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At the 70th anniversary of Academician

Florin Gheorghe Filip

With the appearance of the possibilities of establishing scientific
relations between the Republic of Moldova and Romania, that is to
say, in 1991, together with a group of colleagues from the Institute
of Mathematics and Computer Science of the Academy of Sciences of
Moldova (IMCS), I was received at the National Institute for Research
and Development in Informatics, Bucharest (ICI), by the director of
this prestigious institution Dr. Florin Gheorghe Filip.

The research topics of common interest have been already found
starting from the first discussions, and a collaborative and collegiate
relationship has been established with some joint research projects.

In the course of time, professor and academician F.G. Philip has
accepted to be a member of the advisory board of the newly born
Computer Science Journal of Moldova (CSJM), and has participated
in defence of some habilitation theses of IMCS researchers. Relations
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with IMCS have grown to the relations with the Academy of Sciences
of Moldova. Now academician Florin Gheorghe Filip is an honorary
member of the Academy of Sciences of Moldova.

Researchers, students, master students and doctoral students from
the Republic of Moldova study and draw inspiration from the mono-
graphs of Professor F.G. Philip, some of which are included in the
bibliography recommended in the curricula of disciplines studied by
computer science students at several universities.

Academician F.G. Philip has significant results and an appreciated
impact in decision support systems, hierarchical large-scale systems of
control and optimization, technology management and foresight, and
IT application to the cultural domain. The monographs published in
prestigious scientific publishing houses, about 300 articles in journals
serve as the evidence.

The scientific community appreciates the merits of researcher F.G.
Philip, who is being invited as the lecturer at scientific centers in the
United Kingdom, Austria, Brazil, France, Sweden, China, Poland, Ger-
many, the Republic of Moldova, Chechia etc. Academician F.G. Fi-
lip has the degree honoris causa of Lucian Blaga University of Sibiu,
Valahia University, Târgoviste, Ovidius University, Constanta Ecole
Centrale de Lille, France, Polytechnic University of Timisoara, Agora
University of Oradea, Academy of Economic Studies of Bucharest, Uni-
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versity Petrol-Gaze of Ploiesti, University of Pitesti.
Academician F.G.Filip has an intense organizational and manage-

rial activity: for 10 years, from 2000 till 2010, he was vice-president
of the Romanian Academy. In 2010, he was elected as the Head of
the Section ”Information Science and Technology” of the Romanian
Academy. Currently he is the director of the Romanian Academy Li-
brary. He has an intensive activity on a European and international
scale as a member of the program committees of more than 50 scientific
conferences in Europe, USA, South America, Asia and Africa.

Acad. Filip is the founder and Editor-in-Chief of the journal “Stu-
dies in Informatics and Control” (1991), and co-founder and Editor-
in-Chief of “International Journal of Computers Communications &
Control” (2006). He is a member of the editorial staff of several scien-
tific journals, such as:

• Systems Analysis, Modeling and Simulation;

• International J. of Critical Infrastructures;

• Computer Science Journal of Moldova (Chisinau, since 1993);

• Information Technologies and Control;

• Romanian Journal of Information Science and Technology;

• Control Engineering and Applied Informatics (SRAIT);

• Romanian Journal of Informatics and Automatics ;

• Romanian Journal of Automatics;

• Technological and Economic Development of Economy

• International Journal of Information Technology & Decision Ma-
king (Science Direct);

• Advances in Electrical and Computer Engineering;

• Financial Innovation (Springer, since 2016);
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• Journal of System and Management Sciences (Beijing Jiatong
Univ., China).

We are glad to have the opportunity to know academician F.G.
Philip as a scholar, manager, but also a person with high qualities of
character, full of energy, modest, generous man, colleague and friend.

Our heartiest congratulations on his Birthday! We wish him health,
happiness and new successes for the prosperity of science!

On behalf of the journal CSJM editorial board and colleagues in
IMCS,

Constantin Gaindric
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Collaborative Control Theory and Decision

Support Systems

Shimon Y. Nof

Abstract

Collaborative Decision Support Systems, CDSS, depend on
cost-effective collaboration among the decision participants. Those
may include, in addition to human decision makers, non-human
entities such as robots, software and hardware agents, sensors,
and autonomous instruments. The purpose of this article is to
explore the impact that CCT, the Collaborative Control Theory,
has on cyber supported augmentation of collaboration in gene-
ral, and its proven and potential impacts on CDSS in particular.
Three recent case studies are discussed. The correlation between
CDSS decision process and quality; and the level of CCT-based
collaboration augmentation and the resulting level of Collabora-
tive Intelligence, CI, is presented. It is concluded that while there
are clear positive impacts of CCT based augmentation and level
of CI, they need to be measured and optimized, not maximized.
Further research in this area is also described.

Key Words: CCT-based Collaboration Protocols; Co-
Insight; Collaboration Augmentation; Collaborative Intelligence;
Collaboration Requirements Planning; Error and Conflict Pre-
vention

1 Introduction

The significant research on decision making and taking by Academi-
cian Florin G. Filip,e.g., [17,18], and the recent publication of Filip
et al. book on CDSS [19], collaborative decision support systems, of-
fer an opportunity to analyze the mutual relations between CDSS and

c©2017 by Shimon Y. Nof
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CCT, the Collaborative Control Theory. The book discusses in detail
the role of collaboration in DSS, Decision Support Systems, the vari-
ous processes and protocols of collaboration among the human decision
makers, and the enabling computer, communication, information and
cyber technologies that make CDSS increasingly more feasible, and so-
metimes more effective (e.g., [4], [5], [6], [54], [33], [35], [39], [42], [49],
[50], [56]). It also discusses the fact that while the common team of de-
cision makers are human, increasingly the participants are distributed,
decentralized, and include software and hardware agents, robots, and
machines. In particular, in real-time decision making and control, the
heart and brain of smart and autonomous automation, the role of the
automated, often autonomous non-human participants carries a larger
responsibility.

Several questions arise in this context for control and automation
engineers and scientists, and these questions can be presented by two
key problems:

• What are the risks and what is the balance of these risks compa-
red with the advantages of CDSS?

• How can such CDSS be designed, operated and maintained to
minimize those risks while maximizing the benefits?

These problems are not new, as they have been asked and addressed
by researchers and practitioners since computerized DSS first appea-
red. When additional computational resources at higher levels of cyber
sophistication and power are added, these problems become even more
acute. With greater advantages in supporting decision processes, come
greater risks.

The purpose of this article is to address these problems from the
perspective of CCT. The Collaborative Control Theory emerged when
it was realized that internetworked, interconnected automation systems
become so complex and interdependent that they will collapse unless
designed and even optimized for effective and cyber-supported collabo-
ration.
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The article includes four sections following this introduction: Risks
and advantages of collaboration in CDSS; CCT augmentation to over-
come collaboration limits and risks; Collaborative Intelligence (CI) by
CCT augmentation of CDSS; conclusions and further research.

2 Risks and Advantages of Collaboration in
CDSS

Who collaborates on decision making and decision taking? Why do
they need and why would they want to collaborate? Let us consi-
der the functions of collaboration shown in Table 1, and the examples
shown in Table 2. They illustrate who collaborates, the purpose of
their collaboration, the motivation to reach and implement decisions,
and some of the risks involved.

Revolutionizing collaboration by cyber support, including the case
of CDSS, carries a large number of advantages (Figure 1). Some of
them can be consideredmandatory collaboration requirements, meaning
that without them no good decisions can be analyzed and made. For
instance, in a design case, without timely data from customers about
the details of their demand, and from suppliers about their capacity
availability to deliver, no correct decision can be expected. Errors
and conflicts can be expected. Over large supply networks, and with
inevitable changes and modification in supplies and demands, these
mandatory collaboration requirements scale up and escalate.

Optional collaboration requirements are those that may or may not
be beneficial to have, but are not as clearly necessary as the mandatory
requirements to collaborate. Typical examples involve the amount of
additional information gained by collaboration, but having unclear va-
lue to influence a decision, nor its quality. Furthermore, the cost and
effort to obtain those additional opinions, or preferences, priorities,
etc. may even complicate the decision and damage the entire decision
process.

To evaluate the advantages and limits of collaboration for decision
support in the context of CCT, five key metrics can be considered:
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1. Decision quality – quality of the decisions being made now; of
future decisions

2. Information availability – what information is required and when;
what information is not required; what additional information
can add benefit to the decision making process and to the decisi-
ons’ quality.

3. Timely completion – Which decisions have to be made, and by
when.

4. Multiple views – What level of diversity of logic and of motivati-
ons are beneficial; negotiated decisions; visibility of the decision
process and the decisions made; co-insight, the ability to avail and
gain timely collaborative insights of the multiple participants, in-
cluding overcoming adversarial attitudes.

5. Multiple engagement – For a CDSS to be useful and effective, the
collaborating participants may or may not need to be engaged
during (or during part of) the decision making process, at the
decision taking stage, and during (or during part of) the imple-
mentation and revisions of the decisions.

These five metrics are interrelated and influence each other. They will
be considered in the case studies described later in this article. There
are other metrics that can be considered (e.g., see [11], [12], [13], [16],
[19]).

3 CCT augmentation to overcome collabora-
tion limits and risks

CCT has been developed, validated and implemented by researchers
and engineers worldwide. Its main purpose is to understand, design and
optimize collaboration support systems, collaboration protocols, and
collaboration algorithms that can augment all aspects of collaboration.
Despite the potential risks and failures inherent in complex interactions
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Table 1. Characteristics of DSS and CDSS and their role in augmenting
collaboration (Source: [19]; adapted from [23])

associated with collaboration (Table 2), augmentation by CCT has
been developed to overcome them.

As it is shown in Figure 1, cyber support is integrated with com-
mon CDSS (Figure 1a), but in addition, cyber support with CCT-
augmentation of collaboration processes (Figure 1b) can and is desig-
ned to overcome the risks and shortcomings of collaboration processes
and systems.

A brief summary of CCT ([35]) is provided in Table 3. CCT com-
prises seven augmentation principles, listed in the first column. For
each of them, its role, collaborative decisions, and examples of colla-
boration augmentation models, protocols, and algorithms developed to
implement it are shown in the last column. One can find details about
each of them in the references of Table 3.

The CCT augmentation roles of each principle and its related cyber
tools are as follows.

CRP: Collaboration Requirement Planning. It includes advanced
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Table 2. Decision making by CDSS based on collaboration among
participants

Decision making

participants

Decision exam-

ples

Risks of Collabora-

tive Decisions

People Investments;
policies;
budgeting;
responses;
resource allocation;
scheduling

- Low or no incentive
to collaborate

- Potential logic errors

- Potential conflicts

- Wrong/missing data

- Costs of
collaboration

- Delays

- Poor or no
compromise

- Too late for some or
all

- Too early for some
or all

- Other mismatch
challenges

People and machi-
nes

Activation;
recovery;
diagnostics

Software agents Simulations;
calculations;
assembly design;
service planning

People-machines-
agents

Coordination;
priorities;
healthcare action al-
ternatives

Robots-Robots Navigation;
monitoring;
co-assembly

Swarms of robots,
drones

Surface treatment;
rescue;
exploration;
security

Sensors Health of crops;
safety;
assessment and pre-
diction of conditions

Combinations
changing over time

Above decision com-
binations
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Figure 1. CDSS collaboration with: (a) Cyber support; (b) Cyber
support and CCT augmentation (Source: [38])

pre-planning (CRP-I), followed by on-going monitoring and adap-
tive control/re-planning of collaborating resources (CRP-II). The al-
gorithms, protocols, and multi-agent systems for CRP are designed to
create and gain collaborative intelligence (CI) from multiple human
and non-human participants for the collaborative decisions. By pre-
planning and re-planning the collaboration, there is a greater chance
to eliminate gaps and inefficiencies, thus improving the quality of col-
laboration process and of their outcomes.

EWP: e-Work Parallelism. It implies optimally exploiting the fact
that work in cyber workspaces and workflows, and in human workspa-
ces and workflows can and must be allowed to advance in parallel, and
should not bottleneck each other. For decision support, it implies that
cyber tools, hardware and software agents, can operate at their own
speed and in parallel to human decision makers, to prepare, acquire,
exchange, analyze, evaluate, an even recommend decisions in support
of human decision makers and decisions.

ECR: Errors and Conflicts Resolution. Eliminate or minimize the
cost of resolving conflicts among collaborating e-workers and cyber
tools by automated, cyber-supported error and conflict detection, prog-
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nostics, and prevention systems. Without it, complex, large scale de-
cision systems based only on human-interaction will collapse, as has
been proven theoretically and empirically.

CFT: Collaborative Fault Tolerance. Cyber tools, protocols, algo-
rithms, and agent systems are designed to improve the performance
results of a team, including team decisions, such that a team of weak
collaborators can together reach better results than a single, non-team
and even flawless agent.

A-D: Associate-Dissociate (also known as JLR, Join-Leave-Remain).
Cyber tools designed under this principle include collaborative control
decisions on when, whether, and why to associate, or dissociate from a
team, or network, of collaborators, based on on-going cost/benefit eva-
luations. This evaluations are conducted in parallel to the collaborative
network performance. For collaborating decision makers, for instance,
it means that some of them (e.g., sensors, knowledge bases, etc.) may
or may not need to be engaged in certain portions of a decision process
but join later. Or it could mean that for a team of decision makers,
they may find out that one or a few of them (e.g., certain robots, or
drones, or humans) can be disengaged from the team, at least for a
certain period, to eliminate damage in future decisions, or in certain
decisions.

ELOCC: Evolutionary Lines of Collaboration and Command. This
CCT principle guides the development of evolutionary and machine-
learning cyber mechanisms for organizational learning and impro-
vement of both ad-hoc decisions improvisation, on the spot self-
reorganization and contact creation, and best matching protocols
(BMP), for pairing suppliers (providers) and consumes (clients). For
decision support, it implies the same, with emphasis on the evolutio-
nary nature of decisions over time.

BMP: Best Matching Protocols were originally developed as part
of ELOCC, and later also as part of all other CCT principles. They
are shown in Table 3 under ELOCC and CRP. Their objective is to
optimally match sets, either by pairing best analytic tools and agents
to given decision requirements, or matching higher dimensional sets of

122



Collaborative Control Theory and Decision Support Systems

sensors, robots, instruments, and given planning and control decisions
([31]).

BIC: Bio Inspired Collaboration. These are cyber tools, protocols
and algorithms designed to increase the collaborative intelligence (CI),
hence the resulting benefits of collaborative decisions and control, by
bio inspired and socio inspired collaboration mechanisms observed in
nature, e.g., genetic algorithms, ant and other colony protocols and
algorithms, and market negotiation games.

CSCW oriented protocols

A major objective in CDSS is to understand and deliver interaction
protocols that would structure and improve collaboration processes and
the resulting decisions’ quality. Protocols of collaboration in CDSS
([19], [41]) include interaction protocols developed extensively by re-
searchers in the area of CSCW, Computer Supported Collaborative
Work. Their focus is on social, human factors and psychological as-
pects of computer supported collaboration. Mostly, they are concerned
with the collaboration shown in Figure 1a, and can provide guidance
to cyber-supported collaboration shown in Figure 1b.

Steps of collaboration that are addressed by the CSCW protocols
are identified as Generate, Reduce, Clarify, Organize, Evaluate, and
Build Consensus (e.g., [27]). Typical functions followed by these pro-
tocols are:

• Voting methods (e.g., [14], [20])

• Information sharing (e.g., [9])

• Argumentation by groups (e.g., [43])

• Resource sharing and allocation (e.g., [1], [45])

• Mediation and interaction (e.g., [21])

• Crowd sourcing (e.g., [2],[10])
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An example of a systematic support system for CDSS to enable collabo-
ration is Thinklet ([3], [17], [22]). Additional details on CSCW oriented
protocols can be found in [41]. Several researchers have studied their
complexity, e.g., [20, 21].

While the CSCW collaboration and interaction protocols have ad-
vanced collaborative decision systems ability by providing protocols for
functional collaboration, the CCT augmentation protocols differ in two
main aspects:

1. They seek to automate and alleviate known risks and limitations
that are typical in computer supported collaborative interactions,
as described above and further below.

2. In addition, CCT assumes that any decision system involves,
beyond human decision makers and knowledge bases also sen-
sors, robots, and software agents, who may need to make their
own decisions autonomously, as well as interact with humans for
their decisions

CCT augmentation Protocols

As discussed above and shown in Table 3, the CCT augmentation
protocols are designed as cyber-based augmentation of collaborative
interactions. They are focused on solving the following typical risks in
collaborative interactions:

• Inefficient, ineffective decision processes due to overloaded deci-
sion makers and lack of common, workflow based decision process
plans. These risks are addressed by the CRP protocols (e.g., [59])

• Unclear assignment of who does what and when in support of
the decision interactions. These risks are addressed by the EWP
protocols (e.g., [7])

• Errors and conflicts encountered during collaboration, requiring
monitoring and detection, and either recovery to overcome them,
or better yet, machine learning to prevent and eliminate them.
These risks are addressed by the ECR protocols (e.g., [8], [24],
[28])
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• Errors and conflicts which cannot be resolved, or can only be
resolved too late, pose risks to collaboration. Such risks require
fault tolerance mechanisms designed in the support systems, and
are provided by the CFT protocols (e.g., [25])

• Not all humans, robots, agents, sensors, need to be engaged
throughout the entire decision process. On the other hand, they
may be needed as active and engaged participants at certain ti-
mes, weather preferred by them or needed by other participants.
For instance, in such case they should be alerted for active par-
ticipation when needed. Handling this concern is by the AD
protocols (e.g., [53])

• Certain participants may or may not be available when they need
to or are invited to participate actively. These risks are addressed
by the ELOCC protocols ([52], [58])

Examples of the design implementation and applications of the CCT
augmentation protocols are given, for example, by [39] in manufactu-
ring and logistics; [36] and [47] in modeling and decision support for
sustainability; [26] and [37]in the design of service tasks administra-
tion protocols; [46] in complex production facility collaborative ma-
nagement; and [51] in security of supply networks. In many of these
research applications, humans are in the loop as collaborating decision
makers, including robots, sensors, and software agents. In some of these
research applications, only autonomous robots, sensors, and software
agents are collaborating to make their own autonomous decisions.

The impact and benefits gained by applying the above CCT aug-
mentation cyber tools are intuitive, as they address directly solutions
to critical and common weaknesses of collaboration in CDSS. These
impacts and benefits have also been modeled, measured, and validated
by researchers, based on the above five metrics and other metrics.
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Table 3: CCT principles and PRISM Center discoveries of
CCT collaboration augmentation cyber tools developed for
them (Source: [30], [61]; Adapted from [35], [38])

Principle*
– Ratio-
nale

Features Applied de-
cisions

e-Mfg/e-Service
decisión areas

Model/
Algo-
rithm/
Proto-
col**

CRP-I &
CRP-II
”Think
before
you act”

Collabora-
tion
plan-
ning &
inter-
action

Resource
planning

Multi-robotic
assembly; Multi-
processors

CRP;
TAP;
BMP

Multi-
agent
design

Agent the-
ory

Mfg operations ABMS

EWP
”Divide
and
conquer”

Collabora-
tion
protocol
design

Telecommuni-
cation,
adaptive,
and ex-
change
protocols

ERP applications;
Electronic in-
spection/testing;
Wireless Micro-
Electro Mecha-
nical Systems
(MEMS); Mfg
networks

TIE/P;
Test-
LAN;
TIF;
BMP;
TAP

Middle-
ware
proto-
cols

Client-
server
models

Automotive elec-
tronics; Flexible
assembly

RAP;
TOP

Paralle-
lism

Parallel/grid
computing

Global de-
sign/mfg; Colla-
borative decision-
making

DPIEM;
TAP
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Continuation of Table 3

Principle*
– Ratio-
nale

Features Applied de-
cisions

e-Mfg/e-Service
decisión areas

Model/
Algo-
rithm/
Proto-
col**

Resource
& task
alloca-
tion

Local area
networks;
Internet

Electronic assem-
bly & test; Global
mfg networks

TestLAN;
MEN;
TAP

ECR
”Learn
from
mista-
kes”

Synchro-
nization/
Re-
synchro-
nization

Agent the-
ory

Robotic mainte-
nance

ServSim

Informa-
tion as-
surance

Total qua-
lity manage-
ment

Agent-based
mfg/service

MERP

Error
de-
tection
& pre-
vention

Computer
recovery;
Multi-agent
systems

Robotic assem-
bly; Multi-robot
systems

NEFU-
SER;
EDPA;
CEDP

CFT
”Team
for
synergy”

Fault-
tolerant
integra-
tion

Sensor
fusion

Flow MEMS
sensors; Wireless
MEMS sensors

FTTP;
TIE/
MEMS

Conflict
resolu-
tion

Telecommu-
nication;
Co-assembly

Co-facility de-
sign; Multi-robot
systems; Assem-
bly/disassembly

FDL;
FDL-
CR;
CRP;
BMP
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Continuation of Table 3

Principle*
– Ratio-
nale

Features Applied de-
cisions

e-Mfg/e-Service
decisión areas

Model/
Algo-
rithm/
Proto-
col**

AD
”Be se-
lective”

Enter-
prise
integra-
tion

Network
flow

Distributed
& networked
mfg/service sys-
tems

MEN
Opt.;
JLR;
BMP;
CD-
CSP;
TAP

Organiza-
tional
learning

Enterprise
computing

Mfg/assembly
corp.

CMS

ELOCC
”Trust
the
backup”

Workflow
integra-
tion &
harmo-
nization

Data flow;
Distributed
database;
Workflow
protocols

Aerospace mfg;
CIM

DFI;
DAF-
Net &
AIMIS;
BMP;
TAP

Informa-
tion
sharing
&
collabo-
ration

Virtual
environ-
ments; Task
graphs;
Network
compu-
ting; Inter-
net/Intranet

Mfg cells; Distri-
buted designers;
Mfg networks;
e-Business/e-
Service

FDL;
IDM;
Co-X
Tools;
T-C-M;
TAP
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Continuation of Table 3

Principle*
– Ratio-
nale

Features Applied de-
cisions

e-Mfg/e-Service
decisión areas

Model/
Algo-
rithm/
Proto-
col**

e-
Learning/
e-
Training

Learning
theory;
Distributed
& colla-
borative
DSS

ERP applicati-
ons; Emergency
response

MERP/C;
TSTP

Viability
measu-
res

Virtual mfg HCI TIE/A

e-Work
scalabi-
lity

Distributed
computers

Mfg networks MEN
Opt.

BIC
”Follow
nature”

Distribu-
ted
optimi-
zation
& cont-
rol

Agent the-
ory; HMS;
Swarm in-
telligence;
Evolu-
tionary
algorithms

Mfg process
planning & sche-
duling; Intelligent
shop floor control;
Collaborative
mfg/service pro-
cesses

GA; AS;
NN

Evolution Emergent
networks;
Neural
networks;
Evoluti-
onary &
adaptive
behaviors/
patterns in
nature

Evolutionary ro-
botics; Mfg net-
works; Negotia-
tion systems; Self-
formation & self-
evolution of emer-
gent networks

GA; AS;
NN
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* CRP: Collaboration Requirement Planning; EWP: e-Work Paral-
lelism; ECR: Error and Conflict Resolution; CFT: Collaborative Fault
Tolerance; AD: Association-Dissociation; ELOCC: Emergent Lines of
Collaboration and Command; BIC: Bio-Inspired Collaboration; BMP:
Best Matching Protocol

** These models, protocols, and algorithms are described in detail
in the table references

4 Collaborative Intelligence (CI) by CCT aug-
mentation of CDSS

Two CCT-based developments augmenting collaboration in CDSS are
the Co-Insight system, and the Collaborative Intelligence (CI) of par-
ticipants. Recent research has shown that both help understand better
the collaborative decision and control process, and enable reaching bet-
ter quality decisions (e.g., [15], [60] [61]).

Research on acquiring and accumulating intelligence has been con-
ducted by many researchers (e.g., [32], [40], [44], [55]). See a summary
in Table 4.

CCT augmentation of collaborative decisions by the Co-Insight fra-
mework is shown in Figure 2. It is designed to enable multiple partici-
pants to engage in information and knowledge exchange in a way that
incorporates visual analytics through knowledge repositories and ex-
change protocols. The unique advantage of this framework is that it is
built with CCT cyber tools. A Co-Net, a collaborative network of de-
cision participants, enables interactions under best matching protocol
of participants, recommending who should be involved at each period
of time. The recommendations are generated through a collaborative
network optimization protocol (CNO). Another best matching protocol
guides the matching of decision analytics tools that are best suitable
for each given decision or decision stage.

The Co-Insight framework is developed on a HUB, a powerful com-
putational infrastructure (e.g., Industrial Internet of Things/Internet
of Services, or cloud computing) to enable large scale, decentralized
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interactions for a small social/group network, or for a wide network of
participants.

Figure 2. CCT augmentation of collaborative decisions by Co-Insight:
(a) The Co-Insight framework with task-participant matching (deciding
with whom to collaborate for a specific decision problem); participant-
interface matching (deciding which tool to apply for a specific decision
analysis); within a collaborative, visual analytics workspace. (b) The
role of participating collaborators in a Co-Net for Co-Insight. (Source:
[60])

Research has shown that building and augmenting the CI of par-
ticipants in cyber-physical systems and in CDSS can provide better
support for achieving both their individual and their common, organi-
zational objectives. A definition and formal quantitative measure of CI
have been developed ([61]). They are based on the definitions of the two
key elements, collaboration and intelligence. Three recent case studies
of collaborative decision support systems have been analyzed relative
to their formal level of CI. The three cases involve limited, though
non-finite groups of collaborating human and non-human entities.

Case 1. Collaborative Design

Telerobot-enabled, computer supported collaborative design under
CLM, collaborative life-cycle management, was modeled and experi-
mentally studied in a lab. Novice and experienced designers collabo-
rated over a HUB with CAD systems, CAE systems, control software
development, and a remote robot to collaboratively design and test
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Table 4. Interactions impacting intelligence to improve decision pro-
cesses and decisions quality features (Source: [61]; adapted from [15])
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an electronic assembly. The decisions they made throughout the ex-
periments with and without CCT augmentation were evaluated. The
level of CI in the experiments was measured and evaluated. Metrics of
improved collaboration and improved quality of design decisions were
analyzed (e.g., [57]).

Case 2. Supply Network Control

Collaborative product line control in a global supply network of
paper and related products was designed based on CCT augmentation
of the decision support. Certain decisions were automated for real-
time alerts, batch order rescheduling and resequencing, and feedforward
process control adjustments. Selectively, some of these control decisions
were escalated to human-in-the-loop supervisors. Performance metrics
of decision and control processes, of their CI, and decision and control
impact on production quality were analyzed and evaluated (e.g., [46]).

Case 3. Demand and Capacity Sharing

Collaborating enterprises can benefit from sharing demands for
their products and services, and supply capacities that are available
to them. On-going negotiations and interactions about such sharing
between those that have, from time to time, excess unused capacity, or
temporary decline in demand, can yield significant mutual advantages.
For instance, airlines sharing their equipment and passengers dynami-
cally (“code sharing”), and automotive suppliers, one having excess
storage capacity, while another is having surplus of unsold vehicles and
lacking storage space. Such demand and capacity sharing decisions
were designed with CCT augmentation, and the level of CI and corre-
sponding decisions’ quality and decision process metrics were evaluated
(e.g., [29], [48], [53]).

The five collaboration metrics were assessed in the above three ca-
ses, and overall observations are summarized in Table 5. Based on
these observations, the benefits based on these metrics have been me-
asured and shown with statistical significant to yield advantages when
a higher formal levels of CI are enabled as shown.
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Table 5: Measured impacts of the formal level of CI on key
CDSS metrics (Source: [38], [61])

Collaboration
Metrics

Case 1.
Collaborative
Design

Case 2.
Supply Net-
work Control

Case 3.
Demand-
Capacity
Sharing

Decisions qua-
lity, service
level, effective-
ness, stability

- Improved de-
sign quality
- Improved de-
sign robustness

- Lower throug-
hput variabi-
lity
- Reduced
work-in-
progress

- Improved sta-
bility of inte-
ractions
- Improved sta-
bility of inte-
gration decisi-
ons

Information
availability

Improved
through Co-
Insight

Improved
through Co-
Insight

Improved
through Co-
Insight

Timely com-
pletion

Less time
to complete
design tasks

- Increased
throughput
- Reduced
work-in-
progress

- Improved re-
source utiliza-
tion
- Reduced cost
of mismatch

Multiple views Enabled
through Co-
Insight

Enabled
through Co-
Insight

Enabled
through Co-
Insight
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Continuation of Table 5

Collaboration
Metrics

Case 1.
Collaborative
Design

Case 2.
Supply Net-
work Control

Case 3.
Demand-
Capacity
Sharing

Multiple enga-
gement

Embedded
on HUB-CI
with decision
support alerts

- Automatic
engagement
as needed of
sensors and
knowledge-
bases
- Alert-based
interactions
with line su-
pervisors as
needed

- Automatic
engagement
as needed of
sensors and
knowledge-
bases
- Alert-based
interactions
with enterprise
agents and
supervisors as
needed

Cost of Colla-
boration

Errors and con-
flicts removed
at earlier sta-
ges of design

Minimized im-
pact of disrup-
tions

Reduced cost
of mismatch

5 Conclusions

For CDSS, Collaborative Decision Support Systems to function effecti-
vely and to deliver high quality decisions over time, effective collabora-
tion support is essential ([19]). In this article, the contributing power
of CCT, the Collaborative Control Theory and its associated cyber
tools to augment collaboration ([38]) by multiple decision participants
are explored. Beyond traditional CSCW protocols and methods, that
address mostly human decision makers, CCT augmentation of colla-
boration incorporated multiple human decision makers and multiple
software and hardware agents, sensors, robots, and other automated
instruments.
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The design principles of CCT and their associated collaboration
protocols are discussed, with their specific contributions to solve and
alleviate risks and weaknesses common in collaboration for CDSS. The
CCT-based Co-Insight framework and Collaborative Intelligence (CI)
are presented as additional major components that can improve and
enable productive and effective CDSS.

Three case studies implementing CTT principles, protocols, and
Co-Insight are described based on recent research on the correlation
between CI and its impacts on decision process and decision quality.
According to these case studies and research results, the correlation
is positive, meaning that with greater levels of CI along time, better
decision processes and decisions quality can be gained. In addition,
this research has provided experimental methods that are available for
further research as follows.

While it can be intuitive that higher levels of collaboration and
higher levels of CI can lead to better performance based on better de-
cisions, it is still necessary to establish the limits and appropriate levels
that are optimal, or best in terms of cost and benefits. Specifically:

1. What are the best ways to create, foster, adaptively adjust, and
sustain collaboration processes and level of resulting CI throug-
hout the lifecycle of given decision support systems and the sys-
tems those decisions are meant to optimize?

2. It has been proven that optimal performance of the CDSS is ty-
pically attained with optimal but selective levels of collaboration
and of CI; what are the ways to simplify and optimize, not max-
imize those levels?

Future research in these directions is anticipated by the CDSS,
CSCW, and CCT communities. And already CDSS are implemented
and positively influencing large scale, connected enterprises and cyber
physical infrastructure and networks.
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Hyper-random Phenomena

Igor I. Gorban

Abstract

We give the survey of the researches dedicated to the statisti-
cal stability phenomenon and the physical-mathematical theory
of hyper-random phenomena that takes into account the viola-
tion of statistical stability. It is presented the study technique
of statistical stability, the results of the theoretical and experi-
mental investigations of statistical stability of various processes,
the mathematical apparatus of the theory of hyper-random phe-
nomena, the particularities of mathematical statistics of hyper-
random variables (including ones connected with the law of large
numbers and the central limit theorem), and the explanation why
the accuracy of actual measurements is limited. The description
is constructed on the comparison of the theory of hyper-random
phenomena with the probability theory.

Keywords: Phenomenon of statistical stability; Probability
theory; Theory of hyper-random phenomena; Physical process;
Violation of convergence.

1 Introduction

For description of mass physical phenomena in uncertainty conditions
different mathematical and physical-mathematical theories are used.

Between these two types’ theories there is essential difference: in
mathematical theories the physical entity is ignored and in physical-
mathematical ones it plays a key role. Subject matter of a mathematical
theory is abstract mathematical objects and subject matter of a physical-
mathematical theory is physical phenomena of the real physical world.

c©2017 by Igor I. Gorban
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Classical probability theory based on Kolmogorov’s axioms [1] is a
typical example of mathematical theory, the subject matter of which
is abstract probability space. Theories exploiting uncertainty approach

and approximate reasoning (in particular, imprecise probability theory

[2, 3], interval analyses [4], interval probability theory [5], robust Baye-
sian analysis [6, 7], probability box theory [8], robust Neyman-Pearson

theory [9], Huber’s robust statistics [10], etc.) are of mathematical type

too (Table 1).

Table 1. Theories describing mass physical phenomena in uncertainty
conditions

Mathematical

theories

Physical-

mathematical

theories

Probability

approach

Probability theory as
mathematical discipline

(A.N. Kolmogorov)

Probability theory as
physical discipline

(D. Hilbert)

Uncertainty

approach

Mathematical theories

based on approximate
reasoning

Physical-mathematical

theory of hyper-random

phenomena

Besides mathematical interpretation of the probability theory it is
known the alternative one, the follower of which was David Hilbert. He
and many other scientists regarded the probability theory as physical

discipline [11]. Although the physical approach is less popular now
among mathematicians but it is very popular among engineers and
physicists. The subject matter of the physical-mathematical probability
theory is statistical stability of actual mass phenomena.

The probability theory has the centuries-old development history.
During this time it has established itself as the most powerful tool
solving various statistical tasks. There is even opinion that any sta-
tistical problem can be effectively solved within the paradigm of the
probability theory. However, as it turned out, it is not so.

Some conclusions of the probability theory do not accord to the
experimental data. A typical example concerns the potential accuracy
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of measurement. If systematic error absents, according to the proba-
bility theory (Cramer–Rao inequality [12, 13]), with increasing of the
number of measurement results of any physical quantity the error of
the averaged estimator follows to zero. But every engineer or physi-
cist knows that the actual measurement accuracy is always limited and
to overcome the limit by the statistical averaging of the data is not
possible.

Study of the causes of discrepancies between the theory and practice
led to the understanding that the problem is related to the unjustified

idealization of the phenomenon of statistical stability.

The modern probability theory regarded as a physical-mathematical

one has mathematical and physical components [14]. The mathematical
component is based on the A.N. Kolmogorov’s classical axioms while
the physical component is based on physical hypotheses, in particular
the hypothesis of ideal (perfect) statistical stability of actual events,

variables, processes, and fields assuming the convergence of statistics

when the sample size goes to infinity.

The results of numerous experimental studies of various physical
quantities and processes over long observation intervals have shown
that the hypothesis of perfect statistical stability is not confirmed ex-

perimentally.

For relatively short temporal, spatial, or spatio-temporal observa-
tion intervals, an increase in data volume usually reduces the level of
fluctuation in the statistics. However, when the volumes become very
large, this tendency is no longer visible, and once a certain level is rea-
ched, the fluctuations remain practically unchanged or even grow. This
indicates a lack of convergence for real statistics (their inconsistency).

If the volume of processing data is small, the violation of the con-
vergence practically does not influence on the results, but if this volume
is large, the influence is very significant.

The study of violations of statistical stability of physical processes
and the development of an effective way for description of the actual
world with taking into account such violations has resulted in the con-
struction of the physical-mathematical theory of hyper-random pheno-

mena (Table 1).
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The subject matter of this theory as well as the physical-mathematical

probability theory is statistical stability of actual mass phenomena. The
scope of study of it is the violation of statistical stability among the
characteristics and parameters of real physical phenomena.

The theory of hyper-random phenomena consists of physical and
mathematical components. Mathematical component is based on the
Kolmogorov’s axioms and constructed on the scheme of the classical
probability theory. However it accumulates knowledge obtained in the
framework of a number of adjacent mathematical theories exploiting

approximate reasoning.

Physical component of the theory is based on the hypotheses
that essentially differ from the physical hypotheses of the physical-
mathematical probability theory, in particular, on the hypothesis of

limited statistical stability assuming the absence of convergence of ac-

tual statistics.

The theory of hyper-random phenomena began to develop at the
end of the XX century. Quite a few scientific works concerning this
theory are written. The publication list, in particular, includes eight
monographs [14–21], two of which [14, 21] are written in English.

The purpose of this survey article is to present main results concer-

ning modern investigation of the phenomenon of statistical stability and
to compare two approaches for its description proposed by probability

theory and theory of hyper-random phenomena.

In Sect. 2 we familiarize with the manifestations of the statistical
stability phenomenon and two physical hypotheses: perfect and imper-
fect statistical stability.

Sect. 3 is devoted to description of Hilbert’s sixth problem and its
solution in the part of statistical stability proposed by the probability
theory and the theory of hyper-random phenomena.

Sect. 4 presents the investigation technique of statistical stability
on infinite and finite observation intervals as well as the results of theo-
retical researches of statistical stability of stochastic processes and the
experimental investigations of statistical stability of actual processes of
various physical nature.

Sect. 5 familiarizes with the mathematical apparatus used in the
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theory of hyper-random phenomenon for description of real physical
events, quantities, processes, and fields in conditions of imperfect sta-
tistical stability. The mathematical apparatus is developed for hyper-
random events, scalar and vector hyper-random variables, scalar, vec-
tor, stationary, and ergodic hyper-random functions, hyper-random
differential equations, transformations of hyper-random variables and
functions. The special part is devoted to mathematical statistics of
hyper-random phenomena. We do not describe all these questions
(they are presented in detail, in particular, in the monographs [14,
16, 17]). To obtain general representation about the developed mat-
hematical approaches and main theoretical results we consider briefly
only the description of scalar hyper-random variables, the particula-
rities of mathematical statistics of hyper-random variables, notions of
generalized limit and convergence of sequences in the generalized sense,
generalized law of large numbers, and generalized central limit theorem.

Sect 6 concerns the engineering and practical questions. We des-
cribe here the classic determinate–random measurement model rested
upon the probability theory and the determinate–hyper-random one

based on the theory of hyper-random phenomena, compare these two
models, and present estimation results of potential measurement accu-

racy of physical quantities calculated with using these models.

Note, from the issues presented in the article a special place occupies
the questions concerning experimental research of violation of statisti-

cal stability of actual processes. The results of these investigations give
physical grounds for correct using in practice not only hyper-random
mathematical models but other mathematical models based on approx-

imate reasoning principles.

2 The Physical Phenomenon of Statistical Sta-

bility

2.1 Manifestation of the Phenomenon of Statistical Sta-

bility

The statistical stability is manifested in stability of relative frequency
of mass events. The first to draw attention to the phenomenon of
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statistical stability was the cloth merchant J. Graunt in 1662 [22]. In-
formation about research on statistical stability is fragmentary for the
period from the end of the XVII century to the end of the XIX cen-
tury, e.g., by J. Bernoulli, S.D. Poisson, I.J. Bienayme, A.A. Cournot,
L.A.J. Quetelet, J. Venn, etc. [23, 24].

Systematic study of statistical stability began at the end of the
XIX century. In 1879, the German statistician W. Lexis made the
first attempt to link the concept of statistical stability of the relative
frequency with the dispersion [23]. At the turn of the century and in
the early XX century, statistical stability was studied by C. Pearson,
A.A. Chuprov, L. von Bortkiewicz, A.A. Markov, R.E. von Mises, and
others [23, 24].

A lot of well known scientists led experimental investigations of the
statistical stability of relative frequency of mass events. It is known,
for example, that coin-tossing experiments were studied by P.S. de
Laplace, G.L.L. de Buffon, K. Pearson, R.P. Feynman, A. de Morgan,
W.S. Jevons, V.I. Romanovskiy, W. Feller, and others. At the first
glance, this quite a trivial task per se was not presented for them.

A new stage of experimental research began in the late XX cen-
tury. The necessity for additional studies is called due to the new ap-
plied tasks and the detection of a number of phenomena that can not
be satisfactorily explained and described within the framework of the
classical probability theory. The new tasks are, in particular, the ultra-
precise measurement of physical quantities and ultra-precise forecasting

of developments over large intervals of observation. To the relatively
new phenomena can be led, for instance, an unpredictable measurement
progressive (drift) error [25, 26], as well as a flicker noise [27], which is
detected everywhere and can not be suppressed by averaging the data.

The phenomenon of statistical stability is manifested also in the
stability of the average y(t) of the process x(t) and its sample mean

yn = 1
n

n
∑

i=1
xi, where x1, . . . , xn are discrete samples of the process x(t).

Interesting that this phenomenon occurs in case of averaging of the
fluctuations that are of different types, in particular, of the stochastic,
determinate, and actual physical processes.
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Example 1. In Fig. 1a and Fig. 1c a realization of noise with uni-
form power spectral density (white noise) and a determinate periodical
process are presented. In Fig. 1b and Fig. 1d the dependencies of the
according averages on the averaging interval are shown. As can be seen
from Fig. 1b and Fig. 1d, when the averaging interval increases, fluc-
tuations in the sample mean decrease and the average value gradually
stabilizes.

Figure 1. Realization of white Gaussian noise (a) and harmonic oscil-
lation (c), together with the dependencies of the corresponding sample
mean on the average interval (b, d)

Example 2. Fig. 2a and Fig. 2b show how the mains voltage
in a city fluctuates quickly, while the average changes slowly. As the
averaging interval increases from zero to one hour, the average voltage
stabilizes (Fig. 2b).

Figure 2. Dependence of the mains voltage (a) and the corresponding
average (b) on time over 1.8 hours
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The phenomenon of statistical stability is observed in calculation
of other statistics too, in particular, the sample standard deviation

zn =

√

1
n−1

n
∑

i=1
(xi − yn)

2 (n = 2, 3, . . .).

2.2 The Hypothesis of Ideal Statistical Stability

Taking into account the statistical stability of the relative frequency of
actual physical events and actual statistics it seems naturally to assume
that if the number of the test n infinitely increases, the fluctuation level
of the relative frequency pn(A) of any actual event A tends to zero, and
also that in the unlimited increasing of the sample size n (increasing
the observation time t) the fluctuation level of the sample mean yn of
any random or real physical oscillation x(t) follows to zero too.

In other words, it is possible to hypothesize that there is a conver-

gence of the sequence of the relative frequencies p1(A), p2(A), . . . of any
actual event A to some determinate value P (A) and there is a conver-

gence of the sequence of averages y1, y2, . . . of any stochastic or actual

process to determinate value m, viz. the limit of the relative frequency
lim
n→∞

pn(A) = P (A), and the limit of the average lim
n→∞

yn = m.

The modern probability theory is based on this hypothesis of ideal

(perfect) statistical stability or, in other words, on the assumption of

convergence of statistics.

The value P (A) is interpreted in practice as the probability of the
event A, and the value m is regarded as the expectation of the process
x(t).

2.3 The Hypothesis of Imperfect Statistical Stability

For many years it was believed that the hypothesis of perfect statistical

stability adequately reflects the reality. Although some scholars (even
the founder of axiomatic probability theory A.N. Kolmogorov [1, 28,
29] and such famous scientists as A.A. Markov [30], A.V. Skorokhod
[31], E. Borel [32], V.N. Tutubalin [33], and others) noticed that, in the

real world, this hypothesis is valid only with certain reservations.
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Pay attention, the convergence of the relative frequency and other
statistics is only a hypothesis. It does not follow from any experiments
and any logical inferences. Not all processes, even of oscillatory type,
have the property of perfect statistical stability.

Experimental studies of various processes of different physical na-
ture over broad observation intervals show that the hypothesis of per-
fect statistical stability is not confirmed. The real world is continuously
changing, and changes occur at all levels, including the statistical one.
Statistical assessments formed on the basis of relatively small observa-
tion intervals are relatively stable. Their stability is manifested through
a decrease in the fluctuation of statistical estimators when the volume
of statistical data grows. This creates an illusion of perfect statistical
stability. However, beyond a certain critical volume, the level of fluc-
tuations remains practically unchanged (and sometimes even grows)
when the amount of the data is increased. This indicates that the
statistical stability is not perfect.

Example 3. Non-perfect statistical stability is illustrated in Fig.
3 [14] which presents mains voltage fluctuations over 2.5 days. Note,
the fluctuation in Fig. 2a shows the beginning part of the fluctuation
presented in Fig 3a. As can be seen from Fig. 3b, the sample average
does not stabilize, even for very long averaging intervals.

Figure 3. Dependence of the mains voltage (a) and the corresponding
average (b) on time over 60 hours
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3 Hilbert’s Sixth Problem and Approaches for

Its Solving

3.1 Description of the Phenomenon of Statistical Stabi-

lity in the Framework of Probability Theory

Prior to the early twentieth century, probability theory was regarded as
a physical theory, which described the phenomenon of statistical stabi-
lity. Then at the beginning of the last century, the problem of axioma-
tizing probability theory was raised. In fact, David Hilbert formulated
this as part of the problem of axiomatizing physics (the Hilbert’s sixth
problem) [11].

Many famous scientists tried to solve the problem and various ap-
proaches were proposed. Today, the most widely recognized approach
is the set-theoretic one [1] developed by A.N. Kolmogorov in 1929 [34].
This approach has even been elevated to the rank of a standard [35].

The basic notion in Kolmogorov’s probability theory is the notion of
a random event. Random events are regarded as mathematical objects,
described by means of a probability space defined as a triad (Ω, ℑ, P ),
where Ω is the space of elementary events ω ∈ Ω, ℑ is a σ-algebra of

subsets of events (Borel field), and P is a probability measure on subsets

of events.

For any random event A the probability P (A) is defined by the
following three axioms:

1) the probability of any event A is a non-negative number, i.e.
P (A) ≥ 0;

2) for pairwise disjoint events A1, A2, ... (both finite and countable),
the probability of their union is the sum of the probabilities of the
events, i.e. P (∪

n
An) =

∑

n
P (An);

3) the probability of the event Ω is equal unity (i.e. P (Ω) = 1).

A random variable X is regarded as a measurable function defi-
ned on the space Ω of elementary random events ω, while a random

(stochastic) function X(t) is a function of an independent argument t,
whose value is a random variable when this argument is fixed.

A random phenomenon is understood as a mathematical object
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(a random event, random variable, or stochastic function), which is
exhaustively characterized by some specific probability distribution
law. In particular, a random event is described exhaustively by
the probability, a random variable X – by the distribution function

F (x) = P {X < x}, where P {X < x} is the probability of the ine-
quality X < x, and a scalar random function X(t) – by the distri-

bution function F (~x;~t) = P{X(t1) < x1, ...,X(tL) < xL}, where ~x =
(x1, ..., xL) is the L-dimensional vector of values of the function X(t) at
times t1, ..., tL represented by the L-dimensional vector ~t = (t1, ..., tL).

Note that a phenomenon or mathematical model, not described by

specific distribution law is not considered to be random. This is an
extremely important point that must be taken into account.

In probability theory, the probability of an event is a key concept.
Note that, in Kolmogorov’s definition, it is an abstract mathematical

concept. Using a more visual statistical definition due to R. von Mises
[36], the probability P (A) of a random event A is interpreted as a limit
of the relative frequency pN (A) of the event, when the experiments
are carried out under identical statistical conditions and the number
N of experiments tends to infinity. When N is small, the relative fre-
quency pN (A) can fluctuate greatly, but with increasing N , it gradually
stabilizes, and as N → ∞, it tends to a definite limit P (A).

All mathematical theories, including the version of probability the-
ory based on Kolmogorov’s axioms, are related to abstract mathemati-

cal concepts which are not associated with the actual physical world. In
practice, these theories can be successfully applied if we admit certain
physical hypotheses asserting the adequate description of real world
objects by relevant mathematical models. For probability theory, such
physical hypotheses are as follows [14]:

Hypothesis 1 For mass phenomena occurring in the real world,

the relative frequency of an event has the property of ideal (perfect)
statistical stability, i.e., when the sample volume increases, the relative

frequency converges to a constant value.

Hypothesis 2Mass phenomena are adequately described by random

models which are exhaustively characterized by distribution functions.

It is often assumed that the hypothesis of perfect statistical stability
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is valid for any physical mass phenomena. In other words, a stochastic

concept of world structure is accepted.

Kolmogorov’s axioms with added Hypotheses 1 and 2 solve Hilbert’s
sixth problem in the part of axiomatizing of the probability theory as
physical discipline.

3.2 Description of the Phenomenon of Statistical Stabi-

lity in the Framework of Theory of Hyper-random

Phenomena

In Sect. 2.3, attention was drawn to the fact that the experimental
study of real physical phenomena over broad observation intervals does
not confirm the hypothesis of perfect statistical stability (Hypothesis
1). For a correct application of the classical probability theory in this
case, it is sufficient in principle to replace Hypothesis 1 by the following:

Hypothesis 1’ For real mass phenomena, the relative frequency of

an event has the property of limited statistical stability, i.e., when the

sample volume increases, the relative frequency does not converge to a

constant value.

The replacement of Hypothesis 1 by Hypothesis 1’ leads to consi-
derable mathematical difficulties due to the violation of convergence.
There are different ways to overcome them. The development of one
of these led to the physical-mathematical theory of hyper-random phe-

nomena [14].

In classical probability theory, the basic mathematical entities are
random events, random variables, and random functions. In the the-
ory of hyper-random phenomena, the analogues of these basic entities
are hyper-random events, hyper-random variables, and hyper-random

functions, which are sets of non-interconnected random events, random
variables, and stochastic functions, respectively, each regarded as a
comprehensive whole.

A hyper-random event can be described by a tetrad (Ω,ℑ, G, Pg),
where Ω is a space of elementary events ω ∈ Ω, ℑ is a Borel field, G is
a set of conditions g ∈ G, and Pg is a probability measure on subsets of
events, depending on the condition g. Thus, the probability measure
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is defined for all subsets of events and all possible conditions g ∈ G.
Note that the measure for conditions g ∈ G is not determined.

Using a statistical approach, a hyper-random event A can be inter-
preted as an event whose relative frequency pN (A) is not stabilized by

growth of the number N , and which has no limit when N → ∞.
It is essential to understand that the hyper-random events, varia-

bles, and functions (hyper-random phenomena) aremany-valued objects

exhaustively characterized by the sets of non-interconnected probability

measures. Hence,

• a hyper-random event is described exhaustively by the collection

of probabilities;

• a hyper-random variableX = {Xg, g ∈ G} is described exhausti-
vely by the collection of conditional distribution functions F (x/g)
with conditions g ∈ G, forming the many-valued distribution

function F̃ (x) = {F (x/g), g ∈ G}1, where Xg = X/g is a
random variable subject to the condition g, and the set G can
be finite, countably infinite, or uncountable;

• a scalar hyper-random function X(t) = {Xg(t), g ∈ G} is des-
cribed exhaustively by the collection of conditional multidi-

mensional distribution functions F (~x;~t/g) with conditions g ∈
G, forming the many-valued distribution function F̃ (~x;~t) =
{

F (~x;~t/g), g ∈ G
}

, where Xg(t) = X(t)/g is a random function
subject to the condition g.

For correct use of the theory of hyper-random phenomena, one must
also adopt the following hypothesis, in addition to Hypothesis 1’.

Hypothesis 2’Mass phenomena are adequately described by hyper-

random models which are exhaustively characterized by the sets of dis-

tribution functions.

The assumption that these hypotheses are valid for a wide range
of mass phenomena leads to a world-building concept based on hyper-

random principles.

1A tilde under a letter indicates that the object described by the letter is many-

valued.
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So the mathematical part of the theory of hyper-random phenomena

is based on the classical axioms of probability theory, and the physical

part – on Hypotheses 1’ and 2’.

Note, in contrast to the classical Kolmogorov’s mathematical pro-
bability theory, the theory of hyper-random phenomena is physical-

mathematical one. Its subject matter is phenomenon of statistical
stability and the scope of research is adequate description of it by
hyper-random models (hyper-random phenomena) taking into account
the violation of statistical stability.

Since the mathematical part of the theory of hyper-random pheno-
mena uses the system of mathematical axioms of probability theory,
from the mathematical standpoint it is a branch of classical probabi-
lity theory. But from the physical point of view, the theory of hyper-
random phenomena is a new physical theory based on new physical
hypotheses.

In general, the theory of hyper-random phenomena can be regarded
as a new physical-mathematical theory constituting a complete solution

of Hilbert’s sixth problem in the context of statistical stability.

4 The Investigation of the Statistical Stability

Violation

4.1 Formalization of the Statistical Stability Concept

Curiously enough is that the concept of statistical stability was not
formalized until recent time. First of all note, a data statistically stable
with respect to some statistics can be unstable with respect to other
statistics. This means that the statistical stability is an attribute not
only of a data, but also of the statistics. In addition, the level of
statistical stability depends on the number of the data and on the
sequence of this data.

It was proposed the number of parameters characterizing statistical
stability violation. For the random sequence X1, . . . ,XN most useful
are parameters of statistical instability with respect to the average γN
and respect to the sample standard deviation ΓN described by the fol-
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lowing expressions: γN = E
[

D̄YN

]/

E
[

D̄XN

]

, ΓN = E[D̄ZN
]
/

E[D̄XN
],

where D̄YN
= 1

N−1

N
∑

n=1
(Yn − m̄YN

)2 is the sample variance of the fluctu-

ations in the average Yn = 1
n

n
∑

i=1
Xi (n = 1, N ), m̄YN

= 1
N

N
∑

n=1
Yn is the

sample mean of the average fluctuations, D̄ZN
= 1

N−2

N
∑

n=2
(Zn − m̄ZN

)2

is the sample variance of the fluctuations in the sample standard devi-

ation Zn =

√

1
n−1

n
∑

i=1
(Xi − Yn)

2 (n = 2, N ), m̄ZN
= 1

N−1

N
∑

n=2
Zn is the

average of the sample standard deviations, D̄XN
= 1

N−1

N
∑

n=1
(Xi − YN )2

is the sample variance of the initial sequence.

The actual range of the parameters γN , ΓN is [0,∞). The smaller
the values of the parameters γN and ΓN the more stable the sequence
with respect to average and standard deviation respectively. Small
values for large sample sizes N point to high statistical stability of the
sequence, and large values point to statistical instability.

Random samples, for which the parameters of statistical instability

γN and ΓN do not follow to zero, are considered to be statistically

unstable with respect to the average and standard deviation respectively.

Any measurement procedure consists in the comparison of the mea-
surement result with some unit. For quantitative characterizing of the
degree of instability, the measurement units are requested, the compa-
rison with which would allow judging about the degree of instability
in respect to the average and standard deviation. As the role of the
measurement unit, a variable γ0N can play, that is the parameter γN
calculated for the standard statistically stable sequence of uncorrelated

samples of white Gaussian noise.

The absolute level of statistical instability with respect to the
average and standard deviation in units γ0N characterize the parame-
ters of the statistical instability hN and HN described by the following
expressions: hN = γN/γ0N , HN = ΓN/γ0N . The actual range of the-
ses parameter is [0,∞). The measurement unit of them is the number
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h0N = 1 that does not depend on the sample size.

For solving of the practical tasks it is usually not important the
behavior of statistics on the infinite observation interval, though it is
laid in the basis for a formal definition of statistical stability. More
important the behavior of statistics on the actual observation interval :
the presence or absence of the trends indicating a violation of statistical
stability. If on the observation interval these trends are not tracing,

the process can be considered as statistically stable, but otherwise as

statistically unstable.

Various statistics and processes, as a rule, have different statistical
stability intervals. The concepts of the interval of statistical stability
with respect to the average τsm and of the interval of statistical stability
with respect to the standard deviation τsd can be formalized by the
statistical stability borders of the confidence intervals.

For the parameters of the statistical instability γN and ΓN the
statistical stability upper border of the confidence interval is given by
γ+0N = γ0N+εσγ∗

0N
, where ε is the confidence parameter that determines

the width of the confidence interval and σγ∗

0N
is the standard deviation

of the variable γ∗0N = D̄YN
/E[D̄XN

] calculated for standard statistically
stable sequence.

The criteria of statistical stability violation with respect to the

average and with respect to the standard deviation (that determine the
amounts of the intervals of statistical stability τsm and τsd) can be that
the parameters γN and ΓN go beyond the border γ+0N or the parameters
hN and HN go beyond the border h+0N = γ+0N/γ0N .

In practical work, due to the limited amount of data, instead of the
parameters of statistical instability γN , hN and ΓN , HN , we have to
admit using of the appropriate estimates γ∗N , h∗N and Γ∗

N , H∗

N .

4.2 The Statistical Stability of Stochastic Processes

4.2.1 Dependence of the Statistical Stability on the Process’s

Spectrum

Studies show that the statistical stability of a stochastic sequence (pro-
cess) with respect to the average and standard deviation is determined
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by its spectrum.

In particular, for the sequence X1, . . . ,XN with zero expectation
and power spectral density SxN

(k) the parameter of statistical instabi-

lity with respect to the average γN when N → ∞ is described by the
following asymptotic formula:

γN =

N/2
∑

k=2

1
(k−1)2

[

π2

4 + (C + ln(2π(k − 1)))2
]

SxN
(k)

4π2
N/2
∑

k=2

SxN
(k)

,

where k is the spectral sample number (k = 1, N ), C is the Euler–

Mascheroni constant (C ≈ 0.577216).

4.2.2 Stochastic Processes Whose Spectrum is Described by

a Power Function

In many cases, actual noise is well approximated by random processes
whose power spectral density is described by a power function 1/fβ for
various values of the shape parameter β, where f is frequency. Such
noise sometimes is called a color noise. One thus speaks of violet, blue
(cyan), white, pink, brown (red), and black noise that corresponds to
β = −2,−1, 0, 1, 2, and > 2.

Flicker noise and fractal (self-similar) processes are other exam-
ples of the processes with power spectral density described by power
functions.

Taking into account the prevalence of the processes with power
spectral density described by a power function the research of their
statistical stability was carried out.

Studies show that the process with power spectral density described

by a power function is statistically stable with respect to the average and

with respect to standard deviation if β < 1 and statistically unstable if

β ≥ 1.

Since the state of statistical stability of the process changes at the
point β = 1, the process with this particular parameter value can
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be regarded as a limiting unstable process with respect to average and

standard deviation (limiting unstable in broad sense).

Investigations show that if β ≤ 0, the process is more stable

with respect to the average, than with respect to the standard deviation

(γN < ΓN ), and if β > 0, on the contrary, it is less stable (γN > ΓN ).

Summarizing these results it is possible to mark the following (see
Fig. 4):

Figure 4. Processes with power spectral density described by a power
function

- statistically stable with respect to the average and standard devia-

tion (stable in the broad sense) are stationary processes, a part of
the non-stationary processes, the so called fractal Gaussian noise,
a part of the flicker noise, as well as violet, blue, and white noise;

- statistically unstable with respect to the average and standard

deviation (unstable in the broad sense) are a part of the non-
stationary processes, a part of the flicker noise, as well as pink,
brown, and black noise.
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4.2.3 Dependence of Statistical Stability on Other Process’s

Particularities

Investigation of dependence of statistical stability of the processes on
the correlation of the samples shows that a positive correlation between
the samples leads to a decrease in the statistical stability, and a negative
correlation, to an increase.

Studies show [18] that violations of statistical stability occur not
only in the case of low-frequency processes, but also for narrowband

stochastic processes too.

Not only the non-stationary but stationary in a narrow sense sto-
chastic processes can be statistically unstable in a broad sense. The
statistically unstable processes, for example, are stationary stochastic
processes, cut sets of which are described by distributions that do not
have any moments or do not have moments higher than of the first or-
der (processes described by Cauchy, Pareto, Fischer–Snedecor, Frechet,
and et al. distributions).

Violation of statistical stability can have many causes. These in-
clude the inflow into an open system of matter, energy, and (or) infor-
mation feeding non-equilibrium processes, various nonlinear transfor-

mations, low-frequency linear filtering of special type, etc. It is shown
that, as the result of low-frequency filtration, broadband stationary
and statistically stable noise can be transformed into a statistically
unstable process.

4.3 The Results of Experimental Investigations of the

Statistical Stability of Actual Processes of Various

Physical Nature

To find out whether the actual processes are statistically stable or not,
and if they are unstable, on the whole, but at what observation interval
they can be considered as stable ones, various actual physical processes
were studied over long observation intervals.

For instance, it is investigated the supply-line voltage. The active
(effective) voltages were recorded in the computer memory and then
analyzed. Recording sessions were conducted over two months, with
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Figure 5. Variations in the estimate γ∗N of the statistical instability
parameter during a 60-hour observation of the mains voltage in four
sessions

breaks of a few days. The duration of each session was about 60 hours.
One of such records is presented in Fig. 3a. The estimates of the sta-
tistical instability parameter γ∗N with respect to the average calculated
for four sessions are shown in Fig. 5.

It follows from the figure that, for long observation times, the in-
stability parameter does not show any tendency to fall to zero. Con-
sequently, the mains voltage is statistically unstable. The statistical

stability interval with respect to average τsm of the mains voltage is

approximately an hour.

In the same mane it has been investigated statistical stability of a
lot of various processes, in particular the Earth’s magnetic field, the
height and period of waves on the surface of the sea, the temperature
and speed of sound in the ocean, the air temperature and atmospheric
precipitation in different cities, exchange rates, the X-ray intensity of
astrophysical objects, etc. [14, 17]. It has been found that all the
processes have limited interval of statistical stability. Table 2 presents
the estimation result of these intervals for some real processes.
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All these estimates, except for the one in row 9, relate to statistical
stability with respect to the average. The estimate in row 9 corresponds
to statistical stability with respect to the standard deviation.

Table 2. Estimates of the statistical stability intervals for various real
processes

No Real process Estimate of the statisti-
cal stability interval τs

1 Oscillations in the mains voltage About 1 h

2 Currency rate oscillations About 1 h

3 Height and period of sea surface wa-
ves

About half a day

4 Temperature and sound speed vari-
ations in the ocean

Ten hours

5 Radiation oscillations of astrophysi-
cal source Cygnus X-1

About a week

6 Variations of air temperature Several weeks

7 Radiation oscillations of astrophysi-
cal source GRS 1915+105

About a month

8 Narrowband fluctuations of water
temperature in the ocean with an
average period from 2 to 10 hours

Several weeks

9 Radiation oscillations of pulsar PSR
J1012+5307

Several months

10 Fluctuations in the wind speed in
Chernobyl

Several months

11 Earth’s magnetic field variations Several months

12 Precipitation fluctuations Many tens of years

It is important to note that all the processes, taken intentionally
from different fields of knowledge, are statistically unstable. This al-
lows us to suggest the following hypothesis: all real physical pheno-

mena are statistically unstable. This physical hypothesis becomes the
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foundation for constructing of the mathematical part of the theory of
hyper-random phenomena.

Note, the violation of statistical stability in the real world means
that the probability concept has no physical interpretation [14, 17]. Pro-

bability is thus a mathematical abstraction.

5 The Mathematical Apparatus of the Theory

of Hyper-random Phenomena

5.1 Scalar Hyper-random Variables

5.1.1 Conditional Characteristics

To describe the hyper-random variable X = {Xg, g ∈ G}, we use vari-
ous probabilistic characteristics of the conditional random variables Xg

(g ∈ G) such as the conditional distribution functions (Fig. 6) Fx/g(x)

and the conditional probability density functions2 fx/g(x) =
dFx/g(x)

dx
.

Figure 6. A set of conditional distribution functions Fx/g(x) (thin lines)
and the bounds of the distribution function FSx(x), FIx(x) (bold lines)
of the hyper-random variable X

The most complete description of the hyper-random variable X
gives its many-valued distribution function F̃x(x) = {Fx/g(x), g ∈ G}.

2It is assumed here and below that all the above distribution functions are con-

tinuous or piecewise continuous.
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A less complete description supplies the conditional crude and
central moments of the hyper-random variable X (conditional mo-

ments), in particular, the conditional expectation mx/g = E[Xg] =
∞
∫

−∞

x fx/g(x) dx, the conditional variances Dx/g = E[(Xg − mx/g)
2],

the conditional standard deviations σx/g =
√

Dx/g, and others.

In this interpretation, the expectation, variance, and standard de-

viation of the hyper-random variable X are many-valued values, which
is analytically described as follows: m̃x = {mx/g, g ∈ G}, D̃x =
{Dx/g, g ∈ G}, σ̃x = {σx/g, g ∈ G}.

The scalar hyper-random variables X1 and X2 described by the
respectively distribution functions F̃x1

(x) = {Fx1/g(x), g ∈ G} and

F̃x2
(x) = {Fx2/g(x), g ∈ G} are said to be equal in all conditions, if

under all conditions g ∈ G for the same g their conditional distribution
functions coincide: Fx1/g(x) = Fx2/g(x).

5.1.2 Bounds of the Distribution Function and Their Mo-

ments

A general view of the hyper-random variable X is given by the
bounds of the distribution function FSx(x) = sup

g∈G
Fx/g(x), FIx(x) =

inf
g∈G

Fx/g(x) that are respectively the upper and lower bounds of proba-

bility that X < x (see Fig. 6).

These bounds can be considered as the distribution functions of some

virtual random variables. Between these bounds there is the uncer-

tainty area (shaded area in Fig. 6).

The analogues of the probability density function of the random

variable are the probability densities functions of the bounds, viz.

fSx(x) =
dFSx(x)

dx
, fIx(x) =

dFIx(x)

dx
.

To describe a hyper-random variable, we may use the moments of

the bounds, in particular, the expectations, variances, and standard
deviations of the bounds, and so on.

The expectations of the bounds mSx, mIx of the hyper-random va-

riable X are described by the formulas mSx = ES [X] =
∞
∫

−∞

xfSx(x)dx,
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mIx = EI [X] =
∞
∫

−∞

xfIx(x)dx (see Fig. 6).

For a real hyper-random variable X the variances of the bounds

DSx, DIx are defined by DSx = ES

[

(X −mSx)
2
]

, DIx = EI [(X−
mIx)

2
]

, and the standard deviations of bounds – by σSx =
√
DSx, σIx =√

DIx.

The scalar hyper-random variables X1 and X2 described by the
distribution functions F̃x1

(x) and F̃x2
(x) respectively, are said to be

equal if their upper and lower bounds of the distribution coincide:
FSx1

(x) = FSx2
(x), FIx1

(x) = FIx2
(x).

5.1.3 Bounds of the Moments

The bounds of the moments give a general view of the hyper-random
variable X.

The upper and lower bounds of the expectation of the hyper-random

variable X are the values msx= Es[X] = sup
g∈G

mx/g, mix= Ei[X] =

inf
g∈G

mx/g (see Fig. 6).

The upper and lower bounds of the variance of the hyper-random

variable X are the values Dsx= sup
g∈G

Dx/g, Dix= inf
g∈G

Dx/g. The roots

σsx=
√
Dsx, σix=

√
Dix of these values are the bounds of the standard

deviation.

In general, the operators Es[·], Ei[·] do not coincide with the opera-
tors ES [·], EI [·], and the bounds of the expectation and variance msx,
mix, Dsx, Dix do not coincide with the expectations and variances of
the bounds mSx, mIx, DSx, DIx.

5.2 Particularities of Statistics of Hyper-random Varia-

bles

5.2.1 A Hyper-random Sample

The concepts of mathematical statistics of the theory of hyper-random
phenomena are based on the concepts of mathematical statistics of the
probability theory.
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The entire assembly (general population) of the hyper-random vari-

able X = {Xg, g ∈ G} is the infinite set of all its determinate realiza-

tions (sample elements or components) observed under all conditions

g ∈ G. This set can be either countable or uncountable.
It implies from this definition that the general population of the

hyper-random variable X is the union of the populations of all its
random components Xg, g ∈ G.

The general population can be described by the many-valued dis-

tribution function F̃x(x) of the hyper-random variable X, the set of
conditional distribution functions Fx/g(x) (g ∈ G), the upper and lo-
wer bounds of the distribution function FSx(x), FIx(x), the moments
of the bounds, the bounds of the moments, and other characteristics.

A set of members of the general population

~x = (x1, ..., xN ) = {x1g, . . . , xNg, g ∈ G} = {~xg, g ∈ G}

of the hyper-random variable X obtained for a finite number N of
experiments in different fixed or non-fixed conditions g ∈ G is called
the sample of the population, and its elements x1, ..., xN or x1g, . . . , xNg

are called the sampling values or realizations.
Without specifying a condition g each sampling value xn (n = 1, N)

is a set of determinate values (set of numbers), and with specifying the
condition g each sampling value xng is a determinate value (number).

Ones believe that the sample x1, . . . , xN belongs to the hyper-
random variable X = {Xg, g ∈ G} described by the conditional dis-
tribution functions Fx/g(x), g ∈ G if it is obtained from the general
population described under condition g by the distribution function
Fx/g(x).

Infinite set of the samples ~x = (x1, ..., xN ) of a volume N taken
from a general population without specifying of a condition g forms
N -dimensional hyper-random vector

~X = (X1, ...,XN ) = {X1g, . . . ,XNg, g ∈ G} =
{

~Xg, g ∈ G
}

,

called hyper-random sample and the infinite set of samples ~xg =
(x1g, . . . , xNg) of the volume N taken from this general population un-
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der condition g forms N -dimensional random vector (random sample)
~Xg = (X1g, . . . ,XNg).

Generally one believes that all elements of hyper-random vector are
described by the same many-valued distribution function F̃x(x) and
each component Xng (n = 1, N) of the random vector ~Xg correspon-
ding to the specific condition g is described by the same single-valued
distribution function Fx/g(x) (or probability density function fx/g(x)).

Ones usually assume that the components Xn of the hyper-random
sample ~X are mutually independent under all conditions. Then the
conditional distribution function F~x/~g(~x) of the hyper-random sample

~X under conditions g ∈ G factorizes: F~x/g(~x) =
N
∏

n=1
Fx/g(xn).

In the theory of hyper-random phenomena a statistics is any

function of the hyper-random sample ~X , random sample ~Xg under
a fixed condition g ∈ G, determinate many-valued sample ~x or deter-

minate single-valued sample ~xg under a fixed condition g ∈ G.

5.2.2 Evaluations of Characteristics and Parameters of a

Hyper-random Variable

Using the general population of a hyper-random variable theoretically
it is possible to calculate various its exact determinate characteristics

and parameters, such as the conditional distribution functions Fx/g(x),
bounds of distribution function FSx(x), FIx(x), conditional expecta-
tions mx/g, expectations of bounds mSx, mIx, bounds of expectation
msx, mix, conditional variances Dx/g, variances of bound DSx, DIx,
bounds of variance Dsx, Dix, and so on.

Using certain statistics of realizations of the hyper-random variable
it is possible to calculate approximate evaluations of the same charac-
teristics and parameters, in particular the evaluations of conditional
distribution functions F ∗

x/g(x), bounds of distribution function F ∗

Sx(x),

F ∗

Ix(x), conditional expectations m∗

x/g, expectations of bounds m∗

Sx,
m∗

Ix, bounds of expectation m∗

sx, m
∗

ix, conditional variances D∗

x/g, va-
riances of bound D∗

Sx, D
∗

Ix, bounds of variance D∗

Sx, D
∗

Ix, and so on.

If the sample is hyper-random, then the evaluations are the hyper-
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random estimators, if it is determinate, then the evaluations are deter-

minate estimates.

The estimates can be made in several steps. First, samples
x1g, . . . , xNg are formed separately for each condition g ∈ G. Using
samples ~xg = (x1g, . . . , xNg) for all g ∈ G, one then calculates the
conditional characteristic and parameter estimates, in particular, esti-
mates of the conditional distribution functions F ∗

x/g(x), estimates of the
conditional expectations m∗

x/g, estimates of the conditional variances
D∗

x/g, and others.

From the conditional distribution functions F ∗

x/g(x) for all g ∈
G, one can calculate estimates of the distribution function bounds:
F ∗

Sx(x) = sup
g∈G

F ∗

x/g(x), F
∗

Ix(x) = inf
g∈G

F ∗

x/g(x), and estimates of the pa-

rameters describing these bounds: estimates m∗

Sx, m
∗

Ix of the expecta-
tions of the bounds, estimates D∗

Sx, D
∗

Ix of the variances of the bounds,
and so forth.

Using estimates of the conditional variables, one can calculate esti-
mates of the corresponding variable bounds, for example, estimates of
the expectation bounds m∗

sx = sup
g∈G

m∗

x/g, m
∗

ix = inf
g∈G

m∗

x/g, estimates of

the variance bounds D∗

sx = sup
g∈G

D∗

x/g, D∗

ix = inf
g∈G

D∗

x/g, etc.

When applying this technique, certain difficulties can be expected in

the first stage, when the samples ~xg for all g ∈ G are formed, because
at first glance, it is difficult to control and maintain the conditions g.
The situation is facilitated by the facts that a lot of actual samples
are possessed of ergodic property and the calculation of a number of
characteristics do not require information about the specific conditions

under which the conditional characteristics have been obtained.

Most important that, in the sample formation phase, all possible
conditions g of the set G are represented, and for every fixed condition
g in the sample ~xg, only the data corresponding to this condition g is

used.

Typically, for actual phenomena occurring in the real world, in the
case of a broad observation interval, the latter requirement can be easily
provided, because, although the conditions often vary continuously,
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they vary sufficiently slowly, and it is possible to evaluate the maximum
number of elements Ns for which the conditions can be treated as
practically constant.

Therefore one can collect data on a broad observation interval (that
is essentially larger than Ns) without taking care about what the statis-
tical conditions are at any given time and in what way they alternate,
and then one can separate the resulting data into a number of fragments
containing Ns consistent elements. Using these fragments, which re-
present the variable under different statistical conditions g, one can
then calculate the required estimates. The main requirement for this
technique is to collect the data for all possible observation conditions
in G.

Of course a number of questions arise. What are the conditions
under which the hyper-random evaluations converge to the exact cha-
racteristics and parameters? What are types of these parameters and
characteristics? What are their distribution laws? The generalized

law of large numbers and the generalized central limit theorem help to
obtain answer to these and other questions.

To understand this material, one should be familiar with some mat-
hematical concepts, such as the generalized limit and the convergence

of sequences in the generalized sense.

5.3 Generalized Limit and the Convergence of Sequen-

ces in the Generalized Sense
5.3.1 Generalized Limit

According to classical concepts, the numerical sequence x1, x2, ..., xn is
considered as a convergent sequence if there is a limit a = lim

n→∞

xn. If

the limit exists, then it is unique. The sequence which has not the limit
is considered as a divergent sequence.

From every infinite sequence one can form the set of partial se-

quences (subsequences) derived from the original sequence by discar-
ding part of its members, while maintaining the order of the remaining

members.

It is proved that when the sequence converges, all its partial sequen-
ces converge too. If the sequence diverges, then all its partial sequences
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do not necessary diverge. Some of them can converge to certain limits
(limit points). The set of all limit points am, m = 1, 2, . . . of the se-
quence x1, x2, ..., xn also called partial limits, form the spectrum of limit

points S̃x.

The spectrum of limit points S̃x is a generalization of the limit con-
cept on any sequence, including divergent. If the sequence converges,
the spectrum of the limit points consists of a single element (number),
and if it is divergent, it consists of a set of numbers. The spectrum of
limit points can be described by the expression S̃x = LIM

n→∞

xn, where,

unlike the conventional limit lim
n→∞

the symbol of the generalized limit

LIM
n→∞

is used.

This expression can be interpreted as the convergence of the se-

quence to the spectrum of limit points. The spectrum may be discrete,
continuous, or mixed (discrete-continuous). If the spectrum forms a
continuous interval, they say that the sequence converges to the inter-

val.

A divergent sequence can be characterized by not only the spectrum
of limit points, but also by a set (in general) of the measures descri-
bed by the many-valued (in general) distribution function of the limit

points F̃x(x) = LIM
n→∞

mn(x)
n , where mn(x) is the number of terms of the

sequence x1, x2, ..., xn that are less than x.

If the sequence converges in the usual sense to the number a, the
distribution function of limit points is described by the unique distri-
bution function Fx(x) in the form of a unit step function at the point
a (Fig. 7a) (then the measure equals to one at the point a and zero at
all other points).

If the sequence diverges (converges to the set of numbers (in the
particular case converges to the interval)), the distribution function is
either a single-valued non-decreasing function Fx(x) that differs from
the unit step function (Fig. 7b), or a many-valued function F̃x(x) (Fig.
7c). Note that the special case of hyper-random variable is the interval

variable, the distribution function of which is described by a rectangle
of unit height (Fig. 7d).

Using the terminology of the theory of hyper-random phenomena,
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Figure 7. Single-valued Fx(x) (a, b) and many-valued F̃x(x) (c, d) dis-
tribution functions of the limit points and their bounds FIx(x), FSx(x)
for sequences converge to the number a (a) and to the interval [ai, as]
(b–d)

we can say that the spectrum of the limit points of a numerical sequence

can be

• a number (interpreted by the set of real numbers with the unit
measure at the point x = a and zero measure at all other points)
(Fig. 7a),

• a random variable (Fig. 7b),

• a hyper-random variable (Fig. 7c) (in the degenerated case an
interval variable (Fig. 7d)).

In other words, the numerical sequence may converge to a number

or to a set of numbers (in the particular case to an interval). If it
converges to a set of numbers, the spectrum of limit points may be
either a random variable or a hyper-random variable.
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5.3.2 Convergence of Sequences of Hyper-random Variables

in the Generalized Sense

By analogy with the convergence of a sequence of random variables,
in the theory of hyper-random phenomena the concept of convergence
(in generalized sense) of a sequence of hyper-random variables is intro-
duced. There is convergence in distribution function, in mean-square,

almost surely (with probability one), and in probability (in some mea-

sure).

Consider the convergence of the sequence in the generalized sense
in probability and in distribution function.

Suppose we have a sequence of hyper-random variables X =
{X1, ...,XN} and a hyper-random variable X, where Xn = {Xng, g ∈
G} (n = 1, N ) and X = {Xg, g ∈ G}. For all X1, ...,XN and X, there
are distribution functions F̃x1

(x) = {Fx1/g(x), g ∈ G}, . . . , F̃xN
(x) =

{FxN /g(x), g ∈ G} and F̃x(x) = {Fx/g(x), g ∈ G}.
Then the sequence of hyper-random variables X converges in

the generalized sense to the hyper-random variable X in probability

(P (|XN −X | > ε) → 0) if for all conditions g ∈ G and ε > 0, when
N → ∞, P (|XNg −Xg| > ε) → 0, i.e., for all g ∈ G, the random
sequence X1g, ...,XNg converges in probability to the random variable
Xg.

The sequence of hyper-random variables X converges in the genera-

lized sense to the hyper-random variable X in distribution (F̃xN
(x) →

F̃x(x)) if for each point x, where Fx/g(x) is continues, for all conditions
g ∈ G, when N → ∞, FxN/g(x) → Fx/g(x).

As in the case of the sequences of random variables, convergence in
distribution is weaker than convergence in probability, i.e. the sequence
of hyper-random variables that converges in probability converges in
distribution too. The converse is not always true.

It follows from the definitions that, as well as a numerical sequence,
the hyper-random sequence can converge to a number (determinate
variable, the distribution function of which is a unit step function), to
a random variable or to a hyper-random variable. It is obvious that a
random sequence can also converge to a number, to a random variable
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or to a hyper-random variable.

5.4 Generalized Law of Large Numbers

Several variants of the law of large numbers for random sequences are
known. Let us dwell on one of them formulated and proved by P.L.
Chebyshev in 1867.

Chebyshev theorem. Let X1, . . . ,XN be a sequence of pair-
wise independent random variables with expectations m1, . . . ,mN and
bounded variances. Then, when the sample size N goes to infinity,

the average m∗

xN = 1
N

N
∑

n=1
Xn of the sample values X1, . . . ,XN tends

in probability to the average mxN = 1
N

N
∑

n=1
mxn of the expectations

m1, . . . ,mN : lim
N→∞

P {|m∗

xN −mxN | > ε} = 0.

In typical for the probability theory interpretation the law of large
numbers consists in that the average m∗

xN converges in probability to
some number mx that is a conventional limit of the average mxN of the
expectations mx1

, . . . ,mxN
.

The analysis of the proof of this assertion (which we will not pre-
sent herein) shows that in the proof it is not applied the assumption

that the average m∗

xN of the random samples and the average mxN

of the expectations have the conventional limits. This means that the
sequences {m∗

xN} = m∗

x1, . . . ,m
∗

xN and {mxN} = mx1, . . . ,mxN may

not have limits in the conventional sense, i.e. the sequences may be

divergent.

But if they do not converge in the conventional sense, they can con-

verge in the generalized sense to the many-valued variables: to random
or hyper-random ones.

Hereafter, following the above mentioned agreement concerning de-
signations of single-valued and many-valued variables and functions,
the single-valued limits of the sequences {m∗

xN} and {mxN} we shall
denote by m∗

x and mx, and a many-valued ones by the same manner
but with tilde above: m̃∗

x and m̃x.

Whether the considered limits are single-valued or many-valued, ac-
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cording to the law of large numbers, when the sample size N increases,
the sample mean m∗

xN gradually approaches the average of the expec-

tations mxN .

When N → ∞, there are two possibilities:

Case 1 The variable m∗

xN converges to the single-valued average
of the expectations mx (number).

Case 2 The variable m∗

xN , becoming a many-valued variable m̃∗

x in
the limit, converges in the general sense to a many-valued variable m̃x.

Case 1 is the idealized case considered in probability theory. In this
case, the limit mx of the average of the expectations is described by
the distribution function Fmx(x), which is a unit step function at the
point mx. The distribution function Fm∗

xN
(x) of the sample mean m∗

xN

tends to it when N → ∞ (see Fig. 8a).

Case 2 is more realistic. Here the limit sample mean m̃∗

x and the
limit average of the expectations m̃x are described respectively by the
many-valued spectra S̃m∗

x
and S̃mx . In this case there may be two

variants:

Case 2.1 The limit of the sample mean m̃∗

x and the limit of the
average expectations m̃x are variables of random type. Then the spectra
S̃m∗

x
and S̃mx are characterized by the single-valued distribution functi-

ons Fm∗

x
(x) and Fmx(x) (see Fig. 8 b).

Case 2.2 The limit of the sample mean m̃∗

x and the limit of the
average expectations m̃x are variables of hyper-random type. Then the
spectra S̃m∗

x
and S̃mx are characterized by the many-valued distribution

functions F̃m∗

x
(x) and F̃mx(x) (see Fig. 8c).

Since the convergence in distribution of a sequence of random va-

riables is weaker than the convergence in probability, in Case 2.1, the
limit distribution function Fm∗

x
(x) coincides with the limit distribution

function Fmx(x).

For hyper-random variables, convergence of the sequence in dis-

tribution is also weaker than convergence in probability. Therefore, in
Case 2.2, the limit distribution function F̃m∗

x
(x) coincides with the limit

distribution function F̃mx(x). In this case, the lower bound FIm∗

x
(x) of

the limit distribution function F̃m∗

x
(x) coincides with the lower bound

FImx(x) of the limit distribution function F̃mx(x), and the upper bound
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Figure 8. Formation of the limit distribution function F̃m∗

x
(x) of the

sample mean in the case of a random sequence: the limit sample mean
and the limit average of expectations are a number (a), a random
variable (b), and a hyper-random variable (c, d) (c is the general case
and d is a special case)

FSm∗

x
(x) of the limit distribution function F̃m∗

x
(x) coincides with the

upper bound FSmx(x) of the limit distribution function F̃mx(x).

The uncertainty area located between the specified bounds is shown
in Fig. 8c by the shaded area. It is proved that, if the distribution
function describing the spectrum of the sequence of averages of de-
terminate values is many-valued, then the corresponding uncertainty
area is continuous. So the uncertainty area of the distribution function

F̃mx(x) is continuous.

The interval in which the sample mean m∗

xN fluctuates when
N → ∞ is described by the lower bound m∗

ix when the function
FSm∗

x
(x) begins to rise from zero and the upper bound m∗

sx when the
function FIm∗

x
(x) reaches unity. Naturally, these bounds coincide with

the corresponding bounds mix, msx of the functions FSmx(x), FImx(x):
m∗

ix = mix, m
∗

sx = msx. These bounds can be either finite or infinite.

Note that Case 2.2 includes the special case when the limit sample
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mean m̃∗

x and the limit average of the expectations m̃x are of interval
type (Fig. 8d).

Systematizing the results of the present section, we may note that
the sample mean m∗

xN of a random sample can converge to a number

mx (finite or infinite) or fluctuate within a certain interval [mix,msx].

In the latter case, we shall say that there is convergence of the sam-

ple mean to the interval. Theoretically the limit of the sample mean m̃∗

x

and the limit average of the expectations m̃x can be numbers, random
variables, intervals, or hyper-random variables. The spectra S̃m∗

x
and

S̃mx can be numbers or intervals. The limit distribution functions
Fm∗

x
(x) and Fmx(x) can be of unit step type, single-valued functions,

or many-valued functions with a continuous uncertainty area.

Convergence of the sample mean to a number is not corroborated
by the experiments and convergence to an interval is corroborated by a
lot of them. We shall return to the question concerning the type of the
limit distribution function after study of the generalized central limit
theorem.

5.5 Generalized Central Limit Theorem

In the probability theory it is known the central limit theorem. There
are many variants of it. One of them can be formulated with some
simplification by the following manner.

Lindeberg-Feller theorem. Let X1, . . . ,XN be, in general, a
non-uniform random sample with mutually independent terms descri-
bed by distribution functions Fxn(x) with expectations mxn and varian-
cesDxn (n = 1, N ). We assume the so called Lindeberg condition. Then
the distribution function Fm∗

xN
(x) of the sample mean m∗

xN conver-

ges uniformly to a Gaussian distribution function F (x/mxN ,DxN ) =

Φ
(

(x−mxN )/
√
DxN

)

with expectation mxN = 1
N

N
∑

n=1
mxn and vari-

ance DxN = 1
N2

N
∑

n=1
Dxn , viz.

lim
N→∞

Fm∗

xN
(x) = lim

N→∞

F (x/mxN ,DxN ), (1)
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where Φ (x) is Laplace function.
According to this theorem, with increasing of the sample size the

random variable m∗

xN becomes a Gaussian random variable.

Using the technique devised to obtain (1), a more general state-
ment can be proved: if the conditions specified in Lindeberg-Feller
theorem are satisfied, the difference between the distribution function
Fm∗

xN
(x) of the sample mean m∗

xN and the Gaussian distribution
function F (x/mxN ,DxN ) converges uniformly to zero

lim
N→∞

[

Fm∗

xN
(x)− F (x/mxN ,DxN )

]

= 0. (2)

There is a significant difference between (1) and (2). The expression
(1) implies that the sample mean m∗

xN has a single-valued limit dis-
tribution function Fm∗

x
(x) to which the distribution function Fm∗

xN
(x)

tends when N → ∞, and there is a single-valued Gaussian limit dis-
tribution function Fmx(x) = F (x/mx,Dx) to which the distribution
function F (x/mxN ,DxN ) tends, where mx and Dx are the expectation
and the variance of the limit distribution function, respectively.

The formula (2), on the other hand, allows the given limit distri-
bution functions to be many-valued. The many-valuedness of the limit
distribution function to which the function F (x/mxN ,DxN ) tends is
stipulated by the many-valuedness of the expectation and (or) vari-
ance. Therefore, in the expression F̃mx(x) = F̃ (x/m̃x, D̃x) representing
the limit distribution function of the average of the expectations, the
many-valued parameters m̃x and D̃x appear. In general these parame-
ters are hyper-random variables. Therefore the function F̃ (x/m̃x, D̃x)
is a hyper-random function. It can be interpreted as a set of single-
valued Gaussian distribution functions. Each of these is described by
a single-valued expectation mx ∈ m̃x and variance Dx ∈ D̃x.

The relation Fm∗

xN
(x) → F̃ (x/m̃x, D̃x) follows from (2), implying

that there is convergence in distribution of the sequence of determi-
nate functions Fm∗

xN
(x) to the hyper-random function F̃ (x/m̃x, D̃x).

In other words, the many-valued limit distribution functions F̃m∗

x
(x),

F̃ (x/m̃x, D̃x) are described by identical sets of single-valued conditional
distribution functions.
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When m̃x = mx and D̃x = Dx (i.e. the both parameters are num-
bers) and Dx = 0, the limit Gaussian distribution function Fmx(x) =
F (x/mx,Dx) is the unit step function shown in Fig. 8a by the bold
line; and when m̃x = mx and D̃x = Dx are numbers but Dx 6= 0, this
distribution function is described by the single-valued Gaussian curve
shown in Fig. 8b by the bold line.

When the limit expectation m̃x, the limit variance D̃x or both these
parameters are many-valued variables, the limit distribution function
F̃mx(x) is a many-valued function. In Fig. 8c, d, it is displayed by the
shaded areas.

Note, the analogues results concerning the law of large numbers and
the central limit theorem are generalized on hyper-random sequences.

5.6 Experimental Study of the Convergence of the Sam-

ple Mean

The theoretical research presented in Sects. 5.4 and 5.5 indicates that
with increasing of the sample size the sample means are not necessarily
normalized (i.e. they do not necessarily take on the Gaussian character)
and tend to a certain fixed value. This result is quite different from the
conclusion of the classical probability theory. It raises a very important
question: how do the actual sample means behave?

To answer this question, we return to investigation of the mains
voltage oscillations (see Fig. 3a) and present some results of additional
experimental studies of the process.

Studies consisted in calculation and analysis of the estimates of the
distribution functions of the voltage fluctuations F ∗

g (x) on adjacent
observation intervals, each lasting about one hour (g = 1, 64) (Fig.
9a), and the estimate of the distribution function of the sample mean
F ∗

m∗

xN
(x) (Fig. 9b).

The curves of the distribution functions F ∗

g (x) corresponding to
different values of the parameter g differ essentially from one anot-
her (primarily by their location) (see Fig. 9a), and this confirms the
claimed nonstationarity of the oscillations.

The calculation results of the estimate of the sample mean distri-
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Figure 9. Estimates of the distribution functions of mains voltage os-
cillations on 64 contiguous observation intervals (a) and estimates of
the distribution function of the voltage sample mean F ∗

m∗

xN
(x) for sam-

ple sizes N = 2r, r = 8, 10, 12, 14, 16, 18, 20 (b) (the line thickness
increases with the value of the parameter r)

bution function F ∗

m∗

xN
(x) for exponentially growing sample size (see

Fig. 9b) show that F ∗

m∗

xN
(x) does not tend to a certain limit distribu-

tion function Fmx(x), and the sample mean m∗

xN does not tend to a

certain limit value mx.

On the basis of the curves for the estimate of the distribution
function of the sample mean F ∗

m∗

xN
(x) for small values of the para-

meter r (8 and 10) (see Fig. 9 b), we may with some level of skepticism
conclude that it is tending to a Gaussian distribution with decreasing
variance, as probability theory would predict. However, for large values
of r (starting from 10 to 20), the assumed trend is not confirmed.

When the sample size increases, the variance of the sample mean
m∗

xN sometimes increases (for values of r from 8 to 14 and from 18 to
20) and sometimes decreases (for r from 14 to 18). In general, as one
moves from small to large sample sizes, the variance does not manifest
any tendency to go to zero, as would have been predicted by probability
theory (see Fig. 8a), but in fact increases, even by a significant factor
(the range of the samplemean increases approximately from1V to 8V ).
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It follows from these results that the distribution function of the

sample mean tends to a many-valued function F̃mx(x) of general form
(see Fig. 8c).

Studies of the distribution functions of the sample means of a lot
of processes show that when the data volume is large there is not the

aspiration of the estimate F ∗

m∗

xN
(x) of the distribution function of the

sample mean to any specific distribution law, and more so to a Gaussian
distribution with variance that tends to zero.

Thus, the experimental studies of the actual physical processes show
that in case of a small data volume ones observe the trends of norma-

lization and stabilization of the sample means and in case of a large

amount of data such tendencies are not fixed.

The changing in the character of the behavior of the sample means
can be explained by a violation of statistical stability of the actual pro-
cesses on large observation intervals. These disorders lead to restriction
of the accuracy of measurement and prediction of real physical quan-
tities.

6 Accuracy and Measurement Models

6.1 Measurement Models

Any measurement is based on some models. It is usually suggested that
the measurand (measurement quantity) has a determinate character,

while its estimator is random. Modern classical measurement theory
uses this paradigm.

a b

Figure 10. The classical determinate-random (a) and determinate–
hyper-random (b) measurement models
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When measuring a scalar quantity, the measurand θ can be repre-
sented by a unit step distribution function Fθ(x) and the measurement
result Θ∗ – by a distribution function Fθ∗(x) (Fig. 10a). Such a mea-
surement model may naturally be referred to as determinate–random.

The foundations of this model were laid out by Galileo Galilei,
who introduced the concepts of systematic and random errors. The
systematic error is described by the bias of the estimator ε0 = mθ∗ − θ
and the random error is often presented by the standard deviation σθ∗

of the estimator Θ∗.

Modern metrology is based on the following hypotheses: the ideal
value of a physical quantity is determinate, single-valued, and is not
changed during the measurement time; the measure does not change its
characteristics during the measurement; the statistical conditions are
constant during the measurement time; and the result of a concrete
measurement is unique.

All of these items, to put it mildly, not very reasonable. All actual
physical objects and physical quantities describing them are subjected
to change over time (except perhaps some universal constants). Every-
thing is changed: the object of measurement (measurand), the measure,

and the measurement conditions.

Any measurement is carried out not instantaneously, but over some
time interval. Therefore the measurement result is an average value re-

presenting over this interval the various states of the measuring object,

the different states of the measure, and different measurement conditi-

ons.

Of course, it is very convenient to represent the measurand by a
determinate, unique, and unchanging value, and the measurement re-
sult – by a random variable. But this primitive model does not reflect
many nuances of the real situation.

The theory of hyper-random phenomenon proposes different hyper-
random mathematical models, taking into account some of them.
Determinate–hyper-random model (Fig. 10b) describes, for instance,
the measurand by a determinate model and the estimator by a hyper-
random variable. In the figure, FSθ∗(x) and FIθ∗(x) are the upper and
lower bounds of the distribution function of the hyper-random estima-
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tor Θ∗; εI0 = mSθ∗ − θ and εI0 = mIθ∗ − θ are the biases of the upper
and lower bounds of the distribution function of the hyper-random esti-
mator with respect to the measurand; mSθ∗, mIθ∗ are the expectations
of the upper and lower bounds of the hyper-random estimator; and
σSθ∗ , σIθ∗ are the standard deviations of the appropriate bounds of the
hyper-random estimator. The uncertainty area of the hyper-random
estimator is shown by the shaded area.

6.2 Comparison of the measurement models

In the determinate–random measurement model, the error has a random
nature. It is described by systematic and random components, and
characterized by two parameters: the bias ε0 and the standard deviation

of the estimator σθ∗ (Fig. 10a). In the determinate–hyper-random

measurement model, the error has a hyper-random nature. It has an
uncertainty area and is described by four parameters εS0, εI0, σSθ∗ , σIθ∗

defining the location and size of the uncertainty area on the error axis
(Fig. 10b).

Techniques of statistical measurement according to the comparing
models are well known. They are described for instance in [14, 18].
Here we do not describe them and present only the calculation results
for the parameters characterizing the mains voltage (Fig. 3a) at the
end of 100-second and 60-hour observation intervals (Fig. 11).

The left side of the figure is obtained with using the classic
determinate–random measurement model based on probability theory
and the right side presents the parameters obtained with using the
determinate–hyper-random measurement model based on the theory of
hyper-random phenomena (except the parameter marked with a thin
arrow).

For the 60-hour observation interval, the sample range and the
range of the sample mean are obtained from the data of Figs. 3a and
9b. The confidence interval (THRP) marked with a bold arrow and the
estimate (THRP) are calculated using the technique of the theory of
hyper-random phenomena. The confidence interval (PT) marked by a
thin arrow is calculated using the classic technique of the probability
theory.
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Figure 11. Calculation results for the parameters characterizing the
city mains voltage over 100-second and 60-hour observation intervals,
using calculation techniques based on probability theory (PT) and the
theory of hyper-random phenomena (THRP)

The results shown in the figure for the 100-second and 60-hour
observation intervals differ considerably. The parameters on the left
side of the figure reflect the state of the electrical supply network un-
der the specific statistical conditions that occurred during the relevant
100-second observation interval. The parameters on the right side (ex-
cept for the one marked by a thin arrow) represent the state of the
network for the varying set of statistical conditions that succeeded one
another unpredictably during the relevant 60-hour observation period.
The parameter marked by a thin arrow characterizes the state of the
network for the set of different but very specific statistical conditions

that succeeded each other over the same 60-hour period of observation.

For the 100-second observation interval, the most informative pa-

rameter is the confidence interval calculated using the classic technique

of probability theory, and for the 60-hour interval, it is the confidence

interval calculated using the technique based on the theory of hyper-

random phenomena (in Fig. 11 these parameters are marked by two
bold arrows).

For the 60-hour observation interval, the confidence interval, with
width 50 mV and average value 229.4 V (calculated in accordance with
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probability theory and indicated in the figure by a thin arrow) is not

informative, because it takes into consideration the concrete sequence

of changes in the conditions which, in the next 60-hour observation
interval, is likely to be something quite different. The confidence inter-
val, with width 33 V and average 233.5 V (calculated using the theory
of hyper-random phenomena and marked by a thick arrow) contains
useful practical information about the average dynamics of the voltage
changes in the power supply.

The loss of useful information in the first case and the fact that it is
kept in the second arise because, when there are violations of statistical
stability, the classic determinate–random measurement model reflects
the real situation with considerable distortion, while the determinate–
hyper-random measurement model is able to present it adequately. It
follows from the above example that, ignoring the violation of statistical
stability can lead to absurd results, and in particular, to an unjustifi-
able overstatement of measurement accuracy estimators by factors of
hundreds or more.

The conclusion is obvious: when statistical stability is violated, the

determinate–random measurement model and the measuring techniques

based on it cannot be used. In this case, other models and measu-

rement techniques must be used, and in particular the determinate–

hyper-random measurement model and techniques based on it, which

take into consideration the violations of statistical stability.

6.3 Potential Measurement Accuracy

In case of determinate–random measurement model the error ∆zN =
√

ε20 + σ2
θ∗N

is determined by the bias ε0 and the standard deviation of

the estimator σθ∗N . With increasing sample size N , theoretically this

magnitude tends to the square of the bias ε20. Let the estimator Θ∗

N

be the average of the sample (X ,
1...,XN ) and the sample elements are

independent and have identical variance Dx. Then the variance of the
estimator σ2

θ∗N
= Dx/N and the error is described by the expression

∆=
zN

√

ε20 +Dx/N . The dependence of the magnitude ∆zN on the defi-
ning parameters is shown in Fig. 12a.
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It is clear from the figure that, when N → ∞, the error tends
to the bias ε0 (the systematic error). If the bias ε0 is negligible, the
magnitude ∆zN is in inverse proportion to the root of the sample sizeN .
It follows from this that, theoretically, by increasing N , the accuracy
of the measurement can grow without limit, and as N → ∞, it should
become infinitely large.

Probability theory does not give a satisfactory explanation as to
why, at low bias, an ultra-high measurement accuracy cannot be achie-
ved by statistical processing of a large number of real data. The expla-
nation of this effect gives the theory of hyper-random phenomena.

a b

Figure 12. Dependence of the error ∆zN (a) and the error bounds ∆iz,
∆sz (b) on the sample size N and the variance Dx accordingly for the
determinate–random and the determinate–hyper-random measurement
models. In case a ε0 = 0.01 and in case b ε0 = εS0 = 0.01, ∆ε0 =
0.1. Thicker lines correspond to large values of the variance Dx =
0.2; 0.4; 0.6; 0.8; 1

Suppose the measurand θ is determinate and the estimator Θ∗ is
a hyper-random variable. The elements of the hyper-random sample
(X1, . . . ,XN ) are independent. The statistical conditions change slowly
and this allows us to divide the observation interval into G fragments
of identical length corresponding to nearly constant statistical conditi-
ons. The elements of the sample are taken with uniform step. In any
fragment, the number of samples is Ns.

The distribution law of the random elements X1g, . . . ,XNsg under
the fixed condition g is fixed. Under different conditions g, the distri-
bution laws of the elements are different, however all of them have the
same variance Dx and differ from each other only in the expectation
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value. Then the error bounds can be written as ∆iz =
√

ε2i +Dx/Ns,

∆sz =
√

ε2s +Dx/Ns, where ε2i = inf
g∈G

[ε20/g ] and ε2s = sup
g∈G

[ε20/g] are the

lower and upper bounds of the square of the bias.

The dependence of the error bounds ∆iz, ∆sz on the defining pa-
rameters is shown in Fig. 12b. The dotted lines represent the lower
error bounds and the solid ones the upper error bounds.

It is clear from the figure that, with increasing sample size Ns,
the upper bound of the error ∆sz tends to εs = ε0 + ∆ε0 (ε0 is the
systematic error and ∆ε0 is the length of the uncertainty area).

Therefore, even if we make the unlikely assumption that the value
Ns tends to infinity, the determining upper bound of the error ∆sz will
never be less than the value ∆ε0 6= 0. When the bias ε0 is negligible,
the magnitude ∆sz → ∆ε0 6= 0.

So with the determinate–hyper-random measurement model, we
can explain the inability in practice to achieve infinitely high accuracy,
even with an unlimited amount of data.

7 Conclusions

Summing up the consideration of the issues it is drawn attention to the
following key points.

1. Statistical stability is a physical phenomenon manifested in stabi-
lity of relative frequency of the actual mass events, sample means

and other statistics.

2. There are two theories describing statistical stability phenome-
non: the probability theory and the theory of hyper-random phe-

nomena. The probability theory is based on the assumption that
the phenomenon of statistical stability is perfect (statistics are

converged and estimators are consistent). The theory of hyper-

random phenomena is based on the assumption that the phe-

nomenon of statistical stability is not perfect (statistics are not

converged and estimators are not consistent).
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3. Numerous experimental studies of real phenomena of different
physical nature indicate that statistics obtained from actual sam-

ples do not demonstrate the tendency to convergence. The trend
towards convergence is observed only when the sample volume is
small. In case of large sample volume such trend is not registered.

4. The violation of convergence of the relative frequency of actual
events implies that the probability, the basic concept of the pro-

bability theory is an abstract mathematical concept that does not

have a physical interpretation.

5. It is formulated and proved for divergent sequences the generalized
law of large numbers and the generalized central limit theorem.

6. The results of the experimental studies conform the opinions
of some scholars (including A.N. Kolmogorov, A.A. Markov,
A.V. Skorokhod, E. Borel, and others) that the hypothesis of
perfect statistical stability is valid in the actual world only in cer-
tain reservations. Apparently, the actual world really is obeyed to
three types of laws: determinate, statistically predicted (random,

stochastic or otherwise probabilistic), and statistically unpredic-

table.

7. For the small sample size the influence of statically unpredictable
laws does not reflect essentially on the results of the measurement
of physical quantities. This gives possibility to use the classical
models and statistical methods of probability theory in a lot of
important cases. For the large sample size when the violation of

statistical stability manifests itself clearly, the using of classical

stochastic models leads to unacceptably large measurement errors.
Then the hyper-random models have obvious advantages over the

stochastic models.

8. The hyper-random models, unlike the random ones theoretically
can be used both in case of large and small observation inter-
vals as in large and small samples. However, the hyper-random
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models are more complicated. Therefore for not very large sam-

ple sizes the stochastic models are preferred. The using of the
hyper-random models is justified when the stochastic models do
not provide an adequate description of the reality.

9. The limited accuracy of any statistical measurement of actual

physical quantities and the limited accuracy of the temporal pro-

gress forecasting of actual events can be explained by the presence
of a statistically unpredictable laws.

10. The limited nature of statistical stability suggests that it may be
necessary to review the postulates of a number of physical dis-
ciplines, in which the probability concept and convergence play
a key role, in particular, statistical mechanics, statistical physics,

and quantum mechanics. Taking into account statistical stability
violations may lead to new scientific results that will be interes-
ting for both theory and practice.
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Nominative data with ordered set of names
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Abstract

In the paper we analyze the set of nominative sets, which can
be considered as some mathematical model for data used in com-
puting systems, under assumption that the set of names is line-
arly ordered. We design algorithms, implemented for execution of
basic set-theoretic operations on this set of nominative sets under
assumption that nominative sets are presented by doubly linked
lists with the order of names in increasing strength. The worst-
case time complexity under logarithmic weight for the designed
algorithms is investigated in detail. Applications of presented re-
sults for table algebras, which are mathematical models, intended
for developing and theoretic analysis of relational databases, as
well as of associated query languages, are proposed. The obtained
results can be used in formal software development.

Keywords: nominative set, nominative data, linear ordering,
set-theoretic operations, time complexity of algorithms.

1 Introduction

It’s well known that research of deep internal links ”between the theory
of programming and the products of software engineering practice” [1]
is one of the main challenges of the 21st century. The significance
and complexity of this problem is caused by variety of theoretical and
application-oriented approaches, that are hardly comparable with each
other [2–11].

We deal with composition-nominative approach to program forma-
lization [12–14]. Informally speaking, any software is regarded as some
data processor. Mathematical model intended to present different data
structures, used in computing systems (arrays, lists, tables, trees, etc.),

c©2017 by V.G. Skobelev, I. Ivanov, M. Nikitchenko
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in a unified form is a nominative set. This model is based on the notion
of a name-value relation. The cost of this universality is high complex-
ity in elaboration of formal theory for nominative sets, intended to
automate software design, starting with creation of formal specificati-
ons, and finishing with resolving problems of verification and testing.
The main reason of this complexity is caused by the factor that it is
necessary to deal with algebraic structures, which significantly differ
from the classic ones.

This situation has been illustrated accurately in [15], where the
most general case, arising under the assumption that the sets of names
and data are abstract ones, has been investigated. Indeed, it has been
established that for algebraic system in which the carrier is any fixed set
of all nominative sets, and the set of operations is the set of set-theoretic
operations over these nominative sets, there exist the following different
types of subalgebras: commutative and non-commutative semigroups,
non-commutative non-associative magma, and semi-rings. Also it has
been established that any fixed partially ordered set of all nominative
sets is the union of the set of overlapping isomorphic maximal closed
intervals. The mappings that define isomorphism between two intervals
differ significantly from each other, and the family of these mappings
has sufficiently complicated structure.

The present paper is further development of investigations, that
has been started in [15]. We study any fixed set of all nominative sets
under assumption that the set of names is linearly ordered. The paper
is organized as follows: in Section 2 we recall necessary notions and
definitions; in Section 3 we investigate time complexity of set-theoretic
operations on any fixed set of all nominative sets; in Section 4 we
illustrate how results, established in Section 3 can be applied in table
algebras; in Section 5 we give conclusions.

2 Basic notions

Let V (|V | ≥ 2) and A (|A| ≥ 2) be finite sets of names and data,
respectively. The set FV,A of all (possibly, partial) mappings from V
to A is called the set of nominative sets. Basic set-theoretic operations
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on the set FV,A are defined as follows:

f1 ∩ f2 = f ⇔ graph(f1) ∩ graph(f2) = graph(f), (1)

f1 \ f2 = f ⇔ graph(f1)\graph(f2) = graph(f), (2)

f1 ∪ f2 = f ⇔ graph(f1) ∪ graph(f2) = graph(f), (3)

f1 ⊕ f2 = f ⇔ graph(f1)⊕ graph(f2) = graph(f), (4)

f1 ⊲ f2 = f ⇔ graph(f1) ∪ graph(f2|Domf2\Domf1) = graph(f), (5)

f1 ⊞ f2 = f ⇔
⇔ graph(f1|Domf1\Domf2) ∪ graph(f2|Domf2\Domf1) = graph(f). (6)

We recall that ∪ and ⊕ are partial operations on the set FV,A.
It is supposed that some linearly ordering relation <V is fixed on

the set of the names V (this is true, for example, when the set V
reflects different types of memory addressing, such as real, physical,
flat, or absolute addressing). Thus, we get the possibility to present
any nominative set f = {(vi, ai)|i = 1, . . . , k} ∈ FV,A (k = 0, 1, . . . , |V |)
by such doubly linked list Lf :













previous name data next

i1 ∗ vr1 ar1 i2
i2 i1 vr2 ar2 i3
... ... ... ... ...
ik−1 ik−2 vrk−1

ark−1
ik

ik ik−1 vrk ark ∗













,

that the inequalities vr1<V vr2<V . . . <V vrk−1
<V vrk hold.

In the next section we will show that for basic set-theoretic ope-
rations on the set FV,A the order of names in increasing strength also
remains in the resulting doubly linked list.

For doubly linked list Lf we set:

Lf (ij) =











(∗, vr1 , ar1 , i2), if j = 1

(ij−1, vrj , arj , ij+1), if j = 2, . . . , k − 1

(ik−1, vrk , ark , ∗), if j = k
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and length(Lf ) = k. The last equality implies that

length(Lf ) ≤ |V | (7)

for any nominative set f ∈ FV,A.

3 Time complexity of set-theoretic operations
on the set FV,A

We will investigate time complexity of set-theoretic operations (1)-(6)
on the set FV,A under the following assumptions:

1) initial nominative sets f1, f2 ∈ FV,A are presented by the doubly
linked lists, respectively Lf1 and Lf2 ;

2) the result of operation f1⋄f2 (⋄ ∈ {∩, \,∪,⊕, ⊲,⊞}) is the doubly
linked list Lf1⋄f2 ;

3) the address parameter is denoted:

– by i
(1)
j (j = 1, . . . , length(Lf1)), for doubly linked list Lf1 ;

– by i
(2)
j (j = 1, . . . , length(Lf2)), for doubly linked list Lf2 ;

– by i
(3)
j (j = 1, . . . , length(Lf1⋄f2)), for doubly linked list Lf1⋄f2 .

Analyzing time complexity of set-theoretic operations on the set
FV,A, we deal with asymptotic worst-case time complexity of algorithms
under logarithmic weight [16]. The last factor implies that:

1) time T = O(log |V |) (|V | → ∞) is needed to check for any names
v1, v2 ∈ V , what of formulae, either v1 = v2, v1 6= v2, or v1<V v2, holds;

2) time T = O(log |A|) (|A| → ∞) is needed to check for any data
a1, a2 ∈ A, what of formulae, either a1 = a2, or a1 6= a2, holds;

3) time T = O(log length(Lf )) (length(Lf ) → ∞) is needed for
transition (if it is possible) from any current element of any doubly
linked list Lf , either to its previous element, or to its next element.

If initial nominative sets f1, f2 ∈ FV,A are presented by doubly
linked lists, then the idea of how to compute the result of operation
f1 ⋄ f2 (⋄ ∈ {∩, \,∪,⊕, ⊲,⊞}), is rather simple: sequentially moving
through the doubly linked lists Lf1 and Lf2 , from their beginnings to
their ends, we create the doubly linked list Lf1⋄f2 . However, despite
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transparency of this idea, there are many subtle aspects in case of its
implementation. For this reason, we will design appropriate algorithms
in an explicit form.

The operation ∩ on the set FV,A can be implemented as follows.

Algorithm 1.

Input : doubly linked lists Lf1 and Lf2 .

Output : doubly linked list Lf1∩f2 .

Step 1. Lf1∩f2 := ∅, j3 := 0.

Step 2. If length(Lf1) = 0 or length(Lf2) = 0,

then HALT, else j1 := 1, j2 := 1.

Step 3. u1 := Lf1(i
(1)
j1

), u2 := Lf2(i
(2)
j2

).

Step 4. If pr2u1 = pr2u2, then go to step 7.

Step 5. If pr2u1<V pr2u2, then r := 1, else r := 2.

Step 6. Call Procedure1.1 (r).

Step 7. If pr3u1 = pr3u2, then Call Procedure1.2

Step 8. If pr4u1 = ∗ or pr4u2 = ∗,
then HALT, else j1 := j1 + 1, j2 := j2 + 1,

and go to step 3.

Procedure1.1 (r)

begin;

If pr4ur = ∗, then HALT,

else jr := jr + 1, ur := Lfr(i
(r)
jr

), and go to step 4;

end;

Procedure1.2

begin;

If j3 6= 0, then go to M1;

j3 := j3 + 1, Lf1∩f2(i
(3)
j3

) := (∗,pr2u1,pr3u1, ∗),
go to step 8;

M1: pr4Lf1∩f2(i
(3)
j3

) := j3 + 1,

Lf1∩f2(i
(3)
j3+1) := (j3,pr2u1,pr3u1, ∗), j3 := j3 + 1,

go to step 8;

end;
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Correctness of algorithm 1 is justified by the following two factors.
Firstly, algorithm 1 always halts. Secondly, the list Lf1∩f2 consists of
those and only those pairs (v, a) ∈ V × A, which are elements of the
set graph(f1 ∩ f2).

Theorem 1. For any nominative sets f1, f2 ∈ FV,A time complexity of
algorithm 1 is

T = O((length(Lf1) + length(Lf2))(log |V |+ log |A|)) (|V | → ∞). (8)

Proof. Let us estimate time complexity of steps of algorithm 1 under
the assumption that we are shifting through the doubly linked lists Lf1
and Lf2 , from their beginnings to their ends, no more, than on one line
item.

Time complexity for each of steps 1, and 2 is

T = O(1) (|V | → ∞). (9)

Time complexity for each of steps 3, 6, and 7 is

T = O(log |V |+ log |A|) (|V | → ∞). (10)

Time complexity for each of steps 4, 5, and 8 is

T = O(log |V |) (|V | → ∞). (11)

The number of cycles via operation of algorithm 1 doesn’t exceed
the value

length(Lf1) + length(Lf2) (12)

Formulae (9)-(12) imply that formula (8) holds.

Corollary 1.1. For any nominative sets f1, f2 ∈ FV,A the following
estimation for time complexity of algorithm 1 is true

T = O(|V |(log |V |+ log |A|)) (|V | → ∞). (13)

Proof. Substituting (7) in (8), we get that formula (13) holds.
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Corollary 1.2. Let |V | → ∞. If either |A| = o(|V |) , or |A| = O(|V |),
then for any nominative sets f1, f2 ∈ FV,A the following estimation of
time complexity for algorithm 1 is true

T = O(|V | log |V |) (|V | → ∞). (14)

Proof. Suppose, that |V | → ∞. Substituting either |A| = o(|V |) , or
|A| = O(|V |) in (13), we get that formula (14) holds.

Corollary 1.3. Let |V | → ∞. If either |V | = o(|A|), or |V | = O(|A|),
then for any nominative sets f1, f2 ∈ FV,A the following estimation for
time complexity of algorithm 1 is true

T = O(|A| log |V |) (|V | → ∞). (15)

Proof. Suppose, that |V | → ∞. Substituting either |V | = o(|A|), or
|V | = O(|A|) in (14), we get that formula (15) holds.

The operation \ on the set FV,A can be implemented as follows.

Algorithm 2.

Input : doubly linked lists Lf1 and Lf2 .
Output : doubly linked list Lf1\f2 .
Step 1. Lf1\f2 := ∅, j3 := 0.
Step 2. If length(Lf1) = 0 , then HALT.
Step 3. If length(Lf2) = 0 , then Lf1\f2 := Lf1 , and HALT.

Step 4. j1 := 1, j2 := 1, u1 := Lf1(i
(1)
j1

), u2 := Lf2(i
(2)
j2

).
Step 5. If pr2u1 = pr2u2, then go to step 9.
Step 6. If pr2u1<V pr2u2,

then r := 0, and Call Procedure2.1 (r).
Step 7. If pr4u2 = ∗, then r := 1, and Call Procedure2.1 (r).

Step 8. j2 := j2 + 1, u2 := Lf2(i
(2)
j2

), and go to step 5.
Step 9. If pr3u1 6= pr3u2,

then r := 0, and Call Procedure2.1 (r).
Step 10. If pr4u1 = ∗, then HALT,

else j1 := j1 + 1, u1 := Lf1(i
(1)
j1

),
and go to step 7.
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Procedure2.1 (r)
begin;
M3: If j3 = 0,

then j3 := j3 + 1, Lf1\f2(i
(3)
j3

) := (∗,pr2u1,pr3u1, ∗),
and go to M1;

M2: pr4Lf1\f2(i
(3)
j3

) := j3 + 1,

Lf1\f2(i
(3)
j3+1) := (j3,pr2u1,pr3u1, ∗), j3 := j3 + 1;

M1: If pr4u1 = ∗, then HALT,

else j1 := j1 + 1, u1 := Lf1(i
(1)
j1

);
If r = 0, then go to step 7, else go to M3;

end;

Correctness of algorithm 2 is justified by the following two factors.
Firstly, algorithm 2 always halts. Secondly, the list Lf1\f2 consists of
those and only those pairs (v, a) ∈ V × A, which are elements of the
set graph(f1 \ f2).

Theorem 2. For any nominative sets f1, f2 ∈ FV,A time complexity of
algorithm 2 is

T = O((length(Lf1)+length(Lf2))(log |V |+log |A|)) (|V | → ∞). (16)

Proof is similar to proof of theorem 1.

Corollary 2.1. For any nominative sets f1, f2 ∈ FV,A the following
estimation for time complexity of algorithm 2 is true

T = O(|V |(log |V |+ log |A|)) (|V | → ∞). (17)

Proof is similar to proof of corollary 1.1.

Corollary 2.2. Let |V | → ∞. If either |A| = o(|V |) , or |A| = O(|V |),
then for any nominative sets f1, f2 ∈ FV,A the following estimation of
time complexity for algorithm 2 is true

T = O(|V | log |V |) (|V | → ∞). (18)

Proof is similar to proof of corollary 1.2.
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Corollary 2.3. Let |V | → ∞. If either |V | = o(|A|), or |V | = O(|A|),
then for any nominative sets f1, f2 ∈ FV,A the following estimation for
time complexity of algorithm 2 is true

T = O(|A| log |V |) (|V | → ∞). (19)

Proof is similar to proof of corollary 1.3.

The operation ∪ on the set FV,A can be implemented as follows.

Algorithm 3.

Input : doubly linked lists Lf1 and Lf2 .
Output : α ∈ {0, 1}, where α = 0, if operation ∪ is not defined for

f1, f2 ∈ FV,A, and α = 1, if doubly linked list Lf1∪f2 is computed.
Step 1. Lf1∪f2 := ∅, α := 0, j3 := 0.
Step 2. If length(Lf1) = 0 ,

then Lf1∪f2 := Lf2 , α := 1, and HALT.
Step 3. If length(Lf2) = 0 ,

then Lf1∪f2 := Lf1 , α := 1, and HALT.

Step 4. j1 := 1, j2 := 1, u1 := Lf1(i
(1)
j1

), u2 := Lf2(i
(2)
j2

).
Step 5. If pr2u1<V pr2u2,

then r := 1, and Call Procedure3.1 (r).
Step 6. If pr2u2<V pr2u1,

then r := 2, and Call Procedure3.1 (r).
Step 7. If pr3u1 6= pr3u2, then α := 0, and HALT.
Step 8. If j3 = 0, then j3 := j3 + 1,

Lf1∪f2(i
(3)
j3

) := (∗,pr2u1,pr3u1, ∗),
and go to step 10.

Step 9. pr4Lf1∪f2(i
(3)
j3

) := j3 + 1,

Lf1∪f2(i
(3)
j3+1) := (j3,pr2u1,pr3u1, ∗), j3 := j3 + 1.

Step 10. If pr4u1 = ∗ and pr4u2 = ∗, then α := 1, and HALT.
Step 11. If pr4u1 = ∗ and pr4u2 6= ∗, then go to step 14.
Step 12. If pr4u1 6= ∗ and pr4u2 = ∗, then go to step 16.
Step 13. j1 := j1 + 1, j2 := j2 + 1,

u1 := Lf1(i
(1)
j1

), u2 := Lf2(i
(2)
j2

), and go to step 5.

Step 14. j2 := j2 + 1, u2 := Lf2(i
(2)
j2

), pr4Lf1∪f2(i
(3)
j3

) := j3 + 1,
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Lf1∪f2(i
(3)
j3+1) := (j3,pr2u2,pr3u2, ∗), j3 := j3 + 1.

Step 15. If pr4u2 = ∗, then α := 1, and HALT, else go to step 14.

Step 16. j1 := j1 + 1, u1 := Lf1(i
(1)
j1

), pr4Lf1∪f2(i
(3)
j3

) := j3 + 1,

Lf1∪f2(i
(3)
j3+1) := (j3,pr2u1,pr3u1, ∗), j3 := j3 + 1.

Step 17. If pr4u1 = ∗, then α := 1, and HALT, else go to step 16.

Procedure3.1 (r)
begin;
If j3 = 0,

then j3 := j3 + 1, Lf1∪f2(i
(3)
j3

) := (∗,pr2ur,pr3ur, ∗),
and go to M1;

pr4Lf1∪f2(i
(3)
j3

) := j3 + 1,

Lf1∪f2(i
(3)
j3+1) := (j3,pr2ur,pr3ur, ∗), j3 := j3 + 1;

M1: If pr4ur 6= ∗,
then jr := jr + 1, ur := Lfr(i

(r)
jr

), and go to step 5.

Lf1∪f2(i
(3)
j3+1) := (j3,pr2u3−r,pr3u3−r, ∗), j3 := j3 + 1;

M2: If pr4u3−r = ∗, then α := 1, and HALT;

j3−r := j3−r+1, u3−r := Lf3−r
(i
(3−r)
j3−r

), pr4Lf1∪f2(i
(3)
j3

) := j3+1,

Lf1∪f2(i
(3)
j3+1) := (j3,pr2u3−r,pr3u3−r, ∗), j3 := j3+1, go to M2;

end;

Correctness of algorithm 3 is justified by the following two factors.
Firstly, algorithm 3 always halts. Secondly, α = 1 if and only if ope-
ration ∪ is defined for f1, f2 ∈ FV,A, and doubly linked list Lf1∪f2 is
computed.

Theorem 3. For any nominative sets f1, f2 ∈ FV,A time complexity of
algorithm 3 is

T = O((length(Lf1)+length(Lf2))(log |V |+log |A|)) (|V | → ∞). (20)

Proof is similar to proof of theorem 1.

Corollary 3.1. For any nominative sets f1, f2 ∈ FV,A the following
estimation for time complexity of algorithm 3 is true

T = O(|V |(log |V |+ log |A|)) (|V | → ∞). (21)

204



Nominative data with ordered set of names

Proof is similar to proof of corollary 1.1.

Corollary 3.2. Let |V | → ∞. If either |A| = o(|V |) , or |A| = O(|V |),
then for any nominative sets f1, f2 ∈ FV,A the following estimation of
time complexity for algorithm 3 is true

T = O(|V | log |V |) (|V | → ∞). (22)

Proof is similar to proof of corollary 1.2.

Corollary 3.3. Let |V | → ∞. If either |V | = o(|A|), or |V | = O(|A|),
then for any nominative sets f1, f2 ∈ FV,A the following estimation for
time complexity of algorithm 3 is true

T = O(|A| log |V |) (|V | → ∞). (23)

Proof is similar to proof of corollary 1.3.

The operation ⊕ on the set FV,A can be implemented as follows.

Algorithm 4.

Input : doubly linked lists Lf1 and Lf2 .

Output : α ∈ {0, 1}, where α = 0, if operation ⊕ is not defined for
f1, f2 ∈ FV,A, and α = 1, if doubly linked list Lf1⊕f2 is computed.

Step 1. Lf1⊕f2 := ∅, α := 0, j3 := 0.

Step 2. If length(Lf1) = 0 , then Lf1⊕f2 := Lf2 , α := 1, and HALT.
Step 3. If length(Lf2) = 0 , then Lf1⊕f2 := Lf1 , α := 1, and HALT.

Step 4. j1 := 1, j2 := 1, u1 := Lf1(i
(1)
j1

), u2 := Lf2(i
(2)
j2

).

Step 5. If pr2u1<V pr2u2,

then r := 1, and Call Procedure4.1 (r).
Step 6. If pr2u2<V pr2u1,

then r := 2, and Call Procedure4.1 (r).
Step 7. If pr3u1 6= pr3u2, then α := 0, and HALT.

Step 8. If pr4u1 = ∗ and pr4u2 = ∗, then α := 1, and HALT.
Step 9. If pr4u1 = ∗ and pr4u2 6= ∗,

then r := 2 and Call Procedure4.3 (r).
Step 10. If pr4u1 6= ∗ and pr4u2 = ∗,

then r := 1 and Call Procedure4.3 (r).

205



V.G. Skobelev, I. Ivanov, M. Nikitchenko

Step 11. j1 := j1 + 1, j2 := j2 + 1,

u1 := Lf1(i
(1)
j1

), u2 := Lf2(i
(2)
j2

), and go to step 5.

Procedure4.1 (r)
begin;

If j3 = 0, then j3 := j3 + 1,

Lf1⊕f2(i
(3)
j3

) := (∗,pr2ur,pr3ur, ∗),
and go to M1;

pr4Lf1⊕f2(i
(3)
j3

) := j3 + 1,

Lf1⊕f2(i
(3)
j3+1) := (j3,pr2ur,pr3ur, ∗), j3 := j3 + 1;

M1: If pr4ur 6= ∗,
then j1 := j1 + 1, ur := Lfr(i

(r)
jr

), and go to step 5;

Lf1⊕f2(i
(3)
j3+1) := (j3,pr2u3−r,pr3u3−r, ∗), j3 := j3 + 1;

Call Procedure4.2 (3 − r);
end;

Procedure4.2 (r)
begin;

M1: If pr4ur = ∗, then α := 1, and HALT;

jr := jr + 1, ur := Lfr(i
(r)
jr

);
If j3 = 0,

then j3 := j3 + 1, Lf1⊕f2(i
(3)
j3

) := (∗,pr2ur,pr3ur, ∗),
and go to M1;

pr4Lf1⊕f2(i
(3)
j3

) := j3 + 1, Lf1⊕f2(i
(3)
j3+1) := (j3,pr2ur,pr3ur, ∗),

j3 := j3 + 1, and go to M1;
end;

Procedure4.3 (r)

begin;

M1: jr := jr + 1, ur := Lfr(i
(r)
jr

);
If j3 = 0,

then j3 := j3 + 1, Lf1⊕f2(i
(3)
j3

) := (∗,pr2ur,pr3ur, ∗),
and go to M2;

pr4Lf1⊕f2(i
(3)
j3

) := j3 + 1,

Lf1⊕f2(i
(3)
j3+1) := (j3,pr2ur,pr3ur, ∗), j3 := j3 + 1;
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M2: If pr4u2 = ∗, then α := 1, and HALT, else go to M1;
end;

Correctness of algorithm 4 is justified by the following two factors.
Firstly, algorithm 4 always halts. Secondly, α = 1 if and only if ope-
ration ⊕ is defined for f1, f2 ∈ FV,A, and doubly linked list Lf1⊕f2 is
computed.

Theorem 4. For any nominative sets f1, f2 ∈ FV,A time complexity of
algorithm 4 is

T = O((length(Lf1)+length(Lf2))(log |V |+log |A|)) (|V | → ∞). (24)

Proof is similar to proof of theorem 1.

Corollary 4.1. For any nominative sets f1, f2 ∈ FV,A the following
estimation for time complexity of algorithm 4 is true

T = O(|V |(log |V |+ log |A|)) (|V | → ∞). (25)

Proof is similar to proof of corollary 1.1.

Corollary 4.2. Let |V | → ∞. If either |A| = o(|V |) , or |A| = O(|V |),
then for any nominative sets f1, f2 ∈ FV,A the following estimation of
time complexity for algorithm 4 is true

T = O(|V | log |V |) (|V | → ∞). (26)

Proof is similar to proof of corollary 1.2.

Corollary 4.3. Let |V | → ∞. If either |V | = o(|A|), or |V | = O(|A|),
then for any nominative sets f1, f2 ∈ FV,A the following estimation for
time complexity of algorithm 4 is true

T = O(|A| log |V |) (|V | → ∞). (27)

Proof is similar to proof of corollary 1.3.

It is evident that to compute the result of each of operations, ⊲ and
⊞, defined by formulae (5) and (6), it is needed some algorithm, which
for any given nominative sets f, g ∈ FV,A, presented by doubly linked
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lists Lf and Lg, computes the doubly linked list Lf |Dom f\Dom g
. Using

this algorithm, we can apply the algorithm 3 to compute the result of
each of operations ⊲ and ⊞.

An algorithm, which for any given nominative sets f, g ∈ FV,A,
presented by doubly linked lists Lf and Lg, computes the doubly linked
list Lf |Dom f\Dom g

, can be designed as follows.

Algorithm 5.

Input : doubly linked lists Lf and Lg.

Output : doubly linked list Lf |Dom f\Dom g
.

Step 1. Lf |Dom f\Dom g
:= ∅, j3 := 0.

Step 2. If length(Lf ) = 0 , then HALT.

Step 3. If length(Lg) = 0 , then Lf |Dom f\Dom g
:= Lf , and HALT.

Step 4. j1 := 1, j2 := 1, u1 := Lf (i
(1)
j1

), u2 := Lg(i
(2)
j2

).

Step 5. If pr2u1<V pr2u2, then Call Procedure5.1.

Step 6. If pr2u2<V pr2u1, then Call Procedure5.2.

Step 7. If pr4u1 = ∗,
then HALT,

else j1 := j1 + 1, u1 := Lf (i
(1)
j1

), and go to step 5.

Procedure5.1.

begin;

If j3 = 0 then j3 := j3 + 1,

Lf |Dom f\Dom g
(i
(3)
j3

) := (∗,pr2u1,pr3u1, ∗),
and go to M1;

pr4Lf |Dom f\Dom g
(i
(3)
j3

) := j3 + 1,

Lf |Dom f\Dom g
(i
(3)
j3+1) := (j3,pr2u1,pr3u1, ∗), j3 := j3 + 1;

M1: If pr4u1 6= ∗,
then j1 := j1 + 1, u1 := Lf (i

(1)
j1

), and go to step 5,

else HALT;

end;

Procedure5.2.

begin;

If pr4u2 6= ∗,
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then j2 := j2 + 1, u2 := Lg(i
(2)
j2

), and go to step 5;

M1: If j3 = 0 then j3 := j3 + 1,

Lf |Dom f\Dom g
(i
(3)
j3

) := (∗,pr2u1,pr3u1, ∗),
and go to M2;

pr4Lf |Dom f\Dom g
(i
(3)
j3

) := j3 + 1,

Lf |Dom f\Dom g
(i
(3)
j3+1) := (j3,pr2u1,pr3u1, ∗), j3 := j3 + 1;

M2: If pr4u1 6= ∗,
then j1 := j1 + 1, u1 := Lf (i

(1)
j1

), and go to M1,

else HALT;

end;

Correctness of algorithm 5 is justified by the following two factors.
Firstly, algorithm 5 always halts. Secondly, the list Lf |Dom f\Dom g

con-

sists of those and only those pairs (v, a) ∈ V × A, which are elements
of the set graph(f |Dom f\Dom g).

Theorem 5. For any nominative sets f, g ∈ FV,A time complexity of
algorithm 5 is

T = O((length(Lf ) + length(Lg))(log |V |+ log |A|)) (|V | → ∞). (28)

Proof is similar to proof of theorem 1.

Corollary 5.1. For any nominative sets f, g ∈ FV,A the following
estimation for time complexity of algorithm 5 is true

T = O(|V |(log |V |+ log |A|)) (|V | → ∞). (29)

Proof is similar to proof of corollary 1.1.

Corollary 5.2. Let |V | → ∞. If either |A| = o(|V |) , or |A| = O(|V |),
then for any nominative sets f, g ∈ FV,A the following estimation of
time complexity for algorithm 5 is true

T = O(|V | log |V |) (|V | → ∞). (30)

Proof is similar to proof of corollary 1.2.
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Corollary 5.3. Let |V | → ∞. If either |V | = o(|A|), or |V | = O(|A|),
then for any nominative sets f, g ∈ FV,A the following estimation for
time complexity of algorithm 5 is true

T = O(|A| log |V |) (|V | → ∞). (31)

Proof is similar to proof of corollary 1.3.

The operations ⊲ and ⊞ on the set FV,A can be implemented as
follows.

Algorithm 6.

Input : doubly linked lists Lf1 and Lf2 .

Output : doubly linked list Lf1⊲f2 .

Step 1. Applying algorithm 5 to doubly linked lists Lf2 and Lf1 ,

we design doubly linked list Lf2|Dom f2\Dom f1
.

Step 2. Applying algorithm 3 to doubly linked lists

Lf1 and Lf2|Dom f2\Dom f1
, we design doubly linked list Lf1⊲f2 .

Algorithm 7.

Input : doubly linked lists Lf1 and Lf2 .

Output : doubly linked list Lf1⊞f2 .

Step 1. Applying algorithm 5 to doubly linked lists Lf1 and Lf2 ,

we design doubly linked list Lf1|Dom f1\Dom f2
.

Step 2. Applying algorithm 5 to doubly linked lists Lf2 and Lf1 ,

we design doubly linked list Lf2|Dom f2\Dom f1
.

Step 3. Applying algorithm 3 to doubly linked lists

Lf1|Dom f1\Dom f2
and Lf2|Dom f2\Dom f1

,

we design doubly linked list Lf1⊞f2 .

Estimations for time complexity of algorithms 3 and 5 (i.e. theo-
rems 3 and 5, and corresponding corollaries) imply that the following
estimations for time complexity of algorithms 6 and 7 hold.

Theorem 6. For any nominative sets f1, f2 ∈ FV,A time complexity
for each of algorithms 6 and 7 is

T = O((length(Lf1)+length(Lf2))(log |V |+log |A|)) (|V | → ∞). (32)
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Corollary 6.1. For any nominative sets f1, f2 ∈ FV,A the following
estimation of time complexity for each of algorithms 6 and 7 is true

T = O(|V |(log |V |+ log |A|)) (|V | → ∞). (33)

Corollary 6.2. Let |V | → ∞. If either |A| = o(|V |) , or |A| = O(|V |),
then for any nominative sets f1, f2 ∈ FV,A the following estimation of
time complexity for each of algorithms 6 and 7 is true

T = O(|V | log |V |) (|V | → ∞). (34)

Corollary 6.3. Let |V | → ∞. If either |V | = o(|A|), or |V | = O(|A|),
then for any nominative sets f1, f2 ∈ FV,A the following estimation of
time complexity for each of algorithms 6 and 7 is true

T = O(|A| log |V |) (|V | → ∞). (35)

The obtained results justify the factor, that in the case of linear
ordering on the set of names, all basic set-theoretic operations over
nominative sets, presented by doubly linked lists with ordering of names
in increasing strength, can be implemented by fast algorithms. The
same is also true for operations of inserting elements in any nominative
set, and of deleting elements from any nominative set.

Above, it has been investigated the case, when data are elements of
an abstract set. Obviously that these results can be easily elaborated
in detail for any case, when this or that structure is defined on the set
of data. One of such examples will be considered in the next section.

4 Applications to table algebra

Relational databases are widely used in modern software systems. It is
well known, that any relational database deals, in essence, with finite
relations, defined on some Cartesian products [17].

Mathematical model, intended for developing and theoretic analysis
of relational databases, as well as of associated query languages, is some
table algebra. It can be characterized as follows.
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For any relation its scheme is defined, which is a set of attributes.
Any line of a relation is defined as a set of ordered pairs (attribute,
value of attribute), where attribute transverses all values according to
the scheme of the relation. A relation itself is defined as a set of lines.
Proceeding from this set-theoretic representation, formal theory of re-
lations can be implemented easily into table algebra. Thus, analysis in
detail of set-theoretic operations over tables is essential for any table
algebra.

Unfortunately, in investigation of table algebras all efforts are bent
on development of descriptive theory, while there are practically no re-
searches devoted to algorithms elaboration and analysis of their com-
plexity.

Due to this factor, it is worth to point the paper [18], where there
have been investigated worst-case and average-case time complexity
of algorithms implemented for execution of three main set-theoretic
operations over tables, namely: intersection, union and difference.

It is worth to note that in [18] time complexity is considered as the
number of elementary steps. As the result, all estimations, established
in [18], are typical estimations, that can be established for set-theoretic
operations on abstract sets.

Let us consider, how the results, established in Section 3, can be ap-
plied effectively to the analysis of complexity of set-theoretic operations
in table algebras.

Let A = {Ai|i = 1, . . . , k} be the set of all attributes that are
used in the given table algebra. The active domain of an attribute
Ai (i = 1, . . . , k) is denoted by DomAi. It is evident that any set
DomAi (i = 1, . . . , k) can be linearly ordered. Due to this factor, we
fix some linear ordering <Ai

on each set DomAi (i = 1, . . . , k). Thus,
each Cartesian product Di1,...,il = DomAi1 × · · · × DomAil , where
ij ∈ {1, . . . , k} for all j ∈ {1, . . . , l}, is linearly ordered by lexicographic
order ≺i1,...,il .

The following two approaches, based on the theory of nominative
sets with linearly ordered set of names, can be applied in table algebras
for implementing set-theoretic operations on the set of relations of the
form ρ ⊆ Di1,...,il , where i1, . . . , il ∈ {1, . . . , k} are fixed integers.
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Approach I. It is supposed that the following two assumptions hold:
1) the set of all nominative sets is FDi1,...,il

,{1};

2) each nominative set fρ ∈ FDi1,...,il
,{1} is presented by doubly

linked list Lfρ with ordering of names in the increasing strength.
Under these assumptions all algorithms, designed in Chapter 3, can

be applied directly for implementation in table algebras operations ∩,
\, ∪, ⊕, ⊲, and ⊞, defined by formulae (1)-(6). Moreover, the following
theorem holds

Theorem 7. For any nominative sets fρ1 , fρ2 ∈ FDi1,...,il
,{1}, presented

by doubly linked lists with ordering of names in the increasing strength,
for each of algorithms 1-7, implemented for execution of operations ∩,
\, ∪, ⊕, ⊲, and ⊞, defined by formulae (1)-(6), the worst-case time
complexity under logarithmic weight is

T = O((|ρ1|+ |ρ2|) log
l

∏

j=1

|DomAij |) (|V | → ∞). (36)

It is worth to point out that in the considered case operations ∪
and ⊕ are usual total set-theoretic operations on the set FDi1,...,il

,{1}.

Approach II. It is supposed that the following three assumptions
hold:

1) the set of all nominative sets is FV,Di1,...,il
, where V is some set

of names, ordered by linear ordering relation <V ;
2) each relation ρ ⊆ Di1,...,il is presented by the nominative set

fρ ∈ FV,Di1,...,il
, such that the following condition holds:

(v1, (a
(1)
i1

, . . . , a
(1)
il

)), (v2, (a
(2)
i1

, . . . , a
(2)
il

)) ∈ fρ & v1 <V v2 ⇒

⇒ (a
(1)
i1

, . . . , a
(1)
il

)�i1,...,il(a
(2)
i1

, . . . , a
(2)
il

),

i.e. each nominative set fρ ∈ FV,Di1,...,il
is a nondecreasing (possibly

partial) mapping from V to Di1,...,il ;
3) each nominative set fρ ∈ FV,Di1,...,il

is presented by doubly linked
list Lfρ with ordering of names in the increasing strength.

Under these assumptions all algorithms, designed in Chapter 3, can
be applied directly for implementation in table algebras operations ∩,
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\, ∪, ⊕, ⊲, and ⊞, defined by formulae (1)-(6). Moreover, the following
theorem holds

Theorem 8. For any nominative sets fρ1 , fρ2 ∈ FV,Di1,...,il
, presented

by doubly linked lists with ordering of names in the increasing strength,
for each of algorithms 1-7, implemented for execution of operations ∩,
\, ∪, ⊕, ⊲, and ⊞, defined by formulae (1)-(6), the worst-case time
complexity under logarithmic weight is

T = O((|ρ1|+ |ρ2|)(log |V |+ log

l
∏

j=1

|DomAij |)) (|V | → ∞). (37)

It is worth to note that in the considered case operations ∪ and
⊕ are partial operations on the set FV,Di1,...,il

. For table algebras this
factor means that some of these or the others additional conditions are
associated with the set V of names.

Besides, if we take into account the factor, that each nominative
set fρ ∈ FV,Di1,...,il

is a nondecreasing (possibly partial) mapping from
V to Di1,...,il , then we can speed-up execution of algorithms 1-7.

5 Conclusions

In the given paper it has been formed a strong base, sufficient for
effective implementation of application-oriented algorithms theory in
theory of nominative sets. Developing these results for hierarchical
types of data, multidimensional arrays, lists, trees, algebraic data types,
etc. forms some trend for future research.
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Printings of the 17th–18th Centuries
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Ludmila Malahov Tudor Bumbu Ștefan Ungur

Abstract
The paper describes in details recognition of Romanian texts

of the 17th–18th centuries printed in the Cyrillic script, and their
conversion to the modern Latin script. The challenges are dis-
cussed, and solutions of problems are proposed.
The elaborated technology and a tool pack include historical

alphabets, sets of recognition patterns, and spelling dictionaries
in the corresponding orthographies for ABBYY Finereader. In
addition, virtual keyboards, fonts, a transliteration utility, and
the user manual were developed.
This permits successful recognition of old Romanian texts in

the Cyrillic script. Transliteration to the Latin script grants no-
barrier access to historical documents.

1 Introduction
OCR of old books is a sophisticated task. The problems arose from
peculiarities of historical typography, non-standardized spelling, and
physical degradation of the documents due to their aging and usage.

This paper describes digitization of the Romanian texts of the 17th–
18th centuries that were printed in the old Romanian Cyrillic script
(RC). We need to OCR them, to present the recognized text in the
fonts of the corresponding period, to transliterate then to the modern
Romanian Latin script (MRL). Sometimes the reverse transliteration
is also useful. We use the existing programs and develop our own pack
of additional programs and data.
©2017 by S.Cojocaru, A.Colesnicov, L.Malahov, T.Bumbu, Ș.Ungur
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In the literature, we met the opinion that commercial software like
ABBYY Finereader (AFR) is not fully suitable for OCR of old print-
ings. It is so due to the big variability of old fonts, and because such
software is internally trained with modern fonts and can’t be fully re-
trained by users. A good introduction into the problem and further
references can be found in [1, p. 2−4]. Authors of [1] prefer free “fully
trainable” OCR tools like Tesseract or Ocropus.

Old Cyrillic fonts, especially of the selected epoch, are much less
variable than Latin ones. The usage of the Cyrillic script is connected
with the Slavonic liturgical language of the Orthodox church. For exam-
ple, Orthodox Serbians use the Cyrillic alphabet while Catholic Croats
speaking the same language use the Latin one. Therefore, the Cyrillic
alphabet is used not so widely. Additionally, the Latin alphabet exists
in blackletter and Antiqua typefaces that adds variability.

Our approach is based on the use of AFR. We produced sets of
annexes to AFR containing templates for recognition collected after
OCR training, alphabets, and spelling dictionaries (word lists).

We found that successful OCR supposes usage of many such sets
corresponding not only to the epochs of Romanian Cyrillic printing but
even to the specific typographies. It means that the said variability
shows itself up but doesn’t prevent obtaining good results with AFR.

It is possible that AFR work for old Cyrillic fonts better than for
Latin ones due to some subtle similarity of old and modern Cyrillic
fonts.

2 Digitization and its Problems
Romanian printing of the 16th, 17th and a big part of the 18th centuries
used the 47-letter Romanian Cyrillic script and thoroughly imitated
look and feel of the manuscripts.

We take as our study case the New Testament of Belgrad printed in
1648. Belgrad was a typography site; now this Romanian city is named
Alba-Iulia.

This book of 682 pages is the very first edition of the full text of
New Testament in the Romanian language. Till now we processed the
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Gospel according to Matthew (78 pages) and continue the work.
One of the most common peculiarities of these printings is the po-

sitioning of some letters above the precedent letter (Fig. 1; a: scan; b:
text in RC; c: the same in MRL; d: currently used Romanian variant;
e: English, King James version). In manuscripts, this was made regu-
larly to save place. Almost each consonant could be placed overline. At
word end, the following ь was omitted; sometimes, the following vowel
was omitted. This manner of writing was adopted from the Church
Slavonic manuscripts [2].

a

b ... Ірѡд, че пре алтѫ кале сѫ сѫ ꙟтоаркѫ ла цара лѡрь.
c ... Irod, ce pre altă cale să să întoarcă la țara lor.
d ... Irod, pe altă cale s-au dus în țara lor.
e ... Herod, they departed into their own country another way.

Figure 1. Overline letters in RC in 1648 (part of Matthew 2:12)

Another peculiarity is the usage of standard abbreviations for se-
lected words like for Іисꙋсъ Христосъ (Jesus Christ). These ab-
breviations are composed from several letters and overline signs.

The third peculiarity is denoting numbers by letters with overline
signs, like for 5.

The fourth is the stress signs. They were different for vowels at the
word end as in (afla, Eng. learn) and in another position as in

(toate, all). A special sign was set over each vowel at the word
beginning as in the same ; this sign replaced the stress if it was the
case as in (alte, other).

To OCR these peculiarities, we need to train these combinations as
ligatures, a feature available with AFR. Fig. 2 shows several trained
ligatures in the form of AFR recognition templates (patterns). See [3]
for further examples of recognition patterns.

There are more peculiarities, for example, writing several words
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Figure 2. Examples of AFR patterns for ligatures of the 17th century

in one (mostly prepositions and articles with nouns, adjectives, and
numerals), writing in lowercase only, etc.

A big problem is the absence of the spelling dictionary for the old
Romanian language. It is different from the modern one, both due to
the language development, and due to absence of fixed spelling rules;
some words may be spelled differently in different epochs and in differ-
ent places.

The importance of the proper dictionary can be illustrated by the
following experiment. We took one page from a book of the late 18th
century. Recognition with training but without dictionary resulted in
13% of erroneous words. Then we created a list of words from the
page and repeated OCR with only 5% of erroneous words. More pages
from the same book but with the dictionary restricted by this one page
showed the rate of erroneous words of 8.5%.

We used a spelling dictionary created manually after OCR and par-
tial correction of the result, of approx. 1.600 words for the 17th century
at the moment.

To work with old Romanian texts more comfortably, a virtual key-
board was developed (Fig. 3).
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Figure 3. Virtual keyboard for RC

We implemented a tool pack collecting the tools necessary to digitize
the Romanian Cyrillic printings [4]. It includes: AFR add-ons stored
from AFR during training with alphabets, OCR patterns, and spelling
dictionaries; the AAConv transliteration utility; virtual keyboards; a
shell for selection and uploading the proper add-on into AFR; font
covering rare Cyrillic glyphs; user manual.

Developing this approach, we found that the OCR works with bet-
ter accuracy when we train and use separate templates not only for
different epochs of Romanian historical typography but for each ty-
pography or a group of typographies that had used, presumably, fonts
from the same source.

3 Transliteration to the Latin Script
Once the scanned image was processed and the editable and intelligible
Cyrillic text was obtained, the transliteration process takes place.

Here is an example of recognized Romanian text (17th century):

картѣ деꙟтъи алꙋи Самоил ,17,стих 35. нече нꙋмаи съле
стръжꙋѩскѫ ши съле пъꙁѣскѫ зꙋа ши ноаптѣ,кꙋмь пъꙁїѦ
Ѩковь патриѩрхꙋлъ ѡиле лꙋи Лаван. бытїе, 31 стих 40
нече съле цїе ꙟкисе ꙟстаꙋль

As we got the editable text, we can apply conversion rules to get
the text in MRL. The conversion rules can be “one-to-one” like а→a
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or т→t, and “one-to-many”. Rules may be context dependent. Ex-
amples: ꙟ→îm (ꙟпърат→împărat); ꙟ→în (ꙟдоѧлъ→îndoială); ꙟ→î
(ꙟнсъ→însă). As we see, there are three different cases of conversion
for letter ꙟ, and just a single one for а and т.

See Tab. 1 for examples of context dependent rules.

Table 1. Examples of RC→MRL rules
Cyrillic Latin

ꙟ îm before б, п
ꙟ î before м, н
ꙟ în all other cases
ѧ a at the beginning of word; after ї, ц
ѧ e after ч
ѧ ea after another consonant; at the end of word
ѣ e after ч; exception чѣ→cea
ѣ ea all other cases

All these and many other rules were inplemented in the AAConv
utility. Once opened or inserted in AAConv, the text is automatically
converted to the modern Romanian Latin script. Below we present the
previous Romanian Cyrillic text transliterated to MRL:

cartea deîntăi alui Samoil ,17,stih 35. nece numai
săle strâjuiască şi săle păzească zua şi noaptea,cum
păzea Iacov patriarhul oile lui Lavan. bîtie, 31 stih
40 nece săle ție închise

The transliteration utility has many settings and features accessible
by the user. One of the functionalities we developed gives the possibility
to convert a Cyrillic text in two different modes:
Transliteration with actualization. In addition to the conversion

to the Latin script, some words and archaic letters will be changed
to the modern ones to allow the text to be more understandable.
At the same time it takes away some specifics of the period. For

222



On Digitization of Romanian Cyrillic Printings…

example, the old word nece will be replaced by its modern version
nici.

Transliteration without actualization. The text will be converted
to the MRL preserving archaic words and syntactic structures, as
we saw above.

4 Reverse transliteration
AAConv gives also the possibility of backward transliteration, namely,
MRL→RC. The conversion rules for the backward transliteration are
“one-to-one”, “many-to-one”, and “one-to-many”, and can be context
dependent.

This feature was added because there are several old books that
were manually transliterated in MRL. Applying the reverse translit-
eration, we can use them to replenish the dictionaries (word lists) for
AFR, to evaluate OCR result, and to present the text in its original
form permitting to fix text authenticity.

One-to-one rules are obvious, being mostly the reversed one-to-one
rules of the direct transliteration. Examples: u→ꙋ (lucru→лꙋкрꙋ);
o→о (proporție→пропорцїе), etc.

Some one-to-one rules are context dependent. There are also rules
of the kind “many-to-one”, and (rarely) “one-to-many”. Examples of
such rules are presented in Tab. 2.

We present below an example of MRL→RC transliteration. We do
not use overline signs in the transliteration.

Bine au înțeles acestea cei Crai sfinți de demult, că
nui numai aceasta deregătoria lor, să poarte grije
de oamenii ce sînt sub biruința lor numai trupește,
ce mai vărtos să aibă şi săsă vestească că cuvăntul
lui Dumnezău întru Ei, din casele să știe voia lui
Dumnezeu şi să înțeleagă lucrul spăseniei lor.

Бине аꙋ ꙟцелес ачестѣ чеи Краи сфинци де демꙋлт, къ нꙋи
нꙋмаи ачѣста дерегъторїа лор, съ поарте гриже де оаменїи че
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Table 2. Examples of MRL→RC context dependent rules
Latin Cyrillic
z ꙁ if preceded by ă
z ѯ if surrounded by u from both sides
z ѕ if preceded by e and succeeded by i or ă
z з in all other cases
i иѩ if preceded by r and succeded by a
i ѧ if preceded by a is at the end of the word
i ѩ if preceded by a and succeeded by r or c
i ї if succeeded by one of the vowels o, e, ă
i и in all other cases

сънт сꙋпт бирꙋинца лор нꙋмаи трꙋпѣще, че маи въртос съ
аибъ ши съсъ вестѣскѫ къ кꙋвънтꙋлъ лꙋи Дꙋмнезъꙋ ꙟтрꙋ
Eи, дин каселе съ щїе воїа лꙋи Дꙋмнезѣꙋ ши съ ꙟцелѣгъ
лꙋкрꙋл спъсенїеи лор.

5 Conclusion
We developed a tool pack containing, in particular, OCR templates
and other additions to AFR to recognize Romanian Cyrillic printings of
the 17th–18th centuries. We found that better results can be achieved
when we use separate OCR templates for each typography. For further
processing, we developed the transliteration utilities that convert the
recognized text to the Latin script and vice versa. The more ambitious
task for the future is the exact electronic reproduction of look and feel
of the original text with all overline letters and signs.

With our Romanian colleagues, we use the recognized historical
texts and the collected dictionaries in the development of several
projects: a diachronic corpus; lexicon for a POS-tagger; PROIEL
(Pragmatic Resources in Old Indo-European Languages), etc.
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Comparison of the maximal inaccuracies for

two experiments

Kiril Kolikov, Radka Koleva, Yordan Epitropov, Andrei Corlat

Abstract

In this paper we refine and generalize some previous our re-
sults on the inaccuracy (error) theory. We define conditions,
which characterize different types of functions. Via these functi-
ons an indirectly measurable variable Y can be analytically repre-
sented. We also present criteria for comparison of the maximal
absolute and relative inaccuracies of the indirectly measurable
variable Y in the first and in the second order for two experi-
ments. We correct some of our previous conclusions regarding
the application of the dimensionless scale for evaluation of the
quality of an experiment. Furthermore we give two numerical
contra examples.

Keywords: indirectly measurable variable; maximal ab-
solute inaccuracy; maximal relative inaccuracy; dimensionless
scale.

1 Introduction

Let an indirectly measurable variable Y be represented as a function
of a finite number of directly measurable variables X1,X2, ...,Xn, i.e.
Y = f (X1,X2, ...,Xn) and let f be a differentiable function of each of
its real variables. If in an experiment we have k number of observations
xi1, xi2, ..., xik of the directly measurable varialbe Xi (i = 1, 2, ..., n),

then it is assumed that the arithmetic mean x̄i = 1

k

k
∑

m=1

xim is the

most probable (the most reliable) value of Xi. We denote |∆xim| =
|xim − x̄i| , i = 1, 2, ..., n, m = 1, 2, ..., k.

c©2017 by K. Kolikov, R. Koleva, Y. Epitropov, A. Corlat
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The value of the maximal absolute inaccuracy ∆1Y of an indirectly
measurable variable Y according to the classical method is

∆1Y =
1

k

k
∑

m=1

n
∑

i=1

∣

∣

∣

∣

∂f

∂Xi
(x1m, ..., xnm)

∣

∣

∣

∣

|∆xim|, (1)

and the value of the maximal relative inaccuracy of Y is ∆1Y
Y , where

∆1Y is defined by (1) and

Y =
1

k

k
∑

m=1

|f (x1m, ..., xnm)|, (2)

[6, 7].
The value of the maximal absolute inaccuracy ∆1Y according to

our method [1] is

∆1Y =

n
∑

i=1

Ai |∆Xi|, (3)

where

Ai =
1

k

k
∑

m=1

∣

∣

∣

∣

∂f

∂Xi
(x1m, ..., xnm)

∣

∣

∣

∣

, i = 1, ..., n (4)

and

|∆Xi| =
1

k

k
∑

j=1

|∆xij| , i = 1, 2, ..., n. (5)

The value of the maximal relative inaccuracy ∆1Y
Y according to our

method [2, 3] is

∆1Y

Y
=

n
∑

i=1

Bi

∣

∣

∣

∣

∆Xi

Xi

∣

∣

∣

∣

, (6)

where

Bi =
1

k

k
∑

m=1

∣

∣

∣

∣

xim
f (x1m, ..., xnm)

∂f

∂Xi
(x1m, ..., xnm)

∣

∣

∣

∣

, i = 1, ..., n (7)
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and
∣

∣

∣

∣

∆Xi

Xi

∣

∣

∣

∣

=
1

k

k
∑

j=1

∣

∣

∣

∣

∆xij
xij

∣

∣

∣

∣

, i = 1, 2, ..., n. (8)

We note, that in (4) and in (7)

∂f

∂Xi
(x1m, ..., xnm) and

xim
f (x1m, ..., xnm)

∂f

∂Xi
(x1m, ..., xnm)

are respectively the values of ∂f
∂Xi

and Xi

f
∂f
∂Xi

, calculated on the m-th
observation. Ai and Bi are the arithmetic means of these values for
m = 1, 2, ..., k.

In [4, 5] we denote the values of the maximal absolute inaccuracy

∆2Y and of the maximal relative inaccuracy ∆2Y
Y of second order of

Y = f (X1,X2, ...,Xn) respectively by

∆2Y =

n
∑

i,j=1

Aij |∆Xi| |∆Xj | and
∆2Y

Y
=

n
∑

i,j=1

Bij

∣

∣

∣

∣

∆Xi

Xi

∣

∣

∣

∣

∣

∣

∣

∣

∆Xj

Xj

∣

∣

∣

∣

(9)

where Aij and Bij for ∆2Y and ∆2Y
Y are defined as follows:

Aij =
1

k

k
∑

m=1

∣

∣

∣

∣

∂2f

∂Xi∂Xj
(x1m, ..., xnm)

∣

∣

∣

∣

, i, j = 1, 2, ..., n (10)

and

Bij =
1

k

k
∑

m=1

∣

∣

∣

∣

ximxjm
f (x1m, ..., xnm)

∂2f

∂Xi∂Xj
(x1m, ..., xnm)

∣

∣

∣

∣

, (11)

i, j = 1, 2, ..., n.

We note, that in (10) and in (11)

∂2f

∂Xi∂Xj
(x1m, ..., xnm) and

ximxjm
f (x1m, ..., xnm)

∂2f

∂Xi∂Xj
(x1m, ..., xnm)
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are respectively the values of ∂2f
∂Xi∂Xj

and
XiXj

f
∂2f

∂Xi∂Xj
, calculated at

the m-th observation. Aij and Bij are the arithmetic means of these
values for m = 1, 2, ..., k.

The maximum absolute inaccuracy ∆Y of an indirectly measurable
variable Y in the second degree of approximation, according to [4, 5],
is

∆Y = ∆1Y +
1

2
∆2Y, (12)

and the maximum relative inaccuracy ∆Y
|Y |

of Y in the second degree of
approximation is

∆Y

|Y | =
∆1Y

|Y | +
1

2

∆2Y

|Y | . (13)

In this paper we give some conditions that characterize some type
of functions. An indirectly measurable variable can be analytically
represented via these functions. Thus we obtain some necessary and
sufficient conditions for comparison of the values of the maximal in-
accuracies for two experiments. We correct some of our previous con-
clusions regarding the dimensionless scale application for evaluation of
the quality of an experiment. We show two numerical counterexamples.

2 Conditions that characterize different types

of functions by which an indirectly measura-

ble variable can be represented analytically

Theorem 1. If f (x1, ..., xn) is a function with domain Rn and there
exist the first partial derivatives of f in respect to all its variables, then
the following holds:

∂f

∂xi
= ai, ai ∈ R, i = 1, ..., n (14)

if and only if
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f (x1, ..., xn) = a1x1 + ...+ anxn + c, c, ai ∈ R, i = 1, ..., n. (15)

Proof. If (15) is true, then obviously (14) holds true.

Contrariwise, let (14) is true. Then from ∂f
∂xi

= ai it follows ∂f =
ai∂xi, ai ∈ R. Therefore

f = aixi + ci (x1, ..., xi−1, xi+1, ..., xn) , (16)

where ci (x1, ..., xi−1, xi+1, ..., xn) is a real function of x1, . . . , xi−1, xi+1,
. . . , xn.

We will prove that

f (x1, ..., xn) = a1x1 + ...+ aixi + ci (xi+1, ..., xn) , (17)

by induction on i, 1 ≤ i ≤ n.

Indeed, for i = 1 the equality (17) follows from (16). Assume the
equality (17) is true for i− 1 ≥ 1, i.e.

f (x1, ..., xn) = a1x1 + ...+ ai−1xi−1 + ci−1 (xi, ..., xn) . (18)

Since from (14) and (18) it follows ai =
∂f
∂xi

= ∂ci−1

∂xi
, then ∂ci−1 =

ai∂xi. Therefore

ci−1 (xi, ..., xn) = aixi + ci (xi+1, ..., xn) . (19)

As we substitute ci−1 (xi, ..., xn) from (19) in (18), then we obtain
the equality (17). Therefore formula (17) is proved by induction on i,
1 ≤ i ≤ n.

Let i = n. Then from (17) we have

f = a1x1 + ...+ anxn + c,

where c = cn ∈ R.

The theorem is prooved. ✷
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Theorem 2. If f (x1, ..., xn) is a function with domain Rn and there
exist the first partial derivatives of f in respect to all its variables, then
the following holds

xi
f

∂f

∂xi
= ki, ki ∈ R, i = 1, ..., n (20)

if and only if

f = cxk11 ...xknn , c, ki ∈ R+, i = 1, ..., n. (21)

Proof. Let (21) holds true. Then

xi
f

∂f

∂xi
=

xi kicx
k1
1 ...x

ki−1

i−1 xki−1

i x
ki+1

i+1 ...x
kn
n

cxk11 ...xknn
= ki,

i.e. (20) holds true.

Contrariwise, let (20) holds true. Let us denote y = f (x1, ..., xn).
Then from (20) it follows that dy

y = ki
xi
∂xi. We obtain ln |y| = ki ln |xi|+

ln |ci (x1, ..., xi−1, xi+1, ..., xn)|, where ci (x1, ..., xi−1, xi+1, ..., xn). Then

y = ±xkii ci (x1, ..., xi−1, xi+1, ..., xn) . (22)

We will prove by induction for i, 1 ≤ i ≤ n, that

y = ±xk11 ...xkii ci (xi+1, ..., xn) . (23)

Indeed for i = 1 the equality (23) is the proved formula (22). Let
us assume, that (23) holds true for i− 1 ≥ 1, i.e.

y = ±xk11 ...x
ki−1

i−1 ci−1 (xi, ..., xn) . (24)

From formulas (20) and (24) we have

ki =
xi
y

∂y

∂xi
=

xi x
k1
1 ...x

ki−1

i−1

∂ci−1

∂xi

xk11 ...x
ki−1

i−1 ci−1 (xi, ..., xn)
.
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Therefore we obtain the following formulas

∂ci−1

ci−1

=
ki
xi
∂xi, ln |ci−1| = ki ln |xi|+ ln |ci (xi+1, ..., xn)| ,

ci−1 = ±xkii ci (xi+1, ..., xn) .

We substitute the last formula in (23) and we get

y = ±xk11 ...xkii−1ci (xi+1, ..., xn) .

Thus formula (23) is proved by induction on i, 1 ≤ i ≤ n.
Let i = n. From (23) we have

y = ±xk11 ...xknn c,

where c = cn ∈ R.
The theorem is prooved. ✷

Theorem 3. If f = f (x1, ..., xn) is a second degree polynomial
with unknown quantities x1, ..., xn, represented in the form

f (x1, ..., xn) =
n
∑

i,j=1

aijxixj+
n
∑

i=1

aixi + a, aji = aij,

aj , ai, a ∈ R, (25)

then for each i, j = 1, ..., n the equality ∂2f
∂xi∂xj

= 2aij holds.

Proof. Let us denote f in the form

f (x1, ..., xn) =
n
∑

i=1

a2iix
2
i + 2

n−1
∑

i=1

n
∑

j=2

aijxixj+
n
∑

i=1

aixi + a.

Then
∂f

∂xi
= 2aiixi + 2

∑

j>i

aijxj + ai.

For j 6= i we have ∂2f
∂xi∂xj

= 2aij , and for j = i it follows ∂2f
∂xi∂xi

= 2aii.
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The theorem is prooved. ✷

Theorem 4. If the function f = f (x1, ..., xn) has the form

f = cxk11 ...xkii ...x
kj
j ...xknn , c, ki ∈ R, (26)

then for each i, j the following holds true:

xixj
f

∂2f

∂xi∂xj
=







kikj , if (i) j 6= i,
ki (ki − 1) , if (ii) j = i and ki 6= 1,
0, if j = i and ki = 1.

. (27)

Proof. If j 6= i, then the following equalities are true

xixj
f

∂2f

∂xi∂xj
=

xixj

cxk11 ...xknn
ckikjx

k1
1 ...xki−1

i ...x
kj−1

j ...xknn = kikj .

If j = i and ki 6= 1, then

x2i
f

∂2f

∂xi∂xi
=

x2i
cxk11 ...xknn

cki (ki − 1)xk11 ...xki−2

i ...xknn = ki (ki − 1) .

If j = i and ki = 1, then obviously the third part of (27) holds true. ✷

3 Some necessary and sufficient conditions for

comparison of the values of the maximal in-

accuracies for two experiments

1) Let ∆1Y and ∆1Ỹ be the maximal absolute inaccuracies of the first
order for two experiments, i.e.

∆1Y =

n
∑

i=1

Ai |∆Xi| , ∆1Ỹ =

n
∑

i=1

Ãi

∣

∣

∣
∆X̃i

∣

∣

∣
, (28)

where |∆Xi| and
∣

∣

∣
∆X̃i

∣

∣

∣
are defined from formula (5).
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1.1) If in (28) Ai = ∂f
∂xi

are constant values, i = 1, ..., n, then
according to formula (3)

∆1Y =

n
∑

i=1

Ai |∆Xi| , ∆1Ỹ =

n
∑

i=1

Ai

∣

∣

∣
∆X̃i

∣

∣

∣
. (29)

Thus obviously the following statement is true.
Criterion 1. If Ai = ∂f

∂xi
= const, i = 1, 2, ..., n, then the first

experiment of the maximal absolute inaccuracy of Y is more accurate
than the second one if and only if

n
∑

i=1

Ai

(∣

∣

∣
∆X̃i

∣

∣

∣
− |∆Xi|

)

≥ 0. (30)

Both experiments have equal accuracy if and only if

n
∑

i=1

Ai

(
∣

∣

∣
∆X̃i

∣

∣

∣
− |∆Xi|

)

= 0.

In this case for the inaccuracy of the experiments, calculated by the
classical way from (1) and (28) we have

∆1Y =
1

k

n
∑

i=1

k
∑

m=1

Ai |∆xim| =
n
∑

i=1

Ai

∣

∣∆X̄i

∣

∣ =

n
∑

i=1

Ai |∆Xi|.

Therefore this result match with our result from (29).
In particular, by n = 1 the first experiment is more accurate than

the second one if and only if |∆X1| ≤
∣

∣

∣
∆X̃1

∣

∣

∣
.

Both experiments have equal accuracy if and only if |∆X1| =
∣

∣

∣
∆X̃1

∣

∣

∣
.

As an example for this case we can consider the function from The-
orem 1

f (x1, ..., xn) =
n
∑

i=1

aiXi + c , ai, c ∈ R.

1.2) Let in (28) ∆X1, ...,∆Xn are constant values.
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Criterion 2. If ∆Xi = const (i = 1, 2, ..., n), then the first expe-
riment of the maximal absolute inaccuracy of Y is more accurate than
the second one if and only if

n
∑

i=1

(

Ãi −Ai

)

|∆Xi| ≥ 0. (31)

Both experiments have equal accuracy if and only if

n
∑

i=1

(

Ãi −Ai

)

|∆Xi| = 0.

2) Let ∆1Y
Y and ∆1Ỹ

Ỹ
be the maximal relative inaccuracies of the

first order for two experiments, i.e.
If Xi

f
∂f
∂Xi

= Bi (i = 1, 2, ..., n) are constant values, then according
to formula (6)

∆1Y

Y
=

n
∑

i=1

|Bi|
∣

∣

∣

∣

∆Xi

Xi

∣

∣

∣

∣

,
∆1Ỹ

Ỹ
=

n
∑

i=1

∣

∣

∣
B̃i

∣

∣

∣

∣

∣

∣

∣

∣

∆X̃i

X̃i

∣

∣

∣

∣

∣

, (32)

where
∣

∣

∣

∆Xi

Xi

∣

∣

∣
and

∣

∣

∣

∆X̃i

X̃i

∣

∣

∣
are defined from (8).

Criterion 3. If xi

f
∂f
∂xi

= const (i = 1, 2, ..., n), then the first ex-
periment of the maximal relative inaccuracy of Y is more accurate than
the second one if and only if

n
∑

i=1

|Bi|
(
∣

∣

∣

∣

∣

∆X̃i

X̃i

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∆Xi

Xi

∣

∣

∣

∣

)

≥ 0. (33)

Both experiments have equal accuracy if and only if

n
∑

i=1

|Bi|
(
∣

∣

∣

∣

∣

∆X̃i

X̃i

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∆Xi

Xi

∣

∣

∣

∣

)

= 0.

In particular, for n = 1 the first experiment is more accurate than

the second one if and only if
∣

∣

∣

∆X1

X1

∣

∣

∣
≤
∣

∣

∣

∆X̃1

X̃1

∣

∣

∣
. Both experiments have

equal accuracy if and only if
∣

∣

∣

∆X1

X1

∣

∣

∣
=
∣

∣

∣

∆X̃1

X̃1

∣

∣

∣
.
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As an example for this case we can consider the function from The-
orem 2

f (X1, ...,Xn) = cXk1
1 ...Xkn

n , c, ki ∈ R+ , i = 1, ..., n, k1 6= 0.

3) Let ∆2Y and ∆2Ỹ are the maximal absolute inaccuracies of the
second order of two experiments.

3.1) If ∂2f
∂Xi∂Xj

= Aij are constants, then according to formula (9)

∆2Y =
n
∑

i,j=1

Aij |∆Xi| |∆Xj | , ∆2Ỹ =
n
∑

i,j=1

Ai,j

∣

∣

∣
∆X̃i

∣

∣

∣

∣

∣

∣
∆X̃j

∣

∣

∣
. (34)

Criterion 4. If ∂2f
∂xi∂xj

= Aij = const (i, j = 1, 2, ..., n), then the

first experiment of the maximal absolute inaccuracy of the second order
of Y is more accurate than the second one if and only if

n
∑

i,j=1

Aij

(∣

∣

∣
∆X̃i

∣

∣

∣

∣

∣

∣
∆X̃j

∣

∣

∣
− |∆Xi| |∆Xj|

)

≥ 0. (35)

Both experiments have equal accuracy if and only if

n
∑

i,j=1

Aij

(
∣

∣

∣
∆X̃i

∣

∣

∣

∣

∣

∣
∆X̃j

∣

∣

∣
− |∆Xi| |∆Xj|

)

= 0.

As an example for this case we can consider the function from The-
orem 3

f (X1, ...,Xn) =
n
∑

i,j=1

aijXiXj +
n
∑

i=1

aiXi + a , aij , ai, a ∈ R.

3.2) Let ∆X1, ...,∆Xn are constant values and

∆2Y =
n
∑

i,j=1

Aij |Xi| |Xj | , ∆2Ỹ =
n
∑

i,j=1

Ãij |Xi| |Xj |.
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Criterion 5. If ∆Xi = const, (i = 1, 2, ..., n), then the first expe-
riment of the maximal absolute inaccuracy of the second order of Y is
more accurate than the second one if and only if

n
∑

i,j=1

(

Ãij −Aij

)

|∆Xi| |∆Xj| ≥ 0. (36)

Both experiments have equal accuracy if and only if

n
∑

i,j=1

(

Ãij −Aij

)

|∆Xi| |∆Xj| = 0.

4) Let ∆2Y
Y and ∆2Ỹ

Ỹ
are the maximal relative inaccuracies of the

second order of two experiments. If
XiXj

f
∂2f

∂Xi∂Xj
= Bij are constant

values, then from (9) we have

∆2Y

Y
=

n
∑

i,j=1

Bij

∣

∣

∣

∣

∆Xi

Xi

∣

∣

∣

∣

∣

∣

∣

∣

∆Xj

Xj

∣

∣

∣

∣

,
∆2Ỹ

Ỹ
=

n
∑

i,j=1

Bij

∣

∣

∣

∣

∣

∆X̃i

X̃i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆X̃j

X̃j

∣

∣

∣

∣

∣

. (37)

Criterion 6. If
xixj

f
∂2f

∂xi∂xj
= const (i = 1, 2, ..., n), then the first

experiment of the maximal relative inaccuracy of the second order of
Y is more accurate than the second one if and only if

n
∑

i,j=1

Bij

(
∣

∣

∣

∣

∣

∆X̃i

X̃i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆X̃j

X̃j

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∆Xi

Xi

∣

∣

∣

∣

∣

∣

∣

∣

∆Xj

Xj

∣

∣

∣

∣

)

≥ 0. (38)

Both experiments have equal accuracy if and only if

n
∑

i,j=1

Bij

(
∣

∣

∣

∣

∣

∆X̃i

X̃i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆X̃j

X̃j

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∆Xi

Xi

∣

∣

∣

∣

∣

∣

∣

∣

∆Xj

Xj

∣

∣

∣

∣

)

= 0.
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4 Counterexamples to the dimensionless scale

and improvement of its application

In [1] we considered ∆X1,∆X2, ...,∆Xn,±Y as a system of generalized
orthogonal coordinates. Then for n ≥ 2 we get an (n+ 1)-dimensional
Euclidean space, where (3) is an equation of a plane that passes through
the origin of the coordinate system.

Thus we take ε for sample plane in the space of the absolute in-

accuracy which represents an imaginary ideal perfectly accurate expe-
riment.

If α : ∆Y = A1∆X1 +A2∆X2 + ...+An∆Xn, then ε is determined
by A1 = A2 = ... = An = 0, i.e.

ε : ∆Y = 0.

In [2, 3] we considered the angle between the normal vectors
−→nα (A1, A2, ..., An,−1) of the plane α of the real experiment and
−→nε (0, 0, ..., 0,−1) of the palne ε. Then the value of the cosine

kα = cos∠ (−→nα,
−→nε) =

1
√

A2
1 +A2

2 + ...+A2
n + 1

(39)

of this angle can be chosen for a coefficient of accuracy in a dimen-
sionless scale, i.e. for a numerical characteristic of the quality of the
experiment.

Since kα = cos∠ (−→nα,
−→nε), then the scale for evaluating the quality

of the experiment is the interval [0, 1]. The value kα = 1 represents the
ideal perfectly accurate experiment and the value kα = 0 represents the
ideal absolutely inaccurate experiment. The conclusions we have made
in [1, 2, 3] regarding the application of the scale are not absolutely
correct. We will prove this with the following numerical examples,
applying the criteria from section 3.

Example 1) Let S = f (t) = gt be the distance that the uniformly
moving object passes with constant velocity v during time t. Thus f (t)
has the form from Theorem 1.

For the first experiment we choose t11 = 4, t12 = 2. Then t̄1 =
3, |∆t11| = 1, |∆t12| = 1, |∆t1| = 1. Since df

dt = v, then according to
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formula (4)

A1 =
1

2

2
∑

m=1

∣

∣

∣

∣

df

dt
(t1m)

∣

∣

∣

∣

=
1

2

2
∑

m=1

|v| = v.

From (3) we find the value of the maximal absolute inaccuracy for the
first experiment

∆1Y = ∆1f = A1 |∆t1| = v.1 = v.

For the second experiment we choose t̃11 = 3, 6, t̃12 = 2, 2. Then
t̄1 = 2, 9,

∣

∣∆t̃11
∣

∣ = 0, 7,
∣

∣∆t̃12
∣

∣ = 0, 7,
∣

∣∆t̃1
∣

∣ = 0, 7. From (4), since
df
dt = v, we calculate

A2 =
1

2

2
∑

m=1

∣

∣

∣

∣

df

dt
(t1m)

∣

∣

∣

∣

=
1

2

2
∑

m=1

|v| = v.

From (3) we find the value of the maximal absolute inaccuracy for the
second experiment

∆1Ỹ = ∆1f̃ = A2

∣

∣∆t̃1
∣

∣ = 0, 7v.

Since A1 = A2, then from formula (38) we have the following relations-
hip between the coefficients of accuracy:

k1 =
1

√

A2
1 + 1

=
1

√

A2
2 + 1

= k2,

i.e. regarding [1, 2, 3] we can conclude that both experiments have the
same accuracy. But

∆1Y = ∆1f = g > 0, 7g = ∆1Ỹ = ∆1f̃ .

Therefore the second experiment is more accurate than the first one.
This counterexample contradicts the conclusions in [1, 2, 3] for the
dimensionless scale.

From the necessary and sufficient conditions we have presented in
section 4, for A1 = A2, according to Criterion 1, it follows that the
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second experiment is more accurate than the first one, because
∣

∣∆t̃1
∣

∣ <
|∆t1|. Therefore Criterion 1 gives us more precise conclusion.

Example 2) Let S = f (t) = gt2

2
be the distance that free falling

object passes during time t (in vacuum) and g = 9, 8 m/s2 is the earth
gravitational acceleration. Thus f (t) has the form from Theorem 2.

For the first experiment we choose t11 = 2, t12 = 1, 6. Then
t̄1 = 1, 8, |∆t11| = 0, 2, |∆t12| = 0, 2 and |∆t1| = 0, 2. Since

df
dt = gt, then from formula (4) we find A1 = 1

2

2
∑

m=1

∣

∣

∣

df
dt (t1m)

∣

∣

∣
=

1
2

2
∑

m=1

|gt| = 1
2
g

2
∑

m=1

|t| = 1
2
g (2 + 1, 6) = 1, 8g. From formula (3) we cal-

culate the value of the maximal absolute inaccuracy for the first expe-
riment

∆1Y = ∆1f = A1 |∆t1| = 1, 8g × 0, 2 = 0, 36g.

For the second experiment we choose t̃11 = 1, 8, t̃12 = 1, 9. Then
t̄1 = 1, 85,

∣

∣∆t̃11
∣

∣ = 0, 05,
∣

∣∆t̃12
∣

∣ = 0, 05,
∣

∣∆t̃1
∣

∣ = 0, 05. From formula
(4) we find

A2 =
1

2

2
∑

m=1

∣

∣

∣

∣

df

dt
(t1m)

∣

∣

∣

∣

=
1

2

2
∑

m=1

|gt| = 1

2
g

2
∑

m=1

|t| =

=
1

2
g (1, 8 + 1, 9) = 1, 85g.

From formula (3) we find the value of the maximal absolute inaccuracy
for the second experiment

∆1Ỹ = ∆1f̃ = A2

∣

∣∆t̃1
∣

∣ = 1, 85g × 0, 05 = 0, 0925g.

Since A1 < A2, then from formula (39) we have the following relations-
hip between the coefficients of accuracy:

k1 =
1

√

A2
1 + 1

>
1

√

A2
2 + 1

= k2,

i.e. according to [2, 3] the value of the maximal absolute inaccuracy
∆1Y for the first experiment is more accurate than the value ∆1Ỹ of
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the second one. But

∆1Ỹ = ∆1f̃ = 0, 0925g < 0, 36g = ∆1Y = ∆1f.

Therefore we can conclude that the second experiment is more accurate
than the first one. This counterexample contradicts the conclusions in
[1, 2, 3] for the dimensionless scale.

Both examples show that the conclusions we have made in [1, 2, 3]
regarding the dimensionless scale and the sample plane in the spaces
of the absolute and relative inaccuracies, have to be improved.

For correct application of the dimensionless scale in [1, 3], we give
the following supplements.

Definition 5. We will say that the vector A = (A1, A2, ..., An)
is less than or equal to the vector B = (B1, B2, ..., Bn) (coordinate
by coordinate) and we will denote with Ā ≤ B̄, if Ai ≤ Bi for each
i = 1, 2, ..., n.

Let for fixed values of ∆X1,∆X2, ...,∆Xn for an experiment we
have two different forms for representation of the maximal absolute
inaccuracy ∆Y , i.e.:

∆1Y = A1∆X1 + A2∆X2 + ... + An∆Xn and ∆1Ỹ = B1∆X1 +
B2∆X2 + ...+Bn∆Xn.

Then obviously the following conclusion is true:
Theorem 6. For fixed values of ∆X1,∆X2, ...,∆Xn between two

experiments with planes α : ∆1Y = A1∆X1 +A2∆X2 + ...+An∆Xn

and β : ∆1Ỹ = B1∆X1 +B2∆X2 + ...+Bn∆Xn the more accurate is
that one, the normal vector of which is less than or equal to the other.

If there are two vectors A = (A1, A2, ..., An) , B = (B1, B2, ..., Bn)
and Ā ≤ B̄, then kα ≥ kβ and for the fixed ∆X1,∆X2, ...,∆Xn it
follows that ∆1Y ≤ ∆1Ỹ . However it is not true the statement that
we formulated in [1, 3], that from kα ≥ kβ it follows ∆1Y ≤ ∆1Ỹ .

Let us consider that the maximal absolute inaccuracy ∆Y has the
same representation ∆Y = A1∆X1+A2∆X2+...+An∆Xn for two pro-
vided experiments, i.e. the values of the coefficients A1, A2, ..., An are
fixed. Then obviously for different experiments with measured values
x11, x12, ..., x1n and x21, x22, ..., x2n of ∆X1,∆X2, ...,∆Xn the following
conclusion is true:
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Theorem 7. For the fixed values A1, A2, ..., An between expe-
riments with measured values x11, x12, ..., x1n and x21, x22, ..., x2n of
∆X1,∆X2, ...,∆Xn, the more accurate experiment is that one, the
vector of which is less than or equal (coordinate by coordinate) to
the other.

Thus, if x1 = (x11, x12, ..., x1n) , x2 = (x21, x22, ..., x2n) and x̄1 ≤
x̄2, then ∆1Y ≤ ∆1Ỹ . In this case the reverse statement is not true.

The most accurate experiment will be that one, where the values
of the variables and the normal vector (coordinate by coordinate) are
the least possible.

Analogical conclusions as Theorem 6 and Theorem 7 can be for-
mulated also for the maximal relative inaccuracy ∆Y

Y of an indirectly
measurable variable Y .

5 Discussion

The suggested by us method for determining the numerical values of the
maximal and relative inaccuracy of an indirectly measurable variable
is of great importance for every experimental science, in which the
studied processes can be modelled via functions. The values of the
maximal inaccuracies can be compared very easily when we have two
experiments.

6 Conclusion

In this paper we give necessary and sufficient conditions for comparison
of the values of the maximal inaccuracies for two experiments. We
consider some of the most common in the practice classes of functions.
We give numerical counterexamples regarding the introduced by us
dimensionless scale in [1, 2, 3] for evaluation of two experiments. We
also give some conditions for the correct application of the scale. Thus
we improve the conclusions we have made in [1, 2, 3].

Acknowledgement. We would like to thank Prof. PhD Todor
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