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Semi-symmetric isotopic closure of some group

varieties and the corresponding identities
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Abstract. Four families of pairwise equivalent identities are given and analyzed.
Every identity from each of these families defines one of the following varieties: 1) the
semi-symmetric isotopic closure of the variety of all Boolean groups; 2) the semi-
symmetric isotopic closure of the variety of all Abelian groups; 3) the semi-symmetric
isotopic closure of the variety of all groups; 4) the variety of all semi-symmetric quasi-
groups. It is proved that these varieties are different and form a chain. Quasigroups
belonging to these varieties are described. In particular, quasigroups from 1) and
2) varieties are medial and in addition, they are either groups or non-commutative
semi-symmetric quasigroups.
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1 Introduction

It is well known that the class of all semi-symmetric quasigroups is described by

xy · x = y. (1)

According to A. Sade [26], a groupoid or a quasigroup (Q; ·) satisfying the identity
(1) for all x, y of Q is called semi-symmetric. He also established properties and
structure of semi-symmetric quasigroups. Semi-symmetric quasigroups have also
been described as ‘3-cyclic’. They were studied by J.M. Osborn [21], A. Sade [26–
29], N. S.Mendelsohn [19], G. Grätzer and R.Padmanabhan [15], A.Mitschke and
H.Werner [20], J.W. DiPaola and E.Nemeth [9]. The use of semi-symmetric quasi-
groups for reducing homotopies to homomorphisms first appeared in [32], inspired
by work of Gvaramiya and Plotkin that interpreted homotopies as homomorphisms
of heterogeneous algebras [32]. The classical approach to studying properties of
a quasigroup invariant under isotopy was geometrical, through the concept of a
3-net, as presented in A. A.Albert [2], V. D. Belousov [6], H. O.Pflugfelder [23],
V.A. Shcherbacov [30], J.D. H. Smith [33] and A.B. Romanowska [34].

F. Sokhatsky [38] proposed a symmetry concept for parastrophes of quasigroup
varieties and their quasigroups. This concept is used for the investigation of the
parastrophes of quasigroup varieties and, in particular, quasigroups and their paras-
trophes. F. Sokhatsky’s symmetry concept generalizes the symmetry known as tri-
ality which was investigated by J.D. H. Smith [31]. If a σ-parastrophe coincides
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with a quasigroup itself, then σ is called a symmetry of the quasigroup. The set
of all symmetries of a binary quasigroup forms a group, which is a subgroup of the
symmetry group S3. According to the symmetry group, there are six classes of quasi-
groups: commutative (middle symmetric), left-, right-, semi-, totally symmetric and
asymmetric (which consists of quasigroups with a unitary symmetry group).

We consider semi-symmetric isotopic closures of some group varieties. The nec-
essary and sufficient conditions for a group isotope to be semi-symmetric are well-
known. For example, F. Radó [25] found the necessary and sufficient conditions for
existence of the semi-symmetric group isotopes of prime order. The first author of
the article [16] established the criterion for the semi-symmetry of group isotopes.
The second author [42] gave a variety of Abelian group isotopes containing semi-
symmetric medial quasigroups. I. M.H. Etherington [11] and A. Sade [26] showed
that every semi-symmetric groupoid is necessarily a semi-symmetric quasigroup.
V.V. Iliev [14] studied a construction of the semi-symmetric algebras over a com-
mutative ring with the unit. V. D. Belousov [5] has found a quadratic identity in
five variables describing the isotopic closure of all groups. F. M. Sokhatsky [36] has
established an identity in four variables which also describes this variety but his
identity is not quadratic. The isotopic closure of some group varieties was studied
by G. B. Belyavskaya [7], A. Drapal [10], A. Kh.Tabarov [41].

In this article, we have found families of identities: 1) nine quadratic identities
in three variables (11); 2) nine quadratic identities in four variables (12); 3) one
non-quadratic identity in four variables (15); 4) ten quadratic identities in two vari-
ables (Corollary 11). Identities (11) are pairwise equivalent (Lemma 2) and describe
the variety Bss of the semi-symmetric isotopic closure of all Boolean groups (Corol-
lary 14 from Theorem 8). Identities (12) are pairwise equivalent (Theorem 9) and
describe the variety Ass of the semi-symmetric isotopic closure of all Abelian groups
(Corollary 18). The identity (15) describes the variety Gss of the semi-symmetric
isotopic closure of all groups (Theorem 10). All identities from Corollary 11 are
pairwise equivalent and describe the variety S of all semi-symmetric quasigroups
(Lemma 1). Every identity from (11), (12), (15) and from Corollary 11 implies
semi-symmetry (see corresponding Theorems 6, 7, and Corollaries 12, 22).

The quasigroups belonging to varieties Bss and Ass are medial (Corollary 19).
Moreover, they are either groups or non-commutative semi-symmetric quasigroups
(Corollaries 16, 19). All varieties Bss, Ass, Gss and S are totally symmetric, that is
every parastrophe of a quasigroup of the variety belongs to this variety (Corollar-
ies 10, 13, 17, 23). It is proved that these varieties are different and form a chain
(Theorem 11).

2 Preliminaries

A quasigroup is a natural generalization of the concept of a group. Quasigroups
differ from groups in that they need not be associative. A quasigroup is a group if
and only if it satisfies the associativity [6].
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As usual, whenever unambiguous, a term like x · y is shortened to xy. The word
‘iff’ stands for ‘if and only if’.

An algebra (Q; ·,
ℓ
·,

r
· ) with identities

(x · y)
ℓ
· y = x, (x

ℓ
· y) · y = x, x

r
· (x · y) = y, x · (x

r
· y) = y (2)

is called a quasigroup [6,12]. In [3], an equational quasigroup is defined as an algebra

with three binary operations (Q; ·,
ℓ
·,

r
· ) that fulfill the following six identities: (2)

and x
ℓ
· (y

r
· x) = y, (x

ℓ
· y)

r
· x = y. The triples of identities composed of these

six, emphasizing those that axiomatize the variety of quasigroups, are investigated
in [22].

The main operation of a quasigroup is denoted by (·). A quasigroup operation

(·) is often considered together with its inverse operations: left (
ℓ
·) and right (

r
·)

divisions which are defined by: x · y = z ⇔ x
r
· z = y ⇔ z

ℓ
· y = x. Both inverse

operations are also quasigroups.
Such quasigroups are called equational quasigroups (equasigroups, earlier primi-

tive quasigroups). The equational definition of quasigroups is due to T. Evans [13].
The equational definition of twisted quasigroups is due to A. Krapež [18].

The operations (2) and their duals which are defined by

x
s
· y := y · x, x

sℓ
· y := y

ℓ
· x, x

sr
· y := y

r
· x (3)

are called parastrophes of (·). The defining identities (2) and (3) are called primary.

2.1 On symmetry of an arbitrary proposition

The relationships (3) imply that each identity of the signature (· ,
ℓ
· ,

r
· ,

s
· ,

sℓ
· ,

sr
· )

can be written in the signature (·,
ℓ
·,

r
·). Nevertheless throughout the article, we

consider identities on quasigroups of signature (· ,
ℓ
· ,

r
· ,

s
· ,

sℓ
· ,

sr
· ). All parastrophes

of (·) can be defined by

x1σ

σ
· x2σ = x3σ :⇔ x1 · x2 = x3, (4)

where σ ∈ S3 := {ι, ℓ, r, s, sℓ, sr}, ℓ := (13), r := (23), s := (12). It is easy to verify
that

σ( τ
·

)

=
(

στ
·

)

holds for all σ, τ ∈ S3.

F. Sokhatsky [38, 39] has shown that a mapping (σ; (·)) 7→ (
σ
·) is an action on

the set ∆ of all quasigroup operations defined on Q. A stabilizer Ps(·) is called a
parastrophic symmetry of (·). Thus, the number of different parastrophes of a quasi-
group operation (·) depends on its group of parastrophic symmetry Ps(·). Since Ps(·)
is a subgroup of the symmetric group S3, then there are six classes of quasigroups.
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If Ps(·) ⊇ A3, then a quasigroup is called semisymmetric. The class of all semi-
symmetric quasigroups is described by x · yx = y. It means that

(·) = (
sℓ
· ) = (

sr
· ), (

s
·) = (

ℓ
·) = (

r
·). (5)

If Ps(·) = S3, then a quasigroup is called totally symmetric. The class of all
totally symmetric quasigroups is described by xy = yx and xy ·y = x, it means that
all parastrophes coincide.

Let P be an arbitrary proposition in a class of quasigroups A. The proposition
σP is said to be a σ-parastrophe of P , if it can be obtained from P by replacing

every (
τ
·) with (

τσ−1

· ); σA denotes the class of all σ-parastrophes of quasigroups from
A.

Theorem 1 (see [38,39]). Let A be a class of quasigroups, then a proposition P is
true in A iff σP is true in σA.

Corollary 1 (see [38, 39]). Let P be true in a class of quasigroups A, then σP is
true in A for all σ ∈ S3.

Corollary 2 (see [38,39]). Let P be true in a totally symmetric class A, then σP is
true in A for all σ.

Definition 1. Transition of the identity id to the identity σid is called a parastrophic
transformation (σ-parastrophic transformation) if σid can be obtained by replacing
the main operation with its σ−1-parastrophe.

Two identities are called:

1) equivalent if they define the same variety;

2) primarily equivalent if one of them can be obtained from the other in a finite
number of applications of primary identities (2) – (3) (primary equivalent
identities are equivalent);

3) σ-parastrophic if one of them can be obtained from the other by σ-parastrophic
transformation;

4) σ-parastrophically equivalent if they define σ-parastrophic varieties (according
to Theorem 1, σ-parastrophically equivalent identities define σ-parastrophic
varieties);

5) σ-parastrophically primarily equivalent if one of them can be obtained in a
finite number of applications of primary identities and σ1 -, σ2 -, . . ., σk -
parastrophic transformations such that σ1σ2 . . . σk = σ for some k ∈ N.

In a generalized case σ will be omitted. For example, two identities are called
parastrophically equivalent if they are σ-parastrophically equivalent for some σ ∈ S3.
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2.2 On group isotopes

A groupoid (Q; ·) is called an isotope of a groupoid (Q; +) iff there exists a
triplet of bijections (α, β, γ), which is called an isotopism, such that the relationship
x · y := γ−1(αx + βy) holds. An isotope of a group is called a group isotope.

Definition 2 (see [36]). Let (Q; ·) be a group isotope and 0 be an arbitrary element
of Q, then the right side of the formula

x · y = αx + a + βy (6)

is called a 0-canonical decomposition if (Q; +) is a group, 0 is its neutral element
and α0 = β0 = 0.

In this case, we say: the element 0 defines the canonical decomposition; (Q; +)
is its decomposition group; α, β are its coefficients and a is its free member.

Theorem 2 (see [36]). An arbitrary element of a group isotope uniquely defines a
canonical decomposition of the isotope.

Corollary 3 (see [36]). The isotopic closure of the variety of all groups is a variety
of quasigroups which is described by the following identity:

(x(u
r
· y)

ℓ
· u)z = x(u

r
· (y

ℓ
· u)z). (7)

Corollary 4 (see [35]). If a group isotope (Q; ·) satisfies the identity

w1(x) · w2(y) = w3(y) · w4(x)

and the variables x, y are quadratic, then (Q; ·) is isotopic to a commutative group.

Recall that a variable is quadratic in an identity if it has exactly two appearances
in this identity. An identity is called quadratic if all variables are quadratic. If a
quasigroup (Q; ·) is isotopic to a parastrophe of a quasigroup (Q; ◦), then (Q; ·) and
(Q; ◦) are called isostrophic.

Theorem 3 (see [37]). Let four pairwise isostrophic operations connected by a
quadratic identity satisfy the conditions:

1) an arbitrary subterm of the length two has two different variables;

2) an arbitrary subterm of the length three has three different variables.

Then all these operations are isotopic to the same group.

Belousov’s theorem on four quasigroups [1, 4, 40] implies the following corollary.

Corollary 5. If four quasigroups are connected by the generalized associativity law,
then each of these quasigroups is isotopic to the same group.
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Theorem 4 and its Corollary 7 below are well known and can be found in many
articles, for example, in [6, 36].

Theorem 4. A triple (α, β, γ) of permutations of a set Q is an autotopism of a
group (Q,+) iff there exists an automorphism θ of (Q,+) and elements b, c ∈ Q

such that
αx = c + θx − b, βx = b + θx, γx = c + θx.

Corollary 6. (6) is a canonical decomposition of a group iff α = β = ι.

Proof. Let (6) be a canonical decomposition of a group (Q; ·). Therefore, the groups
(Q; +) and (Q; ·) are isotopic, consequently they are isomorphic and let ϕ be the
corresponding isomorphism. Then

ϕ(ϕ−1x + ϕ−1y) = αx + a + βy

holds. Theorem 4 implies the existence of an automorphism θ and an element b from
(Q; +) such that ϕx = b + θx. Therefore,

x − b + y = αx + a + βy

holds. The left and the right sides of the equality are canonical decomposition of
the same group isotope. Its uniqueness implies α = β = ι.

Corollary 7. Let α, β1, β2, β3, β4 be permutations of a set Q. Besides, α is a
unitary transformation of a group (Q,+) and let

α(β1x + β2y) = β3u + β4v,

where {x, y} = {u, v} holds for all x, y ∈ Q. Then the following statements are true:

1) α is an automorphism of (Q,+) if u = x, v = y;

2) α is an anti-automorphism of (Q,+) if u = y, v = x.

Systematizing all criteria on symmetry, the first author [16] gave a classification
of group isotopes according to their groups of parastrophic symmetry and formulated
the corollary on the classification of isotopes of Abelian groups.

Theorem 5 (see [16]). Let (Q; ·) be a group isotope and (6) be its canonical decom-
position, then (Q; ·) is

1) commutative iff (Q; +) is Abelian and β = α;

2) left symmetric iff (Q; +) is Abelian and β = −ι;

3) right symmetric iff (Q; +) is Abelian and α = −ι;

4) semi-symmetric iff α is an anti-automorphism of (Q; +),
β = α−1, α3 = −I−1

a , αa = −a, where Ia(x) := −a + x + a;
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5) totally symmetric iff (Q; +) is Abelian and α = β = −ι;

6) asymmetric iff (Q; +) is not Abelian or −ι 6= α 6= β 6= −ι and at least one
of the following conditions is true: α is not an anti-automorphism, β 6= α−1,
α3 6= −I−1

a , αa 6= −a.

Theorem 5 implies Corollary 8.

Corollary 8 (see [16]). Let (Q; ·) be an isotope of an Abelian group and (6) be its
canonical decomposition, then (Q; ·) is

1) commutative iff β = α;

2) left symmetric iff β = −ι;

3) right symmetric iff α = −ι;

4) semi-symmetric iff α is an automorphism of (Q; +),
β = α−1, α3 = −ι, αa = −a;

5) totally symmetric iff α = β = −ι;

6) asymmetric iff −ι 6= α 6= β 6= −ι and at least one of the following conditions
is true: α is not an automorphism, β 6= α−1, α3 6= −ι, αa 6= −a.

3 Identities implying semi-symmetry

In this section, we find the relations among identities specifying semi-symmetric
quasigroups. We systematize some well-known results for identities in two variables
for using them in our further investigation. A semi-symmetry can be defined by
different conditions. We consider some of them. We find nine quadratic identities in
three variables and nine quadratic identities in four variables each of them implies
semi-symmetry.

3.1 Identities in two variables

A quasigroup (Q; ·) is called semi-symmetric if the identity (1) holds for all x,
y from Q. Using the definition of the left division, we have the equivalent identity

y
ℓ
· x = xy. We apply the definition of s-parastrophe to the left and to the right

sides of the identity separately:

x
sℓ
· y = xy, y

ℓ
· x = y

s
· x. (8)

These identities mean that (
sℓ
· ) = (·) and (

ℓ
·) = (

s
·) hold. That is why each identity

from (8) is equivalent to (1). The equality (
sℓ
· ) = (·) means that sℓ ∈ Ps(·).

Similarly, one can show that the identity

x · yx = y (9)
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is equivalent to

y
sr
· x = yx, x

r
· y = x

s
· y. (10)

Therefore, (
sr
· ) = (·) and (

r
·) = (

s
·) hold and the equality (

sr
· ) = (·) means that

sr ∈ Ps(·). As a result, we obtain the following lemma.

Lemma 1. In an arbitrary quasigroup (Q; ·) the following statements are equivalent:

1) (Q; ·) is semi-symmetric;

2) A3 is a subgroup of Ps(·);

3) (Q; ·) satisfies (9).

Proof. 1) ⇔ 2). As we have shown above, (1) is equivalent to sℓ ∈ Ps(·). But sℓ

generates the group A3, then A3 is a subgroup of Ps(·). The inverse statement is
evident. 2) ⇔ 3) can be proved in the same way.

Corollary 9. If a semi-symmetric variety contains s-parastrophe of each of its
quasigroups, then it is totally symmetric.

Proof. The proof follows from item 1) of Lemma 1.

Corollary 10. The variety of all semi-symmetric quasigroups is totally symmetric.

Proof. Let S be the variety of semi-symmetric quasigroups. Therefore, S contains
sℓ-parastrophe of an arbitrary quasigroup from S. s-Parastrophe of a quasigroup

from S satisfies s-parastrophe of the identity (1), i. e., (x
s
· y)

s
· x = y. The identity

is equivalent to x · yx = y which defines S. Thus, sℓ and s belong to the group
Ps(S), that is why Ps(S) = S3. It means that S is totally symmetric.

Corollary 11. The identities (1), (8), (9), (10) and x(x
ℓ
· y) = y, (x

r
· y)y = x,

x
ℓ
· xy = y, xy

r
· y = x, x

ℓ
· y = yx, x

r
· y = yx are equivalent.

Proof. Using the definitions of the left and right divisions, the proof is evident.

The equivalency of the identities (1), (9) and the last two identities from Corol-
lary 11 is shown in [31, Proposition 1.2]. The equivalency of the identities (1), (8),
(9), (10) and the last two identities from Corollary 11 are established in [8, 24].

Thus, we have the variety of all semi-symmetric quasigroups, defined by one of
ten equivalent axioms from Corollary 11.

Corollary 12. The identities from Corollary 11 imply semi-symmetry.
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3.2 Identities in three variables

In this subsection, nine quadratic identities in three variables are investigated,
namely

(x · yz) · z = yx, (i1) x · (xy · z) = zy, (i2) xy · yz = zx, (i3)
x(y(yx · z)) = z, (i4) xy · (y · xz) = z, (i5) x(xy · yz) = z, (i6)
((x · yz)z)y = x, (i7) (xy · z) · zy = x, (i8) (xy · yz)z = x. (i9)

(11)

In this form, these identities were among 100 identities without squares, which were
listed in [17]. We establish relations among identities (11), namely, relations of
equivalency and parastrophically primary equivalency. Each quasigroup satisfying
one of the identities from (11) is semi-symmetric (Theorem 6).

Proposition 1. The identities (i4), (i5), (i6) are equivalent.

Proof. Multiply (i4) by yx from the left: yx · (x · (y · (yx · z))) = yx · z. Replacing
yx · z with z, we have yx · (x · yz) = z. Mutually relabeling x and y, we obtain
(i5). Since applied transformations are invertible, then (i4) and (i5) are equivalent.
Multiplying (i5) by x from the left and replacing xz with z, we obtain equivalency
of (i5) and (i6).

Proposition 2. The identities (i7), (i8), (i9) are equivalent.

Proof. Multiply (i7) by yz from the right: (((x · yz) · z) · y) · yz = x · yz. Replacing
x · yz with x, we obtain (xz · y) · yz = x. Mutually relabeling z and y, we obtain
(i8). Since applied transformations are invertible, then (i7) and (i8) are equivalent.

Multiplying (i8) by y from the right and replacing xy with x, we have (xz·zy)·y =
x. Mutually relabeling z and y, we obtain the equivalency of (i8) and (i9).

Theorem 6. Every identity from (11) implies semi-symmetry.

Proof. Let (Q, ·) be a quasigroup. Replacing z with x in identities (i1) and (i2), we
have

(x · yx) · x = y · x, x · (xy · x) = x · y.

Canceling out x in both sides of these identities, we obtain semi-symmetric identity
in both cases.

We put z = y
r
· x in (i3), z = yx

r
· x in (i4):

xy · y(y
r
· x) = (y

r
· x)x, x · y(yx · (yx

r
· x)) = yx

r
· x.

Apply (2):

xy · x = (y
r
· x) · x, x · yx = yx

r
· x.

Canceling out x in the first identity and replacing yx with x in the second identity,

we obtain xy = y
r
· x in both cases. According to the right division, we obtain

semi-symmetric identity y · xy = x.
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By Proposition 1, the identities (i4), (i5), (i6) are equivalent. Then the identities
(i5), (i6) imply semi-symmetry.

We replace x with x
ℓ
· yz in (i7): ((x

ℓ
· yz) · yz)z · y = x

ℓ
· yz.

Apply (2): xz · y = x
ℓ
· yz.

Putting x = y, we obtain semi-symmetric law yz · y = z. Proposition 2 implies
that semi-symmetric law follows from (i8) and (i9).

3.3 Identities in four variables

In this subsection, nine quadratic identities in four variables

(xy · u) · xv = y · uv, (m1) xy · (u · vy) = xu · v, (m2)
(x · (yu · v)) · y = xu · v, (m3) x · ((y · ux) · v) = y · uv, (m4)
xy · (ux · vy) = uv, (m5) (xy · uv) · xu = yv, (m6)
xy · (ux · v) = u · yv, (m7) (x · yu) · vy = xv · u, (m8)

x · ((y · xu)
ℓ
· v) = uv · y (m9)

(12)

are considered. It is proved that each of these identities implies semi-symmetry.

Theorem 7. Every identity from (12) implies semi-symmetry.

Proof. Put u = x in (m1) and u = y in (m2):

(xy · x) · xv = y · xv, xy · (y · vy) = xy · v.

Canceling out xv in the first identity and xy in the second one, we receive semi-
symmetry from each of these identities.

When we put v = y in (m3) and y = x in (m4), then

(x · (yu · y)) · y = xu · y, x · ((x · ux) · v)) = x · uv.

Cancel out y in the first identity and x in the second one:

x · (yu · y) = xu, (x · ux) · v = uv.

Canceling out x and v respectively in these identities, we receive semi-symmetry in
both cases.

Put v = x in (m5) and u = y in (m6):

xy · (ux · xy) = ux, (xy · yv) · xy = yv.

Replace xy with y and ux with u in the first identity, xy with x and yv with v in
the second one. We obtain semi-symmetric law in both cases.

Putting ux = y and u = y
ℓ
· x in (m7), we have xy · yv = (y

ℓ
· x) · yv. Canceling

out yv in both sides of the identity and using the definition of the left division, we
receive the semi-symmetric identity.
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Put yu = v and u = y
r
· v in (m8), then xv ·vy = xv · (y

r
· v). Divide both sides of

this identity by xv. According to Corollary 11, the obtained identity is equivalent
to semi-symmetry.

Put xu = v and x = v
ℓ
· u in (m9):

(v
ℓ
· u) · (yv

ℓ
· v) = uv · y.

According to the first identity from (2), we have (v
ℓ
· u) ·y = uv ·y. Divide both sides

of this identity by y on the right. According to Corollary 11, the obtained identity
is equivalent to semi-symmetry.

4 The varieties of semi-symmetric isotopic closures of some groups

V.D. Belousov [5] has found a quadratic identity in five variables describing the
isotopic closure of all groups:

(x(y
r
· z)

ℓ
· u)v = x(y

r
· (z

ℓ
· u)v).

F. M. Sokhatsky [36] has established an identity (7) in four variables, which also
describes isotopic closure of all groups, but it is not quadratic.

In this section, we find the semi-symmetric isotopic closure of all Boolean groups,
the semi-symmetric isotopic closure of all Abelian groups and the semi-symmetric
isotopic closure of all groups.

4.1 The variety of semi-symmetric isotopes of all Boolean groups

In this subsection, we consider the semi-symmetric isotopic closure of Boolean
groups. We find nine identities (11) which describe the variety of semi-symmetric
isotopes of all Boolean groups. This variety is totally symmetric, that is every
parastrophe of a quasigroup from the variety belongs to it. These quasigroups are
medial and they are either groups or non-commutative semi-symmetric quasigroups.

Lemma 2. The identities (11) are equivalent and define a totally symmetric variety.

Proof. To obtain (i3) we use semi-symmetry law:

• multiply (i9) by z from the left;

• multiply (i6) by x from the right;

• replace z with yz in (i2) and multiply the obtained identity by x from the
right;

• replace x with xy in (i1) and multiply the obtained identity by z from the left.
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Taking into account Proposition 1 and Proposition 2, we obtain equivalency of all
identities from (11).

Consider s-parastrophe of (i1): (x
s
· (y

s
· z))

s
· z = y

s
· x. By the definition of

s-parastrophe of the operation (·), we obtain z · (zy ·x) = xy. This identity coincides
with (i2) after mutual relabeling of x and z. This means that s-parastrophe of
(i1) defines the same variety. Since the variety is semi-symmetric, then it is totally
symmetric.

Theorem 8. In an arbitrary quasigroup (Q; ·) the following statements are equiva-
lent:

1) (Q; ·) is a semi-symmetric isotope of a Boolean group;

2) (Q; ·) satisfies an arbitrary identity from (11);

3) there exists a Boolean group (Q; +), its automorphism α and an element a ∈ Q

such that
x · y = αx + a + α2y, α3 = ι, αa = a. (13)

Proof. Since all identities from (11) are equivalent by virtue of Lemma 2, then they
define the same variety. Therefore, it is enough to prove the theorem for one of
them.

1) ⇔ 3). Let (Q; ·) be a semi-symmetric isotope of a Boolean group (G; ∗).
Then all groups being isotopic to (Q; ·) are Boolean. Therefore, according to item 5)
of Theorem 5, item 1) and item 3) of the theorem are equivalent.

2) ⇒ 1). Let (Q; ·) be a quasigroup satisfying the identity (i1) from (11). By
Theorem 6, (Q; ·) is a semi-symmetric quasigroup. According to Theorem 3 and
Corollary 5, this quasigroup is isotopic to a group, so (Q; ·) is a semi-symmetric
group isotope.

3) ⇒ 2). Let (13) hold for a quasigroup (Q; ·). Prove that the identity (i1) is
true. Indeed,

(x · yz) · z = α(αx + a + α2(αy + a + α2z)) + a + α2z.

Because α is an automorphism, then

(x · yz) · z = α2x + αa + αy + a + α2z + a + α2z.

Since (Q; +) is a Boolean group and αa = a, then 2a = 0 and 2α2z = 0. Conse-
quently,

(x · yz) · z = αy + a + α2x = y · x.

Theorem 8 implies several corollaries.

Corollary 13. The variety of quasigroups being defined by one of the identities (11)
is totally symmetric.
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Proof. The proof follows from Lemma 2 and from Theorem 8.

Corollary 14. The semi-symmetric isotopic closure of all Boolean groups is defined
by pairwise equivalent identities (11).

Proof. The proof is evident, taking into account Theorem 8.

Corollary 15. The semi-symmetric isotopic closure of all Boolean groups is the
intersection of the variety of all semi-symmetric quasigroups and the variety of all
Boolean groups.

Proof. The proof immediately follows from Theorem 8 and Corollary 14.

Corollary 16. Every quasigroup satisfying one of the identities (11) is either a
Boolean group or a non-commutative semi-symmetric quasigroup.

Proof. Let (Q; ·) be a quasigroup satisfying the identity (i1). Then by Theorem 8,
its canonical decomposition has the form (13), where α is some automorphism and
a ∈ Q.

If (Q; ·) is commutative, then according to Theorem 5, α2 = α, i.e., α = ι. The
equality x ·y = x+a+y means that La is an isomorphism between (Q; ·) and (Q; +).
Thus, (Q; ·) is a Boolean group.

If (Q; ·) is non-commutative, then according to Theorem 5 α2 6= α. Therefore,
α 6= ι and according to Corollary 6, (Q; ·) is not a group, but by Theorem 6, it is
semi-symmetric.

Example 1. Consider the group Z
2
2 := Z2 ×Z2. Define the transformation α of the

set Z
2
2:

α(x) := x ·

(

0 1
1 1

)

.

Since α3 = ι, then α is an automorphism of the group Z
2
2. By Theorem 8, a

quasigroup (Z2
2; ◦) defined by the equation x◦y := αx+α2y satisfies the identity (i1).

Because α 6= α2, then (Q, ◦) is non-commutative. By Corollary 16, the quasigroup
(Q, ◦) is semi-symmetric and not a group.

4.2 The variety of semi-symmetric isotopes of all Abelian groups

In this subsection, the variety being defined by identities (12) is considered. Each
of these identities determines the totally symmetric variety of all semi-symmetric me-
dial quasigroups. This variety is the semi-symmetric isotopic closure of all Abelian
groups. Quasigroups belonging to this variety are either Boolean groups or non-
Boolean totally symmetric quasigroups or non-commutative semi-symmetric quasi-
groups.

Theorem 9. The identities (12) are equivalent and define the variety of all medial
semi-symmetric quasigroups.
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Proof. According to Theorem 7, semi-symmetry follows from any identity in (12).
Using semi-symmetry, further it will be shown that each of the identities from (12)
is equivalent to mediality.

Put yx instead of y in (m1) and yv instead of v in (m2):

((x · yx) · u) · xv = yx · uv, xy · (u · (yv · y)) = xu · yv.

Using semi-symmetry, we receive mediality in both cases.
Replace y with uy in (m3) and use semi-symmetry: (x·yv)·uy = xu·v. Replacing

v with vy and applying semi-symmetry to the last identity, we get mediality.
Change x by xu in (m4) and apply the semi-symmetric identity: xu · (yx · v) =

y ·uv. Put y instead of xy in the obtained identity. Using semi-symmetry, we receive
xu · yv = xy · uv, that is the medial law holds for every x, u, y, v.

Multiply (m6) by xu on the left and (m5) by xy on the right:

xu · ((xy · uv) · xu) = xu · yv, (xy · (ux · vy)) · xy = uv · xy.

Applying semi-symmetry to these identities, we obtain medial identity in the first
case and ux · vy = uv · xy in the second one. The last identity means that the
mediality holds for all u, x, v, y.

Substitute u with xu in (m7), u with uy in (m8) and apply semi-symmetry to
the received identities, as a result we obtain mediality in both cases.

Consider (m9). Since (·) is semi-symmetric, then (
ℓ
·) = (

s
·), that is x

ℓ
· y = yx.

Then (m9) can be written as follows: x · (v · (y · xu)) = uv · y. Replace x with ux in
this identity and use semi-symmetry: ux · (v · yx) = uv · y. Substituting y with xy

and using semi-symmetry law, we have ux ·vy = uv ·xy. It means that the mediality
holds for all u, x, v, y.

Thus, a quasigroup satisfying an arbitrary identity from (12) is semi-symmetric
and medial simultaneously. This means that identities (12) define the same variety
of semi-symmetric medial quasigroups.

Corollary 17. The variety of all semi-symmetric medial quasigroups is totally sym-
metric.

Proof. It is well known that the variety of all medial quasigroups is totally sym-
metric, according to Corollary 10, the variety of all semi-symmetric quasigroups
is totally symmetric as well. Therefore, the variety of all semi-symmetric medial
quasigroups is totally symmetric, since it is the intersection of two totally symmet-
ric varieties.

Corollary 18. The semi-symmetric isotopic closure of all Abelian groups is defined
by pairwise equivalent identities (12).

Proof. By virtue of Theorem 9, all identities from (12) are equivalent, then it is
enough to prove this theorem for one of them. Let (Q; ·) be an arbitrary quasigroup.
Let us prove that (Q; ·) is semi-symmetric isotope of Abelian groups iff it satisfies
the identity (m1).
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Let (Q; ·) satisfy (m1), then according to Theorem 9, (Q; ·) is medial and Toyoda-
Bruck theorem implies that (Q; ·) is an isotope of an Abelian group. By Theorem 7,
(Q; ·) is semi-symmetric. Thus, (Q; ·) is semi-symmetric isotope of an Abelian group.

Vice versa, let (Q; ·) be an arbitrary semi-symmetric isotope of an Abelian group.
Then by item 4) of Corollary 8, its canonical decomposition is the following:

x · y = αx + a + α−1y, α3 = −ι, αa = −a, (14)

where (Q; +) is an Abelian group, α is its automorphism and an element a ∈ Q. Let
us show that conditions (14) satisfy the identity (m1).

(xy · u) · xv
(14)
= α(α(αx + a + α−1y) + a + α−1u) + a + α−1(αx + a + α−1v).

Because α and α−1 are automorphisms, then

(xy · u) · xv = α3x + α2a + αy + αa + u + a + x + α−1a + α−2v.

Since (Q; +) is an Abelian group and α3 = −ι, αa = −a, then

(xy · u) · xv = −x + a + αy − a + u + a + x + α−1a + α−2v =

= αy + a + α−1αu + α−1a + α−2v = αy + a + α−1(αu + a + α−1v) = y · uv.

Corollary 19. The semi-symmetric isotopic closure of all Abelian groups is the in-
tersection of the variety of semi-symmetric quasigroups and the variety of all medial
semi-symmetric quasigroups.

Proof. The proof immediately follows from Theorem 9 and Corollary 18.

Corollary 20. Every quasigroup satisfying one of the identities (12) is either a
Boolean group or a non-Boolean totally symmetric quasigroup, or a non-commutative
semi-symmetric quasigroup.

Proof. Let (Q; ·) be a quasigroup satisfying the identity (m1), then according to the
proof of Corollary 18, (14) is its canonical decomposition.

If α = ι, then Corollary 6 implies that (Q; ·) is a Boolean group.
If α = −ι, then according to item 5) of Corollary 8, the quasigroup (Q; ·) is

totally symmetric. There is at least one totally symmetric quasigroup which is non-
Boolean group. For example, the quasigroup (Z3; •) defined by x•y := −x+1−y is
totally symmetric quasigroup and is a non-Boolean group, since 2 · (−1) = −2 6= 0.

Consider the case α 6= ι and α 6= −ι. Since condition α3 = −ι from (14) implies
α 6= α−1, then quasigroup (Q; ·) is non-commutative. But canonical decomposition
(14) satisfies semi-symmetry. Indeed,

x · yx
(14)
= αx + a + α−1(αy + a + α−1x) = αx + a + y + α−1a + α−2x.

Since conditions α3 = −ι and αa = −a imply α−2 = −α and α−1a = −a, then
x · yx = αx + a + y − a − αx = y. The corollary has been proved.
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Example 2. The quasigroup (Z9; ∗), x ∗ y = 2x + 3 + 5y, belongs to the variety
Ass and does not belong to the variety Bss. Indeed, this quasigroup satisfies the
canonical decomposition (14), since α3 = 23 = −ι, αa = 2 · 3 = 6 = −3 and does
not satisfy conditions (13), because α3 6= ι. Thus, taking into account Corollary 20,
(Z9; ∗) is a non-commutative semi-symmetric quasigroup.

4.3 The variety of semi-symmetric isotopes of all groups

In this subsection, we find an identity which describes the semi-symmetric iso-
topic closure of all groups.

Theorem 10. In an arbitrary quasigroup (Q; ·) the following statements are equiv-
alent:

1) (Q; ·) is a semi-symmetric group isotope;

2) (Q; ·) satisfies

u(x · yu) = z(x · (uy · z)u); (15)

3) there exists a group (Q; +), its anti-automorphism α, an element a ∈ Q such
that x ·y = αx+a+α−1y and α3 = −I−1

a , αa = −a, where Ia(x) := −a+x+a.

Proof. 2) ⇒ 1). Let a quasigroup (Q; ·) satisfy (15). Put z = u in (15):

u(x · yu) = u(x · (uy · u)u).

Cancelling out u, x, u, we obtain identity (1). Hence, (Q; ·) is semi-symmetric.
Multiply (15) by z from the right and use the identity of semi-symmetry:

u(x · yu) · z = x · (uy · z)u. (16)

Since (Q; ·) is semi-symmetric, then (5) hold. Replacing the operation (·) with its
patasrophes in (16), we have (7). Corollary 3 implies that (Q; ·) is isotopic to a
group.

1) ⇒ 2). Let (Q; ·) be a semi-symmetric group isotope, then the equalities (5)
are true and (7) can be written as (16). Multiply (16) by z from the left and apply
the identity (1). As a result we obtain (15).

3) ⇔ 1). It follows from item 5) of Theorem 5.

Corollary 21. The semi-symmetric isotopic closure of all groups is defined by (15).

Proof. It is evident from Theorem 10.

Corollary 22. The identity (15) implies semi-symmetry.

Proof. The proof follows from Theorem 10.

Corollary 23. The variety of quasigroups being defined by (15) is totally symmetric.



SEMI-SYMMETRIC ISOTOPIC CLOSURE OF SOME GROUP VARIETIES . . . 19

Proof. Let Q be the variety defined by (15). It means that each quasigroup (Q; ·)
from Q satisfies the identity x·yx = y. This identity is equivalent to xy·x = y. Define

the operation (◦) := (
s
·). Then the last identity can be written as x ◦ (y ◦ x) = y,

i.e., s-parastrophe of an arbitrary quasigroup from Q is in Q. Thus, for all σ ∈ S3

the relation σQ = Q. Therefore, this variety is totally symmetric.

5 Main results

In this article, we have found families (11), (12) and (15) of identities. Namely:

1) identities (11) are pairwise equivalent and describe the variety Bss of the semi-
symmetric isotopic closure of all Boolean groups;

2) identities (12) are pairwise equivalent and describe the variety Ass of the semi-
symmetric isotopic closure of all Abelian groups;

3) the identity (15) describes the variety Gss of the semi-symmetric isotopic clo-
sure of all groups;

4) the identities from Corollary 11 are pairwise equivalent and describe the variety
S of all semi-symmetric quasigroups.

To establish a relationship among these varieties we give the following examples.

Example 3. In the symmetric group (S3; ·), where (·) denotes the composition of
permutations, we define a transformation α by α(x) := sℓ · x−1 · sr. Here α is
anti-automorphism of the group (S3; ·) and α3 = I. Indeed,

α(x · y) = sℓ · (xy)−1 · sr = sℓ · y−1x−1 · sr = sℓy−1sr · sℓx−1sr = α(y) · α(x),

α3(x) = α
(

sℓ(sℓx−1sr)−1sr
)

= α(sℓsℓxsrsr) = (sℓ)3x−1(sr)3 = I.

According to item 5) of Theorem 5, the groupoid (S3; ◦) is defined by

x ◦ y := α(x) · α−1(y)

and it is a semi-symmetric group isotope. Therefore, S3 is a semi-symmetric isotope
of a non-commutative group.

Example 4. Let Q := {1, 2, 3, 4, 5}. On the set Q we define the operation (·):

(·) 1 2 3 4 5

1 1 4 5 3 2

2 5 2 4 1 3

3 4 5 3 2 1

4 2 3 1 5 4

5 3 1 2 4 5

(◦) 1 2 3 4 5

1 1 2 3 4 5

2 2 4 5 3 1

3 3 5 4 1 2

4 4 1 2 5 3

5 5 3 1 2 4
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It is easy to verify that (Q; ·) is a semi-symmetric quasigroup. Permuting rows
by the cycle (2534) and columns by the cycle (2435), we obtain the loop (Q; ◦).
Suppose, the quasigroup (Q; ·) is isotopic to a group (G; ⋄). (Q; ◦) and (Q; ·) are
isotopic according to construction of (Q; ◦). Then the loop (Q; ◦) and the group
(G; ⋄) are isotopic, therefore they are isomorphic. (Q; ◦) is commutative as a prime
order group. But this statement is false, because 4◦2 = 1 6= 3 = 2◦4. Consequently,
the assumption is false and the quasigroup (Q; ·) is not a group isotope.

Theorem 11. The varieties Bss, Ass, Gss and Sss are different and form the fol-
lowing chain: Bss ⊂ Ass ⊂ Gss ⊂ S.

Proof. Nonstrict inclusion of these varieties follows from their definitions. To prove
strict inclusion, we consider some examples of quasigroups which belong to a wider
variety and do not belong to the smaller variety. The total symmetry of each of the
varieties Bss, Ass, Gss, S is provided by Corollaries 10, 13, 17, 23.

In Example 2, the groupoid (Z9; ∗) is a semi-symmetric quasigroup and it is
isotopic to the cyclic group (Z9; +), which is not Boolean. Hence, (Z9; ∗) belongs to
the variety Ass and does not belong to Bss.

The quasigroup (S3; ◦) from Example 3 belongs to the variety Gss and does not
belong to Ass, because the group S3 is non-commutative.

The quasigroup (Q; ·) from Example 4 belongs to the variety Sss and does not
belong to Gss, because the quasigroup (Q; ·) is not isotopic to a group.
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Factorizations in the rings of the block matrices

Vasyl’ Petrychkovych, Nataliia Dzhaliuk

Abstract. The factorizations in the rings of the block triangular and the block
diagonal matrices over an integral domain of finitely generated principal ideals are
described. Conditions for existence and uniqueness up to the association of the fac-
torizations in such rings are established. The construction of the factorizations of
matrices is reduced to the factorizations of diagonal blocks of the block triangular
matrices and the solving of the linear Sylvester matrix equations.
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1 Introduction

Let R be an integral domain of finitely generated principal ideals. We will
denote the ring of n × n matrices by M(n,R), the set of n × m matrices by
M(n,m,R), the group of invertible n×n matrices over R by GL(n,R), the subring
of the block upper triangular matrices

T = triang(T11, . . . , Tkk) =









T11 T12 . . . T1k

0 T22 . . . T2k

· · · · · · · · · · · ·
0 0 · · · Tkk









,

where Tii ∈M(ni, R), i = 1, . . . , k, by BT (n1, . . . , nk, R). Factorizations T = AB

and T = A1B1 of the matrix T ∈M(n,R) are called associate if A1 = AV and
B1 = V −1B, where V ∈ GL(n,R). We will consider the factorizations of matrices
in the ring M(n,R) and in its subring BT (n1, . . . , nk, R) of the block triangular
matrices. We will describe the factorizations of matrices up to the association.
We would like to note that the block matrices arise in various problems, such as
in [10,16].

The theory of factorization of the polynomial matrices, which are matrices over
the polynomial ring, has been well developed. Such factorizations of the polynomial
matrices have been used in the theory of matrix and differential equations [4,7,14],
in the theory of operator pencils [9] and in other applied problems [8]. In [1],
conditions for uniqueness up to the association of the factorizations of matrices over
the principal ideal rings have been formulated.
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In this article, conditions for existence and uniqueness up to the association of
the factorizations in the ring of the block triangular matrices have been obtained.
We have established such classes of the block triangular matrices, where each fac-
torization is associated to its factorization in the ring BT (n1, . . . , nk, R) of the
block triangular matrices. We should note that the block matrices are connected
with the matrix linear bilateral equations. It is known that such equation is solvable
if and only if the block triangular and the block diagonal matrices composed of the
equation coefficients are equivalent [3,5,6,15]. Hence, the factorization of the block
triangular matrices is reduced to the factorization of the diagonal blocks and the
solving of the matrix linear equations. Similar results for matrices over the ring of
polynomials have been obtained in [13].

2 Preliminaries

Let A ∈ M(n,m,R), n ≤ m, dA
n 6= 0 and the matrix A have the factorization

A = BC, B ∈ M(n,R), C ∈ M(n,m,R). Let us write the matrices in the block
form







A1
...
Ak






=







B1
...
Bk






C, Ai, Bi ∈M(ni,m,R), ni ≥ 1, i = 1, . . . , k. (1)

Further, we will denote r-th determinantal divisor of the matrix A by dA
r , the

greatest common divisor of elements a and b by (a, b) = d. Let (dAi
ni
, d

Aj
nj ) = d(Ai,Aj)

and (detB, dC
n ) = d(B,C).

Lemma 1. Let (detB, dAi
ni

) = ϕi, i = 1, . . . , k. If

(d(B,C), dA

n−1) = 1, (2)

then dBi
ni

= ϕi, i = 1, . . . , k.

Proof. Let k = 2. From A1 = B1C and (detB, dA1
n1

) = ϕ1 it follows that dB1
n1

|dA1
n1

and dB1
n1

|ϕ1, that is ϕ1 = dB1
n1
g. We assume that dB1

n1
6= ϕ1. This means that

g 6∈ U(R), where U(R) is the group of units of the ring R.

Let p be an irreducible element from the ring R such that p|g. We suppose
that p|d(B,C). The matrix B1 can be written as

B1 = GF1, G ∈M(n1, R), F1 ∈M(n1, n,R), detG = dB1
n1
, dF1

n1
= 1.

Hence, A1 = GH1, H1 ∈M(n1, n,R). So, from (1) we obtain

[

H1

A2

]

=

[

F1

B2

]

C.
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For matrix F1 there exists such a matrix W ∈ GL(n,R) that F1W =
[

In1 0
]

,

where In1 is an identity matrix. Therefore

[

H1

A2

]

=

[

In1 0
˜B21

˜B22

]

˜C, ˜C = W−1C, ˜B21 ∈M(n2, n1, R), ˜B22 ∈M(n2, R).

So, for the matrix

V =

[

In1 0

− ˜B21 In2

]

we obtain

V

[

H1

A2

]

=

[

H1

H2

]

=

[

In1 0

0 ˜B22

]

[

˜C11
˜C12

˜C21
˜C22

]

= ˜B ˜C.

Since p|det ˜B22, we obtain p|dH2
n2
. On the other hand p|dH1

n1
, hence p|dA

n−1, which
contradicts the condition (2) of the lemma. Thus, g ∈ U(R) and dB1

n1
= ϕ1.

In the same way, we can prove that dB2
n2

= ϕ2.

If p ∤ d(B,C) (does not divide), the proof of the lemma is similar.

For an arbitrary k, we prove the lemma by induction.

Lemma 2. Let ((dAl
nl
, d

Al+1
nl+1 ), d(B,C)) = 1, l = 1, . . . , k − 1. If dA

n = dA1
n1

· · · dAk
nk
,

then detB = dB1
n1

· · · dBk
nk
.

Proof. Following the same procedure as in the proof of Lemma 1, we obtain that
(detB, dAi

ni
) = dBi

ni
, i = 1, . . . , k. We suppose that detB = dB1

n1
· · · dBk

nk
f, f 6∈ U(R).

The matrices Bi and Ai from (1) can be written as Bi = GiFi, Ai = GiHi, Gi ∈
M(ni, R), Fi, Hi ∈M(ni,m,R), detGi = dBi

ni
, dFi

ni
= 1, i = 1, . . . , k.

From (1) we obtain






H1
...
Hk






=







F1
...
Fk






C (3)

or else H = FC. Let q be an irreducible element from the ring R such that
q|f. It is obvious that q|detH. Since detH = dH1

n1
· · · dHk

nk
, q|dHi

ni
for a certain i.

We assume that q|dH1
n1
. Then from (3) we have H1 = F1C. Since dF1

n1
= 1, q|dC

n .

So, from Hj = FjC we obtain q|d
Hj
nj , j = 1, . . . , k. Thus q|d(Al,Al+1) for all

l = 1, . . . , k − 1.

Hence, we get q|d(B,C). Since ((dAl
nl
, d

Al+1
nl+1 ), d(B,C)) = 1, l = 1, . . . , k−1, q = 1.

So f ∈ U(R) and thus, detB = dB1
n1

· · · dBk
nk
.

Corollary 1. Let A ∈M(n,R) and detA = ϕ1 · · ·ϕk. Then the matrix A is the
right equivalent to the block diagonal matrix, that is AV = diag(D1, . . . ,Dk), Di ∈
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M(ni, R), detDi = ϕi, i = 1, . . . k, if and only if the matrix A can be written in
the form

A =







A1
...
Ak






, Ai ∈M(ni,m,R), dAi

ni
= ϕi, i = 1, . . . , k.

Lemma 3. Let C ∈M(n,m,R), n ≤ m and dC
n 6= 0. Let A =

[

cj1 . . . cjn

]

be a
submatrix which is composed of j1, . . . , jn columns of the matrix C and such that
detA = dC

n . Then there exists a matrix Q ∈ GL(m,R) such that CQ =
[

A 0
]

.

Proof. Using the elementary column operations, we reduce the matrix C to the
form CP =

[

A B
]

= C1, where P ∈ GL(m,R). For the matrices A and B

there exist matrices V1 ∈ GL(n,R) and V2 ∈ GL(m− n,R) such that AV1 = A1,

BV2 = B1 and they are lower triangular matrices.

Put m− n ≥ n. Then

[

A B
]

[

V1 0
0 V2

]

=
[

A1 B1

]

=









a1 0 · · · 0 b1 0 · · · 0 0 · · · 0
a21 a2 · · · 0 b21 b2 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
an1 an2 · · · an bn1 bn2 · · · bn 0 · · · 0









= C2.

It is obvious that dC2
n = detA1 = detA. Therefore all the n-th order minors of

the matrix C2 are divided by detA1 = a1 · · · an. Hence, the element bi of the
matrix C2 is divided by ai for all i = 1, . . . , n.

Using the elementary column operations, we reduce the matrix C2 to the form









a1 0 · · · 0 0 0 · · · 0 0 0 · · · 0

a21 a2 · · · 0 b
′

21 0 · · · 0 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

an1 an2 · · · an b
′

n1 b
′

n2 · · · b
′

n,n−1 0 0 · · · 0









= C3.

Continuing this way, we obtain that C1W =
[

A1 0
]

, where W ∈ GL(m,R).
Hence, the matrix C is the right equivalent to the matrix

[

A 0
]

.

If m− n < n, the proof of the lemma is similar.

Corollary 2. Let C =
[

A B
]

, C ∈ M(n,m,R), A ∈ M(n,R), dC
n 6= 0. If

detA = dC
n , then there exists such a unitriangular matrix S =

[

In S12

0 Im−n

]

that

[

A B
]

S =
[

A 0
]

.



FACTORIZATIONS IN THE RINGS OF THE BLOCK MATRICES 27

3 Factorizations of the block matrices

We suppose that the nonsingular matrix T = triang(T11, . . . , Tkk) has the fac-
torization in the ring BT (n1, . . . , nk, R) :

T = BC =









B11 B12 . . . B1k

0 B22 . . . B2k

· · · · · · · · · · · ·
0 0 · · · Bkk

















C11 C12 . . . C1k

0 C22 . . . C2k

· · · · · · · · · · · ·
0 0 · · · Ckk









, (4)

where Bii, Cii ∈M(ni, R), Bij , Cij ∈M(ni, nj, R), i, j = 1, . . . , k, i < j. Then
the diagonal blocks Tii and their determinants detTii of the matrix T have such
factorizations

Tii = BiiCii, i = 1, . . . , k, (5)

and
detTii = ϕiψi, ϕi = detBii, ψi = detCii, i = 1, . . . , k. (6)

Definition 1. We will call the factorization (4) of the matrix T the corresponding
one to the factorization (5) of its diagonal blocks Tii and the parallel one to the
factorization (6 ) of the determinants detTii of their diagonal blocks or briefly, the
parallel factorization of the matrix T in the ring BT (n1, . . . , nk, R).

It should be highlighted that there does not exist the corresponding factorization
of the matrix T, that is its factorization in the ring BT (n1, . . . , nk, R), for every
factorization (5) of the diagonal blocks Tii.

For each factorization

detT = ϕψ, ϕ =

k
∏

i=1

ϕi, ψ =

k
∏

i=1

ψi, i = 1, . . . , k, (7)

of the determinant of the matrix T there exists the parallel factorization T = BC

of the matrix T in the ring M(n,R), that is the factorization is such that detB =
ϕ, detC = ψ. However, there does not exist the parallel factorization (4) in the
ring BT (n1, . . . , nk, R) for every factorization detTii = ϕiψi of the determinants
of the diagonal blocks Tii of the matrix T.

Further, we describe the factorizations of the matrices in the ring
BT (n1, . . . , nk, R). We have established some conditions, under which the factor-
izations of the matrices T ∈ BT (n1, . . . , nk, R) are the same block triangular
form up to the association, that is when they are the factorizations in the ring
BT (n1, . . . , nk, R). We have proved the uniqueness criteria of such factorizations.

Theorem 1. Let T ∈ BT (n1, . . . , nk, R) be a nonsingular matrix and its diago-
nal blocks Tii, i = 1, . . . , k, have the factorizations of the form (5). Then there
exists a unique up to the association factorization of the matrix T in the ring
BT (n1, . . . , nk, R), that is T = triang(B11, . . . , Bkk)triang(C11, . . . , Ckk) if and only
if

(detBss,detCs+t,s+t) = 1, for all s = 1, . . . , k − 1, t = 1, . . . , k − s. (8)
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Proof. The matrix T has the factorization (4) corresponding to the factorizations
(5) of the diagonal blocks Tii, i = 1, . . . , k, if and only if the system of the linear
matrix equations

BiiXij + YijCjj +

j−1
∑

l=i+1

YilXlj = Tij, 1 ≤ i < j ≤ k, (9)

has solutions. The system solutions are Xij = Cij , Yij = Bij , i < j, i, j =
1, . . . , k. The solving of the system is reduced to the solving of the linear Sylvester
matrix equations in the form

BiiXij + YijCjj = Tij , 1 ≤ i < j ≤ k. (10)

From (8) it follows that (detBii,detCjj) = 1, 1 ≤ i < j ≤ k. Then every
linear matrix equation (10) has a solution [12]. Therefore, the system of the matrix
equations (9) has a solution. Consequently, the matrix T has the factorization of
the form (4) corresponding to the factorizations (5) of its diagonal blocks.

For the matrix T there exist such invertible matrices U and V over R that
TU = F, BV = HB , V −1CU = D are upper triangular matrices. The matrix
HB has the Hermite normal form [11]. It follows from (4) that F = HBD:








F11 F12 . . . F1k

0 F22 . . . F2k

· · · · · · · · · · · ·
0 0 · · · Fkk









=









HB11 G12 . . . G1k

0 HB22 . . . G2k

· · · · · · · · · · · ·
0 0 · · · HBkk

















D11 D12 . . . D1k

0 D22 . . . D2k

· · · · · · · · · · · ·
0 0 · · · Dkk









(11)

where HBpp = BppVpp = [h
(p)
ij

]
np

1 is the Hermite normal form of the block Bpp.

Each element of the i−th row of the matrix Gpq = [g
(pq)
ij

]
np,nq

1 lies in a prescribed

complete set of residues modulo the diagonal element h
(p)
ii

of the matrix HBpp ,

that is g
(pq)
ij

∈ R
h
(p)
ii

, i = 1, . . . , np, j = 1, . . . , nq, 1 ≤ p < q ≤ k.

It follows from the factorization (11) that the matrices Xpq = Dpq, Ypq =
Gpq, 1 ≤ p < q ≤ k, are the solutions of the system of the linear matrix equations

HBppXpq + YpqDqq +

q−1
∑

l=p+1

YplXlg = Fpq, 1 ≤ p < q ≤ k. (12)

The solving of this system of the matrix equations is reduced to the solving of the
linear Sylvester matrix equations in the form

HBppXpq + YpqDqq = Fpq, 1 ≤ p < q ≤ k. (13)

It follows from [2] that the solution Xpq = Dpq, Ypq = Gpq = [g
(pq)
ij

]
np,nq

1 of the

equation (13), where g
(pq)
ij

∈ R
h
(p)
ii

, i = 1, . . . , np, j = 1, . . . , nq, 1 ≤ p < q ≤ k,

is unique if and only if (detHBii ,detDjj) = 1, i, j = 1, . . . , k, i < j. These
conditions hold if the conditions (8) are true. The factorizations (11) and (4) of the
matrix T are associate.
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Corollary 3. Let the determinants detTii of the diagonal blocks Tii, i = 1, . . . , k,
of the matrix T ∈ BT (n1, . . . , nk, R) have the factorizations

detTii = ϕiψi, i = 1, . . . , k, and

k
∏

i=1

ϕi = ϕ,

k
∏

i=1

ψi = ψ. (14)

Let at least one of the following conditions hold:

(i) (
∏

s

i=1 ϕi, ψs+1) = 1, s = 1, . . . , k − 1, and ((ϕ,ψ), dT
n−1) = 1,

(ii) (detTii, (ϕ,ψ)) = 1, i = 1, . . . , k − 1.

Then there exist the factorizations

Tii = BiiCii, detBii = ϕi, detCii = ψi, p = 1, . . . , k (15)

of the diagonal blocks Tii and the factorization of the matrix T

T = BC, detB = ϕ, detC = ψ, (16)

in the ring BT (n1, . . . , nk, R). This factorization of the matrix T is unique up to
the association.

Theorem 2. Let T = triang(T11, . . . , Tkk) be a nonsingular matrix and the deter-
minants of the diagonal blocks Tii, i = 1, . . . , k, have the factorizations in the form
(14). If at least one of the following conditions holds:

(i) (
∏

s

i=1 ϕi, ψs+1) = 1, and ((ϕ,ψ), dT
n−1) = 1, s = 1, . . . , k − 1,

(ii) (detTii, (ϕ,ψ)) = 1, i = 1, . . . , k − 1,

then there exists the parallel factorization of the matrix T in the
ring BT (n1, . . . , nk, R): T = BC, B,C ∈ BT (n1, . . . , nk, R), that is
B = triang(B11, . . . , Bkk), C = triang(C11, . . . , Ckk), Bii, Cii ∈ M(ni, R) and
detBi = ϕi, detCi = ψi, i=1, . . . , k. Each parallel factorization T = BC, B,C ∈
M(n,R), detB = ϕ, detC = ψ of the matrix T in the ring M(n,R) is asso-
ciate to the parallel factorization T = ˜B ˜C, where ˜B = triang( ˜B11, . . . , ˜Bkk), ˜C =
triang( ˜C11, . . . , ˜Ckk) and det ˜Bii = ϕi, det ˜Cii = ψi, i = 1, . . . , k, in the ring
BT (n1, . . . , nk, R).

Proof. Let k = 2, that is T = triang(T11, T22). It follows from the conditions (7)
that there exists such a factorization T = BC of the matrix T that detB = ϕ,
detC = ψ. We write it in an appropriate block form

triang(T11, T22) =

[

B11 B12

B21 B22

]

C, (17)

Bij ∈M(ni, nj, R), C ∈M(n,R), i, j = 1, 2. It follows from the conditions (i) of
the theorem that (detB,detT22) = ϕ2.
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According to Lemma 1 dB2
n2

= ϕ2, where B2 =
[

B21 B22

]

, there exists such a

matrix V ∈ GL(n,R) that B2V =
[

0 ˜B22

]

, where ˜B22 ∈ M(n2, R) and det ˜B22 =

ϕ2. So, from (17) we get

triang(T11, T22) = triang( ˜B11, ˜B22)triang( ˜C11, ˜C22) = ˜B ˜C,

where ˜B = BV , ˜C = V −1C, V ∈ GL(n,R), Bij, Cij ∈ M(ni, nj, R) and det ˜Bii =

ϕi, det ˜Cii = ψi, i = 1, 2.

Similarly, the theorem can be proved under the condition (ii).

For an arbitrary k, we prove the theorem by induction.

Corollary 4. Let the determinants detTii of the diagonal blocks Tii, i = 1, . . . , k,
of the matrix T ∈ BT (n1, . . . , nk, R) have the factorizations in the form (14). If
at least one of the following conditions holds:

(i) (
∏

s

i=1 ϕi, ψs+1) = 1, s = 1, . . . , k − 1, and ((ϕ,ψ), dT
n−1) = 1,

(ii) (detTii, (ϕ,ψ)) = 1, i = 1, . . . , k − 1,

then there exist factorizations (15) of the diagonal blocks Tii and the factorization
of matrix T (16) in the ring BT (n1, . . . , nk, R). This factorization of the matrix
T is unique up to the association.

Theorem 3. Let the determinants of the diagonal blocks Tii, i = 1, . . . , k, of the
matrix T ∈ BT (n1, . . . , nk, R) have the factorizations in the form (14). Then
there exists the factorization of the matrix T parallel to the factorization (14) of
the determinants of the diagonal blocks if and only if the following conditions hold:

(i) ((ϕi, ψi), d
Tii

ni−1) = 1, i = 1, . . . , k,

(ii) (ϕs, ψs+t) = 1 for all s = 1, . . . , k − 1, t = 1, . . . , k − s.

This factorization of the matrix T is unique up to the association.

Proof. It follows from the factorizations (14) of the determinants detTii of the
diagonal blocks Tii of the matrix T that there exist the parallel factorizations
of the diagonal blocks Tii. When the condition (i) holds, these factorizations of
the blocks Tii are parallel to the factorizations of their determinants up to the
association and they are unique. From Theorem 1 we conclude that there exists the
factorization of the matrix T corresponding to the factorizations (5) of its diagonal
blocks Tii and parallel to the factorizations (14) of the determinants of the diagonal
blocks Tii, i = 1, . . . , k, and it is unique up to the association.

It should be highlighted that there does not exist the parallel factorization in the
ring BT (n1, . . . , nk, R) for every factorization of the determinants of the diagonal
blocks Tii, i = 1, . . . , k, of the matrix T.

We establish the matrices having such a property in the following corollary.
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Corollary 5. Let the determinants of the diagonal blocks Tii, i = 1, . . . , k,
of the matrix T ∈ BT (n1, . . . , nk, R) be pairwise relatively prime, that is
(detTii,detTjj) = 1. Then for each factorization (14) of the determinants detTii

of the diagonal blocks Tii, i = 1, . . . , k, there exists the parallel factorization of the
matrix T, that is the matrix T has the maximum number of the parallel factoriza-
tions.

The block diagonal matrices D = diag(D11, . . . ,Dkk), Dii ∈ M(ni, R), i =
1, . . . , k, form the subring BD(n1, . . . , nk, R) of the ring of the block triangular ma-
trices. We consider the factorizations of the matrices in the ring BD(n1, . . . , nk, R).

Definition 2. Let the determinants of the diagonal blocks Dii ∈ M(ni, R), i =
1, . . . , k, of the matrix D = diag(D11, . . . ,Dkk) have the factorizations

detDii = ϕiψi, i = 1, . . . , k. (18)

The factorization D = BC, B = diag(B11, . . . , Bkk), C = diag(C11, . . . , Ckk), of
the matrix D is such that detBii = ϕi, detCii = ψi, i = 1, . . . , k, and is called the
parallel factorization to the factorizations (18) of the determinants of the diagonal
blocks Dii, i = 1, . . . , k, or briefly, the parallel factorization of the matrix D in the
ring BD(n1, . . . , nk, R) of the block diagonal matrices.

Theorem 4. Let D ∈ BD(n1, . . . , nk, R), that is D = diag(D11, . . . ,Dkk), Dii ∈
M(ni, R), i = 1, . . . , k, and the determinants of its diagonal blocks Dii have the
factorizations:

detDii = ϕiψi,

k
∏

i=1

ϕi = ϕ,

k
∏

i=1

ψi = ψ, i = 1, . . . , k. (19)

If ((detDii,detDjj), (ϕ,ψ)) = 1, i, j = 1, . . . , k, i 6= j, then for the ma-
trix D there exists the factorization D = BC, B,C ∈ M(n,R), detB =
ϕ, detC = ψ, in the ring M(n,R) and each of such factorizations is associate
to the parallel factorization of the matrix D in the ring BD(n1, . . . , nk, R), that is
D = ˜B ˜C, where ˜B = BV = diag( ˜B11, . . . , ˜Bkk), ˜C = V −1C = diag( ˜C11, . . . , ˜Ckk),
V ∈ GL(n,R), ˜Bii, ˜Cii ∈M(ni, R), det ˜Bii = ϕi, det ˜Cii = ψi, i = 1, . . . , k.

Proof. Let k = 2. It follows from (19) that there exists such a factorization D = BC

of the matrix D that detB = ϕ, detC = ψ. We write it in the block form

[

D1 0
0 D2

]

=

[

B11 B12

B21 B22

]

C, (20)

where Bii ∈ M(ni, R), C ∈ M(n,R), i = 1, 2. Then, from (19) we have that
(detB,detDi) = ϕi, i = 1, 2.

Based on Lemma 2, detB = dB1
n1
dB2

n2
, where Bi =

[

Bi1 Bi2

]

, i = 1, 2. Since
dBi

ni
|ϕi, i = 1, 2, and detB = ϕ1ϕ2, it follows that dBi

ni
= ϕi, i = 1, 2. For the matrix
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B2 there exists such a matrix U ∈ GL(n,R) that B2U =
[

0 ˜B22

]

, ˜B22 ∈

M(n2, R), det ˜B22 = ϕ2.

Then from the equality (20) we obtain:

[

D1 0
0 D2

]

=

[

˜B11
˜B12

0 ˜B22

]

˜C, where

[

˜B11
˜B12

0 ˜B22

]

=

[

B11 B12

B21 B22

]

U, ˜C = U−1C.

According to Corollary 2 there exists such a matrix Q =

[

In1 Q12

0 In2

]

that
[

˜B11
˜B12

]

Q =
[

˜B11 0
]

.

Thus, we get D = ˜B ˜C, ˜B = BW = diag( ˜B11, ˜B22), ˜C = W−1C =
diag( ˜C11, ˜C22), W = UQ, ˜Bii, ˜Cii ∈ M(ni, R), det ˜Bii = ϕi, det ˜Cii =
ψi, i = 1, 2.

For an arbitrary k, we prove the theorem by induction.

Corollary 6. If the determinants of the diagonal blocks Dii of the matrix
D ∈ BD(n1, . . . , nk, R) are pairwise relatively prime, then each factorization
D = BC, B,C ∈ M(n,R) of the matrix D in the ring M(n,R) is associate
to a certain parallel factorization of the matrix D in the ring BD(n1, . . . , nk, R).
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1 Main remarks

Let Σ denote the class of meromorphic functions f(z) normalized by

f(z) =
1

z
+

∞
∑

k=1

akz
k, (1)

which are analytic in the punctured unit disk

U
∗ = {z : z ∈ C and 0 < |z| < 1} = U \ {0},

C being (as usual) the set of complex numbers. We denote by ΣS∗(β) and ΣK(β)
(β ≧ 0) the subclasses of Σ consisting of all meromorphic functions which are,
respectively, starlike of order β and convex of order β in U∗ (see also the recent
works [1] and [2]).

For functions fj(z) (j = 1, 2) defined by

fj(z) =
1

z
+

∞
∑

k=1

ak,jz
k (j = 1, 2), (2)

we denote the Hadamard product (or convolution) of f1(z) and f2(z) by

(f1 ∗ f2)(z) =
1

z
+

∞
∑

k=1

ak,1ak,2z
k. (3)

c© H.M. Srivastava, F. Ghanim, R.M. El-Ashwah, 2017
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Let us consider the function ˜φ(α, β; z) defined by

˜φ(α, β; z) =
1

z
+

∞
∑

k=0

(α)k+1

(β)k+1
akz

k (4)

(

β ∈ C \ Z
−

0 ; α ∈ C
)

,

where
Z
−

0 = {0,−1,−2, · · · } = Z
− ∪ {0}.

Here, and in the remainder of this paper, (λ)κ denotes the general Pochhammer
symbol defined, in terms of the Gamma function, by

(λ)κ :=
Γ(λ + κ)

Γ(λ)
=

{

λ(λ + 1) · · · (λ + n − 1) (κ = n ∈ N; λ ∈ C)

1 (κ = 0; λ ∈ C \ {0}),
(5)

it being understood conventionally that (0)0 := 1 and assumed tacitly that the Γ-
quotient exists (see, for details,[3, p. 21 et seq.]), N being the set of positive integers.

It is easy to see that, in the case when ak = 1 (k = 0, 1, 2, · · · ), the following rela-
tionship holds true between the function ˜φ(α, β; z) and the Gaussian hypergeometric
function [4]:

˜φ(α, β; z) =
1

z
2F1(1, α;β; z). (6)

Recently, Ghanim ([5]; see also [6] and [7]) made use of the Hadamard product
for functions f(z) ∈ Σ in order to introduce a new linear operator Ls

a(α, β), which
is defined on Σ by

Ls

a(α, β)(f)(z) = ˜φ(α, β; z) ∗ Gs,a(z)

=
1

z
+

∞
∑

k=1

(α)n+1

(β)n+1

(

a + 1

a + k

)s

akz
k

(

z ∈ U
∗
)

, (7)

where

Gs,a(z) := (a + 1)s
[

Φ(z, s, a) − as +
1

z(a + 1)s

]

=
1

z
+

∞
∑

k=1

(

a + 1

a + k

)s

zk
(

z ∈ U
∗
)

(8)

and the function Φ(z, s, a) is the well-known Hurwitz-Lerch zeta function defined by
(see, for example,[8, p. 121 et seq.]; see also [9] and [10, p. 194 et seq.])

Φ(z, s, a) :=
∞
∑

n=0

zn

(n + a)s
(9)
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(a ∈ C \ Z
−

0 ; s ∈ C when |z| < 1; ℜ(s) > 1 when |z| = 1).

We recall that the following new family of the λ-generalized Hurwitz-Lerch zeta
functions was introduced and investigated systematically by Srivastava [11] (see
also [12–16] ):

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a; b, λ) =
1

λ Γ(s)

·

∞
∑

n=0

p
∏

j=1
(λj)nρj

(a + n)s ·
q
∏

j=1
(µj)nσj

H
2,0
0,2



(a + n)b
1
λ

∣

∣

∣

∣

(s, 1),
(

0, 1
λ

)





zn

n!
(10)

(

min{ℜ(a),ℜ(s)} > 0; ℜ(b) > 0; λ > 0
)

(

λj ∈ C (j = 1, · · · , p) and µj ∈ C \ Z
−

0 (j = 1, · · · , q); ρj > 0 (j = 1, · · · , p);

σj > 0 (j = 1, · · · , q); 1 +

q
∑

j=1

σj −

p
∑

j=1

ρj ≧ 0

)

,

where the equality in the convergence condition holds true for suitably bounded
values of |z| given by

|z| < ∇ :=





p
∏

j=1

ρ
−ρj

j



 ·





q
∏

j=1

σ
σj

j



 .

Definition 1. The H-function involved in the right-hand side of (10) is the well-
known Fox’s H-function [17, Definition 1.1] (see also [3, 18]) defined by

H
m,n

p,q (z) = H
m,n

p,q



z

∣

∣

∣

∣

(a1, A1), · · · , (ap, Ap)

(b1, B1), · · · , (bq, Bq)





=
1

2πi

∫

L

Ξ(s)z−s ds
(

z ∈ C \ {0}; | arg(z)| < π
)

, (11)

where

Ξ(s) =

m
∏

j=1
Γ(bj + Bjs) ·

n
∏

j=1
Γ(1 − aj − Ajs)

p
∏

j=n+1
Γ(aj + Ajs) ·

q
∏

j=m+1
Γ(1 − bj − Bjs)

,

an empty product is interpreted as 1, m,n, p and q are integers such that

1 ≦ m ≦ q and 0 ≦ n ≦ p,
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Aj > 0 (j = 1, · · · , p) and Bj > 0 (j = 1, · · · , q),

aj ∈ C (j = 1, · · · , p) and bj ∈ C (j = 1, · · · , q)

and L is a suitable Mellin-Barnes type contour separating the poles of the gamma
functions

{Γ(bj + Bjs)}
m

j=1

from the poles of the gamma functions

{Γ(1 − aj + Ajs)}
n

j=1.

We choose to mention here that, by using the fact that [11, p. 1496, Remark 7]

lim
b→0

{

H
2,0
0,2

[

(a + n)b
1
λ

∣

∣

∣

∣ (s, 1),
(

0, 1
λ

)

]}

= λ Γ(s) (λ > 0), (12)

the equation (8) reduces to the following form:

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a; 0, λ) := Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a)

=

∞
∑

n=0

p
∏

j=1
(λj)nρj

(a + n)s ·
q
∏

j=1
(µj)nσj

zn

n!
. (13)

Definition 2. The function Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a) involved in (13) is the multi-

parameter extension and generalization of the Hurwitz-Lerch zeta function Φ(z, s, a)
introduced by Srivastava et al.[16, p. 503, Eq. (6.2)] defined by

Φ
(ρ1,··· ,ρp,σ1,··· ,σq)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a) :=
∞
∑

n=0

p
∏

j=1
(λj)nρj

(a + n)s ·
q
∏

j=1
(µj)nσj

zn

n!
(14)

(

p, q ∈ N0; λj ∈ C (j = 1, · · · , p); a, µj ∈ C \ Z
−

0 (j = 1, · · · , q);

ρj, σk ∈ R
+ (j = 1, · · · , p; k = 1, · · · , q);

∆ > −1 when s, z ∈ C;

∆ = −1 and s ∈ C when |z| < ∇∗;

∆ = −1 and ℜ(Ξ) >
1

2
when |z| = ∇∗

)
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with

∇∗ :=





p
∏

j=1

ρ
−ρj

j



 ·





q
∏

j=1

σ
σj

j



 , (15)

∆ :=

q
∑

j=1

σj −

p
∑

j=1

ρj and Ξ := s +

q
∑

j=1

µj −

p
∑

j=1

λj +
p − q

2
. (16)

By applying this new family of the λ-generalized Hurwitz-Lerch zeta functions,
Srivastava and Gaboury [19] introduced a new linear operator which provides a
generalization of the largely- (and widely-) studied Srivastava-Attiya operator [20]
(see also [21–23]). This new operator contains, as its special cases, the operators
investigated earlier by Prajapat and Bulboacǎ [24, p. 571, Eq. (1.8)], Noor and
Bukhari [25, p. 2, Eq. (1.3)], Choi et al. [26], Cho and Srivastava [27], Jung et al.
[28], Bernardi [1], Carlson and Shaffer [29], Owa and Srivastava [30] and by Dziok
and Srivastava [31,32]. The Dziok-Srivastava convolution operator studied by Dziok
and Srivastava [31, 32] is, in turn, a generalization of the Hohlov operator [33] and
the Ruscheweyh operator [34]. In fact, the Dziok-Srivastava convolution operator is
itself a special case of the Srivastava-Wright operator (see, for details, [35] and [36];
see also the other closely-related works cited in each of these recent publications).

In this paper, we consider the following linear operator:

J
s,a,λ,α,β

(λp),(µq),b
f (z) : Σ → Σ,

which is defined by

J
s,a,λ,α,β

(λp),(µq),bf (z) = G
s,a,λ

(λp),(µq),b(z) ∗ ˜φ(α, β; z),

where ∗ denotes the Hadamard product (or convolution) of analytic functions and

the function G
s,a,λ

(λp),(µq),b(z) is given by

G
s,a,λ

(λp),(µq),b
(z) := (a + 1)s ·

[

Φ
(1,··· ,1,1,··· ,1)
λ1,··· ,λp;µ1,··· ,µq

(z, s, a; b, λ)

−
a−s

λ Γ(s)
Λ (a, b, s, λ) +

(a + 1)−s

z

]

=
1

z
+

∞
∑

k=1

p
∏

j=1
(λj)k

q
∏

j=1
(µj)k

(

a + 1

a + k

)s Λ (a + k, b, s, λ)

λ Γ(s)

zk

k!
(17)

with

Λ (a, b, s, λ) := H
2,0
0,2

[

ab
1
λ

∣

∣

∣

∣ (s, 1),
(

0, 1
λ

)

]

.
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By combining (17) and (4), we obtain

J
s,a,λ,α,β

(λp),(µq),bf (z) =
1

z

+
∞
∑

k=1

(α)k+1

p
∏

j=1
(λj)k

(β)k+1

q
∏

j=1
(µj)k

(

a + 1

a + k

)s Λ (a + k, b, s, λ)

λ Γ(s)
ak

zk

k!
(18)

(

z ∈ U
∗; α, λj ∈ C (j = 1, · · · , p); β, µj ∈ C \ Z

−

0 (j = 1, · · · , q); p ≦ q + 1

)

with
min{ℜ(a),ℜ(s)} > 0, λ > 0 if ℜ(b) > 0

and
s ∈ C and a ∈ C \ Z

−

0 if b = 0.

Clearly, upon setting p−1 = q = 0 and λ1 = 1 in (18) and taking the limit as b → 0,
we obtain the operator Ls

a(α, β)(f)(z) studied earlier by Ghanim [5].

It is easily observed from (18) that

z
(

J
s,a,λ,α,β

(λp),(µq),bf (z)
)′

= α
(

J
s,a,λ,α+1,β

(λp),(µq),b f (z)
)

− (α + 1)
(

J
s,a,λ,α,β

(λp),(µq),bf (z)
)

(19)

and

z
(

J
s,a,λ,α,β+1
(λp),(µq),b f (z)

)′

= β
(

J
s,a,λ,α,β

(λp),(µq),bf (z)
)

− (β + 1)
(

J
s,a,λ,α,β+1
(λp),(µq),b f (z)

)

. (20)

Now, with the help of the linear operator J
s,a,λ,α,β

(λp),(µq),bf (z), we introduce the fol-

lowing subclass:
Σs,a,λ,α,β

(λp),(δq),b (µ) = Σ (α, β, µ)

of meromorphic functions as follows:

Definition 3. For fixed parameters A,B (−1 ≦ B < A ≦ 1) and 0 ≦ µ < 1 , the
function f (z) ∈ Σ is said to be in the class Σ (α, β, µ) if it satisfies the following
subordination condition:

1

1 − µ






−

z
(

J
s,a,λ,α,β

(λp),(µq),bf (z)
)′

J
s,a,λ,α,β

(λp),(µq),bf (z)
− µ






≺

1 + Az

1 + Bz
(z ∈ U

∗) (21)

or, equivalently,

Σ (α, β, µ) =



























f : f (z) ∈ Σ and

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z

(

J
s,a,λ,α,β

(λp),(µq),b
f(z)

)

′

J
s,a,λ,α,β

(λp),(µq),b
f(z)

+ 1

B
z

(

J
s,a,λ,α,β

(λp),(µq),b
f(z)

)

′

J
s,a,λ,α,β

(λp),(µq),b
f(z)

+ B + (A − B) (1 − µ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< 1



























.

(22)
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2 A Set of Lemmas

To establish our main results, we shall need each of the following lemmas:

Lemma 1 (see [37]). If −1 ≦ B < A ≦ 1, ν 6= 0 and the complex number τ satisfies
the inequality:

ℜ{τ} ≧ −
ν(1 − A)

1 − B
,

then the following differential equation:

q(z) +
zq′(z)

νq(z) + τ
≺

1 + Az

1 + Bz
(z ∈ U),

has a univalent solution in U given by

q (z) =















zν+τ (1+Bz)ν(A−B)/B

ν
∫ z

0 tν+τ−1(1+Bt)ν(A−B)/B
dt

− τ

ν
(B 6= 0)

zν+τ exp(νAz)
ν

∫ z

0
tν+τ−1 exp(νAt) dt

− τ

ν
(B = 0).

(23)

If the function φ given by

φ (z) = 1 + c1z + c2z + · · ·

is analytic in U and satisfies the following subordination:

φ (z) +
zφ′ (z)

νφ (z) + τ
≺

1 + Az

1 + Bz
(z ∈ U) , (24)

then

φ (z) ≺ q (z) ≺
1 + Az

1 + Bz
(z ∈ U)

and q(z) is the best dominant of (24).

Lemma 2 (see [38]). Let v be a positive measure on [0, 1]. Let h be a complex-valued
function defined on U× [0, 1] such that h(., t) is analytic in U for each t ∈ [0, 1] and
h(z, .) is v-integrable on [0, 1] for all z ∈ U. Suppose also that ℜ{h (z, t)} > 0,
h(−r, t) is real and

ℜ

{

1

h (z, t)

}

≧
1

h (−r, t)
(|z| ≦ r < 1; t ∈ [0, 1]) .

If

h (z) =

∫ 1

0
h (z, t) dv (t),

then

ℜ

{

1

h (z)

}

≧
1

h (−r)
(|z| ≦ r < 1) .
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Lemma 3 (see [39]). For real numbers a, b and c (c 6= 0,−1,−2, · · ·) , it is asserted
that

∫ 1

0
tb−1 (1 − t)c−b−1 (1 − zt)−a dt =

Γ (b) Γ (c − b)

Γ (c)
2F1 (a, b; c; z) (25)

(

ℜ{c} > ℜ{b} > 0; z ∈ U
)

.

Moreover,

2F1 (a, b; c; z) = 2F1 (b, a; c; z) (26)

and

2F1 (a, b; c; z) = (1 − z)−α
2F1

(

a, c − b; c;
z

z − 1

)

(27)

(

c 6= 0,−1,−2, · · · ; | arg(1 − z)| < π
)

.

Inclusion properties of various classes of analytic and meromorphic functions
were studied earlier by several different methods (see, for example, [40–43] and [44]).
In this paper, we find two inclusion theorems for the meromorphic function class
Σ (α, β, µ). In particular, we show that, if we increase the parameter α by one,
the overall size of the meromorphic function class Σ (α, β, µ) would get smaller.
On the other hand, by increasing the parameters β by one, the overall size of the
meromorphic function class Σ (α, β, µ) would get bigger.

3 Main Results

Unless otherwise mentioned, we assume throughout the remainder of the paper
that

−1 ≦ B < A ≦ 1, 0 ≦ µ < 1, α, β > 0, a ∈ C \ Z
−

0 , s ∈ C and z ∈ U.

We begin with some inclusion relationships concerning the parameter α of the class
Σ (α, β, µ).

Theorem 1.

(i) If f (z) ∈ Σ (α + 1, β, µ) and

α − µ + 1 ≧
(1 − µ) (1 − A)

(1 − B)
, (28)

then

1

1 − µ






−

z
(

J
s,a,λ,α,β

(λp),(µq),bf (z)
)′

J
s,a,λ,α,β

(λp),(µq),bf (z)
− µ






≺

1

1 − µ

(

(α − µ + 1) −
1

Q1 (z)

)

= q1 (z) ≺
1 + Az

1 + Bz
(z ∈ U), (29)
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where

Q1(z) =















∫ 1
0 uα−1

(

1+Bzu

1+Bz

)−(1−µ)(A−B)/B

du (B 6= 0)

∫ 1
0 uα−1e−(1−µ)A(u−1)z du (B = 0)

and q1(z) is the best dominant of (29). Moreover,

Σ (α + 1, β, µ) ⊆ Σ (α, β, µ) . (30)

(ii) If the additional constraints 0 < B < 1 and

α + 1 ≧
(1 − µ) (A − B)

B
(31)

are satisfied, then

1 − |A|

1 − |B|
<

1

1 − µ






−ℜ











z
(

J
s,a,λ,α,β

(λp),(µq),bf (z)
)′

J
s,a,λ,α,β

(λp),(µq),bf (z)











− µ






< ρ1, (32)

where

ρ1 =
1

1 − µ







(α − µ + 1) −
α

2F1

(

1, (1−µ)(A−B)
B

;α + 1; B

B−1

)







. (33)

The bound ρ1 is the best possible.

Proof. Let f (z) ∈ Σ (α + 1, β, µ) and set

φ (z) =
1

1 − µ






−

z
(

J
s,a,λ,α,β

(λp),(µq),bf (z)
)′

J
s,a,λ,α,β

(λp),(µq),bf (z)
− µ






. (34)

Then it is clear that φ (z) is analytic in U and φ (0) = 1. An application of the
identity (19) in (34) yields

− (1 − µ)φ (z) + (α − µ + 1) = α
J

s,a,λ,α+1,β

(λp),(µq),b f (z)

J
s,a,λ,α,β

(λp),(µq),bf (z)
. (35)

By using the logarithmic differentiation of both sides of (35) with respect to z, we
obtain

φ (z) +
z φ′ (z)

(α − µ + 1) − (1 − µ)φ (z)
=

1

1 − µ






−

z
(

J
s,a,λ,α+1,β

(λp),(µq),b
f (z)

)′

J
s,a,λ,α+1,β

(λp),(µq),b f (z)
− µ







≺
1 + Az

1 + Bz
(z ∈ U) .
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Therefore, by applying Lemma 1 with

ν = −(1 − µ) and τ = α − µ + 1,

we have

φ (z) ≺ q1 (z) ≺
1 + Az

1 + Bz
(z ∈ U) ,

where the best dominant q1(z) is defined by (29). The proof of Theorem 1 (i) is
completed.

In order to establish (32) of Theorem 1 (ii), we observe that an application of
the principle of subordination in (21) gives

1 − |A|

1 − |B|
<

1

1 − µ






−ℜ











z
(

J
s,a,λ,α,β

(λp),(µq),bf (z)
)′

J
s,a,λ,α,β

(λp),(µq),bf (z)











− µ






,

which is precisely the left-hand inequality in (32). Also, by the principle of subor-
dination in (29), we have

1

1 − µ






−ℜ











z
(

J
s,a,λ,α,β

(λp),(µq),bf (z)
)′

J
s,a,λ,α,β

(λp),(µq),bf (z)











− µ






≦ sup

z∈U∗

ℜ{q1 (z)}

= sup
z∈U

[

1

1 − µ

(

α − µ + 1 −ℜ

{

1

Q1 (z)

})]

=
1

1 − µ

(

α − µ + 1 − inf
z∈U

ℜ

{

1

Q1 (z)

})

.

(36)

The rest of the proof is devoted to find

inf
z∈U

ℜ

{

1

Q1 (z)

}

.

By hypothesis, B 6= 0. Therefore, by using (29), we have

Q1 (z) = (1 + Bz)δ
∫ 1

0
uα−1 (1 − u)γ−α−1 (1 + Bzu)−δ du,

where

δ =
(1 − µ) (A − B)

B
and γ = α + 1.

Also, since γ > α > 0, by successively using (25) to (27) of Lemma 3, we obtain

Q1 (z) =
Γ (α)

Γ (γ)
2F1

(

1, δ; γ;
Bz

Bz + 1

)

. (37)
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Furthermore, the condition:

α + 1 >
(1 − µ) (A − B)

B
(0 < B < 1)

implies that γ > δ > 0. Another application of (27) of Lemma 3 to (37) gives

Q1 (z) =

∫ 1

0
h (z, u) dv(u),

where

h (z, u) =
1 + Bz

1 + (1 − u)Bz
(0 ≦ u ≦ 1)

and

dv(u) =
Γ (α)

Γ (δ) Γ (γ − δ)
uδ−1 (1 − u)γ−δ−1 du

is a positive measure on u ∈ [0, 1]. We note that

ℜ{h (z, u)} > 0 and h (−r, u)

is real for 0 ≦ r < 1 and u ∈ [0, 1]. Therefore, by using Lemma 2, we get

ℜ

{

1

Q1 (z)

}

≧
1

Q1 (−r)
(|z| ≦ r < 1) ,

so that

inf
z∈U

ℜ

{

1

Q1 (z)

}

= sup
0≦r<1

1

Q1 (−r)

= sup
0≦r<1

1
∫ 1
0 h (−r, u) dv

=
1

∫ 1
0 h (−1, u) dv

=
1

Q1 (−1)

=
α

2F1

(

1, (1−µ)(A−B)
B

, α + 1, B

B−1

) . (38)

Hence, in view of (36), the right-hand inequality of (32) follows from (38).

The result is the best possible as the function q1(z) is the best dominant of (29).
This completes the proof of Theorem 1.

The next theorem gives the corresponding results involving the parameter β.

Theorem 2.

(i) If f (z) ∈ Σ (α, β, µ) and

β − µ + 1 ≧
(1 − µ) (1 − A)

(1 − B)
, (39)
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then

1

1 − µ






−

z
(

J
s,a,λ,α,β+1
(λp),(µq),b

f (z)
)′

J
s,a,λ,α,β+1
(λp),(µq),b f (z)

− µ






≺

1

1 − µ

(

(β − µ + 1) −
1

Q2 (z)

)

= q2 (z) ≺
1 + Az

1 + Bz
(z ∈ U), (40)

where

Q2(z) =















∫ 1
0 uβ−1

(

1+Bzu

1+Bz

)−(1−µ)(A−B)/B

du (B 6= 0)

∫ 1
0 uβ−1 e−(1−µ)A(u−1)zdu (B = 0)

and q2(z) is the best dominant of (40). It is also asserted that

Σ (α, β, µ) ⊆ Σ (α, β + 1, µ) . (41)

(ii) If the additional constraints 0 < B < 1 and

β + 1 ≧
(1 − µ) (A − B)

B
, (42)

are satisfied, then

1 − |A|

1 − |B|
<

1

1 − µ






−ℜ











z
(

J
s,a,λ,α,β+1
(λp),(µq),b f (z)

)′

J
s,a,λ,α,β+1
(λp),(µq),b f (z)











− µ






< ρ2, (43)

where

ρ2 =
1

1 − µ



(β + 1 − µ) −
β

2F1

(

1, (1−µ)(A−B)
B

;β + 1; B

B−1

)



 . (44)

The bound ρ2 is the best possible.

Proof. Let f (z) ∈ Σ (α, β, µ) and set

φ (z) =
1

1 − µ






−

z
(

J
s,a,λ,α,β+1
(λp),(µq),b f (z)

)′

J
s,a,λ,α,β+1
(λp),(µq),b f (z)

− µ






. (45)

Then, by using (17) and logarithmic differentiation for (45) with respect to z, we
get

φ (z) +
z φ′ (z)

−(1 − µ)φ (z) + (β + 1 − µ)
=

1

1 − µ






−

z
(

J
s,a,λ,α,β

(λp),(µq),bf (z)
)′

J
s,a,λ,α,β

(λp),(µq),bf (z)
− µ
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≺
1 + Az

1 + Bz
(z ∈ U) .

Therefore, by an application of Lemma 1 with

ν = −(1 − µ) and τ = β − µ + 1,

we have

φ (z) ≺ q2 (z) ≺
1 + Az

1 + Bz
(z ∈ U) ,

where the best dominant q2(z) is defined by (40). The proof of Theorem 2 (i) is
completed.

In order to establish (43) of Theorem 2 (ii), we apply the principle of subordina-
tion in (21) and use the same technique which was used in the proof of Theorem 1.
We thus find that

Q2 (z) = (1 + Bz)δ
∫ 1

0
uβ−1 (1 − u)γ−β−1(1 + Bzu)−δ du

=
Γ (β)

Γ (γ)
2F1

(

1, δ; γ;
Bz

Bz + 1

)

(46)

where δ = (1−µ)(A−B)
B

and γ = β + 1.
Furthermore, the condition:

β + 1 >
(1 − µ) (A − B)

B
(0 < B < 1)

implies that γ > δ > 0. Another application of (27) of Lemma 3 to (46) gives

Q2 (z) =

∫ 1

0
h (z, u) dv(u),

where

h (z, u) =
1 + Bz

1 + (1 − u)Bz
, (0 ≦ u ≦ 1)

and

dv(u) =
Γ (β)

Γ (γ) Γ (γ − δ)
uδ−1 (1 − u)γ−δ−1 du.

Using Lemma 2 implies that

inf
z∈U

ℜ

{

1

Q2 (z)

}

=
β

2F1

(

1, (1−µ)(A−B)
B

;β + 1; B

B−1

) . (47)

The right-hand inequality of (43) follows from (47).

The bound ρ2 is sharp by the principle of subordination. The proof of Theorem
2 is thus completed.
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4 Concluding Remarks and Observations

In our present sequel to an earlier work (see [5, 6, 14] and [15]), we have inves-
tigated several further properties of the linear operator defined by (18), which is
associated with Hurwitz-Lerch zeta function:

J
s,a,λ,α,β

(λp),(µq),bf (z) =
1

z
+

∞
∑

k=1

(α)k+1

p
∏

j=1
(λj)k

(β)k+1

q
∏

j=1
(µj)k

(

a + 1

a + k

)s Λ (a + k, b, s, λ)

λ Γ(s)
ak

zk

k!
,

as given by (8) and with the notation used with (17). The various properties and
results, which we have presented in this paper, are related to a certain subclass of the
class of (normalized) meromorphically univalent functions in the punctured unit disk
U
∗, which is defined here by means of the Hadamard product (or convolution). Many

interesting results (asserted by Theorems 1 and 2 above) have also been deduced
in this paper. In addition, there are more extensions and ideas that can be found
based on these results.
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Interpolating Bézier spline surfaces with local control

A.P.Pobegailo

Abstract. This paper presents an approach to construct interpolating spline surfaces
over a bivariate network of curves with rectangular patches. Patches of the interpolat-
ing spline surface are constructed by means of blending their boundaries with special
polynomials. In order to ensure a necessary parametric continuity of the designed
surface the polynomials of the corresponding degree are used. The constructed inter-
polating spline surfaces have local shape control. If the surface frame is determined
by means of Bézier curves then patches of the interpolating spline surface are Bézier
surfaces.

Mathematics subject classification: 65D05, 65D07, 65D17.

Keywords and phrases: Blending parametric curves, interpolating surfaces, spline
surfaces, Bézier surfaces.

1 Introduction

Interpolating spline surfaces play important role in different geometric appli-
cations. This paper presents an approach to construction of interpolating spline
surfaces which have local shape control. Patches of the interpolating spline surface
are constructed by means of blending their boundaries with special polynomials.
In order to ensure a necessary parametric continuity of the constructed surface the
polynomials of the corresponding degree must be used. The presented approach is
aimed at construction of interpolating spline surface over the bivariate network of
curves with rectangular patches. Interpolation with Bézier patches over the bivari-
ate network of Bézier curves is considered as application of the general approach.
A classification of algorithms for local smooth surface interpolation with piecewise
polynomials is given in the paper of Peters [14]. A survey of blending methods that
use parametric surfaces can be found in the paper of Vida, Martin, Várady [20].
Construction of surface patches by linear blending of its boundaries was firstly in-
troduced by Coons [5]. Contemporary representation of the patches was given by
Forrest [8] and considered by Faux and Pratt [7]. Spline-blended surface interpola-
tion through curve networks was proposed by Gordon [10]. The presented approach
can be considered as generalization of the techniques. Another approach to surface
interpolation by means of linear blending is considered in the paper of Juhásza and
Hoffmann [12].

c© A.P.Pobegailo, 2017
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2 Construction of a rectangular patch by blending its boundaries

Construction of a surface patch by means of linear blending of its boundaries was
introduced by Coons [5]. The presented approach can be considered as generalization
of the technique.

Consider four parametric curves p0(u), p1(u), u ∈ [0, 1], and q0(v), q1(v), v ∈
[0, 1], which have the following boundary points:

p0(0) = q0(0) = r0,0, p0(1) = q1(0) = r1,0, (1)

p1(0) = q0(1) = r0,1, p1(1) = q1(1) = r1,1. (2)

The problem is to construct a rectangular patch r(u, v), (u, v) ∈ [0, 1]× [0, 1], which
has the considered parametric curves as boundaries, that is

r(u, 0) = p0(u), r(u, 1) = p1(u), (3)

r(0, v) = q0(v), r(1, v) = q1(v) (4)

and partial derivatives of the patch r(u, v) satisfy the following conditions at the
corner points:

∂mr(u, v)

∂um
(0, 0) = (p

(m)
0 (u))(0),

∂mr(u, v)

∂vm
(0, 0) = (q

(m)
0 (v))(0), (5)

∂mr(u, v)

∂um
(0, 1) = (p

(m)
1 (u))(0),

∂mr(u, v)

∂vm
(0, 1) = (q

(m)
0 (v))(1), (6)

∂mr(u, v)

∂um
(1, 0) = (p

(m)
0 (u))(1),

∂mr(u, v)

∂vm
(1, 0) = (q

(m)
1 (v))(0), (7)

∂mr(u, v)

∂um
(1, 1) = (p

(m)
1 (u))(1),

∂mr(u, v)

∂vm
(1, 1) = (q

(m)
1 (v))(1), (8)

for all m ∈ {1, 2, ..., n} where s + r = m and n ∈ N. In order to solve the problem
define the following parametric surface:

r(u, v) = s(u, v) − r̃(u, v), u, v ∈ [0, 1], (9)

where

s(u, v) = (1 − wn+1(v))p0(u) + wn+1(v)p1(u)+

+(1 − wn+1(u))q0(u) + wn+1(u)q1(u),

r̃(u, v) = (1 − wn+1(u))(1 − wn+1(v))r0,0 + wn+1(u)(1 − wn+1(v))r1,0+

+(1 − wn+1(u))wn+1(v)r0,1 + wn+1(u)wn+1(v)r1,1

and the polynomials wn(u) are defined as follows:

wn(u) =

2n−1
∑

i=n

b2n−1,i(u), u ∈ [0, 1],
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where bn,m(u) denotes a Bernstein polynomial

bn,m(u) =
n!

m!(n − m)!
(1 − u)n−mum, u ∈ [0, 1].

Detailed considerations of the polynomials wn(u) can be found in the paper of Pobe-
gailo [15] where it is shown that the polynomials have the following boundary values:

wn(0) = 0, wn(1) = 1 (10)

and satisfy the following boundary conditions:

w(m)
n (0) = w(m)

n (1) = 0 (11)

for all m ∈ {1, 2, ..., n − 1} .
Show that the parametric curves p0(u), p1(u) and q0(v), q1(v) are boundaries

of the patch r(u, v). Substitution of boundary values of the polynomials wn+1(u)
from Equations (10) and parametric curves from Equations (1) and (2) in Equation
(9) yields that

s(u, 0) = p0(u) + (1 − wn+1(u))r0,0 + wn+1(u)r1,0,

r̃(u, 0) = (1 − wn+1(u))r0,0 + wn+1(u)r1,0

and therefore
r(u, 0) = s(u, 0) − r̃(u, 0) = p0(u).

Then
s(0, v) = (1 − wn+1(v))r0,0 + wn+1(v)r0,1 + q0(v),

r̃(0, v) = (1 − wn+1(v))r0,0 + wn+1(v)r0,1

and therefore
r(0, v) = s(u, 0) − r̃(u, 0) = q0(v).

Analogously it can be shown that

r(u, 1) = p1(u), r(1, v) = q1(v).

Thus Equations (3) and (4) are fulfilled.
Show that the patch r(u, v) has necessary partial derivatives at the corner points,

that is Equations (5-8) are also fulfilled. For this purpose compute partial derivatives
of the parametric surface r(u, v). It is obtained that

∂mr(u, v)

∂um
=

∂ms(u, v)

∂um
−

∂mr̃(u, v)

∂um

where

∂ms(u, v)

∂um
= (1 − wn+1(v))p

(m)
0 (u) + wn+1(v)p

(m)
1 (u)+
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+(1 − wn+1(u))(m)q0(v) + w
(m)
n+1(u)q1(v),

∂mr̃(u, v)

∂um
= (1 − wn+1(u))(m)(1 − wn+1(v))r0,0 + w

(m)
n+1(u)(1 − wn+1(v))r1,0+

+(1 − wn+1(u))(m)wn+1(v)r0,1 + w
(m)
n+1(u)wn+1(v)r1,1

and analogously
∂mr(u, v)

∂vm
=

∂ms(u, v)

∂vm
−

∂mr̃(u, v)

∂vm

where

∂ms(u, v)

∂vm
= (1 − wn+1(v))(m)p0(u) + w

(m)
n+1(v)p1(u)+

+(1 − wn+1(u))q
(m)
0 (v) + wn+1(u)q

(m)
1 (v),

∂mr̃(u, v)

∂vm
= (1 − wn+1(u))(1 − wn+1(v))(m)r0,0 + wn+1(u)(1 − wn+1(v))(m)r1,0+

+(1 − wn+1(u))w
(m)
n+1(v)r0,1 + wn+1(u)w

(m)
n+1(v)r1,1

for all m ∈ {1, 2, ..., n}, n ∈ N. Substituting boundary values of the polynomials
wn+1(u) and their derivatives from Equations (10) and (11) in these equations, it is
obtained that

∂mr(0, 0)

∂um
=

∂ms(0, 0)

∂um
−

∂mr̃(0, 0)

∂um
= p

(m)
0 (u)

and
∂mr(u, v)

∂vm
=

∂ms(u, v)

∂vm
−

∂mr̃(u, v)

∂vm
= q

(m)
0 (v).

Thus Equations (5) are fulfilled. Analogously it can be proven that Equations (6)-(8)
are also fulfilled.

Now compute mixed partial derivatives of the parametric surface r(u, v) at the
corner points. It is obtained that

∂mr(u, v)

∂ur∂vs
=

∂ms(u, v)

∂ur∂vs
−

∂mr̃(u, v)

∂ur∂vs

where

∂ms(u, v)

∂ur∂vs
= (1 − wn+1(v))(s)p

(r)
0 (u) + w

(s)
n+1(v)p

(r)
1 (u)+

+(1 − wn+1(u))(r)q
(s)
0 (v) + w

(r)
n+1(u)q

(s)
1 (v),

∂mr̃(u, v)

∂ur∂vs
= (1 − wn+1(u))(r)(1 − wn+1(v))(s)r0,0 + w

(r)
n+1(u)(1 − wn+1(v))(s)r1,0+

+(1 − wn+1(u))(r)w
(s)
n+1(v)r0,1 + w

(r)
n+1(u)w

(s)
n+1(v)r1,1



INTERPOLATING BÉZIER SPLINE SURFACES WITH LOCAL CONTROL 55

for all m ∈ {1, 2, ..., n} where s+r = m and n ∈ N. Substituting values of derivatives
which are defined by Equations (11) in these equations, it is obtained that

∂ms(u, v)

∂ur∂vs
= 0,

∂mr̃(u, v)

∂um
= 0

and therefore
∂mr(0, 0)

∂ur∂vs
=

∂ms(0, 0)

∂ur∂vs
−

∂mr̃(0, 0)

∂ur∂vs
= 0.

Analogously it can be proven that the other mixed partial derivatives at the corners
of the patch r(u, v) are also equal to zero. Thus it is obtained that

∂mr(u, v)

∂ur∂vs
(0, 0) =

∂mr(u, v)

∂ur∂vs
(0, 1) =

∂mr(u, v)

∂ur∂vs
(1, 0) =

∂mr(u, v)

∂ur∂vs
(1, 1) = 0 (12)

for all m ∈ {1, 2, ..., n} where s + r = m and n ∈ N. These values of mixed partial
derivatives are natural because the patch r(u, v) is defined only by the boundary
curves.

3 Construction of spline surfaces by blending frame curves

Spline-blended surface interpolation through curve networks was proposed by
Gordon [10]. Then Gregory [11] introduced a smooth interpolation scheme without
twist constraints. G1 smoothness conditions for rectangular and triangular Gregory
patches are discussed by Farin and Hansford [6]. Another approach to surface in-
terpolation of control point mesh was proposed by Comninos [4]. The surface is
generated by piecewise bicubic interpolation and is derived from a classical Coons
patch. This paper presents an approach to interpolating bivariate network of curves
by means of patches which are constructed by blending frame curves. The pre-
sented approach provides Cn continuity of the constructed surface. Another ap-
proach to surface interpolation by means of linear blending is considered in the
paper of Juhásza and Hoffmann [12].

Consider a rectangular grid of points ri,j, i ∈ {0, 1, ..., k}, j ∈ {0, 1, ..., l}, k, l ∈ N.
Suppose that the rectangular grid is framed by parametric curves pi,j(u), u ∈ [0, 1],
and qi,j(v), v ∈ [0, 1], where i ∈ {0, 1, ..., k − 1}, j ∈ {0, 1, ..., l − 1}, which satisfy
the following boundary conditions:

pi,j(0) = qi,j(0) = ri,j,

pi,j(1) = pi+1,j(0) = ri+1,j,

qi,j(1) = qi,j+1(0) = ri,j+1.

(13)

Besides the considered parametric curves are Cn continuously joined at the common
grid points, that is

(p
(m)
i,j

(u))(1) = (p
(m)
i+1,j

(u))(0), (q
(m)
i,j

(v))(1) = (q
(m)
i,j+1(v))(0) (14)
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for all m ∈ {1, 2, ..., n}, n ∈ N. The problem is to construct a Cn continuous
parametric surface r(u, v) which interpolates the points of this grid and the para-
metric curves pi,j(u) and qi,j(v) are boundaries of rectangular patches which form
the surface. Using Equation (9) define rectangular patches of the surface r(u, v) as
follows:

ri,j(u, v) = si,j(u, v) − r̃i,j(u, v), (u, v) ∈ [0, 1] × [0, 1], (15)

where

si,j(u, v) = (1 − wn+1(v))pi,j(u) + wn+1(v)pi,j+1(u)+

+(1 − wn+1(u))qi,j(u) + wn+1(u)qi+1,j(u),

r̃i,j(u, v) = (1 − wn+1(u))(1 − wn+1(v))ri,j + wn+1(u)(1 − wn+1(v))ri+1,j+

+(1 − wn+1(u))wn+1(v)ri,j+1 + wn+1(u)wn+1(v)ri+1,j+1

for all i ∈ {0, 1, ..., k−1}, j ∈ {0, 1, ..., l−1}. It follows from Equations (10) and (13)
that the parametric curves pi,j(u), pi,j+1(u), qi,j(v) and qi+1,j(v) are boundaries of
the patch ri,j(u, v).

Show that the parametric surface r(u, v) is Cn continuous. The surface r(u, v) is
Cn continuous at the knot points ri,j because the frame curves are Cn continuous at
the knot points and taking into consideration Equations (12). Then it is necessary
to show that the patches of the parametric surface r(u, v) are smoothly joined along
their common boundaries. For this purpose compute partial derivatives of the ad-
justment patches along their common boundaries. It is obtained taking into account
Equations (14) that

∂mri,j(u, v)

∂um
(1, v) = (1 − wn+1(v))(p

(m)
i,j

(u))(1) + wn+1(v)(p
(m)
i,j+1(u))(1) =

= (1 − wn+1(v))(p
(m)
i+1,j

(u))(0) + wn+1(v)(p
(m)
i+1,j+1(u))(0) =

∂mri+1,j(u, v)

∂um
(0, v)

and analogously
∂mri,j(u, v)

∂vm
(u, 1) =

∂mri,j+1(u, v)

∂vm
(u, 0)

for all m ∈ {1, 2, ..., n}. Now determine mixed partial derivatives across boundaries
of the patches. It is obtained using Equation (14) that

∂mri,j(u, v)

∂ur∂vs
(1, v) = (1 − wn+1(v))(s)(p

(r)
i,j

(u))(1) + w
(s)
n+1(v)(p

(m)
i,j+1(u))(1) =

= (1 − wn+1(v))(s)(p
(m)
i+1,j

(u))(0) + w
(s)
n+1(v)(p

(m)
i+1,j+1(u))(0) =

∂mri,j(u, v)

∂ur∂vs
(0, v)

and analogously
∂mri,j(u, v)

∂ur∂vs
(u, 1) =

∂mri,j+1(u, v)

∂ur∂vs
(u, 0)
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for all m ∈ {1, 2, ..., n} where s + r = m. Thus the spline surface r(u, v) constructed
by means of Equation (19) is Cn continuous.

It is obvious that a shape of the interpolating surface constructed by the proposed
method is mainly dependent on boundary curves of the patches. But two features
of the interpolating surface shape which are common for all surfaces constructed by
the approach can be mentioned.

Firstly it follows from Equations (12) that the twist vector ru,v is equal to zero
at all knot points of the interpolating spline surface. Therefore the proposed method
can lead to local flattening of the generated surface near patch corners. There are
more elaborated methods which use geometric specifications along the patch bound-
aries and at the corner points or the surface can be constructed with optimal twist
vectors as a tool for interpolating a network of curves with a minimum energy sur-
face, for example, see the paper of Kallay and Ravani [13]. But these methods can
be used only for offline processing because it is difficult to adjust additional geomet-
ric specifications or global computation procedures for online data point processing.
The old problem of specifying the mixed partial derivatives or twist vectors at the
grid points for an interpolating surface over a rectangular network of curves is con-
sidered in detail by Barnhill, Brown, Klucewicz [1]; Faux, Pratt [7]; Barnhill, Farin,
Fayard, Hagen [2].

Secondly it follows from the extremum property of the polynomials wn(u) that
patches of interpolating surfaces are generated with energy minimizing polynomials.
It can be seen from profiles of the polynomials that the higher degree of continuity
of the interpolating surface the shape of patches closes to shape of frame curves at
knot points and an inflection of the shape moves from knot points to a parametric
center of the patch.

4 Interpolating Bézier spline surfaces with local control

A translation of the Gordon scheme into a Bézier-like form was carried out
by Chiyokura and Kimura [3]. Local surface interpolation with Bézier patches for
meshes of cubic curves is described by Shirman, Sequin [18-19]. The method is local
and provides G1 continuity between patches. In this section construction of spline
surfaces using blending of Bézier frame curves is presented.

Suppose that frame curves of a rectangular grid are constructed by means of
Cn continuous spline Bézier curves. Since the proposed approach is aimed at local
interpolation of the framed grid, the Bézier curves must also have a local control.
In order to ensure this property Bézier curves, which are segments of the curve net,
must have at least 2n+1 order. Such a net of spline curves can be constructed by
the approach considered in the paper of Pobegailo [17]. In this case boundaries of
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the patch ri,j(u, v) can be described by the following Bézier curves:

pi,j(u) =
2n+1
∑

k=0

b2n+1,k(u)pi,j,k, u ∈ [0, 1],

qi,j(v) =

2n+1
∑

l=0

b2n+1,l(v)qi,j,l, v ∈ [0, 1]

(16)

where boundary points of the Bézier curves pi,j(u) and qi,j(v) are knot points of
the grid, that is

pi,j(0) = pi,j,0 = ri,j, pi,j(1) = pi,j,2n+1 = ri+1,j,

qi,j(0) = qi,j,0 = ri,j, qi,j(1) = qi,j,2n+1 = ri,j+1.

Then the patch ri,j(u, v) can be described using Equations (15) and (16) as follows:

ri,j(u, v) = si,j(u, v) − r̃i,j(u, v) =

=

n
∑

l=0

b2n+1,l(v)

2n+1
∑

k=0

b2n+1,k(u)pi,j,k +

2n+1
∑

l=n+1

b2n+1,l(v)

2n+1
∑

k=0

b2n+1,k(u)pi,j+1,k+

+

n
∑

k=0

b2n+1,k(u)

2n+1
∑

l=0

b2n+1,l(v)qi,j,l +

2n+1
∑

k=n+1

b2n+1,k(u)

2n+1
∑

l=0

b2n+1,l(v)qi+1,j,l−

−

n
∑

k=0

b2n+1,k(u)

n
∑

l=0

b2n+1,l(v)ri,j −

2n+1
∑

k=n+1

b2n+1,k(u)

n
∑

l=0

b2n+1,l(v)ri+1,j−

−

n
∑

k=0

b2n+1,k(u)

2n+1
∑

l=n+1

b2n+1,l(v)ri,j+1 −

2n+1
∑

k=n+1

b2n+1,k(u)

2n+1
∑

l=n+1

b2n+1,l(v)ri+1,j+1.

Combination of the similar terms yields that

ri,j(u, v) =

n
∑

k=0

b2n+1,k(u)

n
∑

l=0

b2n+1,l(v)(pi,j,k + qi,j,l − ri,j)+

+

n
∑

k=0

b2n+1,k(u)

2n+1
∑

l=n+1

b2n+1,l(v)(pi,j+1,k + qi,j,l − ri,j+1)+

2n+1
∑

k=n+1

b2n+1,k(u)

n
∑

l=0

b2n+1,l(v)(pi,j,k + qi+1,j,l − ri+1,j)+

2n+1
∑

k=n+1

b2n+1,k(u)

2n+1
∑

l=n+1

b2n+1,l(v)(pi,j+1,k + qi+1,j,l − ri+1,j+1).

This is a Bézier representation of the patch ri,j(u, v) for a Cn continuous Bézier
spline surface. It can be seen from the last equation that the knot and control
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points of the Bézier patch ri,j(u, v) can be arranged in a square block matrix

Pk,l =

[

B0,0 B0,1

B1,0 B1,1

]

.

where every internal block corresponds to a term of the patch equation.

In geometric applications surfaces of C1 and C2 continuity are usually used. A
patch ri,j(u, v) of the C1 continuous surface has the following Bézier representations:

ri,j(u, v) =
3

∑

k=0

b2n+1,k(u)
3

∑

l=0

b2n+1,l(v)pk,l

where points pk,l are corresponding elements of the following matrix:

Pk,l =









ri,j qi,j,1 qi,j,2 ri,j+1

pi,j,1 pi,j,1 + qi,j,1 − ri,j pi,j+1,1 + qi,j,2 − ri,j+1 pi,j+1,1

pi,j,2 pi,j,2 + qi+1,j,1 − ri+1,j pi,j+1,2 + qi+1,j,2 − ri+1,j+1 pi,j+1,2

ri+1,j qi+1,j,1 qi+1,j,2 ri+1,j+1









.

A patch ri,j(u, v) of the C2 continuous surface has the following Bézier representa-
tion:

ri,j(u, v) =

5
∑

k=0

b2n+1,k(u)

5
∑

l=0

b2n+1,l(v)pk,l

where points pk,l are corresponding elements of the following matrix blocks:

B0,0 =





ri,j qi,j,1 qi,j,2

pi,j,1 pi,j,1 + qi,j,1 − ri,j pi,j,1 + qi,j,2 − ri,j

pi,j,2 pi,j,2 + qi,j,1 − ri,j pi,j,2 + qi,j,2 − ri,j



 ,

B0,1 =





qi,j,3 qi,j,4 ri,j+1

pi,j+1,1 + qi,j,3 − ri,j+1 pi,j+1,1 + qi,j,4 − ri,j+1 pi,j+1,1

pi,j+1,2 + qi,j,3 − ri,j+1 pi,j+1,2 + qi,j,4 − ri,j+1 pi,j+1,2



 ,

B1,0 =





pi,j,3 pi,j,3 + qi,j,1 − ri+1,j pi,j,3 + qi,j,2 − ri+1,j

pi,j,4 pi,j,4 + qi+1,j,1 − ri+1,j pi,j,4 + qi+1,j,2 − ri+1,j

ri+1,j qi+1,j,1 qi+1,j,2



 ,

B1,1 =





pi,j+1,3 + qi+1,j,3 − ri+1,j+1 pi,j+1,3 + qi+1,j,4 − ri+1,j+1 pi,j+1,3

pi,j+1,4 + qi+1,j,3 − ri+1,j+1 pi,j+1,4 + qi+1,j,4 − ri+1,j+1 pi,j+1,4

qi+1,j,3 qi+1,j,4 ri+1,j+1



 .
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5 Rational Bézier spline surfaces with local control

Now suppose that frame curves of the rectangular grid are constructed by means
of Cn continuous rational spline Bézier curves with a local shape control. In order
to ensure this property rational Bézier curves, which are segments of the net, must
have at least 2n+1 order. In this case boundaries of the patch ri,j(u, v) can be
described by the following rational Bézier curves:

pi,j(u) =

2n+1
∑

k=0

b2n+1,k(u)wi,j,kpi,j,k

2n+1
∑

k=0

b2n+1,k(u)wi,j,k

, u ∈ [0, 1],

qi,j(v) =

2n+1
∑

l=0

b2n+1,l(u)wi,j,lqi,j,l

2n+1
∑

l=0

b2n+1,l(u)wi,j,l

, v ∈ [0, 1]

where boundary points of the rational Bézier curves pi,j(u) and qi,j(u) are knot
points of the grid. Such a net of spline curves can be constructed by the approach
considered in the paper of Pobegailo [16]. Introduce the following denotations for
numerators and denominators of the rational Bézier curves pi,j(u) and qi,j(u):

Pi,j(u) =
2n+1
∑

k=0

b2n+1,k(u)wi,j,kpi,j,k, u ∈ [0, 1],

Qi,j(v) =

2n+1
∑

l=0

b2n+1,l(v)wi,j,lqi,j,l, v ∈ [0, 1],

Pi,j(u) =

2n+1
∑

k=0

b2n+1,k(u)wi,j,k, u ∈ [0, 1],

Qi,j(v) =

2n+1
∑

l=0

b2n+1,l(v)wi,j,l, v ∈ [0, 1].

Then by analogy with non-rational case, see Equation (15), define the following
rational patches:

ri,j(u, v) =
Si,j(u, v) − R̃i,j(u, v)

Si,j(u, v) − R̃i,j(u, v)
, (u, v) ∈ [0, 1] × [0, 1]

where

Si,j(u, v) = (1 − wn+1(v))Pi,j(u) + wn+1(v)Pi,j+1(u)+

+(1 − wn+1(u))Qi,j(u) + wn+1(u)Qi+1,j(u),
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R̃i,j(u, v) = (1 − wn+1(u))(1 − wn+1(v))wi,jri,j+

wn+1(u)(1 − wn+1(v))wi+1,jri+1,j+

+(1 − wn+1(u))wn+1(v)wi,j+1ri,j+1+

wn+1(u)wn+1(v)wi+1,j+1ri+1,j+1,

Si,j(u, v) = (1 − wn+1(v))Pi,j(u) + wn+1(v)Pi,j+1(u)+

+(1 − wn+1(u))Qi,j(u) + wn+1(u)Qi+1,j(u),

R̃i,j(u, v) = (1 − wn+1(u))(1 − wn+1(v))wi,j+

wn+1(u)(1 − wn+1(v))wi+1,j+

+(1 − wn+1(u))wn+1(v)wi,j+1+

wn+1(u)wn+1(v)wi+1,j+1

for all i ∈ {0, 1, ..., k − 1}, j ∈ {0, 1, ..., l − 1}. By transition to homogeneous
coordinates and using Grassmann algebra of weighted points, see Goldman [9], it can
be proven that the constructed rational spline surfaces are Cn continuous. It should
be noted that rational spline surface provides more opportunities for modification
of its shape by changing weights of knot points.

6 Conclusions

The approach to construction of Cn continuous interpolating spline surfaces by
means of blending boundaries of the surface patches is introduced. The considered
spline surfaces are constructed locally over bivariate networks of curves. This ap-
proach ensures local control of the interpolating surface shape. If the surface frame
is determined by means of Bézier curves then patches of the interpolating spline
surface are represented by Bézier surfaces. General properties of the interpolating
surface shape are considered. The proposed approach can be used for sketching and
fast prototyping of spline surfaces in geometric design. Besides local control of the
constructed interpolating surfaces makes the approach useful in on-line geometric
applications.
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[16] Pobegailo A.P. Interpolating rational Bézier spline curves with local shape control. Interna-
tional Journal of Computer Graphics and Animation, 2013, 3, No. 4, 1–14.
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A Note on the Equivalence of Control Systems

on Lie Groups

Rory Biggs, Claudiu C.Remsing

Abstract. We consider state space equivalence and (a specialization of) feedback
equivalence in the context of left-invariant control affine systems. Simple algebraic
characterizations of both local and global forms of these equivalence relations are
obtained. Several illustrative examples regarding the classification of systems on low-
dimensional Lie groups are discussed in some detail.
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1 Introduction

Invariant control systems on (real, finite dimensional) Lie groups have been
a topic of interest in mathematical control theory since the early 1970’s (see,
e.g., [22, 27, 28, 34]). These systems form a natural framework for various (vari-
ational) problems in mathematical physics, mechanics, elasticity, and dynamical
systems (see, e.g., [3, 20,27,32]).

In order to understand the local geometry of control systems, one needs to intro-
duce some natural equivalence relations. The most natural equivalence relation is
equivalence up to coordinate changes in the state space (viz. state space equivalence).
Another weaker equivalence relation often considered is feedback equivalence; here
state-dependent transformations of the controls are also allowed (see, e.g., [26,33]).

In this note we consider state space equivalence and feedback equivalence in the
context of left-invariant control affine systems. We adapt Krener’s (general) char-
acterization of local state space equivalence [30] to this context. A global analogue
is also obtained. Two examples pertaining to classification of systems on the Eu-
clidean group SE (2) and pseudo-orthogonal group SO (2, 1)0 are provided. We
specialize feedback equivalence in the context of left-invariant control affine systems
by restricting to transformations compatible with the Lie group structure. This is
called detached feedback equivalence. Characterizations of local (resp. global) de-
tached feedback equivalence are obtained in terms of Lie algebra (resp. Lie group)
isomorphisms. Further three examples pertaining to the classification of systems
on low-dimensional Lie groups (namely SE (2), SO (2, 1)0 and the oscillator group)
are provided. Some remarks conclude the paper. A detailed treatment of these
equivalence relations can be found in [18].
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2 Invariant control systems

An ℓ-input left-invariant control affine system Σ = (G,Ξ) takes the form

ġ = Ξ(g, u) = g(A+ u1B1 + · · · + uℓBℓ), g ∈ G, u ∈ R
ℓ.

Here the state space G is a connected Lie group with Lie algebra g, and
A,B1, . . . , Bℓ ∈ g. For the sake of simplicity we shall assume that G ⊆ GL (n,R)
is a matrix Lie group. The dynamics Ξ : G × R

ℓ → TG are invariant under left
translations, i.e., Ξ(g, u) = g Ξ(1, u) for all g ∈ G, u ∈ R

ℓ. The parametrization
map

Ξ(1, ·) : R
ℓ → g, u 7→ A+ u1B1 + · · · + uℓBℓ

is assumed to be injective (i.e., B1, . . . , Bℓ are linearly independent). The trace
Γ = im Ξ(1, ·) ⊂ g of the system is the affine subspace

A+ Γ0 = A+ 〈B1, . . . , Bℓ〉 .

A system is called homogeneous if A ∈ Γ0 and inhomogeneous otherwise; a system
has full rank if its trace Γ generates the whole Lie algebra g. When G is fixed, we
shall specify a system Σ by simply writing

Σ : A+ u1B1 + · · · + uℓBℓ.

Remark 1. Any controllable system has full rank. On the other hand, any full-
rank homogeneous system is controllable. Likewise, full-rank systems evolving on
certain Lie groups, such as compact groups and Euclidean groups, are known to be
controllable.

3 State Space Equivalence

Let Σ = (G,Ξ) and Σ = (G′,Ξ′) be two left-invariant control affine systems with
the same input space R

ℓ. The systems Σ and Σ′ are locally state space equivalent
(shortly Sloc-equivalent) if there exists a diffeomorphism φ : N ⊆ G → N ′ ⊆ G′

such that Tgφ · Ξ(g, u) = Ξ(φ(g), u) for all g ∈ G and u ∈ R
ℓ. Here N and N ′

are some neighbourhoods of the identity elements 1 ∈ G and 1′ ∈ G′, respectively,
and it is assumed that φ(1) = 1′. Σ and Σ′ are state space equivalent (shortly
S-equivalent) if this happens globally (i.e., N = G and N ′ = G′).

Remark 2. The assumption φ(1) = 1′ can always be met by composing φ with
some appropriate left translations.

Krener’s result [30] states that full-rank systems Σ and Σ′ are Sloc-equivalent if
and only if there exists a linear isomorphism ψ : T1G → T1G′ such that the equality

ψ[· · · [Ξu1,Ξu2 ], . . . ,Ξuk
](1) = [· · · [Ξ′

u1
,Ξ′

u2
], . . . ,Ξ′

uk
](1)

holds for any k ≥ 1 and any u1, . . . , uk ∈ Rℓ. Here Ξu is the vector field specified
by Ξu(g) = Ξ(g, u). Hence in the context of left-invariant systems we have the
following characterization.
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Theorem 1. Two full-rank systems Σ and Σ′ are Sloc-equivalent if and only if
there exists a Lie algebra isomorphism ψ : g → g′ such that ψ · Ξ(1, u) = Ξ′(1, u)
for every u ∈ R

ℓ.

Remark 3. If full-rank systems Σ and Σ′ are Sloc-equivalent and G and G′ are
simply connected, then Σ and Σ′ are S-equivalent.

On the other hand, we have the following global analogue of this result.

Theorem 2. Two full-rank systems Σ and Σ′ are S-equivalent if and only if there
exists a Lie group isomorphism φ : G → G′ such that T1φ · Ξ(1, u) = Ξ′(1, u) for
every u ∈ R

ℓ.

Proof. Suppose Σ and Σ′ are S-equivalent. Then there exists a diffeomorphism
φ : G → G′ such that φ∗Ξu = Ξ′

u. Clearly φ satisfies T1φ · Ξ(1, u) = Ξ′(1, u).
We have φ∗[Ξu,Ξv] = [φ∗Ξu, φ∗Ξv] = [Ξ′

u,Ξ
′
v]. As Σ has full rank, it follows that

φ preserves left-invariant vector fields and so φ is a Lie group isomorphism (see,
e.g., [7]). Conversely, suppose φ : G → G′ is a Lie group isomorphism such that
T1φ ·Ξ(1, u) = Ξ′(1′, u). By left invariance and as φ is an isomorphism we have that
Tgφ·Ξ(g, u) = Tgφ·g Ξ(1, u) = T1Lφ(g)·T1φ·Ξ(1, u) = φ(g) Ξ′(1, u) = Ξ′(φ(g), u).

We conclude the section with some specific examples on the classification, under
local state space equivalence, of systems on some three-dimensional Lie groups.

Example 1 ( see [1]). The Euclidean group

SE (2) =











1 0 0
x cos z − sin z
y sin z cos z



 : x, y, z ∈ R







has Lie algebra se (2) given by










0 0 0
x 0 −z
y z 0



 = xE1 + yE2 + zE3 : x, y, z ∈ R







.

The nonzero commutator relations for the ordered basis (E1, E2, E3) are [E2, E3] =
E1 and [E3, E1] = E2.

Any two-input inhomogeneous full-rank system on SE (2) is Sloc-equivalent to
exactly one of the following full-rank systems:

Σ
(2,1)
1,αβγ

: αE3 + u1(E1 + γ1E2) + u2(βE2)

Σ
(2,1)
2,αβγ

: βE1 + γ1E2 + γ2E3 + u1(αE3) + u2E2

Σ
(2,1)
3,αβγ

: βE1 + γ1E2 + γ2E3 + u1(E2 + γ3E3) + u2(αE3)

or, in matrix form

Σ
(2,1)
1,αβγ

:





0 1 0
0 γ1 β

α 0 0



 , Σ
(2,1)
2,αβγ

:





β 0 0
γ1 0 1
γ2 α 0



 , Σ
(2,1)
3,αβγ

:





β 0 0
γ1 1 0
γ2 γ3 α



 .
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Here α > 0, β 6= 0 and γ1, γ2, γ3 ∈ R parametrize families of class representatives,
each different values yielding distinct (non-equivalent) class representatives.

The group of automorphisms Aut(se (2)) is given by











x y v

−ςy ςx w

0 0 ς



 :
x, y, v, w ∈ R,

x2 + y2 6= 0, ς = ±1







.

Let Σ :
∑

aiEi + u1
∑

biEi + u2
∑

ciEi be a two-input inhomogeneous full-rank
system; in matrix form

Σ :





a1 b1 c1
a2 b2 c2
a3 b3 c3



 .

It straightforward to show that there exists an automorphism ψ ∈ Aut (se (2)) such
that

ψ ·





a1 b1 c1
a2 b2 c2
a3 b3 c3



 =





0 1 0
0 γ1 β

α 0 0



 if b3 = 0 and c3 = 0

ψ ·





a1 b1 c1
a2 b2 c2
a3 b3 c3



 =





β 0 0
γ1 0 1
γ2 α 0



 if b3 6= 0 and c3 = 0

ψ ·





a1 b1 c1
a2 b2 c2
a3 b3 c3



 =





β 0 0
γ1 1 0
γ2 γ3 α



 if c3 6= 0.

Thus Σ is Sloc-equivalent to Σ1,αβγ, Σ2,αβγ, or Σ3,αβγ. It is a simple matter to
verify that no two of the class representatives are equivalent.

Example 2 (see [19]). The pseudo-orthogonal group

SO (2, 1) = {g ∈ R
3×3 : g⊤Jg = g, det g = 1}

is a three-dimensional simple Lie group. Here J = diag(1, 1,−1). The identity
component of SO (2, 1) is SO (2, 1)0 = {g ∈ SO (2, 1) : g33 > 0}. Its Lie algebra
so (2, 1) is given by











0 z y

−z 0 x

y x 0



 = xE1 + yE2 + zE3 : x, y, z ∈ R







and has commutator relations [E2, E3] = E1, [E3, E1] = E2, and [E1, E2] = −E3.
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Any two-input homogeneous full-rank system on SO (2, 1)0 is Sloc-equivalent to
exactly one of the following full-rank systems (displayed in matrix form):

Σ
(2,0)
1,αγ

:





γ3 α2 0
0 0 0
γ2 γ1 α1



 , Σ
(2,0)
2,βγ

:





γ3 β + γ1 1
0 0 0
γ2 γ1 1



 ,

Σ
(2,0)
3,αβγ

:





(β + 1
4)γ2 β + 1

4 0
γ3 γ1 α1

(β − 1
4)γ2 β − 1

4 0



 .

Here αi > 0, β 6= 0 and γi ∈ R parametrize families of class representatives, each
different values yielding distinct (non-equivalent) class representatives.

The group Aut(so (2, 1)) of automorphisms of so (2, 1) is exactly SO (2, 1). The
(Lorentzian) product ⊙ on so (2, 1) is given by A ⊙ B = a1b1 + a2b2 − a3b3;
here A =

∑

aiEi and B =
∑

biEi. Any automorphism ψ preserves ⊙, i.e.,
(ψ · A) ⊙ (ψ · B) = A ⊙ B. Furthermore, the group Aut(so (2, 1)) acts transitively
on each of the hyperboloids (and punctured cone) Hα = {A ∈ so (2, 1) : A ⊙ B =
α, A 6= 0}. Hence for every A ∈ so (2, 1), there exists ψ ∈ Aut(so (2, 1)) such that
ψ · A equals αE2, αE3, or E1 + E3. The subgroup of automorphisms fixing these
elements are {exp(tE2), ς ◦ exp(tE2) : t ∈ R}, where

ς =





−1 0 0
0 1 0
0 0 −1





{exp(tE3) : t ∈ R}, and {exp(t(E1 + E3)) : t ∈ R}, respectively. Moreover,
any automorphism fixing at least two of E1, E2, E3, and E1 + E3 is the identity
automorphism.

Suppose Σ : A+ u1B1 + u2B2 is a two-input homogeneous full-rank system on
SO (2, 1)0. Then there exists an automorphism ψ ∈ Aut(so (2, 1)) such that ψ ·B2

equals αE2, αE3 or E1 +E3. Hence Σ is equivalent to Σ′ : A′ + u1B
′
1 + u2(αE3),

Σ′ : A′+u1B
′
1+u2(E1+E3), or Σ′ : A′+u1B

′
1+u2(αE2). In each case we then further

reduce the system by considering the action of the subgroup of automorphisms fixing
E3, E1 + E3, or E2, respectively, on the system.

4 Detached Feedback Equivalence

Two systems Σ and Σ′ are (globally) feedback equivalent if there exists a dif-
feomorphism Φ : G × R

ℓ → G′ × R
ℓ
′

, (g, u) 7→ (φ(g), ϕ(g, u)) transforming the first
system into the second, i.e., Tgφ · Ξ(g, u) = Ξ′(φ(g), ϕ(g, u)). We specialize feed-
back equivalence, by requiring that the transformation u′ = ϕ(g, u) is constant over
the state space; such transformations are exactly those that are compatible with
the Lie group structure (cf. [7]). More precisely, Σ and Σ′ are called locally de-
tached feedback equivalent (shortly DFloc-equivalent) if there exist diffeomorphims
φ : N ⊆ G → N ′ ⊆ G′ and ϕ : R

ℓ → R
ℓ′ such that Tgφ ·Ξ(g, u) = Ξ′(φ(g), ϕ(u)) for
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g ∈ N , u ∈ R
ℓ. Here N and N ′ are some neighbourhoods of the identity elements

1 ∈ G and 1′ ∈ G′ and it is assumed that φ(1) = 1′. On the other hand, Σ and
Σ′ are called detached feedback equivalent (shortly DF -equivalent) if this happens
globally (i.e., N = G and N ′ = G′).

Theorem 3. Two full-rank systems Σ and Σ′ are DFloc-equivalent if and only if
there exists a Lie algebra isomorphism ψ : g → g′ such that ψ · Γ = Γ′.

Proof. Suppose Σ and Σ′ are DFloc-equivalent, i.e., there exist diffeomorphisms
φ : N ⊆ G → N ′ ⊆ G′ and ϕ : R

ℓ → R
ℓ′ such that Tgφ · Ξ(g, u) =

Ξ′(φ(g), ϕ(u)). Then T1φ · Ξ(1, u) = Ξ′(1′, ϕ(u)) and so T1φ · Γ = Γ′. It re-
mains to be shown that T1φ preserves the Lie bracket. We have that φ∗[Ξu,Ξv] =
[φ∗Ξu, φ∗Ξv] for left-invariant vector fields Ξu = Ξ(·, u) and Ξv = Ξ(·, v). Hence,
T1φ · [Ξu(1),Ξv(1)] = [Ξ′

ϕ(u)(1
′),Ξ′

ϕ(v)(1
′)] = [T1φ · Ξu(1), T1φ · Ξv(1)]. Likewise

T1φ · [Ξu(1), [Ξu(1),Ξw(1)]] = [T1φ · Ξu(1), T1φ · [Ξv(1),Ξw(1)]] and similarly for
higher order commutators. As the elements Ξu(1), u ∈ R

ℓ generate g, it follows
that T1φ is a Lie algebra isomorphism.

Conversely, suppose ψ is a Lie algebra isomorphism such that ψ · Γ = Γ′.
Then there exist neighbourhoods N and N ′ of 1 and 1′, respectively, and a local
group isomorphism φ : N → N ′ such that T1φ = ψ (see, e.g., [29]). Also, there
exists a unique affine isomorphism ϕ : R

ℓ → R
ℓ
′

such that ψ ·Ξ(1, u) = Ξ′(1, ϕ(u)).
Therefore, (locally) we get Tgφ·Ξ(g, u) = T1Lφ(g)·ψ·Ξ(1, u) = T1Lφ(g)·Ξ

′(1′, ϕ(u)) =
Ξ′(φ(g), ϕ(u)). Hence Σ and Σ′ are DFloc-equivalent.

The global analogue of the characterization for detached feedback equivalence
follows similarly (and so the proof is omitted).

Theorem 4. Two full-rank systems Σ and Σ′ are DF -equivalent if and only if
there exists a Lie group isomorphism φ : G → G′ such that T1φ · Γ = Γ′.

We conclude the section with some specific examples on the classification, under
local detached feedback equivalence, of systems on some low-dimensional Lie groups.

Example 3 ( see [12]). Any two-input inhomogeneous full-rank system on the Eu-
clidean group SE (2) is DFloc-equivalent to exactly one of the following full-rank
systems:

Σ1 : E1 + u1E2 + u2E3,

Σ2,α : αE3 + u1E1 + u2E2.

Here α > 0 parametrizes a family of class representatives, each different value
corresponding to a distinct non-equivalent representative.

Let Σ be an inhomogeneous system with trace Γ =
∑

aiEi + 〈
∑

biEi,
∑

ciEi〉.
If E3(Γ0) 6= {0}, then Γ = a′1E1 + a′2E2 + 〈b′1E1 + b′2E2, c

′
1E1 + c′2E2 + E3〉. (Here

E3 denotes the corresponding element of the dual basis.) As (b′1)
2 + (b′2)

2 6= 0, the
equation

[

b′2 −b′1
b′1 b′2

] [

v1
v2

]

=

[

a′2
a′1

]
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has a unique solution (with v2 6= 0). Therefore

ψ =





v2b
′
2 v2b

′
1 c′1

−v2b
′
1 v2b

′
2 c′2

0 0 1





is an automorphism such that ψ · Γ1 = ψ · (E1 + 〈E2, E3〉) = Γ. Thus Σ
is DFloc-equivalent to Σ1. On the other hand, suppose E3(Γ0) = {0}. Then
Γ = a3E3 + 〈E1, E2〉. Hence ψ = diag (1, 1, sgn (a3)) is an automorphism such that
ψ · Γ = αE3 + 〈E1, E2〉 with α > 0. Thus Σ is DFloc-equivalent to Σ2,α. As
the subspace 〈E1, E2〉 is invariant (under automorphisms), Σ1 and Σ2,α cannot be
DFloc-equivalent. It is easy to show that Σ2,α and Σ2,α′ are DFloc-equivalent only
if α = α′.

Example 4 (see [10]). Any two-input homogeneous full-rank system on the pseudo-
orthogonal group SO (2, 1) is DFloc-equivalent to exactly one of the following full-
rank systems:

Σ1 : u1E1 + u2E2,

Σ2 : u1E2 + u2E3.

Let Σ be a two-input homogeneous full-rank system with trace Γ = 〈A,B〉. The
sign σ(Γ) of Γ is given by

σ(Γ) = sgn

(
∣

∣

∣

∣

A⊙A A⊙B

A⊙B B ⊙B

∣

∣

∣

∣

)

.

(It is easy to show that σ(Γ) does not depend on the parametrization.) As ⊙ is
preserved by automorphisms, it follows that σ(ψ · Γ) = σ(Γ). A straightforward
computation shows that if σ(Γ) = 0, then Σ does not have full rank.

Suppose σ(Γ) = −1. Then we may assume that a3 6= 0. Hence Γ =
〈a′1E1 + a′2E2 +E3, r sin θE1 + r cos θE2〉. Thus

ψ =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1





is an automorphism such that ψ · Γ = 〈a′′1E1 + E3, E2〉. Now, as σ(ψ · Γ) = −1, we
have (a′′1)

2 − 1 < 0 and so ψ · Γ = 〈sinhϑE1 + coshϑE3, E2〉. Therefore

ψ′ =





coshϑ 0 − sinhϑ
0 1 0

− sinhϑ 0 cosh ϑ





is an automorphism such that ψ′ · ψ · Γ = 〈E3, E2〉. Thus Σ is DFloc-equivalent to
Σ1. If σ(Γ) = 1, then a similar argument shows that there exists an automorphism
ψ such that ψ · Γ = 〈E1, E2〉 (and so Σ is DFloc-equivalent to Σ2). Lastly, as
σ(Γ1) = 1 and σ(Γ2) = −1, it follows that Σ1 and Σ2 are not equivalent.
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Example 5 (see [15]). The (four-dimensional) oscillator Lie group has parametriza-
tion

Osc :









1 −y cos θ − z sin θ z cos θ − y sin θ −2x
0 cos θ sin θ z

0 − sin θ cos θ y

0 0 0 1









where x, y, z, θ ∈ R. Its Lie algebra likewise has parametrization

osc :









0 −y z −2x
0 0 θ z

0 −θ 0 y

0 0 0 0









= xE1 + yE2 + zE3 + θE4

where x, y, z, θ ∈ R. The nonzero commutator relations are [E2, E3] = E1,
[E2, E4] = −E3, and [E3, E4] = E2. Osc decomposes as a semidirect product
H3 ⋊SO (2) of the Heisenberg group H3 and orthogonal group SO (2); furthermore,
it is a nontrivial central extension of the Euclidean group SE (2) ([25]). The os-
cillator group was first studied by Streater [35]; it is associated with the harmonic
oscillator problem, from whence it gets its name. This group (and its higher dimen-
sional analogues) have been studied by several authors in both differential geometry
and mathematical physics (see, e.g., [21,23,24,31]).

Any homogeneous full-rank system on Osc is DFloc-equivalent to exactly one of
the following full rank systems:

Σ(2,0) : u1E2 + u2E4

Σ
(3,0)
1 : u1E1 + u2E2 + u3E4

Σ
(3,0)
2 : u1E2 + u2E3 + u3E4

Σ(4,0) : u1E1 + u2E2 + u3E3 + u4E4.

The group of automorphisms takes the form

Aut(osc) :









σ
(

x2 + y2
)

wy − σvx −wx− σvy u

0 x y v

0 −σy σx w

0 0 0 σ









where x, y, u, v, w ∈ R, x2 + y2 6= 0, and σ = ±1. Clearly no single-input homoge-
neous system has full rank. Suppose Σ is a two-input full-rank system with trace
Γ = 〈

∑

aiEi,
∑

biEi〉. As Σ has full rank, it follows that E4(Γ) 6= {0}. Hence
Γ = 〈a′1E1 + a′2E2 + a′3E3 + E4, b

′
1E1 + b′2E2 + b′3E3〉. Therefore,

ψ =









1 a′2 a′3 −a1 − (a′2)
2 − (a′3)

2

0 1 0 −a′2
0 0 1 −a′3
0 0 0 1
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is an automorphism such that ψ ·Γ = 〈E4, b
′′
1E1 + r cos θE2 + r sin θE3〉 with r > 0.

(We have that r 6= 0 as Σ has full rank.) Accordingly,

ψ′ =











1
r2 −

b′′1 cos θ

r3 −
b′′1 sin θ

r3 0

0 cos θ

r

sin θ

r

b
′′

1
r2

0 − sin θ

r

cos θ

r
0

0 0 0 1











is an automorphism such that (ψ′ ◦ ψ) · Γ =
〈

E2,
b′′1
r2E2 + E4

〉

= 〈E2, E4〉. Conse-

quently Σ is DFloc-equivalent to Σ(2,0). The three-input case is similar, although
somewhat more involved. (The four-input case is trivial.)

Remark 4. The examples discussed in this note deal only with the local case. The
approach for the global case is very similar; however, one needs to first determine
the subgroup dAut(G) of Aut(g). For SE (2) and SO (2, 1)0 it turns out that
dAut(G) = Aut(g) (see, e.g., [16, 19]). For the oscillator group, this does not hold
true.

5 Closing Remarks

State space equivalence is a very strong equivalence relation. Hence, any general
classification leads to a large number of equivalence classes and so is of little use
(except perhaps in low dimensions, e.g., [1, 19]). On the other hand, detached feed-
back equivalence is noticeably weaker, and so leads to far fewer equivalence classes.
On three-dimensional Lie groups, a full classification (both local and global) of sys-
tems under detached feedback equivalence has been achieved ([8, 10–12], and [16];
see also [13, 17]). In the same vein, on several other low-dimensional (matrix) Lie
groups, important classification results have also been obtained (cf. [2, 5, 15]).

Detached feedback equivalence has a natural extension to invariant optimal con-
trol problems (cf. [9, 14]). Two optimal control problems are cost equivalent if the
underlying control systems are detached feedback equivalent and the change of con-
trols ϕ is compatible with the costs. (Such a perspective was used to classify the cor-
responding sub-Riemannian structures on the Heisenberg groups [6]; see also [4,5].)
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Viscous flow through a porous medium filled

by liquid with varying viscosity
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Abstract. The paper deals with study of a Stokes-Brinkman system with varying
viscosity that describes the fluid flow along an ensemble of partially porous cylindrical
particles using the cell approach. We have proved the existence and uniqueness of the
solutions as well as derived some uniform estimates.
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1 Introduction

Pressure driven membrane processes (reverse osmosis, nano-, ultra and micro-
filtration), sedimentation, flows of underground water and crude oil are important
examples of flow through porous media. Usually porous medium was modeled by a
dense set of rigid impermeable (colloid) particles [4]. For now to achieve effective
use of a porous medium in the above-mentioned areas, the structure of a porous
layer should be viewed from different points of view. For example, it is not neces-
sary that the particles always have a smooth homogeneous surface but also have a
rough surface or a surface covered by a porous shell. The hydrodynamic models of
colloid particle changed considerably over last decades. The latter attracts itself in
terminology too: soft particles [8], i. e. particles with porous hydrodynamically per-
meable surface layer, draw now more attention than hard impermeable particles [4].
There has been also considerable recent interest in the use of beds of porous particles
for biological applications such as perfusion chromatography for purifying proteins
and other biomolecules and cell or enzyme immobilization. Therefore a number of
technologies require the development of modeling of porous media. The mentioned
porous media are frequently modeled as aggregates of particles and/or fibers. The
cell model [4] has been very effectively used for investigation of the mentioned above
flows. The basic principle of the cell model is to replace a system of randomly ori-
ented particles by a periodic array of spheres or cylinders embedded in a center of
spherical or cylindrical liquid cells. Appropriate boundary conditions on the cell
boundary are supposed to take into account the influence of surrounding particles
on the flow inside the cell and the force applied to the particle in the center of the
cell. The four variants of these conditions are known as the Happel (the absence
of tangential stresses on the cell surface), Kuwabara (the absence of vortexes - the

c© Anatoly Filippov, Yulia Koroleva, 2017
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flow potentiality), Kvashnin (the cell symmetry), and Cunningham (the flow on the
surface of cell is assumed to be uniform) models [15]. In the course of filtration pro-
cesses the structure of the membrane can change due to (i) dissolution of particles,
(ii) adsorption of polymers on the surfaces of the particles usually referred to as a
poisoning. Both the above mentioned processes result in a formation of a porous
shell (in the form of a colloidal layer or a gel layer) on the solid particles surface,
which are usually hard to remove. The presence of porous shell on solid particles
has a clear impact on the drag force exerted by the flow on the particles. Another
situation where the slip velocity is of interest is flow over polymer brushes. Polymer
chains attached to the surface of a particle create a porous shell around the particle,
effectively increasing its diameter. Penetration of the outer flow into the polymer
brush determines the transport of ions and other chemical species between the outer
flow and the surface of the particle. Hence, the knowledge of the flow field at the in-
terface between a highly porous medium and a liquid is of a substantial importance.
Flow through porous shells is frequently modeled by Brinkman’s equation [2], which
is a modified form of the Darcy’s equation. However, it has been observed that the
results obtained based on the Brinkman’s equations do not agree with the experi-
mental data for non-homogeneous porous media. A modification of the Brinkman’s
equation was suggested in [14] for the media having non-homogeneous porosity. To
overcome this problem it is possible also to use ”variable viscosity model” for the
liquid/porous boundary region. We assume below that porous shells under con-
sideration have a uniform porosity but variable liquid viscosity inside porous layer
in accordance with power or exponential law. The membranes under investigation
below are supposed to be built by either non-porous particles with a rough surface
or particles covered by a porous shell. The latter shells also have a rough surface,
and a scale of roughness is equal or even bigger than the average pore size inside
the shell. The important problem is a correct selection of boundary conditions on
surfaces of non-porous but rough surfaces of particles or porous shell of particles.
We use bellow the condition of ”tangential stresses slippage” which is a jump of
tangential stresses at the porous-liquid interface [6, 7]. The aim of this paper is to
prove the existence and uniqueness of the solutions of boundary value problems as
well as derive some uniform estimates which will be useful for numerical simulations.

2 Statement of the problem

Describe the viscous flow through a porous medium, modeled as a set of parallel
composite cylindrical particles, and filled by liquid with varying viscosity by two
systems: the Stokes one

{

˜∇p̃o = µ̃0
˜∆ṽ0,

˜divṽo = 0
(1)
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Figure 1. The flow parallel to the cylinders

outside the porous layer ã ≤ r̃ ≤ ˜b and in the porous layer ˜R ≤ r̃ ≤ ã by the
Brinkman’s system

{

˜∇p̃i = ˜div(µ̃i
˜Dṽi) − µ̃o

˜k
ṽi,

˜divṽi = 0.
(2)

Here the tilde denotes dimensional variables, indices o and i refer to the external
and porous zones respectively; µ̃i and µ̃o are the viscosities of the liquids inside
Brinkman’s layer and in liquid shell, correspondingly. The variable ˜k is the specific
permeability of the porous layer. We suppose that viscosity of clear liquid µ̃o is
constant over region ã < r̃ < b̃ and viscosity of Brinkmans liquid µ̃i = µ̃o

(

ã

r̃

)α

increases according to power law from µ̃o at porous media-clear liquid interface to

µ̃o

(

ã

R̃

)α

at the interface between solid core and porous layer. Parameter α is needed in order
to get necessary viscosity of Brinkmans liquid in the vicinity of the solid core. The
unknown functions are ṽo, ṽi− the velocity field and the pressure p̃o, p̃i.

Also the boundary conditions as follows are set:

ṽi = 0, as r̃ = ˜R, (3)

the continuity condition:

ṽi = ṽo, σ̃o

rr = σ̃i

rr, as r̃ = ã. (4)

The condition for a jump of tangential stresses at the interface between porous layer
and clear liquid reads,

σ̃i

rz − σ̃o

rz =
β˜µo

√

˜k
ṽo

z , as r̃ = ã. (5)
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Here −∞ < β <
√

µ̃i

µ̃0 is the dimensionless parameter which should be found

from a physical experiment [3]. In case of flow which is parallel to the cylinders all
four known conditions at the outer cell boundary are reduced to the scalar one [12]:

dṽo
z

dr̃
= 0, as r̃ = ˜b. (6)

For the convenience of the analysis we pass to the dimensionless operators and
variables by the following substitutions:

b̃

ã
=

1

γ
, r =

r̃

ã
, z =

z̃

ã
, ∇ = ∇̃ · ã, ∆ = ∆̃ · ã2, δ =

δ̃

ã
, R =

R̃

ã
= 1 − δ,

v =
ṽ

Ũ
p =

p̃

p̃0
, p̃0 =

Ũ · µ̃o

ã
, k =

k̃

ã2
> 0 , ω =

dp

dz
,

(7)

where ˜U is the cell (filtration) velocity Ũ = −L̃11
dp̃

dz̃
, where L̃11 is the hydrodynamic

permeability of the membrane [13].
Denote by Bγ the layer

Bγ = {1 ≤ r ≤
1

γ
, ϕ ∈ [0, 2π], z ∈ [0,∞)}

and by BR the set

BR = {R ≤ r ≤ 1, ϕ ∈ [0, 2π], z ∈ [0,∞)}.

In the dimensionless notations the systems (1) and (2) read as











∇po = µo∆vo in Bγ ,

divvo = 0 in Bγ ,
dvo

z

dr
= 0 on r = 1

γ
, vo

z = vi
z on r = 1,

(8)

where vi is given by























∇pi = div(r−αDvi) − v
i

k
in BR,

divvi = 0 in BR,

vz
i = 0 on r = R,

dvi
z

dr
= dvo

z

dr
+ β

√
k
vz

o as r = 1.

(9)

The problems (8) and (9) are linked to each other via the boundary condition vi = vo

on the common boundary r = 1 which physically means the continuous flow regime.

Our goal is to investigate the qualitative properties of the obtained systems: exis-
tence and uniqueness of the solution as well as to derive some apriori estimates.



78 ANATOLY FILIPPOV, YULIA KOROLEVA

2.1 The flow parallel to cylinders. The case µ
i = µ

o
r

−α

Rewrite the problems (8) and (9) in cylindric coordinates (r, ϕ, z) with help of
formulas

∇p =

(

∂p

∂r
,
1

r

∂p

∂ϕ
,
∂p

∂z

)

,

divv =

(

1

r

∂

∂r
(rvr) +

1

r

∂vϕ

∂ϕ
+

∂vz

∂z

)

,

∆v =
1

r

∂

∂r
(rv) +

1

r2

∂2v

∂ϕ2
+

∂2v

∂z2
,

(10)

and consider the case when the flow is parallel to the cylinders, i. e. the components
of the solution satisfy vi

r = vo
r = vi

ϕ = vo
ϕ = 0, while nonzero are vi

z as well as vo
z .

We show now that in such case the divergence free property of the velocity implies

independence of velocity and ∂pj

∂z
on z-variable. Here index j is o or i. Indeed, for

j = o or j = i the equation

divvj = 0 ⇔

(

1

r

∂

∂r
(rvj

r) +
1

r

∂v
j
ϕ

∂ϕ
+

∂v
j
z

∂z

)

= 0 ⇔
∂v

j
z

∂z
= 0

implies independence v
j
z on z-variable. For an arbitrary µi(r) when the flow is

parallel to z-direction, the term div(µiDv) becomes

1

r

d

dr

(

µi

(

r
dvz

dr

))

=
dvz

dr

(

dµi

dr
+

µi

r

)

+ µi
d2vz

dr2

in the polar coordinates. Having in mind that dp
j

dz
= const = ω, j = o, i, we

arrive at the following one-dimensional Stokes and Brinkman’s equations, where for
the simplicity we omit the sub-index z (i. e. the notation vj should be understood
as v

j
z):

d2vo

dr2
+

1

r

dvo

dr
= ω, 1 < r <

1

γ
, (11)

d2vi

dr2
−

α − 1

r

dvi

dr
= rα

(

vi

k
+ ω

)

, R < r < 1 (12)

with boundary conditions

vi = 0 as r = R,

vo = vi as r = 1,
dvi

dr
−

dvo

dr
=

β
√

k
vo, r = 1.

dvo

dr
= 0 as r =

1

γ
.

(13)
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3 On the existence and uniqueness of the solution

3.1 Preliminaries

We recall some basic definitions of Sobolev spaces. The Sobolev space H1(Ω)
is defined as the completion of the set of functions from the space C∞(Ω) by the

norm ‖u‖H1(Ω) =
√

∫

Ω

(u2 + |∇u|2) dx; the space H−1(Ω) denotes the dual space

to H1, i. e. the set of functionals defined on the elements in H1(Ω). Following the
traditions, we denote by H the set of functions u from H1(Ω) such that divu = 0.

Finally,
◦

L2(Ω) consists of functions u ∈ L2 satisfying the condition
∫

Ω

u dx = 0. In

our analysis the following classical theorem will be used (see [1] and [5]):

Theorem 1 (Lions-Lax-Milgram Lemma). Let U and V be two real Hilbert spaces
and let B : U × V → R be a continuous bilinear functional, where V is continuously
embedded in U (‖u‖U ≤ c‖u‖V ). Suppose also that B is coercive in the following
sense: for some constant c > 0 and all u ∈ U , |B[u, u]| ≥ c‖u‖2

U
. Then, for all

f ∈ V ∗, there exists a unique solution u = uf ∈ U to the weak problem B[uf , v] =
〈f, v〉 for all v ∈ V. Moreover, the solution depends continuously on the given datum:
‖uf‖U ≤ 1

c
‖f‖V ∗ .

3.2 The weak solution

Multiplying equations (11), (12) by vo, vi respectively and integrating the result
over the corresponding domains, we can define the weak solutions vo and vi.

Definition 1. The function vo ∈ H1(BR) is called the weak solution to (11) if the
following integral identity holds:

−

1
γ
∫

1

(

dvo

dr

)2

dr +

1
γ
∫

1

vo

r

dvo

dr
dr =

dvo

dr

∣

∣

∣

∣

r=1

vo(1) + ω

1
γ
∫

1

vo dr. (14)

The function vi ∈ H1(BR) is called the weak solution to (12) if it satisfies

1
∫

R

(

dvi

dr

)2

dr + (α− 1)

1
∫

R

1

r
vi

dvi

dr
dr +

1

k

1
∫

R

rα(vi)2 dr + ω

1
∫

R

rαvi dr =
1

2

d(vi)2

dr

∣

∣

∣

∣

r=1

.

(15)

Here we used integration by parts, the boundary conditions for vi and observation
that

vi
dvi

dr
=

1

2

d(vi)2

dr
.

By using the boundary conditions

vo = vi,
dvi

dr
−

dv0

dr
=

β
√

k
vo, r = 1,
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one can rewrite the identity (15) to the form

1
∫

R

(

dvi

dr

)2

dr + (α − 1)

1
∫

R

1

r
vi

dvi

dr
dr+

1

k

1
∫

R

rα(vi)2 dr + ω

1
∫

R

rαvi dr =

=
1

2

d(vo)2

dr

∣

∣

∣

∣

r=1

+
β
√

k
(vo(1))2.

(16)

Remark 1. Exactly in the same way one can define the weak solution to (8) and (9)
for an arbitrary viscosity µi(r) = µoµ(r). The integral identities will replace r−α by
the function µ(r).

3.3 The main result

Let us prove the existence and uniqueness of the weak solution. The following
theorem gives such result.

Theorem 2. The unique solution vi ∈ H1(BR) to (15) does exist and satisfies the
estimates

‖r
α
2 vi‖2

L2(R,1) ≤ |vo(1)|
kω

2

(

1 −
1

γ2

)

+
β
√

k
(vo(1))2,

∥

∥

∥

∥

dvi

dr

∥

∥

∥

∥

2

L2(R,1)

≤ |vo(1)|
kω

2

(

1 −
1

γ2

)

+
β
√

k
(vo(1))2,

(17)

where vo is the unique solution satisfying (11).

Proof. Let us analyze first the solvability of equation (11). It is easy to find the
analytical solution to (11), which evidently coincides with the solution in the weak
sense. Indeed,

d

dr

(

r
dvo

dr

)

= rω ⇔
dvo

dr
=

rω

2
+

C

r
.

Boundary condition dvo

dr
= 0 at r = 1

γ
implies that C = − ω

2γ2 . Integrating the
equation once more, one derives that

vo = C1 −
ω

2γ2
ln r +

ωr2

4
, where C1 = vi(1) −

ω

4
(18)

due to the condition vo = vi at r = 1. The uniqueness of vo follows directly from
formula (18) or can be derived from equations (11), assuming the existence of two
different functions vo

1 6= vo
2. This technique is quite standard so we skip the full

details.
Denote by B[vi, vi] : H1(BR) × H1(BR) → R the bilinear form

B[vi, vi] =

1
∫

R

(

dvi

dr

)2

dr + (α − 1)

1
∫

R

1

r
vi

dvi

dr
dr +

1

k

1
∫

R

rα(vi)2 dr −
1

2

d(vi)2

dr

∣

∣

∣

∣

r=1

.
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Define the functional on the space H1(BR) :

〈f, vi〉 = −ω

1
∫

R

rαvi dr,

then the question on the existence and uniqueness of the solution (15) is reduced to
solvability of

B[vi, vi] = 〈f, vi〉

for any f ∈ H−1(BR). Let us establish the coerciveness of B[vi, vi] (see Theorem 1).
Evaluating the boundary conditions

1

2

d(vi)2

dr

∣

∣

∣

∣

r=1

=
dvo

dr

∣

∣

∣

∣

r=1

vo(1) +
β
√

k
(vo(1))2 = vo(1)

ω

2

(

1 −
1

γ2

)

+
β
√

k
(vo(1))2

and using the evident inequalities

(vo)2(1) ≤

1
∫

R

1

r
vi

dvi

dr
dr ≤

1

2R
(vo)2(1),

1

k

1
∫

R

rα(vi)2 dr ≥
Rα

k

1
∫

R

(vi)2 dr,

(vo(1))2 = (vi(1))2 =





1
∫

R

dvi

dr
dr





2

≤ δ

1
∫

R

(

dvi

dr

)2

dr,

we conclude that

|B[vi, vi]| ≥

∣

∣

∣

∣

1
∫

R

(

dvi

dr

)2

dr +
1

k

1
∫

R

rα(vi)2 dr +

(

α − 1

2
−

β
√

k

)

(vo)2(1)

− vo(1)
ω

2

(

1 −
1

γ2

)
∣

∣

∣

∣

≥ C(α, β, γ,R, k, vo(1))‖vi‖2
H1(BR),

(19)

where

C(α, β, γ,R, k, vo(1)) is a constant and ‖vi‖2
H1(BR) =

1
∫

R

(

dvi

dr

)2

dr +

1
∫

R

(vi)2 dr.

Hence, the unique solution vi exists due to Lions-Lax-Milgram Lemma.
Observe also that the identity (16) imply the estimates

‖r
α
2 vi‖2

L2(R,1) ≤
k

2

∣

∣

∣

∣

d(vo)2

dr

∣

∣

∣

∣

r=1

∣

∣

∣

∣

+
β
√

k
(vo(1))2,

∥

∥

∥

∥

dvi

dr

∥

∥

∥

∥

2

L2(R,1)

≤
k

2

∣

∣

∣

∣

d(vo)2

dr

∣

∣

∣

∣

r=1

∣

∣

∣

∣

+
β
√

k
(vo(1))2.

(20)



82 ANATOLY FILIPPOV, YULIA KOROLEVA

Coming back to estimates (20) and evaluating

1

2

d(vo)2

dr

∣

∣

∣

∣

r=1

= vo(1)
ω

2

(

1 −
1

γ2

)

,

we derive the asymptotics

‖r
α
2 vi‖2

L2(R,1) ≤ |vo(1)|
kω

2

(

1 −
1

γ2

)

+
β
√

k
(vo(1))2,

∥

∥

∥

∥

dvi

dr

∥

∥

∥

∥

2

L2(R,1)

≤ |vo(1)|
kω

2

(

1 −
1

γ2

)

+
β
√

k
(vo(1))2.

4 Exponential viscosity

Assume now that

µ̃i = µ̃oe−α( r̃
ã
−1), α > 0 (21)

and again the flow is parallel to z-axis. Making an analogous steps to come to
dimensionless form of the Brinkman’s equation, one gets the equation

d2vi

dr2
+

(

−α +
1

r

)

dvi

dr
= eα( r

a
−1)

(

vi

k
+ ω

)

, R < r < 1 (22)

with boundary conditions

vi = 0 as r = R,

vi = vo as r = 1,

dvi

dr
−

dvo

dr
=

β
√

k
vo, r = 1.

(23)

The weak solution to (22), (23) satisfies

1
∫

R

(

dvi

dr

)2

dr +
1

k

1
∫

R

eα( r
a
−1)(vi)2 dr +

α

2

1
∫

R

d

dr
(vi)2 dr + ω

1
∫

R

eα( r
a
−1)vi dr =

=
1

2

d(vi)2

dr

∣

∣

∣

∣

r=1

+
1

2

1
∫

R

1

r

d

dr
(vi)2 dr.

(24)
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Applying the Newton- Leibnitz formula and taking into account the boundary con-
ditions for vi, the identity (24) can be rewritten as follows:

1
∫

R

(

dvi

dr

)2

dr +
1

k

1
∫

R

eα( r
a
−1)(vi)2 dr +

α + 1

2
(vo(1))2−

−
1

2

1
∫

R

(vi)2

r2
dr + ω

1
∫

R

eα( r
a
−1)vi dr =

1

2

d(vo)2

dr

∣

∣

∣

∣

r=1

+
β
√

k
(vo(1))2.

(25)

Similarly, one can prove the following theorem on the existence and uniqueness
of the solution to (24).

Theorem 3. The solution to (24) does exist, is unique and satisfies estimates

‖e
α
2 ( r

a
−1)vi‖2

L2(R,1) ≤

(

1 +
2R2(1 + δβk−

1
2 )

2R2 − δ

)

∣

∣

∣

∣

vo(1)
ωk

2

(

1 −
1

γ2

)
∣

∣

∣

∣

,

∥

∥

∥

∥

dvi

dr

∥

∥

∥

∥

2

L2(R,1)

≤
2R2

2R2 − δ

∣

∣

∣

∣

vo(1)
ωk

2

(

1 −
1

γ2

)
∣

∣

∣

∣

.

(26)

Proof. All steps of the proof are identical to the previously considered case in
Lemma 2. We introduce the bilinear form B[vi, vi] : H1(BR) × H1(BR) → R :

B[vi, vi] =

1
∫

R

(

dvi

dr

)2

dr −
1

2

1
∫

R

(vi)2

r2
dr +

1

k

1
∫

R

e
α
2 ( r

a
−1)(vi)2 dr−

−
1

2

d(vi)2

dr

∣

∣

∣

∣

r=1

+
1

2

1
∫

R

1

r

d

dr
(vi)2 dr

and functional

〈f, vi〉 =
dvo

dr

∣

∣

∣

∣

r=1

vo(1) −

(

α + 1

2
−

β
√

k

)

(vo(1))2 − ω

1
∫

R

e
α
2 ( r

a
−1)vi dr.

In order to use the Lions-Lax-Milgram Lemma on the existence and uniqueness of
the solution, it is required to get the estimate |B[vi, vi]| ≥ C‖vi‖2

H1(BR). In view of
the inequality

−
1

2

1
∫

R

(vi)2

r2
dr ≥ −

1

2

1
∫

R

(vi)2 dr,
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we get the desired bound

|B[vi, vi]| ≥

1
∫

R

(

dvi

dr

)2

dr +
1

k

1
∫

R

(

eα( r
a
−1) −

k

2

)

(vi)2 dr ≥ C(α,R, k)‖vi‖2
H1(BR).

(27)

Here the constant C(α,R, k) = min{1, |e
α(R

a −1)
k

− 1
2 |}. We note that the classical

Friedrich’s inequality
1
∫

R

(vi)2 dr ≤ δ

1
∫

R

(

dvi

dr

)2

dr (28)

is valid for function vi since it vanishes on the boundary r = R. Moreover, the
constant is equal to the square of the strip {R ≤ r ≤ 1} × 1 = δ. To obtain the
estimates (26) we use the integral identity in the form

1
∫

R

(

dvi

dr

)2

dr +
1

k

1
∫

R

eα( r
a
−1)(vi)2 dr +

α + 1

2
(vo(1))2 + ω

1
∫

R

eα( r
a
−1)vi dr =

1

2

d(vo)2

dr

∣

∣

∣

∣

r=1

+
β
√

k
(vo(1))2 +

1

2

1
∫

R

(vi)2

r2
dr.

(29)

It implies the following estimates:

1
∫

R

(

dvi

dr

)2

dr ≤
1

2

d(vo)2

dr

∣

∣

∣

∣

r=1

+
β
√

k
(vo(1))2 +

1

2

1
∫

R

(vi)2

r2
dr,

1
∫

R

eα( r
a
−1)(vi)2 dr ≤

1

2

d(vo)2

dr

∣

∣

∣

∣

r=1

+
β
√

k
(vo(1))2 +

1

2

1
∫

R

(vi)2

r2
dr.

(30)

The first term in the right-hand side is bounded as in (17):
∣

∣

∣

∣

1

2

d(vo)2

dr

∣

∣

∣

∣

r=1

∣

∣

∣

∣

≤

∣

∣

∣

∣

vo(1)
ωk

2

(

1 −
1

γ2

)∣

∣

∣

∣

. (31)

Applying the inequality (28), we consider the third term:

1

2

1
∫

R

(vi)2

r2
dr ≤

1

2R2

1
∫

R

(vi)2 dr ≤
δ

2R2

1
∫

R

(

dvi

dr

)2

dr. (32)

Now we can use this result in the first inequality of (30):

1
∫

R

(

dvi

dr

)2

dr ≤

∣

∣

∣

∣

vo(1)
ωk

2

(

1 −
1

γ2

)
∣

∣

∣

∣

+
δ

2R2

1
∫

R

(

dvi

dr

)2

dr. (33)
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Consequently,

1
∫

R

(

dvi

dr

)2

dr ≤
2R2

2R2 − δ

∣

∣

∣

∣

vo(1)
ωk

2

(

1 −
1

γ2

)
∣

∣

∣

∣

. (34)

Finally, the term β
√

k
(vo(1))2 can also be estimated by

1
∫

R

(

dvi

dr

)2

dr with help of

Friedrichs inequality (28) and Hölder inequality

∫

Ω

|f(x)g(x)| dx ≤





∫

Ω

|f(x)|p dx





1
p




∫

Ω

|g(x)|q dx





1
q

,
1

p
+

1

q
= 1

if one apply it for Ω = (R, 1), f = dv
i

dr
, g = 1 and p = q = 2 :

β
√

k
(vo(1))2 =

β
√

k
(vi(1))2 =

β
√

k

(
∫ 1

R

dvi

dr
dr

)2

≤
δβ
√

k

1
∫

R

(

dvi

dr

)2

dr ≤

≤
2R2δβk−

1
2

2R2 − δ

∣

∣

∣

∣

vo(1)
ωk

2

(

1 −
1

γ2

)
∣

∣

∣

∣

.

(35)

The results in (33), (34) and (35) can be directly used to estimate the second line
in (30):

1
∫

R

eα( r
a
−1)(vi)2 dr ≤

∣

∣

∣

∣

vo(1)
ωk

2

(

1 −
1

γ2

)
∣

∣

∣

∣

+
δ

2R2

1
∫

R

(

dvi

dr

)2

dr ≤

∣

∣

∣

∣

vo(1)
ωk

2

(

1 −
1

γ2

)
∣

∣

∣

∣

(

1 +
2R2(1 + δβk−

1
2 )

2R2 − δ

)

.

(36)

5 Concluding remarks

Let us observe that estimates (17) and (26) show the continuous dependence
of the solution vi on initial data k, ω, β, γ, δ,R as well as on the solution vo at
the common boundary r = 1. Note also that factor r

α
2 in the estimate (17)

and similarly eα( r
a
−1) in (26) means the following asymptotical behaviour of vi :

vi ∼ C(vo(1), k, ω, β, γ)r−
α
2 , where the constant C(vo(1), k, ω, β, γ) depends on

vo(1), k, ω, β, γ. Analogously, vi ∼ C(vo, k, ω, β, γ, δ,R)e−
α
2 ( r

a
−1) in the second case.

Roughly speaking, the solution vi is proportional to square root of the viscosity. If
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one apply the estimate (35) to the second term in right-hand side of (17), we get
the upper bounds in the form which involves R as well:

‖r
α
2 vi‖2

L2(R,1) ≤ |vo(1)|
kω

2

(

1 −
1

γ2

)

(

1 +
2R2δβk−

1
2

2R2 − δ

)

,

∥

∥

∥

∥

dvi

dr

∥

∥

∥

∥

2

L2(R,1)

≤ |vo(1)|
kω

2

(

1 −
1

γ2

)

(

1 +
2R2δβk−

1
2

2R2 − δ

)

.

(37)
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Invariant conditions of stability of unperturbed motion

governed by some differential systems in the plane

Natalia Neagu, Victor Orlov, Mihail Popa

Abstract. Center-affine invariant conditions of the stability of unperturbed motion
were determined for differential systems in the plane with polynomial nonlinearities
in non-critical cases and for differential systems in the plane with polynomial nonlin-
earities up to the fourth degree inclusive in critical cases.

Mathematics subject classification: 34C14, 34C20, 34D20.
Keywords and phrases: Differential systems, stability of unperturbed motion,
center-affine comitant and invariant, Sibirsky graded algebras.

Introduction

Problems which require a general formulation of stability not only of equilibrium
but also of motion arose in science and technics in the middle of XIX-th century.

Lyapunov (1857-1918) published his PhD thesis concerning the stability of mo-
tion in 1892, and it was translated into French and published in France in 1907.
According to the French version, this work was reprinted in Russian, with some
additions, in his collection of works [1] in 1956. The mentioned work contains many
fruitful ideas and results of great importance. All the history related to the the-
ory on stability of motion is considered to be divided into periods before and after
Lyapunov.

First of all, A.M. Lyapunov gave a strict definition of the stability of motion,
which was so successful that all scientists took it as fundamental one for their re-
searches.

A lot of papers were written in the field of stability of motion. The universal
scientific literature concerning the stability of motion contains thousands of papers,
including hundreds of monographs and textbooks of many authors. This literature
is rich in the development of this theory, as well as in its applications in practice.

Note that many problems on stability treated in these works are governed by
two-dimensional (or multidimensional) autonomous polynomial differential systems.
Methods of the theory of invariants for such systems were elaborated in the school
of differential equations from Chişinău. Moreover, the theory of Lie algebras and
Sibirsky graded algebras with applications in the qualitative theory of these equa-
tions [2–7] there were developed.

The stability of unperturbed motions using the theory of algebras, of invariants
and of Lie algebras was studied for the first time in [8]. In this paper, the similar
investigations are done for two-dimensional differential systems with polynomial
nonlinearities.

c© Natalia Neagu, Victor Orlov, Mihail Popa, 2017
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1 Definition of stability of unperturbed motion and of critical

system

We consider the two-dimensional differential system with polynomial nonlinear-
ities of perturbed motion (see, for example, [1] or [9]) of the form

dxj

dt
= aj

αx
α +

l
∑

i=1

aj

α1α2...αmi
xα1xα2 . . . xαmi (j, α, α1, . . . , αmi

= 1, 2; l <∞), (1)

where aj
α1α2...αmi

is a symmetric tensor in lower indices in which the total convolution
is done and Γ = {m1,m2, . . . ,ml} (mi ≥ 2) is a finite set of distinct natural numbers.
Coefficients and variables in (1) are given over the field of real numbers R.

The system of the first approximation ([1], [9])

dxj

dt
= aj

αx
α (j, α = 1, 2) (2)

plays an important role in studying differential systems (1). As it follows from [1]
(or [9]), to unperturbed motion of system (1) the zero values of variables xj(t)
(j = 1, 2) correspond. Taking into account this fact, we have the following definition
of stability by Lyapunov [9] :

If for any small positive value ε, however small, one can find a positive number
δ such that for all perturbations xj(t0) satisfying the condition

2
∑

j=1

(xj(t0))
2 ≤ δ, (3)

the inequality
2

∑

j=1

(xj(t))2 < ε

is valid for any t ≥ t0, then the unperturbed motion xj = 0 (j = 1, 2) is called stable,
otherwise it is called unstable.

If the unperturbed motion is stable and the number δ can be found however
small such that for any perturbed motions satisfying (3) the condition

lim
t→∞

2
∑

j=1

(xj(t))2 = 0,

is valid, then the unperturbed motion is called asymptotically stable.
Inspired by the work [1] we have

Definition 1. The differential system (1) with polynomial nonlinearities will be
called a critical system of Lyapunov type if the characteristic equation of the system
of the first approximation (2) has one zero root and all other roots have negative real
parts. When the real parts of the roots of the characteristic equation are different
from zero, the system (1) will be called non-critical.
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First, we will examine the non-critical case.

Lemma 1. The characteristic equation of system (1) and (2) is

̺2 + L1,2̺+ L2,2 = 0, (4)

where the coefficients in (4) are center-affine invariants [2] and have the form

L1,2 = −I1, L2,2 =
1

2
(I2

1 − I2) (5)

with

I1 = aα

α, I2 = aα

βa
β

α. (6)

By means of the Lyapunov theorems on stability of unperturbed motion in the
first approximation (2), the Hurwitz theorem on the signs of the roots of an algebraic
equation (see, for example, [9]) and using Lemma 1 we have

Theorem 1. Assume that the center-affine invariants (5) of system (1) satisfy the
inequalities L1,2 > 0, L2,2 > 0. Then the unperturbed motion x1 = x2 = 0 of this
system is asymptotically stable.

Theorem 2. If at least one of the center-affine invariant expressions (5) of system
(1) is negative, then the unperturbed motion x1 = x2 = 0 of this system is unstable.

2 Canonical form of a critical system of Lyapunov type

Remark 1. In the following, we will study critical systems of Lyapunov type in the
first case, and such systems will be called critical systems or critical systems of
Lyapunov type.

Lemma 2. The characteristic equation of system (2) (and therefore of system (1))
has one zero root and the other ones real and negative if and only if the following
invariant conditions

I2
1 − I2 = 0, I1 < 0 (7)

hold, where I1 and I2 are from (6).

The proof of Lemma 2 follows from the fact that the characteristic equation of
system (2) and therefore of (1) has the form (4)–(5).

From [1] it follows

Lemma 3. Let for system (2) (for (1)) the invariant conditions (7) hold. Then the
system (2) by a center-affine transformation can be brought to the form

dx1

dt
= 0,

dx2

dt
= a2

αx
α (α = 1, 2) (8)
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and, therefore, the system (1) can be written in the form

dx1

dt
=

l
∑

i=1

a1
α1α2...αmi

xα1xα2 . . . xαmi ,

dx2

dt
= a2

αx
α +

l
∑

i=1

a2
α1α2...αmi

xα1xα2 . . . xαmi (α,α1, . . . , αmi
= 1, 2; l <∞).

(9)

Remark 2. The system (9) is called the canonical form of a critical system of Lya-
punov type (1), where the first equation from (9) is called the critical equation and
the second one – the non-critical equation.

For the case examined in this paper the Lyapunov’s Theorem [1, §32] can be
written in the following form:

Theorem 3. Let the characteristic equation of the matrix of linear part of differen-
tial system with polynomial nonlinearities have one zero root and other roots have
negative real parts. Assume that the differential system of the perturbed motion (1)
was brought to the form (9) and consider the equation

a2
αx

α +

l
∑

i=1

a2
α1α2...αmi

xα1xα2 . . . xαmi = 0 (α,α1, α2, . . . , αmi
= 1, 2; l <∞) (10)

from which we determine the variable x2 as a holomorphic function of the variable
x1, vanishing for x1 = 0 (such determination of x2 is always possible and is unique).
Substitute the determined values into the polynomial

l
∑

i=1

a1
α1α2...αmi

xα1xα2 . . . xαmi (α1, α2, . . . , αmi
= 1, 2; l <∞).

If the obtained result is not identically zero, then we can develop it in an increas-
ing powers series of x1. When the lowest power of x1 in this development is even,
then the unperturbed motion is unstable. When the lowest power of x1 is odd, then
the unperturbed motion depends on the sign of the coefficient of x1. The unperturbed
motion will be unstable when this coefficient is positive and will be stable when the
coefficient is negative. In the last case, any perturbed motion that corresponds to
small enough perturbation will approach asymptotically the unperturbed motion.

If the obtained result is identically zero, then there exists a continuous series
of stabilized motions to which the examined unperturbed motion belongs. All the
motions of this series, close enough to the unperturbed motions, including the last
one, will be stable. In this case, for small enough perturbations, any perturbed motion
will tend asymptotically to one of the stabilized motions of the mention series.
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3 Center-affine invariant conditions of stability of unperturbed

motion for the system with quadratic nonlinearities

We examine the differential system with quadratic nonlinearities

dxj

dt
= aj

αx
α + a

j

αβ
xαxβ (j, α, β = 1, 2), (11)

where aj

αβ
is a symmetric tensor in lower indices in which the total convolution is

done.
It was shown in [4] that the set of unimodular comitants and invariants of the

system (1) consists of some graded algebras, which in [7] were called the Sibirsky
algebras. For system (11) these algebras were denoted in [4] by S1,2 – the Sibirsky
algebras of comitants and SI1,2 – the Sibirsky algebras of invariants.

It was shown in [4] that the set of generators of these algebras (which is fi-
nite) consists of polynomial bases of the homogeneous center-affine comitants and
invariants.

Based on this and on the polynomial bases of the center-affine comitants and
invariants of system (11) given in [2], we can write the Sibirsky algebra in the form

S1,2 =< I1, I2, . . . , I16,K1,K2, . . . ,K20 | f1, f2, . . . , f27 >

and
SI1,2 =< I1, I2, . . . , I16 | f1, f2, . . . , f9 >,

where Ir and Ks are the invariants and the comitants of these algebras, and fj are
their syzygies.

Later on, we will use the following generators of the Sibirsky algebras of system
(11), for which their tensorial forms from [2] are written as follows:

I1 = aα

α, I2 = aα

βa
β

α, I5 = aα

p a
β

γqa
γ

αβ
εpq, K1 = aα

αβx
β, K2 = ap

αx
αxqεpq,

K3 = aα

βa
β

αγx
γ , K4 = aα

γa
β

αβ
xγ , K5 = a

p

αβ
xαxβxqεpq, K7 = aα

βγa
β

αδ
xγxδ,

K8 = aα

γa
β

δ
a

γ

αβ
xδ, K11 = ap

αa
α

βγx
βxγxqεpq, K12 = aα

βa
β

αγa
γ

δµ
xδxµ,

K13 = aα

γa
β

αβ
a

γ

δµ
xδxµ,

(12)

where εpq(εpq) is the unit bivector with coordinates ε11 = ε22 = 0, ε12 = −ε21 =
1 (ε11 = ε22 = 0, ε12 = −ε21 = 1).

Suppose the system (11) is critical of Lyapunov type. Then by Lemma 3 it can
be brought to the canonical form (9)

dx1

dt
= a1

αβx
αxβ,

dx2

dt
= a2

αx
α + a2

αβx
αxβ (α, β = 1, 2). (13)

According to Theorem 3, we examine the equation (10) provided by non-critical
equation of (13), which in the expanded form looks as

a2
1x

1 + a2
2x

2 + a2
11(x

1)2 + 2a2
12x

1x2 + a2
22(x

2)2 = 0. (14)
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In this case, under the conditions (5)–(6) and the inequality from (7) we have

I1 = a2
2 < 0. (15)

Then from (14) we can write

x2 = −
a2

1

a2
2

x1 −
a2

11

a2
2

(x1)2 −
2a2

12

a2
2

x1x2 −
a2

22

a2
2

(x2)2. (16)

By Theorem 3, we seek x2 as a holomorphic function of x1. Then we can write

x2 = −
a2

1

a2
2

x1 +B2(x
1)2 +B3(x

1)3 +B4(x
1)4 + · · · (17)

Substituting (17) into (16) we get

−
a2

1

a2
2

x1 +B2(x
1)2 +B3(x

1)3 + · · · = −
a2

1

a2
2

x1 −
a2

11

a2
2

(x1)2 −
2a2

12

a2
2

x1[−
a2

1

a2
2

x1+

+B2(x
1)2 +B3(x

1)3 + · · · ] −
a2

22

a2
2

[−
a2

1

a2
2

x1 +B2(x
1)2 +B3(x

1)3 + · · · ]2.

This implies that

B2(x
1)2 +B3(x

1)3 +B4(x
1)4 + · · · = [−

a2
11

a2
2

+
2a2

1a
2
12

(a2
2)

2
−

(a2
1)

2a2
22

(a2
2)

3
](x1)2+

+[−
2a2

12

a2
2

B2 +
2a2

1a
2
22

(a2
2)

2
B2](x

1)3 + [−
2a2

12

a2
2

B3 −
a2

22

a2
2

B2
2 + 2

a2
1a

2
22

(a2
2)

2
B3](x

1)4 + · · ·

and we obtain

B2 =
1

(a2
2
)3

[−(a2

2
)2a2

11
+ 2a2

1
a2

2
a2

12
− (a2

1
)2a2

22
], B3 =

2

(a2
2
)2

(−a2

2
a2

12
+ a2

1
a2

22
)B2,

B4 =
1

(a2
2
)2

[−a2

2
a2

22
B2

2
+ 2(a2

1
a2

22
− a2

2
a2

12
)B3], . . .

(18)

Substituting (17) into the right-hand side of the critical differential equation (13)
we have

a1
11(x

1)2 + 2a1
12x

1x2 + a1
22(x

2)2 = A2(x
1)2 +A3(x

1)3 +A4(x
1)4 + · · ·

or in the expanded form we get

a1
11(x

1)2 + 2a1
12x

1[−
a2

1

a2
2

x1 +B2(x
1)2 +B3(x

1)3 + · · · ]+

+a1
22[−

a2
1

a2
2

x1 +B2(x
1)2 +B3(x

1)3 + · · · ]2 = A2(x
1)2 +A3(x

1)3 +A4(x
1)4 + · · · .
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This implies that

A2 =
1

(a2
2)

2
[(a2

2)
2a1

11 − 2a2
1a

2
2a

1
12 + (a2

1)
2a1

22],

A3 =
2

a2
2

(a2
2a

1
12 − a2

1a
1
22)B2, A4 =

2

a2
2

(a2
2a

1
12 − a2

1a
1
22)B3 + a1

22B
2
2 , . . .

(19)

By Theorem 3, to determine the stability of the unperturbed motion described
by system (13), it is necessary to study the expressions (19).

Let us introduce the following notations

P = (a2
2)

2a1
11 − 2a2

1a
2
2a

1
12 + (a2

1)
2a1

22, Q = (a2
2)

2a2
11 − 2a2

1a
2
2a

2
12 + (a2

1)
2a2

22,

R = (a2
2)

2a1
11 − (a2

1)
2a1

22, S = a2
1a

1
22 − a2

2a
1
12

(20)

and take into account that according to (15) we have a2
2 < 0.

Next, we observe that the stability of the unperturbed motion can occur when
A2=0 from (19), i.e. when P = 0 from (20).

Assume in (18) that B2 = 0, then (20) yields Q = 0. This implies that all
B3, B4, ... are equal to zero. From this it follows that all the coefficients A3, A4, ...

vanish and therefore the stability of the unperturbed motion holds.

Suppose B2 6= 0. If S 6= 0, then the stability of the unperturbed motion is
determined by the sign of A3 from (19). If in (20) S = 0, then A3 = 0 and the
coefficient A4 from (19) is non-zero if a1

22 6= 0. Therefore, the stability is possible
only if a1

22 = 0. Observe that when S = P = 0 in (20), then R = 0. Hence, when
a1

22 = 0 the last two equations in (20) yield a1
11 = a1

12 = 0.

Taking into account the inequality (15) and Theorem 3, we obtain the follow-
ing results for stability of the unperturbed motion determined by the system of
perturbed motion (13).

Lemma 4. The stability of the unperturbed motion described by system (13) under
conditions (7) is characterized by one of the following six possible cases:

I. P 6= 0, then the unperturbed motion is unstable;

II. P = 0, QS > 0, then the unperturbed motion is unstable;

III. P = 0, QS < 0, then the unperturbed motion is stable;

IV. R = S = 0, a1
22Q 6= 0, then the unperturbed motion is unstable;

V. P = Q = 0, then the unperturbed motion is stable;

VI. a1
11 = a1

12 = a1
22 = 0, then the unperturbed motion is stable.

In the last two cases the unperturbed motion belongs to some continuous series
of stabilized motions, moreover, it is also asymptotically stable [10] in Case III. The
expressions P,Q,R, S are given in (20).

Later on, we make use of the following expressions of the invariants and comitants



INVARIANT CONDITIONS OF STABILITY OF UNPERTURBED MOTION . . . 95

of system (11) given in (12):

E1 = I2
1K1 − I1(K3 +K4) +K8,

E2 = I3
1 (K2

1 −K7) + 2I2
1 (K1K4 − 2K1K3 −K13) + 2I1(I5K2 + 2K2

3 −K2
4 )+

+4K8(K4 −K3) + 2I2K12, E3 = I2K1 + I1(K4 −K3) −K8,

E4 = I1(K11 −K1K2) +K2(K4 −K3), E5 = K11 − I1K5.

(21)

Lemma 5. Suppose the first equality from (7) holds. Then the system (11) by a
center-affine transformation can be brought to the form

dx1

dt
= 0,

dx2

dt
= a2

αx
α + a2

αβx
αxβ (α, β = 1, 2) (22)

if and only if the following condition

E5 ≡ 0, (23)

holds, where E5 is from (21).

Proof. Suppose the first relation from (7) holds. This allows us to write for (11)

a1
1 = ra2

1, a1
2 = ra2

2. (24)

Denote by ∆ij the minors of matrix of the coefficients from the right-hand sides
of system (11), where i and j represent the number of columns of this matrix on
which the minors are built. Then

E5 = ∆13(x
1)3 + (∆23 + 2∆14)(x

1)2x2 + (∆15 + 2∆24)x
1(x2)2 + ∆25(x

2)3.

By means of this expressions and of conditions (23)–(24) we have

a1
11 = ra2

11, a1
12 = ra2

12, a1
22 = ra2

22. (25)

Taking into account (24) and (25), the center-affine transformation x̄1 = x1 −
rx2, x̄2 = x2 brings the system (11) to the form (15). Lemma 5 is proved.

Theorem 4. Let for differential system of the perturbed motion (11) the invariant
conditions (7) be satisfied. Then the stability of the unperturbed motion in system
(11) is described by one of the following six possible cases:

I. E1 6≡ 0, then the unperturbed motion is unstable;
II. E1 ≡ 0, E2 > 0, then the unperturbed motion is unstable;
III. E1 ≡ 0, E2 < 0, then the unperturbed motion is stable;
IV. E3 ≡ 0, E4E5 6≡ 0, then the unperturbed motion is unstable;
V. E4 ≡ 0, then the unperturbed motion is stable;
VI. E5 ≡ 0, then the unperturbed motion is stable.
In the last two cases the unperturbed motion belongs to some continuous series

of stabilized motions, and moreover, it is also asymptotically stable in Case III. The
expressions Ei (i = 1, 5) are given in (21).
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Proof. Observe that expressions (21), for system (13) under condition (15), are
expressed by (20) as follows:

E1 = Px1, E2 = 4S[Q(x1)2 − Px1x2],

E3 = Rx1 − 2a2
2Sx

2, E4 = −Q(x1)3 + P (x1)2x2.
(26)

Setting E3 ≡ 0, then by means of the polynomials R and S from (20), we get for

E5 from (21) the expression E5 = −a2
2a

1
22(

a
2
1

a2
2
x1 + x2)3.

Using the last assertion, the expressions (22) and Lemmas 4 and 5, we get the
Cases I-VI. We mention that the comitant E2 from (21) is even with respect to x1

and x2 and has the weight equal to zero [2] in the Cases II and III. This ensures
that any center-affine transformation cannot change the sign of E2. Theorem 4 is
proved.

Remark 3. From Theorem 4, the conditions for Lyapunov’s Example 2 [1, §32] are
obtained setting a1

1 = a1
2 = 0, a2

1 = k, a2
2 = −1, a1

11 = a, a1
12 = 1

2b, a
1
22 = c,

a2
11 = l, a2

12 = 1
2m, a

2
22 = n and x1 = x, x2 = y.

4 Critical system of Lyapunov type with cubic nonlinearities

Let the differential system of perturbed motion with polynomial nonlinearities
of the form

dx

dt
= cx+ dy + px3 + 3qx2y + 3rxy2 + sy3,

dy

dt
= ex+ fy + tx3 + 3ux2y + 3vxy2 + wy3

(27)

where c, d, e, f, p, q, r, s, t, u, v, w are arbitrary real coefficients.

Similar to the previous case, when the characteristic equation of (27) has one
zero root and the other one is negative, i.e. the conditions (7) are satisfied, then
system (27) by a center-affine transformation can be brought to its critical form

dx

dt
= px3 + 3qx2y + 3rxy2 + sy3,

dy

dt
= ex+ fy + tx3 + 3ux2y + 3vxy2 +wy3.

(28)

According to (10) we write the equation

ex+ fy + tx3 + 3ux2y + 3vxy2 + wy3 = 0. (29)

By (6)–(7) we have for system (28) that I1 = f < 0. Then from the last relation
we express y and obtain

y = −
e

f
x−

t

f
x3 − 3

u

f
x2y − 3

v

f
xy2 −

w

f
y3. (30)
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We seek y as a holomorphic function of x. Then we can write

y = −
e

f
x+B2x

2 +B3x
3 +B4x

4 +B5x
5 +B6x

6 +B7x
7 +B8x

8 +B9x
9 + · · · (31)

Substituting (31) into (30) and identifying the coefficients of the same powers of
x in the obtained relation we have

B2n = 0, ∀n ∈ N, B3 = −
t

f
+ 3

eu

f2
− 3

e2v

f3
+
e3w

f4
,

B5 = −3
(u

f
− 2

ev

f2
+
e2w

f3

)

B3,

B7 = −3
[( v

f
−
ew

f2

)

B3 − 3
(u

f
− 2

ev

f2
+
e2w

f3

)2]

B3,

B9 = −
[w

f
B3

3 + 6
( v

f
−
ew

f2

)

B3B5 + 3
(u

f
− 2

ev

f2
+
e2w

f3

)

B7

]

, . . .

(32)

Substituting (31) into the right-hand side of the critical differential equation (28)
we obtain

px3 + 3qx2y + 3rxy2 + sy3 =

= A2x
2 +A3x

3 +A4x
4 +A5x

5 +A6x
6 +A7x

7 +A8x
8 +A9x

9 +A10x
10 +A11x

11 + · · ·

From this, taking into account (31) and (32) we have

A2n = 0, ∀n ∈ N, A3 = p− 3
eq

f
+ 3

e2r

f2
−
e3s

f3
,

A5 = 3
(

q − 2
er

f
+
e2s

f2

)

B3, A7 = 3
[(

r −
es

f

)

B2
3 +

(

q − 2
er

f
+
e2s

f2

)

B5

]

,

A9 = sB3
3 + 6

(

r −
es

f

)

B3B5 + 3
(

q − 2
er

f
+
e2s

f2

)

B7,

A11 = 3
[

sB2
3B5 + 2

(

r −
es

f

)

B3B7 +
(

r −
es

f

)

B2
5 +

(

q − 2
er

f
+
e2s

f2

)

B9

]

, . . .

(33)

We introduce the following notations:

T = f3p− 3ef2q + 3e2fr − e3s, U = −f3t+ 3ef2u− 3e2fv + e3w,

V = f2q − 2efr + e2s, W = fr − es.
(34)

Then, from (32) and (33), we get

A3 =
1

f3
T, B3 =

1

f4
U, A5 =

3

f2
V B3, A7 = 3(

1

f
WB2

3 +
1

f2
V B5),

A9 = sB3
3 +

6

f
WB3B5 +

3

f2
V B7, . . .

(35)

Using Theorem 3, the expressions (34) and (35) (I1 = f < 0), we come to the
following statement.
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Lemma 6. The stability of unperturbed motion in the system of perturbed motion
(28) is described by one of the following ten possible cases:

I. T < 0, then the unperturbed motion is unstable;

II. T > 0, then the unperturbed motion is stable;

III. T = 0, UV > 0, then the unperturbed motion is unstable;

IV. T = 0, UV < 0, then the unperturbed motion is stable;

V. T = V = 0, U 6= 0, W < 0, then the unperturbed motion is unstable;

VI. T = V = 0, U 6= 0, W > 0, then the unperturbed motion is stable;

VII. T = V = W = 0, sU > 0, then the unperturbed motion is unstable;

VIII. T = V = W = 0, sU < 0, then the unperturbed motion is stable;

IX. T = U = 0, then the unperturbed motion is stable;

X. p = q = r = s = 0, then the unperturbed motion is stable.

In the last two cases, the unperturbed motion belongs to some continuous series
of stabilized motions, moreover, in Cases II, IV, VI and VIII this motion is also
asymptotically stable [10]. The expressions T,U, V,W are given in (34).

Proof. Assume A3 > 0, then from (35) we get T

f3 > 0. Taking into account that
f < 0, it follows T < 0. By Theorem 3 we have proved the Case I. Similarly the
Case II is analyzed.

Suppose in (34) that U 6= 0. Then from (35) we have B3 6= 0.

If A3 = 0, i.e. T = 0, then by (35) the stability or the instability of unperturbed
motion is determined by the sign of expression UV . Then using Theorem 3 we
proved the Cases III and IV.

If T = A5 = 0, i.e. V = 0, then by (35) the stability or the instability of

unperturbed motion is determined according to the sign of expression U
2
W

f9 . Taking
into account that f < 0, by Theorem 3 we get the Cases V and VI.

If A3 = A5 = A7 = 0 (T = V = W = 0), then the stability or the instability of
unperturbed motion is determined by the sign of expression A9, i.e. sU

f12 . From this,
according to Theorem 3, we obtain the Cases VII and VIII. If T = U = 0, then all
Ak (k ≥ 3) are equal to zero. By Theorem 3 we have the Case IX. If U 6= 0 and
T = V = W = s = 0, then from (34) we obtain the Case X. Lemma 6 is proved.

Proceeding from the polynomial bases of center-affine comitants and invariants
of the system (27) given in [11], we can write the Sibirsky algebras with generators

S1,3 = {J1, J2, . . . , J20,K1,K2, . . . ,K13, Q1, Q2, . . . , Q14}, SI1,3 = {J1, J2, . . . , J20},

where Ji,Kj and Qk are invariants and comitants of these algebras.

For the system (27) we have the notations

x1 = x, a1
1 = c, a1

2 = d, a1
111 = p, a1

112 = q, a1
122 = r, a1

222 = s,

x2 = y, a2
1 = e, a2

2 = f, a2
111 = t, a2

112 = u, a2
122 = v, a2

222 = w.
(36)
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Further we will need the following generators of Sibirsky algebras S1,3 and SI1,3,
which in tensorial form are written

J1 ≡ I1 = aα

α, J2 ≡ I2 = aα

βa
β

α, J3 = aα

πa
β

kαβ
επk, J6 = aα

πa
β

γa
γ

kαβ
επk,

K1 = aα

βx
βxγεαγ , K2 = aα

αβγx
βxγ , K3 = aπ

αβγx
αxβxγxkεπk,

Q1 = aπ

αa
k

βγδx
αxβxγxδεπk, Q2 = aα

βa
β

αγδ
xγxδ,

Q3 = aα

γa
β

αβδ
xγxδ, Q4 = aα

γa
β

δ
a

γ

αβη
xδxη.

(37)

By means of these generators, we compose the following invariant expressions:

F1 = K1(J6 − J1J3) + J1[J
2
1K2 − J1(Q2 +Q3) +Q4], F2 = J6 − J1J3,

F3 = K1[J3K1 − J1(J1K2 + 2Q2 −Q3) +Q4] + J2
1 (J1K3 +Q1),

F4 = J1K2 −Q2, F5 = Q1.

(38)

Lemma 7. Suppose that the first relation from (7) is satisfied. Then the system
(27) by a center-affine transformation can be brought to the form

dx

dt
= 0,

dy

dt
= ex+ fy + tx3 + 3ux2y + 3vxy2 +wy3

if and only if F5 ≡ 0, where F5 is from (38).

The proof is similar to Lemma 6. We make use of F5 which for system (27) has
the form

F5 = ∆13(x
1)4 + (∆23 + 3∆14)(x

1)3x2 + 3(∆15 + ∆24)(x
1)2(x2)2+

+(∆16 + 3∆25)x
1(x2)3 + ∆26(x

2)4,

where ∆ij are the minors of matrix of the coefficients from the right-hand sides of
system (27) built on columns i and j of this matrix.

Theorem 5. Let for differential system of the perturbed motion

dxj

dt
= aj

αx
α + a

j

αβγ
xαxβxγ (j, α, β, γ = 1, 2)

the invariant conditions J2
1 − J2 = 0, J1 < 0 be satisfied. Then the stability of the

unperturbed motion is described by one of the following ten possible cases:
I. F1 < 0, then the unperturbed motion is unstable;
II. F1 > 0, then the unperturbed motion is stable;
III. F1 ≡ 0, F2F3 > 0, then the unperturbed motion is unstable;
IV. F1 ≡ 0, F2F3 < 0, then the unperturbed motion is stable;
V. F1 ≡ 0, F2 = 0, F3 6≡ 0, F4 < 0, then the unperturbed motion is unstable;
VI. F1 ≡ 0, F2 = 0, F3 6≡ 0, F4 > 0, then the unperturbed motion is stable;
VII. F1 ≡ 0, F2 = 0, F4 ≡ 0, F3F5 > 0, then the unperturbed motion is unstable;
VIII. F1 ≡ 0, F2 = 0, F4 ≡ 0, F3F5 < 0, then the unperturbed motion is stable;
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IX. F3 ≡ 0, then the unperturbed motion is stable;
X. F5 ≡ 0, then the unperturbed motion is stable.
In the last two cases the unperturbed motion belongs to some continuous series

of stabilized motions, and moreover, it is also asymptotically stable in Cases II, IV,
VI, VIII. The expressions Fi (i = 1, 5) are given in (38).

Proof. Observe that the first three expressions from (38), for critical system (28)
with notations (36), look as follows:

F1 = Tx2, F2 = V, F3 = Ux4 + Tx3y. (39)

Suppose that F1 ≡ 0, F2 = 0. Then by means of the polynomials T, V,W from
(34), we get for expression F4 from (38) that F4 = W ( e

f
x+y)2. Using the expressions

(39), the last assertion together with Lemmas 6 and 7, we obtain the Cases I-X. We
note that the comitants F1, F2F3, F4, F3F5 from (38), used in the Cases I-VIII of
Theorem 5, are even-degree comitants with respect to x and y and have the weights
[2] equal to 0, 0, 0,−2, respectively. Moreover, each one of these comitants (in the
case when it is applied) is a binary form with a well defined sing. This ensures that
any center-affine transformation cannot change their sign. Theorem 5 is proved.

5 Critical system of Lyapunov type with nonlinearities of

degree four

We consider the differential system of perturbed motion with polynomial non-
linearities

dx

dt
= cx+ dy + gx4 + 4hx3y + 6kx2y2 + 4lxy3 +my4,

dy

dt
= ex+ fy + nx4 + 4px3y + 6qx2y2 + 4rxy3 + sy4,

(40)

where c, d, e, f, g, h, k, l,m, n, p, q, r, s are real arbitrary coefficients.
Similar to the previous cases, when the characteristic equation of (40) has one

zero root and the other one is negative, i.e. the conditions (7) are satisfied, then
this system by a center-affine transformation can be brought to its critical form

dx

dt
= gx4 + 4hx3y + 6kx2y2 + 4lxy3 +my4,

dy

dt
= ex+ fy + nx4 + 4px3y + 6qx2y2 + 4rxy3 + sy4.

(41)

According to Theorem 3, we analyze the equation

ex+ fy + nx4 + 4px3y + 6qx2y2 + 4rxy3 + sy4 = 0. (42)

As for system (40) we have I1 = f < 0, then from (42) we express y:

y = −
e

f
x−

n

f
x4 − 4

p

f
x3y − 6

q

f
x2y2 − 4

r

f
xy3 −

s

f
y4. (43)
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We seek y as a holomorphic function of x. Then we can write

y = −
e

f
x+B2x

2 +B3x
3 +B4x

4 +B5x
5 +B6x

6 +B7x
7 +B8x

8 +B9x
9+

+B10x
10 +B11x

11 +B12x
12 +B13x

13 +B14x
14 +B15x

15 +B16x
16 + · · ·

(44)

Substituting (44) into (43) and equating the coefficients of monomials in x, we
find that

Bi = 0 (i = 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, . . .), B4 = −
(n

f
− 4

ep

f2
+ 6

e2q

f3
− 4

e3r

f4
+
e4s

f5

)

,

B7 = −4
( p

f
− 3

eq

f2
+ 3

e2r

f3
−
e3s

f4

)

B4,

B10 = −2
[

3
( q

f
− 2

er

f2
+
e2s

f3

)

B2
4 + 2

( p

f
− 3

eq

f2
+ 3

e2r

f3
−
e3s

f4

)

B7

]

,

B13 = −4
[( r

f
−
es

f2

)

B3
4 + 3

( q

f
− 2

er

f2
+
e2s

f3

)

B4B7+

+
( p

f
− 3

eq

f2
+ 3

e2r

f3
−
e3s

f4

)

B10

]

,

B16 = −
[ s

f
B4

4 + 12
( r

f
−
es

f2

)

B2
4B7 + 6

( q

f
− 2

er

f2
+
e2s

f3

)(

2B4B10 +B2
7

)

+

+4
( p

f
− 3

eq

f2
+ 3

e2r

f3
−
e3s

f4

)

B13

]

, . . .

(45)
Substituting (44) into the right-hand side of the critical differential equation,

then from (41) we get

gx4 + 4hx3y + 6kx2y2 + 4lxy3 +my4 = A2x
2 +A3x

3 + · · · +A16x
16 + · · ·

Hence, taking into account (44) and (45) we have

Ai = 0 (i = 2, 3, 5, 6, 8, 9, , 11, 12, 14, 15, . . .), A4 = g − 4
eh

f
+ 6

e2k

f2
− 4

e3l

f3
+
e4m

f4
,

A7 = 4
(

h− 3
ek

f
+ 3

e2l

f2
−
e3m

f3

)

B4,

A10 = 2
[

3
(

k − 2
el

f
+
e2m

f2

)

B2
4 + 2

(

h− 3
ek

f
+ 3

e2l

f2
−
e3m

f3

)

B7

]

,

A13 = 4
[(

l −
em

f

)

B3
4 + 3

(

k − 2
el

f
+
e2m

f2

)

B4B7+

+
(

h− 3
ek

f
+ 3

e2l

f2
−
e3m

f3

)

B10

]

,

A16 = mB4
4 + 12

(

l −
em

f

)

B2
4B7 + 6

(

k − 2
el

f
+
e2m

f2

)(

2B4B10 +B2
7

)

+

+4
(

h− 3
ek

f
+ 3

e2l

f2
−
e3m

f3

)

B13, . . .

(46)
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Let us introduce the following notation:

A = f4g − 4ef3h+ 6e2f2k − 4e3fl + e4m,

B = −f4n+ 4ef3p− 6e2f2q + 4e3fr − e4s,

C = f3h− 3ef2k + 3e2fl− e3m, D = f2k − 2efl + e2m, E = fl− em.

(47)

Then taking into account (47), we obtain from (45)–(46) that

A4 =
1

f4
A, B4 =

1

f5
B, A7 =

4

f8
BC, A10 = 2

( 3

f12
B2D +

2

f3
CB7

)

,

A13 = 4
( 1

f16
B3E +

3

f2
DB4B7 +

1

f3
CB10

)

,

A16 = mB4
4 +

12

f
EB2

4B7 +
6

f2
D(2B4B10 +B2

7) +
4

f3
CB13, . . .

(48)

Lemma 8. The stability of unperturbed motion in the system of perturbed motion
(41) is described by nine possible cases, if for expressions (47) (I1 = f < 0) the
following conditions are satisfied:

I. A 6= 0, then the unperturbed motion is unstable;
II. A = 0, BC > 0, then the unperturbed motion is unstable;
III. A = 0, BC < 0, then the unperturbed motion is stable;
IV. A = C = 0, BD 6= 0, then the unperturbed motion is unstable;
V. A = C = D = 0, BE > 0, then the unperturbed motion is unstable;
VI. A = C = D = 0, BE < 0, then the unperturbed motion is stable;
VII. A = C = D = E = 0, mB 6= 0, then the unperturbed motion is unstable;
VIII. A = B = 0, then the unperturbed motion is stable;
IX. g = h = k = l = m = 0, then the unperturbed motion is stable.
In the last two cases, the unperturbed motion belongs to some continuous series

of stabilized motions. Moreover, this motion is also asymptotically stable [10] in
Cases III and VI. The expressions A,B,C,D,E are given in (47).

Proof. If A4 6= 0, then from (48) we have A 6= 0. By Theorem 3, we get the Case I.
Suppose in (47) that B 6= 0. Then (48) implies that B4 6= 0. If A4 = 0, i.e.

A = 0, then according to (48) the stability or the instability of unperturbed motion
is determined by the sign of the expression A7 (the sign of the product BC). Using
Theorem 3 we obtain the Cases II and III.

When A = A7 = 0, i.e. C = 0, then from (48) we have A10 = 6
f12B

2D. If D 6= 0,

then we obtain the Case IV (see Theorem 3).
Suppose A = C = D = 0. Then from (48) it results that A13 6= 0, when BE 6= 0.

So the stability or the instability of the unperturbed motion is determined by the
sign of expression BE. Using Theorem 3 we get the Cases V and VI.

When A4 = A7 = A10 = A13 = 0 (B 6= 0), then we have A = C = D = E = 0. If
A16 6= 0, then from (48) we obtain the Case VII. If A = B = 0, then all Ak (k ≥ 4)
vanish. By Theorem 3 we get the Case VIII. If A = C = D = E = 0 and m = 0,
then (47) with f < 0 implies the Case IX. Lemma 8 is proved.
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Let ϕ and ψ be homogeneous comitants of degree ρ1 and ρ2 respectively of the
phase variables x and y of a two-dimensional polynomial differential system. Then
by [3] the transvectant

(ϕ,ψ)(j) =
(ρ1 − j)(ρ2 − j)

ρ1!ρ2!

j
∑

i=0

(−1)j
(

j

i

)

∂jϕ

∂xj−i∂yi

∂jψ

∂xi∂yj−i
(49)

is also a comitant for this system.
In the Iu. Calin’s works, see for example [12], it is shown that by means of the

transvectant (49) all generators of the Sibirsky algebras of comitants and invariants
for any system of type (1) can be constructed.

We denote the homogeneities from the right-hand sides of system (40) as follows:

P1(x, y) = cx+ dy, P4(x, y) = gx4 + 4hx3y + 6kx2y2 + 4lxy3 +my4,

Q1(x, y) = ex+ fy, Q4(x, y) = nx4 + 4px3y + 6qx2y2 + 4rxy3 + sy4.
(50)

According to [13], we write the following comitants of the system (40)

Ri = Pi(x, y)y −Qi(x, y)x, Si =
1

i

(∂Pi(x, y)

∂x
+
∂Qi(x, y)

∂y

)

, (i = 1, 4). (51)

Later on, we will need the following comitants and invariants from [13] of system
(40) built by operations (49) and (51):

I1 = S1, I2 = (R1, R1)
(2), K1 = R4, K2 = S4, Q1 = R1, Q2 = S1,

Q3 = (R4, R1)
(2), Q4 = (R4, R1)

(1), Q5 = (S4, S1)
(2), Q6 = (S4, R1)

(1),

Q19 = JR4, R1)
(2), R1)

(2), Q20 = JR4, R1)
(2), R1)

(1),

Q21 = JS4, R1)
(2), R1)

(1), Q43 = JR4, R1)
(2), R1)

(2), R1)
(1),

(52)

where the sign “J” denotes all the parentheses of the transvectant that have to be
written in the left.

We consider for system (40) the following expressions composed of comitants
and invariants from (52) that can be written in the form:

H1 = Q1[Q2(15Q19 − 8Q21) − 10Q43 + 12I2

1Q5] +Q2

2[Q2(4K2Q2 + 5Q3 − 8Q6) − 10Q20],

H2 = 5Q3

2
(K1Q2 − 2Q4) + 2Q2

1
(5Q19 + 4Q21 − 6Q2Q5) − 4Q1Q2[Q2(K2Q2 − 5Q3 − 2Q6)+

+5Q20], H3 = Q2(5Q19 − 6Q21 + 3Q2Q5) − 10Q43, H4 = 5I1Q5 + 10Q19 − 2Q21,

H5 = Q1, H6 = 5I1K2 + 10Q3 − 6Q6, H7 = 8K2Q1 − 5K1Q2 − 10Q4.

(53)

Lemma 9. Suppose that the first equality holds in (7). Then by a center-affine
transformation the system (40) can be brought to the form

dx

dt
= 0,

dy

dt
= ex+ fy + nx4 + 4px3y + 6qx2y2 + 4rxy3 + sy4

if and only if the condition H7 ≡ 0 is satisfied, where H7 is from (53).
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The proof of this Lemma is similar to Lemma 6. Here, the fact is used that H7

from (53), for the system (40), is of the form

H7 = 10[∆13(x
1)5 + (∆23 + 4∆14)(x

1)4x2 + 2(2∆24 + 3∆15)(x
1)3(x2)2+

+2(2∆16 + 3∆25)(x
1)2(x2)3 + (∆17 + 4∆26)x

1(x2)4 + ∆27(x
2)5],

where ∆ij are the minors of the matrix of coefficients from the right-hand sides of
system (40), built on the columns i and j of this matrix.

Theorem 6. Let for system of perturbed motion (40) the invariant conditions (7)
be satisfied. Then the stability of the unperturbed motion is described by one of the
following nine possible cases:

I. H1 6≡ 0, then the unperturbed motion is unstable;

II. H1 ≡ 0, H2H3 > 0, then the unperturbed motion is unstable;

III. H1 ≡ 0, H2H3 < 0, then the unperturbed motion is stable;

IV. H1 ≡ H3 ≡ 0, H2H4 6≡ 0, then the unperturbed motion is unstable;

V. H1 ≡ H3 ≡ H4 ≡ 0, H2H5H6 > 0, then the unperturbed motion is unstable;

VI. H1 ≡ H3 ≡ H4 ≡ 0, H2H5H6 < 0, then the unperturbed motion is stable;

VII. H1 ≡ H3 ≡ H4 ≡ H6 ≡ 0, H2H7 6≡ 0, then the unperturbed motion is unstable;
VIII. H2 ≡ 0, then the unperturbed motion is stable;

IX. H7 ≡ 0, then the unperturbed motion is stable.

In the last two cases, the unperturbed motion belongs to some continuous se-
ries of stabilized motions, and moreover in Cases III, and VI this motion is also
asymptotically stable [2]. The expressions Hi (i = 1, 7) are given in (53).

Proof. The first three expressions from (53), for the critical system (41), give

H1 = 10Ax3, H2 = 10Bx5 + 10Ax4y, H3 = 10Cx. (54)

Next the proof is based on Lemma 8. The Case I is obvious if we use (54). Put
H1 = 0, then by Lemma 8, from (54) we obtain the Cases II and III.

The product H2H3 is of even degree with respect to x and has the weight equal
to 0 [2]. Therefore, the expression H2H3 under any center-affine transformation does
not change its sign. Using (54), the Case IV of Lemma 8 implies the Case IV of
Theorem 6 and we have (f = I1 < 0)

H2 = 10Bx5, H4 = 10D(
e

f
x+ y). (55)

For the Cases V and VI of the Theorem, Lemma 8 yields A = C = D = 0. Then
from (54) and (55), we obtain the invariant equations for the examined cases. By
means of these equations and the expressions from (53), we obtain

H2 = 10Bx5, H5 = −fx
( e

f
x+ y

)

, H6 = 10E
( e

f
+ y

)3
. (56)
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From this, we get H2H5H6 = −100fBEx6( e

f
x+ y)4. This product is of even degree

with respect to x and y and have the weight −2 and has a well defined sign. Hence,
we have the Cases V-VI.

The Case VII of Theorem 6 is obtained by using the Case VII of Lemma 8 and
the expressions (54)–(56). Indeed, for this case we have

H7 = −10fm
( e

f
x+ y

)4
.

By means of H7 and H2 from (54), we get the Case VII with inequality H2H7.

The Case VIII of the Theorem results from (54) using the Case VIII of Lemma
8 and expressions (47)–(48). The Case IX results from the Case IX of Lemma 8 and
the assertion of Lemma 9. Theorem 6 is proved.
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A Note on 2-Hypersurfaces of the Nearly Kählerian

Six-Sphere
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Abstract. It is proved that hypersurfaces with type number two in a nearly Kähle-
rian sphere S

6 admit almost contact metric structures of cosymplectic type that are
non-cosymplectic.
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1 Introduction

The six-dimensional sphere S6 with a canonical nearly Kählerian structure was
the first example of non-Kählerian almost Hermitian manifold. That is why it
presents a special interest for researchers in the area of Hermitian geometry. Such
outstanding geometers as A. Gray, V. F. Kirichenko, K. Sekigawa and N. Ejiri have
studied diverse aspects of the geometry of nearly Kählerian six-dimensional sphere.
Of course, the geometry of nearly Kählerian manifolds (or W1-manifolds, after Gray–
Hervella classification [14]) is a spacious and important part of Hermitian geometry.

It is known that almost contact metric structures are induced on oriented hy-
persurfaces of almost Hermitian manifolds. Many specialists observe that this fact
determines the profound connection between the contact and Hermitian geometries.
Almost contact metric structures on hypersurfaces of almost Hermitian manifolds
were studied by some remarkable geometers. The work of D. E. Blair, S. Goldberg,
S. Ishihara, S. Sasaki, H. Yanamoto and K. Yano are assumed classical. In the
present note, almost contact metric structures on 2-hypersurfaces (i.e. on hypersur-
faces with type number 2) of nearly Kählerian six-dimensional sphere are considered.

In [3] and [11], it was proved that if t is the type number of an oriented hyper-
surface of the nearly Kählerian six-sphere S6, then the condition t ≤ 1 holds if and
only if the induced almost contact metric structure on this hypersurface is nearly
cosymplectic.

In this paper, an additional result on almost contact metric hypersurfaces of
nearly Kählerian six-dimensional sphere is given. Namely, we shall show that 2-
type hypersurfaces of a nearly Kählerian six-sphere S6 admit almost contact metric
structures of cosymplectic type.

c© Ahmad Abu-Saleem, Mihail B.Banaru, Galina A.Banaru, 2017
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2 Preliminaries

The almost Hermitian manifold is an even-dimensional manifold M2n with a
Riemannian metric g = 〈·, ·〉 and an almost complex structure J . These objects
must satisfy the following condition

〈JX, JY 〉 = 〈X, Y 〉 , X, Y ∈ ℵ(M2n),

where ℵ(M2n) is the module of smooth vector fields on M2n. All considered mani-
folds, tensor fields and similar objects are assumed to be of the class C∞.

The specification of an almost Hermitian structure on a manifold is equivalent
to the setting of a G-structure, where G is the unitary group U(n) [5], [15]. Its
elements are the frames adapted to the structure (A-frames). They look as follows:

(p, ε1, . . . , εn, ε1̂, . . . , εn̂ ),

where εa are the eigenvectors corresponded to the eigenvalue i =
√
−1, and εâ are

the eigenvectors corresponded to the eigenvalue −i. Here the index a ranges from 1
to n, and we state â = a + n.

The matrixes of the operator of the almost complex structure and of the Rie-
mannian metric written in an A-frame look as follows, respectively:

(

Jk

j

)

=

(

iIn 0

0 −iIn

)

, (gkj) =

(

0 In

In 0

)

,

where In is the identity matrix; k, j = 1, ..., 2n.
We recall [16] that the fundamental form of an almost Hermitian manifold is

determined by the relation

F (X, Y ) = 〈X, JY 〉 , X, Y ∈ ℵ(M2n).

By direct computing it is easy to obtain that in an A-frame the fundamental form
matrix looks as follows:

(Fkj) =

(

0 iIn

−iIn 0

)

.

The first group of the Cartan structural equations of an almost Hermitian man-
ifold written in an A-frame looks as follows [9], [16]:

d ωa = ωa

b ∧ ωb + Bab
c ωc ∧ ωb + Babc ωb ∧ ωc ; (1)

d ωa = −ωb

a ∧ ωb + Bab
c ωc ∧ ωb + Babc ωb ∧ ωc ,

where

Bab
c = −

i

2
Ja

b̂, c
; Bab

c =
i

2
J â

b, ĉ
;

Babc =
i

2
Ja

[b̂, ĉ]
; Babc = −

i

2
J â

[b, c].
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The systems of functions { Bab
c }, { Bab

c }, { Babc }, { Babc }, are the
components of the Kirichenko tensors of the almost Hermitian manifold [2], [9],
a, b, c = 1, ..., n; , â = a + n.

An almost Hermitian manifold is called nearly Kählerian [14], [16] if

∇X (F ) (X,Y ) = 0, X, Y ∈ ℵ(M2n).

The almost contact metric structure on an odd-dimensional manifold N is defined
by the system of tensor fields {Φ, ξ, η, g} on this manifold, where ξ is a vector field,
η is a covector field, Φ is a tensor of the type (1, 1) and g = 〈·, ·〉 is the Riemannian
metric [12],[16]. Moreover, the following conditions are fulfilled:

η(ξ) = 1, Φ(ξ) = 0, η ◦ Φ = 0, Φ2 = −id + ξ ⊗ η,

〈ΦX,ΦY 〉 = 〈ΦX,ΦY 〉 − η (X) η (Y ) , X, Y ∈ ℵ(N),

where ℵ(N) is the module of smooth vector fields on N . As examples of almost
contact metric structures we can consider the cosymplectic structure, the nearly
cosymplectic structure, the Sasakian structure and the Kenmotsu structure.

The cosymplectic structure that is characterized by the following condition:

∇η = 0, ∇Φ = 0,

where ∇ is the Levi-Civita connection of the metric. It has been proved that the
manifold, admitting the cosymplectic structure, is locally equivalent to the product
M × R, where M is a Kählerian manifold [15].

An almost contact metric structure {Φ, ξ, η, g} is called nearly cosymplectic if
the following condition is fulfilled [16], [19]:

∇X(Φ)Y + ∇Y (Φ)X = 0, X, Y ∈ ℵ(N).

We note that the nearly cosymplectic structures have many remarkable prop-
erties and play an important role in contact geometry. We mark out a number of
articles by H. Endo on the geometry of nearly cosymplectic manifolds as well as the
fundamental research by E. V. Kusova on this subject [19].

Is it known if (N, {Φ, ξ, η, g}) is an almost contact metric manifold, then an
almost Hermitian structure is induced on the product N×R [12], [21]. If this almost
Hermitian structure is integrable, then the input almost contact metric structure is
called normal. A normal contact metric structure is called Sasakian [16]. On the
other hand, we can characterize the Sasakian structure by the following condition:

∇X(Φ)Y = 〈X,Y 〉 ξ − η(Y )X, X, Y ∈ ℵ(N).

For example, Sasakian structures are induced on totally umbilical hypersurfaces in
a Kählerian manifold [21]. As it is well known, the Sasakian structures have many
remarkable properties and play a fundamental role in contact geometry.
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In 1972 Katsuei Kenmotsu introduced a new class of almost contact metric struc-
tures, defined by the condition:

∇X(Φ)Y = 〈ΦX,Y 〉 ξ − η(Y )ΦX, X, Y ∈ ℵ(N).

The Kenmotsu manifolds are normal and integrable, but they are not contact
manifolds. We mark out that the fundamental monograph by Gh. Pitiş [20] contains
a detailed description of Kenmotsu manifolds and their generalizations and a set of
important results on this subject.

At the end of this section, note that when we give a Riemannian manifold and
its submanifold (in particular, its hypersurface), the rank of determined second
fundamental form is called the type number [18].

3 The main result

Let us use the first group of Cartan structural equations of an almost contact
metric structure on an oriented hypersurface N2n−1 of an almost Hermitian manifold
M2n [6], [21]:

dωa = ωa

b ∧ ωb + Bab
c ωc ∧ ωb + Babc ωb ∧ ωc +

+
(√

2 Ban
b + iσa

b

)

ωb ∧ ω +

(

−
√

2 B̃nab −
1
√

2
Bab

n −
1
√

2
B̃abn + i σab

)

ωb ∧ ω;

dωa = −ωb

a ∧ ωb + Bab
c ωc ∧ ωb + Babc ωb ∧ ωc +

+
(√

2 Ban
b − iσb

a

)

ωb ∧ ω +

(

−
√

2 B̃nab −
1
√

2
B̃abn −

1
√

2
Bab

n − i σab

)

ωb ∧ ω;

dω =
√

2Bnab ωa ∧ ωb +
√

2Bnab ωa ∧ ωb+ (2)

+
(√

2Bna
b −

√
2Bnb

a − 2i σa

b

)

ωb ∧ ωa+

+
(

B̃nbn + Bnb
n + i σnb

)

ω ∧ ωb +
(

B̃nbn + Bnb
n − i σb

n

)

ω ∧ ωb,

where

B̃abc =
i

2
Ja

b̂, ĉ
; B̃abc = −

i

2
J â

b, c

and σ is the second fundamental form of the immersion of N into M2n. We also
use the detailed structural equations (1) of a six-dimensional almost Hermitian sub-
manifold of Cayley algebra [5], [6], [7]:

dωa = ωa

b ∧ ωb +
1
√

2
εabhDhcω

c ∧ ωb +
1
√

2
εah[bDh

c]ωb ∧ ωc;

dωa = −ωb

a ∧ ωb +
1
√

2
εabhDhcωc ∧ ωb +

1
√

2
εah[bD

h
c]ω

b ∧ ωc; (3)
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Here εabc = ε123
abc

, εabc = εabc
123 are the components of the third-order Kronecher tensor;

Dhc = D
ĥĉ

, Dh
c = Dhĉ, Dh

c = D
ĥc

;

Dcj = ∓T 8
cj + iT 7

cj, Dĉj = ∓T 8
ĉj − iT 7

ĉj,

where
{

T
ϕ

kj

}

are the components of the configuration tensor (in Gray–Kirichenko

notation [13], [15]); ϕ = 7, 8 a, b, c, d, g, h = 1, 2, 3; â = a + 3; k, j = 1, 2, 3, 4, 5, 6.
Comparing these equations with (1), we get the expressions for the Kirichenko ten-
sors of six-dimensional almost Hermitian submanifolds of Cayley algebra (in partic-
ular, for the nearly Kählerian six-dimensional sphere S6):

Bab
c =

1
√

2
εabhDhc ; Bab

c =
1
√

2
εabhDhc ;

Babc =
1
√

2
εah[bDh

c] ; Babc =
1
√

2
εah[bD

h
c] .

Knowing that the Kirichenko tensors Bab
c and Bab

c of the nearly Kählerian six-
sphere vanish [8], we rewrite these structural equations as follows:

dωα = ωα

β
∧ ωβ + Bαβγ ωβ ∧ ωγ+

+iσα

β ωβ ∧ ω + (−
√

2 B̃nαβ −
1
√

2
B̃αβn + iσαβ)ωβ ∧ ω;

dωα = −ωβ

α ∧ ωβ + Bαβγωβ ∧ ωγ−

−iσβ

α ωβ ∧ ω +

(

−
√

2 B̃nαβ −
1
√

2
B̃αβn − i σaβ

)

ωβ ∧ ω; (4)

dω =
√

2 Bnαβ ωα ∧ ωβ +
√

2Bnαβ ωα ∧ ωβ−

−2i σα

β
ωβ ∧ ωα +

(

B̃nβn + i σnβ

)

ω ∧ ωβ +
(

B̃nβn − i σβ

n

)

ω ∧ ωβ.

On the other hand, we obtain the more precise structural equations of the nearly
Kählerian structure on the six-sphere [9]:

dωa = ωa

b ∧ ωb + µ εacbωb ∧ ωc;

dωa = −ωb

a ∧ ωb + µ̄ εacbω
b ∧ ωc.

If an almost contact metric hypersurface of a nearly Kählerian manifold is of
type number two, then we get the simplest matrix of its second fundamental form:

(σps) =





















(σαβ)
0
. . .

0
0

0 . . . 0 0 0 . . . 0

0
0
. . .

0
(σ

ᾱβ̂
)





















, p, s = 1, 2, 3, 4, 5 ,
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and what is more
rank (σαβ) = rank (σ

α̂β̂
) = 1.

That is why from (4) and (5) we obtain the following Cartan structural equations of
an almost contact metric structure on an oriented 2-hypersurface of nearly Kählerian
six-sphere:

dωα = ωα

β ∧ ωβ + Bαβγ ωβ ∧ ωγ + (−
√

2 B̃nαβ −
1
√

2
B̃αβn + i σαβ)ωβ ∧ ω;

dωα = −ωβ

α ∧ ωβ + Bαβγ ωβ ∧ ωγ + (−
√

2 B̃nαβ −
1
√

2
B̃αβn − i σaβ)ωβ ∧ ω; (6)

dω = 0 .

In [17], V. F. Kirichenko and I. V. Uskorev have introduced a new class of
almost contact metric structure. Namely, they have defined the almost contact
metric structure with the close contact form as the structures of cosymplectic type.
As they have established, the condition

dω = 0

is necessary and sufficient for an almost contact metric structure to be of cosymplec-
tic type. V. F. Kirichenko and I. V. Uskorev have also proved that the structure of
cosymplectic type is invariant under canonical conformal transformations [17]. We
recall also that a conformal transformation of an almost contact metric structure
{Φ, ξ, η, g} on the manifold N is a transition to the almost contact metric structure
{

Φ̃, ξ̃, η̃, g̃
}

, where Φ̃ = Φ, ξ̃ = efξ, η̃ = e−f η and g̃ = e−2 f g. Here f is a smooth

function on the manifold N [16], [21].
Evidently, a trivial example of structure of cosymplectic type is the cosymplectic

structure with well-known Cartan structural equations [7], [16]:

dωα = ωα

β ∧ ωβ,

dωα = −ωβ

α ∧ ωβ,

dω = 0 .

Another important example of the almost contact metric structure of cosymplectic
type is the Kenmotsu structure with following Cartan structural equations [1], [16]:

dωα = ωα

β
∧ ωβ + ω ∧ ωα,

dωα = −ωβ

α ∧ ωβ + ω ∧ ωα,

dω = 0 .

It is easy to see that the structural equations (6) perfectly correspond to the structure
of cosymplectic type, but this almost contact metric structure is not cosymplectic
or Kenmotsu. So, we have proved the following result.

Theorem 1. Hypersurfaces with type number two in a nearly Kählerian six-sphere
admit non-cosymplectic and non-Kenmotsu almost contact metric structures of
cosymplectic type.
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4 Some comments

As we have mentioned, in [3] and [11] it was proved that the almost contact
metric structure on a totally geodesic or on 1-type hypersurface in a nearly Kählerian
six-sphere must be nearly cosymplectic. We remark that the nearly cosymplectic
structure is not of cosymplectic type because its Cartan structural equations look
as follows [4],[19]:

dωα = ωα

β ∧ ωβ + Hαβγ ωβ ∧ ωγ + Hαβ ωβ ∧ ω ;

dωα = −ωβ

α ∧ ωβ + Hαβγ ωβ ∧ ωγ + Hαβ ωβ ∧ ω ;

dω = −
2

3
Gαβ ωα ∧ ωβ −

2

3
Gαβ ωα ∧ ωβ .

On the other hand, in [10], it has been proved that 2-hypersurfaces in an ar-
bitrary Kählerian manifold also admit non-cosymplectic and non-Kenmotsu almost
contact metric structures of cosymplectic type. Taking into account that the class
of nearly Kählerian manifolds is situated ”between” the classes of Kählerian and
quasi-Kählerian manifolds [14], we can pose an open problem.

Problem. Find a characterization of the almost contact metric structure on a
2-type hypersurface in a quasi-Kählerian manifold. In particular, can the almost
contact metric structure on such a hypersurface be of cosymplectic type?
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Post-quantum No-key Protocol

N.A.Moldovyan, A.A.Moldovyan, V.A. Shcherbacov

Abstract. There is proposed three-pass no-key protocol that is secure to hypothetic
attacks based on computations with using quantum computers. The main operations
are multiplication and exponentiation in finite ground field GF (p). Sender and receiver
of secret message also use representation of some value c ∈ GF (p) as product of two
other values R1 ∈ GF (p) and R2 ∈ GF (p) one of which is selected at random. Then
the values R1 and R2 are encrypted using different local keys.

Mathematics subject classification: 94A60, 11S05.
Keywords and phrases: Post-quantum cryptography, computationally difficult
problem, conjugacy search problem, discrete logarithm, commutative encryption, no-
key protocol.

1 Introduction

An open problem of cryptography is design of post-quantum cryptographic algo-
rithms and protocols [1, 2]. The most practical public-key cryptoschemes are based
on difficulty of discrete logarithm [3–5] and of factoring integers containing two
large prime factors [6,7]. The three-pass no-key encryption protocol [3] based on the
first problem represents significant practical interest, for example, to perform secure
encryption with short shared keys [8].

Quantum computations are in progress and it is expected that in observable
future it will be possible to implement polynomial algorithms solving the discrete
logarithm and factoring problems [9]. Therefore researchers are looking for new
cryptographic primitives and designs of cryptoschemes, for example, the hidden con-
jugacy search problem in finite non-commutative groups was proposed as primitive
for designing post-quantum cryptoschemes [10–12].

In the present communication we propose post-quantum implementation of the
three-pass no-key encryption protocol. In the proposed protocol there is used expo-
nentiation in the finite ground field GF (p), where p is a sufficiently large prime, like
in the known no-key encryption protocol. However it is additionally used represen-
tation of some element of the field GF (p) as product of two other elements one of
which is selected at random and serves as an additional local key. Due to such rep-
resentation performed independently on the side of the message sender and on the
side of the receiver, solving the discrete logarithm problem (DLP) cannot be used to
break the proposed protocol. No key encryption protocol [3] exploits commutative
ciphers.

c© N.A.Moldovyan, A.A.Moldovyan, V.A. Shcherbacov, 2017
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Encryption function E is called commutative if it satisfies the following condition

EK [EQ(M)] = EQ[EK(M)],

where K and Q are encryption keys and M is some plaintext, for arbitrary keys K

and Q 6= K.
The appropriate commutative encryption function is provided by the exponen-

tiation encryption method by Pohlig and Hellman [13] that is described as follows.
Suppose p is a 2048-bit prime such that number p − 1 contains a large prime

divisor q the size of which is |q| ≥ 256 bits, for example, p = 2q + 1.
To select an encryption/decryption key (e, d) one needs to generate a random

number e that is mutually prime with p − 1 and has size |e| ≥ 256 bits and then to
compute d = e−1 mod p − 1.

The encryption procedure is described with the formula

C = Me mod p.

Decryption of the ciphertext C is performed as computing the value

M = Cd mod p.

Suppose Alice wishes to send the secret message M to Bob, using a public channel
and no shared key. For this purpose they can use the following no key protocol:

(i) Alice chooses a random key (eA, dA) and encrypts the message M using the
formula C1 = MeA mod p. Then she sends the ciphertext C1 to Bob;

(ii) Bob chooses a random key (eB , dB) and encrypts the ciphertext C1 as follows:
C2 = CeB

1 mod p and sends the ciphertext C2 to Alice;

(iii) Alice decrypts the ciphertext C2 obtaining the ciphertext C3 : C3 =
C

dA

2 mod p. Then she sends the ciphertext C3 to Bob;

(iv) Bob computes the message M = CdB

3 mod p.

This three-pass protocol provides security to passive attacks (potential adversary
only intercepts the values sent via public channel, but does not masquerade as sender
or receiver of secret message), since the used exponentiation cipher is as secure as
discrete logarithm problem is hard.

However, the described protocol is not secure against attacks using hypothetic
quantum computers.

We propose the following post-quantum implementation of the no-key protocol.

1. Alice generates two local keys in the form of two pairs of numbers (eA1, dA1)
and (eA2, dA2) such that dA1 = e−1

A1 mod p − 1 and dA2 = e−1
A2 mod p − 1, and forms

the pair of random numbers R1 < p and R2 < p such that M = R1R2 mod p,
where M is some secret message. Then she encrypts the numbers R1 and R2, using
formulas C ′

1 = ReA1
1 mod p and C ′′

1 = ReA2
2 mod p, and sends the ciphertexts C ′

1 and
C ′′

1 to Bob.
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2. Bob generates his two local keys (eB1, dB1) and (eB2, dB2) and represents each
of the numbers C ′

1 and C ′′
1 as product of the pair of random numbers (R11, R12),

where R11 < p and R12 < p, and (R21, R22), where R21 < p and R22 < p, respec-
tively: R1 = R11R12 mod p; R2 = R21R22 mod p.

Then he generates two random values L1 < p and L2 < p and encrypts the
numbers R11, R12, R21, and R22 as follows:

C ′
2 = R

eB1
11 L

dB2
1 mod p; C ′′′

2 = R
eB1
21 L

dB2
2 mod p;

C ′′
2 = ReB2

12 L−dB1
1 mod p; C2 = ReB2

22 L−dB1
2 mod p,

and sends the ciphertexts C ′
2, C

′′
2 , C ′′′

2 , and C2 to Alice.

3. Alice generates random numbers N1 < p and N2 < p and decrypts the
ciphertexts C ′

2, C
′′
2 , C ′′′

2 , and C2 as follows:

C ′
3 = (C ′

2)
dA1N1 mod p; C ′′′

3 = (C ′′′
2 )dA2N−1

1 mod p;

C ′′
3 = (C ′′

2 )dA1N2 mod p; C3 = (C2)
dA2N−1

2 mod p,

and sends the ciphertexts C ′
3, C

′′
3 , C ′′′

3 , and C3 to Bob.

4. Bob recovers the secret message M from the values C ′
3, C

′′
3 , C ′′′

3 , and C3

multiplying the numbers S′, S′′, S′′′ and S that are computed as follows: S′ =
(C ′

3)
dB1 mod p; S′′ = (C ′′

3 )dB2 mod p; S′′′ = (C ′′′
3 )dB1 mod p; S = (C3)

dB2 mod p;
M = S′S′′S′′′S mod p.

A correctness proof of the protocol is as follows:

S′ ≡ (C ′
3)

dB1 ≡ (C ′
2)

dB1dA1NdB1
1 ≡ RdB1dA1eB1

11 LdB1dA1dB2
1 NdB1

1 ≡

RdA1
11 LdB1dA1dB2

1 NdB1
1 mod p;

S′′ ≡ (C ′′
3 )dB2 ≡ (C ′′

2 )dB2dA1N
dB2
2 ≡ R

dB2dA1eB2
12 L

−dB2dA1dB1
1 N

dB2
2 ≡

R
dA1
12 L

−dB2dA1dB1
1 N

dB2
2 mod p;

S′′′ ≡ (C ′′′
3 )dB1 ≡ (C ′′′

2 )dB1dA2N−dB1
1 ≡ RdB1dA2eB1

21 LdB1dA1dB2
2 N−dB1

1 ≡

R
dA2
21 L

dB1dA2dB2
2 N

−dB1
1 mod p;

S ≡ (C3)
dB2 ≡ (C2)

dB2dA2N
−dB2
2 ≡ R

dB2dA2eB2
22 L

−dB2dA2dB1
2 N

−dB2
2 ≡

RdA2
22 L−dB2dA2dB1

2 N−dB2
2 mod p.

Multiplying the numbers S′ and S′′ one gets

S′S′′ ≡ RdA1
11 LdB1dA1dB2

1 NdB1
1 RdA1

12 L−dB2dA1dB1
1 NdB2

2 ≡

(R11R12)
dA1N

dB1
1 N

dB2
2 ≡ (C ′

1)
dA1N

dB1
1 N

dB2
2 ≡

(R1)
dA1eA1NdB1

1 NdB2
2 ≡ R1N

dB1
1 NdB2

2 mod p.

Multiplying the numbers S′′′ and S one gets
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S′′′S ≡ RdA2
21 LdB1dA2dB2

2 N−dB1
1 RdA2

22 L−dB2dA2dB1
2 N−dB2

2 ≡

(R21R22)
dA2N−dB1

1 N−dB2
2 ≡ (C ′

2)
dA2N−dB1

1 N−dB2
2

≡ (R2)
dA2eA2N

−dB1
1 N

−dB2
2 ≡ R2N

−dB1
1 N

−dB2
2 mod p.

Thus, we have

S′S′′S′′′S ≡ R1N
dB1
1 N

dB2
2 R2N

−dB1
1 N

−dB2
2 ≡ R1R2 mod p.

Therefore, M = S′S′′S′′′S mod p.

We invite the reader to participate in security analysis of the proposed protocol.
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Some estimates for angular derivative at the boundary

Bülent Nafi Örnek

Abstract. In this paper, we establish lower estimates for the modulus of the values
of f(z) on boundary of unit disc. For the function f(z) = 1 + c1z + c2z

2 + ... defined
in the unit disc such that f(z) ∈ N (β) assuming the existence of angular limit at the
boundary point b, the estimations below of the modulus of angular derivative have
been obtained at the boundary point b with f(b) = β. Moreover, Schwarz lemma for
class N (β) is given. The sharpness of these inequalities has been proved.

Mathematics subject classification: 30C80, 32A10.
Keywords and phrases: Schwarz lemma on the boundary, Holomorphic function,
Jack’s lemma, Julia-Wolff lemma.

1 Introduction

Let f be a holomorphic function in the unit disc D = {z : |z| < 1}, f(0) = 0
and |f(z)| < 1 for |z| < 1. In accordance with the classical Schwarz lemma, for
any point z in the disc D, we have |f(z)| ≤ |z| and |f ′(0)| ≤ 1. Equality in these
inequalities (in the first one, for z 6= 0) occurs only if f(z) = zeiθ, where θ is a real
number ([6], p.329). For historical background about the Schwarz lemma and its
applications on the boundary of the unit disc, we refer to [2,19].

The basic tool in proving our results is the following lemma due to Jack.

Lemma 1 (Jack’s lemma). Let f(z) be holomorphic function in the unit disc D

with f(0) = 0. Then if |f(z)| attains its maximum value on the circle |z| = r at a
point z0 ∈ D, then there exists a real number k ≥ 1 such that

z0f
′(z0)

f(z0)
= k.

Let A denote the class of functions

f(z) = 1 + c1z + c2z
2 + ...

that are holomorphic in the unit disc D. Also, N (β) be the subclass of A consisting
of all functions f(z) which satisfy

ℜ

(

f(z) −
zf ′(z)

f(z)

)

>
β (3 − 2β)

2 (1 − β)
, (1.1)

c© Bülent Nafi Örnek, 2017
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where β < 0.
Let f(z) ∈ N (β) and define ϕ(z) in D by

ϕ(z) =
f(z) − 1

f(z) − (2β − 1)
.

Obviously, ϕ(z) is holomorphic function in the unit disc D and ϕ(0) = 0. We
want to prove |ϕ(z)| < 1 for |z| < 1.

If there exists a point z0 ∈ D such that

max
|z|≤|z0|

|ϕ(z)| = |ϕ(z0)| = 1,

then Jack’s lemma gives us that ϕ(z0) = eiθ and z0ϕ
′(z0) = kϕ(z0) (k ≥ 1).

Thus we have

z0f
′(z0)

f(z0)
=

2(1−β)z0ϕ
′(z0)

(1−ϕ(z0))2

(1 − β) 1+ϕ(z0)
1−ϕ(z0) + β

=

2(1−β)keiθ

(1−eiθ)
2

(1 − β) 1+eiθ

1−eiθ + β
.

Since
eiθ

(1 − eiθ)
2 =

eiθ

1 − 2eiθ + e2iθ
=

1

e−iθ − 2 + eiθ
=

1

2 (cos θ − 1)

and

1 + eiθ

1 − eiθ
=

1 + cos θ + i sin θ

1 − cos θ − i sin θ
=

(1 + cos θ + i sin θ) (1 − cos θ + i sin θ)

(1 − cos θ)2 + sin2 θ

=
i sin θ

1 − cos θ
,

we obtain

z0f
′(z0)

f(z0)
= −

(1−β)k
1−cos θ

(1 − β) i sin θ

1−cos θ
+ β

=
− (1 − β) k

(1 − β) i sin θ + β (1 − cos θ)

=
− (1 − β) k [− (1 − β) i sin θ + β (1 − cos θ)]

β2 (1 − cos θ)2 + (1 − β)2 sin2 θ

and

ℜ

(

z0f
′(z0)

f(z0)

)

=
−β (1 − β) k (1 − cos θ)

β2 (1 − cos θ)2 + (1 − β)2 sin2 θ
.

If we write 1 − cos θ = s and

h(s) =
s

β2s2 + (1 − β)2 (2s − s2)
,

then we have

ℜ

(

z0f
′(z0)

f(z0)

)

= −β (1 − β) kh(s).
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Since h(s) takes its minimum value for s = 0, we have that

ℜ

(

z0f
′(z0)

f(z0)

)

= −β (1 − β) k
1

2 (1 − β)2
≥

−β

2 (1 − β)
.

Thus, we obtain

ℜ

(

f(z0) −
z0f

′(z0)

f(z0)

)

≤ β +
β

2 (1 − β)
=

β (3 − 2β)

2 (1 − β)
.

This contradict (1.1). So, there is no point z0 ∈ D such that ϕ(z0) = 1. This means
that |ϕ(z)| < 1 for |z| < 1. Thus, from the Schwarz lemma, we obtain

∣

∣f ′(0)
∣

∣ ≤ 2 (1 − β) .

Moreover, the equality |f ′(0)| = 2 (1 − β) occurs for the function

f(z) =
1 − (2β − 1) z

1 − z
.

That proves

Lemma 2. If f(z) ∈ N (β), then we have

∣

∣f ′(0)
∣

∣ ≤ 2 (1 − β) (1.3)

The equality in (1.3) occurs for the function

f(z) =
1 − (2β − 1) z

1 − z
.

This lemma yields a ”N (β) version” of the classical Schwarz lemma for holo-
morphic function of one complex variable.

The following boundary version of the Schwarz lemma was proved in 1938 by
Unkelbach in [20] and then rediscovered and partially improved by Osserman in
2000 [16].

Lemma 3. Let f(z) be a holomorphic function self-mapping of D, that is |f(z)| < 1
for all z ∈ D. Assume that there is a b ∈ ∂D so that f extends continuously to b,
|f(b)| = 1 and f ′(b) exists. Then

∣

∣f ′(b)
∣

∣ ≥
2

1 + |f ′(0)|
. (1.4)

The equality in (1.4) holds if and only if f is of the form

f(z) = −z
d − z

1 − dz
, ∀z ∈ D,

for some constant d ∈ (−1, 0].
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Corollary 1. Under the hypotheses lemma, we have

∣

∣f ′(b)
∣

∣ ≥ 1, (1.5)

with equality only if f is of the form

f(z) = zeiθ,

where θ is a real number.

The following lemma, known as the Julia-Wolff lemma, is needed in the sequel
[18].

Lemma 4 (Julia-Wolff lemma). Let f be a holomorphic function in E, f(0) = 0
and f(D) ⊂ D. If, in addition, the function f has an angular limit f(b) at b ∈ ∂D,
|f(b)| = 1, then the angular derivative f ′(b) exists and 1 ≤ |f ′(b)| ≤ ∞.

Inequality (1.4) and its generalizations have important applications in geometric
theory of functions (see, e.g., [6, 18]). Therefore, the interest to such type results is
not vanished recently (see, e.g., [1, 2, 4, 5, 10,11,16,17, 19] and references therein).

Vladimir N. Dubinin has continued this line and has made a refinement on the
boundary Schwarz lemma under the assumption that f(z) = cpz

p + cp+1z
p+1 + ...,

with a zero set {zk} (see [4]).
S.G. Krantz and D. M.Burns [9] and D. Chelst [3] studied the uniqueness part of

the Schwarz lemma. In M. Mateljević’s papers, for more general results and related
estimates, see also ([12–15]).

Also, M. Jeong [8] showed some inequalities at a boundary point for different
form of holomorphic functions and found the condition for equality and in [7] a
holomorphic self map defined on the closed unit disc with fixed points only on the
boundary of the unit disc.

2 Main Results

In this section, for holomorphic function f(z) = 1 + c1z + c2z
2 + ... belonging

to the class of N (β), the modulus of the angular derivative of the function at the
boundary point of the unit disc has been estimated.

Theorem 1. Let f(z) ∈ N (β). Assume that, for some b ∈ ∂D, f has angular limit
f(b) at b and f(b) = β. Then we have the inequality

∣

∣f ′(b)
∣

∣ ≥
1 − β

2
. (2.1)

The equality in (2.1) occurs for the function

f(z) =
1 − (2β − 1) z

1 − z
.
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Proof. Consider the function

ϕ(z) =
f(z) − 1

f(z) − (2β − 1)
.

ϕ(z) is a holomorphic function in the unit disc D and ϕ(0) = 0. From the Jack’s
lemma and since f(z) ∈ N (β), we obtain |ϕ(z)| < 1 for |z| < 1. Also, we have
|ϕ(b)| = 1 for b ∈ ∂D.

From (1.5), we obtain

1 ≤
∣

∣ϕ′(b)
∣

∣ =
2 (1 − β) |f ′(b)|

|f(b) − (2β − 1)|2
=

2 (1 − β) |f ′(b)|

(β − (2β − 1))2
=

2 (1 − β) |f ′(b)|

(1 − β)2

and

1 ≤
2 |f ′(b)|

1 − β
.

So, we take the inequality (2.1).

Now, we shall show that the inequality (2.1) is sharp. Let

f(z) =
1 − (2β − 1) z

1 − z
.

Then, we have

f ′(z) = 2
1 − β

(z − 1)2
,

and
∣

∣f ′(−1)
∣

∣ =
1 − β

2
.

Theorem 2. Under the same assumptions as in Theorem 1, we have

∣

∣f ′(b)
∣

∣ ≥
(1 − β)2

1 − β + |f ′(0)|
. (2.2)

The inequality (2.2) is sharp with equality for the function

f(z) =
1 + az + (2β − 1)

(

z2 + az
)

1 + 2az + z2
,

where a = |f ′(0)|
2(1−β) is an arbitrary number from [0, 1] (see (1.3)).

Proof. Let ϕ(z) be as in the proof of Theorem 1. Using the inequality (1.4) for the
function ϕ(z), we obtain

2

1 + |ϕ′(0)|
≤
∣

∣ϕ′(b)
∣

∣ =
2 |f ′(b)|

1 − β
.
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Since

ϕ′(z) =
2 (1 − β) f ′(z)

(f(z) − (2β − 1))2

and
∣

∣ϕ′(0)
∣

∣ =
2 (1 − β) |f ′(0)|

(f(0) − (2β − 1))2
=

2 (1 − β) |f ′(0)|

(1 − (2β − 1))2
=

|f ′(0)|

2 (1 − β)
,

we have
2

1 + |f ′(0)|
2(1−β)

≤
2 |f ′(b)|

1 − β

and
∣

∣f ′(b)
∣

∣ ≥
2 (1 − β)2

2 (1 − β) + |f ′(0)|
.

To show that the inequality (2.2) is sharp, take the holomorphic function

f(z) =
1 + az + (2β − 1)

(

z2 + az
)

1 + 2az + z2
.

Then

f ′(1) = −
1 − β

1 + a

and
∣

∣f ′(1)
∣

∣ =
1 − β

1 + a
.

Since a = |f ′(0)|
2(1−β) , we have

∣

∣f ′(1)
∣

∣ =
1 − β

1 + |f ′(0)|
2(1−β)

=
2 (1 − β)2

2 (1 − β) + |f ′(0)|
.

The inequality (2.2) can be strengthened as below by taking into account c2

which is second coefficient in the expansion of the function f(z). That is, taking
into account two consecutive coeffients, the inequality (2.2) has been strengthened.
This is given by the following Theorem.

Theorem 3. Let f(z) ∈ N (β). Assume that, for some b ∈ ∂D, f has angular limit
f(b) at b and f(b) = β. Then we have the inequality

∣

∣f ′(b)
∣

∣ ≥
1 − β

2

(

1 +
2 (2 (1 − β) − |c1|)

2

4 (1 − β)2 − |c1|
2 +

∣

∣2 (1 − β) c2 − c2
1

∣

∣

)

. (2.3)

The inequality (2.3) is sharp with extremal function

f(z) =
1 − (2β − 1) z

1 − z
.
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Proof. Let ϕ(z) be as in the proof of Theorem 1. By the maximum principle for
each z ∈ D, we have |ϕ(z)| ≤ |z|. So,

Θ(z) =
ϕ(z)

z

is a holomorphic function in D and |Θ(z)| < 1 for |z| < 1.

From equality of Θ(z), we have

Θ(z) =
ϕ(z)

z
=

1

z

f(z) − 1

f(z) − (2β − 1)

=
1 + c1z + c2z

2 + c3z
3 + ... − 1

z (1 + c1z + c2z2 + c3z3 + ... − (2β − 1))

=
c1 + c2z + c3z

2 + ...

2 (1 − β) + c1z + c2z2 + c3z3 + ...
.

Thus, we take

|Θ(0)| =
|c1|

2 (1 − β)
≤ 1 (2.4)

and
∣

∣Θ′(0)
∣

∣ =

∣

∣2 (1 − β) c2 − c2
1

∣

∣

4 (1 − β)2
.

Moreover, it can be seen that

bϕ′(b)

ϕ(b)
=
∣

∣ϕ′(b)
∣

∣ ≥
∣

∣(b)′
∣

∣ =
b (b)′

b
.

The function

Φ(z) =
Θ(z) − Θ(0)

1 − Θ(0)Θ(z)

is a holomorphic in the unit disc D, |Φ(z)| < 1 for |z| < 1, Φ(0) = 0 and |Φ(b)| = 1
for b ∈ ∂D.

From (1.4), we obtain

2

1 + |Φ′(0)|
≤

∣

∣Φ′(b)
∣

∣ =
1 − |Θ(0)|2

∣

∣

∣
1 − Θ(0)Θ(b)

∣

∣

∣

2

∣

∣Θ′(b)
∣

∣ ≤
1 + |Θ(0)|

1 − |Θ(0)|

∣

∣Θ′(b)
∣

∣

=
1 + |Θ(0)|

1 − |Θ(0)|

{
∣

∣ϕ′(b)
∣

∣− 1
}

.

Since

Φ′(z) =
1 − |Θ(0)|2

(

1 − Θ(0)Θ(z)
)2 Θ′(z),
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∣

∣Φ′(0)
∣

∣ =
|Θ′(0)|

1 − |Θ(0)|2
=

|2(1−β)c2−c
2
1|

4(1−β)2

1 −
(

|c1|

2(1−β)

)2 =

∣

∣2 (1 − β) c2 − c2
1

∣

∣

4 (1 − β)2 − |c1|
2 ,

we take

2

1 +
|2(1−β)c2−c21|
4(1−β)2−|c1|

2

≤
1 + |c1|

2(1−β)

1 − |c1|

2(1−β)

{

2 |f ′(b)|

1 − β
− 1

}

=
2 (1 − β) + |c1|

2 (1 − β) − |c1|

{

2 |f ′(b)|

1 − β
− 1

}

.

Therefore, we obtain

1 +
2
(

4 (1 − β)2 − |c1|
2
)

4 (1 − β)2 − |c1|
2 +

∣

∣2 (1 − β) c2 − c2
1

∣

∣

2 (1 − β) − |c1|

2 (1 − β) + |c1|
≤

2 |f ′(b)|

1 − β

and
∣

∣f ′(b)
∣

∣ ≥
1 − β

2

(

1 +
2 (2 (1 − β) − |c1|)

2

4 (1 − β)2 − |c1|
2 +

∣

∣2 (1 − β) c2 − c2
1

∣

∣

)

.

So, we obtain the inequality (2.3).
To show that the inequality (2.3) is sharp, take the holomorphic function

f(z) =
1 − (2β − 1) z

1 − z
.

Then
∣

∣f ′(−1)
∣

∣ =
1 − β

2
.

Since |c1| = 2 (1 − β), (2.3) is satisfied with equality.

If f(z) − 1 has no zeros different from z = 0 in Theorem 3, the inequality (2.3)
can be further strengthened. It has been investigated in the case of having only one
point b in the unit disc D of the function f(z). That inequality is stronger than
the inequalities which have been expressed above. This is given by the following
Theorem.

Theorem 4. Let f(z) ∈ N (β) and f(z) − 1 has no zeros in D except z = 0 and
c1 > 0. Assume that, for some b ∈ ∂D, f has angular limit f(b) at b and f(b) = β.
Then we have the inequality

∣

∣f ′(b)
∣

∣ ≥
1 − β

2



1 −
2 (1 − β) |c1| ln

2
(

|c1|

2(1−β)

)

2 (1 − β) |c1| ln
(

|c1|

2(1−β)

)

−
∣

∣2 (1 − β) c2 − c2
1

∣

∣



 . (2.5)

In addition, the equality in (2.5) occurs for the function

f(z) =
1 − (2β − 1) z

1 − z
.
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Proof. Let c1 > 0 in the expression of the function f(z). Having in mind the
inequality (2.4) and the function f(z) − 1 has no zeros in D except D − {0}, we
denote by ln Θ(z) the holomorphic branch of the logarithm normed by the condition

ln Θ(0) = ln

(

|c1|

2 (1 − β)

)

< 0.

The auxiliary function

Γ(z) =
ln Θ(z) − ln Θ(0)

ln Θ(z) + ln Θ(0)

is holomorphic in the unit disc D, |Γ(z)| < 1, Γ(0) = 0 and |Γ(b)| = 1 for b ∈ ∂D.

From (1.4), we obtain

2

1 + |Γ′(0)|
≤

∣

∣Γ′(b)
∣

∣ =
|2 ln Θ(0)|

|ln Θ(b) + ln Θ(0)|2

∣

∣

∣

∣

Θ′(b)

Θ(b)

∣

∣

∣

∣

=
−2 ln Θ(0)

ln2 Θ(0) + arg2 Θ(b)

{
∣

∣ϕ′(b)
∣

∣ − 1
}

.

Since

∣

∣Γ′(0)
∣

∣ =
−1

ln
(

|c1|

2(1−β)

)

|2(1−β)c2−c21|
4(1−β)2

|c1|

2(1−β)

=
−1

ln
(

|c1|

2(1−β)

)

∣

∣2 (1 − β) c2 − c2
1

∣

∣

2 (1 − β) |c1|

and replacing arg2 Θ(b) by zero, then we have

1

1 − 1

ln
(

|c1|
2(1−β)

)

|2(1−β)c2−c21|
2(1−β)|c1|

≤
−1

ln
(

|c1|

2(1−β)

)

{

2 |f ′(b)|

1 − β
− 1

}

and

1 −
2 (1 − β) |c1| ln

2
(

|c1|

2(1−β)

)

2 (1 − β) |c1| ln
(

|c1|

2(1−β)

)

−
∣

∣2 (1 − β) c2 − c2
1

∣

∣

≤
2 |f ′(b)|

1 − β
.

Thus, we obtain the inequality (2.5) with an obvious equality case.

In the following Theorem, we shall give an estimate below |f ′(b)| according to
the first nonzero Taylor coeffcient of about two zeros, namely z = 0 and z1 6= 0.

Theorem 5. Let f(z) ∈ N (β) and f(z1) = 1 for 0 < |z1| < 1. Suppose that,
for some b ∈ ∂D, f has an angular limit f(b) at b, f(b) = β. Then we have the
inequality
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|f ′(b)| ≥ 1−β

2

(

1 + 1−|z1|
2

|b−z1|
2 + 2(1−β)|z1|−|f ′(0)|

2(1−β)|z1|+|f ′(0)| (2.6)

×

[

1 +
4(1−β)2|z1|

2+|f ′(z1)|(1−|z1|
2)|f ′(0)|−2(1−β)|f ′(z1)|(1−|z1|

2)−2(1−β)|f ′(0)|

4(1−β)2|z1|
2+|f ′(z1)|(1−|z1|

2)|f ′(0)|+2(1−β)|f ′(z1)|(1−|z1|
2)+2(1−β)|f ′(0)|

1−|z1|
2

|b−z1|
2

])

.

The inequality (2.6) is sharp, with equality for each possible values |f ′(0)| =

2e (1 − β) and |f ′(z1)| = 2f (1 − β)
(

0 ≤ e ≤ 2 (1 − β) |z1| , 0 ≤ f ≤ 2 (1 − β) |z1|

1−|z1|
2

)

.

Proof. Let

q(z) =
z − z1

1 − z1z
.

Also, let h : D → D be a holomorphic function and a point z1 ∈ D in order to
satisfy

∣

∣

∣

∣

∣

h(z) − h(z1)

1 − h(z1)h(z)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

z − z1

1 − z1z

∣

∣

∣

∣

= |q(z)|

and

|h(z)| ≤
|h(z1)| + |q(z)|

1 + |h(z1)| |q(z)|
(2.7)

by Schwarz-Pick lemma [8]. If p : D → D is holomorphic function and 0 < |z1| < 1,
letting

h(z) =
p(z) − p(0)

z
(

1 − p(0)p(z)
)

in (2.7), we obtain

∣

∣

∣

∣

∣

∣

p(z) − p(0)

z
(

1 − p(0)p(z)
)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

p(z1)−p(0)

z1(1−p(0)p(z1))

∣

∣

∣

∣

+ |q(z)|

1 +

∣

∣

∣

∣

p(z1)−p(0)

z1(1−p(0)p(z1))

∣

∣

∣

∣

|q(z)|

and

|p(z)| ≤
|p(0)| + |z| |C|+|q(z)|

1+|C||q(z)|

1 + |p(0)| |z| |C|+|q(z)|
1+|C||q(z)|

, (2.8)

where

C =
p(z1) − p(0)

z1

(

1 − p(0)p(z1)
) .

Without loss of generality, we will assume that b = 1. If we take

p(z) =
ϕ(z)

z z−z1
1−z1z

,

then

p(z1) =
ϕ′(z1)

(

1 − |z1|
2
)

z1
, p(0) =

ϕ′(0)

−z1
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and

C =

ϕ′(z1)(1−|z1|
2)

z1
+ ϕ

′(0)
z1

z1

(

1 +
ϕ′(z1)(1−|z1|

2)
z1

ϕ′(0)
z1

) ,

where |C| ≤ 1. Let |p(0)| = α and

T =

∣

∣

∣

∣

ϕ′(z1)(1−|z1|
2)

z1

∣

∣

∣

∣

+
∣

∣

∣

ϕ′(0)
z1

∣

∣

∣

|z1|

(

1 +

∣

∣

∣

∣

ϕ′(z1)(1−|z1|
2)

z1

∣

∣

∣

∣

∣

∣

∣

ϕ′(0)
z1

∣

∣

∣

) .

From (2.8), we get

|ϕ(z)| ≤ |z| |q(z)|
α + |z| T+|q(z)|

1+T|q(z)|

1 + α |z| T+|q(z)|
1+T|q(z)|

and

1 − |ϕ(z)|

1 − |z|
≥

1 + α |z| T+|q(z)|
1+T|q(z)| − α |z| |q(z)| − |q(z)| |z|2 T+|q(z)|

1+T|q(z)|

(1 − |z|)
(

1 + α |z| T+|q(z)|
1+T|q(z)|

) = s(z). (2.9)

Let κ(z) = 1 + α |z| T+|q(z)|
1+T|q(z)| and τ(z) = 1 + T |q(z)|. Then

s(z) =
1 − |z|2 |q(z)|2

(1 − |z|)κ(z)τ(z)
+ T |q(z)|

1 − |z|2

(1 − |z|)κ(z)τ(z)
+ |z|Tα

1 − |q(z)|2

(1 − |z|) κ(z)τ(z)
.

Since

lim
z→1

κ(z) = lim
z→1

1 + α |z|
T+ |q(z)|

1 + T |q(z)|
= 1 + α,

lim
z→1

τ(z) = lim
z→1

1 + T |q(z)| = 1 + T

and

1 − |q(z)|2 = 1 −

∣

∣

∣

∣

z − z1

1 − z1z

∣

∣

∣

∣

2

=

(

1 − |z1|
2
)(

1 − |z|2
)

|1 − z1z|
2 ,

passing to the angular limit in (2.9) gives

∣

∣ϕ′(z)
∣

∣ ≥
2

(1 + α) (1 + T)

(

1 +
1 − |z1|

2

|1 − z1|
2 + T+αT

1 − |z1|
2

|1 − z1|
2

)

= 1 +
1 − |z1|

2

|1 − z1|
2 +

1 − α

1 + α

(

1 +
1 − T

1 + T

1 − |z1|
2

|1 − z1|
2

)

.

Moreover, since

1 − α

1 + α
=

1 − |p(0)|

1 + |p(0)|
=

1 −
∣

∣

∣

ϕ′(0)
z1

∣

∣

∣

1 +
∣

∣

∣

ϕ′(0)
z1

∣

∣

∣

=
|z1| − |ϕ′(0)|

|z1| + |ϕ′(0)|
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=
2 (1 − β) |z1| − |f ′(0)|

2 (1 − β) |z1| + |f ′(0)|
,

1 − T

1 + T
=

1 −

∣

∣

∣

∣

∣

ϕ′(z1)(1−|z1|
2)

z1

∣

∣

∣

∣

∣

+
∣

∣

∣

ϕ′(0)
z1

∣

∣

∣

|z1|

(

1+

∣

∣

∣

∣

ϕ′(z1)(1−|z1|
2)

z1

∣

∣

∣

∣

∣

∣

∣

ϕ′(0)
z1

∣

∣

∣

)

1 +

∣

∣

∣

∣

ϕ′(z1)(1−|z1|
2)

z1

∣

∣

∣

∣

+
∣

∣

∣

ϕ′(0)
z1

∣

∣

∣

|z1|

(

1+

∣

∣

∣

∣

ϕ′(z1)(1−|z1|
2)

z1

∣

∣

∣

∣

∣

∣

∣

ϕ′(0)
z1

∣

∣

∣

)

=

1 −

∣

∣

∣

∣

∣

∣

f ′(z1)
2(1−β)(1−|z1|

2)
z1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

f ′(0)
2(1−β)

z1

∣

∣

∣

∣

∣

∣

|z1|



1+

∣

∣

∣

∣

∣

∣

f ′(z1)
2(1−β) (1−|z1|

2)

z1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f ′(0)
2(1−β)

z1

∣

∣

∣

∣

∣

∣





1 +

∣

∣

∣

∣

∣

∣

f ′(z1)
2(1−β)

(1−|z1|
2)

z1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

f ′(0)
2(1−β)

z1

∣

∣

∣

∣

∣

∣

|z1|



1+

∣

∣

∣

∣

∣

∣

f ′(z1)
2(1−β)

(1−|z1|
2)

z1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f ′(0)
2(1−β)

z1

∣

∣

∣

∣

∣

∣





and

1−T
1+T =

|z1|



1+

∣

∣

∣

∣

∣

∣

f ′(z1)
2(1−β)(1−|z1|

2)
z1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f ′(0)
2(1−β)

z1

∣

∣

∣

∣

∣

∣



−

∣

∣

∣

∣

∣

∣

f ′(z1)
2(1−β)(1−|z1|

2)
z1

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

f ′(0)
2(1−β)

z1

∣

∣

∣

∣

∣

∣

|z1|



1+

∣

∣

∣

∣

∣

∣

f ′(z1)
2(1−β) (1−|z1|

2)

z1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f ′(0)
2(1−β)

z1

∣

∣

∣

∣

∣

∣



+

∣

∣

∣

∣

∣

∣

f ′(z1)
2(1−β) (1−|z1|

2)

z1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

f ′(0)
2(1−β)

z1

∣

∣

∣

∣

∣

∣

=
4(1−β)2|z1|

2+|f ′(z1)|(1−|z1|
2)|f ′(0)|−2(1−β)|f ′(z1)|(1−|z1|

2)−2(1−β)|f ′(0)|

4(1−β)2|z1|
2+|f ′(z1)|(1−|z1|

2)|f ′(0)|+2(1−β)|f ′(z1)|(1−|z1|
2)+2(1−β)|f ′(0)|

,

we obtain

|ϕ′(1)| ≥ 1 + 1−|z1|
2

|1−z1|
2 + 2(1−β)|z1|−|f ′(0)|

2(1−β)|z1|+|f ′(0)|

×

[

1 +
4(1−β)2|z1|

2+|f ′(z1)|(1−|z1|
2)|f ′(0)|−2(1−β)|f ′(z1)|(1−|z1|

2)−2(1−β)|f ′(0)|

4(1−β)2|z1|
2+|f ′(z1)|(1−|z1|

2)|f ′(0)|+2(1−β)|f ′(z1)|(1−|z1|
2)+2(1−β)|f ′(0)|

1−|z1|
2

|1−z1|
2

]

.

From definition of ϕ(z), we have

ϕ′(z) =
2 (1 − β) f ′(z)

(f(z) − (2β − 1))2

and
∣

∣ϕ′(1)
∣

∣ =

∣

∣

∣

∣

2 (1 − β) f ′(1)

(f(1) − (2β − 1))2

∣

∣

∣

∣

=
2 |f ′(1)|

1 − β
.

Thus, we obtain the inequality (2.6).

Now, we shall show that the inequality (2.6) is sharp.

Since

p(z) =
ϕ(z)

z z−z1
1−z1z
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is holomorphic function in the unit disc and |p(z)| ≤ 1 for z ∈ D, we obtain

∣

∣ϕ′(0)
∣

∣ ≤ |z1|

and
∣

∣ϕ′(z1)
∣

∣ ≤
|z1|

1 − |z1|
2 .

We take z1 ∈ (−1, 0) and arbitrary two numbers e and f , such that 0 ≤ e ≤

2 (1 − β) |z1|, 0 ≤ f ≤ 2 (1 − β) |z1|

1−|z1|
2 .

Let

K =

f(1−|z1|
2)

z1
+ e

z1

z1

(

1 + ef
1−|z1|

2

z2
1

) =
1

z2
1

f
(

1 − |z1|
2
)

+ e

1 + ef
1−|z1|

2

z2
1

.

The auxiliary function

t(z) = z
z − z1

1 − z1z

−e

z1
+ z

K+
z−z1
1−z1z

1+K
z−z1
1−z1z

1 − e

z1
z

K+
z−z1
1−z1z

1+K
z−z1
1−z1z

is holomorphic in D and |t(z)| < 1 for z ∈ D. Let

f(z) − 1

f(z) − (2β − 1)
= z

z − z1

1 − z1z

−e

z1
+ z

K+
z−z1
1−z1z

1+K
z−z1
1−z1z

1 − e

z1
z

K+
z−z1
1−z1z

1+K
z−z1
1−z1z

. (2.10)

So, we have

f(z) =

1 − (2β − 1) z z−z1
1−z1z

−e
z1

+z

K+
z−z1
1−z1z

1+K
z−z1
1−z1z

1− e
z1

z

K+
z−z1
1−z1z

1+K
z−z1
1−z1z

1 − z z−z1
1−z1z

−e
z1

+z

K+
z−z1
1−z1z

1+K
z−z1
1−z1z

1− e
z1

z

K+
z−z1
1−z1z

1+K
z−z1
1−z1z

.

Therefore, we take |f ′(0)| = 2e (1 − β) and |f ′(z1)| = 2f (1 − β).

From (2.10), with the simple calculations, we obtain

2(1−β)f ′(1)

(f(1)−(2β−1))2
= 1 +

1−z
2
1

(1−z1)2
+

(

1+
1−z2

1
(1−z1)2

1−K
2

(1+K)2

)

(

1− e
z1

)

+ e
z1

(

1+
1−z2

1
(1−z1)2

1−K
2

(1+K)2

)

(

1− e
z1

)

(

1− e
z1

)2

= 1 +
1−z

2
1

(1−z1)2
+ e+z1

−e+z1

(

1 +
1−z

2
1

(1−z1)
2

z
2
1+ef(1−z

2
1)−f(1−z

2
1)−e

z2
1+ef(1−z2

1)+f(1−z2
1)+e

)
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and

f ′(1) = 1−β

2

(

1 +
1−z

2
1

(1−z1)2
+ e+z1

−e+z1

(

1 +
1−z

2
1

(1−z1)
2

z2
1+ef(1−z2

1)−f(1−z2
1)−e

z2
1+ef(1−z2

1)+f(1−z2
1)+e

))

.

Since z1 ∈ (−1, 0), the last equality shows that (2.6) is sharp.
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[15] Mateljević M. Note on Rigidity of Holomorphic Mappings & Schwarz and Jack Lemma (in

preparation), ResearchGate.

[16] Osserman R. A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc., 2000,
128, 3513–3517.

[17] Örnek B.N. Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math.
Soc., 2013, 50, 2053–2059.
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