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Lie algebras of operators and invariant

GL(2, R)-integrals for Darboux type differential systems

O.V. Diaconescu, M.N. Popa

Abstract. In this article two-dimensional autonomous Darboux type differential
systems with nonlinearities of the ith (i = 2, 7) degree with respect to the phase vari-
ables are considered. For every such system the admitted Lie algebra is constructed.
With the aid of these algebras particular invariant GL(2, R)-integrals as well as first
integrals of considered systems are constructed. These integrals represent the alge-
braic curves of the (i − 1)th (i = 2, 7) degree. It is showed that the Darboux type
systems with nonlinearities of the 2nd, the 4th and the 6th degree with respect to the
phase variables do not have limit cycles.
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Consider the system of differential equations

dxj

dt
= aj

αxα + aj
α1α2...αm

xα1xα2 ...xαm (j, α, α1, α2, ..., αm = 1, 2; m ≥ 2), (1)

where coefficient tensor a
j
α1α2...αm is symmetrical in lower indices, in which the com-

plete convolution holds. The system (1) will be considered with the action of the
group GL(2, R) of center-affine transformations [1].

We shall consider the following center-affine invariants and comitants [1] of the
system (1) written in the tensorial form

I1 = aα
α, I2 = aα

βaβ
α, K2 = aα

βxβxγεαγ , K̃m−1 = aα
αα1α2...αm−1

xα1xα2 ...xαm−1 ,

K̃m+1 = aα
α1α2...αm

xα1xα2 ...xαmxβεαβ , (2)

where εαβ is the unit bi-vector with coordinates ε11 = ε22 = 0, ε12 = −ε21 = 1.

It is easy to see that when the condition K̃m+1 ≡ 0 holds, the system (1) takes
the form

dxj

dt
= aj

αxα + mxjR(x1, x2) ≡ P j(x1, x2) (j, α = 1, 2), (3)

where R(x1, x2) is a homogeneous polynomial of the (m − 1)th order. As it is well
known, the system (3) is called a Darboux type differential system (see, for example,
[2, 3]).

c© O.V. Diaconescu, M.N. Popa, 2006

3



4 O.V. DIACONESCU, M.N. POPA

A series of papers is devoted to the problem of the investigation of systems of
the form (3) from different points of view (see, for example, [2–7]).

Note that the family of systems (3) is a subset of the family of systems (1)
defined via center-affine invariant conditions. Indeed, one can verify easily that for
the system (3) the conditions K̃m+1 ≡ 0, K̃m−1 = (m+1)R(x1, x2) hold. Therefore
we have the next

Lemma 1. A system (1) belongs to a family of the Darboux type differential systems
(3) with R(x1, x2) 6≡ 0 if and only if K̃m+1 ≡ 0, K̃m−1 6≡ 0.

For the system (1) with K̃m+1 ≡ 0 and m = 2, 3, ..., 7 or, that is the same, for
(3) with m = 2, 3, ..., 7, two algebraic curves of the form

k∑

j=0

Aj(x
1)k−j(x2)j = Bk (k = 2,m − 1), (4)

where B2 = 0, and Bm−1 6= 0 and Aj are polynomials in the coefficients of this
system, are particular invariant GL(2, R)-integrals.

Remark 1. The construction of particular invariant GL(2, R)-integrals (4) is
remarkable, because as it is shown in [2], the system (3) can have only one limit
cycle and if it exists, it represents an algebraic curve of the form (4) with k = m− 1
and Bk 6= 0, surrounding the origin of coordinates.

Lemma 2. If the factorization over C[x, y] of the left-hand side of the algebraic
curve of the form (4) with Bm−1 6= 0 contains at least one real linear factor, then
this algebraic curve cannot be of the ellipsoidal form.

Proof. Suppose that some algebraic curve of the form (4) with Bm−1 6= 0 can be
written as

(Ax1 + Bx2)
m−2∑

j=0

A′

j(x
1)m−j−2(x2)j = Bm−1,

where the linear factor Ax1 + Bx2 is real. Suppose that the last equation has
the ellipsoidal form, surrounding the origin of coordinates, it means, that any line,
passing through the origin, has to intersect the curve in two points. Particularly,
this holds for the line Ax1+Bx2 = 0. However, in this case we get the contradiction:
at the intersection points we have 0 = Bm−1, i.e. the assertion of Lemma 2 is true.

Theorem 3. System (1) with K̃m+1 ≡ 0 has the particular invariant GL(2, R)-
integral

K2 = 0,

where K2 is from (2).
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Proof. According to Lemma 1, the system (1) with K̃m+1 ≡ 0 has the form (3).
Denote by Λ the operator

P 1(x1, x2)
∂

∂x1
+ P 2(x1, x2)

∂

∂x2
, (5)

where P j (j = 1, 2) is from (3). It is easy to see that

Λ(K2) = K2

(
I1 +

2m

m + 1
K̃m−1

)
,

where I1, K2 and K̃m−1 are from (2). This identity shows that K2 is a particular
integral of the system (3) or, that is the same, of the system (1) with K̃m+1 ≡ 0.
Theorem 3 is proved.

Consider the differential operator

X = ξ1 ∂

∂x1
+ ξ2 ∂

∂x2
, (6)

where ξ1 and ξ2 are polynomials in variables x1, x2 and in coefficients of the system
(3).

According to [8], we can show that the system (3) admits the operator (6) if and
only if its coordinates satisfy the system of constitutive equations

ξ
j
xαPα = ξβP

j

xβ (j, α, β = 1, 2), (7)

where ξ
j
xα =

∂ξj

∂xα
and P

j

xβ =
∂P j

∂xβ
.

As well, according to [8] we have that if the system (3) admits the operator (6),
then we can apply Lie theorem on integrating factor: The system (3) admits a group
with the operator (6) if and only if the function µ of the form

µ−1 = ξ1P 2 − ξ2P 1 (8)

is an integrating factor of the equation

P 2dx1 − P 1dx2 = 0. (9)

In what follows we shall say that µ is an integrating factor of the system (3) if
it is an integrating factor of the equation (9).

Theorem 4. The system (1) with m = 2 and K̃3 ≡ 0 has the invariant GL(2, R)-
integrating factor µ of the form

µ−1 = K2Φ1,



6 O.V. DIACONESCU, M.N. POPA

where K2 is from (2) and

Φ1 ≡ 8I1K̃1 − 12K3 + 3(I2
1 − I2) = 0 (10)

is a particular invariant GL(2, R)-integral of this system.

In (10) invariants and comitants I1, K2, K̃1 = aα
αβxβ are taken from (2), and

K3 = aα
βaβ

αγxγ

are defined in [1].

Proof. Consider the system (3) with m = 2 and x1 = x, x2 = y, written in the form

dx

dt
= cx + dy + 2x(gx + hy) ≡ P 1(x, y),

dy

dt
= ex + fy + 2y(gx + hy) ≡ P 2(x, y).

(11)

where c, d, e, f, g, h ∈ R.

Considering (7) it is easy to verify that the system (11) admits the two-
dimensional commutative Lie algebra of operators of the form

Z1 =

(
x

∂

∂x
+ y

∂

∂y

)
[2(fg − eh)x + 2(ch − dg)y + cf − de],

Z2 = {[h(cf − de) + c(dg − ch)] x + d(dg − ch)y + 2 [g(dg − ch) + h(fg−

−eh)x2
]} ∂

∂x
+ {e(dg − ch)x + d(fg − eh)y + 2 [g(dg − ch) + h(fg − eh)] xy}

∂

∂y
.

Using any one of these operators and (8) we obtain up to a constant factor an
integrating factor of the system (11), in the form

µ−1 = [2(fg − eh)x + 2(ch − dg)y + cf − de] [−ex2 + (c − f)xy + dy2]. (12)

Remark 2. In what follows we will use invariants I1 and I2 and comitant K2 from
(2) for the system (3) with a1

1 = c, a1
2 = d, a2

1 = e, a2
2 = f

I1 = c + f, I2 = c2 + 2de + f2, K2 = −ex2 + (c − f)xy + dy2. (13)

Besides I1, I2,K2, calculating for the system (11) the comitants K̃1 = aα
αβxβ and

K3 we obtain

K̃1 = 3(gx + hy), K3 = [g(2c + f) + eh]x + [h(c + 2f) + dg]y. (14)
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We observe that the second factor from (12) exactly coincides with K2. Moreover,
considering (13),(14) we obtain the first factor from (12) in the form (10) up to a
constant factor.

Using the operator (5), one can verify that the first factor from (12) as well as
the second one (Theorem 3) is a particular integral for the system (11), or, that is
the same, for the system (1) with m = 2 and K̃3 ≡ 0. Theorem is proved.

Theorem 5. The system (1) with m = 3 and K̃4 ≡ 0 has an invariant GL(2, R)-
integrating factor µ of the form

µ−1 = K2Φ2,

and
Φ2 ≡ 3(4I1Q2 − 3I2

1 K̃2 + 2J7K2) − 4I1(I
2
1 − I2) = 0 (15)

is a particular invariant GL(2, R)-integral of this system.

In the last expression the invariants and comitants I1, I2,K2, K̃2 = aα
αβγxβxγ

are taken from (2), and

J7 = aα
p a

β
αβqε

pq, Q2 = aα
βa

β
αγδx

γxδ (16)

are defined in [9] (ε11 = ε22 = 0, ε12 = −ε21 = 1).

Proof. Consider the system (3) with m = 3 and x1 = x, x2 = y, written in the form

dx

dt
= cx + dy + 3x(gx2 + hxy + iy2) ≡ P 1(x, y),

dy

dt
= ex + fy + 3y(gx2 + hxy + iy2) ≡ P 2(x, y),

(17)

where c, d, e, f, g, h, i ∈ R.

Then it is easy to verify with the aid of constitutive equations (7) that this
system admits the two-dimensional commutative Lie algebra of operators

Z1 =

(
x

∂

∂x
+ y

∂

∂y

)
{(c + f)(cf − de) + 3[(cf − de)g + f2g − efh + e2i]x2−

−6(dfg − cfh + cei)xy + 3[d2g + c(c + f)i − d(ch + ei)]y2},

Z2 = {[defh+c(−2dfg+deh−f2h)+c2(fh−2ei)]x+3[dg(−2fg+eh)+cg(fh−2ei)+

+h(−f2g+efh−e2i)]x3−2d(dfg−cfh+cei)y+3[−d2gh+ci(−ch+fh−2ei)+d(ch2−

−2fgi+ ehi)]xy2}
∂

∂x
+ {−2e(dfg− cfh+ cei)x+(d(−2f2g + ceh+ efh)+ cf(−ch+

+fh−2ei))y+3(dg(−2fg+eh)+cg(fh−2ei)+h(−f2g+efh−e2i))x2y+3(−d2gh+

+ci(−ch + fh − 2ei) + d(ch2 − 2fgi + ehi))y3}
∂

∂y
.
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Using any of these operators and equality (8) we obtain up to a constant an inte-
grating factor of the system (17) in the form

µ−1 = {(c+ f)(cf − de)+ 3[(cf − de)g + f2g− efh+ e2i]x2 − 6(dfg− cfh+ cei)xy+

+3[d2g + c(c + f)i − d(ch + ei)]y2}[−ex2 + (c − f)xy + dy2]. (18)

Calculating J7, Q2 and K̃2 = aα
αβγxβxγ for the system (17) we obtain

K̃2 = 4(gx2 + hxy + iy2), J7 = −4dg + 2ch − 2fh + 4ei, Q2 = (3cg + fg + eh)x2+

+2(dg + ch + fh + ei)xy + (dh + ci + 3fi)y2. (19)

We observe that the second factor from (18) exactly coincides with K2. Moreover,
considering (13) and (19) we obtain the first factor from (18) in form (15) up to a
constant factor.

Using the operator (5), one can verify that the first factor from (18) as well as
the second one (Theorem 3) is a particular integral for the system (17) or, that is
the same, for the system (1) with m = 3 and K̃4 ≡ 0. Theorem is proved.

Remark 3. In [7] it is shown that for the existence of a limit cycle for the system
(1) with m = 3 and K̃4 ≡ 0, surrounding the origin, it is necessary and sufficient
that the following conditions hold

2I2 − I2
1 < 0; I2

1J4 + 2J2
7 > 0; I1(4I1Q2 − 3I2

1 K̃2 + 2J7K2)|y=0 > 0,

where I1, I2, J7,K2, K̃2, Q2 are from (2) and (16) and J4 = aα
αpra

β
βqsε

prεrs. Moreover,
the limit cycle is unique and it is stable (unstable) if I1 > 0 (I1 < 0) and has the
form (15).

Theorem 6. Differential system (1) with m = 4 and K̃5 ≡ 0 has the invariant
GL(2, R)-integrating factor µ of the form

µ−1 = K2Φ3,

and

Φ3 ≡ 8(5I2
1 −I2)(4I1K̃3−5M1)+96K2(M3−2I1M2)+15(5I2

1 −I2)(I
2
1 −I2) = 0 (20)

is a particular invariant GL(2, R)-integral of this system.

Here invariants and comitants I1, I2,K2, K̃3 = aα
αβγδx

βxγxδ are from (2), and

M1 = aα
βa

β
αγδµxγxδxµ, M2 = aα

βa
γ
δαγµxµεβδ, M3 = aα

βa
γ
δ aµ

µγνxδεβν .
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Proof. Consider the system (3) with m = 4 and x1 = x, x2 = y, written in the
form

dx

dt
= cx + dy + 4x(gx3 + hx2y + ixy2 + jy3),

dy

dt
= ex + fy + 4y(gx3 + hx2y + ixy2 + jy3),

(21)

where c, d, e, f, g, h, i, j ∈ R.

This system admits a two-dimensional commutative Lie algebra with one of
operators in the form

Z1 =

(
x

∂

∂x
+ y

∂

∂y

)
× ϕ3(x, y),

where

ϕ3(x, y) = {−(cf − de)[2(c + f)2 + (cf − de)] − 4[2c2fg + de(−5fg + eh)−

−c[2deg+f(−5fg+eh)]+2(f3g−ef2h+e2fi−e3j)]x3−12[d2eg−d(cfg+2f2g+ceh)+

+c(cfh+2f2h−2efi+2e2j)]x2y−12[2d2fg+c(2c+f)(fi−ej)+d[−2cfh+e(−fi+

+ej)]]xy2+4[2d3g−d2(2ch+ei)−c(2c2 +5cf +2f2)j+d(2c2i+cfi+5cej+2efj)]y3}.

Using this operator and equality (8) we obtain up to a constant an integrating factor
of the system (21) in the form

µ−1 = ϕ3(x, y) × [−ex2 + (c − f)xy + dy2]. (22)

Calculating M1, M2, M3 and K̃3 for the system (21) we obtain

K̃3 = 5(gx3 + hx2y + ixy2 + jy3), M1 = (4cg + fg + eh)x3 + (3dg + 3ch + 2fh+

+ 2ei)x2y + (2dh + 2ci + 3fi + 3ej)xy2 + (di + cj + 4fj)y3, M2 = −
5

3
(3dg−

ch + fh− ei)x −
5

3
(dh − ci + fi− 3ej)y, M3 =

5

3
(−3cdg + c2h − deh − cfh+

+ 2cei − efi + 3e2j)x +
5

3
(−3d2g + cdh − 2dfh + dei + cfi − f2i + 3efj)y.

(23)

The second factor from (22) exactly coincides with K2. Moreover considering
(13) and (23) we obtain the first factor from (22) in the form (20) up to a constant.

Using the operator (5), one can verify that the first factor from (22) as well as
the second one (Theorem 3) is a particular integral for the system (21) or, that is
the same, for the system (1) with m = 4 and K̃5 ≡ 0. The theorem is proved.
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Theorem 7. The differential system (1) with m = 5 and K̃6 ≡ 0 has the invariant
GL(2, R)-integrating factor µ of the form

µ−1 = K2Φ4,

and

Φ4 ≡ 5(5I2
1 − 2I2)(5I

2
1 K̃4 − 6I1N1) − 60K2(3I

2
1N2 − 2I1N3 − K2N4)+

+12I1(I
2
1 − I2)(5I

2
1 − 2I2) = 0 (24)

is a particular invariant GL(2, R)-integral of this system.

Here invariants and comitants I1, I2,K2, K̃4 = aα
αβγδµxβxγxδxµ are from (2),

and

N1 = aα
βa

β
αγδµνxγxδxµxν , N2 = aα

p a
β
qαβγδx

γxδεpq, N3 = aα
p a

β
δ a

γ
αβγµqx

δxµεpq,

N4 = aα
p aβ

r a
γ
αβγsqε

pqεrs.

Proof. Consider the system (3) with m = 5 and x1 = x, x2 = y in the form

dx

dt
= cx + dy + 5x(gx4 + hx3y + ix2y2 + jxy3 + ky4),

dy

dt
= ex + fy + 5y(gx4 + hx3y + ix2y2 + jxy3 + ky4),

(25)

where c, d, e, f, g, h, i, j, k ∈ R. This system admits a two-dimensional commutative
Lie algebra with one of operators

Z1 =

(
x

∂

∂x
+ y

∂

∂y

)
× ϕ4(x, y),

where

ϕ4(x, y) = (c + f)(cf − de)[3(c + f)2 + 4(cf − de)] + 5[3d2e2g + 3c3fg−

−c2[3deg +f(−13fg+ eh)]−de(13f2g−4efh+ e2i)+ c[de(−16fg + eh)+f(13f2g−

−4efh+e2i)]+3(f4g−ef3h+e2f2i−e3fj+e4k)]x4+20[df(4de−3f2)g+c3fh−c2(dfg+

+deh−4f2h+efi)+c(d2eg−4df2g−4defh+3f3h+de2i−3ef2i+3e2fj−3e3k)]x3y−

−10[3d3eg−d2[9f2g+3c(fg+eh)+e2i]−c(3c+f)(cfi+3f2i−3efj+3e2k)+d[3c2(fh+

+ei)+cf(9fh+2ei)+3e(f2i−efj+e2k)]]x2y2−20[3d3fg−d2f(3ch+ei)−c(3c2+4cf+

+f2)(fj−ek)+d[3c2fi+ef(fj−ek)+c(f2i+4efj−4e2k)]]xy3 +5[3d4g−d3(3ch+

+ei)+c(3c3+13c2f+13cf2+3f3)k+d2(3c2i+cfi+4cej+efj+3e2k)−d(c+f)(3c2j+

+cfj + 13cek + 3efk)]y4.
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Using this operator and equality (8) we obtain up to a constant an integrating factor
of the system (25), in the form

µ−1 = ϕ4(x, y) × [−ex2 + (c − f)xy + dy2]. (26)

Calculating I1, I2, K2, K̃4 = aα
αβγxβxγ and N1, N2, N3, N4 for the system (25)

we obtain the expression (26) in the invariant form. Theorem is proved.

In the same way for the system (3) with m = 6 and x1 = x, x2 = y written in
the form

dx

dt
= cx + dy + 6x(gx5 + hx4y + ix3y2 + jx2y3 + kxy4 + ly5),

dy

dt
= ex + fy + 6y(gx5 + hx4y + ix3y2 + jx2y3 + kxy4 + ly5)

(27)

a two-dimensional commutative Lie algebra is obtained with one of operators in the
form

Z1 =

(
x

∂

∂x
+ y

∂

∂y

)
× ϕ5(x, y),

where

ϕ5(x, y) = (cf−de)[4(c+f)2+9(cf−de)][6(c+f)2+cf−de]+6
[
24c4fg + d2e2(97fg−

−9eh)− 2c3[12deg + f(−77fg +3eh)]+ c2[2de(−103fg +3eh)+ f(269f2g− 37efh+

+4e2i)]+2de(−77f3g+29ef2h−11e2fi+3e3j)+2c[26d2e2g+de(−183f2g+23efh−

−2e2i)+f(77f3g−29ef2h+11e2fi−3e3j)]+24(f5g−ef4h+e2f3i−e3f2j+e4fk−

−e5l) ]x5+30 [ d(−9d2e2+58def2−24f4)g+6c4fh−c3[6d(fg+eh)+f(−37fh+4ei)]+

+c2(6d2eg−37df2g−46defh+58f3h+4de2i−22ef2i+6e2fj)+c[d2e(46fg+9eh)−

−2d(29f3g + 29ef2h − 11e2fi + 3e3j) + 24(f4h − ef3i + e2f2j − e3fk + e4l)]]x4y+

+30[8c4fi− 2c3[4d(fh + ei) + f(−23fi + 6ej)] + c2[8d2(fg + eh) + 59f3i− 51ef2j−

−4d(11f2h+12efi−3e2j)+48e2fk−48e3l]+d[−44d2efg+d(48f3g+11e2fi−3e3j)+

+12e(−f3i+ef2j−e2fk+e3l)]−2c[4d3eg−d2(22f2g+22efh+e2i)+df(24f2h+11efi−

−3e2j)+6f(−f3i+ef2j−e2fk+e3l)]]x3y2+30[12d4eg−3d3[16f2g+4c(fg+eh)+e2i]+

+d2[12c2(fh+ei)+2ef(6fi+ej)+c(48f2h+6efi+11e2j)]+c(12c2+11cf+2f2)(cfj+

+4f2j−4efk+4e2l)−d[12c3(fi+ej)+c2f(51fi+22ej)+8ef(f2j−efk+e2l)+4c(3f3i+

+12ef2j−11e2fk+11e3l)]]x2y3+30[24d4fg−6d3f(4ch+ei)+c(24c3+58c2f+37cf2+

+6f3)(fk− el)− 2d[12c3fj + 3ef2(fk− el)+ c2(11f2j + 29efk− 29e2l)+ cf(2f2j+

+23efk−23e2l)]+d2[24c2fi+2cf(3fi+11ej)+e(4f2j+9efk−9e2l)]]xy4−6[24d5g−
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−6d4(4ch+ei)+d3(24c2i+6cfi+22cej +4efj +9e2k)−c(24c4 +154c3f +269c2f2+

+154cf3+24f4)l+d[24c4k+24ef3l+2c3(29fk+77el)+2cf2(3fk+103el)+c2f(37fk+

+366el)]−d2[24c3j+c2(22fj+58ek)+2ef(3fk+26el)+c(4f2j+46efk+97e2l)]]y5.

Using this operator and equality (8) we obtain up to a constant an integrating factor
of the system (27), in the form

µ−1 = ϕ5(x, y) × [−ex2 + (c − f)xy + dy2].

Therefore we have the next

Theorem 8. Differential system (1) with m = 6 and K̃7 ≡ 0 has the invariant
GL(2, R)-integrating factor µ of the form

µ−1 = K2Φ5,

and

Φ5 ≡ 12(17I2
1 − 9I2)(13I

2
1 − I2)(6I1K̃5 − 7O1) − 480(13I2

1 − I2)K2(4I1O2 − 3O3)+

+5760K2
2 (3I1O4 − O5) + 35(I2

1 − I2)(17I
2
1 − 9I2)(13I

2
1 − I2) = 0 (28)

is a particular invariant GL(2, R)-integral of this system.

Here invariants and comitants I1, I2,K2, K̃5 = aα
αβγδµνxβxγxδxµxν are from

(2), and

O1 = aα
βa

β
αγδµνηxγxδxµxνxη, O2 = aα

p a
β
qαβγδµxγxδxµεpq, O3 = aα

p a
β
δ a

γ
αβγµνqx

δxµxνεpq,

O4 = aα
p aβ

r a
γ
αβγδqsx

δεpqεrs, O5 = aα
p aβ

µaγ
raδ

αβγδqsx
µεpqεrs.

For the system (3) with m = 7 and x1 = x, x2 = y written in the form

dx

dt
= cx + dy + 7x(gx6 + hx5y + ix4y2 + jx3y3 + kx2y4 + lxy5 + ny6),

dy

dt
= ex + fy + 7y(gx6 + hx5y + ix4y2 + jx3y3 + kx2y4 + lxy5 + ny6)

(29)

a two-dimensional commutative Lie algebra is also found , for which one of operators
has the form

Z1 =

(
x

∂

∂x
+ y

∂

∂y

)
× ϕ6(x, y),

where

ϕ6(x, y) = (c+f)(cf −de)[2(c+f)2 +cf −de][5(c+f)2 +16(cf −de)]+7[−10d3e3g+

+10c5fg+c4[−10deg+f(87fg−2eh)]+d2e2(101f2g−16efh+2e2i)+c3[2de(−61fg+

+eh)+f(227f2g−17efh+e2i)]+c2[35d2e2g−de(353f2g−23efh+e2i)+f(227f3g−
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−42ef2h+8e2fi−e3j)]+de(−87f4g+37ef3h−17e2f2i+7e3fj−2e4k)+c[2d2e2(68fg−

−3eh)+de(−328f3g+58ef2h−10e2fi+e3j)+f(87f4g−37ef3h+17e2f2i−7e3fj+

+2e4k)]+ 10(f6g− ef5h+ e2f4i− e3f3j + e4f2k− e5fl + e6n)]x6 + 42[df(−16d2e2+

+37def2−10f4)g+2c5fh−c4[2d(fg+eh)+f(−17fh+ei)]+c3 [2d2eg+d(−17f2g−

−23efh+e2i)+f(42f2h−8efi+e2j)]+c2[d2e(23fg+6eh)−d(42f3g+58ef2h−10e2fi+

+e3j)+f(37f3h−17ef2i+7e2fj−2e3k)]+ c[−6d3e2g +2d2e(29f2g +8efh− e2i)+

+d(−37f4g−37ef3h+17e2f2i−7e3fj+2e4k)+10(f5h−ef4i+e2f3j−e3f2k+e4fl−

−e5n)]]x5y+21[5c5fi−c4[5d(fh+ei)+f(−41fi+5ej)]+c3[5d2(fg+eh)+d(−40f2h−

−52efi+5e2j)+f(93f2i−36efj+10e2k)]+c2[−5d3eg+67f4i+d2(40f2g+50efh+

+11e2i)−57ef3j+52e2f2k−d(85f3h+103ef2i−37e2fj+10e3k)−50e3fl+50e4n]+

+d[10d3e2g−d2(85ef2g+2e3i)+d(50f4g+17e2f2i−7e3fj+2e4k)−10e(f4i−ef3j+

+e2f2k − e3fl + e4n)]− c[10d3e(5fg + eh) + d2(−85f3g − 85ef2h− 12e2fi + e3j)+

+2df(25f3h+17ef2i− 7e2fj +2e3k)− 10f(f4i− ef3j + e2f2k− e3fl + e4n)]]x4y2+

+14[10c5fj−c4[10d(fi+ej)+f(−77fj+20ek)]+2c3[5d2(fh+ei)+75f3j−57ef2k−

−2d(18f2i+21efj−5e2k)+50e2fl−50e3n]+c2[−10d3(fg+eh)+d2(70f2h+74efi+

+7e2j)−2df(57f2i+50efj−14e2k)+f(77f3j−72ef2k+70e2fl−70e3n)]+df [70d3eg−

−2d2(50f2g + 7e2i) + de(20f2i + 7efj − 2e2k) + 10e(−f3j + ef2k − e2fl + e3n)]+

+2c[5d4eg−d3(35f2g+35efh+e2i)+d2(50f3h+14ef2i+25e2fj−7e3k)+5f2(f3j−

−ef2k+e2fl−e3n)+d(−10f4i−42ef3j+37e2f2k−35e3fl+35e4n)]]x3y3−21[10d5eg−

−2d4[25f2g+5c(fg+eh)+e2i]+d3[10c2(fh+ei)+c(50f2h+4efi+7e2j)+e(10f2i+efj+

+2e2k)]− c(10c3 +17c2f +8cf2 +f3)(cfk +5f2k−5efl+5e2n)−d2[10c3(fi+ ej)+

+cf(10f2i+37efj+12e2k)+c2(52f2i+14efj+17e2k)+e(5f3j+11ef2k−10e2fl+

+10e3n)] + d[10c4(fj + ek) + c3f(57fj + 34ek) + 5ef2(f2k − efl + e2n) + cf(5f3j+

+52ef2k−50e2fl+50e3n)+c2(36f3j+103ef2k−85e2fl+85e3n)]]x2y4−42[10d5fg−

−2d4f(5ch+ei)+d3f(10c2i+2cfi+7cej+efj+2e2k)−c(10c4+37c3f+42c2f2+17cf3+

+2f4)(fl−en)+d(c+f)[10c3fk+2ef2(fl−en)+c2(7f2k+37efl−37e2n)+cf(f2k+

+21efl − 21e2n)] − d2[10c3fj + c2f(7fj + 17ek) + ef(f2k + 6efl − 6e2n) + c(f3j+

+10ef2k+16e2fl−16e3n)]]xy5+7[10d6g−2d5(5ch+ei)+d4(10c2i+2cfi+7cej+efj+

+2e2k)+c(10c5+87c4f+227c3f2+227c2f3+87cf4+10f5)n−d(c+f)[10c4l+10ef3n+

+3c3(9fl + 29en) + 2cf2(fl + 56en) + c2f(15fl + 241en)] − d3[10c3j + c2(7fj+
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+17ek) + c(f2j + 10efk + 16e2l) + e(f2k + 6efl + 10e2n)] + d2(c + f)[10c3k+

+c2(7fk + 37el) + ef(2fl + 35en) + c(f2k + 21efl + 101e2n)]]y6.

Using this operator and equality (8) we obtain up to a constant an integrating factor
of the system (29), in the form

µ−1 = ϕ6(x, y) × [−ex2 + (c − f)xy + dy2]. (30)

Analogously to previous cases we have the next

Theorem 9. Differential system (1) with m = 7 and K̃8 ≡ 0 has the invariant
GL(2, R)-integrating factor µ of the form

µ−1 = K2Φ6,

and

Φ6 ≡ 7I1(13I
2
1 − 8I2)(5I

2
1 − I2)(7I1K̃6 − 8S1) − 210I1(5I

2
1 − I2)K2(5I1S2 − 4S3)+

+840K2
2 (6I2

1S4 − 3I1S5 − K2S6) + 24I1(I
2
1 − I2)(13I

2
1 − 8I2)(5I

2
1 − I2) = 0 (31)

is a particular invariant GL(2, R)-integral of this system.

Here invariants and comitants I1, I2,K2, K̃6 = aα
αβγδµνηxβxγxδxµxνxη are from

(2), and

S1 = aα
βa

β
αγδµνηϕxγxδxµxνxηxϕ, S2 = aα

p a
β
qαβγδµνxγxδxµxνεpq,

S3 = aα
p a

β
δ a

γ
αβγµνηqx

δxµxνxηεpq, S4 = aα
p aβ

r a
γ
αβγδµqsx

δxµεpqεrs,

S5 = aα
p aβ

µaγ
r aδ

αβγδνqsx
µxνεpqεrs, S6 = aα

p aβ
r a

γ
kaδ

αβγδqslε
pqεrsεkl.

It is shown in [2, 3] that all singular points of Darboux type differential system
(3), different from the origin, are located on its integral straight lines, coinciding
with integral straight lines of this system for Rm−1 ≡ 0. Therefore the necessary
condition for the existence of a limit cycle for the Darboux type differential system
(3) is the condition that the eigenvalues of the matrix of linear terms should be
imaginary, i.e. the condition [1] 2I2 − I2

1 < 0.

We observe that the expression Φm−1 from (10), (15), (20), (24), (28) and (31)
with m = 2, 7 are only algebraic integrals of the form (4) for the Darboux type
system (3) with m = 2, 7. To prove this remark it is sufficient to examine the
explicit form of first integrals for the system (3) with m = 2, 7.

One can verify easily that holds

Theorem 10. The Darboux type differential system (3) with 2I2 − I2
1 < 0 has the

first real integral in the form

I1√
I2
1
− 2I2

arctan
2a2

1x
1 + (a2

2 − a1
1)x

2

|x2|
√

I2
1
− 2I2

+
1

2
ln |K2|−

1

m − 1
ln |Φm−1| = C (m = 2, 7),

(32)
where K2 is from (2), Φm−1 (m = 2, 7) are from (10), (15), (20), (24), (28) and
(31).
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It is clear from (32) that Φm−1 (m = 2, 7) is the only one algebraic integral of
the form (4).

As for differential systems (11), (21) and (27) the corresponding algebraic invari-
ant integrals (10), (20) and (28) have the homogeneities of odd degree with respect
to x1 and x2, than with the aid of Remark 1 and Lemma 2 we prove

Theorem 11. The differential system (1) with m = 2l and K̃2l+1 ≡ 0, (l = 1, 2, 3)
does not have limit cycles.

The main idea of this theorem allow us to suppose that systems of the form (1)
with m = 2l and K̃2l+1 ≡ 0 where l ≥ 4 also do not have limit cycles.

It is easy to prove the next

Theorem 12. For a system (1) with K2 6≡ 0 and K̃m+1 ≡ 0, (m = 2, 7) to have a
first invariant GL(2, R)-integral of the Darboux type [10] in the form

K1−m
2

Φ2
m−1 = C (m = 2, 7)

it is necessary and sufficient that I1 = 0, where K2, K̃m+1, I1 are from (2), and
Φm−1 (m = 2, 7) are from (10), (15), (20), (24), (28) and (31).

The proof of Theorem 12 results from the identity

Λ(K1−m
2

Φ2
m−1) = (1 − m)I1K

1−m
2

Φ2
m−1 (m = 2, 7),

where Λ is from (5).

There exists the supposition that Theorem 12 holds for m ≥ 8.

The following question remains open: Are all first invariant GL(2, R)-integrals
of the differential system (3) with (m = 2, 7) encapsulated by Theorem 12 or not?

The authors tender thanks to Professor N.I.Vulpe for effective discussions of the
results of this paper.
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Measure of stability for a finite cooperative game

with a generalized concept of equilibrium ∗

V.A. Emelichev, E.E. Gurevsky, A.A. Platonov

Abstract. We consider a finite cooperative game in the normal form with a para-
metric principle of optimality (the generalized concept of equilibrium). This principle
is defined by the partition of the players into coalitions. In this situation, two ex-
treme cases of this partition correspond to the lexicographically optimal situation and
the Nash equilibrium situation, respectively. The analysis of stability for a set of
generalized equilibrium situations under the perturbations of the coefficients of the
linear payoff functions is performed. Upper and lower bounds of the stability radius
in the l

∞
-metric are obtained. We show that the lower bound of the stability radius

is accessible.

Mathematics subject classification: 91A12, 90C29, 90C31.

Keywords and phrases: Cooperative game, lexicographic optimality, Nash equilib-
rium, stability radius.

1 Introduction

Let us consider a finite game of several players in the normal form [1, 2], in
which each player i ∈ Nn = {1, 2, . . . , n}, n ≥ 2, has a finite number of options for
the selection of a strategy Xi ⊂ R, 2 ≤ |Xi| < ∞. The realization of the game and
its result is uniquely determined by the choice of each player. Assume that, on the
set of the situations X =

∏
i∈Nn

Xi of the game, linear payoff functions of the players

fi(x) = Cix, i ∈ Nn

are defined. Here Ci is the i-th row of the matrix C = [cij ]n×n ∈ R
n×n,

x = (x1, x2, . . . , xn)
T , xj ∈ Xj, j ∈ Nn. In the course of the game, which is called the

game with matrix C, each player i receives the payoff fi(x), which he or she wants
to maximize by using certain relationships of preference. For any game in normal
form, the cooperative and noncooperative principles of optimality (equilibrium con-
cepts) are used, which usually leads to different situations (results). In this paper a
parametric principle of optimality is considered. Such principle leads to the set of
generalized equilibrium situations. The parameter of this principle is the partition
of players into coalitions, for which two extreme cases (one coalition of all players

c© V.A. Emelichev, E.E. Gurevsky, A.A. Platonov, 2006
∗This work is supported by program of the Ministry of Education ”Fundamental and application

studies” of the Republic of Belarus (Grant 492/28).
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and the set of one-player coalitions) correspond to the lexicographically optimal sit-
uation and the Nash equilibrium situation, respectively. The analysis of stability
for the set of situations, optimal for a given partition under the perturbations of
coefficients of the linear payoff functions is performed. Lower and upper bounds
of the stability radius for the problem of finding the set of generalized equilibrium
situations are obtained. Note that back in [3–6], formulas of the stability radius of
the optimal situation with various generalizations of the concept of equilibrium was
obtained.

2 Basic definitions and properties

Now we introduce the binary relation of lexicographic order ≺
L

in the space R
d of

any dimension d ∈ N, assuming that, for any different vectors y = (y1, y2, . . . , yd)
and y′ = (y′1, y

′

2, . . . , y
′

d) of the space, the formula

y ≺
L
y′ ⇔ yk < y′k

holds, where k = min{i ∈ Nd : yi 6= y′i}.
The following property is obvious.

Property 1. Let y, y′ ∈ R
d, d ∈ N. If y1 < y′1, then y ≺

L
y′.

We will call any nonempty subset J ⊆ Nn of players a coalition. Here and below,
xJ is the projection of the vector x ∈ X onto the coordinate axes of the space R

n

with the numbers of coalition J . For any coalition J ⊆ Nn we introduce a binary
relation Ω(C, J) on a set of situations X as follows:

x Ω(C, J) x′ ⇔





CJx ≺
L
CJx

′ & xNn\J = x′
Nn\J

, if J 6= Nn,

Cx ≺
L
Cx′, if J = Nn,

where CJ is the submatrix of C consisting of the rows with the numbers of the
coalition J.

Let s ∈ Nn, Nn =
⋃

r∈Ns

Jr be the partition of the set Nn into s coalitions, i. e.

Jr 6= ∅, r ∈ Ns; p 6= q ⇒ Jp∩Jq = ∅. Under the game with matrix C we understand
the problem Zn(C, J1, J2, . . . , Js) of finding the set of generalized equilibrium or,
in other words of (J1, J2, . . . , Js)-optimal situations according to the formula

Qn(C, J1, J2, . . . , Js) = {x ∈ X : ∀r ∈ Ns ∀x
′ ∈ X (x Ω(C, Jr) x

′)},

where Ω(C, Jr) denotes the negation of relation Ω(C, Jr).
Thus, in each coalition the relationships of players are constructed on the basis

of the lexicographic principle. Therefore, any Nn-optimal situation x ∈ Qn(C,Nn)
(all players form one coalition) is lexicographically optimal in the space X of all
situations. This means that all players are ordered (enumerated) by importance
in such a way that each preceding one is more important than all the next. This
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situation corresponds to the generic setup of an optimization problem with several
criteria (payoffs) applied consecutively [7, 8]. It is easy to see that the set Qn(C,Nn)
of Nn-optimal situations is a lexicographic set

Ln(C) = {x ∈ X : ∀ x′ ∈ X (Cx ≺
L
Cx′)},

which is a subset of the Pareto set.
Clearly, in another extreme case, where the game is noncooperative (s = n), any

individually optimal situation x ∈ Qn(C, {1}, {2}, . . . , {n}) is the Nash equilibrium
situation (or equilibrium) [9] (see also [1, 2]). Indeed, by the definition, situation x

is equilibrium if and only if the following formula

∄ k ∈ Nn ∄ x′ ∈ X (Ckx < Ckx
′ & xNn\{k} = x′Nn\{k}

)

holds. Therefore, the reasonability of equilibrium situation x means that any player
does not benefit from a deviation from it (while all others stick to it). We denote
by NEn(C) the set of all Nash equilibrium situations.

In this context, by the parametrization of the principle of optimality we mean
introducing a characteristic of binary relation Ω(C, J) of preference of situations
that allows us to relate the classical concepts of lexicographic optimality and Nash
equilibrium.

Without loss of generality, below we will assume that the elements of the partition
Nn =

⋃
r∈Ns

Jr have the form

Jr = {tr−1 + 1, tr−1 + 2, . . . , tr},

r ∈ Ns, t0 = 0, ts = n.

By taking into account the separability of the linear payoff functions Cix, i ∈ Nn,

we derive the following formula from the definition of the set (J1, J2, . . . , Js)-optimal
situations

Qn(C, J1, J2, . . . , Js) =
s∏

r=1

L|Jr|(Cr), (1)

where each factor L|Jr|(Cr) is the set of lexicographically optimal solutions of a
|Jr|-criteria vector problem

Crz → lex max
z∈XJr

,

i. e.
L|Jr|(Cr) = {z ∈ XJr : ∀z′ ∈ XJr (Crz ≺

L
Crz′)}.

Here Cr is a square |Jr|× |Jr| matrix consisting of the entries of matrix C, standing
at the intersection of the rows and columns with numbers from Jr; XJr is the
projection of the set X onto Jr, i. e.

XJr =
∏

j∈Jr

Xj ⊂ R
|Jr|.
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It is known [7, 8] that the set L|Jr|(Cr) is the result of solving the sequence of
scalar problems

L
|Jr|

i = Arg max{Cri z : z ∈ L
|Jr|

i−1
}, i ∈ N

|Jr|
, (2)

where L
|Jr|

0
= XJr ; C

r
i is the i-th row of matrix Cr. Thus, L|Jr|(Cr) = L

|Jr|

|Jr|
for each

index r ∈ Ns.
Owing to the fact that the set XJr is finite for any index r ∈ Ns, we conclude

that the lexicographic set L|Jr|(Cr) is nonempty for any index r ∈ Ns. Therefore
(in view of (1)) the set of (J1, J2, . . . , Js)-optimal situations Qn(C, J1, J2, . . . , Js)
is nonempty for any matrix C ∈ R

n×n and for any partition. In particular, the
equilibrium situations exist for any matrix C ∈ R

n×n (see Corollary 5).
Under the measure of stability in cooperative game with matrix C we under-

stand the stability radius of the problem Zn(C, J1, J2, . . . , Js) of finding the set
Qn(C, J1, J2, . . . , Js) which analogously to [6, 10, 11] is defined as follows:

ρn(C, J1, J2, . . . , Js) =

{
sup Φ if Φ 6= ∅,

0 otherwise,

where

Φ = {ε > 0 : ∀B ∈ Ξ(ε) (Qn(C +B, J1, J2, . . . , Js) ⊆ Qn(C, J1, J2, . . . , Js))},

Ξ(ε) = {B ∈ R
n×n : ||B||∞ < ε},

||B||∞ = max{|bij | : (i, j) ∈ Nn ×Nn}, B = [bij ]n×n.

In other words, the stability radius determines the limit level of perturbations
of the parameters of payoff function in the l∞-metric, for which new generalized
optimal situations do not appear. Obviously, the problem Zn(C, J1, J2, . . . , Js) is
stable and the stability radius is infinite if the equality Qn(C, J1, J2, . . . , Js) = X

holds. If the set

Qn(C, J1, J2, . . . , Js) = X \Qn(C, J1, J2, . . . , Js)

is nonempty, then we say that the problem Zn(C, J1, J2, . . . , Js) is non-trivial.
Suppose

L|Jr|(Cr) = XJr \ L
|Jr|(Cr),

K(C) = {r ∈ Ns : L|Jr|(Cr) 6= ∅},

||a||1 =
m∑

i=1

|ai|, a = (a1, a2, . . . , am) ∈ R
m.

The following properties are obvious.

Property 2. The situation x0 ∈ Qn(C, J1, J2, . . . , Js) if and only if there exists an

index k ∈ K(C) such that x0
Jk

∈ L|Jk|(Ck).
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Property 3. The problem Zn(C, J1, J2, . . . , Js) is non-trivial if and only if the set
K(C) is nonempty.

From formula (1) and property 2 we derive

Property 4. If r ∈ K(C) and there exists a perturbing matrix B̂ ∈ R
n×n such

that the following formula holds

∀ z ∈ L|Jr|(Cr)
(
z ∈ L|Jr|(Cr + B̂r)

)
, (3)

then we have

∀ x ∈ Qn(C, J1, J2, . . . , Js)
(
x ∈ Qn(C + B̂, J1, J2, . . . , Js)

)
. (4)

3 Bounds of the stability radius

Suppose

ϕn(C, J1, J2, . . . , Js) = min
r∈K(C)

min
z∈L|Jr|(Cr)

max
z′∈L|Jr |(Cr)

Cr1(z′ − z)

||z′ − z||1
.

Theorem. The stability radius ρn(C, J1, J2, . . . , Js) of the non-trivial problem
Zn(C, J1, J2, . . . , Js), n ≥ 2, s ≥ 1, has the following bounds

ϕn(C, J1, J2, . . . , Js) ≤ ρn(C, J1, J2, . . . , Js) ≤ min{||Cr1 ||∞ : r ∈ K(C)}.

Proof. Note that in view of property 3 the non-triviality of the problem
Zn(C, J1, J2, . . . , Js) implies the non-emptiness of the set K(C).

Let us introduce the notations

ϕ := ϕn(C, J1, J2, . . . , Js), ρ := ρn(C, J1, J2, . . . , Js).

It is easy to see that ϕ ≥ 0.

At first we prove the inequality ρ ≥ ϕ. If ϕ = 0, then this inequality is obvious.

Let ϕ > 0, B ∈ Ξ(ϕ), x0 ∈ Qn(C, J1, J2, . . . , Js). Let us show that x0 ∈
∈ Qn(C +B, J1, J2, . . . , Js).

It follows directly from the definition of ϕ that

∀r ∈ K(C) ∀z ∈ L|Jr|(Cr)

(
max

z′∈L|Jr|(Cr)

Cr1(z′ − z)

||z′ − z||1
≥ ϕ

)
. (5)
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According to the property 2 there exists an index k ∈ K(C) such that x0
Jk

∈

∈ L|Jk|(Ck). Therefore the formula (5) implies the existence of a vector
z′ ∈ L|Jk|(Ck), such that the following inequalities

Ck1 (z′ − x0
Jk

)

||z′ − x0
Jk
||1

≥ ϕ > ||B||∞ ≥ ||Bk||∞

hold. Due to the obvious inequality

|uv| ≤ ||u||1||v||∞,

which is valid for all u = (u1, u2, . . . , un) ∈ R
n and v = (v1, v2, . . . , vn)

T ∈ R
n, we

obtain
(Ck1 +Bk

1 )(z′ − x0
Jk

) = Ck1 (z′ − x0
Jk

) +Bk
1 (z′ − x0

Jk
) ≥

≥ Ck1 (z′ − x0
Jk

) − ||Bk||∞||z′ − x0
Jk
||1 > 0.

Thus, according to property 1 we have (Ck + Bk)x0
Jk

≺
L

(Ck + Bk)z′, i. e.

x0
Jk

∈ L|Jk|(Ck + Bk). In view of property 2, we conclude that x0 ∈ Qn(C +
+B, J1, J2, . . . , Js).

So, the following formula is true

∀B ∈ Ξ(ϕ)
(
Qn(C +B, J1, J2, . . . , Js) ⊆ Qn(C, J1, J2, . . . , Js)

)
,

which means that ρ ≥ ϕ.

To prove the upper bound we need to show that for any index r ∈ K(C) the
following formula ρ ≤ ||Cr1 ||∞ is valid.

Let r ∈ K(C), ε > ||Cr1 ||∞, ψi = ||Cri ||∞, i ∈ N|Jr|
. We build a perturbing

matrix B̂ =
[
b̂ij

]
n×n

, assuming

b̂ij =

{
−cij − δci+p−1,j if i = tr−1 + 1, j ∈ Jr,

0 otherwise,

where 0 < δ < ε−ψ1

ψp
. Here

p = min{i ∈ N
|Jr|

: XJr 6= L
|Jr|

i },

and L
|Jr|

i is defined by the formula (2). It is easy to see that ψp 6= 0. After a simple

calculation we obtain ||B̂||∞ < ε, i. e. B̂ ∈ Ξ(ε).

Let z∗ ∈ X\L
|Jr|

p . Then for any vector z ∈ L|Jr|(Cr) we have

Crp(z
∗ − z) < 0.

Using this and taking into account the construction of the row B̂r
1, we derive

(Cr1 + B̂r
1)(z − z∗) = δCrp(z

∗ − z) < 0.
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This inequality in view of property 1 is equivalent to the following relation

(Cr + B̂r)z ≺
L

(Cr + B̂r)z∗.

From this we obtain the formula (3), and therefore by virtue of property 4 we have
(4). Hence

Qn(C + B̂, J1, J2, . . . , Js) 6⊆ Qn(C, J1, J2, . . . , Js). (6)

Resuming all the said above, we conclude that for any index r ∈ K(C) and for
any number ε > ||Cr1 ||∞ there exists a matrix B̂ ∈ Ξ(ε) such that the formula (6)
is true. This means that the stability radius ρ ≤ ||Cr1 ||∞ for any index r ∈ K(C).
That complete the proof.

4 Some of special cases

The theorem allows us to formulate the following corollaries.

Corollary 1. If |Xj | = 2, j ∈ Nn, then for the stability radius ρn(C, J1, J2, . . . , Js)
of non-trivial problem Zn(C, J1, J2, . . . , Js) the formula

ρn(C, J1, J2, . . . , Js) = ϕn(C, J1, J2, . . . , Js) (7)

holds.

Proof. Taking into account the proved inequality ρ ≥ ϕ (see theorem) for deriving
the formula (7) it remains to show that ρ ≤ ϕ. Let us introduce the notations:

Xj = {x−j , x
+

j }, x−j , x
+

j ∈ R, x−j < x+

j , j ∈ Nn.

By the definition of number ϕ, there exist an index r ∈ K(C) and a vector

z∗ ∈ L|Jr|(Cr) such that for any vector z ∈ L|Jr|(Cr) we have

Cr1(z − z∗) ≤ ϕ||z − z∗||1.

Then, assuming ε > ϕ, B̂ =
[
b̂ij

]
n×n

∈ Ξ(ε), where

b̂ij =





−α if z∗j−tr−1
= x−j , i = tr−1 + 1, j ∈ Jr,

α if z∗j−tr−1
= x+

j , i = tr−1 + 1, j ∈ Jr,

0 otherwise,

ε > α > ϕ,

we derive
(Cr1 + B̂r

1)(z − z∗) = Cr1(z − z∗) + B̂r
1(z − z∗) =

= Cr1(z − z∗) − α||z − z∗||1 ≤ ϕ||z − z∗||1 − α||z − z∗||1 < 0,

i. e. z ∈ L|Jr|(Cr + B̂r). Therefore we have (Cr + B̂r)z ≺
L

(Cr + B̂r)z∗.
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Using this we obtain the formula (3), and therefore by virtue of property 4 we
have (4). Hence the formula (6) is true.

Resuming all the information given above, we conclude that for any number
ε > ϕ there exists a matrix B̂ ∈ Ξ(ε) such that the formula (6) is true. This means
that ρ ≤ ϕ. That completes the proof of Corollary 1.

Note, that Corollary 1 shows the accessibility of the lower bound of the stability
radius ρ.

Corollary 2. If Qn(C, J1, J2, . . . , Js) = {x0}, then

ρn(C, J1, J2, . . . , Js) = min
r∈Ns

min
z∈XJr\{x

0
Jr

}

Cr1(x0
Jr

− z)

||x0
Jr

− z||1
. (8)

Proof. Denote the right side of the formula (8) by ζ. It is easy to see that the prob-
lem Zn(C, J1, J2, . . . , Js) is nontrivial and the number ζ is ϕ = ϕn(C, J1, J2, . . . , Js).
Therefore, in view of inequality ρ ≥ ϕ (see the theorem) it remains to show that
ρ ≤ ζ.

By the definition of number ζ, we have that there exist an index r ∈ Ns and a
vector z∗ ∈ XJr \ {x

0
Jr
} such that

Cr1(x0
Jr

− z∗) = ζ||x0
Jr

− z∗||1, {x0
Jr
} = L|Jr|(Cr).

Therefore, assuming ε > ζ and building a perturbing matrix B̂ =
[
b̂ij

]

n×n
∈ Ξ(ε)

with elements

b̂ij =





−α if x0
j ≥ z∗j−tr−1

, i = tr−1 + 1, j ∈ Jr,

α if x0
j < z∗j−tr−1

, i = tr−1 + 1, j ∈ Jr,

0 otherwise,

where ε > α > ζ, we obtain

(Cr1 +B̂r
1)(x

0
Jr
−z∗) = Cr1(x0

Jr
−z∗)−α||x0

Jr
−z∗||1 = ζ||x0

Jr
−z∗||1−α||x

0
Jr
−z∗||1 < 0.

Hence, taking into account property 1 we have

(Cr + B̂r)x0
Jr

≺
L

(Cr + B̂r)z∗.

From here we find the formula (3), and therefore according to the property 4 we
have (4), i. e. the formula (6) is true.

Resuming the said above we conclude that for any number ε > ϕ there exists
a perturbing matrix B̂ ∈ Ξ(ε) such that the formula (6) is true. This means that
ρ ≤ ϕ. The proof of Corollary 2 is completed.

The theorem implies
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Corollary 3. The stability radius ρn(C,Nn) of a non-trivial problem Zn(C,Nn) of
finding the lexicographic set Ln(C) has the following bounds:

min
x∈Ln(C)

max
x′∈Ln(C)

C1(x
′ − x)

||x′ − x||1
≤ ρn(C,Nn) ≤ ||C1||∞.

Here L
n
(C) = X\Ln(C) = X\Qn(C,Nn).

Obviously, in case we have a noncooperative game (s = n), for any index r ∈ Ns

the inequality L1(Cr) 6= ∅, where Cr = crr, is equivalent to the inequality crr 6= 0.
Therefore, the theorem implies

Corollary 4 [12]. For the stability radius ρn(C, {1}, {2}, . . . , {n}), n ≥ 2, of the
problem Zn(C, {1}, {2}, . . . , {n}) of finding the set of Nash equilibrium situations
NEn(C) the formula

ρn(C, {1}, {2}, . . . , {n}) =

{
min{|ckk| : k ∈ K(C)} if K(C) 6= ∅,

∞ if K(C) = ∅

holds.

Taking into account the formula (1) we obtain

Corollary 5 [3]. The situation x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ X of a noncooperative game

with matrix C ∈ R
n×n is a Nash equilibrium situation if and only if the strategy of

each player i ∈ Nn has the form

x0
i =





max{xi : xi ∈ Xi} if cii > 0,

min{xi : xi ∈ Xi} if cii < 0,

xi ∈ Xi if cii = 0.
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Abstract. The computation schemes of collocation and mechanical quadrature
methods for approximate solving of the complete singular integral equations with
piecewise continuous coefficients and a regular kernel with weak singularity are elab-
orated. The case when the equations are defined on the unit circumference of the
complex plane is examined. The sufficient conditions for the convergence of these
methods in the space L2 are obtained.
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1 The Problem Formulation

Let Γ0 be a unit circumference of the complex plane C with the center at the
origin, let D+ be a domain bounded by Γ0, D

− = C \ {D+ ∪ Γ0}, and let L2(Γ0)
be a space of all functions f : Γ0 → C that are Lebesgue measurable and square
integrable on Γ0.

We will denote by PC(Γ0) a Banach algebra of all functions a : Γ0 → C which
are continuous on Γ0 with exception of a finite number of points in such a way that
at each point of discontinuity there exist unilateral finite limits a(t−0), a(t+0) and
a(t− 0) = a(t).

To each element a ∈ PC(Γ0) we associate the function â : Γ0 × [0, 1] → C in the
following way â(t, µ) = µa(t+0)+(1−µ)a(t), t ∈ Γ0, 0 ≤ µ ≤ 1. The set Γâ of values
of the function â(t, µ) represents a closed curve. This curve is a union of the set of
values of the function a(t) and segments µa(tk+0)+(1−µ)a(tk) (0 ≤ µ ≤ 1, k = 1, n),
where t1, ..., tn are all points of discontinuity of the function a. The curve Γâ can be
oriented in a natural way.

We say that the function a ∈ PC(Γ0) is 2-nonsingular if the curve Γâ doesn’t go
through the origin. We denote the number of rotations of the curve Γâ around the
origin by index ind2a of the 2-nonsingular function a.

In L2(Γ0) we consider the following singular integral equation

(Aϕ ≡) a0(t)ϕ(t) +
b0(t)

πi

∫

Γ0

ϕ(τ)

τ − t
dτ +

1

2πi

∫

Γ0

h(t, τ)ϕ(τ)dτ = f(t), t ∈ Γ0, (1)

c© Titu Capcelea, 2006

27



28 TITU CAPCELEA

where a0, b0, f : Γ0 → C, h : Γ0 × Γ0 → C are known functions, a0, b0 ∈
PC(Γ0), h(t, τ) = h0(t, τ)|τ − t|−γ (0 < γ < 1), h0 ∈ C(Γ0 × Γ0), f ∈ L2(Γ0) and
ϕ : Γ0 → C is an unknown function.

It is known that operators K,S : L2(Γ0) → L2(Γ0), defined in the follo-

wing way (Kϕ)(t) =
1

2πi

∫
Γ0
h(t, τ)ϕ(τ)dτ , (Sϕ)(t) =

1

πi

∫
Γ0

ϕ(τ)

τ−t
dτ , are bounded

[1, 2]. Taking into account that ‖cϕ‖2 ≤ ‖c‖∞‖ϕ‖2 for all functions c ∈ PC(Γ0), the
operator A = a0I+b0S+K which describes the left term of equation (1) is bounded
in L2(Γ0).

In [3, 4] the theoretical foundation of the collocation and quadrature methods for
equation (1) in the norm of the space L2(Γ0) was obtained in the case of coefficients
that satisfy Holder condition on Γ0 and in [5] the foundation was obtained in the
case of continuous coefficients on Γ0. In the present paper we will state conditions of
convergence of these methods in L2(Γ0) in the case when coefficients of the equation
(1) belong to the space PC(Γ0).

2 The deduction of a computation schemes

We will denote by Pn the set of all trigonometric polynomials of the form
n∑

k=−n

rkt
k (t ∈ Γ0), where rk (k = −n, n) are arbitrary complex numbers. We

will consider on Γ0 the following equidistant points

tj = exp (2πij/(2n + 1)), j = −n, n. (2)

In the following it is convenient to write equation (1) in the equivalent form

(Aϕ ≡)a(t)(Pϕ)(t) + b(t)(Qϕ)(t) + (Kϕ)(t) = f(t), t ∈ Γ0, (3)

where a(t) = a0(t) + b0(t), b(t) = a0(t) − b0(t), P = (I + S)/2, Q = I − P, I is the
identity operator, and S is a singular operator.

The presence of discontinuity in the kernel of the regular part of equation (1)
implies essential difficulties in the practical realization of the calculation scheme of
the collocation method applied to it, and the quadrature method cannot be applied.

In order to eliminate this drawback, in an analogous way to [3, 6], we introduce
a new equation

(Aρϕ ≡)a(t)(Pϕ)(t) + b(t)(Qϕ)(t) + (Kρϕ)(t) = f(t), t ∈ Γ0, (4)

in which

(Kρϕ)(t) =
1

2πi

∫

Γ0

hρ(t, τ)ϕ(τ)dτ,

hρ(t, τ) =

{
h0(t, τ)|τ − t|−γ , for |τ − t| ≥ ρ

h0(t, τ)ρ
−γ , for |τ − t| < ρ

, ρ ∈ (0, 1).

Equations (3) and (4) have the same characteristic part, and the kernel of the
regular part of equation (4) is a continuous function on Γ0 in both variables.
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In the following the collocation and quadrature methods will be applied to equa-
tion (4). The obtained approximate solutions will be considered as the approxima-
tions of the exact solution of equation (3), and, thus, of equation (1).

According to the collocation method we will seek for an approximate solution of
equation (4) in the form of the polynomial

ϕn(t) =
n∑

k=−n

α
(n)

k tk ∈ Pn, (5)

unknown coefficients of which α
(n)

k = αk (k = −n, n) will be determined from the
following system of linear algebraic equations (SLAE)

a(tj)
n∑

k=0

αkt
k
j + b(tj)

−1∑

k=−n

αkt
k
j +

n∑

k=−n

αk
1

2πi

∫

Γ0

hρ(tj, τ)τ
kdτ=f(tj), j = −n, n. (6)

The proposed calculation scheme essentially simplifies the process of its numerical
implementation.

If for solving equation (4) the method of quadratures is applied, then we will seek
for the approximate solution of this equation in the form (5) and we will determine
coefficients αk (k = −n, n) as solutions of SLAE

a(tj)
n∑

k=0

αkt
k
j + b(tj)

−1∑

k=−n

αkt
k
j +

1

2n+ 1

n∑

k=−n

αk

n∑

s=−n

hρ(tj , ts)t
k+1
s =f(tj), j = −n, n. (7)

Let a bounded and measurable function f : Γ0 → C be given. There exists a
unique interpolation polynomial

(Lnf)(t) =

n∑

k=−n

Λkt
k ∈ Pn, Λk =

1

2n+ 1

n∑

j=−n

f(tj)t
−k
j (8)

such that (Lnf)(tj) = f(tj) for each j = −n, n [7, p.151]. The operator Ln, for which
L2

n = Ln, is a Lagrange interpolation projector. Besides this nonorthogonal projec-
tor, we consider an orthogonal projector Sn : L2(Γ0) → Pn, which for each function
ϕ ∈ L2(Γ0) puts into correspondence a partial sum of order n of the Fourier series

after the system of functions {tk}+∞

k=−∞
, (Snϕ)(t) =

n∑

k=−n

ϕkt
k. Taking into account

that for functions of the form (5) the following equalities are true (Snϕn)(t) = ϕn(t),
we obtain that systems of equations (6), (7) are equivalent to the following operator
equations

(An, ρϕn ≡) Ln(aP + bQ+Kρ)Snϕn = Lnf, (9)

(A
′

n, ρϕ̃n ≡) Ln(aP + bQ+ ∆n)Snϕ̃n = Lnf, (10)

where (∆nϕ̃n)(t) = 1

2πi

∫
Γ0
Lτ

n(hρ(t, τ)ϕ̃n(τ))dτ . Notice that here and in what follows
Lτ

n denotes the operator Ln, applied with respect to the variable τ . Therefore in the



30 TITU CAPCELEA

following instead of systems (6) and (7) we will study operator equations (9) and,
respectively, (10) which are considered in the subspace Pn, in which the same norm
as in L2(Γ0) is introduced.

In the case of an equation with coefficients from PC(Γ0), in order to apply the
methods studied in the paper it is necessary to choose the right term f from a
subclass of L2(Γ0). As such a subclass the set R(Γ0) of all bounded, defined on
Γ0 and integrable by Riemann functions can be chosen. With the norm ‖g‖∞ =
sup
t∈Γ0

|g(t)| the set R(Γ0) becomes the Banach space.

3 Some preliminary results

In this section we will state some relations between integral operators with kernel
h0(t, τ)|τ − t|−γ and hρ(t, τ), considered in the space L2(Γ0). These results, as well
as other results from this section, will be used for the theoretical foundation of the
elaborated computational schemes.

We will denote by χρ(t) the function defined on Γ0 in the following way. If
ϕ(t) ∈ L2(Γ0), then

χρ(t) =
1

2πi

∫

Γ0

[h0(t, τ)|τ − t|−γ − hρ(t, τ)]ϕ(τ)dτ,

where h0(t, τ) and hρ(t, τ) are the defined above functions.

Lemma 1. Let h0(t, τ) ∈ C(Γ0 × Γ0) (in both variables) and ϕ(t) ∈ L2(Γ0). Then
it is true that

a) ‖χρ‖2 ≤ d1ρ
1−γ

2 ‖ϕ‖2;
b) (Kρϕ)(t) ∈ C(Γ0);
c) The operator Kρ : L2(Γ0) → C(Γ0) is completely continuous.

Proof. Let t ∈ Γ0 and Γρ := {τ ∈ Γ0 : |τ − t| < ρ}. Then, as χρ(t) = 0 for
|τ − t| ≥ ρ, we have

‖χρ‖
2
2 =

1

2π

∫

Γ0

|χρ|
2|dt| =

1

2π

∫

Γ0

∣∣∣∣
1

2πi

∫

Γ0

[h0(t, τ)|τ − t|−γ − hρ(t, τ)]ϕ(τ)dτ

∣∣∣∣
2

|dt| =

=
1

(2π)3

∫

Γ0

∣∣∣∣∣

∫

Γρ

h0(t, τ)
[
|τ − t|−γ − ρ−γ

]
ϕ(τ)dτ

∣∣∣∣∣

2

|dt| ≤

≤
1

(2π)3

∫

Γ0

(∫

Γρ

|h0(t, τ)|
∣∣|τ − t|−γ − ρ−γ

∣∣ |ϕ(τ)||dτ |

)2

|dt|.

Since |τ − t|−γ − ρ−γ > 0 (τ ∈ Γρ), from the last relation we obtain

‖χρ‖
2
2 ≤

‖h0‖
2
C

(2π)3

∫

Γ0

(∫

Γρ

|ϕ(τ)||dτ |

|τ − t|γ

)2

|dt|.
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Estimating the interior integral using the Holder inequality for integrals
(see [8, p.496]), we obtain

∫

Γρ

|ϕ(τ)|

|τ − t|γ
|dτ | =

∫

Γρ

1

|τ − t|γ/2

|ϕ(τ)|

|τ − t|γ/2
|dτ | ≤



∫

Γρ

|dτ |

|τ − t|γ




1
2


∫

Γρ

|ϕ(τ)|2

|τ − t|γ
|dτ |




1
2

.

Then

‖χρ‖
2
2 ≤

‖h0‖
2
C

(2π)3

∫

Γ0

(∫

Γρ

|dτ |

|τ − t|γ

)(∫

Γρ

|ϕ(τ)|2

|τ − t|γ
|dτ |

)
|dt|.

We estimate integral
∫
Γρ

|dτ |

|τ − t|γ
using the following relation (see [9, p.10])

|dτ | = |ds| ≤
π

2
dr, (11)

where ds is a length of the arc of the circumference
⌣
τt (the smallest arc from two

possible ones), and dr is a length of the chord that subtends the arc
⌣
τt (|τ − t| = r).

Then when τ passes the arc Γρ, the value r passes the segment [0; ρ]. Using relation
(11) we obtain ∫

Γρ

|dτ |

|τ − t|γ
≤
π

2

∫ ρ

0

r−γdr =
π

2(1 − γ)
ρ1−γ .

Then we have

‖χρ‖
2
2 ≤

‖h0‖
2
C

16π2

1

(1 − γ)
ρ1−γ

∫

Γ0

∫

Γρ

|ϕ(τ)|2

|τ − t|γ
|dτ ||dt| =

=
‖h0‖

2
C

16π2

1

1 − γ
ρ1−γ

∫

Γρ

|ϕ(τ)|2
∫

Γ0

|dt|

|τ − t|γ
|dτ |.

Repeating the above argumentation, we obtain for interior integral the following
estimation ∫

Γ0

|dt|

|τ − t|γ
≤
π

2

∫
2

0

r−γdr =
π

1 − γ
2−γ .

Taking this into account, we obtain

‖χρ‖
2
2 ≤

‖h0‖
2
C

16π

2−γ

(1 − γ)2
ρ1−γ

∫

Γρ

|ϕ(τ)|2|dτ |,

from which results the inequality a), in which d1 =
2(−2−γ/2)

(1 − γ)π1/2
‖h0‖C .

Now we will show that the function (Kρϕ)(t) =
1

2πi

∫
Γ0
hρ(t, τ)ϕ(τ)dτ is con-

tinuous on Γ0. For ϕ ∈ L2(Γ0) we have ‖ϕ‖2 < α. The function hρ(t, τ), being
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continuous on the compact Γ0×Γ0, is uniformly continuous. In such a way for ε > 0
there exists δ > 0 such that the inequalities |t2 − t1| < δ, |τ2 − τ1| < δ imply the
relation |hρ(t2, τ2) − hρ(t1, τ1)| < ε/α. Taking into account the last inequality and
Holder inequalities, we obtain for |t2 − t1| < δ

|(Kρϕ)(t2) − (Kρϕ)(t1)| ≤
1

2π

∫

Γ0

|hρ(t2, τ) − hρ(t1, τ)||ϕ(τ)||dτ | ≤

≤
1

2π

(∫

Γ0

|hρ(t2, τ) − hρ(t1, τ)|
2|dτ |

)1/2(∫

Γ0

|ϕ(τ)|2|dτ |

)1/2

≤
ε

α
‖ϕ‖2 < ε. (12)

In such a way, the function (Kρϕ)(t) is continuous.
The affirmation from point c) is stated using the Arzela-Ascoli theorem. The

linearity of the operator Kρ is evident. Let M be a bounded set in L2(Γ0). In
this way there exists α > 0 such that ‖ϕ‖2 < α (ϕ ∈ M). For every ϕ ∈ M ,
according to inequality (12), we obtain that inequality |t2 − t1| < δ implies
|(Kρϕ)(t2) − (Kρϕ)(t1)| < ε. This means that the functions of the set Kρ(M)
are equally continuous. Let us show that the set Kρ(M) is bounded in C(Γ0). Let
β = max

t,τ∈Γ0

|hρ(t, τ)|. We have

|(Kρϕ)(t)| ≤
1

2π

∫

Γ0

|hρ(t, τ)||ϕ(τ)||dτ | ≤

≤
1

2π

(∫

Γ0

|hρ(t, τ)|
2|dτ |

)1/2 (∫

Γ0

|ϕ(τ)|2|dτ |

)1/2

≤ β‖ϕ‖2.

So, for each Kρϕ ∈ Kρ(M) we have ‖Kρϕ‖C(Γ0) = max
t∈Γ0

|(Kρϕ)(t)| < αβ. Therefore,

the set Kρ(M) ⊂ C(Γ0) is uniformly bounded and functions of this set are equally
bounded.

According to the Arzela-Ascoli theorem the set Kρ(M) is relatively compact in
C(Γ0) and in such a way the operator Kρ is completely continuous. The lemma is
proved.

Lemma 2. Let the operator A, defined by the left term of equation (3), be invertible
in the space L2(Γ0). Then for ρ such that

ερ := d1ρ
(1−γ)/2

∥∥A−1
∥∥

2
≤ q1 < 1, (13)

the operator Aρ, defined by the left term of equation (4), is invertible in L2(Γ0)
as well and the inequality ‖A−1

ρ ‖2 ≤ (1 − ερ)
−1‖A−1‖2 is true. For the solutions

ϕ = A−1f and ϕρ = A−1
ρ f of equations (3) and (4), respectively, we have

‖ϕ− ϕρ‖2 ≤ ερ(1 − ερ)
−1
∥∥A−1

∥∥
2
‖f‖2.

Proof. Using item a) from Lemma 1 we obtain the estimation ‖(A−Aρ)x‖2 = ‖(K−
Kρ)x‖2 = ‖χρ‖2 ≤ d1ρ

(1−γ)/2‖x‖2, ∀x ∈ L2(Γ0). Then ‖A − Aρ‖2 ≤ d1ρ
(1−γ)/2.
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We will show that if inequality (13) holds, then the operator Aρ is invertible for
sufficiently small values of ρ. For this we will use the representation Aρ = A− (A−
Aρ) = A(I−A−1(A−Aρ)). Since ‖A−1(A−Aρ‖2 ≤ ‖A−1‖2d1ρ

(1−γ)/2 = ερ ≤ q1 < 1
is true, then according to Banach theorem about small perturbations of an invertible
operator, results the existence of the inverse operator A−1

ρ = (I−A−1(A−Aρ))
−1A−1

the norm of which satisfies the inequality

∥∥A−1
ρ

∥∥
2
≤
∥∥(I −A−1(A−Aρ))

−1
∥∥

2

∥∥A−1
∥∥

2
= (1 − ερ)

−1
∥∥A−1

∥∥
2
.

For solutions ϕ and ϕρ of equations (3) and (4), respectively, we have

‖ϕ− ϕρ‖2 ≤
∥∥A−1 −A−1

ρ

∥∥
2
‖f‖2 ≤

∥∥A−1
∥∥

2
‖Aρ −A‖

2

∥∥A−1
ρ

∥∥
2
‖f‖2 ≤

≤ (1 − ερ)
−1
∥∥A−1

∥∥2

2
d1ρ

(1−γ)/2‖f‖2 = ερ(1 − ερ)
−1
∥∥A−1

∥∥
2
‖f‖2.

The lemma is proved.

Remark 1. As ερ → 0 when ρ→ 0, it results that ‖ϕ−ϕρ‖2 → 0 when ρ→ 0. This
fact justifies the made convention with relation to the possibility of approximation
of the exact solution of equation (3) with the approximate solution of equation (4),
obtained according to the collocation method. In the following we will consider that
ρ satisfies condition (13). This is true if ρ is sufficiently small.

It is known from [10, p.5; 11, p.12], that the operator Ln that acts in the space
L2(Γ0) is unbounded, but being looking for as an operator that acts from the space
R(Γ0) to L2(Γ0) it is bounded, and in [11] it is shown that

‖Lnf − f‖2 → 0, ∀f ∈ R(Γ0). (14)

Lemma 3. Let {tj}
n
j=−n be the system of points (2). Then for each integer number

m, such that |m| ≤ 2n the following relation is true:

1

2n + 1

n∑

j=−n

tmj =

{
1, if m = 0
0, if m 6= 0

. (15)

Proof. For m = 0 relation (15) is evident. For m 6= 0, |m| ≤ 2n, we have tm 6= 1

and t2n+1
m = 1. In such a way we obtain

n∑

j=−n

tmj =
n∑

j=−n

tjm =
1 − t2n+1

m

tnm(1 − tm)
= 0. The

lemma is proved.

Lemma 4. For each measurable and bounded function g : Γ0 → C and each polyno-
mial pn ∈ Pn the following relation is true

‖Lng pn‖2 ≤ ‖g‖∞‖pn‖2, (16)

where ‖g‖∞ = sup
t∈Γ0

|g(t)|.
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Proof. Taking into account the fact that the functions tn, t = eiθ, n ∈ Z, form an
orthogonal basis in L2(Γ0) and relations (8) and (15), the norm of the polynomial
Lnf (f is measurable and bounded in L2(Γ0)) can be calculated:

‖Lnf‖
2
2 =

1

2π

∫
2π

0

∣∣∣(Lnf)(eiθ)
∣∣∣
2

dθ =
1

2π

∫
2π

0

∣∣∣∣∣

n∑

k=−n

Λke
iθk

∣∣∣∣∣

2

dθ =

n∑

k=−n

|Λk|
2 =

=
1

(2n + 1)2

n∑

k=−n




n∑

j=−n

f(tj)t
−k
j



(

n∑

l=−n

f(tl)t
k
l

)
=

=
1

(2n + 1)2

n∑

j=−n

f(tj)

(
n∑

l=−n

f(tl)

(
n∑

k=−n

t
l−j
k

))
=

1

2n+ 1

n∑

j=−n

|f(tj)|
2 .

In this way we obtain:

‖Lng pn‖
2
2 =

1

2n + 1

n∑

j=−n

|g(tj)|
2 |pn(tj)|

2 ≤ ‖g‖2
∞
‖Ln pn‖

2
2 = ‖g‖2

∞
‖pn‖

2
2,

which implies relation (16). The lemma is proved.

Lemma 5. Each 2-nonsingular function a ∈ PC(Γ0) can be represented in the form
a(t) = rn(t)h(t), where rn is a trigonometric polynomial from Pn and h ∈ PC(Γ0)
(h is 2-nonsingular and with the same discontinuities as a) such that ‖h − 1‖∞ =
sup
t∈Γ0

|h(t) − 1| ≤ q < 1.

Proof. The 2-nonsingular function a ∈ PC(Γ0) with discontinuity points t1, ..., tn
can be represented in the form a(t) = |a(t)| exp(iθ(t)). We set ρ(t) = |a(t)|. From
the hypothesis it results that ρ ∈ PC(Γ0) and there exists δ > 0 such that ρ(t) ≥ δ

for all t ∈ Γ0. In such a way we can include ρ in the factor h and so we can assume,
without loosing generality, that a(t) = exp(iθ(t)).

We choose an arbitrary point t0 ∈ Γ0, t0 6= tj (j = 1, n) as an initial point from
which the calculation of argument begins. The fact that â(t, µ) 6= 0 for all (t, µ) ∈
Γ0 × [0, 1] allows us to choose the function θ with real values in such a way that θ is
continuous at all points t ∈ Γ0 which are different from tj (j = 0, n), is left continuous
at t0, t1, ..., tn and for δ > 0 the relations |θ(tj) − θ(tj + 0)| < π − δ (j = 1, n) are
true while a(t0)− a(t0 + 0) is multiple of 2π. We define the functions b, c ∈ PC(Γ0)
with real values in the following way: b(tj) = θ(tj), b(tj + 0) = θ(tj + 0), j = 0, n,
c(t0) = θ(t0), c(t0 + 0) = θ(t0 + 0), c(tj) = c(tj + 0) = 1

2
(θ(tj)+ θ(tj + 0)), j = 1, n,

and on residual arcs of Γ0, b(t) and c(t) are defined by linear interpolation. Then
the following inequality is true

sup
t∈Γ0

|b(t) − c(t)| <
1

2
(π − δ). (17)
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The mode of choice of functions b(t) and c(t) implies the fact that the functions
θ(t) − b(t) and exp(ic(t)) are continuous on Γ0. So, the following function

f(t) = exp(i(θ(t) − b(t) + c(t))) (18)

is continuous on Γ0. It is evident that |f(t)| = 1 for all t ∈ Γ0. Therefore, ac-
cording to the Wierstrass second theorem of approximation, there exists trigono-

metric polynomial pn(t) =

n∑

k=−n

akt
k such that pn(t) 6= 0 on Γ0 and which approxi-

mates uniformly the function f , such that f can be represented in the following way
f = pn(1 −m), and for m ∈ C(Γ0) the following relations are true:

sup
t∈Γ0

|m(t)| <
1

2
, (19)

−
1

4
δ < arg(1 −m(t)) <

δ

4
. (20)

We mention the fact that relation (20) can be obtained by choosing the polynomial
pn in such a way that for the function m the value sup

t∈Γ0

|m(t)| is sufficiently small.

We define the function u in the following way u(t) = (1 − m(t)) exp(i(b(t) −
c(t))), t ∈ Γ0. Then u ∈ PC(Γ0). As the function f from relation (18) is equal to
pn(1−m), we conclude that a(t) = exp(iθ(t)) = f(t) exp(i(b(t)− c(t))) = pn(t)u(t).
Since pn ∈ C(Γ0), pn(t) 6= 0 on Γ0, and the function a is 2-nonsingular, from the
last relation it results that the function u is 2-nonsingular and it has the same
discontinuities as a. From relations (17) and (20) we obtain | arg u(t)| < π/2 − δ/4,
and from (19) we obtain |u(t)| ≥ 1/2. In such a way values of the function u are
situated in a semi-plane of the line Reu(t) ≥ δ0 > 0 (t ∈ Γ0). More exactly, the
values u(t) for all t ∈ Γ0 are situated in the triangular sector as it is indicated on
the figure.

Evidently, by the similarity transformation with the coefficient γ (> 0) this sector
can be translated into a sector all points of which are distant from point 1 with the
distance which is less than 1. So, a number γ > 0 can be chosen such that for all
t ∈ Γ0 the values γu(t) belong to the unit circle and ‖1−γu‖∞ = sup

t∈Γ0

|1−γu| ≤ q < 1.

Now we set rn(t) = γ−1pn(t), h(t) = γu(t). As a(t) = rn(t)h(t), it results that the
lemma is proved.
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Corollary 1. According to Lemma 5, each 2-nonsingular function a(t) ∈ PC(Γ0)
can be represented in the form

a(t) = rn(t)(g(t) + 1), (21)

where rn ∈ Pn, and the function g ∈ PC(Γ0) satisfies the condition ‖g‖∞ =
sup
t∈Γ0

|g(t)| ≤ q < 1. So, we have ind2(g(t) + 1) = 0, and, as rn(t) and g(t) + 1

do not have common discontinuity points, we obtain that ind2a(t) = ind rn(t).

4 The formulation and the proof of the convergence theorems

Let equation (3) have a unique solution, i.e. the operator A that describes the left
term of the given equation is invertible in L2(Γ0). We will show that this condition
is sufficient for the convergence of the collocation and quadrature methods applied
to this equation.

The integral operator K with the weak singularity (see equation (1)) is com-
pletely continuous in the space L2(Γ0) [1].

Let the operator M = aP +bQ ∈ L(L2(Γ0)) be invertible. Then M is nöetherian
and IndM = 0, that implies the nöetherian character of the operator A = M +K

and the condition IndA = IndM = 0 [2, p.145]. Let dimkerA = 0. Then,
as IndA = dimkerA − dim co kerA, we obtain that dim co kerA = 0, and thus
ImA = L2(Γ0), that implies the invertibility of the operator A in L2(Γ0).

Taking into account all the mentioned above and the necessary and sufficient
conditions of invertibility of the operator M (see [12, 13]), the following results
about convergence of the collocation and quadrature methods can be formulated:

Theorem 1. Let the following conditions be true:

1) a0(t), b0(t) ∈ PC(Γ0), f(t) ∈ R(Γ0), h0(t, τ) ∈ C(Γ0 × Γ0);

2) (i) b(t ± 0) 6= 0, t ∈ Γ0; (ii) ĉ(t, µ) 6= 0, (t, µ) ∈ Γ0 × [0, 1], where
c = ab−1;

3) The number k := ind2c(t) = 0;

4) dim kerA = 0;

5) Nodes tj (j = −n, n) are calculated according to formula (2).

Then, for sufficiently small ρ (ερ ≤ q1 < 1) and for sufficiently large n

(n ≥ n0), system (6) has a unique solution αk (k = −n, n). The approximate
solutions ϕn(t), constructed according to formula (5), converge when ρ → 0 and
n → ∞ to exact solution ϕ(t) of equation (1) in the norm of the space L2(Γ0)
limρ→0 limn→∞ ‖ϕ− ϕn‖2 = 0.

Theorem 2. Let all conditions of Theorem 1 be true with the exception of
h0(t, τ) ∈ Hα(Γ0 × Γ0), where Hα is the Banach space of all functions that satisfy
Hölder condition on Γ0 (see, for example [4, 6]). Then the affirmations of Theorem
1 are true with the condition that SLAE (6) is changed with SLAE (7).
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Proof of Theorem 1. According to condition (ii) we have that the function
c ∈ PC(Γ0) is 2-nonsingular. Then according to the above corollary c is repre-
sented in the form (21) and ind2c(t) = ind rn(t). From condition 3) it results that
ind rn(t) = 0.

As the trigonometric polynomial rn(t) 6= 0 on Γ0, it can be represented in the
form (see [14, p.30])

rn(t) =

n+k∏

j=1

(
1 − t+j t

−1
)
tk

n−k∏

j=1

(
t− t−j

)
, (22)

where k = ind rn(t), and t+j (j = 1, n + k) (t−j (j = 1, n − k)) are all zeroes (taking
into account their multiplicity) of the polynomial rn(t) which belong to the domain
D+ (the domain D−). As polynomials

r−n+k(t) =
n+k∏

j=1

(
1 − t+j t

−1
)
, r+n−k(t) =

n−k∏

j=1

(
t− t−j

)
(23)

satisfy conditions r−n+k(t) 6= 0, t ∈ D− ∪ Γ0, r
+

n−k(t) 6= 0, t ∈ D+ ∪ Γ0, and

(r−n+k)
±1 (respectively (r+n−k)

±1) are analytical in D− (respectively in D+), and
k = ind rn(t) = 0, we obtain that equality (22) is a canonic factorization of the
polynomial rn with respect to the closed contour Γ0

rn(t) = r−n (t)r+n (t). (24)

Taking into account properties of polynomials (23) (for k = 0) and the equality
P +Q = I, we obtain that Pr−nQϕn = Q(r+n )−1Pϕn = 0. From this we have

P (r+n )±1P = (r+n )±1P ; P (r−n )±1P = P (r−n )±1. (25)

The condition (i) implies the existence of the inverse of the function b ∈ PC(Γ0).
We have that b−1 ∈ PC(Γ0). Relations (21), (24) imply for the 2-nonsingular
function c = ab−1 ∈ PC(Γ0) (a, b are coefficients of equation (3)) the representation

c(t) = r−n (t)r+n (t)h(t), (26)

where h(t) = g(t) + 1 is a function that possesses properties described above (in
Lemma 5).

According to equality (26) equation (4) is equivalent to the equation

h(t)r−n (t)(Pϕ)(t) + (r+n (t))−1(Qϕ)(t) + (r+n (t))−1b−1(t)(Kρϕ)(t) = f1(t), (27)

where f1 = (r+n )−1b−1f ∈ R(Γ0). Thus, system (6) is equivalent to the sys-
tem h(tj)r

−

n (tj)(Pϕn)(tj) + (r+n (tj))
−1(Qϕn)(tj) + (r+n (tj))

−1b−1(tj)(Kρϕn)(tj) =
f1(tj), j = −n, n. As the last system is equivalent to the following operator equation

Ln(hr−n P + (r+n )−1Q+ (r+n )−1b−1Kρ)Snϕn = Lnf1, ϕn ∈ Pn, (28)
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equations (9) and (28) are equivalent. Thus, the invertibility of the operator Ln(aP+
bQ+Kρ)Sn implies the invertibility of Ln(hr−n P + (r+n )−1Q+ (r+n )−1b−1Kρ)Sn and
vice versa.

Using relations (25), we obtain

hr−n P + (r+n )−1Q = hPr−n P + hQr−n P + P (r+n )−1Q+Q(r+n )−1Q =

= hPr−n +Q(r+n )−1 + hQr−n P + P (r+n )−1Q,

and, as

hPr−n +Q(r+n )−1 = (hP +Q)(Pr−n +Q(r+n )−1) = (I + gP )(Pr−n +Q(r+n )−1)

is true, it results that equation (28) has the form

Ln

(
(I + gP )(Pr−n +Q(r+n )−1)+hQr−n P +P (r+n )−1Q+(r+n )−1b−1Kρ

)
Snϕn = Lnf1.

Introducing notations V = (I + gP )(Pr−n + Q(r+n )−1), K1 = (r+n )−1b−1Kρ,
K2 = hQr−n P + P (r+n )−1Q, the last equation is written in the following form

Ln(V +K1 +K2)Snϕn = Lnf1. (29)

We will show that for sufficiently large n, the operator Ln(V + K1 + K2)Sn,
defined by the left term of equation (29), is invertible as an operator that acts from
Pn to Pn, and approximate solutions ϕn converge to the solution ϕρ of equation (4).
Toward this end we will show that for sufficiently large values n all conditions of
the following known affirmation about the relation between convergence manifolds
of operators C and C + T , where T is a complete continuous operator (see [4, p.22;
15, p.432]) are true.

Let X,Y be Banach spaces, and {Pn}, {Qn} (n = 1, 2, . . .) are two sequences
of projectors with domains D(Pn) ⊂ X, D(Qn) ⊂ Y and closed images ImPn ⊂
X, ImQn ⊂ Y . By L(X,Y ) we will denote the Banach algebra of all linear and
bounded operators that acts from X to Y , and by K(X,Y ) - the ideal of all complete
continuous operators that acts from X to Y . By GL(X,Y ) we denote the set of all
invertible elements of L(X,Y ).

Lemma 6. Let the operator C ∈ GL(X,Y ), for n ≥ n0 the relation C(ImPn) ⊂
D(Qn) be true and operators QnCPn ∈ GL(ImPn, ImQn). Let Z be a Banach space
that is continuously embedded in Y , such that Z ⊂ L(C,Pn, Qn) := {f ∈ Y : f ∈
D(Qn), n ≥ n1(f), ‖C−1f − (QnCPn)−1Qnf‖X → 0} - the convergence manifold of
the operator C after the system of projectors Qn and Pn. Also, let T ∈ K(X,Z) and
the following two conditions be true:

1) dimKer(C + T ) = 0; 2) Qn|Z ∈ L(Z, Y ).

Then the operators Qn(C + T )Pn ∈ GL(ImPn, ImQn) for n ≥ n2 and the
equality L(C,Pn, Qn) = L(C + T, Pn, Qn) holds.
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We set X = Y = L2(Γ0), Qn = Ln Pn = Sn C = V D(Qn) = R(Γ0),
Z = R(Γ0), T = K1 +K2. Let us show that all conditions of the lemma take place.

Using relations (23) and (25), it can be easily verified that the operator
B = Pr−n + Q(r+n )−1 is invertible in L2(Γ0), with the inverse operator B−1 =
P (r−n )−1 +Qr+n .

As ‖S‖2 = 1 and P = (I + S)/2 is a projector, it results that ‖P‖2 = 1. From
here we have ‖gP‖2 ≤ ‖g‖2 ≤ ‖g‖∞, and, as ‖g‖∞ < 1 (see Corollary 1), it results
that the operator D = I+ gP is invertible in L2(Γ0). In such a way the invertibility
of operators B and D implies the invertibility of the operator V in L2(Γ0).

Lemma 7. The inclusion BPn ⊆ Pn takes place.

Proof. Let xn(t) =

n∑

k=−n

qkt
k be an arbitrary polynomial from Pn. As r−n (t) =

0∑

k=−n

lkt
k and

(
r+n (t)

)
−1

=
∞∑

k=0

mkt
k. It results that r−n (t)xn(t) =

0∑

k=−n

lkt
k

n∑

j=−n

qjt
j =

n∑

k=−2n

nkt
k, and

(
r+n (t)

)
−1
xn(t) =

∞∑

k=0

mkt
k

n∑

j=−n

qjt
j =

∞∑

k=−n

skt
k. Then we have

P (r−n xn) =

n∑

k=0

nkt
k and Q

(
(r+n )−1xn

)
=

−1∑

k=−n

skt
k, from which we obtain

P (r−n xn) + Q
(
(r+n )−1xn

)
=

n∑

k=0

nkt
k +

−1∑

k=−n

skt
k ∈ Pn. Thus, BPn ⊆ Pn takes

place, and the lemma is proved.

On the basis of this result and thanks to the fact that PC(Γ0) is an algebra, we
obtain ∀xn ∈ Pn, V xn = DBxn = (I + gP )yn ∈ PC(Γ0) ⊂ R(Γ0) = D(Qn). As the
operators LnV Sn are linear and dimPn < ∞, it results that they are bounded as
operators that act in Pn.

We consider the operator Dn = Ln(I + gP )Sn ∈ L(Pn). Using the evident
relations Snxn = xn, Pxn ∈ Pn, and ‖Pxn‖2 ≤ ‖xn‖2, where xn ∈ Pn, as well
as relation (16), we obtain ‖Ln(I + gP )Snxn‖2 = ‖(Sn + LngPSn)xn‖2 = ‖xn +
LngPxn‖2 ≥ ‖xn‖2 − ‖LngPxn‖2 ≥ ‖xn‖2 − ‖g‖∞‖Pxn‖2 ≥ ‖xn‖2 − ‖g‖∞‖xn‖2 =
(1−‖g‖∞)‖xn‖2, ∀xn ∈ Pn. The constant C = 1−‖g‖∞ > 0, because ‖g‖∞ ≤ q < 1,
therefore the operator Dn is bounded below in Pn. As ImDn = Pn, according to
the known criterion of invertibility (see [16, p.209]), the operator Dn is invertible in
Pn. At the same time the following inequality is true:

‖xn‖2 ≤
1

1 − ‖g‖∞
‖(Sn + LngPSn)xn‖2, xn ∈ Pn. (30)

The relation Bxn ∈ Pn (xn ∈ Pn), implies the representation LnV Sn = Ln(I +
gP )Sn(Pr−n +Q(r+n )−1) = DnB, and the invertibility of the operators Dn and B in
Pn implies the invertibility of the operator LnV Sn in Pn.
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The Banach space R(Γ0) is included continuously in L2(Γ0). We will show that
R(Γ0) ⊂ L(V, Sn, Ln).

As it was shown above, the operators V and LnV Sn are invertible respectively
in L2(Γ0) and in Pn, with the inverse operators V −1 = (P (r−n )−1 +Qr+n )(I + gP )−1

and (LnV Sn)−1 = (P (r−n )−1 + Qr+n )(Ln(I + gP )Sn)−1. Then for f1 ∈ R(Γ0) we
have

‖V −1f1 − (LnV Sn)−1Lnf1‖2 ≤

≤ ‖P (r−n )−1 +Qr+n ‖2‖(I + gP )−1f1 − (Ln(I + gP )Sn)−1Lnf1‖2. (31)

Let
ψ = (I + gP )−1f1 ∈ L2(Γ0), (32)

ψn = (Ln(I + gP )Sn)−1Lnf1 ∈ Pn. (33)

Evidently, the following relation is true:

‖ψn − ψ‖2 ≤ ‖Snψ − ψn‖2 + ‖Snψ − ψ‖2. (34)

As Snψ−ψn ∈ Pn, using consecutively inequalities (30) and (33), we obtain for the
first term from the right term of inequality (34)

‖Snψ − ψn‖2 ≤
1

1 − ‖g‖∞
‖(Sn + LngPSn)(Snψ − ψn)‖2 =

=
1

1 − ‖g‖∞
‖(Sn + LngPSn)ψ − Lnf1‖2. (35)

From relation (32) we obtain ψ = f1 − gPψ. Then we have (Sn + LngPSn)ψ =
Snf1 − SngPψ + LngPSnψ, but in relation (35)

‖Snψ − ψn‖2 ≤
1

1 − ‖g‖∞
‖Snf1 − SngPψ + LngPSnψ − Lnf1‖2 ≤

1

1 − ‖g‖∞
×

×(‖LngPSnψ − gPψ‖2+ ‖SngPψ − gPψ‖2+ ‖Snf1 − f1‖2+ ‖Lnf1 − f1‖2). (36)

Lemma 8. For every x ∈ L2(Γ0)

‖LngPSnx− gPx‖2 → 0. (37)

Proof. For the proof of the lemma we will use the Banach-Steinhaus theorem [16,
p.271]. Consecutively using relations (16), ‖Pxn‖2 ≤ ‖xn‖2 (xn ∈ Pn) and ‖Sn‖2 =
1, we obtain for every x ∈ L2(Γ0), ‖LngPSnx‖2 ≤ ‖g‖∞‖PSnx‖2 ≤ ‖g‖∞‖Snx‖2 ≤
‖g‖∞‖x‖2 := cx <∞. Such sequence of operators LngPSn : L2(Γ0) → Pn is simply
bounded. As L2(Γ0) is the Banach space, it results that the sequence LngPSn is
uniformly bounded (see [16, p.269, Theorem 1]) ‖LngPSn‖2 ≤ const, n = 1, 2, . . . .

If Pm = {xm(t) =
m∑

k=−m

skt
k|sk ∈ C} is the set of trigonometrical polynomials of

order m (m ≥ 0), defined on Γ0, the set
⋃

∞

m=0
Pm is dense in L2(Γ0). If x ∈

⋃
∞

k=0
Pk,

then there exists m such that x = xm ∈ Pm, and it is true that Snxm = xm for
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n ≥ m. The inclusions g ∈ PC(Γ0) ⊂ R(Γ0) and Pxm ∈ Pm ⊂ R(Γ0) imply the fact
that gPxm ∈ R(Γ0). Then according to relation (14) it results:

‖LngPSnxm − gPxm‖2 = ‖LngPxm − gPxm‖2 → 0, ∀xm ∈

∞⋃

k=0

Pk.

On the basis of all the mentioned above, according to the Banach-Steinhaus theorem,
we have that

‖LngPSnx− gPx‖2 → 0, ∀x ∈ L2(Γ0).

The lemma is proved.

As ψ ∈ L2(Γ0), relation (37) implies

‖LngPSnψ − gPψ‖2 → 0. (38)

Let L∞(Γ0) be a Banach algebra of all essentially bounded functions on Γ0.
An alternative characterization for this space is L∞(Γ0) = {ϕ ∈ L2(Γ0) : ϕf ∈
L2(Γ0), ∀f ∈ L2(Γ0)} [17, p.39]. Then, as g ∈ PC(Γ0) ⊂ L∞(Γ0) and Pψ ∈ L2(Γ0),
we have gPψ ∈ L2(Γ0), and thus (see [11, 16])

‖SngPψ − gPψ‖2 → 0. (39)

Analogously, as f1 ∈ R(Γ0) ⊂ L2(Γ0), we have

‖Snf1 − f1‖2 → 0, (40)

and according to relation (14),

‖Lnf1 − f1‖2 → 0. (41)

Using relations (38)–(41), we obtain from (36) ‖Snψ − ψn‖2 → 0. The last
relation with ‖Snψ − ψ‖2 → 0, implies in (34) ‖ψn − ψ‖2 → 0, i.e. ‖(Ln(I +
gP )Sn)−1Lnf1 − (I + gP )−1f1‖2 → 0. As the operator P (r−n )−1 +Qr+n is bounded
in L2(Γ0), from (31) we obtain:

‖V −1f1 − (LnV Sn)−1Lnf1‖2 → 0, ∀f1 ∈ R(Γ0).

In such a way the inclusion R(Γ0) ⊂ L(V, Sn, Ln) takes place.

It is easy to verify (see [18, p.96]) that for every x ∈ L2(Γ0), the functionsQr−n Px,
P (r+n )−1Qx are continuous on Γ0. Taking into account item b) from Lemma 1 we ob-
tain that the bounded operators K1 = (r+n )−1b−1Kρ and K2 = hQr−n P +P (r+n )−1Q,
where (r+n )−1b−1, h ∈ PC(Γ0), act from L2(Γ0) to PC(Γ0) ⊂ R(Γ0). As the
operator Kρ is completely continuous (see item c) of Lemma 1) and equalities
Qr−n P = 1

2
(r−n S − Sr−n ), P (r+n )−1Q = −1

2
((r+n )−1S − S(r+n )−1), are true, and

r−n , (r+n )−1 are continuous functions on Γ0, we obtain that the operators K1, K2

are completely continuous (see [2, p.33]) K1,K2 ∈ K(L2(Γ0), R(Γ0)).
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The conditions 1)–4) of the convergence theorem assure the invertibility of the
operator A of equation (3). Then, according to Lemma 2, if relation (13) is true,
the operator Aρ is invertible as well, which implies the relation dimKerAρ = 0. As
Aρ = V +K1 +K2, we obtain that dimKer(V +K1 +K2) = 0. As it was mentioned
above, the operator Ln ∈ L(R(Γ0), L2(Γ0)).

In such a way all conditions of Lemma 6 about the lineal of convergence of
the operator V + K1 + K2 are verified, and according to it we obtain that the
operators Ln(V +K1 +K2)Sn : Pn → Pn are invertible for sufficiently large n and
L(V, Sn, Ln) = L(V +K1+K2, Sn, Ln) is true. Then R(Γ0)⊂L(V +K1+K2, Sn, Ln)
and, as equations (29), (9) and, respectively, (27), (4), are equivalent, we obtain
that equation (9) for sufficiently large n has a unique solution, and the approximate
solutions ϕn converge to the exact solution ϕρ of equation (4) ‖ϕρ − ϕn‖2 → 0.
From here and from Lemma 2, using the relation ‖ϕ−ϕn‖2 ≤ ‖ϕ−ϕρ‖2+‖ϕρ−ϕn‖2,
we obtain ‖ϕ − ϕn‖2 → 0 when n→ ∞ and ρ→ 0.

In such a way Theorem 1 is proved.

Proof of Theorem 2. It is easy to verify that equation (10) is equivalent to the
following operator equation

(An + Γn)ϕ̃n = Lnf, (42)

where Anϕ̃n = Ln(aP + bQ+Kρ)ϕ̃n, Γnϕ̃n = −Ln(Kρ −∆n)ϕ̃n, and the operators
Kρ and ∆n were defined above.

Of course, Anϕ̃n = Lnf is an operator equation of the collocation method studied
above. So, equation (42), which describes the quadrature method, can be interpreted
as the perturbation of the equation of the collocation method.

In such a way to state the convergence of the quadrature method we will use the
following lemma about the stability in the sense of Mikhlin of the approximation
method [4, p.31; 15, p.438].

LetX,Y be Banach spaces, and {Pn}, {Qn} be sequences of projectors considered
in Lemma 6.

Lemma 9. Let A ∈ GL(X,Y ) and An := QnAPn ∈ GL(ImPn, ImQn) (n ≥ n0),
and Z is a Banach space which is continuously embedded in Y in such a way that
ImQn ⊂ Z ⊂ L(A,Pn, Qn), Qn|Z ∈ L(Z, Y ), and let y ∈ Z.

Then there exist positive constants p, γ which do not depend on n and y in such
a way that for the operator Rn ∈ L(ImPn, ImQn), which verifies the relation

‖Rn‖X→Z < γ, (43)

we have

1) The equation

(An +Rn)x̃n = Qny (44)

has the unique solution (n ≥ n0);
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2) For solutions x̃n, xn ∈ ImPn of equation (44) and, respectively Anxn = Qny,
the estimation

‖x̃n − xn‖X ≤ p‖y‖Z‖Rn‖X→Z (45)

holds.

We set X = Y = L2(Γ0), Z = R(Γ0)4, Qn = Ln, Pn = Sn, A = Aρ, Rn = Γn,
y = f . The conditions of the last lemma with the exception of relation (43) were
already verified in the proof of Theorem 1. Evidently Γn ∈ L(ImSn, ImLn). We will
show that for Γn condition (43) holds and even more, ‖Γn‖L2→R → 0 when n→ ∞.
In such conditions, taking into account estimation (45), we have ‖x̃n − xn‖2 → 0
when n→ ∞.

Taking into account the identity
∫
Γ0

Lτ
n(hρ(t, τ)ϕn(τ))dτ=

∫
Γ0

1

τ
Lτ

n[τhρ(t, τ)]ϕn(τ)dτ ,

∀ϕn ∈ Pn (see [18, p.72]), and the fact that (∆nϕn)(t) − (Kρϕn)(t) ∈ C(Γ0),
as well as Hölder inequalities, we obtain ‖(Kρϕn)(t) − (∆nϕn)(t)‖C =

(2π)−1 max
t∈Γ0

∣∣∣∣∣
∫
Γ0

τ−1(τhρ(t, τ) − Lτ
n[τhρ(t, τ)])ϕn(τ)dτ

∣∣∣∣∣ ≤ (2π)−1 max
t∈Γ0

∫
Γ0

|τhρ(t, τ) −

Lτ
n[τhρ(t, τ)]| |ϕn(τ)| |dτ | ≤ (2π)−1 max

t∈Γ0

‖τhρ(t, τ) − Lτ
n[τhρ(t, τ)]‖2‖ϕn‖2. As t 7→

‖τhρ(t, τ) − Lτ
n[τhρ(t, τ)]‖2 is a continuous function on Γ0,∃ tn ∈ Γ0 such that

max
t∈Γ0

‖τhρ(t, τ) − Lτ
n[τhρ(t, τ)]‖2 = ‖τhρ(tn, τ) − Lτ

n[τhρ(tn, τ)]‖2. As τhρ(t, τ) ∈

C(Γ0) by τ , using the relation ‖g−Lng‖2 ≤ 2En(g),∀g ∈ C(Γ0) (see [19, p.63]),
we obtain ‖τhρ(tn, τ) − Lτ

n[τhρ(tn, τ)]‖2 ≤ 2Eτ
n(τhρ(tn, τ)). According to Jackson

theorem in C(Γ0) (see [19, p.43]) we have Eτ
n(τhρ(tn, τ)) ≤ 12ωτ (τhρ;

1

n+ 1
) ≤

12ωτ (hρ;
1

n+ 1
), where ω(g; δ) is the modulus of continuity of the function g(t).

In such a way we have ‖(Kρϕn)(t) − (∆nϕn)(t)‖C ≤
12

π
ωτ (hρ;

1

n+ 1
)‖ϕn‖2.

Then taking into account the estimation ‖Ln‖C ≤ d1 lnn (see [19, p.49]), we have

‖Γnϕn‖C ≤ ‖Ln‖C‖(Kρϕn)(t) − (∆nϕn)(t)‖C ≤ d2 lnn ωτ (hρ;
1

n+ 1
)‖ϕn‖2.

Taking into account that hρ(t, τ) ∈ Hδ(Γ0 × Γ0), δ = min(α, γ) (see [20,

p.22; 6, p.10]), we have ωτ

(
hρ;

1

n+ 1

)
= sup

|τ ′

−τ ′′

|≤
1

n+1

|hρ(t, τ
′) − hρ(t, τ

′′)| ≤

sup
|τ ′

−τ ′′

|≤
1

n+1

d3|τ
′ − τ ′′|δ = d3

1

(n+ 1)δ
. Consequently, as Γnϕn ∈ C(Γ0), we have

‖Γnϕn‖R(Γ0) = ‖Γnϕn‖C(Γ0) and then ‖Γn‖L2→R ≤ d4n
−δ lnn→ 0 when n→ ∞.

In virtue of Theorem 1, the equation Anϕn = Lnf , which describes the colloca-
tion method, for all sufficiently large n, has the unique solution ϕn and ‖ϕn−ϕ‖ → 0
when n → ∞ (ϕ is the solution of equation (1)). Applying Lemma 9 we obtain
that equation (42) (equivalent to equation (10)) has the unique solution ϕ̃n and
‖ϕ̃n − ϕn‖ → 0 (n→ ∞).
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Then ‖ϕ̃n − ϕ‖ ≤ ‖ϕ̃n − ϕn‖ + ‖ϕn − ϕ‖ → 0 when n → ∞ and in such a way
we convince of the verity of statements of Theorem 2.
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Criterion of parametrical completeness

in the 6-element non-chain extension

of Intuitionistic logic of A. Heyting

Vadim Cebotari

Abstract. The problem of parametrical completeness in the 6-element non-chain
extension of Intuitionistic logic is considered. The conditions permiting to determine
the parametrical completeness of an arbitrary system of formulas in mentionted logic
are established in terms of 13 parametrical pre-complete classes of formulas.
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Keywords and phrases: Intuitionistic logic, parametrical expressibility, parametri-
cal completeness, pre-complete system.

L.E. Brouwer [1] discarded the Tertiun non datur Law and proclaimed Classical
logic doubtful. Gradually it became clear that Intuitionistic logic presents value in
diverse aspects, including in the theory of algorithms. A. Heyting (1930) succeeded
to represent it by means of well known nowadays Intuitionistic calculus [2].

A.V. Kuznetsov [3] introduced in consideration the notion of parametrical
expressibility as a generalization of explicit expressibility. He found out the cri-
terion of parametrical completeness in the classical logic, and put the problem to
find out conditions for parametrical completeness in the Intuitionistic propositional
logic [3, p. 28, problem 16]. In order to approach to the problems for Intuitionistic
logic, it is more preferable to solve analogous problems, first, for some more simple
logic which approximates it. A. Danil’chenko [4] obtained a criterion of parametrical
completeness for the logic of First Jaskowski’s matrix, generalized later by I. Cucu
[5] for the case of the logic of any finite or countable chain.

In the present paper we give the necessary and sufficient conditions for para-
metrical completeness of any arbitrary system of formulas in the logic of 6-element
pseudo-boolean algebra with one atom, and one penultimate element and two in-
comparable ones. This logic played an essential role in solving the problem of com-
pleteness with respect to explicit expressibility in the Intuitionistic logic realized by
M. Rata [7] in 1970.

We construct the formulas in usual way [2] with the connectives &, ∨, ⊃, and ¬,
starting with propositional variables p, q, r, . . ., possibly with indices. The symbols
0, 1, ⊥p, (A ∼ B) and (A ⊕ B) denote respective by the formulas

(p&¬p), (p ⊃ p), (p ∨ ¬p), (A ⊃ B)&(B ⊃ A) and ((¬A&B) ∨ (A&¬B)).
The result of substituting formulas F1, . . . , Fn in a formula G, respectively, for

the propositional variables π1, . . . , πn is denoted by the symbols G[π1/F1, . . . , πn/Fn]
or in short, G[F1, . . . , Fn].

c© Vadim Cebotari, 2006
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A formula F is said to be explicitly expressible in the logic L by a system Σ of
formulas if F can be obtained from variables and formulas belonging to Σ by means
of a finite numbers of week substitutions (i.e. transitions from B and C to B[π/C],
where π is a variable) and replacements by equivalents in L (i.e. transitions from B

to C such that (B ∼ C) ∈ L). If all the transitions consist only in applications of
week substitution rule, then they say that F is directly expressible by Σ.

A formula F is said to be parametrically expressible (in short, p. expressible)
in a logic L in terms of a system (of formulas) Σ if there exist numbers l and s,
variables π, π1, . . . , πl not occurring in F , pairs a formulas Ai, Bi (i = 1, . . . , s) that
are expressible in L in terms of Σ, and formulas D1, . . . ,Dl that do not contain the
variables π, π1, . . . , πl such that take place the relations

L ⊢ ((F ∼ π) ⊃ (A1 ∼ B1)& . . . &(As ∼ Bs)[π1/D1], . . . , πl/Dl]),

L ⊢ ((A1 ∼ B1)& . . . &(As ∼ Bs) ⊃ (F ∼ π)).

The relation of parametrical expressibility is transitive. But the partial case
of this relation when parameters are absent is called implicit expressibility, and in
general case it is not transitive. A system (of formulas) Σ is said to be parametrically
complete (in short, p. complete) in a logic L if all formulas of the language of L are
p. expressible in L in terms of Σ.

Classical logic, Intuitionistic one, which is intermediate between logics, and
also absolute contradictory logic can be united under the general notion of super-
Intuitionistic logic. For any of these logic there exist some pseudo-boolean algebra
in which the respective logic may be interpreted.

By a pseudo-boolean algebra [6] we mean a system < M ; Ω >, where Ω =
{&,∨,⊃,¬}, which is a lattice with respect to & and ∨, with relative pseudo-
complement ⊃ and pseudo-complement ¬. They say that a formula F is true in a
(pseudo-boolean) algebra Λ if F , as on function of Λ, is identically equal to the great-
est element 1 of Λ. The set of all formulas true in Λ constitutes a super-intuitionistic
logic, called the logic of the algebra Λ and denoted below by the expression LΛ.

The pseudo-boolean algebra whose diagram is represented in Fig. 1 is denoted
by the expression Z2 + Z5. The logic L(Z2 + Z5) played an essential role in solving
the problem of completeness relative to explicit expressibility in the Intuitionistic
logic and in its super-intuitionistic extensions realized by M.Rata [7].

Let us remark that the chains {0, τ, ω, 1}, {0, ρ, ω, 1} and {0, σ, ω, 1} with respect
to operations &, ∨, ⊃, ¬ constitute isomorphic subalgebras of the algebra Z2 + Z5,
and any of them is the interpretation of one and the same (super-intuitionistic) logic
denoted below by the symbol LZ4.
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Analogously, we denote by the symbol LZ2 the logic of Boolean algebra
Z2 =< {0, 1}; Ω >.

Following A.V. Kuznetsov [3], we say that a formula F (p1, . . . pn) preserves the
predicate R(x1, . . . xm) in the algebra Λ if, for any elements αij ∈ Λ (i = 1, . . . ,m;
j = 1, . . . , n), the truth of propositions

R[α11, α21, . . . , αm1], . . . , R[α1n, α2n, . . . , αmn]

implies
R[F [α11, . . . , α1n], . . . , F [αm1, . . . , αmn]].

Proposition 1 [3]. A system of formulas Σ is p.complete in the classical logic LZ2

if and only if there are formulas of Σ that do not preserve the predicates

x = 0, x = 1, x = ¬y, x&y = z, x ∨ y = z, ((x ∼ y) ∼ z) = u (1)

in the algebra Z2.

Under the formula centralizer [8] of a function F we mean the set of formulas
permutable with F in a given pseudo-boolean algebra. Let denote it by the symbol
< F >.

Let us define seven functions f1, . . . , f7 by means of Tables 1 and 2, and note
that these functions cannot be expressed by formulas.

p 0 τ ω 1

f1 0 0 - 1
f2 0 τ τ 1
f3 0 1 τ 1

p 0 τ ρ σ ω 1

f4 0 τ σ ρ 1 1
f5 0 τ τ τ 1 1
f6 0 τ 1 1 1 1
f7 0 1 τ τ 1 1

Table 1 Table 2

Theorem 1. In order that a system Σ of formulas be parametrically complete in
the logic L(Z2 + Z5) it is necessary and sufficient that Σ be parametrically complete
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in the classical logic LZ2 and for every i = 1, . . . , 7 there exist a formula Fi of Σ
which does not belong to the formula centralizer < fi >.

Let’s remind [3] that the formula centralizer < F > coincides with the set of
all formulas preserving the predicate f(x1, . . . , xn) = y in the considered algebra,
where the variable y differs from x1, . . . , xn. Let denote the classes of formulas pre-
serving the predicates of line (1) in Z2 , respectively, by the symbols C0, C1, . . . , C5.
Analogously, for any i = 1, 2, . . . , 7, we denote the class of formulas preserving the
predicate fi(x) = y by the symbol Ci+5

On the base of Proposition 1 Theorem 1 is equivalent with the following

Theorem 2. In order that a system of formulas Σ be p.complete in the logic
L(Z2 + Z5) it is necessary and sufficient that Σ be not included in one of the classes
C0, . . . , C12.

The necessity follows from the fact that the classes C0, . . . , C15 are closed with
respect to p.expressibility, and they are incomparable two by two relative to the
inclusion.

Sufficiency. If the condition holds, then for each i = 1, 2, . . . , 12 there exists a
formula Fi from system Σ not belonging to the class Ci. Note that the system of
six formulas {F0, F1, . . . , F5}, in accordance with Proposition 1, is p.complete in the
classical logic LZ2.

In following we present twelve lemmas necessary for the proof of Theorem 2.
Also we admit, for short, to use the symbol L6 instead of the expression L(Z2 +Z5).

Lemma 1. The formulas 0 and 1 are explicitly expressible in L6 by means of F0,
F1 and F2.

Lemma 2. At least one of three formulas

¬p,¬¬p, or⊥p (2)

is explicitly expressible in L6 by means of the formulas 0, 1 and F6.

Lemma 3. The formula ¬p is implicitly expressible in L6 by means of the formulas
0, 1, F3, F4 and F6.

Lemma 4. The formula ¬¬(p&q) is explicitly expressible in L6 by means of the
formulas 0, 1, ¬p and F5.

Lemma 5. The formulas ⊥p and ¬p&⊥q are p.expressible in L6 by means of the
formulas 0, 1, ¬p, F9 and F11.

Lemma 6. The formulas ¬p&q, ¬p∨ q and p⊕ q are implicitly expressible in L6 by
means of the formulas

¬p,¬¬(p&q),¬p&⊥q. (3)

Lemma 7 [3]. The conjunction p&q is implicitly expressible in any super-
intuitionistic logic by means of the implication p ⊃ q.
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Lemma 8. At least one of the following three formulas

p&q, p ∼ q, p ⊃ q (4)

is p.expressible in L6 by means of the formulas of the list

0, 1,¬p,⊥p,¬p&q,¬p ∨ q, p ⊕ q (5)

and the formulas (plus)
F7, F8, F9, . . . , F11. (6)

Lemma 9. The formula p ⊃ q is p.expressible in L6 by means of the formulas of
list (5) plus the list

p ∼ q, F12. (7)

Lemma 10. At least one of three formulas

p ∨ q, p ∼ q, p ⊃ q (8)

is p.expressible in L6 by means of the formulas (5) and the formulas

p&q, F7, F8, F9, F10. (9)

Lemma 11. The formula p ⊃ q is p.expressible in L6 by means of the formulas of
list (5) and the formulas

p&q, p ∨ q, F7, F8. (10)

Lemma 12. The formula p ∨ q is p.expressible in L6 by means of the formulas of
list (5) and the formulas

p ⊃ q, F9. (11)

Let us return to the proof of the theorem. We sum up that the formulas of
list (5) because of Lemmas 1–6 are p.expressible in L6 by means of the formulas
F0, . . . , F6, F9, and F11.

On the base of Lemma 8 at least one of the formulas of the line (4) is p.expressible
in L6 by means of the formulas of the lists (5) and (6).

In dependence of this fact there are three cases.

Case 1. Let the formula p ⊃ q be p.expressible in L6 by means of the lists (5)
and (6). Then in virtue of Lemma 7 the formula p&q also is p.expressible in L6

through formulas (5) and (6). It remain to say in analyzed case that third formula
p ∼ q from line (4) is explicitly expressible in L6 by means of p&q and p ⊃ q, because
it takes place that (p ∼ q) ∼ ((p ⊃ q)&(q ⊃ p)).

Case 2. Let the formula p ∼ q be p. expressible in L6 via the formulas of lists
(5) and (6). Then on the base of Lemma 9 the formula p ⊃ q is p. expressible in
L6 by means of formulas from list (7). But in virtue of Lemma 7 the third formula
p&q of list (4) is implicitly expressible in L6 via the implication p ⊃ q.

Case 3. Let the formula p&q be p. expressible in L6 by means of the formulas
of lists (5) and (6). Then on base of Lemma 10 at least one of three formulas of line
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(8) is p. expressible in L6 via formulas of lines (5) and (9). If p ⊃ q is p.expressible
then the subcase falls under the case 1. If p ∼ q is p.expressible then it falls under
the case 2. Let p ∨ q be p. expressible by means of formulas of lists (5) and (9).
Then, in accordance with Lemma 11, the formula p ⊃ q is p.expressible in L6 via
formulas of lines (5) and (10).

So, we can say that all three formulas of list (4) are p. expressible in L6 by
means of the formulas of line (5) and formulas F7, . . . , F12. On the base of Lemma
12, the formula p ∨ q also is p. expressible in L6 by means of the formulas of lines
(5) and (11).

It remained to sum up that any formula of the following system {¬p, p&q, p ∨
q, p ⊃ q} is p. expressible in L6 by means of formulas from the hypothesis of theorem,
and add that this system is explicitly complete in the logic L6.

The theorem is proved.
A system (of formulas) Σ is said to be parametrically pre-complete in a logic L

if Σ is not complete in L, but, for any formula F not belonging to Σ, the system
Σ ∪ {F} is p. complete in L.

Theorem 3. There exist exactly 13 parametrically pre-complete in L(Z2 + Z5)
classes of formulas.

Theorem 4. There exists non-complex algorithm which, for any finite system of
formulas, enables to determine whether this system is parametrically complete in the
L(Z2 + Z5).
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Linear stability bounds in a convection problem

for variable gravity field

Ioana Dragomirescu, Adelina Georgescu

Abstract. A problem governing the convection-conduction in a horizontal layer
bounded by rigid walls of a fluid heated from below for a linearly decreasing across
the layer gravity field is reformulated as a variational problem. Stability bounds from
the case of classical convection [1] and the case of convection in a linearly decreasing
across the layer gravity field are compared. The new criterion, which yields good
stability bounds for the stability limit, is shown by the numerical evaluations obtained
in [2–4].
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1 Problem setting

Variations in the gravity field occur in, on and above the Earth’s surface due to
the fluid and atmosphere dynamics. In order to study the variable gravity effects
on various convection problems and to compare them with the results obtained
on a laboratory scale or deduced from the atmospheric models the mathematical
model governing the conduction-convection must be investigated. In this paper we
analyze the influence of a linearly decreasing gravity field on the stability bounds
in a convection problem. The governing mathematical model is that given in [7].
This problem is quite unusual in the linear hydrodynamic stability theory due to the
variable coefficients involved in the equations. It is a two-point eigenvalue problem,
where the Rayleigh number is the eigenvalue which can be expressed by a functional
defined on a Hilbert space of smooth functions satisfying some boundary conditions.
The smallest eigenvalue, the only one of interest in applications, corresponds to the
neutral stability in the case when the principle of exchange of stability holds. It
can be computed as the minimum of that functional in the class H of admissible
functions. This variational problem can be solved by means of a Fourier series
technique and its solution is the smallest eigenvalue, called the linear stability limit.
An alternative approach is to use isoperimetric and algebraic inequalities to provide
bounds of this limit. Herein these two types of results are reported.

Consider a horizontal layer of a heat conducting viscous fluid situated between
the planes z = 0 and z = h. For t > 0 the conduction and convective motion is
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governed by the conservation equations of momentum, mass and internal energy [7]





∂v

∂t
+ (v · grad)v = −

1

ρ
gradp + ν∆v + g(z)αT,

divv = 0,
∂T

∂t
+ (v · grad)T = k∆T,

(1)

where ν is the coefficient of kinematic viscosity, ρ is the density, α the thermal
expansion coefficient, k the thermal diffusitivity, p the pressure, T the temperature,
v the velocity and g(z) = gH(z)k is the gravity, with g constant and k the unit
vector in the z-direction. The boundary conditions at the rigid boundaries are [7]





v = 0, at z = 0, h,

T = TL, at z = 0,
T = TU , at z = h, with TL > TU .

(2)

The linear stability of the conduction stationary solution of equations (1) character-

ized by v = 0, T = −βz + TL, β =
TL − TU

h
, written in the nondimensional form,

against normal mode perturbations is governed by the following two-point problem
for the ordinary differential equations [5, 7]

{
(D2 − a2)2W = RH(z)a2Θ,

(D2 − a2)Θ = −RN(z)W,
(3)

W = DW = Θ = 0 at z = 0, 1. (4)

Here D =
d

dz
, R2 is the Rayleigh number and it represents the eigenvalue of the

problem (3)–(4), a is the wavenumber and W and Θ are the amplitudes of the vertical
velocity and pressure perturbation. They form the eigenfunction of the eigenvalue
problem (3)–(4).

In the sequel we consider that H(z) = 1 − εz, N(z) ≡ 1 and k = 1, so
g(z) = g(1 − εz)k.

2 Stability criteria

For ε ∈ [0, 1], the principle of exchange of stability holds [5] for the eigenvalue
problem {

(D2 − a2)2W = R(1 − εz)a2Θ,

(D2 − a2)Θ = −RW,
(5)

with the boundary conditions (4). Eliminating W between the equations (5) we
obtain the following six-order ordinary differential equation

(D2 − a2)3Θ = −R2a2(1 − εz)Θ,
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and the boundary conditions, written in Θ only, are

Θ = (D2 − a2)Θ = D(D2 − a2)Θ = 0, at z = 0, 1.

The problem (5)–(4) possesses a non-trivial solution only for particular values
of R. So we have an eigenvalue problem for R. For a given a we must determine
the lowest value of R. This minimum value with respect to a is the critical Rayleigh
number at which the instability sets in. It corresponds to the most unstable mode.

Introduce the new function

Ψ = (D2 − a2)Θ. (6)

In this way, we have
(D2 − a2)2Ψ = −R2a2(1 − εz)Θ, (7)

with the boundary conditions

Θ = Ψ = DΨ = 0 at z = 0, 1. (8)

Some practical criteria can be derived for the hydrodynamic stability problem
using the following three isoperimetric inequalities due to Joseph [6]

I2
1 ≥ λ2

1I
2
0 , I2

2 ≥ λ2
2I

2
1 , I2

3 ≥ λ2
3I

2
0 , (9)

where λ1 = π, λ2 = 2π, λ3 = (4.73)2 and I2
i (Φ) =

∫
1

0

(DiΦ)2. These isoperimetric

inequalities are valid in the Hilbert space H1 of real-valued four times continuously
differentiable functions Φ on [0, 1] satisfying the boundary conditions

Φ(0) = Φ(1) = DΦ(0) = DΦ(1) = 0.

Here, the functions Ψ and Θ are both indefinitely differentiable functions on the
Hilbert space L2(0, 1). The unknown function Ψ satisfies the necessary bound-
ary conditions so that the isoperimetric inequalities are valid for Ψ. Denote by
H2 the Hilbert subspace of L2(0, 1) consisting of real-valued four times continu-
ously differentiable functions Φ on [0, 1] satisfying the boundary conditions Φ(0) =
= Φ(1) = 0.

Multiplying (7) by Ψ, integrating the result over [0, 1] and taking into account
the boundary conditions (8) we obtain

I2
2 (Ψ) + 2a2I2

1 (Ψ) + a4I4
0 (Ψ) = −R2a2

∫
1

0

(1 − εz)ΘΨ. (10)

Taking into account the isoperimetric inequalities (9), it is proved that the following
stability criterion holds.

Proposition 1 [2]. For A ≡ a(a−ε) > 0, a stability bound in the two-point problem
(5), (4) is R2 ≥ B(π2 + a2)2/(a2(π2 + A)), where B = 4.734 + 2a2π2 + a4.
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Proposition 2 [2]. For A < 0 the stability bound in the two-point problem (5), (4)
is given by R2 ≥ B(π2 + a2)/(a2(1 + ε)).

Let us recall that, for ε = 0, (5) becomes
{

(D2 − a2)2W = Ra2Θ,

(D2 − a2)Θ = −RW,

which together with the boundary conditions (4), form the classical Bénard convec-
tion problem. Denote by R2

c the Rayleigh number for this two-point problem and
by R2

ε the Rayleigh number for the two-point problem (5), (4) in which the gravity
field is linearly decreasing across the layer. Then the following result holds.

Proposition 3. The domain of stability in the convection problem (5), (4) increases
with ε > 0, i.e. R2

c ≤ R2
ε .

Proof. By multiplying (6) by Θ, integrating the obtained result between 0 and 1,
(10) is rewritten in the form

I2(Ψ) − 2a2I2
1 (Ψ) + a4I2

0 (Ψ) = R2a2

∫
1

0

−ΘΨdz + R2a2ε

∫
1

0

zΘΨdz. (11)

Taking into account (6) projected on Ψ, for ε = 0, from (10) it follows [1] that the
lowest characteristic value of the Bénard problem is given as the minimum

R2
c = min

Ψ∈H1,Θ∈H2

∫
1

0

[(D2 − a2)2Ψdz]

a2

∫
1

0

[(DΘ)2 + a2Θ2]dz

. (12)

Further let us come back to the case ε 6= 0. By (6) we have Ψ = (D2 − a2)Θ.
Then the following equalities

∫
1

0

−ΘΨdz =

∫
1

0

(DΘ)2 + a2(Θ)2dz = I2
1 (Θ) + a2I2

0 (Θ) > 0,

∫
1

0

zΘΨdz = −

∫
1

0

z[(DΘ)2 + a2Θ2]dz < 0

(13)

hold. Consequently, from (11) it follows that the lowest characteristic value can be
obtained by taking the minimum of the functional

R2
e = min

Ψ∈H1,Θ∈H2

I2(Ψ) + 2a2I2
1 (Ψ) + a4I2

0 (Ψ)
∫

1

0

{
(DΘ)2 + a2Θ2 − z[(DΘ)2 + a2Θ2]

}
dz

. (14)

The comparison of (12) and (13) implies immediately that R2
ε ≥ R2

c . �

In Fig. 1 we present the neutral curve for the classical case (ε = 0) and some
neutral curves for the variable gravity field case. These graphs illustrate the stability
criteria too.
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Fig. 1. The function Ra(a)

3 Conclusions

In this paper we presented two stability criteria (one from [2] and a new one)
for a convection problem with a variable gravity field. They show that when the
gravity field is linearly decreasing across the layer (in our case this means that ε > 0),
the stability domain enlarges. The numerical results obtained in [2–4] sustain this
conclusion.

In [3, 4] we obtained numerical evaluations of the Rayleigh number by using
methods based on Fourier series expansions and these results agree very well with
the ones obtained by Straughan in [7] using the energy method. In [2], using a
variational method (in fact, isoperimetric inqualities), we also obtained numerical
evaluations of the stability bounds for this convection problem. Obviously, these
bounds are smaller than the limits (even approximate) obtained by methods based
on Fourier series expansions. However, the advantage of applying the variational
method is its easy use and the quick result obtained.
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A new method for computing the number

of n-quasigroups

S. Markovski, V. Dimitrova, A. Mileva

Abstract. We use the isotopy classes of quasigroups for computing the numbers
of finite n-quasigroups (n = 1, 2, 3, . . . ). The computation is based on the prop-
erty that every two isotopic n-quasigroups are substructures of the same number of
n + 1-quasigroups. This is a new method for computing the number of n-quasigroups
and in an enough easy way we could compute the numbers of ternary quasigroups
of orders up to and including 5 and of quaternary quasigroups of orders up to and
including 4.
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1 Introduction

An n-groupoid (n ≥ 1) is an algebra (Q, f) on a nonempty set Q as its universe
and with one n-ary operation f : Qn → Q. An n-groupoid (Q, f) is said to be an
n-quasigroup if any n of the elements a1, a2, . . . , an+1 ∈ Q, satisfying the equality

f(a1, a2, . . . , an) = an+1,

uniquely determine the other one [1]. An n-groupoid is said to be a cancellative
n-groupoid if it satisfies the cancellation law

f(a1, . . . , ai, x, ai+2, . . . , an) = f(a1, . . . , ai, y, ai+2, . . . , an) ⇒ x = y

for each i = 0, 1, . . . , n− 1 and every aj ∈ Q. An n-groupoid is said to be a solvable
n-groupoid if the equation f(a1, . . . , ai, x, ai+2, . . . , an) = an+1 has a solution x for
each i = 0, 1, . . . , n − 1 and every aj ∈ Q.

The definition of an n-quasigroup immediately implies the following.

Lemma 1. Let (Q, f) be a finite n-quasigroup and let the mapping ϕ : Q → Q be
defined by ϕ(x) = f(a1, . . . , ai, x, ai+2, . . . , an). Then ϕ is a permutation on Q.

Here we consider only finite n-quasigroups (Q, f), i.e., Q is a finite set, and in
this case we have the next property.

Proposition 1. The following statements for a finite n-groupoid (Q, f) are equiva-
lent:

(a) (Q, f) is an n-quasigroup.
(b) (Q, f) is a cancellative n-groupoid.
(c) (Q, f) is a solvable n-groupoid.

c© S. Markovski, V. Dimitrova, A. Mileva, 2006
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Proof. (a) ⇒ (b) follows immediately by the definitions.

(a) ⇒ (c) follows by Lemma 1.

Clearly, (b) and (c) imply (a).

(b) ⇒ (c): Let (Q, f) be a cancellative n-groupoid. Then

{f(a1, . . . , ai, x, ai+2, . . . , an)| x ∈ Q} = Q

for any fixed aj ∈ Q.

(c) ⇒ (b): If the groupoid (Q, f) is not cancellative then, for some aj ∈ Q

and i ∈ {0, . . . , n − 1}, the equation f(a1, . . . , ai, x, ai+2, . . . , an) = an+1 has
two different solutions x1 6= x2. Then there is an element b ∈ Q such that
b /∈ {f(a1, . . . , ai, x, ai+2, . . . , an)| x ∈ Q}. Hence, the equation f(a1, . . . , ai, x,
ai+2, . . . , an) = b has no solution on x. �

Given n-quasigroups (Q, f) and (Q,h), we say that (Q, f) is isotopic to (Q,h) if
there are permutations α1, α2, . . . , αn+1 on Q such that for every aj ∈ Q

αn+1f(a1, . . . , an) = h(α1a1, . . . , αnan).

If (Q, f) is isotopic to (Q,h), then (Q,h) is isotopic to (Q, f) too, since for
the permutations α−1

1
, α−1

2
, . . . , α−1

n+1
we have α−1

n+1
h(a1, a2, . . . , an) = f(α−1

1
a1, . . .

. . . , α−1
n an). Then we say that the n + 1-tuple of permutations (α1, . . . , αn+1) is an

isotopism between the n-quasigroups (Q, f) and (Q,h). The set of all isotopisms of
an n-quasigroup is a group under the operation [3]:

(α1, α2, . . . , αn+1)(β1, β2, . . . , βn+1) = (α1β1, α2β2, . . . , αn+1βn+1).

Also, the relation ”is isotopic to” is an equivalence relation in the set of all
n-quasigroups over a set Q. The equivalence classes are called the classes of iso-
topism or isotopy classes.

Example 1. A unary quasigroup (Q, f) is in fact a permutation on the set Q. If
(Q, f) and (Q, g) are unary quasigroups, then they are isotopic by the isotopism
(g−1, f−1). Hence, there is only one isotopy class in the set of unary quasigroups
over given universe.

Let Q = {1, 2, . . . , r}, r > 0. An r × · · · × r︸ ︷︷ ︸
n

-matrix L = [li1,i2,...,in ], such that for

each i1, . . . , ij−1, ij+1, . . . , in and each j the (i1, . . . , ij−1, ij+1, . . . , in)-th row vector
(li1,...,ij−1,1,ij+1,...,in , li1,...,ij−1,2,ij+1,...,in , . . . , li1,...,ij−1,r,ij+1,...,in) of L is a permutation

of Q, is said to be an n-Latin square of order r. The main body of the multiplication
table of an n-quasigroup (Q, f) is an n-Latin square. Conversely, from an n-Latin
square we can obtain an n-quasigroup, by its bordering [2, 5]. (Note that a 1-Latin
square is a permutation of Q, and a 2-Latin square is a Latin square [2].)

In this paper we give a new method for computing the number of
n-quasigroups, that is based on the main theorem from Section 2. For compu-
ting the number of n + 1-quasigroups one needs the number of elements of each
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isotopy class of n-quasigroups, and a representative of each isotopy class. We note
that the other methods for computing the number of n + 1-quasigroups of order r

use the formula Lr = r!(r− 1)!nNr, where Lr is the number of all n + 1-quasigroups
of order r, and Nr is the number of so called normal n + 1 quasigroups of order r.
Usually, the number Nr is computed by different combinatorial technique, while our
approach is algebraically based.

Applications of our method for computing the number of n-quasigroups are given
in Section 3. For that aim we introduce a linear ordering of the set of n-quasigroups
on the universe set {1, 2, . . . , r}. The obtained results are the same as those obtained
by other methods.

2 Main theorem

The problem of enumerating the set of quasigroups of given order r is well known.
In fact, only the number of binary quasigroups of order r ≤ 11 is known [4]. Nowa-
days, one can handle by personal computer only the set of quasigroups of order r ≤ 6
(or maybe 7), since there are about 8.12 × 108 quasigroups of order 6, 6.14 × 1013

quasigroups of order 7 and 1.08 × 1020 quasigroups of order 8.
The main theorem of this paper allows the numbers of n + 1-quasigroups (of

small orders) to be computed, provided the isotopy classes of n-quasigroups of given
order are known.

Given an n + 1-quasigroup (Q, f) of order r = |Q|, n ≥ 1, we define an (a, i)-
projected n-quasigroup (Q, fa,i) for each i = 1, 2, . . . , n + 1 and each a ∈ Q by

fa,i(x1, . . . , xi−1, xi+1, . . . , xn+1) := f(x1, . . . , xi−1, a, xi+1, . . . , xn+1).

We have by Proposition 1 that fa,i is an n-quasigroup operation and that

fa,i = fb,i ⇐⇒ a = b. (1)

This implies that the n + 1-ary operation f is uniquely determined by each of the
sets Fi = {fa,i| a ∈ Q} of (a, i)-projected n-ary operations (i = 1, 2, . . . , n + 1).

Proposition 2. Let Q be a finite nonempty set and let {fa| a ∈ Q} be a set of
n-quasigroup operations on Q such that

a 6= b ⇒ fa(a1, . . . , an) 6= fb(a1, . . . , an) (2)

for every a1, . . . , an ∈ Q. Fix a number i ∈ {1, 2, . . . , n + 1}. Then an
n + 1-quasigroup (Q, f) can be defined such that (Q, fa) are its (a, i)-projected
n-quasigroups, i.e. (Q, fa,i) = (Q, fa) for each a ∈ Q.

Proof. Choose a number i ∈ {1, 2, . . . , n + 1} and define an n + 1-ary operation f

by
f(a1, a2, . . . , an+1) := fai

(a1, . . . , ai−1, ai+1, . . . , an+1)

for every a1, . . . , an+1 ∈ Q. Then (Q, f) is a cancellative n + 1-groupoid, hence it
is an n + 1-quasigroup by Proposition 1. By the definition of an (a, i)-projected
n-quasigroup, we have fa,i = fa. �
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Theorem 1. Let Q = {q1, q2, . . . , qr}, r ≥ 1, and let (Q, g) and (Q,h) be two
n-quasigroups from the same isotopy class. Fix a number i ∈ {1, 2, . . . , n+1}. Then
the number of n + 1-quasigroups having (Q, g) as its (q1, i)-projected n-quasigroup
is equal to the number of n + 1-quasigroups having (Q,h) as its (q1, i)-projected
n-quasigroup.

Proof. Fix a number i ∈ {1, 2, . . . , n + 1}. Let (α1, α2, . . . , αn+1) be an isotopism
from (Q, g) to (Q,h), i.e.

αn+1g(a1, . . . , an) = h(α1a1, . . . , αnan)

for each a1, . . . , an ∈ Q. Let (Q, f) be an n + 1-quasigroup such that fq1,i = h.
Then, for the projected quasigroups, by (1) we have

fqs,i = fqt,i ⇐⇒ s = t. (3)

Define a set of n-quasigroups {(Q, f ′

q)| q ∈ Q} by f ′

q1
= g and

f ′

qj
(x1, x2, . . . , xn) := α−1

n+1
fqj ,i(α1x1, α2x2, . . . , αnxn) (4)

for j = 2, 3, . . . , r.
The condition (2) of Proposition 2 is satisfied for the set of n-quasigroups

{(Q, f ′

q)| q ∈ Q}. Namely, if f ′

qs
= f ′

qt
, then

α−1
n+1

fqs,i(α1x1, α2x2, . . . , αnxn) = α−1
n+1

fqt,i(α1x1, α2x2, . . . , αnxn)

and that implies

fqs,i(α1x1, α2x2, . . . , αnxn) = fqt,i(α1x1, α2x2, . . . , αnxn).

Since αk are permutations, we have fqs,i = fqt,i, leading to s = t by (3). Now, by
Proposition 2, we can define an n + 1-quasigroup (Q, f ′) such that f ′

q1,i = g and
f ′

qj,i
= f ′

qj
for j ≥ 2.

We showed that to any n+1-quasigroup (Q, f) satisfying the condition fq1,i = h

we can adjoin an n + 1-quasigroup (Q, f ′) satisfying the condition f ′

q1,i = g. If

(Q, f̃) is another n + 1-quasigroup satisfying the condition f̃q1,i = h and if an n + 1-
quasigroup (Q, f̃ ′) is constructed from f̃ as above, then f̃ ′ 6= f ′. Namely, the equality
f̃ ′ = f ′ implies, by (4),

α−1
n+1

fqj,i(α1x1, α2x2, . . . , αnxn) = α−1
n+1

f̃qj,i(α1x1, α2x2, . . . , αnxn),

i.e. we have fqj,i = f̃qj ,i for each j = 1, 2, . . . , r. Hence, f = f̃ .
We proved that the number of n + 1-quasigroups having (Q, g) as its

(q1, i)-projected n-quasigroup is not smaller than the number of n + 1-quasigroups
having (Q,h) as its (q1, i)-projected n-quasigroup. Analogously, the number of
n + 1-quasigroups having (Q,h) as its (q1, i)-projected n-quasigroup is not smaller
than the number of n + 1-quasigroups having (Q, g) as its (q1, i)-projected
n-quasigroup. �
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Corollary 1. Let Q = {q1, q2, . . . , qr}, r ≥ 1, and let the isotopy classes of the
n-quasigroups on Q be C1, C2, . . . , Ck. Then the number of n + 1-quasigroups on Q

is equal to

b1|C1| + b2|C2| + · · · + bk|Ck| (5)

where bi denotes the number of n + 1-quasigroups having as its (q1, 1)-projected n-
quasigroup an n-quasigroup from the class Ci.

Example 2. There are 6 unary quasigroups on the set Q = {1, 2, 3} and they
can be represented as the permutations 123, 132, 213, 231, 312 and 321. They
form one class of isotopism C1 and the unary quasigroup 123 can be (1,1)-projected
quasigroup to b1 = 2 binary quasigroups:

∗1 1 2 3

1 1 2 3
2 2 3 1
3 3 1 2

∗2 1 2 3

1 1 2 3
2 3 1 2
3 2 3 1

Consequently, there are 2 × 6 = 12 binary quasigroups on the set {1, 2, 3}.

3 Numerical results

The main theorem of this paper helps us to compute the numbers of
n-quasigroups of order r. We could do that only for smaller values of r. For
computing purposes we present the set of n-quasigroups of order r linearly and
we order them lexicographically as follows. We take that the universe set is
Q = {1, 2, . . . , r} and that the n-quasigroups are given by their n-Latin squares.
The unary quasigroups are linearly presented and lexicographically ordered in a
natural way, since its 1-Latin square consist of only one permutation of Q. An
n + 1-quasigroup (Q, f) of order r is uniquely determined by its (q, i)-projected
quasigroups (Q, f1,i), (Q, f2,i), . . . , (Q, fr,i), for each fixed i ∈ {1, 2, . . . , n + 1}. We
fix i = 1 and let S1, S2, . . . , Sr be the linear presentations of the quasigroups
(Q, f1,1), (Q, f2,1), . . . , (Q, fr,1) respectively. Then the linear presentation of the
n + 1-quasigroup (Q, f) is given by

S1 || . . . |︸ ︷︷ ︸
n

S2 || . . . |︸ ︷︷ ︸
n

. . . || . . . |︸ ︷︷ ︸
n

Sr. (6)

Now, the lexicographic ordering of the linear presentations of all n-quasigroups of
order r gives the ordering of the quasigroups.

Example 3. On the set {1, 2, 3} we have the following linear presentations
and lexicographically ordering of the unary, binary and ternary quasigroups.

123 < 132 < 213 < 231 < 312 < 321,

123|231|312 < 123|312|231 < 132|213|321 < 132|321|213 <
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< 213|132|321 < 213|321|132 < 231|123|312 < 231|312|123 <

< 312|123|231 < 312|231|123 < 321|132|213 < 321|213|132,

123|231|312||231|312|123||312|123|231 < 123|231|312||312|123|231||231|312|123 <

< 123|312|231||231|123|312||312|231|123 < 123|312|231||312|231|123||231|123|312 <

< 132|213|321||213|321|132||321|132|213 < 132|213|321||321|132|213||213|321|132 <

< 132|321|213||213|132|321||321|213|132 < 132|321|213||321|213|132||213|132|321 <

< 213|132|321||132|321|213||321|213|132 < 213|132|321||321|213|132||132|321|213 <

< 213|321|132||132|213|321||321|132|213 < 213|321|132||321|132|213||132|213|321 <

< 231|123|312||123|312|231||312|231|123 < 231|123|312||312|231|123||123|312|231 <

< 231|312|123||123|231|312||312|123|231 < 231|312|123||312|123|231||123|231|312 <

< 312|123|231||123|231|312||231|312|123 < 312|123|231||231|312|123||123|231|312 <

< 312|231|123||123|312|231||231|123|312 < 312|231|123||231|123|312||123|312|231 <

< 321|132|213||132|213|321||213|321|132 < 321|132|213||213|321|132||132|213|321 <

< 321|213|132||132|321|213||213|132|321 < 321|213|132||213|132|321||132|321|213.

Thus, on the set {1, 2, 3}, the 5-th binary quasigroup is 213|132|321 and the
16-th ternary quasigroup is 231|312|123||312|123|231||123|231|312. One can see that
the 14-th ternary quasigroup is built up from the 8-th, 9-th and the first binary
quasigroups. �

Trivially, there is only one n-quasigroup of order 1 and r! unary quasigroups of
order r. For computing the number of n-quasigroups of order 2 and 3 it is use-
ful to be noted the following. Let in (6) us S1 = s11s12 . . . s1r|t11t12 . . . t1r| . . . ,
S2 = s21s22 . . . s2r|t21t22 . . . t2r| . . . , Sr = sr1sr2 . . . srr|tr1tr2 . . . trr| . . . , where
sλµ, tλµ ∈ {1, 2, . . . , r}. Then

s11s21 . . . sr1, s12s22 . . . sr2, . . . , s1rs2r . . . srr,

t11t21 . . . tr1, t12s22 . . . tr2, . . . , t1rt2r . . . trr, . . .
(7)

are permutations of {1, 2, . . . , r}. Immediately we have:

Proposition 3. There are only 2 n-quasigroups of order 2.

Proposition 4. The number of n-quasigroups of order 3 is 3 × 2n.

Proof. Let S1 || . . . |︸ ︷︷ ︸
n

S2 || . . . |︸ ︷︷ ︸
n

S3 be an n + 1-quasigroup of order 3. S1 can be any

n-quasigroup of order 3. Given S1, by (7), there are only two choices for S2; given
S1 and S2, the quasigroup S3 is uniquely determined. Since we have 6 1-quasigroups
of order 3, the result follows. �

Proposition 5. The number of n-quasigroups of order 4 for n = 1, n = 2, n = 3
and n = 4 are 24, 576, 55 296 and 36 972 288 respectively.
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Isotopy class Represent of Ci |Ci| bi bi|Ci|

1234|2143|3412|4321||

C1 2143|1234|4321|3412|| 864 2292 1980288

3412|4321|1234|2143||

4321|3412|2143|1234

1234|2143|3421|4312||

C2 2143|1234|4312|3421|| 2592 852 2208384

3421|4312|2143|1234||

4312|3421|1234|2143

1234|2143|3412|4321||

C3 2143|1234|4321|3412|| 2592 876 2270592

3412|4321|2143|1234||

4321|3412|1234|2143

1234|2143|3412|4321||

C4 2143|1234|4321|3412|| 2592 876 2270592

3421|4312|1243|2134||

4312|3421|2134|1243

1234|2143|3412|4321||

C5 2143|1234|4321|3412|| 2592 876 2270592

3421|4312|2134|1243||

4312|3421|1243|2134

1432|3241|4123|2314||

C6 4123|2314|1432|3241|| 2592 876 2270592

3214|4132|2341|1423||

2341|1423|3214|4132

1432|3241|4123|2314||

C7 4123|2314|1432|3241|| 2592 876 2270592

3241|1432|2314|4123||

2314|4123|3241|1432

1432|3241|4123|2314||

C8 4123|2314|1432|3241|| 2592 876 2270592

3214|1423|2341|4132||

2341|4132|3214|1423

1234|2341|3412|4123||

C9 4123|3412|2341|1234|| 5184 144 746496

3412|1234|4123|2341||

2341|4123|1234|3412

1234|2341|3412|4123||

C10 4321|1432|2143|3214|| 5184 144 746496

2413|3124|4231|1342||

3142|4213|1324|2431

1243|2431|3124|4312||

C11 3421|4213|1342|2134|| 5184 144 746496

2314|3142|4231|1423||

4132|1324|2413|3241

1234|2143|3412|4321||

C12 2143|1234|4321|3412|| 20736 816 16920576

3412|4321|1243|2134||

4321|3412|2134|1243

Table. Isotopy classes of ternary quasigroups of order 4

Proof. We use Corollary 1. There is only one isotopy class of unary quasigroups
of order 4, and the unary quasigroup 1234 is the first unary quasigroup of 24 binary
quasigroups. So, there are 24 × 24 = 576 binary quasigroups. There are 2 isotopy
classes of binary quasigroups, C1 with 144 and C2 with 432 elements. The quasigroup
1234|2143|3412|4321 ∈ C1 is the first quasigroup of b1 = 132 ternary quasigroups,
and the quasigroup 1234|2143|3421|4312 ∈ C2 is the first quasigroup of b2 = 84
ternary quasigroups. So, there are 144×132+432×84 = 55296 ternary quasigroups
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of order 4. For the quaternary quasigroups of order 4 the results are presented
in Table. �

We remark that the result of Table differs from that given in ”On-Line En-
cyclopedia of Integer Sequences” (see [7]) for the sequence A099321 of ”Number of
isotopy classes of Latin cubes of order n”. We note that, by using Table, we correctly
computed the number of quaternary quasigroups of order 4 (see also [5, 6]).

Proposition 6. The numbers of n-quasigroups of order 5 for n = 1, n = 2 and
n = 3 are 120, 161 280 and 2 781 803 520 respectively.

Proof. We use Corollary 1. There is only one isotopy class of unary quasigroups of
order 5, and the unary quasigroup 12345 is the first unary quasigroup of 56 binary
quasigroups of the form

12345|2a1b1c1d1|3a2b2c2d2|4a3b3c3d3|5a4b4c4d4.

So, 12345 can be the first unary quasigroup of 56 × 4! = 1 344 binary quasigroups.
Hence, there are 5! × 1 344 = 161 280 binary quasigroups of order 5.

There are 2 isotopy classes of binary quasigroups of order 5, C1 with 17280 and
C2 with 144 000 elements. The quasigroup 12345|31452|43521 |54213|25134 ∈ C1

is the first quasigroup of b1 = 22 584 ternary quasigroups, and the quasigroup
12345|21453|34512|45231|53124 ∈ C2 is the first quasigroup of b2 = 16 608 ternary
quasigroups. So, there are 17280× 22584 + 144000× 16608 = 2781803520 ternary
quasigroups of order 5. �
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1 Center-affine transformations

Consider the system

ẋ1 =

4∑

k=0

Pk(x1, x2) ≡ P (x1, x2), ẋ2 =

4∑

k=0

Qk(x1, x2) ≡ Q(x1, x2), (1)

where
Pk(x1, x2) =

∑

i+j=k

aijx
i
1x

j
2
, Qk(x1, x2) =

∑

i+j=k

bijx
i
1x

j
2
.

Denote by E the space of the coefficients

a = (a00, a10, a01, a20, . . . , a13, a04; b00, b10, b01, b20, . . . , b13, b04)

of system (1) and by GL(2, IR) the group of the center-affine transformations of the
phase space Ox, x = (x1, x2).

Applying in (1) the transformation X = qx, where X = (X1,X2), q ∈ GL(2, IR),
i.e.

q =

(
α11 α12

α21 α22

)
, αij ∈ IR, ∆ = det(q) 6= 0, q−1 =

1

∆

(
α22 −α12

−α21 α11

)
,

we obtain the system

Ẋ1 =
4∑

i+j=0

a∗ijX
i
1X

j
2
, Ẋ2 =

4∑

i+j=0

b∗ijX
i
1X

j
2
. (2)

The coefficients a∗ of (2) are expressed linearly by coefficients of system (1):
a∗ = Λ(q)(a), detΛ(q) 6= 0. The set Λ = {Λ(q)|q ∈ GL(2, IR)} forms a 4-parameter

c© A. Păşcanu, 2006
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group with the operation of composition. Λ is called the representation of the
GL(2, IR) group of the center-affine transformations of the phase space Ox in the
space of coefficients E of system (1).

The set O(a) = {Λ(q)(a)| q ∈ GL(2, IR)} is called a GL(2, IR)−orbit of the point
a ∈ E or of the differential system (1) corresponding to this point.

Let

qt
1 =

(
et 0
0 1

)
, qt

2 =

(
1 t

0 1

)
, qt

3 =

(
1 0
t 1

)
, qt

4 =

(
1 0
0 et

)

and Gl = {qt
l | t ∈ IR} ⊂ GL(2, IR), l = 1, 4. Denote gt

l = Λ(qt
l
) and a∗l = gt

l (a) ∈ E.

Then Λl = {gt
l}, l = 1, 4, are representations in E of the subgroups Gl, respectively.

Each of the pairs (E, {gt
l }), l = 1, 4, is a differential flow. They define in E the

following differential system of linear equations

da

dt
=

(
dgt

l (a)

dt

) ∣∣∣
t=0

= A(l) · a, l = 1, 4. (3)

Let

vl =

4∑

i+j=0

(
A

(l)
ij

∂

∂aij
+ B

(l)
ij

∂

∂bij

)
, l = 1, 4,

be the vector fields defined in E by systems (3). The coordinates of the vectors vl,

l = 1, 4, are given by the formulas

A
(1)

ij = (1 − i)aij , B
(1)

ij = −ibij ;

A
(2)

i0 = bi0, A
(2)

ij = bij − (i + 1)ai+1,j−1;

B
(2)

i0 = 0, B
(2)

ij = −(i + 1)bi+1,j−1, j 6= 0;

A
(3)

0j = 0, A
(3)

ij = −(j + 1)ai−1,j+1;

B
(3)

0j = a0j , B
(3)

ij = aij − (j + 1)bi−1,j+1, i 6= 0;

A
(4)

ij = −jaij , B
(4)

ij = (1 − j)bij .

If we denote by Lv the derivative with respect to the vector v and we set w =
[u, v], where Lw = LuLv − LvLu, it is easy to determine that the vector fields vl,

l = 1, 4, generate a Lie algebra. The dimension of the orbit O(a) is equal to the
dimension of this algebra, i.e. with the rank of the matrix of dimension 4 × 30
[1, 2]:

M =




A
(1)

00
A

(1)

10
A

(1)

01
A

(1)

20
. . . A

(1)

04
B

(1)

00
. . . B

(1)

04

. . . . . . . . . . . . . . . . . . . . . . . . . . .

A
(4)

00
A

(4)

10
A

(4)

01
A

(4)

20
. . . A

(4)

04
B

(4)

00
. . . B

(4)

04


 . (4)

The purpose of this paper consists in the classification of systems (1) according
to the dimensions of their GL(2, IR)−orbits.
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We notice that such classification was done for some particular cases of system
(1) in [2−9].

From [10] follows

Lemma 1. Let O(a) be a GL(2, IR)−orbit of the system (1). Then
1) dimO(a) = 0 if and only if (1) has the form

ẋ1 = bx1, ẋ2 = bx2, b = const; (5)

2) dimO(a) 6= 1, ∀a ∈ E.

By Lemma 1, dimO(a) > 1, i.e. dimO(a) is equal to one of the numbers 2,3 or
4, if and only if

|P (x1, x2) − a10x1| + |Q(x1, x2) − a10x2| 6≡ 0.

Therefore, if the right-hand sides of the system (1) have either at least one con-
stant term a00, b00 or one nonlinear term, then the dimension of the GL(2, IR)−orbit
is at least two.

For the linear system

ẋ1 = a10x1 + a01x2, ẋ2 = b10x1 + b01x2 (6)

the matrix (4) has the form:

M1 =




0 a01 −b10 0
b10 b01 − a10 0 −b10

−a01 0 a10 − b01 a01

0 −a01 b10 0


 . (7)

It is easy to determine that rank M1 ≤ 2. So, the linear system has the orbit’s
dimension equal to zero only if it has the form (5) and dim O(a) = 2 in other cases,
i.e. when

ẋ1 = a10x1 + a01x2, ẋ2 = b10x1 + b01x2, |a10 − b01| + |a01| + |b10| 6= 0. (8)

Applying in (1) the transformation of coordinates

x1 −→ x2, x2 −→ x1, (9)

we obtain
ẋ1 = Q(x2, x1), ẋ2 = P (x2, x1). (10)

Denote by v∗l , l = 1, 4, the vectorial fields associated to the differential system
(10).

Remark 1. The equalities αv1 +βv2 +γv3 + δv4 = 0 and δv∗1 +γv∗2 +βv∗3 +αv∗4 = 0
(α, β, γ, δ ∈ IR) are equivalent.

Talking into consideration Remark 1, in order to determine the orbits of dimen-
sion two and three it is enough to examine the following two cases:

αv1 + v4 = 0, (11)

αv1 + v2 + γ v3 + δ v4 = 0. (12)
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2 The case αv1 + v4 = 0

The equality (11) written in the coordinates of v1 and v4 represents a homoge-
neous linear algebraic system in coefficients aij of (1).

If v1 = v4 = 0, then (1) is of the form ẋ1 = a10x1, ẋ2 = b01x2 and it is a
particular case of (6).

In the case when at least one of the vectors v1 and v4 is nonzero, this algebraic
system has nontrivial solutions only for the following values of the parameter α :

α = ±2; 3; 4; ±1; 0; ±
1

2
;

1

3
;

1

4
.

According to Remark 1, it is enough to examine only the cases:

α = 2; 3; 4; −1; −2; 0; 1.

To this values of α the following solutions correspond respectively:

1) aij = 0, (i, j) 6= (1, 0), (0, 2), bij = 0, (i, j) 6= (0, 1);

2) aij = 0, (i, j) 6= (1, 0), (0, 3), bij = 0, (i, j) 6= (0, 1);

3) aij = 0, (i, j) 6= (1, 0), (0, 4), bij = 0, (i, j) 6= (0, 1);

4) aij = 0, (i, j) 6= (1, 0), (2, 1), bij = 0, (i, j) 6= (0, 1), (1, 2);

5) aij = 0, (i, j) 6= (1, 0), (2, 2), bij = 0, (i, j) 6= (0, 1), (1, 3);

6) aij = 0, j 6= 0, bij = 0, j 6= 1;

6a) aij = bij = 0, i + j 6= 1.

Notice that in the case 6a) we obtain the linear system (6).
Denote
i1 = |a00| + |b01 − a10| + |b11 − a20| + |b21 − a30| + |a40| + |b31|,

i2 = |b01 − a10| + |a20| + |a30| + |a40| + |b11| + |b21| + |b31|,

i3 = |a00| + |a20| + |a30| + |a40| + |b11| + |b21| + |b31|.

In order to separate the orbits of dimension two from those of dimension three,
we will determine the conditions on the coefficients of system (1) such that in each
of the cases 1) − 6) all the minors of order three of matrix (4) should be equal to
zero. We have respectively:

1
′

) a02(a10 − b01) = 0; 2
′

) a03(a10 − b01) = 0;

3
′

) a04(a10 − b01) = 0; 4
′

) |a21| + |b12| = 0;

5
′

) |a22| + |b13| = 0; 6
′

) i1 · i2 · i3 = 0.

The cases [1), 1
′

), a02 = 0]; [2), 2
′

), a03 = 0]; [3), 3
′

), a04 = 0]; [4), 4
′

), a21 =
b12 = 0]; [5), 5

′

), a22 = b13 = 0] and [6), 6
′

), i3 = 0] lead us to a system of the
form (6). Later on, assuming that αv1 + v4 = 0, we have the following distribution
by dimensions of orbits of the system (1) (the systems (5) and (6) are not included
here):
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dim O(a)=2

ẋ1 = a10x1 + a02x
2
2, ẋ2 = a10x2, a02 6= 0; (13)

ẋ1 = a10x1 + a03x
3
2, ẋ2 = a10x2, a03 6= 0; (14)

ẋ1 = a10x1 + a04x
4
2, ẋ2 = a10x2, a04 6= 0; (15)

ẋ1 = x1 · F, ẋ2 = x2 · F, F = a10 + a20x1 + a30x
2
1, |a20| + |a30| 6= 0; (16)

ẋ1 = a00 + a10x1, ẋ2 = a10x2, a00 6= 0. (17)

dim O(a)=3

ẋ1 = a10x1 + a02x
2
2, ẋ2 = b01x2, a02(a10 − b01) 6= 0; (18)

ẋ1 = a10x1 + a03x
3
2, ẋ2 = b01x2, a03(a10 − b01) 6= 0; (19)

ẋ1 = a10x1 + a04x
4
2, ẋ2 = b01x2, a04(a10 − b01) 6= 0; (20)

ẋ1 = x1(a10 + a21x1x2), ẋ2 = x2(b01 + b12x1x2), |a21| + |b12| 6= 0; (21)

ẋ1 = x1(a10 + a22x1x
2
2), ẋ2 = x2(b01 + b13x1x

2
2), |a22| + |b13| 6= 0; (22)

{
ẋ1 = a00 + a10x1 + a20x

2
1 + a30x

3
1 + a40x

4
1,

ẋ2 = x2(b01 + b11x1 + b21x
2
1 + b31x

3
1), i1 · i2 · i3 6= 0.

(23)

3 The case α v1 + v2 + γ v3 + δ v4 = 0.

In this section we will need the following notations:

αi = (δ − iα)/(i + 1), δi = (α − iδ)/(i + 1), i = 1, 4, ν1 = δ + 2α, ν2 = α + 2δ;

j1 = |a12 − 3a03α| + |α + δ| + |a00| + |a11| + |a02| + |a13| + |a04|,
j2 = |a00| + |a01| + |a02| + |a03| + |a04|,

j3 = |a11 − 2α a02| + |α + δ| + |a00| + |a01| + |a12| + |a03| + |a13| + |a04|,

j4 = |a00| + |a11| + |a02| + |a12| + |a03| + |a13| + |a04|,

j5 = |a13 − 4α a04| + |α + δ| + |a00| + |a01| + |a11| + |a02| + |a12| + |a03|,

j6 = |a01| + |a03| + |γ + δ2|,

j7 = |a12 + 3δ a03| + |γ + δ2| + |a01|,
j8 = |a12| + |a03|,

j9 = |a13| + |a04|,

j10 = |α + δ| + |a01| + |a04|,

j11 = |a13 + 4δ a04| + |α + δ| + |a01|.

The equality (12) holds if and only if at least one of the following seven series of
conditions is realized:

7) γ = α2 · δ2, a20 = δ2
2a02, a11 = 2δ2a02, b10 = α2δ2a01, b01 = a10 − 2δ1a01,

b20 = −δ3
2a02, b11 = −2δ2

2a02, b02 = −δ2a02, aij = bij = 0, i + j = 0, 3, 4;
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8) γ = α3 · δ3, a30 = a03δ
3
3 , a21 = 3a03δ

2
3 , a12 = 3a03δ3, b10 = a01α3δ3, b01 =

a10 − 2δ1a01, b30 = −a03δ
4
3 , b21 = −3a03δ

3
3 , b12 = −3a03δ

2
3 , b03 = −a03δ3,

aij = bij = 0, i + j = 0, 2, 4;

9) γ = α4 · δ4, a40 = a04δ
4
4 , a31 = 4a04δ

3
4 , a22 = 6a04δ

2
4 , a13 = 4a04δ4, b10 = a01α4δ4,

b01 = a10−2δ1a01, b40 = −a04δ
5
4 , b31 = −4a04δ

4
4 , b22 = −6a04δ

3
4 , b13 = −4a04δ

2
4 ,

b04 = −a04δ4, aij = bij = 0, i + j = 0, 2, 3;

10) γ = α · δ, a20 = −δ(a11 + δa02), a30 = δ2(a12 + 2δa03), a21 = −δ(2a12 + 3a03δ),
a40 = −δ3(a13 + 3δa04), a31 = δ2(3a13 + 8a04δ), a22 = −3δ(a13 + 2δa04), b00 =
−αa00, b10 = a01αδ, b01 = a10 − 2δ1a01, b20 = −a02αδ2, b11 = δ(4δ1a02 − a11),
b02 = a11−3δ2a02, b30 = a03αδ3, b21 = δ2(a12−6a03δ1), b12 = δ(9a03δ2−2a12, )
b03 = a12 − 4δ3a03, b40 = −αδ4a04, b31 = δ3(8a04δ1 − a13), b22 = 3δ2(a13 −
6a04δ2), b13 = δ(16a04δ3 − 3a13), b04 = a13 − 5δ4a04;

11) α = −δ, a30 = −γ(a12 +2δa03), a21 = −2a12δ−4a03δ
2−γa03, b10 = γa01, b01 =

a10+2δa01, b30 = −γ2a03, b21 = −γ(a12+6δa03), b12 = −2δa12−8δ2a03+γa03,

b03 = a12 + 4δa03, aij = bij = 0, i + j = 0, 2, 4;

12) γ = ν1 · ν2, b10 = ν1ν2a01 b01 = a10 − 2δ1a01, a40 = ν1ν
2
2(a13 + 3δa04), a31 =

−ν2(3αa13−8δ2
1a04), a22 = −3(a04α

2 +a13δ+2αδa04 +3δ2a04), b40 = ν2
1ν3

2a04,

b31 = ν1ν
2
2(a13 − 8δ1a04), b22 = −3ν2(a13α − a04α

2 + 6a04αδ + a04δ
2), b13 =

−3δa13 + 4a04δ1(α + 5δ), b04 = a13 − 5a04δ4, aij = bij = 0, i + j = 0, 2, 3;

13) a10 = αb10b01 − δb10, b10 = γa01, aij = bij = 0, i + j = 0, 2, 3, 4.

Notice that in conditions 13) we have a system of the form (6).

Equating to zero the minors of order three of the matrix (4) in each of the cases
7) − 12), we obtain respectively:

7
′

) a01 · a02 = 0;

8
′

) a01 · a03 = 0;

9
′

) a01 · a04 = 0;

10
′

) j1 · j2 · j3 · j4 · j5 = 0;

11
′

) j6 · j7 · j8 = 0;

12
′

) j9 · j10 · j11 = 0.

The relations [7), 7
′

)] − [12), 12
′

)] lead us to the following distribution of the
GL(2, IR)−orbits of the system (1) (the cases which lead us to the system (6) are
not considered here):

dim O(a)=2

ẋ1 = a10x1 + F, ẋ2 = a10x2 − δ2 · F, F = a02(δ2x1 + x2)
2 6≡ 0; (24)

ẋ1 = a10x1 + F, ẋ2 = a10x2 − δ3 · F, F = a03(δ3x1 + x2)
3 6≡ 0; (25)

ẋ1 = a10x1 + F, ẋ2 = a10x2 − δ4 · F, F = a04(δ4x1 + x2)
4 6≡ 0; (26)
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



ẋ1 = x1 · F, ẋ2 = x2 · F,

F = a10 − a11(δ x1 − x2) + a12(δ x1 − x2)
2 − a13(δ x1 − x2)

3,

|a11| + |a12| + |a13| 6= 0;
(27)

ẋ1 = a00 + a10x1, ẋ2 = −α a00 + a10x2, a00 6= 0. (28)

dim O(a)=3





ẋ1 = a10x1 + a01x2 + F,

ẋ2 = α2δ2a01x1 + (a10 − 2δ1a01)x2 − δ2 · F,

F = a02(δ2x1 + x2)
2, a01 · a02 6= 0;

(29)





ẋ1 = a10x1 + a01x2 + F,

ẋ2 = α3δ3a01x1 + (a10 − 2δ1a01)x2 − δ3 · F,

F = a03(δ3x1 + x2)
3, a01 · a03 6= 0;

(30)





ẋ1 = a10x1 + a01x2 + F,

ẋ2 = α4δ4a01x1 + (a10 − 2δ1a01)x2 − δ4 · F,

F = a04(δ4x1 + x2)
4, a01 · a04 6= 0;

(31)





ẋ1 = a00 + a10x1 + a01x2 − ((a11 + a02δ)x1 + a02x2) · F+
+((a12 + 2a03δ)x1 + a03x2) · F

2−
−((a13 + 3a04δ)x1 + a04x2) · F

3,

ẋ2 = −αa00 + αδa01x1 + (a10 − 2δ1a01)x2−
−(α δa02x1 + (a11 − 3a02δ2)x2) · F+
+(α δa03x1 + (a12 − 4a03δ3)x2) · F

2−
−(α δa04x1 + (a13 − 5a04δ4)x2) · F

3,

F = δ x1 − x2, j1 · j2 · j3 · j4 · j5 6= 0;

(32)





ẋ1 = a10x1 + a01x2 − ((a12 + 2a03)x1 + a03x2) · F,

ẋ2 = γ a01x1 + (a10 − 2a01δ1)x2 + (a03γx1 + (a12 + 4a03)x2) · F,

F = γ x2
1 + 2δ x1x2 − x2

2, j6 · j7 · j8 6= 0;
(33)





ẋ1 = a10x1 + a01x2 + ((a13 + 3δ a04)x1 + a04x2) · F,

ẋ2 = ν1 ν2 a01x1 + (a10 − 2δ1a01)x2+
+(ν1 ν2 a04x1 + (a13 − 5δ4 a04)x2) · F,

F = (ν1 x1 + x2)(ν2 x1 − x2)
2, j9 · j10 · j11 6= 0.

(34)

Remark 2. It is easy to see that the systems (13) − (15), (17) are particular cases
of the systems (24) − (26), (28) respectively. The (16) by substitution (9) can be
reduced to a system of the form (27).

The results obtained above are gathered in the following theorem:

Theorem. Up to a transformation (9), the dimension of the GL(2, IR)−orbit of the
system (1) is equal to

0 if it has the form (5);
2 if it has one of the forms (8), (24) − (28);
3 if it has one of the forms (18) − (23), (29) − (34);
4 in other cases.
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Moldova

E-mail: pashcanu@mail.ru

Received October 6, 2006



BULETINUL ACADEMIEI DE ŞTIINŢE
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A Linear Parametrical Programming Approach

for Studying and Solving

Bilinear Programming Problem ∗

Dmitrii Lozovanu, Maria Fonoberova

Abstract. An approach for studying and solving a bilinear programming problem,
based on linear parametrical programming, is proposed. Using duality principle for the
considered problem we show that it can be transformed into a problem of determining
the compatibility of a system of linear inequalities with a right-hand member that
depends on parameters, admissible values of which are defined by another system
of linear inequalities. Some properties of this auxiliary problem are obtained and a
conical algorithm for its solving is proposed. We show that this algorithm can be
used for finding the exact solution of bilinear programming problem as well as its
approximate solution.

Mathematics subject classification: 65K05,68W25.
Keywords and phrases: Bilinear Programming, Linear Parametrical Programming,
Duality Principle for Parametrical Systems, Conical Algorithms.

1 Introduction and Problem Formulation

We consider the following bilinear programming problem (BPP) [1,9]:

to minimize the object function

z = xCy + c′x + c′′y (1)

on subject

Ax ≤ a, x ≥ 0; (2)

By ≤ b, y ≥ 0, (3)

where C,A,B are matrices of size n × m1, m2 × n, k × m1, respectively, and c′,
x ∈ Rn; c′′, y ∈ Rm1 ; a ∈ Rm2 , b ∈ Rk. In order to simplify the notations we will
omit transposition symbol for vectors.

This problem generalizes a large class of practical and theoretical combinatorial
optimization problems [6, 9]. For example, a linear boolean programming problem,
resource allocation problem, and determining Nash equilibria in bimatrix games,
can be formulated as BPP (1)–(3).

It is easy to show that all local and global minima of the considered problem
belong to basic solutions of systems (2), (3) and can be found in finite time. But it

c© Dmitrii Lozovanu, Maria Fonoberova, 2006
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is well-known that BPP is NP-hard and therefore the elaboration of efficient polyno-
mial-time algorithms for its solving looks to be unrealizable. Nevertheless in this
paper we stress the attention to a general approach for studying and solving BPP,
which is based on linear parametrical programming. The proposed approach allows
us to elaborate such an exact algorithm that in the case of long time calculation it
can be interrupted and an admissible solution, which is appropriate to an optimal
one, can be obtained. Some classes of problems, for which the proposed approach
can be used, are given.

2 Parametrical programming approach for studying

and solving BPP

Let L be the size of BPP (1)-(3) with integer coefficients of the matrices C,A,B

and vectors a, b, c′, c′′. So, L = L1 + L2 + log H + 2, where

L1 =

m2∑

i=1

n∑

j=1

log(|aij | + 1) +

m2∑

i=1

log(|ai| + 1) + log m2n + 1;

L2 =
k∑

i=1

m1∑

j=1

log(|bij | + 1) +
k∑

i=1

log(|bi| + 1) + log km1 + 1;

H = max{|cij |, |c′i|, |c′′j |, i = 1, n, j = 1,m1}.

In [7] the following lemma is proved.

Lemma 1. If A,B,C and a, b, c′, c′′ are integer, then for nonempty and bounded
solution sets of systems (2) and (3) the optimal value of the object function of BPP
(1)–(3) is a quantity of the form t/r, where t and r are integer and |t|, |r| ≤ 2L.

On the basis of this lemma and results from [4,5] we may conclude that if BPP
(1)–(3) has solution then it can be solved by varying the parameter h ∈ [−2L, 2L] in
the problem of determining the compatibility of the system





Ax ≤ a;
xCy + c′x + c′′y ≤ h;
By ≤ b;
x ≥ 0, y ≥ 0.

(4)

If there exists an algorithm T for determining the compatibility of such a system
then we can find the optimal value h∗ of the object function and the solution of
BPP (1)-(3) by using the dichotomy method on the segment [−2L, 2L], checking at
every step the compatibility of system (4) with h = hk, where hk is a current value
of parameter h at the kth step of the method. On the basis of results from [4, 5, 7]
we can conclude that using 3L + 2 steps we obtain the optimal value h∗ with the
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precision 2−2L−2. As it is shown in [4,5] if an approximate solution for h∗ is known
with the precision 2−2L−2 then an exact solution can be found in polynomial time
by using a special approximate procedure.

In the following we will reduce the problem of the compatibility of system (4) to
the problem of finding the compatibility of the system of linear inequalities with a
right-hand member depending on parameters. So, we prove the following theorems.

Theorem 2. Let solution sets X and Y of systems (2) and (3) be nonempty. Then
system (4) has no solution if and only if the following system of linear inequalities





−AT u ≤ Cy + c′;
au < c′′y − h;
u ≥ 0

(5)

is compatible with respect to u for every y satisfying (3).

Proof. ⇒ Let us assume that system (4) has no solution. This means that for every
y ∈ Y the following system of linear inequalities





Ax ≤ a,

x(Cy + c′) ≤ h − c′′y,

x ≥ 0
(6)

has no solution with respect to x. Then according to theorem 2.14 from [2] the
incompatibility of system (6) involves the solvability with respect to u and t of the
following system of linear inequalities





AT u + (Cy + c′)t ≥ 0;
au + (h − c′′y)t < 0;
u ≥ 0, t ≥ 0,

(7)

for every y ∈ Y .
Note that for every fixed y ∈ Y in obtained system (7) for an arbitrary solution

(u∗, t∗) the condition t∗ > 0 holds. Indeed, if t∗ = 0, then it means that the system

{
AT u ≥ 0;
au < 0, u ≥ 0,

has solution, what, according to theorem 2.14 from [2], involves the incompatibility
of initial system (2) that is contrary to the initial assumption. Consequently, t∗ > 0.

Since t > 0 in (7) for every y ∈ Y , then, dividing every of inequalities of this
system by t and denoting z = (1/t)u, we obtain the following system of linear
inequalities 




−AT z ≤ Cy + c′;
az < c′′y − h;
z ≥ 0,

which has solution with respect to z for every y ∈ Y .
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⇐ Let system (5) have solution with respect to u for every y ∈ Y . Then the
following system of linear inequalities





AT u + (Cy + c′)t ≥ 0;
au + (h − c′′y)t < 0;
u ≥ 0, t > 0,

is compatible with respect to u and t for every y ∈ Y . However this system is
equivalent to system (7), as it was shown that for every solution (u, t) of system (7)
the condition t > 0 holds. Again using theorem 2.14 from [2], we obtain from the
solvability of system (7) with respect to u and t for every y ∈ Y that system (6) is
incompatible with respect to x for every y ∈ Y . This means that system (4) has no
solution. 2

Theorem 3. The minimal value of the object function in BPP (1)-(3) is equal to
the maximal value h∗ of the parameter h in the system





−AT u ≤ Cy + c′;
au ≤ c′′y − h;
u ≥ 0

(8)

for which it is compatible with respect to u for every y ∈ Y . An arbitrary point
y∗ ∈ Y , for which system (5) with h = h∗ and y = y∗ has no solution with respect
to u, corresponds to one of optimal points for BPP (1)-(3).

Proof. Let h∗ be a maximal value of parameter h, for which system (8) with h = h∗

has solution with respect to u for every y ∈ Y . Then system (5) with h = h∗ has
solution with respect to u not for every y ∈ Y . From this on the basis of the previous
theorem it results that system (4) with h = h∗ is compatible. Using the previous
theorem we can see that if for every fixed h < h∗ system (5) has solution with respect
to u for every y ∈ Y , then system (4) with h < h∗ has no solution. Consequently,
the maximal value h∗ of parameter h, for which system (8) has solution with respect
to u for every y ∈ Y , is equal to the minimum value of the object function of BPP
(1)-(3).

Now let us prove the second part of the theorem. Let y∗ ∈ Em1 be an arbitrary
point for which system (5) with h = h∗ and y = y∗ has no solution with respect to
u. Then on the basis on the duality principle the following system





Ax ≤ a;
x(Cy∗ + c′) ≤ h∗ − c′′y;
x ≥ 0

has solution with respect to x. Consequently, system (4) with h = h∗ is compatible
and the point y∗ ∈ Y together with the certain x∗ ∈ X represents its solution, i.e.
y∗ is one of sought optimal points for BPP (1)-(3). 2
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So, the problem of determining the compatibility of system (4) is equivalent to
the problem of determining the compatibility of system (8) for every y satisfying
(3). If an algorithm for solving this problem is elaborated, then we will obtain an
algorithm for solving BPP (1)-(3).

3 Main properties of systems of linear inequalities with

a right-hand member depending on parameters

The systems of linear inequalities with a right-hand member depending on pa-
rameters have been studied in [6–8].

3.1 Duality principle for parametrical systems of linear inequalities

Let the following system of linear inequalities be given




n∑

j=1

aijuj ≤
k∑

s=1

cisys + ci0, i = 1,m;

uj ≥ 0, j = 1, p (p ≤ n)

(9)

with the right-hand member depending on parameters y1, y2, . . . , yk. We consider
the problem of determining the compatibility of system (9) for every y1, y2, . . . , yk

satisfying the following system




k∑

s=1

bisys + bi0 ≤ 0, i = 1, r;

ys ≥ 0, s = 1, q (q ≤ k).

(10)

In [6, 7] the following theorem has been proved.

Theorem 4. System (9) is compatible with respect to u1, u2, . . . , un for every
y1, y2, . . . , yk satisfying (10) if and only if the following system





−

r∑

i=1

bisvi ≤

m∑

i=1

ciszi, s = 0, q;

−
r∑

i=1

bisvi =
m∑

i=1

ciszi, s = q + 1, k;

vi ≥ 0, i = 1, r

is compatible with respect to v1, v2, . . . , vr for every z1, z2, . . . , zm satisfying the fol-
lowing system 




−
m∑

i=1

aijzi ≤ 0, j = 1, p;

−

m∑

i=1

aijzi = 0, j = p + 1, n;

zi ≥ 0, i = 1,m.
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3.2 Two special cases of the parametrical problem

Note that if r = 0 and q = k in system (10) then we obtain the problem of
determining the compatibility of system (9) for every nonnegative values of param-
eters y1, y2, . . . , yk. It is easy to observe that in this case system (9) is compatible
for every nonnegative values of parameters y1, y2, . . . , yk if and only if each of the
following k + 1 systems (s = 0, k)





n∑

j=1

aijuj ≤ cis, i = 1,m;

uj ≥ 0, j = 1, p

is compatible.
Another special case of the problem is the one when n = 0. This case can be

reduced to the previous one using the duality problem for it.
In such a way, our problem can be solved in polynomial time for the mentioned

above cases.

3.3 General approach for determining the compatibility property

for parametrical systems

Let us assume that the solution sets UY and Y of systems (9) and (10) are
bounded. Then it is easy to observe that the compatibility property of system (9)
for all admissible values of parameters y1, y2, . . . , yk satisfying (10) can be verified by
checking the compatibility of system (9) for every basic solution of system (10). This
fact follows from the geometrical interpretation of the problem. The set Y ⊆ Rk

of vectors y = (y1, y2, . . . , yk), for which system (9) is compatible, corresponds to
the orthogonal projection on Rk of the set UY ⊆ Rn+k of solutions of system (9)
with respect to variables u1, u2, . . . , un, y1, y2, . . . , yk. Therefore Y ⊆ Y if and only
if system (9) is compatible with respect to u1, u2, . . . , un for every basic solution of
system (10) (see Fig.1).

Another general approach which can be argued on the basis of the mentioned
above geometrical interpretation is the following.

We find the system of linear inequalities

r∑

j=1

c′ij yj + c′i0 ≤ 0, i = 1,m′, (11)

which determines the orthogonal projection Y of the set UY ⊆ Rn+k on Rk; then we
solve the problem from Section 3.2. System (11) can be found by using method of
elimination of variables u1, u2, . . . , un from system (9). Such a method of elimination
of variables can be found in [2]. Note that in final system (11) the number of
inequalities m′ can be too big. Therefore such an approach for solving our problem
can be used only for a small class of problems.
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Fig.1

4 An algorithm for determining the compatibility of a parametrical

problem

Let us assume that h = hk ∈ [M1,M2], where M1 ≤ −2L, M2 ≥ 2L. We
propose an algorithm for determining the compatibility of system (8) with h = hk

for every y satisfying (3). This algorithm works in the case when the solution sets
of the considered systems are bounded. The case of the problem with unbounded
solution sets can be easily reduced to the bounded one.

The proposed approach is based on the idea of conical algorithms from [3,9,10].

Algorithm 1.

Step 1. Choose an arbitrary basic solution y0 of system (3). This solution
corresponds to a solution of the system of linear equations

m1∑

j=1

bisjyj + bis0 = 0, s = 1,m1. (12)
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The matrix B = (bisj)m1×m1 of this system represents a submatrix of the matrix

B′ =




b11 b12 . . . b1m1

b21 b22 . . . b2m1

. . . . . . . . . . . .

bk1 bk2 . . . bkm

1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .

0 0 . . . 1




and the vector (bi10, bi20, . . . , bim10)
T is a ”subvector” of (b1, b2, . . . , bk, 0, 0, . . . , 0)

T .
If for y = y0 system (8) is not compatible with respect to u then we fix z = y0

and STOP.
If for y = y0 system (8) is compatible with respect to u then we find the minimal

cone Y 0, originating in y0, which contains the polyhedral solution set Y of system
(3) (see Fig.2).

It is easy to observe that the system of inequalities
m1∑

j=1

bisjyj + bis0 ≤ 0, s = 1,m1,

which corresponds to system (12), determines in Rm1 the cone Y 0 with the following
generating rays ys = y0 + b

s
t, s = 1,m1, t ≥ 0.

Here b
1
, b

2
, . . . , b

m1
represent directing vectors of respective rays originating in

y0. These directing vectors correspond to columns of the matrix B
−1

.

Step 2. For each s = 1,m1, solve the following problem:

maximize t

on subject 



By ≤ b;
y ≥ 0;

y = y0 + b
s
t, t ≥ 0

and find m1 points y1, y2, . . . , ym1 , which correspond to m1 basic solutions of system
(3), i.e. y1, y2, . . . , ym1 represent neighboring basic solutions for y0. If system (8) is
compatible with respect to u for each y = y1, y = y2, . . . , y = ym1 , then go to step
3; otherwise system (8) is not compatible for every y satisfying (3) and STOP.

Step 3. For each s = 1,m1, solve the following problem:

maximize t

on subject 



−AT u ≤ Cy + c′;
au ≤ c′′y − h;
u ≥ 0

y = y0 + b
s
t, t ≥ 0
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and find m1 solutions t′1, t
′

2, . . . , t
′

m1
. Then fix m1 points ŷs = y0 + b

s
t′s, s = 1,m1.

(On Fig.2 we can see ŷ1 and ŷ2.)

Step 4. Find the hyperplane Γ (see Fig.2), determined by the following
equation

∑m1
j=1

a′jyj + a′0 = 0, which passes through the points ŷ1, ŷ2, . . . , ŷm1 .

Consider that the basic solution y0 = (y0
1 , y

0
2, . . . , y

0
m1

) satisfies the following
condition

∑m1
j=1

a′jy
0
j +a′0 ≤ 0. Then add to system (3) the inequality −

∑m1
j=1

a′jyj −
a′0 ≤ 0. If after that the obtained system is not compatible, then conclude that system
(8) is compatible for every y satisfying initial system (3) and STOP; otherwise change
the initial system with the obtained one and go to step 1.

Note that this algorithm works well when the polyhedral set Y is a small part
of the orthogonal projection Y (see Fig.3) or when the intersection of Y and Y is a
small part of Y (see Fig.4). In the case when the polyhedral set Y is a big part of
the orthogonal projection Y the algorithm may work too long (see Fig.5).

Fig.2
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Fig.3

5 An algorithm for solving BPP

Using algorithm 1 for determining the compatibility of system (8) for every y
satisfying (3) when h = hk is fixed, we can now propose an algorithm for solving
BPP (1)-(3).

Algorithm 2.

Preliminary step (step 0). Fix an arbitrary basic solution z = y0 of system
(3) and put M1 = −2L, M2 = 2L, h0 = M1.

General step (step k). Find ε = M2 − M1. If ε < 1

22L+2 then fix yk = z

and STOP, otherwise find hk = M1+M2

2
. Then apply algorithm 1 with h = hk and

determine if system (8) is compatible with respect to u for every y satisfying (3).

If this condition is satisfied then change M2 by M1+M2

2
and go to the next step;

otherwise fix the basic solution y0 = z for which system (8) has no solution with

respect to u, change M1 by M1+M2

2
and go to the next step.
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Fig.4

In general, this algorithm finds the exact solution of BPP (1)–(3). But if the
process of calculation takes too much time then we can stop it and we obtain an
admissible solution of BPP (1)-(3), which is appropriate to an optimal one.

Taking into account the geometrical interpretation of the auxiliary parametrical
programming problem we may conclude that the proposed algorithm will work ef-
ficiently if BPP (1)-(3) has a global minimum with the corresponding value of the
object function, which differs essentially from the values of local minima. Namely in
this case for the auxiliary problem the set Y of the parametrical problem is a small
part of the orthogonal projection Y . In the case when BPP has many local minima
with not essential deviations of the corresponding values of the object function the
algorithm may work too much time.
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Fig.5

6 Applications

In this section we show that the proposed approach can be used for studying
and solving the linear boolean programming problem and the resource allocation
problem.

Let us consider the following linear boolean programming problem:
to minimize

z =

n∑

j=1

cjxj

on subject 



n∑

j=1

aijxj ≤ ai, i = 1,m2;

xj ∈ {0, 1}, j = 1, n.

It is easy to observe that if this problem has solution then it is equivalent to the
following concave programming problem
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to minimize

z =
n∑

j=1

cjxj + M

n∑

j=1

min{xj , 1 − xj}

on subject 



n∑

j=1

aijxj ≤ ai, i = 1,m2;

0 ≤ xj ≤ 1, j = 1, n,

where M >
∑n

j=1
|cj |.

In the following we represent this problem as BPP:

to minimize

z =

n∑

j=1

cjxj + M

n∑

j=1

(xjyj + (1 − xj)(1 − yj))

on subject 



n∑

j=1

aijxj ≤ ai, i = 1,m2;

0 ≤ xj ≤ 1, j = 1, n;
0 ≤ yj ≤ 1, j = 1, n.

So, we obtain BPP (1)-(3), where

B =




1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .

0 0 . . . 1


 and b =




1
1
:
1




This means that BPP (1)-(3) is NP-hard even in such a case.
In [7] it is shown that the proposed approach can be used for studying and solving

the following concave programming problem:
to minimize

z =

q∑

i=1

min{cilx + cil
0 , l = 1, ri} (13)

on subject {
Ax ≤ a;
x ≥ 0,

(14)

where x ∈ Rn, cil ∈ Rn, cil
0 ∈ R1, A is an m2 × n-matrix, a ∈ Rm2 . This problem

arises as an auxiliary one when solving a large class of resource allocation problems
[7,9].

Problem (13)-(14) can be transformed into BPP:

to minimize

z =

q∑

i=1

ri∑

l=1

(cilx + cil
0 )yil
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on subject 



Ax ≤ a, x ≥ 0;
ri∑

l=1

yil = 1, i = 1, q;

yil ≥ 0, l = 1, ri, i = 1, q.

In a more detailed form the algorithm for solving this problem is described in [7].
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Abstract. In this paper, we determine for some classes S of topological torsion
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1 Introduction

Given an LCA group X, let E(X) denote the ring of all continuous endo-
morphisms of X. The very pleasant facts that, with respect to the compact-open
topology, E(X) is a complete Hausdorff topological ring and the evaluation map
(u, x) → u(x) from E(X)×X to X is continuous, where E(X)×X is taken with the
product topology, provide a felicitous setting for the study of interconnections be-
tween the algebraic-topological properties of X and those of E(X). Similar problems
for discrete X constituted the subject of an enormous number of investigations.

The present paper is concerned with the following question:

For which LCA groups X is the ring E(X) commutative?

The prototype of this problem, corresponding to the case when X is discrete,
is listed in Fuchs’ book [6] as problem 46(a), and was studied for the first time by
T. Szele and J. Szendrei. In [14], they have completely solved the case of torsion
groups and have obtained some partial results for the case of mixed groups. In the
case of torsionfree groups a solution, due to L. C. A. van Leeuwen [9], has been
obtained only for very special groups.

This paper is intended to be the first of several investigating the structure of
LCA groups X with a commutative ring E(X). We begin our study by examining
the case of topological torsion LCA groups, which represent a natural generalization
of discrete torsion abelian groups within the class of all LCA groups. In contrast
with the case of discrete torsion groups, this new situation is much more complicated
and we do not settle it completely. Though we are unable to give a full description
of topological torsion LCA groups X having a commutative ring E(X), we give such
a description for certain important special cases of this kind of groups.

c© Valeriu Popa, 2006

87



88 VALERIU POPA

2 Notation

In the following, P is the set of prime numbers, N is the set of natural numbers
(including zero), and N0 = N \ {0}.

For p ∈ P, we denote by Qp the group of p-adic numbers, by Zp the group of
p-adic integers (both with their usual topologies), by Z(p∞) the quasi-cyclic group
corresponding to p and by Z(pn), where n ∈ N, the cyclic group of order pn (all with
the discrete topology).

We let L denote the class of locally compact abelian groups, and Lp, where p ∈ P,

the subclass of L consisting of all topological p-primary groups.

Let X be a group in L. For any closed subgroup C of X, X/C will indicate the
quotient group of X by C, equipped with the quotient topology.

We let 1
X
, c(X), d(X), k(X), m(X), t(X), and X∗ denote, respectively, the

identity map on X, the connected component of X, the maximal divisible subgroup
of X, the subgroup of compact elements of X, the smallest closed subgroup K of
X such that the quotient group X/K is torsionfree, the torsion subgroup of X, and
the character group of X.

For n ∈ N, we let

X[n] = {x ∈ X | n · x = 0} and n ·X = {n · x | x ∈ X}.

If p ∈ P, Xp stands the topological p-primary component of X, i. e.

Xp = {x ∈ X | lim
n→∞

pnx = 0}.

If X is a topological torsion group, we let

S(X) = {p ∈ P | Xp 6= 0}.

For a ∈ X and S ⊂ X, o(a) is the order of a, 〈a〉 is the subgroup of X generated
by a, S is the closure of S in X, and

A(X∗, S) = {γ ∈ X∗ | γ(x) = 0 for all x ∈ S}.

For u ∈ E(X), we let u∗ be the transpose of u, i.e. the endomorphism u∗ ∈ E(X∗)
defined by the rule u∗(γ) = γ ◦ u for all γ ∈ X∗.

If Y is another group in L, then H(X,Y ) stands for the group of all continuous
homomorphisms from X into Y. For h ∈ H(X,Y ), we denote by im(h) the image of
h and by ker(h) the kernel of h.

Also, we write X = A⊕B in case X is a topological direct sum of its subgroups
A and B.

Let (Xi)i∈I be a collection of topological groups (rings) indexed by a set I. We
write

∏
i∈I Xi for the direct product of the family (Xi)i∈I , taken with the product
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topology. In case each Xi is a discrete abelian group,
⊕

i∈I Xi denotes the external
direct sum of the family (Xi)i∈I , taken with the discrete topology. If each Xi = X

for some fixed X, then
∏

i∈I Xi is denoted by XI and
⊕

i∈I Xi by X(I).

Suppose, in addition, that for each i ∈ I we are given an open subgroup (subring)
Ui of Xi. The local direct product of the family (Xi)i∈I with respect to (Ui)i∈I will
be indicated by

∏
i∈I(Xi;Ui). Recall that the group (ring)

∏
i∈I(Xi;Ui) consists of

all (xi)i∈I ∈
∏

i∈I Xi such that xi ∈ Ui for all but finitely many i and is topologized
by declaring all neighborhoods of zero in the topological group (ring)

∏
i∈I Ui to be

a fundamental system of neighborhoods of zero in
∏

i∈I(Xi;Ui).

The symbol ∼= denotes topological group (ring) isomorphism.

3 Some technical lemmas

We collect here several facts which will be frequently used in the sequel.

Lemma 3.1. For any X ∈ L, the mapping u→ u∗ is a topological ring antiisomor-
phism from E(X) onto E(X∗).

Lemma 3.2. Let X be a group in L such that X = A⊕B for some subgroups A,B of
X. If εA ∈ E(X) is the canonical projection of X onto A, then E(A) ∼= εAE(X)εA,
where εAE(X)εA carries the induced topology.

Definition 3.3. A closed subgroup C of a group X ∈ L is said to be topologically
fully invariant in X if u(C) ⊂ C for all u ∈ E(X).

Lemma 3.4. Let (Xi)i∈I be an indexed collection of groups in L, and, for each
i ∈ I, let Yi be a compact open subgroup of Xi. If X =

∏
i∈I(Xi;Yi) and if every

subgroup
X ′

j = {(xi)i∈I ∈ X | xi = 0 for all i 6= j}, j ∈ I,

is topologically fully invariant in X, then E(X) is topologically isomorphic with∏
i∈I(E(Xi); ΩXi

(Yi, Yi)).

Proof. See [11, (2.2)] �

The following lemma provides us with a tool of constructing noncommuting
continuous endomorphisms.

Lemma 3.5. Let X be a group in L admitting a continuous endomorphism w such
that im(w) = A ⊕ B for some nonzero subgroups A,B of X with w(A) ⊂ A and
w(B) ⊂ B. If there exists h ∈ H(A,B) satisfying w(A) 6⊂ ker(h), then E(X) fails to
be commutative.

Proof. Let πA : im(w) → A and πB : im(w) → B denote the canonical projections
corresponding to the above decomposition of im(w). If ηA : A→ X and ηB : B → X

are the canonical injections, define u, v ∈ E(X) by setting u = ηB ◦ h ◦ πA ◦ w and
v = ηA ◦ πA ◦ w. We cannot have

h ◦ πA ◦ w ◦ ηA ◦ πA ◦ w = 0,
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since otherwise it would follow that

(h ◦ πA ◦ w ◦ ηA ◦ πA)(im(w)) ⊂ (h ◦ πA ◦ w ◦ ηA ◦ πA ◦ w)(X) = {0}

[2, Ch. 1, §2, Theorem 1], which would imply

h(w(A)) = (h ◦ πA ◦ w ◦ ηA ◦ πA)(A) ⊂ (h ◦ πA ◦ w ◦ ηA ◦ πA)(im(w)) = {0},

a contradiction. Thus h ◦ πA ◦ w ◦ ηA ◦ πA ◦w 6= 0. It then follows that uv 6= 0, and
since vu = 0, the proof is complete. �

4 Discrete and compact groups

As we have mentioned in Introduction, T. Szele and J. Szendrei characterized
in [14] the major classes of discrete abelian groups with commutative endomorphism
ring.

For torsion groups, the characterization of [14] may be paraphrased as follows:

Theorem 4.1. [14] The endomorphism ring E(X) of a discrete torsion group X ∈ L
is commutative if and only if

X ∼=
⊕

p∈S1

Z(p∞) ×
⊕

p∈S2

Z(pnp),

where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅ and np ∈ N0 for all p ∈ S2.

As a first application of this result, we obtain the description of compact totally
disconnected groups in L with commutative ring of continuous endomorphisms.

Corollary 4.2. The endomorphism ring E(X) of a compact totally disconnected
group X ∈ L is commutative if and only if

X ∼=
∏

p∈S1

Zp ×
∏

p∈S2

Z(pnp),

where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅ and np ∈ N0 for all p ∈ S2.

Proof. Since the rings E(X) and E(X∗) are topologically antiisomorphic, and since
X is discrete and torsion if and only if X∗ is compact and totally disconnected [8,
(23.17) and (24.26)], the assertion follows from Theorem 4.1 by taking duals. �

5 Topological torsion groups

Theorem 4.1, due to T. Szele and J. Szendrei, gives a complete description of
torsion discrete abelian groups X whose ring E(X) is commutative. In the present
section, which contains our main results, we will be concerned with a natural gene-
ralization within L of this class of groups, namely, with the class of topological
torsion groups.
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Definition 5.1. A group X ∈ L is said to be a topological torsion group in case,
for each x ∈ X, limn→∞(n!)x = 0.

Our first goal will be to describe the p-groups in L with commutative ring of
continuous endomorphisms.

Theorem 5.2. Let p ∈ P, and let X be a p-group in L. The ring E(X) is commu-
tative if and only if X is topologically isomorphic with either Z(p∞) or Z(pn) for
some n ∈ N.

Proof. Let E(X) be commutative. We first consider the case whenX is nonreduced.
As is well known, X contains then a closed subgroup D topologically isomorphic
with Z(p∞) [1, Proposition 4.22]. Let us fix an isomorphism j : Z(p∞) → D. Since
the discrete divisible groups are splitting in the class of totally disconnected LCA
groups [1, Proposition 6.21], we can writeX = D⊕X0 for some closed subgroupX0 of
X. Assume by way of contradiction that X0 6= {0}, and let U be a nonzero compact
open subgroup of X0. By the structure theorem for torsion compact groups [8,
(25.9)], there is a topological isomorphism ϕ from U onto a group of the form∏

i∈I Z(pmi), where I is a nonempty set and the mi’s are nonzero natural numbers
not exceeding a fixedN ∈ N. Picking any i0 ∈ I, let π denote the canonical projection
of

∏
i∈I Z(pmi) onto Z(pmi0 ) and ρ the canonical injection of Z(pmi0 ) into Z(p∞).

Since D is divisible and U is open, j ◦ ρ ◦ π ◦ ϕ ∈ H(U,D) extends [8, (A.7)] to
a nonzero homomorphism h ∈ H(X0,D) [3, Ch. III, §2, Proposition 23]. Then
applying Lemma 3.5 to w = 1X and our h ∈ H(X0,D) leads to a contradiction.
Consequently, we must have X0 = {0}, and hence X ∼= Z(p∞).

Next we dispose of the case when X is reduced. Our first goal will be to prove
that X is of bounded order. Pick an arbitrary compact open subgroup V of X.
In view of the earlier mentioned structure theorem for torsion compact groups, we
know that V is of bounded order. Therefore, the desired fact that X is of bounded
order will follow if we show that X/V is of bounded order.

It is not difficult to see that X/V is reduced. Indeed, since V is open, X/V is a
discrete p-group. If X/V were nonreduced, we could write X/V = D1 ⊕ G, where
D1

∼= Z(p∞) and G is a subgroup of X/V. Since A(X∗;V ) ∼= (X/V )∗ [8, (23.25)] it
would then follow from [1, Corollary 6.10] and [8, (25.2)] that A(X∗;V ) = ∆ ⊕ Γ,
where ∆ ∼= Zp. Let ψ ∈ H(A(X∗;V ),∆) denote the canonical projection with kernel
Γ and choose any nonzero η ∈ H(∆,Qp). Since A(X∗;V ) is open in X∗ (because V
is compact) and Qp is divisible, η ◦ ψ extends to a nonzero χ ∈ H(X∗,Qp), and so
the transpose map χ∗ would be a nonzero member of H(Qp,X), which would imply
that X is nonreduced, a contradiction. Consequently, X/V must be reduced.

Having established this, we are ready to prove that X/V is of bounded order.
Let

nV = min
{
n ∈ N | pnV = {0}

}
.
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It is easily seen that pnV V ∗ = {0} as well. Since V ∗ ∼= X∗/A(X∗;V ) [8, (24.5)], it
then follows that

pnV X∗ ⊂ A(X∗;V ). (5.1)

If X/V were not of bounded order, it would follow that X/V has cyclic direct
summands of arbitrarily high orders [7, Chapter V, §27, Exercise 1]. Hence we
could write X/V = A ⊕ B ⊕ C ⊕ F, where A ∼= Z(pnA), B ∼= Z(pnB), C ∼= Z(pnC )
and nC ≥ nB ≥ nA ≥ 2nV +1. By [1, Corollary 6.10] and [8, (23.25)], we then would
obtain A(X∗;V ) = A1 ⊕B1 ⊕C1 ⊕F1, where A1

∼= A, B1
∼= B and C1

∼= C. Letting
α ∈ A1, β ∈ B1 and γ ∈ C1 be generators, define f ∈ H(C1, B1) and g ∈ H(B1, A1)
by the rule f(γ) = β and g(β) = α. Further, letting ξ ∈ H(A(X∗;V ), B1) and ζ ∈
H(A(X∗;V ), C1) be the canonical projections, σ ∈ H(B1,X

∗) and τ ∈ H(A1,X
∗)

the canonical injections, and taking account of (5.1), define u, v ∈ E(X∗) by setting

u = τ ◦ g ◦ ξ ◦ pnV 1X∗ and v = σ ◦ f ◦ ζ ◦ pnV 1X∗ .

Then (u ◦ v)(γ) = u(pnV β) = p2nV α 6= 0 and (v ◦u)(γ) = v(0) = 0, so that uv 6= vu.

This is a contradiction because, in view of Lemma 3.1, E(X∗) must be commutative.
In summary, X/U is a group of bounded order, and hence so is X.

Finally, since in a group of bounded order every cyclic subgroup generated by an
element of maximal order splits topologically [10, (3.8)], we can write X = L⊕M,

where L ∼= Z(pn) for some n ∈ N and M is a subgroup of X. Again we must have
M = {0} since otherwise it would follow that H(L,M) 6= {0}, contradicting by
Lemma 3.5 the commutativity of E(X). Hence X ∼= Z(pn).

Since the converse is clear, the proof is complete. �

As a direct consequence of Theorem 5.2, we obtain the following result.

Corollary 5.3. Let X be a topological torsion group in L with torsion primary
components. Then E(X) is commutative if and only if

X ∼=
∏

p∈S1

(Z(p∞); Z(p∞)[pkp ]) ×
∏

p∈S2

(Z(pnp); Z(pnp)[pkp ]),

where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅, and np, kp ∈ N for all p ∈ S(X).

Proof. By [4, Ch. III, §1, Théorème 1] we have

X ∼=
∏

p∈S(X)

(Xp;Up),

where, for each p ∈ S(X), Up is a compact open subgroup of Xp. Since the Xp’s are
topologically fully invariant in X, it follows from Lemma 3.4 that

E(X) ∼=
∏

p∈S(X)

(E(Xp); Ω(Up, Up)).

Consequently, the commutativity of E(X) is equivalent to the commutativity of all
the E(Xp)’s.
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Now, since X has torsion topological primary components, Theorem 5.2 shows
that this last condition is equivalent to saying that, for each p ∈ S(X), Xp is
topologically isomorphic with either Z(p∞) or Z(pnp) for some np ∈ N. It remains
to put

S1 = {p ∈ S(X) | Xp
∼= Z(p∞)} and S2 = S(X) \ S1. �

To dualize the preceding corollary, a few definitions are in order.

Definition 5.4. A group X ∈ L is said to be compact-by-bounded order in case X
admits a compact subgroup K such that X/K is of bounded order.

Definition 5.5. Let X ∈ L. The subgroup
⋂

n∈N0
nX of X is called the subgroup of

elements of infinite topological height of X. If
⋂

n∈N0
nX={0}, X is said to have no

elements of infinite topological height.

It is easy to see that if X ∈ Lp for some prime p, then X is compact-by-bounded
order if and only if pmX is compact for some m ∈ N, and X has no elements of
infinite topological height if and only if

⋂
n∈N

pnX = {0}.

Corollary 5.6. Let X be a topological torsion group in L such that its primary com-
ponents are compact-by-bounded order and have no elements of infinite topological
height. Then E(X) is commutative if and only if

X ∼=
∏

p∈S1

(Zp; p
kpZp) ×

∏

p∈S2

(Z(pnp); pkpZ(pnp)),

where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅, and np, kp ∈ N0 for all p ∈ S(X).

Proof. Observing that a group X ∈ L is compact-by-bounded order and has no
elements of infinite topological height if and only if X∗ is torsion, the assertion
follows from [8, (23.33)], Lemma 3.1 and Corollary 5.3. �

Specializing Theorem 5.2 to torsion groups, we arrive at the following corollary,
which sharpens Theorem 4.1.

Corollary 5.7. The following are equivalent for a group X ∈ L :

(i) X is discrete and torsion, and E(X) is commutative.

(ii) X is torsion, and E(X) is commutative.

(iii) X ∼=
⊕

p∈S1
Z(p∞) ×

⊕
p∈S2

Z(pnp), where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅, and
np ∈ N0 for all p ∈ S2.

Proof. Clearly, (i) implies (ii), and (iii) implies (i). Assuming (ii), we deduce from
Corollary 5.3 that

X ∼=
∏

p∈S1

(Z(p∞); Z(p∞)[pkp ]) ×
∏

p∈S2

(Z(pnp); Z(pnp)[pkp ]),
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where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅, and np, kp ∈ N for all p ∈ S(X), so that in
particular

∏

p∈S1

Z(p∞)[pkp ] ×
∏

p∈S2

Z(pnp)[pkp ]
(
∼=

∏

p∈S(X)

Z(pkp),

since we may assume that kp ≤ np for all p ∈ S2

)
has to be torsion. It then follows

that {p ∈ S(X) | kp 6= 0} is finite, so

∏

p∈S1

(Z(p∞); Z(p∞)[pkp ]) ×
∏

p∈S2

(Z(pnp); Z(pnp)[pkp ])

is discrete by [8, (6.16)(d)], and hence (iii) holds. �

Corollary 5.8. The following are equivalent for a group X ∈ L :

(i) X is compact and totally disconnected, and E(X) is commutative.

(ii) X is a compact-by-bounded order topologically torsion group with no elements
of infinite topological height, and E(X) is commutative.

(iii) X ∼=
∏

p∈S1
Zp ×

∏
p∈S2

Z(pnp), where S1 ∪ S2 = S(X), S1 ∩ S2 = ∅, and
np ∈ N0 for all p ∈ S2.

We next show that Corollary 5.6 can be improved by dropping the assumption
that the considered groups do not contain elements of infinite topological height.

Theorem 5.9. Let X be a topological torsion group in L with compact-by-bounded
order topological primary components. The following are equivalent:

(i) E(X) is commutative.

(ii) For each p ∈ S(X), Xp is topologically isomorphic with either Zp or Z(pnp)
for some np ∈ N0.

Proof. As we already mentioned in the proof of Corollary 5.3, for a topological
torsion group X ∈ L, the commutativity of E(X) is equivalent to the commutativity
of all the E(Xp)’s.

Pick any p ∈ S(X), and assume that E(Xp) is commutative. Since Xp is
compact-by-bounded order, there is a compact subgroup K of Xp such that Xp/K

is of bounded order. Hence pn0(Xp/K) = {0} for some n0 ∈ N. It follows that pn0Xp

is a closed subgroup of K, so that pn0Xp is compact, and hence (pn0Xp)
∗ is a dis-

crete p-group. But then (pn0Xp)
∗ admits a direct summand isomorphic with either

Z(p∞) or Z(pm) for some m ∈ N [7, Corollary 27.3]. Since every decomposition of
(pn0Xp)

∗ as a direct sum produces a decomposition into a topological direct sum of
pn0Xp [1, Corollary 6.10], we can write pn0Xp = A ⊕ B, where A is topologically
isomorphic with either Zp or Z(pm). We must have H(A,B) = {0}, for otherwise
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we would obtain a contradiction by applying Lemma 3.5 with ω = pn01Xp and any
nonzero h ∈ H(A,B).

Assume A ∼= Zp. Since for every x ∈ Xp there exists f ∈ H(Zp,Xp) such that
x ∈ im(f) [1, Lemma 2.10], the equality H(A,B) = {0} can occur only if B = {0}.
It follows that pn0Xp

∼= Zp, so that
⋂

n∈N
pnXp = {0}, and hence Xp

∼= Zp by
Corollary 5.6.

Now assume A ∼= Z(pm). Since H(A,B) = {0}, we must clearly have t(B) = {0},
so that B ∼= Z

ν
p for some cardinal number ν [8, 25.8]. But in view of Lemma 3.5

H(B,A) = {0} too, which can only occur if ν = 0. It follows that (pn0Xp)
∗ ∼= Z(pm),

soXp is of bounded order, and hence, by Theorem 5.2, X ∼= Z(pnp) for some np ∈ N0.

Since E(Zp) and E(Z(pnp)) are clearly commutative, the proof is complete. �

To dualize the preceding theorem, we need a new definition.

Definition 5.10. A group X ∈ L is said to be bounded order-by-discrete in case X
contains an open subgroup of bounded order.

The following extends Corollary 5.3.

Corollary 5.11. Let X be a topological torsion group in L with bounded order-by-
discrete topological primary components. The following are equivalent:

(i) E(X) is commutative.

(ii) For each p ∈ S(X), Xp is topologically isomorphic with either Z(p∞) or Z(pnp)
for some np ∈ N0.

Next we describe the nonreduced torsionfree topological p-primary groups X ∈ L
with commutative ring E(X).

Theorem 5.12. Let p ∈ P, and let X be a nonreduced torsionfree group in Lp. The
ring E(X) is commutative if and only if X ∼= Qp.

Proof. Assume E(X) is commutative. Since X is a nonreduced torsionfree topo-
logical p-primary group, it follows from [1, Theorem 4.23] that X contains a closed
subgroup D topologically isomorphic with Qp. We shall show that X must coincide
withD. Suppose this is not the case. Then, taking into account that Qp is splitting in
the class of torsionfree LCA groups [1, Proposition 6.23], we can write X = D⊕Y for
some nonzero subgroup Y of X. Let U be an arbitrary compact open subgroup of Y.
Since Y is torsionfree, it follows that U ∼= Z

ν
p for some cardinal number ν ≥ 1 [4, Ch.

III, §1, Proposition 3]. Combining an arbitrary topological isomorphism from U onto
Z

ν
p with a projection of Z

ν
p onto Zp and with an arbitrary continuous monomorphism

from Zp into D, we obtain a nonzero h ∈ H(U,D). Since D is divisible and U is open
in Y, h extends to a nonzero homomorphism h0 ∈ H(Y,D), contradicting by Lemma
3.5 our assumption that E(X) is commutative. Therefore we must have X ∼= Qp.

The converse is clear. �

As a consequence we have the following two corollaries.
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Corollary 5.13. Let X be a torsionfree topological torsion group in L such that,
for each p ∈ S(X), Xp is nonreduced. The ring E(X) is commutative if and only if
X ∼=

∏
p∈S(X)

(Qp; Zp).

Corollary 5.14. Let X be a topological torsion densely divisible group in L such
that, for each p ∈ S(X), m(Xp) 6= Xp. The ring E(X) is commutative if and only if
X ∼=

∏
p∈S(X)

(Qp; Zp).

We now turn our attention to the case of topological torsion groups in L with
mixed topological primary components. As we saw, the key argument used in prov-
ing Theorem 5.12 was the fact, due to L. C. Robertson [12], that, for each p ∈ P,

Qp is splitting in the class of torsionfree LCA groups. In order to do with mixed
nonreduced topological p-primary groups, we first extend Robertson’s result to more
general groups.

Lemma 5.15. Let X be a group in L satisfying c(X) ⊂ m(X) 6= X, and let D be a
closed subgroup of X such that D ∼= Qp for some p ∈ P and D ∩m(X) = {0}. Then
D splits topologically from X.

Proof. It is clear from the very definition of m(X) that m(X) ⊂ k(X). Since by
hypothesis c(X) ⊂ m(X), it follows that c(X) is compact [5, Proposition 3.3.6], so
that m(X)/c(X) is closed in X/c(X) [8, (5.18)]. Taking into account that X/c(X)
is totally disconnected [8, (7.3)], and

X/m(X) ∼= (X/c(X))/(m(X)/c(X)) [8, (5.35)],

we then deduce from [8, (7.11)] that X/m(X) is totally disconnected as well. Let π
denote the canonical projection of X onto X/m(X). Fixing an arbitrary topological
isomorphism f from Qp onto D, set h = π ◦f. Since D∩m(X) = {0}, it follows that
π acts injectively on D, so that h is injective too. Remembering that X/m(X) is
totally disconnected, we conclude from [1, Proposition 4.21] that h(Qp) is a closed
subgroup of X/m(X) and that h establishes a topological isomorphism from Qp onto
h(Qp). Therefore, taking account of the above mentioned fact that Qp is splitting in
the class of torsionfree LCA groups, we can write

X/m(X) = h(Qp) ⊕ Γ

for some closed subgroup Γ of X/m(X). Let G = π−1(Γ). We shall show that
X = D ⊕G. Clearly, G is a closed subgroup of X containing m(X), π(G) = Γ and
π(D) = h(Qp). If there existed a nonzero a ∈ D ∩G, it would follow that

π(a) ∈ π(D) ∩ π(G) = h(Qp) ∩ Γ = {0}.

This would imply that a ∈ m(X), contradicting our assumption that D ∩m(X) =
{0}. Thus we must have D∩G = {0}. To see that also X = D+G, pick an arbitrary
x ∈ X. Since

X/m(X) = h(Qp) ⊕ Γ = π(D) ⊕ π(G),
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there exist y ∈ D and z ∈ G such that π(x) = π(y) + π(z), so that x = y + z + t

for some t ∈ m(X). But z + t ∈ G because m(X) ⊂ G, and since x ∈ X was
chosen arbitrarily, this shows that X = D +G. Consequently, X decomposes as an
algebraic direct sum of D and G. To conclude that the obtained decomposition is in
fact topological, it remains to observe [1, Proposition 6.5] that D, being topologically
isomorphic to Qp, is σ-compact. �

Corollary 5.16. Let X be a totally disconnected group in L having closed torsion
subgroup. If X contains a closed subgroup D topologically isomorphic with Qp for
some p ∈ P, then D splits topologically from X.

Proof. Since c(X) = {0}, m(X) = t(X) and Qp is torsionfree, the assertion follows
from Lemma 5.15. �

We approach the description of mixed nonreduced topological p-primary groups
X ∈ L with commutative ring E(X) through two lemmas.

Lemma 5.17. Let p ∈ P, and let X be a mixed group in Lp. If E(X) is commutative,
then t(X) is reduced.

Proof. If t(X) were nonreduced, X would contain a copy D of Z(p∞). Since Z(p∞)
is splitting in the class of totally disconnected LCA groups, it would then follow that
X = D ⊕ T for some nonzero (because X 6= t(X)) closed subgroup T of X. Letting
U be an arbitrary nonzero compact open subgroup of T, then U∗ would be a nonzero
discrete p-group, and so U∗ would admit by [7, Corollary 27.3] a direct summand
isomorphic with either Z(p∞) or Z(pn) for some n ∈ N. We would then conclude
from [8, (23.18)] that U has a topological direct summand topologically isomorphic
with either Zp or Z(pn), which would imply that H(U,D) 6= {0}. Extending the
elements of H(U,D), we would obtain that H(T,D) 6= {0}, so that by Lemma 3.5
E(X) could not be commutative. �

Lemma 5.18. Let p ∈ P, and let X be a group in Lp such that d(X) 6⊂ m(X). If
E(X) is commutative, then d(X) ∼= Qp and X = d(X) ⊕m(X).

Proof. Fix any a ∈ d(X) \m(X), and let D denote the minimal divisible subgroup
of X containing a. It is clear from the definition of m(X) that t(X) ⊂ m(X), so
a /∈ t(X), and hence D is algebraically isomorphic to Q. It follows that D is divisible,
because every group in L containing a dense divisible subgroup of finite rank is itself
divisible [1, (5.39)(e)]. We assert that D ∼= Qp. Indeed, since X ∈ Lp, it follows

from [1, Lemma 2.11] that 〈a〉 ∼= Zp. Pick a topological isomorphism ϕ from Zp

onto 〈a〉. Since D is divisible, η ◦ϕ extends to homomorphism f ∈ H(Qp,D), where

η is the canonical injection of 〈a〉 into D. To show that f is injective, pick any
x ∈ ker(f). Since Qp is the minimal divisible extension of Zp, we can find an l ∈ N

such that plx ∈ Zp. It follows that plx ∈ ker(η ◦ ϕ), so plx = 0, whence x = 0
because Qp is torsionfree. Thus our claim is established. As every group in Lp is
totally disconnected, it then follows from [1, Proposition 4.21] that f(Qp) is closed

in D and f is a topological isomorphism from Qp onto f(Qp). But 〈a〉 ⊂ f(Qp) and
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f(Qp) is divisible, so D ⊂ f(Qp), and hence f(Qp) = D, proving that D ∼= Qp. Next
we show that D ∩m(X) = {0}. Assume the contrary, and let U = D ∩m(X). Then
U is open in D. Since limn→∞ pna = 0, there exists k ∈ N such that pka ∈ U, and so

a+m(X) ∈ t(X/m(X)).

As X/m(X) is torsionfree, it follows that a ∈ m(X), contradicting the choice of a.
This proves that D ∩m(X) = {0}.

Now, according to Lemma 5.15, we can write X = D ⊕ G for some closed
subgroup G of X. Since, in view of Lemma 3.5, H(D,G) and H(G,D) cannot be
nonzero groups, we must have d(G) = {0} and m(G) = G, so that D = d(X) and
G = m(X). �

Theorem 5.19. Let p ∈ P, and let X ∈ Lp be a nonreduced mixed group having
closed torsion subgroup. The ring E(X) is commutative if and only if X is topolo-
gically isomorphic to Qp × Z(pnp) for some np ∈ N0.

Proof. Assume E(X) is commutative. Since t(X) is closed in X, we clearly have
m(X) = t(X). But t(X) is reduced by Lemma 5.17, so that d(X) 6⊂ m(X). It then
follows from Lemma 5.18 that X = D ⊕ t(X), where D ∼= Qp. As, by Lemma 3.2,
E(t(X)) is also commutative, we deduce from Theorem 5.2 that t(X) ∼= Z(pnp) for
some n ∈ N0.

Assume the converse. We have X = d(X) ⊕ t(X), where d(X) ∼= Qp

and t(X) ∼= Z(pnp). Since d(X) is torsionfree and t(X) is reduced, it follows
that d(X) and t(X) are topologically fully invariant subgroups of X, so that
E(X) ∼= E(Qp) × E(Z(pnp)). �

We prove now

Theorem 5.20. Let X be a topological torsion group in L such that its topologi-
cal primary components have closed torsion subgroup and compact-by-bounded order
quotient modulo the subgroup of elements of infinite topological height. The following
are equivalent:

(i) E(X) is commutative.

(ii) For each p ∈ S(X), Xp is topologically isomorphic with one of the groups
Z(p∞), Z(pnp), Zp, Qp or Qp × Z(pnp), where np ∈ N.

Proof. As we know, E(X) is commutative if and only if all the E(Xp)’s have this
property.

Pick any p ∈ S(X), and assume that E(Xp) is commutative. If Xp = t(Xp), we
deduce from Theorem 5.2 that either X ∼= Z(p∞) or X ∼= Z(pnp) for some np ∈ N.

Let us suppose further that Xp 6= t(Xp). Since

⋂

n∈N

pnX∗

p = A(X∗

p , t(Xp)) [8, (24.24)]
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and t(Xp) is closed in Xp, it then follows from [8, (23.24)(b)] that⋂
n∈N

pnX∗

p 6= {0}. But

(
Xp/t(Xp)

)
∗ ∼=

⋂

n∈N

pnX∗

p [8, (23.25)]

and since Xp/t(Xp) is torsionfree, we conclude by a theorem of Robertson [13, The-
orem 5.2] that

⋂
n∈N

pnX∗

p is densely divisible, so that X∗

p is nonreduced. Now,
if X∗

p = t(X∗

p ), we use Theorem 5.2 again to deduce that X∗

p
∼= Z(p∞), whence

Xp
∼= Zp. Further, if t(X∗

p ) = {0}, we conclude from Theorem 5.12 that X∗

p
∼= Qp,

so Xp
∼= Qp because Qp is self-dual. Thus, it only remains to consider the case when

X∗

p is mixed. As Xp/
⋂

n∈N
pnXp is compact-by-bounded order, it is then easily seen

that t(X∗

p ) is closed in X∗

p , so that by Theorem 5.19 X∗

p
∼= Qp × Z(pmp) for some

mp ∈ N, whence Xp
∼= Qp × Z(pmp).

On the other hand, it is clear that the groups Z(p∞), Z(pnp), Zp, Qp and
Qp × Z(pmp) have commutative ring of continuous endomorphisms. �

Remark. Observe that by dualizing Theorem 5.20 we would obtain nothing new
because the class S of topological torsion groups in L whose topological primary
components have closed torsion subgroup and compact-by-bounded order quotient
by the subgroup of elements of infinite topological height is self-dual, i.e. if X ∈ S,
then X∗ ∈ S too.
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1 Preliminaries

The abstract class of modules K ⊆ R-Mod, (i.e. the class closed under isomor-
phisms) is called natural (or saturated) if it is closed with respect to submodules,
direct sums and essential extensions (or injective envelopes). This type of classes of
modules was studied from diverse points of view in a series of works, for example
in [1–4]. The purpose of this note is to elucidate the relation between the natural
classes and torsions (≡ hereditary radicals) of R-Mod, in special, torsion free classes
of R-modules. It is well known that every torsion r of R-Mod determines two classes
of modules:

Tr = {RM | r(M) = M}, Fr = {RM | r(M) = 0}.

The class of the form Tr, where r is a torsion, is called torsion class and is charac-
terized as a class closed under submodules, direct sums, homomorphic images and
extensions. Dually, the class of the form Fr, where r is a torsion, is called torsion
free class and can be described as a class closed under submodules, direct products
and essential extensions (or injective envelopes). We note that every torsion free
class is closed also under extensions. These and other facts on torsions can be found
in the books [5–8].

In such a way all results on torsions (and on radicals) can be expounded by classes
of modules, using the classes of the form Tr and Fr. The relation between these two
types of classes can be expressed by the following operators of Hom-orthogonality:

K ⊆ R-Mod, K
↑

= {RX |HomR (X,Y ) = 0 ∀Y ∈ K},

K
↓

= {RY |HomR (X,Y ) = 0 ∀X ∈ K}.

c© A.I. Kashu, 2006
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For every torsion r of R-Mod the following relations are true:

Tr = F
↑

r , Fr = T
↓

r .

In the following statement we give an account of elementary properties of the oper-
ators of Hom-orthogonality [6, 8].

Lemma 1.1. (1) The operators (↑) and (↓) are anti-monotone, i.e. they converte
the inclusions of classes: if K1 ⊆ K2, then

K
↑

1 ⊇ K
↑

2, K
↓

1 ⊇ K
↓

2.

(2) For every K ⊆ R-Mod the class K
↑

is a radical class, i.e. it is closed under
homomorphic images, direct sums and extensions.
(3) For every K ⊆ R-Mod the class K

↓

is a semisimple class, i.e. it is closed
under submodules, direct products and extensions.
(4) For every K ⊆ R-Mod the class K

↓↑

is the smallest radical class containing K.

(5) For every K ⊆ R-Mod the class K
↑↓

is the smallest semisimple class contain-
ing K.

The abstract class K ⊆ R-Mod is called hereditary class if it is closed under
submodules, and K is called stable class if it is closed under essential extensions (if
K is hereditary, then the last condition is equivalent to the closeness under injective
envelopes). It is known that if (T,F) is a torsion theory in the sense of S.E. Dickson

(i.e. T = F
↑

and F = T
↓

), then the class T is hereditary if and only if F is stable.
This statement is a corollary of the following facts [6, 8].

Lemma 1.2. (1) If K is a hereditary and stable class, then K
↑

is hereditary.

(2) If K is a hereditary class, then K
↓

is a stable class.

Proof. 1). Let X ∈ K
↑

and X ′ ⊆ X. If X ′ 6∈ K
↑

, then there exists 0 6= f :
X ′ → Y, Y ∈ K and denoting Y ′ = Imf 6= 0, we have Y ′ ∈ K. Now we consider
the diagram:

-

-
?

X ′

Y ′

X

E(Y ′),
?

f f

i

j

where E(Y ′) is the injective envelope of Y ′ ∈ K and i, j are inclusions. Then
E(Y ′) ∈ K and there exists f : X → E(Y ′) which extends f . From f 6= 0 it follows

f 6= 0, a contradiction with X ∈ K
↑

.

2) Let Y ∈ K
↓

and Y ⊆
∗

Z (where ⊆
∗

is the essential inclusion). If
HomR(X,Z) 6= 0 for some X ∈ K, then there exists 0 6= f : X → Z with
0 6= Imf ⊆ Z. From Y ⊆

∗

Z it follows Y ∩Imf 6= 0. Denoting X ′ = f−1(Y ∩Imf),
we have X ′ ∈ K and the restriction of f to X ′ is a non-zero homomorphism
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0 6= f ′ : X ′ → Y ∩ Imf = Y ′, where Y ′ ∈ K
↓

(since K
↓

is hereditary), so
HomR(X ′, Y ′) 6= 0, a contradiction. Therefore HomR(X,Z) = 0 for every X ∈ K,

i.e. Z ∈ K
↓

. �

Corollary 1.3. (1) If K is a natural class, then K
↑

is a radical and hereditary
class, i.e. a torsion class.
(2) If K is a natural class, then the class K

↑↓

is semisimple and stable, i.e. a torsion
free class.

Further we will use the following notations:
R-tors – the set (lattice) of all torsions of R-Mod;
R-nat – the set (lattice) of all natural clases of R-Mod;
R – the set of all torsion classes of R-Mod;
P – the set of all torsion free classes of R-Mod.
It is known that R-nat can be transformed in a lattice and this lattice is boolean

[1, 3, etc]. Similarly, the sets R and P are transformed in a natural way in lattices,
where the order relation is the inclusion and the lattice operations ”∧” and ”∨” are
defined as follows:

in R :
∧

α∈A

Rα =
⋂

α∈A

Rα,
∨

α∈A

Rα = ∩{R ∈ R |R ⊇ Rα ∀α ∈ A};

in P :
∧

α∈A

Pα =
⋂

α∈A

Pα,
∨

α∈A

Pα = ∩{P ∈ P |P ⊇ Pα ∀α ∈ A}.

Since there exists a monotone bijection between torsions and torsion free classes,
we have a lattice isomorphism R ∼= R-tors. The anti-monotone bijection between R

and P is established by the operators of Hom-orthogonality (↑) and (↓), and these
operators are compatible with lattice operations in the following sense.

Proposition 1.4. For every sets {Rα |α ∈ A} ⊆ R and {Pα |α ∈ A} ⊆ P the
following relations are true:

a)
( ∧

α∈A

Pα

)↑

=
∨

α∈A

(P
↑

α); b)
( ∧

α∈A

Rα

)↓

=
∨

α∈A

(R
↓

α);

c)
( ∨

α∈A

Pα

)↑

=
∧

α∈A

(P
↑

α); d)
( ∨

α∈A

Rα

)↓

=
∧

α∈A

(R
↓

α).

Therefore, the lattice R is anti-isomorphic to the lattice P.
Remark. Some results on the lattice of natural classes are contained in [9] and
[10]. In particular, the lattice R-nat is described as a skeleton (boolean part) of the
frame of closed classes of R-Mod.
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2 Natural classes and torsion free classes

From the definitions of §1 it is clear that every torsion free class (i.e. of the form
Fr, where r is a torsion) is natural, so we have the inclusion i : P → R-nat. Now we
define an inverse mapping φ : R-nat → P, considering that for every K ∈ R-nat the
class φ(K) is the smallest torsion free class containing K (i.e. the intersection of all
torsion free classes of R-Mod which contain K).

From the Lemma 1.1 and Corollary 1.3 it follows

Proposition 2.1. For every natural class K the following relation is true:

φ(K) = K
↑↓

.

The next specification of this relation follows from the fact that every class
K ∈ R-nat is hereditary (to compare with Prop. 2.5, chapter VI of [5]).

Proposition 2.2. For every natural class K of R-Mod we have:

φ(K) = {RY | ∀ 0 6= Y ′ ⊆ Y, ∃ epi 0 6= f : Y ′ → Y ′′, Y ′′ ∈ K},

i.e. φ(K) consists of all modules Y such that for every non-zero submodule Y ′ ⊆ Y

there exists a non-zero epimorphism f : Y ′ → Y ′′ with Y ′′ ∈ K.

Proof. Denote by K the class of right part of this relation.
φ(K) ⊆ K: From definitions we have:

K
↑↓

= {RY |HomR(X,Y ) = 0 ∀ X ∈ K
↑

} =

= {RY |HomR(X,Z) = 0 ∀ Z ∈ K ⇒ HomR(X,Y ) = 0} =

= {RY |HomR(X,Y ) 6= 0 ⇒ ∃Z ∈ K, HomR(X,Z) 6= 0}.

Let Y ∈ φ(K) = K
↑↓

and 0 6= Y ′ ⊆ Y . Then HomR(Y ′, Y ) 6= 0, therefore there
exists Z ∈ K such that HomR(Y ′, Z) 6= 0. For 0 6= f : Y ′ → Z and Y ′′ = Imf ,
we obtain a non-zero epimorphism f : Y ′ → Y ′′ ⊆ Z, where Y ′′ ∈ K (since K is
hereditary), therefore Y ∈ K.

φ(K) ⊇ K: Let Y ∈ K and we will prove that HomR(X,Y ) = 0 for every X ∈ K
↑

.

Suppose the contrary: there exists an X ∈ K
↑

such that HomR(X,Y ) 6= 0. Then
we have 0 6= f : X → Y and denote 0 6= Y ′ = Imf ⊆ Y . Since Y ∈ K, there exists
a non-zero epimorphism 0 6= g : Y ′ → Y ′′, Y ′′ ∈ K. Therefore we have a non-zero
epimorphism 0 6= gf : X → Y ′ → Y ′′, Y ′′ ∈ K, in contradiction with X ∈ K

↑

. �

Now we will show another description of the class φ(K) for K ∈ R-nat, using
the closeness properties. Comparing the respective definitions, it is clear that for
the natural class K to be torsion free class it is necessary in addition to be closed
under direct products. In continuation we will prove that to obtain the class φ(K)
for K ∈ R-nat it is sufficient to close the class K with respect to submodules and
direct products. For that we consider the class of all modules of R-Mod cogenerated
by the natural class K:
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Cog (K) = {RM | ∃ mono 0 →M →
Y

α∈A

Mα, Mα ∈ K},

i.e. Cog (K) is the smallest class of R-Mod, which contains K and is closed under
submodules and direct products.

Proposition 2.3. For every class K ∈ R-nat the following relation is true:

φ(K) = Cog (K).

Proof. Firstly we verify that the class Cog (K) is torsion free. From definition it
follows that the class Cog (K) is closed under submodules and direct products, so it
remains to prove that Cog (K) is a stable class.

Let M ∈ Cog (K) and E(M) be the injective envelope of M . Then there exists

a monomorphism 0 → M
φ
−→

∏

α∈A

Mα, Mα ∈ K. Since
∏

α∈A

E(Mα) is an injective

module, the inclusion
∏

α∈A

Mα ⊆
∏

α∈A

E(Mα) can be extended to a monomorphism

ψ : E
( ∏

α∈A

Mα

)
→

∏

α∈A

E(Mα). Now we consider the diagram:

?

M

E(M)

Y

α∈A

Mα

E(
Y

α∈A

Mα)

-0

j i

ϕ

Y

α∈A

E(Mα),-

?

-

-

ϕ ψ

where i, j are inclusions. By injectivity of E
( ∏

α∈A

Mα

)
the monomorphism iϕ can

be extended to a ϕ : E(M) → E
( ∏

α∈A

Mα

)
and, since M ⊆

∗

E(M), ϕ is a monomor-

phism. So we obtain a monomorphism ψϕ : E(M) →
∏

α∈A

E(Mα), where E(Mα) ∈ K

for every α ∈ A, since K is a stable class. Therefore E(M) ∈ Cog (K) and so the
class Cog (K) is stable.

Taking into account that K ⊆ Cog (K), from the preceding result it follows the

inclusion K
↑↓

⊆ Cog (K), since K
↑↓

is the smallest torsion free class containing K

(Corollary 1.3).

It remains to prove that Cog (K) ⊆ K
↑↓

. Let M ∈ Cog (K), i.e. we have a

monomorphism 0 → M
ϕ
−→

∏

α∈A

Mα, Mα ∈ K for every α ∈ A. We will verify that

HomR(X,M) = 0 for every X ∈ K
↑

.

Suppose the contrary: there exists X ∈ K
↑

such that HomR(X,M) 6= 0. Then
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we have 0 6= f : X →M and since ϕ is mono, there exists β ∈ A such that p
β
ϕf 6= 0:

X
f
−→M

ϕ
−→

∏

α∈A

Mα

pβ
−→Mβ,

where p
β

is the canonical projection. Therefore, HomR(X,Mβ) 6= 0, where Mβ ∈ K

and X ∈ K
↑

, a contradiction. �

The studied mapping φ : R-nat → P can be extended to a mapping ψ :
R-nat → R, where R is the lattice of torsion classes of R-Mod, taking by definition:

ψ(K) = [φ(K)]
↑

(since φ(K) is stable, [φ(K)]
↑

is a torsion class by Corollary 1.3). By Prop. 2.1

φ(K) = K
↑↓

, so we have:

ψ(K) = (K
↑↓

)
↑

= K
↑

.

Moreover, we can define the mapping j : R → R-nat by the rule:

j (R) = R
↓

, R ∈ R.

So we obtain the diagram:

6

?

����������)
����������1

PPPPPPPPPPqP
PPPPPPPPPi

(↓) (↑)

R
ψ

j

φ

i

R – nat,

P

where i is the inclusion. By definitions it is clear that φ is a monotone mapping,
while ψ and j are anti-monotone. The following relations (commutativity of the
diagram) are obvious:

j · ψ = i · φ, i = j · (↑), ψ · i = (↑), ψ · j = (↓).

As we have seen above, the operators (↑) and (↓) are compatible with lattice
operations of R and P (Prop. 1.4), i.e. these mappings convert the lattice operations.
Now we will study the similar question for the mappings φ and ψ. We begin with
the following remark.

Lemma 2.4. The mapping φ preserves the lattice operations if and only if the
mapping ψ converts these operations.

Proof. Let, for example, φ preserves the unions:

φ
( ∨

α∈A

Kα

)
=

∨

α∈A

φ
(
Kα

)
.
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Then applying Prop. 1.4 we obtain:

( ∨

α∈A

Kα

)↑↓

=
∨

α∈A

(
K

↑↓

α

)
⇔

( ∨

α∈A

Kα

)↑

=
(( ∨

α∈A

Kα

)↑↓

)↑

=

=
( ∨

α∈A

(
K

↑↓

α

))↑

=
∧

α∈A

(K
↑↓↑

α ) =
∧

α∈A

(K
↑

α),

i.e. φ preserves the unions if and only if ψ transforms the unions of classes in
intersections. �

From this statement it follows that it is sufficient to prove the respective relations
only for one of the mappings φ or ψ. Now we will show that the mapping ψ converts
the unions of the lattice R-nat in the intersections of the lattice R. For that we
would remind that the unions of classes of R-nat can be characterized as follows:

∨

α∈A

Kα = {RM | ∃
⊕

α∈A

Mα ⊆
∗

M, Mα ∈ Kα} (see [1, Theor. 2.15]),

where Kα ∈ R-nat for every α ∈ A and ⊆
∗

is the essential inclusion.

Theorem 2.5. For every set of natural classes {Kα |α ∈ A} the following relation
is true: ( ∨

α∈A

Kα

)↑

=
∧

α∈A

(
K

↑

α

)
,

i.e. ψ converts the unions of R-nat in the intersections of R.

Proof. (⊆). From
∨

α∈A

Kα ⊇ Kα for every α ∈ A it follows
( ∨

α∈A

Kα

)↑

⊆ K
↑

α for

every α ∈ A, therefore
( ∨

α∈A

Kα

)↑

⊆
∧

α∈A

(
K

↑

α

)
.

(⊇). Let X ∈
∧

α∈A

(
K

↑

α

)
. We must prove that HomR(X,M) = 0 for every

M ∈
∨

α∈A

Kα. Suppose the contrary: there exists M ∈
∨

α∈A

Kα such that

HomR(X,M) 6= 0. From the description of the class
∨

α∈A

Kα indicated above, it

follows that there exists a direct sum
⊕

α∈a

Mα ⊆
∗

M with Mα ∈ Kα for every α ∈ A.

Then we have a non-zero homomorphism 0 6= f : X → M, 0 6= Imf ⊆ M and

the essential inclusion
⊕

α∈A

Mα ⊆
∗

M implies
( ⊕

α∈A

Mα

)
∩ Imf 6= 0. Therefore,

there exists an element 0 6= mα1 + · · · + mαk
∈ Imf with mαi

∈ Mαi
. Then

0 6= Rmα1 + · · · + Rmαk
⊆ Imf and it is obvious that there exists αi ∈ A such
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that 0 6= Rmαi
⊆ Imf . So we obtain a non-zero homomorphism from f−1(Rmαi

)
in Mαi

:

X ⊇ f−1(Rmαi
)

f
−→

⊕

α∈A

Mα

pαi−−→Mαi
, Mαi

∈ Kαi
.

On the other hand, since X ∈
∧

α∈A

(K
↑

α), we obtain X ∈ K
↑

αi
, where K

↑

α is a hered-

itary class, so f−1(Rmαi
) ∈ K

↑

αi
. This means that f−1(Rmαi

) has no non-zero
homomorphism in the modules of Kαi

, a contradiction. �

From Theorem 2.5 and Lemma 2.4 immediatly follows

Corollary 2.6. The mapping φ preserves the unions, i.e.

( ∨

α∈K

Kα

)↑↓

=
∨

α∈K

(K
↑↓

α )

for every set {Kα |α ∈ A} of natural classes.
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Finite difference schemes for problems of mixture

of two component elastic materials

Ghenadie Bulgac

Abstract. In this paper we consider the numerical approximation of the solution of
the 2D unsteady equations of mixture on a rectangular domain using the operator-
splitting schemes for solving unsteady elasticity problems. Its major peculiarity is that
transition to the next time level is performed by solving separate elliptic problems for
each component of the displacement vector. The previous results make it possible to
design efficient numerical algorithms for two component mixture elasticity equations.

Mathematics subject classification: 74H15, 93A30.

Keywords and phrases: Two component mixture model, finite difference method,
unsteady elasticity equations.

1 Introduction

The continuum theory of mixtures has been a subject of study in recent years.
The linearized theory of elasticity for the indicated medium was given by T.R. Steel.
[1] The two-dimensional problems for the isotropic mixture are considered by
T.R. Steel [2] and M.O. Basheleishvili [3]. Some three-dimensional basic prob-
lems for indicated medium are considered by D.G. Natroshvili, A.J. Jagmaidze and
M.J. Svanadze [4].

In this work, we develop our study using the finite difference methodology for
spaces discretization. For dynamic problems of continuum mechanics the unsteady
system of elastic mixture equations is used. These equations constitute a hyperbolic
system of equations of second order. Stability analysis of the proposed schemes is
made in framework of the general theory of stability for operator-difference schemes
[5]. Discretization in space is performed in such a way that all basic properties of the
differential operator are preserved in the corresponding grid Hilbert spaces. Finally,
an additive scheme (of predictor-corrector type) is constructed using a triangular
splitting for the discrete matrix operator.

2 Differential problem

For simplicity let us treat the transient problem of elasticity of mixture where
there is no dependence on the longitudinal coordinate. Let us then consider the
stressed state of an elastic isotropic body of mixture with rectangular section Ω. In

c© Ghenadie Bulgac, 2006
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the two-dimensional case the basic equations of the theory of the elastic mixture
have the form [6–8]:

ρ11

∂2u

∂t2
− ρ12

∂2v

∂t2
+ α

(
∂u

∂t
−

∂v

∂t

)
−

− (a1 ∆u + b1 grad div u + c∆v + d grad div v) = f1 (x, t) ,

ρ22

∂2v

∂t2
− ρ12

∂2u

∂t2
− α

(
∂u

∂t
−

∂v

∂t

)
−

− (c∆u + d grad div u + a2 ∆v + b2 grad div v) = f2 (x, t) ,

(1)

where u = (u1, u2), v = (v1, v2) are partial displacements, a1, b1, c, d, a2, b2 are
the known constants characterizing the physical properties of the mixture, ∆ is the
two-dimensional Laplacian, f is the vector of volumetric forces, grad and div are the
operators on the field theory, ρ1 and ρ2 are the partial densities (positive constants),
α ≥ 0 ,

aj = µj − λ5, bj = µj + λj + λ5 +
(−1)j ρ3−jα2

ρ1 + ρ2

,

ρjj = ρj + ρ12, j = 1, 2, c = µ3 + λ5,

d = µ3 + λ3 + λ5 −
ρ1α2

ρ1 + ρ2

= µ3 + λ4 − λ5 +
ρ2α2

ρ1 + ρ2

, α2 = λ3 − λ4,

µ1, µ2, µ3, λ1, λ2, ... , λ5 are elastic constants of the mixture [1, 6, 10].

In the sequel it will be assumed that the following conditions are fulfilled
[1, 6, 10]:

µ1 > 0, µ1µ2 > µ2
3, λ1 −

ρ2α2

ρ1 + ρ2

+
2

3
µ1 > 0,

λ5 ≤ 0, ρ11 > 0, ρ11ρ22 > ρ2
12,

(
λ1 −

ρ2α2

ρ1 + ρ2

+
2

3
µ1

)(
λ2 +

ρ1α2

ρ1 + ρ2

+
2

3
µ2

)
>

(
λ3 −

ρ1α2

ρ1 + ρ2

+
2

3
µ3

)2

.

(2)

The system of equations (1) is supplemented with the corresponding boundary and
initial conditions. Namely, assume that the boundary ∂Ω is fixed, i.e. there is no
displacement

u (x, t) = 0, v(x, t) = 0, x ∈ ∂Ω. (3)

The initial state is specified by

u (x, t) = u0 (x) , v (x, t) = v0 (x) , x ∈ Ω, (4)

∂u

∂t
(x, 0) = u1(x),

∂v

∂t
(x, 0) = v1(x), x ∈ Ω. (5)
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To formulate the operator for (1)-(5), we first introduce appropriate functional spaces
and operators. Let us consider the standard Hilbert space L2 (Ω) the set of square-
integrable scalar valued functions defined on Ω, with the scalar product and the
corresponding norm

(u, v) =

∫

Ω

u (x) v (x) dx, ‖u‖ = (u, u)
1
2 ,

and the Hilbert space H = (L2 (Ω))4 with the inner product for 4D vector valued
functions u and v, given by

(u, v) =

4∑

i=1

(ui, vi)

0

W 1
2 (Ω) denotes the usual Sobolev space of functions vanishing at the boundary ∂Ω,

with the inner product and norm defined by

(u, v) 0

W 1
2 (Ω)

=
2∑

α=1

∫

Ω

∂u

∂xα

∂v

∂xα
dx, ‖u‖ 0

W 1
2 (Ω)

= (u, u)
1
2
0

W 1
2 (Ω)

,

and let V =

(
0

W 1
2 (Ω)

)4

.

On the H we consider the unbounded operator written in operator matrix form
as

Av =




A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


 v. (6)

Where (see (1) )

A11 = − (a1 + b1)
∂2

∂x2
1

− b1

∂2

∂x2
2

, A12 = A21 = −b1

∂2

∂x1∂x2

,

A22 = −b1

∂2

∂x2
1

− (a1 + b1)
∂2

∂x2
2

, A13 = A31 = − (c + d)
∂2

∂x2
1

− d
∂2

∂x2
2

,

A14 = A23 = A32 = A4‘1 = −d
∂2

∂x1∂x2

, A24 = A42 = −d
∂2

∂x2
1

− (c + d)
∂2

∂x2
2

,

A33 = − (a2 + b2)
∂2

∂x2
1

− b2

∂2

∂x2
2

, A34 = A43 = −b2

∂2

∂x1∂x2

,

A44 = −b2

∂2

∂x2
1

− (a2 + b2)
∂2

∂x2
2

The operator A has the domain D (A) = {v ∈ V |Av ∈ H } dense in H.
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We have (Av, v) ≥ 0. In this situation we will write A ≥ 0 in H.
Besides, it is known that A is maximal monotone, and

(Av, u) = (v,Au) ,

i.e., A is selfadjoint in H.
Finally, the following energetic equivalence holds

−b
(
∼

∆ v, v
)
≤ (Av, v) ≤ − (a + b)

(
∼

∆ v, v
)

, (7)

where

∼

∆ =




∆ 0 0 0
0 ∆ 0 0
0 0 ∆ 0
0 0 0 ∆




and b = min {b1, d, b2}, (a + b) = max {(a1 + b1) , (c + d) , (a2 + b2)} .

Problem (1)-(5) can be written in differential operator form as the abstract initial
value problem

ρ
d2v

dt2
+ α

dv

dt
+ Av = f, (8)

v (0) = v0,
dv

dt
(0) = v1, (9)

with the unique solution if v0 ∈ D (A) and v1 ∈ H.
The operator A is selfadjoint and positive on space H and, moreover, is energet-

ically equivalent to the analog for Laplace operator. The construction of discrete
analogs for A will be oriented to the fulfillment of the same important properties.

3 Space discretization

In considering difference schemes for the solution of problem (1)-(5), we begin
with making space approximation. We consider the problem on the rectangle

Ω = {x |x = (x1, x2) , 0 < xα < la, α = 1, 2}

discretized by a uniform rectangular grid mesh steps hα, α = 1, 2. Let ω be the set
of internal nodes of the grid

ω = {x |x = (x1, x2) , xα = iαhα, iα = 1, 2..., Nα − 1, Nαhα = lα, α = 1, 2} ,

and the ∂ω the set of boundary nodes. The finite difference solution of problem
(1)-(4) will be denoted by vh(x, t), x ∈ ω ∪ ∂ω, 0 < t ≤ T . Using the standard
index-free notation of the theory of difference schemes [8], for the right and left
difference derivatives we write

wx =
w (x + h) − w (x)

h
, wx =

w (x) − w (x − h)

h
,
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and the second difference derivative is given by the expression

wxx =
1

h
(wx − wx) =

w (x + h) − 2w (x) + w (x − h)

h2
.

For grid functions equal to zero on ∂ω we define the Hillbert space L2 (ω) where the
inner product and norm are as follows

(y,w) =
∑

x∈ω

y (x)w (x) h1h2, ‖y‖ = (y, y)
1
2 .

For the vector grid functions u (x), v (x) equal to zero on ∂ω we introduce
H̃ = (L2 (ω))4 with the inner product and norm given by

(u, v) = (u1, v1) + (u2, v2) , ‖u‖ = (u, u)
1
2 .

Also, given a self-adjoint and positive definite operator C, H̃C denotes the space H̃

provided by the scalar product (u, v)C = (Cu, v) and norm ‖u‖C = (Cu, u)
1
2 .

Ã =




Ã11 Ã12 Ã13 Ã14

Ã21 Ã22 Ã23 Ã24

Ã31 Ã32 Ã33 Ã34

Ã41 Ã42 Ã43 Ã44


 , (10)

Ã11y = −a1yx1x1 − b1∆hy, Ã12y = Ã21y = −
b1

2
(yx1x2 + yx1x2) ,

Ã22y = −b1∆hy − a1yx2x2,

Ã13y = Ã31y = −cyx1x1 − d∆hy,

Ã14y = Ã23y = Ã32y = Ã41y = −
d

2
(yx1x2 + yx1x2) ,

Ã24y = Ã42y = −d∆hy − cyx2x2 ,

Ã33y = −a2yx1x1 − b2∆hy, Ã34y = Ã43 = −
b1

2
(yx1x2 + yx1x2) ,

Ã44y = −b1∆hy − a1yx2x2.

Here, we use the standard 5-point approximation of the Laplace operator

∆hy = yx1x1 + yx2x2.

For the grid functions u(x) and v(x) from H̃ we have

(
Ãv, u

)
=
(
v, Ãu

)
,

i.e., the operator Ã is selfadjoint.
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Besides, we have

−b
(
∆̃hv, v

)
≤
(
Ãv, v

)
≤ − (a + b)

(
∆̃hv, v

)
, (11)

where

∆̃h =




∆h 0 0 0
0 ∆h 0 0
0 0 ∆h 0
0 0 0 ∆h


 .

The relation (11) is a discrete analog of (7) given for the differential operator Ã. We
approximate the differential operator A by the difference operator Ã, a self-adjoint
and positive definite operator.

After approximation in space and denoting by u (x, t), x ∈ ω ∪ ∂ω, 0 < t ≤ T ,
the semi-discrete solution at time t, we have the initial value problem

ρ
d2u

dt2
+ α

du

dt
+ Ãu = f (x, t) , x ∈ ω, 0 < t ≤ T, (12)

u (0) = vo (x) ,
du

dt
(x, 0) = v1(x), x ∈ ω. (13)

4 Approximation in time

For simplicity, we consider a uniform grid in [0, T ], with step τ > 0. Let
un (x) = u (x, tn), tn = nτ , n = 0, 1, . . . , N , Nτ = T . The simplest second-order
scheme for problem (12),(13) is

ρ
un+1 − 2un + un−1

τ2
+ α

un+1 − un−1

2τ
+ Ãun = fn, n = 1, 2, . . . , N, (14)

with prescribed u0, u1.

Let us highlight the class of additive schemes called alternating triangular meth-
ods. The schemes of this type for evolutionary equations of the first order have been
proposed and investigated by A.A. Samarskii in [11]. Here we consider the possibili-
ties of using this approach to construct additive schemes for system of second-order
equations.

The alternating triangular method is constructed on the basis of the operator
splitting:

Ã = Ã(1) + Ã(2),
(
Ã(1)

)
∗

= Ã(2), (15)
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where, taking into account (10), we define

Ã(1) =




1

2
Ã11 0 0 0

Ã21

1

2
Ã22 0 0

Ã31 Ã32

1

2
Ã33 0

Ã41 Ã42 Ã43

1

2
Ã44




,

Ã(1) =




1

2
Ã11 Ã12 Ã13 Ã14

0
1

2
Ã22 Ã23 Ã24

0 0
1

2
Ã33 Ã34

0 0 0
1

2
Ã44




.

(16)

Let us consider a simple predictor-corrector scheme for the numerical solution of
problem (12), (13). At the predictor stage we calculate ũn+1 from

ρ
un+1 − 2un + un−1

τ2
+ α

un+1 − un−1

2τ
+ Ã(1) ũn+1 − un−1

2
+ Ã(2)un = fn. (17)

After that, at the corrector stage, we improve the solution for the next time level:

ρ
un+1 − 2un + un−1

τ2
+ α

un+1 − un−1

2τ
+

+Ã(1)
ũn+1 − un−1

2
+ Ã(2)

un+1 − un−1

2
= fn.

(18)

Schemes (17), (18) can be written as follows
(

ρE +
τ2

2
Ã(1)

)
1

ρ

(
ρE +

τ2

2
Ã(2)

)
un+1 − 2un + un−1

τ2
+

+α
un+1 − un−1

2τ
+ Ãun = fn, n = 1, 2, . . . , N,

where E denotes the single operator.
The generalization of this scheme is the factorized scheme

D
un+1 − 2un + un−1

τ2
+ α

un+1 − un−1

2τ
+ Ãun = fn, n = 1, 2, . . . , N, (19)

D =
(
ρE + στ2Ã(1)

) 1

ρ

(
ρE + στ2Ã(2)

)
. (20)

This schemes is second order in time, since D = ρE + O
(
τ2
)
. To advance to a next

time-level, its implementation requires to solve four grid elliptic problems, one for
each component of the solution.
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The particular models of random evolutions in various Euclidean spaces of lower
dimensions were studied in [1-5]. In this note we announce the recent results on the
characteristic functions for the most general m-dimensional random evolution.

The subject of our interests is the following stochastic motion. A particle starts
its motion from the origin x1 = · · · = xm = 0 of the space R

m, m ≥ 2 at time
t = 0. The particle is endowed with constant, finite speed c. The initial direction is
a random m-dimensional vector with uniform distribution on the unit m-sphere

Sm
1 =

{
x = (x1, . . . , xm) ∈ R

m : x2
1 + · · · + x2

m = 1
}

.

The particle changes direction at random instants which form a homogeneous Pois-
son process of rate λ > 0. At these moments it instantaneously takes on the new
direction with uniform distribution on Sm

1 , independently of its previous motion.

Let X(t) = (X1(t), . . . ,Xm(t)) be the position of the particle at an arbitrary
time t > 0. At first, we concentrate our attention on the conditional distributions

Pr{X(t) ∈ dx | N(t) = n} =

= Pr{X1(t) ∈ dx1, . . . ,Xm(t) ∈ dxm | N(t) = n}, n ≥ 1

where N(t) is the number of Poisson events that have occurred in the interval (0, t)
and dx = dx1 . . . dxm is the infinitesimal volume in the space R

m.

Consider the conditional characteristic functions:

Hn(t) = E
{

ei(α,X(t))| N(t) = n
}

, n ≥ 1, (1)

where α = (α1, . . . , αm) ∈ R
m is the real m-dimensional vector of inversion param-

eters and (α,X(t)) denotes the scalar (inner) product of the vectors α and X(t).

c© Alexander D. Kolesnik, 2006
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Computing the expectation in (1) we obtain

Hn(t) =
n!

tn

∫ t

0

dτ1

∫ t

τ1

dτ2 . . .

∫ t

τn−1

dτn×

×





n+1∏

j=1

[
2(m−2)/2Γ

(m

2

) J(m−2)/2(c(τj − τj−1)‖α‖)

(c(τj − τj−1)‖α‖)(m−2)/2

]
 . (2)

For the particular cases m = 2 (planar motion) and m = 4 (four-dimensional
motion) the conditional characteristic functions (2) were explicitly computed in [2]
(see formula (18) therein), and in [1] (see formula (15) therein), respectively.

We introduce the function

ϕ(t) = 2(m−2)/2 Γ
(m

2

) J(m−2)/2(ct‖α‖)

(ct‖α‖)(m−2)/2
, m ≥ 2. (3)

Then (2) can rewritten in the following form

Hn(t) =
n!

tn

∫ t

0

dτ1

∫ t

τ1

dτ2 . . .

∫ t

τn−1

dτn





n+1∏

j=1

ϕ(τj − τj−1)



 , n ≥ 1. (4)

Denote the integral factor in (4) as follows

In(t) =

∫ t

0

dτ1

∫ t

τ1

dτ2 . . .

∫ t

τn−1

dτn





n+1∏

j=1

ϕ(τj − τj−1)



 , n ≥ 1. (5)

The following theorem states that, for different n ≥ 1, the functions (5) are
connected with each other by a convolution-type recurrent relation.
Theorem 1. For any n ≥ 1 the following recurrent relation holds

In(t) =

∫ t

0

ϕ(t − τ) In−1(τ) dτ =

∫ t

0

ϕ(τ) In−1(t − τ) dτ, n ≥ 1, (6)

where, by definition, I0(x) = ϕ(x).
Note that formula (6) can be rewritten in the following convolution form

In(t) = ϕ(t) ∗ In−1(t), n ≥ 1. (7)

Corollary 1.1. For any n ≥ 1 the following relation holds

In(t) = [ϕ(t)]∗(n+1) , n ≥ 1, (8)

where the symbol ∗(n + 1) means the (n + 1)-multiple convolution.
Application of the Laplace transform

L [f(t)] (s) =

∫
∞

0

e−stf(t) dt, Re s > 0,
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to the equality (8) leads to the following important result.

Corollary 1.2. For any n ≥ 1 the Laplace transform of functions (5) has the form

L [In(t)] (s) = (L [ϕ(t)] (s))n+1 , n ≥ 1. (9)

These results show that the function ϕ(t) given by (3) plays a key role in our
analysis. The reason is that ϕ(t) is exactly the characteristic function (Fourier
transform) of the uniform distribution on the surface of the m-sphere Sm

ct of the
radius ct.

From both the Theorem 1 and its corollaries we see that the conditional charac-
teristic functions Hn(t) and their Laplace transforms, in fact, are expressed in terms
of function ϕ(t). Formula (9) shows that the possibility of obtaining the explicit
form of the conditional characteristic functions (4) entirely depends on whether the
exact Laplace transform of the function ϕ(t) and its inverse Laplace transform can
be explicitly computed.

Our next result presents a general formula for the conditional characteristic
functions Hn(t) in terms of inverse Laplace transform.

Theorem 2. For any n ≥ 1 and any t > 0 the conditional characteristic functions
(4) are given by

Hn(t) =
n!

tn
L−1



(

1√
s2 + (c‖α‖)2

F

(
1

2
,
m − 2

2
;
m

2
;

(c‖α‖)2

s2 + (c‖α‖)2

))n+1

 (t),

(10)
where L−1 means the inverse Laplace transform and

F (ξ, η; ζ; z) = 2F1(ξ, η; ζ; z) =

∞∑

k=0

(ξ)k(η)k
(ζ)k

zk

k!

is the standard hypergeometric function.

In view of (4), the characteristic function of X(t), t ≥ 0, is given by the uniformly
converging series

H(t) = e−λt
∞∑

n=0

λn In(t). (11)

The following theorem presents the integral equation for the function H(t).

Theorem 3. The characteristic function H(t), t ≥ 0, satisfies the following
convolution-type Volterra integral equation of second kind with the kernel e−λtϕ(t):

H(t) = e−λtϕ(t) + λ

∫ t

0

e−λ(t−τ)ϕ(t − τ)H(τ) dτ, t ≥ 0. (12)

The integral equation (12) can be rewritten in the following convolution form

H(t) = e−λtϕ(t) + λ
[(

e−λtϕ(t)
)
∗ H(t)

]
, t ≥ 0. (13)
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From this we immediately obtain the general formula for the Laplace transform of
the characteristic function H(t):

L [H(t)] (s) =
L [ϕ(t)] (s + λ)

1 − λ L [ϕ(t)] (s + λ)
, Re s > 0. (14)

The explicit form of (14) is

L [H(t)] (s) =

F

(
1

2
,
m − 2

2
;
m

2
;

(c‖α‖)2

(s + λ)2 + (c‖α‖)2

)

√
(s + λ)2 + (c‖α‖)2 − λ F

(
1

2
,
m − 2

2
;
m

2
;

(c‖α‖)2

(s + λ)2 + (c‖α‖)2

) .

(15)
From (11) and (8) it follows that the solution of equation (13) has the form

H(t) = e−λt
∞∑

n=0

λn [ϕ(t)]∗(n+1) . (16)

One should emphasize that, although formula (16) gives a general form of the char-
acteristic function H(t), the multiple convolutions of the function ϕ(t) with itself
can scarcely be explicitly evaluated for arbitrary dimension.

From (12) we can see that

H(t)|t=0
= 1,

∂H(t)

∂t

∣∣∣∣
t=0

= 0,

and, therefore, the transition density f(x, t), x ∈ R
m, t ≥ 0, of the process X(t)

satisfies the following initial conditions

f(x, t)|t=0
= δ(x),

∂f(x, t)

∂t

∣∣∣∣
t=0

= 0,

where δ(x) is the m-dimensional Dirac delta-function.
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Nearly simple elementary divisor domains

B.V. Zabavsky, T.N. Kysil’

Abstract. It is proved that a nearly simple Bezout domain is an elementary divisor
ring if and only if it is 2-simple.

Mathematics subject classification: 16S50, 15A21.
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1 Introduction

According to Kaplansky’s definition [1], a ring R is an elementary divisor ring if
every matrix over R is equivalent to a diagonal matrix with condition of complete
divisibility of the diagonal elements. In [2] Zabavsky proved that a simple Bezout
domain is an elementary divisor ring if and only if it is 2-simple. Nearly simple
domains were constructed in [3–6]. We prove that a nearly simple Bezout domain is
an elementary divisor ring if and only if it is 2-simple.

2 Definitions

Throughout R will always denote a ring (associative, but not necessarily com-
mutative) with 1 6= 0. We shall write Rn for the ring of n×n matrices with elements
in R. By a unit of ring we mean an element with two-sided inverse. We’ll say that
matrix is unimodular if it is the unit of Rn. We denote by GLn(R) the group of
units of Rn. The Jacobson radical of a ring R is denoted by J(R).

An n by m matrix A = (aij) is said to be diagonal if aij = 0 for all i 6= j. We
say that a matrix A admits a diagonal reduction if there exist unimodular matrices
P ∈ GLn(R), Q ∈ GLm(R) such that PAQ is a diagonal matrix. We shall call
two matrices A and B over a ring R equivalent (and write A ∼ B) if there exist
unimodular matrices P,Q such that B = PAQ. If every matrix over R is equivalent
to a diagonal matrix (dij) with the property that every dii is a total divisor of di+1,i+1

(Rdi+1,i+1R ⊆ diiR ∩ Rdii), then R is an elementary divisor ring. We recall that a
ring R is said to be right (left) Hermite if every 1 by 2 (2 by 1) matrix admits a
diagonal reduction, and if both, R is an Hermite ring. By a right (left) Bezout ring
we mean a ring in which all finitely generated right (left) ideals are principal, and
by a Bezout ring a ring which is both right and left Bezout [1].

In any simple ring the property RaR = R holds for every element a ∈ R \ {0}
and some depends on a. As R is a ring with identity then there exist elements
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u1, . . . uk, v1, . . . , vk such that u1av1 + . . . + ukavk = 1. If the same integer n can be
chosen for all nonzero elements a with u1av1 + . . . + unavn = 1 we say that a ring R

is n-simple [3]. For example the full n by n matrix ring over a field K (even a skew
field) is n-simple. A nearly simple ring is a ring in which case R, J(R) and (0) are
its only ideals.

3 Main result

Main result is the next theorem.

Theorem. Let R be a nearly simple Bezout domain. Then R is an elementary
divisor domain if and only if R is 2-simple domain.

Proof. If J(R) = (0) then R is a simple domain and the result follows by [2].
If J(R) 6= (0) and R is an elementary divisor domain then it is enough to consider

the matrix A of the form

A =

(
a 0
0 a

)
,

where a ∈ J(R) \ {0}. Since R is an elementary divisor domain there exist matrices
P = (pij) ∈ GL2(R) and Q = (qij) ∈ GL2(R) such that

(
a 0
0 a

)
P = Q

(
z 0
0 b

)
, (1)

where RbR ⊆ zR ∩ Rz for some z, b ∈ R.

Let’s consider the ideal RbR. Since R is a nearly simple domain, we obtain three
chances:

1) RbR = {0};
2) RbR = R;
3) RbR = J(R).

1) Let RbR = {0} then b = 0. From (1) we have

ap12 = q12b, ap22 = q22b. (2)

Since b = 0 and (2),
ap12 = 0, ap22 = 0. (3)

As a 6= 0 and R is a domain then p12 = p22 = 0, this case is impossible.

2) Let RbR = R. Since RbR ⊆ zR∩Rz, z is a unit of the domain R. Then from
(1) we obtain that z ∈ RaR. Since a ∈ J(R), z ∈ J(R). And this case is impossible
too.

3) Let RbR = J(R). Since RbR ⊆ zR ∩ Rz, a ∈ J(R) and (1), z ∈ J(R). Then
J(R) = zR = Rz. Also z2R = Rz2 takes place. Then z2R = Rz2 = J(R) = zR =
= Rz, that is impossible as R is a domain and z ∈ J(R).

The proof is completed.
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Factorization theorems for some spaces

of analytic functions

R.F. Shamoyan

Abstract. We provide several factorization theorems for different subspaces of the
space of all analytic functions in the unit disk, in particular we prove a strong fac-
torization theorem for Classical Hardy classes with Muckenhoupt weights. Proofs are
based on a new weighted version of Coifman–Meyer–Stein theorem on factorization of
tent spaces and on properties of an extremal outher function,which was constructed
by E. Dynkin.

Mathematics subject classification: 46B20, 46E40, 47B35.
Keywords and phrases: Weighted Tent spaces, strong factorization theorems,
Muckenhoupt weights, Hardy Spaces.

1 Introduction

The aim of this note is to provide several factorization theorems for different
subspaces of the H(D) space, where D is the unit disk on the complex plane C and
H(D) is the space of all holomorphic in the unit disk functions. Let us mention
several vital known results in that direction.

In [1] such theorem was proved by Gorowitz for B
p
α-Bergman spaces. Much later

similar result was proven in [2] by W. Cohn and in much more general form by
W. Cohn and I. Verbitsky in [3]. Such theorems are playing very important role in
different questions in the theory of analytic functions.

2 Definition and main results

In order to formulate the main results of the paper we will give several defini-
tions. Let Z, X and Y be subspaces of H(D). We will say that Z admits strong
factorization g from Z can be represented as a product g = f1f2, where f1 ∈ X,
f2 ∈ Y , and the reverse is also true: for any f1 ∈ X and f2 ∈ Y we have f1f2 ∈ Z,
so Z = XY .

Let T = {z : |z| = 1} be the boundary of D,

Γα(ξ) = {z : |1 − ξ̄z| ≤ α(1 − |z|)}, α > 1,

dm(ξ) and dm2(z) are normalized Lebesgue measures on the boundary T and in the
unit disk D,

Hp(D) =

{
f ∈ H(D) : sup

r∈(0,1)

Mp(f, r) < ∞, p ∈ (0,∞]

}
.
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Hardy spaces for p ∈ (0,∞], where

Mp
p (f, r) =

∫

T

| f(rξ) |p dm(ξ), r ∈ [0, 1),

Let : 2I =
{
z = rξ : ξ ∈ I, 1 − |I| ≤ r < 1

}
,

where I is an arc on T , |I| is a length of the arc. Let further T (E) =
{
(x, t) ∈

∈ R
n+1
+ , B(x, t) ⊂ E

}
be a tent on E,E ⊂ R

n (see [3]), for example E can be a
ball E = B(x, r) in R

n with center at x and radius r. Denote as usual by Ap(Rn),
p ∈ [1,∞) all measurable functions in R

nw(x) such that w is belonging to Mucken-
houpt class (see [5]). Ap(T ) is a Muckenhoupt class on T . Further let

(Aqf)(ξ) =

(∫

Γα(ξ)

|f(z)|q

(1 − |z|)2
dm2(z)

) 1
q

,

(
T̃∞

q (w)
)

=

{
f measurable in D : sup

I⊂T

(∫

I

w
q

q−p dy

)(∫

T (I)

|f(z)|q

1 − |z|
dm2(z)

)
< ∞

}
,

(
Cq

qf
)
(ξ) = sup

ξ∈I

(
1

|I|

)(∫

2I

|f(z)|q

(1 − |z|)
dm2(z)

)
,

(
A∞f

)
(ξ) = sup

Γα(ξ)

{
|f(z)| : z ∈ Γα(ξ)

}
, I ⊂ T, I is an arc.

Theorem 1. Let p < q, s > 0, w1 = w
q

q−p , w1 ∈ L1
loc and w1 ∈ A1(T ). Then

(HT
p
s,q)(w) = (Hp(w1))(HT∞

s,q(w)) where

(
HT p

s,q

)
(w) =

{
f ∈ H(D) : ‖Aq

(
f(z)(1 − |z|)s

)
‖Lp(w) < ∞

}
,

(
HT∞

s,q

)
(w) =

{
f ∈ H(D) : f(z)(1 − |z|)s ∈ T̃∞

q (w)
}
,

(
Hp

)
(w1) =

{
f ∈ H(D) :

∫

T

|
(
A∞f

)
(ξ)|pw1(ξ)dξ < ∞, 0 < p < ∞

}
,

and moreover if F = F1F2, then ‖F1‖Hp(w1) ≤ c‖F‖HT
p
s,q

and ‖F2‖HT∞

s,q
≤ 1.

Remark 1. The pair
(
ω
−

p

q−p , ω
q

q−p
)

can be changed in Theorem 1 to
(
ωτ1 , ωτ2

)
,

τ1 + τ2 = 1.

The proof of Theorem 1 relies on the following extension of Coifman–Meyer–
Stein theotem on factorization of tent spaces and some ideas from the article of
W. Cohn and I. Verbitsky.

Let Γ(ξ) be Luzin cone in R
n [3].
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Theorem 2. Let 0 < p < q, ω1 = ω
q

q−p , ω1 ∈ L1
loc, ω1 ∈ A1(Rn). Then the

following equality holds

T̃ p
q (ω) = T̃ p

∞

(
ω

q

q−p
)(

T̃∞

q (ω)
)
,

where

T̃∞

q (ω) =

{
f is measurable in R

n :

sup
B

(∫

B

ω
q

q−p dy

)
−1 ∫

T (B)

|f(x, t)|q

t
dx dt < ∞

}
,

T̃ p
∞

(φ) =

{
f is measurable in R

n :
∥∥(

A∞f
)
(x)

(
φ(x)

) 1
p
∥∥

Lp(Rn)
< ∞

}
,

T̃ p
q (ω) =

{
f is measurable in R

n :

∫

Rn

(∫

Γ(ξ)

|f(y, t)|q

tn+1
dy dt

) p

q

ω(ξ)dξ < ∞, 0 < p, q < ∞

}
,

where ω is a locally integrable function, ω ∈ L1
loc(R

n).

Remark 2. Theorem 0.2 for ω = const is known and was proved in [3] and [4].

Remark 3. Note that many known spaces of holomorphic functions can be rep-
resented by T

p
q , 0 < p, q < ∞, spaces. So such factorization are very useful in

different problems, connected with the theory of spaces of analytic functions [4, 5].

We are going to formulate two theorems in similar direction. The proof relies on
the existence of extremal outer function, that was constructed by Dynkin in [6].

Let

(
F

∞,q
s,p,k

)
=

{
f ∈ H(D) : |D̃kf(z)|q

(
1 − |z|

)(k−s)q−1
− p is Carleson measure

}
,

where k ∈ R, k > s, s ∈ R, q ∈ (0,∞),

(
D̃

αf
)
(z) =

∑

k≥0

(k + 1)αakz
k, α ∈ R, f(z) =

∑

k≥0

akz
k

is a fractional derivate and a positive Borel measure µ in D is a p-Carleson measure
if ∥∥∥∥ sup

ξ∈I

1

|I|p

∫

2I

dµ(z)

∥∥∥∥
L∞(T )

=
∥∥φ(ξ)

∥∥∞(T )
< ∞, 0 < p ≤ 1.

Below Lp,q(T ) are Lorentz spaces on T . In order to formulate our next theorem
we need the following notation. We will write ‖f‖X ⊆ Y · Z, X,Y,Z are sub-
spaces of H(D), if any functions f , ‖f‖X < ∞ can be writen in the following form
f = (f1)(f2), f1 ∈ Y , f2 ∈ Z.
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Let

Λs def
=

{
f ∈ H(D) : sup

|z|<1

|f ′(z)|
(
1 − |z|

)1−s
< ∞

}
, s ∈ (0, 1) be the Goelder space.

Theorem 3. Let Y , Z be subspaces of H(D).

Let (Y )
(
F

∞,q
−

s
q
,1−q,k

)
⊂ Z, q ∈ (0, 1), s ∈ (0, 1),

then Y ⊂ (Λs)(Z).

Theorem 4.

(i) Let s > 0, q > 1, f ∈ H(D), 1

q
+ 1

q′
= 1. Then

∥∥∥∥
(∫

Γα(ξ)

∣∣∣∣f(z)
∣∣2q′(

1 − |z|
)s−2)

dm2(z)

) 1
2
∥∥∥∥

Lq,1

⊆ (Λs)
(
S̃

2(q′)−1,2(q′)−1

sq′

2

)
, s < 1.

(ii) Let v > 0, q > 1, f ∈ H(D), t ≥ 0 and v − t = s ∈ (0, 1). Then
∥∥∥∥ sup

z∈Γα(ξ)

|f(z)|q
′
(
1 − |z|

)t

∥∥∥∥
Lq,1

⊆ (Λs)
(
S̃

(q′)−1,(q′)−1

vq′

)
,

where

S̃p,q
s =

{
f ∈ H(D) :

∫
1

0

(
Mp(f, |z|)

)q(
1 − |z|

)sq−1
d|z| < ∞

}
, p, q, s,∈ (0,∞).

The proofs of these theorems will be presented elsewhere. Here we indicate that
some ideas from [3] are being used.
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