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SQS–3–Groupoids with q(x,x,y) = x

Magdi H. Armanious

Abstract

A new algebraic structure (P ; q) of a Steiner quadruple systems SQS (P ; B) called an
SQS-3-groupoid with q(x, x, y) = x (briefly: an SQS-3-quasigroup) is defined and some
of its properties are described. Sloops are considered as derived algebras of SQS-skeins.
Squags and also commutative loops of exponent 3 with x(xy)2 = y2 given in [7] are
derived algebras of SQS-3-groupoids. The role of SQS-3-groupoids in the clarification of
the connections between squags and commutative loops of exponent 3 is described.

1. Introduction

A Steiner quadruple (triple) system is a pair (T ; B), where T is a finite set
and B is a collection of 4-subsets (3-subsets) called blocks of T such that
every 3-subset (2-subset) of T is contained in exactly one block of B [4, 8].
Let SQS(m) denote a Steiner quadruple system (briefly: quadruple system)
of cardinality m and STS(n) denote Steiner triple system (briefly: triple
system) of cardinality n. It is will known that SQS(m) exists iff m ≡ 2 or
4 (mod 6) and STS(n) exists iff m ≡ 1 or 3 (mod 6) (cf. [4, 8]).

If we consider Tx = T − {x} for any point x ∈ T and delete this point
from all blocks which contain it, then the obtaining system (Tx;B(x)) is a
triple system, where B(x) = { b ′ = b−{x} : b ∈ B and x ∈ b}. The system
(Tx; B(x)) is called a derived triple system of (P ; B) [4, 7]. There are one-
to-one correspondences between STSs and each of sloops and squags and
also between SQSs and SQS-skeins [4, 11].

An SQS-skein is an algebra T = (T ; q ′) with one fundamental ternary
operation q ′ satisfying the identities:

2000 Mathematics Subject Classification: 05B30, 08A99, 05B07, 20N05
Keywords: Steiner quadruple system, distributive and medial quadruple system,
SQS-3-groupoid, distributive and medial SQS-3-groupoid



2 M. H. Armanious

q ′(x, y, z) = q ′(y, x, z) = q ′(z, x, y),

q ′(x, x, y) = y,

q ′(x, y, q ′(x, y, z)) = z.

A sloop (or a Steiner loop) is a commutative loop (T ; ·, 1) satisfying the
Steiner identity x · (x · y) = y. A squag (or a Steiner quasigroup) is an
idempotent commutative quasigroup (Q; ·) satisfying the Steiner identity.
Note that sloops are derived algebras of SQS-skeins, while squags can’t be
considered as derived algebras of SQS-skeins.

Let q be a ternary operation of a nonempty finite set T , then the algebra
(T ; q) will be called an SQS-3-groupoid with q(x, x, y) = x (briefly: an SQS-
3-groupoid), if the following identities are satisfied:

q(x, y, z) = q(x, z, y) = q(z, y, x),

q(x, x, y) = x,

q(x, y, q(x, y, z)) = z if x 6= y.

It is clear that q is a totally commutative idempotent ternary oper-
ation and satisfies the Steiner equation (the third equation). Moreover,
this algebra is a 3-groupoid but not a 3-quasigroup, because the equation
q(a, a, x) = a has no unique solution [10]. Also, the operation q is commu-
tative but not associative [10]. Similarly, it is idempotent, but it doesn’t
satisfy the generalized idempotent law, i.e. q(x, x, y) 6= y for y 6= x.

This algebra does not seem to be a nice algebra because many algebraic
constructions can’t be made within this class. For example, if ρ is a con-
gruence on an SQS-3-groupoid (T ; q), and if (x, y) ∈ ρ, then (x, x) ∈ ρ and
(z, z) ∈ ρ for all z ∈ T . Hence (q(x, x, z), q(x, y, z)) = (x, q(x, y, z)) ∈ ρ for
all z ∈ T , i.e. (x,w) ∈ ρ for all w ∈ T . This means that such algebra has
no proper congruences.

An SQS is called distributive or medial, if the associated SQS-3-groupoid
satisfies the distributive or the medial law for SQSs, respectively (or more
precisely, if all derived squags of the associated SQS-3-groupoid are dis-
tributive or medial, respectively).

Let (T ; B) be an SQS, we define the ternary operation qB on T putting

qB (x, y, z) =





w if {x, y, z, w} ∈ B

x if x = y or x = z

y if y = z

Obviously such defined (T ; qB ) is an SQS-3-groupoid.
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Conversely, let (T ; q) be an SQS-3-groupoid. Consider the set:

Bq := { {x, y, z, q(x, y, z)} : for all {x, y, z} ⊆ T with |{x, y, z}| = 3}.

It is clear that q(x, y, z) /∈ {x, y, z}, otherwise if q(x, y, z) = x, then
q(x, y, q(x, y, z)) = q(x, y, x) = x and from the Steiner equation we have
q(x, y, q(x, y, z)) = z, which is a contradiction. Since |{x, y, z}| = 3, hence
|{x, y, z, q(x, y, z)}| = 4. Since q is commutative, then (T ;Bq) is an SQS.
Moreover one can deduce that qBq

= q and BqB
= B.

This proves that there is a one-to-one correspondence between SQS’s
and SQS-3-groupoids.

Carmichael [3] and Lüneburg [9] constructed an SQS(3n +1). In section
2, we prove that the associated SQS-3-groupoids with this construction of
SQS(3n + 1) satisfies the medial law for SQSs. Next, in section 3, we prove
that a commutative loop of exponent 3 satisfying the identity x(xy)2 = y2

(i.e. an interior Steiner loop [2]) is also a derived algebra of the SQS-3-
groupoid.

2. Medial SQS-3-groupoids

For any element a ∈ T , we define the derived algebra (Ta; ◦) of the SQS-3-
groupoid (T ; q) putting: Ta = T −{a} and x◦y = q(a, x, y) for all x, y ∈ Ta.
Since

x ◦ x = x

x ◦ y = y ◦ x

x ◦ (x ◦ y) = y,

the derived algebra (Ta; ◦) is the well-known squag.
The class of SQS-3-groupoids is not variety, but the class of all derived

algebras forms the well-known variety of squags.
The interesting subclass of squags forms medial squags which are squags

satisfying the medial identity:

(x ◦ y) ◦ (z ◦ w) = (x ◦ z) ◦ (y ◦ w).

The finite medial squags correspond to the class of affine geometries over
GF(3) (see Klossek [7] and Guelzow [5]). Medial squags are derived algebras
of the subclass of so-called medial SQS-3-groupoids, i.e. SQS-3-groupoids
satisfying the following medial law for SQSs:

q(a, q(a, x, y), q(a, z, w)) = q(a, q(a, x, z), q(a, y, w)).
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Associated SQSs are called medial.
The smallest nontrivial medial SQS-3-groupoid is the associated SQS-

3-groupoid of the quadruple system SQS(10).

Example 1. Let (T (10); qB ) be the SQS-3-groupoid associated with the
quadruple system of order 10. Any derived squag (Ta; ◦) of (T (10); qB ) is
of order 9 and is associated with the triple system STS(9). The STS(9) is
isomorphic to the affine plane over GF(3) (cf. [5, 7]) and then the squag
(Ta; ◦) satisfies the medial identity. This implies (T (10); qB) satisfies the
medial law for SQSs.

Carmichael [3] and Lüneburg [9] constructed an SQS(3n+1) = (K∗; B∗)
having a sharp triply transitive automorphism group Γ∗. Namely, K∗ and
B∗ are defined by:

K∗ = GF (3n) ∪ {∞}
and

B∗ = {Ψ(B) : B = {0, 1,−1,∞} and Ψ ∈ Γ∗},
where

Γ∗ = {Ψ : K∗ → K∗ : Ψ(x) = (ax + b)/(cx + d), ad− bc 6= 0}.

The following theorem is given in [9], helps us to show that the con-
struction (K∗; B∗) supplies us with an example of a medial SQS-3-groupoid
of cardinality 3n + 1 for each positive integer n.

Theorem 1. If (K; B) is a triple system with a sharp doubly transitive
automorphism group Γ∗, then (K; B) is an affine plane over GF(3).

Example 2. For any p ∈ K∗, we have the derived STS (K∗
p ; B∗

p) of (K∗; B∗)
with the automorphism group Γ∗p defined by:

Γ∗P = {Ψ : K∗
P → K∗

P : Ψ ∈ Γ∗, Ψ(p) = p},

where Γ∗p is a sharp doubly transitive automorphism group of (K∗
p ; B∗

p).

According to the above theorem, the triple system (K∗
p ; B∗

p) is an affine
plane over GF(3). This means that the squag (K∗

p ; ◦) associated with
(K∗

p ; B∗
p) satisfies the medial identity. The medial law for SQSs is satis-

fied, too.
According to the above discussion and the construction (K∗; B∗) =

SQS(3n + 1) given by Carmichael [3] and Lüneburg [9], we can say that
any finite medial squag is a derived algebra from a medial SQS-3-groupoid.
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In other words, we can say that there are quadruple systems in which
the associated squag of any its derived triple systems is medial.

Now, we consider the question about the existence of an quadruple sys-
tems in which the squag associated with each derived STS is distributive, i.
e. each derived squag of an SQS-3-groupoid satisfies the distributive law:

x ◦ (y ◦ z) = (x ◦ y) ◦ (x ◦ z).

In other word, is there a non-medial SQS-3-groupoid satisfying the distribu-
tive law for SQSs

q(a, x, q(a, y, z)) = q(a, q(a, x, y), q(a, x, z)) ?

M. Hall [6] constructed an STS (called now a Hall triple system) in which
each three elements generate the affine plane over GF(3) . The smallest
cardinality for a Hall STS is 81. The associated squags of Hall triple systems
are distributive. A vector-space model of a distributive squag of cardinalty
3m is given by Klossek [7].

As a special case, for m = 4, we obtain the smallest non-medial dis-
tributive squag (GF(3)4; ◦), where the binary operation ◦ is defined by:

x ◦ y = 2x + 2y + (0, 0, 0,

∣∣∣∣
x2 x3

y2 y3

∣∣∣∣ (x1 − y1)) .

The above question can be formulated in the following way:

Is there SQS-3-groupoid of cardinality 82 all of whose derived squags are
distributive but non-medial ?

or in the combinatorial language:

Is there SQS(82) all of whose derived STS(81)s are Hall STSs but are not
isomorphic to the direct power STS(3)4 ?

3. SQS-3-Groupoids and commutative loops

A commutative loop (L; ·, e) of exponent 3 is called Moufang, if it satisfies
the Moufang identity:

x · (x · (y · z)) = (x · y) · (x · z).

Commutative Moufang loops of exponent 3 and distributive squags are
polynomially equivalent [7]. There is a one-to-one correspondence between
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triple systems and commutative loops of exponent 3 with x(xy)2 = y2 (cf.
[1]). Therefore, as it is proved in [1], commutative loops of exponent 3 with
x(xy)2 = y2 are polynomially equivalent to squags.

Moreover, any commutative loop of exponent 3 with x(xy)2 = y2 is a
derived algebra of the constructed SQS-3-groupoid.

Indeed, let (T ; q) be an SQS-3-groupoid and a ∈ T . Then (T − {a}; ◦)
is a squag, where ◦ is defined by the formula

x ◦ y = q(a, x, y).

Fixing e ∈ T − {a} and putting

x · y = q(a, e, q(a, x, y)),

we can see that (T − {a}; ·, e) is a commutative loop of exponent 3 with
x · (x · y)2 = y2.

Moreover, for SQS-3-groupoids, we have

x · y = q(a, e, q(a, x, y) = e ◦ (x ◦ y)

and
x ◦ y = q(a, x, y) = q(a, q(a, e, x2), q(a, e, y2))

= q(a, e, q(a, x2, y2)) = x2 · y2

for distributive SQS-3-groupoids.
Thus, using results from [7] and [1], we can see that

(i) if (T ; q) is a distributive SQS-3-groupoid, then for each a ∈ T and each
e ∈ T − {a}, the squag (T − {a}; ◦) is distributive and (T − {a}; ·, e) is
a commutative Moufang loop of exponent 3,

(ii) if (T ; q) is a medial SQS-3-groupoid, then for all a ∈ T and e ∈ T −{a},
the squag (T −{a}; ◦) is medial and the loop (T −{a}; ·, e) is a commu–
tative group of exponent 3.

This, according to results obtained in [7] and [1], means that the dis-
tributive squag (T − {a}; ◦) is polynomially equivalent to the commutative
Moufang loop (T − {a}; ·, e) of exponent 3 with x · (x · y)2 = y2.

In the next page, we give the diagram presenting some connections be-
tween different types of algebras derived from SQS-3-groupoids.
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SQS–3–groupoids with q(x,x,y) = x

(T ; q)

?

¡
¡

@
@

x ◦ y = q(a, x, y)

¡
¡

x • y = q(a, e, q(a, x, y))

@
@

(T − {a} ; ◦)
¡

¡ª

(T − {a} ; •, e)
@

@R

Steiner
quasigroups

?

-¾ polynomially equivalent
see [1]

c. loops of exp. 3
with x · (x · y)2 = y2

?

q(a, x, q(a, y, z)) = q(a, q(a, x, y), q(a, x, z))
distributive SQS-3-groupoids
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?

distributive
Steiner

quasigroups

?

-¾polynomially equivalent [7]
commutative
Moufang loops
of exponent 3

?

q(a, q(a, x, y, q(a, z, w)) = q(a, q(a, x, z), q(a, y, w))
medial SQS–3–groupoids

©©©©©©©©©©©©¼

HHHHHHHHHHHHj

medial Steiner
quasigroups -¾ polynomially equivalent groups of

exponent 3
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Some results on hyper BCK-algebras

Rajab Ali Borzooei and Mahmood Bakhshi

Abstract

In this paper by considering the notion of hyper BCK-algebra, we state and prove some
theorems which determine the relationship among (weak) hyper BCK-ideals, positive
implicative hyper BCK-ideals of types 1, 3, . . . , 8 and hypersubalgebras, under some
suitable conditions. Moreover, we de�ne the notions of commutative hyper BCK-ideals
of types 1, 2, 3 and 4 and obtain some results.

1. Introduction
The study of BCK-algebras was initiated by Y. Imai and K. Iséki [5] in
1966 as a generalization of the concept of set-theoretic di�erence and propo-
sitional calculus. Since then a great deal of literature has been produced
on the theory of BCK-algebras. In particular, emphasis seems to have
been put on the ideal theory of BCK-algebras. The hyperstructure the-
ory (called also multialgebras) was introduced in 1934 by F. Marty [8] at
the 8th congress of Scandinavian Mathematicians. Around 40`s, several
authors worked on hypergroups, especially in France, United States, Italy,
Greece and Iran. Hyperstructures have many applications to several sectors
of both pure and applied sciences. In [7], Y.B. Jun, M.M. Zahedi, X. L.
Xin and R.A. Borzooei applied the hyperstructures to BCK-algebras, and
introduced the notion of a hyper BCK-algebra which is a generalization of
BCK-algebra, and investigated some related properties. They also intro-
duced the notions of hyper BCK-ideal and weak (strong) hyper BCK-ideal,
and gave relations among this notions. Now we follow [3,6,7] and obtain
some results, as mentioned in the abstract.

2000 Mathematics Subject Classi�cation: 06F35, 03G25
Keywords: hyper BCK-algebra, weak hyper BCK-ideal, commutative hyper BCK-
ideal, positive implicative hyper BCK-ideal
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2. Preliminaries
De�nition 2.1. By a hyper BCK-algebra we mean a nonempty set H
endowed with a hyperoperation ◦ and a constant 0 satis�es the following
axioms:

(HK1) (x ◦ z) ◦ (y ◦ z) ¿ x ◦ y,
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3) x ◦H ¿ {x},
(HK4) x ¿ y and y ¿ x imply x = y

for all x, y, z ∈ H, where x ¿ y is de�ned by 0 ∈ x ◦ y and for every
A,B ⊆ H, A ¿ B is de�ned by ∀a ∈ A, ∃b ∈ B such that a ¿ b. In such
case, we call ¿ the hyperorder in H.

Theorem 2.2 [7]. In any hyper BCK-algebra H, the following hold:
(i) 0 ◦ 0 = {0},
(ii) 0 ¿ x,
(iii) x ¿ x,
(iv) A ⊆ B implies A ¿ B,
(v) 0 ◦ x = {0},
(vi) x ◦ y ¿ x,
(vii) x ◦ 0 = {x},

for all x, y, z ∈ H and for all nonempty subsets A and B of H.

Let I be a nonempty subset of a hyper BCK-algebra H. Then I is said
to be a hyper BCK-ideal of H, if for all x, y ∈ H, x ◦ y ¿ I and y ∈ I
imply x ∈ I, weak hyper BCK-ideal of H, if for all x, y ∈ H, x ◦ y ⊆ I
and y ∈ I imply x ∈ I, strong hyper BCK-ideal of H, if for all x, y ∈ H,
(x ◦ y)∩ I 6= ∅ and y ∈ I imply x ◦ y ⊆ I, hyper BCK-subalgebra of H, if I
is a hyper BCK-algebra with respect to the hyperoperation ◦ on H.

Clear that, any strong hyper BCK-ideal of H is a hyper BCK-ideal and
any hyper BCK-ideal of H is a weak hyper BCK-ideal. Moreover, let I be a
nonempty subset of a hyper BCK-algebra H. Then I is a hypersubalgebra
of H if and only if x ◦ y ⊆ I for all x, y ∈ I.
De�nition 2.3. Let I be a nonempty subset of hyper BCK algebra H and
0 ∈ I. Then I is said to be a positive implicative hyper BCK-ideal of
(i) type 1,

if (x ◦ y) ◦ z ⊆ I and y ◦ z ⊆ I imply that x ◦ z ⊆ I for all x, y, z ∈ H,
(ii) type 2,

if (x ◦ y) ◦ z ¿ I and y ◦ z ⊆ I imply that x ◦ z ⊆ I for all x, y, z ∈ H,
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(iii) type 3,
if (x◦y)◦z ¿ I and y ◦z ¿ I imply that x◦z ⊆ I for all x, y, z ∈ H,

(iv) type 4,
if (x ◦ y) ◦ z ⊆ I and y ◦ z ¿ I imply that x ◦ z ⊆ I for all x, y, z ∈ H,

(v) type 5,
if (x ◦ y) ◦ z ⊆ I and y ◦ z ⊆ I imply that x ◦ z ¿ I for all x, y, z ∈ H,

(vi) type 6,
if (x◦y)◦z ¿ I and y ◦z ¿ I imply that x◦z ¿ I for all x, y, z ∈ H,

(vii) type 7,
if (x◦y)◦z ⊆ I and y ◦z ¿ I imply that x◦z ¿ I for all x, y, z ∈ H,

(viii) type 8,
if (x◦y)◦z ¿ I and y ◦z ⊆ I imply that x◦z ¿ I for all x, y, z ∈ H.

In the following diagram, we can see the relationship among all of types
of positive implicative hyper BCK-ideals.

3 ¡
¡¡µ

4

@
@@I

2 @
@@I

1

¡
¡¡µ

?
6

- 7

6
5

¾8

¡
¡

¡
¡

¡µ

@
@

@
@

@I

¡
¡

¡
¡

¡µ

@
@

@
@

@I

@@R

Let H be a hyper BCK-algebra and for each a, b ∈ H, |a ◦ b| be cardi-
nality of a ◦ b. An element a ∈ H is said to be left (resp. right) scalar if
|a ◦ x| = 1 (resp. |x ◦ a| = 1) for all x ∈ H. If a ∈ H is both left and right
scalar, we say that a is a scalar element.

We say that subset I of H satis�es the closed condition, if x ¿ y and
y ∈ I imply x ∈ I, for all x, y ∈ H.

Lemma 2.4. If I is a hyper BCK-ideal and A is a nonempty subset of H,
then I satis�es the closed condition and if A ¿ I, then A ⊆ I.

Theorem 2.5. Let I be a nonempty subset of H satisfying the closed con-
dition. If I is a positive implicative hyper BCK-ideal of type i, then I is a
positive implicative hyper BCK-ideal of type j, for all 1 6 i, j 6 8.
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Proof. By considering the Lemma 2.4 the proof is straightforward.

Lemma 2.6 [3]. Let H = {0, 1, 2} be a hyper BCK-algebra of order 3.
Then the following statements are hold.
(a) If H satis�es the simple condition (that is 1 6¿ 2 and 2 6¿ 1 ), then

(i) 1 ◦ 1 ∈ {{0}, {0, 1}} and 1 ◦ 2 = {1},
(ii) 2 ◦ 1 = {2} and 2 ◦ 2 ∈ {{0}, {0, 2}}.

(b) If H satis�es the normal condition (that is 1 ¿ 2 or 2 ¿ 1 ), then
(iii) 1 ◦ 1 ∈ {{0}, {0, 1}},
(iv) 1 ◦ 2 ∈ {{0}, {0, 1}},
(v) 2 ◦ 1 ∈ {{1}, {2}, {1, 2}},
(vi) 2 ◦ 2 ∈ {{0}, {0, 1}, {0, 2}, {0, 1, 2}}.

Theorem 2.7 [3]. Let H be a hyper BCK-algebra of order 3 which satis�es
the normal condition. Then H has at most one proper hyper BCK-ideal.

3. Positive implicative hyper BCK-ideals
In the sequel H denotes a hyper BCK-algebra.
De�nition 3.1. A nonempty subset I of H is said to be S-re�exive if
(x ◦ y)

⋂
I 6= ∅ implies that (x ◦ y) ⊆ I, for all x, y ∈ H.

Theorem 3.2. Let I be a S-re�exive nonempty subset of H. If I is a
positive implicative hyper BCK-ideal of type 1, then I is a strong hyper
BCK -ideal of H and so is a positive implicative hyper BCK-ideal of type
i for all 1 6 i 6 8.
Proof. Assume that I is a positive implicative hyper BCK-ideal of type 1,
(x ◦ y)

⋂
I 6= ∅ and y ∈ I for x, y ∈ H. Since I is S-re�exive, then x ◦ y ⊆ I.

Hence by Theorem 2.2 (vii), (x◦y)◦0 = x◦y ⊆ I and y◦0 = {y} ⊆ I. Since
I is a positive implicative hyper BCK-ideal of type 1, then {x} = x ◦ 0 ⊆ I
i.e x ∈ I. Thus I is a strong hyper BCK-ideal of H and so I is a hyper
BCK-ideal of H. Hence by Lemma 2.4, I satisfy the closed condition and
so by Theorem 2.5, I is a positive implicative hyper BCK-ideal of type i
for all 1 6 i 6 8.

Example 3.3. Let H be a hyper BCK-algebra which is de�ned as follows:
◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {0}
2 {2} {1, 2} {0, 1, 2}
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Then I = {0, 1} is a positive implicative hyper BCK-ideal of type 1, 3, . . . , 8,
but it is not a strong hyper BCK-ideal and it is not a S-re�exive. Because
2◦1 = {1, 2} 6⊆ I, where (2◦1)

⋂
I 6= ∅. Therefore, the S-re�exive condition

is necessary in Theorem 3.2.

De�nition 3.4. (i) H is called a positive implicative hyper BCK-algebra,
if for all x, y, z ∈ H, (x ◦ y) ◦ z = (x ◦ z) ◦ (y ◦ z).
(ii) H is called an alternative quasi hyper BCK-algebra, if for all x, y ∈ H,
(x ◦ y) ◦ y = x ◦ (y ◦ y).

Lemma 3.5. Let A, B and I are nonempty subsets of H. If I is a weak
hyper BCK-ideal of H, A ◦B ⊆ I and B ⊆ I, then A ⊆ I.

Theorem 3.6. If H is a positive implicative hyper BCK-algebra, then any
weak hyper BCK-ideal of H is a positive implicative hyper BCK-ideal of
types 1 and 5.
Proof. Let I be a weak hyper BCK-ideal of H, (x◦y)◦z ⊆ I and y ◦z ⊆ I,
for x, y, z ∈ H. Since H is a positive implicative hyper BCK-algebra, then
(x◦z)◦ (y ◦z) = (x◦y)◦z ⊆ I. Hence by Lemma 3.5, we get that x◦z ⊆ I.
Therefore I is a positive implicative hyper BCK-ideal of type 1 and so by
diagram in section 2, I is a positive implicative hyper BCK-ideal of type
5.

Example 3.7. Let H be a hyper BCK-algebra which is de�ned as follows:
◦ 0 1 2 3

0 {0} {0} {0} {0}
1 {1} {0} {0} {0}
2 {2} {2} {0} {0}
3 {3} {3} {2} {0, 2}

Then H is not a positive implicative hyper BCK-algebra. Since (3◦2)◦2 =
0 6= 2 = (3 ◦ 2) ◦ (2 ◦ 2). Moreover I = {0, 1} is a weak hyper BCK-ideal
of H but it is not a positive implicative hyper BCK-ideal of type 5. Since
(3 ◦ 2) ◦ 2 = {0} ⊆ I and 2 ◦ 2 = {0} ⊆ I, but 3 ◦ 2 = {2} 6¿ I and so by
diagram in section 2, I is not a positive implicative hyper BCK-ideal of
type 1. Therefore, positive implicative condition is necessary in Theorem
3.6.

De�nition 3.8. A subset I of H is said to be proper if {0} ⊂ I ⊂ H.

Theorem 3.9. Let H = {0, 1, 2} be an alternative quasi hyper BCK-
algebra. Then, there is at least one proper weak hyper BCK-ideal of H.
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Proof. We claim that I = {0, 1} is a weak hyper BCK-ideal of H. Let
x ◦ y ⊆ I and y ∈ I for x, y ∈ H. We must show that x ∈ I. Let x 6∈ I
(by contrary). Then x = 2 and so 2 ◦ y ⊆ I. Since y ∈ I then y = 0 or
1. If y = 0 then by Theorem 2.2 (vii), 2 ∈ {2} = 2 ◦ 0 ⊆ I, which is a
contradiction. Hence y = 1. By Lemma 2.6, 2 ◦ 1 = {1}, {2} or {1, 2}.
If 2 ◦ 1 = {2} or {1, 2}, then 2 ∈ 2 ◦ 1 = x ◦ y ⊆ I, which is impossible.
Hence 2 ◦ 1 = {1}. Moreover, by Lemma 2.6 (iii), 1 ◦ 1 = {0} or {0, 1}. If
1 ◦ 1 = {0}, then by Theorem 2.2 (vii)

(2 ◦ 1) ◦ 1 = 1 ◦ 1 = {0} 6= {2} = 2 ◦ 0 = 2 ◦ (1 ◦ 1)

which is contradiction by alternative quasi. If 1◦1 = {0, 1}, then (2◦1)◦1 =
1 ◦ 1 = {0, 1}. But 2 ∈ {2} = 2 ◦ 0 ⊆ 2 ◦ (1 ◦ 1) and so (2 ◦ 1) ◦ 1 6=
2◦(1◦1), which is a contradiction by alternative quasi hyper BCK-algebra.
Therefore, I = {0, 1} is a weak hyper BCK-ideal of H.

Theorem 3.10. Let H = {0, 1, 2} be a hyper BCK-algebra of order 3 and
I be a proper subset of H. Then

(i) I is a positive implicative hyper BCK-ideal of type 3 if and only if
I is a hyper BCK-ideal,

(ii) I is a positive implicative hyper BCK-ideal of type 1 if and only if
I is a weak hyper BCK-ideal of H.

Proof. (i) It is easy to check that, any positive implicative hyper BCK-
ideal of type 3 is a hyper BCK-ideal of H.

Conversely, let I be a hyper BCK-ideal of H. We consider two following
cases.

Case 1. H satis�es the normal condition. By Theorem 2.7, H has at
most one proper hyper BCK-ideal which is I = {0, 1}. Now, let I = {0, 1}
be a hyper BCK-ideal of H. Then 2 ◦ 1 6¿ I. Since 1 ∈ I, if 2 ◦ 1 ¿ I,
then 2 ∈ I, which is impossible. Hence 2 ∈ 2 ◦ 1 and so by Lemma 2.6 (v),
2 ◦ 1 = {2} or {1, 2}. Now, let (x ◦ y) ◦ z ¿ I and y ◦ z ¿ I, but x ◦ z 6⊆ I.
Then 2 ∈ x ◦ z. By Lemma 2.6 (iii) and (iv), x 6= 1. Moreover, x 6= 0.
Since if x = 0, then 2 ∈ x ◦ z = 0 ◦ z = {0}, which is impossible. Thus
x = 2. Since I is a hyper BCK-ideal of H, then

(x ◦ y) ◦ z ⊆ I and y ◦ z ⊆ I.

Now, we considering the following cases:
Case 1.1. If z = 0, since {y} = y ◦ 0 = y ◦ z ⊆ I, then y = 0 or 1. If

y = 0, then {2} = (2 ◦ 0) ◦ 0 = (x ◦ y) ◦ z ⊆ I, which is a contradiction. If
y = 1, then 2 ∈ 2 ◦ 1 = (2 ◦ 1) ◦ 0 = (x ◦ y) ◦ z ⊆ I, which is impossible.
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Case 1.2. If z = 1, then y ◦1 = y ◦ z ⊆ I. Since I is a hyper BCK-ideal
of H and 1 ∈ I, then y ∈ I and so y = 0 or 1. If y = 0, then by (HK2)

2 ∈ 2 ◦ 1 = (2 ◦ 1) ◦ 0 = (2 ◦ 0) ◦ 1 = (x ◦ y) ◦ z ⊆ I,

which is a contradiction. If y = 1, then

2 ∈ 2 ◦ 1 ⊆ (2 ◦ 1) ◦ 1 = (x ◦ y) ◦ z ⊆ I,

which is impossible.
Case 1.3. If z = 2, since 2 ∈ x ◦ z and x = z = 2, then 2 ∈ 2 ◦ 2. Hence,

by Lemma 2.6 (vi), 2 ◦ 2 = {0, 2} or {0, 1, 2}. If y = 0, then

2 ∈ 2 ◦ 2 = (2 ◦ 0) ◦ 2 = (x ◦ y) ◦ z ⊆ I,

which is a contradiction. If y = 1, then by (HK2)

2 ∈ 2 ◦ 1 ⊆ (2 ◦ 2) ◦ 1 = (2 ◦ 1) ◦ 2 = (x ◦ y) ◦ z ⊆ I,

which is impossible. If y = 2, then

2 ∈ 2 ◦ 2 ⊆ (2 ◦ 2) ◦ 2 = (x ◦ y) ◦ z ⊆ I,

which is impossible. Therefore, x ◦ z ⊆ I and so I is a positive implicative
hyper BCK-ideal of type 3.

Case 2. H satis�es the simple condition. By Theorem 3.1 [3], there
are only three hyper BCK-algebras of order 3 which satis�es the simple
condition. Now, we can show that the I1 = {0, 1} and I2 = {0, 2} are hyper
BCK-ideals and positive implicative hyper BCK-ideal of type 3 in the this
three hyper BCK-algebras.

(ii) The proof is similar to the proof of case (i).

Theorem 3.11. Let H = {0, 1, 2} be an alternative quasi hyper BCK-
algebra. Then there is at least one proper positive implicative hyper BCK-
ideal of type 1, 3, . . . , 8.
Proof. By the proof of Theorem 3.9, I = {0, 1} is a weak hyper BCK-
ideal of H and so by Theorem 3.10 (ii), I is a positive implicative hyper
BCK-ideal of type 1.

Now, we show that I is a hyper BCK-ideal of H. Let x ◦ y ¿ I and
y ∈ I but x 6∈ I (by contrary). Then x = 2. Since y ∈ I, then y = 0 or
1. If y = 0, then {2} = 2 ◦ 0 ¿ I1 and so 2 ¿ 1. Hence 0 ∈ 2 ◦ 1, which
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is impossible by Lemma 2.6. If y = 1, then we consider the following two
cases.

Case 1. Let H satis�es the simple condition. Then by Lemma 2.6 (ii),
{2} = 2 ◦ 1 ¿ I1 = {0, 1} and so 2 ¿ 1, which is a contradiction.

Case 2. Let H satis�es the normal condition. Then by Lemma 2.6 (v),
2◦1 = {1}, {2} or {1, 2}. If 2◦1 = {2} or {1, 2}, then 2 ∈ 2◦1 ¿ I1 = {0, 1}
and so 2 ¿ 1. Hence 0 ∈ 2 ◦ 1 which is a impossible by Lemma 2.6. If
2 ◦ 1 = {1}, then 2 ◦ 1 ⊆ I. Since I is a weak hyper BCK-ideal of H, and
1 ∈ I, then 2 ∈ I = {0, 1} which is impossible. Hence, I is a hyper BCK-
ideal of H. Therefore, by Lemma 2.4 and Theorem 2.5 since I is a positive
implicative hyper BCK-ideal of type 1, then I is a positive implicative
hyper BCK-ideal of type i, for all 1 6 i 6 8.

Theorem 3.12. Let H be a positive implicative and an alternative quasi
hyper BCK-algebra. Then every hyper BCK-subalgebra of H is a positive
implicative hyper BCK-ideal of type 1.

Proof. Let I be a hyper BCK-subalgebra of H, (x◦y)◦z ⊆ I and y ◦z ⊆ I,
for x, y, z ∈ H. Since H is a positive implicative hyper BCK-algebra, then
(x ◦ z) ◦ (y ◦ z) = (x ◦ y) ◦ z ⊆ I. Then for all t ∈ x ◦ z and s ∈ y ◦ z,
t◦s ⊆ I. Since by Theorem 2.2 (iii) and (vii), 0 ∈ s◦s and for all t ∈ x◦z,
t ∈ {t} = t ◦ 0, hence

t ∈ t ◦ 0 ⊆ t ◦ (s ◦ s) = (t ◦ s) ◦ s ⊆ I ◦ s ⊆ I,

since I is a hyper BCK-subalgebra and s ∈ I. Thus x ◦ z ⊆ I. Therefore,
I is a positive implicative hyper BCK-ideal of type 1.

Example 3.13. Consider the following tables:
◦1 0 1 2

0 {0} {0} {0}
1 {1} {0, 1, 2} {1}
2 {2} {0, 2} {0, 2}

◦2 0 1 2

0 {0} {0} {0}
1 {1} {0, 2} {2}
2 {2} {0} {0}

◦3 0 1 2 3

0 {0} {0} {0} {0}
1 {1} {0} {0} {0}
2 {2} {2} {0, 2} {0}
3 {3} {3} {3} {0, 3}

(H, ◦1) is a positive implicative and alternative quasi hyper BCK-
algebra and I = {0, 1} is a positive implicative hyper BCK-ideal of type 1
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but it is not a hyper BCK-subalgebra of H. Since 1 ∈ I, but 1 ◦ 1 6⊆ I.
Therefore, the converse of Theorem 3.12 is not correct in general.

(H, ◦2) is a hyper BCK-algebra but it is not a positive implicative hyper
BCK-algebra. Since, (1 ◦ 1) ◦ 1 6= (1 ◦ 1) ◦ (1 ◦ 1). Moreover, I = {0, 2} is
a hyper BCK-subalgebra of H, but it is not a positive implicative hyper
BCK-ideal of type 1. Since (1 ◦ 2) ◦ 0 ⊆ I and 2 ◦ 0 ⊆ I but 1 ◦ 0 6⊆ I.

(H, ◦3) is a hyper BCK-algebra but it is not an alternative quasi hyper
BCK-algebra. Since, (2 ◦ 3) ◦ 3 6= 2 ◦ (3 ◦ 3). Moreover, I = {0, 1, 3} is
a hyper BCK-subalgebra of H, but it is not a positive implicative hyper
BCK-ideal of type 1. Since (2 ◦ 3) ◦ 0 ⊆ I and 3 ◦ 0 ⊆ I but 2 ◦ 0 6⊆ I.

4. Commutative hyper BCK-ideals
De�nition 4.1. Let I be a subset of H such that 0 ∈ I. Then I is said to
be a commutative hyper BCK-ideal of

(i) type 1, if (x ◦ y) ◦ z ⊆ I and z ∈ I imply x ◦ (y ◦ (y ◦ x)) ⊆ I,
(ii) type 2, if (x ◦ y) ◦ z ⊆ I and z ∈ I imply x ◦ (y ◦ (y ◦ x)) ¿ I,

(iii) type 3, if (x ◦ y) ◦ z ¿ I and z ∈ I imply x ◦ (y ◦ (y ◦ x)) ⊆ I,
(iv) type 4, if (x ◦ y) ◦ z ¿ I and z ∈ I imply x ◦ (y ◦ (y ◦ x)) ¿ I,

for all x, y, z ∈ H.

Theorem 4.2. Let I be a nonempty subset of H. Then the following
statements hold:

(i) if I is a commutative hyper BCK-ideal of type 3, then I is a com-
mutative hyper BCK-ideal of type 1 and 4,

(ii) if I is a commutative hyper BCK-ideal of type 1 or 4, then I is a
commutative hyper BCK-ideal of type 2.

Example 4.3. (i) Let H be the hyper BCK-algebra which is de�ned as
follows:

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {1}
2 {2} {0, 2} {0, 2}

Thus, I = {0, 1} is a commutative hyper BCK-ideal of type 1, 2 and 4 but
it is not of type 3. Because, (2 ◦ 1) ◦ 1 = {0, 2} ◦ 1 = {0, 2} ¿ I and 1 ∈ I,
but 2 ◦ (1 ◦ (1 ◦ 2)) = 2 ◦ (1 ◦ 1) = 2 ◦ 0 = {2} 6⊆ I.
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(ii) Let H = {0, 1, 2, 3}. The following table shows a hyper BCK-
algebra structure on H:

◦ 0 1 2 3

0 {0} {0} {0} {0}
1 {1} {0} {0} {0}
2 {2} {1} {0, 1} {1}
3 {3} {1} {0} {0, 1}

Then I = {0, 2} is a commutative hyper BCK-ideal of type 2 and 4, but it
is not commutative hyper BCK-ideal of type 1. Since, (2 ◦ 1) ◦ 2 = 1 ◦ 2 =
{0} ⊆ I and 2 ∈ I but 2 ◦ (1 ◦ (1 ◦ 2)) = 2 ◦ (1 ◦ 0) = 2 ◦ 1 = {1} 6⊆ I.

Moreover, I = {0, 3} is a commutative hyper BCK-ideal of type 2, but
it is not commutative hyper BCK-ideal of type 4. Since, (2◦0)◦3 = 2◦3 =
{1} ¿ I and 3 ∈ I but 2 ◦ (0 ◦ (0 ◦ 2)) = 2 ◦ 0 = {2} 6¿ I.

Theorem 4.4. Let I be a nonempty subset of H. Then:
(i) if I is a commutative hyper BCK-ideal of type 3, then I is a hyper

BCK-ideal of H,
(ii) if I is a commutative hyper BCK-ideal of type 1, then I is a weak

hyper BCK-ideal of H.
Proof. (i) Let I be a commutative hyper BCK-ideal of type 3, x ◦ y ¿ I
and y ∈ I, for x, y ∈ H. Since (x ◦ 0) ◦ y = x ◦ y ¿ I and y ∈ I, then by
hypothesis we get that {x} = x ◦ 0 = x ◦ (0 ◦ (0 ◦ x)) ⊆ I. Therefore, I is a
hyper BCK-ideal of H.

(ii) The proof is similar to the proof (i).

We summarize the Theorems 4.2 and 4.4 in the following diagram:

3 ¡
¡¡µ

1

@
@@I

4
@

@@I
2

¡
¡¡µ

?

-

¡
¡

¡
¡

¡¡µ
weak hyper BCK-ideal

hyper BCK-ideal

Lemma 4.5. Let A, B and I are nonempty subsets of a hyper BCK-algebra
H. If I is a hyper BCK-ideal of H, then A ◦ B ¿ I and B ⊆ I imply
A ⊆ I.
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Theorem 4.6. Let H = {0, 1, 2} be a hyper BCK-algebra of order 3 and
I be a nonempty subset of H. Then:

(i) I is a commutative hyper BCK-ideal of type 3 if and only if I is
a hyper BCK-ideal of H,

(ii) I is a commutative hyper BCK-ideal of type 1 if and only if I is
a weak hyper BCK-ideal of H,

(iii) if I is a commutative hyper BCK-ideal of type 1, then I is a com-
mutative hyper BCK-ideal of type 4.

Proof. (i) (=⇒) The proof follows from Theorem 4.4 (i).
(⇐=) Let I = {0, 1} be a hyper BCK-ideal of H, (x ◦ y) ◦ z ¿ I and

z ∈ I but x ◦ (y ◦ (y ◦ x)) 6⊆ I, for x, y, z ∈ H. Thus 2 ∈ x ◦ (y ◦ (y ◦ x))
and so x 6= 0. Because, if x = 0, then 2 ∈ 0 ◦ (y ◦ (y ◦ 0)) = {0}, which is
impossible. Since z ∈ I and I is a hyper BCK-ideal, then by Lemma 4.5,
x ◦ y ⊆ I. This implies that 2 6∈ x ◦ y. If y ∈ I (i.e. y = 0 or 1), then
x ∈ I and since x 6= 0, then x = 1. Now, if y = 0, then by hypothesis,
2 ∈ 1 ◦ (0 ◦ (0 ◦ 1)) = 1 ◦ 0 = {1}, which is a contradiction. If y = 1, since
1◦1 = x◦y ⊆ I, thus 1◦1 = {0} or {0, 1} and so 2 ∈ 1◦(1◦(1◦1)) ⊆ {0, 1},
which is impossible.

Now, let y = 2. Hence, x ◦ 2 = x ◦ y ⊆ I and 2 6∈ x ◦ 2. We consider two
cases:

Case 1. Let H satis�es the simple condition. By Lemma 2.6 (a), x = 1
and 1 ◦ 2 = {1} or x = 2 and 2 ◦ 2 = {0}. If x = 1, since by Lemma 2.6 (a),
2 ◦ 1 = {2} and 2 ◦ 2 = {0} or {0, 2}, thus

2 ∈ x ◦ (y ◦ (y ◦ x)) = 1 ◦ (2 ◦ (2 ◦ 1)) = 1 ◦ (2 ◦ 2) = {1}

which is a contradiction. If x = 2, then

2 ∈ 2 ◦ (2 ◦ (2 ◦ 2)) = 2 ◦ (2 ◦ 0) = 2 ◦ 2 = {0},

which is impossible.
Case 2. H satis�es the normal condition. If x = 1, then by Lemma 2.6

(iii) and (iv), for all t ∈ H, 2 6∈ 1 ◦ t and so

2 6∈
⋃

t∈y◦(y◦1)

1 ◦ t = 1 ◦ (y ◦ (y ◦ 1)) = x ◦ (y ◦ (y ◦ x)

which contradicts the contrary hypothesis. If x = 2, since 2 ◦ 2 = x ◦ 2 ⊆ I,
then 2 ◦ 2 = {0} or {0, 1} and so 2 ∈ 2 ◦ (2 ◦ (2 ◦ 2)) = {0} or {0, 1}, which
is a contradiction.



20 R. A. Borzooei and M. Bakhshi

Now, let I = {0, 2} be a hyper BCK-ideal of H, (x ◦ y) ◦ z ¿ I and
z ∈ I but x ◦ (y ◦ (y ◦ x)) 6⊆ I, for x, y, z ∈ I. So, 1 ∈ x ◦ (y ◦ (y ◦ x)) and so
x 6= 0. Since z ∈ I and I is a hyper BCK-ideal of H, then by lemma 4.5,
x ◦ y ⊆ I. Thus 1 6∈ x ◦ y. If y ∈ I, then x ∈ I and since x 6= 0, thus x = 2.
Now, if y = 0, then by hypothesis, 1 ∈ 2 ◦ (0 ◦ (0 ◦ 2)) = 2 ◦ 0 = {2} which is
a contradiction. If y = 2, since 2 ◦ 2 = x ◦ y ⊆ I, then 2 ◦ 2 = {0} or {0, 2}.
Hence, 1 ∈ 2 ◦ (2 ◦ (2 ◦ 2)) = {0} or {0, 2} which is impossible.

Now let y = 1. Since x ◦ 1 = x ◦ y ⊆ I, then x ◦ 1 = {0} or {2} or {0, 2}.
We consider the following cases:

Case 1. H satis�es the simple condition. By Lemma 2.6 (a) we have
x = 1 and 1 ◦ 1 = {0} or x = 2 and 2 ◦ 1 = {2}. If x = 1, then

1 ∈ 1 ◦ (1 ◦ (1 ◦ 1)) = 1 ◦ (1 ◦ 0) = 1 ◦ 1 = {0},

which is a contradiction. If x = 2, since by Lemma 2.6 (a), 1 ◦ 1 = {0} or
{0, 1} and 1 ◦ 2 = {1}, thus

1 ∈ 2 ◦ (1 ◦ (1 ◦ 2)) = 2 ◦ (1 ◦ 1) = {2}

which is impossible.
Case 2. H satis�es the normal condition. By Lemma 2.6 (b), we have

x = 1 and 1 ◦ 1 = {0} or x = 2 and 2 ◦ 1 = {2}. If x = 1, similar to the
preceding case we get a contradiction. If x = 2, since by Lemma 2.6 (iv),
1 ◦ 2 = {0} or {0, 1}, then 1 ∈ 2 ◦ (1 ◦ (1 ◦ 2)) = {2}, which is impossible.

(ii) The proof is similar to the proof (i).
(iii) Let I be a commutative hyper BCK-ideal of type 1, (x◦y)◦z ¿ I

and z ∈ I but x ◦ (y ◦ (y ◦ x)) 6¿ I, for x, y, z ∈ H. If I = {0, 1}, thus
2 ∈ x ◦ (y ◦ (y ◦x)) and 2 6¿ 1. Since (x ◦ y) ◦ z ¿ I, then 2 6∈ (x ◦ y) ◦ z and
so (x ◦ y) ◦ z = {0} or {1} or {0, 1}. Hence, (x ◦ y) ◦ z ⊆ I. Since z ∈ I and
I is a commutative hyper BCK-ideal of type 1, then x ◦ (y ◦ (y ◦ x)) ⊆ I
and so x ◦ (y ◦ (y ◦ x)) ¿ I, which is a contradiction.

The proof of the case I = {0, 2} is similar.

Example 4.7. Let H = {0, 1, 2, 3}. The following table shows a hyper
BCK-algebra structure on H:

◦ 0 1 2 3

0 {0} {0} {0} {0}
1 {1} {0} {0} {0}
2 {2} {2} {0} {0}
3 {3} {3} {3} {0, 3}
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Then I = {0, 1} is a weak hyper BCK-ideal and a hyper BCK-ideal
of H, but it is not commutative hyper BCK-ideal of type 1 and 3. Since,
(2 ◦ 3) ◦ 1 = 0 ◦ 1 = {0} ⊆ I and 1 ∈ I but

2 ◦ (3 ◦ (3 ◦ 2)) = 2 ◦ (3 ◦ 3) = 2 ◦ (3 ◦ 3) = 2 ◦ {0, 3} = {0, 2} 6⊆ I

Hence, I = {0, 1} is not commutative hyper BCK-ideal of type 1 and so is
not commutative hyper BCK-ideal of type 3.

Corollary 4.8. Let H = {0, 1, 2} be a hyper BCK-algebra of order 3 and
I be a nonempty subset of H. Then:

(i) I is a positive implicative hyper BCK-ideal of type 3 if and only if
is a commutative hyper BCK-ideal of type 3,

(ii) I is a positive implicative hyper BCK-ideal of type 1 if and only if
is a commutative hyper BCK-ideal of type 1.

Proof. The proof is a consequence of Theorems 3.10 and 4.6.

Theorem 4.9. In any hyper BCK-algebra of order 3, there is at least one
commutative hyper BCK-ideal of type 2 and 4.
Proof. Let H = {0, 1, 2} be hyper BCK-algebra of order 3. We show
that I = {0, 2} is a commutative hyper BCK-ideal of type 2 and 4 of
H. But, by Theorem 4.2 (ii), it is enough to show that I = {0, 2} is a
commutative hyper BCK-ideal of type 4. Let (x ◦ y) ◦ z ¿ I and z ∈ I but
x ◦ (y ◦ (y ◦ x)) 6¿ I, for x, y, z ∈ H. Thus 1 ∈ x ◦ (y ◦ (y ◦ x)) and 1 6¿ 2.
Moreover, by Theorem 2.2 (v), x 6= 0. Since z ∈ I, thus z = 0 or z = 2.

Now we consider two following cases:
Case 1. Let z = 0. Then x ◦ y = (x ◦ y) ◦ 0 = (x ◦ y) ◦ z ¿ I. Since

1 6¿ 2, then 1 6∈ x ◦ y. Hence x ◦ y = {0} or {2} or {0, 2}.
Case 1.1. Let x ◦ y = {0}. Then by Lemma 2.6, x = y = 1 or x =

y = 2 or x = 1, y = 2. If x = y = 1 or x = y = 2, then by hypothesis
1 ∈ x ◦ (y ◦ (y ◦ x)) = {0}, which is impossible. If x = 1 and y = 2, then
1 ◦ 2 = {0} and so 1 ¿ 2, which is impossible.

Case 1.2. Let x◦ y = {2}. Then by Lemma 2.6, x = 2 and y = 1. Since
2 ◦ 1 = {2}, then 2 6¿ 1 and so H satis�es the simple condition. But in this
case, 1 ∈ x ◦ (y ◦ (y ◦ x)) = 2 ◦ (1 ◦ (1 ◦ 2)) = 2 ◦ (1 ◦ 1) ⊆ 2 ◦ {0, 1} = {2},
which is impossible.

Case 1.3. Let x ◦ y = {0, 2}. Then by Lemma 2.6, x = 2 and y = 2.
Hence 2 ◦ 2 = {0, 2} and so

1 ∈ x ◦ (y ◦ (y ◦ x)) = (2 ◦ (2 ◦ 2)) = 2 ◦ (2 ◦ {0, 2}) = 2 ◦ {0, 2} = {0, 2},
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which is impossible.
Case 2. Let z = 2. Hence (x ◦ y) ◦ 2 ¿ I. Since 1 6¿ 2, then by Lemma

2.6, 1 ◦ 2 = {1} and 1 6∈ (x ◦ y) ◦ 2.
Case 2.1. Let y = 0. Then

1 ∈ x ◦ (y ◦ (y ◦ x)) = x ◦ (0 ◦ (0 ◦ x)) = x ◦ 0 = {x}

and 1 6∈ (x ◦ y) ◦ 2 = (x ◦ 0) ◦ 2 = x ◦ 2. Thus, x = 1, and so 1 6∈ 1 ◦ 2 = {1},
which is impossible.

Case 2.2. Let y = 1. Then

1 ∈ x ◦ (y ◦ (y ◦ x)) = x ◦ (1 ◦ (1 ◦ x)) and 1 6∈ (x ◦ y) ◦ 2 = (x ◦ 1) ◦ 2

If x = 1, then 1 ∈ 1 ◦ (1 ◦ (1 ◦ 1)) and so 1 ◦ 1 6= {0}. Hence, by Theorem
2.6, 1 ◦ 1 = {0, 1}. But, in this case, 1 6∈ (x ◦ 1) ◦ 2 = {0, 1} ◦ 2 = {0, 1},
which is impossible.

If x = 2, then

1 ∈ 2 ◦ (1 ◦ (1 ◦ 2)) = 2 ◦ (1 ◦ 1) , 1 6∈ (2 ◦ 1) ◦ 2

By Theorem 2.6, 2 ◦ 1 = {1} or {2} or {1, 2}. If 2 ◦ 1 = {1}, then 1 6∈
(2 ◦ 1) ◦ 2 = 1 ◦ 2 = {1}, which is impossible. If 2 ◦ 1 = {2}, then 1 ∈
2 ◦ (1 ◦ 1) ⊆ 2 ◦ {0, 1} = {2}, which is impossible. If 2 ◦ 1 = {1, 2}, then
1 6∈ (2 ◦ 1) ◦ 2 ⊆ {1, 2} ◦ 2 ⊆ {0, 1, 2}, which is impossible.

Case 2.3. Let y = 2. Then

1 ∈ x ◦ (y ◦ (y ◦ x)) = x ◦ (2 ◦ (2 ◦ x)) , 1 6∈ (x ◦ y) ◦ 2 = (x ◦ 2) ◦ 2

If x = 1, then 1 6∈ (1 ◦ 2) ◦ 2 = {1} ◦ 2 = {1}, which is impossible. If
x = 2, then 1 ∈ 2 ◦ (2 ◦ (2 ◦ 2)) and 1 6∈ (2 ◦ 2) ◦ 2. If 1 ∈ 2 ◦ 2, then
{1} = 1 ◦ 2 ⊆ (2 ◦ 2) ◦ 2, which is impossible. Since 0 ∈ 2 ◦ 2, hence
2 ◦ 2 = {0} or {0, 2}. If 2 ◦ 2 = {0}, then 1 ∈ 2 ◦ (2 ◦ (2 ◦ 2)) = {0}, which
is impossible. If 2 ◦ 2 = {0, 2}, then 1 ∈ 2 ◦ (2 ◦ (2 ◦ 2)) = {0, 2}, which is
impossible.

Therefore, I = {0, 2} is a commutative hyper BCK-ideal of type 4.

Corollary 4.10. Let H = {0, 1, 2} be a hyper BCK-algebra of order 3 and
I be a nonempty subset of H. Then I is a commutative hyper BCK-ideal
of type 2 if and only if I is a commutative hyper BCK-ideal of type 4.
Proof. (⇐=) The proof follows by Theorem 4.2 (ii).

(=⇒) Let I be a commutative hyper BCK-ideal of type 2 of H =
{0, 1, 2}. If I = {0, 2}, then by the proof of Theorem 4.9, I is a commutative



Some results on hyper BCK-algebras 23

hyper BCK-ideal of type 4. If I = {0, 1}, then by Theorems 3.1, 3.3, 3.4
and 3.5 of [3], there are only 3 non-isomorphic hyper BCK-algebra of order
3 such that I = {0, 1} is not a hyper BCK-ideal of them, which are as
follows:
◦1 0 1 2

0 {0} {0} {0}
1 {1} {0} {0}
2 {2} {1} {0}

◦2 0 1 2

0 {0} {0} {0}
1 {1} {0} {0}
2 {2} {1} {0, 1}

◦3 0 1 2

0 {0} {0} {0}
1 {1} {0, 1} {0, 1}
2 {2} {1} {0, 1}

Moreover, in the above hyper BCK-algebras, I = {0, 1} is not a commu-
tative hyper BCK-ideal of type 2. Since, in all of them, (2◦0)◦1 = 2◦1 =
{1} ⊆ {0, 1} and 1 ∈ {0, 1} but 2 ◦ (0 ◦ (0 ◦ 2)) = 2 ◦ 0 = {2} 6¿ {0, 1}.

Now, since except of the above 3 hyper BCK-algebras, I = {0, 1} is a
hyper BCK-ideal of H, then by Theorem 4.6(i), I = {0, 1} is a commutative
hyper BCK-ideal of type 3 and so by Theorem 4.2(i), it is a commutative
hyper BCK-ideal of type 4.
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Quasi p-ideals of quasi BCI-algebras

Wiesław A. Dudek and Young Bae Jun

Abstract

As a continuation of our previous study of fuzzy subquasigroups and fuzzy ideals
of BCI-algebras, the notion of a quasi p-ideal is introduced. Characterizations of quasi
p-ideals of the set of all fuzzy points in BCI-algebras are obtained. Next, using special
chains of reals we determine the number of non-equivalent fuzzy p-ideals of some types
of BCI-algebras (especially BCI-algebras which are quasigroups) and give the method
of computation of fuzzy p-ideals.

1. Introduction

The fundamental concept of a fuzzy set, introduced by Zadeh [10] in 1965,
provides a natural generalization for treating mathematically the fuzzy phe-
nomena which exist pervasively in our real world and for building new
branches of fuzzy mathematics. In the area of fuzzy BCK/BCI-algebra,
several researches have been carried out since 1991. The connection be-
tween some BCI-algebras, quasigroups and commutative groups motivated
us to study connections between fuzzy ideals of BCI-algebras and fuzzy
subgroups of the corresponding groups (see for example [2] and [3]).

On the other hand, in [7], Lele et al. used the notion of fuzzy point
to study some properties of BCK-algebras. Jun and Lele [5] used the
notion of fuzzy points for establishing quasi ideal. As a continuation of
[5] and our previous study, in this paper, we introduce the notion of quasi
p-ideal in the set of all fuzzy points of a fixed BCI-algebra, and give some
characterizations of this ideal.

Next, using special sequences of real numbers, we determine the number
of non-equivalent fuzzy p-ideals of some types of BCI-algebras (especially

2000 Mathematics Subject Classification: 06F35, 03B52
Keywords: quasi BCI-algebra, quasi p-ideal
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these BCI-algebras which are quasigroups) and give the method of compu-
tation of such fuzzy p-ideals.

2. Preliminaries

An algebra (X, ∗, 0) of type (2, 0) is said to be a BCI-algebra if for all
x, y, z ∈ X it satisfies:

(1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(2) (x ∗ (x ∗ y)) ∗ y = 0,
(3) x ∗ x = 0,
(4) x ∗ y = 0 and y ∗ x = 0 imply x = y.

A non-empty subset A of a BCI-algebra X is called an ideal of X if
• 0 ∈ A,
• x ∗ y ∈ A and y ∈ A imply x ∈ A.

A non-empty subset A of a BCI-algebra X is called a p-ideal of X if
• 0 ∈ A,
• (x ∗ z) ∗ (y ∗ z) ∈ A and y ∈ A imply x ∈ A.

A p-ideal is an ideal. The converse is not true [6], but every ideal is a
subset of some p-ideal (see [11]). In BCI-algebras which are quasigroups,
i.e. in BCI-algebras isotopic to commutative groups (see [1]), these ideals
coincide. Such quasigroups are medial and a finite subset of such BCI-
algebra is an ideal if and only if it is a subgroup of the corresponding group.
For infinite ideals it is not true.

A fuzzy set µ in a BCI-algebra X is called a fuzzy ideal of X if for all
x, y ∈ X we have

• µ(0) > µ(x),
• µ(x) > min{µ(x ∗ y), µ(y)}.

A fuzzy set µ in a BCI-algebra X is called a fuzzy p-ideal of X if for all
x, y, z ∈ X we have

• µ(0) > µ(x),
• µ(x) > min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)}.

Any fuzzy p-ideal is a fuzzy ideal. The converse does not hold in general
[6]. But basing on the results obtained in [1] it is not difficult to see that in
a BCI-quasigroup a fuzzy set µ is a fuzzy ideal if and only if it is a fuzzy
p-ideal.

A fuzzy set µ in a set X is called a fuzzy point if it takes the value 0 for
all y ∈ X except one, say, x ∈ X. If its value at x is α ∈ (0, 1] we denote
this fuzzy point by xα, where the point x is called its support.
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Let FP (X) denote the set of all fuzzy points in X and define a binary
operation ¯ on FP (X) by

xα ¯ yβ = (x ∗ y)min{α, β} ,

where ∗ is a binary operation on X. If (X, ∗) is a quasigroup, then (FP (X),¯)
is not a quasigroup in general.

If (X, ∗, 0) is a BCI-algebra, then

(p1) ((xα ¯ yβ)¯ (xα ¯ zγ))¯ (zγ ¯ yβ) = 0min{α, β, γ },
(p2) (xα ¯ (xα ¯ yβ))¯ yβ = 0min{α, β },
(p3) xα ¯ xα = 0α,

for all xα, yβ, zγ ∈ FP (X). But the following does not hold:

(p4) xα ¯ yβ = yβ ¯ xα = 0min{α,β} imply xα = yβ .

Hence we know (see [5]) that FP (X) may not be a BCI-algebra, and
so we call FP (X) the quasi BCI-algebra.

3. Quasi p-ideals

For a fuzzy set µ in a BCI-algebra X we define the set FP (µ) of all fuzzy
points in X covered by µ to be the set

FP (µ) = {xq ∈ FP (X) | q 6 µ(x), 0 < q 6 1}.

Example 3.1. Let X = {0, a, b, c, d} be a BCI-algebra with the following
Cayley table:

∗ 0 a b c d

0 0 0 d c b
a a 0 d c b
b b b 0 d c
c c c b 0 d
d d d c b 0

For a fuzzy set µ in X defined by µ(0) = 1, µ(a) = 0.6 and µ(b) =
µ(c) = µ(d) = 0.3, we have

FP (µ) = {0α, aβ, bγ , cδ, dσ|α ∈ (0, 1], β ∈ (0, 0.6], γ, δ, σ ∈ (0, 0.3]}.
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Definition 3.2. For a fuzzy set µ in a BCI-algebra X, the set FP (µ) of
all fuzzy points in X covered by µ is called a quasi p-ideal of FP (X) if for
all δ ∈ Im(µ) and xα, yβ, zγ ∈ FP (X):

(i) 0δ ∈ FP (µ)
(ii) (xα ¯ zγ)¯ (yβ ¯ zγ), yβ ∈ FP (µ) =⇒ xmin{α,β,γ} ∈ FP (µ).

It is not difficult to see that in the above example FP (µ) is a quasi
p-ideal of FP (X).

Note that in [5] and [7] Jun and Lele et al. described ideals of FP (X)
of the second type which are called quasi ideals.

Definition 3.3. A subset FP (µ) of FP (X) is called a quasi ideal of
FP (X) if 0α ∈ FP (µ) for all α ∈ Im(µ) and

(iii) xα ¯ yβ, yβ ∈ FP (µ) =⇒ xmin{α,β} ∈ FP (µ)

for all xα, yβ ∈ FP (X).

Proposition 3.4. Every quasi p-ideal of FP (X) is also a quasi ideal.

Proof. Let xα, yβ ∈ FP (X) be such that xα¯yβ ∈ FP (µ) and yβ ∈ FP (µ).
Then (xα ¯ yβ) ¯ (yβ ¯ yβ) = xα ¯ yβ ∈ FP (µ) and yβ ∈ FP (µ). Since
FP (µ) is a quasi p-ideal of FP (X), it follows that xmin{α,β} ∈ FP (µ).
Hence FP (µ) is a quasi ideal of FP (X).

The converse of Proposition 3.4 may not be true as seen in the following
example.

Example 3.5. Let X = {0, a, b, c, d} be a set with the following Cayley
table:

∗ 0 a b c d

0 0 0 0 0 0
a a 0 a 0 0
b b b 0 0 0
c c c c 0 0
d d c d a 0

Then (X, ∗, 0) is a BCK-algebra and hence a BCI-algebra. Let µ be a
fuzzy set in X defined by

µ(x) =
{

0.9 if x ∈ {0, b},
0.3 if x ∈ {a, c, d}.
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Consider the set

FP (µ) = {0α, aβ, bγ , cδ, dσ | α, γ ∈ (0, 0.9], β, δ, σ ∈ (0, 0.3] }.

Then FP (µ) is a quasi ideal of FP (X). Note that

(a0.4¯ c0.5)¯ (b0.7¯c0.5) = (a∗ c)0.4¯ (b∗ c)0.5 = 00.4¯00.5 = 00.4 ∈ FP (µ)

and b0.7 ∈ FP (µ). But amin{0.4, 0.5, 0.7} = a0.4 6∈ FP (µ). This shows that
FP (µ) is not a quasi p-ideal of FP (X).

The converse of Proposition 3.4 is true only in some very limited cases.
One of such cases is given in following theorem.

Theorem 3.6. Let µ be a fuzzy set in a BCI-algebra X. If FP (µ) is a
quasi ideal of FP (X) such that for all xα, yβ, zγ ∈ FP (X)

(xα ¯ zγ)¯ (yβ ¯ zγ) ∈ FP (µ) =⇒ xα ¯ yβ ∈ FP (µ),

then FP (µ) is a quasi p-ideal of FP (X).

Proof. Let xα, yβ, zγ ∈ FP (X) be such that (xα¯ zγ)¯ (yβ ¯ zγ) ∈ FP (µ)
and yβ ∈ FP (µ). Then by hypothesis, we have xα ¯ yβ ∈ FP (µ) and
yβ ∈ FP (µ), and so xmin{α, β} ∈ FP (µ) since FP (µ) is a quasi ideal of
FP (X). But min{α, β, γ} 6 min{α, β} and xmin{α, β} ∈ FP (µ) imply
(according to the definition of FP (µ)) that xmin{α, β,γ} ∈ FP (µ). Hence
FP (µ) is a quasi p-ideal of FP (X).

Now we describe the connection between fuzzy p-ideals of a BCI-algebra
X and quasi p-ideals of FP (X).

Theorem 3.7. If µ is a fuzzy p-ideal of a BCI-algebra X, then FP (µ) is
a quasi p-ideal of FP (X).

Proof. Since µ(0) > µ(x) for all x ∈ X, we have µ(0) > α for all α ∈ Im(µ).
Hence 0α ∈ FP (µ).

Let xα, yβ, zγ ∈ FP (X) be such that (xα¯ zγ)¯ (yβ¯ zγ) ∈ FP (µ) and
yβ ∈ FP (µ). Then µ((x ∗ z) ∗ (y ∗ z)) > min{α, β, γ} and µ(y) > β. Since
µ is a fuzzy p-ideal of X, it follows that

µ(x) > min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)}
> min{min{α, β, γ}, β} = min{α, β, γ}

so that xmin{α,β,γ} ∈ FP (µ). This completes the proof.
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We now consider the converse of Theorem 3.7.

Theorem 3.8. Let µ be a fuzzy set in a BCI-algebra X such that FP (µ)
is a quasi p-ideal of FP (X). Then µ is a fuzzy p-ideal of X.

Proof. Obviously µ(0) > µ(x) for all x ∈ X. Let x, y, z ∈ X be such that
µ((x ∗ z) ∗ (y ∗ z)) = α and µ(y) = β. Then yβ ∈ FP (µ) and

(xα ¯ zα)¯ (yβ ¯ zα) = ((x ∗ z) ∗ (y ∗ z))min{α,β} ∈ FP (µ).

Since FP (µ) is a quasi p-ideal, it follows that xmin{α,β} ∈ FP (µ) so that

µ(x) > min{α, β} = min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)}.
Therefore µ is a fuzzy p-ideal of X.

Lemma 3.9. [6] A fuzzy set µ in a BCI-algebra X is a fuzzy p-ideal of X
if and only if the level set L(µ; α) = {x ∈ X | µ(x) > α} is a p-ideal of X
when it is non-empty.

Combining Lemma 3.9 and Theorems 3.7 and 3.8, we have

Theorem 3.10. Let µ be a fuzzy set in a BCI-algebra X. Then the fol-
lowing statements are equivalent.

(i) µ is a fuzzy p-ideal of X,
(ii) FP (µ) is a quasi p-ideal of FP (X),

(iii) L(µ; α) is a p-ideal of X for every α ∈ Im(µ).

4. Fuzzy p-ideals with a finite set of values

Results of this section are motivated by the corresponding results obtained
for fuzzy subgroups and different types of fuzzy ideals of algebras connected
with logic (cf. for example [2], [4] and [6]).

In the sequel we will consider only fuzzy sets with a finite image, i.e.
fuzzy sets for which 2 6 |Im(µ)| < ∞. Similarly as in the group theory,
we assume that the empty set ∅ is a subalgebra (a subgroup, respectively).
Moreover, we assume also that every fuzzy set takes value 1 on the empty
set. Thus a fuzzy point xα can be defined as a fuzzy set xα on X such that

xα(z) =





1 for z ∈ ∅
α for z = x
0 for z 6= x

We start with the following.



Quasi p-ideals of quasi BCI-algebras 31

Proposition 4.1. Let {Xω : ω ∈ Ω}, where ∅ 6= Ω ⊆ [0, 1], be a collection
of p-ideals of a BCI-algebra X such that

(i) X =
⋃

ω∈Ω

Xω,

(ii) α > β ⇐⇒ Xα ⊂ Xβ ∀ α, β ∈ Ω.

Then a fuzzy set µ in X defined by

µ(x) = sup{ω ∈ Ω : x ∈ Xω}

is a fuzzy p-ideal of X.

Proof. In view of Lemma 3.9, it is sufficient to show that every nonempty
level set L(µ; α) is a p-ideal of X. Assume L(µ; α) 6= ∅ for some α ∈ [0, 1].
Then

α = sup{β ∈ Ω : β < α} = sup{β ∈ Ω : Xα ⊂ Xβ}
or

α 6= sup{β ∈ Ω : β < α} = sup{β ∈ Ω : Xα ⊂ Xβ}.
In the first case we have L(µ;α) =

⋂
β<α Xβ , because

x ∈ L(µ;α) ⇐⇒ x ∈ Xβ for all β < α ⇐⇒ x ∈ ⋂
β<α

Xβ .

In the second case, there exists ε > 0 such that (α − ε, α) ∩ Ω = ∅. We
prove that in this case L(µ; α) =

⋃
β>α

Xβ. Indeed, if x ∈ ⋃
β>α

Xβ , then

x ∈ Xβ for some β > α, which gives µ(x) > β > α. Thus x ∈ L(µ; α), i.e.⋃
β>α

Xβ ⊆ L(µ; α). Conversely, if x /∈ ⋃
β>α

Xβ , then x /∈ Xβ for all β > α,

which implies that x /∈ Xβ for all β > α− ε, i.e. if x ∈ Xβ then β 6 α− ε.
Thus µ(x) 6 α − ε. Therefore x /∈ L(µ;α). Hence L(µ; α) ⊆ ⋃

β>α

Xβ , and

in the consequence L(µ; α) =
⋃

β>α

Xβ . This completes our proof because
⋃

β>α

Xβ and
⋂

β<α

Xβ are p-ideals.

Proposition 4.2. Let µ be a fuzzy set in X and let Im(µ) = {λ0, λ1, ..., λn},
where λ0 > λ1 > ... > λn. If X0 ⊂ X1 ⊂ ... ⊂ Xn = X are p-ideals of X
such that µ(Xk \Xk−1) = λk for k = 0, 1, ..., n, where X−1 = ∅, then µ is
a fuzzy p-ideal in X.

Proof. Since X0 is a p-ideal, then 0 ∈ X0 and µ(0) = µ(X0 \ X−1) = λ0,
which gives µ(0) > µ(x) for all x ∈ X.
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To prove that µ satisfies the second condition of the definition of fuzzy
p-ideals we consider the following four cases:

1o (x ∗ z) ∗ (y ∗ z) ∈ Xk \Xk−1, y ∈ Xk \Xk−1 ,

2o (x ∗ z) ∗ (y ∗ z) ∈ Xk \Xk−1, y /∈ Xk \Xk−1 ,

3o (x ∗ z) ∗ (y ∗ z) /∈ Xk \Xk−1, y ∈ Xk \Xk−1 ,

4o (x ∗ z) ∗ (y ∗ z) /∈ Xk \Xk−1, y /∈ Xk \Xk−1 .

In the first case x ∈ Xk, because Xk is a p-ideal. Thus

µ(x) > λk = µ((x ∗ z) ∗ (y ∗ z)) = µ(y) = min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)} .

In the second case y ∈ Xk−1 ⊂ Xk or y ∈ Xm \ Xm−1 ⊂ Xm \ Xk

for some m > k. This together with (x ∗ z) ∗ (y ∗ z) ∈ Xk \Xk−1 implies
x ∈ Xk or x ∈ Xm \Xk. Thus

µ(x) > λk = µ((x ∗ z) ∗ (y ∗ z)) = min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)}
for x ∈ Xk, y ∈ Xk−1. Similarly

µ(x) > λm = µ(y) = min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)}
for y ∈ Xm \Xm−1, x ∈ Xm \Xk.

In the last two cases the process of verification is analogous.

Corollary 4.3. Let µ be a fuzzy set in X and let Im(µ) = {λ0, λ1, ..., λn},
where λ0 > λ1 > ... > λn. If X0 ⊂ X1 ⊂ ... ⊂ Xn = X are p-ideals of X
such that µ(Xk) > λk for k = 0, 1, ..., n, then µ is a fuzzy p-ideal in X.

Corollary 4.4. If Im(µ) = {λ0, λ1, ..., λn}, where λ0 > λ1 > ... > λn, is
the the set of values of a fuzzy p-ideal µ in X, then all L(µ;λk) are p-ideals
of X such that µ(L(µ; λ0)) = λ0 and µ(L(µ; λk) \ L(µ;λk−1)) = λk for
k = 1, 2, ..., n.

Proposition 4.5. If a fuzzy p-ideal µ in a BCI-algebra X has the finite
set of values, then every descending chain of p-ideals of X terminates at
finite step.

Proof. Suppose there exists a strictly descending chain X1 ⊃ X2 ⊃ X3 ⊃ ...
of p-ideals of a BCI-algebra X which does not terminate at finite step. We
prove that µ defined by

µ(x) =

{ n

n + 1
for x ∈ Xn \Xn+1, n = 1, 2, . . .

1 for x ∈ ⋂
Xn, n = 1, 2, . . .
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where X1 = X, is a fuzzy p-ideal with an infinite number of values.
Clearly µ(0) > µ(x) for all x ∈ X. Let x, y, z ∈ X. Assume that

(x ∗ z) ∗ (y ∗ z) ∈ Xn \Xn+1 and y ∈ Xk \Xk+1 for some k and some n.
(Without loss of generality, we can assume n 6 k.) Then y ∈ Xn, and in
the consequence, x ∈ Xn because Xn is a p-ideal. Hence

µ(x) > n

n + 1
= min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)} .

If (x ∗ z) ∗ (y ∗ z) and y are in
⋂

Xn, then x ∈ ⋂
Xn . Thus

µ(x) = 1 = min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)} .

If (x ∗ z) ∗ (y ∗ z) /∈ ⋂
Xn and y ∈ ⋂

Xn, then (x ∗ z) ∗ (y ∗ z) ∈ Xk \Xk+1

for some k. Hence x ∈ Xk and

µ(x) > k

k + 1
= min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)} .

If (x ∗ z) ∗ (y ∗ z) ∈ ⋂
Xn and y /∈ ⋂

Xn, then y ∈ Yt \Xt+1 for some t,
which implies x ∈ Xt and

µ(x) > t

t + 1
= min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)} .

This proves that µ is a fuzzy p-ideal. Obviously µ has an infinite number
of different values. Obtained contradiction completes our proof.

For finite BCI-algebras the following proposition is true (cf. [6]).

Proposition 4.6. Let µ and ν be a fuzzy p-ideals of a finite BCI-algebra
X such that the families of level p-ideals of µ and ν are identical. Then
µ = ν if and only if Im(µ) = Im(ν).

5. Equivalences of fuzzy p-ideals

Results of this section are motivated by the corresponding results obtained
for fuzzy subgroups [9] and by the connection of some BCI-algebras [1]
with groups.

In the set F (X) of all fuzzy sets on X we can introduce (sf. [9]) the
equivalence relation based on the heuristic principle that the distinction or
similarity of fuzzy sets is really based on the relative membership degrees of
elements with respect to each other rather than the absolute membership
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degree of each element to the fuzzy set under consideration. Thus two fuzzy
sets are similar if they maintain the same relative degrees of membership
with respect to two elements. This gives the motivation to the following
relation [9]:

µ ∼ ν ⇐⇒




µ(x) > µ(y) ⇔ ν(x) > ν(y)
µ(x) = 1 ⇔ ν(x) = 1
µ(x) = 0 ⇔ ν(x) = 0

for all x, y ∈ X.
It is not difficult to see that this relation is an equivalence relation on

F (X) and coincides with the equality of subsets in 2X .
The condition µ(x) = 0 if and only if ν(x) = 0 says that the supports

of µ and ν are equal. This condition cannot be redundant since it is an
essential part of the equivalence relation as seen in the example below.

If in the above definition we replace the strict inequality by > we obtain
the new equivalence relation which has the same equivalence classes as the
above equivalence.

Example 5.1. Let K = {1,−1, i,−i} be a group. Then (K, ·, 1) is a BCI-
algebra (a BCI-quasigroup in fact) with 0 = 1. Define two fuzzy sets µ
and ν putting

µ(x) =





1 for x = 1
0.5 for x = −1
0.3 for x ∈ {i,−i}

and ν(x) =





1 for x = 1
0.5 for x = −1
0 for x ∈ {i,−i}

Then these fuzzy sets are fuzzy p-ideals satisfying only two first condition
of the above definition. Hence µ and ν are not equivalent.

Proposition 5.2. If µ and ν are equivalent fuzzy p-ideals (fuzzy ideals),
then |Im(µ)| = |Im(ν)|.
Proof. The proof is analogous to the proof of Proposition 2.2 in [9].

Note that the converse of Proposition 5.2 is not true.

Example 5.3. Let X = {0, a, b, c} be a BCI-algebra with the following
Cayley table:

∗ 0 a b c

0 0 0 b b
a a 0 c b
b b b 0 0
c c b a 0
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Define fuzzy sets µ and ν in X as follows:

µ(x) =





1 for x = 0
0.5 for x = a
0.3 for x ∈ {b, c}

ν(x) =





1 for x = 0
0.5 for x = b
0.3 for x ∈ {a, c}

Then these two fuzzy sets are fuzzy ideals with the same supports and the
same images. But µ and ν are not equivalent because µ(a) > µ(b), but
ν(a) ≯ ν(b).

Between level p-ideals of equivalent fuzzy p-ideals there is a one-to-one
correspondence. Namely, the following theorem is valid.

Theorem 5.4. Two fuzzy p-ideals µ and ν of a BCI-algebra X are equiv-
alent if and only if for each α > 0 there exists β > 0 such that L(µ;α) =
L(ν; β).

Proof. Let µ and ν be equivalent. If µ(x) = 1 for all x, then also ν(x) = 1 for
all x. In this case we put β = α. Analogously when µ(x) = 0 for all x ∈ X.
Now, if |Im(µ)| > 2, then, according to the Proposition 4.2, fuzzy p-ideals
µ and ν have the same number of values. Thus Im(µ) = {α1, . . . , αn}
and Im(ν) = {β1, . . . , βn} for some αi < αi+1 and βi < βi+1. Hence
L(µ; αi) ) L(µ;αi+1) and L(ν; βi) ) L(ν; βi+1). This together with the
condition µ(x) > µ(y) ⇔ ν(x) > ν(y) gives L(µ;αi) = L(ν; βi).

Conversely, since by the assumption |Im(µ)| > 2, there exists x ∈ X
such that µ(x) > 0. Thus x ∈ L(µ; α) for some α > 0. But by hypothesis
there is β > 0 such that L(µ; α) = L(ν; β). Hence ν(x) > β > 0. Similarly
we can show that ν(x) > 0 implies µ(x) > 0. Therefore µ(x) = 0 if and
only if ν(x) = 0.

Now let α = µ(x) > µ(y) for some x, y ∈ X. In this case, by hypothesis
x ∈ L(µ; α) = L(ν;β). If ν(x) 6 ν(y), then obviously ν(y) > β and
y ∈ L(ν; β) = L(µ;α), which is impossible. Thus ν(x) > ν(y). Similarly
ν(x) > ν(y) implies µ(x) > µ(y).

If µ(x) = 1, then also µ(0) = 1, by the definition of fuzzy p-ideals,
and, in the consequence 0, x ∈ L(µ; 1) = L(ν; β) for some β > 0. Hence
ν(0) = ν(x) for all x ∈ L(ν;β) = L(µ; α) because ν(0) > ν(x) implies
1 = µ(0) > µ(x). But for ν(0) < 1 = ν(∅) we have also µ(0) < µ(∅) = 1,
which is a contradiction. Therefore β = 1. Hence µ(x) = 1 if and only if
ν(x) = 1. This completes the proof.

Now let
∅ ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xn = X
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be a maximal chain of p-ideals of a BCI-algebra X. Putting µ(∅) = 1 and
µ(Xk \Xk−1) = λk for all k = 1, . . . , n, where

1 > λ1 > λ2 > . . . > λn > 0

we can obtain a fuzzy p-ideal µ on X. Such fuzzy p-ideal can be identified
with the sequence

λ1 λ2 . . . λn.

It is clear that non-equivalent fuzzy p-ideals have distinct sequences.

Example 5.5. Let (X, ∗, 0) be a BCI-algebra induced by Z5, i.e. let X =
Z5 and x∗y = (x+4y)(mod 5). Then (X, ∗, 0) is a group-like BCI-algebra
(BCI-quasigroup) in which all p-ideals are subgroups of Z5 (cf. [1]). Thus a
maximal chain of p-ideals of X has the form ∅ ⊂ X1 ⊂ X2, where X1 = {0}
and X2 = Z5 and corresponds to the sequence λ1 λ2.

Using Theorem 5.4 it is not difficult to see that any fuzzy p-ideal of
X corresponds to a fuzzy p-ideal determined by one of the following three
sequences: 1 1, 1λ, 1 0, where 1 > λ > 0. The first sequence determines a
fuzzy p-ideal µ1 such that µ1(x) = 1 for all x ∈ X. The second corresponds
to µ2 such that µ2(0) = 1 and µ2(x) = λ for all x 6= 0. The sequence 1 0
represents µ3 such that µ3(0) = 1 and µ3(x) = 0 for all x 6= 0. (Fuzzy
p-ideals µ2 and µ3 are non-equivalent because they have different supports.)

Note that the number of fuzzy p-ideals of this BCI-algebra is 1 + 2 =
22 − 1, i.e., one fuzzy p-ideal whose support is X1 and two whose support
is X2.

Example 5.6. Now let (X, ∗, 0) be a BCI-algebra induced by Z4. Then
x ∗ y = (x + 3y)(mod 4) and ∅ ⊂ X1 ⊂ X2 ⊂ X3 , where X1 = {0},
X2 = {0, 2} ' Z2, X3 = Z4, is a maximal chain of p-ideals of X. This chain
corresponds to the sequence λ1 λ2 λ3.

Similarly as in the previous case, it is not difficult to see that all non-
equivalent fuzzy p-ideals of X correspond to one of the following sequences:
1 1 1, 1 1 λ1, 1 1 0, 1λ1 λ1, 1λ1 λ2, 1λ1 0, 1 0 0, where 1 > λ1 > λ2 > 0.

The sequence 1α β represents a fuzzy p-ideal

µ(x) =





1 for x ∈ X1

α for x ∈ X2 \X1

β for x ∈ X3 \X2

In this case the number of fuzzy p-ideals is 1+2+22 = 23−1, i.e. one fuzzy
p-ideal whose support is X1, 2 whose support is X2, and 22 whose support
is X3.
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Basing on the above two examples we can formulate the following the-
orem, which can be proved by induction.

Theorem 5.7. A chain X1 ⊂ X2 ⊂ . . . ⊂ Xn = X of p-ideals of a BCI-

algebra X induces
n−1∑
k=0

2k = 2n − 1 non-equivalent fuzzy p-ideals of X.

Corollary 5.8. A BCI-algebra X in which all its p-ideals can be ordered
in the chain X1 ⊂ X2 ⊂ . . . ⊂ Xn = X has exactly 2n − 1 non-equivalent
fuzzy p-ideals.

6. Fuzzy p-ideals of group-like BCI-algebras

Group-like BCI-algebras are described in [1]. Such BCI-algebras are quasi-
groups induced by commutative groups, i.e. for every group-like BCI-alge-
bra (X, ∗, 0) there exists a commutative group (X, +, 0) such that x ∗ y =
x− y holds for all x, y ∈ X. The maximal chain of p-ideals of BCI-algebra
X induced by a cyclic p-group Zpn coincides with the maximal chain of
subgroups of Zpn and has the form {0} ⊂ X1 ⊂ . . . ⊂ Xn, where Xk = Zpk .
Thus, as a consequence of our Theorem 5.7 or Proposition 3.3 from [9], we
obtain

Corollary 6.1. A BCI-algebra induced by a cyclic p-group Zpn has exactly
2n+1 − 1 non-equivalent fuzzy p-ideals.

Similarly, as a consequence of our Theorem 5.7 and results obtained in
[9] (Theorem 3.4 and Proposition 3.6), we obtain

Corollary 6.2. A BCI-algebra induced by the group Zpn×Zq, where p 6= q
are primes, has exactly 2n+1(n + 2)− 1 non-equivalent fuzzy p-ideals.

Corollary 6.3. A BCI-algebra induced by the group Zq ×Zq, where q is a
prime, has exactly 4q + 7 non-equivalent fuzzy p-ideals.

Thus, for example, BCI-algebras induced by Zp, where p is a prime,
have only 3 non-equivalent fuzzy p-ideals. All these fuzzy p-ideals are de-
scribed in Example 5.5. BCI-algebras induced by Zp2 have 7 non-equivalent
fuzzy p-ideals (see Example 5.6), but BCI-algebras induced by Z12, Z18 and
Z20 have 31 such fuzzy p-ideals.
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On groupoids with identity x(xy) = y

Lidija Gora£inova-Ilieva, Smile Markovski and Ana Sokolova

Abstract

The groupoid identity x(xy) = y appears in de�ning several classes of groupoids, such
as Steiner's loops which are closely related to Steiner's triple systems, the class of can-
cellative groupoids with property (2, 5), Boolean groups, and groupoids which exhibit
orthogonality of quasigroups. Its dual identity is one of the de�ning identities for the
variety of quasigroups corresponding to strongly 2-perfect m-cycle systems. In this paper
we consider the following varieties of groupoids: V = V ar(x(xy) = y), Vc = V ar(x(xy) =

y, xy = yx), Vu = V ar(x(xy) = y, (xy)y = xy), Vi = V ar(x(xy) = y, (xy)y = yx).
Suitable canonical constructions of free objects in each of these varieties are given and
several other structural properties are presented. Some problems of enumeration of
groupoids are also resolved. It is shown that each Vi-groupoid de�nes a Steiner quintuple
system and vice versa, implying existence of Steiner quintuple systems of enough large
�nite cardinality.

1. Preliminaries
A groupoid is a pair (G, ·) consisting of a nonempty set G and a binary
operation · on G. Some well known classes of groupoids are semigroups Sem
i.e. groupoids satisfying the identity x(yz) = (xy)z, commutative groupoids
Com with the identity xy = yx, groupoids with unit Un (satisfying the law
(∃x)(∀y) yx = xy = y), etc. We note that some of these classes are de�ned
by identities, i.e. they are varieties of groupoids. The class Un is not a
variety, but it is functionally equivalent ([10]) to the variety of groupoids
determined by the identities xe = ex = x, where e is a nullary operation.
For that reason we will think of Un as being a variety.

2000 Mathematics Subject Classi�cation: 20N02, 20N05, 08B20, 51E10
Keywords: design, groupoid, identity, free object, quasigroup, Steiner system, variety
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In this paper we are mainly interested in varieties of groupoids satisfying
the identity x(xy) = y and we consider the following varieties:

V = V ar(x(xy) = y),
Ve = V ∩ Un (with extended signature),
Vc = V ∩ Com,
Vu = V ar(x(xy) = y, (xy)y = xy),
Vi = V ar(x(xy) = y, (xy)y = yx).

Suitable constructions of free objects in each of these varieties and several
other structural properties and properties of freeness are presented in next
sections.

The variety
Vcs = V ar(x(xy) = y, xy = yx, x(yz) = (xy)z)

is the variety of Boolean groups (i.e. elementary 2-Abelian groups). Several
results on this variety as well as the variety

Vsem = V ar(x(xy) = y, x(yz) = (xy)z)
are presented in [8].

In the sequel B 6= ∅ will be an arbitrary set and TB will denote the set of
all groupoid terms over B in signature ·. TB is the absolutely free groupoid
with (free) base B where the operation is de�ned by (u, v) 7→ uv. Length
|u| of an element u ∈ TB is de�ned inductively by:

u ∈ B =⇒ |u| = 1, u = xy =⇒ |u| = |x|+ |y|.
Let B(TB) be the boolean of TB, i.e. the set of all subsets of TB. We

de�ne inductively a mapping P : TB → B(TB) by:
t ∈ B =⇒ P (t) = {t}, t = t1t2 =⇒ P (t) = {t} ∪ P (t1) ∪ P (t2).

For instance, P ((xy)(xz)) = {x, y, z, xy, xz, (xy)(xz)} for x, y, z ∈ B.
The cardinal number of a base of a free groupoid F is said to be the

rank of F .

2. Variety V
Free objects in V are de�ned in [4]. Here we state another description.

Let F = {t ∈ TB | (∀u, v ∈ TB) u · uv /∈ P (t)}. Then for all u, v ∈ F we
have uv /∈ F ⇔ (∃w ∈ TB) v = uw). De�ne an operation ∗ on F by

u ∗ v =
{

uv uv ∈ F
w v = uw for some w ∈ F

for each u, v ∈ F.
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The product u ∗ v is well de�ned since v = uw1 = uw2 implies w1 = w2

in the absolutely free groupoid TB.
Theorem 1. (F, ∗) is a free groupoid in the variety V with free base B.
Theorem 2. Every subgroupoid (G, ∗) of (F, ∗) is free as well.

Proof. We show that the set R = (B ∩G) ∪ {uv ∈ G|{u, v} 6⊆ G} is a free
base of (G, ∗).

First, by induction on length of terms we show that R is nonempty and
generating for G. Let t ∈ G such that |t| = min{|s| | s ∈ G}. If t ∈ B,
then t ∈ R. If t = uv, then |u| < |t|, |v| < |t|, so {u, v} 6⊆ G. Hence t ∈ R.
Let uv ∈ G. If {u, v} 6⊆ G then uv ∈ R, else uv = u ∗ v and by inductive
hypothesis is generated by R.

Let (H, ◦) ∈ V and let f : R −→ H be a mapping. De�ne a mapping
f̂ : G −→ H by

f̂(t) =
{

f(t) t ∈ R

f̂(u) ◦ f̂(v) t = uv, u, v ∈ G

Let u, v ∈ G. If uv ∈ G, then f̂(u ∗ v) = f̂(uv) = f̂(u) ◦ f̂(v). Otherwise,
if v = uw, then f̂(u ∗ v) = f̂(w) = f̂(u) ◦ (f̂(u) ◦ f̂(w)) = f̂(u) ◦ f̂(uw) =
f̂(u) ◦ f̂(v).

Hence, the class of free objects in V is hereditary.
We next give two simple properties concerning the rank of a subgroupoid

of a free V-groupoid and the number of all V-groupoids on a �nite set.
Proposition 1. Every free V-groupoid F contains a subgroupoid with an
in�nite rank.

Proof. Let b be an arbitrary element of the free base of F . Then the sub-
groupoid G of F generated by the set {ci | i ∈ N}, where c0 = bb and
ci+1 = (cib)b has an in�nite rank.

Further on we will use the following lemma.
Lemma 1. The number of permutations whose disjoint cycles representa-
tion consists of cycles of length at most 2 on a set with n elements is

[n
2
]∑

k=0

n!
2kk!(n− 2k)!
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Proof. Consider a permutation of the wanted type with f �xed elements
and k disjoint cycles of length 2. Then n = f + 2k and 0 6 k 6 [n2 ].
The �xed elements can be chosen on

(
n

n−2k

)
ways. It can be proved by

induction that the number of di�erent disjoint cycles of length 2 that can
be made over a set with 2k elements is (2k − 1)!!. So, given k, there are(

n
n−2k

)
(2k − 1)!! = n!

2kk!(n−2k)!
such permutations.

Proposition 2. The number of di�erent V-groupoids on a set with n ele-

ments is
( [n

2
]∑

k=0

n!
2kk!(n− 2k)!

)n

.

Proof. Let G be a V-groupoid of cardinality n. Note that xy = z ⇐⇒ xz =
y holds in G and G is left-cancellative, so each row in the multiplication
table of G can be considered as a permutation on the set G whose disjoint
cycles representation consists of cycles of length at most 2. The number
of such permutations is ordered by Lemma 1, and there are n rows in the
multiplication table of G.

For example, there are 64 V-groupoids on the set {1, 2, 3}, and they can
be obtained by suitable arrangements of the strings 123, 132, 321 and 213
as rows of their multiplication tables. Here we have that the corresponding
permutations are (1)(2)(3), (1)(23), (13)(2) and (12)(3).

3. Variety Ve

The variety Ve consists of all V-groupoids with unit. Note that each groupoid
in this variety is involutory i.e. x2 = e is its identity. So, we can use the
free object F from V to obtain a free object in Ve. Namely, let e /∈ F and
let Fe = {t ∈ F | (∀u ∈ TB) u2 /∈ P (t)} ∪ {e}. De�ne an operation ∗ on Fe

by
e ∗ u = u ∗ e = u, e ∗ e = e,

u ∗ v =





uv uv ∈ Fe

e u = v
w v = uw, w ∈ Fe

where u, v ∈ Fe \ {e}.
Theorem 3. (Fe, ∗, e) is a free groupoid in Ve with a free base B.
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Proof. One can check that Fe ∈ Ve. B is a generating set of Fe since B
generates F and b ∗ b = e, for each b ∈ B 6= ∅. Given (G, ◦, 1) ∈ Ve and a
mapping f : B → G, in an inductive way we extend it to a homomorphism
f̂ : Fe → G as follows: f̂(e) = 1, f̂(b) = f(b) for b ∈ B, and f̂(xy) =
f̂(x) ◦ f̂(y).

Theorem 4. Every subgroupoid of (Fe, ∗, e) is free as well.
The proof of this theorem is similar to the proof of Theorem 2. Namely,

given a subgroupoid (G, ∗, e) of (Fe, ∗, e), if |G| = 1 then G = {e} is free
with empty base, and if |G| > 1 then we de�ne the set R as before. R 6= ∅
since it contains the elements t such that |t| = min{|s| | s ∈ G, s 6= e}.
Now, the proof follows the same lines as the proof of Theorem 2.

If the rank of Fe is 1, then Fe is a two-element groupoid. Therefore, the
corresponding property of Theorem 3 for the variety Ve can be stated as
follows.
Proposition 3. Every free Ve-groupoid Fe with a rank greater than one,
contains a subgroupoid with an in�nite rank.

Proof. Let B be the free base of Fe, a, b ∈ B, a 6= b. Then the subgroupoid
of Fe generated by the set {ci | i ∈ N}, where c0 = ab, ci+1 = (cib)b has an
in�nite rank.

Proposition 4. The number of di�erent Ve-groupoids on a set with n

elements, n > 1, is n

( [n
2
]−1∑

k=0

(n− 2)!
2kk!(n− 2− 2k)!

)n−1

.

Proof. If G is a Ve-groupoid with unit e, then x · x = e and x · e = x, for
each x ∈ G. So, in the multiplication table of G, the row for the unit e
is uniquely de�ned, and in the row of any other element x 6= e there are
two �xed elements, obtained from x · x = e and x · e = x. The remaining
n− 2 elements in the row of x correspond to a permutation of order n− 2
whose disjoint cycles representation consists of cycles of length at most 2.
The total number of such permutations is ordered by Lemma 1, there are
n− 1 rows that should be suitably ful�lled, and there are n ways a unit to
be chosen.

For example, exactly 32 distinct Ve-groupoids can be constructed over
the set {1, 2, 3, 4}. Fix a unit, for instance 1. Then, in the multiplication
table of the groupoid, the row and the column for 1 are determined, and
on the main diagonal it is only 1. The row for 2 can be completed by
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choosing the elements 3 and 4 in two di�erent ways (corresponding to the
permutation (3)(4) or the permutation (34)), and so on.

4. Variety Vc

In this section we focus on the variety Vc containing all V commutative
groupoids.
Proposition 5. Any two of the identities x · xy = y, yx · x = y, xy = yx
imply the third one.

Proof. Let x · xy = y and yx · x = y hold. Then
xy = y(y · xy) = y((x · xy) · xy) = yx.

Hence, Vc can be de�ned by any two of the preceding three identities,
and we have that the groupoids in Vc are TS-quasigroups (totally symmetric
quasigroups [3]). Further on we describe the free objects in this variety with
base B.

Let (G, ·) be a groupoid. For x, y, z = xy ∈ G, we say that x and y are
divisors of z. An element is prime if it has no divisors.
Proposition 6. ([2]) A groupoid (C, ·) is a free commutative groupoid with
free base B if and only if

(i) (∀x, y, t, u ∈ C)(xy = tu =⇒ {x, y} = {t, u});
(ii) B is the set of primes in (C, ·) and it generates (C, ·).

Let (C, ·) denote the free commutative groupoid with base B and Fc =
{t ∈ C | (∀u, v ∈ C) u(uv) /∈ Pc(t)}, where the mapping Pc : C → B(C)
is de�ned inductively by: t ∈ B ⇒ Pc(t) = {t}, t = uv ⇒ Pc(t) =
{t} ∪ Pc(u) ∪ Pc(v). Pc is well de�ned by Proposition 6(i). De�ne an
operation ∗ on Fc in the following way:

u ∗ v =
{

uv uv ∈ Fc

w v = uw or u = vw in (C, ·)

Theorem 5. (Fc, ∗) is a free groupoid in the variety Vc with a free base B.

Proof. Let u, v ∈ Fc and u·v /∈ Fc. Then u∗v = w for some w ∈ Pc(u)∪Pc(v)
and since y ∈ Pc(x) ∧ x ∈ Fc =⇒ y ∈ Fc, we get u ∗ v ∈ Fc. Therefore
(Fc, ∗) is a groupoid and it is commutative by construction. Also, for u, v ∈



On groupoids with identity x(xy) = y 45

Fc, if u∗v = uv then u∗(u∗v) = v. If u∗v = w, v = uw (or u = vw) in (C, ·)
then u∗(u∗v) = u∗w = uw = v (or u∗(u∗v) = vw∗(vw∗v) = vw∗w = v).
Hence, (Fc, ∗) ∈ Vc.

If (G, ◦) is a Vc-groupoid and f : B → G a mapping, let f̂ : C → G be
the homomorphism that extends f , i.e. f̂ |B = f . Then f̂ |Fc is a homomor-
phism from Fc to G that extends f .

By using similar ideas as in the proofs of Theorem 2 and Theorem 4, it
can be proved that the property of freeness in Vc is hereditary too:
Theorem 6. Each subgroupoid of a free Vc-groupoid is free as well.
Proposition 7. Every free Vc-groupoid contains a subgroupoid with in�nite
rank.

Proof. De�ne terms b<n> inductively in the following way: b<0> = b,
b<k+1> = b<k> · b<k>. If b is a base element of a free Vc-groupoid, then the
subgroupoid generated by the set {ci | i ∈ N}, where c0 = b<1>, ci+1 =
b<i+1> · b has an in�nite rank.

Let G be a subgroupoid of a free Vc-groupoid and let t be one of its
elements with minimal length. Since {t<n> | n ∈ N} is an in�nite set, we
conclude that every subgroupoid of a free groupoid in Vc is in�nite as well.
The same construction can be applied for V too, i.e. every subgroupoid of
a free V-groupoid is not �nite.

The problem concerning the enumeration of all TS-quasigroups de�ned
on n-element set remains open.
Example 1. Let (G, ·) be a commutative group and de�ne an operation ∗
on G by x ∗ y = cx−1y−1, c ∈ G. Then (G, ∗) ∈ Vc.
Example 2. The following 5-element quasigroup is a TS-quasigroup which
can not be obtained by the construction given in Example 1.

0 1 2 3 4
0 0 2 1 4 3
1 2 3 0 1 4
2 1 0 4 3 2
3 4 1 3 2 0
4 3 4 2 0 1

Note that Vc ∩Un is in fact the variety of Steiner's loops. For construc-
tions of free objects in that variety and some related topics the reader is
referred to [6, 7].
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5. Variety Vu

We now consider the variety Vu de�ned by the identities x(xy) = y, (xy)y =
xy. As it will soon become clear, its groupoids have very simple structure.
Proposition 8. Vu = V ar(xy = y2, x2 · x2 = x)

Proof. By de�nition Vu = V ar(x · xy = y, xy · y = xy) so we get �rst (1)
xy · xy = xy · (xy · y) = y and then (2) y · xy = (xy · xy) · xy = xy · xy = y.
Now (1) and (2) give xy = (y · xy)(y · xy) = y2, and (1) gives x2 · x2 = x.

On the other hand, xy = y2, x2 · x2 = x �rst imply x · xy = x · y2 =
y2 · y2 = y and after that yx = yx · (yx · yx) = yx · (x2 · x2) = yx · x.

As a consequence of the previous proposition we get that in the variety
Vu despite of xy = y2 and x2 ·x2 = x, the following identities hold: x2 · y =
y2, x · y2 = y, x2 · y2 = y. (Namely, x · y2 = x · xy = y =⇒ x2 · y2 = y =⇒
x2 · y = x2 · (x2 · y2) = y2.)

Note that x2 = x is not an identity, since ({0, 1}, ∗) ∈ Vu where 0 ∗ 0 =
1 ∗ 0 = 1, 0 ∗ 1 = 1 ∗ 1 = 0.

Let Fu = {b, b2 | b ∈ B} and de�ne an operation ∗ on Fu by u ∗ b =
b2, u ∗ b2 = b for all b ∈ B, u ∈ Fu. Then we have:
Theorem 7. (Fu, ∗) is a free groupoid with free base B in Vu.

As a result from the last theorem we get that any free groupoid in Vu

with �nite base of cardinality n is itself �nite and of order 2n.
Theorem 8. Every subgroupoid of a free groupoid in Vu is free too.

Proof. Let G be a subgroupoid of a free Vu-groupoid Fu and B1 = B ∩G,
where B is the free base of Fu. Since a ∈ G ⊆ Fu imply either a = b or
a = b2 for some b ∈ B, and y2 · y2 = y is an identity in Vu, it follows that
G \B1 = {b2 | b ∈ B1}. Hence, G is free in Vu with free base B1.

Hence, any subgroupoid of the free groupoid with base B coincides with
the free groupoid with some base B1 ⊆ B and we get the following corollary.
Corollary 1. Let |B| = n. Then the number of all subgroupoids of a free
groupoid of Vu with base B is 2n − 1.

Since �nite Vu-groupoids are exactly those V-groupoids which rows in
its multiplication tables are identical and all elements in a row are di�erent
(x2 = y2 ⇒ x = y in Vu), by Lemma 1 we get that the number of di�erent

Vu-groupoids de�ned on a set with n elements is
[n
2
]∑

k=0

n!
2kk!(n− 2k)!

.
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6. Variety Vi

The variety Vi is an interesting one, because its �nite members are closely
connected with the Steiner quintuple systems. Here �rstly we give a de-
scription of the free objects in Vi, and after that we discuss some aspects of
the mentioned connection with Steiner quintuple systems.

Proposition 9. Besides the de�ning identities
(1) x · xy = y and (2) yx · x = xy,

the following identities hold in Vi:
(3) xy · x = x · yx, (8) x(yx · y) = yx,
(4) xx = x, (9) yx · y = x · yx,
(5) xy · yx = y, (10) xy · (x · yx) = x,
(6) (xy · x)x = y, (11) (xy · x) · xy = yx,
(7) (xy · x)y = x, (12) (xy · x) · yx = xy,

as well as the cancellation laws and anticommutativity.

Proof. For any x, y in a Vi - groupoid we have
(3) xy · x (2)

= (yx · x)x
(2)
= x · yx;

(4) xx
(2)
= xx · x (3)

= x · xx
(1)
= x;

(5) xy · yx
(2)
= xy · (xy · y)

(1)
= y;

(6) (xy · x)x
(2)
= x · xy

(1)
= y;

(7) (xy · x)y
(6)
= (xy · x)((xy · x)x)

(1)
= x;

(8) x(yx · y)
(1)
= (y · yx)(yx · y)

(5)
= yx;

(9) yx · y (1)
= x(x(yx · y))

(8)
= x · yx;

(10) xy · (x · yx)
(3)
= xy · (xy · x)

(1)
= x;

(11) (xy · x) · xy
(3)
= xy · (x · xy)

(1)
= xy · y (2)

= yx;
(12) (xy · x) · yx

(3,9)
= (yx · y) · yx

(3)
= yx · (y · yx)

(1)
= yx · x (2)

= xy.
Also

xy = xz =⇒ y = x · xy = x · xz = z,

yx = zx =⇒ xy = yx · x = zx · x = xz,

xy = yx =⇒ y = x · xy = x · yx
(3,9)
= y · xy = y · yx = x.

From (1), (6) and the cancellation laws we have:

Corollary 2. Any groupoid in Vi is a quasigroup.
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Note that in any groupoid of Vi we have x · yx = xy · x = yx · y = y · xy
by (3) and (9). Let α be the congruence on TB generated by the preceding
equalities. We denote by uvu the class u(vu)/α and use the same operation
symbol for TB/α as we did for TB. Also, we shall sometimes continue using
the notions �term� and �subterm� for the elements of TB/α.

Let Fi ⊆ TB/α be the set of all terms that do not contain as a subterm
a left-hand side of (i)− (viii):

(i) ss = s, (v) s · sts = ts,
(ii) s · st = t, (vi) st · sts = s,
(iii) st · t = ts, (vii) sts · s = t,
(iv) st · ts = t, (viii) sts · st = ts,

where s, t ∈ TB.
The next proposition justi�es the de�nition of the set Fi as well as the

use of the notions �term� and �subterm�.

Proposition 10. If the term u(vu) ∈ TB for some u, v ∈ TB does not
contain as a subterm a term of the following forms: ss, s · st, st · t, st · ts,
s·s(ts), s·(st)s, s·(ts)t, s·t(st), st·s(ts), st·(st)s, st·(ts)t, st·t(st), (st)s·s,
s(ts) · s, t(st) · s, (ts)t · s, (st)s · st, s(ts) · st, t(st) · st, (ts)t · st, then the
same holds for the terms (uv)u, (vu)v and v(uv).

Proof. By checking all the possibilities it is easy to see that (vu)v does not
contain such a subterm. Namely, each assumption that the term has such
a subterm, means that the term is of the given form (having in mind that
the statement holds for u, v and vu) which always leads to contradiction for
u, v, vu or u(vu). For instance, (vu)v = (st)s · st =⇒ u(vu) = s · (st)s. In
the same way, it can be shown in all the cases for uv and then �nally for
v(uv) as well.

De�ne an operation ∗ on Fi in the following way. For u, v ∈ Fi, if
uv ∈ Fi then u ∗ v = uv. Otherwise, if uv has the form of a left-hand side
of some of (i) - (viii) de�ne u ∗ v to be the corresponding right-hand side
of the identity, except in the case of (iii) i.e. when u = wv, then we put
u ∗ v = v ∗ w. It can be shown, by induction on length of terms, that ∗ is
well de�ned. Note that, by the previous proposition if sts ∈ Fi then also
ts ∈ Fi.

Theorem 9. (Fi, ∗) is free in Vi with free base B.

Proof. First, we show that (Fi, ∗) satis�es (1). Let u, v ∈ Fi. If uv ∈ Fi

then u ∗ (u ∗ v) = u ∗ (uv)
(ii)
= v. Otherwise, we consider several cases.
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(i′) u = v : u ∗ (u ∗ v) = u ∗ (u ∗ u)
(i)
= u ∗ u

(i)
= u = v;

(ii′) v = ut : u ∗ (u ∗ v) = u ∗ (u ∗ ut)
(ii)
= u ∗ t = ut = v;

(iii′) u = tv and
0. vt ∈ Fi : u ∗ (u ∗ v) = tv ∗ (tv ∗ v)

(iii)
= tv ∗ (v ∗ t) = tv ∗ vt

(iv)
= v;

1. v = t is impossible case since we would have u = tv = tt /∈ Fi;
2. t = vp : u ∗ (u ∗ v) = tv ∗ (v ∗ t) = vpv ∗ (v ∗ vp)

(ii)
= pvp ∗ p

(vii)
= v;

3. v = pt : u ∗ (u ∗ v) = tv ∗ (v ∗ t) = tpt ∗ (pt ∗ t) = tpt ∗ (t ∗ p) =

tpt ∗ tp
(viii)
= pt = v;

4. v = qs, t = sq;
5. t = vpv;
6. v = pq, t = pqp;
7. v = tpt;
8. v = pqp, t = pq.
All the cases 4.-8. are impossible since they lead to u = sq · qs, u =

vpv · v, u = pqp · pq, u = t · tpt, u = pq · pqp, respectively, contradicting
u ∈ Fi.
(iv′) u = tp, v = pt : u ∗ (u ∗ v) = tp ∗ (tp ∗ pt)

(ii)
= tp ∗ p

(iv)
= p ∗ t = pt = v;

(v′) v = utu : u ∗ (u ∗ v) = u ∗ (u ∗ utu)
(v)
= u ∗ tu = utu = v;

(vi′) u = tp, v = tpt : u ∗ (u ∗ v) = tp ∗ (tp ∗ tpt)
(vi)
= tp ∗ t = tpt = v;

(vii′) u = vtv : u ∗ (u ∗ v) = vtv ∗ (vtv ∗ v)
(vii)
= vtv ∗ t = v;

(viii′) u = tpt, v = tp : u ∗ (u ∗ v) = tpt ∗ (tpt ∗ pt) = tpt ∗ pt = tp = v.
So we have shown that (Fi, ∗) satis�es (1) and continue for (2). If

u, v ∈ Fi and u ∗ v = uv ∈ Fi, then (u ∗ v) ∗ v = uv ∗ v = v ∗ u. Otherwise,
we have the cases:
(i′′) u = v : (u ∗ v) ∗ v = (u ∗ u) ∗ u = u ∗ u = v ∗ u;
(ii′′) v = ut, and in this case tut ∈ Fi i.e. no other case is possible and we
get (u ∗ v) ∗ v = (u ∗ ut) ∗ ut = t ∗ ut = tut = utu = ut ∗ u = v ∗ u;
(iii′′) u = tv : (u ∗ v) ∗ v = (tv ∗ v) ∗ v = (v ∗ t) ∗ v and there are several
possibilities:

0. vt ∈ Fi(vtv ∈ Fi) : (u ∗ v) ∗ v = vt ∗ v = vtv = v ∗ u;
1. v = t is impossible case;
2. t = vp : (u ∗ v) ∗ v = (v ∗ t) ∗ v = (v ∗ vp) ∗ v = p ∗ v = pv since

u = tv = vpv ∈ Fi, so pv ∈ Fi, and on the other hand v ∗ u = v ∗ vpv = pv;
3. v = pt : (u ∗ v) ∗ v = (v ∗ t) ∗ v = (pt ∗ t) ∗ pt = (t ∗ p) ∗ pt and

since u = tv = tpt ∈ Fi also tp ∈ Fi and (t ∗ p) ∗ pt = tp ∗ pt = p and
v ∗ u = pt ∗ tpt = p;

4. v = pq, t = qp;
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5. t = vpv;
6. v = pq, t = pqp;
7. v = tpt; 0
8. v = pqp, t = pq.
All the cases 4.-8. are impossible.

(iv′′) u = pt, v = tp : (u ∗ v) ∗ v = (pt ∗ tp) ∗ tp = t ∗ tp = p = tp ∗ pt = v ∗u;
(v′′) v = upu : (u∗v)∗v = (u∗upu)∗upu = pu∗upu = p = upu∗u = v ∗u;
(vi′′) u = pt, v = ptp : (u∗v)∗v = (pt∗ptp)∗ptp = p∗ptp = tp = ptp∗pt =
v ∗ u;
(vii′′) u = vpv : (u ∗ v) ∗ v = (vpv ∗ v) ∗ v = p ∗ v = pv = v ∗ vpv = v ∗ u;
(viii′′) u = ptp, v = pt : (u∗v)∗v = (ptp∗pt)∗pt = tp∗pt = p = pt∗ptp =
v ∗ u.

Thus we have shown that Fi ∈ Vi.
By induction on length of terms one can show that B is a base for Fi.

Namely, B ⊆ Fi and if uv ∈ Fi then uv = u ∗ v is generated by B if u and
v are.

Let (G, ◦) ∈ Vi and f : B → G. De�ne a mapping f̂ : Fi → G
inductively by f̂(b) = f(b), b ∈ B and f̂(uv) = f̂(u) ◦ f̂(v) for uv ∈ Fi \B.
We show that f̂ is a homomorphism and an extension of f . If u, v ∈ Fi

and uv ∈ Fi the statement is clear by de�nition of f̂ . Otherwise one of
the same eight cases might occur. We check here only the third case when
u = tv, because the others can be checked as earlier. Now, f̂(u ∗ v) =
f̂(tv ∗v) = f̂(v ∗ t) which by induction on length of u equals to f̂(v)◦ f̂(t) =
(f̂(t) ◦ f̂(v)) ◦ f̂(v) = f̂(tv) ◦ f̂(v) = f̂(u) ◦ f̂(v).

Note that |B| = 1 =⇒ |Fi| = 1 and |B| = 2 =⇒ |Fi| = 5. It is clear
that in each Vi-groupoid every two distinct elements generate a subgroupoid
with �ve elements. In fact, Vi is the class of cancellative groupoids with
property (2,5) ([11]). (A class K is said to have the property (k, n) if every
algebra in K generated by k distinct elements has exactly n elements.)

Let (G, ·) belongs to Vi and de�ne a groupoid by x ∗ y = yx, x, y ∈ G.
It is easy to verify that the quasigroup (G, ∗) is an orthogonal mate of G.

Let Fi be a free groupoid in Vi, such that its free base contains three
distinct elements a, b, c. Then the subgroupoid of Fi generated by the set
{di | i ∈ N}, where d0 = ab and d3i+1 = (d3i·c)a, d3i+2 = (d3i+1·b)c, d3i+3 =
(d3i+2·a)b, for i ∈ N, has an in�nite rank. Hence, we get the following result.

Proposition 11. Every free Vi-groupoid with rank greater than two has a
subgroupoid with an in�nite rank.



On groupoids with identity x(xy) = y 51

So, unlike the free Vi-groupoids with rank one or two, the free Vi-
groupoids with rank greater than two are in�nite. Also, apart from the
groupoids of the previous varieties, there is no Vi-groupoid with n 6 20
elements, n 6= 1, 5. Here we present the table of a Vi-groupoid with 21
elements.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19
1 3 1 4 0 2 9 12 10 11 5 7 8 6 17 20 18 19 13 15 16 14
2 4 3 2 1 0 11 10 12 9 8 6 5 7 20 17 19 18 14 16 15 13
3 2 4 0 3 1 12 9 11 10 6 8 7 5 18 19 17 20 15 13 14 16
4 1 0 3 2 4 10 11 9 12 7 5 6 8 19 18 20 17 16 14 13 15
5 7 13 15 16 14 5 8 0 6 17 18 19 20 1 4 2 3 9 10 11 12
6 8 15 13 14 16 7 6 5 0 19 20 17 18 2 3 1 4 11 12 9 10
7 6 16 14 13 15 8 0 7 5 20 19 18 17 3 2 4 1 12 11 10 9
8 5 14 16 15 13 0 7 6 8 18 17 20 19 8 1 3 2 10 9 12 11
9 11 17 18 19 20 13 14 15 16 9 12 0 10 5 6 7 8 1 2 3 4
10 12 19 20 17 18 14 13 16 15 11 10 9 0 6 5 8 7 3 4 1 2
11 10 20 19 18 17 15 16 13 14 12 0 11 9 7 8 5 6 4 3 2 1
12 9 18 17 20 19 16 15 14 13 0 11 10 12 8 7 6 5 2 1 4 3
13 15 9 10 11 12 17 20 18 19 1 2 3 4 13 16 0 14 5 7 8 6
14 16 11 12 9 10 18 19 17 20 3 4 1 2 15 14 13 0 7 5 6 8
15 14 12 11 10 9 19 18 20 17 4 3 2 1 16 0 15 13 8 6 5 7
16 13 10 9 12 11 20 17 19 18 2 1 4 3 0 15 14 16 6 8 7 5
17 19 5 7 8 6 1 4 2 3 13 15 16 14 9 12 10 11 17 20 0 18
18 20 6 8 7 5 4 1 3 2 16 14 13 15 11 10 12 9 19 18 17 0
19 18 7 5 6 8 2 3 1 4 14 16 15 13 12 9 11 10 20 0 19 17
20 17 8 6 5 7 3 2 4 1 15 13 14 16 10 11 9 12 0 19 18 20

The most interesting characteristic of the Vi variety is due to its (2,5)
property and re�ects the connection between Vi and the Steiner quintuple
systems.

Let (Q, ·) be an n-element quasigroup in Vi. Consider the set Q̂ =
{K | (K, ·) is a 5-element subquasigroup of (Q, ·)}. It follows by the (2,5)
property that for any two elements a, b ∈ Q there exists a unique K in Q̂
such that a, b ∈ K. Hence, Q̂ is a 2-(n,5,1) design, i.e. a Steiner quintuple
system.
Example 3. From the preceding 21-element quasigroup we have the fol-
lowing Steiner quintuple system:

{0, 1, 2, 3, 4},
{0, 5, 6, 7, 8}, {0, 9, 10, 11, 12}, {0, 13, 14, 15, 16}, {0, 17, 18, 19, 20},
{1, 5, 9, 13, 17}, {1, 6, 12, 15, 18}, {1, 7, 10, 16, 19}, {1, 8, 11, 14, 20},
{2, 5, 11, 15, 19}, {2, 6, 10, 13, 20}, {2, 7, 12, 14, 17}, {2, 8, 9, 16, 18},
{3, 5, 12, 16, 20}, {3, 6, 9, 14, 19}, {3, 7, 11, 13, 18}, {3, 8, 10, 15, 17},
{4, 5, 10, 14, 18}, {4, 6, 11, 16, 17}, {4, 7, 9, 15, 20}, {4, 8, 12, 13, 19}.
On the other hand, let S = {B1, B2, . . . , Bk} be a Steiner quintuple

system. Clearly, for each i ∈ {1, 2, . . . , k}, a Vi-quasigroup (Bi, ∗i) can be
constructed. Now, put Q =

⋃
Bi and ∗ = ∪∗i. For arbitrary a, b ∈ Q there
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is a unique i, such that a and b both belong to Bi. By the construction
of ∗, a ∗ (a ∗ b) = a ∗i (a ∗i b) = b, and similarly the other identity can be
checked, so (Q, ∗) is in Vi.

We have shown that every Vi-quasigroup induces a Steiner quintuple
system and vice versa. Note that the �rst procedure was deterministic,
unlike the second one. Namely, on each 5-element set six di�erent Vi-
quasigroups can be de�ned, which means that for one Steiner quintuple
system {B1, B2, . . . , Bk}, 6k di�erent Vi-quasigroups can be constructed, in
the way presented above. By the preceding discussion we have proved the
following result.
Theorem 10. Each n-element Vi-quasigroup give rise to an n-element
Steiner quintuple system, i.e. 2−(n, 5, 1) design, and each n-element Steiner
quintuple system give rise to 6n di�erent n-element Vi-quasigroups.

Let (Q, ·) and (Q′, ∗) be isomorphic Vi-quasigroups and S and S′ be
their corresponding Steiner quintuple systems. Let f : Q −→ Q′ be an
isomorphism. Since f preserves subquasigroups and for any subquasigroup
(K ′, ∗) of (Q′, ∗) there is a unique subquasigroup (K, ·) of (Q, ·) satisfying
f(K) = K ′, f is an isomorphism from S to S′.

For the opposite, let f be an isomorphism from a Steiner quintuple
system S = {B1, . . . , Bk} to a Steiner quintuple system S′ = {B′

1, . . . , B
′
k}

and Q =
⋃

Bi, Q′ =
⋃

B′
i. Let (Q, ·) be one of the quasigroups arising from

S. De�ne an operation ∗ in Q′ by

a ∗ b = c ⇐⇒ f−1(a) · f−1(b) = f−1(c.)

Then (Q′, ∗) is a quasigroup arising from S′ and f is an isomorphism from
(Q, ·) to (Q′, ∗).

Denote by FV i the class of all �nite Vi-quasigroups, and by S the class
of all Steiner quintuple systems. An equivalence on FV i can be de�ned by

(Q, ·) α (Q′, ∗) ⇐⇒ Q̂ = Q̂′,

where Q̂ is de�ned as before. The reasoning above leads us to the following
result.
Theorem 11. There is one to one correspondence between FV i/α and S.
Corollary 3. A necessary condition for existence of n-element Vi-quasigroup
is n = 20k + 1 or n = 20k + 5 for some nonnegative integer k.

Proof. Given an n-element Vi-quasigroup, we construct an n-element Steiner
quintuple with b blocks. Since there are x = n(n − 1)/2 di�erent pairs of
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elements and each block contains y = 5 · 4/2 = 10 such pairs, we have
b = x/y = n(n − 1)/20. On the other hand, n = 4m + 1 where m is the
number of occurrences of �xed element in the blocks.

We do not know whether for each n such that n = 20k+1 or n = 20k+5
there exists an n-element Vi-quasigroup.

Since a direct product of Vi-quasigroups is a Vi-quasigroup, we have
possibility to construct Steiner quintuple systems of enough large �nite
cardinality. It follows from the next property:
Corollary 4. The existence of n-element and m-element Steiner quintuple
systems implies existence of nm-element Steiner quintuple system.

References
[1] D. E. Bryant, S. Oates-Williams: Strongly 2-perfect cycle systems and

their quasigroups, Discrete Math. 167/168 (1997), 167− 174.

[2] �G. �upona: Free commutative groupoids (personal communication)

[3] J. Denes, A. D. Keedwell: Latin Squares and their Applications, English
Univ. Press Ltd., London 1974.

[4] J. Jeºek: Free groupoids in varieties determined by a short equation, Acta
Universitatis Carolinae - Math. et Phys. 23 (1982), 3− 24

[5] S. Markovski, L. Gora£inova-Ilieva, A. Sokolova: Free groupoids with
the identity (xy)y = yx, Proceed. 10th Congress of Yugoslav Math., Belgrade,
21-24.01.2001, 173− 176.

[6] S. Markovski, A. Sokolova: Free Steiner loops, Glasnik Matemati£ki
36(56) (2002), 85− 93.

[7] S. Markovski, A. Sokolova: Term rewriting system for solving the word
problem for Steiner's loops, Bulletin Math. (Skopje) 24(L) (2000), 7− 18.

[8] S. Markovski, A. Sokolova, L. Gora£inova-Ilieva: On semigroups with
the identity xxy = y, Publ. de l'Institut Math. 70(84) (2001), 1− 8.

[9] S. Markovski, A. Sokolova, L. Gora£inova-Ilieva: On groupoid func-
tional equation A(x,B(x, y)) = y, On Tribute to 65th Aniversary of Prof. S.
B. Presic: A Krapez Ed., Beograd 2001, 84− 88.

[10] R. N. McKenzie, W. F. Taylor, G. F. McNulty: Algebras, Lattices,
Varieties, Wadsworth & Brooks, Monterey, California 1987.

[11] R. Padmanabhan: Characterization of a class of groupoids, Algebra Uni-
versalis 1 (1972), 374− 382.



54 L. Gora£inova-Ilieva, S. Markovski and A. Sokolova

Received May 8, 2003
S. Markovski and A. Sokolova
Faculty of Sciences and Mathematics L. Gora£inova-Ilieva
Institute of Informatics Pedagogical Faculty
p.f.162 Skopje �tip
Republic of Macedonia Republic of Macedonia
e-mail: {smile,anas}@ii.edu.mk e-mail: �ldim@mt.net.mk



Quasigroups and Related Systems 11 (2004), 55− 58

m-Systems and n-systems in ordered semigroups

Niovi Kehayopulu

Abstract

The aim of this short note is to introduce the concepts of m-systems and n-systems in
ordered semigroups. These concepts are related to the concepts of weakly prime and
weakly semiprime ideals, play an important role in studying the structure of ordered
semigroups, so it seems to be interesting to study them.

There were several attempts to define the m-systems and n-systems in
ordered semigroups. These concepts being related to the concepts of weakly
prime and weakly semiprime ideals, play an important role in studying the
structure of ordered semigroups. The aim of this note is to introduce the
concepts of m-systems and n-systems in ordered semigroups. We begin
our consideration by proving the relation between m-systems and weakly
prime ideals, n-systems and weakly semiprime ideals. We prove that if S is
an ordered semigroup, I a weakly prime (resp. weakly semiprime) proper
ideal of S, then the complement S\I of I to S is an m-system (resp. an
n-system) of S. "Conversely", if I is an ideal and S\I an m-system (resp.
an n-system) of S, then I is weakly prime (resp. weakly semiprime). Thus
a proper ideal I of an ordered semigroup S is weakly prime (resp. weakly
semiprime) if and only if the complement S\I of I to S is an m-system
(resp. an n-system). Moreover, each n-system of an ordered semigroup S
containing an element a of S, contains an m-system that contains the same
element a.

If (S, · ) is a semigroup or an ordered semigroup, a subset T of S is called
weakly prime if for all ideals A, B of S such that AB ⊆ T , we have A ⊆ T
or B ⊆ T . The subset T of S is called weakly semiprime if for every ideal
A of S such that A2 ⊆ T , we have A ⊆ T [2]. For H ⊆ S, we define

(H] := {t ∈ S | t 6 h for some h ∈ H}.
2000 Mathematics Subject Classification: 06F05
Keywords: m-system, n-system in ordered semigroups, ideal, weakly prime ideal,
weakly semiprime ideal in ordered semigroups
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A non-empty subset A of an ordered semigroup S is called an ideal of
S if 1) AS ⊆ A, SA ⊆ A, 2) a ∈ A, S 3 b 6 a implies b ∈ A [2]. An
ideal I of S is called proper if I 6= S. A non-empty subset B of an ordered
semigroup S is called a bi-ideal of S if 1) BSB ⊆ B and 2) if a ∈ B and
S 3 c 6 a, then c ∈ B [3].

If (S, · ) is a semigroup, a non-empty subset A of S is called an m-system
of S if for each a, b ∈ A there exists x ∈ S such that axb ∈ A [4].

The set A is called an n-system of S if for each a ∈ A there exists x ∈ S
such that axa ∈ A.

In ordered semigroups the m-system and the n-system are defined as
follows:

Definition 1. Let S be an ordered semigroup and ∅ 6= A ⊆ S. The set A
is called an m-system of S if for each a, b ∈ A there exist c ∈ A and x ∈ S
such that c 6 axb.

Equivalent Definition: For each a, b ∈ A there exists c ∈ A such that
c ∈ (aSb].

Definition 2. Let S be an ordered semigroup and ∅ 6= A ⊆ S. The set A
is called an n-system of S if for each a ∈ A there exist c ∈ A and x ∈ S
such that c 6 axa.

Equivalent Definition: For each a ∈ A there exists c ∈ A such that
c ∈ (aSa].

Remark 1. Each m-system is an n-system. Each bi-ideal is an m-system.

Remark 2. If (S, · ) is a semigroup, we endow S with the order relation
defined by 6:= {(a, b) | a = b}. Then (S, ·,6) is an ordered semigroup.
Moreover, the set A is an m-system (resp. an n-system) of (S, · ) if and only
if A is an m-system (resp. an n-system) of (S, ·, 6).

Lemma. (cf. [1]). Let S be an ordered semigroup and I an ideal of S.
Then I is weakly prime if and only if for each a, b ∈ S such that aSb ⊆ I,
we have a ∈ I or b ∈ I.

We remark that since I is an ideal of S, we have

(aSb] ⊆ I if and only if aSb ⊆ I.

Proposition 1. Let S be an ordered semigroup and I an ideal of S. Then:
1) if I is weakly prime and S\I 6= ∅, then S\I is an m-system,
2) if S\I is an m-system, then I is weakly prime.
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Proof. 1) Clearly, ∅ 6= S\I ⊆ S. Let a, b ∈ S\I. Then, there exists c ∈ S\I
such that c ∈ (aSb]. In fact, let c /∈ (aSb] for every c ∈ S\I. We prove that
aSb ⊆ I. Then, since I is weakly prime, by the Lemma, we have a ∈ I or
b ∈ I, which is impossible.

Let aSb 6⊆ I. Then, there exists y ∈ S such that ayb /∈ I, so ayb ∈ S\I.
For the element ayb ∈ S\I, we have ayb ∈ aSb ⊆ (aSb].

2) Let a, b ∈ S, aSb ⊆ I. Then a ∈ I or b ∈ I. Indeed, let a, b ∈ S\I.
Since S\I is an m-system, there exist c ∈ S\I and x ∈ S such that c 6
axb ∈ aSb ⊆ I. Since I is an ideal of S, we have c ∈ I. Impossible.

Corollary 1. An ideal I of an ordered semigroup S is weakly prime if and
only if either S\I = ∅ or the set S\I is an m-system. A proper ideal I of an
ordered semigroup S is weakly prime if and only S\I is an m-system.

In a similar way, we prove the following:

Proposition 2. Let S be an ordered semigroup and I an ideal of S. Then:
1) if I is weakly semiprime and S\I 6= ∅, then S\I is an n-system,
2) if S\I is an n-system, then I is weakly semiprime.

Corollary 2. An ideal I of an ordered semigroup S is weakly semiprime if
and only if either S\I = ∅ or the set S\I is an n-system. A proper ideal
I of an ordered semigroup S is weakly semiprime if and only if S\I is an
n-system.

According to Remark 2, by Propositions 1 and 2, we get the Corollaries
3 and 4 below which are referred to semigroups without order.

Corollary 3. Let S be a semigroup and I an ideal of S. Then:
1) if I is weakly prime and S\I 6= ∅, then S\I is an m-system,
2) if S\I is an m-system, then I is weakly prime.

Corollary 4. Let S be a semigroup and I an ideal of S. Then:
1) if I is weakly semiprime and S\I 6= ∅, then S\I is an n-system,
2) if S\I is an n-system, then I is weakly semiprime.

In the rest of this note we prove that, in ordered semigroups, each n-
system containing an element a, contains an m-system which contains the
same element. As a consequence, the same result is true for semigroups
without order, as well (Corollary 5). This interesting result has been first
noticed by R. D. Giri and A. K. Wazalwar in [1] extending the corresponding
known result of rings.

Proposition 3. Let S be an ordered semigroup. If N is an n-system of S
and a ∈ N , then there exists an m-system M of S such that a ∈ M ⊆ N .
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Proof. Since N is an n-system and a ∈ N , there exists c1 ∈ N such that
c1 ∈ (aSa], then (aSa] ∩ N 6= ∅. Take a1 ∈ (aSa] ∩ N . Since N is an
n-system and a1 ∈ N , there exists c2 ∈ N such that c2 ∈ (a1Sa1], then
(a1Sa1] ∩ N 6= ∅. Take a2 ∈ (a1Sa1] ∩ N . We continue this way. Take
ai ∈ (ai−1Sai−1] ∩ N . Since N is an n-system and ai ∈ N , there exists
ci+1 ∈ N such that ci+1 ∈ (aiSai], then (aiSai] ∩N 6= ∅.
We put a0 = a, M = {a0, a1, a2, . . . ,i , ai+1, ....}. We have a0 ∈ M and
an ∈ N for all n = 0, 1, 2, . . . , i, . . . , so a ∈ M ⊆ N .
The set M is an m-system. Indeed: ∅ 6= M ⊆ S (a ∈ M ).Let ai, aj ∈ M .
If i = j then, for the element ai+1 ∈ S, we have ai+1 ∈ (aiSai ] = (aiSaj ] .
If i < j then, for the element aj+1 ∈ S, we have

aj+1 ∈ (ajSaj ] ⊆ ((aj−1Saj−1 ]Saj ] ⊆ (aj−1Saj ] ⊆ . . . ⊆ (aiSaj ] .

If j < i then, for the element ai+1 ∈ S, we have

ai+1 ∈ (aiSai ] ⊆ (aiS(ai−1Sai−1) ] ⊆ (aiSai−1 ] ⊆ . . . ⊆ (aiSaj ] ,

which completes the proof.

Corollary 5. Let S be a semigroup. If N is an n-system of S and a ∈ N ,
then there exists an m-system M of S such that a ∈ M ⊆ N .
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Fuzzy congruences on groups

Michiro Kondo

Abstract

In this paper we define a fuzzy congruence on a group which is a new notion and consider
their fundamental properties. We show that there is a lattice isomorphism between the
set of fuzzy normal subgroups of a group and the set of fuzzy congruences on this group.

1. Introduction

While there are many papers about fuzzy group theory, we can not find
papers about fuzzy congruences on groups. In the theory of crisp group
theory, there exist close relationships between normal subgroups and con-
gruences. It is a natural question to extend these relationships to the case of
fuzzy group theory. In this paper we define fuzzy congruences on groups and
fuzzy quotient groups by fuzzy congruences and investigate their properties.
In [4], Rosenfeld defined fuzzy subgroupoids and proved that a homomor-
phic image of a fuzzy subgroupoid with the sup property was a fuzzy sub-
groupoid, and hence that a homomorphic image of a fuzzy subgroup with
the sup property was a fuzzy subgroup. This theorem needs the sup prop-
erty. But in this paper we can show the theorem without the sup property,
that is, a homomorphic image of a fuzzy subgroup is a fuzzy subgroup. And
in [3], Mukherjee and Bhattacharya showed that if Ā is a fuzzy subgroup of
a finite group G is such that all the level subgroups of G are normal sub-
groups then Ā is a fuzzy normal subgroup. We can also prove the theorem
without finiteness using the transfer principle which is a fundamental tool
we have developped here.

In this paper we show that

2000 Mathematics Subject Classification: 20N25, 06B10
Keywords: fuzzy congruence, fuzzy (normal) subgroup, homomorphism theorem,
transfer principle
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1. The lattice FNS(G) of all fuzzy normal subgroups of a group G is
isomorphic to the lattice FCon(G) of all fuzzy congruences on G;

2. FNSα(G) forms a modular lattice for every α ∈ [0, 1];

3. Let G and G′ be groups and f : G → G′ be a homomorphism. If
Ā is a fuzzy (normal) subgroup of G then f [Ā] is a fuzzy (normal)
subgroup of G′;

4. Let G, G′ and f be as above. If Ā is a fuzzy normal subgroup of G′

then G/f−1(Ā) ∼= f(G)/Ā.

Of course, these results are not completely new, but these are obtained
by the crisp group theory with the so-called transfer principle. This means
that the transfer principle is a very important tool to investigate the fuzzy
theory.

2. Fuzzy groups

Let G be any group. By a fuzzy subgroup Ā of G we mean a function
Ā : G → [0, 1] such that

Ā(xy−1) > Ā(x) ∧ Ā(y) = min{ Ā(x), Ā(y) }

for all x, y ∈ G. Moreover a fuzzy normal subgroup Ā of G is defined as a
fuzzy subgroup satisfying the condition

Ā(xy) > Ā(yx).

For the sake of simplicity, we denote by FS(G) (FNS(G)) the class of all
fuzzy (normal) subgroups of G.

For every fuzzy subgroup Ā of G we have the following (see [3, 4]):

Proposition 1. Let G be a group with the unit element e and Ā be a fuzzy
subgroup of G. For all x, y ∈ G,

1. Ā(x) 6 Ā(e),
2. Ā(x) = Ā(x−1),
3. Ā(xy−1) = Ā(e) implies Ā(x) = Ā(y).

As to the converse problem whether Ā(x) = Ā(y) implies Ā(xy−1) =
Ā(e), we have a counter-example. Let G = {e, a, b, c} be a Klein’s group
defined by the following table.
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e a b c

e e a b c
a a e c b
b b c e a
c c b a e

Let Ā be a map from G to [0, 1] as Ā(e) = 1, Ā(a) = 0.5, Ā(b) =
Ā(c) = 0. We see that Ā is a fuzzy normal subgroup of G. Then, while
Ā(b) = Ā(c) = 0, we have Ā(bc−1) = Ā(bc) = Ā(a) = 0.5 6= 1 = Ā(e). Thus
the converse problem above does not hold.

3. Transfer principle

To express the transfer principle in group theory exactly we shall first of all
define several terms in the theory of groups.

Let G be any group, V be a countable set {x, y, z, . . .} of syntactic
variables which range over the elements of G. A term of G is defined
recursively:

(1) The unit element e ∈ G is a term;

(2) Each variable of V is a term;

(3) If s and t are terms, then st is a term.

Thus, for example, x, ex, and x(ey) are terms of G. We use the symbols
a, b, c, . . . as elements of G and x, y, z, . . . as variables of V . We have to
distinguish the elements of G and the terms of G.

Let A be a subset of G which satisfies the following property P expressed
by a first-order formula:

P : ∀x . . .∀y(t1(x, . . . , y) ∈ A ∧ . . . ∧ tn(x, . . . , y) ∈ A → t(x, . . . , y) ∈ A),

where t1(x, . . . , y), . . . , tn(x, . . . , y), and t(x, . . . , y) are terms of G con-
structed by variables x, . . . , y. We say that the subset A satisfies the
property P if, for all elements a, . . . , b ∈ G, t(a, . . . , b) ∈ A whenever
t1(a, . . . , b), . . . , tn(a, . . . , b) ∈ A. For the subset A which satisfies P we
define a fuzzy subset Ā which satisfies the following property P̄:
P̄ : ∀x . . .∀y ( Ā(t(x, . . . , y)) > Ā(t1(x, . . . , y)) ∧ . . . ∧ Ā(tn(x, . . . , y)) ).

For any α ∈ [0, 1], we put

U(Ā : α) = {x ∈ G | Ā(x) > α}.
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The closed interval [0, 1] has a lattice structure with the usual order, so we
have α ∧ β = min{α, β} for α, β ∈ [0, 1].

Now the following is established. We call the theorem the transfer prin-
ciple.

Theorem 1. (Transfer principle) A fuzzy subset Ā satisfies property P̄
if and only if for any α ∈ [0, 1] if U(Ā : α) 6= ∅ then the crisp set U(Ā : α)
satisfies the property P.

We simply denote this result by

Ā : P̄ ⇐⇒ ∀α ( U(Ā : α) 6= ∅ =⇒ U(Ā : α) : P )

Proof. ⇒: Suppose that Ā satisfies P̄. If there is α ∈ [0, 1] such that
U(Ā : α) 6= ∅ but U(Ā : α) does not satisfy P, then we have t1(a, . . . , b) ∈
U(Ā : α), . . ., tn(a, . . . , b) ∈ U(Ā : α) but t(a, . . . , b) /∈ U(Ā : α) for
some a, . . . , b ∈ G. Since Ā(t1(a, . . . , b)) > α, . . ., Ā(tn(a, . . . , b)) > α but
Ā(t(a, . . . , b)) � α, it follows that

Ā(t(a, . . . , b)) � Ā(t1(a, . . . , b)) ∧ . . . ∧ Ā(tn(a, . . . , b))

for some a, . . . , b ∈ G. This means that Ā does not satisfy P̄. This is a
contradiction.

⇐: Suppose that Ā does not satisfy P̄. Since
Ā(t(a, . . . , b)) � Ā(t1(a, . . . , b)) ∧ . . . ∧ Ā(tn(a, . . . , b))

for some a, . . . , b ∈ G, if we put α =
∧

i Ā(ti(a, . . . , b)) then we have
α ∈ [0, 1] and U(Ā : α) 6= ∅ because ti(a, . . . , b) ∈ U(Ā : α). On the other
hand, in this case we have t(a, . . . , b) /∈ U(Ā : α). This means that U(Ā : α)
does not satisfy P.

The above implies that if we define a fuzzy subset Ā to have the property
P̄ whenever a crisp subset A satisfies P then the transfer principle holds
generally.

Conversely we can show that we have to define a fuzzy subset Ā as in
the form P̄ if the transfer principle is too hold.

Theorem 2. If the transfer principle holds for a subset A with the property
P, then the fuzzy subset Ā has the property P̄.
Proof. Suppose that the transfer principle holds for A but the fuzzy subset
Ā does not have the property P̄. Thus there exist a, . . . , b ∈ G such that

Ā(t(a, . . . , b)) � Ā(t1(a, . . . , b)) ∧ . . . ∧ Ā(tn(a, . . . , b)).
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We take α =
∧

i Ā(ti(a, . . . , b)). It is clear that α ∈ [0, 1] and U(Ā : α) 6= ∅
because of

Ā(ti(a, . . . , b)) > α.

Since Ā(t(a, . . . , b)) � α, we have t(a, . . . , b) /∈ U(Ā : α) but ti(a, . . . , b) ∈
U(Ā : α). This means that U(Ā : α) does not satisfy the property P. This
is a contradiction.

Since any concept defined for groups so far has the forms of P and the
corresponding fuzzy subsets are defined by the form of P̄, it is easy to get
the relation between a crisp set A with P and its fuzzy set Ā with P̄. For
example, a non-empty subset A of G is called a subgroup if x ∈ A and
y ∈ A then xy−1 ∈ A. So if we define a fuzzy subgroup Ā as Ā(xy−1) >
Ā(x)∧Ā(y) then the transfer principle holds generally. Thus from the above
we can verify the next theorem immediately. The theorem is proved already
Theorem 3.9 in [3] under the restriction of finiteness of the group G. We
note that this restriction is not needed to get the theorem.

Theorem 3. Ā is a fuzzy (normal) subgroup of G if and only if for all α
U(Ā : α) 6= ∅ → U(Ā : α) is a (normal) subgroup of G.

Let G, G′ be groups and f : G → G′ be a homomorphism, that is,
f(xy) = f(x)f(y). For any fuzzy subgroup Ā of G′, we define a map
f−1(Ā) from G to [0, 1] by

f−1(Ā)(x) = Ā(f(x))

for all x ∈ G. We call f−1(Ā) a preimage of fuzzy subgroup Ā under f .
For any fuzzy subgroup Ā of G we define an image f [Ā] of Ā under f by

f [Ā](y) =
∨

u∈f−1(y)

Ā(u)

for all y ∈ G′. It follows from definition that

Proposition 2. If f : G → G′ is a homomorphism from G to G′ and
Ā is a fuzzy (normal) subgroup of G′, then the preimage f−1(Ā) is a fuzzy
(normal) subgroup of G.

Considering the image f [Ā] of the fuzzy (normal) subgroup Ā of G
under f , we have the following theorem by use of the transfer principle.
The following result is proved in Proposition 4.2 [4] under the restriction of
the sup property:
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A homomorphic image of a fuzzy subgroupoid which has the sup
property is a fuzzy subgroupoid.

A fuzzy set Ā of G has the sup property if for any subset S ⊆ G there
exists s0 ∈ S such that

Ā(s0) =
∨

s∈S

Ā(s).

We note here that the restriction is not essential, that is, we can prove the
theorem without such a restriction. To prove the theorem we need a lemma.
Let G, G′ be groups and f : G → G′ be a homomorphism.

Lemma 1. For all α ∈ [0, 1], U(f [Ā] : α) =
⋂

ε>0 f(U(Ā : α− ε)).

Proof.

y ∈ U(f [Ā] : α)) ⇐⇒ f [Ā](y) > α

⇐⇒
∨

u∈f−1(y)

Ā(u) > α

⇐⇒ ∀ε > 0 ∃u ∈ f−1(y) s.t. Ā(u) > α− ε

⇐⇒ ∀ε > 0 ∃u ∈ f−1(y) s.t. u ∈ U(Ā : α− ε)
⇐⇒ ∀ε > 0 y = f(u) ∈ f(U(Ā : α− ε))

⇐⇒ y ∈
⋂

ε>0

f(U(Ā : α− ε))

Using this lemma we can prove the next theorem.

Theorem 4. Let f : G → G′ be a surjective homomorphism and Ā be a
fuzzy (normal) subgroup of G, then the image f [Ā] is a (normal) subgroup
of G′.

Proof. It follows from the transfer principle that

f [Ā] is a fuzzy (normal) subgroup of G′ if and only if ∀α
U(f [Ā] : α) 6= ∅ → U(f [Ā] : α) is a (normal) subgroup of G′.

It is sufficient to show that U(f [Ā] : α) is a (normal) subgroup of G′ if
U(f [Ā] : α) 6= ∅. Since Ā is a fuzzy (normal) subgroup, it follows from the
transfer principle that U(Ā : α− ε) is also a (normal) subgroup of G for all
ε > 0 if U(Ā : α− ε) 6= ∅. From f being surjective, we have f(U(Ā : α− ε))
is a (normal) subgroup of G′ for all ε > 0 by well-known results about crisp
group theory. Hence

⋂
ε>0 f(U(Ā : α − ε)) = U(f [Ā] : α) is the (normal)

subgroup of G′.
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It is well known that the class of all normal subgroups of G forms a
modular lattice. Similarly we may expect that the class FNS(G) of all
fuzzy normal subgroups of G is a modular lattice. In the following, we shall
show that FNS(G)α forms a modular lattice for every α ∈ [0, 1]. Before
doing, we define an order 6 on FNS(G) by

Ā 6 B̄ ⇐⇒ Ā(x) 6 B̄(x)

for all x ∈ G.
A fuzzy subset Ā ∧ B̄ of G is defined by

(Ā ∧ B̄)(x) = Ā(x) ∧ B̄(x)

for x ∈ G. It is obvious that Ā ∧ B̄ ∈ FNS(G) and

Ā ∧ B̄ = inf{Ā, B̄}

with respect to the order.
As for sup{Ā, B̄}, we consider a fuzzy subset ĀB̄ defined by

(ĀB̄)(x) =
∨

ab=x

(Ā(a) ∧ B̄(b)).

For this fuzzy subset ĀB̄, it follows from definition that

(∗) ĀB̄(x) =
∨
a

Ā(a) ∧ B̄(a−1x) =
∨

b

Ā(xb−1) ∧ B̄(b).

First of all we show that ĀB̄ ∈ FNS(G) for Ā, B̄ ∈ FNS(G) by using the
transfer principle.

Lemma 2. For Ā, B̄ ∈ FNS(G), we have ĀB̄ ∈ FNS(G)

Proof. By transfer principle we have that ĀB̄ is a fuzzy normal subgroup
if and only if for all α U(ĀB̄ : α) 6= ∅ → U(ĀB̄ : α) is a normal subgroup.

It is sufficient to show that U(ĀB̄ : α) is a normal subgroup of G
provided that U(ĀB̄ : α) 6= ∅. Let α be such that U(ĀB̄ : α) 6= ∅ and
x ∈ U(ĀB̄ : α). For every y ∈ G we have to show that yxy−1 ∈ U(ĀB̄ : α).
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Since

ĀB̄(yxy−1) =
∨
u

Ā(u) ∧ B̄(u−1yxy−1)

=
∨
v

Ā(vy−1) ∧ B̄(yv−1yxy−1) (by (∗))

=
∨
v

Ā(y−1v) ∧ B̄(v−1yxy−1y)

=
∨
v

Ā(y−1v) ∧ B̄(v−1yx)

=
∨
v

Ā(y−1v) ∧ B̄((y−1v)−1x)

= ĀB̄(x) > α,

we have yxy−1 ∈ U(ĀB̄ : α), that is, U(ĀB̄ : α) is the normal subgroup of
G if U(ĀB̄ : α) 6= ∅. So we can conclude that ĀB̄ ∈ FNS(G).

As to ĀB̄ we also have

Lemma 3. ĀB̄ = sup{Ā, B̄} for Ā, B̄ ∈ FNS(G) such that Ā(e) = B̄(e).

Proof. It is easy to show that Ā, B̄ 6 ĀB̄. Let C̄ be any fuzzy normal
subgroup such that Ā, B̄ 6 C̄. For every x ∈ G, since

ĀB̄(x) =
∨
u

Ā(u) ∧ B̄(u−1x)

6
∨
u

C̄(u) ∧ C̄(u−1x)

6
∨
u

C̄(uu−1x) = C̄(x)

it follows that ĀB̄ = sup{Ā, B̄} when Ā(e) = B̄(e).

By the above we denote sup{Ā, B̄} by Ā ∨ B̄.
Let α be an element of [0, 1] and FNSα(G) be the class of all fuzzy

normal subgroups of G satisfying Ā(e) = α for all Ā ∈ FNS(G), that is,
FNSα(G) = {Ā ∈ FNS(G)|Ā(e) = α}. We can prove that

Theorem 5. FNSα(G) forms a modular lattice for any α ∈ [0, 1].

Proof. Let Ā, B̄, C̄ ∈ FNSα(G) and Ā 6 C̄. It is sufficient to prove that
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(Ā ∨ B̄) ∧ C̄ 6 Ā ∨ (B̄ ∧ C̄). For all x ∈ G, since

((Ā ∨ B̄) ∧ C̄)(x) = (
∨
u

(Ā(u) ∧ B̄(u−1x))) ∧ C̄(x)

=
∨
u

(Ā(u) ∧ B̄(u−1x) ∧ C̄(x))

=
∨
u

(Ā(u) ∧ C̄(u) ∧ B̄(u−1x) ∧ C̄(x))

=
∨
u

(Ā(u) ∧ B̄(u−1x) ∧ C̄(u) ∧ C̄(x))

6
∨
u

(Ā(u) ∧ B̄(u−1x) ∧ C̄(u−1x))

= (Ā ∨ (B̄ ∧ C̄))(x),

it follows that if Ā 6 C̄ then (Ā ∨ B̄) ∧ C̄ 6 Ā ∨ (B̄ ∧ C̄). This means that
FNSα(G) is a modular lattice.

4. Fuzzy congruences

We define a fuzzy congruence on an arbitrary group G. A binary function
θ from G ×G to [0, 1] is called a fuzzy congruence on G if for all elements
x, y, z, u ∈ G it satisfies the conditions:

1. θ̄(e, e) = θ̄(x, x),

2. θ̄(x, y) = θ̄(y, x),

3. θ̄(x, z) > θ̄(x, y) ∧ θ̄(y, z),

4. θ̄(xu, yu), θ̄(ux, uy) > θ̄(x, y).

Lemma 4. If θ̄ satisfies the conditions (2), (3) and (4) above, then (1) is
equivalent to (1)′ θ̄(e, e) > θ̄(x, y) for all x, y ∈ G.

Proof. Suppose that θ̄(e, e) = θ̄(x, x). Since θ̄ satisfies the conditions (2)
and (3), we have θ̄(e, e) = θ̄(x, x) > θ̄(x, y) ∧ θ̄(y, x) = θ̄(x, y).

Conversely, from (4) we have θ̄(e, e) 6 θ̄(xe, xe) = θ̄(x, x).

Proposition 3. If θ̄ is a fuzzy congruence on G, then θ̄(x, y) = θ̄(xy−1, e)
for all x, y ∈ G.

Proof. θ̄(x, y) 6 θ̄(xy−1, yy−1) = θ̄(xy−1, e) 6 θ̄(xy−1y, ey) = θ̄(x, y).
Hence θ̄(x, y) = θ̄(xy−1, e)
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For every element a ∈ G, we define a subset

a/θ̄ = {b ∈ G|θ̄(a, b) = θ̄(e, e)}

of G and G/θ̄ = {a/θ̄|a ∈ G}. We also define an operator "·" on the set
{a/θ̄|a ∈ G} by

a/θ̄ · b/θ̄ = (ab)/θ̄.

This operator is well-defined. Because, if a/θ̄ = a′/θ̄ and b/θ̄ = b′/θ̄, then
we have θ̄(a, a′) = θ̄(b, b′) = θ̄(e, e). Since θ̄(e, e) = θ̄(a, a′) 6 θ̄(ab, a′b) and
θ̄(e, e) = θ̄(b, b′) 6 θ̄(a′b, a′b′), we have θ̄(e, e) 6 θ̄(ab, a′b) ∧ θ̄(a′b, a′b′) 6
θ̄(ab, a′b′) 6 θ̄(e, e). This means that θ̄(ab, a′b′) = θ̄(e, e) and ab/θ̄ = a′b′/θ̄
hence that the operator is well-defined. It is easy to show that G/θ̄ forms
a group with respect to this operator. So we omit its proof.

Proposition 4. If θ̄ is a fuzzy congruence on G, then G/θ̄ is a group with
the unit element e/θ̄.

Proposition 5. If Ā is a fuzzy normal subgroup of G, then the fuzzy
relation θĀ(x, y) defined by θĀ(x, y) = Ā(xy−1) is a fuzzy congruence.

Proof. We only show that θĀ satisfies the conditions (3) and (4). For the
case of (3), we have

θĀ(x, z) = Ā(xz−1) = Ā(xy−1yz−1)

> Ā(xy−1) ∧ Ā(yz−1) = θĀ(x, y) ∧ θĀ(y, z)

For the case of (4), it follows that

θ̄(xu, yu) = Ā((xu)(yu)−1) = Ā((xu)(u−1y−1))

= Ā(xy−1) = θĀ(x, y)

The case of θĀ(ux, uy) > θĀ(x, y) is similar.

Conversely,

Proposition 6. If θ̄ is a fuzzy congruence, then the function Aθ̄ from G
to [0, 1] defined by Aθ̄(x) = θ̄(x, e) is a fuzzy normal subgroup of G.

Proof. We have Aθ̄(x) ∧ Aθ̄(y) = θ̄(x, e) ∧ θ̄(y, e) = θ̄(x, e) ∧ θ̄(e, y) 6
θ̄(x, y) = θ̄(xy−1, e) = Aθ̄(xy−1). Thus Aθ̄ is a fuzzy subgroup of G.
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Moreover,

Aθ̄(xy) = θ̄(xy, e) 6 θ̄(xyy−1, ey−1) = θ̄(x, y−1)

6 θ̄(x−1x, x−1y) = θ̄(e, x−1y−1)

6 θ̄(ey, x−1y−1y) = θ̄(y, x−1)

6 θ̄(yx, x−1x) = θ̄(yx, e) = Aθ̄(yx).

Hence Aθ̄ is a fuzzy normal subgroup of G.

It is natural to ask whether there is a one-to-one correspondence be-
tween the class FNS(G) of all fuzzy normal subgroups of G and the class
FCon(G) of all fuzzy congruences on G. We can answer the question "Yes".
We see that both sets are (complete) lattices with respect to the order of
set inclusion.

Theorem 6. FNS(G) ∼= FCon(G) as lattices. In particular, Ā = AθĀ

and θ̄ = θAθ̄
.

Proof. It is easy to see that the map ξ : FNS(G) → FCon(G) defined by
ξ(Ā) = θĀ is an isomorphism.

5. Homomorphism theorem

Since θĀ is a fuzzy congruence when Ā is a fuzzy normal subgroup of G ,
we conclude that G/θĀ is a group. We denote the group simply by G/Ā
and call it a fuzzy quotient group induced by a fuzzy normal subgroup Ā.

Let G, G′ be groups and f be a homomorphism from G to G′. If Ā is a
fuzzy normal subgroup of G′, then the map f−1(Ā) defined by

f−1(Ā)(x) = Ā(f(x))

for all x ∈ G is a fuzzy normal subgroup of G as proved above. Thus
G/f−1(Ā) and f(G)/Ā are groups. In this case we can show the following
result which is an extension of homomorphism theorem.

Theorem 7. Let G, G′ be groups, f a homomorphism, and Ā a fuzzy
normal subgroup of G′. Then there is an isomorphism from G/f−1(Ā) onto
f(G)/Ā, that is,

G/f−1(Ā) ∼= f(G)/Ā.
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Proof. We define a map h from G/f−1(Ā) to f(G)/Ā by

h(x/f−1(Ā)) = f(x)/Ā

for all x ∈ G. The map h is well-defined. Because, if x/f−1(Ā) =
y/f−1(Ā), since f−1(Ā)(xy−1) = f−1(Ā)(e) by definition, then we have
Ā(f(x)(f(y))−1) = Ā(f(e)) = Ā(e′), where e′ is the unit element of G′, and
thus f(x)/Ā = f(y)/Ā. This implies that h is well-defined.

For injectiveness of h, we suppose that h(x/f−1(Ā)) = h(y/f−1(Ā)),
that is, f(x)/Ā = f(y)/Ā. It follows from definition that Ā(f(x)(f(y))−1) =
Ā(e′) and hence f−1(Ā)(xy−1) = f−1(Ā)(e). This means that x/f−1(Ā) =
y/f−1(Ā). Therefore h is injective.

It is easy to show that h is a surjective homomorphism.
Thus we can conclude that G/f−1(Ā) ∼= f(G)/Ā.
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Quotient groups induced by fuzzy subgroups

Yong Lin Liu

Abstract

We construct a quotient group induced by a fuzzy normal subgroup and prove the cor-
responding isomorphism theorems. Obtained results are used to the characterization of
selected classes of quotient groups.

1. Introduction
In [16] L. A. Zadeh introduced the concept of fuzzy sets and fuzzy set
operations. A. Rosenfeld [14] applied this concept to the theory of groupoids
and groups. The various constructions of fuzzy quotient groups and fuzzy
subgroup isomorphisms have been investigated by several researchers (see
e.g. [1, 3, 6, 9, 11, 13]). In this paper we give a new method of construction
of quotient groups by fuzzy normal subgroups and apply this construction
to the characterization of selected classes of quotient groups.

2. Preliminaries
A fuzzy subset of a group G, i.e. a function µ from G into [0,1], is called a
fuzzy subgroup of G if

(F1) µ(xy) > min{µ(x), µ(y)} for all x, y ∈ G, and
(F2) µ(x−1) > µ(x) for all x ∈ G,
or, equivalently, if µ(xy−1) > min{µ(x), µ(y)} for all x, y ∈ G.
A fuzzy subgroup µ of a group G is called normal if for all x, y ∈ G it

satis�es one of the following equivalent conditions (cf. [15]):

2000 Mathematics Subject Classi�cation: 20E10, 94D05
Keywords: Fuzzy (normal) subgroup, fuzzy isomorphism theorem
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(F3) µ(xyx−1) > µ(y),
(F4) µ(xyx−1) = µ(y),
(F5) µ(xy) = µ(yx).
It is not di�cult to see that for all fuzzy subgroups µ of a group G and

all x, y ∈ G

(i) µ(e) > µ(x),
(ii) µ(x−1) = µ(x),

(iii) µ(xy−1) = µ(e) implies µ(x) = µ(y).
Fuzzy subgroups of G can be characterized by the collection of levels, i.e.

sets of the form µt = {g ∈ G |µ(g) > t}, where t ∈ [0, 1]. Namely, as it is
proved in [15], a fuzzy subset µ of a group G is a fuzzy (normal ) subgroup of
G if and only if for all t ∈ [0, 1], µt is either empty or a (normal ) subgroup
of G.

The image f(η) of a fuzzy subset η of G and preimage f−1(µ) of a fuzzy
subset µ of G′ and a map f : G → G′ are de�ned as

f(η)(y) =

{
sup

x∈f−1(y)

η(x) if f−1(y) 6= ∅,
0 otherwise,

and
f−1(µ)(x) = µ(f(x)), x ∈ G.

It is not di�cult to see that f(η) and f−1(µ) are fuzzy subsets.

3. Quotient groups induced by fuzzy subgroups
Let µ be a fuzzy normal subgroup of a group G. For any x, y ∈ G, de�ne a
binary relation ∼ on G by

x ∼ y ⇐⇒ µ(xy−1) = µ(e),

where e is the unit of G.
Lemma 1. ∼ is a congruence of G.
Proof. The re�exivity and symmetry are obvious. To prove the transitivity
let x ∼ y and y ∼ z. Then µ(xy−1) = µ(yz−1) = µ(e) and µ(xz−1) =
µ(xy−1yz−1) > min{µ(xy−1), µ(yz−1)} = µ(e). Hence µ(xz−1) = µ(e),
which proves that ∼ is an equivalence relation.
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Now, if x ∼ y, then µ(xy−1) = µ(e). Thus for all z ∈ G we have
µ((xz)(yz)−1) = µ(xzz−1y−1) = µ(xy−1) = µ(e). Hence xz ∼ yz. Since
µ is a fuzzy normal subgroup, we have µ((zx)(zy)−1) = µ(zxy−1z−1) =
µ(z−1zxy−1) = µ(xy−1) = µ(e). This gives zx ∼ zy.

Using these facts it is not di�cult to see that ∼ is a congruence.
The equivalence class containing x is denoted by µx. G/µ denotes the

corresponding quotient set.
Proposition 1. If µ is a fuzzy normal subgroup of a group G, then G/µ is
a group with the operation µxµy = µxy.
Example. Let G be the additive group of all integers and let µ(x) = t1 if
2|x, and µ(x) = t0 if 2 6 |x, where 0 6 t0 < t1 6 1. Then µ is a fuzzy normal
subgroup of G and G/µ = {µ0, µ1} is a quotient group induced by µ.
Lemma 2. [13] If f : G → G′ is an epimorphism of groups and µ a fuzzy
normal subgroup of G, then f(µ) is a fuzzy normal subgroup of G′.

Basing on this Lemma and Proposition 4.2 in [7] we can proved
Lemma 3. Let f : G → G′ be a homomorphism of groups, µ a fuzzy
subgroup of G and ν a fuzzy subgroup of G′.

(i) If f is an epimorphism, then f(f−1(ν)) = ν.

(ii) If µ is a constant on kerf , then f−1(f(µ)) = µ.
Let Gµ = µµ(0) = {x ∈ G|µ(x) = µ(0)}. It is obvious that if µ is a

fuzzy (normal) subgroup of G, then Gµ is a (normal) subgroup of G.
Theorem 1. Let f : G → G′ be an epimorphism of groups and µ a fuzzy
normal subgroup of G with kerf ⊆ Gµ. Then G/µ ∼= G′/f(µ).

Proof. By Proposition 1 and Lemma 2, G/µ and G′/f(µ) are groups.
Let η : G/µ → G′/f(µ), where η(µx) = (f(µ))f(x). If µx = µy,

then µ(xy−1) = µ(e). Since kerf ⊆ Gµ, then µ is a constant on kerf ,
and by Lemma 3 (ii) we have f−1(f(µ)) = µ. Thus (f−1(f(µ)))(xy−1) =
(f−1(f(µ)))(e), i.e. f(µ)(f(xy−1)) = f(µ)(f(e)), then f(µ)(f(x)(f(y))−1)
= f(µ)(e′), and so (f(µ))f(x) = (f(µ))f(y). Hence η is well-de�ned.

It is also a homomorphism because η(µxµy) = η(µxy) = (f(µ))f(xy) =
(f(µ))f(x)f(y) = (f(µ))f(x)(f(µ))f(y) = η(µx)η(µy). Since f is an epimor-
phism, for any (f(µ))y ∈ G′/f(µ), there exists x ∈ G such that f(x) = y.
So η(µx) = (f(µ))f(x) = (f(µ))y, which means that η is an epimorphism.

Moreover, (f(µ))f(x) = (f(µ))f(y) ⇒ f(µ)(f(x)(f(y))−1) = f(µ)(e′) ⇒
f(µ)(f(xy−1)) = f(µ)(f(e)) ⇒ (f−1(f(µ)))(xy−1) = (f−1(f(µ)))(e) ⇒
µ(xy−1) = µ(e) ⇒ µx = µy, which proves that η is an isomorphism.
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Hence G/µ ∼= G′/f(µ).
Corollary 1. Let f : G → G′ be an epimorphism of groups and ν a fuzzy
normal subgroup of G′. Then G/f−1(ν) ∼= G′/ν.

Proof. Since f−1(ν) is a fuzzy normal subgroup (cf. [12]), G/f−1(ν) and
G′/ν are groups. Moreover, by Lemma 3, we have ν = f(f−1(ν)).

If x ∈ kerf , then f(x) = e′ = f(e), and so ν(f(x)) = ν(f(e)), i.e.
f−1(ν)(x) = f−1(ν)(e). Hence x ∈ Gf−1(ν), i.e. kerf ⊆ Gf−1(ν).

Theorem 1 completes the proof.
Proposition 2. Let χS be a characteristic function of a subset S of a group
G. Then χS is a fuzzy normal subgroup of G if and only if S is a normal
subgroup of G.
Proof. If x, y ∈ S, where S is a normal subgroup of G, then χS (xy−1) =
χS (x) = χS (y) = 1. Hence χS (xy−1) = min{χS (x), χS(y)}. If at least
one of x and y is not in S, then at least one of χS (x) and χS (y) is 0.
Therefore χS (xy−1) > min{χS (x), χS (y)}. Hence χS is a fuzzy subgroup of
G. Moreover, for any x, y ∈ G, if y ∈ S, then xyx−1 ∈ S and χS (xyx−1) =
1 = χS (y). If y 6∈ S, then χS (y) = 0, so χS (xyx−1) > χS (y). Hence χS is a
fuzzy normal subgroup of G.

Conversely, if χS be a fuzzy normal subgroup of G, then for any x, y ∈ S,
we have χS (xy−1) > min{χS (x), χS (y)} = 1. Thus χS (xy−1) = 1 and
xy−1 ∈ S. Similarly for any y ∈ S, x ∈ G we have χS (xyx−1) > χS (y) = 1.
Hence χS (xyx−1) = 1 and xyx−1 ∈ S. This proves that S is a normal
subgroup of G.
Corollary 2. G/χ

kerf
∼= G′ for any epimorphism f : G → G′ of groups.

Proof. It follows from the fact that χ{e}f = χ
kerf

and G′/χ{e}
∼= G′.

Let N be a normal subgroup of a group G. Recall that a quotient group
G/N induced by a normal subgroup N is determined by an equivalent
relation ∼, where x ∼ y is de�ned by xy−1 ∈ N . For no confusion, we write
x ∼ y(N) if x is equivalent to y with respect to N , and x ∼ y(χN ) if x is
equivalent to y with respect to the fuzzy normal subgroup χN .
Lemma 4. If N is a normal subgroup of a group G, then x ∼ y(N) if
and only if x ∼ y(χN ).
Corollary 3. Let f : G → G′ be an epimorphism of groups and N be a
normal subgroup of G such that kerf ⊆ N . Then G/χN

∼= G′/χ
f(N)

.

Proof. By Proposition 2, χN and χ
f(N)

are fuzzy normal subgroups of G
and G′, respectively. Putting µ = χN in Theorem 1, we obtain Gµ =
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GχN = N ⊇ kerf . Since f is an epimorphism, for any x′ ∈ G′, there exists
x ∈ G such that x′ = f(x). If x′ ∈ f(N), then x ∈ N , which by Lemma 3
(ii) gives f(µ)(x′) = f(χN )(x′) = f(χN )(f(x)) = χN (x) = 1 = χ

f(N)
(x′). If

x′ 6∈ f(N), then x 6∈ N and f(µ)(x′) = f(χN )(x′) = χN (x) = 0 = χ
f(N)

(x′).
Hence G/χN

∼= G′/χ
f(N)

.
Observe that by Lemma 4, we obtain G/χN

∼= G/N and G′/χ
f(N)

∼=
G′/f(N). This together with Corollary 3 implies the First Isomorphism
Theorem for groups.

Moreover, if f : G → G′ is an epimorphism of groups and K is a normal
subgroup of G′, then, by Proposition 2, we see that χ

f−1(K)
and χK are

fuzzy normal subgroups of G and G′, respectively.
Putting ν = χK , we have f−1(ν) = f−1(χK ) = χ

f−1(K)
. Indeed, if

x ∈ f−1(K), then f(x) ∈ K, f−1(χK )(x) = χK f(x) = 1 = χ
f−1(K)

(x). If
x 6∈ f−1(K), then f(x) 6∈ K, f−1(χK )(x) = χK f(x) = 0 = χ

f−1(K)
(x).

Thus for ν = χK , as a consequence of Corollary 1, we obtain
Corollary 4. If f : G → G′ is an epimorphism of groups and K is a
normal subgroup of G′, then G/χ

f−1(K)
∼= G′/χK .

Lemma 5. If N is a normal subgroup and µ is a fuzzy normal subgroup
of a group G, then µ restricted to N is a fuzzy normal subgroup of N and
N/µ is a normal subgroup of G/µ.
Proof. Indeed, if µa, µb ∈ N/µ, where a, b ∈ N , then µa(µb)−1 = µaµb−1 =
µab−1 ∈ N/µ. If µa ∈ N/µ, µx ∈ G/µ, where a ∈ N and x ∈ G, then
xax−1 ∈ N and µxµa(µx)−1 = µxµaµx−1 = µxax−1 ∈ N/µ. Thus N/µ is a
normal subgroup of G/µ.
Theorem 2. If µ and ν are two fuzzy normal subgroups of a group G such
that µ(e) = ν(e), then GµGν/ν ∼= Gµ/(µ ∩ ν).
Proof. By Lemma 5, ν is a fuzzy normal subgroup of GµGν . By [11] µ∩ν is
a fuzzy normal subgroup of Gµ. Thus GµGν/ν and Gµ/(µ∩ ν) are groups.

For any x ∈ GµGν , x = ab, where a ∈ Gµ and b ∈ Gν , we de�ne
g : GµGν/ν → Gµ/(µ ∩ ν) putting g(νx) = (µ ∩ ν)a.

If νx = νy, where y = a1b1, a1 ∈ Gµ and b1 ∈ Gν , then

ν(ab(a1b1)−1) = ν(abb−1
1 a−1

1 ) = ν(a−1
1 abb−1

1 ) = ν(a−1
1 a(b1b

−1)−1) = ν(e).

Hence ν(a−1
1 a) = ν(b1b

−1) = ν(e). Thus

(µ ∩ ν)(aa−1
1 ) = min{µ(aa−1

1 ), ν(aa−1
1 )} = min{µ(e), ν((a−1

1 a)−1)}
= min{µ(e), ν(e)} = (µ ∩ ν)(e),
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i.e. (µ ∩ ν)a = (µ ∩ ν)a1 . Hence g is well-de�ned.
If νx, νy ∈ GµGν/ν, where x = ab, y = a1b1, a, a1 ∈ Gµ and b, b1 ∈ Gν ,

then xy = aba1b1. Since Gµ is normal, ba1b1 ∈ Gµ. Hence g(νxνy) =
g(νxy) = (µ ∩ ν)a(ba1b1) = (µ ∩ ν)a(µ ∩ ν)ba1b1 and (µ ∩ ν)((ba1b1)a−1

1 ) =
min{µ(ba1b1a

−1
1 ), ν(ba1b1a

−1
1 ) } = min{µ((ba1b1)a−1

1 ), ν(b(a1b1a
−1
1 )) } =

min{µ(e), ν(e) } = (µ∩ν)(e). Hence (µ∩ν)ba1b1 = (µ∩ν)a1 , i.e. g(νxνy) =
(µ ∩ ν)a(µ ∩ ν)a1 = g(νx)g(νy), which shows that g is a homomorphism.

It is also endomorphism since for (µ ∩ ν)a ∈ Gµ/(µ ∩ ν) and b ∈ Gν ,
we have x = ab ∈ GµGν and g(νx) = (µ ∩ ν)a.

Moreover, if x, y ∈ GµGν , where x = ab, y = a1b1, a, a1 ∈ Gµ,
b, b1 ∈ Gν , and (µ ∩ ν)a = (µ ∩ ν)a1 , then (µ ∩ ν)(aa−1

1 ) = (µ ∩
ν)(e), i.e, min{µ(aa−1

1 ), ν(aa−1
1 )} = min{µ(e), ν(e)}. But µ(e) = ν(e)

and µ(aa−1
1 ) = µ(e) imply ν(aa−1

1 ) = ν(e). Therefore ν(xy−1) =
ν(ab(a1b1)−1) = ν(abb−1

1 a−1
1 ) = ν(a−1

1 abb−1
1 ) > min{ν(a−1

1 a), ν(bb−1
1 )} =

min{ν((aa−1
1 )−1), ν(bb−1

1 )} = min{ν(e), ν(e)} = ν(e). Thus νx = νy.
Hence GµGν/ν ∼= Gµ/(µ ∩ ν).

Corollary 5. Let N , K be two normal subgroups of a group G. Then
NK/χK

∼= N/χN∩K .

Proof. By Proposition 2, χN and χK are fuzzy normal subgroups of G.
Putting µ = χN and ν = χK in Theorem 2, we obtain Gµ = N , Gν =
K, µ ∩ ν = χN ∩ χK = χN∩K and µ(e) = 1 = ν(e). Hence NK/χK

∼=
N/χN∩K .

Since NK/χK
∼= NK/K and N/χN∩K

∼= N/N ∩ K, as a consequence
of the above two lemmas we obtain the Second Isomorphism Theorem of
groups. The Third Isomorphism Theorem is a consequence of the following
Theorem 3. Let µ and ν be two fuzzy normal subgroups of a group G with
ν 6 µ and ν(e) = µ(e). Then (G/ν)/(Gµ/ν) ∼= G/µ.
Proof. By Lemma 5, Gµ/ν is a normal subgroup of G/ν.

Putting f(νx) = µx for all x ∈ G, we de�ne f : G/ν → G/µ such
that ν(xy−1) = ν(e) = µ(e) for all νx = νy. Because ν 6 µ, we have
µ(xy−1) > ν(xy−1) = µ(e), and so µ(xy−1) = µ(e), i.e. µx = µy, which
means that f is well-de�ned. Since f(νxνy) = f(νxy) = µxy = µxµy =
f(νx)f(νy), f is a homomorphism. By the de�nition, it is an epimorphism,
too. But kerf = {νx ∈ G/ν | f(νx) = µe} = {νx ∈ G/ν |µx = µe} = {νx ∈
G/ν |µ(x) = µ(e)} = {νx ∈ G/ν |x ∈ Gµ} = Gµ/ν. Thus kerf = Gµ/ν
and (G/ν)/(Gµ/ν) ∼= G/µ.
Corollary 6. (G/χK )/(N/χK ) ∼= G/χN for any normal subgroups N ⊆ K
of a group G.
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Finally we consider fuzzy abelian subgroups, i.e. fuzzy subgroups µ of a
group G satisfying the identity µ(xyx−1y−1) = µ(e).
Proposition 3. A fuzzy subgroup µ of a group G is abelian if and only if
G/µ is abelian.
Proof. If µ is a fuzzy abelian subgroup, then µ(xyx−1y−1) = µ(e), and
hence µ(xy) = µ(yx). Thus µ is fuzzy normal. Since µ(xy(yx)−1) =
µ(xyx−1y−1) = µ(e), we have µxy = µyx, i.e. µxµy = µyµx. Hence G/µ is
an abelian group.

Conversely, if G/µ is abelian, then µxy = µyx and µ(xy(yx)−1) = µ(e).
So µ(xyx−1y−1) = µ(e).

Let µ be a fuzzy subgroup of a group G. The smallest positive integer
n (if it exists) such that µ(xn) = µ(e) is called the fuzzy order of x with
respect to µ and is denoted by FOµ(x) (cf. [4]). If FOµ(x) is �nite for
every x ∈ G, then µ is called fuzzy torsion. In the case when for all x ∈ G
FOµ(x) is a power of a prime number p, we say that µ is a fuzzy p-subgroup
of G.
Proposition 4. A fuzzy normal subgroup µ of a group G is a fuzzy p-
subgroup if and only if G/µ is a p-group.

Proof. If µ is a fuzzy p-subgroup of G, then for any µx ∈ G/µ there is
a nonnegative integer s such that µ(xps

) = µ(e), i.e. µxps = µe. Hence
(µx)ps

= µe. Conversely, if G/µ is a p-group of G, then for any x ∈ G
and some nonnegative integer t we have (µx)pt

= µe, i.e. µxpt = µe. Thus
µ(xpt

) = µ(e), which completers the proof.
Proposition 5. A fuzzy subgroup µ of an abelian group G is fuzzy torsion
if and only if G/µ is torsion.
Proof. Because G is an abelian group, µ is normal. Let G/µ be torsion. For
any x ∈ G, there is a positive integer n such that (µx)n = µe, i.e. µxn = µe,
and so µ(xn) = µ(e). Hence FOµ(x) is �nite and µ is fuzzy torsion.

The converse is obvious.
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Zeroids and idempoids in AG-groupoids

Qaiser Mushtaq

Abstract

Clifford and Miller (Amer. J. Math. 70, 1948) and Dawson (Acta Sci. Math. 27, 1966)
have studied semigroups having left or right zeroids in a semigroup. In this paper, we have
investigated AG-groupoids, and AG-groupoids with weak associative law, having zeroids
or idempoids. Some interesting characteristics of these structures have been explored.

An Abel-Grassman’s groupoid [8], abbreviated as AG-groupoid, is a gro-
upoid G whose elements satisfy the left invertive law: (ab)c = (cb)a. It is
also called a left almost semigroup [4, 5, 6, 7]. In [3], the same structure is
called a left invertive groupoid. In this note we call it an AG-groupoid. It is a
useful non-associative algebraic structure, midway between a groupoid and
a commutative semigroup, with wide applications in the theory of flocks.

AG-groupoid is medial [5], that is, (ab)(cd) = (ac)(bd) for all a, b, c, d in
G. It has been shown in [5] that if an AG-groupoid contains a left identity
then it is unique. It has been proved also that an AG-groupoid with right
identity is a commutative monoid, that is, a semigroup with identity ele-
ment. An element a◦ of an AG-groupoid G is called a left zero if a◦a = a◦
for all a ∈ G.

It has been shown in [5] that if ab = cd then ba = dc for all a, b, c, d in
an AG-groupoid with left identity. If for all a, b, c in an AG-groupoid G,
ab = ac implies that b = c, then G is called left cancellative. Similarly, if
ba = ca implies that b = c, then G is called right cancellative. It is known
[5] that every left cancellative AG-groupoid is right cancellative but the
converse is not true. However, every right cancellative AG-groupoid with
left identity is left cancellative.

Clifford and Miller [1] have defined an element zl as a left zeroid in a
semigroup G if for each element x in G, there exists a in G such that ax = zl.

2000 Mathematics Subject Classification: 20N02
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A right zeroid is similarly defined. An element is a zeroid in G if it is both
left and right zeroid.

Dawson [2] has studied semigroups having left or right zeroid elements
and investigated some of their properties. In this paper we introduce the
concept of left idempoids in AG-groupoid and investigate some of their
properties.

Next we prove the following result.

Theorem 1. An AG-groupoid G is a semigroup if and only if a(bc) = (cb)a
for all a, b, c ∈ G.

Proof. Let a(bc) = (cb)a. Since G is an AG-groupoid, (ab)c = (cb)a. As the
right hand sides of the two equations are equal, we conclude that (ab)c =
a(bc). Thus G is a semigroup.

Conversely, suppose that an AG-groupoid G is a semigroup. This means
that (ab)c = (cb)a and (ab)c = a(bc). Since the left hand sides of these
equations are equal, we get a(bc) = (cb)a for all a, b, c ∈ G.

An element zr of an AG-groupoid G is called a right idempoid if, for
each x ∈ G, there exists a ∈ G such that (xa)a = zr.

Note that G contains a right idempoid because for any x, y ∈ G there
exists a ∈ G such that ax, ay ∈ G. So (ax)(ay) = (aa)(xy) = (aa)z =
(za)a, where z = xy is an arbitrary element in G, implies that G contains
a right idempoid.

Proposition 1. An AG-groupoid G is a semigroup if and only if zr = a(ax)
is a right idempoid for some fixed a and any x ∈ G.

Proof. The proof follows directly from Theorem 1.

Theorem 2. An AG-groupoid G with G2 = G is a commutative semigroup
if and only if (ab)c = a(cb) for all a, b, c ∈ G.

Proof. Suppose (ab)c = a(cb). Since G is an AG-groupoid, (cb)a = (ab)c.
Combining the two equations we obtain (cb)a = a(cb) implying that G
is commutative. Thus (ab)c = (cb)a = a(cb) = a(bc) shows that G is a
commutative semigroup.

The converse follows immediately.

Corollary 1. An AG-groupoid is a commutative semigroup if and only if
zr = xa2 is a right idempoid for fixed a ∈ G and any z ∈ G.

Proof. The proof follows immediately from Theorem 2.
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Proposition 2. The square of every left zeroid in an AG-groupoid G with
an idempotent is a right idempoid.

Proof. Let x be an idempotent and zl a left zeroid in G. Since zl is a left
zeroid, there exists a in G such that ax = zl. Therefore

zlzl = (ax)(ax) = (aa)(xx) = (aa)x = (xa)a = zr,

which completes the proof.

Corollary 2. In an AG-groupoid G there exists a left zeroid element.

Proof. If we define a mapping la : G → G by (x)la = ax by for all x in
G, then obviously these mappings are related to left zeroids in a natural
way.

In the following we shall examine the necessary and sufficient conditions
for la to be an epimorphism, endomorphism, automorphism, monomorphism
and anti-homomorphism.

Theorem 3. If in a left cancellative AG-groupoid G we define for a fixed
a and some x, a mapping la : x 7→ ax, from G onto G, then the following
statements are equivalent:

(i) la is an epimorphism,
(ii) a is an idempotent in G,

(iii) la is an automorphism.

Proof. Suppose (i) holds. Then there exists x in G such that for some fixed
a, ax = y, in G. This implies that for some x in G and a fixed a in G, there
exists an element y in G such that y = (x)la. Now (a)lay = (a)la(x)la =
(aa)(ax) and (a)la(x)la = (ax)la = a(ax) = ay imply that (a)la = a, that
is, a is an idempotent in G. Hence (i) implies (ii).

Also (x)la(y)la = (ax)(ay) = (aa)(xy) = a(xy) because a is idempotent.
This implies that (x)la(y)la = (xy)la, which further implies that la is an
endomorphism. In order to show that la in an automorphism it is sufficient
to show that la is one-to-one. But this is obvious since (x)la = (y)la and
ax = ay implies that x = y by virtue of left cancellation. Thus (ii) implies
(iii).

Since la is an automorphism, (iii) implies (i).

Theorem 4. In an AG-groupoid G the following statements are equivalent:
(i) G has a right zero,
(ii) la : x 7−→ ax an automorphism and G has an idempotent element,

(iii) G has a zero.
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Proof. If x is a right zero of G, then ax = x for somea ∈ G. But x = ax =
(x)la for every x in G. This implies that la is the identity mapping, which
is an automorphism and, in particular, a = (a)la. It follows that a = aa,
that is, a is an idempotent. Thus (i) implies (ii).

Further, for any x and some a in G, we have a(xx) = (xx)la = xx and
(xx)a = (ax)x = (x)lax = xx. This implies that a(xx) = (xx)a = xx,
showing that xx is a zero in G. Hence (ii) implies (iii).

(iii) obviously implies (i).

Theorem 5. If (G)la = {(x)la : x ∈ G}, where a is a fixed idempotent of
an AG-groupoid G, then (G)la is an AG-groupoid with an idempotent a.

Proof. Let (x)la, (y)la belong to (G)la. Then

(x)la(y)la = (ax)(ay) = (aa)(xy) = a(xy) = (xy)la.

This implies that (x)la(y)la ∈ (G)la. Now

(x)la(y)la(z)la = ((ax)(ay))(az) = ((az)(ay))(ax) = ((z)la(y)(x)la.

Hence (G)la is an AG-groupoid.

Theorem 6. If (G)la = {(x)la : x ∈ G}, where a is a fixed element of a
right cancellative AG-groupoid G, then la is an endomorphism if and only
if a is an idempotent of G.

Proof. Let la be an endomorphism. Then (xx′) = (x)la(x′)la. Hence

a(xx′) = (ax)(ax′) = (aa)(xx′)

imply that a = aa.
Conversely, if a = aa then

(x)la(x′)la = (ax)(ax′) = (aa)(xx′) = a(xx′) = (xx′)la,

which completes our proof.

Theorem 7. If G is an AG-groupoid with an idempotent a and la is an
anti-homomorphism, then a commutes with every element of G.

Proof. Let x be an arbitrary element of G. Then there exists x′ ∈ G such
that (x′)la = x. Consider xa for any x and some idempotent a in G. Then

xa = x(aa) = x(a)la = (x′)la(a)la = (ax′)la = a(ax′) = a(x′)la = ax.

This implies that a commutes with every x in G.
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Theorem 8. In a right cancellative AG-groupoid G with an idempotent a,
if la : x 7→ ax is an anti-homomorphism, then the following statements are
equivalent:

(i) la is an anti-epimorphism,
(ii) G is a commutative monoid,

(iii) la is an anti-automorphism.

Proof. Suppose (i) holds. Then for a fixed a ∈ G, there exist x and y in G
such that, y = ax = (x)la. Now

ya = y(aa) = (x)la(a)la = (ax)la = a(ax) = a(x)la = ay

because la is an anti-epimorphism.
Further ay = (aa)y = (ya)a, which implies that ya = (ya)a. So y =

ya = ay. Hence a is the identity of G. But an AG-groupoid with right
identity is a commutative monoid by a result in [5]. Hence (i) implies(ii).

Now, since a is the identity in G, then for any x in G, we have ax = x
implying that (x)la = x and so la is the identity mapping. This implies
that la is an anti-automorphism. It follows that (ii) implies (iii).

Also, (iii) implies (i), follows immediately since an anti-automorphism
must necessarily be an anti-epimorphism.

References
[1] A. H. Clifford and D. D. Miller: Semigroups having zeroid elements, Amer.

J. Math. 70 (1948), 117− 125.

[2] D. F. Dawson: Semigroups having left or right zeroid elements, Acta Sci.
Math. 27 (1966), 93− 96.

[3] P. Holgate: Groupoids satisfying a simple invertive law, Math. Stud. 61
(1992), 101− 106.

[4] M. A. Kazim and M. Naseeruddin: On almost semigroups, Alig. Bull.
Math. 2 (1972), 1− 7.

[5] Q. Mushtaq and S. M. Yusuf: On LA-semigroup, Alig. Bull. Math. 8
(1978), 65− 70.

[6] Q. Mushtaq and M. S. Kamran: On LA-semigroup with weak associative
law, Scientific Khyber, 1 (1989), 69− 71.

[7] Q. Mushtaq and Q. Iqbal: Decomposition of a locally associative LA-
semigroup, Semigroup Forum 41 (1990), 155− 164.

[8] P. V. Protić and M. Boinović: Some congruences on an AG-groupoid,
Filomat 9 (1995), 879− 886.



84 Q. Mushtaq

Department of Mathematics Received May 18, 2002
Quaid-i-Azam University Revised May 8, 2003
Islamabad
Pakistan
e-mail: qmushtaq@apollo.net.pk



Quasigroups and Related Systems 11 (2004), 85− 90

Characterization of division µ-LA-semigroups

Qaiser Mushtaq and Khalid Mahmood

Abstract

Let G be a left almost semigroup (LA-semigroup), also known as Abel-Grassman’s
groupoid and a left invertive groupoid. In this paper we have shown that G is a di-
vision µ-LA-semigroup if and only if it has a linear form. Characterization of division
µ-LA-semigroups is also done by using permutations.

1. Introduction

A left almost semigroup [2], abbreviated as LA-semigroup, is an algebraic
structure midway between a groupoid and a commutative semigroup. Al-
though the structure is non-associative and non-commutative, nevertheless,
it possesses many interesting properties which we usually find in associative
and commutative algebraic structures.

Kazim and Naseerudin have introduced the concept of an LA-semigroup
and have investigated some basic but important characteristics of this struc-
ture in [2]. They have generalized some useful results of semigroup theory.
Relationships between LA-semigroups and quasigroups, semigroups, loops,
monoids, and groups have been established.

Later, Mushtaq and others in [1], [5], [6], [7], [8], and [10] have stud-
ied the structure further and added many results to the theory of LA-
semigroups. Holgate [1], has called the same structure as left invertive
groupoid. It is also known as Abel-Grassman’s groupoid or AG-groupoid.
In this paper we shall call it LA-semigroup.

Kepka [4] has done extensive study of quasigroups satisfying some weak
forms of the medial law. In this paper we have extended some of his results
to LA-semigroups.
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A groupoid G = (G, ·) is called a left almost semigroup, abbreviated as
LA-semigroup, if its elements satisfy the left invertive law: (ab)c = (cb)a.
Examples of LA-semigroups can be found in [5] and [6].

An element e ∈ G is called a left identity if ea = a for all a ∈ G. An
element a′ ∈ G is called a left inverse of a if G contains left identity e and
a′a = e. As in the case of semigroups, both e and a′ are unique [5]. In
[5] it is proved also that if G contains a left identity then ab = cd implies
ba = dc for all a, b, c, d ∈ G. As in the case of semigroups, an element a
of an LA-semigroup G is called left cancellative if ab = ac implies b = c.
Similarly, it is right cancellative if ba = ca implies b = c. If it is both left
and right, it is called cancellative.

It is also known [2] that in an LA-semigroup G, the medial law: (ab)(cd)
= (ac)(bd) holds for every a, b, c, d ∈ G. An LA-semigroup with a left
identity is called an LA-monoid. In [9] an LA-monoid with a left inverse
is called an LA-group. Because in an LA-group every left inverse is a right
inverse, therefore, we can re-define an LA-group as follows: An LA-monoid
G is called a left almost group, abbreviated as LA-group, if it contains
inverses.

Suppose that (G, ·) is a commutative group. Then it is easy to see that
(G, ∗), where a ∗ b = ba−1, is an example of an LA-group.

Let G be an LA-semigroup and a ∈ G. A mapping La : G → G, defined
by La(x) = ax, is called the left translation by a. Similarly a mapping
Ra : G → G, defined by Ra(x) = xa is called the right translation by a. An
LA-semigroup G is called a division LA-semigroup if the mappings La and
Ra are onto for all a ∈ G.

An LA-semigroup G is called a µ-LA-semigroup if there are two map-
pings α, β of the set G onto G and an LA-monoid (G, ◦) such that ab =
α(a) ◦ β(b) for all a, b ∈ G. Note that if we take α, β to be identity maps
and (G, ◦) = (G, ·), then an LA-monoid (G, ·) is trivially a µ-LA-monoid.

Let G be a division µ-LA-semigroup. Then ((G, ◦), α, ψ, g) is said to be
a right linear form of G if (G, ◦) is an LA-group, α a mapping of G onto
G, ψ an endomorphism of (G, ◦), g ∈ G and ab = α(a) ◦ (g ◦ ψ(b)) for all
a, b ∈ G. Similarly ((G, ◦), ψ, α, g) is said to be a left linear form of G if
ab = ψ(a) ◦ (g ◦ α(b)) for all a, b ∈ G. If ϕ = α is an endomorphism of G,
then ((G, ◦), ϕ, ψ, g) is a called a linear form of G.
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2. Division LA-semigroups

Having set the terminology and given the basic definitions we are now in a
position to prove the following results.

Proposition 2.1. Every LA-group is a division µ-LA-group.

Proof. Let G be an LA-group and La its left translation. Then

ab = (ea)b = (ba)e
yields

La((xe)a−1) = a((xe)a−1) = (((xe)a−1)a)e = ((aa−1)(xe))e

= (e(xe))e = (xe)e = (ee)x = ex = x.

Thus for every x ∈ G there exists (xe)a−1 ∈ G such that Lx((xe)a−1) =
x. Hence La is onto. Also Ra is onto because Ra(xa−1) = (xa−1)a =
(aa−1)x = ex = x for every x ∈ G. Hence G is a division LA-group.
Thus, the observation that every LA-monoid is trivially a µ-LA-monoid,
and Theorem 9 in [3], imply that G is in fact a division µ-LA-group.

Let C(G, ◦) denote the centre of LA-semigroup (G, ◦).
Theorem 2.2. If G is an LA-semigroup, then the following statements are
equivalent:
(i) G is a division µ-LA-semigroup,

(ii) G has a linear form ((G, ◦), ϕ, ψ, g) such that ϕψ(a) ◦ g = g ◦ ψϕ(a)
for every a ∈ G. In this case C(G, ◦) = G.

Proof. (i) ⇒ (ii). Since G is a division µ-LA-semigroup satisfying the
medial law, by Theorem 15 in [3], ((G, ◦), ϕ, ψ, g) is the linear form of G
such that ϕψ(a)◦h = h◦ψϕ(a) for all a ∈ G, where h = ψϕ(x)◦g for some
x ∈ G. But by Theorem 15 in [3], we can assume that x is the left identity
of (G, ◦). Thus h = x ◦ g = g.

(ii) ⇒ (i). Since G has a linear form ((G, ◦), ϕ, ψ, g), therefore by the
definition, G is a division µ-LA-semigroup and so ab = ϕ(a) ◦ (g ◦ ψ(b)) for
all a, b ∈ G, where (G, ◦) is an LA-group. If e is the left identity in (G, ◦),
then this last equation can be written as ϕ(a) ◦ (e ◦ ψ(b) = ϕ(a) ◦ ψ(b),
which implies that G is a division µ-LA-semigroup.

Let x ∈ C(G, ◦). We wish to show that x ∈ G. Let a, b, c ∈ G, then

(ax)(bc) = (ϕ(a) ◦ (g ◦ ψ(x)) (ϕ(b) ◦ (g ◦ ψ(c))

= ϕ(ϕ(a) ◦ (g ◦ ψ(x)) ◦ (g ◦ ψ(ϕ(b) ◦ (g ◦ ψ(c))))

= ϕ2(a) ◦ (ϕ(g) ◦ ϕψ(x)) ◦ (g ◦ (ψϕ(b) ◦ (ψ(g) ◦ ψ2(c))).
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Since (G, ◦) is an LA-group, we can apply the medial and the left invertive
laws (which hold in (G, ◦)) to the above identity. Hence

(ax)(bc) = (ϕ2(a) ◦ g) ◦ ((ψϕ(x) ◦ (ψ(g) ◦ ψ2(c))) ◦ (ϕ(g) ◦ ϕψ(b))).

Since (ϕψ(a) ◦ g) ◦ (g ◦ ψϕ(b)) = (ψϕ(b) ◦ g) ◦ (g ◦ ψϕ(a)), therefore

(ax)(bc) = (ϕ2(a) ◦ g) ◦ ((ψϕ(b) ◦ ψ(g)) ◦ ((ψ(g) ◦ ψ2(c)) ◦ ϕψ(x)))

= (ϕ2(a) ◦ g) ◦ ((ϕ(g) ◦ ϕψ(b)) ◦ ((ψϕ(x) ◦ (ψ(g) ◦ ψ2(c))).

Applying the medial law again, we get

(ax)(bc) = (ϕ2(a) ◦ (ϕ(g) ◦ ϕψ(b))) ◦ (g ◦ (ψϕ(x) ◦ (ψ(g) ◦ ψ2(c))))

= ϕ(ϕ(a) ◦ (g ◦ ψ(b))) ◦ (g ◦ ψ(ϕ(x) ◦ (g ◦ ψ(c))))

= (ϕ(a) ◦ (g ◦ ψ(b))) (ϕ(x) ◦ (g ◦ ψ(c))) = (ab)(xc).

Thus x ∈ G, and so C(G, ◦) ⊆ G.
Conversely, let y ∈ G. Then

(ϕψ(a) ◦ g) ◦ ψϕ(y) = (ψϕ(y) ◦ g) ◦ ϕψ(a).

Since ϕψ(a) ◦ g = g ◦ ψϕ(a), therefore the above identity gives

(g ◦ ψϕ(a)) ◦ ψϕ(y) = (g ◦ ϕψ(y)) ◦ ϕψ(a),
i.e.

(ψϕ(y) ◦ ψϕ(a)) ◦ g = (ϕψ(a) ◦ ϕψ(y)) ◦ g.

Since (G, ◦) is cancellative, ψϕ(y) ◦ψϕ(a) = ϕψ(a) ◦ϕψ(y). But ψϕ = ϕψ,
by Theorem 16 in [3]. So ψϕ(y) ◦ ψϕ(a) = ψϕ(a) ◦ ψϕ(y). Thus ψϕ(y) ∈
C(G, ◦). This together with the fact that ψϕ : G → G is a homomorphism,
imply y ∈ G. Hence G ⊆ C(G, ◦), and in consequence G = C(G, ◦).
Corollary 2.3. A division µ-LA-semigroup G is commutative if it has a
linear form ((G, +), ϕ, ψ, g) such that (G,+) is a commutative group and
ψϕ = ϕψ.

Proof. If a division µ-LA-semigroup G has a linear form as above, then
ϕψ(a) + g = ψϕ(a) + g = g + ψϕ(a). Therefore G = C(G, ◦) by Theorem
2.2.

Theorem 2.4. For any division µ-LA-semigroup G there are mappings α, β
of G onto G such that α(a)β(b) = α(b)β(a) for every a, b ∈ G.

Proof. Since G is a division µ-LA-semigroup, therefore α = Lc and β = Rc

are onto mappings (for all c ∈ G), and α(a)β(b) = Lc(a)Rc(b) = (ca)(bc) =
(bc)(ca) = (cb)(ac) = Lc(b)Rc(a) = α(b)β(a).
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Theorem 2.5. A division µ-LA-semigroup G is commutative if and only if
the mapping a 7→ aa is an endomorphism of G.
Proof. If a 7→ aa is an endomorphism of G. Then (ab)(ab) = (aa)(bb) for
every a, b ∈ G, because G is medial, and so G = C(G, ◦) by Theorem 2.2.

Conversely, if G is commutative, then (ab)(ab) = (aa)(bb) implies that
the mapping a 7→ aa is an endomorphism of G.
Proposition 2.6. The mapping a 7→ aa is an endomorphism of G if G is
an LA-semigroup.

Proof. The proof is a trivial consequence of the medial law.

Note here that the converse is not true because there are medial groupoids,
which are not LA-semigroups.

An LA-semigroup G is called idempotent if aa = a for all a ∈ G. An
LA-semigroup G in which aa = bb for all a, b ∈ G is called unipotent.

Proposition 2.7. Let G be a left cancellative LA-semigroup. Then:
(i) α and ψ are permutations of G, if ((G, ◦), α, ψ, g) is a right linear

form of G, ,
(ii) ϕ and β are permutations of G, if ((G, ◦), ϕ, β, g) is a left linear

form of G.
Proof. (i) Since ((G, ◦), α, ψ, g) is a right linear form of a left cancellative
LA-semigroup G, therefore α is a mapping from G onto G and ψ is an
endomorphism of G. We prove that α and ψ are one-to-one.

Let α(a) = (aj) ◦ g−1 = Rj(a) ◦ g−1. If α(a) = α(b), then Rj(a) ◦ g−1 =
Rj(b) ◦ g−1. Since (G, ◦) is cancellative, therefore Rj(a) = Rj(b), which by
Theorem 2.6 from [5], implies a = b. Hence α is one-to-one.

Let ψ(a) = Ly(a), where y = α−1(g−1). Since α(a) = Rj(a) ◦ g−1,
therefore α(y) = Rj(y)◦g−1. But α(y) = g−1 implies g−1 = Rj(y)◦g−1, i.e.
y = α−1(Rj(y)◦g−1) = α−1(g−1). Now ψ(a) = Ly(a) = α−1(Rj(y)◦g−1)a.
If ψ(a) = ψ(b), then α−1(y j ◦ g−1)a = α−1(y j ◦ g−1)b. Since α is one-to-
one, therefore (y j ◦ g−1)a = (y j ◦ g−1)b, which by Theorem 2.6 from [5]
implies a = b. Thus ψ is one-to-one.

(ii) Analogously as (i).

Theorem 2.8. Let G be an LA-semigroup. Then the following conditions
are equivalent:
(i) G is a division µ-LA-semigroup,

(ii) G has a linear form ((G,+), σ, ψ, g) such that (G,+) is a commutative
group and σ(ψ(a) + g) = σ(g) + ψσ(a).
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Proof. Since a division LA-semigroup G is medial, by Theorem 16 in [3], G
has a linear form ((G,+), σ, ψ, g) such that (G,+) is a commutative group
and σψ = ψσ. Thus σ(ψ(a) + g) = σ(g) + σψ(a) = σ(g) + ψσ(a) because
σ is an endomorphism.

Conversely, if an LA-semigroup G has a linear form as in (ii), then
ab = σ(a) + g + ψ(b), which for g = 0 shows that G is a division µ-LA-
semigroup.

Theorem 2.9. Let an LA-semigroup G has a linear form ((G, ◦), ϕ, ψ, g).
Then G is a commutative group, if ϕ, ψ are central automorphism of (G, ◦)
and ϕψ = ψϕ.
Proof. If ϕ,ψ are central automorphisms of (G, ◦) such ϕψ = ψϕ, then
ϕ(a), ψ(a) ∈ C(G, ◦) for every a ∈ G. Thus ϕψ(a) ∈ C(G, ◦) and ϕψ(a) ◦
g = g ◦ ψϕ(a) for every g ∈ G. Theorem 2.2 completes the proof.
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A note on Salem numbers and Golden mean

Qaiser Mushtaq and Arshad Mahmood

Abstract

It is known that every Pisot number is a limit of Salem numbers. At present there
are 47 known Salem numbers less than 1.3 and the list is known to be complete through
degree 40. There is a well known relationship between Coxeter systems, Salem numbers,
and Golden mean. In this short note, we have discovered the existence of Golden mean
in the action of PSL2(Z) on Q(

√
5 ∪ {∞} and investigated some interesting properties

of these.

1. Introduction

An algebraic integer λ > 1 is a Pisot number if its conjugates (other than
λ itself) satisfy |λ′| < 1. Similarly, an algebraic integer λ > 1 is a Salem
number if its conjugates (other than λ itself) satisfy |λ′| 6 1 and include 1

λ .
It is known that the Pisot numbers form a closed subset P ⊂ R, where

R is a field of real numbers, and that every Pisot number is a limit of Salem
numbers [4]. The smallest Pisot number λP , equivalent to 1.324717, is a
root of x3 − x − 1 = 0, while the smallest accumulation point in P is the

Golden mean, λG =
1 +

√
5

2
equivalent to 1.61803. Note that λ2

G
=

3 +
√

5
2

is equivalent to 2.61803...

2. Golden mean

Theorem. In an action of the modular group on Q(
√

5 ∪ {∞}, λG is the
fixed point of the commutator of the modular group.

2000 Mathematics Subject Classification: 11E04, 20G15
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Proof. It is well known that the modular group PSL2(Z) is generated by

the linear fractional transformations x : z 7→ −1
z

and y : z 7→ z − 1
z

which

obviously satisfy the relations x2 = y3 = 1.

Then λGx =
1−√5

2
, λGxy =

3 +
√

5
2

, λGxy2 =
−1 +

√
5

2
,

λGxy2x =
−1−√5

2
, λGxy2xy2 =

3−√5
2

and λGxy2xy =
1 +

√
5

2
=

λG .

Corollary 1. λ2
G
− λG − 1 = 0.

Proof. λGxy2xy = (λG + 1)yxy =
(

λG + 1− 1
λG + 1

)
xy =

λG + 1− 1
λG + 1

+ 1.

Therefore λGxy2xy = λG , and so
λG + 1− 1

λG + 1
+ 1 = λG yields

λ2
G
− λG − 1 = 0.

Corollary 2. Let λG denote the algebraic conjugate of λG. Then:
(i) λGx = λG , λGxy = λ2

G
, λGxy2 = −λG ,

(ii) (λGxy2)x = −λG , (λGxy2)xy = λG , (λGxy2)xy2 = (λG) 2.

Proof. The proof follows directly from Corollary 1.

All Pisot numbers λ, λG + ε are known [1]. The Salem numbers are less
well understood. The catalog of 39 Salem numbers given in [1] includes all
Salem numbers λ < 1.3 of degree less than or equal to 20 over the field of
rationals. At present there are 47 known Salem numbers λ < 1.3, and the
list of such is known to be complete through degree 40 [2] and [3].

Next we give approximation of the golden mean. The Golden mean λG =
1 +

√
5

2
is the quadratic irrationality, which is hardest to approximate by

rational numbers, that is, λG −
p

q
6= 0, where p and q are co-prime integers.

We make
∣∣∣∣λG −

p

q

∣∣∣∣ as small as possible for a fixed q, i.e.,
∣∣∣∣λG −

p

q

∣∣∣∣ < εq(λG),

when εq(λG) tends to zero as q tends to infinity. Trivially, εq(λG) <
1
2q

.

We can, in fact, for any irrational α, choose a sequence q1, q2, . . . , qn, . . .

tending to infinity such that εqi(α) <
1
q2
i

. For the number λG =
1 +

√
5

2
,
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we cannot do better than this. If β =
aα + b

cα + d
, where ad − bc = ±1 and

a, b, c, d are integers then by Liouvelli’s Theorem approximation by rational
integers is roughly the same for α as for β. In other words, if α is nearly

p

q

then
ap

q + b

cp
q + d

is a good approximation to β.
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Abel-Grassmann’s bands

Petar V. Protić and Nebojša Stevanović

Abstract

Abel-Grassmann’s groupoids or shortly AG-groupoids have been considered in a
number of papers, although under the different names. In some papers they are named
LA-semigroups [3] in others left invertive groupoids [2]. In this paper we deal with
AG-bands, i.e., AG-groupoids whose all elements are idempotents. We introduce a
few congruence relations on AG-band and consider decompositions of Abel-Grassmann’s
bands induced by these congruences. We also give the natural partial order on Abel-
Grassmann’s band.

1. Introduction

A groupoid S in which the following

(∀a, b, c ∈ S) ab · c = cb · a, (1)

is true is called an Abel-Grassmann’s groupoid, [5]. It is easy to verify that
in every AG-groupoid the medial law ab · cd = ac · bd holds.

Abell-Grassmann’s groupoids are not associative in general, however
they have a close relation with semigroups and with commutative struc-
tures. Introducing a new operation on AG-groupoid makes it a commu-
tative semigroup. On the other hand introducing a new operation on a
commutative inverse semigroup turns it into an AG-groupoid.

Abel-Grassmann’s groupoid satisfying (∀a, b, c ∈ S) ab · c = b · ca (called
weak associative law in [4]) is an AG∗-groupoid. It is easy to prove that
any AG∗-groupoid satisfies the permutation identity of a next type

a1a2 · a3a4 = aπ(1)aπ(2) · aπ(3)aπ(4),

2000 Mathematics Subject Classification: 20N02
Keywords: AG-groupoid, antirectangular AG-band, AG-band decompositions
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where π is any permutation on a set {1, 2, 3, 4}, [5].
Let (S, ·) be AG-groupoid, a ∈ S be a fixed element. We can define the

"sandwich" operation on S as follows:

x ◦ y = xa · y, x, y ∈ S.

It is easy to verify that x ◦ y = y ◦ x for any x, y ∈ S, in other words
(S, ◦) is a commutative groupoid. If S is AG∗-groupoid and x, y, z ∈ S are
arbitrary elements, then

(x ◦ y) ◦ z = ((xa · y)a)z = za · (xa · y)

and

x ◦ (y ◦ z) = xa · (y ◦ z) = xa · (ya · z) = za · (ya · x) = za · (xa · y),

whence (x ◦ y) ◦ z = x ◦ (y ◦ z). Consequently (S, ◦) is a commutative
semigroup.

Let S be the commutative inverse semigroup. We define a new operation
on S as follows:

a • b = ba−1, a, b ∈ S.

It has been shown in [3] that (S, •) is Abel-Grassmann’s groupoid. Con-
nections mentioned above makes AG-groupoid to be among the most inter-
esting nonassociative structures. Same as in Semigroup Theory bands and
band decompositions appears as the most fruitful methods for research on
AG-groupoids.

If in AG-groupoid S every element is an idempotent, then S is an AG-
band.

An AG-groupoid S is an AG-band Y of AG-groupoids Sα if

S =
⋃

α∈Y

Sα,

Y is an AG-band, Sα ∩ Sβ = ∅ for α, β ∈ Y , α 6= β and SαSβ ⊆ Sαβ.
A congruence ρ on S is called band congruence if S/ρ is a band.

2. Some decompositions of AG-bands

Let S be a semigroup and for each a ∈ S, a2 = a. That is, let S be an
associative band. If for all a, b ∈ S, ab = ba, then S is a semilattice. If for
all a, b ∈ S, a = aba, then S is the rectangular band. It is a well known
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result in Semigroup Theory that the associative band S is a semilattice of
rectangular bands. It is not hard to prove that a commutative AG-band is
a semilattice.

Let us now introduce the following notion.

Definition 2.1. Let S be an AG-band, we say that S is an antirectangular
AG-band if for every a, b ∈ S, a = ba · b.

Let us remark that in that case it holds

a = ba · b = ba · bb = bb · ab = b · ab. (2)

From above it follows that each antirectangular AG-band is a quasigroup.

Example 2.1. Let a groupoid S be a given by the following table.

· 1 2 3 4

1 1 4 2 3
2 3 2 4 1
3 4 1 3 2
4 2 3 1 4

Then S is an antirectangular AG-band and a quasigroup. Let us remark
that S is the unique AG-band of order 4 and we shall see below that it
appears frequently in band decompositions both as an AG-band into which
other bands can be decomposed and like a component. For this reasons
from now on we shall call this band Traka 4 or simply T4. We also remark
that nonassociative AG-bands of order 6 3 do not exist.

An AG-band is anticommutative if for all a, b ∈ S, ab = ba impies that
a = b.

Lemma 2.1. Every antirectangular AG-band is anticommutative.

Proof. Let S be an antirectangular band, a, b ∈ S and ab = ba. Then

a = ba · b = ab · b = bb · a = ba = ab = aa · b = ba · a = ab · a = b.

Theorem 2.1. If S is an AG-band, then S is an AG-band Y of, in general
case nontrivial, antirectangular AG-bands Sα, α ∈ Y .

Proof. Let S be an AG-band. Then we define the relation ρ on S as

aρb ⇐⇒ a = ba · b, b = ab · a. (3)
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Clearly, the relation ρ is reflexive and symmetric. If aρb, bρc, then by (2)
and (3) we have

ac · a = ac · (ba · b) = ((ba · b)c)a = (cb · ba)a

= (a · ba) · cb = b · cb = c.

Similarly, a = ca · c thus the relation ρ is transitive. Hence, ρ is an equiva-
lence relation.

Let aρb and c ∈ S. Then by (1) and the medial law we have

ac = (ba · b)c = cb · ba = (cc · b) · ba = (bc · c) · ba
= (ba · c) · bc = (ba · cc) · bc = (bc · ac) · bc.

Dually, bc = (ac · bc) · ac and so acρbc. Also,

ca = cc · a = ac · c = ((ba · b)c)c = (cb · ba)c = (c · ba) · cb
= (cc · ba) · cb = (cb · ca) · cb.

Dually, cb = (ca · cb) · ca and so caρcb. Hence, ρ is a congruence on S.
Since S is a band we have that ρ is a band congruence on S. From aρb

we have a = a2ρab, whence it follows that ρ-classes are closed under the
operation. By the definition of ρ it follows that ρ-classes are antirectangular
AG-bands. By Lemma 2.1, ρ classes are anticommutative AG-bands.

In Example 2.1. we have ρ = S × S.

Example 2.2. Let AG-band S be given by the following table.

· 1 2 3 4 5 6

1 1 2 2 5 6 4
2 2 2 2 5 6 4
3 2 2 3 5 6 4
4 6 6 6 4 2 5
5 4 4 4 6 5 2
6 5 5 5 2 4 6

Now, S = Sα ∪ Sβ ∪ Sγ where Sα = {1}, Sβ = {3}, Sγ = {2, 4, 5, 6} are
equivalence classes modρ and Y = {α, β, γ} is a semilattice. Obviously,
Sα, Sβ are trivial AG-bands and Sγ is anti-isomorphic with AG-band T4
(as is Example 2.1.).

Lemma 2.2. Let S be an AG-band and e, a, b ∈ S. Then ea = eb implies
that ae = be and conversely.
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Proof. Suppose that ea = eb, then

ae = aa · e = ea · a = eb · a = eb · aa = ea · ba = eb · ba
= (ee · b) · ba = (be · e) · ba = (ba · e) · be = (ea · b) · be
= (eb · b) · be = (bb · e) · be = be · be = be.

Conversely, suppose that ae = be, then

ea = ee · a = ae · e = be · e = ee · b = eb.

Remark 2.1. As a consequence of Lemma 2.2, e = ef and so e = fe and
conversely.

Theorem 2.2. Let S be an AG-band. Then the relation ν defined on S by

aνb ⇐⇒ (∃e ∈ S) ea = eb

is a band congruence relation on S.

Proof. Reflexivity and symmetry is obvious. Suppose that aνb and bνc for
some a, b, c ∈ S. Then there exist elements e, f ∈ S such that ea = eb and
fb = fc. According to the Lemma 2.2 we also have ae = be, bf = cf . Now

fe · a = ae · f = be · f = be · ff = bf · ef = cf · ef
= ce · ff = ce · f = fe · c,

implies that ν is transitive.
It remains to prove compatibility. Suppose aνb and let c ∈ S be an

arbitrary element. Then there exists e ∈ S such that ea = eb. We have,
now

c · ea = c · eb =⇒ cc · ea = cc · eb =⇒ ce · ca = ce · cb,
so aνcb. Similarly

ea · c = eb · c =⇒ ea · cc = eb · cc =⇒ ec · ac = ec · bc,
so acνbc.

In Example 2.1 we have ν ≡ 4, since S is a quasigroup. In Example
2.2, S = Sα ∪ Sβ ∪ Sγ ∪ Sδ, where Sα = {1, 2, 3}, Sβ = {4}, Sγ = {5},
Sδ = {6} are the equivalence classes mod ν. Let us remark that AG-band
Y = {α, β, γ, δ} is anti-isomorphic with T4.

Lemma 2.3. Let S be an AG-groupoid. Then the relation σ on S defined
by the formula

aσb ⇐⇒ ab = ba

is reflexive, symmetric and compatible.
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Proof. Clearly σ is reflexive and symmetric. If aσb and c ∈ S, then by
medial law we have

ac · bc = ab · cc = ba · cc = bc · ac,

ca · cb = cc · ab = cc · ba = cb · ca.

Hence acσbc, caσcb, and so σ is left and right compatible. This means that
σ is compatible.

Definition 2.2. Let S be an AG-band. Then S is transitively commutative
if for every a, b, c ∈ S from ab = ba and bc = cb it follows that ac = ca.

It is easy to verify that AG-bands in examples 2.1 and 2.2 are transitively
commutative.

Theorem 2.3. Let S be a transitively commutative AG-band. Then S is
an AG-band Y of, in general case nontrivial, semilattices Sα, α ∈ Y .

Proof. In this way the relation σ defined by (3) is transitive. Now, by
Lemma 2.3 we have that relation σ is a band congruence on S. Clearly,
σ-classes are commutative AG-bands, i.e., semilattices.

In Example 2.2 we have that S = Sα ∪ Sβ ∪ Sγ ∪ Sδ, AG-band Y =
{α, β, γ, δ} is anti-isomorphic with AG-band T4, Sα = {1, 2, 3} is nontrivial
semilattice and Sβ = {4}, Sγ = {5}, Sδ = {6} are trivial semilattices.

Now, let S be a transitively commutative AG-band, and let aσb ⇐⇒
ab = ba. Then from

ab · a = ba · a = aa · b = aa · bb = ab · ab,

ab · b = bb · a = bb · aa = ba · ba = ab · ab

it follows that ab · a = ab · b, and so aνb. Hence, if S is an transitively
commutative AG-band, then σ ⊆ ν.

3. The natural partial order of AG-band

Theorem 3.1. If S is AG-band, then the relation 6 defined on E(S)

e 6 f ⇐⇒ e = ef

is a (natural ) partial order relation and 6 is compatible with the right and
with the left with multiplication.
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Proof. Clearly, e 6 e and relation 6 is reflexive. Let e 6 f, f 6 e, then
e = ef, f = fe and by the Remark 2.1 we have e = f so relation 6 is
antisymmetric. If e 6 f, f 6 g then e = ef, f = fg also by the Remark
2.1 it holds that f = gf. Now by (1) it follows that

eg = ef · g = gf · e = fe = e.

Hence, e 6 g and relation 6 is transitive thus 6 is a partial order relation.
Now, e 6 f ⇐⇒ e = ef and g ∈ S yields

eg = ef · g = ef · gg = eg · fg,

ge = g · ef = gg · ef = ge · gf

so eg 6 fg, ge 6 gf . Hence, the relation 6 is left and right compatible
with multiplication.

In Example 2.1, 6 ≡ 4. In Example 2.2 we have 2 < 1, 2 < 3 while
other elements are uncomparable.
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Hyper I−algebras and polygroups

Mohammad M. Zahedi, Lida Torkzadeh and Radjab A. Borzooei

Abstract

In this note �rst we give the notion of hyper I-algebra, which is a generalization of
BCI-algebra and also it is a generalization of hyper K-algebra. Then we obtain some
fundamental results about this notion. Finally we give some relationships between the
notion of hyper I-algebra and the notions of hypergroup and polygroup. In particular
we study these connections categorically. In other words by considering the categories of
hyper I-algebrs, hypergroups and commutative polygroups, we give some full and faithful
functors.

1. Introduction
The hyperalgebraic structure theory was introduced by F.Marty [8] in 1934.
Imai and Iseki [7] in 1966 introduced the notion of a BCK-algebra. Re-
cently [2], [9] Borzooei, Jun and Zahedi et.al. applied the hypersrtucture to
BCK-algebras and introduced the concepts of hyper K-algebra which is a
generalization of BCK-algebra. In [5] 1988 Dudek obtained some connec-
tions between BCI-algebras and (quasi)groups. Bonansinga and Corsini [1]
in 1982 introduced the notion of quasi-canonical hypergroup, called poly-
group by Comer [3]. Now in this note we consider all of the above referred
papers and introduce the notion of hyper I-algebra and then we obtain some
results as mentioned in the abstract.

2. Preliminaries
By a hyperstructure (H, ◦) we mean a nonempty set H with a hyperoperation
◦ , i.e. a function ◦ from H ×H to P(H) \ {∅}.

2000 Mathematics Subject Classi�cation: 06F35, 03G25, 20N20
Keywords: hyper I-algebra, hypergroup, polygroup
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De�nition 2.1. A hyperstructure (H, ◦) is called hypergroup if:
(i) (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H,

(ii) a ◦H = H ◦ a = H for all a ∈ H,
(i.e. for all a, b ∈ H there exist c, d ∈ H such that b ∈ c ◦ a and b ∈ a ◦ d).
De�nition 2.2. A hyperstructure (H, ◦) is called quasi-canonical hyper-
group or polygroup if it satis�es the following conditions:

(i) (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H (associative law),
(ii) there exists e ∈ H such that e ◦ x = {x} = x ◦ e for all x ∈ H

(identity element),
(iii) for all x ∈ H there exists a unique element x′ ∈ H such that

e ∈ (x ◦ x′)
⋂

(x′ ◦ x), we denote x′ by x−1

(inverse element),
(iv) for all x, y, z ∈ H we have: z ∈ x◦y =⇒ x ∈ z◦y−1 =⇒ y ∈ x−1◦z

(reversibility property).
If (H, ◦) is a polygroup and x ◦ y = y ◦ x holds for all x, y ∈ H, then we

say that H is a commutative polygroup.
If A ⊆ H, then by A−1 we mean the set {a−1 : a ∈ A}.

Lemma 2.3. Let (H, ◦) be a polygroup. Then for all x, y ∈ H, we have:
(i) (x−1)−1 = x,
(ii) e = e−1,

(iii) e is unique,
(iv) (x ◦ y)−1 = y−1 ◦ x−1.

Proof. See [4].
Lemma 2.4. Let (H, ◦) be a polygroup. Then (A ◦ B) ◦ C = A ◦ (B ◦ C)
for all nonempty subsets A, B and C of H.

3. Hyper I-algebra
De�nition 3.1. A hyperstructure (H, ◦) is called a hyper I-algebra if it
contains a constant 0 and satis�es the following axioms:

(HK1) (x ◦ z) ◦ (y ◦ z) < x ◦ y,
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3) x < x,
(HK4) x < y, y < x =⇒ x = y,
(HI5) x < 0 =⇒ x = 0,

for all x, y, z ∈ H, where x < y is de�ned by 0 ∈ x ◦ y and for every
A,B ⊆ H, A < B is de�ned by ∃a ∈ A, ∃b ∈ B such that a < b.
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A simple example of a hyper I-algebra is a BCI-algebra (H, ∗, 0) with
the hyperopration ◦ de�ned by x◦y = {x∗y}. Also it is not di�cult to see
that a hyper I-algebra is a generalization of hyper K-algebras considered
in [2] and [9]. The following example shows that there are hyper I-algebras
which are not a hyper K-algebras.
Example 3.2. Let H = {0, 1, 2}. Then the following tables show the hyper
I-algebra structures on H.

◦ 0 1 2

0 {0} {0} {2}
1 {1} {0} {2}
2 {2} {2} {0, 2}

◦ 0 1 2

0 {0} {0, 1} {2}
1 {1} {0} {2}
2 {2} {0} {0, 1, 2}

Note that none of the above hyper I-algebras is not a hyper K-algebra,
because 0 6< 2.

Theorem 3.3. Let (H, ◦, 0) be a hyper I-algebra. Then for all x, y, z ∈ H
and for all non-empty subsets A, B and C of H the following hold:

(i) x ◦ y < z ⇐⇒ x ◦ z < y, (vi) A < A,
(ii) (x ◦ z) ◦ (x ◦ y) < y ◦ z, (vii) (A ◦ C) ◦ (A ◦B) < B ◦ C,
(iii) x ◦ (x ◦ y) < y, (viii) (A ◦ C) ◦ (B ◦ C) < A ◦B,
(iv) (A ◦B) ◦ C = (A ◦ C) ◦B, (ix) A ◦B < C ⇔ A ◦ C < B.
(v) A ⊆ B =⇒ A < B,

Proof. The proof is similar to the proof of Proposition 2.5 of [2].

Example 3.4. Let H = {0, 1, 2}. Then the following table shows a hyper
I-algebra structure on H such that x ◦ y 6< x, because 1 ◦ 2 = 2 6< 1.

◦ 0 1 2

0 {0} {0} {2}
1 {1} {0, 1} {2}
2 {2} {2} {0}

Lemma 3.5. Let H be a hyper I-algebra. Then for all x in H we have:
(i) x ◦ 0 < x,

(ii) x ∈ x ◦ 0.
Proof. (i) We have 0 ∈ 0 ◦ 0 ⊆ (x ◦ x) ◦ 0 = (x ◦ 0) ◦ x. So there exists
t ∈ x ◦ 0 such that 0 ∈ t ◦ x. Thus t < x, and hence x ◦ 0 < x.
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(ii) By (i) x ◦ 0 < x. So there exists t ∈ x ◦ 0 such that t < x. Since
t ∈ x ◦ 0, then x ◦ 0 < t and hence x ◦ t < 0, by Theorem 3.3(i). Thus there
exists h ∈ x ◦ t such that h < 0, so by (HI5) we have h = 0. Therefore
0 ∈ x ◦ t and hence x < t. Since t < x, then by (HK4) we get that t = x.
Therefore x ∈ x ◦ 0.

De�nition 3.6. Let (H, ◦, 0) be a hyper I-algebra. We de�ne

H+ = {x ∈ H | 0 ∈ 0 ◦ x}.

Note that H+ 6= ∅ because 0 ∈ 0 ◦ 0.

Proposition 3.7. Let (H, ◦, 0) be a hyper I-algebra. Then (H+, ◦, 0) is a
hyper K-algebra if and only if x ◦ y ⊆ H+, for all x,y in H+.

Proof. Straightforward.

Example 3.8. (i) Let H = {0, 1, 2}. Then the following tables show two
di�erent hyper I-algebra structures on H:

◦ 0 1 2

0 {0} {0} {2}
1 {1} {0, 1} {2}
2 {2} {2} {0, 1}

◦ 0 1 2

0 {0} {0} {2}
1 {1} {0, 1} {0, 2}
2 {2} {2} {0, 1, 2}

We can seen that H+ = {0, 1} and it is a hyper K-algebra.
(ii) The following table shows a hyper I-algebra structure on H = {0, 1, 2},
where H+ = {0, 1} and it is not a hyper K-algebra, since 1 ∈ H+ but
1 ◦ 1 6⊆ H+.

◦ 0 1 2

0 {0} {0} {2}
1 {1} {0, 2} {0, 2}
2 {2} {2} {0, 2}

Theorem 3.9. Let (H, ◦, e) be a commutative polygroup. Then (H, ¦, e) is
a hyper I-algebra, where the hyperopration ¦ is de�ned by x ¦ y = x ◦ y−1.
Furthermore we have:

(i) H+ = {e},
(ii) e ¦ (e ¦ x) = x for all x in H.
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Proof. (HK1) Let A = (x ¦ y) ¦ (z ¦ y). Then by considering Lemma 2.3 we
have A = (x ¦ y) ¦ (z ¦ y) =

⋃
a∈x¦y
b∈z¦y

a ¦ b =
⋃

a∈x◦y−1

b∈z◦y−1

a ◦ b−1 =
⋃

a∈x◦y−1

b−1∈y◦z−1

a ◦ b−1.

Thus, by Lemma 2.4, we get that

A = (x ◦ y−1) ◦ (y ◦ z−1) = x ◦ (y−1 ◦ (y ◦ z−1)) = x ◦ ((y−1 ◦ y) ◦ z−1).

By Lemma 2.3 we have

A ¦ (x ¦ z) =
⋃

a∈A
b∈x¦z

a ¦ b =
⋃

a∈A

b∈x◦z−1

a ◦ b−1 = A ◦ (z ◦ x−1).

Since e ∈ y−1 ◦ y, hence e ◦ z−1 ⊆ (y−1 ◦ y) ◦ z−1, so

x ◦ (e ◦ z−1) ⊆ x ◦ ((y−1 ◦ y) ◦ z−1) = A.

Thus we get that

(x ◦ z−1) ◦ (z ◦x−1) = (x ◦ (e ◦ z−1)) ◦ (z ◦x−1) ⊆ A ◦ (z ◦x−1) = A ¦ (x ¦ z).

Now, by De�nition 2.2 and Lemma 2.4 we have
x ◦ ((z−1 ◦ z) ◦ x−1 )

= x ◦ (z−1 ◦ (z ◦ x−1)) = (x ◦ z−1) ◦ (z ◦ x−1) ⊆ A ¦ (x ¦ z).

Since e ∈ z−1 ◦ z and e ∈ x ◦ x−1, then we have e ∈ A ¦ (x ¦ z), so
A < x ¦ z. Therefore (x ¦ y) ¦ (z ¦ y) < x ¦ z.
(HK2) By De�nition 2.2 and hypothesis we get that (x¦y)¦z = (x◦y−1)¦z =
(x◦y−1)◦z−1 = x◦(y−1◦z−1) = x◦(z−1◦y−1) = (x◦z−1)◦y−1 = (x¦z)¦y.
Therefore (HK2) holds.
(HK3) Since e ∈ x ◦ x−1 = x ¦ x we conclude that x < x and hence (HK3)
holds.
(HK4) To show that (HK4) holds, we prove that x < y implies that x = y.
Let x < y. Then e ∈ x ¦ y = x ◦ y−1. By De�nition 2.2 (vi) we have
y ∈ e−1 ◦ x = e ◦ x = {x}, thus y = x.
(HI5) Let x < e. Then by the proof of (HK4) we get that e = x, and hence
(HI5) holds.

Therefore (H, ¦, e) is a hyper I-algebra.
The proofs of the statements (i) and (ii) are routine.
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Category of commutative polygroups: CPG
Consider the class of all polygroups. For any two polygroups (H1, ◦1, e1)
and (H2, ◦2, e2) we de�ne a morphism f : H1 −→ H2 as a strong homo-
morphism between H1 and H2 (i.e. f(x ◦1 y) = f(x) ◦2 f(y) ∀x, y ∈ H),
which satis�es f(e1) = e2. Then it can easily checked that the class of all
polygroups and the above morphisms construct a category which is denoted
by CPG.
Remark 3.10. It is well known that if f ∈ CPG(H1, H2), then f(x−1) =
(f(x))−1 for all x ∈ H1.

Category of hyper I-algebras: IALG
Consider the class of all hyper I-algebras. For any two I-algebras (H1, ◦1, 01)
and (H2, ◦2, 02) we de�ne a morphism f : H1 −→ H2 as a strong homo-
morphism between H1 and H2, which satis�es the condition f(01) = 02.
Then it can easily checked that the class of all hyper I-algebras and the
above morphisms construct a category which is denoted by IALG.

Theorem 3.11. F : CPG−→ IALG is a faithful functor, where F (H, ◦, e) =
(H, ¦, e) and F (f) = f for all H ∈ CPG and f ∈ CPG(H1,H2).
Proof. Let (H, ◦, e) be a polygroup. Then by Theorem 3.9 (H, ¦, e) is a hy-
per I-algebra, hence F (H) is an object in IALG. Now let f ∈ CPG(H1,H2)
we prove that Ff ∈ IALG(F (H1), F (H2)). By Theorem 3.9 we have

Ff(x ¦1 y) = f(x ¦1 y) = f(x ◦1 y−1) = f(x) ◦2 f(y−1)

= f(x) ◦2 (f(y))−1 = f(x) ¦2 f(y) = (Ff)(x) ¦2 (Ff)(y).

Now it is easy to see that F satis�es to the other conditions of a functor.
Since F maps CPG(H1,H2) injectively to IALG(FH1, FH2), hence F is
faithful.

Problem: Is the functor F (de�ned in Theorem 3.11 ) full embedding ?

De�nition 3.12. A hyperstructure (H, ◦) is called a semipolygroup if it
satis�es the following axioms:

(i) (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H,
(ii) there exists e ∈ H such that e ◦ x = {x} = x ◦ e for all x ∈ H,

(iii) for all x ∈ H there exists a unique element x′ ∈ H such that
e ∈ (x ◦ x′)

⋂
(x′ ◦ x), we denote x′ by x−1.
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Example 3.13. Let H = {0, 1, 2} and the hyperopration ◦ on H is given
by the following table:

◦ 0 1 2

0 {0} {1} {2}
1 {1} {2} {0, 1}
2 {2} {0, 1} {1, 2}

Then H is a semipolygroup, but it is not a polygroup because the reversibil-
ity does not hold. Indeed, 1 ∈ 1◦2 = {0, 1} but 1 6∈ 1◦2−1 = 1◦1 = {2}.

Lemma 3.14. Any group can be cosidered as a semipolygroup.

Lemma 3.15. Let (H, ◦, 0) be a hyper I-algebra. If H+ 6= {0}, then
0 ◦ (0 ◦ x) 6= x for all nonzero elements x ∈ H+.
Proof. Let x 6= 0 be in H+. Then 0 ∈ (0 ◦ x). Thus 0 ∈ (0 ◦ 0) ⊆ 0 ◦ (0 ◦ x),
hence 0 ∈ 0 ◦ (0 ◦ x). Since x 6= 0, so 0 ◦ (0 ◦ x) 6= x.

Note that the following example shows that if H+ = {0}, then it may
be that the equality 0 ◦ (0 ◦ x) = x holds or does not hold.

Example 3.16. (i) Let H = {0, 1, 2}. Then the following table shows a
hyper I-algebra structure on H such that H+ = {0}, while 0 ◦ (0 ◦ 2) =
0 ◦ 1 = 1 6= 2.

◦ 0 1 2

0 {0} {1} {1}
1 {1} {0, 1} {0, 1}
2 {2} {1} {0, 1, 2}

(ii) The following table shows a hyper I-algebra structure on H = {0, 1, 2}.
Then H+ = {0} and 0 ◦ (0 ◦ x) = x for all x ∈ H.

◦ 0 1 2

0 {0} {2} {1}
1 {1} {0, 1} {2}
2 {2} {1, 2} {0, 1}

Theorem 3.17. Let (H, ◦, 0) be a hyper I-algebra. If H+ = {0} and
0◦(0◦x) = x for all x ∈ H, then (H,¯, 0) is a commutative semipolygroup,
where the hyperopration ¯ is de�ned by x¯ y = x ◦ (0 ◦ y).
Proof. By Theorem 3.3(iv) we get that x¯y = x◦(0◦y) = (0◦(0◦x))◦(0◦y) =
(0 ◦ (0 ◦ y)) ◦ (0 ◦ x) = y ◦ (0 ◦ x) = y ¯ x, namely (H,¯) is commutative.
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Now we show that (H,¯) is associative. We have

(x¯ y)¯ z = (x ◦ (0 ◦ y)) ◦ (0 ◦ z)
= (x ◦ (0 ◦ z)) ◦ (0 ◦ y) by Theorem 3.3 (iv)
= ((0 ◦ (0 ◦ x)) ◦ (0 ◦ z)) ◦ (0 ◦ y) by hypothesis
= ((0 ◦ (0 ◦ z)) ◦ (0 ◦ x)) ◦ (0 ◦ y) by Theorem 3.3 (iv)
= (z ◦ (0 ◦ y)) ◦ (0 ◦ x) by Theorem 3.3 (iv)
= (z ¯ y)¯ x

= x¯ (z ¯ y) by commutativity
= x¯ (y ¯ z) by commutativity

Thus (H,¯) is associative.
Now, we prove that 0 ◦ x has only one element for all x ∈ H. On

the contrary, let x1, x2 ∈ 0 ◦ x and x1 6= x2. Then by hypothesis we have
0 ◦ x1 ⊆ 0 ◦ (0 ◦ x) = x, hence 0 ◦ x1 = x and similarly 0 ◦ x2 = x. Thus
0 ◦ (0 ◦ x1) = x1 and 0 ◦ x1 = x imply that 0 ◦ x = x1. Since x2 ∈ 0 ◦ x,
hence x1 = x2 which is a contradiction.

Since 0 ◦ x has only one element for all x ∈ H, hence 0 ∈ 0 ◦ 0, thus we
conclude that 0 ◦ 0 = 0. By Theorem 3.3 (iv) and hypothesis we get that
x ◦ 0 = (0 ◦ (0 ◦ x)) ◦ 0 = (0 ◦ 0) ◦ (0 ◦ x) = 0 ◦ (0 ◦ x) = x. Hence x ◦ 0 = x.
Therefore 0 ¯ x = x ¯ 0 = x ◦ (0 ◦ 0) = x ◦ 0 = x. So (H,¯) satis�es in
condition (ii) of De�nition 3.12.

Since H+ = {0} hence 0 6∈ 0 ◦ x for all x 6= 0. Therefore for all
0 6= x ∈ H there exists 0 6= x′ ∈ H such that 0 ◦ x = x′. By Theorem 3.3
(vi) we have 0 ∈ (0 ◦ x) ◦ (0 ◦ x) = x′ ◦ (0 ◦ x) = x′ ¯ x = x¯ x′. Thus the
condition (iii) of De�nition 3.12 holds. Therefore (H,¯) is a commutative
semipolygroup.

Theorem 3.18. Let (H, ◦, 0) be a hyper I-algebra such that H+ = {0}.
If 0 ◦ (0 ◦ x) = x and x ◦ x = 0 hold for all x ∈ H, then (H,¯, 0) is an
abelian group.
Proof. By considering Theorem 3.17 it is su�cient to show that x ◦ y
has only one element for all x, y ∈ H. On the contrary let x1 6= x2 and
x1, x2 ∈ x ◦ y. Then by the proof of Theorem 3.17 we conclude that there
are x′, y′ ∈ H such that 0 ◦ x = x′, 0 ◦ y = y′, 0 ◦ x′ = x and 0 ◦ y′ = y.
By (HK2) and x ◦ x = 0 we get that y′ = 0 ◦ y = (x ◦ x) ◦ y = (x ◦ y) ◦ x.
Since x1, x2 ∈ x ◦ y, hence x1 ◦ x = y′ and x2 ◦ x = y′. Thus y′ ◦ x1 =
(x1 ◦ x) ◦ x1 = (x1 ◦ x1) ◦ x = 0 ◦ x = x′ and also y

′ ◦ x2 = x
′ . By (HK2)

and hypothesis we get that (y′ ◦ x′) ◦ x1 = (y′ ◦ x1) ◦ x′ = x′ ◦ x′ = {0},
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similarly (y′◦x′)◦x2 = {0}. Since 0 ∈ (y′◦x′)◦x1 so there exists t ∈ y′◦x′

such that 0 ∈ t ◦ x1. By (HK2) we have (t ◦ x1) ◦ t = (t ◦ t) ◦ x1 = 0 ◦ x1.
Since 0 ∈ t ◦ x1 hence 0 ◦ t ⊆ 0 ◦ x1. By the proof of Theorem 3.17 0 ◦ x1

has only one element so we get that 0 ◦ t = 0 ◦ x1. By hypothesis we
have t = 0 ◦ (0 ◦ t) = 0 ◦ (0 ◦ x1) = x1. Therefore x1 ∈ y′ ◦ x′. Since
(y′ ◦ x′) ◦ x2 = 0, then x1 ◦ x2 = 0 and similarly x2 ◦ x1 = 0. Thus
(HK4) implies that x1 = x2, which is a contradiction. So x ◦ y has only
one element. Therefore Theorem 3.17 implies that (H,¯, 0) is an abelian
group.

Since every group is a polygroup hence (H,¯) in Theorem 3.18 is a
commutative polygroup. The following example shows that in Theorem
3.18 the condition x ◦ x = 0 for all x ∈ H is necessary.

Example 3.19. Let H = {0, 1, 2} be a hyper I-algebra, in which the
hyperopration ◦ is given by the following table:

◦ 0 1 2

0 {0} {2} {1}
1 {1} {0, 1} {2}
2 {2} {1, 2} {0, 1}

Then H+ = {0}, 0◦ (0◦x) = x for all x ∈ H and 1◦1 6= 0. But (H,¯, 0)
is not a group since 1¯ 2 = {0, 1}.

Note that the above example also shows that if we omit the condition
x ◦x = 0, in Theorem 3.18, then (H,¯) is not necessary to be a polygroup.
Because the reversibility property does not hold. Indeed, in this example
we have 1 ∈ 1 ¯ 2 = 1 ◦ (0 ◦ 2) = 1 ◦ 1 = {0, 1}, but 1 6∈ 1 ¯ 2−1 =
1 ◦ (0 ◦ 2−1) = 1 ◦ (0 ◦ 1) = 1 ◦ 2 = 2.

Theorem 3.20. Let (H, ◦, 0) be a hyper I-algebra. If H+ = {0} and
0 ◦ (0 ◦ x) = x for all x ∈ H, then (H,¯, 0) is a commutative hypergroup.
Proof. The proof of Theorem 3.17 shows that (H,¯, 0) is commutative
and associative. Let a, b ∈ H be arbitrary. By the proof of Theorem
3.17 there exists a′ ∈ H such that 0 ∈ a′ ¯ a and b ¯ 0 = b. Thus
b ∈ b¯ 0 ⊆ b¯ (a′ ¯ a) = (b¯ a′)¯ a. So there exists t ∈ b¯ a′ such that
b ∈ t¯ a = a¯ t, namely a¯H = H ¯ a = H.

Hence (H,¯, 0) is a commutative hypergroup.
Notation: Let I+ALG be a subcategory of IALG in which for every
object H we have H+ = {0} and 0◦(0◦x) = 0 for all x ∈ H. Similarly, let
CHG be the category of commutative hypergroups with strong morphisms.
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Theorem 3.21. G : I+ALG−→ CHG is a faithful functor, where G(H, ◦, 0)
= (H,¯, 0) for H ∈ I+ALG and G(f) = f for f ∈ I+ALG(H1,H2).
Proof. Let (H, ◦, 0) be an object in I+ALG. Then by Theorem 3.20 we
have G(H) = (H,¯, 0) is an object in CHG.

Let f ∈ I+ALG(H1, H2). We prove that Gf = f ∈ CHG(G(H1), G(H2)).
By Theorem 3.20 we have
Gf(x¯1 y) = f(x¯1 y) = f(x ◦1 (01 ◦1 y)) = f(x) ◦2 (f(01) ◦2 f(y))

= f(x) ◦2 (02 ◦2 f(y)) = f(x)¯2 f(y) = (Gf)(x)¯2 (Gf)(y).

So it is easy to see that G satis�es to the other condition of a functor.
Since G maps I+ALG(H1,H2) injectively to CHG(GH1, GH2), hence G is
faithful.

Remark 3.22. Let F : CPG−→ IALG and G : I+ALG−→ CHG be the
functors which are de�ned in Theorem 3.11 and 3.21 respectively. By The-
orem 3.9, we have H+ = {0} and 0 ¦ (0 ¦ x) = x for all H ∈ F (CPG) and
x ∈ H. Hence F (CPG) ⊆ I+ALG. Since x¯y = x¦(0¦y) = x¦(0◦y−1) =
x ¦ (y−1) = x ◦ (y−1)−1 = x ◦ y. We get that GF (H) = G(FH) = G(H) =
H for all H ∈ CPG and (GF )(f) = G(Ff) = G(f) = f for all
f ∈ CPG(H1,H2). Therefore GF = I.

Let CSPG be the category of commutative semipolygroups. Then
f ∈ CSPG((H1, ◦1, 01), (H2, ◦2, 02)) if and only if f(x ◦1 y) = f(x) ◦2 f(y)
and f(e1) = e2.

Proposition 3.23. K : I+ALG−→ CSPG is a full embedding functor,
where K(H, ◦, 0) = (H,¯, 0) for all H ∈ I+ALG and K(f) = f for all
f ∈ I+ALG(H1,H2).
Proof. The proof of Theorem 3.21 shows that K is a faithful functor. Now
we show that it is full, i.e. K(I+ALG(H1,H2)) = CSPG(KH1,KH2). By
the proof of Theorem 3.17, for all y ∈ H there exists a unique y′ = y−1 ∈ H
such that 01◦1y = y−1 and 01◦1y−1 = y. Hence for all f ∈ CSPG(H1,H2)
we get that

f(x ◦1 y) = f(x ◦1 (01 ◦1 y−1)) = f(x¯1 y−1) = f(x)¯2 f(y−1).

Since 02 ∈ f(01) ⊆ f(y ¯1 y−1) = f(y)¯ f(y−1), hence by De�nition 3.12
(iii) we get that f(y−1) = (f(y))−1. Thus we have

f(x ◦1 y) = f(x)¯2 (f(y))−1 = f(x) ◦2 (02 ◦2 (f(y))−1) = f(x) ◦2 f(y).
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Hence K is full functor. Since K maps I+ALG(H1,H2) injectively to
CSPG(KH1,KH2), then K is faithful. Since K is full and faithful and
one-to-one on objects so is full embedding. Thus K(I+ALG) is a full
subcategory of CSPG.
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Extensions of Latin subsquares and local
embeddability of groups and group algebras

Milo² Ziman

Abstract

We will show that any �self-adjoint� Latin subsquare with constant diagonal can be
extended to a Latin square with the same property. As a consequence, every loop with
inverses satisfying the identity (xy)−1 = y−1x−1 (an IAA loop for short) is locally embed-
dable into �nite IAA loops, and its loop algebra is locally embeddable into loop algebras
of �nite IAA loops. The IAA property enables to extend this result to loop algebras with
the natural involution arising from the inverse map on the loop. In particular, this is
true for groups and their group algebras.

1. Introduction
This paper arises from the study of groups locally embeddable into �nite
groups (LEF groups) and algebras locally embeddable into �nite dimen-
sional algebras (LEF algebras). Both notions were introduced and investi-
gated by Gordon and Vershik in [8]. A relation between local embeddability
of a group and its group algebra was established by the present author in
[12], solving a problem formulated in [8].

A more general notion of approximability of topological groups by �nite
ones was introduced by E. Gordon in connection with his study of approxi-
mation of operators in spaces of functions on topological groups (cf. [6, 7]).
However, not all topological groups are approximable by �nite ones, in par-
ticular, by far not all (discrete) groups are LEF. This raises the issue of
approximation of groups by some �nite grupoids, retaining as much of the
group structure as possible. L. Glebsky and E. Gordon, in [5], proved that
the approximability of locally compact groups by �nite semigroups is equiv-
alent to their approximability by �nite groups. This indicates that in order

2000 Mathematics Subject Classi�cation: 20N05, 20E25, 16S34, 05B15
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to extend the class of LEF groups one has to sacri�ce the associativity of
the binary operation. In the mentioned paper the study of approximability
of groups by �nite quasigroups was commenced.

We will show that every group is even locally embeddable into �nite
loops with inverses satisfying the identity (xy)−1 = y−1x−1, which we call
IAA loops for short. The last property enables to extend the above men-
tioned result from [12] to group algebras with involution. In fact, we will
be working within a slightly more general scope. Given an IAA loop L and
a �eld K with an involutive automorphism, we will prove that L is locally
embeddable into �nite IAA loops, and its loop algebra KL, with the natu-
ral involution arising from the inverse map on L, is locally embeddable into
loop algebras of �nite loops with natural involution.

The proof utilizes the well known relation between quasigroups and
Latin squares. Its key ingredient is a kind of embedding theorem for Latin
subsquares (Theorem 2.4). It gives some su�cient conditions guaranteeing
the extendability of a Latin subsquare, symmetric with respect to some
involutive permutation of the set of its elements and with constant diagonal,
to a Latin square with the same property.

2. α-symmetric Latin squares
A p × q matrix R = (rij) with elements from a set A is called a Latin
rectangle of size p × q over A if every element of A occurs at most once
in each row as well as in each column. If p = q then the Latin rectangle
is called a Latin subsquare of order p. If p = q equals the number n of
elements of the �nite set A then the Latin rectangle is called a Latin square
of order n over A.

De�nition 2.1. Let α : A → A be an involutive permutation of the set A,
i.e., α2 = id. A Latin (sub)square R = (rij) over A is called α-symmetric if
α(rij) = rji for all i, j.

Obviously, if (rij) is an α-symmetric Latin (sub)square then α(rii) = rii,
in other words, all the diagonal elements are �xed by α.

We will make use of the following results. The number of occurrences
of an element a ∈ A in a Latin rectangle R will be denoted by NR(a).

Lemma 2.2. [11, Ch. 6, Theorem 2.2] A Latin rectangle R of size p × q
over an n element set A can be extended to a Latin square of over A if and
only if NR(a) ≥ p + q − n for all a ∈ A.
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Lemma 2.3. [4, Corollary II.10.9] Let m ≤ n, U = {U1, U2, . . . , Un} and
V = {V1, V2, . . . , Vm} be two collections having systems of distinct represen-
tatives (SDR). Then some SDRs Û of U and V̂ of V, satisfying V̂ ⊆ Û ,
exist if and only if

∣∣U ′∣∣ +
∣∣V ′∣∣ ≤ m +

∣∣∣
⋃
U ′ ∩

⋃
V ′

∣∣∣

for all U ′ ⊆ U and V ′ ⊆ V.

The next theorem is a partial case, for α = id, of Cruse theorem on
extensions of commutative Latin squares�cf. [3, Theorem 1] or [9, Theo-
rem 4.1]. The other way round, it can be regarded as a generalization of the
special case (rii = 1) of the quoted result from commutative Latin squares
to the α-symmetric ones.

Theorem 2.4. Let n be even, α be an involutive permutation of the set
A = {1, . . . , n} with α(1) = 1, and R = (rij) be an α-symmetric Latin
subsquare over A of order m < n such that rii = 1 for all i ≤ m. Then R
can be extended to an α-symmetric Latin square S = (sij) over A satisfying
sii = 1 for all i ≤ n if and only if NR(k) ≥ 2m− n for all k ∈ A.

Proof. Obviously, the inequality is necessary by Lemma 2.2. In the reversed
direction we will proceed by induction, showing that the Latin subsquare
R satisfying the assumptions can be extended to an α-symmetric Latin
subsquare R̃ = (rij) of order m + 1 over A such that NR̃(k) ≥ 2(m + 1)−n

for all k ∈ A and rii = 1 for all i ≤ m + 1 (the elements of the extension R̃
will be still denoted by rij). This way R can be extended to an α-symmetric
Latin square S of order n with the desired property, in n−m steps.

The case m = n− 1 is trivial. So we can assume m < n− 1.
Let Ui (i = 1, 2, . . .m) be the set of elements of A, not occuring in the

ith row of R, and U = {U1, U2, . . . , Um}. Set

V0 = {{k}; NR(k) = 2m− n},
V1 = {{k, α(k)}; NR(k) = 2m− n + 1},
V = V0 ∪ V1.

Now it su�ces to show that there exist SDRs Û = {u1, u2, . . . , un} of U and
V̂ of V such that V̂ ⊆ Û . Indeed, adding (u1, u2, . . . , um)T to R as a new
last column and (α(u1), α(u2), . . . , α(um), 1) as a new last row, we get the
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following matrix of order of order m + 1:

R̃ =




r11 r12 · · · r1m u1

r21 r22 · · · r2m u2
... ... · · · ... ...

rm1 rm2 · · · rmm um

α(u1) α(u2) · · · α(um) 1




.

As ui is a representative of the set Ui, it does not occur in the ith row of R,
hence by the α-symmetry α(ui) does not occur in its ith column. Thus R̃
is a Latin subsquare over A. The α-symmetry and rii = 1 for all i ≤ m + 1
are clear from the construction.

The inequality NR̃(k) ≥ 2(m + 1)− n is automatically satis�ed for the
elements of Ar

⋃V. The same will be veri�ed for the elements of
⋃V0 and⋃V1 separately.

The α-symmetry of R implies NR(k) = NR(α(k)) for all k ∈ A. Then

α(k) ∈ V0 ⇔ k ∈ V0.

As
⋃V0 ⊆ V̂ ⊆ Û , we have {k, α(k)} ⊆ Û ∩ α(Û), consequently NR̃(k) =

NR(k) + 2 = 2m− n + 2 for all k ∈ ⋃V0.
If {k, α(k)} ∈ V1 then eighter k ∈ V̂ or α(k) ∈ V̂ . In any case

{k, α(k)} ⊆ Û ∪ α(Û), hence NR̃(k) ≥ NR(k) + 1 ≥ 2m − n + 2 for all
k ∈ ⋃V1.

Finally, it remains to prove the existence of suitable SDRs Û and V̂ . To
this end we use Lemma 2.3, thus we have to verify its assumptions.

We show |V| ≤ |U| = m �rst. Assume that |V| = m + x, where x ≥ 1 is
an integer.

If α(k) = k and k 6= 1 then, by α-symmetry, NR(k) is even. As n is
even, too, N(k) 6= 2m−n+1. The last inequality is true for k = 1, as well,
because NR(1) = m 6= 2m−n + 1. (Recall that m < n− 1.) Hence |V | = 2
for all V ∈ V1. Then the number of �elds of the Latin subsquare R which
can be �lled by elements of A is at most

M = |V0|(2m− n) + 2|V1|(2m− n + 1) + (n− 2|V1| − |V0|)m.

Then |V1| = m + x− y, where y = |V0|. Thus

M = M(x, y)
= y(2m− n) + 2(m + x− y)(2m− n + 1) + (n− 2(m + x− y)− y)m
= (n−m− 2)y − 2(n−m− 1)x + m(2m− n + 2)
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can be regarded as a function of the arguments x and y, decreasing in x and
nondecreasing in y. As y takes the values from the set {0, 1, . . . , m + x},
only,

M(x, m + x) = (m− n)x + m2

is the maximal value of M(x, y) for a �xed x. This is still a decreasing
function of x, hence its maximum is

M(1,m + 1) = m− n + m2 < m2.

In other words, not all �elds of R can be �lled by elements of A. Thus the
assumption |V| > |U| leads to a contradiction, and we have |V| ≤ |U|.

As V1 ∩ V2 = ∅ for any distinct V1, V2 ∈ V, the collection V has some
SDR. The existence of an SDR for U follows from Lemma 2.2.

It remains to show the inequality
∣∣U ′∣∣ +

∣∣V ′∣∣ ≤ m +
∣∣∣
⋃
U ′ ∩

⋃
V ′

∣∣∣ (1)

for all U ′ ⊆ U and V ′ ⊆ V. Take some �xed U ′, V ′, and consider the bipartite
graph Γ =

( ⋃V ′,U ′, E)
with the edge set E =

{
(v, U) ∈ ⋃V ′×U ; v ∈ U

}
.

One can readily see that the degrees of its vertices satisfy the following
conditions:

deg(v) = n−m, v ∈ ⋃V ′0;
deg(v) = n−m− 1, v ∈ ⋃V ′1;
deg(U) ≤ n−m, U ∈ U ,

where V ′i = V ∩ Vi for i = 0, 1. Denoting

p =
∣∣∣
⋃
V ′0 ∩

⋃
U ′

∣∣∣ , q =
∣∣∣
⋃
V ′1 ∩

⋃
U ′

∣∣∣ ,

we have |⋃U ′ ∩⋃V ′| = p + q. Now, one can give an upper bound for the
number of edges ending in U r U ′:
(∣∣∣

⋃
V ′0

∣∣∣− p
)

(n−m) +
(∣∣∣

⋃
V ′1

∣∣∣− q
)

(n−m− 1) ≤ (
m− ∣∣U ′∣∣) (n−m).

Realizing |⋃V ′0| = |V ′0| and |
⋃V ′1| = 2|V ′1|, the last inequality can be writ-

ten in the following form
(∣∣V ′0

∣∣− p
)
(n−m) +

(
2

∣∣V ′1
∣∣− q

)
(n−m− 1) ≤ (

m−
∣∣U ′

∣∣) (n−m).

An elementary computation shows that this one is equivalent to
∣∣V ′0

∣∣ +
∣∣V ′1

∣∣ + |U| ≤ m + p +
n−m− 1

n−m
q − n−m− 2

n−m

∣∣V ′1
∣∣ .
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As |V ′0| + |V ′1| = |V ′|, n−m−1
n−m < 1 and n−m−2

n−m |V ′1| ≥ 0, the last inequality
implies (1).

Hence, by Lemma 2.3, there exist SDRs Û of U and V̂ of V such that
V̂ ⊆ Û .

The idea of the presented proof of Theorem 2.4, based on Lemma 2.3
and the proof of the above mentioned Cruse Theorem [3], was suggested by
the referee. The core of author's original, and considerably longer, proof
consisted of an algorithm written in a computer-like language. Its entry
was an arbitrary extension of the original Latin subsquare R to a Latin
square R′ over A, existing by the virtue of Lemma 2.2. The algorithm
transformed the (m + 1) × (m + 1) upper left corner of R′ into a Latin
subsquare R̃ extending R, still satisfying the assumptions of the theorem.
Having checked the extendability of R̃, the desired Latin square S could
have been obtained by repeating the algorithm n−m times, again.

3. IAA loops and groups
A quasigroup is a grupoid Q satisfying both the left and the right cancella-
tion law, i.e.,

(xy1 = xy2 ∨ y1x = y2x) ⇒ y1 = y2

for all x, y1, y2 ∈ Q. A quasigroup with a unit 1 (which is necessarily
unique) is called a loop. If a loop L possess two-sided inverses then, due to
the cancellation, they are uniquely determined, so that the notation x−1 is
unambiguous.

De�nition 3.1. A loop L with (two-sided) inverses has the inverse anti-
automorphism property if the mapping x 7→ x−1 is an antiautomorphism of
(L, ·), i.e.,

(xy)−1 = y−1x−1, (2)

for every x, y ∈ L.

A loop with the inverse antiautomorphism property is brie�y called an
IAA loop. Obviously, every group is an IAA loop. On the other hand,
an IAA loop does not necessarily satisfy the conditions x−1(xy) = y and
(xy)y−1 = x.

The following de�nition goes back to Mal'tsev [10], where it can be
found in a more general universal-algebraic setting.
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De�nition 3.2. Let Q be a grupoid and F be some class of grupoids.
Then Q is said to be locally embeddable into the class F if for any �nite set
M ⊆ Q there is an F ∈ F and an injective map ϕ : (M ∪M2) → F such
that ϕ(xy) = ϕ(x)ϕ(y) for every x, y ∈ M .

In this section we will prove that every IAA loop, in particular every
group, is locally embeddable into the class of �nite IAA loops. To this end
we will exploit the representation of quasigroups by Latin squares: Enu-
merating the elements of a �nite quasigroup Q, its multiplication table can
readily be turned into a Latin square over Q. Fixing an element 1 of a
quasigroup Q and changing the order of some rows and columns, if nec-
essary, we can transform its Latin square into the multiplication table of
some loop with the unit 1. Expressed in the quasigroups terminology: Every
quasigroup is isotopic to a loop (cf. [1]).

For technical convenience we will formulate the results on embeddability
of IAA loops, announced in the introduction within a more general frame-
work of �partial IAA loops with a root�.

De�nition 3.3. A structure
(
L,
√

L, ·), where · is a partial binary operation
on L and

√
L ⊆ L, is said to be a partial IAA loop with the root

√
L if

(a) The operation · satis�es the cancellation law, whenever de�ned.
(b) There exists an element 1 ∈ √L such that x · 1 = 1 · x = x for all
x ∈ L.

(c) The product xy is de�ned for all x, y ∈ √L and L =
(√

L
)2, i.e.,

each z ∈ L has the form z = xy for some x, y ∈ √L.
(d) For every x ∈ L there exists an x−1 ∈ L such that xx−1 = x−1x = 1.
(e) If xy is de�ned then so is y−1x−1 and (xy)−1 = y−1x−1.

Theorem 3.4. Let
(
L,
√

L, ·) be a partial IAA loop with a �nite root
√

L.
Then there exists a �nite IAA loop F and an injective map ϕ : L → F such
that ϕ(1) = 1 and ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ √L.

In other words, every �nite root of a partial IAA loop can be extended
to a �nite IAA loop. It can be easily seen that such a partial embedding ϕ
satis�es the condition ϕ(x−1) = ϕ(x)−1, as well.

Proof. Denote the elements of L by 1, 2, . . . , m′ (with 1 denoting the unit).
We can assume

√
L = {1, 2, . . .m} for some m ≤ m′. For i, j = 1, 2, . . . , m
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we put rij = k if and only if i · j = k. Choose an even n ≥ max(2m, m′)
and de�ne a permutation α of A = {1, 2, . . . , n} as follows:

α(k) =

{
k−1, if k ≤ m′;
k, if k > m′.

Without loss of generality we can assume that R = (rij) is an α-
symmetric Latin subsquare over A of order m satisfying the assumptions of
Theorem 2.4 (if not, we can always achieve this by changing the order of
some rows in R).

Hence there is an α-symmetric Latin square S = (sij) over A of order
n, extending R such that sii = 1 for all i ≤ n.

De�ne a binary operation · on the set F = A by putting p · q = k if and
only if p = si1, q = s1j , k = sij for some (uniquely determined) i, j ≤ n.
This de�nition is independent of the order of rows and columns in S. The
fact that (F, ·) is a loop with unit 1 could be visualized by interchanging
the order of some rows an columns in S yielding the multiplication table of
F . Moreover we have k−1 = α(k) for each k ∈ F . So it su�ces to verify
the IAA property, i.e.,

α(pq) = α(q)α(p)

for all p, q ∈ F .
Let p = si1 and q = s1j . Then pq = sij . By the α-symmetry of S we

have α(pq) = sji, α(q) = s1i and α(p) = sj1. Hence α(q)α(p) = sji = α(pq).
Now it is enough to take for ϕ : L → F the identity map.

Corollary 3.5. Every IAA loop, in particular, every group, is locally em-
beddable into the class of �nite IAA loops.

Proof. Given an IAA loop L and a �nite M ⊆ L, put M̄ = M ∪M−1∪{1}.
Then (M̄ ∪ M̄2, M̄ , ·) is the partial IAA loop with the root M̄ .

Applying a standard model-theoretic compactness argument to the last
corollary we get (see, e.g., [2])

Corollary 3.6. Every IAA loop, in particular, every group, can be embedded
into an ultraproduct of a system of �nite IAA loops.
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4. Quasialgebras and loop algebras
A linear space A over a �eld K with a bilinear (not necessarily associative)
binary operation · will be called a quasialgebra over K. We avoid the wide
spread term non-associative algebra, as the operation · may (but need not)
be associative. A quasialgebra with a unit element 1 is called unitary.

The de�nition of a quasigroup algebra KQ of a quasigroup Q over K is
analogous to that of a group algebra: It is the linear space over K formed
by formal linear combinations

∑
x∈Q axx of elements of Q with just �nitely

many nonzero coe�cients ax ∈ K. Their product is de�ned by the usual
convolution formula

( ∑

x∈Q

axx
)
·
( ∑

y∈Q

byy
)

=
∑

x,y∈Q

(axby)xy =
∑

z∈Q

∑
xy=z

axbyz.

A quasigroup algebra of a loop L will be called a loop algebra; it is obviously
unitary, with the unit 1 ∈ L.

Given an involutive automorphism a 7→ ā of the �eld K, a unary oper-
ation ∗ on a quasialgebra A is called an involution if for all u, v ∈ A and
a, b ∈ K we have

(a) (au + bv)∗ = āu∗ + b̄v∗;
(b) (u∗)∗ = u;
(c) (uv)∗ = v∗u∗.

In what follows K will be some �eld with an involutive automorphism
a 7→ ā, and we will be dealing just with quasialgebras over K.

The following observation can be veri�ed by some straightforward com-
putations.

Proposition 4.1. Let L be an IAA loop. Then

(i) the operation
(∑

x∈L axx
)∗

=
∑

x∈L āxx−1 is an involution on KL;

(ii) xx∗ = x∗x = 1 for all x ∈ L.

The above de�ned operation u 7→ u∗ will be referred to as the natural
involution of the loop algebra KL.

The notion of local embeddability from De�nition 3.2 can be modi�ed
to quasialgebras (with involution) as follows:
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De�nition 4.2. Let A be a quasialgebra with involution and H be some
class of quasialgebras with involution. Then A is said to be locally embed-
dable into the class H if for any �nite set M ⊆ A there is an H ∈ H and
an injective linear map ψ : span (M ∪M∗ ∪M2) → H such that for every
u, v ∈ M we have

(a) ψ(uv) = ψ(u)ψ(v);
(b) ψ(u∗) = ψ(u)∗.

Theorem 4.3. Let A = KL be the loop algebra of an IAA loop L, endowed
with the natural involution. Then KL is locally embeddable into the class
of loop algebras of �nite IAA loops, with natural involution.

Proof. Let M ⊆ A be �nite. Then there is a �nite set M0 ⊆ L such that
M ⊆ span (M0) and M0 = M0

−1. By Corollary 3.5, there is an injective
map ϕ : M0 ∪M2

0 → F into some �nite IAA loop F .
Let H = KF be the loop algebra of F . As M0 ∪M2

0 ⊆ L, it is linearly
independent in H. Hence the map ϕ can be extended to an injective linear
map λ : span(M0 ∪ M2

0 ) → H. Now it su�ces to take the restriction ψ
of λ to span (M ∪M∗ ∪M2) ⊆ span(M0 ∪M2

0 ). Then one can readily see
that ψ : span (M ∪M∗ ∪M2) → H is an injective linear map, satisfying the
conditions (a) and (b) of De�nition 4.2.

Corollary 4.4. Let A = KG be the group algebra of a group G, endowed
with the natural involution. Then KG is locally embeddable into the class
of loop algebras with natural involution of �nite IAA loops.

Similarly as in Corollary 3.6 one can obtain from Theorem 4.3

Corollary 4.5. Every loop algebra of an IAA loop, in particular, every
group algebra, can be embedded into an ultraproduct of a system of loop
algebras of �nite IAA loops with natural involution.

The question whether Theorem 4.3 can be extended beyond the class of
loop algebras of IAA loops remains open. Let us close with the following
conjecture.

Conjecture. Let A be a unitary quasialgebra with involution which is span-
ned by a set U(A) = {u ∈ A; u∗u = uu∗ = 1}. Then A is locally embeddable
into the class of �nite dimensional quasialgebras with involution.

Obviously, if the set U(A) ⊆ A is closed under multiplication then it
forms an IAA loop with the inverse x−1 = x∗. It is not clear if the above
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conjecture is true under this additional assumption. If A is an algebra
(i.e., it is associative) then U(A) is a group. Even this special case of our
conjecture remains open.
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