
Computer Science Journal of Moldova, vol.31, no.1(91), 2023

Identifying key players in a network of child
exploitation websites using Principal

Component Analysis

Fateme Movahedi, Richard Frank

Abstract

One of the main objectives of this study is to help prioritize
targets for law enforcement by analyzing online websites hosting
child exploitation material and finding key players within. Key
players are defined as websites that display a combination of high
connectivity and a lot of hardcore material and would provide
the most disruption in a network if they were to be removed.
In this study, various strategies based on Principal Component
Analysis are presented to identify those nodes that act as the key
players in an online child exploitation network. For evaluating the
results of these strategies, we consider the results of various attack
strategies. The measures for evaluation are the density, clustering
coefficient, average path length, diameter, and the number of
connected components in the resulting network. The results show
that the strategies proposed are more successful at reducing all
of the outcome measures than existing strategies.

Keywords: Social network analysis, Child exploitation, Net-
work disruption, Attack strategy, Web content.

MSC 2020: 91D30, 94C15, 68R05.

1 Introduction

The Internet has provided the social, individual, and technological con-
ditions needed for child exploitation to flourish online. In 2009, the
United Nations estimated that there were over four million websites

©2023 by Computer Science Journal of Moldova
doi:10.56415/csjm.v31.08

143

https://doi.org/10.56415/csjm.v31.08

F. Movahedi, R. Frank

containing such content [1] while the UK alone processed 105,047 web-
pages containing Child Exploitation Material (CEM) in 2018 alone,
more than three times the number from 2014 [2]. This is focusing only
on websites and does not include other forms of internet-based media-
exchange, such as chatrooms, newsgroups, or peer-to-peer (P2P) net-
works [3] (in particular, it was found that on peer-to-peer networks
0.25% of all queries were pedophilic [4]).

As this is an international problem, government agencies such as
INTERPOL have created the International Child Sexual Exploitation
image database to track and combat this problem. Similar technologies
have also come out from private organizations. Google, working with
the National Center for Missing and Exploited Children (NCMEC),
has adapted its copyright-centric pattern recognition program used on
YouTube, to detect child pornography [5]. Microsoft, also working
with NCMEC, has created an algorithm called PhotoDNA for detecting
modified versions of images, which they have made available for free to
law enforcement who deal with child exploitation online and offline [6].

Research has also focused onto the problem of combating child ex-
ploitation material (CEM). In one such study, P2P-based child ex-
ploitation was examined for the purpose of developing a filter that can
be used to detect queries as pedophilic [7]. In another study, the eDon-
key P2P network was studied for the purpose of profile construction
based on users’ search terms, after which users were classified into those
who prefer pedophilia (prepubescent, generally under age 11) vs. those
who prefer hebephilia (pubescent, generally age 11 to 14) content [8].
Websites have also been studied through the retrieval and mapping
of large networks of websites that host CEM for the purpose of de-
termining structure [9], key players within the networks [10], and the
disruption of those networks through the removal of certain nodes [11].

P2P tends to share files directly and can be queried with keywords
and hash values [7] resulting in CEM that is relatively easy to find
while web-based repositories require digging and exploration to find
such content. Thus, mapping P2P can actually be easier, while analyz-
ing websites requires exhaustive mapping of both the size and content
on it. This paper focuses on website-based content.

Although a lot of money and time has been invested into various

144

Identifying key players in a network of child exploitation websites …

forms of combating online CEM, the problem is nowhere near under
control, and there is a dearth of statistics on how this expenditure
translates into victims being rescued and offenders getting prosecuted.
This is not a comment against law enforcement but rather speaks to
the extent of the problem. With so many websites containing child
sexual abuse images and videos, and the limited resources available to
various organizations to combat the problem, there needs to be con-
tinued efforts to automate and simplify the process of selecting and
prioritizing targets for the purpose of the criminal investigation. While
the cessation of online child exploitation and the distribution of CEM
are unlikely, to prioritize, investigations need to take into account the
severity and exposure of the content rather than simply their presence.

One of the studied issues in analyzing the networks is the removal
of some important nodes or the hubs, the nodes with the highest con-
nectivity, which separate a complex network into some disconnected
components [12-15].

Finding an optimal strategy for disrupting online networks that deal
with CEM depends on the specific goals but is a major task regardless.
A good attack strategy will cause the largest disruption of the network
by selecting the most important nodes termed key players [11]. In the
context of CEM, key players could be measured by a combination of
factors, such as the site’s influence (possibly measured by the number
of other sites linking to them), whether the site is a hub (contains a
lot of links to other sites), or the amount of content on it (measured
in terms of the number of images or videos it contains). Targeting and
removing the sites that score high along these factors would allow law
enforcement to make the best use of their limited resources. In that
sense, key players represent nodes that are among the goals when it
comes to the disruption of an online network [11].

In identifying appropriate attack strategies, it is important to con-
sider the topology of the networks. Online networks have two im-
portant structural features: Power-law distribution and Small-world
properties [10]. The complexity of online networks resides in the small
average path lengths among any two nodes (i.e., the small-world prop-
erty), along with a large degree of local clustering (i.e., the power law
distribution). In other words, some special nodes of the structure de-

145

F. Movahedi, R. Frank

velop a larger probability to establish connections pointing to other
nodes. This introduces problems when finding a node to remove in
these networks. Scale-free networks are dominated by a relatively few,
highly connected nodes, with the vast majority of nodes being poorly
connected [16]. The simplest attack strategy one can consider consists
of random nodes from the network. However, scale-free networks can
be regarded as a bounding case of heterogeneous networks, thus, for
efficiently attacking a heterogeneous network using a random attack a
large number of nodes need to be selected for removal. Therefore, scale-
free networks are extremely resistant to disruption by random deletion
of nodes, and targeted attacks must be used on these networks to ef-
fectively disrupt them [17].

Methods to disrupt online networks have been proposed in the past.
For example, hub attacks, bridge attacks, fragmentation attacks, and
random attacks have been applied to a large online network of web-
sites hosting child exploitation content [10]. The removal of websites
identified by these attack strategies followed a greedy sequential pro-
cess which i) considered a measure m, ii) identified the website that
scored highest according to m, iii) removed the identified website from
the network, then iv) re-analyzed the network to identify the next top
website according to m. This process was repeated until the top web-
sites were eliminated. The impact of the attack strategies was assessed
on four measures of disruption: density, clustering coefficient, average
path distance, and distance-based cohesion [10].

Identifying the best attack strategy can help improve the efficiency
of law enforcement resources when it comes to combating online child
exploitation. This paper proposes a new Principal Component Analysis
(PCA)-based method to improve the process by which nodes are identi-
fied based on their importance and influence within an online network
of child exploitation websites. PCA is a useful statistical technique
with a common technique for finding patterns in data of high dimen-
sions. It has multiple applications in chemistry, biology, epidemiology,
finance, Medical [18]. For example, in [19], the PCA method is inves-
tigated to find the most relevant topological and disease parameters in
an epidemiologic model. One of the important problems in the analysis
of complex networks is to find the key nodes in the network. In [20], an

146

Identifying key players in a network of child exploitation websites …

approach based on non-linear principal component analysis is proposed
to identify the top important nodes. Zhang et al. proposed a statistical
method based on the PCA algorithm to evaluate the importance of a
node in complex networks [21]. Some studies that propose algorithms
based on the PCA method for identifying the important nodes in com-
plex networks in the different fields can be found in [21-25].

In this paper, first, network data is collected from the Internet using
a custom-written web-crawler (Section 2.1), after which PCA (Section
2.2) is used to identify key players (Section 2.3), which are then re-
moved (Section 2.4). Results indicate that the proposed PCA method
outperforms existing network-attack strategies (Section 3) which would
have important implications for law enforcement (Section 4).

2 Methods

To introduce the novel PCA method to disrupt child exploitation net-
works, first, a sub-network centered on online child exploitation ma-
terial is extracted from the Web using a custom-written web-crawler
called CENE (Section 2.1). Using an adjacency matrix and a Laplacian
matrix representation of the network, Principal Component Analysis
(Section 2.2) is used to identify key players within the network (Sec-
tion 2.3). Finally, the proposed method is used to formulate an attack
strategy (Section 2.4).

2.1 Web-Crawler

Information on the scale and scope of online child exploitation material
can be discovered by studying the websites that contain this type of
content. One strategy for doing this is to manually visit the websites
under study, read the webpages, establish the content of each webpage,
then search for links leading to other webpages, and finally map out
the hyper-links between those pages. Analyzing the website manually
might lead to accurate conclusions about the content, but studying a
large website with thousands of pages in this fashion is infeasible. Sim-
ilarly infeasible is the manual creation of a map of the inter-linkages
between the pages for the purposes of social network analysis. Due to

147

F. Movahedi, R. Frank

the large scale of the problem, the data collection and analysis must
be performed by computers.

Web-crawlers are the tools used by all search engines to automati-
cally navigate the Internet and collect information about each website
and webpage. They, given a starting webpage, will recursively follow
the links out of that webpage until some user-specified termination con-
ditions apply. During this process, the web-crawler will keep track of
all the links between other websites and (optionally) eventually follow
them and retrieve those as well. There is much standalone web-crawler
software available on the Internet, such as Win Web Crawler, Web-
SPHINX, or Black Widow, and some could be used to capture the
content of a website onto the machine of the investigator for eviden-
tiary purposes.

However, there are several problems with off-the-shelf web-crawlers.
First, most such web-crawlers will save all the content onto the hard-
drive, which might work for law-enforcement, who are allowed to do
this, but for researchers studying this problem, it is against Canadian
law to store such content on a hard-drive even temporarily. All analysis
must be done in-memory. Second, when looking for targeted content,
off-the-shelf web-crawlers do not perform an adequate job as the search
process must be guided by conditions, such as the presence of a child
exploitation image on a website, or multiple child exploitation-specific
keywords within the body of the webpage. The presence of a child
exploitation image can be detected using hash values such as MD5,
SHA1, or PhotoDNA, which translate an image into a series of numbers
(a hash-value) that are then be compared to a database of previously
identified child exploitation images.

To bypass these problems, a custom-written crawler, called Child
Exploitation Network Extractor (CENE) was used to collect informa-
tion on these online child exploitation networks. As CENE visits each
page, it captures the contents of the webpage for later analysis, while
simultaneously collecting information about the webpage and making
decisions on whether it contains child exploitation material, or not.
All processing such as hash value and keyword frequency calculations
are done in-memory, with the resulting information stored in a cen-
tral database. For each network extracted, features are collected about

148

Identifying key players in a network of child exploitation websites …

the contents of each webpage and the links between them. This infor-
mation is stored at the webpage level and then aggregated up to the
website level. For example, all pages on www.website.com are visited,
analyzed, and statistics are calculated for each page. After this process
is done for all webpages of interest, then all statistics are aggregated up
to a single set of statistics for the website www.website.com itself [9].

The data collection was started with seed points collected through
popular search engines using previously identified CEM-specific key-
words. The URLs presented as the search results were then inputted
into CENE, for it to recursively follow links out of the seeds and scan
the entire website. These websites were not visited by humans before
being analyzed by CENE, thus the size and structure of the webpage
were not a factor in whether that website was used as a seed, or not.
For each page, CENE decided whether the page should be considered
as CEM, and if so, all links on the page were added to a queue for
later retrieval. The criterion for this decision was set at 1) the pres-
ence of one known child exploitation hash value (i.e., an image already
encountered by law-enforcement and known to be an illegal child ex-
ploitation image) and/or 2) the presence of seven child exploitation
keywords (specified below).

The web-crawler continues to examine websites until it does not find
any more such sites, meaning, none of the sites analyzed link to any new
sites containing CEM. A criterion used in the crawling process was the
exclusion of websites known to not contain child exploitation content.
These websites were based on a list of the most popular websites (e.g.,
Google) and a list of websites collected during previous data collections
that were verified to not contain child exploitation content. The result-
ing network contains information about the number of images (overall
and known child exploitation), videos, keywords, and linkages.

2.2 Principal Component Analysis

The main objective of this study is the disruption of an online child
exploitation network by removing appropriate websites from the net-
work. To do this, two methods are introduced to select some nodes from
the network based on Principal Component Analysis (PCA). PCA is a

149

F. Movahedi, R. Frank

common statistical technique for finding information in data with high
dimensions [26]. Advanced topics and technological methods in PCA
are given in the book by Jolliffe [27]. PCA compresses data without
much loss of information [26, Chapter 2], and mathematically defines a
new coordinate system by determining the eigenvectors and eigenval-
ues of a matrix that optimally describe the variance in a single dataset.
Correlation between variables in the dataset corresponds to the degree
of variance such that the greatest variance by any projection of the data
comes to lie on the first coordinate which is called the first principal
component [26, Chapter 3]. PCA involves a calculation of a covari-
ance matrix of a dataset to minimize the redundancy and maximize
the variance [26, Chapter 1] in the process of finding a linear mapping
of a dataset to a dataset of lower dimensionality.

In computational terms, the principal components are found by cal-
culating the eigenvectors and eigenvalues of the data covariance matrix.
This process is equivalent to finding the axis system in which the co-
variance matrix is diagonal. Matlab software is used for computing of
PCA algorithm.

In this study, the input data set of PCA is an n × n matrix M ,
where n is the number of network nodes and M represents the struc-
ture of the network. Then the mean of the data is subtracted from
each data value in order to obtain a data set with zero means. The
resulting matrix is named M − µ̄. The covariance matrix of M − µ̄ is
then calculated, and is given by

Cn×n =
(
cij , cij = cov(Xi, Xj)

)
,

where Cn×n is a matrix with n rows and n columns, Xi is the ith dimen-
sion, and cov(Xi, Xj) =

∑n
k=1(Xik−X̄i)(Xkj−X̄j)

n−1 , that is the covariance
between ith and jth dimensions.

The covariance is a measure to find out how much the dimensions
differ from the mean with respect to each other. Then the eigenval-
ues and eigenvectors of the covariance matrix are calculated. These
eigenvalues and eigenvectors show the useful and important informa-
tion of the data. Noticeably, the eigenvectors are perpendicular to each
other. It should be noted that eigenvalues have quite different values.
In general, the eigenvectors from the covariance matrix are ordered by

150

Identifying key players in a network of child exploitation websites …

eigenvalue, highest to lowest. This gives the components in order of
significance. At this time, one could decide to ignore the components
of lesser significance. By taking the eigenvectors of the covariance ma-
trix, one can extract vectors that characterize the data. The final step
in PCA is to choose the first principal component (eigenvector) and to
form a feature vector.

The eigenvector with the largest eigenvalue is the direction of great-
est variation with the maximal variance of the data set [26], and the
second largest eigenvalue is the (orthogonal) direction with the next
highest variation, and so on [26]. So, in this study, only the eigen-
vector corresponding to the highest eigenvalue is considered a fea-
ture vector. Let α1 be this eigenvector with the norm of 1. Define
B1×n = αT

1 × (M − µ)T . The vector B approximately consists of all
information pertaining to principal data [26].

2.3 PCA Metrics for Identifying Key Players

In mathematical modeling of complex networks, the representation of
the networks can be denoted by the adjacency matrix and Laplacian
matrix of the network. For analyzing and studying the networks, it is
sufficient to compute some measures in these networks. According to
the definition of the adjacency matrix and its properties, some mea-
sures are usually used for analyzing the network such as Clustering
coefficient, Average path length, and Degree distribution. And in the
network modeling with the Laplacian matrix, the measures such as
centrality and connected components are used.

We introduce two strategies using PCA, named PCAA and PCAL,
to identify the most important key players in an online exploitation
network. For this purpose, the adjacency matrix and the Laplacian
matrix of a network are considered input data sets to the PCA algo-
rithm.

The adjacency matrix, named A, of a network G consisting of n
nodes is the n × n matrix, where A(i, j) = 0 if nodes i and j are not
connected, otherwise A(i, j) = 1. The adjacency matrix is represented
to show nodes and connectivity between them.

The Laplacian matrix of a directed network L = (lij)n×n is defined

151

F. Movahedi, R. Frank

as L = D − A, where D = diag(d1, d2, . . . , dn) is the matrix, the di-
agonal matrix which in di denotes the out-degrees or in-degrees of the
nodes in the network [27]. From the definition it follows that

lij =

di if i = j,
−1 if i 6= j and vi is adjacent to vj ,
0 otherwise.

(1)

The Laplacian matrix represents the nodes and connectivity be-
tween the nodes of the network and shows the network structure. It
should be noted at once that loops have no influence on L [28, 29].
The Laplacian matrix of a graph and its eigenvalues can be used in
several areas of mathematical research and have a physical interpreta-
tion in various physical and chemical theories. The Laplacian spectrum
is more important than the adjacency matrix spectrum [28].

Two methods are proposed above to distinguish the key players in
a network. In the PCAA strategy, the adjacency matrix (A) of the net-
work is considered as the input into the PCA algorithm. In the PCAL

strategy, the Laplacian matrix of the network is considered as M . Each
column of M yields the information relevant to the connectivity of each
website in the network. So, the one node of the network corresponding
to the maximum entry of B can be considered a key player.

To clarify the issue, we provide a simple example. We consider a
sub-network with 10 nodes from the initial extracted network by CENE
(Figure 1(a)). Assume the nodes of the network are labeled with vi,
with 1 ≤ i ≤ 10, and consider vector V = (v1, v2, . . . , v10) as the
nodes vector. The adjacency and Laplacian matrices of this network
are denoted by A and L, where the Laplacian matrix is calculated by
equation (1) (see Figure 1 (b and c), respectively).

For the PCAA strategy (see Section 2.2), the matrix (A − µ) is
calculated, in which µ is the mean of the data in each column. Let
α1 be the eigenvector associated with the largest eigenvalue from the
covariance matrix of (A − µ). So, the vector B1×10, the output of the
PCA algorithm, is as follows

B = [0.382, 0.383,−1.1601, 0.1559,0.381,−0.531,

0.156, 0.382, 0.382,−0.521].

152

Identifying key players in a network of child exploitation websites …

Figure 1. A sample network and its corresponding adjacency matrix,
and Laplacian matrix

The maximum entry of this vector is 0.383 which corresponds to
the 2nd entry of the nodes vector. So, we select the node v2 as a key
player. According to matrix A, it is also worth mentioning that node
v2 has the maximum out-degrees in this network (based on the hub
strategy). It means that this website may provide abundant access to
materials in the network. So, it is an appropriate node in the network
that removing it can help for disrupting this network. For the PCAL

strategy, the Laplacian matrix (L) of the network is considered as the
input data set M into PCA, resulting in vector B1×10

B = [−0.736, 1.892, 0.949,−1.116,− 0.617, 0.192

0.043,−0.326,−0.645, 0.363].

The maximum entry of vector B is 1.892 which corresponds to the
2nd entry of the nodes vector. So, the PCA Algorithm selects the node
v2 from the network.

153

F. Movahedi, R. Frank

2.4 Key Player Removal

Key players can be defined as nodes with large volumes of content.
However, we focus on the phase before this, when the offender is seek-
ing out this content and is exploring the network of CEM websites,
hopping from one website to another seeking new material. As a re-
sult, for the purposes of this paper, we define a key player as a website
that is important not in terms of content, but in terms of network
position. Thus, we consider some measures for the evaluation of the
network. Since both the adjacency and Laplacian matrices are used
to represent some properties of networks, thus, we consider them for
investigating the resulting network in any steps.

In each iteration, one node is identified by PCA as being the most
important in the network. The attack scenario presented in this paper
is greedy, a node is removed from the network, after which the remain-
ing network is reanalyzed to identify the next best node. This process
is repeated until the network is disrupted by removing key players us-
ing the PCA approach. Since our aim is to disrupt the initial network
while removing the minimum number of nodes, our algorithm selects
one node at any step. Finally, the resulting network is examined, and
the obtained results are compared to the outcome measures of other
attack strategies.

For comparing the results of the presented strategies to other strate-
gies, we consider various attack strategies. These attack strategies
involve hub attacks (using the measure of degree centrality), bridge at-
tacks (using the measure of Betweenness), network capital [11] (where
the node that contributes the most content is selected), and random
attacks (where each node has an equal chance of being targeted).

In networks, centrality is the measure of how important a node is
in the network. Betweenness centrality is a measure of centrality in
the network. In the bridge attack method, an important node based
on Betweenness centrality is selected. Therefore, we use the PCAL

method to compare the proposed approach based on the PCA method
by considering the Laplacian matrix as the input of the algorithm to
study strategies, especially the bridge attack.

Continuing the example from Section 2.3, after removing the node

154

Identifying key players in a network of child exploitation websites …

v2 from the network, PCAA identified node v9 as the next key player.
PCAL identified nodes {v2, v3}. We consider other attack strategies for
this network to identify two nodes in each step. For this purpose, these
strategies include Hub Attack, Bridge Attack, and Random Attack.
The original and resulting networks using different attack strategies
are shown in Figure 2. It can be seen from Figure 2(b) and Figure 2(f)
that the network became fragmented into three separate components
following both the PCAA and PCAL attack strategies. So, in each of
the components, it would be harder to discover the other small con-
nected components, as no link leads from one connected component to
another. While the graphs of Hub Attack and Bridge Attack have one
component with two isolated nodes (see Figures 2(b and c)). The set of
selected nodes by Hub Attack and Bridge Attack from initial network
are {v4, v7} and {v2, v7}, respectively. Also, as seen in Figure 2(d) the
network has only one component after removing two nodes v8 and v9
by Random Attack.

The impact of removing these websites by the proposed strategy
is then examined on several outcome measures: density, clustering co-
efficient, average path length, diameter, and the number of connected
components in the resulted network. Density is calculated by dividing
the number of existing links in the network by the maximal number of
links [29]. So, the changes in density correspond to the changes in the
number of links. The other outcome measure included is the network
clustering coefficient which is the average density of the neighborhoods
of the websites in a network [29]. In other words, it is defined as the
probability that two randomly selected neighbors are connected to each
other. The average path length, defined as the average number of links
along the shortest paths between two nodes [30], is examined for all
pairs of nodes in the network.

In this paper, we use Matlab for computing and coding the at-
tack simulation. For obtaining the average path length of the resulting
networks, we compute the shortest distance between pairs of nodes in
the network using Matlab’s graphallshortestpaths(G) function, based
on Johnson’s algorithm [31]. In this study, for two nodes vi and vj
that have no other connections, we considered the shortest distance
d(vi, vj) = 0. So, if the size of the network is n, then the average path

155

F. Movahedi, R. Frank

Figure 2. Resulting network after various attacks

length (avg) of the network is obtained as follows

avg =

∑
i 6=j d(vi, vj)

n(n− 1)
.

The distance between the two most distant vertices in a network is
called the diameter of the network. The impact on network connectivity
of selecting and removing targeted nodes as measured by changes to
network diameter is evaluated in [32].

For instance, if the nodes, which are most highly connected, are
removed through the Hub attack, then the network diameter increases
rapidly, and the resulting network fragments into smaller components
or subgraphs [32].

3 Results and Discussion
The main goal of this study is to determine a method to find the web-
sites that should be prioritized by law enforcement agencies involved

156

Identifying key players in a network of child exploitation websites …

in combating child exploitation. In this study, an online network is
extracted using CENE, a web-crawler tailored to follow the links out of
and into child exploitation websites when given a specific set of start-
ing websites [11]. CENE started to explore a network from a single
child exploitation website that was found through extensive searches
on Google. CENE would not follow links out of a single webpage if that
webpage did not meet certain criteria associated with child exploitation
(at least one known image, or at least seven pre-identified keywords re-
lated to child exploitation). These were words that were provided by
the RCMP as well as those used in previous research [3]. These words
are included qwerty, qqaazz, ptsc and pthc. This category of keywords
consisted of twenty-seven words, which, to the best knowledge of the
authors, were still valid during data collection.

With these starting parameters, CENE identified a network of con-
nected websites that contained at least one page matching the require-
ments and stopped expanding the network when none of the webpages
linked to child exploitation material anymore (i.e., the links led to web-
pages off topic). This resulting network contained 177 nodes and 915
edges, where nodes are defined to be entire websites (web-domains), and
the directed edges represent the links pointing from one node (website)
to another. A node in the network is labeled with i, where 1 ≤ i ≤ 177.
The initial network density, clustering coefficient, average path length
and network diameter are 0.0294, 0.5095, 0.0030, and 6, respectively.

First, matrix A (the adjacency matrix) and matrix L (the Laplacian
matrix) are obtained from the network. The PCA algorithm selects a
node from the network using two matrices A and L in each step. After
removing the selected node, the algorithm calculates outcome measures
of the resulting network and updates the new network to identify the
next appropriate node. This process was repeated until the network
breaks up into components for both the strategies.

In the PCAA strategy, the adjacency matrix A, which in this con-
text contains the number of links one website has pointing to another,
was the input into the PCA algorithm. Results (see Table 1) show the
following changes after removing five selected nodes such that the first
disruption happens. Density fell by 26.5% from 0.0294 to 0.0216, while
the number of links dropped from 915 to 687 indicating that by re-

157

F. Movahedi, R. Frank

moving only five (2.8%) nodes, 228 (24.9%) of the links were removed.
Although this was expected, as this attack focuses on the removal of
the nodes with the most links, the amount of damage caused was more
severe than expected. The average path length decreased by 26.7%
from 0.0030 to 0.0022, meaning that with removing the links between
some websites, there is no path between some nodes in the network.
Therefore, according to the definition of avg, this value is reduced. Fi-
nally, the clustering coefficient in this network decreased from 0.5095 to
0.4520 (-11%), each node was now less embedded in the network than
before. Thus, through the removal of just five nodes, we were able to
break 25% of the active links between them, resulting in a much smaller
and partially disconnected graph (see Figure 3(a) vs. 3(b)) making it
much more difficult for individuals to reach other websites.

Table 1. The results of outcome measures of obtained network after
removing one node by PCAA strategy in each step

Steps of running PCA Density of network Clustering coefficient Average path length
Step 0 0.0294 0.5095 0.0030

Step 1 0.0276 0.4990 0.0023

Step 2 0.0260 0.2817 0.0023

Step 3 0.0244 0.4612 0.0023

Step 4 0.0229 0.4608 0.0023

Step 5 0.0216(↓ 26.5%) 0.4520(↓ 9%) 0.0022(↓ 26.7%)

As a second experiment, with the PCAL strategy, the Laplacian
matrix L is given as the input into the PCA algorithm. Since websites
with many in-degree ties may be considered more important, a website
can easily link to others, but it may not be relevant or interesting
enough to receive links from other websites, thus in-degree for any of
the nodes in the Laplacian matrix are considered. After selecting and
removing five nodes, the following changes to the network structure
were observed. First, density fell by 25.8% from 0.0294 to 0.0218,
indicating a similar amount of damage to the network as PCAA. The
clustering coefficient decreased from 0:5095 to 0.4588 (-10%), and each
node was now less embedded in the network than before, even when
compared to PCAA. Finally, the average path length fell by 16.8% from

158

Identifying key players in a network of child exploitation websites …

0.0030 to 0.0025 (see Table 2). Overall, PCAL seems to have severed
almost the same number of links (228 in PCAA vs. 236 in PCAL), but
it did so in such a way that the average path length dropped by only
16.8% (as opposed to 26.7% in PCAA) meaning that, in the context of
a network of child exploitation websites, the average user moving from
one website to another would need to click through more websites to
reach the destination site while having fewer links available to them
to do so. Thus, PCAA significantly increased the difficulty of finding
websites within the network, even compared to PCAL.

Table 2. The results of outcome measures of obtained network after
removing one node by PCAL strategy in each step

Steps of running PCA Density of network Clustering coefficient Average path length
Step 0 0.0294 0.5095 0.0030

Step 1 0.0277 0.4945 0.0030

Step 2 0.0261 0.4813 0.0029

Step 3 0.0246 0.4749 0.0028

Step 4 0.0232 0.4669 0.0026

Step 5 0.0218(↓ 25.8%) 0.4588(↓ 10%) 0.0025(↓ 16.8%)

Indeed, the aim of this study is to find the strategy which selects
the minimum nodes (websites) and will cause the largest disruption to
the network. The removal of websites identified by the proposed attack
strategies followed a sequential process, in which one node is identified
by the PCA algorithm as being the most important in the network.
Then a node is removed from the network, after which the remaining
network is reanalyzed to identify the next best node (i.e., a greedy
approach). Table 1 and Table 2 show the changes in the resulting
network after removing the node, where the PCA algorithm is selected
in each step (n). Also, n is the number of selected nodes by PCA and
it is the number of removed nodes in the resulting network. According
to these tables, for n = 0, 1, 2, 3, 4, the variations were reduced in the
network after each step, but the removal of the nodes with the most
links occurs in step n = 5 disruptions of this network. According to
Figure 3, the active links between these nodes (websites) were removed
and resulting in a smaller disconnected graph.

159

F. Movahedi, R. Frank

Figure 3. Network before and after attack by the PCAA and PCAL

strategies

Table 3 shows the results of calculating the outcome measures af-
ter removing five nodes using any of the other existing strategies (Hub
or Bridge attacks, for example). Results show that for different out-
come measures, some attack strategies are less effective in disrupting
the network. Furthermore, the effectiveness of these various attacks
varied with the different goals, such as reducing density, clustering,
and reachability. For example, if the goal is to delete as many links
in a network as possible (i.e., reduce density), then the Attack Bridge
is the most effective strategy, since it led to a reduction of 18% in the
density of our test network. However, using the strategy proposed in

160

Identifying key players in a network of child exploitation websites …

this paper the density decreased by 26.5% and 25.8% using PCAA and
PCAL, respectively. It means that the proposed strategies are even
more effective in decreasing the number of links. To reduce a nodes
embeddedness in a tight-knit component of the network (clustering),
the results (Table 3) show that the current attack strategies, except hub
attack, increase the value of this measure, while PCAA and PCAL de-
crease it by 11% and 10%, respectively. Also, this measure is decreased
in the hub attack in a similar amount to PCA strategies.

Table 3. The results of outcome measures of obtained network after
removing five nodes by various attack strategies

Steps of running
PCA

Density of
network

Clustering
coefficient

Average
path length

Diame-
ter

Changes of
the number
of CC

Hub Attack 0.0285(↓ 3%) 0.4520(↓ 11%) 0.0021(↓ 30%) 7(↑ 16%) 2 ↑
Bridge Attack 0.0240(↓ 18%) 0.5347(↑

4.9%)
0.0016(↓
46.6%)

7(↑ 16%) 4 ↑

Network Capital
method

0.0305(↑ 3%) 0.5122(↑
0.52%)

0.0032(↑
6.6%)

6(No-
change)

4 ↓

Random Attack 0.0299(↑ 1%) 0.5158(↑
1.2%)

0.0034(↑
13.3%)

6(No-
change)

5 ↓

PCAA 0.0216(↓
26.5%)

0.4520(↓ 11%) 0.0022(↓
26.7%)

7(↑ 16%) 2 ↑

PCAL 0.0218(↓
25.8%)

0.4588(↓ 10%) 0.0025(↓
16.8%)

7(↑ 16%) 2 ↑

Results show that the bridge attack decreased the average path
length the most, and, thus, was the most successful attack among all
of the attack strategies, even better than PCAA or PCAL (note, how-
ever, that in the other measures the bridge attack was significantly
inferior to both PCAA and PCAL). On the other hand, this method
increases the clustering coefficient measure by 4.9%. So, overall, it
can’t be the most effective strategy for disrupting this network.

There are some isolated nodes in the network after running the pro-
posed attacks (PCAA and PCAL). Since the shortest path length for
any isolated node with others is equal to zero in our algorithm, so one
can expect to decrease this measure using both PCA strategies. How-
ever, the PCAL method has less reduction than the PCAA method.

We measure the network diameter and the changes in the number of
connected components (CC) to ensure the above discussion’s integrity.

161

F. Movahedi, R. Frank

As for the network diameter, when the targeted nodes are removed,
the diameter of the network increases, and the network breaks into
isolated, connected components. This occurs because when deleting
these nodes, the heart of the network is disturbed, whereas a random
attack is most likely does not. The results show that all of the attack
strategies increase the network diameter after removing five targeted
nodes by 16%, except for the random and network capital strategies.
According to Table 3, after the removal of targeted nodes in any strat-
egy, four connected components are added to the resulting network by
Bridge attack. By using PCA methods and Hub attack, two connected
components are added to the network.

In this study, decreasing the average path length is significant if
the diameter and the changes in connected components increase, be-
cause after removing the nodes, the resulting network contains some
connected components of small size.

The results show that the number of connected components in the
resulting network after two random and network capital attacks de-
creased. According to the obtained results of other measures for these
two strategies, it is clear to see that the reduction of the number of
connected components is due to selecting isolated nodes.

Figure 3 shows the before and after the process by which the orig-
inal network is changed when the websites are removed by PCAA and
PCAL. Most of the targeted websites are located inside the original
network where they have the most influence on the transmission of in-
formation to other websites (see the red nodes in Figure 3 (a and c).
In addition, as seen in Figure 3(b), the network is now fragmented into
one component with five isolates while density decreased by removing
228 edges from the initial network. Also, in Figure 3(d), the result-
ing network has one component and four isolated nodes after selecting
and removing five nodes by the PCAL strategy. These five nodes also
are located inside the initial network. It is also worth mentioning that
there are four common nodes between those selected by PCAA and
PCAL.

It is clear that one may select more nodes and repeat the proposed
algorithms for selecting and analyzing the obtained networks in steps
n > 5 for this dataset. Table 4 shows the results after removing 20

162

Identifying key players in a network of child exploitation websites …

Table 4. The results of outcome measures of obtained network after
removing 20 nodes by various attack strategies

Steps of running
PCA

Density of
network

Clustering
coefficient

Average
path length

Diame-
ter

Changes of
the number
of CC

Hub Attack 0.0082(↓ 72%) 0.2456(↓ 51%) 0.0006(↓ 80%) 5(↓ 16%) 8 ↑
Bridge Attack 0.0144(↓ 51%) 0.5251(↑ 1%) 0.0004(↓ 86%) 7(↑ 16%) 9 ↑
Network Capital
method

0.0178(↑ 39%) 0.5123(↑
0.5%)

0.0019(↑ 36%) 6(No-
change)

7 ↓

Random Attack 0.0319(↑ 8%) 0.5049(↑ 9%) 0.0024(↑ 20%) 6(No-
change)

8 ↓

PCAA 0.0153(↓ 47%) 0.2396(↓ 53%) 0.0008(↓ 73%) 7(↑ 16%) 9 ↑
PCAL 0.0080(↓ 73%) 0.2429(↓ 52%) 0.0005(↓ 83%) 7(↑ 16%) 9 ↑

nodes by various attack strategies.
The results show that both strategies (PCAA and PCAL) have bet-

ter performance than the four existing strategies after selecting and re-
moving more nodes. According to Table 4, the PCAL strategy yielded
significant improvements over the existing methods versus others. Al-
though the hub attack did yield results close to both PCA strategies in
some measures, one strategy is more successful than existing strategies
for disrupting the network that significantly changes all outcomes.

According to the obtained results, we can use the PCAL strategy
for disrupting this dataset (see Table 4). This strategy is based on the
Laplacian matrix that represents the network and its properties.

4 Conclusion

This experiment attempted to identify the most important nodes in an
online network containing child exploitation images, extracted from the
Internet. The network was extracted using CENE, a custom-written
web-crawler that can identify known child exploitation images through
their hash values and focuses on them for the purposes of network ex-
traction. Agencies that combat this problem have limited resources,
thus, for the purposes of time savings and cost reduction, it is impor-
tant to select the most efficient attack strategies. There are multiple

163

F. Movahedi, R. Frank

existing strategies for disrupting online child exploitation networks that
are dependent on some properties of networks, such as a hub attack
strategy which depends on using the measure of degree centrality. The
aim of these studies is to select the strategy that will cause the largest
disruption to the networks themselves.

In this paper, six attack strategies were used to attack the structure
of a single online network of child exploitation websites. The goal was
to determine whether the two proposed Principal Component Analy-
sis techniques presented an advantage over four previously established
attack methods (hub, bridge, network capital and random). Consid-
ering the adjacency matrix (PCAA) and Laplacian matrix (PCAL) in
the PCA algorithm, each column of these matrices yields the infor-
mation on connectivity relevant to each website in the network. The
nodes which were selected by PCA correspond to websites yielding sig-
nificant information to the network. The results show both the two
strategies (PCAA and PCAL) have better performance than the exist-
ing four strategies when it comes to disrupting the network, although
the Hub attack yielded the results close to both PCA strategies. Over-
all, however, results shown after selecting and removing more nodes of
the network using various strategies, the PCAL strategy yielded sig-
nificant improvements over the existing methods.

Although the data collection aimed at finding as many of these
websites as possible, there are two limitations to the data collection,
which might impact the generalizability of this study. First, the data
collection was started with seed points which were identified through
keyword searches through various search engines, and data collection
proceeded from one website to another through the linkages available
within the websites. While websites containing similar material do
tend to link together, any website which was not linked would have
been missed using this strategy. This limitation was mitigated by hav-
ing multiple seed starting points, but regardless, if a website is not
linked to, then it was not visited and thus not included in the data
collection. Second, this research is focused on open internet networks
only, thus no other types of networks were included, such as dark-web
sites, file-sharing networks, or private password-protected websites.

Future work should look at the effectiveness of these attacks in

164

Identifying key players in a network of child exploitation websites …

other types of networks, not just different networks extracted from the
Internet, but also networks that do not share the Internet’s Power-
law distribution and Small-world properties. The resiliency of nodes
of various importances could also be investigated with the help of law
enforcement. If law enforcement were able to incorporate such attack
strategies into their selection methodologies, and then actually remove
them from the Internet, CENE could be used to monitor the resulting
network for a possible redistribution of the content and/or importance.
Do more important nodes get more prominent, or do the smaller web-
sites take up the opportunity and become more prominent within the
network structure? Or perhaps, like a hydra, many other websites are
created to fill the void?

Acknowledgments. Fateme Movahedi would like to thank Dr.
Vahid Dabbaghian and Dr. Piper Jackson for their constructive sug-
gestions and helps.

References

[1] E. Engeler, “UN expert: Child porn on internet increases,” The
Associated Press, 2009. [Online]. Available: https://www.nbc-
news.com/id/wbna32880508.

[2] “Once upon a year,” Annual Report, Internet Watch Foun-
dation, 2018. [Online]. Available: https://www.iwf.org.uk/me-
dia/tthh3woi/once-upon-a-year-iwf-annual-report-2018.pdf.

[3] M. Latapy, C. Magnien, and R. Fournier, “Quantification of
paedophile activity in a large p2p system”, Project MAPAP
SIP-2006-PP-221003 (http://antipaedo.lip6.fr), Technical report,
2009. [Online]. Available: http://antipedo.lip6.fr/T24/TR/quan-
tification.pdf

[4] M. Latapy, C. Magnien, and R. Fournier, “Quantifying paedophile
activity in a large p2p system,” Information Processing & Man-
agement, vol. 49, pp. 248–263, 2013.

[5] M. Shiels, “Google tackles child pornography,” BBC News, 2008.
[Online]. Available: http://news.bbc.co.uk/2/hi/7347476.stm.

165

F. Movahedi, R. Frank

[6] “New technology fights child porn by tracking its Pho-
toDNA,” Microsoft, 2009. [Online]. Available: https://news.mi-
crosoft.com/2009/12/15/new-technology-fights-child-porn-by-
tracking-its-photodna/.

[7] M. Latapy, C. Magnien, and R. Fournier, “Report on Au-
tomatic Detection of Paedophile Queries,” Measurement and
Analysis of P2P Activity Against Paedophile Content project
(http://antipaedo.lip6.fr), Technical report, 2006. [Online]. Avail-
able: http://antipaedo.lip6.fr/T24/TR/query-detection.pdf.

[8] S. Hammond, E. Quayle, J. Kirakowski, E. O’Halloran, and F.
Wynne, “An Examination of Problematic Paraphilic use of Peer
to Peer Facilities,” in International Conference on Advances in the
Analysis of Online Paedophile Activity, pp. 65–73, 2009.

[9] R. Frank, B. G. Westlake, and M. Bouchard, “The structure and
content of online child exploitation,” in Proceedings of the 16th
ACM SIGKDD Workshop on Intelligence and Security Informat-
ics (ISI-KDD 2010), July 2010, Article No. 3, Pages 1–9. DOI:
https://doi.org/10.1145/1938606.1938609.

[10] K. Joffres, M. Bouchard, R. Frank, and B. Westlake, “Strate-
gies to disrupt online child pornography networks,” in European
Intelligence and Security Informatics Conference 2011, (Athens,
Greece), pp. 163–170, 2011. DOI: 10.1109/EISIC.2011.32.

[11] B. G. Westlake, M. Bouchard, and R. Frank, “Finding the key
players in online child exploitation networks,” Policy and Internet,
vol. 3, no. 2, 2011, Article 6. DOI: 10.2202/1944-2866.1126.

[12] I. A. Kovacs and A. L. Barabási, “Network science: Destruction
perfected,” Nature, vol. 524, pp. 38–39, 2015.

[13] R. Albert, H. Jeong, and A. L. Barabási, “Error and attack toler-
ance of complex networks,” Nature, vol. 406, no. 6794, pp. 378–382,
2000.

[14] F. Morone, B. Min, L. Bo, R. Mari, and H. A. Makse, “Collective
influence algorithm to find influencers via optimal percolation in
massively large social media,” Sci Rep, Article No. 30062, 2016.
DOI: https://doi.org/10.1038/srep30062.

166

Identifying key players in a network of child exploitation websites …

[15] B. Amiri, M. Fathian, and E. Asaadi, “Influence maximization in
complex social networks based on community structure,” Journal
of Industrial and Systems Engineering, vol. 13, no. 3, pp. 16–40,
2021.

[16] A. L. Barabási, “The physics of the Web,” Physics World, vol. 14,
pp. 33–38, 2001.

[17] R. Pastor-Satorras and A. Vespignani, “Immunization of complex
networks,” Physical Review E, vol. 65, Article ID. 036104, 2002.

[18] Y. Mori, M. Kuroda, and N. Makino, Nonlinear Principal Com-
ponent Analysis and Its Applications, Springer, 2016.

[19] P. H. T. Schimit and F.H. Pereira, “Disease spreading in complex
networks: A numerical study with Principal Component Analy-
sis,” Expert Systems with Applications, vol. 97, pp. 41–50, 2018.

[20] S. Basu and U. Maulik, “Mining important nodes in complex net-
works using nonlinear PCA,” in 2017 IEEE Calcutta Conference
(CALCON), (Kolkata, India), IEEE, 2017, pp. 469–473. DOI:
10.1109/CALCON.2017.8280778.

[21] K. Zhang, H. Zhang, Y. dong Wu, and F. Bao, “Evaluating the
importance of nodes in complex networks based on principal com-
ponent analysis and grey relational analysis,” in 2011 17th” IEEE
International Conference on Networks, (Singapore), IEEE, 2011,
pp. 231–235. DOI: 10.1109/ICON.2011.6168480.

[22] Y. J. Jin, K. Xu, N. Xiong, Y. Liu, and G. Li, “Multi-index eval-
uation algorithm based on principal component analysis for node
importance in complex networks,” Networks, IET, vol. 1, no. 3,
pp. 108–115, 2012.

[23] P. Wang, J. Lu, and X. Yu, “Identification of Important Nodes in
Directed Biological Networks: A Network Motif Approach,” PLOS
ONE, vol. 9, Article ID. e106132, 2014.

[24] F. Hu and Y. Liu, “Multi-index algorithm of identifying important
nodes in complex networks based on linear discriminant analysis,”
Modern Physics Letters B, vol. 29, no. 03, Article No. 1450268,
2015.

167

F. Movahedi, R. Frank

[25] F. Hu, Y. Liu, and J. Jin, “Multi-index Evaluation Algorithm
Based on Locally Linear Embedding for the Node Importance in
Complex Networks,” DCABES, pp. 138–142, 2014.

[26] L. I. Smith, A tutorial on Principal Components Analysis, Main-
tained by Cornell University, 2002.

[27] I. T. Jollife, Principal component Analysis, Springer Science &
Business Media, 2013.

[28] C. Godsil and G. Royle, Algebraic Graph Theory. New York:
Springer-Verlag, 2001.

[29] B. Mohar, “The Laplacian spectrum of graphs,” in Graph Theory,
Combinatorics, and Application, Y. Alavi, G. Chartrand, O. R.
Oellermann, A. J. Schwenk, Eds., vol. 2, 1991, pp. 871–898.

[30] D. Knoke and S. Yang, Social Network Analysis, Quantitative Ap-
plications in the Social Sciences, SAGE Publications, 2019.

[31] D. B. Johnson, “Efficient algorithms for shortest paths in sparse
networks,” Journal of the ACM, vol. 24, no. 1, pp. 1–13, 1977.
DOI: 10.1145/321992.321993.

[32] R. Albert, H. Jeong, and A. L. Barabási, “Error and attack toler-
ance of complex networks,” Nature, vol. 406, pp. 378–382, 2000.

Fateme Movahedi, Richard Frank Received August 10, 2022
Revised April 20, 2023

Accepted April 25, 2023

Fateme Movahedi
ORCID: https://orcid.org/nnnn-nnnn-nnnn-nnnn
Department of Mathematics,
Faculty of Sciences, Golestan University, Gorgan, Iran.
MoCSSy Program, The IRMACS Centre, Simon Fraser University, Burnaby, British
Columbia, Canada.
E–mail: f.movahedi@gmail.com

Richard Frank
ORCID: https://orcid.org/nnnn-nnnn-nnnn-nnnn
School of Criminology International CyberCrime Research Centre,
Simon Fraser University, 8888 University Drive, Burnaby, B.C., Canada. V5A 1S6.
E–mail: rfrank@sfu.ca

168

Computer Science Journal of Moldova, vol.31, no.2(92), 2023

Total Italian domatic number of graphs

Seyed Mahmoud Sheikholeslami∗, Lutz Volkmann

Abstract
LetG be a graph with vertex set V (G). An Italian dominating

function (IDF) on a graph G is a function f : V (G) −→ {0, 1, 2}
such that every vertex v with f(v) = 0 is adjacent to a vertex u
with f(u) = 2 or to two vertices w and z with f(w) = f(z) = 1.
An IDF f is called a total Italian dominating function if every
vertex v with f(v) ≥ 1 is adjacent to a vertex u with f(u) ≥ 1.
A set {f1, f2, . . . , fd} of distinct total Italian dominating func-
tions on G with the property that

∑d
i=1 fi(v) ≤ 2 for each vertex

v ∈ V (G), is called a total Italian dominating family (of func-
tions) on G. The maximum number of functions in a total Italian
dominating family on G is the total Italian domatic number of
G, denoted by dtI(G). In this paper, we initiate the study of the
total Italian domatic number and present different sharp bounds
on dtI(G). In addition, we determine this parameter for some
classes of graphs.

Keywords: Total Italian domination number, Total Italian
domatic number.

MSC 2010: 05C69.

1 Introduction
For definitions and notations not given here we refer to [10]. We
consider simple graphs G with vertex set V = V (G) and edge set
E = E(G). The order of G is n = n(G) = |V (G)|. The open neighbor-
hood of a vertex v is the set N(v) = NG(v) = {u ∈ V (G) | uv ∈ E(G)}
and its closed neighborhood is the set N [v] = NG[v] = N(v) ∪ {v}.
The degree of vertex v ∈ V (G) is d(v) = dG(v) = |N(v)|. The maxi-
mum degree and minimum degree of G are denoted by ∆ = ∆(G) and

∗ Corresponding author: s.m.sheikholeslami@azaruniv.ac.ir
©2023 by Computer Science Journal of Moldova
doi:10.56415/csjm.v31.09

169

https://doi.org/10.56415/csjm.v31.09

S.M. Sheikholeslami, L. Volkmann

δ = δ(G), respectively. The complement of a graph G is denoted by
G. A leaf is a vertex of degree one, and its neighbor is called a support
vertex. An edge incident with a leaf is called a pendant edge. We write
Pn for the path of order n, Cn for the cycle of length n, and Kn for
the complete graph of order n. The corona H ◦K1 of a grah H is that
graph obtained from H by adding a pendant edge to each vertex of H.

A set S ⊆ V (G) is a (total) dominating set of G if every vertex of
(V (G)) V (G)− S is adjacent to a vertex in S. The (total) domination
number of a graph G is the cardinality of a smallest (total) dominating
set of G and is denoted (γt(G)) γ(G). The (total) domatic number of
G, (dt(G)) d(G) is the maximum number of classes of a partition of
V (G) such that each class is a (total) dominating set of G.

Cockayne, Dreyer, S.M. Hedetniemi, and S.T. Hedetniemi [8] intro-
duced the concept of Roman domination in graphs, and since then a lot
of related variations and generalizations have been studied (see [4]–[7]).
In this paper, we continue the study of Roman and Italian dominating
functions in graphs G. If f : V (G) −→ {0, 1, 2} is a function, then
let (V0, V1, V2) be the ordered partition of V (G) induced by f , where
Vi = {v ∈ V (G) | f(v) = i} for i ∈ {0, 1, 2}. There is 1-1 correspon-
dence between the function f and the ordered partition (V0, V1, V2).
So, we also write f = (V0, V1, V2).

A function f : V (G) −→ {0, 1, 2} is a Roman dominating function
(RDF) on G, if every vertex v with f(v) = 0 is adjacent to a vertex u
with f(u) = 2. The Roman domination number γR(G) is the minimum
weight of an RDF on G.

A total Roman dominating function (TRDF) on a graph G without
isolated vertices is defined in [11] as a Roman dominting function f
on G with the property that the subgraph induced by V1 ∪ V2 has no
isolated vertex. The total Roman domination number γtR(G) is the
minimum weight of a TRDF on G.

An Italian dominating function (IDF) on a graph G is defined in
[3] as a function f : V (G) −→ {0, 1, 2} such that f(N(v)) ≥ 2 for
every vertex v with f(v) = 0. The weight of an IDF f is the value
ω(f) = f(V (G)) =

∑
u∈V (G) f(u). The Italian domination number

γI(G) is the minimum weight of an IDF on G. In [3], the authors called
the Italian domination number the Roman {2}-domination number.

170

Total Italian domatic number of graphs

A total Italian dominating function (TIDF) on a graph G without
isolated vertices is defined in [1] as an Italian dominating function f
on G with the property that the subgraph induced by V1 ∪ V2 has no
isolated vertex. The total Italian domination number γtI(G) is the
minimum weight of a TIDF on G. A TIDF on G with weight γtI(G) is
called a γtI(G)-function.

A set {f1, f2, . . . , fd} of distinct total Roman dominating func-
tions on a graph G without isolated vertices with the property that∑d

i=1 fi(v) ≤ 2 for each vertex v ∈ V (G), is called in [2] a total Ro-
man dominating family (of functions) on G. The maximum number of
functions in a total Roman dominating family on G is the total Roman
domatic number dtR(G) of G.

A set {f1, f2, . . . , fd} of distinct total Italian dominating func-
tions on a graph G without isolated vertices with the property that∑d

i=1 fi(v) ≤ 2 for each vertex v ∈ V (G), is called a total Italian
dominating family (of functions) on G. The maximum number of func-
tions in a total Italian dominating family on G is the total Italian do-
matic number dtI(G) of G. Italian domatic number has been studied
in [12], [14].

If G is a graph without isolated vertices, then γtI(G) ≤ γtR(G)
and dtR(G) ≤ dtI(G). On the other hand, if S1 ∪ S2 ∪ · · · ∪ Sdt is a
partition of V (G) such that each class is a total dominating set of G,
then the family {f1, f2, . . . , fdt} of functions, where fi is defined on G
by fi(x) = 2 for x ∈ Si and f(x) = 0 otherwise, is a total Italian
dominating family (of functions) on G and so dt(G) ≤ dtI(G).

In this paper, we initiate the study of the total Italian domatic num-
ber, and we present different sharp bounds on dtI(G). In particular,
we prove the Nordhaus-Gaddum type result dtI(G) + dtI(G) ≤ n for
graphs G of order n ≥ 4 with δ(G) ≥ 1 and δ(G) ≥ 1. In addition, we
determine the total Italian domatic number for some classes of graphs.

We make use of the following known results.

Proposition 1 ([1]). If n ≥ 3, then γtI(Pn) = d2n+2
3 e and γtI(Cn) =

d2n3 e.

Proposition 2 ([1]). Let G be a connected graph of order n ≥ 2. Then
γtI(G) ≤ n, with equality if and only if G is the corona F ◦K1 of some

171

S.M. Sheikholeslami, L. Volkmann

connected graph F or G = P3.

Proposition 3 ([1]). If G is a graph without isolated vertices of order
n, then γtI(G) ≥ 2. We have γtI(G) = 2 if and only if there exist two
vertices u and v with d(u) = d(v) = n− 1.

Proposition 4 ([1]). If G is a graph without isolated vertices of order
n, then

γtI(G) ≥
⌈

2n

∆(G) + 1

⌉
.

Proposition 5 ([2]). If t ≥ s ≥ 1 are integers, then dtR(Kt,s) = s.

2 Bounds and Properties
In this section, we present sharp bounds on the total Italian domatic
number and investigate its basic properties. In addition, we determine
this parameter for some classes of graphs.

Theorem 1. Let G be a graph of order n ≥ 3 without isolated vertices.
If G has 2 ≤ p ≤ n vertices of degree n− 1, then dtI(G) ≥ p.

Proof. Let {v1, v2, . . . , vn} be the vertex set of G, and let, without loss
of generality, v1, v2, . . . , vp be the vertices of degree n − 1. If p ≥ 3,
then define the functions fi by fi(vi) = fi(vi+1) = 1 and fi(x) = 0
for x 6= vi, vi+1 for 1 ≤ i ≤ p, where vp+1 = v1. Then f1, f2, . . . , fp
are distinct TIDF on G such that

∑p
i=1 fi(x) ≤ 2 for each x ∈ V (G).

Therefore, {f1, f2, . . . , fp} is a total Italian dominating family on G
and, thus, dtI(G) ≥ p. If p = 2, then define f1 by f1(v1) = f1(v2) = 1
and f1(x) = 0 for x 6= v1, v2. Moreover, define f2 by f2(vi) = 1 for all
1 ≤ i ≤ n. Since n ≥ 3, it follows that {f1, f2} is total dominating
family on G, and so dtI(G) ≥ 2 = p also in this case.

Theorem 2. If G is a graph of order n without isolated vertices, then

γtI(G) · dtI(G) ≤ 2n.

Moreover, if we have the equality γtI(G) · dtI(G) = 2n, then for each
total Italian dominating family {f1, f2, . . . , fd} with d = dtI(G), each
fi is a γtI(G)-function and

∑d
i=1 fi(v) = 2 for all v ∈ V (G).

172

Total Italian domatic number of graphs

Proof. Let {f1, f2, . . . , fd} be a total Italian dominating family on G
with d = dtI(G). Then

d · γtI(G) =

d∑
i=1

γtI(G) ≤
d∑

i=1

∑
v∈V (G)

fi(v) =

=
∑

v∈V (G)

d∑
i=1

fi(v) ≤
∑

v∈V (G)

2 = 2n.

If γtI(G) · dtI(G) = 2n, then the two inequalities occuring in the
proof become equalities. Hence, for the total Italian dominating family
{f1, f2, . . . , fd} on G and for each i,

∑
v∈V (G) fi(v) = γtI(G). Thus,

each fi is a γtI(G)-function and
∑d

i=1 fi(v) = 2 for all v ∈ V (G).

Proposition 3 and Theorem 2 imply the next result immediately.

Corollary 1. If G is a graph of order n without isolated vertices, then
dtI(G) ≤ n.

Theorem 3. If G is a graph of order n without isolated vertices, then

dtI(G) ≤ δ(G) + 1.

Moreover, if F = {f1, f2, . . . , fdtI(G)} is a total Italian dominating
family with dtI(G) = δ(G) + 1, then for any minimum degree vertex v,
the following statements must be held:

(a)
∑

u∈N [v] fi(u) = 2 for each fi ∈ F and
∑d

i=1 fi(u) = 2 for each
u ∈ N [v].

(b) There are exactly δ(G)− 1 Italian dominating functions such that
fi(v) = 0, and exactly two TIDFs such that fi(v) = 1.

(c) If fi(v) = 1, then fi(u) = 0 for each neighbor of v but exactly one
which is assigned 1 under fi.

173

S.M. Sheikholeslami, L. Volkmann

Proof. Let {f1, f2, . . . , fd} be a total Italian dominating family on
G with d = dtI(G). Assume that v is a vertex of minimum de-
gree. It follows from the definitions that

∑
x∈N [v] fi(x) ≥ 2 for each

i ∈ {1, 2, . . . , d}. Therefore, we deduce that

2d ≤
d∑

i=1

∑
x∈N [v]

fi(x) =
∑

x∈N [v]

d∑
i=1

fi(x) ≤
∑

x∈N [v]

2 = 2(δ(G) + 1) (1)

and so, dtI(G) = d ≤ δ(G) + 1.
Assume that the equality holds, that is dtI(G) = δ(G)+1. Then the

inequalities occurring in (1) become equalities which gives the proper-
ties given in the statement (a).

Without loss of generality, assume that f1, f2, . . . , fd′ are the TIDFs
such that fi(v) = 0 (for some d′). For each i such that fi(v) = 0, we
must have

∑
x∈N(v) fi(x) ≥ 2. Therefore,

2d′ ≤
d′∑
i=1

∑
x∈N(v)

fi(x) =
∑

x∈N(v)

d′∑
i=1

fi(x) ≤
∑

x∈N(v)

2 = 2δ(G). (2)

If the equality holds in (2), that is d′ = δ(G), then we must have∑d′

i=1 fi(x) = 2 for each x ∈ N(v). It follows from 2 =
∑d′

i=1 fi(x) ≤∑d
i=1 fi(x) ≤ 2 that fd(x) = 0 for each x ∈ N(v), which contradicts the

totality of fd. Thus, there are at most δ(G)−1 total Italian dominating
functions such that fi(v) = 0. Since there are at most two Italian
dominating functions such that fi(v) ≥ 1, we deduce that there are
exactly δ(G)− 1 Italian dominating functions such that fi(v) = 0, and
exactly two TIDFs such that fi(v) = 1. Thus, the statement (b) holds.

(c) immediately comes from
∑

u∈N [v] fi(u) = 2 (see (a)). This com-
pletes the proof.

For regular graphs, we can use the statements about vertices of
minimum degree at equality to every vertex, so that if d = dtI(G) =
δ(G) + 1, and F = {f1, f2, . . . , fd} is a family of Italian dominating
functions, then this implies each Italian dominating function is a func-
tion fi : V (G) → {0, 1}. So we can consider the Italian dominating

174

Total Italian domatic number of graphs

functions as indicator functions, and in what follows, it will be conve-
nient to restate the property that dtI(G) = δ(G)+1 for a regular graph
G in terms of a family of sets. The proof of next result is essentially
similar to the proof of Lemma 1 in [12].

Corollary 2. Let G be a δ-regular graph, where δ ≥ 1. Then dtI(G) =
δ + 1 if and only if there are distinct sets S1, S2, . . . , Sδ+1, Si ⊆ V (G),
that satisfy the following:

(a) Every vertex of G appears in exactly two sets Si.

(b) Each set Si induces a perfect matching, i.e., the induced subgraph
G[Si] is 1-regular.

(c) For any vertex v 6∈ Si, |N(v) ∩ Si| = 2.

(d) For each i, |Si| = 2n
δ+1 = γtI(G).

Proof. Suppose that there exist sets S1, S2, . . . , Sδ+1 ⊆ V (G) satisfying
(a),(b),(c) and (d). Let fi be the characteristic function of Si for each
i. By Conditions (b) and (c), each fi is a total Italian dominating
function, and by Condition (a), these functions form a total Italian
dominating family with δ+1 total Italian dominating functions. Since
dtI(G) ≤ δ + 1, we get dtI(G) = δ + 1.

Conversely, assume that dtI(G) = δ+1 and let F = {f1, f2, . . . , fδ+1}
be a total Italian dominating family. Since G is δ-regular, we deduce
from Theorem 3-(b) that fi(v) ≤ 1 for each i and each v ∈ V (G). For
each fi, define Si = {v ∈ V (G) | fi(v) = 1}. Note that ω(f) = |Si|.
Clearly, (a) and (c) come from Theorem 3-(b). Also (b) follows from
Theorem 3-(c). Now we prove (d). Using Proposition 4 and noting that
G is δ-regular, we obtain d 2n

δ+1e(δ+1) ≤
∑δ+1

i=1 |Si| = 2n ≤ d 2n
δ+1e(δ+1).

Equality is possible only if 2n is divisible by δ + 1, and |Si| = 2n
δ+1 for

each i.

Corollary 3. Let G be a graph of order n ≥ 3 without isolated vertices.
Then dtI(G) = n if and only if G = Kn.

Proof. If G = Kn, then Theorem 1 and Corollary 1 imply dtI(G) = n.

175

S.M. Sheikholeslami, L. Volkmann

Conversely, assume that dtI(G) = n. If δ(G) ≤ n−2, then Theorem
3 yields the contradiction dtI(G) ≤ δ(G) + 1 ≤ n − 1. Therefore,
δ(G) = n− 1 and, thus, G = Kn.

The Cartesian product of two graphs G and H, denoted G�H, is a
graph whose vertex set is V (G) × V (H) = {(x, y) | x ∈ V (G) and y ∈
V (H)} and two vertices (x1, y1) and (x2, y2) ofG�H are adjacent if and
only if either x1 = x2 and y1y2 ∈ E(H) or y1 = y2 and x1x2 ∈ E(G).
It is shown that, for any two graphs G and H without isolated vertices,
dt(G�H) ≥ max{d(G), d(H)} [9].

Corollary 4. If n ≥ 2, then dtI(Kn�K2) = n.

Proof. Since d(Kn) = n, we have dtI(Kn�K2) ≥ dt(Kn�K2) ≥
max{d(Kn), d(K2)} = n. On the other hand, one can easily see that
γtI(Kn�K2) = 4 and so by Theorem 2 we have dtI(Kn�K2) ≤ 4n

4 = n.
Thus, dtI(Kn�K2) = n.

Theorem 4. Let Cn be a cycle of length n ≥ 3. Then dtI(Cn) = 3
when n ≡ 0 (mod 3) and dtI(Cn) = 2 when n ≡ 1, 2 (mod 3).

Proof. Let n ≡ 0 (mod 3), and let Cn = v1v2 . . . vnv1 with n = 3p
for an integer p ≥ 1. Define the functions f, g, and h by f(v3i−2) =
f(v3i−1) = 1 and f(v3i) = 0, g(v3i−1) = g(v3i) = 1 and g(v3i−2) = 0,
and h(v3i) = h(v3i−2) = 1 and h(v3i−1) = 0 for 1 ≤ i ≤ p. Then
f, g, and h are total Italian dominating functions on Cn such that
f(x) + g(x) + h(x) = 2 for each vertex x ∈ V (Cn). Therefore, {f, g, h}
is a total Italian dominating family on Cn and, thus, dtI(Cn) ≥ 3.
Theorem 3 yields to dtI(Cn) ≤ 3 and so dtI(Cn) = 3 in this case.

Let now n ≡ 1, 2 (mod 3) and Cn = v1v2 . . . vnv1. Theorem 2 and
Proposition 1 imply

dtI(Cn) ≤
2n

γtI(Cn)
=

2n⌈
2n
3

⌉ < 3

and, hence, dtI(Cn) ≤ 2. Define the functions f and g by f(vi) = 1 for
1 ≤ i ≤ n and g(v1) = 0 and g(vi) = 1 for 2 ≤ i ≤ n. Then f and g are
total Italian dominating functions on Cn such that f(x) + g(x) ≤ 2 for
each vertex x ∈ V (Cn). Therefore, {f, g} is a total Italian dominating

176

Total Italian domatic number of graphs

family on Cn and, thus, dtI(Cn) ≥ 2. This leads to dtI(Cn) = 2 in this
case.

Proposition 6. If Pn is a path of order n ≥ 5, then dtI(Pn) = 2.

Proof. Let Pn = v1v2 . . . vn. Define the functions f and g by f(vi) = 1
for 1 ≤ i ≤ n and g(v3) = 0 and g(vi) = 1 for 1 ≤ i ≤ n with i 6= 3.
Then f and g are total Italian dominating functions on Pn such that
f(x) + g(x) ≤ 2 for each vertex x ∈ V (Pn). Therefore, {f, g} is a total
Italian dominating family on Pn and, thus, dtI(Pn) ≥ 2. Theorem 3
implies dtI(Pn) ≤ 2 and so we obtain dtI(Pn) = 2.

The proof of the next proposition is identical to the proof of Propo-
sition 5 and is, therefore, omitted.

Proposition 7. If t ≥ s ≥ 1 are integers, then dtI(Kt,s) = s.

Theorem 5. Let G be a connected graph of order n ≥ 2. Then dtI(G) =
1 if and only if every vertex of G is a leaf or a support vertex.

Proof. Let G contain a vertex w which is neither a leaf nor a support
vertex. Since w is not a leaf, w has at least two neighbors, and since w
is not a support vertex, G − w has no isolated vertex. Therefore, the
function f with f(w) = 0 and f(x) = 1 for x ∈ V (G) \ {w} is a TIDF
on G. In addition, the function g with f(x) = 1 for all x ∈ V (G) is also
a TIDF on G with the property that f(x) + g(x) ≤ 2 for all x ∈ V (G).
Therefore, {f, g} is a total Italian dominating family on G and, thus,
dtI(G) ≥ 2.

Conversely, assume that each vertex of G is a leaf or a support
vertex. Theorem 3 implies dtI(G) ≤ 2. Suppose that {f, g} is a total
Italian dominating family on G. If v is a support vertex, then the
definitions lead to f(v), g(v) ≥ 1. If f(v) = 2, then the condition
f(v)+ g(v) ≤ 2 yields the contradiction g(v) = 0. Thus, f(v) = g(v) =
1 for all support vertices v. If follows that f(u) = g(u) = 1 for all
leaves u, a contradiction to the condition that f and g are distinct.
Consequently, dtI(G) = 1, and the proof is complete.

Theorem 6. Let G be a connected graph of order n ≥ 3. Then

γtI(G) + dtI(G) ≤ n+ 2,

177

S.M. Sheikholeslami, L. Volkmann

with equality if and only if G = Kn.

Proof. If dtI(G) = 1, then Proposition 2 implies γtI(G)+dtI(G) ≤ n+1.
Let next dtI(G) ≥ 2. It follows from Theorem 2 that

γtI(G) + dtI(G) ≤ 2n

dtI(G)
+ dtI(G).

Using the bounds 2 ≤ dtI(G) ≤ n (see Corollary 1), and the fact that
the function g(x) = 2n

x +x is decreasing for 2 ≤ x ≤
√
2n and increasing

for
√
2n ≤ x ≤ n, we obtain

γtI(G) + dtI(G) ≤ 2n

dtI(G)
+ dtI(G) ≤ max{n+ 2, 2 + n} = n+ 2, (3)

and the bound is proved.
If G = Kn, then we deduce from Proposition 3 and Corollary 3 that

γtI(G) + dtI(G) = n+ 2.
Conversely, assume that γtI(G) + dtI(G) = n + 2. It follows from

(3) that

n+ 2 = γtI(G) + dtI(G) ≤ 2n

dtI(G)
+ dtI(G) ≤ n+ 2

and, therefore, dtI(G) = 2 and γtI(G) = n or dtI(G) = n and γtI(G) =
2. If dtI(G) = n and γtI(G) = 2, then Corollary 3 yields G = Kn. If
dtI(G) = 2 and γtI(G) = n, then Proposition 2 implies G = F ◦ K1

for a connected graph F or G = P3. But now Theorem 5 leads to the
contradiction dtI(G) = 1.

3 Nordhaus-Gaddum type results

Results of Nordhaus-Gaddum type study the extreme values of the sum
or product of a parameter on a graph and its complement. In their
classical paper [13], Nordhaus and Gaddum discussed this problem for
the chromatic number. We establish such inequalities for the total
Italian domatic number.

178

Total Italian domatic number of graphs

Theorem 7. If G is a graph of order n ≥ 4 with δ(G) ≥ 1 and
δ(G) ≥ 1, then

dtI(G) + dtI(G) ≤ n.

Proof. Theorem 3 implies

dtI(G)+dtI(G) ≤ (δ(G)+1)+(δ(G)+1) = δ(G)+1+(n−∆(G)−1)+1.

If G is not regular, then ∆(G) − δ(G) ≥ 1, and the inequality chain
above leads to the desired bound.

Let now G be δ-regular. Then G is δ-regular with δ = n − δ − 1.
Assume, without loss of generality, that δ ≤ δ.

If δ = 1, then G = n
2K2 and, thus, dtI(G) = 1. According to

Corollaries 1 and 3, we observe that dtI(G) ≤ n−1 and, thus, dtI(G)+
dtI(G) ≤ n.

Thus, let now δ ≥ 2 and n = p(δ + 1) + r with integers p ≥ 1 and
0 ≤ r ≤ δ. If r 6= 0, δ+1

2 , then Corollary 2 implies dtI(G) ≤ δ and, as
above, we obtain dtI(G) + dtI(G) ≤ n. Next we discuss the case r = 0
or r = δ+1

2 .
Case 1: Let r = 0 and, therefore, n = p(δ + 1). We also have

n = (δ + 1) + δ with 2 ≤ δ ≤ δ. If δ 6= δ+1
2 , then Corollary 2 yields

dtI(G) ≤ δ, and we obtain dtI(G) + dtI(G) ≤ n as above. Let now
δ = δ+1

2 . Then

n = δ + 1 +
δ + 1

2
=

3

2
(δ + 1) =

3

2
(n− δ)

and so n = 3δ. Hence, n = p(δ + 1) = 3δ and, thus, p = 2. We deduce
that δ = 2 and n = 6. Consequently, G is a cycle of length 6 or the
union of two cycles of length 3. Using Theorem 4 and Proposition 7,
it is easy to verify that dtI(G) + dtI(G) = 6 = n in both cases.

Case 2: Let r = δ+1
2 and, therefore, n = p(δ+1)+ δ+1

2 . As in Case
1, there remains the case that n = 3δ. Hence, n = 3δ = (p+ 1

2)(δ + 1)
and so p ≤ 2. If p = 1, then we obtain the contradiction δ = 1. If
p = 2, then δ = 5 and n = 15, a contradiction to the fact that the
number of vertices of odd degree is even.

Since dtR(G) ≤ dtI(G), Theorem 7 leads to the next known
Nordhaus-Gaddum bound.

179

S.M. Sheikholeslami, L. Volkmann

Theorem 8 ([2]). If G is a graph of order n ≥ 4 with δ(G) ≥ 1 and
δ(G) ≥ 1, then

dtR(G) + dtR(G) ≤ n.

Theorem 9. If G is a graph of order n ≥ 5 with δ(G) ≥ 1 and
δ(G) ≥ 1, then

dtI(G) + dtI(G) ≥ 3.

Proof. Assume, without loss of generality, that dtI(G) ≤ dtI(G). If
dtI(G) ≥ 2, then we even see that dtI(G) + dtI(G) ≥ 4. So let now
dtI(G) = 1.

If G is not connected, then the condition δ(G) ≥ 1 shows that
G is connected such that δ(G) ≥ 2. Therefore, Theorem 5 leads to
dtI(G) ≥ 2, and we obtain dtI(G) + dtI(G) ≥ 3.

Let now G be connected. Then it follows from Theorem 5 that each
vertex of G is a leaf or a support vertex. Let S(G) = {v1, v2, . . . , vs}
be the set of support vertices. Since δ(G) ≥ 1, we observe that s ≥ 2.
If s = 2, then the condition n ≥ 5 shows that v1 or v2, say v1, is
adjacent to more than one leaf. We deduce that v2 is neither a leaf nor
a support vertex of G. Since G is connected, it follows from Theorem
5 that dtI(G) ≥ 2 and, thus, dtI(G) + dtI(G) ≥ 3. If s ≥ 3, then
δ(G) ≥ 2, and Theorem 5 leads to dtI(G) + dtI(G) ≥ 3 again.

Since dtI(P4) + dtI(P4) = 2, we observe that the condition n ≥ 5 in
Theorem 9 is necessary.

References

[1] H. Abdollahzadeh Ahangar, M. Chellali, S.M. Sheikholeslami, and
J.C. Valenzuela-Tripodoro, “Total Roman {2}-dominating func-
tions in graphs,” Discuss. Math. Graph Theory, vol. 42, pp.
937–958, 2022.

[2] J. Amjadi, S. Nazari-Moghaddam, and S.M. Sheikholeslami, “To-
tal Roman domatic number of a graph,” Asian-Eur. J. Math., vol.
13, no. 06, Article No. 2050110, 12 p., 2020.

180

Total Italian domatic number of graphs

[3] M. Chellali, T. Haynes, S.T. Hedetniemi, and A. McRae, “Roman
{2}-domination,” Discrete Appl. Math., vol. 204, pp. 22–28, 2016.

[4] M. Chellali, N. Jafari Rad, S. M. Sheikholeslami, and L. Volk-
mann, “Roman domination in graphs,” in Topics in Domination
in Graphs, T. W. Haynes, S. T. Hedetniemi, and M. A. Henning,
Eds. Springer, 2020, pp. 365–409.

[5] M. Chellali, N. Jafari Rad, S. M. Sheikholeslami, and L. Volk-
mann, “Varieties of Roman domination,” in Structures of Dom-
ination in Graphs, T. W. Haynes, S. T. Hedetniemi, and M. A.
Henning, Eds. Springer, 2021, pp. 273–307.

[6] M. Chellali, N. Jafari Rad, S. M. Sheikholeslami, and L. Volk-
mann, “Varieties of Roman domination II,” AKCE Int. J. Graphs
Comb., vol. 17, pp. 966–984, 2020.

[7] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann,
“The Roman domatic problem in graphs and digraphs: A survey,”
Discuss. Math. Graph Theory, vol. 42, pp. 861–891, 2022.

[8] E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi, and S. T. Hedet-
niemi, “Roman domination in graphs,” Discrete Math., vol. 278,
pp. 11–22, 2004.

[9] P. Francis, D. Rajendraprasad, On domatic and total domatic
numbers of product graphs, arXiv:2103.10713.

[10] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals
of Domination in Graphs, New York: Marcel Dekker, Inc., 1998.

[11] C.-H. Liu and G. J. Chang, “Roman domination on strongly
chordal graphs,” J. Comb. Optim., vol. 26, pp. 608–619, 2013.

[12] J. Lyle, “Regular graphs with large Italian domatic number,”
Commun. Comb. Optim., vol. 7, pp. 257–271, 2022.

[13] E. A. Nordhaus and J. W. Gaddum, “On complementary graphs,”
Amer. Math. Monthly, vol. 63, pp. 175–177, 1956.

181

S.M. Sheikholeslami, L. Volkmann

[14] L. Volkmann, “The Italian domatic number of a digraph,” Com-
mun. Comb. Optim., vol. 4, pp. 61–70, 2019.

Seyed Mahmoud Sheikholeslami, Lutz Volkmann Received June 09, 2022
Accepted March 10, 2023

Seyed Mahmoud Sheikholeslami
ORCID: https://orcid.org/0000-0003-2298-4744
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, I. R. Iran
E–mail: s.m.sheikholeslami@azaruniv.ac.ir

Lutz Volkmann
ORCID: https://orcid.org/0000-0003-3496-277X
Lehrstuhl C für Mathematik
RWTH Aachen University
52062 Aachen, Germany
E–mail: volkm@math2.rwth-aachen.de

182

Computer Science Journal of Moldova, vol.31, no.2(92), 2023

Comprehensive Performance Study of Hashing
Functions

G. M. Sridevi, M. V. Ramakrishna, and D. V. Ashoka

Abstract

Most literature on hashing functions speaks in terms of hash-
ing functions being either ‘good’ or ‘bad’. In this paper, we
demonstrate how a hashing function that gives good results for
one key set, performs badly for another. We also demonstrate
that, for a single key set, we can find hashing functions that
hash the keys with varying performances ranging from perfect to
worst distributions. We present a study on the effect of chang-
ing the prime number ‘p’ on the performance of a hashing func-
tion from H1 Class of Universal Hashing Functions. This paper
then explores a way to characterize hashing functions by studying
their performance over all subsets of a chosen Universe. We com-
pare the performance of some popular hashing functions based
on the average search performance and the number of perfect and
worst-case distributions over different key sets chosen from a Uni-
verse. The experimental results show that the division-remainder
method provides the best distribution for most key sets of the
Universe when compared to other hashing functions including
functions from H1 Class of Universal Hashing Functions.

Keywords: H1 Universal Class of Hashing Functions, Radix
transformation, Mid-Square method, Multiplicative Hashing,
Division-remainder method.

MSC 2020: 68P05, 68P10, 68P20.
ACM CCS 2020: Information systems—Database manage-

ment system engines, Information systems—Information Storage
Systems

©2023 by Computer Science Journal of Moldova
doi:10.56415/csjm.v31.10

183

https://doi.org/10.56415/csjm.v31.10

G. M. Sridevi, M. V. Ramakrishna, D. V. Ashoka

1 Introduction
Hashing techniques have been used extensively in various applications
involving storage and retrieval, cryptography, networking, cloud, etc.
Hashing functions map keys to table indexes and provide fast retrieval
of data on different types of storage. The terms ‘good hashing function’
and ‘bad hashing function’ are usually used while talking about how
a hashing function distributes the data in the hash table. While some
hashing functions might distribute keys perfectly without any collisions,
a few others may result in all collisions. The term ‘collision’ refers to
the event where more than one key gets mapped to the same location
in memory. In general, a hashing function causing fewer collisions is
said to be ‘good’ and is said to be ‘bad’ otherwise. Different textbooks
on database and data structures talk about characteristics of a ‘good’
hashing function.

The performance of a hashing function is dependent on the input
key set and cannot be considered to be ‘good’ or ‘bad’ independent
of the input. It is reasonable to evaluate the performance of a hash-
ing function over all possible subsets of a Universe and not just over
one key set. This idea was proposed by Lum [1]. Lum recommends
considering all the subsets of a Universe to study the performance of
hashing functions. To our surprise, there is no reported literature which
studies the performance based on this strategy so far. Carter and Weg-
man’s H1 class of Universal Hashing functions was proved to provide
practical performance on real files and is expected to provide better
results [2], [3]. A comparison of the hashing functions with H1 class
of Universal Hashing functions has not been done so far as per our
knowledge.

In this paper, we demonstrate the effect of the prime number on the
performance of functions from H1 class of Universal Hashing functions.
We then present an exhaustive study on the performance of some of the
known hashing functions in comparison with functions from H1 class
of hashing functions based on Lum’s model. While functions from
Universal Class were expected to give the best results, experimental
results show that the division-remainder method performs better than
the functions from H1 class of Universal Hashing functions for the
Universe chosen.

184

Comprehensive Perf. Study of Hashing Functions …

The rest of the paper is organized as follows: Section II presents the
related work; Section III demonstrates that the performance of hashing
functions is dependent on the input, followed by a study on H1 class of
hashing functions and presents the model used for the study of hashing
functions; Section IV presents the results and the paper is concluded
in Section V.

2 Related Work
Most of the studies on hashing functions was presented in the 60s. Sur-
prisingly, there has been no study on the performance of hashing func-
tions since 70s. Peterson presented an early study on hashing functions
based on the number of probes required to find a record [4]. Buchholz
provided an analysis of hashing functions covering different aspects of
hashing functions including an analysis of overflow handling methods
but with minimal experimental results [5]. According to the author,
a hashing function that involves division of the key by a prime value
provides efficient distribution of keys. Few other studies on hashing
techniques were presented by Mc Ilroy [6], Roberts [7] and Schay et
al. [8], [9]. The performance of different hashing functions over differ-
ent sets of keys of varying datatypes was presented by Lum et al. with
a conclusion that the division method provides the best search results
with fewer collisions [10].

Later, Lum proposed a way to characterize the hashing functions
by selecting key sets from a key space and hashing the keys using
different hashing techniques [11]. Sorenson et al.’s survey on different
hashing techniques along with collision-resolution techniques presents
an analysis from a practitioner’s point of view [12]. Deutscher et al.
provide an excellent characterization and comparison of distribution-
dependent hashing functions with that of division method [3].

Ramakrishna’s study on H1 class of Universal hashing functions de-
fined by Carter and Wegman concludes that functions from this class
can provide practical performance on real files [10]. In this paper, we
present a comparison of the performance of some of the hashing tech-
niques with functions from H1 class. In the next section, we demon-
strate that any hashing function cannot be declared as ‘good’ or ‘bad’
without considering the input given to the hashing function.

185

G. M. Sridevi, M. V. Ramakrishna, D. V. Ashoka

3 Hashing Functions: ‘good’ or ‘bad’

In this section, we consider a few examples to illustrate that the same
hash function can perform differently for different key sets. We chose
functions from H1 class of Universal hashing functions defined by
Carter and Wegman which have been claimed to be good for providing
practical performance on real files [2]. A separate chaining method is
applied to link the keys that result in collisions for our examples. For
the demonstration, we consider 2 different scenarios:

Case 1: Same hashing function, different key sets.
We hashed 4 different key sets with the hashing function h(x) =
((519x + 703)mod 36373)mod 13 to a hash table of size 13. The key
sets considered for the demonstration of the first case are as follows:

K1 = {936, 748, 996, 815, 864, 867, 730, 971}
K2 = {772, 841, 738, 907, 876, 932, 713, 816}
K3 = {757, 861, 929, 744, 755, 797, 808, 836}
K4 = {715, 952, 899, 754, 860, 913, 992, 781}

Figure 1. Good/Normal Distribution of K1 by h(x)

Fig. 1 shows the distribution of the keys in key set K1 to the hash
table using the hash function h(x). The hash function h(x) causes only
2 collisions for key set K1. The function h(x) distributes the keys from
K2 without any collisions making it a perfect hashing function for key

186

Comprehensive Perf. Study of Hashing Functions …

set K2. On the other hand, it results in a larger number of collisions
for K3, with all keys hashing to either table index 8 or to index 10,
and in all collisions for K4. The average search performance of h(x) for
different key sets is shown in Table 1. The hash function’s performance
over the key sets was found to be good for K1; perfect for K2; bad for
K3 and worst for K4 with all keys hashing to table index 11. As we can
see, a hashing function’s performance depends on the key set chosen.

Table 1. Average Search Performance of h(x) over different key sets

Key Set Average Successful
Search Length

Performance

K1 1.25 Good
K2 1 Perfect
K3 2.625 Average/Normal
K4 4.5 Worst

Case 2: Same key set, different functions.
In the previous scenario, we showed the performance of a single hashing
function on different key sets. In another scenario, we show that, for a
single key set, we can find functions h1, h2... such that h1 is perfect,
h2 is average and so on.

For our demonstration of the second case, we consider a key set K5

= {763, 789, 841, 867, 893, 919, 945, 997} of size 8 chosen randomly
from a Universe U ranging from 700 to 1000. For the demonstration,
the key setK5 is hashed using 4 different hashing functions listed below:

h1(x)= ((412x+ 371)mod 5443)mod 13
h2(x)= ((321x+ 576)mod 27283)mod 13
h3(x)= ((513x+ 413)mod 106759)mod 13
h4(x)= ((417x+ 294)mod 158647)mod 13

Fig. 2 shows the distribution of the key set K5 by the hashing func-
tion h1(x) which is found to be perfect with no collisions. The same
key set K5 results in a few collisions when hashed with the function
h2(x). A larger number of collisions is seen when K5 is hashed with

187

G. M. Sridevi, M. V. Ramakrishna, D. V. Ashoka

h3(x) with all keys getting hashed to either index 0 or index 3 of the
hash table. The hashing function h4(x) hashes the key set with all col-
lisions by mapping all the keys to the address 0. The average successful
search performance of the hash functions over the key set K5 is shown
in Table 2. This shows that, for the same key set, different hashing
functions may perform differently. Choosing a hashing function that
provides the best results is vital for any application.

Figure 2. Perfect distribution for K5 by h1(x)

Table 2. Average Search Performance of different hashing functions
over K5

Hashing
Function

Average Successful
Search Length

Performance

h1(x) 1 Perfect
h2(x) 1.625 Good
h3(x) 3 Bad
h4(x) 4.5 Worst

We have illustrated with examples that the performance of any
hashing function is dependent on the key set and, for any given key
set, we can find functions that vary in performance. Also, given any
hashing function, we can find key sets for which the performance of
the hashing function varies from perfect to good, bad, or even worse.

188

Comprehensive Perf. Study of Hashing Functions …

This can be done for any other class of hashing functions such as radix
transformation, division-remainder method, and so on.

3.1 The effect of the prime ‘p’ on the performance of H1

Class of Hashing Functions

We demonstrated that a hashing function cannot be considered ‘good’
or ‘bad’ without taking the input into consideration. For the demon-
stration, we used hashing functions from H1 class of Universal hashing
functions defined by Carter and Wegman of the form

h(x) = ((c ∗ x+ d)mod p)modm, (1)

where c and d are chosen at random, p is a large prime, and m is the
table size. Functions from H1 class are said to be Universal indicating
that the maximum number of collisions expected is nearly n/m, where
n is the size of the key set and m is the hash table size. We can observe
that the performance of the hashing functions varied depending on the
values chosen for ‘c’, ‘d’, and ‘p’. This motivated us to study the effect
of varying the values of ‘p’ on the performance of H1 class of Universal
hashing functions.

In particular, we chose a key set with keys that generate the same
remainder on dividing by the hash table size m taken as 13. We studied
the performance of functions from H1 class over a key set K of size 10
ranging from 700 to 1000. The key set considered for the study is

K = {737, 945, 763, 815, 867, 841, 893, 789, 919, 997}.

We can see that the keys chosen would result in all collisions if hashed
using the modulo method. The keys from the key set K were hashed
to the hash table using hashing functions of the form in Eq. (1). The
values for ‘c’ and ‘d’ were kept constant at c = 453 and d = 657. The
performance of the hashing function was evaluated for different values
for ‘p’ to study the effect of the prime number on the performance of the
hashing function and is shown in Table 3. The results indicate that as
the ratio of ‘(cx+d)’ to ‘p’ decreases, the number of collisions increases.
Larger values of ‘p’ result in a higher number of collisions. If the value

189

G. M. Sridevi, M. V. Ramakrishna, D. V. Ashoka

of ‘p’ is too large, it results in all collisions. Whereas, smaller values
result in fewer collisions and can also provide perfect distribution. In
the next subsection, we present a comprehensive study of some of the
popular hashing functions.

Table 3. Performance variation of a hashing functionh(x) on varying ’p’

pvalue No. of
overflow
records

Average
Search
length

(c∗x+d)
p Search Per-

formance

226637 9 5.5 1.47 Worse
170689 8 4.6 1.95 Bad
156967 9 5.5 1.1 Worse
128761 8 3.0 2.59 Average
70571 7 2.7 4.74 Average
36373 7 2.3 9.19 Average
32203 5 1.7 10.38 Good
30241 6 1.8 11.06 Good
19739 3 1.3 16.94 Good
13219 1 1.1 25.30 Good
10687 0 1 31.30 Perfect
7477 2 1.2 44.73 Good
5879 0 1 56.9 Perfect
2357 0 1 141.9 Perfect

3.2 Exhaustive Performance Study of Hashing Functions

We demonstrated that the performance of a hashing function is highly
dependent on the input. Based on this fact, the best strategy to study
the performance of a hashing function over any given Universe of keys
would be to consider the performance of the hashing function over all
the possible subsets of the Universe rather than on just a few key sets.
As already demonstrated, different hashing functions may provide var-
ied performance for same key set while they behave differently for other
key sets. Hence, we consider exhaustive subsets of the Universe, ac-
cording towhich all possible subsets of a Universe must be considered for

190

Comprehensive Perf. Study of Hashing Functions …

hashing to properly understand how a hashing function distributes the
data. This was suggested by Lum in his earlier studies. A study on
Universal hashing functions based on this idea is presented here in
comparison with other existing methods.

Consider a Universe of keys U = {k1, k2, k3, …, kn} of size n. There
are nCr possible subsetsKS (Key Set) of size r. Each of these subsets is
hashed to the Hash Table individually, and the average search perfor-
mance of the hashing function over all the subsets is taken into consider-
ation to study the performance. Some key setsmay get distributed per-
fectly without any collisions. Somemaybeworst cases (all keys colliding)
and others will be in between. We evaluate the performance of the hash-
ing functions by taking an average of all the extreme cases. The algorithm
for the comprehensive study is presented in Algorithm 1.

Algorithm 1.
Input:
Universe U= {10, 11, …..., 29}
Universe Size n = 20
Table Size m=10
Subset Sizes r = {3, 4, …., 10}

Begin:
1: For each r
Generate all subsets/key sets of U (KS) of size r
//KS = {KS1,KS2, ..KSnCr}
2: For each subset KSx //KSx = {k1,k2, …, kr}
Initialize Total Search Length for KSx to 0
3: For each key kx in a subset KSx

hash(kx)
Compute Search length for kx //(SL(kx))
Total Search Length for KSx= Total Search Length for
KSx + SL(kx)
End For3
Calculate Average Search Length over KSx (ASL(KS))
End For2
ASL(KS) = Average search Length over nCr subsets
End For1

191

G. M. Sridevi, M. V. Ramakrishna, D. V. Ashoka

4 Results and Discussion
For our experiment, we considered mid-square method, radix trans-
formation, division-remainder method, multiplicative method [2], [13],
and H1 class of hashing functions. A brief explanation of the hashing
functions considered for the study is given below.

Mid-square method extracts the middle portion of square value of
the key as the hash address for the key.
For example, for the key x = 2518, squaring the key gives
63,40,324. The middle of the squared value, i.e., ‘0’ is taken
as the hash address to store the key x.

Radix transformation transforms the key from decimal to a differ-
ent base and the resulting value is used to generate the hash
address. The key can be converted to any base of our choice. For
demonstration, we convert the key to base 9.
Consider a key x = 7698. Converting the decimal 7698 to base
9 gives the value 11503. The converted value is then used to
generate the hash address. For a table size of m = 10, we use
a modulo operation on the transformed value with the table size
to generate a hash address within the address range 0 to 9. For
m = 10, we get 3 (11503mod10) as the hash address.

Division-remainder method or modulo method is of the form
h(x) = xmodm, where x is the key and m is the hash table
size. The remainder obtained on dividing the key by table size is
taken as the hash address.
For x = 1893 and m = 10, we get 3 (1893 mod 10) as the hash
address.

Multiplication method is of the form h(x) = floor(m ∗ ((x ∗
c)mod 1)), where c is a floating-point value ranging between 0
to 1 and m is the table size. The key x is multiplied by c, and
the fractional part is extracted by applying a modulo operation
with 1 on the product obtained. The remainder is then multiplied
by the table size and the real part is taken as the hash address.

192

Comprehensive Perf. Study of Hashing Functions …

For example, for a key x = 1788, if c = 0.572593, x ∗ c is
1023.796284. Modulo operation on the product with 1 gives
0.796284 as the remainder which is multiplied with the table size
m. If m = 10, we get 7.96284 as a result, from which the floor
value is taken as the hash address, i.e., 7.

H1 class of hashing functions defined by Carter and Wegman are
of the form h(x) = ((cx + d)mod p)modm, where c and d are
integers chosen at random, p is a large prime, and m is the table
size. For x = 18, if c = 58, d = 67, p = 137, and m = 10, we get
5 as the hash address.

For any given set of size n, the number of possible subsets of size r
is exponential and is equal to nCr. Thus, we have to keep the size of
the Universe n to be small so that the total time taken to conduct the
experiments is within manageable limits. For n = 100, the number
of possible subsets of size r = 7 is 100C7 =16007560800 and the time
taken to generate all the subsets is nearly 42 hours. For r = 8, we get
186087894300 possible subsets which is estimated to take nearly 21 days
to generate. For larger values of r = 9 and 10, we get 1902231808400
and 17310309456440 possible subsets. It would take longer to generate
and hash all the subsets to the hash table; hence, we chose a smaller
Universe U of size n = 20, for which the number of subsets is 184756
for r = 10, which takes lesser time to generate. The Universe U chosen
ranges from 10 to 29. Subsets are constructed for different sizes ‘r’
ranging from 3 to 10. Each of these subsets is hashed to a Hash Table
of size m = 10, and the average search performance is calculated over
all the subsets.

Each of the hashing functions was used to hash all the possible
subsets of the Universe for subset sizes r = 3 to 10. For Universal
hashing functions, we generated 100 different functions by varying the
values of ‘c’, ‘d’ at random and keeping the prime ‘p’ as constant. The
average of Average search length for the 100 hashing functions was used
to compute the search performance of Universal hashing functions. For
example, if r = 3, for each hashing function, we get 1140 subsets;
we take the average search length for all the subsets for each hashing
function. This is repeated for 100 hashing functions. Later we take the

193

G. M. Sridevi, M. V. Ramakrishna, D. V. Ashoka

average of the 100 average search lengths to compute the performance
of Universal hashing functions.

Table 4. Comparison based on Average Successful Search Length

Subset
Size (r)

3 4 5 6 7 8 9 10

No. of
Subsets
(nCr)

1140 4845 15504 38760 77520 125970 167960 184756

Mid-
Square
method

1.12 1.19 1.25 1.31 1.38 1.44 1.5 1.57

Modulo
method

1.05 1.08 1.1 1.13 1.16 1.18 1.21 1.23

Multipli-
cation
method

1.13 1.19 1.25 1.31 1.38 1.44 1.5 1.57

Decimal
to base
11

1.06 1.09 1.12 1.16 1.19 1.22 1.25 1.28

Decimal
to base
15

1.16 1.23 1.31 1.39 1.47 1.55 1.63 1.71

Uni-
versal
Hashing

1.07 1.11 1.15 1.18 1.22 1.26 1.29 1.33

Table 4 shows the results of experiments based on successful search
length. The subset size r (shown in the first row) varies from 3 to
10. For each size, we generated all possible subsets of that size taking
the elements from our small Universe. The total number of subsets
generated in each case is shown in the second row (nCr). After hash-
ing all the keys in a subset, the successful search length is computed.
The average of this search length over all the subsets is computed and
shown in the next six rows corresponding to each method of the hashing

194

Comprehensive Perf. Study of Hashing Functions …

function used.

Table 5. Comparison based on Percentage of Perfect distributions

Subset
Size (r)

3 4 5 6 7 8 9 10

No. of
Subsets
(nCr)

1140 4845 15504 38760 77520 125970 167960 184756

Mid-
Square
method

65.96 42.13 21.96 8.79 2.41 0.34 0 0

Modulo
method

84.21 69.35 52.01 34.67 19.81 9.15 3.05 0.55

Multipli-
cation
method

67.63 50.09 33.69 20.52 10.79 4.65 1.46 0.25

Decimal
to base
11

81.40 64.75 46.31 29.05 15.40 6.49 1.94 0.31

Decimal
to base
15

59.65 36.12 18.78 8.31 3.04 0.88 0.18 0.02

Uni-
versal
Hashing

78.77 60.56 41.49 24.75 12.43 4.96 1.41 0.22

Tables 5 and 6 show the percentage of distributions that are per-
fect(P) and worst(W) respectively for different hashing functions. For
example, with r = 3, we have 1140 possible subsets. A distribution is
perfect if the resulting successful search length is precisely 1.0 or if there
were no collisions. With the mid-square method, out of 1140 subsets,
752 distributions gave a search length of 1.0. Thus, we get (752/1140)
* 100 = 65.96 % of perfect distributions for mid-square method de-
picted in Table 5. Conversely, out of 1140 subsets, 22 subsets result
in all collisions which gives us (22/1140) * 100 = 1.93% of the worst

195

G. M. Sridevi, M. V. Ramakrishna, D. V. Ashoka

Table 6. Comparison based on Percentage of worst-case distributions

Subset
Size (r)

3 4 5 6 7 8 9 10

No. of
Subsets
(nCr)

1140 4845 15504 38760 77520 125970 167960 184756

Mid-
Square
method

1.93 0.31 0.04 0 0 0 0 0

Modulo
method

0 0 0 0 0 0 0 0

Multipli-
cation
method

2.68 0.91 0.33 0.11 0.03 0.01 0.001 0.0001

Decimal
to base
11

0.18 0 0 0 0 0 0 0

Decimal
to base
15

3.51 0.62 0.08 0.01 0 0 0 0

Uni-
versal
Hashing

0.37 0.02 0 0 0 0 0 0

196

Comprehensive Perf. Study of Hashing Functions …

distribution for the mid-square method depicted in Table 6. Similarly,
the division-remainder method provides 960 perfect distributions and
0 worst-case distributions for r = 3. Our experiments show that the
division-remainder method gives the highest percentage of perfect dis-
tributions and the least percentage of the worst distributions for all
subset sizes when compared to other methods.

While we were inclined to believe that functions fromH1 class would
provide the best results when compared to other hashing techniques,
it was surprising to see that, contrary to our belief, the average search
performance of functions from H1 class was not as good as division-
remainder method. The performance of functions from H1 was closely
behind that of the remainder method and radix transformation to base
11. Even the number of subsets with perfect distribution was highest
with the remainder method.

5 Conclusions

In this paper, we have presented the performance of some popular
hashing techniques over all the possible subsets of a Universe. For the
Universe chosen, the remainder method distributed the subsets of dif-
ferent sizes with fewer collisions resulting in a smaller average successful
search. It was closely followed by the radix transformation method to
base 11. The division-remainder method also gave the highest percent-
age of perfect distributions followed by radix transformation to base 11
for all subset sizes r. A smaller value for the prime ‘p’ improved the
performance of the Universal Hashing function making it better than
the radix transformation but it did not do better than the division-
remainder method which was contrary to our belief.

Acknowledgments

This research was supported by Visvesvaraya Technological University,
Jnana Sangama, Belagavi.

Conflict of interest

The authors declare no potential conflict of interests.

197

G. M. Sridevi, M. V. Ramakrishna, D. V. Ashoka

References

[1] V. Y. Lum, P. S. Yuen, and M. Dodd, “Key-to-address transform
techniques: A fundamental performance study on large existing
formatted files,” Communications of the ACM, vol. 14, no. 4, pp.
228–239, 1971.

[2] J. L. Carter and M. N. Wegman, “Universal classes of hash func-
tions,” in Proceedings of the ninth annual ACM symposium on
Theory of computing, 1977, pp. 106–112.

[3] R. Deutscher, P. G. Sorenson, and J. P. Tremblay, “Distribution-
dependent hashing functions and their characteristics,” in Pro-
ceedings of the 1975 ACM SIGMOD international conference on
Management of data, 1975, pp. 224–236.

[4] W. W. Peterson, “Addressing for random-access storage,” IBM
journal of Research and Development, vol. 1, no. 2, pp. 130–146,
1957.

[5] W. Buchholz, “File organization and addressing,” IBM Systems
Journal, vol. 2, no. 2, pp. 86–111, 1963.

[6] M. D. Mc Ilroy, “A variant method of file searching,” Communi-
cations of the ACM, vol. 6, no. 3, p. 101, 1963.

[7] D. C. Roberts, “File organization techniques,” in Advances in
Computers. Elsevier, 1972, vol. 12, pp. 115–174.

[8] G. Schay and N. Raver, “A method for key-to-address transfor-
mation,” IBM Journal of research and development, vol. 7, no. 2,
pp. 121–126, 1963.

[9] G. Schay Jr and W. G. Spruth, “Analysis of a file addressing
method,” Communications of the ACM, vol. 5, no. 8, pp. 459–462,
1962.

[10] M. V. Ramakrishna, “Hashing practice: analysis of hashing and
universal hashing,” ACM SIGMOD Record, vol. 17, no. 3, pp.
191–199, 1988.

[11] V. Y. Lum, “General performance analysis of key-to-address trans-

198

Comprehensive Perf. Study of Hashing Functions …

formation methods using an abstract file concept,” Communica-
tions of the ACM, vol. 16, no. 10, pp. 603–612, 1973.

[12] P. Sorenson, J. Tremblay, and R. Deutscher, “Key-to-address
transformation techniques,” INFOR: Information Systems and
Operational Research, vol. 16, no. 1, pp. 1–34, 1978.

[13] J. Von Neumann, “13. various techniques used in connection with
random digits,” Appl. Math Ser, vol. 12, no. 36-38, p. 3, 1951.

G. M. Sridevi, M. V. Ramakrishna, Received October 26, 2022
D. V. Ashoka Accepted January 25, 2023

G. M. Sridevi
ORCID: https://orcid.org/ 0000-0003-3864-9983
Research Scholar - Visvesvaraya Technological University (VTU),
Dayananda Sagar Academy of Technology and Management,
Department of Information Science and Engineering,
Udayapura, Kanakapura Road, Bengaluru-560082, India.
E–mail: sridevi.gereen87@gmail.com

M. V. Ramakrishna
ORCID: https://orcid.org/0000-0001-7058-7562
SJB Institute of Technology, Department of Information Science and Engineering,
BGS Health and Education City, Dr. Vishnuvardhan Road,
Bengaluru-560060, India.
E–mail: mvrama@yahoo.com

D. V. Ashoka
ORCID: https://orcid.org/ 0000-0003-1326-2387
JSS Academy of Technical Education
Department of Information Science and Engineering,
Dr. Vishnuvardhan Road,
Bengaluru-560060, India.
E–mail: dr.dvashoka@gmail.com

199

Computer Science Journal of Moldova, vol.31, no.2(92), 2023

Deep learning-based software for detecting
population density of Antarctic birds

Sinan Uğuz

Abstract

Monitoring populations of bird species living in Antarctica
with current technologies is critical to the future of habitats
on the continent. Studies of bird species living in Antarctica
are limited due to climate, challenging geographic conditions,
and transportation and logistical constraints. The goal of this
study is to develop Deep Learning-based software to determine
the population densities of Antarctic penguins and endangered
albatrosses. Images of penguins and albatrosses obtained from
internet sources were labeled using the segmentation technique.
For this purpose, 4144 labeled data were trained with five differ-
ent convolutional neural network architectures TOOD, YOLOv3,
YOLOF, Mask R-CNN, and Sparse R-CNN. The performance of
the obtained models was measured using the average precision
(AP) metric. The experimental results show that the TOOD-
ResNet50 model with 0.73 AP 50 detects the Antarctic birds ad-
equately compared to the other models. At the end of the study,
a software was developed to detect penguins and albatrosses in
real time.

Keywords: Deep Learning, Antarctic birds, Remote sensing,
Population estimation, Convolutional neural network.

MSC 2020: 68T07, 68T45, 62P12.

1 Introduction
As a result of global warming in the world, the melting of sea ice has
negatively affected the feeding ecosystems of populations of bird species
such as penguins, albatrosses, skuas, cormorants, petrels, and Arctic

©2023 by Computer Science Journal of Moldova
doi:10.56415/csjm.v31.11

200

https://doi.org/10.56415/csjm.v31.11

A Deep Learning-based software for detecting Antarctic birds …

terns living in Antarctica. Polar regions have difficult conditions for
scientific studies due to climatic difficulties, geographic barriers, trans-
portation and logistical constraints, and ecological limitations. Despite
these difficult conditions, knowledge of bird species populations is very
important for the region’s habitat. Because many seabird species are
closely spaced in colonies or breed in large numbers in inaccessible ar-
eas, population estimates of these birds are difficult [1]. Penguins are
among the most important bird species living in Antarctica. It is esti-
mated that the total number of penguin pairs breeding in Antarctica,
where there are 18 different species of penguins, is about 20 million.
Although penguins cover a large geographic area, they are concentrated
in coastal areas with less harsh climates [2]. Another important bird
species that lives in Antarctica is the albatross. All but seven of the
world’s 22 albatross species are threatened with extinction. Every year,
tens of thousands of albatrosses die because they get caught in large
nets while fishing behind fishing boats [3].

Determining the population densities of both bird species will pro-
vide information on the breeding behavior of these birds and make
an important contribution to the protection of the Antarctic habitat.
To this end, researchers have used various remote sensing technolo-
gies such as satellite imagery and computer vision techniques. In [4],
satellite imagery with a resolution of 10 m was used to survey the pen-
guin population and determine their reproductive behavior. The same
authors used commercial satellite imagery at 30 cm resolution for al-
batross colonies in their 2017 study [5]. In [6] were identified breeding
colonies of the bird species Thalassoica Antarctica using images in six
spectral bands from Landsat-8. In another study using satellite im-
agery, in [7] was used a convolutional neural network (CNN) called
U-Net for albatross colony detection. According to the researchers,
the main limitations of the research are noise in satellite images, cloud
cover, and complex background images.

The main disadvantage of studies based on satellite imagery is that
the spatial resolution of satellite imagery is not high enough to clearly
detect birds. While it is possible with military satellites to detect ob-
jects in an area of 10 cm2, these satellites cannot be used by researchers
because they are not open to the public [8]. Another problem that arises

201

Sinan UĞUZ

when using satellite imagery is that the number of birds detected in
the colony cannot be accurately estimated. In particular, birds ap-
proaching each other for warmth in very cold time periods cause the
population to be miscalculated. Satellite imagery can be of great use
in determining the location of new colonies. However, various solu-
tions need to be developed to determine the population density at that
location.

The most successful methods for bird colony population detection
are Deep Learning, which has recently achieved great success in all
fields, and image processing techniques [9]. In image processing, re-
searchers must manually extract features from images and apply vari-
ous machine-learning techniques to solve each problem. This is a very
long process. Also, in order to define an object, all the features must
be defined by the researchers; for example, to create a penguin’s fea-
ture map using image processing, researchers must define features such
as its beak, arm, and leg. However, in the Deep Learning-based ap-
proach, feature extraction is done automatically using Deep Learning
architectures [10]. In [9], images of birds near lakes and on agricultural
land were collected by unmanned aerial vehicles (UAVs). This dataset
includes popular CNN models, Faster Region-based CNN (Faster R-
CNN), Region-based Fully Convolutional Network (R-FCN), Single
Shot MultiBox Detector (SSD), RetinaNet, and You Only Look Once
(YOLO). The best accuracy was achieved with Faster R-CNN and the
fastest result production with YOLO.

In the other study [11], a penguin dataset was created. The unique
feature of this dataset is the use of the dot annotations technique. That
is, each penguin in the dataset is represented by dots. The researchers
proposed a CNN model based on the VGG16 classification architec-
ture. As a result of the study, the population density of penguins was
determined by creating kernel density maps. In [12], it was aimed
to detect Black-browed albatross and Southern Rockhopper penguin
colonies using drone imagery. Approximately 37.000 data labels were
made. Training was conducted using the RetinaNet architecture. The
mAP for the albatross model was 97.66% and the mAP for the penguin
model was 87.16%. In another study, the Penguin Counting model de-

202

A Deep Learning-based software for detecting Antarctic birds …

veloped by1 is still in the project phase. The main objective of the
project is to count the penguins in the images captured by the camera
traps deployed in Antarctica. For this purpose, the Microsoft Azure
platform and the PyTorch framework were used.

Though several approaches were presented for population predic-
tion of Antarctica birds, there exist some significant challenges in it.
Some Antarctic seabirds gather at the sea surface, while albatrosses
and penguins are not seen in groups in the sea. For this reason, it is
necessary to estimate the population of albatrosses and penguins from
land rather than from the surface of the sea. For land imaging, the res-
olution of commercial satellite images is insufficient. Another problem
is the difficult geographic conditions when taking images with a drone.
On the other hand, population estimates can be made with deep learn-
ing techniques using camera images placed in specific regions.

The aim of this study is to develop a Deep Learning-based remote
sensing software for penguin and albatross colony prediction. The spe-
cific contributions of this study are as follows: (1) A new dataset con-
sisting of 4144 penguin and albatross images is collected to train deep
learning models. (2) In contrast to similar studies, a segmentation-
based annotation technique was used here. (3) By using various state-
of-the-art object detection models, the best AP value of 73% in predic-
tion success was achieved.

2 Material and Methods

The general processes of the project are shown in the diagram in Fig.1.
According to this diagram, the first phase of the project is the data
preprocessing process. The images of penguins and albatrosses were
obtained from the Internet using open-source images and videos. The
penguins and albatrosses in the images are individually labeled based
on segmentation. In the next step, model trainings were conducted
using innovative CNN models. As a result of all trainings, a perfor-
mance evaluation of the model was performed. The model with the
best performance was used in the developed graphical user interface

1https://penguin-counting-app.azurewebsites.net

203

Sinan UĞUZ

(GUI) software.

Figure 1. General operating diagram for experimental studies

2.1 Data collection and preparation

To create the dataset, images of penguins and albatrosses were obtained
from the Internet via open-source images and videos. The VLC player
program was used for the images obtained from the videos. With the
help of this program, one image per 20 frames was obtained from each
of the video images of albatross and penguin colonies. The common
feature of the obtained images is that they are images taken from a
high angle and not in the form of a drone or satellite image. This
is because the software we developed is designed to recognize camera
images taken from a specific height and angle. In addition, birds in
colonies were preferred for all images. Penguin and albatross images
in the dataset were labeled based on segmentation via the Supervisely
platform2.

An example of labeling is shown in Fig.2. It can be seen that the
labeled penguins in the image are colored purple. On the Supervisely
platform, segmentation by rectangles and polygons can be done using
the tools on the left. Each record stores the coordinate information
of the bird in that image. In this study, a total of 4.144 labels were

2https://supervise.ly

204

A Deep Learning-based software for detecting Antarctic birds …

created. The fact that the labeling process is based on segmentation
means that more time is required. It took the project team about 50
hours to label 4.144 images. The distribution of the number of images
and labels in the dataset is shown in Table 1.

Figure 2. Segmentation-based labeling

Table 1. Numerical distribution of classes in the dataset

Classes Image Count Label Count Size
Penguin 128 2072
Albatross 106 2072
Total 234 4144 55MB

2.2 Implementation details of CNN models

CNN architectures first appeared in 1998 with LeNET-5 [13], then came
AlexNet in 2012 [14], and later several other CNN architectures were
developed that provided successful solutions to artificial intelligence
problems. With these architectures, numerous convolutional opera-
tions, pooling operations, and different types of activation functions
were tried.

In this study, experiments were conducted using state-of-the-art
CNN architectures to detect population densities of Antarctic birds.

205

Sinan UĞUZ

The experiments in this study were conducted using the MMDetec-
tion3, a state-of-the-art PyTorch-based modular object detection li-
brary released by the OpenMMLab project4. The toolbox directly
supports state-of-the-arts deep learning frameworks. Sparse R-CNN,
YOLOF, TOOD, YOLOv3, and Mask R-CNN frameworks were pre-
ferred in this study. For these frameworks, ResNet-50, ResNet-101,
and DarkNet-53 architectures were chosen as backbones.

In this study, 90% of the enlarged data was randomly selected as
the training set and the remaining 10% as the test set. Of these, 10%
of the training set was selected as the validation set. All models were
configured to use the base models, and the training hyperparameters
were predefined and remained static for all experiments. For train-
ing the state-of-the-art models, the number of iterations was started
with 100 and gradually increased. In the selection of parameters, the
preferred values in some literature studies [15]–[18] were used. Accord-
ingly, Adam and SGD were used as learning algorithms. The learning
rate was initially set to 0.01 and the mini-batch size was set to 8. The
weight decay and momentum coefficients were set to 0.0001 and 0.9,
respectively.

The Supervisely platform provides the ability to run MMDetection
architectures. The training and testing processes on the Supervisely
platform are performed on a workstation with the configurations of
an Intel Xeon CPU, 16GB Nvidia Quadro RTX5000 GPU with 16GB
RAM.

2.3 Performance evaluation of CNN models

Object detection problems are challenging tasks that involve both clas-
sifying the objects on the image and determining the coordinates of
the images. In these problems, the labeled regions are expressed as
ground truth (G), and the regions detected by the trained model are
expressed as default boxes (D). As can be seen in Fig.3, the ratio of
the intersection of the G and D regions to the union is defined as the
intersection over the union (IoU).

3https://github.com/open-mmlab/mmdetection
4https://github.com/open-mmlab

206

A Deep Learning-based software for detecting Antarctic birds …

Figure 3. Ground-truth and default-box match

IoU takes values between 0 and 1, and IoU = 1 means that the
boxes overlap [19]. The greater the overlap, the better the detection
success. Average precision (AP) was used as a performance evaluation
metric for the Sparse R-CNN, YOLOF, TOOD, YOLOv3, and Mask R-
CNN architectures used in this study. AP given in Eq.(1) is a popular
metric used for the performance of the Microsoft Common Objects in
Context (COCO) dataset [20].

AP =
1

10
(AP 50 +AP 55 +AP 60 + ...+AP 95). (1)

For the performance evaluation of the system in this study, the AP
was preferred, which is commonly used in the literature [21], [22] for
object detection problems. Accordingly, the AP 50 metric expresses the
calculated AP values for IoU > 0.5. As stated in Section 3 of this
study, the best results were obtained with the AP 50.

3 Results and Discussion
The performance results obtained as a result of training for the state-of-
the-art CNN architectures used in this study are shown in Table 2. The
experiments for five different models lasted approximately 48.5 hours.
In this study, the ResNet50, ResNet101, and DarkNet-53 architectures
were preferred as backbone networks. The main task of the backbone
networks is to classify the objects detected in the image as albatross
or penguin. As can be seen in Table 2, the best results were obtained

207

Sinan UĞUZ

with the AP 50 metric. Accordingly, the TOOD_ResNet50 model was
the best performing model with 73.0%. The lowest performance was
achieved with the YOLOv3 architecture with 49.2%.

Table 2. Performance comparison of state-of-the-art models

Model Backbone AP 50:0.5:9 AP 50 AP 75 APS APM APL

Sparse
R-CNN

ResNet50 33.3 54.1 37.0 16.0 33.2 50.7

YOLOF ResNet50 31.0 59.8 27.4 09.0 34.3 50.9
TOOD ResNet101 47.4 68.7 55.2 23.7 53.0 63.9
TOOD ResNet50 51.3 73.0 61.6 35.1 54.0 56.5
YOLOv3 DarkNet-53 22.8 49.2 17.1 2.8 24.5 32.6
Mask R-
CNN

ResNet50 43.0 60.1 54.0 29.3 47.1 54.5

The training loss curves are shown in Figure 4, where the coordi-
nates represent epoch and loss values.

As the number of training iterations increased continuously, the
loss values of all models decreased abruptly at first and then slowly.
The epoch number is limited to 500 in this study. Increasing the num-
ber of epochs will help to further reduce the oscillations in the loss
curve. However, increasing the iteration number would significantly in-
crease the duration of the experiments [23]. When considering the loss
curves, the Sparse R-CNN and YOLOv3 models are the models with
the least oscillations. The loss curve of TOOD-ResNet50, the best pre-
diction model, gradually converged toward 0.162 after 250 iterations,
while that of YOLOv3, the lowest prediction model, converged toward
306.75. The loss values for the YOLOF, Sparse R-CNN, and Mask
R-CNN models decreased to 0.215, 5.25, and 0.217, respectively. It is
shown that the TOOD-ResNet50 model has a lower loss value among
all models and learns the attributes of penguin and albatross images
effectively.

It can be seen that the loss is fixed at a certain value in all models
except the YOLOF model. In the YOLOv3 model, the loss decreased
to a certain level in the first iterations, but no significant decrease was
observed in the next iterations.

In this study, a graphical user interface (GUI) was developed for the

208

A Deep Learning-based software for detecting Antarctic birds …

(a) (b)

(c) (d)

(e) (f)

Figure 4. The loss curve of the models on the test set. (a) The loss
curve of Sparse R-CNN model with ResNet50 backbone (b) The loss
curve of YOLOF model with ResNet50 backbone (c) The loss curve of
TOOD model with ResNet101 backbone (d) The loss curve of TOOD
model with ResNet50 backbone (e) The loss curve of YOLOv3 model
with DarkNet-53 backbone (f) The loss curve of Mask R-CNN model
with ResNet50 backbone

209

Sinan UĞUZ

state-of-the-art application using PyQt5, one of Python’s libraries. In
the GUI screen shown in Figure 5, the image is first selected from the
file system using the ”Select Image” button. The ”Add Model” button
allows the selection of the file with extension .pth, which contains the
weights of the best state-of-the-art model. The ”Add Configuration
File” button is used to load the configuration file created by the Super-
visely platform. The program also detects penguins and albatrosses on
video. For this purpose, the ”Add Video” button must be selected. Af-
ter all the selection processes are completed, the results can be viewed
in real time on the right side of the screen. The obtained results can
be saved in the database.

Figure 5. GUI developed for detection of Antarctic birds

The sample results obtained for the best model are shown in Fig-
ure 6.

Table 3 shows the comparison between this study and some other
studies. Other than this study, there is only one study [12] that detects
both penguins and albatrosses. This is one of the two studies using data
from the Internet as the data source. It can be seen that the studies
are divided into two areas: Image processing and CNN as the method

210

A Deep Learning-based software for detecting Antarctic birds …

(a) (b)

(c) (d)

Figure 6. Results of the best model. (a) Original image of penguin
colony (b) The result produced by the model (c) Original image with
penguins and albatrosses (d) The result produced by the model

used. The five different CNN models used in this study have not been
used in any previous study.

Apart from this study, there is only one study [11] that uses seg-
mentation labeling. In CNN-based studies, [12] achieved a prediction
success of 97.6% for black-browed albatrosses and 90% for southern
rockhopper penguins using the RetinaNet architecture. [9], on the other
hand, achieved a prediction success between 85% and 95.4% in his ex-
periments. In our study, a prediction rate of up to 73% was achieved.

Detection of colony populations can be said to be a difficult problem
for several reasons. One of these reasons is that birds in Antarctica
stay close together to protect themselves from the cold. This makes
the angle of the camera very important. For example, in the image in
Figure 6a, the camera took an image from the horizontal position. For

211

Sinan UĞUZ

Table 3. Results from previous studies on detection of birds in Antarc-
tica

Ref. Birds Data
Source Method Labeling GUI

[4] Penguin Satellite Image Pro. - No
[5] Albatross Satellite Image Pro. - No
[6] Penguin Satellite Image Pro. - No
[7] Albatross Satellite U-NET Rectangle No
[9] Land birds Drone R-CNN,SSD Rectangle No
[11] Penguin Internet VGG-16 Point Yes

[12] Penguin Drone RetinaNet Rectangle NoAlbatross

This
Paper

Penguin
Albatross Internet

TOOD

Segmentation Yes
YOLOv3
YOLOF
Faster R-CNN
Sparse R-CNN

this reason, some penguins left behind are not detected by the software.
It is recommended that researchers wishing to conduct similar studies
work with images taken from the top angle.

Complex background images are the type of problem that re-
searchers find difficult in deep learning applications. Since the data
was not collected under controlled conditions, background trees, rocks,
etc. affect the prediction success. However, the results obtained in this
study are encouraging for studies with other Antarctic birds such as
skuas, cormorants, petrels, and arctic terns.

In this study, 4,144 labeling operations took approximately 50
hours. The fact that the labeling process is based on segmentation
means that more time is spent. As the number of tags increases, the
models are more successful, so datasets with more tags can be created.
However, limited image resources on the Internet are a major problem.
In particular, data collection with cameras in Antarctica will provide
much more successful results.

212

A Deep Learning-based software for detecting Antarctic birds …

4 Conclusion
The protection of Antarctic habitat is considered important everywhere
in the world. However, reasons such as climate, geographic conditions,
and an insufficient research budget require the use of new technological
solutions in Antarctic research. In this study, Deep Learning-based
software was developed for real-time detection of penguin and albatross
colonies in Antarctica. The dataset obtained from internet sources was
trained with five different convolutional neural network architectures:
YOLOv3, YOLOF, Faster R-CNN, and Sparse R-CNN. In addition to
the close proximity of albatrosses and penguins in the colony images,
the complex background structure complicates the problem. However,
the experimental results show that the TOOD-ResNet50 model with
0.73 AP 50 adequately detects the birds compared to the other models.

References
[1] G. P. Rush, L. E. Clarke, M. Stone, and M. J. Wood, “Can

drones count gulls? minimal disturbance and semiautomated im-
age processing with an unmanned aerial vehicle for colony-nesting
seabirds,” Ecology and evolution, vol. 8, no. 24, pp. 12 322–12 334,
2018.

[2] B. A. Surveys, “Penguins,” https://www.bas.ac.uk/about/
antarctica/wildlife/penguins/, 2022, accessed: 2022-10-10.

[3] B. A. Surveys, “Albatross,” https://www.bas.ac.uk/about/
antarctica/wildlife/albatross/, 2022, accessed: 2022-10-10.

[4] P. T. Fretwell, M. A. LaRue, P. Morin, G. L. Kooyman, B. Wie-
necke, N. Ratcliffe, A. J. Fox, A. H. Fleming, C. Porter, and
P. N. Trathan, “An emperor penguin population estimate: the
first global, synoptic survey of a species from space,” PloS one,
vol. 7, no. 4, p. e33751, 2012.

[5] P. T. Fretwell, P. Scofield, and R. A. Phillips, “Using super-high
resolution satellite imagery to census threatened albatrosses,” Ibis,
vol. 159, no. 3, pp. 481–490, 2017.

213

https://www.bas.ac.uk/about/antarctica/wildlife/penguins/
https://www.bas.ac.uk/about/antarctica/wildlife/penguins/
https://www.bas.ac.uk/about/antarctica/wildlife/albatross/
https://www.bas.ac.uk/about/antarctica/wildlife/albatross/

Sinan UĞUZ

[6] M. R. Schwaller, H. J. Lynch, A. Tarroux, and B. Prehn, “A
continent-wide search for antarctic petrel breeding sites with satel-
lite remote sensing,” Remote Sensing of Environment, vol. 210, pp.
444–451, 2018.

[7] E. Bowler, P. T. Fretwell, G. French, and M. Mackiewicz, “Using
deep learning to count albatrosses from space: Assessing results in
light of ground truth uncertainty,” Remote Sensing, vol. 12, no. 12,
p. 2026, 2020.

[8] L. Goddijn-Murphy, N. J. O’Hanlon, N. A. James, E. A. Masden,
and A. L. Bond, “Earth observation data for seabirds and their
habitats: an introduction,” Remote Sensing Applications: Society
and Environment, vol. 24, p. 100619, 2021.

[9] S.-J. Hong, Y. Han, S.-Y. Kim, A.-Y. Lee, and G. Kim, “Applica-
tion of deep-learning methods to bird detection using unmanned
aerial vehicle imagery,” Sensors, vol. 19, no. 7, p. 1651, 2019.

[10] S. Uğuz and N. Uysal, “Classification of olive leaf diseases using
deep convolutional neural networks,” Neural Computing and Ap-
plications, vol. 33, no. 9, pp. 4133–4149, 2021.

[11] C. Arteta, V. Lempitsky, and A. Zisserman, “Counting in the
wild,” in European conference on computer vision. Springer, 2016,
pp. 483–498.

[12] M. C. Hayes, P. C. Gray, G. Harris, W. C. Sedgwick, V. D. Craw-
ford, N. Chazal, S. Crofts, and D. W. Johnston, “Drones and deep
learning produce accurate and efficient monitoring of large-scale
seabird colonies,” The Condor, vol. 123, no. 3, p. duab022, 2021.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings of
the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” Communications
of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

214

A Deep Learning-based software for detecting Antarctic birds …

[15] J. Peng, D. Wang, X. Liao, Q. Shao, Z. Sun, H. Yue, and H. Ye,
“Wild animal survey using uas imagery and deep learning: mod-
ified faster r-cnn for kiang detection in tibetan plateau,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 169, pp.
364–376, 2020.

[16] M. Favorskaya and A. Pakhirka, “Animal species recognition in
the wildlife based on muzzle and shape features using joint cnn,”
Procedia Computer Science, vol. 159, pp. 933–942, 2019.

[17] M. Fennell, C. Beirne, and A. C. Burton, “Use of object detec-
tion in camera trap image identification: Assessing a method to
rapidly and accurately classify human and animal detections for
research and application in recreation ecology,” Global Ecology and
Conservation, vol. 35, p. e02104, 2022.

[18] J. Brown, Y. Qiao, C. Clark, S. Lomax, K. Rafique, and
S. Sukkarieh, “Automated aerial animal detection when spatial
resolution conditions are varied,” Computers and Electronics in
Agriculture, vol. 193, p. 106689, 2022.

[19] W. Li, P. Chen, B. Wang, and C. Xie, “Automatic localization
and count of agricultural crop pests based on an improved deep
learning pipeline,” Scientific reports, vol. 9, no. 1, pp. 1–11, 2019.

[20] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer,
2014, pp. 740–755.

[21] K. Tong, Y. Wu, and F. Zhou, “Recent advances in small object
detection based on deep learning: A review,” Image and Vision
Computing, vol. 97, p. 103910, 2020.

[22] Q.-J. Wang, S.-Y. Zhang, S.-F. Dong, G.-C. Zhang, J. Yang, R. Li,
and H.-Q. Wang, “Pest24: A large-scale very small object data set
of agricultural pests for multi-target detection,” Computers and
Electronics in Agriculture, vol. 175, p. 105585, 2020.

215

Sinan UĞUZ

[23] S. Uğuz, G. Şikaroğlu, and A. Yağız, “Disease detection and phys-
ical disorders classification for citrus fruit images using convolu-
tional neural network,” Journal of Food Measurement and Char-
acterization, pp. 1–10, 2022.

Sinan UĞUZ Received February 3, 2023
Revised April 14, 2023

Accepted April 25, 2023

Sinan UĞUZ
ORCID: https://orcid.org/0000-0003-4397-6196
Department of Computer Engineering
Faculty of Technology
Isparta University of Applied Sciences
E14 Block (3. Floor) West Campus 32260 Isparta/TURKEY
E–mail: sinanuguz@isparta.edu.tr

216

Computer Science Journal of Moldova, vol.31, no.2(92), 2023

Correcting Instruction Expression Logic Errors
with GenExp: A Genetic Programming Solution

Mohammed Bekkouche

Abstract

Correcting logical errors in a program is not simple even with
the availability of an error locating tool. In this article, we in-
troduce GenExp, a genetic programming approach to automate
the task of repairing instruction expressions from logical errors.
Starting from an error location specified by the programmer, we
search for a replacement instruction that passes all test cases.
Specifically, we generate expressions that will substitute the se-
lected instruction expression until we obtain one that corrects the
input program. The search space is exponentially large, making
exhaustive methods inefficient. Therefore, we utilize a genetic
programming meta-heuristic that organizes the search process
into stages, with each stage producing a group of individuals.
The results showed that our approach can find at least one plau-
sible patch for almost all cases considered in experiments and
outperforms a notable state-of-the-art error repair approach like
ASTOR. Although our tool is slower than ASTOR, it provides
greater precision in detecting plausible repairs, making it a suit-
able option for users who prioritize accuracy over speed.

Keywords: error correction, instruction expression, plausi-
ble patch, crossover, mutation.

MSC 2020: 68W50, 68T05, 68T20, 68N30.

1 Introduction
Developers spend a significant amount of their engineering time and
effort in finding and fixing bugs in their code [1]. Even after locating
errors, program debugging remains a challenging task. Logical errors

©2023 by Computer Science Journal of Moldova
doi:10.56415/csjm.v31.12

217

https://doi.org/10.56415/csjm.v31.12

M. Bekkouche

are among the most common bugs in programming. The programmer,
by correcting these errors, in a totally manual way, can insert others
which make matters worse. For this, we need to use an automatic or at
least a semi-automatic approach for error correction. Many researchers
have dealt with this recent subject in view of its importance in the pro-
cess of software development. Among the early proposed approaches,
we can cite [2] and [3], which were the pioneers in utilizing the genetic
programming (GP) technique to evolve the erroneous program until
finding an individual that resolves the errors. The problem which can
oppose the use of this technique in the context of error correction is
that the number of individuals of generated programs can become im-
portant before arriving at a solution. To address this, we propose an
approach called GenExp in this paper. GenExp leverages knowledge
about the program being repaired to find plausible patches for faulty
instruction expressions.

The automatic phase of this approach follows a series of steps that
form the structure of the genetic algorithm:

1. create the initial population,

2. evaluate each candidate using a fitness function,

3. evolve new generation,

4. evaluate candidates,

5. if a candidate that corrects the program, according to the test
cases considered as input, is found, the process ends. Otherwise,
we need to repeat steps 3 and 4.

The goal is to select the best individuals and form other individuals
that combine elements from the previous stage. The process starts with
a set of individuals randomly generated and enriched with expressions
from the program under repair. To create the initial population, our
basic algorithm proposes randomly generating expressions (candidates
or patches) from a set of variables, constants, and operators chosen by
the user. We propose that these sets be defined automatically based
on the program to be repaired and the erroneous instruction. The pro-
cess of GP from this initial population can lead to an explosion in the

218

Genetic Programming for Logic Error Correction in Instructions

number of generated individuals before reaching a plausible patch. To
reduce the effect of this problem, we adopt the idea presented by the
GenProg approach [3] which suggests that most defects can be repaired
by adopting existing code from elsewhere in the program. This is re-
ferred to as ”repair ingredients” or ”patch ingredients”. In GenProg, a
candidate patch is synthesized from instructions taken as is elsewhere
in the application. Our idea which is close to that of CARDUMEN [4] is
to reuse code instruction expressions as ingredients rather than reusing
raw, unmodified code elements (such as raw instructions in GenProg).
For this, we add to the initial population the expressions of instructions
of the program which allow it, by replacing the erroneous expression,
to compile correctly. We calculate the degree of correctness of the can-
didates according to the input test cases and this will be our fitness
function. To evolve the current generation into a new generation, we
first select the best individuals in terms of their fitness function value
to survive in the new population. Then, we apply a set of mutations
and crossovers to individuals in the current population to generate the
other individuals of the new generation. The goal is to improve the
expressions. We continue evolving new generations until we obtain a
plausible patch, that is to say a patch that produces correct outputs
for all inputs in the test suite [5].

We evaluated the capacity of GenExp to discover plausible patches
(test-suite adequate patches). Our tool was implemented in Java to
repair Java programs. To do the experiments, we constructed a set
of erroneous academic programs. Each of these programs contains a
single error to be corrected. We compared our implementation with
three approaches from the ASTOR tool [6], an open-source framework
for repairing buggy Java program. The results showed that our tool
successfully found a plausible patch for nearly all the programs under
repair and outperformed the ASTOR approaches, even when united1.
However, our tool is slower than other tools. Nonetheless, thanks to
its higher precision in detecting plausible repairs, GenExp can be a

1To harness the collective power of ASTOR’s approaches, it is sufficient for at
least one of them to discover a plausible patch in order to claim that ASTOR has
fixed the program.

219

M. Bekkouche

suitable option for users who prioritize accuracy2 over speed.
This article is structured as follows. We illustrate our approach

on an example in Section 2. Section 3 deals with the presentation
of relevant works that have a strong interest in the context of error
correction. The details of the approach proposed and results are ex-
posed respectively in Sections 4 and 5. The conclusion is presented in
Section 6.

2 Illustrative example
We consider an erroneous version of SquareRoot program (Listing 1).
The SquareRoot correct program finds the square root integer part of
an integer value greater than or equal to 0. If we assume that the
locating errors phase is complete and so on we get a set of suspicious
instructions. We obtain this set thanks to an error localization tool.
Now comes the role of the programmer to analyse the produced set
and choose the instruction that should be corrected using GP. In fact,
we aim to modify the expression of this instruction until the program
becomes correct. The programmer after checking realizes that the in-
struction in the line 10 (res = i + 1) should be corrected. The error
correction tool then evolves the program by just changing the expres-
sion of this instruction until the correct program is obtained. The tool
changes the expression of the selected instruction, whether it is an as-
signment or a branching. A timeout is specified to indicate that the
tool has not found solutions. In such cases, the programmer will review
the selected instruction and choose another one.

Listing 1. The SquareRoot program with an error
1 public class SquareRoot {
2 public static int squareRoot (int val) {
3 int i = 1;
4 int v = 0;
5 int res;
6 while (v < val){
7 v = v + 2*i + 1;

2One program repair tool can be considered more accurate than another when it
consistently achieves a higher success rate in finding plausible patches when bench-
marking erroneous programs.

220

Genetic Programming for Logic Error Correction in Instructions

8 i = i + 1;
9 }

10 res = i+1; //error: should be res = i-1
11 return res;
12 }
13 }

Here we will explain how to automatically search for a plausible
patch for a specific suspicious instruction. First, the programmer de-
termines which operators, variables, and constants to take, these sets
allow to build expressions that replace ”i+1” in ”res = i+1”. This
stage is very important, wrong selection may result in making the cor-
rect expression inaccessible. We suppose that these sets are {+,−, ∗}
(for operators) and {val, i, v} (for variables) and integers in the interval
[0, 10] (for constants). Here, these sets are defined manually. However,
in the subsequent Subsection 4.1, we will explore improvements that
enable the automatic construction of these sets from the program under
repair. So the algorithm continues by applying the following genetic
processes from an initial population of individuals: selection, crossover,
and mutation. To establish a preference order among individuals, a
fitness function is utilized, which calculates the number of successful
executions in the modified program (of course test cases should be used
with at least one counterexample). An expression that passes all test
cases is considered a potential correction (plausible patch). Table 1
prints the output expected for each test case input used.

To illustrate how the selection of individuals works, we display the
computed outputs for the same inputs while considering the expression
”(v-val)” instead of ”i+1” in the statement at line 10 (Table 1, column
3). The executed program is depicted in Listing 2.

Listing 2. SquareRoot program, considering the expression ”(v-val)”
in the statment at line 10.

1 public class SquareRootv2 {
2 public static int squareRoot (int val) {
3 int i = 1;
4 int v = 0;
5 int res;
6 while (v < val){
7 v = v + 2*i + 1;
8 i = i + 1;
9 }

221

M. Bekkouche

10 res = (v-val);
11 }
12 }

Table 1. Computed and expected outputs for SquareRoot and Square-
Rootv2

Input Output for Output for Expected
(val) SquareRoot SquareRootv2 output
16 6 8 4
20 6 4 4
25 7 10 5
30 7 5 5
36 8 12 6
40 8 8 6
49 9 14 7
60 9 3 7
64 10 16 8
80 10 0 8
81 11 18 9
90 11 9 9
100 12 20 10

This result shows that there are only two successful test cases (input
= {20, 90}), while the others do not produce the expected output.
Based on this, we can conclude that ”(v-val)” is not a plausible patch.

The initial population consists of a set of candidates (expressions)
that were randomly generated (6, 8, 1, v, v + 2, 2 ∗ val, i ∗ v, i ∗ val, ...).
Each candidate in this set will be evaluated using the same method as
illustrated previously. In order to generate a new generation, we apply
genetic operators to candidates. For example:

• i*val and 1 crossover to i*1

• i*1 mutates to i-1

The iterative process of generating new generations continues until a
termination condition is met:

1. An expression that successfully executes all test cases (a plausible
patch) has been found;

2. The specified timeout has elapsed.

222

Genetic Programming for Logic Error Correction in Instructions

In our case, the first condition is checked because the expression ”i-
1” permits obtaining all expected outputs. The programmer analyses
this result to decide if it should be considered definitive (a patch is
considered definitive when the programmer finds it to be correct). This
patch is a correction because it achieves not only the test cases used
but also all the functionalities of SquareRoot program. The erroneous
instruction will become ”res = i - 1”.

3 State of the art

3.1 Categories of patch generation techniques

Patch generation techniques can be categorized into four main classes [7]:
heuristic-based, template-based, constraint-based, and learning-based
repair techniques.

3.1.1 Heuristic-based repair techniques

Heuristic search methods use a generation-and-test methodology, build-
ing and iterating over a search space of syntactic program modifica-
tions [8]. Among these methods, GenProg [9] is regarded as a seminal
work in this field. It utilizes GP to evolve variants of the program until
one is found that both retains the required functionality and also avoids
the defect in question. The technique takes as input a program, a set
of successful positive test cases that encode the required behaviour of
the program, and a failed negative test case that demonstrates a defect.
GenProg defines a fitness function that measures the quality of each
program variant based on the number of passing and failing test cases.
The search is restricted to only produce changes based on structures in
other parts of the program. Mutation and crossover genetic operations
only operate on the region of the program that is relevant to the error,
i.e., the parts of the program that were on the path of execution that
produced the error. Arcuri and Yao [2] are the ones who proposed the
idea of using GP to co-evolve programs and unit tests in order to au-
tomate the task of fixing bugs. Subsequently, Arcuri [10] developed a
research prototype called JAFF, which models bug fixing as a research
problem. RSRepair (Random-Search-based Repair) [11] is a tool that

223

M. Bekkouche

repairs program defects using the same mutation operations as Gen-
Prog, but it employs random search instead of GP. Unlike GP, which
requires an evaluation of the fitness of a candidate patch even if Gen-
Prog has been aware that the patch is invalid, random search has no
such constraint. Furthermore, RSRepair can speed up the process of
early identification of invalid patches using traditional test case prioriti-
zation techniques. SCRepair (Similar Code-based Repair) [12] uses the
same mutation operators as RSRepair to modify the faulty program.
Note that the insertion operator needs code from other places, which
is the main difference between SCRepair and RSRepair. To select a
new code to replace the existing code during the mutation process,
SCRepair introduces a metric that calculates the similarity between
two code fragments based on their Abstract Syntax Tree (AST). The
most suitable instruction is chosen to replace the faulty location, and
test cases are used to verify the elimination of the bug. In order to
improve the efficiency of research via GP for program repair, Yuan
and Banzhaf [13] present a new repair system based on this technique
for automated repair of Java programs, called ARJA. ARJA is mainly
characterized by a new patch representation, a multi-objective search,
a test filtering procedure, and several strategies to reduce the search
space.

3.1.2 Template-based repair Techniques

An automated program repair strategy involves generating concrete
patches based on remediation templates, also known as program trans-
formation patterns. This strategy is widely used in the literature
and has been implemented in several automated program repair sys-
tems [14]. Techniques like GenProg, which rely on heuristics, can gen-
erate nonsensical patches due to the randomness of their mutation op-
erations. To address this limitation, a new patch generation approach
called Pattern-based Automatic program Repair (PAR) [15] has been
proposed. PAR utilizes patch templates learned from existing human-
written patches. Durieux, Cornu, Seinturier, and Monperrus [16] pro-
posed NPEfix, a new technique to explore the search space of poten-
tial fixes for null pointer exceptions using meta-programming. NPEfix

224

Genetic Programming for Logic Error Correction in Instructions

is based on nine predefined fix templates specifically tailored for null
pointer exceptions. Long, Amidon, and Rinard designed Genesis [17] to
infer remediation patterns from successful human fixes for three types
of defects: null pointer, out-of-bounds, and class cast. Genesis leverages
the expertise and patching strategies of developers around the world
to automatically fix bugs in new applications. Stack Overflow has mil-
lions of posts that could potentially be useful for fixing numerous bugs.
This observation motivates Liu and Zhong [18]’s work on extracting
repair patterns from Stack Overflow for automatic program repair. To
find as many adequate fixes as possible for a test suite for a given bug,
Martinez and Monperrus [4] created CARDUMEN, an automated re-
pair approach based on extracted patterns that has ultra-large search
space. CARDUMEN extracts code patterns from code being repaired.
Liu, Koyuncu, Kim, and Bissyandé [14] implemented TBar, an auto-
mated patch generation system that incorporates a superset of patch
patterns collected, summarized, organized, and labelled from literature
data.

3.1.3 Constraint-based repair techniques

Typically, these approaches infer semantic constraints from the pro-
vided test cases and then generate the appropriate test suite fix by
solving the resulting constraint satisfaction problem, in particular, the
SMT problem [13]. Nguyen, Roychoudhury, and Chandra [19] proposed
SemFix, a pioneering tool for constraint-based program repair. Given a
program location to be fixed, constraints on the expression to appear in
the program location are derived so that the modified program passes
all the given tests. The repair constraints are generated by symbolic
execution and the expression to be repaired is obtained by program syn-
thesis. Ke, Stolee, Le Goues, and Brun [20] developed a repair method
based on semantic code search called SearchRepair. The idea is to
utilize semantic code search [21] on existing open-source code to find
correct implementations of buggy components and methods and use
the results to automatically generate fixes for defective software. This
method encodes a database of human-written code fragments as SMT
constraints on input/output behaviour and searches the database for

225

M. Bekkouche

potential fixes with an input/output specification. Mechtaev, Yi, and
Roychoudhury [22] present a new semantic-based repair method called
DirectFix that generates the simplest fix to maximize the preservation
of the program structure of the buggy program. To take into account
repair simplicity in an efficient way, their method merges fault local-
ization and repair generation into a single step. They achieve this by
leveraging partial MaxSAT constraint solving and component-based
program synthesis. The same authors proposed Angelix [23], a new
semantic-based repair method that is adaptable to programs of similar
size as heuristic-based repair tools like GenProg. They demonstrate
that Angelix is more scalable than previously proposed semantic-based
repair methods such as SemFix and DirectFix. The scalability of An-
gelix is attributed to the new lightweight repair constraint called angelic
forest, which is independent of the size of the program being repaired.
Furthermore, this repair method can repair multiple buggy locations
that depend on each other. In [24], the authors investigate automated
error repair using a reference implementation. They propose deriving
a correct specification from the reference implementation and using it
to guide the repair of the program to solve the test overfitting problem.

3.1.4 Learning-based repair techniques

Machine learning techniques can enhance the efficiency of automatic
bug-fixing systems. Unlike the techniques in the aforementioned three
categories, learning-based techniques typically require additional train-
ing data (i.e., the tuples of buggy, context, and fixed lines of code) to
capture the intricate relationships between buggy and fixed code [7].
For example, [25] presents an algorithm that learns model parame-
ters through a training set of successful human patches collected from
open-source project repositories. It generates a candidate patch space,
utilizes the model to rank the candidate patches in order of likely cor-
rectness, and validates the ranked patches against a suite of test cases
to discover the correct patches. Tufano, Watson, Bavota, Di Penta,
White, and Poshyvanyk [26] extensively evaluate the ability of adopt-
ing neural machine translation (NMT) techniques to learn code fixes
from real bug fixes. Furthermore, Lutellier, Pham, Pang, Li, Wei,

226

Genetic Programming for Logic Error Correction in Instructions

and Tan [27] employ ensemble learning on the combination of convo-
lutional neural networks and a new context-aware NMT architecture
to automatically fix bugs in multiple programming languages. This
architecture separately represents buggy source code and its surround-
ing context. SequenceR [28] utilizes sequence-to-sequence learning on
source code to generate one-line patches. This approach employs the
copy mechanism to address the challenge of unlimited vocabulary in the
source code. In [29], the authors aim to advance deep learning-based
automated program repair by introducing DEAR, a deep learning-
based model that facilitates fixing general bugs with changes depen-
dent on one or more buggy statements belonging to one or multiple
buggy hunks of code.

3.2 The ASTOR tool

The ASTOR tool, also known as Automatic Software Transformations
for Program Repair (ASTOR) [6], automatically repairs Java programs.
We utilized this tool in our experiments. It takes a buggy program, its
test suite with at least one failed test case as input, and generates a
patch, if possible, that fixes the bug (i.e., all test cases pass after the
repair). The change point is driven by an existing spectrum-based fault
localization technique called Ochiai [30]. ASTOR offers various modes,
each corresponding to a different repair algorithm (their original im-
plementations were for other programming languages). The modes we
employed in our experiments are the following: JGenProg, MutRepair,
and CARDUMEN.

JGenProg JGenProg is a Java implementation of GenProg [3]. It
operates at the statement level, meaning it deletes, replaces, and in-
serts statements. The inserted code fragments through addition or re-
placement always originate from the same program. The replacement
operator replaces one statement with another of the same type (e.g.,
an assignment is only replaced by another assignment). There is a risk
that this Java implementation may not reflect the actual performance
of the original GenProg system for C [31].

227

M. Bekkouche

MutRepair MutRepair implements the approach of Debroy and
Wong [32], which is a repair approach that applies operators from mu-
tation testing to repair C code. MutRepair applies mutation operators
to suspicious ”if” condition statements and performs a single change to
the condition. There are three types of mutation operators: relational
(there are six interchangeable operators: >, >=, <, =<, == and ! =);
logic (there are two: OR, AND); unary (there are two mutations:
negation and positivation3).

CARDUMEN CARDUMEN is a repair approach based on mined
templates that has an ultra-large search space [4]. It extracts code tem-
plates from the application being repaired to create a template-based
search space. The repair always consists of replacing the suspected
code element with an instance of the code template.

Note that MutRepair and CARDUMEN are template-based ap-
proaches, while JGenProg is heuristic-based.

4 Approach

The automatic stage of our approach (see Algorithm 1) takes as input
the following: an erroneous program (prog), error provided from an
error location tool (such as LocFaults [33], [34] or BugAssist [35], [36])
and examined by the programmer (error), failing and successful test
cases (tests) with expected output for each one, and a timeout for pro-
cess execution (timeOut). It automatically generates a set of potential
corrections for error in prog that passes all tests in tests. We perform,
for this, the GP algorithm in five steps: Initial population, Fitness
function, Selection, Mutation, and Crossover.

The process begins with a set of individuals called population
(Alg. 1, line 2). Each individual (expression) represents a possi-
ble correction randomly generated from sets that contain variables,
constants, and operators provided from the programmer. For ex-
ample, i ∗ val is an expression that can be generated for this con-
figuration: variables = {..., i, ..., val, ...}, operators = {..., ∗, ...}, and

3Removal of the negation operator.

228

Genetic Programming for Logic Error Correction in Instructions

constants = {...}.
In the next step, we compute a fitness score for each expression

in population to measure how these expressions correct the instruc-
tion error in prog (Alg. 1, line 3). If population contains at least one
individual that succeeds all test cases, the error correction algorithm
ends and returns all individuals with higher fitness function (Alg. 1,
lines 10–11). In the opposite case, we need to build new generations
of populations using crossover and mutation genetic operators until we
find one or more individuals that satisfy the above condition, and then
return them to the programmer (Alg. 1, lines 4–9). Algorithm 1 can
terminate with no correction found in case that the execution exceeds
the specified timeout (Alg. 1, lines 12–14).

Algorithm 1 Algorithm for error correction from a suspected instruction.
Inputs: prog: the erroneous program; error: the error to correct; tests : a map that stores
the expected output for each test case input; timeOut: the maximum allowed execution
time.
Output: a set of potential corrections for error to be checked by the program-
mer.
1: (variables, constants, operators) ← read(); {Read variables, constants, and operators

from the user or programmer.}
2: population ← create(variables, constants, operators, size) {Build the initial popula-

tion.}
3: individualsF itness ← fitnessFunction(population, prog, error, tests); {Compute the

fitness score for each individual in population.}
4: while (! existSolution(individualsF itness) and ! exceed(timeOut)) do
5: newPopulation← selectBestIndividuals(population, individualsF itness, ratio1);
6: newPopulation← newPopulation ∪ mutation(population,ratio2);
7: newPopulation← newPopulation ∪ crossover(population,ratio3);
8: individualsF itness← fitnessFunction(newPopulation, prog, error, tests);
9: end while
10: if existSolution(individualsF itness) then
11: return bestIndividuals(population, individualsF itness);
12: else
13: print(”No plausible patch found, the timeout indicated is elapsed.”);
14: return null;
15: end if
existSolution(individualsF itness): tests if it exists an element in individualsF itness equal
to the number of test cases in tests, this means that the current generation includes at least
one potential correction.
exceed(timeOut) : tests if the timeOut is exceeded.
bestIndividuals(population) : selects individuals with highest fitness score in population.

The idea behind the composition of a new generation is to develop

229

M. Bekkouche

new expressions that may contain a plausible patch or, at the very least,
improve the fitness score of individuals from the previous generation
(Alg. 1, lines 4–9). To achieve this, we apply a set of crossovers and
mutations to the individuals in the current population. However, before
doing so, we select the fittest individuals and include them in the next
generation. A mutation modifies an individual to generate a new one.
We perform mutations at a specific point, which means that a random
element in the expression to be mutated will be replaced with a new
element from the same category (variables, operators, or constants). A
crossover combines individuals to produce a new expression which may
improve their fitness score. To accomplish this, we replace a randomly
selected sub-expression in the first individual with a randomly selected
sub-expression from the other individual. Figure 1 [37] illustrates an
example of how subtree crossover can be used to combine two tree
structures to create a new one. To specify how many times these genetic
operations (selection, mutation, crossover) are activated, we use ratio
values for each one (ratio1, ratio2, and ratio3).

+

∗

3 x

−

y 1

∗

−

2 y

+

9 x

+

+

∗

3 x

+

9 x

=

Figure 1. Example of subtree crossover operation

To calculate the fitness score for each expression in the population
(population), we generate a program for each individual by putting it
in the place of the error expression in prog, prog′ is used to denote the
modified program (Alg. 2, line 2). prog′ will be compiled (Alg. 2, line 3)
to obtain compiledProg. Next, we execute compiledProg on each test
case input in tests, comparing the obtained results with the expected
outputs to determine the number of successful executions (Alg. 2, lines
8–11). This count represents the fitness score for the current individ-
ual’s expression and is stored in a list. Once the fitness scores for
all individuals have been computed, this list, denoted by the variable
individualsF itness in Algorithm1, will be returned (Alg. 2, line 15).

230

Genetic Programming for Logic Error Correction in Instructions

Algorithm 2 fitnessFunction: Function to compute fitness score for individuals.
Inputs: population : individuals ; prog : program to be corrected; error: instruction to
be corrected in prog; tests: test cases.
Output : a list of fitness values.
1: for all individual ∈ population do
2: prog′ ← replaceError(prog, individual, error); {Replace the error expression in prog

with individual, and let prog be the modified program.}
3: compiledProg ← compile(prog′); {Compile prog′.}
4: testCases ← getTestCases(tests); {Get test cases from tests.}
5: cpt← 0;
6: for all testCase ∈ testCases do
7: output ← run(compiledProg,testCase); {Execute compiledProg by using

testCase as input.}
8: expectedOutput ← getExpectedOutput(testcase, tests); {Retrieve the expected

output of testCase from tests.}
9: if Equal(output,expectedOutput) then
10: increment(cpt);
11: end if
12: end for
13: add(cpt,result);
14: end for
15: return result;
Equal(output,expectedOutput) : tests if data in output is equal to that in expectedOutput.
increment(cpt) : increments cpt.

4.1 Improvements

Our error repair algorithm can be improved. The improvements we
propose are related to the calculation of the fitness function and the
initial population.

Fitness function To repair an instruction expression of a program
that produces a numeric value as output, we can consider the following
improvement related to the calculation of the fitness function, aiming to
better assess the plausibility of a replacement expression. Specifically,
we calculate the difference between the computed value of the modified
program and the expected output for each test case, taking the absolute
value of this result. The objective is to measure the extent to which the
program variant (the replacement expression or patch) deviates from
correctness for each test case. By performing the same calculation for
all utilized test cases and summing the results, we obtain the fitness
function value for the patch. The patch is considered plausible when the

231

M. Bekkouche

value of its fitness function is zero. This method of fitness calculating
is different from that in the basic algorithm. Indeed, we do not count
the number of test cases that succeed to evaluate the correction of the
program to be repaired, but we calculate how much all the test cases
deviate from the expected results. Following this improvement, several
functions of our algorithm (Alg. 1) need to be modified. The first one
is ”fitnessFunction”, which should calculate the list of fitness values
of individuals in order according to the method explained above. The
second one is ”selectBestIndividuals”, which should return the list of
the best individuals in population. An individual is considered more fit
than another if its fitness value is lower (instead of higher), by flipping
the fitness function, lower fitness values correspond to better individ-
uals in terms of their proximity to the expected results. Finally, the
”existSolution” and ”bestIndividuals” functions should, respectively,
test if there is one or more individuals with a fitness value equal to
zero and, if so, return this list of individuals.

Initial population This improvement is limited to programs that
need to be repaired, where assignment and return statement expres-
sions always yield an integer, and all variables are integers. The only
Boolean expressions with arithmetic are those within conditional state-
ments. Currently, the process of defining the variables required to con-
struct the expressions (individuals) of the initial population is manual.
We aim to automate this process by collecting them from the program
to be repaired, specifically from the instruction path leading to the
instruction that requires repair. Variables should be either local to
the function (or procedure) containing the expression to be repaired or
global. Local variables should be modified after declaration. There is
no requirement to modify global variables in order to utilize them. The
parameters of the function (or procedure) containing the expression to
be repaired are also included in the set of variables used to construct
the initial population. Let’s consider the example of the AbsMinus
program4 (Listing 3). The set of variables to be used for correcting the
expression in line 9 is {i, j, k}. Although result is declared along the

4The AbsMinus correct program returns the absolute value of i minus j (i and j
are the inputs).

232

Genetic Programming for Logic Error Correction in Instructions

path leading to the instruction that requires repair, it is only modified
at this instruction or in line 12, which is on a different path. If we had
global variables, we could include them in the set of variables without
any issue.

Listing 3. The AbsMinus program with an error
1 public class AbsMinus {
2 public static int absM (int i, int j) {
3 int result;
4 int k = 0;
5 if (i <= j) {
6 k = k+1;
7 }
8 if (k == 1 && i != j) {
9 result = i-j; //error: should be

result = j-i
10 }
11 else {
12 result = i-j;
13 }
14 return result;
15 }
16 }

After the variables, the process of defining the set of constants
should be automated. However, before explaining how we proceed with
that, let us discuss an improvement that could accelerate the search for
a plausible patch. This improvement involves adding instruction ex-
pressions from the program to be repaired to the initial population,
provided they compile successfully5. We have two scenarios: either the
error is in an assignment statement, in which case we only consider
the expressions from assignment statements, or it is in a branching
instruction, which means that only the expressions from conditional
instructions are added. Applying this principle to the AbsMinus pro-
gram shown in Listing 3, we would add the expressions ”0”, ”k + 1”,
and ”i− j” to the initial population (the error was in an assignment).
If the error was in a branching instruction, we would add the expres-
sions ”(i <= j)” and ”(k == 1 && i! = j)”. We construct the set
of constants from the expressions added to the initial population: we
parse each expression and whenever we encounter a constant, we add

5This means that if we replace the instruction expression to be repaired with
each of these expressions, the program compiles without errors.

233

M. Bekkouche

it to this set. In the case of the AbsMinus program example, the set of
constants would be {0, 1} (for an error in an assignment). If the error
was in a condition, then the set would be {1}. The set of operators to
be determined depends on the instruction to be repaired: if the error is
in an assignment, it will contain the usual arithmetic operators; other-
wise, it will consist of arithmetic operators, comparison operators, and
Boolean operators.

5 Results

We used Java programming language to develop our approach and to
test it in practice. This implementation, called GenExp, is an exten-
sion on OakGP, an open-source GP framework written in Java6. This
initial implementation can only correct integer expressions, and the op-
erators considered are: multiplication (∗), division (/), addition (+),
subtraction (−), logical OR (||), logical AND (&&), NOT (!), is equal
to (==), is not equal to (! =), is less than (<), is greater than (>),
is greater than or equal (>=), and is less than or equal (<=). Our
implementation includes the improvements explained in the previous
section. We have also conducted a series of experiments on a number
of toy programs that we built ourselves, which require a correction in
a single location. The considered error can be either in an assignment
or in a conditional statement.

Table 2. Programs used the experiments
Programs class Nbr programs Nbr tests

AbsMinus 10 9
BSearch 6 9

BubbleSort 7 5
Gcd 7 25

Heron 5 9261
Maxmin6var (M6var) 3 4096

Mid 10 36
Minimum (Min) 2 7

SquareRoot 6 15
Tritype 7 125
Total 63

6OakGP is available at this link : http://www.oakgp.org/.

234

http://www.oakgp.org/

Genetic Programming for Logic Error Correction in Instructions

Table 2 shows the programs used in the experiments7. To explore
the capabilities of our implementation on a program (column ”Pro-
grams class”), we introduce an error in one of its instruction expres-
sions and run the tool to determine if a correction can be found (i.e.,
a replacement expression that passes all test cases considered). The
number of test cases employed is indicated in the ”Nbr tests” column.
This process is repeated multiple times by injecting a different error
each time (see ”Nbr programs” column). All developed repair pro-
grams meet the prerequisites described in Subsection 4.1.

We conducted a performance comparison between our implemen-
tation and ASTOR [6], an Automatic Software Transformations for
Program Repair tool (refer to Subsection 3.2). The modes of this tool
utilized in our experiments included JGenProg, MutRepair, and CAR-
DUMEN.

Our tool repairs erroneous programs by focusing on a single in-
struction expression that is responsible for the error. In other words,
we assume that we have achieved perfect error localization. JGenProg,
MutRepair, and CARDUMEN repair the input program by initially
identifying a set of suspicious instructions through their first phase
of error localization. To ensure a fair comparison with ASTOR’s ap-
proaches, we not only start with the same erroneous program and utilize
the same test cases, but also narrow down the set of suspicious instruc-
tions generated during the error localization step to include only the
injected erroneous instruction. The repair process concludes once a
plausible patch is found for all tools. Additionally, there is a timeout
of 5 minutes, after which the process may terminate without a solution.
Testing a variant of the program to be fixed is limited to a maximum
20 milliseconds to address cases involving infinite loops.

All experiments were conducted using an Intel Core i7-3720QM
processor, clocked at 2.6 GHz and equipped with 8 GB of memory.
The experiments were performed on a 64-bit Linux operating system.

In our experiments, we measure the running times by running the
tools multiple times on the same input. We record the time taken
for each run and select the best time obtained as our metric for per-

7Experimental programs are available at https://sites.google.com/prod/
esi-sba.dz/error-correction-experiments.

235

https://sites.google.com/prod/esi-sba.dz/error-correction-experiments
https://sites.google.com/prod/esi-sba.dz/error-correction-experiments

M. Bekkouche

formance comparison. This approach allows us to capture the most
efficient performance achieved by the tools.

The results of our experiments are summarized in Table 3. The
”B” column lists the benchmark programs used, which correspond to
the ”Programms class” column in Table 2. The ”Versions” column
shows the erroneous versions created for each of these programs. The
third, fourth, fifth, and sixth columns indicate whether CARDUMEN,
JGenProg, MutRepair, and our implementation were able to find a
plausible patch (3) or not (7) for each erroneous program considered.
If a tool finds a plausible patch, we also display the time elapsed during
the repair process. The ”G” column displays the number of generations
reached by our GP-based algorithm.

The results8 showed that our approach successfully finds a plausible
patch for almost all cases and outperforms ASTOR’s tools, even when
combined. Figure 2 presents a side-by-side bar chart that compares
the CARDUMEN, JGenProg, MutRepair, and GenExp tools in terms
of the number of times a plausible patch is found, allowing to compare
for each benchmark program.

The low number of generations observed in the majority of cases
presented in Table 3 can be attributed to several factors that con-
tribute to the efficiency of our approach. One important factor is the
inclusion of interesting expressions from the program being corrected
in the initial population. These expressions serve as potential building
blocks for constructing plausible patches. Additionally, it is important
to note that the program itself may already contain an expression that
represents the plausible patch. Moreover, the construction of initial
sets of variables and constants specifically derived from the program
being corrected helps reduce the search space effectively. This reduc-
tion enables the genetic algorithm to focus its exploration on the most
relevant and promising areas. The fitness function further enhances
the convergence process by favoring the selection of superior expres-
sions. As a result, the convergence process is accelerated, leading to
the discovery of plausible patches in a shorter number of generations.

Before each new generation, GenExp calculates the fitness value for
8Experimental results are also available at https://sites.google.com/prod/

esi-sba.dz/error-correction-experiments.

236

https://sites.google.com/prod/esi-sba.dz/error-correction-experiments
https://sites.google.com/prod/esi-sba.dz/error-correction-experiments

Genetic Programming for Logic Error Correction in Instructions

Table 3: Summary of the results of our experiments

B Versions CARDUMEN JGenProg MutRepair GenExp G

A
bs

M
in

us

1 3(0,86s) 7 7 3(2,435s) 3
2 7 7 7 3(1,435s) 1
3 7 7 7 7 \
4 3(0,739s) 7 7 3(1,286s) 1
5 7 7 7 3(1,531s) 1
6 3(0,778s) 7 7 3(2,113s) 2
7 3(0,769s) 7 7 3(2,356s) 3
8 3(0,751s) 7 7 3(1,747s) 1

WrongIf1 3(2,395s) 3(2,454s) 3(1,436s) 3(1,289s) 1
WrongIf2 3(0,793s) 7 3(0,713) 3(1,129s) 1

B
Se

ar
ch

1 7 7 7 3(2,705s) 1
2 3(2,657s) 7 7 3(2,267s) 1
3 7 7 7 3(5,552s) 2

WrongIf1 7 7 3(1,166s) 3(3,7s) 3
WrongIf2 7 7 3(0,795s) 7 \

WrongWhile 7 7 7 3(129,586s) 70

B
ub

bl
eS

or
t 1 7 7 7 3(2,826s) 1

2 7 7 7 3(107,059s) 112
3 3(0,855s) 7 7 3(2,338s) 2
4 3(0,877s) 3(0,784s) 7 3(0,605s) 1

WrongIf 3(4,035s) 7 3(1,43s) 3(1,399s) 2
WrongWhile1 7 7 7 3(2,084s) 3
WrongWhile2 3(9,428s) 7 7 3(1,015s) 1

G
cd

1 3(1,074s) 7 7 3(33,423s) 6
2 3(0,802s) 7 7 3(13,07s) 2

WrongIf1 3(0,861s) 7 3(2,808s) 3(3,262s) 1
WrongI2 7 7 7 3(2,929s) 1
WrongIf3 3(0,912s) 7 3(2,729s) 3(36,293s) 4
WrongIf4 3(1,137s) 7 7 3(3,176s) 1

WrongWhile 7 7 7 3(8,489s) 1

H
er

on

1 7 3(5,669s) 7 3(37,474s) 1
2 7 7 7 7 \

WrongIf1 3(23,469s) 7 3(0,766s) 3(279,383s) 6
WrongI2 7 7 7 7 \
WrongIf3 7 7 3(7,67s) 7 \

M
6v

ar WrongIf1 3(7,33s) 3(1,15s) 3(1,577s) 3(26,138s) 1
WrongIf2 7 7 7 7 \
WrongIf3 7 3(7,405s) 7 3(257,766s) 12

M
id

1 7 3(1,184s) 7 3(1,699s) 1
2 7 3(1,151s) 7 3(1,16s) 1
3 7 7 7 3(0,829s) 1
4 7 3(2,008s) 7 3(0,902s) 1
5 7 3(1,191s) 7 3(0,805s) 1

WrongIf1 3(3,245s) 7 3(1,305s) 3(1,291s) 1
WrongIf2 3(2,613s) 7 3(1,402s) 3(3,318s) 3
WrongIf3 3(2,766s) 7 3(1,23s) 3(2,347s) 2
WrongIf4 3(2,322s) 7 3(1,399s) 3(1,245s) 1
WrongIf5 3(1,397s) 7 3(1,154s) 3(1,175s) 1

M
in WrongIf1 7 7 3(1,491s) 3(2,369s) 1

WrongWhile 7 3(2,466s) 7 3(2,068s) 2

Sq
ua

re
R

oo
t 1 7 7 7 3(2,862s) 5

2 7 7 7 3(0,625s) 1
3 7 7 7 3(1,349s) 7
4 7 7 7 3(2,495s) 4
5 7 7 7 3(30,085s) 13

WrongWhile 3(1,6s) 7 7 3(4,518s) 1

T
ri

ty
pe

1 7 3(0,76s) 7 3(1,305s) 1
WrongIf1 3(6,452s) 3(13,711s) 7 3(3,569s) 1
WrongIf2 7 3(2,711s) 7 3(41,755s) 27

MultPerimetre 3(4,121s) 3(1,378s) 7 3(3,13s) 1
MultPerimetreWrongIf 3(4,282s) 3(4,386s) 7 3(30,621s) 19

Perimetre 3(12,084s) 3(1,333s) 7 3(2,962s) 1
Perimetre2 3(3,95s) 3(3,482s) 7 3(2,145s) 1

237

M. Bekkouche

Ab
sM

inu
s

BS
ea

rch

Bu
bb

leS
ort Gc

d

He
ron

Ma
xm

in6
va

r

Mi
d

Mi
nim

um

Sq
ua

reR
oo

t

Tri
typ

e

Benchmark program

0

2

4

6

8

10

Th
e n

um
be

r o
f ti

me
s a

 pl
au

sib
le

pa
tch

 is
 fo

un
d

CARDUMEN
JGenProg
MutRepair
GenExp

Figure 2. The number of times a plausible patch is found by CARDU-
MEN, JGenProg, MutRepair, and GenExp for each benchmark pro-
gram

every replacement expression in the current population. This involves
executing each variant of the program under repair, which corresponds
to a replacement expression, on all the test cases used as input for that
program. It’s important to note that the running time in Table 3
does not always correlate directly with the number of generations.
For instance, the WrongIf1 version of the Heron program completes
6 generations in 279.383 seconds, while the WrongIf3 version of the
Maxmin6var program takes 12 generations in 257.766 seconds. On the
other hand, the WrongWhile version of BSearch requires 70 generations
in 129.586 seconds, and the version 2 of BubbleSort completes 122 gen-
erations in 107.059 seconds. These discrepancies can be attributed to
the number of test cases used for each benchmark. The Heron and
Maxmin6var benchmarks use 9261 and 4096 test cases, respectively,
while the BSearch and BubbleSort benchmarks use only 9 and 5 test
cases, respectively (refer to Table 2).

238

Genetic Programming for Logic Error Correction in Instructions

5.1 Limitation

To summarize and analyse the repair times of each tool used in our
experiments, we have presented basic statistics such as the mean, me-
dian, standard deviation, as well as the minimum and maximum values
in Table 4. We only consider the times corresponding to cases where
the tools have identified a plausible patch.

Table 4. The basic statistics on the execution times obtained in Table 3
CARDUMEN JGenProg MutRepair GenExp

Mean 3, 602s 3, 131s 1, 818s 19, 728s

Median 2, 359s 2, 008s 1, 401s 2, 369s

Standard deviation 4, 656 3, 293s 1, 669s 53, 313s

Minimum 0, 739s 0, 76s 0, 731s 0, 605s

Maximum 23, 469s 13, 711s 7, 67s 279, 383s

The results suggest that GenExp takes much longer on average
than the other tools to produce repair results, with an average of 19.7
seconds and a large variation in time, ranging from 0.6 to 279.4 seconds.
However, it is interesting to note that the median time of GenExp is
similar to that of the other tools, indicating that it most often finds a
plausible repair within a reasonable time.

Tools CARDUMEN, JGenProg, and MutRepair have much faster
average times to produce repair results, with averages ranging from 1.8
to 3.6 seconds and minimum times under 1 second. These tools may be
more convenient for users who need quick results, but their accuracy
may be lower than that of GenExp.

Figure 3 depicts a line plot with each tool represented by a line. The
various statistics (mean, median, standard deviation, minimum, and
maximum) are plotted based on the tool. This enables the visualization
of the evolution of execution times for each tool.

The significant difference in the range of running times, where the
range of GenExp is approximately 10 times greater than that of CAR-
DUMEN and about 30 times greater than that of MutRepair, can be
attributed to two factors.

Firstly, the success rate of GenExp is much higher than that of other
tools, meaning that there are many more values (times) to consider

239

M. Bekkouche

CARDUMEN JGenProg MutRepair GenExp
Tools

0

50

100

150

200

250

Exe
cut

ion
 Tim

e (
s)

Mean
Median
Standard Deviation
Minimum
Maximum

Figure 3. Evolution of execution times by tool

for calculating the standard deviation and other statistics. Specifically,
there are 57 values for GenExp, 30 for CARDUMEN, 17 for JGenProg,
and 16 for MutRepair. Assuming that GenExp failed to repair the fol-
lowing versions: BSearch (WrongWhile), BubbleSort (version 2), Gcd
(version 1 and WrongIf3), Heron (WrongIf1), Maxmin6var (WrongIf3),
SquareRoot (version 5), and Tritype (WrongIf2). Consequently, the
standard deviation for GenExp decreases from 53,313s to 7,392s, and
the success rate is now 49 out of 63. It should be noted that the success
rates are 30/63 for CARDUMEN, 17/63 for JGenProg, and 16/63 for
MutRepair.

Secondly, the difference can also be attributed to the search space
utilized by each tool. JGenProg’s search space is limited to the pro-
gram instructions to be repaired and cannot correct the error using
code that is not part of the program. The MutRepair algorithm focuses
on mutating the operators within ”if” conditions (see Subsection 3.2).
CARDUMEN, as a template-based approach, has a wide search space
but not as extensive as our approach since it is limited to templates
extracted from the code to be repaired. GenExp has a broader search
space compared to the ASTOR tools. While we do utilize the code un-
der repair to construct the sets of variables, operators, and constants

240

Genetic Programming for Logic Error Correction in Instructions

necessary for building replacement expressions, we also leverage the
repair program to enhance the initial population with expressions ex-
tracted from it. However, our algorithm is capable of generating new
expressions that cannot be derived from the code being repaired. This
explains the high success rate achieved by our tool, which in turn ac-
counts for the difference in the range of running times observed in all
experiments.

The large variation in GenExp’s times may be problematic for users
who need consistent, fast results. It may be preferable to use GenExp
when increased accuracy is needed, even if it takes longer.

Although GenExp has the capability to repair the expression of a
single instruction, it should be noted that programs containing two
or more different erroneous instructions cannot be repaired using this
tool. This limitation is also present in CARDUMEN, JGenProg, and
MutRepair, as they too are designed to repair input programs from a
single suspect instruction. Another constraint of GenExp is its inabil-
ity to repair programs that require the addition or removal of instruc-
tions. Similar limitations exist in CARDUMEN and MutRepair, but
JGenProg has the potential to address such errors. Additionally, JGen-
Prog can also correct the left-hand side of an assignment, a capability
not available in our tool, CARDUMEN, or MutRepair. Another no-
table limitation of GenExp is its inability to generate expressions where
numbers and variables are not integers. In contrast, CARDUMEN,
JGenProg, and MutRepair have the capability to handle variables or
constants of any kind.

6 Conclusion

To correct a program, our approach is based on using GP to construct
a new program without errors. We utilize the suspected instructions
generated by an error locating tool. The error correction process is
applied to a selected instruction, chosen by the programmer, which is
potentially the source of the problem in the input program. Genetic op-
erators are employed to evolve the expression of this instruction, aiming
to generate an individual that produces the expected outputs for the
given test cases. The results demonstrate the effectiveness of our ap-

241

M. Bekkouche

proach in program correction, as our implementation successfully fixed
nearly all cases used in the experiments. GenExp has outperformed AS-
TOR’s three approaches (JGenProg, MutRepair, and CARDUMEN) in
finding plausible fixes for the set of academic repair programs we have
developed.

Based on the results, it seems that GenExp is a slower option com-
pared to the other tools used in the experiments, but it is also more
accurate in finding plausible repairs. This makes it a good choice for
users who prioritize accuracy over speed. However, the large variation
in time and the longer average time may be a concern for users who
need consistent, fast results. Therefore, it is important to consider the
specific needs of the user when deciding whether to use our tool or one
of the faster tools.

In most cases, the programmer corrects only one instruction in the
set obtained during the error locating step. However, a challenge arises
when the program requires corrections in multiple instructions. Our
current approach is unable to find a plausible patch in such scenarios
since it focuses on a single instruction. As part of future work, we aim
to address this limitation by extending our approach to handle multiple
suspected instructions. One possible solution could involve running the
GP process evolution on multiple suspected instructions.

Currently, GenExp possesses the ability to generate instruction ex-
pressions, encompassing both algebraic and boolean expressions with
arithmetic operations. Moreover, GenExp generates integer-based ex-
pressions where numbers and variables are restricted to the integer
domain. Our benchmark is carefully designed to showcase GenExp’s
capabilities, emphasizing that the correct expressions obtained should
exclusively involve integer values for numbers and variables. Moving
forward, our objective is to enhance our implementation to accommo-
date various expression types, enabling comprehensive testing and com-
parison with ASTOR tools across a wider range of expression classes.

7 Funding

No fundingwas received to assist with the preparation of this manuscript.

242

Genetic Programming for Logic Error Correction in Instructions

References

[1] C. Le Goues, M. Pradel, A. Roychoudhury, and S. Chandra, “Au-
tomatic program repair,” IEEE Software, vol. 38, no. 4, pp. 22–27,
2021.

[2] A. Arcuri and X. Yao, “A novel co-evolutionary approach to au-
tomatic software bug fixing,” in 2008 IEEE Congress on Evolu-
tionary Computation (IEEE World Congress on Computational
Intelligence). IEEE, 2008, pp. 162–168.

[3] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automat-
ically finding patches using genetic programming,” in 2009 IEEE
31st International Conference on Software Engineering. IEEE,
2009, pp. 364–374.

[4] M. Martinez and M. Monperrus, “Ultra-large repair search space
with automatically mined templates: The cardumen mode of as-
tor,” in International Symposium on Search Based Software Engi-
neering. Springer, 2018, pp. 65–86.

[5] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch gener-
ation systems,” in Proceedings of the 2015 International Sympo-
sium on Software Testing and Analysis, 2015, pp. 24–36.

[6] M. Martinez and M. Monperrus, “Astor: A program repair library
for java,” in Proceedings of the 25th International Symposium on
Software Testing and Analysis, 2016, pp. 441–444.

[7] Q. Zhang, Y. Zhao, W. Sun, C. Fang, Z. Wang, and L. Zhang,
“Program repair: Automated vs. manual,” arXiv preprint
arXiv:2203.05166, 2022.

[8] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated pro-
gram repair,” Communications of the ACM, vol. 62, no. 12, pp.
56–65, 2019.

243

M. Bekkouche

[9] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” Ieee transactions
on software engineering, vol. 38, no. 1, pp. 54–72, 2011.

[10] A. Arcuri, “Evolutionary repair of faulty software,” Applied soft
computing, vol. 11, no. 4, pp. 3494–3514, 2011.

[11] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of
random search on automated program repair,” in Proceedings of
the 36th International Conference on Software Engineering, 2014,
pp. 254–265.

[12] T. Ji, L. Chen, X. Mao, and X. Yi, “Automated program repair by
using similar code containing fix ingredients,” in 2016 IEEE 40th
Annual Computer Software and Applications Conference (COMP-
SAC), vol. 1. IEEE, 2016, pp. 197–202.

[13] Y. Yuan and W. Banzhaf, “Arja: Automated repair of java pro-
grams via multi-objective genetic programming,” IEEE Transac-
tions on software engineering, vol. 46, no. 10, pp. 1040–1067, 2018.

[14] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revis-
iting template-based automated program repair,” in Proceedings
of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2019, pp. 31–42.

[15] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch genera-
tion learned from human-written patches,” in 2013 35th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2013,
pp. 802–811.

[16] T. Durieux, B. Cornu, L. Seinturier, and M. Monperrus, “Dynamic
patch generation for null pointer exceptions using metaprogram-
ming,” in 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2017,
pp. 349–358.

[17] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in Proceedings of the 2017 11th

244

Genetic Programming for Logic Error Correction in Instructions

Joint Meeting on Foundations of Software Engineering, 2017, pp.
727–739.

[18] X. Liu and H. Zhong, “Mining stackoverflow for program repair,”
in 2018 IEEE 25th international conference on software analysis,
evolution and reengineering (SANER). IEEE, 2018, pp. 118–129.

[19] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Sem-
fix: Program repair via semantic analysis,” in 2013 35th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2013,
pp. 772–781.

[20] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun, “Repairing pro-
grams with semantic code search (t),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering
(ASE). IEEE, 2015, pp. 295–306.

[21] K. T. Stolee, S. Elbaum, and D. Dobos, “Solving the search for
source code,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 23, no. 3, pp. 1–45, 2014.

[22] S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking for
simple program repairs,” in 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, vol. 1. IEEE, 2015,
pp. 448–458.

[23] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable mul-
tiline program patch synthesis via symbolic analysis,” in Proceed-
ings of the 38th international conference on software engineering,
2016, pp. 691–701.

[24] S. Mechtaev, M.-D. Nguyen, Y. Noller, L. Grunske, and A. Roy-
choudhury, “Semantic program repair using a reference implemen-
tation,” in Proceedings of the 40th International Conference on
Software Engineering, 2018, pp. 129–139.

[25] F. Long and M. Rinard, “Automatic patch generation by learning
correct code,” in Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
2016, pp. 298–312.

245

M. Bekkouche

[26] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and
D. Poshyvanyk, “An empirical investigation into learning bug-
fixing patches in the wild via neural machine translation,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Au-
tomated Software Engineering, 2018, pp. 832–837.

[27] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan,
“Coconut: combining context-aware neural translation models us-
ing ensemble for program repair,” in Proceedings of the 29th ACM
SIGSOFT international symposium on software testing and anal-
ysis, 2020, pp. 101–114.

[28] Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshy-
vanyk, and M. Monperrus, “Sequencer: Sequence-to-sequence
learning for end-to-end program repair,” IEEE Transactions on
Software Engineering, vol. 47, no. 9, pp. 1943–1959, 2019.

[29] Y. Li, S. Wang, and T. N. Nguyen, “Dear: A novel deep learning-
based approach for automated program repair,” arXiv preprint
arXiv:2205.01859, 2022.

[30] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation of
similarity coefficients for software fault localization,” in 2006 12th
Pacific Rim International Symposium on Dependable Computing
(PRDC’06). IEEE, 2006, pp. 39–46.

[31] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Mon-
perrus, “Automatic repair of real bugs in java: A large-scale exper-
iment on the defects4j dataset,” Empirical Software Engineering,
vol. 22, no. 4, pp. 1936–1964, 2017.

[32] V. Debroy and W. E. Wong, “Using mutation to automati-
cally suggest fixes for faulty programs,” in 2010 Third Interna-
tional Conference on Software Testing, Verification and Valida-
tion. IEEE, 2010, pp. 65–74.

[33] M. Bekkouche, H. Collavizza, and M. Rueher, “Locfaults: A new
flow-driven and constraint-based error localization approach,” in

246

Genetic Programming for Logic Error Correction in Instructions

Proceedings of the 30th Annual ACM Symposium on Applied Com-
puting, 2015, pp. 1773–1780.

[34] M. Bekkouche, “Combining techniques of bounded model checking
and constraint programming to aid for error localization,” Con-
straints, vol. 22, no. 1, pp. 93–94, 2017.

[35] M. Jose and R. Majumdar, “Bug-assist: assisting fault localization
in ansi-c programs,” in International conference on computer aided
verification. Springer, 2011, pp. 504–509.

[36] M. Jose and R. Majumdar, “Cause clue clauses: error localization
using maximum satisfiability,” ACM SIGPLAN Notices, vol. 46,
no. 6, pp. 437–446, 2011.

[37] “OakGP Genetic Programming Framework,”
http://www.oakgp.org/index.html. [Online]. Available:
http://www.oakgp.org/index.html

Mohammed Bekkouche Received April 02, 2023
Revised 1 – June 16, 2023
Revised 2 – July 11, 2023

Accepted July 13, 2023

Mohammed Bekkouche
ORCID: https://orcid.org/0000-0002-8305-0542
LabRI-SBA Laboratory, Ecole Superieure en Informatique,
Sidi Bel Abbes, Algeria
BP. 73, Bureau de poste EL WIAM, Sidi Bel Abbes, 22016, Algeria
E–mail: m.bekkouche@esi-sba.dz

247

http://www.oakgp.org/index.html

Computer Science Journal of Moldova, vol.31, no.2(92), 2023

An approach to Augmented Reality
Classification and an example of its usage for
application development with VAK learning

styles Markers

Inga Titchiev, Olesea Caftanatov, Veronica Iamandi,
Dan Talambuta, Daniela Caganovschi

Abstract
Augmented reality (AR) encompasses both technology and

the experience it provides, making it applicable in real-world con-
texts. The field of education is particularly suited for utilizing
AR techniques as a novel means of engaging with students. Var-
ious classifications of AR techniques exist, each offering remark-
able potential for educational purposes. This paper presents an
approach to classifying augmented reality based on the character-
istics of different techniques. Additionally, we demonstrate the
application of a specific type of AR technology in the develop-
ment of an educational application. Furthermore, we emphasize
the importance of designing augmented learning scenarios that
align with the VAK learning styles, aiming to deliver personal-
ized and immersive learning experiences. The integration of AR
and VAK learning styles shows the potential for creating educa-
tional tools that are both engaging and effective.

Keywords: AR Classification, VAK learning styles markers,
personalized learning, marker-based application.

MSC 2020: 97C70, 68T05.

1 Introduction
Augmented reality (AR) goes beyond mere technology; it is an im-
mersive experience with tangible applications in real-world scenarios.

©2023 by Computer Science Journal of Moldova
doi:10.56415/csjm.v31.13

248

https://doi.org/10.56415/csjm.v31.13

M-B AR approach

Among these scenarios, e-learning stands out as a context where AR
can be leveraged as a novel means of engaging with students. In the
coming years, augmented techniques hold immense potential to revolu-
tionize education on a broader scale. By seamlessly integrating digital
elements into the learning process, AR has the ability to transform
traditional educational methods and provide students with unique and
interactive learning experiences.

To maximize the potential of respective technology, it is beneficial
to comprehend the various types of AR and their potential to enhance
learning experiences. Thus, in the first part of this paper, we analyze
the emergence of augmented technologies and propose a classification
based on tech characteristics. In addition, we presented some ways of
using the specific type in education.

The integration of augmented reality in education has the power to
reshape how knowledge is imparted and absorbed, paving the way for a
significant shift in the educational landscape. Additionally, the possi-
bilities for incorporating and presenting information in innovative and
interactive ways are virtually limitless. Through these technologies,
various forms of multimedia content can be introduced, ranging from
videos, sounds, and graphics to the inclusion of three-dimensional (3D)
models. Developing learning environments with unforgettable expe-
riences will, definitely, enhance students’ perception of the real world.
Thus, it will increase their engagement in the learning process, because
when the physical and digital worlds collide, it changes everything. Lit-
erally, augmented reality is changing the way we see the physical world.

In the second part of this paper, we stressed the importance of
integrating learning styles in augmented content. When designing aug-
mented reality in education based on learning styles, the goal is to
provide personalized and immersive learning experiences. For visual
learners, AR can offer visually rich content, such as interactive 3D
models or visual simulations, to enhance their comprehension and re-
tention of information. Auditory learners can benefit from AR applica-
tions that include audio instructions, narration, or discussions to sup-
port their preferred mode of learning. Kinesthetic learners can engage
with AR experiences that involve interactive elements, allowing them to
physically manipulate virtual objects or participate in virtual simula-

249

I.Titchiev, O. Caftanatov, V. Iamandi, D. Talambuta, D.Caganovschi

tions. By tailoring augmented reality experiences to different learning
styles, educators can create inclusive and engaging learning environ-
ments. This approach recognizes the diversity of learners’ preferences
and optimizes the potential for knowledge acquisition and retention.

2 The emergence of Augmented reality

Over the past five decades, the landscape of human interaction with
the physical world has been profoundly transformed by the emergence
of AR technology. Augmented reality revolutionizes our perception of
reality by overlaying digital information onto our surroundings. It is
important to note that augmented reality is often confused with virtual
reality (VR), despite some shared developmental origins. However, AR
and VR are distinct from one another. Unlike VR, which constructs
entirely artificial environments to replace the real world with a virtual
one, augmented reality seamlessly integrates technology into our actual
surroundings. By directly integrating with our existing environment,
augmented techniques enriches our sensory experience by introducing
multimedia elements such as videos, sounds, graphics, and more. Aug-
mented reality is a field that leaves some aspects to scientific advance-
ments while sparking the imagination to envision its limitless potential.

As stated in [1], augmented reality is not confined to a singular
device or program, but rather represents a form of interaction between
humans and computers. This interaction is facilitated by a blend of
technologies that superimpose computer-generated content over the
real-world environment. The roots of augmented reality can be traced
back to 1968 when Ivan Sutherland pioneered the first head-mounted
display system. However, it was not until 1990 that the term ”aug-
mented reality” was coined by researchers Thomas Caudell and David
Mizell [2].

During the early 1990s, augmented reality made a significant tran-
sition from laboratory settings to practical applications. In 1992,
Louis Rosenberg pioneered the development of the groundbreaking
augmented reality system known as ”Virtual Fixtures” at the USAF
Armstrong Labs. This system enabled military personnel to remotely
control and provide guidance to machinery, serving various purposes

250

M-B AR approach

such as training US Air Force pilots in safer flying practices. Figure 1
showcases an illustration of this technology in action.

Figure 1. Louis Rosenberg testing Virtual Fixtures [15]

A significant milestone in the popularization of augmented real-
ity occurred in 2000 with the development of an open-source software
library called ARToolKit by Hirokazu Kato. This software package
proved instrumental in enabling other developers to create AR soft-
ware programs. As our reliance on mobile devices continues to grow,
the demand for AR software has also increased, leading to a prolifer-
ation of applications in the field. The convergence of AR technology
and mobile devices has opened up new possibilities and opportunities
for incorporating augmented reality into various aspects of our lives.

In a surprising move, Esquire Magazine introduced the concept of
integrating augmented reality into print media back in 2009. This
innovative approach aimed to bring static pages to life by leveraging
AR technology. By scanning the magazine cover, readers were able
to experience an interactive augmented reality experience. Notably,
the AR-enhanced magazine featured Robert Downey Jr. engaging in
a virtual conversation with the readers. This bold initiative by Es-
quire Magazine showcased the early potential of augmented reality to
transform traditional print media and create dynamic and engaging
experiences for readers.

Another impressive application is Volkswagen’s MARTA, short for
Mobile Augmented Reality Technical Assistance. It is a remarkable
adaptation of AR technology. It offers valuable support to technicians

251

I.Titchiev, O. Caftanatov, V. Iamandi, D. Talambuta, D.Caganovschi

by guiding them visually through the repair process. The MARTA
app utilizes real-time images of the vehicle, superimposing outlines and
labels on the parts, and provides contextually relevant information.
For each step of the repair, it even indicates the specific tools required,
ensuring technicians have the necessary guidance and assistance.

Furthermore, in 2013, Google introduced its Glass devices, a pair of
augmented reality glasses that offer users relevant information through
visual, audio, and location-based inputs. For example, when entering
an airport, a user could automatically receive flight status updates.

Over the past decade, augmented reality has gained significant
recognition as one of the most promising areas within computer graph-
ics. During this time, numerous innovative applications have been de-
veloped, highlighting the growing importance of augmented reality in
our daily lives. Augmented reality has been built from the ground up,
and now is the opportune moment for it to truly flourish and reach
new heights.

3 Types of augmented reality

Augmented reality initially made its way into public spaces several
decades ago, but its true explosion has occurred in recent years, pri-
marily due to the increased processing power available in today’s smart
devices. One of the greatest advantages of AR is its accessibility to or-
dinary users. In this section, we will explore different types of AR and
discuss some of its implementations in the field of education.

As per the findings from Wilson’s team [3], augmented reality can
be categorized into five distinct experience types: ”video launch,” ”3D
object,” ”360-degree surround,” ”interactive game,” and ”information
overlay”. Within each of these types, there are numerous possibilities
and opportunities for exploration and innovation.

According to Onirix [4], another classification of augmented reality
(AR) is based on triggers that initiate the AR experience. These trig-
gers play a role in determining the placement of augmented content.
Onirix identifies three types of trigger-based AR experiences:

1. Targets – the anchors that connect the digital and physical

252

M-B AR approach

worlds; these are images or surfaces.

2. Space – it uses SLAM technologies to create a detailed 3D model
of a real-life location. For this case, the triggers are scene recog-
nition.

3. Places – this type of experience ties AR content to a specific
location; for these types, the main triggers identify the user’s
geolocation. The used tech can help to guide users through a
certain area, etc.

Analyzing many other sources, we found out there are various
types of classification, for instance, in [5], the author believes there are
four types of augmented reality (marker-based, markerless, projection-
based, and superimposition-based AR). As stated in [6], Triggered
AR technologies include four types: Markerbased, Location-based, Dy-
namic Augmentation, and Complex Augmentation. However, we con-
sider that augmented reality can be grouped into two major categories:
marker-based AR and markerless AR. The remaining types may
consist of variations or modifications of these two. Below we will
present a classification from our point of view, with a description and
an example of its application in the education field.

3.1 Marker-Based approach

Marker-based augmented reality is one of the most common types;
it uses markers to trigger an augmented experience. Due to its use of
image recognition, this type of AR is sometimes also called recognition-
based augmented reality. This type works when a camera or app is
scanned over a visual marker. Markers are referenced to merge virtual
extensions with real media. A QR code or a 2D code serves as a
notable example of a visual marker. Before describing the variations of
this type of AR, we need to know the answer to a few key questions,
like: What content do we need to display in the digital world? What
factor will trigger it in the physical world? Where exactly should we
put the content within the user’s view?

To provide an example, consider a scenario where we aim to display
an educational animation directly onto a page of a book. In this case,

253

I.Titchiev, O. Caftanatov, V. Iamandi, D. Talambuta, D.Caganovschi

it becomes crucial to determine the exact location on the page where
the user should point their camera. The device needs to recognize the
specific page and identify the marker present on that page to initiate
the animation. One advantage of this recognition-based technology is
that as we turn the page of the book, the animation will remain fixed
to the page and move accordingly. Consequently, a marker can take
various forms, as long as it possesses distinct visual features. This leads
us to identify two variations of marker-based augmented reality:

1. image-based recognition – involves the placement of a “tracker”
in the form of an encoded image that provides visual cues to
the AR application, indicating where to position virtual content.
The image marker can take various forms, such as pictures, lo-
gos, posters, QR codes, or any type of 2D objects. The crucial
factor in image-based recognition is the quality of the image used
as a marker. Quality does not solely refer to resolution but also
encompasses factors like contrast, color accuracy, distortion, and
texture, which aid camera recognition; more about markers re-
quirements is presented in our research [7]. This type of AR
can be employed in math worksheets, where QR code images are
placed near each task. By triggering the image markers, the AR
app can initiate video demonstrations on how to solve the tasks.
Consequently, students can check their solutions or understand
their mistakes by utilizing this interactive approach after com-
pleting exercises.

2. object-based recognition – refers to a type of marker in augmented
reality (AR) that can take the form of various 3D shapes or ob-
jects. Similar to image-based recognition, it involves recognizing
objects and displaying corresponding digital content on a screen.
The recognition process relies on markers, which are replaced by
3D representations of the corresponding objects. This enables
users to view the objects in greater detail and from different an-
gles. As the user rotates the marker, the 3D image also rotates
accordingly. One practical application of object-based recogni-
tion in the education field is the learning of geometry shapes.
Students can use smartphones or tablets to scan 3D objects and

254

M-B AR approach

access relevant information about them. Another notable exam-
ple is the implementation by CISCO, where they utilize this type
of augmented reality. CISCO scans their devices, and through an
AR app, they provide users with guidance on how to use those
devices (see Fig. 2).

Figure 2. AR Solution for CISCO Technical Content [16]

Marker-based augmented reality (AR) predominantly relies on mo-
bile applications, requiring users to download AR software before they
can interact with augmented content. This may lead to a perceived
loss of spontaneity in marker-based experiences. However, with the
advancements in camera systems and precise sensors found in popular
devices such as those from Apple and Google, the landscape of AR has
shifted from primarily marker-based activations to markerless AR.

Notably, Apple’s ARKit and Google’s ARCore are software devel-
opment kits that have been released in recent years, expanding the
possibilities of markerless AR. These development kits enable the cre-
ation of AR experiences without the need for physical markers. The
integration of advanced technologies within these platforms has facili-
tated the transition towards markerless AR, providing users with more
seamless and immersive AR experiences.

255

I.Titchiev, O. Caftanatov, V. Iamandi, D. Talambuta, D.Caganovschi

3.2 Markerless Augmented Reality

Markerless AR refers to an augmented reality app that can overlay dig-
ital content onto the user’s environment without requiring prior knowl-
edge or the use of physical markers. According to [8], markerless AR
systems integrate 3D virtual objects seamlessly into a real-time 3D en-
vironment, enhancing the user’s perception and interaction with the
world. This type of AR is more versatile compared to marker-based
AR since it doesn’t rely on markers as visual cues to position digital
content in the real world.

Instead, markerless AR utilizes various hardware components of the
device, such as GPS, gyroscope, velocity meter, digital compass, and
accelerometer, to gather the necessary information for determining the
user’s location and other details. This approach is often referred to
as Position-based AR. By leveraging the collected data, users have the
freedom to decide where to place virtual objects within their environ-
ment. Additionally, markerless AR allows for experimentation with
different styles of 3D virtual objects, enabling users to position them
anywhere, regardless of the surroundings. It even allows for objects to
appear as if they are floating in the air.

Markerless AR is at the forefront of augmented reality technol-
ogy, primarily leveraging a powerful tracking system known as SLAM
(Simultaneous Localization and Mapping). SLAM enables real-time
tracking and mapping capabilities, allowing for the placement of 3D
objects in both indoor and outdoor environments without the need
for physical markers. This technology has opened up new possibilities
for various applications in different settings, including indoor spaces,
outdoor areas, aerial environments, and underwater scenarios.

Markerless AR encompasses several types of AR technologies that
do not rely on specific markers to trigger digital content. These include
location-based AR, superimposition-based AR, projection-based AR,
and outlining AR. Each of these techniques utilizes different methods
and approaches to integrate virtual content seamlessly into the user’s
environment.

Location-based or position-based AR is one of the most widely
implemented applications of augmented reality, because of the easy

256

M-B AR approach

availability of smartphones that provide the needed data regarding the
user’s location by using GPS, compass, gyroscope, accelerometer, etc.
In most cases, this type of AR is used for navigation support; it helps
travelers in their journey.

Wikitude Navigation, as cited in reference [9], has been acknowl-
edged as the pioneering augmented reality (AR) GPS navigation sys-
tem globally. It has received numerous prestigious awards and has
been hailed as a “revolutionary step forward”, recognizing its sig-
nificant contribution as a groundbreaking advancement in the domain
of navigation and guidance.

Location-based augmented reality (AR) holds significant potential
in the field of education, offering a multitude of applications. With
the aid of AR technology, teachers are liberated from the confines of
the traditional classroom setting. Augmented reality breathes life into
abstract concepts, enabling educators to guide students through im-
mersive experiences with three-dimensional objects and highlighting
intriguing landmarks and artefacts along the way. A noteworthy ex-
ample of such technology is the AR application known as ”Magical
Parks,” presently utilized in various public parks across New Zealand
and Australia and equally suitable for classroom implementation. By
seamlessly integrating a virtual fantasy realm into the actual park land-
scape, “Magical Parks” captivates children’s attention, presenting them
with life-sized dinosaurs and interactive bears as they navigate through
the park.

Projected-based AR, is the most exciting type of AR because
of its futuristic experience; it consists of a physical three-dimensional
model onto which a computer image is projected to create a realistic-
looking object. Projected-based AR may be one of those technologies
that might eliminate the use of special gear such as Google Glass or
head-mounted displays (HMDS) for experiencing augmented reality.
As is obvious by its name, projected-based AR works by using pro-
jection onto objects. One of the simplest is a projection of light on
surfaces. The only difference between this type of AR and normal pro-
jection is that projected-based AR can detect touch and movement and
to interact with programs. Although projected-based AR is being used
by industry-learning manufacturers (see Fig. 3), it also can be used as

257

I.Titchiev, O. Caftanatov, V. Iamandi, D. Talambuta, D.Caganovschi

training students by developing real-life problem-solving puzzles. The
strong point of this kind of training will help students to think and
react quickly to make correct decisions.

Figure 3. Light Guide Systems [17]

Superimposition-based AR recognizes an object in the physi-
cal world and enhances it in some way to provide an alternative view.
Many companies have used this type of AR to help their customers feel
more connected to their brand. Superimposition-based technology can
recreate or replace a portion of the image or object, or even a whole
thing. An exemplary illustration of this type of augmented reality
implementation can be seen in the case of IKEA. In 2017, IKEA intro-
duced an augmented reality app that revolutionized the retail industry.
The IKEA Place app empowers customers to bring any product from
the IKEA catalogue into their own environment, allowing them to make
informed purchase decisions. This innovative approach to product in-
teraction enables customers to visualize how a particular item would
fit within their space without the need to make a physical purchase.
Furthermore, customers can modify colors and even multiply objects
to enhance their own interior design. The application of superimposing
virtual objects onto the real world can also prove advantageous in ed-
ucational settings, such as learning about bone structures or providing
immersive experiences in history and natural science classes.

Outlining augmented reality (AR) involves the utilization of

258

M-B AR approach

specialized cameras designed to mimic human vision by delineating
specific objects, boundaries, and lines. Although the human eye is
widely regarded as the most exceptional camera, it has inherent lim-
itations. Prolonged focus on objects, poor visibility in low-light con-
ditions, and the inability to perceive infrared light are a few of these
limitations. To overcome these challenges, specialized cameras have
been developed, which are employed in augmented reality (AR) appli-
cations that utilize outlining techniques. Object recognition serves as
the foundation for the capabilities of outlining AR, which shares some
resemblance to projection-based AR. This technique proves beneficial
in various scenarios, leveraging object recognition to enhance the under-
standing of the surrounding environment. Notably, outlining AR finds
application in car navigation systems, particularly for ensuring safer
driving conditions during nighttime. By employing object recognition,
the boundaries of the road can be accurately identified and outlined,
aiding drivers in parking their vehicles. This technology shares some
similarities with projection-based AR but focuses specifically on object
recognition and outlining. Beyond automotive contexts, outlining AR
holds potential in fields such as architecture and engineering, where
it can assist in outlining buildings and identifying their supporting
pillars. This type of augmented reality, combining object recognition
and project-based techniques, represents an unparalleled technological
solution with vast potential for connecting historical content through
augmented reality experiences.

4 Learning styles

Each of us is different, having our own preferences for learning, leading
to behavioral manifestations according to these preferences. Prefer-
ences may vary depending on the person, task, context, previous ex-
perience, education, etc. The frequency, stability, and constancy of
the manifestation over time of a particular combination used in the
execution of most tasks make it possible to differentiate so-called dis-
tinct learning styles. In the educational context, the most known and
explored definition of learning styles is the one proposed by Kolb.

Definition 1 [10]. The learning style designates the concrete ways

259

I.Titchiev, O. Caftanatov, V. Iamandi, D. Talambuta, D.Caganovschi

by which individual changes in behavior are achieved through lived ex-
perience, reflection, experimentation, and conceptualization.

The most frequently operated in educational practice are typologies
based on sensory encoding methods. Depending on the predominant
sensory organ in receiving information and transmitting it to the brain,
Barbe, Swassing, and Milone [13] differentiate the following learning
styles:

1. Visual Learner – prefers to learn based on illustrations, images,
maps, and diagrams; for the efficiency of understanding and stor-
ing new information, it is important to see the written text, be-
cause visual memory prevails; prefers written instructions; learns
better in solitude;

2. Auditory Learner – learns better by listening to a speech or the
explanations of others; associates concepts with various sounds
and prefers to learn on a musical background; has a better audi-
tory memory; prefers group discussions, debates; prefers verbal
instructions for academic tasks; memorizes very well through rep-
etitions out loud;

3. Kinesthetic Learner – prefers learning activities in which he/she
can experiment, apply, and carry out practical actions; he/she
needs to touch, to get involved through movements and manipu-
lations in the learning activity; he/she remembers best what he
does; shows a tendency to play with small objects while listening
to classes or studying; he/she prefers physical/sports activities.

Stable individual differences in the way of learning affect the
rhythms and quality of learning and especially determine the option
for one or another learning strategy as one’s own and personal way of
approaching a learning situation.

In order to facilitate learning, increase study efficiency and success-
fully adapt to the multitude of learning situations, it is necessary to
determine the specific preferences [11] of the personal learning style so
that they can be applied in a targeted manner.

260

M-B AR approach

4.1 Distinct characteristics of learning styles

1. Visual learner

• observes especially the details of the environment
• remembers what he saw faster than what he heard
• the noise does not distract him
• forgets the verbal instructions
• is a good and fast reader
• prefers to read, not to be read
• speaks fast
• is a good organizer.

2. Auditory learner

• learns by listening to conversations or presentations
• speaks rhythmically
• talks to himself (in his mind)
• is easily distracted by noise
• moves his lips and says the words when he reads
• likes to learn out loud
• is a better storyteller than a writer
• is talkative and likes discussions.

3. Kinesthetic learner

• learns by handling objects
• wants to try objects and mechanisms
• speaks rarely
• has bad handwriting
• stays close to the person he is talking to
• uses body actions to demonstrate what he has learned
• is attentive to gestures

261

I.Titchiev, O. Caftanatov, V. Iamandi, D. Talambuta, D.Caganovschi

• likes to get involved in games – memorizes while walking
• does not retain geographical locations unless he was there
• uses action verbs

Knowing the person’s learning style enables using his strengths dur-
ing training. Many people show strength in more than one learning
style but have a dominant learning style depending on the situation.
In order to increase the efficiency of learning, it is recommended to use
strategies adapted to learning styles. Suitable learning strategies for
different styles are:

1. For visual learners

• highlighting the main ideas, words, and mathematical for-
mulas with different colors

• providing sufficient time for viewing graphs, tables, and im-
ages

• using studio tools: maps, tables, graphs
• transcription of the information
• viewing the written information

2. For auditory learners

• explanation of new information, verbal expression of ideas
• reading aloud
• learning with tutors or in a group, where they can ask ques-

tions, provide answers, and express how they understand
oral information

3. For kinesthetic learners

• handling of the objects to be learned
• arranging tables and diagrams in a correct order
• using movements, dramatization, dance, pantomime, or

role-playing games for the development of long-term mem-
ory

• talking and walking during knowledge repetition
• learning by applying the learned knowledge in practice.

262

M-B AR approach

5 Augmented Reality in Mathematics Educa-
tion

In the realm of mathematics education, traditional methods have re-
lied on basic tools such as paper, pencils, and chalkboards or white-
boards. Despite advancements in educational technology, the integra-
tion of more advanced technological tools into mathematics instruction
has been slow to progress. This lack of progress hinders the potential
for improvement in mathematics education, even though educational
technology has made significant strides.

While it is true that new technologies may not necessarily solve
students’ difficulties with arithmetic problem-solving techniques, it is
crucial to take action rather than remain inactive. By embracing in-
novative teaching [21] and learning methodologies [22], educators can
enhance conceptual understanding, scaffold learning, and foster oppor-
tunities for meaningful dialogue surrounding the application of math-
ematical problem-solving techniques in real-life contexts [14].

According to [18] study, the researchers focused on investigating
the existing literature on augmented reality (AR) in mathematics ed-
ucation. The goal was to explore how AR can enhance interactive
learning environments for mathematics in various educational settings,
including classrooms.

To conduct their research, the researchers selected papers from
10 different databases, namely Scopus, Web of Science Core Collec-
tion, ERIC, IEEE Xplore Digital Library, Teacher Reference Center,
SpringerLink, zbMATH Open, Taylor & Francis Online Journals, JS-
TOR, and MathSciNet. By employing the preferred reporting items for
systematic reviews and meta−analysis (PRISMA) method, specifically
PRISMA2020, they were able to identify 42 relevant studies from these
databases. Upon analyzing the selected papers, the researchers found
that the implementation of AR in mathematics education consistently
yielded positive outcomes. The positive effects of AR on mathematics
learning were demonstrated through the various studies reviewed.

AR technology in mathematics can be applied through various ap-
proaches, each catering to different learning objectives. For instance,
researchers such as Cheng -Chih Wu’s Lab [19] focus on utilizing AR to

263

I.Titchiev, O. Caftanatov, V. Iamandi, D. Talambuta, D.Caganovschi

enhance spatial abilities, while others like Cai [20] explore its potential
for teaching probability. In our study, we took a unique approach by
developing augmented content based on individual learning styles.

6 Implementation of scenarios in the AR Tool
specific to a certain learning style

We develop an AR tool that enhances the learning effect by tracking
2D artefacts that trigger the visualization of the 3D geometry objects
using a marker-based Augmented Reality approach, taking learning
styles into account.

For this, there were designed 30 types of AR artefacts; when
scanned by mobile devices camera, they trigger one of the augmented
experiences, such as 3D objects, video content, audio content, text,
formulae, and even virtual tutor. Using marker-based augmented de-
veloped system, learners can interact with the 3D information, objects,
and events in a natural way.

Additionally, pupils can interact with artefacts to change the po-
sition, size, and color of 3D objects. Moreover, by interacting with
virtual tutor, pupils can see the superimposed digital content that ex-
plains and demonstrates the basic theorems. The tool is created by
using the Unity platform with the Vuforia database.

MB-AR tool will deliver a positive impact by keeping pupils’ high
engagement and by enhancing their learning abilities like problem-
solving, collaboration, imaginative thinking, and spatial imagination.

The developed friendly interface allows even 2-3th grade kids to be
used easily. The tools can be extendable to any age category, even for
students. This is created by using the Unity platform with the Vuforia
database. For more about workflow, see Fig. 4.

6.1 Scenarios for visual learners

For visual learners, there were developed several scenarious. For exam-
ple, Figure 5 shows two of them. The first scenario allows viewing the
definition of the object to be studied; in this case, it is the definition
of the square. The second scenario allows viewing a video sequence in

264

M-B AR approach

Figure 4. Workflow representation of AR tool

which the notion of the area of the square is explained, and its formula
and examples of use are presented.

6.2 Scenarios for auditory learners

For auditory learners, a scenario has been developed that allows the
playback of Musical visualisations of Pi (see Fig. 6), composed by Lars
Erickson in the early 1990s.

The scenarios for this type of experience are as follows: 1) when the
card is scanned, the pi symphony is played; 2) in the example in the
middle, the user is asked to calculate the cube of the number 5; if the
option 25 is selected, then in the sound form it is pronounced ”you’re
wrong”; for option 255 it is pronounced ”try again”; and for option
125 it is pronounced ”is correct”; 3) the last example in this section
generates the howl of the wolf.

265

I.Titchiev, O. Caftanatov, V. Iamandi, D. Talambuta, D.Caganovschi

Figure 5. Scenarios for visual learners

Figure 6. Musical visualisations of Pi [12], Scenarios for auditory learn-
ers

266

M-B AR approach

6.3 Scenarios for kinesthetic learners

For kinesthetic learners, the first scenario has been developed that al-
lows to change 3D object size, to rotate, and change RGB color, or
even change color randomly by pressing a bigger green button (see Fig.
7) – handling the object to be learned, in this case, a cube. The second
scenario allows viewing angle types.

Figure 7. Scenarios for kinesthetic learners

6.4 Evaluation

To carry out the evaluation process, a test consisting of 5 questions
is proposed; after selecting the answer to each of the questions, the
accumulated score and the answer for each question are visualized (see
Fig. 8).

This allows obtaining an immediate feed-back and strengthening
the accumulated knowledge.

7 Conclusion
In this paper, an approach to classifying augmented reality based on
the characteristics of different techniques was done. Additionally, the
application of a specific type of AR technology in the development of
an educational application was demonstrated. Furthermore, the im-
portance of designing augmented learning scenarios that align with
the VAK learning styles, aiming to deliver personalized and immersive

267

I.Titchiev, O. Caftanatov, V. Iamandi, D. Talambuta, D.Caganovschi

Figure 8. Some stages of scenario for evaluation

learning experiences, was emphasized. The potential for creating en-
gaging and effective educational tools by integration of AR and VAK
learning styles was shown.

Acknowledgments. The project Ref. Nr. 20.80009.5007.22 “In-
telligent Information systems for solving ill structured problems, knowl-
edge and Big Data processing” has supported part of the research for
this paper.

References

[1] D. Schafer and D. Kaufman, “Augmenting Reality with Intelligent
Interfaces,” in Artificial Intelligence – Emerging Trends and Appli-
cations, 2018, ch. 11, pp. 221–242. DOI:10.5772/intechopen.75751.

[2] T. P. Caudell and D. Mizell, “Augmented reality: An applica-
tion of heads-up display technology to manual manufacturing pro-
cesses,” in IEEE Xplore Conference: System Sciences, 1992. Pro-
ceedings of the Twenty-Fifth Hawaii International Conference,
1992, vol. 2, pp. 659–669. DOI:10.1109/HICSS.1992.183317.

[3] Trekk, [Online]. Available: https://www.trekk.com/augmented-
reality

[4] Onirix, [Online]. Available: https://www.onirix.com/learn-about-
ar/what-is-augmented-reality/

268

M-B AR approach

[5] Yassir El Filali and Krit Salah-ddine, “Augmented reality types
and popular use cases,” International Journal of Engineering, Sci-
ence and Mathematics, vol. 8, no. 4, pp. 91–97, 2019.

[6] Amanda Edwards-Stewar, Tim Hoyt, and Greg Reger, “Clas-
sifying different types of augmented reality technology,” An-
nual Review of CyberTherapy and Telemedicine, vol. 14, pp.
199–202. [Online]. Available: https://www.researchgate.net/pub-
lication/315701832

[7] Osman Güler and Ibrahim Yucedag, “Developing an CNC lathe
augmented reality application for industrial maintanance train-
ing,” in Conference: 2nd International Symposium on Multidisci-
plinary Studies and Innovative Technologies (ISMSIT), 2018, pp.
1–6. DOI: 10.1109/ISMSIT.2018.8567255.

[8] Veronica Teichrieb, Joao Paulo Silva do Monte Lim, Eduardo
Lourenco Apolinario, Thiago Souto Maior Cordeiro de Farias Mar-
cio Augusto Silva Bueno, Judith Kelner, and Ismael H. F. Santos,
“A Survey of Online Monocular MarkerlessAugmented Reality,”
International Journal of modeling and simulation for the petroleum
industry, vol. 1, no. 1, pp. 1–7, august, 2007.

[9] Wikitude. [Online]. Available: https://www.wikitude.com/show-
case/wikitude-navigation/

[10] D. Kolb, The Kolb Learning Style Inventory, Version 3, Boston:
Hay Group, 1999.

[11] S. Focsa-Semionov, Invatarea autoreglata. Teorie. Strategii de in-
vatare, Chisinau: Epigraf, 2010, pp. 95–116.

[12] ThePiano.SG, “Musical visualisations of Pi,” [Online]. Available:
https://www.thepiano.sg/piano/read/musical-visualisations-pi,
Accessed on: November 2022.

[13] W.B. Barbe, R.H. Swassing, and M.N. Milone, Teaching
through Modality Strenghts: Concepts and Practices, Colum-
bus, Ohio: Zaner-Bloser, 1979. ISBN-10: 0883091003, ISBN-13:
9780883091005.

269

I.Titchiev, O. Caftanatov, V. Iamandi, D. Talambuta, D.Caganovschi

[14] J. Lai and K. H. Cheong, “Adoption of virtual and augmented re-
ality for mathematics education: A scoping review,” IEEE Access,
vol. 10, pp. 13693–13703, 2022. DOI: https://doi.org/10.1109/AC-
CESS.2022.3145991.

[15] “File:Virtual-Fixtures-USAF-AR.jpg,” Wikimedia Com-
mons, [Online]. Available: https://commons.wikime-
dia.org/wiki/File:Virtual-Fixtures-USAF-AR.jpg.

[16] Jon Judson, “Augmented Reality: A New Reality for Utili-
ties,” Cisco Blogs. [Online]. Available: https://blogs.cisco.com/en-
ergy/augmented-reality-a-new-reality-for-utilities.

[17] “6 Uses of Augmented Reality for Manufacturing In Every Indus-
try,” Light Guide Systems, 23 February 2022. [Online]. Available:
https://www.lightguidesys.com/resource-center/blog/6-uses-of-
augmented-reality-for-manufacturing-in-every-industry/.

[18] Nur Izza Nabila Ahmad and Syahrul N. Junaini, “Augmented
Reality for Learning Mathematics: A Systematic Literature Re-
view,” International Journal of Emerging Technologies in Learning
(iJET), vol. 15, no. 16, pp. 106. DOI: 10.3991/ijet.v15i16.14961.

[19] Yi-Ting Liao, Chih-Hung Yu, and Cheng-Chih Wu, “Learning Ge-
ometry with Augmented Reality to Enhance Spatial Ability,” in
2015 International Conference on Learning and Teaching in Com-
puting and Engineering, (Taipei, Taiwan), 2015, pp. 221–222. DOI:
10.1109/LaTiCE.2015.40.

[20] S. Cai, E. Liu, Y. Shen, L. Liu, S. Li, and Y. Shen, “Prob-
ability learning in mathematics using augmented reality: im-
pact on student’s learning gains and attitudes,” Interactive
Learning Environments, vol. 28, pp. 560–573, 2020. DOI:
https://doi.org/10.1080/10494820.2019.1696839.

[21] S. Schutera, M. Schnierle, M. Wu, T. Pertzel, J. Seybold, P.
Bauer, D. Teutscher, M. Raedle, N. Heß-Mohr, S. Röck, et al.
“On the Potential of Augmented Reality for Mathematics Teaching
with the Application cleARmaths,” Education Sciencies, vol. 11,

270

M-B AR approach

no. 8, Article No. 368, 2021. DOI: https://doi.org/10.3390/educ-
sci11080368.

[22] E. Demitriadou, K. Stavroulia, and A. Lanitis, “Comparative eval-
uation of virtual and augmented reality for teaching mathematics
in primary education,” Education and Information Technologies,
vol. 1, 2020. [Online]. Available: https://www.springerprofes-
sional.de/en/comparative-evaluation-of-virtual-and-augmented-
reality-for-teac/17028588.

Inga Titchiev1,6, Olesea Caftanatov2, Received May 23, 2023
Veronica Iamandi3, Dan Talambuta4, Revised June 20, 2023
Daniela Caganovschi5 Accepted June 27, 2023

1,2,3,4Vladimir Andrunachievici Institute of Mathematics
and Computer Science, SUM
5, Academiei street, Chisinau, Republic of Moldova, MD 2028
1ORCID: https://orcid.org/0000-0002-0819-0414
E–mail: inga.titchiev@math.md
2ORCID: https://orcid.org/0000-0003-1482-9701
E–mail: olesea.caftanatov@math.md
3ORCID: https://orcid.org/0000-0001-6827-1278
E–mail: veronica.gisca@gmail.com
4ORCID: https://orcid.org/0009-0008-7742-8597
E–mail: dantalambuta@gmail.com
5ORCID: https://orcid.org/0009-0002-3779-5129
State University of Moldova
Alexei Mateevici 60, str
E–mail: dana.caganovschi@gmail.com
6 Ion Creanga State Pedagogical University of Chisinau

271

Computer Science Journal of Moldova, vol.31, no.2(92), 2023

PN2Maude: An automatic tool to generate
Maude specification for Petri net models

Ammar Boucherit Messaoud Abbas
Mohammed Lamine Lamouri Osman Hasan

Abstract
Currently, Model-Driven Engineering (MDE) plays a key role

in the software development process as it aims to handle their
increasing complexity and focuses on the automatic generation
of code and/or specifications from system models. This paper
presents a very useful tool for the automatic generation of Maude
specifications from both Petri net PNML (Petri Net Markup Lan-
guage) descriptions or incidence matrices. At the end of this pa-
per, a simple but complete Petri net example will be presented
to demonstrate the usefulness of the developed tool.

Keywords: Maude, Rewriting Logic, Petri Nets, Code Gen-
eration.

MSC 2020: 68N30, 68Q60.
ACM CCS 2020: Grammars and Other Rewriting Systems,

Formal Languages.

1 Introduction
Nowadays, computer systems have become more and more indispens-
able not only in the industrial field, telecommunication, and energy
production but in almost all areas of our daily life. On the other hand,
because of the increasing complexity and the involvement of several
heterogeneous and distributed components interactions in these sys-
tems, they are also responsible for an ever-increasing number of errors
of varying severity. Therefore, it becomes necessary that the develop-
ment of software systems should be based on powerful modeling for-
malisms facilitating the analysis and verification of these systems before

©2023 by Computer Science Journal of Moldova
doi:10.56415/csjm.v31.14

272

https://doi.org/10.56415/csjm.v31.14

PN2Maude: Maude specification for Petri net models …

their actual implementation. Moreover, since graphical modeling tech-
niques are of increasing interest, formal approaches accompanied with
a graphical representation are becoming more interesting.

Petri nets [1] have been widely used as a graphical and semi-
formal tool for specification and analysis of concurrent and complex
systems [2], [3]. They are gaining more popularity in recent years since
they allow an easy structural and behavioral description of studied
systems [4], [5]. Due to their popularity, a large number of tools have
been developed for editing, modeling, and analyzing Petri net model’s
properties [6]. However, the lack of interoperability between such tools,
manual preparation, and ad hoc validation of system specifications rep-
resent some of their major shortcomings.

In this context, rewriting logic is a very expressive logic that is
particularly suitable for formalizing concurrent, complex, and real-time
systems [7]. In addition, it is a unifying framework for a wide range
of Petri nets [8] and many other concurrency models [9]. Nevertheless,
specifications based on the rewriting logic of Petri net-based systems
are often voluminous and/or more difficult to refine or correct. Hence,
it is necessary to automate such an operation to save time and avoid
errors in the process of writing (preparing) specifications.

Model-Driven Engineering (MDE) is known as a promising solution
to handle the increasing complexity of software architecture through
the automatic generation of code and/or specification from system
models. In fact, it helps the designer to integrate formal specifica-
tion and verification techniques at earlier stages in the software devel-
opment life-cycle. Therefore, looking for a solution integrating MDE
technologies and allowing system designers to quickly, easily, and au-
tomatically generate formal specifications of Petri nets are expected to
be very advantageous. In addition, we believe that the use of standard
input format like the Petri Net Markup Language (PNML) and/or in-
cidence matrices will enlarge the usefulness of this solution and allows
designers to use Petri net tools while preparing their system models.

The main objective of this work is to present a tool (PN2Maude)
that offers a simple and quick way for Maude practitioners to automat-
ically generate the specification for their Petri net models from both
PNML description and incidence matrices. Once the Maude specifi-

273

A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

cation of a Petri net is generated, designers can then use the Maude
LTL model checker or Maude reachability tool to analyze and verify its
behavioral properties. This can greatly simplify the process of mod-
eling and verifying concurrent and distributed systems and can help
to ensure their correctness and reliability. In fact, this tool is an en-
hancement and extension of our previous work [10], in which we have
proposed an algorithm for the automatic generation of Maude speci-
fication based only on the existing rewriting logic semantics by using
incidence matrices for pure Petri nets without inhibitor arcs.

The remainder of this paper is structured as follows. In Section
2, we give a brief introduction to the Petri nets descriptions and the
classical and improved semantics based on the rewriting logic for Petri
nets. Section 3 discusses related works and is followed by Section 4
that presents a brief description of the process of translating the PNML
Petri net description into rewriting logic as well as the structure of the
tool PN2Maude and its main modules. In Section 5, we present the
PN2Maude tool with a simple illustrative example. Finally, Section 6
concludes the paper and draws some perspectives.

2 Preliminaries

2.1 Petri nets Descriptions

Petri nets are typically regarded as one of the widely used modeling
tools for the specification and analysis of concurrent and distributed
systems. A Petri net can be viewed as a directed bipartite graph, in
which arcs are labeled with their corresponding weights and connect
nodes from different types. While the first type of nodes represents
events, and they are depicted by rectangles or bars (called, Transitions),
the second ones represent conditions or objects, and they are depicted
by circles (called, Places). Places may contain a discrete number of dots
(called, Tokens). Figure 1 below shows a simple Petri net consisting of
four places and four transitions.

The distribution of tokens over the Petri net places represents its
configuration and is called a marking. A particular transition t is en-
abled if all its input places (places leading to that transition) contain

274

PN2Maude: Maude specification for Petri net models …

sufficient tokens. Thereafter, an enabled transition t may be uncondi-
tionally fired, and, therefore, it changes the Petri net marking.

Practically, one can distinguish two sets of places for a transition t:

• pre-set(t): is composed of the input places of t, also referred to
as •t. For instance, in our example of Petri net, the pre-set(T4)=
{P3, P4}.

• post-set(t): is composed of the output places of t, also denoted
by t•. Consequently, the post-set(T4)= {P1}.

Accordingly, a tuple (p,t) is called a self-loop if p belongs to both the
pre-set(t) and post-set(t). Accordingly, a Petri net that does not con-
tain any self-loop is called pure. In addition, a transition that does not
have any input place is called a source transition, and a transition that
does not have any output place is called a sink transition. Moreover,
a particular kind of arcs is called inhibitor arcs which is denoted by
an arc with a small circle attached to a transition. Such kind of arcs
is generally used for tests and does not consume tokens after firing.
A transition connected by an inhibitor arc with a place will only be
enabled if such a place contains fewer tokens than the weight of the
inhibitor arc. Figure 1 gives an example of a Petri net.

Figure 1. Example of Petri net

2.1.1 Matrix Representation

The easiest mathematical way to represent the structure of a Petri net
with N places and M transitions is by using matrix representation. Be-
sides the fact that matrices can provide an alternative way to describe

275

A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

Petri nets from conventional graphical representation, one of the main
motivations for this representation is that it facilitates mathematical
analysis of the behavior and properties of Petri nets, such as deadlock
and liveliness. The three main types of matrices used for Petri net
representation are given as follows:

• PRE-Matrix (Input matrix): It is a matrix (N,M) that captures
all the input places to all transitions. An element of matrix (N,M)
equals the weight of the arc linking a place pi to the transition
tj if it exists and 0 otherwise. The PRE-Matrix may contain
negative values in some particular cases, such as the Petri net
with inhibitor arcs, to reflect the weights of the inhibitor arcs
and to distinguish them from ordinary arcs.

• POST-Matrix (Output matrix): It is a matrix (N,M) that cap-
tures all the input places to all transitions. An element of matrix
(N,M) equals the weight of the arc linking the transition tj to a
place pi if it exists and 0 otherwise.

• INC-Matrix (Incidence matrix): It basically represents POST-
Matrix - PRE-Matrix. It can only be used for pure Petri nets.
Otherwise, the static structure of a non-pure Petri net will not be
properly described, and, in that case, POST-Matrix and PRE-
Matrix have to be used instead.

For example, the Petri net in Figure 1 can be specified in matrix rep-
resentation as follows:

PRE

2 0 0 0
0 1 2 0
0 0 0 1
0 0 0 1

 POST

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 INC

−2 0 0 1
1 −1 −2 0
0 1 0 −1
0 0 1 −1

 (1)

In these matrices, each row represents a place, and each column rep-
resents an input or output of a transition. The values in the matrix
represent the number of tokens that are either consumed or produced
by transitions, i.e., a positive value in the matrix represents tokens be-
ing produced, while a negative value represents tokens being consumed.

276

PN2Maude: Maude specification for Petri net models …

2.1.2 PNML Description

The Petri Net Markup Language (PNML) is a standardized XML-
based description of Petri net models. Indeed, a PNML description
(see Figure 2) is generally made up of a set of main nodes such as
“Place”, “Transition” and “Arcs” to describe the structure of a Petri
net in the form of a labeled directed graph. In addition, PNML provides
a universal interchange file format between various Petri net tools and
a common language that allows users and developers to interchange
Petri nets, which enables them to reuse models and integrate tools in
the analysis of complex systems. Practically, there are many tools, such
as WoPeD [11], P3 [12], and PIPE [13], that are capable of exporting
the Petri net model in the PNML format.

Figure 2. Example of the structure of a PNML description

As can be seen, the Petri net components are specified in detail
with three nodes. For instance, the three attributes id (identifier),
name, and initial marking are used to define a place (see node
<place id = ... > ... </place>). A transition is also described
with three attributes, id (identifier), name, and timed, a boolean at-
tribute that determines whether the transition is timed or not (see

277

A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

node <transition id = ... > ... </transition>). Lastly, the at-
tributes id, inscription, and type are used to describe an arc (see
node <arc id = ... > ... </arc>). The source and target of the
arc are identified by the id attribute. The weight of the arc is written
in the inscription. The type indicates whether the arc is normal or
inhibitor.

2.2 Petri nets and Rewriting Logic

Since 1990, rewriting logic [14] has appeared as a promising logical
and semantic framework within which Petri nets [8] and many other
different concurrent systems and logics can be naturally specified [15].
Maude system is an implementation of rewriting logic that offers a
powerful verification toolkit so that Maude’s reachability analysis and
model-checking can be used to formally analyze and verify the Petri
net models with respect to different LTL properties [16].

Usually, a Maude specification is composed of a functional module
and/or a system module. While the functional module describes the
static part of a system by an equational theory, the dynamic part is
described by a set of rewrite rules and, possibly, equations in a system
module.

In the first proposed rewriting logic-based semantics for Petri nets
[8], there are two main types (Sorts), Place and Marking). The
Marking is a multiset of Place as it represents the distributions of
tokens over the Petri net. In addition, the names of places are used
to represent token instances. Moreover, each Petri net transition is
expressed with a rewrite rule as follows: [t] => [t'], where:

• [t] and [t']: are terms that represent a part of the global mark-
ing of the Petri net and describing the input and output of a
transition, respectively.

• => : describes the change to be made while firing a transition
([t] and [t'] are the parts to be consumed and produced, re-
spectively).

Therefore, the Maude specification of Petri net in Figure 1 is given
in Listing 1.

278

PN2Maude: Maude specification for Petri net models …

Listing 1. First Maude specification

In this context, it is worth noting that there is another enhanced
rewriting logic-based semantics [17], [18] for Petri nets, and, therefore,
the corresponding specification of our Petri net is given in Listing 2.

Listing 2. Second Maude specification

As can be seen, our Petri net has four places, P1, P2, P3, P4
and four transitions, T1, T2, T3, and T4. In addition, in Listing 1
(respectively, Listing 2), there are two modules.

While the first is a functional module that describes the static part
of the Petri net, the second is a system module that describes the
dynamic part of the Petri net.

279

A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

However, the new semantics differs from the existing one in that
it encodes the sets of tokens in a place by their cardinality, which
allows for the natural expression of various high-level Petri nets such as
Petri nets with inhibitor arcs, variable arc weights, colored Petri nets,
etc. Additionally, the new semantics facilitates the expression and then
checking of behavioral properties such as boundedness, Deadlock, and
conservation by using the Maude LTL model checker.

2.3 XSLT Transformation

XSLT is a technology that transforms information from an XML doc-
ument to another type of document, such as XML, HTML, XHTML,
WML, PDF, etc. The process of transformation is mainly based on
an XSLT document, called stylesheet, which is an XML format file
that contains the information needed by the processor to perform the
transformation. Practically, an XSLT Stylesheet is associated with an
XML-based document in order to create a resulting document of a dif-
ferent or identical format. This principle is illustrated in Figure 3.

Figure 3. XSLT transformation principle

In the present work, XSLT functions and operators are used to
navigate, select nodes from an PNML document, and then generate a
purified file (see Figure 5(b)) that contains five blocks describing the set
of Petri net places, transitions, and arcs. The purified file is thereafter

280

PN2Maude: Maude specification for Petri net models …

used for the generation of Petri net matrix description.

3 Related Works

Petri nets have been widely used for modeling and simulation of dis-
tributed and concurrent systems, including communication protocols
and synchronization between system components. Unfortunately, most
Petri net tools are rarely accompanied by model-checking algorithms.
Therefore, Petri net models are often translated into other specific lan-
guages for formal analysis purposes [19], [20]. For instance, in [21],
authors presented a transcription tool from Petri net to PLC program-
ming languages. The tool makes the translation process more efficient
and less error-prone and allows for greater flexibility in system design.
Besides the translation process, the program supports stepwise simu-
lation of the Petri net model, allowing for error-checking during the
development. According to the authors, the proposed tool can be use-
ful for dynamic integration projects by providing a more efficient and
reliable process of design and implementation. In addition, in [22],
PetriNet2NuSMV, a tool for the automatic translation of reachability
graphs for colored Petri nets and place-transition Petri nets into the
NuSMV language, was introduced by the authors. The reachability
graphs used as input for this tool are those generated by the TINA and
CPN Tools software. This tool allows the formal verification of Petri
nets designed with these environments using model-checking techniques
for LTL and CTL temporal logics.

In this context, Maude is a very powerful system for which some
works have been realized for the transformation of Petri nets [8], [23].
However, very few works have been reported on the automatic trans-
lation of Petri nets into Maude. For instance, a tool for the editing,
simulation, and analysis of a special extension of Petri nets, so-called
ECATNets (Extended Concurrent Algebraic Terms Nets), is presented
in [24]. Similarly, a graphic tool allowing a bidirectional translation of
colored Petri nets to Maude and vice versa is reported in [25]. Then, a
graph transformation-based approach is proposed in [26] for the auto-
matic generation of ECATNets specification in Maude for simulation
and analysis purposes.

281

A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

Moreover, to the best of our knowledge, all the existing works are
related to some extension of Petri nets (ECATNets and Colored Petri
nets) and their authors did not give any details about the generation
algorithm for their approaches, and none of them had made the pre-
sented tool available for users, which made the use of such tools too
limited.

In addition, the most closely related work is that presented in [10],
where authors have proposed an algorithm for the automatic generation
of Maude specification based on the existing semantics of Petri nets.
However, this work is limited to pure Petri nets without supporting
inhibitor arcs.

Finally, the main advantage of the present work over the latter one
is that now we generate Maude specification based on both existing
and improved semantics to provide a large and solid theoretical basis
and thus facilitate the simulation and formal analysis of Petri nets with
inhibitor arcs using the Maude system analysis tools.

4 The Translation Approach

This section provides an overview about the proposed approach for
translating PNML description into the Maude specification. The tool
PN2Maude, developed based on this approach is accessible for users 1.

4.1 Overview of the Process

The following Figure 4 shows a general description of the developed
tool.

The main idea behind the PN2Maude tool is to generate Maude
specification in six steps as follows:

1. Create a Petri net model and export it as a PNML file, or use
incidence matrices and pass it to Step 5.

2. Translate the importation of the PNML file. . The current ver-
sion of PNML2Maude supports Petri nets with inhibitor arcs and

1PN2Maude is available at: https://drive.google.com/file/d/
1I2DeysLPZzK5i-0sWtFdlPCuShc_0DqV

282

https://drive.google.com/file/d/1I2DeysLPZzK5i-0sWtFdlPCuShc_0DqV
https://drive.google.com/file/d/1I2DeysLPZzK5i-0sWtFdlPCuShc_0DqV

PN2Maude: Maude specification for Petri net models …

Figure 4. General Description of PN2Maude Tool
is exported by PIPE or P3 tools.

3. Extract data and values from the PNML file and create a purified
file (PF) using XSLT.

4. Create incidence matrices from PF.

5. Start translation by using incidence matrices and Maude specifi-
cation templates.

6. Export the generated specification into the Maude file.

4.2 Details of the transformation Process

There are two primary steps in the process of generating a Maude
specification from a Petri net description. The first one deals with
creating the incidence matrice from a PNML file, while the second one
focuses on creating a Maude specification for a Petri net using the
incidence matrices. The subsections that follow provide more details
on these two steps.

283

A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

4.2.1 From the PNML file to the incidence matrices

As we have previously noted, a PNML file typically contains informa-
tion about the places, transitions, arcs, and other elements of the Petri
net, which can be used to construct the incidence matrix. Therefore,
the process of obtaining matrices from a PNML file (exported from
the P3 or PIPE tools) is based on the use of XSLT language and goes
through the following steps:

1. Purification: It allows extracting more or less essential informa-
tion, such as Petri net places, transitions, arcs as well as the
initial marking in order to facilitate the operation of creating
the incidence matrices. Figure 5(a)) shows the XSLT code de-
veloped to navigate and select the essential nodes describing the
Petri net from the input PNML file. Subsequently and in or-
der to facilitate the creation of PRE and POST matrices, these
nodes (see Figure 5(b))) are organized into five blocks describing
lists of places with their initial markings, transitions, input arcs,
inhibiting arcs, and out arcs, respectively.

2. Creation of matrices: This operation is based on the previous
operation, where the purified file is manipulated to create and
fill in the incidence matrices. This step can be summarized as
follows:

i. The number of lines (N) of Block 1 (list of places) represents
the number of lines for the incidence matrices, and the num-
ber of lines (M) of Block 2 (list of transitions) represents the
number of columns for the incidence matrices.

ii. The elements of the incidence matrices are filled from Blocks
3, 4, and 5.

284

PN
2M

aude:
M
aude

specification
for

Petrinet
m
odels

…

Figure 5. XSLT Code and Purified File with Blocs Description

285

A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

4.2.2 From incidence matrices to Maude Specification

The principle of generating Maude specifications from incidence matri-
ces can be summarized in the following steps:

i. The number of rewrite rules is equal to the number of transitions
of the Petri net (number of columns in the incidence matrices).

ii. A rewrite rule is made to describe the firing of a transition. This
rule may often be conditional to describe the enabling condi-
tion for such a transition, especially in the enhanced semantics.
Therefore, such a rule is given as follows:
crl[Label] : <Left_hand_side> => <Right_hand_side> if Cond .

– Label: a given name to represent the transition.
– Left-Hand-Side: the left part of the rule (LHS), which de-

scribes the marking of the Petri net before firing.
– Right-Hand-Side: the right part of the rule (RHS), which

describes the marking of the Petri net after firing.
– Cond: a logical expression represents the enabling condition

of the transition and is picked up from the PRE-Matrix.

iii. Each transition is represented by one column in both PRE-Matrix
and POST-Matrix. Therefore, some special cases can be deter-
mined as follows:

– Source Transition: It is a transition that has columns
with null values in the PRE-Matrix.

– Sink Transition: It is a transition that has columns with
null values in the POST-Matrix.

– Transition with inhibitor arcs: This transition must
have negative values in the PRE-Matrix.

– Normal Transition: It is a transition that is not source,
sink, or with inhibitor arcs.

We recapitulate the Maude specification — by using the existing and
improved semantics — of the different possible cases of a Petri net
transition in Table 1.

286

PN
2M

aude:
M
aude

specification
for

Petrinet
m
odels

…

Table 1. Maude specification of different Petri net Transitions Cases (Continue)

287

A
.B

oucherit,M
.A

bbas,M
.L.Lam

ouri,O
.H

asan

Table 1. Maude specification of different Petri net Transitions Cases

288

PN2Maude: Maude specification for Petri net models …

4.3 Generation Algorithm

As stated previously, the process of generating a Maude specification
of a Petri net is based on its mathematical description or PNML. The
general algorithm illustrating the generation process is given as follows
in the Listing 3.

Algorithm 1 Automatic Generation of Maude Specifications (Existing
and Improved semantics)
Inputs: XML File : Petri net PNML description

PRE(N,M) : Input incidence Matrix
POST(N,M) : Output incidence Matrix
Maude_Spec : Maude specification Templates
XSLT_Code : XSLT Stylesheet

Outputs: Maude Specification 1 : Existing semantics specification
Maude Specification 2 : Improved semantics specification

Uses: MSXSL : Microsoft Command Line XSL Transformation
Begin

1: if (User_Choice = Import_PNML_File) then
2: Select_and_Import_PNML_File
3: Create_PF_Import_PNML_File . PF : is the purified file
4: Automatic_Fill_matrices (PRE(N,M),POST(N,M)) . filling

PRE-Matrix and POST-Matrix
5: else
6: Fill_PRE_Matrix(PRE(N,M))
7: Fill_POST_Matrix(POST(N,M))
8: end if
9: NB_Rules ←M . M : number of columns of incidence matrices = number of

transitions
10: for (each semantics_template) do . templates for existing and improved

semantics
11: for (j ← 1 to NB_Rules) do
12: TType← Get_Transition_Type(j, PRE_Matrix, POST_Matrix) .

source, sink, inhibitor or normal tansition
13: RewriteRule← Generate_Rule(j, TType)
14: Insert_Rule(semantics_template, RewriteRule)
15: end for
16: end for

End

Listing 3. First Maude specification

289

A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

5 Presentation of the PN2Maude tool

PN2Maude is developed using the Delphi 7 language, which is a
strongly typed language that supports the structured and object-
oriented design, allowing rapid application development (RAD) run-
ning on Windows. In practice, the declarative programming language
XSLT has been used to purify a PNML file and extract only the infor-
mation necessary for the transformation and save it in the file purify
(PF). This file is then used to create the incidence matrices, which will
be used in the process of generating the Maude specification. The latter
can be saved in a Maude file. On the one hand, we have used MSXSL,
which is Microsoft’s free command-line XSLT processor for perform-
ing XSL transformations. In the next subsections, we will present the
PN2Maude interface windows with a case study for the following Petri
net (see Figure 6).

Figure 6. Example of Petri net (Case study)

5.1 Main Interface Window

The main interface window of PN2Maude tool is given in the following
Figure 7).

290

PN2Maude: Maude specification for Petri net models …

Figure 7. Main Interface Window of PN2Maude Tool

5.2 Using Incidence Matrices choice Interface Window

To introduce the Petri net, one can use the choice of “using incidence
matrices” as shown in Figure 8.

Figure 8. PN2Maude Interface Window for Using Incidence Matrices

5.3 Using PNML File choice Interface Window

The same Petri net may be introduced via a PNML file if it is edited by
a Petri net tool, such as PIPE or P3. Therefore, the interface window

291

A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

for importing a PNML file is given in Figure 9).

Figure 9. PN2Maude Interface Window for Importing PNML File

5.4 Generated Specification Interface Window

Figure 10 shows the interface window with the generated specification.

Figure 10. PN2Maude Interface for the generated Specifications

292

PN2Maude: Maude specification for Petri net models …

6 Conclusion and Future Work

In this paper, we presented PN2Maude, which is a developed tool for
the automatic generation of the Maude specification for a Petri net fol-
lowing the existing and improved semantics based on its mathematical
or PNML descriptions. We intend — in the near future — to include a
Petri net editor within PN2Maude in order to facilitate the process of
Petri net-based modeling for developers and users of our tool. In addi-
tion, we aim to develop a web version of PN2Maude and/or a plug-in
for Eclipse in order to ensure its wide distribution for users.

References

[1] W. Reisig and G. Rozenberg, Carl Adam Petri: Ideas, Personality,
Impact. Springer, 2019.

[2] E. Huang, L. F. McGinnis, and S. W. Mitchell, “Verifying sysml
activity diagrams using formal transformation to petri nets,” Sys-
tems Engineering, vol. 23, no. 1, pp. 118–135, 2020.

[3] P. Singh and L. Singh, “Verification of safety critical and con-
trol systems of nuclear power plants using petri nets,” Annals of
Nuclear Energy, vol. 132, pp. 584–592, 2019.

[4] D. Buchs, S. Klikovits, and A. Linard, “Petri nets: A formal
language to specify and verify concurrent non-deterministic event
systems,” in Foundations of Multi-Paradigm Modelling for Cyber-
Physical Systems. Springer, 2020, pp. 177–208.

[5] J. Dong, J. Jiao, H. Xia, and J. Chu, “Safety simulation and
analysis for complex systems concurrency based on petri net and
stateflow model,” in 2019 Annual Reliability and Maintainability
Symposium (RAMS). IEEE, 2019, pp. 1–7.

[6] W. J. Thong and M. Ameedeen, “A survey of petri net tools,” in
Advanced Computer and Communication Engineering Technology.
Springer, 2015, pp. 537–551.

293

A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

[7] M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña, “Exploring
conditional rewriting logic computations,” Journal of Symbolic
Computation, vol. 69, pp. 3–39, 2015.

[8] M.-O. Stehr, J. Meseguer, and P. C. Ölveczky, “Rewriting logic
as a unifying framework for petri nets,” in Unifying Petri Nets.
Springer, 2001, pp. 250–303.

[9] J. Meseguer, “Conditional rewriting logic as a unified model of
concurrency,” Theoretical computer science, vol. 96, no. 1, pp.
73–155, 1992.

[10] A. Boucherit, A. Khababa, and L. M. Castro, “Automatic gen-
erating algorithm of rewriting logic specification for multi-agent
system models based on petri nets,” Multiagent and Grid Systems,
vol. 14, no. 4, pp. 403–418, 2018.

[11] T. Freytag, “Woped–workflow petri net designer,” University of
Cooperative Education, pp. 279–282, 2005.

[12] D. Gasevic and V. Devedzic, “Software support for teaching petri
nets: P3,” in Proceedings 3rd IEEE International Conference on
Advanced Technologies. IEEE, 2003, pp. 300–301.

[13] P. Bonet, C. M. Lladó, R. Puijaner, and W. J. Knottenbelt, “Pipe
v2. 5: A petri net tool for performance modelling,” in Proc. 23rd
Latin American Conference on Informatics (CLEI 2007), 2007.

[14] J. Meseguer, “Rewriting as a unified model of concurrency,” in
International Conference on Concurrency Theory. Springer, 1990,
pp. 384–400.

[15] ——, “Twenty years of rewriting logic,” The Journal of Logic and
Algebraic Programming, vol. 81, no. 7-8, pp. 721–781, 2012.

[16] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martí-
Oliet, J. Meseguer, R. Rubio, and C. Talcott, “Maude manual
(version 3.0),” SRI International–University of Illinois at Urbana-
Champaign. URL: http://maude. cs. uiuc. edu, 2019.

294

PN2Maude: Maude specification for Petri net models …

[17] A. Boucherit, K. Barkaoui, and O. Hasan, “An enhanced rewrit-
ing logic based semantics for high-level petri nets,” in The Inter-
national Workshop on Petri Nets and Software Engineering 2021
co-located with the 42nd International Conference on Application
and Theory of Petri Nets and Concurrency (PETRI NETS 2021),
2021.

[18] A. Boucherit, L. M. Castro, A. Khababa, and O. Hasan, “Petri
net and rewriting logic based formal analysis of multi-agent based
safety-critical systems,” Multiagent and Grid Systems, vol. 16,
no. 1, pp. 47–66, 2020.

[19] K. Korenblat, O. Grumberg, and S. Katz, “Translations between
textual transition systems and petri nets,” in International Con-
ference on Integrated Formal Methods. Springer, 2002, pp.
339–359.

[20] O. R. Ribeiro and J. M. Fernandes, “Translating synchronous petri
nets into promela for verifying behavioural properties,” in Indus-
trial Embedded Systems, 2007. SIES’07. International Symposium
on. IEEE, 2007, pp. 266–273.

[21] A. T. F. de Mello, M. C. Barbosa, D. J. dos Santos Filho, P. E.
Miyagi, and F. Junqueira, “A transcription tool from petri net
to clp programming languages,” in ABCM Symposium Series in
Mechatronics—Vol. 5, Section IV—Industrial Informatics, Dis-
crete and Hybrid Systems, 2012.

[22] M. Szpyrka, A. Biernacka, and J. Biernacki, “Methods of transla-
tion of petri nets to nusmv language.” in CS&P, 2014, pp. 245–256.

[23] L. J. Steggles, “Rewriting logic and elan: prototyping tools for
petri nets with time,” in International Conference on Application
and Theory of Petri Nets. Springer, 2001, pp. 363–381.

[24] N. Boudiaf, A. Chaoui, and H. Bakha, “A rewriting logic based
tool for ECATNet’s analysis: Edition and simulation steps de-
scription,” European Journal of Scientific Research, vol. 6, no. 2,
pp. 16–27, 2005.

295

A. Boucherit, M. Abbas, M.L. Lamouri, O. Hasan

[25] N. Boudiaf and A. Djebbar, “Towards an automatic translation
of colored petri nets to maude language,” International Journal
of Computer Science & Engineering, vol. 3, no. 1, pp. 1078–1083,
2009.

[26] E. Kerkouche and A. Chaou, “A graphical tool support to process
and simulate ecatnets models based on meta-modelling and graph
grammars,” INFOCOMP, vol. 8, no. 4, pp. 37–44, 2009.

Ammar Boucherit, Messaoud Abbas, Received April 17, 2023
Mohammed Lamine Lamouri, Revised June 15, 2023
Osman Hasan Accepted June 15, 2023

Ammar Boucherit1, Messaoud Abbas2, Mohammed Lamine Lamouri3
1,2,3LIAP Laboratory, University of El Oued,

PO Box 789, El Oued 39000, Algeria
1ORCID: https://orcid.org/0000-0002-1617-0050
E–mail: ammar-boucherit@univ-eloued.dz
2ORCID: https://orcid.org/0000-0002-7998-9020
E–mail: messaoud-abbas@univ-eloued.dz
3ORCID: https://orcid.org/0000-0002-1074-624X
E–mail: lamouri-mohamedlamine@univ-eloued.dz

Osman Hasan
ORCID: https://orcid.org/0000-0003-2562-2669
SEECS, National University of Sciences and Technology (NUST),
Islamabad, Pakistan
E–mail: osman.hasan@seecs.nust.edu.pk

296

	v31-n2-(pp143-168)
	Introduction
	Methods
	Web-Crawler
	Principal Component Analysis
	PCA Metrics for Identifying Key Players
	Key Player Removal

	Results and Discussion
	Conclusion

	v31-n2-(pp169-182)
	Introduction
	Bounds and Properties
	Nordhaus-Gaddum type results

	v31-n2-(pp183-199)
	Introduction
	Related Work
	Hashing Functions: ‘good’ or ‘bad’
	The effect of the prime ‘p’ on the performance of H1 Class of Hashing Functions
	Exhaustive Performance Study of Hashing Functions

	Results and Discussion
	Conclusions

	v31-n2-(pp200-216)
	Introduction
	Material and Methods
	Data collection and preparation
	Implementation details of CNN models
	Performance evaluation of CNN models

	Results and Discussion
	Conclusion

	v31-n2-(pp217-247)
	Introduction
	Illustrative example
	State of the art
	Categories of patch generation techniques
	Heuristic-based repair techniques
	Template-based repair Techniques
	Constraint-based repair techniques
	Learning-based repair techniques

	The ASTOR tool

	Approach
	Improvements

	Results
	Limitation

	Conclusion
	Funding

	v31-n2-(pp248-271)
	Introduction
	The emergence of Augmented reality
	Types of augmented reality
	Marker-Based approach
	Markerless Augmented Reality

	Learning styles
	Distinct characteristics of learning styles

	Augmented Reality in Mathematics Education
	Implementation of scenarios in the AR Tool specific to a certain learning style
	Scenarios for visual learners
	Scenarios for auditory learners
	Scenarios for kinesthetic learners
	Evaluation

	Conclusion

	v31-n2-(pp272-296)
	Introduction
	Preliminaries
	Petri nets Descriptions
	Matrix Representation
	PNML Description

	Petri nets and Rewriting Logic
	XSLT Transformation

	Related Works
	The Translation Approach
	Overview of the Process
	Details of the transformation Process
	From the PNML file to the incidence matrices
	From incidence matrices to Maude Specification

	Generation Algorithm

	Presentation of the PN2Maude tool
	Main Interface Window
	Using Incidence Matrices choice Interface Window
	Using PNML File choice Interface Window
	Generated Specification Interface Window

	Conclusion and Future Work

