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Introduction

The notion of infinitely near points was initially part of the intuitive foundations
of differential calculus. In the simplest terms, two points which lie at an infinitesimal
distance apart are considered infinitely near [17]. Charles Ehresmann influenced by
language of Taylor polynomials (which precised the infinite nearness in calculus)
introduced the concept of r-jet in his paper [2] (1951). According to this, jets
of smooth mappings are defined as equivalence classes of mappings. Presumably
it was Ehresmann’s initiative which stimulated the paper of André Weil [16] in
which Weil, being experienced from his previous algebraic geometry research in the
use of methods of commutative algebra, introduced the concept of infinitely near
points on a smooth manifold as algebra homomorphisms from the algebra of smooth
real functions on the manifold into a local R-algebra (which is now called the Weil
algebra).

The Weil algebra is defined as local commutative (and associative) R-algebra A
with identity, the nilpotent ideal nA of which has a finite dimension as a vector space
and A/nA = R. André Weil in [15] commented on non-semisimple finite dimensional
algebras that ”. . . on sait qu’on ne sait rien sur cette sorte d’algèbre”; and Shafarevich
in [13] noted that Weil’s observation retains its validity up to this days. We remark
also that the ideas about Weil algebras enter into models for synthetic differential
geometry. Disentangling structures from geometric phenomena to their categorical
formulation was a long process and it is described in [11].

It is well known that the differential invariant is defined as a Gr
n-equivariant

mapping f : Y → Z from a Gr
n-manifold Y into a Gr

n-manifold Z ( see [4]), where
Gr

n = inv Jr
0 (Rn, Rn)0 (invertible r-th order jets from Rn into Rn with source and

target in 0 = (0, . . . , 0)); Gr
n is a Lie group (called usually the jet group or the

differential group), Y and Z are manifolds endowed with the left action of Gr
n and
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f(gy) = gf(y). However, Gr
n is (isomorphic to) the group of R-algebra automor-

phisms of the Weil algebra Dr
n = R[X1, . . . ,Xn]/mr+1, where m is the maximal ideal

in the algebra of real polynomials in n indeterminates. The group Gr
n can be gen-

eralized to AutR A for an arbitrary Weil algebra A and AutR A is, of course, a Lie
group, too. The study of differential invariants has many applications: differential
invariants completely characterize invariants systems of differential equations as well
as invariant variational principles, see the monograph [12] of Peter J. Olver.

The study of the subalgebra SA = {a ∈ A; φ(a) = a for all φ ∈ AutR A} of a Weil
algebra A, is motivated by some classifications problems in differential geometry, in
particular, in the classification of all natural operators lifting vector fields from m-
dimensional manifolds to bundles of Weil contact elements which was solved in [5].
Although in the known geometrically motivated examples is usually SA = R (such
SA is called trivial), there are some algebras for which SA % R and they call
attention to the geometry of corresponding bundles. Thus, the fundamental problem
is a classification of algebras having SA nontrivial. In this paper, we study only the
group of automorphisms of Dr

n; nevertheless we replace R by an arbitrary field F and
obtain new results — we come to a different situation in particular cases: for finite
fields the considered algebras are finite rings and there is the whole theory about this
topic. It is known the ring automorphism problem liying in a decision if a finite ring
has a non-identical automorphism or not. Results about fixed point subalgebras are
also qualitatively totally different from the real case and, for the finite fields, they
can have interesting applications in the coding theory and cryptography.

In the first section, we recall the real case and all definitions. The second section
is devoted to local algebras of the first order: so called dual numbers and their gener-
alizations plural numbers. Groups in question are general linear groups. The higher
order case is studied in the third section. Corresponding groups of automorphisms
are called (in the real case) jet groups. Possible applications are mentioned in the
last section.

1 The real field: Weil algebras and jet groups

We recall that the Weil algebra is a local commutative R-algebra A with identity,
the nilradical (nilpotent ideal) nA of which has a finite dimension as a vector space
and A/nA = R. Then we call the order of A the minimum ord(A) of the integers r
satisfying nr+1

A = 0 and the width w(A) of A the dimension dimR(nA/n2
A).

One can assume A is expressed as a finite dimensional quotient of the algebra
R[X1, . . . ,Xn] of real polynomials in several indeterminates. Thus, the main example
is

Dr
n = R[X1, . . . ,Xn]/mr+1,

m = (X1, . . . ,Xn) being the maximal ideal of R[X1, . . . ,Xn] and we observe that
ord(Dr

n) = r and w(Dr
n) = n. Every other such algebra A of order r can be expressed

in a form

A = R[X1, . . . ,Xn]/j = R[X1, . . . ,Xn]/i + mr+1,
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where the ideal i satisfies mr+1 $ i ⊆ m2 and is generated by a finite number of
polynomials. The fact i ⊆ m2 implies that the width of A is n as well. Clearly, A
can be expressed also as

A = Dr
n/i,

where i is an ideal in Dr
n.

As to the group of automorphisms AutR A of the algebra A, which is studied in
this paper, we recall the well known fact (see [3]) that

AutR Dr
n = Gr

n,

the n-dimensional jet (differential) group of the order r.

By a fixed point of A we mean every a ∈ A satisfying φ(a) = a for all φ ∈ AutR A.
Let

SA = {a ∈ A;φ(a) = a for all φ ∈ AutR A}

be the set of all fixed points of A. It is clear, that SA is a subalgebra of A containing
constants (of couse, every automorphism sends 1 into 1), i.e. SA ⊇ R. If SA = R,
we say that SA is trivial. For some classification results, see [8] and [9].

We will use the same terminology below although we will not focus only on the
real field 1.

2 Dual and plural numbers

2.1 Dual numbers

Let F be an arbitrary field and F [X] the ring of polynomials over F . Then
F [X] is an F -algebra thanks to the ring homomorphism mapping elements of F to
constant polynomials in F [X]. The indeterminate X generates the maximal ideal
(X) in F [X]. The quotient

DF = F [X]/(X)2

is also an F -algebra and it is usually called the algebra of dual numbers over F .
Then DF has the unique maximal ideal generated by X (and so DF is local). We
can express DF by

DF = {a0 + a1X; a0, a1 ∈ F, X2 = 0}.

We will describe automorphisms of DF . For every such an automorphism φ

φ(1F ) = 1F

1In algebraic literature, there exists also the denotation AAutF A for our SA assuming A is an
F -algebra over a field F . Following [14], we can say that A is a Galois extension of F with Galois

group AutF A if F = AAutF A. (This does not quite correspond with the definition in [14] where
the Galois group is considered finite.) Then the problem of a triviality of SA identifies with the
problem whether A is a Galois extension of F (with Galois group AutF A) or not.
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is satisfied and thus
φ(a0) = a0 for every a0 ∈ F.

Further, in general,
φ(X) = b0 + b1X; b0, b1 ∈ F.

We compute

0F = φ(0F ) = φ(X2) = φ(X)φ(X) = b2
0 + b0b1X + b1b0X + b2

1X
2 = b0(b0 + 2b1X),

thus, by a comparing of coefficients standing at 1 at X, b0 = 0, then, necessarily, b1

must be invertible and thus non-zero for φ be a bijection.

Proposition 1. Let A = DF . Then SA is nontrivial if and only if F = F2.

Proof. We have derived that every automorphism φ acts by

φ(a0 + a1X) = a0 + b1a1X; b1 ∈ F − {0F }.

Hence elements a1X are fixed if and only if b1 = 1F : so we must have a field with
only two elements 0F and 1F for it.

2.2 Plural numbers

It is easy to generalize the concept of dual numbers to the quotient of the poly-
nomial F -algebra in n indeterminates. We take the F -algebra

(DF )n = F [X1, . . . ,Xn]/(X1, . . . ,Xn)2

and call this F -algebra the algebra of plural numbers over F .
A general form of endomorphisms of (DF )n is

φ(1) = 1

φ(X1) = b10 + b11X1 + b12X2 + · · · + b1nXn

φ(X2) = b20 + b21X1 + b22X2 + · · · + b2nXn

. . .

φ(Xn) = bn0 + bn1X1 + bn2X2 + · · · + bnnXn.

However, we have

0F = φ(0F ) = φ(X2
1 ) = b2

10 + b2
11X

2
1 + · · · + b2

1nX2
n + 2b10b11X1 + · · · + 2b10b1nXn =

b10(b10 + 2b11X1 + · · · + 2b1nXn),

thus, b10 = 0, and analogously b20 = · · · = bn0 = 0. Now, the matrix

(
b11 b12 ... b1n

b21 b22 ... b2n
... ... ... ...
bn1 bn2 ... bnn

)

must be invertible for φ be a bijection. So, automorphisms of (DF )n form exactly
the group GL(n,F ).
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Remark 1. General linear groups are widely studied. Especially, for the finite case,
the order of GL(n, Fpk) (p a prime number, k ∈ N) is

n−1∏

i=0

(

pnk − pik
)

.

Proposition 2. Let n ∈ N, n > 2, A = (DF )n. Then SA is always trivial.

Proof. We show that the element a = a1X1 + · · ·+anXn cannot be fixed. Of course,
we can assume that one of ai, say a1, is non-zero. Let us consider the (diagonal)
automorphism φ

φ(1F ) = 1F

φ(X1) = bX1

φ(X2) = X2

. . .

φ(Xn) = Xn, where b 6= 0F .

Let us first suppose that b 6= 1F . Then evidently φ(a) 6= a. However, we have not
always a possibility to take b 6= 1F . It occurs in the case F = F2.

So, in the rest of this proof, let F = F2. Let i, j ∈ {1, . . . , n}, i 6= j. Then
φ(i,j) : (D2 )n → (D2 )n given by

φ(i,j)(1) = 1

φ(i,j)(Xi) = Xi + Xj

φ(i,j)(Xk) = Xk for all k ∈ {1, . . . , n}, k 6= i

belongs to AutF2 (DF2)n becasue it is clear that φ(i,j) meets the general form above.
First, let us suppose that a1 = · · · = an = 1 and prove that the element

X1 + X2 + · · · + Xn

is not fixed. For this, it suffices to take some automorphism φ(i,j), e.g. φ(1,2) sends
X1 + X2 + · · · + Xn onto X1 + X2 + X2 + X3 + · · · + Xn = X1 + X3 + · · · + Xn.
Second, let {k1, . . . , kh} be a (non-empty) proper subset of {1, . . . , n}, i.e. h < n.
We prove that the element

Xk1 + Xk2 · · · + Xkh

is not fixed, too. We take i ∈ {k1, . . . , kh} and j ∈ {1, . . . , n} − {k1, . . . , kh} and
apply φ(i,j): it sends Xk1 + Xk2 · · · + Xkh

onto Xk1 + Xk2 · · · + Xkh
+ Xj .

So, SA = F is always trivial.
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3 Higher order case

3.1 One indeterminate

Of course, the powers of the maximal ideal (X) represent notable class of ideals
in DF . For r ∈ N, r > 1, we will study the algebra

(DF )r = F [X]/(X)r+1.

Elements of (DF )r have a form

a0 + a1X + a2X
2 + · · · + arX

r; a0, a1, a2, . . . , ar ∈ F, Xr+1 = 0.

We start with the following lemma.

Lemma 1. Automorphisms φ : (DF )r → (DF )r have a form

φ(1) = 1

φ(X) = b1X + b2X
2 + · · · + brX

r; b1 ∈ F − {0F }, b2, . . . , br ∈ F.

Proof. It suffices to describe φ−1. We have

Y = φ(X) = b1X + b2X
2 + · · · + brX

r

Y 2 = b2
1X

2 + terms of degree > 2

. . .

Y r−1 = br−1
1 Xr−1 + a term of degree r

Y r = br
1X

r

The last equation provides Xr as b−r
1 Y r, the last but one provides (after the substi-

tution) Xr−1 and so on.

On the other hand, we cannot allow any more general form of automorphisms:
it is evident if we consider an endomorphism

φ(1) = 1

φ(X) = b1X + b2X
2 + · · · + brX

r

with b1 = 0 that its kernel is nontrivial and hence does not represent an automor-
phism.

For an F -algebra A in question and its nilradical nA, if an element a ∈ A has
the property au = 0 for all u ∈ nA, we call a the socle element of A. It is easy to
find that all socle elements constitute an ideal; this ideal is called the socle of A and
denoted by soc A.

Lemma 2. Let p be a prime number, k ∈ N, F = Fpk the finite field, l ∈ N,

r = l(pk − 1). Then for A = (DF )r all elements in soc A belong to SA.
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Proof. It is well known that for every x ∈ F , x 6= 0 the equality

xpk
−1 = 1

holds (the generalization of Little’s Fermat Theorem for finite fields). As Xr ∈ soc A
maps onto br

1X
r, for r which is the l-multiple of pk − 1 is br

1 = 1.

Example 1. Let us consider A = (DF2)
3. Then the element a = X2 + X3 belongs

to SA. We compute

φ(X2 + X3) = X2 + b2X
3 + b2X

3 + X3 = X2 + X3

and we see that a is fixed. Hence there exist elements of SA not belonging to socA,
cf. [10], Proposition 2.

Proposition 3. Let A = (DF )r. For fields of characteristic 0, SA is trivial. For
finite fields, SA is nontrivial and contains socA.

Proof. The proof follows directly from the previous two lemmas and their proofs.

3.2 More indeterminates

Let us consider the n-dimensional (n > 1) case now. Elements of the algebra

A = (DF )rn = F [X1, . . . ,Xn]/(X1, . . . ,Xn)r+1

have a form

a0 +

a1X1 + a2X2 + · · · + anXn +

a11X
2
1 + a12X1X2 + · · · + annX2

n +

· · · +

a 1...1
︸︷︷︸

r

Xr
1 + a1...12

︸︷︷︸
r

Xr−1
1 X2 + . . . an...n

︸︷︷︸
r

Xr
n;

a0, a1, . . . , an...n
︸︷︷︸

r

∈ F.

On basis of previous results we can find out nature of this general case now.

Proposition 4. For r ∈ N, n ∈ N, n > 1, let A = (DF )rn. Then the subalgebra SA
of fixed points of A is always trivial.

Proof. Obviously, elements of GL(n,F ) represent automorphisms also for (DF )r
n.

Of course, not all automorphisms, however, these (linear) automorphisms suffice for
our following considerations. In the proof, we use formally partial derivations ∂

∂Xj

for an expressing whether elements of A contain Xj in some non-zero power or not.



10 MIROSLAV KUREŠ

Let u ∈ A and let exist i, j ∈ {1, . . . , n} such that ∂u
∂Xi

6= 0 and ∂u
∂Xj

= 0.

Analogously with the case r = 1, n > 1, we apply φ(i,j) for the demonstration that
u can not be fixed.

So, let v ∈ A be not of such a type and let σ be a permutation of n-tuple
(X1, . . . ,Xn) for which σ(v) 6= v. As permutations of (X1, . . . ,Xn) are also elements
of GL(n,F ), we find again that v can not be fixed.

Therefore we take w ∈ A such that ∂w
∂Xi

6= 0 for all i ∈ {1, . . . , n} and such
that does not exist any permutation of (X1, . . . ,Xn) yielding a transformation of
w. Nevertheless, a ”symmetry” of w will be again unbalanced by φ(i,j), e. g. φ(1,2).
Hence we have an automorphism for which not even w is fixed.

Thus, only zero power elements of A remain fixed with respect to all automor-
phisms: SA is trivial.

4 Comments to applications

We do not intend go into detail in this section and define at length every men-
tioned concept; just informative comments are here.

4.1 The real case: Weil contact elements

Now, let M be a smooth manifold and let the Weil algebra A have width w(A) =
k < m = dimM and order ord(A) = r. Every A-velocity V (see [3]) determines an
underlying D1

k-velocity V . We say V is regular if V is regular, i.e. having maximal
rank k (in its local coordinates). Let us denote reg TAM the open subbbundle of
TAM of regular velocities on M . The contact element of type A or briefly the Weil
contact element on M determined by X ∈ reg TAM is the equivalence class

AutR AM (X) = {φ(X);φ ∈ AutR A}.

We denote by KAM the set of all contact elements of type A on M . Then

KAM = reg TAM/AutR A

has a differentiable manifold structure and reg TAM → KAM is a principal fiber
bundle with the structure group AutR A. Moreover, KAM is a generalization of the
bundle of higher order contact elements Kr

kM = reg T r
k M/Gr

k introduced by Claude
Ehresmann. We remark that the local description of regular velocities and contact
elements is covered by the paper [6].

We have deduced in [5] and [7] the following results:
There is a one-to-one correspondence between all natural operators lifting vector
fields from m-manifolds to the bundle functor KA of Weil contact elements and the
subalgebra of fixed elements SA of A.
There is a one-to-one correspondence between all natural affinors on KA and the
subalgebra of fixed elements SA of A.
All natural operators lifting 1-forms from m-dimensional manifolds to the bundle
functor KA of Weil contact elements are classified for the case of dwindlable Weil
algebras: they represent constant multiples of the vertical lifting.
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4.2 The finite case: Cryptography, coding theory

Finite structures are extensively applied in cryptography. The problem of devel-
oping new public key cryptosystem had occupied the cryptographic research fields
for the last decades. So called multivariate cryptosystems use polynomial auto-
morphisms, in particular, there are known tame transformation methods using for
ciphering compositions of affine automorphisms and de Jonquières automorphisms.
The security of such systems is based on the difficulties in decomposition of a com-
posed polynomial automorphism.

So, the natural modification of these public key cryptosystems is a use of local
(finite) algebras instead polynomial. The role of automorphisms remains unchanged.
Surely, it is important to understand the subalgebra of fixed elements (which are
not transformed under any automorphism).

Example 2. As a toy exercise, we can consider A = (DF4)
2 and take e.g. poly-

nomials in two indeterminates Y1, Y2 over A, i.e. elements of (DF4)
2 [Y1, Y2]. In

multivariate public key cryptosystems, the cipher procedure is based on composed
polynomial automorphisms, which are used as the public key. Let us imagine a
simple scheme based on the composition π = λ2 ◦ τ ◦ λ1 of affine (λ1 and λ2) and
de Jonquières (τ) F4-automorphisms which play a role of a private key. Without a
decomposition of π, it is not easy to find π−1 which is necessary for decryption. Of
course, a descryption of fixed elements is the substantial feature of such a system.

We only remark that local finite algebras are used also in the coding theory, for
detail see [1].
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Abstract. The lower and upper bounds on the stability radius are obtained in mul-
ticriteria Boolean Markowitz investment problem with criteria of extreme optimism
(MAXMAX) about portfolio return in the case when portfolio and financial mar-
ket states spaces are endowed with Hölder metric, and criteria space of economical
efficiency of investment projects is endowed with Chebyshev metric.
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1 Introduction

In the papers [1,2], vector investment Boolean problems with Savage and Wald’s
criteria are formulated based on Markowitz portfolio theory [3]. Stability radius
bounds are obtained only for particular cases, when three-dimensional problem pa-
rameters space is equipped with different combinations of l1 and l∞ metric. In the
present paper, multicriteria portfolio problem with venturesome investor under the
same Markowitz model framework is considered. The investor maximizes various
portfolio efficiency types when financial market is in the most favorable state, i.e.
with criteria of extreme optimism (MAXMAX). We investigate such a kind of stabil-
ity of the problem which is a discrete analogue of the property to be semicontinuous
from above in Hausdorff’s sense of a point-set mapping which transforms any set of
parameters of the investment problem into the corresponding Pareto set. As a re-
sult of the conducted parametric analysis, power and upper bounds on the stability
radius of the problem are obtained in the case when portfolio space and financial
market spaces are endowed with Hölder metric lp, 1 ≤ p ≤ ∞, and criteria space of
economical efficiency of investment projects is endowed with Chebyshev metric l∞.

2 Problem statement and definitions

Based on [2,4], consider multicriteria variant of Markowitz investment manage-
ment problem [3].

Let m be the number of possible financial market states (A1, A2, . . . , Am), n be
the number of alternative investment projects (B1, B2, . . . , Bn) and s be the number
of types (measures) of the project economical efficiency (C1, C2, . . . , Cs). Given

c© Vladimir Emelichev, Olga Karelkina, 2015
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the expected evaluation of economical efficiency eijk for an arbitrary investment
project Bj of type Ck in the case when market is in the state Ai. We denote three-
dimensional matrix [eijk] ∈ Rm×n×s by E and its k-th cut by Ek ∈ Rm×n. Let
x = (x1, x2, . . . , xn)T ∈ En be an investment portfolio where E = {0, 1}, xj = 1
if the investor chooses the project Bj and xj = 0 otherwise; X ⊆ En be the set
of all possible investment portfolios, i.e. those realization of which does not exceed
investor’s initial budget and admissible level of risk.

Note that there are several approaches to evaluate efficiency of investment
projects (see e.g. the bibliography in [2]).

In the portfolio space X we introduce vector objective function

f(x,E) = (f1(x,E1), f2(x,E2), . . . , fs(x,Es)),

components of which are well known in the decision making theory criteria of extreme
optimism (MAXMAX)

fk(x,Ek) = max
1≤i≤m

eikx = max
1≤i≤m

n∑

j=1

eijkxj → max
x∈X

, k ∈ Ns = {1, 2, . . . , s},

where eik = (ei1k, ei2k, . . . , eink) is the i-th row of the cut Ek. Using this criteria
venturesome investor optimizes the efficiency eikx of the portfolio x under the as-
sumption that market is in the most favorable state for him. In other words when a
portfolio return is maximal. It is evident that the approach is based on the behavior
stereotype of reckless optimism (”make or mar”, ”who does not risk cannot win”
etc.). It is worth to notice that such situations in economics when we have to behave
this way are common. Such dealing is inherent in not only optimist but investors
with his (her) back to the wall.

Under a multicriteria Boolean investment problem Zs(E), s ∈ N we understand
the problem of searching the Pareto set P s(E), i.e. the set of Pareto optimal invest-
ment portfolio

P s(E) = {x ∈ X : X(x,E) = ∅},

where

X(x,E) = {x′ ∈ X : f(x,E) ≤ f(x′, E) & f(x,E) 6= f(x′, E)}.

It is obvious that P s(E) 6= ∅ for any matrix E ∈ Rm×n×s.
For any natural number d in the real space Rd we define Hölder metric lp, p ∈

[1,∞], i.e. under the norm of vector y = (y1, y2, . . . , yd)
T ∈ Rd we understand the

number

‖y‖p =







(
d∑

i=1
|yi|

p)1/p if 1 ≤ p <∞,

max
1≤i≤d

|yi| if p = ∞.

It is well known that for any vectors a, b ∈ Rn the Hölder inequality holds

|aT b| ≤ ‖a‖p‖b‖q, (1)
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and for numbers p and q the following relation is true

1/p + 1/q = 1.

Here q = 1 if p = ∞ and q = ∞ if p = 1. Thereby suppose 1/p = 0 for p = ∞.
Further we assume that the domain of variation of p and q is the segment [1,∞].

In the portfolio space Rn and financial market states space Rm define an arbi-
trary Hölder metric lp, p ∈ [1,∞], and in the criteria space of measures of project
economical efficiency Rs define Chebyshev metric l∞, since under the norm of a
matrix E ∈ Rm×n×s we understand the number

‖E‖pp∞ = ‖(‖E1‖pp, ‖E2‖pp, . . . , ‖Es‖pp)‖∞,

where
‖Ek‖pp = ‖(‖e1k‖p, ‖e2k‖p, . . . , ‖emk‖p)‖p, k ∈ Ns.

Obviously,
‖eik‖p ≤ ‖Ek‖pp ≤ ‖E‖pp∞, i ∈ Nm, k ∈ Ns. (2)

Therefore using Hölder inequality (1), it is easy to see that for any portfolios
x, x′ ∈ X and matrix E ∈ Rm×n×s the following inequalities are valid

eikx− ei′kx
′ ≥ −‖E‖pp∞‖x+ x′‖

1/q
1 , i, i′ ∈ Nm, k ∈ Ns. (3)

Indeed
eikx− ei′kx

′ ≥ −(‖eik‖p‖x‖q + ‖ei′k‖p‖x
′‖q) ≥

−‖(‖eik‖p, ‖ei′k‖p)‖p‖(‖x‖q, ‖x
′‖q)‖q ≥ −‖E‖pp∞‖x+ x′‖

1/q
1 .

Moreover, it is easy to see that for vector a = (a1, a2, . . . , an)T ∈ Rn with
conditions |ai| = α, i ∈ Nn, for any number p ∈ [1,∞] the following equality holds

‖a‖p = αn1/p. (4)

According to [1, 2, 5], with respect to the metrics defined, under the stability
radius of the problem Zs(E), s ∈ N, we understand the number

ρ = ρ(m,n, s, p) =

{
supΞp if Ξp 6= ∅,
0 if Ξp = ∅,

where
Ξp = {ε > 0 : ∀E′ ∈ Ωp(ε) (P s(E + E′) ⊆ P s(E))},

Ωp(ε) = {E′ ∈ Rm×n×s : ‖E′‖pp∞ < ε}

be the set of perturbed matrices, P s(E+E′) be the Pareto set of perturbed problem
Zs(E +E′). Thus the stability radius of problem Zs(E) is the limit level of pertur-
bations of matrix E elements in normed vector space Rm×n×s which do not lead to
appearance of new Pareto optimal portfolios. It is obvious that for P s(E) = X the
stability radius of the problem is supposed to be infinite. The problem for which
P s(E) 6= X is called nontrivial.
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3 Bounds on the stability radius of the problem

For the nontrivial problem Zs(E) put

ϕ = ϕ(m,n, s, p) = min
x/∈P s(E)

max
x′∈P (x,E)

γ(x′, x)

‖x′ + x‖
1/q
1

,

ψ = ψ(m,n, s) = min
x/∈P s(E)

max
x′∈P (x,E)

γ(x′, x)

‖x′ − x‖1
,

where
γ(x′, x) = min{fk(x

′, Ek) − fk(x,Ek) : k ∈ Ns},

P (x,E) = X(x,E) ∩ P s(E).

It is easy to see that ϕ, ψ ≥ 0.

Theorem 1. For any m,n, s ∈ N and p ∈ [1,∞] for the stability radius ρ(m,n, s, p)
of the multicriteria nontrivial investment problem Zs(E) the following bounds are
valid

ϕ(m,n, s, p) ≤ ρ(m,n, s, p) ≤ (mn)1/pψ(m,n, s). (5)

Proof. Let us first show that the inequality ρ ≥ ϕ is valid. For ϕ = 0 it is evident.
Let ϕ > 0 and the perturbed matrix E′ ∈ Rm×n×s with cuts E′

k, k ∈ Ns, belongs to
the set Ωp(ϕ), i.e. ‖E′‖pp∞ < ϕ. According to the definition of number ϕ for any
portfolio x /∈ P s(E) there exists portfolio x0 ∈ P (x,E) such that

γ(x0, x) ≥ ϕ‖x0 + x‖
1/q
1 ,

i.e. the inequalities

fk(x
0, Ek) − fk(x,Ek) ≥ ϕ‖x0 + x‖

1/q
1 , k ∈ Ns

hold.
Therefore, taking into account inequality (3), for any index k ∈ Ns we obtain

fk(x
0, Ek + E′

k) − fk(x,Ek + E′
k) = max

1≤i≤m
(eik + e′ik)x

0 − max
1≤i≤m

(eik + e′ik)x =

= min
1≤i≤m

max
1≤i′≤m

(ei′kx
0 − eikx+ e′i′kx

0 − e′ikx) ≥

≥ min
1≤i≤m

max
1≤i′≤m

(ei′kx
0 − eikx) − ‖E′‖pp∞‖x0 + x‖

1/q
1 =

= fk(x
0, Ek) − fk(x,Ek) − ‖E′‖pp∞‖x0 + x‖

1/q
1 ≥ (ϕ− ‖E′‖pp∞)‖x0 + x‖

1/q
1 > 0,

where e′ik is the i-th row of the cut E′
k. Thus, any portfolio x, which is not in

P s(E), is not a Pareto optimal portfolio on the perturbed problem Zs(E + E′).
Therefore we conclude that for any perturbed matrix E′ ∈ Ωp(ϕ) the inclusion
P s(E + E′) ⊆ P s(E) is valid. Hence the inequality ρ ≥ ϕ is true.
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Further we prove the inequality ρ ≤ (mn)1/pψ.
According to the definition of the number ψ there exists portfolio x0 /∈ P s(E)

such that for any portfolio x ∈ P (x0, E) there exists l = l(x) ∈ Ns, for which

fl(x,El) − fl(x
0, El) ≤ ψ‖x− x0‖1. (6)

Assuming ε > (mn)1/pψ, we define the k-th cut E0
k, k ∈ Ns elements e0ijk of the

perturbed matrix E0 by the rule

e0ijk =

{
δ if i ∈ Ns, x

0
j = 1

−δ otherwise,

where ε/(mn)1/p > δ > ψ. Then according to (4) we have

‖e0ik‖p = n1/pδ, ‖E0
k‖pp = (mn)1/pδ, i ∈ Nm, k ∈ Ns,

‖E0‖pp∞ = (mn)1/pδ.

This means that E0 ∈ Ωp(ε). Moreover, all rows e0ik, i ∈ Nm, of the cut E0
k , k ∈ Ns,

are the same and consist of the components δ and −δ. Therefore, assuming A = e0ik,
i ∈ Nm, k ∈ Ns, we have

A(x− x0) = −δ‖x− x0‖1. (7)

Hence, taking into account (6), we conclude that for any portfolio x ∈ P (x0, E)
there exists l ∈ Ns, satisfying the relations

fl(x,El + E0
l ) − fl(x

0, El + E0
l ) = max

1≤i≤m
(eil + e0il)x− max

1≤i≤m
(eil + e0il)x

0 =

= min
1≤i≤m

max
1≤i′≤m

(ei′lx− eilx
0 + e0i′lx− e0ilx

0) = fl(x,El) − fl(x
0, El) +A(x− x0) ≤

≤ (ψ − δ)‖x − x0‖1 < 0.

Thus the formula
∀x ∈ P (x0, E) (x /∈ X(x0, E + E0)) (8)

is valid. If X(x0, E + E0) = ∅ then x0 ∈ P s(E +E0). Recall that x0 /∈ P s(E).
Now suppose that X(x0, E + E0) 6= ∅.
Then due to the external stability of the set P s(E + E0) (see e.g. [6, 7]) there

exists portfolio x∗ ∈ P (x0, E + E0). We show that x∗ /∈ P s(E).
We assume the contrary: x∗ ∈ P s(E). According to (8) the inclusion

x∗ ∈ P s(E) \ P (x0, E)

holds. Therefore only two following cases are possible.
Case 1. f(x∗, E) = f(x0, E). Then for any k ∈ Ns from equality (7) it follows

fk(x
∗, Ek + E0

k) − fk(x
0, Ek + E0

k) = fk(x
∗, Ek) − fk(x

0, Ek)+
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+A(x∗ − x0) = −δ‖x∗ − x0‖1 < 0.

Case 2. There exists q ∈ Ns such that fq(x
∗, Eq) < fq(x

0, Eq). Then again
using (7) we obtain

fq(x
∗, Eq + E0

q ) − fq(x
0, Eq + E0

q ) = fq(x
∗, Eq) − fq(x

0, Eq) +A(x∗ − x0) < 0.

Consequently both cases contradict the inclusion x∗ ∈ P (x0, E+E0). Therefore
it is proved that x∗ /∈ P s(E). Recall that x∗ ∈ P s(E + E0).

Thus for any number ε > (mn)1/pψ it is guaranteed that there exists a perturbing
matrix E0 ∈ Ωp(ε) such that there exists portfolio (x0 or x∗) which is not Pareto
optimal portfolio for Zs(E) but becomes Pareto optimal in the perturbed problem
Zs(E + E0). Hence the formula

∀ε > (mn)1/pψ ∃E0 ∈ Ωp(ε) (P s(E + E0) * P s(E))

is valid.
Consequently, ρ ≤ (mn)1/pψ.

The well known result follows from Theorem 1.
Corollary 1 [8]. ϕ(m,n, s,∞) ≤ ρ(m,n, s,∞) ≤ ψ(m,n, s).

The following evident statement confirms attainability on these bounds
Corollary 2. If for any pair x 6∈ P s(E) and x′ ∈ P (x,E) the equality

{j ∈ Nn : xj = x′j = 1} = ∅

holds then the formula

ρ(m,n, s,∞) = ϕ(m,n, s,∞) = ψ(m,n, s)

is valid.
Attainability of the upper bound in (5) for m = 1 and p = ∞ follows from the

following known theorem.
Theorem 2 [9]. ρ(1, n, s,∞) = ψ(1, n, s), n, s ∈ N.

Remark 1. From theorem 1 it follows that the upper bound on the stability radius
of the problem ρ(m,n, s, p) decreases mn times with number p increasing from 1
to ∞. That is the upper bound decreases from mnψ(m,n, s) to ψ(m,n, s). At the
same time the lower bound also decreases from

ϕ(m,n, s, 1) = min
x/∈P s(E)

max
x′∈P (x,E)

γ(x′, x)

to

ϕ(m,n, s,∞) = min
x/∈P s(E)

max
x′∈P (x,E)

γ(x′, x)

‖x′ + x‖1
.

As follows from Corollary 2, when its conditions hold the lower values of the
lower and upper bounds on the stability radius are identical:

ϕ(m,n, s,∞) = ψ(m,n, s).

The present paper is prepared with partial support of the Belarusian republican
fund of fundamental research (Projects F11K-095, F13K-078).
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lp(R)-equivalence of topological spaces
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Abstract. Let R be a topological ring and E be a unitary topological R-module.
Denote by Cp(X, E) the class of all continuous mappings of X into E in the topology
of pointwise convergence. The spaces X and Y are called lp(E)-equivalent if the topo-
logical R-modules Cp(X, E) and Cp(Y, E) are topological isomorphisms. Some con-
ditions under which the topological property P is preserved by the lp(E)-equivalence
(Theorems 8 – 11) are given.
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1 Preliminaries

Let G be an Abelian group under addition operation and R be a ring. We call
G a left R-module or, simply, an R-module if on it the operation of multiplication
between an element of R and an element of G is defined, say ra ∈ G, where r ∈ R
and a ∈ G, with the following properties: r(a + b) = ra + rb, (r + s)a = ra + sa,
r(sa) = (rs)a, for any r, s ∈ R and a, b ∈ G. In other words, an R-module is a
vector space where the base field is replaced by a base ring R. Usually the operation
of multiplication (r, a) 7→ ra is called scalar multiplication. Obviously, any ring R
is a module over itself. An R-module is unitary [11] if R possesses a multiplicative
identity 1 and 1x = x for every x ∈ G.

An additive topological group is an additive group G with a topology such that
the addition operation (x, y) → x + y and inverse operation x → −x are continu-
ous mappings [11]. A topological ring is a ring R with a topology making R into
an additive Abelian topological group such that the multiplication is a continuous
mapping [11].

Let R be a topological ring. A topological R-module is an R-module E together
with a topology such that E is an additive Abelian topological group and scalar
multiplication is a continuous mapping.

Let E and F be R-modules. The mapping ϕ : E → F is a linear mapping if it
satisfies the conditions:

(i) ϕ(x+ y) = ϕ(x) + ϕ(y), for any x, y ∈ E;

(ii) ϕ(αx) = αϕ(x), for any x ∈ E and α ∈ R.

c© Mitrofan M. Choban, Radu N.Dumbrăveanu, 2015
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Throughout this paper, by a ”space” we will mean a ”completely regular space”,
by a ”topological ring” we will mean ”topological unitary ring” and by a ”topological
module” we will mean a ”topological unitary module”.

Fix a space X, a topological ring R and a topological R-module E. By
C(X,E) we will denote the family of all E-valued continuous functions with the
domain X and by Cp(X,E) we will denote the space C(X,E) endowed with the
topology of pointwise convergence. Recall that the family of sets of the form
W (x1, x2, ..., xn, U1, U2, ..., Un) = {f : C(X,E) : f(xi) ∈ Ui for any i ≤ n}, where
x1, x2, ..., xn ∈ X, U1, U2, ..., Un are open sets of E and n ∈ N, is an open base of the
space Cp(X,E).

Let E be a topological R-module. The spaces X and Y are called lp(E)-
equivalent if the spaces Cp(X,E) and Cp(Y,E) are linearly homeomorphic and we

denote X
E
∼ Y .

Recall that an embedding of X into Y is a mapping e : X → Y such that e is a
homeomorphism of X onto e(X) ⊆ Y .

Proposition 1. Fix a topological R-module E. Then Cp(X,E) is a topological
R-module and E is embedded in a natural way in Cp(X,E) as a closed submodule
of Cp(X,E).

Proof. Cp(X,E) is a group under operation of pointwise addition and respectively
is unitary module over the ring R. We put aX(x) = a for any a ∈ E and x ∈ X, i. e.
aX is a constant function.

Let e : E → Cp(X,E), where e(a) = aX(x) for every a ∈ E. The mapping e
is injective, since, if a, b ∈ E, with a 6= b, then aX(x) = a 6= b = bX(x) for every
x ∈ X.

The sets W (x1, x2, ..., xn, U1, U2, ..., Un) = {f ∈ Cp(X,E) : f(xi) ∈ Ui}, where
n ∈ N, x1, x2, ..., xn ∈ X and U1, U2, ..., Un are open subsets of E, form an open base
of the space Cp(X,E).

If x ∈ X and U is open in E, then e(U) = {aX : a ∈ U} = e(E) ∩
W (x1, x2, ..., xn, U, U, ..., U) and e−1(W (x1, x2, ..., xn, U1, U2, ..., Un)) = {a ∈ E :
aX ∈ U1 ∩ U2 ∩ ... ∩ Un} = U1 ∩ U2 ∩ ... ∩ Un. Hence, e is an embedding of E
in Cp(X,E).

Fix g ∈ Cp(X,E) such that g /∈ e(E). There exist two distinct points x1, x2 ∈
X such that g(x1) 6= g(x2). Now we fix two open sets U1 and U2 from R such
that g(x1) ∈ U1, g(x2) ∈ U2 and U1 ∩ U2 = ∅. Then g ∈ W (x1, x2, U1, U2) and
W (x1, x2, U1, U2) ∩ e(R) = ∅. Hence the set e(E) is closed.

A space X is zero-dimensional if indX = 0 (small inductive dimension is zero),
i. e. X has a base of clopen (open and closed) subsets.

Proposition 2. If E is a zero-dimensional topological R-module, then Cp(X,E) is
a zero-dimensional topological R-module.

Proof. Since Cp(X,E) is a subspace of EX , the proof is complete.
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2 The evaluation mapping

Let X be a space, R be a topological ring and E be a non-trivial topological
R-module. Fix x ∈ X. Then the mapping ξx : Cp(X,E) → E defined by ξx(f) =
f(x) is called the evaluation mapping at x.

Proposition 3. The evaluation mapping ξx : Cp(X,E) → E is continuous and
linear for every point x ∈ X.

Proof. Fix a point x ∈ X. For every open set U of E we have ξ−1
x (U) = {f ∈

Cp(X,E) : f(x) ∈ U} = W (x,U). But W (x,U) is an element of the subbase of the
topology on Cp(X,E), i.e. ξ−1

x (U) is open in Cp(X,E) for every open U ⊆ E.
Obviously ξx(f +αg) = (f +αg)(x) = f(x) +αg(x) = ξx(f) +αξx(g). Hence ξx

is a linear continuous mapping.

We now define the canonical evaluation mapping eX : X → Cp(Cp(X,E), E),
where eX(x) = ξx for any x ∈ X.

Proposition 4. The canonical evaluation mapping eX : X → Cp(Cp(X,E), E) is
continuous. Moreover, the set eX(X) is closed in the space Cp(Cp(X,E), E).

Proof. Let U = W (f1, f2, ..., fk, U1, U2, ..., Uk) ∩ eX(X) be a standard open set in
Cp(Cp(X,E), E) ∩ eX(X). Without loss of generality, we can assume that U ⊆
eX(X), i.e. U = {ξx ∈ eX(X) : ξx(fi) ∈ Ui, x ∈ X, i = 1, k} = {ξx ∈ eX(X) : fi(x) ∈
Ui, x ∈ X, i = 1, k}. On the other hand e−1

X (U) = {x ∈ X : fi(x) ∈ Ui, i = 1, k} =
∩{f−1

i (Ui) : i = 1, k}. Since for every i = 1, k and fi ∈ C(X,E), the set e−1
X (U) is a

finite intersection of open sets, therefore it is open.
Fix ϕ ∈ Cp(Cp(X,E), E) \ eX(X). There exist f ∈ Cp(X,E) and b ∈ X such

that ϕ(f) 6= f(b) = ξb(f). Fix in E two open sets V and W such that ϕ(f) ∈ V ,
f(b) ∈ W and V ∩W = ∅. The set U = {ψCp(Cp(X,E), E) : ψ(f) ∈ V } is open in
Cp(Cp(X,E), E) and U ∩ eX(X) = ∅. The proof is complete.

Let X and Y be spaces, Φ a family of functions f : X → Y . We say that Φ
separates points of X (or simply is separating [1]) if for any x, y ∈ X, x 6= y, there
exists f ∈ Φ such that f(x) 6= f(y). We also say that Φ separates points from closed
sets (or is regular [1]) if for any closed subset F of X and any point x ∈ X \F there
exists f ∈ Φ such that f(x) /∈ clY f(F ).

Proposition 5. If Cp(X,E) is a separating and regular family, then the canonical
evaluation mapping eX : X → Cp(Cp(X,E), E) is a homeomorphism from X to the
subspace eX(X) of Cp(Cp(X,E), E).

Proof. Since canonical evaluation mapping is continuous, it is clear that it is sur-
jective and we have only to prove that eX is injective and the inverse function is
continuous.

First, we show that eX is injective. Let x, y ∈ X, x 6= y. By assumption,
Cp(X,E) is a separating collection, i. e., we can find a function f ∈ Cp(X,E) such
that f(x) 6= f(y), hence ξx 6= ξy.
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Now, we prove that e−1
X is continuous. Let F be a closed subset of X. By

assumption Cp(X,E) is a regular collection, i.e. for any x /∈ F we can find f ∈
Cp(X,E) such that f(x) /∈ clEf(F ). Therefore f(x) has a neighbourhood Uf(x) for
which Uf(x) ∩ f(F ) = ∅. Then W (f, Uf(x)) is a neighbourhood of ξx that is not

contained in eX(F ), i.e. eX(F ) is closed. Hence e−1
X is continuous.

A space X is called:
(i) R-completely regular if for any closed subset F of X and any point a ∈ X \F

there exists f ∈ C(X,R) such that f(a) /∈ clRf(F );

(ii) R-Tychonoff if for any closed subset F of X, any point a ∈ X \F there exists
g ∈ C(X,R) such that g(a) = 0 and F ⊆ g−1(1).

The space R is R-completely regular. The Cartesian product of R-completely
regular spaces is R-completely regular and the Cartesian product of R-Tychonoff
spaces is an R-Tychonoff space. A subspace of an R-Tychonoff (R-completely reg-
ular) space is an R-Tychonoff (R-completely regular) space.

Remark 1. Let X be an R-Tychonoff space. Then:
(i) X is a Tychonoff space.

(ii) If E is a topological R-module, then for each closed set F of X, any point
a ∈ X \ F and any point b ∈ E, there exists f ∈ C(X,E) such that f(a) = 0 and
f(F ) = b.

(iii) X is R-completely regular.

Remark 2. Let E be a topological R-module and X be an R-completely regular
space. Then:

(i) X is a Tychonoff space.
(ii) For any closed subset F ofX and any point a ∈ X\F there exists f ∈ C(X,E)

such that f(a) /∈ clEf(F ).

(iii) C(X,E) is a separating and regular family of continuous mappings.

Proposition 6. A space X is R-completely regular if and only if the family C(X,E)
is separating and regular for any non-trivial topological R-module E.

Proof. It is obvious.

Proposition 7. If indX = 0, then the space X is R-Tychonoff.

Proof. If C is a clopen subset, then χC is continuous, where χC(C) = 1 and
χC(X \ C) = 0. Fix a point x ∈ X and closed subset F of X such that x ∈ X \ F .
Since indX = 0 we can find a clopen subset C such that C ⊆ X \ F . Then X \ C
is also clopen and F ⊆ clXF ⊆ X \ C. The characteristic function g = χX\C is
continuous, g(x) = 0 and F ⊆ g−1(1). Hence X is R-Tychonoff.

Let R be a topological ring. A topological R-module E is called:

(i) simple if it does not contain a non-trivial submodule over R;
(ii) locally simple if E is not trivial and there exists an open subset U of E such

that 0 ∈ U and U does not contain non-trivial R-submodules of E;
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(iii) R-closed if there exists a continuous mapping ϕE : E −→ R onto R such
that ϕE(x+ y) = ϕE(x) +ϕE(y) and ϕE(tx) = tϕE(x) for any t ∈ R and x, y ∈ E.

Example 1. Let R be the field of real numbers and C be the field of complex
numbers. The rings R and C are simple rings.

Example 2. If R is the field of real numbers or of complex numbers, then any
locally convex linear space over R is an R-closed module.

Example 3. Let Q be the field of rational numbers. Then R and C are locally
simple, not simple and not Q-closed Q-modules.

Example 4. If R is a locally simple ring, then Rn is a locally simple R-closed
R-module for any natural number n ≥ 1.

Example 5. Let Z be the ring of integers. Relative to discrete topology Z is locally
simple non-simple ring. If p ≥ 2 and Zp = p·Z, then Zp is an ideal and {nZp : n ∈ N}
is a base at 0 of the ring topology. In that topology Z is not a locally simple ring.

Let R be a ring and E be an R-module. For any a ∈ E we put Ea = Ra =
{ta : t ∈ R}.

Lemma 1. Let R be a ring and E be an R-module. Then Ra is an R-module for
any a ∈ E.

Proof. Fix a ∈ E, a 6= 0. By definition, Ra = {xa : x ∈ R}. In the first we will
prove that Ra is an Abelian group.

Let x, y ∈ Ra. Then there exist x1, y1 ∈ R such that x = x1a and y = y1a.
Then x + y = x1a + y1a = (x1 + y1)a ∈ Ra. Also 0 + x1a = x1a + 0 = x1a and
x1a+ (−x1)a = (−x1)a+ x1a = 0. Hence Ra is a group under addition operation.

Now we will prove that Ra is an R-module. Let α, β ∈ R and x, y ∈ Ra.
By definition, x = x1a and y = y1a for some x1, y1 ∈ R. Then α(x1a + y1a) =
αx1a+ αy1a ∈ Ra, (α+ β)x1a = αx1a+ βx1a and α(βx) = α(βx1a) = (αβ)x1a =
(αβ)x.

Remark 3. It is obvious that, by Lemma 1, for any simple ring R and any a ∈ R,
a 6= 0, we have Ra = R, i. e. R is a field. Moreover, for any simple R-module E and
any a ∈ E, a 6= 0, we have Ra = E.

Proposition 8. Let E be a locally simple R-closed R-module, a ∈ E and ϕE(a) = 1.
Then Ea = {ta : t ∈ R} is an R-submodule of E with the following properties:

1. va = ϕE |Ea : Ea −→ R is a topological isomorphism of the R-module Ea onto
R-module R.

2. The mapping ψa : E −→ Ea, where ψa(x) = v−1
a (ϕE(x)) for each x ∈ E, is an

open continuous homomorphism of the R-module E onto the R-module Ea.

3. The space E is homeomorphic to the space ϕ−1
E (0) × Ea.

4. The set Ea is closed in E.
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Proof. The set ϕ−1
E (1) is non-empty. Fix a ∈ ϕ−1

E (1). If t ∈ R, then ϕE(ta) =
tϕE(a) = t · 1 = t. Thus ϕE(Ea) = R and va is a one-to-one continuous homomor-
phism of Ea onto R. Since (t, x) 7→ tx is a continuous mapping of R×E onto E, the
mapping va is a homeomorphism, i. e. v−1

a : R −→ Ea is continuous. Assertion 1 is
proved. Assertion 2 follows from the Assertion 1.

The mapping ψ : ϕ−1
E (0) × E −→ E, where ψ(x, y) = x+ y for any x ∈ ϕ−1

E (0)
and y ∈ Ea, is a homeomorphism.

Let X be a space, R be a topological ring and E be a topological R-module. We
will consider two subsets of Cp(Cp(X,E), E):

(i) Lp(X,E) = {α1x1 + α2x2 + ...+ αnxn : αi ∈ R,xi ∈ eX(X), n ∈ N}.

(ii) Mp(X,E) the subspace of all linear mappings from Cp(X,E) into E.

(iii) If F is a topological R-module, then Lp(F,E) is the space of all linear
continuous mappings ϕ : F → E as a subspace of the space Cp(F,E).

Proposition 9. Let R be a locally simple ring and X be an R-Tychonoff space.
Then Mp(X,R) = Lp(X,R).

Proof. We will show that every continuous linear mapping µ ∈ Mp(X,R) can be
written as µ = α1x1 +α2x2+ ...+αnxn for some concrete n ∈ N, αi ∈ R, xi ∈ eX(X)
and 1 ≤ i ≤ n.

Fix µ ∈Mp(X,R). Assume that µ 6= 0. Let f ∈ C(X,R), f = 0. Then µ(f) = 0,
since µ is linear. Fix a neighbourhood U of 0 ∈ R which does not contain R-
submodules. Since µ is continuous, we can find n ∈ N, distinct points x1, x2, ..., xn ∈
X, and V = V1 = V2 = ... = Vn ⊆ U such that µ(W (x1, x2, ..., xn, V1, V2, ..., Vn)) ⊆
U .

Let g ∈ Cp(X,R) and g(x1) = g(x2) = ... = g(xn) = 0. Clearly, αg ∈
W (x1, x2, ..., xn, V1, V2, ..., Vn) for any α ∈ R. Thus µ(αg) ∈ U and, since µ is a
linear functional, we have αµ(g) ∈ U for every α ∈ R. From Lemma 1 it follows
that Rµ(g) is an R-submodule of R and Rµ(g) ⊆ U , a contradiction. Therefore
Rµ(g) = {0} and µ(g) = 0.

Fix gi ∈ C(X,R) such that gi(xi) = 1 and gi(xj) = 0 for j 6= i.

We put αi = µ(gi). Consider µ′ = α1x1 + α2x2 + ... + αnxn. Then µ′(g) =
α1g(x1) + α2g(x2) + ...+ αng(xn) for any g ∈ C(X,R).

Let g ∈ Cp(X,R) and g′ = g − g(x1)g1 − g(x2)g2 − ... − g(xn)gn. Obviously,
g′ ∈ Cp(X,R) and g′(xi) = 0 for each i ≤ n. Hence µ(g′) = 0. Since µ is a linear
mapping, 0 = µ(g′) = µ(g)−µ(Σ{g(xi)gi : i ≤ n}) and µ(g) = µ(Σ{g(xi)gi : i ≤ n})
= Σ{g(xi)µ(gi) : i ≤ n} = Σ{αig(xi) : i ≤ n}. Hence µ = µ′

Remark 4. Let E be a topological R-module and Hom(E) be the set of all con-
tinuous homomorphisms ϕ : E −→ E. If µ ∈ Mp(X,E) and ϕ ∈ Hom(E), then
ϕ ◦ µ ∈Mp(X,E). As follows from the next example, there exist a topological ring
R, a topological R-module E, a space X, µ ∈ Lp(X,E) and ϕ ∈ Hom(E) such that
ϕ ◦ µ ∈Mp(X,E) \ Lp(X,E).
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Example 6. Let R be a topological ring with the identity 1, A be a non-empty
set and E = RA. Then E is an R-closed R-module and a topological ring. For any
subset B of A consider the point 1B = (tα(B) : α ∈ A) ∈ E, where tα(B) = 1 for
α ∈ B, and tα(B) = 0 for α ∈ A \ B. The point 1B generate the homomorphism
ϕB ∈ Hom(E), where ϕB(x) = x · 1B for any x ∈ E. If EB = {x · 1B : x ∈ E} =
ϕB(E), then EB is a a subring of E and R-submodule of E. The homomorphism
ϕB is a retraction of E onto EB .

Let X be a non-empty space. We consider two cases.

Case 1. |X| + |R| + ℵ0 ≤ |A|.
Fix a ∈ X. We put ψB(g) = ϕB(g(a)) for any g ∈ Cp(X,E). We identify a =

eX(a). Hence ψB = ϕB ◦ a. We have ψB(C(X,E)) = EB. Therefore |Mp(X,E)| ≥
|{ψB : B ∈ A}| = 2|A| > |A|, where |Y | is the cardinality of the set Y . Obviously,
|Lp(X,E)| ≤ |X|+ |R|+ℵ0. Hence, since |X|+ |R|+ℵ0 ≤ |A|, we have |Lp(X,E)| <
|Mp(X,E)| and Mp(X,E) \ Lp(X,E) 6= ∅.

Case 2. R is a simple ring and 2 ≤ |A|.
In this case R is a field and E is a locally simple R-module provided the set A

is finite. Fix a non-empty proper subset subset B of A and ψ ∈ Lp(Cp(X,E), EB),
where ψ 6= 0. We affirm that ψ ∈ Mp(X,E) \ Lp(X,E). Suppose that we can find
n ∈ N, distinct points x1, x2, ..., xn ∈ X and α1, α2, .., αn ∈ R \ {0} such that ψ(g)
= α1g(x1) + α2g(x2) + ... + αng(xn) for any g ∈ C(X,R). Let C = A \ B. Fix a
function h ∈ C(X,E) for which h(x1) = 1C and h(xi) = 0 for each i ≥ n. Then ψ(h)
= α1h(x1) ∈ EC \EB , a contradiction with the condition ψ(B) ⊆ EB . In particular,
we have ϕB ∈Mp(X,E) \ Lp(X,E).

Proposition 10. Let R be a ring, E be a topological R-module and X be a space.
Then for any g ∈ C(X,E) there exists a unique linear mapping g ∈ Lp((Lp(X,E), E)
such that g = g ◦ eX , where eX : X → Lp(X,E) is the evaluation mapping.

Proof. Let Ef = E for any f ∈ Cp(X,E). By definition, eX(X) ⊆ Lp(X,E) ⊆
EC(X,E) = Π{Ef : f ∈ C(X,E)}. We consider the projection πf : EC(X,E) −→
Ef = E. Let f = πf |Lp(X,E) : Lp(X,E) −→ E. Then f and πf are continuous
linear mappings. If x ∈ X, then f(eX(x))) = f(x). Hence f = f |X and for any
f ∈ C(X,E) there exists a linear mapping f ∈ Lp(Lp(X,E), E) such that f = f ◦eX .
Since the subspace eX(X) generates the linear space Lp(X,E), the linear mapping
f is unique.

Theorem 1. Let R be a ring, E be a topological R-module and X be a space.
Consider the space eX(X), where eX : X → Lp(X,E) is the evaluation mapping.
Then the linear spaces Cp(X,E), Cp(eX(X), E) and Lp(Lp(X,E), E) are linearly
homeomorphic.

Proof. Let Ef = E for any f ∈ Cp(X,E). By definition, eX(X) ⊆ Lp(X,E) ⊆
ECp(X,E) = Π{Ef : f ∈ C(X,E)}. We consider the projection πf : EC(X,E) −→
Ef = E. Let f = πf |Lp(X,E) : Lp(X,E) −→ E. Then f and πf are continuous
linear mappings.
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If g : eX(X) → E is a continuous mapping, then g ◦ eX = f for a unique
f ∈ C(X,E). Therefore, g = πf |eX(X) and the correspondence f → πf |eX(X) is a
linear homeomorphism of Cp(X,E) onto Cp(eX(X), E).

Hence, without loss of generality, we can assume that X = eX(X) ⊆ Lp(X,E).

By virtue of Proposition 10, the correspondence ψ : Cp(X,E) → Lp(Lp(X,E), E),
where ψ(f) = f , is a one-to-one linear mapping of C(X,E) onto Lp(Lp(X,E), E).

For each y ∈ Lp(X,E) there exist the minimal n = n(y) ∈ N, the unique
points x1(y), ..., xn(y) ∈ X and the unique points α1(y), ..., αn(y) ∈ R such that
y = α1(y)x1(y) + ... + αn(y)xn(y). Hence, the correspondence ψ is continuous and
linear.

Since ψ(f)|X = f , the mapping ψ−1 is continuous.

Remark 5. We say that eX(X) is the E-replica of the spaceX. IfX is R-completely
regular, then X = eX(X).

Corollary 1. Let X, Y be spaces and R be a locally simple R-module. The spaces
Cp(X,R) and Cp(Y,R) are linearly homeomorphic if and only if the spaces Lp(X,R)
and Lp(Y,R) are linearly homeomorphic.

For n ≥ 1, an R-module E and a space X we put Lp,n(X,E) = {α1x1 + α2x2 +
... + αnxn : xi ∈ eX(X), αi ∈ R, i ≤ n}. Obviously, Lp,n(X,E) ⊆ Lp,n+1(X,E) for
each n and Lp(X,E) =

⋃
{Lp,n(X,E) : n ∈ N}.

Proposition 11. The mapping pn : Rn × Xn −→ Lp,n(X,E), where
pn(α1, α2, ..., αn, x1, x2, ..., xn) = α1eX(x1)+α2eX(x2)+ ...+αneX(xn), is a continu-
ous mapping of Rn ×Xn onto Lp,n(X,E).

Proof. Follows from Proposition 1.

Let E be an R-module. We say that the pair (F (X,E), iX ) is an E-free R-module
of a space X if it has the following properties:

1. F (X,E) is a submodule of the topological R-module Eτ for some cardinal
number τ ;

2. iX : X → F (X,E) is a continuous mapping and the set iX(X) algebraically
generates the R-module F (X,E);

3. For any continuous mapping f : X → E there exists a continuous homomor-
phism f : F (X,E) −→ E such that f = f ◦ iX .

From the property 2 it follows that the homomorphism f is unique and is called
the homomorphism generated by the mapping f .

Proposition 12. For any space X there exists a unique E-free R-module. The pair
(Lp(X,E), eX ) is the E-free R-module of the space X.

Proof. The uniqueness of the E-free R-module of the space X is well known (see
[6, 7]). From the method of construction of the object (Lp(X,E), eX ) and from
the definition of the E-free R-module it follows that (Lp(X,E), eX ) is the E-free
R-module of the space X.
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Proposition 13. Let X be an R-Tychonoff space and E be an R-module. Then
Lp,n(X,E) is a closed subset of Lp(X,E) for any n ∈ N.

Proof. We follow very closely the proof of Proposition 0.5.16 in [1].
Since eX is an embedding of X into Lp(X,E), we can assume that X = eX(X) ⊆

Lp(X,E). In this case a point x ∈ X as an element of EC(X,E) has the form
x = (f(x) : f ∈ C(X,E)).

Fix y ∈ Lp(X,E)\Lp,n(X,E). Then y = α1y1+α2y2 + ...+αmym, where m > n,
yi ∈ X, αi ∈ R and αiyi 6= 0 for any i ≤ m, yi 6= yj provided i 6= j. For any i ≤ m
there exists hi ∈ C(X,E) such that αihi(yi) 6= 0. We put bi = hi(yi).

Fix a family of pairwise disjoint open sets {Vi : i ≤ m} in X and the continuous
functions {fi ∈ C(X,R)i ≤ m} such that yi ∈ Vi, fi(yi) = 1 and fi(X \ Vi) = 0 for
any i ≤ m. Let gi(x) = fi(x)bi. By virtue of Proposition 10, each gi extends to a
continuous and linear mapping gi : Lp(X,E) −→ E. The subset U =

⋂
{gi

−1(E \
{0})} of Lp(X,E) is open.

We have gi(αiyi) = αig(yi) = αibi 6= 0. If j 6= i, then gi(αjyj) = αjg(yj) =
αi0 = 0. Hence gi(y) = αibi 6= 0 for any i ≤ m. Therefore y ∈ U .

We will show that U ∩ Lp,n(X,E) = ∅. Fix z ∈ U , i.e. for some k ∈ N,
z1, z2, ..., zk ∈ X and β1, β2, ..., βk ∈ R we have z = β1z1 +β2z2 + ...+βkzk, βizi 6= 0
for any i ≤ k and zi 6= zj provided i 6= j. Then gi(z) = β1gi(z1) + β2gi(xz2) + ... +
βkgi(xzk) 6= 0 for each i ≤ k. Hence Vi ∩ {z1, z2, ..., zk} = V ′

i 6= ∅ for each i ≤ k.
As the sets {Vi : i ≤ m} are pairwise disjoint, it follows that the sets {V ′

i : i ≤ k}
are non-empty and pairwise disjoint too. Hence k ≥ m > n, i.e. U ∩ Lp,n = ∅. The
proof is complete.

Let Lc
p,n(X,E) = Lp,n(X,E) \ Lp,n−1(X,E) and Hp,n(X,E) = p−1

n (Lc
p,n(X,E))

for any n ∈ N.

Proposition 14. Let X be an R-Tychonoff space, R be a simple ring and E be a
topological R-module. The following assertions are true:

1. The mapping qn = pn|Hp,n(X,E) : Hp,n(X,E) −→ Lc
p,n(X,E) is one-to-one.

2. If R is a topological field and the module E is R-closed, then the mapping qn
= pn|Hp,n(X,E) : Hp,n(X,E) −→ Lc

p,n(X,E) is a homeomorphism.

Proof. By virtue of Propositions 11 and 1, the mapping qn is continuous. Since eX
is an embedding of X into Lp(X,E), we can assume that X = eX(X) ⊆ Lp(X,E).

Since R is a simple ring, R is a field and for any λ ∈ R \ {0} there exists
the inverse element λ−1. The ring R is a topological field provided the mapping
−1 : R \ {0} → R is continuous.

We have αx 6= 0 for all α ∈ R \ {0} and x ∈ E \ {0}.

Claim 1. Let n ∈ N, x1, x2, ..., xn ∈ X, α1, α2, ..., αn ∈ R and xi 6= xj provided
i 6= j. If α1x1 + α2x2 + ...+ αnxn = 0, then αi = 0 for each i ≤ n.

Assume that αi 6= 0 for each i ≤ n. A point x ∈ X as an element of EC(X,E) has
the form x = (f(x) : f ∈ C(X,E)). Hence, for any i ≤ m there exists hi ∈ C(X,E)
such that αihi(xi) 6= 0. We put bi = hi(xi).



LP (R)-EQUIVALENCE OF TOPOLOGICAL SPACES . . . 29

Fix a family of pairwise disjoint open sets {Vi : i ≤ m} in X and the continuous
functions {fi ∈ C(X,R)i ≤ m} such that xi ∈ Vi, fi(xi) = 1 and fi(X \ Vi) = 0 for
any i ≤ m. Let gi(x) = fi(x)bi. Then 0 = 0(gi) = (α1x1 + α2x2 + ...+ αnxn)(gi) =
α1x1(gi) + α2x2(gi) + ...+ αnxn(gi) = αibi 6= 0, a contradiction.
Claim 2. Let n,m ∈ N, x1, x2, ..., xn, y1, y2, ..., ym ∈ X, α1, α2, ..., αn, β1, β2, ..., βm ∈
R, xi 6= xj provided i 6= j, and yl 6= yk provided l 6= k. If α1x1 +α2x2 + ...+αnxn =
β1y1 + β2y2 + ...+ βmym, then m = n, {x1, x2, ..., xn} = {y1, y2, ..., ym} and αi = βj

provided xi = yj.
Obviously, Claim 2 follows from Claim 1. From Claim 2 it follows that the

mapping qn is one-to-one.

Assume now that R is a topological field and E is an R-closed topological R-
module. Fix the continuous homomorphism ϕE : E −→ R of the topological R-
module E onto the topological R-module R. Fix a ∈ ϕ−1

E (1). If Ea = Ra, then the
mapping ϕE |Ea is a homeomorphism of Ea onto R. Hence the mapping ϕE is open
and continuous as quotient homomorphism of the topological R-module E onto the
topological R-module R.

We can fix the non-empty open subsets V1, V2, ..., Vn of R and the non-empty
open subsets W1,W2, ...,Wn of X such that:

– U = V1 × V2 × ...× Vn ×W1 ×W2 × ...×Wn ⊆ H(p,n)(X,E);
– Wi ∩Wj = ∅ provided i 6= j;

– 0 6∈ Vi for each i ≤ n.
We affirm that the set qn(U) is open in Lc

p,n(X,E).
Fix a point y ∈ qn(U). By definition, y = α1y1 +α2y2 + ...+αnyn and q−1

n (y)y =
(α1, α2, ..., αn, y1, y2, ..., yn), where αi ∈ Vi ⊆ R \ {0}, yi ∈ Wi ⊆ X and yj 6= yi

for each i ≤ n and j 6= i. Now we fix fi ∈ C(X,E), i ≤ n, such that fi(yi) =
α−1

i a and fi(X \ Vi) = 0. Then y(fi) = α1y1(fi) + α2y2(fi) + ... + αnyn(fi) =
α1fi(y1) + α2fi(y2) + ...+ αnfi(yn) = αifi(yi) = a.

Since αi ∈ Vi, there exist two open subsets D(1, i) and D(2, i) such that
1 ∈ D(1, i), α−1

i ∈ D(2, i), 0 6∈ D(1, i) ∪D(2, i) and D(1, i)D(2, i)−1 ⊆ Vi. By con-
struction, pE(fi(yi)) ∈ D(2, i). Hence, we can fix gi ∈ C(X,E) for which gi(yi) = a
and gi(X \ Wi ∩ f−1

i (p−1
E (D(2, i))) = 0. For each i ≤ n there exists the unique

continuous linear mappings fi, gi ∈ Lp((Lp(X,E), E) such that fi = fi|X and gi =
gi|X.

We put V = ∩{fi
1
(p−1

E (D(1, i))) ∩ gi
−1(E \ {0}) : i ≤ n}. By construction,

fi(y) = a and gi(y) 6= 0. Hence, y ∈ V . As in the proof of Proposition 12 we
establish that V ∩ Lp,n−1(X,E) = ∅. Hence, V ∩ Lp,n(X,E) ⊆ Lc

p,n(X,E).
Fix some z ∈ V ∩Lp,n(X,E). Then z = β1z1+β2z2+...+βnzn, where αi ∈ R\{0}

and zj 6= zi for each i ≤ n and j 6= i. Since fi(z) 6= 0 for all i ≤ n, we can assume
that fi(zi) 6= 0 and zi ∈ Vi.

By construction, gi(z) = βigi(zi) and gi(z) 6= 0. Since pE(fi(zi)) ∈ D(2, i),
pE(fi(z)) ∈ D(1, i) and f i(z) = βif(zi), we have pE(fi(zi)) ∈ D(2, i) and
βipE(fi(zi)) ∈ D(1, i). Therefore, βipE(fi(zi))·pE(fi(zi))

−1 ∈ D(1, i)·D(2, i)−1 ⊆ Vi

and βi ∈ Vi. Hence, z ∈ qn(U) and V ⊆ qn(U), i.e. qn(U) is an open subset of
Lc

p,n(X,E) and the mapping p−1
n is continuous.
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Example 7. Let E = R be the field of reals with the topology generated by the
Euclidian distance. Denote by R the topological space R × R with the following
operations:

– the additive operation (α, β) + (δ, µ) = (α + δ, β + µ);
– the inverse operation −(α, β) = (−α,−β);
– the multiplicative operation (α, β) · (δ, µ) = (α · δ, αµ + βδ).
Then R is a topological commutative ring with the unity (1, 0). The ring R is

a locally simple R-module. The multiplicative operation · : R× E −→ E is defined
as follows (α, β) · t = αt. In this case E is a simple R-module and a simple R-
module. Obviously, we have the same subspaces Lp,n(X,E) when E is considered
an R-module or an R-module.

Since R is a topological field and E is an R-closed topological R-module, the
mapping qn = pn|Hp,n(X,E) : Hp,n(X,E) −→ Lc

p,n(X,E) is a homeomorphism if E is
considered as an R-module. Hence indLc

p,n(X,E) = n provided indX = 0.
Now we consider E as an R-module. In this case indHp,n(X,E) ≥ indRn = 2n.

Hence the mapping qn is not one-to-one if E is considered as an R-module. Moreover,
the fibers q−1

n (y) have the dimension equal to n and are homeomorphic to the space
Rn. Hence the assumption that R is a simple ring in the conditions of Proposition
14 is essential.

Remark 6. For any topological ring ring R and a space X the mapping qn =
pn|Hp,n(X,R) : Hp,n(X,R) −→ Lc

p,n(X,R) is one-to-one.

Lemma 2. Let X be an R-Tychonoff space, Z be a closed subspace of X, E be
a topological R-module and g : X −→ E be a continuous mapping. For any finite
subset F of X \ Z and any function f : F −→ E there exists a continuous function
ϕ : X −→ E such that f = ϕ|F and ϕ|Z = g|Z .

Proof. Fix a family {Ux : x ∈ F} of open subsets of X such that x ∈ Ux ⊆ X \Z for
each x ∈ F and Ux ∩ Uy = ∅ for each distinct points x, y ∈ F . For each x ∈ F fix a
continuous function fx : X −→ R such that fx(x) = 1 and fx(X \ Ux) = 0. We put
ϕx(y) = fx(y) · f(x) for each x ∈ F and y ∈ X. Let ϕF (y) =

∑
{ϕx(y) : x ∈ F}.

By construction, the function ϕF is continuous, ϕF |F = f and ϕF (Z) = 0. Let
gx(y) = 1 − fx(y) for any x ∈ F and y ∈ X. We put gF (y) =

∏
{gx(y) : x ∈ F}

for each y ∈ X. The function gF is continuous, gF (F ) = 0 and gF (Z) = 1. Let
ϕZ(y) = gF (y) ·g(y) for each y ∈ Y . By construction, the function ϕZ is continuous,
ϕZ(F ) = 0 and ϕZ |Z = g|Z . Obviously, ϕ = ϕF + ϕZ is the desired function.

For any subspace Y of a space X we put Cp(Y |X,E) = {f |Y : f ∈ C(X,E)}.
A subspace Y of X is E-full if C(Y |X,E) = C(Y,E).
A space X is called compactly E-full if C(Y |X,E) = C(Y,E) for any compact

subspace Y of X.

Lemma 3. Let X be a zero-dimensional space and E be a metrizable space. Then
X is a compactly E-full space. Moreover, for any compact subset Y of X and any
f ∈ C(Y,E) there exists g ∈ C(X,E) such that g(X) ⊆ f(Y ) and f = g|Y , i.e. X
is compactly E-full.
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Proof. Fix a metric d on E. Let Y be a non-empty compact subspace of the space
X. Fix f ∈ C(Y,E). For each point y ∈ Y and each n ∈ N we fix a clopen subset
Uny of X such that y ∈ Uny and d(f(y), f(z)) < 2−n−1 for each z ∈ Uny ∩ Y .

There exists a sequence {Yn : n ∈ N} of finite subsets of Y and a sequence
{γn = {Vny : y ∈ Yn} : n ∈ N} of families of clopen subsets of the space X such
that:

– Yn ⊆ Yn+1 for each n ∈ N;
– y ∈ Vn+1y ⊆ Vny ⊆ Uny for any n ∈ N and any y ∈ Yn;
– Y ⊆ ∪{Vny : y ∈ Yn} = ∪γn for each n ∈ N;
– for each n ∈ N and each y ∈ Yn+1 there exists a unique z(y) ∈ Yn such that

Vn+1y ⊆ Vnz(y);
– if y1, y2 ∈ Yn, y1 6= y2 and n ∈ N, then Vny1 ∩ Vny2 = ∅.
We put Vn = ∪{Vny : y ∈ Yn}. Fix a ∈ f(Y ). We will construct a sequence

{gn : X −→ E : n ∈ N} of continuous mappings with the next properties:
– d(gn(y), f(y)) < 2−n for each n ∈ N and any y ∈ Y ;
– d(gn(x), gn+k(x)) < 2−n for each n, k ∈ N and any x ∈ X;
– gn(X) ⊆ f(Y ) for each n ∈ N.
We put f1(x) = a for each x ∈ X \ V1 and f1(V1y) = f(y) for each y ∈ Y1.

Assume that n ≥ 1 and the function gn is constructed. We put gn+1|(X\Vn+1) =
gn|(X\Vn+1) and gn+1(Vn+1y) = f(y) for each y ∈ Yn+1. The sequence {gn : n ∈ N}
is constructed. Since {gn : n ∈ N} is a fundamental sequence and (f(Y ), d) is a
compact metric space, there exists the continuous limit g = lim gn. By construction,
we have f = g|Y . The proof is complete.

3 About theorem of Nagata

Let R be a simple topological ring. We consider only R-Tychonoff spaces. Fix
n ∈ N. A functional µ : C(X,R) −→ Rn is called multiplicative if it is linear and
µ(fg) = µ(f)µ(g) for any f, g ∈ C(X,Rn).

Denote by I(p,n)(X,R) = {µ ∈ Lp(X,R,R
n) : µ 6= 0, µ is multiplicative}.

Theorem 2. The spaces Xn and I(p,n)(X,R) are homeomorphic.

Proof. Let 1 = (1, 1, ..., 1) be the unity of the ring Rn. For each i ≤ n we put
Ri = {(x1, x2, ..., xn) ∈ Rn : xj = 0 for any j 6= i}. Then Ri is a subring of Rn

with the unity 1i = (0, 0, ..., 1, 0, ..., 0) ∈ Ri. The ring R and Ri are topologically
isomorphic. The mapping pi : Rn −→ Ri, where pi(x1, x2, ..., xn) = 1i ·(x1, x2, ..., xn)
for each (x1, x2, ..., xn) ∈ Rn is open, continuous, linear and multiplicative. If
µ ∈ I(p,n)(X,R), then we put πi(µ) = µi ◦ pi. Then πi(µ) ∈ I(p,1)(X,R) and
µ(f) = (π1(µ)(f), π2(µ)(f), ..., πn(µ)(f)) for all f ∈ C(X,R). Hence I(p,n)(X,R) =
I(p,1)(X,R)n.

Now is sufficient to prove that Ip(X,R) = I(p,1)(X,R) and X are homeomorphic.
Obviously, ξx ∈ Ip(X,R) for any x ∈ X. Assume that µ ∈ Ip(X,R). Then

there exists n ≥ 1, x1, x2, ..., xn ∈ X and α1, α2, ..., αn ∈ R \ {0} such that µ =
α1ξx1 + α2ξx2 + ... + αnξxn . Since R is a simple ring, we have αiβi = 1 for some
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βi ∈ R. For each i ≤ n fix fi ∈ C(X,R) such that fi(xi) = βi and fi(xj) = 0 for
each j 6= i. By construction, µ(fi) = αif(xi) = αiβi = 1 for each i ≤ n. Assume
that n ≥ 2. Then fi · f2 = 0 and 0 = µ(0) = µ(f1 · f2) = µ(f1)µ(f2) = 1 · 1 = 1, a
contradiction. Hence n = 1 and µ = α1ξx1 .

Assume that α1 6= 1. Then β1 6= 1 and β1 = 1 · β1 = α1β1β1 = α1(f1 · f1)(x1) =
µ(f1 · f1) = µ(f1) · µ(f1) = 1 · 1 = 1, a contradiction. Hence β1 = α1 = 1 and µ =
ξx1. The proof is complete.

Corollary 2. If the rings Cp(X,R) and Cp(Y,R) are topologically isomorphic, then
the spaces X and Y are homeomorphic.

The Corollary 2 for the ring R of reals was proved by Nagata (see [1], Theo-
rem 0.6.1).

4 Algebraical classes of spaces

Fix a topological ring R. Assume that R is an R-Tychonoff space. A class P of
topological spaces is called an algebraical R-class of spaces if:

(i) any space X ∈ P is R-Tychonoff and Y ∈ P for any closed subspace Y of X;

(ii) if f : X −→ Y is a continuous mapping of X onto Y , X ∈ P and Y is an
R-Tychonoff space, then Y ∈ P;

(iii) if {Xn ∈ P : n ∈ N} is a sequence of closed subspaces of an R-Tychonoff
space X and X = ∪{Xn : n ∈ N}, then X ∈ P;

(iv) if X,Y ∈ P, then X × Y ∈ P;

(v) R ∈ P.

Lemma 4. Let P be an algebraical R-class of spaces, {Xn : n ∈ N} be a sequence
of subspaces of an R-Tychonoff space X, X = ∪{Xn : n ∈ N} and Xn ∈ P for any
n ∈ N. Then X ∈ P.

Proof. Let Yn = Xn × {n} and Y is the discrete sum of the spaces {Yn : n ∈ N}.
Obviously Y is an R-Tychonoff space, Yn ∈ P and Yn is closed in Y for any n ∈ N.
Hence Y ∈ P and X is a continuous image of Y .

Theorem 3. Let P be an algebraical R-class of spaces, R be a topological ring
and E be a topological R-module. Assume that E is an R-Tychonoff space. For an
R-Tychonoff space X the following assertions are equivalent:

(i) X ∈ P.

(ii) Lp(X,E) ∈ P.

Proof. Assume that X ∈ P. We consider the mapping ϕn : Xn × Rn −→ Lp(X,E)
where ϕn((x1, x2, ..., xn), (α1, α2, ..., αn)) = α1ξx1 +α2ξx2 + ...+αnξxn . The mapping
ϕn is continuous and we put Lp,n(X,E) = ϕn(Xn ×Rn).

Since Lp(X,E) ⊆ EC(X,E), the space Lp(X,E) is R-Tychonoff. Hence Xn ×Rn,
Lp,n(X,E) ∈ P for each n. From Proposition 13 we have Lp(X,E) = ∪{Lp,n(X,E) :
n ∈ N}. Thus Lp(X,E) ∈ P.
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Assume now that Lp(X,E) ∈ P. Since X = Lp,1(X,E), by virtue of Proposition
13, X is a closed subspace of the space Lp(X,E). Then X ∈ P.

Corollary 3. Let P be an algebraical R-class of spaces, R be a topological ring and
E be a topological R-module. Assume that E is an R-Tychonoff space. If Cp(X,E)
and Cp(Y,E) are topologically homeomorphic and X ∈ P, then Y ∈ P.

Remark 7. For the ring R of reals and E = R the above assertion is proved in [1],
Proposition 0.5.13.

5 The support mapping

Fix a topological ring R and a non-trivial locally simple topological
R-module E.

Consider a space X and a functional µ ∈ Mp(X,E). We put S(µ) = {B ⊆
X : if B ⊆ f−1(0), then µ(f) = 0}). Obviously, X ∈ S(µ). Thus the set S(µ) is
non-empty.

The set suppX(µ) is the family of all points x ∈ X such that for each neighbour-
hood U of x in X there exists f ∈ Cp(X,E) such that f(X \ U) = 0 and µ(f) 6= 0
(see [2, 8] for E = R = R, and [3,10] for R = R).

If f ∈ Cp(X,E) and U is an open neighbourhood of 0 in E, then we put
A(f, L,U) = {g ∈ Cp(X,E) : f(x) − g(x) ∈ U for any x ∈ L}. The family
{A(f, L,U) : f ∈ Cp(X,E), L is a finite subset of X,U is an open neighbourhood of
0 in E} is an open base of the space Cp(X,E).

Theorem 4. Let X be an R-Tychonoff space, E be a non-trivial locally simple
topological E-module, µ ∈Mp(X,E) and µ 6= 0. Then:

1. There exists a finite set K ∈ S(µ) such that suppX(µ) ⊆ K.

2. suppX(µ) ∈ S(µ) and suppX(µ) is a finite subset of X.

Proof. Fix an open subset V0 of E such that 0 ∈ V0 and V0 does not contain non-
trivial R-submodules of E.

There exists a finite subset K of X such that µ(f) ∈ V0 for each f ∈ A(0,K, V0).
Let f ∈ Cp(X,E) and f(K) = 0. Then αf ∈ A(0,K, V0) for each α ∈ R. Hence
µ(αf) ∈ W0 for each α ∈ R. Thus E · µ(f) ⊆ V0 and E · µ(f) is the trivial R-
submodule. Thus µ(f) = 0 and K ∈ S(µ). In this case suppX(µ) ⊆ K. Hence
suppX(µ) is a finite set and K is a finite set from S(µ).

Let L ∈ S(µ) be a finite set and x0 ∈ L \ supp(µ). Then L1 = L \ {x0} ∈ S(µ).
Really, since x0 /∈ suppX(µ), there exists an open subset H of X such that x0 ∈ H
and µ(f) = 0 provided f(X \H) = 0. Fix h ∈ C(X,R) such that h(x0) = 1 and
h(X \H) = 0. Let f ∈ Cp(X,E) and f(L1) = 0. We put f1(x) = h(x)f(x) for any
x ∈ X and f2 = f − f1. Since f1(X \H) = 0, we have µ(f1) = 0. By construction,
f2(L) = 0 and µ(f2) = 0. Hence f = f1+f2 and µ(f) = µ(f1+f2) = µ(f1)+µ(f2) =
0. Hence L1 ∈ S(µ). SinceK\suppX(µ) is a finite set, we have suppX(µ) ∈ S(µ).
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Proposition 15. If x ∈ X and ξx(f) = f(x) for each f ∈ Cp(X,E), then ξx ∈
Lp(X,E).

Proof. Obviously, ξx = αx(f), where α ∈ R and α = 1. Thus ξx ∈ Lp(X,E).

Remark 8. Let R be a locally simple ring, X be an R-Tychonoff space, µ ∈
Mp(X,R) and supp(µ) = {x1, x2, ..., xn}. Then, by virtue of Proposition 9, there
exists α1, α2, ..., αn ∈ R \ {0} such that µ = Σ{α1ξxi

: i ≤ n}.
As was mentioned in Remark 4 and Example 6, as a rule Mp(X,E) 6= Lp(X,E).

The following result specifies the form of linear functionals for locally simple
R-modules.

Theorem 5. Let X be an R-Tychonoff space, E be a non-trivial topological
E-module, µ ∈ Mp(X,E), µ 6= 0, suppX(µ) ∈ S(µ) and suppX(µ) is a finite subset
of X. Then µ = ϕ ◦ η for some ϕ ∈ Hom(E) and η ∈ Lp(X,E).

Proof. Assume that n ≥ 1 and suppX(µ) = {b1, b2, ..., bn}, where bi 6= bj for i 6= j.
We put ηi = bi ∈ Lp(X,E) and η = η1 + η2 + ...+ ηn. Obviously, η ∈ Lp(X,E) and
suppX(η) = {b1, b2, ..., bn} = suppX(µ).

We can fix the non-empty open subsets V1, V2, ..., Vn of X and the functions
f1, f2, ..., fn ∈ C(X,R) such that:

– Vi ∩ Vj = ∅ provided i 6= j;
– bi ∈ Vi, fi(bi) = 1 and fi(X \ Vi) = 0 for each i ≤ n.
Fix i ≤ n. For each y ∈ E we put ϕi(y) = µ(fi · y), where (fi · y)(x) = fi(x)y

for each x ∈ X. If g ∈ C(X,E), then µi(g) = µ(fi · g).

Claim 1. ϕi ∈ Hom(E) for each i ≤ n.

The mapping ψi : E −→ Cp(X,E), where ψi(y) = fi · y for each y ∈ E, is
continuous and linear. The equality ϕi = µ ◦ψi completes the proof of the Claim 1.

Claim 2. µi ∈Mp(X,E) and suppX(µi) = {bi} for each i ≤ n.

It is clear that µi ∈ Mp(X,E). If g ∈ C(X,E), then g(bi) = (fi · g)(bi) and
(fi ·g)(bj) = 0 provided i 6= j. Hence µi(g) = µi(fi ·g) = µ(fi ·g). Claim 2 is proved.

Claim 3. µ = µ1 + µ2 + ...+ µn.

Let g ∈ C(X,E) and h = f1g+ f2g+ ...+ fng. Then g|suppX(µ) = h|suppX(µ).
Hence µ(g) = µ(h) = µ(f1g + f2g + ... + fng) = µ(f1g) + µ(f2g) + ... + µ(fng) =
µ1(g) + µ2(g) + ...+ µn(g). Claim 3 is proved.

Claim 4. µ = ϕ ◦ η.

By construction, suppX(µ) = suppX(ϕ ◦ η). If g ∈ C(X,E) and h = f1g+ f2g+
... + fng, then (ϕ ◦ η)(g) = (ϕ ◦ η)(h). Since (ϕ ◦ η)(fig) = ((ϕ1 + ϕ2 + ... + ϕn) ◦
(η1 + η2 + ...+ ηn))(fig)) = Σ{(ϕi ◦ ηj)(fig) : i, j ≤ n} = (ϕi ◦ ηi)(fig) = ϕi(ηj(fig))
= ϕi(g(bi)) = µ(fig), we have (ϕ ◦ η)(g) = (ϕ ◦ η)(h) = (ϕ ◦ η)(f1g+ f2g+ ...+ fng)
= Σ{(ϕ ◦ η)(fig) : i ≤ n} = Σ{µ(fig) : i ≤ n} = (µ(f1g + f2g + ... + fng) = µ(g).
Claim is proved. The proof is complete.
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6 Topological properties of the mapping suppX

Fix a topological ring R, a non-trivial locally simple R-module E and an
R-Tychonoff space X.

Recall that a set-valued mapping f : X → 2Y is lower semicontinuous (l. s. c) if for
every open subset U of Y the inverse image of U , f−1(U) = {x ∈ X : f(x)∩U 6= ∅}
is open in X.

Proposition 16. The set-valued mapping suppX : Mp(X,E) → X is l. s. c.

Proof. We follow very closely the proof of [3], Property 4.2, and [8], Lemma 6.8.2(4).

Let U be an open subset of X, and put V = supp−1
X (U), i.e., V = {µ ∈

Mp(X,E,F ) : suppX(µ) ∩ U 6= ∅}. Let µ ∈ V , and take x ∈ suppX(µ) ∩ U . Fix an
open subset W of X such that x ∈ W ⊆ clXW ⊆ U . The there exists f ∈ C(X,E)
such that f(X \W ) = {0} and µ(f) 6= 0.

Let H = {η ∈ Mp(X,E,F ) : η(f) 6= 0}. Since the set {0} is closed in E, H
is the prebasic open set W (f,E \ {0}) = {η ∈ Mp(X,E) : η(f) ∈ E \ {0}} and
µ ∈W (f,E \ {0}).

We claim that H ⊆ V . By contradiction, suppose that η ∈ H \ V , i. e. η(f) 6= 0
and suppX(η) ∩ U = ∅. Then X \ clXW is an open neighbourhood of suppX(η)
and since f(X \ clXW ) = {0}, applying Theorem 4, we get that η(f) = 0. A
contradiction, hence V is open in Mp(X,E).

A subset L of a space X is bounded if any continuous real-valued function
f : X −→ R is bounded on L.

A subset L of a topological R-module E is called:

(i) precompact or totally a-bounded if for any neighbourhood U of 0 in E there
exists a finite subset A of E such that L ⊆ A+ U = U +A;

(ii) a-bounded if for any neighbourhood U of the 0 in E there exists n ∈ N such
that L ⊆ nU .

Any bounded set is precompact. In a topological vector space over field of reals
any precompact set is a-bounded.

A topological R-module E is called locally bounded if there exists an a-bounded
neighbourhood U of 0 in E such that E = ∪{nU : n ∈ N} and for any a ∈ E, a 6= 0,
and any n ∈ N there exists t ∈ R such that ta /∈ nU . In this case the set U does not
contain R-submodules of E and E is a locally simple R-module.

Example 8. Let E be a normed vector space over reals R. Then E is a locally
bounded R-module.

Example 9. Let E be a topological vector space over reals R and there exists a
number q > 0 and a functional || · || : E −→ R such that:

1. 0 < q ≤ 1.

2. ||x|| ≥ 0 for any x ∈ E.

3. If ||x|| = 0, then x = 0.

4. ||x+ y|| ≤ ||x|| + ||y|| for all x, y ∈ E.
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5. ||λx|| ≤ |λ|q||x|| for all x ∈ E and λ ∈ R.
6. If x 6= 0 then limλ→+∞||λx|| = +∞.

The functional || · || is called a q-norm if the family {V (0, r) = {x : ||x|| < r} :
r > 0} is a base of E at 0. Any q-normed space is locally bounded.

Theorem 6. Let E be a non-trivial locally bounded topological R-module, X be an
R-Tychonoff space and for any non-bounded subset L of X there exists f ∈ C(X,E)
such that the set f(L) is not a-bounded. Then:

(i) The set suppX(H) is bounded in X for any a-bounded subset H of Mp(X,E).
(ii) The set suppX(H) is bounded in X for any totally a-bounded subset H of

Mp(X,E).
(iii) The set suppX(H) is bounded in X for any bounded subset H of Mp(X,E).

Proof. Fix an a-bounded open neighbourhood W1 of 0 in E such that E =
⋃
{nW1 :

n ∈ N} and for any a ∈ E, a 6= 0 and any n ∈ N there exists t ∈ R such that
ta /∈ nW1.

Now fix two open neighbourhoodsW and W0 of 0 in E such that W0+W0+W0 ⊆
W = −W ⊆W1 and W0 = −W0.

By construction, W1 ⊆ kW0 for some k ∈ N.
Hence the sets W and W0 have the following properties:
– W and W0 are a-bounded subsets of E;

– E =
⋃
{nW : n ∈ N} =

⋃
{nW0 : n ∈ N};

– if L is a bounded or a precompact subset of E, then L ⊆ nW0 for some n ∈ N;
– if a ∈ E, a 6= 0, then for any n ∈ N there exists t ∈ R such that ta /∈ nW .
Suppose that the set H is a-bounded or precompact in Lp(X,E) and the set

suppX(H) is not bounded in X. Fix f ∈ C(X,E) such that the set f(suppX(H)) is
not a-bounded in E.

By induction, we shall construct a sequence {µn : n ∈ N} ⊆ H, a sequence
{Uk : k ∈ N} of open subsets of X, a sequence {xn ∈ suppX(µn) : n ∈ N} and a
sequence {hk ∈ C(X,E) : n ∈ N} with properties:

1. xi ∈ Ui, hi(X \ Ui) = 0 for any i ∈ N;

2. {Un : n ∈ N} is a discrete family of subsets of X;
3. µn(hn) /∈ nW ;
4. suppX{µ1, µ2, ..., µn} ∩ clXUn+1 = ∅;
5. f(Un) ⊆ f(xn) +W0 and f(xn+1) /∈

⋃
{f(xi) +W : i ≤ n} for each n ∈ N.

Fix µ1 ∈ H and x1 ∈ suppX(µ1). There exists an open subset U1 of X and
g1 ∈ C(X,E) such that f(U1) ⊆W0 + f(x1), g1(X \U1) = 0 and µ1(g1) 6= 0. There
exists α1 ∈ R such that α1µ1(g) /∈W . We put h1 = α1g1.

Assume that n ≥ 1 and the objects {hi, xi, Ui, µi : i ≤ n} are constructed. We
put Mn =

⋃
{suppX(µi) : i ≤ n}. The set Mn is finite. Hence the set f(suppX(H))\

f(Mn) is not a-bounded in E. For some mn ∈ N we have f(Mn) ⊆ mnW0.

Fix µn+1 ∈ H and xn+1 ∈ suppX(H) such that f(xn+1) ∈ E\mnW . There exists
an open subset Un+1 of X and gn+1 ∈ C(X,E) such that xn+1 ∈ Un+1, f(Un+1) ⊆
f(xn+1) + W0, gn+1(X \ Un+1) = 0, clXUn+1 ∩ Mn = ∅ and Mn+1(gn+1) 6= 0.
There exists αn+1 ∈ R such that αn+1µn+1(gn+1) /∈ (n + 1)W . We put hn+1 =
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αn+1gn+1. That completes the inductive construction. The objects {xm, µn, hn, Un}
are constructed for all n ∈ N. Let h = Σ{hn : n ∈ N. Since {Un : n ∈ N} is a discrete
family and hn(X \ Un) = 0 for any n ∈ N, we have h ∈ C(X,E). By construction
µn(h) = µn(hn) /∈ nW0 for any n. Then {µn(h) : n ∈ N} is not a-bounded subset
of E. Since the set H is a-bounded, the set µ(h) : µ ∈ H} is a-bounded too, a
contradiction. The proof is complete.

Remark 9. If R is the fields of real or complex numbers and E is a locally bounded
R-module, then:

– E is a metrizable linear space;

– E is a locally simple R-module;

– any precompact set is a-bounded in E.

Remark 10. Any normed space is a locally bounded R-module. If E is a non-
trivial normed space, then for any non-bounded subset L of the space X there exists
f ∈ C(X,E) such that the set f(L) is not bounded in E. For a normed space E
Theorem 6 was proved by V. Valov in [10].

A space X is µ-complete if any closed bounded subset of X is compact.
A space X is Dieudonné complete if the maximal uniformity on X is complete.

Any Dieudonné complete space is µ-complete.

Denote by PX the space X with the Gδ-topology generated by the Gδ-subsets of
X. The set δ-clXH = clPXH is called the Gδ-closure of the set H in X. If δ-clXH
= H, then we say the set H is Gδ-closed.

If the space X is µ-complete, then any Gδ-closed subspace of X is µ-complete.
A tightness of a space X is the minimal cardinal number τ for which for any

subset L ⊆ X and any point x ∈ clXL there exists a subset L1 ⊆ L such that
|L1| ≤ τ and x ∈ clXL1.

We denote by t(X) and l(X) the tightness and the Lindelöf numbers respectively
of a space X.

The following assertion for E = R was proved by A. V. Arhangel’skii and E. G.
Pytkeev (see [1], Theorem II.1.1).

Proposition 17. Assume that E is a metrizable space and l(Xn) ≤ τ for any
n ∈ N. Then t(Cp(X,E)) ≤ τ .

Proof. The proof is as in [1]. We show only the scheme of the proof.

Fix a metric d on E. Let A ⊆ Cp(X,E) and f ∈ clA. Let εn = 2−n. For
any x = (x1, x2, ..., xn) ∈ Xn there exists gx ∈ A such that d(gx(xi), f(xi)) < εn,
i ≤ n. Since gx and f are continuous, there exists Ox = Π{Oxi : i ≤ n} such that
d(gx(y), f(y)) < εn for all y ∈ Ox. The {Ox : x ∈ Xn} is a cover of Xn. Fix
Bn ⊆ Xn, |Bn| ≤ τ and

⋃
{Ox : x ∈ Bn} = Xn. Let An = {fx : x ∈ Bn} ⊆ A. Then

f ∈ cl(
⋃
{An : n ∈ N}).

Proposition 18. Let X and E be spaces and t(X) ≤ ℵ0. Then Cp(X,E) is a
Gδ-closed subspace of the space EX . Moreover, if E is µ-complete, then the space
Cp(X,E) is µ-complete too.
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Proof. Since the product of µ-complete spaces is µ-complete, the space EX is
µ-complete provided the space E is µ-complete.

Assume that g ∈ EX \ C(X,E). Then there exists a point x0 ∈ X and an
open subset U of E such that g(x0) ∈ U and x0 ∈ clX{x ∈ X : g(x) /∈ U}. Since
t(X) ≤ ℵ0 there exists a countable subset L ⊆ {x ∈ X : g(x) /∈ U} such that
x0 ∈ clXL. Fix an open subset V of E such that g(x0) ∈ V ⊆ clEV ⊆ U .

For each y ∈ L we put Hy = {f ∈ EX : f(x0) ∈ V, f(y) = E \ clEV }. The set
Hy is open in EX and g ∈ Hy. Let H = ∩{Hy : y ∈ L}. Then H is a Gδ-subset
of EX .

Assume that f ∈ C(X,E). If f(x0) /∈ V , then f /∈ Hy for each y ∈ L. Suppose
that f(x0) ∈ V . There exists an open subset W of X and a point y ∈ L such that
x0 ∈ W , y ∈ L ∩W and f(W ) ⊆ V0. Then f /∈ Hy. Hence H ∩ C(X,E) = ∅ and
g /∈ δ-clEXC(X,E). Therefore C(X,E) is a Gδ-closed subset of EX . Any Gδ-closed
subset of a µ-complete space is µ-complete.

Proposition 19. Let F and E be topological R-modules and Lp(F,E) be the space
of all linear continuous mappings of F into E. Then Lp(F,E) is a closed subspace
of the space Cp(F,E).

Proof. Fix g ∈ Cp(F,E) \ Lp(F,E). Then we have one of the following two cases.

Case 1. There exist a, b ∈ F such that g(a+ b) 6= g(a) + g(b).

In this case there exist four open subsets V1, V2, V and W of E such that
g(a) ∈ V1, g(b) ∈ V2, g(a + b) ∈ W , V1 + V2 ⊆ V and V ∩ W = ∅. The set
H = {f ∈ Cp(F,E) : f(a + b) ∈ W,f(a) ∈ V1, f(b) ∈ V2} is open in Cp(F,E) and
H ∩ Lp(F,E) = ∅.

Case 2. There exist a ∈ F and λ ∈ R such that g(αa) 6= αg(a).

In this case there exist three open subsets V1, V and W of E such that g(a) ∈ V1,
g(αa) ∈ W , αV1 ⊆ V and V ∩W = ∅. The set H = {f ∈ Cp(F,E) : f(αa) ∈
W,f(a) ∈ V1} is open in Cp(F,E) and H ∩Lp(F,E) = ∅. The proof is complete.

Corollary 4. Let E and F be topological R-modules and t(F ) ≤ ℵ0. Then Lp(F,E)
is a Gδ-closed subset of EF . In particular, if E is µ-complete, then the space
Lp(F,E) is µ-complete too.

For any subspace Y of a space X we view Cp(Y |X,E) = {f |Y : f ∈ C(X,E)} as
a subspace of the space Cp(Y,E).

Proposition 20 ([1], Proposition 0.4.1 for E = R). Let Y be a subspace of the space
X, E be a non-trivial topological R-module, X be an R-Tychonoff space and pY (f) =
f |Y for each f ∈ Cp(X,E). Then the mapping pY : Cp(X,E) −→ Cp(Y |X,E) has
the following properties:

(i) pY is a continuous mapping.

(ii) If the set Y is closed in X, then the mapping pY is open.

(iii) If Y is dense in X, then pY is a one-to-one correspondence.

(iv) The subspace Cp(Y |X,E) is dense in Cp(Y,E).
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Proof. Let x1, x2, ..., xn be a finite subset of X. The we can assume that there exists
k ≤ n such that x1, x2, ..., xk−1 ∈ Y and xk, ..., xn ∈ X \ Y . Let f ∈ C(X,E)
and U1, U2, ..., Un be open subsets of E such that f(xi) ∈ Ui for each i ≤ n. We
put W (f, x1, x2, ..., xn, U1, ..., Un) = {g ∈ C(X,E) : g(xi) ∈ Ui for each i ≤ n}
and WY (f, x1, ..., xk−1, U1, ..., Uk−1) = {g|Y : g ∈ W (f, x1, ..., xk−1, U1, ..., Uk−1)}.
We have pY (W (f, x1, x2, ..., xn, U1, ..., Un)) ⊆WY (f, x1, ..., xk−1, U1, ..., Uk−1). Thus
the mapping pY is continuous. If Y is closed in X, then from Lemma 2 it follows
that pY (W (f, x1, x2, ..., xn, U1, ..., Un)) =WY (f, x1, ..., xk−1, U1, ..., Uk−1). Hence the
mapping pY is open.

Assertion (iii) is obvious. Assertion (iv) follows from Lemma 2. The proof is
complete.

Theorem 7. Let E be a locally bounded metrizable R-module, X be an R-Tychonoff
compactly E-full space and for any non-bounded subset L of X there exists f ∈
C(X,E) such that the set f(L) is not a-bounded in E. Then the space X is µ-
complete if and only if the space Mp(X,E) is µ-complete.

Proof. By virtue of Proposition 5, we can assume that X = eX(X) is a subspace of
the space Mp(X,E). From Proposition 4 it follows that the subspace X is closed in
Mp(X,E).

Let Mp(X,E) be a µ-complete space. Since X is a closed subspace of Mp(X,E),
the space X is µ-complete too.

Assume that X is a µ-complete space. Let Φ be a closed bounded subset of
Mp(X,E). Then the closure Y of the set ∪{suppX(µ) : µ ∈ Φ} is a compact subset
of X.

The restriction mapping pY : Cp(X,E) −→ Cp(Y,E) is an open continuous linear
mapping of the R-module Cp(X,E) onto the R-module Cp(Y,E).

Claim 1. The dual mapping ϕ : EC(Y,E) −→ ECp(X,E) is a linear embedding and
the set ϕ(EC(Y,E)) is closed in EC(X,E).

The proof of this fact is similar with the prof of Proposition 0.4.6 from [1].

By construction, we have Φ ⊆ ϕ(Mp(Y,E)) ⊆Mp(X,E).

Claim 2. ϕ(Mp(Y,E)) is a closed subset of the subspaces Mp(X,E) and Cp(Cp(X,E), E)
of the space EC(X,E).

Follows from Claim 1 and Proposition 19.

Claim 3. ϕ(Cp(Cp(Y,E), E)) ⊆ Cp(Cp(X,E), E).

Follows from the continuity of the mapping pY .

Claim 4. The sets ϕ(Mp(X,E)) and ϕ(Cp(Cp(Y,E), E)) are Gδ-closed in EC(X,E).

Since Y is compact, from Proposition 17 it follows that t(Cp(Y,E)) = ℵ0. Then,
from Proposition 18 it follows that Cp(Cp(Y,E), E) is a Gδ-closed subset of the space
EC(Y,E). From Claim 1 it follows that ϕ(Cp(Cp(Y,E), E)) is Gδ-closed in EC(X,E).
Corollary 4 completes the proof of the claim.
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Let G be the Gδ-closure of the set Cp(Cp(X,E), E)) in EC(X,E). We have
Mp(X,E) ⊆ G. Hence Φ is a bounded subset of the space G.

Claim 5. The sets ϕ(Mp(X,E)) and ϕ(Cp(Cp(Y,E), E)) are closed in G.

Follows from Claim 4.

Since E is a metrizable space, E is a µ-complete space. Thus Φ is a closed
bounded subset of the µ-complete space G. Therefore the set Φ is compact. The
proof is complete.

7 Relations between spaces generated by a linear homeomorphism

Let R be a topological ring and E be a non-trivial locally bounded topological
R-module. Then the R-module E is locally simple.

Fix two non-empty R-Tychonoff spaces X and Y with the properties:

– for any non-bounded subset L of X there exists f ∈ C(X,E) such that the set
f(L) is not a-bounded in E;

– for any non-bounded subset L of Y there exists f ∈ C(Y,E) such that the set
f(L) is not a-bounded in E.

Fix now a continuous linear homeomorphism u : Cp(X,E) −→ Cp(Y,E). Then
the dual mapping v : Mp(Y,E) −→ Mp(X,E), where v(η) = η ◦ u for each
η ∈ Mp(Y,E), is a linear homeomorphism. For each x ∈ X we put ϕ(x) =
suppY (v−1(ξx)) and for any y ∈ Y put ψ(y) = suppX(v(ξy)).

Property 1. ϕ : X → Y and ψ : Y → X are l.s.c. set-valued mappings and ϕ(x),
ψ(y) are finite sets for all points x ∈ X, y ∈ Y .

Proof. Follows from Proposition 16 and Theorem 4.

Property 2. Let y0 ∈ Y , f ∈ C(X,E) and f(ψ(y0)) = 0. Then u(f)(y0) = 0.

Proof. For any η ∈ Mp(Y,E) and g ∈ C(X,E) we have v(η)(g) = η(u(g)). Since
f(suppX(v(ξy0))) = f(ψ(y0)) = 0, we have u(f)(y0) = ξy0(u(f)) = v(ξy0)(f) =
f(suppX(v(ξy0))) = 0. The proof is complete.

Corollary 5. If f, g ∈ C(X,E) and f |φ(y) = g|φ(y), then u(f)(y) = u(g)(y).

Property 3. x ∈ clXψ(ϕ(x)) for every point x ∈ X and y ∈ clY ϕ(ψ(y)) for every
point y ∈ Y .

Proof. Assume that x0 ∈ X and x0 /∈ clXψ(ϕ(x0)) = F . Fix f ∈ C(X,E) such that
f(x0) = b 6= 0 and f(F ) = f(ψ(ϕ(x0))) = 0. Since ψ(y) ⊆ F and f(F ) = 0 for
any y ∈ ϕ(x0) by virtue of Property 2, we have u(f)(y) = 0 for each y ∈ ϕ(x0).
Since u(f)(y) = 0 for each y ∈ ϕ(x0), by virtue of Property 2, we have f(x0) =
u−1(u(f))(x0) = 0. By construction, we have f(x0) 6= 0, a contradiction.

Property 4. x ∈ ψ(ϕ(x)) for every point x ∈ X.
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Proof. For every x ∈ X, ϕ(x) is finite set and ψ(ϕ(x)) is compact. Property 3
completes the proof.

Property 5. If H is a dense subset of Y , then ψ(H) is a dense subset of X.

Proof. Assume that x0 /∈ clXψ(H). Then there exists f ∈ C(X,E) such that
f(x0) 6= 0 and f(ψ(H)) = 0. Since f(ψ(H)) = 0 for any y ∈ Y , by virtue of
Property 2, we have u(f)(y) = 0 for any y ∈ Y . Thus u(f) = 0. Hence f = 0, a
contradiction.

Corollary 6. The space X is separable if and only if the space Y is separable. In
general, d(X) = d(Y ).

Property 6. ϕ(F ) is a bounded set of Y for each bounded set F of X.

Proof. Let F be a bounded subset of X. Then F is a bounded subset of Mp(X,E)
and respectively v−1(F ) is a bounded subset of Mp(Y,E). By Theorem 6 the set
suppY (v−1(F )) is a bounded subset of Y . The proof is complete.

Property 7. Let E be a metrizable space, X and Y be compactly E-full spaces.
Then the space X is µ-complete if and only if the space Y is µ-complete.

Proof. Let X be a µ-complete space. Then Mp(X,E) and Mp(Y,E), by virtue of
Theorem 7, are µ-complete spaces. By Theorem 7 the space Y is µ-complete too.
The proof is complete.

As in [3, 4] we say that the pair of set-valued mappings θ : X −→ Y and
π : Y −→ X is called lower-reflective if it satisfies the following conditions:

1l. θ and π are l.s.c.

2l. θ(x) and π(x) are finite sets for all points x ∈ X and y ∈ Y .

3l. x ∈ π(θ(x)) and y ∈ θ(π(y)) for all points x ∈ X and y ∈ Y .

Also, as in [3, 4] we say that the pair of set-valued mappings θ : X −→ Y and
π : Y −→ X is called upper-reflective if it satisfies the following conditions:

1u. θ(F ) is a bounded subset of Y for each bounded subset F of X.

2u. π(Φ) is a bounded subset of X for each bounded subset Φ of Y .

3u. x ∈ clXπ(θ(x)) and y ∈ clY θ(π(y)) for all points x ∈ X and y ∈ Y .

From the above properties follows

Corollary 7. The space X is separable if and only if the space Y is separable. In
general, d(X) = d(Y ).

General conclusion: The set-valued mappings ϕ : X −→ Y and ψ : Y −→ X
form an equivalence of X and Y in sense of articles [3,4]. Thus the general theorems
from [3] can be extended for the mappings in topological R-modules. In the following
sections we formulate the general theorems for that case.
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8 Application to perfect properties

We say that the property P is a perfect property if for any continuous perfect
mapping f : X −→ Y of X onto Y we have X ∈ P if and only if Y ∈ P. We say
that the property P is a strongly perfect property if it is perfect and any space with
property P is µ-complete.

Example 10. By virtue of Example 6.2 from [3] (see also [4]), the following prop-
erties are perfect:

1. To be a compact space.

2. To be a paracompact p-space.

3. To be a paracompact space.

4. To be a metacompact space.

5. To be a k-scattered space.

6. To be a monotonically p-space.

7. To be a monotonically Čech complete space.

8. To be a Čech complete space.

9. To be a Lindelöf space.

10. To be a Lindelöf Σ-space.

11. To be a subparacompact space.

12. To be a locally compact space.

Example 11. The following properties are strongly perfect:

1. To be a compact space.

2. To be a paracompact p-space.

3. To be a paracompact space.

4. To be a µ-complete metacompact space.

5. To be a k-scattered µ-complete space.

6. To be a µ-complete monotonically p-space.

7. To be a µ-complete monotonically Čech complete space.

8. To be a µ-complete Čech complete space.
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9. To be a Lindelöf space.

10. To be a Lindelöf Σ-space.

11. To be a µ-complete subparacompact space.

12. To be a µ-complete locally compact space.

A space X is called a wq-space if for any point x ∈ X there exists a sequence
{Un : n ∈ N} of open subsets of X such that x ∈ ∩{Un : n ∈ N} and each set
{xn ∈ Un : n ∈ N} is bounded in X.

A space X is pseudocompact if the set X is bounded in the space X. A pseudo-
compact space is a µ-complete space if and only if it is compact. Any pseudocompact
space is a wq-space.

Theorem 8. Let R be a topological ring and E be a non-trivial locally bounded
topological R-module. Fix two non-empty R-Tychonoff spaces X and Y with the
properties:

– for any non-bounded subset L of X there exists f ∈ C(X,E) such that the set
f(L) is not a-bounded in E;

– for any non-bounded subset L of Y there exists f ∈ C(Y,E) such that the set
f(L) is not a-bounded in E.

Assume that u : Cp(X,E) −→ Cp(Y,E) is a linear homeomorphism. Then:

1. X is a pseudocompact space if and only if Y is a pseudocompact space.

2. If P is a perfect property and X, Y are µ-complete wq-spaces, then X ∈ P if
and only if Y ∈ P.

Proof. Consider the set-valued mappings ϕ : X −→ Y and ψ : Y −→ X constructed
in Section 7.

Let X be a pseudocompact space. Then X is a bounded subset of the space
X. Hence Y = ϕ(X) is a bounded subset of Y and Y is a pseudocompact space.
Assertion 1 is proved.

Assume that P is a perfect property andX, Y are µ-complete wq-spaces. Suppose
that X ∈ P. By virtue of Theorem 2.5 from [3], there exist a space Z and two perfect
single-valued mappings f : Z −→ X and g : Z −→ Y onto X and Y , respectively.
Hence, Y,Z ∈ P. Assertion 2 is proved. The proof is complete.

Theorem 9. Let R be a topological ring and E be a non-trivial metrizable locally
bounded topological R-module. Fix two non-empty R-Tychonoff compactly E-full
spaces X and Y with the properties:

– for any non-bounded subset L of X there exists f ∈ C(X,E) such that the set
f(L) is not a-bounded in E;

– for any non-bounded subset L of Y there exists f ∈ C(Y,E) such that the set
f(L) is not a-bounded in E.

Assume that u : Cp(X,E) −→ Cp(Y,E) is a linear homeomorphism. Then:

1. The space X is µ-complete if and only if the space Y is µ-complete.
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2. X is a compact space if and only if Y is a compact space.

3. If P is a strongly perfect property and X, Y are wq-spaces, then X ∈ P if and
only if Y ∈ P.

Proof. Consider the set-valued mappings ϕ : X −→ Y and ψ : Y −→ X constructed
in Section 7. Assertion 1 follows from Property 7.

Assume that P is a strongly perfect property and X, Y are wq-spaces. Suppose
that X ∈ P. By definition of a strongly perfect property, X is a µ-complete space.
From Assertion 1 it follows that Y is a µ-complete space too. By virtue of Theorem
2.5 from [3], there exist a space Z and two perfect single-valued mappings f : Z −→
X and g : Z −→ Y ontoX and Y , respectively. Hence, we have Y,Z ∈ P. Assertion 3
is proved.

Let X be a compact space. By virtue of Theorem 8, Y is a pseudocompact
space. Hence X and Y are wq-spaces. Assertion 3 completes proof of Assertion 2.
The proof is complete.

9 Application to open properties

We say that the property P is an of -property (open-finite property) if for any
continuous open finite-to-one mapping f : X −→ Y and any subspace Z of X we
have Z ∈ P if and only if f(Z) ∈ P.

Example 12. From the results from [3],[4] and [5] the following properties are
of -properties:

1. To be hereditarily Lindelöf.

2. To be σ-space.

3. To be hereditarily separable.

4. To be σ-metrizable.

5. To be σ-scattered.

6. To be σ-discrete space.

Example 13. Let τ be an infinite cardinal. Consider the properties:

1. X ∈ e(τ) if and only if e(X) ≤ τ ;

2. X ∈ d(τ) if and only if d(X) ≤ τ ;

3. X ∈ hd(τ) if and only if hd(X) ≤ τ ;

4. X ∈ hl(τ) if and only if hl(X) ≤ τ .
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Then e(τ), d(τ), hd(τ), hl(τ) are of -properties.

Theorem 10. Let R be a topological ring and E be a non-trivial locally bounded
topological R-module. Fix two non-empty R-Tychonoff spaces X and Y with the
properties:

– for any non-bounded subset L of X there exists f ∈ C(X,E) such that the set
f(L) is not a-bounded in E;

– for any non-bounded subset L of Y there exists f ∈ C(Y,E) such that the set
f(L) is not a-bounded in E.

Assume that u : Cp(X,E) −→ Cp(Y,E) is a linear homeomorphism. If P is an
of -property, then X ∈ P if and only if Y ∈ P.

Proof. Consider the set-valued mappings ϕ : X −→ Y and ψ : Y −→ X constructed
in the Section 7. As in [3] (see Theorem 2.1 from [3]) we put Z = ∪{{x}×ϕ(x) : x ∈
X} and S = ∪{ψ(y) × {y} : y ∈ Y } as subspaces of the spaces X × Y , f(x, y) = x
and g(x, y) = y for any point (x, y) ∈ X × Y . Then f : Z −→ X and g : S −→ Y
are continuous open finite-to-one mappings. If D = Z ∩ S, then from Property 4
it follows that f(D) = X and g(D) = Y . Hence X ∈ P if and only if Y ∈ P. The
proof is complete.

10 lp(E)-equivalence and metrizability

Theorem 11. Let R be a topological ring and E be a non-trivial metrizable locally
bounded topological R-module. Fix two non-empty R-Tychonoff compactly E-full
spaces X and Y with the properties:

– for any non-bounded subset L of X there exists f ∈ C(X,E) such that the set
f(L) is not a-bounded in E;

– for any non-bounded subset L of Y there exists f ∈ C(Y,E) such that the set
f(L) is not a-bounded in E.

Let X and Y be lp(E)-equivalent spaces. Then:

1. X is a compact metrizable space if and only if Y is a compact metrizable
space.

2. If X is a metrizable space, then the space Y is metrizable if and only if Y is
a wq-space.

Proof. Any metrizable space is a wq-space.

Let X be a metrizable space and Y be a wq-space. Since X is metrizable, by
virtue of Theorem 8, Y is a paracompact p-space. From Theorem 10 it follows that
Y is a σ-space. If a paracompact space Y is a σ-space and a p-space, then Y is
metrizable [9]. Assertion 2 is proved.

Assertion 1 follows from the Assertion 2 and Theorem 8. The proof is
complete.
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11 Final remarks and examples

The requirements on spaces R, E and X in the conditions of Theorems 8, 9 and
10 are essential.

First, the space X must have a sufficient number of continuous mappings into
R and E. Moreover, these mappings must determine the topology of the space X
and should feel certain properties of subsets relative to their position in the space
X. These are explained the requirements:

– the space X is a non-empty R-Tychonoff space;

– for any non-bounded subset L of X there exists f ∈ C(X,E) such that the set
f(L) is not a-bounded in E.

Obviously, the requirement ”X is a non-empty R-Tychonoff space” may be
changed by the requirement ”X is a non-empty E-Tychonoff space”. A space X
is an E-Tychonoff space if for each closed set F of X, any point a ∈ X \ F and any
point b ∈ E, there exists f ∈ C(X,E) such that f(a) = 0 and f(F ) = b.

Second, the space E should have unbounded sets and some neighborhoods of
zero should be able to distinguish boundedness and unboundedness of sets from E.

Example 14. Let Z be the discrete ring of integers, E = {(x, y) ∈ R2 : x2 +y2 = 1}
be the unit circle with the binary operation (x, y) + (u, v) = (xu − yv, xv + yu).
Then any zero-dimensional space is Z-Tychonoff and E is a locally simple compact
Z-module. Any Tychonoff space is an E-Tychonoff space. For any space X the
Z-modules Cp(X,E) and Mp(X,E) are a-bounded. In this case the assertions (i)
and (ii) of Theorem 6 are not true.

Example 15. Let R be a finite ring, 0 6= 1, and E = RA, where A is an infinite
discrete space. Then the ring R is locally simple and compact. The R-module
E is compact and not locally simple. Any zero-dimensional space is R-Tychonoff.
The spaces Cp(X,E), Cp(X×A,E), Cp(X,E)A, Cp(X,R)A, Cp(X,E)A, and Cp(X×
A,R) are linearly homeomorphic. The space X may be compact and the space X×A
is not pseudocompact. If the space A is countable, the module E is metrizable.

Example 16. Let E = RA, where A is an infinite discrete space. The ring of reals
R is a locally simple and locally compact topological field. The R-module E is not
locally simple and not locally a-bounded. Any Tychonoff space is an R-Tychonoff
space. The spaces Cp(X,E), Cp(X,R), Cp(X,E)A, Cp(X,R)A, Cp(X,E)A, and
Cp(X × A,R) are linearly homeomorphic. The space X may be compact and the
space X × A is not pseudocompact. If the space A is countable, the module E is
metrizable.
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One subfamily of cubic systems with invariant lines

of total multiplicity eight and with two distinct real

infinite singularities

Cristina Bujac

Abstract. In this article we classify a subfamily of differential real cubic systems
possessing eight invariant straight lines, including the line at infinity and including
their multiplicities. This subfamily of systems is characterized by the existence of two
distinct infinite singularities, defined by the linear factors of the polynomial C3(x, y) =
yp3(x, y) − xq3(x, y), where p3 and q3 are the cubic homogeneities of these systems.
Moreover we impose additional conditions related with the existence of triplets and/or
couples of parallel invariant lines. This classification, which is taken modulo the action
of the group of real affine transformations and time rescaling, is given in terms of affine
invariant polynomials. The invariant polynomials allow one to verify for any given real
cubic system whether or not it has invariant straight lines of total multiplicity eight,
and to specify its configuration of straight lines endowed with their corresponding real
singularities of this system. The calculations can be implemented on computer and
the results can therefore be applied for any family of cubic systems in this class, given
in any normal form.

Mathematics subject classification: 34G20, 34A26, 14L30, 34C14.
Keywords and phrases: Cubic differential system, configuration of invariant
straight lines, multiplicity of an invariant straight line, group action, affine invari-
ant polynomial.

1 Introduction and the statement of the Main Theorem

We consider here real polynomial differential systems

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1)

where P, Q are polynomials in x, y with real coefficients, i. e. P, Q ∈ R[x, y]. We
say that systems (1) are cubic if max(deg(P ),deg(Q)) = 3.

Let

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y

be the polynomial vector field associated to systems (1).

A straight line f(x, y) = ux+ vy + w = 0, (u, v) 6= (0, 0) satisfies

X(f) = uP (x, y) + vQ(x, y) = (ux+ vy + w)R(x, y)

c© Cristina Bujac, 2015
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for some polynomial R(x, y) if and only if it is invariant under the flow of the
systems. If some of the coefficients u, v, w of an invariant straight line belong to
C\R, then we say that the straight line is complex; otherwise the straight line is real.
Note that, since systems (1) are real, if a system has a complex invariant straight
line ux+ vy + w = 0, then it also has its conjugate complex invariant straight line
ūx+ v̄y + w̄ = 0.

To a line f(x, y) = ux + vy + w = 0, (u, v) 6= (0, 0) we associate its projective
completion F (X,Y,Z) = uX + vY + wZ = 0 under the embedding C2 →֒ P2(C),
(x, y) 7→ [x : y : 1]. The line Z = 0 in P2(C) is called the line at infinity of
the affine plane C2. It follows from the work of Darboux (see, for instance [10])
that each system of differential equations of the form (1) over C yields a differential
equation on the complex projective plane P2(C) which is the compactification of the
differential equation Qdx− Pdy = 0 in C2. The line Z = 0 is an invariant manifold
of this complex differential equation.

Definition 1 (see [27]). We say that an invariant affine straight line f(x, y) =
ux+ vy + w = 0 (respectively the line at infinity Z = 0) for a cubic vector field X

has multiplicity m if there exists a sequence of real cubic vector fields Xk converging
to X, such that each Xk has m (respectively m−1) distinct invariant affine straight
lines f j

k = uj
kx + vj

ky + wj
k = 0, (uj

k, v
j
k) 6= (0, 0), (uj

k, v
k
i , w

j
k) ∈ C3 (j ∈ {1, . . . m}),

converging to f = 0 as k → ∞ (with the topology of their coefficients), and this
does not occur for m+ 1 (respectively m).

We mention here some references on polynomial differential systems possessing
invariant straight lines. For quadratic systems see [11, 24, 25, 27–30] and [31]; for
cubic systems see [15–18, 26, 34] and [35]; for quartic systems see [33] and [36]; for
some more general systems see [13,21,22] and [23].

According to [2] the maximum number of invariant straight lines taking into
account their multiplicities for a polynomial differential system of degree m is 3m
when we also consider the infinite straight line. This bound is always reached if we
consider the real and the complex invariant straight lines, see [9].

So the maximum number of the invariant straight lines (including the line at
infinity Z = 0) for cubic systems is 9. A classification of all cubic systems possessing
the maximum number of invariant straight lines taking into account their multiplic-
ities have been made in [16]. We also remark that a subclass of the family of cubic
systems with eight invariant lines was discussed in [34] and [35].

It is well known that for a cubic system (1) with finite number of infinite sin-
gularities there exist at most 4 different slopes for invariant affine straight lines, for
more information about the slopes of invariant straight lines for polynomial vector
fields, see [1].

Definition 2 (see [31]). Consider a planar cubic system (1). We call configuration
of invariant straight lines of this system, the set of (complex) invariant straight
lines (which may have real coefficients) of the system, each endowed with its own
multiplicity and together with all the real singular points of this system located on
these invariant straight lines, each one endowed with its own multiplicity.
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Remark 1. In order to describe the various kinds of multiplicity for infinite singu-
lar points we use the concepts and notations introduced in [24]. Thus we denote
by ’(a, b)’ the maximum number a (respectively b) of infinite (respectively finite)
singularities which can be obtained by perturbation of the multiple point.

Suppose that a cubic system (1) possesses 8 distinct invariant straight lines
(including the line at infinity). We say that these lines form a configuration of type
(3, 3, 1) if there exist two triplets of parallel lines and one additional line, every
set with different slopes. And we say that these lines form a configuration of type
(3, 2, 1, 1) if there exist one triplet and one couple of parallel lines and two additional
lines, every set with different slopes. Similarly configurations of types (3, 2, 2) and
(2, 2, 2, 1) are defined and these four types of the configurations exhaust all possible
configurations formed by 8 invariant lines for a cubic system.

Note that in all configurations the invariant straight line which is omitted is the
infinite one.

Suppose a cubic system (1) possesses 8 invariant straight lines, including the
infinite one, and taking into account their multiplicities. We say that these lines form
a potential configuration of type (3, 3, 1) (respectively, (3, 2, 2); (3, 2, 1, 1); (2, 2, 2, 1))
if there exists a sequence of vector fields Xk as in Definition 1 having 8 distinct lines
of type (3, 3, 1) (respectively, (3, 2, 2); (3, 2, 1, 1); (2, 2, 2, 1)).

It is well known that the infinite singularities (real or complex) of cubic systems
are determined by the linear factors of the polynomial C3(x, y) = yp3(x, y)−xq3(x, y)
where p3 and q3 are the cubic homogeneities of these systems.

In this paper we consider the family of cubic systems possessing two distinct
infinite singularities defined by one triple and one simple factors of the invariant
polynomial C3(x, y). This family univocally is determined by affine invariant criteria
(see Lemma 7). Moreover we impose some additional conditions related with the
existence of triplets and/or couples of parallel invariant lines of these systems (see
Theorem 1 and Main Theorem). As a result we investigate the obtained subfamily
of cubic systems and determine necessary and sufficient affine invariant conditions
for the existence of eight invariant straight lines, including the line at infinity and
taking into account their multiplicities.

Our results are stated in the following theorem.

Main Theorem. We consider here the family of cubic systems for which the con-
ditions D1 = D3 = D4 = 0, D2 6= 0 hold, i.e. the infinite singularities of these
systems are determined by one triple and one simple factors of the invariant poly-
nomial C3(x, y). Moreover we assume in addition that for this family the condition
V1 = V3 = 0 is satisfied. Then:

(A) This family of cubic systems could be brought via an affine transformation
and time rescaling to the systems

ẋ = a+ cx+ dy + 2hxy + ky2 + x3, ẏ = b+ ex+ fy + lx2 + 2mxy + ny2, (2)

which could possess one of the 16 possible configurations Config. 8.23 – Config. 8.38
of invariant lines given in Figure 1.
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(B) The condition K5 = N1 = 0 is necessary for a system (2) to have invariant
lines of total multiplicity 8, including the line at infinity. Assuming this condition
to be satisfied, a system (2) possesses the specific configuration Config. 8.j (j ∈
{23, 24, . . . , 38}) if and only if the corresponding additional conditions included below
are fulfilled. Moreover this system can be brought via an affine transformation and
time rescaling to the canonical form, written below next to the configuration:

• Config.8.23 ⇔ N2N3 6= 0, N4 =N5 =N6 = N7 =0 :

{
ẋ=(x−1)x(1+x),
ẏ=x−y+x2+3xy;

• Config. 8.24 - 8.27 ⇔ N2 6= 0, N3 = 0, N4 = N6 = N8 = 0, N9 6= 0:

{
ẋ = x(r + 2x+ x2),

ẏ = (r + 2x)y, r(9r − 8) 6= 0;







Config.8.24 ⇔ N11 < 0 (r < 0);
Config.8.25 ⇔ N10>0, N11>0 (0<r<1);
Config.8.26 ⇔ N10 = 0 (r = 1);
Config.8.27 ⇔ N10 < 0 (r > 1);

• Config. 8.28 - 8.30 ⇔ N2 6= 0, N3 = 0, N5 = N8 = N12 = 0, N13 6= 0:
{
ẋ=x(r−2x+x2), (9r−8) 6= 0

ẏ=2y(x−r), r(r − 1) 6= 0;







Config.8.28 ⇔ N15 < 0 (r < 0);
Config.8.29 ⇔ N14<0, N15>0 (0<r<1);
Config.8.30 ⇔ N14 > 0 (r > 1);

• Config. 8.31, 8.32 ⇔ N2 = N3 = 0, N17 = N18 = 0, N10N16 6= 0:
{
ẋ = x(r + x2),

ẏ = x− 2ry, r ∈ {−1, 1};

{
Config.8.31 ⇔ N10 < 0 (r = −1);
Config.8.33 ⇔ N10 > 0, (r = 1);

• Config. 8.33 ⇔ N2 =N3 = 0, N10 =N17 =N18 =0, N16 6= 0:

{
ẋ = x3,

ẏ = 1 + x;

• Config.8.34 - 8.38 ⇔ N2 = N3 = 0, N16 = N19 = 0, N18 6= 0:

{

ẋ = x(r + x+ x2),

ẏ = 1 + ry, (9r−2) 6=0;







Config. 8.34 ⇔ N21 < 0 (r < 0);
Config. 8.35 ⇔ N20 > 0, N21 > 0 (0 < r < 1/4);
Config. 8.36 ⇔ N20 = 0 (r = 1/4);
Config. 8.37 ⇔ N20 < 0 (r > 1/4);
Config. 8.38 ⇔ N21 = 0 (r = 0).

Remark 2. If in a configuration an invariant straight line has multiplicity k > 1,
then the number k appears near the corresponding straight line and this line is in
bold face. Real invariant straight lines are represented by continuous lines, whereas
complex invariant straight lines are represented by dashed lines. We indicate next
to the real singular points of the system, located on the invariant straight lines, their
corresponding multiplicities.
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Figure 1. The configurations of invariant straight lines of cubic systems (2)

2 Preliminaries

Consider real cubic systems, i.e. systems of the form:

ẋ = p0 + p1(x, y) + p2(x, y) + p3(x, y) ≡ p(x, y),

ẏ = q0 + q1(x, y) + q2(x, y) + q3(x, y) ≡ q(x, y)
(3)

with real coefficients and variables x and y. The polynomials pi and qi (i = 0, 1, 2, 3)
are homogeneous polynomials of degree i in x and y:

p0 = a00, p3(x, y) = a30x
3 + 3a21x

2y + 3a12xy
2 + a03y

3,

p1(x, y) = a10x+ a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q3(x, y) = b30x
3 + 3b21x

2y + 3b12xy
2 + b03y

3,

q1(x, y) = b10x+ b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.
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Let a = (a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03) be the 20-tuple of the coefficients
of systems (3) and denote R[a, x, y] = R[a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03, x, y].

2.1 The main invariant polynomials associated to configurations

of invariant lines

It is known that on the set CS of all cubic differential systems (3) the group
Aff(2,R) of affine transformations acts on the plane [27]. For every subgroup
G ⊆ Aff(2,R) we have an induced action of G on CS. We can identify the set
CS of systems (3) with a subset of R20 via the map CS −→ R20 which associates
to each system (3) the 20-tuple a = (a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03) of its
coefficients.

For the definitions of an affine or GL-comitant or invariant as well as for the
definition of a T -comitant and CT -comitant we refer the reader to [27]. Here we shall
only construct the necessary T− and CT−comitants associated to configurations of
invariant lines for the family of cubic systems mentioned in the statement of Main
Theorem.

Let us consider the polynomials

Ci(a, x, y) = ypi(a, x, y) − xqi(a, x, y) ∈ R[a, x, y], i = 0, 1, 2, 3,

Di(a, x, y) =
∂

∂x
pi(a, x, y) +

∂

∂y
qi(a, x, y) ∈ R[a, x, y], i = 1, 2, 3,

which in fact are GL-comitants, see [32]. Let f, g ∈ R[a, x, y] and

(f, g)(k) =

k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h
.

(f, g)(k) ∈ R[a, x, y] is called the transvectant of index k of (f, g) (cf. [12],[19])

We apply a translation x = x′ + x0, y = y′ + y0 to the polynomials
p(a, x, y) and q(a, x, y) and we obtain p̃(ã(a, x0, y0), x

′, y′) = p(a, x′ + x0, y
′ + y0),

q̃(ã(a, x0, y0), x
′, y′) = q(a, x′ +x0, y

′ + y0). Let us construct the following polynomi-
als:

Ωi(a, x0, y0) ≡ Res x′

(

Ci

(
ã(a, x0, y0), x

′, y′
)
, C0

(
ã(a, x0, y0), x

′, y′
))

/(y′)i+1,

G̃i(a, x, y) = Ωi(a, x0, y0)|{x0=x, y0=y} ∈ R[a, x, y] (i = 1, 2, 3).

Remark 3. We note that the constructed polynomials G̃1(a, x, y), G̃2(a, x, y) and
G̃3(a, x, y) are affine comitants of systems (3) and are homogeneous polynomials in
the coefficients a00, . . . , b02 and non-homogeneous in x, y and

dega G1 = 3, dega G2 = 4, dega G3 = 5,
deg(x,y) G1 = 8, deg(x,y) G2 = 10, deg(x,y) G3 = 12.
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Notation 1. Let Gi(a,X, Y, Z) (i = 1, 2, 3) be the homogenization of G̃i(a, x, y), i.e.

G1(a,X, Y, Z) = Z8G̃1(a,X/Z, Y/Z), G2(a,X, Y, Z) = Z10G̃2(a,X/Z, Y/Z),

G3(a,X, Y, Z) = Z12G̃3(a,X/Z, Y/Z),

and H(a,X, Y, Z) = gcd
(

G1(a,X, Y, Z), G2(a,X, Y, Z), G3(a,X, Y, Z)
)

in

R[a,X, Y, Z].

The geometrical meaning of the above defined affine comitants is given by the
two following lemmas (see [16]):

Lemma 1. The straight line f(x, y) ≡ ux+ vy + w = 0, u, v,w ∈ C, (u, v) 6= (0, 0)
is an invariant line for a cubic system (3) if and only if the polynomial f(x, y) is a
common factor of the polynomials G̃1(a, x, y), G̃2(a, x, y) and G̃3(a, x, y) over C, i.e.

G̃i(a, x, y) = (ux+ vy + w)W̃i(x, y) (i = 1, 2, 3), where W̃i(x, y) ∈ C[x, y].

Lemma 2. Consider a cubic system (3) and let a ∈ R20 be its 20-tuple of coefficients.
1) If f(x, y) ≡ ux+vy+w = 0, u, v,w ∈ C, (u, v) 6= (0, 0) is an invariant straight

line of multiplicity k for this system then [f(x, y)]k | gcd(G̃1, G̃2, G̃3) in C[x, y], i.e.
there exist Wi(a, x, y) ∈ C[x, y] (i = 1, 2, 3) such that

G̃i(a, x, y) = (ux+ vy +w)kWi(a, x, y), i = 1, 2, 3. (4)

2) If the line l∞ : Z = 0 is of multiplicity k > 1 then Zk−1 | gcd(G1,G2,G3), i.e.
we have Zk−1 | H(a,X, Y, Z).

Consider the differential operator L = x ·L2−y ·L1 constructed in [4] and acting
on R[a, x, y], where

L1 =3a00
∂

∂a10
+ 2a10

∂

∂a20
+ a01

∂

∂a11
+

1

3
a02

∂

∂a12
+

2

3
a11

∂

∂a21
+ a20

∂

∂a30
+

3b00
∂

∂b10
+ 2b10

∂

∂b20
+ b01

∂

∂b11
+

1

3
b02

∂

∂b12
+

2

3
b11

∂

∂b21
+ b20

∂

∂b30
,

L2 =3a00
∂

∂a01
+ 2a01

∂

∂a02
+ a10

∂

∂a11
+

1

3
a20

∂

∂a21
+

2

3
a11

∂

∂a12
+ a02

∂

∂a03
+

3b00
∂

∂b01
+ 2b01

∂

∂b02
+ b10

∂

∂b11
+

1

3
b20

∂

∂b21
+

2

3
b11

∂

∂b12
+ b02

∂

∂b03
.

Using this operator and the affine invariant µ0 = Resultantx

(
p3(a, x, y), q3(a, x, y)

)
/y9

we construct the following polynomials

µi(a, x, y) =
1

i!
L(i)(µ0), i = 1, .., 9,

where L(i)(µ0) = L(L(i−1)(µ0)) and L(0)(µ0) = µ0.
These polynomials are in fact comitants of systems (3) with respect to the group

GL(2,R) (see [4]). The polynomial µi(a, x, y), i ∈ {0, 1, . . . , 9} is homogeneous
of degree 6 in the coefficients of systems (3) and homogeneous of degree i in the
variables x and y. The geometrical meaning of these polynomial is revealed in the
next lemma.



CUBIC SYSTEMS WITH MAXIMUM NUMBER OF INVARIANT LINES 55

Lemma 3 (see [3, 4]). Assume that a cubic system (S) with coefficients ã belongs
to the family (3). Then:

(i) The total multiplicity of all finite singularities of this system equals 9 − k if
and only if for every i ∈ {0, 1, . . . , k − 1} we have µi(ã, x, y) = 0 in the ring R[x, y]

and µk(ã, x, y) 6= 0. In this case the factorization µk(ã, x, y) =

k∏

i=1

(uix− viy) 6= 0

over C indicates the coordinates [vi : ui : 0] of those finite singularities of the system
(S) which ”have gone” to infinity. Moreover the number of distinct factors in this
factorization is less than or equal to four (the maximum number of infinite singu-
larities of a cubic system) and the multiplicity of each one of the factors uix − viy
gives us the number of the finite singularities of the system (S) which have collapsed
with the infinite singular point [vi : ui : 0].

(ii) The system (S) is degenerate (i.e. gcd(P,Q) 6= const) if and only if
µi(ã, x, y) = 0 in R[x, y] for every i = 0, 1, . . . , 9.

In order to define the needed invariant polynomials we first construct the follow-
ing comitants of second degree with respect to the coefficients of the initial system:

S1 = (C0, C1)
(1) , S10 = (C1, C3)

(1) , S19 = (C2,D3)
(1) ,

S2 = (C0, C2)
(1) , S11 = (C1, C3)

(2) , S20 = (C2,D3)
(2) ,

S3 = (C0,D2)
(1) , S12 = (C1,D3)

(1) , S21 = (D2, C3)
(1) ,

S4 = (C0, C3)
(1) , S13 = (C1,D3)

(2) , S22 = (D2,D3)
(1) ,

S5 = (C0,D3)
(1) , S14 = (C2, C2)

(2) , S23 = (C3, C3)
(2) ,

S6 = (C1, C1)
(2) , S15 = (C2,D2)

(1) , S24 = (C3, C3)
(4) ,

S7 = (C1, C2)
(1) , S16 = (C2, C3)

(1) , S25 = (C3,D3)
(1) ,

S8 = (C1, C2)
(2) , S17 = (C2, C3)

(2) , S26 = (C3,D3)
(2) ,

S9 = (C1,D2)
(1) , S18 = (C2, C3)

(3) , S27 = (D3,D3)
(2) .

We shall use here the following invariant polynomials constructed in [16] to char-
acterize the family of cubic systems possessing the maximal number of invariant
straight lines:

D1(a) = 6S3
24 −

[

(C3, S23)
(4)

]2
, D2(a, x, y) = −S23,

D3(a, x, y) = (S23, S23)
(2) − 6C3(C3, S23)

(4), D4(a, x, y) = (C3,D2)
(4),

V1(a, x, y) = S23 + 2D2
3, V2(a, x, y) = S26, V3(a, x, y) = 6S25 − 3S23 − 2D2

3,

V4(a, x, y) = C3

[

(C3, S23)
(4) + 36 (D3, S26)

(2)
]

,

V5(a, x, y) = 6T1(9A5 − 7A6) + 2T2(4T16 − T17) − 3T3(3A1 + 5A2) + 3A2T4+

+ 36T 2
5 − 3T44,

L1(a, x, y) = 9C2 (S24 + 24S27) − 12D3 (S20 + 8S22) − 12 (S16,D3)
(2)

− 3 (S23, C2)
(2) − 16 (S19, C3)

(2) + 12 (5S20 + 24S22, C3)
(1) ,
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L2(a, x, y) = 32 (13S19 + 33S21,D2)
(1) + 84 (9S11 − 2S14,D3)

(1) +

+ 8D2 (12S22 + 35S18 − 73S20) − 448 (S18, C2)
(1) −

− 56 (S17, C2)
(2) − 63 (S23, C1)

(2) + 756D3S13 − 1944D1S26+

+ 112 (S17,D2)
(1) − 378 (S26, C1)

(1) + 9C1 (48S27 − 35S24) ,

U1(a) = T31 − 4T37,

U2(a, x, y) = 6 (T30 − 3T32, T36)
(1) − 3T30 (T32 + 8T37)−

− 24T 2
36 + 2C3 (C3, T30)

(4) + 24D3 (D3, T36)
(1) + 24D2

3T37.

K2(a, x, y) = T74, K4(a, x, y) = T13 − 2T11,

K1(a, x, y) =
(
3223T 2

2 T140 + 2718T4T140 − 829T 2
2 T141, T133

)(10)
/2,

K5(a, x, y) = 45T42 − T2T14 + 2T2T15 + 12T36 + 45T37 − 45T38 + 30T39,

K6(a, x, y) = 4T1T8(2663T14 − 8161T15) + 6T8(178T23 + 70T24 + 555T26)+

+ 18T9(30T2T8 − 488T1T11 − 119T21) + 5T2(25T136 + 16T137)−

− 15T1(25T140 − 11T141) − 165T142,

K8(a, x, y) = 10A4T1 − 3T2T15 + 4T36 − 8T37.

However these invariant polynomials are not sufficient to characterize the cubic
systems with invariant lines of the total multiplicity 8. So we construct here the
following new invariant polynomials:

N1(a, x, y) =S13, N2(a, x, y) = C2D3 + 3S16, N3(a, x, y) = T9,

N4(a, x, y) = − S2
14 − 2D2

2(3S14 − 8S15) − 12D3(S14, C1)
(1)+

+D2(−48D3S9 + 16(S17, C1)
(1)),

N5(a, x, y) =36D2D3(S8 − S9) +D1(108D
2
2D3 − 54D3(S14 − 8S15))+

+ 2S14(S14 − 22S15) − 8D2
2(3S14 + S15)−9D3(S14, C1)

(1)−16D4
2 ,

N6(a, x, y) =40D2
3(15S6 − 4S3) − 480D2D3S9 − 20D1D3(S14 − 4S15)+

+ 160D2
2S15 − 35D3(S14, C1)

(1) + 8
(
(S23, C2)

(1), C0

)(1)
,

N7(a, x, y) =18C2D2(9D1D3 − S14) − 2C1D3(8D
2
2 − 3S14 − 74S15)−

− 432C0D3S21 + 48S7(8D2D3 + S17) − 51S10S14+

+ 6S10(12D
2
2 + 151S15) − 162D1D2S16 + 864D3(S16, C0)

(1),

N8(a, x, y) = − 32D2
3S2 − 108D1D3S10 + 108C3D1S11 − 18C1D3S11−

− 27S10S11 + 4C0D3(9D2D3 + 4S17) + 108S4S21,

N9(a, x, y) =11S2
14 − 2592D2

1S25 + 88D2(S14, C2)
(1)−

− 16D1D3(16D
2
2 + 19S14 − 152S15) − 8D2

2(7S14 + 32S15),

N10(a, x, y) = − 24D1D3 + 4D2
2 + S14 − 8S15,

N11(a, x, y) =S2
14 + 8D1D3[2D

2
2 − (S14 − 8S15)] − 2D2

2(5S14 − 8S15)+

+ 8D2(S14, C2)
(1),



CUBIC SYSTEMS WITH MAXIMUM NUMBER OF INVARIANT LINES 57

N12(a, x, y) = 135D1D3[8D
2
2 − (S14 − 20S15)] − 5D2

2(39S14 − 32S15)+

+ 5S2
14 − 160D4

2 − 1620D2
3S3 + 85D2(S14, C2)

(1)+

+ 81
(
(S23, C2)

(1), C0

)(1)
,

N13(a, x, y) = 2(136D2
3S2 − 126D2D3S4 + 60D2D3S7 + 63S10S11)−

− 18C3D1(S14 − 28S15) − 12C1D3(7S11 − 20S15)+

+ 4C0D3(21D2D3 + 17S17)+3C2(S14, C2)
(1)−192C2D2S15,

N14(a, x, y) = − 6D1D3 − 15S12 + 2S14 + 4S15,

N15(a, x, y) = 216D1D3(63S11 − 104D2
2 − 136S15) + 4536D2

3S6+

+ 4096D4
2 + 120S2

14 + 992D2(S14, C2)
(1)+

+ 135D3

[
28(S17, C0)

(1) + 5(S14, C1)
(1)

]
,

N16(a, x, y) = 2C1D3 + 3S10, N17(a, x, y) = 6D1D3 − 2D2
2 − (C3, C1)

(2),

N18(a, x, y) = 2D3
2 − 6D1D2D3 − 12D3S5 + 3D3S8,

N19(a, x, y) = C1D3(18D
2
1 − S6) − 3C0D3(4D1D2 + 6S5 − 3S8)+

+ 6C2D1S82D2(9D3S1 − 4D2S2) + 2D1(12D3S2 − 9C3S6)+

+ 4C0D
3
2 − 18D3(S4, C0)

(1),

N20(a, x, y) =3D4
2 − 8D1D

2
2D3 − 8D2

3S6 − 16D1D3S11 + 16D2D3S9,

N21(a, x, y) =2D1D
2
2D3 − 4D2

3S6 +D2D3S8 +D1(S23, C1)
(1)

where

A1 =S24/288, A2 = S27/72, A3 = (72D1A2 + (S22,D2)
(1)/24,

A4 =[9D1(S24−288A2)+4(9S11−2S14,D3)(2)+8(3S18−S20−4S22,D2)
(1)]/2733

are affine invariants, whereas the polynomials

T1 = C3, T2 = D3, T3 = S23/18, T4 = S25/6, T5 = S26/72,

T6 =
[
2C3(2D

2
2 − S14 + 8S15) − 3C1M1 − 2C2M2

]
/24/32,

T8 =
[
5D2(D

2
3 + 27T3 − 18T4) + 20D3S19+12

(
S16,D3

)(1)
−8D3S17

]
/5/25/33,

T9 =
[
9D1M1 + 2D2(D2D3 − 3S17 − S19 − 9S21) + 18

(
S15, C3

)(1)
−

− 6C2(2S20 − 3S22) + 18C1S26 + 2D3S14

]
/24/33,

T11 =
[
6
(
M1,D2

)(1)
−

(
M1, C2

)(2)
− 12

(
S26, C2

)(1)
+ 12D2S26+

+ 432(A1 − 5A2)C2

]
/27/34,

T13 =
[
27(T3, C2)

(2) − 18(T4, C2)
(2) + 48D3S22 − 216(T4,D2)

(1) + 36D2S26−

− 1296C2A1 − 7344C2A2 + (D2
3 , C2)

(2)
]
/27/34,

T14 =
[(

8S19 + 9S21,D2

)(1)
−D2(8S20 + 3S22) + 18D1S26 + 1296C1A2

]
/24/33,
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T15 = 8
(
9S19+2S21,D2

)(1)
+3

(
M1, C1

)(2)
−4

(
S17, C2

)(2)
+

+4
(
S14−17S15,D3

)(1)
−8

(
S14+S15, C3

)(2)
+432C1(5A1+11A2)+

+36D1S26−4D2(S18+4S22)
]
/26/33,

T21 =
(
T8, C3

)(1)
, T23 =

(
T6, C3

)(2)
/6, T24 =

(
T6,D3

)(1)
/6,

T26 =
(
T9, C3

)(1)
/4, T30 =

(
T11, C3

)(1)
, T31 =

(
T8, C3

)(2)
/24,

T32 =
(
T8,D3

)(1)
/6, T36 =

(
T6,D3

)(2)
/12, T37 =

(
T9, C3

)(2)
/12,

T38 =
(
T9,D3

)(1)
/12, T39 =

(
T6, C3

)(3)
/24/32, T42 =

(
T14, C3

)(1)
/2,

T44 =
(
(S23, C3)

(1),D3

)(2)
/5/26/33,

T74 =
[
27C0M

2
1 − C1

(
2835T11C3 + 3M1M2

)
+ 2834T11C

2
2+

+ C2M1(8D
2
2 + 54D1D3 − 27S11 + 27S12 − 4S14 + 32S15)−

− 54D1M1S16 − 54C3M1(2D1D2 − S8 + 2S9) − 2632T6M2

]
/28/34,

T133 =(T74, C3)
(1), T136 =

(
T74, C3

)(2)
/24, T137 =

(
T74,D3

)(1)
/6,

T140 =
(
T74,D3

)(2)
/12, T141 =

(
T74, C3

)(3)
/36, T142 =

(
(T74, C3)

(2), C3

)(1)
/72

where M1 = 9T3−18T4−D
2
3 , M2 = 2D2D3−S17 +2S19−6S21 and Ti, i = 1, ..., 142

are T -comitants of cubic systems (3) (see for details [27]). We note that these
invariant polynomials are the elements of the polynomial basis of T -comitants up to
degree six constructed by Iu. Calin [8].

2.2 Preliminary results

In order to determine the degree of the common factor of the polynomials
G̃i(a, x, y) for i = 1, 2, 3, we shall use the notion of the kth subresultant of two
polynomials with respect to a given indeterminate (see for instance [14,19]).

Following [16] we consider two polynomials f(z) = a0z
n+a1z

n−1+· · ·+ an, g(z) =
b0z

m +b1z
m−1 + · · ·+bm, in the variable z of degree n and m, respectively. Thus the

k–th subresultant with respect to variable z of the two polynomials f(z) and g(z)

will be denoted by R
(k)
z (f, g).

We say that the k–th subresultant with respect to variable z of the two polyno-
mials f(z) and g(z) is the (m+ n− 2k) × (m+ n− 2k) determinant

R(k)
z (f, g) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a0a1 a2 . . . . . .am+n−2k−1

0a0 a1 . . . . . .am+n−2k−2

00 a0 . . . . . .am+n−2k−3

. . . . . . . . . . . . . . . . . . . . . . . .

00 b0 . . . . . .bm+n−2k−3

0b0 b1 . . . . . .bm+n−2k−2

b0b1 b2 . . . . . .bm+n−2k−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣







(m− k) − times







(n− k) − times

(5)
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in which there are m− k rows of a’s and n− k rows of b’s, and ai = 0 for i > n, and
bj = 0 for j > m.

For k = 0 we obtain the standard resultant of two polynomials. In other words
we can say that the k–th subresultant with respect to the variable z of the two
polynomials f(z) and g(z) can be obtained by deleting the first and the last k rows
and the first and the last k columns from its resultant written in the form (5) when
k = 0.

The geometrical meaning of the subresultant is based on the following lemma.

Lemma 4 (see [14,19]). Polynomials f(z) and g(z) have precisely k roots in com-
mon (considering their multiplicities) if and only if the following conditions hold:

R(0)
z (f, g) = R(1)

z (f, g) = R(2)
z (f, g) = · · · = R(k−1)

z (f, g) = 0 6= R(k)
z (f, g).

For the polynomials in more than one variables it is easy to deduce from Lemma
4 the following result.

Lemma 5. Two polynomials f̃(x1, x2, ..., xn) and g̃(x1, x2, ..., xn) have a common
factor of degree k with respect to the variable xj if and only if the following conditions
are satisfied:

R(0)
xj

(f̃ , g̃) = R(1)
xj

(f̃ , g̃) = R(2)
xj

(f̃ , g̃) = · · · = R(k−1)
xj

(f̃ , g̃) = 0 6= R(k)
xj

(f̃ , g̃),

where R
(i)
xj (f̃ , g̃) = 0 in R[x1, . . . xj−1, xj+1, . . . , xn].

In paper [16] 23 configurations of invariant lines (one more configuration is con-
structed in [5]) are determined in the case, when the total multiplicity of these lines
(including the line at infinity) equals nine. For this purpose in [16] the authors
proved some lemmas concerning the number of triplets and/or couples of parallel
invariant straight lines which could have a cubic system. In [6] these results have
been completed.

Theorem 1 (see [6]). If a cubic system (3) possesses a given number of triplets
or/and couples of invariant parallel lines real or/and complex, then the following
conditions are satisfied, respectively:

(i) 2 triplets ⇒ V1 = V2 = U 1 = 0;
(ii) 1 triplet and 2 couples ⇒ V3 = V4 = U2 = 0;
(iii) 1 triplet and 1 couple ⇒ V4 = V5 = U2 = 0;
(iv) one triplet ⇒ V4 = U 2 = 0;
(v) 3 couples ⇒ V3 = 0;
(vi) 2 couples ⇒ V5 = 0.

In papers [6] and [7] all the possible configurations of invariant straight lines
of total multiplicity 8, including the line at infinity with its own multiplicity are
determined for cubic systems with at least three distinct infinite singularities. In
particular the next result is obtained.
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Lemma 6 (see [6]). A cubic system with four distinct infinite singularities could not
possess configuration of invariant lines of type (3, 2, 2). And it possesses a configura-
tion or potential configuration of a given type if and only if the following conditions
are satisfied, respectively

(3, 3, 1) ⇔ V1 = V2 = L1 = L2 = K1 = 0, K2 6= 0;
(3, 2, 1, 1) ⇔ V5 = U2 = K4 = K5 = K6 = 0, D4 6= 0;
(2, 2, 2, 1) ⇔ V3 = K4 = K2 = K8 = 0, D4 6= 0.

Let L(x, y) = Ux + V y + W = 0 be an invariant straight line of the family of
cubic systems (3). Then, we have

UP (x, y) + V Q(x, y) = (Ux+ V y +W )(Ax2 + 2Bxy + Cy2 +Dx+Ey + F ),

and this identity provides the following 10 relations:

Eq1 =(a30 −A)U + b30V = 0, Eq2 = (3a21 − 2B)U + (3b21 −A)V = 0,

Eq3 =(3a12 − C)U + (3b12 − 2B)V = 0, Eq4 = (a03 − C)U + b03V = 0,

Eq5 =(a20 −D)U + b20V −AW = 0,

Eq6 =(2a11 − E)U + (2b11 −D)V − 2BW = 0,

Eq7 =a22U + (b22 − E)V − CW = 0, Eq8 = (a10 − F )U + b10V −DW = 0,

Eq9 =a01U + (b01 − F )V − EW = 0, Eq10 = a00U + b00V − FW = 0.

(6)

As it was mentioned earlier, the infinite singularities (real or complex) of systems
(3) are determined by the linear factors of the polynomial C3. So in the case of two
distinct infinite singularities they are determined either by one triple and one simple
real or two double real (or complex) factors of the polynomial C3(x, y). We consider
here the first case.

Lemma 7 (see [20]). A cubic system (3) possesses the infinite singularities deter-
mined by one triple and one simple factors of the invariant polynomial C3(x, y) if
and only if the conditions D1 = D3 = D4 = 0, D2 6= 0 hold. Moreover the cu-
bic homogeneities of this system could be brought via a linear transformation to the
canonical form

x′ =(u+ 1)x3 + vx2y + rxy2,

y′ =ux2y + vxy2 + ry3, with C3 = x3y.
(7)

3 The proof of the Main Theorem

Assume that a cubic system possesses two distinct infinite singularities which
are determined by one simple and one triple real factors of the polynomial C3. Then
considering Lemma 7 we obtain that systems (3) via a linear transformation become:

x′ = p0 + p1(x, y) + p2(x, y) + (u+ 1)x3 + vx2y + rxy2,
y′ = q0 + q1(x, y) + q2(x, y) + ux2y + vxy2 + ry3 (8)
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with C3 = x3y. Hence, the infinite singular points are located at the “ends” of the
following straight lines: x = 0 and y = 0.

The proof of the Main Theorem proceeds in 4 steps.

First we construct the cubic homogeneous parts (P̃3, Q̃3) of systems for which
the corresponding necessary conditions provided by Theorem 1 in order to have the
given number of triplets or/and couples of invariant parallel lines in the respective
directions are satisfied.

Secondly, taking cubic systems ẋ = P̃3, ẏ = Q̃3 we add all quadratic, linear and
constant terms and using the equations (6) we determine these terms in order to get
the needed number of invariant lines in the needed configuration. Thus the second
step ends with the construction of the canonical systems possessing the needed
configuration.

The third step consists in the determination of the affine invariant conditions
necessary and sufficient for a cubic system to belong to the family of systems (con-
structed at the second step) which possess the corresponding configuration of invari-
ant lines.

And finally, in the case of the existence of multiply invariant lines in a potential
configuration we construct the corresponding perturbed systems possessing 8 distinct
invariant lines (including the line at infinity).

3.1 Construction of the corresponding cubic homogeneities

In what follows we construct the cubic homogeneous parts of systems (8) for
each one of the possible configurations mentioned in Lemma 6.

a) The case of the configuration (3, 3, 1). In this case we have two triplets of
parallel invariant straight lines and according to Theorem 1 the condition V1 = V2 =
U1 = 0 is necessary for systems (8). A straightforward computation of the value of

V1 provides V1 = 16

4∑

j=0

V1jx
4−jyj, where

V10 = u(2u+ 3), V12 = 4ru+ 3r + 2v2,

V11 = v(4u + 3), V13 = 4vr, V14 = 2r2.

Therefore from V1 = 0 it results v = r = 0 and u(2u+ 3) = 0, and we consider two
subcases: u = 0 and u = −3/2. For u = 0 we get the cubic homogeneous system:

ẋ = x3, ẏ = 0 (9)

whereas for u = −3/2, after the time rescaling t→ −2t, we have

ẋ = x3, ẏ = 3x2y. (10)

It has to be underlined that for systems (9) and (10) the relation V2 = U1 = 0
holds.
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b) The case of the configuration (3, 2, 1, 1). According to Theorem 1, if a cu-
bic system possesses 7 invariant straight lines in the configuration (3, 2, 1, 1), then
necessarily the conditions V4 = V5 = U2 = 0 hold.

We consider again systems (8). A straightforward computation of the value of

V5 yields: V5 =
9

32

4∑

j=0

V5jx
4−jyj, where

V50 = −u(3r + ru− v2), V52 = 6r2u,

V51 = 4ruv, V53 = 0, V54 = −r3.

Hence r = 0 which gives V 4 = 0 and U2 = −12288v2x2(ux+ vy)2. So the condition
U2 = 0 is equivalent to v = 0 and in this case we have V 5 = V 4 = U 2 = 0. As a
result we get the family of systems

ẋ = (u+ 1)x3, ẏ = ux2y (11)

if u 6= 0, whereas if u = 0 we arrive at system (9).

c) The case of the configuration (2, 2, 2, 1). According to Theorem 1 if a cubic
system possesses 7 invariant straight lines in the configuration (2, 2, 2, 1), then
necessarily the condition V3 = 0 holds.

So we shall consider the family of systems (8) and we force the condition V3 = 0
to be satisfied. We have:

V30 = u(3 + u), V31 = 2uv, V32 = −3r + 2ru+ v2, V33 = 2rv, V34 = r2

where V3j are the elements of V3 = −32

4∑

j=0

V3jx
4−jyj. So the condition V34 = 0 is

equivalent to r = 0 and, in consequence, V33 = V34 = 0 and V32 = v2. So v = 0
and the condition V30 = 0 gives u(u + 3) = 0. Therefore if u = −3 due to the time
rescaling t→ −t we arrive at the cubic homogeneities

ẋ = 2x3, ẏ = 3x2y (12)

whereas in the case u = 0 we get system (9).
So we get three specific systems (9), (10) and (12) and one-parameter family of

systems (11). As it can be observed, the first three systems belong to this family
for some values of the parameter u: system (9) for u = 0, system (10) for u = −3/2
(after the time rescaling t → −2t) and system (12) for u = −3 (after the time
rescaling t→ −t).

On the other hand for systems (11) we have V1 = 16u(3+2u)x4, V3 = −32u(3+
u)x4 and therefore we arrive at the next proposition.

Proposition 1. Assume that for a cubic homogeneous system the conditions D1 =
D3 = D4 = 0 and D2 6= 0 hold. Then this system can be brought to one of the
canonical systems indicated below if and only if the corresponding conditions are
satisfied, respectively:
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(i) V1 = V3 = 0, ⇒ system (9), (ii) V1 = 0, V3 6= 0 ⇒ system (10),

(iii) V1 6= 0, V3 = 0 ⇒ system (12), (iv)V1V3 6= 0, V5 = U2 = 0 ⇒ system (11).

Thus for the further investigation four different homogeneous systems remain:
(9), (10), (11) and (12). However in this article, we will consider only the cubic
systems with cubic homogeneities of the form (9), as in the statement of the Main
Theorem we assume the additional condition V1 = V3 = 0.

We observe that if for perturbed systems some condition K(x, y) = 0 holds,
where K(x, y) is an invariant polynomial, then this condition must hold also for
the initial (unperturbed) systems. So considering Lemma 6 we arrive at the next
remark.

Remark 4. Assume that a cubic system with two distinct infinite singularities pos-
sesses a potential configuration of a given type. Then for this system the following
conditions must be satisfied, respectively:

(a1) ( 3, 3, 1 ) ⇒ V1 = V2 = L1 = L2 = K1 = 0;

(a2) ( 3, 2, 1, 1 ) ⇒ V5 = U2 = K4 = K5 = K6 = 0;

(a3) ( 2, 2, 2, 1 ) ⇒ V3 = K4 = K2 = K8 = 0.

3.2 Construction of the configurations and of the corresponding

normal forms

In this case, considering (8) and (9) via a translation of the origin of coordinates
we can consider g = 0 and hence we get the cubic systems

ẋ = a+ cx+ x3 + dy + 2hxy + ky2, ẏ = b+ ex+ lx2 + fy + 2mxy + ny2 (13)

for which we have H(X,Y,Z) = Z (see Notation 1).
Now we force the necessary conditions given in Remark 4 which correspond to

each type of configuration. We claim that if any of the conditions (a1), (a2) or (a3)
are satisfied for a system (13) then k = h = n = 0 and this condition is equivalent
to K5 = 0. We divide the proof of this claim in three subcases defined by (a1)–(a3).

(a1). For systems (13) we calculate: L1 = 0 and

Coefficient[L2, xy] = −20736(12h2 + 7km− 6hn + 3n2) = 0,

Coefficient[K1, y
2] = 3967 · 21839547319k6 = 0.

Therefore we get k = 0 and as the discriminant of the binary form 4h2 − 2hn + n2

is negative we obtain h = n = 0 (and this implies L2 = K1 = 0).
(a2). In the same manner in the case of the configuration (3, 2, 1, 1) we determine

K4 = K6 = 0 and

K5 = −180m(h − n)x4 + 60(4h2 − 3km− 2hn + n2)x3y − 240k2xy3.
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From K5 = 0 it results k = 0 and we get the same binary form 4h2 −2hn+n2 which
leads to h = n = 0. Consequently K5 = 0 if and only if k = h = n = 0.

(a3). We calculate K4 = 0 and Coefficient[L2, x
2y7] = 2k3 = 0, i.e. k = 0. Then

calculations yield

Coefficient[K2, x
5y4] = −2n(h−n)2 =0, Coefficient[K8, x

3y] = 2(4h2 +14hn+n2)=0

and evidently we obtain h = n = 0 (then K2 = K8 = 0) and this completes the proof
of the claim.

Remark 5. Since infinite singularities of systems (8) are located on the ”ends” of
the axis x = 0 and y = 0, the invariant affine lines must be either of the form
Ux + W = 0 or V y + W = 0. Therefore we can assume U = 1 and V = 0 (for
the direction x = 0) and U = 0 and V = 1 (for the direction y = 0). In this case,
consideringW as a parameter, six equations among (6) become linear with respect to
the parameters {A,B,C,D,E, F} (with the corresponding non–zero determinant)
and we can determine their values, which annulate some of the equations (6). So
in what follows we will examine only the non-zero equations containing the last
parameter W .

Since for systems (8) the condition k = h = n = 0 is equivalent to K5 = 0 we
assume this condition to be fulfilled.

We begin with the examination of the direction x = 0 (U = 1, V = 0). So,
considering (6) and Remark 5 for systems (13) we have: Eq9 =d, Eq10 =a−cW−W 3.
So in the direction x = 0 we could have three invariant lines (which could coincide)
and this occurs if and only if d = 0. Thus we arrive at the family of systems

ẋ = a+ cx+ x3, ẏ = b+ ex+ lx2 + fy + 2mxy (14)

for which we calculate

H(X,Z) = Z(X3 + cXZ2 + aZ3). (15)

Remark 6. Any invariant line of the form x+ α = 0 (i.e. in the direction x = 0) of
cubic systems (3) must be a factor of the polynomials P (x, y), i.e. (x+α) | P (x, y).

Indeed, according to the definition, for an invariant line ux + vy + w = 0 we
have uP + vQ = (ux + vy + w)R(x, y), where the cofactor R(x, y) generically is a
polynomial of degree two. In our particular case (i.e. u = 1, v = 0, w = α) we obtain
P (x) = (x+ α)R(x), which means that (x+ α) divides P (x).

This remark could be applied for any cubic systems when we examine the direc-
tion x = 0. Similarly, for an invariant line y + β = 0 in the the direction y = 0 it is
necessary (y + β = 0) | Q(x, y).
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Considering systems (14) we calculate

G1/H =lX4 +X3
[
4mY + 2(e − lm)Z)

]
+X2

[
(3f − 4m2)Y Z + (3b− cl − lf−

+ −2em)Z2
]
+X

[
− 4fmY Z2 + (−2al − ef − 2bm)Z3

]
+ (cf − f2−

− 2am)Y Z3 + (bc− ae− bf)Z4 ≡ F1(X,Y,Z),

G2/H =(X3 + cXZ2 + aZ3)
{

2lX3 +
[
X2(6mY + (3e − 2lm)Z

]
+X

[
(3f−

− 4m2)Y Z + (3b− cl − 2em)Z2
]
− 2fmY Z2 + (−al − 2bm)Z3

]

≡

≡ P ∗(X,Z)F2(X,Y,Z),

G3/H =24(lX2 + 2mXY + eXZ + fY Z + bZ2)(X3 + cXZ2 + aZ3)2 ≡

≡ 24Q∗(X,Y,Z) [P ∗(X,Z)]2 ,
(16)

where P ∗(X,Z) and Q∗(X,Y,Z) are the homogenization of the polynomials P (x)
and Q(x, y) of systems (14). It is clear that these systems are degenerate if and only
if the polynomials P (x) and Q(x, y) have a nonconstant common factor (depending
on x) and this implies the existence of such a common factor (depending on X and
Z) of the polynomials P ∗(X,Z) and Q∗(X,Y,Z). So for non-degenerate systems
the condition

R
(0)
X (P ∗(X,Z), Q∗(X,Y,Z)) 6= 0 (17)

must hold. We have the next lemma.

Lemma 8. For a non-degenerate system (14) the polynomial P ∗(X,Z) could not be
a factor of G1/H, i.e. P ∗(X,Z) does not divide F1(X,Y,Z).

Proof. Suppose the contrary that P ∗(X,Z) divides F1(X,Y,Z). Then considering
the form of the polynomial P ∗(X,Z) (which contains the term X3) by Lemma 5

the following conditions are necessary and sufficient: R
(0)
X (F1, P

∗)=R
(1)
X (F1, P

∗)=

R
(2)
X (F1, P

∗) = 0. We calculate R
(2)
X (F1, P

∗) =
[
(3f − 4m2)Y + (3b − 2cl − lf −

2em)
]
Z = 0 and this implies f = 4m2/3 and b = 2(3cl + 3em + 2lm2)/9. Then we

obtain

R
(1)
X (F1, P

∗) =
Z4

81

[
12m(3c+4m2)Y +(27al+18ce− 6clm+24em2 +8lm3)Z

]2
= 0

and we consider two cases: m 6= 0 and m = 0.

1) If m 6= 0 then we may assume m = 1 and e = 0 due to the change (x, y, t) →
(mx, y−e/2m, t/m2) and in this case the above condition gives us c = −4/3 and a =

−16/27. However in this case we have R
(0)
X (P ∗, Q∗) = 0, i.e. we get a contradiction

with the condition (17).

2) Assume now m = 0. In this case we obtain

R
(1)
X (F1, P

∗) = (3al + 2ce)2Z6 = 0,

R
(0)
X (F1, P

∗) = (27a2 + 4c3)
[
27a2l3 + 27ae(cl2 − e2) + 2c2l(cl2 + 9e2)

]
Z12/27 = 0,

R
(0)
X (P ∗, Q∗) =

[
27a2l3 + 27ae(cl2 − e2) + 2c2l(cl2 + 9e2)

]
/27 6= 0
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and this implies c 6= 0, otherwise the second equality yields a = 0 and then

R
(0)
X (P ∗, Q∗) = 0. So c 6= 0 and the first equation gives e = −3al/(2c) and then we

arrive at the contradiction:

R
(0)
X (F1, P

∗) =
l3Z12

216c3
(27a2 + 4c3)3 = 0, R

(0)
X (P ∗, Q∗) =

l3Z6

216c3
(27a2 + 4c3)2 6= 0.

This completes the proof of the lemma.

Now we examine the direction y = 0. The following proposition holds.

Proposition 2. For the existence of an invariant line of systems (14) in the direc-
tion y = 0 it is necessary and sufficient

l = 0, ef − 2bm = 0, f2 +m2 6= 0. (18)

Proof. Indeed, considering the equations (6) for a system (14) we obtain

Eq5 = l, Eq8 = e− 2mW, Eq10 = b− fW.

Clearly, Eq5 = 0 is equivalent to l = 0. On the other hand in order to have a line in
the direction y = 0 the condition f2 +m2 6= 0 is necessary. Therefore the condition
Res W (Eq8, Eq10) = ef − 2bm = 0 is necessary and sufficient for the existence of a
common solution W = W0 of the equations Eq8 = 0 and Eq10 = 0. This completes
the proof of the proposition.

3.2.1 The case m 6= 0, l 6= 0

By Proposition 2 we could not have invariant line in the direction y = 0. So after
the transformation (x, y, t) → (mx,−e/2m + ly, t/m2) we can consider l = m = 1
and e = 0. As a result we arrive at the family of systems

ẋ =a+ cx+ x3 ≡ P (x), ẏ = b+ x2 + fy + 2xy ≡ Q(x, y). (19)

Proposition 3. Systems (19) possess invariant lines of total multiplicity 8 if and
only if

a = 0, f = c = −
4

9
, b =

4

27
. (20)

Proof. Sufficiency. Assume that (20) are satisfied. Then for the system (19)
we calculate H(X,Y,Z) = −3−8X2(3X − 2Z)3Z(3X + 2Z) and hence, we have 8
invariant straight lines (including the line at infinity).

Necessity. Consider systems (19) for which the polynomial H has the form (15).
The degree of this polynomial equals four, but should be seven . Therefore we have
to find out the conditions to increase the degree of the polynomial H up to seven,
namely we have to find out additionally a common factor of degree three of the
polynomials Gi, i = 1, 2, 3 (see Lemma 2 and Notation 1).

Considering (16) for systems (19) we obtain G1/H|Z=0 = X3(X+4Y ). Therefore
we conclude that all three polynomials could only have common factors of the form
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X + α = 0, which by Remark 6 must be factors of the polynomial P ∗(X,Z). We
observe that P ∗(X,Z) is a common factor of the polynomials G2/H and G3/H and,
moreover, in the last one this factor is of the second degree.

According to Lemma 8 the polynomial P ∗(X,Z) could not be a factor of G1/H,
i.e. of the polynomial F1(X,Y,Z). Thus not all the factors of the polynomial
P ∗(X,Z) are also the factors in F1(X,Y,Z). This leads us to the conclusion that
the polynomial F2(X,Y,Z) must have a common factor with P ∗(X,Z), i.e. the
condition

R
(0)
X (F2, P

∗) = (8 + 27a+ 18c)Z3R
(0)
X (P ∗, Q∗) = 0

has to be fulfilled. Due to (17) this gives c = −(8 + 27a)/18 and we obtain that the
polynomial ψ = (3X − 2Z) is a common factor of the polynomials F2(X,Y,Z) and
P ∗(X,Z). On the other hand it must be a factor in F1(X,Y,Z). We calculate

R
(0)
X (F1, ψ) = − (8 + 27a+ 18f)Z3(12Y + 9fY + 4Z + 9bZ)/2 = 0,

R
(0)
X (P ∗, Q∗) =(12Y + 9fY + 4Z + 9bZ)Ψ(Y,Z) 6= 0,

where Ψ(Y,Z) is a polynomial. So the above conditions give us the equality a =
−2(4 + 9f)/27 and then we obtain f = c. In this case calculations yield

G1/H =
1

27
(3X − 2Z)

[
9X3 + 12X2(3Y − Z) + 3(9c − 4)XY Z+

+ (27b − 18c− 8)XZ2 − 2(4 + 9c)Y Z2
]
≡

1

27
(3X − 2Z)F ′

1(X,Y,Z),

G2/H =
1

729
(3X − 2Z)2

[
18X2 + 54XY − 6XZ + 27cY Z + (27b − 9c− 4)Z2

]
×

× (9X2 + 6XZ + 4Z2 + 9cZ2) ≡
1

729
(3X − 2Z)2F ′

2(X,Y,Z)P̃ (X,Y,Z)

and we obtain

R
(0)
X

(

F ′
1, F̃

′
2

)

= − 729Z2
[
36Y 2 − 3(4 + 9c)Y Z + (4 − 27b + 9c)Z2

]
Γ(Y,Z),

R
(0)
X

(

F ′
1, P̃

)

=729(4 + 9c)Z4Γ(Y,Z),

R
(0)
X (P ∗, Q∗) =

1

729
Z3(12Y + 9cY + 4Z + 9bZ)Γ(Y,Z),

where Γ(Y,Z) is a polynomial. Since R
(0)
X

(

F ′
1, F̃

′
2

)

6= 0 due to R
(0)
X (P ∗, Q∗) 6= 0,

we deduce that for the existence of a common factor of degree 3 of the polynomials

G1/H and G2/H the condition R
(0)
X

(

F ′
1, P̃

)

= 0 is necessary, i.e. c = −4/9 and we

get c = f = −4/9 and a = 0. In this case we obtain

G1/H =
1

9
X(3X − 2Z)(3X2 + 12XY − 4XZ − 8Y Z + 9bZ2) ≡

1

9
X(3X − 2Z)F ′′

1 ,

P ∗(X,Z) = X(3X − 2Z)(3X + 2Z)/9



68 CRISTINA BUJAC

and since X could not be a factor of F ′′
1 (X,Y,Z) and, moreover, as it was proved

earlier the polynomial P ∗(X,Z) could not divide G1/H, we deduce that the factor
of F ′′

1 (X,Y,Z) must be 3X − 2Z. So the condition

R
(0)
X

(
F ′′

1 , 3X − 2Z
)

= 3(27b − 4)Z2 = 0

is necessary and this implies b = 4/27, i.e. we arrive at the conditions (20) and this
completes the proof of Proposition 3.

Considering the conditions (20) we obtain the family of systems which after the
suitable transformation (x, y, t) → (2x/3, y + 1/3, 9t/4) becomes

ẋ =(x− 1)x(1 + x), ẏ = x− y + x2 + 3xy (21)

with H(X,Y,Z) = −X2(X −Z)3Z(X + Z). We observe that these systems possess
3 finite singularities: (0, 0), (1,−1) and (−1, 0). On the other hand considering
Lemma 3 for systems (21) we calculate:

µ0 = µ1 = µ2 = µ3 = µ4 = µ5 = 0, µ6 = 8x6 6= 0.

So by Lemma 3 all other 6 finite singular points have gone to infinity and collapsed
with the singular point [0, 1, 0] located on the “end” of the invariant line x = 0.

Thus this system possesses 3 real distinct invariant affine lines (besides the double
infinite line) and namely: one triple, one double and one simple, all real and distinct.
Therefore we obtain the configuration Config. 8.23.

3.2.2 The case m 6= 0, l = 0

As it was mentioned earlier we may assume m = 1 and e = 0 due to the change
(x, y, t) → (mx, y − e/2m, t/m2). So we get the family of systems

ẋ =a+ cx+ x3, ẏ = b+ fy + 2xy (22)

which by Proposition 2 possess invariant line in the direction y = 0 if and only
if b = 0.

1) The subcase b 6= 0. We claim that in this case the above systems could
not have invariant lines of total multiplicity 8. Indeed, due to the rescaling y → by
we can consider b = 1 and we obtain that for systems (22) the polynomial H of the
form (15) has the degree 4, but should be 7. Moreover we have G1/H|Z=0 = 4X3Y
and hence the polynomials Gk/H, k = 1, 2, 3 (see their values (16) for m = b = 1
and l = e = 0) could have only the common factors of the form X + αZ.

Considering Remark 6 and Lemma 8 we arrive again at the conclusion that the
polynomial F2(X,Y,Z) must have a common factor with P ∗(X,Z). We determine
that for systems (22) F2(X,Y,Z) = (3X − 2Z)P ∗(X,Z)Q∗(X,Y,Z) and hence due
to the condition (17) and according to Lemma 8 (which says that P ∗(X,Z) could not
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divide G1/H) we conclude that 3X − 2Z must be a double factor in G1/H. However
we obtain

R
(1)
X

(
(3X − 2Z)2,G1/H

)
= 162Z3 6= 0,

i. e. for systems (22) we could not increase the degree of H(X,Y,Z) up to 7 and
this completes the proof of our claim.

2) The subcase b = 0. We obtain the family of systems

ẋ = a+ cx+ x3 ≡ P (x), ẏ = y(f + 2x) ≡ yQ̃(x). (23)

Proposition 4. Systems (23) possess invariant lines of total multiplicity 8 if and
only if one of the following sets of conditions holds:

f = c, a = −
2(4 + 9c)

27
, (4 + 3c)(4 + 9c) 6= 0; (24)

f =
−2(3c + 2)

3
, a =

2(4 + 9c)

27
, (4 + 3c)(4 + 9c) 6= 0. (25)

Proof. Sufficiency. Assume that (24)
(
respectively (25)

)
are satisfied. Then consid-

ering systems (23) we calculate H(X,Y,Z) = 3−8Y (3X−2Z)3Z(9X2+6XZ+4Z2+
9cZ2) ( respectivelyH(X,Y,Z) = 3−92Y Z(3X+2Z)(9X2−6XZ+4Z2+9cZ2)2) and
hence, we have 8 invariant straight lines, including the line at infinity. Moreover for

the corresponding systems we calculate R
(0)
X (G2/H,G1/H) = 3112(4+3c)2(4+9c)Z3

(respectively R
(0)
X (G2/H,G1/H) = −315(4 + 3c)2(4 + 9c)Z3) and this leads to the

condition (4 + 3c)(4 + 9c) 6= 0 which does not allow us to have 9 invariant lines.
Necessity. For systems (23) we have H(X,Y,Z) = Y Z(X3 + cXZ2 + aZ3).

Thus according to Lemma 2 we conclude that we need additionally a non-constant
factor of the second degree of H. For systems (23) we calculate (see Notation 1)

G1/H =4X3 − (4 − 3f)X2Z − 4fXZ2 − (2a− cf + f2)Z3,

G2/H =(3X − 2Z)(2X + fZ)(X3 + cXZ2 + aZ3) ≡ (3X − 2Z)Q̃∗(X,Z)P ∗(X,Z),

G3/H =24(2X + fZ)(X3 + cXZ2 + aZ3)2 ≡ Q̃∗(X,Z) [P ∗(X,Z)]2 ,

where P ∗(X,Z) and Q̃∗(X,Z) are the homogenization of the polynomial P (x) and
Q̃(x) from (23).

We observe that G1/H|Z=0 = 4X3 and we conclude that all three polynomials
could not have as a common factor Z. On the other hand these polynomials do not
depend on Y . So common factors of the above polynomials could be only factors
of the form X + αZ, which by Remark 6 must be also factors in P ∗(X,Z). So
considering this remark and Lemma 8 we arrive at the two possibilities: the linear
form 3X − 2Z either is a common factor of the polynomials G1/H and P ∗(X,Z) or
it is not.

a) Assume first that 3X − 2Z is a common factor of G1/H and P ∗(X,Z). Then
the following condition must be satisfied:

R
(0)
X (3X − 2Z,P ∗) =(8 + 27a+ 18c)Z3 = 0
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and this implies a = −2(4 + 9c)/27. Herein we have

R
(0)
X (3X − 2Z,G1/H, ) =9(c− f)(4 + 3f)Z3 = 0,

R
(0)
X (P ∗(X,Z), Q∗(X,Z)) =(4 + 3f)(16 + 36c− 12f + 9f2)Z3/27 6= 0

and hence the condition f = c must hold, which leads to the first two conditions
(24).

b) Suppose now that 3X − 2Z is not a common factor of G1/H and P ∗(X,Z).
Then clearly these polynomials must have a common factor of the second degree.
So the conditions

R
(0)
X (P ∗,G1/H)=(8a− 4cf − f3)Φ1(a, c, f)Z9 =0, R

(1)
X (P ∗,G1/H)=Φ2(a, c, f)4 =0,

R
(0)
X (P ∗, Q∗)=(4cf + f3 − 8a)Z3 6=0

must hold, where Φ1 = 8a+27a2+4c2+4c3+18af−f3−cf(4+3f), Φ2 = 16c2+

2c(8 + 6f + 3f2) + 3(6af − 8a+ 4f2 + f3). Due to R
(0)
X (P ∗, Q∗) 6= 0 we must have

Φ1 = Φ2 = 0 and we calculate

R(0)
a (Φ1,Φ1) = 3(4 + 6c+ 3f)2(4c+ 3f2)(16 + 16c+ 3f2) = 0.

We claim that the condition 4 + 6c + 3f = 0 has to be satisfied for non-degenerate
systems (23). Indeed assuming c = −3f2/4 (respectively c = −(16 + 3f2)/16)) we
get that 4a + f3 (respectively 32a + 16f − f3) is a common factor of Φ1 and Φ2,

however in this case the polynomial R
(0)
X (P ∗, Q∗) gives the value −2(4a+f3)Z3 6= 0

(respectively −(32a+ 16f − f3)Z3/4 6= 0).

So 4+6c+3f = 0, i.e f = −2(2+3c)/3 and in this case the common factor of Φ1

and Φ2 is (8−27a+18c). Hence the condition Φ1 = Φ2 = 0 implies a = 2(4+9c)/27
and this leads to the conditions (25).

Next we construct the respective canonical forms of systems (23) when either
the conditions (24) or (25) of Proposition 4 are satisfied.

(i) Conditions (24). We observe that in this case due to a translation and an
additional notation, namely r = (4 + 3c)/3, we arrive at the family of systems

ẋ =x(r + 2x+ x2), ẏ = (r + 2x)y (26)

for which we have H(X,Y,Z) = X3Y Z(X2 + 2XZ + rZ2). So the polynomial
H(X,Y,Z) has the degree 7 and by Lemma 2 the above systems possess invariant
lines of total multiplicity 8 (including the line at infinity, which is double). Now
we need an additional condition under the parameter r which conserves the degree

of the polynomial H(X,Y,Z). For systems (26) we calculate R
(0)
X (G3/H,G1/H) =

48r3(8 − 9r)2Z5 6= 0. Consequently we get the condition r(8 − 9r) 6= 0 which for
systems (23) is equivalent to (4 + 3c)(4 + 9c) 6= 0 (see the last condition from (24)).
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Besides the infinite line Z = 0 (which is double) systems (26) possess six affine
invariant lines, namely:

L1,2,3 = x, L4 = y, L5,6 = r + 2x+ x2.

We detect that the lines L5,6 = 0 are either complex or real distinct or real coinciding,
depending on the sign of the discriminant of the polynomial x2+2x+r, which equals
∆ = 4(1− r). We also observe that systems (26) possess 3 finite singularities: (0, 0)
and (−1 ±

√
1 − r, 0) which are located on the invariant line y = 0. On the other

hand considering Lemma 3 for systems (26) we calculate:

µ0 = µ1 = µ2 = µ3 = µ4 = µ5 = 0, µ6 = r3x6 6= 0.

So by Lemma 3 all other 6 finite singular points have gone to infinity and collapsed
with the singular point [0, 1, 0] located on the “end” of the invariant line x = 0.
Moreover by this lemma systems (26) became degenerate only if r = 0, and we
observe that in this case the system indeed is degenerate.

We consider the three possibilities given by the value of the discriminant ∆.

a) The possibility ∆ > 0. Then 1 − r > 0, i. e. r < 1. We set the notation
1 − r = u2 (i. e. r = 1 − u2) which leads to the systems

ẋ = (1 − u+ x)x(1 + u+ x), ẏ = (1 − u2 + 2x)y

possessing one triple and three simple distinct real invariant lines. Comparing the
line x = ∓u − 1 with x = 0 we conclude that if |u| > 1 (i. e. r < 0) then in the
direction x = 0 the triple invariant line is situated in the domain between two simple
ones, whereas in the case |u| < 1 (i. e. 0 < r < 1) the triple line is located outside
this domain. As a result we get Config. 8.24 in the case of r < 0 and Config. 8.25
in the case of 0 < r < 1.

b) The possibility ∆ = 0. Then r = 1 and we obtain the configuration
Config. 8.26.

c) The possibility ∆ < 0. In this case r > 1 and we get systems possessing two
complex, one simple and one triple real all distinct invariant lines and this leads to
the configuration Config. 8.27.

(ii) Conditions (25). In this case after the translation of the origin of coordinates
to the singular point (−2/3,−e/2) and setting a new parameter r = (4 + 3c)/3 we
obtain the systems

ẋ =(r − 2x+ x2)x, ẏ = 2(x− r)y. (27)

For these systems we have H(X,Y,Z) = 2XY Z(X2 − 2XZ + rZ2)2. Besides the
double infinite line systems (27) possess 4 affine invariant lines:

L1 = x, L2 = y, L3,4 = x2 − 2x+ r,
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where the lines L3,4 = 0 are double ones. We denote by ∆ = 4(1−r) the discriminant
of the polynomial x2−2x+r and we observe that for ∆ = 0 (i.e. r = 1) the systems
become degenerate.

We also observe that systems (27) possess 3 finite singularities: (0, 0) and
(1 ±

√
1 − r, 0) which are located on the invariant line y = 0. On the other hand

considering Lemma 3 for systems (26) we calculate:

µ0 = µ1 = µ2 = µ3 = µ4 = µ5 = 0, µ6 = 8(1 − r)r2x6.

If r(r − 1) 6= 0 by Lemma 3 all other 6 finite singular points have gone to infinity
and collapsed with the singular point [0, 1, 0] located on the “end” of the invariant
line x = 0. Moreover by this lemma systems (27) became degenerate only if either
r = 0 or r = 1 and in both cases we get degenerate systems.

Thus we have the following two possibilities:

a) The possibility ∆ > 0. Then r < 1 and denoting r = 1 − v2 we obtain the
systems

ẋ =(1 + v − x)x(1 − v − x), ẏ = 2(v2 − 1 + x)y (28)

with H(X,Y,Z) = 2XY Z(X−Z−vZ)2(X−Z+vZ)2. Examining the lines x = 1±v
and x = 0 we conclude that if |v| > 1 then we get a simple invariant line between two
double real lines in the directions x = 0 and consequently we arrive at Config. 8.28.
In the case of |v| < 1 these two double real lines are located on the right–hand side
of the simple invariant line. So we get Config. 8.29.

b) The possibility ∆ > 0. In this case r > 1 and systems (27) possess 2 real
simple, 2 complex double invariant lines, all distinct ⇒ Config. 8.30.

3.2.3 The case m = 0, l 6= 0

We claim that in this case systems (14) could not possess invariant lines of total
multiplicity 8.

Indeed, since l 6= 0 by Proposition 2 we could not have a line in the direction
y = 0. Via the rescaling (x → x, y → ly, t → t) we can consider l = 1 and therefore
we arrive at the systems

ẋ =a+ cx+ x3, ẏ = b+ ex+ x2 + fy (29)

for which the polynomial H has the form (15) and Gi/H (i = 1, 2, 3) are the polyno-
mials (16) for the particular case m = 0 and l = 1. We observe that G1/H|Z=0 = X4

and hence Z could not be a common factor of these polynomials. Since we have no
invariant lines in the direction y = 0, in what follows we shall examine only the con-
ditions given by resultants with respect to X. According to (16) and condition (17)
the polynomial F1(X,Y,Z) must have a common factor of degree 3 with

[
P ∗(X,Y )]2.

For systems (29) we calculate Coefficient[R
(2)
X

(
F1,

[
P ∗]2

)
, Y 4Z4] = 81f4. Clearly the

condition f = 0 is necessarily to get a common factor of the degree 3. Then we have

R
(0)
X

(
F1,

[
P ∗]2

)
=(27a2+4c3)2[Φ(a, b, c, e)]2Z24 =0, R

(0)
X (Q∗, P ∗)=Φ(a, b, c, e)Z6 6=0
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where Φ(a, b, c, e) is a polynomial. So the above conditions imply 27a2 + 4c3 = 0.
First we examine the possibility a = 0 and we get c = 0. Then we calculate

R
(0)
X (Q∗, P ∗) =b3Z6 6= 0, R

(2)
X

(
F1,

[
P ∗]2

)
= 81b4Z8 = 0

and we arrive at the contradictory condition (0 6= b = 0). So it remains to examine
the case when a 6= 0. Since in this case c 6= 0 we denote a = 2a1c which implies
c = −27a2

1. We calculate

R
(0)
X (Q∗, P ∗) =(9a2

1 + b− 3a1e)
2(36a2

1 + b+ 6a1e)Z
6 6= 0,

R
(1)
X

(
F1,

[
P ∗]2

)
=23310a5

1(9a
2
1 + b− 3a1e)

3(36a2
1 + b+ 6a1e)

2Z15 = 0

and we also get a contradiction which completes the proof of our claim.

3.2.4 The case m = 0, l = 0

We divide our examination in two subcases: e 6= 0 and e = 0.

1) The subcase e 6= 0. Then due to the rescaling (x, y, t) → (ex, y, t/e2) we
can consider e = 1 and therefore we arrive at the systems

ẋ = a+ cx+ x3, ẏ = b+ x+ fy. (30)

Proposition 5. Systems (30) possess invariant lines of total multiplicity 8 if and
only if the following conditions hold:

f = −2c, a = 0. (31)

Proof. Sufficiency. Assume that (31) is satisfied. Then considering systems (30)
we calculate H(X,Y,Z) = XZ2(X2 + cZ2)2 and hence, we have invariant straight
lines of total multiplicity 8 (including the line at infinity). On the other hand we

could not have 9 lines, because R
(0)
X (G2/H,G1/H) = −27(2cY − bZ)3 = 0 if and

only if b = c = 0. However in this case we get a degenerate system.
Necessity. For systems (30) we have H(X,Y,Z) = Z2(X3+cXZ2+aZ3) and we

observe that the degree of the polynomial H is 5. So we have to increase the degree
of H up to 7. In other words we have to determine the conditions under which the
three polynomials G1/H, G2/H and G3/H have a common factor of degree 2. For
these systems we calculate

G1/H =2X3 + 3fX2Y + 3bX2Z − fXZ2 + f(c− f)Y Z2 + (bc− a− bf)Z3,

G2/H =3X(X + fY + bZ)(X3 + cXZ2 + aZ3) ≡ 3XQ∗P ∗,

G3/H =24(X + fY + bZ)(X3 + cXZ2 + aZ3)2 ≡ 24Q∗[P ∗]2.

We observe that G1/H|Z=0 = 2X3 + 3fX2Y and hence Z could not be a com-

mon factor of these polynomials. For systems (30) we get R
(0)
Y (G3/H,G1/H) =

−24f(X3 + cXZ2 + aZ3)3 which vanishes if and only if f = 0 and since m = 0,
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considering Proposition 2, we conclude that in this case we could not have a line in
the direction y = 0. Thus all three mentioned polynomials could only have common
factors of the form X + α = 0, which by Remark 6 must be factors of the poly-
nomial P ∗(X,Z). So considering this remark and Lemma 8 we arrive at the two
possibilities: the linear form X either is not a common factor of the polynomials
G1/H = F1(X,Y,Z) and P ∗(X,Z) (i.e. a 6= 0) or it is (i.e. a = 0).

a) Assume first that X is not a factor of P ∗(X,Z), i.e. we have to consider
a 6= 0. According to (16) and condition (17) the polynomial F1(X,Y,Z) must have
a common factor of degree 2 with P ∗(X,Y ). Then considering systems (30) the
following conditions must be satisfied:

R
(0)
X (F1, P

∗) = [27a2 + (c− f)(2c+ f)2]Z6Ψ(Y,Z) = 0, R
(0)
X (Q∗, P ∗) = Ψ(Y,Z) 6= 0

where Ψ(Y,Z) is a polynomial. So the condition 27a2 + (c − f)(2c + f)2 = 0 is
necessary for the existence of a common factor of the polynomials F1 and P ∗. Then
(c− f)(2c+ f) 6= 0 (due to a 6= 0) and denoting u = 2c+ f 6= 0 (i.e. f = u− 2c) we
obtain c = u/3− 9a2/u2 and f = u− 2c = (54a2 + u3)/(3u2). In this case we obtain

F1 =(uX+3aZ)F ∗
1 (X,Y,Z)/(3u4), P ∗=(uX+3aZ)(3uX2−9aXZ+u2Z2)/(3u2)

where F ∗
1 (X,Y,Z) is a polynomial of the second degree. Assume first that uX+3aZ

is a factor in F ∗
1 . In this case it must be a factor in 3uX2−9aXZ+u2Z2 and therefore

the following condition must hold:

R
(0)
X (uX + 3aZ, 3uX2 − 9aXZ + u2Z2) = u(54a2 + u3)Z2 = 0.

Since u 6= 0 we can set a = a1u and thus, we get u = −54a2
1. Then

R
(0)
X (F ∗

1 , uX+3aZ)=18a1(3a1−b)Z
2 =0, R

(0)
X (P ∗, Q∗)=(b−3a1)

2(6a1+b)Z3 6=0

and we arrive at the contradiction.
Now we consider that uX + 3aZ is not a factor in F ∗

1 . Then the polynomials F ∗
1

and 3uX2 − 9aXZ +u2Z2 must have a common factor, i.e. the following conditions
hold:

R
(0)
X (F ∗

1 , 3uX
2 − 9aXZ + u2Z2) = 27u5Z2F ∗∗

1 (Y,Z) = 0,

R
(0)
X (P ∗, Q∗) = [(3a− bu)3uZ − (54a2 + u3)Y ]F ∗∗

1 (Y,Z)/(27u6) 6= 0

where F ∗∗
1 (Y,Z) is a polynomial of the second degree. Since c 6= 0 in this case we

also arrive at the contradictory condition.

b) Assume now thatX is a common factor of P ∗(X,Z), i.e. we have the condition
a = 0 which implies G2/H = 3X2(X2 + cZ2)Q∗. Therefore either X2 or X2 + cZ2

must be a factor of F1. In order to have X2 as a common factor of the mentioned
polynomial the condition R

(0)
X (X2, F1) = R

(1)
X (X2, F1) = 0 must be satisfied. We

calculate

R
(1)
X (X2, F1) = −fZ2 = 0, R

(0)
X (X2, F1) = (c− f)2Z4(fY + bZ)2 = 0
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and R
(0)
X (P ∗, Q∗) |{c=f=0}= −b(b2 + c)Z3. It is evident that in order to have X2 as

a factor of the polynomial F1 it is necessary the conditions f = c = 0 and b 6= 0 to
be satisfied, i.e. we get a particular case of the conditions (31). Since b 6= 0, due to
the rescaling {x → bx, y → y/b, t → t/b2} we can consider b = 1. So we arrive at
the system

ẋ =x3, ẏ = 1 + x (32)

for which H(X,Z) = X5Z2. This system possesses the affine invariant line of the
multiplicity 5 in the direction x = 0 and the infinite invariant line is of the multi-
plicity 3. Considering Lemma 3 for these systems we get

µ0 = µ1 = µ2 = µ3 = µ4 = µ5 = µ6 = µ7 = µ8 = 0, µ9 = 9x9 6= 0.

Therefore by Lemma 3 all 9 finite singular points have gone to infinity and collapsed
with the singular point [0, 1, 0] located on the “end” of the invariant line x = 0.
Consequently we get the configuration Config. 8.33.

Now we assume that X2 +cZ2 is a factor of the polynomial F1, i.e. the condition

R
(0)
X

(
X2 +cZ2, F1 |{a=0}

)
= R

(1)
X

(
X2+cZ2, F1 |{a=0}

)
= 0 must hold. We calculate

R
(1)
X

(
X2 + cZ2, F1 |{a=0}

)
= −(2c+ f)Z2 = 0

from which it results f = −2c 6= 0 and we obtain the conditions (31). Since c 6= 0
we may assume b = 0 (applying the translation of the origin of coordinates at the
point x0 = 0, y0 = b/2c). Therefore we arrive at non-degenerate systems depending
on the parameter c = {−1, 1} (applying a rescaling)

ẋ =x(c+ x2), ẏ = x− 2cy. (33)

For the above systems we have H(X,Z) = XZ2(X2 + cZ2)2. Thus beside the triple
infinite invariant line systems (37) possess 5 invariant affine lines. More precisely,
we have one simple and two double, all real and distinct if c = −1 and one simple
real and two double complex if c = 1.

On the other hand we observe that systems (33) possess 3 finite singularities:
(0, 0) and

(
±
√
−c,∓1/(2

√
−c)

)
. Considering Lemma 3 for these systems we calcu-

late:

µ0 = µ1 = µ2 = µ3 = µ4 = µ5 = 0, µ6 = −8c3x6 6= 0.

Therefore by Lemma 3 all other 6 finite singular points have gone to infinity and
collapsed with the singular point [0, 1, 0] located on the “end” of the invariant line
x = 0. Thus we get Config. 8.31 if c = −1 and Config. 8.32 if c = 1.

2) The subcase e = 0. Then we get the family of systems

ẋ =a+ cx+ x3, ẏ = b+ fy (34)
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for which H(a,X, Y Z) = Z2(fY + bZ)(X3 + cXZ2 + aZ3). So the degree of H
is six but should be seven. Therefore we need an additional common factor of
Gi, i = 1, 2, 3. We calculate

G1/H =3X2 + cZ2 − fZ2, G2/H = 3X(X3 + cXZ2 + aZ3),

G3/H =24(X3 + cXZ2 + aZ3)2

and we observe that these polynomials could not have as a common factor neither
Z nor Y. So we examine their resultants with respect to X. We calculate

R
(0)
X (G1/H,P

∗) =[27a2 + (c− f)(2c+ f)2]Z6 = 0,

R
(0)
X (P ∗, Q∗) =(fY + bZ)3 6= 0,

which implies 27a2 + (c − f)(2c + f)2 = 0. We observe that (c − f)(2c + f) 6=
0, otherwise we get a = 0 and this leads to systems with invariant lines of total
multiplicity 9.

Denoting u = 2c + f 6= 0 (i.e. f = u − 2c) we obtain c = u/3 − 9a2/u2 and
f = u− 2c = (54a2 + u3)/(3u2). So we get the family of systems

ẋ =
1

3u2
(3a+ ux)(u2 − 9ax+ 3ux2), ẏ = b+

54a2 + u3

3u2
y. (35)

Without loss of generality we may assume b 6= 0, because in the case b = 0 we
must have 54a2 + u3 6= 0 (otherwise we get degenerate systems) and then via a
translation y → y + y0 (with y0 6= 0) we obtain b 6= 0. So applying the translation
of the origin of coordinates at the point (−3a/u, 0), after the suitable rescaling
{x→ −(9ax)/u, y → bu2y/(81a2), t → tu2/81a2} systems (35) become

ẋ =rx+ x2 + x3, ẏ = 1 + ry, (36)

where r = (54a2 + u3)/(243a2). For these systems we calculate H = X2(rY +

Z)Z2(X2 + XZ + rZ2) and R
(0)
X (G2/H,G1/H) = 3(9r − 2)Z3 6= 0 and this leads

to the condition 9r − 2 6= 0 which guarantee the non-existence of nine invariant
lines. We observe that the infinite invariant line Z=0 is triple if r 6= 0 and it has
multiplicity four in the case r = 0.

a) The possibility r 6= 0. In this case the geometry of the configuration depends
on the sign of the discriminant ∆ of the polynomial x2 + x + r, i.e. ∆ = 1 − 4r.
Accordingly we conclude that besides the double infinite invariant line the systems
(35) possess 5 affine lines which are as follows:

∆ > 0 (i.e. 0 6= r < 1/4) ⇒ 3 simple, 1 double, all real and distinct,
∆ = 0 (i.e. r = 1/4) ⇒ 1 simple, 2 double, all real and distinct,
∆ < 0 (i.e. r > 1/4) ⇒ 2 real simple, 1 complex double.

On the other hand considering Lemma 3 we calculate:

µ0 = µ1 = µ2 = µ3 = µ4 = µ5 = 0, µ6 = r3x6, µ7 = r2x6(3x− ry),

µ8 = rx6(3x2 − 2rxy + r3y2), µ9 = 9x7(x2 − rxy + r3y2).
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Since r 6= 0 by Lemma 3 only 6 finite singular points have gone to infinity and
collapsed with the singular point [0, 1, 0] located on the “end” of the invariant line
x = 0. Other three finite points are (0,−1/r) and

(
(−1±

√
1 − 4r)/2,−1/r

)
(located

on the invariant line ry + 1 = 0).

Moreover, in the case of ∆ > 0, denoting 1 − 4r = v2 (i.e. r = (1 − v2)/4 ) we
obtain the systems

ẋ =(1 − v + 2x)x(1 + v + 2x)/4, ẏ = 1 + (1 − v2)y/4.

We compare the lines x = (−1 ± v)/2 with x = 0 and conclude that if |v| > 1 , i.e.
r < 0 (respectively 0 < |v| < 1/4, i.e. 0 < r < 1/4) then the double real invariant
line is located (respectively is not located) between two simple ones and we arrive
at the configuration Config. 8.34 (respectively Config. 8.35.).

Additionally, we have the configuration Config. 8.36 in the case of ∆ = 0 ( i.e.
r = 1/4) and Config. 8.37 in the case of ∆ < 0 ( i.e. r > 1/4).

b) The possibility r = 0. In this case we get the system

ẋ = x2(x+ 1), ẏ = 1 (37)

with H(X,Z) = X3Z3(X+Z). Therefore besides the infinite line of the multiplicity
four this system possesses 2 distinct affine invariant lines (one of the multiplicity 3
and one simple), and namely: L1,2,3 = x, L4 = x+ 1.

Since in this case we obtain µi = 0 (i = 0, 1, . . . , 8) and µ9 = 9x9 6= 0, by
Lemma 3 all 9 finite singular points have gone to infinity and collapsed with the the
same singular point [0, 1, 0]. As a result we get the configuration Config. 8.38 Thus
considering the above results we arrive at the following proposition.

Proposition 6. The systems (34) possess invariant lines of total multiplicity eight
if and only if

27a2 + (c− f)(2c+ f)2 = 0, a 6= 0. (38)

3.3 Invariant conditions for the configurations Config. 8.23–

Config. 8.38

By Lemma 7 the conditions D1 = D3 = D4 = 0, D2 6= 0 are necessary and suffi-
cient for a cubic system to have two real distinct infinite singularities, and namely
they are determined by one triple and one simple factors of C3(x, y). After a lin-
ear transformation a cubic system could be brought to the form (8). According to
Proposition 1, the condition V1 = V3 = 0 gives systems (13) (via a linear transfor-
mation and time rescaling). At the beginning of Subsection 3.2 it was proved that
for these systems the condition K5 = 0 is equivalent to k = h = n = 0. Moreover,
for the existence of invariant lines in the direction x = 0 the additional condition
d = 0 has to be satisfied. So considering the condition K5 = 0 (i.e. k = h = n = 0)
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for systems (13) we calculate N1 = 12d and evidently N1 = 0 is equivalent to d = 0
and we arrive at systems (14). For these systems we calculate

N2 = −m2x4, N3 = −12lx5.

We remark that in the previous subsections the examination of systems (14) was
divided in the cases determined by the parameters m and l. In addition it was
proved (see Subsection 3.2.3) that in the case m = 0 and l 6= 0 (i.e. N2 = 0 and
N3 6= 0) systems (14) could not have invariant lines of total multiplicity 8. So in
what follows we split our examination here in three cases, defined by the invariant
polynomials N2 and N3:

(i) N2N3 6= 0; (ii) N2 6= 0, N3 = 0; (iii) N2 = N3 = 0.

3.3.1 The case N2N3 6= 0

Then l ·m 6= 0 and as it was shown earlier systems (14) could be brought via an
affine transformation to systems (19). According to Proposition 3 the last systems
possess invariant lines of total multiplicity 8 if and only if the conditions (3) are
satisfied. We prove that these conditions are equivalent to N4 = N5 = N6 = N7 = 0,
i.e.

a = 0, f = c = −
4

9
, b =

4

27
⇔ N4 = N5 = N6 = N7 = 0.

Indeed, for systems (19) we calculate

N4 = 5184(c − f)x4 and N5 = 2592(4 + 6c+ 3f)x4

and clearly the condition N4 = N5 = 0 is equivalent to f = c = −4/9. Then
considering the last conditions we calculate N6 = 8640ax4 and hence N6 = 0 gives
a = 0. It remains to determine the invariant condition which governs the parameter b.
Considering the obtained conditions for systems (19) we calculate N7 = 288(27b−

4)x6 = 0 which is equivalent to b =
4

27
. So if for systems (14) the conditions

N2N3 6= 0, N4 = N5 = N6 = N7 = 0 are satisfied then we arrive at the system (21)
possessing the configuration Config. 8.23.

3.3.2 The case N2 6= 0, N3 = 0

These conditions imply m 6= 0 and l = 0, and as it was proved in Subsection
3.2.2 the condition ef − 2bm = 0 is necessary to be fulfilled for systems (17) in
order to have invariant lines of total multiplicity 8. On the other hand for these
systems we calculate N8 = 1296(ef − 2bm)x6 and the last condition is equivalent to
N8 = 0. Due to a rescaling we may assume m = 1 and then we get b = ef/2 and
this leads to systems (23). By Proposition 4 these systems possess invariant lines of
total multiplicity 8 if and only if either the conditions (24) or (25) are satisfied.
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In what follows we consider each one of these sets of conditions and construct
the corresponding equivalent invariant conditions as well as the additional invariant
conditions for the realization of the respective configurations.

(a) Conditions (24). We clam that for a system (23) the following conditions
are equivalent:

f = c, a = −
2(4 + 9c)

27
, (4 + 3c)(4 + 9c) 6= 0 ⇔ N4 = N6 = 0, N9 6= 0.

Indeed, for systems (23) we calculate N4 = 5184(c−f)x4 and therefore N4 = 0 gives
f = c. Then we have N6 = 320(27a + 18c + 8)x4 and N9 = 2304(4 + 3c)(4 + 9c)x4

which imply the condition a = −
2(4 + 9c)

27
if N6 = 0 and (4 + 3c)(4 + 9c) 6= 0 if

N9 6= 0.

Thus if the conditions N4 = N6 = 0 are satisfied then systems (23) via a transla-
tion and a suitable notation can be brought to systems (26), for which the condition
N9 = 6912r(9r − 8)x4 6= 0 holds. Now for these systems we need to determine the
invariant polynomials which govern the conditions under parameter r in order to
get different configurations of invariant straight lines.

We calculate N10 = 144(1− r)x2 and N11 = 3456rx4. Therefore, considering the
obtained earlier for systems (26) configurations (see page 70) we conclude that if
for a system (14) the conditions N3 = N4 = N6 = N8 = 0, N2N9 6= 0 are satisfied
then we get the configuration Config. 8.24 if N11 < 0; Config. 8.25 if N10 > 0 and
N11 > 0; Config. 8.26 if N10 = 0 and Config. 8.27 in the case N10 < 0.

(b) Conditions (25). We clam that for a system (23) the next conditions are
equivalent:

f = −
2(2 + 3c)

3
, a =

2(4 + 9c)

27
, (4+3c)(4+9c) 6= 0 ⇔ N5 = N12 = 0, N13 6= 0.

Indeed, for (23) we calculate N5 = 2592(4+6c+3f)x4 and hence N5 = 0 implies

f = −
2(2 + 3c)

3
. Then we have N12 = 3240(27a − 18c − 8)x4 and, clearly, N12 = 0

gives a =
2(4 + 9c)

27
. For N5 = N12 = 0 we calculate N13 = 1008(4 + 3c)(4 + 9c)x5y

and therefore N13 6= 0 ⇔ (4 + 3c)(4 + 9c) 6= 0.

So, considering the above relations among the parameters a, c and f of systems
(23) it was shown earlier that these systems can be brought (via a translation and
additional notation) to systems (27).

It remains to determine the invariant polynomial which gives the expression of
the discriminant ∆ = 4(1 − r) . For these systems we calculate N14 = 288(r − 1)x2

and N15 = 2937rx4.

Therefore if for a system (14) the conditions N3 = N5 = N8 = N12 = 0, N2N13 6=
0 are satisfied then we get the configuration Config. 8.28 ifN15 < 0; the configuration
Config. 8.29 if N14 < 0, N15 > 0 and the configuration Config. 8.30 if N14 > 0.
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3.3.3 The case N2 = N3 = 0

Then l = m = 0 and we get systems for which we calculate N16 = −12ex4. In
what follows we split our examination here in two subcases, defined by the polyno-
mial N16.

1) The subcase N16 6= 0. Then e 6= 0 and systems (14) could be brought via a
rescaling (i. e. assuming e = 1) to systems (30). According to Proposition 5 the
last systems possess invariant lines of total multiplicity 8 if and only if the
conditions (31) are satisfied. We prove that these conditions are equivalent to
N17 = N18 = 0, i. e.

f = −2c, a = 0 ⇔ N17 = N18 = 0.

Indeed, for the corresponding systems we calculate N17 = 12(2c + f)x2 = 0, N18 =
216ax3 = 0 and evidently, the above equalities are equivalent to f = −2c, a = 0.

It remains to determine the invariant condition which governs the value of c.
For the last systems we determine N10 = 72cx2. Next we split our examinations
according to the parameter c.

a) The possibility N10 6= 0. Then c 6= 0 and assuming b = 0 after a translation
we arrive at the system (33). So, if for systems (14) the conditions N2 = N3 =
N17 = N18 = 0, N10N16 6= 0 are satisfied then we get the configuration Config. 8.31
if N10 < 0 and Config. 8.32 if N10 > 0.

b) The possibility N10 = 0. Then f = c = 0 and after a rescaling we assume
b = 1 and we get the systems (32). So, if for systems (14) the conditions N2 =
N3 = N10 = N17 = N18 = 0, N16 6= 0 are satisfied then we get the configuration
Config. 8.33.

2) The subcase N16 = 0. Then e = 0 and systems (14) became of the form (34).

According to Proposition 6 the last systems possess invariant lines of total mul-
tiplicity 8 if and only if the conditions (38) hold. We prove that these conditions
are equivalent to N19 = 0, N18 6= 0, i.e.

27a2 + (c− f)(2c+ f)2 = 0, a 6= 0 ⇔ N19 = 0, N18 6= 0.

Indeed, for systems (34) we have N19 = 24[27a2 + (c − f)(2c + f)2]x3y and,
evidently, N19 = 0 implies 27a2 + (c− f)(2c+ f)2 = 0. On the other hand we have
N18 = 216ax3 and thus, the condition N18 6= 0 is equivalent to a 6= 0. Therefore if the
conditions N19 = 0, N18 6= 0 are satisfied then systems (34) via a transformation
and a suitable notation (see page 76) can be brought to systems (36). For these
systems we calculate N20 = 48(1 − 4r)x4, N21 = 48rx4.
Therefore if for a system (14) the conditions N2 = N3 = N16 = N19 = 0 and
N18 6= 0 hold then we obtain the configuration Config. 8.34 if N21 < 0; Config. 8.35
if N20 > 0, N21 > 0; Config. 8.36 if N20 = 0 and Config. 8.37 in the case N20 < 0.
Moreover if N21 = 0, i.e. r = 0 we obtain Config. 8.38.



CUBIC SYSTEMS WITH MAXIMUM NUMBER OF INVARIANT LINES 81

3.3.4 Perturbations of normal forms

To finish the proof of the Main Theorem it remains to construct for the nor-
mal forms given in this theorem the corresponding perturbations, which prove that
the respective invariant straight lines have the indicated multiplicities. In this
section we construct such perturbations and for each configuration Configs. 8.j,
j = 23, 24, . . . , 38 we give: (i) the corresponding normal form and its invariant
straight lines; (ii) the respective perturbed normal form with its invariant straight
lines and (iii) the configuration Configs. 8.jε, j = 23, 24, . . . , 38 corresponding to
the perturbed system.

Config. 8.23

{

ẋ = (x− 1)x(1 + x),

ẏ = x− y + x2 + 3xy;

Invariant lines: L1,2 = x, L3,4,5 = x− 1, L6 = x+ 1, L7 : Z = 0;

Config. 8.23ε:

{
ẋ = x(1 + x)(x+ 3xε− 1),
ẏ = (1 + 3εy)(x + x2 − y + 3xy − 3εy + 3εxy − 6εy2 − 9ε2y2);

Invariant lines:

{
L1 = x, L2 = x− 3εy, L3 = x+ 3εx− 1, L4 = x− 3εy − 1,
L5 = x− 3ε− 6εy − 9ε2y − 1, L6 = 1 + x, L7 = 1 + 3εy.

Config. 8.24-8.26

{
ẋ = x(1 − u+ x)(1 + u+ x),

ẏ = (1 − u2 + 2x)y, |u| 6= 1,







|u| > 1 ⇒ Config. 8.24;
|u| < 1 ⇒ Config. 8.25;
u = 0 ⇒ Config. 8.26;

Invariant lines: L1,2,3 = x, L4 = x+ 1 + u, L5 = x+ 1 − u, L6 = y, L7 : Z = 0;

Config. 8.24ε-8.26ε:

{
ẋ = x(1 − u+ ε2 + x)(1 + u− ε2 + x),
ẏ = y(1 + εy)

[
1 − (u− ε2)2 + 2x+

(
ε2(u− ε2)2 − ε2

)
y
]
;

Invariant lines:

{
L1 = x, L2 = x− ε(u+ 1)y, L3 = x− ε(u− 1)y − yε3,
L4 = x+ 1 + u− ε2, L5 = x+ 1 − u+ ε2, L6 = y, L7 = 1 + εy.
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Config. 8.27 :

{

ẋ = x
[
(x+ 1)2 + u2

]
,

ẏ = (1 + u2 + 2x)y, u 6= 0;

Invariant lines: L1,2,3 = x, L4 = x+ 1 + iu, L5 = x+ 1− iu, L6 = y, L7 : Z = 0;

Config. 8.27ε:

{
ẋ = x

[
(x+ 1)2 + u2

]
,

ẏ = y(1 − yε)(1 + u2 + 2x+ yε+ u2yε);

Invariant lines: L1 =x, L2,3 =x+εy±iuεy, L4,5 =x+1 ± iu, L6 =y, L7 =−1+yε.

Config. 8.28, 8.29

{

ẋ = (1 − x+ u)x(1 − x− u),

ẏ = 2(u2 + x− 1)y, |u| 6= 1,

{
|u| > 1 ⇒ Config. 8.28;
|u| < 1 ⇒ Config. 8.29;

Invariant lines: L1 = x, L2,3 = 1 − x+ u, L4,5 = 1 − x− u, L6 = y, L7 : Z = 0;

Config. 8.28ε, 8.29ε:

{
ẋ = (1 − x+ u)x(1 − x− u),
ẏ = y(1 + u− εy)(2u2 + 2x+ εy − uεy − 2)/(1 + u);

Invariant lines:

{
L1 = x, L2 = 1 − x+ u, L3 = 1 − x+ u− εy, L4 = 1 − x− u,
L5 = x− 1 + u2 + ux+ εy − uεy, L6 = y, L7 = 1 + u− εy.

Config. 8.30 :

{
ẋ = x(1 + u2 − 2x+ x2),

ẏ = 2y(x− 1 − u2), u 6= 0;

Invariant lines: L1 =x, L2,3 =x−1−iu, L4,5 =x−1+iu, L6 =y, L7 : Z=0;
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Config. 8.30ε:

{
ẋ = x(1 + u2 − 2x+ x2),
ẏ = y(1 − εy)(2x − 2 − 2u2 + εy + u2εy);

Invariant lines:

{
L1 = x, L2 =x− 1 − iu, L3 =x− 1 − iu+ yε+ iuεy,
L4 =x−1+iu, L5 =x−1+iu+εy−iuεy, L6 = y, L7 =εy−1.

Config. 8.31, 8.32

{
ẋ = x(x2 + r),

ẏ = x− 2ry,

{
r = −1 ⇒ Config. 8.31;
r = 1 ⇒ Config. 8.32;

Invariant lines: L1 = x, L2,3 =x−
√
−r, L4,5 =x+

√
−r, L6 =y, L6,7 : Z=0;

Config. 8.31ε, 8.32ε:







ẋ = (2r − ε4 + ε6)(4r + 4x2 − 4rε2 − 3ε4 + 6ε6 − 3ε8)×
(x− xε+ 6ryε+ 2ryε2 − 3yε5 − yε6 + 3yε7 + yε8)/(8r),
ẏ = (x− 2ry + ε4y − yε6)(4r − 4rε2 + 16r2ε2y2 − 3ε4+
+6ε6−16rε6y2−3ε8+16rε8y2+4ε10y2−8ε12y2+4ε14y2)/(4r);

Config. 8.33 :
{
ẋ = x3, ẏ = 1 + x;

Invariant lines: L1,2,3,4,5 = x, L6,7 : Z = 0;

Config. 8.33ε:

{
ẋ = x(9x− 6ε+ 4ε2)(9x+ 6ε− 10ε2 + 4ε3)/81,
ẏ = (3−2ε+yε2)(3−2ε−yε2)(9+9x−15ε+6ε2−ε2y+ε3y)/81;

Invariant lines:







L1 = x, L2 = x− 6ε+ 4ε2, L3 = x+ 6ε− 10ε2 + 4ε3,
L4 = x− 3ε+ 2ε2 + ε3y, L5 =x+3ε−5ε2+2ε3−ε3y+ε4y,
L6 = 3 − 2ε+ ε2y, L7 = −3 + 2ε+ ε2y.
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Config. 8.34-8.37

{
ẋ = x(r + x+ x2),

ẏ = ry, r 6= 0,







r < 0 ⇒ Config. 8.34;
0 < r < 1/4 ⇒ Config. 8.35;
r = 1/4 ⇒ Config. 8.36;
r > 1/4 ⇒ Config. 8.37;

Invariant lines: L1,2 = x, L3,4 = r + x+ x2, L5 = y, L6,7 : Z = 0;

Config. 8.34ε-8.37ε:

{
ẋ = x(r − ε2 + x+ x2),
ẏ = y(r − ε2 − εy + ε2y2);

Invariant lines:

{
L1 = x, L2 = x− εy, L3,4 = r + x+ x2 − ε2,
L5,6 = r − εy − ε2 + ε2y2, L7 = y.

Config. 8.38 :
{
ẋ = x2(x+ 1), ẏ = 1;

Invariant lines: L1,2,3 = x, L4 = x+ 1, L5,6,7 : Z = 0;

Config. 8.38ε:

{
ẋ = x(x− ε)(1 + x+ ε− 2εy),
ẏ = (εy − 1)(2εy − 1)(1 − 2εy + 2ε2y);

Invariant lines:

{
L1 =x, L2 =x−ε, L3 =x+ε−2yε2, L4 =1+x−ε−2yε+2yε2,
L5 = yε− 1, L6 = 2yε− 1, L7 = 1 − 2yε+ 2yε2.
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Primary decomposition of general graded structures
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Abstract. In this paper we discuss the primary decomposition in the case of general
graded modules – moduloids, a generalization of already done work for general graded
rings – anneids. These structures, introduced by Marc Krasner are more general
than graded structures of Bourbaki since they do not require the associativity nor
the commutativity nor the unitarity in the set of grades. After proving the existence
and uniqueness of primary decomposition of moduloids, we breafly turn our attention
to Krull’s Theorem and to the existence of the primary decomposition of Krasner–
Vuković paragraded rings.
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Keywords and phrases: Moduloid over an anneid, irreducible submoduloid,
quasianneid, primary decomposition.

1 Introduction

The graded primary decomposition of graded modules graded by torsion free
Abelian groups can be found in Bourbaki [1]. The more general case of grad-
uations by finitely generated Abelian groups is covered in papers of M. Perling,
S.D. Kummar [16], and S.D. Kummar, S. Behara [15]. However, M. Krasner in-
troduced the theory of general graded structures (groups, rings, modules) where
nothing is assumed for the set of grades except its nonemptiness, since, in his defini-
tions, additive graduation and structures of rings and modules will imply operations
(generally partial) in the set of grades. It all started when M. Krasner defined the no-
tion of a corpoid while he was studying valued division rings [4]. Corpoid is actually
the homogeneous part of a division ring, graded by an arbitrary set, with induced
operations among which the induced addition is, naturally, a partial operation, since
the sum of two homogeneous elements does not have to be homogeneous. As a gen-
eralization of a corpoid, we have the notion of an anneid – the homogeneous part
of a graded ring, and finally, the notion of a moduloid over an anneid. The general
graded theory continued to develop [2, 3, 5–9, 14]. Particularly, M. Chadeyras con-
sidered the existence and uniqueness of the primary decomposition of commutative
anneids in [2]. Unlike the abstract case, an irreducible ideal of a Noetherian anneid
is not in general a primary ideal, but it is under certain assumptions. In this paper
we will extend these results to the case of moduloids. Since proofs of propositions in
the case of moduloids are similar to ones in the case of anneids discussed in [2], which
were inspired by those given by O. Zariski, P. Samuel in [19], we will give proofs only
of some results. Krull’s Theorem for moduloids is followed by the brief observation
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of the existence of primary decomposition of Noetherian paragraded rings, actually
of their homogeneous parts. Paragraduations were introduced by M. Krasner and
M. Vuković [11–14] and these structures are closed with respect to the direct sum
(direct product) in the sense that the homogeneous part of obtained structure is
the direct sum (direct product) of homogeneous parts of components (see [14, 18]),
which is not necessarily true for their graded counterparts.

2 Preliminaries

According to the definition of Bourbaki–Krasner [10, 14], a graded group G,
with the neutral element e, is a group with graduation γ : ∆ → Sg(G), γ(δ) = Gδ

(δ ∈ ∆), such that G =
⊕

δ∈∆ Gδ, where ∆ is a nonempty set, called the set of
grades, and Sg(G) the set of subgroups of G. We also say that G has graduation
(∆, γ). The set H =

⋃

δ∈∆ Gδ is called the homogeneous part of G and elements
from H are called homogeneous. The grade ξ ∈ ∆ for which e 6= x ∈ Gξ is called
the grade of a homogeneous element x and is denoted by δ(x). The neutral element
e does not have a grade but we may associate a grade to it from ∆ \ ∆∗, where
∆∗ = {δ ∈ ∆ | Gδ 6= {e}}, and call it the zero grade and write δ(e) = 0. If
∆ = ∆∗ ∪ {0}, a graded group G =

⊕

δ∈∆ Gδ is called proper. We will assume
graduations throughout the paper to be proper. Multiplicative operation on G
induces the partial operation on H. If x, y ∈ H, then xy is defined in H if and only
if xy ∈ G is the element from H, and in that case the result is the same and we
write it in the same way. If this situation occurs, we say that the elements x, y
are composable or multipliable (addible in the case of an additive operation) and we
write x#y [10, 14]. Elements x, y are composable if and only if they come from the
same subgroup G(a) = {x ∈ H | ax ∈ H}, a ∈ H∗ = H \ {e}. In [10,14] it is proved
that when H with the operation induced from G is given, then we may reconstruct
G up to H-isomorphism, namely G =

⊕

G(a)∈D∗ G(a), where D∗ = {G(a) | a ∈ H∗}.
Also, from [10, 14] we know that H is the homogeneous part of some graded group
G, with operation induced from that group, if and only if:

i) (∃e ∈ H)(∀x ∈ H) x#e ∧ xe = x;

ii) (∀x ∈ H) x#x;

iii) (∀x, y, z ∈ H) x#y ∧ y#z ∧ y 6= e ⇒ x#z;

iv) for all a ∈ H∗, H(a) = {x ∈ H | a#x} is a group.

The structure that satisfies formentioned axioms is called a homogroupoid [10].

If R is a ring whose additive group has a proper graduation (∆, γ), it is called a
graded ring if for all ξ, η ∈ ∆ there exists ζ ∈ ∆ such that RξRη ⊆ Rζ [10]. Clearly,
this ζ is unique if RξRη 6= {0}. According to Krasner’s Lemma [3], if (a, a′) and
(b, b′) are two pairs of elements of the same grade and if ab 6= 0, a′b′ 6= 0, then ab
and a′b′ are of the same grade. Hence, we may define a multiplicative operation on
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∆ in the following manner [10,14]: if ξ, η ∈ ∆ we put

ξη =

{
0, RξRη = {0};
ζ, {0} 6= RξRη ⊆ Rζ .

This multiplication does not have to be associative. However, if RξRηRζ 6= {0}, then
(ξη)ζ = ξ(ηζ). Thus, this definition represents a generalization of the definition of
a graded ring given by Bourbaki [1]. If A =

⋃

δ∈∆ Rδ – the homogeneous part of
R, then A, with respect to operations induced by R, satisfies the following axioms
[10,14]:

i) A is a multiplicative semigroup with a biabsorbing element 0, i.e. with an
element 0 for which a0 = 0a = 0, for all a ∈ A;

ii) (∀a, b, c ∈ A) a#b ∧ b#c ∧ b 6= 0 ⇒ a#c;

iii) (∀a ∈ A) a#0;

iv) (∀a, b ∈ A) a#b ⇒ b#a;

v) (∀a ∈ A) a#a;

vi) (∀a ∈ A \ {0}) the set A(a) = {x ∈ A | x#a} is a group with respect to
addition;

vii) distributivity of multiplication with respect to addibility and additivity holds.

An anneid [10] is a nonempty set A which satisfies the axioms i) − vii). If A
is an anneid, then we put ∆ = ∆∗ ∪ {0}, where ∆∗ = {A(a) | a ∈ A \ {0}}. Then
A =

⊕

A(a)∈∆∗ A(a) is a graded ring and is called an associated graded ring to an
anneid A or a linearization of A [2, 3, 10].

Let R be a graded ring with graduation (∆, γ), (M,+) a commutative graded
group with graduation (D,Γ), and let M be an R-module with external multiplica-
tion (a, x) → ax (a ∈ R, x ∈ M). M is a graded R-module if (∀ξ ∈ ∆)(∀s ∈ D)(∃t ∈
D) RξMs ⊆ Mt [10].

Let M be a commutative additive homogroupoid, A an anneid, and let the
external multiplication (a, x) → ax (a ∈ A,x ∈ M,ax ∈ M) have the following
properties: i) a#b ⇒ ax#bx and (a + b)x = ax + bx; ii) x#y ⇒ ax#ay and
a(x + y) = ax + ay; iii) a(bx) = (ab)x. Then M is called an A-moduloid [10]. If A
is unitary, then M is unitary if 1x = x, for all x ∈ M. We will assume all moduloids
unitary. A graded A-module M =

⊕
M(x), where M(x) runs through the set of

addibility groups of a homogroupoid M, is called an associated graded module to a
moduloid M. A nonempty subset N of an A-moduloid M is called a submoduloid if
x − y ∈ N for all addible x, y ∈ N, and ax ∈ N for all a ∈ A and x ∈ N.
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3 Primary decomposition of submoduloids

Like in the abstract case, we begin with the definition of a primary submoduloid
of a moduloid. The notion of a primary decomposition of a submoduloid is clear
enough. Also, the notion of a Noetherian moduloid is analogous to the ungraded
case.

Definition 1. A submoduloid N of a moduloid M over an anneid A is called primary
if N 6= M and whenever a ∈ A, x ∈ M and ax ∈ N implies x ∈ N or anM ⊆ N, for
some n ∈ N.

The following result is straightforward.

Lemma 1. If N is a primary submoduloid of an A-moduloid M, then
√

N : M =
{a ∈ A | (∃n ∈ N) anM ⊆ N} is a prime ideal of A. If P =

√
N : M, then we say

that N is P -primary.

Before we proceed, we need to make few observations which are analogous to
what Krasner [10] and Chadeyras [2] did in the case of anneids. First, let X be a
subset of a moduloid M over an anneid A. Denote by X+ an additive homogroupoid
generated by X and if X and Y are subsets of M, let X + Y be the set {x +
y | x ∈ X ∧ y ∈ Y ∧ x#y}. If AX ⊆ X and AY ⊆ Y, then it is easy to prove that
A(X + Y ) ⊆ X + Y. Also, if X and Y are additive subhomogroupoids of M, then
X + Y is also an additive subhomogroupoid and so, if X and Y are submoduloids
of M, X + Y is also a submoduloid of a moduloid M. If AX ⊆ X, then AX+ ⊆ X+

and X+ is a submoduloid of a moduloid M. We are particularly interested in the
case X = {m}. We denote (m) = (Am)+. Let M and M ′ be two A-moduloids,
where A is an anneid. The mapping f : M → M ′ is called a quasihomomorphism if
x#y ⇒ f(x)#f(y) and in that case f(x+y) = f(x)+f(y), and also f(ax) = af(x),
where x, y ∈ M and a ∈ A (see [2, 10, 14] for more details). In [2] M.Chadeyras
observed agglutinations M (f) = f̄−1(M ′), where f̄ : M → M ′, f = f̄ |M , is a
quasihomogeneous homomorphism of graded modules, that is, it is a homomorphism
of modules and f(M) ⊆ M ′ [2]. In particular, for a ∈ A, the mapping fa : M → M,

f(x) = ax (x ∈ M) is a quasihomomorphism and let M (a) = fa
−1

(M). M. Krasner
in [10] proved that if M is Noetherian with every element from ∆ being semiregular,
that is, if M is strong Noetherian, then the chain M (a) ⊆ M (a2) ⊆ . . . is stationary,
i. e. there exists n such that M (an) = M (an+1); the smallest such n is called an
exponent of semiregularity. An element δ ∈ ∆ is called semiregular if the sequence
(ǫ(an)) is finite, where ǫ(a) is an equivalence of grades defined by d1 ∼ d2 ⇔ δ(a)d1 =
δ(a)d2, d1, d2 ∈ D, where D is the set of grades of M.

Lemma 2. Each submoduloid of a Noetherian moduloid is the intersection of finitely
many irreducible submoduloids.

Proof. This follows from Zorn’s Lemma.



PRIMARY DECOMPOSITION OF GENERAL GRADED STRUCTURES 91

The following lemma is crucial in our discussion, since an irreducible submoduloid
is not in general a primary submoduloid. The assumption of strongness imposed on
a Noetherian moduloid removes this issue.

Lemma 3. Let N be a submoduloid of a strong Noetherian A-moduloid M, where
A is an anneid. If N is irreducible, then it is primary.

Proof. Suppose N is not primary. Then there exist m ∈ M \ N and a ∈ A such
that am ∈ N and anM * N, for every n ∈ N. Then we have an ascending chain of
submoduloids (N : {an}) = {x ∈ M | anx ∈ N}. Since M is Noetherian, there exists
s ∈ N such that (N : {as}) = (N : {as+1}). Also, since M is strong Noetherian,
by M. Krasner [10] there exists r ∈ N such that M (ar) = M (ar+1). Let n = r + s.
Submoduloids N1 = N+(m) and N2 = N+(an) strictly contain N. Let 0 6= x ∈ N1∩
N2. Then there exist α, β ∈ N, ξ ∈ M (an) and η ∈ A such that x = α+ξan = β+ηm.
All elements are mutually addible. Now, ax = aβ +ηam and since am ∈ N, we have
ax ∈ N and so ξan+1 ∈ N. Let ζ = ξar. Then ζ ∈ M and ζas+1 = ξan+1 ∈ N and
from (N : {as}) = (N : {as+1}) we have that ξan = ζas ∈ N. Hence, x ∈ N.

The notion of a reduced primary decomposition is defined as in the case of abstract
modules [19].

Corollary 1. Each submoduloid of a strong Noetherian moduloid has a reduced
primary decomposition.

Corollary 2. A Noetherian module has a reduced primary decomposition.

Proof. Let M be a Noetherian R-module. Then R may be viewed as a graded ring
via trivial graduation, and as its homogeneous part coincides with R, it may be
regarded as an anneid. Analogously, M is a moduloid over an anneid R, if observed
as a graded module with trivial graduation. Hence, M is a strong Noetherian R-
moduloid with the exponent of semiregularity equal to 1 and it admits a primary
decomposition.

Definition 2. Let M and M ′ be two unitary moduloids over an anneid A,
f : M → M ′ a quasihomomorphism, and N,N ′ submoduloids of M,M ′, respec-
tively. Then (N ′)c := f−1(N ′) is a submoduloid of M called a contraction of N ′

and N e := 〈f(N)〉 is a submoduloid of M ′ called an extension of N.

It is easy to prove the following

Lemma 4. Let M and M ′ be two unitary moduloids over an anneid A and f : M →
M ′ a quasihomomorphism. If N ′ is a P ′-primary submoduloid of M ′, then (P ′)c is
a prime ideal and (N ′)c is (P ′)c-primary.

Corollary 3. Let M be an A-moduloid. If M is Noetherian, then M admits a
reduced primary decomposition.
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Proof. Let N be a submoduloid of M and let N be its linearization, that is a
homogeneous submodule of a graded module M. Then, since M is Noetherian, N
has a primary decomposition. The assertion now follows from the previous lemma
and the fact that N = N ∩ M.

Remark 1. It should be noted that if a moduloid admits a primary decomposition,
then this does not imply that its linearization has the same property.

Let us now give the uniqueness theorems.

Theorem 1. Let M be an A-moduloid and N a submoduloid with a reduced primary
decomposition N =

⋂

i Ni and let Pi =
√

(Ni : M). Then Pi’s are prime ideals P in
A for which there exists x ∈ M, x /∈ N, such that (N : {x}) is a P -primary ideal.

Proof. The proof is similar to the classical case [19]. Namely, if x ∈
⋂

j 6=i Nj , x ∈ Ni,
then (N : {x}) contains the annihilator of M/Ni, and hence it can be proved that
(N : {x}) is Pi-primary. The converse is easy as well.

Theorem 2. If N is a submoduloid of an A-moduloid M which has a reduced pri-
mary decomposition N =

⋂

i Ni, Ni a Pi-primary, then the minimal elements of the
family of all prime ideals Pi are also the minimal elements of the family of all prime
ideals P which contain the annihilator of M/N.

Proof. Let Qi = ann(M/Ni). Then Qi is a Pi-primary ideal and ann(M/N) =
⋂

i Qi. Since
⋂

i Qi represents the primary decomposition of ann(M/N), the assertion
follows from the known result for anneids [2] which claims that a prime ideal of an
anneid A contains an ideal I, which has a reduced primary decomposition

⋂

i Qi, Qi

a Pi-primary, if and only if it contains one of the Pi’s.

Theorem 3. Let N be a submoduloid of an A-moduloid M which has a reduced
primary decomposition N =

⋂

i Ni, Ni a Pi-primary. The set N ′
i of all elements

x ∈ M for which there exists a /∈ Pi such that ax ∈ N is a submoduloid of M which
is contained in Ni, and, if Pi is a minimal element of the family {Pi}, then N ′

i = Ni.

Proof. Let x1, x2 ∈ N ′
i and x1#x2. Then there exist a1, a2 /∈ Pi such that

a1x1, a2x2 ∈ N, and hence, a1a2(x1 − x2) ∈ N while a1a2 /∈ Pi, which proves that
N is a submoduloid of M. The inclusion N ′

i ⊆ Ni is clear enough. If Pi is a minimal
element of the family {Pi}, then for all j 6= i, we have Pj * Pi. Let aj ∈ Pj \ Pi,

n(j) ∈ N be such that a
n(j)
j M ⊆ Nj and a =

∏

j 6=i a
n(j)
j . Then a /∈ Pi and, if x ∈ Ni,

then ax ∈ N, which means that x ∈ N ′
i .

4 Krull’s Theorem

The proof of the following result runs exactly as in the abstract case [19].

Lemma 5. If A is a strong Noetherian anneid and M a Noetherian A-moduloid,
then if Q is an ideal of A and N a submoduloid of M, then there exist an integer s
and a submoduloid N ′ of M such that QN = N ∩ N ′ and N ′ ⊇ QsM.
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Lemma 6. Let Q be an ideal of a unitary anneid A and let N be a submoduloid of
M. If N = QN and if N is finitely generated, then for all 0 6= x ∈ N, x ∈ Qx.

Proof. Let {x1 = x, x2, . . . , xn} be the generators of N. From N = QN we have that
each xi can be written as a linear combination of x1, . . . , xn over Q. Thus, we have
n equations

−µi
1x1 − · · · − (µi

i − 1)xi − · · · − µi
jxj − · · · = 0 i = 1, . . . , n,

where µi
j ∈ Q. If we do the calculations in M, we will obtain a determinant of

coefficients equal to 1 − µ, where µ ∈ Q, such that (1 − µ)x1 = (1 − µ)x = 0.
By regrouping the addible elements of M in the development of (1 − µ)x, we get
(1−α)x+β1x+ · · ·+βsx = 0, α, β1, . . . , βs ∈ Q. Since M is the direct sum of groups
of addibility, we have that (1 − α)x = 0 which implies that α =

∑

k ak ∈ Q, where
x and akx are mutually addible.

Now we may formulate and prove Krull’s Theorem for moduloids.

Theorem 4 (Krull’s Theorem). Let A be a Noetherian strong anneid with unity,
and Q an ideal of A. If M is a Noetherian A-moduloid, then

⋂∞
n=1 QnM = {0} if

and only if x /∈ Qx, for all 0 6= x ∈ M.

Proof. Let x 6= 0 and x ∈ Qx. Then there exists α =
∑

k ak (ak ∈ Q) such that ak

are mutually addible as well as aix#ajx (i 6= j) and x = αx =
∑

k akx. Hence,

x =
∑

k

ak(
∑

k′

ak′x) =
∑

k

ak(
∑

k′

ak′(
∑

k′′

ak′′x)) = . . .

and so x ∈ QnM for all n ∈ N. Thus,
⋂∞

n=1 QnM 6= {0}. Conversely, let
⋂∞

n=1 QnM = N 6= {0}. Then there exist an integer s and a submoduloid N ′ such
that QN = N ∩ N ′ with N ′ ⊇ QsM. So, QN ⊇ N ∩ QsM = N, which means that
N = QN, and so for all 0 6= x ∈ N ⊆ QM, x ∈ Qx.

5 Primary decomposition of quasianneids

We start by giving less known notions introduced in [11–14]. The mapping
π : ∆ → Sg(G), π(δ) = Gδ (δ ∈ ∆), of partially ordered set (∆, <), which is from
below a complete semi-lattice and from beyond inductively ordered, to the set Sg(G)
of subgroups of the group G, is called a paragraduation if it satisfies the following
six-axiom system:

i) π(0) = G0 = {e}, where 0 = inf ∆; δ < δ′ ⇒ Gδ ⊆ Gδ′ ;

Remark 2. H =
⋃

δ∈∆ Gδ is called the homogeneous part of G with respect
to π.

Remark 3. If x ∈ H, we say that δ(x) = inf{δ ∈ ∆ | x ∈ Gδ} is the grade of
x. We have δ(x) = 0 if and only if x = e. Elements δ(x), x ∈ H, are called
principal grades and they form a set which we will denote by ∆p.



94 EMIL ILIĆ-GEORGIJEVIĆ, MIRJANA VUKOVIĆ

ii) θ ⊆ ∆ ⇒
⋂

δ∈θ Gδ = Ginf θ;

iii) If x, y ∈ H and yx = zxy, then z ∈ H and δ(z) ≤ inf{δ(x), δ(y)};

iv) Homogeneous part H is a generating set of G;

v) Let A ⊆ H be a subset such that for all x, y ∈ A there exists an upper bound
for δ(x), δ(y). Then there exists an upper bound for all δ(x), x ∈ A;

vi) G is generated by H with the set of H-inner and left commutation relations:

1. xy = z (H-inner relations);

2. yx = z(x, y)xy (left commutation relations).

A group with paragraduation is called a paragraded group. A ring R is called
paragraded if its additive group is paragraded and if for all ξ, η ∈ ∆ there exists
ζ ∈ ∆ such that RξRη ⊆ Rζ . If R is a paragraded ring with homogeneous part
H, then we may observe restrictions of operations on R to H. Induced addition is
partial and we write x#y if and only if x+y ∈ H. The obtained structure is called a
paraanneid [14]. If x ∈ H, let H(x) = {y ∈ H | x#y}. Paraanneid certainly satisfies
the following axioms:

i) There exists an element 0 ∈ H such that H = H(0) and such that for all
x ∈ H we have 0 + x = x;

ii) If a ∈ H, x + y is always defined on g(a) = {x ∈ H | H(x) ⊇ H(a)} and
(g(a),+) is an Abelian group;

iii) If A ⊆ H is such that for all x, y ∈ A we have x#y, then there exists g ⊆ H
such that x + y ∈ g for all x, y ∈ g, x ∈ g implies g(x) ⊆ g and A ⊆ g;

iv) H2 ⊆ H;

v) x#x′ and y#y′ imply xy#x′y′.

Structure (H,+, ·) which satisfies axioms i) − v) is called a quasianneid [14].
A quasianneid however does not have to be a paraanneid; it is under few more
assumptions [14]. Let us notice that iv) and v) imply

vi) If x#y then z(x + y) = zx + zy and (x + y)z = xz + yz.

Let us now suppose that a paraanneid H is commutative, and let us consider
the mapping ϕa : x → ax (x ∈ H), where a ∈ H. It is a quasiendomorphism [14] of
H (definition is analogous to the notion of a quasiendomorphism for anneids) and
let H [a] = ϕ−1

a (Ĥ), where Ĥ = 〈ϕa(H)〉. The mapping ϕa defines the equivalence
ǫa on the set of grades ∆ of H in the following manner: δ1 ∼ δ2 ⇔ δ(a)δ1 = δ(a)δ2.
Obviously, (H [a],+) = (H,+) implies discrete equivalence θ[x ∼ y ⇒ x = y]. Since
ϕab = ϕaϕb, we have H [ab] ⊇ H [b], and we write H [ab] ≥ H [b]. Also, the equivalence
ǫb is finer than ǫab and we write ǫab ≥ ǫb. Hence H ≤ H [a] ≤ H [a2] ≤ . . . and
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θ ≤ ǫa ≤ ǫa2 ≤ . . . . If the sequence (H [an]) resp. (ǫan) is stationary, then we
say that a is a semiregular element resp. semiregular grade [14]. A paraanneid
H is called strong [14] if every a ∈ H is semiregular. The notion of a Noetherian
paraanneid is clear. A nonempty subset Q of a paraanneid H is called an ideal if
x − y ∈ Q for all addible x, y ∈ Q, and if ax ∈ Q for all a ∈ H and x ∈ Q. The
notion of a primary ideal is analogous to the abstract case. Now, as in the case of
anneids and moduloids, one can prove the following

Theorem 5. Each ideal of a Noetherian paraanneid is the intersection of finitely
many irreducible ideals. If Q be an irreducible ideal of a strong Noetherian paraan-
neid H, Q is primary. A strong Noetherian paraanneid has a primary decomposition.

If a ring R is extragraded [13, 14], that is, if (R,+) is an extragraded group, i.e.
if instead of the axiom vi) we have the following axiom:

vi′) If δ1, . . . , δs ∈ ∆p are incomparable in pairs and if xi, x
′
i ∈ H (i = 1, . . . , s) are

such that x1 + · · ·+xs = x′
1 + · · ·+x′

s and xi, x
′
i ∈ Rδi

for all i = 1, . . . , s, then
δ(−xi + x′

i) < δi,

then the ascending chain condition on R implies the existence of a primary decom-
position in the corresponding homogeneous part, which we call an extraanneid.

Theorem 6. If R is an extragraded Noetherian ring, then its extraanneid has a
primary decomposition.

Proof. Let H be a homogeneous part of R. Since R is Noetherian, every ideal, and
particularly, every homogeneous ideal Q, has a primary decomposition. Since R is
extragraded, Q ∩ H is an ideal in an extraanneid H and Q is generated exactly by
Q ∩ H [14]. Also, if Q is a primary ideal in R, then Q ∩ H is a primary ideal in H
and the claim follows.
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On the distinction between one-dimensional Euclidean

and hyperbolic spaces

Alexandru Popa

Abstract. The difference between Euclidean and hyperbolic spaces is clear starting
with dimension two. However, the difference between elliptic space and both Euclidean
and hyperbolic ones can be described also for dimension one. Does it mean that
there is no difference between one-dimensional Euclidean and hyperbolic lines, or
it is necessary to better define the difference between them? This paper proposes
one possible way to draw clear distinction between one-dimensional Euclidean and
hyperbolic lines.

Mathematics subject classification: 51N25, 51N15.
Keywords and phrases: Points connectability, angle measurability, strong and weak
separability.

1 Introduction

The difference between hyperbolic (named also Lobachevsky in Russian litera-
ture) and Euclidean spaces is space curvature — zero in Euclidean case and negative
in hyperbolic case. The space curvature is intrinsic space property starting with di-
mension two [1], it cannot be used to distinguish one-dimensional Euclidean and
hyperbolic spaces.

Another approach is to distinguish geometries. Hyperbolic geometry differs from
Euclidean one by Parallel axiom [2]:
Euclidean Parallel axiom: On the plane with given line l, through a point P 6∈ l
exactly one line a goes so that a ∩ l = ∅.
Hyperbolic Parallel axiom: On the plane with given line l, through a point P 6∈ l
at least two lines a, b go so that a ∩ l = ∅, b ∩ l = ∅.

These axioms, as well as all their equivalents, assume the existence of two parallel
lines, triangles or other figures, that are essentially two-dimensional.

On the other hand, there exists a clear distinction between one-dimensional ellip-
tic and both Euclidean and hyperbolic spaces. Define points of some line separable
if among any three different points A,B,C one (let it be B) divides the line into two
half–lines, and remaining two points A,C lie on different half–lines. In this case we
can speak that B lies between A and C. Otherwise, we call points non-separable.

The elliptic points are non-separable, because no point devides elliptic line into
two half–lines and among any three points no one lies between two others [3]. Eu-
clidean and hyperbolic points are separable. In order to make the difference between
them, we refine the point separability property.

c© Alexandru Popa, 2015
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2 Uniform model of elliptic, Euclidean and hyperbolic lines

Before we can speak about the tuning of points separability property, we need
one universal model for all three one-dimensional spaces constructed in spirit of [7].

Definition 1. Define a characteristic to be a number k ∈ {1, 0,−1}. The charac-
teristic is elliptic if k = 1, linear or parabolic if k = 0 and hyperbolic if k = −1.

Definition 2. For x, y ∈ R2 define x ⊙ y = x0y0 + kx1y1. Define the metaplane
M2 = {R2,⊙}.

Definition 3. Define the line B1 = {x ∈M2 |x⊙ x = 1, −x ≡ x} (Figure 1).

O x1

x0

k = 1

k = 0

k = −1

Figure 1. One-dimensional models of elliptic, Euclidean and hyperbolic spaces.

Definition 4. Define generalized by k cosine, sine and tangent functions as:

C(t) =
∞∑

n=0

(−k)n
t2n

(2n)!
=







cos t, k = 1,

1, k = 0,

cosh t, k = −1;

S(t) =

∞∑

n=0

(−k)n
t2n+1

(2n + 1)!
=







sin t, k = 1,

t, k = 0,

sinh t, k = −1;

T (t) =
S(t)

C(t)
=







tan t, k = 1,

t, k = 0,

tanh t, k = −1.

Definition 5. Define the translation by ϕ in B1 to be the transformation with the
matrix

T(ϕ) =

(
C(ϕ) −kS(ϕ)
S(ϕ) C(ϕ)

)

.
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In these definitions we obtain circle model of one-dimensional elliptic space when
k = 1. When k = 0, the model is identical to one-dimensional Euclidean space
identified by the equation x0 = 1 in the metaspace M2. When k = −1 we have
hyperbola model of hyperbolic one-dimensional space. This model is equivalent to
Beltrami–Klein model of hyperbolic space if instead of coordinates x0, x1 use one:

x′ =
x1

x0
,

and is equivalent to Poincaré model in a disk if:

x′ =
x1

1 + x0
.

It is important to mention that whatever model or coordonate system is used for
one-dimensional space it is always possible to reconstruct its metaplane M2 by fixing
some point O as origin with homogeneous coordonates (1 : 0) and for some line point
X coordonates will be (C(x) : S(x)), where x is the signed distance |OX|.

3 Point unconnectability and angle unmeasurability notions

Because a metaspace M2 is not Euclidean unless k = 1, we need several more
important notions. These notions belong to geometry, not to space model construc-
tions. In order to see it, we obtain them from axioms of two-dimensional elliptic,
Euclidean and hyperbolic geometries using duality operation. We can generalize
Parallel axiom in the following way (Figure 2):

l

b1 b2
b3

P

a)

l

a1

b1 b2
b3

P

b)

l

a4a1

a3a2 b1 b2

P

c)

Figure 2. Parallel axiom: a) elliptic, b) Euclidean and c) hyperbolic.

Generalized Parallel axiom: On the plane with given line l, through a point
P 6∈ l 0k lines {ai} go so that ai ∩ l = ∅.

Remark. The symbol 0k is not used in calculus. Its value is:

0k =







0, k = 1,

1, k = 0,

∞, k = −1.
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Duality operation on a plane means exchanging the following relations:

Point P ←→ Line p,

P ∈ l←→ p ∋ L,

P 6∈ l←→ p 6∋ L,

l = AB ←→ L = a ∩ b,

|AB| = ϕ←→ ∡ab = ϕ,

a ‖ b←→ A,B have no common line.

The relation “A,B have no common line” is dual to line parallelism. Such geometries
were proposed in [4, 5]. Several of them are described in [6–9].

Definition 6. Two points A,B are unconnectable if they have no common line.

In order to see different types of points unconnectability, we need new axiom.
Let formulate Connectability axiom, dual to Parallel axiom (Figure 3):
Connectability axiom: On the plane with given point L, in the line p 6∋ L 0k

points {Ai} lie so that Ai, L are unconnectable.

L

B1 B2 B3

p

a)

L

B1 B2
A1

p

b)

L

A2 A3A1 A4B1 B2

p

c)

Figure 3. Connectability axiom: a) elliptic, b) parabolic and c) hyperbolic.

Remark. As in the case of hyperbolic Parallel axiom (Figure 2, c), the limit case
between non-intersected and intresected lines is two parallel lines (bold ones), for
hyperbolic Connectability axiom (Figure 3, c), the limit case between connectable
and unconnectable points is two unconnectable points (also marked with bold).

Remark. Elliptic variant of Connectability axiom is equivalent to the following state-
ment: “Any two different points can be connected by a line”, that holds for elliptic,
Euclidean and hyperbolic geometries.

Definition 7. Define some angle to be measurable if any point from its interior
(including the rays) is either connectable or unconnectable with the vertex. Define an
angle to be unmeasurable if its interior (including the rays) contains both connectable
and unconnectable points with the vertex.

4 Points separability in a line

In order to draw the difference between Euclidean and hyperbolic cases of sep-
arable points, give more precise definition [10]. This definition is based only on



DIFFERENT TYPES OF POINTS SEPARABILITY 101

points connectability notion. Although the Connectability axiom also assumes at
least two-dimensional plane, this plane is nothing more than extended space of one-
dimensional line — its metaplane. No geometric objects are involved other than
objects of an one-dimensional line with its structure.

Definition 8. We call points on a line non-separable if all points on this line are
connectable with any point on the metaplane. We call points on a line separable
if for any three points A,B,C on this line and some point D on the metaplane,
connectable with A,C and unconnectable with B, the angle ∠ADC is unmeasurable
(Figure 4).

A B C

DA

D

DC

Figure 4. Points separability on a line.

Remark. For separable points A,B,C only a single point (B) has the described
property. For other points (A,C) and some unconnectable with them points DA,DC ,
the angles ∠BDAC and ∠ADCB are measurable.

If points of some line are separable, then the point B devides the line into two
half–lines and points A and C lie on different half–lines defined by B. When points
of some line are non-separable, then no point devides the line into half–lines.

Definition 9. In the case of separable points we say that the point B lies between
points A and C.

Remark. In the case of non-separable points on a line, among any three points no
one divides the line into half–lines, and it is impossible to talk about the position of
some point between other two.

Definition 10. We call points on some line weak separable (Figure 5, left) if any
point D of the line metaplane, being unconnectable with point B (that lies between
A and C) and connectable with both A,C, is also connectable with all points from
some neighborhood of B. We call points on some line strong separable (Figure 5,
right) if in the same conditions any point D is unconnectable not only with B, but
also with all points from some its neighborhood.
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A B C A
B

C

D

D1

D

D1

Figure 5. Points separability on a plane: weak (left) and strong (right).

In this definitions, points of elliptic line are non-separable, points of Euclidean
line are weak separable, and points of hyperbolic line are strong separable.
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On the number of ring topologies on countable rings

V. I.Arnautov, G.N.Ermakova

Abstract. For any countable ring R and any non-discrete metrizable ring topology
τ0, the lattice of all ring topologies admits:
– Continuum of non-discrete metrizable ring topologies stronger than the given topo-
logy τ0 and such that sup{τ1, τ2} is the discrete topology for any different topologies;
– Continuum of non-discrete metrizable ring topologies stronger than τ0 and such that
any two of these topologies are comparable;
– Two to the power of continuum of ring topologies stronger than τ0, each of them
being a coatom in the lattice of all ring topologies.

Mathematics subject classification: 22A05.
Keywords and phrases: Countable ring, ring topology, Hausdorff topology, basis
of the filter of neighborhoods, number of ring topologies, lattice of ring topologies,
Stone-Čech compacification.

1 Introduction

The study of possibility to set a non-discrete Hausdorff topology on infinite
algebraic systems in which existing operations are continuous was begun in [1]. In
this article for any countable group a method of constructing such group topologies
was given.

For countable rings the problem of the possibility to set non-discrete Hausdorff
ring topologies was studied in [2, 3]. In these articles for any countable ring a
method of obtaining any ring metrizable topology was given and it was proved that
any countable ring admits such topology.

The present article is a continuation of research in this direction. The main result
of this paper is Theorem 3.1, in which for any countable ring R and any non-discrete
metrizable ring topology τ0, the number of topologies which have some properties
in the lattice of all ring topologies is specified.

For countable groups similar result was obtained in [4, 5].

2 Notations and preliminaries

To present the main results we remind the following well-known result (see, for
example, [2], Proposition 1.2.2 and Theorem 1.2.5).

Theorem 2.1. A set Ω of subsets of a ring R is a basis of filter of neighborhoods
of zero for some Hausdorff ring topology on the ring R if and only if the following
conditions are satisfied:

c© V. I.Arnautov, G.N.Ermakova, 2015
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1)
⋂

V ∈Ω
V = {0};

2) For any subsets V1 and V2 ∈ Ω there exists a subset V3 ∈ Ω such that V3 ⊆
V1 ∩ V2;

3) For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that V2 + V2 ⊆ V1;

4) For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that −V2 ⊆ V1;

5) For any subset V1 ∈ Ω and any element r ∈ R there exists a subset V2 ∈ Ω
such that R · V2 ⊆ V1 and V2 · r ⊆ V1;

6) For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that V2 · V2 ⊆ V1.

Definition 2.2. A subset V of the ring R is called symmetric if −V = V .

Notation 2.3. If V1, V2, . . . and S1, S2, . . . are non-empty symmetric subsets
of a ring R, then for any natural number k we define by induction the subset
Fk

(
S1, . . . , Sk;V1, . . . , Vk

)
of the ring R:

We take F1(S1;V1) = V1 + V1 + V1 · V1 + S1 · V1 + V1 · S1 and

Fk+1(S1, S2, . . . , Sk+1;V1, V2, . . . , Vk) = F1(S1;V1 ∪ Fk

(
S2, . . . , Sk+1;V2, . . . , Vk+1

)
).

Proposition 2.4. If V1, V2, . . . and S1, S2, . . . are some sequences of non-empty
finite symmetric subsets of a ring R and 0 ∈ Vi for any natural numbers i, then for
any natural number k the following statements are true:

2.4.1. V1 + V1 ⊆ F1(S1;V1), V1 · V1 ⊆ F1(S1;V1), S1 · V1 ⊆ F1(S1;V1) and
V1 · S1 ⊆ F1(S1;V1);

2.4.2. For any natural number k the set Fk(S1, . . . , Sk;V1, . . . , Vk) is a finite
symmetric set;

2.4.3. Fk(S1, . . . , Sk; {0}, . . . , {0}) = {0} for any natural number k;

2.4.4. If k is a natural number and Ui ⊆ Vi ⊆ R and Ti ⊆ Si ⊆ R for any
natural number 1 ≤ i ≤ k, then

Fk(T1, . . . , Tk;U1, . . . , Uk) ⊆ Fk(S1, . . . , Sk;V1, . . . , Vk);

2.4.5. If k and p are natural numbers and Vk+j = {0} for any natural number
1 ≤ j ≤ p, then

Fk(S1, . . . , Sk;V1, . . . , Vk) = Fk+p(S1, . . . , Sk+p;V1, . . . , Vk+p);

2.4.6. For any natural number k ≥ 2 the following equality is true

Fk(S1, . . . , Sk;V1, . . . , Vk) =

Fk(S1, . . . , Sk;V1 ∪ Fk−1 (S2, . . . , Sk;V2, . . . , Vk), . . . , Vk−1 ∪ F1(Sk;Vk), Vk);

2.4.7. Vt ⊆ Fk(S1, . . . , Sk;V1, . . . , Vk) for any natural numbers 1 ≤ t ≤ k;

2.4.8. Fk+1(Ss, . . . , Sk+s;Vs, . . . , Vk+s) ⊆ Fk+s−t+1(St, . . . , Sk+s;Vt, . . . , Vk+s)
for any natural numbers k, s, t and t ≤ s.
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Proof. For proof of Statements 2.4.1 – 2.4.7 see in [2] the proof of Proposition 5.3.2.

We prove Statement 2.4.8 by induction on the number s − t.

If s − t = 0, then t = s, and then

Fk+1(Ss, . . . , Sk+s;Vs, . . . , Vk+s

)
= Fk+(s−t)+1

(
St, . . . , Sk+s;Vt, . . . , Vk+s).

Assume that the required inclusion is proved for the number s − t = n and any
natural numbers k, s and let s − t = n + 1. Then, from the induction assumption
and Statement 4.7 it follows

Fk+1(Ss, . . . , Sk+s;Vs, . . . , Vk+s) ⊆ Vs ∪ Fk+n+1(Ss, . . . , Sn+s;V2, . . . , Vk+n+s) ⊆

F1(Ss;Vs ∪ Fk+n(Ss+1, . . . , Sk+n+s;Vs+1, . . . , Vk+n+s)) =

Fk+n+1

(
Ss, . . . , Sk+n+s;Vs, . . . , Vk+n+s

)
= Fk+s−t+1

(
Ss, . . . , Sk+s−t;Vs, . . . , Vk+s−t

)

for any natural numbers s, k.
Thus Statement 2.4.8 is proved, and hence, Proposition 2.4 is proved.

Definition 2.5. If R is a ring and x is some variable, then we denote by R[x] the
free ring generated by the set R

⋃
{x}.

We call elements of the ring R[x] the generalized polynomials over the ring R in
variable x.

Definition 2.6. For any element a ∈ R, we consider:

– The mapping ϕa : R
⋃

{x} → R such that ϕa(x) = a and ϕa(b) = b for any
b ∈ R;

– The ring homomorphism ϕ̃a : R[x] → R, which is an extension of the mapping
ϕa : R

⋃
{x} → R;

– If f(x) ∈ R[x], then we denote by f(a) the element ϕ̃a(f(x)) of the ring R;
– We call the element f(0) of the ring R the free term of generalized polynomial

f(x) ∈ R[x];

– An element b of the ring R is called a root of a generalized polynomial f(x) ∈
R[x] if f(b) = 0.

Notation 2.7. If R = {0,±r1,±r2, . . .} is a countable ring, then for any natural
number k let Sk = {±r1,±r2, . . . ,±rk}.

Theorem 2.8. If τ is a non-discrete Hausdorff ring topology on a countable ring
R = {0,±r1,,±r2, . . .} and f(x) is a generalized polynomial over the ring R with
nonzero free term, then there exists a neighborhood W of zero such that each element
r ∈ W is not a root of this polynomial.

Proof. Since (R, τ0) is a Hausdorff space, then there exists a countable basis
{
V1, V2, . . .

}
of the filter neighborhoods of zero such that −Vk = Vk and Vk ∩Sk = ∅

(definition of the set Sk see above) and

F1(Sk+1;Vk+1) = Vk+1 + Vk+1 + Vk+1 · Vk+1 + Sk+1 · Vk+1 + Vk+1 · Sk+1 ⊆ Vk
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for any natural number k.
Using induction on k it is easy to prove that Fk(Si+1, . . . , Si+k;Vi+1, . . . , Vi+k) ⊆

Vi for any natural numbers i, k.
Since f(0) 6= 0, then f(0) /∈ Vt0 for some natural number t0.
If S is the set of all nonzero elements of the ring R which are included in the

expression of the polynomial f(x) − f(0), then the finiteness of the set S implies
that S ⊆ Si0 for some natural number i0, and hence, S ⊆ Si for all natural numbers
i ≥ i0. Besides, if n is a natural number such that the ring operations include not
more than n times in the expression of the polynomial f(x)− f(0) and n ≥ i0, then
from the definition of sets Fk(Si+1, . . . , Si+k;Vi+1, . . . , Vi+k) it follows that

f(x) − f(0) ∈ Fn

(
St0+1, . . . , St0+n; {0}, . . . , {0}, {x, 0,−x}

)
.

Then
f(r)− f(0) ∈ Fn

(
St0+1, . . . , St0+n; {0}, . . . , {0}, {r, 0,−r}

)
⊆

Fn

(
St0+1, . . . , St0+n;Vtt0+1, . . . , Vt0+n

)
⊆ Vt0

for any r ∈ Vt0+n. And since F (0) /∈ Vt0 , then f(r) 6= 0 for any r ∈ Vt0+n.
The theorem is proved.

Since the intersection of a finite number of neighborhoods of zero is a neighbor-
hood of zero, then from Theorem 8 follows

Corollary 2.9. If τ is a non-discrete Hausdorff ring topology of a countable ring
R, then for any finite set of generalized polynomials over the ring R with nonzero
free terms there exists a neighborhood W of zero such that each element r ∈ W is
not a root of each of these polynomials.

Proposition 2.10. The following statements are true:
2.10.1. There exists a set Ñ of subsets of the set N of natural numbers such that

the cardinality of the set Ñ is continuum and A ∩ B is a finite set for any different
sets A and B (see. [6], the proof of example 3.6.18);

2.10.2. If (βN, τ) is the Stone–C̆ech compactification of the set N of natural
numbers with the discrete topology, then N is a dense subset of the Hausdorff space
(βN, τ) and the cardinality of the set βN is two to the power of continuum (see [6],
Corollary 3.6.12).

3 Basic results

Theorem 3.1. If R =
{
0,±r1,,±r2, . . .

}
is a countable ring and τ0 is a non-discrete

Hausdorff ring topology such that the topological ring (R, τ0) has a countable basis
of the filter of neighborhoods of zero, then the following statements are true:

3.1.1. For any infinite set A of natural numbers there is a metrizable ring
topology τ(A) such that τ0 ≤ τ(A);

3.1.2. sup{τ(A), τ(B)} is the discrete topology for any infinite sets A and B of
natural numbers such that A ∩ B is a finite set;
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3.1.3. There are continuum of ring topologies stronger than τ0 and such that
any two of them are comparable to each other;

3.1.4. There exist two to the power of continuum of ring topologies such that
sup{τ1, τ2} is the discrete topology for any two different topologies τ1 and τ2;

3.1.5. There exist two to the power of continuum of coatoms in the lattice of
ring topologies of the ring R.

Proof. Since (R, τ0) is a Hausdorff space, then there exists a countable basis
{V1, V2, . . .} of the filter of neighborhoods of zero such that −Vk = Vk and Vk∩Sk = ∅
and

F1(Sk+1;Vk+1) = Vk+1 + Vk+1 + Vk+1 · Vk+1 + Sk+1 · Vk+1 + Vk+1 · Sk+1 ⊆ Vk

for any natural number k.
Then by induction on n it is easy to prove that

Fn(Si+1, . . . , Si+n;Vi+1 . . . , Vi+n) ⊆ Vi

for any natural numbers i and n.
Further the proof of Statement 3.1.1 will be realized in several steps.

Step I. By induction we construct a sequence k1, k2, . . . of natural numbers such
that ki ≥ i, for any positive integer number i and a sequence h1, h2, . . . of nonzero
elements of the ring R such that {−hi, hi} ⊆ Vki

and

Fn(S1, . . . , Sk;UA,1, . . . , UA,n)
⋂

Fn(S1, . . . , Sk;UB,1, . . . , UB,n) = {0}

for all subsets A and B of the set of all natural numbers such that A ∩ B = ∅,
where UC,i = {hi, 0,−hi} if i ∈ C and UC,i = {0} if i /∈ C, for any set C of natural
numbers.

We take k1 = 2, and as h1 we take an arbitrary element of the set V2\{0}.
If A and B are some sets of natural numbers such that A

⋂
B = ∅, then k1 /∈ A

or k1 /∈ B, and hence, UA,1 = {0} or UB,1 = {0}. Then F1(S1;UA,1)∩F1(S1;UB,1) =
{0} for any sets A and B of natural number such that A ∩ B = ∅.

Suppose that we defined natural numbers k1 < k2 < . . . < kn such that ki ≥ i
and nonzero elements h1, h2, . . . , hn of the ring R such that {hi,−hi} ⊆ Vki

and

Fn(S1, . . . , Sk;UA,1, . . . , UA,n) ∩ Fn(S1, . . . , Sk;UB,1, . . . , UB,n) = {0}

for any sets A and B of natural numbers such that A ∩ B = ∅.
For any subsets A′ ⊆ {1, . . . , n} and B′ ⊆ {1, . . . , n} we consider a finite set

Ω(A′,B′) = Fn+1(S1, . . . , Sn+1;UA′,1 . . . , UA′,n, {x, 0,−x})−

(
Fn(S1, . . . , Sn+1;UB′,1 . . . , UB′,n)\{0}

)

of generalized polynomials over the ring R in variable x.
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Since, according to Statement 4.5,

Fn+1(S1, . . . , Sn+1;UA′,1 . . . , UA′,n, {0}) = Fn(S1, . . . , Sn+1;UA′,1, . . . , UA′,n)

and, according to inductive assumption,

Fn(S1, . . . , Sn;UA′,1, . . . , UA′,n) ∩ Fn(S1, . . . , Sn;UB′,1, . . . , UB′,n) = {0}

then the free term of generalized polynomial from Ω(A′,B′) is nonzero.
Since the set {1, . . . , n} has a finite number of subsets, then the set Φn =

⋃

A′,B′⊆{1,...,n},A′
⋂

B′=∅

Ω(A′,B′) is a finite set of generalized polynomials with nonzero

free term.
Then, by Corollary 2.9, there exists a neighborhood W of zero in the topological

ring (R, τ0) such that any element r ∈ W is not a root of any polynomial of the set
Φn+1(x).

Then there exists a natural number kn+1 such that kn+1 > n+1 and Vkn+1 ⊆ W .
We take hn+1, any element of the set Vkn+1\{0}.

We prove that

Fn+1(S1, . . . , Sn+1;UA,1, . . . , UA,n+1) ∩ Fn+1(S1, . . . , Sn+1;UB,1, . . . , UB,n+1) = {0}

for all sets A and B of natural numbers such that A ∩ B = ∅.
Assume the contrary, and let

0 6= r ∈ Fn+1(S1, . . . , Sn+1;UA,1, . . . , UA,n+1)∩Fn+1(S1, . . . , Sn+1;UB,1, . . . , UB,n+1).

Since A ∩ B = ∅ then from inductive assumption it follows that

Fn+1(S1, . . . , Sn+1;UA,1, . . . , UA,n, {0}) ∩ Fn+1(S1, . . . , Sn+1;UB,1, . . . , UB,n, {0}) =

Fn(S1, . . . , Sn+1;UA,1, . . . , UA,n) ∩ Fn+1(S1, . . . , Sn+1;UB,1, . . . , UB,n) = {0},

and hence UA,n+1 = {hn+1, 0,−hn+1} or UB,n+1 = {hn+1, 0,−hn+1} and from the
definition of sets UC,i it follows that UA,n+1 = {0} or UB,n+1 = {0}.

Assume, for definiteness, that UA,n+1 = {0} and UB,n+1 = {hn+1, 0,−hn+1}.
Then

0 6= r ∈ Fn(S1, . . . , Sn;UA,1, . . . , UA,n)
⋂

Fn+1(S1, . . . , Sn+1;UB,1, . . . , UB,n+1),

and hence, r = f(hn+1) for some generalized polynomial

f(x) ∈ Fn+1(S1, . . . , Sn+1;UB,1, . . . , UB,n, {x, 0,−x}).

Since r /∈ Fn(S1, . . . , Sn;UB,1 . . . , UB,n), the free term of the generalized polynomial
f(x) − r is nonzero, and the element hn+1 is a root of the generalized polynomial
f(x) − r, and

f(x) − r ∈ Fn+1(S1, . . . , Sn+1;UA,1, . . . , UA,n, {x, 0,−x})−
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(Fn(S1, . . . , Sn+1;UB,1. . . . , UB,n)\{0}).

As UC,i = UC
⋂
{1,...,n},i for any natural number 1 ≤ i ≤ n and any set C of

natural numbers, then f(h) − r ∈ Fn+1(S1, . . . , Sn+1;UA′,1, . . . , UA′,n, {h, 0,−h})−
(Fn(S1, . . . , Sn+1;UB′,1. . . . , UB′,n)\{0}) for some subsets A′, B′ ⊆ {1, . . . , n}.

We have contradiction with the definition of the element hn+1. Therefore

Fn+1(S1, . . . , Sn+1;UA,1 . . . , UA,n+1) ∩ Fn+1(S1, . . . , Sn+1;UB,1 . . . , UB,n+1) = {0}.

So, we defined the sequence k1, k2, . . . of natural numbers such that ki ≥ i for
any number i and the sequence h1, h2, . . . of nonzero elements of the ring R such
that {−hi, hi} ⊆ Vki

for any natural number i and

Fn(S1, . . . , Sk;UA,1, . . . , UA,n) ∩ Fn (S1, . . . , Sk;UB,1, . . . , UB,n) = {0}

for all sets A and B of natural numbers such that A ∩ B = ∅ and any natural
number n.

Step II. For any pair (i, j) of natural numbers we consider the set

U(i,j),A = Fj(Ui+1,A, . . . , Ui+j,A;Si+1, . . . , Si+j),

where Ui,A = {0} if i /∈ A and Ui,A = {0, hi,−hi} if i ∈ A.
We show that for the sets U(i,j),A the following inclusions are true:
1. From Statement 2.4.3 it follows that 0 ∈ U(i,j),A for any natural numbers i, j

and
U(i,n),A = Fn(Si+1, . . . , Si+n;Ui+1,A, . . . , Ui+n,A) ⊆

Fn(Si+1, . . . , Si+n;Vi+1, . . . , Vi+n) ⊆ Vi

for any natural numbers i, n and any set A of natural numbers.
2. From Statements 2.4.4 and 2.4.5 it follows that U(k,j),A ⊆ U(k,n),A for any

natural numbers j ≤ n.
3. From Statement 2.4.8 it follows that U(i,j),A ⊆ U(k,j),A for any natural num-

bers k ≤ i and j.
4. From Statement 2.4.2 it follows that U(i,j),A is a symmetric set, i.e.

−U(I,j),A = U(i,j),A for any natural numbers i, j.
5. U(i+1,j),A · U(i+1,j),A ⊆ U(i,j),A and U(i+1,j),A + U(i+1,j),A ⊆ U(i,j),A for any

natural numbers i and j > 1.
6. rn · U(i+n,j),A ⊆ U(i,j),A and U(i+n,j),A · rn ⊆ U(i,j),A for any natural numbers

i, j, n and any set A of natural numbers.
We prove the inclusion 5 by induction on the number j.
In fact, if j = 2, then, from the definition of sets U(i,j),A, Statements 2.4.1 and

2.4.4, it follows:

U(i+1,2),A · U(i+1,2),A = F1(Si+2;Ui+2,A) · F1(Si+2;Ui+2,A) ⊆

F1

(
Si+1;F1(Si+2;Ui+2,A)

)
⊆ F1(Si+1;Ui+1,A ∪ F1(Si+2;Ui+2,A)) =
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F2(Si+1, Si+2;Ui+1,A, Ui+2,A) = U(i,2),A

and

U(i+1,2),A + U(i+1,2),A = F1(Si+2;Ui+2,A) + F1(Si+2;Ui+2,A) ⊆

F1

(
Si+1;Ui+1,A ∪ F1(Si+2;Ui+2,A)

)
= F1

(
Si+1;F1(Si+2;Ui+2,A)

)
⊆

F2(Si+1, Si+2;Ui+1,A, Ui+2,A) = U(i,2),A

for any natural number i and any set A of natural numbers.
Assume that the required inclusion is proved for natural number j = n ≥ 2 and

any natural number i. Then

U(i+1,i+n+1),A · U(i+1,i+n+1),A = Fn(Si+2, . . . , Si+n+1;

Ui+2,A, . . . , Ui+n+1,A) · Fn(Si+2, . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A) ⊆

F1(Si+1;Ui+1 ∪ Fn(Si+2, . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A)) ⊆

F1

(
Si+1;Ui+1,A ∪ Fn(Si+2 . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A)

)
=

Fn+1(Si+1 . . . , Si+n+1;Ui+1,A, . . . , Ui+n+1,A) = U(i,n+1),A

and

U(i+1,i+n+1),A + U(i+1,i+n+1),A =

Fn(Si+2, . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A)+

Fn(Si+2, . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A) ⊆

F1(Si+1;Ui+1 ∪ Fn(Si+2, . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A)) ⊆

F1(Si+1;Ui+1,A ∪ Fn(Si+2, . . . , Si+n+1;Ui+2,A, . . . , Ui+n+1,A)) =

Fn+1(Si+1 . . . , Si+n+1;Ui+1,A, . . . , Ui+n+1,A) = U(i,n+1),A.

Proof of inclusion 6. In fact,

rn · U(i+n,j),A ⊆ Si+n · Fn+i+j(Sn+i+1, . . . , Sn+i+j;Un+i+1,A, . . . , Un+i+j,A) ⊆

F1(Sn+i;Un+i,A ∪ Fn+i+j(Sn+i+1, . . . , Sn+i+j ;Un+i+1,A, . . . , Un+i+j,A)) =

U(i+n−1,j),A ⊆ U(i,j),A and

U(i+n,j),A · rn ⊆ Fn+i+j(Sn+i+1, . . . , Sn+i+j ;Un+i+1,A, . . . , Un+i+j,A) · Si+n ⊆

F1(Sn+i;Un+i,A ∪ Fn+i+j(Sn+i+1, . . . , Sn+i+j ;Un+i+1,A, . . . , Un+i+j,A)) =

U(i+n−1,j),A ⊆ U(i,j),A for any natural numbers i, j, n, and any set A of natural
numbers.

Step III. For every infinite set A of natural numbers and any natural number

i we take Ûi(A) =
∞⋃

j=1
U(ij),A and show that the set {Ûi(A)|i ∈ N} satisfies the
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conditions of Theorem 2.1, and hence, this set is a basis of the filter of neighborhoods
of zero for a ring topology τ(A) on the ring R.

In fact, since

U(i,n+1),A = Fn+1(Si+1, . . . , Si+n+1;Ui+1,A, . . . , Ui+n+1,A) ⊆

Fn+1(Si+1 . . . , Si+n+1;Vi+1, . . . , Vi+n+1) ⊆ Vi

for any natural numbers i and n, then Ûi(A) =
∞⋃

j=1
U(ij),A ⊆ Vi. Then

{0} ⊆
∞⋂

i=1
Ûi(A) ⊆

∞⋂

i=1
Vi = {0}, and hence, the condition 1 of Theorem 2.1 is satis-

fied.
From inclusions 2 and 3 (see Step II), it follows

Ûi(A)
⋂

Ûk(A) = (

∞⋃

j=1

(
U(i,j),A

)⋂(
∞⋃

l=1

U(k,l),A

)
=

∞⋃

j=1

∞⋃

l=1

(
U(i,j),A

⋂

U(k,l),A

)
=

∞⋃

j=1

U(t,j),A = Ût(A),

where t = max{i, k}, and hence, the condition 2 of Theorem 2.1 is satisfied.
From inclusions 2 and 5 (see Step II) it follows

Ûi(A) + Ûk(A) =
(

∞⋃

j=1

U(i,j),A

)
+

(
∞⋃

l=1

U(i,l),A

)
=

⋃

j=1

⋃

j=1

(
U(i,j),A + U(i,l),A

)
=

∞⋃

t=1

U(i−1,t),A = Ûi−1(A)

and

Ûi(A) · Ûk(A) =
(

∞⋃

j=1

U(i,j),A

)
·
(
∞⋃

l=1

U(i,l),A

)
=

∞⋃

j=1

∞⋃

j=1

(
U(i,j),A · U(i,l),A

)
=

∞⋃

t=1

U(i−1,t),A = Ûi−1(A)

for any natural number i > 1, and hence, the conditions 3 and 6 of Theorem 2.1 are
satisfied.

From inclusion 3 (see Step II) it follows

−Ûi(A) = −(

∞⋃

j=1

U(i,j),A) =

∞⋃

j=1

∞⋃

l=1

(
−U(i,j),A

)
=

∞⋃

j=1

Uj,A = Ûi(A)

for any natural number i, and hence, the condition 4 of Theorem 2.1 is satisfied.
Now, let r ∈ R.
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If r = 0, then r · Ûi(A) = {0} ⊆ Ûi(A) and Ûi(A) · r = {0} ⊆ Ûi(A) for any
natural number i and any set A of natural numbers.

If r 6= 0, then r = rn or r = −rn for some natural number n. Then, from the
inclusion of 6, it follows rn · Ûi+n(A) ⊆ Ûi(A) and Ûi+n(A) · rn ⊆ Ûi(A) for any
natural number i, and hence, the condition 5 of Theorem 2.1 is satisfied.

Thus, we have shown that the set {Ûi(A)|i ∈ N} satisfies conditions 1 – 6 of
Theorem 2.1, and hence, this set is a basis of the filter neighborhoods of zero for a
ring topology τ(A) on the ring R.

Since Ûi(A) =
∞⋃

j=1
U(i,j),A ⊆ Vi for any natural number i, then τ0 ≤ τ(A).

Thus Statement 3.1.1 is proved.

Proof of Statement 3.1.2.

For any subset A ∈ Ñ (definition of the set Ñ see in Statement 2.10.1) we consider
the ring topology τ(A), constructed in the proof of Step III of Statement 3.1.1.

Since the set Ñ has cardinality of continuum, then to finish the proof of this
Statement, it remains to verify that sup{τ(A), τ(B)} is the discrete topology for
different sets A,B ∈ Ñ.

Let A,B ∈ N. Then there exists a natural number n such that

(A\{1, . . . , n})
⋂

(B\{1, . . . , n}) = ∅.

If A′ = A\{1, . . . , n} and B′ = B\{1, . . . , n}, then (see proof of Step I of State-
ment 3.1.1)

Fk(S1, . . . , Sk;UA′,1, . . . , UA′,k)
⋂

Fk(S1, . . . , Sk;UB′,1, . . . , UB′,k) = {0}

for any natural number k.

Since Ui,A = Ui,A′ and Ui,B = Ui,B′ for any natural number i > n, then U(i,j),A =
U(i,j),A′ and U(i,j),B = U(i,j),B′ for any natural numbers i, j such that i > n, and
hence, U(i,j),A

⋂
U(i,j),B = U(i,j),A′

⋂
U(i,j),B′ = {0} for any natural numbers i, j such

that i > n. Then, from the inclusion of 2 (see step II), it follows that

Ûn+1(A)
⋂

Ûn+1(B) =

∞⋃

j=1

(
U(n+1,j),A

⋂

U(n+1,j),B

)
= {0}.

Since Ûn+1(A) and Ûn+1(B) are neighborhoods of zero in topological rings
(R, τ(A)) and (R, τ(B)), respectively, then {0} is a neighborhood of zero in the
topological ring (R, sup{τ(A), τ(B)}), and hence, sup{τ(A), τ(B)} is the discrete
topology.

Statement 3.1.2 is proved.

Proof of Statement 3.1.3. If Q is the set of all rational numbers and N is the
set of all natural numbers, then there is a bijection ξ : Q → N.
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For each real number r we consider the infinite set Ar = {ξ(q)|q ∈ Q, r ≤ q} of
natural numbers and let τ(Ar) be the ring topology on the ring R, constructed in
the proof of step III of Statement 3.1.1.

We show that the set {τ(Ar)|r is a real number} of ring topologies is as required.
Since the set {Ûi(Ar)|i ∈ N} is a basis of the filter of neighborhoods of zero for

the ring topology τ(Ar), then the topological ring (R, τ(Ar)) has a countable basis
of filter of neighborhoods of zero.

We show that for any two distinct real numbers r, r′ topologies τ(Ar) and τ(Ar′)
are different and comparable.

In fact, if r < r′, then Ar\Ar′ is an infinite set, and then for any natural number
n there exists a natural number k ∈ Ar\Ar′ such that k > n. Then hk ∈ U(k,1),Ar

⊆

U(n,1),Ar
and hk /∈ U(1,s),Ar′

for any natural number s, and hence, hk ∈ Ûn(Ar) and

hk /∈ Û1(Ar′). The arbitrariness of the number n implies that τ(Ar) 6= τ(Ar′), and
hence, the set {τ(Ar)|r ∈ R} has the cardinality of continuum.

In addition, since Ar′ = ξ({q|q ∈ Q,′r ≤ q} ⊆ ξ({q|q ∈ Q, r ≤ q} = Ar, then
(see the definition of the sets U(i,j),A in the proof of Step II of Statement 3.1.1)

U(i,j),Ar′
⊆ U(i,j),Ar

for any natural numbers i, j. Then Ûn,Ar′
⊆ Ûn,Ar for any

natural number n, and since the sets of {Un,Ar′
|n ∈ N} and {Un,Ar |n ∈ N} are basis

of the filters of neighborhoods of zero in topological rings (R, τ(Ar′)) and (R, τ(Ar)),
respectively, then τ(Ar) ≤ τ(Ar′).

Statement 3.1.3 is proved.

Proof of Statement 3.1.4. If (see Statement 2.10.2) â ∈ βN\N, then Û
⋂

N
is an infinite set of natural numbers for any neighborhood Û of the element â in the
topological space (βN, τ).

Let τ(Û
⋂

N) be the ring topology, defined according to Statement 3.1.1, and

let τ̂â = sup
{

τ(Û
⋂

N)|Û is a neighborhood of element â in the topological space

(βN, τ)
}

.

Since the cardinality of the set βN\N is equal to two to the power of the contin-
uum, then it suffices to prove that sup{τ̂â, τ̂b̂

} is a discrete topology for any deferent

elements â, b̂ ∈ βN\N.
So, let â, b̂ ∈ βN\N and â 6= b̂. Since the space (βN, τ) is a Hausdorff space,

then there exist neighborhoods Û and V̂ of elements â and b̂ in the topological
space (βN, τ), respectively, such that Û

⋂
V̂ = ∅. Then, according to Statement

11.2, sup{τ(N∩ Û), τ(N∩ V̂ )} is the discrete topology, and hence, sup{τ̂â, τ̂b̂
} is the

discrete topology.
Statement 3.1.4 is proved.

Proof of Statement 3.1.5. If T is the set of all non-discrete, ring topologies
on the ring R, then by the theorem of Kuratowski-Zorn, for any non-discrete ring
topology τ̂â, constructed in Statement 3.1.4, there is a maximal element τ∗

â such that
τ∗
â ≥ τ̂â. Then the set {τ∗

â |â ∈ βN\N} is as required.
The theorem is proved.
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countable groups. Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2013, No. 2(72)–3(73), 17–26.

[5] Arnautov V. I., Ermakova G.N. On the number of group topologies on countable groups.
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Determining the Optimal Evolution Time

for Markov Processes with Final Sequence of States

Alexandru Lazari

Abstract. This paper describes a class of dynamical stochastic systems that re-
presents an extension of classical Markov decision processes. The Markov stochastic
systems with given final sequence of states and unitary transition time, over a finite or
infinite state space, are studied. Such dynamical system stops its evolution as soon as
given sequence of states in given order is reached. The evolution time of the stochastic
system with fixed final sequence of states depends on initial distribution of the states
and probability transition matrix. The considered class of processes represents a ge-
neralization of zero-order Markov processes, studied in [3]. We are seeking for the
optimal initial distribution and optimal probability transition matrix that provide the
minimal evolution time for the dynamical system. We show that this problem can be
solved using the signomial and geometric programming approaches.

Mathematics subject classification: 65C40, 60J22, 90C39, 90C40.
Keywords and phrases: Markov Process, Final Sequence of States, Evolution Time,
Geometric Programming, Signomial Programming, Posynomial Function.

1 Introduction and Problem Formulation

Let L be a stochastic discrete system with finite set of states V , |V | = ω. At
every discrete moment of time t ∈ N the state of the system is v(t) ∈ V . The system
L starts its evolution from the state v with the probability p∗(v), for all v ∈ V ,
where

∑

v∈V

p∗(v) = 1. Also, the transition from one state u to another state v is

performed according to given probability p(u, v) for every u ∈ V and v ∈ V , where
∑

v∈V

p(u, v) = 1, ∀u ∈ V and p(u, v) ≥ 0, ∀u, v ∈ V . Additionally we assume that

a sequence of states x1, x2, . . . , xm ∈ V is given and the stochastic system stops
transitions as soon as the sequence of states x1, x2, . . . , xm is reached in given order.
The time T when the system stops is called evolution time of the stochastic system
L with given final sequence of states x1, x2, . . . , xm.

Various classes of such systems have been studied in [1] and [5], where polyno-
mial algorithms for determining the main probabilistic characteristics (expectation,
variance, mean square deviation, n-order moments) of evolution time of the given
stochastic systems were proposed. Another interpretations of these Markov pro-
cesses were analyzed in 1981 by Leo J.Guibas and Andrew M.Odlyzko in [9] and
by G. Zbaganu in 1992 in [8]. First article considers the evolution of these stochas-
tic systems as a string, composed from the states of the systems, and studies the

c© Alexandru Lazari, 2015
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periods in this string. In the second paper the author considers that the evolution
of Markov process is similar with a poem written by an ape. The evolution time of
the system is associated with the time that needs for the ape to write that poem
(the final sequence of states of the system).

Next, we consider that the distributions p and p∗ are not fixed. So, we have the
Markov process L(p∗, p) with final sequence of states X, distribution of the states p∗

and transition matrix p, for every parameters p and p∗. The problem is to determine
the optimal distribution p∗ = p∗ and optimal transition matrix p = p that minimize
the expectation of the evolution time T (p∗, p) of the stochastic system L(p∗, p).

Based on the results mentioned above, efficient methods for minimizing the ex-
pectation of the evolution time of zero-order Markov processes with final sequence of
states and unitary transition time were obtained in [3]. The main idea was that the
expectation of the evolution time can be written as a posynomial minus one unit.
The geometric programming approach was applied and the problem was reduced to
the case of convex optimization and solved using the interior-point methods.

In this paper we consider a generalization of this problem where the evolution
time is minimized for Markov processes of order 1.

2 Preliminary Results

In order to determine the minimal evolution time for Markov processes with
final sequence of states we will use the geometric and signomial programming
approaches [6].

2.1 Geometric Programming

The geometric programming was introduced in 1967 by Duffin, Peterson, and
Zener. Wilde and Beightler in 1967 and Zener in 1971 contributed with several
results referred to many extensions and sensitivity analysis. A geometric program
represents a type of optimization problem, described by objective and constraint
functions that have a special form. A good tutorial on geometric programming was
presented in [6].

First numerical methods, based on solving a sequence of linear programs, were
elaborated by Avriel et al., Duffin, Rajpogal and Bricker. Nesterov and Nemirovsky
in 1994 described the first interior-point method for geometric programs and proved
the polynomial time complexity. Recent numerical approaches were presented by
Andersen and Ye, Boyd and Vandenberghe, Kortanek.

In the context of geometric programming, a monomial represents a function
f : Rs → R of the form f(x1, x2, . . . , xs) = cxα1

1 xα2
2 . . . xαs

s , where c > 0 and αi ∈ R,

i = 1, s. An arbitrary sum of monomials, f(x1, x2, . . . , xs) =
K∑

k=1

ckx
α1k
1 xα2k

2 . . . xαsk
s ,

where ck > 0, k = 1,K and αik ∈ R, i = 1, s, k = 1,K, represents a posynomial.
Posynomials are closed under addition, multiplication, and nonnegative scaling. A
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geometric program is an optimization problem of the form

f0(x1, x2, . . . , xs) → min,







fi(x1, x2, . . . , xs) ≤ 1, i = 1, r
gj(x1, x2, . . . , xs) = 1, j = 1,m

xl > 0, l = 1, s
,

where fi(x1, x2, . . . , xs), i = 0, r, are posynomials and gj(x1, x2, . . . , xs), j = 1,m,
are monomials.

In order to efficiently solve a geometric program we need to convert it to a convex
optimization problem. The conversion is based on a logarithmic change of variables
yl = ln xl, l = 1, s and a logarithmic transformation of the objective and constraint
functions. The obtained convex optimization problem has the form

ln f0(e
y1 , ey2 , . . . , eys) → min,

{
ln fi(e

y1 , ey2 , . . . , eys) ≤ 0, i = 1, r
ln gj(e

y1 , ey2 , . . . , eys) = 0, j = 1,m

and can be efficiently solved using standard interior-point methods (see [6] and [7]).

2.2 Signomial Programming

In the context of signomial programming, a signomial monomial represents a
function f : Rs → R of the form f(x1, x2, . . . , xs) = cxα1

1 xα2
2 . . . xαs

s , where c ∈ R
and αi ∈ R, i = 1, s. An arbitrary sum of signomial monomials of the form

f(x1, x2, . . . , xs) =
K∑

k=1

ckx
α1k
1 xα2k

2 . . . xαsk
s , where ck ∈ R, k = 1,K and αik ∈ R,

i = 1, s, k = 1,K , represents a signomial. Signomials are closed under addition,
substraction, multiplication, and scaling. A signomial program is an optimization
problem of the form:

f0(x1, x2, . . . , xs) → min,







fi(x1, x2, . . . , xs) ≤ 1, i = 1, r
gj(x1, x2, . . . , xs) = 1, j = 1,m

xl > 0, l = 1, s
,

where fi(x1, x2, . . . , xs), i = 0, r and gj(x1, x2, . . . , xs), j = 1,m, are signomials.

So, a signomial has the same form as a posynomial, but the coefficients are
allowed to be also negative. There is a huge difference between a geometric program
and a signomial program. The global optimal solution of a geometric program can
always be determined, but only a local solution of a signomial program can be
calculated efficiently.
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2.3 Geometric Programs with Posynomial Equality Constraints

In several particular cases the signomial programs can be handled as geometric
programs. In [6] it was shown that the geometric programs with posynomial equa-
lity constraints represent such particular case, i.e. can be solved using geometric
programming method. A geometric program with posynomial equality constraints
is a signomial program of the form:

f0(x1, x2, . . . , xs) → min,







fi(x1, x2, . . . , xs) ≤ 1, i = 1, r
gj(x1, x2, . . . , xs) = 1, j = 1,m
hk(x1, x2, . . . , xs) = 1, k = 1, n

xl > 0, l = 1, s

,

where fi(x1, x2, . . . , xs), i = 0, r and hk(x1, x2, . . . , xs), k = 1, n, are posynomials
and gj(x1, x2, . . . , xs), j = 1,m, are monomials.

Suppose that for each posynomial equality constraint hk(x1, x2, . . . , xs), k = 1, n,
we can find a different variable xl(k) with the following properties:

• The variable xl(k) does not appear in any of the monomial equality constraint
functions;

• The posynomial hk(x1, x2, . . . , xs) is monotone strictly

– increasing in xl(k), case in which we denote λ(xl(k)) = −1 or

– decreasing in xl(k), case in which we denote λ(xl(k)) = 1;

• The functions fi(x1, x2, . . . , xs), i = 0, r, are all

– monotone decreasing in xl(k) if λ(xl(k)) = −1;

– monotone increasing in xl(k) if λ(xl(k)) = 1.

We first form the geometric program relaxation:

f0(x1, x2, . . . , xs) → min,







fi(x1, x2, . . . , xs) ≤ 1, i = 1, r
gj(x1, x2, . . . , xs) = 1, j = 1,m
hk(x1, x2, . . . , xs) ≤ 1, k = 1, n

xl > 0, l = 1, s

.

If f∗ is the optimal value of the relaxed problem, then any optimal solution of the
auxiliary problem

n∏

k=1

(xl(k))
λ(xl(k)) → min,
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





fi(x1, x2, . . . , xs) ≤ 1, i = 1, r
gj(x1, x2, . . . , xs) = 1, j = 1,m
hk(x1, x2, . . . , xs) ≤ 1, k = 1, n
f0(x1, x2, . . . , xs) ≤ f∗

xl > 0, l = 1, s

,

is an optimal solution of the original problem.

3 The Main Results

3.1 Stochastic Systems with Final Sequence of States

Independent States

In this subsection we briefly describe the main results referred to the problem
of optimization of the evolution time of stochastic systems with final sequence of
states and independent states. These systems are also called zero order Markov
processes with final sequence of states or strong memoryless stochastic systems with
final sequence of states and are analyzed and studied in [2] and [3]. This problem was
reduced to a geometric program using the main properties of homogeneous recurrent
linear sequences and generating function, presented in [3–5] and [1].

The zero order Markov processes with final sequence of states represent a par-
ticular case of stochastic systems with final sequence of states studied in this paper.
In this case the states of the system are independent, so, the rows of the transition
matrix p are equal to initial distribution p∗. The expectation of the evolution time
can be determined using the following theorem.

Theorem 1. The expectation of the evolution time T (p∗) of zero-order Markov

process L(p∗) is E(T (p∗)) = −1 + (m + w−1
m ) +

1

wm

m−1∑

k=0

(k + 1)zmk, where m is the

length of final sequence of states X = (x1, x2, . . . , xm), πs = p∗(xs), ws =
s∏

j=1
πj,

t(s) = min({t ∈ {2, 3, . . . , s + 1} | xt−1+j = xj, j = 1, s + 1 − t}), s = 1,m and for
each s = 1,m and k = 0, s − 1 the following relation holds:

zsk =







0 if 0 ≤ k ≤ t(s) − 3
−wt(s)−1 if k = t(s) − 2

wt(s)−1(1 − π1) if t(s − t(s) + 1) = 2 and k = t(s) − 1

wt(s)−1 if t(s − t(s) + 1) ≥ 3 and k = t(s) − 1

wt(s)−1zs−t(s)+1, k−t(s)+1 if t(s) ≤ k ≤ s − 1

.

The following theorem shows how the problem of optimization of the evolution
time can be reduced to the geometric program

E(T (p∗)) + 1 → min,
{ ∑

x∈Y

p∗(x) ≤ 1

p∗(x) > 0, ∀x ∈ Y ,
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where Y = {x1, x2, . . . , xm}. If π∗ = (π∗(x))x∈Y represents the optimal solution of
this geometric program, then p∗ = (p∗(x))x∈V represents the optimal solution of the
initial problem, where

{
p∗(x) = π∗(x), x ∈ Y
p∗(x) = 0, x ∈ V \Y .

Theorem 2. The expression E(T (p∗)) + 1 represents a posynomial in the variables
π1, π2, . . . , πm.

Also, several particular cases were analyzed and presented in [3] and the explicit
optimal solutions were obtained.

Theorem 3. If t(m) = 2, then the optimal solution is p∗ = (p∗(x))x∈V , where
p∗(x1) = 1 and p∗(y) = 0, for all y ∈ V \{x1}, and the minimal value of the
expectation of evolution time is E(T (p∗)) = m − 1.

Theorem 4. If t(m) = m + 1, then the components p∗(y), y ∈ V , of the optimal
solution p∗ are direct by proportional to the multiplicities m(y), y ∈ V , of the res-
pective states in final sequence of states X and the minimal value of the expectation

of evolution time is E(T (p∗)) = −1 +
∏

y∈Y

(

m

m(y)

)m(y)

.

3.2 Stochastic Systems with Final Sequence of States and

Interdependent States

In this subsection we study the problem of optimization of the evolution time of
stochastic systems with final sequence of states and interdependent states. The opti-
mal initial distribution and optimal transition matrix are obtained, using signomial
and geometric programming approaches.

Theorem 5 offers us the way for determining the optimal initial distribution of
the system.

Theorem 5. The optimal initial distribution of the states is p∗, where p∗(x1) = 1
and p∗(x) = 0, ∀x ∈ V \{x1}.

Proof. For finishing the evolution of the system it is necessary to pass consecutively
through the final states x1, x2, . . . , xm. So, the evolution time will be minimal when
the state x1 will be reached as soon as possible. For this reason, it is optimal to start
the evolution of the system from the state x1, i.e. p∗(x1) = 1. Since

∑

x∈V

p∗(x) = 1,

we have p∗(x) = 0, ∀x ∈ V \{x1}.

Theorem 6 describes several important properties of the optimal transit matrix.

Theorem 6. We consider the set of active final states X = {x1, x2, . . . , xm−1}, the
set of final transitions Y = {(x1, x2), (x2, x3), . . . , (xm−1, xm)} and the set of branch
states Z = {y ∈ X\{x1} | ∃x ∈ X,∃z ∈ X ∪ {xm}, z 6= y : (x, y) ∈ Y , (x, z) ∈ Y }.
The optimal transition matrix p has the following properties:
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1. p(x, x1) = 1 if (x, x1) ∈ Y and (x, z) 6∈ Y , ∀z 6= x1;

2. p(x, x1) = 1, ∀x 6∈ X;

3. p(x, x1) > 0, ∀x ∈ Z and p(x, x1) = 0 if (x, x1) 6∈ Y , x ∈ X\Z;

4. p(x, y) = 0 if (x, y) 6∈ Y and y 6= x1;

5. p(x, y) > 0, ∀(x, y) ∈ Y ;

6.
∑

(x,y)∈Y ∪{(x,x1)}

p(x, y) = 1, ∀x ∈ X.

Proof. Let X = {x1, x2, . . . , xm−1} be the set of the states from which it is possible
to perform an optimal transition, Y = {(x1, x2), (x2, x3), . . . , (xm−1, xm)} – the set
of the optimal transitions (that follow optimal realization of the final sequence of
states), Z = {y ∈ X\{x1} | ∃x ∈ X,∃z ∈ X∪{xm}, z 6= y : (x, y) ∈ Y , (x, z) ∈ Y } –
the set of branch states, in which the stochastic system, having as goal the realization
of the final sequence of states, can make a mistake and need to have a chance to
return in the state x1.

1. If (x, x1) ∈ Y and (x, z) 6∈ Y , ∀z 6= x1, then x ∈ X and the transition (x, x1)
is the unique possible transition from the state x that belongs to the set Y .
For ensuring the realization of this transition when the system is in the state
x ∈ X , it is necessary to have p(x, x1) = 1.

2. For finishing the evolution of the system it is necessary to pass consecutively
through the final states x1, x2, . . . , xm. So, for minimizing the evolution
time of the system it is necessary that the state x1 to be reached as soon as
possible. So, if the system is in the state x 6∈ X , we need to have p(x, x1) = 1.

3. Since Z represents the set of branch states, in which the stochastic system,
having as goal the realization of the final sequence of states, can make a mis-
take, we need to give as soon as possible a chance to return in the state x1 for
retrying from the beginning the realization of the final sequence of states. So,
we can assume that p(x, x1) > 0, ∀x ∈ Z and p(x, x1) = 0 if (x, x1) 6∈ Y and
x ∈ X\Z;

4. If the state x ∈ X , then ∃y1, y2, . . . , yk ∈ X ∪ {xm} such that (x, yj) ∈ Y ,
j = 1, k, where k ≥ 1. For ensuring the realization of one of these transitions
when the system is in the state x ∈ X or return to the initial state x1 when
it is necessary, we need the nonexistence of another transition (x, y) 6∈ Y
with y 6= x1, i. e. need to have p(x, y) = 0. If x 6∈ X, from Property 2 of this
Theorem, since

∑

y∈V

p(x, y) = 1 and p(x, y) ≥ 0, ∀x, y ∈ V , we have p(x, y) = 0,

∀y 6= x1.
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5. We have p(x, y) > 0, ∀(x, y) ∈ Y , because, otherwise we have p(x, z) = 0 for
at least one transition (x, z) ∈ Y , i. e. this transition is not realizable, which
implies that the evolution time is infinite (non optimal), contradiction with
our minimization goal.

6. The relation
∑

(x,y)∈Y ∪{(x,x1)}

p(x, y) = 1, ∀x ∈ X is obtained from the formula

∑

y∈V

p(x, y) = 1, ∀x ∈ X and the Property 4 from this Theorem.

Such we proved these six properties of the optimal transition matrix p.

Theorem 7 offers us the way for determining the optimal transition matrix of
the system.

Theorem 7. If δi,j(p) 6≡ 0, i, j = 1, 2, then the optimal transition matrix can be
determined by solving the following geometric programs with posynomial equality
constraints:

E(T (p)) = d1d
−1
2 → min, (1)







(2a) :
∑

(x,y)∈Y ∪{(x,x1)}

p(x, y) = 1, ∀x ∈ X

(2b) : d−1
1,1d1 + d−1

1,1d1,2 = 1

(2c) : d−1
2,1d2 + d−1

2,1d2,2 = 1

(2d) : d−1
1,1δ1,1(p) = 1

(2e) : d−1
1,2δ1,2(p) = 1

(2f) : d−1
2,1δ2,1(p) = 1

(2g) : d−1
2,2δ2,2(p) = 1

(2h) : di > 0, i = 1, 2
(2i) : di,j > 0, i, j = 1, 2

(2j) : p(x, y) > 0, ∀(x, y) ∈ Y

(2k) : p(x, x1) > 0, ∀x ∈ Z

(2)

and (1) subject to







(3a) :
∑

(x,y)∈Y ∪{(x,x1)}

p(x, y) = 1, ∀x ∈ X

(3b) : d−1
1,1d1 + d−1

1,1d1,2 = 1

(3c) : d−1
2,1d2 + d−1

2,1d2,2 = 1

(3d) : d−1
1,1δ1,2(p) = 1

(3e) : d−1
1,2δ1,1(p) = 1

(3f) : d−1
2,1δ2,2(p) = 1

(3g) : d−1
2,2δ2,1(p) = 1

(3h) : di > 0, i = 1, 2
(3i) : di,j > 0, i, j = 1, 2

(3j) : p(x, y) > 0, ∀(x, y) ∈ Y

(3k) : p(x, x1) > 0, ∀x ∈ Z

(3)
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according to the properties described by Theorems 5 and 6, where δi,j(p), i, j = 1, 2,
are the posynomials from the decomposition

E(T (p)) = (δ1,1(p) − δ1,2(p))(δ2,1(p) − δ2,2(p))−1 (4)

which follows from the algorithm developed in [1]. The signomial programs (1)− (2)
and (1)−(3) can be handled as geometric programs using the way followed in [6] and
described in Section 2.3. If p1 is the optimal solution of the problem (1)− (2) and p2

is the optimal solution of the problem (1) − (3), then the optimal transition matrix
is p ∈ {p1, p2} for which E(T (p)) is minimal. If there exists at least one posynomial
δi∗,j∗(p) ≡ 0, then in (2) and (3) the corresponding posynomial equality constraints
just disappear and the corresponding substitution di∗,j∗ = 0 is performed in (2) and
substitution di∗,3−j∗ = 0 is performed in (3).

Proof. From Theorem 5 and theoretical argumentation of the algorithm developed
and presented in [1], which determines the generating vector of the distribution of
the evolution time, we can observe that the components of generating vector q(p)
of the distribution a = rep(T (p)) of the evolution time T (p) represent signomials
in the variables p(x, y), x, y ∈ V . Since E(T (p)) = G[a]′(1), we obtain that E(T (p))
represents a fraction with signomial numerator and denominator. Because every
signomial can be written as a difference between two posynomials, we have the
relation (4), where δi,j(p), i, j = 1, 2, are posynomials.

If we denote di,1 = max{δi,1(p), δi,2(p)}, di,2 = min{δi,1(p), δi,2(p)}, i = 1, 2 and
di = di,1 − di,2 > 0, i = 1, 2, we obtain 0 < E(T (p)) = d1d

−1
2 , d−1

i,1 di + d−1
i,1 di,2 = 1,

i = 1, 2 and d−1
i,j δi,j(p) = 1 or d−1

i,j δi,3−j(p) = 1, i, j = 1, 2. The relations
∑

(x,y)∈Y ∪{(x,x1)}

p(x, y) = 1, ∀x ∈ X and p(x, y) > 0, ∀(x, y) ∈ Y , follow from Theo-

rem 6.
Also, applying the same Theorem 6, we can eliminate the variables p(x, y) for

which p(x, y) = 0 or p(x, y) = 1 performing the corresponding substitutions. In
such way, we obtain the signomial programs (1) − (2) and (1) − (3). Because all
constraints (2a) − (2g) and (3a) − (3g) are posynomial equality constraints, these
signomial programs are geometric programs with posynomial equality constraints.

Next we will illustrate how these geometric programs with posynomial equality
constraints can be handled as geometric programs using the way described in Section
2.3. We will consider only the problem (1)− (2), the argumentation for the problem
(1) − (3) can be performed in similar way.

So, if the posynomials δi,j(p), i, j = 1, 2, are not monomials, we can fix the
variable d1,1 for constraint (2b), d2 for (2c), d1,2 for (2e), d2,1 for (2f), d2,2 for (2g),
an arbitrary variable p(x∗, y∗) that appears in the posynomial δ1,1(p) for constraint
(2d) and an arbitrary variable p(x, y∗(x)) 6= p(x∗, y∗) that appears in the posynomial
from (2a) for every x ∈ X for the constraints (2a). These selected variables verify
the properties described in Section 2.3, i.e. the problem (1)− (2) can be handled as
geometric programs.
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If the posynomial δ1,2(p), δ2,1(p) or δ2,2(p) is a monomial, then the respective
constraint (2e), (2f) or (2g) just disappears and the respective substitution di∗,j∗ =
δi∗,j∗(p) is performed in the signomial program (1) − (2). The selected variables for
the rest of constraints are not changed. So, the problem (1)− (2) can be handled as
geometric programs.

If the posynomial δ1,1(p) is a non-constant monomial, then the corresponding
constraint (2d) just disappears and the corresponding substitution d1,1 = δ1,1(p)
is performed in the signomial program (1) − (2). The selected variables for the
constraints (2a), (2c), (2e), (2f) and (2g) are not changed. Additionally, the variable
p(x∗, y∗) that appears in the posynomial δ1,1(p) is selected for constraint (2b). These
selected variables verify the properties described in Section 2.3, i.e. the problem
(1) − (2) can be handled as geometric programs.

If the posynomials δ1,1(p) and δ1,2(p) are two constants, then also d1 is a constant.
In this case the constraints (2b), (2d) and (2e) just are eliminated. The selected
variables for the rest of constraints are not changed. So, in this way, the problem
(1) − (2) can be handled as geometric programs.

If the posynomial δ1,1(p) is a constant and δ1,2(p) is not a constant, then the
constraint (2d) is eliminated and substitution d1,1 = δ1,1(p) is performed in the
signomial program (1) − (2). We can fix the variable d1,2 for constraint (2b), an ar-
bitrary variable p(x∗∗, y∗∗) that appears in the posynomial δ1,2(p) for constraint (2e)
and an arbitrary variable p(x, y∗∗(x)) 6= p(x∗∗, y∗∗) that appears in the posynomial
from (2a) for every x ∈ X for the constraints (2a). The selected variables for the
rest of constraints are not changed. These selected variables verify the properties
described in Section 2.3, i. e. the problem (1) − (2) can be handled as geometric
programs.

In this way, we analyzed all the possible cases. So, the problems (1) − (2) and
(1) − (3) can be handled as geometric programs.

4 Particular cases and generalizations

In the previous section a method for determining the optimal evolution time of
stochastic systems with final sequence of states, based on geometric and signomial
programming approaches, was theoretically grounded. Theorems 5 and 6 present
the main properties of the optimal distribution and optimal transition matrix. From
these theorems we can easy remark several particular cases and generalizations.

We consider the particular case x1 = x2 = . . . = xm. From Theorem 6 the
optimal transition matrix is obtained. The following formula holds:

p(x, y) =

{
1 if y = x1

0 if y 6= x1
, ∀x, y ∈ V.

So, the expectation of the evolution time is minimal (equal to m − 1) when the
stochastic system starts the evolution from the state x1 and remains with probability
1 at every moment of time in this state.
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Also, in the case xi 6= xj, ∀i, j, 1 ≤ i < j ≤ m, we have

p(x, y) =







1 if x 6∈ {x1, x2, . . . , xm−1} and y = x1

1 if ∃ i, 1 ≤ i < m, such that x = xi and y = xi+1

0 otherwise
, ∀x, y ∈ V.

The expectation of the evolution time is minimal (equal to m−1) when the stochastic
system starts the evolution from the state x1, passes with probability 1 in the state
x2, next, in similar way, passes in the state x3, . . ., until it reaches the state xm.

Another particular case is when ∀i, j, 1 ≤ i < j ≤ m, if xi = xj then j = m or
xi+1 = xj+1. This case is an extension of the previous particular case. We consider
the minimal values i∗ and j∗, i∗ < j∗, for which xi∗ = xj∗. We have xi∗+k = xj∗+k,
k = 0,m − j∗. So, {x1, x2, . . . , xm} = {x1, x2, . . . , xj∗−1}, which implies

p(x, y) =







1 if x 6∈ {x1, x2, . . . , xj∗−1} and y = x1

1 if ∃ i, 1 ≤ i < j∗ − 1, such that x = xi and y = xi+1

1 if x = xj∗−1 and y = xi∗

0 otherwise

, ∀x, y ∈ V.

The expectation of the evolution time is minimal (equal to m−1) when the stochas-
tic system starts the evolution from the state x1, passes with probability 1 in the
state x2, next, in similar way, passes in the state x3, . . ., until it reaches the state
xm ∈ {x1, x2, . . . , xj∗−1}.

Next we present a generalization of the problem studied in this paper for the
case in which the number of the states of the system is not finite, i.e. we have
ω = |V | = ∞. This case cannot be handled in the same way as finite case, because
it is not known any formula and any algorithm for determining the expectation of the
evolution time of stochastic system with final sequence of states and interdependent
states when the number of the states is not finite and the transition matrix and
initial distribution are fixed and given. Nevertheless, the optimal distribution and
optimal transition matrix can be determined using the result obtained above.

Indeed, we observed above that the given stochastic system, with finite or infinite
number of states, can be reduced to a new stochastic system with maximum m states,
x1, x2, . . . , xm, preserving the optimal solution. This reduction is possible thanks
to Theorems 5 and 6, from which, in optimal case, the excluded states cannot be
reached by system at any moment of time. So, if p is the optimal transition matrix for
the stochastic system with infinite number of states and pr is the optimal transition
matrix for the reduced stochastic system, then

p(x, y) =







pr(x, y) if x, y ∈ {x1, x2, . . . , xm}
1 if x 6∈ {x1, x2, . . . , xm} and y = x1

0 otherwise
, ∀x, y ∈ V.

5 Conclusions

In this paper the following results related to stochastic systems with final se-
quence of states and unitary transition time were established:
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• The given stochastic system, with finite or infinite number of states, can be
reduced to a new stochastic system with maximum m states, x1, x2, . . . , xm,
preserving the optimal solution;

• The evolution time of the stochastic system with fixed final sequence of states
depends on initial distribution of the states and probability transition matrix;

• In the case when the states of the system are independent, the expectation
of the evolution time represents a posynomial minus one unit, that offers the
possibility to minimize it using geometric programming approach;

• In the case when the states of the system are interdependent, the expectation
of the evolution time can be minimized by solving two geometric programs with
posynomial equality constraints, that represents signomial programs which can
be handled as geometric programs using the models developed in this paper;

• In several particular cases, which were described in Section 4, the optimal
initial distribution and optimal probability transition matrix are trivial.
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