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Choice Numbers of Multi-Bridge Graphs

Julian Allagan Benkam Bobga

Abstract

Suppose ch(G) and χ(G) denote, respectively, the choice
number and the chromatic number of a graph G = (V,E). If
ch(G) = χ(G), then G is said to be chromatic-choosable. Here,
we find the choice numbers of all multi-bridge or l-bridge graphs
and classify those that are chromatic-choosable for all l ≥ 2.
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1 Preliminaries

In this paper, G = (V,E) denotes a simple connected graph, where
V = V (G) and E = E(G) denote, respectively, the set of vertices and
the set of edges of G. An edge e ∈ E with endpoints u, v ∈ V is denoted
by uv. Also, we denote by N(u) = NG(u) = {x ∈ V | ux ∈ E} the
(open) neighbor set in G of u ∈ V . ∆ = ∆(G), Kn and Cn denote,
respectively, the maximum degree of G, a complete graph and a cycle
on n vertices. The join of two graphs G1 and G2, denoted by G1 ∨G2,
is the graph G whose vertex set is V (G) = V (G1) ∪ V (G2), a disjoint
union, and whose edge set is E(G) = E(G1) ∪ E(G2) ∪ {u1u2 | u1 ∈
V (G1), u2 ∈ V (G2)}. For other basic notions of graphs, see [15].

A list assignment to the graph G = (V,E) is a function L which
assigns a finite set (list) L(v) to each vertex v ∈ V . A proper L-coloring
of G is a function φ : V → ∪v∈V L(v) satisfying, for every u, v ∈ V , (i)
φ(v) ∈ L(v) and (ii) uv ∈ E → φ(v) 6= φ(u).

The choice number of G, denoted by ch(G), is the smallest integer k
such that there is always a proper L-coloring of G if L satisfies |L(v)| ≥
k for every v ∈ V . We define G to be k-choosable if it admits a proper

c©2017 by J. Allagan, B. Bobga

247



J. Allagan, B. Bobga

L-coloring whenever |L(v)| ≥ k for all v ∈ V ; so ch(G) is the smallest
integer k such that G is k-choosable. The following theorem is useful
in the estimation of choice number.

Theorem A. (Erdős, Rubin and Taylor [3]) If G is a connected
graph that is neither a complete graph nor an odd cycle, then ch(G) ≤
∆(G).

Corollary A. For any graph G, ch(G) ≤ ∆(G) + 1.

The proof of Corollary A follows from a ”greedy coloring” argument.

Clearly, χ(G) ≤ ch(G) since the chromatic number χ(G) is similarly
defined with the restriction that the list assignment is to be constant
and there are many graphs whose choice number exceeds (sometimes
greatly) their chromatic number. The two planar graphs in Figure 1
are some examples, where it is not too hard to see that, given the list
assignment for each graph G, ch(G) = 3 > 2 = χ(G).

{b, c} {a, c}

{b, c}
{a, b}

{a, b}

{a, c}

{a, b}

{b, c}

{a, c}

{a, c}

{b, c}

{a, b}

{a, b}

(A) (B)

Figure 1: Two graphs with two list assignments.

Any graph G for which the extremal case χ(G) = ch(G) holds
is said to be chromatic-choosable. Cycles, cliques and trees are some
examples of chromatic-choosable graphs.

Historically, the topic of list colorings is believed to be first intro-
duced by Vizing [9] and independently by Erdős, Rubin and Taylor [3].
Ever since, many researchers (see for e.g., [1], [4]–[7]) have sought to
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classify chromatic-choosable graphs. It is worth noting that the pro-
blem of finding chromatic-choosable graphs contains the famous list co-
loring conjecture [9]: the line graph of any graph is chromatic-choosable.
In fact, this conjecture has been partially proved by Galvin [4] in

Theorem B.(Galvin [4]) The line graph of any bipartite multigraph
is chromatic-choosable.

Recently, Reed et al. [6] settled the well-known Ohba’s conjecture
[7]. We state their result (or Ohba’s conjecture) without proof, in the
next theorem.

Theorem C.(Noel, Reed and Wu [6]) If |V (G)| ≤ 2χ(G) + 1, then
G is chromatic-choosable.

Because the proposed bound is obviously weak in characterizing
chromatic-choosable graphs with low chromatic numbers, we classify a
class of acyclic graphs with low chromatic number (χ ≤ 3) and arbi-
trarily large ∆.

2 Choice number of some l-bridge graphs

The length of a path is the number of its edges and two paths are said
to be internally disjoint if they have no common internal vertex.

An l-bridge (or multi-bridge) graph Θ(a1, . . . , al) is the graph obtai-
ned by connecting two distinct vertices u and v with l internally disjoint
paths Pai of lengths ai ≥ 1. It is customary to assume l ≥ 3 since when
l = 2, Θ(a1, a2) is a cycle on a1 + a2 vertices; the trivial case when
l = 1, Θ(a1) ∼= uv, an edge. L-bridge graphs are planar and when
l = 3, figure 1(A) depicts an example of Θ(1, 3, 3). For the rest of this
article, it causes no confusion to denote Pai := uv if some ai = 1, and
Pai := uxi1xi2 . . . xiai−1

v, a sequence of edges for all ai ≥ 2.

Recall, the core of a connected graph is the graph obtained by
deleting all vertices of degree 1, and then all vertices of degree 1 in
what remains, and so forth, until there are no vertices of degree 1
remaining; except that, in case of K2, delete only one vertex. Erdős,
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Rubin and Taylor have described the structure of 2-choosable graphs
(which are necessarily bipartite) in the next theorem.

Theorem D.(Erdős, Rubin and Taylor [3]). A connected graph G
is 2-choosable if and only if the core of G is K1, an even cycle, or of
the form Θ(2, 2, 2t), where t is a positive integer.

Not surprisingly, there has been no characterization of k-choosable
graphs, k ≥ 3. Alon and Tarsi [2] showed that every bipartite planar
graph is 3-choosable and there has been several attempts at characteri-
zing triangle free planar graphs in order to strengthen Alon and Tarsi’s
result. See for instance, [8], [10]–[14]. Clearly, since each graph G in
Figure 1 is bipartite and planar, it follows from Alon and Tarsi’s result
that ch(G) = 3, given the list assignment. It is important to point out
that l-bridge graphs are not necessarily bipartite as they may contain
odd cycles. Here, we show that they are 3-choosable and later, we
classify them based on their choice number.

Proposition 1. If G = Θ(a1, . . . , al), then G is 3-choosable.

Suppose L is a list assignment to G satisfying |L(w)| ≥ 3 for each
w ∈ V (G). Because every path is 2-choosable, color properly the
vertices (including u,v) of some path Pai . Suppose, in coloring Pai ,
φ(u) = c1 and φ(v) = c2, where c1 and c2 are not necessarily distinct
colors. For each vertex y ∈ V (G\Pai ), define L′(y) = L(y) − {c1, c2}.
If |L′(y)| ≥ 2 for each y ∈ V (G\Pai), color properly the vertices on
each independent path Paj − uv, j 6= i. Or else, there exists a vertex
z ∈ V (G\Pai ) such that, for some k 6= i, |L′(z)| ≥ 1. This implies that
N(u) = z = N(v), i.e., Pak := uzv. In this case, color z with the color
left in its palette, giving a proper L-coloring of G.

�

Theorem 1. Suppose G = Θ(a1, . . . , al) is any l-bridge graph with
l ≥ 3. ch(G) = 3 if and only if G is not Θ(2, 2, 2t), for all t ≥ 1.

Proof. Clearly if G = Θ(2, 2, 2t), then it follows from Theorem D that
ch(G) = 2. Now, if G is an l-bridge that contains an odd cycle, then
the result follows from Proposition 1. Thus, to complete the proof,
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we can assume that G is neither Θ(2, 2, 2t) nor contains an odd cycle
and show that ch(G) > 2. In each upcoming claim we present a list
assignment which is left up to the reader to verify in order to establish
the result.

Claim A. If G1 = Θ(a1, . . . , al) and each ai is odd, then G1 is not
2-choosable, for all l ≥ 3.

Let H = Θ(a1, a2, a3) such that each ai is odd, for i = 1, 2, 3.
Clearly H contains no odd cycle. Define a list assignment L1 satisfying,
for each w ∈ V (H)

(i) L1(u) = L1(v) = L1(x1j ) = {a, b} for 1 ≤ j ≤ a1 − 1

(ii) L1(x21) = . . . = L1(x2a2−2
) = L1(x3a3−1

) = {a, c}

(iii) L1(x31) = . . . = L1(x3a3−2
) = L1(x2a2−1

) = {b, c}.

It is easy to see that every proper L1-coloring of Pa1 will require
distinct colors a, b for the vertices u, v, forcing L1(xij ) = ∅, for some
i 6= 1 and 1 ≤ j ≤ ai − 1. Hence, ch(H) > 2. Because H ⊆ G1, for all
l ≥ 3, G1 is not 2-choosable.

�

Claim B. If G2 = Θ(2r, 2s, 2t), then G2 is not 2-choosable for all
r ≥ 1, and s, t ≥ 2.

Denote x1, x2 and y1, y2 the vertices on the paths P2s and P2t,
respectively, such that x1 = N(u), x2 = N(x1), y1 = N(u), and y2 =
N(y1). Then for each w ∈ V (G3), define the list assigment L2 such
that

(i) L2(u) = L2(v) = L2(z) = {a, b} for z /∈ {x1, x2, y1, y2}

(ii) L2(x1) = L2(y2) = {b, c}, L2(y1) = L2(x2) = {a, c}.

It is easy to see that G2 does not admit a proper L2-coloring. �
Observe that the previous claim completely resolves the case of l-

bridge graphs (with even paths) that are not of the form Θ(2, 2, 2t) for
l = 3.

Claim C. If G3 = Θ(a1, . . . , al) and each ai is even, then G3 is not
2-choosable, for all l ≥ 4.
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For l ≥ 4, we present a list assignment L3 to G3 when ai = aj, for
each i 6= j. A similar list assignment can easily be derived when some
ai 6= ak by letting L3(xkak/2

) be a specific 2-subset of {a, b, c, d}.

Let H = Θ(a1, a2, a3, a4) such that a1 = a2 = a3 = a4. Now define
L3 to be a list assignment satisfying, for each w ∈ V (H):

(i) L3(u) = {a, b} and L3(v) = {c, d}

(ii) L3(x1a1/2) = {a, c}, L3(x2a2/2) = {a, d}, L3(x3a3/2) = {b, c},
L3(x4a4/2) = {b, d}

(iii) L3(xij ) = {a, b} for 1 ≤ j < ai/2 and L3(xij ) = {c, d}
for ai/2 < j ≤ ai − 1

It is easy to verify that H ⊆ G3 admits no proper L3-coloring.

�

Thus, if G contains only even cycles and G is not Θ(2, 2, 2t), Gmust
satisfy one of the previous claims. The result follows for all l-bridge
graphs, with l ≥ 3.

Corollary 1. Suppose G = Θ(a1, . . . , al), l ≥ 3. G is chromatic-
choosable if and only if G contains an odd cycle or G is of the form
Θ(2, 2, 2t), where t is a positive integer.

Proof. Suppose G = Θ(a1, . . . , al) is chromatic-choosable. It follows
from Proposition 1 that, either (i) χ(G) = 2 = ch(G) or (ii) χ(G) =
3 = ch(G). Case (i) follows from Theorem D. In which case G ∼=
Θ(2, 2, 2t) while in case (ii) it is clear that G must contain an odd
cycle. Conversely, if G contains an odd cycle, then χ(G) = 3. It
follows from Theorem 1 that G is chromatic-choosable. Moreover, if
G ∼= Θ(2, 2, 2t), then G contains no odd cycle and χ(G) = 2. It follows
from Theorem D that G is chromatic-choosable.

We end this article with the next lemma which gives an estimate on
the choice number of any connected graph. A graph G of order greater
than r is said to be r-connected if G remains connected whenever fewer
than any r number of vertices of G are removed.

252



Choice Numbers of Multi-Bridge Graphs

Lemma 1. Suppose G is an r-connected graph with components
G1, . . . , Gm. If k = max

1≤i≤m
{ch(Gi)}, then G is (k + r)-choosable for

all k, r ≥ 1 and m ≥ 2.

Proof. Suppose L is a list assignment to v ∈ V (G) satisfying |L(v)| ≥
k+r with k, r ≥ 1. Denote S ⊂ V (G) a set of r vertices whose deletion
produces the non-empty components G1, . . . , Gm, m ≥ 2. Color each
element of S using distinct r colors, and remove those colors from
the palette of each vertex u ∈ V (G)\S. Let L′ be the resulting list
assigment for each vertex u. It follows that |L′(u)| ≥ k for each u ∈
V (Gi), 1 ≤ i ≤ m. By the hypothesis, each Gi is k-choosable so we
color each vertex u ∈ V (Gi). Because G is r-connected, together with
the r-colorings of S, we have a proper L-coloring of G.

Notice that this bound is sharp for some 1-connected cyclic graphs.
See for instance, Figure 1(B). From this proposition follows

Corollary 2. Suppose S is a clique on r vertices and for some graphs
Hi, k = max

1≤i≤m
{ch(Hi)}. If G = S ∨ {Hi}

m
i=1, then ch(G) = k + r.

Proof. Because every proper coloring of S ⊂ G uses exactly r colors,
the result follows from similar steps as in Lemma 1.
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A remark on the weak Turán’s Theorem

Nader Jafari Rad

Abstract

A subset S of vertices of a graph G is an independent set if
no pair of vertices of S are adjacent. The independence number,
α(G) of G, is the maximum cardinality of an independent set of
G. In this note, we present an improvement of the weak Turán’s
theorem.

Keywords: Independent set, Turán’s Theorem, Probabilistic
methods.

AMS Subject Classification: 05C69.

1 Introduction

For graph theory notation and terminology not given here we refer
to [4], and for the probabilistic methods notation and terminology we
refer to [1], [5]. We consider finite, undirected and simple graphs G
with vertex set V = V (G) and edge set E(G). The number of vertices
of G is called the order of G and is denoted by n = n(G), and the
number of edges of G is called the size of G. The open neighborhood

of a vertex v ∈ V is N(v) = NG(v) = {u ∈ V | uv ∈ E} and the closed

neighborhood of v is N [v] = NG[v] = N(v)∪{v}. The degree of a vertex
v, denoted by deg(v) (or degG(v) to refer to G), is the cardinality of its
open neighborhood. We denote by δ(G) and ∆(G), the minimum and
maximum degrees among all vertices of G, respectively. For a subset
S of vertices of G, we denote by G[S] the subgraph of G induced by S.
A subset S of vertices of G is an independent set if G[S] has no edge.
The independence number, α(G) of G, is the maximum cardinality of
an independent set.

c©2017 by Nader Jafari Rad

256



A remark on the weak Turán’s Theorem

Turán [6] proved his best-known result, namely Turán’s Graph The-

orem or just Turán’s Theorem, by determining those graphs of order n,
not containing the complete graph Kk of order k, and extremal with re-
spect to size (that is, with as many edges as possible). Much have been
written about Turán’s Theorem, see for example [1], [2] and [5]. The
Turán’s Theorem states that if G is a graph with n vertices such that
G is Kr+1-free, then the number of edges in G is at most (1− 1/r)n

2

2 .
There is an equivalent theorem referred as the dual version of the
Turán’s Theorem, (or sometimes the Turán’s Theorem, too) that sta-
tes that any graph G of order n and size m contains an independent
set of size at least n

d+1 , where d = 2m
n

is the average degree of G. A
weak version of Turán’s Theorem has been proved by several authors
by probabilistic methods.

Theorem 1 (A weak Turán’s theorem, [1], [5]) If G is a graph of

order n, and size m, and d = 2m
n

≥ 1 is the average degree, then

α(G) ≥ n

2d .

In this note, we present an improvement of the weak Turán’s The-
orem by the same probabilistic methods. We use the following.

Theorem 2 (Caro [3] and Wei [7]) For any graph G,

α(G) ≥
∑

v∈V (G)

1

1 + deg(v)
.

2 Main result

Theorem 3 If G is a graph of order n, size m, maximum degree ∆,

minimum degree δ, and d = 2m
n

≥ 1 is the average degree, then α(G) ≥

n

2d + n

∆+1

[

1
d
+

(

1− 2
d

)(

1− 1
d

)δ]

.

Proof. Select a random subset of vertices S ⊆ V (G) in such a
way that we insert every vertex into S independently with probability
p = 1

d
. Let A be the set of all non-isolated vertices of G[S], G′ = G[A],
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and IS be a maximum independent set in G′. Let X = {v ∈ V (G)−S :
NG[v]∩S = ∅}, and JS be a maximum independent set in G[X]. From
Theorem 2, we find that

|IS | ≥
|A|

∆(G′) + 1
≥

|A|

∆(G) + 1
=

|A|

∆+ 1
,

and

|JS | ≥
|X|

∆(G[X])) + 1
≥

|X|

∆(G) + 1
=

|X|

∆+ 1
.

Let X = |S|, Y denotes the number of edges of G[S−IS], and Z = |JS |.
We compute the expectation of X − Y + Z. Clearly E(X) = np. Any
vertex of IS is incident with at least one edge in G[S]. Thus, the
number of edges of G[S − IS ] is bounded above by the number of
edges of G[S] minus the number of vertices of IS . Let Y1 denotes the
number of edges of G[S], and Y2 denotes the number of vertices of |IS |.
Then Y ≤ Y1−Y2. Observe that E(Y1) = mp2, and E(Y2) = E(|IS |) ≥

E( |A|

∆+1 ) =
1

∆+1E(|A|). For a vertex v, Pr(v ∈ A) = p(1−(1−p)deg(v)),

and Pr(v ∈ X) = (1− p)1+deg(v). Thus,

E(Y ) ≤ E(Y1)− E(Y2)

≤ mp2 −
1

∆ + 1
E(|A|)

≤ mp2 −
1

∆ + 1
np

(

1− (1− p)δ
)

.

Moreover,

E(|JS |) ≥ E(
|X|

∆+ 1
) =

1

∆ + 1
E(|X|) ≥

n

∆+ 1
(1− p)1+δ.

Now,

E(X − Y + Z) ≥

np−mp2 +
1

∆+ 1
np

(

1− (1− p)δ
)

+
n

∆+ 1
(1− p)1+δ =

=
n

2d
+

n

∆+ 1

[

1

d
+

(

1−
2

d

)(

1−
1

d

)δ]

.
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Thus there exists a specific set S for which the number of vertices
of S minus the number of edges in G[S−IS ] plus the number of vertices

of JS is at least n

2d + n

∆+1

[

1
d
+

(

1 − 2
d

)(

1 − 1
d

)δ]

. Select one vertex

from each edge of G[S − IS ] and delete it. This leaves a set S∗ with at

least n

2d +
n

∆+1

[

1
d
+

(

1− 2
d

)(

1− 1
d

)δ]

vertices which is an independent

set.
Remark: Although our main result is weaker than Theorem 2, it

would be interesting for researchers interested to weak Turán’s Theo-
rem.
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On the locating matrix of a graph and its

spectral analysis

H. N. Ramaswamy Anwar Alwardi N. Ravi Kumar

Abstract

We introduce a new matrix representation for a graph by
defining the locating matrix Lo(G) of G. We define the locating
eigenvalues, the locating spectrum, and locating energy of the
graph and we calculate them for some standard graphs. We also
obtain bounds for the locating energy for regular and strongly
regular graphs.

Keywords: Locating eigenvalues (of graph), Locating Spect-
rum (of graph), Locating energy (of graph).

1 Introduction

A graph is completely determined by either its adjacencies or its inci-
dences. This information can be conveniently stated in matrix form. It
is often possible to make use of these matrices in order to identify cer-
tain properties of a graph. The adjacency matrix A(G) = A = [aij ]
of a labeled graph G with p points is the p× p matrix in which aij = 1
if vi is adjacent with vj and aij = 0 otherwise. Thus, there is a one-to-
one correspondence between labeled graphs with p vertices and p × p
symmetric binary matrices with zero diagonal. The eigenvalues are the
roots of the characteristic polynomial

φ(G;λ) = det(λI −A)

= λn + c1λ
n−1 + c2λ

n−2 + · · ·+ cn−1λ+ cn,

where I is the n × n identity matrix. The eigenvalues of A(G) are
eigenvalues of G. Since A is a real symmetric matrix with zero trace,

c©2017 by H. N. Ramaswamy, Anwar Alwardi, N. Ravi Kumar
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these eigenvalues are all real with sum equal to zero. The Spectrum of
a graph is the list of distinct eigenvalues λ1 > λ2 > . . . > λr of G, with
multiplicities m1,m2, . . . ,mr, represented by

Spec(G) =

(

λ1 λ2 · · · λr

m1 m2 · · · mr

)

.

The energy of the graphG is defined in [8] as the sum of the absolute
values of its eigenvalues:

E(G) =
n
∑

i=1

|γi| .

Details on the theory of graph energy can be found in the book [20],
whereas details on its chemical applications in the book [14] and in the
review [11].

Lemma 1. [6] For the standard graphs Kp, Km,n and Cn, we have

• Spec(Kp) =

(

n− 1 −1
1 n− 1

)

.

• Spec(Km,n) =

( √
mn −

√
mn 0

1 1 m+ n− 2

)

.

• Spec(Cn) =















(

2 2 cos 2π
n

· · · 2 cos
2(n−1)π

n

1 2 · · · 2

)

, if n is odd;
(

2 2 cos 2π
n

· · · 2 cos
2(n−2)π

n
−2

1 2 · · · 2 1

)

, if n is even.

2 The Locating Spectrum of a Graph

Definition 1. Let G = (V,E) be a connected graph with ver-
tex set V = {v1, v2, ..., vn}. A locating function of G denoted by
L(G) is a function L(G) : V (G) → R

n such that L(vi) = −→vi =
(d(v1, vi), d(v2, vi), ..., d(vn, vi)), where d(vi, vj) is the distance between
the vertices vi and vj in G. The vector −→vi is called the locating vector
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corresponding to the vertex vi.
The locating product of two locating vectors −→vi and −→vj in a graph G is
denoted by L(−→vi .

−→vj ) and defined as:

L(−→vi .
−→vj ) =

{ −→vi .
−→vj , if i 6= j and vi adjacent to vj;

0 otherwise,

where −→vi .
−→vj is the dot product of the vectors −→vi and

−→vj in the Euclidean
space R

n.

The locating matrix of G is then Lo = Lo(G) = [lij ], where

lij = L(−→vi .
−→vj ).

The characteristic polynomial det(γ I − Lo(G)) of Lo(G) is called
the Lo-characteristic polynomial of G and is denoted by PLo(G) =
∑

n

i=0 aiγ
n−i. The eigenvalues of the matrix Lo(G), which are the ze-

ros of |γI − Lo(G)| are called the Lo-eigenvalues of G and form its
Spectrum denoted by SpecLo(G). If the distinct Lo-eigenvalues of G are
γ1, γ2..., γm with multiplicities t1, t2, ..., tm respectively, then, SpecLo(G)

is written as:

(

γ1 γ2 ... γm
t1 t2 ... tm

)

.

By the above definition, the locating matrix is a real symmetric
n×n matrix. Therefore its eigenvalues γ1, γ2, . . . , γm are real numbers.
Since the trace of Lo(G) is zero, the sum of its eigenvalues is also equal
to zero.
In this paper, by graph, we mean a simple, finite, undirected, connected
graph and for short by −→vi .

−→vj , we mean the locating product of the two
locating vectors −→vi and −→vj in G. For graph theoretic terminology we
refer to Charatrand and Lesniak [5].

Lemma 2. Let G be a connected graph with n vertices and let
γ1, γ2, ..., γn be its Lo-eigenvalues. Then

1.
∑

n

i=1 γi = 0

2.
∑

n

i=1 γ
2
i
= 2

∑

1≤i<j≤n
(−→vi .

−→vj )
2
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Proof. (1)
∑

n

i=1 γi = trace(Lo(G)) =
∑

n

i=1 aii = 0.
(2) For i = 1, 2, ..., n, the (i, i) entry of (Lo(G))2 is equal to the
trace(Lo(G))2

trace[Lo(G)]2 =
n
∑

i=1

n
∑

j=1

(−→vi .
−→vj )

2

= 2
∑

1≤i<j≤n

(−→vi .
−→vj )

2.

�

Definition 2. The locating energy of the graph G is

ELo = ELo(G) =

n
∑

i=1

|γi| .

Theorem 1. For the complete graph Kn of order n ≥ 2,

SpecLo(Kn) =

(

(n− 1)(n − 2) −(n− 2)
1 n− 1

)

,

and ELo(Kn) = 2(n − 1)(n − 2).

Proof. Let G = Kn with vertices v1, v2, ..., vn and let −→vi be the locating
vector corresponding to the vertex vi. Then −→vi = (a1, ..., an), where
ai = 0 and aj = 1. Thus for any two vectors −→vi ,

−→vj , where i 6= j, we
have

−→vi .
−→vj = n− 2.

Therefore, Lo(Kn) = (n − 2)A(Kn), were A(Kn) is the adjacency
matrix of Kn, and by Lemma 1 it is easy to see that SpecLo(Kn) =
(

(n− 1)(n − 2) −(n− 2)
1 n− 1

)

. Hence ELo(Kn) = 2(n− 1)(n − 2). �

We now determine the Lo-spectrum and Lo-energy of any cycle Cn.

Theorem 2. Let n ≥ 2 be an even integer. Then for the cycle Cn, we
have

SpecLo(Cn) =
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=

(

n(n−2)2

6
n(n−2)2

6 cos 2π
n

· · · n(n−2)2

6 cos 2(n−2)π
n

−n(n−2)2

6
1 2 · · · 2 1

)

.

Further ELo(Cn) =
n(n−2)2

12 E(Cn), where E(Cn) is the energy of Cn.

Proof. By labelling the vertices of the cycle Cn in the anticlockwise
direction as {v1, v2, ..., vn}, we observe that,

−→v1 =
(

0, 1, 2, 3, ...,
n

2
,
n

2
− 1,

n

2
− 2, ..., 1

)

−→v2 =
(

1, 0, 1, 2, ...,
n

2
− 1,

n

2
,
n

2
− 1, ..., 2

)

−→v3 =
(

2, 1, 0, 1, ...,
n

2
− 2,

n

2
− 1,

n

2
, ..., 3

)

.

.

.

−→vn =
(

1, 2, 3, ...,
n

2
,
n

2
− 1,

n

2
− 2,

n

2
− 3, ..., 0

)

.

Then, by symmetry,

−→vi .
−−→vi+1 = 2

(

(2)(1) + (3)(2) + (4)(3) + ...+
n

2
(
n

2
− 1)

)

= 2

n
2
∑

i=2

i(i− 1)

= 2

n
2
∑

i=2

i2 − 2

n
2
∑

i=2

i

= 2

(

n

2 (
n

2 + 1)(n + 1)

6
− 1

)

− 2

(

n

2 (
n

2 + 1)

2
− 1

)

=
n(n− 2)2

12
.

Therefore Lo(Cn) =
n(n−2)2

12 A(Cn).
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Hence by Lemma 1, we get,

SpecLo(Cn) =

=

(

n(n−2)2

6
n(n−2)2

6 cos 2π
n

· · · n(n−2)2

6 cos 2(n−2)π
n

−n(n−2)2

6
1 2 · · · 2 1

)

.

Also clearly

ELo(Cn) =
n(n− 2)2

12
E(Cn),

where E(Cn) is the energy of Cn. �

Theorem 3. Let n ≥ 3 be an odd integer. Then for the cycle Cn, we
have,

SpecLo(Cn) =

=
(

(n−1)(n−2)(n+3)

6

(n−1)(n−2)(n+3)

6
cos 2π

n
· · ·

(n−1)(n−2)(n+3)

6
cos

2(n−1)π
n

1 2 · · · 2

)

.

Further ELo(Cn) =
(n−1)(n−2)(n+3)

6 E(Cn), where E(Cn) is the energy
of E(Cn).

Proof. Let G be a cycle Cn with odd number n of vertices. By
labeling the vertices of G with anticlockwise direction as {v1, v2, ..., vn},
we observe that,

−→v1 =

(

0, 1, 2, 3, ...,
n− 1

2
,
n− 1

2
,
n− 1

2
− 1,

n− 1

2
− 2, ..., 1

)

−→v2 =

(

1, 0, 1, 2, ...,
n− 1

2
− 1,

n− 1

2
,
n− 1

2
,
n− 1

2
− 1, ..., 2

)

−→v3 =

(

2, 1, 0, 1, ...,
n− 1

2
− 2,

n− 1

2
− 1,

n− 1

2
,
n− 1

2
, ..., 3

)

.

.

.

−→vn =

(

1, 2, 3, ...,
n− 1

2
,
n− 1

2
,
n− 1

2
− 1,

n− 1

2
− 2, ..., 0

)

.
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Then, by symmetry,

−→vi .
−−→vi+1 = 2

[

(2)(1) + (3)(2) + (4)(3) + ...+
n− 1

2

(

n− 1

2
− 1

)]

+

+
n− 1

2

(

n− 1

2

)

= 2

n−1

2
∑

i=2

i(i− 1) +
(n− 1)2

4

= 2

n−1

2
∑

i=2

i2 − 2

n−1

2
∑

i=2

i+
(n− 1)2

4

= 2

[

n−1
2 (n−1

2 + 1)(2n−1
2 + 1)

6
− 1

]

−

− 2

[

n−1
2 (n−1

2 + 1)

2
− 1

]

+
(n− 1)2

4

=
(n− 1)(n − 2)(n + 3)

12
.

Therefore,

SpecLo(Cn) =
(

(n−1)(n−2)(n+3)

6

(n−1)(n−2)(n+3)

6
cos 2π

n
· · ·

(n−1)(n−2)(n+3)

6
cos

2(n−1)π
n

1 2 · · · 2

)

.

Further ELo(Cn) =
(n−1)(n−2)(n+3)

12 E(Cn). �

Theorem 4. Let G be a complete bipartite graph Ka,b, where 1 ≤ a ≤ b.
Then

SpecLo(Ka,b) =

(

(2a+ 2b− 4)
√
ab −(2a+ 2b− 4)

√
ab 0

1 1 a+ b− 2

)

.

Further ELo(Ka,b) = 4(a+ b− 2)
√
ab.

Proof. Let the vertices of Ka,b be labelled such that vi are adjacent
to va+j for all 1 ≤ i ≤ a and 1 ≤ j ≤ b.
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Now, it is obvious that the locating vectors −→vi of vi are given by:

−→v 1 =



0, 2, ..., 2
︸ ︷︷ ︸

a−1

, 1, 1, ..., 1
︸ ︷︷ ︸

b



, −→v2 =



2, 0, 2, ..., 2
︸ ︷︷ ︸

a−2

, 1, 1, ..., 1
︸ ︷︷ ︸

b





−→v 3 =



2, 2, 0, 2, ..., 2
︸ ︷︷ ︸

a−3

, 1, 1, ..., 1
︸ ︷︷ ︸

b



 , ...,

−→v a =



2, ..., 2
︸ ︷︷ ︸

a−1

, 0, 1, 1, ..., 1
︸ ︷︷ ︸

b



, −→v a+1 =



1, ..., 1
︸ ︷︷ ︸

a

, 0, 2, ..., 2
︸ ︷︷ ︸

b−1



,

−→v a+2 =



1, ..., 1
︸ ︷︷ ︸

a

, 2, 0, 2, ..., 2
︸ ︷︷ ︸

b−2



 , ..., −−→va+b =



1, ..., 1
︸ ︷︷ ︸

a

, 2, ..., 2
︸ ︷︷ ︸

b−1

, 0



 .

Then it is easy to see that for any two locating vertices vi, vj inKa,b,
−→vi .

−→vj = 2(a+ b− 2). Therefore,

Lo(Ka,b) = 2(a+ b− 2)A(Ka,b).

Also by using Lemma 1, we get

SpecLo(Ka,b) =

(

(2a+ 2b− 4)
√
ab −(2a+ 2b− 4)

√
ab 0

1 1 a+ b− 2

)

,

and hence
ELo(Ka,b) = 4(a+ b− 2)

√
ab. �

The following results are obtained straightforward from
Theorem 4.

1. Let G be a complete bipartite graph Kn,n, where n ≥ 1. Then
ELo(Kn,n) = 8n(n− 1).

2. Let G be any star graph K1,n. Then

ELo(K1,n) = 4
√
n(n− 1)
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3 Locating Spectrum And Energy of Regular

and Strongly Regular Graphs

One of the most important family of regular graphs is the strongly
regular graphs (abbreviated SRG), which has so many beautiful pro-
perties. There are many SRGs arising from combinatorial concepts
such as orthogonal arrays, latin squares, conference matrices, designs
and geometric graphs.

A strongly regular graph (SRG) with parameters (n, k, λ, µ) is a
graph on n vertices which is regular with valency k and has the following
properties:

• any two adjacent vertices have exactly λ common neighbours;

• any two nonadjacent vertices have exactly µ common neighbours.

Theorem 5. [7] Let G be a strongly regular graph with parameters
(n, k, λ, µ). Then the eigenvalues of G satisfy the following properties:

1. G has exactly three distinct eigenvalues which are k, θ and τ
where

θ =
1

2
(λ− µ+

√

(λ− µ)2 + 4(k − µ)),

and

τ =
1

2
(λ− µ−

√

(λ− µ)2 + 4(k − µ)).

2. The multiplicity of the eigenvalue k is 1 and the multiplicities of
θ and τ are f and g respectively, where

f = n− 1 +
(n− 1)(µ − λ)− 2k
√

(λ− µ)2 + 4(k − µ)
,

and

g = n− 1−
(n− 1)(µ − λ)− 2k
√

(λ− µ)2 + 4(k − µ)
.
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3. If (n − 1)(µ − λ) − 2k 6= 0, then the eigenvalues θ and τ are
integers. On the other hand if (n − 1)(µ − λ) − 2k = 0, then
f = g and θ and τ need not be integers. The strongly regular
graph is called a conference graph in this case.

Theorem 6. Let G be a strongly regular graph with parameters

(n, k, λ, µ) and Spec(G) =

(

k θ τ
1 f g

)

. Then

SpecLo(G) =

(

kδ θδ τδ)
1 f g

)

,

further, ELo(G) = δE(G), where δ = λ+4(n− k− 1) and E(G) is the
energy of G.

Proof. Let G be a strongly regular graph with the parameters
(n, k, λ, µ). Let u and v be any two adjacent vertices and suppose
that P 1

11(u, v) is the number of vertices which are adjacent to both of
the vertices u and v, P 1

12(u, v) is the number of vertices which are adja-
cent to u but not adjacent to v, P 1

21(u, v) the number of vertices which
are adjacent to v but not adjacent to u and P 1

22(u, v) is the number
of vertices which are not adjacent to both of the vertices u and v. As
in [4], we have

P 1
12(u, v) = P 1

21(u, v) = n1 − P 1
11(u, v) − 1

and
P 1
22(u, v) = n2 − n1 + P 1

11(u, v) + 1,

where n1 = k and n2 = n− k − 1.
Note that the diameter of G is atmost two. Thus for any vertex v in G
there are k vertices that have distance one from v and n−k−1 vertices
that have distance two from v. Suppose that −→v , −→u are the locating
vectors corresponding to the adjacent vertices u and v respectively.
Then

P 1
12(u, v) = P 1

21(u, v) = k − λ− 1

and
P 1
22(u, v) = n− 2k + λ.
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Therefore

−→v .−→u = P 1
11(u, v) + 2P 1

12(u, v) + 2P 1
21(u, v) + 4P 1

22(u, v).

Hence
−→v .−→u = λ+ 4(n − k − 1).

Then
Lo(G) = (λ+ 4(n− k − 1))A(G).

If we put δ = λ+ 4(n − k − 1), then,

SpecLo(G) =

(

kδ θδ τδ
1 f g

)

,

and ELo(G) = δE(G) �

Notation:

If

(

λ1 λ2 · · · λr

m1 m2 · · · mr

)

is the spectrum of a graph G, then we write

δ spec(G) = δ

(

λ1 λ2 · · · λr

m1 m2 · · · mr

)

=

(

δλ1 δλ2 · · · δλr

m1 m2 · · · mr

)

,

for any real number δ.

We can generalize the Theorem 6 as the following:

Theorem 7. Let G = (V,E) be a k-regular graph of diameter two
in which any two adjacent vertices have t common neighbours. If

Spec(G) =

(

k λ2 ... λm

1 t2 ... tm

)

, then

SpecLo(G) = δSpec(G).

Proof. Let u and v be any two adjacent vertices in G. We can partition
the remaining vertices of G into four sets given by:
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1. A = {w ∈ V (G)|d(u,w) = 1, d(v,w) = 1}.

2. B = {w ∈ V (G)|d(u,w) = 1, d(v,w) = 2}.

3. C = {w ∈ V (G)|d(u,w) = 2, d(v,w) = 1}.

4. D = {w ∈ V (G)|d(u,w) = 2, d(v,w) = 2}.

Since G is k-regular graph with diameter two, we have, |A| = P 1
11(u, v),

|B| = P 1
12(u, v), |C| = P 1

21(u, v) and |D| = P 1
22(u, v). Since any two

adjacent vertices u, v have t common neighbours, then P 1
11(u, v) = t,

P 1
12(u, v) = P 1

21(u, v) = k − 1 − t and as the sets A, B, C and D par-
tition the set V (G) − {u, v}, we have n − 2 = 2(k − t − 1) + t + |D|.
Hence P 1

22(u, v) = n− 2k + t.

Thus,

−→u .−→v = P 1
11(u, v)+2P 1

12(u, v)+2P 1
21(u, v)+4P 1

22(u, v) = t+4(n−k−1).

Putting t+ 4(n − k − 1) = δ, we obtain Lo(G) = δ, A(G). Hence

SpecLo(G) =

(

kδ δλ2 ... δλm

1 t2 ... tm

)

.

�

Theorem 8. Let G = (V,E) be a regular graph of diameter two and
without triangles. Then

SpecLo(G) =

=

(

4k(n − k − 1)) 4(n − k − 1)λ2 ... 4(n− k − 1)λm

1 t2 ... tm

)

.

Proof. When G has no triangles in Theorem 8, that means t = 0.
Hence we obtain the following:

If Spec(G) =

(

k λ2 ... λm

1 t2 ... tm

)

, then

SpecLo(G) =

=

(

4k(n − k − 1)) 4(n − k − 1)λ2 ... 4(n− k − 1)λm

1 t2 ... tm

)

.

�
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4 Bounds for the Locating Energy ELo(G)

Theorem 9. If G is a graph with locating vectors −→v1 ,
−→v2 , ...,

−→vn, then

√
α ≤ ELo(G) ≤

√
nα ,

where α = 2
∑

1≤i<j≤n
(−→vi .

−→vj )
2.

Proof Let γ1, γ2, . . . , γn be the Lo–eigenvalues of G. The Cauchy–
Schwarz inequality states that if (a1, a2, . . . , an) and (b1, b2, . . . , bn) are
n-vectors, where a1, a2, ..., an, b1, b2, ..., bn ∈ R, then,

(

n
∑

i=1

ai bi

)2

≤

(

n
∑

i=1

a2i

)(

n
∑

i=1

b2i

)

.

Now, by setting ai = 1 and bi = |γi|, i = 1, 2, . . . , n, in the above
inequality, we obtain

(

n
∑

i=1

|γi|

)2

≤

(

n
∑

i=1

12

)(

n
∑

i=1

|γi|
2

)

.

Hence by using Lemma 2 we get

n
∑

i=1

|γi| ≤

√

√

√

√n
n
∑

i=1

|γi|2 =

√

2n
∑

1≤i<j≤n

(−→vi .
−→vj )2

and so
ELo(G) ≤

√
nα.

For the lower bound, we have

(ELo(G))2 =

(

n
∑

i=1

|γi|

)2

≥
n
∑

i=1

(|γi|)
2 = 2

∑

1≤i<j≤n

(−→vi .
−→vj )

2.

Thus
ELo(G) ≥

√
α.

�
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Theorem 10. For any connected graph of diameter d with n vertices,
n ≥ 2,

(n− 2)
√

2(n− 1) ≤ ELo(G) ≤ n(n− 2) d2
√
n− 1 .

Proof. Let G be a connected graph with vertices v1, v2, ..., vn, with
diameter d, then for any locating vectors −→vi ,

−→vj in G the locating
product −→vi .

−→vj is at least equal to n− 2, that means,

−→vi .
−→vj ≥ n− 2,

and hence
(−→vi .

−→vj )
2 ≥ (n− 2)2.

The number of (−→vi .
−→vj )

2 for which 1 ≤ i < j ≤ n and the locating
product −→vi .

−→vj does not equal to zero is at least n − 1 because G is
connected.

Therefore
n
∑

1≤i<j≤n

(−→vi .
−→vj )

2 ≥ (n− 1)(n − 2)2.

By using the lower bound found in Theorem 9 we have,

ELo(G) ≥

√

2
∑

1≤i<j≤n

(−→vi .
−→vj )2 ≥ (n − 2)

√

2(n − 1).

Similarly, to obtain the upper bound, we have

−→vi .
−→vj ≤ (n− 2)d2,

and we have,
(−→vi .

−→vj )
2 ≤ (n− 2)2 d4.

Obviously, for any connected graph G there exist at most n(n − 1)/2
of the locating product −→vi .

−→vj which are not zero. Therefore

n
∑

1≤i<j≤n

(−→vi .
−→vj )

2 ≤
1

2
(n(n− 1)(n − 2)2 d4).
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By using the upper bound which is obtained in Theorem 9, we have,

ELo(G) ≤

√

2n
∑

1≤i<j≤n

(−→vi .
−→vj )2 ≤ n(n− 2) d2

√
n− 1.

�

Theorem 11. Let G be k-regular graph with n vertices and diameter
two. Then

ELoG ≤ n(4n− 3k − 5)
√
n− 1.

Proof. Let G be a connected k-regular graph with diameter two and
its vertices are v1, v2, ..., vn. For any two locating vectors −→vi and

−→vj the
locating product −→vi .

−→vj in G has maximum value if the vertices which
have distance two from vi also have distance two from vj. Since G is
regular, there are n− k− 1 vertices that have distance two from vi and
k vertices that have distance one. Hence for any adjacent vertices vi
and vj , we have −→vi .

−→vj ≤ 4n− 3k − 5, that implies to

(−→vi .
−→vj )

2 ≤ (4n − 3k − 5)2.

Also since Lo(G) contains at most n(n − 1) terms that are not zero,
therefore, as earlier,

∑

1≤i<j≤n

(−→vi .
−→vj )

2 ≤
1

2
(n(n− 1)(4n − 3k − 5)2).

Hence by Theorem 9

ELoG ≤
√
nα =

√
2n

√

∑

1≤i<j≤n

(−→vi .
−→vj )2.

Hence,

ELoG ≤ n(4n− 3k − 5)
√
n− 1.

�
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Abstract

In this paper, we consider two main approaches to compute
Gröbner bases for parametric polynomial ideals, namely the Dis-

PGB algorithm developed by Montes [18] and the PGBMain

proposed by Kapur, Sun and Wang [11]. The former algorithm
creates new branches in the space of parameters during the con-
struction of Gröbner basis of a given ideal in the polynomial
ring of variables and the latter computes (at each iteration) a
Gröbner basis of the ideal in the polynomial ring of the variables
and parameters and creates new branches according to leading
coefficients in terms of parameters. Therefore, the latter algo-
rithm can benefit from the efficient implementation of Gröbner
basis algorithm in each computer algebra system. In order to
compare these two algorithms (in the same platform) we use the
recent algorithm namely GVW due to Gao et al. [8] to compute
Gröbner bases which makes the use of the F5 criteria proposed
by Faugère to remove superfluous reductions [6]. We show that
there exists a class of examples so that an incremental structure
on the DisPGB algorithm by using the GVW algorithm is faster
than the PGBMain by applying the same algorithm to compute
Gröbner bases. The mentioned algorithms have been implemen-
ted in Maple and experimented with a number of examples

Keywords: Comprehensive Gröbner systems, DisPGB al-
gorithm, PGBMain algorithm, F5 criteria, GVW algorithm.
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1 Introduction

One of the most important tools in computer algebra is Gröbner bases.
This concept along with the first algorithm to compute it, were introdu-
ced in 1965 by Buchberger in his PhD thesis (see [3]). His two criteria
and the implementation methods [4] transformed Gröbner bases to a
powerful tool to tackle many important problems in polynomial ideals
theory. However, Buchberger’s algorithm was not efficient in practice
for large polynomial systems. In 1983, Lazard described a new algo-
rithm to compute Gröbner bases, using linear algebra techniques [14].
In 1988, Gebauer and Möller have installed Buchberger’s two crite-
ria on Buchberger’s algorithm in an efficient manner (see [9]). In 1999,
Faugère described his F4 algorithm to compute Gröbner bases (see [5]).
This algorithm (which is an efficient algorithm based on [9], [14]) ex-
ploits fast linear algebra on sparse matrices, and has been implemented
in Maple and Magma. In 2002, Faugère has described the F5 algorithm;
a new incremental algorithm which makes the use of the F5 criteria
to compute Gröbner bases [6] (see also [17]). Ars and Hashemi [1]
proposed a non-incremental version of this algorithm by defining new
orderings on the signatures to make it independent from the order of
the input polynomials. Gao et al. [7] presented G2V; a variant of the
F5 algorithm which is simpler and more efficient than F5. Finally, Gao
et al. [8] proposed a new framework more general than the G2V algo-
rithm, namely GVW to compute simultaneously Gröbner bases for an
ideal and its syzygy module.

The concept of comprehensive Gröbner bases can be considered as
an extension of Gröbner bases of polynomials over fields to polyno-
mials with parametric coefficients. This extension plays an important
role in the applications such as constructive algebraic geometry, ro-
botics, electrical network, automatic theorem proving and so on (see
e.g. [15], [16], [18], [19]). Comprehensive Gröbner bases and comprehen-
sive Gröbner systems (for simplification, we employ the term CGS to
refer to comprehensive Gröbner system) were introduced in 1992 by
Weispfenning [24]. He proved that any parametric polynomial ideal
has a finite CGS and described an algorithm to compute it. In 2002,
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Montes [18] proposed a more efficient algorithm namely DisPGB for
computing CGSs. Suzuki and Sato [21] provided an important im-
provement for computing CGSs using only computations of reduced
Gröbner bases in polynomial rings over ground fields (we subsequently
refer to this algorithm as the Suzuki-Sato algorithm). In 2010, Ka-
pur et al. [11] by combining Weispfenning’s algorithm [24] with the
Suzuki-Sato algorithm, gave a new algorithm (that we refer to as PG-

BMain algorithm) for computing CGSs (see also [12], [13]). Finally,
Montes and Wibmer in [20] presented the GröbnerCover algorithm
(see [23]) which computes a finite partition of the space of parameters
into locally closed subsets together with polynomial data, from which
the reduced Gröbner basis for a given parameter point can immediately
be determined.

It is worth noting that PGBMain at each iteration computes the
Gröbner basis over a polynomial ring in the variables and parameters.
Therefore, it makes the use of a Gröbner basis function in each compu-
ter algebra system. On the other hand, DisPGB reduces the compu-
tation in a polynomial ring of only variables by creating new branches
when a new polynomial with an undecidable coefficient is constructed.
So a natural question arises: Which of these two algorithms is more
efficient in practice? In this paper, we consider this question by propo-
sing an incremental structure on DisPGB by applying GVW equipped
with the F5 criteria. We have implemented in Maple this algorithm and
also PGBMain by using GVW as the engine of Gröbner bases compu-
tation. We compare the performance of these algorithms on a number
of polynomial ideals by showing that there exists a class of ideals for
which our new variant of DisPGB is more efficient than PGBMain.
We shall mention that due to the structure of PGBMain, its outputs
in general have less number of branches than DisPGB.

Now, we give the structure of the paper. Section 2 contains the ba-
sic definitions and notations related to CGSs, and a short description
of DisPGB. In Section 3, we present briefly GVW. Section 4 is de-
voted to the description of our new algorithm namely GVWDisPGB

for computing CGSs. In Section 5, we show the performance of this
algorithm w.r.t. our implementation of PGBMain in Maple and the
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function cgsdr of Singular via some examples.

2 Comprehensive Gröbner systems and Dis-

PGB algorithm

In this section, we recall the basic definitions and notations concerning
CGSs, and describe briefly the DisPGB algorithm.
Let R = K[x] be a polynomial ring, where x = x1, . . . , xn is the se-
quence of variables and K an arbitrary field. Let I = 〈f1, . . . , fk〉 be
the ideal of R generated by the polynomials f1, . . . , fk. Also, let f ∈ R
and let ≺ be a monomial ordering on R. The leading monomial of f
is the greatest monomial (w.r.t. ≺) appearing in f , and we denote
it by LM(f). The leading coefficient of f , denoted by LC(f), is the
coefficient of LM(f). The leading term of f is LT(f) = LC(f)LM(f).
The leading term ideal of I is defined to be

LT(I) = 〈LT(f) | f ∈ I〉.

A finite set G = {g1, . . . , gk} ⊂ I is called a Gröbner basis of I w.r.t.
≺ if LT(I) = 〈LT(g1), . . . ,LT(gk)〉. For more details, we refer to [2],
pages 213–214.

Now consider F = {f1, . . . , fk} ⊂ S = K[a,x], where a =
a1, . . . , am is the sequence of parameters. Let ≺x (resp. ≺a) be a
monomial ordering involving the xi’s (resp. ai’s). We also need a com-
patible elimination product ordering ≺x,a. It is defined as follows: For
all α, γ ∈ Z

n
≥0 and β, δ ∈ Z

m
≥0

xγaδ ≺x,a xαaβ iff

{

xγ ≺x xα or
xγ = xα and aδ ≺a aβ.

Now, we recall the definition of a CGS for a parametric ideal.

Definition 1. Let G = {(Gi, Ni,Wi)}
ℓ
i=1 be a finite set of triples,

where Ni,Wi ⊂ K[a] and Gi ⊂ S are finite for i = 1, . . . , ℓ. The
set G is called a CGS for 〈F 〉 w.r.t. ≺x,a if for any specialization
σ : K[a] → K̄ with K̄ the algebraic closure of K there exists i such
that the following conditions hold
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• σ(Gi) ⊂ K̄[x] is a Gröbner basis for σ(〈F 〉) ⊂ K̄[x] w.r.t. ≺x

• σ(p) = 0 for each p ∈ Ni and σ(q) 6= 0 for each q ∈Wi.

For each i, the set Ni (resp. Wi) is called a (resp. non-) null
conditions set. Each pair (Ni,Wi) is called a specification (for a homo-
morphism σ if both the conditions in the above definition are satisfied).

Now, we describe shortly Montes DisPGB algorithm to compute
CGSs for parametric ideals (see [15], [18]). The main idea of DisPGB

is based on discussing the nullity or not w.r.t. a given specification
(N,W ) of the leading coefficients of the polynomials appearing at each
step (this process is performed by NewCond subalgorithm). Let us
consider a set F ⊂ S of parametric polynomials. For a given poly-
nomial f ∈ F , and a given specification (N,W ), NewCond is called.
Three cases are possible: If LC(f) specializes to zero w.r.t. (N,W ),
we replace f by f − LT(f), and then start again. If LC(f) speciali-
zes to a non-zero element, we continue with the next polynomial in
F . Otherwise (if LC(f) is not decidable), the subalgorithm Branch

is called to create two supplementary cases by assuming LC(f) = 0
and LC(f) 6= 0. Therefore, two new disjoint branches with the specifi-
cations (N ∪ {LC(f)},W ) and (N,W ∪ {LC(f)}) will be made. This
procedure will continue until every polynomial in F has a non-null lea-
ding coefficient w.r.t. the current specification. Then, we proceed with
CondPGB: This algorithm receives as input a set of parametric poly-
nomials and a specification (N,W ) and using Buchberger’s algorithm,
it creates new polynomials. When a new polynomial is generated, Ne-

wCond verifies whether its leading coefficient gives a new condition
or not. If a new condition is found it stops, and Branch is called to
make two new disjoint branches. Otherwise, this continues and com-
putes a Gröbner basis for 〈F 〉, according to the current specification.
The collection of these bases, gives a CGS for 〈F 〉.

3 F5 criteria and GVW algorithm

This section aims to present the F5 theory. After recalling some nota-
tions and definitions (used also in the next section), we state the main
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theorem of [6] which forms the basis of the F5 algorithm. Finally, we
present briefly the GVW algorithm following [8].

Let R = K[x] be a polynomial ring, where x = x1, . . . , xn is the
sequence of variables, K is an arbitrary field and I = 〈f1, . . . , fk〉 is
the ideal of R generated by the polynomials f1, . . . , fk. Let Rk be a
k-dimensional R-module and f1, . . . , fk its canonical basis. A module
monomial is an element of Rk of the form mfi, where m ∈ R is a
monomial. Given two module monomials mfi and m

′fj, one can extend
a monomial ordering ≺ on R to a module monomial ordering on Rk

in different ways. In [8] the authors proposed four different module
monomial orderings. Below, we recall one of them under which GVW
closely corresponds to the G2V algorithm presented in [7].

mfi < m′fj if

{

j < i or
i = j and m ≺ m′.

For an element g =
∑

k

i=1 gifi ∈ Rk, we define the index of g,
index(g) to be the lowest integer i such that gi 6= 0. Let index(g) = i0,
then we call LM(gi0)fi0 the module leading monomial of g and denote
it by MLM(g). Also, we use LM(g) to denote LM(

∑

k

i=1 gifi).

The elements of the form r = (mfi, f) ∈ A = Rk × R, where
m is a monomial, i an integer and f a polynomial are called label-
led polynomials. S(r) = mfi is called the signature part of r and
poly(r) = f the polynomial part of r. Denote ψ the map ψ : Rk → R
so that ψ(g1, . . . , gk) = g1f1 + · · · + gkfk. A labelled polynomial
r = (S(r),poly(r)) is called admissible if there exists g ∈ Rk such that
ψ(g) = poly(r) and MLM(g) = S(r). We define the following operati-
ons on labelled polynomials: Let r = (mfi, f) be a labelled polynomial,
u a monomial and c a constant. Then we define ur = (umfi, uf) and
cr = (mfi, cf). These definitions obviously preserve the admissibility.
The special reduction of F5 also preserves it and ensures that during
a Gröbner basis computation by F5, the labelled polynomials always
take the minimal possible signature and remain admissible. We also
need the following definitions to state the main theorem.

Definition 2 (F5 criterion). An admissible labelled polynomial r =
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(mfi, f) is called normalized if we have m /∈ LT(〈fi+1, . . . , fk〉). A pair
(r, s) of admissible labelled polynomials is normalized if ur and vs are

normalized, where r = (mfi, f), s = (m′fj, g), u = lcm(LM(f),LM(g))
LM(f) and

v = lcm(LM(f),LM(g))
LM(g) .

Faugère has described F5 as an incremental algorithm to use the F5

criterion, i.e. to compute the Gröbner basis of I, it computes respecti-
vely the Gröbner bases of the ideals

〈fk〉, 〈fk−1, fk〉, . . . , 〈f1, . . . , fk〉.

In the following, we define the concept of t-representation for la-
belled polynomials, imposing additional conditions on the signatures
(see [2, page 219]).

Definition 3. Let P ⊂ A be a finite set of labelled polynomials, and
r, t ∈ A two labelled polynomials with poly(r) = f , where f 6= 0 . We
say that f =

∑

pi∈P
hipoly(pi) is a t-representation of r w.r.t. P if for

all pi ∈ P with poly(pi) 6= 0 we have

LM(hi)LM(poly(pi)) � LM(poly(t)) and LM(hi)S(pi) < S(r).

This property is denoted by r = OP (t). We write s = oP (t) if
there exists labelled polynomial t′ ∈ A satisfying S(t′) < S(t) and
LM(poly(t′)) ≺ LM(poly(t)) such that s = OP (t

′).

Let f, g ∈ R be two polynomials. The S-polynomial of f and g is
defined as:

Spoly(f, g) =
lcm(LM(f),LM(g))

LT(f)
f −

lcm(LM(f),LM(g))

LT(g)
g.

Let r = (S(r), f) and s = (S(s), g) be two admissible labelled poly-

nomials such that vS(s) < uS(r) with u = lcm(LM(f),LM(g))
LM(f) and v =

lcm(LM(f),LM(g))
LM(g) . Then, we define Spoly(r, s) = (uS(r),Spoly(f, g)).

Theorem 1. ( [6]) Let I = 〈f1, . . . , fk〉 ⊂ R. Let G ⊂ A be a finite set
of admissible labelled polynomials such that
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• for every i, we have fi = poly(ri) for some ri ∈ G,

• for each (ri, rj) ∈ G × G which is normalized, Spoly(ri, rj) is
either zero or equal to oG(usrs), where

us =
lcm(LM(poly(ri)),LM(poly(rj)))

LM(poly(rs))
for s ∈ {i, j}.

Then the set {poly(r) | r ∈ G} is a Gröbner basis for I.

Faugère in the F5 algorithm has used another criterion, namely
IsRewritten criterion, to detect more useless critical pairs, however he
has not declared it explicitly in [6]. We recall this criterion and refer
to [10] for more details.

Definition 4 (IsRewritten criterion). With the above notations, let u ∈
R be a monomial and r = (mfi, f) an admissible labelled polynomial.
Then, the pair [u, r] is called rewritable if there exists an admissible
labelled polynomial r′ = (m′fi, f

′) computed after r, i.e. S(r) < S(r′),
such that m′ divides um. A pair (r, s) of admissible labelled polynomials
is rewritable if [u, r] or [v, s] is rewritable, where r = (mfi, f), s =

(m′fj, g), u = lcm(LM(f),LM(g))
LM(f) and v = lcm(LM(f),LM(g))

LM(g) .

As the following proposition yields, if a critical pair is rewritable, its
S-polynomial has a standard representation w.r.t. the last computed
Gröbner basis, and therefore the F5 algorithm deletes all such pairs.

Proposition 1. ( [10]) Let I = 〈f1, . . . , fk〉 ⊂ R be an ideal. Let
ri and rj be two labelled polynomials treated during an execution of
the F5 algorithm for computing the Gröbner basis of I. If (ri, rj) is
rewritable, then Spoly(ri, rj) is either zero or equal to oG(usrs), where

us =
lcm(LM(poly(ri)),LM(poly(rj)))

LM(poly(rs))
for s ∈ {i, j} (and so the pair (ri, rj)

can be omitted).

Throughout this paper, by the F5 criteria we mean F5 criterion and
IsRewritten criterion. The main problem with the F5 algorithm is that
it is difficult to both understand and implement. Gao et al. in [8]
presented the GVW algorithm which seems to be simpler and more
efficient than the F5 algorithm. That is why, we use this algorithm to
apply the F5 criteria on DisPGB.
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To explain more precisely the structure of GVW, let us suppose that
we are going to compute a Gröbner basis for the ideal 〈f1, . . . , fk〉 with
respect to a monomial ordering ≺. The main difference of GVW and
F5 relies on the non-incremental structure of GVW which makes the
use of different kinds of module monomial orderings. Let us consider
e.g. module monomial ordering < defined as above (remark that GVW
endowed with this ordering is equivalent to G2V [7]). Without lose of
generality, suppose that for all labelled polynomials (u, v), LC(v) = 1.
Given two labelled polynomials p1 = (u1, v1) and p2 = (u2, v2), the

J-pair of p1 and p2 is the new pair tipi, where ti =
lcm(LM(v1),LM(v2))

LM(vi)

and tivi = max<{t1u1, t2u2}, provided that t1u1 6= t2u2.

At the first step, GVW begins with the initial set of J-pairs
{(f1, f1), . . . , (fk, fk)}. It takes in each step the smallest J-pair (w.r.t.
signature) and repeatedly performs only regular top reductions until it
is no longer regular top reducible. A labelled polynomial (u1, v1) is
top reducible by (u2, v2) if there exists a monomial t ∈ R such that
LM(v1) = tLM(v2) and tu2 < u1. The corresponding top reduction is

(u1, v1)− t(u2, v2) = (u1, v1 − tv2).

If tu2 = u1, the top reduction is called super, otherwise it is called
regular. Let (u, v) be the result of the reduction of a labelled polyno-
mial. If v 6= 0, we add (u, v) to the current Gröbner basis, and form the
new J-pairs. Otherwise, GVW uses u to delete useless J-pairs: For any
labelled polynomial (u′, v′), if tu = u′ for some monomial t, then we
can discard (u′, v′), provided that tLM(v) ≺ LM(v′). Indeed, this is a
special case of super top reduction, where (u′, v′) is super top reducible
by (u, 0). Furthermore, a J-pair (u, v) is called covered by G if there is
a pair (u′, v′) ∈ G so that u′ divides u and tLM(v′) ≺ LM(v) (strictly
smaller), where t = u′/u is a monomial.

Remark 1. The relation of the criteria used in GVW with F5 criterion
(Theorem 1) and IsRewritten criterion (Proposition 1) is illustrated in
[8, Corollaries 2.5 and 2.6], respectively. Furthermore the correctness
and termination of GVW are proved in [8, Theorem 3.1].
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4 Description of the new algorithm

In this section, we show how to combine the GVW algorithm with
the DisPGB algorithm to compute CGSs for parametric ideals. For
this, we use the improved version of DisPGB described in [15], and an
incremental structure on DisPGB to be able to apply the F5 criteria.
More precisely, let I = 〈f1, . . . , fk〉 ⊂ K[a,x] be a parametric ideal,
where x = x1, . . . , xn is the sequence of variables and a = a1, . . . , am
is the sequence of parameters. Let ≺x (resp. ≺a) be a monomial
ordering involving the xi’s (resp. ai’s). Then, to compute a CGS
for I, we compute CGSs of the ideals 〈fk〉, 〈fk−1, fk〉, . . . , 〈f1, . . . , fk〉
respectively and for each i, we use the CGS of 〈fi+1, . . . , fk〉 to compute
a CGS for 〈fi, . . . , fk〉.

Example 1. In this simple example, we show how an incremen-
tal structure may be used to compute a CGS for an ideal. Let
I = 〈ax + 1, by + 1〉 ⊂ K[a,x], where a = a, b and x = x, y.
We compute first a CGS for the ideal 〈by + 1〉 which is equal to
{({1}, {b}, {}), ({by + 1}, {}, {b})}. Now, we will discuss the addition
of ax+ 1 to each member of this system according to nullity or not of
a. It follows the following CGS for I:
{

({1}, {b}, {a}), ({1}, {a, b}, {}), ({1}, {a}, {b}), ({by+ 1, ax+ 1}, {}, {b, a})
}

.

We describe now the main algorithm GVWDisPGB which com-
putes incrementally a CGS for a given ideal.

Algorithm 1 GVWDisPGB

Require: F : finite subset of S
Ensure: A CGS for 〈F 〉

global: List, Grob, JP
List:=Null
{f1, . . . , fk}:=InterReduce(F,≺x,a)
Branch((1, fk), { }, { }, { }, { }, { })
for i from k − 1 to 1 do

IncDisPGB(fi,{List})
end for

Return (List)
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Note that the function InterReduce(F,≺x,a) inter-reduces a list of
polynomials F w.r.t. ≺x,a; i.e. every polynomial in F must be divided
by the remaining elements of F such that at the output no monomial of
any polynomial of F is divisible by the leading monomials of the other
polynomials in F . In the above algorithm, List (resp. JP) is a global
variable in which (and at each iteration) we save the computed CGS
(resp. set of J-pairs). That is why, at the beginning of each iteration
we must keep them null (see the next subalgorithm). Indeed, Branch

calculates a CGS for 〈fk〉 and save it in List. Then, for any i between
k − 1 and 1, IncDisPGB computes a CGS for the ideal 〈fi, . . . , fk〉
(using the CGS of 〈fi+1, . . . , fk〉 which has already been computed)
and saves it in List. Thus, at the end, List is a CGS for the ideal
〈f1, . . . , fk〉. Now, we describe IncDisPGB.

Algorithm 2 IncDisPGB

Require:

{

fi : a polynomial with 1 ≤ i ≤ k − 1
{G1, . . . , Gt} : a CGS for 〈fi+1, . . . , fk〉

Ensure: A CGS for 〈fi, . . . , fk〉
L:=Null
for j from 1 to t do

JP:={ }, List:=Null
(Grob, N,W ) := Gj

f := fi
N

(the remainder of the division of fi by N)
if f = 0 then

List:=List,Gj

else
Branch((1, f),Grob, N,W, { }, {(0, g) | g ∈ Grob})

end if
L:=L,List

end for
List:=L
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Algorithm 3 Branch

Require:























(u, f) : labelled polynomial
B : specializing basis

N,W : where (N,W ) is an specification
JP : set of J-pairs
R : set of computed labelled polynomials (v, g) s.t.g ∈ B

Ensure: It stores the refined (B′, N ′,W ′, JP ′, R′), and either creates two
new vertices when necessary or marks the vertex as terminal
(N,W ):=CanSpec(N,W)
(cd, f,N,W ) :=NewCond(f,N,W )
if cd = { } then

(test, (u′, f ′), B′, N ′,W ′, JP ′, R′) :=CondPGB((u, f), B,N,W, JP,R)
if test then

if JP = { } then
List:=List,(B′, N,W )

end if
else

Branch((u′, f ′), B′, N ′,W ′, JP ′, R′)
end if

else
Branch((u, f), B,N ∪ cd,W, JP,R)
Branch((u, f), B,N,W ∪ cd, JP,R)

end if

To clarify Branch, suppose that it receives a polynomial f and
a specification (N,W ). If LC(f) is not decidable w.r.t. (N,W ), this
subalgorithm creates two supplementary cases by adding LC(f) = 0
and LC(f) 6= 0 to the set of null and non-null conditions set re-
spectively. Therefore, two new disjoint branches with the specifications
(N ∪ {LC(f)},W ) and (N,W ∪ {LC(f)}) will be made. We explain
here the significance of the variables B and cd in Branch. The va-
riable B contains all polynomials related to the corresponding branch
which will be completed, and at the end of the branch it will be the
Gröbner basis for the corresponding specification. We explain now the
variable cd. When we call NewCond(f,N,W ), if LC(f) is decida-
ble w.r.t the specification (N,W ), it returns (∅, f − LT(f), N,W ) in
the case that LC(f) specializes to zero w.r.t. (N,W ), and it returns
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(∅, f,N,W ) in the case that LC(f) does not specialize to zero w.r.t.
(N,W ). Otherwise, it returns (cd, f ′, N,W ), where cd contains one of
the non-decidable factors (w.r.t (N,W )) of LC(f). We describe below
the NewCond subalgorithm in which FacVar factors a polynomial
in parameters. Remark that FacVar(LC(f ′)) \W ′ returns only one
factor of LC(f ′).

Algorithm 4 NewCond

Require:

{

f : a parametric polynomial
N,W : where (N,W ) is an specification

Ensure:







cd : set of a new condition
f ′ : a parametric polynomial

N ′,W ′ : where (N ′,W ′) is an specification
f ′ := f
test:=true
N ′ := N
while test do

if LC(f ′) ∈
√

〈N ′〉 then
N ′ := a Gröbner basis for 〈N ′,LC(f ′)〉 w.r.t. ≺a

f ′ := f ′ − LM(f)
else

test:=false
end if

f ′ := f ′
N ′

W ′ := {wN ′

| w ∈W}
cd :=FacVar(LC(f ′)) \W ′

end while

Return (cd, f ′, N ′,W ′)

We shall note that
√
I denotes the radical of I, i.e., the set of all

elements for which some positive power lies in I. By Hilbert Nullstel-
lensatz, if a polynomial over an algebraically closed field vanishes on
the vanishing set of an ideal, then a power of the polynomial belongs to
the ideal, see [2, Theorem 7.40]. For a radical membership test (which
has been used in the algorithm), we refer to [2, page 268]. The next
algorithm is a variant of the GVW algorithm (to apply the F5 criteria)
for parametric ideals.
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Algorithm 5 CondPGB

Require:























(u, f) : labelled polynomial
B : specializing basis

N,W : where (N,W ) is an specification
JP : set of J-pairs
R : set of labelled polynomials

Ensure: (flag,(v, g), B′, N ′,W ′, JP ′, R′) with flag=true when f does not ge-
nerate no new condition and no new JPair and B′ = B∪{f} is a Gröbner ba-
sis for the corresponding branch; otherwise, flag=false and B,N,W, JP,R
are updated

B := B
N
; (if a polynomial in B is reduced to zero, then remove all J-pairs

in JP containing this polynomial)
R := {(v, gN ) | (v, g) ∈ R}
LM := {LM(g) | g ∈ Grob}

f := f
N

f := f
Grob

if f = 0 and JP = {} then
Return (true,(0, 0), B,N,W, { }, { })

end if
if f 6= 0 then

(cd, f,N,W ) :=NewCond(f,N,W )
if f = 0 then

Return (true,(0, 0), B,N,W, { }, { })
end if
if cd 6= { } then
JP := JP ∪ { JPair((u, f), r) | r ∈ R}
add (u, f) into R and add f into B
sort JP by increasing signature

else
Return (false,(u, f), B,N,W, JP,R)

end if

end if
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Algorithm 5 Continuation of CondPGB

while JP 6= { } do
select and remove the first J-pair P from JP
(v, g) := Reduction(P,R) performing only regular top reductions
if g = 0 then
LM := LM ∪ {v}
remove any pair in JP if v divides its signature

else
g := gN

(cd, g,N,W ) :=NewCond(g,N,W )
if cd = { } then

if g 6= 0 then
JP := JP ∪ {JPair((v, g), r) | r ∈ R}
add (v, g) into R and add g into B
sort JP by increasing signature

end if
else

if g 6= 0 then
Return (false,(v, g), B,N,W, JP,R)

end if
end if

end if
end while

Return (true,(0, 0), B,N,W, { }, { })

Theorem 2. Suppose that we are willing to compute a CGS for the
ideal 〈F 〉 with F = {fi+1, . . . , fk} for some i. Let N and W be the
null and non-null conditions sets respectively and let σ a homomor-
phism such that (N,W ) is its specification. Let also B be the set of
polynomials satisfying the following conditions:

• σ(B) is a basis of 〈σ(F )〉,

• σ(LC(g)) 6= 0 for g ∈ B.

Suppose that theCondPGB algorithm outputs (test,B′, N ′,W ′, JP ′, R′).
If test = true, then σ(B′) is a Gröbner basis of 〈σ(F )〉, where (N ′,W ′)
is a specification of σ. If test = false, then B′ is an extended set of B
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which contains at least one polynomial for which the actual specification
(N,W ) cannot decide if its leading coefficient specializes to zero or not.
The sets N,W, JP,R are also updated to N ′,W ′, JP ′, R′ respectively.

Proof. The structure of the new CondPGB is similar to that of the
old CondPGB in [18]. Therefore, the proof of this theorem may be
deduced from [18, Proposition 15] and [8, Theorem 3.1].

Remark 2. We shall note that the finite termination of this algorithm
is guaranteed by that of the GVW algorithm [8, Theorem 3.1].

Remark 3. In the above algorithm, if JP= ∅, it returns the sets
B,N,W , where B is a Gröbner basis for the ideal 〈fi+1, . . . , fk〉 for
some i w.r.t. the specification (N,W ). To speed-up the computations,
we can first minimize B; i.e. discard any polynomial in B whose leading
monomial (w.r.t ≺x) is divisible by the leading monomial of another
polynomial in B. Then, we may replace B by InterReduce(B,≺x,a)
to have the reduced Gröbner basis. Indeed, this may reduce the number
of J-pairs for the next step.

Below, we describe the CanSpec algorithm from [18] to produce
k-quasi-canonical representation (N ′,W ′) for a specification (N,W ).

Definition 5. A specification (N,W ) is called k-quasi-canonical if the
following conditions hold:

• N is the reduced Gröbner basis of the ideal containing all polyno-
mials that specialize to zero in K[a], w.r.t. ≺a.

• The polynomials in W specializing to non-zero are reduced mo-
dulo N and are irreducible over K ′[a], where K ′ is an algebraic
extension of K.

•
∏

q∈W q /∈
√

〈N〉 and the polynomials in N are square-free.

• None of the polynomials in N have an irreducible factor contained
in W .
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For more details we refer to [18].

Algorithm 6 CanSpec

Require:
{

N,W : where (N,W ) is an specification

Ensure:







test :

{

true: if N and W are compatible
false : otherwise

(N ′,W ′) : a k-quasi-canonical representation of (N,W ).

W ′ :=FacVar({qN : q ∈W});
test:=true
N ′ := N and h :=

∏

q∈W q

if h ∈
√

〈N ′〉 then
test:=false
N ′ := {1}
Return (test , (N ′,W ′))

end if
flag:=true
while flag do

flag:=false
N ′′:= Drop any factor of a polynomial in N ′ ∩W ′, as well as multiple
factors
if N ′′ 6= N ′ then

flag:=true
N ′:= a Gröbner basis of 〈N ′′〉 w.r.t. ≺a

W ′ :=FacVar({qN
′′

: q ∈W ′})
end if

end while

Return (test , (N ′,W ′))

5 Experiments and results

We have implemented all the algorithms described in this paper in
Maple 151. In this section, we compare the performance of GVW-

DisPGB algorithm with DisPGB and PGBMain algorithms. It
should be noted that in PGBMain algorithm we use GVW algo-

1The Maple codes of the algorithms are available at

http://amirhashemi.iut.ac.ir/softwares
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rithm for the Gröbner basis computation. We use also the cgsdr

function from grobcov.lib library which is a Singular [22] imple-
mentation of PGBMain. The following parametric ideals in the ring
S = K[a, b, c, d,m, n, r, t][x, y, z, u] were chosen, and our aim was to
compute a CGS of each ideal w.r.t. the product of the orderings u ≺lex

z ≺lex y ≺lex x and t ≺lex r ≺lex n ≺lex m ≺lex d ≺lex c ≺lex b ≺lex a.

• EX.1 = [x3 + (d− a)xy+m− a,−cba+ az2 + cx− d, (c− a)y2 +
xn+ a, u3 + (a2 − 1)x+ n−m]

• EX.2 = [abu4+ b2a2+xyz−1, ay2+n(mt−2)xz+a, baz3+ t(2−
b7)xyz + x2z − 1]

• EX.3 = [(c−1)y3+(ac−b)x+dn, rx5+(ba−c)z−n, z3−(c−t)y]

• EX.4 = [(a + 1)x2 + a2b(d − 1)y2 + a, y2 + bx + c(c2 − 4), (a −
d)z3 + ay2 + b(c4 − 1)− 1]

• EX.5 = [ax+ by + cz6, axy + byz6 + czx, xyz6 − 1]

• EX.6 = [ax2 + cu + (a − 3)x, bayx + ay3 − cz + 1, (t − 3)u3 +
tu, bz3 + (1− b)z2 +mnx]

• EX.7 = [cz5 + dax2 + dby, yz5b+ axy + czx, dxyz5 − ba]

• EX.8 = [amy2+x3− zb− bt−1, amy3+ tx+n− t, z3+ tx−abcd]

• EX.9 = [(ba− c)z+ rx4−n, y2 + (ac− b)x+ d, z2 − (cb− a)y+ t]

• EX.10 = [(mn− a)x+ y2 + a, cx+ z2, x2 + (ad− c)yx+ ba, u2 +
(a4 − 4)x]
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Table 1. The performance comparison of different algorithms.

Example Method Time (Sec) Used Memory (GB) Branch

GVWDisPGB 11.77 0.7 140
DisPGB 26.59 1.65 149

EX.1 PGBMain – – –
cgsdr – – –
FirstGB – – –
GVWDisPGB 6.59 0.44 15
DisPGB 33.45 2.21 14

EX.2 PGBMain – – –
cgsdr – – –
FirstGB – – –
GVWDisPGB 40.35 2.5 71
DisPGB 72.81 4.85 59

EX.3 PGBMain – – –
cgsdr – – –
FirstGB 119.15 11.38 –
GVWDisPGB 2.19 0.11 43
DisPGB – – –

EX.4 PGBMain – – –
cgsdr – – –
FirstGB 256.2 33.19 –
GVWDisPGB 10.65 0.67 10
DisPGB – – –

EX.5 PGBMain – – –
cgsdr – – –
FirstGB 3.24 0.31 –
GVWDisPGB 4.1 0.23 51
DisPGB 82.11 4.66 36

EX.6 PGBMain – – –
cgsdr 0.5 – 24
FirstGB 30.08 3.49 –
GVWDisPGB 9.57 0.62 17
DisPGB – – –

EX.7 PGBMain – – –
cgsdr – – –
FirstGB 3.96 0.39 –
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Continuation of Table 1.

Example Method Time (Sec) Used Memory (GB) Branch

GVWDisPGB 102.3 5.85 43
DisPGB – – –

EX.8 PGBMain – – –
cgsdr – – –
FirstGB 5.40 0.55 –
GVWDisPGB 10.38 6.7 119
DisPGB – – –

EX.9 PGBMain – – –
cgsdr – – –
FirstGB – – –
GVWDisPGB 22.38 1.4 245
DisPGB 10.11 0.67 55

EX.10 PGBMain – – –
cgsdr – – –
FirstGB 136.8 12.45 –

We shall emphasize that from DisPGB we mean the classical DisPGB

algorithm due to Montes [18]. The results are shown in the above ta-
bles, where the timings were conducted on a personal computer with 7
core, 8 GB RAM and 64 bits under the windows 7 operating system.
All the computations are done over Q. In these tables, the third and
fourth columns show respectively the CPU time (in second) and the
amount of required memory (in gigabytes) of the corresponding met-
hod computation. The last column indicates the number of branches
of the output CGS. Furthermore, “First GB” method stands for the
computation of the reduced Gröbner basis of the corresponding ideal
in K[a,x] w.r.t. ≺x,a using the Maple function Basis. It is worth
nothing that, this computation is needed in PGBMain to compute
a CGS w.r.t. ≺x,a. Also, “—” means that the related function can
not compute anything and we stopped the computation after 400 se-
conds. A comparison of the timing columns in the above tables and
our test for some other examples show that this first implementation
of GVWDisPGB is efficient for many examples.

According to our experiments on more than 50 examples, we may
consider two main classes of examples for which the performance of
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GVWDisPGB and PGBMain are quite different. In general, for each
ideal I with I ∩K[a] 6= 〈0〉 PGBMain has a better performance than
GVWDisPGB. For instance, let us consider the ideal I = 〈ax− ac+
a2, aby3 + by + ab+ b2c, axy − by + ax− c, aby3 + axy, by + bc+ c2〉 ⊂
K[a, b, c][x, y]. By running both algorithms over I w.r.t. c ≺lex b ≺lex a
and y ≺lex x, we observe that PGBMain takes about 20 seconds of
CPU time while GVWDisPGB needs more than 95 seconds. It seems
that when PGBMain finds a non-empty generating set for I ∩ K[a],
then this generating set has a positive impact on the rest of calculation.
However, in contrast, if I∩K[a] = 〈0〉, thenGVWDisPGB has a better
performance than PGBMain. For instance, one can refer to EX.1 in
Table 5.

The other issue concerning PGBMain is that by the structure of
this algorithm, one needs to compute successive Gröbner bases by ad-
ding, at each step, new polynomials. This may enlarge the size of
the computed Gröbner basis at each step. Let us consider the ideal
〈aby3 + b2c + ab+ by, axy + ax − by − c, aby3 + axy〉 in K[a, b, c][x, y]
with c ≺lex b ≺lex a and y ≺lex x. In Figure 5, the x-axis shows the
number of computed branches and the y-axis indicates the number of
polynomials as the input of Gröbner basis algorithm in each branch.

Figure 1. Comparing the output of GVWDisPGB and PGBMain

As it is shown, GVWDisPGB computes more branches than PG-

BMain (17 versus 6) but the maximum number of polynomials as the
input of Gröbner basis algorithm in GVWDisPGB is 3 compared with
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14 in PGBMain.
Let us consider the ideal I = 〈f1, f2〉 ⊂ K[a, b][x, y] generated by

the polynomials

f1 = (a12 + a5 + 6)x17 + bx5 + x6 + x4 + a7x+ a5, and

f2 = (a13 + a6 + 3)y7 + ay3 + y + 1.

One can observe that f1 and f2 have coprime leading monomials w.r.t
y ≺lex x however this does not hold by considering f1 and f2 in
K[a, b, x, y] with the product of b ≺lex a and y ≺lex x. Therefore,
if the leading coefficients of f1 and f2 in K[a, b][x, y] are non-zero, then
{f1, f2} forms a Gröbner basis by Buchberger’s first criterion and in
turn GVWDisPGB needs only 0.3 second to compute a CGS for I,
however just the first Gröbner basis in K[a, b, x, y] (which is the first
step in PGBMain) takes more than five minutes.

Finally, it is worth noting that PGBMain has the advantage of
using the Gröbner basis function of a computer algebra system. Ho-
wever, if the number of parameters is high then the first Gröbner ba-
sis computation may be hard and GVWDisPGB may have a better
performance than PGBMain. Furthermore, due to the structure of
PGBMain, the number of branches in the output CGS by using this
algorithm is generally less compared with the one of GVWDisPGB.
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in the construction of Gröbner bases”, in In symbolic and algebraic
computation EUROSAM-1979, (Marseille, France), Lecture Notes
in Comput. Sci., vol. 72, Berlin: Springer, 1979, pp. 3–21.

[5] J.-C. Faugère, “A new efficient algorithm for computing Gröbner
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Stability Analysis of Efficient Portfolios in a

Discrete Variant of Multicriteria Investment

Problem with Savage’s Risk Criteria
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Abstract

We consider a multicriteria discrete variant of investment
portfolio optimization problem with Savage’s risk criteria. Three
combinations of norms in problem parameter spaces are consi-
dered. In each combination, one of the three spaces is endowed
with Hölder’s norm, and the other two spaces are endowed with
Chebyshev’s norm. The lower and upper attainable bounds on
the stability radius of one Pareto optimal portfolio are obtained.

Keywords: Multicriteria problem, Pareto optimal portfolio,
Savage’s risk criteria, stability radius, Hölder’s norms

1 Introduction

Modern financial environments require mitigation of the limitations of
modern portfolio theory to make portfolio choice easier in the context of
long-term and goal-based investing [1]. Investment managing problems
are of the type with uncertainty of the initial data (see e.g. [2]). Usually,
any separate investment asset has a higher level of risk and less return
than the portfolio of those assets, and there is no reason to invest in one
particular asset. Creating the portfolio by diversification and mixing a
variety of investments an investor reduces the riskiness of the portfolio.

Following classical Markowitz’s portfolio theory [3],[4], the investor
plots on the graph an efficient frontier depending on various pairs of
risk and expected return, and then he chooses portfolio drawing on

c©2017 by Vladimir Emelichev, Yury Nikulin, Vladimir Korotkov
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individual risk-return preferences. It gives him a chance to construct a
portfolio with the same expected return and less risk.

The model we consider is rather different from the classical models.
The risk matrix is constructed for several market states related to each
type of the risk. Unlike classic modern portfolio theories, where a
portfolio consists of a percentage of each asset, in our model a Boolean
decision vector is used to describe feasible portfolios. The problem
consists in finding a set of Pareto optimal portfolios with Savage’s risk
criteria.

The model formulation requires statistical and expert evaluation
of risks (e.g. financial or ecological) [5] to be specified as the initial
data. To construct an efficient portfolio, the investor must be able to
quantify risk and provide the necessary inputs. Usually, the collected
data contain computational errors and inaccuracies. It leads to the
situation when the initial data representing risk values are inaccurate
and uncertain. One of the key points of portfolio choice analysis under
uncertainty is estimation of perturbation ranges for initial data the
optima. The quantitative measure of the data perturbation level that
do not violate optimality is known as the stability radius. The concept
is widely presented and analyzed in the recent literature focusing on
finding analytical expressions and bounds (see e.g. [6]–[10]). Similar
approaches were also developing in parallel in scheduling theory (see
[11]–[13]).

Analytic formulas are pairwise comparisons of solutions depending
on selected optimality principles. The structure of global perturbation
of this problem and the structure of the solution set should be taken into
account. The particular definition of the stability radius depends on
choosing optimality principles (given the problem was multicriterial),
an uncertain data and a type of distance metric used to measure the
nearness in problem parameter spaces. Various types of metrics allow
considering a specific of problem parameters perturbation. So in the
case of the Chebyshev metric l∞ the maximum changes in the initial
data is taken into account only. Thus the perturbations are considered
to be independent. In the case of the Manhattan metric l1 every change
of the initial data can be monitored in total. Hölder’s metric lp, 1 ≤ p ≤
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∞, is the metric with the parameter and includes such extreme cases
as the Chebyshev metric l∞, Manhattan metric l1 and also Euclidean
metric l2. Thus, lp norm allows controlling the degree and type of
admissible perturbations, and therefore gives the decision maker more
flexibility. For more details on the issue of using Hölder’s metric in
portfolio optimization we refer the reader to [14].

Along with quantitative analysis, a qualitative approach is develo-
ped in parallel. This approach concentrates on specifying analytical
conditions which will guarantee some certain pre-specified behavior of
the set of optimal solutions. To highlight the ideas of this approach, it
is worth mentioning papers [15],[16], where comparative analysis of five
different types of stability is presented for multicriteria integer linear
programming problem. Similar results were obtained for multicriteria
combinatorial problems with bottleneck criteria [17] as well as with
some other nonlinear criteria [18].

In the previous papers (see, e.g. [19]–[24]), some bounds on the sta-
bility radii were obtained in the cases where three-dimensional problem
parameters space is equipped with different combinations of l1 and l∞
norms. In the present paper, we obtain the lower and upper bounds
on the stability radius of one Pareto optimal portfolio for the multicri-
teria investment problem with Savage’s risk criteria, where we assume
that in one space an arbitrary lp norm is defined with 1 ≤ p ≤ ∞. At
the same time, we measure distances with l∞ norm in the remaining
spaces. This allows the investor to make a more detailed control over
changes in the initial data regarding to the three spaces. For example,
the Euclidian metric is often used to deal with risks, and lp norm can
treat the case once the decision maker needs it.

2 Problem formulation and basic definitions

Consider a multicriteria discrete variant of the portfolio optimization
problem. We assume the model can be described by the following
primitives listed below. Let

Nn = {1, 2, . . . , n} be a variety of alternatives (investment assets,
projects);
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Nm be a set of possible financial market states (market situations,
scenarios);

Ns be a set of possible risks;

rijk be a numerical measure of economic risk of type k ∈ Ns if
investor chooses project j ∈ Nn given the market state i ∈ Nm;

R = [rijk] ∈ Rm×n×s;

x = (x1, x2, . . . , xn)
T ∈ En be an investment portfolio, where E =

{0, 1},

xj =

{

1 if investor chooses project j,
0 otherwise;

X ⊂ En be a set of all admissible investment portfolios;

Rm be a financial market state space;

Rn be a portfolio space;

Rs be a risk space.

In our model, we assume that the risk measure is addictive, i.e. the
total risk of one portfolio is a sum of risks of the projects included in
the portfolio. The risk of each project can be measured, for instance,
by means of the associated implementation cost.

The presence of a risk factor is integral feature of financial market
functioning. One can find information about risk measurement met-
hods and their classification in [25]. The last trend is to quantify risks
using five R: robustness, redundancy, resourcefulness, response and
recovery. The natural target of any investor is to minimize different
types of risks. It creates a motivation for multicriteria analysis within
risk modeling. It leads to the usage of multicriteria decision making
tools [26].

Assume that the efficiency of a chosen portfolio (Boolean vector)
x ∈ X, |X| ≥ 2, is evaluated by a vector objective function

f(x,R) = (f1(x,R1), f2(x,R2), . . . , fs(x,Rs)),

each partial objective represents minimax Savage’s risk criterion [27].

fk(x,Rk) = max
i∈Nm

Rikx = max
i∈Nm

∑

j∈Nn

rijkxj → min
x∈X

, k ∈ Ns,
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where Rk ∈ Rm×n – k-th cut R = [rijk] ∈ Rm×n×s with rows
Rik = (ri1k, ri2k, . . . , rink) ∈ Rn, i ∈ Nm.

If investor chooses Savage’s risk criterion [28], then (s)he minimizes
the total risk of the selected portfolio in the worst (maximum risk state)
case. This approach takes place when the decision maker has the most
pessimistic expectations about the market.

The problem of finding Pareto optimal (efficient) portfolios is refer-
red to as the multicriteria investment Boolean problem with Savage’s
risk criteria and denoted Zs(R), s ∈ N. The set of Pareto optimal
portfolios is defined as follows

P s(R) = {x ∈ X : ∄x′ ∈ X (g(x, x′, R) ≥ 0(s) & g(x, x′, R) 6= 0(s))},

where

g(x, x′, R) = (g1(x, x
′, R1), g2(x, x

′, R2), . . . , gs(x, x
′, Rs)),

gk(x, x
′, Rk)=fk(x,Rk)−fk(x

′, Rk) = min
i′∈Nm

max
i∈Nm

(Rikx−Ri′kx
′), k ∈ Ns,

0(s) = (0, 0, . . . , 0) ∈ Rs.

If m = 1, then the problem Zs(R) transforms into s-criteria linear
Boolean programming problem:

Zs
B(R) : Rx→ min

x∈X
, (1)

where X ⊆ En, R = [rkj] ∈ Rs×n is a matrix with rows Rk =
(rk1, rk2, . . . , rkn) ∈ Rn, k ∈ Ns. The case m = 1 can be interpre-
ted as a stable market with one state only.

While solving investment problems, it is necessary to take into ac-
count inaccuracy of initial information (statistical and expert risks eva-
luation errors) which are very common in real life. Under these condi-
tions, it is highly recommended to get numerical bounds about possible
changes in initial data preserving efficiency of the original Pareto opti-
mal portfolio for any perturbation. Similarly to [20], [29], the number

ρ = ρs(x0) =

{

sup Ξ if Ξ 6= ∅,
0 if Ξ = ∅,
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is called a stability radius of a Pareto optimal solution x0 ∈ P s(R),
where

Ξ = {ε > 0 : ∀R′ ∈ Ω(ε) (x0 ∈ P s(R+R′))},

Ω(ε) = {R′ ∈ Rm×n×s : ‖R′‖ < ε}.

Here Ω(ε) is a set of feasible perturbation matrices, P s(R + R′) is a
Pareto set of perturbed problem Zs(R + R′), ‖R′‖ is the norm of the
matrix R′ = [r′

ijk
]. This norm depends on norms specified in portfolio

space Rn, market state space Rm as well as risk space Rs.

Further, we investigate the stability radius in three different cases
depending on which of those three spaces Rn, Rm or Rs is equipped
with Hölder’s lp-norm, 1 ≤ p ≤ ∞. For any dimension d and 1 ≤ p ≤
∞, the Hölder lp norm of a = (a1, a2, . . . , ad) ∈ Rd in Rd is defined by
the following equation

‖a‖p =











(

∑

j∈Nd
|aj |

p

)1/p

if 1 ≤ p <∞,

max{|aj | : j ∈ Nd} if p = ∞.

It is well-known that lp norm, defined in Rd, induces conjugated
lp∗ norm in (Rd)∗. For p and p∗, the following relations hold

1

p
+

1

p∗
= 1, 1 < p <∞.

Here as usual, we set p∗ = 1 if p = ∞, and p∗ = ∞ if p = 1. Thus,
we assume that p and p∗ vary within the range [1,∞]. We also assume
1/p = 0 if p = ∞.

It is easy to see that

‖z‖p‖z‖p∗ = ‖z‖1 for z ∈ {−1, 0, 1}n, p ∈ [1,∞]. (2)

For any α > 0 and m ∈ N,

‖(α, ..., α
︸ ︷︷ ︸

m

)‖p = m1/pα. (3)
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Further, we will use classical Hölder’s inequality ab ≤ ‖a‖p‖b‖p∗ , where
a = (a1, a2, . . . , an) ∈ Rn, b = (b1, b2, . . . , bn)

T ∈ Rn.
The following lemma can be easily proven by contradiction.
Lemma. Let x0 ∈ P s(R), γ > 0. If for any portfolio x ∈ X \ {x0}

and every perturbing matrixR′ ∈ Ω(γ) there exists an index l ∈ Ns such
that gl(x, x

0, Rl +R′
l
) > 0, then x0 is Pareto optimal in any perturbed

problem Zs(R+R′), i.e. x0 ∈ P s(R+R′) as R′ ∈ Ω(γ).

3 Case A: portfolio space Rn is endowed with

lp

We endow portfolio space Rn with an arbitrary Hölder’s lp norm, 1 ≤
p ≤ ∞, while in market state space Rm and risk space Rs we measure
distances by means of l∞. Thus, for any matrix R = [rijk] ∈ Rm×n×s

‖R‖p∞∞ = ‖(‖R1‖p∞, ‖R2‖p∞, . . . , ‖Rs‖p∞)‖∞ = max
k∈Ns

‖Rk‖p∞,

where ‖Rk‖p∞ = ‖(‖R1k‖p, ‖R2k‖p, . . . , ‖Rmk‖p)‖∞, k ∈ Ns.
Obviously, ‖Rik‖p ≤ ‖Rk‖p∞ ≤ ‖R‖p∞∞, i ∈ Nm, k ∈ Ns. Additio-
nally, due to Hölder’s inequality, for any x, x0 ∈ X we get

Rikx−Ri′kx
0 ≥ −(‖Rik‖p‖x‖p∗ + ‖Ri′k‖p‖x

0‖p∗) ≥

≥ −‖Rk‖p∞(‖x‖p∗ + ‖x0‖p∗), i, i′ ∈ Nm, k ∈ Ns. (4)

In this context ρ1 = ρs
1
(x0,m, p,∞,∞) denotes the stability radius of

x0. For Pareto optimal portfolio x0 in Zs(R), we will use the following
notation

ϕ1 = ϕs
1(x

0,m, p,∞,∞) = min
x∈X\{x0}

‖[g(x, x0, R)]+‖∞
‖x‖p∗ + ‖x0‖p∗

,

ψ1 = ψs
1(x

0,m, p,∞,∞) = min
x∈X\{x0}

‖[g(x, x0, R)]+‖∞
‖x− x0‖p∗

.

Obviously, ψ1 ≥ ϕ1 ≥ 0. Here and henceforth we will use a vector a =
(a1, a2, . . . , as) ∈ Rs projection operator to the nonnegative orthant:

[a]+ = (a+
1
, a+

2
, . . . , a+s ),
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where sign ” + ” means the positive projection of the vector, i.e.
a+
k
= max{0, ak}, k ∈ Ns.

Theorem 1. For any m, s ∈ N and p ∈ [1,∞], the stability radius
ρs
1
(x0,m, p, ∞,∞) of Pareto optimal portfolio x0 ∈ P s(R) in Zs(R)

has the following upper and lower bounds

ϕs
1(x

0,m, p,∞,∞) ≤ ρs1(x
0,m, p,∞,∞) ≤ ψs

1(x
0,m, p,∞,∞). (5)

Proof. Let x0 ∈ P s(R). First we prove ρ1 ≥ ϕ1. The claim is evident
if ϕ1 = 0. Assume ϕ1 > 0. According to the definition of ϕ1, for any
portfolio x ∈ X \ {x0} the inequality

‖[g(x, x0, R)]+‖∞ ≥ ϕ1(‖x‖p∗ + ‖x0‖p∗) (6)

holds. Further, we are going to prove by contradiction that

∀R′ ∈ Ω(ϕ1) ∃l ∈ Ns (gl(x, x
0, Rl +R′

l) > 0).

Suppose, there exists a perturbing matrix R0 ∈ Ω(ϕ1) with cuts R0

k
,

k ∈ Ns such that

gk(x, x
0, Rk +R0

k) ≤ 0, k ∈ Ns.

Then due to (4) for any k ∈ Ns, we obtain

0 ≥ gk(x, x
0, Rk +R0

k) = max
i∈Nm

(Rik +R0

ik)x− max
i∈Nm

(Rik +R0

ik)x
0 =

= min
i′∈Nm

max
i∈Nm

(Rikx−Ri′kx
0 +R0

ikx−R0

i′kx
0) ≥

≥ gk(x, x
0, Rk)− ‖R0

k‖p∞(‖x‖p∗ + ‖x0‖p∗) ≥

≥ gk(x, x
0, Rk)− ‖R0‖p∞∞(‖x‖p∗ + ‖x0‖p∗) >

> gk(x, x
0, Rk)− ϕ1(‖x‖p∗ + ‖x0‖p∗).

From the last, we deduce

‖[g(x, x0, R)]+‖∞ < ϕ1(‖x‖p∗ + ‖x0‖p∗),
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and it contradicts to (6). Finally, using Lemma, we get x0 ∈ P s(R+R′)
for any R′ ∈ Ω(ϕ1). Hence, ρ1 ≥ ϕ1.

Now we prove that ρ1 ≤ ψ1. According to definition of ψ1 > 0,
there exists a portfolio x∗ ∈ X \ {x0} such that

gk(x
∗, x0, Rk) ≤ [gk(x

∗, x0, Rk)]
+ ≤

≤ ‖[g(x∗, x0, R)]+‖∞ = ψ1‖x
∗ − x0‖p∗ , k ∈ Ns. (7)

Assuming ε > ψ1, consider a perturbing matrix R0 = [r0
ijk

] ∈ Rm×n×s

with elements

r0ijk = δ
x0
j
− x∗

j

‖x∗ − x0‖p
, i ∈ Nm, j ∈ Nn, k ∈ Ns,

where ψ1 < δ < ε. Since in any cuts R0

k
∈ Rm×n, k ∈ Ns, all the rows

R0

ik
, i ∈ Nm, are the same (let A denotes such a row), we have

A = δ
(x0 − x∗)T

‖x∗ − x0‖p
. (8)

Therefore, ‖R0‖p∞∞ = ‖R0

k
‖p∞ = ‖R0

ik
‖p = ‖A‖p = δ, i ∈ Nm, k ∈

Ns, and, hence R
0 ∈ Ω(ε) for any ε > δ. Further, due to (2) and (8),

for any p ∈ [1,∞] the chain of equalities is true

A(x∗ − x0) = −δ
‖x∗ − x0‖1
‖x∗ − x0‖p

= −δ‖x∗ − x0‖p∗ .

Finally, using the above equalities along with (7), we conclude that for
any k ∈ Ns the following is true

gk(x
∗, x0, Rk +R0

k) = max
i∈Nm

(Rik +A)x∗ − max
i∈Nm

(Rik +A)x0 =

= gk(x
∗, x0, Rk) +A(x∗ − x0) = gk(x

∗, x0, Rk)− δ‖x∗ − x0‖p∗ <

< gk(x
∗, x0, Rk)− ψ1‖x

∗ − x0‖p∗ ≤ 0.

Therefore, x0 6∈ P s(R+R0). And hence, ρ1 ≤ ψ1.
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Attainability of the upper and lower bounds specified in (5) when
p = ∞ follows also from the following evident statement, which is a
direct consequence of Theorem 1.

Corollary 1 If for any investment portfolio x 6= x0 the set {j ∈ Nn :
x0
j
= xj = 1} is empty, then for any number m ∈ N the formula

ρs1(x
0,m,∞,∞,∞) = ϕs

1(x
0,m,∞,∞,∞) = ψs

1(x
0,m,∞,∞,∞) =

= min
x∈X\{x0}

‖[g(x, x0, R)]+‖∞
‖x+ x0‖1

holds.

From Theorem 1 it also follows the corollary below.

Corollary 2[ [21]] For any m ∈ N, the following bounds take place

ϕs
1(x

0,m,∞,∞,∞) ≤ ρs1(x
0,m,∞,∞,∞) ≤ ψs

1(x
0,m,∞,∞,∞).

The following theorem gives evidence about attainability of lower
bound specified in Corollary 3, i.e. lower bound (5) while p = ∞.

Theorem 2. There exists a class of problems Zs(R), such that for
portfolio x0 ∈ P s(R) the following relations are valid

0 < ρs1(x
0,m,∞,∞,∞) = ϕs

1(x
0,m,∞,∞,∞) < ψ1(x

0,m,∞,∞,∞).
(9)

Proof. Let ϕ1 > 0. To fulfill the inequality ϕ1 < ψ1 it is sufficient
that ‖x + x0‖1 > ‖x − x0‖1 holds for any x ∈ X \ {x0}. To prove
ρ1 = ϕ1, according to Theorem 1, it is sufficient to specify a class of
problems with ρ1 ≤ ϕ1. So, the rest of the proof is about this. From
the definition of ϕ1 > 0 there exists x∗ ∈ X \ {x0} with

ϕ1‖x
∗ + x0‖1 ≥ gk(x

∗, x0, Rk), k ∈ Ns. (10)

Further conclusions are true for any k ∈ Ns. Denote

i(x0) = argmax{Rikx
0 : i ∈ Nm},
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i(x∗) = argmax{Rikx
∗ : i ∈ Nm},

∆ = ‖x∗ + x0‖1 − ‖x∗ − x0‖1 > 0.

Further assume
(Ri(x∗)k −Ri(x0)k)x

∗ > ϕ1∆, (11)

which implies i(x0) 6= i(x∗) since ϕ1∆ > 0. For any ε > ϕ1 the elements
of the cut R0

k
in the perturbing matrix R0 we define as below

r0ijk =







δ if i = i(x0), x0
j
= 1,

−δ otherwise,

(12)

where

min

{

ε,
1

∆
(Ri(x∗)k −Ri(x0)k)x

∗

}

> δ > ϕ1. (13)

Notice also that the last inequalities are valid due to (11). Due to the
construction specific of R0

k
we have

R0

ikx
∗ = −δ‖x∗‖1, i ∈ Nm \ {i(x0)}, (14)

R0

i(x0)k
x0 = δ‖x0‖1, (15)

‖R0

k‖p∞ = ‖R0‖p∞∞ = δ, R0 ∈ Ω(ε).

Additionally,
R0

i(x0)k
x∗ = δ(∆ − ‖x∗‖1). (16)

Indeed, let
Q1 = {j ∈ Nn : x∗j = x0j = 1},

Q2 = {j ∈ Nn : x∗j = 1, x0j = 0}.

Then
|Q1| = ∆/2,

|Q2| = ‖x∗‖1 −∆/2,

R0

i(x0)k
x∗ = δ(|Q1| − |Q2|),

and (16) follows.
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Further we prove gk(x
∗, x0, Rk + R0

k
) < 0. According to (15) we

have

fk(x
0, Rk +R0

k) = max
i∈Nm

(Rik +R0

ik)x
0 = fk(x

0, Rk) + δ‖x0‖1. (17)

Now we show

fk(x
∗, Rk +R0

k) = fk(x
∗, Rk)− δ‖x∗‖1. (18)

Using (14), we yield

fk(x
∗, Rk +R0

k) = max
{

(Ri(x∗)k +R0

i(x∗)k
)x∗, max

i 6=i(x∗)

(Rik +R0

ik)x
∗
}

=

= max
{

(fk(x
∗, Rk)− δ‖x∗‖1), max

i 6=i(x∗)

(Rik +R0

ik)x
∗
}

.

Therefore, taking into account that

fk(x
∗, Rk)− δ‖x∗‖1 ≥ (Rik +R0

ik)x
∗, i ∈ Nm \ {i(x0), i(x∗)},

in order to prove (18) it is sufficient to check

fk(x
∗, Rk)− δ‖x∗‖1 ≥ (Ri(x0)k +R0

i(x0)k
)x∗.

To do this, we use (13) and (16)

fk(x
∗, Rk)− δ‖x∗‖1 − (Ri(x0)k +R0

i(x0)k
)x∗ =

= (Ri(x∗)k −Ri(x0)k)x
∗ − δ‖x∗‖1 −R0

i(x0)k
x∗ >

> δ(∆ − ‖x∗‖1)−R0

i(x0)k
x∗ = 0.

Finally, sequentially applying (17), (18), (10) and (13), for any index
k ∈ Ns we get

gk(x
∗, x0, Rk+R

0

k)=gk(x
∗, x0, Rk)−δ‖x

∗+x0‖1≤(ϕ1−δ)‖x
∗+x0‖1<0.

And hence, the formula below holds

∀ε > ϕ1 ∃R0 ∈ Ω(ε) (x0 6∈ P s(R+R0)),

which due to x0 ∈ P s(R) produces ρ1 ≤ ϕ1. Summarizing, the correct-
ness of (9) now becomes clear.
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Now consider a numerical example illustrating Theorem 2.

Example 1. Let m = 2, n = 3, s = 1, X = {x0, x∗}, x0 = (1, 1, 0)T ,
x∗ = (0, 1, 1)T ,

R =

(

−5 2 2
1 −1 0

)

.

Then f(x0, R) = 0, f(x∗, R) = 4, x0 ∈ P 1(R), ‖x∗ + x0‖1 = 4, ‖x∗ −
x0‖1 = 2, i(x0) = 2, i(x∗) = 1. Therefore ϕ1 = 1, ψ2 = 2, (Ri(x∗)k −
Ri(x0)k)x

∗ = 5 > 2 = ϕ1(‖x
∗ + x0‖1 − ‖x∗ − x0‖1).

If the perturbing matrix R0 is defined according to (12)

R0 =

(

0 −δ −δ
δ δ −δ

)

, 1 < δ < 2.5,

it is easy to see that ‖R0‖ = δ and f(x0, R + R0) = 2δ > 4 − 2δ =
f(x∗, R + R0). from the last and from the relations ‖R0‖ > 1, x0 ∈
P 1(R) it follows that ρ1 ≤ 1. Therefore due to Theorem 1 we conclude
ρ1 = ϕ1 = 1 < ψ1 = 2.

The following known result gives us the evidence about attainability
of the upper bound on stability radius of x0 ∈ P s(R) in Zs(R) for the
case m = 1 (see (1)). In this context Rn is endowed with lp, and Rs is
endowed with l∞.

Theorem 3 ( [29]). For any p ∈ [1,∞] and s ∈ N, the stability radius
of x0 ∈ P s(R) in the linear Boolean programming problem Zs

B
(R),

R ∈ Rs×n is expressed by the formula

ρs1(x
0) = min

x∈X\{x0}

‖[R(x− x0)]+‖∞
‖x− x0‖p∗

.

4 Case B: market state space Rm is endowed

with lp

Now consider the case when portfolio space Rn and risk space Rs are
endowed with l∞, whereas market state space Rm is equipped with

315



Vladimir Emelichev, Yury Nikulin, Vladimir Korotkov

arbitrary Hölder’s lp norm, 1 ≤ p ≤ ∞. Thus, the norm of matrix is
defined by

‖R‖∞p∞ = ‖(‖R1‖∞p, ‖R2‖∞p, . . . , ‖Rs‖∞p)‖∞ = max
k∈Ns

‖Rk‖∞p,

where

‖Rk‖∞p = ‖(‖R1k‖∞, ‖R2k‖∞, . . . , ‖Rmk‖∞)‖p, k ∈ Ns.

Obviously,

‖Rik‖∞ ≤ ‖Rk‖∞p ≤ ‖R‖∞p∞, i ∈ Nm, k ∈ Ns.

Additionally, due to Hölder’s inequality, for any x, x0 ∈ X we have

Rikx−Ri′kx
0 ≥ −(‖Rik‖∞‖x‖1 + ‖Ri′k‖∞‖x0‖1) ≥

≥ −‖Rk‖∞p‖x+ x0‖1, i, i′ ∈ Nm, k ∈ Ns. (19)

In this context, ρs
2
(x0) = ρs

2
(x0,m,∞, p,∞) is the stability radius

of x0. For Pareto optimal portfolio x0 in Zs(R) we use the following
notations

ϕ2 = ϕs
2(x

0,m) = min
x∈X\{x0}

‖[g(x, x0, R)]+‖∞
‖x+ x0‖1

,

ψ2 = ψs
2(x

0,m) = min
x∈X\{x0}

‖[g(x, x0, R)]+‖∞
‖x− x0‖1

.

Evidently, ψ2 ≥ ϕ2 ≥ 0.

Theorem 4. For any m, s ∈ N and p ∈ [1,∞] the stability radius
ρs
2
(x0,m) of Pareto optimal portfolio x0 ∈ P s(R) in Zs(R) the following

bounds are valid

ϕs
2(x

0,m) ≤ ρs2(x
0) ≤ m1/pψs

2(x
0,m).
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Proof. Let x0 ∈ P s(R). First we prove ρ2 ≥ ϕ2. It is evident if
ϕ2 = 0. Let ϕ2 > 0. According to the definition of ϕ2, for any portfolio
x ∈ X \ {x0} the inequality

‖[g(x, x0, R)]+‖∞ ≥ ϕ2‖x+ x0‖1 (20)

is true. Further, by contradiction, we show the correctness of the for-
mula given below

∀R′ ∈ Ω(ϕ2) ∃l ∈ Ns (gl(x, x
0, Rl +R′

l) > 0).

From contrary, let it be so that there exists a perturbing matrix R0 ∈
Ω(ϕ2) with cuts R0

k
, k ∈ Ns such that

gk(x, x
0, Rk +R0

k) ≤ 0, k ∈ Ns.

Then according to (19) for any index k ∈ Ns we obtain

0 ≥ gk(x, x
0, Rk +R0

k) = max
i∈Nm

(Rik +R0

ik)x− max
i∈Nm

(Rik +R0

ik)x
0 =

= min
i′∈Nm

max
i∈Nm

(Rikx−Ri′kx
0 +R0

ikx−R0

i′kx
0) ≥

≥ gk(x, x
0, Rk)− ‖R0

k‖∞p‖x+ x0‖1 ≥

≥ gk(x, x
0, Rk)− ‖R0‖∞p∞‖x+ x0‖1 > gk(x, x

0, Rk)− ϕ2‖x+ x0‖1.

From the last we deduce inequality

‖[g(x, x0, R)]+‖∞ < ϕ2‖x+ x0‖1,

which contradicts to (20). Finally, applying Lemma, we have x0 ∈
P s(R+R′) for every perturbing matrix R′ ∈ Ω(ϕ2). Hence, ρ2 ≥ ϕ2.

Now we prove ρ2 ≤ m1/pψ2. According to the definition ψ2 > 0,
there exists a portfolio x∗ ∈ X \ {x0} such that

gk(x
∗, x0, Rk) ≤ [gk(x

∗, x0, Rk)]
+ ≤

≤ ‖[g(x∗, x0, R)]+‖∞ = ψ2‖x
∗ − x0‖1, k ∈ Ns. (21)

317



Vladimir Emelichev, Yury Nikulin, Vladimir Korotkov

Assuming ε > m1/pψ2, consider a perturbing matrix R0 = [r0
ijk

] ∈

Rm×n×s whose elements are defined as follows

r0ijk = δ(x0j − x∗j), i ∈ Nm, j ∈ Nn, k ∈ Ns,

where ε/m1/p > δ > ψ2. Since all the rows R0

ik
, i ∈ Nm in the cut

R0

k
∈ Rm×n, k ∈ Ns are the same in the matrix R0, then we have (let

A ∈ Rm denote such a row)

A = δ(x0 − x∗)T . (22)

‖R0

ik‖∞ = ‖A‖∞ = δ, i ∈ Nm, k ∈ Ns.

From the last and (3), we get

‖R0

k‖∞p = m1/pδ, k ∈ Ns,

‖R0‖∞p∞ = m1/pδ ≥ m1/pψ2.

Thus R0 ∈ Ω(ε) for any ε > m1/pψ2. Further due to (22), we have

A(x∗ − x0) = −δ‖x∗ − x0‖1.

Finally, combining the equality above and (21), we conclude that for
any k ∈ Ns the following relations are true

gk(x
∗, x0, Rk +R0

k) = max
i∈Nm

(Rik +A)x∗ − max
i∈Nm

(Rik +A)x0 =

= gk(x
∗, x0, Rk) +A(x∗ − x0) = gk(x

∗, x0, Rk)− δ‖x∗ − x0‖1 <

< gk(x
∗, x0, Rk)− ψ2‖x

∗ − x0‖1 ≤ 0.

Thus x0 6∈ P s(R+R0). Hence, ρ2 ≤ m1/pψ2.

The following known result confirms attainability on the upper
bound of the stability radius of x0 ∈ P s(R) in Zs(R) for the case
m = 1 (see (1)). In this context, both Rn and Rs are equipped with
l∞.

Theorem 5 ( [30]). For the stability radius of x0 ∈ P s(R) in the
Boolean linear programming problem Zs

B
(R), R ∈ Rs×n, and s ∈ N

the following analytical expression holds

ρs2(x
0) = min

x∈X\{x0}

‖[R(x− x0)]+‖∞
‖x− x0‖1

.
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5 Case C: risk space Rs is endowed with lp

Now assume we measure distances by means of l∞ in portfolio spaceRn

and market state spaceRm while in risk spaceRs we use lp, 1 ≤ p ≤ ∞.
In this case under the norm of the matrix R we understand the number

‖R‖∞∞p = ‖(‖R1‖∞∞, ‖R2‖∞∞, . . . , ‖Rs‖∞∞)‖p,

where

‖Rk‖∞∞ = ‖(‖R1k‖∞, ‖R2k‖∞, . . . , ‖Rmk‖∞)‖∞, k ∈ Ns.

Obviously,

‖Rik‖∞ ≤ ‖Rk‖∞∞ ≤ ‖R‖∞∞p, i ∈ Nm, k ∈ Ns.

It is easy to check that for any portfolios x and x′ the inequalities hold

Rikx−Ri′kx
′ ≥ −‖Rk‖∞∞‖x+ x′‖1, i, i′ ∈ Nm, k ∈ Ns. (23)

In this context, ρ3 = ρs
3
(x0,m,∞,∞, p) denotes the stability radius

of x0. For Pareto optimal portfolio x0 in Zs(R), we introduce the
notation

ϕ3 = ϕs
3(x

0,m,∞,∞, p) = min
x∈X\{x0}

‖[g(x, x0, R)]+‖p
‖x+ x0‖1

,

ψ3 = ψs
3(x

0,m,∞,∞, p) = min
x∈X\{x0}

‖[g(x, x0, R)]+‖p
‖x− x0‖1

.

Evidently, ψ3 ≥ ϕ3 ≥ 0.

Theorem 6. For any m, s ∈ N and p ∈ [1,∞], the stability radius
ρs
3
(x0,m,∞, ∞, p) of portfolio x0 ∈ P s(R) in Zs(R) has the following

lower and upper bounds

ϕs
3(x

0,m,∞,∞, p) ≤ ρs3(x
0,m,∞,∞, p) ≤ ψs

3(x
0,m,∞,∞, p).
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Proof. Let x0 ∈ P s(R). First we prove ρ3 ≥ ϕ3. Without loss of
generality, assume ϕ3 > 0 (otherwise inequality ρ3 ≥ ϕ3 is obvious).
According to the definition of ϕ3, for any x 6= x0 the following is true

‖[g(x, x0, R)]+‖p ≥ ϕ3‖x+ x0‖1. (24)

To prove the lower bound, it is necessary to show that the formula
below is true

∀R′ ∈ Ω(ϕ3) ∃l ∈ Ns (gl(x, x
0, Rl +R′

l) > 0). (25)

From contrary, assume there exists a perturbing matrix R0 ∈ Ω(ϕ3)
such that

gk(x, x
0, Rk +R0

k) ≤ 0, k ∈ Ns.

Then using (23), we easily deduce

0 ≥ gk(x, x
0, Rk +R0

k) = min
i′∈Nm

max
i∈Nm

(Rikx−Ri′kx
0 +R0

ikx−R0

i′kx
0) ≥

≥ gk(x, x
0, Rk)− ‖R0

k‖∞∞‖x+ x0‖1,

i.e.
[gk(x, x

0, Rk)]
+ ≤ ‖R0

k‖∞∞‖x+ x0‖1, k ∈ Ns.

Thus, due to R0 ∈ Ω(ϕ3) while p ∈ [1,∞] we have

‖[g(x, x0, R)]+‖p ≤ ‖R0‖∞∞p‖x+ x0‖1 < ϕ3‖x+ x0‖1.

This contradicts to (24), and hence (25) is true. From here, accor-
ding to the Lemma, x0 ∈ P s(R + R′) for any R′ ∈ Ω(ϕ3). Hence,
ρs
3
(x0,m,∞,∞, p) ≥ ϕs

3
(x0,m,∞,∞, p).

Further, we prove that ρ3 ≤ ψ3 holds for any p ∈ [1,∞]. Let
ε > ψ3 > 0, and portfolio x∗ 6= x0 is such that

‖[g(x∗, x0, R)]+‖p = ψ3‖x− x0‖1.

Then, taking into account that the norm lp depends on vector continu-
ously, we take δ ∈ Rs with positive components such that

δk‖x
∗ − x0‖1 > [gk(x

∗, x0, Rk)]
+, k ∈ Ns, (26)
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and ε > ‖δ‖p > ψ3. Then we construct a perturbing matrix R0 ∈ Ω(ε),
where ε > ‖δ‖p, with cuts R0

k
, k ∈ Ns such that for every k ∈ Ns the

inequality
gk(x

∗, x0, Rk +R0

k) < 0 (27)

holds. Using components of vector δ, we define the elements of any k-th
cut R0

k
= [r0

ijk
] ∈ Rm×n of the perturbing matrix R0 = [r0

ijk
] ∈ Rm×n×s

using the formula

r0ijk =

{

δk if i ∈ Nm, x0
j
≥ x∗

j
,

−δk if i ∈ Nm, x0
j
< x∗

j
.

Then, we have
‖R0

k‖∞∞ = δk, k ∈ Ns.

Therefore, it is easy to see that ‖R0‖∞∞p = ‖δ‖p < ε. Additionally, all
the rows R0

ik
(i ∈ Nm) in the cut R0

k
, k ∈ Ns are the same and contain

components δk and −δk only. Denoting such a row Ak, we obtain

Ak(x
∗ − x0) = −δk‖x

∗ − x0‖1, k ∈ Ns.

From this for any k ∈ Ns due to (26) we get (27):

gk(x
∗, x0, Rk +R0

k) = gk(x
∗, x0, Rk) +A(x∗ − x0) =

= gk(x
∗, x0, Rk)− δk‖x

∗ − x0‖1 ≤

≤ [gk(x
∗, x0, Rk)]

+ − δk‖x
∗ − x0‖1 < 0, k ∈ Ns.

Thus, while ε > ψ3 there exists a perturbing matrix R0 ∈ Ω(ε) such
that x0 ∈ P s(R) is not Pareto optimal in the perturbed problem Zs(R+
R0). This implies that for any ε > ψ3 we have ρ3 < ε. Hence, ρ3 ≤ ψs

3
,

and then p ∈ [1,∞].

The following statement gives the evidence about attainability of
the lower and upper bounds specified in Theorem 6.

Corollary 3 If for any x 6= x0 the set {j ∈ Nn : x0
j
= xj = 1} is

empty, then for any m ∈ N any p ∈ [1,∞] the following holds

ρs3(x
0,m,∞,∞, p) = ϕs

3(x
0,m,∞,∞, p) =
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= ψs
3(x

0,m,∞,∞, p) = min
x∈X\{x0}

‖[g(x, x0, R)]+‖p
‖x+ x0‖1

.

If m = 1, as it was pointed out before, Zs(R) transforms into s-
criteria Boolean linear programming problem Zs

B
(R), R ∈ Rs×n (see

(1)). In this context, Rn is equipped with l∞, and Rs is equipped with
lp, 1 ≤ p ≤ ∞. The following known result illustrates the fact that the
upper bound specified in Theorem 6 is right.

Theorem 7 ( [29]). For any p ∈ [1,∞] and s ∈ N, the stability radius
of x0 ∈ P s(R) in Zs

B
(R), R ∈ Rs×n is expressed by the formula

ρs3(x
0) = min

x∈X\{x0}

‖[R(x− x0)]+‖p
‖x− x0‖1

.

6 Conclusion

While composing a portfolio, the investor’s intention to minimize dif-
ferent types of risks motivates the use of multicriteria environment
within the corresponding mathematical and economical models. This
approach allows using a variety of multicriteria decision making met-
hods [26], [31]. In this paper, to maintain the different types of risks,
we used the bottleneck partial objectives, forcing the investor to choose
a portfolio with the minimal total aggregated risk in the worst case
scenario, i.e. in the situation where the values of risks are at their
maximum.

Another type of uncertainty is related to inaccuracy of statistical
observations and expert evaluations while measuring different risks. In
this context there is a necessity to conduct post-optimal analysis in
order to quantify the extreme level of initial data changes not violating
the portfolio optimality. In this work different cases are analyzed de-
pending on a type of the metric used in problem parameter spaces. In
all the cases analyzed, the lower and upper bounds on stability radius
of an efficient portfolio are presented.

The results give an investor information on reliability of chosen op-
timal portfolio and prevent the situation, when his/her portfolio will
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lose its property with unexpected changes in the initial data. Using
Hölder’s norm the control of changes in the initial data can vary de-
pending on the space of the problem parameters. The results could be
potentially interesting for construction the investment models in which
the investor wants to merge different types of risks at the presence of
unreliable information and forecasted financial market states.

The straightforward application of the results to practical calcula-
tion is limited due to enumerating structure of analytical expressions
which may need a number of comparisons growing exponentially with
n and s. In the case when direct calculation is time consuming (it may
happen if n ≥ 40 and s ≥ 3), getting the values should be calculated
heuristically, for example some multicriteria genetic algorithms can be
used.

It is also important to note that sometimes the stability radius does
not give us complete information about the quality of a given solution
in the case when problem data are located outside of the stability re-
gion. Some attempts to study a quality of the problem solution in this
case are connected with concepts of stability and accuracy functions.
These functions were first introduced in [32],[33] for the scalar combina-
torial optimization problem. In [34], the results were later extended to
the vector linear discrete optimization problem with Pareto and lexico-
graphic optimality principles. Similar results were obtained for Boolean
linear programming [35], game theory problem formulations [36] and
some scheduling models [37]. Moreover, as it was shown recently (see,
e.g. [38], [39]), calculating stability and accuracy functions is closely
related to analyzing problem robustness. Robust optimization in that
context is understood as a process aiming to produce solutions that op-
timize an additionally constructed objective. The objective must assure
that the optimal solution will remain feasible under worst case reali-
zation of uncertain problem input parameters. Robust optimization
is also known as worst-case or minmax regret optimization, and opti-
mal solutions of worst case optimization are often referred to as robust
solutions (see, e.g. [40]). Conducting similar research for investment
models could be an interesting direction for further investigations.
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A linear model for multidimensional Big Data

visualization

Vadim Grinshpun

Abstract

The author introduces and analyzes a model that allows orga-
nizing visualization of primary linear constructs such as interval,
simplex and polygonal lines in multidimensional space.

Keywords: computer science, big data, data visualization,
multi-dimensional data, exploratory data research.

1 Introduction

There are a number of well-known methods to visualize multidimen-
sional data. There are Andrews plots, Bergeron’s or Wong’s model,
Zinoviev model as well as Klaft, Barrett and Kleiner-Hartigan, and
every one of them introduces their own unique mechanism for data
visualization [1]. However, every method has its own limitations, nar-
rowing the field of direct applicability. For instance, the Bergeron’s
model visualizes the wave lines and the time interval for a single fre-
quency [2].

Graphical methods are especially helpful during the Exploratory
Data Research (EDR) of the large sets of multi-dimensional data and
the clustering problems, enabling the analyst to discover patterns and
relationships hidden in the data set. The main advantage of the mo-
deling data as a multi-dimensional set of points or observations is the
convenience and effectiveness of analyzing a big volume of data, par-
ticularly when applied to a time-series. The problem with such model
is its bulkiness and poor suitability for simple tasks of the operational
data processing [3].

c©2017 by Vadim Grinshpun
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2 Model Definition

Theorem 1. As a basis for visualization of the multidimensional data
a linear modification of a multidimensional observation H into two-
dimensional curved line LH(t) is used, so H approximates LH(t) : H ↔
LH(t), with the provable condition that the values of the dimensional
attributes of observations H and X correspond to graphics LH(t) and
LX (t) that visually appear near each other, reflecting the relative close-
ness of H and X . Conversely when these values are relatively distant,
the graphical lines will appear to be far apart.

Proof Theorem 1. For the analysis of the proposed method we
will use the most general system of data presentation. Let’s pick a
vector H in Pn – a space with finite number of dimensions.

H = (h0, h1, h2, h3, . . . hn− 1) ∈ Pn. (1)

To create the visualization of the vector we have to create a basis for
transformation as a set of orthogonal functions {ϕ(t)} → ∞. Legendre
orthogonal polynomials can be applied on a 0 to 1 interval, set of which
can be shown as ζ(t) → ∞. In this case the vector H with coordinates
(h0, h1, h2, h3, . . . hn− 1) ∈ Pn corresponds to the following function:

EH(t) =

n−1
∑

i=0

HiLi(t). (2)

Conversion of the vector H is accomplished by conversion of its
multidimensional data. In order to characterize the observable multi-
dimensional object its coordinate values play a significant role. In the
extreme cases, each coordinate should have its own measurement defi-
ned, and its value should affect the appearance of the Eh (t) function.
To exclude the influence of the individual measurement types over the
Eh (t) function, it is necessary to switch to a neutral set of values, by
using one of the known methods.

It should be noted that the of inclusion of the dimensional values in
vector H also can influence the look of the Eh (t) function. To justify
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the order of inclusion of these characteristics in certain applications, an
expertise determining the “informativeness” (the degree of influence)
of each individual one can be performed, accompanied by an analysis
of the optimal sequence of inclusion of these characteristics into the
vector H [4].

Let’s introduce a second vector into the model:

X = (x0, x1, x2, x3, . . . xn− 1) ∈ Pn (3)

and its corresponding function:

Ex(t) =

n−1
∑

i=0

HiLi(t). (4)

And now we can transform two pointsH&X from the Pn space, into
the graphical view of their representative functions Eh(t) and Ex(t)
(Fig.1).

Figure 1. Visualization of H&X from the Pn space.

When we consider H&X to be vectors, with the beginning located
at the beginning of the coordinate system selected for the Pn space
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– then the relative proximity between all points in the Pn space be-
comes definitively tied to the graphical representations of their cor-
responding Eh(t) and Ex(t) functions, with axes values defined as
h0, h1, h2, h3, . . . hn − 1. By introducing a variable, we can create an
equation:

C(C) = (1− c)H + cX = ((1− c)h0 + cx0, (1 − c)h1 + cx1,

. . . (1− c)hn1 + cxn1.
(5)

From which obviously follows C(0) = H and C(1) = X, which
can be viewed as a definition of a multidimensional “straight” line
connecting H&X in the Pn space, and we can use the expression like
(5) to represent a multidimensional segment HX:

HX = (1− c)H + cX, where ∈ [0, 1]. (6)

Assuming “c” represents the distance in the Pn space, the equation
(6) can be shown as the proposed model:

EHX(c) =
n−1
∑

i=0

(1− c)HiLi(t) + cxiLi(t). (7)

This function has two arguments {c, t}, which allows us to get a
graphical function Ehx(c) = Ehx{c, t} that visually represents the
HX segment, as shown in Figure 2.

When defined over the [0, 1]/[0, 1] square, it is possible to produce
a smooth surface based on (7), that corresponds to an analytical ex-
pression (6) that represents a multidimensional segment HX [5] QED.

3 Sample Application

To test the model, we will apply it to a sample set of multi-
dimensional objects with the following values: H1 = {1, 0, 0, 0},H2 =
{0, 1, 0, 0},H3 = {0, 0, 1, 0},H4 = {0, 0, 0, 1}, and transform them
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Figure 2. Visualization of smooth surface, corresponding to the HX
segment from the Pn space

using polynomial matrices

[

1 0
0 0

]

→ 1 ∗ l0(t) + 0 ∗ l0(t) + 0 ∗ l2(t) + 0 ∗ l3(t)

[

0 1
0 0

]

→ 1 ∗ l0(t) + 0 ∗ l0(t) + 0 ∗ l2(t) + 0 ∗ l3(t)

[

0 0
1 0

]

→ 1 ∗ l0(t) + 0 ∗ l0(t) + 0 ∗ l2(t) + 0 ∗ l3(t)

[

0 0
0 1

]

→ 1 ∗ l0(t) + 0 ∗ l0(t) + 0 ∗ l2(t) + 0 ∗ l3(t)

and get the general formula

E =

[

f0 f1
f2 f3

]

→ f0 ∗ l0(t) + f1 ∗ l0(t) + f2 ∗ l2(t) + f3 ∗ l3(t).

The polynomial argument {t} is the characterization of the composite
representation and has a value, but no measure. Vector E cannot
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be shown in 3D, and therefore it is being substituted with a 2D line
E1(t) [6].

Let’s see what the graphic would look like for the following 10-
dimensional values.

Figure 3. Visualization of H : 54, 1, 18, 2.6, 6.4, 0.2, 4.7, 8, 3.3, 2 in the
Pn space

When these two graphics are joined, it becomes very clear that
they not only look very similar, but are very close to each other in the
dimensional points, indicating that the original raw observations are in
close proximity in the Pn space as shown in Figure 5.

The more indistinguishable are the graphical representations of the
raw observations, the closer to each other are these observations in
their original space, as the multidimensional points are bijected into
their corresponding graphics.

It is possible to visualize many interesting characteristics, by re-
producing the Figure 5 graphics in 3D, by defining a Z-order as the
distance between the points in the Pn-space or the time-interval be-
tween the observations. The Pn-space distance or the time interval
can be measured in any applicable way and scaled to fit the relative
distance into the graphic, which makes it possible not only evaluate

334



A linear model for multidimensional . . .

Figure 4. Visualization of X : 50, 1, 19, 2.4, 6, 1, 5, 3.8, 8, 3, 2.5 in the
Pn space

Figure 5. Proximity visualization of H&X from the Pn space.

335



Vadim Grinshpun

the static characteristics of the observation data, but to view some of
the changes dynamically [7].

4 Model Optimization

In linear transformation of H ↔ FH(t), using the segment between
the multidimensional observations H&X, we obtain a corresponding
surface, that ties the projected observations. Every line representing
observations with intermediate values (observations that belong to the
[H;X] segment in Pn space) will appear on that surface [6]. Let’s
consider Figure 6.

Figure 6. Proximity visualization of H&X from the Pn space.

In order to compare the observations in greater detail, particularly
in the case of the heterogeneity of the units of measurement of the va-
rious data characteristics, a traditional modification mechanism should
be applied:

• Normalization – to be applied to express the results in a coherent
system of measurements;
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• Standardization – to be applied to enable comparison of the data
characteristics with variant attribute distributions and/or diffe-
rent units of measure [8];

Currently there are numerous programmatic and algorithmic visualiza-
tion tools for multidimensional data structures. However, quite often
basic visualization technique cannot be directly applied to a task at
hand, since the researchers are usually interested in some very specific
properties of the data that cannot be identified using standard appro-
aches. Cases like these, call for development of the specialized types of
presentation, focusing on the specific requirements of task at hand.

So, the developed model (6) of multidimensional data visualization
demonstrates that the proposed approach holds promise in the area of
analysis and representation of raw multidimensional data.

The particulars in the model selection process and the characteris-
tics of its generation depend on the specific expectations of the outcome
of the research. To formulate the task, it would be more reasonable to
produce a limited and compact model. For example, an exponential
function or a spline with two or three junction points. If we consider a
forecasting model, there are no severe restrictions on the function’s look
and feel, with the one and only requirement being the authenticity and
immutability of the prediction, when extrapolating the multidimensio-
nal data. However, the same principle of searching for the best model
by the way of self-organization applies in all cases.

The essence of the development process of the model of optimal
complexity by means of model’s self-organizing is contained in its gra-
dual organizational identification, i.e. setting of the model’s optimal
structure and isochronous analysis of its characteristics. In the cases
like that, the specific sets of models of varied complexity are generated,
and the best of them are identified based on a given rational indicator
of regularization.

Figure 7 shows the selection of the criteria for the optimization of
multidimensional data [9].

An important question in the research of multidimensional data
visualization is the analysis of the relationships between data point’s
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Figure 7. Selection of models for development of multidimensional data
set optimizations for application in visualization techniques

individual characteristics and its effect on the overall informational
content of the data set.

When considering the Bergeron and Wong models (Figure 7) it is
important to note that when applied they produce the same effect on
a given data-set. Because of it the following statement can be referred
to as the “Bergeron-Wong” theorem.

Theorem 2. Full linear big data model, used for the synthesis of the
selected multidimensional predictive collections is dependent on the pro-
cesses characterized by the multicollinearity, neural networks and robust
statistical methods applied against large volumes of data for targeted se-
lection of the most informationally significant data attributes.

Proof Theorem 2. The specifics of the Bergeron Model lie in
its applicability to the large volumes of data calculation methods with
multicollinearity. The model looks as follows:

∆v =
a · ∗vm

g

a· = ab+Dh

∆v =
ab · ∗vm

g

b· = −(ab+Dh) (8)
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This model demonstrates that the visualization problems of infor-
mation spaces may be resolved by application of the self-organizing
modeling described in Figure 7: through various transformations with
targeted selection of the informational value of the attributes, bree-
ding records’ observed indicators, neural networks and robust statisti-
cal methods applied against large volumes of data for targeted selection
of the most informationally significant data attributes [2].

Wong’s model corresponds to the same representation however it
works from the large data sets to the minimalistic ones [11]. The
Wong’s model can be represented as follows:

∆ = −gm ∗∆t =
−gt−∆r + gt

2
∆t. (9)

The formulae for Bergeron’s and Wong’s models shown above re-
present a complete linear spatial model for the large sets of data, used
for the synthesis of the selected multidimensional predictive collecti-
ons. Thus the self-organizing approach based on the above statements
allows constructing methods and models developed for a specific set
of large multidimensional observations. Also it is representable as a
collection of the high-level polynomials, through the application of the
model connection technique [2].

∆ = a0 +

m
∑

i=1

aigi+

m
∑

i=1

m
∑

j=1

aiajgigj +

m
∑

i=1

m
∑

j=1

m
∑

k=1

aiajakgigjgk +m. . . (10)

The key issue in such complex structures based on the very large
data sets is to cull the (9) by removing the low-information data at-
tributes, that prove largely irrelevant and to leave a necessary and
sufficient number of most meaningful attributes.

The complexity of the model being analyzed is considered optimal
when the model remains adequate for the stated purpose with the fewest
number of attributes used to comprise the transformed model [7]. Let’s
illustrate this statement with the Figure 8
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Figure 8. Graphical representation of the combined model
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5 Conclusion

In conclusion, it is important to point out that the data visualization
methods are necessary to answer the data interpretation questions,
however to determine all the characteristics of the data, manage its
size and complexity and eventually reduce the time it takes to develop
the answers, these visualizations methods must be preceded and often
augmented by the non-visual means of analysis and interpretation of a
given set of data.

The more general outcome of this analysis is a methodology for
accounting of the group’s characteristics, that can be viewed as the
linkage between a variety of methodological concepts and can be de-
picted through modern methods of artificial intelligence [12]. In conti-
nuation of this research an original program module will be developed.
That model shall implement a generalized multi-faceted algorithm for
visualizations of big data with its attributes described and optimized
through a set of linear functions, implementing the reflecting “distan-
ces” between the attributes at every step of the subset selection.
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du sujet hypertendu : le coup de bélier hydraulique á l’origine
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Non-commutative finite associative algebras of

2-dimensional vectors

Alexander Moldovyan, Nicolay Moldovyan, Victor Shcherbacov

Abstract

In this paper properties of the non-commutative finite associa-
tive algebra of two-dimensional vectors are presented. Interesting
features of algebra are mutual associativity of all modifications
of the defined parameterized multiplication operation and exis-
ting of a large set of single-side unit elements. In the ordinary
case one unique two-side unit element is connected with each ele-
ment of the algebra, except the elements that are square roots
from zero element. There are also presented four different vari-
ants of defining commutative associative algebras of 2-dimension
vectors. For the case of commutativity the algebra has common
unit element for all its elements.

Keywords: finite algebra; ring; Galois field; vector; associa-
tive multiplication; parameterized multiplication; cryptoscheme

AMS: 16U60, 11G20, 11T71

1 Introduction

Finite non-commutative associative algebras (FNAA) are interesting
for applications in the desin of the public-key cryptoschemes characte-
rized in using the hidden conjugacy search problem (called also discrete
logarithm problem in hidden commutative subgroup) [1]–[3]. In the li-
terature there are considered different FNAA defined over the finite
vector spaces with dimensions m = 4, 6, and 8. The main attention
was paid to the case m = 4 that provides lower computational diffi-
culty of the multiplication operation in the FNAA, while defining the
vector spaces over the same finite field GF (p).

c©2017 by Alexander Moldovyan, Nicolay Moldovyan, Victor Shcherbacov
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In the present paper it is shown that the FNAA can be defined over
the vector spaces of the dimensions less than 4. There are introduced
two possible variants of defining the FNAA of two-dimensional vec-
tors and investigated some properties of such FNAA. There are also
described in brief four possible variants of defining the commutative
associative algebras of two-dimensional vectors.

Suppose e and i be some formal basis vectors and a, b ∈ GF (p),
where prime p ≥ 3, be coordinates. The two-dimensional vectors are
denoted as ae + bi or as (a, b). The terms τv, where τ ∈ GF (p) and
v ∈ {e, i} are called components of the vector.

The addition of two vectors (a, b) and (x, y) is defined as addition
of the corresponding coordinates, i.e. by the following formula (a, b) +
(x, y) = (a+ x, b+ y).

The multiplication of two vectors ae+ bi and xe+ yi is defined by
the following formula

(ae+ bi) ◦ (xe+ yi) = axe ◦ e+ bxi ◦ e+ aye ◦ i+ byii,

where ◦ denotes the vector multiplication operation and each product
of two basis vectors is to be replaced by some basis vector or by a
one-component vector in accordance with the so called basis-vector
multiplication table (BVMT) which defines associative (commutative
and non-commutative) multiplication of the two-dimensional vectors.
In the paper there are considered two variants of the BVMT presented
in Table 1 (Section 2) and Table 2 (Section 3) for defining FNAA and
four variants of the BVMT presented in Tables 3, 4, 5, and 6 (Section 4)
for defining commutative finite algebras.

2 Algebra with unique local right-side unit ele-

ments

The multiplication of two-dimensional vectors defined by Table 1,
where µ 6= 0 and τ 6= 0, is a parameterized operation, different mo-
difications of which correspond to different pairs of values of the so
called structural coefficients µ and τ . As compared with the case of
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Table 1. The basis-vector multiplication table for the case m = 2

◦ −→e −→ı
−→e µe µi
−→ı τe τ i

the commutative finite algebra of the 2-dimensional vectors [4], the de-
fined non-commutative multiplication operation is characterized in the
mutual associativity of all its modifications.

Statement 1. Suppose ◦ and ⋆ are two arbitrary modifications
of the vector multiplication operation, which correspond to different
pairs of structural coefficients (µ1, τ1) and (µ2, τ2) 6= (µ1, τ1). Then for
arbitrary three vectors A, B, and C the following formula (A◦B)⋆C =
A ◦ (B ⋆ C) holds.

Proof of this statement consists of straightforward calculations
using the definition of the multiplication operation and Table 1.

To find the right unit element of the considered FNAA, one can
solve the following vector equation

(ae+ bi ◦ (xe+ yi) = (ae+ bi), (1)

where V = (ae + bi) is an arbitrary vector and X = (xe + yi) is the
unknown one.

Equation (1) can be reduced to solving the following system of two
linear equations in GF (p):

{

(aµ + bτ)x = a

(aµ + bτ)y = b.
(2)

In the case aµ+ bτ 6= 0 this system has a unique solution











x =
a

aµ+ bτ

y =
b

aµ+ bτ
.

(3)
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All vectors (a, b) such that aµ + bτ 6= 0 have only one right unit
element. In the general case the right unit elements corresponding
to different vectors are different, therefore these unit elements can be
called local, since they act only in frame of some sufficiently restricted
subset of the two-dimensional vectors. There does not exist global right
unit element, i.e. right unit acting over the whole two-dimensional
vector space. The following is evident:

Statement 2. Suppose V = (a, b) be a vector such that aµ+ bτ 6=
0. Then the vector

Er =

(

a

aµ+ bτ
,

b

aµ+ bτ

)

(4)

acts as local right unit in the following subset of two-dimensional vec-
tors V, V 2, ..., V i, ..., where i is an arbitrary integer.

Let us consider the sequence V, V 2, ..., V i (for i = 1, 2, 3, ...). If the
vector V is not a zero-divisor relatively some its power (zero-divisors
are considered below and it is shown that vectors satisfying condition
aµ + bτ 6= 0 are not zero-divisors), then for some two integers h and
k > h we have V k = V h and V k = V k−h ◦ V h = V h ◦ V k−h, i.e. the
mentioned sequence is periodic and for some integer ω (that can be
called order of the vector V ) it holds that V ω = E′, where E′ is bi-side
local unit such that V i◦E′ = E′◦V i = V i holds for all integers i. Thus,
taking into account that the local right unit element corresponding to
the vector V is unique one can conclude the following:

Statement 3. Suppose V = (a, b) be a vector such that aµ+ bτ 6=
0. Then the vector Er described by formula (4) acts as a unique bi-side
local unit element E′ in the subset

{

V, V 2, ..., V i, ...,
}

and the value E′

can be computed as some power of V .

The following computational example illustrates this fact: for p =
16832914260232697023 and µ = 276474637; τ = 948576254546 we have

N = (a, b) =

(17235252752952, 29124252511124).
(5)

Computation of the value E′ as E′ = Np−1 and by using formula (3)
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gives the same result

E′ =

(12597150130467515608, 9876457378547066970).
(6)

To find the left unit elements of the considered FNAA one can solve
the following vector equation:

(xe+ yi) ◦ (ae+ bi) = (ae+ bi). (7)

Equation (7) can be reduced to solving the following system of two
linear equations in GF (p):

{

aµx+ aτy = a

bµx+ bτy = b.
(8)

The last system defines the following set of the left unit elements:

El = (x, y) =
(

x, τ−1(1− x)
)

, (9)

where x takes on all possible values in GF (p). Each element of the
last set acts on all elements of the considered FNAA as the left unit,
i.e. elements of set (9) are global left unit elements. Substituting the
value x = a(aµ + bτ)−1 in (9) one can show that all local right units
are contained in the set of the (global) left unit elements. This is in
compliance with Statement 3.

Let us consider the question of existence of the right and left zero-
divisors. The first case is connected with solving the vector equation

(ae+ bi) ◦ (xe+ yi) = (0, 0), (10)

where V = (ae + bi) is an arbitrary vector different from (0,0) and
X = (xe+ yi) is the unknown one.

Equation (10) can be reduced to solving the following system of two
linear equations in GF (p):

{

(aµ+ bτ)x = 0

(aµ+ bτ)y = 0.
(11)
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In the case of the vectors V , the coordinates of which satisfy condition
aµ + bτ 6= 0, this system has a unique solution (x, y) = (0, 0) that
represents zero of the considered FNAA. Each two-dimensional vector
acts on the vectors V such that aµ+ bτ = 0 as the right zero-divisor.

Consideration of the case of the left zero-divisors is connected with
solving the vector equation

(xe+ yi) ◦ (ae+ bi) = (0, 0), (12)

that can be reduced to the following system of two linear equations in
GF (p):

{

aµx+ aτy = 0

bµx+ bτy = 0.
(13)

One can see that each of the vectors

Dl =
(

x,−τ−1µx
)

,

where x takes on all values in GF (p), acts on each element of the
considered FNAA as the left zero-divisor.

Some zero-divisor D satisfying equation

D2 = D ◦D = (0, 0)

can be called square root from zero of the FNAA. Finding such elements
is connected with solving the vector equation

(xe+ yi) ◦ (xe+ yi) = (0, 0),

connected with the following system of two linear equations in GF (p)
{

µx2 + τxy = 0

µxy + τy2 = 0.
(14)

For the last system we have the following solutions that define the set
of the square roots from zero element (0, 0):

D = (x, y) =
(

x, − µτ−1x
)

, (15)

where x = 0, 1, ..., p − 1. Taking into account the condition of State-
ment 2 one can conclude that elements, to which no right unit element
corresponds, are square roots from the zero vector (0, 0).
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3 Algebra with unique local left-side unit ele-

ments

The FNAA of two-dimensional vectors with the multiplication ope-
ration defined by Table 2 , where µ 6= 0 and τ 6= 0, has properties
analogous to the properties of the FNAA described in Subsection 2.1,
for example Statement 1 is valid.

Table 2. Alternative BVMT for the case m = 2

◦ −→e −→ı
−→e µe τe
−→ı µi τ i

Consideration of the vector equations defining the right and left
unit elements, the right and left zero divisors, and square roots from
zero (0, 0) have given the following statements.

Statement 4. Each two-dimensional vector from the set

Er = (x, y) =
(

x, τ−1(1− x)
)

, (16)

where x takes on all possible values in GF (p), represents a global right-
side unit element.

Statement 5. Suppose V = (a, b) be a vector such that aµ+ bτ 6=
0. Then the vector

El =

(

a

aµ+ bτ
,

b

aµ+ bτ

)

(17)

is a unique local left-side unit for all vectors from the following set
{

V, V 2, ..., V i, ...
}

, where i is an arbitrary integer.

Statement 6. A unique local bi-side unit element E′ = El acts
in the set

{

V, V 2, ..., V i, ...
}

, where i is an arbitrary integer and vector
V = (a, b) is such that aµ+ bτ 6= 0. The value E′ can be computed as
E′ = V ω for some integer ω.
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Statement 7. Each two-dimensional vector acts on the vectors
V = (a, b) such that aµ+ bτ = 0 as the left zero-divisor.

Statement 8. Each of the vectors

Dr =
(

x,−τ−1µx
)

,

where x takes on all values in GF (p), acts on each element of the
considered FNAA as the right-side zero-divisor.

4 Commutative finite algebras of two-dimensi-

onal vectors

Finite commutative associative algebras (FCAA) of two-dimensional
vectors can be defined using the following BVMT presented in Tables 3,
4, 5, and 6, where µ 6= 0 and τ 6= 0.

Table 3. The BVMT defining FCAA with the unit element (1, 0)

◦ −→e −→ı
−→e e i
−→ı i τe

The case relating to Table 3 was described in [4], where it has been
shown that the algebra represents a finite ring with the unit element
(1, 0), if the structural coefficient τ is a quadratic residue modulo p, or
finite field GF (p2), if τ is a quadratic non-residue.

Table 4. The BVMT defining FCAA with the unit element (0, τ−1)

◦ −→e −→ı
−→e µi τe
−→ı τe τ i
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Table 5. Unbalanced BVMT defining FCAA with the unit element
(0, τ−1)

◦ −→e −→ı
−→e µe τe
−→ı τe τ i

Table 6. Unbalanced BVMT defining commutative algebra with the
unit element

(

0, µ−1
)

◦ −→e −→ı
−→e µe µi
−→ı µi τ i

Let us consider the case relating to Table 4. The vector equation
for finding the unit element of the considered FCAA is as follows

(ae+ bi) ◦ (xe+ yi) = (ae+ bi), (18)

where X = (xe+ yi) is unknown.
Using Table 4, equation (18) can be reduced to solving the following

system of two linear equations in GF (p):

{

τbx+ τay = a

µax+ τby = b.
(19)

In the case ∆ = τ2b2 − τµa2 6= 0 the system has a unique solution
(x, y) =

(

0, τ−1
)

. The indicated inequality takes place for all elements
(a, b) 6= (0, 0) in the following two cases

i) τ is a quadratic non-residue and µ is a quadratic residue; ii) τ is
a quadratic residue and µ is a quadratic non-residue.

In the last two cases all two-dimensional vectors V = (a, b) 6= (0, 0)
are invertible and the considered FCAA represents the finite field
GF (p2).

352



Non-commutative finite algebras

If conditions i) and ii) do not take place, for some vectors V = (a, b)
we have ∆ = τ2b2 − τµa2 = 0. Such vectors are not invertible and the
FCAA represents a finite ring.

For the non-invertible vector (a, b) 6= (0, 0) we have the follo-
wing set of local unit elements: Ex =

(

x, τ−1a−1(a− τbx)
)

, where
x = 0, 1, 2, ..., p − 1. Except one non-invertible, all other local unit ele-
ments are invertible, and E0 = E =

(

0, τ−1
)

represents the global unit
element of the FCAA, i.e. the vector acting as a unit element for all
elements of the FCAA. The non-invertible local unit element is defined
by the following formula:

En =

(

a

τb+ a
√
µτ

,
1

τ
−

b

τb+ a
√
µτ

)

. (20)

Statement 9. The local unit element En acts in the set
{

V, V 2, ..., V i, ...
}

, where i is an arbitrary integer and vector V = (a, b)
is such that τ2b2 − µτa2 = 0, and the value En can be computed as
En = V ω for some integer ω.

Each non-invertible vector (a, b) 6= (0, 0) devides zero element (0, 0),
i.e. for some element Dx 6= (0, 0) we have (a, b) ◦ Dx = (0, 0). Zero
divisors Dx = (x, y) connected with the non-invertible vector (a, b) 6=
(0, 0) can be computed from the following system of equations

{

τbx+ τay = 0

µax+ τby = 0.
(21)

The set of the zero divisors Dx is described as follows

Dx =
(

x,−ba−1x
)

.

All values Dx are non-invertible elements of the FCAA.

In the case of defining FCAA by Table 5 we have the folowing
system of equations for computing the unit elements:

{

(µa+ τb)x+ τay = a

τby = b.
(22)
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For all vectors (a, b) 6= (0, 0), such that µa+τb 6= 0, system (22) has
the same solution (x, y) =

(

0, τ−1
)

= E. The element E is the global
unit element of the FCAA defined by Table 5. This FCAA represents
a ring with p non-invertible elements N that can be described with the
following formular

N =
(

x,−
µ

τ
x
)

,

where x = 0, 1, 2, ...p − 1.

Each element from the set

Ex =
(

x, τ−1
)

acts as local unit element on all non-invertible elements of the FCAA
defined by Table 5.

In the case of defining FCAA by Table 6 we have the following
system of equations for computing the unit elements:

{

µax = a

µbx+ (µa+ τb)y = b.
(23)

For all vectors (a, b) 6= (0, 0), such that µa+τb 6= 0, system (23) has
the same solution (x, y) =

(

µ−1, 0
)

= E. The element E is the global
unit element of the FCAA defined by Table 6. This FCAA represents
a ring with p non-invertible elements N that can be described with the
following formula

N =
(

x,−
µ

τ
x
)

,

where x = 0, 1, 2, ...p − 1.

Each element from the set

Ex =
(

µ−1, y
)

acts as local unit element on all non-invertible elements of the FCAA
defined by Table 6.
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5 Conclusion

It has been introduced the associative FNAA of the two-dimensional
vectors defined over the field GF (p). One of the interesting properties
of the investigated FNAA is mutual associativity of all modifications
of the parameterized non-commutative multiplication operation. The
known in the literature parameterized commutative multiplication ope-
ration for the case m = 2 [4] do not possess such property.

There are also considered FCAAs defined by four different BVMT,
three of them being considered for the first time. The considered six
BVMT (two for the non-commutativity case and four for the commuta-
tivity case) cover possible variants of defining finite associative algebras
of the dimension 2. Other variants of BVMT define non-associative al-
gebras, except some modification of Table 3 in which an additional
structural coefficient can be inserted.

Future research in frame of the concerned topic is connected with
investigation properties of the associative FNAAs of m-dimensional
vectors for cases m = 3 and m = 5.
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