sequence of parameters and dummies is additionally
assigned. Thus, the sequents of mLK consist of pairs 〈p,A〉, where A is
a formula and p a sequence (word) of parameters and dummies. Also,
it will be assumed that the empty sequence is always added to each
formula of an initial sequent (that is, a sequent to be proved).

The calculus mLK has the following rules:

Axioms:

Γ, 〈p,A〉 → 〈p,A〉,∆

Propositional rules:

Γ, 〈p,A〉, 〈p,B〉 → ∆

Γ, 〈p,A ∧B〉 → ∆

Γ → 〈p,A〉,∆ Γ → 〈p,B〉,∆

Γ → 〈p,A ∧B〉,∆

Γ, 〈p,A〉 → ∆ Γ, 〈p,B〉 → ∆

Γ, 〈p,A ∨B〉 → ∆

Γ → 〈p,A〉,∆

Γ → 〈p,A ∨B〉,∆

Γ → 〈p,B〉,∆

Γ → 〈p,A ∨B〉,∆

Γ, 〈p,A〉 → 〈p,B〉,∆ Γ, 〈p,B〉 → ∆

Γ, 〈p,A ⊃ B〉 → ∆

Γ, 〈p,A〉 → 〈p,B〉,∆

Γ → 〈p,A ⊃ B〉,∆

Γ → 〈p,A〉,∆

Γ, 〈p,¬A〉 → ∆

Γ, 〈p,A〉 → ∆

Γ → 〈p,¬A〉,∆
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Contraction rules:

Γ, 〈p,A〉, 〈p,A〉 → ∆

Γ, 〈p,A〉 → ∆
(Con →)

Γ → 〈p,A〉, 〈p,A〉∆

Γ → 〈p,A〉,∆
(→ Con)

Quantifier rules:

Γ, 〈pd,A[d/x]〉 → ∆

Γ, 〈p, ∀xA〉 → ∆
(∀ : left′)

Γ → 〈pz,A[z/x]〉,∆

Γ → 〈p, ∀xA〉,∆
(∀ : right′)

Γ, 〈pz,A[z/x]〉 → ∆

Γ, 〈p, ∃xA〉 → ∆
(∃ : left′)

Γ → 〈pd,A[d/x]〉,∆

Γ → 〈p, ∃xA〉,∆
(∃ : right′)

Here d is a new dummy, z a new parameter, p a sequence of param-
eters and dummies, Γ and ∆ are arbitrary multisets of ordered pairs
consisting of sequences (of dummies and parameters) and formulas, A
and B are arbitrary formulas.

In what follows, the establishing of the deducibilty of a sequent
A1,. . . , Am → B1, . . . , Bn in LK is replaced by the establishing of
the deducibilty of the so-called initial sequent 〈, A1〉,. . . ,〈, Am〉 →
〈, B1〉, . . . , 〈, Bn〉 in mLK (or its modifications).

Applying first a rule from bottom to top to a sequent under con-
sideration and afterwards to its “heirs”, and so on, we finally obtain a
so-called inference tree for this sequent.

Let D be an inference tree in mLK and s a substitution. If all the
leaves of D · s are axioms, then D is called a latent proof tree in mLK
w.r.t. s.

The main result concerning the calculus mLK is as follows.

Theorem 1. Let A1, . . . , Am, B1, . . . , Bn be formulas of the first-order
language. The sequent A1, . . . , Am → B1, . . . , Bn is deducible in LK
if and only if there exist an inference tree D in mLK for the initial
sequent 〈, A1〉, . . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 and a substitution s of
terms without dummies for all the dummies of D such that: (1) D is a
latent proof tree in mLK w.r.t. s and (2) s is an admissible substitution
for the set of all the sequences of parameters and dummies from D.
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Proof. (=>) Let D be a proof tree for an initial sequent 〈, A1〉, . . . ,
〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 in the calculus mLK and s be a substitution
converting all the leaves of D into axioms and being admissible for the
set P of all sequences of parameters and dummies fromD. Without loss
of generality, it can be assumed that terms of s do not contain dummies
for otherwise these dummies could be replaced by a special constant,
say, c0. Since s is admissible for P , it is possible to construct the
following sequence p consisting of parameters and dummies occurring
in the sequences of P :

(i) every p′ ∈ P is a subsequence of p and

(ii) s is admissible for {p} (i.e. there is no an element 〈z, t, p〉 ∈
T (p, s) such that t/z ∈ s.

Such a sequence p can be generated, for example, by using the con-
volution algorithm from [4], applied to a list of all the sequences from
P (in the convolution algorithm, parameters are treated as existence
quantifiers and dummies as universal quantifiers). The property (i) of
the sequence p and the definitions of the propositional and quantifier
rules lead to the following observation:

When D is constructed, propositional, contraction, and quantifier
rules are applied (from bottom to top) in the order that corresponds to
looking through p from the left to right: i.e. when the first quantifier
rule is applied, the first variable (a parameter or dummy) of p is gen-
erated, when the second quantifier rule is applied, the second variable
(a parameter or dummy) of p is generated, and so on.

Now it is possible to convert the tree D into a proof tree D′ for the
initial sequent A1, . . . , Am → B1, . . . , Bn in calculus LK. To do this,
it is enough to “repeat” the process of the construction of D in the
above-given order p and execute the following transformations:

1) Suppose that in a processed node of D one of the following rules
was applied:

Γ, 〈pd,A[d/x]〉 → ∆

Γ, 〈p,∀xA〉 → ∆
(∀ : left′) or

Γ → 〈pd,A[d/x]〉,∆

Γ → 〈p,∃xA〉,∆
(∃ : right′) ,

where t/d ∈ s for some term t. The term t is free for d in A, because the
order of applications of quantifier rules is reflected by p, and the prop-

295



Alexander Lyaletski

erty (ii) is satisfied. Hence, the conditions of admissibility in Gentzen’s
(classical) sense are satisfied when the above-given rules (∀ : left′) and
(∃ : right′) are replaced in D by the corresponding rules (∀ : left) and
(∃ : right) of the calculus LK:

Γ, A[t/x] → ∆

Γ,∀xA → ∆
(∀ : left) or

Γ → A[t/x]∆

Γ → ∃xA,∆
(∃ : right)

and all occurrences of d in D are replaced by t.

2) In all the other cases, the rules of the calculus mLK are replaced
in D by their analogues from LK by a simple deleting of sequences of
parameters and dummies from these rules.

It is evident that D′ is an inference tree in the calculus LK. Further-
more, by the construction of D′ it follows that all its leaves are axioms
of the calculus LK. Thus, D′ is a proof tree for the initial sequent A1,

. . . , Am → B1, . . . , Bn in LK.

(<=) Let D′ be a proof tree for an initial sequent A1, . . . , Am

→ B1, . . . , Bn in the calculus LK. Convert D′ into a proof tree D for
the initial sequent 〈, A1〉, . . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 in mLK. For
this purpose, “repeat” (from bottom to top) the process of construction
of D′, replacing in D′ every rule application by its analogue in mLK
and subsequently generating a substitution s. (Initially s is the empty
substitution.)

1) If an applied rule is one of the following:

Γ, A[t/x] → ∆

Γ,∀xA → ∆
(∀ : left) or

Γ → A[t/x]∆

Γ → ∃xA,∆
(∃ : right) ,

then it is replaced by

Γ, 〈pd,A[d/x]〉 → ∆

Γ, 〈p,∀xA〉 → ∆
(∀ : left′) or

Γ → 〈pd,A[d/x]〉,∆

Γ → 〈p,∃xA〉,∆
(∃ : right′)

accordingly with adding t/d to the existing substitution s, where d is
a new dummy, and substituting d for those occurrences of the term t

into “heirs” of the formula A[t/x] being the result of a replaced rule
application inserting t.
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2) In all the other cases, the replacement of the rules of LK by the
rules of mLK is evident. (The rules (∀ : left) and (∃ : right) may be
considered as those inserting new parameters).

Since D′ is a proof tree in the calculus utilizing the classical notion
of an admissible substitution, then it is clear that the finally generated
substitution s is admissible (in the new sense) for a set of all sequences
of parameters and dummies from D. Therefore, D is a proof tree for
the initial sequent 〈, A1〉, . . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 in mLK.

To demonstrate the deduction technique, consider the sequent
A1, A2 → B from the above-given example and establish its deducibil-
ity in the calculus LK. To do this, construct a proof tree for the initial
sequent 〈, A1〉,〈, A2〉 → 〈, B〉 in mLK and use Theorem 1.

Applying first the rule (→ Con) to the initial sequent and then
only quantifier rules to the result in any order, the following se-
quent is deduced: 〈d1z1, R1(x1) ∨ R2(y1)〉, 〈d2z2, R1(y2) ⊃ R3(x2)〉
→ 〈d3z3, R2(d3) ∨ R3(x3)〉, 〈d4z4, R2(d4) ∨ R3(x4)〉, where d1, . . . , d4
are dummies, z1, . . . , z4 parameters.

Now let us apply propositional rules to the latter sequent as long
as they are applicable. As a result, we construct an inference tree, say,
D. If we take the substitution s = {z2/d1, z3/d2, c0/d3, z1/d4} (c0 is
a special constant), then the following conclusions concerning s and
D are valid: (1) every leaf from D is transformed into an axiom by
applying of s to it and (2) s is admissible for the set of all sequences of
dummies and parameters from D.

So, in accordance with Theorem 1 the sequent A1, A2 → B is de-
ducible in the calculus LK.

Draw your attention to the fact that the selection of an order of the
quantifier rules applications in mLK is immaterial; it can be any.

6 Admissibility, compatibility, and intuitionis-

tic deducibility

The intuitionistic calculus LJ is distinguished from LK by that the
succedent of any sequent in LJ should contain no more than one for-
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mula [1]. In this connection, it may seem that this restriction putting
on mLK leads to a correct intuitionistic modification of the classical
calculus mLK, say, mLJ. Unfortunately, it is not so, and the following
example demonstrates this fact.

Consider the sequent ¬∀xP (x) → ∃y¬P (y). Obviously, it is de-
ducible in LK while it is not deducible in LJ.

We can construct the following proof tree D in mLK for it:

〈d, P (d)〉 → 〈z, P (z)〉
〈d, P (d)〉 → 〈,∀xP (x)〉
〈,¬∀xP (x)〉, 〈d, P (d)〉 →
〈,¬∀xP (x)〉 → 〈d,¬P (d)〉

〈,¬∀xP (x)〉 → 〈,∃y¬P (y)〉 ,

where d is a dummy and z a parameter.
Consider the substitution s = {z/d}. It converts the upper sequent

of D into an axiom and is admissible for D. By Theorem 1, the sequent
¬∀xP (x) → ∃y¬P (y) is deducible in LK.

The succedent of any sequent in D contains only one formula, i.e.
D satisfies the intuitionistic requirement to inference rules. Therefore,
the usage of only the new admissibility is not enough for providing the
“sound” deducibility in mLJ for the intuitionistic case.

This situation can be corrected with the help of the notion of the
so-called compatibility of a constructed proof tree with a selected sub-
stitution [6]. Because of the paper size limit, this notion will not be
formally defined below. We note simply that after introducing both
the notions of admissibility and compatibility in mLJ, they correlate
with each other in such a way that provides the soundness of inference
search. For example, the above-given tree D for the sequent ¬∀xP (x)
→ ∃y¬P (y) is not compatible with the unique “reasonable” substitution
s = {z/d}, which implies that ¬∀xP (x) → ∃y¬P (y) is not deducible
in the calculus LJ.

The following result takes place for intuitionistic logic.

Theorem 2. Let A1, . . . , Am, B1, . . . , Bn be formulas of the first-order
language. The sequent A1, . . . , Am → B1, . . . , Bn is deducible in LJ
if and only if there exist an inference tree D in mLJ for the initial
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sequent 〈, A1〉, . . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 and a substitution s of
terms without dummies for all the dummies of D such that: (1) D is
a latent proof tree in mLJ w.r.t. s, (2) s is an admissible substitution
for the set of all sequences of parameters and dummies from D, and
(3) D is compatible with s.

Pay your attention to the fact that Theorems 1 and 2 are distin-
guished by only the presence of the item (3) in Theorem 2.

7 Admissibility, compatibility, and deducibili-

ty in equality and modal extensions

Let LK≈ and LJ≈ be, respectively, the calculi LK and LJ, in which the
Kanger equality rules from [3] are incorporated, where ≈ denotes the
equality symbol.

Let us introduce for mLK and mLJ the following modifications of
the Kanger equality rules (denoting the corresponding equality exten-
sions by mLK≈ and mLJ≈):

Γ|t
′

t′′
, 〈p, t′ ≈ t′′〉 → ∆|t

′

t′′

Γ, 〈p, t′ ≈ t′′〉 → ∆

Γ|t
′

t′′
, 〈p, t′′ ≈ t′〉 → ∆|t

′

t′′

Γ, 〈p, t′′ ≈ t′〉 → ∆
,

where the terms t′ and t′′ do not contain dummies and Γ|t
′

t′′
and ∆|t

′

t′′

denote the results of the simultaneous replacement of t′ by t′′ in Γ and
∆ respectively.

As in [3], the introduced equality rules are applied in inference
search in mLK≈ and mLJ≈ last of all, i.e. when it seems impossible to
construct such a tree D without applying equality rules and select such
a substitution s that the conditions (1), (2), and (3) from Theorems 1
and 2 are satisfied.

Let D be an inference tree constructed in mLK≈ (mLJ≈) without
applying equality rules and s be a substitution. Suppose that after
subsequent applying only the equality rules to all the leaves of D · s
not being axioms, then to their “heirs”, and so on, an inference tree
is produced, each leaf of which is only an axiom. Then D is called a
latent proof tree in mLK≈ (mLJ≈) w.r.t. s.
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Theorem 3. Let A1, . . . , Am, B1, . . . , Bn be formulas of the first-order
language. The sequent A1, . . . , Am → B1, . . . , Bn is deducible in LK≈

(LJ≈) if and only if there exist an inference tree D in mLK≈ (mLJ≈)
for the initial sequent 〈, A1〉, . . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 and a
substitution s of terms without dummies for all the dummies of D such
that: (1) D is a latent proof tree in mLK≈ (mLJ≈) w.r.t. s, (2) s is
an admissible substitution for the set of all the sequences of parameters
and dummies from D, and, in the case of mLJ≈, (3) the tree D is
compatible with s.

Our way of the construction of modal calculi has a certain corre-
lation with the papers [7] and [8], where necessary modal rules in a
sequent form are simply added to Gentsen’s calculi LK and LJ.

Doing the same for LK and LJ and LK≈ and LJ≈, we obtain
their modal extensions LK+Modm, LJ+Modm, LK≈+Modm, and
LJ≈+Modm, where Modm is a set of modal rules.

As to modal rules that can be added to LK, LJ, LK≈, and LJ≈,
any such modal rule is considered to be of the following general form:

Γ,Φ1, . . . ,Φk → Ψ1, . . . ,Ψr,∆

Γ,©1(Φ1), . . . ,©k(Φk) → ©′
1
(Ψ1), . . . ,©′

r(Ψr),∆
,

where ©1, . . . ,©r,©
′
1
, . . . ,©′

r are modal operators and Φ1, . . . , Φk,
Ψ1, . . . , Ψr multisets of formulas (containing, possibly, modal opera-
tors). In particular, such approach makes possible to determine the
calculus GK or GS4 from [8] based on using certain sequent rules for
the standard modal operators � and ♦.

Any modal rule of this form naturally determines the corresponding
modal rule of the following form (that can be introduced in any of the
calculi mLK, mLJ, mLK≈, and mLJ≈):

Γ′, 〈p1,Φ1〉, ..., 〈pk ,Φk〉 → 〈q1,Ψ1〉, ..., 〈qr ,Ψr〉,∆
′

Γ′, 〈p1,©1(Φ1)〉, ..., 〈pk ,©k(Φk)〉 → 〈q1,©′
1
(Ψ1)〉, ..., 〈qr ,©′

r(Ψr)〉,∆′

where p1, . . . , pk, q1, . . . , qr are sequences of dummies and parameters.
Draw your attention to that any such rule satisfies the subformula

property, which leads to the following result for modal extensions in
virtue of Theorems 1, 2, and 3.
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Theorem 4. Let A1, . . . , Am, B1, . . . , Bn be formulas of the first-order
language containing, possibly, modal operators. The sequent A1,. . . , Am

→ B1, . . . , Bn is deducible in LK+Modm (LJ+Modm, LK≈+Modm,
LJ≈+Modm) if and only if there exist an inference tree D in LK+Modm
(LJ+Modm, LK≈+Modm, LJ≈+Modm) for the initial sequent 〈, A1〉,
. . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 and a substitution s of terms without
dummies for all the dummies of D such that: (1) D is a latent proof
tree in LK+Modm (LJ+Modm, LK≈+Modm, LJ≈+Modm) w.r.t. s,
(2) s is an admissible substitution for the set of all the sequences of
parameters and dummies from D, and, in the cases of LJ+Modm and
LJ≈+Modm, (3) the tree D is compatible with s.

The Kanger calculus K without equality is coextensive with the
Gentzen calculus LK [3]. It is easy to see that all the above-described
constructions made for LK can be transferred to the case of K pro-
ducing an analogue of mLK for K and its intuitionistic modification
as well as their equality and modal extensions retaining the results on
coextensivity for all such modifications and extensions of K.

Taking into consideration this and all the above-given theorems,
we can obtain the soundness and completeness theorem for any of the
introduced calculi if and only if this theorem is true for its Gentzen or
Kanger analogue. For example, we conclude that the validity of a for-
mula F in the classical (intuitionistic) logic with equality is equivalent
to the deductibility of the initial sequent → 〈, F 〉 in mLK≈ (in mLJ≈).

8 Conclusion

The research presented in this paper demonstrates that the introduced
notions of admissibility and compatibility lead to a good enough deci-
sion of the problem of quantifier handling in first-order logics. They
can be easily built-in into the Gentzen calculi LK and LJ, which gives a
good basis for constructing computer-oriented sequent calculi for clas-
sical and intuitionisticl logics as well as for their equality and modal
extensions. Despite the questions of the machine implementation of
such sequent calculi were not considered in the paper, note that the
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construction of efficient calculi requires optimizing the order of the
propositional rule applications and selecting a method for generating
a substitution which can produce a latent proof tree. Bypassing de-
tails, make a point that the Robinson unification algorithm combined
with the new notion of admissibility (and compatibility) is suitable for
generating such substitutions.

The suggested approach to the construction of methods for infer-
ence search in first-order logics corresponds well to a modern vision of
the so-called Evidence Algorithm, EA, advances by V. M. Glushkov as
early as 1970. For the classical logic, it has found its reflection in the
deductive engine of the system for automated deduction SAD designed
in the accordance with the EA requirements to automated theorem
proving (see the Web-site “nevigal.org” as well as papers [9–14]).
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Small P Systems with Catalysts or Anti-Matter

Simulating Generalized Register Machines and

Generalized Counter Automata

Artiom Alhazov Rudolf Freund Petr Sośık

Abstract

In this paper we focus on two weak forms of cooperation in P
systems, namely, catalytic rules and matter/anti-matter annihila-
tion rules. These variants of P systems both are computationally
complete, while the corresponding rule complexity turns out to be
of special interest. For establishing considerably small universal
P systems in both cases, we found two suitable tools: generalized
register machines and generalized counter automata. Depending
on the features used in the different variants, we construct several
small universal P systems.

1 Introduction

Membrane systems with symbol objects are a theoretical framework
of parallel distributed multiset processing, for example, see [12, 13,
14]. While non-cooperative P systems are known to characterize the
regular languages, in case of unrestricted (even binary) cooperation,
showing computational completeness is straightforward, for example,
by simulating register machines. Hence, since many years researchers
have been interested in even weaker forms of cooperation.

A catalytic rule is a non-cooperative rule with an additional catalyst
on both the left side and the right side of the rule. Essentially, a catalyst
only inhibits parallelism of rules where it is indicated. The question
whether catalytic P systems are computationally complete (without
priorities or other additional features) has been open for a number of
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years, being finally answered positively, moreover, even showing that
two catalysts suffice (or three for the purely catalytic systems), see [7].

In the variant with anti-matter objects, in addition to non-
cooperative rules, specific cooperative erasing is allowed, namely, of
two objects related by a bijection “object-antiobject”. Anti-matter in
P systems is a rather recent direction, for instance, see [1].

Small universal P systems have been investigated for a number of
years. The smallest ones are those with string objects and splicing rules
where even five rules suffice, see [5]. In the case of symbol objects, if
full cooperation is allowed, then 23 rules suffice, see [6], and only 16
are needed if in addition inhibitors are allowed, see [8].

In this paper, we give an overview on small universal P systems
using anti-matter or catalysts as in [4] and we even improve the results
established there for (purely) catalytic P systems, based on recent re-
sults obtained in [3] as well as in [16] and [17].

2 Definitions

We assume the reader to be familiar with the basic notions and concepts
from formal language theory, for example, see textbooks as [15]; for the
area of P systems we refer to [12, 13, 14] and to [18] for actual news.

For an alphabet V , by V ∗ we denote the free monoid generated
by V under the operation of concatenation, i.e., containing all possible
strings over V . The empty string is denoted by λ.

In this paper we will not distinguish between a multiset, its string
representation (having as many occurrences of every symbol as its mul-
tiplicity in the multiset, the order in the string being irrelevant), and a
vector of multiplicities (assuming that the order of enumeration of sym-
bols from V is fixed). We mention that

∏

represents the concatenation
of an ordered list of strings, and if these strings represent multisets, this
corresponds to their union.
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2.1 Register Machines

Register machines are well-known universal devices for computing (gen-
erating or accepting) sets of (vectors of) natural numbers.

Definition 1 A register machine is a construct M = (m,B, l0, lh, P )
where

• m is the number of registers,

• P is the set of instructions bijectively labeled by elements of B,

• l0 ∈ B is the initial label, and

• lh ∈ B is the final label.

The instructions of M can be of the following forms:

• p : (ADD (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically
jump to instruction q or s.

• p : (SUB (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero, then decrease the value of
register r by one (decrement case) and jump to instruction q,
otherwise jump to instruction s ( zero-test case).

• lh : HALT.
Stop the execution of the register machine.

A configuration of a register machine is described by the contents
of each register and by the value of the current label, which indicates
the next instruction to be executed. M is called deterministic if all the
ADD-instructions are of the form p : (ADD (r) , q).

In the accepting case, a computation starts with the input of a
k-vector of natural numbers in its first k registers and by executing
the first instruction of P (labeled with l0); it terminates with reaching
the HALT-instruction. Without loss of generality, we may assume all
registers to be empty at the end of the computation.
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A register machine MU is called universal, if, given the code of an
arbitrary register machine M , MU can simulate the computations of M
on any given input. We speak of strong universality, if both input and
output are given directly as numbers, whereas weak universality means
that both input and output are encoded by a recursive function f , e.g.,
f(n) = 2n; we also consider weak-strong universality with encoded
input, but unencoded output.

2.2 P Systems

In this paper, we will only consider membrane systems with the sim-
plest membrane structure µ = [ ]1, i.e., with even omitting µ, we con-
sider a (catalytic) P system as a construct Π = (O,C,w1, R1) where O
is the alphabet of objects, C ⊆ O is the set of catalysts, w1 the multiset
of objects present in the skin region at the beginning of a computation,
and R1 is a finite set of evolution rules, associated with the skin region.
In this paper we only use the maximally parallel derivation mode, i.e.,
in each derivation step we apply a non-extendable multiset of rules.

If a rule u → v has at least two objects in u, then it is called co-
operative, otherwise it is called non-cooperative. In catalytic P systems
we use non-cooperative as well as catalytic rules, which are of the form
ca → cv where c is a special object called catalyst, which never evolves
(this restriction can be relaxed), but it just assists object a to evolve to
the multiset v. In a purely catalytic P system we only allow catalytic
rules. If we allow catalysts to switch between different states, we speak
of multi-stable catalysts.

In P systems with anti-matter objects, each object a also has an
anti-matter object ā in O and, in addition to non-cooperative and cat-
alytic rules, matter/anti-matter annihilation rules aā → λ are allowed,
for instance, see [1].

In P systems with toxic objects, specific symbols are specified as
being toxic; a computation can only be continued by a non-extendable
multiset of rules which does not leave any toxic object idle. For more
details about toxic P systems, for example, see [2].
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3 Small Universal Register Machines

The universal register machines with the smallest known number of
instructions are those constructed by I. Korec in [10]. For the standard
instruction set (ADD-instructions and SUB-instructions, not counting
the halting one), these are the strongly universal machine U22 and the
weakly universal machine U20, see Figure 1.
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Figure 1. The strongly universal register machine U22 (left) and the
simulation block of the weakly universal register machine U20 (right).

3.1 Generalized Register Machines

We often observe that the most efficient (in terms of rule complex-
ity) simulations of register machines by P systems do not use separate
rules for ADD-instructions, but perform them as a part of the rules
simulating SUB-instructions. Hence, we recall from [4] the following
generalization of register machines, as a tool for such simulations.

The model of generalized register machines has only instructions of
one type except the halt instruction, i.e., generalized SUB-instructions
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of the form j : (SUB(r), A−(j)k,A0(j)l) where j, k, l ∈ B are instruction
labels and A−(j), A0(j) are (possibly empty) strings of increment com-
mands (sub-instructions) ADD(j′). Clearly, a standard register machine
(with ADD-instructions and SUB-instructions) can be obtained from a
generalized one, simply by introducing intermediate states, see [4] for
additional remarks.

3.2 With Multiple Registers

Below we present the (rules for the) strongly universal register machine
U22 of Korec, see [10] and Figure 1, left, in the form of a generalized
register machine:

q1 : (SUB(1), ADD(7)q1, ADD(6)q4), q16 : (SUB(5), q18, q23),
q4 : (SUB(5), ADD(6)q4, q7), q18 : (SUB(5), q20, q27),
q7 : (SUB(6), ADD(5)q10, q4), q23 : (SUB(2), q32, q25),
q10 : (SUB(7), ADD(1)q7, q13), q25 : (SUB(0), q1, q32),
q13 : (SUB(6), ADD(6)q14, q1), q27 : (SUB(3), q32, ADD(0)q1),
q14 : (SUB(4), q1, q16), q32 : (SUB(4), q1, qh),
q20 : (SUB(5), ADD(4)q16, ADD(2)ADD(3)q32).

In the generalized register machine form of the weakly universal
register machine U20 of Korec, see [10], q25 is no longer present, and
instructions q20, q23 and q27 are different, see Figure 1, right, and reg-
ister 3 is not needed any more:

q20 : (SUB(5), ADD(4)q16), q23 : (SUB(0), q32, q1), q27 : (SUB(2), q32, q1).

Remark 1 Sometimes, also for technical reasons, we want to produce
the output in a register which only has increment instructions associ-
ated to it, and have all other registers empty in the end. Unfortunately,
these technical details are not fulfilled by the (strongly or weakly) uni-
versal register machines constructed by Korec in [10]: the result is ob-
tained in register 0, a register allowing for SUB-instructions, and, due
to the specific features of the register machines simulated by the univer-
sal Korec machines, (only) the registers 1 and 6 are not empty. There-
fore, the last instruction q32 can be replaced by the following ones, with
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register 8 being the new output register; we can omit the right column
and already take q35 as the halting state if “cleaning” is not needed:

q32 : (SUB(4), q1, q34), q35 : (SUB(1), q35, q36),
q34 : (SUB(0), ADD(8)q34, q35), q36 : (SUB(6), q36, qh).

3.3 With Two Decrementable Registers

In this subsection we discuss how to reduce the number of registers to
two, possibly not counting an extra increment-only register. It is well
known, e.g., see [11], that the computations of any m-register machine
can be simulated by a 2-register machine, via exponential encoding.
Indeed, if we take the first m prime numbers pi, 1 ≤ i ≤ m, the
values xi of the registers i, 1 ≤ i ≤ m, can be encoded in any of the
first two registers as the single number p1

x1 . . . pm
xm . Then, ADD(r)

is simulated by multiplying the value of the first register by pr, and
SUB(r) is simulated by trying to divide the value of the first register by
pr; if the division is successful, the decrement transition is made, and
otherwise, the value is restored, and the zero-test transition is made.

In the following, we analyze the simulation blocks mentioned above
and represent the obtained 2-register machine in the generalized regis-
ter machine form, following the constructions given in [11]:
– Instruction j : (ADD(r), k) is simulated by the two generalized SUB-
instructions j : (SUB(1), (ADD(2))pr j, j′) and j′ : (SUB(2), ADD(1)j′, k).
– Instruction j : (SUB(r), k, l) is simulated by the pr + 2 generalized
SUB-instructions

j : (SUB(1), j1, j
′),

jn : (SUB(1), jn+1, (ADD(1))
n j′′), for 1 ≤ n ≤ pr − 2,

jn : (SUB(1), ADD(2)j, (ADD(1))n j′′), for n = pr − 1,
j′ : (SUB(2), ADD(1)j′, k),
j′′ : (SUB(2), (ADD(1))n j′′, l), for n = pr.

In the course of the analysis of the number of uses of decrements,
the assignment of prime numbers to registers was chosen for U22: The
conditional decrement of register 5 happens 4 times, the conditional
decrements of registers 4 and 6 happen twice each, and the conditional
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decrement of any other register happens once. Register 5 is represented
by powers of 2, registers 6 and 4 by powers of 3 and 5 as well as registers
0, 1, 2, 7, and 3 by powers of 7, 11, 13, 17, and 19, respectively. We
remark that we use a smaller prime for R6 than for R4 because the
former is incremented twice and the latter is incremented only once in
the underlying Korec machine, which, compared to the opposite choice
leads to saving two ADD-instructions, which might be an interesting
feature in another context, although in the present paper we are not
concerned about that. We used the largest of the first 8 primes for
R3 because R3, besides being one of the least-used registers here, is
no longer used in the weakly universal Korec machine U20 considered
next. Moreover, a smaller prime is used for R0 than for R1 and R2,
because R0 is also involved in the decoding phase discussed below.

In [4] the rule complexity of this reduction was improved as follows.
It was noted that the recopying for increment and zero-test usually can
be avoided by assigning different “master registers” to different states.
The word “usually” means whenever the master register is changed
after increment and zero-test, but is not changed after a decrement.

Hence, now the following allocation of master registers is chosen:
Register 1: q1, q6, q9, q12, q33, q18, q22, q27.
Register 2: q3, q4, q7, q10, q13, q14, q16, q20, q23, q25, q32, qh.

Another observation that we use to save even more instructions
is the following: if an increment instruction has a unique entry point
which is a zero-test, then such an increment can be embedded into
the zero-test without using additional instructions. Clearly, the same
transformation can be applied to multiple consecutive increments. The
states q29, q30, and q31 do not appear in the register allocations above
because we have embedded them into the zero-tests of q27 and q20.

We proceed with evaluating the instruction complexity of the ob-
tained generalized register machine by states. With the register al-
location given above, recopying has been skipped for all transitions
except q13 → q1 and q23 → q32. The table below shows the numbers
of generalized register machine instructions associated with each gen-
eralized register machine instruction, and the numbers of generalized
register machine instructions associated with the states q13 and q23 are
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underlined. The necessity of at least two recopyings can be argued
by inspecting the cycles q1 − q6 − q4 − q7 − q9 − q10 − q13 − q1 and
q23 − q25 − q32 − q23; these cycles do not have common nodes, and each
cycle needs at least one recopying to have the value in the original reg-
ister. This minimality has been further confirmed by computer search
in the space of possible allocations of registers to states, furthermore
showing the uniqueness of the optimal allocation modulo the symmetric
assignment.

state q1 q3 q4 q6 q7 q9 q10 q12 q13 q33
instructions 12 1 3 1 4 1 18 1 5 1

state q14 q16 q18 q20 q22 q23 q25 q27 q32 qh
instructions 6 3 3 3 1 15 8 20 6 0

This gives a total of 112 instructions for a weakly universal general-
ized 2-register machine. To obtain weak-strong universality, the result
has to be decoded into a third increment-only register, which means
repeated division of the encoding by 7 with incrementing the new reg-
ister in each cycle, iterated until a remainder is obtained. In fact, this
means adding the following generalized register machine instructions:

qh : (SUB(2), h1, h7),
hi : (SUB(2), hi+1, h8), 1 ≤ i ≤ 5,
h6 : (SUB(2), ADD(1)ADD(3)qh, h8),
h7 : (SUB(1), ADD(2)h7, qh)

with h8 being the new halting state. The computation ends up with
empty register 2, but still some “garbage” in register 1, which can be
erased by taking an additional rule h8 : (SUB(1), h8, h9) and h9 as the
new halting state instead. Hence, in total this additional part costs
8 instructions for the decoding, plus an extra instruction to erase the
rest of the encoding, i.e., the instruction labeled by h8, resulting in the
overall value for the generalized register machine instructions of 121
(with “cleaning”) and 120 (without “cleaning”), respectively.

Yet for weak universality, several states and rules can be saved by
simulating the weakly universal machine U20 of Korec, see [10], instead
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of the strongly universal register machine U22. The weakly universal
register machine U20 does not use register 3, so we no longer need to
carry out division by 19. The difference is only in the simulation block,
so only instructions associated with states q23 and q27 are affected, as
well as q30 and q31 work on different registers, which does not affect
the number of generalized instructions, and instructions q25 and q29
are no longer present. Like in case of the strongly universal register
machine, we embed the instructions q30 and q31 into the preceding
zero-test of q20.

We leave the same assignment of prime numbers to the registers
and the same allocation of the main register, except that we reallocate
q23 to register 1 and that we no longer have q25. This leads to skip-
ping recopying for all transitions except for q13 → q1 and q16 → q23;
again, the associated numbers of instructions are underlined in the
table below. The necessity of at least two recopyings can be argued
by inspecting the cycles q1 − q6 − q4 − q7 − q9 − q10 − q13 − q1 and
q16 − q18 − q27 − q32 − q23 − q16; these cycles have no common nodes,
and each cycle needs at least one recopying to have the value in the
original register. This minimality has been further confirmed by com-
puter search in the space of possible allocations of registers to states,
furthermore again showing the uniqueness of the optimal allocation
modulo the symmetric assignment for the weakly universal generalized
register machine with embedded increments.

We have the following adjustment on the number of generalized
instructions; the numbers to the left of each arrow are replaced by the
numbers to the right of that arrow.

state q16 q23 q25 q27
instructions 3 → 4 15 → 8 8 → 0 20 → 14

After having saved 20 instructions in this way, only 112 − 20 = 92
generalized instructions remain.

3.4 Generalized Counter Automata

Generalized counter automata (GCAs for short) were introduced in [1]
and also used in [4] and [3] with slightly different restrictions because
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of how they then were simulated by the corresponding P systems. The
reason to consider a generalization of counter automata is that some-
times the simulation costs (measured in the number of rules in the
description of a P system) of a composite instruction is the same as
that (or almost the same, but anyway less than the sum of those) for
simulating an elementary instruction.

For a register machine M = (m,B, l0, lh, P ) consider the more gen-
eral type of instructions i : (q,M−, N,M+, q

′) where q, q′ ∈ Q are states,
N ⊆ R is a set of registers, andM−,M+ are multisets of registers. Such
a register machine applies instruction i as follows: first, multiset M− is
subtracted from the register values (i.e., for each register j ∈ R, M−(j)
is subtracted from the contents of register j; if at least one resulting
value would be negative, the machine is blocked without producing
any result); second, the subset N of registers is checked to be zero (if
at least one of them is found to be non-zero, the machine is blocked
without producing any result); third, the multiset M+ is added to the
register values (i.e., for each register j ∈ R, M+(j) is added to the
contents of register j), and finally the state changes to q′.

The work of such a register machine, now also called a general-
ized counter automaton and written M = (m,B, q1, qh, P ), consists of
derivation steps applying instructions, chosen in a non-deterministic
way, associated with the current state. The computation starts in
the initial state q1, and we say that it halts if the final state qh has
been reached (which replaces the condition of reaching the final HALT-
instruction labeled by lh).

We start by presenting the small universal antiport P systems with
inhibitors from [8]; let us call it GCA 1.

1 : (q1, 〈1〉, {}, 〈7〉, q1), 9 : (q10, 〈6, 5〉, {7, 4}, 〈〉, q18),
2 : (q1, 〈〉, {1}, 〈6〉, q4), 10 : (q18), 〈5

3〉, {}, 〈4〉, q18),
3 : (q4, 〈5〉, {}, 〈6〉, q4), 11 : (q18, 〈〉, {5, 3}, 〈0〉, q1),
4 : (q4, 〈6〉, {5}, 〈5〉, q10), 12 : (q18, 〈5

2, 0〉, {5, 2}, 〈〉, q1),
5 : (q10, 〈7, 6〉, {}, 〈1, 5〉, q10 ), 13 : (q18, 〈5

2, 2〉, {5}, 〈〉, q1),
6 : (q10, 〈7〉, {6}, 〈1〉, q4), 14 : (q18, 〈5

2〉, {5, 2, 0}, 〈〉, q1)
7 : (q10, 〈〉, {6, 7}, 〈〉, q1), 15 : (q18, 〈3, 4〉, {5}, 〈〉, q1),
8 : (q10, 〈6, 4〉, {7}, 〈〉, q1), 16 : (q18, 〈5, 4〉, {5}, 〈2, 3〉, q1).
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We now present a few variations of GCA 1, which have more instruc-
tions, but satisfy certain requirements that make them more suitable
for a simulation by specific P systems.

For the variant to be simulated by anti-matter P systems, we require
that for any instruction, M− does not overlap with M+; note that
this condition is already fulfilled by GCA 1. Moreover, we note that,
as it will be shown later, if M− does not overlap with N , then the
simulation (in terms of the number of instructions) is more efficient,
but otherwise the simulation is still more efficient than in the case of
splitting such an instruction into two instructions and simulating these
two. Another requirement, due to the technicalities of the simulation,
is that the halting must be in a state with no associated instructions
(unlike in GCA 1, which halts in q18 if no instruction is applicable,
its straightforward simulation would non-deterministically choose an
instruction to simulate and fail, entering an infinite loop). The solution
is to replace the last two rules with the following ones; let us call this
resulting automaton GCA 2:

15 : (q18, 〈3〉, {5}, 〈〉, q32), 16 : (q18, 〈5〉, {5}, 〈2, 3〉, q32),
17 : (q32, 〈4〉, {}, 〈〉, q1), 18 : (q32, 〈〉, {4}, 〈〉, qh).

For the simulation with many catalysts, we need different require-
ments. However, also in this case we need that the GCA halts in a state
with no associated instructions, so we take GCA 2 as the basis. While
it no longer matters whether M− and N are disjoint, we require that
M+ does not overlap with either M− or N . To fulfill this condition,
we take GCA 2 and replace instruction 4 by new instructions 4 and 4′

below. Let us call the result GCA 3. Moreover, for technical reasons,
we have to produce the output in a register that only has increment
instructions associated to it, and have all other registers empty in the
end, hence, instruction 18 is replaced by instructions 18–21 below. Let
us call the result GCA 4.

4 : (q4, 〈6〉, {5}, 〈〉, q4′ ) 4′ : (q4′ , 〈〉, {}, 〈5〉, q10),
18 : (q32, 〈0〉, {4}, 〈8〉, q32), 20 : (q32, 〈6〉, {4}, 〈〉, q32),
19 : (q32, 〈1〉, {4}, 〈〉, q32), 21 : (q32, 〈〉, {0, 1, 4, 6}, 〈〉, qh).
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Finally, for a simulation with multiple catalysts (in fact, 8), the
setting is more restricted. A coupling function fc is considered, which
is a bijective mapping from the set of registers to the same set, without
a fixed point. Not only is M− forbidden to contain more than one copy
of the same register, but we need all the sets supp(M−), fc(supp(M−)
and N to be disjoint. After having carefully inspected the Korec ma-
chines and the resulting GCAs from [4], we decided to use the following
coupling function fc:

r : 0 1 2 3 4 5 6 7
fc(r) 6 5 7 4 3 1 0 2

While we keep instructions 1–9 identical to the ones listed above,
the rest of instructions is presented below. We call the result GCA 5 (in
[3] such a variant of counter automata is called “weakly generalized”).

10 : (q18, 〈5〉, {}, 〈〉, q20), 14 : (q16, 〈〉, {0, 2, 5}, 〈〉, q32),
10′ : (q20, 〈5〉, {}, 〈4〉, q16), 15 : (q18, 〈3〉, {5}, 〈〉, q32),
10′′ : (q16, 〈5〉, {}, 〈〉, q18), 16 : (q20, 〈〉, {5}, 〈2, 3〉, q32),
11 : (q18, 〈〉, {3, 5}, 〈0〉, q1), 17 : (q32, 〈4〉, {}, 〈〉, q1),
12 : (q16, 〈0〉, {2, 5}, 〈〉, q1), 18 : (q32, 〈〉, {4}, 〈〉, qh).
13 : (q16, 〈2〉, {5}, 〈〉, q32),

As in the case of multiple catalysts, the input must be moved to an
increment-only register, but for technical reasons the other registers do
not have to be cleaned by instructions of the GCA. Hence, we replace
instruction 18 by the instructions below, with λ being the new final
state, and we call the result GCA 6.

18 : (q32, 〈0〉, {4}, 〈8〉, q32), 18′ : (q32, 〈〉, {0, 4}, 〈〉, λ).

4 Antimatter

We now consider P systems with matter/anti-matter annihilation rules,
see [1].
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Theorem 1 (see [1]) There exist small universal P systems with non-
cooperative rules and matter/anti-matter annihilation rules – with 9
annihilation rules and, in total, 53 rules in the accepting case, 59 rules
in the generating case, and 57 rules in the computing case.

Table 1. A small universal P system with anti-matter.

Π =
(

O, [ ]
1
, q1, R1, 1, 1

)

where

O = {l2, l4, l6, l7, l8, l9, l11, l12, l
′
12, l13, l

′
13, l14, l

′
14, l15, l16, l

′
16, l18}

∪ {q1, q4, q10, q18, q32, qh} ∪ {a, a− | a ∈ {aj | 0 ≤ j ≤ 7} ∪ {#}}

and R1 contains the following rules:

q1 → q1a1
−a7,

q1 → l2a1
−, l2 → q4#a6,

q4 → q4a5
−a6,

q4 → l4a5
−, l4 → q10#a6

−a5,

q10 → q10a7
−a6

−a1a5,

q10 → l6a6
−, l6 → q4#a7

−a1,

q10 → l7a6
−a7

−, l7 → q1##,

q10 → l8a7
−, l8 → q1#a6

−a4
−,

q10 → l9a7
−a4

−, l9 → q18##a6
−a5

−,

q18 → q18a5
−a5

−a5
−a4,

q18 → l11a5
−a3

−, l11 → q1##a0,

q18 → l12a5
−a5

−a−
0
, l12 → l′

7
a5

−a2
−,

q18 → l13a5
−a5

−a2
−, l13 → l′

13
a5

−, l′
13

→ q1#,

q18 → l14a5
−a5

−, l14 → l′
14
a5

−a2
−a0

−, l′
14

→ q1###,

q18 → l15a5
−, l15 → q32#a3

−,

q18 → l16a5
−, l16 → l′

16
a5

−, l′
16

→ q32#a2a3,

q32 → q1a4
−,

q32 → l18a4
−, l18 → qh#,

#− → #4, # → #4, (##− → λ),
ar

− → #−, (arar
− → λ), 0 ≤ r ≤ 7.
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For a generalized counter automaton M = (m,B, q1, qh, P ), let

k = 1 + max
i:(q,M−,N,M+,q′)∈P

(|M−|, |N |).

Common for different instructions ofM , we consider the following rules:

#− → #k, # → #k, ##− → λ, ar → #−, ara
−
r → λ, r ∈ R.

We recall the main construction block: the simulation of instruction
i : (q,M−, N,M+, q

′) ∈ P . First we consider the case when M− and
N have no common elements, and moreover, we also assume that M−

does not overlap with M+.

q → li
∏

r∈N
ar

−, li → q′(
∏

r∈N
#)(

∏

r∈M−

ar
−)

∏

r∈M+

ar.

If the zero-test set N is empty, then the first step is a simple re-
naming and can be combined with the second step, yielding one rule

q → q′(
∏

r∈M−

ar
−)

∏

r∈M+

ar.

Clearly, if M− and N overlap, such an instruction can be broken
down into two subsequent instructions of the generalized counter au-
tomaton. However, a more efficient solution with only three rules exists:

q → li
∏

r∈M−

ar
−, li → l′i

∏

r∈N
ar

−, l′i → q(
∏

r∈N
#)

∏

r∈M+

ar.

The accepting case is shown by the construction in Table 1, simulat-
ing GCA 2.

5 One Catalyst and One Multi-Stable Catalyst

A conditional decrement is performed by letting the multi-stable cata-
lyst try to remove one register object, the states of the catalyst being
associated to the registers. In the next step, the “program object”
verifies whether the state of the multi-stable object was changed, and
the proper transition is modeled. Based on this idea, a few universal P
systems have been constructed in [4], depending on whether the strong
Korec machine, the weak one, or the one reduced to two working reg-
isters is simulated, whether the output is decoded, and whether the
feature of toxic objects is used, see the upper part of Table 4.
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6 Multiple Catalysts

In this section, we do not limit the number of catalysts, but aim at a
small number of rules, based on the results recently established in [3].

Theorem 2 (see [3]) There exists a small universal catalytic P system
with 8 catalysts and 98 rules. Using toxic objects, the number of rules
can be reduced to 89.

Besides the rules associated to the instructions, we use rules

{# → #} ∪ {cror → crdr, crdr → cr, crer → cr#,

cfc(r)er → cfc(r), dr → # | 0 ≤ r ≤ 7}.

For a general instruction j of wGCA, j : (qi,M−, N,M+, qk) it suffices
to have the following three rules:

qi → pjEM−
Dm,M−,N , pj → pjD

′
m,M−

, pj → qkDmOM+ where

Dm,M−,N =
∏

i∈[1..m]\(supp(M−)∪N)

di,

D′
m,M−

=
∏

i∈[1..m]\{r,c(r)|r∈M−}

di,

EM−
=

∏

r∈M−

er, and

OM+ =
∏

r∈M+

or.

The construction given in Table 2 was used for the proof, simu-
lating GCA 6 (for conciseness, the multiset of objects dr, 0 ≤ r ≤ 7,
r 6∈ M , is denoted by d(M), and we omit the braces denoting M).

In addition to w1, to the initial configuration we add the number of
symbols o1 corresponding with the code of the machine to be simulated
and the number of symbols o0 corresponding with the input number to
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Table 2. A universal catalytic P system with 8 catalysts.

Π = (O,Σ, C = {cr | 0 ≤ r ≤ 7}, µ = [ ]
1
, w1, R1, f = 1),

O = {or, dr, er | 0 ≤ r ≤ 7} ∪ {#, p10′ , p10′′ , p18′ , o8}

∪ {p′j | j ∈ {1, 3, 4, 5, 6, 8, 9, 10, 10′ , 10′′, 12, 13, 15, 17, 18′}}

∪ {pj | 1 ≤ j ≤ 18} ∪ {q1, q4, q10, q16, q18, q20, q32},

R1 = R ∪ {# → #} ∪ {cror → crdr, crdr → cr, crer → cr#,

cfc(r)er → cfc(r), dr → # | 0 ≤ r ≤ 7},

w1 = q1d(),

and the rules from the set R are listed below:

q1 → p1e1d(1), p1 → p′
1
d(1, 5), p′

1
→ q1d()o7,

q1 → p2d(1), p2 → q4d()o6,
q4 → p3e5d(5), p3 → p′

3
d(1, 5), p′

3
→ q4d()o6,

q4 → p4e6d(5, 6), p4 → p′
4
d(0, 6), p′

4
→ q10d()o5,

q10 → p5e6e7d(6, 7), p5 → p′
5
d(0, 2, 6, 7), p′

5
→ q10d()o1o5,

q10 → p6e7d(6, 7), p6 → p′
6
d(2, 7), p′

6
→ q4d()o1,

q10 → p7d6,7, p7 → q1d(),
q10 → p8e4e6d(4, 6, 7), p8 → p′

8
d(0, 3, 4, 6), p′

8
→ q1d(),

q10 → p9e5e6d(4, 5, 6, 7), p9 → p′
9
d(0, 1, 5, 6), p′

9
→ q18d(),

q18 → p10e5d(5), p10 → p′
10
d(1, 5), p′

10
→ q20d(),

q20 → p10′e5d(5), p10′ → p′
10′

d(1, 5), p′
10′

→ q16d(),
q16 → p10′′e5d(5), p10′′ → p′

10′′
d(1, 5), p′

10′′
→ q18d(),

q18 → p11d(3, 5), p11 → q1d()o0,
q16 → p12e0d(0, 2, 5), p12 → p′

12
d(0, 6), p′

12
→ q1d(),

q16 → p13e2d(2, 5), p13 → p′
13
d(2, 7), p′

13
→ q32d(),

q16 → p14d(0, 2, 5), p14 → q32d(),
q18 → p15e3d(3, 5), p15 → p′

15
d(3, 4), p′

15
→ q32d(),

q20 → p16d(5), p16 → q32d()o2o3,
q32 → p17e4d(4), p17 → p′

17
d(3, 4), p′

17
→ q1d(),

q32 → p18e0d(0, 4), p18 → p′
18
d(0, 6), p′

18
→ q32d()o8,

q32 → p18′d(0, 4), p18′ → d().
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this machine; the result of the simulation is represented by the number
of symbols o8 in the final configuration.

Going to the extreme with the number of catalysts, we can even
obtain a real-time simulation of register machines, see [4], and obtain
a universal P system with even less rules.

Theorem 3 (see [4]) There exists a small universal purely catalytic P
system with 21 catalysts and 74 rules. Using toxic objects, the number
of rules can be reduced to 64.

Let S be a finite multiset and S′ ⊆ S, and let eS(S
′) be a string

representing the multiset S \ S′. We note that we will use eS(λ) (as λ
denotes the empty multiset) for representing the multiset S itself. We
define the multiset S and the corresponding mapping eS by

eS(λ) = d0,− · · · d4,− d5,− d5,− d5,− d6,− d7,− d0,0 · · · d7,0,

and for a finite multiset L, by g(L) we denote a string representing a
multiset consisting of objects or for each occurrence of r in L. Besides
the rules associated to instructions, the following rules are used:

R = {cr,−or → cr,−, cr,−d → cr,−# | r ∈ {0, · · · , 7}}

∪ {cr,0or → cr,0#, cr,0dr,0 → cr,0, cr,−dr,− → cr,−,

c#dr,− → c## | r ∈ {0, · · · , 7}}

∪ {cdd
′ → cd, cdd → cd, c#d

′ → c##, c## → c##}.

If we take S to be the finite multiset over {dr,− , dr,0 | 1 ≤ r ≤ m}
such that, for 1 ≤ r ≤ m, S(dr,0) = 1 if r ∈

⋃

j:(q,M−,N,M+,q′)∈P N

and S(dr,0) = 0 otherwise, as well as S(dr,−) = max{M−(r) |
j : (q,M−, N,M+, q

′) ∈ P}, then the simulation of an instruction
j : (q,M−, N,M+, q

′) is initiated by the catalytic rule

cpq → cpq
′d′eS(〈dr,−

M−(r) | r ∈ supp(M−)〉 ∪ 〈dr,0 | r ∈ N〉)g(M+).

The construction for the proof simulating GCA 4 is given in Table 3.
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Table 3. A universal purely catalytic P system with 21 catalysts.

Π = (O,C, {o1, o2}, {o8}, w,R) where

O = C ∪ {or | 0 ≤ r ≤ 8} ∪Q ∪ {dr,− , dr,0 | 0 ≤ i ≤ 7} ∪ {d, d′,#},

C = {cr,− , cr,0 | 0 ≤ r ≤ 7} ∪ {cd, cp, c#},

w = c0,− · · · c4,− c5,− c5,− c5,− c6,− c7,− c0,0 · · · c7,0 cdcpc#

dd′p1eS(d1,−), and the set R consists of the following rules:

R = {cr,−or → cr,−, cr,−d → cr,−# | r ∈ {0, · · · , 7}}

∪ {cr,0or → cr,0#, cr,0dr,0 → cr,0, cr,−dr,− → cr,−,

c#dr,− → c## | r ∈ {0, · · · , 7}}

∪ {cdd
′ → cd, cdd → cd, c#d

′ → c##, c## → c##}

∪ {cpq1 → cpq1d
′eS(d1,−)o7, cpq1 → cpq4d

′eS(d1,0)o6,

cpq4 → cpq4d
′eS(d5,−)o6, cpq4 → cpq4′d

′eS(d6,− d5,0),

cpq4′ → cpq10d
′eS(λ)o5,

cpq10 → cpq10d
′eS(d6,− d7,−)o1o5,

cpq10 → cpq4d
′eS(d7,− d6,0)o1,

cpq10 → cpq1d
′eS(d6,0 d7,0), cpq10 → cpq1d

′eS(d4,− d6,− d7,0),

cpq10 → cpq18d
′eS(d5,− d6,− d4,0 d7,0),

cpq18 → cpq18d
′eS(d5,− d5,− d5,−)o4,

cpq18 → cpq1d
′eS(d3,0 d5,0)o0,

cpq18 → cpq1d
′eS(d0,− d5,− d5,− d2,0 d5,0)o4,

cpq18 → cpq32d
′eS(d2,− d5,− d5,− d5,0)o4,

cpq18 → cpq32d
′eS(d5,− d5,− d0,0 d2,0 d5,0)o4,

cpq18 → cpq32d
′eS(d3,− d5,0),

cpq18 → cpq32d
′eS(d5,− d5,0)o2o3, cpq32 → cpq1d

′eS(d4,−),

cpq32 → cpq32d
′eS(d0,− d4,0)o8,

cpq32 → cpq32d
′eS(d1,− d4,0), cpq32 → cpq32d

′eS(d6,− d4,0),

cpq32 → cpeS(d0,0 d1,0 d4,0 d6,0)}.
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7 Universal P Systems with Two Catalysts

We now take the new simulation from [3]. For a register machine with
only two working registers, we need 5 rules per instruction plus 11
rules; cleaning happens by the P system itself at the end of a successful
simulation (for example, see [16], for detailed arguments), but recopy-
ing of the result to an extra non-decrementable register at the end of
the simulation is needed for the case of weak universality. Hence, we
obtain a weakly-strongly / weakly universal catalytic P system with
two catalysts, having 611/476 rules (improving the result of 1091/848
rules from [4]). Using the feature of toxic objects, the simulation costs
are reduced to 5 rules per instruction plus 8, yielding 608/473 rules
(improving the result of 726/564 rules from [4]).

8 Universal Purely Catalytic P Systems

It was stated in [3] that the constructions obtained there for catm also
hold for pcatm+2: one catalyst can take care of the states and pro-
gram symbols, while one more catalyst can perform the trapping rules.
Hence, any generalized register machine with m decrementable regis-
ters and s generalized SUB-instructions can be simulated by a purely
catalytic P system with m+2 catalysts and 5s+5m+1 rules. There-
fore, the results with 611, 476, 608 and 473 rules for universal catalytic
P systems with 2 catalysts also hold for universal purely catalytic P
systems with 4 catalysts.

It was shown in [3] that purely catalytic P systems with 9 catalysts
are strongly universal with 6 × 16 + 6 × 8 + 1 = 145 rules. Using the
formula 6s + 6m+ 1 from [17], simulating the weakly universal gener-
alized register machine we obtain a weakly universal purely catalytic
P system with 8 catalysts and 6× 15 + 6× 7 + 1 = 133 rules (improv-
ing the result of 171 rules from [4]). In a similar approach, consider
the weakly-strongly/weakly universal generalized register machine with
m = 2 decrementable registers and s = 93/s = 120 generalized regis-
ter machine instructions. Again using the formula 6s + 6m + 1 from
the recent paper [17], we obtain a weakly-strongly/weakly universal
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purely catalytic P system with 3 catalysts and 6 × 120 + 6 × 2 + 1 =
733/6× 93+6× 2+1 = 571 rules, thus improving the previously best
known results of 1091/848 rules, respectively.

9 Conclusions

It has been known that only one bi-stable catalyst suffices for computa-
tional completeness of P systems (having non-cooperative rules besides
the bi-catalytic ones) and that purely catalytic P systems with three
catalysts are computationally complete. With two catalysts computa-
tional completeness can be obtained if one of them is bi-stable, see [4].

Generalizing counter automata by allowing them to perform mul-
tiple operations on multiple registers, a few small generalized counter
automata are obtained (from 16 rules to 22 rules), depending on the
specific requirements of P systems that would simulate them. General-
ized counter automata are a very convenient tool for constructing small
universal P systems. For instance, small strongly universal P systems
with anti-matter with 9 annihilation rules and, in total, 53 rules in
the accepting case, 59 rules in the generating case, and 57 rules in the
computing case can be constructed.

By optimizing the reduction of the universal register machines
U22 and U20 to register machines with two working registers, in [4]
a strongly universal register machine with 120 instructions and two
decrementable registers and a weakly universal register machine with
92 instructions and two registers have been obtained.

The now best known results for catalytic systems are summarized
in Table 4. It describes universal (purely or not) catalytic P systems
with and without toxic objects where the type of universality ranges
from strong over weak-strong to weak. The results in the upper part of
the table correspond to one normal catalyst and one m-stable catalyst,
2 ≤ m ≤ 8, while the results in the lower part of the table correspond
to k catalysts, 2 ≤ k ≤ 21. Depending on all these features, the overall
number of rules varies from 43, top right, to 733, bottom left.

The new results elaborated in this paper are indicated in boldface.
If some entry of a table contains “+”, then the reference following it in-
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Table 4. Number of rules in universal catalytic P systems. We write
“s” for strongly universal P systems, “ws” for weakly-strongly universal
P systems and “w” for weakly universal P systems, “tox” for P systems
with toxic objects, “catk” for k catalysts, mcat for anm-stable catalyst,
and “p” indicates P systems without non-cooperative rules.

Feature s ws w s,tox ws,tox w,tox

p8cat,
pcat 61[4] 47[4]
p7cat,
pcat 56[4] 43[4]
p2cat,
pcat 483[4] 371[4] 362[4] 278[4]

pcat21 74[4]
pcat20 64[4]
pcat10 98[3] 89[3]
cat8 98[3] 89[3]
pcat9 145[3]
pcat8 133[17]+[4] 120[4]
pcat7 111[4]
pcat4 611+[4] 476+[4] 608+[4] 473+[4]

cat2 611+[4] 476+[4] 608+[4] 473+[4]

pcat3 733[17]+[4] 571[17]+[4]

pcat2 726[4] 564[4]

dicates where the underlying simulating model has been studied, while
the reference preceding “+” (if indicated, otherwise we imply the cur-
rent paper) indicates where the currently best known simulated com-
plexity has been obtained. Three small universal P systems, namely,
the one with anti-matter and 53 rules, the catalytic one with 8 cata-
lysts and 98 rules, and the purely catalytic one with 21 catalysts and
74 rules, were chosen to be presented explicitly in Tables 1, 2, and 3.
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brane Computing - 15th International Conference, CMC 2014,
Prague, Lecture Notes in Computer Science. 8961, 2014, 99–125.

[3] A. Alhazov, R. Freund. Small Catalytic P Systems. In: M. Din-
neen, Ed., Workshop on Membrane Computing, Auckland, 2015,
1–16.

[4] A. Alhazov, R. Freund. Variants of Small Universal P Sys-
tems with Catalysts. Fundamenta Informaticae. 138(1-2), 227–
250, 2015.

[5] A. Alhazov, Yu. Rogozhin, S. Verlan. On Small Universal Splic-
ing Systems. International Journal of Foundations of Computer
Science. 23 (7), 2012, 1423–1438.

[6] A. Alhazov, S. Verlan. Minimization Strategies for Maximally Par-
allel Multiset Rewriting Systems. Theoretical Computer Science.
412 (17), 2011, 1581–1591.

[7] R. Freund, L. Kari, M. Oswald, P. Sośık. Computationally Univer-
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[16] P. Sośık, M. Langer. Improved Universality Proof for Catalytic P
Systems and a Relation to Non-Semilinear Sets. In: S. Bensch, R.
Freund, F. Otto (Eds.): Sixth Workshop on Non-Classical Mod-
els of Automata and Applications (NCMA 2014), books@ocg.at,
BAND 304, 2014, 223–233.
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Extensionality, Proper Classes, and Quantum

Non-Individuality

William J. Greenberg

Abstract

In this paper I address two questions: (1) What distinguishes
proper classes from sets? (2) Are proper classes and quantum
particles individuals?

Against the familiar response to (1) that proper classes are too
big to be sets, I propose that it is not a difference in size that dis-
tinguishes such collections but a difference in individuation. The
linchpin of my proposal and centerpiece of an NBG-like fragment
of class and set theory (“NBG”: von Neumann-Bernays-Gödel),
is an Axiom of Restricted Extensionality according to which sets
are individuated by their members but proper classes are not.
This setting (I call it NBG−) I show to be equi-consistent with
its NBG counterpart.

I answer (2) by exhibiting a parallelism in NBG− between
proper classes and quantum particles, the former unindividuated
by their members and the latter unindividuated by their rela-
tional properties. Since both violate the (weak) principle of the
identity of indiscernibles as well as the principle of reflexive iden-
tity, in NBG− neither proper classes nor quantum particles are
individuals.

1 Three Principles

Modulo the deductive apparatus of First-Order Logic with Weak Iden-
tity1, Russell’s Paradox follows from three principles: Unrestricted

c©2015 by W. J. Greenberg
1In FOL=W : x = y → y = x and (x = y & y = z) → x = z are theses but x = x

is not. Every proof in FOL=W is a proof in FOL=. So FOL=W is a sub-theory of
FOL=.
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Extensionality, Restricted Comprehension, and Unrestricted Pairing.
Concerning the first of these Michael Potter writes:

Various theories of [classes] have been proposed since the 1900s. What

they all share is the axiom of extensionality, which asserts that if x

and y are [classes] then

∀z(z ∈ x ↔ z ∈ y) → x = y.

The fact that they share this is just a matter of definition: objects

which do not satisfy extensionality are not [classes]. ([12])

Restricted Comprehension says that for every condition P (x), some
y contains just the sets satisfying P (x).

∃y∀x(x ∈ y ↔ (set x & Px)).

And Unrestricted Pairing says that for every w, u and some y:
identity-with-w or identity-with-u is necessary and sufficient for mem-
bership in y:

∀x(x ∈ y ↔ (x = w ∨ x = u)).

Individually, each of these is plausible. But no consistent theory
features all three. For (A,B,C) prove (D),2 engendering Russell’s Para-
dox.

21. ∀z(z ∈ x ↔ z ∈ y) → x = y Unrestricted Extensionality

2. ∃y∀x(x ∈ y ↔ (set x & Px)) Restricted Comprehension

3. ∀t∀w∃y∀x(x ∈ y ↔ (x = t ∨ x = w)) Unrestricted Pairing

4. ∀t∀w∀x∃y(x ∈ y ↔ x = t ∨ x = w) 3, Quantifier Shift
5. ∀x∃y(x ∈ y ↔ x = x) 4,UI
6. ∀x∃y(x = x → x ∈ y) 5
7. ∀x[x = x → ∃y(x ∈ y)] 6
8. ∀x(x = x) → ∀x∃y(x ∈ y) 7
9. ∀x(x = x) Corollary of 1
10. ∀x∃y(x ∈ y) 8,9
11. ∀x(set x) 10, definition of set
12. ∃y∀x(x ∈ y ↔ Px) 2,11
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(A) ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y) (Unrestricted Extensionality)
(B) ∃y∀x(x ∈ y ↔ set & Px) (Restricted Comprehension)
(C) ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) (Unrestricted Pairing)
(D) ∃y∀x(x ∈ y ↔ Px) (Unrestricted Comprehension)

(D) can be avoided by replacing (B) with (B′), as in Zermelo Set
Theory;

(B′) ∀z∃y∀x(x ∈ y ↔ (x ∈ z & Px)) (Separation)

or by replacing (C) with (C’) as in NBG*, a sub-theory of NBG;

(C′) ∀w∀u((set w & set u) → (Restricted

∃y∀x(x ∈ y ↔ (x = w ∨ x = u))) Pairing)

or by replacing (A) with (A′), as in NBG−: an NBG-like theory with
Restricted Extensionality and Unrestricted Pairing :

(A′) ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → (Restricted
((set x & set y) ↔ x = y)) Extensionality)

(B) ∃y∀x(x ∈ y ↔ (set x & Px)) (Restricted
Comprehension)

(C) ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) (Unrestricted
Pairing)

2 Proper Classes in NBG−

From (A′) it follows that identity is reflexive for sets (T1) but irreflexive
for proper classes (T2).

T1: ∀x(x = x ↔ set x)

T2: ∀x(¬(x = x) ↔ prop x)3

From (B) it follows that there is a class of non-self-membered sets (T3),
T3: ∃y∀x(x ∈ y ↔ (set x & ¬(x ∈ x))),

which is not a set but a proper class (T4) – and thus not self-identical
(T5).

3Prop x
def
= ¬(set x)
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T4: ∀y(∀x(x ∈ y ↔ (set x & ¬(x ∈ x))) → prop y)

T5: ∀y(∀x(x ∈ y ↔ (set x & ¬(x ∈ x))) → ¬(y = y))

Hence there is no universe class (T6).
T6: ¬∃y∀x(x ∈ y)

(A′, B) secure an empty class (T7); a pair class (T8: aka C); a sum
class (T9); a power class (T10); a class of self-identicals (T11); and a
class of sets (T12).

T7: ∃y∀x¬(x ∈ y) (Empty Class)4

T8: ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) (Pair Class)5

T9: ∀z∃y∀x(x ∈ y ↔ ∃w(w ∈ z & x ∈ w)) (Sum Class)6

T10: ∀z∃y∀x(x ∈ y ↔ (set x & (Power Class)
∀w(w ∈ x → w ∈ z)))

T11: ∃y∀x(x ∈ y ↔ x = x) (Class of Self-Identicals)7

T12: ∃y∀x(x ∈ y ↔ set x) (Class of Sets)

41. ∀x(x ∈ y ↔ (set x & ¬(x = x))) B, EI
2. ∃x(x ∈ y) ↔ ∃x(set x & ¬(x = x)) 1
3. ∀x(set x ↔ x = x) A′

4. ¬∃x(x ∈ y). 2, 3
51. Show ∀a∀b∃y∀x(x ∈ y ↔ x = a ∨ x = b)
2. Show ∃y∀x(x ∈ y ↔ x = a ∨ x = b)
3. ∀a∀b∃y∀x(x ∈ y ↔ (set x & (x = a ∨ x = b))) B
4. x ∈ y ↔ (set x & (x = a ∨ x = b)) 3, UI, EI
5. (x = a ∨ x = b) → x = x “=” is weakly reflexive
6. x = x → set x A′

7. (x = a ∨ x = b) → set x 5, 6
8. (x = a ∨ x = b) → x ∈ y 4,6,7
9. x ∈ y → (x = a ∨ x = b) 4
10. x ∈ y ↔ (x = a ∨ x = b) 8, 9
11. ∀x(x ∈ y ↔ x = a ∨ x = b) 10, UG
12. ∃y∀x(x ∈ y ↔ x = a∨ x = b) 11, EG: Cancel Show line 2
13. ∀a∀b∃y∀x(x ∈ y ↔ x = a∨ x = b) 2, UG: Cancel Show line 1
61. Show ∀z∃y∀x(x ∈ y ↔ ∃w(w ∈ z & x ∈ w))
2. ∀z∃y∀x(x ∈ y ↔ (set x & ∃w(w ∈ z & x ∈ w)))
3. ∃w(w ∈ z & x ∈ w) → set x
4. ∀z∃y∀x(x ∈ y ↔ ∃w(w ∈ z & x ∈ w)) Cancel Show line 1
71. ∃y∀x(x ∈ y ↔ (set x & x = x)) B
2. set x ↔ x = x A′

3. ∃y∀x(x ∈ y ↔ x = x) 1, 2
4. ∃y∀x(x ∈ y ↔ set x) 2,3
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Remark 1 : “Set x” doesn’t appear on the right-hand side of T8 or
T9 because it is redundant.

Remark 2 : From T8 it follows that the “singleton” of a non-self-
identical is empty.8

3 Some Classes Are Not Sets

Conventional wisdom decrees that some classes are not sets, either
because they are infinite totalities “too large” to be sets ([8], 44 ff ;
[11], 264 ff ), or because their members “are not all present at any rank
of the iterative hierarchy”. ([7], 104) According to John Bell, however,
infinite totalities are not problematic per se. He writes:

. . . set theory. . . as originally formulated, does contain contradictions,

which result not from admitting infinite totalities per se, but rather

from countenancing totalities consisting of all entities of a certain ab-

stract kind, “manys” which, on pain of contradiction, cannot be re-

garded as “ones”. So it was in truth not the finite/infinite opposition,

but rather the one/many opposition, which led set theory to incon-

sistency. This is well illustrated by the infamous Russell paradox,

discovered in 1901. ([1], 173)

My treatment of Russell’s paradox squares with Bell’s observation.
Restricted Comprehension provides for classes of non-self-membered
sets, but on pain of contradiction these “manys” cannot be treated
as “one”, as would be the case if they were subject to Unrestricted
Extensionality. Indeed, from Restricted Comprehension it follows that
every predicate is associated with (perhaps empty) classes of sets which
satisfy it. In NBG− (and its extensions), whether such “manys” can
be “ones” – that is, sets – depends not on their size or rank, but on
whether their “oneness” would spawn contradiction ([1], op. cit.).

8“Consider a thing, a say, and its unit set {a}. . . If anything x is not a member
of the unit set {a} then that thing x is not a. And conversely, if anything x is not
a then that thing x is not a member of the unit set {a}.” ([3], 82)
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4 Proper Classes, Sets, and Models

Suppose ∀z(z ∈ x ↔ z ∈ y). Are x and y identical? Are x and y sets?
Unlike NBG*, in NBG− identity and set-hood go hand-in-hand: equi-
membered x and y are identical iff these are sets.9 But from (A′,B)
it does not follow that equi-membered classes are sets. Therefore, al-
though (A′,B) prove T7-T12, they do not make equi-membered classes
identical: unlike sets, classes are not individuated by their members.

(A′,B) are satisfied by a non-self-identical, non-element. But such
an entity violates model-theoretic restrictions enunciated by Ruth Mar-
cus, who in “Dispensing With Possibilia”writes:

The notion of an individual object or thing is an indispensable prim-

itive for theories of meaning grounded in standard model theoretic

semantics. One begins with a domain of individuals, and there are no

prima facie constraints as to what counts as an individual except those

of a most general and seemingly redundant kind. Each individual must

be distinct from every other and identical to itself (emphasis added).

([9], 39)

5 NBG− and NBG*

NBG− and NBG∗ are deviations10 of one another, for ¬∀x(x = x) is a
theorem of NBG− and ∀x(x = x) a theorem of NBG*. I will now show
that NBG* and NBG− are definitional extensions of one another as
well. To show this I will define “=” in terms of “I” and “∈” in NBG*,
and “I” in terms of “∈” in NBG−; and then show that NBG* ⊢ NBG−,
and NBG− ⊢ NBG*.

9In Elementary Logic, Mates writes, “. . . we have explicated the term ’relation’
in such a way that whatever cannot be a member of a set cannot be related by any
relation. Thus insofar as identity is a relation in this sense, such a thing cannot even
stand in this relation to itself. This would hold not only of the set of all objects that
are not members of themselves, but also of sets described by phrases that give no
hint of impending difficulties. The problem is closely related to Russell’s Antinomy,
and once again every way out seems unintuitive.” ([10], 157-8)

10“One system is a deviation of another if it shares the vocabulary of the first,
but has a different system of theorems/valid inferences.” ([5], 3)

334



Extensionality, Proper Classes, and Quantum Non-Individuality

NBG*:
(∈) 1*: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → ∀z(x ∈ z ↔ y ∈ z))
(I) 2*: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → xIy)

3*: ∀x∀y(xIy → ∀z(z ∈ x ↔ z ∈ y))
(Set) 4*: ∃y∀x(x ∈ y ↔ (set x & Px))

5*: ∀w∀u((set w & set u) → ∃y∀x(x ∈ y ↔ (xIw ∨ xIu)))

(Def) D1*: set x
def
= ∃y(x ∈ y)

D2*: x = y
def
= (xIy & set x & set y)

NBG− :
(∈) 1−: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → ∀z(x ∈ z ↔ y ∈ z))
(=) 2−: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → ((set x & set y) ↔ x = y))

3−: ∀x∀y(x = y → ∀z(z ∈ x ↔ z ∈ y))
(Set) 4−: ∃y∀x(x ∈ y ↔ (set x & Px))

(Def) D1−: set x
def
= ∃y(x ∈ y)

D2−: xIy
def
= ∀z(z ∈ x ↔ z ∈ y)

NBG* ⊢ NBG−: Since 1− = 1* and 4− = 4*, to show that NBG*
⊢ NBG− I will show that NBG* ⊢ 2−, 3−

Proof of 2−:

1. Show ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → ((set x & set y) ↔ x = y))

2. ∀z(z ∈ x ↔ z ∈ y) Assume
3. Show (set x & set y) ↔ x = y

4. x = y
def
= (xIy & set x & set y) D2*

5. x = y → (set & set y) 4
6. Show (set x & set y) → x = y

7. set x & set y Assume
8. Show x = y

9. xIy & set x & set y 2*, 2, 7
10. x = y 9, D2*: Cancel Show line 8
11. (set x & set y) → x = y 7, 8: Cancel Show line 6
12. (set x & set y) ↔ x = y 5, 6: Cancel Show line 3

13. ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → ((set x & set y) ↔ x = y)) 2, 3: Cancel
Show line 1
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Proof of 3− :
1. Show ∀x∀y(x = y → ∀z(z ∈ x ↔ z ∈ y))
2. x = y Assume
3. Show ∀z(z ∈ x ↔ z ∈ y))

4. x = y
def
= (xIy & set x & set y) D2*

5. xIy 2, 4
6. ∀x∀y(xIy → ∀z(z ∈ x ↔ z ∈ y)) 3*
7. ∀z(z ∈ x ↔ z ∈ y) 5, 6: Cancel Show line 3
8. ∀x∀y(xIy → ∀z(z ∈ x ↔ z ∈ y)) 2, 3: Cancel Show line 1

NBG− ⊢ NBG∗: Since 1− = 1* and 4− = 4*, to show that
NBG− ⊢ NBG∗ I will show that NBG− ⊢ 2*, 3*,5*.

Proof of 2*:
1. Show ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → xIy)
2. ∀z(z ∈ x ↔ z ∈ y) Assume
3. Show xIy

4. xIy
def
= ∀z(z ∈ x ↔ z ∈ y) D2−

5. xIy 2, 4: Cancel Show line 3
6. ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → xIy) 2, 3: Cancel Show line 1

Proof of 3*:
1. Show ∀x∀y(xIy → ∀z(z ∈ x ↔ z ∈ y))

2. xIy
def
= ∀z(z ∈ x ↔ z ∈ y) D2−

3. ∀x∀y(xIy → ∀z(z ∈ x ↔ z ∈ y)) 2: Cancel Show line 1

Proof of 5*:

1. Show ∀w∀u((set w & set u) → ∃y∀x(x ∈ y ↔ (xIw ∨ xIu)))

2. set w & set u Assume
3. Show ∃y∀x(x ∈ y ↔ (xIw ∨ xIu))
4. ∃y∀x(x ∈ y ↔ (set x & Px)) 4−

5. ∃y∀x(x ∈ y ↔ (set x & x = w ∨ x = u)) Instance of 4
6. (x = w ∨ x = u) → set x 1−

7. x ∈ y → set x D2−

8. ∃y∀x(x ∈ y ↔ (x = w ∨ x = u)) 5, 6, 7
9. x = w ↔ ∀z(z ∈ x ↔ z ∈ w) 3−

10. x = u ↔ ∀z(z ∈ x ↔ z ∈ u) 3−

11. ∃y∀x(x ∈ y ↔ (∀z(z ∈ x ↔ z ∈ w) ∨ ∀z(z ∈ x ↔ z ∈))) 8, 9, 10

12. ∃y∀x(x ∈ y ↔ xIw ∨ xIu) 11, D2−: Cancel
Show line 3

13. ∀w∀u((set w & set u) → ∃y∀x(x ∈ y ↔ (xIw ∨ xIu))) 2, 3: Cancel
Show line 1
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Each a definitional extension of the other, NBG* and NBG−are
accordingly equi-consistent. The question thus arises, Which of these
two systems – NBG* (in which identity is reflexive and proper classes
are individuated by their members), or NBG− (in which identity is non-
reflexive and proper classes are not individuated by their members) –
should be employed as a setting for theories in which all sets are classes,
but some classes are not sets?

6 Classes Into Sets

(5−, 6−, 7−, 8−) constitute – as sets: pair classes, sum classes, power
classes, and sub-classes of sets. For it follows from (5−, 6−, 7−, 8−)
that these are individuated by their members.

5−: ∀y(∀x(x ∈ y ↔ (x = a ∨ x = b)) → set y) (Pair Set)
6−: ∀z∀y(∀x(x ∈ y ↔ ∃w(w ∈ z & x ∈ w)) → set y) (Sum Set)
7−: ∀z∀y(∀x(x ∈ y ↔ (set x & ∀w(w ∈ x → w ∈ z))) → set y) (Power Set)
8−: ∀z∀y(∀x(x ∈ z → x ∈ y) → (set y → set z)) (Subsets)

To guarantee an empty set, Z and its extensions require an axiom
of infinity or an axiom of set existence; and Lemmon’s NBG requires
an axiom, “set ∅”. ([6], 46) In NBG− no such apparatus is required,
for (1−, 2−, 5−) guarantee an empty set.

Thus (1−, 2−, 5−) prove T13,

T13: ∀y(∀x¬(x ∈ y) → set y) (Empty Set)

which together with T7: ∃y∀x¬(x ∈ y) establish a unique empty set.

Proof of T13:

Suppose y empty. From (T7, T8, 5−) we have

∃z(set z & ∀x(x ∈ z ↔ x = y)),

and so by EI: set z & ∀x(x ∈ z ↔ x = y). Hence ∃x(x ∈ z) ↔ ∃x(x =
y). Now suppose, contrary to T13, that y is a proper class. Then
¬(y = y), ¬∃x(x = y), and ¬∃x(x ∈ z), so that z and y have the same
members. So because z is a set, from T14 it follows that y is a set:
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T14: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → (set x ↔ set y)) (Equi-Equi)11

So if y is a proper class, y is a set. Hence y is a set.

7 NBG− and Foundation

4− provides for a class of self-membered sets:

T15: ∃y∀x(x ∈ y ↔ x ∈ x) (Class of self-membered sets)

The Anti-Foundation axiom 9− would constitute this class as a set.

9−: ∀y(∀x(x ∈ y ↔ x ∈ x) → set y) (Anti-Foundation)

But a Foundation axiom such as 9−′ would constitute such a class
as a proper class.

9−′: ∀y(∀x(x ∈ y ↔ x ∈ x) → ¬(set y)) (Foundation)

8 NBG− and the Identity of Indiscernibles

Here is a set-theoretic gloss on the weak version of Leibniz’s principle
of the Identity of Indiscernibles (PII ):

∀x∀y(∀z(x ∈ z ↔ y ∈ z) → x = y) (Unrestricted PII )

Unrestricted PII is refuted in NBG−. For by satisfying ¬(x = x),
proper classes refute ∀x(x = x), a corollary of PII. PII must thus be
restricted, by excluding proper classes from its range of application,
thus:

∀x∀y(∀z(x ∈ z ↔ y ∈ z) → ((set x & set y) ↔ x = y)) (Restricted PII )

And to save pairing and extensionality, which together prove unre-
stricted PII, either pairing or extensionality must be restricted, as in
NBG* or NBG−.

11If x,y are equi-membered, from 1− it follows that x is an element iff y is an
element. So set x iff set y.
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9 Quasi-Set Theories and ¬(x = x)

Quasi-Set theories deal with collections of indistinguishable objects
such as quantum particles. Such theories recognize two kinds of en-
tities: M-Atoms, which “have the properties of standard Ur-elemente
of ZFU”; and m-atoms, which “represent the elementary basic entities
of quantum physics”. To m-atoms “the concept of identity does not
apply.” In Quasi-Set theories “this exclusion is achieved by restricting
the concept of formula: expressions like x = y are not well formed if x
and y denote m-atoms. The equality symbol is not a primitive logical
symbol” ([4], 276]

Whereof they cannot speak, thereof must Quasi-Set theories remain
silent. But by remaining silent about the distinctness of indiscernible
elementary particles, Quasi-Set theories dissimulate a relation whose
trivial proof does nothing to diminish the bearing of the distinctness
of indiscernibles on the Principle of Reflexive Identity (PRI ).

For equi-propertied x and y, suppose ¬(x = y). Because x lacks
identity-with-y and x and y share their properties, y lacks identity-
with-y and x identity-with-x. Hence for equi-propertied x and y: ¬(x =
y) → (¬(x = x) & ¬(y = y)). So distinct quantum particles with
identical relational properties contravene PRI as well as unrestricted
PII.

Except in the land of quasi-sets – where to defend ZFU from
Logic, m-particles representing the elementary basic entities of quan-
tum physics are not allowed to co-occur with the sign for identity.12

10 Summary and Conclusion
A: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y) (Unrestricted Extensionality)
B: ∃y∀x(x ∈ y ↔ set x & Px) (Restricted Comprehension)
C: ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) (Unrestricted Pairing)

12Dean Rickles writes, “An immediate problem with the denial of primitive iden-
tities is, then, that it is unclear how one is able to support set theory. . . (I owe this
point to Steven French). There are ways of accommodating the denial of primitive
identities through the use of ‘quasi-set theory’ in which the identity relation is not
a wellformed formula for indistinguishable objects (see French & Krause [1999] and
Krause [1992])”. ([13], 106)
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Modulo a background logic in which identity is a partial equivalence
relation, the inconsistency of (A,B,C) can be resolved by replacing B
with B′, as in Z*;

Z*

A: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y) Unrestricted Exten-
sionality

B′: ∀z∃y∀x(x ∈ y ↔ (x ∈ z &Px)) Separation

C: ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) Unrestricted Pairing

or by replacing C with C’, as in NBG*;

NBG*

A: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y) Unrestricted Exten-
sionality

B: ∃y∀x(x ∈ y ↔ (set x & Px)) Restricted Compre-
hension

C′: ∀w∀u((set w & set u) → ∃y∀x(x ∈
y ↔ (x = w ∨ x = u)))

Restricted Pairing

or by replacing A with A’, as in NBG−.

NBG−

A′: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) →
((set x & set y) ↔ x = y))

Restricted Extensio-
nality

B: ∃y∀x(x ∈ y ↔ (∃z(x ∈ z) & Px)) Restricted Comprehen-
sion

C: ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) Unrestricted Pairing

Z* and NBG* are sub-theories of Z and NBG. NBG− and NBG*
are deviations and definitional extensions of one another.

Highlighting the rivalry of NBG* and NBG−, I have proposed
NBG− – in which identity is reflexive for sets and classical particles, but
irreflexive for proper classes and quantum particles – as a setting for
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class and set theory and framework for quantum non-individuality.13

References

[1] Bell, John L. Oppositions and paradoxes in mathematics and phi-
losophy. Axiomathes 15.2:165-80, 2005.

[2] Ben-Menahem, Yemima, editor. Hilary Putnam. Cambridge Uni-
versity Press, Cambridge, UK, 2005.

[3] Bigelow, John. Sets are haecceities. In D. M. Armstrong et al, ed-
itors, Ontology, causality and mind, pages 73-96. Cambridge Uni-
versity Press, Cambridge, UK, 1993.

[4] French, Steven, and Décio Krause. Identity in physics: A histori-
cal, philosophical, and formal analysis. Clarendon Press, Oxford,
UK, 2006.

[5] Haack, Susan. Deviant logic: Some philosophical issues. Cam-
bridge University Press Archive, Cambridge, UK, 1974.

[6] Lemmon, Edward John. Introduction to axiomatic set theory.
Routledge & K. Paul, London/New York, 1969.

[7] Lewis, David K. On the plurality of worlds. (Vol. 322). Blackwell,
Oxford, UK, 1986.

13As things now stand, non-self-identicals in NBG are non-elements, making their
identification with quantum particles problematic. To surmount this obstacle, a
more restrictive definition of “set” is required:

set x
def
= ∃y(x ∈ y & ∀z(z ∈ y → z = x)) (

def
= Set )

From (
def
= Set) and “set x ↔ x = x” (a corollary of 2− – 2− holding under

both definitions of “set”), it follows that possession of an individuating property is
necessary and sufficient for self-identity:

x = x ↔ ∃y(x ∈ y & ∀z(z ∈ y → z = x)) (Ind)
Hence ¬(x = x) if, and only if, x is not a member of any unit class.
¬(x = x) ↔ ∀y(¬(x ∈ y) ∨ ∃z(z ∈ y & ¬(z = x))) (Ind)
This will be the case if x is not a member of any class (think proper classes); or if

every class that x belongs to is such that it contains an element that is not identical
with x (think quantum particles). In both cases, x can be said to lack individuality.
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Edge detection in digital images using Ant

Colony Optimization
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Abstract

Ant Colony Optimization (ACO) is an optimization algorithm
inspired by the behavior of real ant colonies to approximate the
solutions of difficult optimization problems. In this paper, ACO
is introduced to tackle the image edge detection problem. The
proposed approach is based on the distribution of ants on an
image; ants try to find possible edges by using a state transition
function. Experimental results show that the proposed method
compared to standard edge detectors is less sensitive to Gaussian
noise and gives finer details and thinner edges when compared to
earlier ant-based approaches.

Keywords: Ant Colony Optimization (ACO), Digital image
processing, Edge detection, Noisy images.

1 Introduction

Edge detection is by far the most common approach for detecting mean-
ingful discontinuities in gray level. It is an important problem in pat-
tern recognition, computer vision and image processing. Conventional
image edge detection algorithms usually perform a linear filtering op-
eration (or with a smoothing pre-processing operation to remove noise
from the image) on the image [1], such as Sobel, Prewitt [2] and Canny
operators [3].

Ant Colony Optimization (ACO) is an optimization algorithm
inspired by the behavior of real ant colonies [4, 5]. Ants deposit
pheromone on the ground to mark their favorable paths, which can
be followed by the ants of the colony. The first ACO algorithm, called

c©2015 by M. Kuchaki Rafsanjani, Z. Asghari Varzaneh
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the ant system, was proposed by Dorigo et al. [4]. Since then, a
number of ACO algorithms have been developed, such as the Max-
Min ant system [6]. ACO has been widely applied in various problems
[7, 8, 9, 10, 11]. Besides, ACO algorithms has been used to solve many
complex problems successfully such as quadratic assignment problem
[12], data clustering [13], image retrieval [14], too used to image thresh-
olding [15], and image segmentation [16, 17].

Zhuang [18] proposed to utilize the perceptual graph to represent
the relationship among neighboring image pixels, then use the ant
colony system to build up the perceptual graph. Nezamabadi-Pour
et al. [19] proposed to use the ant system to detect edges from images
by formulating the image as a directed graph. Lu and Chen [20] pro-
posed to use the ACO technique as a post-processing to compensate
broken edges, which are usually incurred in the conventional image
edge detection algorithms. Alikhani et al. [21] use a Fuzzy Inference
System (FIS) with 4 simple rules to identify the probable edge pixels
in 4 main directions, then the ACO is applied for assigning a higher
pheromone value for the probable edge pixels. Finally, by using an
intelligent thresholding technique which is provided by training a neu-
ral network, the edges from the final pheromone matrix are extracted.
Davoodianidaliki et al. [22] proposed usage of traditional edge detec-
tors for initial pheromone and distribution matrixes that previously
were equal and random. Koner and Acharyya [23] have applied the
variants for detection of edges in binary images. Contreras et al. [24]
propose an approach based on a paradigm that arises from artificial
life; more specifically ant colonies foraging behavior. Ari et al. [25]
proposed a novel algorithm for image edge detection using ant colony
optimization and Fisher ratio (Fratio)-based techniques. Ming and Xi-
anghong [26] used ant colony system algorithm (ACSA) to detect the
edge of gray scale images. The novelty of the proposed method is that
the artificial ants used for detecting the edges of images have global
memory capacity. Method proposed by Agrawal et al. [27] gives a
pheromone matrix and memory stored positions that are followed by
leading ant. The memory based positions are stored on the basis of
intensity values with reference with a threshold value. Tian et al. [28]
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proposed to establish a pheromone matrix that represents the edge pre-
sented at each pixel position of the image, according to the movements
of ants on the image.

In this paper, we propose an improved ant-based edge detector that
provides finer details and thinner edges on both noisy and clean images.
This method uses pheromone information to detect the edges of image.

The remainder of the paper is organized as follows; the next section
describes Ant Colony Optimization. In Section 3, we discuss Ant-
Based our edge detection approach in details. Experimental results
and analysis are presented in Section 4. Finally, Section 5 concludes
this paper.

2 Ant Colony Optimization (ACO)

In the natural world, ants (initially) wander randomly, and upon find-
ing food return to their colony while laying down pheromone trails. If
other ants find such a path, they are likely not to keep travelling at
random, but to instead follow the trail; returning and reinforcing it if
they eventually find food. Over time, however, the pheromone trail
starts to evaporate, thus reducing its attractive strength. The more
time it takes for an ant to travel down the path and back again, the
more time the pheromones have to evaporate. A short path, by com-
parison, gets marched over more frequently, and thus the pheromone
density becomes higher on shorter paths than longer ones. Pheromone
evaporation also has the advantage of avoiding the convergence to a
locally optimal solution. If there were no evaporation at all, the paths
chosen by the first ants would tend to be excessively attractive to the
following ones. In that case, the exploration of the solution space would
be constrained.

Thus, when one ant finds a good (i.e., short) path from the colony
to a food source, other ants are more likely to follow that path, and
positive feedback eventually leads to all the ants’ following a single
path. The idea of the ant colony algorithm is to mimic this behavior
with ”simulated ants” walking around the graph representing the prob-
lem to solve. The ant colony optimization algorithm is a probabilistic
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technique for solving computational problems which can be reduced to
finding better paths through graphs. This algorithm is a member of
the ant colony algorithms family, in swarm intelligence methods, and
it constitutes some metaheuristic optimizations. Initially proposed by
Marco Dorigo in 1992 in his PhD thesis [4]; the first algorithm was
aiming to search for an optimal path in a graph, based on the behavior
of ants seeking a path between their colony and a source of food. The
original idea has since diversified to solve a wider class of numerical
problems, and as a result, several problems have emerged, drawing on
various aspects of the behavior of ants.

The goal of this article is to introduce an ant-based algorithm for
edge detection.

3 The proposed Ant-Based Approach

In this approach, the value of visibility is determined using the max-
imum variation of gray level of the image intensity. Edge pixels are
expected to have a greater value of visibility. Therefore, the ants’
movements are driven by the local variation of the image intensity val-
ues. That is, the ants prefer to move towards positions with larger
variations [12].

The proposed approach works as follows:

Step1: At first, k ants are placed on the randomly chosen nodes
(pixel position) on an image I with a size of M1 ×M2. Therefore,
one ant is assigned to each pixel position (called a node) of the image.
The proposed approach sets the initial value of each component of the
pheromone matrix τ (0) to be a constant τinit.

Step2: At the n-th construction-step, each ant probabilistically
selects a new neighbor pixel to visit according to Eq. (1). The prob-
ability of displacing k-th ant from node (l,m) to its neighboring node
(i,j) is determined by:

P
(n)
(l,m),(i,j) =

(T
(n−1)
i,j )α(ηi,j)

β

∑

(s,q)∈Ω(l,m)(T
(n−1)
s,q )α(ηs,q)β

, (1)
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Figure 1. A local configuration at the pixel position Ii,j for computing
the variation Vc(Ii,j) defined in (3).

where Ω(l,m) is the neighborhood nodes of the node (l,m); ηi,j and

T
(n−1)
i,j are the heuristic information which belongs to pixel (i,j) and the

pheromone intensity of the pixel (i,j), respectively; and, the parameters
α and β control the relative importance of the pheromone matrix versus
the heuristic information ηi,j used in [28], which is given by:

ηi,j =
1

z
Vc(Ii,j), (2)

where Z =
∑M1

i=1

∑M2
j=1 Vc(Ii,j) which is a normalization factor, Ii,j is

the intensity value of the pixel at the position (i,j) of the image I and
function Vc(Ii,j) is a function of a local group of pixels c, and its value
depends on the variation of image’s intensity values on the clique c (as
shown in Figure 1). The function Vc(Ii,j) is determined by:

Vc(Ii,j) = f(|Ii−1,j−1 − Ii+1,j+1|+ |Ii−1,j − Ii+1,j|+ (3)

|Ii−1,j+1 − Ii+1,j−1|+ |Ii,j−1 − Ii,j+1|).

347



M. Kuchaki Rafsanjani, Z. Asghari Varzaneh

To determine the function f (.), the following four functions are
considered [8]; they are mathematically expressed as follows:

f(x) = λx x ≥ 0; (4)

f(x) = λx2 x ≥ 0; (5)

f(x) =

{

sin(πx2λ ) 0 ≤ x ≤ λ

0 else
; (6)

f(x) =

{

sin(
πx sin(πx

λ
)

λ
) 0 ≤ x ≤ λ

0 else
. (7)

We select f (.) which is defined by (8), because this function shows
better results.

f(x) =

{

sin(πx2λ ) 0 ≤ x ≤ λ

0 else
. (8)

The parameter λ determines the function’s shape.

Step3: After every step, the pheromone values are updated after
the movement of each ant within each construction-step according to:

τ
(n−1)
i,j ←











(1− ρ).τ
(n−1)
i,j + ρ.∆

(k)
i,j if (i, j) is visited by the current

k − th ant;

τ
(n−1)
i,j Otherwise

,

(9)

where ρ is evaporation rate, it controls the degree of the updating of

τ
(n−1)
i,j ; ∆

(k)
i,j is determined by the heuristic matrix; that is, ∆

(k)
i,j = ηi,j .

Secondly, after the movement of all ants, the pheromone matrix is
updated as:

τ (n) = (1−Ψ).τ (n−1) +Ψ.τ (0), (10)
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where Ψ is the pheromone decay coefficient, and τ (0) is the initial value
of the pheromone. Steps 2 and 3 iteratively run for N iterations. Fi-
nally, the pheromone matrix τ (n) can be obtained to represent the
saliency of the image.

Step4: Finally, a binary decision is made at each pixel location to
determine whether it is edge or not, by applying a threshold T on the
final pheromone matrix τ (N). In this paper, we use thresholding based
on the method developed in [1] as follows:

1. Select an initial estimate for T (average of the values for the
points).

2. Produce two groups of values: G1 consisting of all values > T

and G2 consisting of values < T .

3. Compute the average values µ1 and µ2 for the values in G1 and
G2.

4. Compute a new threshold value: T = µ1+µ2

2 .

5. Repeat steps 2 through 4 until the difference in T in successive
iterations is smaller than a predefined parameter ε.

4 Experimental Results

Experiments were conducted to demonstrate the performance of the
proposed approach using two test images, Camera and House, which
are shown in Figure 2.

4.1 Parameters Setting

Suitable algorithm parameters are determined based on trial and error.
The parameters of the proposed approach were experimentally set as
follows:

K is the number of ants. It could be chosen proportionally to the
root of pixel numbersM1×M2. Total number of ant’s movement-steps
within each construction-step and total number of construction-steps
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Figure 2. Test images used in this paper: (a) Camera (256× 256); (b)
House (600 × 600).

are selected to be L= 50 and N= 4, respectively. τinit, the initial value
of each component of the pheromone matrix is set to be 0.0001; α and
β control the relative importance of intensity of pheromone versus the
heuristic information, they are set to be α = 6 and β = 0.001, respec-
tively [4]. The permissible ant’s movement range at the position (l,m)
could be either the 4-connectivity neighborhood or the 8-connectivity
neighborhood. It is selected to be 8-connectivity neighborhood. λ is
the adjusting factor of the functions, it is set to be 10. Evaporation
rate and the pheromone decay coefficient are set to be ρ = 0.1 and
Ψ = 0.005, respectively. Parameter ε is set to be 0.01.

4.2 Experimental Results and Discussions

Experimental results are provided to compare the proposed approach
with Tian et al.’s edge detection method [28]. Figures 3 and 4 show
the proposed approach that always outperforms Tian et al.’s method,
in terms of visual quality of the extracted edge information. Therefore
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Figure 3. Results of edge detectors for Cameraman image. (a) The
original image; (b) Tian et al.’s edge detection algorithm [28]; (c) The
proposed ACO-based image algorithm.

Figure 4. Results of edge detectors for House image. (a) The original
image; (b) Tian et al.’s edge detection algorithm [28]; (c) The proposed
ACO-based image algorithm.

the determination of parameters is critical to the performance of the
proposed approach. Figures 5 and 7 show the results of Canny, Sobel,
Log, Roberts and the proposed ACO-based edge detectors respectively
on clear images. Furthermore we added Gaussian noise (see Figures
6 and 8) to test images. As we can see in the figures, our proposed
method gives better results than the others, both in clean and noisy
images.
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Figure 5. Comparison of ant-based edge detection algorithms. (a) The
original image; (b) Canny edge detector; (c) Sobel edge detector; (d)
Log edge detector; (e) Roberts edge detector (f) The proposed ACO-
based edge detector.
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Figure 6. Comparison of ant-based edge detection algorithms. (a) The
noisy image; (b) Canny edge detector; (c) Sobel edge detector; (d) Log
edge detector; (e) Roberts edge detector (f) The proposed ACO-based
edge detector.
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Figure 7. Comparison of ant-based edge detection algorithms. (a) The
original image; (b) Canny edge detector; (c) Sobel edge detector; (d)
Log edge detector; (e) Roberts edge detector (f) The proposed ACO-
based edge detector.
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Figure 8. Comparison of ant-based edge detection algorithms. (a) The
noisy image; (b) Canny edge detector; (c) Sobel edge detector; (d) Log
edge detector; (e) Roberts edge detector (f) The proposed ACO-based
edge detector.
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5 Conclusions

This paper introduces an efficient ant-based edge detector that gives
satisfactory results both in clean and noisy images. This approach
uses a pheromone matrix that represents the edge presented at each
pixel position of the image, according to the movements of ants on the
image and updates the pheromone matrix using the initial pheromone
value [28]. Suitable values of the algorithm parameters were determined
through empirical studies. When we compare our proposed edge de-
tector with other ant-based approaches, our edge detector gives finer
details and thinner edges. Experimental results show that the pro-
posed method compared to standard edge detectors is less sensitive to
Gaussian noise.
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Abstract

In her thesis, Mosina introduced the concept of mean-set of
random (graph-) group-variables and generalized Strong Law of
Large Numbers (SLLN) to (graphs) groups, which she used for
cryptanalysis of authentication schemes. This attack called the
mean-set attack is presented here. It allows to break the Sibert
authentication scheme on braid groups without solving the under-
lined difficult problem. We propose an amelioration to this attack
and its implementation on the platform CRAG. We carry some
experiments and we present the results. These results are dis-
cussed and they confirm those obtained by Mosina and Ushakov
with a considerable gain of time.

Keywords: Braid group, Authentication protocol, Probabil-
ity on groups, Mean-set attack, CRAG.

2010 Mathematics Subject Classification: primary
20F36, 60B15, secondary 14G50.

1 Introduction

During these last years, several cryptosystems among which the au-
thentication schemes based on difficult problems in braid groups were
proposed. Indeed, Sibert and al. [21] presented authentication schemes
based on the conjugacy problem, the Diffie-Helmann-type conjugacy
problem, the root problem; in [3], Dehornoy designed an authentica-
tion scheme using the shifted conjugacy problem; Lal and Chaturvedi

c©2015 by S. Djimnaibeye, D. Tieudjo, N. Youmbi
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proposed in [8] two authentication schemes presumably based on the
difficulty of the root problem; Shpilrain and Ushakov also offered in
[20] an authentication scheme whose security is based on the hardness
of the twisted conjugacy search problem, etc. The security of these
authentication schemes relies on the difficulty to solve the underlined
algorithmic problems. So, the robustness of these schemes is ensured by
their resistance to the known cryptanalysis methods. Several methods
to attack the authentication schemes were suggested in the literature
[5, 6, 9, 10, 11, 23]. Mostly, these methods try to solve the difficult
problem used to design the scheme.

In 2009 in her thesis, Natalia Mosina presented a new probabilistic
approach to prove the vulnerability of the authentication protocols on
the braid groups [14, 15, 16] without solving the underlying problem.
So, given a group G with a probability measure induced by random
G-variables, Mosina defined the mean-set of random G-elements. She
stated and proved the Strong Law of Large Numbers (SLLN) on G,
and gave an algorithm to compute the mean-set of a sequence of inde-
pendent and identically distributed (i.i.d.) random G-variables. Using
these tools, she developed an approach called mean-set attack that
breaks the Sibert and al. authentication scheme, without solving the
difficult problem used to design the protocol. She then implemented
the attack and carried some experiments on the n-string braid group
Bn with the software package CRAG. In her approach, Mosina consid-
ered the relative frequency as the probability distribution on the group
Bn. However in [21], Sibert and al. suggested the use of the uniform
law to generate the braids and the bits in the authentication protocol.

In this work, we present the Mosina’s probabilistic approach and
a restricted form which uses the uniform law. We derive a simplified
mean-set attack algorithm that we implement on CRAG. We perform a
series of experiments and discuss the results obtained. We see that they
confirm those obtained by Mosina with a considerable gain of time.
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2 Probability on groups

2.1 Mean set of a random G-variable

Let G = 〈X〉 be the group generated by a non empty set X. Let CG(X)
be the Cayley graph associated to G. Let (Ω,F , P ) be a probability
space and ξ : Ω→ G a random G-variable.

• A probability distribution is a function µ : G → [0, 1] on ξ such
that:

µ(g) = µξ(g) = P ({ω ∈ Ω | ξ (ω) = g}, g ∈ G);

• The weight function is the function Mξ : G→ R defined by

Mξ(g) =
∑

s∈G

d2(g, s)µ(s),

where d(g, s) is the distance between g and s in the Cayley graph
CG(X) of G.

• The domain domain(M) of the weight function M is defined by:

domain(M) =

{

g ∈ G |
∑

s∈G

d2(g, s)µ(s) <∞

}

.

The weight function Mξ is totally defined if for all vertices g ∈ G,
Mξ(g) <∞ i.e. domain(M) = G.

Definition 2.1. Let ξ be a random G-variable such that Mξ(·) is
totally defined. The set E(ξ) of vertices g ∈ G having the smallest
value of Mξ i.e.

E(ξ) = {g ∈ G : Mξ(g) ≤Mξ(u),∀u ∈ G}

is called mean-set of ξ.

Since d(a, b) = d(ga, gb) for all a, b, g ∈ G we have:
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Proposition 2.1 (Shift Property). Let G = 〈X〉 be the group gen-
erated by a non empty set X and let g ∈ G. Suppose (Ω,F , P ) is a
probability space and let ξ : Ω → G be a random G-variable on Ω.
Then ξg defined by ξg(ω) = gξ(ω) is a random G-variable and we have
E(ξg) = gE(ξ).

2.2 The Strong Law of Large Numbers (SLLN)

Definition 2.2. Let ξ1, . . . , ξn be a sequence of i.i.d. random G-
variables with ξi : Ω→ G defined on a probability space (Ω,F , P ).

• The relative frequency

µn(g) = µn(g, ω) =
|{i | ξi(ω) = g, 1 ≤ i ≤ n}|

n

is the probability with which g occurs in the random sample
ξ1, . . . , ξn. µn defines a probability distribution on G.

• The sampling weight function is the function Mn : G→ R defined
by

Mn(g) =
∑

s∈G

d2(g, s)µn(s),

where d(g, s) is the distance between g and s in the Cayley graph
CG(X) of G.

• The sample mean-set of ξ1, . . . , ξn is the set Sn defined by

Sn = S(ξ1, . . . , ξn) = {g ∈ G : Mn(g) ≤Mn(u),∀u ∈ G}.

We now state the SLLN generalized to graphs and groups which
shows the convergence of the sample mean-set Sn to the mean-set E(ξ)
when n→∞.

Theorem 2.1. Let G = 〈X〉 be the group generated by a non empty set
X, where its associated Cayley graph CG(X) is connected and locally
finite. Let {ξi}

∞
i=1

be a sequence of i.i.d. random G-variables. If the
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weight function Mξ1(·) is totally defined and E(ξ1) = {g} for some
vertex g ∈ G, then

lim
n→∞

S(ξ1, . . . , ξn) = E(ξ1)

with probability 1.

For more details, see [14, 15].

Let G = 〈X〉 be a group and G1 = {g1, . . . , gn} be a subset of group
G with cardinality n. In [16], the following polynomial algorithm to
compute the mean-set of G1 is described.

Algorithm 2.1. Computation of the mean-set in a group

Input: the group G by its set X of generators and a subset G1 =
{g1, ..., gn} of G.
Output: An element g of G having the smallest weight function.
Computations:

A. Choose a random element g ∈ G according to some probability
measure µ on G.

B. If for every x ∈ X±1,Mn (g) ≤Mn (gx), then output g.

C. Otherwise put g ← gx, where x ∈ X±1 is an element minimizing
the value of Mn (gx) and go to step B.

The computation of Sn, the mean-set of the sample G1, poses some
problems:

• The computation of the set {M(g) : g ∈ G} requires at least
O(|G1|

2) elementary operations. This computation is practically
impossible when n is too large;

• The computation of the distance function d(·, ·) is difficult in some
groups like the braid groups.
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However, Algorithm 2.1 presented above allows to solve the first
problem. Indeed, it is a direct descent heuristic algorithm and it com-
putes the sample mean-set since the weight function Mn comes from a
sequence of random elements of G1. The second problem is the compu-
tation of the distance between two elements in G. An approximation of
the computation of the distance is described in [12]. Although it does
not guarantee an optimal solution, this approximation sometimes has
been used in a series of attacks.

3 Cryptanalysis of the authentication protocol

We now present the probabilistic approach used by Mosina to attack
an authentication protocol in the braid groups [16].

3.1 The Sibert and al. authentication protocol

The authentication is a procedure that permits the user to convince the
interlocutor of its identity. So, it involves two parties: the Prover (user)
and the Verifier (interlocutor). The Prover provides the purported
identity to the Verifier, and then both the Prover and the Verifier
should corroborate and act simultaneously such that the Verifier should
be convinced of the identity of the Prover. Only the Prover knows the
secret value corresponding to his public one, and it is the proper use
of this secret value which allows to convince the Verifier of its identity.

For n ≥ 2, the n-string braid group denoted Bn is the group with
the following presentation:

Bn =

〈

σ1, . . . , σn−1

∣

∣

∣

∣

σiσj = σjσi for |i− j| ≥ 2
σiσjσi = σjσiσj for |i− j| = 1

〉

. (1)

We present the Sibert and al. authentication protocol. The security
level of this protocol is parametered by the size of the used braids and
by the rank of the group Bn.

Protocol 3.1. Let n be an integer, let b be a braid in Bn and let h be
a hash function. b is written on its normal form or handle reduction
form.
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Phase I. Keys generation

Private key: Alice chooses a secret braid s ∈ Bn

Public key: Alice publishes (b, b
′

) with b′ = h(s−1bs)
Phase II. Authentication phase: repeat k times
Engagement: Alice choses a random braid r and sends x = h(r−1b′r)
to Bob;
Challenge: Bob sends a random bit ǫ to Alice;
Answer:

• If ǫ = 0, Alice sends y = r to Bob and Bob checks if x =
h(y−1b′y);

• If ǫ = 1, Alice sends y = h(sr) to Bob and Bob checks if x =
h(y−1by).

3.2 Mean-set attack

In this section we present the mean-set attack on the protocol 3.1 de-
scribed above (see also [16] or [14]).

3.2.1 Principle

If observe the Sibert and al. protocol 3.1, wee see that the Prover
sends to the Verifier sequence of two types of random elements: r and
sr, where r is a randomly generated element and s is the secret of the
Prover. An Intruder (Eve) can intercept and arrange the answers of
the challenges in a table similar to Table 1.

We obtain two sets R0 and R1 of elements, corresponding to ǫ = 0
and ǫ = 1 respectively. R0 = {ri1 , . . . , ril} and R1 = {srj1 , . . . , srjt},
where all the elements ri (i = 1, . . . , k = l+t) are distributed according
to a probability law µ. The objective of Eve is to retrieve the secret s
using the intercepted sequences R0 and R1.

SupposeG = Z. In this case, we writeR1 = {s+rj1, . . . , s+rjt}, and

we can compute the empirical average r0 =
1

l

∑l
m=1

rim of elements of

R0 ⊂ Z and the empirical average r1 =
1

t

∑t
p=1

(s+rjp) = s+ 1

t

∑t
p=1

rjp
of elements of R1 ⊂ Z. By the SLLN (Section 2.2, Theorem 2.1), if the
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Table 1. Principle of the mean-set attack

Tour Challenge Answers type
# 1

Answers type
# 2

1 ǫ = 1 – sr1
2 ǫ = 0 r2 –

3 ǫ = 0 r3 –

4 ǫ = 1 – sr4
5 ǫ = 0 r5 –

. . . . . . . . . . . .

k ǫ = 0 rl –

sequence R0 is too large, then r0 tends to the mathematical expectation
E(µ) of the distribution µ in Z. Similarly, if the sequence R1 is too
large, then r1 tends to s+ E(µ). Hence, by subtracting the limit of r0
to the limit of r1 we obtain an approximation of the secret s.

So, in this case, where G = Z, we can compute the secret thanks
to the following three properties:

(AV1) (SLLN for real-valued random variables): If {ξi}
∞
i=1

is a sequence
of real i.i.d. random variables and if E(ξ1) <∞, then

1

n

n
∑

i=1

ξi→E(ξ1)

with probability 1 when n→∞.

(AV2) (Shift Property): For all real random variable ξ, we have

E(c+ ξ) = c+ E(ξ),

where c is a constant.

(AV3) (Efficient computation): The average 1

n

∑n
i=1

ξi is efficiently com-
putable.
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Now, this method can be generalized to some infinite groups where
these three properties (AV1), (AV2) and (AV3) are defined similarly
and are satisfied. Indeed let G be an infinite group.

• For a random G-variable ξ : Ω→ G, define a set E(ξ) ⊆ G called
mean-set;

• For a set of n random G-variables ξ1, . . . , ξn, define a set Sn =
S(ξ1, . . . , ξn) ⊆ G called the sample mean-set of ξ1, . . . , ξn.

Hence, we have the shift property E(sξ) = sE(ξ) and a generalization
of the SLLN for groups in the sense that S(ξ1, . . . , ξn) converges to
E(ξ1) when n → ∞, with probability 1. Moreover, suppose that the
sample mean-set S(ξ1, . . . , ξn) is efficiently computable. Then Eve can
form the sets S(srj1, . . . , srjn−k

) and S(ri1 , . . . , rik) and compute

S(srj1, . . . , srjn−k
) · [S(ri1 , . . . , rik)]

−1,

which contains s with high probability when n is sufficiently large.

Below is the algorithm of the mean-set attack designed by Mosina.

3.2.2 Attack algorithm

Algorithm 3.1. The mean-set attack Algorithm

Input: the Prover public key (t, w) and the sequences R0 and R1;
Output: an element z such that t = zwz−1 or ’Failure’.
Computation:

A. Apply Algorithm 2.1 to R0 and get g0.

B. Apply Algorithm 2.1 to R1 and get g1.

C. If g1g
−1

0
satisfies t = (g1g

−1

0
)−1w(g1g

−1

0
), then retrieve g1g

−1

0
.

Otherwise output Failure.
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4 An amelioration of the mean-set attack

As mentioned by Sibert and al. in [21], we now consider the uniform
law as the probability distribution used to generate r and ǫ in the
protocol 3.1. We need to redefine the parameters of Section 2.2 for this
restriction.

• Taking a sample S of k elements in Bn, the probability for an
element to appear more than once in S is negligeable (since the
probability distribution is uniform and |Bn| =∞); we then have
the relative frequency

µk(g) = µk(g, ω) =
1

k
,

where g ∈ S.

• The sample weight is

Mk(g) =
1

k

∑

i∈S

d2(g, i),

where d(·, ·) is the distance function in Bn.

• The sample mean-set is

Sk = S(ξ1, . . . , ξk) =

= {g ∈ Bn :
∑

i∈S

d2(g, i) ≤
∑

i∈S

d2(u, i), ∀u ∈ Bn}.

The SLLN is then stated as follows:

Theorem 4.1. Let Bn be the n-string braid group and let {ξi}
∞
i=1

be a
sequence of i.i.d. random Bn-variables. If Mξ1(·) is totally defined and
E(ξ1) = {g} for an element g ∈ Bn, then

lim
k→∞

Sk = E(ξ1) = {g}.
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Proof. Similar to the proof of theorem 2.1 which can be seen in [14,
15].

Now take a sequence of sample elements in Bn. We can approxi-
mate the mean-set of random Bn-variables. We experiment Mosina’s
algorithm 3.1 on CRAG by varying (n) the number of strings, (L) the
length of the secret keys and (k) the number of elements in the sample.
The results are presented in Tables 2–3.

T.T represents the ratio for obtaining the trivial braid e as element
of the mean-set (on 100 tests).

T.T =
|{gi|short(gi) = e}|

100

with gi the element of the mean-set for the i-th test and short(gi) is
the shortest normal or reduced element representing gi.

DLMoy represents the average length of the braids when the ele-
ment of the mean-set is different from the trivial braid.

DLmoy =
1

100 − TT ∗ 100

∑

g∈S

lX(g),

where S is the set of the elements which are different from the trivial
braid and lX(g) represents the length of the element gwith respect toX.

Table 2. Experimental results of the approximation of the mean-set of
a random B5-variable

L\k 20 40 80 160

T.T DLMoy T.T DLMoy T.T DLMoy T.T DLMoy

10 65% 1,08 92% 1 100% 0 100% 0

20 45% 1,66 88% 1,8 96% 1 100% 0

30 45% 3,3 60% 1,7 89% 1,45 98% 1

40 21% 5,87 48% 5,11 64% 3,5 89% 8

50 14% 13,03 29% 6,7 71% 6,06 88% 5

An analysis of these results shows that the element of the mean-set
of a random Bn-variable is either the trivial braid or either a braid
which is very closed to the trivial braid (see that DLMoy tends to 0
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Table 3. Experimental results of the approximation of the mean-set of
a random B10-variable

L\k 20 40 80 160

T.T DLMoy T.T DLMoy T.T DLMoy T.T DLMoy

10 85% 1,33 97% 1 100% 0 100% 0

20 49% 1,29 92% 0,99 100% 0 100% 0

30 46% 1,59 93% 1,01 100% 0 100% 0

40 31% 1,42 88% 1,66 97% 1 100% 0

50 29% 2,8 74% 1,8 98% 1 100% 0

when T.T tends to 100). Hence we can deduce the following proposi-
tion:

Proposition 4.1. Let Bn be the n-string braid group and let g ∈ Bn.
Let (Ω,F , P ) be a probability space and let {ξgi }

∞
i=1

be a sample of
random Bn-variables. Then for the random Bn-variable ξ

g
i defined by

ξ
g
i (ω) = gξi(ω), we have

lim
k→∞

Sk(ξ
g
1
, ...ξ

g
k) = g lim

k→∞
Sk(ξ1, ...ξk) = g.

This proposition means that limn→∞ S(ξ1, . . . , ξn) = E(ξ1) = e,
where e is the trivial braid in Bn. We then pose the following conjec-
ture:

Conjecture 4.1. Let Bn be the n-string braid group. Let (Ω,F , P )
be a probability space and let ξ : Ω → Bn a random Bn-variable.
Then E(ξ) = {g}, where the normal form short(g) of g is such that
short(g) = e, the trivial braid in Bn.

Thus, from the set R1 defined in Section 3.2.1, one can compute
the set

S(srj1 , . . . , srjk)

which contains element s with a very high probability when k is large.

We can then rewrite the attack Algorithm 3.1 as follows.
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Algorithm 4.1. The revisited mean-set attack Algorithm

Input: the Prover public key (t, w) and a sequence R1

Output: an element g such that t = gwg−1 or ’Failure’
Computation:

A. Apply Algorithm 2.1 to R1 and get g.

B. If g satisfies t = g−1wg, then retrieve g. Else Failure.

The experimental results, implemented on CRAG with this revis-
ited mean-set attack Algorithm 4.1, are presented in Tables 4–6. Here,
we vary n the number of strings, the length L of the words and the
number k of tours in the algorithm (or elements in the sample).

Table 4. Experimental results of the attack Algorithm 4.1 in B5

L\k 20 40 80 160

10 66% 95% 100% 100%
20 55%, 85%, 95% 100%
30 13% 38% 67%, 100%

Table 5. Experimental results of the attack Algorithm 4.1 in B10

L\k 20 40 80 160

10 73% 99% 100% 100%
20 60%, 95%, 100% 100%
30 45% 90% 100%, 100%

Table 6. Experimental results of the attack Algorithm 4.1 in B20

L\k 20 40 80 160

10 94% 100% 100% 100%
20 89%, 100%, 100% 100%
30 65% 97% 100%, 100%

On these tables, we see that the rate of success increases when
the values of k increase. The length of the key influences the rate
of success. Also, the success rate increases with the rank (number of
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strings) of the group . These results, as those on Tables 2 and 3, confirm
Mosina and Ushakov’s obtained in [16]. Moreover we obtain a slight
rise of the success rate, compared to Mosina. Furthermore, we gain in
computation time since we need to compute only the mean-set of the
set R1, instead of computing for R0 and R1. Note that the computation
of the mean-set is timely significant when k and L are large.
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Abstract

High prevalence of non-alcoholic fatty liver disease (NAFLD)
has made this domain of medical diagnostics one of high profes-
sional and public interest. The major problem of NAFLD diag-
nostics is that in its initial phase non-alcoholic fatty liver tends
to be benign without tendency to progress, while in its second
phase – non-alcoholic steatohepatitis (NASH) can progress to cir-
rhosis, which subsequently may cause hepatocellular carcinoma.
This fact explains the need for more sensitive classifications that
would allow early diagnostics of NAFLD. NAFLD diagnostics
in most cases is based on clinicopathological criteria – decision
rules expressed through ultarasound signs and laboratory data,
annotated by hepatologist/gastroenterologist. In this article we
describe the process of creation of a classification of NAFLD early
stages based on a decisional reasoning, which combines two meth-
ods of medical diagnostics.

Keywords: Non-alcoholic fatty liver, NAFLD diagnostics,
medical ultrasound, hepatologist/gastroenterologist, pathological
liver states classification.
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1 Introduction

NAFLD in its initial stage is asymptomatic, often with normal hepatic
functional tests, and is difficult to diagnose [1]. It is estimated that
NAFLD is the most common liver disease both in countries of Western
Europe and United States with high income per capita and in poor
countries [2].

NAFLD encompasses a broad spectrum of liver diseases. NAFLD is
a disease that can progress, and in its natural evolution passes through
several stages. It begins with free fatty acids synthesis in the liver,
resulted in steatosis. Simple steatosis refers to diseases with a fa-
vorable course and possibility of a complete regression. However, in
10-20% of cases steatosis is associated with inflammation, which leads
to non-alcoholic steatohepatitis [1]. In present, hepatic steatosis and
steatohepatitis are considered early stages of NAFLD. The evolution
of fibrosis, in turn, causes transformation into cirrhosis and cancer –
advanced stages of NAFLD [2].

The degree of filling of the liver with fat can be determined using
sonography technique and/or laboratory tests.

Both sonographists and hepatologists/gastroenterologists examine
separately at best only functionality of the liver (most often the whole
hepato-pancreato-biliary region), rather than the degree of steatosis.
The degree of steatosis appears in the patients’ diagnosis only if the
physician finds NASH fibrosis (at best of degree 1). This is also ex-
plained by the fact that generally a hepatologist examines patients
with suspected NAFLD only if they are referred by a family doctor or
sonographist.

Therefore, it is impossible to determine exactly interconnection be-
tween the steatosis degree and fibrosis appearance, and the role of
steatosis as a trigger.

Additionally, at the moment, there is no specialized examination
algorithm and protocol (within the meaning of physicians) for patients
with suspected NAFLD or patients with early stages of NAFLD.

In this paper we propose a classification using two types of findings
(sonographic and hepatologic) to estimate the steatosis degree at early
stages.
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2 Related work

In a general way NAFLD diagnostics can be reduced to: (i) excluding
the fact of alcohol consumption or its daily limitation by less than 20 g
for women and less than 30 g for men; (ii) determining the presence
of hepatic steatosis by imaging technigues or laboratory tests; and (iii)
excluding of other liver diseases.

There are several methods of medical imagistics that can identify
the degree of infiltration of the liver with fat. Ultrasound is reliable and
accurate method for diagnostics of the diseases of hepato-pancreato-
biliary region with sensitivity more than 70-80%. Another important
advantage is that ultrasound diagnostics is by far inexpensive compared
to many other imaging methods of diagnostics like MRI, CT, etc.

However, this diagnostics technique has its own drawbacks. The
accuracy of ultrasound in detecting pathologies is a good one, but has
some limitations, because of both false-positive and false-negative re-
sults. In addition, ultrasound images are noisy, blurred in shape, and
suffer from echoes.

So, the first problem is to obtain a good image, the most relevant
and useful for physician’s decision-making. This is the main task of an
operator, and the reason for which ultrasound investigation is consid-
ered highly operator dependent.

Ultrasound diagnostics of pathological modifications is based on the
analysis of characteristic signs from images, obtained for the investi-
gated organ. The resulting conclusion is quite subjective, and widely
depends on a physician’s experience. So, the second, and probably
more important problem, is the interpretation of the obtained ultra-
sound images.

In order to solve two major problems described above, SonaRes
methodology and technology for formalization of professional expert
knowledge in the domain of medical ultrasound disgnoctics of hepato-
pancreatic-biliary region were proposed in [3].

The SonaRes knowledge base includes the following data and expert
knowledge:

• the knowledge base for gallbladder contains 335 facts and 54 de-
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cision rules, 166 model images annotated by the expert group,
226 images with regions of interest (ROIs) marked;

• for pancreas – 231 facts, 52 decision rules, 106 model images, 137
images with ROIs marked;

• for liver – 167 facts, 31 decision rules, 87 model images, 111
images with ROIs marked;

• for bile ducts – 257 facts, 15 decision rules, 30 model images, 37
images with ROIs marked.

On the other hand, hematologists/gastroenterologists in their pro-
fessional practice use various scoring systems, which describe the hep-
atic functionality.

The authors of the NAFLD activity score (NAS) – Matteoni, Brunt,
and the NASH Clinical Research Network Pathology Committee – pro-
posed the best-known pathological classification of NAFLD/NASH [4-
5].

The NAS represents an unweighted sum of the scores for steatosis
(0-3), lobular inflammation (0-3) and ballooning degeneration (0-2).
Scores of 5 or more are correlated well with the diagnosis of NASH,
as confirmed by an experienced pathologist who studied the specimens
independently. Scores of less than 3 are correlated equally well with
”not NASH”, while scores of 3 or 4 did not allow clear assignments to
one or the other category.

NAS differentiates fibrosis in four stages: stage 1 means perisinu-
soidal fibrosis in zone 3; stage 2 is characterized by perisinusoidal and
portal/periportal fibrosis; stage 3 is defined as bridging fibrosis; stage
4 reflects cirrhosis.

3 Classification of early stages of NAFLD in

CATDC-NAFLD

Scenarios, describing NAFLD progress from hepatic steatosis (grade 1,
grade 2, grade 3), to non-alcoholic steatohepatitis (fibrosis 0-1, fibrosis
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2-3) and cirrhosis are known, and are presented in Fig. 1. Fibrosis
progression in stages 0-1-2-3 is reversible, while there is no reversibility
of fibrosis stage 4 (cirrhosis).

Figure 1. Scenarios, describing NAFLD progress

But, at present there is neither generally accepted theory on
NAFLD pathogenesis, nor complete understanding of mechanisms of
NAFLD onset and progress (its transition from steatosis to steato-
hepatitis). Therefore, the knowledge describing NAFLD diagnostics
domain is needed to be formalized.

Discovering and formalization of knowledge diagnostics process, on-
set and progress of early stages of NAFLD is one of goals of CATDC-
NAFLD project [6] – development of computer-aided tools for diagnos-
tics and classification of early stages of NAFLD.

To create the knowledge base of CATDC-NAFLD we have used
SonaRes technology [3], which allows to incorporate the kernel of the
SonaRes knowledge base about liver pathologies into CATDC-NAFLD.
This kernel includes the following data and expert knowledge: 207 facts,
38 decision rules, 81 model images, 111 images with ROIs marked.

After that, sonographic and hepatologic experts extended the num-
ber of liver rules from 38 into 44, taking into account NAFLD specifics.
For diffuse hepatic steatosis 3 rules were created, identifying mild, mod-
erate and severe forms. Also 3 rules were created for steatohepatitis,
separating liver fibrosis into stages F0-F1, F2-F3 and F4. As the result
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11 rules (including liver normal state) and 120 facts, corresponding to
NAFLD pathologies, were selected from 44 rules and 207 facts (see
Table 1).

Table 1. CATDC-NAFLD knowledge base evolution (sonographic find-
ings)

SonaRes
liver KB

CATDC-NAFLD KB adjusted
to NAFLD diagnostics

Total facts 207 120

Total rules 38 11

Total model US im-
ages

81 24

Total US images
with ROIs marked

111 31

The obtained 11 rules are based on sonographic findings and formu-
lated using sonographic terminology. It can lead to misunderstanding
and wrong interpretation by hepatologist.

In order to solve this problem we, together with the experts-
physicians, established a correspondence between liver sonographic
conclusions (rules) and NAFLD pathological states (IIa-IIc, IIIa-IIIb,
IV) (see Table 2).

Validation of the obtained correspondence between liver sono-
graphic conclusions and NAFLD pathological states was done on 10
patients.

As a result of the validation process the need for the addition of
hepatologic findings based on laboratory tests was identified. It will
help to make the desired classification more accurate.

An analysis of 53 liver protocols was done in order to determine
characteristics, which are specific to NAFLD. The following four groups
of hepatologic characteristics were identified: general data, risk factors,
clinical data, and laboratory tests. The total number of hepatologic
findings was essensially redused for the case of NAFLD (see Table 3).

Thus, the base of professional knowledge, used in the diagnostics
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Table 2. Classification of NAFLD pathological states

Liver sonographic conclusion NAFLD pathological
state

1 R00. Normal liver I Predisposition to
NAFLD

2 R20.1. Metabolic diseases.
Diffuse hepatic steatosis, mild
form

II a Hepatic steatosis grade
1

3 R20.2. Metabolic diseases.
Diffuse hepatic steatosis,
moderate form

II b Hepatic steatosis grade
2

4 R20.3. Metabolic diseases.
Diffuse hepatic steatosis, se-
vere form

II c Hepatic steatosis grade
3

5 R20a. Metabolic diseases.
Parcelar hepatic steatosis

II Hepatic steatosis

6 R20b. Metabolic diseases.
Diffuse hepatic steatosis with
sparing areas. Focal fatty
sparing

II Hepatic steatosis

7 R20c. Metabolic diseases.
Focal hepatic steatosis (pseu-
dotumoral)

II Hepatic steatosis

8 R24a. Steatohepatitis. Liver
fibrosis F0-F1

III a NASH, fibrosis 0-1

9 R24b. Steatohepatitis. Liver
fibrosis F2-F3

III b NASH, fibrosis 2-3

10 R24c. Steatohepatitis. Liver
fibrosis F4. Liver cirrhosis

IV NASH, fibrosis 4 = cir-
rhosis

11 R35. Portal hypertension III b
IV

NASH, fibrosis 2-3,
NASH, fibrosis 4
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of early stages of NAFLD by both sonographists and hepatologists,
was obtained. This knowledge base consists of 120 facts describing
NAFLD, 18 facts describing NAFLD onset risk factors and 11 decision
rules. Using this knowledge base and inference engine of the SonaRes
technology, early stages of NAFLD can be classified.

Table 3. CATDC-NAFLD knowledge base evolution (hepatologic find-
ings)

Total hepato-
logic findings

NAFLD-
related findings

General data 6 4

Risk factors (no alcohol-related,
used only for NAFLD progres-
sion scenarios)

29 18

Clinical data 36 2

Laboratory tests 55 14

Total 126 20 (+18)

4 Conclusions and future work

The current practice is the following: a hepatologist generally only as-
sesses patients after they are referred by the ultrasound physician. But
not always ultrasound images can show the liver pathological changes
in the early stages of NAFLD, or ultrasound physician pays attention to
more serious pathology in gallbladder, pancreas and biliary system. It
is a major cause of delayed access to the hepatologist and late NAFLD
diagnostics. The proposed classification allows to focus attention on the
early liver pathological changes, revealed not by one, but by two main
diagnostics methods, that improves the accuracy of diagnosis and al-
lows to diagnose early stages of NAFLD. In addition, this classification
forces ultrasound physician and hepatologist to cooperate at NAFLD
early stages manifestation.
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As in the inference mechanism we use decision rules that involve
sonographic findings, obtained from phisicians-experts, and case-based
hepatologic findings, it is necessary to validate the obtained inference
on the same cohort. Another task for the future work is to create a
score, taking into account both sonographic and hepatologic findings.
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Objective: Consider the problems of computational completeness
and universality for several biologically-inspired models of computa-
tion: insertion-deletion systems, networks of evolutionary processors,
and multiset rewriting systems. The presented results fall into two ma-
jor categories: study of expressive power of the operations of insertion
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and deletion with and without control, and construction of universal
multiset rewriting systems of low descriptional complexity.

Novelty: The thesis focuses on novel models of computation in-
spired by the biological cell and gives original techniques of analysis of
the expressive power of these models as well as of optimisation of their
descriptional complexity.

Results: In the first part of the thesis we focus on insertion-
deletion systems and we show that allowing one-symbol insertion and
deletion rules to check a two-symbol left context enables them to gen-
erate all regular languages. Moreover, we prove that allowing longer
insertion and deletion contexts does not increase the computational
power. We further consider insertion-deletion systems with additional
control over rule applications and show that the computational com-
pleteness can be achieved by systems with very small rules.

The second part of the thesis is concerned with the universality
problem, which consists in finding a fixed element able to simulate the
work any other computing device. We start by considering networks
of evolutionary processors (NEPs), a computational model inspired by
the way genetic information is processed in the living cell, and con-
struct universal NEPs with very few rules. We then focus on multiset
rewriting systems, which model the chemical processes running in the
biological cell. For historical reasons, we formulate our results in terms
of Petri nets. We construct a series of universal Petri nets and give sev-
eral techniques for reducing the numbers of places, transitions, inhibitor
arcs, and the maximal transition degree. Some of these techniques rely
on a generalisation of conventional register machines, proposed in this
thesis, which allows multiple register checks and operations to be per-
formed in a single state transition.

Software contributions: The construction of small universal
Petri nets (multiset rewriting systems) was supported by software de-
veloped by the author with the goal of automating solutions to some
combinatorial and optimisation problems. Programmatic definitions of
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the discussed models of computing were given and are available online1.

Applicative value: The applicative value of the thesis has two
principal aspects. On the one hand, the results concerning insertion-
deletion systems contribute directly to understanding of the complexity
of the biological processes this model was inspired by, whereas the
described small universal objects may serve as a theoretical foundation
for the construction of simple but computationally universal biological
computers. On the other hand, the thesis proposes a number of original
approaches to the discussed problems, which can be generalised and
applied in a different context.

1https://github.com/scolobb/computing-devices
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