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Propositional inquisitive logic: a survey∗

Ivano Ciardelli

Abstract

This paper provides a concise survey of a body of recent work on
propositional inquisitive logic. We review the conceptual founda-
tions of inquisitive semantics, introduce the propositional system,
discuss its relations with classical, intuitionistic, and dependence
logic, and describe an important feature of inquisitive proofs.

Keywords: questions, inquisitive logic, dependency, intermedi-
ate logics, proofs-as-programs.

1 Introduction

Inquisitive semantics stems from a line of work which, going back
to [12], has aimed at providing a uniform semantic foundation for the
interpretation of both statements and questions. The approach was
developed in an early version, based on pairs of models, in [13], [16];
it reached the present form, based on information states, in [3], [9],
where the associated propositional logic was also investigated. An al-
gebraic underpinning for the inquisitive treatment of logical operators
was given in [19]. The foundations of the inquisitive approach have
been motivated starting from a language-oriented perspective in [11],
and starting from logic-oriented perspective in [7], [8].

The aim of this paper is to provide a short survey of the work done
on propositional inquisitive logic, drawing mostly on [3],[6],[8],[9]. More
precise pointers to the literature will be provided when discussing spe-
cific topics. We will start in Section 2 by showing at a general level how
questions can be brought within the scope of logic by means of a simple
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but fundamental shift in the way semantics is viewed. In Section 3, we
instantiate this general approach in the propositional setting, introduc-
ing propositional inquisitive logic. In Sections 4, 5, and 6, we examine
the connections of this logic to the propositional versions of classical
logic, intuitionistic logic, and dependence logic. In Section 7 we dis-
cuss inquisitive proofs and their constructive content. In Section 8, we
present an extension and a generalization of propositional inquisitive
logic. Section 9 wraps up and concludes.

2 Bringing question into the logical landscape

Traditionally, logical entailment captures relations such as the one ex-
emplified by (1): the information that Alice and Bob live in the same
city, combined with the information that Alice lives in Amsterdam,
yields the information that Bob lives in Amsterdam.

(1) Alice and Bob live in the same city
Alice lives in Amsterdam

Bob lives in Amsterdam

Inquisitive logic brings questions into this standard picture, broadening
the notion of entailment so as to encompass patterns which we might
write as in (2): the information that Alice and Bob live in the same
city, combined with the information on where Alice lives, yields the
information on where Bob lives.

(2) Alice and Bob live in the same city
Where Alice lives

Where Bob lives

Notice the crucial difference between the two examples: in (1) we are
concerned with a relation holding between three specific pieces of in-
formation. The situation is different in (2): given the information that
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Alice and Bob live in the same city, any given piece of information
on Alice’s city of residence yields some corresponding information on
Bob’s city of residence. We may say that what is at play in (2) are
two types of information, which we may see as labeled by the questions
where Alice lives and where Bob lives. Entailment captures the fact
that, given the assumption that Alice and Bob live in the same city,
information of the first type yields information of the second type.

The entrance of questions into the logical arena is made possible
by a fundamental shift in the way the semantics of a sentence is con-
strued. In classical logic, the meaning of a sentence is given by laying
out in what states of affairs the sentence is true; however, this truth-
conditional view does not seem suitable in the case of questions. In
inquisitive logic, by contrast, the meaning of a sentence is given by
laying out what information is needed in order for a sentence to be sup-
ported. Accordingly, sentences are evaluated relative to objects called
information states, which formally encode bodies of information.

Unlike truth-conditional approach, the support approach is appli-
cable to both statements and questions. To give concrete examples, a
statement like (3-a) is supported by an information state s if the in-
formation available in s implies that Alice lives in Amsterdam; on the
other hand, a question like (3-b) is supported by an information state
s if the information available in s determines where Alice lives.

(3) a. Alice lives in Amsterdam.
b. Where does Alice live?

This more general semantic approach comes with a corresponding no-
tion of entailment, understood as preservation of support: an entail-
ment holds if the conclusion is supported whenever all the premises
are. Assuming a natural connection between the truth-conditions of a
statement and its support conditions—namely, that a state supports a
statement iff it implies that the statement is true—this notion of entail-
ment coincides with the truth-conditional one as far as statements are
concerned. The novelty, however, lies in the fact that now, questions
can also participate in entailment relations. Thus, for example, we can
indeed capture the pattern in (2) as a case of logical entailment. To
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see this, suppose an information state s supports the premises of (2):
this means that the information available in s implies that Alice and
Bob live in the same city, and also determines in which city Alice lives;
clearly, then, the information available in the state determines in which
city Bob lives, which means that the conclusion of (2) is supported.

The one discussed in this section is a very general approach to logic,
which can be instantiated by a range of concrete systems, differing
with respect to their logical language and to the relevant notion of
information states. Just as for classical logic, we have inquisitive logics
of different sorts: propositional, modal, first-order, etc. The remaining
sections of the paper provide an overview of the results obtained in the
most basic and best understood setting—the propositional one.1,2

3 Propositional inquisitive logic

The language of propositional inquisitive logic, InqB, is the proposi-
tional language built up from a set of atomic sentences and ⊥ by means
of conjunction, ∧, implication, →, and inquisitive disjunction,

>

.

φ ::= p | ⊥ | φ ∧ φ | φ→ φ | φ

>

φ

Negation and classical disjunction are defined by setting ¬φ := φ→ ⊥,
and φ ∨ ψ := ¬(¬φ ∧ ¬ψ). Formulas that contain no occurrence of

>

are called classical formulas.

In the propositional setting, an information state is construed as a
set of propositional valuations. The idea here is that a set s encodes
the information that the actual state of affairs corresponds to one of
the valuations in s. This means that if t ⊆ s, then t contains at least
as much information as s, and possibly more.

The clauses defining the relation of support relative to an informa-
tion state are the following ones:

1For discussion on the semantic foundations of the inquisitive approach, on the
role of questions in logic, and on the relation between truth and support, see [6], [8].

2The research in inquisitive modal logic and inquisitive first-order logic has also
been growing rapidly in these last few years. Recent work includes [4], [6], [10], [22].
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• s |= p ⇐⇒ w(p) = 1 for all w ∈ s

• s |= ⊥ ⇐⇒ s = ∅

• s |= φ ∧ ψ ⇐⇒ s |= φ and s |= ψ

• s |= φ

>

ψ ⇐⇒ s |= φ or s |= ψ

• s |= φ→ ψ ⇐⇒ ∀t ⊆ s : t |= φ implies t |= ψ.

A key feature of the semantics is persistency : if φ is supported by an
information state s, then it is also supported by any state t ⊆ s which
contains at least as much information. This means that as information
grows, more and more formulas become supported. In the information
state ∅, which represents the state of inconsistent information, every
formula is supported. This may be regarded as a semantic analogue of
the ex falso quodlibet principle.

4 Relations with classical logic

In inquisitive logic, the fundamental semantic notion is that of support
relative to an information state. However, the notion of truth relative
to a particular valuation w can be recovered by setting: w |= φ ⇐⇒
{w} |= φ. It is then easy to check that all classical formulas receive the
standard truth-conditions.

For some formulas, support at a state simply amounts to truth at
each world in the state. If this is the case, we say that the formula is
truth-conditional. More formally, φ is truth-conditional in case for all
states s: s |= φ ⇐⇒ ∀w ∈ s, w |= φ. We regard truth-conditional
formulas as corresponding to statements. The intuition is that there is
only one way for an information state s to support a statement: the
information available in s must imply that the statement is true.

As a matter of fact, large classes of formulas in InqB are truth-
conditional. In particular, all classical formulas are.

Proposition 1. All classical formulas are truth-conditional.
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This means that all classical formulas receive essentially the same treat-
ment as in classical propositional logic: their semantics is fully deter-
mined by their truth-conditions, which in turn are the standard ones.
This is reflected by the relation of entailment among these formulas.

Proposition 2 (Conservativity over classical logic).
Entailment restricted to classical formulas coincides with entailment in
classical propositional logic.

This means that the classical fragment of InqB can be identified for all
intents and purposes with classical propositional logic, and our logic
may be regarded as a conservative extension of classical propositional
logic with an inquisitive disjunction operator.

Formulas formed by means of inquisitive disjunction are typically
not truth-conditional. We take such formulas to correspond to ques-

tions. For instance, the formula p

>

¬p, abbreviated as ?p, corresponds
to the question whether p or not p. An information state can support
this formula in two different ways: either by implying that p is true, or
by implying that p is false. Similarly, the formula p

>

q can be regarded
as encoding the question whether p or q, which can be supported either
by establishing that p is true, or by establishing that q is true.3

Like in classical logic, formulas in inquisitive logic can be written
in a very constrained normal form: namely, any formula of InqB can
be written as an inquisitive disjunction of classical formulas.

Theorem 1 (Inquisitive normal form).
Recursively on φ, we can define a set R(φ) = {α1, . . . , αn} of classical
formulas, called the resolutions of φ, such that φ ≡ α1

>

. . .

>

αn.

Intuitively, we can regard the resolutions of a formula as capturing
the different ways in which the formula may be supported. If φ is a
classical formula, then it can be supported in only one way, by es-
tablishing that it is true; accordingly, we have R(φ) = {φ}. On the
other hand, if φ stands for a question, there will be multiple ways of

3An exclusive reading of the question whether p or q can be formalized as well,
by translating the question as (p ∧ ¬q)

>

(q ∧ ¬p).
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supporting the formula, and thus multiple resolutions; for instance, we
have R(?p) = {p,¬p}, and R(p

>

q) = {p, q}. Any formula in InqB can
thus be construed as offering a (possibly trivial) choice among classical
formulas.

We saw that entailments among classical formulas amount to entail-
ments in classical logic. On the other hand, we saw that our language
also includes formulas which can be regarded as questions. Instances
of entailment which involve such formulas capture interesting logical
relations that lack a counterpart in classical logic; notably, entailments
involving both question assumptions and question conclusions capture
relations of logical dependency among these questions, possibly within
the context of certain statements. For instance, the following entail-
ment captures the fact that, given the information that r ↔ p ∧ q, the
question ?r is completely determined by the questions ?p and ?q.

r ↔ p ∧ q, ?p, ?q |= ?r.

Summing up, then, propositional inquisitive logic can be regarded as a
conservative extension of classical propositional logic with an inquisi-
tive disjunction: while the classical fragment of the language coincides
with classical logic, by means of the operator

>

we can build formu-
las which express propositional questions, and capture dependencies
among such questions as special cases of the relation of entailment.4

5 Relations with intuitionistic logic

In the previous section, we saw that InqB can be viewed as a conser-
vative extension of classical logic if

>

is regarded as an additional,
non-standard connective. In this section we will show that if, on the
other hand, we regard

>

as the standard disjunction of the system,
then InqB turns out to be a special kind of intermediate logic, i.e., a
logic sitting in between intuitionistic and classical logic.

The first step in this direction is to notice that our semantics can
be regarded as a case of intuitionistic Kripke semantics on a particular

4For more on the relations between inquisitive logic and classical logic, see [6],[8].
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Kripke model, having consistent information states as its elements,
the relation ⊇ as accessibility relation, and the valuation function
V (p) = {s |w(p) = 1 for all w ∈ s}. Since Kripke semantics is sound
for intuitionistic logic, this implies that anything that can be falsified in
inquisitive logic can be falsified in intuitionistic propositional logic, IPL.
On the other hand, it is easy to see that singleton information states
{w} behave just like the corresponding propositional valuation w: this
ensures that anything that can be falsified in classical logic, CPL, can
also be falsified in inquisitive logic. If we identify a logic with the
corresponding set of validities, we can sum up our findings as follows.

Proposition 3. IPL ⊆ InqB ⊆ CPL

Thus, from this perspective InqB is a logic stronger than intuitionistic
logic, but weaker than classical logic. It is not, however, an interme-

diate logic in the usual sense of the term. This is because InqB is not
closed under the rule of uniform substitution: in particular, the double
negation law is valid for propositional atoms, but invalid when atoms
are replaced by questions: ¬¬p → p ∈ InqB, but ¬¬?p → ?p 6∈ InqB.
The conceptual point here is that atoms in InqB are not intended as
placeholders for arbitrary sentences, but only placeholders for arbitrary
statements. As we saw, statements are truth-conditional, and as such
they validate the double negation law, which is not generally valid. It
is worth emphasizing that this is not an accident, but a deliberate ar-
chitectural choice (see pp. 66-67 of [6]). This choice (i) enables InqB

to retain a classical fragment, which encodes the underlying logic of
statements; (ii) allows for a recursive decomposition of questions into
resolutions; and (iii) makes a neat proof system possible.

Besides this classical feature of atoms, inquisitive logic differs from
intuitionistic logic in that the space of information states has a special
structure, which renders valid some non-intuitionistic principles. The
best known of these is the Kreisel-Putnam scheme, first studied in [14]:

(KP) (¬φ→ ψ

>

χ) → (¬φ→ ψ)

>

(¬φ→ χ)

While this principle may look mysterious at first, it can be shown (see
p. 80 of [6]) to encode a fundamental relation between statements and
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questions: a statement only counts as resolving a question if it entails
a specific resolution to the question.

As shown in [9], the classicality of atoms and the validity of the
KP scheme, together with the underlying intuitionistic base, suffice to
characterize inquisitive propositional logic completely. More formally,
InqB can be characterized as the set of formulas obtained by extending
IPL with all instances of KP and with ¬¬p → p for all atoms p, and
closing the resulting set under modus ponens.

Theorem 2. InqB = IPL+ KP+ ¬¬p→ p

In fact, besides the Kreisel-Putnam logic axiomatized by the scheme
KP, there is a whole range of intermediate logics which, when ex-
tended with classical atoms, yield inquisitive logic: as shown in [9],
this range consists exactly of those intermediate logics which include
Maksimova’s logic [15] and are included in Medvedev’s logic of finite
problems [17], [18]. In particular, Medvedev’s logic is the largest stan-
dard intermediate logic included in InqB.

An important aspect of the relation between inquisitive logic and in-
tuitionistic logic can be observed based on the normal form result given
by Theorem 1. This result guarantees that any formula can be written
as an inquisitive disjunction of classical formulas. Since classical formu-
las behave as in classical logic, they are logically equivalent to their own
double negation. Thus, it follows that in InqB, any formula φ is equiva-
lent to an inquisitive disjunction of negations φDNT = ¬ψ1

>

. . .

>

¬ψn.
Now, the following theorem shows that the map (·)DNT is a translation
of inquisitive logic into intuitionistic logic.

Theorem 3. Φ |= ψ ⇐⇒ ΦDNT |=IPL ψ
DNT

This result can be extended to show that the Lindenbaum-Tarski alge-
bra for InqB is isomorphic to the sub-algebra of the Lindenbaum-Tarski
algebra for IPL consisting of equivalence classes of disjunctions of nega-
tions. Thus, while classical propositional logic can be regarded as the
negative fragment of intuitionistic logic, propositional inquisitive logic
can be regarded as the disjunctive-negative fragment of intuitionistic
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logic—the fragment consisting of disjunctions of negations.5

6 Relations with dependence logic

We mentioned above that in inquisitive logic, entailments involving
questions capture logical dependencies. The relation of dependency is
also the focus of recent work in the framework of dependence logic [23].
Dependence logic and inquisitive logic are tightly connected frame-
works, as discussed in detail in [7]. In the propositional setting, full
translations are possible between the two [25]. In both propositional
systems, formulas are interpreted relative to sets of assignments; while
propositional inquisitive logic enriches classical propositional logic with
questions, propositional dependence logic enriches it with formulas
called dependence atoms, written =(p1, . . . , pn, q), which capture the
fact that the truth-value of an atomic proposition q is determined by
the truth-values of other atomic propositions p1, . . . , pn. The semantics
of these atoms is given by the following clause:

s |= =(p1, . . . , pn, q) ⇐⇒ ∀w,w′∈s : if w(pi) = w′(pi) for all i,

then w(q) = w′(q)

It is easy to check that such a dependence atom can be expressed in
InqB by means of the formula ?p1 ∧ · · · ∧ ?pn → ?q. This is not an
accident: as shown in [7], in inquisitive logic, the fact that a question ν
is fully determined by questions µ1, . . . , µn is generally captured by the
implication µ1∧· · ·∧µn → ν. More precisely, the formula µ1∧· · ·∧µn →
ν is supported at a state s in case relative to s, any way of resolving
the questions µ1, . . . , µn determines a corresponding way to resolve the
question ν. What a dependence atom expresses is that the question ?q
is determined by the questions ?p1, . . . , ?pn, hence the representation
?p1 ∧ · · · ∧ ?pn → ?q.

Realizing that dependencies can be captured generally as implica-
tions between questions is interesting for various reasons. The first kind

5For more on the relations between propositional inquisitive logic, intuitionistic
logic, and intermediate logics, see [3] and [9].
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of reason is proof-theoretic: in inquisitive logic, all the connectives, in-
cluding those involved in a dependence formula, can be handled by
essentially standard inference rules. Thus, for instance, a dependency
?p → ?q may be formally proved to hold by assuming the question ?p
and trying to conclude the question ?q. In fact, this perspective brings
out the fact that the Armstrong axioms for functional dependency [2]
used in database theory are essentially nothing but the axioms of im-
plication in disguise—a fact that was first noted in [1].

Moreover, realizing that dependencies can be generally captured as
implications between questions allows us to see that dependence atoms
are a particular case of a more general pattern. Not just for atomic
polar questions of the form ?p, but for all sorts of questions µ1, . . . , µn, ν
expressible in the system—in fact, in any inquisitive system—the fact
that ν is determined by µ1, . . . , µn is expressed by µ1, . . . , µn → ν.

Finally, realizing that dependencies can be expressed as implica-
tions among questions allows us to use inquisitive logics to investigate
the logical properties of the notion of dependency. For example, con-
sider the valid entailment ?p, ?p ∧ ?q → ?r |= ?q → ?r. This captures
the fact that given the information whether p, from a dependency of ?r
on both ?p and ?q we can always compute a dependency of ?r on ?q.
If we think of a dependency as encoded by a function (cf. the notion of
dependence function in §2 of [6]), this amounts to the fact that we can
saturate one of the arguments of this function.6

7 Questions in proofs

An important feature of inquisitive logic is that it shows that questions
can meaningfully be manipulated in logical inferences, and that their
logical behavior is in fact rather familiar. In the propositional setting, a
natural deduction system for inquisitive logic is obtained by extending
a system for intuitionistic logic with the following two inference rules,
where α ranges over classical formulas, and φ,ψ over arbitrary formulas.

6For more on the relations between inquisitive and dependence logic, see [6], [7],
[26].
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α→ (φ

>

ψ)

(α→ φ)

>

(α→ ψ)
(split)

¬¬α

α
(dne)

The second of these rules captures the fact that classical formulas are
truth-conditional, and thus behave exactly as in classical logic. The
first—related to the Kreisel-Putnam scheme discussed above—captures
the interaction among statements and questions, stipulating that if a
statement resolves a question, it must do so by yielding a particular
resolution to it. The completeness of this system for InqB, proved in [6],
implies in particular that any valid propositional dependency can be
formally proved by making inferences with propositional questions in
this system. Thus, questions are interesting proof-theoretic tools: by
making inferences with them, we can establish the existence of certain
logical dependencies. Moreover, the following theorem, proved in [6],
shows that a proof of a dependency does not just witness that the
dependency holds, but actually encodes a method for computing it.

Theorem 4 (Constructive content of inquisitive proofs).
Suppose P is a natural deduction proof having assumptions φ1, . . . , φn
and conclusion ψ. Recursively on P , we can define a procedure fP
which, when given as input resolutions α1, . . . , αn of the assumptions,
outputs a resolution fP (α1, . . . , αn) of the conclusion with the property
that α1, . . . , αn |= fP (α1, . . . , αn).

What this theorem shows is that proofs in inquisitive logic have a spe-
cific kind of constructive content: they encode methods for turning
any given resolutions of the question assumptions into a resolution
of the conclusion which is determined by them. This is reminiscent
of the proofs-as-programs interpretation of intuitionstic logic, and it
shows once more that, while our logic coincides with classical logic on
statements, encoded by classical formulas, the logic of questions has a
constructive flavor to it.7

7For more on the role of questions in inference and on the constructive content
of inquisitive proofs, see [5], [6], [8].
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8 Extensions and generalization

In the last couple of years, the work on propositional inquisitive logic
presented in the previous sections has been extended in several di-
rections. First of all, it has been taken as the basis for logics that
go beyond the propositional realm, such as the modal logics given
in [4],[6],[10], and the first-order logics given in [6],[7]. Presenting these
richer logics goes beyond the scope of the present survey. However, in
this section I want to briefly discuss an extension and a generalization
of InqB, both due to Vı́t Punčochář, that remain within the domain of
propositional logic.

First, the system InqB is extended in [20] with a weak negation

connective, denoted ∼, which allows us to express the fact that a certain
formula fails to be supported at the evaluation state.

s |= ∼φ ⇐⇒ s 6|= φ

Evidently, the addition of this connective results in a system in which
support is no longer persistent: a formula ∼φ may be supported by a
state s, yet it may fail to be supported by a stronger state t ⊆ s. One
reason why such a system is interesting is that—while remaining within
the propositional inquisitive setting—it allows for the definition of for-
mulas ✸φ which express the fact that the state of evaluation can be
extended consistently to support φ. Interestingly, this logic is axioma-
tized by means of a proof system which allows for two different modes
of hypothetical proofs. In one mode, making the assumption φ corre-
sponds to supposing that the current information state supports φ. In
the other mode, it corresponds to supposing that the current informa-
tion state is extended so as to support φ. In this second mode, only
some formulas from outside the hypothetical context can be appealed
to when reasoning within the hypothetical context.

A generalization of propositional inquisitive logic is explored in
[21]. This paper defines an operation G which, given a logic Λ with
IPL ⊆ Λ ⊆ CPL, returns a corresponding logic G(Λ), called the global

variant of Λ. Logics of the form G(Λ) are called G-logics.8 Intuitively,

8Here, the logic Λ is assumed to be closed under modus ponens, but not neces-
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G(Λ) is a logic obtained by extending the

>

-free fragment of Λ with
an inquisitive disjunction connective. In Section 4, we saw that InqB

can be seen as arising from extending classical logic with inquisitive
disjunction. And indeed, we have InqB = G(CPL), which means that
inquisitive logic is the greatest of all G-logics. The smallest G-logic,
G(IPL), is the logic IPL+H axiomatized by extending intuitionistic logic
with the following scheme, where φ,ψ range over arbitrary formulas,
and α ranges over Harrop formulas, and closing under modus ponens.9

(H) (α→ φ
>

ψ) → (α→ φ)

>

(α→ ψ)

All other G-logics fall in between IPL+H and InqB, and share many of
the core features of inquisitive logic. All of them have the disjunction
property, meaning that a disjunction φ

>

ψ can only be valid if either
φ or ψ is valid. None of them is closed under uniform substitution.
All of them coincide with the base logic Λ in their

>

-free fragment,
and allow for an analogue of Theorem 1, stating that any formula is
equivalent to a disjunction α1

>

. . .

>

αn of classical formulas. Finally,
all G-logics can be characterized axiomatically in a uniform way: G(Λ)
amounts to the logic obtained by extending intuitionistic logic with the
scheme H and all

>

-free formulas which are valid in Λ, and closing this
set under modus ponens.

9 Conclusion

In this paper I have tried to give a bird’s eye view of propositional in-
quisitive logic, including its conceptual underpinnings, its main mathe-
matical features, and its relations to other logics. My hope is that this
survey, together with the pointers scattered through the paper, will
provide a valuable guide to the growing literature on the subject.

sarily under uniform substitution.
9A Harrop formula is defined as a formula in which disjunction is only allowed

to occur within the antecedent of an implication.
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[20] V. Punčochář, “Weak negation in inquisitive semantics,” Journal

of Logic, Language and Information, vol. 23, pp. 47–59, 2015.
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“The absence of the difference from a pot is

potness” – Axiomatic Proofs of Theorems

Concerning Negative Properties in Navya-Nyāya

Eberhard Guhe

Abstract

The present paper deals with an aspect of the Navya-Nyāya
“logic of property and location” (Matilal) in classical Indian
philosophy, namely the so-called “absences” (abhāva). Follow-
ing George Bealer (Quality and Concept, Oxford 1982) we may
regard these negative properties as the result of applying cer-
tain algebraic operations to property terms, which Bealer names
after their corresponding propositional or first-order operations
(“negation of a property”, “conjunction of properties”, “existen-
tial generalization of a property” etc.). Bealer introduces these
operations in his property theories in order to explain how the de-
notation of a complex property term can be determined from the
denotation(s) of the relevant syntactically simpler term(s). An
interesting case in Navya-Nyāya is the “conjoint absence” (ubha-
yābhāva), which can be regarded as the Sheffer stroke applied to
property terms.

We will show that an extension of Bealer’s axiomatic system
T1 may serve to prove some of the Navya-Naiyāyikas’ intuitions
concerning iterated absences, such as “the relational absence of
the difference from a pot”, “the relational absence of the rela-
tional absence of a pot” or “the relational absence of the rela-
tional absence of the relational absence of a pot”. The former,
e.g., was claimed to be identical to the universal “potness”.

Keywords: Indian logic, Navya-Nyāya, intensionality, property
theories, negation.
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1 Introduction

The present paper is about late Indian logic. More specifically, we will
deal with a type of logic which originated in a school of classical Indian
philosophy called “Navya-Nyāya” (“New Logic”?). Its early beginnings
date back to the 12th or 13th century with authors such as Śaśadhara
and Man. ikan. t.ha Mísra.1 Gaṅgeśa’s magnum opus Tattvacintāman. i
(14th century) was seminal for the development of the typical style of
the Navya-Naiyāyikas’ approach to logical and epistemological issues.
In order to define their concepts with utmost precision they designed
an ideal language, a kind of Leibnizian characteristica universalis based
on a canonical form of Sanskrit, which serves to explicate the objective
content of verbalized and unverbalized cognitions and to disambiguate
sentences formulated in ordinary Sanskrit. The school reached its peak
in the works of authors such as Raghunātha Śiroman. i (16th century),
Jagad̄ı́sa and Gādādhara (17th century) and remained active through
to the 19th century.

Navya-Nyāya logic was dubbed a “logic of property and location”
by Matilal. In order to demonstrate what this means, let us take an
empty pot as an example. Even though the pot is empty, Navya-
Naiyāyikas claimed that there are lots of items in this pot and also
all around it. The universals (jāti) “substanceness” (dravyatva) and
“potness” (ghat.atva), e.g., are in the pot and all around it. There are
some other properties attached to the pot, such as “being created”
(kr. tatva) and “being non-eternal” (anityatva), which were unlike uni-
versals not counted as elementary constituents of empirical reality in
Navya-Nyāya. As nominal properties (upādhi) they were nevertheless
considered to be part of the actual world. Navya-Naiyāyikas reified
universals and nominal properties, i.e., they treated them as individu-
als.

In the present paper we will focus on negative properties, the so-
called “absences” (abhāva), which were also regarded as individuals.
There are two types of absence. In order to illustrate them we can

1There is good reason to believe that the works of Udayana (11th century) already
mark the advent of Navya-Nyāya (cf. [13], p. 9f).
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again refer to our example of an empty pot. Since the pot is different
from a cloth, it is a locus of the “mutual absence” (anyonyābhāva) of
or the “difference” (bheda) from a cloth. Since there is no food in the
pot, it is also a locus of the “absence of food”. This is another type
of negative property. More accurately, it is called “relational absence”
(sam. sargābhāva), since this property characterizes a locus as being
unrelated to the absentee in terms of one of the relations enunciated in
the Navya-Nyāya system of ontological categories. Since food has no
“contact” (sam. yoga) with the pot, the latter is a locus of the “absence
of food having contact with the pot”.2 The specification of the relation
whereby an absentee fails to reside in a locus was regarded as crucial:
Although potness resides in a pot via a relation called “inherence” (sa-
mavāya), a pot is a locus of the absence of potness having contact with
a pot. A difference is construed as a denial of a further type of relation,
namely “identity” (tādātmya).

Let us look again at the properties “being created” and “being non-
eternal”. Navya-Naiyāyikas assumed that whatever is created is non-
eternal and vice versa. Therefore both properties were believed to share
the same loci, i.e., they were regarded as equi-locatable. Nevertheless,
they were considered to be distinct properties. This coincides with our
intuition, because we can imagine a logically possible world in which
something is created, but eternal.

What about potness and the absence of the difference from a pot?
Differences were assumed to be related to their loci via the so-called
“peculiar relation” (svarūpasam. bandha). So, we may understand this
absence as an absence whose absentee, i.e., the difference from a pot,
is unrelated to a locus in the sense that it has no peculiar relation to
that locus. But no matter in what way we specify the relation here,
the difference from a pot is always absent from every pot, since every
pot is not different from some pot (∀x(Px → ∃y(Py ∧ ¬(x ≠ y)))).
So, the relational absence of the difference from a pot resides in every
pot. On the other hand, every pot is a locus of potness. Hence, the
relational absence of the difference from a pot is equi-locatable with

2To be more precise, such an absence was said to be “limited” (avacchinna) by
contact.
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potness. In this case we might have the feeling that the expressions
“the relational absence of the difference from a pot” and “potness”
refer to the same property. The former expression seems to be a kind of
logically equivalent circumlocution of the latter. Actually, the Navya-
Nyāya logician Mathurānātha equates “potness” with “the relational
absence of the difference from a pot”.

The example of the properties “being created” and “being non-
eternal” shows that in the Navya-Nyāya logic of property and location
properties do not conform to an extensionality principle. Unlike sets,
which are identical if they have the same members, properties need not
be identical if they have the same loci.

On the other hand, the example of the properties “potness” and
“the relational absence of the difference from a pot” shows that an
appropriate formal reconstruction of the Navya-Nyāya logic of property
and location should be equipped with a criterion for the identification
of properties. An obvious idea is to model the Navya-Nyāya intuitions
about the identity of properties by regarding identity as tantamount
to necessary equivalence. This is expressed in [2] in the form of axiom
A8 as part of Bealer’s intensional property theory T1, as we will see
below.

2 Towards a formal reconstruction of the logic

of Navya-Nyāya

2.1 G. Bealer’s calculus T1 as a basic framework

T1 harmonizes well with the reification of properties in Navya-Nyāya,
since Bealer denotes properties by means of terms. For that purpose he
adds square brackets to a first-order language along with the following
formation rule:

If A is a formula and v1, . . . , vm (0 ≤m) are distinct variables, then
[A]v1...vm is a term.

A term of the form [A]v1...vm denotes . . .
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a) a proposition, if m = 0 (“that A”).

b) a property, if m = 1 (“being a v1 of which A is true”).

c) an m-ary relation, if m ≥ 2 (“the relation which holds between
v1,. . . , vm iff A applies to them”).

If Px translates into “x is a pot”, then [Px]x (which can be read as
“being an x such that x is P”) is an analytical expression for “potness”.
The function of the index variable x is to bind the free occurrence of x
in Px. The square brackets around Px indicate an intensional context.
If one substitutes an expression within the bracketed part by another
one which is extensionally equivalent, one might change the reference
of the property term. Such restrictions concerning the substitutability
of extensionally equivalent expressions generally distinguish intensional
from extensional logical systems.

The language of T1 includes also the modal operators ◻ and ◇,
but as defined symbols. An expression of the form ◻A is adopted as
a convenient abbreviation of expressions such as N[A], where N is a
one-place predicate expressing “. . . is necessary”. The semantic model
structure for T1 (cf. [2], p. 49) contains a condition which ensures that
there is only one necessary truth (cf. [2], p. 52f). Since [x = x] is a
trivial necessary truth for any proposition x, [A] can be identified with
it if A is necessarily true. Therefore it is possible to define the modal
operator ◻ simply by means of the square brackets: ◻A ∶↔ [A] = [[A] =
[A]] (A is necessarily true iff the proposition “that A” is identical to
a trivial necessary truth.) As usual, ◇A ∶↔ ¬ ◻ ¬A.

Bealer shows that we obtain a sound and complete calculus by
axiomatizing T1 in the following way (cf. [2], p. 58f):

A1: Truth-functional tautologies

A2: ∀viA(vi)→ A(t), where t is free for vi in A, i.e., no free occurrence
of vi in A lies within the scope of a quantifier or a sequence of
index variables in a term [. . . ]v1...vm which would bind a variable
occurring in t.

A3: ∀vi(A → B)→ (A → ∀viB), where vi is not free in A.
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A4: vi = vi

A5: vi = vj → (A(vi, vi) ↔ A(vi, vj)), where A(vi, vj) is a formula
that arises from A(vi, vi) by replacing some (but not necessarily
all) free occurrences of vi by vj, and vj is free for the occurrences
of vi that it replaces.

A6: [A]u1...up ≠ [B]v1...vq , where p ≠ q.

A7: [A(u1, . . . , up)]u1...up = [A(v1, . . . , vp)]v1...vp , where these two
terms are alphabetic variants.

A8: [A]u1...up = [B]u1...up ↔ ◻∀u1 . . .∀up(A↔ B)

A9: ◻A→ A

A10: ◻(A → B)→ (◻A → ◻B)

A11: ◇A→ ◻◇A

R1: If ⊢ A and ⊢ (A → B), then ⊢ B.

R2: If ⊢ A, then ⊢ ∀viA.

R3: If ⊢ A, then ⊢ ◻A.

A1 – A5 along with R1 and R2 constitute an axiomatization of
first-order predicate logic including identity. A6 – A8 determine how
to deal with the intensional abstracts in T1. A8 furnishes a criterion
for the identification of intensional abstracts. It captures the idea that
identity is tantamount to necessary equivalence. A9 – A11 and R3 are
the modal part of the axiomatic system S5 of propositional modal logic.

2.2 Extensions of T1 which function as alternatives to

set theories

2.2.1 The naive property abstraction in Navya-Nyāya

In order to prove some of the Navya-Naiyāyikas’ intuitions about neg-
ative properties we need an extension of this calculus. More specifi-
cally, we need a kind of comprehension principle for properties. The
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Navya-Naiyāyikas themselves formulated such a principle in the follow-
ing way: tattvavat tad eva. – “Anything which possesses the property
‘being that’ is that.” (Cf. [9], p. 36)

In order to see how this rule works one might replace the Sanskrit
word tat (“that”), which has the same function as a schematic vari-
able here, by words like ghat.a (“pot”). ghat.atvavān ghat.a eva means:
“Anything which possesses the property ‘potness’ is a pot.” Thus, the
tattvavat tad eva-rule can be regarded as a kind of counterpart of the
naive class abstraction in set theory:

a ∈ {x∣A(x)}↔ A(a), where a is free for x in A and vice versa.

This equivalence can be transformed into a formal version of the
naive property abstraction rule in Navya-Nyāya by replacing {x∣A(x)}
by the corresponding property term in T1, i.e., [A(x)]x. In order to
express that something possesses or is a locus of [A(x)]x we can use
Bealer’s ∆-relation, which functions as a counterpart of the ∈-relation
in set theory (cf. [2], p. 96). Thus, if we understand the tattvavat
tad eva-rule in the sense of an equivalence, we can formalize it in the
following way3:

(∗) a∆ [A(x)]x ↔ A(a), where a is free for x in A and vice versa.

2.2.2 A property-theoretic variant of Zermelo-Russell’s anti-
nomy and its Sanskrit equivalent

Navya-Nyāya logicians were not aware that a variant of Zermelo-
Russell’s antinomy can be derived from the tattvavat tad eva-rule
(cf. [5], p. 109 and [6], p. 144f):

Let us replace the word tat (“that”) in the tattvavat tad eva-rule by
asvavr. ttitva (“being not resident in itself”). This property can easily

3The present interpretation of the tattvavat tad eva-rule as an equivalence is
confirmed by Matilal, who characterizes the specific style of Navya-Nyāya texts
in the following way: “Simple predicate formulations, such as ‘x is F ’ are noted,
but only to be rephrased as ‘x has F-ness’ (where ‘F-ness’ stands for the property
derived from ‘F ’).” ( [11], p. 115).
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be formalized. If one admits x∆x as a formal equivalent of “x resides
in itself”, “being not resident in itself” can be expressed as [¬x∆x]x.
Let r be an abbreviation of this property.

(a) If r is resident in itself (i.e., if it is svavr. tti), then the property
“being not resident in itself” (asvavr. ttitva) resides in r. Therefore
(according to the tattvavat tad eva-rule) r is not resident in itself (i.e.,
it is asvavr. tti). (Contradiction!)

This is the formal counterpart of the argument:

r∆ r⇒ r∆ [¬x∆x]x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

can be substituted for a∆ [A(x)]x in (∗)

⇒ ¬r∆ r

(b) If r is not resident in itself (i.e., if it is asvavr. tti), then (according
to the tattvavat tad eva-rule) the property “being not resident in itself”
(asvavr. ttitva) resides in r. Therefore r is resident in itself (i.e., it is
svavr. tti). (Contradiction!)

This is the formal counterpart of the argument:
¬r∆ r
´¹¹¹¹¹¸¹¹¹¹¹¶

can be substituted for A(a) in (∗)

⇒ r ∆ [¬x∆x]x ⇒ r∆ r

(a) and (b) together yield the following variant of Zermelo-Russell’s
antinomy:

r∆ r↔ ¬r∆ r

2.2.3 An ST2-style extension of T1 (“T1+”) as an appropri-
ate framework for a formal reconstruction of Navya-
Nyāya logic

In order to modify (∗) in such a way that its paradoxical consequence
disappears we can try to imitate the strategies which were pursued
by the founders of set theories in order to safeguard the naive class
abstraction rule against Zermelo-Russell’s antinomy.
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Certain restrictions in standard systems of set theory would, how-
ever, interfere with ontological commitments in Navya-Nyāya. In ZF
(Zermelo-Fraenkel set theory), e.g., sets are the only objects in the do-
main of models of this system. However, since Navya-Naiyāyikas also
talk about non-class-like objects, such as, e.g., pots, one needs a system
which is similar to set theories with urelements.

Moreover, some logical arguments in Navya-Nyāya involve universal
properties such as nameability, which can be regarded as the analogue
of a proper class in set theory. Talking about proper classes like, e.g.,
{x ∣x = x} (“the universal class”) is admissible in NBG (Neumann-
Bernays-Gödel set theory), but not in ZF. Therefore a property adap-
tation of NBG with urelements is preferable as a system which may
serve to model logical inquiries concerning properties in Navya-Nyāya.

Mendelson incorporates urelements into the framework of NBG (cf.
[12], p. 297f). He uses lower-case Latin letters (x, y, z) as restricted
variables for sets, capital Latin letters (X,Y,Z) as restricted variables
for classes (i.e., for sets and proper classes) and lower-case boldface
Latin letters (x,y,z) as variables for classes and urelements alike (cf.
[12], p. 297). In the present property adaptation of set-theory the same
kinds of variables stand for set-like properties, class-like properties (i.e.,
set-like and properly class-like properties) and urelements, respectively.
Lower-case boldface Latin letters as index variables in property terms
refer to urelements and set-like individuals. Thus, [A(x)]x has to be
understood in the sense of “being an urelement or a set-like individual
x such that A is true of x”. Without this restriction [x = x]x might
pass for a property of all properly class-like properties. However, the
presumptive existence of such a property invokes a variant of Zermelo-
Russell’s antinomy in the present logical framework, as we will see
below.

A property version of the NBG comprehension axiom seems to be
still too restrictive, because it does not include impredicative instanti-
ations, which a Navya-Naiyāyika might not want to rule out (cf. the
example given in fn. 4). Since impredicative comprehension is admis-
sible in QM (Quine-Morse set theory, also known as “Morse-Kelley set
theory”), but not in NBG, the modification of (∗) should be patterned
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after the QM comprehension axiom. By means of the predicates Psx
(for “x is a set-like property”) and Ux (for “x is an urelement”) it can
be expressed in the following way:

(C) ∀x(Psx ∨ Ux → (x∆[A(y)]y ↔ A(x))), where x is free for y
in A and vice versa.4

There is still another constraint in standard systems of set theory
which should not be reproduced in a formal reconstruction of Navya-
Nyāya logic: It is commonly assumed that proper classes can never be
elements of classes, i.e., (even finite) collections of proper classes do
not exist.

In Navya-Nyāya, however, it is possible to apply the -tva-abstraction
technique repeatedly, so that we might create an expression like abhi-
dheyatvatva (“nameabilityness”), which denotes a property of name-
ability. The analogue of such a property in set theory would be the
singleton of the universal class, something which does not exist accord-
ing to standard systems of set theory. One might call it a “hyper-class”
( [4], p. 142).5

An appropriate set-theoretic system on which one can model a for-
mal reconstruction of Navya-Nyāya logic should endorse the existence
of hyper-classes, hyper-hyper-classes (i.e., classes of hyper-classes) etc.
In [4] (cf. p. 142f) the authors design such a system by combining

4Since (C) is impredicative, we can use it to formalize substitution instances of
the tattvavat tad eva-rule, such as: “x is a locus of the property ‘being a locus of
some property which is equi-locatable with nameability’ (abhidheyatvasamaniyata-

kim. ciddharmādhikaran. atva) iff x is a locus of some property which is equi-locatable
with nameability.” The symbolization key . . .

Nx: “x is nameable”
xLy: “x is a locus of y”
x ⩦ y: “x is equi-locatable with y”, i.e., ∀z(zLx↔ zLy)

. . . yields the following instantiation of (C):

∀x(Psx ∨ Ux→ (x∆[∃z(x∆z ∧ z ⩦ [Ny]y)]x ↔ ∃z(x∆z ∧ z ⩦ [Ny]y))
5The concept of a hyper-class should not be confounded with that of a hyperset

(i.e., a non-wellfounded set) in non-wellfounded systems of set theory (cf. [1], p. 6).

321



E. Guhe

the set theories of QM and ZF. The resulting system ST2 can serve
as a set-theoretic prototype of the Navya-Nyāya logic of property and
location if we additionally take into account urelements. In ST2 with
urelements Sx (read: “x is a set”) functions as a primitive monadic
predicate. The system comprises the following axioms:

(a) A sethood axiom: Every member of a set is a set or urelement.

(b) All the axioms of QM with urelements (with due regard to the
above-mentioned notational convention for variables).

(c) The axioms of ZF with all variables replaced by upper case vari-
ables.

This is a two-tier set theory with sets and urelements in the bot-
tom tier and classes in the upper tier. (c) warrants the existence of
hyper-classes, hyper-hyper-classes etc. in ST2. Due to the ZF-axiom
of pairing with upper case variables we can, e.g., pair the universal
class V with itself in order to obtain the hyper-class {V }. However,
a hyper-class which contains all proper classes does not exist in ST2.
Since there is no universal set in ZF, there is also no way to obtain a
corresponding universal hyper-class by means of the axioms in (c).6

Proper classes can be elements in ST2, but they should still be
distinguishable from sets. This is achieved by adding (a), which ensures
that proper classes cannot be elements of sets.

A property-theoretic counterpart of ST2 with urelements can be
obtained by transforming (a), (b) and (c) into the corresponding prop-
erty versions. Only the variants of the axiom of extensionality in (b)
and (c) have to be exlcuded, because there is already a criterion for the
identification of intensional abstracts in T1, namely A8.7 The exten-
sion of T1 which includes the above-mentioned axioms of a property

6If V = {x ∣x = x} were a set, then {x ∈ V ∣x ∉ x} would also be a set according
to the ZF-comprehension axiom, i.e., {x ∣x = x∧x ∉ x} = {x ∣x ∉ x} = Ru would be a
set. Hence, Ru ∈ Ru↔ Ru ∉ Ru.

7The following list takes its cue from the property versions of NBG and ZF in [2]
(cf. p. 265). For the sake of completeness we have included all the axioms ensuing
from the property adaptation of ST2 with urelements, although some of them might
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adaptation of (a), (b) and (c) (exluding the variants of the axiom of
extensionality in (b) and (c)) will be called “T1+” hereafter.8

be irrelevant to a formal reconstruction of Navya-Nyāya logic. A notable exception
is a regularity axiom for properties, which does play an important role in logical
inquiries concerning properties in Navya-Nyāya (cf. [8]).

(a)′ ∀x∀y(y∆x → (Psy ∨ Uy))

(b)′ (Urelements) ∀x(Ux → ∀y(y /∆ x))

(Comprehension) ∀x(Psx∨Ux → (x∆[A(y)]y ↔ A(x))), where x is free for
y in A and vice versa.

(Null) ∃x∀y(y /∆ x)

(Pairing) ∀x∀y((Psx∨Ux)∧(Psy∨Uy) → ∃z∀w(w∆z ↔ (w = x∨w = y)))

(Union) ∀x∃y∀z(z∆y ↔ ∃w(w∆x ∧ z∆w))

(Power) ∀x∃y∀z(z∆y ↔∀w(w∆z→w∆x))

(Infinity) ∃x([y ≠ y]y∆x ∧ ∀z(z∆x→ [w∆z ∨w = z]zw∆x))

(Replacement) ∀X∀x(∀u∀v∀w((Psu ∨ Uu) ∧ (Psv ∨ Uv) ∧ (Psw ∨ Uw) →
(< u,v > ∆X∧ < u,w > ∆X → v = w)) → ∃y∀z(z∆y ↔ ∃w(w∆x∧ < w,z >

∆X)))

(Regularity) ∀X(∃y(y∆X) → ∃y(y∆X ∧ ∀z(z∆X → z /∆ y)))

(c)′ (Comprehension) X∆[X∆Y ∧A]YX ↔X∆Y ∧A

(Null) X /∆ [X ≠X]X

(Pairing) X∆[X = Y ∨X = Z]Y Z
X ↔ X = Y ∨X = Z

(Union) X∆[∃Z(X∆Z ∧Z∆Y )]YX ↔ ∃Z(X∆Z ∧Z∆Y )

(Power) X∆[∀Z(Z∆X → Z∆Y )]YX ↔∀Z(Z∆X → Z∆Y )

(Infinity) ∃X([Y ≠ Y ]Y ∆X ∧ ∀Z(Z∆X → [W∆Z ∨W = Z]ZW∆X))

(Replacement) ∀X∀Y ∀Z((A(X,Y ) ∧ A(X,Z)) → Y = Z) →
∀Y (Y∆[∃X(X∆W ∧A(X,Y ))]WY ↔ ∃X(X∆W ∧A(X,Y )))

(Regularity) ∀X(∃Y (Y∆X)→ ∃Y (Y∆X ∧ ∀Z(Z∆X → Z /∆ Y )))

8In T1+ we can prove the following instantiation of the naive Navya-Nyāya
property abstraction: “It is a locus of nameabilityness, iff it is nameability.” By
means of the predicate Nx (for “x is nameable”) “nameability” can be expressed as
[Nx]x. The substitution of [Nx]x for Y and Z in the (c)′-axiom of pairing yields
the above-mentioned instantiation of the naive Navya-Nyāya property abstraction:
X∆[X = [Nx]x]X ↔ X = [Nx]x The existence of the hyper-class-like property
“nameabilityness”, i.e., [X = [Nx]x]X can be inferred from this as a corollary.
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3 Negative properties

We are now prepared to formalize some of the Navya-Nyāya intuitions
about negative properties and to prove them in T1+. First of all, we
will translate the two types of “absence” (abhāva) into the language of
T1+.

An absence can be regarded as the result of applying an operation
to a property, which Bealer calls “negation”. Following his terminology
the term [¬Fx]x is the result of “negating” the term [Fx]x. Bealer
introduces several operations on properties in order to explain how the
denotation of a complex term [A]α can be determined from the deno-
tation(s) of the relevant syntactically simpler term(s) (cf. [2], p. 46f).
Interestingly, some of these operations were also taken into account by
Navya-Nyāya logicians.

3.1 Mutual absence

The term [¬Fx]x may serve as a formal representation of the “mu-
tual absence” (anyonyābhāva), i.e., of the “difference” (bheda) from
an F (more accurately: from anything which is an F ). The indefi-
nite article has been added here in front of F in order to facilitate a
smooth English translation. In Sanskrit there is no article. A phrase
like “the mutual absence of a cloth” is commonly expressed by means
of a compound (pat.ānyonyābhāva) and the literal meaning would be
“cloth-mutual-absence”. Similarly, “the relational absence of a pot”
would be renderd as a compound which literally translates into “pot-
relational-absence” (ghat.asam. sargābhāva). When asked to specify the
absentees, the so-called “counterpositives” (pratiyogin) of these ab-
sences, a Navya-Naiyāyika might say “cloth” (pat.a) and “pot” (ghat.a),
where “cloth” and “pot” are meant in the sense of expressions which
refer to any cloth or any pot, respectively.9

9In order to emphasize that no reference to one particular cloth or pot is intended
here, a Navya-Naiyāyika might say that in these cases the counterpositiveness is
“limited” (avacchinna) by clothness or potness, respectively. On the other hand,
by adding a demonstrative like “this” (etad) in front of “cloth” or “pot” he might
indicate that these expressions are meant in the sense of singular terms.
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We can regard [¬Fx]x as a shorthand version of the following for-
malization which duly mirrors the fact that Navya-Naiyāyikas conceive
of a mutual absence, i.e., of a difference, as a denial of an identity be-
tween the absentee and the locus of the absence:

(�) [¬∃y(Fy ∧ x = y)]x

3.2 Relational absence

The “relational absence” (sam. sargābhāva) of an F (more accurately:
of anything which is an F ) can be construed as a property which char-
acterizes something as being devoid of (or: no locus of) anything which
is an F . In order to formalize this property we will use the predicate
xLy with the intended meaning “x is a locus of y”. L is supposed to
be a more general occurrence relation than the ∆-relation in the sense
that xLy might also be true if y is an urelement. Thus, we can infer
xLy from x∆y, but not vice versa.

Using the L-relation for the purpose of formalizing a relational ab-
sence is appropriate in cases where there is no specification of the oc-
currence relation which fails to subsist between the absentee and the
locus of the absence. Thus, an unspecified relational absence can be
formalized in the following way:

(�) [¬∃y(Fy ∧ xLy)]x

If the relational absence is more specifically meant in the sense of
a relational absence via contact or inherence etc., we can replace L by
the corresponding symbols for these relations (such as, e.g., C or I).

Since the present formalization of relational absences has basically
the same syntactic structure as a mutual absence, namely [¬φ(x)]x,
where φ(x) ∶↔ ∃y(Fy ∧ xLy), we can also regard a relational absence
as a negation, i.e., as the negation of the property “being a locus of an
F” ([∃y(Fy∧xLy)]x). Possessing a relational absence of an F means
to be different from a locus of an F . So, a relational absence turns
out to be a special case of a mutual absence. Both can be regarded as
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negations.
Navya-Naiyāyikas see the essential difference between the two types

of absence in the relation by which the absentee fails to reside in the
locus of the absence. In the case of mutual absence this relation is
identity. In the case of relational absence it is some kind of occurrence
relation. This distinctive feature is duly mirrored in the present for-
malizations (�) and (�), because they differ only with respect to the
relations (L and =).

3.3 Identities concerning iterated absences

[6] (p. 147f) contains a proof of the following identity concerning
iterated absences, which is endorsed by Mathurānātha (cf. [9], p. 71
and [11], p. 152f):

(Id) The relational absence (sam. sargābhāva) of the difference
(bheda) from a pot is identical to potness.

The difference from a pot can obviously be represented as . . .

[¬Px]x, where Px translates into “x is a pot”.

Since not only urelements other than pots, but also all class-like
individuals are different from pots, one might be inclined to regard
the difference from a pot as a property which applies to all class-like
individuals including properly class-like properties. However, T1+ does
not yield the existence of a hyper-class-like property which applies to
every properly class-like property, as there is also no universal set in
ZF. Therefore our formalization of the difference from a pot restricts
the range of loci to urelements and set-like individuals.

In order to obtain a formal representation of the absence of the
difference from a pot one might replace Fy in (�) by . . .

y = [¬Px]x.

Then the relational absence of the difference from a pot (ghat.abhe-
dābhāva) can be expressed as . . .
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[¬∃y(y = [¬Px]x ∧ x∆y)]x (“being no locus of anything which is
identical to the difference from a pot”).

If the difference from a pot is supposed to be a property of all
set-like properties and urelements other than pots, one might argue
that the relational absence of the difference from a pot applies to all
properly class-like properties. However, as noted above, the existence
of a hyper-class-like property which applies to every properly class-like
property is not warranted by T1+. Therefore our formalization of the
relational absence of the difference from a pot restricts the range of loci
to urelements and set-like individuals.

Now (Id) can be rendered as a T1+ proposition and we can prove
it in T1+:

Theorem (Id):

[¬∃y(y = [¬Px]x ∧ x∆y)]x = [Px]x

The proof contains an application of the following instantiation of
(C):

∀x(Psx ∨Ux → (x∆[¬Px]x ↔ ¬Px))

Hence, a substitution of equivalents by means of the wff x∆[¬Px]x↔
¬Px is admissible if we require the variable x to range over urelements
and set-like properties:

Proof of (Id)10:

(A1) ¬¬Px↔ Px
(C) ¬x∆[¬Px]x ↔ Px
(1st-order logic) ¬∃y(y = [¬Px]x ∧ x∆y)↔ Px
(R2, R3) ◻∀x(¬∃y(y = [¬Px]x ∧ x∆y)↔ Px)
(A8, R1) [¬∃y(y = [¬Px]x ∧ x∆y)]x = [Px]x ∎

10In order to be very precise, one might want to add “∧(Psx∨Ux)” on each side
of the equivalences in the first four lines. The last line of the proof would then be
[¬∃y(y = [¬Px]x∧x∆y)∧(Psx∨Ux)]x = [Px∧(Psx∨Ux)]x and this is, of course,
equivalent to (Id).
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Maheśa Chandra states two other identities concerning iterated ab-
sences, namely the following reduction rules, which are referred to as
(Id′) and (Id′′) below: tathāhi dvit̄ıyābhāvah. (ghat.ābhāvābhāvah. ) prati-
yogi(ghat.a)svarūpas tr. t̄ıyābhāvah. (ghat.ābhāvābhāvābhāvah. ) prathamā-
bhāva(ghat. ābhāva)svarūpa iti prathamābhāvasya (ghat.ābhāvasya) ghat.a
iva dvit̄ıyābhāvo ’pi (ghat.ābhāvābhāvo ’pi) pratiyoḡı. ( [3], p. 15, 27f
= [7], p. 81) – “So, the second absence (the absence of the absence of a
pot) is essentially identical to the counterpositive (pot). The third ab-
sence (the absence of the absence of the absence of a pot) is essentially
identical to the first absence (the absence of a pot). So, the second
absence (the absence of the absence of a pot) is like ‘pot’ of the first
absence (the absence of a pot) a counterpositive (author’s note: The
“second absence” ghat.ābhāvābhāva is the counterpositive of the “third
absence” ghat.ābhāvābhāvābhāva.).”

(Id′) The relational absence of the relational absence of a pot is
identical to “pot”.11

(Id′′) The relational absence of the relational absence of the rela-
tional absence of a pot is identical to the relational absence of a pot.12

11As noted by Matilal, the Navya-Naiyāyika Raghunātha Śiroman. i rejected this
identity. “Raghunātha, however, in his intensionalist vein, argued against the iden-
tification of x with ∼∼ x (author’s note: “∼” is Matilal’s abbreviation of “relational
absence”.). For, he thought, the notion of negation conveyed by the second can
never be conveyed by the first, and hence it is difficult to think of them as non-
distinct.” ( [10], p. 5) For the same reason Raghunātha would also not have been in
favour of (Id), which was like (Id′) generally accepted in Navya-Nyāya (cf. [10], p.
7). Raghunātha’s intuitions concerning properties are closer to Bealer’s system T2
(cf. [2], p. 64f). In T2 axiom A8 of T1 is replaced by A 8: [A]α = [B]α → (A↔ B)
Moreover, T2 contains an axiom which coincides with Raghunātha’s argument
against (Id′), namely A 9: t ≠ r (where t and r are non-elementary complex terms
of different syntactic kinds). According to our formalization techniques the left side
of (Id′) is the negation of a property, whereas the right side should be interpreted
as a non-negated property. Hence, they belong to different syntactic categories and
therefore A 9 forces us to reject (Id′).

12Some other kinds of iterated absences might have been taken into account here,
especially those starting with a difference, such as the difference from the absence of
a pot or the difference from the difference from a pot. However, as noted by Mati-
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In order to explicate the right side of (Id′) in an appropriate way
one might substitute “pot” (ghat.a) by “being a locus of a pot” (ghat.a-
vattva), since this is common practice in Navya-Nyāya (cf. [11], p. 115).
After all, the property “being a locus of a pot” is equi-locatable with
every pot. Even though the Navya-Naiyāyikas do regard expressions
like ghat.a and ghat.avattva as interchangeable, this is not unproblem-
atic, because a pot possesses potness, whereas the property “being a
locus of a pot” does not.

Theorem (Id′):

[¬∃z(z = [¬∃y(Py ∧ xLy)]x ∧ x∆z)]x = [∃y(Py ∧ xLy)]x

Since not only urelements other than loci of pots, but also all class-
like individuals are no loci of pots, one might be inclined to regard
the relational absence of a pot as a property which applies to all class-
like individuals including properly class-like properties. However, as
noted above, T1+ does not yield the existence of a hyper-class-like
property which applies to every properly class-like property. Therefore
our formalization of the relational absence of a pot restricts the range
of loci to urelements and set-like individuals.

If the relational absence of a pot is supposed to be a property
of all set-like properties and urelements other than loci of pots, one
might argue that the relational absence of the relational absence of
a pot applies to all properly class-like properties. However, since the
existence of a hyper-class-like property which applies to every prop-

lal, these kinds of absences were ignored in Navya-Nyāya (cf. [10], p. 8), because
they were regarded as “not very interesting” (ibid.). This is quite obvious from the
perspective of our formalization techniques, because any iterated absence starting
with a difference can be expressed as [x ≠ . . . ]x, where “. . . ” stands for an absence
or a difference. Only the dotted part might be reducible to a less complex term.
A “difference” in the beginning of an iterated absence is invariant under the ap-
plication of any reduction procedure. Hence, there is no coreferential syntactically
simpler term which corresponds to “the difference from the absence of a pot” or
“the difference from the difference from a pot”. Each of these properties resides in
everything except for one individual, namely the absence of a pot or the difference
from a pot, respectively.
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erly class-like property is not warranted by T1+, we have to impose
the above-mentioned restriction on the formalization of the relational
absence of the relational absence of a pot as well.

The proof of (Id′) contains an application of the following instanti-
ation of (C):

∀x(Psx ∨Ux → (x∆[¬∃y(Py ∧ xLy)]x ↔ ¬∃y(Py ∧ xLy)))

Hence, a substitution of equivalents bymeans of thewffx∆[¬∃y(Py∧
xLy)]x ↔ ¬∃y(Py ∧ xLy)) is admissible if we require the variable x
to range over urelements and set-like properties:

Proof of (Id′):

(A1) ¬¬∃y(Px ∧ xLy)↔ ∃y(Py ∧ xLy)
(C) ¬x∆[¬∃y(Py ∧ xLy)]x ↔ ∃y(Py ∧ xLy)
(1st-order logic) ¬∃z(z = [¬∃y(Py ∧ xLy)]x ∧ x∆z)↔

∃y(Py ∧ xLy)
(R2, R3) ◻∀x(¬∃z(z = [¬∃y(Py ∧ xLy)]x ∧ x∆z)↔

∃y(Py ∧ xLy))
(A8, R1) [¬∃z(z = [¬∃y(Py ∧ xLy)]x ∧ x∆z)]x =

[∃y(Py ∧ xLy)]x ∎

In order to prove (Id′′) and any other reduction rule which states
the identity of an uneven number of such relational absences to a single
relational absence, it suffices to prove:

(Id∗) The relational absence of the property “being a locus of a
pot” is identical to the relational absence of a pot.

By adding one relational absence on both sides of (Id′) we can infer
from (Id′) that the relational absence of the relational absence of the
relational absence of a pot is identical to the relational absence of pot
(where the underlined “pot” is supposed to be explicated in the sense
of “the property ‘being a locus of a pot’ ”). On account of (Id∗) the
relational absence of “pot”, i.e., of the property “being a locus of a
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pot”, is identical to the relational absence of a pot, and this proves
(Id′′).

Theorem (Id∗):
[¬∃z(z = [∃y(Py ∧ xLy)]x ∧ x∆z)]x = [¬∃y(Py ∧ xLy)]x

The proof contains an application of the following instantiation of
(C):

∀x(Psx ∨Ux → (x∆[∃y(Py ∧ xLy)]x ↔ ∃y(Py ∧ xLy))).

It is plausible to asume that neither of the members of the equiva-
lence x∆[∃y(Py ∧ xLy)]x ↔ ∃y(Py ∧ xLy) in this formula is true of
any x which fulfills the condition ¬(Psx∨Ux), i.e., ∀x(¬(Psx∨Ux)→
¬∃y(Py ∧ xLy) ∧ ¬x∆[∃y(Py ∧ xLy)]x), because individuals which
are neither set-like properties nor urelements are class-like properties,
i.e., they are different from loci of pots and do not possess the prop-
erty to be loci of pots. Hence, the equivalence x∆[∃y(Py ∧xLy)]x ↔
∃y(Py ∧ xLy) can be applied unconditionally in this case.

Proof of (Id∗):
(A1) ¬∃y(Px ∧ xLy)↔ ¬∃y(Py ∧ xLy)
(C) ¬x∆[∃y(Py ∧ xLy)]x ↔ ¬∃y(Py ∧ xLy)
(1st-order logic) ¬∃z(z = [∃y(Py ∧ xLy)]x ∧ x∆z)↔

¬∃y(Py ∧ xLy)
(R2, R3) ◻∀x(¬∃z(z = [∃y(Py ∧ xLy)]x ∧ x∆z)↔

¬∃y(Py ∧ xLy))
(A8, R1) [¬∃z(z = [∃y(Py ∧ xLy)]x ∧ x∆z)]x =

[¬∃y(Py ∧ xLy)]x ∎

3.4 Sheffer stroke applied to properties

In Mathurānātha Tarkavāḡı́sa’s Vyāptipañcakarahasyam (quoted in [9],
p. 64f) this operation is named “conjoint absence” (ubhayābhāva).
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Maheśa Chandra characterizes it as “an absence due to prefixing ‘being
both’ ”: . . . pat.aghat.obhayatvarūpen. a vobhayatvapuraskāren. ābhāvo . . .
( [3], p. 14, 5f = [7], p. 76) – “. . . or an absence due to prefixing ‘being
both’ in the form of ‘being both, [i.e.] cloth and pot’ . . . ”

Following Bealer, who names property operators after their cor-
responding propositional operators, one can regard the Sheffer stroke
applied to properties as the negation of the conjunction of properties.
An example of such a property is the absence of both, cloth and pot,
in a house where there is a cloth, but no pot. evam. gr.he kevalasya pa-
t.asya sattve ’pi ghat.asyābhāvena pat.aghat.obhayasyāpy abhāvo ’sty eva.
ekābhāvenobhayābhāvasyāvaśyam. bhāvitvād . . . ( [3], p. 14, 8f = [7], p.
76) – “So, when there is only a cloth in the house, there is absence of
both, a cloth and a pot <collectively>, because of the absence of a pot,
because the absence of both <collectively> is necessary on account of
the absence of one.”

The condition that there is a cloth but no pot in the house can be
formalized as . . .

∃y(Cy ∧hLy) ∧¬∃z(Pz ∧hLz) (where Cx is to be read as “x is a
cloth”, Px as “x is a pot”, xLy as “x is a locus of y” and h as “the
house”).

Now, if there is a cloth but no pot in the house, then it is not the
case that there is a cloth and a pot in the house. This can be rendered
as an implication with an alternative formalization of the consequent
by means of the Sheffer stroke:

∃y(Cy∧hLy)∧¬∃z(Pz∧hLz)→ ¬(∃y(Py ∧ hLy) ∧ ∃z(Cz ∧ hLz))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∃y(Py∧hLy) ↑∃z(Cz∧hLz)

Since h denotes an urelement, we can apply (C) and substitute the
consequent by an equivalent formula which expresses the fact that the
house is a locus of the negation of the conjunction of the properties
[∃y(Cy ∧ xLy)]x (“being a locus of a cloth”) and [∃z(Pz ∧ xLz)]x
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(“being a locus of a pot”):

h∆[∃y(Cy ∧ xLy) ↑ ∃z(Pz ∧ xLz)]x

The negation of each of the properties [∃y(Cy ∧ xLy)]x and
[∃z(Pz ∧ xLz)]x yields the term for the corresponding absence, i.e.,
the absence of a cloth and the absence of a pot, respectively. There-
fore it makes sense to regard the negation of their conjunction, i.e.,
[∃y(Cy ∧ xLy) ↑ ∃z(Pz ∧ xLz)]x, as a formal equivalent of the “con-
joint absence” (ubhayābhāva) of a cloth and a pot.
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Abstract

In this article we show that there are invariant distances on
the monoid L(A) of all strings closely related to Levenshtein’s
distance. We will use a distinct definition of the distance on
L(A), based on the Markov - Graev method, proposed by him
for free groups. As result we will show that for any quasimetric
d on alphabet A in union with the empty string there exists a
maximal invariant extension d∗ on the free monoid L(A). This
new approach allows the introduction of parallel and semipar-
allel decompositions of two strings. In virtue of Theorem 3.1,
they offer various applications of distances on monoids of strings
in solving problems from distinct scientific fields. The discus-
sion covers topics in fuzzy strings, string pattern search, DNA
sequence matching etc.

Keywords: String pattern matching, parallel decomposi-
tion, semiparallel decomposition, free monoid, invariant distance,
quasimetric, Levenshtein distance, Hamming distance, proper
similarity.

1 Introduction

The dynamic transition of our technological civilization to digital pro-
cessing and data transmission systems created many problems in the
design of modern systems in computer science and telecommunications.
Providing robustness and noise immunity is one of the most impor-
tant and difficult tasks in data transmission, recording, playback, and
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storage. The distance between information plays a paramount role in
mathematics, computer science, and other interdisciplinary research
areas. The first among many scientists in the field, who presented the
theoretical solutions to error detection and error correction problems,
were C. Shannon, R. Hamming, and V. Levenshtein (see [11],[12],[18]).
We begin this section with introductions into the field, focusing mainly
on abstract monoid of strings L(A).

A monoid is a semigroup with an identity element. Fix a non-empty
set A. The set A is called an alphabet. Let L(A) be the set of all finite
strings a1a2 . . . an with a1, a2, . . . , an ∈ A. Let ε be the empty string.
Consider the strings a1a2 . . . an such that ai = ε for some i ≤ n. If
ai 6= ε, for any i ≤ n or n = 1 and a1 = ε, the string a1a2 . . . an is
called a canonical string. The set

Sup(a1a2 . . . an) = {a1, a2, . . . , an} ∩A

is the support of the string a1a2 . . . an and

l(a1 . . . an) = |Sup(a1 . . . an)|

is the length of the string a1a2 . . . an. For two strings a1 . . . an and
b1 . . . bm, their product(concatenation) is a1 . . . anb1 . . . bm. If n ≥
2, i < n and ai = ε, then the strings a1 . . . an and a1 . . . ai−1ai+1 . . . an
are considered equivalent. In this case any string is equivalent to
one unique canonical string. We identify the equivalent strings. In
this case L(A) becomes a monoid with identity ε. Let Sup(a, b) =
Sup(a) ∪ Sup(b) ∪ {ε}, and Sup(a, a) = Sup(a) ∪ {ε}.

It is well known that any subset L ⊂ L(A) is an abstract language
over the alphabet A.

2 Distances on spaces

2.1 Definitions

Let A be a non-empty set and d : X ×X → R be a mapping such that
for all x, y ∈ X we have:
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(im) d(x, y) ≥ 0;
(iim) d(x, x) = 0.
Then (X, d) is called a pseudo-distance space and d is called a

pseudo-distance on X. In addition,
(iiim) d(x, y) + d(y, x) = 0 if and only if x = y,

then (X, d) is called a distance space and d is called a distance on X.
Furthermore,

(ivm) d(x, y) = 0 if and only if x = y,
then (X, d) is called a strong distance space and d is called a strong
distance on X.

General problems in distance spaces were studied by different au-
thors (see [1], [3], [4], [8], [15]). The notion of a distance space is more
general than the notion of o-metric spaces in sense of A. V. Arhangel-
skii [1] and S. I. Nedev [15]. A distance d is an o-metric if from d(x, y)
= 0 it follows that x = y, i.e. d is a strong distance.

Let X be a non-empty set and d be a pseudo-distance on X. Then:

• (X, d) is called a pseudo-symmetric space and d is called a pseudo-
symmetric on X if for all x, y ∈ X

(vm)d(x, y) = d(y, x);

• (X, d) is called a symmetric space and d is called a symmetric on
X if d is a distance and a pseudo-symmetric simultaneously;

• (X, d) is called a pseudo-quasimetric space and d is called a
pseudo-quasimetric on X if for all x, y, z ∈ X

(vim)d(x, z) ≤ d(x, y) + d(y, z);

• (X, d) is called a quasimetric space and d is called a quasimetric
on X if d is a distance and a pseudo-quasimetric simultaneously;

• (X, d) is called a pseudo-metric space and d is called a pseudo-
metric if d is a pseudo-symmetric and a pseudo-quasimetric si-
multaneously;

• (X, d) is called a metric space and d is called a metric if d is both
symmetric and quasimetric;
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• a distance d is called discrete if d(x, y) ∈ ω = {0, 1, 2, . . .} for all
x, y ∈ X.

LetG be a semigroup and d be a pseudo-distance on G. The pseudo-
distance d is called:

• Left (respectively, right) invariant if d(xa, xb) ≤ d(a, b) (respec-
tively, d(ax, bx) ≤ d(a, b)) for all x, a, b ∈ G;

• Invariant if it is both left and right invariant.

A distance d on a semigroup G is called stable if d(xy, uv) ≤
d(x, u) + d(y, v) for all x, y, u, v ∈ G.

Proposition 1. Let d be a pseudo-quasimetric on a semigroup G. The
next assertions are equivalent:

1. d is invariant,

2. d is stable.

2.2 Extension of pseudo-quasimetrics on free monoids

Fix an alphabet A and let Ā = A∪{ε}. We assume that ε ∈ Ā ⊆ L(A)
and ε is the identity of the monoid L(A). Let ρ be a pseudo-quasimetric
on the set Ā and Q(ρ) be the set of all stable pseudo-quasimetrics d on
L(A) for which d(x, y) ≤ ρ(x, y) for all x, y ∈ Ā. The set Q(ρ) is non-
empty since it contains the trivial pseudo-quasimetric d(x, y) = 0 for
all x, y ∈ L(A). For all a, b ∈ L(A) let ρ̂(a, b) = sup{d(a, b) : d ∈ Q(ρ)}.
We say that ρ̂ is the maximal stable extension of ρ on L(A).

The following properties are proved in [5].

Property 2.1. ρ̂ ∈ Q(ρ).

For any r > 0 let dr(a, a) = 0 and dr(a, b) = r for all distinct points
a, b ∈ L(A). Then dr is an invariant metric on L(A).

Property 2.2. Let r > 0 and ρ(x, y) ≥ r for all distinct points x, y ∈
A. Then ρ̂ is a quasimetric on L(A), dr ∈ Q(ρ), and ρ̂(a, b) = r for all
distinct points a, b ∈ L(A).
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For any a, b ∈ L(A) let

ρ̄(a, b) = inf{Σ{ρ(xi, yi) : i ≤ n}},

where n ∈ N = {1, 2, . . .}, x1, y1, x2, y2, . . . , xn, yn ∈ Ā, a =
x1x2 . . . xn, b = y1y2 . . . yn. Let

ρ∗(a, b) = inf{ρ̄(a, z1) + · · ·+ ρ̄(zi, zi+1) + · · ·+ ρ̄(zn, b)},

where n ∈ N, z1, z2, . . . , zn ∈ L(A).

Property 2.3. ρ̄ is a pseudo-distance on L(A) and ρ̄(x, y) ≤ ρ(x, y)
for all x, y ∈ Ā.

Property 2.4. ρ̄(x, y) = ρ(x, y) for all x, y ∈ X.

Property 2.5. The pseudo-distance ρ̄ is invariant on L(A).

Property 2.6. The pseudo-distance ρ∗ is a stable pseudo-quasimetric
on L(A) and ρ∗ ∈ Q(ρ).

Property 2.7. If ρ is a quasimetric on X, then ρ̄ is a distance on
L(A).

Property 2.8. Let a, b ∈ L(A) be two distinct points in L(A) and
r(a, b) = min{ρ(x, y) : x ∈ Sup(a, a), y ∈ Sup(b, b), x 6= y}. Then

ρ̂(a, b) = ρ∗(a, b) ≥ r(a, b).

The following properties follow from Property 2.8.

Property 2.9. If ρ is a quasimetric on Ā, then ρ∗ and ρ̂ are quasi-
metrics on L(A).

Property 2.10. If ρ is a strong quasimetric on Ā, then ρ∗ and ρ̂ are
strong quasimetrics on L(A).

Property 2.11. Let ρ be a pseudo-quasimetric on Ā, Y be a subspace
of Ā, and ε ∈ Ȳ . Let M(Y ) = L(Y ) be the submonoid of the monoid
L(A) generated by the set Y , and by dY be the extension ρ̂|Y on M(Y )
of the pseudo-quasimetric ρY on Y , where ρY (y, z) = ρ(y, z) for all
y, z ∈ Ȳ . Then
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1. dY (a, b) = ρ̂(a, b) for all a, b ∈ M(Y ),

2. If ρ is a (strong) quasimetric on Y , then ρ̂ is a (strong) quasi-
metric on M(Y ),

3. If ρ is a metric on Y , then ρ̂ is a metric on M(Y ),

4. If a, b ∈ L(A) are distinct points and ρ is a quasimetric on
Sup(a, b), then ρ̂(a, b) + ρ̂(b, a) > 0,

5. If a, b ∈ L(A) are distinct points and ρ is a strong quasimetric
on Sup(a, b), then ρ̂(a, b) > 0 and ρ̂(b, a) > 0,

6. For any a, b ∈ L(A) there are n ∈ N, x1, x2, . . . , xn ∈ Sup(a, a)
and y1, y2, . . . , yn ∈ Sup(b, b) such that a = x1x2 · · · xn, b =
y1y2 · · · yn ρ, n ≤ l(a) + l(b) and ρ̄(a, b) = Σ{ρ(xi, yi) : i ≤ n},

7. ρ̂ = ρ̄ = ρ∗.

Property 2.12. For any a=a1a2 . . . an we put a−1=an . . . a2a1. Then
ρ∗(a, b)=ρ∗(a−1, b−1) and (ab)−1=b−1a−1 for all a, b ∈ L(A).

Remark 2.1. The method of extensions of distances for free groups,
used by us, was proposed by A. A. Markov [13] and M. I. Graev [9].
For free universal algebras it was extended in [3], for free groups and
varieties of groups it was examined in [6], [17].

2.3 Discrete distances on L(A)

Fix an alphabet A and Ā=A∪{ε}. Consider on A some linear ordering
for which ε < x for any x ∈ A. On Ā consider the following distances ρl,
ρr, ρs, where ρl(x, x) = ρr(x, x) = 0 for any x ∈ Ā; if x, y ∈ Ā and x <

y, then ρl(x, y) = 1, ρl(y, x) = 0, ρr(x, y) = 0, ρr(y, x) = 1, ρs(x, y) =
ρl(x, y) + ρr(x, y). By construction, ρl and ρr are quasimetrics and ρs
is a metric on Ā. Then ρl*(x, y) and ρr*(x, y) are invariant discrete
quasimetrics on L(A) and ρs* is a discrete invariant metric on L(A).

Theorem 2.1. Let ρ be a quasimetric on Ā, and ρ(a, ε) = ρ(b, ε) for all
a, b ∈ A. Then ρ∗(ac, bc) = ρ∗(ca, cb) = ρ∗(a, b) for all a, b, c ∈ L(A).

Corollary 2.1. If ρ∗ = ρ∗s, then ρ∗(ac, bc) = ρ∗(ca, cb) = ρ∗(a, b) for
all a, b, c ∈ L(A).
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3 Parallel decompositions of two strings

The longest common substring and pattern matching in two or more
strings is a well known class of problems. For any two strings a, b ∈
L(A) we find the decompositions of the form a = v1u1v2u2 · · · vkukvk+1

and b = w1u1w2u2 · · ·wkukwk+1, which can be represented as a =
a1a2 · · · an, b = b1b2 · · · bn with the following properties:

• some ai and bj may be empty strings, i.e. ai = ε, bj = ε;

• if ai = ε, then bi 6= ε and if bj = ε, then aj 6= ε;

• if u1 = ε, then a = v1 and b = w1;

• if u1 6= ε, then there is a sequence 1 ≤ i1 ≤ j1 < i2 ≤ j2 < · · · <
ik ≤ jk ≤ n such that:

– u1 = ai1 · · · aj1 = bi1 · · · bj1 , u2 = ai2 · · · aj2 = bi2 · · · bj2 ,
uk = aik · · · ajk = bik · · · bjk ;

– if v1 = w1 = ε, then i1 = 1;

– if vk+1 = wk+1 = ε, then jk = n;

– if k ≥ 2, then for any i ∈ {2, · · · , k} we have vi 6= ε or
wi 6= ε.

In this case

l(u1) + l(u2) + · · ·+ l(uk) = |{i : ai = bi}|.

The above decomposition forms are called parallel decompositions of
strings a and b. For any parallel decompositions a = v1u1 · · · vkukvk+1

and b = w1u1 · · ·wkukwk+1 the number

E(v1u1 · · · vkukvk+1, w1u1 · · ·wkukwk+1) =
∑

i≤k+1

{max{l(vi), l(wi)}}

is called the efficiency of the given parallel decompositions. The num-
ber E(a, b) is equal to the minimum of the efficiencies of all parallel
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decompositions of the strings a, b and is called the common efficiency
of the strings a,b. It is obvious that E(a, b) is well determined. We
say that the parallel decompositions a = v1u1v2u2 · · · vkukvk+1 and
b = w1u1w2u2 · · ·wkukwk+1 are optimal if

E(v1u1v2u2 · · · vkukvk+1, w1u1w2u2 · · ·wkukwk+1) = E(a, b).

These types of parallel decompositions are associated with the prob-
lem of approximate string matching [14]. If the decompositions a =
v1u1 · · · vkukvk+1 and b = w1u1 · · ·wkukwk+1 are optimal and k ≥ 2,
then we may consider that ui 6= ε for any i ≤ k.

Any parallel decompositions a = a1a2 · · · an = v1u1 · · · vkukvk+1

and b = b1b2 · · · bn = w1u1 · · ·wkukwk+1 generate a common sub-
sequence u1u2 · · · uk. The number

m(a1a2 · · · an, b1b2 · · · bn) = l(u1) + l(u2) + · · · + l(uk)

is the measure of similarity of the decompositions [2], [16]. There
are parallel decompositions a = v1u1v2u2 · · · vkukvk+1 and b =
w1u1w2u2 · · ·wkukwk+1 for which the measure of similarity is maximal.
The maximum value of the measure of similarity of all decompositions
is denoted by m∗(a, b). The maximum value of the measure of simi-
larity of all optimal decompositions is denoted by mω(a, b). We can
note that mω(a, b) ≤ m∗(a, b). For any two parallel decompositions
a = a1a2 · · · an and b = b1b2 · · · bn as in [16], we define the penalty
factor as

p(a1a2 · · · an, b1b2 · · · bn) = |{i ≤ n : ai = ε}|+ |{j ≤ n : bj = ε}|

and

M (a1a2 · · · an, b1b2 · · · bn)

= m(a1a2 · · · an, b1b2 · · · bn)− p(a1a2 · · · an, b1b2 · · · bn)

as the measure of proper similarity. The number

dH(a1a2 · · · an, b1b2 · · · bn) = |{i ≤ n : ai 6= bi}|
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is the Hamming distance between decompositions and it is another type
of penalty. We have that

p(a1 · · · an, b1 · · · bn) ≤ dH(a1 · · · an, b1 · · · bn).

Theorem 3.1. Let a and b be two non-empty strings, a = a1a2 · · · an
and b = b1b2 · · · bn be the initial optimal decompositions, and a =
a′
1
a′
2
· · · a′q and b = b′

1
b′
2
· · · b′q be the second decompositions, which are

arbitrary. Denote by

m0 = m(a1a2 · · · an, b1b2 · · · bn), m1 = m(a′1a
′

2 · · · a
′

n, b
′

1b
′

2 · · · b
′

q),

p0 = p(a1a2 · · · an, b1b2 · · · bn), p1 = p(a′1a
′

2 · · · a
′

n, b
′

1b
′

2 · · · b
′

q),

r0 = dH(a1a2 · · · an, b1b2 · · · bn), r1 = dH(a′1a
′

2 · · · a
′

n, b
′

1b
′

2 · · · b
′

q),

M0 = m0 − p0, M1 = m1 − p1.

The following assertions are true

1. If m1 ≥ m0, then M0 ≥ M1 and p1−p2 = 2(m1−m0)+2(r1−r0),

2. If m1 ≥ m0 and the second decompositions are non-optimal, then
M0 > M1,

3. If m1 = m0 and the second decompositions are optimal, then
p0 = p1 and M0 = M1,

4. If m1 ≤ m0 and the second decompositions are non-optimal, then
m1 − r1 < m0 − r0.

Proof. Firstly, we prove the following claims:

Claim 1. If m1 > m0, then M0 > M1 and p1 − p2 = 2(m1 − m0) +
2(r1 − r0).

Assume that M0 ≤ M1. Hence,

m0 − p0 ≤ m1 − p1, p0 ≤ r0, p1 ≤ r1, n = m0 + r0, q = m1 + r1.

Moreover, l(a) + l(b) = 2n − p0 = 2q − p1. Since m0 < m1, r0 ≤ r1
and m0 = n − r0 < q − r1 = m1, we obtain that n < q. From
l(a) + l(b) = 2n− p0 = 2q − p1 it follows that p0 < p1.
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Let m1 = m0 + δ0 and p1 = p0 + δ1, with δ0 > 0 and δ1 > 0. Then,
from assumptions, we have that m0−p0 ≤ m1−p1 = m0+δ0−p0−δ1 =
(m0 − p0) + (δ0 − δ1). Hence

δ1 ≤ δ0. (1)

On the other hand, q = m1 + r1 = m0 + δ0 + r1 = n− r0 + δ0 + r1 and
q = (n+δ0)+(r1−r0). Since p1 = 2q−l(a)−l(b) and p0 = 2n−l(a)−l(b),
after substitutions, we obtain that p1 + l(a) + l(b) = p0 + l(a) + l(b) +
2δ0 + 2(r1 − r0), or p0 + δ1 = p0 + 2δ0 + 2(r1 − r0), or

δ1 = 2δ0 + 2(r1 − r0). (2)

From (2), δ1 > δ0, a contradiction with inequality (1). Hence M0 >

M1 provided that m1 > m0. From (2) it follows that p1 − p0 = 2(m1 −
m0) + 2(r1 − r0), provided that m1 > m0. The claim is proved.

Claim 2. If m1 = m0, then M0 ≥ M1 and p1 − p2 = 2(r1 − r0).

We have that n = m0 + r0 and q = m0 + r1. Since r0 ≤ r1, we
have that n ≤ q. Assume that M0 < M1. Then m0 − p0 < m0 − p1,
p1 = 2q−l(a)−l(b) and p0 = 2n−l(a)−l(b). Hencem0−2n+l(a)+l(b) <
m0 − 2q + l(a) + l(b), or −2n < −2q and n > q, a contradiction.

From Claims 1 and 2, Assertions 1-3 of the Theorem 3.1 follow
immediately. Since r1 > r0, from m1 ≤ m0 it follows that m1 − r1 <

m0 − r0. Assertion 4 and Theorem 3.1 are proved.

Remark 3.1. From Assertions 1 and 3 of Theorem 3.1 it follows that
on the class of all optimal decompositions of two strings:

• The maximal measure of proper similarity is attained on the opti-
mal parallel decomposition with minimal penalties (minimal mea-
sure of similarity),

• The minimal measure of proper similarity is attained on the opti-
mal parallel decomposition with maximal penalties (maximal mea-
sure of similarity).
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For any two non-empty strings there are parallel decompositions
with maximal measure of similarity and optimal decompositions on
which the measure of similarity is minimal.

The following example shows that there are some exotic non-
optimal parallel decompositions a = a′

1
a′
2
· · · a′q and b = b′

1
b′
2
· · · b′q, such

that for optimal decompositions a = a1a2 · · · an and b = b1b2 · · · bn we
have m1 < m0, p1 < p0, and M1 > M0.

Example 3.1. Let

A A A A C C C

C C C B B B B

be trivial optimal decompositions of strings a, b, and

A A A A

ε ε ε ε

(

C C C

C C C

)

ε ε ε ε

B B B B

be their non-optimal decompositions. Then

m1 = 3, r1 = 8, p1 = 8,

m0 = 0, r0 = 7, p0 = 0.

In this example we have that −5 = m1 − r1 > m0 − r0 = −7 and
−5 = m1 − p1 = M1 < M0 = m0 − p0 = 0.

Example 3.2. Let

A B C D

C D E F

(

E

E

)

F

D

be trivial non-optimal decompositions of strings a, b and

A B

ε ε

(

C D E F

C D E F

)

ε ε

E D

be their optimal decompositions. Then

m1 = 1, r1 = 5, p1 = 0,

m0 = 4, r0 = 4, p0 = 4.

We have that m1 − p1 = M1 > M0 = m0 − p0, and m1 − r1 < m0 − r0.
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The above examples show that Theorem 3.1 cannot be improved in
the case of m1 < m0.

Decompositions with minimal penalty and maximal proper similar-
ity are of significant interest. Moreover, if we solve the problem of text
editing and correction, the optimal decompositions are more favorable.
Therefore, the optimal decompositions are the best parallel decompo-
sitions and we may solve the string match problems only on class of
optimal decompositions.

Remark 3.2. The optimal decompositions:

• describe the proper similarity of two strings,

• permit to obtain long common sub-sequences,

• permit to calculate the distance between strings,

• permit to appreciate changeability of information over time.

4 Relations to Hamming and Levenshtein

Distances

If a, b ∈ L(a, b) and a = a1a2 · · · an, b = b1b2 · · · bm are the canonical
decompositions, then for m ≤ n the number

dH(a, b) = dH(b, a) = |{i ≤ m : ai 6= bi}|+ n−m

is called the Hamming distance [11] between strings a and b.
The Levenshtein distance [12] between two strings a = a1a2 · · · an

and b = b1b2 · · · bm is defined as the minimum number of insertions,
deletions, and substitutions required to transform one string to the
other. A formal definition of Levenshtein’s distance dL(a, b) is given by
the following formula:

dL(a1 · · · ai, b1 · · · bj)=































i, if j=0,

j, if i=0,

min











dL(a1 · · · ai−1, b1 · · · bj) + 1

dL(a1 · · · ai, b1 · · · bj−1) + 1

dL(a1 · · · ai−1, b1 · · · bj−1) + 1(ai 6=bj),
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where 1(ai 6=bj) equals to 0 if ai = bj and to 1 otherwise.

Theorem 4.1. dL(a, b) = ρ∗(a, b) ≤ dH(a, b) for any a, b ∈ L(A).

Proof. To prove the equality dL(a, b) = ρ∗(a, b), we will first prove that
dL(a, b) ≤ ρ∗(a, b), and then that dL(a, b) ≥ ρ∗(a, b).

We begin with the observation that the parallel decompositions of
two strings a, b allow more transparent evaluation of the Levenshtein
distance dL(a, b). If a = v1u1v2u2 · · · vn and b = w1u1w2u2 · · ·wn are
optimal parallel decompostions, then for transformation of b to a it is
sufficient to transform any wi to vi. The cost of transformation of wi

to vi is ≤ max{l(wi), l(vi)}. Hence dL(a, b) ≤ ρ∗(a, b).

The proof of the inequality dL(a, b) ≥ ρ∗(a, b) is based on the
Levenshtein distance formula, as well as the construction of the trans-
formation of string a to string b. We observe that the Levenshtein
distance is calculated recursively using the memoization matrix and
dynamic programming technique [7, pp. 359–378]. A small snapshot
of the memoization matrix calculation is presented below.

Table 1. Construction of memoization matrix for Levenshtein distance

Diag Above

Left
min(Above + delete,

Left + insert, Diag + 1ai 6=bj )

Distance dL calculated on subtrings a1 · · · ai of string a and sub-
string b1 · · · bj of string b is equal to the minimum of the following
values:

• dL(a1 · · · ai−1, b1 · · · bj) + 1, (1)

• dL(a1 · · · ai, b1 · · · bj−1) + 1, (2)

• dL(a1 · · · ai−1, b1 · · · bj−1) + 1ai 6=bj . (3)

Remark : the operation (1) is the delete operation, (2) is the insert
operation, and (3) is the substitution operation.
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Once all of the above values are calculated and the memoization
matrix is filled, the distance is given by the value in the cell on the nth

row and mth column.
The construction of the transformation of string a into string b is

based on the values of the memoization matrix. At each point of the
construction process, we will execute operations on both strings a and
b, and obtain another pair of strings a′ and b′ equivalent to the initial
pair a and b. We use the top-down analysis approach to describe the
transformation process step by step. The process below starts with
i = n, j = m, p = 0, q = 0 and both a′, b′ as empty strings:

• if when calculating dL(a1 · · · ai, b1 · · · bj) we used operation (1),
then we deleted a character from string a at position i, which is
equivalent to inserting the ε character in string b at the corre-
sponding position. In this case, in the building process of a′ and
b′, we put p := p+1, v′p = {ai},w

′

p = {ε}, a′ := v′p∪a
′, b′ := w′

p∪b
′.

Next, we proceed to calculate dL(a1 · · · ai−1, b1 · · · bj).

• if when calculating dL(a1 · · · ai, b1 · · · bj) we used operation (2),
then we inserted the ε character in string a at position i. In this
case, in the building process of a′ and b′, we put p := p + 1,
v′p = {ε},w′

p = {bj}, a
′ := v′p ∪ a′, b′ := w′

p ∪ b′. Next, we proceed
to calculate dL(a1 · · · ai, b1 · · · bj−1).

• if when calculating dL(a1 · · · ai, b1 · · · bj) we used operation (3),
then we either substituted the character at position i of string a

with the character at position j of string b, or we did not make any
change in case if ai = bj . If ai = bj, we put q =: q + 1,u′q = {ai},
a′ := u′q ∪a′, b′ := u′q ∪ b′. If ai 6= bj , we put p =: p+1, v′p = {ai},
w′

p = {bj}, a′ := v′p ∪ a′, b′ := w′

p ∪ b′. Next, we proceed to
calculate dL(a1 · · · ai−1, b1 · · · bj−1).

According to the above steps, we observe that string a′ is equivalent
to string a, and string b′ is equivalent to b by construction. But, we
also have that the decomposition a′ = v′pu

′

qv
′

p−1
u′q−1

· · · u′
1
v′
1
and a′ =

w′

pu
′

qw
′

p−1
u′q−1

· · · u′
1
w′

1
obtained from the above construction process,

represent a parallel decomposition of strings a and b. Thus, we have
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that dL(a, b) = E(a, b) ≥ ρ∗(a, b). This completes the proof of the
equality dL(a, b) = ρ∗(a, b).

We will now prove the second part of the theorem, namely that
ρ∗(a, b) ≤ dH(a, b). Let dH(a, b) < max{l(a), l(b)} = n, where n =
l(a) ≥ l(b) = m. Then a = a1a2 · · · an, b = b1b2 · · · bm, ai 6= ε for any
i ≤ n, and or m = 1 and b1 = ε, or bj 6= ε for any j ≤ m. In this
case dH(a, b) = n− |{i ≤ m : ai = bi}| and we have the representations
a = (a1)(a2) · · · (am)(am+1 · · · an) and b = (b1)(b2) · · · (bm)(ε) which
generate two parallel decompositions α, β with E(α, β) = dH(a, b).
Therefore ρ∗(a, b) ≤ E(α, β) = dH(a, b). The proof is complete.

Corollary 4.1. Distance dL is strictly invariant, i.e. dL(ac, bc) =
dL(ca, cb) = dL(a, b) for any a, b, c ∈ L(A).

Remark 4.1. The Hamming distance dH is not invariant.

Example 4.1. Let n = m + p and strings a = (01)n, b = (10)m,
c = (01)p. We obtain the following distance values for the above strings:

dL(a, b) = 2p, ρ∗(a, b) = 2p, dH(a, b) = 2n,

dL(ac, bc) = 2p, ρ∗(ac, bc) = 2p, dH(ac, bc) = 2n.

Remark 4.2. If l(a) = l(b), then dH(ac, bc) = dH(a, b) for any a, b, c ∈
L(A). Additionally, the following equality always holds:

dH(ca, cb) = dH(a, b).

5 Applications

First and foremost let us look at how we can apply the results of this
article in information distance problems such as string search, text
correction, and pattern matching. We have presented one such example
in the previous section – the edit distance.

We also mentioned the problem of DNA/RNA sequence alignment,
which goes back as early as 1970 [16]. Other bioinformatic applica-
tions of the distance ρ∗ include phylogenetic analysis, whole genome
phylogeny, and detection of acceptable mutations.
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We begin this section with the pseudo-codes of two algorithms:
distance calculation and decompositions alignment.

The first algorithm describes how to calculate the distance between
two strings a and b. The approach is based on dynamic programming
and it has a complexity of O(mn), where m and n are the lengths of a
and b.

Algorithm 1.

Description: Computes the metric ρ∗ on strings a and b.
Input: Strings a, b ∈ L(A)
Output: Value of ρ∗(a, b)
Initialisation: m := l(a), n := l(b), D[m,n] := 0
Pseudocode:
for i := 0 to m D[i,0] := i;
for j := 0 to n D[0,j] := j;
for j := 1 to n do

for i := 1 to m do
if a[i]= b[j] then

D[i,j] := D[i-1,j-1]
else

D[i,j] := min(D[i-1,j] + 1,
min(D[i,j-1] + 1, D[i-1,j-1] + 1));

return D[m,n];

The algorithm that follows constructs the optimal parallel decom-
positions of strings a and b that give the value of distance ρ∗. This algo-
rithm uses the memoization matrix D[m,n] calculated in the previous
algorithm. The idea is to traverse from the bottom right cell D[m,n]
to the top left cell D[0, 0] and at each step to evaluate whether the
minimal distance was obtained by replacement, deletion or insertion.
The algorithm uses recursive backtracking to reconstruct all decom-
positions of strings a and b. We modified the classical version of the
pseudo-code to print only the most optimal decomposition, instead of
printing all possible paths.
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Algorithm 2.

Description: Constructs optimal parallel decompositions
of strings a and b.
Input: n,m - current indexes in matrix D

ar, br - recontructed decompositions
Output: Optimal parallel decompositions of strings a, b
Initialisation: Read D[m,n] from Algorithm 1
Pseudocode:
if (n=0) and (m=0) then return ar, br
if ((n>0)and(m>0)) and((D[n,m]=D[n-1,m-1]+cdist)

or ((D[n,m]=D[n-1,m-1]) and (cdist=0)))
then recOPD(n-1, m-1, ar +a[n], br + b[m])

else
if (n>0) and (D[n,m]=D[n-1,m] +costr)

then recOPD(n-1, m, ar+a[n], br+ε)
else
if (m>0) and (D[n,m]=D[n,m-1] +costi)

then recOPD(n, m-1, ar+ε, br+b[m])

In the worst case scenario its complexity is O(m+n) (this happens
when we separately traverse the matrix horizontally and vertically).
This result is achieved with the help of prioritizing the direction of
analysis when traversing the matrix. We first look to the north-west
and only afterwards to the northern and western cell values. We stop
the reconstruction process once the algorithm reaches the cell atD[0, 0].
The reasoning behind this decision is to find the most optimal decom-
position among all possible decompositions of strings a and b. The
example that follows is a good illustration of this approach.

Example 5.1. Let’s investigate the example where a = industry and
b = interest. In this case we have ρ∗(a, b) = 6. The possible decompo-
sitions of strings a and b are as follows:

industry inεεdustry inεdεustry indεεustry inεduεstry
interest interestεε interestεε interestεε interestεε

The first pair of parallel string decompositions is the optimal one
as it has minimal string length. Another good example of two strings
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decomposition into their building blocks ui, vj , and wj is illustrated
below.

Example 5.2. Consider the alphabet Ā = {ε,X, Y, Z,W} and two
strings a = XXY YWZYX and b = Y XXWZWXY . For this exam-
ple we obtain that ρ∗(a, b) = 5 as well as the following optimal decom-
position:

ε

Y

(

X X

X X

)

Y Y

W Z

(

W

W

)

Z

X

(

Y

Y

)

X

ε

Lets look at results in detection of the mutational events. We ex-
tend the parallel decompositions and present the construction of the
semiparallel decompositions. We take into consideration the ordering
� and the corresponding distance ρ∗l . From this point of view, for
any two strings a, b ∈ L(A) we find the decompositions of the form
a = v1u1v2u2 · · · vkukvk+1 and b = w1u

′

1
w2u

′

2
· · ·wku

′

kwk+1, where

• ui, u
′

i are canonical substrings of the strings a and b and ui, u
′

i

may be empty strings;

• vj is a substring of a and vj may be an empty string;

• wj is a substring of b and wj may be an empty string;

• ρ∗l (ui, u
′

i) = 0 for all i ≤ k.

Like in the case with parallel decompositions, the semiparallel de-
compositions are optimal if

ρ∗l (a, b) = Σ{ρ(vi, wi) : i ≤ k + 1}.

This given interpretation of the metric and string decompositions can
be used in the study of the minimum number of acceptable and unac-
ceptable (when metric ρ∗r is used)mutational events required to convert
one sequence to another.

To illustrate the application of the semiparallel decomposition let
us partition the strings from the previous example.
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Example 5.3. Let a = XXY YWZYX and b = Y XXWZWXY ,
with the alphabet Ā = {ε,X, Y, Z,W}, on which we consider the classic
ordering �, meaning that ρ∗l (zi, zj) = 0 for all zi, zj ∈ Ā, where zi � zj .
This time we obtain that ρ∗l (a, b) = 3, as well as the following optimal
decomposition:

(

X X

Y X

)

Y

X

(

Y

W

)

W

Z

(

Z

W

)

Y

X

(

X

Y

)

For semiparallel decompositions we can define measure of similarity,
penalty, and proper similarity.

Remark 5.1. Our algorithms are effective for any quasimetric on Ā.
Some authors consider the possibility to define the generalized Leven-
shtein metric with distinct values ρ(a, b) and ρ(b, a). It is necessary
to require that ρ(a, b) is a quasimetric. In other cases we may obtain
some confusions as will be seen from the next example.

Example 5.4. Let A = {a, b}, Ā = {ε, a, b}. The following table de-
fines the distance ρ on Ā:

0 0 1 ε

1 0 0 a

0 1 0 b

ε a b y x

In this example we have 0 = ρ(a, b) + ρ(b, ε) < ρ(a, ε) = 1 and:
1. for u = aba, v = ba we get ρ̄(u, v) = ρ̄(v, u) = 0,
2. for u = a, v = b we get ρ̄(u, v) = ρ̄(v, u) = 0, when ρ(v, u) = 1.

Example 5.5. Let us examine the example from [16] in the context of
the results achieved. We have strings a = AJCJNRCKCRBP and
b = ABCNJROCLCRPM for which there are eight pairs of optimal
decompositions. We present two of them, the shortest and the longest:
(

A

A

)

J

B

(

C

C

)

ε

N

(

J

J

)

N R

R O

(

C

C

)

K

L

(

C R

C R

)

B P

P M
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(

A

A

)

J

B

(

C

C

)

J

ε

(

N

N

)

ε

J

(

R

R

)

ε

O

(

C

C

)

K

L

(

C R

C R

)

B

ε

(

P

P

)

ε

M

For the first pair we have ρ∗ = 7, m = 6, p = 1, and M = 5. For the
second pair we have ρ∗ = 7, m = 8, p = 5, and M = 3. Our algorithms
allow us to calculate all optimal decompositions with distinct measure
of similarity. Authors from [16] prefer the second pair of decomposition
since it has maximal possible measure of similarity. We consider more
preferable the first pair, which has the maximal proper similarity.

6 Conlusion

We showed that there are invariant distances on L(A) closely related to
Levenshtein’s distance, which help us solve various problems in math-
ematics, computer science, and bioinformatics. The results can be
applied in different areas such as data correction of signals transmit-
ted over channels with noise, finding matching DNA sequence after
mutations, text searching with possible typing errors, and estimation
of dialect pronunciations proximity [8], [14]. For construction of the
matching sequence we propose the method of optimal decompositions
of strings, priority of which is confirmed by Theorem 3.1. Our dis-
tances of ρ∗ type can be defined for distinct values ρ(a, b) of strings
a,b, in general, and for ρ(a, b) 6= ρ(b, a). In such a case, the metric can
be used in solving the stable marriage problem [10].
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Insertion Modeling and Its Applications

Alexander Letichevsky, Oleksandr Letychevskyi

Vladimir Peschanenko

Abstract

The paper relates to the theoretical and practical aspects of
insertion modeling. Insertion modeling is a theory of agents and
environments interaction where an environment is considered as
agent with a special insertion function. The main notions of
insertion modeling are presented. Insertion Modeling System is
described as a tool for development of different kinds of insertion
machines. The research and industrial applications of Insertion
Modeling System are presented.

Keywords: process algebra, insertion modeling, formal mod-
els, verification.

1 Introduction

Insertion modeling is an approach for research of distributed multi-
agent systems and for development of tools for verification of its models.
The first papers about insertion modeling were published about 20
years ago [1], [2]. A model of the agents and environments interaction
which helps the insertion function notion was presented in these papers.

The main sources of insertion modeling are in a model of inter-
acting control and operating automata, which were found by V.M.
Glushkov [3], [4] for the computers description. An algebraic abstrac-
tion of this model has been studied in the theory of discrete trans-
formers and has provided some important results on the problem of
equivalence of programs, their equivalent transformation and optimiza-
tion. Macroconveyor models of parallel computing [5] are even closer
to the model of interaction between agents and environments. In these

c©A. Letichevsky, O. Letychevskyi, V. Peschanenko
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models processes corresponding to parallel processors can be regarded
as agents interacting in distributed environment data structures. In
recent years the insertion simulation becomes a tool for development
applications of verification of systems requirements and specifications
of distributed interacting systems [6]–[10].

Another source of insertion modeling is a general theory of inter-
acting information processes, which was created in previous century
and is the basis for modern research in this area. It includes CCS
(Calculus of Communicated Processes) [11], [12] and π-calculus of R.
Milner [13], CSP (Communicated Sequential Processes) of T. Hoar [14],
ACP (Algebra of Communicated Processes) [15] and many other dif-
ferent branches of these basic theories. A quite complete review of the
classical theory of processes is represented in the handbook on algebra
processes [16], which was published in 2001.

The second section is defined by the algebra of behaviors and the
bisimulation equivalence of transition systems. The third section in-
troduces the concepts of environment and agents features. The fourth
section is devoted to the Insertion modeling system. The fifth section
deals with the application of insertion modeling, and finally discusses
the possibilities for further development and possible new applications.

2 Behavior algebras

2.1 Transition System

A common approach for describing the dynamics of systems in modern
computer science is the notion of transition system, which is defined
by sets of states and transitions. Usually this notion is enriched by
the additional structures, the most important of which are the tran-
sition labelling (labelled transition system introduced by Park [8] to
describe the behavior of automata on infinite words). The basic notion
in the insertion modeling is an attribute transition system [10], which
is defined as follows:

< S,A,U, T, ϕ > (1)
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where S is a set of states, A is a set of actions, which are used for
marking the transition, U is a set of labeled attributes, which are used
for marking the states, T is transition relation: T ⊆ S×A×S ∪S×S,
which consists of labeled transitions s

a
−→ s′ and not labeled transitions

s → s′.

Function ϕ : S → U is a function of labeling states. U could be
defined as a set U = DR of mapping of a set R of attributes in a set

of data D (a range of values of attributes) or as a U =
(

D
Rξ

ξ

)

ξ∈Ξ
,

where Ξ is a set of data types. A formula of some logic language L(R)
is used for symbolic modeling as attributes labels U ⊆ L(R), where R

is a set of attributes or a set of attributes with types R = (Rξ)ξ. It
could be interpreted by first order language, which could be expanded
by some temporal logic modality. States labeling is considered as some
equivalence for symbolic case.

Transition system can also be configured by highlighting some spe-
cific sets of states from the set of states S. Among them there are the
most important set of initial states S0, a set of termination states S∆

and a set of non-defined states S⊥. The last one is used in the theory
to determine the relationship of approximation and to build infinite
systems in form of finite limits.

As in the theory of automata states the transition systems are con-
sidered as some equivalence. In the branch of different equivalences
which are considered in the [19] the most important are the trace and
bisimulation equivalence (strongest and weakest respectively).

For simplicity, we consider only the system with no hidden tran-
sitions. History of operation of attribute transition system is de-
fined as a finite or infinite sequence s1

a1−→ s2
a2−→ . . . of transitions,

and a trace corresponding to this history is defined as a sequence
ϕ (s1)

a1−→ ϕ (s2)
a2−→ . . .

The trace is called maximal if it can’t be continued. Let L(s) be
the set of all maximal traces which are started in a state s. The states
s and s′ are called trace equivalent, if L(s) = L(s′).

Bisimulation equivalence is weaker than trace and defined by thin-
ner manner. A binary relation R on the set of states of the system 1
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is called a relation of bisimulation, if for every pair (s, s′) of its states
the following rules are true:

• (s, s′) ∈ R ⇒ ϕ (s) = ϕ (s′),

• (s, s′) ∈ R ∧ s
a
−→ t ⇒ ∃t′

(

(t, t′) ∈ R ∧ s′
a
−→ t′

)

,

• (s, s′) ∈ R ∧ s′
a
−→ t′ ⇒ ∃t

(

(t, t′) ∈ R ∧ s
a
−→ t

)

.

The states s and s′ of the system 1 are called bisimulation equivalent

if a bisimulation relation R exists, such as (s, s′) ∈ R.
Equivalence of systems is usually defined in terms of their equiv-

alence of states. For example, for the initial systems two systems are
declared to be equivalent, if the initial state of each of them is equiva-
lent to the initial state of another. The difference between the trace and
bisimulation equivalence occurs only in the case of non-deterministic
systems. A labeled system is called deterministic if

s
a
−→ s′ ∧ s

a
−→ s′′ ⇒

(

s′, s′′
)

∈ R.

Two deterministic systems are bisimulation equivalent if and only
if they are trace equivalent.

2.2 Behavior algebra

In contrast to the trace equivalence for which the invariant of equiva-
lence (a set of traces) is given together with the definition, the invariant
of bisimulation equivalence is not so obvious. In insertion modeling as
invariants (generally infinite) expressions or system of equations in al-
gebra behavior are used. A behavior algebra is arranged simply. It
is a two-sorted algebra < U,A >, the first component U is a set of
behaviors, and the second A is a set of actions. The signature of the
behavior algebra consists of two operations, one relation and three con-
stants. The first operation a.u is called prefixing. Its arguments are
action a and behavior u. The result is a new behavior. The second
operation is the operation of a non-deterministic choice of u+ v. This
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is a binary operation defined in the set of behaviors. It is commutative,
associative and idempotent. The behavior algebras constants are the
successful termination ∆, undefined behavior ⊥ and the deadlock be-
havior 0, which is a neutral element of non-deterministic choice. On the
set of behaviors a binary relation of approximation ⊆ is defined, which
is a relation of a partial order with the smallest element ∆. Prefixing
and non-deterministic choice operation are monotonous and continu-
ous with respect to this relation. The main role is played by a full
behavior algebra F (A), which contains all limits of directed sets and,
therefore, a theorem on the minimal fixed point is applied. The exact
structure algebra F (A) (for any, including infinite number of actions)
is presented in [17].

In the full algebra of behavior each element has the following rep-
resentation:

u =
∑

i∈I

ai.ui + εu,

which is uniquely defined (up to commutativity and associativity), if
all ai.ui are different.

With each state s of transition system a behavior beh(s) = us
of system S is associated as the lowest component of the system of
equations

us =
∑

s
a
−→t

a.ut + εs,

where εs = 0,∆,⊥,∆+ ⊥ depends on the conditions s /∈ S∆ ∪ S⊥, s ∈
S∆ \ S⊥, s ∈ S⊥ \ S∆, s ∈ S∆ \ S⊥, respectively. The main theo-
rem, which characterizes a bisimulation equivalence claims that two

states are bisimulation equivalent if and only if they have equal behavior.
Other approaches to the characterization of a bisimulation equivalence
can be found in [20].
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3 Agents and Environments

Agent is a transition system, which defines a state up to bisimulation
equivalence.

Environment is an agent that has an insertion function. In ad-
ditional environments there is < E,C,A, Ins >, where E is a set of
states of an environment, C is a set of actions which could be in-
serted into an environment, Ins : E × F (a) → E is an insertion func-
tion. Since the states transition systems are considered as bisimulation
equivalence, they can be identified with the behavior and talk about
continuity of an insertion function. The main requirement for the en-
vironment is a continuity of an insertion function. This assumption
implies a number of useful effects. For example, the fact that an in-
sertion function can be set with the help of systems of rewriting rules
as the minimal fixed point of the system of functional equations. A
result Ins(e, u) of agents insertion, which is in a state u, is defined
as e [u]. Assuming e [u, v] = (e [u]) [v] we get the opportunity to talk
about the combination of agents that are inserted in an environment
and to consider the state of an environment of the form e [u1, u2, . . .].
Taking into account that an environment is an agent, it can be in-
serted in a top level environment, considering the multi-level envi-
ronments like e

[

e1 [u11, u12, . . .]E1
, e2 [u21, u22, . . .]E2

, . . .
]

, where defi-
nition e [u1, u2, . . .]E clearly shows environment E, which belongs to the
state e. The behavior u of initialized agent defines relation [u] : E → T ,
which is defined by the relation [u] (e) = e [u] and an insertional equiv-
alence of agents ∼E relative to environment E, which is defined by
relation u ∼E v ⇐⇒ [u] = [v]. This equivalence is usually weaker than
bisimulation and plays main role in the applications, because a trans-
formation of algorithms and software implementations of the agents
which live in some environment should be executed as transformation
which saves insertional equivalence.

In [17] some classification of the insertion functions and the ob-
tained results on a reduction of the complex class of functions to the
simple ones are presented.
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Figure 1. Architecture of Insertion Machine

4 Insertion Modeling System

Insertion modeling system [21] is an environment for the development of
insertion machines and performing experiments with them. The notion
of insertion machine was used as a tool for programming with some
special class of insertion functions. Later this notion was extended for
wider area of applications, different levels of abstraction, and multilevel
structures.

Insertion model of a system represents this system as a composition
of environment and agents inserted into it. Contrariwise the whole sys-
tem as an agent can be inserted into another environment. In this case
we talk about internal and external environment of a system. Agents
inserted into the internal environment of a system themselves can be
environments with respect to their internal agents. In this case we talk
about multilevel structure of agent or environment and about high level
and low level environments.

The general architecture of insertion machine is represented in Fig-
ure 1.

The main component of insertion machine is model driver, the com-
ponent which controls the machine movement along the behavior tree
of a model. The state of a model is represented as a text in the in-
put language of insertion machine and is considered as an algebraic
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expression. The input language includes the recursive definitions of
agent behaviors, the notation for insertion function, and possibly some
compositions for environment states. Before computing insertion func-
tion the state of a system must be reduced to the form E [u1, u2, ...].
This functionality is performed by the module called agent behavior
unfolder. To make the movement, the state of environment must be
reduced to the normal form

∑

i∈I

ai.Ei + ε,

where ai are actions, Ei are environment states, ε is a termination
constant. This functionality is performed by the module environment
interactor. It computes the insertion function calling if it is necessary
the agent behavior unfolder. If the infinite set I of indices in the normal
form is allowed, then the weak normal form a.F +G is used, where G

is arbitrary expression of input language.

Two kinds of insertion machines are considered: real time or inter-
active and analytical insertion machines. The first ones exist in the real
or virtual environment, interacting with it in the real or virtual time.
Analytical machines are intended for model analyses, investigation of
its properties, solving problems etc. The drivers for two kinds of ma-
chines correspondingly are also divided into interactive and analytical
drivers.

Interactive driver after normalizing the state of environment must
select exactly one alternative and perform the action specified as a
prefix of this alternative. Insertion machine with interactive driver
operates as an agent inserted into external environment with insertion
function defining the laws of functioning of this environment.

Analytical insertion machine as opposed to interactive one can con-
sider different variants of making decision about performed actions,
returning to choice points (as in logic programming) and consider dif-
ferent paths in the behavior tree of a model. The model of a system
can include the model of external environment of this system, and
the driver performance depends on the goals of insertion machine. In
the general case analytical machine solves the problems by search of
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Figure 2. Architecture of Insertion Modeling System

states, having the corresponding properties (goal states) or states in
which given safety properties are violated. The external environment
for insertion machine can be represented by a user who interacts with
insertion machine, sets problems, and controls the activity of insertion
machine.

Analytical machine enriched by logic and deductive tools is used for
generating traces of symbolic models of systems. The state of symbolic
model is represented by means of properties of the values of attributes
rather than their concrete values.

General architecture of insertion modeling system is represented in
Figure 2.

High level model driver provides the interface between the system
and external environment including the users of the system. Design
tools based on Algebraic Programming system APS [21] are used for
the development of insertion machines and model drivers for different
application domains and modeling technologies. Verification tools are
used for the verification of insertion machines, proving their properties
statically or dynamically. Dynamic verification uses generating sym-
bolic model traces by means of special kinds of analytical model drivers
and deductive components.
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The repository of insertion machines collects already developed ma-
chines and their components which can be used for the development of
new machines as their components or templates for starting. Special
library of APLAN functions supports the development and design in
new projects. The C++ library for IMS supports APLAN compilers
and efficient implementation of insertion machines. Deductive system
provides the possibility of verification of insertion models [22].

5 Applications

Based on the ideas of insertion modeling the Verification of Require-
ment Specification (VRS) system was developed by researchers from
V.M. Glushkov Institute of Cybernetics of National Academy of Sci-
ence of Ukraine.

The language of basic protocols is implemented in VRS, which sup-
ports the usage of numerical attributes and symbolic types, arrays, lists
and functional data types. The deductive system provides proof of the
identities in the theory of the first order logic, which is the integration of
theories of real and integer linear inequalities, free uninterpreted func-
tion symbols and theory query. Symbolic modeling in the VRS is based
on satisfiability checking and predicate transformer functions [23].

Proving Programming System is a new and modern system that is
designed to maintain a high level of training of qualified specialists in
programming. This system is created based on the Insertion Model-
ing system and Algebraic Programming System which was developed at
the V.M. Glushkov Institute of Cybernetics of NAS of Ukraine with the
participation of authors from Kherson State University. This system
implements Floyds algorithm of proving partial correctness of anno-
tated programs [24].

Insertion Modeling system was successfully used for implementation
of theory for building of invariants of the models [25] and loops in
software [26], for the set of school computer algebra systems[27], for
interleaving reduction in symbolic insertion models [28].
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6 Conclusion

In this paper the main notions of insertion modeling are given. In-
sertion modeling theory is one of the most general theories of process
algebra. Its main difference consists in the fact that an environment
is considered as an agent with insertion function. Insertion Modeling
System was developed for supporting this theory in practice and is used
for developing industrial and research insertion machines.

In the nearest future we are planning to use such theory and system
for research of models which came from law and economics.
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Abstract

In the paper we develop methods for proving properties of
programs on hierarchical nominative data on the basis of the
composition-nominative approach. In accordance with this ap-
proach, the semantics of a program is a function on nominative
data constructed from basic operations using compositions (oper-
ations on functions) which represent programming language con-
structs. Nominative data can be considered as a class of abstract
data models which is able to represent many concrete types of
structured and semistructured data that appear in programming.
Thus, proofs of properties of programs depend on proofs of prop-
erties of compositions and basic operations on nominative data.

To simplify the parts of such proofs that deal with program
compositions we propose to represent compositions of programs
on nominative data using effective definitional schemes of H.
Friedman. This permits us to consider proofs in data algebras
(which are simpler to derive, automate, etc.) instead of proofs in
program algebras. In particular, we demonstrate that the prop-
erties of programs related to structural transformations of data
can be reduced to the data level. The obtained results can be
used in software development and verification.
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1 Introduction

The importance of the problem of elaborating the theory of program-
ming and connecting it with software development practice was recog-
nized by many researchers. In particular, it was mentioned as one of the
grand challenges in computing by T. Hoare in his influential paper [1].
More generally, one may argue that development of tools and methods
of program analysis that can make sure that it has the desired runtime
properties before the program is run (e.g. model checking, verification
against a formal specification using logical methods and automatic the-
orem provers, etc.) is a very important research topic.

In this paper we consider one aspect of the mentioned problem that
is concerned with simplification of the process of proving properties of
programs which operate on complex data structures (e.g. records, mul-
tidimensional arrays, trees, etc.). The types of properties we consider
are the properties which can be described by special predicates on in-
put and output data of a program: if i is an input data, o is the output
of a program on the input i, then the property can be formulated as
P (i, o), where P is a predicate such that its truth domain is a tran-
sitive binary relation. Another kind of property which we consider is
monotonicity of a program as a function from input data to output
data with respect to some preorder relation on data (or, in particular,
equivalence relation).

The ability to check such properties is useful in many cases. For
example, in terms of such properties one can formulate the state-
ment of partial correctness of a cyclic program in Floyd-Hoare logic
[2], [3], the statement about correctness of implementation of a pro-
cedure/function/method with respect to its specification in contract
programming [4], the statement about preservation of the structure or
content of the data by a program (if a program is intended to perform a
certain transformation of its input like optimization, translation, com-
pilation, etc.).

Usually a proof of such a property of a program can be done by in-
duction on the program structure and it ultimately reduces to a number
of proofs of properties of similar type for the basic operations on data
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and for programming constructs (compositions – such as sequential
execution, branching, cycle, etc.).

However, the complexity of such a proof can be lowered, if one
is able to reduce the proofs of properties of different compositions to
proofs of properties of operations on data. In this paper we propose a
way of achieving such a reduction by representing compositions using
effective definitional schemes of H. Friedman. The achieved reduction
permits us to consider proofs in data algebras (which are simpler to
derive, automate, etc.) instead of proofs in program algebras. Using
this approach we demonstrate that the properties of programs related
to structural transformations of data can be simplified by reducing
them to the data level.

An informal description of how our approach works is given below.
Consider the following version of the greatest common divisor compu-
tation algorithm (GCD algorithm).

Input: x, y (integer), local variables: a, b (integer)

a:=x; b:=y;
while a 6= b do begin
if a>b do a:=a-b;
if b>a do b:=b-a;
end

The program has a state which can be represented as an association
between variable names a, b, x, y and integer values e.g. its initial state
can be d = [x 7→ 10, y 7→ 5, a 7→ 10, b 7→ 5]. Such an association can be
formalized as a nominative data. We will denote the value associated
with a name x in a data d as d(x). The program state changes during
execution, however, all operations which change the state (assignments
a := a − b, b := b − a) leave the value gcd(a, b) unchanged. Let us
define as P the input-output relation of the program, i.e. the set of
pairs (di, do) of nominative data such that if di is the initial state of
the program, then do is the final state of the program. Let us denote
as 6 the following binary relation: if d1, d2 are nominative data which
give values to the names a, b, x, y, then d1 6 d2 if and only if

d1(x) = d2(x) ∧ d1(y) = d2(y) ∧ gcd(d1(a), d1(b)) = gcd(d2(a), d2(b)).
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Obviously, 6 is a transitive relation. If we can show (di, do) ∈ P implies
that di 6 do, then we can easily conclude that the program is partially
correct, i.e. if the program terminates, then a = b = gcd(x, y), so it in-
deed computes the greatest common divisor of x and y. Thus for prov-
ing the property of partial correctness of this program it is sufficient to
show that its input-output mapping (P ) is an increasing function in the
sense of some transitive relation. Now our observation is that to prove
that P defines an 6-increasing function, it may be sufficient to check
that all basic transformations of data (e.g. assignments) which appear
in the program’s source code are 6-increasing without analyzing how
these basic transformations are composed using various programming
constructs like the conditional operator (if) and cycle operator (while).

The benefit of this approach to proving partial correctness (or other
properties) of a program is that when this approach is applicable, it
gives its user the ability to reuse the proof of a program’s property when
a program undergoes various changes/improvements/optimizations
that do not change the set of basic operations (transformations) of
data which appear in it. For example, if we modify the above men-
tioned version of the GCD algorithm in the following way:

Input: x, y (integer), local variables: a, b (integer)

a:=x; b:=y;
while a 6= b do begin
while a>b do a:=a-b;
while b>a do b:=b-a;
end

then the modified algorithm still consists of the same basic operations
as the original one, so it is still partially correct.

To describe formally our approach we need a formal model of com-
plex data structures used in programming and of programs that op-
erate on such data. We choose the formal models of data, programs
and programming constructs provided by the composition-nominative
approach [5]. In accordance with this approach, the denotational se-
mantics of a program is a function on nominative data [5] (a class of
abstract models of data which is able to represent many concrete types
of structured and semistructured data that appear in programming)
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constructed from basic operations on nominative data using compo-
sitions (operations on functions) which represent programming lan-
guage constructs. The model of nominative data is particularly suit-
able for our purposes since, it was demonstrated [11] that nominative
data with complex names and/or values can adequately represent many
data structures used in programming practice. For example, the data
representable in JSON (JavaScript Object Notation) data-interchange
format, which is very popular in web development, can be naturally
modeled using nominative data.

Besides data formalization, we will need the formalizations of com-
mon programming language constructs in terms of operations on pro-
grams on nominative data. As such formalizations we will use the op-
erations of the Associative Nominative Glushkov Algorithmic Algebra
(ANGAA) introduced in [11] which is a rich, but tractable general-
ization of Glushkov algorithmic algebras [14] to programs on complex
data structures.

We give the necessary preliminaries about the composition-nomina-
tive approach in the next section.

We will use the following notation:

- f : A → B denotes a total function from a set A to B;

- f : A→̃B denotes a partial function from a set A to B;

- f(x) ↓ means that a partial function f is defined on a value x;

- f(x) ↑ means that a partial function f is undefined on a value x;

- ∼= denotes the strong equality: f(x) ∼= g(x) means that either f

and g are both defined on x and have the same value on x, or f and g

are both undefined on x.

2 Composition-Nominative Approach

The composition-nominative approach [5] aims to propose a mathemat-
ical basis for development of formal methods of analysis and synthesis
of software systems. According to this approach, program models are
specified as composition-nominative systems (CNS) which consist of
simpler systems: composition, description, and denotation systems.
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Composition system defines semantic aspects of programs, descrip-
tion system defines syntactical aspects, and denotation system specifies
meanings of descriptions. Semantics of programs are defined as partial
functions over a class of data processed by programs and means of con-
struction of complex programs from simpler programs (e.g. branching,
cycle, etc.) are defined as n-ary operations (called compositions) over
functions over data. A composition system can be specified as two
algebras: data algebra and function algebra. Syntactically programs
are represented as terms in the function algebra. The corresponding
term algebra defines a descriptive system and the ordinary procedure
of term interpretation gives a denotation system.

Data on which programs operate are modeled as nominative data
[5]. Such data are special kinds of associations between names and
values. There are several types of nominative data [8], [9], [10]. Among
them the simplest type is the class of nominative sets, where a nom-
inative set is a partial function from a set of abstract names to a set
of abstract values [5], [8]. Nominative sets are frequently used in de-
notational semantics for formalizing program state [17]. In the general
case, nominative data are classified in accordance with the following
parameters:

• values can be simple (unstructured) or complex (structured),

• names can be simple (unstructured) or complex (structured).

Here “complex values” mean that the values corresponding to
names in a nominative data can be nominative data themselves. Com-
plex (structured) names are understood as strings consisting of simple
(unstructured) names. The possible values of the mentioned parame-
ters give four types of nominative data which are denoted as follows:
TNDSS – nominative data with simple names and simple values,
TNDCS – nominative data with complex names and simple values,
TNDSC – nominative data with simple names and complex values,
TNDCC – nominative data with complex names and complex values.

The formal definitions of the mentioned types of nominative data
are given below.
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• For any fixed sets of names V and values A, the class of data of
the type TNDSS over V and A is defined as D0(V,A) = V

n
→A,

where V
n
→A denotes the set of partial functions from V to A

which have a finite graph. The elements of this class are denoted
using notation [v1 7→ a1, ..., vn 7→ an], where vi ∈ V are names
and ai ∈ A are the corresponding values. For example, data
d = [u 7→ 1, v 7→ 2] belongs to D0(V,A), where u, v ∈ V are
distinct elements and {1, 2} ⊆ A, dom(d) = {u, v} and d(u) = 1,
d(v) = 2.

• For any fixed sets of names V and values A, the class of data of
the type TNDSC over V and A is D1(V,A) = ND(V,A), where

– ND(V,A) =
⋃

k≥0NDk(V,A),

– ND0(V,A) = A ∪ {∅},

– NDk+1(V,A) = A ∪
(

V
n

−→NDk(V,A)
)

, k ≥ 0.

Here, we denote by ∅ the empty nominative data, i.e. a function
with an empty graph (this notation is also used for the empty
set).

Data of type TNDSC are hierarchically constructed. An example
of such data is [u 7→ 1, v 7→ [w 7→ 2]], where u, v, w ∈ V , 1, 2 ∈ A.
Such data can be represented by oriented trees (of varying arity)
with arcs labelled by names and with leafs labelled by elements
from A or ∅.

A path is a nonempty finite sequence (v1, v2, ..., vk), v1, ..., vk ∈ V .

For a given data d, a value of a path (v1, v2, ..., vk) in d is defined
by the expression d(v1, v2, ..., vk) ∼= (...((d(v1))(v2))...(vk)).

We say that a path (v1, v2, ..., vk) is a path in a data d ∈
ND(V,A), if a value of (v1, v2, ..., vk) in d is defined, i.e.
d(v1, v2, ..., vk) ↓ (a path in data corresponds to a path from the
root to a node in an oriented tree). A terminal path in a data
d ∈ ND(V,A) is a path in d such that its value belongs to A∪{∅}.
The least k such that d ∈ NDk(V,A) is the rank of a data d.
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• For any fixed sets of names V and values A, the class of data
of the type TNDCS over V and A is defined as D2(V,A) =
NDV S(V,A), where NDV S(V,A) is the set of all elements of
A∪(V + n

→A) such that either d ∈ A, or d ∈ V + n
→A and all strings

from dom(d) are pairwise incomparable in the sense of the pre-
fix relation (principle of unambiguous associative naming). An
example of such data is [uv 7→ 1, uw 7→ 2, w 7→ 3], u, v, w ∈ V .
Such data have complex names i.e. names that are strings.

• For any fixed sets of names V and values A, the class of data
of the type TNDCC over V and A is defined as D3(V,A) =
NDV C(V,A), where NDV C(V,A) is the class of all data d ∈
ND(V +, A) such that for any two paths (u1, u2, ..., uk) and
(v1, v2, ..., vl) in d, neither of which is a prefix of another, the
words u1u2...uk and v1v2...vl are incomparable in the sense of
the prefix relation (principle of unambiguous associative naming).
Such data is also called complex-named data [10]. An example of
such data is [uv 7→ 1, w 7→ [uw 7→ ∅]], u, v, w ∈ V .

3 Basic Operations on Nominative Data

The basic operations on nominative data are the operations of
– denaming (taking the value of a name),
– naming (assigning a new value to a name),
– overlapping.
Let us define these operations for data of the most interesting and

complex type TNDCC .
Let V and A be fixed sets of names and basic values respectively.

Definition 1 (Denaming). The (associative) denaming is an operation
v ⇒a with a parameter v ∈ V + defined by induction on the length of v:

• if v ∈ V , then v ⇒a (d) ∼=











d(v), if d(v) ↓;

d/v, if d(v) ↑ and d/v 6= ∅;

undefined, if d(v) ↑ and d/v = ∅,

where d/u = [v1 7→ d(z) | d(z) ↓, z = uv1, v1 ∈ V +];
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• if v ∈ V +\V , then v ⇒a (d) ∼= v2 ⇒a (v1 ⇒a (d)), where v1 is
the first symbol of v and v2 is the suffix, i.e. v1, v2 are (unique)
words such that v = v1v2 and v1 ∈ V .

The following examples illustrate this operation:

• u ⇒a ([u 7→ 1, v 7→ 2]) = 1;

• (uv) ⇒a ([u 7→ [vw 7→ 1, u 7→ 2]]) = [w 7→ 1].

This operation has the following property (associativity) [10]:

u ⇒a (d) ∼= un ⇒a (un−1 ⇒a (... u1 ⇒a (d)...))

for all complex names u, u1, u2, ..., un ∈ V + such that u = u1u2...un.

Definition 2 (Naming). Naming is an unary operation ⇒ v with a
parameter v ∈ V + such that ⇒ v(d) = [v 7→ d].

Overlapping is a kind of updating operation which updates the val-
ues of names in its first argument with the values of names in its second
argument. For different types of nominative data different overlapping
operations can be considered. We will define two kinds of overlapping:
global and local overlapping. Global (associative or structural) over-
lapping ∇a updates several values in the first argument while the local
one ∇v

a (with a parameter name v) updates only one value which is
associated with the name v.

Global overlapping can be used, e.g. for formalizing procedures
calls, while the local overlapping can be used as a formalization of the
assignment operator in programming languages.

Definition 3 (Global overlapping). For nominative data of the type
TNDCC , global overlapping is a binary operation ∇a defined induc-
tively by the rank of the first argument as follows.

Let NDVCk(V,A) = NDV C(V,A)∩NDk(V
+, A) be the data from

the set NDV C(V,A), the rank of which is ≤ k.
Induction base of the definition. If d1 ∈ NDV C0(V,A), then

d1∇ad2 ∼=

{

d2, if d1 = ∅ and d2 ∈ NDV C(V,A)\A;

undefined, if d1 ∈ A or d2 ∈ A.
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Induction step of the definition. Assume that the value d1∇ad2 is al-
ready defined for all d1, d2 such that d1 ∈ NDV Ck(V,A). Let

d1 ∈ NDV Ck+1(V,A)\NDV Ck(V,A).

Then d1∇ad2 = d, where d is defined for each name u ∈ V + as follows:
1) d(u) = d2(u), if u ∈ dom(d2) and u does not have a proper prefix

which belongs to dom(d1);
2) d(u) = d1(u)∇a(d2/u), if d1(u) is defined and does not belong to

A and u is a proper prefix of some element of dom(d2), where d2/u =
[v1 7→ d2(v) | d2(v) ↓, v = uv1, v1 ∈ V +];

3) d(u) = d2/u, if d1(u) is defined and belongs to A and u is a
proper prefix of some element of dom(d2);

4) d(u) = d1(u), if d1(u) is defined and u is not comparable (in the
sense of the prefix relation) with any element of dom(d2);

5) d(u) ↑, otherwise.

The global overlapping has the following properties [10]:

• [u 7→ d1]∇a[v 7→ d2] = [u 7→ d1, v 7→ d2], u, v ∈ V, u 6= v;

• [uv 7→ d1]∇a[u 7→ d2] = [u 7→ d2], u, v ∈ V +, i.e. the value under
a name u in the second argument overwrites the values under
names in the first argument which are extensions of u;

• [u 7→ d1]∇a[uv 7→ d2] = [u 7→ (d1∇a[v 7→ d2])], if u, v ∈ V +,
d1 /∈ A, i.e. the value under a name uv in the second argument
modifies values under prefixes of uv in the first argument.

Definition 4 (Local overlapping). For nominative data of the type
TNDCC local overlapping is a binary operation ∇v

a with a parameter
v ∈ V + defined as follows: d1∇

v
ad2

∼= d1∇a(⇒ v(d2)).

Definition 5. Name checking predicate u! on NDV C(V,A) with a
parameter u ∈ V + is defined as follows:

u!(d) = T , if u ⇒a (d) ↓; u!(d) = F , if u ⇒a (d) ↑.

Definition 6. Emptiness checking predicate IsEmpty on NDV C(V,A)
is defined as follows:

IsEmpty(d) = T , if d = ∅; IsEmpty(d) = F , if d 6= ∅.
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Using the basic operations on nominative data, we can define an
algebraic structure of nominative data.

Definition 7. An algebraic structure of nominative data of the type
TNDCC is defined as follows:

NDASCC(V,A) = (NDV C(V,A); ∅, {v ⇒a}v∈V + ,

{⇒ v}v∈V + , {∇v
a}v∈V + , {v!}v∈V + , IsEmpty),

where ∅ is a constant – the empty nominative data.

Note that NDASCC(V,A) is a structure without equality.
One can extend NDASCC(V,A) with additional unary predicates

and operations on nominative data.

Definition 8. Let k, l ∈ N ∪ {0}, p1, p2, ..., pk be partial predi-
cates on NDV C(V,A) and f1, ..., fl be partial functions of the type
NDV C(V,A)→̃NDV C(V,A). An extended algebraic structure of
nominative data of the type TNDCC with additional unary predicates
p1, ...pk and operations f1, ..., fl is defined as follows:

NDASCC(V,A; p1, ..., pk; f1, ..., fl) = (NDV C(V,A);

∅, {v ⇒a}v∈V + , {⇒ v}v∈V + , {∇v
a}v∈V + , {v!}v∈V + , IsEmpty,

p1, ..., pk, f1, ..., fl),

where ∅ is a constant – the empty nominative data.

Definition 9. A path in d ∈ NDV C(V,A) is a nonempty sequence
(v1, v2, ..., vn) of words from V + such that the value ((d(v1))(v2)...)(vn)
is defined. This value ((d(v1))(v2)...)(vn) is called the value of the path
(v1, v2, ..., vn) in d. A path is called a terminal path in d, if its value in
d belongs to A ∪ {∅}.

Definition 10. 1) d1 ∈ NDV C(V,A) is nominatively included in
d2 ∈ NDV C(V,A), if either d1, d2 ∈ A and d1 = d2, or d1, d2 /∈ A

and for each terminal path (v1, v2, ..., vn) in d1 there is a terminal
path (v′1, v

′

2, ..., v
′

m) in d2 such that v1v2...vn = v′1v
′

2...v
′

m and the
values of (v1, v2, ..., vn) in d1 and (v′1, v

′

2, ..., v
′

m) in d2 coincide.

2) d1, d2 are nominative equivalent (d1 ≈ d2), if d1 is nominatively
included in d2 and d2 is nominatively included in d1.
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4 Associative Nominative Glushkov Algorith-

mic Algebra

Programs on nominative data can be formalized as functions from
nominative data (input data) to nominative data (output data) which
can be constructed from the operations of the algebraic structure
NDASCC(V,A) using compositions which represent programming lan-
guage constructs, e.g. sequential execution, branching, cycle, etc.

The set of such programs together with compositions forms an al-
gorithmic algebra similar to, e.g. Glushkov algorithmic algebras [14].

In [11] the authors of this paper proposed a generalization of
Glushkov algorithmic algebras to algebras of functions and predicates
over nominative data of the type TNDCC (i.e. data with complex
names and complex values) in order to obtain a rich, but tractable
formal language for specifying and reasoning about programs. This
generalization is called an Associative Nominative Glushkov Algorith-
mic Algebra (ANGAA).

Let V and A be fixed sets of basic names and values. Denote

PrCC(V,A) = NDV C(V,A)→̃{T, F},

FnCC(V,A) = NDV C(V,A)→̃NDV C(V,A).

We will assume that T and F do not belong to NDV C(V,A).

We will call the elements of PrCC(V,A) (partial nominative) predi-
cates and the elements of FnCC(V,A) (partial binominative) functions.

Let us denote by Ū the set of all tuples (u1, u2, ..., un), n ≥ 1 of
complex names from V + such that whenever i 6= j, ui and uj are
incomparable in the sense of the prefix relation.

• Sequential composition of functions (denoted using the infix no-
tation) • : Fn(V,A)×Fn(V,A) → Fn(V,A) is defined as follows:
for all f, g ∈ Fn(V,A) and data d: (f • g)(d) ∼= g(f(d)).

• Prediction composition [14] · : Fn(V,A) × Pr(V,A) → Pr(V,A)
is defined as follows: for all f ∈ Fn(V,A), p ∈ Pr(V,A), and
data d: (f · p)(d) ∼= p(f(d)).
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• Assignment composition Asgu : Fn(V,A) → Fn(V,A) with a
parameter u ∈ V + is defined as follows: for each f ∈ Fn(V,A)
and data d, (Asu(f))(d) ∼= d∇u

af(d).

• The composition of superposition into a function

S
u1,u2,...,un

F : Fn(V,A)× (Fn(V,A))n → Fn(V,A)

with parameters n ≥ 1 and u1, ..., un ∈ V + such that (u1, ..., un) ∈
Ū is defined as follows:

S
u1,...,un

F (f, f1, ..., fn)(d) ∼= f(...(d∇u1

a f1(d))...∇
un

a fn(d))...).

We will also use the following notation for this composition: for
each tuple ū = (u1, u2, ..., un) ∈ Ū , Sū

F denotes Su1,u2,...,un

F .

• The composition of superposition into a predicate

S
u1,u2,...,un

P : Pr(V,A)× (Fn(V,A))n → Pr(V,A)

with parameters n ≥ 1 and u1, ..., un ∈ V + such that (u1, ..., un) ∈
Ū is defined as follows:

S
u1,...,un

P (p, f1, ..., fn)(d) ∼= p(...(d∇u1

a f1(d))...∇
un

a fn(d))...).

We will also use the following notation for this composition: for
each tuple ū = (u1, u2, ..., un) ∈ Ū , Sū

P denotes Su1,u2,...,un

P .

• Branching composition IF : Pr(V,A)× Fn(V,A)× Fn(V,A) →
Fn(V,A) is defined as follows: for each p ∈ Pr(V,A), f, g ∈
Fn(V,A):

IF (p, f, g)(d) ∼= f(d), if p(d) ↓= T .

IF (p, f, g)(d) ∼= g(d), if p(d) ↓= F .

IF (p, f, g)(d) undefined, if p(d) ↑.

• Cycle composition WH : Pr(V,A) × Fn(V,A) → Fn(V,A) is
defined as follows: for each p ∈ Pr(V,A), f ∈ Fn(V,A), and d:
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WH(p, f)(d) ↓= f (n)(d), if there exists n ≥ 0 such that (f (i) ·
p)(d) ↓= T for all i ∈ {0, 1, ..., n−1} and (f (n) ·p)(d) ↓= F , where
f (n) is a n-times sequential composition of f with itself (f (0) is
the identity function), and WH(p, f)(d) is undefined otherwise.

• Negation ¬ : Pr(V,A) → Pr(V,A) is a composition such that
for each p ∈ Pr(V,A) and data d: (¬p)(d) ∼= T , if p(d) ↓= F ;
(¬p)(d) ∼= F , if p(d) ↓= T ; (¬p)(d) is undefined, if p(d) ↑.

• Disjunction ∨ : Pr(V,A)×Pr(V,A) → Pr(V,A) is a composition
defined as follows: for each p1, p2 ∈ Pr(V,A) and data d:

(p1 ∨ p2)(d) ∼=











T, if p1(d) ↓= T or p2(d) ↓= T ;

F, if p1(d) ↓= F and p2(d) ↓= F ;

undefined, otherwise.

• Identity composition Id : Fn(V,A) → Fn(V,A) is defined as
follows: Id(f) = f for all f ∈ Fn(V,A).

• True constant predicate (null-ary composition) True ∈ Pr(V,A)
is defined as follows: True(d) ↓= T for all data d.

• Bottom function (null-ary composition) ⊥F∈ Fn(V,A) is defined
as follows: ⊥F (d) ↑ for all data d.

• Bottom predicate (null-ary composition) ⊥P∈ Pr(V,A) is defined
as follows: ⊥P (d) ↑ for all data d.

• Name checking predicate (null-ary composition) with a parameter
u ∈ V +: u!(d) = T , if u ⇒a (d) ↓; u!(d) = F , if u ⇒a (d) ↑.

• Empty constant function (null-ary composition): Empty(d) = ∅.

• Emptiness checking predicate (null-ary composition):

IsEmpty(d) = T , if d = ∅; IsEmpty(d) = F , if d 6= ∅.

Our generalization of Glushkov algorithmic algebras to an algebra
of programs on hierarchical data is defined below.
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Definition 11. An Associative Nominative Glushkov Algorithmic Al-
gebra (ANGAA) is a two-sorted algebra

NGAa
CC(V,A) = (PrCC(V,A), FnCC (V,A); •, IF,WH, ·, {Asgu}u∈V +,

{Sū
F }ū∈Ū , {S

ū
P }ū∈Ū ,∨,¬, Id, T rue,⊥F ,⊥P , {u!}u∈V + ,

Empty, IsEmpty)

One can further extend ANGAA by adding constant symbols which
denote certain fixed predicates from PrCC(V,A) and/or functions from
FnCC(V,A) to its signature.

Definition 12. Let k, l ∈ N ∪ {0}, p1, p2, ..., pk ∈ PrCC(V,A) and
f1, f2, ..., fl ∈ FnCC(V,A).

An extended Associative Nominative Glushkov Algorithmic Algebra
(eANGAA) with predicate constants p1, ..., pk and function constants
f1, ..., fl is a two-sorted algebra

NGAa
CC(V,A; p1, ..., pk; f1, ...fl) =

(PrCC(V,A), FnCC(V,A); •, IF,WH, ·, {Asgu}u∈V + ,

{Sū
F }ū∈Ū , {S

ū
P }ū∈Ū ,∨,¬, Id, T rue,⊥F ,⊥P , {u!}u∈V + , Empty, IsEmpty,

p1, p2, ..., pk, f1, f2, ...fl).

5 Effective Definitional Schemes and General-

ization of eds Definability

The generalized recursion theory as proposed by H. Friedman [15] and
subsequently developed in [16] investigates generalized notions of com-
putability on objects of algebraic structures. In this context in [15] H.
Friedman defined the notion of a generalized Turing algorithm and the
equivalent notion of an effective definitional scheme (eds) [15]. Basi-
cally, eds are definitions by infinite cases which have a recursive enumer-
able structure. They can be used to give a very general definition of a
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computable function; in fact it was argued [16] that for reasonable def-
initions of computable functions over algebraic structures computable
functions need to be eds definable.

Such a definition of a computable function can be described as fol-
lows [16]. Consider a language L with finitely many constant, relation,
operation symbols interpreted in an algebraic structure M with some
domain, constants, relations and operations. Then a function f (on
the domain of M) is eds definable, if there is a set S of conditions
of the form ϕi(v, v1, ..., vn) → ti(v, v1, ..., vn) (eds) consisting of terms
ti(v, v1, ..., vn) in L and basic semialgebraic conditions (i.e. finite con-
junctions of atomic formulas and their negations) ϕi(v, v1, ..., vn) in L,
where v, v1, ..., vn are formal variable names, such that S is effective
(recursively enumerable as a set of strings) and there exist elements
a1, ..., an of the domain of M (parameters of the definition) such that
for each i: f(x) = ti(x, a1, ..., an), if ϕi(x, a1, ..., an).

It is known [16, Theorem 2] that in a suitable formalization, pro-
grams expressible in imperative programming languages with variables
ranging over M and assignments, stacks of values from the domain of
M with the operations Push and Pop, conditional operators (If-Then-
Else), and jumps (Goto) define eds definable functions.

However, as it is, the notion of eds definability has a limited ap-
plicability to semantics of programming languages, since it tells only
what are computable functions from M (or more generally, Mn) to M

or Mm, where the elements of M are considered as unstructured data.

In contrast, in the context of semantics of programming languages
[17], [2], [3], it is more important to describe computability of the steps
taken by the program during execution, which are usually transforma-
tions of structured program states to structured program states.

Below we generalize eds definability of functions on a structure M

to eds definability of transformations of program execution states for
programs operating on complex data structures (e.g. multidimensional
arrays, lists, trees and tree-like structures, etc.) over M .

Let V = {v1, v2, ..., vm} be a fixed finite set of basic names and A

be a fixed set of basic values.

Let p1, ..., pk ∈ PrCC(V,A), f1, ..., fl ∈ FnCC(V,A) be fixed fi-
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nite sequences of predicates and functions. If x1, ..., xn are vari-
able names, denote by Tx1,x2,...,xn

(V ; p1, ..., pk; f1, ..., fl) the set of
all terms in NDASCC(V,A; p1, ..., pk; f1, ..., fl) in x1, ..., xn, and by
Φx1,...,xn

(V ; p1, ..., pk; f1, ..., fl) the set of all basic semalgebraic condi-
tions, i.e. formulas which have a form of a finite conjunction of atomic
formulas in NDASCC(V,A; p1, ..., pk; f1, ..., fl) or their negations (note
that equality is not allowed).

For each term t in Tx1,x2,...,xn
(V ; p1, ..., pk; f1, ..., fl) or formula ϕ

in Φx1,...,xn
(V ; p1, ..., pk; f1, ..., fl), denote by [t] and [ϕ] their standard

interpretations (i.e. the corresponding partial function and predicate
on tuples of elements of NDV C(V,A)).

Definition 13. A function f ∈ FnCC(V,A) is eds definable with re-
spect to p1, ..., pk and f1, ..., fl, if there exists a natural number n, data
d1, d2, ..., dn ∈ NDV C(V,A), and a finite or countable set S of pairs
of the form

{(ϕi(x, x1, x2, ..., xn), ti(x, x1, ..., xn)) | i ∈ I}
(I is a set of indices I = N or I = {1, 2, ...,K} for some natu-
ral K), where ϕi(x, x1, ..., xn) ∈ Φx,x1,...,xn

(V ; p1, ..., pk; f1, ..., fl) and
ti(x, x1, ..., xn) ∈ Tx,x1,...,xn

(V ; p1, ..., pk; f1, ..., fl) and x, x1, ..., xn are
different variable names, such that

1) the set of all strings of the form ϕ(x, x1, ..., xn) → t(x, x1, ..., xn)
for (ϕ(x, x1, ..., xn), t(x, x1, ..., xn)) ∈ S in the alphabet {v1, v2, ..., vm, ,,

(, ), x, x1, ..., xn, ∅,⇒, a, !, IsEmpty,¬,∧, p1, ..., pk, f1, ..., fl} is recursive-
ly enumerable (it is assumed that symbols with sub/superscripts ∇v

a in
terms are represented as ∇av).

2) For each d ∈ NDV C(V,A) and i ∈ I, if [ϕi](d, d1, ..., dn) ↓= T ,
then f(d) ∼= [ti](d, d1, ..., dn).

3) For each d ∈ NDV C(V,A), if [ϕi](d, d1, ..., dn) ↑ for all i ∈ I,
then f(d) ↑.

Note that the problem of checking whether a given set of the form
{(ϕi(x, x1, x2, ..., xn), ti(x, x1, ..., xn)) | i ∈ I} defines an eds definable
function as in Definition 13 may be algorithmically undecidable. How-
ever, this does not have any implications on applicability of the notion
of eds definable functions to the problems considered in this paper.
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Definition 14. A predicate p ∈ PrCC(V,A) is eds definable with re-
spect to p1, ..., pk and f1, ..., fl, if there exists a natural number n, data
d1, d2, ..., dn ∈ NDV C(V,A), and a finite or countable set S of pairs
of the form

{(ϕi(x, x1, x2, ..., xn), bi) | i ∈ I}
(I is a set of indices I = N or I = {1, 2, ...,K} for a natural K, bi is a
Boolean value), where ϕi(x, x1, ..., xn) ∈ Φx,x1,...,xn

(V ; p1, ..., pk; f1, ..., fl)
and bi ∈ {T, F} and x, x1, ..., xn are different variable names, such that

1) the set of all strings of the form ϕ(x, x1, ..., xn) → b for
(ϕ(x, x1, ..., xn), b) ∈ S in the alphabet {v1, v2, ..., vm, ,, (, ), x, x1, ..., xn,
∅,⇒, a, !, IsEmpty,¬,∧, p1, ..., pk, f1, ..., fl} is recursively enumerable
(it is assumed that symbols with superscripts ∇v

a in terms are repre-
sented as ∇av).

2) For each d ∈ NDV C(V,A) and i ∈ I, if [ϕi](d, d1, ..., dn) ↓= T ,
then p(d) ∼= bi.

3) For each d ∈ NDV C(V,A), if [ϕi](d, d1, ..., dn) ↑ for all i ∈ I,
then p(d) ↑.

6 Main results

Let us introduce the following notation.

• PrEdsCC(V,A; p1, ..., pk; f1, ..., fl) is the set of all predicates in
PrCC(V,A) which are eds definable with respect to p1, ..., pk and
f1, ..., fl.

• FnEdsCC(V,A; p1, ..., pk; f1, ..., fl) is the set of all functions in
FnCC(V,A) which are eds definable with respect to p1, ..., pk and
f1, ..., fl.

The following theorem shows that all programs of eANGAA with
predicate constants p1, ..., pk and function constants f1, ..., fl are eds
definable with respect to p1, ..., pk and f1, ..., fl.

Theorem 1 (eds definability of programs of eANGAA). The sets
PrEdsCC(V,A; p1, ..., pk; f1, ..., fl), FnEdsCC(V,A; p1, ..., pk; f1, ..., fl)
form a subalgebra of NGAa

CC(V,A; p1, ..., pk; f1, ..., fl).
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Proof. (Sketch)
It is easy to check that all null-ary compositions of the algebra

NGAa
CC(V,A; p1, ..., pk; f1, ..., fl) are eds definable by Definition 13 and

Definition 14.
The fact that all unary and binary compositions of the algebra

NGAa
CC(V,A; p1, ..., pk; f1, ..., fl) (sequential composition, branching,

cycle, etc.) preserve eds definability can be proven similarly to [16].
This implies the statement of the theorem.

For any transitive binary relation 6 on NDVC(V,A) let us denote:

• PrMCC(V,A,6) is the set of all p ∈ PrCC(V,A) such that for all
d1, d2, if p(d1) ↓ and d1 6 d2, then p(d2) ↓= p(d1). The elements
of PrMCC(V,A,6) are called 6 -equitone predicates.

• FnICC(V,A,6) is the set of all f ∈ FnCC(V,A) such that for
each d, if f(d) ↓, then d 6 f(d). The elements of FnICC(V,A,6)
are called 6-increasing functions.

• FnMCC(V,A,6) is the set of all f ∈ FnCC(V,A) such that for
each d1, d2, if f(d1) ↓ and d1 6 d2, then f(d2) ↓ and f(d1) 6

f(d2). The elements of FnMCC(V,A,6) are called 6-monotone
functions.

• PrMn
CC(V,A,6) is the set of all p ∈ PrnCC(V,A) such that for

all d1, d2, ..., dn, d
′

1, d
′

2, ..., d
′

n, if p(d1, d2, ..., dn) ↓ and d1 6 d′1,
d2 6 d′2, ..., dn 6 d′n, then p(d′1, d

′

2, ..., d
′

n) ↓= p(d1, d2, ..., dn).
The elements of FnMn

CC(V,A,6) are called 6-equitone n-ary
predicates.

• FnInCC(V,A,6) is the set of all f ∈ Fnn
CC(V,A) such that for

each d1, d2, ..., dn, if f(d1, d2, ..., dn) ↓, then di 6 f(d1, d2, ..., dn)
for each i = 1, 2, ..., n. The elements of FnMCC(V,A,6) are
called 6-increasing n-ary functions.

• FnMn
CC(V,A,6) is the set of all f ∈ Fnn

CC(V,A) such that for
each d1, d2, ..., dn, d

′

1, d
′

2, ..., d
′

n, if f(d1, d2, ..., dn) ↓ and d1 6 d′1,
d2 6 d′2, ..., dn 6 d′n, then f(d′1, d

′

2, ..., d
′

n) ↓ and f(d1, d2, ..., dn) 6

389



Ie. Ivanov, M. Nikitchenko, V.G. Skobelev

f(d′1, d
′

2, ..., d
′

n). The elements of FnMn
CC(V,A,6) are called 6-

monotone n-ary functions.

Lemma 1. Let 6 be a transitive binary relation on NDV C(V,A).
Assume that:

f1, f2, ...., fl,⇒ u, u ⇒a,∇
u
a ∈ FnICC(V,A,6) for each u ∈ V +.

Then for each n ∈ N, distinct variable names x1, ..., xn, and a term
t(x1, ..., xn) ∈ Tx1,...,xn

(V ; p1, ..., pk; f1, ..., fl) we have
[t] ∈ FnInCC(V,A,6).

Proof. The proof can be straightforwardly done by induction on the
structure of the term t(x1, ..., xn) of the algebraic structure of nomina-
tive data NDASCC(V,A; p1, ..., pk; f1, ..., fl) (note that the base of the
induction follows from the assumptions).

Lemma 2. Let 6 be a transitive binary relation on NDV C(V,A).
Assume that:

f1, f2, ...., fl,⇒ u, u ⇒a,∇
u
a ∈ FnICC(V,A,6) for each u ∈ V +.

p1, p2, ..., pk, IsEmpty ∈ PrMCC(V,A,6), u!, for each u ∈ V +.
Then for each n ∈ N, distinct variable names x1, ..., xn, a term
t(x1, ..., xn) ∈ Tx1,...,xn

(V ; p1, ..., pk; f1, ..., fl), and a formula
ϕ(x1, ..., xn) ∈ Φx1,...,xn

(V ; p1, ..., pk; f1, ..., fl) we have
[t] ∈ FnInCC(V,A,6) and [ϕ] ∈ PrMn

CC(V,A,6).

Proof. The proof can be straightforwardly done by induction on the
structure of the term t(x1, ..., xn) and the formula ϕ(x1, ..., xn) of the al-
gebraic structure of nominative dataNDASCC(V,A; p1, ..., pk; f1, ..., fl)
(note that the base of the induction follows from the assumptions).

Lemma 3. Let 6 be a preorder NDV C(V,A).
Assume that:

f1, f2, ..., fl,⇒ u, u ⇒a,∇
u
a, u! ∈ FnMCC(V,A,6) for each u ∈ V +

and p1, p2, ..., pk, IsEmpty ∈ PrMCC(V,A,6).

Then for each n ∈ N, distinct variable names x1, ..., xn, and
a term t(x1, ..., xn) ∈ Tx1,...,xn

(V ; p1, ..., pk; f1, ..., fl), and a formula
ϕ(x1, ..., xn) ∈ Φx1,...,xn

(V ; p1, ..., pk; f1, ..., fl) we have

[t] ∈ FnMn
CC(V,A,6) and [ϕ] ∈ PrMn

CC(V,A,6).
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Proof. The proof can be straightforwardly done by induction on the
structure of the term t(x1, ..., xn) and the formula ϕ(x1, ..., xn) of the al-
gebraic structure of nominative dataNDASCC(V,A; p1, ..., pk; f1, ..., fl).

Theorem 2. (1) If 6 is a transitive relation on NDV C(V,A) and
the conditions of Lemma 1 hold, then

FnEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ FnICC(V,A,6).

(2) If 6 is a transitive relation on NDV C(V,A) and the conditions
of Lemma 2 hold, then

PrEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ PrMCC(V,A,6) and

FnEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ FnICC(V,A,6).

(3) If 6 is a preorder on NDV C(V,A) and the conditions of Lemma
3 hold, then

PrEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ PrMCC(V,A,6) and

FnEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ FnMCC(V,A,6).

Proof. (1) Let us show that FnEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆
FnICC(V,A,6). Let f ∈ FnEdsCC(V,A; p1, ..., pk; f1, ..., fl), d ∈
NDV C(V,A), and f(d) ↓. Then using notations of Definition 13
we can say that there exists i such that [ϕi](d, d1, ..., dn) ↓= T and
[ti](d, d1, ..., dn) ↓= f(d). By Lemma 2, we have [ti] ∈ FnIn+1

CC (V,A,6),
so d 6 [ti](d, d1, ..., dn) = f(d). Since d is arbitrary, we have f ∈
FnICC(V,A,6).

(2) Let us show that

PrEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ PrMCC(V,A,6).

Let p ∈ PrEdsCC(V,A; p1, ..., pk; f1, ..., fl), d
′, d′′ ∈ NDV C(V,A) and

d′ 6 d′′. Assume that p(d′) ↓. Then using notations of Definition 14 we
can say that there exists i such that p(d′) = bi and [ϕi](d

′, d1, ..., dn) ↓=
T . By Lemma 2, [ϕi] ∈ PrMn+1

CC (V,A,6), so [ϕi](d
′′, d1, ..., dn) ↓=

T . Then p(d′′) ↓= bi = p(d′). Since d is arbitrary, we have p ∈
PrMCC(V,A,6).
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That FnEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ FnICC(V,A,6) can be
shown similarly to the case (1) above.

(3) Let us show that
PrEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ PrMCC(V,A,6).

Let p ∈ PrEdsCC(V,A; p1, ..., pk; f1, ..., fl), d
′, d′′ ∈ NDV C(V,A) and

d′ 6 d′′. Assume that p(d′) ↓. Then using notations of Definition 14 we
can say that there exists i such that p(d′) = bi and [ϕi](d

′, d1, ..., dn) ↓=
T . By Lemma 3, [ϕi] ∈ PrMn+1

CC (V,A,6), so [ϕi](d
′′, d1, ..., dn) ↓=

T . Then p(d′′) ↓= bi = p(d′). Since d is arbitrary, we have p ∈
PrMCC(V,A,6).

Let us show that
FnEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ FnMCC(V,A,6).
Let f ∈ FnEdsCC(V,A; p1, ..., pk; f1, ..., fl), d, d

′ ∈ NDV C(V,A),
d 6 d′, and f(d) ↓. Then using notations of Definition 13 we
can say that there exists i such that [ϕi](d, d1, ..., dn) ↓= T and
[ti](d, d1, ..., dn) ↓= f(d). By Lemma 3, [ti] ∈ FnMn+1

CC (V,A,6)
and [ϕi] ∈ PrMn+1

CC (V,A,6), so [ti](d
′, d1, ..., dn) ↓ and f(d) =

[ti](d, d1, ..., dn) 6 [ti](d
′, d1, ..., dn). Moreover, [ϕi](d

′, d1, ..., dn) ↓= T ,
so f(d′) ↓= [ti](d

′, d1, ..., dn) and f(d) 6 f(d′). Since d is arbitrary, we
have f ∈ FnMCC(V,A,6).

Corollary 1. Under the conditions of Lemma 1 or Lemma 2, all unary
functions (programs) expressible in NGAa

CC(V,A; p1, ..., pk; f1, ..., fl)
belong to FnICC(V,A,6).

Proof. Follows immediately from Theorem 1 and Theorem 2.

Corollary 2. Under the conditions of Lemma 3, all unary functions
(programs) expressible in NGAa

CC(V,A; p1, ..., pk; f1, ..., fl) belong to
FnMCC(V,A,6).

Proof. Follows immediately from Theorem 1 and Theorem 2.

Corollary 1 implies that in order to show that a program express-
ible in NGAa

CC(V,A; p1, ..., pk; f1, ..., fl) has the property (d, f(d)) ∈6
which expresses the fact that the input and output of f belong to a
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transitive relation 6, it is sufficient to check several properties of basic
operations on nominative data with respect to 6 which are formulated
in Lemma 1. It is not necessary to prove preservation of this prop-
erty by the compositions of NGAa

CC(V,A; p1, ..., pk; f1, ..., fl), since this
preservation follows automatically from eds definability of all programs
expressible in NGAa

CC(V,A; p1, ..., pk; f1, ..., fl).

It is easy to see that the results similar to corollaries from Theorem
2 hold not only for eANGAA, but for a reduct of ANGAA [18], i.e. an
algebra with narrower carriers and/or sets of operations (in particular,
constants) and predicates:

1) if all function constants of a reduct of eANGAA are 6-increasing,
then all unary functions (programs) expressible in this reduct are 6-
increasing.

2) if in a reduct of eANGAA all function constants are 6-monotone
and all predicate constants are 6-equitone, then all unary functions
(programs) expressible in this reduct are 6-monotone.

Using this observation, e.g., we can show partial correctness of the
GCD program mentioned in the introduction by considering a reduct
of eANGAA of functions and predicates over NDV C({x, y, a, b},Z)
which has as function constants the functions which perform assign-
ment operations which appear in this program: f1(d) = d∇a[a 7→ d(x)],
f2(d) = d∇a[b 7→ d(y)], f3(d) = d∇a[a 7→ d(a)−d(b)], f4(d) = d∇a[b 7→
d(b) − d(a)] and showing that they are 6-increasing.

Corollary 2 implies that in order to show that a program expressible
in NGAa

CC(V,A; p1, ..., pk; f1, ..., fl) is monotone with respect to some
preorder on data, it is sufficient to check several properties of basic
operations on nominative data with respect to 6 which are formulated
in Lemma 3.

An example of application of the obtained results is given below.
In [11] the authors considered a special property of programs which
is called nominative stability [11], [8], [9], [10]. This property is a
formalization of the idea of stability of program semantics when the
data structures used in the program are changed to equivalent in the
sense of information content and supported operations.

It can be illustrated by the following feature of the Pascal pro-
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gramming language: the two-dimensional array definitions var A:

array [1..n, 1..m] of real and var A:array [1..n] of array [1..m]

of real are equivalent and both the A[i,j] and A[i][j] syntax can be
used to access the array elements regardless of the form of its definition
(it should be noted that the languages like C++ and Java do not have
this feature). This implies that one can safely swap two-dimensional
array definitions in a program without changing the rest of the text of
the program while preserving program semantics.

Nominative stability is defined using the nominative equivalence
relation on nominative data of the type TNDCC . This relation is a
formalization of the idea that data are equivalent, if they have essen-
tially the same information content, but may have different hierarchical
naming structure. For example, the following data are nominatively
equivalent: [v1 7→ [v2 7→ [v3 7→ 1]]] and [v1v2v3 7→ 1], as they differ only
in the naming hierarchy, but contain the same basic names and values.
A function on nominative data is nominative stable, if on nominative
equivalent data it gives nominative equivalent results.

Formally,

Definition 15. 1) Data d1 ∈ NDV C(V,A) is nominatively in-
cluded in d2 ∈ NDV C(V,A), if either d1, d2 ∈ A and d1 = d2,
or d1, d2 /∈ A and for each terminal path (v1, v2, ..., vn) in d1
there is a terminal path (v′1, v

′

2, ..., v
′

m) in d2 such that v1v2...vn =
v′1v

′

2...v
′

m and the values of (v1, v2, ..., vn) in d1 and (v′1, v
′

2, ..., v
′

m)
in d2 coincide.

2) Data d1, d2 are nominative equivalent (d1 ≈ d2), if d1 is nomina-
tively included in d2 and d2 is nominatively included in d1.

3) The elements of FnMCC(V,A,≈) are called nominative stable
functions (programs).

Using Corollary 2 formulated above we can easily show that all pro-
grams expressible in NGAa

CC(V,A) (i.e. ANGAA without additional
predicates and functions) are nominative stable.

In [11] it was shown that ≈ is an equivalence on NDV C(V,A) (and
thus is a preorder) and the functions ⇒ u, u ⇒a, ∇

u
a are nominative

394



Proving Properties of Programs on Hierarchical . . .

stable. It is trivial to check by the definition that u! is ≈-equitone
binary predicate on NDV C(V,A) and IsEmpty is ≈-monotone (i.e.
nominative stable). Then by Corollary 2, all functions expressible in
NGAa

CC(V,A) are nominative stable.

7 Conclusions

We have investigated methods of proving properties of programs on hi-
erarchical nominative data on the basis of the composition-nominative
approach. The proofs of properties of programs depend on proofs of
properties of compositions and basic operations on data. The complex-
ity of such proofs can be lowered, if one is able to reduce the proofs
of properties of various compositions to proofs of properties of opera-
tions on data. We have proposed a way of achieving such a reduction
by representing compositions using effective definitional schemes of H.
Friedman. The achieved reduction permits us to consider proofs in
data algebras (which are simpler to derive, automate, etc.) instead of
proofs in program algebras. Using this approach we have demonstrated
that the properties of programs related to structural transformations
of data can be reduced to the data level. The obtained results can be
used in software development and verification.
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Natural Language Processing versus Logic.

Pros and cons on the dispute whether logic is

useful in the computational interpretation of

language

Dan Cristea

Abstract

In this essay I express some personal opinions regarding the
influence that logic has on modern approaches to process natural
language in artificial systems. I start by presenting some suc-
cessful linguistic formalisms that were originated in logic, argu-
ing why logic is important in conveying the meaning of language
expression. Then, I counterbalance the argumentation with a
number of examples where logic is impuissant to mirror language
usage, finally supporting a rather temperate opinion about the
usefulness of logic to formalise low level linguistic processes and
about the limits of language formalisation.

Keywords: natural language processing (NLP), logic the-
ories in NLP, statistical approaches, symbolic versus statistical
approaches in NLP.

1 Introduction

It seems that we, human beings, motored by the need to understand
the reality among us (a condition for survival), make use of shallower
or deeper cognitive processes in our efforts to assign meanings to mes-
sages we receive through language. This cognitive behaviour resembles,
in some cases, logical formalisms (what is logic if not an expression of
thinking?). This is just as we have in our brains a symbolic machinery

c©2016 by D. Cristea
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capable to help us make inferences and offer solutions to complex puz-
zles that the language encodes. In other cases, however, logic is of no
use: language manifests a totally weird behaviour.

The need for symbolic approaches, as opposed to statistical ones, is
in itself an expression of the feelings researchers have that language can
be expressed as a system of rules, which would make its messages to
be “computable”. This paradigm is similar to the one of mathematical
logic, since there too, based on a very clear notation of a number of
basic ingredients and of defined ways in which they can be grouped
together, truth values of sentences (i.e. syntactical constructions) can
be deduced.

The debate here, is not if logical, i.e. symbolic, formalisms are
useful, but to what extend can they be applied to explain a range of
linguistic phenomena. Then, for the whole rest of linguistic phenomena
for which logic fails to offer support, ought we instead resort to statis-
tical or neural-based solutions? Or part of our manifestations triggered
by language escapes from any formalisation, being it based on logic,
statistics or neural grounds? And finally, what is the range of practical
applications of language which put at their base logical solutions?

In this essay I express some personal opinions regarding the influ-
ence that logic has on modern approaches to processing natural lan-
guage.

2 When do we need logic to decipher lan-

guage?

Language ought to be logical, or, else, the communication based on it
would be impossible (imagine that the inscription of messages would
be made in a randomizing system of signs. . . ). In most of cases, peo-
ple are able to transmit their intentions correctly to the intended re-
ceivers. So, when we say two horses we mean something of the kind:
∃ S = {x|horse(x)}∧card(S) = 2, where card(S) means the cardinal of
the set S, horse(x) is a qualifying function asserting that x, its argu-
ment, has a semantic property that is shared in the common knowledge
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of the living inhabitants of this world, that this property is currently
denominated in English by the word horse, and that the pragmatic con-
text in which the expression is uttered clearly separates the different
meanings that this English word may encode. In the same time, utter-
ing this noun phrase, we are also aware that the listener possesses an
equivalent decoding mechanism that enables her to coagulate an equiv-
alent meaning. So, it seems that in extremely many situations of the
real life, when we use language, we implicitly resort to mathematical
logic to express our messages. In fact, although we don’t really do that,
it is just like doing that, i.e. just like somebody above us, listening to
what we are saying, quickly encodes our saying in a logical expression
that could unambiguously be “read” or decoded by our partner in the
conversation.

The challenge to describe language in a logical system of notation
that would allow non-ambiguous representations of its lexical elements
and coherent composition/decomposition has preoccupied modern lin-
guistics for a long time already. In this section I will make a very quick
survey of only some of these approaches.

2.1 Generative Lexicon and Qualia Structures

This kind of attitude towards language brings forward Generative Lex-
icon (GL) [6], a theory that intends to build lexical and semantic re-
sources capable of expressing in computational terms (which is another
name for logic) the rich lexical variety of the language (any language, in
principle), including its capacity to combine meanings of lexical items
through grammar and, to a certain extend, through pragmatics. GL
tries to describe the semantic flexibility shown by words in combina-
tion with others. To account for diverse interpretations that words can
display when placed in combinations with others, GL associates a hid-
den event in the lexicon description of nouns, adjectives and adverbs.
Originated in the Aristotelian concept of aitia (explanation), with re-
interpretations added by Moravcsik [4], further developments of GL [5,
7] introduce Qualia structures, describing roles according to which the
meaning of words can be decomposed on four different coordinates:
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• Formal (F): encoding taxonomic information about the lexical
item (the is-a relation); ✷

• Constitutive (C): encoding information on the parts and consti-
tution of an object (part-of or made-of relation); ✷

• Telic (T): encoding information on purpose and function (the
used-for or functions-as relation); ✷

• Agentive (A): encoding information about the origin of the object
(the created-by relation). ✷

Qualia are formally represented as typed feature structures. For in-
stance, the one in Fig. 1 can account for combinations such as: large
car (F = vehicle), broken car (C = motor), speedy car (T = drive), Ital-
ian car (A = made in Italy). Also, adding arguments to roles, Qualia
structures can deal with metonymy, as in: the car from behind honked :
T = drive (human, vehicle). Such lexicon representations actually en-
code in a logical form part of an ontology of lexicalised concepts, out
of which “understanding” can be computed.

Figure 1. A Qualia structure for the lexical concept car

Qualia structures are recognised to have various shortcomings.
Pustejosky and Jezek [7], for instance, recognise the rather limited
“ability [of the formalism] to take on an indefinite variety of possible
senses depending on the other words they combine with”. He gives
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the example of the verb like and wonders whether it has two different
meanings in “He likes my sister” and “He likes vanilla ice cream”, and
if so, how is this difference to be represented in decompositional terms?

2.2 Discourse coherence

But logic is needed at upper levels of language interpretation as well.
One example is the need to consolidate meanings of sequences of ut-
terances in discourse. Compare, for instance:

Maria dropped the egg from her hand. (1.1)
She cleaned the floor. (1.2)

with:

Maria dropped the feather from her hand. (2.1)
She cleaned the floor. (2.2)

While sequence (1) is perfectly coherent, sequence (2) apparently
has no meaning, although the utterances of each sequence convey un-
ambiguous meanings. It is clear that an inferential chain of deductions,
triggered by common sense (or ontological) knowledge, link the two ut-
terances in (1), as opposed to (2), where the connection is much harder
to establish. The meaning in (1) is built out of a reasoning sequence
showing a temporal occurrence of events that could be schematized as
follows:

(1.1) ⇒ drops(AG:Maria, OB:egg) ⇒ falls(REC:egg) ⇒
touches(AG:egg, OB:X) (3)

Qualia.Formal(egg) = container; Qualia.Constitutive(egg) =
{eggshell(fragile),liquid} (4)
(3), (4) ⇒ breaks(REC:eggshell) ⇒ leaks(REC:liquid, ON:X) ⇒
perceives(AG:Maria, OB:dirty(X)) (5)
(1.2) ⇒ cleans(AG:Maria, OB:floor) ⇒
perceives(AG:Maria, OB:dirty(floor)) (6)

The equality of (5) and (6), whenX equals floor, closes the inference
chain, proving the high degree of coherence of the sequence (1). A
longer inference chain (if any), implying volitional searches in a space
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of possibilities fuelled by imagination, as opposed to the first case, in
which the inferences are common-sense, natural, spontaneous, could,
in the mind of an intrigued reader, possibly link the utterances in (2),
thus showing a much lower degree of coherence.

2.3 Textual Entailment

In the fight to decipher the meaning expressed in language, two con-
trary phenomena have to be faced: variability and ambiguity. Vari-
ability of language means that the same meaning can be verbalized in
different surface forms. Ambiguity means that one surface form can
be interpreted as having different meanings. A number of NLP appli-
cations that deal with the variability of language trying to reduce the
distance between form and meaning are: Information Retrieval (IE),
Textual Entailment (TE) and Question Answering.

In TE, it is said that text t entails hypothesis h ( t⇒h) if hu-

mans reading t will infer that h is most likely true. So, textual
entailment is a directional relation between two texts. In practical ap-
plications of TE (including competitions1) t could be complemented
with external knowledge in order for h to be entailed, but h cannot be
entailed only by the knowledge itself (for instance, by searching on the
web).

Here is an example of a true entailment (from RTE data):

t : . . . a shootout at the Guadalajara airport in May, 1993, that killed
Cardinal Juan Jesus Posadas Ocampo and six others.

h : Cardinal Juan Jesus Posadas Ocampo died in 1993. (7)

and of a false one (same source):

t : Regan attended a ceremony in Washington to commemorate the
landings in Normandy.

h : Washington is located in Normandy. (8)

One of the methods used to measure the similarity between t and h

does syntactic matching or transformations at the syntactic level. To

1For instance, the EU FP-6 Funded PASCAL Network of Excellence 2004-7:
Recognizing Textual Entailment (RTE) Challenges.
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see the complexity of such an attempt, I will examine in some detail
an example. Suppose t is:

Philanthropic Golding Inc. came into existence in January 2004. (9.1)

One year after its foundation the company declared bankruptcy. (9.2)

and h:

Philanthropic Golding Inc. bankrupted in January 2005. (10)

One way to check the validity of such an entailment, is to launch
a pipeline of processes, at the end of which the sentences of both t

and h are expressed in a symbolic form that allows close comparison.
Applied to (9.1) the pipeline produces the following successive results
(simplified)2:

Step1: tokenisation (not shown), part-of-speech tagging (not
shown), chunking noun phrases and clashing multi-word expressions.

<NP id=”n1”>Philanthropic Golding Inc.</NP>

<MWE id=”m1”>came into existence</MWE>

Step 2: recognition of entity mentions, of time expressions and
resolution of anaphora.

<COREF-LIST id=”ent1” TYPE = “ENTITY” REF-LIST=”n1” />3

<TIMEX3 tid=”t1” type=”DATE” value=”2004-01”>January 2004

</TIMEX3>

Step 3: functional dependency parsing; in Figure 2 we show a
Universal Dependency (UD) coding [3].

Step 4: time analysis, in which EVENT and TLINK elements,
formalizing the events and their temporal relations, are generated4.

<EVENT eid=”ev1” VB=”m1” AG=”ent1”/>

<TLINK eventID=”ev1” relatedToTime=”t1” relType=”BEGINS”/>

2Here we use an XML coding, but a representation that uses RTF tuples or
another notation convension can also be employed.

3A COREF-LIST with only one member signals the first mention of an ENTITY
or EVENT, according to TYPE.

4To simplify notations, MAKEINSTANCE and SIGNAL elements are ignored
and EVENT elements are complemented with roles.
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Figure 2. UD parsing of sentence (9.1)

Step 5: generation of equivalent structures (transformations) and
the application of the closure tool, which computes the transitive clo-
sure of temporal relations; the transformation here concerns the equiv-
alence of the expressions: X comes into existence and UNKNOWN
founds X. This rule triggers the element:

<EVENT eid=”ev2” VB=”found” AG=”UNKNOWN” OB=”ent1”/>

and its correspondent time link:

<TLINK eventID=”ev2” relatedToTime=”t1” relType=”BEGINS”/>

And now the pipeline applied to (9.2):

Step 1:

<NP id=”n3”><NP id=”n2”>its</NP>foundation</NP>

<NP id=”n4”>the company</NP>

<NP id=”n5”>bankruptcy</NP>

Step 2:

<TIMEX3 tid=”t2” type=”DURATION” value=”P1Y”>one year

</TIMEX3>

<COREF-LIST id=”ent1” TYPE=”ENTITY” REF-LIST=”n1 n2
n4” />

<COREF-LIST id=”eve1” TYPE=”EVENT” REF-LIST=”ev1 ev2
n3” />

<COREF-LIST id=”eve2” TYPE=”EVENT” REF-LIST=”n5” />

Step 3:
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Figure 3. UD parsing of sentence (9.2)

Step 4:

<EVENT eid=”e3” POS=”VERB” CLASS=”REPORTING”
AG=”ent1” OB=”eve2”>declared</EVENT>

<EVENT eid=”e4” POS=”NOUN” CLASS=”OCCURRENCE” AG=
”ent1”> bankruptcy</EVENT>

<TLINK eventID=”e3” relatedToTime=”t2” relType=”AFTER”/>

<SLINK eventID=”e3” subordinatedEvent=”e4” relType=
”FACTIVE”/>

Step 5: the closure tool produces:

<TIMEX3 tid=”t4” type=”DATE” value=”2005-01-xx” />

<TLINK eventID=”e4” relatedToTime=”t4” relType=
”DURING”/> (11)

A similar processing pipeline applied to (10) should yield:

<EVENT eid=”e5” POS=”VERB” AG=”ent1”>bankrupted
</EVENT>

<TIMEX3 tid=”t5” type=”DATE” value=”2005-01-xx”>
January 2005 </TIMEX3>

<TLINK eventID=”e5” relatedToTime=”t5” relType=
”DURING”/> (12)

And the equivalence of (11) and (12) proves the entailment.
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2.4 Other NLP formalisms rooted on logic

Prolog, the programming language of logic, has inspired much work on
NLP. In syntax, this means to express a grammar as a set of statements
in a logic formalism (e.g. Horn clauses), and to use a theorem prover
(e.g. resolution) in order to parse or generate sentences. Recently
used in information extraction, SHERLOCK [8] is a system able to
learn Horn clauses in a large-scale, domain independent manner, from
Web texts. The learned rules can then be used to fuel a first-order
reasoning system, as HOLMES, described by Schoenmackers et al. [9],
which infers answers from tuples.

3 And when logic is of no use?

Languages have specific ways to express linguistic phenomena. Some
of them seem to escape any logical explanations.

3.1 Double negation

In propositional logic the double negation is equivalent to an affirma-
tion. However, applied to language, this rule does not always hold. In
connection to this phenomenon, Falaus [2] inventories two main types
of languages. In Double Negation languages, among which standard
varieties of Germanic and Scandinavian, two negative elements cancel
each other out resulting in a positive reading, as in (13) below:

Paul didn’t see nobody. = Paul saw somebody. (13)

However, in Negative Concord languages, among which Romanian
and Italian, multiple occurrences of negation are interpreted as one
semantic negation, as in (14):

Paul n-a văzut pe nimeni. = Paul didn’t see anybody. (14)

The sentence can be paraphrased as “It is not the case that there
is an individual x, such that Paul saw x.”
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3.2 Linear position

Romanian is known to be ambivalent with respect to the position of
quality adjectives around the nouns they modify: they may occur pre-
nominally as well as post-nominally. Cornilescu [1] notices that certain
associations of noun+adjective versus adjective+noun makes a differ-
ence of interpretation, as here:

femeia singură => the woman alone

singura femeie => the only woman (15)

I believe that the following examples display similar behaviour.
Suppose somebody has two cars, one bought some time ago and one
recently bought, and the one recently bought belongs to an old brand
while the one bough in the past belongs to a newer brand. Then:

maşina lui cea veche refers to his old brand car, while

vechea lui maşină refers to the car owned by him for a long time (16)

However, in the following associations the sense does not change:

domnişoara frumoasă, frumoasa domnişoară => the beautiful young
lady

cartea interesantă, interesanta carte => the interesting book (17)

Also the positional ambivalence does not apply to any adjective.
Certain modifiers make sense only when situated in the pre-position
with respect to the modified noun. For example, biet (poor, pitiful)
is not accepted unless it precedes the noun: biet om (poor man), but
not: om biet. Vulchanova [10] explains this for Balkan languages: these
associations seem to contradict the usual intersection-based composi-
tion. In general, if X is an adjective and Y – a noun, then XY (or
Y X) means the set of objects Y that have the property X, or the in-
tersection between the set of objects having the property X and the
set of objects Y . As such, poor men should be taken as the intersection
between the set of things which are poor and the set of men, but bieţii
oameni means something different than the subset of the set of men
which are poor, it means a subset of the set of men which are in a
pitiful/miserable state.

409



D. Cristea

3.3 Contexts and the mist of pragmatics

It is a truism that the context determines the meaning of words, and
the previous section showed some examples. By “context” here I mean
both textual (i.e. positional) and not textual (for instance, temporal).

Figure 4. Google Translate solutions for difference occurrences of the
Romanian word “masa”

The left side of Fig. 4 shows different contexts of occurrence of
the Romanian word “masa”. As with any other poli-semantic words,
its sense is fixed by the context. Google Translate applies statistics
to disambiguate and, as can be seen, remarkably well. For the time
being, I cannot imagine a workable logical solution to this issue, and if
this would ever be achieved, what would be the cost of the supportive
lexico-semantic resources?

But it is also clear that words induce different reactions in humans,
depending of their culture, the moment of the utterance and any other
pragmatic conjuncture. A notorious example is the wood language. I
wonder how would a logical approach detect the humorous effect that
is conveyed by phrases such as the following:

“Obiectivele majore, de ı̂nsemnătate cu adevărat istorică, pe care
Partidul Comunist Român le-a ı̂ncredinţat frontului culturii româneşti
ı̂n perioada făuririi societăţii socialiste multilateral dezvoltate anga-
jează – deschis şi plenar. . . ”5 (approximately: The major objectives,

5Florian Georgescu (1982) The History Museum – dynamic factor in implement-
ing the P.C.R. policy of patriotic education of the masses, of formation of socialist
consciousness, in the Scientific Session: Permanency, unity and progress in the his-
tory of the Romanian people. Romanian Communist Party at the 60th anniversary,
VI. www.mnir.ro
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of truly historic significance, which the Romanian Communist Party
has entrusted to the frontline of the Romanian culture in the making of
the multilaterally developed socialist society – openly and fully. . . ) (18)

“Pus astfel ı̂n lumină, ancorat ı̂n sinergia faptelor, recursul la uni-
versalitate nu eludează meandrele concretului.”6 (approximately: Thus
put in light, anchored in the synergy of its facts, the appeal to univer-
sality does not circumvent the meanders of the concrete.) (19)

“Să luptăm pentru propăşirea neamului şi aducerea României pe
cele mai ı̂nalte culmi de civilizaţie multilateral dezvoltată.” (approxi-
mately: Let’s fight to thrive our stirps and bring Romania on the highest
peaks of multilaterally developed civilization.) (20)

3.4 Style in literature

Humans perceive co-occurrence of words as producing very suggestive
images. Confronted with the extraordinary diversity of suggestion that
words can convey, logic seems to me faint, forceless, impuissant. How
could poetical expressions, such as the following:

“constelaţia ochilor mei” (the constellation of my eyes), “atingi cu
auzul” (approximately: your hearing touches), “nisipuri de fiară” (beast
sands) – Nichita Stănescu, Autoportret ı̂n timp de veghe (Auto portrait
during watch time) (21)

be encoded in logical constructions? Or how could emotions incurred
in sentences like the following one be seized in logical expressions?:

”It’s enough for me to be sure that you and I exist at this mo-
ment.” –Garcia Marquez: One Hundred Years of Solitude (22)

I agree that an effort to formalise in logical terms a metonymic
sense of an expression, as in this magnificent sequence of simple words:

“lipindu-se de răcoarea tocului uşii” (approximately: sticking to
the chil of the door frame) — Garcia Marquez: One Hundred Years of
Solitude (23)

6attributed to Ion Iliescu
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in which a touched object is replaced with a sensation that the agent
borrows from that object is a challenging task. The same happens
when looking for logical equivalent of metaphorical language, as here:

“Te mângâi cu degetele muiate ı̂n amintiri.” (I caress you with my
fingers dipped in memories.). (24)

4 And the solution is? (instead of conclusions)

The last examples I have given address the philosophical question of
whether it is worth looking for a formalisation of language able to
encode all its extremely large diversity of expressing power. Supposing
logic proves to be successful in representing some language aspects,
there should be a limit where the ambition to express natural language
in logical form has to stop because it reaches an insurmountable limit.

Some people, including me, think that since humans use language
all the time, but only rarely make explicit use of logic in their lives,
the domain of NLP should not necessarily be dependent on logical for-
malisms. Their lack of confidence in logic as a universal machinery for
processing language comes from observations of the inability of logic
to support exhaustively the processing infrastructures of language. In
their opinions, there are aspects of language production and under-
standing for which something else than logic should be used in order to
explain and reproduce on the machine these human performances. On
the other hand, these people agree that logic is necessary for acquiring
certain types of representations. What they don’t believe is that each
sentence, or each sequence of sentences, should be transformed into a
theorem that necessitates a proof.

It has to be clear by now that I am not talking here about reason-
ing, as the one needed to make volitional connections, to find explicit
links, without which understanding would be impossible, as the ones
exemplified in sections 2.2 and 2.3, where, clearly, logic is on the first
plan, but about the primary processes that enable the use of language
as a communication channel, therefore that allow cognition based on
language.
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However, it can be said that the whole domain of formal linguis-
tics is inspired by logical formalisms. Indeed, why representing NL
sentences as trees? Because, doing this, we intrinsically incorporate
decisions about their ambiguities, this way preparing the path towards
semantic representations and reasoning. A logical system applied to
language means to interpret signs of the language, i.e. words, in their
surface variation, as dictated by morphology, then their sequences, as
dictated by syntax, and their meanings, as dictated by semantics, with
the goal of arriving to an overall formal and unambiguous represen-
tation. Above the sentence boundaries, the sentential representations
would be combined in discourse trees (sometimes graphs), on which
rhetorical deductions could be made and inter-sentential links, as those
implied by anaphorae, would be fulfilled, or extra-textual connections,
as those evoked by named entities in the cultural background of the
receiver of the message, would be activated. If sufficiently sensitive
antennae oriented towards the external world would also be available,
pragmatic contexts could make subtle revisions to these representa-
tions.

But is this enough? Suppose the day D has come when all com-
putational theories now evolving in the field of language with the aim
to decipher and represent language in symbolic form would reach
a successful finalization, and a sufficiently rich collection of accompa-
nying resources, necessary to support with data these formalizations,
would be acquired. Are we done with the interpretation of language
in that day? Can we install this tremendous computational machinery
on a high performance computer or on an whatever network of cloud
interconnected devices and say: from now on, whatever text we read
(we, the humans), this Goliath super-computer can also read and it will
get similar reactions (of course, inventoried in a very rich annotation
language)?

First, let’s notice that many successful NLP applications already
exist, that are so dumb in a real “interpretation” of the language that
would horripilate a “bad” classical linguist. Among them: machine
translation. The Google Translate machine, exemplified in Fig. 4,
does not “understand” a iota, in the classical sense. Put to represent
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the meaning of those sentences, it will be incapable. And yet, it deals
so well with those sentences: the result is equivalent to that obtained
by a human being graduated in Romanian-English translation.

In these approaches, of a purely statistical nature, the performance
to translate any source language text into any other target language
can be obtained by “compiling” a very large collection of parallel doc-
uments and a very large collection of target language documents, out
of which huge tables of figures, called language models, are extracted.
This computer performance in fact copies the human ability to learn
a language by practising it, instead of using grammar books and drill
exercises that formally incorporate the language competence.

Then, going a little bit further, we may think that a similar statis-
tical apparatus could be used in a dialog system, that would support a
human-machine dialogue, resembling intelligence (as in a Turing’s test).
Again, a machine, statistically trained to answer questions, could arrive
to a similar level of performance as a humanly incorporated call-centre
operator. Also, close to this, many models of now-a-days chat-bots
make use of purely statistical solutions.

However, we should not exaggerate with congratulations and com-
pliments. Until now, statistical solutions proved to behave well in ap-
plications where of interest is the conveying of meaning more than the
stylistic expression, the clear message more than the poetical language
that adorns the message with subliminal adds, in general there where
language refinements that imply more than pure transmission of in-
formation, those that touch the domain of literature and art, are not
involved. But, although still far away from any acceptable solutions,
challenged to approach this side of language, my conviction is that sta-
tistical methods (and neural) have more chances than rule-based ones.

A vivid area of research in NLP is called Sentiment Analysis. The
type of applications belonging to this domain addresses the interests
that big commercial companies have to interpret opinions from their
clients involving their products, in order to improve them or to estimate
future trends. Big data methods put to work on text files are being
employed successfully here. Still, a sentiment means much more than
the mere and overtly expression of a taste or inclination. For instance,
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actual systems would perhaps categorise as positive a sentence like I
love you. and as neutral one that says I see and I smell everything
around us differently since I met you.

I am confident that machines will arrive to interpret texts, in the
sense of extracting the information contained in them (if I would not
believe in this success, why bothering to remain in the field?...). More-
over, more and more complex applications that put the interpretation of
language at their very base will be on the market. However, I am rather
reserved on the usefulness of pure logical approaches in practical NLP
settings, one important reason for this being the difficulty of fuelling
these systems with the amount of resources that are needed to support
the complex reasoning processes. On the contrary, mixed approaches,
which maculate the purity of logical approaches with statistics and/or
neural models, have a much greater chance of being successful. But
my optimism dilutes significantly if the border of semantic content in-
terpretation is overpassed, and we will dig our feet on touching more
subtle aspects of language, those that involve emotion sourced in lan-
guage and interpretation of artistic style, therefore those that address
the genuine and inspired juxtaposition of words.
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Abstract

The objective of this paper is to present the software archi-
tecture used for the OPERANDO privacy platform, funded by
the European Union in a Horizon 2020 project. For integration,
OPERANDO is using SwarmESB, an open source Enterprise Ser-
vice Bus (ESB) based on executable choreographies. In this pa-
per we are presenting the concept of service transformations, pre-
sented as a bridge between the world of REST web services and
the world of services implemented with executable choreogra-
phies. These transformations are improving the heterogeneity
aspects when we are analysing SwarmESB as a distributed sys-
tem. Five types of transformations that have been analysed and
implemented as open source software have been integrated. This
proposal is shaped around a common language capable of express-
ing all these five transformation types we have identified working
for OPERANDO. Therefore, the Domain Specific Language pro-
posed, renders the essential elements for transformations among
functions, web services and executable choreographies. This uni-
fication will trigger a quantitative effect on the productivity of
the teams creating or integrating web services in a federated ser-
vice bus environment which is a key architectural component in
the future Internet-of-Things and cloud systems.

Keywords: middleware · architectures · DSL · executable
choreographies · web service transformations.
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1 Introduction

The OPERANDO’s [1] architecture presented in this article focuses
on the usage of an Enterprise Service Bus (ESB) [2] based on the
open source research project SwarmESB [3]. The main goal of the
OPERANDO project is to integrate and extend the existing privacy
techniques to create a platform that will be used by independent organ-
isations called Privacy Service Providers (PSPs) to ensure policies com-
pliance regarding privacy laws and regulations. OPERANDO should
ensure comprehensive user privacy enforcement in the form of a ded-
icated online service, called “Privacy Authority”. The OPERANDO
platform supports flexible and viable business models, including target-
ing of individual market segments such as public administration, social
networks and Internet of Things. We are approaching the concept of
service transformations, presented as a bridge between the world of
REST web services and the world of services implemented with ex-
ecutable choreographies. Web services can be seen as working on a
request/response communication pattern. Executable choreographies
[4] can be intuitively seen as arbitrary complex workflows that get ex-
ecuted in systems belonging to multiple organisations or authorities.
Executable choreographies are implemented in SwarmESB using the
swarm communication idea [5]. Therefore, SwarmESB is a research
and engineering effort to implement and adapt ideas specific to the
mobile calculus theory. While theoretical research on mobile code [6]
and on systems for asynchronous calculus have existed for many years,
SwarmESB is a practical approach that can be appealing for the spe-
cialists used to program in mainstream languages Java, C#, Java Script
and who will not easily switch to research programming languages (ac-
tor inspired languages[7], pi calculus[8] et al.).

In SwarmESB, messages have a long time identity during multi-
ple communication events and during complex communication pro-
cesses. Groups of related messages called swarms change their state
after each communication event. In actor model inspired approaches,
a message does not have identity or an associated behaviour. Iden-
tity, state changes or behaviours are associated only with the message
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receivers (actors). Associating state, mobile code and behaviour with
its own messages is the main difference between swarm communication
and the actor model. In the actual implementation message, queues
are used and the mobile code is securely deployed on the processing
nodes but swarm communication hides all the details of the code mi-
gration message queues. Executable choreographies are scripts that
get executed in multiple processing nodes which may belong to multi-
ple organisations. Swarm communication environments can be easily
integrated with web services by manually exposing remote endpoints
in JavaScript functions. In OPERANDO project, we have decided to
automate this process by creating methods of describing web service
and providing multiple types of “transformations” between web ser-
vices and executable choreographies. Choreographies can implement a
larger number of communication patterns compared with web services.
However, we are currently living in a world of web services and since
OPERANDO is a complex project that uses existing components and
technologies, we have found mandatory to automate the integration of
the web services.

2 ESB middleware’s based on choreography –

concepts overview

An important concern in Service Oriented Architecture (SOA) [9] is
to extract the business processes from the application code and or-
chestrate the business process grounded on services. When multiple
organisations are involved in the same business process, we talk about
choreography. When business processes spread over multiple organisa-
tions, governance, security and privacy aspects become suddenly criti-
cal and have a big influence on the business and technology choices. In
OPERANDO, we have chosen to use executable choreography, a con-
cept emerging from our previous research [4, 5, 13], [10]. Executable
choreographies propose the existence of a business process description
that is aware of the location aspects (which is the organisation). It also
unifies short living processes as ESB routing and long living business
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processes (implemented as an extension to the routing). Executable
choreographies are technical descriptions of business agreements among
multiple organisations and should be treated as such.

One of the most popular integration methods is the nightly batch
processing [11]. However, batch-processing integration strategies are
prone to errors caused by multiple data changes on shared resources
and are bound to cause delays in information retrieval. An ESB can
eliminate many latency problems by providing real-time throughput
of the data flows among applications and organisations. This real-
time flow of data requires support for data transformations [12]. From
the development process point of view, an ESB can be seen as the
foundation of a SOA architecture that may enable an agile style of
working. Agile main goal of reducing waste is accomplished by lowering
the need of complex ad-hoc architectures. The development team can
understand the big picture from an early stage and actively contribute
to defining the services scope and detailed requirements.

Executable choreographies that should be executed by multiple or-
ganisations will be manually or automatically verified and approved
each time they get updated. Any ESB allows parallel development
of integrated services, reducing the need of stubs or fake service im-
plementation during development. The missing services can be simu-
lated within the integration scripts (e.g. executable choreographies).
The integration scripts as executable artefacts of the short/long living
processes may be independently developed by each team which imple-
ments different services. Different versions of the choreographies can
be merged at any time, usually without requiring any changes in the
service implementation.

The typical ESB roles include connectivity, routing, transforma-
tions and various methods to represent short or long living business
processes (integrations, orchestration or choreographies) [13].

Connectivity is the basic feature for any Service Bus. An ESB
reduces the configuration efforts because the producers will send infor-
mation only towards BUS and do not have to be aware of consumers.

Routing: beside connectivity, if integration is a subject of interest,
the necessity to route the messages in an efficient way becomes appar-
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ent. A service consumer only receives that piece of information that
should be handled. Typically, routing can take multiple approaches:

• The ”pipe” pattern: a single event triggers a sequence of process-
ing steps, each performing a specific function.

• The ”content based router” pattern: the message content is used
to take decisions about the receivers

• The ”message dispatcher” pattern: a message is sent to a list of
services

• The ”scatter gather” pattern: a request is sent to a number of
service providers but all the responses get aggregated into a single
response message

In case of SwarmESB based choreographies, all these patterns and
many others can be achieved in explicit declarative and imperative
code (see Figure 1).

Figure 1. The main roles of an ESB
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Transformation: integrated service and applications do not have
the same data formats and the ESB is a good place to handle the trans-
formations among these formats. The transformation services that are
specialized in the needs of individual applications plugged into the bus
can be located anywhere and accessible everywhere on the bus. The
transformation can be implemented in the form of adapter nodes or
can be implicit in the scripts describing the routing. In this paper,
we present the transformation layer implemented in SwarmESB. The
proposed methods are able to automate integration with web services,
expose web services and perform complex data transformations related
to integration or privacy concerns.

Business processes and Service Orchestration concepts are unifying
concerns that can be explained meaningfully to the final user (map
in scripts or descriptions specific user stories or use cases). They also
provide useful abstractions for software analysts, software architects
and developers. There are two main types of business processes: long
living processes and short living processes. Long living processes are
abstracting business concerns that take a long time to be executed
(they have a persistent state stored in databases). Until the end of
their execution, long living processes are prepared to receive various
human inputs or special events in their execution environment (time
events, changes in data structures, creation of new objects, etc.).

Human intervention in business processes is usually described by
the “workflow” concept. It is quite tempting to use workflow and busi-
ness process concept as synonyms. This is justified and it is acceptable
because, in execution, any manual intervention from a dedicated op-
erator is almost identical to non-human change. In both cases, we
are talking about a set of events and changes in databases or in data
structures.

A key point is that workflows follow the opposite paradigm of state-
based approach rather than a flow-based one like Business Process Ex-
ecution Language (BPEL) orchestrators. In some cases, the workflow
approach is better adapted to long-lived processes, without being re-
stricted from sitting on top of orchestrated services. Hence, workflow
servers are usefully complemented by ”straight” orchestrators and we
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may find solutions that are deploying two business process-oriented
servers. Additionally, in many ESBs, short living processes are rep-
resented by the routing mechanism and in some others by the BPEL
type of orchestration. Unfortunately, this approach exposes the de-
velopers to too many different languages or approaches when describ-
ing short living processes (integration processes). In OPERANDO,
SwarmESB choice avoids the complexity and the redundancy of effort
and resources caused by the usage of three quite different process de-
scription languages. The usage of orchestration concept is discussed in
multiple contexts and sometimes with different meanings. We can talk
about orchestrations in the context of provisioning in the virtualized
deployment environments (in dynamic data-center use cases) and in
Service Oriented Architectures. In both cases, orchestration is about
aligning the business request with the applications, data, and infras-
tructure. It defines the policies and service levels through automated
workflows, provisioning, and change management. From the data-
center or deployment management perspective, orchestration creates
an application-aligned infrastructure that can be scaled up or down
based on the needs of the applications. For simplicity, we will call this
kind of orchestration, orchestration for deployments and provisioning.

A somewhat different usage of the orchestration concept is related
to the process of coordinating an exchange of information through in-
teractions of web services. We will call this kind of orchestration service
orchestration. Advanced Service Oriented Architectures could try to
decouple the orchestration layer from the service layer in the form of
the service orchestration or service choreography. Systems like ESB or
integration Platform as a Service (iPaaS) are typically deployed and
fine-tuned in order to perform this role. For dynamic data-center use
cases, the orchestration is typically related and closely connected to
monitoring infrastructure and to the management of the virtualisation
solutions. As it will be explained below, the choreography concept and
especially the executable choreography is a technique that offers an al-
ternative implementation for the service orchestration. The final results
of the service orchestration and of the choreography may look identi-
cal (some services are mixed together) but from the point of view of
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performance, scalability, security and privacy, the decentralised way of
choreography brings important benefits. An ESB is a strategic compo-
nent in any complex system as it succeeds in reducing coupling between
solution’s components. Reduced coupling enables parallel work to be
performed by multiple teams that use separate tools, processes and
even platforms/technologies (Java, C#, PHP, node.js etc.). An ESB
enables an SOA that is an alternative to the client server model. An
ESB promotes agility and flexibility regarding communication between
applications and subsystems (see Figure 2).

Figure 2. The generic architecture for ESB based systems

The purpose of the integration bus is to provide a flexible method to
compose services and components, ensure security and scalability of the
system and to allow development towards a federated system between
multiple ESBs. Enterprise Service Bus systems must be seen as an
architectural pattern. An ESB offers a standard way of integration
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between applications, services or other kinds of integration objects.
An ESB mediates between service providers and service consumers.
Integration of loosely coupled services within or across organizations
can be obtained.

The SwarmESB current architecture starts from the premises that
we are supporting the federation of services among multiple organi-
sations. This perspective implies a technology capable of executing
business processes among multiple organisations (choreography) (see
Figure 3). Any usage of centralised message queues or centralised Busi-
ness Process Management (BPM) engines will not be sufficient because
of the security and privacy issues raised by centralisation. SwarmESB
uses a script based on the routing method that circumvents these pri-
vacy concerns.

Figure 3. The architecture for choreography based integration offering
federation
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3 Web Service transformation language pro-

posal

To enable complex communication between the distributed bus pro-
vided by SwarmESB and the external world, we have analysed the
types of transformation that we have to create in order to enable in-
bound and outbound usage of web services. A typical integration case
is the need to call existing web services inside executable choreography
scripts. Another case is the requirement of a new or existing application
to communicate with the ESB using web services. These capabilities
were not available by default in SwarmESB and as workaround, we
used to create custom code for each case. Beyond these two cases, our
research for OPERANDO has shown that other three types of trans-
formations exist. The current implementation can be found in the
TransRest open source project [14]. The resulted five types of trans-
formations are presented in Table 1.

All five types of transformations may be described in a common
language called Swarm to web service Transformation (SwarmTL). For
syntax description, we used Backus-Naur Form notation. SwarmTL
DSL is an internal DSL (Domain Specific Language) so all JavaScript
syntactic and semantic rules should be considered. By using an inter-
nal DSL we can benefit from existing tools for debugging, Integrated
Development Environments and programming expertise, therefore we
reduce adoption risks for this new technology.

SwarmTL language is presented in Table 2.

In order to get an intuitive image about the syntax of the transfor-
mations we are exemplifying a SF transformation that takes a remote
REST web service from http://localhost:3000 and exposes a set of func-
tions with the name of the blocks (e.g. baseUrl or createEntity).

{

baseUrl: ’http://localhost:3000’,

getEntity: {

method:’get’,

params: [’entity’, ’token’],
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Table 1. Types of transformations

Name Description

Service to Func-
tions transforma-
tions (SF)

This transformation can translate a REST service into
functions usable in a processing node (e.g. Swarm ESB
adapter) and from choreographies. Intuitively, this trans-
formation is just a quick method to generate some functions
that asynchronously call remote web services. This simple
transformation allows documenting the web service and it
also permits a uniform working style inside the SwarmESB
based project in which the adapters are plain JavaScript
functions.

Choreography to
Service transfor-
mations (CS)

This transformation exposes a swarm workflow (choreog-
raphy) as a REST web service. Since the same based sys-
tems are real time systems that allow push notification
and multiple results for a call, this transformation offers
a bridge to the applications that are designed to work in
an ask/request method promoted by REST services. The
CS transformation allows that existing services to be refac-
tored to use SwarmESB and allows the reuse of the existing
skills and tools.

Function to Ser-
vice transforma-
tions
(FS)

The FS transformation exposes functions as REST web
APIs. This type of transformation is very useful for test-
ing and mocking web services but also for the creation of
REST web services with very little code. As we see below,
the transformation language hides all the wiring usually
required to create web services. This transformation will
work together with CS and I transformations allowing to
expose an enriched set of services.

Service to Chore-
ography transfor-
mations (SC)

This transformation can change a REST Service into a
workflow/choreography (swarm description/script) based
on an existing template. This kind of transformation is
complex and requires metaprogramming capabilities from
the choreography implementation. This transformation
has not been implemented yet in SwarmESB. The SF
transformation allows manual creation of new choreogra-
phy based on existing web services so basically the SC
transformations should be manually programmed.

Interceptor
transformations
(I)

This kind of transformation can be seen as a combination
between SC and CS transformations. An Interceptor trans-
formation can be seen as a smart proxy between some arbi-
trary REST APIs and an exposed REST APIs. The benefit
will be that the transformation can intercept every call and
can enrich each call with some arbitrary logic that will be
hosted in a swarm workflow description.
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Table 2. SwarmTL language

<transformation> :== “{“ <properties> ”,” <blockList>

”}”

<properties> :== ”” | <property>

| <property> <opt-comma>

<properties>

<blockList> :== <block> | <block> <opt-

comma> <blockList>

<block> :== <blockName> <opt-whitespace>

“:” <opt-whitespace>

“{“ <blockPropertyList> “}”

blockPropertyList :== ”” | <blockProperty>

| <blockProperty><opt-comma>

<blockPropertyList>

<blockProperty> :== <mandatoryProperty>

| <specificProperty>

<property> :== <globalKey> <equal> <value>

<mandatoryProperty> :== <mandatoryKey> <equal>

<value>

<specificProperty> :== <specificKey> <equal>

<value>

<mandatoryKey> :== ”method” | ”params” | ”path”

<globalKey> :== ”baseUrl” | ”port” | ”swarm”

<specificKey> :== ”code” | ”phase”

<value> :== jsString | jsAnonymousFunction |
jsArray

<opt-comma> :== <opt-whitespace> ”,”

<opt-whitespace> | ””

<equal> :== <opt-whitespace> ”=”

<opt-whitespace>

<opt-whitespace> :== ” ” <opt-whitespace> | ””
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path:’/$entity/$token’

},

createEntity: {

method: ’put’,

params: [’entityId’, ’token’, ’ body’],

path : ’/?id=$entityId&token=$token’

}

}

Any transformation is composed of global properties and a list of
transformation blocks. The global properties are basically key value

assignments. Each block is composed of a list of properties known as
’block’ properties. A set of properties is present in all the transforma-
tions (and are called mandatory properties) but the others are optional
or transformation specific. The mandatory properties are ”method”,
”params” and ”path”. The values for ”method” are ”get”, ”post”,
”put”, ”delete” corresponding to the HTTP verbs. The ”path” param-
eter specifies the part of the URL that is used to route the request to
the actual implementation. The path value is a string that consists of
fixed strings and ”parameters”. All parameters are prefixed by an ”$”
character that enables the url parse to determine the place of the cor-
responding values in the actual urls. The values for “params” property
are a JavaScript array of string denoting the parameters names. The
actual usage of the parameter depends on the type of the transforma-
tion. These parameters should appear as strings in the url prefixed
by a ”$”. To terminate a parameter placeholder and to begin a new
string or a new parameter, the ”/” character should be used. As we
can see, this scheme is similar to the ones used in the other routing
web engines. A similar naming scheme for routing is used to connect
node.js framework but instead of ”$” they use ”:”.

Additionally, we support variables that are not part of the URL,
specifically the ” body” parameter that will contain the content of
the POST and PUT requests. All the names of variables prefixed with
” ” are reserved to be used with the parameters of the POST and
PUT body content. In the global section, a set of attributes can be

429



S. Alboaie, L. Alboaie, M.-F. Vaida, C. Olariu

used. ”baseURL” key means the base url of the rest services. The
”node” means the group (or the node type for the processing nodes)
on which the transformation will be executed. Other specific properties
are specific to particular transformation types as we can see in Table 3.

Tests and code demonstrating the transformations can be found in
the TransREST open source project [14].

4 Web service transformations applied in OPE-

RANDO

OPERANDO system is built around a Shared Bus that supports feder-
ation and advanced transformation capable of integrating internal and
third party web services and functionalities.

Figure 4. OPERANDO architecture. The high-level view diagram

The major components or layers in the OPERANDO architecture
consist of:

• Authentication layer: a set of services and components respon-
sible with the authentication and monitoring of all the business
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Table 3. Swarm Transformation Language property names

Property Transformations Semantic description Possible

value

baseUrl CS,SC,SF,I Global property that specifies
the base url for a remote ser-
vice,

A remote
URL

swarm I Global property that specifies
the name of a swarm used in
I transformations to actually
call the remote REST service.

String

template SC Global property that specifies
the name of a swarm used
as template in SC transforma-
tions

A swarm
name

method CS,FS,SC,SF,I A block property that speci-
fies the HTTP method used
for routing in local and remote
services

GET |

POST |

PUT |

DELETE

path CS,FS,SC,SF,I A block property that speci-
fies the path in the url for re-
mote services or for the local
router

specially
formatted
string

params CS,FS,SC,SF,I A block property having as
value an array with the name
of the parameters used in the
choreography constructors, of
the generated functions in all
transformations

jsArray:
JavaScript
array with
strings

phase CS A block property specifying
the phase name that is trans-
formed as a service in CS
transformations

String

Code FS A block property used by
FS transformations to spec-
ify the actual implementation
of the service. The value is
just a plain JavaScript func-
tion returning a value asyn-
chronously.

jsAnonymous-

Function:

anonymous
function

Result-

Phase

CS A block property used by CS
transformations to specify the
phase name of the result.

String
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processes involving OPERANDO;

• OPERANDO Core services: a collection of complex services,
techniques and algorithms that offer functionalities to OSPs such
as secure data vaults, anonymization, data mining, etc.;

• REGULATOR API: a collection of web services offered to legal
authorities (regulators) to monitor and control OPERANDO’s
features regarding privacy laws and regulations;

• Online Service Providers APIs (OSP APIs) refer to a set of ex-
tensible APIs that can be integrated and transformed by the
OPERANDO to be made available for use in applications de-
veloped by third party developers called OSPs;

• UA Middleware (User Agent Middleware): a collection of services
and workflows used by the OPERANDO client side components.

For OPERANDO we have found three generic use cases where we
may use web service transformations:

a) composition of multiple services from the OPERANDO’s inter-
nal services (OPERANDO Core in Figure 4). For this use case, we use
SF transformations to translate external web services into JavaScript
functions. These web services are external from the point of view of
the bus but are internal for OPERANDO. These functions are exposed
to choreographies and used by processing nodes that are called adapter
nodes in SwarmESB [6]. With this type of transformation, we can au-
tomatically integrate multiple services developed in various languages
and make them accessible to the bus without writing any code. In
SwarmTL only the declarative descriptions are required and it reduces
risks of bugs when using lower level libraries to do REST remote calls.

b) exposition of a single service from Core that will be directly
exposed almost unchanged. In this case, the existing web services are
enriched by adding only a layer of authentication or by filtering the data
within a logical layer responsible with transparent data transformation
consisting in real-time anonymization. For this use case we can use an
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I transformation that can enrich existing web services while exposing
web services to the external environment.

c) creation of custom made web services that have to fit with the
need of particular OSP APIs and UA Middleware.

For this use case, we make combinations of FS, SF and CS transfor-
mations. SF transformations are capable of exposing various Web Ser-
vices (implemented with various technologies and by different partners)
to the Shared Bus. FS and CS transformations are capable of exposing
web services towards outside parties (OSPs, clients, legal regulators)
by translating custom made functions and SwarmESB choreographies
in web services.

For OPERANDO project, we have analysed the short and medium
term quantitative and qualitative effects of the web service transfor-
mations. By unifying a set of 5 complementary operations between
functions, web services and choreographies we have managed to reduce
the quantity of conventions that a programmer has to gasp. An obvious
quantitative effect is the reduction of the number of code lines required
to create a web service or to use existing web services in choreogra-
phies. The reduction in the number of code lines correlates with the
reduction in the number of bugs as it is commonly accepted [15]

We constantly evolve SwarmESB in area of building better, generic
error handling mechanisms. Our perspective is that every step that
increases the use of these generic mechanisms instead of relying on
custom code – created by the programmers using lower level libraries –
is very important for the reduction of the programming costs and can
increase the maintainability of the resulted systems.

5 Conclusions

ESBs created around the concept of executable choreographies and
other classical ESBs that are using orchestration engines for web ser-
vices may have similar purposes. However, as it has been demonstrated
in the previous research [4] executable choreographies are designed to
provide federation concepts and better privacy ensuring capabilities in
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complex solutions involving multiple organisations. Executable chore-
ographies do not have a direct correspondent in the web service world
and in this paper we have presented five types of web service transfor-
mations that enable a bridge between REST web services programming
environments and the executable choreography environments. Provid-
ing real time messaging [5], the swarm communication pattern can be
seen as a generalization for request/response case of the http commu-
nication. Likewise, web service transformations are a general case for
the more well-known concept of data transformation [12]. The service
transformations can be used to implement the well-known concept of
data transformations but can also be used for other integration pur-
poses that typically do not belong to data transformation. The most
widely used description languages for web services do not annotate data
for privacy concerns. Therefore, it makes sense to extend the descrip-
tions used for web service transformations in order to add support for
automated checks or automated anonymization of the choreographies.
We have already allocated research efforts in this direction. Neverthe-
less, the ubiquity of web services encouraged our efforts to extend the
executable choreographies with deeper support for web services and
this has turned out to be an opportunity to create technologies that
provide qualitative improvements for programmers’ productivity.
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Ŝınică Alboaie, Lenuta Alboaie, Received October 2, 2016
Mircea-Florin Vaida, Cristina Olariu
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