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Loop algebras of loops

whose derived subloop is central

Luiz G. X. de Barros

Abstract

The isomorphism problem for loops, that is, to know under which conditions the loop
algebra isomorphism implies the loop isomorphism, is studied in the semisimple case for
loops whose derived subloop is central. This is done by studying the structure of the
semisimple loop algebra and by proving that it can be decomposed as a direct sum of
an associative and commutative subalgebra with a nonassociative and non-commutative
subalgebra.

1. Nomenclature and Introduction

A loop is a set L with a binary operation · which admits an identity element
1 and that the equations X · a = b and a ·X = b have unique solutions for
all a and b in L.

The unique solution of the equation a · b = (b · a) · X in L is called
the commutator of the elements a and b, while the unique solution of the
equation (a · b) · c = (a · (b · c)) ·X is called the associator of the elements
a,b and c. For a loop L, the subloop L′ generated by all commutators and
all associators is called the derived subloop of L. The quotient loop L/L′ is
an abelian group and L′ is the smallest subloop of L with such property.

The centre of a loop L is the set Z(L) of the elements in L which
commute with any element in L and which associate with any two others
elements in L in any order of association.
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In a loop, the solution of the equation X ·a = 1 is called the left inverse
of the element a and it is denoted by aλ, while the solution of the equation
a ·X = 1 is called the right inverse of a and it is denoted by aρ.

Given an associative and commutative ring R and a loop L, the loop

ring RL is the free R-module with basis L and multiplication de�ned dis-
tributively from the multiplication of L. For a �eld K, the loop algebra KL
is de�ned in the same way.

For a normal subloop N of a loop L , the epimorphism L −→ L/N
extends to the algebra epimorphism KL −→ K[L/N ] whose kernel, denoted
by ∆(L,N), is the ideal of KL generated by the set {n− 1 | n ∈ N}.

We shall denote by [KL, KL] the left ideal of KL generated by all
elements of the form αβ − βα with α, β ∈ KL, and by [KL, KL, KL] the
left ideal of KL generated by all elements of the form αβ · γ − α · βγ with
α, β, γ ∈ KL.

The isomorphism problem for group rings, posed by Graham Higman in
his 1940 thesis, asks if a group is determined by its group ring, that is, given
a ring R and groups G and H, does the ring isomorphism RG ∼= RH imply
the group isomorphism G ∼= H ?

G. Higman himself proved that the integral group ring of a �nite abelian
group determines the group. Later, A. Whitcomb extended this result to
integral group ring of �nite metabelian groups.

The isomorphism problem over �elds was �rst considered in 1950 by S.
Perlis and G.L. Walker who proved that if G is a �nite abelian group then
G is determined its rational group algebra QG. Solutions for many classes
of group, many kinds of rings and �elds are found during this time.

On the '80s, the problem was reposed for loops and expressive results for
RA-loops were obtained. For details, Chapter XI of the book "Alternative

Loop Rings", Elsevier, (1996), by E.G. Goodaire, E. Jespers and C. Polcino
Milies, is recommended.

During the '90s, the author has worked in extending these results to
other classes of loops. In this work, some advances on the loops whose
derived subloop is central are shown. The semisimple case, that is, when the
characteristic of the �eld does not divide the order of the loop, is completely
solved. This is made studying the structure of the loop algebra and proving
that it can be decomposed as a direct sum of an associative and commutative
subalgebra with a non-associative and non-commutative subalgebra.
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2. Loop algebras of loops whose derived subloop

is central

Here we focus our attention on the class L of the �nite loops whose derived
subloop is central. These loops appear very often in the theory of loops.
Code loops [6], RA-loops [5], loops with a unique non-trivial commutator-
associator element [8] are examples of such loops.

Some of the results in this section are extensions of those obtained for
RA-loops in [1] by the author and in [3] by C. Polcino Milies and the author.

This �rst lemma is fundamental for the sequence and extends to loop
algebras of loops in L a very known result of group algebras.

Lemma 2.1. Let K be a �eld and L be a loop in L with derived subloop L′.
Then

[KL, KL] + [KL, KL, KL] = ∆(L,L′).

Proof. First, we observe that [KL, KL] is generated by elements of the
form lm−ml with l,m ∈ L. Since lm = ml · (l, m) we have that

lm−ml = ml · (l, m)−ml = ml · ((l,m)− 1) ∈ ∆(L,L′) .

Also, [KL, KL, KL] is generated by elements of the form lm.n − l.mn
with l,m, n ∈ L. Since, lm.n = (l.mn) · (l, m, n) we have that

lm.n− l.mn = (l.mn) · (l,m, n)− l.mn = (l.mn) · ((l,m, n)−1) ∈ ∆(L,L′) .

Thus [KL, KL] + [KL, KL, KL] ⊂ ∆(L,L′) .
On the other hand, since lm = ml · (l, m) and (l,m) is central, we have

that (l,m) = (ml)λ · lm and (l, m)−1 = (lm)λ ·ml.
Then

1− (l, m) = 1− (ml)λ · lm = (ml)λ ·ml − (ml)λ · lm
= (ml)λ · (ml − lm) ∈ [KL, KL]

and

1− (l,m)−1 = 1− (lm)λ ·ml = (lm)λ · lm− (lm)λ ·ml

= (lm)λ · (lm−ml) ∈ [KL, KL].

Also, since lm.n = (l.mn) ·(l, m, n) and (l, m, n) is central, we have that
(l,m, n) = (l.mn)λ · (lm.n) and (l, m, n)−1 = (lm.n)λ · (l.mn).
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Then

1− (l,m, n) = 1− (l.mn)λ · (lm.n) = (l.mn)λ · (l.mn)− (l.mn)λ · (lm.n)

= (l.mn)λ · (l.mn− lm.n) ∈ [KL, KL, KL]

and

1− (l, m, n)−11− (lm.n)λ · (l.mn) = (lm.n)λ · (lm.n)− lm.n)λ · (l.mn)

= (lm.n)λ · (lm.n− l.mn) ∈ [KL, KL, KL].

An element x ∈ L′ is a product of commutators, associators and their
inverses. The identity 1− cd = (1− c)+(1−d)− (1− c) · (1−d) shows that
1− x can be separated in terms of the form α · (1− c) where α ∈ KL and c
is a commutator (or its inverse) or an associator (or its inverse). Each one
of these terms of the form α · (1− c) belongs to [KL, KL] or [KL, KL, KL].
Thus ∆(L,L′) ⊂ [KL, KL] + [KL, KL, KL]. �

For a future use we recall a classical result about group algebras of �nite
abelian groups due to S. Perlis and G.L. Walker [10],

Theorem 2.2. (Theorem X.2.1, [7]) Let G be a �nite abelian group of order

n and K be �eld whose characteristic does not divide n. Then

KG ∼= ⊕d|nadK(ξd) ,

where ad = nd/[K(ξd) : K], nd denotes the number of elements of order d
in G and ξd denotes a primitive dth root of unity over K.

Using Lemma VI.1.2 of [7], we can prove

Lemma 2.3. Let L be a loop in L and let K be any �eld whose characteristic

does not divide |L′|, the order of L′. De�ne L̂′ = 1
|L′| ·

∑
n∈L′ n. Then

i) L̂′ is a central idempotent in KL,
ii) KL · L̂′ ∼= K[L/L′] and KL · (1− L̂′) ∼= ∆(L,L′),

iii) KL ∼= KL · L̂′ ⊕KL · (1− L̂′) ∼= K[L/L′]⊕∆(L,L′).

The next result is valid for any �eld.

Proposition 2.4. Let L1 and L2 be loops in L and K be any �eld. Sup-

pose that KL1
∼= KL2. Then K[L1/L′

1] ∼= K[L2/L′
2] and ∆(L1, L

′
1) ∼=

∆(L2, L
′
2).
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Proof. Let KL1 −→ K[L1/L′
1] be the natural epimorphism whose kernel

is ∆(L1, L
′
1).

Given an isomorphism Ψ : KL1 −→ KL2, we have

Ψ(∆(L1, L
′
1)) = Ψ([KL1,KL1] + [KL, KL, KL]) =

= [KL2,KL2] + [KL2,KL2,KL2] = ∆(L2, L
′
2).

This shows that Ψ also induces an isomorphism Ψ of the corresponding
factor rings, so

K[L1/L′
1] ∼= KL1/∆(L1, L

′
1) ∼= KL2/∆(L2, L

′
2) ∼= K[L2/L′

2]. �

As a consequence of both results, we obtain the next theorem which is
an extension of Theorem 3.2 in [2] for RA-loops

Theorem 2.5. Let L1 and L2 be loops in L and K be any �eld whose

characteristic does not divide |L′
1| and |L′

2|. Then KL1
∼= KL2 if and only

if K[L1/L′
1] ∼= K[L2/L′

2] and ∆(L1, L
′
1) ∼= ∆(L2, L

′
2).

Using Theorem 2.2 we have

Corollary 2.6. Let L1 and L2 be loops in L and let Q be the rational

�eld. Then QL1
∼= QL2 if and only if L1/L′

1
∼= L2/L′

2 and ∆(L1, L
′
1) ∼=

∆(L2, L
′
2).

3. A subclass of L
In this section we study the class L1 of the �nite loops L such that L/Z(L) ∼=
C2 × C2. These loops appear as groups in the main papers about RA-loops
as [5] and [9].

Proposition 3.1. Let L ∈ L1. Then

i) L′ ⊂ Z(L), that is, L1 ⊂ L,
ii) L2 ⊂ Z(L),

iii) L = < x, y,Z(L) >, the subloop generated by x, y and Z(L), for all

non-central elements x, y ∈ L such that x.Z(L) 6= y.Z(L).

Proof.

i) It comes from the fact that L/Z(L) is an abelian group.
ii) It comes from the fact that the group C2 × C2 has exponent 2.
iii) It comes from the fact that L/Z(L) ∼= C2 × C2 can be generated by
two non-central elements x and y such that x.Z(L) 6= y.Z(L) . �
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Proposition 3.2. Let L =< x, y,Z(L) > a loop in L1. Write Z(L) ∼=
E×A, where E is an abelian 2-group and A is an abelian group of odd order.

Then there exist x0, y0 ∈ L, with x2
0, y

2
0 ∈ E such that L =< x0, y0,Z(L) > .

Proof. Write x2 = x1.x2 and y2 = y1.y2 with x1, y1 ∈ E and x2, y2 ∈ A.
Let x0 = xo(x2) and y0 = yo(y2). It is easy to see that x0 and y0 have the
desired properties. �

Theorem 3.3. Let L be a loop in L1. Then L = M × A, where M is a

2-loop in L1 and A is an abelian group of odd order.

Proof. Write Z(L) ∼= E × A, where E is an abelian 2-group and A is an
abelian group of odd order. By Proposition 3.2 there exist x0, y0 ∈ L , with
x2

0, y
2
0 ∈ E such that L =< x0, y0,Z(L) > . De�ne M =< x0, y0, E >.

Then Z(M) = E and M/Z(M) ∼= C2 × C2. Also L = M ×A. �

Corollary 3.4. Let L be a loop in L1. Write L = M × A, where M is a

2-loop in L1 and A is an abelian group of odd order. Then L′ = M ′.

Proof. Given the elements l = xa
0.y

b
0.zl, m = xc

0.y
d
0 .zm and n = xe

0.y
f
0 .zn in

L with xo, y0 ∈ M and zl, zm, zn ∈ Z(L), observe that

(l, m) = (xa
0.y

b
0.zl , xc

0.y
d
0 .zm) = (xa

0.y
b
0 , xc

0.y
d
0) ∈ M ′

and

(l,m, n) = (xa
0.y

b
0.zl , xc

0.y
d
0 .zm , xc

0.y
d
0 .zn) = (xa

0.y
b
0 , xc

0.y
d
0 , xc

0.y
d
0) ∈ M ′

since zl , zm and zn are central. �

We say that elements a and b of a loop L are conjugate if b = θ(a) for
some θ ∈ Inn(L), the inner mapping group of L. Conjugacy de�nes an
equivalence relation on L. In a loop ring, a (�nite) class sum is the sum of
all the elements in a �nite conjugacy class of L.

The next theorem is a classical result due to R. H. Bruck and it appears
in [7] as Theorem III.1.3

Theorem 3.5. Let L be a loop and R be a commutative and associative

ring. The (�nite) class sums of the loop ring RL form a R-basis for the

centre of RL .

Now we focus our attention to the class L2 of the loops L in L1 with a
unique nonidentity commutator-associator element.

As the Corollary III.1.5 in [7], we can prove
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Corollary 3.6. Let L be a loop in L2 with a unique nonidentity

commutator-associator element s and let R be a commutative and asso-

ciative ring. Then the centre of the loop ring RL is spanned by the centre

of L and those elements of RL of the form l + sl, l ∈ L .

Also, as the Corollary VI.1.3 in [7], we can prove

Lemma 3.7. Let L be a loop in L2 with a unique nonidentity commutator-

associator element s and let K be a �eld whose characteristic does not divide

the order of L. Then Z(∆(L,L′)) ∼= K[Z(L)](1− L̂′), where L̂′ = 1+s
2 .

The next theorem extends Theorem 2.5 of [4] from RA-loops to the class
L2.

Theorem 3.8. Let L1 and L2 be loops in L2 and K be a �eld whose charac-

teristic does not divide the order of either of these loops. For 1 = 1, 2, write
Li = Mi × Ai where Mi is 2-loop in L2 and Ai is an abelian group of odd

order. Then KL1
∼= KL2 if and only if KM1

∼= KM2 and KA1
∼= KA2.

Proof. Suppose �rst that KL1
∼= KL2. By Proposition 2.4, we have

K[L1/L′
1] ∼= K[L2/L′

2]; that is,

K[(M1/M
′
1)×A1] ∼= K[(M2/M

′
2)×A2].

As these group algebras are commutative, using a result due to D. E.
Cohen and which appears as Theorem X.2.5 in [7], we can conclude that

K[M1/M
′
1] ∼= K[M2/M

′
2] and KA1

∼= KA2.

In view of Theorem 2.5, in order to prove that KM1
∼= KM2 as well,

it will su�ce to show that ∆(M1,M
′
1) ∼= ∆(M2,M

′
2) . By Theorem 2.5,

∆(L1, L
′
1) ∼= ∆(L2, L

′
2). Moreover, for i = 1, 2, denoting by L̂′

i = 1
|L′

i|
·∑

n∈L′
i
n the central idempotent in KLi,

∆(Li, L
′
i) = KLi(1− L̂′

i) ∼= (KMi ⊗KAi)(1− L̂′
i) ∼= ∆(Mi,M

′
i)⊗KAi

since L̂′
i ∈ Mi. Thus

∆(M1,M
′
1)⊗KA1

∼= ∆(L1, L
′
1) ∼= ∆(L2, L

′
2) ∼= ∆(M2,M

′
2)⊗KA2.

Using Theorem 2.2, we have that KA1
∼= nK ⊕ (⊕dmdK(ξd)) ∼= KA2,

where ξd is a primitive root of unity of odd order d and d runs over the set
of divisors of |A1| such that K(ξd) 6= K. For i = 1, 2,

∆(Li, L
′
i) ∼= n∆(Mi,M

′
i)⊕ (⊕dmd(∆(Mi,M

′
i)⊗K(ξd))).
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By Lemma 3.7 , Z(∆(Mi,M
′
i)) = K[Z(Mi)](1− L̂′

i). Thus, using again
Theorem 2.2, Z(∆(Mi,M

′
i)) ∼= ⊕jK(ξaj ), where the ξaj are primitive roots

of unity of order 2aj . Consequently,

Z(∆(Mi,M
′
i)⊗K(ξd)) ∼= ⊕jK(ξaj )⊗K(ξd).

Since (d, 2aj ) = 1, we have that

K(ξaj )⊗K(ξd) ∼= K(ξaj )(ξd) = K(ξajd) ,

where ξajd is a primitive root of unity of order 2ajd. We claim that this
�eld is never isomorphic to a �eld of the form K(ξai). In fact, assume that
K(ξajd) ∼= K(ξai). Then K(ξd) ⊂ K(ξai) and so

K(ξai)⊗K K(ξd) ∼= K(ξaid) = K(ξai)(ξd) = K(ξai).

However, as K(ξd) 6= K, the tensor product K(ξai)⊗K K(ξd) has dimen-
sion at least two over the �eld K(ξai), a contradiction. Hence the centre of
the algebra ∆(Mi,M

′
i) is a direct sum of �elds which are all di�erent from

those appearing in the decomposition of the centre of ∆(Mi,M
′
i)⊗K(ξd).

Since

n∆(M1,M
′
1)⊕ (⊕dmd(∆(M1,M

′
1)⊗K(ξd))) ∼=

∼= n∆(M2,M
′
2)⊕ (⊕dmd(∆(M2,M

′
2)⊗K(ξd)))

and because ∆(Mi,M
′
i) is a sum of algebras over �elds of the form K(ξaj )

while Z(∆(Mi,M
′
i)⊗K(ξd)) contains no such direct summands, it follows

that n∆(M1,M
′
1) ∼= n∆(M2,M

′
2). Hence ∆(M1,M

′
1) ∼= ∆(M2,M

′
2), as

desired.

The converse is straightforward. �

Corollary 3.9. Let L1 and L2 be loops in L2 and K be a �eld whose

characteristic does not divide the order of either of these loops. For 1 = 1, 2,
write Li = Mi × Ai where Mi is 2-loop in L2 and Ai is an abelian group

of odd order. Then KL1
∼= KL2 if and only if K[M1/M

′
1] ∼= K[M2/M

′
2],

∆(M1,M
′
1) ∼= ∆(M2,M

′
2) and KA1

∼= KA2.

Corollary 3.10. Let L1 and L2 be loops in L2 and Q be the �eld of ra-

tionals. For 1 = 1, 2, write Li = Mi × Ai where Mi is 2-loop in L2 and

Ai is an abelian group of odd order. Then QL1
∼= QL2 if and only if

M1/M
′
1
∼= M2/M

′
2 , ∆(M1,M

′
1) ∼= ∆(M2,M

′
2) and A1

∼= A2.
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Subassociative groupoids

Milton S. Braitt and Donald Silberger

Dedicated to the memory of Eva Ruth Silberger, 1962 � 2006

Abstract

When 〈G; �〉 is a groupoid with binary operation � : G2 → G, and when k ∈ N :=
{1, 2, 3, . . .}, then F σ(k) denotes the set of all formal products u on k independent vari-
ables. It is well known that |F σ(k)| = C(k), where C(k) is the kth Catalan number.

Each word u ∈ F σ(k) induces a function u : Gk → G given by u : ~g 7→ u(�, ~g),
where u(�, ~g) is the interpretation in 〈G; �〉 of u as a ��product of the sequence ~g :=
〈g0, g1, . . . , gk−1〉 ∈ Gk.

Write u =� v for {u,v} ⊆ F σ(k) i� u(�, ~g) = v(�, ~g) whenever ~g ∈ Gk. This
=� is an equivalence relation on the set F σ :=

⋃
{F σ(k) : k ∈ N}. The sequence

SaT(〈G; �〉) := 〈|F σ(k)/ =� |〉∞k=2 presents the subassociativity types of 〈G; �〉.
We calculate SaT(G) for a few evocative groupoids G := 〈G; �〉, and we initiate a

study of the partitions F σ(k)/ =�. Each equivalence class of the completely free groupoid
F σ is a singleton, and so F σ realizes the theoretical minimum k�associativity for each
k ∈ N. We propose for each k a minimally k�associative class of �nite groupoids.

Introduction

Given a set G and a binary operation � : G×G → G on G, it is customary
to write �(x, y) in the form x � y when 〈x, y〉 ∈ G2 := G × G. The pair
〈G; �〉 is said to be a groupoid.

We say that a triple 〈g0, g1, g2〉 ∈ G3 of elements in G associates under
the binary operation � i� (g0 � g1) � g2 = g0 � (g1 � g2). If every triple of

2000 Mathematics Subject Classi�cation: 20N02, 08A99, 05A99
Keywords: groupoid, free groupoid, associative law
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elements in G associates under �, the binary operation � itself is said to be
associative, and the groupoid 〈G; �〉 is called a semigroup.

For 〈G; �〉 a semigroup, each �nite sequence g0, g1, . . . , gk−1 of elements
in G determines under � a unique element in G as its product. We can write
this product in the simpli�ed form g0 � g1 � · · · � gk−1 because parentheses
are not needed to avoid ambiguity.

Of course, the great majority of groupoids are not semigroups. Each
such nonsemigroup has at least one triple of elements which fails to as-
sociate. This failure of some triples to associate induces diversity among
products of the longer strings as well.

Our paper's principal focus is upon this diversity of products.

For instance, if 〈G; �〉 is not a semigroup then we expect that some
quadruples 〈g0, g1, g2, g3〉 ∈ G4 may in a general sense also fail to associate.
However, whereas there are at most two potentially distinct products for a
triple of elements in a groupoid, there are �ve potentially distinct products
of a quadruple of such elements, fourteen potentially distinct 5�tuple prod-
ucts, and in general there are C(k) potentially distinct k�products, where
C(k) is the kth Catalan number.

That is, when the binary operation � of a groupoid lacks 3�associativity,
then � may lack k�associativity for sundry integers k > 4 as well.

In �1 we introduce Reverse Polish Notation, which provides a convenient
tool for specifying the potentially di�erent k�products under � of a length k
sequence of elements in G. This leads to our presentation in �2 of the notion
of a formal k�product, and of a completely free groupoid in which every
formal k�product of a length k sequence in G produces a de facto distinct
element in the groupoid, and enables our development in �3 of a measure
of the subassociativity of an arbitrary groupoid; this measure is given as
an in�nite sequence of positive integers which we call the subassociativity
type of the groupoid. In �3 we calculate the subassociativity type of each of
several important nonassociative groupoids, including that of the groupoid
of integers under subtraction. Related to the subassociativity type of a
groupoid is its size sequence, which appears interestingly complicated even
when the subassociativity type of the groupoid is regular and simple in
form.

�4 concentrates upon those groupoids in which k�associativity is mini-
mal for every integer k > 3.

Our paper presents a variety of natural problems.
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1. Reverse Polish Notation

For a nonassociative binary operation �, if ~g := 〈g0, g1, . . . , gk−1〉 is a �nite
sequence of elements in G then it may happen that w(�, ~g) 6= v(�, ~g), where
w and v are some two �appropriate parenthesizations� of the augmented
sequence �(~g) := 〈g0, �, g1, �, · · · , �, gk−1〉.

We call a parenthesization of �(~g) appropriate if it enables the k − 1
occurrences of the symbol � unambiguously to serve as a binary operation in
�(~g). For instance, the two parenthesizations in (1), below, are appropriate;
and, if � is associative, then we can believe that

((g0 � (g1 � g2)) � (g3 � g4)) = ((g0 � g1) � ((g2 � g3) � g4)). (1)

We have enclosed each of the two expressions, balanced by the = sign in
(1), with an external, conventionally unnecessary, parenthesis pair, whose
purpose is to assure that each ��multiplication is consistent in its form;
namely, (a � b), instead of a � b as sometimes abbreviated. Our reason for
this ostensible redundancy of parentheses should become clear after our
discussion, in the next few paragraphs, of Reverse Polish Notation (RPN).

RPN is sometimes more convenient than parenthesized expressions of
the sort in (1). For people who are uneasy with RPN we provide a gradual
approach to this, parenthesis-free, notation. In two steps we will convert
the usual-form equality (1) into its equivalent RPN version, (3).

First, we remove left parentheses from (1). A routine proof shows that
there is exactly one way to restore left parentheses to the resulting left-
parenthesis deprived expression, (2), so as to regain an appropriately paren-
thesized augmented sequence. Here then is (2):

g0 � g1 � g2)) � g3 � g4)) = g0 � g1) � g2 � g3) � g4)) (2)

Each of the = expressions in (1) and (2) has 5 terms, gi, which are
elements in G. It is no accident that each of those expressions has also
exactly 4 occurrences of � and exactly 4 right parentheses. In order to create
from the expressions in (2) their equivalent RPN expressions we merely
eliminate the 4 occurrences in (2) of �, and then in the ��free resulting
expression we replace each right parenthesis with a new occurrence of �.
Thus, �nally, we obtain the RPN equation which is equivalent to (1):

g0g1g2 � �g3g4 � � = g0g1 � g2g3 � g4 � �. (3)
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Comparing (1) and (3), we see that (3) is shorter than (1). RPN is an
e�cient way of representing lengthy ��products. One can safely remove all
parentheses from (1) and maintain a bona �de equality if and only if � is
associative. But with the RPN expression, (3), there are no parentheses
to remove, and when � is associative then every RPN product constructed
from the sequence 〈g0, g1, g2, g3, g4〉 ∈ G5 is equal to that given by

g0g1g2g3g4 �4 .

This too is shorter than the usual product expression

g0 � g1 � g2 � g3 � g4.

RPN confers a more important advantage: It facilitates our classi�cation
of the �subassociativity� of groupoids.

2. Formal Products

We will de�ne a groupoid, F σ, inspired by the idea of the �completely free�
groupoid F := F (x, •) generated by a two-letter alphabet, {x, •}.

F ⊂ {x, •}∗, where {x, •}∗ is the semigroup under concatenation of all
�nite words with letters in {x, •}.

We write a = b to say that the word a is spelled the same as the word
b, for {a,b} ⊆ F .

#(u, z) denotes the number of occurrences of a letter z in the word u.
A nonempty word w ∈ {•, x}∗ is an element in F if and only if

(i) #(w, x)−#(w, •) = 1.

(ii) If p is a nonempty pre�x of w then #(p, x) > #(p, •).

It is easy to see that x ∈ F , and that {u,v} ⊆ F ⇒ uv• ∈ F .
Thus • serves in F as an operator symbol, providing a binary operation
• : 〈u,v〉 7→ uv• for F in RPN format.

The relevant property of the groupoid 〈F, •〉 is that if 〈p, s〉 6= 〈p′, s′〉
with {p,p′, s, s′} ⊂ F then ps 6= p′s′. An easy related fact is that the
binary operation • is antiassociative; i.e., that no triples in F associate:

Theorem 2.1. Let 〈a,b, c〉 ∈ F 3. Then abc • • 6= ab • c •.
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Proof. Clearly the �free� semigroup {x, •}∗ has the cancellation property.
Thus, if abc • • = ab • c • then c • • = • c •. But c • • 6= • c •, since x is a
pre�x of c and since x 6= •.

Notice that, if w ∈ F , then either w = x or there exists exactly one
pair 〈p, s〉 ∈ F × F such that w = ps•.

Henceforth ~x := 〈x0, x1, x2, . . .〉 is a sequence of distinct variables, and
• is an operator symbol. Let k be a positive integer. We now modify F :

De�nition 2.2. By a formal k�product we mean any word w of length
2k − 1 in the alphabet {x0, x1, . . . , xk−1, •}, satisfying three conditions:

(i) x0x1 . . . xk−1 is a subword of w.

(ii) w has exactly k − 1 occurrences of the operator symbol • .

(iii) If p is a nonempty pre�x of w then p has fewer occurrences of the
operator symbol • than it has of variable symbols xi.

As usual N := {1, 2, 3, . . .}. For k ∈ N the expression F σ(k) denotes
the set of all formal k�products. Finally, we de�ne the in�nite set F σ by

F σ :=
⋃
{F σ(k) : k ∈ N}.

It is well-known, viz [1, 2, 3, 4], that for each k ∈ N the number |F σ(k)| is
the kth term of the Catalan sequence, which is to say that

|F σ(k)| = C(k) :=
1

2k − 1

(
2k − 1

k

)
.

Henceforth ω := N ∪ {0}, and k := {0, 1, . . . , k − 1} when k ∈ N.

For 〈k, j〉 ∈ N× ω and w ∈ F σ(k), the expression wj denotes the word
obtained by replacing the letter xi in w with the letter xj+i for each i ∈ k.
We write F σ

j (k) := {uj : u ∈ F σ(k)}.

Illustrative Example 1: When w := x0x1 • x2x3 • x4 • • then w ∈ F σ(5),
and w13 = x13x14 • x15x16 • x17 • • ∈ F σ

13(5) .

Observe that 〈F σ;�〉 is a groupoid where the binary operation � is
de�ned thus: When 〈u,v〉 ∈ F σ(k)×F σ(j), then uv� := uvk • . It is easy
to see that then uv� ∈ F σ(k + j).
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Indeed, F σ(1) = {x0}, while for 2 6 k ∈ N one could show that

F σ(k) =
⋃
{F σ(i)F σ(k − i)� : 1 6 i 6 k − 1} ,

where F σ(i)F σ(k − i)� := {uv� : u ∈ F σ(i) ∧ v ∈ F σ(k − i)}.

Illustrative Example 2: When u := x0x1 • x2x3 • • ∈ F σ(4), and when
v := x0x1x2x3 • x4 • • • ∈ F σ(5), we have that

uv� = x0x1 • x2x3 • • x0x1x2x3 • x4 • • • �
= x0x1 • x2x3 • •x4+0x4+1x4+2x4+3 • x4+4 • • • •
= x0x1 • x2x3 • •x4x5x6x7 • x8 • • • • ∈ F σ(4 + 5) .

Theorem 2.3. If 〈a,b, c〉 ∈ (F σ)3 then ab� c� 6= abc�� .

Proof. 〈a,b, c〉 ∈ F σ(i) × F σ(j) × F σ(t) for some 〈i, j, t〉 ∈ N3. Thus
ab� c� = abi • c� = abi • ci+j• and abc�� = abcj •� = abici+j • • .
So if ab� c� = abc�� then • ci+j • = ci+j • • , an impossibility.

In our view, the groupoids 〈F ; •〉 and 〈F σ;�〉 lie at an opposite extreme
from the class of semigroups. For, no triple of elements in either of these
two groupoids associates. However, every triple in a semigroup associates.

For 〈G; �〉 a semigroup, each sequence ~g := 〈g0, g1, . . . , gk−1〉 ∈ Gk un-
ambiguously determines the element in G obtained by the conventionally
presented but unparenthesized product g0 � g1 � · · · � gk−1.

If we endowed F σ with the relation, x0x0 � x0� ≈ x0x0x0 � �, then
|F σ(k)/ ≈ | = 1 for each k ∈ N, where F σ(k)/ ≈ is the family of ≈�
equivalence classes.

Plainly every groupoid falls between the extremes represented by
〈F σ;�〉 on one end, and by the class of semigroups on the other. We
believe that every �nite nonassociative groupoid lies strictly between these
extremes.

We next propose a scheme for using F σ in order to pin down this idea.

3. The Subassociativity Type of a Groupoid

Let 〈G; �〉 be an arbitrary groupoid, let w ∈ F σ(k) for a given k ∈ N,
and let ~g := 〈g0, g1, g2, . . .〉 ∈ G∞. Then w(�, ~g) denotes the element in G
obtained by replacing in w the operator • with the operation � , and the
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symbol xi with the element gi for each i ∈ k, and then executing the k − 1
binary operations � as indicated in the modi�ed version of w.

Illustrative Example 3: Consider the groupoid 〈Z; −〉 of integers under sub-
traction, and the formal 5�product w := x0x1 • x2x3x4 • • • ∈ F σ(5). Let
~g := 〈2, 7, 0, 1,−5, g5, g6, . . .〉. Then w(− , ~g) = 2 7 − 0 1 (−5) − −−,
where we append parentheses to eliminate ambiguity. In conventional form
w(− , ~g) = (2− 7)− (0− (1− (−5))), and hence w(− , ~g) = 1.

De�nition 3.1. Let k > 3, and let {u,v} ⊆ F σ(k). Let 〈G; �〉 be a
groupoid. We say that u is ��equivalent to v, in which event we write
u ≈� v, i� u(�, ~g) = v(�, ~g) for all ~g ∈ G∞. The expressions F σ(k)/� and
F σ(k)/ ≈� denote the family of ≈��equivalence classes [w]� of F σ(k).

De�nition 3.2. We call a groupoid 〈G; �〉 completely free i� [w]� = {w}
for every w ∈ F σ .

Illustrative Example 4: Returning to the groupoid 〈Z; −〉 of Example 3,
we easily see for k ∈ {1, 2, 3} that F σ(k)/ ≈− = {{w} : w ∈ F σ(k)}. But
for k = 4 the situation complicates slightly. As we will proceed to show,
u ≈− v where u := x0x1x2x3 • • • and where v := x0x1x2 • •x3 • :

Switching back and forth between RPN and ordinary terminology as
convenience dictates, we note for an arbitrary ~g ∈ Z∞ that u(− , ~g) =
g0g1g2g3−−− = g0−(g1−(g2−g3)) = g0−g1+g2−g3 = (g0−(g1−g2))−g3 =
g0g1g2−−g3− = v(− , ~g). Similar calculations establish that F σ(4)/ ≈− =
{{u,v}, {a}, {b}, {c}}, where a := x0x1x2 • x3 • • and b := x0x1 • x2x3 • •
and c := x0x1 • x2 • x3 • . Thus |F σ(4)/ ≈− | = 4 < 5 = |F σ(4)|. So the
groupoid 〈Z; −〉 is neither a semigroup, nor is it completely free.

Theorem 3.3. Let 〈G; �〉 be a groupoid, and let {s, t, s′, t′} ⊂ F σ. Let

s ≈� s′, and let t ≈� t′. Then st� ≈� s′t′�.

Proof. There exist k ∈ N such that {s, s′} ⊆ F σ(k), and j ∈ N such that
{t, t′} ⊆ F σ(j). Pick ~g := 〈g0, g1, . . . , gk−1, gk, . . . , gk+j−1, . . .〉 ∈ G∞. Let
~b := 〈gk, gk+1, . . . , gk+j−1, . . .〉 ∈ G∞.

By hypothesis s(�, ~g) = s′(�, ~g) and t(�,~b) = t′(�,~b). Therefore

(st�)(�, ~g) = (stk•)(�, ~g) = [s(�, ~g)][tk(�, ~g)]� = [s(�, ~g)][t(�,~b)]� =

[s′(�, ~g)][t′(�,~b)]� = [s′(�, ~g)][t′k(�, ~g)]� = (s′t′k•)(�, ~g) = (s′t′�)(�, ~g),

with parentheses and brackets appended only to aid the reader.
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Recall that C(k) denotes the kth Catalan number. The following is an
easy consequence of Theorem 3.3 and Illustrative Example 4.

Corollary 3.4. If k ∈ {1, 2, 3} then |F σ(k)/ ≈− | = C(k). However,

|F σ(j)/ ≈− | < C(j) for every integer j > 4.

De�nition 3.5. For 〈G; �〉 a groupoid, we de�ne the subassociativity type

of this groupoid to be the in�nite sequence in N, written

SaT(〈G; �〉) := 〈 |F σ(k)/ ≈� | 〉∞k=2 .

For 〈S; · 〉 a semigroup, obviously SaT(〈S; · 〉) = 〈1, 1, 1, . . .〉.
As we remarked, SaT(〈F σ;�〉) = 〈C(n)〉∞n=2 .

Theorem 3.6. SaT(〈Z; −〉) = 〈2k−2〉∞k=2 .

Proof. For each integer k > 2, for each w ∈ F σ(k), and for each ~g ∈ Zk, we
observe that w(− , ~g) = g0 − g1 ±1 g2 ±2 g3 ±3 · · · ±k−3 gk−2 ±k−2 gk−1 for
some �sign� sequence 〈±1,±2, . . . ,±k−2〉 ∈ {−,+}k−2, where we present the
expression to the right of the symbol = in ordinary terminology. Indeed,
since there are only 2k−2 distinct sign sequences of length k−2, we see that
|F σ(k)/ ≈− | ≤ 2k−2. So it su�ces to show that |F σ(k)/ ≈− | 6< 2k−2.

Claim: For every sign sequence 〈±1,±2, . . . ,±k−2〉 ∈ {−,+}k−2, there
exists r ∈ F σ(k) such that r(− , ~g) = g0 − g1 ±1 g2 ±2 · · · gk−2 ±k−2 gk−1,
thus �realizing� the sign sequence 〈±i〉k−2

i=1 .
We argue by induction on k > 2. The claim is trivial for k = 2.
For 2 6 n ∈ N, suppose the claim holds when k = n. Pick a sign se-

quence 〈±i〉n−2
i=1 ∈ {−1, 1}n−2 and a sequence ~h := 〈h0, h1, . . . , hn〉 ∈ Zn+1.

We are required only to supply {w− ,w+} ⊂ F σ(n + 1) such that

w−(− ,~h) = h0 − h1 ±1 h2 ±2 · · · ±n−3 hn−2 ±n−2 hn−1 − hn

and such that

w+(− ,~h) = h0 − h1 ±1 h2 ±2 · · · ±n−3 hn−2 ±n−2 hn−1 + hn.

For each positive integer i 6 n− 2 let ∓i := −±i. And now de�ne ~p :=
〈h0, h1, h2, . . . , hn−2, hn−1, . . .〉 and ~s := 〈h1,±1h2, h3, . . . , hn−1, hn, . . .〉.
Both ~p and ~s are sequences in Z∞.

By the inductive hypothesis there exists u ∈ F σ(n) such that

u(− , ~p) = h0 − h1 ±1 h2 ±2 · · ·hn−2 ±n−2 hn−1.
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Let w− := ux0� . Then, with ordinary terminology when convenient,

w−(− ,~h) = (uxn•)(− ,~h) = (u(− , ~p))−hn = h0−h1±1· · ·±n−2hn−1−hn .

Again by the inductive hypothesis there exists v ∈ F σ(n) such that

v(− , ~s) = h1 − (±1h2)∓2 h3 ∓3 · · · ∓n−2 hn−1 − hn.

Let w+ := x0v� . Then

w+(− ,~h) = (x0v1•)(− ,~h) = h0 − (v(− , ~s)) =

h0 − (h1 − (±1h2)∓2 h3 ∓3 · · · ∓n−2 hn−1 − hn) =

h0 − h1 ±1 h2 ±2 h3 ±3 · · · ±n−2 hn−1 + hn.

The theorem follows.

Corollary 3.4 applies to each groupoid 〈G; �〉. If |F σ(k)/ ≈� | < C(k)
then |F σ(j)/ ≈� | < C(j) for all j > k.

The subtraction of integers is an issue for the very young. Surely one
ought to be able to settle every relevant question about the groupoid 〈Z; −〉.

Theorem 3.6 suggests further scrutiny. Since the average size

C(k)
2k−2

of the equivalence classes [w]− ∈ F σ(k)/ ≈− increases without bound as
k increases, it is reasonable to wonder how the sizes of those equivalence
classes are distributed

De�nition 3.7. For each k > 2 we say that the sequence 〈 〈νk(i), i〉 〉∞i=1 in
ω×N is the size sequence for k of 〈Z; −〉 when F σ(k)/ ≈− contains exactly
νk(i) member sets of size i, for each i ∈ N.

Of course in any size sequence, νk(i) > 0 for only �nitely many i. For a
size sequence we list only those terms with positive �rst coordinates.

Here are the size sequences and other relevant numerical data about
F σ(k)/ ≈− for the cases k ∈ {4, 5, 6}:

|F σ(4)| = 5 and |F σ(4)/ ≈− | = 4. Size sequence: 〈3, 1〉, 〈1, 2〉.
|F σ(5)| = 14 and |F σ(5)/ ≈− | = 8. Size sequence: 〈4, 1〉, 〈3, 2〉, 〈1, 4〉 .
|F σ(6)| = 42 and |F σ(6)/ ≈− | = 16. Size sequence: 〈5, 1〉, 〈3, 2〉,

〈4, 3〉, 〈2, 4〉, 〈1, 5〉, 〈1, 6〉.



20 Milton S. Braitt and Donald Silberger

Problem 3.8. Specify the size sequences of 〈Z; −〉 for each k > 2.

Observe that a groupoid 〈G; �〉 is completely free if and only if |F σ(k)| =
|F σ(k)/ ≈� | for all k ∈ N .

Suggestive Example 5: Let the binary operation / on the set 2 := {0, 1} be
given by 0t/ := 1 and 1t/ := 0 for each t ∈ 2.

It is easily checked that the groupoid, 〈2; /〉, is antiassociative. Hence,
F σ(3)/ ≈/ = { {x0x1x2 • •}, {x0x1 • x2 •} } . F σ(4)/ ≈/ := {A,B} where
|A| = 3 and |B| = 2. In fact

A = {x0x1 • x2 • x3 •, x0x1x2 • x3 • •, x0x1x2x3 • • •},
B = {x0x1x2 • •x3 •, x0x1 • x2x3 • •}.

F σ(5)/ ≈/ = {C,D}, where C contains 8 of the elements in F σ(5) while
D contains the other 6 formal 5�products.

Theorem 3.9. |F σ(k)/ ≈/ | = 2 for all k > 3.

Proof. Choose k > 3. Our �test sequence� is ~0 := 〈0, 0, . . .〉. For w ∈ F σ(k)
we write w ∈ Ak to mean that w(/ ,~0) = 0, and we de�ne Bk := F σ(k)\Ak.

For every positive integer pair 〈i, j〉 such that i + j = k, we have that
AiF

σ(j)� ⊂ Bk. Indeed

k−1⋃
i=1

AiF
σ(k − i)� = Bk

and similarly
k−1⋃
i=1

BiF
σ(k − i)� = Ak.

So {Ak, Bk} is a partition of F σ(k), since

F σ(k) =
k−1⋃
i=1

F σ(i)F σ(k − i)� =
k−1⋃
i=1

(Ai∪̇Bi)F σ(k − i)� = Bk∪̇Ak.

It remains only to show that we were wise in our choice of ~0 as a test
sequence in 2∞. For an arbitrary pair u and v of formal k�products we
must prove that u(/,~0) = v(/ ,~0) ⇒ u ≈/ v . So, pick any ~g ∈ 2∞.

Recall that u = p0s0� for a unique pair 〈p0, s0〉 ∈ F σ × F σ. Likewise
there is a unique 〈p1, s1〉 ∈ F σ × F σ with p0 = p1s1�. Proceeding, we
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obtain a unique descending sequence of formal product pre�xes of u. There
exists λ := λ(u) ∈ N for which pλ is the �nal and shortest term 6= x0 of the
sequence. Notice that pλ(/ ,~g) = g0 where 0 := 1 and 1 = 0. Furthermore,

u = pλsλ � sλ−1 � · · · � s1 � s0 � .

Thus we see that u(/ ,~g) = g0 if the integer λ(u) is even, but that u(/ ,~g) =
g0 if λ(u) is odd. A parallel analysis holds for v . Thus u(/ ,~g) = v(/ ,~g)
if and only if u(/ ,~0) = v(/ ,~0) .

So now, for {u,v} ⊆ F σ(k), we see that

u ≈/ v ⇔ u(/ ,~0) = v(/ ,~0) ⇔ λ(u) + λ(v) is even ⇔

({u,v} ⊆ Ak ∨ {u,v} ⊆ Bk) .

The theorem follows.

Theorem 3.9 generalizes to an in�nite class of antiassociative groupoids
〈n; δ̂〉 for 2 6 n ∈ N. Indeed, the groupoid in Theorem 3.9 is the smallest
example of the sort we will call �vertically deranged�.

The expression Sym(G) denotes the collection of all permutations on
the set G. And Drn(G) denotes the set of all derangements of G, which are
those f ∈ Sym(G) such that x 6= xf for every x ∈ G, where xf denotes the
image � often written f(x) � of x under the function f .

We call a groupoid 〈G; δ̂〉 vertically deranged if there is a derangement
δ ∈ Drn(n) such that xyδ̂ := xδ for every 〈x, y〉 ∈ n × n, and we say that
δ induces δ̂ . Remarks analogous to those below apply to the horizontally
deranged groupoid 〈G; δ̌〉 where xyδ̌ := yδ .

Theorem 3.10. Every vertically deranged groupoid is antiassociative.

Proof. Let 〈G; δ̂〉 be vertically deranged via some δ ∈ Drn(G). Let ~g ∈ G3.
Then g0g1g2δ̂δ̂ = g0g1δδ̂ = g0δ 6= g0δδ = g0g1δ̂δ = g0g1δ̂g2δ̂.

In the interest of maximizing the size of the families F σ(k)/ ≈� induced
by the groupoids 〈n; �〉 for a �xed n ∈ N, it seems prudent �rst to con-
sider those 〈n; �〉 which are antiassociative. The vertically deranged 〈n; �〉
constitute a convenient class of �nite antiassociative groupoids.

If 2 6 n ∈ N and if δ is a cyclic permutation of n, then for i ∈ ω it is
evident that δi ∈ Drn(n) if and only if i is not a multiple of n.
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Theorem 3.11. Let 2 6 n ∈ N. Let δ ∈ Sym(n) be cyclic. Then

|F σ(k)/ ≈δ̂ | = min{k − 1, n}.

Proof. By Theorem 3.9 we can take it that n > 3.
Let k ∈ {2, . . . , n}. Pick w ∈ F σ(k) and ~g := 〈g0, g1, g2, . . .〉 ∈ n∞.
Claim One: w(δ̂, ~g) = g0δ

i for some positive integer i < k.
First, for k = 2 observe that (x0x0�)(δ̂, ~g) = g0g1δ̂ := g0δ =: g0δ

1.
Choose k > 3. Suppose that whenever 2 6 j < k,

u ∈ F σ(j) ⇒ u(δ̂, ~g) = g0δ
t

for some t ∈ {1, 2, . . . , j − 1}. Factor w in 〈F σ,�〉: w = ps�. Since p ∈
F σ(j) for some j < k, by hypothesis there exists t with 1 6 t 6 j − 1 such
that p(δ̂, ~g) = g0δ

t. From earlier calculations, (ps�)(δ̂, ~g) = p(δ̂, ~g) s(δ̂,~b)δ̂,
where ~b := 〈gj , gj+1, . . .〉. So w(δ̂, ~g) = p(δ̂, ~g) s(δ̂, ~g)δ̂ = p(δ̂, ~g)δ = g0δ

tδ =
g0δ

t+1. Furthermore, t + 1 6 j 6 k − 1. Claim One is established.
Claim Two: Since k 6 n, for every i < k there exists v ∈ F σ(k) such

that v(δ̂, ~g) = gi
0.

Pick an appropriate i. Let v := x0x1 • x2 • x3 • · · · • xi−1 • r� where
r ∈ F σ(k − i). Then v(δ̂, ~g) =

g0g1δ̂g2δ̂ · · · δ̂gi−2δ̂gi−1δ̂δ = g0δg2δ̂ · · · gi−2δ̂gi−1δ̂δ =

g0δ
2g3δ̂ · · · δ̂gi−1δ̂δ = · · · = g0δ

i−1δ = g0δ
i.

Claim Two is established.
If k > n + 1 then δk−1 = δj for some j ∈ {1, 2, . . . , n}. In the light of

Claims One and Two each of the n distinct elements g0δ
j ∈ n determines

a distinct equivalence class [w]δ̂ ∈ F σ(k)/ ≈δ̂, and all of the elements in
F σ(k)/ ≈δ̂ are thus determined if k > n.

Corollary 3.12. If C(k) > n then there exist distinct formal k�products u
and v such that u ≈δ̂ v.

Proof. |F σ(k)| = C(k). Therefore if C(k) > n then the pigeonhole principle
applies, since |F σ(k)/ ≈δ̂ | 6 n by Theorem 3.11.

Conjecture 3.13. No �nite groupoid is completely free.

Under the assumption that our conjecture is correct, it becomes relevant
to raise the following question:

Problem 3.14. Given 2 6 n ∈ N, what is the smallest integer τ(n) such

that, for every integer k > τ(n) and for every groupoid 〈n; �〉, there exist

elements a 6= b in F σ(k) for which a ≈� b ?
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4. k�Anti-Associativity

In RPN an ordered triple 〈x, y, z〉 of elements in G associates under µ i�
xyµzµ = xyzµµ. RPN confers other conveniences besides relieving us of
parenthesis jungles. We use it to express the complex products involving
the nonassociative binary operations of concern in this section.

If the groupoid 〈G;µ〉 happens to be a semigroup then, for every pair
{p, s} ⊆ F σ(k) of formal k�products, we get that p(µ,~g) = s(µ,~g) whenever
~g ∈ G∞. That is, in a semigroup, all formal k�products are µ�equivalent.
So we focus on non-semigroups. We seek groupoids which are, indeed, �as
anti-associative as possible�. The following remarks elaborate.

The concept of k�anti-associativity, as it pertains to a groupoid 〈G;µ〉,
is trivial for 1 6 k 6 2. Henceforth we take it that k > 3.

〈G;µ〉 is 3�anti-associative i� xyzµµ 6= xyµzµ for every ordered triple
〈x, y, z〉 ∈ G3. Theorem 3.10, and a comment preceding it on horizontal
derangements, provides 2 · |Drn(n)| distinct 3�anti-associative groupoids
on the set n, when 2 6 n ∈ N .

〈G;µ〉 is 4�anti-associative i�, for every ~g := 〈g0, g1, g2, g3, . . .〉 ∈ G∞,
the subset,

{g0g1g2g3µµµ, g0g1g2µg3µµ, g0g1µg2g3µµ, g0g1g2µµg3µ, g0g1µg2µg3µ},

of G is 5�membered. If 〈G;µ〉 is 4�anti-associative, clearly |G| > 5 .
Do there exist 4�anti-associative groupoids?

De�nition 4.1. 〈G;µ〉 is k�anti-associative i� u(µ,~g) 6= v(µ,~g) for all
〈u,v, ~g〉 ∈ F σ(k)× F σ(k)×G∞ with u 6= v.

Theorem 4.2. The groupoid 〈F σ;�〉 is k�anti-associative if k > 3.

Proof. Fix k > 3. We normally use 〈F σ;�〉 as a tool for evaluating the sub-
associativity of other groupoids. Since our argument here requires 〈F σ;�〉
itself to be evaluated, we relabel this groupoid qua instrument in order to
distinguish it from the same groupoid qua entity scrutinized.

〈F σ;�〉 is the tool version; its elements are words in the alphabet
{•, x0, x1, x2, . . .}. Let ~g := 〈g0,g1,g2, . . .〉 ∈ (F σ)∞ be any in�nite se-
quence of �nite formal products. We must prove that u(�, ~g) 6= v(�, ~g) for
every {u,v} ⊆ F

σ(k) with u 6= v.
For {r, s} ⊆ F σ, recall that r = s i� r and s are spelled alike as �nite

words in the in�nite alphabet {•, x0, x1, x2, . . .}, in which event there exists
j ∈ N such that {r, s} ⊆ F σ(j) .
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Now choose any 〈u,v〉 ∈ F
σ(k) × F

σ(k) such that u 6= v . Obviously
|u(�, ~g)| = |v(�, ~g)|. So, in order to prove that u(�, ~g) 6= v(�, ~g), we must
show that the words u(�, ~g) and v(�, ~g) are spelled di�erently.

The following remarks should be viewed in the light of De�nition 2.2 and
the material between that de�nition and the statement of Theorem 2.3.

Among the possibly many occurrences of the letter • in the word
u(�, ~g) ∈ F σ ⊆ {•, x0, x1, x2, . . .}∗ are exactly k − 1 of them which de-
rive from transformations of � into • . The same is true of the word
v(�, ~g) ∈ F σ . We tag those crucial occurrences of • in order to keep
track of them: We write them as •′.

If we removed all of the k− 1 occurrences of •′ from u(�, ~g) , and all of
the k − 1 occurrences of •′ from v(�, ~g), then the two resulting shortened
words would be identical. It is the di�ering placements of those k−1 vagrant
tagged •′ in u(�, ~g) and in v(�, ~g) that make the two words di�er in their
spellings. We now establish this orthographic distinction.

Since by hypothesis u 6= v , there is a smallest integer m for which
m = |pu| = |pv|, but for which pu 6= pv, where pu and pv are pre�xes
respectively of u and v. Let pu be the pre�x that is generated in u(�, ~g)
from pu under the mapping u 7→ u(�, ~g). Let pv be similarly obtained
from pv.

Since surely both u and v have x0 as a pre�x, we have that m > 2.
Furthermore, by our choice of m, if q is a pre�x of pu with |q| = m − 1,
then q is a pre�x also of pv. Therefore the length-one su�x of pu di�ers
from the length-one su�x of pv.

Without loss of generality we suppose that pu has • as its length-one
su�x. Then pu has •′ as its length-one su�x. Moreover, pv has some xc

as its length-one su�x. There are two cases.

Case: gc = x0. Then |pu| = |pv| and pv has a length-one su�x of
the sort xd 6∈ {•′, •}. So the length�|pu| pre�x of u(�, ~g) di�ers from the
length�|pu| pre�x of v(�, ~g), whence u(�, ~g) 6= v(�, ~g) .

Case: |gc| > 3, and so |pu| < |pv|. Then the length�|pu| pre�x of
v(�, ~g) has some xd 6∈ {•′, •} as its length-one su�x. So the words u(�, ~g)
and v(�, ~g) have distinct length�|pu| pre�xes, and are therefore themselves
distinct.

These cases are exhaustive, and in both cases u(�, ~g) 6= v(�, ~g).

Illustrative Example 6: Let g0 := x0x1• and g1 := g2 := x0 and g3 :=
x0x1 • x2 • be the �rst four terms in a sequence ~g ∈ (F σ)∞ of formal



Subassociative groupoids 25

products. Consider the actions on ~g of two elements u and v in the set
F

σ(4) ; to wit, the words u := x0x1•x2x3• • and v := x0x1x2x3• • • .
Now u(�, ~g) = g0g1 � g2g3 � � = x0x1 • x0 � x0x0x1 • x2 • �� =

x0x1 • x2 •′ x0x1x2 • x3 • •′� = x0x1 • x2 •′ x3x4x5 • x6 • •′•′ , with the
tags ′ appended to those instances in the word u(�, ~g) of the letter • which
came from transformed operator symbols �, which in their turn replaced
the occurrences of the letter • in the word u. In summary,

u(�, ~g) = x0x1 • x2 •′ x3x4x5 • x6 • •′ •′ .

Likewise, v(�, ~g) = g0g1g2g3 ��� , and so eventually

v(�, ~g) = x0x1 • x2x3x4x5 • x6 • •′ •′ •′ .

Notice: u(�, ~g) 6= v(�, ~g) because the •′ occur di�erently in each word.

Since 〈F σ;�〉 achieves the theoretical extreme of anti-associativity, and
since in a semigroup everything is k�associative for every k, we imagine a
hierarchy of groupoids between these extremes. Of course, the set F σ is
in�nite, rendering anti-associativity fairly straightforward to produce.

Recall that |F σ(k)| = C(k) . Thus

Theorem 4.3. If C(k) > n, no groupoid 〈n; �〉 is k�anti-associative. So,

no �nite groupoid is k�anti-associative for every k ∈ N.

Problem 4.4. For each k > 3 is there some n := n(k) ∈ N and some

β : n× n → n such that the groupoid 〈n;β〉 is k�anti-associative?

Our inquiry re�nes and extends in natural ways. Here is one:
For integers n > 2 and k > 3 and a binary operation � : n2 → n let

Ψ(n, k, �) := |{~g|̀k : ~g ∈ n∞ ∧ ∀{u,v} ⊆ F σ(k) (u(�, ~g) = v(�, ~g) )}|.

Given an arbitrary rational number q ∈ [0, 1] does there exist a relevant
triple 〈n, k, �〉 such that

q =
Ψ(n, k, �)

nk
?
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The construction of loops using right division

and Ward quasigroups

Kenneth W. Johnson

Abstract

Constructions are given of families of loops which can be described in terms of the table
obtained from the loop by using the operation of right division. The motivation comes
from group representation theory and the group matrix which goes back to Frobenius.

1. Introduction

The point of departure of this paper is the study of a group or a loop Q
via the multiplication table W (Q) under the operation of right division.
The right division operation of a group was used by Frobenius in [3] where
group characters and representation theory �rst appear, and the symmetry
of the table corresponding to this operation is used extensively in Frobenius'
work. Recently these multiplication tables were discussed in more detail in
[9], where Ward quasigroups appear and some comments are made related
to the extension to loops. We discuss here how interesting loops can be
constructed by relaxing some of the strong symmetry of W (G) for a group
G. Often families of loops have been constructed by forming extensions

1 → G→ Q→ H → 1 (1)

where G and H are groups, H is normal in Q and Q/H l G. For example
the family of Moufang loops M(G, 2) constructed by Chein in [1] are of
this form with an arbitrary non-commutative group G and H l C2, the
cyclic group of order 2. A symmetric construction of W (Q) arising from
an extension of the form (1) can be given in this case. Several families of

2000 Mathematics Subject Classi�cation: 20N05
Keywords: Quasigroup, Ward quasigroup, right division, Frobenius
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such loops are described below. A simple example occurs when G l Cn

and H l C2, and the latin square of (Q, \) is de�ned to be[
A B
B A

]
where A is W (G) (which will usually be written in terms of {1, ..., n}) and
B is the ordinary multiplication table of G (usually written in terms of
{n + 1, ..., 2n}). Then (Q, .) is D2n, the dihedral group of order 2n. If we
take any nonabelian group G then the corresponding loop (Q, .) is non-
associative and we call this the D(G), the dihedral extension of G.

The table W (G) corresponding to a group G has very strict symmetry
which is explored in [9]. If some of this symmetry is relaxed, the table will
correspond to a non-associative loop, but in general this loop need not have
nice properties. We give examples of loops Q of order 6 which have W (Q)
(de�ned analogously) close to W (G) for a group G, and which satisfy com-
mon algebraic identities. We also show how the Moufang loops M(G, 2) of
small orders have W (Q) which can easily be described and that in partic-
ular M(D2n, 2) has a Ward table which is made up of block circulants and
reverse circulants. In [10] a variation on a group split extension is given
which produces a Bol loop. We describe the Ward tables in this case and
show the tables of a group and its corresponding loop. The ideas here are
in the same direction as those in the works of Drápal on distances between
groups and loops [2].

In Section 2 a summary of the relevant work on Ward-Dedekind quasi-
groups is given, and a discussion of tables for W (Q) for loops of order 6
and Moufang loops is given. The next section �rst describes W (D) where
D is a group split extension G ×H arising from an action of G on H and
then points out how this can be modi�ed to produce the Bol split exten-
sion described in [10]. In Section 4 there is given the construction and
some properties of dihedral extensions and Frobenius extensions and some
remarks and conjectures form the remaining section.

2. Ward quasigroups and variations

Consider the quasigroup (Q, ∗) obtained from a �nite group (G, .) of order n
using right division which we write as (∗), i.e. g∗h = gh−1. It is reasonably
well-known that such quasigroups may be characterised as those satisfying
the identity
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(x ∗ z) ∗ (y ∗ z) = x ∗ y.

Quasigroups satisfying this identity are called Ward quasigroups. We refer
to [9] for the details. Suppose that H =< s > is any cyclic subgroup of G
of order m and let {x1 = e, x2, ..., xr} be a left transversal to H in G. If
the left cosets of H in G are ordered as {eH, x2H, ..., xrH} and each coset
xiH is ordered as

xi, xis, xis
2, ...xis

m−1

the multiplication table W (Q,H) of (Q, ∗) with rows and columns indexed
by the elements of G in this order has the following properties.

(i) It consists of m × m blocks of circulant matrices. (The circulant
C(a1, a2, ...au) is a u × u matrix each row of which is obtained from the
previous one by a right shift with wrap-around:

C(a1, a2, ...au) =


a1 a2 a3 ... au

au a1 a2 ... au−1

...
a2 a3 ... au a1

).

(ii) De�ne the inverse pattern π : G → G by π(g) = g−1. Then
W (Q,H)(i, j) = π(W (Q,H)(j, i)).

(iii) W (Q,H)(i1, j) ∗W (Q,H)(i2, j) = W (Q,H)(i1, k) ∗W (Q,H)(i2, k)
for all i1, i2, j, k , i.e. the product under ∗ of corresponding elements of a
�xed pair of rows is constant.

(iv) The identity element appears in the diagonal.
The following examples illustrate the symmetrical tables W (Q,H) de-

scribed above.
(1) Let G = S3, the symmetric group on 3 objects and H be the sub-

group generated by a 3-cycle. Then

W (Q,H) =



1 3 2 4 5 6
2 1 3 6 4 5
3 2 1 5 6 4
4 6 5 1 2 3
5 4 6 3 1 2
5 5 4 2 3 1

 .

Usually tables such as that above will be written in abbreviated form as[
C(1, 3, 2) C(4, 5, 6)
C(4, 6, 5) C(1, 2, 3)

]
(2)
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(2) More generally if G = D2n and H = Cn the table of W (Q,H) is[
C(1, n, n− 1, ..., 2) C(n+ 1, n+ 2, ..., 2n)

C(n+ 1, 2n, 2n− 1, ..., n+ 2) C(1, 2, ..., n)

]
which may also be written [

At B
Bt A

]
where A = C(1, 2, ..., n) and B = C(n+ 1, n+ 2, ..., 2n).

(3) Let G = A4, the alternating group. Here we take

H = {e, (1, 2)(3, 4)}

but we order the left cosets of H by listing the cosets of the normaliser of
H, which is of course the Klein 4-group V . Speci�cally, the list is

V = {e, (1, 2)(3, 4), (1, 4)(2, 3), (1, 3)(2, 4)} = H + (1, 4)(2, 3)H.
(1, 2, 3)V = {(1, 2, 3), (2, 4, 3), (1, 4, 2), (1, 3, 4)} = (1, 2, 3)H + (1, 4, 2)H
(1, 3, 2)V = {(1, 3, 2), (1, 4, 3), (1, 2, 4), (2, 3, 4)} = (1, 3, 2)H+(1, 2, 4)H.
To simplify the table we write the above cosets as

V={11, 21, 31, 41}, (1, 2, 3)V={12, 22, 32, 42}, (1, 3, 2)V={13, 23, 33, 43}.

Then W (Q,H) is MV (1, 2, 3, 4)1 MV (1, 4, 3, 2)3 MV (1, 3, 4, 2)2

MV (1, 2, 3, 4)2 MV (1, 4, 3, 2)1 MV (1, 3, 4, 2)3

MV (1, 2, 3, 4)3 MV (1, 4, 3, 2)2 MV (1, 3, 4, 2)1


where

MV (1, 2, 3, 4)i =


1i 2i 3i 4i

2i 1i 4i 3i

3i 4i 1i 2i

4i 3i 2i 1i

 .
This illustrates how the cosets of the normaliser of H can be used to

further organise W (Q,H).
Now consider the loops produced when some of the the restrictions on

the symmetry ofW (Q,H) are relaxed. Given symbols c1, . . . , cn, we denote
by R(c1, . . . , cn) the reversed circulant matrix

c1 c2 · · · cn
c2 c3 · · · c1
...

...
...

cn c1 . . . cn−1.

 .
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We �rst look at some examples of loops of order 6. If we take G as C6 and
H as C2 then W (Q,H) is C(1, 2) C(5, 6) C(3, 4)

C(3, 4) C(1, 2) C(5, 6)
C(5, 6) C(3, 4) C(1, 2)

 .
There is a unique non-associative loop of order 6 which has a normal

subloop of order 2 with W (Q,H) as below C(1, 2) C(5, 6) C(3, 4)
C(3, 4) C(1, 2) C(6, 5)
C(5, 6) C(3, 4) C(1, 2)


where the di�erence is seen to be in the (2, 3) block. The corresponding
loop is commutative, and satis�es the weak inverse and weak inverse abelian
properties.

Several loops of order 6 have a normal C3. The closest variation on the
table (2) is [

C(1, 3, 2) C(4, 5, 6)
C(4, 6, 5) C(1, 3, 2)

]
(3)

which corresponds to an inverse property loop. It is seen that the circulant
in the (2, 2)th place has been modi�ed. The loop is isotopic to the loop with
W (Q,H) [

C(1, 3, 2) C(4, 5, 6)
R(4, 5, 6) C(1, 3, 2)

]
which is commutative, and satis�es the inverse property.

Further examples are[
C(1, 3, 2) R(4, 5, 6)
C(4, 6, 5) C(1, 3, 2)

]
whose corresponding loop satis�es the right inverse property, and[

C(1, 3, 2) C(5, 6, 4)
R(4, 5, 6) C(1, 3, 2)

]
with corresponding loop satisfying the weak inverse, generalized Moufang
and generalized Bol properties.

Now suppose we start with a non-associative loop G which has two-sided
inverses and satis�es the automorphic inverse property. In a similar fashion
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to that above the �generalized Ward quasigroup� (Q, ∗) may be constructed
from G by x ∗ y = xy−1. In general the left cosets of a subloop H need
not partition G and even if they do the set (aiH)(ajH)−1 may contain
more than |H| elements, but we can avoid this problem if we take H to
be a normal cyclic subgroup of G. The resulting multiplication table of
(Q, ∗) satis�es (ii) and (iv) above but if G is not associative (iii) cannot be
satis�ed. We use W (G,H) to denote the multiplication table of (Q, ∗) with
the elements of G ordered by left cosets of H exactly as above for groups.

Let P be the smallest non-associative Moufang loop M12 of order 12
and let H be the unique subgroup of order 3. Then W (P,H) is


C(1, 3, 2) C(4, 5, 6) C(7, 8, 9) C(10, 11, 12)
C(4, 6, 5) C(1, 2, 3) R(10, 12, 11) R(7, 9, 8)
C(7, 9, 8) R(10, 12, 11) C(1, 2, 3) R(4, 6, 5)
C(10, 12, 11) R(7, 9, 8) R(4, 6, 5) C(1, 2, 3).

 (4)

Note that the �rst row and column (of blocks) and the blocks on the diag-
onal are determined by diassociativity and it is interesting to note how the
remaining part of the table has nice symmetry. The table obviously violates
condition (i) above and it is easy to see that (iii) also fails. It may also be
remarked that the inverse pattern of (Q, ∗), which may be read o� from the
�rst row of the table could not give rise to a group, as there is no group of
order 12 with 9 involutions.

There are 5 nonassociative Moufang loops of order 16 and each of them
has a cyclic normal subloop of order 4 (cf. [4]). The multiplication tables
of the associated quasigroups can be all written in such a way that every
4 × 4 block in the �rst row, �rst column or along the main diagonal is a
circulant, while every other block is a reversed circulant. It seems unlikely
that arbitrary Moufang loops with a normal cyclic subgroup would have a
table of this form, but if K is M(Dn, 2) the table T (K,Cn) is similar to (4)
in that the blocks which are not forced by diassociativity to be circulants
are reverse circulants of the form R(m+ 1,m+ n,m+ n− 1, ...,m+ 2). 1

The Chein constructionM(G, 2) may be given explicitly as follows. Con-

1. The referee has informed me that there is a loop of order 32 with a normal cyclic
subloop of order 4 which has o�-diagonal blocks which are neither circulants nor reversed
circulants.
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sider the set G× C2 with multiplication

(g, 0)(h, 0) = (gh, 0)
(g, 0)(h, 1) = (hg, 1)

(g, 1)(h, 0) = (gh−1, 1)

(g, 1)(h, 1) = (h−1g, 0).

It is well known that M(G, 2) is Moufang and if G is not commutative it is
nonassociative. The table W (M(G, 2)) may be written[

A B
BT π(AT )π

]
where A is (W (G), 0) and B is the table of the multiplication on the set
(G, 1) given by (g, 1)(h, 1) = (gh, 1), π is the inverse map and we also denote
by π the permutation matrix of order n× n corresponding to π.

3. Split Extensions

In [10] a variation on the split extension of two groups is used to construct a
family of Bol loops. If we have two groups G and H with an homomorphism
β : G → aut(H) the split extension G o H may be constructed on the set
G×H by the explicit multiplication

(g1, h1)(g2, h2) = (g1g2, h
β(g2)
1 h2).

The variation on this construction to given in [10] is

(g1, h1)(g2, h2) = (g1g2, h
β(g−1

2 )
1 h2)

and if Im(β) is noncommutative a non-Moufang loop GoBH which satis�es
the right Bol identity

x(yz.y) = (xy.z)y

is produced.
By direct calculation the right inverse (∗) operations are

(g1, h1) ∗ (g2, h2) = (g1g−1
2 , (h1h

−1
2 )β(g−1

2 ))

in the case of the GoH and

(g1, h1) ∗ (g2, h2) = (g1g−1
2 , (h1h

−1
2 )β(g2))
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in the case of G oB H. If we suppose that W (D) is produced by ordering
the elements of H as {h1 = e, h2, ..., hm} according to the left cosets of
a cyclic subgroup S as described above and then ordering the elements of
G×H as

{(g1, h1), (g1, h2), ...., (g1, hm), (g2, h1), (g2, h2), ...., (g2, hm),
..., (gn, h1), (gn, h2), ...., (gn, hm)}

then W (D) has blocks of size m×m in the (i, j)th position of the form

{(gigj−1 ,W (H)(hβ(gj)
1 , ..., h

β(gj)
m )}

where (g,W (H)(t1, ..., tm)) is used to denote the square obtained by replac-
ing hi by (g, ti) in W (H). There is a similar table for W (B) where in the
(i, j)th block there appears

{(gigj−1 ,W (H)(h
β(g−1

j )

1 , ..., h
β(g−1

j )
m )}.

Example. Let G = S3 and H = V4. Let β be the obvious isomorphism
from G to aut(H). We introduce the notation (g, V κ) where κ ∈ S4 to
mean the table obtained from

W (V ) =

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

by replacing the integer i by the element (g, iκ). The group split extension
is isomorphic to S4 and one version of the W (D) is

(e, V ) (σ2, V (2,3,4)) (σ, V (2,4,3)) (τ, V (2,3)) (µ, V (2,4)) (ν, V (3,4))

(σ, V ) (e, V (2,3,4)) (σ2, V (2,4,3)) (ν, V (2,3)) (τ, V (2,4)) (µ, V (3,4))

(σ2, V ) (σ, V (2,3,4)) (e, V (2,4,3)) (µ, V (2,3)) (ν, V (2,4)) (τ, V (3,4))

(τ, V ) (ν, V (2,3,4)) (µ, V (2,4,3)) (e, V (2,3)) (σ, V (2,4)) (σ2, V (3,4))

(µ, V ) (τ, V (2,3,4)) (ν, V (2,4,3)) (σ2, V (2,3)) (e, V (2,4)) (σ, V (3,4))

(ν, V ) (µ, V (2,3,4)) (τ, V (2,4,3)) (σ, V (2,3)) (σ2, V (2,4)) (e, V (3,4))


The corresponding Bol split extension table is

(e, V ) (σ2, V (2,4,3)) (σ, V (2,3,4)) (τ, V (2,3)) (µ, V (2,4)) (ν, V (3,4))

(σ, V ) (e, V (2,4,3)) (σ2, V (2,3,4)) (ν, V (2,3)) (τ, V (2,4)) (µ, V (3,4))

(σ2, V ) (σ, V (2,4,3)) (e, V (2,3,4)) (µ, V (2,3)) (ν, V (2,4)) (τ, V (3,4))

(τ, V ) (ν, V (2,4,3)) (µ, V (2,3,4)) (e, V (2,3)) (σ, V (2,4)) (σ2, V (3,4))

(µ, V ) (τ, V (2,4,3)) (ν, V (2,3,4)) (σ2, V (2,3)) (e, V (2,4)) (σ, V (3,4))

(ν, V ) (µ, V (2,4,3)) (τ, V (2,3,4)) (σ, V (2,3)) (σ2, V (2,4)) (e, V (3,4))


The di�erence is seen to be that the second members of the second and
third columns are interchanged.
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4. Dihedral Extensions

The author thanks the referee for the following comment. In [12] there
is a classi�cation of all constructions of loops of Bol-Moufang type with a
subgroup of index 2. The dihedral extensions below appear in their notation
as (θxy, θxy∗ , θxy∗).

Let G be a �nite group of order n. As above de�ne the quasigroup
(Q(G), ∗) by

g ∗ h = gh−1

for all g, h ∈ G. Associate to Q(G) the Latin square A = W (G) on the
set {1, ..., n} and to (G, .) a Latin square B on {n + 1, ..., 2n}. Suppose
{g1 = e, g2, ... gn} is an ordering of G. Then A(i, j) = k where gi ∗ gj = gk

and B(i, j) = k + n where gigj = gk. It is easily seen that the square
B is obtained from square A by operating on the columns by the inverse
pattern π and then adding n to each entry. For example, if G is the cyclic
group of order 3, A = C(1, 3, 2) and B = R(4, 5, 6) . If we form the Latin

square L(G) =
[
A B
B A

]
we can interpret this as W (D(G)) as the Ward

table of the loop D(G). It is easily seen that in the above example D(G)
is isomorphic to the dihedral group D6 (which is also isomorphic to S3).
We call D(G) the dihedral extension of G. If G is cyclic of order n then
D(G) is the usual dihedral group D2n. If G is nonabelian D(G) is not
associative and we obtain an interesting family of loops. We can write the
multiplication for D(G) explicitly as follows. The elements of D(G) may
be taken as ordered pairs of the form (g, ε) where g ∈ G and ε ∈ {0, 1}.
Then

(g, 0)(h, 0) = (gh, 0)
(g, 0)(h, 1) = (gh, 1)

(g, 1)(h, 0) = (gh−1, 1)

(g, 1)(h, 1) = (gh−1, 0).

The non-associativity may be proved by calculating the right maps of
the form R(x, y) = R(x)R(y)R−1(xy). Let x = (g, ε1), y = (h, ε2) and
z = (h, ε3). Then

xR(y, z) =
{
x if ε1 = 0
(g[h, k], ε1) if ε1 = 1
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where [h, k] denotes the usual commutator h−1k−1hk. It is clear that D(G)
is associative if and only if G is commutative.

One interesting feature of dihedral extensions is that their character
theory is similar to that for groups, especially if G is taken to be of odd
order. To discuss the character theory we �rst calculate the conjugacy
classes. We calculate the map T (x) = L(x)R−1(x). Let x = (g, ε1), y =
(h, ε2) . Then

xT (y) =


(hgh−1, ε1) if ε1 = 0, ε2 = 0
(hg−1h−1, ε1) if ε1 = 0, ε2 = 1
(hgh, ε1) if ε1 = 1, ε2 = 0
(hg−1h, ε1) if ε1 = 1, ε2 = 1.

Further calculation shows that for the map L(y, z) = L(y)L(z)L(yz)−1

xL(y, z) = (g, ε1) or (hgh−1, ε1).

Since the inner mapping group of D(G) is generated by {R(y, z), T (y),
L(y, z)} as y and z run through the elements of D(G) it is straightforward
to determine that the conjugacy class containing an element of D(G) of the
form (g, 0) is {(h, 0);h = k−1gk or h = k−1g−1k for some k ∈ G}. For an
element of the form (g, 1) the conjugacy class is {(h, 1);h = uk2, h = u−1k2

for u = t−1gt for some t ∈ G or h = gc with c ∈ G′}. If G is of odd order
the classes of D(G) are easily described. The class Ci 6= {e} of G is distinct
from C∗

i = {g−1 : g ∈ C}, and gives rise to the class Bi of D(G) of the
form {(g, 0) : g ∈ C∪C∗}. In addition to the identity class there is only one
other class B′ which consists of all elements of the form {(g, 1) : g ∈ G}.
The characters of a loop or quasigroup are de�ned in [11] in terms of the
association scheme arising from the classes of the quasigroup.

Theorem 1. Let G be a group of odd order, with irreducible characters
{χ1 = 1, χ2, χ̄2, ...χr, χ̄r}. Then the characters of D(G) are

{µ1 = 1, µ′1, µ2, ..., µr}

where the value of µi, i > 2 on the class {e} is 2χi, on the class Bi is
χi(Ci + C∗

i ) and on the class B′ is 0. The value of µ′1 on all classes of the
form {g, 0} is 1 and on B′ is −1.

Proof. It is explained in [11] that the conjugacy classes of D(G) are in
1 : 1 correspondence with the orbits ∆i of D(G) ×D(G) under the action
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of the left and right maps of D(G) and the adjacency matrices Ai of the
corresponding association scheme are the incidence matrices of these orbits:
if ∆i is an orbit then Ai(g, h) = 1 if (g, h) ∈ ∆i and 0 otherwise. Then the
Ai are as follows: if Cj is the n × n incidence matrix of the class Φj of G
the (2n× 2n) incidence matrix of the class of D(G) is of the form[

Cj + C∗
j 0

0 Cj + C∗
j
.

]
and the incidence matrix of B′ is[

0 J
J 0

]
where J is the all 1 matrix. Now if χ is a non-trivial irreducible character
of G its value on the class Cj of G is related to an eigenvalue λ of Cj by
χ(Cj) = mχλ/|Cj |, where mj is a multiplicity. It is clear that a correspond-
ing eigenvalue of Cj + C∗

j is λ + λ where λ is the complex conjugate of λ
and which has multiplicity 2mχ. This means that to each pair χ, χ there
is a character ψ of D(G)which takes on the value 2χ(e) on the trivial class
of D(G) and χ(Cj) + χ(Cj) on the class Bj of D(G), and 0 on B′. The
remaining character µ′1 necessarily takes on the value 1 on the elements of
the form (g, 0) and −1 on elements of the form (g, 1).

Example. Let G be the nonabelian Frobenius group of order 21. Its
character table is

C0 C1 CT
1 C2 CT

2

χ0 1 1 1 1 1
χ1 1 1 1 ω ω2

χ1 1 1 1 ω2 ω
χ2 3 α α 0 0
χ2 3 α α 0 0

.

where ω = exp(2πi/3) and α = (−1 +
√

7)/2.
The corresponding table for D(G) is

B0 B1 B2 B′

µ0 1 1 1 1
µ1 1 1 1 −1
µ2 2 2 −1 0
µ3 6 −1 0 0

.
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As in group character theory, the product of two characters of a loop L
is de�ned by

(χ.ψ)(x) = χ(x)ψ(x).

For groups the product of characters is automatically a character since
it corresponds to the tensor product of modules. This is no longer the case
for loops, and leads to the coe�cient ring Z(L) of a loop L obtained by
extending Z by the coe�cients ai de�ned by

(χ.ψ) =
∑

aiχi(x).

For the dihedral extension in the case where |G| is odd we show that
Z(D(G)) = Z. This follows directly from the calculation

(χi + χi)(χj + χj) = (χiχj + χiχj) + (χiχj + χiχj).

Now if χiχj =
∑
akχk it follows that χiχj + χiχj =

∑
ak(χk + χk) i.e.

ψiψj =
∑

akψk

where i, j > 3 and the product ψiψj where i 6 2 is obviously ψk for some
k.

4.1. Frobenius Extensions

Suppose we take a group G and construct the extension Q = F (G, 2) on
the set G× {0, 1} with explicit multiplication

(g, 0)(h, 0) = (gh, 0) = (g, 1)(h, 1)
(g, 0)(h, 1) = (hg, 1) = (g, 1)(h, 0).

The referee has also indicated that Frobenius extensions also appear in
[12] described by the triple (θyx, θyx, θxy). It may readily be seen that the
multiplication table of (Q, ∗) has the structure[

A B
B A

]
where A is W (G) on the elements (1, ..., n) and B = (πW (G)tπ) on the
elements {n+1, n+2, ...2n} is the table under the operation (g, h) → h−1g
(here π denotes the permutation matrix corresponding to π). Such squares
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occur in the work of Frobenius on group determinant factorisation [3]. It is
straightforward to compute that if G is abelian then Q is the group G×C2

and that if G is nonabelian Q is a nonassociative loop that is not Moufang
and unless strong conditions are placed on G it is not diassociative.

As an example we construct the table for F (G, 2) where G ≈ S3:We let

A =
[
C(1, 3, 2) C(4, 5, 6)
C(4, 6, 5) C(1, 2, 3)

]
and

B =
[

C(7, 9, 8) R(10, 11, 12)
R(10, 11, 12) C(7, 9, 8)

]
The table is then [

A B
B A

]
.

We brie�y summarise the character theory. Associated to each conju-
gacy class C of G there is (a) a conjugacy class of Q of the form {(g, 0) :
g ∈ C} where C is a conjugacy class of G and (b) a conjugacy class of the
form {(gG′, 1) : g ∈ C}, where as usual G′ denoted the derived group of
G. From this and using Frobenius' work we can deduce that the character
table of Q consists of 2r linear characters where |G/G′| = r and for each
non-linear irreducible character of degree m of G there is a basic character
of Q of degree

√
2m. These exhaust the characters of Q.

5. Comments and suggestions for further work

1) It appears to be a di�cult problem to produce simple loops with
interesting properties from methods similar to those above. However, it
is certainly true that if G is a simple group with cyclic subgroup H and
W (G,H) is modi�ed by rearrangement within the circulant blocks W (Q)
is produced for a simple loop Q. For example it may be useful to take
G = A5 and H = C5 and search for interesting simple loops by modifying
the circulant blocks.

2) The following may also be useful. Take the simple Moufang loop Q
of order 120 and form W (Q) by listing the cosets either of the Moufang
subloop of order 12 or that of order 24.

3) Even the construction of the Moufang loop of order 12 starts with an
inverse pattern (i.e. the �rst row of the W (Q)) which is di�erent from that
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of any group. It would seem to be a di�cult but interesting project to �nd
the kind of inverse patterns which can lead to Moufang or Bol loops.

4) It would seem that there should be a proof that the Moufang loops and
Bol loops described in the above work satisfy the corresponding identities
using the closure properties in the webs associated to the Ward tables and
that such a proof may also be helpful in trying to construct new loops.

5) Non-split extensions for groups can be approached via factor sets.
Perhaps one can obtain a combinatorial description of factor sets for groups
and loops using the methods here (see also [8]).

6) Call a loop Q tame if if W (Q) can be obtained from W (G) for a
group G by rearrangements within the circulant blocks without destroying
their circulant property. One example is the loop (3) in section 2. Question:
can we describe the algebraic properties of tame loops?

7) Group character theory and loop character theory consist of the in-
formation remaining in W (Q) when each elements in the table is replaced
by a representative of its conjugacy class. For loops it would be interesting
to �nd some intermediate table between W (Q) and this "reduced table"
which could play the role of a "super character theory".

Some of the constructions here have appeared in [5], [6] and [7].
The author would like to thank the referee for helpful comments and

suggestions.
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Geometric means and re�ection quasigroups

Jimmie Lawson and Yongdo Lim

Abstract

In this paper we show how the category of re�ection quasigroups forms a natural and
suitable context for the development of an abstract theory of the geometric mean, as
it appears in matrix and operator theory. We provide a new characterization of those
quasigroups that arise when re�ection quasigroups are endowed with the mean operation.
We also show how the notion of the geometric mean can be enlarged to that of weighted
means, develop basic properties of the latter, and illustrate their usefulness in solving
equations involving the mean operation.

1. Introduction

The notion of the geometric mean of two positive real numbers, a#b =√
ab, as the solution of the equation x2 = ab can be pro�tably extended

to much more general contexts. A natural approach in the setting of a
noncommutative group G is to �symmetrize� the equation and de�ne the
geometric mean a#b of a and b to be the unique solution of the equation
xa−1x = b, provided such a unique solution exists. In the matrix group
setting the equation thus assumes the form of the simplest of the matrix
Riccati equations.

The Riccati equation has a natural alternative form in the setting of
nonassociative algebra. Recall that the core of a group G is de�ned to be the
group equipped with the binary operation a•b := ab−1a. In the core setting
we are seeking a unique solution of the equation x • a = b. The condition
that this equation always have a unique solution is just the condition that
(G, •) be a right quasigroup (see Section 2). Since one quickly realizes that
this is frequently not the case, it is natural to look for restricted settings in
which it is. Thus we are led to look among •-closed subsets containing the

2000 Mathematics Subject Classi�cation: 20N05
Keywords: Quasigroup, dyadic symmetric set, geometric mean, weighted mean
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identity, the twisted subgroups (terminology courtesy of M. Aschbacher [3]),
for ones that are right quasigroups. The recognition that many familiar
sets of �positive objects� such as the set of positive de�nite symmetric or
Hermitian matrices or the set of positive elements in a C∗-algebra form
twisted subgroups of the multiplicative group of invertible elements suggests
that this approach is worth pursuing.

At this stage it becomes most helpful to identify in an axiomatic method
the type of algebraic structures that are arising as twisted subgroups of the
core of a group. For a twisted subgroup A of a group G, the following
properties of (A, •) are readily veri�ed: for all a, b, c ∈ A,

(1) (idempotency) a • a = a.

(2) (left symmetry) a • (a • b) = b.

(3) (left distributivity) a • (b • c) = (a • b) • (a • c).

These turn out to be familiar axioms. Indeed they are the �rst three of the
four axioms of Ottmar Loos in his axiomization of symmetric spaces [14,
Chapter II], the fourth one being the topological requirement that the �xed
points of La, solutions of a • x = x, be isolated. In the symmetric space
setting the left translation La(b) := a • b represents the symmetry or point
re�ection of the space through the point a, so the �rst two axioms at least
have very natural geometric motivation.

After Loos, groupoids (or magmas as some would have it) that are idem-
potent, left symmetric, and left distributive received rather extensive study.
N. Nobusawa [15, 16] and collaborators [6], who called them symmetric sets,
were among the earliest, if not the earliest. They were also investigated by
R. Pierce [17, 18] under the name of �symmetric groupoids.� Through the
pioneering work of Joyce [5] they resurfaced in knot theory, where they are
referred to as involutory quandles, although such structures, called �kei's,�
were studied as far back as 1945 by M. Takasaki [20]. (For quandles in
general, Axiom (2) is weakened to require only that La be bijective; such
structures are called pseudo-symmetric sets by Nobusawa.) The recent dis-
sertation of D. Stanovský [19] also contains considerable information about
such structures. Other references could be mentioned as well, but we return
to our train of thought.

Pasting together the abstracted properties of twisted subgroups with
the property of being a right quasigroup, we are led to groupoids (X, •)
satisfying for all a, b, c ∈ X
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(1) a • a = a (Saa = a);

(2) a • (a • b) = b (SaSa = idX);

(3) a • (b • c) = (a • b) • (a • c) (SaSb = SSabSa);

(4) the equation x • a = b (Sxa = b) has a unique solution x ∈ X, called
the geometric mean, mean for short, or midpoint of a and b, and
denoted a#b.

Here we follow the notation of Loos and denote by Sa (instead of La) left
translation by a to indicate its geometric interpretation as a symmetry or
point re�ection. Each axiom is then given an alternative formulation in
terms of these symmetries. The terminology �geometric mean� is motivated
by our entire previous discussion, while the terminology �midpoint� is sug-
gested by that fact that it is reasonable to expect that re�ection through
the midpoint between a and b would carry a to b.

Note that it is an immediate consequence of Axiom (2) that the left
translation Sa is a bijection (with inverse Sa); hence (X, •) is also a left
quasigroup. Thus Axioms (2) and (4) together imply that (X, •) is a quasi-
group.

De�nition 1.1. If (X, •) satis�es Axioms (1)-(4), then it is called a re�ec-

tion quasigroup. The re�ection quasigroups form the objects of a category
for which the morphisms are •-preserving homomorphisms.

We note that we have previously investigated re�ection quasigroups in
some detail in [9, 10], where we called them �dyadic symmetric sets.�

We can also consider the modi�ed category of pointed re�ection quasi-
groups with point-preserving •-homomorphisms for morphisms. This view-
point allows a weakening of Axiom (4) that is often useful for veri�cation
of the axiom in speci�c examples.

Lemma 1.2. Let (X, •, ε), ε ∈ X, satisfy Axioms (1) − (3) and for all

b ∈ X, and

(4ε) the equation x • ε = b (Sxε = b) has a unique solution x ∈ X.

Then (X, •) is a re�ection quasigroup.

Proof. For a, b ∈ X, pick y such that y•ε = Syε = a; then Sya = SySyε = ε.
It follows that

Syx • a = b ⇔ x • ε = SySyx • Sya = Syb.
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The lemma follows from hypothesis and the fact Sy is bijective.

The lemma leads to a characterization of those twisted subgroups ad-
mitting geometric means. Note �rst that if A is a twisted subgroup and e
is the identity, then c is a solution of x • e = b if and only if ce−1c = c2 = b.
Thus the equation x•e = b has a unique solution if and only if every element
of A has a unique square root in A, i.e., A is uniquely 2-divisible. From the
preceding lemma we conclude that

Proposition 1.3. For a twisted subgroup A of a group G, (A, •) is a re-

�ection quasigroup if and only if A is uniquely 2-divisible.

Example 1.4. The twisted subgroups of positive de�nite symmetric real
matrices, positive de�nite Hermitian matrices, and positive elements of a
C∗-algebra are all uniquely 2-divisible, a standard and well-known fact.
They thus yield examples of re�ection quasigroups and admit geometric
means.

The geometric mean in these contexts is a known quantity in the litera-
ture and has a variety of characterizations. In a uniquely 2-divisible twisted
subgroup it can be de�ned directly by

a#b = a1/2(a−1/2ba−1/2)1/2a1/2;

one sees by direct computation that this satis�es the equation x • a =
xa−1x = b. There are a variety of references where the geometric mean
appears (see, for example, [1, 2, 4, 7, 8, 13]). In [8] the treatment begins
with the matrix Riccati equation de�ning the geometric mean, as we have
done here.

2. The quasigroup theory of means

After our initial foray into the study of the geometric mean [8], we began to
look for a suitable categorical �home� for a general theory of the geometric
mean. In the preceding section we have seen that re�ection quasigroups
provide a natural axiomatic theory for geometric means. In this section
we demonstrate that much of the basic algebraic theory of the geometric
mean can be worked out in an elementary and straightforward way in the
quasigroup context. We thus set forth some elementary, mostly well-known
facts about quasigroups that will be pertinent and useful for our study of
re�ection quasigroups.



Geometric Means and Re�ection Quasigroups 47

A set M equipped with a binary operation • : M × M → M is a
quasigroup if for all a, b ∈ M , the equations x • a = b and a • y = b have
unique solutions, the right and left quotients, usually denoted by x = b/a
and y = a \ b.

Remark 2.1. Alternatively one can de�ne a quasigroup by requiring that
the left and right translation maps La, Ra : X → X de�ned by La(x) = a•x
and Ra(x) = x•a are bijections. It follows that quasigroups are cancellative.

Quasigroups form the objects of a category with corresponding mor-
phisms those functions that are •-homomorphisms.

We develop the quasigroup theory that pertains to re�ection quasigroups
in the context of general quasigroups. We assume as we go along that
(X, •) denotes a re�ection quasigroup, and point out applications of our
developments to re�ection quasigroups. There will be some variation in
notation in the general quasigroup setting and the re�ection quasigroup
setting. For example, left translation is denoted La in the general setting
and Sa in the re�ection quasigroup setting. The right quotient of b by a is
denoted b/a, but this same element is called the mean and denoted by a#b
in the re�ection quasigroup setting.

Let (M, •) be a quasigroup. We consider the right quotient operation
x •r y := x/y. That is,

x •r y = w ⇐⇒ x/y = w ⇐⇒ x = w • y. (2.1)

Lemma 2.2. Let (M, •) be a quasigroup.

(i) (M, •r) is a quasigroup.

(ii) (•r)r = •.

(iii) A function is a •-homomorphism if and only if it is a •r-homomorphism.

(iv) La distributes over • if and only if it distributes over •r.

Proof. (i) The quasigroup property of (M, •r) follows from (2.1):

x •r a = b ⇐⇒ x = b • a,

a •r y = b ⇐⇒ a = b • y ⇐⇒ y = b \ a.

(ii) From

a = b(•r)rc ⇐⇒ a •r c = b ⇐⇒ a = b • c,
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we have (•r)r = •.
(iii) Suppose f : (M, •) → (Y, •) is a homomorphism. From (2.1)

x •r y = w ⇐⇒ x = w • y =⇒ f(x) = f(w • y) = f(w) • f(y)
⇐⇒ f(x) •r f(y) = f(w).

The converse follows from (ii).
(iv) Immediate from (iii).

Lemma 2.3. Let (M, •) be a quasigroup.

(i) (M, •) is idempotent if and only if (M, •r) is.

(ii) (M, •) is left symmetric (Lx◦Lx = idM for all x) if and only if (M, •r)
is commutative.

Proof. (i) From (2.1) x = x • x if and only if x •r x = x.

(ii) Let a, b ∈ M . There exists a unique x such that Lx(a) = x • a = b.
Assuming that Lx is involutive and applying it to the previous equation,
we conclude that a = Lx(b) = x • b. From these two equations we conclude
that

b •r a = b/a = x = a/b = a •r b.

Conversely assume that (M, •r) is commutative and let x ∈ M . Let
a ∈ M and set b := x • a = Lx(a). Then

x = b/a = b •r a = a •r b = a/b,

so Lx(Lx(a)) = Lx(b) = x • b = (a/b) • b = a.

Remark 2.4. Consider a re�ection quasigroup (X, •). By de�nition a#b =
b/a = b •r a = a •r b, where the last equality follows from part (ii) of the
preceding lemma. Thus the operation # is commutative, equal to •r, and
idempotent. It follows from Lemma 2.2(i) that (X, #) is also a quasigroup
and from part (ii) that (X, #r) = (X, •).

Lemma 2.5. In a quasigroup (M, •), the following are equivalent.

(i) R−1
x•y = R−1

x •R−1
y , where (R−1

x •R−1
y )(z) = R−1

x (z) •R−1
y (z).

(ii) If a • c = b • d := m, then (a • b) • (c • d) = m.
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Proof. (i) implies (ii): Suppose that a • c = b • d := m. Then

a = R−1
c (a • c) = R−1

c (m), b = R−1
d (b • d) = R−1

d (m).

This implies that

a • b = R−1
c (m) •R−1

d (m) = (R−1
c •R−1

d )(m) = R−1
c•d(m)

and thus m = Rc•d(a • b) = (a • b) • (c • d).
(ii) implies (i): Let x, y and m be given. Let a = R−1

x (m), b = R−1
y (m).

Then m = a • x = b • y and then by (ii)

(a • b) • (x • y) = m.

This implies that

R−1
x•y(m) = a • b = R−1

x (m) •R−1
y (m) = (R−1

x •R−1
y )(m).

Since m was arbitrary, we have

R−1
x•y = R−1

x •R−1
y . �

Remark 2.6. A binary operation • is called medial if for all a, b, c, d,

(a • b) • (c • d) = (a • c) • (b • d).

Observe that if the operation • is idempotent and a•c = m = b•d, then the
right hand side of the preceding equation is also m, so the left must be also.
Hence condition (ii) of Lemma 2.5, in the setting of idempotent operations,
can be viewed as weakened mediality condition, called limited mediality. If
one interprets geometric means as midpoints of some sort, then the notion
of limited mediality has an intuitive geometric interpretation.

Proposition 2.7. In a quasigroup (M, •), the following are equivalent.

(i) (M, •) is left distributive, i.e., x • (y • z) = (x • y) • (x • z) for all

x, y, z.

(ii) In (M, •r), for all x, y, R−1
x•ry = R−1

x •r R−1
y .

(iii) For all a, b, c, d ∈ M , if a•r c = b•r d := m, then (a•r b)•r (c•r d) = m.

If, in addition, M is left symmetric, then (i)− (iii) are equivalent to
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(iv) For all x, y, z ∈ M , (x • y) • z = x • (y • (x • z)).

Proof. The equivalence of (ii) and (iii) follows from the preceding lemma.
Suppose that (i) holds. We have w = R−1

x (z) in (M, •r) if and only if
w •r x = z if and only if w = z • x. Thus R−1

x (z) = z • x. From Lemma
2.2(iv), we have

R−1
x (z) •r R−1

y (z) = (z • x) •r (z • y) = z • (x •r y) = R−1
x•ry(z).

Thus (ii) holds.
Conversely assume that (ii) holds. Then from the previous paragraph

and the hypothesis

z • (x •r y) = R−1
x•ry(z) = R−1

x (z) •r R−1
y (z) = (z • x) •r (z • y).

By Lemma 2.2(iv) (M, •) is left distributive.
The equivalence of (i) and (iv) follows by replacing z by x • z in each

and reducing it to the other by means of left symmetry.

We gather together the preceding results into a characterization of the
mean operation # on a re�ection quasigroup. The theorem follows directly
from our preceding results.

Theorem 2.8. Let (X, •) be a re�ection quasigroup. Then (X, #) equals

(X, •r) and is a quasigroup satisfying for all a, b, c, d ∈ X:

(1) (idempotency) a#a = a;

(2) (commutivity) a#b = b#a;

(3) (limited mediality) If a#c = m = b#d, then (a#b)#(c#d) = m.

Furthermore, (X, #r) = (X, •).
Conversely, if (X, #) is an idempotent, commutative, limited medial

quasigroup, then (X, •) := (X, #r) is a re�ection quasigroup and (X, •r) =
(X, #).

The preceding theorem is quite satisfactory. It provides a characteriza-
tion of the geometric mean operations arising from re�ection quasigroups.

Remark 2.9. It was shown in [2] that the geometric mean operation of
positive de�nite matrices satis�es the limited medial property (2.6). We
have extended this result to any re�ection quasigroup.
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3. Dyadic powers, weighted means,

and dyadic symmetric sets

Let (X, •, ε) be a pointed re�ection quasigroup. If X is, in particular, a
uniquely 2-divisible twisted subgroup, • is the core operation, and ε is the
identity, then by the de�ning equation of ε#x,

x = (ε#x) • ε = (ε#x)ε−1(ε#x) = (ε#x)2

and thus ε#x = x1/2. We thus have for all x, y ∈ X,

ε#x = x1/2 x • ε = x2 ε • x = x−1,

where the last two equalities follow directly from the de�nition x • y =
xy−1x. We take these equalities to be de�ning equalities for the powers
x1/2, x2 and x−1 in the case of general pointed re�ection quasigroups.

Note that the squaring map is right translation Rε, the inversion map
is Lε = Sε and the square root map is left translation L#

ε by ε in (X, #).
Since

ε • (x • ε) = (ε • x) • (ε • ε) = (ε • x) • ε,

it follows that Rε and Sε commute. Since (ε#x) • ε = x (by the de�ning

equation), it follows that L#
ε given by L#

ε (x) = ε#x = x1/2 is the inverse

for the bijection Rε. Thus the square root map L#
ε commutes with Rε, and

also commutes with Sε since Rε does. The mutual commutativity of these
three operators allows us unambiguously to de�ne the dyadic powers xm/2n

by an appropriate composition of these three maps. We note that in the
uniquely 2-divisible setting, these powers agree with those computed with
respect to the group operation.

Example 3.1. The additive group D of dyadic rationals (rational numbers
with denominator a power of 2) is a uniquely 2-divisible subgroup of itself,
and hence provides an important special example of a (pointed) re�ection
quasigroup. The re�ection operation is given by r • s = 2r − s and the
corresponding geometric mean operation is the standard midpoint operation
r#s = (r + s)/2. The re�ection quasigroup D is called the dyadic line and
a •-homomorphism from D into a re�ection quasigroup X is called a dyadic

geodesic.

Theorem 3.2 (Corollary 5.8, [9]). Let (X, •) be a re�ection quasigroup

and let x, y ∈ X. Then there exists a unique •-homomorphism (and hence
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also #-homomorphism) γ from the dyadic line (D, •) to X such that γ(0) =
x and γ(1) = y. For the particular case that x = ε in a pointed re�ection

quasigroup, γ is given by γ(t) = yt, the tth-power for the dyadic t.

The proof of the theorem involves showing that t 7→ yt, as de�ned in
the preceding remarks, is the unique •-homomorphism sending 0 to ε and
1 to y, and then extending to the general case by pointing the re�ection
quasigroup at x.

Remark 3.3. A function β : D → D is a •-homomophism if and only if it is
of the form β(t) = at+ b for constants a, b ∈ D. Such maps clearly preserve
midpoints, hence are #-homomorphisms, and thus •-homomorphisms. The
uniqueness statement in the preceding theorem guarantees that these ex-
haust the •-homomorphisms. Thus a reparametrization of a dyadic geodesic
is again a dyadic geodesic if and only if the reparametrization is a�ne.

De�nition 3.4. We de�ne the t-weighted mean x#ty = γ(t), where γ is
the unique dyadic geodesic with γ(0) = x and γ(1) = y.

The weighted means allow the simultaneous extension of the re�ection
operation and the mean operation to an all-inclusive, comprehensive setting.
For a re�ection quasigroup, we de�ne

Φ : D×X ×X → X, Φ(t, x, y) := x#ty.

We call pairs (X, Φ) arising in this way dyadic symmetric sets. (In our
original paper [9] we de�ned dyadic symmetric sets to be what in this paper
are called �re�ection quasigroups,� but the terminology there was motivated
by the existence of the weighted means.)

Remark 3.5. Observe that (i) x = x#0y = Φ(0, x, y), (ii) y = x#1y =
Φ(1, x, y), (iii) y#x = x#y = x# 1

2
y = Φ(1/2, x, y), (iv) x • y = x#−1y =

Φ(−1, x, y), and (v) y • x = x#2y = Φ(2, x, y). (The �rst two follow from
the de�nition of the weighted mean and the others all follow from the fact
that t 7→ x#ty is a •- and #-homomophism from D.) Thus for a re�ection
quasigroup the map Φ incorporates and extends the re�ection and mean
operations into a dyadic �module.�

A triple (X, Φ, ε) is a pointed dyadic symmetric set if (X, Φ) is a dyadic
symmetric set and ε is some distinguished element of X. In this case we
have that Φ(t, ε, y) = ε#ty = yt.
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Example 3.6. For a vector space V over a �eld with 2 6= 0, we have

Φ : D× V × V → V, Φ(t, v, w) = (1− t)v + tw.

(Note that m/2n is de�ned in the �eld for all integers m,n.)

We list elementary properties of a dyadic symmetric set.

Proposition 3.7. Let (X, Φ, ε) be a pointed dyadic symmetric set. Then

the following properties hold for general elements of D and X:

(i) The map Φx,y : D → X de�ned by Φx,y(t) = x#ty is a •- and #-

homomorphism; in particular, this holds for t 7→ xt : D → X.

(ii) x#t(x#sy) = x#tsy; in particular, (xs)t = xst.

(iii) x#ty = y#1−tx.

(iv) x • (y#tz) = (x • y)#t(x • z); in particular, (y#tz)−1 = y−1#tz
−1.

(v) The maps x 7→ x#tb, t 6= 1, and y 7→ a#ty, t 6= 0, are bijective.

Proof. Part (i) follows from the de�nition of x#ty. Parts (ii)− (iv) follow
from Theorem 3.2 (the uniqueness of the de�ning homomorphism) and the
observation that a�ne maps f(t) = at+ b are •-homomorphisms on D, and
isomorphisms for a 6= 0. For (ii) the two sides of the equality, thought of as
maps of t, are •-homomorphisms (the right hand side involves composition
with f(t) = st) sending 0 to x and 1 to x#sy, and hence agree everywhere.
For part (iii) the homomorphisms again agree at 0 and 1. For (iv) the
left hand composition with Sx is a •-homomorphism as a consequence of
the distributive law and the two sides again agree at 0 and 1 (the second
part is the special case x = ε). For (v), we may assume, by changing the
pointing if necessary, that a = ε. Then a#ty = ε#ty = yt. Since we
saw at the beginning of the section that the map y 7→ yt, t 6= 0, is some
appropropriate composition of the bijections Sε, Lε and L#

ε , we conclude
that y 7→ yt = a#ty is bijective. The bijectivity of x 7→ x#tb then follows
from (iii).

Lemma 3.8. Let (X, •) be a re�ection quasigroup, and let m ∈ X. Then

Xm := {(a, b) ∈ X ×X|a#b = m} is a subquasigroup of the product quasi-

group X ×X.



54 J. Lawson and Y. Lim

Proof. Let (a, b), (c, d) ∈ X, i.e., a#b = m = c#d. By the de�ning equation
of #, m • a = (a#b) • a = b and similarly m • c = d. Thus

m • (a • c) = (m • a) • (m • c) = b • d,

and hence m = (a • c)#(b • d). It follows from the limited medial property
that m = (a#c)#(b#d).

The preceding lemma allows us to derive an extended version of limited
mediality in the context of dyadic symmetric sets.

Corollary 3.9. Let (X, •) be a re�ection quasigroup and suppose that

a#c = m = b#d. Then (a#tb)#(c#td) = m for all t.

Proof. We note that (a, c), (b, d) ∈ Xm as de�ned in Lemma 3.8. Since
by that lemma Xm is a subquasigroup of X × X and hence a re�ection
quasigroup, there exists a dyadic geodesic t 7→ (a, c)#t(b, d) in Xm. Since
the operations are de�ned coordinatewise, this map is a •-homomorphism
in each coordinate, and by uniqueness of this homomorphism we must have
(a, c)#t(b, d) = (a#tb, c#td) for each t. Since the image is in Xm for each
m, the corollary follows.

Recall from Theorem 2.8 that the quasigroup (X, #) derived from a
re�ection quasigroup can be characterized as a quasigroup satisfying

(1) (idempotency) a#a = a;

(2) (commutativity) a#b = b#a;

(3) (limited mediality) If a#c = m = b#d, then (a#b)#(c#d) = m.

In addition we have seen that the map γ(t) = a#tb is a #-homomorphism
from D to X carrying 0 to a and 1 to b. Thus

(4) (a#rb)#(a#sb) = γ(r)#γ(s) = γ((r + s)/2) = a#(r+s)/2b.

We can obtain a version of Theorem 2.8 for dyadic symmetric sets by show-
ing that all of these properties generalize to the setting of weighted means
and that these generalized properties characterize dyadic symmetric sets.
The preceding properties are obtained from the corresponding ones in the
following theorem by specializing to the case t = 1/2.

Theorem 3.10. In a re�ection quasigroup (X, •) the weighted means satisfy

the following properties for all a, b, c, d ∈ X, all r, s, t ∈ D:
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(0) a#0b = a, a#1b = b;

(1) (idempotency) a#ta = a;

(2) (commutivity) a#tb = b#1−ta;

(3) (limited mediality) If a#c = m = b#d, then (a#tb)#(c#td) = m;

(4) (a�ne change of parameter) (a#rb)#t(a#sb) = a#(1−t)r+tsb;

(5) (exponential law) a#r(a#sb) = a#rsb;

(6) (cancellativity) a#tb = a#tc for t 6= 0 implies b = c.

Conversely if for Φ : D × X × X → X, a#tb := Φ(t, a, b) satis�es items

(0)− (6), then a#tb is the t-weighted mean for the re�ection quasigroup X
with operations a • b := a#−1b and a#b := a#1/2b.

Proof. Property (0) holds by Remark 3.5. The unique dyadic geodesic car-
rying 0 and 1 to a is the constant map to a, so (1) is satis�ed. Properties
(2) and (5) we have already established in Proposition 3.7 and property (3)
in Corollary 3.9. For (4) the left hand side is a •-homomorphism in t, and
the right hand side is also, since it is the composition of the dyadic geodesic
t 7→ a#tb with the a�ne map on D sending t to (1− t)r + ts (see Remark
3.3). Since they both sent 0 to a#rb and 1 to a#sb, by uniqueness they
agree. Property (6) follows from Proposition 3.7.

Conversely suppose that items (1) through (6) are satis�ed. We set
a#b := a#1/2b. As we remarked before the theorem, properties (1) − (3)
ensure that the corresponding properties of Theorem 2.8 are satis�ed by #.
Note that the equation a#x = b has solution x = a#2b since a#1/2(a#2b) =
a#1b = b by Properties (5) and (0). The uniqueness follows from (6),
and then by commutivity (X, #) is a quasigroup. Thus by Theorem 2.8,
(X, •) := (X, #r) is a re�ection quasigroup with # as its mean. From

(a#2b)#a = a#1/2(a#2b) = a#1b = b,

we conclude that b#ra = a#2b = b#−1a. Thus a•b = a#−1b. Finally it fol-
lows from Property (4) with t = 1/2 that t 7→ a#tb is a #-homomorphism,
and hence a •-homomorphism. Thus it is the unique dyadic geodesic car-
rying 0 to a and b to 1.
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4. Solving equations involving means

In this section we apply the machinery of weighted means that we have
developed to the solution of equations involving the mean operation. There
is no attempt here to develop a comprehensive theory�only to illustrate
how the need for such machinery arises and how it can be employed. In [12]
we have studied lower degree symmetric matrix equations in some detail.
There again the mean was a crucial tool, although it did not appear directly
in the equations in the setting.

Throughout this section we assume that (X, •) is a dyadic symmetric
set and a#b is the associated geometric mean operation on X. We also

assume that the weighted mean extends to all real numbers t and that the

properties of the weighted mean developed in the last section remain valid

in this context. Many of the typical examples (positive de�nite matrices,
positive elements of a C∗-algebra), indeed most topological examples, satisfy
this requirement. We have studied in some detail the topological setting for
the theory of dyadic symmetric sets and the extension of the weighted mean
to all real parameters in [11].

Theorem 4.1. The geometric mean x = a#b is the unique solution of

(x#a)#(x#b) = x. (4.2)

Proof. Let x = a#b. Then x = x#x = a#b = (x#a)#(x#b) by the limited
medial property and hence a#b is a solution of the equation (4.2).

Conversely, suppose that (x#a)#(x#b) = x. Then

x#b = x • (x#a) = (x • x)#(x • a) = x#(x • a)

and by the cancellative law b = x • a. Therefore, x = a#b.

Theorem 4.2. The weighted mean a# 4
3
b is the unique solution of the equa-

tion

x#(x#a) = b.

Furthermore, a# 2
3
b is the unique solution of the equation

(a#x)#b = x.

Proof. Applying the left translation a#4/3(·) to

b = x#(x#a) = x#1/2(x#1/2a) = x#1/4a = a#3/4x,
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we obtain a#4/3b = a#4/3(a#3/4x) = x. Conversely if x = a#4/3b, then

x#(x#a) = x#1/4a = a#3/4x = a#3/4(a#4/3b) = a#1b = b.

Next, consider the equation (a#x)#b = b#(a#x) = x. By the de�ning
property of the mean, this is equivalent to

b = x • (a#x) = (x • a)#(x • x) = (x • a)#x. (4.3)

Setting y = x • a, we have x = y#a and thus (4.3) becomes

y#(y#a) = b.

This has the unique solution y = a# 4
3
b and hence

x = y#a = (a#4/3b)#a = a#1/2(a#4/3b) = a# 2
3
b. �

Remark 4.3. We observe that for a re�ection quasigroup (X, •) possessing
general weighted means, the two quasigroups (X, •) and (X, #) are orthog-
onal in the sense that given a, b ∈ X, the simultaneous equations{

a = x • y

b = x#y

have a unique solution. Indeed since a = x • y is equivalent to x = a#y,
the second equation reduces to

b = y#(y#a).

By Theorem 4.2, we can uniquely solve the system by

y = a# 4
3
b, x = a#(a# 4

3
b) = a# 2

3
b.

Theorem 4.4. Let (X, •, ε) be a pointed dyadic symmetric set and a, b ∈ X.
Then the simultaneous equations{

c • a = b#x

c • x = a#x

have unique solutions in x and c, namely x = a#b and c = a#(b#(a#b)) =
(a#b)#(a#(a#b)) = a#3/8b. In particular, the geometric mean x = a#b
is the unique solution of

a#(b#x) = x#(x#a).
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Proof. The second equation is equivalent to

x = c • (c • x) = c • (a#x) = (c • a)#(c • x).

By the de�ning equation of the geometric mean, this is equivalent to

c • a = x • (c • x).

Combining this with the two equations of the theorem, we have

b#x = c • a = x • (c • x) = x • (a#x) = (x • a)#(x • x) = (x • a)#x.

From the cancellative property of the mean operation, b = x•a and therefore
x = a#b by the mean de�ning equation. The characterizations for c in order
that the original equations be satis�ed for x = a#b then follow directly from
those equations. By properties of the weighted mean in the previous section,
these both reduce to a#3/8b, and hence are equal. Their equality ensures
that a#b is a solution of the equation in the last assertion of the theorem.

Suppose that a#(b#x) = x#(x#a). Setting c = b#x and d = x#a, we
have from the limited medial property that

a#c = x#d = (a#x)#(c#d) = d#(c#d).

From the cancellation property, x = c#d = (x#b)#(x#a). By Theorem
4.1, x = a#b. Thus the solution in the last equation of the theorem is
unique.
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Ranks of nets

G. Eric Moorhouse

Abstract

Let N be a k-net of prime order p. We �nd bounds on the p-rank of (the point-line
incidence matrix of) N for k ∈ {3, 4}, and observe connections between the p-rank and
certain structural properties of N . Implications for the study of �nite projective planes
are described.

1. Loops and 3-nets of prime order

Let (L, ∗) be a loop of prime order p. The 3-net N = N (L) coordinatized
by L is the point-line incidence system having p2 points L2 = L × L, and
3p lines given by

{a} × L for a ∈ L (the lines �x = a�);

L× {b} for b ∈ L (the lines �y = b�); and

{(x, y) ∈ L2 : x ∗ y = c} for c ∈ L (the lines �x ∗ y = c�).

The point-line incidence matrix of N is the p2 × 3p matrix with rows
and columns indexed by points and lines of N respectively; and having
entries 0 and 1 corresponding to non-incident and incident point-line pairs
respectively. We have

Theorem 1.1. (Main Theorem [5]) The p-rank of the incidence matrix

of N equals 3p−3 if L is associative, and 3p−2 otherwise.

Our original proof [5], still the simplest proof available, uses loop theory.
(Here for simplicity we consider only loops and nets of prime order, although
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more arbitrary �nite orders were considered in [5].) We reproduce this proof
below; and we indicate three alternative proofs of the same result. Our
(currently unrealized) goal is a generalization of Theorem 1.1 to k-nets for
k = 3, 4, . . . , p+1; possibly using techniques from nonassociative algebra,
or possibly by generalizing some of the other techniques described in this
paper. The desired generalization of this result is

Conjecture 1.2. [5] Let N be any k-net of prime order p, and let N ′ be
any (k−1)-subnet of N obtained by deleting one of the k parallel classes

of lines of N ; here k ∈ {2, 3, . . . , p+1}. Then the p-rank of the incidence

matrix of N exceeds that of N ′ by at least p−k+1.

The signi�cance of Conjecture 1.2 lies in the fact [5] that this would im-
ply that every projective plane of prime order is Desarguesian, thereby set-
tling one of the most celebrated currently open problems in �nite geometry.
Extensions of this method to other �nite orders would yield restrictions on
the possible orders of �nite projective planes, beyond the restrictions avail-
able through the Bruck-Ryser Theorem [2]. We believe that these �nite geo-
metric questions are worthy of the attention of researchers in nonassociative
algebra. Indeed, Belousov [1] attributes the origins of quasigroup theory to
the study of �nite projective planes. (I am grateful to V.V. Goldberg for
bringing this reference to my attention during our Mile High Conference.)

In Section 2, we describe the p-rank of a net in terms recognizable to
researchers of webs. This leads to a reformulation of our main result The-
orem 1.1 in equivalent terms as Theorem 2.3. In Sections 3, 4, 5 and 6
we provide proofs of this main result using loop theory, group theory, �nite
�eld theory, and number theory (speci�cally, exponential sums) respectively.
Each of these approaches suggests di�erent possibilities for generalization
to k-nets. Finally in Section 7 we describe some recent progress towards
Conjecture 1.2 in the case of 4-nets.

2. Nets and planes of prime order

Consider a �eld F = Fp of prime order p, and let k > 2. For every J ⊆
{1, 2, . . . , k} we consider the projection F k → F |J | de�ned by

(a1, a2, . . . , ak) 7→ (aj : j ∈ J).
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We simply write πi = π{i}, πij = π{i,j}, and we denote J ′ = {1, 2, . . . , k}\J
so that in particular

πi′(a1, a2, . . . , ak) = (a1, a2, . . . , ai−1, ai+1, . . . , ak).

A k-net of order p is a subset N ⊆ F k such that for all i 6= j in

{1, 2, . . . , k}, the map N
πij−→ F 2 is bijective. The members of N are called

points, and the lines of N are the �bres

N ∩ π
−1

i (a) = {v ∈ N : πi(v) = a}

for i ∈ {1, 2, . . . , k}, a ∈ F . For every J ⊆ {1, 2, . . . , k} of cardinality at
least 2, clearly πJ(N ) is a |J |-net of order p; we call this a |J |-subnet
of N . In particular for each i ∈ {1, 2, . . . , k}, we have that πi′(N ) is
a (k−1)-subnet of N , obtained by simply deleting from N the i-th par-
allel class of lines. An isomorphism of nets φ : N → N ′ is a map of
the form (a1, a2, . . . , ak) 7→ (α1(aσ(1)), α2(aσ(2)), . . . , αk(aσ(k))) for some
α1, α2, . . . , αk ∈ Sym(F ) and σ ∈ Sk; this simply says that the corre-
sponding point-line incidence structures are isomorphic.

An a�ne plane of order p is simply a (p+1)-net of order p. The Desar-
guesian a�ne plane is the (p+1)-net

D = {(a, b, a+b, a+2b, . . . , a+(p−1)b) : a, b ∈ F}.

A Desarguesian net is any subnet of D. A Desarguesian 3-net is known
simply as a cyclic 3-net. Every cyclic 3-net of order p is isomorphic to
{(a, b, a+b) : a, b ∈ F}.

Denote by V = V(N ) the vector space consisting of all k-tuples
(f1, f2, . . . , fk) of functions F → F such that

f1(a1) + f2(a2) + · · ·+ fk(ak) = 0

for all (a1, a2, . . . , ak) ∈ N . Also denote by V0 = V0(N ) 6 V the sub-
space consisting of all (f1, f2, . . . , fk) ∈ V satisfying the additional condi-
tion f1(0) = f2(0) = · · · = fk(0) = 0. The map V → F k, (f1, f2, . . . , fk) 7→
(f1(0), f2(0), . . . , fk(0)) induces an isomorphism from V/V0 to a (k−1)-
dimensional subspace of F k; thus dim(V) = dim(V0) + k − 1, and so we
may focus our attention on V0 rather than on V itself. Since V may be
interpreted as the right null space of the point-line incidence matrix A of
N , this gives
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Proposition 2.1. The p-rank of the incidence matrix A of N is given by

rankp A = pk − dimV = (p−1)k + 1− dimV0.

Rephrasing our conjectured bounds for the rank of A in terms of the
nullity gives

Conjecture 2.2. We have:

(i) dim π1(V) 6 k−1.

(ii) dim(V0) 6 1
2(k−1)(k−2), and equality holds i� N is Desarguesian.

Statement (i) is equivalent to Conjecture 1.2, and the �rst assertion of
(ii) is implied by (i). If either (i) or (ii) holds then every plane of prime
order is Desarguesian. As indication that V0 is more natural to consider
than the row or column space of A itself, we observe that in the case of
webs, the corresponding incidence map has in�nite rank, whereas the null
space V is �nite-dimensional. Indeed the bound dim(V0) 6 1

2(k−1)(k−2)
holds for k-webs, with equality attainable in the case of algebraic webs;
see [3,4]. We rephrase the Main Theorem as

Theorem 2.3. Let N be a 3-net of order p. Then dim(V0) 6 1. Moreover,

equality holds i� N is cyclic, in which case V0 is spanned by a triple (f, g, h)
in which the maps f, g, h : F → F are permutations.

3. First proof of main theorem (using loop theory)

Let N ⊂ F 3 be a 3-net of prime order p, in the notation of Section 2, and
suppose (f, g, h) ∈ V0(N ) is nonzero. To within an isomorphism of nets, we
have

N = {(x, y, x ∗ y) : x, y ∈ F}

where (x, y) 7→ x ∗ y ∈ F is a loop operation on F with identity 0. By
de�nition we have

f(0) = g(0) = h(0) = 0;
f(x) + g(y) + h(x ∗ y) = 0 for all x, y ∈ F.

This implies that f(x) = g(x) = −h(x) for all x ∈ F and that f is a
nonzero homomorphism from the loop (F, ∗) to the cyclic group (F,+) of
order p. These two loops are therefore isomorphic, so N is cyclic. Moreover
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every such homomorphism has the form cf for some c ∈ F , so V0(N ) is
1-dimensional. The result follows.

The same argument actually yields the stronger result

Theorem 3.1. [5] Let L be a loop of order n = prm where gcd(p, m) = 1.
Then the p-rank of the incidence matrix of the 3-net N (L) equals 3p−2− e
where e ∈ {0, 1, 2, . . . , r}. We have |K| = pe where K ⊆ L is the largest

normal subloop such that the quotient loop L/K is an elementary abelian

p-group.

4. Second proof of main theorem

(using permutation groups)

An alternative proof of Theorem 3.1 is obtained by considering the left
multiplication group of L. More generally, let Ω be a set of size |Ω| = n =
prm where gcd(p, m) = 1, and let G be a group permuting Ω transitively.
Let H 6 G be the stabilizer of a point which we denote 1 ∈ Ω. For each
k > 0, denote by Ck the vector space over F consisting of all functions
Ωk+1 → F . Then G acts on Ck via

fg(x0, x1, . . . , xk) = f(xg
0, x

g
1, . . . , x

g
k)

for g ∈ G, f ∈ Ck, xi ∈ Ω. Consider the F -linear map ∂ = ∂k : Ck → Ck+1

de�ned by

(∂f)(x0, x1, . . . , xk+1) =
k+1∑
i=0

(−1)k+1−if(x0, x1, . . . , xi−1, xi+1, . . . , xk+1)

for f ∈ Ck, xi ∈ Ω. Note that ∂ is G-equivariant: ∂(fg) = (∂f)g. The
image B1 = ∂C0 6 C1 consists of all functions ∂φ(x0, x1) = φ(x0)− φ(x1)
for some φ : Ω → F . Consider the subspace of G-invariants given by

(B1)G = {f ∈ B1 : fg = f for all g ∈ G}.

In the following, Hom(G/K,F ) denotes the vector space over F consisting
of homomorphisms from the multiplicative group G/K to the additive group
of F .

Lemma 4.1. (B1)G ∼= Hom(G/K,F ) where K is the smallest normal

subgroup of G containing H such that G/K is an elementary abelian p-
group. In particular, dim (B1)G = e ∈ {0, 1, 2, . . . , r} where |G/K| = pe.
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Proof. For each φ : G/K → F , de�ne φ̂ : Ω → F by φ̂(1g) = φ(Kg) for
g ∈ G. Note that φ̂ ∈ C0 is well-de�ned since K contains H. We claim that
the map

θ : Hom(G/K, F ) → (B1)G, φ 7→ ∂φ̂

is an isomorphism of vector spaces over F . Certainly if φ ∈ Hom(G/K,F )
then

∂φ̂(1ug, 1vg) = φ(Kug)− φ(Kvg) = φ(Ku) + φ(Kg)− φ(Kv)− φ(Kg)

= φ(Ku)− φ(Kv) = ∂φ̂(1u, 1v)

for all u, v, g ∈ G. Since G is transitive on Ω, this implies that ∂φ̂ ∈ (B1)G.
If ∂φ̂ = 0 then φ(Kg) = φ(K) = 0 for all g ∈ G, i.e. φ = 0 so θ is injective.
Finally, given f ∈ (B1)G, de�ne φ(Kg) = f(1g, 1). Since f ∈ (B1)G we
have

0 = ∂f(1gh, 1h, 1) = f(1h, 1)− f(1gh, 1) + f(1gh, 1h)

= f(1h, 1)− f(1gh, 1) + f(1g, 1)
= φ(Kh)− φ(Kgh) + φ(Kg)

for all g, h ∈ G so that φ ∈ Hom(G/K, F ) satisfying ∂φ̂ = f and θ is
surjective.

Now suppose (L, ∗) is a loop of order n = prm where gcd(p, m) = 1.
Let 1 ∈ L be the identity, and let G be the left multiplication group of L;
i.e. G 6 Sym(L) is generated by the permutations x 7→ a ∗ x, a ∈ L. We

show that the map (f, g, h) 7→ ∂f gives an isomorphism V0(N )
∼=−→ (B1)G.

For (f, g, h) ∈ V0(N ) we have

f(x) + g(y) + h(x ∗ y) = 0

for all x, y ∈ L and so f(x) = g(x) = −h(x) and

∂f(a ∗ x, a ∗ y) = f(a ∗ x)− f(a ∗ y)
= f(a) + f(x)− f(a)− f(y) = f(x)− f(y)
= ∂f(x, y)

so that ∂f ∈ (B1)G. If ∂f = 0 then f(x) = ∂f(x, 1) = 0. Also if φ : L → F
such that ∂φ ∈ (B1)G then we easily check that (f, f,−f) ∈ V0(N ) where
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f(x) = ∂φ(x, 1) = φ(x)− φ(1):

f(x) + f(y)− f(x ∗ y) = ∂φ(x, 1) + ∂φ(y, 1)− ∂φ(x ∗ y, 1)
= ∂φ(x, 1)− ∂φ(x ∗ y, 1) + ∂φ(x ∗ y, x)

= ∂2(x ∗ y, x, 1) = 0.

Theorem 3.1 follows.

5. Third proof of main theorem (using �nite �elds)

We require the following well-known result, whose proof is included for
completeness. As before we �x F = Fp where p is prime, and we use the
convention that 00 = 1.

Proposition 5.1. Let f : F → F , and for every r > 0, write σf,r =∑
a∈F f(a)r ∈ F . Then

(a) The map f is a permutation of F , if and only if

σf,0 = σf,1 = · · · = σf,p−2 = 0 and σf,p−1 = −1.

(b) We have σf,0 = σf,1 = · · · = σf,p−2 = 0, if and only if
∣∣f(F )

∣∣ equals

either 1 or p.

Proof. First suppose that the map f is a permutation of F , so that σf,r =∑
a∈F ar. Clearly σf,0 = p = 0 ∈ F and σf,p−1 = p−1 = −1 ∈ F . Now

suppose 1 6 r 6 p−2. For every c ∈ {1, 2, . . . , p − 1} we have crσf,r =∑
a∈F (ca)r =

∑
a∈F ar = σf,r since the map a 7→ ca is a permutation of F .

Now the polynomial σf,rX
r − σf,r ∈ F [X] has p−1 > r zeroes in the �eld

F , so σf,r = 0 as required.

In the general case, for every a ∈ F , let na =
∣∣f−1(a)

∣∣, so that σf,r =∑
a∈F arna . The linear system

1 1 1 · · · 1 1
0 1 2 · · · p−2 p−1
0 1 22 · · · (p−2)2 (p−1)2
...

...
...

. . .
...

...
0 1 2p−2 · · · (p−2)p−2 (p−1)p−2

0 1 2p−1 · · · (p−2)p−1 (p−1)p−1





n0

n1

n2
...

np−2

np−1


=



0
0
0
...
0
−1
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over Q has a unique solution, since the coe�cient matrix is a nonsingular
Vandermonde matrix. We have seen that n0 = n1 = · · · = np−1 = 1 is a
solution, so (a) follows. Moreover the linear system


1 1 1 · · · 1 1
0 1 2 · · · p−2 p−1
0 1 22 · · · (p−2)2 (p−1)2
...

...
...

. . .
...

...
0 1 2p−2 · · · (p−2)p−2 (p−1)p−2





n0

n1

n2
...

np−2

np−1


=


0
0
0
...
0


has as its general solution n0 = n1 = · · · = np−1 since the coe�cient matrix
has rank p−1. Since n0 + n1 + n2 + · · · + np−1 = p, we have either (i)
n0 = n1 = · · · = np−1 = 1, or (ii) one of the nk's is p and the others are
zero. Conclusion (b) follows.

LetN be a 3-net of odd prime order p, i.e. a set of p2 triples (x, y, z) ∈ F 3

such that each point (x, y, z) ∈ N is uniquely determined by any two of its
coordinates. We have rankpN = 3p−2−dimV0 where V0 is the set of all
triples (f, g, h) of functions F → F such that f(0) = g(0) = h(0) = 0 and

f(x) + g(y) + h(z) = 0 for all (x, y, z) ∈ N .

We must show that dimV0 6 1, and that equality holds i� the 3-net N is
cyclic.

Suppose (f, g, h) ∈ V0 is nonzero. Using always the convention that
00 = 1, we see that σf,0 = σg,0 = σh,0 = 0. Note that for all r > 0 and all
(x, y, z) ∈ N , we have

h(z)r = (−1)r
r∑

s=0

(
r

s

)
f(x)r−sg(y)s

by the Binomial Theorem. Summing over all p triples (x, y, z) ∈ N with a
�xed value of y gives

σh,r = (−1)r
r∑

s=0

(
r

s

)
σf,r−sg(y)s (5.1)

for all r > 0, y ∈ F .
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Summing (5.1) over all y ∈ F gives

0 =
r∑

s=0

(
r

s

)
σf,r−sσg,s (5.2)

for all r > 0.

Theorem 5.2. We have

σf,r = σg,r = σh,r =
{

0, for r = 0, 1, 2, . . . , p−2, and

−1, for r = p−1.

Proof. As previously noted, the result holds for r = 0. Assume the con-
clusion of the Theorem holds for all r ∈ {0, 1, . . . , t} where t 6 p−2, and
we will verify the conclusion in the case r = t+1. Applying (5.1) in the
case r = t+1, we have σh,t+1 = (−1)t+1σf,t+1 . Similarly, we obtain

σf,t+1 = (−1)t+1σg,t+1 and σg,t+1 = (−1)t+1σh,t+1 . Clearly the conclu-
sion σf,t+1 = σg,t+1 = σh,t+1 = 0 follows if t is even, but we proceed to
obtain the same conclusion regardless of the parity of t.

We consider �rst the case t 6 1
2(p−3). Applying (5.2) for r = 2t+2

yields

0 =
2t+2∑
s=0

(
2t+2

s

)
σf,2t+2−sσg,s =

(
2t+2
t+1

)
σf,t+1σg,t+1 .

Since 2t+2 < p, this implies that σf,t+1σg,t+1 = 0. Combining this with
the previous paragraph yields σf,t+1 = σg,t+1 = σh,t+1 = 0. Thus the
conclusion holds for r = t+1 as well.

Next consider the case 1
2(p−1) 6 t < p−2. Multiplying both sides of

(5.1) by g(y)2t+3−p and setting r = p−1 yields

σh,p−1g(y)2t+3−p =
p−1∑
s=0

(
p−1
s

)
σf,p−1−sg(y)s+2t+3−p

=
p−t−2∑
s=0

(
p−1
s

)
σf,p−1−sg(y)s+2t+3−p.

Note that 2t+3−p > 2, so all exponents are non-negative. Now observe
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that 2t+3−p < t and sum over y ∈ F to obtain

0 = σh,p−1σg,2t+3−p =
p−t−2∑
s=0

(
p−1
s

)
σf,p−1−sσg,s+2t+3−p

=
(

p−1
p−t−2

)
σf,t+1σg,t+1.

Since the latter binomial coe�cient is not divisible by p, we obtain
σf,t+1σg,t+1 = 0. This yields σf,t+1 = σg,t+1 = σh,t+1 = 0 as before.

Applying (5.1) for r = p−1 gives σh,p−1 = σf,p−1 ; and similarly,
σh,p−1 = σg,p−1 . By assumption, (f, g, h) ∈ V0 is nonzero; therefore by
Proposition 5.1 we have σf,p−1 = σg,p−1 = σh,p−1 = −1 and each of the
maps f, g, h is a permutation of F . We may assume that f(x) = g(x) =
−h(x) = x for all x ∈ F ; otherwise relabel the lines in each parallel class so
that this is the case. Since f(x) + g(y) + h(z) = 0 for all (x, y, z) ∈ N , we
obtain N = {(x, y, x+y) : x, y ∈ F} and so the 3-net N is cyclic.

6. Fourth proof of main theorem

(using exponential sums)

Let F = Fp where p is prime, and let ζ ∈ C be a primitive p-th root of
unity. We have a well-de�ned map

e : F → Z[ζ], a 7→ ζa

satisfying e(a + b) = e(a)e(b) for all a, b ∈ F . Each function f : F → F
gives rise to an exponential sum

Sf =
∑
a∈F

e(f(a)) ∈ Z[ζ].

Now suppose N is a 3-net of order p, and let (f, g, h) ∈ V0(N ). Summing
ζf(a)+g(b) = ζ−h(c) over all (a, b, c) ∈ N gives SfSg = Sh, and similarly
SgSh = Sf and ShSf = Sg. Thus

|Sf |2 = |Sg|2 = |Sh|2 = 1
pSfSgSh.

Now if |Sf | = |Sg| = |Sh| = p then f, g, h : F → F are constant functions,
but then the condition f(0) = g(0) = h(0) = 0 forces (f, g, h) = (0, 0, 0).

Otherwise we must have Sf = Sg = Sh = 0, so that f, g, h : F → F are
permutations. After permuting labels, we may assume that
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f(X) = X, g(X) = X, h(X) = −X.

Now

0 = f(a) + g(b) + h(c) = a + b− c

for all (a, b, c) ∈ N , i.e.

N = {(a, b, a+b) : a, b ∈ F}
which is the cyclic 3-net of order p.

7. 4-nets of prime order

Let N be a 4-net of prime order p, and let (f, g, h, u) ∈ V(N ). In the
notation of Section 6, we sum the quantity ζf(x)+g(y) = ζ−h(z)−u(t) over all
(x, y, z, t) ∈ N to obtain SfSg = ShSu. It is not hard to check that either

|Sf | = |Sg| = |Sh| = |Su| > 0

or at least three of the exponential sums {Sf , Sg, Sh, Su} vanish, in which
case the corresponding members of {f, g, h, u} are permutations. With some
further investigation we have shown

Theorem 7.1. [8] Let N be a 4-net of order p. Then:

(i) The number of cyclic 3-subnets of N is 0, 1, 3 or 4.

(ii) N has four cyclic 3-subnets i� N is Desarguesian.

(iii) Suppose N has at least one cyclic 3-subnet. Then N has rank at least

4p−3, and equality holds i� N is Desarguesian.

We remark that (i) and (ii) are best possible in the sense that there
exist (necessarily non-Desarguesian) 4-nets of prime order p having 0, 1 or
3 cyclic subnets. Examples of these for p = 7, 11 are found at [6,7].
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A short basis for the variety of WIP PACC-loops

J. D. Phillips

Abstract

The variety of weak inverse property, power-associative, conjugacy closed loops (WIP
PACC-loops) is an ideal variety from which to investigate CC-loops. We give a surpris-
ingly short basis for this variety. We also give a useful associator identity.

1. Introduction

A quasigroup (Q, ·) is a set Q with a binary operation · such that for each
a, b ∈ Q the equations a ·x = b and y ·a = b have unique solutions x, y ∈ Q.
A loop is a quasigroup with a two-sided neutral element, 1. We write xy
instead of x · y, and stipulate that · have lower priority than juxtaposition
among factors to be multiplied�for instance, x · yz stands for x(yz). For
an overview of the theory of loops, see [3, 4, 17].

A loop is conjugacy closed (a CC-loop) i� it satis�es both of the following
equations:

xy · z = xz · (z\(yz)) (RCC) z · yx = ((zy)/z) · zx (LCC)

This de�nition is owing to Goodaire and Robinson [10, 11]; CC-loops were
introduced independently, with di�erent terminology, by So$ikis [20]. Fur-
ther development of the theory can be found in [1, 2, 5, 6, 7, 14, 15]. The
literature is not uniform as to which of these two equations is left (LCC) and
which is right (RCC). With our choice here LCC is equivalent to requiring
that the set of left multiplication maps be closed under conjugation. In
[14, 15], the equation labels LCC and RCC were arranged in the opposite
order.

The CC-loops which are also diassociative (that is every 〈x, y〉 is a group)
are the extra loops introduced by Fenyves [8, 9]. For these, a detailed
structure theory was described in [12], and their relationship to the other
loops (and quasigroups) of so-called Bol-Moufang type is detailed in [18, 19].
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De�nition 1.1. For any loop Q and for c ∈ Q:

1. De�ne cρ and cλ by: ccρ = cλc = 1.

2. c is power-associative i� the subloop 〈c〉 is a group. Q is power-

associative i� every element is power-associative.

The two parts of this de�nition are related by:

Lemma 1.2. (cf. [15]) Let c be an element of a CC-loop Q. Then

c is power associative i� cρ = cλ i� cc2 = c2c

Power-associative CC-loops (PACC-loops) were thoroughly analyzed by
Kinyon and Kunen in [13]. Central to their analysis is the notion of weak
inverse property elements.

De�nition 1.3. An element c of a loop Q is a weak inverse property (WIP)

element i� ∀x ∈ Q,

c(xc)ρ = xρ (cx)λc = xλ . (WIP)

A loop Q is then a weak inverse property loop if all of its elements have the
weak inverse property.

Kinyon and Kunen showed that if Q is a PACC-loop and if c ∈ Q, then
c12 ∈ N(Q), the nucleus of Q; they prove this by showing that c3 is a WIP
element and c6 is an extra element.

There is thus, a chain of �ve prominent varieties of CC-loops: (1) groups,
(2) extra loops, (3) WIP PACC-loops, (4) PACC-loops, (5) CC-loops.

Obviously, a great deal has been written about the varieties (1), (2),
and (5). And with the appearance of [13], the variety in (4) has now been
analyzed in great detail; moreover, the prominence of the weak inverse
property in the theory of CC-loops is now apparent. The variety in (3)
is thus, a natural setting in which to investigate CC-loops: rich enough
for deep structural theorems, but still, quite general. Unfortunately, the
equations that axiomatize this variety are unwieldy. The main purpose of
this paper is to give a surprisingly short and elegant basis for the variety of
WIP PACC-loops.
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2. Main result

Theorem 2.1. In the variety of loops, WIP PACC-loops are axiomatized

by the identities

(xy · x) · xz = x · ((yx · x)z) (LWPC)

and

zx · (x · yx) = (z(x · xy)) · x. (RWPC)

Proof. We �rst show that WIP PACC-loops satisfy both LWPC and
RWPC. We proceed in four steps. Firstly, we note that in WIP PACC loops,
it is easy to see that both (x/y)·yz = y·((y\x)z) and (x/y)\1 = y(x\1) hold,
and that together they imply x · ((x\y)z) = ((y\1)\(x\1)) · ac. Secondly,
we note that in WIP PACC loops, it is easy to see that (x\y) 1 = (y\1)x,
((x\y)\1)x · (x\y) = (x\y)\y, and x/y = (x\1)\(y\1) hold, and that to-
gether they imply (x\y)\y = (y\1) · xy. Thirdly, we note that in WIP
PACC loops, it is easy to see that (xy)\1 = y\(x\1), (x\y)\y = (y\1) ·
xy, and (x\y)z = ((y\1)\(x\1) · xz) hold, and that together they imply
(x\1)(xy ·x) = yx. Fourthly, and �nally, we note that in WIP PACC loops,
it is easy to see that both xy\1 = y\(x\1) and x\(yx) = (x\1)y) · x hold
and that together the three identities just established, implies LWPC. Of
course, dualize this proof to obtain RWPC.

We now show that loops satisfying both LWPC and RWPC are, in
fact, WIP PACC loops. In LWPC, replace z with x\z to obtain (xy ·x)z =
x((yx·x)·(x\z)). Now, replace y with (y/x)/x to obtain (x((y/x)/x)·x)z =
x(y · (x\z)). In other words, there exists a function f(x, y) such that
L(x)−1L(y)L(x) = L(f(x, y)). Thus, in the variety of loops, LWPC implies
LCC. Similarly, RWPC implies RCC. Also, it is easy to see that LWPC
implies xρ = xλ, which by Lemma 1.2 guarantees power-associativity. Fi-
nally, we o�er an Otter output �le proving that LWPC andRWPC together
imply WIP:

Length of proof is 89. Level of proof is 20.
---------------- PROOF ----------------
240 [] x=x.
242,241 [] 1*x=x.
244,243 [] x*1=x.
245 [] ((x*y)*x)*(x*z)=x*(((y*x)*x)*z).
246 [] (x*y)*(y*(z*y))=(x*(y*(y*z)))*y.
247 [copy,246,flip.1] (x*(y*(y*z)))*y=(x*y)*(y*(z*y)).
250,249 [] 1/x=x\1.
252,251 [] x*(x\y)=y.
254,253 [] x\(x*y)=y.
255 [] (x*y)/y=x.
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258,257 [] (x/y)*y=x.
259 [] ((x*y)/x)*(x*z)=x*(y*z).
261 [] (x*y)*(y\(z*y))=(x*z)*y.
262 [] A*((B*A)\1)!=B\1.
263 [copy,245,flip.1] x*(((y*x)*x)*z)=((x*y)*x)*(x*z).
264 [copy,261,flip.1] (x*y)*z=(x*z)*(z\(y*z)).
265 [para_into,245.1.1.1.1,243.1.1,demod,242]

(x*x)*(x*y)=x*((x*x)*y).
267 [para_into,245.1.1.2,243.1.1,demod,244]

((x*y)*x)*x=x*((y*x)*x).
271 [para_into,247.1.1.1,241.1.1,demod,242]

(x*(x*y))*x=x*(x*(y*x)).
274,273 [para_into,251.1.1,241.1.1] 1\x=x.
285 [para_into,253.1.1.2,243.1.1] x\x=1.
287 [para_into,255.1.1.1,251.1.1] x/(y\x)=y.
298,297 [para_into,257.1.1.1,249.1.1] (x\1)*x=1.
302,301 [para_from,257.1.1,253.1.1.2] (x/y)\x=y.
305 [para_into,259.1.1.1.1,251.1.1] (x/y)*(y*z)=y*((y\x)*z).
309 [para_into,259.1.1.2,251.1.1] ((x*y)/x)*z=x*(y*(x\z)).
310 [copy,309,flip.1] x*(y*(x\z))=((x*y)/x)*z.
315,314 [para_into,261.1.1.2.2,257.1.1,flip.1]

(x*(y/z))*z=(x*z)*(z\y).
316 [para_into,261.1.1.2.2,251.1.1]

(x*(y\z))*((y\z)\z)=(x*y)*(y\z).
326 [para_into,263.1.1.2,251.1.1,flip.1]

((x*y)*x)*(x*(((y*x)*x)\z))=x*z.
343 [para_into,265.1.1.2,251.1.1,flip.1] x*((x*x)*(x\y))=(x*x)*y.
346,345 [para_into,265.1.1.2,243.1.1,demod,244] (x*x)*x=x*(x*x).
359 [para_from,267.1.1,255.1.1.1] (x*((y*x)*x))/x=(x*y)*x.
369 [para_into,271.1.1.1.2,251.1.1,flip.1]

x*(x*((x\y)*x))=(x*y)*x.
409,408 [para_into,287.1.1,249.1.1] (x\1)\1=x.
423,422 [para_from,297.1.1,261.1.1.2.2,flip.1]

(x*(y\1))*y=(x*y)*(y\1).
425 [para_from,297.1.1,264.1.1.1,demod,242,flip.1]

((x\1)*y)*(y\(x*y))=y.
428,427 [para_from,297.1.1,261.1.1.1,demod,242]

x\(y*x)=((x\1)*y)*x.
430 [back_demod,425,demod,428] ((x\1)*y)*(((y\1)*x)*y)=y.
453 [para_from,314.1.1,267.1.1.1,demod,258]

((x*x)*(x\y))*x=x*(y*x).
512,511 [para_into,359.1.1.1.2.1,257.1.1,demod,315]

(x*(y*x))/x=(x*x)*(x\y).
554,553 [para_into,422.1.1.1,297.1.1,demod,242,409,flip.1]
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(x*x)*(x\1)=x.
560,559 [para_from,427.1.1,251.1.1.2] x*(((x\1)*y)*x)=y*x.
565 [para_from,430.1.1,255.1.1.1] x/(((x\1)*y)*x)=(y\1)*x.
572,571 [para_into,453.1.1.1.2,253.1.1] ((x*x)*y)*x=x*((x*y)*x).
574,573 [para_into,453.1.1,422.1.1,demod,346,242]

(x*(x*x))*(x\1)=x*x.
579 [para_from,553.1.1,427.1.1.2,demod,409,574] (x\1)\x=x*x.
599 [para_into,559.1.1.2.1.1,408.1.1] (x\1)*((x*y)*(x\1))=y*(x\1).
602,601 [para_into,559.1.1.2.1,559.1.1,demod,423,409,423,flip.1]

((x*y)*x)*(x\1)=x*((y*x)*(x\1)).
603 [para_into,559.1.1.2.1,251.1.1,flip.1] ((x\1)\y)*x=x*(y*x).
624,623 [para_into,579.1.1.1,408.1.1] x\(x\1)=(x\1)*(x\1).
636,635 [para_from,603.1.1,255.1.1.1,demod,512,flip.1]

(x\1)\y=(x*x)*(x\y).
646,645 [para_into,305.1.1.1,249.1.1] (x\1)*(x*y)=x*((x\1)*y).
678 [para_into,635.1.1,253.1.1,flip.1] (x*x)*(x\((x\1)*y))=y.
680 [para_from,635.1.1,287.1.1.2] x/((y*y)*(y\x))=y\1.
684,683 [para_from,635.1.1,251.1.1.2] (x\1)*((x*x)*(x\y))=y.
686 [para_into,645.1.1.2,343.1.1,demod,684] (x\1)*((x*x)*y)=x*y.
692,691 [para_into,645.1.1.2,251.1.1,flip.1]

x*((x\1)*(x\y))=(x\1)*y.
702,701 [para_from,645.1.1,253.1.1.2,demod,636,254]

(x*x)*((x\1)*y)=x*y.
710,709 [para_into,309.1.1,243.1.1] (x*y)/x=x*(y*(x\1)).
720 [back_demod,310,demod,710] x*(y*(x\z))=(x*(y*(x\1)))*z.
725,724 [para_into,678.1.1.2.2.1,635.1.1,demod,554,636,254]

((x\1)*(x\1))*((x*x)*y)=y.
728 [para_from,678.1.1,645.1.1.2,flip.1]

(x*x)*(((x*x)\1)*(x\((x\1)*y)))=((x*x)\1)*y.
733,732 [para_from,678.1.1,253.1.1.2] (x*x)\y=x\((x\1)*y).
734 [back_demod,728,demod,733,244,624,733,244,624]

(x*x)*(((x\1)*(x\1))*(x\((x\1)*y)))=((x\1)*(x\1))*y.
740 [para_into,680.1.1.2.2,301.1.1,demod,315,258]

x/(x*(y\x))=(x/y)\1.
754 [para_from,686.1.1,265.1.1.2,demod,725]

((x\1)*(x\1))*(x*y)=(x\1)*y.
756 [para_into,316.1.1.1,251.1.1] x*((y\x)\x)=(y*y)*(y\x).
766,765 [para_into,701.1.1.2,343.1.1,demod,636,725,252]

(x*x)*(((x\1)*(x\1))*y)=y.
769,768 [back_demod,734,demod,766] x\((x\1)*y)=((x\1)*(x\1))*y.
771,770 [back_demod,732,demod,769] (x*x)\y=((x\1)*(x\1))*y.
784 [para_into,720.1.1.2.2,285.1.1,demod,244,flip.1]

(x*(y*(x\1)))*x=x*y.
816 [para_into,740.1.1.2.2,301.1.1,flip.1] (x/(x/y))\1=x/(x*y).
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828,827 [para_from,754.1.1,247.1.1.1,demod,646,423,298,242,646]
(x*((x\1)*y))*x=x*((x\1)*(y*x)).

843,842 [para_from,756.1.1,253.1.1.2,flip.1]
(x\y)\y=y\((x*x)*(x\y)).

858,857 [para_from,784.1.1,427.1.1.2,demod,254,646,828,423,flip.1]
x*((x\1)*((y*x)*(x\1)))=y.

862 [para_from,784.1.1,253.1.1.2] (x*(y*(x\1)))\(x*y)=x.
867 [para_from,816.1.1,287.1.1.2,demod,250,flip.1]

x/(x/y)=(x/(x*y))\1.
889 [para_into,862.1.1.2,251.1.1] (x*((x\y)*(x\1)))\y=x.
894,893 [para_from,867.1.1,301.1.1.1,demod,636,302,315,258,flip.1]

x/y=x*((x*y)\x).
911 [back_demod,565,demod,894,560] x*((y*x)\x)=(y\1)*x.
925 [back_demod,257,demod,894] (x*((x*y)\x))*y=x.
935 [para_into,889.1.1.1.2.1,635.1.1,demod,843,554,274,572,252,646]

(x*((x\1)*(y*x)))\y=x\1.
951 [para_into,925.1.1.1.2.1,251.1.1] (x*(y\x))*(x\y)=x.
959 [para_into,935.1.1.1.2.1,889.1.1,demod,692,244,692,244,646,692,

244,843,554,274] (x*((x\1)*(y*(x\1))))\y=x.
995 [para_from,951.1.1,720.1.1.2,flip.1]

(x*((x*(y\x))*(x\1)))*y=x*x.
1011 [para_from,369.1.1,599.1.1.2.1,demod,602,646,858,flip.1]

(x*((x\y)*x))*(x\1)=y.
1025 [para_from,911.1.1,253.1.1.2,demod,428,flip.1]

(x*y)\y=((y\1)*(x\1))*y.
1034,1033 [para_into,1011.1.1.1.2.1,253.1.1] (x*(y*x))*(x\1)=x*y.
1048 [para_into,1033.1.1.1,559.1.1] (x*y)*(y\1)=y*((y\1)*x).
1050 [para_into,1033.1.1.2,889.1.1,demod,692,244,692,244,692,244]

(x\1)*(y*(x\1)))*x=(x\1)*y.
1068 [para_into,1048.1.1.2,770.1.1,demod,244,771,244,766]

(x*(y*y))*((y\1)*(y\1))=x.
1080 [para_from,1050.1.1,326.1.1.2.2.1.1,demod,828,423,858]

x*(y*((((y\1)*x)*y)\z))=y*z.
1092 [para_into,1080.1.1.2.2,1025.1.1,demod,560]

x*((((y\1)*x)\1)*y)=y*y.
1098 [para_into,1092.1.1.2.1.1,251.1.1,demod,636]

((x*x)*(x\y))*((y\1)*x)=x*x.
1102 [para_into,1098.1.1.2.1,889.1.1,demod,692,244]

((x*x)*(x\(y\1)))*(y*x)=x*x.
1110 [para_from,1102.1.1,935.1.1.1.2.2]

((x*y)*(((x*y)\1)*(y*y)))\((y*y)*(y\(x\1)))=(x*y)\1.
1257 [para_into,1068.1.1.2.1,959.1.1,demod,242,692,244,242,692,244,

242,692,244,843,554,274] (x*((y\1)*(y\1)))*(y*y)=x.
1263 [para_into,1257.1.1.1,995.1.1,demod,771,843,554,274,843,554,



A short basis for the variety of WIP PACC-loops 79

274,1034] (x*x)*(y*y)=x*(x*(y*y)).
1266,1265 [para_from,1263.1.1,765.1.1.2,demod,702]

x*((x\1)*(y*y))=y*y.
1272,1271 [back_demod,1110,demod,1266,254,flip.1] (x*y)\1=y\(x\1).
1295 [back_demod,262,demod,1272,252] B\1!=B\1.
1296 [binary,1295.1,240.1] $F.
------------ end of proof -------------

Problem 2.2. Is a quasigroup that satis�es LWPC and RWPC a loop?

Recall, that an element c of a CC-loop is a Moufang element i� for all
x, y (c ·xy)c = cx ·yc (see [4],VII�2), and c is an extra element i� for all x, y
c(x · yc) = (cx · y)c [13]. Also, recall that the associator (x, y, z) is given by
xy · z = (x · yz) · (x, y, z). Finally, given a loop L and an element x ∈ L,
de�ne the right and left multiplications by xy = xRy = yLx. We then may
de�ne the inner mappings on L by:

R(x, y) := RxRyR
−1
xy , L(x, y) := LxLyL

−1
yx , Tx := RxL−1

x .

Theorem 2.3. Let c be a Moufang element in a CC-loop L. Then ∀x, y we

have (c, x, y)2 = (c2, x, y).

Proof. The otter output �le of this proof may be found here:
http://persweb.wabash.edu/facstaff/phillipj/research.html

Let c be an extra element in a CC-loop. Then ∀x, y we have (c, x, y)2 = 1
[13]. We now give a version of this result for Moufang elements.

Corollary 2.4. Let c be a Moufang element in a WIP CC-loop. Then ∀x, y
we have (c, x, y)2 = 1.

Proof. In WIP CC loops, squares are nuclear [14]. Now, use Theorem 2.3.

Acknowledgement. Our investigations were aided by the automated rea-
soning tool OTTER [16]. We thank Michael Kinyon for his helpful and
generous comments.
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Duality for central piques

Anna B. Romanowska and Jonathan D. H. Smith

Abstract

A duality for locally compact central piques is established, based on Pontryagin duality
for locally compact abelian groups. The duality restricts to yield Suvorov duality for
quasigroup modes.

1. Introduction

Piques are quasigroups with a pointed idempotent element. As such, they
form an intermediate class between loops and general quasigroups. A quasi-
group Q is central if the diagonal Q̂ is a normal subquasigroup of the square
Q2, or an equivalence class of a quasigroup congruence relation on Q2 [1,
Ch. III]. Each central quasigroup Q is very tightly related to a central
pique, namely the quotient Q2/Q̂ with Q̂ as the pointed idempotent. (The
exact relationship is central isotopy [1, Ch. III]. In particular, Q × Q and
Q × Q2/Q̂ are isomorphic.) Moreover, the class of central piques includes
many of the quasigroups encountered in practice, such as abelian groups
under subtraction or the standard constructions of orthogonal quasigroups
based on �nite �elds. It also includes the class of quasigroup modes, idem-
potent and entropic quasigroups [3].

As part of a general determination of the character tables of �nite (dis-
crete) central piques, the paper [4] sketched a duality for them, and raised
the problem of

2000 Mathematics Subject Classi�cation: 20N05
Keywords: quasigroup, loop, centrality, duality, topological quasigroup, Pontryagin
duality
The second author gratefully acknowledges the hospitality of the Faculty of Mathe-
matics and Information Sciences of Warsaw University of Technology during the
completion of this paper while he was on a Faculty Professional Development As-
signment from Iowa State University.
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extension of the duality theory from �nite (discrete) central
piques to general locally compact central piques.

The purpose of the current paper is to present such an extension (Theo-
rem 5.5). Earlier, Suvorov exhibited a duality for locally compact topo-
logical quasigroup modes on the basis of Pontryagin duality [7]. Suvorov
duality may now be seen as a special case of the duality for central piques
(Section 6).

Readers are referred to [6] for concepts and notational conventions not
otherwise de�ned explicitly in this paper.

2. Quasigroups and piques

A quasigroup (Q, ·) is considered combinatorially as a set Q equipped with a
binary multiplication operation denoted by · or simple juxtaposition of the
two arguments, in which speci�cation of any two of x, y, z in the equation
x·y = z determines the third uniquely. Equationally, a quasigroup (Q, ·, /, \)
is a set Q equipped with three binary operations of multiplication, right
division / and left division \, satisfying the identities:

(IL) y \ (y · x) = x;
(IR) x = (x · y)/y;
(SL) y · (y \ x) = x;
(SR) x = (x/y) · y.

(Suppressing explicit mention of the division operations of a quasigroup, one
may denote it merely as (Q, ·) instead.) The equational de�nition of quasi-
groups means that they form a variety in the sense of universal algebra, and
are thus susceptible to study by the concepts and methods of universal alge-
bra [6]. In particular, a quasigroup (Q, ·, /, \) is topological if the underlying
set Q is a topological space, and if the operations Q2 → Q; (x, y) 7→ x · y,
Q2 → Q; (x, y) 7→ x/y and Q2 → Q; (x, y) 7→ x\y are continuous maps from
the product space Q2.

An element e of a quasigroup Q is said to be idempotent if {e} forms
a singleton subquasigroup of Q. A pique or pointed idempotent quasigroup

[1, �III.5] is a quasigroup P , containing an idempotent element 0, that has
its quasigroup structure of multiplication and the divisions enriched by a
nullary operation selecting the idempotent element 0. Note that piques also
form a variety.
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For each element q of a quasigroup (Q, ∗), the right multiplication R∗(q)
or

R(q) : Q → Q;x 7→ x ∗ q

and left multiplication L∗(q) or

L(q) : Q → Q;x 7→ q ∗ x

are elements of the group Q! of bijections from the set Q to itself. The
subgroup of Q! generated by all the right and left multiplications is called
the multiplication group MltQ of Q. For a pique P with pointed idempotent
0, it is conventional to set R = R(0) and L = L(0). The stabilizer of 0 in
the permutation group MltP is called the inner multiplication group InnP
of P . For example, if P is a group, then the inner multiplication group of
the pique P is just the inner automorphism group of the group P .

3. Central piques

A loop L is a pique in which the pointed idempotent element 1 acts as an
identity. For a general pique (P, ·, 0), the cloop or corresponding loop is the
loop B(P ) or (P,+, 0) in which the �multiplication� operation + is de�ned
by

x + y = xR−1 · yL−1. (3.1)

Inverting (3.1), the multiplication of a pique is recovered from the cloop by

x · y = xR + yL. (3.2)

De�nition 3.1. A pique (P, ·, 0) is said to be central, or to lie in the class
Z, if B(P ) is an abelian group, and InnP is a group of automorphisms of
B(P ).

Remark 3.2. The syntactical De�nition 3.1 of pique centrality is chosen
for its concreteness, and because it is well suited to the purposes of the
current paper. The equivalence of this de�nition with the structural char-
acterization given in the introduction is discussed in [1, �III.5], [5, �3.5].

In a central pique P , the right division is given by

x/y = (x − yL)R−1 (3.3)
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and the left division by

x\y = (y − xR)L−1 (3.4)

for x, y in P , using the subtraction of the cloop B(P ). Topological central
piques are easily characterized.

Proposition 3.3. A central pique P is topological if and only if the cloop

B(P ) is a topological abelian group, and the maps R : P → P and L : P →
P are homeomorphisms.

Proof. If P is topological, then the maps R : P → P ;x 7→ x · 0 and L :
P → P ;x 7→ 0 · x are certainly continuous, as are their respective inverses
R−1 : P → P ;x 7→ x/0 and L−1 : P → P ;x 7→ 0\x. The cloop addition
(3.1) is then continuous, as is the negation −y = 0/(yRL−1) according to
(3.3).

Conversely, if the cloop is a topological group and the maps R,L are
homeomorphisms, then it is apparent from (3.1), (3.3) and (3.4) that the
pique is topological.

Let P be a central pique. Let 〈R,L〉 denote the free group on the 2-
element set {R,L}. Then the group homomorphism

〈R,L〉 → InnP ; R 7→ R(0), L 7→ L(0)

makes P a right 〈R,L〉-module. Conversely, a right 〈R, L〉-module P yields
a pique with multiplication given by (3.2).

Proposition 3.4. Let 〈R,L〉 denote the free group on the 2-element set

{R,L}.
(a) The category of central piques is equivalent to the category of right

〈R,L〉-modules.

(b) The category of locally compact central piques is equivalent to the

category of locally compact right 〈R,L〉-modules.

Proof. Statement (a) follows immediately from the preceding considera-
tions, while (b) holds by Proposition 3.3.
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4. Schizophrenic objects and diagrammatic duality

Let D and E be concrete categories with products. Objects of D and E are
often just denoted by their underlying sets. A schizophrenic object is a set
S which is the underlying set of an object S or SD of D and an object S
or SE of E. Now for an object D of D, the morphism set D∗ = D(D,S) is
a subset of the product SD. If this subset inherits the structure of SD

E as a
product object of E, then the assignment D 7→ D∗ may become the object
part of a contravariant functor F : D → E. Similarly, for an object E of
E, de�ne E∗ = E(E,S). The assignment E 7→ E∗ may then become the
object part of a contravariant functor G : E → D. If the composites FG
and GF are naturally isomorphic to the identity functors on their domains,
then the categories D and E are said to be dual or dually equivalent via the
schizophrenic object S.

Let T be the one-dimensional torus, the group S1 of complex numbers
of unit modulus under multiplication, or the quotient abelian group R/Z.
The torus may be equipped with the subset topology induced from the Eu-
clidean topology on C, or the quotient topology induced from the Euclidean
topology on R. Then Pontryagin duality is the dual equivalence of the cat-
egory A of locally compact abelian topological groups with itself that is
given by T as schizophrenic object. For a locally compact abelian group
A, the dual object A∗ is called the character group of A. In particular, the
compact group T is the character group of the discrete group Z of integers,
while the locally compact group R of reals is its own character group.

Suppose that categories D and E are dually equivalent by a pair of
contravariant functors F and G. Let J be a small category. Then objects
of the functor category DJ are considered as diagrams in D, images of the
small category J . Similarly, objects of the functor category EJop

(consisting
of covariant functors to E from the opposite Jop of J , or contravariant
functors from J to E) are images of the opposite category Jop. For an
object θ : J → D of DJ , the duality between D and E gives a dual diagram

θF : J → E in EJop
. Similarly, a diagram ϕ : Jop → E in E yields a

dual diagram ϕG : J → D in D. The double duals θFG : J → D and
ϕGF : J → E are naturally isomorphic to their respective primals θ and
ϕ. Thus one obtains a diagrammatic duality between the functor categories
DJ and EJop

.
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5. Duality for central piques

Let P be a locally compact central pique, with inner multiplication group
H and pointed idempotent 0. The cloop B(P ) of P is a locally compact
abelian group, with dual abelian group B(P )∗. Let H act from the left on
B(P )∗ by (b)hβ = (bh)β for h ∈ H, β ∈ B(P )∗, and b ∈ P . A quasigroup
operation is de�ned on B(P )∗ by

ξ · η = Rξ + Lη. (5.5)

De�nition 5.1. The pique P ∗ dual to P consists of the space B(P )∗

equipped with the quasigroup operation (5.5), and pointed by the trivial
character 0 of B(P ).

Example 5.2. Consider the pique (R,−, 0) of real numbers under subtrac-
tion. It is a topological pique under the usual, locally compact (Euclidean)
topology on R. Since xR(0) = x − 0 = x and xL(0) = 0 − x = −x, the
〈R,L〉-module structure on R is given by xR = x and xL = −x for each
real number x. The character group of the cloop B(R,−, 0) = R is again
the usual abelian group R. For a real number ξ considered as the charac-
ter R → S1;x 7→ exp(2πixξ), the corresponding left actions are given by
Rξ = ξ and Lξ = −ξ. By (5.5), the dual pique (R,−, 0)∗ has the subtrac-
tion (ξ, η) 7→ ξ−η as its quasigroup operation. Similar considerations show
that the dual of the pique (Z,−, 0) of integers under subtraction is the unit
circle (S1, ◦, 1) under z◦w = zw for complex numbers z, w of unit modulus.
Here z is considered as the character Z → S1;n 7→ zn.

Let J be the free group on two generators R and L. Consider J as a
small category with a single object ◦, and with morphisms corresponding to
the elements of the group [2, Ch.1, �2]. The following proposition identi�es
locally compact central piques as J-diagrams in the category A of locally
compact abelian groups.

Proposition 5.3. The category of locally compact central piques is equiv-

alent to the functor category AJ . Under this equivalence, a pique P with

cloop B(P ) determines the covariant functor J → A speci�ed uniquely by

θ :

{
R 7→

(
R : B(P ) → B(P )

)
,

L 7→
(
L : B(P ) → B(P )

)
.

(5.6)
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Conversely, a functor ϕ : J → A with P = ◦ϕ determines a locally compact

central pique on P with

x · y = xRϕ + yLϕ (5.7)

for x, y in P .

Proof. The functor (5.6) maps to A, since the cloop of a locally compact
central pique is a locally compact abelian group, and since the right and
left multiplications by the pointed idempotent are homeomorphic homo-
morphisms. Conversely, (5.7) de�nes a locally compact central pique, since
the automorphisms Rϕ, Lϕ, and their inverses are continuous.

Proposition 5.3 has a dual counterpart.

Proposition 5.4. The category of locally compact central piques is equiva-

lent to the functor category AJop
. Under this equivalence, a pique P ′ with

cloop B(P ′) determines the contravariant functor J → A speci�ed uniquely

by

θ :

{
R 7→

(
R : B(P ′) → B(P ′)

)
,

L 7→
(
L : B(P ′) → B(P ′)

)
.

(5.8)

Conversely, a contravariant functor ϕ : J → A with P ′ = ◦ϕ determines a

locally compact central pique on P ′ with

x · y = Rϕx + Lϕy (5.9)

for x, y in P ′. In particular, if a central pique P corresponds to the functor

(5.6), then the dual pique P ∗ corresponds to the contravariant functor

θ∗ :

{
R 7→

(
R∗ : B(P )∗ → B(P )∗

)
,

L 7→
(
L∗ : B(P )∗ → B(P )∗

)
.

(5.10)

Proof. If the primal pique P is given by the functor (5.6) according to
Proposition 5.3, one obtains B(P ) as a right 〈R,L〉 module according to
Proposition 3.4. Diagrammatic duality then gives the dual group B(P )∗ as
the left 〈R,L〉-module corresponding to the dual pique P ∗ of De�nition 5.1,
equivalent to the functor (5.10).

Theorem 5.5. The correspondence between the covariant functors θ of

(5.6) and the contravariant functors θ∗ of (5.10) yields a duality for the

category of locally compact central piques.
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Proof. If P corresponds under the equivalence of Proposition 5.3 to the
functor (5.6), then P ∗ corresponds to (5.10). In turn, P ∗∗ corresponds to
the dual of this latter functor, namely the covariant functor θ∗∗ with

θ∗∗ :

{
R 7→

(
R∗∗ : B(P )∗∗ → B(P )∗∗

)
,

L 7→
(
L∗∗ : B(P )∗∗ → B(P )∗∗

)
.

Since θ∗∗ is naturally isomorphic to θ, the double dual pique P ∗∗ is naturally
isomorphic to the primal P .

6. Suvorov duality

An algebra is said to be idempotent if each singleton forms a subalgebra.
It is said to be entropic if each operation is a homomorphism. Finally, it is
said to be a mode if it is both idempotent and entropic [3]. For quasigroups,
idempotence reduces to satisfaction of the identity

x · x = x (6.11)

[7, (3)], while entropicity reduces to satisfaction of the identity

xy · zt = xz · yt (6.12)

[7, (2)]. Comparing with (3.2), it is apparent that a central pique P is a
mode if and only if

R + L = 1 (6.13)

and
RL = LR (6.14)

in the endomorphism ring of the cloop B(P ). In fact P is a mode if and
only if (6.13) alone is satis�ed, since then RL = R(1 − R) = (1 − R)R =
LR. Conversely, any quasigroup mode P is central, since the diagonal P̂
is the preimage of the singleton subquasigroup {P̂} under the quasigroup
homomorphism

P 2 → P 2/P̂ ; (x, y) 7→ P̂ (x, y)

to the set {P̂ (x, y) | x, y ∈ P} of cosets of P̂ under the multiplication

P̂ (x, y) · P̂ (x′, y′) = P̂ P̂ ·
(
(x, y)(x′, y′)

)
= P̂ (xx′, yy′)

well-de�ned by the entropic law (6.12).
Suvarov duality is now recovered as follows.
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Corollary 6.1. The duality of Theorem 5.5 restricts to a self-duality for

the category of locally compact quasigroup modes.

Proof. If the image of the functor (5.6) satis�es (6.13), then so does the
image of the dual functor (5.10). Since the images of the morphism parts
of the functors are commutative groups, there is no distinction between
covariant and contravariant functors.
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Quasigroups and Related Systems 14 (2006), 91 � 109Loops in Relativisti DynamisTzvi SarrAbstratThe Einstein veloity addition loop and the symmetri veloity addition loop are used todevelop relativisti dynami equations. Sine these loops are highly non-ommutative,the question arises whether one should use the left or the right translations of theseloops. We show that while the left translations are well-suited to relativisti dynamis,the right translations are problemati. We hypothesize that using the left translations isequivalent to a generalized form of the Equivalene Priniple.1. IntrodutionThis paper is about two loops whih play a entral role in Speial Relativity.The �rst is the Einstein veloity addition loop (Dv,⊕E), where
Dv = {v ∈ R

3 : |v| < c}(c = the speed of light) is the ball of relativistially admissible veloitiesand v⊕E u is the relativisti sum of the two veloities v and u. This is a leftBruk loop. The loop operation ⊕E is onstruted from the Lorentz trans-formations between two inertial systems. This onstrution will be arriedout in Setion 2. Einstein veloity addition is, in general, not ommutative.In fat, v ⊕E u = u ⊕E v if and only if v and u are parallel.The seond loop under investigation involves a new dynami variable,alled symmetri veloity, de�ned as follows. If the relative veloity betweentwo inertial systems is v, then the symmetri veloity between the systemsis the unique veloity w suh that w⊕Ew = v. Thus the symmetri veloityis the relativisti half of the given veloity. Let Ds = {v ∈ R
3 : |v| < 1}2000 Mathematis Subjet Classi�ation: 20N05, 83A05Keywords: loops, speial relativity, relativisti dynamis, Einstein veloity addition,symmetri veloity, Equivalene Priniple



92 T. Sarrdenote the set of relativistially admissible symmetri veloities (normalizedto c = 1). The set Ds admits a binary operation ⊕s, the addition ofsymmetri veloities, whih makes (Ds,⊕s) a loop.The two loops (Dv,⊕E) and (Ds,⊕s) are isotopi as topologial loops.Indeed, the funtion Ψ : Dv → Ds whih maps a given veloity v to its or-responding symmetri veloity w is a homeomorphism whih also respetsthe loop operations:
Ψ(v ⊕E u) = Ψ(v) ⊕s Ψ(u). (1)See Setion 5 for expliit de�nitions of Ψ and Ψ−1.Despite the above isotopy, these loops are di�erent. (Dv,⊕E) is a leftBruk loop, whereas (Ds,⊕s) is not. Moreover, these two loops behave dif-ferently geometrially. Friedman and Semon [2℄ have already exploited thisdi�erene. They used symmetri veloity and obtained an analyti solutionfor the motion of an eletri harge in a uniform, onstant eletromagneti�eld E,B in whih E and B are perpendiular. The �rst expliit solutionto this problem was found in 2002 by Takeuhi [5℄.The left translations of (Dv,⊕E) (respetively, (Ds,⊕s)) generate agroup of automorphisms of Dv (respetively, Ds). In turns out that inthe ase of (Dv,⊕E), the automorphisms are projetive (also alled a�ne).This means that line segments are mapped to line segments. In this way,

Dv an be seen as a subset of projetive spae P3. In ontrast, the auto-morphisms indued by symmetri veloity are onformal. Thus while thetwo automorphism groups are isomorphi as groups, they are quite di�erentgeometrially.The use of these two loops in developing relativisti dynamis is new andbrings with it an interesting dilemma. Relativisti dynamis is onernedwith desribing the motion of an objet whose veloity is hanging withtime due to a fore. Sine the veloities are bounded by c, they must beadded relativistially. Over an in�nitesimal time period dt, the fore addsa hange dv to the veloity v. The new veloity will be v ⊕E dv. Thus,veloity addition lies at the heart of relativisti dynamis, and it is naturalto use the loop (Dv,⊕E) to develop relativisti dynamis.Now omes the dilemma. Is the new veloity really v ⊕E dv? Or is it
dv⊕Ev? Sine Einstein veloity addition is, in general, not ommutative, wemust hoose between having the fore at on the left or on the right. At �rstglane, this hoie seems arbitrary. There is no a priori preferene. Whyshould we prefer one over the other? And how does the fore know whih



Loops in Relativisti Dynamis 93side to at on? Furthermore, does it matter? Does the dynamis basedon left translations oinide with the dynamis based on right translations?The answer to this last question will be interesting either way. Agreementof �left� and �right� dynamis would be fasinating given the highly non-ommutative nature of the veloity addition. On the other hand, if the twodynamis are at odds, we will then be faed with two additional questions:Whih dynamis does nature use? Why does nature use this one?Unfortunately, we annot yet ompare �left� and �right� dynamis be-ause no one to date has sueeded in using the right translations to developrelativisti dynamis. Indeed, Friedman [1℄ uses the left translations of theEinstein veloity addition loop (Dv,⊕E) to derive the relative dynamisequation
m0

dv(τ)

dτ
= q(E + v(τ) × B − c−2〈v(τ)|E〉v(τ)) (2)for a partile of harge q and rest-mass m0 in an eletromagneti �eld

E,B. Here, τ is the proper time of the partile. Friedman's developmentis straightforward. The right translations, on the other hand, possess someinherent pathologies. We will attempt to explain this asymmetry in termsof the physial interpretation of the loop operations.Note that the traditional approah to relativisti dynamis does notenounter the above dilemma. In fat, relativisti dynamis is usually de-veloped without referene to Einstein veloity addition at all. In [3℄, forexample, one starts with the assumption that the fore on, say, a hargedpartile is equal to the rate of hange of the partile's relativisti momen-tum. Sine a partile with harge q and veloity v in an eletromagneti�eld E,B experienes a fore F = q(E + v × B), the relativisti dynamisequation in this ase is
m0

d(γv)

dt
= q(E + v × B). (3)In [1℄, it is shown that (2) and (3) are equivalent. Note that although thetraditional approah avoids our dilemma, the equivalene of (2) and (3)means that the traditional approah impliitly assumes that the fore atson the left. See also [4℄.This paper is organized as follows. In the next setion, we onstrutthe Einstein veloity addition loop from the Lorentz transformations. InSetion 3, the left translations of this loop are used to derive the relativistidynamis equation (2). Setion 4 desribes the di�ulties inherent in usingthe right translations to develop relativisti dynamis. Setion 5 is devoted



94 T. Sarrto the symmetri veloity addition loop. Here, also, we will see that the lefttranslations are preferred over the right. In Setion 6, we disuss possiblereasons why the left and right translations should behave so di�erently.The �nal setion o�ers suggestions for further researh. One diretion isto develop relativisti dynamis using the triple produt to overome thedi�ulties of the right translations. Another approah is to show that usingthe left translations is atually equivalent to the Equivalene Priniple. Thelatter idea will be taken up in a forthoming paper.2. Constrution of the Einstein veloity addition loopIn this setion, we will onstrut the Einstein veloity addition loop fromthe Lorentz spaetime transformation between two inertial systems K and
K ′. We assume that the spatial axes of K are parallel to those of K ′ andthat at time t = 0, the origins of the two systems oinided. The spaetimeoordinates of an event in K will be denoted by (

t
r

), where t ∈ R isthe time of the event and r ∈ R
3 represents the loation of the event. Theoordinates of the same event in K ′ will be denoted by (

t′

r′

).Suppose that the veloity of K ′ with respet to K is v. Then the Lorentztransformation from K ′ to K is
(

t
r

)
= γ

(
1 c−2vT

v Pv + α(I − Pv)

) (
t′

r′

)
, (4)where γ = γ(v) = 1√

1−
|v|2

c2

, α = α(v) = 1
γ(v) , vT denotes the transpose of

v, and Pv denotes the projetion operator onto v.The physial de�nition of the Einstein veloity addition is as follows.We are given that the veloity of K ′ with respet to K is v. Suppose thatan observer at rest in system K ′ measures an objet's veloity as u. Thenthe veloity of this objet as measured by an observer at rest in system Kis alled the relativisti sum of v and u and is denoted by v ⊕E u.Consider motion with uniform veloity u in system K ′. The world-lineof this motion is (
t′

ut′

)
. From (4), this world-line in system K is

γ

(
t′ + v

T
ut′

c2

vt′ + t′Pvu + αt′(I − Pv)u

) (5)
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γt′

(
1 + 〈v|u〉

c2

v + u‖ + αu⊥

)
, (6)where u‖ = Pvu denotes the omponent of u parallel to v and u⊥ =

(I − Pv)u denotes the omponent of u perpendiular to v. This de�nes auniform motion in system K with veloity
v ⊕E u =

v + u‖ + αu⊥

1 + 〈v|u〉
c2

, (7)with α = α(v) =
√

1 − |v|2

c2
. This de�nes the binary operation ⊕E on Dv.The pair (Dv,⊕E) is a left Bruk loop.In ase v and u are parallel, the Einstein veloity addition redues to
v ⊕E u =

v + u

1 + vu
c2

, (8)where v = |v| and u = |u|. In ase v and u are perpendiular, the formulabeomes
v ⊕E u = v + α(v)u. (9)Note that the veloity addition is ommutative only for parallel veloities.3. Left translationsIn [1℄, the left translations of the loop (Dv,⊕E) are used to obtain therelativisti dynamis equation

m0
dv(τ)

dτ
= q(E + v(τ) × B − c−2〈v(τ)|E〉v(τ)), (10)where τ is the proper time of the partile. It is then shown that (10) isequivalent to (3). Here we give an outline of that development. For details,see [1℄.For eah v in the veloity ball Dv, we de�ne the left translation Lv :

Dv → Dv by
Lv(u) = v ⊕E u. (11)See Figure 1.
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(a)
(b)Figure 1. Ation of the veloity addition on Dv.

(a) A set of 5 uniformly spaed diss ∆j obtained by interseting the three-dimensional ve-loity ball Dv of radius c = 3·108m/s with y-z planes at x = 0,±108,±2·108m/s. (b) Theimages of these ∆j under the left translation Lv(u) = v ⊕E u, with v = (108, 0, 0)m/s.Note that Lv(∆j) is also a dis in Dv, perpendiular to v and moved in the diretion of
v. On eah dis ∆j , the map Lv ats as multipliation by a onstant in the omponentof u perpendiular to v.The left translations have some nie properties. First, eah left transla-tion Lv is a projetive automorphism of Dv. To appreiate the projetivegeometry at work here, envision the ation of Lv on Dv as follows. Fix a ve-loity u ∈ Dv. Identify u with the intersetion of the world-line L =

(
t
ut

)in the inertial system K and the plane Π = {(1, r) : r ∈ R}. Let K ′ be aninertial system moving with relative veloity v with respet to K. Applyingthe Lorentz transformation from K to K ′ to the line L yields a line L′ in
K ′ whose intersetion with Π is v ⊕E u.The seond nie property is losure under inverses. In fat L−1

v = L−v.The above two properties ombine to make the following useful harater-ization of the group Autp(Dv) of all projetive automorphisms of Dv. Let
ψ be any projetive automorphism of Dv. Set v = ψ(0) and U = L−1

v ψ.Then U is a projetive map that maps 0 → 0 and is thus a linear map whihan be represented by a 3× 3 matrix. Sine U maps Dv onto itself, it is anisometry and is represented by an orthogonal matrix. Sine ψ = LvU , thegroup Autp(Dv) is de�ned by
Autp(Dv) = {LvU : v ∈ Dv, U ∈ O(3)}. (12)We write Lv,U instead of LvU .The group Autp(Dv) is a representation of the Lorentz group by a�nemaps. It is a real Lie group of dimension 6, sine any element of the group



Loops in Relativisti Dynamis 97is determined by an element v of the three-dimensional open ball of radius
c in R

3 and an element U of the three-dimensional orthogonal group O(3).The dynamis equation (10) will be onstruted from the elements ofthe Lie algebra autp(Dv) of Autp(Dv). The elements of a Lie algebra are, byde�nition, the tangent spae of the identity of the orresponding Lie group.To obtain the elements of autp(Dv), let g(s) be a di�erentiable urve froma neighborhood I0 of 0 into Autp(Dv), with g(0) = L0,I , the identity of
Autp(Dv). Then g(s) has the form

g(s) = Lv(s),U(s), (13)where v : I0 → Dv is a di�erentiable funtion satisfying v(0) = 0 and
U(s) : I0 → O(3) is di�erentiable and satis�es U(0) = I.For an example of suh a urve g(s), �x v ∈ Dv. Let j = v/|v| andde�ne k = tanh−1(|v|/c). For s ∈ R, de�ne b(s) = tanh(sk)cj. Theresulting urve g(s) := Lb(s) is alled the one-parameter subgroup generatedby Lv. See Figure 2.
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Figure 2. Ation of a one-parameter subgroup on Dv.The e�et on a two-dimensional setion of Dv by the one-parameter subgroup g(s) gen-erated by the map Lv, for s = −1, 0, 1, 2. One ell of the grid has been darkenedalong with its images to help visualize the e�et of the transformation. Note that
g(−1) = L−1

v = L−v, g(0) = I-the identity, g(1) = Lv and g(2) = L2
v = Lv⊕Ev.



98 T. SarrWe denote by δ the element of autp(Dv) generated by g(s). For any�xed u ∈ Dv, g(s)(u) is a smooth urve in Dv, with g(0)(u) = u, and δ(u)is a tangent vetor to this line. Thus, the elements of autp(Dv) are vetor�elds δ(u) on Dv de�ned by
δ(u) =

d

ds
g(s)(u)

∣∣∣
s=0

. (14)Note that (14) is equivalent to using dv ⊕E v and not v ⊕E dv for theveloity at time t + dt.The expliit form of δ(u) is alulated in [1℄. There it is shown that theLie algebra
autp(Dv) = {δE,B : E,B ∈ R

3}, (15)where δE,B : Dv → R
3 is the vetor �eld de�ned by

δE,B(u) = E + u × B − c−2〈u |E〉u. (16)Note that eah generator δE,B(u) is a seond-degree polynomial in u. Thequadrati term an be used to derive the triple produt assoiated with
Dv as a Bounded Symmetri Domain. Moreover, these generators give theorret formulas for the transformation of an eletromagneti �eld betweentwo inertial systems. Two examples of these vetor �elds are shown inFigures 3 and 4.
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Figure 3. The vetor �eld generated by an eletri �eld E.The vetor �eld q/m · δE,B on a two-dimensional setion of Dv, with q/m = 107C/kg,
E = (2, 0, 0)V/m and B = 0. Sine E is in the positive diretion of the vx-axis, the



Loops in Relativisti Dynamis 99�eld tends to move partiles in this diretion. However, near the edge of Dv, the vetorseither shrink to zero magnitude or beome nearly tangent to Dv, re�eting the fat thatthe �ow generated by this �eld annot leave Dv.
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Figure 4. The vetor �eld generated by an eletromagneti �eld E,B.The vetor �eld q/m · δE,B on a two-dimensional setion of Dv, with q/m = 107C/kg,
E = (2, 0, 0)V/m and cB = (0, 0, 3)V/m. Here, the addition of a magneti �eld B ausesa rotation.Using the generator δE,B ∈ autp(Dv) de�ned by (16) to represent thefore on a partile with harge q and rest-mass m0, we obtain the relativistidynamis equation

dv(τ)

dτ
=

q

m0
δE,B(v(τ))or

m0
dv(τ)

dτ
= q(E + v(τ) × B − c−2〈v(τ)|E〉v(τ)), (17)where τ is the proper time of the partile. It is shown in [1℄ that (17) isequivalent to (3). 4. Right translationsWhen we try to mimi the development of the previous setion using theright translations, we run into problems.For eah v ∈ Dv, we de�ne the right translation Rv : Dv → Dv by

Rv(u) = u ⊕E v. (18)



100 T. SarrUnfortunately, the right translations do not possess any of the nie prop-erties of the left translations. The map Rv is not projetive. It's not evenanalyti. Moreover,
R−1

v 6= R−v. (19)In fat, R−1
v is not a right translation at all. We will express R−1

v (u)using Ungar's gyration operator [6℄. For x,y ∈ Dv, de�ne gyr[x,y] : Dv →
Dv by

gyr[x,y](z) = −(x ⊕E y) ⊕E (x ⊕E (y ⊕E z)). (20)Then
R−1

v (u) = u ⊕E − gyr[u,v]v. (21)This last equation shows that R−1
v is not a right translation. It is not learat all how to proeed from this point in developing relativisti dynamis.We think the di�ulties might be overome by using the triple produtassoiated with Dv as a Bounded Symmetri Domain, but this approah isstill in the beginning stages. See Setion 7.5. Symmetri veloity additionIn this setion, we onstrut the loop (Ds,⊕s) of symmetri veloities. Wederive the formula for the addition of symmetri veloities from the physialde�nition of this addition. The left translations of (Ds,⊕s), whih belongto the group Autc(Ds) of all onformal automorphisms of Ds, are thenused to derive the relativisti dynamis equation for symmetri veloities.The elements of the Lie algebra autc(Ds) will be expressed in terms ofa triple produt. We also obtain a very useful two-dimensional version of

(Ds,⊕s). This version is usually simpler to work with and yet aptures allof the properties of the full three-dimensional version. Here too, in the aseof symmetri veloity, we will see that while the left translations yield anie development of relativisti dynamis, the right translations are ratherproblemati, even in the simpler, two-dimensional ase.The de�nition of symmetri veloity is as follows. If the relative veloitybetween two inertial systems is v, then the symmetri veloity between thesystems is the unique veloity w1 suh that
v = w1 ⊕E w1 =

w1 + w1

1 + |w1|
c

|w1|
c

=
2w1

1 + |w1|2/c2
.



Loops in Relativisti Dynamis 101Instead of w1, we use a dimensionless vetor w = w1/c and all it s-veloity.Thus, the relationship between an s-veloity w and its orresponding ve-loity v is given by the two formulas
w = Ψ(v) =

v/c

1 +
√

1 − |v|2/c2
(22)and

v = Ψ−1(w) =
2cw

1 + |w|2
. (23)The set of all relativistially admissible s-veloities form a unit ball

Ds = {w ∈ R
3 : |w| < 1}. (24)The physial meaning of symmetri veloity is as follows. Consider twoinertial systems with relative veloity v between them. Plae two objets ofequal mass (test masses) at the origin of eah inertial system. The enter ofmass of the two objets will be alled the enter of the two inertial systems.The symmetri veloity is the veloity of eah system with respet to theenter of the systems, and the s-veloity is the dimensionless veloity of thesystems with respet to their enter (see Figure 5).
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Figure 5. The physial meaning of symmetri veloity.The physial meaning of symmetri veloity. Two inertial systems K and K′ with relativeveloity v between them are viewed from the system onneted to their enter. In thissystem, K and K′ are eah moving with veloity ±w.



102 T. SarrThe physial de�nition of s-veloity addition is as follows. Considerthree inertial systems K1, K2 and K3. We hoose the spae axes of K2to be parallel to the axes of K1 and the axes of K3 to be parallel to thoseof K2. Denote their origins by O1, O2 and O3, respetively. Denote by athe s-veloity of system K2 with respet to K1 and by w the s-veloity ofsystem K3 with respet to K2. Then the s-veloity w3 of system K3 withrespet to K1 (i.e., the veloity of K3 with respet to the enter of systems
K1 and K3) is alled the sum of the s-veloities a and w and is denoted by
a⊕s w (see Figure 6). In other words, if ca⊕E ca = v and cw⊕E cw = u,then a ⊕s w is 1/c times the relativisti half of v ⊕E u.
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Figure 6. The sum of s-veloities.The sum of s-veloities. Inertial systems K1, K2 and K3, with origins O1, O2 and O3,respetively, had a ommon origin at time t = 0. The line K̃12 is the world-line of theenter of the two inertial systems K1 and K2. Similarly, the lines K̃23 and K̃13 representthe world-lines of the enters of the systems K2, K3 and K1, K3, respetively. Theveloity of system K2 with respet to system K1 is v, and its s-veloity a is the veloityof K2 with respet to K̃12. Similarly, the veloity of system K3 with respet to system
K2 is u, and its s-veloity w is the veloity of K3 with respet to K̃23. By de�nitionof Einstein veloity addition, the veloity of system K3 with respet to system K1 is
v ⊕E u. The s-veloity of K3 with respet to K1, meaning the dimensionless veloity of
K3 with respet to K̃13, is alled the sum of symmetri veloities a and w and is denotedby a ⊕s w.



Loops in Relativisti Dynamis 103Using the above de�nition and formula (7) for Einstein veloity addition,we obtain the s-veloity-addition formula:
a ⊕s w =

(1 + |w|2 + 2〈a | w〉)a + (1 − |a|2)w

1 + |a|2|w|2 + 2〈a | w〉
. (25)As in the ase of Einstein veloity addition, it an be shown that a⊕s w =

w ⊕s a if and only if a and w are parallel.Note that a ⊕s w is a linear ombination of a and w and therefore be-longs to the plane Π generated by a and w. This allows us to obtain atwo-dimensional version of s-veloity addition. It is often su�ient (andeasier!) to work with the two-dimensional version. Moreover, we obtain anew method of solving relativisti dynami equations. If the motion underinvestigation has an invariant plane, then the relativisti dynami equa-tion for the symmetri veloity beomes a �rst-order analyti di�erentialequation in one omplex variable.We obtain the two-dimensional version of s-veloity addition by impos-ing a omplex struture on the plane Π. In other words, we treat the disk
∆ = Ds ∩ Π as a opy of the unit disk |z| < 1 of the omplex plane C.Denote by a the omplex number orresponding to the vetor a and by wthe omplex number orresponding to the vetor w. We use the identities

Re 〈a | w〉 =
aw + aw

2
, |w|2 = ww, (26)where the bar denotes omplex onjugation, to onvert (25) into our two-dimensional version:

a ⊕s w =
(1 + ww + aw + aw)a + (1 − aa)w

1 + aaww + aw + aw
(27)

=
(a + w)(1 + aw)

(1 + aw)(1 + aw)
=

a + w

1 + aw
. (28)This is the well-known Möbius transformation of the omplex unit disk.Thus, s-veloity addition is a generalization of the Möbius addition of om-plex numbers (see Figure 7).
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La(w) = a ⊕s w. (29)Eah left translation La is a onformal automorphism of Ds. In addition,the inverse of a left translation is again a left translation. In fat L−1
a =

L−a. As a result, the same argument as that in Setion 3 shows that thegroup Autc(Ds) of all onformal automorphisms of Ds has the followingharaterization:
Autc(Ds) = {LaU : a ∈ Ds, U ∈ O(3)}. (30)We write La,U instead of LaU .The group Autc(Ds) is a representation of the Lorentz group by onfor-mal maps. It is a real Lie group of dimension 6, sine any element of thegroup is determined by an element a of the three-dimensional open unit ballin R

3 and an element U of the three-dimensional orthogonal group O(3).The two groups Autp(Ds) and Autc(Ds) are isomorphi. In fat, theisomorphism is given by
Lv,U ←→ ΨLv,UΨ−1. (31)



Loops in Relativisti Dynamis 105Nevertheless, they lead to di�erent dynamis, as we will see.The relativisti dynamis equation for symmetri veloities will be on-struted from the elements of the Lie algebra autc(Ds) of Autc(Ds). Tode�ne the elements of autc(Ds), onsider di�erentiable urves g(s) from aneighborhood I0 of zero into Autc(Ds), with g(0) = L0,I , the identity of
Autc(Ds). Then

g(s) = La(s),U(s), (32)where a : I0 → Ds is a di�erentiable funtion satisfying a(0) = 0 and
U(s) : I0 → O(3) is di�erentiable and satis�es U(0) = I. We denote by ξthe element of autc(Ds) generated by g(s). For any �xed w ∈ Ds, g(s)(w)is a smooth urve in Ds, with g(0)(w) = w, and ξ(w) is a tangent vetorto this line. Thus, the elements of autc(Ds) are vetor �elds ξ(w) on Dsde�ned by

ξ(w) =
d

ds
g(s)(w)

∣∣∣
s=0

. (33)The expliit form of ξ(w) is alulated in [1℄. There it is shown that
autc(Ds) = {ξb,A : b ∈ R

3, A is a 3 × 3 antisymmetri matrix}, (34)where
ξb,A(w) = b + Aw − 2〈b|w〉w + |w|2b. (35)It is useful to express the generator ξb,A in terms of the triple produt
{a,b, c} = 〈a|b〉c + 〈c|b〉a − 〈a|c〉b, (36)where a,b, c ∈ R

3. This produt is alled the spin triple produt. Thebounded symmetri domain Ds endowed with the spin triple produt isalled the spin fator and is a domain of type IV in Cartan's lassi�ation.See Chapters 2 and 3 of [1℄ for a full treatment of the spin triple produt inthe theory of Bounded Symmetri Domains and Speial Relativity.Rewriting the generators (35) using the triple produt, we �nd that
autc(Ds) = {ξb,B : b,B ∈ R

3}, (37)where ξb,B : Ds → R
3 is the vetor �eld de�ned by

ξb,B(w) = b + w × B − {w,b,w}. (38)See Figures 8 and 9 for two examples of these vetor �elds.The similarities between Figures 3 and 8 and between Figures 4 and 9an be misleading. For example, the �ow generating Figure 4 is elliptial,while the trajetories in Figure 9 are irles.
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Loops in Relativisti Dynamis 107To obtain the relativisti dynamis equation for symmetri veloities,we start with
m0

d(γv)

dt
= q(E + v × B) (39)and hange variables from veloity v to s-veloity w. We obtain

m0c
dw(τ)

dτ
= q(E/2 + w(τ) × cB − {w(τ),E/2,w(τ)}) = qξE/2,cB(w(τ)).(40)Thus the left translations yield a nie development of relativisti dy-namis also in the ase of symmetri veloity. The right translations, onthe other hand, are again problemati. Even in the ostensibly simpler two-dimensional version of symmetri veloity addition, the inverses of righttranslations are rather unwieldy. Reall that the two-dimensional versionof s-veloity addition is

a ⊕s b =
a + b

1 + ab
. (41)The left inverses are well-behaved, and we have

L−1
a (b) =

−a + b

1 − ab
= L−a(b). (42)Compare this to the right inverse, whih is not even analyti:

R−1
a (b) =

b(1 − |a|2) − a(1 − |b|2)

1 − |b|2|a|2
. (43)Again the right translations have lead to an apparent dead end.6. Why are the left and righttranslations so di�erent?Why are the left translations so well-suited for relativisti dynamis, whilethe right translations are not? Who told fores that they have to at onthe left?Let's take another look at the physial de�nition of the Einstein veloityaddition. Suppose an observer is at rest in an inertial system K. Forany veloity a ∈ Dv, let Ka denote the inertial system whose axes areparallel to those of K and moves with relative veloity a with respet to K.Then the inverse funtions L−1

a and R−1
a now have the following physial



108 T. Sarrinterpretation. The question �What is the value of L−1
a (u)?� is equivalent tothe question �Whih veloity measured in the system Ka will be measured byour observer as u?� whereas the question �What is the value of R−1

a (u)?�is equivalent to the question �In whih system K ′ will the veloity a bemeasured by our observer as u?� In other words, the two inverse funtionsare answering fundamentally di�erent questions.This might explain why the left and right translations behave di�erently.But it still does not explain the preferred status of left over right.7. Suggestions for further researhAs mentioned previously, we believe that the triple produt might be helpfulin overoming the di�ulties inherent in using the right translations. Inthe two-dimensional version of s-veloity addition, for example, the tripleprodut is derived from (36) and takes the form
{z, b, w} = zbw, (44)where z, b, w ∈ C. Then, although neither the right translation Ra norits inverse is analyti, eah of these funtions does have a power seriesexpansion. More expliitly, for the right translation we have

Ra(b) =
b + a

1 + ba
=

∞∑

n=0

(−1)nD(a, b)n(a + b), (45)where D(a, b)x = {a, b, x} and D(a, b)0 = Id. For the inverse, we have
R−1

a (b) =
b(1 − |a|2) − a(1 − |b|2)

1 − |b|2|a|2
=

∞∑

n=0

Q(a, b)n(−a + b), (46)where Q(a, b)x = {a, x, b} and Q(a, b)0 = Id. It will be interesting to see ifthese power series make the right translations more amenable to relativistidynamis.Another line of investigation involves the Equivalene Priniple. Thispriniple has several versions. The lassial version ([3℄, p. 244) states thatmotion in a uniformly aelerated system is the same as that in an inertialsystem in the presene of a gravitational �eld. Aording to the generalizedEquivalene Priniple, motion in a uniformly aelerated system is the sameas that in an inertial system in the presene of any fore. We believe that



Loops in Relativisti Dynamis 109using the left translations of either the Einstein or the symmetri veloityloop is equivalent to the generalized Equivalene Priniple. In other words,the right translations are the wrong ones to use beause they ontraditthe generalized Equivalene Priniple. Moreover, if our belief is orret,then, one we sueed in developing relativisti dynamis from the righttranslations, we will have a way of testing the orretness of the EquivalenePriniple itself. These ideas will be taken up in a forthoming paper.Aknowledgments. The author would like to thank Professor YaakovFriedman for his ontinued guidane and the referee for his helpful remarks.Referenes[1℄ Y. Friedman: Physial Appliations of Homogeneous Balls, Progress inMathematial Physis 40 Birkhäuser, Boston, 2004.[2℄ Y. Friedman, M. Semon: Relativisti aeleration of harged partiles inuniform and mutually perpendiular eletri and magneti �elds as viewed inthe laboratory frame, Phys. Rev. E 72 (2005), 026603.[3℄ L. Landau, E. Lifshitz: The Classial Theory of Fields, Addison-Wesley,Reading, 1959.[4℄ W. Rindler: Relativity: Speial, General, and Cosmologial, Oxford Univer-sity Press, New York, 2001.[5℄ S. Takeuhi: Relativisti E×B aeleration, Phys. Rev. E 66 (2002), 37402.[6℄ A. A. Ungar: Beyond the Einstein Addition Law and its Gyrosopi ThomasPreession, Fundamental Theories of Physis 117, Kluwer Aademi Pub-lisher, 2001.Jerusalem College of Tehnology Reeived Otober 26, 2006Department of MathematisJerusalem 91160Israele-mail: sarr�jt.a.il
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Mathematical concepts of evolution algebras

in non-Mendelian genetics

Jianjun Paul Tian and Petr Vojt¥chovský

Abstract

Evolution algebras are not necessarily associative algebras satisfying eiej = 0 whenever
ei, ej are two distinct basis elements. They mimic the self-reproduction of alleles in
non-Mendelian genetics. We present elementary mathematical properties of evolution
algebras that are of importance from the biological point of view.

Several models of Mendelian [2, 4, 12, 6, 8, 11] and non-Mendelian ge-
netics [1, 5] exist. Based on the self-reproduction rule of non-Mendelian
genetics [1, 7], the �rst author introduced a new type of algebra [10], called
evolution algebra. In this paper we discuss some basic properties of evolution
algebras.

1. Evolution algebras and subalgebras

Let K be a �eld. A vector space E over K equipped with multiplication is
an algebra (not necessarily associative) if u(v + w) = uv + uw, (u + v)w =
uw + vw, (αu)v = α(uv) = u(αv) for every u, v, w ∈ E and α ∈ K.

Let {ei; i ∈ I} be a basis of an algebra E. Then eiej =
∑

k∈I aijkek

for some aijk ∈ K, where only �nitely many structure constants aijk are
nonzero for a �xed i, j ∈ I. The multiplication in E is fully determined by
the structure constants aijk, thanks to the distributive laws.

2000 Mathematics Subject Classi�cation: 17A20, 92C15, 20N05, 37N25
Keywords: Nonassociative algebra, evolution algebra, non-Mendelian genetics, allele,
self-reproduction
J. P. Tian would like to acknowledge the support from the National Science Founda-
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Let E be an algebra. Then F ⊆ E is a subalgebra of E if F is a subspace
of E closed under multiplication.

It is not di�cult to show that the intersection of subalgebras is a sub-
algebra. Thus, given a subset S of E, there is the smallest subalgebra of
E containing S. We call it the subalgebra generated by S, and denote it by
〈S〉. As usual:
Lemma 1.1. Let S be a subset of an algebra E. Then 〈S〉 consists of all

elements of the form α1(s1,1 · · · s1,m1)+ · · ·+αk(sk,1 · · · sk,mk
), where k > 1,

mi > 0, si,j ∈ S, αi ∈ K, and where the product si,1 · · · si,mi is parenthesized

in some way.

An ideal I of an algebra E is a subalgebra of E satisfying I · E ⊆ I,
E ·I ⊆ I. Clearly, 0 and E are ideals of E, called improper ideals. All other
ideals are proper. An algebra is simple if it has no proper ideals.

An evolution algebra is a �nite-dimensional algebra E over K with basis
{e1, . . . , ev} such that aijk = 0 whenever i 6= j. Upon renaming the
structure constants we can write eiei =

∑v
j=1 aijej . We refer to {e1, . . . , ev}

as the natural basis of an algebra E. An evolution algebra is nondegenerate
if eiei 6= 0 for every i. Throughout the paper we will assume that evolution

algebras are nondegenerate.

The multiplication in an evolution algebra is supposed to mimic self-
reproduction of non-Mendelian genetics. We think and speak of the gen-
erators ei as alleles. The rule eiej = 0 for i 6= j is then natural, and the
rule eiei =

∑
aijej can be interpreted as follows: aij is the probability that

ei becomes ej in the next generation, and thus
∑

aijej is the superposi-
tion of the possible states. Nevertheless, we will develop much of the theory
over arbitrary �elds and with no (probabilistic) restrictions on the structure
constants aij .

Given two elements

x =
v∑

i=1

αiei, y =
v∑

i=1

βiei,

of an evolution algebra, we have

xy =
v∑

i=1

αiei ·
v∑

j=1

βjej =
v∑

i=1

αiβie
2
i

=
v∑

i=1

αiβi

v∑
j=1

aijej

 =
v∑

j=1

(
v∑

i=1

αiβiaij

)
ej ,
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a formula we will use without reference.
The natural basis of an evolution algebra plays a privileged role among

all other bases, since the generators ei represent alleles. Importantly, the
natural basis is privileged for purely mathematical reasons, too. The fol-
lowing example illustrates this point:

Example 1.2. Let E be an evolution algebra with basis {e1, e2, e3} and
multiplication de�ned by e1e1 = e1 + e2, e2e2 = −e1 − e2, e3e3 = −e2 + e3.
Let u1 = e1 + e2, u2 = e1 + e3. Then (αu1 + βu2)(γu1 + δu2) = αγu2

1 +
(αδ + βγ)u1u2 + βδu2

2 = (αδ + βγ)u1 + βδu2. Hence F = Ku1 + Ku2 is a
subalgebra of E. However, F is not an evolution algebra:

Let {v1, v2} be a basis of F . Then v1 = αu1 + βu2, v2 = γu1 + δu2 for
some α, β, γ, δ ∈ K such that D = αδ−βγ 6= 0. By the above calculation,
v1v2 = (αδ + βγ)u1 + βδu2. Assume that v1v2 = 0. Then βδ = 0 and
αδ + βγ = 0. If β = 0, we have αδ = 0. But then D = 0, a contradiction.
If δ = 0, we reach the same contradiction. Hence v1v2 6= 0, and F is not an
evolution algebra.

We have just seen that evolution algebras are not closed under subal-
gebras. We therefore say that a subalgebra F of an evolution algebra E
with basis {e1, . . . , ev} is an evolution subalgebra if, as a vector space, it is
spanned by {ei; i ∈ I} for some I ⊆ {1, . . . , v}. The subset I determines
F uniquely, and we write F = E(I) = {

∑v
i=1 αiei; αi = 0 when i 6∈ I}.

Similarly, we de�ne an evolution ideal as an ideal I of E that happens
to be an evolution subalgebra. This concept is super�uous, however:

Lemma 1.3. Every evolution subalgebra is an evolution ideal.

Proof. Let F = E(I) be an evolution subalgebra . Let x =
∑

i∈I αiei be an
element of F and ej an allele. We need to show that xej ∈ F . When j 6∈ I
then xej = 0 ∈ F . Assume that j ∈ I. Since F is an evolution subalgebra,
ei ∈ F for every i ∈ I. Then xej = αje

2
j ∈ F , since F is a subalgebra.

Not every ideal of an evolution algebra is an evolution ideal:

Example 1.4. Let E be generated by e1, e2, where e1e1 = e1 + e2 = e2e2.

Then K(e1 + e2) is an ideal of E, but not an evolution subalgebra.

An evolution algebra is evolutionary simple if if has no proper evolution
ideals (evolution subalgebras).

Clearly, every simple evolution algebra is evolutionary simple. The con-
verse it not true, as is apparent from Example 1.4.
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The following theorem gives some basic properties of evolution algebras,
all easy to prove (or see [10]). Recall that an algebra is �exible if it satis�es
x(yx) = (xy)x.

Theorem 1.5. Evolution algebras are commutative (and hence �exible), but
not necessarily power-associative (hence not necessarily associative). Direct
products and direct sums of evolution algebras are evolution algebras. Evo-

lution subalgebra of an evolution algebra is an evolution algebra.

An algebra is real if K = R. An evolution algebra is nonnegative if it
is real and all structure constants aij are nonnegative. A Markov evolution

algebra is a nonnegative evolution algebra such that
∑

j aij = 1 for every
1 6 i 6 v.

When E is a real algebra, let E+ = {
∑

αiei; αi > 0}.

Lemma 1.6. Let E be a nonnegative evolution algebra. Then E+ is closed

under addition, multiplication, and multiplication by positive scalars.

Proof. Let x =
∑

αiei, y =
∑

βiei ∈ E+. Then x + y =
∑

(αi + βi)ei

clearly belongs to E+. Moreover, xy =
∑

j (
∑

i αiβiaij) ej ∈ E+, since αi,

βi, aij > 0 for every i, j. It is clear that E+ is closed under multiplication
by nonnegative scalars.

2. The evolution operator

Let E be an evolution algebra with basis {e1, . . . , ev}. Since we are mainly
interested in self-reproduction, we focus on the evolution operator Λ : E →
E, which is the (unique) linear extension of the map ei 7→ e2

i .

Lemma 2.1. Let E be an evolution algebra and x =
∑

αiei. Then Λ(x) =
x2, i.e.,

∑
α2

i e
2
i = (

∑
αiei)2.

Proof. This is an immediate consequence of the fact that eiej = 0 whenever
i 6= j.

When E is a real evolution algebra, we can equip it with the usual L1

norm, i.e., ‖
∑

αiei‖ =
∑
|αi|. Since E is then isomorphic to Rv as a

vector space, it becomes a complete vector space with respect to the metric
d(x, y) = ‖x− y‖. In other words, E is a Banach space.

Since v < ∞, all linear operators de�ned on E are continuous. In
particular, every left translation by z, de�ned by Lz(x) = zx, is a continuous
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operator on E. However, due to the lack of associativity, the composition
of two left translations does not have to be a left translation.

A (not-necessarily associative) Banach algebra is an algebra that is also
a Banach space with norm ‖ · ‖ satisfying ‖xy‖ 6 ‖x‖ · ‖y‖. Not every
evolution algebra is a Banach algebra. However:

Lemma 2.2. Let E be a real evolution algebra such that
∑

j |aij | 6 1 for

every i (eg. a Markov evolution algebra). Then E is a Banach algebra.

Proof. Let x =
∑

i αiei, y =
∑

i βiei. Then ‖x‖ · ‖y‖ =
∑

i |αi| ·
∑

j |βj |.
On the other hand,

‖xy‖ =

∥∥∥∥∥∥
∑

j

(∑
i

αiβiaij

)
ej

∥∥∥∥∥∥ =
∑

j

∣∣∣∣∣∑
i

αiβiaij

∣∣∣∣∣ 6∑
j

∑
i

(|αiβi| · |aij |)

=
∑

i

∑
j

|aij |

 |αiβi| 6
∑

i

|αiβi|,

and the needed inequality follows.

Note that even in the case of a Markov evolution algebra we never
have ‖xy‖ = ‖x‖ · ‖y‖ for every x, y, as long as v > 1. For instance,
‖eiej‖ = 0 < 1 = ‖ei‖ · ‖ej‖ when i 6= j.

Given x in an algebra E, we de�ne the plenary powers of x by x[0] = x,
x[n+1] = x[n]x[n]. Equivalently, we can set x[n] equal to Λn(x) for any n > 0.

Recall that composition of maps is an associative binary operation.
Thus:

Lemma 2.3. Let E be an algebra, x ∈ E, α ∈ K, and n, m > 0. Then:

(i) (x[n])[m] = x[n+m],

(ii) (αx)[n] = α(2n)x[n].

Proof. It remains to prove (ii), which is easy by an induction on n.

3. Occurrence relation

The question we are most interested in is the following: When does the allele

ei give rise to the allele ej? The phrase give rise can be interpreted in two
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ways: (i) the self-reproduction of ei yields ej with nonzero probability after
a given number of generations, or (ii) the self-reproduction of ei yields ej

with nonzero probability after some number of generations.

The �rst interpretation is studied below, while the second interpretation
is investigated later, starting with Section 5.

Let E be an algebra with basis {e1, . . . , ev}. We say that ei occurs in
x ∈ E if the coe�cient αi ∈ K is nonzero in x =

∑v
j=1 αjej . When ei

occurs in x we write ei ≺ x.

Lemma 3.1. Let E be a nonnegative evolution algebra. Then for every x,
y ∈ E+ and n > 0 there is z ∈ E+ such that (x + y)[n] = x[n] + z.

Proof. We proceed by induction on n. We have (x+y)[0] = x+y = x[0] +y,
and it su�ces to set z = y. Also, (x+y)[1] = (x+y)(x+y) = x[1]+2xy+y2.
By Lemma 1.6, 2xy + y2 = z belongs to E+.

Assume the claim is true for some n > 1. In particular, given x, y ∈ E+,
let w ∈ E+ be such that (x + y)[n] = x[n] + w. Then (x + y)[n+1] =
((x + y)[n])[1] = (x[n] + w)[1]. Since w ∈ E+ and x[n] ∈ E+ by Lemma 1.6,
we have (x[n] + w)[1] = (x[n])[1] + z = x[n+1] + z for some z ∈ E+.

Proposition 3.2. Let E be a nonnegative evolution algebra. When ei ≺ e
[n]
j

and ej ≺ e
[m]
k then ei ≺ e

[n+m]
k .

Proof. We have e
[m]
k = αjej +y for some αj 6= 0 and y ∈ E such that ej 6≺ y.

Moreover, by Lemma 1.6, we have αj > 0 and y ∈ E+. By Lemma 3.1,

e
[n+m]
k = (e[m]

k )[n] = (αjej + y)[n] = (αjej)[n] + z = α
(2n)
j e

[n]
j + z for some

z ∈ E+. Now, e
[n]
j = βiei + v for some βi > 0 and v ∈ E satisfying ei 6≺ v.

We therefore conclude that ei ≺ e
[n+m]
k .

The proposition does not generalize to all evolution algebras, as the
following example shows:

Example 3.3. Let E be an evolution algebra with basis {ei; 1 6 i 6 7}
such that e1e1 = e1, e2e2 = e4, e3e3 = e5 + e6, e4e4 = e1, e5e5 = e2,

e6e6 = e7, e7e7 = −e4. Then e
[1]
2 = e2e2 = e4, e

[2]
2 = e4e4 = e1. Thus

e1 ≺ e
[2]
2 . Also, e

[1]
3 = e3e3 = e5 + e6, e

[2]
3 = (e5 + e6)2 = e2

5 + e2
6 = e2 + e7.

Thus e2 ≺ e
[2]
3 . However, e

[3]
3 = (e2 + e7)2 = e2

2 + e2
7 = e4 − e4 = 0, and so

e
[n]
3 = 0 for every n > 3. This means that e1 6≺ e

[n]
3 for any n > 0.
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4. Occurrence sets

Let ei, ej be two alleles of an evolution algebra. Then the occurrence set of

ei with respect to ej is the set Oi,j = {n > 0; ei ≺ e
[n]
j }.

Recall that a semigroup is a set with one binary operation that satis�es
the associative law. When E is a nonnegative evolution algebra, every
occurrence set Oi,i is a subsemigroup of ({1, 2, . . . },+) by Proposition 3.2.

The goal of this section is to show that any �nite subset of {1, 2, . . . }
can be realized as an occurrence set of some evolution algebra, and that
every subsemigroup of ({1, 2, . . . },+) can be realized as an occurrence set
of some nonnegative evolution algebra. Hence the occurrence sets are as
rich as one could hope for.

Example 4.1. Let n > 1. Consider the evolution algebra E with generators

{e1, . . . , en+1} de�ned by e1e1 = e2, e2e2 = e3, . . . , en−1en−1 = en,

enen = e1+en+1, en+1en+1 = −e2. Then e
[m]
1 = em+1 for every 1 6 m < n,

e
[n]
1 = e1 + en+1, and e

[m]
1 = 0 for every m > n. Thus O1,1 = {n}.

Lemma 4.2. Let S be a �nite subset of {1, 2, . . . }. Then there is an

evolution algebra E such that O1,1 = S.

Proof. Let S = {n1, . . . , nm}. In the following calculations we label basis
elements of E also by ei,j ; these can be relabeled as ei at the end.

Let e1e1 = e2,1 + · · · + e2,m. Given 1 6 i 6 m, let e2,ie2,i = e3,i,
e3,ie3,i = e4,i, . . . , eni,ieni,i = e1 + eni+1,i, eni+1,ieni+1,i = −e1e1. Thus,
roughly speaking, we imitate Example 4.1 for every 1 6 i 6 m. It is now
not hard to see that O1,1 = S.

A semigroup is �nitely generated if it is generated by a �nite subset.
Here is a well-known fact:

Lemma 4.3. Every subsemigroup of ({1, 2, . . . },+) is �nitely generated.

Proof. Let S be a subsemigroup of ({1, 2, . . . },+). Let n be the smallest
element of S. For every 1 6 i < n let mi be the smallest element of S
such that mi is congruent to i modulo n, if such an element exists, else set
mi = n. We claim that A = {n, m1, . . . , mn−1} generates S. Suppose that
this is not the case and let s be the smallest element of S not generated
by A. Since s cannot be a multiple of n, there is 1 6 i < n such that s is
congruent to i modulo n. Then mi 6= n and mi < s. But then s = mi + kn
for some k > 0, so s ∈ A, a contradiction.
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Lemma 4.4. Let S be a subsemigroup of ({1, 2, . . . },+). Then there is a

nonnegative evolution algebra E such that O1,1 = S.

Proof. Assume that S is 1-generated, i.e., that S = {n, 2n, . . . } for some
n > 1. Then de�ne E by: e1e1 = e2, e2e2 = e3, . . . , en−1en−1 = en,
enen = e1. It is easy to see that O1,1 = S.

When S is generated by m elements, say n1, . . . , nm, we can use a
similar trick as in the proof of Lemma 4.2.

Every subsemigroup of ({1, 2, . . . },+) is �nitely generated by Lemma
4.3.

Problem 4.5. Can any subset of {1, 2, . . . } be realized as an occurrence

set of some evolution algebra?

Problem 4.6. Let S be a subset of {1, 2, . . . }, |S| = n. What is the

smallest integer v such that there is an evolution algebra E of dimension v
for which S is an occurrence set?

5. Occurrence based on evolution subalgebras

We are now going to look at the second interpretation of �ei gives rise to
ej .�

Lemma 5.1. Intersection of evolution subalgebras is an evolution subalge-

bra.

Proof. Let F = E(I), G = E(J) be two evolution subalgebras of E. Then
F ∩ G = E(I ∩ J) as a vector space. Since F ∩ G is a subalgebra, we are
done.

Thus for any subset S of E there exists the smallest evolution subalgebra
of E containing S, and we denote it by 〈〈S〉〉. The notation is supposed to
suggest that the evolution subalgebra generated by S can be larger than
the subalgebra generated by S.

We now de�ne another occurrence relation as follows: For x, y ∈ E, let
x � y if x ∈ 〈〈y〉〉.

Lemma 5.2. For x, y, z ∈ E we have:

(i) if x � y and y � x then 〈〈x〉〉 = 〈〈y〉〉,

(ii) if x � y and y � z then x � z,
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(iii) if x � y[n] for some n > 0 then x � y.

Proof. Easy.

In view of Lemma 5.2(iii), it makes no sense to speak of occurrence sets
(analogous to Oi,j) in the context of �, since every occurrence set would
be either empty or would consists of all nonnegative integers.

Lemma 5.3. Let F , G be evolutionary simple evolution subalgebras of E.

Then either F = G or F ∩G = 0.

Proof. Assume that there is x ∈ F ∩ G, x 6= 0. Then 〈〈x〉〉 is an evolution
subalgebra of both F and G. Since both F , G are evolutionary simple, it
follows that F = G = 〈〈x〉〉.

6. Algebraically persistent and transient generators

A generator ei of an evolution algebra E is algebraically persistent if 〈〈ei〉〉
is evolutionary simple, else it is algebraically transient.

Lemma 6.1. If E is an evolutionary simple evolution algebra then it has

no algebraically transient generators.

Proof. Assume that ei is an algebraically transient generator, i.e., that 〈〈ei〉〉
is not evolutionary simple. If E = 〈〈ei〉〉, we see right away that E is not
evolutionary simple. If 〈〈ei〉〉 is a proper evolution subalgebra of E then it
is a proper evolution ideal of E by Lemma 1.3, and E is not evolutionary
simple.

The following example shows that the converse of Lemma 6.1 does not
hold (but see Corollary 7.3):

Example 6.2. Let E have generators e1, e2 such that e1e1 = e1, e2e2 =
e2. Then 〈〈e1〉〉 = Ke1, 〈〈e2〉〉 = Ke2, which means that both e1, e2 are
algebraically persistent. Yet 〈〈ei〉〉 is a proper evolution ideal of E, and
hence E is not evolutionary simple.

Lemma 6.3. Let ei be an algebraically persistent generator of E, and as-

sume that ej ≺ eiei. Then ej is algebraically persistent.

Proof. Since ej ≺ eiei, we have 〈〈ei〉〉 ⊇ 〈〈ej〉〉. But 〈〈ei〉〉 is evolutionary
simple, thus 〈〈ei〉〉 = 〈〈ej〉〉. Then 〈〈ej〉〉 is evolutionary simple, and thus ej

is algebraically persistent.



120 J. P. Tian and P. Vojt¥chovský

7. Decomposition of evolution algebras

An evolution algebra E is indecomposable if whenever E = F ⊕G for some
evolution subalgebras F , G of E, we have F = 0 or G = 0. An easy
induction proves that every evolution algebra can be written as a direct
sum of indecomposable evolution algebras.

Here is an indecomposable evolution algebra that is not evolutionary
simple:

Example 7.1. Let E be generated by e1, e2, where e1e1 = e1, e2e2 = e1.
Then 〈〈e1〉〉 = Ke1, 〈〈e2〉〉 = E.

An evolution algebra E is evolutionary semisimple if it is a direct sum
of some of its evolutionary simple evolution subalgebras. Note that every
evolutionary simple evolution subalgebra of E can be written as 〈〈ei〉〉 for
some algebraically persistent generator of E.

Proposition 7.2. An evolution algebra E is evolutionary semisimple if and

only if all of its alleles ei are algebraically persistent.

Proof. Assume that E is evolutionary semisimple, and write E = 〈〈ei1〉〉 ⊕
· · · ⊕ 〈〈ein〉〉, where each eij is algebraically persistent. Let ej be an allele
of E. Then ej belongs to some 〈〈eik〉〉. Since 〈〈ej〉〉 is an evolution ideal of
〈〈eik〉〉 and eik is algebraically persistent, we conclude that 〈〈ej〉〉 = 〈〈eik〉〉.
Thus ej is algebraically persistent, too.

Conversely, assume that every allele of E is algebraically persistent. For
each ei let Ii = {j; ej � ei}. Given i 6= j, we have either Ii = Ij or
Ii ∩ Ij = ∅, by Lemma 5.3. Thus there exists {i1, . . . , in} ⊆ {1, . . . , v} = I
such that Ii1 ∪ · · · ∪ Iin = I, and the union is disjoint. In other words,
E = 〈〈ei1〉〉 ⊕ · · · ⊕ 〈〈ein〉〉.

Here is a partial converse of Lemma 6.1:

Corollary 7.3. An indecomposable evolution algebra with no transient gen-

erators is evolutionary simple.

Let E be an evolution algebra. Partition {1, . . . , v} as I ∪ J , where
ei ∈ I if and only if ei is an algebraically persistent generator of E. Let
P (E) = {

∑
αiei; αi = 0 for i 6∈ I}, and T (E) = {

∑
αiei; αi = 0 for

i 6∈ J}.

Lemma 7.4. P (E) is an evolutionary semisimple evolution subalgebra of

E.
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Proof. We �rst show that P (E) is an evolution subalgebra. Let x ∈ P (E),
y ∈ P (E), x =

∑
i∈I αiei, y =

∑
i∈I βiei, where I is as above. Then

xy =
∑

i∈I αiβie
2
i . By Lemma 6.3, e2

i is a linear combination of algebraically
persistent generators, and hence xy ∈ P (E).

Then P (E) is evolutionary semisimple by Proposition 7.2.

Observe:

Lemma 7.5. Let E(I), E(J) be evolution subalgebras of E such that E(I)
is a subalgebra of E(J). Then I ⊆ J . If E(I) is a proper subalgebra of

E(J), then I is a proper subset of J .

Thus:

Lemma 7.6. Every evolution algebra E has an evolutionary simple evolu-

tion subalgebra. In particular, P (E) 6= 0.

Proof. We proceed by induction on v. If v = 1, then E = 〈〈e1〉〉 is evolution-
ary simple. Assume that the lemma is true for v − 1. If E = E({1, . . . , v})
is evolutionary simple, we are done. Else, by Lemma 7.5, there is a proper
subset I of {1, . . . , v} such that E(I) is a proper evolution subalgebra. By
induction, E(I) contains an evolutionary simple evolution subalgebra.

Every evolution algebra E decomposes as a vector space into P (E) ⊕
T (E), and P (E) 6= 0, by the above lemma. Moreover, P (E) is an evolution-
ary semisimple evolution algebra, and can therefore be written as a direct
sum of evolutionary simple evolution algebras 〈〈eij 〉〉.

However, the subspace T (E) does not need to be a subalgebra of E,
hence it does not need to be an evolution algebra. But we can make it into
an evolution algebra:

Let T (E) = {
∑

αiei; αi = 0 for i 6∈ J}. Let J∗ = J \ {j; e2
j ⊆ P (E)}.

(This will guarantee that the resulting evolution algebra is nondegenerate.)
Let T ∗(E) be de�ned on the subspace generated by {ei; i ∈ J∗} by eiei =∑

j∈J∗ aijej , where the structure constants aij are inherited from E. If
J∗ 6= ∅, then T ∗(E) is a nondegenerate evolution algebra. If J∗ = ∅ then all
algebraically transient generators of E vanish after the �rst reproduction,
and therefore have no impact, biologically speaking.

If E1 = T ∗(E) 6= 0, we can iterate the decomposition and form P (E1),
T (E1) and T ∗(E1), etc. Eventually we reach a point n when T ∗(En) = 0,
i.e., every transient generator of En disappears after the �rst generation.
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Let us emphasize that the decomposition of E thus obtained results in
an evolution algebra not necessarily isomorphic to E; some information may
be lost in the decomposition P (E)⊕ T (E).
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