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Abstract

A new type of structures called “universes” is introduced to
subsume the “von Neumann universe”, “Grothendieck universes”
and “universes of discourse” of various theories. Theories are
also treated as universes, “universes of ideas”, where “idea” is a
common term for assertions and terms. A dualism between in-
duction and deduction and their treatment on a common basis
is provided. The described approach referenced as “universics”
is expected to be useful for metamathematical analysis and to
serve as a foundation for mathematics. As a motivation for this
research served the Harvey Friedman’s desideratum to develop a
foundational theory based on “induction construction”, possibly
comprising set theory. This desideratum emerged due to “foun-
dational incompleteness” of set theory. The main results of this
paper are an explication of the notion “foundational complete-
ness”, and a generalization of well-founded-ness.
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1 Introduction

“Universics” is the term used by philosophers for the approach, which
presupposes the treatment of any object from the perspective of the
whole Universe, as if “the object was made in the image of the Uni-
verse”. This is a limit case of the “holistic approach”, when the “whole”
is chosen to be the “maximal whole”, i.e. “the Universe”. The term
“universics” was coined in the form of plural of modifier “universic”
(similar to “mathematics” which comes from modifier “mathematic”,
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“related to knowledge”) – a term customarily used for a feature of an
object, whereby the Universe “reflects” in the object.

The “reflection principle” in set theory states that in any universe
of discourse of a full-fledged set theory there are sets which “reflect” the
features of the universe; examples of sets which are in the image of the
von Neumann universe are Grothendieck universes. Thus, universics
is not new to set theory domain. The goal of this paper is to give
to universics the features of a mathematical discipline with its specific
methodology, in particular, manifesting as (a) treating both theories
and their universes of discourse on equal footing, as “universes”, and
(b) treating induction and deduction as dual notions.

A term which sounds to be closely correlated with “universics” is
“multiverse”, used to refer to the multitude of set theories viewed from
the perspective of their universes of discourse – a multitude, which
emerges due to various methods of constructing universes, among which
the best known is “forcing method” [1, 2]. The difference between two
approaches is that universics is a theory of separate structures called
“universes”, whereas in the approach using the term “multiverse”, all
such structures are treated as parts of a “multiverse”.

The Grothendieck universes were introduced as a foundation for
category theory – a foundation needed due to the fact, that the main
concepts of this theory cannot be expressed in terms of sets, as this is
explained next. Really, the “category of categories” is one of the key
concepts of category theory, since “functor”, “adjointness”, “natural
equivalence” and other central notions, which determine the value of
this theory, are defined proceeding from the supposition that “category
of categories” exists. But the existence of such an object presupposes
the existence of the “class of classes” – a concept which is “contradic-
tory by definition”, since no proper class can be member of another
class. Moreover, category theory uses such notions as “functor of func-
tors”, which imply existence of “proper classes of proper classes” – ob-
jects inadmissible in any set theory or class theory. Thus, since there
are mathematical concepts, which cannot be expressed or represented
in ZF set theory or NBG (von Neumann-Bernays-Godel) class theory,
these theories cannot be said to be “foundations for mathematics”.
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On the other hand, surprisingly or not, only one of the Grothendieck
universes turns out to be sufficiently rich to serve as a “foundation for
mathematics” – true, to the same extent as set theory is, that is, as
an “incomplete foundation”. Merely this fact calls to have clarified
the notion “foundational completeness” used by Harvey Friedman in
a message to the automated email list “Foundations of Mathematics”
(https://cs.nyu.edu/pipermail/fom/1997-November/000143.html). As
he wrote, set theory “does not come close to doing everything one might
demand of a foundation for mathematics” and it cannot be said to be
“foundationally complete” for mathematics. Despite that this is an
intuitively clear notion, Friedman mentions that he does not know how
to define it. In universics this term will obtain a natural explication
and this is one of the main results of this paper.

In addition to the strong conceptual arguments mentioned above
to support the statement that set theory is foundationally incomplete
for mathematics, there are reasons supporting the thesis that set the-
ory is also foundationally incomplete for informatics (here, the term
“informatics” is used to reference mainly the “data structures” used
in computer science). Namely, set theory is too poor for representing
the data structures used in informatics. On the other hand, no argu-
ments were found in favor of the thesis that category theory, founded
on Grothendieck universes, or just these universes alone may be foun-
dationally incomplete. Therefore, a theory of universes, among which
are also the Grothendieck universes, can be expected to be a founda-
tionally complete theory. Based on this thesis, the axiomatic system
of universics introduced in this paper is expected to be of good service
to both mathematicians and computer scientists.

As an informal theory, universics was developed in [3, 4], where
“universes” were treated as the largest structures, similarly to how
the proper classes called “universes” are treated in set theory. There
are, though, two major differences between set theory and universics,
namely: (a) set theory studies conceptions which are obtained by ab-
straction from any kind of order, but the “universes”, about which
universics discusses, are structures; universics is a “structuralist” the-
ory, (b) set theory studies “small scale” universes (see section 2.), but
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universics studies any structures, even though it could be said to be fo-
cused on “large scale” universes. The first attempt to present universics
as a framework of axiomatic theories was undertaken in [5].

In papers [3] and [4], any structure was considered built by repet-
itive application of three operations, called “aggregation”, “associa-
tion”, “atomification” – operations for building sets, ordered pairs and
atoms, respectively. The reason for the choice of these notions as a
starting point in building a foundational theory is the belief that the
notions “set”, “ordered pair” and “atom” are sufficient to serve as a
“conceptual orthogonal basis” for a universe of concepts. This concep-
tuality is intended to describe the “fabric” of a universe, and could be
called “small scale universics”. The current paper presents a theory of
structures called “universes”, which can be called “large scale univer-
sics”. Since the “fabric” of a universe is irrelevant here, any knowledge
of [3, 4] is not required for understanding the current paper.

2 On the terminology and conceptuality used

in metamathematics

The terms used in a meta-discourse necessarily contain an amount of
ambiguity, but one of the goals of universics is to serve as a language of
metamathematics. Therefore, this section is intended to sort out some
of the terms used in metamathematics and contribute to their precise
use. Several other terms used in metamathematics will get a precise
treatment later, when these terms will be explicated. In order that a
term needing clarification can be easily found while reading the main
text, the terms explained in this section are italicized.

A universe of discourse is correlated with a theory, which is said to
“discuss about” the entities populating this universe, but to “describe”
the universe (as a whole). The distinction between to “discuss about”
and to “describe”, is that one discusses necessarily about objects within
a “universe of discourse”, but one can describe something, which is
not in a “universe of discourse” – say, one can describe the (whole)
“universe of discourse”, informally or by (the axioms of) a theory.
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There are clearly specified universes (like Grothendieck universes),
for which no theory describing them have been presented; about these
they discuss informally. Also, the von Neumann universe was invented
as a view upon the totality of sets and only later it was found that ZF
theory extended with terms for ranks of the sets can describe it. Finally,
two theories may have the same universe of discourse. These arguments
support the treatment of the notion “universe” as a notion on its own,
prior for it to be correlated with a theory with this universe as its
“universe of discourse”. Thus, in this paper the term “universe” will
be used without necessarily being followed by the phrase “of discourse”.

The term “universe of discourse” of a theory was introduced by
George Boole (the inventor of the “algebra of logic”) and this term
turned out to be very useful in the early days of metamathematics, but
later, this term created difficulties, for example, when it was used for
a theory treated (itself) as a universe. Currently, the term “domain of
discourse” is preferred (say, a search in Wiki of the phrase “universe
of discourse” will result in an article titled “Domain of discourse”),
even though it did not replace the term “universe of discourse”, which
remains as its synonym.

In universics, the notion “universe” is treated on the same footing
as the notion “theory”, and the phrase “universe of discourse” may
create even more difficulties in forming correct expressions. But, the
term “domain of discourse” will not be used in this paper, and the term
“universe of discourse” will not create problems, since it will be used
only in proper contexts. Also, another phrase starting with particle
“of” will follow the word “universe” according the “pattern” of form-
ing the term universe of sets customarily used interchangeably with
the expression “the universe of discourse of (a) set theory”. Similarly,
the terms universe of ideas (as a generalization of “theory”), universe
of objects (for the universe described by a theory), universe of struc-

tures (for any of the previous two) will be here preferred to the longer
expressions using the phrase “of discourse”.

Fraenkel used the term “object” for the entities in a universe, and
since anything populating a universe is called “object”, the expression
“universe of objects” does not sound to be always convenient. There
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is, though, a special case, when this term is the most appropriate one,
and only this case occurs in this paper – this is when one opposes a
“universe of ideas” to a “universe of objects”. Thus, the term universe

of objects will be used here to express a meaning opposed to that of the
term universe of ideas. The totality of relationships between elements
of one of these universes with those of the other universe is called here
reflexion – a generic term for both the “interpretation” of elements of
the universe of ideas into the universe of objects, and for the inverse
relations of “naming” and “describing” the latter through the former
ones.

An example of a “universe of objects” is the totality of all the
things called “sets”, “classes”, “classes-as-many” (a term introduced
by Russel to refer to collections which reflect the plural of a noun; the
regular classes were shown to incorrectly reflect it), “multi-sets” , or
“aggregates” (a generic term introduced also by Russel seemingly for
any kind of set-like objects). Here, the term “aggregation” instead of
“aggregate“ is preferred for any “set-likes” – both because this term is
widely used in computer science, and in order to avoid confusions with
many “theories of aggregates”. Accordingly, the “universe of aggrega-
tions” refers to a universe containing any set-likes.

The term collection is commonly informally used for a notion gen-
eralizing the notions of set and of class. A collection is presupposed to
have no repeating elements, i.e. to be really a set or a class, so that the
“universe of collections” satisfies the extensionality axiom – an axiom,
which occurs in all mainstream set theories. Mathematics does not
seem to be same focused on multi-sets as it is on collections. Here, the
“universe of collections” is considered as the most important universe
for the metamathematics of the foundations of mathematics. On the
other hand, the set-likes used in building data structures of informatics,
obviously, do not satisfy the extensionality axiom. Therefore, here, the
“universe of aggregations” is considered as the most important universe
for the foundations of informatics.

The term “collection” is convenient in metamathematical analysis,
especially, when the notion of “size” (see below) is irrelevant to the
topic of discussion. In set theory, a set is treated as a class which is a
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member of another class. There are also classes which are not mem-
bers of other classes, and these are called “proper classes”. Similar to
category theory, in metamathematics, the modifiers “small” and “big”
are appropriate to modify the noun “collection” in order to distinguish
between sets and proper classes in this manner: “small collection” as
synonym for “set”, “big collection” as synonym for “proper class”.

The modifiers “small” and “big” reference two values on a scale
called “size” expressed in terms of membership relation “∈”. Namely,
a “big collection” is a maximal collection within the universe of collec-
tions governed by the membership relation, and a “small collection” is
not maximal in this universe. This dimension can also be referenced
as “height/depth” (depending on the perspective from which the mem-
bership relation is viewed). Accordingly, in category theory, a category
with a big collection of objects and morphisms is said to be a “big cate-
gory”, and one with such a collection small, is called “small category”.

The universe of discourse of a set theory, let this be ZF, is a proper
class (i.e. a “big collection”), but there are also other proper classes,
and a question arises: “what singularizes the universe of discourse of
ZF among other proper classes making it a ‘universe’ ”. This question
cannot be answered in terms of “size”, as this term is used today. To
answer it, yet another dimension needs to be considered – one which
is referenced here as “extension” in this manner: a collection C will be
said to have a smaller extension than a collection D, if C ⊆ D. Notice,
that in addition to being “big” in size, the universe of discourse of ZF

has the largest extension, and this answers the question regarding what
singularizes the universe of discourse among other classes. To account
for both “size” and “extension” dimensions, in universics the terms
small scale and large scale will be used.

Finally, notice that the word “idea” is treated here as a term. No-
tice, that logicians consider the things used in a theory to be of two
kinds – “notions” and “assertions” and they use the generic term idea

for them (here, the “notions” can be – “properties”, “relations”, “func-
tions”, “operations”, etc.). A theory is also an “idea” which can be
treated as an inhabitant of a universe of ideas, and if a universe of
ideas is populated only by theories, the universe is called “universe of
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theories”. In universics, this is an important universe, without which
such notions as “foundational completeness” cannot be explicated in
precise terms.

Due to the special role of the universe of theories, certain terms like
“foundation”, “foundational”, “fundamental” which will be explicated
here, will be borrowed from it for describing (any) structure called
“universe”. In particular, the term “foundation of a theory” will be
preferred to the term “basis of a theory”. This borrowing of terms
“from above”, considering them as “more general”, will provide for
a uniform treatment of any universes and will help discover (maybe,
totally unexpectedly) similarities between apparently distant notions.

3 What is a universe?

Since the notion “universe” originates in logic (if only set theory is
considered as a chapter of logic), one can get a hint on what kind
of mathematical structure might be a universe exactly from logic, and
namely from the definition of the notion “axiomatic theory”, or shorter,
“theory”. Logicians define a theory as having a “basis” consisting of
ideas of two sorts – “basic notions” and “axioms” and consider the
other ideas of the theory as obtained either by definition or deduction.
A common term used here for basic notions and axioms is the term
“axiom”. Also, since the process of definition and the process of de-
duction are similar, the term reduction is customarily used for both
these processes. According to definition of “theory”, a theory uses two
sorts of entities – notions and assertions. But the notions can be miss-
ing from a theory, and this can be a “theory of assertions”. Similarly,
by admitting that the assertions can also miss from the theory, one
gets a “theory of notions”. Customarily, the logicians do not use such
“theories”, but nothing in this definition prevents these from being
“theories”. Any of these structures is referenced as ‘universe of ideas”.

Proceeding from the definition of the notion “theory”, and recalling
that we prefer the term “foundation” to the term “basis”, the notion
“universe” is defined here as a triple (U,F,R), where U is a collection
called support, F is a subcollection of U called foundation, and R a
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binary relation on U called reduction relation. As per usual practice
for other types of structures, a universe and its support will be denoted
and referenced by the same name or notation.

The notion defined next is not primitive, i.e. it does not occur
in definition of “universe”, but it is the same important as the no-
tion “foundation”, since it can be treated as its dual and called “co-
foundation”. But this notion is intended to serve as an explication of
a notion informallly treated in [7] and its name is taken from there.
Namely, the collection U\F (complement of F in U) is called super-

structure of the foundation F in universe U .

In this paper, the meaning of symbol turnstile “⊢” used in sequent
calculi is extended to denote the reduction relation correlating any
ideas, assertions or notions. A “universe of ideas” is treated as a simple
mathematical structure denoted as a triple (U,R, “ ⊢ ”). Moreover, the
use of turnstile symbol will be further extended to stand for arbitrary
binary relations. This complies with its use in an increasingly “generic”
manner in so called “sub-structural sequent calculi”, where this relation
is not even supposed to necessarily be reflexive and transitive.

Reduction is to be treated as a “generalization” of many relations
between different types of objects. Here, “generalization” is used within
quotation marks to emphasize that various other kinds of relations
are not really “partial cases” of reduction – they are “reducible to
reduction”. This means that reduction is a fundamental binary relation
and even “generalization”, whatever this is, must be treated in terms
of reduction.

The ideas about objects and the objects (themselves) abide in a
relationship called here “reflection”, and the supposition is made that
this relation, similar to a “homomorphism”, “projects” the same struc-
ture “universe” from ideas onto objects. Therefore, a “universe of
objects” will be considered here to be the same type of structure as
a “universe of ideas”. In this manner we came to a definition of the
notion “universe”, applicable both to theories and to (their) universes
of discourse.

One may wonder why the notion of theory is “replaced” with the
notion “universe of ideas”. Aside from getting to treat theories and
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their universes of discourse on the same footing, there are also other
benefits from this “replacement”. To illustrate this, notice that along-
side many alternative “set theories”, there is also one discipline called
“set theory” and this kind of ”theory” defies any definitions given by
logicians. The theories like “set theory” turn out to be “universes of
ideas”, with a foundation consisting of assertions generally accepted as
being about the conception “set”. Such theories are referenced here as
“informal theories”.

A remark is also in place regarding the treatment of reduction as
a binary relation. Notice, that in case of deduction, in a correlation
like “x ⊢ y”, x is a list of assertions and y is one assertion, things of
different sorts. This forces considering both the lists of assertions and
the assertions as things of one sort, “object”. Similarly, a notion is
generally reducible to a set of other notions and a “set of notions” is
of a sort different from “one notion”. This forces considering reduction
of notions also as a relation between things of the same sort, “ideas”.
The reason why reduction is treated as a relation between two things,
and not between one thing of a sort and many things of the same sort,
is that the reduction relation implicitly presupposes the existence of
a multitude of things to which one thing is reducible. It is exactly
this implicit presupposition which made possible development of an
alternative set theory to be presented in a future paper.

The symbol “⊣” symmetric to “⊢” will be also used. The formula
“x ⊣ y” is read “x is reducible to y” or “x is generated from/by y”,
and is called “direct presentation” of reduction (“direct”, because the
order of arguments in formula and in English expression coincides).
This “presentation” is more convenient in many cases. The formula
“x ⊢ y” is read “x reduces to y” or “x generates y and is called “inverse
presentation”.

As a standard notation for the property “to be a member of founda-
tion” can serve the symbol of reduction “⊢” used as a unary predicate
symbol as in expression “⊢ x” (which is regularly used in sequent cal-
culi), and symmetrically, the symbol “⊣” like this: “x ⊣”. Notice, that
the notations “x ⊢”, “ ⊣ x” have another meaning, and in order to avoid
confusions, remember for this meaning to place the argument against
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the “dash”, and not the “bar”, of the turnstile symbol. Such use of the
symbol of reduction for a unary predicate symbol shows that the prop-
erty “to be in foundation” can be intuitively treated as a “rudiment”
of the relation “to be reducible to”.

The reason why we focused in so much detail on the two presenta-
tions is due to our treatment of induction and deduction as two princi-
ples “dual” to one another, i.e. as de facto one principle governing the
two symmetrical universes – the universe of ideas and the universe of
objects. It sounds like a good practice to use the symbol “⊢” for de-
duction and its generalizations, and the symbol “⊣” for all other cases.
Also, it is not easy to remember which presentation is “direct” and
which is “inverse”, but the terms “deductive presentation” and “in-
ductive presentation” are more suggestive and will be preferred (it will
become clear later, why “inductive”). This notation practice suggests
that membership relation “∈” is treated as “dual” to deduction “in
a certain sense”, and this sense will become clear after precise terms
are introduced in the next section. Meanwhile, here are two important
classes of universes, dual to each other.

1. (V, F, “∈”), where V is the universe of discourse of a “collection
theory” (a set theory or a class theory), and F is the set of its atoms.
Call this kind of universes “collection universes”.

2. (U,F, “⊢”), where U is the set of formulas in a predicate lan-
guage, F is a subset of closed formulas from U considered as axioms,
and “⊢” is the symbol of deduction. Call this kind of universes “de-
duction universes”.

The intuitive meaning of the notion “foundation of universe” is “the
totality of all objects from which all objects in the universe can be
“built” or “deducted”, where “to build” and “to deduct” are described
as “dual” actions to one another. The set of atoms is the foundation of
a collection universe, and “the set of ‘possible axioms’, i.e. of formulas
from which the axioms for axiomatic theories can be selected” is the
foundation of the deduction universe. From this treatement it follows
that the notion of deduction universe can be treated as an explication
of an “informal theory”, since an informal theory is said to be “axioma-
tized” by an axiomatic theory, and such axiomatization is nothing else,
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but selecting a set of axioms from among the assertions considered as
“fundamental” for the conception of “set”.

Notice, that the foundation of a collection universe without atoms is
the empty set. Thus, the empty set the existence of which is required in
any set theory is to be treated as a foundation, which is “mandatory”.
This shows that even though the “universe of discourse” of set theory
is customarily said to be (just) a “class”, it is actually treated by set
theorists as a full-fledged “universe” as this notion is defined in this
paper! Here is a statement of Friedman, which sounds relevant to
this: “The viewpoint is that the empty set of set theory has a unique
unequivocal meaning independently of context”.

4 Basic notions related with universes

The first “basic notion” defined here is easier to be understood if the
reduction is denoted in its “inductive presentation”, i.e. as “⊣”.

Definition. A sub-collection X of a universe (U,F, “⊣”) is called
transitive collection in universe U , if the following condition, called
fundamentality principle, is satisfied:

(∀u, v ∈ U)((v ∈ X)&(u ⊣ v) → u ∈ X). (1)

The inductive presentation of reduction was preferred, because if
reduction is membership, then what was defined above is exactly the
well-known property for a sub-collection of a universe of sets to be
called “transitive”. In a dual presentation, this condition is a kind of
“dual modus ponens” law for a sub-collection:

(∀u, v ∈ U)((v ∈ X)&(u ⊢ v) → u ∈ X). (2)

A universe is called fundamental, if its foundation is transitive. The
mainstream collection universes, where reduction is membership, are
trivially fundamental by definition of atoms (see section 6). The non-
mainstream collection universes, like the universe of discourse of Aczel’s
set theory with the “anti-foundation” axiom, are also fundamental.
Basically, all theories of sets are fundamental, trivially or non-trivially.
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The deduction universes are “fundamental” only if condition (2) is
satisfied. Even though modus ponens is the main law in the axiomatic
theories, the “dual modus ponens” law (2) might not hold for a de-
duction universe. At this point, it is appropriate to explain this term.
Notice, that unlike the modus ponens law (also called “detachment
law”), where the consequent is “detached”, in (2) the antecedent is
“detached”, and this explains the use of the word “dual”. For compar-
ison, notice that if the subcollection X is a theory, then the (regular)
modus ponens law, which holds for the theory, looks like this:

(∀u, v ∈ U)((u ∈ X)&(u ⊢ v) → v ∈ X). (3)

The intuitive meaning of “fundamentality principle” is expressed by
this reading: “if an idea is fundamental, then another idea to which it
can be reduced is also fundamental”. This principle makes little sense
for axiomatic theories, where the axioms are already chosen as the
“fundamental ideas”, but it makes a lot of sense for informal theories.
So, the intuitive set theory is an informal theory – it is a universe of
statements among which some statements are considered as mandatory
for describing the conception “set”, i.e. are regarded as “fundamental”.
If a statement B is regarded as fundamental, and later another state-
ment A was found, such that A ⊢ B, then the fundamentality principle
prescribes to consider “fundamental” also the statement A. Thus, fun-
damentality principle can be used in development of axiomatic theories,
which “axiomatize” an informal theory.

The intersection of all transitive subcollections of U containing the
collection X is called transitive closure of X in U and is denoted as
“[X]”. This is a simple notion for collection universes, but it permits
to discuss also about deduction, and in a rather concise manner. So, if
X is the axiom set of theory, then “[X]” is the set of its theorems.

The co-universe of a universe (U,F, “ ⊣ ”) is defined as universe
(U c, F c, “ ⊣c ”), where U c = U , F c = U\F (the superstructure in
U), and “⊣c” graphically coincides with “⊢”. The universe and its
co-universe are said to be “dual” to each other. Notice, that a uni-
verse dual to a universe U is not just a universe with the symmetric
presentation, but also with the superstructure in U as its foundation.
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In a customary manner (as for example, in category theory), a “dual
notion” with prefix “co-” added to its name is defined for each notion.
The superscript “c” will be used in the denotation of a dual notion as
above in the definition of the notion “co-universe” or, for example, in
notation [X]c for the co-transitive closure of a subcollection X.

Obviously, the correlation [F ]c = [F c] takes place, which in words
sounds like this: “the co-transitive closure of the foundation is equal
to the transitive closure of the superstructure”. Therefore, [F ]c = U

and [F c] = U are two equivalent conditions. In words, both have the
meaning: “the foundation generates the universe”.

This is the right place to explain why the term “foundation” is bet-
ter than the term “basis” for a universe. In mathematics, the term
“basis” is customarily used as a synonym for “generating basis” or
“basis of generators”. Therefore, mathematicians would consider as
implied the statement that “the basis of a universe generates the uni-
verse” – a statement which in general case might be wrong! On the
other hand, the term “foundation” does not have this connotation of
“generation” and this is why it was preferred. Still, when the founda-
tion really generates the universe, like in case of an axiomatic theory,
or dually, a set theory with atoms, there is no reason to avoid using
the term “basis” for the foundation of a universe.

The notions as direct product, homomorphic image, etc. for uni-
verses are defined in the customary manner, but since these are not
used in this paper, they will not be formulated here. The only notion
in addition to those already introduced which is needed here is that
of a “sub-universe” and this is defined here like this: a universe U is
said to be a sub-universe of the universe V , if the support, the foun-
dation, and the reduction relationship of U (treated as a collection of
ordered pairs) are included in the support, foundation and reduction
relationship of V , respectively.

5 The universe of structures

The universes of ideas and the universes of objects are structures of
the same type, and the distinction between them can be made only in
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terms of various relations between them. These two kinds of universes
are “structures”, and one would like to look into the reduction relation
between structures, before anything else.

If x and y are two structures, then the expression “x ⊣ y” is con-
veniently read as “x is a reduct of y”. The term “reduct” used here
comes from universal algebra, where an algebra A is said to be a reduct
of an algebra B, if the signature of A is a subset of the signature of
B. This can be imagined as “reducing” the B to A by “neglecting” or
“ignoring” some of its operations. An intuitive synonym for “reduct”
is “rudiment” or “rudimentary structure”. In some cases, the expres-
sion “x ⊣ y” is conveniently read as “x is more elementary than y”,
and in one of such cases, when reduction is membership, even more
conveniently: “x is an element of y”.

The collections can be treated as “final reducts” of mathematical
structures, since these have a collection as their support. Next, an
explanation follows why the term “universe” is customarily used both
for a collection and a structure which has this collection as its support.
When the set theorists consider a universe of sets as an “internal model”
of a set theory, no doubt they also take into account the membership
relation which governs the sets in that universe. Thus, they treat such
a “universe” as a structure and not as a “class”. But they refer to
such a structure as “class” by making use of a linguistic device called
“metonymy” – naming a whole by the name of a part. Thus, the
reference to a structure by its support, which is the “final reduct”
of the structure can be treated as a result of applying a “conceptual
metonymy” device.

It is by applying the conceptual metonymy device, that other
reducts of a universe are also called “universes”. One of such reducts is
of the kind (U, “⊣”) obtainable by ignoring the foundation. Such a uni-
verse will be said to be “foundation-free” or (in some cases) “base-free”.
The most representative example of such a universe is the universe
(V, “ ∈ ”) of discourse of ZF, where “V ” is the standard notation of the
class of all pure sets (i.e. sets built out of the empty set). One cannot
just “identify” (consider “the same”) the pair (U, “ ⊣ ”) and the triple
(U, ∅, “ ⊣ ”), since “without foundation” is not the same as “with an
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empty foundation”. Instead, one can use the conceptual metonymy de-
vice and call “universe”, or more precisely “foundation-free universe”,
the pair (U, “ ⊣ ”).

There is yet another kind of reduct of a universe – a reduct obtained
by discarding the reduction relation to obtain the ordered pair P =
(U,F ). Such a universe can be treated as a “problem”, where U is the
collection of “possible solutions”, and F – the set of “actual solutions”,
of the problem P . This type of “universes-problems” was proposed by
Kolmogorov as an alternative interpretation of intuitionism. Finally,
the reduct obtained by discarding both the reduction and the basis
is a collection – thus, by using the conceptual metonymy device, the
collections will be also referenced as “universes”.

A proper definition of universes as structures, a definition account-
ing for the reducts of universes so that the metonymy device is not

needed, cannot be formulated in the language of set theory other than
by re-defining the notion of relation in a complicated manner. But
such a “re-definition” can create risks of ontological and terminological
inconsistency. There is, though, an approach, which offers a convenient
device for the presentation of universes as structures – the approach
presented in [6] which uses the notion “quasiary relation”. Roughly, a
quasiary relation is a relation with optional correlates. It also sounds
plausible, that the notion of “conceptual metonymy” can be explicated
in terms of quasiary relations.

An important question is whether any type of structures is reducible
to structures of type “universe”. The author did not research this, but
there is a result of Quine which sounds to give an affirmative reply to
this question. Namely, Quine showed that the combinatory logic of
Moses Schoenfinkel can be interpreted as a logic of relations (rather
than functions) [8]. This result can serve as a basis for the belief, that
all possible kinds of structures can be represented as universes.

The final remark in this section is for terminologic purposes. Since
there are two objects, which are more “rudimentary” than a binary re-
lation, then the relation together with these two objects can be treated
as a “generalized relation” and this is exactly a “universe”. Thus, we
obtain an important intuitive definition: A universe is a “generalized
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binary relation”. This treatment is needed for unification of terminol-
ogy (say, the notion “well-founded” is commonly defined for relations,
and here – for universes).

6 Atoms and axioms – dual irreducible objects

Recall that in this paper, the term “axiom” is considered as generalizing
the terms “basic notions” and “axioms” of an axiomatic theory. In
universics, such “axioms” and the set-theoretic “atoms” are treated as
dual, which permits “projecting” the properties of ones to the others.
The atoms and the axioms can be called “marginal objects”, the atoms
– “initial objects”, and the axioms – “final objects”. Next, the atoms
are discussed and the aquired knowledge is applied to axioms.

A set theory with atoms uses a predicate symbol, customarily
“Atom(x)”, in addition to the membership symbol, and it postulates
that the atoms make up a set (not a class). In such a theory the atoms
are objects of a sort different from that of the sets, the atoms need to
be considered as making up the foundation of the universe of discourse
of the theory, since there is no other way to distinguish between dif-
ferent sorts. Here, as “atoms” the “regular atoms”, those also called
“urelements”, are referenced. The urelements do not have elements,
and are different from the empty set.

A “Quine atom” is an object q which equals to its singleton {q}, or
in other words, a Quine atom is a set (!) “on which the membership
relation is reflexive”. Thus, a Quine atom is not a proper “atom” – it is
a singleton, a special kind of set. Hence, a set theory whose all atoms
are Quine atoms is a “pure set theory”. If q is a Quine atom in a set
theory, then there exists an infinite chain in the universe of discourse of
this theory: q ∈ q ∈ . . . . A Quine atom is a non-well-founded object,
and the transfinite induction principle cannot be proved in a set theory
with Quine atoms.

By analogy with set theory, the definitions for two kinds of atoms

in arbitrary universes are these: Urelement(x)
def
= ¬∃y(y ⊣ x) and

QuineAtom(x)
def
= ∀x((y ⊣ x) ↔ y = x). In any mainstream “set
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theory with atoms”, the atoms are always of exactly one of these two
sorts, and there is no need to introduce a general term for them. But in
universics, the following definition of “atoms”, which are either “urele-
ments” or a “Quine atoms”, makes sense:

Atom(x)
def
= ∀y((y ⊣ x) → y = x).

There is no requirement that the foundation of a universe consists
only of atoms, but if this is the case, then the elements of the foundation
are “pairwise incomparable”, i.e. the following condition is satisfied:

(∀x, y ∈ F )((x ⊣ y)&(y ⊣ x) → x = y).

Such a “foundation” is called here “basis”, or “orthogonal basis”,
and this complies with general mathematical terminologic practices
(here the modifier “orthogonal” is used rather for “emphasis”). The
foundation of universes of discourse of set theories with atoms is a
“basis”.

And now, these notions will be used in the “dual presentation” to
clarify the terminology regarding the axioms of an axiomatic theory.
The logical terminology is not the same “brushed up” one as that of
set theory. Really, a statement, which can be deduced from “axioms”,
cannot be said to be “axiom” – at most it can be called “intended
axiom”. But in practice, expressions like “set of independent axioms”
are often used, and “axioms”, which are deducible from other axioms
are accepted for an axiomatic theory. A better term for them is “fun-
damental statements”.

In order to treat the “axioms” of an axiomatic theory and the
“atoms” as duals, the term “axiomatic set theory” needs to be treated
as “axiomatic set theory with ‘independent axiom set’ ” and to main-
tain the terminology of universics consistent, this convention is here
adopted.

7 What is foundational completeness?

Foundationally complete can be the “axiomatic theories” and “⊢” is
the convenient symbol for reduction of the theories treated as universes.
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The expression “x ⊢ y” will be read here as “x is more fundamental
than y”, and the formula “F (x)” as “x is fundamental”.

Definition. Suppose (T,A, “ ⊢ ”) is an axiomatic theory and this
theory is a sub-universe of the universe (U,F, “ ⊢ ”). Then the theory
T is said to be foundationally complete in the universe U , if [A] = F .

If in this definition, “U” is a well-founded universe (see below), then
the equality [A] = U is definitely true, but using this condition in the
definition would limit it to only well-founded universes. Thus, as it was
formulated, this definition provides for the most large applicability of
this notion, including, to the non-well-founded universes.

To get a better perception of this notion, a couple of examples of
“wordings”, which are close in meaning with the expression “founda-
tionally complete”, is in place (to give “precise” examples is impossible,
since this is an “explication” and not a definition of a precise notion):

(a) if U is the collection of all assertions considered as true in intu-
itive set theory, and T is an axiomatic theory, then T is “foundationally
complete in U”, if T is said to be an “axiomatic theory of sets”;

(b) if U is the collection of all “mathematical theorems”, and T is
an axiomatic theory, then T is “foundationally complete in U”, if the
theory T is said to be “foundations for mathematics”.

8 Axiomatic universe theories

Similarly to set theory which is both an informal theory and a collec-
tion of “axiomatic set theories” focused on various explications of the
conception “set”, universics is an informal theory of universes and a
collection of axiomatic “universe theories”. Various axiomatic theories
of Grothendieck universes can serve as examples of the latter kind. In
order that universics obtains a practical use, alongside serving as a
framework of “universe theories”, it must also take over from concrete
theories strict treatment of some of the most general subjects. In this
paper, “fundamentality” and “well-founded-ness” are considered to be
among such subjects, and these are treated here in terms of axiomatic
theories. These theories describe the most general features of universes,
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and their axioms and axiom schemes are referenced as “principles” to
be distinguished from the axioms and axioms schemes of more “special”
theories based on them.

The language of universe theories introduced in this paper will use a
1st order predicate language with a unary predicate symbol “F”, where
“F (x)” is interpreted in a universe with a foundation F ′ as “x ∈ F ′”
– a formula read as “x is fundamental” (or as “x is foundational” for
a universe of theories, where some theories can be “foundational”), as
well as the binary predicate symbol “⊣” and its “symmetrical” symbol
“⊢”. Obviously, the theory in this language of all universes – denote
it as “U” – cannot contain any non-logical axioms, since for any such
“axiom” there exists a universe which falsifies it. Thus, only theories
describing a class of universes narrower than U are interesting.

Universics explicates the property “to be fundamental’ of objects
and ideas (notions, assertions, but also theories), via the theory F with
the principle (F ) below as its only axiom:

(∀ x, y) ((x ⊣ y) & F(y) → F(x)) (F ).

The theory F, obviously, describes all fundamental universes, in
particular, the universes of all mainstream set theories, where the
“foundation axiom” in any form is either postulated or deducible, but
also the universe of discourse of non-well-founded theories, including
Aczel’s set theory with its “anti-foundation” axiom. Thus, the “fun-
damentality” is treated in universics in so wide manner that most (or
maybe all) set theories proposed for the foundation of mathematics
are “fundamental”. Obviously, of particular interest is the fundamen-
tality principle for the universe of theories, where some theories are
“fundamental” whereas others are not.

In universics, “well-founded-ness” property is explicated via the
theory R with the following axiom scheme (R) as its sole axioms:

(∀x(F(x) → P(x)) & ∀x(∀y((y ⊣ x) →P(x)) → P(x))) → ∀xP(x) (R).

In this “principle”, P is a formula and “x” is a variable which may
or may not enter in P , together forming a “property”. The theory R
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describes the universes said to be “reductive”. To get the first idea
about these universes, one can analyze “how they look” in particular
cases.

If the reduction relation is membership, then by replacing the sym-
bol “⊣” with the symbol “ǫ” in (R), one can easily discover that the
reduction principle is actually the well known epsilon-induction princi-
ple generalized also to describe universes with atoms or other non-well
founded objects residing in its foundation.

If the reduction is deduction, then in the particular case, when F (x)
is the property “x is an axiom” and P (x) is the property “x is true”,
the reduction principle states a semantic characteristics of axiomatic
theories. In the most general setting, the meanings of reduction princi-
ple are much wider, and other meanings can be obtained as the result
of profound research.

9 Well-founded universes

The notion of well-foundedness in most general treatment is a property
of relations (https://en.wikipedia.org/wiki/Well-founded relation),
where the collection, on which a relation is defined, is also taken into
account. One can say that this property is currently defined only for
the foundation-free universes, and they would obviously expect that
this property can be extended to arbitrary universes.

For the foundation-free universes, the induction (epsilon-induction)
cannot start from the “induction basis”, which is empty, and one would
naturally also want to generalize induction to its most general form
with “induction basis” as foundation of any universe. This would be
the generalization of induction to arbitrary “generalized relations”, i.e.
to arbitrary universes. In universics, the conjunction (F )&(R) stands
for the “generalized induction principle”, and the theory with these
two principles as its sole axioms describes the class of all reductive
fundamental universes. This class is treated here as the “largest span”
of induction principle.

Alongside the axiomatic characterization of reductive fundamental
universes, one would expect that these can also be characterized in
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terms of their structure. Such a characterization is known for the well-
founded relations: a relation R on a collection U is well-founded, if and
only if, it contains no countable infinite descending chains, that is, there
is no infinite sequence x0, x1, x2, ... of elements of U such that xn+1R xn
for every natural number n. Considering that this is a characterization
of well-founded foundation-free universes, and terming a foundation-
free universe with this “chain condition” a “Noetherian universe”, one
can expect a similar characterization for any reductive fundamental
universe, and this will be given below. One may wonder weather the
term “Noetherian” was correctly used here, or the term “Artinian”
should have been chosen. Actually, the term “Noetherian” is correctly
chosen, because this definition can be equivalently formulated in terms
of encreasing chains of “ideals” like in ring theory. This was not done
because the “ideals” in arbitrary universes would have no other uses in
current paper.

A universe (U,F, “ ⊣ ”) is called quasi-Noetherian if any countable
infinite descending chain in U continues from some point in F , that
is, if x0, x1, x2, ... is a sequence of elements of U , such that xn+1 ⊣ xn,
for every natural number n, then there exists a natural number n such
that xm ǫ F , for any m, wherem ≥ n. Obviously, any quasi-Noetherian
foundation-free universe is Noetherian.

Theorem. A universe U is both fundamental and reductive, if and
only if, U is a quasi-Noetherian universe.

The proof of this theorem, even though formulated in slightly dif-
ferent terms, can be found in [5], published in the Proceeding of the the
first “Mathematical Foundations of Informatics”, which can be down-
loaded at this link: http://www.mfoi.eu/workshop2015/proceedings.pdf.

10 Conclusions

The following below conclusions about the use of universics impose
themselves from the foregoing presentation.

(1) Since the deduction is an apparatus of metamathematics, and
the language of set theory is generally considered as the language of
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metamathematics – two “duals” in universics, this approach sounds to
offer a convenient language for metamathematical analysis.

(2) An important application of universics can be the “projection”
of the results from one domain of research to another.

(3) Usiversics can serve as a foundational theory, presumably on
par with category theory. Both these theories use maximal collections,
i.e. proper classes, but, unlike category theory, universics uses only
one sort of entities based on such collections, the “universes”, and
does not invoke (or rather rarely invokes) any second sort of entities
(like “morphisms” of category theory). Due to using only one sort of
entities, and due to the similarity of its methods with those used in the
intuitive set theory, universics can appear to be more intuitive than
category theory to those “working mathematicians”, who think that
the diagrams of category theory “hide the intuition”.

11 Future research and an open problem

Various directions of research can be easily indicated proceeding from
the conclusions in previous section. But also, there is an “open prob-
lem”, which prominently imposes itself – one, the solution of which
would indicate how important for the foundations are the fundamen-
tal reductive universes, outline the ”validity span” of principles (F )
and (R), and show whether or not their validity is correlated with the
predicativity of definition of set via comprehension principle.

Open Problem. Is there an axiomatic set theory with an im-
predicative comprehensition in which the principle (F )&(R) is not de-
ducible?
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Many-Sorted First-Order

Composition-Nominative Logic as Institution

Alexey Chentsov

Abstract

In the paper the institution for many-sorted first-order compo-
sition-nominative logic (CNL) is considered. The difference from
the author’s previous paper on this topic is richer logical system
in question due to addition of operations and sorts, and also a
slightly weakened constraint on signature morphisms regarding
the set of names. The satisfaction condition is proven. Some
directions for further research are outlined.

Keywords: Institution theory, many-sorted nominative data,
irrefutability.

1 Introduction

Composition-nominative logics (CNL) are program-oriented algebra-
based logics [1]–[3]. Many-sorted algebras of partial mappings form a
semantic base of CNL. Mappings are defined over classes of nomina-
tive data considered in integrity of their intensional and extensional
components [2]. The hierarchy of nominative data induces a hierarchy
of CNLs. Properties of composition-nominative logics are quite well-
studied [1],[3],[4]. Still there is a need to relate the results obtained for
these logics to other logics. This can be achieved using such theoretical
tools as institutions [5], [6].

Institutions are a unified framework that allows studying proper-
ties of logical systems in abstract way independently of notation [5],[7].
Institutions capture a lot of common features of different logics. So
considering the logical system one is interested in presenting it as in-
stitution and finding out what specificity the obtained institution has.

c©2016 by A. Chentsov

27



A. Chentsov

This paper continues work started in [8], [9]. It aims to construct
the institution for many-sorted first-order CNL. This is done in usual
fashion when all necessary elements of the corresponding institution are
gradually defined starting from category of signatures and ending with
checking of satisfaction condition. The difference from one-sorted case
is additional structure of sorts. It primarily affects variables and terms.
Most compositions remain intact. However, some sort-awareness yet
should be considered.

2 Indexed families of sets

In order to identify sorts in the system, we use indexed families of
sets and functions. There are two approaches to the definition of the
indexed families. The first one is conventional and most commonly
used in the literature. Its systematic account can be found in [6].
The second approach is based on fibers. The reasoning behind it is
presented in [10]. Some results concerning the connection between the
approaches are listed in [11]. In this section we only recall necessary
concepts and work out notation convention.

Definition 1. Given a set of sorts S, an S-sorted set B is an object

of the category SetS. Usually it is denoted (Bs)s∈S. An S-sorted map
is a morphism of the category SetS.

It is known that the category SetS is equivalent to the slice cate-
gory Set/S [12], [13, sec. 7.9]. Where convenient, we use slice category
constructions. It is stylistically closer to single-sorted case (provides
easy transition by forgetting the sorts). It also allows to save writing
by avoiding subscripts. The difference between two categories is that
fibers of the object of Set/S are always disjoint while sets in the indexed
family have no such restriction.

Consider an S-sorted set A = (As)s∈S. If sets As are pairwise
disjoint, then there is a total function TA : A→ S, where A =

⋃

· s∈S As.
Dot in the middle of symbol for union emphasizes that arguments are
pairwise disjoint. Thus pair (A,TA) determines indexed family. If
the disjointness condition does not hold we can use coproduct A =
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∐

s∈S As. There is a canonical map TA : A→ S such that TA(is(a)) = s

for all s ∈ S, a ∈ As, where is is a coproduct injection. That is the
following diagram commutes

As
is

//

!As

��

∐

s∈S

As

TA

��

1
s

// S

In both cases, we use slice category to represent A. We write A =
(A,TA). In this representation S-sorted map from (A,TA) to (B,TB)
is a function f : A→ B such that the following diagram commutes.

A
f

//

TA ��
❄❄

❄❄
❄❄

❄❄
B

TB��⑦⑦
⑦⑦
⑦⑦
⑦⑦

S

It is usually quite straightforward to recover presentation in SetS from
Set/S representation.

For a given reindexing ϕ : S → S′, there are reindexing of S-sorted
and S′-sorted sets described as “change of base” [13, sec. 9.7]. For any
S-sorted set A = (A,TA) = (As)s∈S , the corresponding S

′-sorted set is
ϕ(A) = (A,ϕ ◦ TA). Its fibers are defined as follows:

ϕ(A) =





∐

ϕ(s)=s′

As





s′∈S′

.

If A′ = (A,T ′

A) is an S′-sorted set, then we have an S-sorted set
ϕ∗(A′) = (Aϕ(s))s∈S defined by pullback along ϕ. This transition can
be demonstrated by the following pullback diagram:

∐

s∈S

Aϕ(s)
//

TA

��

A

T ′
A

��

S ϕ
// S′
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The transitions have functorial behavior and can be applied to S-sorted
maps as well.

3 Syntactic part

3.1 Language

Definition 2. A signature of many-sorted first-order composition-

nominative logic is a tuple Σ = (S,V, P,F), where S is a set of sorts,

V an S-sorted set of names, P a set of predicate symbols and F an

S-sorted set of operation symbols.

Sentences of the language, called formulas, are constructed using
symbols from the signature and a number of special composition sym-
bols. Composition symbols form a tuple

C =
(

∨,¬, {∃x}x∈V , {S
v1...vn | v̄ ∈ V n, vi 6= vj for i 6= j},

{‘x}x∈V , {S
v1...vn
F | v̄ ∈ V n, vi 6= vj for i 6= j}

)

.

Here traditional compositions: ¬ – negation, ∨ – disjunction, ∃x –
existential quantifier. Composition ‘x is called denomination. Compo-
sitions Sv1...vn , Sv1...vnF are substitutions in formula and in term respec-
tively. v̄ denotes sequence v1 . . . vn. There is a uniqueness constraint
on names vi in substitution: vi = vj only if i = j. Usually compo-
sition symbols are not explicitly included into signature because they
are fixed and fully determined by V.

First, we define the S-sorted set of terms T (Σ) = (Ter, T ). The
definition is mutually inductive for terms and their typing (here we use
notation similar to [14])

τ ::= α : TF (α)
‘x : TV (x)
Sv1...vnF (t; t1 . . . tn) : T (t).

(1)

Here α ∈ F , x, vi ∈ V , i = 1, n, t, ti are terms. The terms ti sat-
isfy condition TV (vi) = T (ti) for all i = 1, n. Sorts after semicolons
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determine T (τ). The following notation for substitution is used:

[v1 7→ t1, . . . , vn 7→ tn] t = [ v̄ 7→ t̄ ] t = Sv1...vnF (t; t1 . . . tn).

The class of Σ-sentences is based on class of terms and defined induc-
tively:

Φ ::= π

¬Ψ
Ψ ∨Ψ′

∃xΨ
Sv1...vn(Ψ; t1 . . . tn),

(2)

where π ∈ P , x, vi ∈ V ; Ψ and Ψ′ are formulas, Sv1...vn – substitution
in formula. Once again there are typing constraints: T (ti) = TV (vi)
for all i = 1, n. We use notation

[v1 7→ t1, . . . , vn 7→ tn] Φ = [ v̄ 7→ t̄ ] Φ = Sv1...vn(Φ; t1 . . . tn).

Implication, conjunction and universal quantifier are defined conven-
tionally as follows

Φ ∧Ψ = ¬(¬Φ ∨ ¬Ψ)

Φ → Ψ = ¬Φ ∨Ψ

∀xΦ = ¬∃x¬Φ

Rv1...vnx1...xn
Φ = [v1 7→ ‘x1, . . . , vn 7→ ‘xn] Φ.

Composition Rv1...vnx1...xn
is called renomination and usually abbreviated

as Rv̄x̄. Uniqueness constraint transfers to the set of upper names vi of
renomination.

3.2 Signature morphisms and sentence translation

Definition 3. A morphism of signatures is

ϕ = (ϕS , ϕV , ϕP , ϕF ) : (S,V, P,F) → (S′,V ′, P ′,F ′),
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where ϕP : P → P ′, ϕS : S → S′ is a reindexing, ϕF : ϕS(F) → F ′ an

S′-sorted map, ϕV : ϕS(V) → V ′ an injective S′-sorted map. In other

words the following diagrams commute:

V
ϕV

//

TV
��

V ′

T ′
V

��

S ϕS
// S′

F
ϕF

//

TF
��

F ′

T ′
F

��

S ϕS
// S′

Name component ϕV of signature morphism is restricted to 1-1
mapping to avoid name clashes in substitution (renomination) compo-
sition and to be able to extend Mod to a functor.

Our category Sig is simply a category of signatures and signature
morphisms defined above.

Now we can extend action of signature morphism to the Σ-sentences
defined in (2), i.e. define Sen(ϕ) : Sen(S,V, P,F) → Sen(S′,V ′, P ′,F ′)
inductively on structure of the sentence as follows

Sen(ϕ)(α) = ϕF (α)

Sen(ϕ)(‘x) = ‘ϕV (x)

Sen(ϕ)([ v̄ 7→ t̄ ] t′) = [ϕV (v̄) 7→ Sen(ϕ)(t̄)] Sen(ϕ)(t′)

Sen(ϕ)(π) = ϕP (π)

Sen(ϕ)(Φ ∨Ψ) = Sen(ϕ)(Φ) ∨ Sen(ϕ)(Ψ)

Sen(ϕ)(¬Φ) = ¬ Sen(ϕ)(Φ)

Sen(ϕ)(∃xΦ) = ∃ϕV (x) Sen(ϕ)(Φ)

Sen(ϕ)([ v̄ 7→ t̄ ] Φ) = [ϕV (v̄) 7→ Sen(ϕ)(t̄)] Sen(ϕ)(Φ).

Here ξ(l̄) denotes componentwise application of a function ξ to a list
l̄ = l1, . . . , ln, i.e. the list ξ(l1), . . . , ξ(ln).

Proposition 1. The following diagram commutes:

Ter
Sen(ϕ)

//

T
��

Ter′

T ′

��

S ϕS
// S′
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Proof. By induction on term structure. Let us check congruence rule.

T ′
(

Sen(ϕ)([ v̄ 7→ t̄ ] t′)
)

= T ′
(

[ϕV (v̄) 7→ Sen(ϕ)(t̄)] Sen(ϕ)(t′)
)

= T ′
(

Sen(ϕ)(t′)
)

= ϕS(T (t
′))

= ϕS(T ([ v̄ 7→ t̄ ] t′)).

Here we used induction hypothesis for t′, and assumed typing constraint
for [ϕV (v̄) 7→ Sen(ϕ)(t̄)] Sen(ϕ)(t′). Let us prove the latter. By induc-
tion hypothesis, the properties of signature morphism and correctness
of original term we have

T ′(Sen(ϕ)(t̄)) = ϕS(T (t̄)) = ϕS(TV (v̄)) = T ′

V (ϕV (v̄)).

As a result, Sen(ϕ) is correctly defined w.r.t. sorts.

Proposition 2. Sig is a category. Sen is a functor Sig → Set.

In a context where Sen is known, expression Sen(ϕ)(Φ) is usually
abbreviated as simply ϕ(Φ).

4 Models and model homomorphisms

4.1 Many-sorted nominative data

The basis for semantics of various composition-nominative logics is
formed by nominative sets, quasiary predicates and operations. Let
A 6= ∅ be some set, V be the set of names. A (partial) nominative set

is a partial mapping from V to A, the class of all such mappings is
denoted VA. In this context the set A is called the set of values, VA –
the set of nominative sets or set of states. Nominative sets can be also
called nominative data. By analogy with single-sorted case, we define
many-sorted nominative data.

Definition 4. A partial S-sorted map f : (A,TA) 7→ (B,TB) is a par-

tial map f : A 7→ B such that the following diagram commutes in a
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weak sense

A
f ✤ //

TA ��
❄❄

❄❄
❄❄

❄❄
B

TB��⑦⑦
⑦⑦
⑦⑦
⑦⑦

S

i.e. TB ◦ f = TA
∣

∣

dom f
.

S-sorted sets and S-sorted partial maps form a category S-Setpart.

Definition 5. Let V, A be S-sorted sets. An S-sorted V-nominative
set is a partial S-sorted map d : V 7→ A.

Let V = (Vs)s∈S, A = (As)s∈S . The class of all S-sorted V-
nominative sets is also an S-sorted set VA defined as follows:

VA = (VsAs)s∈S .

If we ignore sorts, then S-sorted nominative set d becomes simply a
partial function d : V 7→ A, where V =

⋃

· s∈S Vs, A =
∐

s∈S As. In this
sense there is an embedding

VA �

�

// VA .

Sometimes we prefer to work with such representation of d ∈ VA rather
than (ds)s∈S .

We use the following notation in regard to partiality. Let f : A 7→ B,
a, a′ ∈ A, b ∈ B. We write f(a)↑ if a /∈ dom f , otherwise (if a ∈ dom f)
we write f(a)↓. Here dom f = f−1(B) = {x | (x, y) ∈ f for some y} is
the domain of definition of f . In the latter case f(a)↓ can be used as
well as the value of f on a, e.g. f(a)↓ = b. Also we use symbol ∼= for
strong equality that makes allowance for undefined value, namely

f(a) ∼= f(a′) if f(a)↓ = f(a′)↓ or (f(a)↑ and f(a′)↑).

Two partial functions f and g are equal if and only if f(x) ∼= g(x) for
all x.

The elements of nominative data are pairs of the form v 7→ a.
Expression v 7→ a ∈n d denotes d(v)↓ = a. Given v ∈ Vs, a ∈ As
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for some s ∈ S, expression v 7→ a in the context of VA means v 7→
is(a), where is : As → A is a canonical injection. Nominative sets are
constructed using set-builder notation with square brackets.

Let us introduce the unary operation rv1...vnx1...xn
: VA → VA of finite

renomination of nominative set, where TV (vi) = TV (xi) for all i = 1, n.
First, we specify an S-sorted map σv1...vnx1...xn

: V → V associated with it:

σv1...vnx1...xn
(v) =

{

xi if v = vi.

v otherwise.

Then rv1...vnx1...xn
d = d ◦σv1...vnx1...xn

, where ◦ denotes the composition of partial
functions.

We require three more operations, single name binding, for d ∈ VA,
u ∈ Vs, a ∈ As, s ∈ S

d▽u 7→ a = d
∣

∣

V \{u}
∪· [u 7→ a].

Here
∣

∣

W
denotes conventional restriction of function domain to W and

dot in ∪· emphasizes that the union is disjoint. Finite name binding,
for d ∈ VA, distinct names vi ∈ Vsi , ai ∈ Asi , si ∈ S for i = 1, n

d▽[vi 7→ ai | i = 1, n] = d
∣

∣

V \{vi}i=1,n
∪· [vi 7→ ai | i = 1, n].

Finally overriding, for d1, d2 ∈ VA

d1▽d2 = d1
∣

∣

V \dom d2
∪· d2.

Construction VA demonstrates bifunctorial behavior in the following
sense. Let σ : V 7→ V ′ be a partial S-sorted map, and h : A → A′ be
an S-sorted map. They induce several total maps between nominative
set domains: function σA : V

′

A → VA that maps nominative set d ∈ V
′

A
to nominative set d ◦ σ, function Vh : VA → VA′ that maps d ∈ VA to
h ◦ d, and function σh : V

′

A → VA′ defined as d 7→ h ◦ d ◦ σ. Notice that
functions induced by change of set of values and set of names commute
under composition:

Vh ◦ σA = σh = σA′ ◦ V
′

h. (3)
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In these terms we have

rv1...vnx1...xn
d = d ◦ σv1...vnx1...xn

= σv̄x̄A(d).

Ignoring the sorts does not change the functorial behavior of VA.

4.2 Quasiary predicates and operations

Let Bool = {⊤,⊥} be a Boolean set. The quasiary predicate over S-
sorted set of names V and S-sorted set of values A is a partial Boolean-
valued function: VA 7→ Bool. The quasiary predicates over set of names
V and set of values A are called (V,A)-quasiary predicates for short.
Let PrV

A
=

{

p | p : VA 7→ Bool
}

.

The truth and falsity domains of p ∈ PrV
A

are respectively ⊤(p) =
{d | p(d)↓ = ⊤} = p−1 ({⊤}), ⊥(p) = p−1({⊥}).

Definition 6. The extension of a partial predicate p is a pair of its

truth and falsity domains: ‖p‖ = (⊤(p),⊥(p)).

Notice that sets in the extension of a predicate are necessarily dis-
joint. There is a 1-1 correspondence between extensions and partial
predicates. Also there is a natural ordering of extensions:

‖p‖ ⊆ ‖p′‖ if ⊤(p) ⊆ ⊤(p′) and ⊥(p′) ⊆ ⊥(p).

Definition 7. A predicate p is irrefutable if ⊥(p) = ∅.

Like the domain of nominative data VA, the construction PrV
A

also
has bifunctorial behavior. Given partial S-sorted map σ : V 7→ V ′ and
total S-sorted map h : A → A′, there are total maps PrVh : Pr

V

A
′ →

PrV
A
, Prσ

A
: PrV

A
→ PrV

′

A
, Prσh : Pr

V

A
′ → PrV

′

A
realized as follows. Let

p ∈ PrV
A′ , q ∈ PrV

A
, then

PrVh (p) = p ◦ Vh

Prσ
A
(q) = q ◦ σA

Prσh(p) = p ◦ σh.
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Once again, notice that maps induced by change of set of values and
set of names commute under composition

PrV
′

h ◦ Prσ
A

′ = Prσh = Prσ
A
◦ PrVh . (4)

Analogously to the quasiary predicates, we consider quasiary oper-

ations over S-sorted set of names V and S-sorted set of values A as
partial functions: VA 7→ As for some s ∈ S. The quasiary operations
over set of names V and set of values A are called (V,A)-quasiary oper-

ations for short. Let FnV
A,s =

{

f | f : VA 7→ As
}

, FnV
A
=

(

FnV
A,s

)

s∈S
.

Similarly to the domain of nominative data VA and class of quasiary
predicates PrV

A
construction FnV

A
also demonstrates functorial behav-

ior, but this time only by parameter V. Given a partial S-sorted map
σ : V 7→ V ′, there is a total S-sorted map Fnσ

A
: FnV

A
→ FnV

′

A
realized

as follows: Fnσ
A,s(f) = f ◦ σA, where f ∈ FnV

A,s. Elements of FnV
A,s

can also be thought as functorial algebras in S-Setpart (for the functor
(Hs)s∈S such that Hs(A) = VA, and Hs′(A) = ∅ for s′ ∈ S \{s}) [15, p.
142-143].

Given d ∈ VA, distinct vi ∈ V , fi ∈ FnV
A,si

, such that TV (vi) = si,

i = 1, n, there is a nominative data [v1 7→ f1(d), . . . , vn 7→ fn(d)] ∈
VA

defined as follows

v 7→ a ∈n [v1 7→ f1(d), . . . , vn 7→ fn(d)] if ∃i ∈ 1, n.v = vi, fi(d)↓ = a.

For short [v1 7→ f1(d), . . . , vn 7→ fn(d)] is written as [v̄ 7→ f̄(d)]. Let us
introduce substitution operation [v1 7→ f1, . . . , vn 7→ fn] for nominative
sets:

[v1 7→ f1, . . . , vn 7→ fn] d = d
∣

∣

V \{vi}
▽[v̄ 7→ f̄(d)].

For short [v1 7→ f1, . . . , vn 7→ fn] d is written as [ v̄ 7→ f̄ ] d.

4.3 Models

The sets FnV
A
, PrV

A
are used as a carrier sets for most composition-

nominative logics. The terms are interpreted as quasiary operations

37



A. Chentsov

and formulas as quasiary predicates. Compositions have fixed inter-
pretation for CNLs and are defined as follows

‘x(d) ∼= dTV (x)(x).

‖p ∨ q‖ = (⊤(p) ∪⊤(q),⊥(p) ∩⊥(q))

‖¬p‖ = (⊥(p),⊤(p))

‖∃xp‖ =
(

{d | d▽x 7→ a ∈ ⊤(p) for some a ∈ ATV (x)},

{d | d▽x 7→ a ∈ ⊥(p) for all a ∈ ATV (x)}
)

[ v̄ 7→ f̄ ] g(d) ∼= g([ v̄ 7→ f̄ ] d)

[ v̄ 7→ f̄ ] p(d) ∼= p([ v̄ 7→ f̄ ] d).

(5)

Here d ∈ VA, x, vi ∈ V , g ∈ FnV
A,TV (x), fi ∈ FnV

A,TV (vi)
, i = 1, n,

p, q ∈ PrV
A
; [ v̄ 7→ f̄ ] g(d) denotes [v1 7→ f1, . . . , vn 7→ fn] g(d), likewise

[ v̄ 7→ f̄ ] p(d) denotes [v1 7→ f1, . . . , vn 7→ fn] p(d). In these terms

Rv̄x̄p(d)
∼= [ v̄ 7→ ‘x̄ ] p(d) ∼= p([ v̄ 7→ ‘x̄ ] d) ∼= p ◦ σ

v̄
x̄A(d).

That is
Rv̄x̄p = p ◦ σ

v̄
x̄A = Pr

σv̄x̄
A
(p).

Definition 8. A first-order algebra of (V,A)-quasiary predicates is a

tuple (Pr,Fn,A;Comp), where Comp are compositions defined in (5)
and sets Pr ⊆ PrV

A
, Fn ⊆ FnV

A
are closed under compositions.

Definition 9. Given a signature Σ = (S,V, P,F), a Σ-model of

many-sorted first-order composition-nominative logic is a quadruple

(Pr,Fn,A, I) such that (Pr,Fn,A;Comp) forms a first-order (V,A)-
quasiary predicates algebra and I = (IP , IF ), where IP : P → Pr and

IF : F → Fn are total and S-sorted total maps respectively.

Interpretation of formulas and terms in a model is straightforward.
The details are presented in section 6.

4.4 Model homomorphisms

Consider the conventional case of first-order logic. Model homomor-
phisms are functions h : A → B with operation and predicate preser-
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vation property. For each arity n due to contravariant powerset func-
tor there is an induced map Pn(h) : P(Bn) → P(An) between n-ary
predicates. Preservation of n-ary predicate symbol π ∈ Pn means
Mπ ⊆ Pn(h)(M

′

π).

An analogous construction for quasiary case is presented in subsec-
tion 4.2. Let h : A → A′ be a total S-sorted map. Consider total map
PrVh : Pr

V

A′ → PrV
A
induced by h. Let us check its properties in regards

to algebraic structure.

Proposition 3. Function PrVh preserves disjunction, negation and

renomination compositions. If h is surjective, it also preserves exis-

tential quantifier composition.

Proof. Let p ∈ PrV
A

′ , then

⊤(PrVh (p)) = {d | Vh(d) ∈ ⊤(p)} =
(

Vh
)−1

(⊤(p)).

Therefore

‖PrVh (p)‖ =
(

(

Vh
)−1

(⊤(p)),
(

Vh
)−1

(⊥(p))
)

=
(

Vh
)−1

‖p‖.

Let p, q ∈ PrV
A

′ , then

‖PrVh (¬p)‖ =
(

Vh
)−1

(⊥(p),⊤(p)) = ‖¬PrVh (p)‖,

‖PrVh (p ∨ q)‖ =
(

Vh
)−1

(⊤(p) ∪ ⊤(q),⊥(p) ∩ ⊥(q))

= ‖PrVh (p) ∨ Pr
V

h (q)‖,

where preservation of unions and intersections by preimage is used.

For the renomination composition we use commutativity (4):

PrVh (R
v̄
x̄p) = PrVh ◦ Pr

σv̄x̄
A′ (p) = Pr

σv̄x̄
A

◦ PrVh (p) = Rv̄x̄Pr
V

h (p).
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Finally, if h : A → A′ is surjective, then

⊤(PrVh (∃xp)) =
{

d ∈ VA | (h ◦ d)▽x 7→ a′ ∈ ⊤(p) for some a′ ∈ A′

T (x)

}

=
{

d | (h ◦ d)▽x 7→ hs(a) ∈ ⊤(p) for some a ∈ AT (x)
}

=
{

d | h ◦ (d▽x 7→ a) ∈ ⊤(p) for some a ∈ AT (x)
}

= ⊤(∃xPrVh (p)).

⊥(PrVh (∃xp)) =
{

d | (h ◦ d)▽x 7→ a′ ∈ ⊥(p) for all a′ ∈ A′

T (x)

}

=
{

d ∈ VA | (h ◦ d)▽x 7→ hs(a) ∈ ⊥(p) for all a ∈ AT (x)
}

= ⊥(∃xPrVh (p)).

That is PrVh (∃xp) = ∃xPrVh (p).

Since there is no direct transformation between FnV
A
and FnV

A
′ , we

cannot establish similar property for arbitrary substitution but we can
do it for some subset of operations.

Definition 10. Given a total function h : A → A′, an operation f ∈
FnV

A,s is h-related to operation f ′ ∈ FnV
A

′,s if the following diagram

commutes.

VA
f

//

Vh
��

As

hs
��

VA′

f ′
// A′

s

The next proposition summarizes interaction between h and oper-
ation compositions.

Proposition 4. For arbitrary map h : A → A′ and name x ∈ V com-

position ‘x ∈ FnV
A,TV (x) is h-related to ‘x ∈ FnV

A
′,TV (x)

. If g ∈ FnV
A,s,

fi ∈ FnV
A,si

are h-related to g′ ∈ FnV
A,s, f

′

i ∈ FnV
A

′,si
, then substitution

[ v̄ 7→ f̄ ] g is h-related to [ v̄ 7→ f̄ ′ ] g′. If fi ∈ FnV
A,si

are h-related to

f ′i ∈ FnV
A

′,si
, p ∈ PrV

A
′ , then

PrVh ([ v̄ 7→ f̄ ′ ] p) = [ v̄ 7→ f̄ ]PrVh (p). (6)
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Proof. If d ∈ VA, then hs(‘x(d)) ∼= hs(ds(x)) ∼=
Vh(d)s(x) ∼= ‘x(Vh(d)),

where s = TV (x). For the second property we prove the commutativity
of the diagram

VA
[ v̄ 7→f̄ ]

//

Vh
��

VA

Vh
��

g
// As

hs
��

VA′

[ v̄ 7→f̄ ′ ]
// VA′

g′
// A′

s

The right rectangle is commutative by condition. Let d ∈ VA, v ∈ V .
Suppose v 6= vi for all i = 1, n. Then

Vh([ v̄ 7→ f̄ ] d)(v) ∼= h([ v̄ 7→ f̄ ] d(v)) ∼= h(d(v)) ∼= [ v̄ 7→ f̄ ′ ] (Vh(d))(v).

Otherwise, if v = vi for some i ∈ 1, n, then

Vh([ v̄ 7→ f̄ ] d)(v) ∼= h([ v̄ 7→ f̄ ] d(vi)) ∼= h(is(fi(d))) ∼= i′s(f
′

i(
Vh(d)))

∼= [ v̄ 7→ f̄ ′ ] Vh(d)(v),

where s = TV (vi) and is : As → A, i′s : A
′

s → A′ are canonical injec-
tions. This gives us commutativity of left rectangle. As a result outer
rectangle is also commutative, i.e. the second property holds.

Let p ∈ PrV
A

′ , then

PrVh ([ v̄ 7→ f̄ ′ ] p) = p ◦ [ v̄ 7→ f̄ ′ ] ◦ Vh

= p ◦ Vh ◦ [ v̄ 7→ f̄ ] = [ v̄ 7→ f̄ ]PrVh (p).

Here we used the commutativity of left rectangle once again.

Thus we only need to formalize preservation of predicates by map
h. There are several ways to accomplish this. Here we do it similarly
to the conventional case using the extensions of quasiary predicates.

Definition 11. A (S,V, P, (Fs)s∈S)-model homomorphism h : (Pr,Fn,
A, I) → (Pr′,Fn′,A′, I ′) is a total S-sorted map h : A → A′ such that

PrVh (Pr
′) ⊆ Pr, IF,s(α) is h-related to I ′F,s(α) for all α ∈ Fs, s ∈ S,

and ‖IP (π)‖ ⊆ ‖PrVh (I
′

P (π))‖ for all π ∈ P .
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Proposition 5. (S,V, P,F)-models and (S,V, P,F)-model homomor-

phisms form a category Mod(S,V, P,F).

If this notion of homomorphism is too strict, other options include
different relations between predicate extensions [8].

5 Model transformation

Now we need to figure out the change of model under signature mor-
phism. Signature morphism has several components. Each of them
cause some change of the model. We consider them one-by-one start-
ing with predicate and operation symbols component, then following
with change of names and ending with the change of sorts.

The simplest is the change of operation and predicate symbols. It
only affects the interpretation functions for operation and predicate
symbols. In the new model they become (I ′P ◦ ϕP , I

′

F ◦ ϕF ). Due to
properties of ϕ they are correct interpretations for the set of sorts S.

Consider the following commutative diagram

V
ϕV

//

TV

��

T ′′
V

  
❅❅

❅❅
❅❅

❅❅
❅❅

V ′

T ′
V

��

S
ϕS

// S′

It shows that model transformation is performed sequentially: first,
according to the right triangle and then, according to the left triangle.

5.1 Change of names

Recall that name component of signature morphism is a 1-1 S-sorted
map ϕV : ϕS(V) → V ′. Due to injectivity of ϕV there is a partial map
ψV : V ′ 7→ ϕS(V) such that ϕV ◦ ψV = idϕV (ϕS(V)), ψV ◦ ϕV = idϕS(V).

It induces a total function ψVA : ϕS(V)A → V
′

A. Notice that ψVA(d)(v′)↑

for all v′ ∈ V ′ \ ϕV (V ). There are also total functions PrψV
A

: PrV
′

A
→

Pr
ϕS(V)
A

, FnψV

A,s′ : Fn
V

′

A,s′ → Fn
ϕS(V)
A,s′ . They are required to be able to
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jump from V ′-quasiary predicate model to V-quasiary predicate model
as Mod-functor implies. Before working out change of the model let
us see how ψV affects the extension of quasiary predicate and how it
interacts with compositions.

Lemma 6. The following diagram commutes in the category of sets

and partial mappings

V
ϕV

//

σv̄x̄

��

V ′

σ
ϕV (v̄)

ϕV (x̄)

��

ψV
// V

σv̄x̄

��

V
ϕV

// V ′

ψV

// V

Proof. Outer rectangle commutes because ψV ◦ϕV = idV . Notice that
if v ∈ V ′ \ ϕV (V ), then value for both paths of right rectangle are

undefined since ψ(v)↑, σ
ϕV (v̄)
ϕV (x̄)(v) = v. Therefore right rectangle com-

mutes. Left rectangle commutes because domψV = ϕV (V ) and ψV is
injective.

Proposition 7. Let ϕV : ϕS(V) → V ′ be a name component of sig-

nature morphism. Then Pr
ψV
A

: PrV
′

A
→ Pr

ϕS(V)
A

, Fn
ψV

A,s′ : Fn
V

′

A,s′ →

Fn
ϕS(V)
A,s′ preserve compositions in the following sense. Let p′, q′ ∈ PrV

′

A
,

x, vj , xj , ui ∈ V , g′ ∈ FnV
′

A,s′, f
′

i ∈ FnV
′

A,T ′′
V (ui)

, then

Pr
ψV
A

(¬p′) = ¬PrψV
A

(p′)

Pr
ψV
A

(p′ ∨ q′) = Pr
ψV
A

(p′) ∨ PrψV
A

(q′)

Pr
ψV
A

(R
ϕV (v̄)
ϕV (x̄)p

′) = Rv̄x̄Pr
ψV
A

(p′)

Pr
ψV
A

(∃ϕV (x)p
′) = ∃xPrψV

A
(p′)

Fn
ψV
A,T ′′

V (x)
(‘ϕV (x)) = ‘x

Fn
ψV
A,s′([ϕV (ū) 7→ f̄ ′ ] g′) = [ū 7→ Fn

ψV
A,T ′′

V (ū)
(f̄ ′)]FnψV

A,s′(g
′)

Pr
ψV
A

([ϕV (ū) 7→ f̄ ′ ] p′) = [ū 7→ Fn
ψV
A,T ′′

V (ū)
(f̄ ′)]PrψV

A
(p′).
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Proof. The proof is similar to the proof of proposition 3. We di-
rectly check the properties and switch to extensions of predicates where
needed. Suppose that p′, q′ ∈ PrV

′

A
. Then

⊤(PrψV
A

(p′)) = {d ∈ ϕS(V)A | ψVA(d) ∈ ⊤(p′)} = ψVA
−1

(⊤(p′)),

where ψVA
−1

(D) is a preimage of D under map ψVA. The same goes
for the falsity domain. Therefore

‖PrψV
A

(p′)‖ =
(

ψVA
−1

(⊤(p′)), ψVA
−1

(⊥(p′))
)

= ψVA
−1

(‖p′‖).

Respectively

‖PrψV
A

(¬p′)‖ = ψVA
−1

(⊥(p′),⊤(p′)) = ‖¬PrψV
A

(p′)‖,

‖PrψV
A

(p′ ∨ q′)‖ = ψVA
−1

(⊤(p′) ∪ ⊤(q′),⊥(p′) ∩ ⊥(q′))

= ‖PrψV
A

(p′) ∨ PrψV
A

(q′)‖.

Here we used the properties of the preimage of a function.
For the existential quantifier let p′ ∈ PrV

′

A
, then

⊤(∃xPrψV
A

(p′)) =
{

d | (d▽x 7→ a) ◦ ψV ∈ ⊤(p′) for some a ∈ AT ′′
V (x)

}

=
{

d | d ◦ ψV ▽ϕV (x) 7→ a ∈ ⊤(p′) for some a ∈ As
}

= ⊤(PrψV
A

(∃ϕV (x)p
′)).

Here we used the definition of ψV and the following property of nomi-
native sets. For d ∈ VA, partial function σ : V ′ 7→ V we have

(d▽x 7→ a) ◦ σ =
(

d
∣

∣

V \{x}
∪· [x 7→ a]

)

◦ σ

=
(

d ◦ σ
∣

∣

σ−1(V )\σ−1({x})
∪·
[

x′ 7→ a | σ(x′)↓ = x)
]

)

= d ◦ σ▽
[

x′ 7→ a | σ(x′)↓ = x)
]

.

Repeating for falsity domain and combining we derive

∃xPrψV
A

(p′) = Pr
ψV
A

(∃ϕV (x)p
′).
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For renomination by lemma 6 we immediately have

Rv̄x̄Pr
ψV
A

(p′) = Prσ
v̄
x̄ ◦ PrψV

A
(p′) = Pr

ψV
A

(R
ϕV (v̄)
ϕV (x̄)p

′).

Now let us consider denomination. For s′ = T ′′

V (x) we have

Fn
ψV
A,s′(‘ϕV (x))(d)

∼= ψVA(d)s′(ϕV (x)) ∼= ds′(ψV (ϕV (x)) ∼= ‘x(d).

Let g′ ∈ FnV
′

A,s′ , f
′

i ∈ FnV
′

A,T ′′
V (ui)

, ui ∈ V , i = 1, n. Notice that

([ū 7→ Fn
ψV
A,T ′′

V
(ū)(f̄

′)] d) ◦ ψV =
(

d
∣

∣

V \{ui}
▽[ū 7→ f̄ ′(d ◦ ψV )]

)

◦ ψV

= [ϕV (ū) 7→ f̄ ′ ] (d ◦ ψV ).

Here we used equality

[ū 7→ f̄ ′(d′)] ◦ ψV = [v 7→ f ′i(d
′) | ψV (v)↓ = ui] = [ϕV (ū) 7→ f̄ ′(d′)].

Then

Fn
ψV
A,s′([ϕV (ū) 7→ f̄ ′ ] g′)(d) ∼= [ϕV (ū) 7→ f̄ ′ ] g′(d ◦ ψV )

∼= g′([ϕV (ū) 7→ f̄ ′ ] d ◦ ψV )

∼= g′(([ū 7→ Fn
ψV
A,T ′′

V (ū)
(f̄ ′)] d) ◦ ψV )

∼= [ū 7→ Fn
ψV
A,T ′′

V (ū)
(f̄ ′)]FnψV

A,s′(g
′)(d).

And similarly

Pr
ψV
A

([ϕV (ū) 7→ f̄ ′ ] p′)(d) ∼= [ū 7→ Fn
ψV
A,T ′′

V (ū)
(f̄ ′)]PrψV

A
(p′)(d).

5.2 Change of base

We start with commutative triangle

V
TV

��⑧⑧
⑧⑧
⑧⑧
⑧⑧ T ′′

V

  
❅❅

❅❅
❅❅

❅❅

S ϕS
// S′
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According to it (V, T ′′

V ) = ϕ(V). A new S-sorted set of values is ob-
tained from S′-sorted A using pullback functor ϕ∗

S(A) = (AϕS(s))s∈S .
Fundamental for the construction of quasiary predicates and operations
of new model is to understand the connection between nominative data
of the two models. Here we use 1-1 correspondence

d : V 7→ ϕ∗

S(A)

d# : ϕS(V) 7→ A

realized as follows:

d
#
s′ =

⋃

·
ϕS(s)=s′

ds

ds = d
#
ϕS(s)

∣

∣

∣

Vs
.

It is actually a conventional adjunction ϕS ⊣ ϕ∗

S but extended to partial
S-sorted maps [13, sec. 9.7].

Let p ∈ Pr
ϕS(V)
A

, s ∈ S, f ∈ Fn
ϕS(V)
A,ϕS(s)

. Then there are p# ∈

PrV
ϕ∗
S(A), f

# ∈ FnV
ϕ∗
S(A),s defined as

p#(d) ∼= p(d#)

f#(d) ∼= f(d#).

Notice there is an instance of f# for each s′ such that ϕS(s
′) = ϕS(s).

By construction, the transition d 7→ d# preserves the operation of
domain restriction and disjoint union of nominative sets. Respectively

(d1▽d2)
# = d

#
1 ▽d

#
2

(d▽x 7→ a)# = d#▽x 7→ a

(d▽[v̄ 7→ ā])# = d#▽[v̄ 7→ ā]

[ ū 7→ f̄#(d) ]# = [ ū 7→ f̄(d#) ].
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Proposition 8. The correspondence p 7→ p#, (f, s) 7→ f# preserves

compositions in the following sense:

(p ∨ q)# = p# ∨ q#

(¬p)# = ¬p#

(Rv̄x̄p)
# = Rv̄x̄p

#

(∃xp)# = ∃xp#

(‘x)# = ‘x

([ ū 7→ f̄ ] g)# = [ū 7→ f̄#] g#

([ ū 7→ f̄ ] p)# = [ū 7→ f̄#] p#.

Proof. We immediately check

‖(p ∨ q)#‖ = ({d | d# ∈ ⊤(p ∨ q)}, {d | d# ∈ ⊥(p ∨ q)})

= (⊤(p#) ∪ ⊤(q#),⊥(p#) ∩ ⊥(q#)) = ‖p# ∨ q#‖.

‖(¬q)#‖ = ({d | d# ∈ ⊥(q)}, {d | d# ∈ ⊤(q)}) = ‖¬q#‖.

⊤((∃xp)#) = {d | d#▽x 7→ a ∈ ⊤(p) for some a ∈ AT ′′
V (x)}

= {d | (d▽x 7→ a)# ∈ ⊤(p) for some a ∈ AϕP (TV (x))}

= ⊤(∃xp#).

⊥((∃xp)#) = {d | (d▽x 7→ a)# ∈ ⊥(p) for all a ∈ AϕP (TV (x))}

= ⊥(∃xp#).

[ ū 7→ f̄ ] d# = d#▽[ ū 7→ f̄(d#) ]

= (d▽[ ū 7→ f̄#(d) ])# = ([ ū 7→ f̄# ] d)#.

([ ū 7→ f̄ ] p)#(d) ∼= p([ ū 7→ f̄ ] d#)

∼= p(([ ū 7→ f̄# ] d)#) ∼= [ū 7→ f̄#] p#(d).

([ ū 7→ f̄ ] g)#(d) ∼= g([ ū 7→ f̄ ] d#)

∼= g(([ ū 7→ f̄# ] d)#) ∼= [ū 7→ f̄#] g#(d).

(‘x)#(d) ∼= d
#
T ′′
V (x)

(x) ∼=
⋃

·
ϕS(s)=ϕS(TV (x))

ds(x) ∼= ‘x(d).
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(Rv̄x̄p)
#(d) ∼= p(d# ◦ σv̄x̄)

∼= p((d ◦ σv̄x̄)
#) ∼= Rv̄x̄p

#(d).

Suppose Pr ⊆ Pr
ϕS(V)
A

, then we denote Pr# = {p# | p ∈ Pr}.

5.3 Reduct functor

Next we provide combined model transformation.

Proposition 9. Let ϕ : (S,V, P, (Fs)s∈S) → (S′,V ′, P ′,F ′) be a signa-

ture morphism and M ′ = (Pr′, (Fn′s′)s′∈S′ ,A, I ′) be a (S′,V ′, P ′,F ′)-
model. Then there is a (S,V, P, (Fs)s∈S)-model

Mod(ϕ)(M ′) = (Pr, (Fns)s∈S, ϕ
∗

S(A), (IP , IF )), (7)

where

Pr = Pr
ψV
A

(Pr′)#, Fns = Fn
ψV
A,ϕS(s)

(Fn′ϕS(s))
#,

IP (π) = Pr
ψV
A

(I ′P (ϕP (π)))
# for π ∈ P,

IF,s(α) = Fn
ψV
A,ϕS(s)

(I ′F,ϕS(s)(ϕF (α)))
# for α ∈ Fs.

Proof. Considerations above show that Pr is closed under quasiary
predicates compositions. For instance, assume that p1,2 = Pr

ψV
A

(p′1,2)
#

∈ Pr. Then p1 ∨ p2 = Pr
ψV
A

(p′1 ∨ p
′

2)
# ∈ Pr. Class (Fns)s∈S is also

closed under operation composition. For instance, suppose that vi ∈ V ,
fi = Fn

ψV
A,T ′′

V (vi)
(f ′i)

# ∈ FnTV (vi), i = 1, n, g = Fn
ψV
A,ϕS(s)

(g′)# ∈ Fns.

Then

[ v̄ 7→ f̄ ] g = Fn
ψV
A,ϕS(s)

([ϕV (v̄) 7→ f̄ ′ ] f ′)# ∈ Fns.

Thus (Pr, (Fns)s∈S , ϕ
∗

S(A);Comp(V, ϕ∗

S(A))) is indeed a (V,A)-
quasiary predicate algebra. The following diagram

P
ϕP−−→ P ′

I′P−→ Pr′
Pr

ψV
A−−−→ Pr

ψV
A

(Pr′)
#
−→ Pr

shows that IP has proper type P → Pr. The same way IF,s : Fs →
Fns.
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Corollary 10. Given signatures Σ = (S,V, P,F), Σ′ = (S′,V ′, P ′,F ′),
morphism ϕ : Σ → Σ′ and Σ′-models M ′ = (Pr′,Fn′,A, I ′), M ′

1 =
(Pr′1,Fn

′

1,A1, I
′

1), any Σ′-model homomorphism h : M ′ →M ′

1 induces

Σ-model homomorphism ϕ∗

S(h) : Mod(ϕ)(M ′) → Mod(ϕ)(M ′

1).

Proof. There are three conditions to check here: that map PrV
ϕ∗
S(h)

satisfies image condition, that it preserves predicates from P and that
map ϕ∗

S(h) preserves operations from F .
By definition of (S′,V ′, P ′,F ′)-model homomorphism, commutativ-

ity (4) and properties of images we have

Pr
ψV
A

(Pr′)# ⊆ Pr
ψV
A

(PrV
′

h (Pr′1))
# = PrVϕ∗

S(h)
(PrψV

A1
(Pr′1)

#).

Here we also used properties of adjunction:

PrVh (p)
#(d) ∼= p(h ◦ d#) ∼= p((ϕ∗

S(h) ◦ d)
#) ∼= PrVϕ∗

S(h)
(p#)(d).

Similarly, for any π ∈ P we have

‖PrψV
A

(I ′P (π
′))#‖ ⊆ ‖PrVϕ∗

S(h)
(PrψV

A1
(I ′1P (π

′))#)‖,

where π′ = ϕP (π).
Finally, for any α ∈ Fs we have

ϕ∗

S(h)s(IF,s(α)(d))
∼= hϕS(s) ◦ I

′

F,ϕS(s)
(α′) ◦ ψVA(d#)

∼= I ′1F,ϕS(s)(α
′) ◦ V

′

h ◦ ψVA(d#)

∼= I ′1F,ϕS(s)(α
′) ◦ ψVA1(h ◦ d#)

∼= I ′1F,ϕS(s)(α
′) ◦ ψVA1((ϕ

∗

S(h) ◦ d)
#)

∼= I1F,s(α) ◦
Vϕ∗

S(h)(d).

where α′ = ϕF (α) ∈ F ′

ϕS(s)
. Here we used preservation of α′ by h,

adjunction and commutativity for induced maps (3).

Corollary 11. The construction given by (7) and

Mod(ϕ)(h) =ϕ∗

S(h)

extends Mod to a functor Sig → Cat.
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When Mod is known, the model resulting from the application of
the reduct functor Mod(ϕ) toM , i.e. Mod(ϕ)(M), is often abbreviated
as M

∣

∣

ϕ
.

6 Satisfaction relation

First, we extend the interpretation to all terms and formulas. Due
to the definition of quasiary predicate algebras it is quite easy. Let
Σ = (S,V, P,F), t ∈ Ter(Σ), Φ ∈ Sen(Σ), M = (Pr, (Fns)s∈S ,A, I) ∈
|Mod(Σ)|. We define M(Φ) ∈ Pr, MT (t)(t) ∈ FnT (t) inductively:

Ms(α) = IF,s(α), where α ∈ Fs

MTV (x)(‘x) = ‘x

MT (t′)([ v̄ 7→ t̄ ] t′) = [v̄ 7→MT (t̄)(t̄)]MT (t′)(t
′)

M(π) = IP (π)

M(Φ ∨Ψ) =M(Φ) ∨M(Ψ)

M(¬Φ) = ¬M(Φ)

M(∃xΦ) = ∃xM(Φ)

M([ v̄ 7→ t̄ ] Φ) = [v̄ 7→MT (t̄)(t̄)]M(Φ).

In the right-hand side we use the interpretation of composition symbols
given in subsection 4.3. The interpretation is respected by homomor-
phisms in the following sense.

Proposition 12. Let h : M →M1 be a Σ-model homomorphism, where

M = (Pr,Fn,A, I), M1 = (Pr1,Fn1,A1, I1) are Σ-models. Then

M(t) is h-related to M ′(t) for any Σ-term t.

Proof. By induction on term structure and proposition 4.

Corollary 13. Let h : M → M1 be a Σ-model homomorphism, where

M = (Pr,Fn,A, I), M1 = (Pr1,Fn1,A1, I1). Then for arbitrary Σ-
terms ti, i = 1, n and predicate p1 ∈ Pr1, the following holds

PrVh ([v̄ 7→M1(t̄)] p1) = [v̄ 7→M(t̄)]PrVh (p1).
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Definition 12. A formula Φ ∈ Sen(Σ) is satisfied by Σ-model M =
(Pr,Fn,A, I), if the predicate M(Φ) is irrefutable, i.e. ⊥(M(Φ)) = ∅.
This is denoted by M |= Φ.

Let us see how change of notation affects interpretation of a formula.

Proposition 14. Given a Σ-term t, formula Φ ∈ Sen(Σ), signature

Σ′ = (S′,V ′, P ′, (F ′

s)s′∈S′), Σ′-model M ′ = (Pr′,Fn′,A, I ′) and signa-

ture morphism ϕ : Σ → Σ′, the following holds:

Fn
ψV
A,ϕS(s)

(M ′

ϕS(s)
(ϕ(t)))# =M ′

∣

∣

ϕ,s
(t), where s = T (t)

Pr
ψV
A

(M ′(ϕ(Φ)))# =M ′
∣

∣

ϕ
(Φ).

Proof. By induction on structure of term t and formula Φ respectively.
Let α ∈ Fs be an operation symbol. Then

Fn
ψV
A,ϕS(s)

(M ′

ϕS(s)
(ϕF (α)))

# = Fn
ψV
A,ϕS(s)

(I ′F,ϕS(s)(ϕF (α)))
#

=M ′
∣

∣

ϕ,s
ϕF (α).

Fn
ψV
A,ϕS(TV (x))(M

′

ϕS(TV (x))(‘ϕV (x)))
# = Fn

ψV
A,ϕS(TV (x))(‘ϕV (x))

#

= ‘x# =M ′
∣

∣

ϕ,TV (x)
(‘x).

In the latter we used propositions 7 and 8. For the next case in addition
to them we use induction hypothesis. Let t, ti be Σ-terms, vi ∈ V ,
TV (vi) = T (ti) = si, T (t) = s, ϕS(s) = s′, i = 1, n. Then

Fn
ψV
A,s′(M

′(ϕ([ v̄ 7→ t̄ ] t)))# = Fn
ψV
A,s′

(

[ϕV (v̄) 7→M ′

s̄(ϕ(t̄))]M
′(ϕ(t))

)#

= [v̄ 7→M ′
∣

∣

ϕ,s̄
(t̄)]M ′

∣

∣

ϕ,s
(t′)

=M ′
∣

∣

ϕ,s
([ v̄ 7→ t̄ ] t′).

The same can be done for formulas. Let π ∈ P be a predicate
symbol, then

Pr
ψV
A

(M ′(ϕP (π)))
# = Pr

ψV
A

(I ′P (ϕP (π)))
# =M ′

∣

∣

ϕ
(π).
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For the rest of cases we use propositions 7, 8, induction hypothesis
and just proven property for terms:

Pr
ψV
A

(M ′(ϕ(Φ ∨Ψ)))# = Pr
ψV
A

(

M ′(ϕ(Φ))# ∨M ′(ϕ(Ψ))
)#

= Pr
ψV
A

(

M ′(ϕ(Φ))
)#

∨ PrψV
A

(

M ′(ϕ(Ψ))
)#

=M ′
∣

∣

ϕ
(Φ) ∨M ′

∣

∣

ϕ
(Ψ) =M ′

∣

∣

ϕ
(Φ ∨Ψ).

P r
ψV
A

(M ′(ϕ(¬Φ)))# = ¬
(

Pr
ψV
A

(M ′(ϕ(Φ)))#
)

= ¬M ′
∣

∣

ϕ
(Φ) =M ′

∣

∣

ϕ
(¬Φ).

P r
ψV
A

(M ′(ϕ(∃xΦ)))# = Pr
ψV
A

(∃ϕV (x)M
′(ϕ(Φ)))#

= ∃xPrψV
A

(M ′(ϕ(Φ)))# =M ′
∣

∣

ϕ
(∃xΦ).

The case for substitution in formula basically repeats case for substi-
tution in term.

Corollary 15. Given formula Φ ∈ Sen(Σ), Σ′-model M ′ and signature

morphism ϕ : Σ → Σ′, then

M ′ |= ϕ(Φ) if and only if M ′
∣

∣

ϕ
|= Φ.

Proof. By previous proposition ⊥(M ′
∣

∣

ϕ
(Φ))# = ψVA

−1
(⊥(M ′(ϕ(Φ))),

where A is the carrier of M ′. Due to properties of images the satisfac-
tion condition holds.

By proposition 2, and corollaries 11, 15 we have

Theorem 1. Constructed (Sig,Sen,Mod, |=) form an institution.

This result finishes construction of institution FOCNL for many-
sorted first-order composition-nominative logic.

7 Conclusion

This paper proves that many-sorted first-order composition-nominative
logic forms an institution. For this all necessary constituents of insti-
tution are provided. Homomorphisms between models of many-sorted
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first-order CNL are introduced. This construction can be considered
as an extension of the institution for (pure) first-order CNL [8], [9]. It
can be developed further to accommodate programming logics like [4].
Other line of research suggests studying the distinctive features of ob-
tained institutions compared to more conventional ones.
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[6] D. Sannella and A. Tarlecki, Foundations of Algebraic Specification
and Formal Software Development, ser. Monographs in Theoretical
Computer Science. An EATCS Series. Springer-Verlag Berlin
Heidelberg, 2012.

[7] T. Mossakowski, J. Goguen, R. Diaconescu, and A. Tarlecki,
“What is a logic?” in Logica Universalis: Towards a General

53



A. Chentsov

Theory of Logic, J.-Y. Béziau, Ed. Birkhäuser Basel, 2007, pp.
111–133.

[8] A. Chentsov and M. Nikitchenko, “Institution for pure first-order
composition-nominative logic,” in Proc. Workshop Foundations

of Informatics (FOI-2015), Aug. 2015, pp. 50–63. [Online].
Available: http://foi.math.md/proceedings.pdf

[9] ——, “Composition-nominative logics as institutions,” in
Handbook 5th World Congr. and School Universal Logic

(UniLog 2015), Jun. 2015, pp. 370–371. [Online]. Available:
http://www.uni-log.org/hunilog2015.pdf

[10] C. McLarty, Elementary Categories, Elementary Toposes, ser. Ox-
ford Logic Guides, Book 21. Clarendon Press, 1992, ch. 11, pp.
99–106.

[11] J. Stell, “A framework for order-sorted algebra,” in Algebraic

Methodology and Software Technology, ser. Lecture Notes in
Computer Science, 2002, vol. 2422, pp. 396–410. [Online].
Available: http://dx.doi.org/10.1007/3-540-45719-4 27

[12] W. Phoa, “An introduction to fibrations, topos theory, the effec-
tive topos and modest sets,” Lab. Found. Comp. Sci., Univ. of
Edinburgh, Edinburgh, Tech. Rep. ECS-LFCS-92-208, 1992.

[13] S. Awodey, Category Theory, ser. Oxford Logic Guides, Book 52.
Oxford University Press, 2006.

[14] B. Pierce, Types and Programming Languages. Massachusetts:
MIT Press, 2002.

[15] D. Rydeheard and R. Burstall, Computational Category Theory.
New York, London: Prentice Hall, 1988.

Alexey Chentsov Received December 14, 2015

Alexey Chentsov

Taras Shevchenko National University of Kyiv

01601, Kyiv, Volodymyrska st, 60

Phone: +38044 2590511

E–mail: chentsov@ukr.net

54



Computer Science Journal of Moldova, vol.24, no.1(70), 2016

Some applications of quasigroups in cryptology

N.A. Moldovyan A.V. Shcherbacov V.A. Shcherbacov

Abstract

In the paper we present based on quasigroups new deniable
encryption method, generalisation of Markovski stream cipher,
and generalisation of El-Gamal enciphering system.
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1 Deniable-encryption mode for block ciphers

This paper is the extended version of the paper [1].
Deniable encryption (DE) is a method for generating ciphertexts

that can be alternatively decrypted providing security against so called
coercive attacks [2] for which it is assumed that after ciphertext has
been sent the adversary has possibility to force both the sender and
the receiver to open the plaintext corresponding to the ciphertext and
the encryption key. In the case of block ciphering the DE can be
provided with simultaneous encryption of the secret and fake messages
using the secret and fake keys, correspondingly. While being coerced
the sender and receiver of the ciphertext open the fake key and fake
message and declare they have used the probabilistic encryption [3].
Earlier in paper [4] it had been proposed a method for simultaneous
encryption of two messages based on solving a system of two linear
equations. In this section we propose design of the DE mode for using
block ciphers, which is based on the mentioned method.

Definition 1. Binary groupoid (G, ◦) is an isotopic image of a binary

groupoid (G, ·), if there exist permutations α, β, γ of the set G such that

x ◦ y = γ−1(αx · βy) [5].

c©2016 by N.A. Moldovyan, A.V. Shcherbacov, V.A. Shcherbacov
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Suppose EV be a block encryption algorithm with n-bit input data
block and the value used as encryption key. All existing n-bit data
blocks can be considered as elements of some quasigroup with the op-
eration ∗ defined as follows:

K ∗ i = EV (K ⊕ EV (i)),

where ⊕ is the XOR operation; K and i are n-bit vectors. This quasi-
group is an isotope of the group (G,⊕), where G is the set of all n-bit
vectors. Here EV is a permutation of the symmetric group SG.

Evidently, for all possible values i and Q 6= K we have

EV (Q⊕ EV (i)) 6= EV (K ⊕EV (i)). (1)

Using this property of the quasigroup and two different keys K

and Q 6= K one can define simultaneous encryption of two different
messages T = (t1, t2, . . . , ti, . . . , tz) and M = (m1,m2, . . . ,mi, . . . ,mz),
where z < 2n; ti and mi are n-bit data blocks, as generation of the sin-
gle ciphertext C = (c1, c2, . . . , ci, . . . , cz) containing (2n)-bit ciphertext
blocks ci = (c′i, c

′′

i ), where c′i and c′′i are n-bit values, computed from
the following system of equations in the field GF (2n):

{

c′i +Aic
′′

i ≡ Bi +mi mod η(x)
c′i +Gic

′′

i ≡ Hi + ti mod η(x),
(2)

where η(x) is some specified irreducible binary polynomial of the degree
n; the n-bit values Ai, Bi, Gi, and Hi are computed using the random
n-bit initialization vector V (this value is not secret) as follows:

Ai = EV (K ⊕ EV (i));Gi = EV (Q⊕ EV (i));

Bi = EK(Ai);Hi = EQ(Gi).
(3)

While solving (2) the values Ai, Bi, Gi, and Hi are considered as
binary polynomials of the degree s < n. Due to condition (1) it holds
the unequality Ai 6= Gi, therefore the system (2) always has the single
solution, i.e. the proposed deniable-encryption procedure is defined
correctly.
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Let us agree that the secret message (key) is the value T (Q) and
the fake message (key) is the value M (K). If the coercer forces the
sender and receiver of the secret message T to open the ciphertext C

and the encryption key, then they open the fake key K and the fake
message M and declare using the probabilistic block-encryption mode
implemented with the block cipher E. In terms of paper [3] the declared
encryption algorithm is called the associated encryption algorithm.

In the case of the proposed deniable-encryption method the last
algorithm is described as consecutive probabilistic encryption of the
data blocks mi for each value i = 1, 2, . . . , z performing the following
steps:

1. Generate a random initialization vector V and compute the
values Ai = EV (K ⊕ EV (i)) and Bi = EK(Ai).

2. Generate a random binary polynomial ρi(x) 6= Ai of the degree
s < n.

3. Compute the unknowns c′i and c′′i from the following system of
equations in GF (2n):

{

c′i +Aic
′′

i ≡ Bi +mi mod η(x)
c′i + ρic

′′

i ≡ 1 mod η(x),
(4)

Evidently, for some sequence of the values ρ1(x), ρ2(x), . . . , ρz(x) the
message M is transformed with the key K into the given ciphertext C.

To distinguish the use of the deniable encryption with the system
(2) from the probabilistic encryption with the system (4) the poten-
tial coercive attacker should compute the key Q. The last problem is
computationally difficult, if E is a secure block cipher, for example,
AES [6] with 128-bit key and n = 128. Restoring the secret message
from the ciphertext is performed as decryption of each ciphertext block
ci = (c′i, c

′′

i ), i = 1, 2, . . . , z, as follows:

1. Using the secret key Q compute the values Gi = EV (Q⊕EV (i))
and Hi = EQ(Gi).

2. Compute the plaintext data block ti = c′i +Gic
′′

i −Hi mod η(x).

The fake decryption of the ciphertext is performed as follows (i =
1, 2, . . . , z):
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1. Using the fake key K compute the values Ai = EV (K ⊕ EV (i))
and Bi = EK(Ai).

2. Compute the plaintext data block mi = c′i+Aic
′′

i −Bi mod η(x).

2 Stream deniable-encryption scheme

The method described in Section 1 can be used for constructing stream
deniable encryption algorithms. Formally, for small values n (for ex-
ample n = 8) that method represents consecutive deniable encryption
of the pairs of symbols of two different input texts. The sequence of
the pairs (Ai, Bi) represents the key stream used for encrypting the
message M . Respectively, the sequence of the pairs (Gi,Hi) represents
the key stream used for encrypting the message T . However one should
take into account that for small values n these key streams contain too
short periods, therefore such encryption method is not secure. To over-
come this problem one can propose the following modification of the
formulas for computing the values Ai, Bi, Gi, and Hi:

Ai = EV ||i(kj), Gi = EV ||i(qj),

Bi = EK(Ai),Hi = EQ(Gi),
(5)

where ‖ denotes concatenation operation; V is 64-bit initialization
vector; i is 64-bit counter; kj are 8-bit subkeys of the key K =
(k0, k1, . . . , k7); qj are 8-bit subkeys of the key Q = (q0, q1, . . . , q7),
j = (i − 1) mod 8. In the last formulas the block encryption function
E operates with 8-bit data block and 128-bit key.

While generating the keys K and Q it is to be fulfilled the condition
kj 6= qj for j = 0, 1, . . . , 7.

It should be mentioned that the value V ||i is used as variable key
for computing the values Ai and Bi, i.e. the key is to be reset for
each transformed pair of the 8-bit symbols of the texts M and T .
This feature makes preferable to use block ciphers E with simple key
scheduling in order to get higher performance of the stream deniable
encryption [7]. In the case of hardware implementation of the function
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E one can use, for example, the design based on controlled substitution-
permutation networks [8].

3 Stream cipher based on binary quasigroups

Here we give more detailed description of algorithm which was pro-
posed in [9]. This algorithm simultaneously uses two cryptographical
procedures: enciphering using generalisation of Markovski stream al-
gorithm [10] and enciphering using a system of orthogonal operations.

We also give some realisation of this algorithm based on T-
quasigroups, more precise, on medial quasigroups. Necessary infor-
mation about quasigroups and some its applications in cryptography
can be found in [5], [9], [11].

Below we denote the action of the left (right, middle) translation
in the power a of a binary quasigroup (Q, g1) on the element u1 by the
symbol g1T

a
l1
(u1). And so on. Here l1 means leader element. See [9]–[11]

for details.

Algorithm 1. Enciphering. Initially we have plaintext u1, u2, . . . , u6.

Step 1.

g1T
a
l1
(u1) = v1

g2T
b
l2
(u2) = v2

F c
1 (v1, v2) = (v′1, v

′

2)

Step 2.

g3T
d
v′
1

(u3) = v3

g4T
e
v′
2

(u4) = v4

F
f
2 (v3, v4) = (v′3, v

′

4)

(6)

Step 3.

g5T
g

v′
3

(u5) = v5

g6T
h
v′
4

(u6) = v6

F i
3(v5, v6) = (v′5, v

′

6).

59



N.A. Moldovyan, A.V. Shcherbacov, V.A. Shcherbacov

We obtain ciphertext v′1, v
′

2, . . . , v
′

6.

Deciphering. Initially we have ciphertext v′1, v
′

2, . . . , v
′

6.

Step 1.

F−c
1 (v′1, v

′

2) = (v1, v2)

g1T
−a
l1

(v1) = u1

g2T
−b
l2

(v2) = u2

Step 2.

F
−f
2 (v′3, v

′

4) = (v3, v4)

g3T
−d
v′
1

(v3) = u3

g4T
−e
v′
2

(v4) = u4

Step 3.

F−i
3 (v′5, v

′

6) = (v5, v6)

g5T
−g

v′
3

(v5) = u5

g6T
−h
v′
4

(v6) = u6

(7)

We obtain plaintext u1, u2, . . . , u6.

From Algorithm 1 we obtain classical Markovski algorithm, if we
take only one quasigroup, one kind of quasigroup translations (left
translations) any of which is taken in power = 1, and, finally, if sys-
tem of orthogonal operations (crypto-procedure F ) is not used. Some
generalisations of Algorithm 1 are given in [12].

4 T-quasigroup based stream cipher

We give a numerical example of encryption Algorithm 1 based on T -
quasigroups (more exactly, on medial quasigroups) [12]. Notice that
the number 257 is prime. The form of parastrophes of T-quasigroups,

for example, of quasigroup (A,
(13)
∗ ) can be found in [12], [13, p. 39].

Example 1. Take the cyclic group (Z257,+) = (A,+).
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1. Define T-quasigroup (A, ∗) by the form x∗y = 2·x+131·y+3 with
a leader element l, say, l = 17. Denote the mapping x 7→ x ∗ l by
the letter g1, i.e. g1(x) = x ∗ l for all x ∈ A.

In order to find the mapping g−1
1 we find the form of operation

(13)
∗ . We have x

(13)
∗ y = 129 ·x+63 ·y+127, f−1x = x

(13)
∗ l. Then

g−1
1 (g1(x)) = g−1

1 (x ∗ l) = (x ∗ l)
(13)
∗ l=x.

In some sense quasigroup (A,
(13)
∗ ) is the ”right inverse quasi-

group” to quasigroup (A, ∗). Notice that from results of arti-

cle [13, Theorem 16] it follows that (A, ∗)⊥(A,
(13)
∗ ).

2. Define T-quasigroup (A, ◦) by the form x ◦ y = 10 · x+81 · y+53
with a leader element l, say, l = 71. Denote the mapping x 7→ l∗x
by the letter g2, i.e. g2(x) = l ◦ x for all x ∈ A.

In order to find the mapping g−1
2 we find the form of operation

(23)
◦ . We have x

(23)
◦ y = 149 · x+ 165 · y + 250.

3. Define a system of two parastroph orthogonal T-quasigroups (A, ·)

and (A,
(23)
· ) in the following way







x · y = 3 · x+ 5 · y + 6

x
(23)
· y = 205 · x+ 103 · y + 153.

Denote quasigroup system (A, ·,
(23)
· ) by F (x, y), since this system

is a function of two variables.

In order to find the mapping F−1(x, y) we solve the system of

linear equations
{

3 · x+ 5 · y + 6 = a

205 · x+ 103 · y + 153 = b.

We have ∆ = 55, 1/∆ = 243, x = 100 ·a+70 ·b+255, y = 43 ·a+
215 · b. Therefore we have, if F (x, y) = (a, b), then F−1(a, b) =
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(100 · a+ 70 · b+ 255, 43 · a+ 215 · b), i.e.
{

x = 100 · a+ 70 · b+ 255

y = 43 · a+ 215 · b.

We have defined the mappings g1, g2, F and now we can use them

in Algorithm 1.

Let 212; 17; 65; 117 be a plaintext. We take the following values in

formula (6): a = b = d = e = f = 1; c = 2. Below we use Gothic font

to distinguish leader elements, i.e., the numbers 17 and 71 are leader

elements. Then

Step 1.

g1(212) = 212 ∗ 17 = 2 · 212 + 131 · 17 + 3 = 84
g2(17) = 71 ◦ 17 = 10 · 71 + 81 · 17 + 53 = 84
F (84; 84) = (3 · 84 + 5 · 84 + 6; 205 · 84 + 103 · 84 + 153) = (164; 68)
F (164; 68) = (3·164+5·68+6; 205·164+103·68+153) = (67; 171)

Step 2.

g1(65) = 65 ∗ 67 = 2 · 65 + 131 · 67 + 3 = 172
g2(117) = 171 ◦ 117 = 10 · 171 + 81 · 117 + 53 = 189
F (172; 189) = (3 · 172 + 5 · 189 + 6; 205 · 172 + 103 · 189 + 153) =

(182; 139)
We obtain the following ciphertext 67; 171; 182; 139.

For deciphering we use formula (7).

Step 1.

F−1(67; 171) = (100·67+70·171+255, 43·67+215·171) = (164; 68)
F−1(164; 68) = (100 ·164+70 ·68+255, 43 ·164+215 ·68) = (84; 84)

g−1
1 (84) = 84

(13)
∗ 17 = 129 · 84 + 63 · 17 + 127 = 212

g−1
2 (84) = 71

(23)
◦ 84 = 149 · 71 + 165 · 84 + 250 = 17

Step 2.

F−1(182; 139) = (100 · 182 + 70 · 139 + 255, 43 · 182 + 215 · 139) =
(172; 189)

g−1
1 (172) = 172

(13)
∗ 67 = 129 · 172 + 63 · 67 + 127 = 65
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g−1
2 (189) = 171

(23)
◦ 189 = 149 · 171 + 165 · 189 + 250 = 117

A program using freeware version of programming language Pascal
was developed. First experiments demonstrate that encoding-decoding
is executed sufficiently fast.

We plan to continue researches in this direction, namely we plan
to estimate time complexity of encryption and decryption for the pro-
posed algorithms, as well as give formal justification for computational
security of ones. The authors thank Referee for this suggestion.

Remark 1. Proper binary groupoids are more preferable than linear

quasigroups by construction of the mapping F (x, y) in order to make

encryption more safe, but in this case decryption may be slower than

in linear quasigroup case and definition of these groupoids needs more

computer (or some other device) memory. The same remark is true

for the choice of the function g. Maybe a golden mean in this choice

problem is to use linear quasigroups over non-abelian, especially simple,

groups.

Remark 2. In this cipher there exists a possibility of protection against

standard statistical attack. For this scope it is possible to denote more

often used letters or pair of letters by more than one integer or by more

than one pair of integers.

5 El Gamal cryptosystem

We recall El Gamal cryptosystem [14]. Let (Zp,+) be a cyclic group
of residues of big (say 200 to 300 digits) prime order relative to addi-
tion of residues, a be a generator of the group (Zp−1, ·) ∼= Aut(Zp,+)
(gcd(a, p − 1) = 1).

Alices keys are as follows:
Public Key p, a, and am, m ∈ N.
Private Key m.

Encryption

To send a message b ∈ (Zp−1, ·) Bob computes ar and amr for a
random r ∈ N (sometimes the number r is called an ephemeral key).
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The ciphertext is (ar, amr · b).

Decryption

Alice knows m, so if she receives the ciphertext (ar, amr · b), she
computes a−rm from ar and then she computes b from amr · b using the
formula a−mr · amr · b = b.

6 De-symmetrisation of Markovski algorithm

We give an analogue of El Gamal encryption system based on
Markovski algorithm [1], [15].

Let (Q, f) be a binary quasigroup and T = (α, β, γ) be its isotopy.

Alices keys are as follows:

Public Key is (Q, f), T , T (m,n,k) = (αm, βn, γk), m,n, k ∈ N, and
Markovski algorithm.

Private Key m,n, k.

Encryption

To send a message b ∈ (Q, f) Bob computes T (r,s,t), T (mr,ns,kt) for
a random r, s, t ∈ N and (T (mr,ns,kt)(Q, f)).

The ciphertext is (T (r,s,t), (T (mr,ns,kt)(Q, f))b).

To obtain (T (mr,ns,kt)(Q, f))b Bob uses Markovski algorithm which
is known to Alice.

Decryption

Alice knows m,n, k, so if she receives the ciphertext

(T (r,s,t), (T (mr,ns,kt)(Q, f))b),

she computes (T (mr,ns,kt)(Q, f))−1 using T (r,s,t) and, finally, she com-
putes b.

In this algorithm there can also be used isostrophy [16] instead of
isotopy, Algorithm 1 instead of Markovski algorithm, n-ary (n > 2)
quasigroups [9], [17] instead of binary quasigroups.

Generalisation of El Gamal scheme using a Moufang loop is given
in [18]. In [19] it is proved that discrete logarithms problem in Moufang
loops can be reduced to the same problem in finite simple fields.
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Generalisation of El Gamal encryption system based on a quasiau-
tomorphism of a quasigroup is presented in [18]. In this generalisation
a generator element of the group Zn is a quasiautomorphism (the third
component of an autotopy) of a quasigroup.

7 Conclusion

In this paper we have presented stream deniable encryption algorithm,
generalisation of quasigroup based Markovski algorithm, and based on
Markovski algorithm and concept of isotopy generalisation of El Gamal
encryption system.

Acknowledgment. The authors thank Referee for valuable sug-
gestions.

References

[1] N. Moldovyan, A. Shcherbacov, and V. Shcherbacov, “On some
applications of quasigroups in cryptology,” in Workshop on Foun-

dations of Informatics, August 24-29, 2015, Chisinau, Proceed-

ings, Chisinau, 2015, pp. 331–341.

[2] R. Canetti, C. Dwork, M. Naor, and R.Ostrovsky, “Deniable En-
cryption,” Proceedings Advances in Cryptology CRYPTO 1997

(Lecture Notes in Computer Science, vol. 1294), pp. 90–104, 1997.

[3] A. Moldovyan and N. Moldovyan, “Practical method for bi-
deniable public-key encryption,” Quasigroups and related systems,
vol. 22, pp. 277–282, 2014.

[4] A. Moldovyan, N. Moldovyan, and V. A. Shcherbacov, “Bi-
deniable public-key encryption protocol secure against active co-
ercive adversary,” Buletinul Academiei de Stiinte a Republicii

Moldova. Matematica, no. 3, pp. 23–29, 2014.

[5] V. Belousov, Foundations of the Theory of Quasigroups and Loops.
Moscow: Nauka, 1967, (in Russian).

65



N.A. Moldovyan, A.V. Shcherbacov, V.A. Shcherbacov

[6] J. Pieprzyk, T. Hardjono, and J. Seberry, Fundumentals of Com-

puter Security. Berlin: Springer-Verlag, 2003.

[7] N. Moldovyan, “On cipher design based on switchable controlled
operations,” International Journal of Network Security, vol. 7,
no. 3, pp. 404–415, 2008.

[8] N. Moldovyan and A. Moldovyan, CData-driven block ciphers for

fast telecommunication systems. New York: Talor&Francis Group,
2008.

[9] V. Shcherbacov, “Quasigroups in cryptology,” Comput. Sci. J.

Moldova, vol. 17, no. 2, pp. 193–228, 2009.

[10] V. Shcherbacov and N. Moldovyan, “About one cryptoalgorithm,”
in Proceedings of the Third Conference of Mathematical Society of

the Republic of Moldova dedicated to the 50th anniversary of the

foundation of the Institute of Mathematics and Computer Science,

August 19-23, 2014, Chisinau. Chisinau: Institute of Mathematics
and Computer Science, 2014, pp. 158–161.

[11] V. Shcherbacov, “Elements of quasigroup theory and some
its applications in code theory,” 2003. [Online]. Available:
www.karlin.mff.cuni.cz/drapal/speccurs.pdf.

[12] V. Shcherbacov, “Quasigroup based crypto-algorithms,” pp. 1–23,
2012, arXiv:1201.3016.

[13] G. Mullen and V. Shcherbacov, “On orthogonality of binary oper-
ations and squares,” Bul. Acad. Stiinte Repub. Mold., Mat., no. 2,
pp. 3–42, 2005.

[14] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE Trans inf Theo, vol. 31, no. 4,
pp. 469–472, 1985.

[15] V. Shcherbacov, “On generalisation of Markovski cryptoalgo-
rithm”, AAA89: Workshop on General Algebra, February 26-

66



Some applications of quasigroups in cryptology

March 1, 2015, Technische Universität Dresden, Technical Report,
2015, Technische Universität Dresden, Dresden, pp. 36–37.

[16] V. Shcherbacov, “On the structure of left and right F-, SM- and E-
quasigroups,” J. Gen. Lie Theory Appl., vol. 3, no. 3, pp. 197–259,
2009.

[17] V. Belousov, n-Ary Quasigroups. Kishinev: Stiintsa, 1971, (in
Russian).

[18] A. V. Gribov, “Algebraic non-associative structures and its appli-
cations in cryptology,” Ph.D. dissertation, Moscow: Moscow State
University, 2015, (in Russian).

[19] G. Maze, “Algebraic methods for constructing one-way trapdoor
functions,” Ph.D. dissertation, University of Notre Dame, 2003.

N.A.Moldovyan1, A.V. Shcherbacov2, Received October 30, 2015

V.A. Shcherbacov3,

1 Professor, St. Petersburg Institute for Informatics and Automation of

Russian Academy of Sciences

14 Liniya, 39, St.Petersburg, 199178

Russia

E–mail: mdn.spectr@mail.ru

2 M.Sc., Theoretical Lyceum ”C. Sibirschi”

Lech Kaczyski str. 4, MD-2028, Chişinău
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Abstract

A method for stream deniable encryption of secret message
is proposed, which is computationally indistinguishable from the
probabilistic encryption of some fake message. The method uses
generation of two key streams with some secure block cipher. One
of the key streams is generated depending on the secret key and
the other one is generated depending on the fake key. The key
streams are mixed with the secret and fake data streams so that
the output ciphertext looks like the ciphertext produced by some
probabilistic encryption algorithm applied to the fake message,
while using the fake key. When the receiver or/and sender of
the ciphertext are coerced to open the encryption key and the
source message, they open the fake key and the fake message.
To disclose their lie the coercer should demonstrate possibility
of the alternative decryption of the ciphertext, however this is a
computationally hard problem.

Keywords: cryptology, algorithm, stream, deniable, encryp-
tion.

MSC 2000: 94A60, 11S05.

1 Introduction

This paper is an extended version of the article [1].

The notion of deniable encryption (DE) was introduced by Canetti
et al. in 1997 [2] as property of cryptographic protocols and algorithms
to resist the so called coercive attacks that are performed by some ad-
versary (coercer) that intercepts the ciphertext and has power to force

c©2016 by N.A. Moldovyan, A.A. Moldovyan, D.N. Moldovyan, V.A.

Shcherbacov

68



Stream Deniable-Encryption Algorithms

sender or/and receiver to open both the sent message and the encryp-
tion key. If the sender encrypts the secrete message using public key
of the receiver of the message, then we have the case of the public-key
deniable encryption schemes. If the encryption of the secrete message
is performed using a shared secret key, then we have the case of the
shared-key deniable encryption schemes.

The public-key DE protocols are applicable for preventing vote
buying in the internet-voting systems [3] and for providing security of
multiparty computations [4]. The shared-key DE algorithms represent
interest for information protection in computer and telecommunica-
tion systems. In literature the following cryptoschemes are considered:
sender-deniable [2], [3] (coercer attacks the sender of the ciphertext),
receiver-deniable [4] (coercer attacks the receiver of the ciphertext), and
bi-deniable [5] (coercer attacks the both parties of the secure commu-
nication session) cryptoschemes. The encryption scheme is deniable, if
it provides possibility to the sender or/and to the receiver to open a
fake message and a fake key instead of the secret ones so that disclosing
their lie is a computationally infeasible problem for the coercer. Practi-
cal methods for bi-deniable public-key encryption have been proposed
in [6], [7].

Fast methods for block deniable encryption are described in [8].
Those methods implement deniable encryption as simultaneous trans-
formation of two different messages, secret and fake ones, using two
keys, secret and fake ones, into the single ciphertext. In the paper [8]
it has been also introduced the notion of the computational indistin-
guishability of the DE from the probabilistic encryption. The DE al-
gorithm is considered as possessing such property, if it produces the
ciphertext that can be also produced by some probabilistic-encryption
algorithm used for ciphering the fake message with the fake key and
some random input. The stream DE algorithms proposed in [8] and [9]
are indistinguishable from some probabilistic encryption algorithms,
however those algorithms are very slow. At present no practical and
fast algorithms for shared-key stream DE are described in the literature,
such algorithms are very attractive for practical application to provide
information protection in computer and telecommunication systems
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though.

The present paper proposes a method and algorithm for sufficiently
fast stream bi-deniable encryption. Computational indistinguishabil-
ity from a probabilistic stream encryption is used as a design criterion.
The paper is organized as follows. Section 2 presents the design cri-
teria. Section 3 and 4 present method and algorithm for stream bi-
deniable encryption, correspondingly. Section 5 discusses the proposed
algorithm. Section 6 concludes the paper.

2 Design criteria

For designing a shared-key DE algorithm the following criteria have
been used:

- the algorithm should implement the stream encryption;

- the used encryption method should provide possibility of the in-
dependent decryption of each symbol of the produced ciphertext; this
criterion takes into account possible practical applications in the cloud-
computing technologies for processing data contained in encrypted files
having large size;

- the method should implement the DE procedure as simultaneous
encryption of the secret and fake messages using the secret and fake
keys;

- the output ciphertext generated by the algorithm should be com-
putationally indistinguishable from the ciphertext produced by some
probabilistic ciphering a fake message with a fake key;

- the algorithm should provide sufficiently high encryption speed;

- the algorithm should provide bi-deniability;

- one should provide possibility of the independent recovering of the
secret and fake messages, using secret or fake key, correspondingly.

3 Encryption method

One can consider text files as sequence of small data blocks having fixed
size, i.e. as sequence of bit strings with which symbols are coded. Thus,
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for encrypting a file or a message it is possible to apply formally the
fast bi-deniable block-encryption method proposed in [7]. To encrypt a
secret message T = (T1, T2, . . . , Ti, . . . , Tn) represented as sequence of
the b-bit data blocks Ti (b = 32, 64, 128, or 256), in that method it is
supposed to generate a fake message M = (M1,M2, . . . ,Mi, . . . ,Mn),
where Mi are the b-bit data blocks, having the same size as the secret
one and then to encrypt simultaneously all pairs of the data blocks Ti

and Mi (i = 1, 2, . . . , n) as follows:

1. Using some known secure block cipher with b-bit input data
block, encrypt the data block Mi into the b-bit block CMi

of interme-
diate ciphertext in accordance with the formula

CMi
= EK(Mi), (1)

where E is the used block cipher; K is the fake key.

2. Encrypt the data block Ti into the b-bit block CTi
of intermediate

ciphertext in accordance with the formula

CTi
= EQ(Ti), (2)

where Q is the secret key.

3. Compute the ith (2b)-bit block of the output ciphertext Ci as
(2b)-bit binary polynomial satisfying the system of congruences

{

Ci ≡ CMi
mod µ(x)

Ci ≡ CTi
mod λ(x),

(3)

where binary polynomial µ(x) = 1||µ′(x), || denotes the concatenation
operation; µ′(x) is the binary polynomial, which is given by the right
b bits of the fake key K (i.e. the right b bits of the secret key K are
interpreted as binary polynomial); binary polynomial λ(x) = 1||λ′(x);
λ′(x) is the binary polynomial, which is given by the right b bits of the
secret key Q.

In the method described in [8] the keys K and Q are generated
as a pair of random bit strings such that polynomials µ′(x) and λ′(x)
are mutually irreducible, therefore the last system of congruences has
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unique solution Ci < λ(x)µ(x) and can be computed as follows:

Ci = [CMi
λ(x)(λ−1(x) mod µ(x))+

+ CTi
µ(x)(µ−1(x) mod λ(x))] mod µ(x)λ(x).

In the case of small values of the data blocks the described method is
insecure, for example, in the case of simultaneous encryption of the files
T = (t1, t2, . . . , ti, . . . , tn) and M = (m1,m2, . . . ,mi, . . . ,mn), where ti
and mi are symbols having size b ≤ 16 bits. To overcome this problem
we propose to modify the key for each value i = 1, 2, . . . , n. Due to
such modification it becomes possible to simplify computation of the
blocks CMi

and CTi
, if the sequences of the modified values of the

fake and secret key are generated in the form of some pseudorandom
sequence that is computationally indistinguishable from the uniform
random sequence. Besides, we propose to use unique fake and secret
key sequences for encryption of each secret message T . Thus, we have
come to idea to generate fake (Γ) and secret (Γ′) key sequences using
the block cipher E in accordance with the following formulas

EK(i||V ) mod 22b = (αi||βi) and EQ(i||V ) mod 22b = (α′

i
||β′

i
),

where αi, βi, α
′

i
, and β′

i
are b-bit strings such that binary polynomials

µi(x) = 1||βi and λi(x) = 1||β′

i
are mutually irreducible; V is the 64-bit

initialization vector generated at random for each encrypted message
or file (the value V is not secret, therefore V can be transmitted via
insecure channel).

The sequences Γ and Γ′ can be written as follows:

Γ = {(α1||β1), (α2||β2), . . . , (αi||βi), . . . , (αn||βn)} and

Γ′ = {(α′

1||β
′

1), (α
′

2||β
′

2), . . . , (α
′

i
||β′

i
), . . . , (α′

n
||β′

n
)}.

The elements (αi||βi) and (α′

i
||β′

i
) of these sequences are to be used

to encrypt simultaneously the couple of symbols ti and mi. Instead of
formulas (1) and (2) one can use the following transformation of the
ith symbol of the fake and secret messages, respectively:

cmi
= mi ⊕ αi (4)

cti = ti ⊕ α′

i
, (5)
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where ⊕ is the XOR operation. The b-bit symbols cmi
and cti of the

intermediate ciphertext are to be mixed into the single (2b)-bit symbol
ci of the output ciphertext in accordance with the following formula

ci = [cmi
λi(x)(λ

−1
i

(x) mod µi(x))+

+ ctiµi(x)(µ
−1
i

(x) mod λi(x))] mod µi(x)λi(x),
(6)

where µi(x) = 1||βi and λi(x) = 1||β′ are mutually irreducible binary
polynomials. Formula (6) defines solution of the following system of
congruences

{

ci ≡ cmi
mod µi(x)

ci ≡ cti mod λi(x).
(7)

System (7) defines the following formulas for computing the symbols
cmi

and cti from ci:

cmi
= ci mod µi(x), (8)

cti = ci mod λi(x). (9)

Then the ith symbols ti and mi of the source texts T and M are
computed using the values αi and α′

i
with the following formulas (i =

1, 2, . . . , n):

mi = cmi
⊕ αi, (10)

ti = cti ⊕ α′

i
. (11)

4 The stream deniable encryption algorithm

Suppose we have a secure block cipher E with 128-bit input data block
and 128-bit key K. Using the method described in Section 3 (in which
it is supposed that two parties of the communication session share the
secret 128-bit key Q and the fake 128-bit key K) we have constructed
the following algorithm for performing the stream DE of the secret
message T :

INPUT: the secret message T = (t1, t2, . . . , ti, . . . , tn) and encryp-
tion keys K and Q.
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1. Generate a fake message M having the same length as the mes-
sage T .

2. Generate a random value of the 64-bit initialization vector V .

3. For i = 1 to n do the following steps.

3.1. Using the procedure Form αβ generate the ith elements
(αi||βi) and (α′

i
||β′

i
) of the key sequences Γ and Γ′.

3.2. Compute the b-bit symbols cmi
and cti of the intermediate

ciphertext using formulas (4) and (5).

3.3. Compute the (2b)-bit symbol ci of the output ciphertext as
solution of the system of two linear congruences (7), which is defined
by formula (6).

4. Compose the output ciphertext C = (c1, c2, . . . , ci, . . . , cn).

OUTPUT: the ciphertext C = (c1, c2, . . . , ci, . . . , cn) and the ini-
tialization vector V .

The procedure Form αβ used at step 3 is described as follows:

INPUT: two 128-bit keys K and Q and two 64-bit values i and V .

1. Compute the value (αi||βi) = EK(i||V ) mod 22b, where E is
some specified 128-bit block cipher; αi and βi are b-bit strings; the
value EK(i||V ) is considered as binary number.

2. Compose the bit string µi = (1||βi).

3. Compute the value (α′

i
||β′

i
) = EQ(i||V ) mod 22b.

4. Compose the bit string λi = (1||β′

i
).

5. Considering the bit strings µi and λi as binary polynomials µi(x)
and λi(x) of the degree b, respectively, compute the greatest common
divisor D = gcd(µi(x), λi(x)).

6. If D 6= 1, then increment β′

i
← β′

i
+1 mod 2b (here the bit string

β′

i
is considered as binary number) and go to step 4, otherwise STOP.

OUTPUT: two (2b)-bit elements (αi||βi) and (α′

i
||β′

i
) of the key

sequences Γ and Γ′.

Decryption of the ciphertext C produced by the proposed DE algo-
rithm requires using the value V assigned to C (i.e. sent together with
the ciphertext C) and both the secret and fake keys. The following
algorithm describes the decryption procedure.

Algorithm for decrypting the secret message.
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INPUT: the ciphertext C = (c1, c2, . . . , ci, . . . , cn), the encryption
key Q, the fake key K, and the initialization vector V .

1 For i = 1 to n do the following steps.

1.1. Using the procedureForm αβ generate the ith element (α′

i
||β′

i
)

of the key sequence Γ′.

1.2. Compute the b-bit symbol cti of the intermediate ciphertext
using the formula (9).

1.3. Compute the b-bit symbol ti of the secret message using for-
mula (11).

2. Compose the message T = (t1, t2, . . . , ti, . . . , tn).

OUTPUT: the opened message T .

5 Discussion

5.1 Security against the two-side coercive attack

Suppose a coercive adversary intercepts the ciphertext and initializa-
tion vector sent by sender to receiver of secret message and then forces
both the parties to open the message, the encryption and decryption al-
gorithms, and the encryption key. The encryption algorithm proposed
in Section 4 resists this attack, since the sender and the receiver are
able to fulfill coercers demands without opening the secret message.
For this purpose they open the following:

- the fake key K declared as the secret one;

- the fake message M declared as the secret one;

- probabilistic encryption algorithm that allegedly produced the
ciphertext intercepted by the coercer;

- decryption algorithm that discloses the fake message from the
cryptogram, while using the fake key.

To catch them in a lie, the coercer should show conclusively that
the ciphertext contains another message. The last can be performed
by guessing the secret key Q, however this method is impractical due
to sufficiently large size of the value Q (128 bits).

Let us also consider the known-plaintext attack, i.e. suppose the
coercer knows the secret message. If he is able to compute the secret key
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Q, then he is able to prove that the sender and the receiver are cheating
(the proving consists in opening the message T from the ciphertext C,
while using the key Q). Suppose additionally that, using the known
message T and the value V , the coercer is able to compute the key
sequence Γ′ and then all values EK(i||V ), where i = 1, 2, . . . , n (see
step 3 in description of the procedure Form αβ).

In this case the assumption about possibility to compute the key Q

from the known 128-bit input i||V and output values EK(i||V ) leads
to conclusion about insecurity of the used block cipher E against the
known-plaintext attack. However in the proposed DE algorithm it
is used a secure block cipher, for example, AES that surely resists
such attacks and is recommended by the standard ISO/IET 18033-
3:2010 [10].

Thus, one can conclude the proposed DE algorithm provides bi-
deniability. The probabilistic encryption algorithm to be opened to
the coercer is described as follows.

Associated probabilistic stream encryption algorithm

INPUT: the message M = (m1,m2, . . . ,mi, . . . ,mn) and the en-
cryption key K.

1. Generate a random value of the 64-bit initialization vector V .

2. For i = 1 to n do the following steps.

2.1. Compute the value (αi||βi) = EK(i||V ) mod 22b, where E is
the specified 128-bit block cipher; αi and βi are b-bit strings; the value
EK(i||V ) is considered as binary number.

2.2. Compose the bit string µi = (1||βi).
2.3. Generate randomly two b-bit strings ρ and η′.

2.4. Compose the bit string η = (1||η′).

2.5. Considering the bit strings µi and η as binary polynomials
µi(x) and η(x) of the degree b, respectively, compute the greatest com-
mon divisor D = gcd(µi(x), η(x)).

2.6. If D 6= 1, then increment η′ ← η′ + 1 mod 2b (here the bit
string η′ is considered as binary number) and go to step 2.4, otherwise
go to step 2.7.
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2.7. Compute the b-bit symbol cmi
of the intermediate ciphertext

using formula (4).

2.8. Compute the (2b)-bit symbol ci as solution of the following
system of two linear congruences:

{

ci ≡ cmi
mod µi(x)

ci ≡ ρ(x) mod η(x),
(12)

where the bit string cmi
is considered as binary polynomial and ρ(x) is

the binary polynomial represented by the bit string ρ.

3. Compose the output ciphertext C = (c1, c2, . . . , ci, . . . , cn).
OUTPUT: the ciphertext C = (c1, c2, . . . , ci, . . . , cn) and the initial-
ization vector V .

The value ci at step 2.8 can be computed using the following for-
mula:

ci = [cmi
η(x)(η−1(x) mod µi(x))+

+ ρ(x)µi(x)(µ
−1
i

(x) mod η(x))] mod µi(x)η(x).

It is easy to see that for each symbol ci of the ciphertext C there
exist different bit strings η′ and ρ satisfying system (12). Indeed, for
given ci and arbitrary η′ such that gcd(µi(x), η(x)) = 1 the value ρ

satisfying (12) can be computed as binary polynomial ρ(x) = ci mod
η(x), where the bit string ci is considered as binary polynomial.

Thus, while using the encryption key K the associated probabilistic
encryption algorithm can potentially encrypt the message M into the
cryptogram C produced by the DE algorithm. Since it is computa-
tionally difficult to prove that the ciphertext C was produced by the
DE process, but not by the probabilistic encryption, one can say the
proposed DE algorithm is computationally indistinguishable from the
associated probabilistic encryption algorithm.

The decryption algorithm to be opened to the coercer is described
as follows.

Dishonest decryption algorithm
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INPUT: the ciphertext C = (c1, c2, . . . , ci, . . . , cn), the encryption
key K, and the initialization vector V .

1. For i = 1 to n do the following steps.
1.1. Compute the value (αi||βi) = EK(i||V ) mod 22b.
1.2. Compose the bit string µi = (1||βi).
1.3. Compute the b-bit symbol cmi

of the intermediate ciphertext
using the formula (8).

1.4. Compute the b-bit symbol mi using the formula (10).
2. Compose the message M = (m1,m2, . . . ,mi, . . . ,mn).
OUTPUT: the opened message M .

5.2 Estimation of the encryption speed

For comparing the performance of the proposed algorithm with the
stream DE algorithm described in [7] one can roughly assume that
time complexity of computation of the value ci in accordance with the
formula (6) is equal to the time complexity of one block encryption
operation. Besides, the time complexity of generation of the values
(αi||βi) = EK(i||V ) mod 22b and (α′

i
||β′

i
) = EQ(i||V ) mod 22b is ap-

proximately equal to 1 and 2 block-encryption operations, correspond-
ingly.

Thus, the time complexity of the encryption of one symbol of the
secret message is equal to ≈ 4 block-encryption operations. Taking the
last into account one can get the following formula for the encryption
speed of the proposed algorithm:

S =
1

4
·

b

128
SE, (13)

where b is the bit length of the symbols with which the secret message
is written; SE is the encryption speed of the block cipher E.

While implementing the DE method from [8] using the block cipher
E, encryption of one symbol of the secret message takes on the aver-
age 22b+1 operations of the block encryption and defines the following
formula for estimating the speed:

S[7] =
b

128
·

SE

22b+1
. (14)
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Comparing (13) with (14) one can state that the proposed stream DE
algorithm is significantly faster (by 22b−1 times) than algorithm by
method in [8]. For example, in the case b = 8 the ratio S/SE is equal
to 215.

5.3 Probabilistic deniable encryption

The feasibility of practical use of the probabilistic encryption is related
to its providing better statistical properties of ciphertext. This thesis
provides credence to both the associated probabilistic stream encryp-
tion algorithm and the dishonest decryption algorithm that are to be
presented to the coercive attacker together with the fake key. In the
stream deniable encryption algorithm described in Section 4 no random
values are used, i.e. it is deterministic after the fake message was gener-
ated. From practical point of view it is interesting that one can modify
the proposed deniable encryption algorithm into the probabilistic de-
niable encryption one. Indeed, the probabilistic deniable encryption of
the messages T and M can be performed as follows:

1. Generate a random value of the 64-bit initialization vector V .

2. For i = 1 to n do the following steps.

2.1. Using the procedure Form αβ generate the ith elements
(αi||βi) and (α′

i
||β′

i
) of the key sequences Γ and Γ′.

2.2. Compute the b-bit symbols cmi
and cti of the intermediate

ciphertext using formulas (4) and (5).

2.3. Generate at random two b-bit strings ρ and η′.

2.4. Compose the bit string η = (1||η′).

2.5. Considering the bit strings µi, λi, and η as binary polynomials
µi(x), λi(x), and η(x) of the degree b, respectively, compute the greatest
common divisors D1 = gcd(µi(x), η(x)) and D2 = gcd(λi(x), η(x)).

2.6. If D1 6= 1 or D2 6= 1, then increment η′ ← η′ + 1 mod 2b (here
the bit string η′ is considered as binary number) and go to step 2.4,
otherwise go to step 2.7.

2.7. Compute the (3b)-bit symbol ci of the output ciphertext as
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solution of the system of the following three linear congruences











ci ≡ cmi
mod µi(x)

ci ≡ cti mod λi(x)

ci ≡ ρ(x) mod η(x),

which is defined by the formula

ci = ⌊cmi
λi(x)η(x)

(

λ−1
i

(x)η−1(x) mod µi(x)
)

+

+ ctiµi(x)η(x)
(

µ−1
i

(x)η−1(x) mod λi(x)
)

+

+ ρ(x)λi(x)µi(x)
(

λ−1
i

(x)µ−1
i

(x) mod η(x)
)

⌋ mod λi(x)µi(x)η(x)

3. Compose the output ciphertext C = (c1, c2, . . . , ci, . . . , cn).

The associated probabilistic encryption algorithm connected with
the last one is the same as that described in Subsection 5.1, except
at step 2.3 there are generated (2b)-bit random values ρ and η′. The
corresponding dishonest decryption algorithm is exactly the same as
that described in Subsection 5.1.

6 Conclusion

It is proposed a method and algorithm for fast stream deniable en-
cryption satisfying criterion of the computational indistinguishability
from the stream probabilistic encryption. It has been shown that the
DE algorithm resists two-side coercive attack. As compared with the
stream DE algorithm presented in [8] the proposed one is significantly
faster, the algorithm from [8] has one interesting advantage though.
The advantage consists in using the same decryption algorithm for
opening both the secret and the fake messages from the ciphertext.
Such property is significant for providing security against coercive at-
tacks combined with measuring duration of the decryption process. In
our future research we plan to develop a fast stream DE method with
the same algorithm that decrypts the secret and fake message.
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Taxonomy of Strategic Games with Information

Leaks and Corruption of Simultaneity
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Abstract

We consider pseudo-simultaneous normal form games — stra-
tegic games with rules violated by information leaks and simul-
taneity corruption. We provide classification and construction of
a game taxonomy based on applicable solution principles. Exis-
tence conditions are highlighted, formulated and analysed.

Keywords: Non-cooperative game, Nash equilibrium, simul-
taneous and sequential games, Stackelberg equilibrium, knowl-
edge, information leak, corruption, taxonomy.

MSC 2010: 91A05, 91A06, 91A10, 91A43, 91A20, 91A26,
91A44, 91A65.

1 Introduction

Strategic or normal form game constitutes an abstract mathemati-
cal model of decision processes with two or more decision makers (play-
ers) [5], [6]. An important supposition of the game is that all the play-
ers choose their strategies simultaneously and confidentially, and that
everyone determines his gain on the resulting profile. Reality is some-
what diverse. The rules of the games may be broken. Some players
may cheat and know the choices of the other players. So, the rule
of confidentiality and simultaneity is not respected. Is the essence of
initial normal form game change in such games? Is still the Nash equi-
librium principle applicable? Do we need other solution principles and
other interpretations? How many types of games appear and may they
be classified? Can we construct a taxonomy (classification) of these

c©2016 by V. Ungureanu
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games? Answers to these and other related questions are the objective
of presented work.

Usually, the traditional research approach to games of such types
relies on consideration of all possible players’ best response mappings
and analysis of all possible profiles [3]. There is a stable opinion about
a high complexity of their analysis and solving [3].

We initiate an approach which sets rules of all possible games with
information leaks and highlights their specific characteristics. The ap-
proach relies on knowledge vectors of the players and game knowledge
net. A taxonomy (classification) of all possible games is done on the
bases of the applicable solution principles. The name of every taxon
(class) reflects the principle used for including respective games in the
same taxon.

As a result of the taxonomy construction and establishing strict
characteristics and rules for every taxon, we reveal simplicity of analysis
and solving the games. It is an unexpected and impressive result.

For the beginning, let us remember that a Nash equilibrium (NE)
sample and the entire Nash equilibrium set (NES) may be determined
via intersection of the graphs of best response mappings — a method
considered earlier in works [8]–[13]. The approach proves to be expedi-
ent for strategic games with information leaks and broken simultaneity
as well. Initially, we expose the results for two-matrix games with
different levels of knowledge. Then, we expose results for the general
multi-matrix game. It is a useful approach both for simplicity of expo-
sition, and for understanding the ideas and results.

1.1 Normal form game and axioms

Consider finite strategic (normal form) game

Γ =
〈

N, {Sp}p∈N ,
{

ap
s
= aps1s2...sn

}

p∈N

〉

,

where

N = {1, 2, ..., n} is a set of players,

Sp = {1, 2, . . . ,mp} is a set of strategies of player p ∈ N ,
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sp ∈ Sp is a strategy of p ∈ N player,

#Sp = mp < +∞, p ∈ N , is a finiteness constraint,

a
p
s = a

p
s1s2...sn is a player’s p ∈ N pay-off function defined on

Cartesian product S = ×
p∈N

Sp, i.e. for every player p ∈ N a n

dimensional pay-off matrix Ap[m1 ×m2 × · · · ×mn] is defined.

For normal form game a system of axioms is stated.

Axiom 1.1. Rationality. The players behave rationally. The ratio-
nality means that every rational player optimizes the value of his pay-off
function.

Axiom 1.2. Knowledge. The players know the set of players, the
strategy sets and the pay-off functions.

Axiom 1.3. Simultaneity. The players choose their strategy simulta-
neously and confidentially in a single-act (single stage) without knowing
the chosen strategies of the other players.

Axiom 1.4. Pay-off. After all strategy selection the players compute
their pay-off as the values of their pay-off functions on the resulting
profile.

Traditionally, simultaneous Nash games [5], [6] are based on these
four axioms.

In Stackelberg game the axiom of simultaneity is replaced by the
axiom of hierarchy.

Axiom 1.5. Hierarchy. The players choose their strategies in a
known order, e.g. the first player chooses his strategy and commu-
nicates it to the second player. The second player (follower) knows the
strategy of the leader, chooses his strategy and communicates it to the
third player and so on. The last player knows all the strategies of the
precedent players and chooses his strategy the last.

Both the Nash game, and the Stackelberg game, are based com-
monly on axioms of rationality, knowledge and pay-off. Additionally
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and distinctively the Nash game [5] is based on axiom of simultaneity,
while the Stackelberg game [4], [7] is based on axiom of hierarchy.

Finally, we can deduce that in Nash game all the players choose
their strategies simultaneously and every player determines his gain
as the value of his pay-off function on the resulting profile. But in
Stackelberg game the players choose their strategies sequentially, in
a known order and knowing the strategies chosen by the precedent
players, and every player determines his gain as the value of his pay-off
function on the resulting profile.

1.2 Axiom of simultaneity and its corruption

Both for Nash games, and for Stackelberg games, their own solution
principles exist. If the axioms of the games are respected, these solution
principles may be applied. Actually, the name of the games are chosen
to reflect the solution concept which is applicable.

But, what does it happen when the axioms are violated by the
corruption of some of their elements, e.g. some players may know
chosen strategies of the other players in Nash games? May such games
be examined by applying the same general solution principles (Nash
and Stackeberg equilibria) or must new solution concepts be defined
and applied?

To respond to these questions, we need to avoid the ambiguity. So,
let us examine more exactly the process of decision making in conditions
of information leaks, by establishing the axioms of the corrupt games.
It is very convenient to consider in such case a manager of the games
— a person (or persons) which organizes and manages the decision
process in the games. Thereby, we can describe exactly the process of
decision making in corrupt games, knowing the source of corruption1.

At the first pseudo-stage of the decision process, the manager
declares the players must choose their strategies. After players choose
their strategies (intentions), the manager dishonestly from the view-

1Corruption: “the abuse of entrusted power to private gain” (Transparency In-

ternational); “dishonest or fraudulent conduct by those in power, typically involving

bribery” (Oxford Dictionary, 2014).
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point of the rules of the strategy game may submit to some players in-
formation about chosen strategies (corruption and information leaks).
With additional information, some of players may want to change their
strategies and they can do this at the second pseudo-stage.

At the second pseudo-stage, the manager declares the players
must submit immediately their choices. At this moment, the play-
ers may change their initial decisions. After possible changes in their
intentions the players submit definitely their chosen strategies.

For an honest player, the decision process looks like a mono stage
process. Only for the dishonest manager and for the players which
obtain additional information, the decision process looks like a two
stage process.

As an axiom of such a game the axiom of information leak may be
stated as

Axiom 1.6. Information leak. The decision process has two pseudo-
stages.

At the first pseudo-stage, the information leak about player cho-
sen strategies may occur.

At the second pseudo-stage, the players choose their strategies,
some of them knowing eventually the strategies chosen by the other
players.

Definition 1.1. Let us define a game with information leak or a cor-
rupt game as a game for which four axioms are fulfilled: rationality,
knowledge, pay-off and information leak.

Remark 1.1. Let us observe that three axioms of rationality, knowl-
edge and pay-off, are common for Nash game, Stackelberg game and
corrupt game (game with information leak).

Remark 1.2. Generally, the game with information leak is only a
particular case of the corrupt game. We will use interchangeably this
name unless we will define a more general context of corrupt game.

Remark 1.3. The game with information leak as it is defined above
actually includes different types of games.
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To respond to the various questions which appear in the context of
corrupt games we consider further the taxonomy (classification) of the
all possible types of games, principles of solutions, solution existence
conditions and algorithms for solutions determining. The exposition
will start with two-matrix games, but firstly we must highlight shortly
in this context the essence of so named theory of moves.

1.3 Theory of moves

We must observe that the games we consider in this work may be
related to the theory of moves [2]. Nevertheless, it is an important
difference — we consider only two pseudo-stages of the decision mak-
ing process, while the theory of moves does not limit the number of
moves to one fixed number. Moreover, theory of moves has initial ax-
ioms which are defined in a strict manner as the process of decision
making, as the end condition. Additionally, those axioms differ from
that accepted for games with information leaks.

The theory of moves is based on the concepts of thinking ahead, sta-
ble outcomes, outcomes induced when one player has “moving power”,
incomplete information, non-myopic concept of equilibrium, etc. The
non-myopic equilibrium depends on some parameters, such as, e.g., ini-
tial state from which the process of moving starts and who moves the
first. It is essential that all games have at least one non-myopic equi-
librium. In the games we consider, there are different solution concepts
and it is not guaranteed that the solutions exist. These thoughts we
expose further.

2 Taxonomy of two-matrix games with infor-

mation leaks

For two-matrix strategic games, we suppose the process of making
decision occurs in two pseudo-stages, because of possible information
leaks. At the first pseudo-stage, the players choose their strategies and
by corruption, it is possible either for one of them, or for both players,
to know the chosen (intention) strategy of the opponent. At the second
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pseudo-stage, the players use the obtained information, choose their
strategies and no more corruption is possible.

First, for such processes of decision making we can distinguish si-

multaneous and sequential two-matrix games.
Second, simultaneous two-matrix games may obtain some features

of sequential games taking into consideration the obtained informa-
tion/knowledge (γνωση) possessed by each player in the process of
realizing the game.

Remark 2.1. We suppose initially, when the players begin the strategy
selections, they start playing a Nash game, but in the process of strategy
selections information leak may occur, the Nash game may degenerate
and may change its essence.

Remark 2.2. In order to distinguish players without their numbers,
we will refer to them as the player and his opponent. So, if the first
player is referred to simply as the player, then the second player is
referred to as the opponent, and vice versa.

2.1 Knowledge and types of games

The knowledge of the players is associated with their knowledge
vectors γA and γB .

2.1.1 Knowledge vectors

Essentially, the knowledge vectors have an infinite number of com-
ponents γA =

(

γA0 , γ
A
1 , . . .

)

and γB =
(

γB0 , γB1 , . . .
)

, with components
defined and interpreted as it follows.

• Player’s knowledge of the normal form components. γA0
and γB0 are reserved to knowledge about the normal form of the
game. Values γA0 = 1 and γB0 = 1 mean that the players have
full information about the strategy sets and pay-off functions.
It is the case we consider in this work, i.e. mutually γA0 = 1
and γB0 = 1, and these components of the knowledge vectors are
simply omitted.
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• Player’s knowledge of the opponent’s chosen strategy.

Values γA1 = 0 and γB1 = 0 mean for each player, correspond-
ingly, that he doesn’t know the opponent’s strategy. γA1 = 1 and
γB1 = 1 mean for each player, correspondingly, that he knows the
opponent’s strategy. The combined cases are possible, too.

• Player’s knowledge of the opponent’s knowledge of the

player’s chosen strategy. γA2 = 0 and γB2 = 0 mean for each
player, correspondingly, that he knows that the opponent doesn’t
know player’s strategy. γA2 = 1 and γB2 = 1 mean for each player,
correspondingly, that he knows that the opponent knows player’s
strategy. Evidently, the combined cases are possible, too. Re-
mark that these components may be thought rather as the play-
ers beliefs, because such type of knowledge may be as true, as
false. In this context it must be observed, that the values of γA2
and γB2 represent the knowledge/belief about the values of γB1
and γA1 , correspondingly.

• The next components γA3 , γ
A
4 , . . . and γB3 , γB4 , . . . of the

knowledge vectors are omitted, initially. Nevertheless, it
must be remarked that the values of γAi and γBi represent the
knowledge/belief about the values of γBi−1 and γAi−1, correspond-
ingly.

We distinguish the games with l levels of knowledge, for which all
components of the knowledge vectors with indices greater than l are
equal to 0.

Remark 2.3. Remark, once again, that there are two pseudo-levels of
decision making process. Information leaks may occur only at the first
pseudo-level. The knowledge vectors may have any number l ≥ 1 of
components (levels of knowledge).

2.1.2 Types of games

Depending on the values of the knowledge vectors, different types
of games may be considered.
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Proposition 2.1. There are 4l possible types of games ΓγAγB with l

levels of knowledge.

Proof. It is enough to emphasize the components of the knowledge
vectors γA =

(

γA1 , . . . , γ
A
l

)

and γB =
(

γB1 , . . . , γBl
)

and their possible
values as 0 or 1. Accordingly, there are 4i possible pairs of such vectors,
i.e. 4l possible games.

2.1.3 Knowledge net

Knowledge net is defined as:

G = (V,E) ,

where V = I ∪ J ∪ γA ∪ γB , E ⊆ V × V .
For the present we will limit ourselves to knowledge vectors.

2.2 Taxonomy Elements

If the information leaks occur only at the first 2 levels, then there
are 42 = 16 possible kinds of games with information leaks with
γA =

(

γA1 , γ
A
2

)

and γB =
(

γB1 , γB2
)

, according to the above. From
the solution principle perspective, some of them are similar and they
may be included in common taxa (classes, families, sets).

Let us highlight the possible kinds of such games by the values
of low index, where the first two digits are the values for knowledge
vector components of the first player, and the following two digits are
the values for knowledge vector components of the second player. We
obtain the following taxonomy for two matrix games with information
leaks on two levels:

1. Nash taxon: NT = {Γ00 00, Γ11 11, Γ00 11, Γ11 00} ,

2. Stackelberg taxon: ST = {Γ01 10, Γ01 11, Γ10 01, Γ11 01} ,

3. Maximin taxon: MT = {Γ01 01} ,

4. Maximin-Nash taxon: MNT = {Γ00 01, Γ01 00} ,
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5. Optimum taxon: OT = {Γ10 10} ,

6. Optimum-Nash taxon: ONT = {Γ00 10, Γ10 00} ,

7. Optimum-Stackelberg taxon: OST = {Γ10 11, Γ11 10} .

The generic name of each taxon is selected on the basis of the corre-
spondent solution principles applied by the players: Nash equilibrium,
Stackelberg equilibrium, Maximin principle, Optimum principle or two
of them together. Even though the taxon may include some games, the
name reflects solution principle or principles applied in all the games
of the taxon. If the taxon is formed only by one element, its name is
the same as for game.

Remark 2.4. We choose the term taxon (plural — taxa) to name the
set of the related games in order to highlight additionally their acquired
pseudo-dynamics [1],[4],[7] and to avoid confusion with mathematically
overcharged or too used terms of class, cluster, family, group or set.

Let us investigate the solution principles for all these taxa.

3 Solution principles of two-matrix games with

information leaks on two levels of knowledge

Consider a two-matrix m× n game Γ with matrices

A = (aij), B = (bij), i ∈ I, j ∈ J,

where I = {1, 2, . . . ,m} is the set of strategies of the first player, and
J = {1, 2, . . . , n} is the set of strategies of the second player.

We consider the games base on four axioms of rationality, knowl-
edge, pay-off and information leak (axioms 1.1, 1.2, 1.4, 1.6). The
players choose simultaneously their strategies and before submitting
the results of their selections, the information leaks may occur. One or
both of them may know the intention of the opponent. Let us suppose
in such case, they may change only once their strategy according to
the leaked information. So, the strategic games may be transformed
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by acquiring additional information into two stage games. At the first
stage they choose strategies but do not submit them because of ac-
quiring additional information. At the second stage, according to the
leaked information they may change the initial strategies and submit
definitely new strategies adjusted to the obtained information. After
such submission, the games end and both players determine the values
of their pay-off functions.

Evidently, other types of games with information leaks may be con-
sidered. Firstly, we will limit ourselves only to such two-pseudo-stage
games with information leaks on two levels of knowledge.

For every taxon we will firstly define it, after that we will argue its
consistency.

3.1 Nash Taxon

Let us argue that for NT = {Γ00 00, Γ11 11, Γ00 11, Γ11 00} all its ele-
ments are Nash games, i.e. axioms 1.1–1.4 are characteristic, too, for
these games and for them Nash equilibrium principle may be applied
as a common solution principle.

Firstly, let us remember, that the process of decision making in the
Nash game, denoted by NΓ, is described in the following way. Simul-
taneously and confidentially, the first player selects the lines i∗ of the
matrices A and B, and the second player selects columns j∗ of the same
matrices. The first player gains ai∗j∗ , and the second player gains bi∗j∗ .

Evidently, Γ00 00 is a pure Nash game, i.e. Γ00 00 = NΓ. But, it is
not difficult to understand that Γ11 11, Γ00 11, Γ11 00, are Nash games,
too. So, the taxon (group) is formed by four Nash games, differing only
by the knowledge/belief of the players.

If we call the player which applies a Nash equilibrium strategy as
an atom (a Nash atom, Nash atomic player) and denote him as N, then
the two-player Nash game may be denoted as N2 (Nash game, Nash
molecular game).

Remark 3.1. We will name and denote in the same manner other
types of players and games.
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3.1.1 Nash Equilibrium

The pair of strategies (i∗, j∗) forms a Nash equilibrium if

ai∗j∗ ≥ aij∗,∀i ∈ I,

bi∗j∗ ≥ bi∗j,∀j ∈ J.

3.1.2 Set of Nash Equilibria

An equivalent Nash equilibrium definition may be formulated in
terms of graphs of best response (optimal reaction) applications (map-
pings).

Let

GrA =

{

(i, j) : j ∈ J, i ∈Argmax
k∈I

akj

}

,

be the graph of best response application of the first player, and

GrB =

{

(i, j) : i ∈ I, j ∈Argmax
k∈J

bik

}

.

be the graph of best response application of the second player.

NE = GrA ∩GrB

forms the set of Nash equilibria.

3.1.3 Nash Equilibrium Existence

Proposition 3.1. There are Nash games which do not have a Nash
equilibrium.

Proof. Examples of games which do not have a Nash equilibrium are
commonly known.

Remark, the games we consider are pure strategy games. It is a
largely known result that every poly-matrix strategic game has Nash
equilibria in mixed strategies. In this work we consider only pure strat-
egy games.
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3.2 Stackelberg Taxon

Stackelberg Taxon is defined as ST = {Γ01 10, Γ01 11, Γ10 01, Γ11 01}.
To argue the inclusion of each element in ST, let us remember the
decision making process in the Stackelberg game.

Stackelberg two player game has two stages, from the start, and for
Stackelberg game the axioms 1.1, 1.2, 1.4 and 1.5 are characteristic. At
the first stage, the first player (leader) selects the lines i∗ of the matrices
A and B, and communicates his choice to the second player (follower).
At the second stage, the second player (follower) knows the choice of
the first player (leader) and selects columns j∗ of the matrices A and
B. The first player gains ai∗j∗, and the second player gains bi∗j∗ . If the
players change their roles as the leader and the follower, an another
Stackelberg game is defined.

The Stackelberg game is denoted by SG12 if the first player is the
leader and by SG21 if the second player is the leader.

Γ01 10 is a pure Stackelberg game SΓ12, i.e. Γ01 10 = SΓ12, and Γ10 01

is a pure Stackelberg game SΓ21, i.e. Γ10 01 = SΓ21. It is clear that
Γ01 11 = SΓ12 and Γ11 01 = SΓ21.

3.2.1 Stackelberg Equilibrium

The pair of strategies (i∗, j∗) ∈ GrB forms a Stackelberg equilibrium
if

ai∗j∗ ≥ aij ,∀(i, j) ∈ GrB.

If the players change their roles and the second player is the leader, then
the pair of strategies (i∗, j∗) ∈ GrA forms a Stackelberg equilibrium if

bi∗j∗ ≥ bij,∀(i, j) ∈ GrA.

3.2.2 Set of Stackelberg Equilibria

The sets of Stackelberg equilibria are generally different for Stack-
elberg games SΓ12 and SΓ21.

SE12 =Argmax
(i,j)∈GrB

aij
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forms the set of Stackelberg equilibria in a Stackelberg game SΓ12 =
S12.

SE21 =Argmax
(i,j)∈GrA

bij

forms the set of Stackelberg equilibria in a Stackelberg game SΓ21 =
S21.

It is evident that the notions of Nash and Stackeberg equilibria
are not identical. The respective sets of equilibria may have common
elements, but the sets generally differ.

3.2.3 Stackelberg Equilibrium Existence

Proposition 3.2. Every finite Stackelberg game has a Stackelberg equi-
librium.

Proof. The proof follows from the Stackelberg equilibrium definition
and the finiteness of the player strategy sets.

3.3 Maximin Taxon

Maximin Taxon contains only one element MT = {Γ01 01} .
The decision making process in the Maximin game MΓ = M2 follows

the axioms 1.1–1.4 as for Nash game. Simultaneously and secretly, as
in Nash Game, the first player selects the lines i∗ of the matrices A

and B, and the second player selects columns j∗ of the same matrices.
Unlike the Nash game, every player suspects that the opponent may
know his choice, i.e. distinction of the Maximin game consists in player
attitudes.

3.3.1 Maximin Solution Principle

Players compute the set of their pessimistic strategies.

MSA = Arg max
i∈ I

min
j∈J

aij

forms the set of pessimistic strategies of the first player.
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MSB = Arg max
j∈J

min
i∈ I

bij

forms the set of pessimistic strategies of the second player.
Every element of Cartesian product MS = MSA ×MSB forms a

maximin solution of Maximin Game MΓ = M2.

3.3.2 Set of Maximin Solutions

MS = MA ×MB is the set of Maximin Solutions of the Maximin
Game.

Proposition 3.3. For matrices A and B the sets NE, SE12, SE21 and
MS are generally not identical.

Proof. It is enough to mention that every Stackelberg game has Stack-
elberg equilibria and every Maximin game has the maximin solution,
but the Nash game with the same matrices may do not have Nash equi-
libria. Even though the Nash game has equilibria, simple examples may
be constructed which illustrate that Nash equilibrium is not identical
with the Stackelberg equilibrium and the Maximin solution.

3.3.3 Maximin Solution Existence

Proposition 3.4. Every finite Maximin Game has maximin solutions.

Proof. The proof follows from the finiteness of the strategy sets.

3.4 Maximin-Nash Taxon

Maximin-Nash Taxon contains two elements:

MNT = {Γ00 01, Γ01 00} .

Let us suppose, without loss of generality, that the players choose
their strategies without knowing the opponent choice. However, one
of them (and only one) has the belief that there is information leak
about the chosen strategy. Let us denote such a game by MNΓ = MN
or NMΓ = NM.
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3.4.1 Maximin-Nash Solution Principle

For defining the solution concept of such games, we can observe
firstly that they may be seen as a constrained Nash Game Γ00 00, in
which additionally must be applied the Maximin principle for the pes-
simistic player which suspects the corruption. So, for Γ00 01 we can
define as the solution any element from:

NMS = NE ∩ (I×MSB),

For Γ01 00 the solution is any element from:

MNS = NE ∩ (MSA × J).

From the above definitions, it follows that a Maximin-Nash Solution
is a Nash Equilibrium for which one of it’s components (corresponding
to the player which suspects corruption) is a Maximin strategy, too.

3.4.2 Set of Maximin-Nash Solutions

NMS is the set of solutions in game NM = Γ00 01, and MNS is the
set of solutions in game MN = Γ01 00.

3.4.3 Maximin-Nash Solution Existence

Proposition 3.5. If Maximin-Nash Game MN has a solution, then
the Nash Game has a Nash equilibrium.

Proof. The proof follows from the definition of the Maximin vs Nash
solution.

Generally, the reciprocal proposition is not true.

3.5 Optimum Taxon

Optimum Taxon is formed only by one element OT = {Γ10 10} .
The player strategies are selected as it follows. Let us suppose, that

the both players declare they play Nash game, but everyone cheats
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and (by corruption and information leaks) knows the choices of the
opponent. Such a game is denoted by OΓ = O2.

To formalize this game we must highlight two pseudo-stages of the
game. The first pseudo-stage when the players initially choose their
strategies (i0, j0). And the second pseudo-stage when the players, after
knowing (i0, j0), may choose their final strategies (i1, j1).

3.5.1 Optimum Profile

As everyone do not suspect opponent of cheating, but the both
cheat, they play as followers, i.e., in the game O2 the players act as
followers.

The resulting profile is (i1, j1), where i1 ∈Argmax
i∈ I

aij0 and j1 ∈

Argmax
j∈J

bi0j.

As both i1 and j1 correspond to j0 and i0, correspondingly, the pair
(i1, j1) is not a solution concept. It is a simple profile — an Optimum
Profile.

3.5.2 Set of Optimum Profiles

For this game we can define only the set of Optimum Profiles:

O2P(i0, j0) =

(

Argmax
i∈I

aij0 , Argmax
j∈J

bi0j

)

.

3.5.3 Optimum Profiles Existence

We mentioned above that the OT taxon is based on Optimum Pro-
file, which is generally not a solution concept. Nevertheless, we may
conclude the Optimum Profile exists for every finite game, because of
strategy finiteness.

3.6 Optimum-Nash Taxon

This Taxon has two symmetric elements ONT = {Γ00 10, Γ10 00} .
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Let us suppose, the players declare they play Nash game, but
one of them cheats and (by corruption and information leaks) knows
the choice of the opponent. We denote this game by ONΓ = ON or
NOΓ = NO.

To formalize this game we highlight two stages of the game, as in the
precedent case. The first stage is when the players initially choose their
strategies (i0, j0). And the second stage is when the cheater changes
his strategy as optimal to the opponent strategy. So, at the second
stage the strategy (i0, j1) or (i1, j0) is realised.

3.6.1 Optimum-Nash Profile Principle

As in the case of the Maximin vs Nash Game, for defining the
solution concept we can observe firstly that if they play Nash Game
Γ00 00, i.e., they choose to play a Nash Equilibrium, the cheating is not
convenient. For such games, Nash Equilibrium is the solution principle
to apply. If the honest player does not play Nash Equilibrium Strategy,
he may lose out comparably with the Nash Equilibrium. So, he plays
Nash Equilibrium. In such case, for the cheater it is convenient to play
a Nash Equilibrium strategy.

As a conclusion, this type of game may be thought as a Nash Game
if the game has Nash equilibrium. If the game doesn’t have Nash Equi-
librium or it has many Nash Equilibria, the principle of the Optimum-
Nash profile is applied. One of them chooses his strategy as in Nash
game (leader). He can apply the maximin or the Stackelberg strategy
of the leader. The opponent chooses his strategy as the last player in
Stackelberg game (follower).

3.6.2 Set of Optimum-Nash Profiles

Evidently, if the honest player chooses the Nash Equilibrium Strat-
egy, the set of solutions is identical to NES.

If the honest player chooses maximin strategy, e.g. the first player
chooses one of the elements of MSA = Arg max

i∈I
min
j∈J

aij , the opponent

chooses every element from J∗ = Arg max
j∈J

bij.
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If the honest player chooses Stackelberg leader strategy, the oppo-
nent chooses the follower strategy. In such case, the ON Profile is a
Stackelberg equilibrium.

3.6.3 Optimum-Nash Profile Existence

Based on the above, ON Profile exists for every ON game. It may
be NE, SE, or a simple Maximin-Optimum Profile.

3.7 Optimum-Stackelberg Taxon

Optimum-Stackelberg Taxon contains two symmetric elements:

OST = {Γ10 11, Γ11 10} .

Let us suppose that each player knows the opponent’s chosen strat-
egy, and only one of them knows additionally that the opponent knows
his chosen strategy. So, the one which doesn’t know that the opponent
knows his chosen strategy, will simply select his strategy as optimal
response to the opponent’s strategy (he will play as an unconscious
leader in a Stackelberg game), but the other (which knows additionally
that the opponent knows his chosen strategy; player with the value of
knowledge vector equal to ‘11’) will know the opponent’s reaction and
will play as a follower in a Stackelberg game.

Proposition 3.6. If every player knows a priory what information
leaks he will use (he knows the values of his respective knowledge vec-
tor), then the player with the value of knowledge vector equal to ‘11’
will play as a leader, and his opponent will play as a follower.

It is not the case we consider.

3.7.1 Optimum-Stackelberg Solution Principle

If the first player doesn’t suspect of information leaks to the second
player (Γ10 11), but he knows the strategy j selected by the second
player, then he chooses his strategy as an optimal response to j, i.e.
i∗ ∈ I∗ =Argmax

i∈I

aij . Let us suppose that #I∗ = 1. The second
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player knows that for his selected strategy j the first player will select
i∗. He must select his strategy as an optimal response to the i∗, i.e.
j∗ ∈ J∗ =Argmax

j∈J

bi∗j. So, the solution of Γ10 11 is (i∗, j∗).

By analogy, we can define the solution concept for Γ11 10. If the
second player doesn’t suspect of information leaks to the first player,
but he knows the strategy i selected by the first player, then he chooses
his strategy as an optimal response to i, i.e. j∗ ∈ J∗ =Argmax

j∈J

bij . Let

us suppose that #J∗ = 1. The first player knows that for his selected
strategy i the second player will select j∗. He must select his strategy
as an optimal response to the j∗, i.e. i∗ ∈ I∗ =Argmax

i∈I

aij∗ . So, the

solution of Γ11 10 is (i∗, j∗).

Let us denote such a game by OSΓ = OS. The symmetric one is
denoted as SOΓ = SO.

3.7.2 Set of Optimum-Stackelberg Solutions

Let us remember that to define solution concept we impose the
cardinality of sets I∗ and J∗ to be 1. To define the set of solutions we
must exclude this supposition. So, for Γ10 11 the set I∗ =Argmax

i∈ I

aij

represents all optimal responses to strategy j of the second player. The
second player knows/calculates this optimal response set. On its basis,
by applying Maximin Principle he defines his set of Maximin Response
J∗ =Argmax

j∈J

min
i∈ I∗

bij . So the set of solutions of Γ10 11 is I∗ × J∗.

Analogically, for Γ11 10 the set J∗ =Argmax
j∈J

aij represents all opti-

mal responses to strategy i of the first player. The first player knows
this optimal response set. On its base, by applying Maximin Principle
he defines his set of Maximin Response I∗ =Argmax

i∈I

min
j∈J∗

aij. So the

set of solutions of Γ11 10 is I∗ × J∗.

3.7.3 Optimum-Stackelberg Solution Existence

Proposition 3.7. Every finite Optimum-Stackelberg Game OS has an
Optimum-Stackelberg solution.
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Proof. The proof follows from the definition of the Optimum-Stackel-
berg Solution and the finiteness of the strategy sets.

4 Taxonomy of two-matrix games with in-

formation leaks and three or more levels of

knowledge

According to the above result, there are 43 = 64 possible kinds
of games with information leaks ΓγAγB in the case when the vectors

of knowledge have three components γA =
(

γA1 , γ
A
2 , γ

A
3

)

and γB =
(

γB1 , γB2 , γB3
)

(information leaks may occur on 3 levels).

In this case and in the general case, is it enough to examine only
seven taxa of games as for games with two level of knowledge or the
number of taxa increases?

Theorem 4.1. The number of taxa for two-matrix games with infor-
mation leaks with the number of knowledge levels l ≥ 2 does not depend
on l.

Proof. Firstly, let us observe that the abstract maximal number of pos-
sible taxa depends on number of solution principle applied by two play-
ers. In our case, we apply only four solution principle: Nash equilib-
rium, Stackelberg equilibrium, Maximin principle, and Optimum prin-
ciple. So, the maximal number of taxa may be equal to 16. But, the
rules of the games and knowledge possessed by players in the case of
two levels of knowledge make up possible only seven taxa.

By induction, it is provable that this number of taxa remains un-
changed for l ≥ 3.

5 Repeated two-matrix games with informa-

tion leaks

If the games described above are considered as molecular games,
then we can examine a series of molecular games on every stage of
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which a molecular game is played. Evidently, such games are a simple
consequence of the games of the seven types, corresponding to seven
taxa highlighted above.

6 Taxonomy of multi-matrix games with in-

formation leaks and three or more levels of

knowledge

In the case of three and more players, we can adjust the molecular
approach and we can denote the games by their atoms (atom players).
Evidently, the number of taxa for such games can increase. Can we
present a taxonomy of such games? Can we present a scheme or a
table of elementary or molecular games? We are going to answer soon
to these questions.

7 Conclusions

Normal form games pretend to be a mathematical model of situa-
tions often met in reality. Actually, they formalize an essential part of
real decision making situations and processes, but not ultimate. Real
decision making situations are influenced by different factors, which
may change the essence of the games and the solution principle appli-
cable for their solving. It follows that the initial mathematical models
must be modified, at least.

Thiswork in progress presents a taxonomy of normal form games
with information leaks. Every taxon contains the games solvable on the
base of the same solution principle, highlighted in the name.

The games with arbitrary pseudo-levels and levels of knowledge,
and the games with bribe are the subject of the work in progress.
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Optical Character Recognition Applied to

Romanian Printed Texts of the 18th–20th

Century∗

Svetlana Cojocaru Alexandru Colesnicov
Ludmila Malahov Tudor Bumbu

Abstract

The paper discusses Optical Character Recognition (OCR) of
historical texts of the 18th–20th century in the Romanian lan-
guage using the Cyrillic script.

We differ three epochs (approximately, the 18th, 19th, and
20th centuries), with different usage of the Cyrillic alphabet in
Romanian and, correspondingly, different approach to OCR.

We developed historical alphabets and sets of glyphs recogni-
tion templates specific for each epoch. The dictionaries in proper
alphabets and orthographies were also created. In addition, vir-
tual keyboards, fonts, transliteration utilities, etc. were devel-
oped.

The resulting technology and toolset permit successful recog-
nition of historical Romanian texts in the Cyrillic script. After
transliteration to the modern Latin script we obtain no-barrier
access to historical documents.

1 Introduction

At present Internet is the most valuable deposit of information as it
can be accessed and researched from any point. New information is
prepared electronically and can be exposed effortlessly. If we want to
expose historical documents, we are to digitize them.

c©2016 by S. Cojocaru, A. Colesnicov, L. Malahov, T. Bumbu
∗The results published in this article were presented on November 13, 2015 at

the seminar dedicated to the memory of Prof. Iu. Rogojin
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Sometimes we even can access graphical images of text pages but
this form effectively restricts their availability. In particular, graphical
presentation makes impossible full text search.

Full text search needs textual transcription of the historical source
that can be got by OCR. It was statistically showed that full-text search
and quick access to contents are very important for the users, because
access to the original document becomes smoother [1].

Using OCR for historical documents started in early 1990-s and pro-
gressed in parallel with the advance of OCR tools. Since 2008 big OCR
projects have started, like large-scale OCR of newspaper collections in
the United Kingdom and Austria [1]. Modern projects referred to in [1]
are IMPACT (Improving Access to Text) under FP7, and EOD under
EU Culture 2007-2013 programme.

The conversion of historical documents from the paper to accessible
and searchable electronic form meets two obstacles that are not fully
cleared till now.

Nowadays state-of-the-art in OCR guarantees relatively good re-
sults only on modern texts. For historical typography, results are
worse. There are several causes of it. Historical fonts vary even in one
book, and are less readable. Old paper introduces speckles and distor-
tions. Linguistic components and resources of modern systems don’t
often know the peculiarities of historical language variations. Each text
yields its own specific mix of features and problems, which implies that
the quality of OCR for historical documents may vary from perfect to
almost unacceptable.

The second general problem is produced by the historical orthog-
raphy and language changes. Most users of digital libraries don’t have
a good command of old language and desire to use the modern or-
thography at their search. Any word can have numerous variants in
the historical documents because of language evolution and lack of or-
thography standardization. To get satisfactory replies at search, it is
necessary to skip over the gap between modern and new orthography.

In different languages, availability of texts in original historical or-
thography differs. For example, Romanian Cyrillic script of the 18th
century has glyphs that are not supported by most OCR programs.
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There are such variants in accessibility of lexical resources at the search
in the historical documents. Very subtle details should be taken into
account because of the alphabet evolution; for example, the Romanian
language in the middle of the 19th centure used more than 17 alphabet
modifications.

This situation is usual for many languages and for many cases
when scientists, students, publicists, writers, statesmen, etc. want to
learn from original historical documents without intermediate inter-
pretations. Therefore, national systems for no-barrier access to his-
torical documents are necessary, being supported by historical lexical
resources, proper OCR tools and tools for quick interpretation of new
unknown texts. Such systems should become available for interested
users of these cultural data.

The OCR of manuscripts is a specific challenge, and we will not
discuss it here.

In the paper, we would discuss the factors defining the reliability
of the OCR result, and the techniques permitting to enhance it by the
example of printed historical Romanian texts of the 18th–20th century
in the Cyrillic script. The following epochs were preliminary distin-
guished in the Cyrillic scripts for Romanian, using the principle “since
the present and back centuries” (see details in [2]):
Epoch 1: the 2nd half of the 20th century, Moldavian SSR, Russian-

based Cyrillic script.
Epoch 2: 1830–1860, the so-called transitional alphabets, mix of Ro-

manian Cyrillic and Latin script.
Epoch 3: the early 19th century and back, the Romanian Cyrillic

script.

For epoch 1, the problem seems to be almost solved, and we shortly
discuss our achievements in Sec. 4. We concentrate our discussion
mainly on the 2nd epoch (Sec. 5). We research also epoch 3; our
results are presented in Sec. 6.
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2 Production process

The following four stages form the process of producing the textual
transcription of a printed historical document.

1. Digitization (scan) and image preprocessing.
2. OCR.
3. Text post-processing.
4. Quality evaluation.

For scanning, we recommend specialized book scanners, for exam-
ple, Plustek OpticBook [3], and scan with at least 600 DPI resolution.
The worst case is when we get already scanned source from some col-
lection and cannot regulate its properties.

There are several freely available programs for image preprocess-
ing like line straightening, image cleaning, converting to black-and-
white. One of such programs is ScanTailor. A big collection of such
tools is presented at [4]. In particular, Agora is an interesting tool that
analyses blocks of text and images on pages.

OCR is a most complicated and error-prone stage. We tested sev-
eral OCR systems and selected ABBYY FineReader (AFR) [2],[5]. The
latest AFR versions include some image preprocessing but we recom-
mend separate tools as more powerful and versatile. The OCR program
performs segmentation of image to characters, and produces text com-
paring characters with patterns. Then the dictionaries for supposed
languages can be used to check the spelling of resulted text and correct
it. Training mode can be proposed when the user manually corrects
text segmentation to glyphs and pattern-to-glyph mapping.

Post-processing of the text mainly includes manual correction of
the OCR outcome, and extracting words to replenish the dictionary
used at OCR. AFR permits some manual corrections in its output
window before storing the resulting text. Allocation of textual blocks
may also need correction, depending on purpose. For example, it is not
necessary for full text search. The post-processing may continue up to
full restoration of physical text appearance.

Quality assurance also depends on purpose of text processing. It
can be done at several levels: the scan and dataset level, institutional
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and the project consortium level. It is recommended to perform thor-
ough post-evaluation and error spotting over the first produced text
samples to ensure consistency in further production.

3 Factors affecting scan and OCR quality

The recognition quality depends on: the scan quality; the alphabet
selection; the OCR engine training over specific texts; the availabil-
ity of dictionary corresponding to the proper historical period. In its
turn, scan quality is influenced by factors like: black-letter typefaces;
irregular spacing between letters and words; changing font sizes; poor
paper; inconsistent inking; speckles; distortion and other geometric de-
formations of text, non-straight lines; text strike-through. In the worst
case, these may imply the manual correction of each page image, e.g.,
despeckling.

The case of color and negative (white letters on black or dark back-
ground) printing is also very difficult. AFR splits the image of each
page to blocks that can be attributed as text, table, or image. This
splitting is not always perfect; the manual correction may be necessary.

OCR quality may be affected by: alphabet diversity; mix of scripts;
use of special characters, digraphs, ligatures; use of accents; use of
historical vocabulary; poor vocabulary recognition.

The task of dictionary creation seems to be a true vicious circle as
it supposes studying a lot of potential hardly accessible sources, and
extracting data through language and script barriers.

4 Recognition of Moldavian Cyrillic script

Moldavian Cyrillic script was used in Moldavian ASSR and Moldavian
SSR. It was based on the Russian alphabet with one additional letter
� �æ�. The typography of that period permits to obtain good scans.
The dictionary was produced from recognized books themselves using
manual correction of words; it can be expanded from new books. De-
tails are discussed in [2], [5]. The purpose of recognition was mainly
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re-editing valuable books in modern Latin script; for this purpose, a
transliteration utility was developed [5].

5 Recognition of transitional alphabets

Transitional alphabets were used in the Romanian typography since
1830 and until 1860–1870 [6]. They can be characterized by regular
many-to-one mapping of old Romanian Cyrillic letters to the mix of
Latin and Cyrillic letters. This mapping could be expanded further to
modern Latin Romanian script; slightly different orthography makes
an obstacle. The existence of such mapping distinguishes the old Ro-
manian Cyrillic and transitional scripts from Moldavian Cyrillic script
that cannot be ([5]) regularly mapped to the modern Latin script.

There were many different transitional scripts. Our impression is
that different typographers used them depending on the existed stock
of letterpunches, progressively replacing the Cyrillic letterpunches with
the Latin ones whenever the former were worn. We can see different
alphabets at the same year. Book [6, p. 115] shows a “record” example
of 1840 where the title page was printed in four different scripts si-
multaneously (old Cyrillic, simplified Cyrillic, transitional, and Latin).
Sources count up to 17 variants of the transitional scripts. This diver-
sity makes a main problem at OCR of these documents.

We used two approaches to OCR of Romanian transitional scripts.
The first approach is to reproduce the scanned text after OCR in its
original glyphs. It is possible with the corresponding AFR configuring
and training, and by providing the proper dictionary (Fig. 1, p. 112).
It produces 7% of erroneous words.

The second approach was tested to solve the problem of alphabet
variation. We rejected the principle of the exact text reconstruction
after OCR. AFR permits to output the result in original glyphs or
substitute them by any sequence of letters from the selected alphabet
of recognition. This is called “ligatures” in AFR documentation. For
AFR output, we invented a Latinized version of the alphabet that
can be set in one-to-one mapping with any transitional alphabet. For
example, both “ò” (Cyrillic) and “t” (Latin) will be recognized as “t”.
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(a)

(b)

Figure 1. Romanian transitional script (1848) after OCR: (a) source;
(b) text
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Because of one-to-one letter mapping, the exact reconstruction of
the text from a book is achieved applying a simple letter substitution
selecting the desired variant of the transitional alphabet. We are de-
veloping the corresponding conversion utility.

Figure 2. Part of AFR pattern collection for Romanian transitional
alphabets with substitutions (“ligatures”)

This approach also reduces drastically the volume of the dictio-
nary. For example, “trekut” (“past”, modern Latin script “trecut”) in
the recognition dictionary may check up to 16 variants obtaining by
independently replacing t→ò, r→ð, k→ê, u→ov).

This restriction of the recognition alphabet solves one small prob-
lem of interaction with AFR. AFR does not support arbitrary Unicode
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glyphs in its dialogs and forms. Old Romanian letter “↑” was intro-
duced in Unicode only after 2009. Standard system fonts do not contain
some Romanian Cyrillic (and transitional) letters. As a result, we see
in AFR empty boxes “�” instead of letters during training, alphabet
formation, etc.

Work with ligatures also reduces errors to 4.8% (word level; see
Sec. 6).

After training, we collected a set of glyph patterns for Romanian
transitional alphabets. Part of this collection is shown in Fig. 2, p. 113.

Resuming, the OCR of Romanian transitional script should be per-
formed as follows. Configure AFR with the corresponding “user lan-
guage”. Set the alphabet for this language from the corresponding
string. Fill the recognition dictionary from the corresponding file. In
the pattern editor of AFR, download recognition patterns from the
corresponding file. After recognition, apply the utility and remap the
result to the necessary variant of the transitional alphabet to restore
the original glyphs.

You can also use the AFR output (before its remapping) to replen-
ish the recognition dictionary. The recognition quality grows as the
dictionary grows. We repeated recognition several times using the rec-
ognized text as new words source, with manual checking of the included
words because of the absence of the historical lexicons.

6 Recognition of old Romanian Cyrillic script

AFR recognizes old Romanian Cyrillic Script. Small problems arose
due to absence of necessary glyphs in system fonts, as it was already
noted above. In fact, only three fonts in the whole world have old Ro-
manian Cyrillic letters: Kliment, Unifont (bitmap font), and Everson
Mono [7]–[9].

For example, the juridical text from 1786 was recognized with en-
gine training and user supplied dictionary (Fig. 3, p. 117). This results
in 4.5% errors (word level) with original glyphs and 3% errors with
ligatures. We observed this effect with transitional scripts also.

This unexpected result is to be explained. The most likely reason
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is that AFR skips some glyphs that are supposed to be recognized
properly in the training mode. With original glyphs, AFR skips more
glyphs, while, at the glyph substitution, AFR should train substituted
glyphs and performs better training.

7 Conclusions

Digitization of historical texts includes their scanning and recognition;
the latter was performed by ABBYY FineReader 12.

To use OCR for the Romanian Cyrillic script, we developed a set of
historical alphabets and sets of glyphs templates, which are specific for
each epoch. The spelling dictionaries in proper alphabets and orthogra-
phies were also created. Some auxiliary supporting tools like virtual
keyboards, fonts, transliteration utilities, etc. were also developed.

Images were preprocessed with specific pre-OCR tools.
We have analyzed two approaches to recognition: using authen-

tic glyphs, and using glyph substitution. The second approach solves
the problem of diversity for transitional alphabet, and, due to some
peculiarities of the AFR training mode, produces fewer errors.

OCR can dramatically increase the usability of digital libraries.
The proposed solutions of the problems discussed in the paper can
significantly impair the quality of the OCR outcomes. With it, full-text
search and no-barrier access to digitized historical documents become
possible.
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(a)

(b)

(c)

Figure 3. Recognition of the juridical text of the 18th century in the
Romanian Cyrillic script: (a) source; (b) original glyphs; (c) “ligatures”
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Large-scale executable biology using rapid
integration of computational models∗

Vladimir Rogojin, Ion Petre

Abstract

We plan to develop a systematic framework for assembling large-
scale computational biological models by reusing and combining al-
ready existing modelling efforts. Our goal is to build a software plat-
form that will compile large-scale biomodels through successive inte-
grations of smaller modules. The modules can be arbitrary executable
programs accompanied by a set of (I/O) interface variables;they may
also have an internal structure (such as a metabolic network, interac-
tion network, etc.) that yields its executable part in a welldefined
way. Firstly, wherever possible, modules with the compatible inter-
nal structure will be joined by combining their structure and by pro-
ducing new larger executable modules (like, combining two metabolic
networks, etc.). Then, irrespective of the underlying internal structure
and modelling formalisms, all the modules will be integrated through
connecting their overlapping interface variables. The resulting com-
posed model will be regarded as an executable program itselfand it
will be simulated by running its submodules in parallel and synchroniz-
ing them via their I/O variables. This composed model in its turn can
also act as a sub-module for some other even large composite model.
The major goal of this project is to deliver a powerful large-scale mod-
eling methodology for the primary use in the fields of Computational
Systems Biology and Bioinformatics.

Keywords: computational biomodelling, multiscale whole-cell
modeling, model integration, model refinement, executablebiology.

c©2016 by Vladimir Rogojin, Ion Petre
∗The results published in this article were presented on November 13, 2015 at the seminar

dedicated to the memory of Prof. Iu. Rogojin
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1 Introduction

Predictive and comprehensive models of biological cells are highly signifi-
cant for the understanding and engineering biological systems. Such large-
scale whole-cell models have the potential to direct experiments in molecular
biology, facilitate computer-aided design and simulationin synthetic biology,
and enhance personalized therapeutic methods.

The ultimate goal of our research is to develop and implementa generic
technique that will allow for automatic building of custom large-scale multi-
level comprehensive models that are able to describe accurately a biological
phenomenon of interest with a desired level of details. The main idea here
stays in reusing and integrating of already existing disparate modeling efforts
into more representative, and therefore, more accurate, simulations of the tar-
geted phenomenon. The models will be organized into a hierarchical struc-
ture by their levels of abstraction, so that a user can easilynavigate through
the hierarchy and choose the appropriate levels of details for the resulting
integrated model.

In Computational Systems Biology a large number of individual teams
of researchers target isolated subsystems and processes from living cells for
modeling and simulation. In many cases, different researchers model inde-
pendently overlapping, highly related or even the same cellular structures and
processes. Moreover, those computational models focus on some particular
cellular sub-systems while ignoring cross-talks with the other sub-systems
and the other factors that also influence the sub-system under studies. A step
forward towards building representative cellular models will be to join the
disparate efforts of different modelers and build complex large-scale models
via integration of already existing ones.

The greatest challenge here comes from the fact that different research
teams come with their own concepts, abstraction levels, formalisms and
methodology preferences as well as with their own technological limitations
for their models. They contribute to the literature a mass ofknowledge in
the form of models and simulations in different formats, level of details and
data types. One has to overcome those challenges in order to bring numer-
ous modeling and simulation efforts into a significantly more representative
larger comprehensive model that will capture all the features of initial models
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and will agree still with all the respective initial experimental data.

Our method will involve searching for a common ground of integration
between models, regardless of their formalisms and implementation. That
common ground can be used to join models automatically into asingle com-
prehensive simulation system. This will allow models to be integrated on
several levels of details, depending on the required analysis. We will base
our developments on a formal framework for integration of models of dif-
ferent formalisms, implementations and level of details that was presented
in [1].

A software implementation of an integrated whole-cell model was pre-
sented in [2]. A model Mycoplasma genitalium was obtained through joining
of 28 different independent computational submodels, where each submodel
represents some specific cellular process [2]. The model described the dy-
namics of every molecule over the entire life cycle and accounts for the spe-
cific function of every annotated gene product. Each submodel was using
formalism most appropriate to its functioning and existingknowledge. The
submodels were assumed to run approximately independentlyon a short time
scales. Simulations were performed by running through a loop in which the
submodels were run independently at each time step but depended on the
values of variables determined by the other submodels at theprevious time
step. The simulation software worked as a set of communicating running in
parallel Matlab programs, where each program implements a submodel. The
whole-cell software managed to predict the observed experimental data very
accurately as well as it helped also to discover new previously unknown cel-
lular behaviors. In the similar spirit, we will let for coordinated synchronized
execution of different simulation instances within our simulation framework.

In our research, we propose a follow-up for the effort of developing large-
scale biological model building techniques and model integration [1], [2]. We
will represent a model as an executable simulating program that can be in-
tegrated with the other executable simulating programs standing for other
models via a well defined API. We will allow for hierarchical type of model
integration, that is, a number of complex models obtained due to previous
integrations of simpler models can also be integrated together and form even
more complex models.The practical outcome of our research will be a soft-
ware modeling platform that will provide a systematic framework for integra-
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tion and coordinated execution of different simulation instances, each simu-
lating different parts of the biological phenomenon of interest. We are going
to validate our methodology and computational platform through building a
prototype for a whole-cell model of the life cycle of either yeast or E.coli, two
of the most studied model organisms [3], [4]. Existing data in well-curated
model database such as Biomodels [5] should be enough at least for a rough
prototype of such a whole-cell model.

2 Background

A formal framework for integration of models of different formalisms, imple-
mentations and level of details was presented in [1]. The framework involves
searching for a common computational ground between the models that will
allow to integrate them, regardless of their formalism and implementation,
across different methodologies into a single agent-based simulation system.
Our abstract model descriptor will be based in particular onthe concept of
behavioral inclusion trees from [1].

Parameter fitting of a model to the experimental data is formulated as a
global optimization problem. The goal is to tweak parameters of the model
in such way that the predicted behavior of the model is as close as possible
to the experimental data. The objective function here showshow far are the
simulated data points from the experimental ones and takes as arguments the
set of parameters to fit. The optimization goal is to find values of the parame-
ters where the objective function reaches the global optimum (minimum). In
particular, COPASI provides functionality for quantitative ODE-based model
parameter estimation. It allows to fit both reaction kineticrate parameters as
well as initial concentrations of the metabolites.

Quantitative model refinement is an essential step in the model develop-
ment cycle. Starting with a high level, abstract representation of a biological
system, one often needs to add details to this representation to reflect changes
in its constituent elements. Any such refinement step has twoaspects: one
structural and one quantitative. The structural aspect of the refinement de-
fines an increase in the resolution of its representation, while the quantitative
one specifies a numerical setup for the model that ensures itsfit preservation
at every refinement step. The refinement should be done so as toensure the
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preservation of the numerical properties of the model, suchas its numerical
fit and validation. In [6]–[10] there were presented methodsfor quantitative
model refinement in a number of modeling frameworks, such as ODE-based
models, rule-based models, Petri net models, guarded command language.
We plan to use quantitative refinement when bringing different models to the
same level of details.

A number of efforts towards integrating a plethora of publicly avail-
able molecular-scale experimental measurements that render intracellular
molecule functions and interactions has facilitated data-driven large-scale
model development [11]. For instance, in [11] there was developed a toolkit
called Moksiskaan that can integrate information about theconnections be-
tween genes, proteins, pathways, drugs and other biological entities from a
large number of databases. As the result, one can obtain a comprehensive
network model encompassing signaling, metabolic, gene regulatory, etc. in-
tracellular relations. We will employ Moksiskaan for collecting a vast range
of biological data needed for model construction and fitting.

Anduril [12] is an open source component-based workflow framework
for scientific data analysis developed at the ComputationalSystems Biology
Laboratory, University of Helsinki. Anduril also providesAPI that allows in-
tegrating rapidly various existing software tools and algorithms into a single
data analysis pipeline. An Anduril pipeline comprises a setof interconnected
executable programs (called components) with well-definedI/O ports, where
an output port of a component may be connected to the input ports of some
number of other components. (for example, see Figure 1). During execution
of a pipeline, a component will be executed as soon as all the input data are
provided by the up-stream components. After execution of the component,
its results become available for the downstream componentsthat can be ex-
ecuted in their turn as soon as all the necessary input data are provided for
them. Anduril is highly scalable computational platform, it runs well both
on desktop personal computers as well as on powerful supercomputers and
clusters. Anduril can run multiple processes in parallel and its pipelines can
be scaled for a distributed execution across the network. The size of Anduril
pipelines can range from several component instances that could run in few
seconds up to thousands of component instances requiring several days of
execution. We will base our model integration platform on Anduril.
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Figure 1. Example of an Anduril workflow (pipeline). Workflow is a set oftasks
(component instances) organized in a directed network. Each component instance
has some defined set of inputs and outputs, where outputs of aninstance are con-
nected to inputs of some other instances. Instances withoutany inputs import data
into the workflow. Instances without any outputs normally output the workflow’s
computation results. For example, herematrixA andmatrixB are instances of a com-
ponentRandomMatrix that is a program generating a random matrix; instancemean
of componentCSVTransformer calculates mean for each row of matrices coming
from matrixA andmatrixB instances; instancescatterPlot generates a specific plot
for the matrices frommatrixA andmatrixB, etc.

3 Integration of computational models

We are planning to obtain a software platform, that will allow a user to specify
the input data (like set of initial models with their software implementations,
model and environment parameters, abstraction levels, experimental data to
fit to, etc.) for some target biological phenomenon and to query for prediction
on some target features of the behavior of the modeled biological system (for
instance, a time course for concentrations of some biochemical species, the
time of cell growth in particular environmental conditions, etc.).

Here, we focus on developing model refinement and integration tech-
niques for biological computational models. This project is a first step to-
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wards building a system that, based on a user query, will allow collecting and
reuse existing biological computational models in order togenerate automat-
ically custom case-specific comprehensive models for particular biological
phenomenon at the desired abstraction level. We will develop a methodology
that will allow minimizing or avoiding refitting the initialmodels to their cor-
responding experimental data while performing model refinement and model
integration activities.

Our research is a follow-up for the effort of developing large-scale bio-
logical model building techniques and model integration [1],[2]. Particularly,
we will allow for an arbitrary nature of a modeling formalismand its imple-
mentation. A model will be represented by an executable simulating program
and can be integrated with the other executable simulating programs standing
for other models via a well defined API. We will allow for hierarchical type
of model integration, that is, a number of complex models obtained due to
previous integrations of simpler models can also be integrated together and
form even more complex models. We will allow for a high level of scalabil-
ity and flexibility in the sense that a model can be tuned to a particular use
case to fit the expected/desired behavior and to incorporatethe desired level
of details. In particular, we will employ here the previous practices related to
numerical model parameter fitting [13] and model refinement [6]–[10].

We will address the following challenges:

1. Develop and implement intra-formalism integration methods for a
number of different formalisms across different abstraction levels. That
is, we are aiming to develop a systematic approach for automatic ab-
straction level adjustment via refinement and building a single model
through joining a number of initial models, while working within the
same formalism;

2. Develop and implement inter-formalism integration methods;

3. Deploy a generic (plug&play) platform that allows to “plug” compu-
tational models into the composite model, refine them and obtain the
respective large-scale models and simulations.
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4 Methods

We discuss here the methods that we are planning to apply in our research.

4.1 Abstract model descriptor

We will develop a methodology to describe in an abstract way models so that
it will be possible to decide automatically how to join the models and how
to instantiate the resulting integrated model. Thisabstract model descrip-
tor will abstract from the model type (discrete or continuous, stochastic or
deterministic), the modeling frameworks and models implementations.

The model descriptor will include such concepts as anentity (formalizes a
real world physical object), aprocess (represents an activity involving one or
more entities), avariable (a measurable/observable and/or affectable property
of an entity or process). An entity may consist of a number of other entities,
a process can be split in subprocesses, a variable may characterize/affect the
current state of an entity or a process. Also, an entity may bean abstraction of
some other entity and a process may be an abstraction of some other process.

We regard the abstract model descriptor as a digraph with annotated nodes
and edges, Figure 2. In order to enable automatic integration of models basing
on their descriptors, the user has to map nodes and edges of the descriptors to
the corresponding components of the models or simulating instances. The ex-
act way, how this mapping should be performed will depend on the particular
type, formalism and implementation of each of the models.

4.2 Model integration and simulation

Here, the user should provide a set of initial models to integrate along with
their abstract descriptors and mappings between the modelsand their descrip-
tors. We remind, that we regard a model as an executable program or as a
formal construct (a set of chemical reactions, signaling pathways, gene reg-
ulatory nets, etc.) together with its well-defined mapping onto an executable
simulation instance.

We consider the following steps for integrating multiple user-provided
models into one:
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Figure 2. Schematic representation of abstract model descriptor. Anentity can be
a part of/abstraction of some other entity, a process can be apart of/abstraction of
some other process and a variable can be a part of/abstraction of some other variable.
Thepart-of relation is represented by a triple-line edge on the plot, and abstraction-
of is represented as a dotted line. Entity can participate in a process. The relation
participates-in is represented by solid line. A variable can be regarded as aninterface
to the state of an entity or process. The relationinput/output (I/O) is represented by
a double-line edge.

1. For all the models for which we have formally defined constructs,
decide what constructs can be combined and how (for instance, two
metabolic networks can be joined into one). We need to develop meth-
ods for joining models with the “compatible” internal structures into
one model with its internal structure being a union of the original struc-
tures. See for example Figure 3. The internal structures will be joined
through their overlapping components. Those overlapping components
from two different structures that are at different levels of details will
be brought to the same abstraction level via model refinementtech-
niques [6]–[10]. The internal structure integration methodology and
model refinement process strictly depend on the formalism being used,
and we will develop the integration and refinement techniques for a
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Figure 3. Example of integration of two models within the same formalism into
one. The result: modified classic Lotka-Volterra Pray-Predator model [14] with two
types of prey. The model is regarded in terms of chemical reactions (reaction rates
and initial species concentrations are omitted here). One of the initial models de-
scribes dynamics (basically proliferation) of two types ofprey. The other initial
model describes predator’s dynamics and its relation to prey specie (note that this
model does not consider different types of prey species). During the integration pro-
cess, the predators’ model gets refined in order to include relations to the two types
of prey species, then sets of reactions from the prey and the refined predator models
get united.

number of classical formalisms (such as mass-action based ODEs, Petri
nets, Boolean logic networks, etc.) separately. As the result of such in-
tegration of models with the compatible internal structures we will get
one simulation instance that captures the behavior of the original mod-
els;

2. The user may provide a set of experimental data to fit the initial mod-
els. Fit the models to the user-provided time series data where neces-
sary. Translate the resulting formal models into executable simulation
instances;

3. Basing on the abstract model descriptors, decide connections between
the executable simulation instances. The connections can be uni- or bi-
directional. Here, a connection will also mean translationof an output
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from a source simulation instance into an appropriate inputformat for
the destination simulation instance. The type of translation will be de-
cided automatically basing on the classes of the source and destination
instances.

As the result, the integrated model will be the set of executable simulation
instances with the scheme of their interconnections. The integrated model
can be considered as a simulation instance itself and can be further integrated
with the other models.

During the simulation the simulation instances will send toeach other
synchronizing messages that include the current states of some of their com-
ponents as well as their contexts. The connection scheme defines which in-
stance sends messages to which instances and what components states are
included in each of the messages. In particular, the states of entities, pro-
cesses and variables will be communicated. The abstract model descriptor
of each of the initial models will be used to identify the overlapping or re-
lated components between different models. This information will be used
to decide what components of the respective models should berefined, and
what connections to form between instances. If in one of the models one
identifies a set of components that is a refinement of a component from some
other model, then one has to perform the respective refinement in the other
model in order to obtain a set of the components that coincides exactly with
the components from the former model. The refinement procedure depends
on what type, formalism and model implementation is used in the respective
model. When having same component (at the same level of abstraction) in
two different models, one can form a connection between those two models
that specifies in particular what components in these modelsare connected
(also, probably, in which direction). One also associates to the connection a
data transformer/adapter in order to transform the representation of states of
the model component between the respective formalisms and data formats.
See Figures 4, 5, 6 and 7 for an example of combining two simulation in-
stances basing on their abstract descriptors.

The set of connections between a pair of instances defines what compo-
nents communicate their states to the partner model within amessage. Also,
the context of one model that is being sent to the other model along with the
states includes the simulated time point in order to synchronize two models.
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Figure 4. An abstract model descriptor for the prey population dynamics and its
mapping to the internal model structure (set of reactions and species)

Figure 5. An abstract model descriptor for the predator population dynamics (in-
cluding population growth/decay and prey consumption) andits mapping to the in-
ternal model structure
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Figure 6. An abstract model descriptor for the predator population dynamics that
was refined with two types of prey in order to have overlappingcomponents between
submodels from (a) and (b) at the same level of details

Figure 7.Basing on the abstract model descriptors for submodels from(a) and (b) it
was decided to refine submodel for (b) into (c), and the overlapping components were
detected between (a) and (c), that are “Prey1” and “Prey2” entities, “Population1
size” and “Population2 size” variables. Hereby, we establish connection between
simulation instances corresponding to (a) and (c) that update each other with the
states of “Prey1”, “Prey2”, “Population1 size” and “Population2 size” components.
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We will develop an API which the simulation instances shouldhandle in
order to exchange messages with each other during the simulation. When a
simulation instance receives a message, it should decide how to update its
internal states of the respective components, especially in the case when the
received message brings set of states contradicting the instance’s own internal
states.

4.3 Software implementation

We will produce a software platform that will construct a large-scale model
through integration and refinement of the existing models.

Our platform will be built on top of the Anduril workflow framework due
to the fact that Anduril provides systematic computationalenvironment for
rapid integration of existing computational tools and algorithms into an or-
ganized pipeline. An integrated model will be implemented as an Anduril
pipeline, where components will represent the initial simulation instances,
and connections between the components will represent connections between
the respective models/instances. We also note, that an Anduril pipeline can
serve as a component to be included in the other pipeline. In other words, An-
duril will allow integrating a complex model within the other more complex
model.

A simulation instance will be a software program wrapping the respec-
tive existing simulation software for the respective model, while handling
the API to communicate to other instances and updating the local states of
the instance according to the states received from the otherinstances. Also,
the wrapper has to handle translation of states between different abstraction
levels. In particular, we can incorporate COPASI as a dynamically linked li-
brary and access all of its simulation and parameter estimation functionality
from our simulation instance program, that can “talk” to other instances and
input/output data into/from the COPASI-simulated model from/to the other
simulation instances. Petri nets can be simulated with S4 Snoopy modeling
software that we are going to access from the respective simulation instance
via well-define API of S4. Simulation instances for the Rule-Based mod-
eling will use BioNetGen software as a command-line tool, orincorporate
directly BioNetGen program code. We will use CellNetAnalyzer Matlab li-
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brary in the simulation instance for Boolean networks. Generally speaking,
any third-party simulation software can be incorporated into our integrative
simulation framework via a wrapping program that handles our API for the
communication with the other simulation instances. Schematically, this idea
is represented in Figure 8.

Figure 8.Scheme of the general organization of simulation instances. Each simu-
lation instance simulates a model of some biological phenomena (for instance, bio-
chemical networks, signaling networks, DNA transcription, RNA translation, etc.)
probably in some well-defined formalism (for instance, mass-action based ODE
model, Petri nets, Boolean networks, etc.) that is being implemented/simulated by
some software (for instance, COPASI for ODE, Snoopy for Petri nets, CellNetAn-
alyzer for Boolean networks, etc.) A simulation instance consists of the original
simulating software and the wrapper that translates between the simulation software
and the messages for the other simulation instances.

5 Discussion

As the result, this project should deliver a powerful methodology for con-
struction of large-scale models via integration of existing models and data.
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The methodology will combine model refinement and integration tech-
niques and assumes both data- and hypotheses-driven model construction ap-
proaches.

We believe that our research will contribute to the scientific modeling
community through the development of a methodology for connecting dif-
ferent computational biological models irrespective of their formalisms, con-
cepts and implementations. The platform that we are planning to implement
will allow to build large-scale models and run comprehensive simulations by
joining independent modeling and simulation efforts from agreat number
of research biomodeling projects. As the result, one will beable to build
rapidly and easily large-scale custom models from a set of already existing
models that will satisfy user-specific particular needs. Inparticular, the exper-
imental biologist researchers should be the first to benefit from our platform
due to the fact that comprehensive large-scale modeling canhelp in discov-
ering new features of cellular processes without the need toconduct multi-
ple expensive laboratory experiments. We may list among theother stake-
holders bioinformaticians, medical-related researchers, synthetic biologists,
bio-engineers, pharmacologists and any one else who needs to run expensive
bio-experiments in-vivo or in-vitro.

References

[1] M. Patel and S. Nagl, “The role of model integration in complex
systems modelling,”Understanding Complex Systems, 2010. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-15603-8

[2] J. R. Karr, J. C. Sanghvi, D. N. Macklin, M. V. Gutschow, J.M. Jacobs,
B. Bolival Jr., N. Assad-Garcia, J. I. Glass, and M. W. Covert, “A
Whole-Cell Computational Model Predicts Phenotype from Genotype,”
Cell, vol. 150, no. 2, pp. 389–401, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0092867412007763

[3] L. Pray, “L. h. hartwell’s yeast: A model organism for studying somatic
mutations and cancer,”Nature Education, vol. 1, no. 1, p. 183, 2008.

133



Vladimir Rogojin, Ion Petre

[4] P. S. Lee and K. H. Lee, “Escherichia colia model system that benefits
from and contributes to the evolution of proteomics,”Biotechnology
and Bioengineering, vol. 84, no. 7, pp. 801–814, 2003. [Online].
Available: http://dx.doi.org/10.1002/bit.10848

[5] C. Li, M. Donizelli, N. Rodriguez, H. Dharuri, L. Endler,V. Chelliah,
L. Li, E. He, A. Henry, M. I. Stefan, J. L. Snoep, M. Hucka,
N. Le Novère, and C. Laibe, “Biomodels database: An enhanced,
curated and annotated resource for published quantitativekinetic
models,” BMC Systems Biology, vol. 4, no. 1, p. 92, 2010. [Online].
Available: http://www.biomedcentral.com/1752-0509/4/92

[6] D.-E. Gratie, B. Iancu, S. Azimi, and I. Petre, “Quantitative model re-
finement in four different frameworks,” inFrom Action Systems to Dis-
tributed Systems, L. Petre and E. Sekerinski, Eds. Taylor & Francis
Group, 2016.

[7] D.-E. Gratie and I. Petre, “Hiding the combinatorial state space explo-
sion of biomodels through colored petri nets,”Annals of University of
Bucharest, vol. LXI, pp. 23–41, 2014.

[8] C. Gratie and I. Petre, “Fit-preserving data refinement of mass-action re-
action networks,” inLanguage, Life, Limits, ser. Lecture Notes in Com-
puter Science, A. Beckmann, E. Csuhaj-Varju, and K. Meer, Eds., vol.
8493. Springer, 2014, pp. 204 – 213.

[9] B. Iancu, D.-E. Gratie, S. Azimi, and I. Petre, “On the implementation
of quantitative model refinement,” inAlgorithms for Computational Bi-
ology, ser. Lecture Notes in Computer Science, A.-H. Dediu, C. Martin-
Vide, and B. Truthe, Eds., vol. 8542. Springer International Publishing,
2014, pp. 95–106.

[10] B. Iancu, E. Czeizler, E. Czeizler, and I. Petre, “Quantitative refinement
of reaction models,”International Journal of Unconventional Comput-
ing, vol. 8, no. 5-6, pp. 529–550, 2012.

134



Large-scale executable biology . . .

[11] M. Laakso and S. Hautaniemi, “Integrative platform to translate gene
sets to networks,”Bioinformatics, vol. 26, pp. 1802–1803, 7 2010.
[Online]. Available: http://dx.doi.org/10.1093/bioinformatics/btq277

[12] K. Ovaska, M. Laakso, S. Haapa-Paananen, R. Louhimo, P.Chen,
V. Aittomki, E. Valo, J. Nunez-Fontarnau, V. Rantanen, S. Karinen,
K. Nousiainen, A.-M. Lahesmaa-Korpinen, M. Miettinen, L. Saarinen,
P. Kohonen, J. Wu, J. Westermarck, and S. Hautaniemi, “Large-
scale data integration framework provides a comprehensiveview on
glioblastoma multiforme.”Genome medicine, vol. 2, no. 9, pp. 65+,
Sep. 2010. [Online]. Available: http://dx.doi.org/10.1186/gm186

[13] E. Czeizler, V. Rogojin, and I. Petre, “The phosphorylation of the heat
shock factor as a modulator for the heat shock response,”IEEE/ACM
Transactions on Computational Biology and Bioinformatics, vol. 9,
no. 5, pp. 1326–1337, 2012.

[14] F. Hoppensteadt, “Predator-prey model,”Scholarpedia, vol. 1, no. 10,
p. 1563, 2006, revision 91666.

Vladimir Rogojin, Ion Petre Received February 9, 2016

Computational Biomodelling Laboratory
Turku Centre for Computer Science, and
Department of Computer Science
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Phone: +358 2 215 3361
E–mail:vrogojin@abo.fi, ipetre@abo.fi

135



Computer Science Journal of Moldova, vol.24, no.1(70), 2016

Advantages of application of unconventional

computing to image processing

and whence these advances come∗
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Abstract

This paper presents the advantages of P system computing
based approach to solving image processing problems. Being sig-
nificantly reduced relative to classic algorithms, P system com-
puting based algorithms nevertheless produce better results and
even resolve the problems just unsolvable for classic algorithms.
Despite these evident advances, unconventional computing ap-
proaches remain less popular in practical image processing be-
cause their hardware is mostly virtual that supposes computing
on simulator. This obstacle can be in perspective eliminated by
direct implementation of P system computing based solutions on
today’s HPC hardware.

Keywords: Medical imaging, unconventional computing,
P system, HPC, image processing.

1 Introduction

This paper intends to demonstrate the advantages of image processing
problems solving by application of P system computing [1] that is the
branch of unconventional computing.

Unconventional computing, also known as alternative computing,
uses new or unusual devices instead of classical silicon ones. The most
widely distributed branches of unconventional computing are: quantum
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computing, wetware computing, DNA computing, molecular comput-
ing, nanocomputing. The algorithms and programming methods of un-
conventional computing are conceptually different from the traditional
ones. Essentially this difference springs from nature of unconventional
computing that supposes computing in parallel on large amount of el-
ementary devices. So, the algorithms and programming methods of
unconventional computing suppose to be intrinsically parallel. Practi-
cally this aspect means that developers do not need tips-and-tricks to
avoid exhaustive search (brute force).

Image processing – in particular medical imaging – is the most
perspective user of unconventional computing algorithms. Unconven-
tional computing based solutions are significantly reduced relative to
classic based one; nevertheless they not only produce better results,
but even resolve just classically unsolvable problems. Despite these
evident advances, practical domains like medical imaging still rare use
unconventional computing, because “hardware” is mostly virtual that
supposes computing on simulator. This obstacle can be surmounted
by recently proposed implementation of unconventional computing so-
lutions on today’s hardware – HPC (high performance computing) [2].

Advances of applications of unconventional computing to image
processing mostly spring from easy obtaining of pixel neighborhood
and possibility to use brute force algorithms without computational
overdraft.

In the presented work P system computing – a particular branch of
unconventional computing – is applied. This is bio-inspired paradigm,
and its models, known as membrane systems or P systems, reproduce
the membrane structure of the biological cell. Computing is performed
by execution of rules of objects movement or transformation. The rules
are applied in parallel. P systems demonstrate challenging applications
in images processing and analysis. A variant of P system, called tissue-
like P system, shows itself as suitable representation of image: pixel is
mapped to cell in tissue [3].

In this work the above formalism and representation are applied to
the solution of noisy medical image processing problems. The presented
solution is used to illustrate the advantages of application of P system
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computing.

2 Key features from which advantages come

As it was stated above, programming methods of unconventional com-
puting are conceptually different from the traditional ones. Because
of this principal difference the methods of unconventional computing
often look tricky and advantages of their application are veiled.

To explane whence the advances come, the application of P sys-
tem computing to solving practical problems of image processing is
presented by illustrative example.

Firstly, P system computing workflow of this example has to be
explained. Let us consider the cell as small computer. The substances
which are transferred into the cell, could be considered as input. The
substances which go out of the cell, could be considered as output.
Some substance conversion done inside the cell is data processing. An-
other name of P system computing is membrane computing because
the main aspect of this computing is the cell membrane that divides
work area to inner cell and environment. The computation consists in
execution of rules which act toward membrane providing:

• objects transition through membrane;

• objects conversion inside membrane or during transition.

The tissue P system is the abstract map of living tissue. The rect-
angle tissue of cells ordered in rows and columns is the natural repre-
sentation of image where pixels are the cells and cell content is color
value.

Having the brief scheme of P system computing we can show the
springs of advantages of this computing application to image processing
tasks.

From the very beginning the important aspect has to be stated.
The today’s application of unconventional computing is effective only
for the cases which are hard solvable or even unresolvable by classical
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methods. Of course this aspect is generated by absence of real hardware
and restricted simulators capability.

According to the mentioned aspect, the test use case was selected.
This set was selected from medical ultrasound images of gallbladder in
SonaRes system database [4]. To prepare the test set of images, regions
of interest (ROIs) are subtracted from full image. The resulted images
present suitable test because of:

• hard noise make useless application of shape recognition methods;

• small size strikes application of gradient methods.

Moreover, SonaRes is the functioning system with its own retrieval
module. For test purposes only those images were selected, the retrieval
of which fails.

Formal definition of the problem is: to develop effective algo-
rithms for extracting image-based features from ultrasonic images to
be used for image matching and classification in diagnosis supporting
process.

The problem solving by P system computing has two steps:

step (1) obtaining of features from test image and

step (2) retrieval the images with similar features from database of
already processed images.

For presented use case the contours were chosen as images sig-
natures because they can define the majority of gallbladder patholo-
gies. At the step (1), contours of image artifacts are traced apply-
ing P system based grayscale image region-based segmentation algo-
rithm adopted from one proposed by [3]. The details of adoption
are presented in our work [5]. The adoption was not a problem be-
cause of unconcern of P system based methods to image dimension
or grayscale/color content of pixel representation. The proposed algo-
rithm produces the acceptable segmentation result independently on
image noisiness. Graphical-related basis of algorithm is the edge-based
segmentation using the cross-like 4 points adjacency.
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While P system based algorithm of segmentation is efficient and
effective, the one currently used for retrieval at step (2) is reduced to
comparison of contour obtained from pattern image with contours from
the database. The problem of contours comparison is mostly finding
of shape descriptor suitable to particular retrieval algorithm, in our
case – shape descriptor by height function (length of perpendicular to
the chosen axis) [6]. The coefficient of similarity is defined as ratio of
“common” points obtained by retrieval to the total number of points
in contour received from the pattern image.

These outlines of solving steps allow one to demonstrate the spe-
cific for P system computing features which make solving noisy image
processing problems faster and simpler.

For the both steps, productive P system computing key features
are the same:

1. Charge-less using of brute force algorithms makes available the
per/pixel processing. Per/pixel processing in this case allows
avoiding algorithmic tricks needed for retrieving features indis-
tinguishable by another methods.

2. Tissue structure formalism gives easy access to neighborhood of
every shape and complexity. For given problem such easy access
provides the separation of grayscale levels that give as result the
contour.

The key features application can be demonstrated in detail by pre-
sented example. In general, algorithms for the both steps consist in
marking of target pixels by specific objects transferred from environ-
ment. Marking process is managed by rules. Algorithm executes iden-
tical rules for each pixel simultaneously applying massive parallelism
feature of P system computing. Rules executing process applies an-
other key feature – accessibility of any neighborhood of every cell of
tissue structure.

Focusing on step (1) algorithm that is implemented efficiently,
the springs of P system based solution advantages can be presented.
When implementing segmentation, the rules are executed for each pixel
in parallel but computation takes only 2 steps.
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[I] First set of rules searches for border pixels until all half-border
objects will be checked.

[II] Second set of rules repeats the same process converting temporary
borders to final ones.

Specifically the native massive parallelism of P system computing
makes the proposed algorithm so reduced.

3 Simulation results and perspective of direct

HPC implementation

The demonstrated efficiency of P system based algorithm of course
provokes the question how appropriate are the obtained results.

As stated above, today the only implementation of P system based
solution can be done by simulator.

In this section the sufficiency of P system based image processing
can be confirmed by extracts of simulation results. Sample group in-
cludes the results of presented use case and results of several tests on
use cases taken from works where advanced classical algorithms were
applied.

The used simulator is based on P lingua [7] framework. P lingua
has full set of patterns for implementation of elements of membrane
computing. While segmentation algorithm is the adopted one, its im-
plementation was done in frame of presented work.

The use case for simulation is a set of real medical ultrasound im-
ages of gallbladder. Fig.1 shows the test results of cases of gallbladder
polyps. In the case of this pathology, contours recognition plays the
main role showing the difference between stones and polyps, which have
straps with outer wall of gallbladder. P system based algorithm shows
the acceptable results, while our attempts to get solutions by classical
methods did not give the results at all.

Fig.2 shows the comparative results of test on medical images con-
sidered as hard processed in works [8] (left pair) and [9] (right pair).
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Figure 1. Results of presented use case simulation

Figure 2. Results of comparative use cases simulation

There is a sufficient number of medical imaging problems solutions
by unconventional computing algorithms, which are successfully imple-
mented by simulators. But even working on parallel hardware, simu-
lators cannot implement massive parallel processing of unconventional
computing. Moreover, researchers does not trust the results obtained
by simulator or just do not intend to spend the time for “ghost” com-
puting. Therefore, despite the described advantages, medical imag-
ing problems solutions based on unconventional computing still meet
“non-existent hardware” obstacle. The mentioned “misunderstanding”
challenge can be successfully answered by modern research of direct im-
plementation of unconventional computing on today’s hardware of high
performance computing (HPC). Although this research is very fresh,
the problems of such both important and suitable domain as image
processing are certainly in list of considered tasks.

We recently have joined this research basing our decision on long
experience of Spanish colleagues in CUDA implementation of P systems
simulator [10]. Medical imaging use case that is currently the subject
of our research shows itself as suitable and perspective application to
develop the HPC implementation of presented P system based solution.
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4 Conclusions and further work

P system based approach to image processing demonstrates effective-
ness and productivity even being implemented on simulator. The so-
lutions of test real-life problems of medical imaging domain promise
successful further development of implementation of this approach on
today’s HPC hardware. The development supposed representing P sys-
tem computing blocks as universal pattern from which the solution of
particular task can be built. To extract suitable blocks more test prob-
lems of different domains have to be solved.

References

[1] Gh. Paun, Membrane computing. An introduction (Natural
Computing Series). Springer, 2002, 412 p. Available: DOI:
10.1007/978-3-642-56196-2.

[2] M. Snir, “The future of supercomputing,” in Proceedings of the
28th ACM international conference on Supercomputing (ICS ’14).
ACM, New York, NY, USA, 2014, pp. 261–262.

[3] H. A. Christinal, D. Diaz-Pernil and P. Real, “Region-based seg-
mentation of 2D and 3D images with tissue-like P systems,” Pat-
tern Recognition Letters, vol. 32, no. 16, pp. 2206–2212, Dec. 2011.

[4] L. Burtseva, S. Cojocaru, C. Gaindric, I. Secrieru, O. Popcova
and D. Sologub, “SONARES a decision support system in ul-
trasound investigations,” Computer Science Journal of Moldova,
vol.15, no.2(44), pp. 153–178, 2007.

[5] Yu. Rogozhin, A. Alhazov, L. Burtseva, S. Cojocaru, A. Colesnicov
and L. Malahov, “Solving Problems in Various Domains by Hybrid
Models of High Performance Computations,” Computer Science
Journal of Moldova, vol.22, no.1(64), pp. 3–20, 2014.

143



L. Burtseva

[6] Junwei Wang, Xiang Bai, Xinge You, Wenyu Liu, and Longin
Jan Latecki, “Shape matching and classification using height func-
tions,” Pattern Recogn. Lett., vol. 33, no. 2, pp.134–143, Jan. 2012.

[7] M. Garcia-Quismondo, R. Gutierrez-Escudero, I. Perez-Hurtado,
M. J. Perez-Jimenez and A. Riscos-Nunez, “An Overview of P-
Lingua 2.0,” inMembrane Computing (Lecture Notes in Computer
Science, vol. 5957), Springer Berlin Heidelberg, 2009, pp. 264–288.
Available: DOI: 10.1007/978-3-642-11467-0 20.

[8] S. Mudigonda, F. Oloumi, K. M. Katta and R. M. Rangayyan,
“Fractal analysis of neovascularization due to diabetic retinopathy
in retinal fundus images,” in E-Health and Bioengineering Confer-
ence (EHB), Iasi, 2015, pp. 1–4.

[9] V. Kovalev, A. Prus and P. Vankevich, “Mining lung shape from
X-ray images,” in Machine Learning and Data Mining in Pat-
tern Recognition (Lecture Notes in Computer Science, vol. 5632),
Springer Berlin Heidelberg, 2009, pp. 554–568. Available: DOI:
10.1007/978-3-642-03070-3 42.

[10] M.A. Mart́ınez-del-Amor, L.F. Maćıas-Ramos, L. Valencia-
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