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Anti fuzzy Lie ideals of Lie algebras

Muhammad Akram

Abstract

In this paper we apply the Biswas’s idea of anti fuzzy subgroups to Lie ideals of Lie
algebras. We introduce the notion of anti fuzzy ideals in Lie algebras and investigate

some of their properties.

1. Introduction

Lie algebras were discovered by Sophus Lie (1842-1899) while he was at-
tempting to classify certain "smooth" subgroups of general linear groups.
The groups he considered are now called Lie groups. He found that by tak-
ing the tangent space at the identity element of such a group, one obtained a
Lie algebra. Problems about the group could be reduced to problems about
the Lie algebra in which form they usually proved more tractable. There
are many applications of Lie algebras, such as spectroscopy of molecules,
atoms, nuclei and hadrons. Physical applications of Lie algebras include
rotations and vibrations of molecules (vibron model), collective modes in
nuclei (interacting boson model), the atomic shell model, the nuclear shell
model, and the quark model of hadrons.

The notion of fuzzy sets was first introduced by L. A. Zadeh [12]. Fuzzy
set theory has been developed in many directions by many scholars and has
evoked great interest among mathematicians working in different fields of
mathematics. There have been wide-ranging applications of the theory of
fuzzy sets, from the design of robots and computer simulation to engineering
and water resources planning. A. Rosenfeld [9] introduced the fuzzy sets
in the realm of group theory. Since then many mathematicians have been
involved in extending the concepts and results of abstract algebra to the
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broader frame work of the fuzzy setting. Fuzzy ideals in Lie algebras have
been studied in [2, 3, 7, 8, 10, 11]|. In this paper we apply the Biswas’s
idea of anti fuzzy subgroups to Lie ideals of Lie algebras. We introduce
the notion of anti fuzzy ideals in Lie algebras and investigate some of their
properties.

2. Preliminaries

In this section we review some elementary aspects that are necessary for
this paper.

Definition 2.1. A Lie algebra is a vector space L over a field F' (equal
to R or C) on which L x L — L (z,y) — [z,y] is defined satisfying the
following axioms:

(L1) [z,y] is bilinear,
(L2) [z,z]=0forallx € L,
(L3) [[=,y], 2] + [y, 2], 2] + [[z, z], y] = 0 for all z,y, z € L (Jacobi identity).

In this paper by L will be denoted a Lie algebra. We note that the
multiplication in a Lie algebra is not associative, i.e., it is not true in general
that [[z,y], z] = [z, [y, 2]]. But it is anti commutative, i.e., [z,y] = —[y, z].

Definition 2.2. Let L; and Lo be Lie algebras over a field F. A linear
transformation f : Ly — Lo is called a Lie homomorphism if f([z,y]) =

[f(x), f(y)] for all z, y € L;.

Definition 2.3. A subspace H of Lie algebra L is called Lie subalgebra if
[x,y] € H for z,y € H. A subspace I of L is called Lie ideal of Lie algebra
if for all z € I, y € L implies [x,y] € I, i.e., [I,L] C I.

Definition 2.4. A fuzzy set vy, i.e., a map v : L — [0,1], is called a fuzzy
Lie subalgebra of L if

(a) y(z +y) = min{y(z),v(y)},

(b) v(ax) = (),

(c) y([z,y]) = min{y(z),v(y)}
hold for all z,y € L and o € F.
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Definition 2.5. A fuzzy subset v : L — [0, 1] satisfying (a), (b) and
(d) ~([z,9]) = v(z)
is called a fuzzy Lie ideal of L.

A fuzzy ideal of L is a fuzzy subalgebra [2| such that y(—z) > ~(z)
holds for all x € L. According to Zadeh’s extension principle the bracket
[,-] on L can be extended to the bracket < -,- > defined on the set of all
anti fuzzy sets on L in the following way

<7, A > (z) = inf{max{y(y), A\(2)} |y, 2 € L, [y, 2] = =},

where v, A are anti fuzzy sets on L and = € L.

3. Anti fuzzy Lie ideals

Definition 3.1. Let L be a Lie algebra. A fuzzy subset v of L is called an
anti fuzzy Lie ideal of L if the following axioms are satisfied:

(AF1) ~(z +y) <max({y(x),7(y)},
(AF2) ~(az) <v(x),
(AF3) ~([z,y]) < vy(z) for all z,y € L and o € F.

Example 3.2. Let R = {(z,y) : z,y € R} be the set of all 2-dimensional
real vectors. Then R? with [z,y] = 2 x y is a real Lie algebra. Define a
fuzzy set of 12 by

(2,y) = 0 ifz=y=0,
Y= 1 otherwise.

By routine computations, we can easily check that v is an anti fuzzy Lie
ideal of :2.

The following lemma is obvious.
Lemma 3.3. Let v be an anti fuzzy Lie ideal of L then
() 7(0) <y(z) Vel
(i) ([, ) < min{r(2),7(1)} V 2y € L,

(iii) v([z,y]) = v(=[y,z]) = v([y,2]) Vz,y € L.
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Theorem 3.4. Let v be an anti fuzzy Lie ideal in a Lie algebra L. Then -y is
an anti fuzzy Lie ideal of L if and only if the set L(vy;t) = {x € L|y(x) < t},
t € [0,1], is a Lie ideal of L when it is nonempty.

Proof. Assume that v is an anti fuzzy Lie ideal of L and let ¢ € [0, 1] be such
that L(vy;t) # 0. Let =, y € L be such that x € L(~v;t), and y € L(v;t).
Then ~y(z) < t and y(y) < t. It follows that

v(z +y) < max{y(z),v(y)} < t,

1y
Y(azr) < y(z) <t
Y[z, y]) < (@) <t
so that x +y € L(v;t), ax € L(;t) and [z
Lie ideal of L.
Conversely, suppose that L(v;t) # () is a Lie ideal of L for every t € [0, 1].
Assume that y(z 4+ y) > max{y(z),v(y)} for some x,y € L. Taking

,y] € L(~y;t). Hence L(~;t) is a

0= %{v(ﬂf +y) + max{y(z) +v(y)}},

we have y(z +y) > to > max{vy(z),v(y)}. So, v +y & L(v;t), v € L(v;t)
and y € L(y;t). This is a contradiction. Hence y(z +y) < max{y(z),v(y)}
for all x,y € L.

Similarly we can show that v(az) < «(z) and v([z,y]) < 7(z). This
completes the proof. O

Theorem 3.5. If v and p are anti fuzzy Lie ideals of a Lie algebra L, then
the function vV p: L — [0,1] defined by
(v V p)(z) = max{y(z), p(z)}
15 an anti fuzzy Lie ideal of L.
Proof. Let x,y € L and o € F. Then
(vVp)(z +y) = max{y(z +y), p(z + y)}
< max{max{~y(z),y(y)}, max{p(z), p(y)} }

= max{max{y(z), p(z) }, max{y(y), p(y) } }
=max{(yV p)(@), (v V p)(¥)},

(v V p)(ax) = max{y(az), plax)} < max{y(z), p(x)} = (v V p) (@),

(v V o) ([, y]) = max{y([z, y]), p([z, y]) } < max{y(z), p(2)} = (v V p) ().
Hence (v V p) is an anti fuzzy Lie ideal of L. O
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Definition 3.6. For a family of fuzzy sets {v;|i € I} in a Lie algebra L,
the union \/y; of {7;|i € I} is defined by

(\/ 7)(x) = sup{ri(x)|i € I},
for each x € L.

Theorem 3.7. If {v;|i € I} is a family of anti fuzzy Lie ideals of Lie
algebras L then so is \/ ;.

Proof. Straightforward. O
Theorem 3.8. Let f: L1 — Lo be an epimorphism of Lie algebras. If v is

an anti fuzzy Lie ideal of Lo and 7y is the pre-image of v under f. Then
1s an anti fuzzy Lie ideal of L.

Proof. For any z,y € L1 and o € F,
Y +y)=v(flz+y) =v(f(z)+ fy))
< max{v(f(z)), v(f(y))} = max{y(z),7(y)},
Y(ax) = v(f(ax)) = v(af(z)) < v(f(z)) =(x),
and

V(s yl) = v(f ([, 9]) < v(f(@) = 7(2).

Hence 7 is an anti fuzzy Lie ideal of L. O

Definition 3.9. Let L; and Lo be two Lie algebras and f be a function of
Ly into Lo. If ~y is a fuzzy set in Lo, then the preimage of v under f is the
fuzzy set in Ly defined by

FHo)(@) =~(f(2)  Vx € Ly

Theorem 3.10. Let f : L1 — Lo be an onto homomorphism of Lie algebras.
If v is an anti fuzzy Lie ideal of Lo, then f~1(v) is an anti fuzzy Lie ideal
Of Ll .

Proof. Let x1,22 € L1 and o € F, then

F7H ) (@1 + a2) = y(f(21) + f(=2)) < max{y(f(21)),7(f(22))}
= max{f 1 (7)(z1), f 1 (7)(22)},

f ) (exr) = y(f(axr)) < v(ef (21) = af 71 (y)(21),
F ), y) = ~(f [z, 9]) = ([ (@), F(»)]) <A(f(@) = 1 (0) (@)
Hence f~!(v) is an anti fuzzy Lie ideal of L;. O
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Theorem 3.11. Let f : L1 — Lo be an onto homomorphism of Lie algebras.
If v is an anti fuzzy Lie ideal of Lo, then f~1(7¢) = (f~1(7))c.

Proof. Let v be an anti fuzzy Lie ideal of Lo. Then for x € L,
FHOO@) =7 (f(@) =1 =(f(2) = 1= F7 () (@) = (f ' (7)°().

That is f~(y¢) = (f 1 (7))" O

Definition 3.12. Let v be a fuzzy set in a Lie algebra L and f a mapping
defined on L. Then the fuzzy set 47 in f(L) defined by

f —  inf
Y (y)= inf ~y(z
W)= _ inf ) (z)
for every y € f(L), is called the image of v under f. A fuzzy set v in L has
the inf property if for any subset A C L, there exists ag € A such that

v(ao) = 32&7(@)-

Theorem 3.13. A Lie algebra homomorphism image of an anti fuzzy Lie
tdeal having the inf property is an anti fuzzy Lie ideal.

Proof. Let f: Ly — Lo be an epimorphism of Ly onto Ly and v be a fuzzy
Lie ideal of Lj with the inf property. Consider f(x), f(y) € f(L1). Let
zo,y0 € f1(f(x)) be such that

To) = inf t and = inf t
W)= i 1) W) =, k)70

respectively. Then

v(f(z) + fy)) = inf () < (o + yo) < max{y(zo) +7(vo)}

tef~1(f(@)+f(v)
=max{ inf 4(t), inf ~A(t)}

tef=1(f(z)) ( tef=1(f(v))
= max{v(f(z)) +v(f(y))},

V(flow) = inf (1) < 5(e0) < max{y(a)) = v(f(2))

v([f (@), F(W)]) = v(f([z,9])) = tef—li(l}f[%y]))rY(t) < ([0, %0l)

< v(20) = v(f(2)).

Consequently, v is an anti fuzzy Lie ideal of Lo. O
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Definition 3.14. Let L and Lo Lie algebras and f a function of v is a
fuzzy set in L1, then the anti image of v under f is the fuzzy set defined by

fN) =
{ inf{y(t) | t € Ly, f(t) =y}, if [T (y) #0,

1, otherwise.

Definition 3.15. Let L1 and Lo be any sets and let f : L1 — Lo be any
function. A fuzzy set 7y is called f-invariant if and only if for z,y € L4,

f(z) = f(y) implies y(z) = v(y).

Theorem 3.16. Let f : L1 — Lo be an epimorphism of Lie algebras. Then
v 1s an f-invariant anti fuzzy Lie ideal of Ly if and only if f(v) is an anti
fuzzy Lie ideal of Lo.

Proof. Let z,y € Ly and o € F. Then there exist a,b € L; such that
fla) =z, f(b) =y, v+y = f(a+b) and ax = af(a). Since 7 is
f-invariant,

Hence f(v) is an anti fuzzy Lie ideal of L.
Conversely, if f(v) is an anti fuzzy Lie ideal of Lo, then for any = € L,

FHFO) (@) = fF(0)(f(2)) = inf{y(t) | t € L1, f(t) = f(2)}
=inf{y(t) [ t € L1,7(t) = v(2)} = ().

Hence f~1(f(7)) = 7 is an anti fuzzy Lie ideal by Theorem 3.10. O

Definition 3.17. An ideal A of Lie algebra L is said to be characteristic
if f(A) = A, for all f € Aut(L), where Aut(L) is the set of all automor-
phisms of L. Anti fuzzy Lie ideal v of Lie algebra L is said to be anti fuzzy
characteristic if 4/ (z) = (), for all z € L and f €Aut(L).

Lemma 3.18. Let v be an anti fuzzy Lie ideal of a Lie algebra L and let
x € L. Then y(z) = s if and only if x € L(~y;s) and x ¢ L(vy;t) , for all
s>1.

Proof. Straightforward. O



130 M. Akram

Theorem 3.19. An anti fuzzy Lie ideal is characteristic if and only if each
its level set is a characteristic Lie ideal.

Proof. Suppose that ~ is anti fuzzy characteristic and let s € Im(7)
f €Aut(L) and = € L(y;s). Then v/(z) = ~y(x) implies vy(f(z)) <
whence f(z) € L(v;s). Thus f(L(vy;s)) C L(v; s).

Let € L(v;s) and y € L such that f(y) = 2. Then y(y) = 7/ (y) =
Y(f()) = 7(z) < s, consequently y € L(is). So, v = f(4) € L(x:5).
Thus, L(v;s) C f(L(v;s)). Hence f(L(v;s)) = L(% s), i.e, L(v;s) is
characteristic.

Conversely, suppose that each level Lie ideal of ~ is characteristic and
let x € L, f € Aut(L), v(x) = s. Then, by virtue of Lemma 3.18, x €
L(v;s) and x ¢ L(v;t) , for all s > ¢. It follows from the assumption that
f(@) € f(L(7:5)) = L(7s5), so that 7/ (z) = 4(f(2))) < 5. Let t = 7/ (x)
and assume that s > ¢. Then f(x) € L(v;t) = f(L(y;t)), which implies
from the injectivity of f that x € L(7;t), a contradiction. Hence v/ (z) =
v(f(z)) = s = y(x) showing that ~ is an anti fuzzy characteristic. O

[V I

Definition 3.20. Let v be an anti fuzzy Lie ideal in L. Define a sequence
of anti fuzzy Lie ideals in L putting v* = v and 4™ = [y"~1,y*~!] for n > 0.
If there exists a positive integer n such that 4™ = 0, then an anti fuzzy Lie
ideal « is called solvable.

Theorem 3.21. Homomorphic image of a solvable anti fuzzy Lie ideal is a
solvable anti fuzzy Lie ideal.

Proof. Let f: Ly — L2 be a homomorphism of Lie algebras. Suppose that
v is a solvable anti fuzzy Lie ideal in L;. We prove by induction on n
that f(74™) 2 [f(7)]", where n is any positive integer. First we claim that

f(v,7) 2 [f(0), f(7)]. Let y € Lo, then

J(€yy>)(y) =inf{<y,v> (2) | f(z) =y}

= inf{inf{max{vy(a),v(b)} | a,b € L1,[a,b] =z, f(z) = y}}
inf{maX{V(a)77(b)} | a,b € Ly, [a7 b] =z, f(z) = y}
inf{max{y(a), y(0)} | a,b € L1, [f(a), f(b)] = x}
inf{max{v(a),y(0)} | a,b € L1, f(a) = u, f(b)] = v, [u,v] = y}
inf{max{inf,c 10, v(a), infpe g1,y 7(0) } | [u,v] = y}
inf{max(f(v)(w), f(7)(v)) | [u,v] =y} =< f(7), f(7) > (y).

Now for n > 1, we get f(y") = ([ ) 2 MY, (] 2
[(f())"~ 1,(f(’y))" = (f(y))™. This completes the proof. O

Al
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Definition 3.22. Let v be an anti fuzzy Lie ideal in L and let 7, = [y, yn—1]
for n > 0, where 9 = . If there exists a positive integer n such that v, =0
then ~y is called nilpotent.

Using the same method as in the proof of Theorem 3.21, we can prove
the following two theorems.

Theorem 3.23. Homomorphic image of a nilpotent anti fuzzy Lie ideal is
a nilpotent anti fuzzy Lie ideal.

Theorem 3.24. If v is a nilpotent anti fuzzy Lie ideal, then it is solvable.

Theorem 3.25. Let I be a Lie ideal of a Lie algebra L. If v is an anti
fuzzy Lie ideal of L, then the fuzzy set ¥ of L/I defined by

Fa+1)= irelflfy(a—l—x)

is an anti fuzzy Lie ideal of the quotient Lie algebra L/I.
Proof. Clearly, 7 is well-defined. Let x + I, y +1 € L/I, then

o+ D)+ (y+D) =74l +y) + 1) = nf (2 +9) +2)

- Z:isriﬁely((x +y)+ (s +1))

< inf max{y(x+s),v(y+1t)}

s, tel

inf inf
max{inf v(z + s), inf(y + 1)}
=max{F(z+1),7(y+ 1)},

F(a(z+1)) =7(ax+ 1) = irenify(aa:%—z) < irgfy(:v—i-z) =75z +1),

Yz +Ly+1) =7z, yl +1) = ig’y([%y] +2) < irelgv(xﬂ) =5z +1).

Hence 7 is an anti fuzzy Lie ideal of L/I. O
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Actions of a subgroup of the modular group

on an imaginary quadratic field

Muhammad Ashiq and Qaiser Mushtaq

Abstract

The imaginary quadratic fields are defined by the set {a + by/—n : a,b € Q} and are
denoted by Q(v/—n), where n is a square-free positive integer. In this paper we have
proved that if o = @ € Q" (v/—n) = {@ :a, “2:",0 € Z, ¢ # 0}, then n does
not change its value in the orbit aG, where G =< u,v : ©®> = v® =1 >. Also we show
that the number of orbits of Q*(y/—n) under the action of G are 2[d(n) + 2d(n + 1) — 6]

and 2[d(n) + 2d(n + 1) — 4] according to n is odd or even, except for n = 3 for which

there are exactly eight orbits. Also, the action of G on Q*(1/—n) is always intransitive.

1. Introduction

It is well known [6] that the modular group PSL(2, Z), where Z is the ring of

integers, is generated by the linear-fractional transformations x : z — _71

and y: 2z — Z;—l and has the presentation < z,y: 22 =y3=1>.

Let v = zyz, and u = y. Then (2)v = % and thus u? = v3 = 1. So the
group G =< u,v > is a proper subgroup of the modular group PSL(2,7)
[1].

The algebraic integer of the form a + by/n, where n is square free, forms
a quadratic field and is denoted by Q(y/n). If n > 0, the field is a called real
quadratic field, and if n < 0, it is called an imaginary quadratic field. The
integers in Q(y/1) are simply called the integers. The integers in Q(y/—1)
are called Gaussian integers, and the integers in Q(y/—3) are called Eisen-
stein integers. The algebraic integers in an arbitrary quadratic field do not
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necessarily have unique factorization. For example, the fields Q(1/—5) and
Q(v/—6) are not uniquely factorable. All other quadratic fields Q(y/n) with
n < 7 are uniquely factorizable.

A number is said to be square free if its prime decomposition contains
no repeated factors. All primes are therefore trivially square free.

Let F' be an extension field of degree two over the field @) of rational
numbers. Then any element x € F — @ is of degree two over Q and is a
primitive element of F. Let F(z) = 2% 4 bz + ¢, where b,c € @Q, be the
minimal polynomial of such an element x € F. Then 2z = —b £ Vb2 — 4c
and so F = Q(v/b? — 4c). Here, since b? — 4c is a rational number % = inﬂ?
with [,m € Z, we obtain F' = Q(\/%) with I,m € Z. In fact it is possible
to write ' = Q(y/n) , where n is a square free integer.

The imaginary quadratic fields are usually denoted by Q(v/—n), where
n is a square free positive integer. We shall denote the subset

{a—i-\/—n_a a+n ceZc#O}
C ) C ) )

by Q*(v/—n). The imaginary quadratic fields are very useful in different
branches of mathematics. For example, [3] the Bianchi groups are the
groups PSL,(O,,), where O, is the ring of integers of the imaginary quadratic
number field Q(y/—n). Also it is known that O,, is an Euclidean ring if and
only if n=1,2,3,7 or 11.

In [2, 4], many properties of Q(y/n) have been discussed. Here we discuss
some fundamental results of G =< u,v : u® = v3 =1 > on Q*(v/—n).

2. Coset diagrams

We use coset diagrams, as defined in [4] and [5], for the group G and study
its action on the projective line over imaginary quadratic fields. The coset
diagrams for the group G are defined as follows. The three cycles of the
transformation « are denoted by three unbroken edges of a triangle per-
muted anti-clockwise by u and the three cycles of the transformation v are
denoted by three broken edges of a triangle permuted anti-clockwise by wv.
Fixed points of u and wv, if they exist, are denoted by heavy dots. This
graph can be interpreted as a coset diagram with the vertices identified
with the cosets of Stab,, (G), the stabilizer of some vertex v; of the graph,
or as 1-skeleton of the cover of the fundamental complex of the presentation
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which corresponds to the subgroup Stab,, (G). Let aG denote the orbit of
a in an action of G on Q*(v/—n).

For instance, in the case of G acting on the projective line over the field
Q*(y/n), a fragment of a coset diagram will look as follows:

(1) If & # 1,0, 00 then of the vertices k, ku, ku? of a triangle, in a coset
diagram for the action of G on any subset of the projective line, one
vertex is negative and two are positive.

(2) If k # —1,0, 00 then of the vertices k, kv, kv? of a triangle, in a coset
diagram for the action of G on any subset of the projective line, one
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vertex is positive and two are negative.

_ atv—n .
'I‘hegrem 1. If o = “2—=" € Q*(v/—n), then n does not change its value
in aG.

Proof. Let a = @ and b = “2% Since (a)u = <L =1 —

1
[0} «

1- a+\‘;jn = b_“t” —. Therefore, the new values of a and ¢ for («)u are

b—a and b respectively. The new value of b for (a)u is = —2a+b+c.
1

-1 _ —c _ —a—ct+v/—n
Now (a)v = 77 = TR T hrersa Therefore the new values of a

and c¢ for (a)v are —a — ¢ and 2a + b + ¢ respectively. The new value of

Cac)? .
% = c. Similarly, we can calculate the new values of
2 2

a,b and c for (a)u?, (a)v?, (@)uv, (a)u?v, (a)vu, (a)uv?, (a)vu? and (a)viu
as follows:

(b—a)?4n
b

b for (a)v is

o a b c
(a)u b—a —2a+b+c b

(a)v —a—c c 2a +b+c
(a)u? c—a c —2a+b+c
(a)v? —a—1b 2a+b+c b
(a)uv a—2b b —4da+4b+c
(a)u?v [ 3a—b—2c| —2a+b+c | —4a+b+4c
()vu a+2b da + b+ 4c c
(a)v®u | 3a+2b+c | da+4b+c 20+b+c
(@)uv? | 3a—2b—c | —4a+4b+c| —2a+b+c
(@)vu? | 3a+b+2c| 2a+b+c | da+b+4c

Table 1

From the above information we see that all the elements of aG are in
Q*(v/—n). That is, n does not change its value in aG. O
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As we know from [5] the real quadratic irrational numbers are fixed
points of the elements of PSL(2,Z) =< 2? = y3 = 1 > except for the
group theoretic conjugates of z,y*! and (2y)". Now we want to see that
when imaginary quadratic numbers are fixed points of the elements of G.

3. Existence of fixed points in Q*(1/—3)

Remark 1. Let (2)u = z. Then 221 = 2 gives 22 — 2 +1 = 0. Thus z =

z

&Tm € Q*(v/—3). Similarly, (z)v = z implies % =2.90,2242+1=0
gives z = %‘/_—3 € Q*(v-3).

Theorem 2. The fized points under the action of G on Q*(\/—n) exist only
if n=3.

Proof. Let g be a linear-fractional transformation in G. Then, (2)g can
be taken as Zjis where ad — bc = 1. Let %ig = z which yields us the
quadratic equation cz? + (d — a)z — b = 0. It has the imaginary roots only
if (d—a)?+4bc <0 or (d+a)? —4(ad — be) < 0 or (a+ d)? < 4. That is,
a+d=0,%+1.

If a+d = 0 then g is an involution. But there is no involution in G.
Now, if a + d = £1 then as (trace(g))? = det(g), order of g will be three
and hence it is conjugate to the linear fractional transformations u*! and
v*!. Since the fixed points of the linear fractional transformations u and
v (by Remark 1) are 1i\2/T3 and 7&2‘/7_3 respectively, therefore, the roots
of the quadratic equation cz? + (d — a)z — b = 0 belong to the imaginary
quadratic field Q*(v/=3). If two elements of G are conjugate, then their
corresponding determinants are also equivalent. O

4. Orbits of Q*(\/—n)

Definition 1. If o = “2=" ¢ Q*(y/=n) is such that ac < 0 then «
is called a totally negative imaginary quadratic number and totally positive
mmaginary quadratic number if ac > 0.

As b = ‘IQJ", therefore, be is always positive. So, b and ¢ have same

sign. Hence an imaginary quadratic number o = 2EY=" € Q*(v—n) is
totally negative if either a < 0 and b,¢ > 0 or a > 0 and b, ¢ < 0. Similarly
= atvon Y—" € Q*(v/—n) is totally positive if either a,b,c > 0 or a,b,c < 0.
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Theorem 3.
(1) If « is a totally negative imaginary quadratic number then (a)u and
(a)u? are both totally positive imaginary quadratic numbers.
(13) If v is a totally positive imaginary quadratic number then (a)v and
(a)v? are both totally negative imaginary quadratic numbers.

Proof. (i) Let v = @ be a totally negative imaginary quadratic num-
ber. Here there are two possibilities: either a < 0 and b,¢ > 0 or a > 0 and
b,c < 0.

Let a < 0 and b, c > 0. We can easily tabulate the following information.

a a b c
()u |b—a | —2a+b+c b
(a@)u® | c—a c —2a+b+c

From the above information, we see that the new values of a, b and c for
(a)u and (a)u? are positive. Therefore, (a)u and (a)u? are totally positive
imaginary quadratic numbers.

Now, let @ > 0 and b,c¢ < 0. Then the new values of a,b and c for
(a)u and (a)u? are negative. Therefore, (a)u and (a)u? are totally positive
imaginary quadratic numbers.

(ii) Let a = @ be a totally positive imaginary quadratic number.
Here there are two possibilities: either a,b,c > 0 or a,b,c < 0.

Let a,b,c > 0. Then one can easily tabulate the following information.

o a b c
(v)v | —a—c c 2a+b+c
(@)v? | —a—b|2a+b+c b

From the above information, we see that the new value of a for (a)v
and (a)v? is negative and the new values of b and ¢ for (a)v and (a)v? are
positive. Therefore, (a)v and («)v

2 are totally negative imaginary quadratic
numbers.

Now, let a, b, ¢ < 0. Then the new value of a for (a)v and (a)v? is positive
and the new values of b and ¢ for (a)v and (a)v? are negative. Therefore,
(a)v and (a)v? are totally negative imaginary quadratic numbers. O

Theorem 4.
(i) Ifa= atyv-n Y—" where ¢ > 0 then the numerator of every element in
aG is also positive.

— atv—n

) Ifa==5=

(i1 where ¢ < 0 then the numerator of every element in
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the orbit aG is also negative.

7

Proof. (i) Since o = % with ¢ > 0, therefore, b is also positive. As
b and c always have the same sign. Using this fact we can easily see from
the information given in Table 1 that every element in aG has positive
numerator.

(74) Since o = @ with ¢ < 0, therefore, b is also negative. As b
and c always have the same sign. Using this fact we can easily see from
the information given in Table 2 that every element in oG has negative

numerator. O

For a = “HY=" ¢ Q*(\/=n), we define ||a| = |a].

Theorem 5.
(1) Let v be a totally negative imaginary quadratic number. Then
[(@)ull > [la]l and |[(a)u?|| > |lall, and
(13) Let « be a totally positive imaginary quadratic number. Then
[(a)v]| > [lall and |[(a)o*|| > lla] -

Proof. (i) Let a be a totally negative imaginary quadratic number. Then
either, a < 0 and b,c > 0 or a > 0 and b,c < 0. Let us take a < 0 and
b,c > 0. Then, by Theorem 3(i) (a)u and (a)u? both are totally positive
imaginary quadratic numbers. Thus, ||(a)u| = |b—a| > |a| = ||la], and
H(oz)uQH = |c—a| >= |a| = ||a||. Similarly, we have the same result for
a>0and b, c<O.

(i) Let a be a totally positive imaginary quadratic number. Then
either, a, b, ¢ > 0 or a, b, ¢ < 0. Let us take a,b,c > 0. Now, using the

information given in Table 1, we can easily see that ||(a)v]| = |—a—¢| =
la+¢| > |a| = ||| and H(a)vQH =|-a—0bl =|a+0b| > |a| = || . Simi-
larly, we have the same result for a,b,c < 0. U

Theorem 6. Let o be a totally positive or negative imaginary quadratic

number. Then there exists a sequence a = aq, Qa, ..., .y such that o; is al-
ternately totally negative and totally positive number fori =1,2,3,...,m—1
and ||apm| =0 or 1.

Proof. Let a = a1 be a totally positive imaginary quadratic number. Then,
by Theorem 3(i), (a)u or (a)u? is a totally negative imaginary quadratic
number. If (a)u is a totally negative imaginary quadratic number, then put
as = (a)u and by Theorem 5(i), ||(a1)|| > [Jaz||. Now if (a)u? is a totally



140 M. Ashiq and Q. Mushtaq

negative imaginary quadratic number, then put as = (a)u?.

we have also |[(aq)]| > ||z

Now if (a)u a is totally negative imaginary quadratic number, then
(a)uv or (a)uv? is a totally positive imaginary quadratic number. If (a)uv
is a totally positive imaginary quadratic number, put (a)uv = a3 and so by
Theorem 5(ii) || (a)uv|| < ||[(@)u| < [Ja| or |las]| < ||az|| < ||a1]| and contin-
uing in this way we obtain an alternate sequence aq, aa, ..., a, of totally
positive and totally negative numbers such that ||aq| > [|az| > |las|| >
... > |lam]|- Since |Jai]|, [[az]|, |asl|, ..., |[[am] is a decreasing sequence of
non negative integers, therefore, it must terminate and that happens only
when ultimately we reach at an imaginary quadratic number a,, = @
such that ||a.,|| = |a’| =0 or 1. It can be shown diagrammatically as:

“-. r"l N f
(GL')M vgzal G‘.’:gl‘- :
o Y
2 _
Y eu’ = oy
JJ \\
\\.

In this case

Y 552
. .
- -
. -

e = oy o _{ , . _\<
_________ (e Jv [T

Theorem 7. There are exactly eight orbits of Q*(v/—n) under the action
of the group G when n = 3.

Proof. As we have seen in Theorem 6, we get a decreasing sequence of non
negative integers |||, |lazll,||asll,--.,|lam| such that [|ai|| > |az| >
llas|l > ... > |lam|| which must terminate and that happens only when
ultimately we reach at an imaginary quadratic number o, = @ such
that ||y, || = |a'| =0 or 1.

If apy, = &\Q/TS or 7&2*/7_3 then because % are the fixed points
of u and v, therefore, we cannot reach at an imaginary quadratic number

whose norm is equal to zero. So in this case there are four orbits, namely
1+vV/=3 ~ 1—vV/=3,~ —14+/=3 -1-/=3
+2 G, ——G, +2 G and —=—G of Q*(v/—-3).
Now, if we reach at an imaginary quadratic number «,, =

that |la, || = |a/| = 0 then ay, = Y=3 Since ay = Y2 € Q*(v/-3),

c c

therefore, ¢ = 1, £3. That is, ay, = Y72, ¥o2, ¥=3 and 2,

al+v—=3 V=3 Such
C
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V=3

Now, if a = ¥3=, we can easily calculate the new values of a, b, and ¢
as:
« 0 |31
(u | 3 |43
()v | —1]14
(@u?] 1 [1]4
(a)v? | =343

Hence from the above table, we see that /—3, 1+F and _1+4‘/jg lie

in aG.
Similarly, if o = @f, then —/—3, 7”7—}4/?3 and @ lie in aG, if
V=3

a = Y=, then @, H\l/j?’ and 71+1‘/j3 lie in aG, and if a = @;, then
@, 1+j/1j3 and —142\1/?3 lie in aG.

Thus, @, @, @, and @; lie in four different orbits. Hence there
are exactly eight orbits of Q*(v/—n) for n = 3. O

Remark 2.

1. Ifa= @ € Q*(v/—n) then Stab,(G) is non-trivial only if n = 3.
Particularly, if o = =3 then Staba(G) = Cs.

B

_ v—=3
_1 >

2. In Q*(v/—3), there are four elements of norm zero, namely 4=,
3 V=3
-3

ﬁ

Y3 and

3. In Q*(v/—3), there are twelve elements of norm one, namely % V=3
+1EyV=3 g £1EV/3
==, and =F—.

Theorem 8. Let o € Q*(\/—n), where n # 3. Then
(1) if a« =+/—n, then \/—n, liﬁ and _1:ﬁ lie in aG,
(i) if a= @, then Y= @ and _1%\/?” lie in oG,

n

(ii1) if « = Y5, where n is even and ly = 5, then o is the only element
of norm zero in aG,
(iv) if a =¥, where k1 = = and ny # 1, 2 or n, then « is the only

ny
element of norm zero in aG, and

(v) if o= 1=

, where 1 +n =cico and c1 #1 orn+ 1, then « is
the only element of norm one in aG.

Proof. (i) If @ = \/—n, then, we can easily tabulate the following informa-
tion.
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e} 0 n 1
(u | n | n+1 n
()v | —1 1 n+1

N N
—_

()u 1 n+1
(a)v® | —n | n+1 n

Hence from the above table, we see that /—n, 1J;+V T and _1;11_" lie
in aG.

(1) If o« = ¥, then we can calculate the new values of a, b, and ¢ as:

o 0 1 n
()u | 1 |n+1 1
(v | —n| n |n+1
(@)u® | n n n+1
(@)v? | =1 | n+1 1

Hence from the above table, we see that ¥, lJ”l — and 71+1V — lie
in aG.

(ii1) If o = Y57, then we can calculate the new values of a, b, and c as:

« 0 ll 2
a)u ll ll + 2 ll
o | —2 2 L +2
(a)u® | 2 2 | h+2
2l | h+2 I
Hence from the above table, we see that « is the only element of norm

zero in aG.
(iv) Let o = ¥, where k; = = and n; # 1 or n, then
1 ni

« 0 kl nq
(@)u | k1 | ni+k k1
() | =g ny ny + k1
(@)u? | m ny ny + k1
(Oé)U2 —k1 | 1+ Kk k1

Hence from the above table, we see that « is the only element of norm
zero in aG.

(v) Let a = @, where 1 +n = cycp and ¢; # 1 or n + 1, then the
new values of a, b, and ¢ can be calculated as:
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« 1 Co c1
(Wu | ca—1 | =24c1+c2 o
() | =1—¢1 c1 24c1+co
(@)u® | ¢ —1 c1 2+ ¢+
(@)v? | —1—ca | 24c1+eo co

If ¢; = 2, then H(a)uQH = 1 implies that (a)u? = % If q = -2,
then ||(a)v]| = 1 implies that (a)v = %ﬁn That is, 1+‘2/j" and Lo/on

(")

lie in the same orbit, and 1+_V27" and IJE;J:; lie in the same orbit.
(5=

Now if ¢; #£ 1,2 or "Tﬂ,n—i— 1, that is, co #n+1, ”T‘H or 1, then Hcvl_"
lie in aG.

O

Example 1. By using Theorem 8, the orbits of Q*(v/—14) are:

() V=14, By ang ==l e iy /T4G,
(i) Y=H, BVl g =yl g 4y Yo
(i) Yott, VI gng ZlVEU e gy Vol
(iv) \/_%, H\_/;ﬁ and 71+_—‘{7T4 lie in @G,
(v) @ lies in @G,
(vi) @ lies in ‘/:?G,
(vit) @ lies in @G,
(vii) Y=H Ties in Y=HG,
(ix) @ lies in HT\/TMG,
(z) 71%\/74 lies in A%MG,
(x1) @ lies in @G,
(wid) —HELH fjeg in vl
(x1i7) L‘é__m lies in @G,.
(ziv) _HT‘/__M lies in _1%‘/__14(;,

(zv) avesr V5_14 lies in V14 V5_14G7 and
(zvi) =M jes in G
So, there are sixteen orbits of Q*(y/—n).

Remark 3.
1. fa= @ € Q*(v/—n), then aG contains the conjugates of the ele-
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and @ = lie in two different

ments of aG. Since o = V" o =
orbits, therefore, oG and @G are always disjoint.

2. The elements of norm zero and one in Q*(v/—n), play a vital role to
identify the orbits of Q*(1/—n).

Definition 2. If n is a positive integer then d(n) denotes the arithmetic
function defined by the number of positive divisors of n.

For example, d(1) = 1,d(2) = 2,d(3) = 2,d(4) = 3,d(5) = 2 and
d(6) = 4.

Theorem 9. If n # 3, then the total number of orbits of Q*(v/—n) under
the action of G are:

(7) 2[d(n)+2d(n+ 1) — 6] if n is odd, and

(73) 2[d(n)+2d(n+ 1) —4] if n is even.

Proof. First suppose that n is odd, that is n + 1 is even. Let the divisors
of n are +1, £ny, ££no, *+,...,+n and the divisors of n + 1 are +1, £2,
+mq, tmeo, £, ..., i@, +(n+1). Then by Theorem 8(i), there exist two
orbits of @*(y/—n) corresponding to the divisors £1 of n and +(n + 1) of
n + 1. By Theorem 8(i7), there exist two orbits of Q*(y/—n) corresponding
to the divisors +n of n and +1 of n + 1. By Theorem 8(v), there exists
four orbits of @*(v/—n) corresponding to the divisors £2, (%) of n + 1.
Now we are left with 2d(n) — 4 and 4d(n + 1) — 16. Thus total orbits are
2d(n) —4+4d(n+1)—16+8 = 2d(n)+4d(n+1)—12 = 2[d(n)+2d(n+1)—6).

Now if n is even, then the total orbits are [2d(n)—4]+[4d(n+1)—8]+4 =
2d(n) +4d(n+1) — 8 = 2[d(n) + 2d(n + 1) — 4]. O

Example 2. Now, by using Theorem 9,
(i) the orbits of Q*(y/—14) are:
2[d(n) +2d(n+ 1) — 4] = 2[d(14) + 2d(15) — 4] = 2[4 4+ 8 — 4] = 16,
and
(ii) the orbits of Q*(v/—15) are:
2[d(n) +2d(n+ 1) — 6] = 2[d(15) + 2d(16) — 6] = 2[4+ 10— 6] = 16.

Theorem 10. There are 2d(n) elements of Q*(/—n) of norm zero under
the action of G.

Proof. As we have seen in Theorem 6, we get a decreasing sequence of non-
negative integers ||aq]|, |lag ||, ||las ||, - - -, ||am || such that ||ag || > ||ag || >
llas || > ... > ||au, || which must terminate and that happens only when
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ultimately we reach at an imaginary quadratic number a,, = % V=" such
that |l || = |a/| = 0. Thus oy, = Y=, Since a,, = Y= € Q*(v/—n),
therefore, ¢ must be a divisor of n. Hence there are 2d(n) elements of

Q*(v/—n) of norm zero under the action of G. O

Theorem 11. There are 4d(n+1) elements of Q*(v/—n) of norm one under
the action of G.

Proof. As we have seen in Theorem 6, there exists a decreasing sequence

of non-negative integers ||a1]|,||az ||, [|as ||, ..., [[am || such that ||aq || >
|l || > [|as || > ... > ||am || which must terminate and that happens only
when ultimately we reach at an imaginary quadratic number a,,, = @
such that ||ay, | = |a/| = 1. Then a,, = il%ﬁ, where b = “2% = Ln
that is, ¢ must be a divisor of n 4 1. Hence there are 4d(n + 1) elements of
Q*(v/—n) of norm one under the action of G. O

Corollary. The action of G on Q*(\/—n) is intransitive.

Proof. If n is even, then the minimum value of n in Q*(v/—n) is two. So,
by Theorem 9, the total number of orbits are 2[d(n) + 2d(n + 1) — 4] =
2[2 4+ 2(2) — 4] = 4. So, the action of G on Q*(v/—n) must be intransitive.

Now, if n is odd, then the minimum value of n in Q*(y/—n) is five, when
n # 3. So, by Theorem 10, the total number of orbits are 2[d(n) + 2d(n +
1) —6] = 2[2+2(4) — 6] = 8. So, the action of G on Q*(y/—n) is intransitive.

According to Theorem 7, there are exactly eight orbits of Q*(y/—n)
when n = 3 under the action of the group G. Hence the proof. O
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On primal ideals over semigroups

Shahabaddin Ebrahimi Atani and Ahmad Yousefian Darani

Abstract

Let S be a commutative cancellation torsion-free additive semigroup with identity 0 and
let S # {0}. This paper is devoted to study some properties of primal ideals and quasi-
primary ideals of the semigroup S. First, a number of results concerning of these ideals
are given. Second, we characterize primal ideals and quasi-primary ideals of a Priifer
semigroup and show that in such semigroup, the three concepts: primary, quasi-primary,

and primal coincide.

1. Introduction

Throughout this paper S will be a commutative cancellation torsion-free
additive semigroup with identity 0 and let S # {0}. We will study the
structure of primal ideals and quasi-primary ideals of S. Our interest is
motivated by the work [2].

Fuchs in [1] introduced the concept of a primal ideal, where a proper
ideal I of S is said to be primal if the elements of S which are not prime to
I form an ideal (see section 3). Fuchs and Mosteig proved in [2] that in a
Priifer domain of finite character every non-zero ideal is the intersection of
a finite number of primal ideals, and moreover, the P-primal ideals form a
semigroup under ideal multiplication. A similar result is established for de-
composition into the intersection (even into the products) of quasi-primary
ideals. The purpose of this paper is to explore some basic facts of these
class of ideals of a semigroup. In the second section we characterize the
semigroups in which every ideal is prime and prove that a semigroup is a
group if and only if every its proper ideal is prime. We show also that ev-
ery ideal over a Priifer semigroup is quasi-primary and characterize primal

2000 Mathematics Subject Classification: 13A02, 13F05, 20M 14
Keywords: Priifer semigroup, oversemigroup, primal, quasi-primary ideal.
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ideals of a Priifer semigroup. Connection between the primal ideals, the
quasi-primary and the primary ideals of such semigroups are studied too.

Before we state some results let us introduce some notation and termi-
nologies. Let S be a semigroup. Then G = {a—b: a,b € S} is a torsion-free
ablian group with respect to the addition and S is a subsemigroup of G.
G is called the quotient group of S. Any semigroup T between S and G is
called an oversemigroup of S (see [3]).

By an ideal of S we mean a non-empty subset I of S such that for all
a € I and for all b € S we have a +b € I, that is, ] +.S = I. Thus for
reS, z+S={xr+y:y € S} is the principal ideal generated by z. If
I,J are ideals of S, then I+ J = I+ S)+(J+S)= I+ J)+ S is an
ideal of S too. For a € § and an ideal I of S, by a + I, we mean the sum
a+1=(a+S)+ (I+795), which is an ideal of S. A proper ideal I of a
semigroup S is called mazimal if there does not exist an ideal J of S with
I C J C S, where C denotes the strict inclusion. An element a € S is
called a unit if a + b = 0 for some b € S. If U(S) is the set of units in S
and 0 € U(S), then U(S) is a subgroup of G and M = S —U(S) #0 is a
maximal ideal of S. A prime ideal in a semigroup S is any proper ideal P
of S such that for a,b € S a+ b € P implies either a € P or b € P. The
maximal ideal is a prime ideal (see [3]).

Let I be an ideal of S. The set

rad(I) = {a € S : na € I for some positive integer n}

is an ideal of S. It is called the radical of I. A proper ideal I of S is primary
if for a,b € S a+b € I implies either a € I or b € rad([). If I is primary,
then P = rad(I) is a prime ideal of S and [ is called a P-primary ideal of
S. The set {a € S:a+J C I}, where I, J are ideals, is denoted by (I : J).

A non-empty subset T" of a semigroup S is called an additive system of
Sifa,beTimpliessa+beT and0e€T. Spr={s—t:seSteT}is
an oversemigroup of S which is called the quotient semigroup of S. If P is
a prime ideal of S, then T'= 5 — P is an additive system of S. In this case
the quotient semigroup St is denoted by Sp.

Throughout this paper we shall assume unless otherwise stated, that S
is a semigroup with the maximal ideal M = S — U(S) # 0.

Let S be a semigroup with quotient group G. We say that S is a
valuation semigroup if g € S or —g € § for each g € G, so its ideals are
linearly ordered by inclusion (see [3, Lemma 4]). We say that S is a Priifer
semigroup if Sp is a valuation semigroup for every prime ideal P of S. An
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ideal of a semigroups S is irreducible if, for ideals J and K of S, [ = JNK
implies that either I = J or I = K.

2. Quasi-primary ideals

An ideal of S is called quasi-primary if its radical is a prime ideal of S.

Lemma 2.1. Let I be an ideal of a semigroup S. Then:
(i) if I contains a unit of S, then [ =S,
(13) S is a subgroup of G if and only if S has ezactly one ideal.

Proof. (i) Let a be a unit of S such that a € I. Then a + b = 0 for some
be S, so0=a+bel+S=1 Ifze S, thenz=0+2€l+5=1.
Therefore I = S.

(ii) Let S be a subgroup of G and let I be an ideal of S. Then there
exists a € I such that a is a unit of S; hence I = S by (7). Conversely, it
is enough to show that every element of S is a unit. Suppose that ¢ € S.
Then ¢+ S # () is an ideal of S, so ¢+ S = S; whence ¢ + d = 0 for some
d € S. It is easy to see that S is a subgroup of G. O

Theorem 2.2. Let S be a semigroup. Then S is a subgroup of G if and
only if every proper ideal of S is prime.

Proof. If S is a subgroup of G, then the result is clear. Conversely, let a
be a non-zero and non-unit element of S. By assumption, a +a + S = I,
where I is prime, and so a+a € I impliesa € I. Thusa=a+0=a+a+b
for some b € S, and since S is a cancellation semigroup, we can cancel a to
obtain a 4+ b = 0, showing that a is unit, as required. O

Lemma 2.3. Let I,J and K be ideals of a semigroup S. Then:
(i) I=I+Su)NS,
(1i) K=1INJ if and only if K+ Syr = (I + Sar) N (J + Sur).

Proof. (i) Since I C (I + Sp;) NS is trivial, we will prove the reverse
inclusion. Let uw € (I + Spr) NS. There exist @ € [ and t € S — M such
that u = a—t, sou+t =a € I and t + b = 0 for some b € S; hence
u=u+t+bel+ S =1, asrequired.

(74) Suppose first that K = INJ. Clearly, K+Sy C (I4+Sa)N(J+Sn).
For the reverse inclusion, assume that z € (I +.Say) N (J + Sar). Then there
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are elements a € I, b€ Jand t,u € S — M such that z=a—t=b—u, so
at+u=(a—t)+u+t=(b—u)+u+t=>b+teINJ since t,u are units
of S;hence z=a—t = (a+u)— (t+u) € K+ Sy, as needed. The reverse
implication follows from (). O

Lemma 2.4. For ideals I and J of a semigroup S the following statements
hold:
(¢) rad({ +J) =rad(l)Nrad(J) =rad(I NJ). Moreover, [ +J =S5
if and only if rad(I) + rad(J) = S.
(ii) If N is an additive system of S, then I + Sy = Sy if and only if
INN #0.
(#31) If N is an additive system of S, then rad(I + Sy) = rad(l) + Sn.

Proof. (i) Is straightforward.

(ii) If I+ Sy = Sn, then 0 € I + Sy, so 0 = a —t for some a € I and
t € N; hence a =t € I N N. Conversely, assume that u € TN N. Asu is a
unit of Sy, I + Sy = Sy by Lemma 2.1.

(7i7) Since rad(I) + Sy C rad(I + Sy) is trivial, we will prove the
reverse inclusion. Suppose that z € rad(I+Sy). Then there exist a positive
integer n such that nz € I + Sy, so nz = a —t for some a € I, t € N.
Asn(z+t) =a+(n—1)t € I, we get z+t € rad(l). It follows that
z=z+t—terad(l)+ Sy, as required. O

Lemma 2.5. Let I be an ideal of S with rad(I) = M. Then I is M-pri-
mary.

Proof. Since I C M # S, an ideal I is proper. Let a,b € S be such that
a+b e Ibutb ¢ rad(l). But M is maximal and b ¢ M, so must be
M+ (b+S) = S. Then from Lemma 2.4 it follows I + (b+ S) = S, i.e.,
0=c+ (b+s) for some c € I, s € S. Therefore, we have a = a + 0 =
a+b+c+sel+S=1,asneeded. O

Proposition 2.6. Let P be a prime ideal of a semigroup S, and let I
be a quasi-primary ideal of Sp with a prime radical Q. Then I NS is a
quasi-primary ideal of S with a prime radical QN S.

Proof. Since (Q is a prime ideal of Sp, Q' = Q N S is a prime ideal of S
with @ C P and Q' + Sp = @ by [3, Proposition 2|, so all that remains
to be verified that @’ is the radical of I NS. Let a € rad(I NS). Then
na € I for some positive integer n; hence a € Q. Thus, a € Q'. Conversely,
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if b € @', then mb € I NS for some positive integer m; so b € rad(I N S),
as required. O

Proposition 2.7. Let I be a quasi-primary ideal of a semigroup S with a
prime radical P. Then I + Sp is a primary ideal (so quasi-primary) of Sp.
In particular, (I + Sp) NS is a quasi-primary ideal of S.

Proof. By Lemma 2.4 we have rad(I+Sp) = P+.Sp, so it is a maximal ideal
of Sp by [3, Corollary 3]. Now Lemma 2.5 shows that I + Sp is primary.
The last claim follows from Proposition 2.6. O

Proposition 2.8. FEvery ideal of a valuation semigroup S is quasi-primary.

Proof. Let I be an ideal of S with radical P. Let a,b € S such that a+b € P.
Then there exists a positive integer n such that n(a +b) € I. Since S is a
valuation semigroup, either a+.5 C b+S or b+ S5 C a+ 5. We may assume
that a +S C b+ S. Then there is an element ¢ € S such that a = b+ ¢, so
2na =na+mnb+ncel+ S =1;henceac P. O

Theorem 2.9. Every ideal of a Priifer semigroup S is quasi-primary.

Proof. Let I be an ideal of S. By Theorem 2.8, the ideal I 4+ Sj; of the
valuation semigroup Sy is quasi-primary; hence Proposition 2.6 and Lemma
2.3 imply that I = (I 4+ Syr) NS is quasi-primary. O

3. Primal ideals

An element s € S is called prime to I if (r+s) € I (r € S) implies that
re I, thatis, (I :s)=(I:(s))=1. Anideal I of S is called primal if the
elements of S that are not prime to I form an ideal (see [1]).

Lemma 3.1. Let I be an ideal of a semigroup S and let P be the set of
elements of S which are not prime to I. If P is an ideal of S, then P is
prime.

Proof. Let a,b € S—P. Then (I :a) = :b)=1. If se (I:a+0),
then a +b+ s € I, whence s+a € (I : b) = I. Therefore s € (I : a) =1,
consequently (I :a+b) =1. Thus a+b ¢ P. O



152 S. E. Atani and A. Y. Darani

If I is a primal ideal of S, then, by Lemma 3.1, P is a prime ideal of
S called the adjoint prime ideal of I. In this case we also say that [ is a
P-primal ideal.

Theorem 3.2. For an ideal I of a semigroup S, the following statements
are equivalent.
(i) I is primal with the adjoint prime ideal P,
(i) Ifa+bel and b ¢ I, then a € P and conversely, for every a € P
there exists an element b € S — I such that a+b € I.

Proof. (i) = (ii) Let a+0b € I with b ¢ I. Then b € (I : a) — I; hence
a € P. If a € P, then I C (I : a) because I is primal. So, there is an
element x of (I : a) which is not in /. Thusa+x € [ and x ¢ I.

(79) = (i) It is enough to show that P+ S C P. Let x +y € P+ S
where z € P, y € S. Then there exists ¢ ¢ I such that  + ¢ € I by (ii),
and hence x +y + ¢ € I with ¢ ¢ I. Thus z +y € P by (ii). O

Lemma 3.3 Let QQ be a P-primary ideal of a semigroup S, and let a € S.
(i) Ifae@, then (Q:a)=S.
(1) Ifa ¢ Q, then (Q : a) is P-primary.
(ii7) Ifa ¢ P, then (Q :a) = Q.

Proof. The proof is straightforward. O
Proposition 3.4. A P-primary ideal is primal.

Proof. 1t is enough to show that the set of elements of S which are not
prime to @ is just P. Suppose that s is such element of S which is not
prime to . Then Q C (Q : s). Hence there exists a € (Q : s) with a ¢ Q
and a+s € Q. Therefore, s € P because @) is primary. Conversely, if s ¢ P,
then (@ : s) = @ by Lemma 3.3. O

Proposition 3.5. Let I be a Q-primal ideal of a semigroup S, and let P
be a prime ideal of S. Then:

(i) I=UI+Sp)NS for Q@ C P,

(it) IC(I+Sp)NnS forQ ¢ P.
Proof. (i) Clearly, I C (I + Sp)NS. For z € (I + Sp) NS we have

x=c—d¢€ S for some c € I and d ¢ P. Therefore, v +d =c € I. As
d ¢ @, dis prime to I; hence x € I.
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(it) Since @ ¢ P, there is y € @ such that y ¢ P. Soy +u € I for
some u ¢ I by Theorem 3.2. Then u = (y+u) —y € (I +Sp)NS. But
ug¢ I, sol C(I+Sp)NI. O

Corollary 3.6. Let I be a Q-primal ideal of a semigroup S, and let T be a
quotient semigroup of S. Then either [ = (I+T)NS or I C(I+T)NS.

Proof. By |3, Proposition 2|, T'= Sp for some prime ideal P of S. The rest
follows from Proposition 3.5. O

Proposition 3.7. Let P be a prime ideal of a semigroup S, and let I be
a Q-primal ideal of Sp. Then I NS is a primal ideal of S with the adjoint
prime ideal QN S.

Proof. As @ is prime ideal of Sp, by [3, Proposition 2], @' = QNS is a
prime ideal of S with @' C P and Q'+ Sp = Q. To prove that Q' is exactly
the set of elements non-prime to I NS let z ¢ QN S. Then z ¢ Q, so
(I :s5p 2) =1. Thus (INS :z) =1INS, whence z is prime to I N S. If
z€@QNS, then z € Q, so there exists u € Sp with z+u € I and u ¢ I by
Theorem 3.2. We can write u =x —y for somexz € S,y e S—P. If x € I,
then x = u+y € I with y ¢ @, so u € I, a contradiction. So we can assume
that = ¢ I. Since z+u € I implies z+xz € INS, weget z € (INS: 2).
But « ¢ I, so z is not prime to I N S. O

Corollary 3.8. Let I be a Q-primal ideal of a quotient semigroup T of S.
Then I NS is a primal ideal of S with the adjoint prime ideal QN S.

Proof. Follows from [3, Proposition 2] and Proposition 3.7. O

Proposition 3.9. Let I be an ideal of a semigroup S such that (I : a) =P
is a prime ideal of S for some a € S — 1. Then (I + Sp) NS is a P-primal
1deal of S.

Proof. Let J = (I + Sp) N S. First, we show that (J:a) =P. Ift€ P =
(I :a), thent+a €I C J; hencet € (J:a). For the reverse inclusion,
assume that w € (J:a), sou+a=c—d e J for some ce€ I,d¢ P. Thus
u+a+d=cel. Consequently u+d e (I:a)= P.So,u € P since P is
prime. As P # S, we get a ¢ J. Therefore, in P no elements prime to J.
Let us show that every b ¢ P is prime to J. Clearly, J C (J : b). To
prove (J : b) C J, assume that ¢ € (J : b), so c+b=e— f € I for some
ecl, f¢ P;hencec=e—(b+f) € Jsince (b+ f) ¢ P. Thus, (J:b) C J,
which completes the proof. O
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Lemma 3.10. Every irreducible ideal of a semigroup S is primal.

Proof. Let I be an irreducible ideal of S. Assume that P is the set of
elements of S which are not prime to /. To prove that P+ S C P let
a+s € P+Swhereae€ P,se€ S. Then I C (I :a) because a € P. Clearly,
IC{I:a)Nn(I:s)C([T:a+s) fI={U:a)N(I:s),thenI=(I:5s)
since I is irreducible. Let t € (/ : a+s). Thent+a € ([ : s) = I, so
te(l:a);hence I C(I:a)=(I:a+s). IfI#(I:a)N(]:s),then again
I C(I:a+s),thatis, a+ sisnot prime to I. Thusa+ s € P. ]

Proposition 3.11. An ideal I of a Priifer semigroup is irreducible if and
only if it is primal.

Proof. By Lemma, 3.10, it is sufficient to show that if I is P-primal, then [ is
irreducible. If I = JNK for ideals J, K, then I +Sy = (J+Sy) N (K +Sw)
by Lemma 2.3. Since Sy is a valuation semigroup, either I +Sy; = J+ .Sy,
or I + Sy = K + Sy. Because M contains P then by Proposition 3.5
I+ Sy = J+ Sy gives I = (I +Sy)NS = (J+ Sy)NnS. Hence
JC (J+Sy)NS =1. The case I + Sy = K + Sy is similar. So, I is
irreducible. O

Proposition 3.12. An ideal I of a valuation semigroup S is a primal ideal
of S with the adjoint prime ideal P ={a € S:(a+ S)+ 1 C I}.

Proof. Let I = JN K for ideals J, K of S. Then either J C K or K C J
because S is a valuation semigroup. So either I = J or I = K. Therefore,
I is irreducible, and hence I is primal by Proposition 3.10. Let us show
that P is an ideal of S. Let a +s € P+ S where a € P, s € S. Then
(a+S)+1 C I;hence (a+s)+S+1C (a+S)+1CI,soa+se P. Thus,
P is an ideal of S. To prove that P is prime let z +y € P with x ¢ P.
Then (z+S)+I=1Iand (y+S5)+1=(x+y+95)+1 C I, whencey € P.

To prove that P is the set of elements of S which are not prime to [
consider w € P. Then (u+S)+1 C I C (I :wu). Suppose that (I : u) = I.
Ifve(l:u)=1thenu+vel,sove (u+S)+1I;hence I = (u+S5)+1,
a contradiction. O

Corollary 3.13. Ewvery ideal of a oversemigroup of a valuation semigroup
18 primal.

Proof. This follows from |3, Lemma 4| and Proposition 2.12. O
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Theorem 3.14. Every ideal of a Priifer semigroup is primal.

Proof. If I is an ideal of a Priifer semigroup S, then I = (I + Sy) NS
by Lemma 2.3, so, by Proposition 3.12, the ideal I 4+ Sjs of Sy is primal.
Proposition 3.7 completes the proof. ]

Corollary 3.15 An ideal of a Priifer semigroup is primal (resp. quasi-
primary) if and only if it is primary.

Proof. Follows from Theorem 2.9 and Theorem 3.14. O

References

[1] L. Fuchs: On primal ideals, Proc. Amer. Math. Soc. 1 (1950), 1 — 6.

[2] L. Fuchs and E. Mosteig: Ideal theory in Prifer domains, J. Algebra 252
(2002), 411 — 430.

[3] M. Kanemitsu: Quversemigroups of a valuation semigroup, SUT Journal
Math. 2 (2000), 185 — 197.

S. E. Atani Received September 14, 2005
Department of Mathematics

University of Guilan

P.O. Box 1914, Rasht

Iran

E-mail: ebrahimi@guilan.ac.ir

A. Y. Darani

Department of Mathematics
University of Guilan

P.O. Box 1914, Rasht

Iran

E-mail: yousefian@guilan.ac.ir



Quasigroups and Related Systems 14 (2006), 157 — 162

Finite hexagonal quasigroups
Mea Bombardelli

Abstract

In this article some examples of finite hexagonal (idempotent, medial and semisymmetric)
quasigroups are given. The main goal is to determine the set of possible orders of finite

hexagonal quasigroups.

1. Introduction

Hexagonal quasigroups are defined by V. Volenec in [1] as follows:

Definition. A quasigroup (Q, -) is said to be hezagonal if it is idempotent,
medial and semisymmetric, i.e., if the equalities

a-a=a,
ab-cd=ac-bd,

a-ba=ab-a=0

hold for all its elements.
Study of hexagonal quasigroups in [1| and [2] is motivated by

Example 1. On the set C of complex numbers the operation * is defined

by:
= 1-iv3 a+ 1+iv3 b.
2 2
If we identify the complex numbers with the points of the Euclidean
plane, the points a, b and a * b are the vertices of a positively oriented
equilateral triangle.
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Keywords: hexagonal quasigroup, finite quasigroups, order, IM quasigroup
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In this paper, we’ll give some examples of finite hexagonal quasigroups,
and answer the question: for which positive integers n there exists a hexag-
onal quasigroup of order n?

We’ll need some elementary results.

Lemma 1. Let (Q1,1), (Q2,2)s- -, (Qn,n) be hexagonal quasigroups, and
let o be the operation defined on Q = Q1 X Q2 X ... X Qn by:

(1,22, ..., Tn) 0 (Y1, Y2, -, Un) = (X1 1 Y1, L2292, -+ -, Tn n Yn)-

Then (Q, o) is a hexagonal quasigroup.

Therefore, if a hexagonal quasigroup of order m exists, then there exists
hexagonal quasigroup of order m™, for each n € N. If hexagonal quasigroups
of orders ki, ko,. . . ky, exist, then a hexagonal quasigroup of order kiks - - -k,
exists.

A subquasigroup of the quasigroup (Q,-) is any subset S C @ such
that (S,-) is a quasigroup. Obviously, any subquasigroup of a hexagonal
quasigroup is hexagonal.

For any quasigroup (@, -) and its subset A, the smallest quasigroup that
contains A is the intersection of all subquasigroups of @) that contain A.

Example 2. Let (D,*) be the smallest subquasigroup of (C,x*) (as in
Example 1) that contains 0 and 1. D can be represent by triangular lattice
with the same operation as in (C,x*): the product of two points a and b is
the third vertex of regular triangle with vertices a and b.

If ¢ = % + i@, then D = {z + qy : =,y € Z}, and it can be identified
with the set {(x,y) : z,y € Z}. It’s easy to verify:
(z1,91) * (22, 92) = (1 — @) (21 + qy1) + q(z2 + qy2)
= (z1+y1 — Y2, 22 + Y2 — 71).
We obtained an important example of hexagonal quasigroup:

Theorem 1. Let (G,+) be a commutative group. The set G x G with the
operation

(z1,91) - (72,92) = (1 + y1 — Y2, 72 + Y2 — 1)
18 a hexagonal quasigroup.

Therefore, a hexagonal quasigroup of order n? exists for any n € N.

The following characterization of hexagonal quasigroups was given in

[1].
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Theorem 2. A hezagonal quasigroup on the set Q exists if and only if on
the same set exists commutative group with automorphism @ satisfying

(po@)(a) —pla) +a=0 (1)
forall a € Q.
Given such commutative group (@, +), the quasigroup is obtained by
a-b=a+ p(b-a). (2)
Note that from (1) it follows
P’(2) = p(p(x) —x) = p o p(z) — () = (p(z) — 2) — p(z) = —x

and f(x) = z for all € Q.

2. Commutative hexagonal quasigroups

Let us use the Theorem 2 to study commutative hexagonal quasigroups.
We wish to find all commutative groups ) which have an automorphism ¢
that satisfies (1), with additional condition that the operation - defined by
(2) is commutative. In other words,

a+pb—a)=b+ pla—0>),
pb—a)—pla—b)=b—a

for all a,b € Q. Therefore

plz) +o(z) == (3)

must hold for all x € Q.
From (1) it follows ¢(p(x)) + p(e(z)) + * + x = @(x) + ¢(x) and
using (3) we obtain ¢(z) + =+ z = p(z) + ¢(x) = z. It follows

ox)+x=0 and o(r) =2+ .

Therefore, x + x + = = 0 for all z € @, i.e., each element of the group G
is of order 3 or 1. The only finite groups which satisfy that condition are
(Z3)™, and the group of order 1.
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On the other hand, if z + x + x = 0, Vz € @, then p(z) =z +2 = —=x
is an automorphism that satisfies (1), and the operation defined by (2) is
commutative.

We have proved:

Theorem 3. The only finite commutative hexagonal quasigroups with more
than one element, are the quasigroups obtained in the way described in The-
orem 2 from the group (Z3)"™, for some n € N.

From each group (Z3)™ we obtain unique hexagonal quasigroup of order
3".

Example 3. From (Z3)? we obtain hexagonal quasigroup of order 9:

W UTO ~1 00O R N+
LW 00 O ~1 N O |
— N O R Ul W ~] 00 O W
O =N W UL =1 00 i
O Ot W 00 O =1t
00 O R N O R UlwW o
100 O — MW R Ol =T
0O~ O R UlwW

0O~ O UL i WO N —= O
= Ot W ~J 00 O — N OO

3. Cyclic groups

The automorphism ¢(x) = kx (k is relatively prime to n) of the group Z,
satisfies (1) if and only if k% — k + 1 = 0(mod n).

We need to determine for which n € N the obtained quadratic con-
gruence has solution %k (in that case k and n are relatively prime), or to
determine the possible factors of k* — k + 1 for k € Z.

Evidently, since k? — k + 1 is odd, n cannot be even.

Let us determine all odd primes p for which p | k2—k+1, for some k € Z.
If p | k2 —k+1, then so do p divides the number 4(k? —k+1) = (2k—1)2+3,
that is p | a® +3 where a = 2k — 1 is an odd integer. It suffices to determine
for which p exists = € Z such that 22 = —3(mod p) (if such an even integer
x exists, then z + p is odd integer that satisfies the condition).

It is equivalent to <_73> = 1, which (since p is an odd integer) is equiv-

alent to (8) =1, i.e., p = 0(mod 3) or p = 1(mod 3). The solutions are
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p = 3 and all primes of the form p = 6]+ 1, | € Z. Factors of k2 — k + 1
cannot be primes of the form 6/ — 1.
This proves the following:

Theorem 4. The cyclic group Z,, has an automorphism that satisfies (1)
if and only if its order n is a product of primes from the set {3} U {6l +1:
l € Z}, i.e., if and only if n is an odd integer without any prime factor that
1s congruent to —1 modulo 6.

Example 4. Group Z; has two such automorphisms, ¢(x) = 3z and
o(z) = 5x. So we obtain two hexagonal quasigroups of order 7.

-0 1 2 3 4 5 6 -0 1 2 3 4 5 6
0|0 3 6 2 5 1 4 0|0 5 3 1 6 4 2
115 1 4 0 3 6 2 113 1 6 4 2 0 5
213 6 2 5 1 4 0 216 4 2 0 5 3 1
311 4 0 3 6 2 5 312 0 5 3 1 6 4
416 2 5 1 4 0 3 415 3 1 6 4 2 0
514 0 3 6 2 5 1 51 6 4 2 0 5 3
6|2 5 1 4 0 3 6 64 2 0 5 3 1 6

4. Conclusion

The following theorem is well-known.

Theorem 5. Let m; and mo be relatively prime positive integers, and G
be commutative group of order myma, whose automorphism ¢ satisfies (1).
Then there exist groups G1 and Go such that G = Gy X Ga, |G1| = mq,
|G2| = ma, with automorphisms that satisfy (1).

Theorem 5 allows us to deal with groups of order p* only, in order to
determine which groups have "good" automorphism.

So far, we know that finite hexagonal quasigroup can have orders p?*
for any prime p, 3%, and p* where p is a prime of the form 61 + 1.

Let G be finite commutative group with automorphism ¢ which satisfies
(1). For € G let us denote

Sy = {l‘, gO(fL‘), 902('7;)’ 903('7;)’ 904('7;)’ 905('7;)’ o }

It is clear that {S, : # € G} is a partition of the set G. Since ©5(z) = =,
for all x € G, the set S, has 6 elements at most, i.e., it may have 1, 2, 3 or
6 elements. The only x for which Card S, =1 is x = 0.
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Card S, = 2 when z = ¢?(z), that is when 2 + 2 + 2 = 0.
Card S, = 3 when = = ¢3(z), i.e.,, z = —1.
Let

a = Card{S; : z € G, |S;| = 2},

b= Card{S, :z € G,|S,| = 3},
c=Card{S; : v € G, |5S;| = 6}.

The number of elements of G equals |G| =1+ 2a + 3b + 6e.

Now we can finally solve remaining problems: the existence of hexagonal
quasigroup of order 22™~1 or of order p?>™~! for p prime of the form 61 — 1.

Suppose the group G of order 22~ has an automorphism that satisfies
(1). Since its order is not divisible by 3, a = 0, and |G| = 1+ 3b + 6¢ =
1(mod 3). But, 22m~! = 2(mod 3), which is a contradiction.

Let now p be a prime number of the form 6/ — 1, and let G be the group
of order p?™~!, with an automorphism which satisfies (1). That group has
no element of order two, and no element of order three, so a = 0 and b = 0.
It follows p?™~! = 1 + 6¢, which is impossible since p*™~! = —1(mod 6).

This finally proves:

Theorem 6. A finite hezagonal quasigroup of order n = m - 12, where m
18 square-free, exists if and only if m is an odd integer with no prime factor
congruent to —1 modulo 6.
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On n-ary semigroups with adjoint neutral element

Wiestaw A. Dudek and Vliadimir V. Mukhin

Abstract

We prove that we can adjoint an n-ary neutral element to an n-ary semigroup iff this

semigroup is derived from a binary semigroup.

According to the general convention used in the theory of n-ary groupoids

the sequence of elements z;, i1, ...,z; will be denoted by «]. For j < i

it is the empty symbol. If ;41 = x40 = ... = x;44+ = x, then instead
. t

of i} we will write (x). In this convention the symbol f(z1,...,2,)

ot
will be written as f(«}). Similarly, the symbol f(z1, (ac), T, 1) means
flrr, .o @i @y T g1y e o T
——

t
An n-ary groupoid (G, f) is called (i, j)-associative if
. . B - - -
F@h fat )2y = fa 0 a7, a2 (1)

holds for all x1,...,x9,—1 € G. If this identity holds for all 1 <i < j < n,
then we say that the operation f is associative and (G, f) is called an n-ary
semigroup. 1t is clear that an n-ary groupoid is associative if and only if it

is (1, j)-associative for all j = 2,...,n. In the binary case (i.e. for n = 2)
it is a usual semigroup.
An n-ary semigroup (G, f) in which for all zg,z1,...,2, € G and all
i € {1,...,n} there exists an element z; € G such that
f(wi_lv Z, x?+1) = Zo, (2)

is called an n-ary group. It is clear that for n = 2 we obtain a usual group.
Note by the way that in many papers n-ary semigroups (n-ary groups)
are called n-semigroups (n-groups, respectively). Moreover, in many papers,
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where the arity of the basic operation does not play a crucial role, is used
the term polyadic semigroups (polyadic groups) (cf. [8]).

In the paper [1] written by W. Dérnte (under inspiration of Emmy
Noether), he observed that any n-ary groupoid (G, f) of the form

f(zl)=x10290...02500b,

where (G, o) is a group and b belongs to the center of this group, is an
n-ary group but for every n > 2 there are n-ary groups which are not
of this form. In the first case we say that an n-ary groupoid (G, f) is
b-derived (or derived if b is the identity of (G,o)) from the group (G,o),
in the second — irreducible. Obviously, an n-ary operation derived from a
binary associative operation is also associative in the above sense. An n-ary
operation b-derived from an associative operation can be associative also in
the case when b is not in the center. For example, the ternary operation
b-derived from the multiplication of a nilpotent associative algebra of index
7 (the product of any 7 elements is 0) is trivially associative for every b.

In some n-ary groupoids there exists an element e (called an n-ary neu-
tral element) such that

(" e = 3
holds for all x € G and for all ¢ = 1,...,n. There are n-ary semigroups
(groups) with two, three and more neutral elements [9]. Also there are n-ary
semigroups (groups too) in which all elements are neutral. All n-ary groups
with this property are derived from the commutative group of the exponent
kE|(n—1) [2]. In n-ary group the set of neutral elements (if it is non-empty)
forms an n-ary subgroup [5, 6]. In ternary groups each two neutral elements
form a ternary subgroup. Other important properties of neutral elements
one can find in [7| and [12].

As is it well known, to any semigroup (G, o) we can adjoint the identity
e ¢ G in this way that (G U {e},¢) is a semigroup containing (G, o) as its
semigroup. For this it is sufficient to define the operation ¢ as the extension
of o putting x oy =xoy forz,y € G,eve=cand xroe=cecox =z for
zeG.

Natural question is: Is it possible to find the analogous construction for
n-ary semigroups? We prove below that the answer is positive.

First we characterize n-ary semigroups containing at least one n-ary
neutral element.

Lemma 1. An n-ary semigroup containing the neutral element is derived
from a binary semigroup.
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Proof. Let e be the neutral element of an n-ary semigroup (G, f). It is clear

-2
that (G, o), where x oy = f(z, (ne ),y), is a semigroup and e is its neutral

element. Direct computations shows that (G, f) is derived from (G,0). O

From the above proposition we can deduce the following result firstly
proved by W. Dérnte.

Corollary 1. An n-ary group is derived from a binary group if and only if
1t has the neutral element.

Note that any (i, j)-associative n-ary groupoid (G, f) with the neutral
element in the center is an m-ary semigroup [3, 10, 11]. Such groupoid is
associative also in the case when in the center of (G, f) lies at least one
neutral polyad (sequence), i.e., the sequence of elements af € G such that
f(z,ay) = f(ay,x) = = holds for all x € G |3, 11|. Neutral sequences are
in all n-ary groups ([8]), but not in all n-ary semigroups.

Lemma 2. An n-ary semigroup derived from a binary semigroup possess a
neutral sequence if and only if it contains the neutral element.

Proof. Let (G, f) be derived from a semigroup (G,o). If a¥ is a neutral
sequence of (G, f), then e = ag0ago...oa, belongs to G and x oe =
roagoazo...oay = f(x,ay) =z for all z € G. Similarly e o x = x. This
means that e is the identity of (G, o). Hence it is the neutral element of an
n-ary semigroup derived from (G, o).

The converse statement is obvious. O

Corollary 2. If an n-ary semigroup without neutral elements is derived
from a binary semigroup then it does not possess any neutral sequence.

Proposition 1. A neutral element can be adjoint to any n-ary semigroup
derived from a binary semigroup.

Proof. Let n-ary semigroup (G, f) be derived from a binary semigroup
(G,0). Then to (G,o) we can add the identity e ¢ G in this way that
(G U {e}, o) becomes a semigroup with (G, o) as its subsemigroup. In an
n-ary semigroup (G U{e}, g) derived from (G U {e}, o) the element e is neu-
tral and f(z7) = g(2}) for 2} € G. So, to (G, f) we can adjoint the neutral
element e ¢ G. O

Proposition 2. If an n-ary semigroup (G, f) do not contains any neutral
elements, then to (G, f) we can adjoint the neutral element if and only if
(G, f) 1s derived from a binary semigroup.
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Proof. If to an n-ary semigroup (G, f) we can adjoint the neutral element
e ¢ G, then on G U {e} we can define the n-ary operation g such that
g(a}) = f(2f) for all ' € G. By Lemma 1, an n-ary semigroup (GU{e}, g)

(n—2)

is derived from the semigroup (G U {e},*), where z xy = g(z, e ",y).
Obviously (G, %) is a subsemigroup of (G U {e}, x). If not, then there are
a,b € G such that e = a * b which contradicts to the assumption on e. This
means that (G, f) is an n-ary subsemigroup of (G U{e}, g) and it is derived
from (G, ).

The converse statement follows from Proposition 1. O

As a consequence of the above two propositions we obtain the following

Theorem 1. To an n-ary semigroup (G, f) we can adjoint the neutral ele-
ment if and only if (G, f) is derived from a binary semigroup.

From the above proofs it follows that in an n-ary semigroup (G, f)
derived from a semigroup (G, o) the adjoint n-ary neutral element is the
adjoint identity of (G, o).

Corollary 3. An n-ary semigroup (G, f) can be embedded into an n-ary
semigroup with neutral element if and only if it is derived from a binary
semigroup.

Corollary 4. An n-ary group (G, f) can be embedded into an n-ary group
derived from a binary group if and only if (G, f) has at least one neutral
element.

This means that to n-ary groups without neutral element we do not
adjoint any neutral element.

Theorem 2. For every n > 2 there exists at least one n-ary semigroup
(group) to which any n-ary neutral element cannot be adjoint.

Proof. 1t is sufficient to prove that for every n > 2 there exists at least one
n-ary group without neutral elements.
At first consider the multiplicative group G = T'(3,K) of triangular ma-

1 =z y
trices of the form | 0 1 2z |, where K is a field of non-zero characteristic
0 0 1
p. Then the map
1 =z y 1 azr vy
f10 1 z|=]10 1 pgz]|,
0 0 1 0 0 1
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where « is a primitive root of unity of degree n — 1 and af = 1, is an
automorphism of this group. It is not difficult to verify that the set G with
the operation

f(A1, A, .o Ay) = Ay -0(Ag) - 6%(A3) ... - 0" 1(A,) - B, (4)

1 01
where B= | 0 1 0 [, is an n-ary group.
0 01

This group do not contains any n-ary neutral element. Indeed, if A is its
n-ary neutral element, then we have f(X, A, A,...;A) = f(A, X, A,..., A)
for all X € G. Whence, according to (4), we conclude X - A = A - 0X.
Taking the identity matrix as X, we get #A = A. This proves that the
matrix A belongs to the center of the group (G,-). Thus X -A=A-0X =
60X - A, which implies 6X = X for all X € G. This is not true. So, (G, f)
is an n-ary group without neutral elements.

Now we give the another example of n-ary group without n-ary neutral
elements.

Let C be the set of complex numbers and let w be the primitive (n—1)-th
root of unity. Then G' = C? with the operation

xey = (21,72,73) ® (y1,92,¥3) = (71 + Y1, T2 + Y2 + 21Y3, T3 + ¥3)

is a group and 0(x1,22,73) = (w1, w?T2,WT3) is its automorphism.

It is not difficult to verify that (G, g), where
g(X1,X2,...,%Xn) = X1 @ 0(x2) @ %(x3)e... 00" (xy),

is an m-ary group. It is isomorphic to an n-ary group of triangular matrices
from the proof of Theorem 3 in [4].

Similarly as in the previous case we can prove that (G, g) is not derived
from any binary group. O
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Left regular and intra-regular ordered semigroups

in terms of fuzzy subsets

Niovi Kehayopulu and Michael Tsingelis

Abstract

In this paper we extend some results concerning ideals of left regular and intra-regular
ordered semigroups to fuzzy ordered semigroups. A theory of fuzzy sets on ordered
groupoids and ordered semigroups can be developed. Some results on ordered groupoids-
semigroups have been already given by the same authors. The aim of writing this paper
is to show the way we pass from the theory of ordered semigroups based on ideals or
from the theory of poe-semigroups (i.e. ordered semigroups having a greatest element
7¢”) based on ideal elements to the theory of ordered semigroups based on fuzzy ideals.
Then we also have the way we pass from the theory of semigroups based on ideals to the

theory of semigroups based on fuzzy ideals.

1. Introduction

Given a set S, a fuzzy subset of S (or a fuzzy set in S) is, by definition, an
arbitrary mapping f : .S — [0, 1] where [0, 1] is the usual closed interval of
real numbers. If the set S bears some structure, one may distinguish some
fuzzy subsets of S in terms of that additional structure. This important
concept of the fuzzy set was first introduced by Zadeh in [28]. Since then,
many papers on fuzzy sets appeared showing the importance of the concept
and its applications to logic, set theory, group theory, groupoids, real analy-
sis, measure theory, topology, etc. The concept of a fuzzy set introduced by
Zadeh, was applied in [2] to generalize some of the basic concepts of general
topology. Rosenfeld [26] was the first who considered the case when S is a
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Keywords: Ordered semigroup; poe-semigroup; left regular, intra-regular ordered
semigroup; left ideal, ideal; semiprime subset; left ideal element, ideal element,
semiprime element in a poe-semigroup; fuzzy left ideal, fuzzy semiprime subset.
This research has been supported by the Special Research Account of the University
of Athens (grant no. 70/4/5630).



170 N. Kehayopulu and M. Tsingelis

groupoid. He gave the definition of a fuzzy subgroupoid and the fuzzy left
(right, two-sided) ideal of S and justified these definitions by showing that
a (conventional) subset A of a groupoid S is a (conventional) subgroupoid
or a left (right, two-sided) ideal of S if the characteristic function

fes—oalla— = { 05

is, respectively, a fuzzy subgroupoid or a fuzzy left (right, two-sided) ideal of
S. Kuroki has been first studied the fuzzy sets on semigroups [19-24]. See
also Liu’s paper [25] where "fuzzy" analogous of several further important
notions, e.g. those of bi-ideals or interior ideals have been defined and
justified in a similar fashion. Fuzzy sets on semigroups have been also
considered by Kehayopulu, Xie and Tsingelis in [18] and by Kehayopulu
and Tsingelis in [10-12,15]. Fuzzy pseudo-symmetric ideals of semigroups
and their radicals have been studied by K. P. Shum, Chen Degang and Wu
Congxin in |27]|. A theory of fuzzy sets on ordered groupoids and ordered
semigroups can be developed. We endow S with the structure of an ordered
groupoid or semigroup and define "fuzzy" analogous for several notions
that have been proved to be useful in the theory of ordered semigroups.
Following the terminology given by Zadeh, if S is an ordered groupoid
(resp. ordered semigroup), a fuzzy subset of S (or a fuzzy set in S) is any
mapping of S into the real closed interval [0,1]. Based on the terminology
given by Zadeh, fuzzy sets in ordered groupoids have been first considered by
Kehayopulu and Tsingelis in [13,16,17]. Moreover, each ordered groupoid
can be embedded into an ordered groupoid having a greatest element in
terms of fuzzy sets [16]. The aim of writing this paper is to show the
way we pass from the theory of ordered semigroups based on ideals to the
theory of poe-semigroups based on ideal elements, and then to the theory
of ordered semigroups based on fuzzy ideals. Then we have the way we
pass from the theory of semigroups -without order- based on ideals to the
theory of semigroups based on fuzzy ideals. The paper serves as an example
to have an easy comparison among the theory of ordered semigroups (or
semigroups) based on ideals, the theory of poe-semigroups (i.e. ordered
semigroups having a greatest element ”e”) based on ideal elements and the
theory of ordered semigroups based on fuzzy ideals.

Croisot [4] connects the matter of decompositions of a semigroup S
with two other sets of conditions on .S, regularity and semiprime condi-
tions. Croisot uses the term "inversif" instead of "regular". The following
decomposition theorems are well known. A semigroup S is a disjoint union
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of left simple subsemigroups (equivalently, S is left regular) if and only if
every left ideal of S is semiprime. It might be also noted that a semigroup
S is left regular if and only it is just a union of left simple subsemigroups
of S. The results remain true if we replace the word "left" by "right" [3].
A semigroup S is a union of groups, equivalently, a union of disjoint groups
if and only if it is both left regular and right regular [3]. A semigroup S is
intra-regular if and only if it is a union of simple semigroups (cf. [3]). The
characterizations mentioned above can be expressed by means of Green’s
relations as well. For details we refer to [3]. It has been proved in [7] that
a poe-semigroup S is left regular if and only if every left ideal element of S
is semiprime, equivalently, if every left ideal of S is semiprime. Moreover,
a poe-semigroup S is left regular if and only if it is a union of left simple
subsemigroups of S. Exactly as in semigroups, the left regularity of poe-
semigroups can be expressed in terms of Green’s relations as well (cf. [7]).
Furthermore, an ordered semigroup S is left regular if and only if every left
ideal of S is semiprime, equivalently, if S is a union of left regular subsemi-
groups of S. In addition, an ordered semigroup S is left regular if and only
if it is a complete semilattice of left regular and simple semigroups. For
details we refer to [14]. The following structure theorem is known as well:
An ordered semigroup S is intra-regular if and only if it is a semilattice of
simple semigroups, equivalently, if .S is a union of simple subsemigroups of
S 19]. Moreover, an ordered semigroups S is intra-regular if and only if the
ideals of S are semiprime (cf. [9; Remark 3]). In addition, a poe-semigroup
is a semilattice of simple semigroups if and only if it is a semilattice of
simple poe-semigroups.

In the present paper we first give some further characterizations of left
(resp. right) regular and intra-regular ordered semigroups in terms of right
ideals and semiprime subsets, then we characterize the left regular, right
regular and intra-regular poe-semigroups in terms of left ideal elements,
right ideal elements and semiprime ideal elements. Finally we characterize
the left regular, right regular and intra-regular ordered semigroups in terms
of fuzzy left, fuzzy right ideals and fuzzy semiprime subsets.

By a poe-groupoid we mean an ordered groupoid (po-groupoid [1]) S
having a greatest element "e” (i.e. e > a V a € S). A V-semigroup is a
semigroup at the same time a semilattice under V such that a(bVc) = abVvac
and (aVb)c = acVbe for all a,b,c € S [1]. A poe-semigroup or Ve-semigroup
is a po-semigroup or V-semigroup having a greatest element "e”.



172 N. Kehayopulu and M. Tsingelis

2. A characterization of left regular and intra-regular
ordered semigroups in terms of semiprime left ideals

If (S,-, <) is an ordered groupoid and H C S, we denote H the subset of S
defined as follows:

(H={te S|t<hforsomehecH}.

If (S, -, <) is an ordered groupoid, a non-empty subset A of S is called a left
(resp. right) ideal of S if 1) SA C A (resp. AS C A) and 2) If a € A and
S >5b< a,then b € A. A is called an ideal of S if it is both a left and a
right ideal of S |6]. For an ordered semigroup S, we denote by L(a), R(a),
I(a) the left ideal, right ideal, and the ideal of S, respectively, generated by
a (a € S). For each a € S, we have L(a) = (aU Sal], R(a) = (a U aS], and
I(a) = (aU SaUaSUSals] [6].

An ordered semigroup (5, -, <) is called left regular if for every a € S
there exists x € S such that a < za? . Equivalent definitions: 1) A C (SA?]
for every A C S. 2) a € (Sa?] for every a € S. An ordered semigroup
(S,-, <) is called right regular if for every a € S there exists z € S such
that a < a?z. Equivalent definitions: 1) A C (A42%S] for every A C S. 2)
a € (a®S] for every a € S [8]. S is called intra-regular if for every a € S there
exist 7,y € S such that a < za?y. Equivalent Definitions: 1) A C (SA2S]
for every A C S. 2) a € (Sa?S] for every a € S [9].

A subset T of an ordered groupoid S is called semiprimeifa € S, a®> € T
imply a € T. Equivalent Definition: A C S, A?> C T imply A C T [7].
Proposition 2.1. For an ordered semigroup (S,-,<) the following are
equivalent:

1) S is left regular.

2) Every left ideal of S is semiprime.

3) L(a) is a semiprime left ideal of S for every a € S.

4) L(a?) is a semiprime left ideal of S for every a € S.

Proof. 1) = 2). Cf. [14]. It can be independently proved as follows: Let
L be a left ideal of S and a € S, a® € L. Since S is left regular, there exists
x € S such that a < za?. Since a? € L and L is a left ideal of S, we have
za? € SL C L. Since S 3 a < za®? € L and L is a left ideal of S, we have
a€ L.

2 = 3) = 4). It is obvious.

4) = 1). Let a € S. Since a? € L(a?) and L(a?) is semiprime, we have
a € L(a®) = (a®> U Sa?]. Then a < a® or a < za? for some x € S. If a < a?,
then a < aa < aa?. Thus S is left regular. ]
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In a similar way we prove the following two propositions.

Proposition 2.2. For an ordered semigroup (S,-,<) the following are
equivalent:
1) S is right regular.
2) E’uery right ideal of S is semiprime.
3) R ) s a semiprime right ideal of S for every a € S.
4) R(a?) is a semiprime right ideal of S for every a € S. O

Proposition 2.3. For an ordered semigroup (S,-,<) the following are
equivalent:
1) S is intra-regular.
2) Ewvery ideal of S is semiprime.
3) I(a ) is a semiprime ideal of S for every a € S.
4) I(a?) is a semiprime ideal of S for every a € S. O

3. A characterization of left regular and intra-regular
poe-semigroups is terms of left ideal elements

An element a of an ordered groupoid S is called a left (resp. right) ideal
element if xa < a (resp. ax < z) for all x € S [1]. An element which is both
a left and a right ideal element is called an ideal element. One can easily see
that in poe-groupoids, an element a is a left (resp. right) ideal element if
and only if ea < a (resp. ae < a) [5]. We denote by [(a), r(a), i(a) the left
ideal element, right ideal element and the ideal element of S, respectively,
generated by a (a € S). For a Ve-semigroup S, we have l(a) = ea V a,
r(a) =aeVaand i(a) =aVeaVaeV eae for all a € S (cf. also [5]).

Let (S,-,<) be an ordered semigroup. Suppose that S has a greatest
element ”e”, that is S is a poe-semigroup. Then, one can easily see that
S is left (resp. right) regular if and only if a < ea® (resp. a < a’e) for
every a € S. S is intra-regular if and only if a < ea?e for every a € S. For
further information concerning the left, right ideal elements and the left,
right regularity and intra-regularity (in poe-semigroups) we refer to [5]. An
element t of an ordered groupoid S is said to be semiprime if for every a € S
such that a? < t, we have a < t [5].

Proposition 3.1. Let (S,-,<) be a poe-semigroup. We consider the state-
ments:

1) S is left reqular.

2) Ewvery left ideal element of S is semiprime.
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3) l(a) is a semiprime left ideal element of S for every a € S.

4) 1(a?) is a semiprime left ideal element of S for every a € S.
Then 1) = 2). In particular, if S is a Ve-semigroup, then the properties
1) — 4) are equivalent.

Proof. 1) = 2). Let a be a left ideal element of S and ¢ € S such that
t2 < a. Then, since S is left regular, we have ¢ < et? < ea < a.

Let now S be a Ve-semigroup. Then
2) = 3) = 4). It is obvious.

4) = 1). Let a € S. Since a? < l(a?) and I(a?) is a semiprime element
of S, by 4), we have a < I(a?) = a? V ea®. Then a® < a® V ea® < ea?, so
a < ea?, and S is left regular. O

In a similar way the following two propositions hold true.

Proposition 3.2. Let (S,-,<) be a poe-semigroup. We consider the state-
ments:

1) S is right regular.
2) Every right ideal element of S is semiprime.
3) r(a) is a semiprime right ideal element of S for every a € S.

4) r(a®) is a semiprime right ideal element of S for every a € S.
Then 1) = 2). In particular, if S is a Ve-semigroup, then the properties
1) — 4) are equivalent. O

Proposition 3.3. Let (S,-, <) be a poe-semigroup. We consider the state-
ments:

1) S is intra-regular.
2) Every ideal element of S is semiprime.
3) i(a) is a semiprime ideal element of S for every a € S.

4) i(a?) is a semiprime ideal element of S for every a € S.
Then 1) = 2). In particular, if S is a Ve-semigroup, then the properties
1) — 4) are equivalent. O

For the equivalence 1) <= 2) cf. also [5].
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4. A characterization of left regular and intra-regular
ordered semigroups in terms of fuzzy subsets

If S is a groupoid or an ordered groupoid and A C S, the fuzzy subset fa
of S is the characteristic function of A defined as follows:

fA:S—>[0,1Ha—>fA(9U)::{(1) g i;ﬁ

Let (S,-,<) be an ordered groupoid. A fuzzy subset f of S is called a
fuzzy left ideal of S if 1) f(xy) > f(y) for every z,y € S and 2) If z < y,
then f(z) = f(y).

A fuzzy subset f of S is called a fuzzy right ideal of S'if 1) f(xy) > f(x)
for every x,y € S and 2) If x < y, then f(z) > f(y) [13].

A fuzzy subset f of S is called a fuzzy ideal of S if it is both a fuzzy right
and a fuzzy left ideal of S. Equivalent Definition: 1) f(xy) > maz{f(z), f(v)}
for every x,y € S and 2) If x <y, then f(z) > f(y) [13].

Definition 4.1. Let S be a groupoid or an ordered groupoid. A fuzzy
subset f of S is called semiprime if f(a) > f(a?) for every a € S.

For an equivalent definition of the semiprime fuzzy subsets we refer to
[18].

Remark 4.2. If f is a semiprime fuzzy left ideal of S, then f(a) = f(a?)
for every a € S. In fact, let a € S. Since S is a fuzzy left ideal of S, we
have f(zy) > f(y) for each x,y € S, so f(a?) > f(a). Since f is semiprime,
we have f(a) > f(a?), hence we have f(a) = f(a?). Similarly, if f is a
semiprime fuzzy right ideal of S, then f(a) = f(a?) for every a € S.

Lemma 4.3. [13] A non-empty subset L of an ordered groupoid (S, -, <) is
a left ideal of S if and only if the characteristic function fr, is a fuzzy left
1deal of S.

Lemma 4.4. A non-empty subset R of an ordered groupoid (S,-,<) is a
right ideal of S if and only if the characteristic function fr is a fuzzy right
ideal of S. O

Lemma 4.5. (Cf. also [18]) A non-empty subset A of a groupoid (S,.) or
an ordered groupoid (S,-,<) is a semiprime subset of S if and only if the
fuzzy subset fa of S is semiprime. O

Proposition 4.6. An ordered semigroup (S, -, <) is left (resp. right) reqular
if and only if the fuzzy left (resp. fuzzy right) ideals of S are semiprime.



176 N. Kehayopulu and M. Tsingelis

Proof. Let S be left regular, f a fuzzy left ideal of S and a € S. Since S is
left regular, there exists € S such that a < za?. Then, since f is a fuzzy
left ideal of S, we have f(a) > f(za?) > f(a?). Thus f is semiprime.

Conversely, let a € S. Since L(a?) is a left ideal of S, by Lemma 4.3,
the characteristic function fr(,2) is a fuzzy left ideal of S. By hypothesis,
fL(a2) 18 semiprime. By Lemma 4.5, L(a?) is a semiprime left ideal of S.
Then, by Proposition 2.1, S is left regular.

In a similar way we prove S is right regular if and only it the fuzzy right
ideals of S are semiprime. O

Remark 4.7. Each of the following two conditions also characterizes the
left regular ordered semigroups.

1) fL(a) is a semiprime fuzzy left ideal of S for every a € S.

2) fr(a2) is a semiprime fuzzy left ideal of S for every a € S.

Remark 4.8. Each of the following two conditions also characterizes the
right regular ordered semigroups.

1) fR(a) is a semiprime fuzzy right ideal of S for every a € S.

2) fR(a?) is a semiprime fuzzy right ideal of S for every a € S.

In a similar way we have the following:

Proposition 4.9. An ordered semigroup S is intra-regular if and only if
the fuzzy ideals of S are semiprime. O

Remark 4.10. Each of the following two conditions also characterizes the
intra-regular ordered semigroups.

1) fi(e) is a semiprime fuzzy ideal of S for every a € S.

2) fr(a2) is a semiprime fuzzy ideal of S for every a € S. O
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On the prime graph of Ly(q)
where ¢ = p“ < 100

Behrooz Khosravi and Seyyed Sadegh Salehi Amiri

Abstract

Let G be a finite group. We construct the prime graph of G as follows: the vertices of
this graph are the prime divisors of |G| and two vertices p and ¢ are joined by an edge if
and only if G contains an element of order pg. The prime graph of G is denoted by I'(G).

Mina Hagie (Comm. Algebra, 2003) determined finite groups G such that I'(G) =
I'(S), where S is a sporadic simple group. In this paper we determine finite groups G
such that I'(G) = I'(L2(q)) for some ¢ < 100.

1. Introduction

Let G be a finite group. We denote by 7(G) the set of all prime divisors of
|G|. If |7(G)| = n, then G is called a K, —group.

The prime graph (Gruenberg-Kegel graph) I'(G) of a group G is the
graph whose vertex set is 7(G), and two distinct primes p and ¢ are joined
by an edge (we write p ~ ¢) if and only if G contains an element of order
pq. Let t(G) be the number of connected components of I'(G) and let 7y,
T, .-+, Tyq) be the connected components of I'(G). If 2 € 7(G), then we
always suppose 2 € 71. Also the set of orders of the elements of G is denoted
by m.(G). Obviously 7.(G) is partially ordered by divisibility. Therefore
it is uniquely determined by u(G), the subset of its maximal elements.
We know that u(L2(q)) = {p,(¢ — 1)/d, (¢ + 1)/d} and u(PGL(2,q)) =
{p,(q—1),(¢+1)} where ¢ = p® and d = (2,q — 1). Also we know that the
prime graph components of La(g) are cliques (i.e., complete subgraphs).

The structure of finite groups G with disconnected prime graph has been
determined by Gruenberg and Kegel (1975) and they have been described

2000 Mathematics Subject Classification: 20D05, 20D60, 20D08
Keywords: Prime graph, order elements, simple group, linear group.
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in [9, 13, 16]. It has been proved that ¢(G) < 6 [9, 13, 16], and we know
that the diameter of I'(G) is at most 5 (see[14]).

Mina Hagie in [8] determined finite groups G such that I'(G) = I'(S)
where S is a sporadic simple group. Also in [12] finite groups were de-
termined which have the same prime graph as a CIT simple group. In
this paper we determine finite groups G such that I'(G) = I'(L2(q)), where
g < 100 is a prime power. Throughout this paper we denote by (a,b), the
greatest common divisor of a and b.

2. Preliminary results

Lemma 2.1. ([5]) Let G be a finite group, H a subgroup of G and N a
normal subgroup of G. Then

(1) if p and q are joined in T'(H), then p and q are joined in T'(G);

(2) if p and q are joined in T'(G/N), then p and q are joined in I'(G).
In fact if tN € G/N has order pq, then there is a power of x which has
order pq.

Lemma 2.2. (|1]) If G is a simple K3—group, then G is isomorphic to one
of the following groups: As, Ag, La(7), Lo(8), Lo(17), L3(3), Us(3) and
Uy(2).

Lemma 2.3. ([1]) If G is a simple K4—group, then G is isomorphic to one
of the following groups:

A7, Ag, Ag, Alg, My, Mia, Jo, L3(4), L3(5), L3(7), L3(8), L3(17), L4(3),
05(4); 05(5); 05(7); O5<9); 07(2); Og—(2); GQ(?’); 3D4(2); 2F4(2)/; SZ(S);
SZ(32)7 U3(4): U3(5); U3(7)7 U3(8)7 U3(9)7 U4(3): U5(2); L2(Q);

where q is a prime power satisfying q(q> — 1) = (2,q — 1)2213%2p3pas
a; EN (1 <i<4) and?2, 3, p, r are distinct primes.

The next lemma is an immediate consequence of Theorem A in [16]:

Lemma 2.4. If G is a finite group whose prime graph is disconnected,
then one of the following holds: G is a Frobenius group or a 2— Frobenius
group; or G has a normal series 1 <N I M <G such that G/M and N are
mi—groups, N is a nilpotent m1—group and M/N is a non-abelian simple
group.

Corollary 2.1. [16] If G is a solvable group with disconnected prime graph,
then t(G) = 2 and G is either Frobenius or 2— Frobenius group and G has
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exactly two components, one of which consists of the primes dividing the
lower Frobenius complement.

The next lemma follows from [2] and the structure of Frobenius com-
plements:

Lemma 2.5. Let G be a Frobenius group of even order and let H, K
be Frobenius complement and Frobenius kernel of G, respectively. Then
t(G) = 2 and the prime graph components of G are n(H), m(K) and G has
one of the following structures:

(a) 2 € w(K) and all Sylow subgroups of H are cyclic;
(b) 2enw(H), K is an abelian group, H is a solvable group, the Sylow

subgroups of odd order of H are cyclic groups and the 2—Sylow sub-
groups of H are cyclic or generalized quaternion groups;

(¢) 2enw(H), K is an abelian group and there exists Hy < H such that
|H : Ho| <2, Hy=Z x SL(2,5), 7(Z)N{2,3,5} =0 and the Sylow
subgroups of Z are cyclic.

Also the next lemma follows from [2| and the properties of Frobenius
groups:

Lemma 2.6. Let G be a 2— Frobenius group of even order, i.e. G has a
normal series 1 A H I K <G, such that K and G/H are Frobenius groups
with kernels H and K/H, respectively. Then

(a) t(G)=2,m =n(G/K)Un(H) and mo = n(K/H);
(b) G/K and K/H are cyclic, |G/K| | (|K/H|-1) and G/K < Aut(K/H);
(¢) H is nilpotent and G is a solvable group.

Lemma 2.7. Let L be a finite group with t(L) = 3. If G is a finite group
such that T'(G) = T'(L), then G has a normal series 1 I N I M <G such

that G/M and N are m1—groups, N is a nilpotent m—group and M/N is a
non-abelian simple group, where t(M/N) > 3. Also |G/M| | |Out(M/N)].

Proof. The first part of theorem follows from the above lemmas. Since
t(G) = 3, it follows that t(G/N) > 3. Moreover, we have Z(G/N) = 1. For
any N € G/N and N ¢ M/N, N induces an automorphism of M /N
and this automorphism is trivial if and only if N € Z(G/N). Therefore
G/M < Out(M/N) and since Z(G/N) = 1, the result follows. O

Lemma 2.8. ([7|) The equation p™ — q" = 1, where p and q are prime
numbers and m,n > 1, has only one solution, namely 3> — 23 = 1.
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Lemma 2.9. ([7]) With the exceptions of the relations (239)? —2(13)* = —1
and (3)° — 2(11)2 = 1 every solution of the equation p™ — 2¢™ = +1; p, q
prime; m,n > 1, has exponents m = n=2.
Lemma 2.10. (Zsigmondy Theorem) (|17]) Let p be a prime and n be a
positive integer. Then one of the following holds:

(i) there is a prime p' such that p'|(p" — 1) but p"{ (p™ — 1) for every

1<m<n;

(i) p=2,n=1or6;

(iii) p is a Mersenne prime and n = 2.
Lemma 2.11. ([15, Proposition 3.2|) Let G be a finite group and H a
normal subgroup of G. Suppose G/H is isomorphic to PSL(2,q), q odd

and q > 5, and that an element t of order 3 in G\H has no fized points on
H. Then H =1.

3. Main results

In this section we determine finite groups G satisfying I'(G) = T'(L2(q)),
where ¢ < 100 is a prime power.

Theorem 3.1. Let L= Ly(q) where ¢ < 100. If G is a non-abelian simple
group such that T'(G) is a subgraph of T'(L) and m;(L) C m;(G) for2 < i < 3,
then G is one of the groups in the 2nd column of Table 1.

In the table, X is one of the following non-abelian simple groups: L2(q)
such that ¢ = p® is a prime power and g # 72, 16 < ¢ < 100.

Proof. By assumptions we have 7(G) C 7(L). We consider three steps:

STEP 1. If |7(L)| = 3, then L = Lo(5), Lo(7), La(8), L2(9) or Lo(17), by
Lemma 2.2. Also G is a simple K3—group, since G is a non-abelian simple
group. Now by using the atlas of finite groups [6], it follows that the result
holds.

Table 1.
L G L G
L) | L205), L209) || Ta(i1) To(11), M
Lo(7) | La(7), L2(8) || L2(13) Ly(13), G2(3)
Ly(8) | La(7), La(8) || L2(49) | A7, L2(49), Ls(4), Us(3)
Ls(9) | La(5), L2(9) X X
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STEP 2. If |7(L)|=4, then L is isomorphic to one of the following groups:
Ly(11), Ly(13), Ly(16), La(19), La(23), La(25), La(27), La(31), La(32),
L2(37), L2(47), L2(49), L2(53), L2(73), L2(81) and L2(97), by Lemma 2.3.
Since G is a non-abelian simple group and I'(G) is a subgraph of T'(L), it
follows that G is a simple K3—group or a simple Ky—group. For each L,
there exists a prime number p in m;(L), for 2 < ¢ < 3, which is not in 7(G),
for every simple K3—group G [6]. So G is a simple K4—group. Then G is
one of the groups listed in Lemma 2.3. Since the proofs of these cases are
similar, we do only one of them, namely Ly(11).

Let L = L9(11) and G be a simple K4—group such that I'(G) is a
subgraph of I'(L). Since G and L are Ky—groups, it follows that 7(G) =
m(L). Therefore 7(G) = {2,3,5,11}. Hence by using Lemma 2.3 and [6],
it follows that G = Mj;, Mi12,Us(2) or La(q) where ¢ is a prime power
satisfying q(¢® — 1) = (2,q — 1)2213925%11%  where o; € N (1 < i < 4).
We know that 2 ~ 5 in Mjp and 3 ~ 5 in Us(2), but 2 % 5 and 3 ¢ 5 in
I'(L). Hence G = My or G = La(q) where ¢ is a prime power satisfying
q(q® — 1) = (2,q — 1)2213225%311%  where o; € N (1 < i < 4).

If T'(G) = T'(La(q)) is a subgraph of I'(L), it follows that I'(Ls(11)) =
I'(La(q)), since the components of La(q) are cliques. Now we prove that
g=11. We know that u(L2(11)) = {5,6,11}. Note that {p} is a prime
graph component of G = Ly(q) where ¢ = p®, and so p # p’ for every prime
number p’ # p. As I'(L2(11)) = T'(La(q)), it follows that I'(L2(q)) has the
same components as I'(L2(11)). Also 2 ~ 3 in I'(L2(11)) and hence g # 2¢
and g # 3% where a € N. Therefore ¢ = 5% or ¢ = 117 for some «, 3 € N.

If g = 5% then 4| (¢ —1) and so u(La(q)) = {5, (5> —1)/2, (5* +1)/2}.
Also 2 divides (5%—1)/2 and hence 2 € 7((5%—1)/2). Therefore (5%+1)/2 =
11* for some k > 0. Then 5% —2-11% = —1 and as this diophantine equation
has no solution, by Lemma 2.9, we have a contradiction. If ¢ = 117, then
we consider two cases: if 3 is even, then 4 | (11% — 1) and so 2 | (11% —1)/2
which implies that (11° 4 1)/2 = 5*, for some k > 0. Again by using
Lemma 2.9 we get a contradiction. If 8 is odd, then 2 | (11% 4 1)/2 and
hence (117 —1)/2 = 5%, for some k > 0. Now by using Lemma 2.9, it follows
that 8 = k=1. Therefore G = Ly(11) and the result follows.

The proof of the other cases are similar and we omit them for conve-
nience.

STEP 3. Let |7n(L)| = 5. Now by using [6], we can see that L is isomorphic
to one of groups Lo(29), Lo(41), L2(43), Lo(59), Lo(61), Lo(64), L2(67),
Lo(71), L2(79), L2(83) or L2(89). In Steps 1 and 2 we use Lemmas 2.2 and
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2.3. But in this step we have no result about simple Ks—group. Therefore
we use the following method to get the result. Since I'(L) has three com-
ponents and m;(L) C m;(G) for 2 < i < 3, it follows that I'(G) has at least
three components, by Lemma 2.1. Now by using the table of non-abelian
simple groups with at least three components (see [10]), we consider all
possibilities. Again the proof of these cases are similar and for convenience
we do one of them, namely L2(29).

Let L = Ly(29). We know that 1u(L(29)) = {29,14,15}. If G = A,
where p and p — 2 are prime numbers, then we get a contradiction, since
2,3 € m(Ap) and I'(G) is a subgraph of I'(L2(29)). If G = A;(q) where
4| (¢ +1), then ¢ = 29¥ or (¢ — 1)/2 = 29 for some k € N. Since
44 (29% + 1), thus g # 29%. So (¢ — 1)/2 = 29*. Then the third component
of I'(G) is w(q) = {3, 5}, which is a contradiction, since ¢ is a prime power.
If G = Ai(q) where 4 | (¢ — 1), then ¢ = 29% or (¢ + 1)/2 = 29*. First
let ¢ = 29F and k& > 1. Then ¢ — 1 = 29 — 1 has a prime divisor p where
p & {2,7}, by Zsigmondy theorem, which is a contradiction. If k=1, then
G = [5(29). If (¢g+1)/2 = 29%, then 7(q) = {3,5}, which is a contradiction.
If G = Aj(q) where 4 | ¢, then ¢ — 1 = 29¥ or ¢ + 1 = 29 and these
diophantine equations have no solution by Lemma 2.8, a contradiction. If
G = 2By(q) where ¢ = 2?1 > 2 then ¢ — 1 is equal to a power of 3, 5, 7,
29 or ¢—1 = 357 for some, a, 3 € N. The equation ¢—1 = 7% has only one
solution, namely @ = n = 1. Since 29 ¢ 7(Sz(8)), we get a contradiction.
Also the diophantine equations ¢ — 1 = 3%, ¢ —1 =5 or ¢ — 1 = 297 have
no solution by Lemma 2.8. If ¢ — 1 = 3%58 then 3 | (22 — 1), 5| (2* — 1)
and so ¢ — 1 has a prime divisor, except 3, 5 for every n > 2 by Zsigmondy
theorem, which is a contradiction. Also 29 ¢ 7(52(32)) and so n # 2.
Therefore this case is impossible. Since the cases 2D, (3) where p = 2" + 1,
n > 2, 2D,41(2) where p = 2" — 1, n > 2, Ga(q) where 3 | ¢ and 2Ga(q)
where ¢ = 32"*! have similar proofs, we consider only one of them, namely
2D,(3). If G = 2D,(3) where p = 2" + 1, n > 2, then 2,3 € m(2D,(3)).
Since I'(G) is a subgraph of I'(L2(29)) and 2 ¢ 3 in T'(L2(29)), we get a
contradiction.

If G = Fu(q) such that 2 | ¢, ¢ > 2, then m1(G) contains at least
three prime numbers, by Zsigmondy theorem. Since I'(G) is a subgraph of
I'(L2(29)), this gives a contradiction.

By the same method we can show that G' % 2Fy(q) where ¢ = 22"+ > 2.

Since m;(L) C m;(G) for i=2,3, it follows that G is not isomorphic to the
fOHOWiIlg groups: A2(2>7 A2(4)7 2A5(2)7 E7(2)7 E7<3)a 2E6(2)7 M117 M227
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Mgg, M24, Jl, J3, J4, HS, SZ, ON, Ly, COQ, Fgg, F2,4, M, B or Th.

If G = Es(q), then 1 (G) contains at least three prime numbers by Zsig-
mondy theorem, which is a contradiction. Now the proof of this theorem is
complete. O

Corollary 3.1. Let L= Ls(q), where ¢ < 100 and G be a finite simple
group such that |G| = |L|. Then G is isomorphic to L.

Proof. Straightforward from Theorem 3.1. O

Theorem 3.2. Let L= Ly(q), where ¢ < 100 and G be a finite group
satisfying T'(G) = T'(L). Then G is one of the groups in 2nd column of
Table 2 (G means G/O(G)).

Proof. Since t(L) > 3, we can apply Lemma 2.4. Also note that G is
neither a Frobenius group nor a 2-Frobenius group by Lemmas 2.5 and 2.6.
Therefore G has a normal series 1 <N < M <G such that G/M and N are
mi—groups, N is a nilpotent 73 —group and M /N is a non-abelian simple
group, such that M /N satisfies the following conditions:

(1) I'(M/N) is a subgraph of I'(G);
(2) m(L) Cmi(G) Cw(L) fori=2, 3; (%)
(3) I'(G)=T(L).

CasE I. Since Ly(5) and L2(9) have the same prime graph, we only consider
one of them. So let L = Ly(5). By (*) and Theorem 3.1, it follows that
M/N = Ly(5) or M/N = Ly(9). First let M/N = Ly(5). We note that
Out(L2(5)) = Zy [6]. Therefore G/M < Out(L2(5)) = Zz, by Lemma 2.7.
If G/M = Z,, then since La(5).2 has an element of order 6, it follows that
I'(L2(5).2) is not a subgraph of I'(L). Thus G = M and G/O(G) = La(5)
Where © C {2}. Let M/N = L9(9). We know that Out(L2(9)) = Zy x Zs
and there exists three involutions in Zy X Zs.

By using the notations of atlas L2(9).2; and L2(9).25 have elements of
order 6 and 10, respectively [6]. Thus I'(L2(9).21) and I'(L2(9).22) are not
subgraphs of I'(L), and G = M. By the atlas of finite groups, I'(L2(9)) =
F(LQ(Q).23). So G/N = L2(9) or G/N = L2(9).23. If2e 7T(N), then let
P € Syly(N) and Q € Syl3(G). Since N is a nilpotent group, P char N
and N < G, we conclude that P < G. Also 2 o 3 in T'(L), so @ acts fixed
point freely on P. Hence QP is a Frobenius group, with kernel P and
complement Frobenius ). Therefore ) is cyclic. This is a contradiction
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since L2(9) has no element of order 9. Hence we have N=1 and G = L2(9)
or L2(9)23

Table 2.
L G L G
Lo (5) G = Ly(5), m C {2} Lo(41) Lo(41)
L2(9), L2(9).23 L5(43) Lo(43)
L2(7) L2(7) or G = L2(8) LQ (47) L2(47)
T Q {2} L2(49) L2(49), L2(49).23,
L2(8> L2(7) or G = L2(8) G = L3(4), L3(4)2/2
_ nC {2 Ls(4).24,
L(9) G = Ly(5), m C {2} L3(4).25, L3(4).25,
L2(9), L2(9).23 Us(3), Us(3).23, A7
Ly(11) Ly(11) or M1y T C{2,3}
Lo(13) | G = Lo(13) or Go(3) || L2(53) Lo(53)
T C {2,3} Lo(59) Ly(59)
Ly(16) | G = Ly(16), # C {2} || La(61) | G = Ly(61), m C {2,3,5}
Lo(17) Lo(17) Ly(64) | G = Ly(64)), m C {2}
Ly(19) L(19) Lo (67) Lo (67)
L4(23) L5(23) Loy(71) Ly (71)
Ly(25) Lo(25), La(25).23 Lo(73) | G = Ly(73), € {2,3}
Ly (27) Lo (27) Lo (79) Lo (79)
L(29) L(29) L(81) Ly(81) , L(81).23
L4(31) L,(31) L(83) L(83)
Ly(32) G = Ly(32), m C {2} L(89) L(89)
Lo(37) | G =2 Ly(37), m € {2,3} || L2(97) | G = Ly(97), m C {2,3}

CAsE II. Since Lo(7) and Lo(8) have the same graph, we only consider
one of them. So let L = Ly(7). By (x) and Theorem 3.1 it follows that
M/N = Ly(7) or M/N = Ly(8). First let M/N = Lo(7). Therefore
G/M < Out(L2(7)) = Z by Lemma 2.7. Since L3(7).2 has an element of
order 6, I'(L2(7).2) is not a subgraph of I'(L), thus G = M. We know that
N is a 2—group. If 2 € m(N), then M has a solvable {2, 3, 7} —subgroup H,
since Lo(7) contains a 7:3 subgroup [6]. Since there exist no edge between
2,3 and 7 in I'(L), it follows that ¢(H)= 3, a contradiction since t(H) < 2,
by Remark 2.1. Therefore N =1 and G = Lo(7). Let M/N = Ly(8). As
L2(8).3 has an element of order 6 and Out(Ly(8)) = Z3, then I'(L2(8).3) is
not a subgraph of I'(L). Therefore G = M and G/O(G) = L2(8) where
m C {2}.
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CaAskE III. L = Ly(11). By (%) and Theorem 3.1, it follows that M/N =
Ly(11) or M/N = Mj;. We consider both cases simultaneously. Since
Out(L2(11)) = Zs, Out(Mi1)=1 and L2(11).2 has an element of order 10, in
each case it follows that G = M. We know that N is a {2,3}—group. If 2 €
m(N), then M has a solvable {2, 5, 11}—subgroup H, since Ly(11) and M
have a 11:5 subgroup. Then I'(L) yields ¢(H)=3, which is a contradiction,
since t(H) < 2, by Remark 2.1. Similarly 3 ¢ n(N). Hence N=1 and
G= Lz(ll) or MH.

Cask IV. Since L2(13), L2(16>, L2(17), L2(29), L2(32), L2(37), L2(41),
Ly(53), Lo(61), Lo(73), L2(89) and Ly(97) have similar proofs, we con-
sider only one of them. So let L = L3(13). By (*) and Theorem 3.1,
it follows that M/N = Ly(13) or M/N = G3(3). Let M/N = Ly(13).
Since Out(L2(13)) = Zy and L2(13).2 has an element of order 14, it fol-
lows that I'(L2(13).2) is not a subgraph of I'(L). Thus G = M and
G/Ox(G) = Ly(13) where 7 C {2,3}. By the same method easily we
can show that, if M/N = G3(3), then G/O0-(G) = G2(3), where m C {2, 3}.

CAseE V. Since Lg(lg), L2(23), L2(27), L2(31), L2(43), L2(47), L2(59),
Lo(67), La(71), Lo(79) and Lo(83) have similar proofs, we only consider a
few of them. Let L = L2(19). Similar to the last cases, M/N = Ly(19).
Since Out(L2(19)) = Zy and L2(19).2 has an element of order 6, it fol-
lows that I'(L2(19).2) is not a subgraph of I'(L), and so G = M. We
know that Lo(19) has a 19:9 subgroup [6]. If 2 € 7w(N), then M has a
solvable {2,3,19}—subgroup H and I'(L) yields ¢t(H)=3, a contradiction
since t(H) < 2. It follows that 2 ¢ w(NN). Similarly, if 5 € 7(N), then
M has a solvable {3,5,19}—subgroup H. Hence I'(L) yields t(H)=3, a
contradiction. This yields 5 ¢ m(N). Now N—1 and G = Ly(19). Let
L = Ly(43). We know that Out(L2(43)) = Za, L2(43).2 = PGL(2,43) and
PGL(2,43) has an element of order 6, so I'(L2(43).2) is not a subgraph of
I'(L), and G = M. Since L9(43) contains a 43 : 21 subgroup, then N =1
and G = L2(43)

CASeE VI. L = Ly(25). In this case we have M/N = L5(25). We note
that Out(L2(25)) = Zy x Zy and by using the notations of the atlas of
finite groups we know that L9(25).2; and L2(25).25 have element of order
26 and 10, respectively [6]. Thus I'(L2(25).21) and I'(L2(25).22) are not
subgraphs of I'(L), and in this case G = M. By using the atlas of finite
groups, I'(L2(25)) = I'(L2(25).23). So G/N = Ly(25) or G/N = L9(25).25.
If 3 € ©(N), then let P € Syls(N) and @ € Syl5(G). We know that N is
nilpotent and P char N, N < G. Therefore P < G. Since 3 # 5 in I'(L),
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so QP is a Frobenius group, with kernel P and complement Frobenius Q.
Therefore @ is cyclic. This is a contradiction since L2(25) has no element
of order 25. By the same method we can show that 2 ¢ w(N). Therefore
N =1 and G = Ly(25) or G = Ly(25).23.

CASE VII. L = Ly(49). In this case we have M /N = L5(49), A7, L3(4) or
Uy(3). First let M/N = L9(49). We know that Out(L2(49)) = Zy X Zo
and by using the notations of atlas, L(49).2; and L2(49).22 have elements
of order 10 and 14, respectively. Therefore I'(L2(49).21) and I'(L2(49).22)
are not subgraphs of I'(L), and so in this case G = M. But I'(La(q)) =
F(L2(49)23), SO G/N = L2(49) or G/N = L2(49)23 If2e 7T(N), then let
P € Syla(N) and Q € Syl7(G). Since 2 £ 7in T'(L), so QP is a Frobenius
group. Therefore @ is cyclic. This is a contradiction, since L9(49) has no
element of order 49. By the same method we can show that 3 & w(NV).
Therefore N =1 and G = Ly(49), G = L2(49).23. Let M/N = A;. Since
Out(A7) = Zy and A7.2 has an element of order 10, it follows that I'(A7.2)
is not a subgraph of I'(L), and so G = M. Hence G/O,(G) = A; where
m C {2,3}. Let M/N = L3(4). We know that Out(L3(4)) = Za x Ss.
Similar to the last cases it follows that by the notations in the atlas of
finite groups, G/O(G) = L3(4), L3(4).2,, L3(4).25, L3(4).25 or L3(4).2§
where m C {2,3}. Let M/N = Uy(3). We note that Out(Uy(3)) = Ds.
Then similarly we conclude that by the notations of the atlas G/N = Uy(3)
or G/N = Uy(3).23, since 2 » 5 in I'(L). Hence G/O-(G) = Uy(3) or
U4(3).23 where 7 - {2,3}. Since U4(3).21, U4(3).22, U4(3).23 and U4(3).4
have element of order 10, then I'(U4(3).21), I'(U4(3).22), T'(Us(3).23) and
I'(U4(3).4) are not subgraphs of I'(L), and G = M.

CAsg VIII. L = Ly(64). By assumption we have M /N 2 Ly(64). We note
that Out(L2(64)) = Zg X Zs3. Since Ly(64).2 and Lo(64).3 have elements
of order 6, thus I'(Ly(64).2) and I'(L2(64).3) are not subgraphs of I'(L).
Therefore G = M and G/O,(G) = L2(64) where m C {2}.

CASE IX. L = L9(81). By (x), it follows from Theorem 3.1 that M/N =
Ly(81). Since Out(L2(81)) & Zy x Z4 and L9(81).27 and L9(81).29 have
element of order 82 and 6, respectively, thus I'(L2(81).2;) and I'(L2(81).22)
are not subgraphs of I'(L), and in these cases G = M. But I'(L2(81) =
['(L2(81).25. If 2 € w(N), then let P € Syla(N) and @ € Syl3(G). There-
fore P < G. Since 2 3 in I'(L), so QP is a Frobenius group, with kernel
P and complement Frobenius Q). Therefore Q is cyclic. This is a contradic-
tion, since Ly(81) has no element of order 3*. By the same method we can
show 5 & m(N). Therefore N=1 and G = Ly(81) or La(81).23. O
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The application of DES, IDEA and AES

in strong encryption

Czestaw Koscielny

Abstract

The concept of strong encryption by means of DES and IDEA in [9, pp. 295, 324] has
been mentioned. In the paper this thought concerning the commonly used DES, IDEA
and AES algorithms has been developed and generalized.

1. Introduction

It has been announced in [2]| that

... the Data Encryption Standard became effective July 1977. It was reaffirmed in
1983, 1988, 1993, and 1999. The DES has now been withdrawn. The use of DES
is permitted only as a component function of TDEA, and that

with the withdrawal of the FIPS 46-3 standard:

1. Triple DES (i.e., TDEA), as specified in ANSI X9.52, Keying Options 1 and
2, is recognized as the only FIPS approved DES algorithm.

2. Other implementations of the DES function are no longer authorized for pro-
tection of Federal government information.

Note: Through the year 2030, Triple DES (TDEA) and the FIPS 197 Advanced
Encryption Standard (AES) will coexist as FIPS approved algorithms - thus, allow-
ing for a gradual transition to AES. (The AES is a new symmetric based encryption
standard approved by NIST.)

In the light of the presented paper the above decision seems to be ir-
rational because the protection of data by means of the Triple Data En-
cryption Algorithm is much more weaker than that offered by DES, used
according to the method discussed in this work.

The paper is addressed to application researchers well acquainted with
the standards [1], [4] and with the IDEA [3].

2000 Mathematics Subject Classification: 68P25, 94A60, 11T71
Keywords: DES, IDEA, AES, block ciphers, strong encryption
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2. DES, IDEA and AES as a reason of contention

DES, IDEA and AES belong to a class of iterated block ciphers involving the
sequential repetition of a round function and a particular subkey for each
round. For any iterated block cipher encryption procedure is described by
means of the equation

C = E(ks(K), M), (1)

where E denotes two-variable encrypting function, K — a secret key chosen
by the user, and M — a message to be encrypted. The secret key K is not
directly applied in the encryption operation, but it serves as input data for
the function ks, generating a key schedule, i.e. subkeys for each iteration.
A number of cryptologists suspect that the function ks intends to "inject"
into the cryptogram as much additional information about bits of the secret
key K as possible during the encryption process instead of maximizing the
diffusion and confusion. This additional information may deliver — to the
privileged circle of the initiated — a manner of deciphering cryptograms
without the knowledge of the secret key. To verify the justness of this
suspicion one ought to find and analyze an explicit function F', which, taking
into account both the encryption and key schedule generation algorithms,
will allow to express symbolically the cryptogram

C=F(K,M), (2)

and to compute it in one step, using the secret key K and the message M.
But in the case of the iterated block ciphers this task is almost unfeasible.

The author shows in next section how to eliminate this bone of con-
tention.

3. DES—768, IDEA 832, and AES—1408:1664:1920

It has been verified by the author that it is possible to encrypt data using
the DES with the 768-bit key, IDEA with 832-bit key and bringing into play
the AES with the key length equal to 1408 bits, 1664 bits or 1920 bits. In
the case of the strong version of these algorithms the encrypting/decrypting
procedures exactly conform to standards [1] and [4]. To transform DES and
AES into strong ciphers it simply suffices to eliminate the key expansion
algorithms, i.e. to generate arbitrarily the set of subkeys K for all iterations
and to use it as a secret key. Then, applying the same encrypting algorithm
E as in (1), we now compute the cryptogram of the message M according
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to
C = E(K,, M), (3)

and we are sure that all bits of our modified secret key K, participate in
the encryption process. Thus, since DES needs sixteen 48-bit subkeys, in
this way we will obtain the 768-bit secret key to protect a 64-bit block
of data. The IDEA needs fifty two 16-bit subkeys for protecting 64-bit
plaintext block - it means that the modified secret key for this algorithm can
contain 832 bits. Similarly, AES—128, AES—192, AES—256, apply eleven,
thirteen and fifteen 128-bit subkeys for encrypting a 128-bit message block,
respectively. Making use of these sets of subkeys as secret keys we can now
safeguard a 128-bit block of data with secret keys of 1408, 1664 and 1920
bits.

4. Strong symmetric-key block ciphers
related to DES and to AES

Introducing small changes into the considered cryptographic algorithms we
can further strengthen their protecting power. Discussing DES from this
point of view we can treat the initial permutation I P, primitive functions
S1 — Ss (S-boxes), permutation P and selection function F as variables and
in this way enlarge additionally the key space. Since there can be

e r = 64! permutations I P,

o y=(4-16")° sets of 8 S-boxes,

e > = 32! permutations P,

o u = 2%0 gelection functions E,
then the increase of a secret key length will be

Apgs = LWL (4)
that is 1591 bits. Thus, taking into account the previous section, we can
use DES for protection 64-bit data block with key containing 2359 bits.

Some aspects of strong AES encryption have been already considered
in |6]. In the instance of AES, we can get any from 30 irreducible poly-
nomials of degree 8 over GF'(2) to compute in GF'(256). The transforma-
tion SubBytes() may be replaced by any permutation of 256 elements, one
can replace ShiftRows () and InvShiftRows () transformations by a pair of
random mutually invertible permutations acting on elements of the State
array, and MixColumns() and InvMiColumns() transformations by a pair
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of random mutually invertible 4 x 4 non-singular matrices over GF'(256).
In this manner we can get the full protecting power of the AES (with the
secret key up to 3736 bits).

5. Conclusions

In the paper an important application-oriented problem concerning the data
security, has been presented. The author hopes that this work may have
some influence on the future standardization policy in cryptography.

The method presented, with regard to IDEA, may be exactly tested
by the reader by means of the topicIDEA Maple 10 package |7] available
in the Maple Application Center. The author also worked aut StrongDES
and genericAES Maple 10 packages more interesting from the point of view
of teaching and research than the latter, allowing the reader to test the
presented method in the case of DES and AES and to explore precisely
these algorithms.
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A graphical technique to obtain homomorphic
images of A(2,3,11)

Qaiser Mushtag and Munir Ahmed

Abstract

In this paper we have developed a technique by which a suitably created fragment of
a coset diagram for the action of PSL(2,Z) or PGL(2,Z) on projective lines over Ga-
lois fields Fp, p = £1(mod 11), can be used to obtain a family of permutation groups
A2,3,11) =<z, y: 2> =¢* = (xy)' =1>.

1. Introduction

It is well known that the modular group PSL(2, Z) is generated by the linear
fractional transformations z:z — —1/z and y: z — (2 — 1)/z, satistying
the relations #2 = 3 = 1. The extended modular group PGL(2,7) is
generated by the linear fractional transformations = : z — —1/z, y : z —
(z—1)/z,and t : z — 1/z, such that 22 = % = 12 = (2t)? = (yt)? = 1.

Let ¢ = p™ where m > 0 and p is a prime number. A number w € Fj
is said to be a non-zero square in Fy, if w = a? (mod p) for some non-zero
element a in F,. The projective lines over a finite field Fy, F, U {oc}, is
denoted by PL(Fy).

The group PGL(2,q) is a group consisting of all the transformations
z — (az +b)/(cz + d), where a, b, ¢, d € F, and ad — bc # 0. The group
PSL(2,q) is a group containing transformations z — (az+0b)/(cz+d) where
a, b, c,d € Fy and ad — bc is a non-zero square in Fj.

Let A(l,m,n) denote the triangle group < z,y : 2! = y™ = (xy)¥ = 1>.
The triangle group A(l,m, k) is infinite for k¥ > 6. For k < 5, A(2,3,k) is
trivial, Ss, Ay, S4, and Aj respectively. The group A(2,3,6) is an exten-
sion by the cyclic group Cg of a free abelian group of rank 2. For k = 7,
the triangle group A(2,3,k) is a Hurwitz group [1]. The group A(2,3,k),

2000 Mathematics Subject Classification: 05C38, 15A15, 05A15
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when £ = 8,9 and 10 are known to be less interesting. There is rela-
tively less information available about A(2,3,11). We therefore consider
A(2,3,11) and use coset diagrams for the actions of PGL(2, Z) on PL(F}),
p = +1(mod 11) and see for what values of p these actions evolve triangle
groups A(2,3,11) as subgroups of Sp.

A coset diagram for PGL(2, Z) consists of a set of small triangles and
a set of edges. The three cycles of y are denoted by small triangles whose
vertices are permuted counter-clockwise by y and any two vertices which
are interchanged by x are joined by an edge. The action of ¢ is represented
by reflection about a vertical line of axis in the case of PGL(2,Z). The
fixed points of x and y are denoted by heavy dots.

Let PSL(2, Z) act on a space 2. If an element (zy)™! (my‘l)m- . (my‘l)n’
of PSL(2,Z) fixes an element of €2, then the patch of the coset diagram is
called a circuit. We denote it by (n1,ns,...,n;). For a given sequence of
positive integers (n1,ng,ns, ..., ngk) the circuit of the type

(nl,ng,ng, ey MKy M1, N2, N3y e o o Ny o ooy TV, T2, N3, . ,n2k/),

where k' divides k, is said to be a periodic circuit of length 2k'. A trivial
circuit consists of a path followed by its own inverse. A portion of a coset
diagram is called a fragment of a coset diagram. First of all we construct a
fragment composed of two connected, non-trivial circuits such that neither
of them is periodic and more than two vertices in the fragment are fixed
by (xy)!!. Corresponding to two circuits we have two words (elements of
PSL(2,7)), yielding a polynomial f(z) in Z[z] as in [4]. A homomorphism
a: PGL(2,7Z) — PGL(2,q) is called non-degenerate if x, y, t do not belong
to Ker(a). Of course a gives rise to an action of PGL(2,Z) on PL(F,).
Two non-degenerate homomorphisms « and § are called conjugate if there
exists an inner automorphism p on PGL(2, q) such that o = pS. In |5], these
actions, or conjugacy classes, have been parameterized with the elements
0 € F,. Corresponding to each root §(# 0,3) of f(6) = 0 in F,, where
p = +1(mod k), we obtain a conjugacy class of actions of PGL(2,Z7) on
PL(F,) each action evolving A(2,3, k). By D(f, q) we mean a coset diagram
of the conjugacy class corresponding to parameter 6 € F.
We need the following results proved in [4] and [5].

Theorem 1. [4] Given a fragment 7y, where v is a non-simple fragment
consisting of two connected, non-trivial circuits such that neither of them is
periodic, there exists a polynomial F(z) in Z |z] such that

(2) if the fragment v occurs in D (0,q), then F (0) =0,
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(i) if F (0) =0 then the fragment, or a homomorphic image of it occurs
in D (0,q) orin D (0,q), where D (0,q) denotes the diagram with the
vertices from the complement PL (F,2) \PL (Fy).

Theorem 2. [5] The conjugacy classes of a non-degenerate homomorphisms
of PGL(2,Z) into PGL(2,q) are in one-to-one correspondence with the
elements 0 # 0, 3 of Fy. under the correspondence which maps each class
to its parameter.

2. Appropriate fragments

By an appropriate fragment we shall mean a fragment composed of two non-
trivial, connected circuits C; and C9 such that neither of them is periodic
and at least three vertices of this fragment are fixed by (zy)'.

By Theorems 1 and 2, we can find conjugacy classes of non-degenerate
homomorphisms corresponding to the elements 6(# 0,3) in some finite
field Fj,, p = £1(mod 11) obtained from the condition in the form of a
polynomial. Each conjugacy class corresponds to a diagram. These coset
diagrams will be such that every vertex in these diagrams will be a fixed
point of (T y)”, and so by a well known fact that no non-trivial linear frac-
tional transformation in PGL(2,q) can fix more than two vertices in F, it
will depict the triangle group a(A (2,3,11)).

Theorem 3. Let v be an appropriate fragment of a coset diagram for
PGL(2,Z) with at least one of the three vertices as the common vertex
of C1 and Cs. Then there exists a coset diagram D (6, p) containing vy, or
its homomorphic image, representing a(A(2,3,11)).

Proof. Consider v which is composed of two non-periodic circuits C7 and
C5. Let wy and wg be two elements of PSL(2, Z) induced by the circuits Cy
and C9 respectively. That is w1 = zyryryyryry and we = ryyryyryryy.
We can represent w; and wy as matrices W7, = XY XY XYY XY XY and
Wy = XYYXYYXYXYY which are elements of SL(2,Z), where X and
Y are the matrices representing the elements z and y (of orders 2 and 3
respectively) of PSL(2,Z). According to Mushtaq [4], we can express W
and Wy as linear combinations of I, X, Y and XY, that is,

Wi=XI+MX+ XY +A3XY

and
Wa = pol + 1 X + poY + pz XY
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| a ke | d kf . _
We take X—[C —a]’ Y—[f _d_l],wwhtrace(X)—O

and det(X) = A. Then the characteristic equation of X is X2 + Al = O,
and since trace(Y) = —1 and det(Y') = 1, the characteristic equation of Y is
Y24+Y +1I = O. Thus the characteristic equation of XY is (XY)2—r(XY)+
Al = O, where r = trace(XY) and A = det(XY). Also, A = —(a? + kc?)
and d? + d + kf? + 1 = 0. Using these equations, we obtain

(XY)" = {(ngl>r”—1—<n12>r"_3A+....}XY
_A{<”82>7«n—2_<”I?’)r”‘4A+...}I.

After a suitable manipulation of the above equations, we get XY X =rX +
ANI+AY, YXY =rY+Xand YX =71 — X — XY. Of course

(XY)3 = (r? = A)XY —rAl,

(XY) = (r = 2rA)XY — (r2A — A2,

(XY?)?2 =rXY +rX — Al

(XY?)3 = (r2 = A)XY + (r? = A)X — rAI, and

(XY2)t = (r® = 2rA)XY + (r® — 2rA)X — (r?A — A1
Now,

W) = XYXYXY2XYXY
(XY)3Y(XY)2

(r? — AYXY —rAIY (r XY — AI)

(r? = A)XY? — rAY][rXY — Al

(r2 — A)(—=XY — X) —rAY][rXY — Al

=[(~ r +A)XY + ( r2 + A)X — rAY][rXY — Al

=[(-r +rA)XY)2 + (= + rA) XY — 2AY XY + (r?A — A?)XY
+(r 2A A X +rA?Y]

=[(=r +rA)(rXY — AI) + (=3 +rA) (ALY — r2A(rY + X))+

(r 2A — A?)XY + (r’A — A X + rA?Y]

[(—=rt 4+ r2A)XY + (rPA —rA?) + (1A —rA2)Y — 13AY — r?AX
( 2A ADXY + (r’A — A%)X + rA?Y]

=[(r3A —rA)] — A2X +0Y + (—r? + 2r2A — AHXY

and
Wo=XYYXYYXYXYY

= (XY?)*(XY)*Y
= [rXY +rX — All[rXY — AIY
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=[rXY +rX — AIl[rXY? — AY]
=[rXY +rX — AIl[r(-XY — X) — AY]
=

[

rXY +rX — All[-rXY —rX — AY]
= [-r2(XY)? = XY X —rAXY? = r2XY — r2X? — rAXY + rAXY +

=[-r2(rXY — AI) —7?(r X + AY + AI) + rA(XY + X) + r2AY +
Al —rAXY +rAXY +rAX 4+ A%Y]
=7r2AI 4+ (=3 + 2rA) X + A%Y + (=13 + rA)XY.

Using equations
W1 =X + M1 X + XY + A3XY,

Wao = pol + i1 X + p2Y + pus XY,
we obtain A\; = —A% Ay = 0and A3 = (—r*4+2r2A—A2?), 1 = (—r3+2rA),
po = A% and pz = (—r3 +rA).
Now substituting these values in the equation
(Aapiz — p2Xa)® + A (Napr — pshn)? + Az — pada)”

+ 7 (A2pz — p2A3) (Aspn — p3A1) + (Aapz — p2A3) (Mpz — pid2) =0
we get:

0— Az(—r4 +2r2A — Ag)]2 + A[(—r3 + 21"A)(—r4 + 2r2A — AQ)
FAZ(=r3 4 A2+ [-AZA% —0]2 4 7[0 — A2(—r* + 2r2A — A2)]
[(=r3 4+ 2rA) (—r* +2r2A — A?) + A2(—r3 + rA)|+
[0— A2(—r* 4+ 2r2A — A?)][-A* - 0] =0,
[A4(r4 —2r2A + A2)2 + A(T7 —2P9A + A3 — 25 A + 413 A2 — 2r A3
—r3A2 4 7rA3) + A8 4 rA2(rt — 2r2A + A2)(r7 — 2r5A +1r3A2 — 29°A
+4r3AZ — 2rA3 + P3A2Z + TAS) + AG[—T4 + 2r2A — AQ]] =0,
AYA20% — 2A%0 + A2 + Alr" — 4r5A + 4r3A2% — rA3]? 4+ A8
+rA2[AZ02 — 2A20 4+ A2][r7 — 415 A + 4r3 A% — r A3
+AS[—A207 + 2A20 — A?] = 0.
That is,
AB[(0% —20 +1)2 4+ 0(0° — 40% + 40 — 1) + 1+

0(0% —20 +1)(6> — 4602 +40 — 1) + (—6*> +20 — 1)] = 0.
By Theorem 1 we obtain a polynomial f(#) = 67 — 765 + 180° — 200* +
70% 4302 — 20+ 1. If welet f(0) =0, then f(6;) =0 where 6; € F, and
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p = +1(mod 11), then according to our Theorem 2, D (6;,p) is such that
it corresponds to a conjugacy class of non-degenerate homomorphisms «
from PGL(2,Z) into PGL(2,p). This depicts an action of PGL(2,Z) on
PL(F,) and the diagram depicting the action is such that every vertex
in the diagram is fixed by the element (Z%)!!. Since no non-trivial linear
fractional transformation can fix more than two vertices in PL (F),), thus
(Ty)!! = 1 and so the coset diagram represents the homomorphic image of
the triangle group A(2,3,11), that is, a(A(2,3,11)). O

Theorem 4. There ezists only two coset diagrams D(19,67) and D(125,199)
for the action of PGL(2,Z) on PL(F,) depicting a(A(2,3,11)), where
2 < p <1033, and p is a prime congruent to £1 (mod 11).

Proof. In order to obtain the required coset diagram first of all we take
the following fragment v which is composed of two non-trivial, and non-
periodic circuits C7 and Co with the vertex v of + as the common ver-
tex of C; and C% as shown in the fragment. Note that the fragment is
required to contain at least three vertices, namely v, vo and v which
are fixed by (Z7)''. Let wy = zyryryyryry and we = zyyryyryryy
be the elements induced by the circuits C7 and C5 respectively. Notice
that w; and wy are the elements of PSL(2,Z) and represent the matri-
ces Wi = XYXYXYYXYXY and Wo = XYY XYY XY XYY belonging
to GL(2,7), where X and Y are the matrices representing = and y of
PGL(2,7), so (185,185) (0,00)(3,198)(88, 156).

< -
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Asin [4],

W) = XYXYXY2XYXY
=[(r3A —rA)] — A2X +0Y + (—r* + 2r2A — AHXY

and
Wo=XYYXYYXYXYY
=r2Al + (= + 2rA) X + A%Y + (=3 + rA)XY

and by using Theorem 1, we can obtain a polynomial f(6) = 67 — 76% +

1865 — 200* + 763 + 302 — 20 + 1. If we convert this polynomial into an

equation f(f#) = 0, and solve it in the field Fg7, we obtain 19, 60 and

61 as its roots. By using theorem 2 for § = 19, we obtain the matrices
9 38 0 20 0 —2

X—{lg 9}, Y—{lo 1} and T—[l 0 ].Therefore

the corresponding transformations are, T : z — %i’g, Yz 1()22:—071 and
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. -2
t.Zf—)?.SO,

T 33,0)(1,65)(62,2)(3,53)(4, 00)(22,5)(6, 13)
11,64)(12,23)(14, 46)(15, 30)(39, 16)(26, 17
24,25)(31,27)(28, 55) (61, 29)(35, 37)(36, 59
)( (

44, 48)(45,60)(49, 58) (50, 51)(52, 63) (54, 66

7,10)(8,42)(21,9)
(18,34)(19, 32)(20, 47)
(38,40)(41, 57)(43, 56)

o~ o~ o~ o~
—_— — ~— —

’

(0,47, 00)(32,49,1)(65, 15, 46)(48, 2, 61) (45, 66, 53) (3, 3, 3) (44, 44, 44)
(28,14, 4)(33,19,43)(34, 5,51)(42, 13, 63)(31, 25, 6)(22, 16, 41)(10,9, 7)
(38, 37,40)(24, 64, 8)(50, 23, 39)(26, 35, 11)(12, 21, 36) (55, 17, 58)
(30,59, 56)(18, 60, 62) (54, 29, 52)(27, 20, 57),

<

and

8,50) (9, 37)
(20, 20) (21, 35)
(31,41) (32, 46)
AT, AT).

0,00)
10,40
23, 64
33,4)

1,65) (2,66) (3,44) (4,33) (5,13) (6,22) (7,38)
(11,12) (14,19) (15, 49) (16, 25) (17,59) (18, 52
(24, 39) (26, 36) (27, 57) (28, 43) (29, 60) (30, 58
34,63) (55,56) (42, 51) (54, 62) (48,53) (61, 45)

AA/_\/_\
—_— — = —
—~ — — —~

Thus we have a coset diagram D(19,67) in which each vertex of the
diagram is fixed by (z7)"', and we have (z7)'* = 1. Thus the diagram
D(19,67) is a representation of the triangle group a(A (2,3,11)).
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Now solving the equation f(8) = 07 — 76% + 180° — 200* + 763 + 36 —
20 + 1 =0 in Figg, we obtain 125, 159, and 193 as its roots.

. . . . 121 124
For instance, if we consider § = 125, we obtain X = [ 174 —1921 }
Y = 0 14 nd T = as before. The corresponding trans-
Tl | MR T 1 0 ponding
formations are: 7 : z %}é*g‘f, e 7lz - and T : z — =2, Thus,

g

22,0)(106,1)(2, 141)(96, 3)(99, 4)(5, 48)(6, 49)(7, 70)(8, 177)
9,119)(10,101)(31, 11)(18, 12)(13, 60)(14, 185)(165, 15)(16, 69)
113,17)(35,19)(93,20)(104, 21)(43, 23)(181, 24)(59, 25)(91, 26)
27,00)(28, 162)(194, 29)(72, 30)(32, 54) (33, 149) (160, 34)(42, 36)
140, 37) (184, 38)(39, 88)(40, 68) (41, 193) (44, 152)(45, 134)(46, 76)
183,47)(154,50)(51, 157)(52, 112)(53, 147)(110, 55) (114, 56)
131,57)(58, 179)(61, 189)(62, 173)(63, 180) (64, 192)(65, 151)
66,107)(67,105)(71,116)(73,190)(195, 74)(92, 75)(77, 169)
135,78)(79,87)(80, 191)(81,129)(82, 138) (83, 168) (84, 176)

85, 170)(90, 86)(89, 103)(94, 130)(95, 108)(97, 100)(98, 127)

188,102)(109, 133)(111, 121)(115, 171)(117, 128)(118, 175)
120, 144)(122, 196)(123, 159) (124, 172) (125, 136) (126, 155)
132,142)(137,182)(139, 197)(143, 198) (145, 158) (146, 187)
148,186)(150, 164)(153, 156) (161, 178) (163, 167)(166, 174),

N —

)
)
)
)

~—~~ Y~

0

\/\/\/\/\/\/

e N N e e T N T e N N e N e
N N T

<

(0,185, 00) (1,40, 188)(145, 184, 196)(137, 87, 2)(98, 48, 183)
(3,47,186) (138, 182,198)(166, 136, 4)(49, 19, 181)(106, 5, 63)
(180,79, 122)(86, 6,30)(179, 99, 155)(7, 57, 157)(128, 178, 28)
(172,61,8)(124,13,177)(9, 78, 119)(107, 176, 66)(46, 10, 25)
(175,139,160)(131, 11, 24)(174, 54, 161)(69, 36, 12)(149, 116, 173)
(171,14,192)(55, 26, 15)(159, 130, 170)(123, 16, 20)(169, 62, 165)
(167,33,17)(152, 18,168) (74, 43,21)(142, 111, 164)(22, 83, 158)
(102, 163,27)(70, 64, 23)(121, 115, 162) (88, 41, 29) (144, 97, 156)
(146,153, 31) ) 1)

(32,39, 154)(112, 109, 34)(76, 73, 151)(60, 35, 195)
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(150, 125, 189)(82, 56, 37)(129, 103, 148)(134, 117, 38)(68, 51, 147)
(96, 114, 42)(71, 89, 143)(127, 72, 44)(113, 58, 141) (45, 81, 132)
(104, 140, 53)(50, 84, 197)(101, 135, 187)(120, 52, 190)(133, 65, 194)
(90, 67,59)(118, 95, 126)(75, 85, 193)(100, 110, 191)(105, 92, 77)
(93,80, 108)(91, 91, 91)(94, 94, 94),

and

(2,98) (4,49) (5,79) (6,99) (7,28) (8,124) (9,66) (10, 139) (11, 54)
(12,149) (13,61) (14, 14) (15, 159) (16, 62) (17, 152) (18, 33) (19, 136)
(20,169) (21,142) (22,27) (23,121) (24, 174) (25, 175) (26, 130)
(29,144) (30, 179) (31, 32) (34, 76) (35, 125) (36, 116) (37, 129)
(38,68) (39, 153) (40, 184) (41,97) (42, 71) (43, 111) (44, 113)
(45,53) (46, 160) (47, 182) (48,87) (50, 187) (51, 117) (52, 65)
(55,170) (56, 103) (57, 178) (58, 72) (59, 118) (60, 189) (63, 180)
(64,115) (67,95) (69, 173) (70, 162) (73, 109) (74, 164) (75,191)
(77,93) (78,176) (80,92) (81, 140) (82, 148) (83, 163) (84, 135)
(85,110) (86, 155) (89, 114) (90, 126) (91, 94) (96, 143) (100, 193)
(101,197
(

(

(

(

(

) (102, 158) (104, 132) (105, 108) (106, 122) (107, 119)
112,151)

)

)

( )

(120,194) (123, 165) (127, 141) (128, 157) (131, 161)
133,190) (134, 147) (137, 183) (138, 186) (145, 188) (146, 154)
150, 195) ( )
(o,

185, 185)

166,181) (1,196) (167, 168) (171, 192) (172,177)
0)(3,198)(88, 156).

Thus we have the coset diagram D(125,199) (see the next page) in which
cach vertex is fixed by (Zg)™ . We have therefore (z7)™ = 1.

Thus the diagram D(125,199) is a representation of the triangle group
a(A(2,3,11)). O

Corollary 5. For prime p, 2 < p < 1033 such that p = +1(mod 11),
(i) the action of PGL(2,Z) on PL (F,) is transitive,
(73) the diagram of a(A(2,3,11)) is connected.

Proof. (i) Consider the action of PGL(2,Z) on PL (Fg7). Of course, by
Theorem 3, there is only one orbit = {00,0,1,2,...,66} under this action.
Thus the action of PGL(2,Z) on PL (Fgy7) is transitive.

A similar argument shows that the action of PGL(2,Z) on PL(F1g9) is
transitive.



A graphical technique to obtain homomorphic images 205

(7i) The coset diagrams given in theorem 3 are the connected diagrams

of a(A(2,3,11)). O
5 A

Y
~7
@ ~ <]

LY Y|
AN, A
- 3
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Ideals in AG-band and AG*-groupoid

Qaiser Mushtag and Madad Khan

Abstract

We have shown that an ideal I of an AG-band is prime iff ideal (S) is totally ordered; it
is prime iff it is strongly irreducible. The set of ideals of S form a semilattice structure.
We have proved that if a belongs to the centre of S, then S is zero-simple if and only if
(Sa)S = S, for every a in S\{0}. Ideal structure in an AG*-groupoid S has also been
investigated. It has been shown that if [ is a minimal right ideal of S then Ia is a minimal
left ideal of S, for all a in S. It has been shown also that every ideal of an AG*-groupoid
S is prime if and only if it is idempotent and ideal (S) is totally ordered.

1. Introduction

A groupoid S is called an Abel-Grassmann’s groupoid, abbreviated as an
AG-groupoid, if its elements satisfy the left invertive law [4, 5], that is:

(ab)c = (cb)a (1)

for all a,b,c € S.

Several examples and interesting properties of AG-groupoids can be
found in [5], [6], [7] and [8]. It has been shown in [5] that if an AG-groupoid
contains a left identity then it is unique. It has been proved also that an AG-
groupoid with right identity is a commutative monoid, that is, a semigroup
with identity element.

It is also known [4] that in an AG-groupoid S, the medial law, that is,

(ab)(cd) = (ac)(bd) (2)

for all a,b,c,d € S holds.

2000 Mathematics Subject Classification: 20M10, 20N990
Keywords: AG-groupoid, AG-band, AG*-groupoid, minimal ideal, prime ideal,
invertive law, medial law
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2. AG-band

An AG-groupoid whose all elements are idempotents is called an AG-band.
It is easy to see that in an AG-band S for any a,b,c € S, (ab)a = a(ba) and
(ab)e = (ac)(be), (ab)b = ba.

Theorem 1. If an AG-band S contains a left identity e then S becomes a
semilattice with identity e.

Proof. Let x € S. Then
ze = (zx)e = (ex)r =xx =12

implies that x is the right identity for S and so by [5], the AG-bandS
becomes a commutative monoid, that is, a semilattice with identity e. [

Due to Theorem 1, an AG-band with left identity becomes a semigroup

with identity. So we cannot include automatically the left identity in an
AG-band.
In an AG-band every congruence relation is trivially separative.

Theorem 2. If S is an AG-band and a is a fived element in S then
H(a)={z € S:za=uzx}
15 a commutative subsemigroup with identity a.

Proof. Since a € H(a) we conclude that H(a) is non-empty.
Let x,y,z € H(a), then

zy = (za)(ya) = (zy)(aa) = (zy)a

implies that H(a) is a groupoid.
Now
vy = (va)y = (ya)z = yx

shows that H(a) is commutative and so it becomes associative. Also
ar = (aa)r = (za)a = za =z,

imply that H(a) is a commutative subsemigroup of idempotents with iden-
tity @ in S. 0
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Example 1. Let S = {1,2,3,4,5,6} and a binary operation be defined in
S as follows:

1 23456
111 2 2 5 6 4
212 2 2 5 6 4
312 2 3 5 6 4
416 6 6 4 2 5
5|14 4 4 6 5 2
6|5 5 5 2 4 6

Then, as in [11], (5, -) is an AG-band and H (1) = {1, 2} is a semilattice

with identity 1.

The following definitions are given in [10]. If S is an AG-groupoid and
A,B C S, then A and B are called right connected sets if AS C B and
BS C A. Similarly, if S is an AG-groupoid and A, B C S, then A and B
are called left connected if SA C B and SB C A. Also A and B are called
connected sets if they are both left and right connected.

A subset I of an AG-groupoid S is said to be right (left) ideal if 1S C I
(SI CI). As usual [ is said to be an ideal if it is both right and left ideal.

Proposition 1. If A and B are left connected sets of an AG-band S and
A is an ideal, then S(AU B) C A.

Lemma 1. If A and B are ideals of an AG-band S, then AB and BA are
right and left connected sets.

Proof. Using identity (1), we get
(AB)S = (SB)A C BA.

Similarly
(BA)S C AB.

This shows that AB and BA are right connected. Using identity (1),
we get

S(BA) = (SS)(BA) = (BA)S)S = ((SA)B)S C AB.

Also
S(AB) C BA.

This implies that AB and BA are left connected. O
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Proposition 2. A proper subset I of an AG-band S is a right ideal if and
only if it is left.

Proof. Let I be a right ideal of an AG-band S. Then I.S C S, that is, ix € [
for all i € I and x € S. Hence

(i) = (zz)i = (iz)r € (IS)S CISCI

shows that ST C I, that is, I is a left ideal of S. The converse can be proved
similarly. O

It can easily be seen from Proposition 2, that ST C IS.

An ideal P of an AG-groupoid S is prime (semiprime) if for any other
ideals A, B of S, AB C P (A% C P) implies either A C P or B C P
(A C P). A groupoid S is called fully semiprime if every ideal of S is
semiprime. If S is an AG-band then trivially S is completely semiprime.

Lemma 2. For every ideal I of an AG-band S we have

{reS|lar=xforaclI}CTand{x €S |ax=x foracl} CI.

An AG-groupoid S is called totally ordered if for all ideals A, B of S
either A C B or B C A.

Theorem 3. Ewvery ideal of an AG-band S is prime if and only if the set
of all ideals of S is totally ordered.

Proof. Assume that every ideal of an AG-band S is prime. Let P, @ be the
ideals of S. Then PQ C P and PQ C @ imply that PQ C PN Q. Since
PNQ isprime,so PC PNQor Q@ C PNQ imply that P C Q or Q C P.
Hence the set of all ideals of S is totally ordered.

Conversely, let I, J and P be ideals of an AG-band S such that IJ C P.
Being ideals of S they are totally ordered and that I C J. Thus P is
prime. O

Theorem 4. If [ and J are ideals of an AG-band S then IJ =1NJ.

Proof. Let I and J be ideals of an AG-band S. Obviously, IJ C I N J.
Since INJ C I, INJ C J, therefore (I NJ)2 C1.J. O

By Theorem 4, IJ = JI. Therefore the following Lemma is an easy
consequence.
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Lemma 3. The set of ideals of an AG-band S form a semilattice structure.

An ideal I of an AG-groupoid S is said to be strongly irreducible if and
only if for ideals H and K of S, H N K C I implies that H C I or K C [I.
This leads to the following important theorem with a rather straight forward
proof.

Theorem 5. In an AG-band every ideal is strongly irreducible if and only
if it is a prime ideal.

An AG-groupoid S is (left, right) simple, if S contains no proper (left,
right) ideals. Left simple, right simple and simple AG-bands coincide. The
AG-band from Example 1 is not simple because {2,4,5,6} is a proper ideal
of S.

An AG-groupoid S with zero is called zero-simple if {0} and S are its
only ideals and S? # {0}.

Example 2. Let S = {1,2,3,4} and the operation be defined on S as
follows:

|12 3 4
11 4 2 3
213 2 4 1
314 1 3 2
412 3 1 4

Then, as in [11], (S,-) is a simple AG-band. If we adjoin 0 in S then it
become a zero-simple AG-band.

Theorem 6. If aS = Sa for all non-zero a in an AG-band S, then S is
zero-simple if and only if (Sa)S =S.

Proof. Clearly S? # {0} and S® = S. Now for any a in S\{0} the subset
(Sa)S of Sis an ideal of S. Therefore either (Sa)S = S or (Sa)S = {0}. If
(Sa)S = {0}, then the set [ = {z € S: (Sx)S = {0}} contains an element
other than zero, and I becomes an ideal of S. As S is zero-simple so by
definition I = S, that is, (Sz)S = {0} for every =z in S. This implies that
S3 = {0}. But this is a contradiction to the fact that S = S Hence
(Sa)S = 5.

Conversely, assume that, (Sa)S = S for every a in S\{0}. Also if A is
an ideal of S containing a, then (SA)S C A implies (Sa)S C A. O

Corollary 1. S is simple if and only if (Sa)S =S.
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Proof. 1f S is a simple AG-band, then (Sa)S is an ideal of S and so (Sa)S =
S. Conversely, if (Sa)S = S for all a € S, then we need to show that S is
simple. Let A be an ideal of S and a € A. Then (SA)S C A implies that
(Sa)S C A. Now, if 0 € S, then (S0)S = {0} # S. As (Sa)S = S holds for
all a € S, it means that 0 ¢ S. Hence S without zero has no ideal except S
itself. O

An ideal M in an AG-groupoid S with zero is called zero-minimal if it
is minimal in the set of all non-zero ideals.

Proposition 3. If M is a zero-minimal ideal of an AG-band S such that
aS = Sa for all non-zero a € S, then M is a zero-simple AG-band.

Proof. Clearly M = M?3 and if a € M\{0}, then (Sa)S is an ideal of S
contained in M. It is non-zero, since it contains a, and so (Sa)S = M.
Thus using (2) and (1) we get

(Ma)M C (Sa)S = M = M3 = (M((Sa)S))M C (Ma)M,
which implies (Ma)M = M. By Theorem 6, M is zero-simple. O

Proposition 4. Let S be an AG-band without zero. If K is a minimal ideal
of S, then K is a simple AG-band.

Proof. Note that 0 ¢ S implies 0 ¢ K. As K is uniquely minimum so it
cannot contain any other ideal of S. Hence K is a simple AG-band. 0
3. Ideals in an AG*-groupoid

An AG-groupoid S is called an AG*-groupoid if it satisfies one of the fol-
lowing equivalent weak associative laws [10]:

(ab)e = b(ac), (3)

(ab)e = b(ca). (4)
From (3) and (4), we obtain

b(ac) = b(ca) (5)

for all a,b,c € S.
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If all elements of an AG*-groupoid S are idempotent, then S = S?. This
further implies that S is a commutative semigroup [10].

If S is an AG*-groupoid and a = a? (for a fixed element a € S) then,
as it is proved in [10], aS = Sa and (za)y = z(ay) for any z,y € S. If a
belongs to Sa = a8, then Sa = a5 is a semilattice.

A non-associative left simple (right simple, simple) AG*-groupoid does
not exist [9]. SA is a left ideal of an AG*-groupoid S for all subsets A of S.

Lemma 4. If I is a right ideal of an AG*-groupoid S and J is a subset of
S then I1J is a left ideal of S and it is a right ideal if IJ = JI, and a(1J)
{(JI)a} becomes a left (right) ideal of S.

Proof. The proof is straight forward. O
By K we shall mean the set of all ideals of an AG*-groupoid S.
Proposition 5. In any AG*-groupoid:

(1) K has associative powers,

(i3
(i

Proof. The proof is obvious. O

)

(it) I™I™ = I™*" for all I € K,
) (I™)" =1™", for all I € K and all positive integers m, n,
v)

(AB)" = A"B" forn > 1 and (AB)" = B"A™ forn > 2, VA, B € K.

Lemma 5. If I is an ideal of an AG*-groupoid S then so is I™ for n > 2.

Proof. Let I be a right ideal of an AG*-groupoid S and = = ij € I? where
i,7 € I. Using identity (3), we get

s(ij) = (is)j C 1T = I?,
(if)s = j(is) C 11 = I,

which shows that I? is an ideal of S. Now suppose that I"~! is an ideal.
Then using (1), (3), and Proposition 5(i7), we get

S = (I""'1S = (SNI"' C I[I"~! =™,
SIm = §(I"11) = (I1S)I"1 C I™,

which completes the proof. O
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Lemma 6. If I is an ideal of an AG*-groupoid S and a = a2, then al® is
an ideal of S.

Proof. Using Proposition 5(iv) and identity (3), we get I?a = aI®. Then it
is not difficult to see that al? is an ideal. O

An ideal I of an AG-groupoid S is called minimal if and only if it does
not contain any ideal of S other than itself.

Theorem 7. If I is a minimal right ideal of an AG*-groupoid S then for
all a € S Ia is a minimal left ideal of S.

Proof. Let I be the minimal right ideal of an AG*-groupoid S and = = ia €
Ia, where i € I. Then using identity (3) we get sz = s(ia) = (is)a € Ia
which shows that Ia is a left ideal of S. Let H be a non-empty left ideal of
S properly contained in Ia. Define H' = {r € [ :ra € H}. If y € H’, then
ya € H, and so (ys)a = s(ya) € SH C H, imply that H' is a right ideal of
S properly contained in I. This is a contradiction to the minimality of I.
Hence Ia is a minimal left ideal of S. O

Theorem 8. If I is a minimal left ideal of an AG*-groupoid S then al
(a? = a) is a minimal right ideal of S.

Proof. Let ai € al where I is a minimal left ideal of an AG*-groupoid S.
Then using identities (3) and (2) we get

ia =i(aa) = (ai)a = (ai)(aa) = (aa)(ia) = a(ia) = (aa)i = ai.

Also (ai)s = (ia)s = a(is) € al, shows that al is a right ideal of S.
Let H be a non-empty right ideal of .S properly contained in al. Define
H' = {r:ar € I}. Then a(sy) = (sy)a = (ay)s € HS C H imply that H’
is a left ideal of S properly contained in I. But this is a contradiction to
the minimality of I. Hence al is a minimal left ideal of S. O

Theorem 9. Every ideal of an AG*-groupoid S is prime if and only if it is
tdempotent and the set of all ideals of S is totally ordered.

Proof. Let every ideal of S be prime. Assume that [ is any ideal of S. Then
I? is an ideal of S by Lemma 5. Also I? C I implies that I C I? or I = I°.
If P and Q are any ideals of S then, PS C P and SQ C @ implies that
PQ C Pand PQ C @, and so PQ C PNQ. Since intersection of two prime
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ideals is prime. So, P C PN Q or Q@ € PN Q. This implies that P C @ or
@ C P. Hence the set of all ideals of S' is totally ordered.

Conversely, assume that every ideal of S is idempotent and the set of

all ideals of S is totally ordered. Let I, J and P be any ideals of S such
that IJ C P with I C J. Then I = I?> = II C IJ C P, implies that every
ideal of S is prime. 0
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Skew endomorphisms on n-ary groups
Nikolay A. Shchuchkin

Abstract

Let Z® denote this element of an n-ary group G which is skew to Z* 1, where k > 1
and ¥ = z. We find the identities defining the variety of all n-ary groups for which the

(k)

operation : 2 — ™ is an endomorphism.

1. Introduction

According to the general convention used in the theory of n-ary systems
the sequence of elements z;,x;11,...,2; will be denoted by x. In the case
j < 4 it will be the empty symbol. If ;11 = 2442 = ... = xj4¢+ = z, then

i+t

t
instead of x; 1] we shall write (x). In this convention f(z1,...,zy,) = f(z])

and )
ot
f(xla sy Lgy Ly ooy Ty Lt 1y v - - 756?1) = f(x7i7 xva:;l—&-t—i-l)'

t
If m =k(n —1)+ 1, then the m-ary operation g of the form

9@ = (e ), 2200 ) 2 e o)
k

will be denoted by f(x). In certain situations, when the arity of g does not
play a crucial role or when it will differ depending on additional assump-
tions, we will write f() to mean f() for some k=1,2,....

For n > 3, there are several equivalent definitions of an n-ary group (see
for example, [2], |6], [8], [L0]). The definition given in [1| generalizes the
definition of a binary group as follows:

The algebra (G, f) with the n-ary operation f is called an n-ary group
if for every ¢ = 1,2,...,n the following two conditions are satisfied:

2000 Mathematics Subject Classification: 20N15
Keywords: n-ary group, skew element, endomorphism.
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1. the operation f satisfies the general associative law:

FF@D), 22nh) = f(@h, fiD), 270, (1)

2. the equation f(ail_l,ac, aj ;) = b has a unique solution z € G for all
Aly.eeyAj—1,Q541, - .y Gn,bEG™.

An algebra (G, f) satisfying (1) for all ¢« = 1,2,...,n is called an n-ary
SEMIGroup.
In an n-ary group (G, f) the solution z of the equation

(n—1)

f( x 7'2):337

is denoted by T and is called the skew element of x.
One can prove (see for example [1]) that

N = 1<ign,

for all z,y € G.
Identities (1), (2) and (3) can be used as identities defining the variety
of all n-ary groups (see [2], [6], [8], [10]).

For example, in [6] the following theorem is proved.
Theorem 1.1. An n-ary (n > 2) semigroup (G, f) with the unary operation

:x — T is an n-ary group if and only if the identities (2) and (3) hold in
G for some 1 <i,j <n— 1.

(n—1)

Following Post [11], we say that two sequences a7~ " and blf of ele-
ments of G are equivalent in an n-ary group (G, f) if the equation
_ k(n—1
f.ai™) = fy(a,07Y) 4)

is valid for some z € G.

Lemma 1.2. If in an n-ary group (G, f) the sequences a?' and blf(”_l)

are equivalent, then the equation (4) is valid for all x € G.
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Proof. Indeed, if this equality holds for some =z, a’f_l, b]f(nfl) € G, then

(n—3) _ e (n—3) _ n—
f(y7 €T ,.%',f(.%’,(ll 1)) :f(y> €T awaf(k)($7blf( 1)))

is valid for all y € G. Whence, according to the associativity of f, we obtain

(n=3) _ ne (n=3) _ n—
f(f(y7 Z ,x,a:),al 1):f(k)(f(y7 €z 7x7m)7b’1€( 1))

This, by (2), implies

f(y7 a?_l) = f(k) (y7 b’f(n_l)>7

which completes the proof. O

2. Skew endomorphisms

W. A. Dudek posed in (|5]) several problems on the operation ~: x — T on
n-ary groups. He asks (see also [4]) when this operation is an endomorphism,
i.e., in which n-ary groups the identity

f&?) = f(@1, T2, .., Tn) (5)

is satisfied.
The partial answer was given in [5]. Other answer is given in [13].
Namely, in [13] the following theorem is proved.

Theorem 2.1. The operation ~: x — T is an endomorphism of an n-ary

group (G, f) if and only if
70 ") ),
(n—1) (n) (n)
fCY S flu flz,w),... flz, w),z,u),u)

(2)

u) =

and
1 n—1 n

f(zﬁj’af(n5 7“7“)) = f(f( € 7u7u)7u)
hold for all xz,y,u € G.
It is clear that ~ : z — T is an endomorphism in all commutative n-ary

groups. Obviously, it is an endomorphism in all idempotent (also non-
commutative) n-ary groups. Glazek and Gleichgewicht proved in [9] that
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it is an endomorphism in all medial n-ary groups, i.e., in n-ary groups
satisfying the identity

FEFEDNED = FAF @YD (6)
One can prove (see [2]) that an n-ary group (G, f) is medial if there exists
an element a € G such that

f((l), (”52)7 y) = f(y7 (nc_l2)7 .73) (7)

holds for all z,y € G.
Using (7) and the associativity of the operation f it is not difficult to
verify that the following theorem is true.

Theorem 2.2. Each medial n-ary group satisfies the identity

(n—2) (n—2) (n—2)
f(n—l) (‘/Ela T2 5 T3 5...,Tn+1, :L‘n+2) -
f(wla f(x'n+la Tpyyeeey x?)v LR f(l'n+1> Tpyeeny xQ)a xn+2)- (8)

n—2 times

The identity (8) describes the class of n-ary groups for which ": x — T
is an endomorphism.

Theorem 2.3. The operation ~: x — T is an endomorphism of an n-ary

group (G, f) if and only if (G, f) satisfies (8).

Proof. Let ~: x — T be an endomorphism of an n-ary group (G, f), i.e., let
(5) be satisfied. Then, according to (2) and (3), for any 2572 € G we have

_ _ _ (n=2) (n—2) (n—2)
-0y (f(@ng1, Ty, T2), T2, X370, Ty 1, Tny2) = Tng2
and
f(f(-fn—&-lvxnr"a CCQ), f(xn-f—la xnv"wa)v o 7f(a:n+17xn7"'7$2)7 $n+2):$n+2

v

~
n—2 times

for all elements x
(n—2) (n—2) (n—2)
Xy T3 ey Tptl, Tnt2 ANd f(Tpi1, Try ooy 2)seesy [(Tnt1, Ty ooey T2), Tt

2+l € G, which, by (5), means that the sequences

n—2 times
are equivalent. So, in view of Lemma 1.1, the equality (8) is valid for

all 271! € G.
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Conversely, let (8) be satisfied in an n-ary group (G, f). Then putting

Ty = f(ylayQa cee 7?71)7 Tn42 = f(y?) and Tk = Yn+2—k for 2 < k <n+1we
see that the left hand side of (8) has the form

_ _\ (n=2) (n-2) (n=2) ——= Ty
f(n—l)(f(ylay% 3 TUn)s Yn s Yn—1,---, Y1 7f(y?)) = f(y?)

On the right side of (8) we obtain

f(f(ylay% cee 7?n)7f(y711)7 cee 7f(y711)7f(y?)) = f(ylvy% cee ?gn)

n—2 times

So, f(y}) = f(¥1,Y2s--.,7,) for all yf € G. This completes the proof. [

This theorem proves that the converse of Theorem 2.2 is not true. In-
deed, in any idempotent n-ary group the operation ~: x — ¥ is the identity
endomorphism but not any idempotent n-ary group is medial [11].

Let Z®) be the skew element to Z* Y, where k > 1 and 70 = z, i.e.,
let 7MW =% 7@ =7, and so on. If ~: z — T is an endomorphism of an
n-ary group (G, f), then obviously “0) .z 7M™ isan endomorphism too.
In some cases it is an automorphism (see [4] and [5]). However, the converse
is not true. For example, in all ternary groups T = =z, i.e., the operation
~@ .z T is the identity endomorphism, but in a ternary group (Ss, f)
defined on the symmetric group S3, where f is the composition on three
permutations, we have

f((12), (13), (123)) # (132) = f((12), (13), (132)).

Hence ™ : x — T is not an endomorphism of this group.
Since in ternary groups T = z for all z, we have z*) = 2 if k is even,

and T*) = T if k is odd. Therefore, the operation ~®) g — 7® s the
identity endomorphism or coincides with the operation = : x — Z. From
the last theorem it follows that ~ : x — 7 is an endomorphism of a ternary
group if and only if this group is medial. In this case ~ : x — T is an
automorphism.

Other important properties of operations “k) Ly s 7® n-ary groups
satisfying some additional properties are described in |3| and [4].

Following Post [11] an n-ary power of an element z in an n-ary group

n—1
(G, f) is defined as <> = 2 and z<F+1> = f(( x ),x<k>) for all & > 0.
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: : (n—2)
In this convention z<~*> means z € G such that f(z<F"1> "2 2) =
2<0> _ 4

It is not difficult to verify that the following exponential laws hold
f(l‘<51> r<s2> $<5n>) — x<81+82+...+8n+1>

(x<r>)<s> — p<rs(n—1)+s+r> ::(x

<s>)<r>‘

Using the above laws we can see that T = <"1~

and, consequently
72 — (x<_1>)<_1> — 1.<n—3>7

(3) — ((a:<_1>)<_1>)<_1>,

5]

and so on. Generally: z (k) = (j(k—l))<—1> for all k > 1. This implies
(see [3] or [4]) that Z®*) = <S> for

k-1

_ i 2-n)lf-1
Sk = ;(2 n)_in—l .
_ (n—2)F—1
For even k we have S = “—=7—. Hence
— (k) ((n—=2)%)
V= fo( ) (9)

— —2)2
for even k. In particular T = 2<"73> = f(n_g)(((nac ) )). Thus the operation

k) . 2 — 7(® coincides with the operation <S¥> : x — <S> So, the

operation “®) 5y 5 7® s an endomorphism if and only if

F@)S5> = flay ™7 a5, )

is valid for all 27 € G. This implies

k)

Theorem 2.4. For even k the operation “® s z® s an endomor-

phism of an n-ary group (G, f) if and only if the identity

fo(f@), o @) = fooC oz ' @’ e, )

(n-2)*

15 satisfied.
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Theorem 2.5. For odd k the operation “®) Ly 7R s an endomorphism
of an n-ary group (G, f) if and only if the identity

(n=2)%) ((n—2)") ((n=2))
f(-)(xl) 2 , I3 .- Tptl a$n+2) =

f(.)(xl,f(xn+1,$n, < 7x2)7 R ,f(l'n+1,xn, R 7$2>1xn+2)7

(n—2)k

15 satisfied.

Proof. Let k be odd and let ~0) 2 — 7™ pe an endomorphism of an
n-ary group (G, f). From (2), (3) we get

(n=2)%) (=27 (n=2) _ (n=2) _
f()(ya zr o, €T ):f()(ya r ,T,..., T ,IL‘):y, (]-]-)
(=271 ((n-2)%) _ (n-2) _ (n=2)
fot = Ly)=fu(z, ..., T, xy)=y  (12)
Consequently
(n=2)*"1) ((n=2)*71) ((n=2)*"1)  ((n—2)k n—2)k
folfoC Tny T o, T2 ), w ), Tnt2) = Tn2
and
f(,)(f(xn+1, Tpy .- - ,.%'2), ce ,f(:L'n+1, Lpy - ,372) 5
(n—2)k-1
f($n+laxna L) 7:62)) ey f(xn+1axn’ R 7:172)1) xn+2) - xn+2-
(n—2)*
— (k- ((n=2)%1)
Since k — 1 is even, by (9) we have z(¥) = (7) = o @ ) forall
x € G. Thus
(k) _
f(xn-i-la Tny oo ,.’132) - f()(f(xn-i—la Tny .- 7'7:2)’ sy f(xn+17$n7 sy 1'2))
(n—2)k-1
and

(=21 (=21 ((n-2)1) o
foC Tppr s T .., T2 ):f(,)(xfl_gl,xqg),...,azé )),
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whence

(n=2)F=1) ((n—2)*~1) (n—2)%—1)
f()( Tn+1 In geeey T2 =

f(~)(f($n+la$n7- . -,$2), .. '7f(x’n+1a:1:na cee 7$2))'

-~

(n—2)k—1

This, together with the above two identities containing x,t2, means
that the sequences:

((n=2)%) ((n—2)%) ((n—2)%)
x2 ) T3 DRI :UnJrl ,xn+2
and
f($n+1, Tny .- - >$2)a PN f(anrl’xna cee 7:E2) y Tp42

(n—2)*

are equivalent. Hence, by Lemma 1.2, the equality (10) is valid for all
In+2 cG
7 .
On the other hand, if (10) is valid for all z7"? € @, then for

(n=2)F~1) ((n=2)F1) ((n—2)*1)

v1=foC T s Yz s Tn )
Tk = Ynto—k, for k=23,...,n+1,

(n—2)k—1

it has the form

((”*E)k_l) ((nfg)k_l) (n=2)%)  ((n—2)%) ((n—2)%) ((n_Q)kil)
FolfoC T ooy T Do Yneeos ¥2 oyt Lo flyh) ) =

k—l)

((n—g)kfl) ((n_z)k—l) ((n—2)k) ((n—2)
foloC o e T s £ Fo( T ).

Whence, applying (11) and (12), we obtain

(=25 ((r=2/1) (=2

foC f@8) )=foC U ey Uno )
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But, by (9), for all y € G we have f,( 7 )= (7) *=1) 7% Thus,
the last identity implies

f) “

k)

Therefore, “0) s 5 7® s an endomorphism. O

Note that for any finite n-ary group there exists a natural number m
such that Z("™ = z holds for all z € G. The same holds also in some
infinite n-ary groups (see for example [3]). In these groups endomorphisms

“R) Ly 7 ®) are automorphisms.
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