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Some integrals for groups of bounded linear operators
on finite-dimensional non-Archimedean Banach spaces

J. Ettayb

Abstract. In this paper, we extend the Volkenborn integral and Shnirelman inte-
gral for groups of bounded linear operators on finite-dimensional non-Archimedean
Banach spaces over Qp and Cp respectively. When the ground field is a complete non-
Archimedean valued field, which is also algebraically closed, we give some functional
calculus for groups of infinitesimal generator A such that A is a nilpotent operator on
finite-dimensional non-Archimedean Banach spaces.
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1 Introduction and Preliminaries

Throughout this paper, K is a non-Archimedean non trivially complete valued
field with valuation | · |, X is a non-Archimedean Banach space over K, Qp is the
field of p-adic numbers (p ≥ 2 being a prime) equipped with p-adic valuation | · |p
and Zp denotes the ring of p-adic integers (the ring of p-adic integers Zp is the unit
ball of Qp). We denote the completion of algebraic closure of Qp under the p-adic
valuation | · |p by Cp and B(X) denotes the set of all bounded linear operators on
X.
The study of Archimedean C0-semigroup or C0-group of bounded linear operators
was first attempted by Yosida and Hille [8]. From [8], Corollary 2.5, if A is the
infinitesimal generator of a C0-semigroup then it is closed and D(A) = X. By [8],
(b) of Theorem 2.4:

For x ∈ X, t ∈ R+,

∫ t

0
T (s)ds ∈ D(A),

and

for x ∈ X, T (t)x− T (s)x =
∫ t

s
T (u)Axdu =

∫ t

s
AT (u)xdu.

This is thanks to the Haar measure on the topological group (R,+).
In the non-Archimedean analysis, there is no Haar measure on a subset of Qp into
Qp, see Theorem 5. When K = Cp, it is useful to use the Shnirelman integral defined
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as: let f(z) be a Cp-valued function defined for all z ∈ Cp such that |z − a|p = r
where a ∈ Cp and r > 0 with r ∈ |Cp|p. Let Γ ∈ Cp such that |Γ|p = r. Then the
Shnirelman integral of f is defined as the following limit, if it exists,

∫

a,Γ
f(z)dz =

′
lim

n→∞
1
n

∑

ζn=1

f(a + ζΓ), (1)

where lim′ indicates that the limit is taken over n such that gcd(n, p) = 1. For more
details, we refer to [2], [4] and [9]. But there is a different results in non-Archimedean
analysis, by [2], Theorem 1, we have:

∫

a,Γ
ezdz = ea,

and ∫

a,Γ
(z − a)ezdz = 0.

Recently, Diagana [3] introduced the notion of C0-groups of bounded linear operators
on a free non-Archimedean Banach space, for more details we refer to [3] and [5].
In [5], A. El Amrani, A. Blali, J. Ettayb and M. Babahmed introduced the notions
of C-groups and cosine families of bounded linear operators on non-Archimedean
Banach space. Let r > 0, Ωr = {t ∈ K : |t| < r} [5]. We have the following
definition.

Definition 1. [5] Let r > 0 be a real number. A one-parameter family (T (t))t∈Ωr

of bounded linear operators from X into X is a group of bounded linear operators
on X if

(i) T (0) = I, where I is the unit operator of X.

(ii) For all t, s ∈ Ωr, T (t + s) = T (t)T (s).

The group (T (t))t∈Ωr
will be called of class C0 or strongly continuous if the following

condition holds:

• For each x ∈ X, lim
t→0

‖T (t)x− x‖ = 0.

A group of bounded linear operators (T (t))t∈Ωr
is uniformly continuous if and

only if lim
t→0

‖T (t)− I‖ = 0.

The linear operator A defined by

D(A) = {x ∈ X : lim
t→0

T (t)x− x

t
exists},

and

Ax = lim
t→0

T (t)x− x

t
, for each x ∈ D(A),
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is called the infinitesimal generator of the group (T (t))t∈Ωr
.

In this paper, we extend to Volkenborn integral and Shnirelman integral for
studying the C0-groups of bounded linear operators on some non-Archimedean Ba-
nach spaces and we show some results about it. Now, we assume that K = Cp. We
have the following definition.

Definition 2. [4] Let f(z) be a Cp-valued function defined for all z ∈ Cp such that
|z − a|p = r where a ∈ Cp and r > 0 with r ∈ |Cp|p. Let Γ ∈ Cp such that |Γ|p = r.
Then the Shnirelman integral of f is defined as the following limit, if it exists,

∫

a,Γ
f(z)dz =

′
lim

n→∞
1
n

∑

ζn=1

f(a + ζΓ),

where lim
′
indicates that the limit is taken over n such that gcd(n, p) = 1.

Theorem 1. [1] Let f(z) =
∑

n∈N
anfn(z) where the series on the right converges

uniformly to f(z) for all points z ∈ Cp such that |z− a|p = |γ|p. Suppose that for all

n ∈ N,

∫

a,γ
fn(z)dz exists.

Then
∫

a,γ
f(z)dz exists and

∫

a,γ
f(z)dz =

∑

n∈N
an

∫

a,γ
fn(z)dz.

Lemma 1. [1] Let p be any integer such that 0 <| p |< n. Then
n∑

i=1

ξ
(n)p
i = 0.

Now, let f(z) = a0 + a1z + a2z
2 + · · · be a power series converging for all z ∈ Cp

such that |z|p < R
(
R > 0

)
, we have the following:

Theorem 2. [1] If |a|p < R and |γ|p < R, then
∫

a,γ
f(z)dz = f(a).

Corollary 1. [1] With the same hypothesis as in Theorem 2, we have:
∫

a,γ
(z − a)f(z)dz = 0.

Theorem 3. [1] Let f(z) =
∞∑

k=0

akz
k be a power series converging for all z ∈ Cp

such that |z|p < R (R > 0). Suppose that x, r ∈ Cp such that |x|p, |r|p < R. Then,
∫

0,r

zf(z)
z − x

dz =

{
f(x) if |x|p < |r|p,
0 if |x|p > |r|p.
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Theorem 4. [1] With the same hypothesis as in Theorem 3, we have:
∫

0,r

zf(z)
(z − x)n+1

dz =
fn(x)

n!
for |x|p < |r|p.

In the next, we assume that K = Qp. There is no Newton-Leibniz formula in

the p-adic analysis. There is no Qp-valued Lebesgue measure
∫

Qp

f(t)dt is not well

defined as usual.

Theorem 5. [7] Additive, translation invariant and bounded Qp-valued measure on
clopens of Zp is the zero measure.

We denote by C(Zp,Qp) the space of all functions defined and continuous from
Zp into Qp.

Theorem 6. [7] Let f ∈ C(Zp,Qp). The function defined on N by

F (0) = 0, F (n) = f(0) + f(1) + · · ·+ f(n− 1)

is uniformly continuous. The extended function is denoted by Sf(x) (called indenite
sum of f). If f is strictly differentiable, so is Sf .

We denote by C1
s (Zp,Qp) the space of all functions defined and strictly differen-

tiable in Zp taking values in Qp. For more details, we refer to [7].

Definition 3. [7] The Volkenborn integral of f ∈ C1
s (Zp,Qp) is defined by

∫

Zp

f(t)dt = lim
n→∞ p−n

pn−1∑

j=0

f(j) = lim
n→∞

Sf(pn)− Sf(0)
pn

= (Sf)′(0).

Lemma 2. [7] For all t ∈ Ω∗
p
−1
p−1

,

∫

Zp

etudu =
t

et − 1
.

2 Integral for C0-groups on finite-dimentional Banach space over
Cp

In this section, let K = Cp and let Ωr be the open ball of K centered at 0 with
radius r > 0. We always assume that r is suitably chosen such that t ∈ Ωr 7→ T (t)
is well-defined, we have the following definition.

Definition 4. Let r > 0 be a real number. A one-parameter family (T (t))t∈Ωr
of

bounded linear operators from Cn
p into Cn

p is said to be analytic group of bounded
linear operators on Cn

p if

(i) T (0) = I, where I is the unit operator of Cn
p .
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(ii) For all t, s ∈ Ωr, T (t + s) = T (t)T (s).

(iii) For all x ∈ X, t → T (t)x is analytic on Ωr.

We extend the following definition.

Definition 5. Let (T (t))t∈Ωr be analytic group of bounded linear operators on Cn
p .

The group (T (t))t∈Ωr
is said to be integrable in the sense of Schnirelman if for all

a ∈ Ωr and γ ∈ Ωr\{0}, the sequence (Sn)n ⊂ B(Cn
p ) defined by

Sn =
∑

ζn=1

T (a + ζγ),

converges strongly as n →∞
(
the limit is taken over n such that gcd(n, p) = 1

)
to

a bounded linear operator. More precisely
∫

a,γ
T (t)dt =

′
lim

n→∞
1
n

∑

ζn=1

T (a + ζγ),

where lim′ indicates that the limit is taken over n such that gcd(n, p) = 1.

Lemma 3. Let (T (t))t∈Ωr
be analytic group on Cn

p such that
∫

a,γ
T (t)dt exists and

sup
t∈Ωr

‖T (t)‖≤ M where a ∈ Ωr and γ ∈ Ωr\{0}. Then

(i) For all x ∈ Cn
p , ‖

∫

a,γ
T (t)xdt‖≤ M‖x‖.

(ii) For all a ∈ Ωr, x ∈ Cn
p ,

∫

a,γ
T (t)xdt = T (a)

∫

0,γ
T (t)xdt.

Proof. Let (T (t))t∈Ωr
be analytic group on Cn

p such that
∫
a,γ T (t)dt exists, then

(i) It suffices to apply Definition 5.

(ii) By Definition 5, for all x ∈ Cn
p and for each a ∈ Ωr, then

∫

a,γ
T (t)xdt =

′
lim

n→∞
1
n

∑

ζn=1

T (a + ζγ)x

= T (a)
′

lim
n→∞

1
n

∑

ζn=1

T (ζγ)x

= T (a)
∫

0,γ
T (t)xdt.
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Definition 6. [6] Let A ∈ B(Cn
p ). A is said to be nilpotent of index d, if there is an

integer number d ≤ n such that An = 0Cn
p

and An−1 6= 0Cn
p

(
where 0Cn

p
denotes the

null operator from Cn
p into Cn

p

)
.

Example 1. Let A ∈ B(C4
p) be defined by




0 a b c
0 0 a b
0 0 0 a
0 0 0 0


 where a, b, c ∈ Cp.

It is easy to see that A is nilpotent of index 4.

Proposition 1. Let A be a nilpotent operator of index n on Cn
p such that

‖A‖ < p
−1
p−1 . Then etA =

n−1∑

k=0

tkAk

k!
.

Proof. Since A is nilpotent operator of index n on Cn
p . Then,

etA =
∑

k∈N

tkAk

k!

=
n−1∑

k=0

tkAk

k!
.

Theorem 7. Let etA be a C0-group of infinitesimal generator A on Cn
p such that A

is nilpotent operator of index n on Cn
p . Then for all x ∈ Cn

p ,

∫

a,γ
etAxdt = eaAx.

Proof. Let etA =
n−1∑

k=0

tkAk

k!
. Using Proposition 1 and Theorem 2, we have for all

x ∈ Cn
p ,

∫

a,γ
etAxdt =

n−1∑

k=0

Ak

k!

∫

a,γ
tkxdt

=
n−1∑

k=0

akAk

k!
x = eaAx.
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Corollary 2. Under the hypothesis of Theorem 7, for all x ∈ Cn
p ,

∫

a,γ
(t− a)etAxdt = 0.

Remark 1. Let A ∈ B(Cn
p ) be a nilpotent operator, then etA is integrable in the

sense of Shnirelman.

Set for all λ ∈ ρ(A), R(λ,A) = (λI−A)−1 where ρ(A) is the resolvent set of the
linear operator A defined on X, we have the following:

Proposition 2. Let A ∈ B(Cn
p ). If A is a nilpotent operator of index n, then for all

λ ∈ C∗p, R(λ,A) exists. Furthermore, for each λ ∈ C∗p, we have

R(λ,A) =
n−1∑

k=0

Ak

λk+1
.

Proof. Let λ ∈ C∗p, then

(λI −A)
( n−1∑

k=0

Ak

λk+1

)
=

n−1∑

k=0

Ak

λk
−

n−1∑

k=0

Ak+1

λk+1

= I.

On the other hand,

( n−1∑

k=0

Ak

λk+1

)
(λI −A) =

n−1∑

k=0

Ak

λk
−

n−1∑

k=0

Ak+1

λk+1

= I.

Consequently, for all λ ∈ C∗p, R(λ, A) =
n−1∑

k=0

Ak

λk+1
.

Proposition 3. Let A be a nilpotent operator of index n on Cn
p and r = −1

p−1 . Then

for all t ∈ Ωr, etA =
∫

0,γ
λeλtR(λ,A)dλ, where γ ∈ Ωr\{0}.

Proof. By Proposition 2, for all λ ∈ Ω −1
p−1
\{0}, R(λ,A) has a polynomial function

form on Cn
p , hence it is analytic on Ω −1

p−1
\{0}. Using Theorem 4, we obtain

∫

0,γ
λeλtR(λ,A) =

∫

0,γ

n−1∑

k=0

λ−ketλAkdλ

=
n−1∑

k=0

Ak

∫

0,γ
λ−ketλdλ
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=
n−1∑

k=0

Ak

(
etλ

)(k)
(0)

k!

=
n−1∑

k=0

Ak tk

k!
= etA.

We have the following proposition.

Proposition 4. Let A and B be nilpotent operators on Cn
p and let etA and etB

be two C0-groups of infinitesimal generators A and B respectively. If R(λ,A) and
R(λ,B) commute, then etA and etB commute.

Proof. By Proposition 3, we have

etA =
∫

0,γ
λeλt(λI −A)−1dλ and etB =

∫

0,γ
λeλt(λI −B)−1dλ.

Asumme that R(λ,A) and R(λ,B) commute, then

etAetB =
∫

0,γ
λeλt(λI −A)−1dλ

∫

0,γ
λeλt(λI −B)−1dλ

=
∫

0,γ

∫

0,γ
λeλt(λI −A)−1λeλt(λI −B)−1dλdλ

=
∫

0,γ

∫

0,γ
λeλt(λI −B)−1λeλt(λI −A)−1dλdλ

= etBetA.

We have the following:

Proposition 5. Let A and (Ak)k∈N be nilpotent operators on Cn
p . If,

R(λ,Ak) → R(λ,A) as k →∞, then etAk converges to etA as k →∞.

Proof. From Proposition 3, we have

for all t ∈ Ωr, etA =
∫

0,γ
λeλtR(λ,A)dλ,

where γ ∈ Ωr\{0} and r = −1
p−1 and

for all t ∈ Ωr, k ∈ N, etAk =
∫

0,γ
λeλtR(λ,Ak)dλ.
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Moreover,

etAk − etA =
∫

0,γ
λetλ[R(λ,Ak)−R(λ, A)]dλ

is well-defined. Set
M = max

|λ|p=|γ|p
|λetλ|p < ∞.

Since R(λ,Ak) → R(λ,A) as k → ∞, it follows that for each ε > 0 there exists
N ∈ N such that for all k ≥ N, ‖R(λ,Ak)−R(λ,A)‖ ≤ ε

M . Consequently

‖etAk − etA‖ ≤
∥∥∥

∫

0,γ
λetλ[R(λ,Ak)−R(λ,A)]dλ

∥∥∥

≤ max
|λ|p=|γ|p

|λetλ|p‖R(λ,Ak)−R(λ,A)‖

≤ M · ε

M
= ε,

whenever k ≥ N , then etAk converges to etA as k →∞.

3 Integral of groups of linear operators on Qn
p

From now on we assume that K = Qp, we extend the Volkenborn integral to
some non-Archimedean Banach spaces.

Definition 7. Let f ∈ C1
s (Zp,Qn

p ). The sequence (Sm)m ⊂ B(Qn
p ) defined by

Sm = p−m
pm−1∑

j=0

f(j),

converges strongly as m →∞ to a bounded linear operator. More precisely

∫

Zp

f(t)dt = lim
m→∞ p−m

pm−1∑

j=0

f(j).

Set Br(Qn
p ) = {A ∈ B(Qn

p ) : 0 < ‖A‖ < r} where r = p
−1
p−1 .

Proposition 6. Let A ∈ Br(Qn
p ) be invertible diagonal operator, then (etA)t∈Zp is

C1 function and (eA − I)−1 ∈ B(Qn
p ).

Proof. Let A ∈ Br(Qn
p ) be invertible diagonal operator, then

for all i ∈ {1, · · · , n}, Aei = aiei,

where ai ∈ Q∗p such that |ai|p < r and (ei)1≤i≤n is the canonical basis of Qn
p . Hence,

for all t ∈ Ωr, etA exists and is given by

for all i ∈ {1, · · · , n}, etAei = etaiei.
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Hence etA is C∞ that is C1. Moreover,

for all i ∈ {1, · · · , n},
(
eA − I

)
ei =

(
eai − 1

)
ei.

We have for all i ∈ {1, · · · , n}, 1 − eai 6= 0. Consequently, det(eA − I) 6= 0, then
eA − I is invertible. Moreover,

for all i ∈ {1, · · · , n},
(
eA − I

)−1
ei =

(
1

eai−1

)
ei.

Hence ‖(eA − I)−1‖ = sup1≤i≤n

∣∣∣ 1
eai − 1

∣∣∣
p

=
1

inf
1≤i≤n

|eai − 1|p < ∞. Consequently,

(eA − I)−1 ∈ B(Qn
p ).

Proposition 7. Let A ∈ Br(Qn
p ) be invertible diagonal operator such that

∫

Zp

etAdt

exists. Then for all x ∈ Qn
p , (eA − I)

∫

Zp

etAxdt = Ax.

Proof. Let A ∈ Br(Qn
p ) be invertible diagonal operator. By Proposition 6, the C0-

group (etA)t∈Zp is locally analytic function and (eA − I)−1 ∈ B(Qn
p ). Let x ∈ Qn

p ,

set Smx = p−m

pm−1∑

j=0

ejAx. Hence for all x ∈ Qn
p , we have

(eA − I)Smx = Sm(eA − I)x

=
epmAx− x

pm
.

By assumption, for all x ∈ Qn
p , we have

∫

Zp

etAxdt = lim
m→∞Smx.

Then, for all x ∈ Qn
p , we have

(eA − I)
∫

Zp

etAxdt = (eA − I) lim
m→∞Smx

= lim
m→∞

epmAx− x

pm

= Ax.
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Example 2. Let r = −1
p−1 and let A ∈ B(Q2

p) defined by
(

a 0
0 b

)
where a, b ∈ Ω∗r .

Then, for all t ∈ Zp, we have

etA =
(

eat 0
0 ebt

)
.

Hence,

∫

Zp

etAdt =




∫

Zp

eatdt 0

0
∫

Zp

ebtdt


 .

Thus, for all x =
(

u
v

)
∈ Q2

p, we have

∫

Zp

etAxdt =

(
a

ea−1 0
0 b

eb−1

)(
u
v

)

=
(

a 0
0 b

)
·
( 1

ea−1 0
0 1

eb−1

)(
u
v

)

= (eA − I)−1Ax.

Definition 8. Let A ∈ B(Qn
p ). A is said to be scalar multiple of identity operator

on Qn
p , if A = aI for some a ∈ Qp and I is the identity operator on Qn

p .

Example 3. Let A be invertible scalar multiple of identity operator on Qn
p such

that A = aI, where a ∈ Ω∗r with r = −1
p−1 . Hence for all t ∈ Zp, T (t) = etaI, then for

all x ∈ Qn
p and a ∈ Ω∗r, we have

∫

Zp

T (tu)xdu =
a

ea − 1
x = (T (1)− I)−1Ax. (2)
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1 Introduction and Preliminaries

The applications of fixed point theorems are very important in diverse disci-
plines of mathematics, statistics, engineering and economics in dealing with prob-
lems arising in: approximation theory, potential theory, game theory, mathematical
economics, theory of differential equations, theory of integral equations, etc.

In this paper, we prove a fixed point theorem for p-contraction mappings in
partially ordered metric spaces and we apply this theorem to ordinary differential
equation. For this aim we need the following definitions.
First of all, we define the fixed point of mapping A.

Definition 1. [2] Let A,S : X → X be two mappings. A point u ∈ X is said to be
i) a fixed point of A if Au = u,
ii) a coincidence point of A and S if Au = Su. The point z = Au = Su is called

a point of coincidence of A and S.
iii) a common fixed point of A and S if Au = Su = u.
iv) A and S are weakly compatible iff they commute at their coincidence point.

Also, we must mention the famous Banach contraction.

Definition 2. [4] A mapping T : X −→ X is said to be a Banach contraction
mapping if it satisfies the following inequality:

d(T (x), T (y)) ≤ λd(x, y),

for all x, y ∈ X, where 0 < λ < 1. It is well known that a Banach contraction
mapping T on a complete metric space X has a unique fixed point.
Let X be a topological space and Y ⊂ X be equipped with relativized topology.

c© A. C. Aouine, 2022
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Definition 3. A mapping T : Y ⊂ X −→ X is said to be a weak topological
contraction if Y is T -invariant and T is continuous and closed such that for each
non-empty closed subset A of Y with T (A) = A, A is a singleton set. Further, if
the diameter δ(Tn(Y )) → 0 as n → ∞ then the mapping T is said to be a strong
topological contraction.

Remark 1. If X is a bounded metric space (i.e., δ(X), the diameter of X, is finite)
and T is a Banach contraction, then clearly T is a weak topological contraction. In
2008, H. K. Pathak and N. Shahzad introduced in the following definition the notion
of p-contraction which is more general than the Banach contraction principle.

Definition 4. [8] Let (X, d) be a metric space. A mapping T : Y ⊂ X −→ X is
said to be a metric p-contraction (or simply p-contraction) mapping if Y is
T -invariant and it satisfies the following inequality:

d(T (x), T 2(x)) ≤ p(x)d(x, T (x)) (1)

for all x in Y , where p : Y −→ [0, 1] is a function such that p(x) < 1 for all
x ∈ Y and supx∈Y p(Tx) = α < 1. Further, if ∩∞n=0T

n(Y ) is a singleton set, where
Tn(Y ) = T (Tn−1(Y )) for each n ∈ N and T 0(Y ) = Y , then T is said to be a strong
p-contraction.

Remark 2. 1) If p(x) ≤ 1 for all x ∈ Y , then the p-contraction mapping is said to
be a fundamental contraction which is also known as a Banach operator.

2) If Y = X and y = T (x), then a Banach contraction mapping is a fundamental
contraction.

3) If p(x) ≤ 1 for all x ∈ Y and supx∈Y p(Tx) = 1, then the p-contraction map-
ping is said to be fundamentally p-non-expansive. In particular when
p(x) = 1 for all x ∈ Y , then the fundamentally p-non-expansive mapping is said
to be fundamentally non-expansive.

4) If supx∈Y p(x) < 1 (or ≤ 1), then supx∈Y p(Tx) < 1 (or ≤ 1) since T (Y ) ⊂ Y .

Remark 3. The concept of p-contraction is more general than the Banach contraction
principle, see [8], example 2.1.

Remark 4. A p-contraction mapping is not continuous in general, see [8], example
2.2.

In 1976, Caristi [3] proved the following theorem.

Theorem 1. Let (X, d) be complete and ϕ : X −→ R a lower semi-continuous func-
tion with a finite lower bound. Let T : X −→ X be any (not necessarily continuous)
function such that

d(y, Ty)(y) ≤ ϕ(y)− ϕ(Ty)

for each y ∈ X. Then T has a fixed point.

Remark 5. In general, a p-contraction does not satisfy Caristi’s condition but every
fundamental contraction does.
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Definition 5. [6] A metric space (X, d) is said to be T -orbitally complete if T is a
self-mapping of X and if any Cauchy subsequence {Tnix} in orbit O(x, T ), x ∈ X,
converges in X.

Definition 6. [6] An operator T : X −→ X on X is said to be orbitally continuous
if Tnix −→ u, then T (Tnix) −→ Tu as i −→∞.

Definition 7. [6] An operator T : X −→ X on X is said to be weakly orbitally
continuous if Tnix −→ u, then d(Tnix, T (Tnix)) −→ d(u, Tu) as i −→∞.

Remark 6. It is clear that a complete metric space is orbitally complete with respect
to any self-mapping of X and that a continuous mapping is always orbitally con-
tinuous and an orbitally continuous mapping is always weakly orbitally continuous,
but the converse implications are not true in general, see [8], example 2.3.

The aim of this paper is to prove a fixed point result for self-mapping which
satisfies p-contraction condition in partially ordered metric spaces. For this purpose
we need the following definitions.

Definition 8. [1] Let X be a nonempty set. Then (X, d,¹) is called an ordered
metric space iff:
(i) (X, d) is a metric space; (ii) (X,¹) is partially ordered set.

Definition 9. [6] Let (X,¹) be a partially ordered set. x, y ∈ X are called compa-
rable if x ¹ y or y ¹ x holds.

2 Main Results

Theorem 2. Let (X,≤) be a partially ordered set. Suppose that there exists a metric
d in X such that (X, d) is T -orbitally complete, T is a non-decreasing mapping such
that there exists x0 ∈ X with x0 ≤ T (x0) and T is a strongly fundamental contraction
mapping with T (x) ≤ x. Assume that either T is orbitally continuous or X is such
that

if a sequence xn → x in X is non-decreasing, then xn ≤ x. (2)

Then T has a fixed point. Moreover, if

for each x ∈ X, there exists z ∈ X which is comparable to x and T (x), (3)

therefore, the fixed point is unique.

Proof. First, we show that T has a fixed point. Let x0 be an arbitrary point of X.
We construct an iterative sequence {xn} defined by xn+1 = T (xn) = Tn(x0). Since
x0 ≤ T (x0) and T is a nondecreasing function, we have by induction

x0 ≤ T (x0) ≤ T 2(x0) ≤ T 3(x0) ≤ ... ≤ Tn(x0) ≤ Tn+1(x0) ≤ ....

As xn ≤ xn+1 for each n ∈ N, applying (1) we get

d(x1, x2) ≤ p(x0)d(x0, x1),
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d(x2, x3) ≤ p(x1)d(x1, x2)
≤ p(x0)p(x1)d(x0, x1).

By induction we obtain

d(xn, xn+1) ≤
n
Π

i=1
pid(x0, x1), (4)

where pi = p(xi−1) = p(T i−1(x0)), i ∈ N. Since max{p(x0), sup p(Tx)} ≤ λ < 1,
using (4) we have

d(xn, xn+1) ≤ λnd(x0, x1),∀n ∈ N.

For m > n, m,n ∈ N, we get

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xm−1, xm)
≤ [λn + λn+1 + · · · + λm−1]d(x0, x1)

=
λn(1− λm−n)

1− λ
d(x0, x1)

<
λn

1− λ
d(x0, x1).

Therefore, the sequence {xn} is a Cauchy sequence in X. Since X is T -orbitally
complete, it follows that there exists a Cauchy subsequence {Tni(x0)} of {xn} in
the orbit O(x, Tx), x ∈ X, which converges to a point z ∈ X. Suppose that T is
orbitally continuous. Then

z = lim
n→∞xni = lim

n→∞Tni (x0)

= lim
n→∞Tni+1 (x0) = lim

n→∞ T (Tni (x0))

= T (z) ,

which shows that z is a fixed point of T . Hence T (z) = z. If case (2) holds, then

d (T (z) , z) ≤ d (T (z) , T (xn)) + d (T (xn) , z)
≤ p(xn)d(z, xn) + d(xn+1, z)
≤ d(z, xn) + d(xn+1, z).

Since d(z, xn) → 0 then we obtain T (z) = z. To prove the uniqueness of the fixed
point, let w be another fixed point of T . From (3) there exists x ∈ X which
is comparable to w and z. Monotonicity implies that Tn (x) is comparable to
Tn (w) = w and Tn (z) = z for n = 1, 2, .... Then

d(z, Tn (x)) = d(Tn (z) , Tn (x)) (5)
≤ p(Tn−1 (z))d(Tn−1 (z) , Tn−1 (x)).

Therefore
d(z, Tn (x)) ≤ d(z, Tn−1 (x)).
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Consequently, the sequence {γn} defined by γn = d(z, Tn (x)) is nonnegative and
nonincreasing and so lim

n→∞d(z, Tn (x)) = γ ≥ 0. Now, we show that γ = 0. On the

contrary, assume that γ > 0. By passing to the limit in (5), we get

γ ≤ sup
x∈X

p(Tx)γ < γ,

which is a contradiction and so γ = 0. Simillarly, it can be proved that
lim

n→∞d(w, Tn (x)) = 0. Finally,

d (z, w) ≤ d(z, Tn (x)) + d(Tn (x) , w),

and taking the limit as n →∞, we obtain z = w.

3 Application to ordinary differential equations

Inspired by the papers of Pathak and Shahzad [8] and Aouine and Aliouche [3],
we investigate the possibility of optimally controlling the solution of the ordinary
differential equation (6) via dynamic programming.

Let A be a compact subset of Rm and for each given a ∈ A, Fa : Rn → Rn

be a strong p-contraction mapping such that Fa(x) = f(x, a), ∀x ∈ Rn, where
f : Rn× A → Rn is a given bounded function which satisfies the following generalized
contractive condition:

|f(x, a)− f(y, a)| ≤ q(|x− y|)|x− y|, x, y ∈ Rn, a ∈ A, (*)

where q : R+ → [0, 1] is a function with sup
t≥0

q(t) ≤ λ < 1. We will now study

the possibility of optimally controlling the solution x(·) of the ordinary differential
equation {

ẋ(s) = f(x(s), α(s)) (t < s < T )
x(t) = x0.

(6)

Here T > 0 is a fixed terminal time, and x ∈ Rn is a given initial point, taken on by
our solution x(·) at the starting time t ≥ 0. At later times t < s < T , x(·) evolves
according to the ODE (6). The function α(·) appearing in (6) is a control, that is,
some appropriate scheme for adjusting parameters from the set A as time evolves,
there by affecting the dynamics of the system modelled by (6). Let us write

A = {α : [0, T ] → A|α(·) is measurable}, (7)

to denote the set of admissible controls. Then since

|f(x, a)| ≤ C, |f(x, a)− f(y, a)| ≤ q(|x− y|)|x− y|, x, y ∈ Rn, a ∈ A, (8)

where q is defined in (∗), we have

|Fa(x)− Fa(y)| ≤ q(|x− y|)|x− y| (9)
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≤ p(x)|x− y|,

where
p(x) = sup

y∈Rn
q(|x− y|),

for all x in Rn, where p : Rn → [0, 1] is a function such that sup
x∈Rn

p(x) = λ < 1.

We see that for each control α(·) ∈ A. We have proved that the ODE (6) has a
unique generalized contractive continuous solution x(·) = xα(·)(·), existing on the
time interval [t, T ] and solving the ODE for a.e. time t < s < T . We call x(·) the
response of the system to the control α∗(·) and x(s) the state of the system at time
s.

Our aim is to find control α∗(·) which optimally steers the system. In order
to define what “optimal” means however, we must first introduce a cost criterion.
Given x ∈ Rn and 0 ≤ t ≤ T , let us define for each admissible control α(·) ∈ A the
corresponding cost

Cx,t[α(·)] :=

T∫

t

h(x(s), α(s))ds + g(x(T )), (10)

where x(·) = xα(·)(·) solves the ODE (6) and h : Rn× A → R, g : Rn → R are given
functions. We call h the running cost per unit time and g the terminal cost and will
henceforth assume





|Ha(x)|, |g(x)| ≤ C,
|Ha(x)−Ha(y)| ≤ p(x)|x− y|, |g(x)− g(y)| ≤ p(x)|x− y|,

x, y ∈ Rn, a ∈ A,
(11)

for some constant C, where p : Rn → [0, 1] is a function such that sup
x∈Rn

p(x) = λ < 1

and for each given a ∈ A, Ha : Rn → Rn is a strongly fundamental contraction
mapping such that Ha(x) = h(x, a) for all x ∈ Rn.

Given now x ∈ Rn and 0 ≤ t ≤ T , we would like to find if a control α∗(·) is
possible which minimizes the cost functional (10) among all admissible controls.
To investigate the above problem we shall apply the method of dynamic program-
ming. We now turn our attention to the value function u(x, t) defined by

u(x, t) := inf
α(·)∈A

Cx,t[α(·)](x ∈ Rn, 0 ≤ t ≤ T ). (12)

The plan is this: having defined u(x, t) as the least cost given we start at the position
x at time t, we want to study u as a function of x and t. We are therefore embedding
our given control problem (6) and (10) into the larger class of all such problems, as
x and t vary. This idea then can be used to show that u solves a certain Hamilton–
Jacobi type PDE, and finally to show conversely that a solution of this PDE helps us
to synthesize an optimal feedback control. Let us fix x ∈ Rn, 0 ≤ t ≤ T . Following
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the technique of Evans [7], p. 553, we can obtain the optimality conditions in the
form given below: For each ξ > 0 so small that t + ξ ≤ T ,

u(x, t) := inf
α(·)∈A





t+ξ∫

t

h(x(s), α(s))ds + u(x(t + ξ), t + ξ)



 , (13)

where x(·) = xα(·), solves the ODE (6) for the control α(·).
Acknowledgement. The author would like to thank the referee for his valuable

comments and suggestions.
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[6] Lj. Ćirić, M. Abbas, R. Saadati, N. Hussain Common fixed points of almost generalized
contractive mappings in ordered metric spaces, Appl. Math. Comput. 217, (2011), 5784–5789.

[7] L. C. Evans Partial Differential Equations, American Mathematical Society 12 (1998).

[8] H. K. Pathak, N. Shahzad Fixed points for generalized contractions and applications to
control theory. Nonlinear Analysis 68, (2008), 2181–2193.

A. C. Aouine
Mohamed-Cherif Messaadia University Souk Ahras, 41000,
Algeria.
E-mail: a.aouine@univ-soukahras.dz,

chawki81@gmail.com

Received April 15, 2022



BULETINUL ACADEMIEI DE ŞTIINŢE
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Optimal control of jump-diffusion processes with
random parameters
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Abstract. Let X(t) be a controlled jump-diffusion process starting at x ∈ [a, b] and
whose infinitesimal parameters vary according to a continuous-time Markov chain.
The aim is to minimize the expected value of a cost function with quadratic control
costs until X(t) leaves the interval (a, b), and a termination cost that depends on the
final value of X(t). Exact and explicit solutions are obtained for important processes.
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1 Introduction

Let {Y (t), t ≥ 0} be a continuous-time Markov chain with state space
E = {1, 2, . . . , k}. We consider the two-dimensional process {(X(t), Y (t)), t ≥ 0},
where X(t) is defined by the stochastic differential equation

dX(t) = µ[X(t), Y (t)]dt + b0u[X(t), Y (t)]dt + σ[X(t), Y (t)]dB(t) + εdN(t), (1)

in which b0 and ε are positive constants, {B(t), t ≥ 0} is a standard Brownian motion
and {N(t), t ≥ 0} is a time-homogeneous Poisson process with rate λ > 0. That is,
{X(t), t ≥ 0} is a controlled jump-diffusion process with random infinitesimal mean
µ(·, ·) and variance σ2(·, ·). We assume that {B(t), t ≥ 0} and {N(t), t ≥ 0} are
independent processes.

Jump-diffusion processes are very important in mathematical finance, where they
are used as models for the evolution of stock or commodity prices. Moreover, be-
cause of frequent regime changes, the fact that the parameters µ(·, ·) and σ2(·, ·) are
random is more realistic.

In this paper, we are looking for the control u∗(x, i) that minimizes the expected
value of the cost function

J(x, i) :=
∫ T (x,i)

0

{
1
2

q0,iu
2[X(t), i] + θi

}
dt + Ki[X(T (x, i))], (2)

where q0,i > 0, θi ∈ R and T (x, i) is the first-passage time

T (x, i) = inf{t ≥ 0 : X(t) /∈ (a, b) | X(0) = x ∈ [a, b], Y (0) = i}, (3)

c©Mario Lefebvre, 2022
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for i = 1, 2, . . . , k. If the constant θi is positive (respectively, negative), then the
optimizer wants the process to leave the continuation region as soon (respectively,
late) as possible. Furthermore, we assume that the termination cost is of the form

Ki[X(T (x, i))] = aiX
2(T (x, i)) + biX(T (x, i)) + ki, (4)

where ai, bi and ki are constants, for i = 1, 2, . . . , k. Depending on the values of
these constants (and the other parameters in the problem), the aim can be to try to
leave the interval (a, b) through a rather than b, or vice versa.

The problem set up above is an extension of the so-called LQG homing problem
studied by Whittle [7] for n-dimensional diffusion processes. He showed that it is
sometimes possible to obtain the exact optimal control by computing a mathemat-
ical expectation for the corresponding uncontrolled process. Lefebvre [3] extended
Whittle’s results to the case of one-dimensional jump-diffusion processes with deter-
ministic infinitesimal parameters. The optimal control then becomes approximate,
rather than exact. At any rate, even if one is able to reduce the stochastic optimal
control problem to a purely probabilistic problem, computing the mathematical ex-
pectation needed to obtain the optimal control is usually very difficult, especially in
two or more dimensions.

For applications of LQG homing problems, see in particular Ionescu et al. [1]
and [2], as well as Lefebvre [4] and [5]. See also Makasu [6] for the solution to a
two-dimensional problem.

In the next section, we will give the system of non-linear differential-difference
equations that we must solve to determine the optimal controls u∗(x, i), for
i = 1, 2, . . . , k. In Section 3, exact solutions to particular problems for important
processes will be found explicitly.

2 Dynamic programming

We define the value function

F (x, i) = inf
u[X(t),i], 0≤t≤T (x,i)

E[J(x, i)], (5)

for i = 1, 2, . . . , k. To obtain the dynamic programming equation satisfied by the
function F (x, i), we will use the following results: first, by definition, a Poisson
process starts at N(0) = 0, and the number N(t) of events in the interval (0, t] has
a Poisson distribution with parameter λt, which implies that

P [N(∆t) = 0] = e−λ∆t = 1− λ∆t + o(∆t) (6)

and
P [N(∆t) = 1] = λ∆te−λ∆t = λ∆t + o(∆t). (7)

Next, we assume that B(0) = 0; then, as is well known, we can write that

E[B(∆t)] = 0 (8)
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and
E[B2(∆t)] = V [B(∆t)] = ∆t. (9)

Finally, in the case of the continuous-time Markov chain {Y (t), t ≥ 0}, when it
enters state i, it remains there for a random time τi having an exponential distribu-
tion with parameter denoted by νi. Then, it will move to state j 6= i with probability
pi,j , with

∑
j 6=i pi,j = 1. Therefore, when Y (0) = i,

P [Y (∆t) = i] = P [τi > ∆t] = e−νi∆t = 1− νi∆t + o(∆t) (10)

and
P [Y (∆t) = j] =

(
1− e−νi∆t

)
pi,j = νipi,j ∆t + o(∆t), (11)

for j 6= i.
Using the standard arguments, we obtain the following dynamic programming

equation (DPE):

0 = inf
u(x,i)

{
1
2

q0,iu
2(x, i) + θi + [µ(x, i) + b0u(x, i)]F ′(x, i)

+
1
2

σ2(x, i)F ′′(x, i) +
∑

j 6=i

νipi,j [F (x, j)− F (x, i)]

+λ [F (x + ε, i)− F (x, i)]
}

. (12)

From Eq. (12), we deduce at once that, in terms of F (x, i), the optimal control
u∗(x, i) is

u∗(x, i) = − b0

q0,i
F ′(x, i). (13)

We can now state the following proposition, obtained by substituting the above
expression into the DPE.

Proposition 2.1. The value functions F (x, i), i = 1, . . . , k, satisfy the system of
non-linear second-order differential-difference equations

0 = θi + µ(x, i)F ′(x, i)− 1
2

b2
0

q0,i

[
F ′(x, i)

]2

+
1
2

σ2(x, i)F ′′(x, i) +
∑

j 6=i

νipij [F (x, j)− F (x, i)]

+λ [F (x + ε, i)− F (x, i)] . (14)

The system is valid for a < x < b. Moreover, because the jump size is a positive
constant ε, the boundary conditions are

F (a, i) = Ki(a) and F (x, i) = Ki(x) if b ≤ x < b + ε. (15)

In the next section, we will find exact solutions to the above system in important
particular cases.
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3 Particular cases

For the sake of simplicity, we assume that the state space of the Markov chain
{Y (t), t ≥ 0} is the set {1, 2}; that is, k = 2 in Proposition 2.1. Then, we have that
pi,j = 1.

First, making use of Taylor’s formula, we can write that

F (x + ε, i) = F (x, i) + εF ′(x, i) +
1
2

ε2F ′′(x, i) + o(ε2), (16)

which implies that the system (14) can be rewritten as follows:

0 ≈ θi + µ(x, i)F ′(x, i)− c2
i

[
F ′(x, i)

]2 +
1
2

σ2(x, i)F ′′(x, i)

+ νi [F (x, j)− F (x, i)] + λ

[
εF ′(x, i) +

1
2

ε2F ′′(x, i)
]

(17)

for i = 1, 2, where

c2
i :=

1
2

b2
0

q0,i
. (18)

If ε is small, then the solution to the above system should be a good approxi-
mation to the exact solution that we are looking for. Furthermore, if F (x, i) is a
polynomial of degree 1 or 2, then the solution to (17) is actually the exact solution
to our problem.

Case I. Assume that the interval [a, b] is [0, 1], and that µ(x, i) ≡ µi ∈ R, for
i = 1, 2. If σ2(x, i) ≡ σ2

i , then the continuous part of the process {X(t), t ≥ 0} is a
Wiener process with random infinitesimal parameters. The Wiener process is surely
among the most important diffusion processes.

Suppose that
Ki[X(T (x, i))] = biX(T (x, i)) + ki, (19)

where bi 6= 0, for i = 1, 2. So, we take ai = 0 in Eq. (4). The boundary conditions
are therefore

F (0, i) = ki and F (x, i) = bix + ki if 1 ≤ x < 1 + ε. (20)

Hence, in general, the optimizer should try to make the controlled process leave the
interval (0, 1) through the origin, so that we expect u∗(x, i) to be negative. However
the sign of the optimal control also depends, in particular, on the value of θi. If
θi > 0 is large and x is close to 1, it might be better to leave the interval through
x ≥ 1 and accept the larger termination cost.

Now, let us try a value function F (x, i) of the same form as Ki(x). Substituting
this expression into the system (17), we find that

0 = θ1 + µ1 b1 − c2
1 b2

1 + ν1 [(b2 − b1)x + (k2 − k1)] + λεb1, (21)
0 = θ2 + µ2 b2 − c2

2 b2
2 − ν2 [(b2 − b1)x + (k2 − k1)] + λεb2. (22)
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We deduce from the above equations that a necessary condition for the solution to
be valid is that we must have b1 = b2, so that the constants b1 6= 0, k1 and k2 must
be such that

0 = θ1 + µ1 b1 − c2
1 b2

1 + ν1 (k2 − k1) + λεb1, (23)
0 = θ2 + µ2 b1 − c2

2 b2
1 − ν2 (k2 − k1) + λεb1. (24)

Let us choose the following parameters:

µ1 = −1, µ2 = 0, λ = ε = θi = νi = b0 = q0,i = 1, for i = 1, 2.

Then, one can check that the system (23), (24) is satisfied if b1 = 2, k1 = 0 and
k2 = 1. Thus, we have that

F (x, 1) = 2x and F (x, 2) = 2x + 1 if 0 < x < 1. (25)

Furthermore, the functions F (x, i) satisfy the boundary conditions in (20) with
b1 = b2 = 2, for i = 1, 2.

From Eq. (13), we obtain that the optimal control is given by

u∗(x, 1) = u∗(x, 2) ≡ −2. (26)

For other choices of the parameters q0,1 and q0,2, u∗(x, 1) and u∗(x, 2) could be
different, but they are always constant in this first example.
Remarks. (i) If instead of µ2 = 0 above, we rather have µ2 = −2, then we find
that the system is satisfied if b1 = −2 (together with k1 = 0, k2 = 1). Therefore,
we have a second explicit solution to the problem considered. Moreover, notice that
the optimal control u∗(x, i) would then be positive.
(ii) Since the solution to our problem does not depend on σ2

1(x, i) and σ2
2(x, i), it

is valid, in particular, in the case of a Wiener process with random parameters and
Poissonian jumps, as mentioned above.
(iii) We can easily find other particular solutions. For instance, if µ1 = 0, µ2 = 1/3,
k1 = 0 and k2 = 1/2, then b1 = 3, etc.

Case II. Assume again that the continuation region is the interval (0, 1). This
time, we take µ(x, i) = −γix, for i = 1, 2. If the constant γi is positive and if
σ2(x, i) ≡ σ2

i , {X(t), t ≥ 0} is then an Ornstein-Uhlenbeck process with random
parameters and Poissonian jumps. The Ornstein-Uhlenbeck process is also among
the most important diffusion processes for applications.

We choose the termination cost function in Eq. (19), and we try a solution
F (x, i) = Ki(x) of the system (17). We obtain the following system:

0 = θ1 − γ1 b1x− c2
1 b2

1 + ν1 [(b2 − b1)x + (k2 − k1)] + λεb1, (27)
0 = θ2 − γ2 b2x− c2

2 b2
2 − ν2 [(b2 − b1)x + (k2 − k1)] + λεb2. (28)

Therefore, we must have (for the terms in x)

0 = −γ1 b1 + ν1 (b2 − b1), (29)
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0 = −γ2 b2 − ν2 (b2 − b1) (30)

and (for the constant terms)

0 = θ1 − c2
1 b2

1 + ν1 (k2 − k1) + λεb1, (31)
0 = θ2 − c2

2 b2
2 − ν2 (k2 − k1) + λεb2. (32)

Let us choose the parameters γ1 = 1, γ2 = −1/2, λ = ε = ν1 = ν2 = b0 = 1,
θ1 = −1/2, θ2 = −1, q0,1 = 1 and q0,2 = 2. We find that a solution of the above
systems (that also satisfies the appropriate boundary conditions) is

F (x, 1) = x + k1 and F (x, 2) = 2x + k2 if 0 < x < 1, (33)

for any choice of the constants k1 and k2 such that

k2 − k1 = 0. (34)

Furthermore, the optimal control is

u∗(x, 1) = u∗(x, 2) ≡ −1. (35)

Case III. Finally, we take µ(x, i) = µix, where µi ∈ R, and σ2(x, i) = σ2
i x2, for

i = 1, 2. Therefore, the continuous part of the process {X(t), t ≥ 0} is a geometric
Brownian motion, which is widely used in financial mathematics. Because this
diffusion process is always positive (if it starts at X(0) > 0), we assume that a > 0
in the interval [a, b]. We choose the interval [1, 2] and the termination cost function
in (4), with a1 = a2 and b1 = b2. The boundary conditions are

F (1, i) = a1 + b1 + ki and F (x, i) = a1x2 + b1x + ki if 2 ≤ x < 2 + ε. (36)

Proceeding as in the previous cases, we try a solution of the same form as the
function Ki(·). We then obtain the system

0 = θ1 + µ1x(2a1x + b1)− c2
1 (2a1x + b1)2 + σ2

1 x2a1

+ν1 (k2 − k1) + λ
[
ε(2a1x + b1) + ε2a1

]
, (37)

0 = θ2 + µ2x(2a1x + b1)− c2
2 (2a1x + b1)2 + σ2

2 x2a1

−ν2 (k2 − k1) + λ
[
ε(2a1x + b1) + ε2a1

]
. (38)

For the sake of simplicity, let us choose λ = ε = 1. We then deduce that we must
have (for the terms in x2)

0 = 2µ1a1 − 4c2
1a2

1 + σ2
1 a1, (39)

0 = 2µ2a1 − 4c2
2a2

1 + σ2
2 a1, (40)

(for the terms in x)

0 = µ1 b1 − 4c2
1a1 b1 + 2a1, (41)
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0 = µ2 b1 − 4c2
2a1 b1 + 2a1 (42)

and (for the constant terms)

0 = θ1 − c2
1 b2

1 + ν1 (k2 − k1) + b1 + a1, (43)
0 = θ2 − c2

2 b2
1 − ν2 (k2 − k1) + b1 + a1. (44)

We can check that the function

F (x, i) = x2 + x + ki for 1 < x < 2 (45)

is a solution to our problem if

µ1 = 0, µ2 = −1, σ2
1 = 2, σ2

2 = 3, b0 = ν1 = ν2 = q0,1 = 1

and q0,2 = 2, together with

θ1 = −3
2
− (k2 − k1) and θ2 = −7

4
+ (k2 − k1). (46)

It follows that the optimal controls are affine functions of x:

u∗(x, 1) = −(2x + 1) and u∗(x, 2) = −1
2

(2x + 1). (47)

4 Conclusion

In this paper, we considered a difficult problem, namely an optimal control prob-
lem for jump-diffusion processes with random parameters, when in addition the final
time is a first-passage time random variable. The aim was to obtain exact and ex-
plicit solutions to such problems.

In Section 3, we were able to solve three particular problems for very important
diffusion processes. Wiener processes, Ornstein-Uhlenbeck processes and geometric
Brownian motions appear in numerous applications.

For the discrete part of the jump-diffusion processes, we assumed that jumps oc-
curred according to a time-homogeneous Poisson process and that the jump size was
a positive constant. This enabled us, making use of Taylor’s formula, to transform
a system of differential-difference equations into an approximate system of differen-
tial equations. However, this approximate system becomes an exact one in the case
when the value function is a polynomial of degree equal to 1 or 2.

It would be interesting to try to generalize the results obtained in this paper to
the case of a random jump size. We could also assume that there can be both positive
and negative jumps that are generated by two independent Poisson processes.

Finally, as mentioned above, the aim was to obtain analytical solutions to the
problem set up in Section 1. When the state space E of the Markov chain contains
many values, it should at least be possible to use numerical methods to determine
the value functions and the optimal controls.
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A self-similar solution for the two-dimensional
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Abstract. A self-similar solution of the Broadwell system is found. Here the so-
lution is sought using a reduction that transforms the given system into a system of
differential equations. Further, the solution is constructed using the Painlevé series.
Here the system already passes the Painlevé test and it is possible to find the solu-
tion if the equations in resonance satisfy the solution of the two-dimensional Bateman
equation. Exact solution of the Bateman equation is established, allowing to find new
explicit solution for the original system. In the process of calculations, we use the
Wolfram Mathematica program. The proof of these results is carried out at a rigorous
mathematical level.
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1 Introduction

We consider the well-known two-dimensional Broadwell model [7,10,11,15,17,20]

∂tu + ∂xu =
1
ε
(wz − uv),

∂tv − ∂xv =
1
ε
(wz − uv), x, y ∈ R, t > 0,

∂tw + ∂yw =
1
ε
(uv − wz),

∂tz − ∂yz =
1
ε
(uv − wz).

(1)

Here u(x, y, t), v(x, y, t), w(x, y, t), z(x, y, t) are the densities of particle groups,
ε is the Knudsen parameter. It is required to find a self-similar solution of the
system (1). As is known, most of the equations of mathematical physics describe
various physical processes, for example, the Burgers equation, the Korteweg-de Vries
equation, the Allen-Kahn equation, etc. One of such equations is the discrete ki-
netic Boltzmann equation [22] (see p.1). We consider the so-called Broadwell model
[7, 11,20], which is a consequence in the discrete case when the collision integral on
the right side of the Boltzmann equation is replaced by a finite sum. From here, the
given system of equations is directly obtained. The physical interpretation of the
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system can be found in [7,20]. Works [1,5,11] are devoted to finding exact solutions
of kinetic systems by means of the Bateman equation [3, 6, 13, 14]. These systems
are non-integrable (kinetic systems Carleman [1], Godunov-Sultangazin [9,11] (one-
dimensional model of Broadwell), McKean [5,12], two-dimensional model of Broad-
well). As a result, the Painlevé test fails. Here, in resonance, the author obtained
the Bateman equation and, knowing its implicit solution, constructed a solution for
the original system. Stationary solutions of systems were found in [16, 18]. In the
works [7, 9, 19] it is proved that the solution of systems tends to a positive equilib-
rium state exponentially fast. Also recently in [8,12,18,20], solutions were found that
can take both positive and negative values. Nevertheless, ones produce interesting
results. In our work, a self-similar solution of the system is presented.

2 Bateman equation

The two-dimensional Bateman equation is an equation of the form [4,6, 11]

∂2ϕ

∂η2

(∂ϕ

∂ξ

)2
− 2

∂ϕ

∂η

∂ϕ

∂ξ

∂2ϕ

∂ξ∂η
+

(∂ϕ

∂η

)2 ∂2ϕ

∂ξ2
= 0. (2)

This equation has an implicit solution

ξf(ϕ) + ηg(ϕ) = c, (3)

where f, g are arbitrary smooth functions, c ∈ R. The proof is carried out by direct
computation

∂ϕ

∂ξ
= − f(ϕ)

ξf ′(ϕ) + ηg′(ϕ)
,

∂2ϕ

∂ξ2
= −

f(ϕ)
(
− 2ξf ′(ϕ)2 − 2ηf ′(ϕ)g′(ϕ) + f(ϕ)(ξf ′′(ϕ) + ηg′′(ϕ))

)

(ξf ′(ϕ) + ηg′(ϕ))3
,

∂ϕ

∂η
= − g(ϕ)

ξf ′(ϕ) + ηg′(ϕ)
, (4)

∂2ϕ

∂η2
= −

g(ϕ)
(
− 2ξf ′(ϕ)g′(ϕ)− 2ηg′(ϕ)2 + g(ϕ)(ξf ′′(ϕ) + ηg′′(ϕ))

)

(ξf ′(ϕ) + ηg′(ϕ))3
,

∂2ϕ

∂ξ∂η
=

fg′(ξf ′ + ηg′) + g
(
ξf ′(ϕ)2 + ηf ′(ϕ)g′(ϕ)− f(ξf ′′ + ηg′′)

)

(ξf ′(ϕ) + ηg′(ϕ))3
.

Substituting (4) into (2), we are convinced of the equality.

3 A self-similar solution for the Broadwell system

We look for a self-similar solution in the form (see [21], S.3.3., p. 708)

u(x, y, t) = xαU(ξ, η), v(x, y, t) = xβV (ξ, η),
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w(x, y, t) = xγW (ξ, η), z(x, y, t) = xsZ(ξ, η),

where ξ = txA, η = yxB. System is scale invariant under

t = Ckt, x = Cx, y = C ly, u = Cmu, v = Cnv, w = Cpw, z = Cqz, C > 0. (5)

The scaling transformation (5) converts system (1) into

Cm−k ∂ū

∂t̄
+ Cm−1 ∂ū

∂x̄
=

1
ε
(Cp+qw̄z̄ − Cm+nūv̄),

Cn−k ∂v̄

∂t̄
− Cn−1 ∂v̄

∂x̄
=

1
ε
(Cp+qw̄z̄ − Cm+nūv̄),

Cp−k ∂w̄

∂t̄
+ Cp−l ∂w̄

∂ȳ
=

1
ε
(Cm+nūv̄ − Cp+qw̄z̄),

Cq−k ∂z̄

∂t̄
− Cq−l ∂z̄

∂ȳ
=

1
ε
(Cm+nūv̄ − Cp+qw̄z̄),

Equating the powers of C yields the following system of linear algebraic equations
for the constants m, k, p, q, l and n:

m− 1−m + k = 0, p + q −m + k = 0,m + n−m + k = 0,

n− 1− n + k = 0, p + q − n + k = 0,m + n− n + k = 0,

p− l − p + k = 0,m + n− p + k = 0, p + q − p + k = 0,

q − l − q + k = 0,m + n− q + k = 0, p + q − q + k = 0.

This system has a unique solution

k = l = 1, n = p = m = q = −1.

In this case according to the formulas from (see [21], S.3.3., p. 708)

α = β = γ = s = −1, A = B = −1.

Then we have

u(x, y, t) =
1
x

U(ξ, η), v(x, y, t) =
1
x

V (ξ, η), (6)

w(x, y, t) =
1
x

W (ξ, η), z(x, y, t) =
1
x

Z(ξ, η), (7)

where ξ = t/x, η = y/x. Substituting expressions (6)-(7) into (1), we obtain for the
first equation

1
x

U ′
ξ

1
x
− U

x2
+

1
x

(U ′
ξ(−

t

x2
) + U ′

η(−
y

x2
)) =

1
ε
(

1
x2

WZ − 1
x2

UV ). (8)
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The rest of the equations are obtained similarly. Hence, we have system

U ′
ξ(1− ξ)− U ′

ηη = U +
1
ε
(WZ − UV ),

V ′
ξ (1 + ξ) + V ′

ηη = −V +
1
ε
(WZ − UV ),

W ′
ξ + W ′

η =
1
ε
(UV −WZ),

Z ′ξ − Z ′η =
1
ε
(UV −WZ).

(9)

We apply the Painlevé expansion [2]:

U(ξ, η) = ϕ−p
∞∑

j=0

Uj(ξ, η)ϕj , V (ξ, η) = ϕ−β
∞∑

j=0

Vj(ξ, η)ϕj ,

W (ξ, η) = ϕ−γ
∞∑

j=0

Wj(ξ, η)ϕj , Z(ξ, η) = ϕ−q
∞∑

j=0

Zj(ξ, η)ϕj ,

(10)

where ϕ = ϕ(ξ, η) is an analytic function in a neighborhood of the manifold
ϕ(ξ, η) = 0. Firstly, we find the dominant terms

U = U0ϕ
−p, V = V0ϕ

−β,W = W0ϕ
−γ , Z = Z0ϕ

−q, (11)

where p, β, γ, q are positive integers. Substituting the leading terms of (11) into our
original system, we have

(1− ξ)(U ′
0ξϕ

−p − pϕ−p−1ϕ′ξU0)− η(U ′
0ηϕ

−p − pϕ−p−1ϕ′ηU0) =

= U0ϕ
−p +

1
ε
(W0Z0ϕ

−γ−q − U0V0ϕ
−p−β),

(1 + ξ)(V ′
0ξϕ

−β − βϕ−β−1ϕ′ξV0) + η(V ′
0ηϕ

−p − pϕ−p−1ϕ′ηV0) =

= −V0ϕ
−β +

1
ε
(W0Z0ϕ

−γ−q − U0V0ϕ
−p−β),

W ′
0ξϕ

−γ − γϕ−γ−1ϕ′ξW0 + W ′
0ηϕ

−γ − γϕ−γ−1ϕ′ηW0 =

=
1
ε
(U0V0ϕ

−p−β −W0Z0ϕ
−γ−q),

Z ′0ξϕ
−q − qϕ−q−1ϕ′ξZ0 − Z ′0ηϕ

−q + qϕ−q−1ϕ′ηZ0 =

=
1
ε
(U0V0ϕ

−p−β −W0Z0ϕ
−γ−q).

(12)
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Multiplying the first equation of (12) by ϕp+1 and taking into account that
ϕ(ξ, η) = 0, we have p = β = γ = q = 1. From here

−(1− ξ)ϕ′ξU0 + ϕ′ηU0η =
1
ε
(W0Z0 − U0V0),

−(1 + ξ)ϕ′ξV0 − ϕ′ηV0η =
1
ε
(W0Z0 − U0V0),

−ϕ′ξW0 − ϕ′ηW0 =
1
ε
(U0V0 −W0Z0),

−ϕ′ξZ0 + ϕ′ηZ0 =
1
ε
(U0V0 −W0Z0).

(13)

Solving the system (13), we obtain solution

U0(ξ, η) = − ε(ηϕη + (ξ + 1)ϕξ)(ϕ2
η − ϕ2

ξ)

(η2 − 1)ϕ2
η + 2ξηϕξϕη + ξ2ϕ2

ξ

,

V0(ξ, η) =
ε(ηϕη + (ξ − 1)ϕξ)(ϕ2

η − ϕ2
ξ)

(η2 − 1)ϕ2
η + 2ξηϕξϕη + ξ2ϕ2

ξ

,

W0(ξ, η) = −ε(ϕη − ϕξ)(ηϕη + (ξ − 1)ϕξ)(ηϕη + (ξ + 1)ϕξ)
(η2 − 1)ϕ2

η + 2ξηϕξϕη + ξ2ϕ2
ξ

,

Z0(ξ, η) =
ε(ϕη + ϕξ)(ηϕη + (ξ − 1)ϕξ)(ηϕη + (ξ + 1)ϕξ)

(η2 − 1)ϕ2
η + 2ξηϕξϕη + ξ2ϕ2

ξ

.

(14)

The truncated Painlevé expansion has the form

U = U0ϕ
−1 + U1, V = V0ϕ

−1 + V1,

W = W0ϕ
−1 + W1, Z = Z0ϕ

−1 + Z1,
(15)

where U0, V0,W0, Z0 are defined by (14) and U1, V1,W1, Z1 are arbitrary functions.
Substituting (15) into (9), we have

ϕ−1
(
U ′

0ξ(1− ξ)− ηU ′
0η − U0 − 1

ε
(W0Z1 + W1Z0 − U0V1 − U1V0)

)
+

+ϕ−2
(
− U0ϕ

′
ξ(1− ξ) + ηϕ′ηU0 − 1

ε
(W0Z0 − U0V0)

)
+

+ϕ0
(
U ′

1ξ(1− ξ)− ηU ′
1η − U1 − 1

ε
(W1Z1 − U1V1)

)
= 0,

ϕ−1
(
V ′

0ξ(1 + ξ) + ηV ′
0η + V0 − 1

ε
(W0Z1 + W1Z0 − U0V1 − U1V0)

)
+

+ϕ−2
(
− V0ϕ

′
ξ(1 + ξ)− ηϕ′ηV0 − 1

ε
(W0Z0 − U0V0)

)
+

+ϕ0
(
V ′

1ξ(1 + ξ) + ηV ′
1η + V1 − 1

ε
(W1Z1 − U1V1)

)
= 0,
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ϕ−1
(
W ′

0ξ + W ′
0η −

1
ε
(U0V1 + U1V0 −W0Z1 −W1Z0)

)
+

+ϕ−2
(
−W0ϕ

′
ξ − ϕ′ηW0 − 1

ε
(U0V0 −W0Z0)

)
+

+ϕ0
(
W ′

1ξ + W ′
1η −

1
ε
(U1V1 −W1Z1)

)
= 0,

ϕ−1
(
Z ′0ξ − Z ′0η −

1
ε
(U0V1 + U1V0 −W0Z1 −W1Z0)

)
+

+ϕ−2
(
− Z0ϕ

′
ξ + ϕ′ηZ0 − 1

ε
(U0V0 −W1Z1)

)
+

+ϕ0
(
Z ′1ξ − Z ′1η −

1
ε
(U1V1 −W1Z1)

)
= 0.

The coefficients at ϕ−2 give the well-known expressions defined by (14). Assuming
that U1 = V1 = W1 = Z1 = 0, the coefficients at ϕ0 are satisfied. It remains to
consider at ϕ−1. Equating each coefficient of ϕ−1 to zero, we have

U ′
0ξ(1− ξ)− ηU ′

0η − U0 =
1
ε
(W0Z1 + W1Z0 − U0V1 − U1V0),

V ′
0ξ(1 + ξ) + ηV ′

0η + V0 =
1
ε
(W0Z1 + W1Z0 − U0V1 − U1V0),

W ′
0ξ + W ′

0η =
1
ε
(U0V1 + U1V0 −W0Z1 −W1Z0),

Z ′0ξ − Z ′0η =
1
ε
(U0V1 + U1V0 −W0Z1 −W1Z0).

(16)

We rewrite the system (16) as

U ′
0ξ(1− ξ)− ηU ′

0η − U0 = V ′
0ξ(1 + ξ) + ηV ′

0η + V0, (17)

U ′
0ξ(1− ξ)− ηU ′

0η − U0 = −W ′
0ξ −W ′

0η, (18)

U ′
0ξ(1− ξ)− ηU ′

0η − U0 = −Z ′0ξ + Z ′0η, (19)

U ′
0ξ(1− ξ)− ηU ′

0η − U0 = 0. (20)

Substituting (14) into (17), we have

4ηε(ηϕ2
η + (−1 + η2 + ξ2)ϕηϕξ + ηξϕ2

ξ)(ϕηηϕ
2
ξ + ϕη(−2ϕξϕξη + ϕηϕξξ))

((−1 + η2)ϕ2
η + 2ηξϕηϕξ + ξ2ϕ2

ξ)
2

= 0,

which contains one of the equations – the Bateman equation. Similarly, the equations
(18), (19) also yield the given equation. Finally, substituting (14) into (20), we have
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condition using the Wolfram Mathematica

−2ηϕ5
η + ϕ4

η

(
η2(−1 + η2)ϕηη − 2ξϕξ − 2ηξϕξη + ϕξξ − η2ϕξξ+

+2η2ξϕξξ − ξ2ϕξξ − η2ξ2ϕξξ

)
+ ξϕ4

ξ

(
η2(2 + ξ)ϕηη−

−2ϕξ − 2ηϕξη + ξϕξξ − ξ3ϕξξ

)
− 2ηϕ3

ηϕξ

(
− 2η2ξϕηη − 2ϕξ − ηϕξη+

+η3ϕξη + 2ηξϕξη − ηξ2ϕξη + ϕξξ − η2ϕξξ − ξϕξξ + η2ξϕξξ−
−ξ2ϕξξ + ξ3ϕξξ

)
+ ϕ2

ηϕ
2
ξ

(
η2(−1 + η2 + 2ξ + 5ξ2)ϕηη + 4ξϕξ + 4ηϕξη−

−4η3ϕξη − 4η3ξϕξη − 4ηξ2ϕξη + 4ηξ3ϕξη − 3ϕξξ + 3η2ϕξξ+

+2η2ξϕξξ + 4ξ2ϕξξ − 5η2ξ2ϕξξ − ξ4ϕξξ

)
+

2ϕηϕ
3
ξ

(
η(1 + ξ)(−1 + η2 + ξ2)ϕηη − ηϕξ−

−(1 + ξ)
(
(η2 − (−1 + ξ)2)(1 + ξ)ϕξη + 2η(−1 + ξ)ξϕξξ

))
= 0.

(21)

Equating coefficients to zero at the same degrees, we obtain

ξ : −4f3g2(f ′)2 + 2fg4(f ′)2 + 2f4gf ′g′ + f4g2f ′′ − f2g4f ′′ = 0,

η : −4f3g2f ′g′ + 2fg4f ′g′ + 2f4g(g′)2 + f4g2g′′ − f2g4g′′ = 0,

ξ2 : 0,

ξ2η : 8f4g(f ′)2 + 4f5f ′g′ − 8f3g2f ′g′ − 4f4g(g′)2−
− 2f5gf ′′ + 2fg5f ′′ − f6g′′ + f2g4g′′ = 0,

ξ2η2 : 0, η2 : 0,

η2ξ : 4f3g2(f ′)2 + 8f4gf ′g′ − 4f2g3f ′g′ − 8f3g2(g′)2−
− f4g2f ′′ + g6f ′′ − 2f5gg′′ + 2fg5g′′ = 0,

ξ3 : 4f5(f ′)2 − 4f4gf ′g′ − f6f ′′ + f2g4f ′′ = 0,

ξ3η : 0,

ξ3η2 : −12f3g2(f ′)2 − 8f4gf ′g′ + 12f2g3f ′g + 8f3g2(g′)2+
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+ 6f4g2f ′′ − 6f2g4f ′′ + 4f5gg′′ − 4f3g3g′′ = 0,

ξ3η3 : 0,

η3 : 4f3g2f ′g′ − 4f2g3(g′)2 − f4g2g′′ + g6g′′ = 0,

η3ξ : 0,

η3ξ2 : −8f2g3(f ′)2 − 12f3g2f ′g′ + 8fg4f ′g′ + 12f2g3(g′)2+

+ 4f3g3f ′′ − 4fg5f ′′ + 6f4g2g′′ − 6f2g4g′′ = 0,

ξ4 : 0,

ξ4η : −8f4g(f ′)2 − 2f5f ′g′ + 8f3g2f ′g′ + 2f4g(g′)2+

+ 4f5gf ′′ − 4f3g3f ′′ + f6g′′ − f4g2g′′ = 0,

ξ4η2 : 0, ξ4η3 : 0, ξ4η4 : 0, η4 : 0,

η4ξ : −2fg4(f ′)2 − 8f2g3f ′g′ + 2g5f ′g′ + 8fg4(g′)2+

+ f2g4f ′′ − g6f ′′ + 4f3g3g′′ − 4fg5g′′ = 0,

η4ξ2 : 0; η4ξ3 : 0; η4ξ4 : 0,

ξ5 : −2f5(f ′)2 + 2f4gf ′g′ + f6f ′′ − f4g2f ′′ = 0,

ξ5η : 0,

η5 : −2fg4f ′g′ + 2g5(g′)2 + f2g4g′′ − g6g′′ = 0.

This system of equations is satisfied for g(ϕ) = ±f(ϕ). Taking this equality into (3),
we have for g(ϕ) = f(ϕ)

ϕ = F
( c

ξ + η

)
, (22)

where F is an arbitrary invertible function. And finally, to get the final solution of
our system, we substitute (22) in (15) and take into account the formula (6).

We can formulate a proposition.
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Proposition. A self-similar solution of (1) is

u(x, y, t) =
1
x

U0

ϕ
, v(x, y, t) =

1
x

V0

ϕ
,w(x, y, t) =

1
x

W0

ϕ
, z(x, y, t) =

1
x

Z0

ϕ
,

where U0, V0,W0, Z0 are defined by (14) and ϕ satisfies the two-dimensional Bateman
equation (2) and (21). Solution for ϕ is

ϕ(ξ, η) = F
( c

ξ ± η

)
, c ∈ R.

Here F is an arbitrary invertible function.

Solutions of system (1) are for g(ϕ) = f(ϕ)

u(x, y, t) = 0, v(x, y, t) = 0,

w(x, y, t) = 0, z(x, y, t) = −1
x

2cεF ′( c
ξ+η )

(ξ + η)2F ( c
ξ+η )

(23)

and for g(ϕ) = −f(ϕ)

u(x, y, t) = 0, v(x, y, t) = 0,

w(x, y, t) = −1
x

2cεF ′( c
ξ−η )

(ξ − η)2F ( c
ξ−η )

, z(x, y, t) = 0,
(24)

where ξ = t/x, η = y/x are self-similar variables.
Comment. We give an example of a solution that is not described in the work [11]:

u(x, y, t) = −14
15
− 16

5(−71
60 + 7

60

√
191 tan( 7

120

√
191(1 + t + 2x + 3y)))

,

v(x, y, t) = 3 +
48

5(−71
60 + 7

60

√
191 tan( 7

120

√
191(1 + t + 2x + 3y)))

,

w(x, y, t) = 2 +
12

5(−71
60 + 7

60

√
191 tan( 7

120

√
191(1 + t + 2x + 3y)))

,

z(x, y, t) = 1− 24
5(−71

60 + 7
60

√
191 tan( 7

120

√
191(1 + t + 2x + 3y)))

.

This solution is taken from [20].

4 Conclusion

We investigated the two-dimensional Broadwell system. We found the self-similar
solutions for this system using the Bateman equation.



A SELF-SIMILAR SOLUTION FOR THE TWO-DIMENSIONAL ... 39

References

[1] S. A. Dukhnovskii Solutions of the Carleman system via the Painlevé expansion,
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Construction of medial ternary self-orthogonal
quasigroups
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Abstract. Algorithms for checking if a medial ternary quasigroup has a set of
six triple-wise orthogonal principal parastrophes and a set of six triple-wise strongly
orthogonal principal parastrophes are found. It is proved that n-ary strongly self-
orthogonal linear (including medial) quasigroups do not exist when n > 3.
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A quasigroup algebra is a universal algebra whose operations are invertible.
Quasigroup algebras satisfying orthogonality problems have wide applications in
algebra, combinatorics, cryptography, geometry, coding theory, etc., but the prob-
lem of their construction is still open, especially when their arities are greater than
two and also for the case when the number of operations is larger than their arities.

Recall that the Cayley table of an n-ary operation of order m is a hypercube
of order m, i.e. an m×m× · · · ×m︸ ︷︷ ︸

n

array on m distinct symbols. An operation

is invertible (in other words, a quasigroup operation) if each line of the hypercube
contains all symbols. An n-element set of n-ary operations are orthogonal if su-
perimposing the corresponding hypercubes all possible n-tuples of the symbols are
obtained. Another interpretation of orthogonal quasigroups as an MDS code is
given, for instance, in [1].

In [2], the authors proposed an algorithm for constructing a big number of tu-
ples of n-ary operations which generalizes the recursive algorithm introduced by
G. Belyavskaya and G. Mullen [3] and improved by S. Markovsky and A. Mileva [4].
However, operations of these sets are not necessarily invertible. There are some
algorithms for constructing orthogonal Latin hypercubes, for example, T. Evans [5]
proposed a method for constructing using two sets of orthogonal Latin hypercubes
of less dimensions, later M. Trenkler [6] suggested a method by a pair of orthogonal
Latin squares.

Each n-ary quasigroup operation has (n + 1)! parastrophes and n! of them are
principal. A quasigroup is called:

• asymmetric if all parastrophes are different;

c© Iryna Fryz, Fedir Sokhatsky, 2022
DOI: https://doi.org/10.56415/basm.y2022.i3.p41
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• parastrophically orthogonal if it has n orthogonal parastrophes;

• self-orthogonal if it has n orthogonal principal parastrophes;

• totally parastrophically orthogonal (briefly, top) if each set of n different paras-
trophes is orthogonal.

Note that throughout the article we consider maximal sets of principal parastro-
phes, so by self-orthogonality we understand self-orthogonality with the additional
condition that all principal parastrophes are different and triple-wise orthogonal.

There are a number of papers concerned with the parastrophic orthogonality
of quasigroups. For example, V. D. Belousov [7] described all minimal identities
which define varieties of parastrophically orthogonal quasigroups; G. Belyavskaya
and T. Popovich [8] described conditions when a binary central asymmetric quasi-
group is a top quasigroup. Consequently, they gave a method for constructing six
pairwise orthogonal binary quasigroups (Latin squares).

P. Syrbu [9, 10] was the first who described series of self-orthogonal identities.
Much later, in a joint paper, P. Syrbu and D. Cheban [11, 12] found a series of
identities for ternary self-orthogonal quasigroups.

The main goal of this paper is to study methods for constructing orthogonal
ternary quasigroups and Latin cubes. Throughout the article, we focus on medial
asymmetric self-orthogonal ternary quasigroups with the restriction that all principal
parastrophes are orthogonal and we found conditions under which these parastrophes
are triple-wise orthogonal. Thus, having such a self-orthogonal ternary quasigroup
we have 6 triple-wise orthogonal ternary quasigroups.

Here, Section 2 contains some introductory statements about medial quasigroups.
The necessary and sufficient conditions for a medial ternary quasigroup to be self-
orthogonal are given in Section 3, in particular these conditions are reduced to
conditions of invertibility of 3 polynomials under a set of decomposition authomor-
phisms of the quasigroup. In Section 4, the necessary and sufficient conditions for
a medial ternary quasigroup to be strongly self-orthogonal are found, these con-
ditions are reduced to conditions of invertibility of 5 polynomials under a set of
decomposition authomorphisms of the quasigroup. Also, we give some conclusions
for self-orthogonal n-ary quasigroups.

1 Preliminaries

We should mention some necessary notions reformulating them for ternary case.
Throughout the article, all operations are defined on a fixed set Q called a carrier
and |Q| =: m < ∞.

A ternary operation f defined on Q is called invertible and the pair (Q; f) is
called a quasigroup of the order m if for every a, b of Q each of the terms f(x, a, b),
f(a, x, b), f(a, b, x) defines a permutation of Q.

To each ternary quasigroup (Q; f) of order m there corresponds a Latin cube of
order m, i.e., a 3-dimensional array on m distinct symbols from Q, each of which
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occurs exactly once in any line of the array.

Orthogonality. Orthogonality of ternary operations [3] is defined as follows:

1) a triplet of ternary operations f1, f2, f3 is called orthogonal if for all
a1, a2, a3 ∈ Q, the system of equations





f1(x1, x2, x3) = a1,

f2(x1, x2, x3) = a2,

f3(x1, x2, x3) = a3

has a unique solution;

2) a pair of ternary operations f1, f2 is called orthogonal if for all a1, a2 ∈ Q, the
system of equations {

f1(x1, x2, x3) = a1,

f2(x1, x2, x3) = a2

has m solutions;

3) an operation f is called complete if the equation

f1(x1, x2, x3) = a1

has m2 solutions for all a1 ∈ Q.

Orthogonality of three (two) operations means that under superimposition of the
corresponding cubes each triplet (respectively pair) of elements from Q occurs ex-
actly once (resp. m times). Completeness of an m-ordered ternary operation means
that each element of the carrier occurs exactly m2 times in this cube. Therefore,
completeness can be considered as a partial case of orthogonality.

A set of ternary operations Σ = {f1, f2, . . . , fs} is called

– orthogonal if each triplet of distinct operations from Σ is orthogonal, where
s > 3;

– pairwise orthogonal if each pair of distinct operations from Σ is orthogonal,
where s > 2.

A set of ternary operations f1, f2, f3 on a set Q is called strongly orthogonal if
the set of operations {f1, f2, f3, e1, e2, e3} is triple-wise orthogonal, where e1, e2, e3

are defined by the equalities

e1(x1, x2, x3) = x1, e2(x1, x2, x3) = x2, e3(x1, x2, x3) = x3.

The operations e1, e2, e3 are called the 1st selector, the 2nd selector and the 3rd
selector respectively.

Recall some definitions from [2] specifying it for ternary case.
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Let f be a ternary operation defined on a set Q. Binary operations f(c,{1,2}),
f(b,{1,3}) and f(a,{2,3}) which are defined by

f(c,{1,2}) :=f(x1, x2, c), f(b,{1,3}) :=f(x1, b, x3), f(a,{2,3}) :=f(a, x2, x3)

are called {1, 2}-, {1, 3}-, {2, 3}-retracts of f by a, b, c ∈ Q.
Let δ := {i, j} ⊂ {1, 2, 3}, operations f and g be ternary operations defined on

Q and a, b ∈ Q. Binary operations f(a,δ) and g(b,δ) are called similar δ-retracts of f
and g if a = b.

Definition 1. [2] Let δ ⊆ {1, 2, 3}. A set of ternary operations is called δ-retractly
orthogonal if all tuples of similar δ-retracts of these operations are orthogonal.

If δ = {i}, then δ-retract orthogonality of f degenerates into its i-invertibility.
If δ = {1, 2, 3}, then retract orthogonality of ternary operations f1, . . . , fn is orthog-
onality.

The next statement is another form of Theorem 3 [13] for ternary quasigroups.

Theorem 1. An orthogonal set of ternary quasigroups f1, f2, . . . , ft defined on a set
Q, where t > 1, is strongly orthogonal if and only if it is {i, j}-retractly orthogonal
for each i, j ∈ {1, 2, 3}, where i 6= j.

Let f1, f2, f3 be ternary operations defined on Q and

θ̄(x1, x2, x3) := (f1(x1, x2, x3); f2(x1, x2, x3); f3(x1, x2, x3)).

Therefore, the mapping θ̄ 7→ (f1, f2, f3) defines a one-to-one correspondence between
the set of all transformations of the set Q3 and the set of all triplets of ternary
operations defined on Q. Since a transformation θ̄ is a permutation of Q3 if and
only if the corresponding triplet (f1, f2, f3) of operations are orthogonal, there are
(m3)! ordered triplets of orthogonal ternary operations of order m.

Let f be an operation defined on Q and γ be a permutation of Q. Then the
operation αf being defined by

(αf)(x, y, z) := α (f(x, y, z))

is called a torsion of f .

Proposition 1. If a set of operations is orthogonal, then their torsions are also
orthogonal.

Proof. If a triplet (a, b, c) takes each value in the set Q3 and α, β, γ are permuta-
tions of Q, then the triplet (α−1(a), β−1(b), γ−1(c)) also takes each value in the set
Q3. Therefore, the statement ‘for all a, b, c the triplet of operations f1, f2, f3 is
orthogonal ’ means that ‘for all a, b, c of Q the system





f1(x1, x2, x3) = α−1(a),

f2(x1, x2, x3) = β−1(b),

f3(x1, x2, x3) = γ−1(c)
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has a unique solution’. Since this system is equivalent to the system





(αf1)(x1, x2, x3) = a,

(βf2)(x1, x2, x3) = b,

(γf3)(x1, x2, x3) = c,

the triplet αf1, βf2, γf3 is orthogonal.

Parastrophes. For every permutation σ ∈ S4, a σ-parastrophe σf of an invertible
ternary operation f is defined by

σf(x1σ, x2σ, x3σ) = x4σ :⇐⇒ f(x1, x2, x3) = x4.

This relationship is equivalent to

σf(x1, x2, x3) = x4 :⇐⇒ f(x1σ−1 , x2σ−1 , x3σ−1) = x4σ−1 . (1)

It is easy to verify that the formula

σ(τf) = στf (2)

holds for all permutations σ, τ ∈ S4 and for each invertible operation f .
A σ-parastrophe is called:

• an i-th division if σ = (i4) for i = 1, 2, 3, 4, where (44) := ι and (44)f := ιf = f ;

• an identical division if σ = ι;

• a principal parastrophe if 4σ = 4.

The formula (1) implies that any principal σ-parastrophe can be defined by

σf(x1, x2, x3) = f(x1σ−1 , x2σ−1 , x3σ−1). (3)

Therefore, a ternary operation is invertible if and only if it has four divisions. Each
ternary operation has at most 4! = 24 parastrophes. If all parastrophes are pairwise
different, the operation is called asymmetric. Four of the parastrophes are divisions,
one of them is identical. Each operation has 3! = 6 principal parastrophes.

Consider the subgroup S3 := {σ | 4σ = 4} of the symmetric group S4 and the
right cosets of S3:

S4 = S3(14) ∪ S3(24) ∪ S3(34) ∪ S3(44).

If τ ∈ S3(i4), i.e. τ = σ(i4) for some σ ∈ S3, then

i = 4(i4) = 4σ(i4) = 4τ
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and
τf(x1, x2, x3) = σ(i4)f(x1, x2, x3)

(2)
= σ

(
(i4)f

)
(x1, x2, x3) =

(3)
= (i4)f(x1σ−1 , x2σ−1 , x3σ−1)

and so
τf(x1, x2, x3) = (i4)f(x1σ−1 , x2σ−1 , x3σ−1).

Hence,
(i4)f(x1, x2, x3) = τf(x1σ, x2σ, x3σ).

Therefore, i-th division (i4)f exists, i.e. the operation f is i-invertible (note that
each ternary operation is 4-invertible). Moreover, for every κ ∈ S3(i4) there exists
κ-parastrophe.

Thus, the following theorem has been proved.

Theorem 2. Let τ ∈ S4 and τ ∈ S3(i4), where i := 4τ and σ := τ(i4) ∈ S3. Then
τ -parastrophe of a ternary invertible operation is its principal σ-parastrophe of i-th
division of the operation.

2 Medial quasigroups

A pair (Q; Ω) is called a ternary quasigroup algebra if all elements from Ω are
ternary invertible operations defined on Q.

A ternary quasigroup algebra (Q; Ω) is called:

• medial [14] if each pair f , g of operations from Ω satisfies the identity of
mediality :

f(g(x11, x12, x13), g(x21, x22, x23), g(x31, x32, x33)) =

g(f(x11, x21, x31), f(x12, x22, x32), f(x13, x23, x33)).
(4)

• abelian [14] if it is medial and has a one-element subalgebra, i.e. it has an
element 0 ∈ Q such that f(0, 0, 0) = 0 for all operations from Ω. The abelian
algebra is denoted by (Q; Ω, 0).

The theorem given below follows from more general statement [14, Theorem 3].

Theorem 3. A ternary quasigroup algebra (Q; Ω) is medial if and only if there
exists an abelian group (Q; +, 0), a set E of pairwise commuting automorphisms of
the group and a set A ⊆ Q of elements such that for each operation g ∈ Ω there exist
automorphisms ψ1, ψ2, ψ3 from E and elements ag ∈ A such that

g(y1, y2, y3) = ψ1y1 + ψ2y2 + ψ3y3 + ag,

µg(ah) = µh(ag) (5)

for all h ∈ Ω, where µg := ψ1 + ψ2 + ψ3 − ι.
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Hence, a ternary quasigroup (Q; f) is called medial if the identity (4) with f = g
holds. Since (5) with f = g is evident, the following assertion holds.

Corollary 1 ([15]). A quasigroup (Q; f) is medial if and only if there exists an
abelian group (Q; +) such that

f(x1, x2, x3) = ϕ1x1 + ϕ2x2 + ϕ3x3 + a, (6)

where ϕ1, ϕ2, ϕ3 are pairwise commuting automorphisms of (Q; +) and a ∈ Q.

These automorphisms are called coefficients, the element a is a free term, and
(Q; +) is a decomposition group of f .

Corollary 2. A ternary quasigroup algebra (Q; Ω, 0) is abelian if and only if there
exists an abelian group (Q; +, 0) and a set E of pairwise commuting automorphisms
of (Q; +, 0) such that for every operation g ∈ Ω there exist automorphisms ψ1, ψ2,
ψ3 from E such that

g(y1, y2, y3) = ψ1y1 + ψ2y2 + ψ3y3.

Lemma 1. Let (Q; f) be a medial quasigroup with (6) and J(x) := −x =: ϕ4(x).
Then for each τ ∈ S4

τf(x1, x2, x3) = Jϕ−1
4τ ϕ1τ (x1) + Jϕ−1

4τ ϕ2τ (x2) + Jϕ−1
4τ ϕ3τ (x3) + b, (7)

where b := Jϕ−1
4τ (a).

Proof. Suppose f is a medial quasigroup and is defined by (6). By virtue of (1),

ϕ1(x1τ−1) + ϕ2(x2τ−1) + ϕ3(x3τ−1) + a = x4τ−1 ,

i.e.,
ϕ1(x1τ−1) + ϕ2(x2τ−1) + ϕ3(x3τ−1) + ϕ4(x4τ−1) + a = 0.

As the group (Q; +) is commutative, the equality is equivalent to

ϕ1τ (x1) + ϕ2τ (x2) + ϕ3τ (x3) + ϕ4τ (x4) + a = 0.

Therefrom,

x4 = Jϕ−1
4τ ϕ1τ (x1) + Jϕ−1

4τ ϕ2τ (x2) + Jϕ−1
4τ ϕ3τ (x3) + Jϕ−1

4τ (a).

Thus, (7) holds.

Corollary 3. Any parastrophe of a medial ternary quasigroup is medial.

Corollary 4. Let (Q; f, 0) be an abelian quasigroup with (6) and
J(x) := −x =: ϕ4(x). Then for each τ ∈ S4,

τf(x1, x2, x3) = Jϕ−1
4τ ϕ1τ (x1) + Jϕ−1

4τ ϕ2τ (x2) + Jϕ−1
4τ ϕ3τ (x3). (8)
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Lemma 2. Let (Q; f) be a medial ternary quasigroup (Q; f) with (6) and τ1, τ2,
τ3 ∈ S4. The parastrophes τ1f , τ2f , τ3f are orthogonal if and only if the determinant

∣∣∣∣∣∣∣

ϕ1τ1 ϕ2τ1 ϕ3τ1

ϕ1τ2 ϕ2τ2 ϕ3τ2

ϕ1τ3 ϕ2τ3 ϕ3τ3

∣∣∣∣∣∣∣
(9)

is an automorphism of the group (Q; +), where ϕ4 := J .

Proof. According to Proposition 1, orthogonality of the parastrophes τ1f , τ2f , τ3f is
equivalent to orthogonality of their torsions

L−1
a ϕ4τ1J (τ1f) , L−1

a ϕ4τ2J (τ2f) , L−1
a ϕ4τ3J (τ3f) .

By Lemma 1,

L−1
a ϕ4τ1J (τ1f) (x1, x2, x3) = ϕ1τ1(x1) + ϕ2τ1(x2) + ϕ3τ1(x3),

L−1
a ϕ4τ2J (τ2f) (x1, x2, x3) = ϕ1τ2(x1) + ϕ2τ2(x2) + ϕ3τ2(x3),

L−1
a ϕ4τ3J (τ3f) (x1, x2, x3) = ϕ1τ3(x1) + ϕ2τ3(x2) + ϕ3τ3(x3),

where La(x) := x+a. Thus, the parastrophes τ1f , τ2f , τ3f are orthogonal if and only
if the system of equations





ϕ1τ1(x1) + ϕ2τ1(x2) + ϕ3τ1(x3) = b1,

ϕ1τ2(x1) + ϕ2τ2(x2) + ϕ3τ2(x3) = b2,

ϕ1τ3(x1) + ϕ2τ3(x2) + ϕ3τ3(x3) = b3

has a unique solution for all b1, b2, b3 in Q. Since the automorphisms ϕ1, ϕ2, ϕ3, ϕ4

of the commutative group (Q; +) pairwise commute, they generate a commutative
ring K. Therefore, this system has a unique solution if and only if the determinant
(9) is invertible, i.e. it is an automorphism of the group (Q; +).

3 Self-orthogonal medial ternary quasigroups

A self-orthogonal ternary operation f has 6 triple-wise orthogonal operations,
i.e. 20 triplets of orthogonal principal parastrophes of f . Therefore according to
Lemma 2, to check self-orthogonality of an invertible medial operation f , we have
to examine invertibility of 20 determinants, which can be described by polynomials
with some conditions.

Definition 2. A polynomial p over a commutative ring K will be called invertible-
valued over a subset H ⊆ K if p(a, b, c) is invertible in K whenever a, b, c are in
H.
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Lemma 3. A ternary medial quasigroup (Q, f), where f is defined by (6), is self-
orthogonal if and only if the polynomials

γ1 − γ2, γ1 + γ2 + γ3,

γ2
1 + γ2

2 + γ2
3 − γ1γ2 − γ1γ3 − γ2γ3

(10)

are invertible-valued over the set of automorphisms {ϕ1, ϕ2, ϕ3} of the group (Q,+).

Proof. Suppose that (Q; f) is a medial ternary quasigroup and (6) is its decomposi-
tion which exists by Corollary 1. Since the automorphisms ϕ1, ϕ2, ϕ3 of the group
(Q; +) pairwise commute, they generate a subring K in the ring of all endomor-
phisms of the commutative group (Q; +). According to Lemma 2, orthogonality of
principal parastrophes τ1f , τ2f , τ3f of the operation f is equivalent to invertibility
of the determinant (9) in the ring K, i.e. the determinant should be an automor-
phism of the group (Q; +). Self-orthogonality means that all 20 determinants of the
form (9) with conditions τ1, τ2, τ3 ∈ S3 should be invertible. In other words, the
polynomial

d := d~τ (γ1, γ2, γ3) :=

∣∣∣∣∣∣

γ1τ1 γ2τ1 γ3τ1

γ1τ2 γ2τ2 γ3τ2

γ1τ3 γ2τ3 γ3τ3

∣∣∣∣∣∣
(11)

is invertible-valued over the set {ϕ1, ϕ2, ϕ3} in the ring K, where γ1, γ2, γ3 are
variables, ~τ := (τ1, τ2, τ3).

Two polynomials are supposed to be equivalent if they are invertible simultane-
ously and we will denote this fact by ∼.

Now permute columns in (11) to get sequence γ1, γ2, γ3 in the first row and
permute the second and third rows to get the determinant

d ∼
∣∣∣∣∣∣

γ1 γ2 γ3

γ1ν γ2ν γ3ν

γ1τ γ2τ γ3τ

∣∣∣∣∣∣

with 1 6 1ν 6 1τ , where ν, τ ∈ S3. Add the first and second columns to the third
one:

d ∼ (γ1 + γ2 + γ3)

∣∣∣∣∣∣

γ1 γ2 ι
γ1ν γ2ν ι
γ1τ γ2τ ι

∣∣∣∣∣∣
Therefore,

d ∼
∣∣∣∣∣∣

γ1 γ2 ι
γ1ν γ2ν ι
γ1τ γ2τ ι

∣∣∣∣∣∣
(12)

under the condition that the polynomial γ1 + γ2 + γ3 is invertible.
No column has three repetitions of a variable, otherwise d has two equal rows

and consequently d = 0. If d has two repetitions of a variable, then rename it by
γ1. Permuting rows and columns, we obtain (12) with 1ν = 1. In the second row
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of this determinant, 2ν = 3, otherwise the first and second rows coincide. Multiply
the first row by −ι and add it to the second row:

d ∼
∣∣∣∣∣∣

γ1 γ2 ι
0 γ3 − γ2 0

γ1τ γ2τ ι

∣∣∣∣∣∣
= (γ3 − γ2)(γ1 − γ1τ ).

Thus, invertibility of d is equivalent to the fact that both polynomials of the form
γ1 + γ2 + γ3 and γ1 − γ2 are invertible-valued over the set {ϕ1, ϕ2, ϕ3}.

At last, suppose the variables are different in each row and in each column. Then
we obtain

d ∼
∣∣∣∣∣∣

γ1 γ2 ι
γ2 γ3 ι
γ3 γ1 ι

∣∣∣∣∣∣
= γ2

1 + γ2
2 + γ2

3 − γ1γ2 − γ1γ3 − γ2γ3.

Consequently, the lemma has been proved.

Theorem 4. A ternary medial quasigroup (Q, f), where f is defined by (6), is
self-orthogonal if and only if the mappings

ϕ1 − ϕ2, ϕ1 − ϕ3, ϕ2 − ϕ3, ϕ1 + ϕ2 + ϕ3,

(ϕ1 + ϕ2 + ϕ3)2 − 3(ϕ1ϕ2 + ϕ1ϕ3 + ϕ2ϕ3)
(13)

are automorphisms of the group (Q,+).

Proof. The polynomial γ1 − γ2 is invertible-valued over the automorphisms ϕ1, ϕ2,
ϕ3 if and only if the endomorphisms

ϕ1 − ϕ2, ϕ1 − ϕ3, ϕ2 − ϕ3

are automorphisms. The polynomials

γ1 + γ2 + γ3, γ2
1 + γ2

2 + γ2
3 − γ1γ2 − γ1γ3 − γ2γ3

are symmetric and contain three variables, then they are invertible-valued if and
only if the endomorphisms ϕ1 + ϕ2 + ϕ3 and

ϕ2
1 + ϕ2

2 + ϕ2
3 − (ϕ1ϕ2 + ϕ1ϕ3 + ϕ2ϕ3) = (ϕ1 + ϕ2 + ϕ3)2 − 3(ϕ1ϕ2 + ϕ1ϕ3 + ϕ2ϕ3)

are automorphisms of the group (Q; +).

Corollary 5. If at least two coefficients of a central quasigroup coincide, then the
quasigroup can not be self-orthogonal.
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4 Strongly self-orthogonal medial quasigroups

The concept of strong orthogonality of the given ternary quasigroups which fol-
lows from Theorem 1 with the restriction of mediality is: a triplet of ternary medial
quasigroups is strongly orthogonal if for all s ∈ {1, 2, 3}, all minors of order s of the
corresponding determinant are invertible.

Lemma 4. A ternary medial quasigroup (Q, f), where f is defined by (6), is strongly
self-orthogonal if and only if the polynomials (10) and the polynomials

γ1γ2 − γ2
3 , γ1 + γ2 (14)

are invertible-valued over the set of automorphisms {ϕ1, ϕ2, ϕ3} of the group (Q,+).

Proof. According to Theorem 1, the necessary and sufficient condition for a set of
quasigroups to be strongly orthogonal is that each its subset is retractly orthogonal.
For the ternary quasigroups it means that

1. Each operation has to be a quasigroup;

2. Each pair of quasigroups has to be {1, 2}-, {1, 3}-, {2, 3}-retractly orthogonal;

3. Each triplet of quasigroups has to be orthogonal.

Conditions for satisfying item 3 are found in Lemma 3. Consequently, it remains
to consider item 2, i.e. invertibility conditions for minors of order 2 of determinant
(11).

If every column contains each of the variables γ1, γ2, γ3, then the determinant
is a Latin square of order 3. Therefore permuting rows and columns, we obtain the
determinant ∣∣∣∣∣∣

γ1 γ2 γ3

γ2 γ3 γ1

γ3 γ1 γ2

∣∣∣∣∣∣
which is invertible simultaneously with (11). It is obvious that this determinant
contains only one form of minors of order 2 up to sign J and relabeling of the
variables: namely, it is γ1γ2 − γ2

3 .
Suppose that not every column contains each of the variables γ1, γ2, γ3. There-

fore, one of the variables repeats. Let us label it by means of γ1. Then permuting
rows and columns, we obtain the determinant

d =

∣∣∣∣∣∣

γ1 γ2 γ3

γ1 γi γj

γ1ν γ2ν γ3ν

∣∣∣∣∣∣

each row of which contains different variables. If i = 2, then j = 3 and thence the
first and second rows are equal and so d = 0. It means that i = 3 and j = 2. If
1ν = 1, then two rows coincide and so the determinant is 0. Therefore, 1ν 6= 1.
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Let 1ν = 3. Now relabel variable γ2 by γ3, γ3 by γ2 and then permute the second
and third columns. As a result, we obtain determinants with 1ν = 2. There are two
such determinants:

d1 =

∣∣∣∣∣∣

γ1 γ2 γ3

γ1 γ3 γ2

γ2 γ1 γ3

∣∣∣∣∣∣
, d2 =

∣∣∣∣∣∣

γ1 γ2 γ3

γ1 γ3 γ2

γ2 γ3 γ1

∣∣∣∣∣∣
.

They are equivalent. Indeed, relabel variable γ1 by γ3, γ3 by γ1 in d2 and then
permute the rows and the columns:

d2 ∼
∣∣∣∣∣∣

γ3 γ2 γ1

γ3 γ1 γ2

γ2 γ1 γ3

∣∣∣∣∣∣
∼

∣∣∣∣∣∣

γ3 γ1 γ2

γ2 γ1 γ3

γ3 γ2 γ1

∣∣∣∣∣∣
∼

∣∣∣∣∣∣

γ1 γ2 γ3

γ1 γ3 γ2

γ2 γ1 γ3

∣∣∣∣∣∣
= d1.

Thus, it is enough to consider all minors of the determinant d1.
The minors of the first and second rows are

∣∣∣∣
γ1 γ2

γ1 γ3

∣∣∣∣ = γ1(γ3 − γ2),
∣∣∣∣

γ1 γ3

γ1 γ2

∣∣∣∣ = γ1(γ2 − γ3),

∣∣∣∣
γ2 γ3

γ3 γ2

∣∣∣∣ = γ2
2 − γ2

3 = (γ2 + γ3)(γ2 − γ3).

The minors of the first and third rows are
∣∣∣∣

γ1 γ2

γ2 γ1

∣∣∣∣ = γ2
1 − γ2

2 = (γ1 + γ2)(γ1 − γ2),
∣∣∣∣

γ1 γ3

γ2 γ3

∣∣∣∣ = γ3(γ1 − γ2),

∣∣∣∣
γ2 γ3

γ1 γ3

∣∣∣∣ = γ3(γ2 − γ1).

The minors of the second and third rows are
∣∣∣∣

γ1 γ3

γ2 γ1

∣∣∣∣ = γ2
1 − γ2γ3,

∣∣∣∣
γ1 γ2

γ2 γ3

∣∣∣∣ = γ1γ3 − γ2
2 ,

∣∣∣∣
γ3 γ2

γ1 γ3

∣∣∣∣ = γ2
3 − γ1γ2.

Consequently, strong self-orthogonality of f is equivalent to the fact that poly-
nomials (10) and (14) are invertible-valued over {ϕ1, ϕ2, ϕ3}.
Theorem 5. A ternary medial quasigroup (Q, f), where f is defined by (6), is
strongly self-orthogonal if and only if the mappings (13) and

ϕ2ϕ3 − ϕ2
1, ϕ1ϕ3 − ϕ2

2, ϕ1ϕ2 − ϕ2
3,

ϕ1 + ϕ2, ϕ1 + ϕ3, ϕ2 + ϕ3
(15)

are automorphisms of the group (Q,+).
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Proof. The first part of the theorem follows from Theorem 4.
The polynomial γ1 + γ2 is invertible-valued over the automorphisms ϕ1, ϕ2, ϕ3

if and only if the endomorphisms

ϕ1 + ϕ2, ϕ1 + ϕ3, ϕ2 + ϕ3

are automorphisms. The polynomial γ1γ2− γ2
3 is invertible-valued if and only if the

endomorphisms
ϕ1ϕ2 − ϕ2

3, ϕ1ϕ3 − ϕ2
2, ϕ2ϕ3 − ϕ2

1

are automorphisms of the group (Q; +).

Conclusion

Let Zm be a ring of integers modulo m. Consider a ternary operation f with
decomposition

f(x, y, z) := x + 2y + 3z.

If m is relatively prime to 6, then (Zm; f) is a quasigroup.
Let us now consider conditions (13) and (15) for f . Conditions (13) are

2− 1 = 1, 3− 1 = 2, 3− 2 = 1, 1 + 2 + 3 = 6,

62 − 3 · (1 · 2 + 1 · 3 + 2 · 3) = 36− 33 = 3.

Conditions (15) are

1 · 2− 32 = −7, 1 · 3− 22 = −1, 2 · 3− 12 = 5,

1 + 2 = 3, 1 + 3 = 4, 2 + 3 = 5.

According to Theorem 4 and Theorem 5, we have three conclusions:

1. (Zm; f) is a self-orthogonal ternary quasigroup if m is not divisible by 6;

2. (Zm; f) is a self-orthogonal ternary quasigroup, but it is not strongly self-
orthogonal if m is not divisible by 6 and m is divisible by 5 or 7;

3. (Zm; f) is a strongly self-orthogonal ternary quasigroup if m is not divisible
by 2, 3, 5 and 7.

Corollary 6. n-ary strongly self-orthogonal linear quasigroups do not exist if n > 3.

Proof. Suppose that (G;h) is an n-ary strongly self-orthogonal linear quasigroup,
where n > 3, i.e. there exists a group (G; +), its automorphisms ϕ1, . . . , ϕn and an
element a ∈ G such that

h(x1, x2, . . . , xn) = ϕ1x1 + ϕ2x2 + . . . + ϕnxn + a.
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A decomposition of its principal σ-parastrophe σh with the conditions 1σ = 1, 2σ = 2
is

σh(x1, x2, x3, . . . , xn) = ϕ1x1 + ϕ2x2 + ϕ3x3σ−1 + . . . + ϕnxnσ−1 + a.

Strong self-orthogonality of h implies that, in particular, any {1, 2}-retracts of h and
σh are orthogonal, i.e. for every b1, b2 and for all a3, . . . , an, the system

{
ϕ1x1 + ϕ2x2 + ϕ3a3 + . . . + ϕnan + a = b1,

ϕ1x1 + ϕ2x2 + ϕ3a3σ−1 + . . . + ϕnanσ−1 + a = b2

has a unique solution. Therefore, the system
{

ϕ1x1 + ϕ2x2 = c1,

ϕ1x1 + ϕ2x2 = c2

has a unique solution for all c1 and c2 from G, in particular, when c1 6= c2, which is
a contradiction. This contradiction shows that an n-ary (n > 3) linear quasigroup
(G; h) with the property of strong self-orthogonality does not exist.
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Poisson Stable Motions and Global Attractors of
Symmetric Monotone Nonautonomous Dynamical

Systems

David Cheban

Abstract. This paper is dedicated to the study of the problem of existence of Pois-
son stable (Bohr/Levitan almost periodic, almost automorphic, almost recurrent, re-
current, pseudo-periodic, pseudo-recurrent and Poisson stable) motions of symmetric
monotone non-autonomous dynamical systems (NDS). It is proved that every pre-
compact motion of such system is asymptotically Poisson stable. We give also the
description of the structure of compact global attractor for monotone NDS with sym-
metry. We establish the main results in the framework of general non-autonomous
(cocycle) dynamical systems. We apply our general results to the study of the prob-
lem of existence of different classes of Poisson stable solutions and global attractors
for a chemical reaction network and nonautonomous translation-invariant difference
equations.

Mathematics subject classification: 39A24, 37B05, 37B20, 37B55, 34C12,
34C27.
Keywords and phrases: Poisson stable motions, compact global attractor, mono-
tone nonautonomous dynamical systems, translation-invariant dynamical systems.

1 Introduction

This article continues the author’s series of works [13]-[18] devoted to the study of
Poisson stable motions and global attractors of monotone nonautonomous dynamical
systems.

In present work we study a class of monotone nonautonomous dynamical systems
with symmetry. The writing of this article was motivated by works D. Angeli and
E. Sontag [1,2], D. Angeli, P. Leenheer and E. Sontag [3] (for autonomous systems),
H. Hu and J. Jiang [22, 23] (for periodic and almost periodic systems) and Q. Liu
and Y. Wang [28] (for almost periodic and almost automorphic systems). We study
these problems within the framework of general non-autonomous dynamical systems
(cocycles).

2 NDS: some general properties

In this section we collect some notions and facts for non-autonomous dynamical
systems which we will use below; the reader may refer to [9],[12, Ch. IX],[31] for
details.
c© D. Cheban, 2022
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Throughout the paper, we assume that X and Y are metric spaces and for
simplicity we use the same notation ρ to denote the metrics on them, which we
think would not lead to confusion. Let R = (−∞,+∞), Z := {0,±1,±2, . . .}, S = R
or Z, S+ := {s ∈ S| s ≥ 0}, S− := {s ∈ S| s ≤ 0} and T ⊆ S be a sub-semigroup of
S such that S+ ⊆ T. For given dynamical system (X,T, π) and given point x ∈ X,
we denote by Σx (respectively, Σ+

x ) its trajectory (respectively, semi-trajectory), i.e.
Σx := {π(t, x) : t ∈ T} (respectively, Σ+

x := {π(t, x) : t ∈ T+}), and call the
mapping π(·, x) : T → X the motion through x at the moment t = 0. For given
set A ⊆ X, we denote ΣA := {π(t, x) : t ∈ T, x ∈ A}; Σ+

A is defined similarly. We
denote the hull (respectively, semi-hull) of a point x by H(x) := Σx (respectively,
H+(x) := Σ+

x ), where by bar we mean closure. A point x ∈ X is called Lagrange
stable, “st. L” in short, (respectively, positively Lagrange stable, “st. L+” in short)
if H(x) (respectively, H+(x)) is compact.

Let (Y,S, σ) be a two-sided dynamical system on Y and E be a metric space.

Definition 1. (Cocycle on the state space E with the base (Y, S, σ).). A triplet
〈E, φ, (Y,S, σ)〉 (or briefly φ if no confusion) is said to be a cocycle on state
space (or fibre) E with base (Y, S, σ) (or driving system (Y, S, σ)) if the mapping
φ : S+ × Y × E → E satisfies the following conditions:

1. φ(0, u, y) = u for all u ∈ E and y ∈ Y ;

2. φ(t + τ, u, y) = φ(t, φ(τ, u, y), σ(τ, y)) for all t, τ ∈ S+, u ∈ E and y ∈ Y ;

3. the mapping φ is continuous.

Definition 2. (Skew-product dynamical system.) Let 〈E, φ, (Y,S, σ)〉 be a cocycle
on E, X := E × Y and π be a mapping from S+ ×X to X defined by π := (φ, σ),
i.e., π(t, (u, y)) = (φ(t, u, y), σ(t, y)) for all t ∈ S+ and (u, y) ∈ E × Y . The triplet
(X, S+, π) is an autonomous dynamical system and is called skew-product dynamical
system.

Definition 3. (Nonautonomous dynamical system.) Let T1 ⊆ T2 be two sub-
semigroups of the group S, (X,T1, π) and (Y,T2, σ) be two autonomous dynamical
systems and h : X → Y be a homomorphism from (X,T1, π) on (Y,T2, σ) (i.e.,
h(π(t, x)) = σ(t, h(x)) for all t ∈ T1 and x ∈ X, and h is continuous and surjec-
tive), then the triplet 〈(X,T1, π), (Y, T2, σ), h〉 is called a nonautonomous dynamical
system (NDS) with basis (Y,T2, σ).

Example 1. (The nonautonomous dynamical system generated by cocycle φ.) An
important class of NDS are generated from cocycles. Indeed, let 〈E, φ, (Y, S, σ)〉 be a
cocycle, (X, S+, π) be the associated skew-product dynamical system
(X = E × Y, π = (φ, σ)) and h = pr2 : X → Y (the natural projection mapping),
then the triplet 〈(X, S+, π), (Y, S, σ), h〉 is a NDS.

Lagrange stable (or called ”compact”) motions have been studied comprehen-
sively, but it is not the case for non-Lagrange stable motions. The following concept
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of conditional compactness introduced in [9] is important for our study of noncom-
pact motions and NDS with non-compact base (driving system).

Definition 4. Let (X, h, Y ) be a fiber space [24]. A set M ⊆ X is said to be
conditionally precompact if its intersection with the preimage of any precompact
subset Y ′ ⊆ Y , i.e. the set h−1(Y ′)

⋂
M , is a precompact subset of X. A set M is

called conditionally compact if it is closed and conditionally precompact.

Remark 1. 1. Let K be a compact space, Y is a noncompact metric space,
X := K × Y and h = pr2 : X → Y . Then the triplet (X,h, Y ) is a fiber space. The
space X is conditionally compact, but it is not compact.

2. If Y is a compact set and M ⊆ X is conditionally precompact, then M is a
precompact set.

Let x0 ∈ X. Denote by Σ+
x0

:= {π(t, x0) : t ≥ 0} the positive semi-trajectory of
point x0 and H+(x0) := Σ+

x0
the semi-hull of x0, where by bar the closure of Σ+

x0
in

X is denoted.
The following result provides a useful criterion for conditional compactness in

applications.

Lemma 1 ([7]). Let 〈E, φ, (Y, S, σ)〉 be a cocycle and 〈(X, S+, π), (Y,RSσ), h〉 be the
NDS generated by the cocycle φ (cf. Example 1).
Assume that x0 := (u0, y0) ∈ X = E×Y and the set Q+

(u0,y0) := {φ(t, u0, y0) : t ∈ S+}
is compact. Then the semi-hull H+(x0) is conditionally compact.

Denote by C(T, X) the family of all continuous functions f : T → X equipped
with the compact-open topology. This topology can be generated by Bebutov dis-
tance (see, e.g.[4],[41, ChIV])

d(f, g) := sup
L>0

min{max
|t|≤L

ρ(f(t), g(t)), 1/L}.

Denote by (C(T, X),T, σ) the shift dynamical system (or called Bebutov dynamical
system), i.e. σ(τ, f) := f τ , where f τ (t) := f(t+ τ) for t ∈ T. Note that the function
f ∈ C(T, X) is positively Lagrange stable (respectively, Lagrange stable) if and only
if the function f is bounded and uniformly continuous on T (see, e.g.[34],[41, ChIV]).

Let (Y,S, σ) be a two-sided dynamical system.

Definition 5. A point y ∈ Y is called positively (respectively, negatively) Poisson
stable if there exists a sequence tn → +∞ (respectively, tn → −∞) such that
σ(tn, y) → y as n →∞. If y is Poisson stable in both directions, it is called Poisson
stable.

Definition 6. Let 〈E, φ, (Y,S, σ)〉 (respectively, (X, S+, π)) be a cocycle (respec-
tively, one-sided dynamical system). A continuous mapping ν : S → E (respec-
tively, γ : S → X) is called an entire trajectory of cocycle φ (respectively, of
dynamical system (X, S+, π)) passing through the point (u, y) ∈ E × Y (respec-
tively, x ∈ X) at t = 0 if φ(t, ν(s), σ(s, y)) = ν(t + s) and ν(0) = u (respectively,
π(t, γ(s)) = γ(t + s) and γ(0) = x) for all t ∈ S+ and s ∈ S.
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Denote by

– C(T, X) the space of all continuous functions f : T → X equipped with the
compact-open topology;

– Φx the family of all entire trajectories of (X, S+, π) passing through the point
x ∈ X at the initial moment t = 0 and Φ :=

⋃{Φx : x ∈ X}.
Remark 2. Note that:

1. if γ ∈ Φx then γτ ∈ Φγ(τ), where γτ (t) := γ(t + τ) for t ∈ T, and consequently
Φ is a translation invariant subset of C(T, X);

2. if γn ∈ Φxn and γn → γ in C(T, X) as n →∞, then γ ∈ Φx with x := lim
n→∞xn

and consequently Φ is a closed subset of C(T, X).

By Remark 2 Φ is a closed and invariant (with respect to shifts) subset of
C(T, X), and consequently on Φ a shift dynamical system (Φ,T, λ) induced from(
C(T, X),T, λ

)
is defined.

Let M be a subset of X. We denote the ω-limit set of M by

ω(M) :=
⋂

t≥0

⋃
{π(τ, M) : τ ≥ t};

for a singleton set, for simplicity we also write ω(x) or ωx for ω({x}) and denote
ωq(M) := ω(M)

⋂
h−1(q). Note that x ∈ ω(M) if and only if there exist sequences

{xn} ⊂ M and {tn} ⊂ R such that tn → +∞ as n →∞ and lim
n→∞π(tn, xn) = x.

Definition 7. Let 〈(X,S+, π), (Y, S, σ), h〉 be an NDS. A subset A ⊆ X is said to
be (positively) uniformly stable if for arbitrary ε > 0 there exists δ = δ(ε) > 0 such
that ρ(x, a) < δ (a ∈ A, x ∈ X and h(a) = h(x)) implies ρ(π(t, x), π(t, a)) < ε for
any t ≥ 0. In particular, a point x0 ∈ X is called uniformly stable if the singleton
set {x0} is so.

Remark 3. Let A ⊆ X be uniformly stable and B ⊆ A, then B is also uniformly
stable.

Lemma 2. ([5, ChIV],[6]) If the set A ⊆ X is uniformly stable and the mapping
h : X → Y is open, then the closure A of A is uniformly stable.

Corollary 1. If Σ+
x0

is uniformly stable and h is open, then:

1. H+(x0) is uniformly stable;

2. ωx0 is uniformly stable, because ωx0 ⊆ H+(x0).

Remark 4. Note that if an NDS is generated by a skew-product dynamical system
(or equivalently by a cocycle) in which case the homomorphism h is given by the
natural projection mapping, then clearly h is open.
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3 Poisson stable motions and their comparability by character of
recurrence

3.1 Classes of Poisson stable motions

Let (X, S, π) be a dynamical system. Let us recall the classes of Poisson stable
motions we study in this paper, see [31,34,37,41] for details.

Definition 8. A point x ∈ X is called stationary (respectively, τ -periodic) if
π(t, x) = x (respectively, π(t + τ, x) = π(t, x)) for all t ∈ S.

Definition 9. A point x ∈ X is called quasi-periodic with the base of frequency
ν = (ν1, ν2, . . . , νk) if the associated function f(·) := π(·, x) : S → X satisfies the
following conditions:

1. the numbers ν1, ν2, . . . , νk are rationally independent;

2. there exists a continuous function Φ : Rk → X such that
Φ(t1 + 2π, t2 + 2π, . . . , tk + 2π) = Φ(t1, t2, . . . , tk) for all (t1, t2, . . . , tk) ∈ Rk;

3. f(t) = Φ(ν1t, ν2t, . . . , νkt) for t ∈ R.

Definition 10. For given ε > 0, a number τ ∈ R is called an ε-shift of x (respec-
tively, ε-almost period of x) if ρ(π(τ, x), x) < ε (respectively, ρ(π(τ+t, x), π(t, x)) < ε
for all t ∈ R).

Definition 11. A point x ∈ X is called almost recurrent (respectively, Bohr almost
periodic) if for any ε > 0 there exists a positive number l such that any segment of
length l contains an ε-shift (respectively, ε-almost period) of x.

Definition 12. If a point x ∈ X is almost recurrent and its trajectory Σx is pre-
compact, then x is called (Birkhoff) recurrent.

Denote Ny := {{tn} ⊂ S : σ(tn, y) → y}, N+∞
y := {{tn} ∈ Ny : tn → +∞},

N−∞
y := {{tn} ∈ Ny : tn → −∞}, and N∞

y := {{tn} ∈ Ny : tn →∞}.

Definition 13. A point x ∈ X is called Levitan almost periodic [27] (see also
[5, 10, 26]) if there exists a dynamical system (Y,T, σ) and a Bohr almost periodic
point y ∈ Y such that Ny ⊆ Nx.

Definition 14. A point x ∈ X is called almost automorphic if it is Lagrange stable
and Levitan almost periodic.

Definition 15. A point x ∈ X is said to be uniformly Poisson stable or pseudo-
periodic in the positive (respectively, negative) direction if for arbitrary ε > 0 and
l > 0 there exists an ε-almost period τ > l (respectively, τ < −l) of x. The point x
is said to be uniformly Poisson stable or pseudo-periodic if it is so in both directions.
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Definition 16 ([32, 33]). A point x ∈ X is said to be pseudo-recurrent if for any
ε > 0, p ∈ Σx and t0 ∈ R there exists L = L(ε, t0) > 0 such that

B(p, ε)
⋂

π([t0, t0 + L], p) 6= ∅,

where
B(p, ε) := {x ∈ X : ρ(p, x) < ε} and π([t0, t0 + L], p) := {π(t, p) : t ∈ [t0, t0 + L]}.
Definition 17. A point x ∈ X is said to be [16, ChI] strongly Poisson stable (in the
positive direction) if p ∈ ωp for any p ∈ H(x).

Remark 5. It is known that:

1. a strongly Poisson stable point is Poisson stable, but the converse is not true
in general;

2. all the motions introduced above (Definitions 8–16) are strongly Poisson stable.

Definition 18 ([11,38]). A point x ∈ X is said to be asymptotically stationary (re-
spectively, asymptotically τ -periodic, asymptotically Bohr almost periodic, asymp-
totically almost automorphic, asymptotic recurrent, asymptotically Levitan almost
periodic, asymptotically almost recurrent, asymptotically pseudo-periodic, asymp-
totically pseudo-recurrent, asymptotically Poisson stable) if there exists a stationary
(respectively, τ -periodic, Bohr almost periodic, almost automorphic, recurrent, Lev-
itan almost periodic, almost recurrent, pseudo-periodic, pseudo-recurrent, Poisson
stable) point p ∈ X such that lim

t→+∞ ρ(π(t, x), π(t, p)) = 0.

3.2 Comparability of motions by their character of recurrence

In this subsection we present some notions and results stated and proved by B.
A. Shcherbakov [34]–[37].

Let (X, S, π) and (Y,S, σ) be two dynamical systems.

Definition 19. A point x ∈ X is said to be comparable with y ∈ Y by character of
recurrence if for any ε > 0 there exists a δ = δ(ε) > 0 such that every δ-shift of y is
an ε-shift for x, i.e., ρ(σ(τ, y), y) < δ implies ρ(π(τ, x), x) < ε.

Theorem 1. The following conditions are equivalent:

1. the point x is comparable with y by character of recurrence;

2. Ny ⊆ Nx;

3. N∞
y ⊆ N∞

x ;

4. from any sequence {tn} ∈ Ny we can extract a subsequence {tnk
} ∈ Nx;

5. from any sequence {tn} ∈ N∞
y we can extract a subsequence {tnk

} ∈ N∞
x .
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Theorem 2. Let x ∈ X be comparable with y ∈ Y . If the point y is stationary
(respectively, τ -periodic, Levitan almost periodic, almost recurrent, Poisson stable),
then so is the point x.

Definition 20. A point x ∈ X is called uniformly comparable with y ∈ Y by
character of recurrence if for any ε > 0 there exists a δ = δ(ε) > 0 such that every
δ-shift of σ(t, y) is aN ε-shift of π(t, x) for all t ∈ S, i.e., ρ(σ(t + τ, y), σ(t, y)) < δ
implies ρ(π(t + τ, x), x) < ε for all t ∈ R (or equivalently: ρ(σ(t1, y), σ(t2, y)) < δ
implies ρ(π(t1, x), π(t2, x)) < ε for all t1, t2 ∈ S).

Denote Mx := {{tn} ⊂ S : {π(tn, x)} converges}, M+∞
x := {{tn} ∈ Mx : tn →

+∞ as n →∞} and M∞
x := {{tn} ∈ Mx : tn →∞ as n →∞}.

Definition 21 ([8,11]). A point x ∈ X is said to be strongly comparable with y ∈ Y
by character of recurrence if My ⊆ Mx.

Theorem 3. (i) If My ⊆ Mx, then Ny ⊆ Nx, i.e. strong comparability implies
comparability.

(ii) Let X be a complete metric space. If the point x is uniformly comparable
with y by character of recurrence, then My ⊆ Mx, i.e. uniform comparability implies
strong comparability.

Theorem 4. Let y be Lagrange stable. Then My ⊆ Mx holds if and only if the point
x is Lagrange stable and uniformly comparable with y by character of recurrence.

Theorem 5. Let X and Y be two complete metric spaces. Let the point x ∈ X
be uniformly comparable with y ∈ Y by character of recurrence. If y is quasi-
periodic (respectively, Bohr almost periodic, almost automorphic, Birkhoff recurrent,
Lagrange stable, pseudo-periodic, pseudo-recurrent), then so is x.

4 Global Attractors of Non-Autonomous Dynamical Systems

Definition 22. A family {Ay| y ∈ Y } of subsets Ay of W indexed by y ∈ Y is called
a non-autonomous set.

Let {Ay| y ∈ Y } be a non-autonomous set. Denote byA the subset of X := W×Y
defined by equality

A :=
⋃
{Ap × {y}| y ∈ Y }} = {(w, y) ∈ X| w ∈ Ay, y ∈ Y }.

Remark 6. 1. Let A be a subset of X = W × Y , Ay := A
⋂

pr−1
2 (y) and

Ay := pr1(Ay), then {Ay| y ∈ Y } is a non-autonomous set.
2. Denote by A =

⋃{Ay × {y}| y ∈ Y }, then A ⊆ A.

Definition 23. A non-autonomous set {Ay| y ∈ Y }is said to be

1. precompact (respectively, uniformLY precompact) if for every y ∈ Y the set
Ay (respectively,

⋃{Ay| y ∈ Y }) is a precompact subset of W ;
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2. bounded (respectively, uniformLY bounded) if for every y ∈ Y the set Ay

(respectively,
⋃{Ay| y ∈ Y }) is a bounded subset of W .

Let W be a complete metric space.

Definition 24. A cocycle ϕ over (Y,T, σ) with the fiber W is said to be compactly
dissipative if there exits a nonempty compact K ⊆ W such that

lim
t→+∞ sup{β(U(t, y)M,K) | y ∈ Y } = 0 (1)

for any M ∈ C(W ), where β(A,B) := sup{ρ(a,B) : a ∈ A} is a semi-distance of
Hausdorff.

Definition 25. The family {Iy | y ∈ Y }(Iy ⊂ W ) of nonempty compact subsets is
called a compact (forward) global attractor of the cocycle ϕ if the following condi-
tions are fulfilled:

1. the set I :=
⋃{Iy | y ∈ Y } is relatively compact;

2. the family {Iy | y ∈ Y } is invariant with respect to the cocycle ϕ;

3. the equality
lim

t→+∞ sup
y∈Y

β(ϕ(t,K, y), I) = 0

holds for every K ∈ C(W ).

Let M ⊆ W and

ωy(M) :=
⋂

t≥0

⋃

τ≥t

ϕ(τ, M, σ(−τ, y))

for any y ∈ Y .

Theorem 6. [12, ChII] Let 〈W,ϕ, (Y, S, σ)〉 be compactly dissipative and K be the
nonempty compact subset of W appearing in the equality (1), then:

1. Iy = ωy(K) 6= ∅, is compact, Iy ⊆ K and

lim
t→+∞β(U(t, σ(−t, y))K, Iy) = 0

for every y ∈ Y ;

2. U(t, y)Iy = Iyt for all y ∈ Y and t ∈ T+;

3.
lim

t→+∞β(U(t, σ(−t, y))M, Iy) = 0

for all M ∈ C(W ) and y ∈ Y ;

4. the set I is relatively compact, where I := ∪{Iy | y ∈ Y }.
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Theorem 7. [14] Let 〈W,ϕ, (Y, S, σ)〉 be compactly dissipative and K be the
nonempty compact subset of W appearing in the equality (1), then the family of
subsets {Iy| y ∈ Y } is a maximal family possessing the properties 2.–4.

Definition 26. Let 〈W,ϕ, (Y, S, σ)〉 be compactly dissipative, K be the nonempty
compact subset of W appearing in the equality (1) and Iy := ωy(K) for any y ∈ Y .
The family of compact subsets {Iy| y ∈ Y } is said to be a Levinson center (compact
global attractor) of non-autonomous (cocycle) dynamical system 〈W,ϕ, (Y,S, σ)〉.

Remark 7. According to Theorem 7 by Definition 26 the notion Levinson cen-
ter (compact global attractor) for non-autonomous (cocycle) dynamical system
〈W,ϕ, (Y, S, σ)〉 is well defined.

Corollary 2. Let 〈W,ϕ, (Y,S, σ)〉 be compactly dissipative non-autonomous dynam-
ical system, {Iy| y ∈ Y } be its Levinson center and ν : T 7→ W be a relatively
compact full trajectory of ϕ (i.e., ν(S) is relatively compact and there exists a point
y0 ∈ Y such that ν(t + s) = ϕ(t, ν(s), σ(s, y0)) for any t ≥ 0 and s ∈ S), then
ν(0) ∈ Iy0.

Theorem 8. [12, ChII] Under the conditions of Theorem 6 w ∈ Iy (y ∈ Y ) if and
only if there exits a whole trajectory ν : S → W of the cocycle ϕ, satisfying the
following conditions: ν(0) = w and ν(S) is relatively compact.

Definition 27. A family of subsets {Iy| y ∈ Y } (Iy ⊆ W for any y ∈ Y ) is said to
be upper semicontinuous if for any y0 ∈ Y and yn → y0 as n →∞ we have

lim
n→∞β(Iyn , Iy0) = 0.

Lemma 3. [14] The following statements hold:

1. the family {Iy| y ∈ Y } is invariant if and only if the set J :=
⋃{Jy| y ∈ Y },

where Jy := Iy × {y}, is invariant with respect to skew-product dynamical
system (X, S+, π) (X := W × Y and π := (ϕ, σ));

2. if
⋃{Iy| y ∈ Y } is relatively compact, then the family {Iy| y ∈ Y } is upper

semicontinuous if and only if the set J is closed in X.

Definition 28. A non-autonomous set K = {Ky : y ∈ Y } with Ky ⊆ W for any
y ∈ Y is said to be positively Lyapunov stable (respectively, uniformly stable) if
for arbitrary ε > 0 and y ∈ Y there exists a positive number δ = δ(ε, y,K) > 0
(respectively, δ = δ(ε,K) > 0) such that ρ(ϕ(t0, u, y), ϕ(t0, u0, y)) < δ (u0 ∈ Ky and
u ∈ W ) implies ρ(ϕ(t, u, y), ϕ(t, u0, y)) < ε for any t ≥ t0 and y ∈ Y .

Definition 29. A trajectory ϕ(t, u0, y0) of the point (u0, y0) ∈ W × Y is said
to be positively uniformly Lyapunov stable if the set K0 := ϕ(T+, u0, y0) =
{ϕ(t, u0, y0)| t ∈ S+} is uniformly Lyapunov stable.
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Definition 30. A cocycle ϕ is said to be positively Lyapunov stable (respectively,
uniformly stable) if for arbitrary ε > 0 and non-autonomous uniformly precom-
pact and upper semicontinuous set K = {Ky : y ∈ Y } there exists a number
δ = δ(ε, y,K) > 0 (respectively, δ = δ(ε,K) > 0) such that ρ(u, u0) < δ with
u0 ∈ Ky and u ∈ W implies ρ(ϕ(t, u, y), ϕ(t, u0, y)) < ε for any t ≥ 0.

Theorem 9. [12, Ch.IX] Let 〈W,ϕ, (Y, S, σ)〉 be a cocycle with the following prop-
erties:

1. It admits a conditionally relatively compact invariant set {Iy | y ∈ Y } (i.e.⋃{Iy | y ∈ Y ′} is relatively compact subset of W for any relatively compact
subset Y ′ of Y ).

2. The cocycle ϕ is positively uniformly stable on {Iy| y ∈ Y }.
Then all motions on J :=

⋃{Jy| y ∈ Y } (Jy := Iy × {y}) may be continued
uniquely to the left and on J a two-sided dynamical system (J,S, π) is defined , i.e.,
the skew-product system (X, S+, π) generates on J a two-sided dynamical system
(J,S, π).

5 Monotone NDS: existence and convergence to Poisson stable mo-
tions

Let E be a real Banach space with a closed convex cone P ⊂ E such that
P

⋂
(−P ) = {0}. Assume that Int(P ) 6= ∅. For u1, u2 ∈ E, we write u1 ≤ u2 if

u2 − u1 ∈ P ; u1 < u2 if u2 − u1 ∈ P \ {0}; u1 ¿ u2 if u2 − u1 ∈ Int(P ).
Assume that E is an ordered space.

Definition 31. A subset U of E is said [25] to be order convex if for any a, b ∈ U
with a < b, the segment {a + s(b− a) : s ∈ [0, 1]} is contained in U .

Let V = [0, b]E with b À 0 or V = P , or furthermore, V be an order convex
subset of E.

Definition 32. A subset U of E is called lower-bounded (respectively, upper-
bounded) if there exists an element a ∈ E such that a ≤ U (respectively, a ≥ U).
Such an a is said to be a lower bound (respectively, upper bound) for U .

Definition 33. A lower bound α is said to be the greatest lower bound (g.l.b.) or
infimum, if any other lower bound a satisfies a ≤ α. Similarly, we can define the
least upper bound (l.u.b.) or supremum.

A bundle (X, h, Y ) is said to be ordered if each fiber Xy is ordered. Note that
only points on the same fiber may be order related: if x1 ≤ x2 or x1 < x2, then it
implies h(x1) = h(x2). We assume that the order relation and the topology on X
are compatible in the sense that x ≤ x̃ if xn ≤ x̃n for all n and xn → x, x̃n → x̃ as
n →∞.
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Definition 34. For given bundle (X, h, Y ), an NDS 〈(X, S+, π), (Y,S, σ), h〉 defined
on it is said to be monotone (respectively, strictly monotone) if x1 ≤ x2 (respectively,
x1 < x2) implies π(t, x1) ≤ π(t, x2) (respectively, π(t, x1) < π(t, x2)) for any t > 0.

For given NDS 〈(X, S+, π), (Y, S, σ), h〉, let S ⊆ X be a nonempty closed ordered
subset possessing the following properties:

1. h(S) = Y ;

2. S is positively invariant with respect to π, i.e., 〈(S, S+, π), (Y,S, σ), h〉 is an
NDS.

Below we will use the following assumptions:

(C1) For every conditionally compact subset K of S and y ∈ Y the set
Ky := h−1(y)

⋂
K has both infimum αy(K) and supremum βy(K).

(C2) For every x ∈ S, the semi-trajectory Σ+
x is conditionally precompact, ωx 6= ∅

and the set ωx is positively uniformly stable.

(C2.1) For every x ∈ S, the semi-trajectory Σ+
x is conditionally precompact and

ωx 6= ∅.
(C3) The NDS

〈(S, S+, π), (Y, S, σ), h〉
is monotone.

Let X, Y be two complete metric spaces and

〈(X,T1, π), (Y,T2, σ), h) (2)

be a non-autonomous dynamical system.

Definition 35. A closed subset M of X is said to be a minimal set of non-
autonomous dynamical system (NDS) (2) if it possesses the following properties:

a. h(M) = Y ;

b. M is positively invariant, i.e., π(t, M) ⊆ M for any t ∈ T1;

c. M is a minimal subset of X possessing properties a. and b..

Theorem 10. [16, Ch.IV] Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous dy-
namical system and M ⊂ X be a nonempty, conditionally compact and positively
invariant set. If the dynamical system (Y,T2, σ) is minimal, then the subset M is a
minimal subset of NDS (2) if and only if H(x) = M for any x ∈ M .

Theorem 11. [16, Ch.IV] Suppose that 〈(X,T1,π),(Y, T2,σ), h〉 is a non-autono-
mous dynamical system, (Y,T2, σ) is minimal and the space X is conditionally com-
pact, then there exists a minimal subset M of NDS (2).
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Lemma 4. Let 〈(X, S+, π), (Y,S, σ), h〉 be an NDS with the following properties:

a. there exists a point x0 ∈ X such that the positive semi-trajectory Σ+
x0

is con-
ditionally precompact;

b. the point y0 := h(x0) is Poisson stable, i.e., y0 ∈ ωy0.

Then the following statements hold:

1. there are a Poisson stable point p ∈ ωx0 and a sequence {tk} ∈ N+∞
y0

such that

lim
k→∞

ρ(π(tk, x0), π(tk, p)) = 0;

2. if the dynamical system (Y, S, σ) is minimal, then there are a minimal subset
M ⊆ ωx0 of non-autonomous dynamical system 〈(ωx0 , S+, π), (Y, S, σ), h〉, a
point p ∈ M

⋂
Xy0 and a sequence {tk} ∈ N+∞

y0
such that (3) is fulfilled.

Corollary 3. Let 〈(X, S+, π), (Y,S, σ), h〉 be an NDS with the following properties:

a. there exists a point x0 ∈ X such that the positive semi-trajectory Σ+
x0

is con-
ditionally precompact;

b. the point y0 := h(x0) is Poisson stable, i.e., y0 ∈ ωy0;

c. the set ωx0 is positively uniformly stable.

Then the following statements hold:

1. there is a Poisson stable point p ∈ ωx0 such that

lim
t→+∞ ρ(π(t, x0), π(t, p)) = 0; (3)

2. if the dynamical system (Y, S, σ) is minimal, then there are a minimal subset
M ⊆ ωx0 of non-autonomous dynamical system 〈(ωx0 ,S+, π), (Y,S, σ), h〉 and
a point p ∈ M

⋂
Xy0 such that (3) is fulfilled, and hence, ωx0 is a minimal

subset of non-autonomous dynamical system 〈(X0, S+, π), (Y, S, σ), h〉.
Now fix (x0, y0) ∈ V × Y , then the set ω(x0,y0) is a nonempty , conditionally

compact, positively invariant set. Assume that (Y,T, σ) is minimal and y ∈ ωy for
any y ∈ Y , then h(ω(x0,y0)) = Y . According to Corollary 3 the set ω(x0,y0) is a
minimal set of non-autonomous dynamical system 〈(V × Y,T+, π), (Y,T, σ), h〉. We
put K := ω(x0,y0).

Let (Ei, Pi), 1 ≤ i ≤ n, be ordered Banach spaces with Int(Pi) 6= ∅. For each
I = {j1, . . . , jm} ⊆ N := {1, . . . , n}, we define

EI :=
m∏

k=1

Ejk
, PI :=

m∏

k=1

Pjk
.
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Then (EI , PI) is an ordered Banach space with

Int(PI) =
m∏

k=1

Int(Pjk
) 6= ∅.

Let ≤I (respectively, <I and ¿I) be the orders induced by PI in EI . In the case
where I = N , we use (E,P ) to denote the ordered Banach space (EN , PN ), and
omit the order subscripts to get the orders ≤, < and ¿ in E, respectively. For each
1 ≤ i ≤ n, let Qi : E×Y :→ Ei be the projection mapping defined by Qi(x, y) = xi.

Condition (C4). For any two bounded full orbits γj ∈ F(xj ,y) (j = 1, 2) with
γ1(t) ≤ γ2(t) for any t ∈ S, there exists t0 > 0 such that whenever Qiγ1(s) < Qiγ2(s)
holds for some i ∈ N and s ∈ S, then Qiγ1(t) ¿ Qiγ2(t) for all t ≥ s + t0.

Definition 36. A skew-product semi-flow π on V ×Y is said [25] to be component-
wise strongly monotone if it is monotone and whenever x1 ≤ x2 with x1i < x2i, one
has Qiπ(t, (x1, y)) ¿ Qiπ(t, (x2, y)) for all t > 0.

Remark 8. If the semi-flow π is componentwise strongly monotone, then it satisfies
Condition (C4).

Theorem 12. [20] Assume that the dynamical system (Y,S, σ) is minimal and
q ∈ ωq for any q ∈ Y . Under conditions (C1)-(C4) for any (x0, y0) ∈ V × Y
the following statements hold:

1. for any q ∈ Y the set

ω(x0,y0)

⋂
Xq

consists of a single point {(xq, q)};

2. the point (xq, q) is strongly comparable by character of recurrence with the point
q ∈ Y ;

3.
lim

t→+∞ ρ(ϕ(t, x0, y0), ϕ(t, xy0 , y0)) = 0.

Corollary 4. Under the conditions (C1) − (C4) if the point y0 is τ -periodic (re-
spectively, quasi-periodic, Bohr almost periodic, recurrent, strongly Poisson stable
and H(y0) is a minimal set), then:

1. the point xy0 is so;

2. the point x0 is asymptotically τ -periodic (respectively, asymptotically quasi-
periodic, asymptotically Bohr almost periodic, asymptotically recurrent, asymp-
totically strongly Poisson stable).
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6 Structure of the Levinson center for monotone non-autonomous
dynamical systems

Lemma 5. [16, Ch.V] Suppose that 〈W,ϕ, (Y, S, σ)〉 is a cocycle under (Y,S, σ) with
the fibre W . If Y is a compact space, then the following conditions are equivalent:

a) the cocycle ϕ is positively uniformly Lyapunov stable;

b) every trajectory ϕ(t, u0, y0) (x0 := (u0, y0) ∈ W × Y ) of cocycle ϕ is positively
uniformly Lyapunov stable.

Theorem 13. [17] Assume that the cocycle 〈E, ϕ, (Y,S, σ)〉
1. is monotone;

2. admits a compact global attractor I := {Iy| y ∈ Y };
3. is positively uniformly Lyapunov stable and denote by α(y) (respectively, by

β(y)) the greatest lower bound of the set Iy (respectively, the least upper bound
of Iy) and

4. the point y ∈ Y is positively Poisson stable, i.e., y ∈ ωy.

Then the following statements hold:

1. α(y) ≤ u ≤ β(y) for any u ∈ Iy and y ∈ Y ;

2. α(y), β(y) ∈ Iy and, consequently, Iy ⊆ [α(y), β(y)];

3. ϕ(t, α(y), y) = α(σ(t, y)) (respectively, ϕ(t, β(y), y) = β(σ(t, y))) for any t ≥ 0;

4. the point γ∗(y) := (α(y), y) ∈ X = E×Y (respectively, γ∗(y) := (β(y), y) ∈ X)
is comparable by character of recurrence with the point y;

5. if u ∈ E and u ≤ α(y) (respectively, u ≥ β(y)), then ωx
⋂

Xy = {γ∗(y)}
(respectively, ωx

⋂
Xy = {γ∗(y)}), where x := (u, y);

6. if u ≤ α(y) (respectively, u ≥ β(y)),then

lim
t→+∞ ρ(ϕ(t, u, y).γ∗(σ(t, y))) = 0

(respectively,
lim

t→+∞ ρ(ϕ(t, u, y).γ∗(σ(t, y))) = 0);

7. if y is strongly Poisson stable, then the point γ∗(y) := (α(y), y) ∈ X = E × Y
(respectively, γ∗(y) := (β(y), y) ∈ X) is strongly comparable by character of
recurrence with the point y.

Corollary 5. Under the conditions of Theorem 13 the following statements take
place:
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1. if the point y is τ -periodic (respectively, Levitan almost periodic, almost recur-
rent, almost automorphic, recurrent, Poisson stable), then the full trajectory
γy passing through the point (α(y), y) (respectively, through the point (β(y), y))
is so;

2. if the point y is quasi-periodic (respectively, Bohr almost periodic, almost auto-
morphic, recurrent, pseudo-recurrent and Lagrange stable, uniformly Poisson
stable and stable in the sense of Lagrange), then the full trajectory γy passing
through the point (α(y), y) (respectively, through the point (β(y), y)) is so.

Remark 9. Corollary 5 generalizes and refines the results of the work [14] which
give as the positive answer for I. U. Bronshtein’s conjecture [5, ChIV, p.273] for
monotone Bohr almost periodic systems.

7 Translation-invariant monotone systems

Definition 37. Let E be a real Banach space. A cone P is said to be normal if the
norm | · | in E is semi-monotone, i.e., there exists a constant k > 0 such that the
property 0 ≤ u ≤ v implies that |u| ≤ k|v|.

Assume that E is a strongly ordered Banach space with normal cone P .
Fix v ∈ Int(P ) with |v| = 1. Let G be the group of phase-translations

Ta : E → E; Ta(u) := u + av, by a scalar a ∈ R.

Definition 38. The phase-translation group G = {Ta| a ∈ R} commutes with the
skew-product dynamical system (X,T, π) (X = E × Y , π = (ϕ, σ)) if

π(t, (Ta(u), y)) = (Ta(ϕ(t, u, y)), σ(t, y))

for any x = (u, y) ∈ X = E × Y , t ∈ T and Ta ∈ G.

For such v above, the Banach space E has a direct sum decomposition

E = E0 ⊕ Span(v),

where E0 is the null space of a bounded linear functional f on E with 〈f, v〉 = 1.
Let v ∈ P be a strongly positive unit vector, i.e., v ∈ Int(P ) and |v| = 1. Define

the v-norm as follows

||u||v := inf{α > 0 : −αv ≤ u ≤ αv}.
Remark 10. If the cone P is normal, then the norms | · | and || · ||v are equivalent.

Let V be an ordered convex subset of E.

Definition 39. A cocycle 〈V, ϕ, (Y,S, σ)〉 is said to be translation invariant with
respect to v if

ϕ(t, u + λv, y) = ϕ(t, u, y) + λv

for any (t, u, y, λ) ∈ S+ × V × Y × R.
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Lemma 6. [22,28] Assume that the following conditions are fulfilled:

1. (X,S+, π) is the skew-product dynamical system on X := V × Y generated by
cocycle ϕ;

2. the subset E ⊂ V is invariant with respect to translation by a strongly positive
vector v, i.e., v À 0 and u + λv ∈ E for any u ∈ E and λ ∈ R;

3. the set E × Y is invariant with respect to skew-product dynamical system
(X,S+, π).

Then

1. the cocycle ϕ is positively uniformly stable;

2. every positive semitrajectory of the skew-product dynamical system
(E × Y, S+, π) is uniformly positively stable;

3. ‖ϕ(t, u1, y)− ϕ(t, u2, y)‖v ≤ ‖u1 − u2‖v for any u1, u2 ∈ E, y ∈ Y and t ≥ 0.

Proof. Let (u1, y) ∈ X × Y . Then we shall prove that

‖ϕ(t, u1, y)− ϕ(t, u2, y)‖v ≤ ‖u1 − u2‖v, (4)

for all t >. By the definition of v-norm,

−‖u1 − u2‖vv ≤ u1 − u2 ≤ ‖u1 − u2‖vv,

for all u1, u2 ∈ E, that is,

u2 − ‖u1 − u2‖vv ≤ u1 ≤ u2 + ‖u1 − u2‖vv,

for all u1, u2 ∈ E. This inequality implies together with monotonicity and positive
translation invariance that for all u1, u2 ∈ E, t > 0,

ϕ(t, u2, y)− ‖u1 − u2‖vv ≤ ϕ(t, u1, y) ≤ ϕ(t, u2, y) + ‖u1 − u2‖vv.

Equivalently, for all u1, u2 ∈ E, t > 0,

−‖u1 − u2‖vv ≤ (ϕ(t, u1, y)− ϕ(t, u2, y) ≤ ‖u1 − u2|vv. (5)

(4) immediately follows from (5) and the definition of v-norm and, consequently, ϕ
is positively uniformly stable. By the cocyle property, we have that

ϕ(t + τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for all u ∈ E, y ∈ Y, t, τ > 0.

From this cocyle property together with (4), we conclude that

‖ϕ(t + τ, u1, y)− ϕ(t + τ, u2, y)‖v ≤ ‖ϕ(τ, u1, y)− ϕ(τ, u2, y)‖v, for all t, τ > 0.

This proves that every forward orbit of (X,R+, π) is uniformly stable in the order-
norm. The normality of the cone P implies that every forward orbit of (X,R+, π)
is uniformly stable.
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Theorem 14. Let 〈W,ϕ, (Y,S, σ)〉 be a cocycle over dynamical system (Y,S, σ) with
the fiber W . Assume that the dynamical system (Y,S, σ) is minimal, q ∈ ωq for any
q ∈ Y and the cocycle ϕ is translation invariant with respect to v ∈ Int(P ).

Under the conditions (C1), (C2.1) and (C3)-(C4) for any (x0, y0) ∈ V ×Y the
following statements hold:

1. for any q ∈ Y the set
ω(x0,y0)

⋂
Xq

consists of a single point {(xq, q)};
2. the point (xq, q) is strongly comparable by character of recurrence with the point

q ∈ Y ;

3.
lim

t→+∞ ρ(ϕ(t, x0, y0), ϕ(t, xy0 , y0)) = 0.

Proof. Since the cocycle ϕ is monotone and translation invariant with respect to
v ∈ Int(P ), then by Lemma 6

1. every trajectory ϕ(t, u, y) ((u, y) ∈ W × Y ) is positively uniformly Lyapunov
stable;

2. every semi-trajectory Σ+
x of skew-product dynamical system (X, S+, π)

(X := W × Y and π := (ϕ, σ)) is conditionally precompact and ωx 6= ∅.
Now to finish the proof of Theorem it is sufficient to apply Theorem 12.

Corollary 6. Under the conditions of Theorem 14 if the point y0 is τ -periodic
(respectively, quasi-periodic, Bohr almost periodic, recurrent, strongly Poisson stable
and H(y0) is a minimal set), then:

1. the point xy0 is so;

2. the point x0 is asymptotically τ -periodic (respectively, asymptotically quasi-
periodic, asymptotically Bohr almost periodic, asymptotically recurrent, asymp-
totically strongly Poisson stable).

Definition 40. A non-autonomous set {Ay| y ∈ Y } is said to be

1. positively (respectively, negatively) invariant (with respect to cocycle ϕ) if
ϕ(t, Ay, y) ⊆ Aσ(t,y) (respectively, ϕ(t, Ay, y) ⊇ Aσ(t,y)) for any y ∈ Y and
t ≥ 0;

2. invariant if it is positively and negatively invariant.

Lemma 7. [19] Assume that the set Y is invariant, that is, σ(t, Y ) = Y for any
t ∈ T. The non-autonomous set {Ay| y ∈ Y } is positively invariant (respectively,
negatively invariant or invariant) if and only if the set A is a positively invariant
(respectively, negatively invariant or invariant) subset of skew-product dynamical
system (X,T, π).
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Lemma 8. [19] The following statements are equivalent:

1. for any compact subset K ⊆ Y the set
⋃{Ay| y ∈ K} is precompact in W ;

2. the set A ⊆ X is conditionally precompact in (X,h, Y ) (X = W × Y and
h := pr2 : X → Y ).

Corollary 7. Let {Ay| y ∈ Y } be a uniformly precompact non-autonomous set,
then the set A is a conditionally compact subset of X with respect to (X,h, Y ),
where h = pr2.

Lemma 9. [19] Let {Iy| y ∈ Y } be a non-autonomous set. Assume that the set
J =

⋃{Jy = Iy × {y}| y ∈ Y } is conditionally precompact, then the following
statements are equivalent:

1. the mapping y → Iy is upper semicontinuous;

2. the set J is closed in X.

Definition 41. A trajectory ϕ(t, u0, y0) (x0 := (u0, y0) ∈ W × Y ) of cocycle ϕ is
said to be precompact if Q(u0,y) := ϕ(T+, u0, y0) is a compact subset of W .

Lemma 10. Suppose that 〈W,ϕ, (Y,S, σ)〉 is a cocycle under (Y, S, σ) with the fibre
W and K = {Ky : y ∈ Y } is a non-autonomous set with Ky ⊂ W for any y ∈ Y .
Assume that the following conditions hold:

1. Y is a compact space;

2. K = {Ky : y ∈ Y } is uniformly precompact;

3. K = {Ky : y ∈ Y } is upper semicontinuous.

Then the following conditions are equivalent:

a) the non-autonomous set K = {Ky : y ∈ Y } is positively uniformly Lyapunov
stable;

b) every precompact trajectory ϕ(t, u0, y0)
(x0 := (u0, y0) ∈ K :=

⋃{Ky × {y} : y ∈ Y }) of cocycle ϕ is positively
uniformly Lyapunov stable.

Proof. Taking into consideration that the implication a) ⇒ b) is evident it is suf-
ficient to show that b) implies a). If we suppose that it is not true then there are
a positive number ε0, sequences {yk} ⊆ Y , {u0

k} (u0
k ∈ Kyk

), and {uk} (uk ∈ W ),
{tk} ⊂ S+ such that

ρ(uk, u
0
k) < δk and ρ(ϕ(tk, uk, yk), ϕ(tk, u0

k, yk)) ≥ ε0. (6)

Since K is uniformly precompact and the space Y is compact, then without loss of
generality we can suppose that the sequences {u0

k} {uk} and {yk} are convergent.
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Denote by u0 := lim
k→∞

u0
k = lim

k→∞
uk and y0 := lim

k→∞
yk. Since {Ky : y ∈ Y } is upper

semicontinuous, then u0 ∈ Ky0 . By condition b) for y0 ∈ Y , u0 ∈ Ky0 and ε0 there
exists a positive number δ0 := δ(ε0/3, u0, y0) > 0 such that

ρ(ϕ(t0, u, y0), ϕ(t0, u0, y0)) < δ

implies
ρ(ϕ(t, u0, y0), ϕ(t, u0, y0)) < ε0/3

for any t ≥ t0 ≥ 0. Let k0 = k0(ε0/3) be a natural number such that ρ(uk, u0) < δ0

for any k ≥ k0 and, consequently,

ρ(ϕ(t, uk, y0), ϕ(t, u0, y0)) < ε0/3 (7)

for t ≥ 0. Then from (7) we obtain

ρ(ϕ(t, uk, y0), ϕ(t, u0
k, y0)) ≤ ρ(ϕ(t, uk, y0), ϕ(t, u0, y0)) + (8)

ρ(ϕ(t, u0, y0), ϕ(t, u0
k, y0)) < ε0

3 + ε0
3 < ε0

for any t ≥ 0. Inequalities (6) and (8) are contradictory. The obtained contradiction
proves our statement.

Let E be a real Banach space and P ⊂ E be a cone in E with Int(P ) 6= ∅ and
W ⊆ E.

Theorem 15. Let 〈W,ϕ, (Y,S, σ)〉 (shortly ϕ) be a cocycle over dynamical system
(Y,T, σ) with the fiber W . Assume that the following conditions are fulfilled:

1. the cone P is normal;

2. the space Y is compact and (Y,T, σ) is minimal;

3. the cocycle ϕ is monotone and translation invariant with respect to v ∈ Int(P );

4. the cocycle ϕ satisfies (C1);

5. the cocycle ϕ admits a uniformly precompact global attractor I = {Iy : y ∈ Y }.
Then the following statements hold:

1. α(y) ≤ u ≤ β(y) for any u ∈ Iy and y ∈ Y ;

2. α(y), β(y) ∈ Iy and, consequently, Iy ⊆ [α(y), β(y)];

3. ϕ(t, α(y), y) = α(σ(t, y)) (respectively, ϕ(t, β(y), y) = β(σ(t, y))) for any t ≥ 0;

4. the point γ∗(y) := (α(y), y) ∈ X = W × Y
(respectively, γ∗(y) := (β(y), y) ∈ X) is strongly comparable by character of
recurrence with the point y;
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5. if u ∈ W and u ≤ α(y) (respectively, u ≥ β(y)), then ωx
⋂

Xy = {γ∗(y)}
(respectively, ωx

⋂
Xy = {γ∗(y)}), where x := (u, y);

6. if u ≤ α(y) (respectively, u ≥ β(y)),then

lim
t→+∞ ρ(ϕ(t, u, y).γ∗(σ(t, y))) = 0

(respectively,
lim

t→+∞ ρ(ϕ(t, u, y).γ∗(σ(t, y))) = 0).

Proof. Since the cocycle ϕ is monotone and translation invariant with respect to
v ∈ Int(P ), then by Lemma 6

1. the cocycle ϕ is positively uniformly stable;

2. every trajectory ϕ(t, u, y) ((u, y) ∈ W × Y ) is positively uniformly Lyapunov
stable;

3. the uniformly compact global attractor I = {Iy : y ∈ Y } is positively uni-
formly Lyapunov stable.

Now to finish the proof of Theorem it is sufficient to apply Theorem 13.

Corollary 8. Under the conditions of Theorem 15 the following statements take
place:

1. if the point y is τ -periodic (respectively, quasi-periodic, Bohr almost periodic,
almost automorphic, recurrent), then the full trajectory γy passing through the
point (α(y), y) (respectively, through the point (β(y), y)) is so.

Proof. This statement follows from Theorem 15 and Corollary 5.

8 Application

8.1 Time-dependent chemical reaction networks

In the works of Angeli and Sontag [1, 2] and Angeli, Leenheer and Sontag [3]
the authors have contributed a new type of global convergence condition, named
positive translation invariance, which is motivated by a chemical reaction network.
A standard form for representing (well-mixed and isothermal) chemical reactions by
ordinary differential equations is

S′ = ΓR(S), (9)

evolving on the nonnegative orthant Rm
+ , where S is an m-vector specifying the

concentrations of m chemical species, Γ : Rn → Rm is the stoichiometry matrix, and
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R : Rm
+ → Rn is a function which provides the vector of reaction rates for any given

vector of concentrations. Choosing µ ∈ Rm
+ and using the reaction coordinates x,

S = µ + Γx,

instead of the traditional species coordinates S, the authors of [1]–[3] have investi-
gated the monotonicity and global behavior of systems in the reaction coordinates,

x′ = fµ(x) = R(µ + Γx), (10)

evolving on the state space Xµ := {x ∈ Rn| µ + Γx ≥ 0}.
Suppose that the matrix Γ has rank exactly n − 1 and its kernel is spanned

by a strongly positive vector v. Then the state space is invariant with respect to
translation by v, namely,

x ∈ Xµ ⇒ x + λv ∈ X, ∀λ ∈ R,

and the solution ϕ(t, ξ) generated by (10) enjoys positive translation invariance:

ϕ(t, ξ + λv) = ϕ(t, ξ) + λv, ∀ x ∈ Xµ and λ ∈ R.

Motivated by the study of Angeli and Sontag [1,2], Angeli, Leenheer and Sontag
[3] and Hongxiao Hu and Jifa Jiang [22], we shall investigate the nonautonomous
chemical reaction network. Suppose that the reaction rates depend on time

S′ = ΓR(t, S), (11)

where R(t, S) is almost periodic (respectively, quasi-periodic, Bohr almost periodic,
automorphic, Birkhoff recurrent, Levitan almost periodic, Bebutov almost recur-
rent, Poisson stable) in t. Choosing µ ∈ Rm

+ and using the reaction coordinates
x : S = µ + Γx, we transform (11) into a system in the reaction coordinates:

x′ = Fµ(t, x) := R(t, µ + Γx) (12)

evolving on the state space Xµ.

Remark 11. Note that Xµ is an ordered convex closed subset of Rn.

Let U be a subset of Rm. Denote by C(T × U,Rn) the space of all continuous
functions F : T×U → Rn equipped with the compact-open topology. This topology
can be generated, for example, by the following distance d:

d(F,G) :=
∞∑

k=1

1
2k

dk(F, G)
1 + dk(F, G)

,

where dk(F,G) := max{(t, x) ∈ T × U | |t| ≤ k, |x| ≤ k} (k ∈ N). For
F ∈ C(T×U,Rn) and τ ∈ T we denote by F τ the τ -translation of F with respect to
time t, i.e., F τ (t, x) := F (t+τ, x) for any (t, x) ∈ T×U and by (C(T×U,Rn),T, λ) the
shift (Bebutov’s) dynamical system on the space C(T×U,Rn). Let f ∈ C(T×U,Rn)
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and denote by H(f) its hull, i.e., H(f) := {f τ | τ ∈ T}, where by bar the closure in
the space C(T× U,Rn) is denoted.

Condition (A1). A function Fµ ∈ C(R × Xµ,Rn) is regular, that is, for any
u ∈ Xµ and G ∈ H(Fµ) there exists a unique solution ϕ(t, u, G) of equation

u′ = G(t, u) (13)

defined on R+.
Assume that the function Fµ ∈ C(R ×Xµ,Rn) is regular. Let φ(t, v, G) denote

the solution of (13) passing through v at t = 0. Then it enjoys positive translation
invariance:

φ(t, ξ + λv,G) = ϕ(t, v, G) + λv, ∀ ξ ∈ Xµ, λ ∈ R and G ∈ H(Fµ), (14)

where H(Fµ) is the hull of Fµ. So the skew-product flow induced by H-class

v′ = G(t, v) (G ∈ H(Fµ)) (15)

of system (12) has positive translation invariance.

Lemma 11. [22] Suppose that the function Fµ is regular. If the positive orthant
Rm

+ is positively invariant for (11), then Xµ is invariant under(12).

Recall that the set Rm
+ (respectively, the set Xµ) is positively invariant with

respect to (11) (respectively, with respect to (12)) if for any (S0, R̃) ∈ Rm
+ ×H(R)

(respectively, (u0, G) ∈ Xµ ×H(Fµ)) φ(t, S0, R̃) ∈ Rm
+

(respectively, φ(t, u0, G) ∈ Xµ) for any t ∈ R+.
The purpose of this paper is to study the periodic (respectively, quasi-periodic,

Bohr almost periodic, automorphic, recurrent in the sense of Birkhoff, Levitan al-
most periodic, Bebutov almost recurrent, Poisson stable) solutions and compact
global attractors of monotone equation (12) (respectively, (15)) possessing a posi-
tively translation-invariant property (14).

With the above notation, a chemical reaction network is described by the fol-
lowing differential equations:

S′ = ΓR(t, S), t > 0, S(0) = S0 ∈ Rm
+ , (16)

where Rm
+ := {S ∈ Rm| Si ≥ 0}. Of course, S0 is the initial concentration of all

species and R(t,S) is a time-dependent vector-valued function. Given a chemical
reaction network (16), following [28] we introduce the so-called associate system in
reaction coordinates. For any µ ∈ Rm

+ , such a system in reaction coordinates is
defined as the following nonautonomous system:

u′ = Fµ(t, u), t > 0, u(0) = u0 ∈ Xµ, (17)

where Fµ(t, u) := f(t, µ + Γu). Here u = (u1, . . . , un) is called the extent of the
reaction [29]. For systems (16) and (17), let H(Fµ) and H(f) be the hull of Fµ and
f , respectively.

Denote by X(µ,Γ) := {µ + Γ(u)| u ∈ Xµ}.
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Lemma 12. If rank(Γ) = n − 1 and its kernel is spanned by a strongly positive
vector v, then X(µ,Γ) is a closed subset of Rm

+ .

Proof. To prove this statement it is sufficient to show that X(µ,Γ) ⊆ X(µ,Γ), where
by bar the closure of the set X(µ,Γ) in the space Rm is denoted.

Let U ∈ X(µ,Γ), then there exists a sequence {Uk} ⊂ X(µ,Γ) such that
Uk → U as k → ∞. Since Uk ∈ X(µ,Γ), then there exists an element uk ∈ Xµ

such that Uk = µ + Γuk. On the other hand we have Rn = B1
⊕

B2, where
B2 = Span{v}. Since rank(Γ) = n − 1 and B2 = Span{v}, then the subspaces
rank(Γ) and B1 are isomorphic. Thus there exists a unique element ui

k ∈ Bi

(i = 1, 2) such that uk = u1
k + u2

k. Note that Γ(uk) = Γ(u1
k) + Γ(u2

k) = Γ(u1
k) and,

consequently, µ+Γ(u1
k) = µ+Γ(uk) ≥ 0, i.e., u1

k ∈ Xµ. Since Uk−µ = Γ(u1
k) → U−µ

as k → ∞, then the sequence {u1
k} is convergent in Rn. Denote by u1 = lim

k→∞
u1

k,

then u1 ∈ Xµ and U = µ + Γ(u1) ∈ X(µ,Γ). Lemma is proved.

Let W be a subset of Rm
+ .

Definition 42. A function f ∈ C(T ×W,Rn) is said to be Lagrange stable if the
set Σf :=

⋃{f τ | τ ∈ T} is precompact.

Let Φ be the mapping from C(T × X(µ,Γ),Rn) into C(T × Xµ,Rn) defined by
equality

Φ(f) := Fµ,

where Fµ(t, u) := f(t, µ + Γu) for any (t, u) ∈ T×Xµ.

Lemma 13. The following statements hold:

1. the mapping Φ is continuous;

2. Φ(f1) 6= Φ(f2) for any f1, f2 ∈ C(T×X(µ,Γ),Rn) with f1 6= f2;

3. Φ(λ(τ, f)) = λ(τ, Φ(f)) for any (τ, f) ∈ T × C(T × X(µ,Γ),Rn), i.e.,
Φ is a homomorphism of dynamical system (C(T × X(µ,Γ),Rn),T, λ) into
(C(T×Xµ,Rn),T, λ);

4. Φ(H(f)) ⊆ H(Φ(f)) for any f ∈ C(T×X(µ,Γ),Rn);

5. if the function f is Lagrange stable, then Φ(H(f)) = H(Φ(f)).

Proof. The first three statements of Lemma are evident.
Let now g ∈ H(f), then there is a sequence {τn} ⊂ T such that f τn → g in

C(T×X(µ,Γ),Rn) as n → ∞. Then taking into consideration the second and third
statements of Lemma 13 we obtain

Φ(g) = Φ( lim
n→∞ f τn) = lim

n→∞Φ(f τn) = lim
n→∞Φτn(f) := G ∈ H(Φ(f)),

i.e., Φ(H(f)) ⊆ H(Φ(f)).
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If the function f is Lagrange stable, then we will establish that the converse
inclusion H(Φ(f)) ⊆ Φ(H(f)) is also true. In fact if G ∈ H(Φ(f)), then there
exists a sequence {τn} ⊆ T such that Φτn(f) → G as n → ∞. Note that
Φτk(t, u) = f(t + τk, µ + Γu) for any (t, u) ∈ T × Xµ. Since f is Lagrange sta-
ble, then there exists a subsequence {τkm} ⊂ {τk} such that the sequence {f τkm}
converges in the space C(T×X(µ,Γ),Rn). Denote by h(t, x) = lim

m→∞ f(t+ τkm , x) for

any (t, x) ∈ T×X(µ,Γ), then h ∈ H(f) and Φ(h) = lim
n→∞Φτkm (f) and, consequently,

Φ(h) ∈ H(Φ(f)). Notice that

G := lim
m→∞Φτkm (f) = lim

m→∞Φ(f τkm ) = Φ( lim
m→∞ f τkm ) = Φ(h) ∈ H(Φ(f)),

i.e., H(Φ(f)) ⊆ Φ(H(f)). Lemma is completely proved.

Corollary 9. The following statements hold:

1. Nf ⊆ NΦ(f) and, consequently if the function f is stationary (respectively,
τ -periodic, Levitan almost periodic, almost recurrent, Poisson stable) in
t ∈ T uniformly with respect to x on every compact subset from X(µ,Γ) then
the function Φ(f) is so;

2. Mf ⊆ MΦ(f) and, consequently if the function f is stationary (respectively, τ -
periodic, quasi-periodic, Bohr almost periodic, almost automorphic, recurrent,
Poisson stable) in t ∈ T uniformly with respect to x on every compact subset
from X(µ,Γ) then the function Φ(f) is so;

3. If the function f is Lagrange stable, then Φ is a homomorphism of dynamical
systems (H(f),T, λ) onto (H(Φ(f)),T, λ) and, consequently, Mf = MΦ(f).

Proof. This statement follows from Lemma 13.

Remark 12. According to Corollary 9 (item ii) the function Φ(f) is strongly compa-
rable by character of recurrence with the function f . Moreover, there is a stronger
statement. Namely, the function Φ(f) is uniformly comparable with the func-
tion f , i.e., for any ε > 0 there exists a positive number δ = δ(ε) such that
d(λ(τ1, f), λ(τ2, f)) < δ implies d(λ(τ1, Φ(f)), λ(τ2, Φ(f))) < ε.

As a consequence from Lemma 13 (item (v)) if the function f is Lagrange stable,
then for any G ∈ H(Fσ) there exists a unique h ∈ H(f) (G = Φ(h)) such that

G(t, u) = h(t, µ + Γu).

In particular, G = Fσ if and only if h = f . For every G ∈ H(Fµ) and h ∈ H(f)
in (18), let ϕ(t, x0, h) and φ(t, u0, G) be the solutions of

x′ = Γh(t, x), t > 0, x(0) = x0 ∈ Rm
+ (18)

and
u′ = G(t, u), t > 0, u(0) = u0 ∈ Xµ, (19)

respectively.
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Lemma 14. [28] Let the function f ∈ C(T × X(µ,Γ),Rn) be Lagrange stable and
ϕ(t, x0, h), φ(t, u0, G) be the solutions of (18) and (19), respectively. Then we have

ϕ(t, µ + Γu0, h) = µ + Γφ(t, u0, Φ(h))

for any t ∈ T, u0 ∈ Xµ and h ∈ H(f).

Condition (A2). Equation (17) is monotone (respectively, strongly monotone).
This means that the cocycle 〈Rn, ϕ, (H(Fµ), R, σ)〉 generated by (17) is monotone
(respectively, strongly monotone), i.e. if u, v ∈ Rd and u ≤ v (respectively, u < v)
then ϕ(t, u,G) ≤ ϕ(t, v,G) (respectively, ϕ(t, u, G) ¿ ϕ(t, v,G)) for all t ≥ 0 and
G ∈ H(Fµ).

Definition 43. Let f ∈ C(R×W,Rn). The set H(f) is said to be minimal if it is
a minimal set of shift dynamical system (C(R×W,Rn),R, σ).

Definition 44. A function f ∈ C(R×W,Rn) is said to be strongly Poisson stable
if every function g ∈ H(f) is Poisson stable.

Remark 13. If the function f ∈ C(R×W,Rn) is time almost periodic, then

1. the set H(f) is minimal;

2. every function h ∈ H(f) is almost recurrent and, consequently, f is strongly
Poisson stable.

Theorem 16. Suppose that the following conditions hold:

1. µ ∈ Rm is such that the system (17) is strongly monotone;

2. the set H(Fµ) is minimal and Fµ is strongly Poisson stable;

3. the matrix Γ has rank exactly n − 1 whose kernel is spanned by a strongly
positive vector v;

4. for any G ∈ H(Fµ) all forward solutions of equation (19) are bounded.

Then for any U0 ∈ X(µ,Γ) the following statements hold:

1. the set ω(U0,f)

⋂
Xf consists of a single point p0 = (V0, f), where ω(U0,f) is the

ω-limit set of the motion π(t, (U0, f)) of the skew-product dynamical system
(X,R+, π) (X := X(µ,Γ) ×H(f), π := (ϕ, σ)) and Xf := X(µ,Γ) × {f};

2. the solution ϕ(t, V0, f) of equation (18) is defined on R, ϕ(R, v0, f) ⊆ Q
(U0,f)
+

and it is strongly compatible;

3.
lim
t→∞ |ϕ(t, U0, f)− ϕ(t, V0, f)| = 0.
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Proof. Let (H(Fµ),R, σ) (respectively, (H(f),R, σ)) be the shift dynamical system
on H(Fµ) (respectively, on H(f)). Denote by 〈Xµ, φ, (H(Fµ),R, σ)〉 (respectively,
〈X(µ,Γ), ϕ, (H(f),R, σ)〉, where X(µ,Γ) = µ + Γ(Xµ) := {µ + Γu| u ∈ Xµ}) the
cocycle generated by family of equations (19) (respectively, (18)). Note that under
the conditions of Theorem 16 Conditions (C1), (C3) and (C4) are fulfilled for the
cocycle 〈Xµ, φ, (H(Fµ),R, σ)〉. Let U0 ∈ X(µ,Γ), then there exists a point u0 ∈ Xµ

such that U0 = µ + Γ(u0). By equality (14) the cocycle φ is translation invariant
with respect to vector v À 0. According to Theorem 14 for given u0 ∈ Xµ the
following statements are fulfilled:

a. the set ω(u0,Fµ)

⋂
XFµ consists of a single point q0 = (v0, Fµ), where ω(u0,Fµ)

is the ω-limit set of the motion π(t, (u0, Fµ)) of the skew-product dynamical
system (X,R+, π) (X := Xµ×H(Fµ), π := (φ, σ)) and XFµ := X(µ,Γ)×{Fµ};

b. the solution φ(t, V0, Fµ) of equation (17) is defined on R, φ(R, v0, Fµ) ⊆ Q
(u0,Fµ)
+

and it is strongly compatible;

c.
lim
t→∞ |φ(t, u0, Fµ)− φ(t, v0, Fµ)| = 0.

Denote by V0 := µ + Γ(v0) ∈ X(µ,Γ) and consider the solutions ϕ(t, U0, f) and
ϕ(t, V0, f) of equation (18) (h = f). Since φ(·, v0, Fµ) is a strongly compatible
solution of equation (19) (G = Fµ), then

MFµ ⊆ Mφ(·,v0,Fµ). (20)

By Lemma 14 we have ϕ(t, V0, f) = µ + φ(t, v0, Fµ) for any t ∈ R. Note that

Mφ(·,v0,Fµ) ⊆ Mϕ(·,V0,f). (21)

Indeed if {tk} ∈ Mφ(·,v0,Fµ) then we have

ϕ(t + tk, V0, f)− ϕ̄(t) = µ + Γφ(t + tk, v0, Fµ)− (µ + Γφ̄(t)) =
Γ(φ(t + tk, v0, Fµ)− φ̄(t)) → 0

as k → ∞ uniformly with respect to t on every compact subset from R, where
φ̄ = limφ(·+ tk, v0, Fµ) in the space C(R,Rn). This means that {tk} ∈ Mϕ(·,V0,f).

From (20) and (21) we have

MFµ ⊆ Mϕ(·,V0,f). (22)

Finally, from Corollary 9 (item (ii)) we have

Mf ⊆ MΦ(f). (23)

In virtue of (22)–(23) and taking into consideration the equality Φ(f) = Fµ we
obtain

Mf ⊆ Mϕ(·,V0,f),
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i.e., ϕ(t, V0, f) is a strongly compatible solution of equation (18) (for h = f).
To finish the proof of Theorem it is sufficient to note that

|ϕ(t, U0, f)− ϕ(t, V0, f)| = |(µ + Γφ(t, u0, Fµ))− (µ + Γφ(t, v0, Fµ))| =
|Γ(φ(t, u0, Fµ)− φ(t, v0, Fµ))| ≤ ‖Γ‖|φ(t, u0, Fµ)− φ(t, v0, Fµ)| → 0

as t →∞.

Corollary 10. Under the conditions of Theorem 16 if the function
f ∈ C(R × X(µ,Γ),Rn) is stationary (respectively, τ -periodic, quasi-periodic, Bohr
almost periodic, almost automorphic, recurrent in the sense of Birkhoff, strongly
Poisson stable) in time t ∈ R, then for any U0 ∈ X(µ,Γ) the following statements
hold:

1. the set ω(U0,f)

⋂
Xf consists of a single point p0 = (V0, f);

2. ϕ(t, V0, f) is a stationary (respectively, τ -periodic, quasi-periodic, Bohr almost
periodic, almost automorphic, recurrent in the sense of Birkhoff, strongly Pois-
son stable) solution of equation (17);

3. lim
t→+∞ |ϕ(t, U0, f)−ϕ(t, V0, f)| = 0, i.e., ϕ(t, u0, f) is asymptotically stationary

(respectively, asymptotically τ -periodic, asymptotically quasi-periodic, asymp-
totically Bohr almost periodic, asymptotically almost automorphic, asymptoti-
cally recurrent in the sense of Birkhoff, asymptotically strongly Poisson stable).

Proof. This statement follows from Theorem 16 and Corollary 6.

Let Y be a compact metric space, 〈Rn, ϕ, (Y,S, σ)〉 be a cocycle on the state space
Rn and (X, S+, π) be the corresponding skew-product dynamical system, where
X := Rn × Y and π := (ϕ, σ).

Definition 45. The cocycle 〈Rnϕ, (Y,S, σ)〉 is said to be dissipative if for any y ∈ Y
there is a positive number ry such that

lim sup
t→+∞

|ϕ(t, u, y)| < ry

for any y ∈ Y and u ∈ Rn, i.e., for all u ∈ Rn and y ∈ Y there exists a positive
number L(u, y) such that |ϕ(t, u, y)| < ry for any t ≥ L(u, y).

Theorem 17. [12, ChIII] Let 〈Rn, ϕ, (Y,S, σ)〉 be a cocycle over the dynamical sys-
tem (Y,S, σ) with the fiber Rn. Then the following statements are equivalent:

1. There exists a positive number R such that

lim sup
t→+∞

|ϕ(t, u, y)| < R

for all u ∈ Rn and y ∈ Y .
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2. There is a positive number r1 such that for all u ∈ Rn and y ∈ Y there exists
τ = τ(u, y) > 0 for which |ϕ(τ, u, y)| < r1.

3. There is a positive number r2 such that

lim inf
t→+∞ |ϕ(t, u, y)| < r2

for all u ∈ Rn and y ∈ Y .

4. There exists a positive number R0 and for all R > 0 there is l(R) > 0 such
that |ϕ(t, u, y)| ≤ R0 for all t ≥ l(R), u ∈ Rn, |u| ≤ R and y ∈ Y .

Remark 14. 1. Note that every condition 1.-4. that figures in Theorem 17 is
equivalent to the (compact) dissipativity of the non-autonomous dynamical system
〈(X, S+, π), (Y,S, σ), h〉 associated by the cocycle 〈Rn, ϕ, (Y,S, σ)〉 over (Y,S, σ) with
the fiber Rn.

2. Note that Theorem 17 remains true if we replace the space Rn by a closed
subset W of Rn.

Consider the differential equation

u′ = f(t, u), (24)

where f ∈ C(R × Rn,Rn). Along with the equation (24) we consider its H-class
[5, 21,27,34,37], i.e., the family of the equations

v′ = g(t, v), (25)

where g ∈ H(f) = {fτ : τ ∈ R} and fτ (t, u) = f(t + τ, u), with the bar indicating
closure in the compact-open topology.

We will suppose that the function f is regular. Denote by ϕ(·, v, g) the so-
lution of (25) passing through the point v ∈ Rn for t = 0. Then the mapping
ϕ : R+×Rn×H(f) → Rn satisfies the following conditions (see, for example,[5,31]):

1) ϕ(0, v, g) = v for all v ∈ Rn and g ∈ H(f);

2) ϕ(t, ϕ(τ, v, g), gτ ) = ϕ(t + τ, v, g) for each v ∈ Rn, g ∈ H(f) and t, τ ∈ R+;

3) ϕ : R+ × Rn ×H(f) → Rn is continuous.

Denote by Y := H(f) and (Y,R, σ) a dynamical system of translations on Y ,
induced by the dynamical system of translations (C(R × Rn,Rn),R, σ). The triple
〈Rn, ϕ, (Y,R, σ)〉 is a cocycle over (Y,R+, σ) with the fiber Rn. Hence, the equation
(24) generates a cocycle 〈Rn, ϕ, (Y,R, σ)〉 and the non-autonomous dynamical system
〈(X,R+, π), (Y,R, σ), h〉, where X := Rn × Y , π := (ϕ, σ) and h := pr2 : X → Y .

Definition 46. Recall that the equation (24) is called dissipative [21, 30, 39, 40] if
for all t0 ∈ R and u0 ∈ Rn there exists a unique solution x(t;u0, t0) of the equation
(24) passing through the point (u0, t0) and if there exists a number R > 0 such that
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lim
t→+∞ sup |x(t;u0, t0)| < R for all u0 ∈ Rn and t0 ∈ R. In other words, for every

solution x(t; u0, t0) there is an instant t1 = t0 + l(t0, u0) such that |x(t; u0, t0)| < R
for any t ≥ t1. If for any r > 0 the number l(t0, u0) can be chosen independently on
t0 and u0 with |u0| ≤ r, then the equation (24) is called uniformly dissipative [21].

Lemma 15. [12, ChIII] Let W ⊆ Rm and f ∈ C(R×Rn,Rn) be regular. If H(f) is
compact, then equation (24) is uniformly dissipative if and only if there is a positive
number r such that

lim sup
t→+∞

|ϕ(t, u0, g)| < r (u0 ∈ W, g ∈ H(f)) .

Remark 15. If f ∈ C(R × W,Rn) is regular, H(f) is compact and then equation
(24) is uniformly dissipative, then the cocycle ϕ generated by equation (24) admits
a compact global attractor.

Theorem 18. Suppose that the following assumptions are fulfilled:

– µ ∈ Rm is such that the system (17) is monotone;

– the matrix Γ has rank exactly n − 1 whose kernel is spanned by a strongly
positive vector v;

– the function Fµ ∈ C(R×Xµ,Rn) is recurrent in t ∈ R uniformly with respect
to u on every compact subset from Xµ;

– the cocycle φ generated by equation (17) admits a compact global attractor and
I := {IG| G ∈ H(Fµ)} is its Levinson center.

Then under conditions (A1)− (A2) the following statements hold:

1. α(G), β(G) ∈ IG for any G ∈ H(Fµ) and, consequently, IG ⊆ [α(G), β(G)];

2. φ(t, α(G), G) = α(σ(t, G)) (respectively, φ(t, β(G), G) = β(σ(t, G))) for any
t ≥ 0 and G ∈ H(Fµ);

3. the point γ∗(Fµ) := (α(Fµ), Fµ) ∈ X = Xµ × Y (respectively,
γ∗(Fµ) := (β(Fµ), Fµ) ∈ X) is strongly comparable by character of recurrence
with the point Fµ;

4. for any h ∈ H(f) equation (19) has at least two solutions ϕ(t, U0(h), h)
(U0(h) = µ + Γα(Φ(h))) and ϕ(t, V0(h), h) (V0(h) = µ + Γβ(Φ(h))) defined
and bounded on R which are strongly compatible and belong to Levinson center
of (17);

5. if the function Fµ ∈ C(R × X(µ,Γ),Rn) is quasi-periodic (respectively, Bohr
almost periodic, almost automorphic, recurrent, pseudo-recurrent and La-
grange stable, uniformly Poisson stable and stable in the sense of Lagrange)
in t ∈ R uniformly with respect to u on every compact subset from X(µ,Γ),
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then ϕ(t, U0(f), f) and ϕ(t, V0(f), f) are quasi-periodic (respectively, Bohr al-
most periodic, almost automorphic, recurrent, pseudo-recurrent and Lagrange
stable, uniformly Poisson stable and stable in the sense of Lagrange).

Proof. Let (H(Fµ),R, σ) (respectively, (H(f),R, σ)) be the shift dynamical system
on H(Fµ) (respectively, on H(f)). Denote by 〈Xµ, φ, (H(Fµ),R, σ)〉 (respectively,
〈X(µ,Γ), ϕ, (H(f),R, σ)〉, where X(µ,Γ) = µ+Γ(Xµ) := {µ+Γu| u ∈ Xµ}) the cocycle
generated by family of equations (19) (respectively, (18)). By equality (14) the
cocycle φ is translation invariant with respect to vector v À 0. Applying Theorem 15
to nonautonomous dynamical system 〈Xµ, φ, (H(Fµ),R, σ)〉 we obtain the following
statements:

1. α(G), β(G) ∈ IG for any G ∈ H(Fµ) and, consequently, IG ⊆ [α(G), β(G)],
where α(G) := inf IG (respectively, β(G) := sup IG);

2. φ(t, α(G), G) = α(σ(t, G)) (respectively, φ(t, β(G), G) = β(σ(t, G))) for any
t ≥ 0 and G ∈ H(Fσ);

3. the point γ∗(Fµ) := (α(Fµ), Fµ) ∈ X = Xµ × Y (respectively,
γ∗(Fµ) := (β(Fµ), Fµ) ∈ X) is strongly comparable by character of recurrence
with the point Fµ.

Note that the nonautonomous dynamical system 〈X(µ,Γ), ϕ, (H(f),R, σ)〉 is
compactly dissipative because ϕ(t, U, h) = µ + Γφ(t, u, Φ(h)) for any h ∈ H(f)
(U = µ + Γu) and the cocycle φ is so. Let A = {Ah| h ∈ H(f)} be the Levinson
center for the compact dissipative cocycle ϕ generated by equation (18). Denote
by U(h) := µ + Γα(Φ(h)) and V (h) := µ + Γβ(Φ(h)). Then by Lemma 14 for any
h ∈ H(f)

ϕ(t, U(h), h) = µ + Γφ(t, α(Φ(h)), Φ(h)) (26)

(respectively,
ϕ(t, V (h), h) = µ + Γφ(t, β(Φ(h)), Φ(h))) (27)

is a bounded on R solution of equation (19). By Theorem 8 we have U(h), V (h) ∈ Ah,
i.e., U(h) and V (h) belong to the Levinson center of the cocycle ϕ. Finally, from
(26) (respectively, (27)) it follows that ϕ(t, U(f), f) (respectively, ϕ(t, V (f), f)) is a
strongly compatible solution of equation (18) for h = f , because φ(t, α(Φ(h), Φ(h))
(respectively, φ(t, β(Φ(h), Φ(h))) is a strongly compatible solution of equation (19),
Φ : H(f) → H(Fµ) is a homeomorphism and Φ(f) = Fµ. Theorem is proved.

8.2 Translation-Invariant Discrete Monotone Systems

Consider the discrete version of chemical reactions by ordinary differential equa-
tions (9), i.e.,

∆S(k) = ΓR(S(k)), (∆S(k) := S(k + 1)− S(k) ∀ t ∈ T)
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evolving on the nonnegative orthant Rm
+ . Choosing µ ∈ Rm

+ and using the reaction
coordinates x,

S = µ + Γu,

instead of the traditional species coordinates S, we will have investigated the mono-
tonicity and global behavior of systems in the reaction coordinates,

∆u(k) = fµ(u(k)) = R(µ + Γu(k)), (28)

evolving on the state space Xµ := {u ∈ Rn| µ + Γu ≥ 0}.
Suppose that the matrix Γ has rank exactly n − 1 and its kernel is spanned

by a strongly positive vector v. Then the state space is invariant with respect to
translation by v, namely,

u ∈ X ⇒ u + λv ∈ X, ∀ λ ∈ R,

and the solution ϕ(t, ξ) generated by (28) enjoys positive translation invariance:

ϕ(k, ξ + λv) = ϕ(k, ξ) + λv, ∀ ξ ∈ Xµ and λ ∈ R.

Suppose that the reaction rates depend on time

∆S(k) = ΓR(k, S(k)), (29)

where R(k, S) is almost periodic (respectively, Bohr almost periodic, almost au-
tomorphic, Birkhoff recurrent, Levitan almost periodic, Bebutov almost recur-
rent, Poisson stable) in k. Choosing µ ∈ Rm

+ and using the reaction coordinates
x : S = µ + Γx, we transform (29) into a system in the reaction coordinates:

∆u(k) = Fµ(k, u(k)) := R(k, µ + Γu(k)) (30)

evolving on the state space Xµ := {u ∈ Rn| µ + Γu ≥ 0}.
Let ϕ(k, ξ, f) denote the unique solution of (30) passing through ξ at k = 0.

Then it enjoys positive translation invariance:

ϕ(k, ξ + λv, f) = ϕ(k, ξ, f) + λv, ∀ ξ ∈ Xµ, λ ∈ R. (31)

It can be checked that the solution for every h ∈ H(f) possesses the positive
translation invariance property (31), where H(f) is the hull of f . So the skew-
product flow induced by H-class

∆u(k) = h(k, u(k)) (h ∈ H(f))

of system (30) has positive translation invariance.
According to Corollary 9 (item (iii)) for any G ∈ H(Fµ) there exists a unique

h ∈ H(f) (G = Φ(h)) such that

G(k, u) = h(k, µ + Γu), (32)
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for any (k, u) ∈ Z × Xµ. In particular, G = Fµ if and only if h = f . For every
G ∈ H(Fµ) and h ∈ H(f) in (32), let ϕ(t, x0, h) and φ(t, u0, G) be the solutions of

∆U(k) = Γh(k, U(k)), k > 0, U(0) = U0 ∈ Rm
+ (33)

and
∆u(k) = G(k, u(k)), k > 0, u(0) = u0 ∈ Xµ, (34)

respectively.

Lemma 16. Let ϕ(k, x0, h) and φ(k, u0, G) be the solutions of (33) and (34), re-
spectively. Then we have

ϕ(k, µ + Γu0, h) = µ + Γφ(k, u0, Φ(h))

for any k ∈ Z+, u0 ∈ Xµ and h ∈ H(f).

Proof. Denote by
ψ(k) := µ + Γφ(k, u0, G) (G = Φ(h)) (35)

for any (k, u0, G) ∈ Z+ ×Xµ ×H(Fµ). Then from (32), (34) and (35) we obtain

∆ψ(k) = Γ∆φ(k, u0, G) = ΓG(k, φ(k, u0, G)) =
Γh(k, µ + Γφ(k, u0, G)) = Γh(k, ψ(k))

for any k ∈ Z+. Thus ψ is a solution of equation (33). Taking into consideration
that ψ(0) = µ + Γu0, then we will have ψ(k) = ϕ(k, µ + Γu0, h) and, consequently,
ϕ(k, µ + Γu0, h) = µ + Γφ(k, u0, Φ(h)) for any (k, u0, h) ∈ Z+×Xµ×H(f). Lemma
is proved.

Condition (D). Equation (34) is monotone (respectively, strongly monotone).
This means that the cocycle 〈Xµ, φ, (H(Fµ), Z, σ)〉 generated by (34) is monotone
(respectively, strongly monotone), i.e. if u, v ∈ Xµ and u ≤ v (respectively, u < v)
then φ(k, u, g) ≤ φ(k, v, g) (respectively, φ(k, u, g) ¿ φ(k, v, g)) for all k ≥ 0 and
G ∈ H(Fµ).

Definition 47. Let Fµ ∈ C(Z×Xµ,Rn). The set H(Fµ) is said to be minimal if it
is a minimal set of shift dynamical system (C(Z×Xµ,Rn),Z, σ).

Definition 48. A function Fµ ∈ C(Z×Xµ,Rn) is said to be strongly Poisson stable
if every function G ∈ H(Fµ) is Poisson stable.

Theorem 19. Suppose that the following conditions hold:

1. µ ∈ Rm is such that the system (30) is strongly monotone;

2. the set H(Fµ) is minimal and Fµ is strongly Poisson stable;

3. the matrix Γ has rank exactly n − 1 whose kernel is spanned by a strongly
positive vector v;
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4. for any G ∈ H(Fµ) all forward solutions of equation (30) are bounded.

Then for any U0 ∈ X(µ,Γ) the following statements hold:

1. the set ω(U0,f)

⋂
Xf consists of a single point p0 = (V0, f), where ω(U0,f) is the

ω-limit set of the motion π(k, (U0, f)) of the skew-product dynamical system
(X,Z+, π) (X := X(µ,Γ) ×H(f), π := (ϕ, σ)) and Xf := X(µ,Γ) × {f};

2. the solution ϕ(k, V0, f) of equation (30) is defined on Z, ϕ(Z, v0, f) ⊆ Q
(U0,f)
+

and it is strongly compatible;

3.
lim

k→∞
|ϕ(k, U0, f)− ϕ(k, V0, f)| = 0.

Proof. Let (H(Fµ),Z, σ) (respectively, (H(f),Z, σ)) be the shift dynamical system
on H(Fµ) (respectively, on H(f)). Denote by 〈Xµ, φ, (H(Fµ),Z, σ)〉 (respectively,
〈X(µ,Γ), ϕ, (H(f),Z, σ)〉, where X(µ,Γ) = µ + Γ(Xµ) := {µ + Γu| u ∈ Xµ}) the
cocycle generated by family of equations (34) (respectively, (33)). Note that under
the conditions of Theorem 19 Conditions (C1), (C3) and (C4) are fulfilled for the
cocycle 〈Xµ, φ, (H(Fµ),R, σ)〉. Let U0 ∈ X(µ,Γ), then there exists a point u0 ∈ Xµ

such that U0 = µ + Γ(u0). By equality (30) the cocycle φ is translation invariant
with respect to vector v À 0. According to Theorem 14 for given u0 ∈ Xµ the
following statements are fulfilled:

a. the set ω(u0,Fµ)

⋂
XFµ consists of a single point q0 = (v0, Fµ), where ω(u0,Fµ)

is the ω-limit set of the motion π(k, (u0, Fµ)) of the skew-product dynamical
system (X,Z+, π) (X := Xµ ×H(Fµ), π := (φ, σ)) and XFµ := X(µ,Γ) × {Fµ};

b. the solution φ(k, V0, Fµ) of equation (30) is defined on Z,
φ(Z, v0, Fµ) ⊆ Q

(u0,Fµ)
+ and it is strongly compatible;

c.
lim

k→∞
|φ(k, u0, Fµ)− φ(k, v0, Fµ)| = 0.

Denote by V0 := µ + Γ(v0) ∈ X(µ,Γ) and consider the solutions ϕ(k, U0, f) and
ϕ(k, V0, f) of equation (33) (h = f). Since φ(·, v0, Fµ) is a strongly compatible
solution of equation (34) (G = Fµ), then

MFµ ⊆ Mφ(·,v0,Fµ). (36)

By Lemma 16 we have ϕ(k, V0, f) = µ + φ(k, v0, Fµ) for any k ∈ Z. Note that

Mφ(·,v0,Fµ) ⊆ Mϕ(·,V0,f). (37)

Indeed if {km} ∈ Mφ(·,v0,Fµ) then we have

ϕ(k + km, V0, f)− ϕ̄(k) = µ + Γφ(k + km, v0, Fµ)− (µ + Γφ̄(k)) =
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Γ(φ(k + km, v0, Fµ)− φ̄(k)) → 0

as m → ∞ uniformly with respect to k on every compact subset from Z, where
φ̄ = lim

m→∞φ(·+km, v0, Fµ) in the space C(Z,Rn). This means that {km} ∈ Mϕ(·,V0,f).

From (36) and (37) we have

MFµ ⊆ Mϕ(·,V0,f). (38)

Finally, from Corollary 9 (item (ii)) we have

Mf ⊆ MΦ(f). (39)

In virtue of (38)–(39) and taking into consideration the equality Φ(f) = Fµ we
obtain

Mf ⊆ Mϕ(·,V0,f),

i.e., ϕ(k, V0, f) is a strongly compatible solution of equation (33) (for h = f).
To finish the proof of Theorem it is sufficient to note that

|ϕ(k, U0, f)− ϕ(k, V0, f)| = |(µ + Γφ(k, u0, Fµ))− (µ + Γφ(k, v0, Fµ))| =
|Γ(φ(k, u0, Fµ)− φ(k, v0, Fµ))| ≤ ‖Γ‖|φ(k, u0, Fµ)− φ(k, v0, Fµ)| → 0

as k →∞.

Corollary 11. Under the conditions of Theorem 19 if the function
f ∈ C(Z × X(µ,Γ),Rn) is stationary (respectively, τ -periodic, quasi-periodic, Bohr
almost periodic, almost automorphic, recurrent in the sense of Birkhoff, strongly
Poisson stable) in time, then for any U0 ∈ X(µ,Γ) the following statements hold:

1. the set ω(U0,f)

⋂
Xf consists of a single point p0 = (V0, f);

2. ϕ(k, V0, f) is a stationary (respectively, τ -periodic, quasi-periodic, Bohr al-
most periodic, almost automorphic, recurrent in the sense of Birkhoff, strongly
Poisson stable) solution of equation (30);

3. lim
k→+∞

|ϕ(k, U0, f) − ϕ(k, V0, f)| = 0, i.e., ϕ(k, u0, f) is asymptotically sta-

tionary (respectively, asymptotically τ -periodic, asymptotically quasi-periodic,
asymptotically Bohr almost periodic, asymptotically almost automorphic, asymp-
totically recurrent in the sense of Birkhoff, asymptotically strongly Poisson
stable).

Proof. This statement follows from Theorem 19 and Corollary 6.

Consider the difference equation

∆u(k) = f(k, u(k)), (40)
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where f ∈ C(Z × Rn,Rn). Along with the equation (40) we consider its H-class
[5, 21,27,34,37], i.e., the family of the equations

∆v(k) = g(k, v(k)), (41)

where g ∈ H(f) = {fτ : τ ∈ Z} and fτ (k, u) = f(k + τ, u), with the bar indicating
closure in the compact-open topology.

We will suppose that the function f is regular. Denote by ϕ(·, v, g) the so-
lution of (41) passing through the point v ∈ Rn for k = 0. Then the mapping
ϕ : Z+×Rn×H(f) → Rn satisfies the following conditions (see, for example,[5,31]):

1) ϕ(0, v, g) = v for all v ∈ Rn and g ∈ H(f);

2) ϕ(k, ϕ(τ, v, g), gτ ) = ϕ(k + τ, v, g) for each v ∈ Rn, g ∈ H(f) and k, τ ∈ Z+;

3) ϕ : Z+ × Rn ×H(f) → Rn is continuous.

Denote by Y := H(f) and (Y,Z, σ) a dynamical system of translations on Y ,
induced by the dynamical system of translations (C(Z × Rn,Rn),Z, σ). The triple
〈Rn, ϕ, (Y,Z, σ)〉 is a cocycle over (Y,Z+, σ) with the fiber Rn. Hence, the equation
(40) generates a cocycle 〈Rn, ϕ, (Y,Z, σ)〉 and the non-autonomous dynamical system
〈(X,Z+, π), (Y,Z, σ), h〉, where X := Rn × Y , π := (ϕ, σ) and h := pr2 : X → Y .

Definition 49. Recall that the difference equation (40) is called dissipative if for
all t0 ∈ R and u0 ∈ Rn there exists a unique solution x(k; u0, k0) of the equation
(40) passing through the point (u0, k0) and if there exists a number R > 0 such that
lim

k→+∞
sup |x(k; u0, k0)| < R for all x0 ∈ Rn and k0 ∈ Z. In other words, for every

solution x(k;u0, k0) there is an instant k1 = k0+l(k0, u0), such that |x(k; u0, k0)| < R
for any k ≥ k1. If for any r > 0 the number l(k0, u0) can be chosen independently
on k0 and u0 with |u0| ≤ r, then the equation (40) is called uniformly dissipative.

Lemma 17. Let f ∈ C(Z × Rn,Rn) be regular. If H(f) is compact, then equation
(40) is uniformly dissipative if and only if there is a positive number r such that

lim sup
k→+∞

|ϕ(k, u0, g)| < r (u0 ∈ Rn, g ∈ H(f)) .

Proof. This statement can be proved using the same arguments as in the proof of
Lemma 15 (see [12, ChIII]).

Remark 16. If f ∈ C(Z × Rn,Rn) is regular, H(f) is compact and then equation
(40) is uniformly dissipative, then the cocycle ϕ generated by equation (40) admits
a compact global attractor.

Theorem 20. Suppose that the following assumptions are fulfilled:

– µ ∈ Rm is such that the system (30) is monotone;
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– the matrix Γ has rank exactly n − 1 whose kernel is spanned by a strongly
positive vector v;

– the function Fµ ∈ C(Z×Xµ,Rn) is recurrent in k ∈ Z uniformly with respect
to u on every compact subset from Xµ;

– the cocycle φ generated by equation (30) admits a compact global attractor and
I := {IG| G ∈ H(Fµ)} is its Levinson center.

Then under the condition (D) the following statements hold:

1. α(G), β(G) ∈ IG for any G ∈ H(Fµ) and, consequently, IG ⊆ [α(G), β(G)];

2. φ(k, α(G), G) = α(σ(k, G)) (respectively, φ(k, β(G), G) = β(σ(k, G))) for any
k ≥ 0 and G ∈ H(Fµ);

3. the point γ∗(Fµ) := (α(Fµ), Fµ) ∈ X = Xµ × Y (respectively,
γ∗(Fµ) := (β(Fµ), Fµ) ∈ X) is strongly comparable by character of recurrence
with the point Fµ;

4. for any h ∈ H(f) equation (34) has at least two solutions ϕ(k, U0, h)
(U0 = µ+Γα(Φ(h))) and ϕ(k, V0, h) (V0 = µ+Γβ(Φ(h))) defined and bounded
on Z which are strongly compatible and belong to Levinson center of (30);

5. if the function f ∈ C(Z × X(µ,Γ),Rn) is quasi-periodic (respectively, Bohr
almost periodic, almost automorphic, recurrent, pseudo-recurrent and La-
grange stable, uniformly Poisson stable and stable in the sense of Lagrange)
in k ∈ Z uniformly with respect to u on every compact subset from X(µ,Γ),
then ϕ(k, u0, f) and ϕ(k, V0, f) are quasi-periodic (respectively, Bohr almost
periodic, almost automorphic, recurrent, pseudo-recurrent and Lagrange sta-
ble, uniformly Poisson stable and stable in the sense of Lagrange).

Proof. Let (H(Fµ),Z, σ) (respectively, (H(f),Z, σ)) be the shift dynamical system
on H(Fµ) (respectively, on H(f)). Denote by 〈Xµ, φ, (H(Fµ),Z, σ)〉 (respectively,
〈X(µ,Γ), ϕ, (H(f),Z, σ)〉, where X(µ,Γ) = µ+Γ(Xµ) := {µ+Γu| u ∈ Xµ}) the cocycle
generated by family of equations (34) (respectively, (33)).

By equality (30) the cocycle φ is translation invariant with respect to vector
v À 0. Applying Theorem 15 to nonautonomous dynamical system 〈Xµ, φ, (H(Fµ),
Z, σ)〉 we obtain the following statements:

1. α(G), β(G) ∈ IG for any G ∈ H(Fµ) and, consequently, IG ⊆ [α(G), β(G)],
where α(G) := inf IG (respectively, β(G) := sup IG);

2. φ(k, α(G), G) = α(σ(k, G)) (respectively, φ(k, β(G), G) = β(σ(k, G))) for any
k ≥ 0 and G ∈ H(Fµ);

3. the point γ∗(Fµ) := (α(Fµ), Fµ) ∈ X = Xµ × Y (respectively,
γ∗(Fµ) := (β(Fµ), Fµ) ∈ X) is strongly comparable by character of recurrence
with the point Fµ.
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Note that the nonautonomous dynamical system 〈X(µ,Γ), ϕ, (H(f),Z, σ)〉 is com-
pactly dissipative because ϕ(k, U, h) = µ + Γφ(k, u,Φ(h)) for any h ∈ H(f)
(U = µ + Γu) and the cocycle φ is so. Let A = {Ah| h ∈ H(f)} be the Levin-
son center for the compact dissipative cocycle ϕ generated by equation (33). Denote
by U(h) := µ + Γα(Φ(h)) and V (h) := µ + Γβ(Φ(h)). Then by Lemma 16 for any
h ∈ H(f)

ϕ(k, U(h), h) = µ + Γφ(k, α(Φ(h)), Φ(h)) (42)

(respectively,
ϕ(k, V (h), h) = µ + Γφ(k, β(Φ(h)), Φ(h))) (43)

is a bounded on Z solution of equation (34). By Theorem 8 we have U(h), V (h) ∈ Ah,
i.e., U(h) and V (h) belongs to the Levinson center of the cocycle ϕ. Finally, from
(42) (respectively, (43)) it follows that ϕ(k, U(f), f) (respectively, ϕ(k, V (f), f)) is a
strongly compatible solution of equation (33) for h = f , because φ(k, α(Φ(h)), Φ(h))
(respectively, φ(k, β(Φ(h)), Φ(h))) is a strongly compatible solution of equation (34),
Φ : H(f) → H(Fµ) is a homeomorphism and Φ(f) = Fµ. Theorem is proved.
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