
Computer Siene Journal of Moldova, vol.23, no.2(68), 2015

About FOI-2015

This CSJM issue and a part of the next one are devoted to the

�rst edition of International Sienti� Workshop on �Foundations of

Informatis� (FOI). They ontain seleted, revised and extended papers

presented at this sienti� event.

The event took plae in Moldova on August 24 � 29, 2015. The

organizers of Workshop FOI 2015 are Institute of Mathematis and

Computer Siene of the Aademy of Sienes of Moldova, Taras Shev-

henko National University of Kyiv, Ukraine, East Computers, SRL in

o-operation with the Information Soiety Development Institute and

Tiraspol State University.

99

The �rst workshop on FOI was aimed to bring together researhers

from East and West Europe and worldwide by adding synergy to their

endeavors to lay down and foster the foundations of omputer siene

also known as informatis.

About 40 sientists from 8 ountries (Moldova, Netherlands, Russia,

Romania, Turkey, Ukraine, UK, USA) attended the workshop: Every

FOI working day started with the invited speakers' speehes:

• Aad. Solomon Marus, Honorary member of �Simion Stoilow�

Institute of Mathematis of the Romanian Aademy;

• Dr Alexandru Baltag, Assoiate Researher, Institute for Logi,

Language and Computation, Amsterdam, Netherlands;

• Aad. Gheorghe Paun, Senior researher of �Simion Stoilow� Insti-

tute of Mathematis of the Romanian Aademy;

• Dr Sonja Smets, Assoiate Researher, Institute for Logi, Langu-

age and Computation, Amsterdam, Netherlands;

• Dr. Razvan Diaonesu, Researh Professor of �Simion Stoilow�

Institute of Mathematis of the Romanian Aademy;

• Dr. Vadim Ermolayev, Assoiate Professor, Dept. Information

Tehnologies, Zaporizhzhya National University;

• Dr. Gabriel Ciobanu, Institute of Computer Siene, Romanian

Aademy, Iasi Branh, Romania.

FOI-2015 has brought more fous on suh foundational aspets of infor-

matis treated by mathematial methods as Theory of omputing, Theo-

retial aspets of software system development, Natural omputing,

100

Theoretial issues in automated reasoning, Logis in informatis, Formal

languages and automata, Semanti tehnologies, Natural language pro-

essing, Cryptography and seurity.

Round tables organized at the end of eah workshop day provided

open debates on the state of the art in the delared problem and

new diretions of the respetive �eld. Disussions in round tables were

devoted to logis in informatis, reviewing researh diretions and results

in institutions represented by the partiipants.

At the last day round table disussion the FOI-2015 partiipants

have noted the high level of the event organization and speially menti-

oned the signi�ane of presented results. Also the ation items required

for the renaissane of the East Europe researh in domain were disussed.

The neessity of periodial organization of onferenes on FOI next

years was formulated. At the same time many onnetions for personal

partiipants' ollaboration and their a�liation were established.

CSJM Editorial board

101

Computer Science Journal of Moldova, vol.23, no.2(68), 2015

Semantic Properties of T-consequence Relation

in Logics of Quasiary Predicates∗

Mykola Nikitchenko, Stepan Shkilniak

Abstract

In the paper we investigate semantic properties of program-
oriented algebras and logics defined for classes of quasiary pred-
icates. Informally speaking, such predicates are partial predi-
cates defined over partial states (partial assignments) of variables.
Conventional n-ary predicates can be considered as a special case
of quasiary predicates. We define first-order logics of quasiary
non-deterministic predicates and investigate semantic properties
of T -consequence relation for such logics. Specific properties of
T -consequence relation for the class of deterministic predicates
are also considered. Obtained results can be used to prove logic
validity and completeness.

Keywords: First-order logic, quasiary predicate, partial
predicate, non-deterministic predicate.

1 Introduction

Mathematical logic is one of the basic disciplines for computer science.
To use effectively mathematical logic it is important to construct log-
ical systems that are adequate for problems considered in computer
science. Classical logic, despite its numerous advantages, has some re-
strictions for its use in this area. For example, classical logic is based
on the class of total n-ary predicates, while in computer science partial
and non-deterministic predicates often appear. Therefore many logical

∗ This work was partially supported by the research project No. 11BF015-02

“Formal specifications and methods of development of reliable software systems”,

Taras Shevchenko National University of Kyiv, Ukraine.

c©2015 by M. Nikitchenko, S. Shkilniak

102

Semantic Properties of Logics of Quasiary Predicates

systems which better reflect properties of such kind were constructed
[1, 2]. One of specific features for computer science is quasiarity of pred-
icates. Such predicates are partial predicates defined over partial states
(partial assignments) of variables. Conventional n-ary predicates can
be considered as a special case of quasiary predicates. In our previous
works [3, 4, 5] we investigated the class of partial deterministic (single-
valued) predicates and constructed corresponding logics. For such logic
a natural extension of conventional logical consequence relation, called
irrefutability relation, was used.

This paper aims to develop a semantic basis for construction of
logics of non-deterministic (many-valued) quasiary predicates. To re-
alize this idea we first construct predicate algebras using composition-
nominative approach [6]. Terms of such algebras specify the language
of logic. Then we define interpretation mappings. At last, we construct
calculi of sequent type for defined logics. It is important to admit that
constructed logics better reflect specifics of computer science problems,
but the opposite side of this feature is that the methods of logic investi-
gation turn out to be more complicated. In particular, the irrefutability
relation collapses for the class of non-deterministic predicates. There-
fore in this paper which is an extended version of [7] we concentrate on
semantic properties of a special T -consequence relation. We also for-
mulate properties of this relation for logics of deterministic predicates.

The rest of the paper is structured as follows. In Section 2 we define
first-order algebras of quasiary predicates. In Sections 3 we define logics
of quasiary predicates. Section 4 is devoted to semantic properties
of such logics. In Section 5 T -consequence relation is specified and
its main properties are studied. Section 6 is devoted to properties of
T -consequence relation for the class of deterministic predicates. In
Section 7 conclusions are formulated.

Arrows
t

−→,
p

−→, and
r

−→ specify total, partial, and relational map-
pings respectively. Notations not defined in this paper are understood
in a sense of [4].

103

M. Nikitchenko, S. Shkilniak

2 First-order algebras of quasiary predicates

Let V be a nonempty set of names. According to tradition, names
from V are also called variables. Let A be a set of basic values (A 6= ∅).
Given V and A, the class VA of nominative sets is defined as the class
of all partial mappings from V to A, thus, VA = V

p
−→ A. Informally

speaking, nominative sets represent states of variables.

Though nominative sets are defined as mappings, we follow math-
ematical tradition and also use set-like notation for these objects. In
particular, the notation d = [vi 7→ ai | i ∈ I] describes a nominative
set d; the notation vi 7→ ai ∈n d means that d(vi) is defined and its
value is ai (d(vi) ↓= ai). The main operation for nominative sets is

a total unary parametric renomination rv1,...,vnx1,...,xn
: VA

t
−→ VA, where

v1, ..., vn, x1, ..., xn ∈ V , v1, ..., vn are distinct names, n ≥ 0 , which is
defined by the following formula:

rv1,...,vnx1,...,xn
(d) =

= [v 7→ a∈nd | v /∈ {v1, ..., vn}] ∪ [vi 7→ d(xi) | d(xi) ↓, i ∈ {1, ..., n}].
Intuitively, given d this operation yields a new nominative set changing
the values of v1, ..., vn to the values of x1, ..., xn respectively. We also
use simpler notation for this formula: rv̄x̄(d) = d∇v̄ 7→ d(x̄). Also note
that we treat a parameter v1,...,vn

x1,...,xn
as a total mapping from {v1, ..., vn}

into {x1, ..., xn} thus parameters obtained by pairs permutations are
identical.

Operation of deleting a component with a name v from a nominative
set d is denoted d|−v. Notation d =−v d

′ means that d|−v = d′|−v. The
set of assigned names (variables) in d is defined by the formula

asn(d) = {v ∈ V | v 7→ a ∈n d for some a ∈ A}.

Let Bool = {F, T} be a set of Boolean values.

Let PrRV
A = VA

r
−→ Bool be the set of all non-deterministic (rela-

tional) predicates over VA. Such predicates are called non-deterministic
(relational) quasiary predicates. The term ’relational’ means that
graphs of such predicates are binary relations from VA × Bool. Note
that non-determinism in logic was intensively studied, see, for example,
[8].

We will also use set-theoretic notations for quasiary predicates.

104

Semantic Properties of Logics of Quasiary Predicates

Full image of d ∈ VA under p ∈ PrRV
A is defined by the formula

p[d] = {b ∈ Bool | (d, b) ∈ p}.
For p ∈ PrRV

A the truth and falsity domains of p are respectively

T (p) = {d ∈ VA | (d, T) ∈ p} and F (p) = {d ∈ VA | (d, F) ∈ p}.

Considering predicates from PrRV
A in set-theoretic style we can

speak about such operations as union ∪ and intersection ∩. The fol-
lowing statement is obvious.

Lemma 1. The set < PrRV
A ;∪,∩ > is a complete distributive lattice.

The greatest and the least elements of this lattice are denoted ⊤V
A

and ⊥V
A respectively. For these elements T (⊤V

A) = VA, F (⊤V
A) = VA,

T (⊥V
A) = ∅, F (⊥V

A) = ∅.
Operations over PrRV

A are called compositions. The set C(V) of
first-order compositions is {∨,¬, Rv̄

x̄,∃x}. Compositions have the fol-
lowing types:

∨ : PrRV
A × PrRV

A

t
−→ PrRV

A ; ¬, R
v1,...,vn
x1,...,xn

,∃x : PrRV
A

t
−→ PrRV

A

and are defined by the following formulas (p, q ∈ PrRV
A):

– T (p ∨ q) = T (p) ∪ T (q); F (p ∨ q) = F (p) ∩ F (q);

– T (¬p) = F (p); F (¬p) = T (p);

– T (Rv̄
x̄(p)) = {d ∈ VA | rv̄x̄(d) ∈ T (p)};

F (Rv̄
x̄(p)) = {d ∈ VA | rv̄x̄(d) ∈ F (p)};

– T (∃xp) = {d ∈ VA | d∇x 7→ a ∈ T (p) for some a ∈ A};

F (∃xp) = {d ∈ VA | d∇x 7→ a ∈ F (p) for all a ∈ A}.

Here d∇x 7→ a = [v 7→ c ∈n d | v 6= x] ∪ [x 7→ a]. Conventional
notation is d[v 7→ a].

Please note that definitions of compositions are similar to strong
Kleene’s connectives and quantifiers.

Also note that parametric compositions of existential quantification
and renomination can also represent classes of compositions. Thus,

105

M. Nikitchenko, S. Shkilniak

notation ∃x can represent one composition, when x is fixed, or a class
{∃x | x ∈ V } of such compositions for various names.

A pair AQR(V,A) =< PrRV
A ;C(V) > is called a first-order algebra

of non-deterministic quasiary predicates.

It is not difficult to prove the following statement.

Lemma 2. Singleton sets {⊤V
A} and {⊥V

A} are sub-algebras of algebra
AQR(V,A).

Algebras AQR(V,A) (for various A) form a semantic base for the
constructed first-order pure quasiary predicate logic LQR (called also
quasiary logic). Let us now proceed with formal definitions.

3 First-order pure quasiary logic

To define a logic we should first specify its semantic component, syn-
tactic component, and interpretational component [3, 4, 5]. Then a
consequence relation should be defined. Semantics of the logic under
consideration is specified by algebras of the type AQR(V,A) (for vari-
ous A), so, we proceed with syntactic component of the logic.

3.1 Syntactic component

A syntactic component specifies the language of LQR. Let Cs(V) be a
set of composition symbols that represent compositions in algebras de-
fined above – Cs(V) = {∨,¬, Rv̄

x̄,∃x}. For simplicity, we use the same
notation for symbols of compositions and compositions themselves.

Let Ps be a set of predicate symbols. A triple ΣQ = (V,Cs(V), Ps)
is a language signature. Given ΣQ , we inductively define the language
of LQR – the set of formulas Fr(ΣQ):

1) if P ∈ Ps, then P ∈ Fr(ΣQ); such formulas are called atomic;

2) if Φ, Ψ ∈ Fr(ΣQ), then (Φ ∨Ψ) ∈ Fr(ΣQ);

3) if Φ ∈ Fr(ΣQ), then (¬Φ) ∈ Fr(ΣQ);

106

Semantic Properties of Logics of Quasiary Predicates

4) if Φ ∈ Fr(ΣQ), v1, ..., vn, x1, ..., xn ∈ V , v1, ..., vn are distinct
names, n ≥ 0, then (Rv1,...,vn

x1,...,xn
(Φ)) ∈ Fr(ΣQ);

for such formulas notation Rv1,...,vn
x1,...,xn

Φ or Rv̄
x̄Φ can be also used;

5) if Φ ∈ Fr(ΣQ), x ∈ V , then (∃xΦ) ∈ Fr(ΣQ).

Extra brackets can be omitted using conventional rules of operation
priorities. Derived operations like conjunction ∧, implication → etc.
are defined in a usual way.

3.2 Interpretational component

Given ΣQ and nonempty set A we can consider an algebra of quasiary
predicates AQR(V,A) =< PrRV

A ;C(V) >. Composition symbols have
fixed interpretation, but we additionally need interpretation IPs :

Ps
t

−→ PrRV
A of predicate symbols; obtained predicates are called

basic predicates. A tuple J = (ΣQ, A, IPs) is called an interpretation.

Formulas and interpretations in LQR are called LQR-formulas and
LQR-interpretations respectively. Usually the prefix LQR is omitted.
Given a formula Φ and an interpretation J we can speak of an inter-
pretation of Φ in J . It is denoted by ΦJ .

3.3 Extensions of LQR

The logic LQR being a rather powerful logic still is not expressive
enough to represent transformations required for proving its complete-
ness. Therefore we introduce its two extensions: LUR — a logic with
unessential variables, and LUR

ε — a logic with unessential variables
and a parametric total deterministic variable unassignment predicate
εz which checks if a variable z is unassigned in a given nominative set.

To define LUR we should specify its semantic, syntactic, and inter-
pretational components.

Let U be an infinite set of variables such that V ∩U = ∅ . Variables
from U are called unessential variables (analogs of fresh variables in
classical logic) that should not affect the formula meanings.

107

M. Nikitchenko, S. Shkilniak

Algebras
AQR(V ∪ U,A) =< PrV ∪U

A ;C(V ∪ U) >
(for different A) form a semantic base for LUR.

A syntactic component is specified by the set of formulas Fr(ΣU),
where ΣU = (V ∪ U,Cs(V ∪ U), Ps) is the signature of LUR.

An interpretational component restricts the class of LUR-interpreta-
tions in such a way that interpretations of predicate symbols are neither
sensitive to the values of the component with an unessential variable
u in nominative sets, nor to presence of such components. Formally, a
variable u ∈ U is unessential in an interpretation of predicate symbols
IPs if IPs(P)[d] = IPs(P)[d′] for all P ∈ Ps, d, d′ ∈ V ∪UA such that
d =−u d′.

The following statement is obvious.

Lemma 3. LUR is a model-theoretic conservative extension of LQR.

Note that given p ∈ PrRV ∪U
A and v ∈ V ∪ U we say that v is

unessential for p if p[d] = p[d′] for any d, d′ ∈ V ∪UA such that d =−v d′.

The next logic LUR
ε is an extension of LUR by a null-ary parametric

composition (predicate) εz (z ∈ V ∪ U) defined in interpretation J by
the following formulas:

T (εzJ) = {d ∈ V ∪UA | z /∈ asn(d)},
F (εzJ) = {d ∈ V ∪UA | z ∈ asn(d)}.

Thus, for this logic the set of compositions is equal to {∨,¬, Rv̄
x̄,∃x, εz}.

Note that in free logic [9] E!z corresponds to negation of εz.

Algebras of the form
ARE(V ∪ U,A) =< PrV ∪U

A ;∨,¬, Rv̄
x̄,∃x, εz >

(for different A) constitute a semantic base for LUR
ε .

A syntactic component is specified by the set of formulas Fr(ΣU
ε),

where ΣU
ε = (V ∪ U, {∨,¬, Rv̄

x̄,∃x, εz}, Ps) is the signature of LUR
ε .

An interpretational component of LUR
ε is defined in the same way

as for LUR.

By construction of LUR
ε we get the following statement.

Lemma 4. LUR
ε is a model-theoretic conservative extension of LUR.

108

Semantic Properties of Logics of Quasiary Predicates

Predicates εz specify cases when z is assigned or unassigned. This
property can be used for construction of sequent rules for quantifiers.

For a formula Φ and a set of formulas Γ let nm(Φ) denote all
names (variables) that occur in Φ, nm(Γ) denote all names that oc-
cur in formulas of Γ. Names from U\nm(Φ) are called fresh unessen-
tial variables for Φ and their set is denoted fu(Φ), in the same way
fu(Γ) = U\nm(Γ) is the set of fresh unessential variables for Γ. We
also use natural extensions of this notation for a case of several formulas
and sets of formulas like nm(Γ,∆, Rū

v̄ (∃xΦ)) and fu(Γ,∆, Rū
v̄ (∃xΦ)).

Such notation is also used when we consider properties of predicate
algebras. We write x ∈ v̄ to denote that x is a variable from v̄. We
write {v̄, x̄} to denote the set of variables that occur in the sequences
v̄ and x̄.

In the sequel we adopt the following convention: a, b denote el-
ements from A; x, y, z, v, w (maybe with indexes) denote variables
(names) from V ∪U ; d, d′, d1, d2 denote nominative sets from V ∪UA; p, q
denote predicates from ARE(V ∪ U,A); Φ,Ψ,Ξ denote LUR

ε -formulas,
Γ,∆ denote sets of LUR

ε -formulas, J denotes LUR
ε -interpretation.

4 Semantic properties of quasiary logics

The set of compositions {∨,¬, Rv̄
x̄,∃x, εz} of quasiary logics specifies

four types of properties related to propositional compositions ∨ and ¬,
to renomination composition Rv̄

x̄, to unassignment composition (pred-
icate) εz, and to existential quantifier ∃x.

4.1 Properties related to propositional compositions

Properties of propositional compositions are traditional. In particular,
disjunction composition is associative, commutative, and idempotent;
negation composition is involutive

¬¬: ¬¬p = p.

109

M. Nikitchenko, S. Shkilniak

4.2 Properties related to renomination composition

Renomination composition is a new composition specific for logics of
quasiary predicates. Its properties are not well-known therefore we
describe them in more detail. The main attention will be paid to dis-
tributivity properties.

Lemma 5. For every algebra ARE(V ∪U , A) the following properties
related to renomination composition hold:

R∨: Rv̄
x̄(p ∨ q) = Rv̄

x̄(p) ∨Rv̄
x̄(q);

R¬: Rv̄
x̄(¬p) = ¬Rv̄

x̄(p);
RI: Rz,v̄

z,x̄(p) = Rv̄
x̄(p);

RU: Ry,v̄
z,x̄(p) = Rv̄

x̄(p), y is unessential for Rv̄
x̄(p);

RR: Rv̄
x̄(R

w̄
ȳ (p)) = Rv̄

x̄ ◦
w̄
ȳ (p);

R: R(p) = p;
R∃s: Rv̄

x̄(∃yp) = ∃y(Rv̄
x̄(p)), y /∈ {v̄, x̄};

R∃r: ∃yp = ∃zRy
z(p), z is unessential for p;

R∃: Rv̄
x̄(∃yp) = ∃zRv̄

x̄(R
y
z(p)), z is unessential for Rv̄

x̄(∃yp);
R∃R: Ry,v̄

z,x̄(∃yp) = Rv̄
x̄(∃yp).

Here Rv̄
x̄◦

w̄
ȳ represents two successive renominations Rw̄

ȳ and Rv̄
x̄.

Proof. We prove the lemma by showing that truth and falsity domains
of predicates in the left- and right-hand sides of equalities coincide. Let
us consider properties R∃s, R∃r, and R∃ only.

For R∃s we have:
d ∈ T (Rv̄

x̄(∃yp)) ⇔ rv̄x̄(d) ∈ T (∃yp) ⇔ rv̄x̄(d)∇y 7→ a ∈ T (p) for
some a ∈ A ⇔ (since y /∈ {v̄, x̄}) rv̄x̄(d∇y 7→ a) ∈ T (p) for some a ∈ A
⇔ d∇y 7→ a ∈ T (Rv̄

x̄(p)) for some a ∈ A ⇔ d ∈ T (∃y(Rv̄
x̄(p)));

d ∈ F (Rv̄
x̄(∃yp)) ⇔ rv̄x̄(d) ∈ F (∃yp) ⇔ rv̄x̄(d)∇y 7→ a ∈ F (p) for

all a ∈ A ⇔ (since y /∈ {v̄, x̄}) rv̄x̄(d∇y 7→ a) ∈ F (p) for all a ∈ A
⇔ d∇y 7→ a ∈ F (Rv̄

x̄(p)) for all a ∈ A ⇔ d ∈ F (∃y(Rv̄
x̄(p))).

For R∃r we have:
d ∈ T (∃z(Ry

z(p))) ⇔ d∇z 7→ a ∈ T (Ry
z(p)) for some a ∈ A ⇔

ryz (d∇z 7→ a) ∈ T (p) for some a ∈ A ⇔ (d∇z 7→ a)∇y 7→ a ∈ T (p) for
some a ∈ A ⇔ (since z is unessential for p) d∇y 7→ a ∈ T (p) for some
a ∈ A ⇔ d ∈ T (∃yp).

110

Semantic Properties of Logics of Quasiary Predicates

In the same way we demonstrate coincidence of the falsity domains
for R∃r.

By R∃s and R∃r we obtain R∃.

4.3 Properties related to unassignment composition

Here we formulate only that null-ary unassignment composition (pred-
icate) is total deterministic predicate, i.e.

T (εy) ∪ F (εy) = VA and T (εy) ∩ F (εy) = ∅.

4.4 Properties related to quantifier composition

The following lemmas describe properties of quantifiers.

Lemma 6. For every algebra ARE(V ∪ U,A) and every p ∈ PrRV ∪U
A

the following properties hold (x 6= y):
T∃v : T (Rx

y(p)) ∩ F (εy) ⊆ T (∃xp);
F∃v : F (∃xp) ∩ F (εy) ⊆ F (Rx

y(p));
T∃u : T (Rx

y(p)) ⊆ T (εy) ∪ T (∃xp);
F∃u : F (∃xp) ⊆ T (εy) ∪ F (Rx

y(p)).

Proof. To prove T∃v consider arbitrary d ∈ T (Rx
y(p)) ∩ F (εy). This

means that y is assigned in d with some value a and d∇x 7→ a ∈ T (p),
therefore d ∈ T (∃xp).

Property F∃v is proved in the same manner.

Properties T∃u and F∃u are obtained from T∃v and F∃v using the
following property of Boolean algebra of sets:

SI: S1 ∩ S2 ⊆ S3 ⇔ S1 ⊆ S2 ∪ S3,
where S2 denotes supplement of S2 and the properties that T (εy) =
F (εy) and F (εy) = T (εy).

Lemma 7. For every algebra ARE(V ∪ U,A) the following property
holds (x 6= y):

∃eL: T (∃xp) =−y (T (Rx
y(p)) ∩ F (εy)) if y is unessential for p.

Proof. Let d ∈ T (∃xp)|−y. It means that there exists d′ ∈ V ∪UA and
a ∈ A such that d′∇x 7→ a ∈ T (p) and d′ =−y d. Since y is not

111

M. Nikitchenko, S. Shkilniak

essential for p, then (d′∇x 7→ a)∇y 7→ a ∈ T (p). By definition, we get
that d′∇y 7→ a ∈ T (Rx

y(p)) ∩ F (εy). But d = d′|−y. Thus,
T (∃xp)|−y ⊆ (T (Rx

y(p)) ∩ F (εy))|−y .

The inverse follows from T∃v.

5 T -consequence relation for sets of formulas

Traditionally, for logics of quasiary predicates a conventional logical
consequence is considered [3, 4].

Let Γ ⊆ Fr(ΣU
ε) and ∆ ⊆ Fr(ΣU

ε) be sets of formulas. ∆
is a consequence of Γ in an interpretation J (denoted ΓJ |= ∆), if⋂

Φ∈Γ

T (ΦJ) ∩
⋂

Ψ∈∆

F (ΨJ) = ∅.

∆ is a logical consequence of Γ (denoted Γ |= ∆), if ΓJ |= ∆ in
every interpretation J . The introduced relation of logical consequence
specifies irrefutability.

For the class of non-deterministic predicates the logical consequence
relation collapses, i.e. it is empty. Indeed, for any Γ and ∆ we have
that ΓJ 6|= ∆ if we in J interpret predicate symbols as non-deterministic
predicate ⊤V

A (Lemma 2).

Therefore we introduce another consequence relation which arises
naturally in Computer Science [10].

∆ is a T-consequence of Γ in an interpretation J (denoted by ΓJ |=T

∆), if
⋂

Φ∈Γ

T (ΦJ) ⊆
⋃

Ψ∈∆

T (ΨJ). ∆ is a T -consequence of Γ (denoted

by Γ |=T ∆), if ΓJ |=T ∆ in every interpretation J .

We will also use the following notation: T∧(ΓJ) =
⋂

Φ∈Γ

T (ΦJ) and

T∨(ΓJ) =
⋃

Φ∈Γ

T (ΦJ).

Now we describe the main properties of T -consequence relation.

First, let us give the following definitions for arbitrary consequence
relation |=∗ [11]:

– |=∗ is called paraconsistent if there exist Γ, ∆, and Φ, such that
Γ,Φ ∧ ¬Φ 6|=∗ ∆;

112

Semantic Properties of Logics of Quasiary Predicates

– |=∗ is called paracomplete if there exist Γ, ∆, and Ψ such that
Γ 6|=∗ Ψ ∨ ¬Ψ,∆;

– |=∗ is called paranormal if there exist Γ, ∆, Φ, and Ψ such that
Γ,Φ ∧ ¬Φ 6|=∗ Ψ ∨ ¬Ψ,∆.

We say that |=∗ is consistent, complete, and normal if it is not para-
consistent, not paracomplete, and not paranormal respectively.

It is easy to see that paranormality implies paraconsistency and
paracompleteness; consistency or completeness implies normality.

Theorem 1. T -consequence relation is paraconsistent, paracomplete,
and paranormal.

Proof. To prove the theorem it is sufficient do demonstrate only para-
normality of T -consequence relation. Indeed, let Γ = ∅, ∆ = ∅, Φ be
P1 ∈ Ps, Ψ be P2 ∈ Ps such that P1 6= P2. Then it is easy to check
that interpreting P1 as predicate ⊤V

A and P2 as predicate ⊥V
A we get

that P1 ∧ ¬P1 6|=T P2 ∨ ¬P2.

In a similar way we can prove the following statement.

Lemma 8. For T -consequence relation the following properties hold:

– Γ,¬Φ |=T ∆ and Γ 6|=T Φ,∆ for some Γ, ∆, and Φ;

– Γ,Φ |=T ∆ and Γ 6|=T ¬Φ,∆ for some Γ, ∆, and Φ;

– Γ |=T ¬Φ,∆ and Γ,Φ 6|=T ∆ for some Γ, ∆, and Φ;

– Γ |=T Φ,∆ and Γ,¬Φ 6|=T ∆ for some Γ, ∆, and Φ.

This lemma states that rules of sequent calculi permitting moving
(negated) formulas from one side of a sequent to its another side are
not valid for T -consequence relations. Consequently, sequent calculi
for |=T will be more complicated.

Still, such transformations are possible for a formula interpreted as
total deterministic predicate (see Theorem 2(4)).

Lemma 9. Let Φ be a formula, Γ,Γ′,∆,∆′ be sets of formulas. Then

113

M. Nikitchenko, S. Shkilniak

(M) if Γ ⊆ Γ′ and ∆ ⊆ ∆′, then Γ |=T ∆ ⇒ Γ′ |=T ∆′;

(C) Φ,Γ |=T ∆,Φ.

Proof of the lemma follows immediately from definitions.
Now we continue with those properties of T -consequence relation

which induce sequent rules for the logic under consideration. Such
properties are constructed upon semantic properties of compositions.
To do this the following lemma is often used.

Theorem 2. Let Φ, Ψ, and Ξ be formulas, Γ and ∆ be sets of formulas,
J be LUR

ε -interpretation. Then

(1) if T (ΦJ) = T (ΨJ), then
Φ,Γ J|=T ∆ ⇔ Ψ,Γ J|=T ∆ and Γ J|=T Φ,∆ ⇔ Γ J|=T Ψ,∆;

(2) if T (ΦJ) = T (ΨJ) ∩ T (ΞJ), then
Φ,Γ J|=T ∆ ⇔ Ψ,Ξ,Γ J|=T ∆,

Γ J|=T Φ,∆ ⇔ (Γ J|=T Ψ,∆ and Γ J|=T Ξ,∆);

(3) if T (ΦJ) = T (ΨJ) ∪ T (ΞJ), then
Γ J|=T Φ,∆ ⇔ Γ J|=T Ψ,Ξ,∆,

Φ,Γ J|=T ∆ ⇔ (Ψ,Γ J|=T ∆ and Ξ,Γ J|=T ∆);

(4) if T (ΦJ) ∪ F (ΦJ) =
VA and T (ΦJ) ∩ F (ΦJ) = ∅, then

Φ,Γ J|=T ∆ ⇔ Γ J|=T ¬Φ,∆ and¬Φ,Γ J|=T ∆ ⇔ Γ J|=T Φ,∆;
Γ |=T ∆ ⇔ (Φ,Γ |=T ∆ and Γ |=T ∆,Φ);

(5) if y ∈ fu(Γ,∆), then Γ J|=T ∆ ⇔ Γ J|=T ∆, εy;

(6) if T (ΦJ) =−y T (ΨJ) for y ∈ fu(Ψ,Γ,∆), then
Φ,Γ J|=T ∆ ⇔ Ψ,Γ J|=T ∆.

Proof. Property (1) is obvious. For (2) we have
Φ,Γ J|=T ∆ ⇔ T (ΦJ) ∩ T∧(ΓJ) ⊆ T∨(∆J) ⇔
⇔ T (ΨJ) ∩ T (ΞJ) ∩ T∧(ΓJ) ⊆ T∨(∆J) ⇔ Ψ,Ξ,Γ J|=T ∆.

In the same way the second part of (2) and property (3) are proved.
Let us consider (4). We have
Φ,Γ J|=T ∆ ⇔ T (ΦJ) ∩ T∧(ΓJ) ⊆ T∨(∆J) ⇔

114

Semantic Properties of Logics of Quasiary Predicates

⇔ T∧(ΓJ) ⊆ T (ΦJ) ∪ T∨(∆J) ⇔ T∧(ΓJ) ⊆ T (¬ΦJ) ∪ T∨(∆J) ⇔
⇔ Γ J|=T ¬Φ,∆.

In the same way other properties of (4) are proved.

Let us consider (5). By Lemma 9(M) we have that
Γ J |=T ∆ ⇒ Γ J |=T ∆, εy. We need to prove that Γ J |=T ∆, εy ⇒
Γ J|=T ∆. It is equivalent to
T∧(ΓJ) ⊆ T∨(∆J) ∪ T (εy) ⇔ T∧(ΓJ) ∩ F (εy) ⊆ T∨(∆J).

Let d ∈ T∧(ΓJ) ∩ F (εy). Since y is unessential for Γ, it means
that d|−y ∈ T∧(ΓJ). From this follows that d|−y ∈ T∨(∆J). Since y is
unessential for ∆, it means that d ∈ T∨(∆J). Thus, T

∧(ΓJ) ⊆ T∨(∆J)
that proves the property under consideration.

Let us consider (6). We should prove that
T (ΦJ) ∩ T∧(ΓJ) ⊆ T∨(∆J) ⇔ T (ΨJ) ∩ T∧(ΓJ) ⊆ T∨(∆J).

Let d ∈ T (ΨJ) ∩ T∧(ΓJ). Since T (ΦJ) =−y T (ΨJ), there exists
d′ ∈ T (ΦJ) such that d′ =−y d. Since y is unessential for Γ, we have
that d′ ∈ T∧(ΓJ). Hence d′ ∈ T∨(∆J). Again, y is also unessential for
∆ therefore d ∈ T∨(∆J). This proves the direct implication.

Let us prove the inverse implication. First, we prove that T (ΦJ) ⊆
T (ΨJ). Indeed, let d ∈ T (ΦJ). Since T (ΦJ) =−y T (ΨJ), there exists
d′ ∈ T (ΨJ) such that d′ =−y d. Since y is unessential for Ψ, d ∈ T (ΨJ).
Thus, T (Φ) ⊆ T (Ψ).

From this follows that Ψ,Γ J|=T ∆ ⇒ Φ,Γ J|=T ∆.

This completes the proof of (6).

Theorem 3. The following properties hold for T -consequence relation.

– Properties related to propositional compositions:

¬¬L) ¬¬Φ,Γ |=T ∆ ⇔ Φ,Γ |=T ∆.

¬¬R) Γ |=T ∆,¬¬Φ ⇔ Γ |=T ∆,Φ.

∨L) Φ ∨Ψ,Γ |=T ∆ ⇔ (Φ,Γ |=T ∆ and Ψ,Γ |=T ∆).

¬ ∨L) ¬(Φ ∨Ψ),Γ |=T ∆ ⇔ ¬Φ,¬Ψ,Γ |=T ∆.

∨R) Γ |=T ∆,Φ ∨Ψ ⇔ Γ |=T ∆,Φ,Ψ.

¬ ∨R) Γ |=T ∆,¬(Φ ∨Ψ) ⇔ (Γ |=T ∆,¬Φ and Γ |=T ∆,¬Ψ).

115

M. Nikitchenko, S. Shkilniak

– Properties related to renomination compositions:

R ∨L) Rv̄
x̄(Φ ∨Ψ),Γ |=T ∆ ⇔ Rv̄

x̄(Φ) ∨Rv̄
x̄(Ψ),Γ |=T ∆.

¬R ∨L) ¬Rv̄
x̄(Φ ∨Ψ),Γ |=T ∆ ⇔ ¬(Rv̄

x̄(Φ) ∨Rv̄
x̄(Ψ)),Γ |=T ∆.

R ∨R) Γ |=T ∆, Rv̄
x̄(Φ ∨Ψ) ⇔ Γ |=T ∆, Rv̄

x̄(Φ) ∨Rv̄
x̄(Ψ).

¬R ∨R) Γ |=T ∆,¬Rv̄
x̄(Φ ∨Ψ) ⇔ Γ |=T ∆,¬(Rv̄

x̄(Φ) ∨Rv̄
x̄(Ψ)).

RL) R(Φ),Γ |=T ∆ ⇔ Φ,Γ |=T ∆.

RR) Γ |=T ∆, R(Φ) ⇔ Φ,Γ |=T ∆,Φ.

RIL) R
z,v̄
z,x̄(Φ),Γ |=T ∆ ⇔ Rv̄

x̄(Φ),Γ |=T ∆.

¬RIL) ¬R
z,v̄
z,x̄(Φ),Γ |=T ∆ ⇔ ¬Rv̄

x̄(Φ),Γ |=T ∆.

RIR) Γ |=T ∆, Rz,v̄
z,x̄(Φ) ⇔ Γ |=T ∆, Rv̄

x̄(Φ).

¬RIR) Γ |=T ∆,¬Rz,v̄
z,x̄(Φ) ⇔ Γ |=T ∆,¬Rv̄

x̄(Φ).

RUL) R
y,v̄
z,x̄(Φ),Γ |=T ∆ ⇔ Rv̄

x̄(Φ),Γ |=T ∆, if y ∈ fu(Φ).

¬RUL) ¬R
y,v̄
z,x̄(Φ),Γ |=T ∆ ⇔ ¬Rv̄

x̄(Φ),Γ |=T ∆, if y ∈ fu(Φ).

RUR) Γ |=T ∆, Ry,v̄
z,x̄(Φ) ⇔ Γ |=T ∆, Rv̄

x̄(Φ), if y ∈ fu(Φ).

¬RUR) Γ |=T ∆,¬Ry,v̄
z,x̄(Φ),⇔ Γ |=T ∆,¬Rv̄

x̄(Φ), if y ∈ fu(Φ).

RRL) R
v̄
x̄(R

w̄
ȳ (Φ)),Γ |=T ∆ ⇔ Rv̄

x̄ ◦
w̄
ȳ (Φ),Γ |=T ∆.

¬RRL) ¬R
v̄
x̄(R

w̄
ȳ (Φ)),Γ |=T ∆ ⇔ ¬Rv̄

x̄ ◦
w̄
ȳ (Φ),Γ |=T ∆.

RRR) Γ |=T ∆, Rv̄
x̄(R

w̄
ȳ (Φ)) ⇔ Γ |=T ∆, Rv̄

x̄ ◦
w̄
ȳ (Φ).

¬RRR) Γ |=T ∆,¬Rv̄
x̄(R

w̄
ȳ (Φ)) ⇔ Γ |=T ∆,¬Rv̄

x̄ ◦
w̄
ȳ (Φ).

R¬L) R
v̄
x̄(¬Φ)),Γ |=T ∆ ⇔ ¬Rv̄

x̄(Φ),Γ |=T ∆.

¬R¬L) ¬R
v̄
x̄(¬Φ)),Γ |=T ∆ ⇔ ¬¬Rv̄

x̄(Φ),Γ |=T ∆.

R¬R) Γ |=T ∆, Rv̄
x̄(¬Φ)) ⇔ Γ |=T ∆,¬Rv̄

x̄(Φ).

¬R¬R) Γ |=T ∆,¬Rv̄
x̄(¬Φ)) ⇔ Γ |=T ∆,¬¬Rv̄

x̄(Φ).

R∃RL) R
ū,x
v̄,y (∃xΦ),Γ |=T ∆ ⇔ Rū

v̄ (∃xΦ),Γ |=T ∆.

¬R∃RL) ¬R
ū,x
v̄,y (∃xΦ),Γ |=T ∆ ⇔ ¬Rū

v̄ (∃xΦ),Γ |=T ∆.

R∃RR) Γ |=T ∆, Rū,x
v̄,y (∃xΦ) ⇔ Γ |=T ∆, Rū

v̄ (∃xΦ).

116

Semantic Properties of Logics of Quasiary Predicates

¬R∃RR) Γ |=T ∆,¬Rū,x
v̄,y (∃xΦ) ⇔ Γ |=T ∆,¬Rū

v̄ (∃xΦ).

R∃sL) R
v̄
x̄(∃yΦ),Γ |=T ∆ ⇔ ∃yRv̄

x̄(Φ),Γ |=T ∆, if y /∈ {v̄, x̄}.

¬R∃sL) ¬R
v̄
x̄(∃yΦ),Γ |=T ∆ ⇔ ∃y¬Rv̄

x̄(Φ),Γ |=T ∆, if y /∈ {v̄, x̄}.

R∃sR) Γ |=T ∆, Rv̄
x̄(∃yΦ) ⇔ Γ |=T ∆,∃yRv̄

x̄(Φ), if y /∈ {v̄, x̄}.

¬R∃sR) Γ |=T ∆,¬Rv̄
x̄(∃yΦ) ⇔ Γ |=T ∆,∃y¬Rv̄

x̄(Φ), if y /∈ {v̄, x̄}.

R∃L) R
v̄
x̄(∃yΦ),Γ |=T ∆ ⇔ ∃zRv̄

x̄ ◦
y
z (Φ),Γ |=T ∆,

if z ∈ fu(Rv̄
x̄(∃yΦ)).

¬R∃L) ¬R
v̄
x̄(∃yΦ),Γ |=T ∆ ⇔ ¬∃zRv̄

x̄ ◦
y
z (Φ),Γ |=T ∆,

if z ∈ fu(Rv̄
x̄(∃yΦ)).

R∃R) Γ |=T ∆, Rv̄
x̄(∃yΦ) ⇔ Γ |=T ∆,∃zRv̄

x̄ ◦
y
z (Φ),

if z ∈ fu(Rv̄
x̄(∃yΦ)).

¬R∃R) Γ |=T ∆,¬Rv̄
x̄(∃yΦ) ⇔ Γ |=T ∆,¬∃zRv̄

x̄ ◦
y
z (Φ),

if z ∈ fu(Rv̄
x̄(∃yΦ)).

– Properties related to unassignment predicates:

εLR) Γ |=T ∆ ⇔ εy,Γ |=T ∆ and Γ |=T ∆, εy.

εR) Γ |=T ∆ ⇔ Γ |=T ∆, εz, if z ∈ fu(Γ,∆).

– Properties related to quantifiers:

∃eL) ∃xΦ,Γ |=T ∆ ⇔ Rx
z (Φ),Γ |=T ∆, εz, if z ∈ fu(Γ,∆,∃xΦ).

¬∃eL) ¬∃xΦ,Γ |=T ∆, εy ⇔ ¬∃xΦ,¬Rx
y(Φ),Γ |=T ∆, εy.

∃eR) Γ |=T ∆,∃xΦ, εy ⇔ Γ |=T ∆,∃xΦ, Rx
y(Φ), εy.

¬∃eR) Γ |=T ∆,¬∃xΦ ⇔ Γ |=T ∆,¬Rxz(Φ), εz,
if z ∈ fu(Γ,∆,∃xΦ).

Proof. Proof of the formulated properties is based on semantic proper-
ties of compositions and properties of T -consequence relation. Con-
sider, for instance, properties ∨L and ¬∨L. For ∨L we have that
Φ ∨Ψ,Γ J|=T ∆ ⇔ (T (ΦJ) ∪ T (ΨJ)) ∩ T∧(ΓJ) ⊆ T∨(∆J) ⇔ (T (ΦJ) ∩
T∧(ΓJ))∪ (T (ΨJ)∩T∧(ΓJ)) ⊆ T∨(∆J) ⇔ (T (ΦJ)∩T∧(ΓJ) ⊆ T∨(∆J)
and T (ΨJ) ∩ T∧(ΓJ) ⊆ T∨(∆J)) ⇔ (Φ,Γ J |=T ∆ and Ψ,Γ J |=T ∆)

117

M. Nikitchenko, S. Shkilniak

for any interpretation J . Thus, Φ ∨ Ψ,Γ |=T ∆ ⇔ (Φ,Γ |=T ∆ and
Ψ,Γ |=T ∆).

For ¬∨L we have that ¬(Φ ∨ Ψ),Γ J |=T ∆ ⇔ T (¬(Φ ∨ Ψ)J) ∩
T∧(ΓJ) ⊆ T∨(∆J) ⇔ F (ΦJ) ∩ F (ΨJ) ∩ T∧(ΓJ) ⊆ T∨(∆J) ⇔
T (¬ΦJ) ∩ T (¬ΨJ) ∩ T∧(ΓJ) ⊆ T∨(∆J) ⇔ ¬Φ,¬Ψ,Γ J |=T ∆ for any
interpretation J . Thus, ¬(Φ ∨Ψ),Γ |=T ∆ ⇔ ¬Φ,¬Ψ,Γ |=T ∆.

Properties related to renomination composition hold by Lemma 5.
Property εLR follows from Theorem 2(4); property εR follows from

Theorem 2(5).
Properties related to quantifiers are consequences of Lemma 6,

Lemma 7, and Theorem 2(6). Detailed proof is omitted here.

Properties presented in Theorem 3 induce sequent rules for calculus
formalizing |=T . For example, property ∃eL induces a rule

Rx
z (Φ),Γ → ∆, εz

∃xΦ,Γ → ∆
, z ∈ fu(Γ,∆,∃xΦ).

Detailed construction of such a calculus will be presented in forth-
coming papers.

6 T -consequence relation for the class of deter-

ministic predicates

A class of deterministic quasiary predicates is an important subclass of
the class of non-deterministic predicates.

Predicate p ∈ PrRV
A is called deterministic (partial single-valued)

if T (p) ∩ F (p) = ∅. The class of such predicates is denoted PrVA .

Lemma 10. Class PrVA is a sub-algebra of algebra AQR(V,A).

The lemma is proved by direct checking that all compositions pre-
serve the class of deterministic predicates. Defined algebra is denoted
AQ(V,A).

Such algebras form a semantic base for a logic of quasiary deter-
ministic predicates LQ. The extended logics LU and LU

ε are defined
in the same way as for non-deterministic predicates. In this section a

118

Semantic Properties of Logics of Quasiary Predicates

sign |=T denotes a T -consequence relation for the class of deterministic
quasiary predicates.

Here we present only those properties of logics of deterministic pred-
icates that differ from corresponding properties for non-deterministic
predicates. In particular, a formula from the right side of T -
consequence relation can be placed as a negated formula into the left
side of the relation. Such property does not hold for the class of non-
deterministic predicates.

Lemma 11. The following properties hold for T -consequence relation
for the logic of deterministic quasiary predicates:

– Γ |=T ∆,Φ ⇒ ¬Φ,Γ |=T ∆;

– Γ |=T ∆,¬Φ ⇒ Φ,Γ |=T ∆.

Proof. For any Γ, ∆, Φ, and interpretation J we have that
Γ J|=T ∆,Φ ⇔ T∧(ΓJ) ⊆ T (Φ) ∨ T∨(∆J) ⇔ T∧(ΓJ) ∩ T (Φ) ⊆ T∨(∆J).
Since T (¬Φ) ⊆ T (Φ) for deterministic predicates, we have that

T∧(ΓJ) ∩ T (Φ) ⊆ T∨(∆J) ⇒ T∧(ΓJ) ∩ T (¬Φ) ⊆ T∨(∆J).
Thus, Γ J|=T ∆,Φ ⇒ ¬Φ,Γ J|=T ∆. Therefore

Γ |=T ∆,Φ ⇒ ¬Φ,Γ |=T ∆.

The second property is proved in the same manner.

Properties concerning paraconsistency, paracompleteness, and para-
normality also differ for the class of deterministic predicates.

Theorem 4. T -consequence relation for the logic of deterministic
quasiary predicates is consistent, paracomplete, and normal.

Proof. For the class of deterministic predicates we have that Φ ∧
¬Φ,Γ J|=T Ψ,∆ ⇔ (T (ΦJ)∩T (¬ΦJ))∩T∧(ΓJ) ⊆ T (ΨJ)∨T∨(∆J) for
any Γ, ∆, Φ, Ψ, and interpretation J . This inclusion holds because for
deterministic predicates T (ΦJ)∩ T (¬ΦJ) = ∅. Thus, |=T is consistent;
consequently, |=T is normal. To demonstrate paracompleteness of |=T

we take an interpretation J such that T (ΦJ) 6= ∅ and ΨJ = ⊥V
A. Then

Φ J 6|=T Ψ ∨ ¬Ψ.

119

M. Nikitchenko, S. Shkilniak

In general, comparing properties of T -consequence relation for
classes of deterministic and non-deterministic predicates, we can say
that the latter is poorer and the former is richer. In particular, if we
consider F -consequence relation, which is dual to T -consequence rela-
tion, and a combined TF -consequence relation, then all three relations
coincide for the class of non-deterministic predicates, but they are dif-
ferent for the class of deterministic predicates. Also, the irrefutability
consequence relation is quite natural for the class of deterministic pred-
icates while it collapses for the class of non-deterministic predicates.

7 Conclusion

In the paper we have investigated a special kind of program-oriented
algebras and logics defined for classes of non-deterministic and deter-
ministic quasiary predicates. We have considered the main semantic
properties of T -consequence relations for such logics. We have pre-
sented properties related to propositional compositions, renomination,
variable unassignment predicates, and quantifier compositions. These
properties form a basis for construction of sequent calculi for logics
of non-deterministic and deterministic quasiary predicates. We plan
to present such calculi and prove their validity and completeness in
forthcoming papers.

References

[1] Handbook of Logic in Computer Science, S. Abramsky, Dov M.
Gabbay, and T. S. E. Maibaum (eds.), in 5 volumes, Oxford Univ.
Press, Oxford, 1993–2001.

[2] Handbook of Philosophical Logic, D.M. Gabbay, F. Guenthner
(eds.), 2nd Edition, in 17 volumes, Springer, 2001–2011.

[3] M. Nikitchenko, S. Shkilniak. Mathematical logic and theory of
algorithms, Publishing house of Taras Shevchenko National Uni-
versity of Kyiv, Kyiv, 2008, 528 p. (In Ukrainian)

120

Semantic Properties of Logics of Quasiary Predicates

[4] M. Nikitchenko, S. Shkilniak. Applied Logic, Publishing house of
Taras Shevchenko National University of Kyiv, Kyiv, 2013, 278 p.
(in Ukrainian).

[5] M. Nikitchenko, V. Tymofieiev. Satisfiability in composition-
nominative logics, Central European Journal of Computer Science,
vol. 2, no. 3, 2012, pp. 194–213.

[6] N. Nikitchenko. A Composition Nominative Approach to Program
Semantics, Technical Report IT-TR 1998-020, Technical Univer-
sity of Denmark, 1998.

[7] M. Nikitchenko, S. Shkilniak. Semantic properties of logics of
quasiary predicates, Workshop on Foundation of Informatics: Pro-
ceedings FOI-2015, August 24-29, 2015, Chisinau/Inst. of Mathe-
matics and Computer Science, Acad. of Sciences of Moldova; ed.:
S. Cojocaru, C. Gaindric, 2015, pp. 180–197.

[8] A. Avron, A. Zamansky. Non-deterministic semantics for logical
systems, in Handbook of Philosophical Logic, D.M. Gabbay, F.
Guenthner (eds.), 2nd ed., vol. 16, Springer Netherlands, 2011,
pp. 227–304.

[9] E. Bencivenga. Free Logics, in Handbook of Philosophical Logic, D.
Gabbay and F. Guenthner (eds.), vol. III: Alternatives to Classical
Logic, Dordrecht: D. Reidel, 1986, pp. 373–426.

[10] A. Kryvolap, M. Nikitchenko, W. Schreiner. Extending Floyd-
Hoare logic for partial pre- and postconditions, CCIS, 412, 2013,
Springer, Heidelberg, pp. 355–378.

[11] J.-Y. Béziau. What is paraconsistent logic?, in D. Batens, C.
Mortensen, G. Priest, J.P. Van Bendegem (Eds.), Frontiers of
Paraconsistent Logic, Proceedings of the 1st World Congress on
Paraconsistency, held in Ghent, Belgium, July 29–August 3, 1997,
Research Studies Press, Baldock, UK, 2000, pp. 95–111.

121

M. Nikitchenko, S. Shkilniak

Mykola Nikitchenko, Stepan Shkilniak, Received September 20, 2015

Mykola Nikitchenko

Taras Shevchenko National University of Kyiv

01601, Kyiv, Volodymyrska st, 60

Phone: +38044 2590519

E–mail: nikitchenko@unicyb.kiev.ua

Stepan Shkilniak

Taras Shevchenko National University of Kyiv

01601, Kyiv, Volodymyrska st, 60

Phone: +38044 2590519

E–mail: sssh@unicyb.kiev.ua

122

Computer Science Journal of Moldova, vol.23, no.2(68), 2015

BioMaxP : A Formal Approach for

Cellular Ion Pumps

Bogdan Aman Gabriel Ciobanu

Abstract

We look at the living cells as complex systems of ion pumps
working in parallel to ensure proper physiologic functionalities.
To model such a system of pumps, we define a simple and ele-
gant approach that allows working with multisets of ions, explicit
interpretation of the transportation (from inside to outside, and
from outside to inside) based on the number of existing ions, and
a maximal parallel execution of the involved pumps.

1 Introduction

All living cells can be seen as complex systems of interacting com-
ponents, having different concentrations of ions (e.g., Na+, K+ and
Ca++) across the cell membrane. Under resting conditions, Na+ and
Ca++ ions enter the cells and K+ ions exit the cell because the concen-
tration of K+ is high inside the cell and low outside, while the opposite
situation is found for Na+ and Ca++. A fundamental mechanism in
most of the living cells is the Na+/K+-ATPase that is essential for
the maintenance of Na+ and K+ concentrations across the membrane
by transporting Na+ out of the cell and K+ back into the cell. This
pump is the first discovered ion transporter; for this discovery, the
Danish chemist Jens Skou received the Nobel Prize in 1997.

In this paper we model the movement of ions and the conforma-
tional transformations of ion transporters (NaK ion pumps, Na and
K ion channels) by using BioMaxP , a very simple but powerful ap-
proach. We use an operational semantics able to capture quantitative

c©2015 by B. Aman, G. Ciobanu

123

B. Aman, G. Ciobanu

aspects (e.g., number of ions) and abstract conditions associated with
evolution (e.g., the number of ions is between certain thresholds). The
modelling aims to facilitate a better understanding of the living cell
viewed as a complex system of parallel ion transporters.

The novelty of our approach is that we model systems composed of
more than one pump as usually done (e.g., see [5]). Since the pumps
non-deterministically choose which ions to transport, the complexity of
such systems increases with the number of pumps. For further notions
about NaK pump, the interested reader can consult [1].

2 Syntax and Semantics of BioMaxP

The prototyping language BioMaxPprovides sufficient expressiveness to
model in an elegant way the interaction in complex systems of parallel
ion pumps. The cell is a complex system of parallel pumps trying to
keep the equilibrium of ions inside the cell. In order to model these
pumps, we enforce that their functioning takes place only if the number
of various types of ions is between some accepted limits given by min
and max values. Therefore the syntax and semantics emphasize the
process of counting them, and the way the quantities of ions vary during
evolution. The semantics of BioMaxP is provided by multiset labelled
transitions in which multisets of actions are executed in parallel.

Syntax of BioMaxP The syntax of BioMaxP is given in Table 1,
where the following are assumed:

• a set Chan of ion transportation channels a, and a set Id of process
identifiers (each id ∈ Id has its arity mid);

• for each id ∈ Id there is a unique process id(u1, . . . , umid
:

T1, . . . , Tmid
)
def
= Pid, where the distinct variables ui are parame-

ters, and the Ti are ions types;

• v is a tuple of expressions built from values, variables and allowed
operations;

• T represent ions types.

124

BioMaxP : A Formal Approach for Cellular Ion Pumps

Table 1. BioMaxP Syntax

Processes
P,Q ::= amin!(v : T) then P p (sending)

amax?(f(u : T)) then P p (receiving)
id(v) p (recursion)
P | Q (parallel)

A constraint min associated with a sending action amin!(z : T) then

P makes the channel a available for sending z units/ions of type T
only if the total available quantity of ions of type t is greater than
min. A constraint max associated to a receiving action amax?(x : T)
then P along a channel a is activated only if the number of ions of
the type T available is less than max. The function f of the receiving
action can be either id (we often omit it), meaning that the received
ions are to be transported, or add, meaning that the ions are received
from some other process. The only variable binding constructor is
amax?(u : T) then P ; it binds the variable u within P . The free variables
of a process P are denoted by fv(P); for a process definition, is assumed
that fv(Pid) ⊆ {u1, . . . , umid

}, where ui are the process parameters.
Processes are defined up-to an alpha-conversion, and {v/u}P denotes
P in which all free occurrences of the variable u are replaced by v,
eventually after alpha-converting P in order to avoid clashes. Processes
are further constructed from the parallel composition P | Q. A system
of parallel pumps is represented as a process with some initial values
for the numbers of ions.

Remark 1 In order to focus on the local interaction aspects of
BioMaxP , we abstract from arithmetical operations, considering by de-
fault that the simple ones (comparing, addition, subtraction) are in-
cluded in the language.

Operational Semantics of BioMaxP The operational semantics
rules of BioMaxP is presented in Table 2. The multiset labelled transi-

125

B. Aman, G. Ciobanu

tions of form P
Λ
−→ P ′ use a multiset Λ to indicate the actions executed

in parallel in one step. When the multiset Λ contains only one ac-

tion λ, in order to simplify the notation, P
{λ}
−−→ P ′ is simply written

as P
λ
−→ P ′. We assume that in order to interact the processes can

commute, namely P | Q is the same process as Q | P .

Table 2. BioMaxP Operational Semantics

(Com)
v : T and min ≤ |T | ≤ max

amin!〈v〉 then P | amax?(f(u : T)) then P ′ {v/u}
−−−→ P | {v/u}P ′

and |T | = |T | − v if f = id or |T | = |T |+ v if f = add

(Call)
{v/u}Pid

id
−→ P ′

id

id(v)
id
−→ P ′

id

where id(v : T)
def
= Pid

(Par1)
P1

Λ1−→ P ′

1 P 6→

P1 | P
Λ1−→ P ′

1 | P
(Par2)

P1

Λ1−→ P ′

1 P2

Λ2−→ P ′

2

P1 | P2

Λ1∪Λ2−−−−→ P ′

1 | P
′

2

In rule (Com), an output process amin!〈v〉 then P succeeds in send-
ing a tuple of values v over channel a to process amax?(u : T) then P
if v has the same type T as u and if the number of ions of type T is
between min and max, namely v : T and min ≤ |T | ≤ max. Both
processes continue to execute, the first one as P and the second one
as {v/u}P ′. Once the ions are send away, f = id, the number of ions
of type T becomes T − |v|, while if they are received, f = add, then
the number of ions of type T becomes T + |v|. Rule (Call) describes
the evolution of a recursion process. Rules (Par1) and (Par2) are
used to compose larger processes from smaller ones by putting them
in parallel, and considering the union of multisets of actions. In rule
(Par2), P 6→ denotes a process P that cannot evolve. It can be noticed
that in rule (Par2) we use negative premises: an activity is performed
based on the absence of actions. This is due to the fact that sequencing

126

BioMaxP : A Formal Approach for Cellular Ion Pumps

the evolution can only be defined using negative premises, as done for
sequencing processes [6, 10].

Example 1 The use of BioMaxP for specifying complex systems of
pumps is illustrated by describing in an explicit way the molecular in-
teractions and conformational transformations of a large system of ion
transporters, namely Na+K+ ATPases and Na and K ion channels,
that are concerned with the movement of sodium-potassium ions in and
out of a cell whenever certain thresholds are verified. The system we
consider is formed from n1 NaK pumps, n2 Na channels and n3 K
channels. Each pump i is modelled by three processes: one that models
the interaction of the pump with the environment, one modelling the
interaction with the cell and another one that models the transport of
ions through the membrane. The molecular components are processes
modelled as the ends of a channel (one end for input, and another for
output), while the molecular interaction coincides with communication
on channels.

The initial system of pumps is described in BioMaxP by:
Cell(NaEnv,KEnv,NaCell,KCell, AtP,ADP, P) =

| NaKPumpEnv(0) | NaKPumpCell(0) | NaKPump(0)
· · · | NaKPumpEnv(n1-1) | NaKPumpCell(n1-1) | NaKPump(n1-1)

| NaPumpEnv(n1) | NaPumpCell(n1) | NaPump(n1)
· · ·|NaPumpEnv(n1+n2−1) |NaPumpCell(n1+n2−1) |NaPump(n1+n2−1)

| KPumpEnv(n1 + n2) | KPumpCell(n1 + n2) | KPump(n1 + n2)
· · · | KPumpEnv(n1 + n2 + n3-1) | KPumpCell(n1 + n2 + n3-1) |

KPump(n1 + n2 + n3-1)
CreateATP | ConsumeADP

We present in detail some of the above processes. The others are writ-
ten in a similar manner.

• Cell(NaCell,KCell, AtP,ADP,NaEnv,KEnv, P) is the sys-
tem in which several quantities of ions are initialized.

• Each NaK-ATPase is described by three processes:

∗ NaKPumpEnv(id) = site2[id]160?(add(yna : NaEnv))
then site2[id]2!〈2K〉
then p[id]6?(add(yp : P))

then NaKPumpEnv(id)

127

B. Aman, G. Ciobanu

The environment site of the pump contains the channel
site2[id] used for receiving three ions of Na+ and also for
sending two ions of K+, and also the channel p[id] for re-
ceiving the produced P molecules. The sending and receiv-
ing operations modify also the number of ions present in the
system of pumps: e.g., when sending two K+ ions, an op-
eration of the form KEnv = Kenv − 2 is performed, while
receiving the yna : NaEnv ions an operation of the form
NaEnv = NaEnv + 3 is performed due to the add func-
tion that is used to add the amount of received ions to the
corresponding multiset.

∗ NaKPumpCell(id) = site1[id](12,1)!〈(3Na,ATP)〉
then adp[id]6?(add(xadp : ADP))
then site1[id]150?(add(xk : KCell))

then NaKPumpCell(id)

The cell site of the pump contains the channel site1[id] used
for sending three ions of Na+ and one ATP and also for
receiving two ions of K+, and also the channel adp[id] for
receiving the produced ADP molecules.

∗ NaKPump(id) = site1[id](28,9)?((xna : NaCell, xatp : ATP))
then adp[id]0!〈ADP 〉
then site2[id]100!〈2Na〉
then site2[id]6?(yk : KEnv)
then p[id]0!〈P 〉 then site1[id]110!〈2K〉
then NaKPump(id)

This process describes the evolution of the pump, namely the
transport of Na and K ions between the environment and
the cell.

3 Timed Automata

Due to their simplicity, timed automata, extended with integer vari-
ables, structured data types, user defined functions, and channel syn-
chronization, have been used by several tools (e.g., Uppaal) for the
simulation and verification of timed automata [2]. In what follows we
consider a particular case of timed automata, namely we ignore the

128

BioMaxP : A Formal Approach for Cellular Ion Pumps

time aspects as they are not relevant to our approach and will refer to
timed automata as automata.

Syntax Assume a finite set of integer variables C ranged over by x,
y, . . . standing for data, and a finite alphabet Σ ranged over by a,
b, . . . standing for actions. A constraint is a conjunctive formula of
constraints of the form x ∼ m for x ∈ C, ∼∈ {≤, <,==, >,≥}, and
m ∈ N. The set of constraints, ranged over by g, is denoted by B(C).

Definition 1 An automaton A is a tuple 〈N,n0, E〉, where

• N is a finite set of nodes;

• n0 is the initial node;

• E ⊆ N × B(C)× Σ× N
C ×N is the set of edges.

n
g,a,r
−−−→ n′ is a shorthand notation for 〈n, g, a, r, n′〉 ∈ E. r denotes

fresh assignments to variables after the transition is performed.

Networks of Automata A network of automata is the parallel com-
position A1 | . . . | An of a set of automata A1, . . . ,An combined into
a single system. Synchronous communication inside the network is by
handshake synchronization of input and output actions. In this case,
the action alphabet Σ consists of a? symbols (for input actions), a!
symbols (for output actions), and τ symbols (for internal actions). A
detailed example is found in [9]. A network can perform action tran-
sitions (following an enabled edge). An action transition is enabled if
all guards on the corresponding edges are satisfied.

Let u, v, . . . denote assignments mapping C to naturals N. g |= u
means that the values u satisfy the guard g. Let ni stand for the ith
element of a node vector n, and n[n′

i/ni] for the vector n with ni being
substituted with n′

i. A network state is a pair 〈n, u〉, where n denotes
a vector of current nodes of the network (one for each automaton),
and u is an assignment storing the current values of all network integer
variables.

129

B. Aman, G. Ciobanu

Definition 2 The operational semantics of an automaton is a transi-
tion system where states are pairs 〈n, u〉 and transitions are defined by
the rules:

• 〈n, u〉
τ
−→ 〈n[n′

i/ni], u
′〉 if ni

g,τ,r
−−−→ n′

i, g |=u and u′=r[u];

• 〈n, u〉
τ
−→ 〈n[n′

i/ni][n
′

j/nj], u
′〉 if there exist i 6= j such that

1. ni
gi,a?,ri−−−−→ n′

i, nj

gj ,a!,rj
−−−−→ n′

j, gi ∧ gj |= u,
2. u′ = ri[rj [u]].

4 Relating BioMaxP to Automata

In order to use existing tools such as Uppaal for the verification of
complex systems of parallel pumps, we establish a relationship between
BioMaxP and automata.

Building an automaton for each process: Given a process P
without the parallel operator at the top level, we associate to it an
automaton A = 〈N,n0, E〉, where n0 = l0, N = {l0}, E = ∅. The
initial values of the BioMaxP system composed of P are set as the initial
values of the automaton A. The nodes of the associated automata are
labelled using a fresh label l, and an index such that the nodes are
uniquely labelled in this automaton (we start with the index 0, and
increment it when necessary). The components N and E are updated
depending on the structure of process P :

• for P = amin!〈v〉 then P1 we have

– N = N ∪ {li+1} where i = max{j | lj ∈ N};
∗ The added node li+1 indicates the execution of the pro-

cess P , leading to P1.

– E = E ∪ {n,min ≤ |T |, a!, , li+1};

∗ If i > 0 it means that the automaton already contains
some edges, and the process P was launched from the
then branch of a process P ′. Since the translation is
made depending on the structure of the processes, it
means that the action leading to P is already modelled

130

BioMaxP : A Formal Approach for Cellular Ion Pumps

in the automaton. If P ′ = bmin′

!〈w〉 then P or P ′ =
bmax′

?(u : T ′) then P , then the action of P ′ is modelled
by an edge with the last component lk, and thus n = lk.

∗ Otherwise, n = l0.

The edge encodes the then branch leading to process P1.
Channel a is an urgent channel (communication takes place
as soon as possible).

• for P = amax?(f(u : T)) then P1 we have
– N = N ∪ {li+1} where i = max{j | lj ∈ N};

– E =

{
E ∪ {li, |T | ≤ max, a!, |T | = |T | − |u|, li+1}, if f = id;

E ∪ {li, |T | ≤ max, a!, |T | = |T |+ |u|, li+1}, if f=add.
A similar reasoning as for the previous case. Depending
on function f , ions are removed or added from the number
representing the existing ions of type T .

• for P =P1 | . . . |Pk, k > 1, and Pj does not contain operator | at
top level, then

– N = N ∪ {li+1} where i = max{j | lj ∈ N};
∗ If P contains some indexed nodes l (namely l0, . . . , li),

then add li+1 to N .
– E = E ∪ {n, , a!, {x = 0}, li+1};

∗ If i > 0, using a similar argument as for the commu-
nication actions, it holds that n = lk. We use a new
channel labelled a as a broadcast channel, in order to
start at the same time all the parallel processes from P .

∗ Otherwise, n = l0.
The new edge leads to process P1. For each of the other
processes Pj , j > 1, a new automaton Aj = 〈Nj , nj0, Ej , Ij〉
is build, where:
∗ nj0 = l0; Nj = {l0, l1}; Ej = {l0, , a?, {x = 0}, l1};

Ij(l0) = ∅.
The automaton is constructed recursively using the defini-
tion of Pj .

Building an automaton for each process leads to the next result about
the equivalence between a BioMaxPprocess P and its corresponding
automaton AP in state 〈nP , uP 〉 (i.e., (AP , 〈nP , uP 〉). Their transition

131

B. Aman, G. Ciobanu

systems differ not only in transitions, but also in states; thus, we adapt
the notion of bisimilarity:

Definition 3 A symmetric relation ∼ between BioMaxP processes and
their corresponding automata is a bisimulation if whenever (N, (AN ,

〈nN , uN 〉)) ∈∼ if P
λ
−→ P ′, then 〈nP , uP 〉

τ
−→ 〈nP ′ , uP ′〉 and (P ′, (AP ′ ,

〈nP ′ , uP ′〉)) ∈∼ for some P ′.

After defining bisimulation, we can state the following result.

Theorem 1 Given a BioMaxP process P , there exists an automata AP

with a bisimilar behaviour. Formally, P ∼ AP .

Proof. [Sketch] The construction of the automaton simulating a given
BioMaxPprocess is presented above. A bisimilar behaviour is given by
the fact that a communication rule is matched by a synchronization
between the edges obtained by translations. ✷

Thus, the size of an automata AP is polynomial with respect to the size
of a BioMaxPprocess P , and the state spaces have the same number of
states.

Reachability Analysis. Qualitative properties abstract away from
any quantitative information like time aspects or energy costs of tar-
geted biological systems. One of the most useful question to ask about
an automaton is the reachability of a given set of final states. Such
final states may be used to characterize safety properties of a system.

Definition 4 For an automata with initial state 〈n0, u0〉, 〈n, u〉 is

reachable if and only if 〈n0, u0〉
τ

→∗ 〈n, u〉. More generally, given a
constraint φ ∈ B(C) if 〈n, u〉 is reachable for some u satisfying φ, then
a state 〈n, φ〉 is reachable.

The reachability problem is decidable [4]. The reachability problem
can be also defined for BioMaxPnetworks.

132

BioMaxP : A Formal Approach for Cellular Ion Pumps

Definition 5 Starting from a BioMaxP process P0, a process P1 is

reachable if and only if P0

λ

→∗ P1.

The following result is a consequence of Theorem 1.

Corollary 1 For a BioMaxP process, the reachability problem is decid-
able.

5 Conclusion

Previously, we provided a formal description of the sodium-potassium
ion transport across cell membranes in terms of the π-calculus [8]. In
[7], the transfer mechanisms were described step by step, and a software
tool called Mobility Workbench [11] was used to verify some properties
of the described system formed of only one pump. Inspired by the
functioning of this pump, we introduced and studied a ratio-based type
system using thresholds in a bio-inspired framework [3]. The aim was
to avoid errors in the definition of the formal models used to mimic the
evolution of some biologic processes.

In this paper we try to unify and extend our previous attempts to
model the movement of ions in the sodium-potassium-pump by using
BioMaxP , a simple and elegant approach able to capture the quantita-
tive aspects (e.g., number of ions) and abstract conditions associated
with evolution (e.g., the number of ions is between certain thresholds).
This approach facilitates a better understanding of the processes hap-
pening in a cell viewed as a complex system of ion pumps working in
parallel. The novelty is that we are able to model systems consisting
of more than just a NaK pump by adding different amounts of other
types of ion pumps.

Acknowledgements. The work was supported by a grant of the
Romanian National Authority for Scientific Research, project number
PN-II-ID-PCE-2011-3-0919.

133

B. Aman, G. Ciobanu

References

[1] B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts,
P. Walter. Molecular Biology of the Cell, 6th edition, Garland
Science, New York (2014).

[2] R. Alur, D.L. Dill. A Theory of Timed Automata. Theoretical
Computer Science 126, 183–235 (1994).

[3] B. Aman, G. Ciobanu. Behavioural Types Inspired by Cellu-
lar Thresholds. Lecture Notes in Computer Science 8368, 1–15
(2014).

[4] J. Bengtsson, W. Yi. Timed Automata: Semantics, Algorithms
and Tools. Lecture Notes in Computer Science 3098, 87–124
(2004).

[5] D. Besozzi, G. Ciobanu. A P System Description of the Sodium-
Potassium Pump. Lecture Notes in Computer Science 3365, 210–
223 (2005).

[6] B. Bloom, S. Istrail, A.R. Meyer. Bisimulation Can’t Be Traced:
Preliminary Report. In 15th ACM Symposium on Principles of
Programming Languages, 229–239, 1988.

[7] G. Ciobanu. Software Verification of the Biomolecular Systems.
in Modelling in Molecular Biology, Natural Computing Series,
Springer, 40–59 (2004).

[8] G. Ciobanu, V. Ciubotariu, B. Tanasă. A π-calculus Model of the
Na Pump, Genome Informatics 13, 469–472 (2002).

[9] T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic Model
Checking for Real-time Systems. Information and Computation
111, 192–224 (1994).

[10] F. Moller. Axioms for Concurrency. PhD Thesis, Department of
Computer Science, University of Edinburgh, 1989.

[11] B. Victor, F. Moller. The Mobility Workbench - A Tool for the π-
Calculus. Lecture Notes in Computer Science 818, 428–440 (1994).

Bogdan Aman, Gabriel Ciobanu Received July 21, 2015

Romanian Academy, Institute of Computer Science

Blvd. Carol I no.11, 700506 Iaşi, Romania

E–mail: baman@iit.tuiasi.ro, gabriel@info.uaic.ro

134

Computer Science Journal of Moldova, vol.23, no.2(68), 2015

Structuring of Specification Modules

(extended)∗

Răzvan Diaconescu

Abstract

This paper has two goals. One goal is to provide a brief
introduction to the concept of modularisation in the context of
formal specifications. The other goal is to survey some recent
developments in this area, including parameter instantiation with
sharing and module systems for behavioural specifications.

1 Composition of Specification Modules

1.1 Formal methods in software engineering

The field of formal methods for software and hardware systems is with-
out alternative in safety-critical or security areas where one cannot take
the risk of failure. Moreover formal methods are crucial in ensuring a
smooth development of large software systems as well as their evolu-
tion and maintainability. In general one may distinguish between two
classes of formal methods:

1. model checking; and
2. formal specification.

While the former has gained certain prominence, being especially suc-
cesfull in discovering errors in the system development process, only
the latter may fully guarantee correctness.

c©2015 by Răzvan Diaconescu
∗This work has been supported by a grant of the Romanian National Authority

for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-

0439.

135

Răzvan Diaconescu

1.2 Formal specification

In simple terms, formal specification activity can be described at two
levels:

– At specification level, the system is specified axiomatically in a
formal logical system (not necessarily a conventional one).

– At verification level, the properties of the system are derived as
theorems, getting a fully formal proof.

Perhaps the most prominent classes of formal specifications are those
that are based upon algebraic principles (in a wide sense of the term).
While traditionally algebraic specification [3] is based upon a general
form of algebra (such as the equational logic of many-sorted algebra),
modern algebraic specification employs a wide variety of logical sys-
tems of higher levels of sophistication. Modern algebraic specification
systems include CASL [2], CafeOBJ [20], Maude [10], Specware [29],
etc. Heterogeneous environments [20, 32] constitute a recent integrat-
ing trend in logic-based formal specification that provides a very flexible
approach when choosing the appropriate language and formalism. The
theoretical infrastructure developed over many decades of research in
formal specification has been exported also to other areas of computing
science such as ontologies (e.g. [30]) or declarative programming.

In some cases there is a rather strong integration between the speci-
fication and the verification levels (like in OBJ, CafeOBJ, Maude, etc.).
These are systems that in some sense are most faithful to the original
algebraic specification culture that has equational logic at its core. The
algebraic features of those systems smoothen up significantly the ver-
ification process by integrating techniques with good computational
properties such as rewriting. In a way such specification languages,
also called executable languages, may function quite well as very high
level (declarative) programming languages. However equational logic
poses some limitations in the specification power. In other cases (such
as CASL, Specware, etc.) there is not a direct integration between the
specification and the verification levels, allowing for more sophisticated
logics meaning significant gains in specification power. In these cases
the formal verification methodologies may involve external automatic

136

Structuring Specification Modules

provers (SPASS [41], etc.) and/or proof assistants (Coq, Isabelle, etc.).
The difference between these two lies at the level of human involvement,
while in the former situations this is minimal, in the case of the proof
assistants the formal proofs are human guided.

An important distinctive feature of formal/algebraic specifications
is its rock solid mathematical foundations based upon the principle of
specification languages being rigorously based upon underlying formal
logical systems such that each language constructs reflect rigorously
as a mathematical concept in the underlying logic. Modern specifica-
tion theory is based upon Goguen and Burstall’s theory of institutions
[24, 14] which is a general category theoretic [31] approach to logic.
This makes the general theory independent of the actual choice of a
logical system, which means great uniformity and applicability to a
wide variety of specification languages.

1.3 Modular specifications

Modularisation is the only way to cope with the complexity of formal
specifications of large software systems. It greatly enhances readability
and reusability of specification code. Moreover structuring techniques
also reduce the complexity of the formal verification process.

The work on specification modules has a long history that starts
with the specification language Clear developed by Goguen and Burstall
[9]. That laid general founding principles for module systems of formal
specifications that have been realised by a multitude of subsequent
languages and systems, notably including programming languages such
as ADA or ML.

The main structuring constructs include

– Module imports (various kinds);
– Module sum/aggregation;
– Renamings;
– Information hiding;
– Parameterised (generic) modules and parameters instantiation by
views;

– Complex module expressions;

137

Răzvan Diaconescu

The current modularisation theory and methodologies include many
developments that have been fuelled by the actual practice in formal
specification and by the design of new modern languages and systems
supporting this activity. Moreover the modularisation technology has
been exported from the area of formal specifications to other computer
science areas, e.g. ontologies (the OMG standard OntoIOp).

Two quite major ideas have shaped the current approaches to spec-
ification modules.

1.3.1 Institution theory

The first idea is to abstract away from the details of the logic underlying
the actual specification language. The module composition techniques
are largely independent of the logical formalism employed by the re-
spective specification language; in fact this important observation con-
stituted the main idea behind the language Clear and has triggered
the conception of institution theory [24] as an abstract framework for
modularisation. This very general mathematical study of formal logi-
cal systems, with emphasis on semantics, is based upon a mathematical
definition for the informal notion of logical system, called institution.
This definition accommodates not only well established logical systems
but also very unconventional ones and moreover it has served and it
may serve as a template for defining new ones. Institution theory ap-
proaches logic from a relativistic, non-substantialist perspective, quite
different from the common reading of logic. This is not opposed to the
established logic tradition, since it rather includes it from a higher
abstraction level. However the real difference is made at the level
of methodology, top-down (in the case of institution theory) versus
bottom-up (in the case of conventional logic tradition). Institution the-
ory has had a strong impact in computer science and logic for over
more than three decades (see [16]), and it continues to attract an ever
growing interest in institution theory by computer scientists and (more
recently) logicians.

138

Structuring Specification Modules

Let us very briefly recall here the main concept of institution theory.

Definition 1 (Institutions) An institution is a tuple
(Sign,Sen,Mod , (|=Σ)Σ∈|Sign||) that consists of

– a category Sign whose objects are called signatures,

– a functor Sen : Sign → Set (to the category of sets) giving for
each signature a set whose elements are called sentences over that
signature,

– a (contravariant) functor Mod : (Sign)op → CAT (to the ‘category’
of categories), giving for each signature Σ a category whose ob-
jects are called Σ-models, and whose arrows are called Σ-(model)
homomorphisms, and

– a relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sign|, called
the satisfaction relation,

such that for each morphism ϕ : Σ → Σ′ ∈ Sign, the Satisfaction Con-
dition

M ′ |=Σ′ Sen(ϕ)(ρ) if and only if Mod(ϕ)(M ′) |=Σ ρ (1)

holds for each M ′ ∈ |Mod(Σ′)| and ρ ∈ Sen(Σ).

The literature (e.g. [14, 39]) shows myriads of logical systems from
computing or from mathematical logic captured as institutions. In
fact, an informal thesis underlying institution theory is that any ‘logic’
may be captured by the above definition. While this should be taken
with a grain of salt, it certainly applies to any logical system based on
satisfaction between sentences and models of any kind.

1.3.2 Core specification building operators

A second important idea envisaged in many works (e.g. [38, 4, 39], etc.)
is to have a core set of specification building operators, with a clearly
defined semantics, that can be used to define composition operators in
actual module systems. The most prominent such set of specification

139

Răzvan Diaconescu

building operators has been introduced in [38]; we recall them below
in the more modern form of [8].

Given any institution (Sign,Sen,Mod , |=) with designated classes
of signature morphisms T and D the class of the (T ,D)-structured
specifications [8] is the least class such that

– it contains all finite presentations, i.e. pairs (Σ, E) with Σ signa-
ture and E finite set of Σ-sentences; we also define

– Φ(Σ, E) = Σ and

– Mod(Σ, E) = {M ∈ |Mod(Σ)| | M |= E},

– if SP1 and SP2 are structured specifications such that Φ(SP1) =
Φ(SP2), then SP1 ∪ SP2 is also a structured specification and we
define

– Φ(SP1 ∪ SP2) = Φ(SPi) and

– |Mod(SP1 ∪ SP2)| = |Mod(SP1) ∩Mod(SP2)|,

– if SP is a structured specification and (ϕ : Φ(SP) → Σ′) ∈ T , then
SP ⋆ ϕ is structured specification and

– Φ(SP ⋆ ϕ) = Σ′ and

– |Mod(SP ⋆ ϕ)| = {M ′ | Mod(ϕ)(M ′) ∈ Mod(SP)}, and

– if SP′ is a structured specification and (ϕ : Σ → Φ(SP′)) ∈ D,
then ϕ✷SP′ is structured specification and

– Φ(ϕ✷SP′) = Σ and

– |Mod(ϕ✷SP′)| = {M ′↾ϕ | M ′ ∈ Mod(SP)}.

Given a structured specification SP as above Φ(SP) is its signature
Φ(SP) and Mod(SP) is its class of models. The signature and the class
of models of a specification SP represents its semantics.

When the actual specification language provides tight semantics ca-
pabilities, then an initial or final semantics operator is also typically
included. However occasionally (see [18]) these specification building
operators do not suffice, therefore other operators have also to be con-
sidered.

140

Structuring Specification Modules

1.3.3 Inclusion systems

At the end of this section we would like to briefly present a category
theoretic device that plays an important technical role in the theory of
specification modules.

Inclusion systems were introduced in [23] with the aim of support-
ing an abstract general study of structuring specifications and program-
ming modules that is independent of any underlying logic. While com-
puter science is usually a heavy consumer of mathematics, inclusion
systems can be seen as opposite, i.e. a rare contribution of computer
science to pure mathematics. Inclusion systems have been used in a
series of general module algebra studies such as [23, 27, 14], and also
in institutional model theory studies [14, 36, 13, 1, 14]. Inclusion sys-
tems capture categorically the concept of set-theoretic inclusion in a
way reminiscent of the manner in which the rather notorious concept
of factorisation system [7] captures categorically the set-theoretic injec-
tions; however, in many applications the former are more convenient
than the latter. The definition below can be found in the recent liter-
ature on inclusion systems (see, e.g. [14]), and differs slightly from the
original one of [23].

Definition 2 (Inclusion system) An inclusion system for a cate-
gory C is a structure 〈I, E〉 such that I and E are broad subcategories
of C satisfying the following two properties:

– I is a partial order (with the ordering relation denoted by ⊆), and

– every arrow f in C can be factored uniquely as f = ef ; if , with
ef ∈ E and if ∈ I.

In [12] it was shown that the category I of abstract inclusions de-
termines the category E of abstract surjections. In this sense, [12] gives
an explicit equivalent definition of inclusion systems that relies only on
the category I of abstract inclusions.

The standard example of inclusion system is that from Set, with
set theoretic inclusions in the role of abstract inclusions and surjective
functions in the role of abstract surjections. The literature contains

141

Răzvan Diaconescu

many other examples of inclusion systems for the categories of signa-
tures and for the categories of models of various institutions from logic
or specification theory.

2 Recent Developments

In this section we survey some recent developments in the theory of
modular formal specifications. Three topics are considered: general
theory, genericity and sharing, and module systems for behavioural
specifications.

2.1 General theory

Pivotal developments in the institutional theory of structured spec-
ifications (such as [38, 23] etc.) provide an abstract treatment of
the underlying logic as an abstract institution but consider fixed sets
of concrete structuring operators. To overcome this limitation, but
also to achieve unification between the Goguen-Burstall [24, 23] and
the Sannella-Tarlecki [38, 39] approaches to the semantics of struc-
tured specifications, the recent paper [15] introduces a second level of
institution-independence by treating the class of the structured spec-
ifications together with their model theory as an abstract institution.
The relationship between the level of structured specifications and the
level of the underlying logic is axiomatized by a special kind of insti-
tution morphism. The following definition recalls from [15] the main
concept of this theory.

Definition 3 (Structured institution) An institution
I ′ = (Sign ′,Sen ′,Mod ′, |=′) is said to be structured over a base insti-
tution I = (Sign ,Sen,Mod , |=) through a structuring functor Φ, or
(Φ,I)-structured, when

– Φ is a functor Sign ′ → Sign,

– for every I ′-signature Σ′, Sen(Φ(Σ′)) = Sen ′(Σ′), and similarly,
for every I ′-signature morphism ϕ′, Sen(Φ(ϕ′)) = Sen ′(ϕ′),

142

Structuring Specification Modules

– for every I ′-signature Σ′, Mod ′(Σ′) is a full subcategory of
Mod(Φ(Σ′)) such that the diagram below commutes for every I ′-
signature morphism ϕ : Σ′

1
→ Σ′

2
, and

Mod ′(Σ′

1
)

⊆ // Mod(Φ(Σ′

1
))

Mod ′(Σ′

2)

Mod ′
(ϕ)

OO

⊆

// Mod(Φ(Σ′

2))

Mod(Φ(ϕ))

OO

– for every I ′-signature Σ′, Σ′-model M ′ and Σ′-sentence ρ,

M ′ |=′

Σ′ ρ if and only if M ′ |=Φ(Σ′) ρ.

Several examples of structured institutions are presented in some
detail in [15]. One of the most important ones is that of the structured
specifications of Sect. 1.3.2. In that example, Sign ′ is the category
of the structured specifications, Mod ′(SP) is Mod(SP) as defined in
Sect. 1.3.2 and the satisfaction relation of I ′ is inherited from I in the
obvious way.

Recent papers such as [15, 40, 11, 19, 17] develop elements of mod-
ularisation theory in this abstract framework.

2.2 Genericity and Sharing

Generic or parameterised modules represent one of the most important
module composition techniques because they can be (re)used in vari-
ous ways by appropriate instantiations of their parameters. In simple
terms, a parameterised module (denoted SP(P)) can be regarded as
a module import P → SP, with P being its parameter and SP being
its body. Instantiation of parameterised modules is performed through
interpretations of their parameters. In the specification literature they
are usually called views and they are syntactic mappings v : P → SP1

that satisfy two conditions:

1. they match consistently the signature of the parameter P to the
signature of the value SP1 (which is also a specification module);

143

Răzvan Diaconescu

technically this amounts to the fact that v is a signature mor-
phism; and

2. any implementation1 of SP1 has to be a an implementation of the
parameter P via the interpretation of the syntactic entities given
by v.

Given a parameterised module SP(P) and a view v : P → SP1 the
instance SP(P ⇐ v) is commonly defined by the using the pushout
technique (cf. [9, 39], etc.) from category theory [31], which informally
can be explained as a ‘user-defined’ form of union. This is a two-steps
process. First consider the underlying signatures of the specifications
and compute a pushout in the category of signatures:

Φ(P)
⊆ //

Φ(v)

��

Φ(SP)

v′

��
Φ(SP1)

i′
// Σ′

At the second stage we built the actual instance

P //

v

��

SP

v′

��
SP1

i′
// SP(P ⇐ v)

(2)

by defining

SP(P ⇐ v) = (SP1 ⋆ i
′) ∪ (SP ⋆ v′).

This requires that, minimally, there are unions and translations avail-
able as building operators.

While this is the traditional approach to parameter instantia-
tion which is widely employed by actual specification formalisms (e.g.
[9, 2, 20], etc.) and also by programming languages such as ML and

1Mathematically speaking, ‘implementations’ are treated as models or interpre-

tations in the underlying logic.

144

Structuring Specification Modules

other languages influenced by it, it still raises several technical issues
of important methodological significance and that can be summarised
as follows:

1. Since the pushout construction is unique only up to isomorphic
renaming, actual implementations of module systems involving
parameters provide ad-hoc constructions for the results of param-
eter instantiations. But how can we ensure in general that there
exists an instantiation such that SP1 → SP(P ⇐ v) behaves like
an import, and moreover would this be uniquely defined?

2. In order to avoid technical complications the actual specification
systems commonly dismiss the sharing between the body (SP)
and the instance (SP1), a situation that in practice constitutes a
real restriction, as for example it may lead to duplication of the
same data.

3. In the case of multiple parameters, for example SP(P1, P2), we
can instantiate them sequentially (first (SP(P1 ⇐ v1)(P2) and
next SP(P1 ⇐ v1)(P2 ⇐ v2), or the other way around) or in
parallel by regarding SP as parameterised by a single parameter,
SP(P1 + P2 ⇐ v1 + v2). Are the two sequential instantiations
and the parallel one equivalent methods in the sense of yielding
isomorphic results?

The main technicalities involved in the answer to these questions in-
clude both a reshape of the definition of parameter instantiation and a
general property of the signatures of the specification language formu-
lated. In brief the traditional pushout square (2) has to be redefined
as

P ∪ SP1

⊆ //

v∪1SP1

��

SP ∪ SP1

v′

��
SP1

i
// SP(P ⇐ v)

(3)

(where v ∪ 1SP1
implies that v is identity on the part shared between

P and SP1)

145

Răzvan Diaconescu

and the signatures have to enjoy the following general property: for
any signature morphism ϕ : Σ → Σ1 and any inclusion Σ ⊆ Σ′

Σ ∩ Ω

1©⊆

��

⊆

��

⊆ // Σ′ ∩ Ω

⊆

��
2© ⊆

��

Σ

3©

⊆ //

ϕ

��

Σ′

ϕ′

��
Σ1

⊆

// Σ′

1

there exists a pushout 3© such that for any signature Ω if 1© holds then
2© holds too.

In the works [18, 15, 40] the concepts of inclusion (⊆), union (∪),
intersection (∩), disjointness, etc. are treated abstractly within the
framework of ‘inclusion systems’ as presented in Sect 1.3.3. In this way
the solution proposed is general and can be applied to almost all exist-
ing specification formalisms (with the notable exception of behavioural
specifications discussed below). The required property above holds
naturally for all specification formalisms of interest, often in a stronger
form than actually required (see [18, 40]). The generality of this so-
lution implies also that it can be employed also by new specification
formalisms to be defined in the future.

2.3 Module systems for behavioural specifications

Modern algebraic specification theory and practice has extended the
traditional many-sorted algebra-based specification to several new
paradigms. One of the most promising is behavioural specification,
which originates from the work of Horst Reichel [33, 34] and can be
found in the literature under names such as hidden algebra [25, 26],
observational logic [5, 28], coherent hidden algebra [21] and hidden
logic [35]. Behavioural specification characterises how objects (and
systems) behave, not how they are implemented. This new form of
abstraction can be very powerful for the specification and verification
of software systems since it naturally embeds other useful paradigms

146

Structuring Specification Modules

such as concurrency, object-orientation, constraints, nondeterminism,
etc. (see [26] for details). In the tradition of algebraic specification,
the behavioural abstraction is achieved by using specification with hid-
den sorts and a behavioural concept of satisfaction based on the idea of
indistinguishability of states that are observationally the same, which
also generalizes process algebra and transition systems (see [26]). An
important effort has been undertaken to develop languages and systems
supporting the behavioural extension of conventional or less conven-
tional algebraic specification techniques; these include CafeOBJ [20, 22],
CIRC [37] and BOBJ [35]. In other situations, behavioural specifica-
tion, although not directly realized at the level of the language defini-
tion, is employed as a mere methodological device [6]. In all cases there
is the unavoidable need of a structuring mechanism for behavioural
specifications.

However the modularisation of behavioural specifications poses spe-
cific challenges with respect to the standard modularisation techniques.
Some important properties that in general are taken for granted do not
hold in the case of behavioural specifications, for example the basic
operation of union (aggregation) of behavioural specifications is only
partial. The root cause of these problems lies in the ‘encapsulation con-
dition’ on the signature morphisms, which prohibits new behavioural
operations on old hidden sorts (i.e. that correspond to sorts of the
source signature). Therefore the basic compositionality properties of
behavioural specifications hold in a partial rather than total algebra
style form. For example (see [19]) the associativity of union of be-
havioural specifications

(SP ∪ SP′) ∪ SP′′ = SP ∪ (SP′ ∪ SP′′)

means that either both members are defined and are equal semantically
or else that neither of them is defined.

In the case of the instantiation of parameterised behavioural speci-
fications the pushout square (2) is replaced with the following pushout

147

Răzvan Diaconescu

square:

P ∪ (SP ∩ SP1)
⊆ //

v∪id

��

SP

��
SP1

// SP′

1

(4)

when P ∪ SP1 is defined. When SP ∪ SP1 is defined too, (4) can be
replaced by the technically more convenient (3). However in this case
the condition underlying (3) is stronger than that of (4) (note that
according to [19] while unions of behavioural specifications are partial,
intersections are total).

3 Conclusions and Future Research

We have presented some important elements of modularisation the-
ory in formal specification, including important mathematical tools
(institutions, inclusion systems) and methods (pushout-style parame-
terisation). In the second part of the paper we have discussed recent
developments such as two-layered institution-independence, upgrade
to pushout-style, multiple parameters, and behavioural specification.
The latter three topics have been developed in close collaboration with
Ionuţ Ţuţu.

At this moment there is ongoing work on parameterisation with
sharing for behavioural specifications, on general views for parameter
instantiation, etc.

References

[1] Marc Aiguier and Fabrice Barbier. An institution-independent
proof of the Beth definability theorem. Studia Logica, 85(3):333–
359, 2007.

[2] Edigio Astesiano, Michel Bidoit, Hélène Kirchner, Berndt Krieg-
Brückner, Peter Mosses, Don Sannella, and Andrzej Tarlecki.

148

Structuring Specification Modules

CASL: The common algebraic specification language. Theoreti-
cal Computer Science, 286(2):153–196, 2002.

[3] Jan Bergstra, Jan Heering, and Paul Klint. Algebraic Specification.
Association for Computing Machinery, 1989.

[4] Jan Bergstra, Jan Heering, and Paul Klint. Module algebra. Jour-
nal of the Association for Computing Machinery, 37(2):335–372,
1990.

[5] Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioural
and abstractor specifications. Sci. Comput. Program., 25(2-3):149–
186, 1995.

[6] Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Observa-
tional interpretation of CASL specifications. Mathematical Struc-
tures in Computer Science, 18(2):325–371, 2008.

[7] Francis Borceux. Handbook of Categorical Algebra. Cambridge
University Press, 1994.

[8] Tomasz Borzyszkowski. Logical systems for structured specifica-
tions. Theoretical Computer Science, 286(2):197–245, 2002.

[9] Rod Burstall and Joseph Goguen. The semantics of Clear, a speci-
fication language. In Dines Bjorner, editor, 1979 Copenhagen Win-
ter School on Abstract Software Specification, volume 86 of Lecture
Notes in Computer Science, pages 292–332. Springer, 1980.

[10] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln,
Narciso Mart́ı-Oliet, José Meseguer, and Carolyn Talcott. All
About Maude - A High-Performance Logical Framework, volume
4350 of Lecture Notes in Computer Science. Springer, 2007.

[11] Ionuţ Ţuţu. Comorphisms for structured institutions. Information
Processing Letters, 113(894–900), 2013.

[12] Virgil Emil Căzănescu and Grigore Roşu. Weak inclusion systems.
Mathematical Structures in Computer Science, 7(2):195–206, 1997.

[13] Răzvan Diaconescu. Elementary diagrams in institutions. Journal
of Logic and Computation, 14(5):651–674, 2004.

[14] Răzvan Diaconescu. Institution-independent Model Theory.
Birkhäuser, 2008.

149

Răzvan Diaconescu

[15] Răzvan Diaconescu. An axiomatic approach to structuring speci-
fications. Theoretical Computer Science, 433:20–42, 2012.

[16] Răzvan Diaconescu. Three decades of institution theory. In Jean-
Yves Béziau, editor, Universal Logic: an Anthology, pages 309–322.
Springer Basel, 2012.

[17] Răzvan Diaconescu. On the existence of translations of structured
specifications. Information Processing Letters, 115(1):15–22, 2015.

[18] Răzvan Diaconescu and Ionuţ Ţuţu. On the algebra of structured
specifications. Theoretical Computer Science, 412(28):3145–3174,
2011.

[19] Răzvan Diaconescu and Ionuţ Ţuţu. Foundations for structuring
behavioural specifications. Journal of Logical and Algebraic Meth-
ods in Programming, 83(3–4):319–338, 2014.

[20] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report:
The Language, Proof Techniques, and Methodologies for Object-
Oriented Algebraic Specification, volume 6 of AMAST Series in
Computing. World Scientific, 1998.

[21] Răzvan Diaconescu and Kokichi Futatsugi. Behavioural coherence
in object-oriented algebraic specification. Universal Computer Sci-
ence, 6(1):74–96, 2000. First version appeared as JAIST Technical
Report IS-RR-98-0017F, June 1998.

[22] Răzvan Diaconescu and Kokichi Futatsugi. Logical foundations of
CafeOBJ. Theoretical Computer Science, 285:289–318, 2002.

[23] Răzvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Log-
ical support for modularisation. In Gerard Huet and Gordon
Plotkin, editors, Logical Environments, pages 83–130. Cambridge,
1993. Proceedings of a Workshop held in Edinburgh, Scotland,
May 1991.

[24] Joseph Goguen and Rod Burstall. Institutions: Abstract model
theory for specification and programming. Journal of the Associ-
ation for Computing Machinery, 39(1):95–146, 1992.

[25] Joseph Goguen and Răzvan Diaconescu. Towards an algebraic se-
mantics for the object paradigm. In Hartmut Ehrig and Fernando
Orejas, editors, Recent Trends in Data Type Specification, volume

150

Structuring Specification Modules

785 of Lecture Notes in Computer Science, pages 1–34. Springer,
1994.

[26] Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical
Computer Science, 245(1):55–101, 2000.

[27] Joseph Goguen and Grigore Roşu. Composing hidden information
modules over inclusive institutions. In Olaf Owe, Stein Krogdahl,
and Tom Lyche, editors, From Object-Orientation to Formal Meth-
ods, volume 2635 of Lecture Notes in Computer Science, pages
96–123. Springer, 2004.

[28] Rolf Hennicker and Michel Bidoit. Observational logic. In A. M.
Haeberer, editor, Algebraic Methodology and Software Technol-
ogy, number 1584 in LNCS, pages 263–277. Springer, 1999. Proc.
AMAST’99.

[29] Kestrel Institute. Specware system and documentation, 2003.
www.specware.org.

[30] Oliver Kutz, Till Mossakowski, and Dominik Lücke. Carnap,
Goguen, and the hyperontologies - logical pluralism and heteroge-
neous structuring in ontology design. Logica Universalis, 4(2):255–
333, 2010.

[31] Saunders Mac Lane. Categories for the Working Mathematician.
Springer, second edition, 1998.

[32] T. Mossakowski, C. Maeder, and K. Lütich. The heterogeneous
tool set. In Lecture Notes in Computer Science, volume 4424,
pages 519–522. 2007.

[33] Horst Reichel. Behavioural equivalence – a unifying concept for
initial and final specifications. In Proceedings, Third Hungarian
Computer Science Conference. Akademiai Kiado, 1981. Budapest.

[34] Horst Reichel. Initial Computability, Algebraic Specifications, and
Partial Algebras. Clarendon, 1987.

[35] Grigore Roşu. Hidden Logic. PhD thesis, University of California
at San Diego, 2000.

[36] Grigore Roşu. Axiomatisability in inclusive equational logic. Math-
ematical Structures in Computer Science, 12(5):541–563, 2002.

151

Răzvan Diaconescu

[37] Grigore Roşu and Dorel Lucanu. Circular coinduction: A proof
theoretical foundation. In Alexander Kurz, Marina Lenisa, and
Andrzej Tarlecki, editors, Algebra and Coalgebra in Computer Sci-
ence, volume 5728 of Lecture Notes in Computer Science, pages
127–144, 2009.

[38] Donald Sannella and Andrzej Tarlecki. Specifications in an arbi-
trary institution. Information and Control, 76:165–210, 1988.

[39] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic
Specifications and Formal Software Development. Springer, 2012.

[40] Ionuţ Ţuţu. Parameterisation for abstract structured specifica-
tions. Theoretical Computer Science, 517:102–142, 2014.

[41] Christoph Weidenbach, Uwe Brahm, Thomas Hillenbrand, Enno
Keen, Christian Theobald, and Dalibor Topic. Spass version 2.0.
In Proceedings of the 18th International Conference on Automated
Deduction, CADE-18, pages 275–279, London, UK, 2002. Springer-
Verlag.

Răzvan Diaconescu Received September 11, 2015

Simion Stoilow Institute of Mathematics of Romanian Academy

Romania

E–mail: Razvan.Diaconescu@imar.ro

152

Computer Science Journal of Moldova, vol.23, no.2(68), 2015

Fundamental theorems of

extensional untyped λ-calculus revisited

Alexandre Lyaletsky

Abstract

This paper presents new proofs of three following fundamental
theorems of the untyped extensional λ-calculus: the η-Postpo-
nement theorem, the βη-Normal form theorem, and the Norma-
lization theorem for βη-reduction. These proofs do not involve
any special extensions of the standard language of λ-terms but
nevertheless are shorter and much more comprehensive than their
known analogues.

Keywords: extensional untyped λ-calculus, βη-reduction,
postponement of η-reduction, η-Postponement theorem, βη-Nor-
mal form theorem, Normalization theorem for βη-reduction.

1 Introduction

The untyped version of the λ-calculus is considered.

Its variables are denoted by symbols x, y and z, λ-terms by t, p, q,
u and w, redeces by △ (of cause, indices are sometimes used). All the
other denotations used in the paper are completely standard or other-
wise will be introduced separately.

Throughout the paper the variable convention is assumed to be
satisfied; hence the conditions x /∈ t and x /∈ FV (t) say the same.

Recall some basic facts concerning η- and βη-reduction. By def-
inition, the notion η of η-reduction is {< λx.wx,w > | x /∈ w }, the
notion βη of βη-reduction is β ∪ η. The notions of η- and βη-reduction
induce, in the usual way, the dictionaries of their derivative notions
(such as η- and βη-redeces, the relations of one-step and multi-step η-

c©2015 by Alexandre Lyaletsky

153

Alexandre Lyaletsky

and βη-reduction, η- and βη-reduction sequences, etc.). Remark that
the notion of η-reduction is strongly normalizing since the contraction
of an η-redex in any λ-term decreases its length.

The extensional untyped λ-calculus studies properties of the notion
of βη-reduction as well as of its derivative relations, especially ։βη

(multi-step βη-reduction) and =βη (βη-convertibility). Along with
the Church-Rosser theorem for βη-reduction (and not taking the re-
sults on λ-representability into account), the most important results
in the extensional λ-calculus are: 1) the η-Postponement theorem,
2) the βη-Normal form theorem, 3) the Normalization theorem for
βη-reduction.

In the paper, new proofs of the theorems 1) – 3) are constructed.
These proofs do not involve any special extensions of the standard
language of λ-terms but nevertheless are shorter and much more com-
prehensive than their original or known analogues. (For example, the
original proof of the theorem 3) by J.W.Klop takes over 20 pages and
is technically very complicated.) The new proofs are arranged in the
following logical order: 1) ⇒ 2) ⇒ 3).

2 Postponable binary relations

Our proof of the η-Postponement theorem exploits some general pro-
perties which are more convenient to be observed and studied in the
general set-theoretic situation.

Definition 1. Given a set A and binary relations Q and R on A, then
R is said to be postponable after Q if the following diagram holds:

·
Q

��✁
✁
✁
✁

R

��❂
❂❂

❂❂
❂❂

·

R ��❂
❂

❂
❂ ·

Q��✁✁
✁✁
✁✁
✁

·

(Here and in the sequel, the language of diagrams of binary relations
is used. In the general case, such a diagram is a configuration on the

154

Fundamental theorems of extensional untyped λ-calculus revisited

plane consisting of points some of which may be labelled by elements
of a fixed set A, and arrows between points, each obligatorily labelled
by a binary relation on A. Each arrow can be of two sorts: usual or
dotted. If a diagram contains a usual arrow from a to b and labelled by
R, then the latter expresses that aR b; if a point has no label, then it
is considered to be bounded by a universal quantifier (restricted by A).
At that, precisely those arrows are dotted that lead to or start with
the elements, the existence of which is being claimed (together with
the conditions imposed by the labels). Thus, each diagram (containing
at least one dotted arrow) determines a certain implicative statement.
For example, the diagram from the last definition means the following:

∀a, b, c ∈A
[
aR b & bQ c ⇒ ∃ d ∈A (aQd & dR c)

]
,

i.e. that R ◦ Q ⊆ Q ◦ R, where ◦ denotes the usual composition of
binary relations.)

Note that if binary relations Q = f and R = g are functions, then
g is postponable after f if and only if g ◦ f = f ◦ g, that is f and
g commute with each other. Therefore, in this case f is postponable
after g as well. However in the general case the latter is not valid, i.e.
the notion of postponability is not symmetric.

By R+ and R∗ denote, resp., the transitive and reflexive-transitive
closures of a binary relation R.

It can easily be proved that if R is postponable after Q, then R∗ is
postponable after Q∗ as well. Containing this statement as a particular
case, the following result can be viewed as its natural generalization.

Postponement Lemma. Let Q and R be binary relations on a set A
such that for any triple of elements of A, at least one of the following
diagrams holds:

·
Q

��✁
✁
✁
✁

R

��❂
❂❂

❂❂
❂❂

·

Q+

��✤
✤

✤

✤

✤

✤
R

��❂
❂❂

❂❂
❂❂

·

R∗

��❂
❂

❂
❂ ·

Q��✁✁
✁✁
✁✁
✁

or ·

Q��✁✁
✁✁
✁✁
✁

· ·

Then R∗ is postponable after Q∗ and (Q ∪R)∗ = Q∗◦R∗.

155

Alexandre Lyaletsky

Proof. Since R∗ ◦ Q∗ ⊆ (Q ∪ R)∗, for proving the postponability, it is
sufficient to show that (Q ∪R)∗ ⊆ Q∗◦R∗, which also substantiates the
second statement (the inclusion opposite to the latter holds trivially).
Let a and c be any elements of A with a (Q∪R)∗c. Obviously, it can be
assumed that a 6= c. Then there is, for some elements b1, . . . , bn−1 ∈ A,
a valid sequence of the form

b0 S0 b1 S1 b2 S2 . . . Sn−2 bn−1 Sn−1 bn , (1)

where b0 = a, bn = c, and Si ∈ {Q,R} for every i ∈ {0, n − 1}.
Consider its leftmost “two-step” segment of the form bkRbk+1Qbk+2

(if there is no such a segment, there is nothing to prove). If, for simp-
licity, the “Q-prefix” of (1) is empty, then (1) has the following form:

b0Rb1Rb2R . . . R bk−1Rbk Rbk+1Qbk+2 Sk+2 bk+3 Sk+3 . . . Sn−1bn . (2)

Applying one of the diagrams from the conditions of the lemma to
the underlined segment, one of the following sequences will be obtained:

b0R . . . R bk−1Rbk Qb′k+1Rb′k+1, 1R . . . R b′k+1,mRbk+2Sk+2 . . . Sn−1 bn

(in the case of the left diagram), where m is a natural number, or

b0R . . . R bk−1Rbk Qb′k+1, 1Q . . . Q b′k+1, mQbk+2Sk+2 . . . Sn−1 bn

(in the case of the right diagram), wherem is a positive natural number.
Comparing the obtained sequences with the previous one, notice

that in the both cases, the position of the leftmost occurrence of Q is
one item to the left than that was in (2). Therefore, the proof can be
completed by induction, applied to the set of sequences of the form (1)
that is considered to be lexicographically ordered in accordance with
the positions of all occurrences of Q in a sequence under consideration
when reading it from left to right. �

Remark. The Postponement lemma states less than that was proved.
Actually, the above given proof determines an algorithm of reconstruc-
ting each sequence (1) to a form b0Q . . . Q dR . . . R bn which will be
referred to as postponing R after Q. (Of cause, this algorithm makes
sense provided the conditions of the lemma are satisfied.)

156

Fundamental theorems of extensional untyped λ-calculus revisited

3 Postponement of η-reduction

Note that when considering diagrams over the set of λ-terms some ar-
rows of which are labelled by one-step reductions, it is often convenient
to introduce additional labels for (some of) these arrows for indicating
the contracted redex occurrences. (Examples are given below.)

Given a one-step βη-reduction sequence σ : t1
△
−→βη t2. If △1 is

such a βη-redex occurrence in t1 that has exactly one residual in t2
(w.r.t. σ), then the latter will be denoted by

−→
△1. If △2 is a βη-redex

occurrence in t2, then it can be trivially verified that there can be
at most one βη-redex occurrence in t1 for which △2 is a residual of
(or belongs to the set of residuals of); in this case, it is denoted by

←−
△2,

i.e.
←−
△2 is a “coresidual” of △2 w.r.t. σ.

η-Postponement Theorem. [1; 2] Every finite βη-reduction sequ-
ence σ : t1 ։βη t2 can be reconstructed into a sequence of the form
σ′ : t1։β u ։η t2, for some λ-term u.

Proof. Let us verify the diagrams from the conditions of the Post-
ponement lemma (with Q =−→β and R =−→η). For a given two-step

βη-reduction sequence of the form t1
△η
−→η t2

△β
−→β t3, note that the

coresidual
←−
△β always exists and is always a β-redex occurrence in t1.

Let △η ≡ λx.wx, △β ≡ (λy.p′)q′ and
←−
△β ≡ (λz.p)q. Consider all the

possible cases of mutual locations of the redeces △η and
←−
△β in t1:

1. △η ∩
←−
△β = ∅

2. △η⊃
←−
△β

3. △η⊂
←−
△β

3.1. △η ≡ λz.p ≡ λx.(λy.p′)x (hence z ≡ x and q ≡ q′)

3.2. △η ⊆ p (hence z ≡ y and q ≡ q′)

3.3. △η ⊆ q (hence z ≡ y and p ≡ p′)

The cases 1, 2 and 3.2 are trivial: one only needs to reverse the
order of contractions (first, to contract

←−
△β in t1 and then, to contract

the residual
−→
△η of △η in the resulting term), which all lead to a diagram

of the form:

157

Alexandre Lyaletsky

t1
←−
△β

β ��✁
✁
✁
✁ △η

η��❄
❄❄

❄❄
❄❄

·

−→
△η

η
��❂

❂
❂

❂ t2

△β

β
��⑧⑧
⑧⑧
⑧⑧
⑧

t3

Case 3.1:
. . . (λx.(λy.p′)x)q′ . . .

(λx.(λy.p′)x)q′

β
xxq q

q
q
q
q
q
q
q
q
q
q

λx.(λy.p′)x

η
&&▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼

. . . (λy.p′)q′ . . .

(λy.p′)q′

β &&▼
▼

▼
▼

▼
▼

▼
▼

▼
▼

▼
▼

. . . (λy.p′)q′ . . .

(λy.p′)q′

βxxqqq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq

. . . p′[y := q′] . . .

Case 3.3. First, consider the subcase when q ≡△η ≡ λx.wx:

. . . (λy.p′)(λx.wx) . . .

(λy.p′)(λx.wx)

β
ww♦ ♦

♦
♦
♦
♦
♦
♦
♦
♦
♦
♦

λx.wx

η
&&▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

. . . p′[y := λx.wx] . . .

η '' ''❖
❖

❖
❖

❖
❖

❖
❖

❖
❖

❖
❖

. . . (λy.p′)w . . .

(λy.p′)w

βxxqqq
qq
qq
qq
qq
qq
qq
qq
qq
qq
q

. . . p′[y := w] . . .

Finally, in the general conditions of the case 3.3, one has
q ≡ . . . λx.wx . . . , which leads to a diagram similar to the latter. �

158

Fundamental theorems of extensional untyped λ-calculus revisited

4 βη-Normal forms

Note that for a λ-term of the form (λx.wx)q, where x /∈ w, the both

contractions (λx.wx)q
(λx.wx)q
−−−−−→β wq and (λx.wx)q

λx.wx
−−−−→η wq lead to

the same result wq.

Definition 2. An η-redex occurrence △η ≡ λx.wx in a λ-term t is
called β-replaceable, if △η is a re-part of some β-redex occurrence in t,
i.e. there is a term q such that (λx.wx)q is a β-redex occurrence in t.

Lemma 1. Given a finite η-reduction sequence σ : t ։η t′ in which
neither of the contracted η-redeces is β-replaceable. If t′ is a β-normal
form, then so is t.

Proof. Obviously, it is sufficient to prove the lemma for the case of

a one-step η-reduction sequence σ : t
△η
−→η t′. If t is not a β-normal

form, then it contains some β-redex occurrence (λx.p)q and hence
t ≡ . . . (λx.p)q Since △η is not β-replaceable, it follows that
△η 6≡ λx.p. Then, evidently, (λx.p)q has a nonempty residual in t′

which is a β-redex occurrence. Thus, t′ is not a β-normal form. �

βη-Normal Form Theorem. [1; 3] An arbitrary λ-term t has a
βη-normal form ⇔ t has a β-normal form.

Proof. The sufficiency is obvious, since if t has a β-normal form t′,
then any η-redex contraction in t′ does not create new β-redeces and
decreases the length of t′.

Let us prove the necessity. Suppose a λ-term t has a βη-normal
form t′. By the Church-Rosser theorem for βη-reduction ([1; 2]), then
there is a βη-reduction sequence σ : t ։βη t′. Moreover, it can be as-
sumed without loss of generality that neither of the η-redeces being
contracted in σ is β-replaceable (since any such an η-redex can be re-
placed in σ with the corresponding β-redex). Furthermore, from the
analysis of the diagrams from the proof of the η-Postponement theorem
it can be concluded that when postponing η-reduction in σ, no con-
tracted β-replaceable η-redeces can emerge. Therefore, there exists a
βη-reduction sequence of the form σ′ : t ։β u ։η t′, for some λ-term u,

159

Alexandre Lyaletsky

that does not contract neither of the β-replaceable η-redeces. Lemma
1 finally implies that u is the needed β-normal form of t. �

5 Normalization theorem for βη-reduction

Recall that for a given notion R of reduction and λ-term t, an R-left-
most redex is any such an R-redex occurrence in t, the position (in t) of
the first symbol of which cannot be strictly to the right of the position
of the first symbol of any other R-redex occurrence. Therefore, this
notion is not deterministic in the general case, i.e. for some notion R
of reduction, a term t may have two or more distinct leftmost R-redex
occurrences. By this reason, the latter notion is sometimes strength-
ened to the notion of the R-leftmost-outermost redex occurrence which
is always unique in every λ-term (if any).

As to the βη-reduction, the notion of a βη-leftmost redex occurrence
is not deterministic as well. However this is a small problem, since the
only possibility for the ambiguity in this case is when considering terms
with subterm occurrences of the form (λx.px)q, where x /∈ p (having
two distinct leftmost βη-redex occurrences: λx.px and (λx.px)q, the
both contractions of which lead to the same result pq).

By leftβη denote the so-called βη-leftmost strategy which in every
λ-term always contracts the βη-leftmost-outermost redex occurrence
(if any). For each term t, it determines a certain finite or infinite
βη-reduction sequence starting with t which is also called βη-leftmost.
Analogously, by leftβ denote the β-leftmost strategy.

We write t −−−−→
βη-left

t′ and t −−−−→
β-left

t′ instead of, resp., t′ = leftβη (t)

and t′ = leftβ (t). The notation t
△

−−−−→
βη-left

η t
′ means that t −−−−→

βη-left
t′

and t
△
−−→η t′. Therefore, −−−−→

βη-left
η can be considered as a binary rela-

tion on the set of λ-terms; by
βη-left, 6=∅

// //
η denote its transitive closure.

The relations −−−−→
βη-left

β and
βη-left, 6=∅

// //
β are introduced analogously,

the same concerns −−−−→
β-left

β and
β-left, 6=∅

// //
β .

160

Fundamental theorems of extensional untyped λ-calculus revisited

Lemma 2. The following diagram holds:

·
β-left, 6=∅

β ����✁
✁
✁
✁ βη-left, 6=∅

η�� ��❂
❂❂

❂❂
❂❂

·

βη-left, 6=∅

η
�� ��❂

❂
❂

❂ ·

β-left, 6=∅

β
����✁✁
✁✁
✁✁
✁

·

Proof. First consider the case of a two-step reduction sequence of the

form t1
△η

−−−−→
βη-left

η t2
△β
−−−−→
β-left

β t3. Since △η is the βη-leftmost-outermost

redex, it follows that △η is strictly to the left of
←−
△ β in t1. Obviously,

this is possible only in the cases 1 and 2 from the proof of the η-Postpo-
nement theorem, which, as noted there, leads to the following diagram:

t1
β-left

β ←−
△β △η���

�
�
� βη-left

η
��❃

❃❃
❃❃

❃❃
❃

t′2

βη-left

η

−→
△η △β

��❃
❃

❃
❃

t2

β-left

β
����
��
��
��

t3

(at that, evidently,
←−
△ β is indeed the β-leftmost redex occurrence in t1

and
−→
△η the βη-leftmost-outermost redex occurrence in t′2).

Now the general case can be concluded from the following typical
example of a diagram can arise under such conditions (in which all the
labels are omitted due to the triviality of its construction):

· //

��✤
✤
✤ · //

��✤
✤
✤ · //

��✤
✤
✤ · //

��✤
✤
✤ ·

��
· //❴❴❴

��✤
✤
✤ · //❴❴❴

��✤
✤
✤ · //❴❴❴

��✤
✤
✤ · //❴❴❴

��✤
✤
✤ ·

��
· //❴❴❴

��✤
✤

✤ · //❴❴❴

��✤
✤

✤ · //❴❴❴

��✤
✤

✤ · //❴❴❴

��✤
✤

✤ ·

��
· //❴❴❴ · //❴❴❴ · //❴❴❴ · //❴❴❴ · �

161

Alexandre Lyaletsky

Recall that a βη-strategy f is called normalizing if whenever a term
t has a βη-normal form, fn(t) is a βη-normal form for some natural
number n.

Normalization Theorem for βη-Reduction. [4; 5] The strategy
leftβη is normalizing.

Proof. Supposing the contrary, there is a term t having a βη-normal
form, the βη-leftmost reduction sequence σ of which is infinite. It will
be proved, by means of postponing η-reduction with the help of Lemma
2, that σ can be reconstructed into the infinite β-leftmost reduction
sequence (starting with t), which leads to a contradiction: indeed, by
the Normalization theorem for β-reduction ([1; 3]), then t does not
have a β-normal form and by the βη-Normal form theorem, t does not
have a βη-normal form as well.

It can be assumed without loss of generality that σ contracts at
least one η-redex (otherwise, σ is already β-leftmost) and, moreover,
that it contracts the infinite number of η-redeces (otherwise, exclude
from σ such an initial segment that the resulting sequence contracts
β-redeces only, which sends back to the previous case). On the other
hand, σ should contract the infinite number of β-redeces, since the
notion of η-reduction is strongly normalizing. In addition to all these
conditions, it can also be assumed, for definiteness, that σ starts with
an η-redex contraction (otherwise, exclude from σ its β-prefix). Then
σ can be represented in a form of the following infinite sequence:

σ : t0
βη-left, 6=∅

// //
ηu0 βη-left, 6=∅

// //
β t1 βη-left, 6=∅

// //
ηu1 βη-left, 6=∅

// //
β . . . ,

where t0 ≡ t (i.e. σ is being divided into alternating η- and β-segments).

Finally, notice that every βη-leftmost reduction sequence that con-
tracts β-redeces only is evidently the β-leftmost reduction sequence as
well. Now the following infinite diagram can be constructed with the
help of Lemma 2:

162

Fundamental theorems of extensional untyped λ-calculus revisited

t0
β-left, 6=∅

β ����✤
✤

✤ βη-left, 6=∅ η
// // u0

β-left, 6=∅

β����
·

β-left, 6=∅

β ����✤
✤

✤ βη-left, 6=∅ η
// //❴❴❴❴❴❴❴ t1

βη-left, 6=∅ η
// // u1

β-left, 6=∅

β����
·

β-left, 6=∅

β ����✤
✤

✤ βη-left, 6=∅ η
// //❴❴❴❴❴❴❴❴❴❴❴❴❴❴ t2

βη-left, 6=∅ η
// // u2

β-left, 6=∅

β����
·

����

βη-left, 6=∅ η
// //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ t3

βη-left, 6=∅ η
// // u3

����
· · · · · ·

Its vertical line determines the β-leftmost reduction sequence starting
with t0 ≡ t. Thus, the latter is indeed infinite, just as expected. �

Note that this proof is rather close to that from [5]. (Both the
proofs are based on the idea to reduce the Normalization theorem for
βη-reduction to its analogue for β-reduction by means of postponing
η-reduction and taking into account that η-reduction is strongly nor-
malizing, both of them are proceeded by contradiction and exploit
Lemma 2, however in the other proof the contradiction is obtained
in a different way.)

An interested reader is invited to compare the constructed proofs
with their original or known analogues. The detailed references to the
latter are contained in the following table compiled for his convenience:

η-Postponement theorem
[1, pp. 384 − 386]
[2, pp. 132 − 135]

βη-Normal form theorem
[1, pp. 384 − 386]
[3, pp. 313 − 314]

Normalization theorem for βη-reduction
[4, pp. 279 − 290]
[5, pp. 529 − 537]

163

Alexandre Lyaletsky

References

[1] H. Barendregt. The Lambda Calculus. Its Syntax and Semantics
(revised ed.), Elsevier (1984).

[2] H. Curry, R. Feys, W. Craig. Combinatory Logic (vol. I), North-
Holland: Amsterdam (1958).

[3] H. Curry, J. Hindley, J. Seldin. Combinatory Logic (vol. II), North-
Holland: Amsterdam (1972).

[4] J.W. Klop. Combinatory reduction systems (PhD thesis), Utrecht
university (1980).

[5] A. Lyaletsky. New proofs of important theorems of extensional un-
typed λ-calculus, Cybernetics and Systems Analysis, 50(4): pp. 529–
537, 2014.

Alexandre Lyaletsky Received September 21, 2015

Alexandre Lyaletsky

Institution: Taras Shevchenko National University of Kyiv (Faculty of Cybernetics)

Phone: +38 067 4086768

E–mail: foraal@mail.ru

164

Computer Science Journal of Moldova, vol.23, no.2(68), 2015

Finite automata over algebraic structures:

models and some methods of analysis

Volodymyr V. Skobelev, Volodymyr G. Skobelev

Abstract

In this paper some results of research in two new trends of fi-
nite automata theory are presented. For understanding the value
and the aim of these researches some short retrospective analy-
sis of development of finite automata theory is given. The first
trend deals with families of finite automata defined via recurrence
relations on algebraic structures over finite rings. The problem
of design of some algorithm that simulates with some accuracy
any element of given family of automata is investigated. Some
general scheme for design of families of hash functions defined
by outputless automata is elaborated. Computational security of
these families of hash functions is analyzed. Automata defined
on varieties with some algebra are presented and their homomor-
phisms are characterized. Special case of these automata, namely
automata on elliptic curves, are investigated in detail. The sec-
ond trend deals with quantum automata. Languages accepted by
some basic models of quantum automata under supposition that
unitary operators associated with input alphabet commute each
with the others are characterized.

Keywords: finite automata, finite rings, varieties, simula-
tion, hash functions, elliptic curves, quantum automata.

1 Introduction

It is well known that ’an automaton’ is one of the basic notions of
computer science. Its significance was established in the fundamental
paper of A.M. Turing [1] where it has been used as some formal model
for informal notion of ’an algorithm’ (i.e. either a digital transducer,

c©2015 by V.V. Skobelev, V.G. Skobelev

165

V.V. Skobelev, V.G. Skobelev

or an acceptor of a language). Foundations of finite automata (FA)
theory were laid in the middle of XX century [2]. In its essence any
finite automaton presents some formal model for processes that can be
implemented on computers (under the subject to the limitation that
the memory is finite).

Development of FA theory has been motivated not only by its in-
ternal problems, but also it has been carried out in close interaction
with other areas of computer science. The last circumstance in many
respects led to numerous applications of FA models. On the other
hand, research of actual applied problems (including the ones in the
area of modern information technologies) and emergence of some new
paradigms for notion of ’computation’ led to significant reconsideration
problems in FA theory. As the result, the formation of some entirely
new sections of this theory has been started.

In this paper we consider two of these new sections. The first one
deals with FA defined via recurrence relations over some finite ring.
In many ways this section owes its appearance to research in the field
of information protection. Moreover, the necessity of investigation of
these models is substantially caused by the problems of modern cryp-
tography [3, 4]. The second section deals with quantum FA, i.e. with
some section of quantum algorithms theory which is being developed
intensively at present. In this context, an essential factor is that the
notion ’quantum FA’ is based on the new paradigm of computations
called ’quantum computations’ [5, 6].

2 Survey of finite automata theory

The following two stages can be naturally highlighted in the develop-
ment of FA automata theory.

The first stage covers 50s–80s of the XX century.

Finite automaton considered as a transducer has been defined as a
system M = (Q, X, Y, δ, λ) (where Q, X and Y are respectively finite set of
states, finite input alphabet and finite output alphabet, δ : Q × X → Q

is the transition function and λ : Q × X → Y is the output function).
Moore and Mealy models of FA and some their variants associated

166

Finite automata over algebraic structures . . .

with FA functioning in time have been determined. The problems of
analysis and synthesis for FA [7, 8, 9], the problem of completeness for
FA [10,11] and problems of theory of experiments with FA [12] have
been investigated within these models. Analysis of transformations
of free semigroups carried out by FA [13] had a significant influence
on formation of algebraic theory of FA [14,15] and automata-algebraic
approach to software engineering [16].

It should be noted investigation of information-lossless FA [17, 18]
which (possibly with some additional information) carry-out injective
transformations of input semigroup into output semigroup. Some im-
portant subclass of information-lossless FA form reversible FA. These
FA are characterized in that the input alphabet coincides with the out-
put alphabet, and in each state it is carried out some bijective conver-
sion of input symbols into output symbols. Reversible FA forms some
powerful mathematical tool which enables us to investigate the deep in-
ner connection between the FA theory and the theory of groups. Thus,
these FA can be applied successfully in resolving of a wide range of the-
oretical and applied problems, both. It should be emphasized that just
information-lossless FA demonstrate possibility for using of FA as some
mathematical model for stream ciphers. Also, numerous applications
in resolving of theoretical and applied problems were found for group
FA. In these FA transition function carries out some permutation of
the set of states for every fixed input symbol value.

Finite automaton considered as an acceptor has been defined as a
system M = (Q, X, δ, qin, Qacc) (where Q and X are respectively finite set
of states and finite input alphabet, δ : Q × X → Q is the transition
function, qin ∈ Q is the initial state and Qacc ⊆ Q is the set of accepting
states). An input string is accepted by M if it transforms the initial
state into the set of accepting states. The set of all such input strings
is the language accepted by M. It has been proved that for any fixed
finite alphabet the set of languages LDFA accepted by FA acceptors
equals to the set of regular languages (Kleene’s theorem). It should
be noted that any FA acceptor is some 1-way 1-head Turing Machine
(TM) with input tape, i.e. information can only be read (1-way means
that at every step the head of TM moves one cell to the right).

167

V.V. Skobelev, V.G. Skobelev

Non-deterministic FA acceptors have been investigated under sup-
position that any subset Qin ⊆ Q of initial states could be chosen and
any ternary relation δ ⊆ Q×({Λ}∪X)×Q (Λ is the empty symbol) could
define admissible transitions. Accepted language has been defined as
the set of strings that transform at least one initial state into the set
of accepting states. It has been proved that the set of all languages
accepted by these acceptors equals to the set LDFA. Although ev-
ery non-deterministic FA acceptor can be effectively transformed into
equivalent deterministic one, this transformation can lead to a signifi-
cant increase in cardinality for the set of states (there are known some
examples when non-deterministic FA acceptor has n states while equiv-
alent deterministic one has 2n states). Possibly, just this factor has
grounded application of non-deterministic FA acceptors algebra [9] for
formation of one of the main classes of discrete event systems intended
to automate industrial process control.

Nontrivial generalization of non-deterministic FA acceptors was the
emergence of probabilistic FA [19, 20]. In this model for each state
and each input symbol the probability of transition into each state is
defined (thus, there is some deep inner link between probabilistic FA
and finite Markov chains [21]). Formally, probabilistic FA is a system
M = (Q, X, {Mx}x∈X, u0, Qacc), where Q = {q1, . . . , qn} is the set of states,
X is finite input alphabet, Mx (x ∈ X) is some stochastic n× n-matrix

of transitions, u0 = (α
(0)
1 , . . . , α

(0)
n)T (α

(0)
i ∈ R+ (i ∈ Nn),

n∑

i=1
α
(0)
i = 1)

is the initial distribution of states, and Qacc ⊆ Q is the set of accepting
states. The evolution of M on input string x1 . . . xl (l ∈ Z+) is defined

by identity (α
(l)
1 , . . . , α

(l)
n)T = Mxl

. . .Mx1
u0. This string is accepted

by M with probability PM(x1 . . . xl) =
∑

α
(l)
i , where the sum is over all

i such that qi ∈ Qacc. It is defined that probabilistic FA M accepts the
language L ⊆ X

+ with: 1) probability p (0.5 ≤ p ≤ 1) if it accepts
every string w1 ∈ L with probability not less than p, while any string
w2 6∈ L is accepted with probability not exceeding 1−p; 2) error (p1; p2)
(0 ≤ p1 < p2 ≤ 1) if it accepts every string w1 ∈ L with probability
not less than p2, while any string w2 6∈ L is accepted with probability
not exceeding p1. It should be noted that any probabilistic FA is some

168

Finite automata over algebraic structures . . .

1-way 1-head probabilistic TM with input tape.

Progress in error-correcting codes development [22, 23] and linear
systems analysis [24] has stimulated research of FA presented via re-
currence relations over finite fields [25].

The second stage in the development of FA automata theory started
in 90s of the XX century.

Development of models for cryptographic protection of information
had a great influence on FA theory. The following problems became
actual. Firstly, it is analysis of pre-images of output strings produced
by FA [26]. Secondly, it is analysis of linear and poly-linear recur-
rences over finite rings [27, 28]. These recurrences define some class
of autonomous automata intended for design of generators of pseudo-
random sequences used in modern ciphers. Thirdly, it is analysis of
experiments with linear and bilinear automata defined via recurrence
relations over finite fields [29]. Fourthly, it is investigation of complex-
ity of FA identification [30]. This problem is caused by application of
FA for analysis of computational security for stream ciphers [31, 32].
Fifthly, it is investigation of families of FA defined via algebraic recur-
rence relations over finite rings [33, 34]. If these FA are reversible, they
can be used as mathematical models for some stream ciphers.

The problems listed above show that formation of some new section
of algebraic theory of FA is carried out at present. Essentially new
factor for this section is the transition from transformations of free
semigroups to transformations of algebraic structures performed by FA
defined via recurrence relations over finite algebraic structures. These
researches are presented in Section 3 of the current paper.

Since 1997 a variety of quantum FA (QFA) models different in com-
putational capacity have been investigated. All of them are acceptors
and they are defined in terms of 1-way k-head (k ≥ 1) quantum TM
(QTM) with input tape. Accepting of languages was analyzed both
from the point ’with given probability’ and ’with given error’.

Basic QFA models with measurement of a state only at the last step
are listed below (X (|X| = m) is input alphabet and with every letter
x ∈ X some unitary operator Ux acting in n-dimensional complex space
C
n is associated).

169

V.V. Skobelev, V.G. Skobelev

The model MO-1QFA [35] is 1-way 1-head QTM M = (Q, X, |ϕ〉, Qacc),
where Q = Bn (Bn = {|i〉|i ∈ Nn}) is the set of basic states, the unit
vector |ϕ〉 ∈ C

n is the pure initial state and Qacc ⊆ Bn is the set of
accepting states. Probability that M accepts a string w = x1 . . . xl ∈ X+

equals to P(|ϕ〉, w) =‖ PaccUw|ϕ〉‖
2, where Uw = Uxl

. . . Ux1
and Pacc

is the projection operator on the subspace spanned by Qacc.

The model L-QFA [36] differs from the model MO-1QFA only that it
deals with some initial mixed state {(|ϕi〉, αi)}i∈Nn such that |ϕi〉 ∈ C

n

(i ∈ Nn) are pair-wise different unit vectors, αi > 0 (i ∈ Nn), and∑

i∈Nn

αi = 1 (αi (i ∈ Nn) is referred to as probability that at initial

instant QTM M exists in the state |ϕi〉).

Probability that L-QFA M accepts a string w ∈ X+ equals to
P({(|ϕi〉, αi)}i∈Nn , w) =

∑

i∈Nn

αiP(|ϕi〉, w).

The model kQFA [37] is 1-way k-head QTM M = (Q, T, |ϕ〉, Qacc) (at
any instant all heads move simultaneously by one cell to the right),

where T = X
k ∪

k−1⋃

i=1
X
i{Λ}k−i. It is worth to note that similarly to

the case when the model L-QFA was defined as some generalization of
the model MO-1QFA, in [38] the model L-kQFA was defined as some
generalization of the model kQFA.

Currently, analysis of QFA models is focused on detailed study of
the set of accepted languages, as well as on resolving of the problem of
identification of equivalent states. Some research of languages accepted
by above listed models of QFA is presented in Section 4 of the current
paper.

3 Automata over algebraic structures

Let K = (K,+, ·) be fixed finite ring and M = {Ma}a∈A (A ⊆ K l) be
any family of FA

Ma :

{
qt+1 = f1(qt,xt+1,a)

yt+1 = f2(qt,xt+1,a)
(t ∈ Z+),

170

Finite automata over algebraic structures . . .

where f1 : Kn1+n2+l → Kn1 and f2 : Kn1+n2+l → Kn3 are fixed map-
pings, and a are parameters. It is known that via any experiment with
an automaton Ma the values of parameters a ∈ A not always can be
identified uniquely. So naturally arises the problem of design of some
algorithm that simulates any Ma ∈ M with some accuracy (from the
standpoint of cryptography this means ’an attack on the algorithm’).
This problem has been resolved in [39, 40]. The essence of proposed
solution is as follows.

We fix a set of parameters B ⊆ K l1 and three families of mappings

{ϕ
(1)
b : Kn1+n2 → Kn3}b∈B, {ϕ

(2)
b : Kn1×

r−1⋃

j=1
(Kn3)j×Kn2 → Kn3}b∈B

and {ϕ
(3)
b : Kn1+rn3+n2 → Kn3}b∈B. Let GB = {Gb}b∈B be the set

of mappings, such that Gb(q0,x1 . . . xm) = y1 . . .ym (b ∈ B,m ∈ N),
where

yi =

ϕ
(1)
b

(q0,x1), if i = 1

ϕ
(2)
b (q0,y1 . . .yi−1,xi), if i = 2, . . . , r

ϕ
(3)
b (q0,yi−r . . .yi−1,xi), if r < i ≤ m

.

Let Hb,q
0
(x1 . . .xm) = Gb(q0,x1 . . . xm) (b ∈ B,q0 ∈ Kn1 ,m ∈ N).

It is evident that each family Hb = {Hb,q
0
}q

0
∈Kn1 (b ∈ B) defines

some finite automaton over the ring K. Fixing surjection h : A → B

we associate some family Hh(a) with every automaton Ma ∈ M .

The ordered pair (GB, h) is defined as simulation model for the fam-
ily M. It is supposed that equalities Hh(a),q

0
| r⋃

i=1

(Kn2)i
= Fa,q

0
| r⋃

i=1

(Kn2)i

(a ∈ A,q0 ∈ Kn1) hold, where Fa,q
0
: (Kn2)+ → (Kn3)+ is the map-

ping realized by initial automaton (Ma,q0). Semantics of these equal-
ities is that simulation model (GB, h), connected to the input and the
output channels of an automaton Ma (a ∈ A) passes the first r output
symbols, and then blocks the output channel of an automaton Ma and
simulates its behavior on the remaining tail of input string.

On the base of standard techniques of algorithms theory accuracy
of simulation model (GB, h) has been defined for all combinations of
notions ’in the worst case’ and ’in average’. Asymptotically exact sim-

171

V.V. Skobelev, V.G. Skobelev

ulation models have been extracted and some sufficient conditions for
existence of these models have been established in [39, 40].

It is evident that any hash function is some mapping of input semi-
group into the set of states realized by some finite initial automaton.
From the standpoint of cryptography analysis of hash functions fami-
lies defined by outputless FA over finite ring is actual. This problem
has been investigated in [41]. The main results are as follows.

Let Fk,m (k ≤ m) be the set of all mappings f : Kk+m → Kk, such
that the following two equalities |{x ∈ Km|f(q,x) = q′′}| = |K|m−k

and {x ∈ Km|f(q,x) = q′′} ∩ {x ∈ Km|f(q′,x) = q′′} = ∅ hold for
all q,q′,q′′ ∈ Kk (q 6= q′). It is evident that any mapping f ∈ Fk,m

defines strongly connected outputless automaton Mf, such that Kk is
the set of states and Km is input alphabet.

Let Hf,q
0
be the mapping of input semigroup (Km)+ into the set

of states Kk realized by initial automaton (Mf,q0). Thus, automaton
Mf defines the family of hash functions {Hf,q

0
}q

0
∈Kk .

The following theorems are true:

Theorem 1. [41]. For any mapping f ∈ Fk,m if q0 6= q′

0 (q0,q
′

0 ∈
Kk), then Hf,q

0
(u) 6= Hf,q′

0
(u) for any input string u ∈ (Km)+.

Corollary 1. [41]. For any f ∈ Fk,m if q0 6= q′

0 (q0,q
′

0 ∈ Kk), then
H−1

f,q
0

(q) ∩H−1
f,q′

0

(q) = ∅ for any q ∈ Kk.

Theorem 2. [41]. For any mapping f ∈ Fk,m and q0 ∈ Kk equality
|H−1

f,q
0

(qt) ∩ (Km)t| = |K|tm−k (qt ∈ Kk) holds for all t ∈ N.

Let p
(1)
f,q

0
,t(q) be probability that input string u randomly selected

in the set (Km)t is some solution of the equation H(u) = q, and p
(2)
f,q

0
,t

be probability that for two different input strings u and u′ randomly
selected in the set (Km)t equality H(u) = H(u′) holds.

The following theorems are true:

Theorem 3. [41]. For any mapping f ∈ Fk,m and q0,q ∈ Kk equality

p
(1)
f,q

0
,t(q) = |K|−k holds for all t ∈ N.

Theorem 4. [41]. For any mapping f ∈ Fk,m and q0 ∈ Kk equality

p
(2)
f,q

0
,t = |K|−k(1− |K|

k
−1

|K|mt−1) holds for all t ∈ N.

Thus, the number |K|−k characterizes computing security for a fam-

172

Finite automata over algebraic structures . . .

ily of hash functions {Hf,q0
}q

0
∈Kk . This implies some feasibility for

using these families in resolving problems of information protection.
Applications of elliptic curves over finite fields for resolving prob-

lems of information transformation justify feasibility of research FA
defined on varieties (i.e. on the sets of solutions of systems of algebraic
equations) over finite ring. It allows to set internal connections between
modern algebraic geometry, systems theory, FA theory and cryptology.

From standpoint of algebraic FA theory and its applications it
is reasonable to deal with the set V1(K) of all varieties V ⊆ Kn

with some algebra (V,F1 ∪ F2), where F1 = {α0, α1, . . . , αk1} and
F2 = {β1, . . . , βk2} are the sets of unary and binary operations, corre-
spondingly. For any variety V ∈ V1(K) the algebra (V,F1 ∪ F2) gives
possibility to define the set A(1)(V) of Mealy FA

{
qt+1 = βj1(αi1(qt), αxt+1

(v1))

yt+1 = βj2(αi2(qt), αxt+1
(v2))

(t ∈ Z+)

and the set A(2)(V) of Moore FA
{
qt+1 = βj1(αi1(qt), αxt+1

(v1))

yt+1 = βj2(αi2(qt+1),v2)
(t ∈ Z+),

where v1,v2 ∈ V are fixed points, i1, i2 ∈ Zk1+1 and j1, j2 ∈ Nk2 are
fixed integers, q0 ∈ V, and xt+1 ∈ Zk1+1 (t ∈ Z+). Thus, for any
M ∈ A(1)(V) ∪A(2)(V) values of xt, qt and yt are, correspondingly, an
input symbol, a state and an output symbol at instant t.

Let V,U ∈ V1(K). We say that: 1) the variety U is a homo-

morphic image of the variety V, if the algebra (U,F
(2)
1 ∪ F

(2)
2) is a

homomorphic image of the algebra (V,F
(1)
1 ∪F

(1)
2); 2) varieties U and

V are isomorphic if algebras (U,F
(2)
1 ∪ F

(2)
2) and (V,F

(1)
1 ∪ F

(1)
2) are

isomorphic.
The next theorem is true:

Theorem 5. [42]. Let U,V ∈ V1(K). If U is a homomorphic image
of V, then there exist mappings Ψj : A(j)(V) → A(j)(U) (j = 1, 2),
such that homomorphic image of any automaton Mj ∈ A(j)(V) is the
automaton Ψj(Mj).

173

V.V. Skobelev, V.G. Skobelev

Corollary 2. [42]. Let U,V ∈ V1(K). If U and V are isomorphic
varieties, then there exist mappings Ψj : A

(j)(V) → A(j)(U) (j = 1, 2),
such that automata Mj ∈ A(j)(V) and Ψj(Mj) are isomorphic.

Any elliptic curve γ over a finite field K = (K,+, ·) defines the
abelian group (Gγ ,+γ), where Gγ is the set of all points of γ including
specified point O (this point serves as the neutral element of the group).
Setting F1 = {α0, α1, . . . , αk1} (1 ≤ k1 < |Gγ |), where α0(P) = O
(P ∈ Gγ) and αi(P) = P+γ . . .+γP

︸ ︷︷ ︸
i times

(P ∈ Gγ) for all i = 1, . . . , k1,

and F2 = {+γ}, we get some algebra (Gγ ,F1 ∪F2). Thus, any elliptic
curve γ defines some variety of above considered type.

For any P1, P2 ∈ Gγ\{O} and n,m ∈ Nk1 recurrence relations

{
qt+1 = nqt+γxtP1

yt+1 = mqt+γxtP2

(t ∈ Z+)

and {
qt+1 = nqt+γxtP1

yt+1 = mqt+1

(t ∈ Z+),

where xt+1 ∈ Nk1 , define the familyM1,γ,k1 of Mealy FA and the family
M2,γ,k1 of Moore FA, correspondingly.

The following theorems are true:
Theorem 6. [43]. For any automaton M1 ∈ M1,γ,k1 identification
of its initial state (with the accuracy to the set of equivalent states)
is reduced to searching any solution of equation mu = a0, where an
element a0 ∈ Gγ is determined as the result of some simple experiment
of the length 1 with the automaton M1.
Theorem 7. [43]. For any automaton M2 ∈ M2,γ,k1 identification
of its initial state (with the accuracy to the set of equivalent states)
is reduced to searching any solution of equation mnv = b0, where an
element b0 ∈ Gγ is determined as the result of some simple experiment
of the length 1 with the automaton M2.
Theorem 8. [43]. Exact imitation model for the family M1,γ,k1 of
Mealy FA can be designed as the result of some multiple experiment of
the multiplicity 3 and of the height not exceeding |Gγ | + 1. The total

174

Finite automata over algebraic structures . . .

length of all input strings applied to the investigated automaton in this
experiment does not exceed |Gγ |+ 1 + 0.5|Gγ | · (|Gγ |+ 3).

Theorem 9. [43]. Exact imitation model for the family M2,γ,k1 of
Moore FA can be designed as the result of some multiple experiment
of the multiplicity 2 and of the height not exceeding |Gγ |. The total
length of all input strings applied to the investigated automaton in this
experiment does not exceed |Gγ |+ 0.5|Gγ | · (|Gγ |+ 1).

These results imply some feasibility for using the above considered
families of FA in resolving problems of information protection.

4 Quantum Automata

QFA under supposition that unitary operators associated with input
alphabet commute each with the others have been investigated in [44].
Languages accepted either with given probability, or with given error
have been characterized as follows.

Let X = {x1, . . . , xm} be the input alphabet of QFA. It is supposed
that elements of the set U = {Ui|i ∈ Nm} (Ui is unitary operator
associated with xi ∈ X) commute each with the others. With any input
string w ∈ X

l (l ∈ N) the string prU (w) = U r1
1 . . . U rm

m can be associated,
where ri (i ∈ Nm) is the number of occurrences of xi in w.

Let ≡X,U be equivalence on the set X+ defined as follows: for any
input strings w1, w2 ∈ X

+

w1≡X,Uw2 ⇔ prU(w1) = prU (w2).

The following theorem is true:

Theorem 10. [44]. Let U be any set of unitary operators that com-
mute each with the others. Then any language accepted (either with
given probability, or with given error) by the model MO-1QFA, as well
as by the model L-QFA with measurement at final instant only is union
of some elements of the factor-set X+/≡X,U .

It is evident that with any element B ∈ X
+/≡X,U unique unitary

operator UB can be associated, such that UB = prU(w) for all w ∈ B.
Let ≡

′

X,U
be any equivalence on the set X

+, such that every element

175

V.V. Skobelev, V.G. Skobelev

of the factor-set X
+/≡

′

X,U
is union of some elements B ∈ X

+/≡X,U to

which the same unitary operator UB is associated.
The following corollary is true.

Corollary 3. [44]. Let U be any set of unitary operators that commute
each with the others. Then any language accepted (either with given
probability, or with given mistake) by the model MO-1QFA, as well as
by the model L-QFA with measurement at final instant only is union
of some elements of the factor-set X+/≡

′

X,U
.

Important special case of equivalence ≡
′

X,U
on the set X+ takes place

in the following situation.
Let U = {Ui|i ∈ Nm} (Ui 6= I for all i ∈ Nm) be some set of

unitary operators that commute each with the others, such that for
every i ∈ Nm there exists some positive integer ai that satisfies the
identity Uai

i = I. In what follows it is assumed that ai (i ∈ Nm)
is the minimal positive integer that satisfies this identity. We define

equivalence ≡
(1)

X,U
on the set X

+ in the following way: for any input

strings w1, w2 ∈ X
+ (prU(wi) = U ri1

1 . . . U rim
m (i = 1, 2))

w1≡
(1)

X,U
w2 ⇔

⇔ U
r11(mod a1)
1 . . . U r1m(mod am)

m = U
r21(mod a1)
1 . . . U r2m(mod am)

m .

It is evident that the equivalence ≡
(1)

X,U
is some special case of equiva-

lence ≡
′

X,U
. Moreover, the following identity holds: |X+/≡

(1)

X,U
| =

m∏

i=1
ai.

Thus, the following corollary is true.
Corollary 4. [44]. Let U = {Ui|i ∈ Nm} (Ui 6= I for all i ∈ Nm) be
some set of unitary operators that commute each with the others, such
that for every i ∈ Nm there exists some positive integer ai that satisfies
the identity Uai

i = I. Then any language accepted (either with given
probability, or with given mistake) by the model MO-1QFA, as well as
by the model L-QFA with measurement at final instant only is union

of some elements of the factor-set X+/≡
(1)

X,U
.

Similar results can be established for models kQFA and L-kQFA
under supposition that unitary operators associated with elements of

176

Finite automata over algebraic structures . . .

the set X
k commute each with the others. However, some technical

difficulties arise with definition of equivalence on the set T+ due to the

presence of elements of the set
k−1⋃

i=1
X
i{Λ}k−i.

In [38] presented above approach has been worked out in detail for
one of the most simple non-trivial models of QFA, namely 1-qubit QA
under supposition that associated unitary operators are rotations of
the Bloch sphere [5, 6] around the y-axe and measurement of a state is
produced at final instant only. Criteria when investigated models MO-
1QFA, L-QFA, kQFA and L-kQFA accept some language with given
probability, as well as with given error has been established.

These results imply feasibility of investigation of the structure of the
set of all finitely generated commutative semigroups of special unitary
operators in C

2 (the notion ’special’ means that the determinant of a
matrix that defines unitary operator equals to unit). This problem has
been investigated in [45]. Main results are as follows.

Let V be the set of all special unitary operators V : C2 → C
2 and S

be the set of all finitely generated commutative semigroups G = (G, ·)
(G ⊆ V). The semigroup generated by elements V1, . . . , Vk ∈ V is
denoted (〈V1, . . . , Vk〉, ·). Without loss of generality it can be suggested
that for any semigroup (〈V1, . . . , Vk〉, ·) ∈ S (k ≥ 2) the following
condition holds: (∀r1, r2 ∈ Nk)(r1 6= r2 ⇒ (∀n ∈ N)(V n

r1
6= Vr2)).

For any γ ∈ [0, 4π) we denote R
(1)
γ , R

(2)
γ and R

(3)
γ rotations of the

Bloch sphere through the angle 0.5γ around, correspondingly, the x-
axe, the y-axe and the z-axe. It is worth to note that any special unitary

operator V ∈ V can be presented as superposition V = R
(3)
γ1 R

(2)
γ2 R

(3)
γ3

for some γ1, γ2, γ3 ∈ [0, 4π).

The set S1 = {(〈V 〉, ·)|V ∈ V} consists of all commutative cyclic

semigroups G ∈ S. Setting S
(l)
1 = {(〈V 〉, ·)|V ∈ V(l)} (l = 1, 2, 3),

where V(l) = {R
(l)
γ |γ ∈ [0, 4π)} (l = 1, 2, 3), we extract in the set S1

the sets of all commutative cyclic semigroups of rotation of the Bloch
sphere through fixed angle around fixed coordinate axe. It is evident

that (〈R
(l)
γ 〉, ·) (γ ∈ [0, 4π); l = 1, 2, 3) is finite semigroup if and only if

γ(mod π) ∈ Q+.

177

V.V. Skobelev, V.G. Skobelev

For any integer k ≥ 2 we set

S
(k)
2l = {(〈R(l)

γ1
, . . . , R(l)

γk
〉, ·)|R(l)

γ1
, . . . , R(l)

γk
∈ V(l)&

&(∀r1, r2 ∈ Nk)(∀n ∈ N)(r1 6= r2 ⇒ (R(l)
γr1

)n 6= R(l)
γr2

)} (l = 1, 2, 3).

The set S2 =
3⋃

l=1

∞⋃

k=2

S
(k)
2l consists of all finitely generated commutative

non-cyclic semigroups of rotation of the Bloch sphere around fixed coor-

dinate axe. It is evident that (〈R
(l)
γ1 , . . . , R

(l)
γk 〉, ·) ∈ S

(k)
2l (k ∈ N (k ≥ 2)

and l = 1, 2, 3) is finite semigroup if and only if γr(mod π) ∈ Q+ for all
integers r ∈ Nk.

Now we investigate conditions under which two different special
unitary operators of general form commute. Let

Vj =

(
eiαj cos 0.5γj −e−iβj sin 0.5γj
eiβj sin 0.5γj e−iαj cos 0.5γj

)

∈ V (j = 1, 2),

where αj , βj ∈ [0, 2π) (j = 1, 2) and γj ∈ [0, 4π) (j = 1, 2). Then

V1V2 = V2V1 ⇔

⇔

{
(ei2(−β1+β2) − 1) sin 0.5γ1 sin 0.5γ2 = 0

eiβ1 sinα1 sin 0.5γ2 cos 0.5γ1 = eiβ2 sinα2 sin 0.5γ1 cos 0.5γ2
(1)

It is sufficient to set these or the others restrictions on the structure
of special unitary operator V1 and determine corresponding restrictions
on the structure of special unitary operator V2. Thus, we can analyze
the following cases.

Case 1. Let sin 0.5γ1 = 0 (γ1 ∈ [0, 4π)), i.e. γ1 ∈ {0, 2π} and

cos 0.5γ1 = ±1. We get V1 ∈ V1(α1) = {R̃
(3)
α1

,−R̃
(3)
α1

} (α1 ∈ [0, 2π)),
where

R̃(3)
α1

=

(
eiα1 0
0 e−iα1

)

(α1 ∈ [0, 2π)),

i.e. R̃
(3)
α1

is rotation of the Bloch sphere through the angle −α1 around
the z-axe.

178

Finite automata over algebraic structures . . .

The second identity in (1) takes the form

sinα1 sin 0.5γ2 = 0 (α1 ∈ [0, 2π), γ2 ∈ [0, 4π)). (2)

The following cases can take place.
Case 1.1. Let sin 0.5γ2 = 0 (γ2 ∈ [0, 4π)), i.e. γ2 ∈ {0, 2π} and

cos 0.5γ2 = ±1. We get V2 ∈ V1(α2).

Let S3 =
∞⋃

k=2

S
(k)
3 , where

S
(k)
3 = {(〈V1, . . . , Vk〉, ·)|V1, . . . , Vk ∈

⋃

ω∈[0,2π)

V1(ω)&

&(∀r1, r2 ∈ Nk)(∀n ∈ N)(r1 6= r2 ⇒ V n
r1

6= Vr2)}.

For any fixed numbers αr1 , αr2 ∈ [0, 2π) we get:

1) if Vr1 = R̃
(3)
αr1

and Vr2 = R̃
(3)
αr2

or Vr1 = −R̃
(3)
αr1

and Vr2 = −R̃
(3)
αr2

,
then identity V n

r1
= Vr2 holds for some integer n ∈ N if and only if

relation nαr1 − αr2 ≡ 0 (mod 2π) holds;

2) if Vr1 = R̃
(3)
αr1

and Vr2 = −R̃
(3)
αr2

, then identity V n
r1

= Vr2 holds for
some integer n ∈ N if and only if π−1(nαr1 − αr2) is some odd integer;

3) if Vr1 = −R̃
(3)
αr1

and Vr2 = R̃
(3)
αr2

, then identity V n
r1

= Vr2 holds for
some n ∈ N if and only if either n and π−1(nαr1−αr2) are odd integers,
or n is some even integer and relation nαr1 − αr2 ≡ 0 (mod 2π) holds.

It is evident that the set S3 consists of some finitely generated

non-cyclic commutative semigroups and inclusion S3 ⊂ S
(2)
23 holds.

Case 1.2. Let sin 0.5γ2 6= 0 (γ2 ∈ [0, 4π)), i.e. γ2 ∈ [0, 4π)\{0, 2π}.
Identity (2) takes the form sinα1 = 0 (α1 ∈ [0, 2π)), i.e. α1 ∈ {0, π}.
We get V1 ∈ {I,−I}.

Let V2 = {I,−I} and V3 be the set of all special unitary operators
V2 ∈ V, such that γ2 ∈ [0, 4π)\{0, 2π} and V n

2 /∈ V2 for all n ∈ N. We
get some set S4 = {(〈V1, V2〉, ·)|V1 ∈ V2, V2 ∈ V3} of finitely generated
non-cyclic commutative semigroups.

Case 2. Let
{
sin 0.5γ1 6= 0 (γ1 ∈ [0, 4π))

sin 0.5γ2 6= 0 (γ2 ∈ [0, 4π))
,

179

V.V. Skobelev, V.G. Skobelev

i.e. γj ∈ [0, 4π)\{0, 2π} (j = 1, 2). The first identity in (1) takes the
form ei2(−β1+β2) − 1 = 0 (β1, β2 ∈ [0, 2π)). Without loss of generality
we can assume that β1 ≤ β2. We get that either β1 = β2 and

Vj =

(
eiαj cos 0.5γj −e−iβ1 sin 0.5γj
eiβ1 sin 0.5γj e−iαj cos 0.5γj

)

(j = 1, 2),

or β2 = β1 + π and

V1 =

(
eiα1 cos 0.5γ1 −e−iβ1 sin 0.5γ1
eiβ1 sin 0.5γ1 e−iα1 cos 0.5γ1

)

,

V2 =

(
eiα2 cos 0.5γ2 e−iβ1 sin 0.5γ2
−eiβ1 sin 0.5γ2 e−iα2 cos 0.5γ2

)

.

The second identity in (1) takes the form

sinα1 sin 0.5γ2 cos 0.5γ1 = sinα2 sin 0.5γ1 cos 0.5γ2, (3)

where γ1, γ2 ∈ [0, 4π)\{0, 2π}. The following cases can take place.
Case 2.1. Let cos 0.5γ1 = 0 (γ1 ∈ [0, 4π)\{0, 2π}), i.e. γ1 ∈ {π, 3π}.

We get V1 ∈ V4(β1) = {Jβ1
,−Jβ1

} (β1 ∈ [0, 2π)), where

Jβ1
=

(
0 −e−iβ1

eiβ1 0

)

(β1 ∈ [0, 2π)).

Identity (3) takes the form

sinα2 cos 0.5γ2 = 0 (γ2 ∈ [0, 4π)\{0, 2π}, α2 ∈ [0, 4π)).

The following cases can take place.
Case 2.1.1. Let cos 0.5γ2 = 0, i.e. γ2 ∈ {π, 3π}. Since V2 ∈ V4(β1)

and V2 6= V1, then V2 = −V1. For any β1 ∈ [0, 2π) identity J2
β1

= −I
holds. We get some set S5 = {(〈V,−V 〉, ·)|V ∈

⋃

β1∈[0,2π)

V4(β1)} of

finite non-cyclic commutative semigroups.
Case 2.1.2. Let cos 0.5γ2 6= 0, i.e. γ2 ∈ [0, 4π)\{0π, 2π, 3π}. Then

sinα2 = 0, i.e. α2 ∈ {0, π}. Since eiα2 = ±1, then

V2 ∈ V5(β1) =
⋃

γ2∈[0,4π)\{0π,2π,3π}

V5(γ2, β1) (β1 ∈ [0, 2π)),

180

Finite automata over algebraic structures . . .

where V5(γ2, β1) = {Uj(γ2, β1)|j = 1, . . . , 4}, and

U1(γ2, β1) =

(
cos 0.5γ2 −e−iβ1 sin 0.5γ2

eiβ1 sin 0.5γ2 cos 0.5γ2

)

,

U2(γ2, β1) =

(
cos 0.5γ2 e−iβ1 sin 0.5γ2

−eiβ1 sin 0.5γ2 cos 0.5γ2

)

,

U3(γ2, β1) = −U2(γ2, β1) and U4(γ2, β1) = −U1(γ2, β1).
It is evident that:
1) if β1 = 0, then U1(γ2, β1) is rotation of the Bloch sphere through

the angle 0.5γ2 around the y-axe;
2) if β1 = 1.5π, then U2(γ2, β1) is rotation of the Bloch sphere

through the angle 0.5γ2 around the x-axe.
We get some set

S6 =
⋃

β1∈[0,2π)

⋃

γ2∈[0,4π)\{0π,2π,3π}

S6(γ2, β1)

of finitely generated non-cyclic commutative semigroups, where

S6(γ2, β1) = {(〈V1, V2〉, ·)|V1 ∈ V4(β1)&

&V2 ∈ V5(γ2, β1)&(∀n ∈ N)(V n
2 6= V1)}.

Case 2.2. Let
{
cos 0.5γ1 6= 0 (γ1 ∈ [0, 4π))

cos 0.5γ2 6= 0 (γ2 ∈ [0, 4π))
,

i.e. (see case 2) γ1, γ2 ∈ [0, 4π)\{0, π, 2π, 3π}. The following cases can
take place.

Case 2.2.1. Let sinα1 = 0 (α1 ∈ [0, 2π)), i.e. α1 ∈ {0, π}. Identity
(3) takes the form sinα2 = 0 (α2 ∈ [0, 2π)), i.e. α2 ∈ {0, π}. We get
that:

1) if β2 = β1, then

Vj =

(
± cos 0.5γj −e−iβ1 sin 0.5γj
eiβ1 sin 0.5γj ± cos 0.5γj

)

(j = 1, 2);

181

V.V. Skobelev, V.G. Skobelev

2) if β2 = β1 + π, then

V1 =

(
± cos 0.5γ1 −e−iβ1 sin 0.5γ1
eiβ1 sin 0.5γ1 ± cos 0.5γ1

)

,

V2 =

(
± cos 0.5γ2 e−iβ1 sin 0.5γ2

−eiβ1 sin 0.5γ2 ± cos 0.5γ2

)

.

It is evident that V1 ∈ V6(γ1, β1) = {U1(γ1, β1), U3(γ1, β1)} and
V2 ∈ V5(γ2, β1). We get some set S7 =

⋃

β1∈[0,2π)

S7(β1) of finitely

generated non-cyclic commutative semigroups, where

S7(β1) =
⋃

γ1,γ2∈[0,4π)\{0,π,2π,3π}

{(〈V1, V2〉, ·)|V1 ∈ V6(γ1, β1)&

&V2 ∈ V5(γ2, β1)&(∀n ∈ N)(V n
1 6= V2&V n

2 6= V1)}.

Case 2.2.2. Let
{
sinα1 6= 0 (α1 ∈ [0, 2π))

sinα2 6= 0 (α2 ∈ [0, 2π))
,

i.e. αj ∈ [0, 2π)\{0, π} (j = 1, 2). Identity (3) takes the form

sinα1

sinα2
= ± tan 0.5γ1 cot 0.5γ2,

where γ1, γ2 ∈ [0, 4π)\{0, π, 2π, 3π} and α1, α2 ∈ [0, 2π)\{0, π}.
Let S′(β1) be the set of all subsets {V1, V2} of special unitary op-

erators, such that:
1) unitary operators Vj (j = 1, 2) are defined by formula

Vj =

(
eiαj cos 0.5γj −e−iβ1 sin 0.5γj
eiβ1 sin 0.5γj e−iαj cos 0.5γj

)

(j = 1, 2),

where γ1, γ2 ∈ [0, 4π)\{0, π, 2π, 3π} and α1, α2 ∈ [0, 2π)\{0, π};
2) identity sinα1

sinα2
= tan 0.5γ1 cot 0.5γ2 holds;

3) disequalities V n
1 6= V2 (n ∈ N) and V n

2 6= V1 (n ∈ N) hold.

182

Finite automata over algebraic structures . . .

Similarly, let S
′′(β1) be the set of all subsets {V1, V2} of special

unitary operators, such that:
1) unitary operators Vj (j = 1, 2) are defined by formulae

V1 =

(
eiα1 cos 0.5γ1 −e−iβ1 sin 0.5γ1
eiβ1 sin 0.5γ1 e−iα1 cos 0.5γ1

)

,

V2 =

(
eiα2 cos 0.5γ2 e−iβ1 sin 0.5γ2
−eiβ1 sin 0.5γ2 e−iα2 cos 0.5γ2

)

.

where γ1, γ2 ∈ [0, 4π)\{0, π, 2π, 3π} and α1, α2 ∈ [0, 2π)\{0, π};
2) identity sinα1

sinα2
= − tan 0.5γ1 cot 0.5γ2 holds;

3) disequalities V n
1 6= V2 (n ∈ N) and V n

2 6= V1 (n ∈ N) hold.
We get some set

S8 =
⋃

β1∈[0,2π)

{(〈V1, V2〉, ·)|{V1, V2} ∈ S
′(β1)}∪

∪
⋃

β1∈[0,2π)

{(〈V1, V2〉, ·)|{V1, V2} ∈ S
′′(β1)}

of finitely generated non-cyclic commutative semigroups.
Summarizing all the above, we conclude that the following theorem

is true:

Theorem 11. The following inclusion holds: S ⊇
8⋃

j=1
Sj .

Unfortunately, it is still unknown, if the identity S =
8⋃

j=1
Sj holds.

5 Conclusions

In the given paper some research in two new trends of FA theory has
been presented.

The first trend deals with investigation of FA families defined on al-
gebraic structures over finite rings. The presented results justify some
feasibility for using these families in resolving problems of information
protection. Based on this viewpoint, the following further research can

183

V.V. Skobelev, V.G. Skobelev

be pointed. Firstly, searching non-trivial FA families for which any
asymptotically accurate simulation model is much more complicated
than a system of equations defining the family itself. Secondly, char-
acterization of families of reversible FA for which transition to any
simulation model results in essential loss of accuracy. Thirdly, de-
tailed investigation into computational security of specific families of
hash-functions determined by outputless automata over finite rings.
Fourthly, detailed investigation into computational security of FA fam-
ilies defined on elliptic curves over finite fields.

The second trend deals with investigation of languages accepted by
QFA models under supposition that unitary operators associated with
input alphabet commute each with the others. In this direction, some
progress in investigation of 1-qubit QFA have been achieved. How-
ever, no similar results are known for l-qubit QFA (l ≥ 2). Possibly,
the reason is that no visual geometric model which is similar to Bloch
sphere is known for l ≥ 2. Characterization of l-qubit QFA (l ≥ 2) un-
der supposition that unitary operators associated with input alphabet
commute each with the others forms some trend for future research.

References

[1] A.M. Turing On computable numbers, with an application to the
Entscheidungsproblem. Proc. London Math. Soc., ser. 2, vol. 42
(1936), pp. 230–265.

[2] Automata studies (Ed. by C.E. Shannon, J. McCarthy). Princeton
University Press, 1956.

[3] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone. Handbook of ap-
plied cryptography. CRC Press, 2001.

[4] J. Kaz, Y. Lindell. Introduction to modern cryptography. CRC
Press, 2007.

[5] M.A. Nielsen, I.L. Chuang. Quantum computation and quantum
information. Cambrige University Press, 2010.

184

Finite automata over algebraic structures . . .

[6] C.P. Williams. Explorations in quantum computing. Springer-
Verlag London Limited, 2011.

[7] V.M. Glushkov. Synthesis of digital automata. Moskow, Nauka,
1962. [in Russian]

[8] Z. Kohavi. Switching and finite automata theory. New York,
McGraw-Hill, 1970.

[9] B.A. Trachtenbrot, Y.M. Barzdin. Finite automata. Behavior and
synthesis. North-Holland, 1973.

[10] A.A. Letichevskii. Completeness conditions for finite automata.
USSR Computational Mathematics and Mathematical Physics,
vol. 1, issue 3 (1962), pp. 829–840.

[11] M.I. Kratko. Undecidability of completeness for finite automata.
Doklady AN SSSR, vol. 155, No 1 (1964), pp. 35–37. [in Russian]

[12] A. Gill. Introduction to the theory of finite-state machines. New
York, McGraw-Hill, 1962.

[13] V.M. Glushkov. The abstract theory of automata. Russian Mathe-
matical Surveys, vol. 16, No 5 (1961) , pp.1–53.

[14] S. Eilenberg. Automata, languages and machines. Vol. A. New
York, Academic Press, 1974.

[15] S. Eilenberg. Automata, languages and machines. Vol. B. New
York, Academic Press, 1976.

[16] V.M. Glushkov, G.E. Tseitlin, E.L. Yushchenko. Algebra, lan-
guages, programming. Kiev, Naukova Dumka, 1978. [in Russian]

[17] D.A. Huffman. Canonical forms for information-lossless finite
state logical machines. IRE Transactions Circuit Theory. Special
Supplement, vol. CT-6 (1959), pp. 41–59.

185

V.V. Skobelev, V.G. Skobelev

[18] S. Even. On information-lossless automata of finite order. IEEE
Transactions on Electronic Computers, vol. C-14, 4 (1965), pp.
561–569.

[19] M.O. Rabin Probabilistic automata. Information and Control, No
3 (1963), pp. 230–245.

[20] A. Paz A. Introduction to probabilistic automata. New York, Aca-
demic Press, 1971.

[21] J.G. Kemeny, T.L. Snell. Finite Markov chains. Princeton, NJ: D.
Van Nostrand, 1960.

[22] E.R. Berlekamp. Algebraic coding theory. New York, McGraw-Hill,
1968.

[23] W.W. Peterson, E.J. Weldon, Jr. Error-correcting codes. The
M.I.T. Press, Cambridge, MA, 1972.

[24] L.A. Zadeh, C.A. Desoer. Linear system theory. New York,
McGraw-Hill, 1963.

[25] A. Gill. Linear sequential circuits – analysis, synthesis, and appli-
cations. New York, McGraw-Hill, 1966.

[26] B.A. Sevastyanov, V.P. Chistyakov. On the number of input se-
quences corresponding to the output sequences of a finite au-
tomaton. Review of Applied and Industrial Mathematics, vol. 1,
Moskow, TVP (1994), pp. 96–107. [in Russian]

[27] V.L. Kurakin, A.S. Kuz’min, A.A. Nechaev. Pseudo-random and
polylinear sequences. Memoires in Discrete Mathematics, vol. 1,
Moskow, TVP (1997), pp. 139–202. [in Russian]

[28] V.L. Kurakin, A.S. Kuz’min, A.A. Nechaev. Properties of linear
and polylinear recurrencies over Galois rings (I). Memoires in Dis-
crete Mathematics, vol. 2, Moskow, TVP (1998), pp. 191–222. [in
Russian]

186

Finite automata over algebraic structures . . .

[29] D.V. Speransky. Experiments with linear and bilinear finite au-
tomata. Saratov, Saratov State University, 2004. [in Russian]

[30] A.V. Babash. Approximate models for finite automata. Review of
Applied and Industrial Mathematics, vol. 12 (2005), pp. 108–117.
[in Russian]

[31] N. Courtois, W. Meier. Algebraic attack on stream ciphers with
linear feedback. LNCS, vol. 2656 (2003), pp. 345–349.

[32] V.N. Trenkaev, R.G. Kolesnikov. Automata approach to attack on
symmetric ciphers. Bulletin of Tomsk State University. Appendix,
No 23, (2007), pp. 130–135.

[33] V.V. Skobelev, V.G. Skobelev. Ciphersystems analysis. Donetsk,
IAMM of NASU, 2009. [in Russian].

[34] V.V. Skobelev, N.M. Glazunov, V.G. Skobelev. Varieties over
rings. Theory and applications. Donetsk, IAMM of NASU, 2011.
[in Russian].

[35] C. Moore, J. Crutchfield. Quantum automata and quantum gram-
mars. Theor. Comput. Sci., vol. 237 (2000), pp. 257–306.

[36] A. Ambainis, M. Beaudry, M. Golovkins, at al. Algebraic results
on quantum automata. LNCS, vol. 2996 (2004), pp. 93–104.

[37] A. Belovs, A. Rosmanis A., J. Smotrovs. Multi-letter reversible
and quantum finite automata. LNCS, vol. 4588 (2007), pp. 60–71.

[38] V.G. Skobelev. Analysis of finite 1-qubit quantum automata uni-
tary operators of which are rotations. Visn., Ser. Fiz.-Mat. Nauky,
Kÿıv. Univ. Im. Tarasa Shevchenka, No. 2 (2014), pp. 194–201.

[39] V.V. Skobelev. Simulation of automata over a finite ring by the
automata with a finite memory. Journal of Automation and Infor-
mation Sciences, vol. 44, issue 5 (2012), pp. 57–66.

187

V.V. Skobelev, V.G. Skobelev

[40] V.V. Skobelev. Analysis of the problem of recognition of automaton
over some ring. Dopov. Nats. Akad. Nauk Ukr., Mat., Pryr., Tekh.
Nauky, No 9 (2012), pp. 29–35.

[41] V.V. Skobelev. Analysis of families of hash functions defined by
automata over a finite ring. Cybern. Syst. Anal., vol. 49, No. 2
(2013), pp. 209–216.

[42] V.V. Skobelev. Analysis of automata models determined on va-
rieties ovef finite ring. Journal of Automation and Information
Sciences, vol. 45, issue 8 (2013), pp. 21–31.

[43] V.V. Skobelev. Automata on algebraic structures. Donetsk, IAMM
of NASU, 2013. [in Russian]

[44] V.G. Skobelev. Quantum automata with operators that commutes.
Visn., Ser. Fiz.-Mat. Nauky, Kÿıv. Univ. Im. Tarasa Shevchenka,
Special Issue (2013), pp. 34–41.

[45] V.G. Skobelev. On the structure of the set of all finitely gener-
ated semigroups of special unitary operators in the space C

2. Visn.,
Ser. Fiz.-Mat. Nauky, Kÿıv. Univ. Im. Tarasa Shevchenka, No. 3
(2014), pp. 182–187.

Volodymyr V. Skobelev, Volodymyr G. Skobelev Received September 16 , 2015

Volodymyr V. Skobelev

V.M. Glushkov Institute of Cybernetics of NAS of Ukraine

40 Glushkova ave., Kyiv, Ukraine, 03187

Phone: +38 063 431 86 05

E-mail: vvskobelev@incyb.kiev.ua

Volodymyr G. Skobelev

V.M. Glushkov Institute of Cybernetics of NAS of Ukraine

40 Glushkova ave., Kyiv, Ukraine, 03187

Phone: +38 063 431 86 05

E-mail: skobelevvg@mail.ru

188

Computer Science Journal of Moldova, vol.23, no.2(68), 2015

Communicative automata based programming.

Society Framework∗

Andrei Micu, Adrian Iftene

Abstract

One of the aims of this paper is to present a new program-
ming paradigm based on the new paradigms intensively used in
IT industry. Implementation of these techniques can improve the
quality of code through modularization, not only in terms of en-
tities used by a program, but also in terms of states in which they
pass. Another aspect followed in this paper takes into account
that in the development of software applications, the transition
from the design to the source code is a very expensive step in
terms of effort and time spent. Diagrams can hide very impor-
tant details for simplicity of understanding, which can lead to
incorrect or incomplete implementations. To improve this pro-
cess communicative automaton based programming comes with
an intermediate step. We will see how it goes after creating mod-
eling diagrams to communicative automata and then to writing
code for each of them. We show how the transition from one step
to another is much easier and intuitive.

Keywords: Communicative Automata, XML Automata,
Automata transfer, Distributed systems, Traveling code.

1 Introduction

The last decades of evolution for computing machines brought a sig-
nificant increase in computing power and their diversity. The rise of
parallel computing, the important foundations of modern computers,

c©2008 by A. Micu, A. Iftene
∗This work was supported by MUCKE (Multimedia and User Credibility Knowl-

edge Extraction) project Reference No. 2 CHIST-ERA, three years from 01.10.2012.

* This paper represents an extended version of the paper presented at FOI2015.

189

A. Micu, A. Iftene

has revolutionized the world of software and hardware making it pos-
sible to create artificial intelligent systems. Whether it is a desktop,
mobile phone, mainframe, or any other computing system, it is able
to simultaneously perform a number of tasks that sometimes depend
on each other. Their synchronization is essential in most cases and it
depends on the states in which the processes or threads are at a time.
Synchronization is not easy to achieve if the source code is not struc-
tured in terms of states. Sometimes it happens that a seemingly stable
code in terms of errors to work as expected for successive runs with the
same input data, but at a certain running (with the same input data)
to give a wrong result.

Automata have been used since before the beginning of modern
computers to solve mathematical problems. Nowadays they have ap-
plications in many of the components of a software product such as lex-
ical analyzers, parsers which use regular expressions or network com-
munication protocols [1]. In 2003 Russian scientist Anatoly Shalyto
published an article about automata based programming [2]. This pa-
per presents a new way of programming mechanisms for simulation of
states, transitions and input/output operations. In designing of large
applications state charts and activity diagrams can be used, and they
are very similar to automata. The problem arises when you have to
translate these diagrams into source code. Shalyto senses this trans-
position and connects his theory with the association between diagram
elements and automata elements.

Communicative automata based programming has elements from
the object-oriented version of the Russian researcher and, additionally,
it solves the problems mentioned above. It proposes an improved model
of the application, dividing the tasks of the control automata in the
object-oriented model to several independent machines that communi-
cate with each other. Every communicative automata is self-contained
and do not share information, the only way to exchange data is the
transmission of messages. So the code of applications benefits from
high cohesion without sacrificing coupling and it can be reused easily.

The main strength in the technology based on communicative au-
tomata is that the application can be easily distributed across multiple

190

Communicative automata based programming. . .

computing machines. Each system has its suite of communicative au-
tomata, which communicates with the rest of the automata by the
same type of messages; in this case the communication channel is the
network. Moreover, these systems can switch automata between them,
which do not depend on a particular machine, providing task balanc-
ing. This is useful particularly in the client-server model, where the
client is a computing machine with low capacities, such as a mobile
phone. In this paper we will see how we created the premises for the
communicative automata based programming paradigm, which is based
on object-oriented programming concepts. This paradigm intensively
uses the concept of automaton; code structure is given by the states
and transitions. Novelty to classic automata based programming is to
treat automata as atomic elements at application-level and the intro-
duction of using transmission of messages between automata. Society
Framework implements the basic elements and concepts described by
communicative automata based programming. The framework allows
creation of native and XML automata, the XML ones having an impor-
tant advantage because they can be serialized locally and deserialized
on another machine at runtime.

2 Communicative automata based program-

ming

2.1 Automata based programming (classical version)

For the first time in software engineering, Shalyto describes an ap-
plication model composed only from automata. Its technology uses
intensive enumerations and switch-case instructions, so that is also
called ”Switch Technology” [2]. In this solution, although the code
is easy to understand, there are big problems when the number of
states increases. This is because the program code increases with each
added state and transition. The solution appears later in the paradigm
”object-oriented programming based on states” [2]. It combines the ad-
vantages of automata for easier understanding of the program behavior
and advantages of object-oriented programming for easier understand-

191

A. Micu, A. Iftene

Figure 1. Comparison between client-server model and Shalyto model

ing of the structure. The new technique shifts from ”switch-case” in-
structions to classes and objects to describe automata, thus avoiding
nested switches. Shalyto takes in discussion the existence of several
automata in one application. Their management is difficult when you
have to synchronize certain transitions or when performing operations
of reading/writing from the same memory location. Therefore the no-
tion of ”space of states” [2] arises, a set of conditions designed to con-
trol objects. Knowing which states control objects, we can program
automata to have synchronous access to memory. Moreover, if we con-
sider one object for each automaton, the space of states may act as a
supervisor for the other automata. Thus, the application model begins
to look like client-server model, as in Figure 1.

Another novelty in this technique is the capacity of system to re-
spond to events, a necessary feature for communication between state
space and the other automata. So, not only I/O operations can change
the state of automata, but also other automata by generating its own
events. Object-oriented programming based on states solves many of
the initial problems presented by Shalyto, but even this option cannot
be used in large projects. The main reason would be that as the code
grows in size, it becomes more difficult to extend. State space must be
rewritten for each new added automaton and becomes more and more
complex, and harder to understand.

192

Communicative automata based programming. . .

2.2 Communicative automata based programming

Programming based on interconnected automata expands object-
oriented programming, inheriting all its elements and rules. On top
of them there is the added notion of communicative automaton, with
new rules related to its functionality. The major differences between the
automata from object-oriented version and communicative automata
are their atomic characteristic and the communication based on mes-
sages. In what follows, an automaton is a finite automaton with epsilon-
transitions, without isolated states, with one or more final states and
a single initial state [3].

Communicative automata bring new elements compared to the clas-
sical automata, leading to changing application architecture. The main
elements are: (1) State – a series of instructions viewed as an atomic
part. It contains code that performs the actual work of the automaton;
(2) Transition – a series of instructions viewed as an atomic part. In
contrast with states, transitions contain only the code needed to deter-
mine the next state where it will pass; (3) Message – an entity that
contains data transmitted by an automaton to another automaton or
by a code that is not part of an automaton; (4) List of messages – a
comprehensive list of received messages by automaton.

A communicative automaton may contain, in addition to the base
elements, other resources such as variables, operating system resources
or references/pointers to other automata. In most cases, when a sys-
tem runs more communicative automata, it is desirable to execute their
code in parallel. The general solution in modern systems is to run the
code for each automaton on a separate thread. Some programming lan-
guages such as JavaScript before HTML5 [4, 5], do not support working
with multiple threads. If the parallel execution is not possible, the pro-
grammer will have to use an own method of allocation and arbitration
of automata to the processor. This approach has an important advan-
tage in that the programmer can choose the convenient moments when
to deallocate an automaton to ensure a consistent state at each step
of the execution. This approach has a disadvantage, though. At any
point in execution it cannot run more than one automaton, so others

193

A. Micu, A. Iftene

have to wait.

Each automaton must provide ways to add messages to its mes-
sage list. The problem occurs when an automaton should reference
another automaton, to which it must send a message. A naive way
to solve this problem is to keep a reference/pointer to every possible
destination, which is set by the function that creates it. Such practices,
however, are extremely hard to maintain since it requires changing the
code of the function that instantiates automata each time when we add
a new type of automaton. A better approach is to mediate communi-
cation with an object that keeps track of automata. This object, called
”router”, has an implementation similar with the Observer pattern.
Automata must register using a unique identifier to this mediator and
must be able to handle messages from any source, automaton or not.
The router methods can send messages based on recipient identifier,
thus obtaining a total decoupling of automata in the system. When
the router handles messages sent through the network, security prob-
lems may appear which must be taken into account. A security system
must provide a separation between user automata to avoid situations
in which an automaton sends a compromising message to another au-
tomaton.

3 Society framework

3.1 Architecture

Society Framework is a project developed to demonstrate the advan-
tages of communicative automata based programming. Its source code
and examples are publicly available on https://code.google.com/p/soci
ety-framework/. Its target is to facilitate the development of commu-
nicative automata based applications and to minimize the errors that
can happen in such an application. There are two framework implemen-
tations, one written in Java language and one written in C# language,
the reason being the demonstration of its interoperability.

The three major modules of this framework are the following: (1)
Base module for communicative automata – contains interfaces,

194

Communicative automata based programming. . .

Figure 2. An efficient use of a communicative automaton

abstract classes and completely implemented classes to create a native
automaton; (2) XML communicative automata module – con-
tains interfaces, abstract classes and completely implemented classes
to create an XML automaton; (3) Communication module – con-
tains classes with role in automata communication, both locally and
through the network, on different applications.

In Society the communicative automata are divided in two large
categories: native automata, with Java or C# code based on the frame-
work implementation and XML automata, for which the code is written
using an extension of XML. The main reason is the fact that, unlike
the native automata, the XML ones can be serialized, sent through the
network to another application and re-instantiated on that machine,
the process being intuitively described in Figure 2. The XML code
inside the serialization is transformed in one more object trees rep-
resenting the instruction that must be executed in the states and the
transitions. For this reason we cannot say that the framework compiles
the code and neither that it interprets it. It constructs its own code
using objects corresponding to the instructions described by the XML.

XML automata can use only a restricted set of instructions, on
which the framework can construct XML specifications. The reason
is the fact that XML automata are not intended for complex or in-
tense processing due to the great overhead compared to the native
ones. Their utility is the fact that they can communicate with the na-

195

A. Micu, A. Iftene

Figure 3. Example of optimization using a native automaton and an
XML automaton

tive ones through messages, the latter fulfilling the tasks described in
the messages much more efficiently. The alternative usage of the two
types enables optimizing the application processing, an example being
described in Figure 3.

The efficiency relies on the fact that the only data sent between the
server and the client is the automaton serializations. Thus, the transfer
of data between server and client is minimized and it is replaced by
service calls, the result being a constant number of connections to the
server for executing a task. Fortunately an XML automaton plays the
role of manager for the native automata in the system and they don’t
require much code, so traveling to another machine through network
doesn’t imply a lot of data transfer. Another major advantage in this
approach is the reduced overhead of the native automata because, as
we previously mentioned, the native automata are written directly in
the language/platform of the framework implementation. The fact that
a native automaton can use any instruction of this type raises security
problems regarding the actions permitted to XML automata. XML
automata can only execute instructions that don’t compromise security,
the only way of communicating with the machine it runs on being the

196

Communicative automata based programming. . .

Figure 4. Interaction with the message list (queue)

message sending to other automata.

3.2 Base module for communicative automata

The base module contains the base class for all the automata created
in a system (BaseAutomaton) and classes for automaton components.
In both framework implementations these are: (1) State – the base
class for the states in an automaton; (2) Transition – the base class
for the transitions in an automaton; (3) TransitionGroup – class that
contains transitions and acts like a normal transition; (4) Message-

List – the class that implements the queue of messages received by an
automaton.

The State, Transition and TransitionGroup classes are classes inside
the BaseAutomaton class. The reason is the fact that these classes must
have access to the fields and the methods in BaseAutomaton.

The MessageList class implements a special type of queue with syn-
chronized add and remove methods (see Figure 4). The add operation
is synchronized to ensure consistency to the list while more than one
execution threads add messages simultaneously. The remove opera-
tion is synchronized to block the thread that calls it when there are
no messages in the queue until another thread places a message in it.

197

A. Micu, A. Iftene

The message queue is encapsulated in the automaton, the only permit-
ted operation being the message addition by using the Add method at
automaton. Inside the State, Transition and TransitionGroup classes
there is direct access to the MessageList object, meaning that they can
both add and remove messages.

Each state contains a transition or a transition group which indi-
cates the next state and is kept in an indexed list (HashMap in Java
and Dictionary in C#) with string identifiers. To create a new state
the State class must be extended and the stateCode (or StateCode in
C#) method must be overridden. Then the Transition class must be
extended (or TransitionGroup if the state has more than one transi-
tions) and the transitionCode (or TransitionCode in C#) method must
be overridden, such that the new implementation returns a valid tran-
sition name. The next executed state is decided by the name returned
by the transition. Societys communicative automata can run both on
the current thread, by calling the run (or Run in C#) method, and
on a newly created thread by calling start (or Start in C#). To stop
the thread that runs the automaton without risking data corruption
the stopSafely (or StopSafely in C#) method can be used. The run
method contains a while loop that ends at the stopSafely call. This
loop executes states one at a time and the order of execution is driven
by each states transition or transition group.

Another important class in the base module is the SocietyManager
which manages the automata inventory from the current application
and the XML automata transfers. This can be extended to imple-
ment the saving and loading methods for the automata. For automata
transfer SocietyManager runs a special native automaton called Au-
tomataTransferAutomaton responsible with managing the connections
and sending/receiving automata.

3.3 XML communicative automata module

XML communicative automata are an extension of the native ones,
their base class being BaseAutomaton. The XML automaton name
is given by the serialization and deserialization of this type, which is

198

Communicative automata based programming. . .

achieved by using the Society XML, an extension of XML.

The serialization of XML automata contains 6 major elements: (1)
Automaton name – also named identifier, it is the character sequence
attribute of the < automaton > element with role in a possible sub-
scribe of the automaton at the message router; (2) Current state

name – current state identifier, also stored as a character sequence;
(3) Current message – the serialization of the last message pulled
from the message queue; (4) Message list – the serialization of the
automaton’s message queue; (5) Variables – the list of variables and
their values; (6) States – the list of states in the automaton and their
code.

The current state name must match the name of a state in the state
list. If this rule is violated, then the automaton cannot start. Also,
if the name which was provided for the automaton serialization differs
from the name it had in the system before, when the automaton is re-
instantiated, all entities which send messages to that automaton must
be aware of the change and send message for the new name.

Variables are key-value pairs. In the Society framework automata
work with 5 data types: Boolean, Integer, Double, String and Map.
The Boolean type is represented using characters delimited by dots:
.T. for true and .F. for false. Integer and Double types have the same
representation as in Java or C#. String type is delimited by apostro-
phes and it can contain anything exception apostrophe characters. Map
type can represent vectors with any number of dimensions; the only
limit is the machine memory. To ensure this property, the framework
uses a series of indexed lists (the type of list depends by framework
implementation). The indexed values can be of any type, including
Map type. Thanks to this flexibility we can create vectors that contain
other vectors, any number of times and in any combination, the result
being as much dimensions as the memory can hold.

The state serialization contains the state identifier (name at-
tribute), the executed code (< code > element) and the transition (<
transition > element) or the transition group (< transition group >

element). A transition group contains any number of transitions and
a < code > element which contains the instructions that manage the

199

A. Micu, A. Iftene

returned values for each transition. From the moment when the au-
tomaton is started, the initial state code is executed indicated by the
value in the current state attribute. Then the transition code from
that state is executed (or the transition group code if it’s a group of
transitions) and the next state name is obtained. The process contin-
ues until the automaton is stopped, either from a state code, or from
an execution thread outside it.

It should be noted the fact that inside a transition group each tran-
sition must have a name (specified in the name attribute), so that their
code can be called from the < code > element of the group. If a state
has just a transition, and not a transition group, then that transition
doesn’t have to specify a name. The instructions represent the impera-
tive part of Society XML and there are two types of them: (1) Simple

instructions – instructions that don’t contain other instructions inside
them (empty elements); (2) Compound instructions – instructions
that contain other instructions inside them (non-empty elements).

Simple instructions are the base for the code executed in the states
and transitions. These are represented by XML elements without
content, the only parameters being their attributes. The following
simple instructions can be used in Society XML: get next message,
send message, execute, continue, break and return. Compound in-
structions are usually loops (while, do − while, for), but they can
be other types, like the if − else instruction or the switch − case.
Their behavior is identical with the one in the framework’s implemen-
tation language, with small differences to enable much more flexibility
by using the expressions. The following compound instructions can be
used in Society XML: while, do while, for, if , else, switch, case and
default.

Unlike the other elements, where the declaring order does not drive
the code behavior, instructions must be written in the exact order in
which they must be executed. Regarding the calculability of Society
XML, it contains enough instructions to be Turing-complete: at least
one assignation operation, one conditional operation and one jump in-
struction. This means that XML communicative automata can solve
any problem which can be transformed in an algorithm. The input and

200

Communicative automata based programming. . .

the output are ensured by the router and the message queue inside the
automaton. Native automata must provide communication methods
with the user for the XML ones because the language of the latter does
not allow native calls for reading, writing or displaying data. The ad-
vantage is the fact that XML automata don’t have any security issues so
long as the native ones verify and control the requests. The expressions
have an important role in Society XML because they provide values for
the attributes in the instructions presented earlier. An expression will
always return a value, even if this value is null, and some expressions
may even change the state of variables during the execution, like the
assign operation or the function call. The expressions may also be used
to access the values of the received messages.

XML communicative automata deserialization

The BaseAutomaton class incorporates methods to serialize and de-
serialize automata. For parsing the XML data the Society framework
uses SAXParser in Java and XMLReader in C#. For constructing
the objects that compose the XML automaton functionality the frame-
work uses a special automaton called DeserializationAutomaton. For
each beginning and ending tag the parser sends a message to the de-
serialization automaton containing the corresponding data (tag name,
attributes, and tag type). According to the state and message data the
automaton will create the objects and perform transitions.

The major components in the XML automaton serialization are the
following: the variables, the messages, the states, the transitions and
the transition groups. When the deserialization automaton encoun-
ters an expression inside an attribute it must analyse it and construct
an instruction tree equivalent. The constructExpression method inside
DeserializationAutomaton has a string representation of the expres-
sion as input and an instruction tree as output. It uses an algorithm
inspired from the infix to prefix expression transformation algorithm
[6]. Instead of constructing the list of prefix ordered symbols the al-
gorithm was modified to construct the instruction tree. To extract
the symbols (tokens) from the expression the deserialization automa-
ton uses the LexerAutomaton. The lexer provides these symbols as
instructions. The paranthesis (OpenedBracketInstruction and Closed-

201

A. Micu, A. Iftene

BracketInstruction) are also considered instructions, though they only
have functionality inside the deserialization process. Because both the
expressions and the instructions implement the same interface, Instruc-
tion, they are treated in the same way: instructions are executed by
calling their code method and, for their part; the instructions call the
same method for the expressions they contain. The call of a state or
transition is done by only calling their code method, as the other calls
are done through call chaining.

The lexer automaton is similar to the automata constructed for
regular expressions. Its implementation has a string as input and for
each of its runs it provides an Instruction object in the final state. This
object corresponds to the next symbol found in the expression string,
therefore situations when the lexer automaton must run multiple times
on the same expression are often. If the automaton reaches the final
state and provides a null value it means no more symbols can be found
in the current expression and the constructExpression method returns
the created tree. Lexer Automaton holds data about the current parse
at each run. These pieces of information are named accumulators and
stored in a list. In the final states of the automaton these are used to
construct the returned instruction. The first accumulator is always the
string of the expression to parse. There are cases when the lexer will
also call the constructExpression method to create a subtree of a sub-
string in the expression. An example would be the function parsing: for
each substring delimited by parenthesis and commas constructExpres-
sion is called to obtain the subtrees corresponding to the parameters.

XML communicative automata serialization

XML automata serialization is a much simpler process thanks to the
tree structure of the instructions inside them. The serialization process
implies the construction of the XML based on the objects inside the
automaton. To achieve this it is necessary to inspect the variables, the
message list, the special members (automaton name, current message,
etc.) and a single BFS traversal of object trees in the states, transitions
and transition groups.

The expression serialization is an exception from the BFS: an ex-
pression tree is traversed in-order. The reason for this is the fact that

202

Communicative automata based programming. . .

the expressions linear structure requires the left subtree of a node to
be written before the operator and the right subtree to be written af-
ter the operator. To send serialization through the network, Society
framework uses TCP connections which it tries to keep alive during the
execution. The non-ASCII characters are encoded using UTF-8. This
means that the values and names in an XML automaton can use any
character from Unicode.

3.4 The communication module

The communication module includes the classes responsible with send-
ing and routing the messages: (1)Message – the class which represents
a message; (2) MessageRouter – the class responsible with message
transfers.

The Message class contains two fields (or properties in C#): from
and data. The from field holds the identifier with which the sender
automaton has subscribed to the router or any other name if the mes-
sage was not sent by an automaton. The data field is a reference to
the sent object and it can be of any type. The MessageRouter class
manages the message transfers for both automata in the same applica-
tion and automata on different machines. It implements the Observer,
Singleton and Lazy Initialization patterns and its unique instance can
be accessed anywhere in the code. Automata can subscribe to receive
messages using the subscribe(String name, BaseAutomaton automa-
ton) method and they can unsubscribe through the unsubscribe(String
name) method. The name parameter will have the value of a unique
identifier for that automaton, usually its name. The sendLocal(String
to, Message message) method sends the message provided as parame-
ter to an automaton in the current application. It returns whether the
automaton was found in the application and, in case it was found, the
message is added to its message queue.

To send messages to an automaton outside the application the
router uses an automaton which is responsible with the message trans-
fer through the network called NetworkMessagingAutomaton. This
looks similar to the DeserializationAutomaton inside the SocietyMan-

203

A. Micu, A. Iftene

ager class, the only difference being the type of sent information. The
network messaging automaton contains a message queue from which
messages are sent starting from the moment when the connection is
established with the application in the network. To place a message
in this queue the sendRemote(String to, Message message) method is
used. The send(String to, Message message) method first tries to send
the message locally, then, if the recipient automaton is not found in
the current application, it places the message in the NetworkMessagin-
gAutomaton’s queue.

4 Comparisons

4.1 Loose code vs. native communicative automata

Loose code means any object-oriented code written without the con-
straints of the communicative automaton based programming paradigm.
By applying these constraints to loose code the native communicative
automatons can be obtained, the performance difference being mini-
mal.

To create a native automaton the following steps must be followed:
(1) Extending the BaseAutomaton or Automaton classes – if
the automaton state doesn’t have to be persisted, then the Automa-
ton class is used, otherwise the BaseAutomaton class is extended and
the serialization/deserialization methods are implemented; (2)Adding

the member variables – necessary for the automaton functionality;
(3) Creating the nested classes – corresponding to the states, tran-
sitions and transition groups; (4) Instantiating and adding the pre-

viously created classes at the current automaton – these steps
can be made in the automaton constructor.

The code executed in the stateCode and transitionCode methods
by the automaton is the imperative (procedural) code corresponding to
the language of the framework implementation. The automaton code,
as a whole, has a structure enforced by the programming paradigm: it
is grouped in states, transitions and transition groups.

The run method (or Run in C#), which was previously mentioned

204

Communicative automata based programming. . .

in this article, is responsible with the correct execution of the automa-
ton regarding the order in which the states, the transitions and the
transition groups are executed. The management instructions in this
method have O(1) complexity, except the operation that searches a
state in the state set. After a transition returns an identifier, in the
run method, a search for the state corresponding to that identifier is
attempted. This implies a get operation in a HashMap (Java) or Dic-
tionary (C#) with a complexity in the worst case scenario of O(n) [7,
8], where n is the length of the identifier hash. Though the complexity
in the general case is greater than when using normal vectors, the pro-
grammer can minimize the execution time by offering identifiers with
a minimum number of characters. The execution time also depends
on the hash algorithm on which the search is based (specific for the
platform).

While the automata are designed, the programmers and architects
must decide how to split the automaton tasks and what are their states
and transitions. Fewer automata and states/transitions means less allo-
cated memory and less time consumed by the context switches between
automaton threads. This approach implies more code written per state
or transition, therefore the imperative part of the automata is favored.
On the other hand, more automata and states/transitions mean a bet-
ter modularization of the code and the possibility to allocate the tasks
to a greater number of processors or machines, favoring the declarative
part of the automaton.

4.2 Native communicative automata vs. XML commu-

nicative automata

The XML communicative automata, as mentioned in the previous chap-
ters, are an extension of the native communicative automata. Their
states, transitions and transition groups are constructed in a certain
manner to ensure they can be serialized and deserialized using the Soci-
ety XML language. The code inside the XML automaton is composed
of an object tree and the objects are implementing the Instruction in-
terface. Executing its code means calling the code method of the root

205

A. Micu, A. Iftene

object which will trigger directly or indirectly the call of code in the
other objects from the tree.

The overhead compared to the native ones is visibly greater because
each instruction implies a method call at the level of implementation.
Starting from the moment the automaton tries to assign a value to a
Map object at an inexistent level, the algorithm creates the necessary
levels based on the indexes from the left operand. If on one of the levels
that must be created there is an object of a type different from Map,
then it is replaced by a new Map object.

In the native automata the variable access has O(1) complexity
thanks to the fact that they are direct members of the automaton class.
XML automata keep all the variables in an indexed list, the same way
the states are stored, therefore the access algorithm complexity is O(n),
where n is the length of the variable name hash [7, 8].

When comparing XML automata and native automata it can be
inferred that the native ones must be used for intense processing and
system calls and XML ones must be used for the business logic, control
and code that must be transferred between applications. This way we
can take advantage of both without sacrificing execution time or code
modularity. The connection between the two types of automata is the
messaging which ensures a uniform communication. Because Society
framework was written using just the base platform for each language
it was implemented in, there are no additional dependencies for it to
run. An advantage of this decision is the ease of extending the frame-
work for the Android platform. In Android the Java code runs on a
special virtual machine called Dalvik [9]. To run the intermediary Java
code (Java byte-code) it is transformed into intermediary Dalvik code
(Dalvik byte-code) for optimizations [10]. This way the Android exten-
sion for the Society framework was created which contains specialized
classes for that environment in the society.framework.android package.
The ActivityAutomaton class is an extension of the Automaton class
which contains a reference to the current Activity in the application
instance. The reference to the Activity is necessary for some actions
on the application resources: user interface changes, system resources
usage, service starting, etc. The AndroidSocietyManager class extends

206

Communicative automata based programming. . .

the SocietyManager class and implements the serialization and dese-
rialization methods for saving and loading the automata state from a
persistent environment.

5 Conclusions

Communicative automata based programming makes the process of
moving from the design to the implementation easier and the state or
the activity diagrams to be found directly in the source code, without
the need of a detailed documentation. The paradigm combines both
imperative programming elements and declarative elements for obtain-
ing a higher quality code with less effort. The new features it brings on
top of the classic automata based programming, automaton atomicity
and messaging communication, enforce practical rules with an aim for
minimizing the errors: code modularization, data encapsulation at au-
tomaton level and request verification. These advantages have a great
impact in production, especially in large projects where the work is
assigned to a great number of programmers and architects.

Society framework has reached its purpose: the demonstration of
the advantages brought by the communicative automata based pro-
gramming. The differentiation between native automata and XML au-
tomata resulted in the development of two categories of automata, each
with its advantages and disadvantages. The native ones are intended
to provide methods to access the machine resources in a controlled and
efficient manner and the XML ones have the role to use these func-
tionalities, to execute the business logic and to travel in the network
at the most suitable place for a certain task. The alternative and ef-
ficient use of those has results superior to the current approaches for
some problems: minimizing the number of connections and the amount
of data sent through the network, efficient execution of a distributed
application or providing universal processing services on a powerful
machine.

The Society framework, though it is not the most efficient imple-
mentation of the mechanisms in the communicative automata based
programming, it draws closer to the industry needs. Large distributed

207

A. Micu, A. Iftene

applications or the ones that intensively use network transfers can be
boosted by Society framework. Nonetheless, based on the applica-
tion necessities, different mechanisms can be implemented for the au-
tomata. The target would be code optimization, security (message
encryption, authentication, error tolerance, etc.) or the sending of
messages through other environments (embedded systems, Bluetooth).

References

[1] E. Gribko. Applications of Deterministic Finite Automata. (2013).

[2] A. Shalyto. it Technology of Automata-Based Programming.
(2004).

[3] J. Hopcroft, R. Motwani, J. Ullman. Introduction to Automata
Theory, Languages, and Computation, Second Edition. Addison-
Wesley, (2000).

[4] J. Edwards. Multi-threading in JavaScript. (2012).

[5] R. Gravelle. Introducing HTML 5 Web Workers: Bringing Multi-
threading to JavaScript. (2012).

[6] S. Singhal. Infix to Prefix Conversion. Sharing ideas, Sharing ex-
periences. (2012).

[7] Arno. HashMap vs. TreeMap. (2010).

[8] K. Normark. Generic Dictionaries in C#. (2010).

[9] J. Hildenbrand. Android A to Z: What is Dalvik. (2012).

[10] Security Engineering Research Group, Institute of Management
SciencesPeshawar, Pakistan, Analysis of Dalvik Virtual Machine
and Class Path Library. November (2009).

Andrei Micu, Adrian Iftene, Received September 20, 2015

Andrei Micu, Adrian Iftene

Institution: ”Alexandru Ioan Cuza” University

Address: General Berthelot, No. 16

Phone: 004 - 0232 - 2011549

E–mail: andrei.micu@info.uaic.ro, adiftene@info.uaic.ro

208

Computer Science Journal of Moldova, vol.23, no.2(68), 2015

The Law of Gravitation for Ontologies and

Domains of Discourse∗

Vadim Ermolayev

Abstract

The idea of the presented approach is to borrow a plausible
analogy of a “system law”1 from the field of Dynamics in Mechan-
ics – the Newton’s Law of Universal Gravitation. This analogy is
exploited for building the law of gravitation in dynamic systems
comprising a Domain of Discourse and knowledge representations
(ontologies) describing this domain. As ontology elements do not
possess physical mass, this component of the gravitation law is
substituted by the property of fitness of an ontology to the re-
quirements of the knowledge stakeholders characteristic for the
described domain. It is also argued that the implementation of
the developed theoretical framework is feasible as the support-
ing techniques, including some software tools, already exist. As
the examples of the relevant component methods and tools, the
paper presents concisely the OntoElect methodology, Ontology
Difference Visualizer, and Structural Difference Discovery En-
gine. These instruments help solve some practical problems in
eliciting domain requirements, developing structural contexts for

∗This paper is a revised and extended presentation of the substance of the invited

talk [1] given at the 2015 Workshop on Foundations of Informatics at Chisinau on

the 25th of August, 2015.

c©2015 by V. Ermolayev
1As remarked in [2], a system law is a rule which generalizes the behavior of

some observed phenomenon within a concrete system and its given spatiotemporal

context. A system law tells what behavior is expected within the system. Thus

a system’s law can cause change or represent a barrier to change. It can be used

to predict certain aspects of the system behavior, which are based on the force,

or influence it exerts on the internal environment of the system. In contrast to a

natural law, a system law is neither universal nor does it need to be true, correct,

etc.

209

V. Ermolayev

the requirements, generating the mappings between these struc-
tural contexts and the target ontology, computing increments and
decrements of ontology fitness based on these mappings. It is con-
cluded that the presented framework has prospects to be applied
practically for visualization and analysis of ontology changes in
dynamics. Use cases for ontology refinement and anomaly detec-
tion are suggested for validation.

Keywords: Ontology, Domain, Dynamics, Gravitation, Fit-
ness

1 Introduction

The world of knowledge representations, comprising ontologies, is by
its nature a reflection of the world we live in. Dynamics in physical,
social, biological contexts are the subject of study by several disciplines,
where useful analogies can be sought. The findings hint about a way
to identify and specify useful aspects and help offer the law to describe
dynamics in ontological systems.

It is known for example from Mechanics, the branch of Physics and
Engineering, that Kinematics studies the motion of an object without
direct reference to the causes of this motion. Motion in this context
is understood as a change of position, often compared to a reference
point. In difference to Kinematics, Dynamics is concerned with forces
and torques and their effect on the motion of objects. For example,
in Dynamics it is analyzed why an object changes its position and due
to which causes or influences the acceleration has this specific value
function over time.

One of the particular kinds of forces of interest regarding a physi-
cal system is gravitation. Basically, gravitation forces are known to be
expressed by the Newton’s Law of Universal Gravitation [3] as propor-
tional to the product of interacting masses and inverse to the square
distance between these masses. In biological and social systems similar
“forces” reflect the degree of “attraction” of a particular object to a
group, habitat, etc. For knowledge representations, an analogy to the
notions of mass, gravitation, force could be sought in terms of the fit-
ness of a knowledge representation module to the requirements of the

210

The Law of Gravitation for Ontologies and Domains of Discourse

stakeholders in a Domain of Discourse or its similarity to the other
modules which could be found regarding the Domain of Discourse.

This paper starts with the discussion of the notion of an ontology
– one of the fundamental concepts in Knowledge Representation and
Management. In this context, the property of being a “shared con-
ceptualization” is explained in terms of the fitness to the requirements
of the domain knowledge stakeholders, resulting in their commitment.
The paper continues with an outline of the state of the play in the
field of Ontology Change, putting a particular emphasis on ontology
Dynamics versus Kinematics. Then, the fundamentals of the theory
of Ontology Dynamics based on the analogy to the Newton’s Law of
Universal Gravitation are presented. Yet further, the paper deliber-
ates about the techniques for implementing this theoretical ontology
gravitation framework. The paper concludes with the summary of the
presented work and outlines the potential applications of the presented
framework in Ontology Refinement and Anomaly Detection.

2 Ontologies, Domain Requirements, Fitness,

and Dynamics

An ontology is often denoted as a “formal, explicit specification of a
shared conceptualization” (c.f. [4]) and this paper follows this defini-
tion. In particular it is focused on describing and exploiting the prop-
erties of being “formal” and “explicit” regarding the representation of
a conceptualization (specification), and – even more importantly – the
property of being “shared” regarding the conceptualization itself. It is
also emphasized that the completeness of an ontology has a straight-
forward impact on becoming a “shared conceptualization”

Being “formal” means that an ontology has to be specified using
a formally defined ontology specification language such that logical
inference is enabled with respect to this artifact. To enable logical
inference, such a language needs to be based on logics – so an ontology is
a logical theory. Ontology is also a descriptive theory as it is developed
with the purpose to describe common sense, abstract high-level notions,
or a Domain of Discourse.

211

V. Ermolayev

Following [5], an ontology is a logical descriptive theory formally
denoted as a tuple O = 〈C,P, I, T, V,≤,⊥,∈,=〉, where C is the set
of concepts (or classes); P is the set of properties (object and datatype
properties); I is the set of individuals (or instances); T is the set of
datatypes; V is the set of values; ≤ is a reflexive, anti-symmetric, and
transitive relation on (C × C)∪(P × P)∪(T × T) called specialization,
that helps form partial orders on C and P called concept hierarchy
and property hierarchy respectively; ⊥ is an irreflexive and symmetric
relation on (C × C)∪(P × P)∪(T × T) called exclusion; ∈ is a relation
over (I × C)∪(V × P) called instantiation; = is a relation over I×P×
(I ∪ V) called assignment. The sets C,P, I, T, V are pairwise disjoint.
It is also assumed (c.f. [6]), that an ontology O comprises its schema
S and the assertional part A:

O = 〈S,A〉 ;S = 〈C,P, T 〉 ;A = 〈I, V 〉 . (1)

Ontology schema S is also referred to as a terminological compo-
nent (TBox). It contains the statements describing the concepts of
O, the properties of those concepts, and the axioms over the schema
constituents. The set of individuals A, also referred to as assertional
component (ABox), is the set of the ground statements about the in-
dividuals and their attribution to the schema – i.e. where these indi-
viduals belong.

This paper focuses on the ontologies that describe a particular well
circumscribed Domain of Discourse – classified as domain ontologies.
The reason for this emphasis is that any ontology development pro-
cess, including its change management or refinement, takes as an input
the requirements by the subject experts in the domain of interest and
produces the ontology as its output – covering those requirements cor-
rectly and to the maximal possible extent. Straightforwardly, the set
of methods shaping out this process needs to comprise the mechanisms
for:

• Eliciting the (change2) requirements from the domain knowledge
stakeholders as fully as possible

2Change requirements are elicited in the ontology Refinement phase. In the phase

of Initial Development initial requirements are collected.

212

The Law of Gravitation for Ontologies and Domains of Discourse

• Measuring how completely the requirements were captured

• Transforming the elicited requirements to the (changes in the)
ontology

• Measuring how well the result fits to the intentions of the domain
knowledge stakeholders

If a methodology fails to do any of the above sufficiently well, then
the commitment of the knowledge stakeholders to the output ontology
will be low. So, such a product cannot be regarded as a really “shared
conceptualization”.

Hence, a domain ontology OD could be regarded as a harmonized
formal and explicit representation of the union of the interpretations
(K) by the knowledge stakeholders si ∈ S of the subject domain D.
So, näıvely, we may elicit all the K-s and build the ontology of those
as:

OD = hrm(
⋃

S

unffj(Ksi)), (2)

where hrm is a harmonization function and unf is the transformation
that maps a knowledge interpretation represented in the form fj to the
knowledge representation formalism used by the knowledge engineer
(unification). Even if so, harmonization and unification functions are
not easy to perform. For example, a formalism fj for Ksi could be more
expressive than the ontology specification language used for coding
OD; Ksm and Ksn could be mutually contradictory in some parts;
etc. Reality introduces more complications – mainly influencing the
properties of being explicit and complete:

• K-s are subjective. The stakeholders interpret their domain
based on their individual background knowledge and experience.

• K-s are tacit. The views on the domain by the subject experts
are often not stated explicitly. On the contrary, some parts of
those K-s are assumed, taken as evident or default, subsuming
that (all) the professional community regards these assumptions

213

V. Ermolayev

in a similar way. The tacit parts are the cause for difference in
interpretations, or even misinterpretations.

• K-s are partial. Subject experts focus on their narrow context
of professional interest and expertise, and have only a shallow
coverage of the broader area within the domain. The partiality
and fragmentation of their K-s is the reason for (a) contradictions
between different views on the overlapping contexts; and (b) gaps
in the coverage of the domain.

• K-s are not available. The knowledge stakeholders are not read-
ily willing to spend their time for materializing their K-s or re-
vealing them to knowledge engineers in another form.

In Ontology Engineering and Management the degree of the confor-
mance of an ontology to the requirements of the domain knowledge
stakeholders is regarded as its fitness. Measuring ontology fitness is
not an easy task as one has to have: the requirements; the ontology;
these two compared and difference measured. Several approaches to
ontology fitness measurement are known from the literature – e.g. [7,
8]. One of these approaches has been developed as a part of the On-
toElect ontology engineering methodology [9]. In OntoElect, ontology
fitness to domain stakeholder requirements is understood as propor-
tional to the ratio of positive and negative votes of these stakeholders
regarding the assessed ontology. These votes are collected indirectly
[9], as for example in [10], by:

• Extracting a saturated set of multi-word key terms from the sta-
tistically representative document corpus

• Detecting the most influential key terms by applying weights to
the most “important” documents in the corpus

• Transforming the natural language definitions of the selected key
terms to formalized structural contexts in the ontology specifica-
tion language; and

• Mapping the structural contexts to the ontology

214

The Law of Gravitation for Ontologies and Domains of Discourse

Ontologies describing realistic domains could be substantially large and
complex in their structures and properties. So, the development and
management of these descriptive theories call for solving several in-
teresting research problems. As profoundly surveyed in [11], ontology
change – changing an ontology in response to a certain need – is one
of the most important and challenging among them. Ontology Change
as a field remains to be on the research and development agenda. For
example, a Google Scholar search for “Ontology Dynamics” OR “On-
tology Evolution” OR “Ontology Change” yields over 5 300 papers3.
If the search is constrained by those published after 01 January 2015
it returns 224 hits.

The term of ontology change is often used broadly – to cover sev-
eral interrelated facets of the problem and covering different kinds of
changes to ontologies: in response to external events; caused by trans-
lations to a different language having different expressive power; caused
by the evolution of stakeholder requirements; introduced by the ontol-
ogy engineer according to the evolved understanding of the domain;
etc. Several research sub-fields have emerged to cope with this broad
variety of change aspects. The most prominent of those are:

• Ontology evolution (reactive response to a change in the domain
or its conceptualization)

• Ontology refinement (goal-directed, proactive change)

• Ontology versioning (enable transparent access to different ver-
sions of an ontology)

• Ontology mapping (identify related vocabulary elements)

• Ontology morphing (map between vocabularies and axioms)

• Ontology matching (map and measure semantic distance be-
tween vocabularies and axioms)

• Ontology alignment (result of matching process)

3As of September 2, 2015

215

V. Ermolayev

• Ontology translation (to a different representation language)

• Ontology integration/ merging (fuse knowledge from ontolo-
gies covering similar/ identical domains)

• Ontology debugging – diagnosis and repair (render an ontol-
ogy consistent/coherent)

The plethora of these research facets, all looking at the phenomenon
of change in ontologies, gave also the birth to the Ontology Dynamics
community (http://ontologydynamics.org/). It may be noticed how-
ever, that the mainstream approach, also adopted by the aforemen-
tioned community, follows more Kinematics than Dynamics. Indeed,
the term of “ontology change” is referred to “the problem of deciding
the modifications to perform upon an ontology in response to a certain
need for change as well as the implementation of these modifications
and the management of their effects in depending data, services, ap-
plications, agents or other elements” (c.f.[11]). In simple words: given
the need for a change, it is decided what is changed and to what extent
– i.e. if following the analogy with Mechanics, how much the position,
velocity, acceleration of the object changes.

It appears that the Ontology Change does not look sufficiently
deeply into the causes of a change – which is in fact the task for Ontol-
ogy Dynamics. In this paper some steps are made toward laying out a
foundation for filling this gap based on analyzing the (changes in the)
fitness of an ontology to a particular Domain of Discource.

3 Ontology Dynamics and the Law of Gravita-

tion

Let us now think of a system, comprising a Domain of Discourse and
several ontologies describing it, as of a closed “mechanical” system.
For making this analogy plausible – i.e. to be able to propose usable
dynamic laws – we have to find the proper analogies to the mechanical
notions of: a coordinate grid and its origin; a position, a distance, a
motion; a mass; and a force (gravitation).

216

The Law of Gravitation for Ontologies and Domains of Discourse

Let us assume that a Domain of Discourse (D) is adequately mod-
eled by the set of all relevant requirements (R), by its knowledge stake-
holders, for representing knowledge in this domain. For building a grid
based on these requirements it is assumed, as pictured in Fig. 1a, that:

• All the requirements are placed in the centre of the D; and

• They are not equal in their importance – i.e. have different
spheres of influence around the centre of gravitation, which is
quantified using normalized scores ns ∈ [0, 1]

Figure 1. Domain requirements, their spheres of influence (a), and
gravitation forces (b)

Let us suppose now that an ontology (O) is positioned in D at a
(semantic) distance l from its centre (Fig. 1(b)). This can be any
location on the circle of radius l around the centre of the grid. We
are now interested in what might be the forces influencing O in this
position.

Let us assume that O is checked against the requirements r from R
which spheres of influence reach the position of O (i.e. nsr ≥ l). The
following are the possible outcomes of these checks:

217

V. Ermolayev

• A particular part of O, say a semantic context o ∈ O (a white
coloured circle in Fig. 1(b)), fulfils the requirement r. Therefore
O becomes more fitting to R. In this case we will consider that
the increase in fitness (∆Φ+

o) creates a positive gravitation force
−→
G+

o applied to O and directed towards the centre ofD, as pictured
in Fig. 1(b). The absolute value of this force is computed using
a direct analogy with the Newton’s Law of Universal Gravitation
[3]:

G+
o =

1×∆Φ+
o

(nsr)2
, (3)

where: “1” in the numerator is the fitness of r with respect to D
– meaning that r fits D perfectly as one of its requirements; the
value of ∆Φ+

o is within [0, 1].

• There is no semantic context o ∈ O that fulfills the requirement r
(no circle on the ontology side in Fig. 1(b)) or there is an o that
contradicts r (a black coloured circle in Fig. 1(b)). In both cases
O becomes less fitting to R. Therefore we will consider that the
decrease in fitness (∆Φ−

O for a missing semantic context; ∆Φ−
o

for a context contradictory to r) creates a negative gravitation

force,
−→
G−

O or
−→
G−

o respectively, applied to O and directed towards
the periphery of D, as pictured in Fig. 1(b). Similarly to (3), the
absolute values of these forces are computed as:

G−

O =
1×∆Φ−

O

(nsr)2
,

G−

o =
1×∆Φ−

o

(nsr)2
. (4)

The overall gravitation force applied to O as an influence by D is
computed as a vector sum:

218

The Law of Gravitation for Ontologies and Domains of Discourse

−→
GO

∣
∣
∣
D
=

∑

r∈R:nsr≥l

(−→
G+

o +
−→
G−

O +
−→
G−

o

)
. (5)

Figure 2. Equilibrium states in the gravitation field of domain D: (a)
the case of a single ontology; (b) – multiple ontologies

O is considered as properly positioned within D when it reaches its
equilibrium state (Fig. 2a) with respect to the gravitation field in D,

i.e. appears at a distance l from the centre of D at which
−→
GO

∣
∣
∣
D

=
−→
0 . This distance could be interpreted as an integral measure of the
semantic difference between what does O describe and what is required
to be described for D by its knowledge stakeholders. If O is not in

an equilibrium state regarding D,
−→
GO

∣
∣
∣
D

will cause it to move either

towards the centre of D or towards its periphery. O also generates its
gravitation field which affects D. However, we do not take into account
the movement of D because the centre of the grid (and therefore a
potential observer) is always located in the centre of D.

The gravitation field of O will come into effect in this grid if there
are several ontologies positioned within D (Fig. 2b). This case is
resolved similarly to the case of a single ontology described above.
Ontology A reaches its equilibrium state within D and with respect

to the ontologies B and C if
−→
GA

∣
∣
∣
D
+

−→
GA

∣
∣
∣
B
+

−→
GA

∣
∣
∣
C

=
−→
0 . So do the

other ontologies B and C. In this equilibrium state the distances lAB ,

219

V. Ermolayev

lAC , lBC could be interpreted as the integral measures of the semantic
difference in the respective pairs of ontologies, also under the influence
of R in D. One topical difference for the case of multiple ontologies
is that the differences and similarities in the pairs of ontologies are
computed differently compared to the fitness in the pair O, D. For
comparing ontologies, the use of matching techniques is the mainstream
approach.

Let us now compare a mechanical system which is governed by
the Newton’s Gravitation Law and the proposed Domain – Ontology
system using the proposed fitness-based gravitation. The comparison
is summarized in Table 1.

The subsequent section focuses on the case of a single ontology in
the gravitation field of D as the basic. It elaborates how the set of
requirements R could be formed for D and also how ontology fitness
changes could be computed.

4 Supporting Techniques

As outlined above, for making the theoretical framework based on the
Law of Gravitation usable in practice several technical problems have
to be solved and corresponding software tools to be developed. Let us
unfold the workflow for computing gravitation forces from the outline
given in Table 1.

As it may be seen in Fig. 3, the amount of work to be accomplished
before the Law of Gravitation can be applied is quite high. The amount
of human work may however be reduced due to:

• The re-use of the results of the previous iterations as the number
of the newly coming requirements is normally much lower than
of those already processed and still remaining valid for D

• The use of several instruments – methods and tools – that may
help partially automate the process

The techniques and tools applicable in this context are presented in
this section.

220

The Law of Gravitation for Ontologies and Domains of Discourse

Table 1. Gravitation in a mechanical system versus domain – ontology
system

A Mechanical (e.g.
Solar) System

A Domain – Ontology
System

Coordinate
grid

E.g. Helio-centric, 3 di-
mensional, Decartes

Domain-centric, 2 dimen-
sional, normalized

Distance
(l)

Meters, from point
(0,0,0)

Normalized, semantic

Mass (m) Kilogramms, measured
using scales or other in-
direct methods

Fitness of O regarding R
describing D

Force (G) Newton’s Law: G =
γm1×m2

l2

−→
GO

∣
∣
∣
D

=
∑

r∈R:nsr≥l

(−→
G+

o +
−→
G−

O +
−→
G−

o

)

Model
type /
granular-
ity

Continuous Discrete

To apply

• Measure masses

• Measure distance

• Extract r ∈ R with
their ns

• Create knowledge
tokens (kt) for r

• Map kt to O

• Compute ∆Φ+
o ,

∆Φ−
o , ∆Φ−

O

221

V. Ermolayev

Figure 3. The workflow for applying the Law of Gravitation in the
ontology refinement process

4.1 Extracting Domain Requirements

As explained in Section 2, a feasible way to make domain requirements
explicit is to elicit those indirectly – by extracting multi-word key terms
from a representative document corpus describing the domain. A doc-
ument corpus could be considered as representative if it is sufficiently
completely covers the description of the domain. One way to assess its
completeness is to use the saturation metric proposed in OntoElect [9]
as follows.

Let Doc = Doc1, ...,Doci+1 = Doci
⋃
∆i+1, ...,Docn be the se-

quence of the samples of the document corpus which are built incremen-
tally – i.e. each subsequent sample Doci+1 in the sequence is created
by adding a number of new relevant documents (∆i+1) to the previous
sample Doci. Let Ti = {(tij , s

i
j , ns

i
j)} be the bag of terms and their

normalized scores extracted from the sample Doci. A normalized score

222

The Law of Gravitation for Ontologies and Domains of Discourse

nsij of a term tij is computed as nsij = sij/s
i
max, where s

i
max is the max-

imal score among all the terms in the bag. A bag of terms Ti is the
termhood related to Doci if Ti contains only:

• Significant terms – i.e. those scored above the significance thresh-
old εs; and

• Valid terms – i.e. those after filtering out the terms that are
highly ranked, but have no substantial contribution to the se-
mantics of the domain

One reasonable way to choose εs is to ensure that the terms in the
termhood reflect the majority of the stakeholders’ opinions. This could
be done by taking in those terms from the top of the bag of terms,
sorted by term score, having the sum of the scores slightly higher than
the 50 per cent of the sum of all scores in the bag of terms. Doc =
Doc1, ...,Docn−1,Docn is considered saturated if:

thd(Tn−1, Tn) < εst, (6)

where: thd is the termhood difference function computed using the
THD algorithm [9] which takes semantically equivalent and orphan
terms in consideration; εst is the saturation threshold chosen empiri-
cally by a knowledge engineer for the given domain; Tn−1, Tn are the
termhoods related to the two final document samples Docn−1,Docn of
Doc.

It is assumed in our work that the sequence of thd values monotoni-
cally going down below εst indicates that Docn is a complete document
corpus possessing sufficient representativeness. Non-monotonicity of
thd values sequence signals that the corresponding ∆i+1 is either not
very relevant to the domain or is a valuable addition containing the ter-
minology not used in the previous samples (Doci). Anyhow, saturation
indicates that the chosen document corpus is complete.

In order to apply semi-automated ontology mapping technique to
compare these extracted requirements and ontology contexts, the re-
quirements have to be represented similarly formally as the ontology.
For achieving that:

223

V. Ermolayev

• Natural language definitions for the terms in the final termhood
are collected. An example is given in Figure 4. This activity is
performed manually by a knowledge engineer.

• Formalized semantic contexts (knowledge tokens, kt) are built for
the terms using the retrieved definitions. This activity could be
facilitated by following the OntoElect methodology as described
in [9, 10]. Knowledge tokens are in fact small ontological frag-
ments coded in OWL DL and also visualized as UML class dia-
grams – as pictured in Fig. 4.

• The mappings of the constructed semantic contexts to the ontol-
ogy are created. The mappings could be verified by a knowledge
engineer using the visualization of the structural difference rep-
resented in an extended UML class diagram notation [14]. This
activity could be done semi-automatically using the software tools
for ontology alignment [13, 14].

4.2 Computing the Change in Ontology Fitness

For measuring the fitness of the entire ontology or its particular
constituents with respect to the domain requirements the OntoElect
methodology [9] recommends to use the metaphor of votes. Votes are
computed based on:

• The scores of the respective terms t in R

• The mappings of the terms to the ontology elements

A mapping of the term t to ontology O is denoted as the func-
tion that establishes a relationship between t and the element of
O: µ = (t, re, o, cf), where re is the relationship type – re ∈
{equivalence,membership, subsumption,meronymy, association}, o is
the element in O, and cf is the confidence factor with a value from
[0, 1]. Hence, Mo = {µ} is the set of all term mappings to the ontology
element o.

224

The Law of Gravitation for Ontologies and Domains of Discourse

A positive vote vo for an ontology element o ∈ O is denoted as
a value reflecting the evidence of referring to o by the term t through
the term mapping µ:

vo =
∑

µ∈Mo

ns× w(re)× cf, (7)

where: ns is the normalized score of t; cf is the confidence factor of the
respective mapping µ; and w(re) is the weight of the mapping based
on the type of the relationship re of µ. The weights are introduced
to reflect that different types of mappings could be regarded as the
arguments of different strength in favour of this ontological element.
Indeed, if a term is equivalent to the element, then it is a strong di-
rect argument in favour of the element. However a statement about
being an individual member of the element, a direct subsumption of an
element, being a part of an element, or having an association to an ele-
ment is considered as a weaker argument. So the weights are proposed
as: equivalence – 1.0; membership – 0.7; subsumption, meronymy –
0.5; association – 0.3. These values may further be reconsidered if any
experimental evidence is collected in this respect. Direct subsumption
mappings to very abstract elements in the ontology should however be
avoided. For example, all concepts, and therefore the terms categorized
as concepts, subsume to the root concept of a Thing present in any
OWL ontology. This subsumption mapping has indeed very little to
do with domain semantics and therefore should not be counted as an
argument for a vote. Valid direct subsumption mappings have to be
sought to the most specific possible ontology elements. Indirect sub-
sumption mappings could further be accounted for propagating votes
up the concept hierarchy as described below. Propagated votes may
be used to further clarify the distribution of the fitness upwards the
subsumption hierarchy of the ontology.

So far only direct positive votes with respect to ontology elements
have been discussed. So, the overall ontology fitness computed based
on these votes reflects only the arguments focused on an element and
without any influence on the surrounding of this element. This however
might not be fully correct with respect to the fitness of the surround-

225

V. Ermolayev

Figure 4. Term processing pipline by example. The term and semantic
context of a Clock

226

The Law of Gravitation for Ontologies and Domains of Discourse

ing elements. Indeed, let us for example assume that the concept of a
Clock in a Time ontology gets a vote. Then it may be expected that
the concept of an Instrument, subsuming Clock (See also Fig. 4),
also qualifies for the part of the value of this vote. A straightforward
reason is that, due to the subsumption relationship, the more specific
concept inherits the properties of the more abstract concept in the sub-
sumption hierarchy. So the vote has to be propagated up the hierarchy
with attenuation – factored empirically or possibly aligned with the
proportion of the inherited properties in each individual case.

A propagated vote vpo for an ontology element o ∈ O is the value
reflecting the contribution of o to the semantics of the ontology element
osub subsumed by o:

vpo = att× vosub , (8)

where att is the attenuation coefficient.

Positive and propagated votes provided by the term t are further
used for computing the fitness increments ∆Φ+

o of the elements in O.

∆Φ+
o =

∑

µ∈Mo

vo +
∑

Osub
o

vpo , (9)

where Osub
o is the subset of the elements in O which are subsumed by o.

A negative vote provided by a term t (v−t = −ns) is:

• Either a vote based on the term t ∈ Tmiss pointing out that t
is not described by O. In this case a fitness decrement for the
whole ontology O could be computed as:

∆Φ−

O = v−t |t∈Tmiss ; (10)

• Or a vote pointing out that the term t is in a contradiction with
a particular ontology element o. In this case a fitness decrement
for the ontology element o ∈ O could be computed as:

227

V. Ermolayev

∆Φ−

o = v−t . (11)

The overall change in ontology fitness caused by the influence of the
term t (requirement r ∈ R), being the sum of all positive, propagated,
and negative votes could hence be computed as follows:

∆ΦO |t =
∑

O

(∆Φ+
o +∆Φ−

o) + ∆Φ−

O. (12)

Consequently, the change in overall ontology fitness caused by R is:

∆ΦO |R =
∑

R

(∆ΦO |t) , (13)

As already mentioned in Section 2.2, all these changes are taking
effect if the sphere of influence ns of the requirement r = (t, ns) ∈ R is
more or equal to the distance l between O and D.

4.3 Computing Mappings between Ontologies

The creation of the mappings of the semantic contexts of the terms from
the termhood (knowledge tokens, kt) could be done in a partially au-
tomated way using an appropriate ontology matching technique. One
possible technique is meaning negotiation using argumentation based
on the exchange of presuppositions [12]. This approach has been im-
plemented in several software tools supporting different steps in the
mapping generation process:

• Generation of the mappings between the TBoxes of two different
ontologies in the ontology alignment format or as ABox transfor-
mation rules could be facilitated using the Structural Difference
Discovery Engine (SDDE) [13]

SDDE uses an approach for ontology alignment based on the implemen-
tation of meaning negotiation [12] between intelligent software agents.
Their negotiation strategy implies aligning ontologies by parts (con-
ceptual subgraphs or contexts) that are relevant to a particular negoti-
ation encounter. Negotiation is conducted in an iterative manner and

228

The Law of Gravitation for Ontologies and Domains of Discourse

is aimed at the reduction of a semantic distance between the contexts.
Agents use propositional substitutions, expressed in a Type theory,
which may reduce the distance, and support them with argumenta-
tion. The process is stopped when the distance reaches some commonly
accepted threshold or the parties exhaust their propositions and argu-
ments. The software produces a set of mappings between the ontology
fragments either in the Ontology Alignment Format [15] or as transfor-
mation rules [16]. The mappings are produced as XML serializations
of µ = (t, re, o, cf) – as explained in Section 4.2. These mappings, after
been verified, may be refined using the Transformation Rule Editor of
the OIM Tool [16] – as pictured in Fig. 5.

Figure 5. OIM tool Dashboard and Transformation Rule Editor,
adopted from [16]

• Verifying the structural changes between the TBoxes of two dif-

229

V. Ermolayev

ferent OWL ontologies by visualizing the difference using an ex-
tension to the UML class diagram language could be performed
by the Ontology Difference Visualizer (ODV) tool [14]. ODV
desktop is pictured in Fig. 6.

Figure 6. The ODV desktop. Visualized is the structural difference
between the PSI Time Core ontologies v.2.2 and 2.3. Adopted from
[14]

The composition of a semantic context of a concept (0), as imple-
mented in the ODV, could be formed by specifying the radius of the
neighborhood of this concept (1). Further it could be fine-tuned by
manual inclusion or exclusion of the concepts (2), object properties
(3), subsumption relationships (4). The analyzed ontological context
may be placed on the wafer of the source (old) ontology by toggling the
“show old” mode in the Tools menu. The context may be also altered

230

The Law of Gravitation for Ontologies and Domains of Discourse

by considering or filtering out the concepts belonging to the imported
ontology modules (5). Finally the “owner” filter may be employed for
concentrating on the changes that have been introduced by a particular
ontology engineer in the team (6). The ODV implementation allows
also editing and saving the layout of the visualized structural difference
in the project file (7). Such a layout saves all the context settings and
therefore allows personalized representations for different users. The
release of the ODV proof of concept software prototype [14] has been
implemented in Java as a plug-in to the Cadence ProjectNavigator
software prototype. ODV uses OWL API 2 and therefore is capable of
processing OWL ontologies coded in OWL DL.

5 Conclusive Remarks

This paper presented the approach to deal with dynamics in knowledge
representations, in the form of ontologies, regarding the domains these
ontologies are intended to describe. In order to place the reported
research in the context of the scientific discipline, the basics of Ontology
Engineering, Management, and Change have been concisely presented
in Section 2.

The high-level idea followed in the presented work is to understand
the dynamics of ontologies in a way similar to the other scientific disci-
plines – primarily answering the questions about the causes of a change
and therefore offering the laws to compute forces and their effect on the
motion of ontologies within the domain. Hence, the central part of the
presented research deals with an attempt to exploit the analogy with
the Newton’s law of Universal Gravitation. This law has however to be
applied to the objects that do not possess physical mass. Therefore, the
proper analogues for a mass, a coordinate grid and its origin; a position,
a distance, a motion; and a force (gravitation) have been elaborated
– resulting in a theoretical Ontology Gravitation framework presented
in Section 3. This framework is based on the notion and measurement
of ontology fitness to the knowledge stakeholder requirements to the
description of a particular Domain of Discourse.

It has also been described in Section 4 of the paper that the im-

231

V. Ermolayev

plementation of the presented theoretical framework is feasible as the
supporting techniques, including some software tools already exist. The
presentation focused on outlining the opportunities provided by the On-
toElect methodology, Ontology Difference Visualizer, and Structural
Difference Discovery Engine to help solve the practical problems in:

• Eliciting domain requirements without any direct involvement of
the knowledge stakeholders

• Developing structural contexts for multiple word key phrases that
indicate the requirements

• Generating the mappings between these structural contexts and
the target ontology

• Computing increments and decrements of ontology fitness based
on these mappings

The framework presented in the paper has prospects to be applied prac-
tically for visualization and analysis of ontology changes in dynamics.
The following use cases could be of particular scientific, industrial, and
societal value.

Ontology refinement is the implementation of the required changes
in an ontology for making it fit the changed stakeholder requirements
to the maximal possible extent – Fig. 7. In the terms of the Ontology
Gravitation framework described above, stakeholder requirements are
captured by R for D (Fig. 1), each having also its ns. So the changes in
these requirements result in the changes to the gravitation field gener-
ated by D (Fig. 7a and 7b). These in turn will cause that the ontology
O changes its position to reach a new equilibrium state in the changed
gravitation field of D (Fig 7c and 7d). This new position of O may ap-
pear to be closer to the centre of D’s gravitation – which indicates that
the changes in the stakeholder requirements were favourable for the
current implementation of O. It may also appear, as in Fig. 7d, that
O will move further out from the gravitation centre of D – indicating
that the changes in requirements hint about the necessity to refine O.
A visualization tool showing the changes in ontology equilibrium state

232

The Law of Gravitation for Ontologies and Domains of Discourse

positions in response to the changes in the gravitation field of D may
become a powerful instrument for a knowledge engineer to assess and
justify the refinement of the particular fragments of the ontology. Such
a justification will be based on the acquired knowledge, in a condensed
and visualized form, about the causes triggering the needed change.

Figure 7. A way to visualize the changes in ontology fitness in ontology
refinement

Anomaly detection in data analytics is about revealing the parts
of data that change beyond normal values – hinting about a potential
or developing problem in the system that is the source of these data.
For example, if a system is a civil community and its environment (D),
then it may be producing many diverse streams of observation data
coming from various sorts of sensors – like outdoor temperature mea-
surements, water levels, industrial emissions, share prices, cell phone
activity, etc. Imagine that each sort of censor measurement is described
by its individual ontology which is updated using knowledge extraction
from the respective incoming data stream. From the other hand, com-
munity requirements R reflect the desire of the stakeholders to live in
a comfortable (normal) environment: clean air and water; stable share
prices, no traffic hold-ups, etc. If so, it is reasonable to expect that an
equilibrium state, involving the abovementioned sensor data ontologies
and D, will show how close (normal) or far (abnormal) each sort of

233

V. Ermolayev

sensor measurement is from the normal condition. This visual result
may be made available in time sufficient for emergency response to the
detected anomaly.

6 Acknowledgements

The theory of gravitation between ontologies and Domains of Dis-
cource, based on fitness, has been developed in the SemData project
funded by the Marie Cure International Research Staff Exchange
Scheme (IRSES) of the 7th Framework Programme of the European
Union, grant No PIRSES-GA-2013-612551. OntoElect methodology
has been developed as a part of the PhD project of Olga Tatarintseva.
The tools for ontology mapping and alignment have been developed
with Anton Copylov and Maxim Davidovsky.

References

[1] V. Ermolayev. The Law of Gravitation in Ontology Dynamics. In:
S. Cojocaru and C. Gaindric (Eds.): Proc. W-shop on Founda-
tions in Informatics (FOI 2015), pp. 246–267, Acad. of Sciences of
Moldova, 2015.

[2] W.-E. Matzke. Engineering Design Performance Management –
from Alchemy to Science through ISTa (Invited Talk). ISTA 2005,
23-25 May 2005, Palmerston North, New Zealand, pp. 154–179
(2005).

[3] I. Newton. The Principia, Mathematical Principles of Natural
Philosophy, a new Translation. By I Bernard Cohen and Anne
Whitman, preceded by ”A Guide to Newton’s Principia” by I
Bernard Cohen, University of California Press, 1999, ISBN 978-0-
520-08816-0, ISBN 978-0-520-08817-7.

[4] Rudi Studer, V. Richard Benjamins, Dieter Fensel. Knowledge En-
gineering: Principles and Methods. In: Data & Knowledge Engi-
neering, 25(1-2):161–197, 1998.

234

The Law of Gravitation for Ontologies and Domains of Discourse

[5] J. Euzenat, P. Shvaiko. Ontology Matching, Berlin Heidelberg
(DE), Springer-Verlag, 2007.

[6] D. Nardi, R. J. Brachman. An Introduction to Description Logics.
In The Description Logic Handbook, F. Baader, D. Calvanese, D.
L. McGuinness, D. Nardi, P. F. Patel-Schneider, Eds. Cambridge
University Press New York, NY, USA, 2007.

[7] A. Gangemi, C. Catenacci, M. Ciaramita, J. Lehmann. Modelling
ontology evaluation and validation. In: Sure, Y., Domingue, J.
(eds.) ESWC 2006, LNCS 4011, pp. 140–154 (2006).

[8] Fabian Neuhaus, Amanda Vizedom, Ken Baclawski, Mike Ben-
nett, Mike Dean, Michael Denny, Michael Grüninger, Ali Hashemi,
Terry Longstreth, Leo Obrst, Steve Ray, Ram Sriram, Todd
Schneider, Marcela Vegetti, Matthew West, Peter Yim. Towards
Ontology Evaluation Across the Life Cycle. In: Applied Ontology.
8 (2013), pp. 179–194, DOI 10.3233/AO-130125.

[9] O. Tatarintseva, V. Ermolayev, B. Keller, W.-E. Matzke. Quanti-
fying Ontology Fitness in OntoElect Using Saturation- and Vote-
Based Metrics. In: Ermolayev et al. (eds.) ICT in Education, Re-
search, and Industrial Applications. Revised Selected Papers of
ICTERI 2013, CCIS 412, pp. 136–162, Springer Verlag, Berlin –
Heidelberg (2013).

[10] V. Ermolayev, S. Batsakis, N. Keberle, O. Tatarintseva, G. An-
toniou. Ontologies of Time: Review and Trends. In: Int. J. of
Computer Science & Applications, 11(3), pp. 57–115, 2014.

[11] Giorgos Flouris, Dimitris Manakanatas, Haridimos Kondylakis,
Dimitris Plexousakis, Grigoris Antoniou. Ontology Change: Clas-
sification and Survey. In: The Knowledge Engineering Review,
23(2), pp. 117-152, 2008. doi:10.1017/S0269888908001367.

[12] V. Ermolayev, N. Keberle, W.-E. Matzke, V. Vladimirov. A Strat-
egy for Automated Meaning Negotiation in Distributed Informa-
tion Retrieval. In: Y. Gil et al. (Eds.): ISWC 2005 Proc. 4th Int.

235

V. Ermolayev

Semantic Web Conference (ISWC’05), 6-10 November, Galway,
Ireland, LNCS 3729, pp. 201–215 (2005).

[13] M. Davidovsky, V. Ermolayev, V. Tolok. Agent-Based Implemen-
tation for the Discovery of Structural Difference in OWL-DL On-
tologies. In: H.C. Mayr et al. (Eds.): UNISCON 2012, LNBIP 137,
pp. 87–95 (2013).

[14] V. Ermolayev, A. Copylov, N. Keberle, E. Jentzsch, W.-E. Matzke.
Using Contexts in Ontology Structural Change Analysis. In: Er-
molayev, V., Gomez-Perez, J.-M., Haase, P., Warren, P, (eds.)
CIAO 2010, CEUR-WS, vol. 626 (2010).

[15] J. David, J. Euzenat, F. Scharffe, C. Trojahn dos Santos. The
Alignment API 4.0, Semantic Web, 2(1), 3-10 (2011).

[16] M. Davidovsky, V. Ermolayev, V. Tolok. Instance Migra-
tion Between Ontologies having Structural Differences. Int J
on Artificial Intelligence Tools. 20(6) 1127–1156 (2011) DOI:
10.1142/S0218213011000553

Vadim Ermolayev Received September 7, 2015

Department of IT, Zaporizhzhya National University,

66 Zhukovskogo st., 69063, Zaporizhzhya, Ukraine

E–mail: vadim@ermolayev.com

236

Computer Science Journal of Moldova, vol.23, no.2(68), 2015

Solving Problem of Graph Isomorphism

by Membrane-Quantum Hybrid Model

Artiom Alhazov Lyudmila Burtseva Svetlana Cojocaru

Alexandru Colesnicov Ludmila Malahov

Abstract

This work presents the application of new parallelization
methods based on membrane-quantum hybrid computing to
graph isomorphism problem solving. Applied membrane-quantum
hybrid computational model was developed by authors. Massive
parallelism of unconventional computing is used to implement
classic brute force algorithm efficiently. This approach does not
suppose any restrictions of considered graphs types. The esti-
mated performance of the model is less then quadratic that makes
a very good result for the problem of NP complexity.

1 Introduction

The present paper concerns application of new computational models
based on hybrid of bio-inspired and quantum approaches. In com-
putability theory, a model defines feasible computational operations
with their execution time/space. There are many branches of bio-
computation: evolution, DNA, swarm, etc. We took as our base the
membrane computing formalism, also known as P systems [4].

A P system is a set of mutually inclusive membranes that contain
multisets of objects (numbers, strings, or some abstract items) and
evolve under some rules. All possible rules are applied in parallel to
all possible membranes and objects. This is the membrane parallelism
that makes this computation model very powerful.

In our model, membranes can additionally contain quantum ma-
chines that perform quantum computations (Fig. 1).

c©2015 by A. Alhazov, L. Burtseva, S. Cojocaru, A. Colesnicov,

L. Malahov

237

A. Alhazov et al.

Membrane system

· · ·
qhi

qhj

Quantum systems

· · ·

Figure 1. Structure of the hybrid model

The idea of such hybrid computation arises from needs of differ-
ent domains delivering hard tasks, which are not always satisfactorily
solved by existing high performance computational models.

To illustrate the proposed model, we present in this paper a solu-
tion of the graph isomorphism problem (GI). Due to its practical ap-
plications ranging from chemistry to social sciences, this problem has
been solved by many algorithms, both classical and unconventional,
still remaining under investigation. Unlike problems which are usually
considered as suitable for unconventional computation, GI belongs to
NP, but is not known to belong to its well-studied subsets like P or
NP-complete. The best classical algorithm complexity is O(c

√
n logn),

where n is the number of vertices in the graph.

Because of this uncertainty of general task, it is divided into sev-
eral subtasks according to graph types (trees, planar graphs, poor-
connected, etc.). The majority of mentioned subproblems are proved
to be in the integer factorization class. So, existence of polynomial-
time quantum algorithm for integer factoring makes GI a good candi-
date for speedup by a quantum computing [1]. Further developments
of quantum computing solutions of GI mostly applied the quantum
walk [6]. However, all issues attributable for quantum computation
such as “probability” results or exponential growing of system size af-
fect the proposed solutions.

As we said above, we choose the membrane computing formalism.
The proposed hybrid model is the usual P system framework supplied
by capability to perform quantum computations in its membranes.

238

Solving Problem of Graph Isomorphism by Hybrid Model . . .

Membranes, which are supposed to obtain quantum functionality, just
have the specific marks in the P system description. In the marked
membrane, the apparition of some specific objects (quantum data, or
quantum triggers) starts quantum computation. Specified data become
the initial state of the quantum registers. After finishing the quantum
computation produces other specific objects (quantum results) in the
external membrane.

To provide incorporated quantum functionality in the proposed hy-
brid model, standard scheme of quantum device [7] proves itself to be
sufficient.

Both for membrane and quantum part, we use particular P system
formalisms and quantum gates in dependence of the solved problem.

In this paper, the hybrid model solving GI is constructed over de-

cision P system with active membranes implementing brute force algo-
rithm. The quantum devices perform only comparison using CNOT,
NOT and Toffoli gates.

2 Hybrid Computational Model

2.1 Membrane Subsystem

Membrane systems, or P systems, consist of a set of mutu-
ally inclusive membranes. The membrane structure µ is a rooted
tree, traditionally represented by bracketed expression. For example,
[[[]4]2 []3]1 denotes membranes 2 and 3 inside membrane 1, and
membrane 4 inside membrane 2. There are many different variants of
P systems. Some variants may use static membrane structure, others
change it during calculations.

Membranes contain multisets of objects. Objects are numbers,
strings, or some abstract items. Different operations over objects may
be available. The initial state of a P system is always provided. The
initial state is some membrane structure with some multisets inside.

The evolution of a P system is governed by a set of rules. Rules
are applicable under certain conditions to change the objects in mem-
branes. All possible rules are applied in parallel to all possible mem-

239

A. Alhazov et al.

branes and objects (membrane parallelism). The calculation stops
when no rules can be applied.

We will use a decision P system with active membranes. Deci-

sion means that the alphabet of objects contains symbols yes and no

that represent two possible results of calculation. P system with active

membranes is defined as a tuple:

Π = {O,E, µ,w1, · · · , wm, e1, · · · , em, R}.

Here O is the alphabet of objects. E = {0, 1, ..., k} is a set of membrane
electrical charges, or polarizations. µ is a membrane structure of m
membranes labeled by integers; we will denote H = {1, . . . ,m} a set of
membrane labels. wi ∈ O∗ and ei ∈ E, i ∈ H, represent initial content
and initial polarization of the i-th membrane. Strings wi over alphabet
O (possibly empty) represent multisets of objects from O. R is a set
of rules of the form:
(a) [a → v]ih, a ∈ O, v ∈ O, h ∈ H, i ∈ E (evolution rules, used in

parallel in the region of the h-th membrane, provided that the
polarization of the membrane is i);

(b) a[]ih → [b]jh, a, b ∈ O, h ∈ H, i, j ∈ E (communication rules,
sending an object into a membrane and possibly changing the
polarization of the membrane);

(c) [a]ih → []jhb, a, b ∈ O, h ∈ H, i, j ∈ E (communication rules,
sending an object out of a membrane, possibly changing the po-
larization of the membrane);

(d) [a]ih → b, a, b ∈ O, h ∈ H, i ∈ E (membrane dissolution rules; in
reaction with an object, the membrane is dissolved);

(e) [a]ih → [b]jh[c]
k
h, a, b, c ∈ O, h ∈ H, i, j, k ∈ E (division rules for el-

ementary membranes not containing other membranes inside; in
reaction with an object, the membrane is divided into two mem-
branes with the same label, possibly of different polarizations,
and the object specified in the rule is replaced in the two new
membranes by possibly new objects).

240

Solving Problem of Graph Isomorphism by Hybrid Model . . .

2.2 Quantum Subsystem

The investigated hybrid model supposes additionally that in any mem-
brane the apparition of some specific objects (quantum data, or quan-
tum triggers) starts a quantum calculation. The said data are avail-
able as initial state of the quantum registers. After its termination
the quantum calculation produces another specific objects (quantum
results) inside the membrane. From the P system point of view, the
quantum calculation is a step of the membrane calculation.

Quantum device. We suppose a standard quantum device avail-
able for quantum calculations. The quantum device contains qubits
organized in quantum registers. It works in three steps: non-quantum
(classical) initialization of qubits when they are set in base states; quan-
tum transformation when the qubits are non-observable; non-quantum
(classical) measurement that produces the observable result.

Several restrictions are imposed over the quantum device. Each
qubit contains 0, or 1, or (during quantum calculation) superposition
of both. Therefore, the initial data and the result may be regarded as
non-negative integers in binary notation. The quantum transformation
is linear and reversible. The general rule is that arguments and results
are kept in different quantum registers. Another general condition is
that the ancillary qubits were not entangled with the argument and
the result after the calculation.

The construction of a quantum computer shown in Fig. 2 guarantees
this.

3 Interface between Membrane and Quantum

Sub-systems

Communications between membrane and quantum sub-systems are
performed through input/output signals and triggering (Fig. 3).

We define the hybrid system formally as a tuple

β = (Π, T, T ′,HQ, QN , QM , Inp,Outp, t, qh1
, · · · , qhm

).

241

A. Alhazov et al.

|y〉M

|x〉N

|w〉R

|z〉K

Vf

|f(x)〉
M

CM

|ψx,z〉N+R+K−M

|f(x)〉
M

V
†

f

|y ⊕ f(x)〉M

|x〉N

|w〉R

|z〉K

Figure 2. Quantum calculation; initialization and measurement are not
shown

Here, Π is a P system, and HQ = {h1, · · · , hm} is a subset of membrane
labels in Π used for quantum calculations. T is a trigger and T ′ is the
signal on obtaining the quantum result. Sub-systems qh1

, · · · , qhm
are

the quantum sub-systems associated to the corresponding membranes
from HQ. The rest of the components of the tuple β specify the inter-
action between Π and qhj

, 1 ≤ j ≤ m (Fig. 3).

Membrane subsystem Quantum subsystem(s)

Interfaceobjects states

β = (Π qh1
, · · · , qhm

), · · · ,

Figure 3. Subsystems and interface in the hybrid model

For simplicity, we assume that the running time of quantum sub-
systems of the same type is always the same. To keep this time general,
we include a timing function t : HQ → N: the quantum computation
in a sub-system of type qhj

takes t(hj) membrane steps. It is an open
general question how to calculate the timing of quantum calculation
with respect to the timing of membrane calculation. We could use as
the first rough estimation that quantum calculation takes three steps
of membrane calculation (initialization, quantum transformation, mea-
surement).

The input size (in qubits) for quantum systems is given by QN :

242

Solving Problem of Graph Isomorphism by Hybrid Model . . .

HQ → N. The output size (in bits) for quantum systems is given by
QM : HQ → N.

We would like to define the behavior of β in all possible situations,
so we introduce the trigger T ∈ O, where O is the alphabet of Π. The
work of a quantum sub-system of type qhj

starts whenever T appears
inside the corresponding membrane. Note that we said that qhj

is a
type of a quantum sub-system, because in general there may be multiple
membranes with label hj containing quantum sub-systems with the
same functionality. The quantum state is initialized by objects from
Inp(hj) = {Ok,hj ,b | 1 ≤ k ≤ QN (hj), b ∈ {0, 1}} ∪ {T}, so Inp :

HQ → 2O is a function describing the input sub-alphabet for each type
of quantum sub-system, the meaning of object Ok,hj,b being to initialize
bit k of input by value b. We require that the set of rules satisfies the
following condition: any object that may be sent into a membrane
labeled hj must be in Inp(hj).

The output of quantum sub-systems is returned to the membrane
system in the form of objects from Outp(hj) = {Rk,hj ,b | 1 ≤ k ≤
QM (hj), b ∈ {0, 1}} ∪ {T ′}, the meaning of object Rk,hj,b being that
the output bit k has value b. In case of one-bit output, we often denote
it yes and no.

The result of a quantum sub-system may be produced in the mem-
brane together with object T ′.

There are two possibilities to synchronize quantum and membrane
levels. We can use a timing function and to wait for the quantum result
by organizing the corresponding delay in membrane calculations, or we
can wait for appearance of the resulting objects, or the trigger T ′.
For generality, our model provides both possibilities. The topic needs
further investigations.

4 Graphs Isomorphism Problem

GI requires to decide whether two given graphs G1 = (V,E1) and
G2 = (V,E2) are actually the same graph with relabeling of the vertices.

243

A. Alhazov et al.

4.1 Graph Isomorphism: Hybrid Computation

The first graph is represented by objects a
(c)
i,j,0,0,0, where c = 1 if the

graph has edge (i, j), and c = 0 if it does not, 0 ≤ i ≤ n− 1, 0 ≤ j ≤

n − 1. The second graph is similarly represented by objects b
(c)
i,j,0. Let

N = ⌈log2 n⌉ (hence, n ≤ 2N < 2n). We construct the following hybrid
system.

β = (Π,Hq = {2}, n, Inp,Outp = {yes, no}, q2), where

Inp = {Ik,b | 0 ≤ k ≤ 2n2 − 1, 0 ≤ b ≤ 1},

q2 is a quantum system comparing the first n2 bits with the

n2 second bits in 2N + 1 steps, described later, and

Π = (O,Σ, µ = [[]02]01, w1, w2, R, 1)

is a decisional P system with active membranes, where

Σ = {a
(c)
i,j,0,0,0, b

(c)
i,j,0 | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1, c ∈ {0, 1}},

O = {di | 1 ≤ i ≤ nN} ∪ {pi | 1 ≤ u ≤ (n+ 2)N + 5}

∪ {xi,t,k,s | 0 ≤ i < n, 0 ≤ t < n, 0 ≤ k ≤ N,

0 ≤ s ≤ max(2k−1, 0)} ∪ {yes, no,X}

∪ {a
(c)
i,j,t,k,s | −2N ≤ i < n, −2N ≤ j < n, 0 ≤ t ≤ n,

0 ≤ k ≤ N, 0 ≤ s ≤ max(2k−1 − 1, 0), c ∈ {0, 1}} ∪ Inp

∪ {b
(c)
i,j,t | 0 ≤ i < n, 0 ≤ j < n, 0 ≤ t ≤ nN + 1, c ∈ {0, 1}},

w1 = p1, w2 = d1x0,0,0,0 · · · xn−1,0,0,0,

and the set R is the union of the following rule groups (together with
their explanations): generation, checking, processing the input, and
result. Note that the all four groups start working in parallel.

Generation

1 : [di]
e
2 → [di+1]02 [di+1]12, e ∈ {0, 1}, 1 ≤ i ≤ nN,

2 : [dnN+1]e2 → []02dnN+1, e ∈ {0, 1},

1: creating 2nN membranes and generating for each of them the
corresponding nN bits defining the permutations candidates. Other

244

Solving Problem of Graph Isomorphism by Hybrid Model . . .

objects may check these bits as membrane polarizations during nN
steps (not considering the initial step, where the polarization was 0).

2: After the generation phase, set the polarization to 0.

Checking

3 : [xi,t,k,s → xi,t,k+1,2s+e]e2, 0 ≤ i < n, e ∈ {0, 1},
0 ≤ t < n, 0 ≤ k ≤ N − 1, 0 ≤ s ≤ max(2k−1 − 1, 0),

4 : [x2s+e,t,N,s → λ]e2,
0 ≤ s ≤ 2N−1 − 1, 0 ≤ t < n, e ∈ {0, 1},

5 : [xi,t,N,s → xi,t+1,1,0]e2, 0 ≤ i < n,
0 ≤ t < n− 1, 0 ≤ s ≤ 2N−1 − 1, e ∈ {0, 1}, i 6= 2s+ e,

6 : [xi,n−1,N,s → X]e2, 0 ≤ i < n,
0 ≤ s ≤ 2N−1 − 1, e ∈ {0, 1}, i 6= 2s+ e,

7 : [X]02 → []12X,
3: Compute the value σ(t) of permutation σ for node label t.
4: Erase the label σ(t).
5: Continue matching the label.

6: Rename unmatched node labels into X (to make the next step
deterministic).

7: Invalid permutation detected. Cancel isomorphism check by
setting polarization to 1.

Processing the input

8 : [a
(c)
i,j,t,k,s → a

(c)
i,j,t,k+1,2s+e]

e
2,

−2N ≤ i < n, −2N ≤ j < n, 0 ≤ t < n, 0 ≤ k ≤ N − 1,
c ∈ {0, 1}, 0 ≤ s ≤ max(2k−1 − 1, 0),

9 : [a
(c)
i,j,t,N,s → a

(c)
i′,j′,t+1,1,0]e2, −2N ≤ i < n, −2N ≤ j < n,

0 ≤ t < n, c ∈ {0, 1}, 0 ≤ s ≤ 2N−1 − 1,
i′ = −2s− e− 1, i = t, i′ = i otherwise,
j′ = −2s− e− 1, j = t, j′ = j otherwise,

10 : [a
(c)
−i−1,−j−1,n,1,0 → Ini+j,c]

0
2,

0 ≤ i < n, 0 ≤ j < n, c ∈ {0, 1},

11 : [b
(c)
i,j,t → b

(c)
i,j,t+1]e2, 0 ≤ i < n, 0 ≤ j < n,

0 ≤ t ≤ nN, e ∈ {0, 1}, c ∈ {0, 1},

12 : [b
(c)
i,j,nN+1 → In2+ni+j,c]

0
2,

0 ≤ i < n, 0 ≤ j < n, c ∈ {0, 1},

245

A. Alhazov et al.

8: Compute σ(t) for matrix elements.

9: Perform row/column substitution if row/column is t. If so, store
the result as a negative index, minus one. In either case, proceed with
the next node.

11: The input symbols for the second graph wait while the permu-
tations for the first graph are being generated.

10,12: Initialize the quantum subsystem.

Result

13 : [yes]02 → []12yes,

14 : [yes]01 → []1yes,

15 : [pi → pi+1]01, 1 ≤ i ≤ (n+ 2)N + 4,

16 : [p(n+2)N+5]01 → []11no, 1 ≤ i ≤ (n+ 2)N + 4.

13: If the quantum subsystem detected a match, send this signal
out to the skin.

14: Send the final answer yes out, also halting the computation.

15: Wait for the possible answer yes to appear.

16: If it did not appear in time, send the final answer no.

4.2 Quantum Comparison

Quantum comparison is shown in Fig. 4. It uses CNOT, NOT and
Toffoli gates. The result is produced on the qubit initialized by |0〉
(the lowest in the diagram).

4.3 Notes on Complexity

The classical general algorithm solves GI for graphs of n vertices in
time O(c

√
n logn), were c is a constant [3].

Quantum computation has been widely employed at GI solving
during last decade. Initially, users of classic algorithms just applied
the Grover method for search between relabeled candidates. But for
graphs with n nodes a naive application of Grover search means O(

√
n!)

queries, so some other quantum methods have been proposed to im-
prove the efficiency. The most popular of these methods seems to be

246

Solving Problem of Graph Isomorphism by Hybrid Model . . .

|a1〉

|a2〉

...

|b1〉

|b2〉

...

|0〉

Figure 4. Quantum comparator

the quantum walk [6]. The computation complexity of GI solution ap-
plying quantum walk is declared for graph with n vertices as O(n7) for
discrete quantum walk [2] and as O(n6) for continuous one [5].

In the presented GI solution the P system part of computation
takes 2⌈(log2 n)⌉ + 1 steps. Supposing the pure P system computa-
tion the algorithm could execute the comparison of each pairs (candi-
date/pattern) by 2 steps. Totally the pure P system based comparison
would take 2n2 steps.

We will count the quantum subsystem comparison as 3 steps. So,
the whole work time is (n+ 2)⌈(log2 n)⌉+ 4.

5 Conclusions

This paper concerns the application of membrane-quantum hybrid com-
putational model to speed up the classical brute force algorithm solving
the problem of graph isomorphism.

Membrane-quantum hybrid computational model is the P system
framework with additional quantum functionalities. With this ap-
proach, we obtained computation time advancement against both pure
membrane and pure quantum solutions, namely: O(n log2 n) (hybrid)
against O(n2) (pure membrane) and O(n6) (pure quantum).

247

A. Alhazov et al.

References

[1] S. Dorn. Quantum Algorithms for Graph and Algebra Problems.

VDM Verlag (2008).
[2] B.L. Douglas, J.B. Wang. Classical approach to the graph isomor-

phism problem using quantum walks. Journal of Physics A: Mathe-
matical and Theoretical 41(7) (2008).

[3] J. Kobler, U. Schoning, J. Toran. The graph isomorphism problem:

its structural complexity. Birkhauser Verlag (1994).
[4] Gh. Păun.Membrane Computing. An Introduction. Springer (2002).
[5] X. Qiang, X. Yang, J. Wu, X. Zhu. An enhanced classical approach

to graph isomorphism using continuous-time quantum walk. Journal
of Physics: A Mathematical and Theoretical 45(4) (2012).

[6] K. Rudinger, J.K. Gamble, E. Bach, M. Friesen, R. Joynt, S.N.
Coppersmith. Comparing algorithms for graph isomorphism using

discrete- and continuous-time quantum random walks. Journal of
Computational and Theoretical Nanoscience 10(7), 1653–1661(9)
(2013).

[7] C.P. Williams. Explorations in Quantum Computing. Springer
(2008).

Artiom Alhazov, Lyudmila Burtseva, Received September 19, 2015

Svetlana Cojocaru, Alexandru Colesnicov,

Ludmila Malahov

Institute of Mathematics and Computer Science

Str. Academiei 5,

Chişinău, MD-2028,

Moldova

Phone: +373 22 72 59 82

E–mail:

{artiom.alhazov,lyudmila.burtseva,svetlana.cojocaru,kae,mal}@math.md

248

	99-101_About FOI-2015
	102-122_Semantic Properties of T-consequence Relation in Logics of Quasiary Predicates
	123-134_BioMaxP_A Formal Approach for Cellular Ion Pumps
	135-152_Structuring of Specification Modules (extended)
	153-164_Fundamental theorems of extensional untyped lambda-calculus revisited
	165-188_Finite automata over algebraic structures_models and some methods of analysis
	189-208_Communicative automata based programming. Society Framework
	209-236_The Law of Gravitation for Ontologies and Domains of Discourse
	237-248_Solving Problem of Graph Isomorphism by Hybrid Model

