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Anti fuzzy Lie ideals of Lie algebras

Muhammad Akram

Abstract

In this paper we apply the Biswas's idea of anti fuzzy subgroups to Lie ideals of Lie
algebras. We introduce the notion of anti fuzzy ideals in Lie algebras and investigate
some of their properties.

1. Introduction

Lie algebras were discovered by Sophus Lie (1842-1899) while he was at-
tempting to classify certain "smooth" subgroups of general linear groups.
The groups he considered are now called Lie groups. He found that by tak-
ing the tangent space at the identity element of such a group, one obtained a
Lie algebra. Problems about the group could be reduced to problems about
the Lie algebra in which form they usually proved more tractable. There
are many applications of Lie algebras, such as spectroscopy of molecules,
atoms, nuclei and hadrons. Physical applications of Lie algebras include
rotations and vibrations of molecules (vibron model), collective modes in
nuclei (interacting boson model), the atomic shell model, the nuclear shell
model, and the quark model of hadrons.

The notion of fuzzy sets was �rst introduced by L. A. Zadeh [12]. Fuzzy
set theory has been developed in many directions by many scholars and has
evoked great interest among mathematicians working in di�erent �elds of
mathematics. There have been wide-ranging applications of the theory of
fuzzy sets, from the design of robots and computer simulation to engineering
and water resources planning. A. Rosenfeld [9] introduced the fuzzy sets
in the realm of group theory. Since then many mathematicians have been
involved in extending the concepts and results of abstract algebra to the
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broader frame work of the fuzzy setting. Fuzzy ideals in Lie algebras have
been studied in [2, 3, 7, 8, 10, 11]. In this paper we apply the Biswas's
idea of anti fuzzy subgroups to Lie ideals of Lie algebras. We introduce
the notion of anti fuzzy ideals in Lie algebras and investigate some of their
properties.

2. Preliminaries

In this section we review some elementary aspects that are necessary for
this paper.

De�nition 2.1. A Lie algebra is a vector space L over a �eld F (equal
to R or C) on which L × L → L (x, y) → [x, y] is de�ned satisfying the
following axioms:

(L1) [x, y] is bilinear,

(L2) [x, x] = 0 for all x ∈ L ,

(L3) [[x, y], z]+ [[y, z], x]+ [[z, x], y] = 0 for all x, y, z ∈ L (Jacobi identity).

In this paper by L will be denoted a Lie algebra. We note that the
multiplication in a Lie algebra is not associative, i.e., it is not true in general
that [[x, y], z] = [x, [y, z]]. But it is anti commutative, i.e., [x, y] = −[y, x].

De�nition 2.2. Let L1 and L2 be Lie algebras over a �eld F . A linear
transformation f : L1 → L2 is called a Lie homomorphism if f([x, y]) =
[f(x), f(y)] for all x, y ∈ L1.

De�nition 2.3. A subspace H of Lie algebra L is called Lie subalgebra if
[x, y] ∈ H for x, y ∈ H. A subspace I of L is called Lie ideal of Lie algebra
if for all x ∈ I, y ∈ L implies [x, y] ∈ I, i.e., [I, L] ⊆ I.

De�nition 2.4. A fuzzy set γ, i.e., a map γ : L → [0, 1], is called a fuzzy

Lie subalgebra of L if

(a) γ(x + y) > min{γ(x), γ(y)},

(b) γ(αx) > γ(x),

(c) γ([x, y]) > min{γ(x), γ(y)}

hold for all x, y ∈ L and α ∈ F .
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De�nition 2.5. A fuzzy subset γ : L → [0, 1] satisfying (a), (b) and

(d) γ([x, y]) > γ(x)

is called a fuzzy Lie ideal of L.

A fuzzy ideal of L is a fuzzy subalgebra [2] such that γ(−x) > γ(x)
holds for all x ∈ L. According to Zadeh's extension principle the bracket
[·, ·] on L can be extended to the bracket � ·, · � de�ned on the set of all
anti fuzzy sets on L in the following way

� γ, λ � (x) = inf{max{γ(y), λ(z)} | y, z ∈ L, [y, z] = x},

where γ, λ are anti fuzzy sets on L and x ∈ L.

3. Anti fuzzy Lie ideals

De�nition 3.1. Let L be a Lie algebra. A fuzzy subset γ of L is called an
anti fuzzy Lie ideal of L if the following axioms are satis�ed:

(AF1) γ(x + y) 6 max({γ(x), γ(y)},
(AF2) γ(αx) 6 γ(x),
(AF3) γ([x, y]) 6 γ(x) for all x, y ∈ L and α ∈ F .

Example 3.2. Let <2 = {(x, y) : x, y ∈ R} be the set of all 2-dimensional
real vectors. Then <2 with [x, y] = x × y is a real Lie algebra. De�ne a
fuzzy set of <2 by

γ(x, y) =

{
0 if x = y = 0,
1 otherwise.

By routine computations, we can easily check that γ is an anti fuzzy Lie
ideal of <2.

The following lemma is obvious.

Lemma 3.3. Let γ be an anti fuzzy Lie ideal of L then

(i) γ(0) 6 γ(x) ∀ x ∈ L,

(ii) γ([x, y]) 6 min{γ(x), γ(y)} ∀ x, y ∈ L,

(iii) γ([x, y]) = γ(−[y, x]) = γ([y, x]) ∀x, y ∈ L.
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Theorem 3.4. Let γ be an anti fuzzy Lie ideal in a Lie algebra L. Then γ is

an anti fuzzy Lie ideal of L if and only if the set L(γ; t) = {x ∈ L|γ(x) 6 t},
t ∈ [0, 1], is a Lie ideal of L when it is nonempty.

Proof. Assume that γ is an anti fuzzy Lie ideal of L and let t ∈ [0, 1] be such
that L(γ; t) 6= ∅. Let x, y ∈ L be such that x ∈ L(γ; t), and y ∈ L(γ; t).
Then γ(x) 6 t and γ(y) 6 t. It follows that

γ(x + y) 6 max{γ(x), γ(y)} 6 t,

γ(αx) 6 γ(x) 6 t,

γ([x, y]) 6 γ(x) 6 t

so that x + y ∈ L(γ; t), αx ∈ L(γ; t) and [x, y] ∈ L(γ; t). Hence L(γ; t) is a
Lie ideal of L.

Conversely, suppose that L(γ; t) 6= ∅ is a Lie ideal of L for every t ∈ [0, 1].
Assume that γ(x + y) > max{γ(x), γ(y)} for some x, y ∈ L. Taking

t0 :=
1
2
{γ(x + y) + max{γ(x) + γ(y)}},

we have γ(x + y) > t0 > max{γ(x), γ(y)}. So, x + y /∈ L(γ; t), x ∈ L(γ; t)
and y ∈ L(γ; t). This is a contradiction. Hence γ(x+ y) 6 max{γ(x), γ(y)}
for all x, y ∈ L.

Similarly we can show that γ(αx) 6 γ(x) and γ([x, y]) 6 γ(x). This
completes the proof.

Theorem 3.5. If γ and ρ are anti fuzzy Lie ideals of a Lie algebra L, then
the function γ ∨ ρ : L → [0, 1] de�ned by

(γ ∨ ρ)(x) = max{γ(x), ρ(x)}

is an anti fuzzy Lie ideal of L.

Proof. Let x, y ∈ L and α ∈ F . Then

(γ ∨ ρ)(x + y) = max{γ(x + y), ρ(x + y)}
≤ max{max{γ(x), γ(y)},max{ρ(x), ρ(y)}}
= max{max{γ(x), ρ(x)},max{γ(y), ρ(y)}}
= max{(γ ∨ ρ)(x), (γ ∨ ρ)(y)},

(γ ∨ ρ)(ax) = max{γ(ax), ρ(ax)} 6 max{γ(x), ρ(x)} = (γ ∨ ρ)(x),

(γ ∨ ρ)([x, y]) = max{γ([x, y]), ρ([x, y])} 6 max{γ(x), ρ(x)} = (γ ∨ ρ)(x).

Hence (γ ∨ ρ) is an anti fuzzy Lie ideal of L.
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De�nition 3.6. For a family of fuzzy sets {γi|i ∈ I} in a Lie algebra L,
the union

∨
γi of {γi|i ∈ I} is de�ned by

(
∨

γi)(x) = sup{γi(x)|i ∈ I},

for each x ∈ L.

Theorem 3.7. If {γi|i ∈ I} is a family of anti fuzzy Lie ideals of Lie

algebras L then so is
∨

γi.

Proof. Straightforward.

Theorem 3.8. Let f : L1 → L2 be an epimorphism of Lie algebras. If ν is

an anti fuzzy Lie ideal of L2 and γ is the pre-image of ν under f . Then γ
is an anti fuzzy Lie ideal of L1.

Proof. For any x, y ∈ L1 and α ∈ F ,

γ(x + y) = ν(f(x + y)) = ν(f(x) + f(y))
≤ max{ν(f(x)), ν(f(y))} = max{γ(x), γ(y)},

γ(αx) = ν(f(αx)) = ν(αf(x)) ≤ ν(f(x)) = γ(x),

and
γ([x, y]) = ν(f([x, y])) ≤ ν(f(x)) = γ(x).

Hence γ is an anti fuzzy Lie ideal of L1.

De�nition 3.9. Let L1 and L2 be two Lie algebras and f be a function of
L1 into L2. If γ is a fuzzy set in L2, then the preimage of γ under f is the
fuzzy set in L1 de�ned by

f−1(γ)(x) = γ(f(x)) ∀x ∈ L1.

Theorem 3.10. Let f : L1 → L2 be an onto homomorphism of Lie algebras.

If γ is an anti fuzzy Lie ideal of L2, then f−1(γ) is an anti fuzzy Lie ideal

of L1.

Proof. Let x1, x2 ∈ L1 and α ∈ F , then

f−1(γ)(x1 + x2) = γ(f(x1) + f(x2)) 6 max{γ(f(x1)), γ(f(x2))}
= max{f−1(γ)(x1), f−1(γ)(x2)},

f−1(γ)(αx1) = γ(f(αx1)) 6 γ(αf(x1)) = αf−1(γ)(x1),

f−1(γ)([x, y]) = γ(f([x, y])) = γ([f(x), f(y)]) 6 γ(f(x)) = f−1(γ)(x).

Hence f−1(γ) is an anti fuzzy Lie ideal of L1.
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Theorem 3.11. Let f : L1 → L2 be an onto homomorphism of Lie algebras.

If γ is an anti fuzzy Lie ideal of L2, then f−1(γc) = (f−1(γ))c.

Proof. Let γ be an anti fuzzy Lie ideal of L2. Then for x ∈ L1,

f−1(γc)(x) = γc(f(x)) = 1− γ(f(x)) = 1− f−1(γc)(x) = (f−1(γ))c(x).

That is f−1(γc) = (f−1(γ))c.

De�nition 3.12. Let γ be a fuzzy set in a Lie algebra L and f a mapping
de�ned on L. Then the fuzzy set γf in f(L) de�ned by

γf (y) = inf
x∈f−1(y)

γ(x)

for every y ∈ f(L), is called the image of γ under f . A fuzzy set γ in L has
the inf property if for any subset A ⊆ L, there exists a0 ∈ A such that
γ(a0) = inf

a∈A
γ(a).

Theorem 3.13. A Lie algebra homomorphism image of an anti fuzzy Lie

ideal having the inf property is an anti fuzzy Lie ideal.

Proof. Let f : L1 → L2 be an epimorphism of L1 onto L2 and γ be a fuzzy
Lie ideal of L1 with the inf property. Consider f(x), f(y) ∈ f(L1). Let
x0, y0 ∈ f−1(f(x)) be such that

γ(x0) = inf
t∈f−1(f(x))

γ(t) and γ(y0) = inf
t∈f−1(f(y))

γ(t)

respectively. Then

ν(f(x) + f(y)) = inf
t∈f−1(f(x)+f(y))

γ(t) 6 γ(x0 + y0) 6 max{γ(x0) + γ(y0)}

= max{ inf
t∈f−1(f(x))

γ(t), inf
t∈f−1(f(y))

γ(t)}

= max{ν(f(x)) + ν(f(y))},

ν(f(αx)) = inf
t∈f−1(f(αx))

γ(t) 6 γ(x0) 6 max{γ(x0)} = ν(f(x)),

ν([f(x), f(y)]) = ν(f([x, y])) = inf
t∈f−1(f([x,y]))

γ(t) 6 γ([x0, y0])

6 γ(x0) = ν(f(x)).

Consequently, ν is an anti fuzzy Lie ideal of L2.
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De�nition 3.14. Let L1 and L2 Lie algebras and f a function of γ is a
fuzzy set in L1, then the anti image of γ under f is the fuzzy set de�ned by
f(γ)(y) = {

inf{γ(t) | t ∈ L1, f(t) = y}, if f−1(y) 6= ∅ ,
1, otherwise.

De�nition 3.15. Let L1 and L2 be any sets and let f : L1 → L2 be any
function. A fuzzy set γ is called f -invariant if and only if for x, y ∈ L1,
f(x) = f(y) implies γ(x) = γ(y).

Theorem 3.16. Let f : L1 → L2 be an epimorphism of Lie algebras. Then

γ is an f -invariant anti fuzzy Lie ideal of L1 if and only if f(γ) is an anti

fuzzy Lie ideal of L2.

Proof. Let x, y ∈ L2 and α ∈ F . Then there exist a, b ∈ L1 such that
f(a) = x , f(b) = y, x + y = f(a + b) and αx = αf(a). Since γ is
f -invariant,

f(γ)(x + y) = γ(a + b) 6 max{γ(a), γ(b)} = max{f(γ)(x), f(γ)(y)},
f(γ)(αx) = γ(αa) 6 γ(a) = f(γ)(x),

f(γ)([x, y]) = γ([a, b]) = [γ(a), γ(b)] 6 γ(a) = f(γ)(x).

Hence f(γ) is an anti fuzzy Lie ideal of L2.
Conversely, if f(γ) is an anti fuzzy Lie ideal of L2, then for any x ∈ L1

f−1(f(γ))(x) = f(γ)(f(x)) = inf{γ(t) | t ∈ L1, f(t) = f(x)}
= inf{γ(t) | t ∈ L1, γ(t) = γ(x)} = γ(x).

Hence f−1(f(γ)) = γ is an anti fuzzy Lie ideal by Theorem 3.10.

De�nition 3.17. An ideal A of Lie algebra L is said to be characteristic

if f(A) = A, for all f ∈ Aut(L), where Aut(L) is the set of all automor-
phisms of L. Anti fuzzy Lie ideal γ of Lie algebra L is said to be anti fuzzy

characteristic if γf (x) = γ(x), for all x ∈ L and f ∈Aut(L).

Lemma 3.18. Let γ be an anti fuzzy Lie ideal of a Lie algebra L and let

x ∈ L. Then γ(x) = s if and only if x ∈ L(γ; s) and x /∈ L(γ; t) , for all

s > t .

Proof. Straightforward.
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Theorem 3.19. An anti fuzzy Lie ideal is characteristic if and only if each

its level set is a characteristic Lie ideal.

Proof. Suppose that γ is anti fuzzy characteristic and let s ∈ Im(γ),
f ∈Aut(L) and x ∈ L(γ; s). Then γf (x) = γ(x) implies γ(f(x)) 6 s
whence f(x) ∈ L(γ; s). Thus f(L(γ; s)) ⊆ L(γ; s).

Let x ∈ L(γ; s) and y ∈ L such that f(y) = x. Then γ(y) = γf (y) =
γ(f(y)) = γ(x) 6 s, consequently y ∈ L(γ; s). So, x = f(y) ∈ L(γ; s).
Thus, L(γ; s) ⊆ f(L(γ; s)). Hence f(L(γ; s)) = L(γ; s), i.e., L(γ; s) is
characteristic.

Conversely, suppose that each level Lie ideal of γ is characteristic and
let x ∈ L, f ∈ Aut(L), γ(x) = s. Then, by virtue of Lemma 3.18, x ∈
L(γ; s) and x /∈ L(γ; t) , for all s > t. It follows from the assumption that
f(x) ∈ f(L(γ; s)) = L(γ; s), so that γf (x) = γ(f(x))) 6 s. Let t = γf (x)
and assume that s > t. Then f(x) ∈ L(γ; t) = f(L(γ; t)), which implies
from the injectivity of f that x ∈ L(γ; t), a contradiction. Hence γf (x) =
γ(f(x)) = s = γ(x) showing that γ is an anti fuzzy characteristic.

De�nition 3.20. Let γ be an anti fuzzy Lie ideal in L. De�ne a sequence
of anti fuzzy Lie ideals in L putting γ0 = γ and γn = [γn−1, γn−1] for n > 0.
If there exists a positive integer n such that γn = 0, then an anti fuzzy Lie
ideal γ is called solvable.

Theorem 3.21. Homomorphic image of a solvable anti fuzzy Lie ideal is a

solvable anti fuzzy Lie ideal.

Proof. Let f : L1 → L2 be a homomorphism of Lie algebras. Suppose that
γ is a solvable anti fuzzy Lie ideal in L1. We prove by induction on n
that f(γn) ⊇ [f(γ)]n, where n is any positive integer. First we claim that
f([γ, γ]) ⊇ [f(γ), f(γ)]. Let y ∈ L2, then

f(� γ, γ �)(y) = inf{� γ, γ � (x) | f(x) = y}
= inf{inf{max{γ(a), γ(b)} | a, b ∈ L1, [a, b] = x, f(x) = y}}
= inf{max{γ(a), γ(b)} | a, b ∈ L1, [a, b] = x, f(x) = y}
= inf{max{γ(a), γ(b)} | a, b ∈ L1, [f(a), f(b)] = x}
= inf{max{γ(a), γ(b)} | a, b ∈ L1, f(a) = u, f(b)] = v, [u, v] = y}
≤ inf{max{infa∈f−1(u) γ(a), infb∈f−1(v) γ(b)} | [u, v] = y}
= inf{max(f(γ)(u), f(γ)(v)) | [u, v] = y} =� f(γ), f(γ) � (y).

Now for n > 1, we get f(γn) = f([γn−1, γn−1]) ⊇ [f(γn−1), f(γn−1)] ⊇
[(f(γ))n−1, (f(γ))n−1] = (f(γ))n. This completes the proof.
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De�nition 3.22. Let γ be an anti fuzzy Lie ideal in L and let γn = [γ, γn−1]
for n > 0, where γ0 = γ. If there exists a positive integer n such that γn = 0
then γ is called nilpotent.

Using the same method as in the proof of Theorem 3.21, we can prove
the following two theorems.

Theorem 3.23. Homomorphic image of a nilpotent anti fuzzy Lie ideal is

a nilpotent anti fuzzy Lie ideal.

Theorem 3.24. If γ is a nilpotent anti fuzzy Lie ideal, then it is solvable.

Theorem 3.25. Let I be a Lie ideal of a Lie algebra L. If γ is an anti

fuzzy Lie ideal of L, then the fuzzy set γ of L/I de�ned by

γ(a + I) = inf
x∈I

γ(a + x)

is an anti fuzzy Lie ideal of the quotient Lie algebra L/I.

Proof. Clearly, γ is well-de�ned. Let x + I, y + I ∈ L/I, then

γ(x + I) + (y + I)) = γA((x + y) + I) = inf
z∈I

γ((x + y) + z)

= inf
z=s+t∈I

γ((x + y) + (s + t))

6 inf
s, t∈I

max{γ(x + s), γ(y + t)}

= max{inf
s∈I

γ(x + s), inf
t∈I

γ(y + t)}
= max{γ(x + I), γ(y + I)},

γ(α(x + I)) = γ(αx + I) = inf
z∈I

γ(αx + z) 6 inf
z∈I

γ(x + z) = γ(x + I),

γ([x+ I, y + I]) = γ([x, y] + I) = inf
z∈I

γ([x, y] + z) 6 inf
z∈I

γ(x+ z) = γ(x+ I).

Hence γ is an anti fuzzy Lie ideal of L/I.
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tions of a subgroup of the modular groupon an imaginary quadrati
 �eldMuhammad Ashiq and Qaiser MushtaqAbstra
tThe imaginary quadrati
 �elds are de�ned by the set {a + b
√
−n : a, b ∈ Q} and aredenoted by Q(

√
−n), where n is a square-free positive integer. In this paper we haveproved that if α = a+

√
−n

c
∈ Q∗(

√
−n) = {a+

√
−n

c
: a, a

2
+n

c
, c ∈ Z, c 6= 0}, then n doesnot 
hange its value in the orbit αG, where G =< u, v : u3 = v3 = 1 >. Also we showthat the number of orbits of Q∗(

√
−n) under the a
tion of G are 2[d(n) + 2d(n + 1)− 6]and 2[d(n) + 2d(n + 1) − 4] a

ording to n is odd or even, ex
ept for n = 3 for whi
hthere are exa
tly eight orbits. Also, the a
tion of G on Q∗(

√
−n) is always intransitive.1. Introdu
tionIt is well known [6] that the modular group PSL(2, Z), where Z is the ring ofintegers, is generated by the linear-fra
tional transformations x : z −→ −1

zand y : z −→ z−1
z

and has the presentation < x, y : x2 = y3 = 1 > .Let v = xyx, and u = y. Then (z)v = −1
z+1 and thus u3 = v3 = 1. So thegroup G =< u, v > is a proper subgroup of the modular group PSL(2, Z)

[1]. The algebrai
 integer of the form a+ b
√

n, where n is square free, formsa quadrati
 �eld and is denoted by Q(
√

n). If n > 0, the �eld is a 
alled realquadrati
 �eld, and if n < 0, it is 
alled an imaginary quadrati
 �eld. Theintegers in Q(
√

1) are simply 
alled the integers. The integers in Q(
√
−1)are 
alled Gaussian integers, and the integers in Q(

√
−3) are 
alled Eisen-stein integers. The algebrai
 integers in an arbitrary quadrati
 �eld do not2000 Mathemati
s Subje
t Classi�
ation: 05C25, 11E04, 20G15Keywords: Imaginary quadrati
 �eld, linear fra
tional transformation, extension �eld,
oset diagram.
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essarily have unique fa
torization. For example, the �elds Q(
√
−5) and

Q(
√
−6) are not uniquely fa
torable. All other quadrati
 �elds Q(

√
n) with

n 6 7 are uniquely fa
torizable.A number is said to be square free if its prime de
omposition 
ontainsno repeated fa
tors. All primes are therefore trivially square free.Let F be an extension �eld of degree two over the �eld Q of rationalnumbers. Then any element x ∈ F − Q is of degree two over Q and is aprimitive element of F . Let F (x) = x2 + bx + c, where b, c ∈ Q, be theminimal polynomial of su
h an element x ∈ F. Then 2x = −b ±
√

b2 − 4cand so F = Q(
√

b2 − 4c). Here, sin
e b2 − 4c is a rational number l

m
= lm

m2with l, m ∈ Z, we obtain F = Q(
√

lm) with l, m ∈ Z. In fa
t it is possibleto write F = Q(
√

n) , where n is a square free integer.The imaginary quadrati
 �elds are usually denoted by Q(
√
−n), where

n is a square free positive integer. We shall denote the subset
{

a +
√
−n

c
: a,

a2 + n

c
, c ∈ Z, c 6= 0

}by Q∗(
√
−n). The imaginary quadrati
 �elds are very useful in di�erentbran
hes of mathemati
s. For example, [3] the Bian
hi groups are thegroups PSL

2
(On), where On is the ring of integers of the imaginary quadrati
number �eld Q(

√
−n). Also it is known that On is an Eu
lidean ring if andonly if n = 1, 2, 3, 7 or 11.In [2, 4], many properties of Q(

√
n) have been dis
ussed. Here we dis
usssome fundamental results of G =< u, v : u3 = v3 = 1 > on Q∗(

√
−n).2. Coset diagramsWe use 
oset diagrams, as de�ned in [4] and [5], for the group G and studyits a
tion on the proje
tive line over imaginary quadrati
 �elds. The 
osetdiagrams for the group G are de�ned as follows. The three 
y
les of thetransformation u are denoted by three unbroken edges of a triangle per-muted anti-
lo
kwise by u and the three 
y
les of the transformation v aredenoted by three broken edges of a triangle permuted anti-
lo
kwise by v.Fixed points of u and v, if they exist, are denoted by heavy dots. Thisgraph 
an be interpreted as a 
oset diagram with the verti
es identi�edwith the 
osets of Stabv1

(G), the stabilizer of some vertex v1 of the graph,or as 1-skeleton of the 
over of the fundamental 
omplex of the presentation
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h 
orresponds to the subgroup Stabv1
(G). Let αG denote the orbit of

α in an a
tion of G on Q∗(
√
−n).For instan
e, in the 
ase of G a
ting on the proje
tive line over the �eld

Q∗(
√

n), a fragment of a 
oset diagram will look as follows:

(1) If k 6= 1, 0,∞ then of the verti
es k, ku, ku2 of a triangle, in a 
osetdiagram for the a
tion of G on any subset of the proje
tive line, onevertex is negative and two are positive.

(2) If k 6= −1, 0,∞ then of the verti
es k, kv, kv2 of a triangle, in a 
osetdiagram for the a
tion of G on any subset of the proje
tive line, one



136 M. Ashiq and Q. Mushtaqvertex is positive and two are negative.

Theorem 1. If α = a+
√
−n

c
∈ Q∗(

√
−n), then n does not 
hange its valuein αG.Proof. Let α = a+

√
−n

c
and b = a

2+n

c
. Sin
e (α)u = α−1

α
= 1 − 1

α
=

1 − c

a+
√
−n

= b−a+
√
−n

b
. Therefore, the new values of a and c for (α)u are

b−a and b respe
tively. The new value of b for (α)u is (b−a)2+n

b
= −2a+b+c.Now (α)v = −1

α+1 = −c

a+c+
√
−n

= −a−c+
√
−n

b+c+2a
. Therefore the new values of aand c for (α)v are −a − c and 2a + b + c respe
tively. The new value of

b for (α)v is (−a−c)2+n

2a+b+c
= c. Similarly, we 
an 
al
ulate the new values of

a, b and c for (α)u2, (α)v2, (α)uv, (α)u2v, (α)vu, (α)uv2, (α)vu2 and (α)v2uas follows:
α a b c

(α)u b − a −2a + b + c b

(α)v −a − c c 2a + b + c

(α)u2 c − a c −2a + b + c

(α)v2 −a − b 2a + b + c b

(α)uv a − 2b b −4a + 4b + c

(α)u2v 3a − b − 2c −2a + b + c −4a + b + 4c

(α)vu a + 2b 4a + b + 4c c

(α)v2u 3a + 2b + c 4a + 4b + c 2a + b + c

(α)uv2 3a − 2b − c −4a + 4b + c −2a + b + c

(α)vu2 3a + b + 2c 2a + b + c 4a + b + 4cTable 1From the above information we see that all the elements of αG are in
Q∗(

√
−n). That is, n does not 
hange its value in αG.
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tions of a subgroup of the modular group 137As we know from [5] the real quadrati
 irrational numbers are �xedpoints of the elements of PSL(2, Z) =< x2 = y3 = 1 > ex
ept for thegroup theoreti
 
onjugates of x, y±1 and (xy)n. Now we want to see thatwhen imaginary quadrati
 numbers are �xed points of the elements of G.3. Existen
e of �xed points in Q∗(
√
−3)Remark 1. Let (z)u = z. Then z−1

z
= z gives z2 − z + 1 = 0. Thus z =

1±
√
−3

2 ∈ Q∗(
√
−3). Similarly, (z)v = z implies −1

z+1 = z. So, z2 + z + 1 = 0gives z = −1±
√
−3

2 ∈ Q∗(
√
−3).Theorem 2. The �xed points under the a
tion of G on Q∗(

√
−n) exist onlyif n = 3.Proof. Let g be a linear-fra
tional transformation in G. Then, (z)g 
anbe taken as az+b

cz+d
where ad − bc = 1. Let az+b

cz+d
= z whi
h yields us thequadrati
 equation cz2 + (d − a)z − b = 0. It has the imaginary roots onlyif (d − a)2 + 4bc < 0 or (d + a)2 − 4(ad − bc) < 0 or (a + d)2 < 4. That is,

a + d = 0,±1.If a + d = 0 then g is an involution. But there is no involution in G.Now, if a + d = ±1 then as (trace(g))2 = det(g), order of g will be threeand hen
e it is 
onjugate to the linear fra
tional transformations u±1 and
v±1. Sin
e the �xed points of the linear fra
tional transformations u and
v (by Remark 1) are 1±

√
−3

2 and −1±
√
−3

2 respe
tively, therefore, the rootsof the quadrati
 equation cz2 + (d − a)z − b = 0 belong to the imaginaryquadrati
 �eld Q∗(
√
−3). If two elements of G are 
onjugate, then their
orresponding determinants are also equivalent.4. Orbits of Q∗(

√
−n)De�nition 1. If α = a+

√
−n

c
∈ Q∗(

√
−n) is su
h that ac < 0 then αis 
alled a totally negative imaginary quadrati
 number and totally positiveimaginary quadrati
 number if ac > 0.As b = a

2+n

c
, therefore, bc is always positive. So, b and c have samesign. Hen
e an imaginary quadrati
 number α = a+

√
−n

c
∈ Q∗(

√
−n) istotally negative if either a < 0 and b, c > 0 or a > 0 and b, c < 0. Similarly

α = a+
√
−n

c
∈ Q∗(

√
−n) is totally positive if either a, b, c > 0 or a, b, c < 0.
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(i) If α is a totally negative imaginary quadrati
 number then (α)u and

(α)u2 are both totally positive imaginary quadrati
 numbers.
(ii) If α is a totally positive imaginary quadrati
 number then (α)v and

(α)v2 are both totally negative imaginary quadrati
 numbers.Proof. (i) Let α = a+
√
−n

c
be a totally negative imaginary quadrati
 num-ber. Here there are two possibilities: either a < 0 and b, c > 0 or a > 0 and

b, c < 0.Let a < 0 and b, c > 0. We 
an easily tabulate the following information.
α a b c

(α)u b − a −2a + b + c b

(α)u2 c − a c −2a + b + cFrom the above information, we see that the new values of a, b and c for
(α)u and (α)u2 are positive. Therefore, (α)u and (α)u2 are totally positiveimaginary quadrati
 numbers.Now, let a > 0 and b, c < 0. Then the new values of a, b and c for
(α)u and (α)u2 are negative. Therefore, (α)u and (α)u2 are totally positiveimaginary quadrati
 numbers.

(ii) Let α = a+
√
−n

c
be a totally positive imaginary quadrati
 number.Here there are two possibilities: either a, b, c > 0 or a, b, c < 0.Let a, b, c > 0. Then one 
an easily tabulate the following information.

α a b c

(α)v −a − c c 2a + b + c

(α)v2 −a − b 2a + b + c bFrom the above information, we see that the new value of a for (α)vand (α)v2 is negative and the new values of b and c for (α)v and (α)v2 arepositive. Therefore, (α)v and (α)v2 are totally negative imaginary quadrati
numbers.Now, let a, b, c < 0. Then the new value of a for (α)v and (α)v2 is positiveand the new values of b and c for (α)v and (α)v2 are negative. Therefore,
(α)v and (α)v2 are totally negative imaginary quadrati
 numbers.Theorem 4.

(i) If α = a+
√
−n

c
where c > 0 then the numerator of every element in

αG is also positive.
(ii) If α = a+

√
−n

c
where c < 0 then the numerator of every element in
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tions of a subgroup of the modular group 139the orbit αG is also negative.Proof. (i) Sin
e α = a+
√
−n

c
with c > 0, therefore, b is also positive. As

b and c always have the same sign. Using this fa
t we 
an easily see fromthe information given in Table 1 that every element in αG has positivenumerator.
(ii) Sin
e α = a+

√
−n

c
with c < 0, therefore, b is also negative. As band c always have the same sign. Using this fa
t we 
an easily see fromthe information given in Table 2 that every element in αG has negativenumerator.For α = a+

√
−n

c
∈ Q∗(

√
−n), we de�ne ‖α‖ = |a| .Theorem 5.

(i) Let α be a totally negative imaginary quadrati
 number. Then
‖(α)u‖ > ‖α‖ and ∥

∥(α)u2
∥

∥ > ‖α‖ , and
(ii) Let α be a totally positive imaginary quadrati
 number. Then

‖(α)v‖ > ‖α‖ and ∥

∥(α)v2
∥

∥ > ‖α‖ .Proof. (i) Let α be a totally negative imaginary quadrati
 number. Theneither, a < 0 and b, c > 0 or a > 0 and b, c < 0. Let us take a < 0 and
b, c > 0. Then, by Theorem 3(i) (α)u and (α)u2 both are totally positiveimaginary quadrati
 numbers. Thus, ‖(α)u‖ = |b − a| > |a| = ‖α‖ , and
∥

∥(α)u2
∥

∥ = |c − a| >= |a| = ‖α‖ . Similarly, we have the same result for
a > 0 and b, c < 0.

(ii) Let α be a totally positive imaginary quadrati
 number. Theneither, a, b, c > 0 or a, b, c < 0. Let us take a, b, c > 0. Now, using theinformation given in Table 1, we 
an easily see that ‖(α)v‖ = |−a − c| =
|a + c| > |a| = ‖α‖ and ∥

∥(α)v2
∥

∥ = |−a − b| = |a + b| > |a| = ‖α‖ . Simi-larly, we have the same result for a, b, c < 0.Theorem 6. Let α be a totally positive or negative imaginary quadrati
number. Then there exists a sequen
e α = α1, α2, . . . , αm su
h that αi is al-ternately totally negative and totally positive number for i = 1, 2, 3, . . . , m−1and ‖αm‖ = 0 or 1.Proof. Let α = α1 be a totally positive imaginary quadrati
 number. Then,by Theorem 3(i), (α)u or (α)u2 is a totally negative imaginary quadrati
number. If (α)u is a totally negative imaginary quadrati
 number, then put
α2 = (α)u and by Theorem 5(i), ‖(α1)‖ > ‖α2‖. Now if (α)u2 is a totally
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 number, then put α2 = (α)u2. In this 
asewe have also ‖(α1)‖ > ‖α2‖.Now if (α)u a is totally negative imaginary quadrati
 number, then
(α)uv or (α)uv2 is a totally positive imaginary quadrati
 number. If (α)uvis a totally positive imaginary quadrati
 number, put (α)uv = α3 and so byTheorem 5(ii) ‖(α)uv‖ < ‖(α)u‖ < ‖α‖ or ‖α3‖ < ‖α2‖ < ‖α1‖ and 
ontin-uing in this way we obtain an alternate sequen
e α1, α2, . . . , αm of totallypositive and totally negative numbers su
h that ‖α1‖ > ‖α2‖ > ‖α3‖ >

. . . > ‖αm‖. Sin
e ‖α1‖ , ‖α2‖ , ‖α3‖ , . . . , ‖αm‖ is a de
reasing sequen
e ofnon negative integers, therefore, it must terminate and that happens onlywhen ultimately we rea
h at an imaginary quadrati
 number αm = a′+
√
−n

csu
h that ‖αm‖ = |a′| = 0 or 1. It 
an be shown diagrammati
ally as:

Theorem 7. There are exa
tly eight orbits of Q∗(
√
−n) under the a
tionof the group G when n = 3.Proof. As we have seen in Theorem 6, we get a de
reasing sequen
e of nonnegative integers ‖α1‖ , ‖α2‖ , ‖α3‖ , . . . , ‖αm‖ su
h that ‖α1‖ > ‖α2‖ >

‖α3‖ > . . . > ‖αm‖ whi
h must terminate and that happens only whenultimately we rea
h at an imaginary quadrati
 number αm = a′+
√
−3

c
su
hthat ‖αm‖ = |a′| = 0 or 1.If αm = 1±

√
−3

2 or −1±
√
−3

2 then be
ause ±1±
√
−3

2 are the �xed pointsof u and v, therefore, we 
annot rea
h at an imaginary quadrati
 numberwhose norm is equal to zero. So in this 
ase there are four orbits, namely
1+

√
−3

2 G, 1−
√
−3

2 G, −1+
√
−3

2 G and −1−
√
−3

2 G of Q∗(
√
−3).Now, if we rea
h at an imaginary quadrati
 number αm = a′+

√
−3

c
su
hthat ‖αm ‖ = |a′| = 0 then αm =

√
−3
c

. Sin
e αm =
√
−3
c

∈ Q∗(
√
−3),therefore, c = ±1,±3. That is, αm =

√
−3
1 ,

√
−3
3 ,

√
−3
−1 , and √

−3
−3 .
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tions of a subgroup of the modular group 141Now, if α =
√
−3
1 , we 
an easily 
al
ulate the new values of a, b, and cas:

α 0 3 1

(α)u 3 4 3

(α)v −1 1 4

(α)u2 1 1 4

(α)v2 −3 4 3Hen
e from the above table, we see that √
−3, 1+

√
−3

4 and −1+
√
−3

4 liein αG.Similarly, if α =
√
−3
−1 , then −

√
−3, −1+

√
−3

−4 and 1+
√
−3

−4 lie in αG, if
α =

√
−3
3 , then √

−3
3 , 1+

√
−3

1 and −1+
√
−3

1 lie in αG, and if α =
√
−3
−3 , then

√
−3
−3 , 1+

√
−3

−1 and −1+
√
−3

−1 lie in αG.Thus, √
−3
1 ,

√
−3
−1 ,

√
−3
3 , and √

−3
−3 lie in four di�erent orbits. Hen
e thereare exa
tly eight orbits of Q∗(

√
−n) for n = 3.Remark 2.1. If α = a+

√
−n

c
∈ Q∗(

√
−n) then Stabα(G) is non-trivial only if n = 3.Parti
ularly, if α = ±1±
√
−3

2 then Stabα(G) ∼= C3.2. In Q∗(
√
−3), there are four elements of norm zero, namely √

−3
1 ,

√
−3
−1 ,

√
−3
3 , and √

−3
−3 .3. In Q∗(

√
−3), there are twelve elements of norm one, namely ±1±

√
−3

2 ,
±1±

√
−3

4 , and ±1±
√
−3

1 .Theorem 8. Let α ∈ Q∗(
√
−n), where n 6= 3. Then

(i) if α =
√
−n, then √

−n,
1+

√
−n

n+1 and −1+
√
−n

n+1 lie in αG,

(ii) if α =
√
−n

n
, then √

−n

n
,

1+
√
−n

1 and −1+
√
−n

1 lie in αG,

(iii) if α =
√
−n

2 , where n is even and l1 = n

2 , then α is the only elementof norm zero in αG,

(iv) if α =
√
−n

n1
, where k1 = n

n1
and n1 6= 1, 2 or n, then α is the onlyelement of norm zero in αG, and

(v) if α = 1+
√
−n

c1
, where 1 + n = c1c2 and c1 6= 1 or n + 1, then α isthe only element of norm one in αG.Proof. (i) If α =

√
−n, then, we 
an easily tabulate the following informa-tion.



142 M. Ashiq and Q. Mushtaq
α 0 n 1

(α)u n n + 1 n

(α)v −1 1 n + 1

(α)u2 1 1 n + 1

(α)v2 −n n + 1 nHen
e from the above table, we see that √−n,
1+

√
−n

n+1 and −1+
√
−n

n+1 liein αG.

(ii) If α =
√
−n

n
, then we 
an 
al
ulate the new values of a, b, and c as:

α 0 1 n

(α)u 1 n + 1 1

(α)v −n n n + 1

(α)u2 n n n + 1

(α)v2 −1 n + 1 1Hen
e from the above table, we see that √
−n

n
,

1+
√
−n

1 and −1+
√
−n

1 liein αG.

(iii) If α =
√
−n

2 , then we 
an 
al
ulate the new values of a, b, and c as:
α 0 l1 2

(α)u l1 l1 + 2 l1
(α)v −2 2 l1 + 2

(α)u2 2 2 l1 + 2

(α)v2 −l1 l1 + 2 l1Hen
e from the above table, we see that α is the only element of normzero in αG.

(iv) Let α =
√
−n

n1
, where k1 = n

n1
and n1 6= 1 or n, then

α 0 k1 n1

(α)u k1 n1 + k1 k1

(α)v −n1 n1 n1 + k1

(α)u2 n1 n1 n1 + k1

(α)v2 −k1 n1 + k1 k1Hen
e from the above table, we see that α is the only element of normzero in αG.

(v) Let α = 1+
√
−n

c1
, where 1 + n = c1c2 and c1 6= 1 or n + 1, then thenew values of a, b, and c 
an be 
al
ulated as:
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α 1 c2 c1

(α)u c2 − 1 −2 + c1 + c2 c2

(α)v −1 − c1 c1 2 + c1 + c2

(α)u2 c1 − 1 c1 −2 + c1 + c2

(α)v2 −1 − c2 2 + c1 + c2 c2If c1 = 2, then ∥

∥(α)u2
∥

∥ = 1 implies that (α)u2 = 1+
√
−n

c2
. If c1 = −2,then ‖(α)v‖ = 1 implies that (α)v = 1+

√
−n

c2
. That is, 1+

√
−n

2 and 1+
√
−n

(n+1

2
)lie in the same orbit, and 1+

√
−n

−2 and 1+
√
−n

−(n+1

2
)
lie in the same orbit.Now if c1 6= 1, 2 or n+1

2 , n + 1, that is, c2 6= n + 1, n+1
2 or 1, then 1+

√
−n

c1lie in αG.Example 1. By using Theorem 8, the orbits of Q∗(
√
−14) are:

(i)
√
−14, 1+

√
−14

15 and −1+
√
−14

15 lie in √
−14G,

(ii)
√
−14
−1 , 1+

√
−14

−15 and −1+
√
−14

−15 lie in √
−14
−1 G,

(iii)
√
−14
14 , 1+

√
−14

1 and −1+
√
−14

1 lie in √
−14
14 G,

(iv)
√
−14
−14 , 1+

√
−14

−1 and −1+
√
−14

−1 lie in √
−14
−14 G,

(v)
√
−14
2 lies in √

−14
2 G,

(vi)
√
−14
−2 lies in √

−14
−2 G,

(vii)
√
−14
7 lies in √

−14
7 G,

(viii)
√
−14
−7 lies in √

−14
−7 G,

(ix) 1+
√
−14

3 lies in 1+
√
−14

3 G,

(x) −1+
√
−14

3 lies in −1+
√
−14

3 G,

(xi) 1+
√
−14

−3 lies in 1+
√
−14

−3 G,

(xii) −1+
√
−14

−3 lies in −1+
√
−14

−3 G,

(xiii) 1+
√
−14

5 lies in 1+
√
−14

5 G, .

(xiv) −1+
√
−14

5 lies in −1+
√
−14

5 G,

(xv) 1+
√
−14

−5 lies in 1+
√
−14

−5 G, and
(xvi) −1+

√
−14

−5 lies in −1+
√
−14

−5 G.So, there are sixteen orbits of Q∗(
√
−n).Remark 3.

1. If α = a+
√
−n

c
∈ Q∗(

√
−n), then αG 
ontains the 
onjugates of the ele-
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e α = a+
√
−n

c
and α = a−

√
−n

c
lie in two di�erentorbits, therefore, αG and αG are always disjoint.

2. The elements of norm zero and one in Q∗(
√
−n), play a vital role toidentify the orbits of Q∗(

√
−n).De�nition 2. If n is a positive integer then d(n) denotes the arithmeti
fun
tion de�ned by the number of positive divisors of n.For example, d(1) = 1, d(2) = 2, d(3) = 2, d(4) = 3, d(5) = 2 and

d(6) = 4.Theorem 9. If n 6= 3, then the total number of orbits of Q∗(
√
−n) underthe a
tion of G are:

(i) 2 [d(n) + 2d(n + 1) − 6] if n is odd, and
(ii) 2 [d(n) + 2d(n + 1) − 4] if n is even.Proof. First suppose that n is odd, that is n + 1 is even. Let the divisorsof n are ±1, ±n1, ±n2, ±, . . . ,±n and the divisors of n + 1 are ±1, ±2,

±m1, ±m2, ±, . . . , ± (n+1)
2 , ±(n+1). Then by Theorem 8(i), there exist twoorbits of Q∗(

√
−n) 
orresponding to the divisors ±1 of n and ±(n + 1) of

n + 1. By Theorem 8(ii), there exist two orbits of Q∗(
√
−n) 
orrespondingto the divisors ±n of n and ±1 of n + 1. By Theorem 8(v), there existsfour orbits of Q∗(

√
−n) 
orresponding to the divisors ±2, ±(n+1

2 ) of n + 1.Now we are left with 2d(n) − 4 and 4d(n + 1) − 16. Thus total orbits are
2d(n)−4+4d(n+1)−16+8 = 2d(n)+4d(n+1)−12 = 2[d(n)+2d(n+1)−6].Now if n is even, then the total orbits are [2d(n)−4]+[4d(n+1)−8]+4 =
2d(n) + 4d(n + 1) − 8 = 2[d(n) + 2d(n + 1) − 4].Example 2. Now, by using Theorem 9,

(i) the orbits of Q∗(
√
−14) are:

2[d(n) + 2d(n + 1)− 4] = 2[d(14) + 2d(15)− 4] = 2[4 + 8− 4] = 16,and
(ii) the orbits of Q∗(

√
−15) are:

2[d(n)+2d(n+1)− 6] = 2[d(15)+2d(16)− 6] = 2[4+10− 6] = 16.Theorem 10. There are 2d(n) elements of Q∗(
√
−n) of norm zero underthe a
tion of G.Proof. As we have seen in Theorem 6, we get a de
reasing sequen
e of non-negative integers ‖α1‖ , ‖α2 ‖ , ‖α3 ‖ , . . . , ‖αm ‖ su
h that ‖α1 ‖ > ‖α2 ‖ >

‖α3 ‖ > . . . > ‖αm ‖ whi
h must terminate and that happens only when
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h at an imaginary quadrati
 number αm = a′+
√
−n

c
su
hthat ‖αm ‖ = |a′| = 0. Thus αm =

√
−n

c
. Sin
e αm =

√
−n

c
∈ Q∗(

√
−n),therefore, c must be a divisor of n. Hen
e there are 2d(n) elements of

Q∗(
√
−n) of norm zero under the a
tion of G.Theorem 11. There are 4d(n+1) elements of Q∗(

√
−n) of norm one underthe a
tion of G.Proof. As we have seen in Theorem 6, there exists a de
reasing sequen
eof non-negative integers ‖α1‖ , ‖α2 ‖ , ‖α3 ‖ , . . . , ‖αm ‖ su
h that ‖α1 ‖ >

‖α2 ‖ > ‖α3 ‖ > . . . > ‖αm ‖ whi
h must terminate and that happens onlywhen ultimately we rea
h at an imaginary quadrati
 number αm = a′+
√
−n

csu
h that ‖αm ‖ = |a′| = 1. Then αm = ±1+
√
−n

c
, where b = a

2+n

c
= 1+n

c
,that is, c must be a divisor of n + 1. Hen
e there are 4d(n + 1) elements of

Q∗(
√
−n) of norm one under the a
tion of G.Corollary. The a
tion of G on Q∗(

√
−n) is intransitive.Proof. If n is even, then the minimum value of n in Q∗(

√
−n) is two. So,by Theorem 9, the total number of orbits are 2[d(n) + 2d(n + 1) − 4] =

2[2 + 2(2) − 4] = 4. So, the a
tion of G on Q∗(
√
−n) must be intransitive.Now, if n is odd, then the minimum value of n in Q∗(

√
−n) is �ve, when

n 6= 3. So, by Theorem 10, the total number of orbits are 2[d(n) + 2d(n +
1)−6] = 2[2+2(4)−6] = 8. So, the a
tion of G on Q∗(

√
−n) is intransitive.A

ording to Theorem 7, there are exa
tly eight orbits of Q∗(

√
−n)when n = 3 under the a
tion of the group G. Hen
e the proof.Referen
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On primal ideals over semigroups

Shahabaddin Ebrahimi Atani and Ahmad Youse�an Darani

Abstract

Let S be a commutative cancellation torsion-free additive semigroup with identity 0 and
let S 6= {0}. This paper is devoted to study some properties of primal ideals and quasi-
primary ideals of the semigroup S. First, a number of results concerning of these ideals
are given. Second, we characterize primal ideals and quasi-primary ideals of a Prüfer
semigroup and show that in such semigroup, the three concepts: primary, quasi-primary,
and primal coincide.

1. Introduction

Throughout this paper S will be a commutative cancellation torsion-free
additive semigroup with identity 0 and let S 6= {0}. We will study the
structure of primal ideals and quasi-primary ideals of S. Our interest is
motivated by the work [2].

Fuchs in [1] introduced the concept of a primal ideal, where a proper
ideal I of S is said to be primal if the elements of S which are not prime to
I form an ideal (see section 3). Fuchs and Mosteig proved in [2] that in a
Prüfer domain of �nite character every non-zero ideal is the intersection of
a �nite number of primal ideals, and moreover, the P -primal ideals form a
semigroup under ideal multiplication. A similar result is established for de-
composition into the intersection (even into the products) of quasi-primary
ideals. The purpose of this paper is to explore some basic facts of these
class of ideals of a semigroup. In the second section we characterize the
semigroups in which every ideal is prime and prove that a semigroup is a
group if and only if every its proper ideal is prime. We show also that ev-
ery ideal over a Prüfer semigroup is quasi-primary and characterize primal

2000 Mathematics Subject Classi�cation: 13A02, 13F05, 20M14
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ideals of a Prüfer semigroup. Connection between the primal ideals, the
quasi-primary and the primary ideals of such semigroups are studied too.

Before we state some results let us introduce some notation and termi-
nologies. Let S be a semigroup. Then G = {a−b : a, b ∈ S} is a torsion-free
ablian group with respect to the addition and S is a subsemigroup of G.
G is called the quotient group of S. Any semigroup T between S and G is
called an oversemigroup of S (see [3]).

By an ideal of S we mean a non-empty subset I of S such that for all
a ∈ I and for all b ∈ S we have a + b ∈ I, that is, I + S = I. Thus for
x ∈ S, x + S = {x + y : y ∈ S} is the principal ideal generated by x. If
I, J are ideals of S, then I + J = (I + S) + (J + S) = (I + J) + S is an
ideal of S too. For a ∈ S and an ideal I of S, by a + I, we mean the sum
a + I = (a + S) + (I + S), which is an ideal of S. A proper ideal I of a
semigroup S is called maximal if there does not exist an ideal J of S with
I ⊂ J ⊂ S, where ⊂ denotes the strict inclusion. An element a ∈ S is
called a unit if a + b = 0 for some b ∈ S. If U(S) is the set of units in S
and 0 ∈ U(S), then U(S) is a subgroup of G and M = S − U(S) 6= ∅ is a
maximal ideal of S. A prime ideal in a semigroup S is any proper ideal P
of S such that for a, b ∈ S a + b ∈ P implies either a ∈ P or b ∈ P . The
maximal ideal is a prime ideal (see [3]).

Let I be an ideal of S. The set

rad(I) = {a ∈ S : na ∈ I for some positive integer n}

is an ideal of S. It is called the radical of I. A proper ideal I of S is primary

if for a, b ∈ S a + b ∈ I implies either a ∈ I or b ∈ rad(I). If I is primary,
then P = rad(I) is a prime ideal of S and I is called a P -primary ideal of
S. The set {a ∈ S : a + J ⊆ I}, where I, J are ideals, is denoted by (I : J).

A non-empty subset T of a semigroup S is called an additive system of
S if a, b ∈ T implies a + b ∈ T and 0 ∈ T . ST = {s − t : s ∈ S, t ∈ T} is
an oversemigroup of S which is called the quotient semigroup of S. If P is
a prime ideal of S, then T = S − P is an additive system of S. In this case
the quotient semigroup ST is denoted by SP .

Throughout this paper we shall assume unless otherwise stated, that S
is a semigroup with the maximal ideal M = S − U(S) 6= ∅.

Let S be a semigroup with quotient group G. We say that S is a
valuation semigroup if g ∈ S or −g ∈ S for each g ∈ G, so its ideals are
linearly ordered by inclusion (see [3, Lemma 4]). We say that S is a Prüfer

semigroup if SP is a valuation semigroup for every prime ideal P of S. An



On primal ideals over semigroups 149

ideal of a semigroups S is irreducible if, for ideals J and K of S, I = J ∩K
implies that either I = J or I = K.

2. Quasi-primary ideals

An ideal of S is called quasi-primary if its radical is a prime ideal of S.

Lemma 2.1. Let I be an ideal of a semigroup S. Then:

(i) if I contains a unit of S, then I = S,

(ii) S is a subgroup of G if and only if S has exactly one ideal.

Proof. (i) Let a be a unit of S such that a ∈ I. Then a + b = 0 for some
b ∈ S, so 0 = a + b ∈ I + S = I. If z ∈ S, then z = 0 + z ∈ I + S = I.
Therefore I = S.

(ii) Let S be a subgroup of G and let I be an ideal of S. Then there
exists a ∈ I such that a is a unit of S; hence I = S by (i). Conversely, it
is enough to show that every element of S is a unit. Suppose that c ∈ S.
Then c + S 6= ∅ is an ideal of S, so c + S = S; whence c + d = 0 for some
d ∈ S. It is easy to see that S is a subgroup of G.

Theorem 2.2. Let S be a semigroup. Then S is a subgroup of G if and

only if every proper ideal of S is prime.

Proof. If S is a subgroup of G, then the result is clear. Conversely, let a
be a non-zero and non-unit element of S. By assumption, a + a + S = I,
where I is prime, and so a+a ∈ I implies a ∈ I. Thus a = a+0 = a+a+ b
for some b ∈ S, and since S is a cancellation semigroup, we can cancel a to
obtain a + b = 0, showing that a is unit, as required.

Lemma 2.3. Let I, J and K be ideals of a semigroup S. Then:

(i) I = (I + SM ) ∩ S,

(ii) K = I ∩ J if and only if K + SM = (I + SM ) ∩ (J + SM ).

Proof. (i) Since I ⊆ (I + SM ) ∩ S is trivial, we will prove the reverse
inclusion. Let u ∈ (I + SM ) ∩ S. There exist a ∈ I and t ∈ S − M such
that u = a − t, so u + t = a ∈ I and t + b = 0 for some b ∈ S; hence
u = u + t + b ∈ I + S = I, as required.

(ii) Suppose �rst that K = I∩J . Clearly, K+SM ⊆ (I+SM )∩(J+SM ).
For the reverse inclusion, assume that z ∈ (I +SM )∩ (J +SM ). Then there
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are elements a ∈ I, b ∈ J and t, u ∈ S −M such that z = a− t = b− u, so
a + u = (a− t) + u + t = (b− u) + u + t = b + t ∈ I ∩ J since t, u are units
of S; hence z = a− t = (a + u)− (t + u) ∈ K + SM , as needed. The reverse
implication follows from (i).

Lemma 2.4. For ideals I and J of a semigroup S the following statements

hold:

(i) rad(I + J) = rad(I) ∩ rad(J) = rad(I ∩ J). Moreover, I + J = S

if and only if rad(I) + rad(J) = S.

(ii) If N is an additive system of S, then I + SN = SN if and only if

I ∩N 6= ∅.
(iii) If N is an additive system of S, then rad(I + SN ) = rad(I) + SN .

Proof. (i) Is straightforward.

(ii) If I + SN = SN , then 0 ∈ I + SN , so 0 = a− t for some a ∈ I and
t ∈ N ; hence a = t ∈ I ∩N . Conversely, assume that u ∈ I ∩N . As u is a
unit of SN , I + SN = SN by Lemma 2.1.

(iii) Since rad(I) + SN ⊆ rad(I + SN ) is trivial, we will prove the
reverse inclusion. Suppose that z ∈ rad(I+SN ). Then there exist a positive
integer n such that nz ∈ I + SN , so nz = a − t for some a ∈ I, t ∈ N .
As n(z + t) = a + (n − 1)t ∈ I, we get z + t ∈ rad(I). It follows that
z = z + t− t ∈ rad(I) + SN , as required.

Lemma 2.5. Let I be an ideal of S with rad(I) = M . Then I is M -pri-

mary.

Proof. Since I ⊆ M 6= S, an ideal I is proper. Let a, b ∈ S be such that
a + b ∈ I but b /∈ rad(I). But M is maximal and b /∈ M , so must be
M + (b + S) = S. Then from Lemma 2.4 it follows I + (b + S) = S, i.e.,
0 = c + (b + s) for some c ∈ I, s ∈ S. Therefore, we have a = a + 0 =
a + b + c + s ∈ I + S = I, as needed.

Proposition 2.6. Let P be a prime ideal of a semigroup S, and let I
be a quasi-primary ideal of SP with a prime radical Q. Then I ∩ S is a

quasi-primary ideal of S with a prime radical Q ∩ S.

Proof. Since Q is a prime ideal of SP , Q′ = Q ∩ S is a prime ideal of S
with Q′ ⊆ P and Q′ + SP = Q by [3, Proposition 2], so all that remains
to be veri�ed that Q′ is the radical of I ∩ S. Let a ∈ rad(I ∩ S). Then
na ∈ I for some positive integer n; hence a ∈ Q. Thus, a ∈ Q′. Conversely,
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if b ∈ Q′, then mb ∈ I ∩ S for some positive integer m; so b ∈ rad(I ∩ S),
as required.

Proposition 2.7. Let I be a quasi-primary ideal of a semigroup S with a

prime radical P . Then I + SP is a primary ideal (so quasi-primary) of SP .

In particular, (I + SP ) ∩ S is a quasi-primary ideal of S.

Proof. By Lemma 2.4 we have rad(I+SP ) = P +SP , so it is a maximal ideal
of SP by [3, Corollary 3]. Now Lemma 2.5 shows that I + SP is primary.
The last claim follows from Proposition 2.6.

Proposition 2.8. Every ideal of a valuation semigroup S is quasi-primary.

Proof. Let I be an ideal of S with radical P . Let a, b ∈ S such that a+b ∈ P .
Then there exists a positive integer n such that n(a + b) ∈ I. Since S is a
valuation semigroup, either a+S ⊆ b+S or b+S ⊆ a+S. We may assume
that a + S ⊆ b + S. Then there is an element c ∈ S such that a = b + c, so
2na = na + nb + nc ∈ I + S = I; hence a ∈ P .

Theorem 2.9. Every ideal of a Prüfer semigroup S is quasi-primary.

Proof. Let I be an ideal of S. By Theorem 2.8, the ideal I + SM of the
valuation semigroup SM is quasi-primary; hence Proposition 2.6 and Lemma
2.3 imply that I = (I + SM ) ∩ S is quasi-primary.

3. Primal ideals

An element s ∈ S is called prime to I if (r + s) ∈ I (r ∈ S) implies that
r ∈ I, that is, (I : s) = (I : (s)) = I. An ideal I of S is called primal if the
elements of S that are not prime to I form an ideal (see [1]).

Lemma 3.1. Let I be an ideal of a semigroup S and let P be the set of

elements of S which are not prime to I. If P is an ideal of S, then P is

prime.

Proof. Let a, b ∈ S − P . Then (I : a) = (I : b) = I. If s ∈ (I : a + b),
then a + b + s ∈ I, whence s + a ∈ (I : b) = I. Therefore s ∈ (I : a) = I,
consequently (I : a + b) = I. Thus a + b /∈ P.
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If I is a primal ideal of S, then, by Lemma 3.1, P is a prime ideal of
S called the adjoint prime ideal of I. In this case we also say that I is a
P -primal ideal.

Theorem 3.2. For an ideal I of a semigroup S, the following statements

are equivalent.

(i) I is primal with the adjoint prime ideal P ,

(ii) If a + b ∈ I and b /∈ I, then a ∈ P and conversely, for every a ∈ P
there exists an element b ∈ S − I such that a + b ∈ I.

Proof. (i) ⇒ (ii) Let a + b ∈ I with b /∈ I. Then b ∈ (I : a) − I; hence
a ∈ P . If a ∈ P , then I ⊂ (I : a) because I is primal. So, there is an
element x of (I : a) which is not in I. Thus a + x ∈ I and x /∈ I.

(ii) ⇒ (i) It is enough to show that P + S ⊆ P . Let x + y ∈ P + S
where x ∈ P, y ∈ S. Then there exists c /∈ I such that x + c ∈ I by (ii),
and hence x + y + c ∈ I with c /∈ I. Thus x + y ∈ P by (ii).

Lemma 3.3 Let Q be a P -primary ideal of a semigroup S, and let a ∈ S.

(i) If a ∈ Q, then (Q : a) = S.

(ii) If a /∈ Q, then (Q : a) is P -primary.

(iii) If a /∈ P , then (Q : a) = Q.

Proof. The proof is straightforward.

Proposition 3.4. A P -primary ideal is primal.

Proof. It is enough to show that the set of elements of S which are not
prime to Q is just P . Suppose that s is such element of S which is not
prime to Q. Then Q ⊂ (Q : s). Hence there exists a ∈ (Q : s) with a /∈ Q
and a+s ∈ Q. Therefore, s ∈ P because Q is primary. Conversely, if s /∈ P ,
then (Q : s) = Q by Lemma 3.3.

Proposition 3.5. Let I be a Q-primal ideal of a semigroup S, and let P
be a prime ideal of S. Then:

(i) I = (I + SP ) ∩ S for Q ⊆ P ,

(ii) I ⊂ (I + SP ) ∩ S for Q * P .

Proof. (i) Clearly, I ⊆ (I + SP ) ∩ S. For x ∈ (I + SP ) ∩ S we have
x = c − d ∈ S for some c ∈ I and d /∈ P . Therefore, x + d = c ∈ I. As
d /∈ Q, d is prime to I; hence x ∈ I.
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(ii) Since Q * P , there is y ∈ Q such that y /∈ P . So y + u ∈ I for
some u /∈ I by Theorem 3.2. Then u = (y + u) − y ∈ (I + SP ) ∩ S. But
u /∈ I, so I ⊂ (I + SP ) ∩ I.

Corollary 3.6. Let I be a Q-primal ideal of a semigroup S, and let T be a

quotient semigroup of S. Then either I = (I + T ) ∩ S or I ⊂ (I + T ) ∩ S.

Proof. By [3, Proposition 2], T = SP for some prime ideal P of S. The rest
follows from Proposition 3.5.

Proposition 3.7. Let P be a prime ideal of a semigroup S, and let I be

a Q-primal ideal of SP . Then I ∩ S is a primal ideal of S with the adjoint

prime ideal Q ∩ S.

Proof. As Q is prime ideal of SP , by [3, Proposition 2], Q′ = Q ∩ S is a
prime ideal of S with Q′ ⊆ P and Q′ +SP = Q. To prove that Q′ is exactly
the set of elements non-prime to I ∩ S let z /∈ Q ∩ S. Then z /∈ Q, so
(I :SP

z) = I. Thus (I ∩ S : z) = I ∩ S, whence z is prime to I ∩ S. If
z ∈ Q ∩ S, then z ∈ Q, so there exists u ∈ SP with z + u ∈ I and u /∈ I by
Theorem 3.2. We can write u = x− y for some x ∈ S, y ∈ S − P . If x ∈ I,
then x = u+y ∈ I with y /∈ Q, so u ∈ I, a contradiction. So we can assume
that x /∈ I. Since z + u ∈ I implies z + x ∈ I ∩ S, we get x ∈ (I ∩ S : z).
But x /∈ I, so z is not prime to I ∩ S.

Corollary 3.8. Let I be a Q-primal ideal of a quotient semigroup T of S.
Then I ∩ S is a primal ideal of S with the adjoint prime ideal Q ∩ S.

Proof. Follows from [3, Proposition 2] and Proposition 3.7.

Proposition 3.9. Let I be an ideal of a semigroup S such that (I : a) = P
is a prime ideal of S for some a ∈ S − I. Then (I + SP ) ∩ S is a P -primal

ideal of S.

Proof. Let J = (I + SP ) ∩ S. First, we show that (J : a) = P . If t ∈ P =
(I : a), then t + a ∈ I ⊆ J ; hence t ∈ (J : a). For the reverse inclusion,
assume that u ∈ (J : a), so u + a = c− d ∈ J for some c ∈ I, d /∈ P . Thus
u + a + d = c ∈ I. Consequently u + d ∈ (I : a) = P. So, u ∈ P since P is
prime. As P 6= S, we get a /∈ J . Therefore, in P no elements prime to J .

Let us show that every b /∈ P is prime to J . Clearly, J ⊆ (J : b). To
prove (J : b) ⊆ J , assume that c ∈ (J : b), so c + b = e − f ∈ I for some
e ∈ I, f /∈ P ; hence c = e− (b+f) ∈ J since (b+f) /∈ P . Thus, (J : b) ⊆ J ,
which completes the proof.
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Lemma 3.10. Every irreducible ideal of a semigroup S is primal.

Proof. Let I be an irreducible ideal of S. Assume that P is the set of
elements of S which are not prime to I. To prove that P + S ⊆ P let
a+s ∈ P +S where a ∈ P , s ∈ S. Then I ⊂ (I : a) because a ∈ P . Clearly,
I ⊆ (I : a) ∩ (I : s) ⊆ (I : a + s). If I = (I : a) ∩ (I : s), then I = (I : s)
since I is irreducible. Let t ∈ (I : a + s). Then t + a ∈ (I : s) = I, so
t ∈ (I : a); hence I ⊂ (I : a) = (I : a+ s). If I 6= (I : a)∩ (I : s), then again
I ⊂ (I : a + s), that is, a + s is not prime to I. Thus a + s ∈ P .

Proposition 3.11. An ideal I of a Prüfer semigroup is irreducible if and

only if it is primal.

Proof. By Lemma 3.10, it is su�cient to show that if I is P -primal, then I is
irreducible. If I = J∩K for ideals J, K, then I+SM = (J +SM )∩(K+SM )
by Lemma 2.3. Since SM is a valuation semigroup, either I +SM = J +SM

or I + SM = K + SM . Because M contains P then by Proposition 3.5
I + SM = J + SM gives I = (I + SM ) ∩ S = (J + SM ) ∩ S. Hence
J ⊆ (J + SM ) ∩ S = I. The case I + SM = K + SM is similar. So, I is
irreducible.

Proposition 3.12. An ideal I of a valuation semigroup S is a primal ideal

of S with the adjoint prime ideal P = {a ∈ S : (a + S) + I ⊂ I}.

Proof. Let I = J ∩K for ideals J,K of S. Then either J ⊆ K or K ⊆ J
because S is a valuation semigroup. So either I = J or I = K. Therefore,
I is irreducible, and hence I is primal by Proposition 3.10. Let us show
that P is an ideal of S. Let a + s ∈ P + S where a ∈ P , s ∈ S. Then
(a+S)+I ⊂ I; hence (a+s)+S +I ⊆ (a+S)+I ⊂ I, so a+s ∈ P . Thus,
P is an ideal of S. To prove that P is prime let x + y ∈ P with x /∈ P .
Then (x+S)+ I = I and (y +S)+ I = (x+ y +S)+ I ⊂ I, whence y ∈ P .

To prove that P is the set of elements of S which are not prime to I
consider u ∈ P. Then (u + S) + I ⊂ I ⊆ (I : u). Suppose that (I : u) = I.
If v ∈ (I : u) = I, then u+ v ∈ I, so v ∈ (u+S)+ I; hence I = (u+S)+ I,
a contradiction.

Corollary 3.13. Every ideal of a oversemigroup of a valuation semigroup

is primal.

Proof. This follows from [3, Lemma 4] and Proposition 2.12.
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Theorem 3.14. Every ideal of a Prüfer semigroup is primal.

Proof. If I is an ideal of a Prüfer semigroup S, then I = (I + SM ) ∩ S
by Lemma 2.3, so, by Proposition 3.12, the ideal I + SM of SM is primal.
Proposition 3.7 completes the proof.

Corollary 3.15 An ideal of a Prüfer semigroup is primal (resp. quasi-

primary) if and only if it is primary.

Proof. Follows from Theorem 2.9 and Theorem 3.14.
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Finite hexagonal quasigroups

Mea Bombardelli

Abstract

In this article some examples of �nite hexagonal (idempotent, medial and semisymmetric)
quasigroups are given. The main goal is to determine the set of possible orders of �nite
hexagonal quasigroups.

1. Introduction

Hexagonal quasigroups are de�ned by V. Volenec in [1] as follows:

De�nition. A quasigroup (Q, ·) is said to be hexagonal if it is idempotent,
medial and semisymmetric, i.e., if the equalities

a · a = a,

ab · cd = ac · bd,

a · ba = ab · a = b

hold for all its elements.
Study of hexagonal quasigroups in [1] and [2] is motivated by

Example 1. On the set C of complex numbers the operation ∗ is de�ned
by:

a ∗ b =
1− i

√
3

2
a +

1 + i
√

3
2

b.

If we identify the complex numbers with the points of the Euclidean
plane, the points a, b and a ∗ b are the vertices of a positively oriented
equilateral triangle.
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In this paper, we'll give some examples of �nite hexagonal quasigroups,
and answer the question: for which positive integers n there exists a hexag-

onal quasigroup of order n?

We'll need some elementary results.

Lemma 1. Let (Q1, ·1), (Q2, ·2), . . . , (Qn, ·n) be hexagonal quasigroups, and

let ◦ be the operation de�ned on Q = Q1 ×Q2 × . . .×Qn by:

(x1, x2, . . . , xn) ◦ (y1, y2, . . . , yn) = (x1 ·1 y1, x2 ·2 y2, . . . , xn ·n yn).

Then (Q, ◦) is a hexagonal quasigroup.

Therefore, if a hexagonal quasigroup of order m exists, then there exists
hexagonal quasigroup of order mn, for each n ∈ N. If hexagonal quasigroups
of orders k1, k2,. . . kn exist, then a hexagonal quasigroup of order k1k2 · · · kn

exists.

A subquasigroup of the quasigroup (Q, ·) is any subset S ⊂ Q such
that (S, ·) is a quasigroup. Obviously, any subquasigroup of a hexagonal
quasigroup is hexagonal.

For any quasigroup (Q, ·) and its subset A, the smallest quasigroup that
contains A is the intersection of all subquasigroups of Q that contain A.

Example 2. Let (D, ∗) be the smallest subquasigroup of (C, ∗) (as in
Example 1) that contains 0 and 1. D can be represent by triangular lattice
with the same operation as in (C, ∗): the product of two points a and b is
the third vertex of regular triangle with vertices a and b.

If q = 1
2 + i

√
3

2 , then D = {x + qy : x, y ∈ Z}, and it can be identi�ed
with the set {(x, y) : x, y ∈ Z}. It's easy to verify:

(x1, y1) ∗ (x2, y2) = (1− q)(x1 + qy1) + q(x2 + qy2)

= (x1 + y1 − y2, x2 + y2 − x1).

We obtained an important example of hexagonal quasigroup:

Theorem 1. Let (G, +) be a commutative group. The set G×G with the

operation

(x1, y1) · (x2, y2) = (x1 + y1 − y2, x2 + y2 − x1)

is a hexagonal quasigroup.

Therefore, a hexagonal quasigroup of order n2 exists for any n ∈ N.

The following characterization of hexagonal quasigroups was given in
[1].
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Theorem 2. A hexagonal quasigroup on the set Q exists if and only if on

the same set exists commutative group with automorphism ϕ satisfying

(ϕ ◦ ϕ)(a)− ϕ(a) + a = 0 (1)

for all a ∈ Q.

Given such commutative group (Q,+), the quasigroup is obtained by

a · b = a + ϕ(b− a). (2)

Note that from (1) it follows

ϕ3(x) = ϕ(ϕ(x)− x) = ϕ ◦ ϕ(x)− ϕ(x) = (ϕ(x)− x)− ϕ(x) = −x

and ϕ6(x) = x for all x ∈ Q.

2. Commutative hexagonal quasigroups

Let us use the Theorem 2 to study commutative hexagonal quasigroups.
We wish to �nd all commutative groups Q which have an automorphism ϕ
that satis�es (1), with additional condition that the operation · de�ned by
(2) is commutative. In other words,

a + ϕ(b− a) = b + ϕ(a− b),

ϕ(b− a)− ϕ(a− b) = b− a

for all a, b ∈ Q. Therefore

ϕ(x) + ϕ(x) = x (3)

must hold for all x ∈ Q.

From (1) it follows ϕ(ϕ(x)) + ϕ(ϕ(x)) + x + x = ϕ(x) + ϕ(x) and
using (3) we obtain ϕ(x) + x + x = ϕ(x) + ϕ(x) = x. It follows

ϕ(x) + x = 0 and ϕ(x) = x + x.

Therefore, x + x + x = 0 for all x ∈ Q, i.e., each element of the group G
is of order 3 or 1. The only �nite groups which satisfy that condition are
(Z3)n, and the group of order 1.
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On the other hand, if x + x + x = 0, ∀x ∈ Q, then ϕ(x) = x + x = −x
is an automorphism that satis�es (1), and the operation de�ned by (2) is
commutative.

We have proved:

Theorem 3. The only �nite commutative hexagonal quasigroups with more

than one element, are the quasigroups obtained in the way described in The-

orem 2 from the group (Z3)n, for some n ∈ N.

From each group (Z3)n we obtain unique hexagonal quasigroup of order
3n.

Example 3. From (Z3)2 we obtain hexagonal quasigroup of order 9:

· 0 1 2 3 4 5 6 7 8

0 0 2 1 6 8 7 3 5 4
1 2 1 0 8 7 6 5 4 3
2 1 0 2 7 6 8 4 3 5
3 6 8 7 3 5 4 0 2 1
4 8 7 6 5 4 3 2 1 0
5 7 6 8 4 3 5 1 0 2
6 3 5 4 0 2 1 6 8 7
7 5 4 3 2 1 0 8 7 6
8 4 3 5 1 0 2 7 6 8

3. Cyclic groups

The automorphism ϕ(x) = kx (k is relatively prime to n) of the group Zn

satis�es (1) if and only if k2 − k + 1 ≡ 0(mod n).
We need to determine for which n ∈ N the obtained quadratic con-

gruence has solution k (in that case k and n are relatively prime), or to
determine the possible factors of k2 − k + 1 for k ∈ Z.

Evidently, since k2 − k + 1 is odd, n cannot be even.

Let us determine all odd primes p for which p | k2−k+1, for some k ∈ Z.
If p | k2−k+1, then so do p divides the number 4(k2−k+1) = (2k−1)2+3,
that is p | a2 +3 where a = 2k−1 is an odd integer. It su�ces to determine
for which p exists x ∈ Z such that x2 ≡ −3(mod p) (if such an even integer
x exists, then x + p is odd integer that satis�es the condition).

It is equivalent to
(
−3
p

)
= 1, which (since p is an odd integer) is equiv-

alent to
(p

3

)
= 1, i.e., p ≡ 0(mod 3) or p ≡ 1(mod 3). The solutions are
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p = 3 and all primes of the form p = 6l + 1, l ∈ Z. Factors of k2 − k + 1
cannot be primes of the form 6l − 1.

This proves the following:

Theorem 4. The cyclic group Zn has an automorphism that satis�es (1)
if and only if its order n is a product of primes from the set {3} ∪ {6l + 1 :
l ∈ Z}, i.e., if and only if n is an odd integer without any prime factor that

is congruent to −1 modulo 6.

Example 4. Group Z7 has two such automorphisms, ϕ(x) = 3x and
ϕ(x) = 5x. So we obtain two hexagonal quasigroups of order 7.

· 0 1 2 3 4 5 6

0 0 3 6 2 5 1 4
1 5 1 4 0 3 6 2
2 3 6 2 5 1 4 0
3 1 4 0 3 6 2 5
4 6 2 5 1 4 0 3
5 4 0 3 6 2 5 1
6 2 5 1 4 0 3 6

· 0 1 2 3 4 5 6

0 0 5 3 1 6 4 2
1 3 1 6 4 2 0 5
2 6 4 2 0 5 3 1
3 2 0 5 3 1 6 4
4 5 3 1 6 4 2 0
5 1 6 4 2 0 5 3
6 4 2 0 5 3 1 6

4. Conclusion

The following theorem is well-known.

Theorem 5. Let m1 and m2 be relatively prime positive integers, and G
be commutative group of order m1m2, whose automorphism ϕ satis�es (1).
Then there exist groups G1 and G2 such that G = G1 × G2, |G1| = m1,

|G2| = m2, with automorphisms that satisfy (1).

Theorem 5 allows us to deal with groups of order pk only, in order to
determine which groups have "good" automorphism.

So far, we know that �nite hexagonal quasigroup can have orders p2k

for any prime p, 3k, and pk where p is a prime of the form 6l + 1.
Let G be �nite commutative group with automorphism ϕ which satis�es

(1). For x ∈ G let us denote

Sx = {x, ϕ(x), ϕ2(x), ϕ3(x), ϕ4(x), ϕ5(x), . . .}.

It is clear that {Sx : x ∈ G} is a partition of the set G. Since ϕ6(x) = x,
for all x ∈ G, the set Sx has 6 elements at most, i.e., it may have 1, 2, 3 or
6 elements. The only x for which CardSx = 1 is x = 0.



162 M. Bombardelli

CardSx = 2 when x = ϕ2(x), that is when x + x + x = 0.
CardSx = 3 when x = ϕ3(x), i.e., x = −x.
Let

a = Card {Sx : x ∈ G, |Sx| = 2},

b = Card {Sx : x ∈ G, |Sx| = 3},

c = Card {Sx : x ∈ G, |Sx| = 6}.

The number of elements of G equals |G| = 1 + 2a + 3b + 6c.
Now we can �nally solve remaining problems: the existence of hexagonal

quasigroup of order 22m−1, or of order p2m−1 for p prime of the form 6l− 1.
Suppose the group G of order 22m−1 has an automorphism that satis�es

(1). Since its order is not divisible by 3, a = 0, and |G| = 1 + 3b + 6c ≡
1(mod 3). But, 22m−1 ≡ 2(mod 3), which is a contradiction.

Let now p be a prime number of the form 6l−1, and let G be the group
of order p2m−1, with an automorphism which satis�es (1). That group has
no element of order two, and no element of order three, so a = 0 and b = 0.
It follows p2m−1 = 1 + 6c, which is impossible since p2m−1 ≡ −1(mod 6).

This �nally proves:

Theorem 6. A �nite hexagonal quasigroup of order n = m · l2, where m
is square-free, exists if and only if m is an odd integer with no prime factor

congruent to −1 modulo 6.
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On n-ary semigroups with adjoint neutral element

Wiesªaw A. Dudek and Vladimir V. Mukhin

Abstract

We prove that we can adjoint an n-ary neutral element to an n-ary semigroup i� this
semigroup is derived from a binary semigroup.

According to the general convention used in the theory of n-ary groupoids
the sequence of elements xi, xi+1, . . . , xj will be denoted by xj

i . For j < i
it is the empty symbol. If xi+1 = xi+2 = . . . = xi+t = x, then instead

of xi+t
i+1 we will write

(t)
x . In this convention the symbol f(x1, . . . , xn)

will be written as f(xn
1 ). Similarly, the symbol f(xi

1,
(t)
x , xn

i+t+1) means
f(x1, . . . , xi, x, . . . , x︸ ︷︷ ︸

t

, xi+t+1, . . . , xn).

An n-ary groupoid (G, f) is called (i, j)-associative if

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j ) (1)

holds for all x1, . . . , x2n−1 ∈ G. If this identity holds for all 1 6 i < j 6 n,
then we say that the operation f is associative and (G, f) is called an n-ary
semigroup. It is clear that an n-ary groupoid is associative if and only if it
is (1, j)-associative for all j = 2, . . . , n. In the binary case (i.e. for n = 2)
it is a usual semigroup.

An n-ary semigroup (G, f) in which for all x0, x1, . . . , xn ∈ G and all
i ∈ {1, . . . , n} there exists an element zi ∈ G such that

f(xi−1
1 , z, xn

i+1) = x0, (2)

is called an n-ary group. It is clear that for n = 2 we obtain a usual group.
Note by the way that in many papers n-ary semigroups (n-ary groups)

are called n-semigroups (n-groups, respectively). Moreover, in many papers,

2000 Mathematics Subject Classi�cation: 20N05
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where the arity of the basic operation does not play a crucial role, is used
the term polyadic semigroups (polyadic groups) (cf. [8]).

In the paper [1] written by W. Dörnte (under inspiration of Emmy
Noether), he observed that any n-ary groupoid (G, f) of the form

f(xn
1 ) = x1 ◦ x2 ◦ . . . ◦ xn ◦ b,

where (G, ◦) is a group and b belongs to the center of this group, is an
n-ary group but for every n > 2 there are n-ary groups which are not
of this form. In the �rst case we say that an n-ary groupoid (G, f) is
b-derived (or derived if b is the identity of (G, ◦)) from the group (G, ◦),
in the second � irreducible. Obviously, an n-ary operation derived from a
binary associative operation is also associative in the above sense. An n-ary
operation b-derived from an associative operation can be associative also in
the case when b is not in the center. For example, the ternary operation
b-derived from the multiplication of a nilpotent associative algebra of index
7 (the product of any 7 elements is 0) is trivially associative for every b.

In some n-ary groupoids there exists an element e (called an n-ary neu-

tral element) such that

f(
(i−1)

e , x,
(n−i)

e ) = x (3)

holds for all x ∈ G and for all i = 1, . . . , n. There are n-ary semigroups
(groups) with two, three and more neutral elements [9]. Also there are n-ary
semigroups (groups too) in which all elements are neutral. All n-ary groups
with this property are derived from the commutative group of the exponent
k|(n− 1) [2]. In n-ary group the set of neutral elements (if it is non-empty)
forms an n-ary subgroup [5, 6]. In ternary groups each two neutral elements
form a ternary subgroup. Other important properties of neutral elements
one can �nd in [7] and [12].

As is it well known, to any semigroup (G, ◦) we can adjoint the identity
e 6∈ G in this way that (G ∪ {e}, �) is a semigroup containing (G, ◦) as its
semigroup. For this it is su�cient to de�ne the operation � as the extension
of ◦ putting x � y = x ◦ y for x, y ∈ G, e � e = e and x � e = e � x = x for
x ∈ G.

Natural question is: Is it possible to �nd the analogous construction for

n-ary semigroups? We prove below that the answer is positive.
First we characterize n-ary semigroups containing at least one n-ary

neutral element.

Lemma 1. An n-ary semigroup containing the neutral element is derived

from a binary semigroup.
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Proof. Let e be the neutral element of an n-ary semigroup (G, f). It is clear

that (G, ◦), where x ◦ y = f(x,
(n−2)

e , y), is a semigroup and e is its neutral
element. Direct computations shows that (G, f) is derived from (G, ◦).

From the above proposition we can deduce the following result �rstly
proved by W. Dörnte.

Corollary 1. An n-ary group is derived from a binary group if and only if

it has the neutral element.

Note that any (i, j)-associative n-ary groupoid (G, f) with the neutral
element in the center is an n-ary semigroup [3, 10, 11]. Such groupoid is
associative also in the case when in the center of (G, f) lies at least one
neutral polyad (sequence), i.e., the sequence of elements an

2 ∈ G such that
f(x, an

2 ) = f(an
2 , x) = x holds for all x ∈ G [3, 11]. Neutral sequences are

in all n-ary groups ([8]), but not in all n-ary semigroups.

Lemma 2. An n-ary semigroup derived from a binary semigroup possess a

neutral sequence if and only if it contains the neutral element.

Proof. Let (G, f) be derived from a semigroup (G, ◦). If an
2 is a neutral

sequence of (G, f), then e = a2 ◦ a3 ◦ . . . ◦ an belongs to G and x ◦ e =
x ◦ a2 ◦ a3 ◦ . . . ◦ an = f(x, an

2 ) = x for all x ∈ G. Similarly e ◦ x = x. This
means that e is the identity of (G, ◦). Hence it is the neutral element of an
n-ary semigroup derived from (G, ◦).

The converse statement is obvious.

Corollary 2. If an n-ary semigroup without neutral elements is derived

from a binary semigroup then it does not possess any neutral sequence.

Proposition 1. A neutral element can be adjoint to any n-ary semigroup

derived from a binary semigroup.

Proof. Let n-ary semigroup (G, f) be derived from a binary semigroup
(G, ◦). Then to (G, ◦) we can add the identity e 6∈ G in this way that
(G ∪ {e}, ◦) becomes a semigroup with (G, ◦) as its subsemigroup. In an
n-ary semigroup (G∪{e}, g) derived from (G∪{e}, ◦) the element e is neu-
tral and f(xn

1 ) = g(xn
1 ) for xn

1 ∈ G. So, to (G, f) we can adjoint the neutral
element e 6∈ G.

Proposition 2. If an n-ary semigroup (G, f) do not contains any neutral

elements, then to (G, f) we can adjoint the neutral element if and only if

(G, f) is derived from a binary semigroup.
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Proof. If to an n-ary semigroup (G, f) we can adjoint the neutral element
e 6∈ G, then on G ∪ {e} we can de�ne the n-ary operation g such that
g(xn

1 ) = f(xn
1 ) for all xn

1 ∈ G. By Lemma 1, an n-ary semigroup (G∪{e}, g)

is derived from the semigroup (G ∪ {e}, ∗), where x ∗ y = g(x,
(n−2)

e , y).
Obviously (G, ∗) is a subsemigroup of (G ∪ {e}, ∗). If not, then there are
a, b ∈ G such that e = a ∗ b which contradicts to the assumption on e. This
means that (G, f) is an n-ary subsemigroup of (G∪{e}, g) and it is derived
from (G, ∗).

The converse statement follows from Proposition 1.

As a consequence of the above two propositions we obtain the following

Theorem 1. To an n-ary semigroup (G, f) we can adjoint the neutral ele-

ment if and only if (G, f) is derived from a binary semigroup.

From the above proofs it follows that in an n-ary semigroup (G, f)
derived from a semigroup (G, ◦) the adjoint n-ary neutral element is the
adjoint identity of (G, ◦).

Corollary 3. An n-ary semigroup (G, f) can be embedded into an n-ary
semigroup with neutral element if and only if it is derived from a binary

semigroup.

Corollary 4. An n-ary group (G, f) can be embedded into an n-ary group

derived from a binary group if and only if (G, f) has at least one neutral

element.

This means that to n-ary groups without neutral element we do not
adjoint any neutral element.

Theorem 2. For every n > 2 there exists at least one n-ary semigroup

(group) to which any n-ary neutral element cannot be adjoint.

Proof. It is su�cient to prove that for every n > 2 there exists at least one
n-ary group without neutral elements.

At �rst consider the multiplicative group G = T (3, K) of triangular ma-

trices of the form

 1 x y
0 1 z
0 0 1

, where K is a �eld of non-zero characteristic

p. Then the map

θ

 1 x y
0 1 z
0 0 1

 =

 1 αx y
0 1 βz
0 0 1

 ,
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where α is a primitive root of unity of degree n − 1 and αβ = 1, is an
automorphism of this group. It is not di�cult to verify that the set G with
the operation

f(A1, A2, . . . , An) = A1 · θ(A2) · θ2(A3) · . . . · θn−1(An) · B, (4)

where B =

 1 0 1
0 1 0
0 0 1

, is an n-ary group.

This group do not contains any n-ary neutral element. Indeed, if A is its
n-ary neutral element, then we have f(X, A,A, . . . , A) = f(A,X,A, . . . , A)
for all X ∈ G. Whence, according to (4), we conclude X · θA = A · θX.
Taking the identity matrix as X, we get θA = A. This proves that the
matrix A belongs to the center of the group (G, ·). Thus X ·A = A · θX =
θX · A, which implies θX = X for all X ∈ G. This is not true. So, (G, f)
is an n-ary group without neutral elements.

Now we give the another example of n-ary group without n-ary neutral
elements.

Let C be the set of complex numbers and let ω be the primitive (n−1)-th
root of unity. Then G = C 3 with the operation

x • y = (x1, x2, x3) • (y1, y2, y3) = (x1 + y1, x2 + y2 + x1y3, x3 + y3)

is a group and θ(x1, x2, x3) = (ωx1, ω
2x2, ωx3) is its automorphism.

It is not di�cult to verify that (G, g), where

g(x1,x2, . . . ,xn) = x1 • θ(x2) • θ2(x3) • . . . • θn−1(xn),

is an n-ary group. It is isomorphic to an n-ary group of triangular matrices
from the proof of Theorem 3 in [4].

Similarly as in the previous case we can prove that (G, g) is not derived
from any binary group.
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Left regular and intra-regular ordered semigroups

in terms of fuzzy subsets

Niovi Kehayopulu and Michael Tsingelis

Abstract

In this paper we extend some results concerning ideals of left regular and intra-regular
ordered semigroups to fuzzy ordered semigroups. A theory of fuzzy sets on ordered
groupoids and ordered semigroups can be developed. Some results on ordered groupoids-
semigroups have been already given by the same authors. The aim of writing this paper
is to show the way we pass from the theory of ordered semigroups based on ideals or
from the theory of poe-semigroups (i.e. ordered semigroups having a greatest element
”e”) based on ideal elements to the theory of ordered semigroups based on fuzzy ideals.
Then we also have the way we pass from the theory of semigroups based on ideals to the
theory of semigroups based on fuzzy ideals.

1. Introduction

Given a set S, a fuzzy subset of S (or a fuzzy set in S) is, by de�nition, an
arbitrary mapping f : S → [0, 1] where [0, 1] is the usual closed interval of
real numbers. If the set S bears some structure, one may distinguish some
fuzzy subsets of S in terms of that additional structure. This important
concept of the fuzzy set was �rst introduced by Zadeh in [28]. Since then,
many papers on fuzzy sets appeared showing the importance of the concept
and its applications to logic, set theory, group theory, groupoids, real analy-
sis, measure theory, topology, etc. The concept of a fuzzy set introduced by
Zadeh, was applied in [2] to generalize some of the basic concepts of general
topology. Rosenfeld [26] was the �rst who considered the case when S is a
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groupoid. He gave the de�nition of a fuzzy subgroupoid and the fuzzy left
(right, two-sided) ideal of S and justi�ed these de�nitions by showing that
a (conventional) subset A of a groupoid S is a (conventional) subgroupoid
or a left (right, two-sided) ideal of S if the characteristic function

fA : S → [0, 1] | a → fA(x) :=
{

1 if x ∈ A
0 if x /∈ A

is, respectively, a fuzzy subgroupoid or a fuzzy left (right, two-sided) ideal of
S. Kuroki has been �rst studied the fuzzy sets on semigroups [19�24]. See
also Liu's paper [25] where "fuzzy" analogous of several further important
notions, e.g. those of bi-ideals or interior ideals have been de�ned and
justi�ed in a similar fashion. Fuzzy sets on semigroups have been also
considered by Kehayopulu, Xie and Tsingelis in [18] and by Kehayopulu
and Tsingelis in [10�12,15]. Fuzzy pseudo-symmetric ideals of semigroups
and their radicals have been studied by K. P. Shum, Chen Degang and Wu
Congxin in [27]. A theory of fuzzy sets on ordered groupoids and ordered
semigroups can be developed. We endow S with the structure of an ordered
groupoid or semigroup and de�ne "fuzzy" analogous for several notions
that have been proved to be useful in the theory of ordered semigroups.
Following the terminology given by Zadeh, if S is an ordered groupoid
(resp. ordered semigroup), a fuzzy subset of S (or a fuzzy set in S) is any
mapping of S into the real closed interval [0,1]. Based on the terminology
given by Zadeh, fuzzy sets in ordered groupoids have been �rst considered by
Kehayopulu and Tsingelis in [13,16,17]. Moreover, each ordered groupoid
can be embedded into an ordered groupoid having a greatest element in
terms of fuzzy sets [16]. The aim of writing this paper is to show the
way we pass from the theory of ordered semigroups based on ideals to the
theory of poe-semigroups based on ideal elements, and then to the theory
of ordered semigroups based on fuzzy ideals. Then we have the way we
pass from the theory of semigroups -without order- based on ideals to the
theory of semigroups based on fuzzy ideals. The paper serves as an example
to have an easy comparison among the theory of ordered semigroups (or
semigroups) based on ideals, the theory of poe-semigroups (i.e. ordered
semigroups having a greatest element ”e”) based on ideal elements and the
theory of ordered semigroups based on fuzzy ideals.

Croisot [4] connects the matter of decompositions of a semigroup S
with two other sets of conditions on S, regularity and semiprime condi-
tions. Croisot uses the term "inversif" instead of "regular". The following
decomposition theorems are well known. A semigroup S is a disjoint union
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of left simple subsemigroups (equivalently, S is left regular) if and only if
every left ideal of S is semiprime. It might be also noted that a semigroup
S is left regular if and only it is just a union of left simple subsemigroups
of S. The results remain true if we replace the word "left" by "right" [3].
A semigroup S is a union of groups, equivalently, a union of disjoint groups
if and only if it is both left regular and right regular [3]. A semigroup S is
intra-regular if and only if it is a union of simple semigroups (cf. [3]). The
characterizations mentioned above can be expressed by means of Green's
relations as well. For details we refer to [3]. It has been proved in [7] that
a poe-semigroup S is left regular if and only if every left ideal element of S
is semiprime, equivalently, if every left ideal of S is semiprime. Moreover,
a poe-semigroup S is left regular if and only if it is a union of left simple
subsemigroups of S. Exactly as in semigroups, the left regularity of poe-
semigroups can be expressed in terms of Green's relations as well (cf. [7]).
Furthermore, an ordered semigroup S is left regular if and only if every left
ideal of S is semiprime, equivalently, if S is a union of left regular subsemi-
groups of S. In addition, an ordered semigroup S is left regular if and only
if it is a complete semilattice of left regular and simple semigroups. For
details we refer to [14]. The following structure theorem is known as well:
An ordered semigroup S is intra-regular if and only if it is a semilattice of
simple semigroups, equivalently, if S is a union of simple subsemigroups of
S [9]. Moreover, an ordered semigroups S is intra-regular if and only if the
ideals of S are semiprime (cf. [9; Remark 3]). In addition, a poe-semigroup
is a semilattice of simple semigroups if and only if it is a semilattice of
simple poe-semigroups.

In the present paper we �rst give some further characterizations of left
(resp. right) regular and intra-regular ordered semigroups in terms of right
ideals and semiprime subsets, then we characterize the left regular, right
regular and intra-regular poe-semigroups in terms of left ideal elements,
right ideal elements and semiprime ideal elements. Finally we characterize
the left regular, right regular and intra-regular ordered semigroups in terms
of fuzzy left, fuzzy right ideals and fuzzy semiprime subsets.

By a poe-groupoid we mean an ordered groupoid (po-groupoid [1]) S
having a greatest element ”e” (i.e. e > a ∀ a ∈ S). A ∨-semigroup is a
semigroup at the same time a semilattice under ∨ such that a(b∨c) = ab∨ac
and (a∨b)c = ac∨bc for all a, b, c ∈ S [1]. A poe-semigroup or ∨e-semigroup
is a po-semigroup or ∨-semigroup having a greatest element ”e”.
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2. A characterization of left regular and intra-regular

ordered semigroups in terms of semiprime left ideals

If (S, ·,6) is an ordered groupoid and H ⊆ S, we denote H the subset of S
de�ned as follows:

(H] = {t ∈ S | t 6 h for some h ∈ H}.

If (S, ·,6) is an ordered groupoid, a non-empty subset A of S is called a left

(resp. right) ideal of S if 1) SA ⊆ A (resp. AS ⊆ A) and 2) If a ∈ A and
S 3 b 6 a, then b ∈ A. A is called an ideal of S if it is both a left and a
right ideal of S [6]. For an ordered semigroup S, we denote by L(a), R(a),
I(a) the left ideal, right ideal, and the ideal of S, respectively, generated by
a (a ∈ S). For each a ∈ S, we have L(a) = (a ∪ Sa], R(a) = (a ∪ aS], and
I(a) = (a ∪ Sa ∪ aS ∪ SaS] [6].

An ordered semigroup (S, ·,6) is called left regular if for every a ∈ S
there exists x ∈ S such that a 6 xa2 . Equivalent de�nitions: 1) A ⊆ (SA2]
for every A ⊆ S. 2) a ∈ (Sa2] for every a ∈ S. An ordered semigroup
(S, ·,6) is called right regular if for every a ∈ S there exists x ∈ S such
that a 6 a2x. Equivalent de�nitions: 1) A ⊆ (A2S] for every A ⊆ S. 2)
a ∈ (a2S] for every a ∈ S [8]. S is called intra-regular if for every a ∈ S there
exist x, y ∈ S such that a 6 xa2y. Equivalent De�nitions: 1) A ⊆ (SA2S]
for every A ⊆ S. 2) a ∈ (Sa2S] for every a ∈ S [9].

A subset T of an ordered groupoid S is called semiprime if a ∈ S, a2 ∈ T
imply a ∈ T . Equivalent De�nition: A ⊆ S, A2 ⊆ T imply A ⊆ T [7].
Proposition 2.1. For an ordered semigroup (S, ·,6) the following are

equivalent:

1) S is left regular.

2) Every left ideal of S is semiprime.

3) L(a) is a semiprime left ideal of S for every a ∈ S.
4) L(a2) is a semiprime left ideal of S for every a ∈ S.

Proof. 1) =⇒ 2). Cf. [14]. It can be independently proved as follows: Let
L be a left ideal of S and a ∈ S, a2 ∈ L. Since S is left regular, there exists
x ∈ S such that a 6 xa2. Since a2 ∈ L and L is a left ideal of S, we have
xa2 ∈ SL ⊆ L. Since S 3 a 6 xa2 ∈ L and L is a left ideal of S, we have
a ∈ L.

2 =⇒ 3) =⇒ 4). It is obvious.
4) =⇒ 1). Let a ∈ S. Since a2 ∈ L(a2) and L(a2) is semiprime, we have

a ∈ L(a2) = (a2 ∪ Sa2]. Then a 6 a2 or a 6 xa2 for some x ∈ S. If a 6 a2,
then a 6 aa 6 aa2. Thus S is left regular.
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In a similar way we prove the following two propositions.

Proposition 2.2. For an ordered semigroup (S, ·,6) the following are

equivalent:

1) S is right regular.

2) Every right ideal of S is semiprime.

3) R(a) is a semiprime right ideal of S for every a ∈ S.
4) R(a2) is a semiprime right ideal of S for every a ∈ S.

Proposition 2.3. For an ordered semigroup (S, ·,6) the following are

equivalent:

1) S is intra-regular.

2) Every ideal of S is semiprime.

3) I(a) is a semiprime ideal of S for every a ∈ S.
4) I(a2) is a semiprime ideal of S for every a ∈ S.

3. A characterization of left regular and intra-regular

poe-semigroups is terms of left ideal elements

An element a of an ordered groupoid S is called a left (resp. right) ideal

element if xa 6 a (resp. ax 6 x) for all x ∈ S [1]. An element which is both
a left and a right ideal element is called an ideal element. One can easily see
that in poe-groupoids, an element a is a left (resp. right) ideal element if
and only if ea 6 a (resp. ae 6 a) [5]. We denote by l(a), r(a), i(a) the left
ideal element, right ideal element and the ideal element of S, respectively,
generated by a (a ∈ S). For a ∨e-semigroup S, we have l(a) = ea ∨ a,
r(a) = ae ∨ a and i(a) = a ∨ ea ∨ ae ∨ eae for all a ∈ S (cf. also [5]).

Let (S, ·,6) be an ordered semigroup. Suppose that S has a greatest
element ”e”, that is S is a poe-semigroup. Then, one can easily see that
S is left (resp. right) regular if and only if a 6 ea2 (resp. a 6 a2e) for
every a ∈ S. S is intra-regular if and only if a 6 ea2e for every a ∈ S. For
further information concerning the left, right ideal elements and the left,
right regularity and intra-regularity (in poe-semigroups) we refer to [5]. An
element t of an ordered groupoid S is said to be semiprime if for every a ∈ S
such that a2 6 t, we have a 6 t [5].

Proposition 3.1. Let (S, ·,6) be a poe-semigroup. We consider the state-

ments:

1) S is left regular.

2) Every left ideal element of S is semiprime.



174 N. Kehayopulu and M. Tsingelis

3) l(a) is a semiprime left ideal element of S for every a ∈ S.

4) l(a2) is a semiprime left ideal element of S for every a ∈ S.
Then 1) =⇒ 2). In particular, if S is a ∨e-semigroup, then the properties

1)− 4) are equivalent.

Proof. 1) =⇒ 2). Let a be a left ideal element of S and t ∈ S such that
t2 6 a. Then, since S is left regular, we have t 6 et2 6 ea 6 a.

Let now S be a ∨e-semigroup. Then

2) =⇒ 3) =⇒ 4). It is obvious.
4) =⇒ 1). Let a ∈ S. Since a2 6 l(a2) and l(a2) is a semiprime element

of S, by 4), we have a 6 l(a2) = a2 ∨ ea2. Then a2 6 a3 ∨ ea3 6 ea2, so
a 6 ea2, and S is left regular.

In a similar way the following two propositions hold true.

Proposition 3.2. Let (S, ·,6) be a poe-semigroup. We consider the state-

ments:

1) S is right regular.

2) Every right ideal element of S is semiprime.

3) r(a) is a semiprime right ideal element of S for every a ∈ S.

4) r(a2) is a semiprime right ideal element of S for every a ∈ S.
Then 1) =⇒ 2). In particular, if S is a ∨e-semigroup, then the properties

1)− 4) are equivalent.

Proposition 3.3. Let (S, ·,6) be a poe-semigroup. We consider the state-

ments:

1) S is intra-regular.

2) Every ideal element of S is semiprime.

3) i(a) is a semiprime ideal element of S for every a ∈ S.

4) i(a2) is a semiprime ideal element of S for every a ∈ S.
Then 1) =⇒ 2). In particular, if S is a ∨e-semigroup, then the properties

1)− 4) are equivalent.

For the equivalence 1) ⇐⇒ 2) cf. also [5].
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4. A characterization of left regular and intra-regular

ordered semigroups in terms of fuzzy subsets

If S is a groupoid or an ordered groupoid and A ⊆ S, the fuzzy subset fA

of S is the characteristic function of A de�ned as follows:

fA : S → [0, 1] | a → fA(x) :=
{

1 if x ∈ A
0 if x /∈ A.

Let (S, ·,6) be an ordered groupoid. A fuzzy subset f of S is called a
fuzzy left ideal of S if 1) f(xy) > f(y) for every x, y ∈ S and 2) If x 6 y,
then f(x) > f(y).

A fuzzy subset f of S is called a fuzzy right ideal of S if 1) f(xy) > f(x)
for every x, y ∈ S and 2) If x 6 y, then f(x) > f(y) [13].

A fuzzy subset f of S is called a fuzzy ideal of S if it is both a fuzzy right
and a fuzzy left ideal of S. Equivalent De�nition: 1) f(xy) > max{f(x), f(y)}
for every x, y ∈ S and 2) If x 6 y, then f(x) > f(y) [13].

De�nition 4.1. Let S be a groupoid or an ordered groupoid. A fuzzy
subset f of S is called semiprime if f(a) > f(a2) for every a ∈ S.

For an equivalent de�nition of the semiprime fuzzy subsets we refer to
[18].

Remark 4.2. If f is a semiprime fuzzy left ideal of S, then f(a) = f(a2)
for every a ∈ S. In fact, let a ∈ S. Since S is a fuzzy left ideal of S, we
have f(xy) > f(y) for each x, y ∈ S, so f(a2) > f(a). Since f is semiprime,
we have f(a) > f(a2), hence we have f(a) = f(a2). Similarly, if f is a
semiprime fuzzy right ideal of S, then f(a) = f(a2) for every a ∈ S.

Lemma 4.3. [13] A non-empty subset L of an ordered groupoid (S, ·,6) is

a left ideal of S if and only if the characteristic function fL is a fuzzy left

ideal of S.

Lemma 4.4. A non-empty subset R of an ordered groupoid (S, ·,6) is a

right ideal of S if and only if the characteristic function fR is a fuzzy right

ideal of S.

Lemma 4.5. (Cf. also [18]) A non-empty subset A of a groupoid (S, .) or

an ordered groupoid (S, ·,6) is a semiprime subset of S if and only if the

fuzzy subset fA of S is semiprime.

Proposition 4.6. An ordered semigroup (S, ·,6) is left (resp. right) regular
if and only if the fuzzy left (resp. fuzzy right) ideals of S are semiprime.
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Proof. Let S be left regular, f a fuzzy left ideal of S and a ∈ S. Since S is
left regular, there exists x ∈ S such that a 6 xa2. Then, since f is a fuzzy
left ideal of S, we have f(a) > f(xa2) > f(a2). Thus f is semiprime.

Conversely, let a ∈ S. Since L(a2) is a left ideal of S, by Lemma 4.3,
the characteristic function fL(a2) is a fuzzy left ideal of S. By hypothesis,
fL(a2) is semiprime. By Lemma 4.5, L(a2) is a semiprime left ideal of S.
Then, by Proposition 2.1, S is left regular.

In a similar way we prove S is right regular if and only it the fuzzy right
ideals of S are semiprime.

Remark 4.7. Each of the following two conditions also characterizes the
left regular ordered semigroups.

1) fL(a) is a semiprime fuzzy left ideal of S for every a ∈ S.
2) fL(a2) is a semiprime fuzzy left ideal of S for every a ∈ S.

Remark 4.8. Each of the following two conditions also characterizes the
right regular ordered semigroups.

1) fR(a) is a semiprime fuzzy right ideal of S for every a ∈ S.
2) fR(a2) is a semiprime fuzzy right ideal of S for every a ∈ S.

In a similar way we have the following:

Proposition 4.9. An ordered semigroup S is intra-regular if and only if

the fuzzy ideals of S are semiprime.

Remark 4.10. Each of the following two conditions also characterizes the
intra-regular ordered semigroups.

1) fI(a) is a semiprime fuzzy ideal of S for every a ∈ S.
2) fI(a2) is a semiprime fuzzy ideal of S for every a ∈ S.
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On the prime graph of L2(q)

where q = pα < 100

Behrooz Khosravi and Seyyed Sadegh Salehi Amiri

Abstract

Let G be a �nite group. We construct the prime graph of G as follows: the vertices of
this graph are the prime divisors of |G| and two vertices p and q are joined by an edge if
and only if G contains an element of order pq. The prime graph of G is denoted by Γ(G).

Mina Hagie (Comm. Algebra, 2003) determined �nite groups G such that Γ(G) =

Γ(S), where S is a sporadic simple group. In this paper we determine �nite groups G

such that Γ(G) = Γ(L2(q)) for some q < 100.

1. Introduction

Let G be a �nite group. We denote by π(G) the set of all prime divisors of
|G|. If |π(G)| = n, then G is called a Kn−group.

The prime graph (Gruenberg-Kegel graph) Γ(G) of a group G is the
graph whose vertex set is π(G), and two distinct primes p and q are joined
by an edge (we write p ∼ q) if and only if G contains an element of order
pq. Let t(G) be the number of connected components of Γ(G) and let π1,
π2, . . . , πt(G) be the connected components of Γ(G). If 2 ∈ π(G), then we
always suppose 2 ∈ π1. Also the set of orders of the elements of G is denoted
by πe(G). Obviously πe(G) is partially ordered by divisibility. Therefore
it is uniquely determined by µ(G), the subset of its maximal elements.
We know that µ(L2(q)) = {p, (q − 1)/d, (q + 1)/d} and µ(PGL(2, q)) =
{p, (q− 1), (q + 1)} where q = pα and d = (2, q− 1). Also we know that the
prime graph components of L2(q) are cliques (i.e., complete subgraphs).

The structure of �nite groups G with disconnected prime graph has been
determined by Gruenberg and Kegel (1975) and they have been described

2000 Mathematics Subject Classi�cation: 20D05, 20D60, 20D08
Keywords: Prime graph, order elements, simple group, linear group.
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in [9, 13, 16]. It has been proved that t(G) 6 6 [9, 13, 16], and we know
that the diameter of Γ(G) is at most 5 (see[14]).

Mina Hagie in [8] determined �nite groups G such that Γ(G) = Γ(S)
where S is a sporadic simple group. Also in [12] �nite groups were de-
termined which have the same prime graph as a CIT simple group. In
this paper we determine �nite groups G such that Γ(G) = Γ(L2(q)), where
q < 100 is a prime power. Throughout this paper we denote by (a, b), the
greatest common divisor of a and b.

2. Preliminary results

Lemma 2.1. ([5]) Let G be a �nite group, H a subgroup of G and N a
normal subgroup of G. Then

(1) if p and q are joined in Γ(H), then p and q are joined in Γ(G);
(2) if p and q are joined in Γ(G/N), then p and q are joined in Γ(G).

In fact if xN ∈ G/N has order pq, then there is a power of x which has
order pq.

Lemma 2.2. ([1]) If G is a simple K3−group, then G is isomorphic to one
of the following groups: A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3) and
U4(2).

Lemma 2.3. ([1]) If G is a simple K4−group, then G is isomorphic to one
of the following groups:

A7, A8, A9, A10, M11, M12, J2, L3(4), L3(5), L3(7), L3(8), L3(17), L4(3),
O5(4), O5(5), O5(7), O5(9), O7(2), O+

8 (2), G2(3), 3D4(2), 2F4(2)′, Sz(8),
Sz(32), U3(4), U3(5), U3(7), U3(8), U3(9), U4(3), U5(2), L2(q),
where q is a prime power satisfying q(q2 − 1) = (2, q − 1)2α13α2pα3rα4 ,
αi ∈ N (1 6 i 6 4) and 2, 3, p, r are distinct primes.

The next lemma is an immediate consequence of Theorem A in [16]:

Lemma 2.4. If G is a �nite group whose prime graph is disconnected,
then one of the following holds: G is a Frobenius group or a 2−Frobenius
group; or G has a normal series 1 E N E M E G such that G/M and N are
π1−groups, N is a nilpotent π1−group and M/N is a non-abelian simple
group.

Corollary 2.1. [16] If G is a solvable group with disconnected prime graph,
then t(G) = 2 and G is either Frobenius or 2−Frobenius group and G has
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exactly two components, one of which consists of the primes dividing the
lower Frobenius complement.

The next lemma follows from [2] and the structure of Frobenius com-
plements:

Lemma 2.5. Let G be a Frobenius group of even order and let H, K
be Frobenius complement and Frobenius kernel of G, respectively. Then
t(G) = 2 and the prime graph components of G are π(H), π(K) and G has
one of the following structures:

(a) 2 ∈ π(K) and all Sylow subgroups of H are cyclic;

(b) 2 ∈ π(H), K is an abelian group, H is a solvable group, the Sylow
subgroups of odd order of H are cyclic groups and the 2−Sylow sub-
groups of H are cyclic or generalized quaternion groups;

(c) 2 ∈ π(H), K is an abelian group and there exists H0 6 H such that
|H : H0| 6 2, H0 = Z × SL(2, 5), π(Z) ∩ {2, 3, 5} = ∅ and the Sylow
subgroups of Z are cyclic.

Also the next lemma follows from [2] and the properties of Frobenius
groups:

Lemma 2.6. Let G be a 2−Frobenius group of even order, i.e. G has a
normal series 1 E H E K E G, such that K and G/H are Frobenius groups
with kernels H and K/H, respectively. Then

(a) t(G) = 2, π1 = π(G/K) ∪ π(H) and π2 = π(K/H);
(b) G/K and K/H are cyclic, |G/K| | (|K/H|−1) and G/K 6 Aut(K/H);
(c) H is nilpotent and G is a solvable group.

Lemma 2.7. Let L be a �nite group with t(L) = 3. If G is a �nite group
such that Γ(G) = Γ(L), then G has a normal series 1 E N E M E G such
that G/M and N are π1−groups, N is a nilpotent π1−group and M/N is a
non-abelian simple group, where t(M/N) > 3. Also |G/M | | |Out(M/N)|.

Proof. The �rst part of theorem follows from the above lemmas. Since
t(G) = 3, it follows that t(G/N) > 3. Moreover, we have Z(G/N) = 1. For
any xN ∈ G/N and xN 6∈ M/N , xN induces an automorphism of M/N
and this automorphism is trivial if and only if xN ∈ Z(G/N). Therefore
G/M 6 Out(M/N) and since Z(G/N) = 1, the result follows.

Lemma 2.8. ([7]) The equation pm − qn = 1, where p and q are prime
numbers and m, n > 1, has only one solution, namely 32 − 23 = 1.
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Lemma 2.9. ([7])With the exceptions of the relations (239)2−2(13)4 = −1
and (3)5 − 2(11)2 = 1 every solution of the equation pm − 2qn = ±1; p, q
prime; m,n > 1, has exponents m = n=2.

Lemma 2.10. (Zsigmondy Theorem) ([17]) Let p be a prime and n be a
positive integer. Then one of the following holds:

(i) there is a prime p′ such that p′|(pn − 1) but p′ - (pm − 1) for every
1 6 m < n;

(ii) p = 2, n = 1 or 6;

(iii) p is a Mersenne prime and n = 2.

Lemma 2.11. ([15, Proposition 3.2]) Let G be a �nite group and H a
normal subgroup of G. Suppose G/H is isomorphic to PSL(2, q), q odd
and q > 5, and that an element t of order 3 in G\H has no �xed points on
H. Then H = 1.

3. Main results

In this section we determine �nite groups G satisfying Γ(G) = Γ(L2(q)),
where q < 100 is a prime power.

Theorem 3.1. Let L= L2(q) where q < 100. If G is a non-abelian simple
group such that Γ(G) is a subgraph of Γ(L) and πi(L) ⊆ πi(G) for 2 6 i 6 3,
then G is one of the groups in the 2nd column of Table 1.

In the table, X is one of the following non-abelian simple groups: L2(q)
such that q = pα is a prime power and q 6= 72, 16 6 q < 100.

Proof. By assumptions we have π(G) ⊆ π(L). We consider three steps:

Step 1. If |π(L)| = 3, then L ∼= L2(5), L2(7), L2(8), L2(9) or L2(17), by
Lemma 2.2. Also G is a simple K3−group, since G is a non-abelian simple
group. Now by using the atlas of �nite groups [6], it follows that the result
holds.

Table 1.

L G

L2(5) L2(5), L2(9)
L2(7) L2(7), L2(8)
L2(8) L2(7), L2(8)
L2(9) L2(5), L2(9)

L G

L2(11) L2(11), M11

L2(13) L2(13), G2(3)
L2(49) A7, L2(49), L3(4), U4(3)

X X
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Step 2. If |π(L)|=4, then L is isomorphic to one of the following groups:
L2(11), L2(13), L2(16), L2(19), L2(23), L2(25), L2(27), L2(31), L2(32),
L2(37), L2(47), L2(49), L2(53), L2(73), L2(81) and L2(97), by Lemma 2.3.
Since G is a non-abelian simple group and Γ(G) is a subgraph of Γ(L), it
follows that G is a simple K3−group or a simple K4−group. For each L,
there exists a prime number p in πi(L), for 2 6 i 6 3, which is not in π(G),
for every simple K3−group G [6]. So G is a simple K4−group. Then G is
one of the groups listed in Lemma 2.3. Since the proofs of these cases are
similar, we do only one of them, namely L2(11).

Let L = L2(11) and G be a simple K4−group such that Γ(G) is a
subgraph of Γ(L). Since G and L are K4−groups, it follows that π(G) =
π(L). Therefore π(G) = {2, 3, 5, 11}. Hence by using Lemma 2.3 and [6],
it follows that G ∼= M11,M12, U5(2) or L2(q) where q is a prime power
satisfying q(q2 − 1) = (2, q − 1)2α13α25α311α4 , where αi ∈ N (1 6 i 6 4).
We know that 2 ∼ 5 in M12 and 3 ∼ 5 in U5(2), but 2 6∼ 5 and 3 6∼ 5 in
Γ(L). Hence G ∼= M11 or G ∼= L2(q) where q is a prime power satisfying
q(q2 − 1) = (2, q − 1)2α13α25α311α4 , where αi ∈ N (1 6 i 6 4).

If Γ(G) = Γ(L2(q)) is a subgraph of Γ(L), it follows that Γ(L2(11)) =
Γ(L2(q)), since the components of L2(q) are cliques. Now we prove that
q=11. We know that µ(L2(11)) = {5, 6, 11}. Note that {p} is a prime
graph component of G ∼= L2(q) where q = pα, and so p 6∼ p′ for every prime
number p′ 6= p. As Γ(L2(11)) = Γ(L2(q)), it follows that Γ(L2(q)) has the
same components as Γ(L2(11)). Also 2 ∼ 3 in Γ(L2(11)) and hence q 6= 2α

and q 6= 3α where α ∈ N. Therefore q = 5α or q = 11β for some α, β ∈ N.
If q = 5α, then 4 | (q− 1) and so µ(L2(q)) = {5, (5α − 1)/2, (5α + 1)/2}.

Also 2 divides (5α−1)/2 and hence 2 ∈ π((5α−1)/2). Therefore (5α+1)/2 =
11k for some k > 0. Then 5α−2 ·11k = −1 and as this diophantine equation
has no solution, by Lemma 2.9, we have a contradiction. If q = 11β , then
we consider two cases: if β is even, then 4 | (11β − 1) and so 2 | (11β − 1)/2
which implies that (11β + 1)/2 = 5k, for some k > 0. Again by using
Lemma 2.9 we get a contradiction. If β is odd, then 2 | (11β + 1)/2 and
hence (11β−1)/2 = 5k, for some k > 0. Now by using Lemma 2.9, it follows
that β = k=1. Therefore G ∼= L2(11) and the result follows.

The proof of the other cases are similar and we omit them for conve-
nience.

Step 3. Let |π(L)| = 5. Now by using [6], we can see that L is isomorphic
to one of groups L2(29), L2(41), L2(43), L2(59), L2(61), L2(64), L2(67),
L2(71), L2(79), L2(83) or L2(89). In Steps 1 and 2 we use Lemmas 2.2 and
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2.3. But in this step we have no result about simple K5−group. Therefore
we use the following method to get the result. Since Γ(L) has three com-
ponents and πi(L) ⊆ πi(G) for 2 6 i 6 3, it follows that Γ(G) has at least
three components, by Lemma 2.1. Now by using the table of non-abelian
simple groups with at least three components (see [10]), we consider all
possibilities. Again the proof of these cases are similar and for convenience
we do one of them, namely L2(29).

Let L = L2(29). We know that µ(L2(29)) = {29, 14, 15}. If G ∼= Ap

where p and p − 2 are prime numbers, then we get a contradiction, since
2, 3 ∈ π1(Ap) and Γ(G) is a subgraph of Γ(L2(29)). If G ∼= A1(q) where
4 | (q + 1), then q = 29k or (q − 1)/2 = 29k for some k ∈ N. Since
4 - (29k + 1), thus q 6= 29k. So (q − 1)/2 = 29k. Then the third component
of Γ(G) is π(q) = {3, 5}, which is a contradiction, since q is a prime power.
If G ∼= A1(q) where 4 | (q − 1), then q = 29k or (q + 1)/2 = 29k. First
let q = 29k and k > 1. Then q − 1 = 29k − 1 has a prime divisor p where
p 6∈ {2, 7}, by Zsigmondy theorem, which is a contradiction. If k=1, then
G ∼= L2(29). If (q+1)/2 = 29k, then π(q) = {3, 5}, which is a contradiction.
If G ∼= A1(q) where 4 | q, then q − 1 = 29k or q + 1 = 29k and these
diophantine equations have no solution by Lemma 2.8, a contradiction. If
G ∼= 2B2(q) where q = 22n+1 > 2, then q − 1 is equal to a power of 3, 5, 7,
29 or q−1 = 3α5β for some, α, β ∈ N. The equation q−1 = 7α has only one
solution, namely α = n = 1. Since 29 6∈ π(Sz(8)), we get a contradiction.
Also the diophantine equations q − 1 = 3α, q − 1 = 5β or q − 1 = 29γ have
no solution by Lemma 2.8. If q − 1 = 3α5β , then 3 | (22 − 1), 5 | (24 − 1)
and so q − 1 has a prime divisor, except 3, 5 for every n > 2 by Zsigmondy
theorem, which is a contradiction. Also 29 6∈ π(Sz(32)) and so n 6= 2.
Therefore this case is impossible. Since the cases 2Dp(3) where p = 2n + 1,
n > 2, 2Dp+1(2) where p = 2n − 1, n > 2, G2(q) where 3 | q and 2G2(q)
where q = 32n+1 have similar proofs, we consider only one of them, namely
2Dp(3). If G ∼= 2Dp(3) where p = 2n + 1, n > 2, then 2, 3 ∈ π1(2Dp(3)).
Since Γ(G) is a subgraph of Γ(L2(29)) and 2 6∼ 3 in Γ(L2(29)), we get a
contradiction.

If G ∼= F4(q) such that 2 | q, q > 2, then π1(G) contains at least
three prime numbers, by Zsigmondy theorem. Since Γ(G) is a subgraph of
Γ(L2(29)), this gives a contradiction.

By the same method we can show that G 6∼= 2F4(q) where q = 22n+1 > 2.
Since πi(L) ⊆ πi(G) for i=2,3, it follows that G is not isomorphic to the

following groups: A2(2), A2(4), 2A5(2), E7(2), E7(3), 2E6(2), M11, M22,
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M23, M24, J1, J3, J4, HS, Sz, ON , Ly, Co2, F23, F ′
24, M , B or Th.

If G ∼= E8(q), then π1(G) contains at least three prime numbers by Zsig-
mondy theorem, which is a contradiction. Now the proof of this theorem is
complete.

Corollary 3.1. Let L= L2(q), where q < 100 and G be a �nite simple
group such that |G| = |L|. Then G is isomorphic to L.

Proof. Straightforward from Theorem 3.1.

Theorem 3.2. Let L= L2(q), where q < 100 and G be a �nite group
satisfying Γ(G) = Γ(L). Then G is one of the groups in 2nd column of
Table 2 (G means G/Oπ(G)).

Proof. Since t(L) > 3, we can apply Lemma 2.4. Also note that G is
neither a Frobenius group nor a 2-Frobenius group by Lemmas 2.5 and 2.6.
Therefore G has a normal series 1 E N E M E G such that G/M and N are
π1−groups, N is a nilpotent π1−group and M/N is a non-abelian simple
group, such that M/N satis�es the following conditions:

(1) Γ(M/N) is a subgraph of Γ(G);

(2) πi(L) ⊆ πi(G) ⊆ π(L) for i = 2, 3; (∗)
(3) Γ(G) = Γ(L).

Case I. Since L2(5) and L2(9) have the same prime graph, we only consider
one of them. So let L = L2(5). By (∗) and Theorem 3.1, it follows that
M/N ∼= L2(5) or M/N ∼= L2(9). First let M/N ∼= L2(5). We note that
Out(L2(5)) ∼= Z2 [6]. Therefore G/M 6 Out(L2(5)) ∼= Z2, by Lemma 2.7.
If G/M ∼= Z2, then since L2(5).2 has an element of order 6, it follows that
Γ(L2(5).2) is not a subgraph of Γ(L). Thus G = M and G/Oπ(G) ∼= L2(5)
Where π ⊆ {2}. Let M/N ∼= L2(9). We know that Out(L2(9)) ∼= Z2 × Z2

and there exists three involutions in Z2 × Z2.
By using the notations of atlas L2(9).21 and L2(9).22 have elements of

order 6 and 10, respectively [6]. Thus Γ(L2(9).21) and Γ(L2(9).22) are not
subgraphs of Γ(L), and G = M . By the atlas of �nite groups, Γ(L2(9)) =
Γ(L2(9).23). So G/N ∼= L2(9) or G/N ∼= L2(9).23. If 2 ∈ π(N), then let
P ∈ Syl2(N) and Q ∈ Syl3(G). Since N is a nilpotent group, P char N
and N E G, we conclude that P E G. Also 2 6∼ 3 in Γ(L), so Q acts �xed
point freely on P . Hence QP is a Frobenius group, with kernel P and
complement Frobenius Q. Therefore Q is cyclic. This is a contradiction
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since L2(9) has no element of order 9. Hence we have N=1 and G ∼= L2(9)
or L2(9).23.

Table 2.

L G

L2(5) G ∼= L2(5), π ⊆ {2}
L2(9), L2(9).23

L2(7) L2(7) or G ∼= L2(8)
π ⊆ {2}

L2(8) L2(7) or G ∼= L2(8)
π ⊆ {2}

L2(9) G ∼= L2(5), π ⊆ {2}
L2(9), L2(9).23

L2(11) L2(11) or M11

L2(13) G ∼= L2(13) or G2(3)
π ⊆ {2, 3}

L2(16) G ∼= L2(16), π ⊆ {2}
L2(17) L2(17)
L2(19) L2(19)
L2(23) L2(23)
L2(25) L2(25), L2(25).23

L2(27) L2(27)
L2(29) L2(29)
L2(31) L2(31)
L2(32) G ∼= L2(32), π ⊆ {2}
L2(37) G ∼= L2(37), π ⊆ {2, 3}

L G

L2(41) L2(41)
L2(43) L2(43)
L2(47) L2(47)
L2(49) L2(49), L2(49).23,

G ∼= L3(4), L3(4).2′
2

L3(4).2′′
3,

L3(4).2′′
2, L3(4).2′

3,
U4(3), U4(3).23, A7

π ⊆ {2, 3}
L2(53) L2(53)
L2(59) L2(59)
L2(61) G ∼= L2(61), π ⊆ {2, 3, 5}
L2(64) G ∼= L2(64)), π ⊆ {2}
L2(67) L2(67)
L2(71) L2(71)
L2(73) G ∼= L2(73), π ⊆ {2, 3}
L2(79) L2(79)
L2(81) L2(81) , L2(81).23

L2(83) L2(83)
L2(89) L2(89)
L2(97) G ∼= L2(97), π ⊆ {2, 3}

Case II. Since L2(7) and L2(8) have the same graph, we only consider
one of them. So let L = L2(7). By (∗) and Theorem 3.1 it follows that
M/N ∼= L2(7) or M/N ∼= L2(8). First let M/N ∼= L2(7). Therefore
G/M 6 Out(L2(7)) ∼= Z2 by Lemma 2.7. Since L2(7).2 has an element of
order 6, Γ(L2(7).2) is not a subgraph of Γ(L), thus G = M . We know that
N is a 2−group. If 2 ∈ π(N), then M has a solvable {2, 3, 7}−subgroup H,
since L2(7) contains a 7:3 subgroup [6]. Since there exist no edge between
2, 3 and 7 in Γ(L), it follows that t(H)= 3, a contradiction since t(H) 6 2,
by Remark 2.1. Therefore N = 1 and G = L2(7). Let M/N ∼= L2(8). As
L2(8).3 has an element of order 6 and Out(L2(8)) ∼= Z3, then Γ(L2(8).3) is
not a subgraph of Γ(L). Therefore G = M and G/Oπ(G) ∼= L2(8) where
π ⊆ {2}.
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Case III. L = L2(11). By (∗) and Theorem 3.1, it follows that M/N ∼=
L2(11) or M/N ∼= M11. We consider both cases simultaneously. Since
Out(L2(11)) ∼= Z2, Out(M11)=1 and L2(11).2 has an element of order 10, in
each case it follows that G = M . We know that N is a {2, 3}−group. If 2 ∈
π(N), then M has a solvable {2, 5, 11}−subgroup H, since L2(11) and M11

have a 11:5 subgroup. Then Γ(L) yields t(H)=3, which is a contradiction,
since t(H) 6 2, by Remark 2.1. Similarly 3 6∈ π(N). Hence N=1 and
G ∼= L2(11) or M11.

Case IV. Since L2(13), L2(16), L2(17), L2(29), L2(32), L2(37), L2(41),
L2(53), L2(61), L2(73), L2(89) and L2(97) have similar proofs, we con-
sider only one of them. So let L = L2(13). By (∗) and Theorem 3.1,
it follows that M/N ∼= L2(13) or M/N ∼= G2(3). Let M/N ∼= L2(13).
Since Out(L2(13)) ∼= Z2 and L2(13).2 has an element of order 14, it fol-
lows that Γ(L2(13).2) is not a subgraph of Γ(L). Thus G = M and
G/Oπ(G) ∼= L2(13) where π ⊆ {2, 3}. By the same method easily we
can show that, if M/N ∼= G2(3), then G/Oπ(G) ∼= G2(3), where π ⊆ {2, 3}.
Case V. Since L2(19), L2(23), L2(27), L2(31), L2(43), L2(47), L2(59),
L2(67), L2(71), L2(79) and L2(83) have similar proofs, we only consider a
few of them. Let L = L2(19). Similar to the last cases, M/N ∼= L2(19).
Since Out(L2(19)) ∼= Z2 and L2(19).2 has an element of order 6, it fol-
lows that Γ(L2(19).2) is not a subgraph of Γ(L), and so G = M . We
know that L2(19) has a 19:9 subgroup [6]. If 2 ∈ π(N), then M has a
solvable {2, 3, 19}−subgroup H and Γ(L) yields t(H)=3, a contradiction
since t(H) 6 2. It follows that 2 6∈ π(N). Similarly, if 5 ∈ π(N), then
M has a solvable {3, 5, 19}−subgroup H. Hence Γ(L) yields t(H)=3, a
contradiction. This yields 5 6∈ π(N). Now N=1 and G ∼= L2(19). Let
L = L2(43). We know that Out(L2(43)) ∼= Z2, L2(43).2 ∼= PGL(2, 43) and
PGL(2, 43) has an element of order 6, so Γ(L2(43).2) is not a subgraph of
Γ(L), and G = M . Since L2(43) contains a 43 : 21 subgroup, then N = 1
and G ∼= L2(43).

Case VI. L = L2(25). In this case we have M/N ∼= L2(25). We note
that Out(L2(25)) ∼= Z2 × Z2 and by using the notations of the atlas of
�nite groups we know that L2(25).21 and L2(25).22 have element of order
26 and 10, respectively [6]. Thus Γ(L2(25).21) and Γ(L2(25).22) are not
subgraphs of Γ(L), and in this case G = M . By using the atlas of �nite
groups, Γ(L2(25)) = Γ(L2(25).23). So G/N ∼= L2(25) or G/N ∼= L2(25).23.
If 3 ∈ π(N), then let P ∈ Syl3(N) and Q ∈ Syl5(G). We know that N is
nilpotent and P char N , N C G. Therefore P E G. Since 3 6∼ 5 in Γ(L),
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so QP is a Frobenius group, with kernel P and complement Frobenius Q.
Therefore Q is cyclic. This is a contradiction since L2(25) has no element
of order 25. By the same method we can show that 2 6∈ π(N). Therefore
N = 1 and G ∼= L2(25) or G ∼= L2(25).23.

Case VII. L = L2(49). In this case we have M/N ∼= L2(49), A7, L3(4) or
U4(3). First let M/N ∼= L2(49). We know that Out(L2(49)) ∼= Z2 × Z2

and by using the notations of atlas, L2(49).21 and L2(49).22 have elements
of order 10 and 14, respectively. Therefore Γ(L2(49).21) and Γ(L2(49).22)
are not subgraphs of Γ(L), and so in this case G = M . But Γ(L2(q)) =
Γ(L2(49).23), so G/N ∼= L2(49) or G/N ∼= L2(49).23. If 2 ∈ π(N), then let
P ∈ Syl2(N) and Q ∈ Syl7(G). Since 2 6∼ 7 in Γ(L), so QP is a Frobenius
group. Therefore Q is cyclic. This is a contradiction, since L2(49) has no
element of order 49. By the same method we can show that 3 6∈ π(N).
Therefore N = 1 and G ∼= L2(49), G ∼= L2(49).23. Let M/N ∼= A7. Since
Out(A7) ∼= Z2 and A7.2 has an element of order 10, it follows that Γ(A7.2)
is not a subgraph of Γ(L), and so G = M . Hence G/Oπ(G) ∼= A7 where
π ⊆ {2, 3}. Let M/N ∼= L3(4). We know that Out(L3(4)) ∼= Z2 × S3.
Similar to the last cases it follows that by the notations in the atlas of
�nite groups, G/Oπ(G) ∼= L3(4), L3(4).2′

2, L3(4).2′′
2, L3(4).2′

3 or L3(4).2′′
3

where π ⊆ {2, 3}. Let M/N ∼= U4(3). We note that Out(U4(3)) ∼= D8.
Then similarly we conclude that by the notations of the atlas G/N ∼= U4(3)
or G/N ∼= U4(3).23, since 2 � 5 in Γ(L). Hence G/Oπ(G) ∼= U4(3) or
U4(3).23 where π ⊆ {2, 3}. Since U4(3).21, U4(3).22, U4(3).23 and U4(3).4
have element of order 10, then Γ(U4(3).21), Γ(U4(3).22), Γ(U4(3).23) and
Γ(U4(3).4) are not subgraphs of Γ(L), and G = M .

Case VIII. L = L2(64). By assumption we have M/N ∼= L2(64). We note
that Out(L2(64)) ∼= Z2 × Z3. Since L2(64).2 and L2(64).3 have elements
of order 6, thus Γ(L2(64).2) and Γ(L2(64).3) are not subgraphs of Γ(L).
Therefore G = M and G/Oπ(G) ∼= L2(64) where π ⊆ {2}.
Case IX. L = L2(81). By (∗), it follows from Theorem 3.1 that M/N ∼=
L2(81). Since Out(L2(81)) ∼= Z2 × Z4 and L2(81).21 and L2(81).22 have
element of order 82 and 6, respectively, thus Γ(L2(81).21) and Γ(L2(81).22)
are not subgraphs of Γ(L), and in these cases G = M . But Γ(L2(81) =
Γ(L2(81).23. If 2 ∈ π(N), then let P ∈ Syl2(N) and Q ∈ Syl3(G). There-
fore P E G. Since 2 6∼ 3 in Γ(L), so QP is a Frobenius group, with kernel
P and complement Frobenius Q. Therefore Q is cyclic. This is a contradic-
tion, since L2(81) has no element of order 34. By the same method we can
show 5 6∈ π(N). Therefore N=1 and G ∼= L2(81) or L2(81).23. �
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The application of DES, IDEA and AES

in strong encryption

Czesªaw Ko±cielny

Abstract

The concept of strong encryption by means of DES and IDEA in [9, pp. 295, 324] has
been mentioned. In the paper this thought concerning the commonly used DES, IDEA
and AES algorithms has been developed and generalized.

1. Introduction

It has been announced in [2] that
... the Data Encryption Standard became e�ective July 1977. It was rea�rmed in

1983, 1988, 1993, and 1999. The DES has now been withdrawn. The use of DES

is permitted only as a component function of TDEA, and that
with the withdrawal of the FIPS 46-3 standard:

1. Triple DES (i.e., TDEA), as speci�ed in ANSI X9.52, Keying Options 1 and

2, is recognized as the only FIPS approved DES algorithm.

2. Other implementations of the DES function are no longer authorized for pro-

tection of Federal government information.

Note: Through the year 2030, Triple DES (TDEA) and the FIPS 197 Advanced

Encryption Standard (AES) will coexist as FIPS approved algorithms - thus, allow-

ing for a gradual transition to AES. (The AES is a new symmetric based encryption

standard approved by NIST.)

In the light of the presented paper the above decision seems to be ir-
rational because the protection of data by means of the Triple Data En-
cryption Algorithm is much more weaker than that o�ered by DES, used
according to the method discussed in this work.

The paper is addressed to application researchers well acquainted with
the standards [1], [4] and with the IDEA [3].

2000 Mathematics Subject Classi�cation: 68P25, 94A60, 11T71
Keywords: DES, IDEA, AES, block ciphers, strong encryption
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2. DES, IDEA and AES as a reason of contention

DES, IDEA and AES belong to a class of iterated block ciphers involving the
sequential repetition of a round function and a particular subkey for each
round. For any iterated block cipher encryption procedure is described by
means of the equation

C = E(ks(K),M), (1)

where E denotes two-variable encrypting function, K− a secret key chosen
by the user, and M− a message to be encrypted. The secret key K is not
directly applied in the encryption operation, but it serves as input data for
the function ks, generating a key schedule, i.e. subkeys for each iteration.
A number of cryptologists suspect that the function ks intends to "inject"
into the cryptogram as much additional information about bits of the secret
key K as possible during the encryption process instead of maximizing the
di�usion and confusion. This additional information may deliver − to the
privileged circle of the initiated − a manner of deciphering cryptograms
without the knowledge of the secret key. To verify the justness of this
suspicion one ought to �nd and analyze an explicit function F , which, taking
into account both the encryption and key schedule generation algorithms,
will allow to express symbolically the cryptogram

C = F (K, M), (2)

and to compute it in one step, using the secret key K and the message M .
But in the case of the iterated block ciphers this task is almost unfeasible.

The author shows in next section how to eliminate this bone of con-
tention.

3. DES−768, IDEA−832, and AES−1408:1664:1920

It has been veri�ed by the author that it is possible to encrypt data using
the DES with the 768-bit key, IDEA with 832-bit key and bringing into play
the AES with the key length equal to 1408 bits, 1664 bits or 1920 bits. In
the case of the strong version of these algorithms the encrypting/decrypting
procedures exactly conform to standards [1] and [4]. To transform DES and
AES into strong ciphers it simply su�ces to eliminate the key expansion
algorithms, i.e. to generate arbitrarily the set of subkeys Ks for all iterations
and to use it as a secret key. Then, applying the same encrypting algorithm
E as in (1), we now compute the cryptogram of the message M according
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to
C = E(Ks,M), (3)

and we are sure that all bits of our modi�ed secret key Ks participate in
the encryption process. Thus, since DES needs sixteen 48-bit subkeys, in
this way we will obtain the 768-bit secret key to protect a 64-bit block
of data. The IDEA needs �fty two 16-bit subkeys for protecting 64-bit
plaintext block - it means that the modi�ed secret key for this algorithm can
contain 832 bits. Similarly, AES−128, AES−192, AES−256, apply eleven,
thirteen and �fteen 128-bit subkeys for encrypting a 128-bit message block,
respectively. Making use of these sets of subkeys as secret keys we can now
safeguard a 128-bit block of data with secret keys of 1408, 1664 and 1920
bits.

4. Strong symmetric-key block ciphers

related to DES and to AES

Introducing small changes into the considered cryptographic algorithms we
can further strengthen their protecting power. Discussing DES from this
point of view we can treat the initial permutation IP , primitive functions
S1−S8 (S-boxes), permutation P and selection function E as variables and
in this way enlarge additionally the key space. Since there can be

• x = 64! permutations IP ,

• y = (4 · 16!)8 sets of 8 S-boxes,

• z = 32! permutations P ,

• u = 240 selection functions E,
then the increase of a secret key length will be

∆DES = b ln(x · y · z · u)
ln(2)

c, (4)

that is 1591 bits. Thus, taking into account the previous section, we can
use DES for protection 64-bit data block with key containing 2359 bits.

Some aspects of strong AES encryption have been already considered
in [6]. In the instance of AES, we can get any from 30 irreducible poly-
nomials of degree 8 over GF (2) to compute in GF (256). The transforma-
tion SubBytes() may be replaced by any permutation of 256 elements, one
can replace ShiftRows() and InvShiftRows() transformations by a pair of
random mutually invertible permutations acting on elements of the State

array, and MixColumns() and InvMiColumns() transformations by a pair
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of random mutually invertible 4 x 4 non-singular matrices over GF (256).
In this manner we can get the full protecting power of the AES (with the
secret key up to 3736 bits).

5. Conclusions

In the paper an important application-oriented problem concerning the data
security, has been presented. The author hopes that this work may have
some in�uence on the future standardization policy in cryptography.

The method presented, with regard to IDEA, may be exactly tested
by the reader by means of the topicIDEA Maple 10 package [7] available
in the Maple Application Center. The author also worked aut StrongDES
and genericAES Maple 10 packages more interesting from the point of view
of teaching and research than the latter, allowing the reader to test the
presented method in the case of DES and AES and to explore precisely
these algorithms.
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Quasigroups and Related Systems 14 (2006), 195 − 206A graphi
al te
hnique to obtain homomorphi
images of ∆(2, 3, 11)Qaiser Mushtaq and Munir AhmedAbstra
tIn this paper we have developed a te
hnique by whi
h a suitably 
reated fragment ofa 
oset diagram for the a
tion of PSL(2, Z) or PGL(2, Z) on proje
tive lines over Ga-lois �elds Fp, p ≡ ±1(mod 11), 
an be used to obtain a family of permutation groups
∆(2, 3, 11) =< x, y : x2 = y3 = (xy)11 = 1 > .1. Introdu
tionIt is well known that the modular group PSL(2, Z) is generated by the linearfra
tional transformations x : z → −1/z and y : z → (z − 1)/z, satisfyingthe relations x2 = y3 = 1. The extended modular group PGL(2, Z) isgenerated by the linear fra
tional transformations x : z → −1/z, y : z →
(z − 1)/z, and t : z → 1/z, su
h that x2 = y3 = t2 = (xt)2 = (yt)2 = 1.Let q = pm where m > 0 and p is a prime number. A number ω ∈ Fqis said to be a non-zero square in Fq if ω ≡ a2 (mod p) for some non-zeroelement a in Fq. The proje
tive lines over a �nite �eld Fq, Fq ∪ {∞}, isdenoted by PL(Fq).The group PGL(2, q) is a group 
onsisting of all the transformations
z → (az + b)/(cz + d), where a, b, c, d ∈ Fq and ad − bc 6= 0. The group
PSL(2, q) is a group 
ontaining transformations z → (az+b)/(cz+d) where
a, b, c, d ∈ Fq and ad − bc is a non-zero square in Fq.Let ∆(l, m, n) denote the triangle group < x, y : xl = ym = (xy)k = 1>.The triangle group ∆(l, m, k) is in�nite for k > 6. For k 6 5, ∆(2, 3, k) istrivial, S3, A4, S4, and A5 respe
tively. The group ∆(2, 3, 6) is an exten-sion by the 
y
li
 group C6 of a free abelian group of rank 2. For k = 7,the triangle group ∆(2, 3, k) is a Hurwitz group [1]. The group ∆(2, 3, k),2000 Mathemati
s Subje
t Classi�
ation: 05C38, 15A15, 05A15Keywords: Diagram, group, homomorphi
 image.



196 Q. Mushtaq and M. Ahmedwhen k = 8, 9 and 10 are known to be less interesting. There is rela-tively less information available about ∆(2, 3, 11). We therefore 
onsider
∆(2, 3, 11) and use 
oset diagrams for the a
tions of PGL(2, Z) on PL(Fp),
p ≡ ±1(mod 11) and see for what values of p these a
tions evolve trianglegroups ∆(2, 3, 11) as subgroups of Sp+1.A 
oset diagram for PGL(2, Z) 
onsists of a set of small triangles anda set of edges. The three 
y
les of y are denoted by small triangles whoseverti
es are permuted 
ounter-
lo
kwise by y and any two verti
es whi
hare inter
hanged by x are joined by an edge. The a
tion of t is representedby re�e
tion about a verti
al line of axis in the 
ase of PGL(2, Z). The�xed points of x and y are denoted by heavy dots.Let PSL(2, Z) a
t on a spa
e Ω. If an element (xy)n1

(

xy−1
)n2 · · ·

(

xy−1
)nlof PSL(2, Z) �xes an element of Ω, then the pat
h of the 
oset diagram is
alled a 
ir
uit. We denote it by (n1, n2, ..., nl). For a given sequen
e ofpositive integers (n1, n2, n3, ..., n2k) the 
ir
uit of the type

(n1, n2, n3, . . . , n2k′ , n1, n2, n3, . . . , n2k′ , . . . , n1, n2, n3, . . . , n2k′) ,where k′ divides k, is said to be a periodi
 
ir
uit of length 2k′. A trivial
ir
uit 
onsists of a path followed by its own inverse. A portion of a 
osetdiagram is 
alled a fragment of a 
oset diagram. First of all we 
onstru
t afragment 
omposed of two 
onne
ted, non-trivial 
ir
uits su
h that neitherof them is periodi
 and more than two verti
es in the fragment are �xedby (xy)11. Corresponding to two 
ir
uits we have two words (elements of
PSL(2, Z)), yielding a polynomial f(z) in Z[z] as in [4℄. A homomorphism
α : PGL(2, Z) → PGL(2, q) is 
alled non-degenerate if x, y, t do not belongto Ker(α). Of 
ourse α gives rise to an a
tion of PGL(2, Z) on PL(Fq).Two non-degenerate homomorphisms α and β are 
alled 
onjugate if thereexists an inner automorphism ρ on PGL(2, q) su
h that α = ρβ. In [5℄, thesea
tions, or 
onjuga
y 
lasses, have been parameterized with the elements
θ ∈ Fq. Corresponding to ea
h root θ(6= 0, 3) of f(θ) = 0 in Fp where
p ≡ ±1(mod k), we obtain a 
onjuga
y 
lass of a
tions of PGL(2, Z) on
PL(Fp) ea
h a
tion evolving ∆(2, 3, k). By D(θ, q) we mean a 
oset diagramof the 
onjuga
y 
lass 
orresponding to parameter θ ∈ Fq.We need the following results proved in [4] and [5] .Theorem 1. [4] Given a fragment γ, where γ is a non-simple fragment
onsisting of two 
onne
ted, non-trivial 
ir
uits su
h that neither of them isperiodi
, there exists a polynomial F (z) in Z [z] su
h that

(i) if the fragment γ o

urs in D (θ, q), then F (θ) = 0,
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(ii) if F (θ) = 0 then the fragment, or a homomorphi
 image of it o

ursin D (θ, q) or in D (θ, q), where D (θ, q) denotes the diagram with theverti
es from the 
omplement PL

(

Fq2

)

\PL (Fq).Theorem 2. [5] The 
onjuga
y 
lasses of a non-degenerate homomorphismsof PGL(2, Z) into PGL(2, q) are in one-to-one 
orresponden
e with theelements θ 6= 0, 3 of Fq. under the 
orresponden
e whi
h maps ea
h 
lassto its parameter. 2. Appropriate fragmentsBy an appropriate fragment we shall mean a fragment 
omposed of two non-trivial, 
onne
ted 
ir
uits C1 and C2 su
h that neither of them is periodi
and at least three verti
es of this fragment are �xed by (xy)11.By Theorems 1 and 2, we 
an �nd 
onjuga
y 
lasses of non-degeneratehomomorphisms 
orresponding to the elements θ(6= 0, 3) in some �nite�eld Fp, p ≡ ±1(mod 11) obtained from the 
ondition in the form of apolynomial. Ea
h 
onjuga
y 
lass 
orresponds to a diagram. These 
osetdiagrams will be su
h that every vertex in these diagrams will be a �xedpoint of (x y)11, and so by a well known fa
t that no non-trivial linear fra
-tional transformation in PGL(2, q) 
an �x more than two verti
es in Fq, itwill depi
t the triangle group α(∆ (2, 3, 11)).Theorem 3. Let γ be an appropriate fragment of a 
oset diagram for
PGL(2, Z) with at least one of the three verti
es as the 
ommon vertexof C1 and C2. Then there exists a 
oset diagram D (θ, p) 
ontaining γ, orits homomorphi
 image, representing α(∆(2, 3, 11)).Proof. Consider γ whi
h is 
omposed of two non-periodi
 
ir
uits C1 and
C2. Let w1 and w2 be two elements of PSL(2, Z) indu
ed by the 
ir
uits C1and C2 respe
tively. That is w1 = xyxyxyyxyxy and w2 = xyyxyyxyxyy.We 
an represent w1 and w2 as matri
es W1 = XY XY XY Y XY XY and
W2 = XY Y XY Y XY XY Y whi
h are elements of SL(2, Z), where X and
Y are the matri
es representing the elements x and y (of orders 2 and 3respe
tively) of PSL(2, Z). A

ording to Mushtaq [4], we 
an express W1and W2 as linear 
ombinations of I, X, Y and XY, that is,

W1 = λ0I + λ1X + λ2Y + λ3XYand
W2 = µ0I + µ1X + µ2Y + µ3XY.
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[

a kc
c −a

]

, Y =

[

d kf
f −d − 1

]

, with trace(X) = 0and det(X) = ∆. Then the 
hara
teristi
 equation of X is X2 + ∆I = O,and sin
e trace(Y ) = −1 and det(Y ) = 1, the 
hara
teristi
 equation of Y is
Y 2+Y +I = O. Thus the 
hara
teristi
 equation of XY is (XY )2−r(XY )+
∆I = O, where r = trace(XY ) and ∆ = det(XY ). Also, ∆ = −(a2 + kc2)and d2 + d + kf2 + 1 = 0. Using these equations, we obtain

(XY )n =

{(

n − 1

0

)

rn−1 −
(

n − 2

1

)

rn−3△ + ....

}

XY

−△
{(

n − 2

0

)

rn−2 −
(

n − 3

1

)

rn−4△ + ...

}

I.After a suitable manipulation of the above equations, we get XY X = rX +
△I + △Y, Y XY = rY + X and Y X = rI − X − XY. Of 
ourse

(XY )3 = (r2 − ∆)XY − r∆I,
(XY )4 = (r3 − 2r∆)XY − (r2∆ − ∆2)I,

(XY 2)2 = rXY + rX − ∆I,

(XY 2)3 = (r2 − ∆)XY + (r2 − ∆)X − r∆I, and
(XY 2)4 = (r3 − 2r∆)XY + (r3 − 2r∆)X − (r2∆ − ∆2)I.Now,

W1 = XY XY XY 2XY XY
= (XY )3Y (XY )2

= [(r2 − ∆)XY − r∆I]Y (rXY − ∆I)
= [(r2 − ∆)XY 2 − r∆Y ][rXY − ∆I]
= [(r2 − ∆)(−XY − X) − r∆Y ][rXY − ∆I]
= [(−r2 + ∆)XY + (−r2 + ∆)X − r∆Y ][rXY − ∆I]
= [(−r3 + r∆)(XY )2 + (−r3 + r∆)X2Y − r2∆Y XY + (r2∆ − ∆2)XY

+(r2∆ − ∆2)X + r∆2Y ]
= [(−r3 + r∆)(rXY − ∆I) + (−r3 + r∆) (−∆I)Y − r2∆(rY + X)+

(r2∆ − ∆2)XY + (r2∆ − ∆2)X + r∆2Y ]
= [(−r4 + r2∆)XY + (r3∆ − r∆2)I + (r3∆ − r∆2)Y − r3∆Y − r2∆X

+(r2∆ − ∆2)XY + (r2∆ − ∆2)X + r∆2Y ]
= [(r3∆ − r∆2)I − ∆2X + 0Y + (−r4 + 2r2∆ − ∆2)XYand

W2 = XY Y XY Y XY XY Y

=
(

XY 2
)2

(XY )2 Y

= [rXY + rX − ∆I][rXY − ∆I]Y
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= [rXY + rX − ∆I][rXY 2 − ∆Y ]

= [rXY + rX − ∆I][r(−XY − X) − ∆Y ]

= [rXY + rX − ∆I][−rXY − rX − ∆Y ]

= [−r2 (XY )2 − r2XY X − r∆XY 2 − r2XY − r2X2 − r∆XY + r∆XY +

r∆X + ∆2Y ]

= [−r2 (rXY − ∆I) − r2(rX + ∆Y + ∆I) + r∆(XY + X) + r2∆Y +

r2∆I − r∆XY + r∆XY + r∆X + ∆2Y ]

= r2∆I + (−r3 + 2r∆)X + ∆2Y + (−r3 + r∆)XY.Using equations
W1 = λ0I + λ1X + λ2Y + λ3XY,

W2 = µ0I + µ1X + µ2Y + µ3XY,we obtain λ1 = −∆2, λ2 = 0 and λ3 = (−r4+2r2∆−∆2), µ1 = (−r3+2r∆),
µ2 = ∆2 and µ3 = (−r3 + r∆).Now substituting these values in the equation
(λ2µ3 − µ2λ3)

2 + △ (λ3µ1 − µ3λ1)
2 + (λ1µ2 − µ1λ2)

2

+ r (λ2µ3 − µ2λ3) (λ3µ1 − µ3λ1) + (λ2µ3 − µ2λ3) (λ1µ2 − µ1λ2) = 0we get:
[0 − ∆2(−r4 + 2r2∆ − ∆2)]2 + ∆[(−r3 + 2r∆)(−r4 + 2r2∆ − ∆2)

+∆2(−r3 + r∆)]2 + [−∆2.∆2 − 0]2 + r[0 − ∆2(−r4 + 2r2∆ − ∆2)]

[(−r3 + 2r∆)(−r4 + 2r2∆ − ∆2) + ∆2(−r3 + r∆)]+

[0 − ∆2(−r4 + 2r2∆ − ∆2)][−∆4 − 0] = 0,

[∆4(r4 − 2r2∆ + ∆2)2 + ∆(r7 − 2r5∆ + ∆2r3 − 2r5∆ + 4r3∆2 − 2r∆3

−r3∆2 + r∆3) + ∆8 + r∆2(r4 − 2r2∆ + ∆2)(r7 − 2r5∆ + r3∆2 − 2r5∆

+4r3∆2 − 2r∆3 + r3∆2 + r∆3) + ∆6[−r4 + 2r2∆ − ∆2]] = 0,

∆4[∆2θ2 − 2∆2θ + ∆2]2 + ∆[r7 − 4r5∆ + 4r3∆2 − r∆3]2 + ∆8

+r∆2[∆2θ2 − 2∆2θ + ∆2][r7 − 4r5∆ + 4r3∆2 − r∆3]

+∆6[−∆2θ2 + 2∆2θ − ∆2] = 0.That is,
∆8[(θ2 − 2θ + 1)2 + θ(θ3 − 4θ2 + 4θ − 1)2 + 1+

θ(θ2 − 2θ + 1)(θ3 − 4θ2 + 4θ − 1) + (−θ2 + 2θ − 1)] = 0.By Theorem 1 we obtain a polynomial f(θ) = θ7 − 7θ6 + 18θ5 − 20θ4 +
7θ3 + 3θ2 − 2θ + 1. If we let f(θ) = 0, then f(θi) = 0 where θi ∈ Fp and
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p ≡ ±1(mod 11), then a

ording to our Theorem 2, D (θi, p) is su
h thatit 
orresponds to a 
onjuga
y 
lass of non-degenerate homomorphisms αfrom PGL(2, Z) into PGL(2, p). This depi
ts an a
tion of PGL(2, Z) on
PL (Fp) and the diagram depi
ting the a
tion is su
h that every vertexin the diagram is �xed by the element (x y)11. Sin
e no non-trivial linearfra
tional transformation 
an �x more than two verti
es in PL (Fp), thus
(x y)11 = 1 and so the 
oset diagram represents the homomorphi
 image ofthe triangle group ∆(2, 3, 11), that is, α(∆(2, 3, 11)).Theorem 4. There exists only two 
oset diagrams D(19, 67) and D(125, 199)for the a
tion of PGL(2, Z) on PL (Fp) depi
ting α(∆(2, 3, 11)), where
2 6 p 6 1033, and p is a prime 
ongruent to ±1 (mod 11).Proof. In order to obtain the required 
oset diagram �rst of all we takethe following fragment γ whi
h is 
omposed of two non-trivial, and non-periodi
 
ir
uits C1 and C2 with the vertex v of γ as the 
ommon ver-tex of C1 and C2 as shown in the fragment. Note that the fragment isrequired to 
ontain at least three verti
es, namely v1, v2 and v whi
hare �xed by (x y)11. Let w1 = xyxyxyyxyxy and w2 = xyyxyyxyxyybe the elements indu
ed by the 
ir
uits C1 and C2 respe
tively. Noti
ethat w1 and w2 are the elements of PSL(2, Z) and represent the matri-
es W1 = XY XY XY Y XY XY and W2 = XY Y XY Y XY XY Y belongingto GL(2, Z), where X and Y are the matri
es representing x and y of
PGL(2, Z), so (185, 185) (0,∞)(3, 198)(88, 156).
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As in [4] ,

W1 = XY XY XY 2XY XY

= [(r3∆ − r∆2)I − ∆2X + 0Y + (−r4 + 2r2∆ − ∆2)XYand
W2 = XY Y XY Y XY XY Y

= r2∆I + (−r3 + 2r∆)X + ∆2Y + (−r3 + r∆)XYand by using Theorem 1, we 
an obtain a polynomial f(θ) = θ7 − 7θ6 +
18θ5 − 20θ4 + 7θ3 + 3θ2 − 2θ + 1. If we 
onvert this polynomial into anequation f(θ) = 0, and solve it in the �eld F67, we obtain 19, 60 and
61 as its roots. By using theorem 2 for θ = 19, we obtain the matri
es
X =

[

9 38
19 −9

]

, Y =

[

0 20
10 −1

] and T =

[

0 −2
1 0

]

. Thereforethe 
orresponding transformations are, x : z 7→ 9z+38
19z−9 , y : z 7→ 20

10z−1 and
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t : z 7→ −2

z
. So,

x : (33, 0)(1, 65)(62, 2)(3, 53)(4,∞)(22, 5)(6, 13)(7, 10)(8, 42)(21, 9)

(11, 64)(12, 23)(14, 46)(15, 30)(39, 16)(26, 17)(18, 34)(19, 32)(20, 47)

(24, 25)(31, 27)(28, 55)(61, 29)(35, 37)(36, 59)(38, 40)(41, 57)(43, 56)

(44, 48)(45, 60)(49, 58)(50, 51)(52, 63)(54, 66),

y : (0, 47,∞)(32, 49, 1)(65, 15, 46)(48, 2, 61)(45, 66, 53)(3, 3, 3)(44, 44, 44)

(28, 14, 4)(33, 19, 43)(34, 5, 51)(42, 13, 63)(31, 25, 6)(22, 16, 41)(10, 9, 7)

(38, 37, 40)(24, 64, 8)(50, 23, 39)(26, 35, 11)(12, 21, 36)(55, 17, 58)

(30, 59, 56)(18, 60, 62)(54, 29, 52)(27, 20, 57),and
t : (0,∞) (1, 65) (2, 66) (3, 44) (4, 33) (5, 13) (6, 22) (7, 38) (8, 50) (9, 37)

(10, 40) (11, 12) (14, 19) (15, 49) (16, 25) (17, 59) (18, 52) (20, 20) (21, 35)

(23, 64) (24, 39) (26, 36) (27, 57) (28, 43) (29, 60) (30, 58) (31, 41) (32, 46)

(33, 4) (34, 63) (55, 56) (42, 51) (54, 62) (48, 53) (61, 45) (47, 47) .Thus we have a 
oset diagram D(19, 67) in whi
h ea
h vertex of thediagram is �xed by (x y)11 , and we have (x y)11 = 1. Thus the diagram
D(19, 67) is a representation of the triangle group α(∆ (2, 3, 11)).
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2θ + 1 = 0 in F199, we obtain 125, 159, and 193 as its roots.For instan
e, if we 
onsider θ = 125, we obtain X =

[

121 124
174 −121

]

,

Y =

[

0 14
71 −1

] and T =

[

0 −3
1 0

] as before. The 
orresponding trans-formations are: x : z 7→ 121z+124
174z−121 , y : z 7→ 14

71z−1 , and t : z 7→ −3
z
. Thus,

x : (22, 0)(106, 1)(2, 141)(96, 3)(99, 4)(5, 48)(6, 49)(7, 70)(8, 177)

(9, 119)(10, 101)(31, 11)(18, 12)(13, 60)(14, 185)(165, 15)(16, 69)

(113, 17)(35, 19)(93, 20)(104, 21)(43, 23)(181, 24)(59, 25)(91, 26)

(27,∞)(28, 162)(194, 29)(72, 30)(32, 54)(33, 149)(160, 34)(42, 36)

(140, 37)(184, 38)(39, 88)(40, 68)(41, 193)(44, 152)(45, 134)(46, 76)

(183, 47)(154, 50)(51, 157)(52, 112)(53, 147)(110, 55)(114, 56)

(131, 57)(58, 179)(61, 189)(62, 173)(63, 180)(64, 192)(65, 151)

(66, 107)(67, 105)(71, 116)(73, 190)(195, 74)(92, 75)(77, 169)

(135, 78)(79, 87)(80, 191)(81, 129)(82, 138)(83, 168)(84, 176)

(85, 170)(90, 86)(89, 103)(94, 130)(95, 108)(97, 100)(98, 127)

(188, 102)(109, 133)(111, 121)(115, 171)(117, 128)(118, 175)

(120, 144)(122, 196)(123, 159)(124, 172)(125, 136)(126, 155)

(132, 142)(137, 182)(139, 197)(143, 198)(145, 158)(146, 187)

(148, 186)(150, 164)(153, 156)(161, 178)(163, 167)(166, 174),

y : (0, 185,∞)(1, 40, 188)(145, 184, 196)(137, 87, 2)(98, 48, 183)

(3, 47, 186)(138, 182, 198)(166, 136, 4)(49, 19, 181)(106, 5, 63)

(180, 79, 122)(86, 6, 30)(179, 99, 155)(7, 57, 157)(128, 178, 28)

(172, 61, 8)(124, 13, 177)(9, 78, 119)(107, 176, 66)(46, 10, 25)

(175, 139, 160)(131, 11, 24)(174, 54, 161)(69, 36, 12)(149, 116, 173)

(171, 14, 192)(55, 26, 15)(159, 130, 170)(123, 16, 20)(169, 62, 165)

(167, 33, 17)(152, 18, 168)(74, 43, 21)(142, 111, 164)(22, 83, 158)

(102, 163, 27)(70, 64, 23)(121, 115, 162)(88, 41, 29)(144, 97, 156)

(146, 153, 31)(32, 39, 154)(112, 109, 34)(76, 73, 151)(60, 35, 195)
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(150, 125, 189)(82, 56, 37)(129, 103, 148)(134, 117, 38)(68, 51, 147)

(96, 114, 42)(71, 89, 143)(127, 72, 44)(113, 58, 141)(45, 81, 132)

(104, 140, 53)(50, 84, 197)(101, 135, 187)(120, 52, 190)(133, 65, 194)

(90, 67, 59)(118, 95, 126)(75, 85, 193)(100, 110, 191)(105, 92, 77)

(93, 80, 108)(91, 91, 91)(94, 94, 94),and
t : (2, 98) (4, 49) (5, 79) (6, 99) (7, 28) (8, 124) (9, 66) (10, 139) (11, 54)

(12, 149) (13, 61) (14, 14) (15, 159) (16, 62) (17, 152) (18, 33) (19, 136)

(20, 169) (21, 142) (22, 27) (23, 121) (24, 174) (25, 175) (26, 130)

(29, 144) (30, 179) (31, 32) (34, 76) (35, 125) (36, 116) (37, 129)

(38, 68) (39, 153) (40, 184) (41, 97) (42, 71) (43, 111) (44, 113)

(45, 53) (46, 160) (47, 182) (48, 87) (50, 187) (51, 117) (52, 65)

(55, 170) (56, 103) (57, 178) (58, 72) (59, 118) (60, 189) (63, 180)

(64, 115) (67, 95) (69, 173) (70, 162) (73, 109) (74, 164) (75, 191)

(77, 93) (78, 176) (80, 92) (81, 140) (82, 148) (83, 163) (84, 135)

(85, 110) (86, 155) (89, 114) (90, 126) (91, 94) (96, 143) (100, 193)

(101, 197) (102, 158) (104, 132) (105, 108) (106, 122) (107, 119)

(112, 151) (120, 194) (123, 165) (127, 141) (128, 157) (131, 161)

(133, 190) (134, 147) (137, 183) (138, 186) (145, 188) (146, 154)

(150, 195) (166, 181) (1, 196) (167, 168) (171, 192) (172, 177)

(185, 185) (0,∞)(3, 198)(88, 156).Thus we have the 
oset diagram D(125, 199) (see the next page) in whi
hea
h vertex is �xed by (x y)11 . We have therefore (x y)11 = 1.Thus the diagram D(125, 199) is a representation of the triangle group
α(∆ (2, 3, 11)).Corollary 5. For prime p, 2 6 p 6 1033 su
h that p ≡ ±1(mod 11),

(i) the a
tion of PGL(2, Z) on PL (Fp) is transitive,
(ii) the diagram of α(∆ (2, 3, 11)) is 
onne
ted.Proof. (i) Consider the a
tion of PGL(2, Z) on PL (F67) . Of 
ourse, byTheorem 3, there is only one orbit Ω = {∞, 0, 1, 2, . . . , 66} under this a
tion.Thus the a
tion of PGL(2, Z) on PL (F67) is transitive.A similar argument shows that the a
tion of PGL(2, Z) on PL(F199) istransitive.
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(ii) The 
oset diagrams given in theorem 3 are the 
onne
ted diagramsof α(∆ (2, 3, 11)).
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Ideals in AG-band and AG∗-groupoid

Qaiser Mushtaq and Madad Khan

Abstract

We have shown that an ideal I of an AG-band is prime i� ideal (S) is totally ordered; it
is prime i� it is strongly irreducible. The set of ideals of S form a semilattice structure.
We have proved that if a belongs to the centre of S, then S is zero-simple if and only if
(Sa)S = S, for every a in S\{0}. Ideal structure in an AG∗-groupoid S has also been
investigated. It has been shown that if I is a minimal right ideal of S then Ia is a minimal
left ideal of S, for all a in S. It has been shown also that every ideal of an AG∗-groupoid
S is prime if and only if it is idempotent and ideal (S) is totally ordered.

1. Introduction

A groupoid S is called an Abel-Grassmann's groupoid, abbreviated as an
AG-groupoid, if its elements satisfy the left invertive law [4, 5], that is:

(ab)c = (cb)a (1)

for all a, b, c ∈ S.
Several examples and interesting properties of AG-groupoids can be

found in [5], [6], [7] and [8]. It has been shown in [5] that if an AG-groupoid
contains a left identity then it is unique. It has been proved also that an AG-
groupoid with right identity is a commutative monoid, that is, a semigroup
with identity element.

It is also known [4] that in an AG-groupoid S, the medial law, that is,

(ab)(cd) = (ac)(bd) (2)

for all a, b, c, d ∈ S holds.

2000 Mathematics Subject Classi�cation: 20M10, 20N990
Keywords: AG-groupoid, AG-band, AG∗-groupoid, minimal ideal, prime ideal,
invertive law, medial law
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2. AG-band

An AG-groupoid whose all elements are idempotents is called an AG-band.
It is easy to see that in an AG-band S for any a, b, c ∈ S, (ab)a = a(ba) and
(ab)c = (ac)(bc), (ab)b = ba.

Theorem 1. If an AG-band S contains a left identity e then S becomes a

semilattice with identity e.

Proof. Let x ∈ S. Then

xe = (xx)e = (ex)x = xx = x

implies that x is the right identity for S and so by [5], the AG-bandS
becomes a commutative monoid, that is, a semilattice with identity e.

Due to Theorem 1, an AG-band with left identity becomes a semigroup
with identity. So we cannot include automatically the left identity in an
AG-band.

In an AG-band every congruence relation is trivially separative.

Theorem 2. If S is an AG-band and a is a �xed element in S then

H(a) = {x ∈ S : xa = x}

is a commutative subsemigroup with identity a.

Proof. Since a ∈ H(a) we conclude that H(a) is non-empty.

Let x, y, z ∈ H(a), then

xy = (xa)(ya) = (xy)(aa) = (xy)a

implies that H(a) is a groupoid.

Now

xy = (xa)y = (ya)x = yx

shows that H(a) is commutative and so it becomes associative. Also

ax = (aa)x = (xa)a = xa = x,

imply that H(a) is a commutative subsemigroup of idempotents with iden-
tity a in S.
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Example 1. Let S = {1, 2, 3, 4, 5, 6} and a binary operation be de�ned in
S as follows:

· 1 2 3 4 5 6
1 1 2 2 5 6 4
2 2 2 2 5 6 4
3 2 2 3 5 6 4
4 6 6 6 4 2 5
5 4 4 4 6 5 2
6 5 5 5 2 4 6

Then, as in [11] , (S, ·) is an AG-band and H(1) = {1, 2} is a semilattice
with identity 1.

The following de�nitions are given in [10]. If S is an AG-groupoid and
A,B ⊆ S, then A and B are called right connected sets if AS ⊆ B and
BS ⊆ A. Similarly, if S is an AG-groupoid and A, B ⊆ S, then A and B
are called left connected if SA ⊆ B and SB ⊆ A. Also A and B are called
connected sets if they are both left and right connected.

A subset I of an AG-groupoid S is said to be right (left) ideal if IS ⊆ I
(SI ⊆ I). As usual I is said to be an ideal if it is both right and left ideal.

Proposition 1. If A and B are left connected sets of an AG-band S and

A is an ideal, then S(A ∪B) ⊆ A.

Lemma 1. If A and B are ideals of an AG-band S, then AB and BA are

right and left connected sets.

Proof. Using identity (1), we get

(AB)S = (SB)A ⊆ BA.

Similarly
(BA)S ⊆ AB.

This shows that AB and BA are right connected. Using identity (1),
we get

S(BA) = (SS)(BA) = ((BA)S)S = ((SA)B)S ⊆ AB.

Also
S(AB) ⊆ BA.

This implies that AB and BA are left connected.
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Proposition 2. A proper subset I of an AG-band S is a right ideal if and

only if it is left.

Proof. Let I be a right ideal of an AG-band S. Then IS ⊆ S, that is, ix ∈ I
for all i ∈ I and x ∈ S. Hence

(xi) = (xx)i = (ix)x ∈ (IS)S ⊆ IS ⊆ I

shows that SI ⊆ I, that is, I is a left ideal of S. The converse can be proved
similarly.

It can easily be seen from Proposition 2, that SI ⊆ IS.

An ideal P of an AG-groupoid S is prime (semiprime) if for any other
ideals A, B of S, AB ⊆ P (A2 ⊆ P ) implies either A ⊆ P or B ⊆ P
(A ⊆ P ). A groupoid S is called fully semiprime if every ideal of S is
semiprime. If S is an AG-band then trivially S is completely semiprime.

Lemma 2. For every ideal I of an AG-band S we have

{x ∈ S | ax = x for a ∈ I} ⊆ I and {x ∈ S | ax = x for a ∈ I} ⊆ I.

An AG-groupoid S is called totally ordered if for all ideals A, B of S
either A ⊆ B or B ⊆ A.

Theorem 3. Every ideal of an AG-band S is prime if and only if the set

of all ideals of S is totally ordered.

Proof. Assume that every ideal of an AG-band S is prime. Let P , Q be the
ideals of S. Then PQ ⊆ P and PQ ⊆ Q imply that PQ ⊆ P ∩ Q. Since
P ∩Q is prime, so P ⊆ P ∩Q or Q ⊆ P ∩Q imply that P ⊆ Q or Q ⊆ P .
Hence the set of all ideals of S is totally ordered.

Conversely, let I, J and P be ideals of an AG-band S such that IJ ⊆ P .
Being ideals of S they are totally ordered and that I ⊆ J . Thus P is
prime.

Theorem 4. If I and J are ideals of an AG-band S then IJ = I ∩ J .

Proof. Let I and J be ideals of an AG-band S. Obviously, IJ ⊆ I ∩ J .
Since I ∩ J ⊆ I, I ∩ J ⊆ J , therefore (I ∩ J)2 ⊆ IJ .

By Theorem 4, IJ = JI. Therefore the following Lemma is an easy
consequence.
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Lemma 3. The set of ideals of an AG-band S form a semilattice structure.

An ideal I of an AG-groupoid S is said to be strongly irreducible if and
only if for ideals H and K of S, H ∩ K ⊆ I implies that H ⊆ I or K ⊆ I.
This leads to the following important theorem with a rather straight forward
proof.

Theorem 5. In an AG-band every ideal is strongly irreducible if and only

if it is a prime ideal.

An AG-groupoid S is (left, right) simple, if S contains no proper (left,
right) ideals. Left simple, right simple and simple AG-bands coincide. The
AG-band from Example 1 is not simple because {2, 4, 5, 6} is a proper ideal
of S.

An AG-groupoid S with zero is called zero-simple if {0} and S are its
only ideals and S2 6= {0}.

Example 2. Let S = {1, 2, 3, 4} and the operation be de�ned on S as
follows:

· 1 2 3 4
1 1 4 2 3
2 3 2 4 1
3 4 1 3 2
4 2 3 1 4

Then, as in [11], (S, ·) is a simple AG-band. If we adjoin 0 in S then it
become a zero-simple AG-band.

Theorem 6. If aS = Sa for all non-zero a in an AG-band S, then S is

zero-simple if and only if (Sa)S = S.

Proof. Clearly S2 6= {0} and S3 = S. Now for any a in S\{0} the subset
(Sa)S of S is an ideal of S. Therefore either (Sa)S = S or (Sa)S = {0}. If
(Sa)S = {0}, then the set I = {x ∈ S : (Sx)S = {0}} contains an element
other than zero, and I becomes an ideal of S. As S is zero-simple so by
de�nition I = S, that is, (Sx)S = {0} for every x in S. This implies that
S3 = {0}. But this is a contradiction to the fact that S = S3. Hence
(Sa)S = S.

Conversely, assume that, (Sa)S = S for every a in S\{0}. Also if A is
an ideal of S containing a, then (SA)S ⊆ A implies (Sa)S ⊆ A.

Corollary 1. S is simple if and only if (Sa)S = S.
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Proof. If S is a simple AG-band, then (Sa)S is an ideal of S and so (Sa)S =
S. Conversely, if (Sa)S = S for all a ∈ S, then we need to show that S is
simple. Let A be an ideal of S and a ∈ A. Then (SA)S ⊆ A implies that
(Sa)S ⊆ A. Now, if 0 ∈ S, then (S0)S = {0} 6= S. As (Sa)S = S holds for
all a ∈ S, it means that 0 /∈ S. Hence S without zero has no ideal except S
itself.

An ideal M in an AG-groupoid S with zero is called zero-minimal if it
is minimal in the set of all non-zero ideals.

Proposition 3. If M is a zero-minimal ideal of an AG-band S such that

aS = Sa for all non-zero a ∈ S, then M is a zero-simple AG-band.

Proof. Clearly M = M3 and if a ∈ M\{0}, then (Sa)S is an ideal of S
contained in M . It is non-zero, since it contains a, and so (Sa)S = M .
Thus using (2) and (1) we get

(Ma)M ⊆ (Sa)S = M = M3 = (M((Sa)S))M ⊆ (Ma)M,

which implies (Ma)M = M . By Theorem 6, M is zero-simple.

Proposition 4. Let S be an AG-band without zero. If K is a minimal ideal

of S, then K is a simple AG-band.

Proof. Note that 0 /∈ S implies 0 /∈ K. As K is uniquely minimum so it
cannot contain any other ideal of S. Hence K is a simple AG-band.

3. Ideals in an AG∗-groupoid

An AG-groupoid S is called an AG∗-groupoid if it satis�es one of the fol-
lowing equivalent weak associative laws [10]:

(ab)c = b(ac), (3)

(ab)c = b(ca). (4)

From (3) and (4), we obtain

b(ac) = b(ca) (5)

for all a, b, c ∈ S.
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If all elements of an AG∗-groupoid S are idempotent, then S = S2. This
further implies that S is a commutative semigroup [10].

If S is an AG∗-groupoid and a = a2 (for a �xed element a ∈ S) then,
as it is proved in [10], aS = Sa and (xa)y = x(ay) for any x, y ∈ S. If a
belongs to Sa = aS, then Sa = aS is a semilattice.

A non-associative left simple (right simple, simple) AG∗-groupoid does
not exist [9]. SA is a left ideal of an AG∗-groupoid S for all subsets A of S.

Lemma 4. If I is a right ideal of an AG∗-groupoid S and J is a subset of

S then IJ is a left ideal of S and it is a right ideal if IJ = JI, and a(IJ)
{(JI)a} becomes a left (right) ideal of S.

Proof. The proof is straight forward.

By K we shall mean the set of all ideals of an AG∗-groupoid S.

Proposition 5. In any AG∗-groupoid:

(i) K has associative powers,

(ii) ImIn = Im+n, for all I ∈ K,

(iii) (Im)n = Imn, for all I ∈ K and all positive integers m, n,

(iv) (AB)n = AnBn for n > 1 and (AB)n = BnAn for n > 2, ∀A,B ∈ K.

Proof. The proof is obvious.

Lemma 5. If I is an ideal of an AG∗-groupoid S then so is In for n > 2.

Proof. Let I be a right ideal of an AG∗-groupoid S and x = ij ∈ I2 where
i, j ∈ I. Using identity (3), we get

s(ij) = (is)j ⊆ II = I2,

(ij)s = j(is) ⊆ II = I2,

which shows that I2 is an ideal of S. Now suppose that In−1 is an ideal.
Then using (1), (3), and Proposition 5(ii), we get

InS = (In−1I)S = (SI)In−1 ⊆ IIn−1 = In,

SIn = S(In−1I) = (IS)In−1 ⊆ In,

which completes the proof.
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Lemma 6. If I is an ideal of an AG∗-groupoid S and a = a2, then aI2 is

an ideal of S.

Proof. Using Proposition 5(iv) and identity (3), we get I2a = aI2. Then it
is not di�cult to see that aI2 is an ideal.

An ideal I of an AG-groupoid S is called minimal if and only if it does
not contain any ideal of S other than itself.

Theorem 7. If I is a minimal right ideal of an AG∗-groupoid S then for

all a ∈ S Ia is a minimal left ideal of S.

Proof. Let I be the minimal right ideal of an AG∗-groupoid S and x = ia ∈
Ia, where i ∈ I. Then using identity (3) we get sx = s(ia) = (is)a ∈ Ia
which shows that Ia is a left ideal of S. Let H be a non-empty left ideal of
S properly contained in Ia. De�ne H ′ = {r ∈ I : ra ∈ H}. If y ∈ H ′, then
ya ∈ H, and so (ys)a = s(ya) ∈ SH ⊆ H, imply that H ′ is a right ideal of
S properly contained in I. This is a contradiction to the minimality of I.
Hence Ia is a minimal left ideal of S.

Theorem 8. If I is a minimal left ideal of an AG∗-groupoid S then aI
(a2 = a) is a minimal right ideal of S.

Proof. Let ai ∈ aI where I is a minimal left ideal of an AG∗-groupoid S.
Then using identities (3) and (2) we get

ia = i(aa) = (ai)a = (ai)(aa) = (aa)(ia) = a(ia) = (aa)i = ai.

Also (ai)s = (ia)s = a(is) ∈ aI, shows that aI is a right ideal of S.
Let H be a non-empty right ideal of S properly contained in aI. De�ne
H ′ = {r : ar ∈ I}. Then a(sy) = (sy)a = (ay)s ∈ HS ⊆ H imply that H ′

is a left ideal of S properly contained in I. But this is a contradiction to
the minimality of I. Hence aI is a minimal left ideal of S.

Theorem 9. Every ideal of an AG∗-groupoid S is prime if and only if it is

idempotent and the set of all ideals of S is totally ordered.

Proof. Let every ideal of S be prime. Assume that I is any ideal of S. Then
I2 is an ideal of S by Lemma 5. Also I2 ⊆ I implies that I ⊆ I2 or I = I2.
If P and Q are any ideals of S then, PS ⊆ P and SQ ⊆ Q implies that
PQ ⊆ P and PQ ⊆ Q, and so PQ ⊆ P ∩Q. Since intersection of two prime
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ideals is prime. So, P ⊆ P ∩Q or Q ⊆ P ∩Q. This implies that P ⊆ Q or
Q ⊆ P . Hence the set of all ideals of S is totally ordered.

Conversely, assume that every ideal of S is idempotent and the set of
all ideals of S is totally ordered. Let I, J and P be any ideals of S such
that IJ ⊆ P with I ⊆ J . Then I = I2 = II ⊆ IJ ⊆ P , implies that every
ideal of S is prime.
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Skew endomorphisms on n-ary groups

Nikolay A. Shchuchkin

Abstract

Let x(k) denote this element of an n-ary group G which is skew to x(k−1), where k > 1

and x(0) = x. We �nd the identities de�ning the variety of all n-ary groups for which the
operation (k)

: x 7→ x(k) is an endomorphism.

1. Introduction

According to the general convention used in the theory of n-ary systems
the sequence of elements xi, xi+1, . . . , xj will be denoted by xj

i . In the case
j < i it will be the empty symbol. If xi+1 = xi+2 = . . . = xi+t = x, then

instead of xi+t
i+1 we shall write

(t)
x . In this convention f(x1, . . . , xn) = f(xn

1 )
and

f(x1, . . . , xi, x, . . . , x︸ ︷︷ ︸
t

, xi+t+1, . . . , xn) = f(xi
1,

(t)
x , xn

i+t+1).

If m = k(n− 1) + 1, then the m-ary operation g of the form

g(xk(n−1)+1
1 ) := f(f(..., f(f︸ ︷︷ ︸

k

(xn
1 ), x2n−1

n+1 ), ...), xk(n−1)+1
(k−1)(n−1)+2)

will be denoted by f(k). In certain situations, when the arity of g does not
play a crucial role or when it will di�er depending on additional assump-
tions, we will write f(.) to mean f(k) for some k = 1, 2, ....

For n > 3, there are several equivalent de�nitions of an n-ary group (see
for example, [2], [6], [8], [10]). The de�nition given in [1] generalizes the
de�nition of a binary group as follows:

The algebra 〈G, f〉 with the n-ary operation f is called an n-ary group

if for every i = 1, 2, . . . , n the following two conditions are satis�ed:

2000 Mathematics Subject Classi�cation: 20N15
Keywords: n-ary group, skew element, endomorphism.
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1. the operation f satis�es the general associative law:

f(f(xn
1 ), x2n−1

n+1 ) = f(xi
1, f(xi+n

i+1 ), x2n−1
i+n+1), (1)

2. the equation f(ai−1
1 , x, an

i+1) = b has a unique solution x ∈ G for all
a1, . . . , ai−1, ai+1, . . . , an, b ∈ Gn.

An algebra 〈G, f〉 satisfying (1) for all i = 1, 2, . . . , n is called an n-ary
semigroup.

In an n-ary group 〈G, f〉 the solution z of the equation

f(
(n−1)

x , z) = x,

is denoted by x and is called the skew element of x.
One can prove (see for example [1]) that

f(
(i−1)
x , x,

(n−i)
x ) = x, 1 6 i 6 n,

f(y
(n−j−1)

x , x,
(j−1)

x ) = y, 1 6 j 6 n− 1 (2)

f(
(i−1)
x , x,

(n−i−1)
x , y) = y, 1 6 i 6 n− 1 (3)

for all x, y ∈ G.
Identities (1), (2) and (3) can be used as identities de�ning the variety

of all n-ary groups (see [2], [6], [8], [10]).

For example, in [6] the following theorem is proved.

Theorem 1.1. An n-ary (n > 2) semigroup 〈G, f〉 with the unary operation

: x → x is an n-ary group if and only if the identities (2) and (3) hold in

G for some 1 6 i, j 6 n− 1.

Following Post [11], we say that two sequences an−1
1 and b

k(n−1)
1 of ele-

ments of G are equivalent in an n-ary group 〈G, f〉 if the equation

f(x, an−1
1 ) = f(k)(x, b

k(n−1)
1 ) (4)

is valid for some x ∈ G.

Lemma 1.2. If in an n-ary group 〈G, f〉 the sequences an−1
1 and b

k(n−1)
1

are equivalent, then the equation (4) is valid for all x ∈ G.
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Proof. Indeed, if this equality holds for some x, an−1
1 , b

k(n−1)
1 ∈ G, then

f(y,
(n−3)

x , x, f(x, an−1
1 )) = f(y,

(n−3)
x , x, f(k)(x, b

k(n−1)
1 ))

is valid for all y ∈ G. Whence, according to the associativity of f , we obtain

f(f(y,
(n−3)

x , x, x), an−1
1 ) = f(k)(f(y,

(n−3)
x , x, x), bk(n−1)

1 ).

This, by (2), implies

f(y, an−1
1 ) = f(k)(y, b

k(n−1)
1 ),

which completes the proof.

2. Skew endomorphisms

W. A. Dudek posed in ([5]) several problems on the operation : x → x on
n-ary groups. He asks (see also [4]) when this operation is an endomorphism,
i.e., in which n-ary groups the identity

f(xn
1 ) = f(x1, x2, . . . , xn) (5)

is satis�ed.

The partial answer was given in [5]. Other answer is given in [13].
Namely, in [13] the following theorem is proved.

Theorem 2.1. The operation : x → x is an endomorphism of an n-ary
group 〈G, f〉 if and only if

f(f(x,
(n−1)

u , y), . . . , f(x,
(n−1)

u , y),
(2)
u ) =

f(
(n−1)

y , f(u, f(x,
(n)
u ), . . . , f(x,

(n)
u ), x, u), u)

and

f(
n
u, f(

n−1
x , u, u)) = f(f(

n−1
x , u, u),

n
u)

hold for all x, y, u ∈ G.

It is clear that : x → x is an endomorphism in all commutative n-ary
groups. Obviously, it is an endomorphism in all idempotent (also non-
commutative) n-ary groups. Gªazek and Gleichgewicht proved in [9] that
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it is an endomorphism in all medial n-ary groups, i.e., in n-ary groups
satisfying the identity

f({f(xin
i1 )}i=n

i=1 ) = f({f(xni
1i )}i=n

i=1 ). (6)

One can prove (see [2]) that an n-ary group 〈G, f〉 is medial if there exists
an element a ∈ G such that

f(x,
(n−2)

a , y) = f(y,
(n−2)

a , x) (7)

holds for all x, y ∈ G.
Using (7) and the associativity of the operation f it is not di�cult to

verify that the following theorem is true.

Theorem 2.2. Each medial n-ary group satis�es the identity

f(n−1)(x1,
(n−2)
x2 ,

(n−2)
x3 , . . . ,

(n−2)
xn+1, xn+2) =

f(x1, f(xn+1, xn,..., x2), . . . , f(xn+1, xn,..., x2)︸ ︷︷ ︸
n−2 times

, xn+2). (8)

The identity (8) describes the class of n-ary groups for which : x → x
is an endomorphism.

Theorem 2.3. The operation : x → x is an endomorphism of an n-ary
group 〈G, f〉 if and only if 〈G, f〉 satis�es (8).

Proof. Let : x → x be an endomorphism of an n-ary group 〈G, f〉, i.e., let
(5) be satis�ed. Then, according to (2) and (3), for any xn+2

2 ∈ G we have

f(n−1)(f(xn+1, xn, . . . , x2),
(n−2)
x2 ,

(n−2)
x3 , . . . ,

(n−2)
xn+1, xn+2) = xn+2

and

f(f(xn+1, xn,..., x2), f(xn+1, xn,..., x2), . . . , f(xn+1, xn,..., x2)︸ ︷︷ ︸
n−2 times

, xn+2)=xn+2

for all elements xn+1
2 ∈ G, which, by (5), means that the sequences

(n−2)
x2 ,

(n−2)
x3 ,...,

(n−2)
xn+1, xn+2 and f(xn+1, xn, ..., x2),..., f(xn+1, xn, ..., x2)︸ ︷︷ ︸

n−2 times

, xn+2

are equivalent. So, in view of Lemma 1.1, the equality (8) is valid for
all xn+1

1 ∈ G.
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Conversely, let (8) be satis�ed in an n-ary group 〈G, f〉. Then putting
x1 = f(y1, y2, . . . , yn), xn+2 = f(yn

1 ) and xk = yn+2−k for 2 6 k 6 n+1 we
see that the left hand side of (8) has the form

f(n−1)(f(y1, y2, . . . , yn),
(n−2)
yn ,

(n−2)
yn−1, . . . ,

(n−2)
y1 , f(yn

1 )) = f(yn
1 ).

On the right side of (8) we obtain

f(f(y1, y2, . . . , yn), f(yn
1 ), . . . , f(yn

1 )︸ ︷︷ ︸
n−2 times

, f(yn
1 )) = f(y1, y2, . . . , yn).

So, f(yn
1 ) = f(y1, y2, . . . , yn) for all yn

1 ∈ G. This completes the proof.

This theorem proves that the converse of Theorem 2.2 is not true. In-
deed, in any idempotent n-ary group the operation : x → x is the identity
endomorphism but not any idempotent n-ary group is medial [11].

Let x (k) be the skew element to x (k−1), where k > 1 and x(0) = x, i.e.,
let x (1) = x, x (2) = x, and so on. If : x → x is an endomorphism of an
n-ary group 〈G, f〉, then obviously (k) : x → x (k) is an endomorphism too.
In some cases it is an automorphism (see [4] and [5]). However, the converse
is not true. For example, in all ternary groups x = x, i.e., the operation

(2) : x → x is the identity endomorphism, but in a ternary group 〈S3, f〉
de�ned on the symmetric group S3, where f is the composition on three
permutations, we have

f((12), (13), (123)) 6= (132) = f((12), (13), (132)).

Hence : x → x is not an endomorphism of this group.

Since in ternary groups x = x for all x, we have x (k) = x if k is even,
and x (k) = x if k is odd. Therefore, the operation (k) : x → x (k) is the
identity endomorphism or coincides with the operation : x → x. From
the last theorem it follows that : x → x is an endomorphism of a ternary
group if and only if this group is medial. In this case : x → x is an
automorphism.

Other important properties of operations (k) : x → x (k) in n-ary groups
satisfying some additional properties are described in [3] and [4].

Following Post [11] an n-ary power of an element x in an n-ary group

〈G, f〉 is de�ned as x<0> = x and x<k+1> = f(
(n−1)

x , x<k>) for all k > 0.
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In this convention x<−k> means z ∈ G such that f(x<k−1>,
(n−2)

x , z) =
x<0> = x.

It is not di�cult to verify that the following exponential laws hold

f(x<s1>, x<s2>, . . . , x<sn>) = x<s1+s2+...+sn+1>,

(x<r>)<s> = x<rs(n−1)+s+r> = (x<s>)<r>.

Using the above laws we can see that x = x<−1> and, consequently

x (2) = (x<−1>)<−1> = x<n−3>,

x (3) = ((x<−1>)<−1>)<−1>,

and so on. Generally: x (k) = (x (k−1))<−1> for all k > 1. This implies
(see [3] or [4]) that x (k) = x<Sk> for

Sk = −
k−1∑
i=0

(2− n)i =
(2− n)k − 1

n− 1
.

For even k we have Sk = (n−2)k−1
n−1 . Hence

x (k) = f(·)(
((n−2)k)

x ) (9)

for even k. In particular x = x<n−3> = f(n−3)(
((n−2)2)

x ). Thus the operation
(k) : x → x (k) coincides with the operation <Sk> : x → x<Sk>. So, the

operation (k) : x → x (k) is an endomorphism if and only if

f(xn
1 )<Sk> = f(x<Sk>

1 , x<Sk>
2 , . . . , x<Sk>

n )

is valid for all xn
1 ∈ G. This implies

Theorem 2.4. For even k the operation (k) : x → x (k) is an endomor-

phism of an n-ary group 〈G, f〉 if and only if the identity

f(·)(f(xn
1 ), . . . , f(xn

1 )︸ ︷︷ ︸
(n−2)k

) = f(·)(
((n−2)k)

x1 ,
((n−2)k)

x2 , . . . ,
((n−2)k)

xn )

is satis�ed.
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Theorem 2.5. For odd k the operation (k) : x → x (k) is an endomorphism

of an n-ary group 〈G, f〉 if and only if the identity

f(·)(x1,
((n−2)k)

x2 ,
((n−2)k)

x3 , . . . ,
((n−2)k)
xn+1 , xn+2) =

f(·)(x1, f(xn+1, xn, . . . , x2), . . . , f(xn+1, xn, . . . , x2)︸ ︷︷ ︸
(n−2)k

, xn+2), (10)

is satis�ed.

Proof. Let k be odd and let (k) : x → x (k) be an endomorphism of an
n-ary group 〈G, f〉. From (2), (3) we get

f(·)(y,
((n−2)k)

x ,
((n−2)k−1)

x ) = f(·)(y,
(n−2)

x , x , . . . ,
(n−2)

x , x ) = y, (11)

f(·)(
((n−2)k−1)

x ,
((n−2)k)

x , y) = f(·)( x ,
(n−2)

x , . . . , x ,
(n−2)

x , y) = y. (12)

Consequently

f(·)(f(·)(
((n−2)k−1)

xn+1 ,
((n−2)k−1)

xn , . . . ,
((n−2)k−1)

x2 ),
((n−2)k)

x2 , . . . ,
((n−2)k)
xn+1 , xn+2) = xn+2

and

f(·)(f(xn+1, xn, . . . , x2), . . . , f(xn+1, xn, . . . , x2)︸ ︷︷ ︸
(n−2)k−1

,

f(xn+1, xn, . . . , x2), . . . , f(xn+1, xn, . . . , x2)︸ ︷︷ ︸
(n−2)k

, xn+2) = xn+2.

Since k − 1 is even, by (9) we have x (k) = (x)
(k−1)

= f(·)(
((n−2)k−1)

x ) for all
x ∈ G. Thus

f(xn+1, xn, . . . , x2)
(k)

= f(·)(f(xn+1, xn, . . . , x2), . . . , f(xn+1, xn, . . . , x2)︸ ︷︷ ︸
(n−2)k−1

)

and

f(·)(
((n−2)k−1)

xn+1 ,
((n−2)k−1)

xn , . . . ,
((n−2)k−1)

x2 ) = f(·)(x
(k)
n+1, x

(k)
n , . . . , x

(k)
2 ),
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whence

f(·)(
((n−2)k−1)

xn+1 ,
((n−2)k−1)

xn , . . . ,
((n−2)k−1)

x2 ) =

f(·)(f(xn+1, xn, . . . , x2), . . . , f(xn+1, xn, . . . , x2)︸ ︷︷ ︸
(n−2)k−1

).

This, together with the above two identities containing xn+2, means
that the sequences:

((n−2)k)
x2 ,

((n−2)k)
x3 , . . . ,

((n−2)k)
xn+1 , xn+2

and

f(xn+1, xn, . . . , x2), . . . , f(xn+1, xn, . . . , x2)︸ ︷︷ ︸
(n−2)k

, xn+2

are equivalent. Hence, by Lemma 1.2, the equality (10) is valid for all
xn+2

1 ∈ G.

On the other hand, if (10) is valid for all xn+2
1 ∈ G, then for

x1 = f(·)(
((n−2)k−1)

y1 ,
((n−2)k−1)

y3 , . . . ,
((n−2)k−1)

yn ),

xk = yn+2−k, for k = 2, 3, . . . , n + 1,

xn+2 = f(·)(f(yn
1 ), f(yn

1 ), . . . , f(yn
1 )︸ ︷︷ ︸

(n−2)k−1

) = f(·)(
((n−2)k−1)

f(yn
1 ) ),

it has the form

f(·)(f(·)(
((n−2)k−1)

y1 , . . . ,
((n−2)k−1)

yn ),
((n−2)k)

yn , . . . ,
((n−2)k)

y2 ,
((n−2)k)

y1 , f(·)(
((n−2)k−1)

f(yn
1 ) ) =

f(·)(f(·)(
((n−2)k−1)

y1 , . . . ,
((n−2)k−1)

yn ),
((n−2)k)

f(yn
1 ) , f(·)(

((n−2)k−1)

f(yn
1 ) )).

Whence, applying (11) and (12), we obtain

f(·)(
((n−2)k−1)

f(yn
1 ) ) = f(·)(

((n−2)k−1)

y1 , . . . ,
((n−2)k−1)

yn ).
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But, by (9), for all y ∈ G we have f(·)(
((n−2)k−1)

y ) = (y)
(k−1)

= y (k). Thus,
the last identity implies

f(yn
1 )

(k)
= f(y (k)

1 , y
(k)
2 , . . . , y (k)

n ).

Therefore, (k) : x → x (k) is an endomorphism.

Note that for any �nite n-ary group there exists a natural number m
such that x (m) = x holds for all x ∈ G. The same holds also in some
in�nite n-ary groups (see for example [3]). In these groups endomorphisms

(k) : x → x (k) are automorphisms.
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