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The Cotton tensor and Chern-Simons invariants in

dimension 3: an introduction

Sergiu Moroianu

Abstract. We review, with complete proofs, the theory of Chern-Simons invariants
for oriented Riemannian 3-manifolds. The Cotton tensor is the first-order variation
of the Chern-Simons invariant. We deduce that it is conformally invariant, and trace-
and divergence-free, from the corresponding properties of the Chern-Simons invariant.
Moreover, the Cotton tensor vanishes if and only if the metric is locally conformally
flat. In the last part of the paper we survey the link of Chern-Simons invariants with
the eta invariant and with the central value of the Selberg zeta function of odd type.
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1 Motivation

Let (M,g) be an oriented Riemannian 3-manifold. It is natural to ask if, like
it happens in dimension 2, the metric g is locally conformally flat. There exists an
obstruction to local conformal flatness in dimension 3, discovered by Émile Cotton [5]
in 1899. This obstruction is a symmetric, traceless, conformally covariant, and
divergence-free 2-tensor on M . In 1974 it was further unveiled by Chern and Simons
[4] that the Cotton tensor is variational : if M is compact, there exists a R/Z-valued
function on the space of Riemannian metrics, the Chern-Simons invariant, whose
gradient at a given metric g is the Cotton tensor Cott(g).

In this survey paper we give a short and self-contained introduction to the theory
of Chern-Simons invariants for three-dimensional Riemannian manifolds. As conse-
quences, we will prove in a conceptual way some of the important properties of Cott.
Our approach relies on the paper by Chern and Simons [4], with modern notation
and focusing on the dimension 3. We use Besse’s book [3] as reference for standard
formulas in Riemannian geometry.

Chern-Simons invariants are defined here with respect to some Riemannian met-
ric, but they actually depend on just a connection. Moreover they can be defined
in arbitrary dimensions, while we have limited ourselves to dimension 3. The main
focus of interest regarding Chern-Simons invariants shifted in recent years towards
invariants of smooth manifolds, independent of any background metric, obtained by
averaging Chern-Simons invariants with respect to a (mathematically non-rigorous)
measure over an infinite-dimensional space of connections. Such an invariant is
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called a “topological quantum field theory” and currently plays a prominent role in
mathematical physics. Witten’s foundational paper [11] highlighted a link between
this Chern-Simons TQFT and the Jones polynomial of knots. We do not attempt
here any foray into these fancy fields.

Since on one hand a comprehensive list of references would dwarf the size of
the paper, and since on the other hand our text is self-contained except for the
last section, we have kept the references to a minimum, hoping that the numerous
authors having significant contributions to the subject will not feel slighted. We
have limited our ambitions to understanding Riemannian Chern-Simons invariants
of 3-manifolds, in the goal of offering the reader a firm, albeit tiny, first foothold into
Chern-Simons realm. The Cotton tensor comes as a reward for our self-limitation.
Evidently, no claim of originality is made below other than the presentation, itself
strongly influenced by [6].

These notes are accessible to readers familiar with the basic objects of Rieman-
nian geometry: differential forms, Levi-Civita connection, curvature, Ricci tensor,
scalar curvature. They formed the topic of a concentrated doctoral course at the
University of Bucharest in March 2014. I am grateful to Sorin Dăscălescu for the
invitation.
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2 Definitions and background

Throughout the paper, M is a Riemannian manifold of dimension 3, and g its
metric. Let

∇ : C∞(M,TM) → C∞(M,Λ1M ⊗ TM)

denote the Levi-Civita connection, and

d∇ : C∞(M,ΛkM ⊗ TM) −→ C∞(M,Λk+1M ⊗ TM)

its extension to k-forms twisted by vector fields. The square of this operator equals,
in every degree k, the curvature operator R, viewed as an endomorphism-valued
2-form:

(d∇)2 = R ∈ C∞(M,Λ2M ⊗ End(TM)).

The second Bianchi identity is an immediate consequence:

d∇(R) = [d∇, (d∇)2] = 0. (1)

The Ricci tensor is the contraction on positions {1, 4} of R viewed as a (3, 1) tensor:

Ric(U, V ) = tr [X 7→ RXUV ] .
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The scalar curvature scal is the trace of Ric with respect to g.

Let (d∇)∗ denote the formal adjoint of d∇. This operator restricted to symmetric
2-tensors is sometimes called the divergence operator. By twice contracting the (4, 1)
tensor from (1) on positions {3, 4} and then {1, 5}, we obtain

(d∇)∗
(

Ric − scal

2 g
)

= 0. (2)

Definition 1. The Schouten tensor of the metric g is essentially the Ricci tensor,
namely

Sch := Ric − scal

4 g.

Notice that since the dimension of M is 3, tr(Sch) = scal

4 . Also from (2), Sch is
not divergence-free unless scal is constant.

Definition 2. The Cotton form of g is cott := d∇Sch ∈ C∞(M,Λ2M ⊗ TM).
Assuming M to be oriented, the Cotton tensor of g is the bilinear form

Cott := ∗d∇Sch ∈ C∞(M,Λ1M ⊗ TM),

where ∗ is the Hodge operator transforming 2-forms into 1-forms on M .

Recall that the Hodge operator in dimension 3 is defined in terms of an oriented
orthonormal frame S1, S2, S3 as follows:

∗1 = S1 ∧ S2 ∧ S3, ∗S1 = S2 ∧ S3, ∗S2 = S3 ∧ S1, ∗S3 = S1 ∧ S2 (3)

and satisfies ∗2 = IdΛ∗M .

3 Chern-Simons forms of degree 3

Let M be a smooth manifold of any dimension, m ≥ 1 a natural number, and
θ a 1-form on M with values in gl(m, R), i.e., θ is a m × m matrix with entries θij ,
i, j ∈ {1, . . . ,m}, which are 1-forms on M . The Chern-Simons form associated to θ
is defined by

cs(θ) := tr
(

θ ∧ dθ + 2
3θ ∧ θ ∧ θ

)

∈ Λ3(M).

In the above trace, the wedge product of forms-valued matrices is the usual product
of matrices, where the entries are multiplied using the wedge product on Λ∗(M).
The exterior differential dθ is obtained by applying the de Rham differential d to
each entry θij, yielding a gl(m, R)-valued 2-form.

Lemma 1. Let {θt}t∈R be a smooth family of forms and denote by θ̇ := dθt

dt |t=0 its

variation in t = 0. Then

d
dtcs(θt)|t=0 = dtr(θ̇ ∧ θ) + 2tr(θ̇ ∧ (dθ + θ ∧ θ)).
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Proof. For matrix-valued forms α, β ∈ Λ∗(M)⊗ gl(m, R) we have the trace identity

tr(α ∧ β) = (−1)deg α·deg βtr(β ∧ α)

although of course the matrix-valued forms α and β need not commute. We also
use the obvious rule for taking the exterior differential of a trace, namely

dtr(α ∧ β) = tr(dα ∧ β + (−1)deg(α)α ∧ dβ).

We compute by differentiating under the trace by the Leibnitz rule and using the
above trace identity:

d
dtcs(θt)|t=0 = tr(θ̇ ∧ dθ + θ ∧ dθ̇ + 2θ̇ ∧ θ ∧ θ)

= tr(dθ̇ ∧ θ − θ̇ ∧ dθ + 2θ̇ ∧ dθ + 2θ̇ ∧ θ ∧ θ)

which gives the desired formula.

Set Ω := dθ + θ ∧ θ ∈ Λ2(M) ⊗ gl(m, R). Lemma 1 can be rewritten

d
dtcs(θt)|t=0 = dtr(θ̇ ∧ θ) + 2tr(θ̇ ∧ Ω).

Lemma 2. The exterior derivative of cs(ω) is

dcs(θ) = tr(Ω ∧ Ω).

Proof. We have by the trace identity

dcs(θ) = tr(dθ ∧ dθ + 2dθ ∧ θ ∧ θ) = tr
(

(dθ + θ ∧ θ)2
)

where in the last equality we used tr(θ4) = 0 by anti-symmetry.

4 The Chern-Simons invariant of a Riemannian metric

From now on M is an oriented compact 3-manifold without boundary. The
tangent bundle to such a manifold is trivial by a classical result of Stiefel [9, Satz
21] (in fact, for this result one does not even need M to be compact, but we do
not use here this more general statement). Choose a global orthonormal frame
S = (S1, S2, S3), obtained for instance by applying the Gram-Schmidt procedure to
some arbitrary smooth frame. In such a frame, the Levi-Civita connection can be
expressed as

∇ = d + ω

where the so(3)-valued connection 1-form ω = (ωij)i,j=1,2,3 is given by

ωij = 〈∇Sj, Si〉

(since the metric is parallel, we have ωij = −ωji).
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Definition 3. The Chern-Simons 3-form cs(M,g, S) is defined by

cs(M,g, S) := cs(ω) = tr(ω ∧ dω + 2
3ω ∧ ω ∧ ω) ∈ Λ3(M),

where the trace is the usual trace on 3× 3 matrices. The Chern-Simons invariant of
(M,g) with respect to the frame S is

CS(M,g, S) := − 1
16π2

∫

M
cs(M,g, S) ∈ R.

The triviality of the vector bundle TM entails the vanishing of its “primary”
characteristic classes (Stiefel-Whitney, Pontriagin and Euler). At the same time, this
triviality implies the existence of a global connection 1-form, the essential ingredient
in the construction of the Chern-Simons invariant. Since the invariant exists under
the condition that all primary characteristic classes vanish, it is viewed as a kind of
“secondary” characteristic class, dependent on the metric, and a priori also on the
choice of the frame.

Proposition 1. Let S, S′ be two orthonormal frames on M linked by some SO(3)-
valued function a : M → SO(3), i.e., S′ = Sa. Then

CS(M,g, S) − CS(M,g, S′) ∈ Z.

Proof. The connection form changes by

ω′ = a−1ωa + a−1da.

By a simple computation, the Chern-Simons form of ω′ is given by

cs(ω′) = cs(ω) + dtr(a−1ω ∧ da) − 1
3tr((a−1da)3).

The form a−1da equals the pull-back via the map a : M → SO(3) of the Maurer-
Cartan 1-form ωMC that we recall in Lemma 3 below. By that lemma, the integral
on SO(3) of the 3-form tr((ωMC)3) equals 48π2, thus 1

48π2 tr((ωMC)3) is a generator
of H3(SO(3), Z). It follows that the integral on M of 1

48π2 tr((a−1da)3) is an integer,
equal to the degree of the map a.

We see that the constant of normalization was chosen so that for different
choices of S, the Chern-Simons integral changes by some integer. In other words,
the invariant is well-defined modulo Z independently of S, and will be denoted
CS(M,g) ∈ R/Z.

5 An example

Let us compute the Chern-Simons invariant of the Lie group SO(3). Let H be
the quaternion algebra. The group of quaternions of length 1 (which is just the
sphere S3 ⊂ H) acts on H via right multiplication, preserving at the same time the
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standard Hermitian metric and the structure of complex vector space given by left
multiplication with complex numbers. We get in this way a unitary representation of
S3. By compactness, the representation lies in SU(2), and since it is clearly faithful,
it provides a Lie group isomorphism SU(2) → S3.

Conjugation by quaternions of length 1 is a real representation of S3 (which
we henceforth identify with SU(2)). It acts orthogonally on H = R

4 and preserves
the real line, thus it also preserves its orthogonal complement H

′ = R
3, the 3-

dimensional space of purely imaginary quaternions. By connectedness, it must take
values in SO(3). The kernel of this representation is the intersection of the center of
H with S3, thus it consists of {±1}. Moreover the representation is surjective since
it contains every reflection around an axis in H

′.
We have obtained a 2 : 1 covering SU(2) → SO(3) of Lie groups, with deck

group {±1} acting isometrically. Endow SO(3) with the metric g induced from this
covering.

Let

I := adi =





0 0 0
0 0 −2
0 2 0



 , J := adj =





0 0 2
0 0 0
−2 0 0



 , K := adk =





0 −2 0
2 0 0
0 0 0





(4)

be the image in the Lie algebra so(3) of the standard orthonormal basis {i, j, k} in
T1S

3 (recall that the tangent space to SO(3) at the identity can be identified with
the Lie algebra of anti-symmetric 3 × 3 matrices). We transport these vectors on
SO(3) by left translations, thus obtaining left-invariant vector fields denoted by the
same letters I, J,K. Their Lie bracket is given by:

[I, J ] = 2K, [J,K] = 2I, [K, I] = 2J.

From the Koszul formula (6) and left-invariance, we deduce

∇IJ = K, ∇JK = I, ∇KI = J.

The connection 1-form ω is thus given by

ω(I) =





0 0 0
0 0 −1
0 1 0



 , ω(J) =





0 0 1
0 0 0
−1 0 0



 , ω(K) =





0 −1 0
1 0 0
0 0 0





implying that tr(ω3) = −6dvolg. Since the coefficients of ω are constant, it follows
from the Cartan formula

dω(I, J) = −2ω(K), dω(J,K) = −2ω(I), dω(K, I) = −2ω(J).

Since tr
(

ω(I)2
)

= tr
(

ω(I)2
)

= tr
(

ω(I)2
)

= −2, it follows tr(ω ∧ dω) = 12dvolg. In
conclusion,

cs(ω) = 8dvolg.
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The volume of the sphere S3 with its standard metric is obtained as follows:

vol(S3) =

∫ π/2

−π/2
cos2(t)vol(S2)dt = 4π · π

2 = 2π2,

so vol(SO(3), g) = π2. We deduce

CS(SO(3), g) = −1
2 . (5)

Corollary 1. The Chern-Simons invariant of S3 with its standard metric vanishes

in R/Z.

Proof. The 2 : 1 covering S3 → SO(3) is an isometry, hence
∫

S3 cs(S3) =
2
∫

SO(3) cs(SO(3)). The result follows from (5).

Lemma 3. Let ωMC denote the Maurer-Cartan 1-form on SO(3), namely ωMC(X) =
X ∈ so(3) for every left-invariant vector field X. Then

tr(ω3
MC) = −48dvolg.

Proof. It follows from (4) that

tr(ωMC(I)ωMC(J)ωMC(K)) = tr(IJK) = − 8,

tr(ωMC(I)ωMC(K)ωMC(J)) = tr(IKJ) = 8.

From the trace identity, the lemma follows.

6 Conformal invariance

One of the striking properties of the Riemannian Chern-Simons invariant is its
conformal invariance: the invariant does not change (modulo Z) when the metric
varies in a fixed conformal class.

Theorem 1. Let (M,g) be a closed oriented Riemannian 3-fold, and f ∈ C∞(M, R)
an arbitrary conformal factor. Then

CS(M,g) = CS(M,e2f g).

Proof. For t ∈ R set gt := e2tfg, thus in particular g0 = g. Fix an orthonormal frame
S = (S1, S2, S3) on (M,g), and define St

j := e−tfSj, j = 1, 2, 3. Then (St
1, S

t
2, S

t
3)

form an orthonormal frame on (M,gt). Starting from the Koszul formula

2〈∇XY,Z〉 = X〈Y,Z〉 + Y 〈X,Z〉 − Z〈X,Y 〉

+ 〈[X,Y ], Z〉 + 〈[Z,X], Y 〉 + 〈[Z, Y ],X〉,
(6)

we deduce that the Levi-Civita connections of g1 = e2fg and that of g differ by

∇1
XY −∇XY = X(f)Y + Y (f)X − 〈X,Y 〉ggrad

g(f).
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for every vector fields X,Y . We apply this identity to deduce

〈∇1
XS1

j , S1
i 〉g1 = 〈∇XSj, Si〉 + 〈Sj(f)Si,X〉 − 〈Si(f)Sj,X〉.

In other words, if we identify vectors and 1-forms using the metric g, we express the
connection 1-form of ∇1 in the frame S1 as

ω1 = ω + α

where

αij(X) = 〈Sj(f)Si − Si(f)Sj ,X〉.

Applying this identity to gt, we get ωt = ω + tα. From Lemma 1 with ω̇ = α,
we obtain

d
dtcs(ω

t)|t=0 = dtr(α ∧ ω) + 2tr(α ∧ R) (7)

where R ∈ Λ2(M, so(3)) is the Riemannian curvature tensor written in the frame S.

Lemma 4. The trace tr(α ∧ R) vanishes.

Proof. Let (k, h, l) ∈ Σ(3)+ denote even permutations of {1, 2, 3}. We write

tr(α ∧ R) = dvolg
∑

(k,h,l)∈Σ(3)+

3
∑

i,j=1

αji(Sk)Rhlij.

But αji(Sk) = Si(f)δkj − Sj(f)δki, hence

tr(α ∧ R) = dvolg
∑

(k,h,l)∈Σ(3)+





3
∑

i=1

Si(f)Rhlik −

3
∑

j=1

Sj(f)Rhlkj



 .

Both terms vanish by the first Bianchi identity (see [3, Prop. 1.85d]).

By this lemma, (7) can be rewritten

d
dtcs(ω

t)|t=0 = dtr(α ∧ ω).

Now apply this to ωt instead of ω. We have seen that dωt

dt = α is independent of t.
Therefore the identity

d
dtcs(ω

t) = dtr(α ∧ ωt)

is valid for all t. Moreover, tr(α∧α) = 0 and so finally we deduce dcs(ωt)
dt = dtr(α∧ω).

This is independent of t, and by integrating from 0 to 1 we get cs(ω1) = cs(ω) +
dtr(α ∧ ω). The theorem is a direct consequence of Stokes’ formula.
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7 First-order variation of the Chern-Simons invariant

Recall the definitions of the Cotton form, respectively tensor, on a Riemannian
3-manifold (M,g):

cott = d∇Sch, Cott = ∗cott.

Let L2 denote the Hilbert space of square-integrable symmetric 2-tensors on M with
respect to the scalar product and the volume form induced by g.

Theorem 2. Let Ω := dω + ω ∧ ω ∈ Λ2(M, so(3)) denote the curvature form of g
in the frame S. Let (gt)t∈R be a 1-parameter family of Riemannian metrics, and

denote by ġ := d
dtg

t
|t=0 its first-order variation. Then

.

CS := d
dtCS(M,gt)|t=0 = − 1

8π2 〈ġ,Cott〉L2 = − 1
8π2

∫

M
〈ġ,Cott(g)〉gdvolg.

Proof. We first construct a smooth family (St)t∈R of global frames on M such that
St is orthonormal for gt. For this, consider the metric gZ := dt2 +gt on Z := R×M ,
and set St to be the parallel transport along the segment [0, t] of the frame S0 := S.
A direct computation shows that the lines R×{p} are geodesics for gZ for all p ∈ M ,
thus St is indeed an orthonormal frame in the slice {t} × M .

Let ωt be the connection 1-form of gt in the frame St, and set ω̇ := dωt

dt |t=0.
Applying Lemma 1 and interchanging the integral on M with the t-differential, we
find

−16π2
.

CS = 2

∫

M
tr(ω̇ ∧ Ω).

Let X ∈ V(M) be a vector field on M , extended on Z to be constant in the t
direction, in other words LT X = 0 or equivalently [T,X] = 0 where we denote
T := ∂

∂t . Then

ω̇ij(X) = ∂tg
t(∇t

XSt
j , S

t
i ) = ∂tg

Z(∇Z
XSt

j, S
t
i ) = 〈∇Z

T∇
Z
XSt

j, S
t
i 〉 = 〈RZ

TXSt
j , S

t
i 〉.

We used above the fact that ∇Z
T St

j = 0 (by construction of St
j) and the commutation

of T and X. From the symmetries of the Riemannian curvature, we get

ω̇ij = RZ
Sj ,Si

T

(we identify vectors and 1-forms using the metric g). Let W be the Weingarten
operator of {0} × M →֒ Z. By the Codazzi-Mainardi equation [3, 1.72d],

RZ
Sj ,Si

T = d∇W (Sj, Si)

or equivalently RZT = d∇W as vector-valued 2-forms. The operator W , essentially
the second fundamental form, can be computed in terms of the first variation h of
gt, namely

W = g−1II = 1
2g−1ġ.
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It follows that ω̇ = 1
2d∇ġ, where d∇ġ is viewed as a so(3)-valued 1-form using the

basis S. Since the trace is independent of the basis,

−16π2
.

CS =

∫

M
tr(d∇ġ ∧ R)

where R is the Riemannian curvature tensor viewed as a section in Λ2(M) ⊗
End(TM), and d∇ġ is viewed as a section in End(TM) ⊗ Λ1(M). Using the sym-
metry of R, this becomes

−2

∫

M
〈d∇ġ, ∗34R〉dvolg,

where the Hodge star operator ∗34 acts on the last two positions in R. By definition
of the adjoint operator, this equals

−2〈ġ, d∇
∗
∗34 R〉L2 .

Now the adjoint of d∇ on 2-forms with values in T ∗M is just − ∗12 d∇∗12, thus

−16π2
.

CS = 2〈ġ, ∗12d
∇ ∗12 ∗34R〉L2 .

The 2-tensor ∗12 ∗34 R is easily computed:

∗12 ∗34 R = Ric − scal

2 g =: Q = Sch − scal

4 g.

We remark that h is symmetric but d∇
∗
∗34 R is not necessarily so. Of course, the

skew-symmetric component of d∇
∗
∗34 R will not contribute towards ˙CS since h is

symmetric. Thus,

−8π2
.

CS = 〈ġ, (∗12d
∇ ∗12 ∗34R)sym〉L2 = 〈ġ, (∗12d

∇Q)sym〉L2 .

We now claim that (∗12d
∇Q)sym = ∗12d

∇Sch = Cott. This means two things:

• ∗12d
∇Sch is symmetric;

• ∗12d
∇(scal · g) is skew-symmetric.

For any function f , ∗12d
∇(fg) = ∗df is a 2-form, so the second fact is evident. As

for the first, we use the identity [3, 1.94]

tr13d
∇Sch = d∇

∗
(Ric − scal

2 g) = 0,

where tr13 denotes trace with respect to g on positions {1, 3}. Take (i, j, k) to be a
cyclic permutation of (1, 2, 3). Then

0 = (tr13d
∇Sch)(Sk) = d∇Sch(Si, Sk, Si) + d∇Sch(Sj , Sk, Sj),

which is equivalent (by immediate algebraic considerations) to the desired symmetry

∗12d
∇Sch(Si, Sj) = ∗12d

∇Sch(Sj, Si).
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8 Properties of the Cotton tensor

Let (M◦, g◦) be a Riemannian 3-manifold, not necessarily compact. Then every
point x ∈ M◦ has a neighborhood which can be isometrically embedded in some
compact manifold (M,g). We will prove below some local properties of the Cotton
tensor of (M,g), which are therefore shared by Cott(M◦, g◦).

Proposition 2. The Cotton tensor ∗d∇Sch is symmetric.

Proof. This was shown in the last part of the proof of Theorem 2.

Proposition 3. The Cotton tensor is trace-free.

Proof. Let f ∈ C∞(M, R) be arbitrary, and set gt := e2tf g. Its first-order variation
at t = 0 is given by 2fg. By conformal invariance, CS(M,gt) is constant in time.
On the other hand, by Theorem 2, we get

0 = 16π2 dCS(M,gt)

dt
|t=0 = 〈2fg,Cott(g)〉 = 2

∫

M
ftr(Cott(g))dvolg.

This means that tr(Cott(g)) is L2-orthogonal on every smooth function on M , hence
it must vanish identically.

Proposition 4. The Cotton tensor is divergence-free, i.e., d∇
∗
Cott(g) = 0.

Proof. Let X ∈ V(M) be a vector field, and φt the 1-parameter group of diffeomor-
phisms obtained by integrating X on M . Set gt := φ∗

t g, so in particular ġ = LXg.
Since g and gt are isometric, it is rather evident that CS(M,gt) = CS(M,g). By
Theorem 2 we deduce that 〈LXg,Cott(g)〉L2 = 0. But LXg = 1

2(d∇X)sym, so by

Proposition 2 and the definition of the adjoint, 〈LXg,Cott(g)〉 = 1
2 〈X, d∇

∗
Cott〉.

Hence d∇
∗
Cott is L2-orthogonal to every vector field X, so it must vanish identi-

cally.

Proposition 5. The Cotton tensor is conformally covariant, in the sense that for

every f ∈ C∞(M), we have

Cott(e2fg) = e−fCott(g).

The Cotton form cott = d∇Sch is conformally invariant:

cott(e2f g) = cott(g).

Proof. Let h be any symmetric 2-tensor, and choose a family gt of metrics with
ġ = h, for instance gt = g + th for small t. By conformal invariance of the Chern-
Simons invariant, CS(M,e2fgt) = CS(M,gt) so their first variations in t = 0 must
be equal. Therefore by Theorem 2, 〈e2fh,Cott(e2fg)〉L2(e2f g) = 〈h,Cott(g)〉L2(g), or
equivalently

〈efh,Cott(e2f g)〉L2(g) = 〈h,Cott(g)〉L2(g).
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Since h was arbitrary, we deduce that efCott(e2fg) = Cott(g). Using the obvious
rescaling properties of the Hodge star operator under conformal transformations in
dimension 3 acting on 1-forms, we deduce that the Cotton forms of g and e2fg are
equal.

These four propositions can of course be proved directly from the definitions, by
local computations. We hope nevertheless that the reader will admit the qualitative
advantage of proving properties of the Cotton tensor via Chern-Simons invariants.
The difficulty of the proof was hidden in the definition and properties of the latter,
but in exchange we gain a superior insight for the properties of the former.

9 Conformal immersions in R4

Theorem 3. Let (M,g) be a closed oriented Riemannian 3-manifold and assume

there exists a conformal immersion ı : M → R
4. Then the Chern-Simons invariant

CS(M,g) vanishes.

Proof. Since the Chern-Simons invariant is conformally invariant, by replacing g
with ı∗gR

4
we can assume that ı is an isometric immersion. Let N : M → S3 be the

Gauss map of the immersion, i.e., N(x) is the unit normal to ı∗(TxM) chosen such
that if (S1, S2, S3) is an oriented frame in TxM , then (N(x), S1, S2, S3) is positively
oriented in R

4. We identify R
4 with the quaternion algebra as in Section 5. For

every point η ∈ S3, consider the orthonormal frame in TηS
3

U1 = iη, U2 = jη, U3 = kη.

Similarly, for every x ∈ M consider the orthonormal frame in TxM

S1 = ı−1
∗ (iN(x)), S2 = ı−1

∗ (jN(x)), S3 = ı−1
∗ (kN(x)).

We claim that in these frames, the connection 1-forms on S3 and on M are related
by

N∗ωS3
= ωM . (8)

This is a local statement so we can assume that M is a hypersurface in R
4. Notice

that for every x ∈ M , we have Si(x) = Ui(N(x)), i = 1, 2, 3. Let X ∈ TxM be a
vector tangent to a curve γ in M with x = γ(0). Then using the definition of the
Levi-Civita connection for hypersurfaces, we get

〈∇M
X S1, S2〉 = 〈∂tS1(γ(t)), S2〉 = 〈i∂tN(γ(t)), jNx〉,

〈∇S3

N∗XU1, U2〉 = 〈∂tU1(N(γ(t))), U2〉 = 〈i∂tN(γ(t)), jNx〉

so ωM
21 (X) = ωS3

21 (N∗X). The same arguments for the other pairs of indices end the
proof of (8). Then by definition, the Chern-Simons forms on M and S3 are related
by

N∗cs(S3, U) = cs(M,S).

It follows that CS(M,g) = deg(N)CS(S3) is an integer, by Corollary 1 (where
deg(N) ∈ Z is the topological degree of the Gauss map N : M → S3).
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In particular, it follows from this theorem and (5) that SO(3) cannot be confor-
mally immersed in R

4, although it is locally isometric to S3 ⊂ R
4.

10 Locally conformally flat metrics

We end our excursion into Cotton territory by solving the lcf (locally conformally
flat) problem in dimension 3:

When does a Riemannian metric g on a 3-manifold M admit, for every

x ∈ M , a conformal factor f ∈ C∞(V ) defined on some neighborhood

V ∋ x such that e2fg is flat?

From Proposition 5, one necessary condition for a positive answer is the vanish-
ing of the Cotton tensor Cott = ∗d∇Sch, where Sch is the Schouten tensor. The
following result is due to Émile Cotton [5].

Theorem 4. A Riemannian metric g on a 3-manifold M is locally conformally flat

if and only if its Cotton tensor Cott(g) vanishes.

The Cotton tensor and the Cotton form are obtained from one another through
the Hodge star, so they vanish simultaneously. In dimension 3 the Schouten tensor
determines completely the curvature tensor since for every vectors U, V,X we have
(see [3, 1.119b])

RU,V X = 〈X,V 〉Sch(U) + 〈Sch(X), V 〉U − 〈Sch(X), U〉V − 〈U,X〉Sch(V ), (9)

or in other words

RX = −X ∧ Sch − Sch(X) ∧ g. (10)

Moreover, Sch and Ric determine one another, since tr(Sch) = scal(g)/4. Hence g
is conformally flat if and only if it is conformally Schouten-flat.

Proof. Take g1 = e2fg for some f ∈ C∞(M). We know by Proposition 5 that
cott = cott1. Thus, if cott1 = 0 it follows that cott = 0.

Conversely, recall from [3, 1.159] the formula for the conformal change of the
Schouten tensor: if we set X := df ,

Sch − Sch1 = ∇X − X ⊗ X + 1
2 |X|2g. (11)

Suppose that we can solve locally the equation in the unknown X

Sch = ∇X − X ⊗ X + 1
2 |X|2g (12)

for some vector field X (identified to a 1-form using g). Then the term ∇X is
symmetric, hence X must be closed. From the Poincaré lemma, X is locally exact,
thus there exists (locally) a function f with X = df . By combining (11) and (12),
the metric g1 := e2fg will be Schouten-flat. Thus, in order to finish the proof it is
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enough to show that the equation (12) is locally solvable under the assumption that
cott = 0.

Rewrite (12) as the overdetermined system

∇X = Sch + X ⊗ X − 1
2 |X|2g (13)

and apply the twisted exterior differential d∇ in both sides. We get

RX = cott + d∇(X ⊗ X − 1
2 |X|2g) (14)

where R is the curvature tensor. Using (13), the fact that X is closed and g is
parallel, we compute

d∇(X ⊗ X − 1
2 |X|2g) = − X ∧∇X − 〈∇X,X〉 ∧ g

= − X ∧ Sch + 1
2 |X|2X ∧ g

− Sch(X) ∧ g − |X|2X ∧ g + 1
2 |X|2X ∧ g

which, substituting in (14) and using the assumption cott = 0, reduces to the con-
straint

RX = − X ∧ Sch − Sch(X) ∧ g

already noted above (10). Thus the system (12) is involutive, so by the Frobenius
theorem it is locally integrable. For completeness, let us prove this integrability by
hand, without invoking the Frobenius theorem.

Choose local coordinates x1, x2, x3 in M , and for j = 1, 2, 3 denote by ∂j = ∂
∂xj

the coordinate vector fields. We fix X(0), and extend X along the axis {x2 = x3 = 0}
in a neighborhood of the origin by solving the equation (13) in the direction of ∂1:

∇∂1X = Sch(∂1) + 〈X,∂1〉X − 1
2 |X|2∂1. (15)

This is an ODE with smooth coefficients, hence the solution X(t, 0, 0) exists for
small time t and is uniquely determined by the initial value X(0). Now for every t,
extend X along the lines {x1 = t, x3 = 0} using the ODE obtained from (13) in the
direction of ∂2:

∇∂2X = Sch(∂2) + 〈X,∂2〉X − 1
2 |X|2∂2. (16)

Again, the solution X(t, s, 0) exists for small time s, depends smoothly on the pa-
rameter t and on the variable s, and is uniquely determined by the values of X
in (t, 0, 0). Finally, we extend X along the lines {x1 = t, x2 = s} using (13) in the
direction of ∂3. This defines a smooth vector field X in a neighborhood of the origin,
but we must still prove that (13) is satisfied.

By construction we know (15) only at points of the form (t, 0, 0), and (16) only
on the plane x3 = 0. Let us prove that (15) holds on the plane {x3 = 0}. For this,
set

A := ∇∂1X − (Sch(∂1) + 〈X,∂1〉X − 1
2 |X|2∂1). (17)
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Since (15) is valid at (t, 0, 0) we know that A(t, 0, 0) = 0 for every t.
The fact that the system (12) is involutive should imply that A satisfies a linear

system of ODE’s in the direction of x2. Explicitly we compute using (16) repeatedly:

∇∂2A = ∇∂2∇∂1X −∇∂2Sch(∂1) − ∂2〈X,∂1〉X − 〈X,∂1〉∇∂2X

+ 〈∇∂2X,X〉∂1 + 1
2 |X|2∇∂2∂1.

Now use ∇∂2∇∂1X = R∂2∂1X +∇∂1∇∂2X and d∇Sch = cott = 0. We get from (16)

∇∂2A = R∂2∂1X + ∇∂1

(

Sch(∂2) + 〈X,∂2〉X − 1
2 |X|2∂2

)

−∇∂2Sch(∂1)

− ∂2〈X,∂1〉X − 〈X,∂1〉∇∂2X + 〈∇∂2X,X〉∂1 + 1
2 |X|2∇∂2∂1

= R∂2∂1X + dX(∂1, ∂2)X + 〈X,∂2〉∇∂1X − 〈X,∂1〉∇∂2X

− 〈∇∂1X,X〉∂2 + 〈∇∂2X,X〉∂1.

Substitute ∇∂2X and ∇∂1X in the equation above, using (16) and (17):

∇∂2A = R∂2∂1X + dX(∂1, ∂2)X + 〈X,∂2〉A − 〈A,X〉∂2

+ 〈X,∂2〉Sch(∂1) − 〈X,∂1〉Sch(∂2)

− 〈Sch(∂1),X〉∂2 + 〈Sch(∂2),X〉∂1

= dX(∂1, ∂2)X + 〈X,∂2〉A − 〈A,X〉∂2

where in the last equality we have used (9). From (17), (16) and the symmetry of
the Schouten tensor,

dX(∂1, ∂2) = 〈∇∂1X,∂2〉 − 〈∇∂2X,∂1〉 = 〈A, ∂2〉.

Hence we get
∇∂2A = 〈A, ∂2〉 + 〈X,∂2〉A − 〈A,X〉∂2 = L(A) (18)

where L is an endomorphism of TM . Therefore the vector field A is a solution of
the linear ODE (18) in the variable x2, with zero initial values, hence it vanishes
identically.

By precisely the same argument applied to the pairs of variables {x1, x3} and
{x2, x3}, we see that (15) and (16) continue to hold at every point (t, s, x3). This
means that X is a solution to (13) as claimed.

From the proof, it appears that X is closed, and uniquely determined by the
initial value X(0). Therefore the conformal factor f , the primitive of X, is uniquely
determined by four parameters, its value and its differential at 0. These 4 degrees
of freedom arise from the fact that locally on R

3, the Lie algebra of conformal
Killing vector fields has dimension 10, while the subalgebra of Killing vector fields
has dimension 6.

11 Links with other invariants

We survey below two beautiful mathematical objects related to the Chern-Simons
invariant. This section is of course no longer self-contained.
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11.1 The eta invariant

The Chern-Simons invariant is strongly related to the eta invariant of the odd
signature operator on M . The eta invariant is a real-valued invariant of closed
oriented 3-manifolds, initially introduced by Atiyah, Patodi and Singer [2] as a
correction term in Hirzebrich’s signature formula on a 4-manifold with boundary.
It can be defined for every elliptic self-adjoint differential operator A acting on the
sections of some vector bundle E, but its construction is non-elementary: one needs
to understand the spectrum of A, which is the discrete subset of R of eigenvalues
(with multiplicity) of A viewed as a self-adjoint unbounded operator in L2(M,E).
The non-zero part of the spectrum is denoted Spec(A)∗.

The eta function, a meromorphic function in the variable z ∈ C, is defined for
ℜ(z) > 3 by the absolutely convergent series

η(A; z) = dimker(A) +
∑

λ∈Spec(A)∗

sign(λ)|λ|−z .

The eigenvalues of A grow sufficiently fast to ensure absolute convergence in a half-
plane, for instance if A is of order 1, then the series defining η(A, z) is absolutely
convergent for ℜ(z) > 3. The function thus obtained extends to C with possible
simple poles in z ∈ {2,−2,−4,−6, . . .}, in particular z = 0 is a regular point, and
η(A) is by definition that regular value.

When A is the self-adjoint odd signature operator acting on Λ1(M) ⊕ Λ3(M),

A := ∗d − d∗

(here ∗ is the Hodge star defined in (3)), the resulting eta invariant is denoted
η(M,g) to highlight its dependence on the metric.

Theorem 5 ([2]). Modulo Z, the following equality holds:

3η(M,g) ≡ 2CS(M,g) mod Z.

The proof relies on the signature formula of Atiyah, Patodi and Singer [1] on an
oriented 4-manifold X with boundary M :

signature(X) = − 1
24π2

∫

X
tr((RX)2) − η(M,g).

Here signature(X) ∈ Z is the signature of the intersection form on the relative
cohomology H2(X,M ; R), defined as the difference of the dimensions of maximal
subspaces in H2(X,M ; R) along which the intersection form is positive, respectively
negative definite. The metric gX on X is of product type near the boundary, in the
sense that Lνg

X = 0 for ν the geodesic vector field with respect to gX orthogonal
to M (here Lν denotes Lie derivative). Moreover, gX restricts to g on M .

We only care about the right-hand side of the signature formula modulo integers:

η(M,g) + 1
24π2

∫

X
tr((RX)2) ∈ Z. (19)
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Recall that for every orthonormal frame S on M , we have by definition

CS(M,g) + 1
16π2

∫

M
cs(M,g, S) ∈ Z. (20)

To give the idea of the proof of Theorem 5, suppose that we can find X a compact
oriented four-manifold bounded by M (this is always possible by a result of Thom [10]
about the oriented cobordism ring). Extend g to a metric gX on X, and suppose that
S completed with the inner unit normal vector field can be extended to a frame SX

on X (this is not always possible, for topological reasons). Nevertheless, whenever
these assumptions are fulfilled, write using Stokes’ formula and Lemma 2

∫

M
cs(M,g, S) =

∫

X
tr((RX)2).

This equality holds for instance when X is a cylinder, with diffeomorphic boundary
components (M,g), (M ′, g′) with opposite orientations. Keeping g′ fixed and using
(19), (20), we see that 3

2η(M,g) − CS(M,g) is constant (modulo Z) on the space
of Riemannian metrics on M . That constant is shown in [2] to be either 0 or 1

2 ,
according to the parity of signature(X) if we choose the filling manifold X to be
Spin (using the vanishing of the Spin cobordism group in dimension 3).

11.2 The Selberg zeta function

Assume (M,g) is hyperbolic, i.e., its sectional curvatures are constant and equal
to −1. As above, M is supposed to be compact and orientable. Then M is isometric
to a quotient Γ\H3, where H

3 is the hyperbolic 3-space, and Γ ⊂ PSL(2, C) is a
discrete subgroup of oriented isometries (i.e., a Kleinian group) consisting only of
loxodromic elements: every non-trivial element of Γ is conjugated in PSL(2, C) to a

matrix of the form

[

vγ 0
0 v−1

γ

]

with |vγ | < 1, where of course vγ and its inverse are the

eigenvalues of the matrix γ. The complex number qγ := v2
γ is called the multiplier of

γ, corresponding to the fact that the action of γ on the Riemann sphere (the ideal
boundary of H

3) is conjugated to the multiplication by qγ .
Closed geodesics in M are in one-to-one correspondence with (non-trivial) con-

jugacy classes in Γ ≃ π1(M). A geodesic cγ coresponding to a conjugacy class [γ]
determines thus the multiplier qγ = e−(lγ+iθγ). Viewed geometrically, lγ is the length
of cγ , while eiθγ is the holonomy along c[γ]. Both quantities are expressible in terms
of the trace tr(γ) = vγ + v−1

γ ∈ C.
The Selberg zeta function of odd type was defined by Millson [7] as an infinite

product over the set P of primitive conjugacy classes of Γ (an element in Γ is said
to be primitive if it is not a nontrivial power of another element). The definition is
a particular case of a construction from Selberg’s foundational paper [8]:

ZΓ(λ) =
∏

[γ]∈P

∞
∏

m,n=0

1 − qm
γ (qγ)n+1e−λlγ

1 − qm+1
γ (qγ)ne−λlγ

.
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The product is absolutely convergent in the half-plane {ℜ(λ) > 0}, and has a
meromorphic extension to the whole complex plane. Like the Riemann zeta function,
the Selberg zeta function displays a symmetry around 0 (moreover, it is known to
have zeros only on the imaginary axis). The central value ZΓ(0) can be interpreted
heuristically as the divergent product

ZΓ(0) =
∏

[γ]∈P

∏

n≥1

1 − (qγ)n

1 − qn
γ

.

Theorem 6 (Millson). The central value of the Selberg zeta function of odd type on

a 3-dimensional hyperbolic manifold M = Γ\H3 is related to the eta invariant by the

identity

exp(iπη(M)) = ZΓ(0).
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1 Introduction and Preliminaries

Let m be a positive integer. The problem of finding such integers d−, d
(0 ≤ d− ≤ d < m) that the product of binomial coefficients

C(d−, d) =

(

m

d−

)(

d

d−

)(

2m − d− − d − 1

m − d − 1

)

(1)

is large, appears in the following two cases.

1. AKS primality proving algorithm optimization.
Efficient primality tests (determining whether a given number is prime or com-

posite) are needed in applications: a number of cryptographic protocols use big
prime numbers.

In 2002 M. Agrawal, N. Kayal and N. Saxena [1] presented a deterministic poly-
nomial time algorithm AKS that determines whether an input number n is prime or
composite. It was proved [3] that AKS algorithm runs in (log n)7.5+o(1) time. Sig-
nificantly modified versions of AKS [3, 4] are also known with (log n)4+o(1) running
time. The algorithm in [3] uses a notion of certificate for an integer n. It is proved
that if we have found the certificate for an integer, then this integer is a power of a
prime. Then it is easy to decide if the integer is prime. During the certificate finding
an essential point is to verify an inequality, for which it is necessary to calculate an
expression of the form (1). We choose numbers d−, d to construct the certificate.

2. Construction of high multiplicative order elements for finite field extensions.
The problem of constructing efficiently a primitive element for a given finite

field is notoriously difficult in the computational theory of finite fields. That is why
one considers less restrictive question: to find an element with high multiplicative
order [8, 9]. It is sufficient in this case to obtain a lower bound on the order. High
order elements are needed in several applications. Such applications include but are

c© Roman Roman B. Popovych, 2015
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not limited to cryptography, coding theory, pseudorandom number generation and
combinatorics. The problem is considered both for general and special finite fields.

General extensions are considered in [7,13]. For special finite fields, it is possible
to construct elements which can be proved to have much higher orders. Extensions
connected with a notion of Gauss period are considered in [2,10]. Extensions based
on Kummer polynomials are considered in [5, 6, 11].

Fq denotes finite field with q elements. According to [6, Lemma 2.1] we have the
following lemma for extensions on a base of Kummer polynomials.

Lemma 1. Let q be a prime power. Let m be a positive divisor of q− 1. Let xm −a
(a ∈ F ∗

q ) be an irreducible polynomial in Fq and θ be one of its roots in the extension

Fqm = Fq[x]/(xm − a). Then for any b ∈ Fq the element θ + b has the multiplicative

order at least D = max
0≤d−≤d<m

C(d−, d).

One can see that the product of the form (1) is present in Lemma 1. Therefore,
the problem of product (1) maximization is important. It is shown in [3] that
approximately for d ≈ m/2 and d− ≈ 0, 2928m we have C(d−, d) ≈ 5, 8284m. Note
that the value 5, 8284m is not a lower bound on D, but only some approximate value.
Indeed, consider the following numerical examples.

For m = 37, maximum D is achieved at d− = 10, d = 17 and is equal to
D = C(10, 17) ≈ 2, 81 · 1025 . We do not compute precise integer value of D, because
we only need to compare it with (5, 8284)37 = 2, 12 · 1028. For m = 511, we have
D = C(149, 254) ≈ 4, 17 · 10386. At the same time, (5, 8284)511 = 1, 57 · 10391.

From the point of view of applications (in particular, cryptography) an exact
theoretical lower bound on D is desired. We give in the paper such explicit lower
bound on maximum of the product (1) of binomial coefficients. In particular, bounds
on binomial coefficients from [12] are used. The following inequality for binomial
coefficients has been obtained in [12, Theorem 2.8, inequality (2.12)].

Lemma 2. If r, s, t are integers with the conditions s > r ≥ 1 and t ≥ 2, then
(

st

rt

)

> (1/
√

2π) · er−1/(8t) · t−1/2 ss(t−1)+1

(s − r)(s−r)(t−1)−r+1 · rrt+1/2
. (2)

For r = 1 we have the following corollary from inequality (2) [12, Corollary 2.9,
inequality (2.13)].

Corollary 1. For s > 1 and t ≥ 2 the following inequality holds:
(

st

t

)

> (1/
√

2π) · e1−1/(8t) · t−1/2 ss(t−1)+1

(s − 1)(s−1)(t−1)
. (3)

Lemma 3. The following equalities are true for binomial coefficients:
(

u

v

)

=
u

u − v

(

u − 1

v

)

, (4)

(

u

v

)

=
u

v

(

u − 1

v − 1

)

. (5)
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Proof. To prove (4) note that
(u
v

)

= (u−v+1)·...·u
1·2·...·v and

(u−1
v

)

= (u−v)·...·(u−1)
1·2·...·v . The

observation that
(u−1
v−1

)

= (u−v+1)·...·(u−1)
1·2·...·(v−1) allows to prove (5).

2 Main result

We give below in Theorem a lower bound on the maximum D of the product (1)
of binomial coefficients. The proof of the theorem uses inequalities (2) and (3) from
respectively Lemma 2 and Corollary 1.

Theorem 1. Put h = 4 · 55/4/33/2. For m ≥ 8 the following lower bound holds:

D >
hm

30m3/2
. (6)

Proof. Take k = m mod 4, d− = (m − k)/4, d = (m − k)/2. Show first that for
k ∈ {0, 1, 2, 3}

(

m

d−

)

=

(

m

(m − k)/4

)

> β(k)

(

m − k

(m − k)/4

)

, (7)

where β(0) = 1, β(1) = 32
25 , β(2) = 16·14

13·11 , β(3) = 32· 28·24
27·23·19 .

β(0) = 1 is clear. For k = 1, apply (4) to the left side of (7):

(

m

(m − 1)/4

)

=
4m

3m + 1

(

m − 1

(m − 1)/4

)

.

Since, for m ≥ 8, the inequality 4m
3m+1 ≥ 32

25 holds, we have the above-mentioned

β(1). For k = 2, apply (4) subsequently 2 times:

(

m

(m − 2)/4

)

=
4m

3m + 2

(

m − 1

(m − 2)/4

)

,

(

m − 1

(m − 2)/4

)

=
4(m − 1)

3(m − 1) + 1

(

m − 2

(m − 2)/4

)

.

As, for m ≥ 8, the conditions 4m
3m+2 ≥ 16

13 , 4(m−1)
3(m−1)+1 ≥ 14/11 are true, we have the

foresaid β(2). For k = 3, apply (4) subsequently 3 times:

(

m

(m − 3)/4

)

=
4m

3m + 3

(

m − 1

(m − 3)/4

)

,

(

m − 1

(m − 3)/4

)

=
4(m − 1)

3(m − 1) + 2

(

m − 2

(m − 3)/4

)

,

(

m − 2

(m − 3)/4

)

=
4(m − 2)

3(m − 2) + 1

(

m − 3

(m − 3)/4

)

.

Since, for m ≥ 8, the inequalities 4m
3m+3 ≥ 32

27 , 4(m−1)
3(m−1)+2 ≥ 28

23 and 4(m−2)
3(m−2)+1 ≥ 24

19

hold, we obtain the aforementioned β(3).
Show now that

(

2m − d− − d − 1

m − d − 1

)

=

(

2m − 3(m − k)/4 − 1

m − 2(m − k)/4 − 1

)

> δ(k)

(

5(m − k)/4

2(m − k)/4

)

, (8)
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where δ(0) = 1
3 , δ(1) = 39

25 , δ(2) = 21·19·17
8·13·11 , δ(3) = 5·41·37·33·29

2·14·27·23·19 .

For k = 0, apply (5) to the left side of (8):

(

5m/4 − 1

2m/4 − 1

)

=
2m/4 − 1

5m/4 − 1

(

5m/4

2m/4

)

.

As, for m ≥ 8, the condition 2m/4−1
5m/4−1 ≥ 3

9 is true, we have δ(0) = 1
3 . For k = 1, apply

the equality (4):

(

5(m − 1)/4 + 1

2(m − 1)/4

)

=
5(m − 1)/4 + 1

3(m − 1)/4 + 1

(

5(m − 1)/4

2(m − 1)/4

)

.

Since, for m ≥ 8, the inequality 5(m−1)/4+1
3(m−1)/4+1 ≥ 39

25 holds, we have the aforesaid δ(1).

For k = 2, first apply (5):

(

5(m − 2)/4 + 3

2(m − 2)/4 + 1

)

=
5(m − 2)/4 + 3

2(m − 2)/4 + 1

(

5(m − 2)/4 + 2

2(m − 2)/4

)

.

Then apply (4) subsequently 2 times:

(

5(m − 2)/4 + 2

2(m − 2)/4

)

=
5(m − 2)/4 + 2

3(m − 2)/4 + 2
·
5(m − 2)/4 + 1

3(m − 2)/4 + 1

(

5(m − 2)/4

2(m − 2)/4

)

.

For m ≥ 8, since 5(m−2)/4+3
2(m−2)/4+1 ≥ 21

8 , 5(m−2)/4+2
3(m−2)/4+2 ≥ 19

13 and 5(m−2)/4+1
3(m−2)/4+1 ≥ 17

11 are true,

we obtain the foregoing δ(2). For k = 3, first apply (5) 2 times:

(

5(m − 3)/4 + 5

2(m − 3)/4 + 2

)

=
5(m − 3)/4 + 5

2(m − 3)/4 + 2
·
5(m − 3)/4 + 4

2(m − 3)/4 + 1

(

5(m − 3)/4 + 3

2(m − 3)/4

)

.

Then apply (4) subsequently 3 times:

(

5(m − 3)/4 + 3

2(m − 3)/4

)

=
5(m − 3)/4 + 3

3(m − 3)/4 + 3
·
5(m − 3)/4 + 2

3(m − 3)/4 + 2
·
5(m − 3)/4 + 1

3(m − 3)/4 + 1

(

5(m − 3)/4

2(m − 3)/4

)

.

For m ≥ 8, since 5(m−3)/4+5
2(m−3)/4+2 ≥ 5

2 , 5(m−3)/4+4
2(m−3)/4+1 ≥ 41

14 , 5(m−3)/4+3
3(m−3)/4+3 ≥ 37

27 , 5(m−3)/4+2
3(m−3)/4+2 ≥

33
23 and 5(m−3)/4+1

3(m−3)/4+1 ≥ 29
19 hold, we have the forementioned δ(3).

Combining (7) and (8), we obtain that for k ∈ {0, 1, 2, 3} and n = m − k the
following inequality holds

D > β(k)δ(k)

(

n

n/4

)(

n/2

n/4

)(

5n/4

2n/4

)

. (9)

Now we give, using inequalities (2) or (3), lower bounds on each binomial coeffi-
cient on the right side of (9). Applying the inequality (2) to the first coefficient on
the right side of (9) (in this case t = n/4, s = 4), we have:
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(

n

n/4

)

> (1/
√

2π) · e1−1/(2n)(n/4)−1/2 4n−3

33n/4−3
. (10)

Note, that t ≥ 2 must hold, that is m − k ≥ 8, and if k = 0, then m ≥ 8. Applying
the inequality (2) to the second coefficient (in this case t = n/4, s = 2), we have:

(

n/2

n/4

)

> (1/
√

2π) · e1−1/(2n)(n/4)−1/22n/2−1. (11)

Applying the inequality (3) to the third coefficient (in this case t = n/4, s = 5,
r = 2), we have:

(

5n/4

2n/4

)

>
1

√
2π

· e2−1/(2n)(n/4)−1/2 55n/4−4

2n/2−4 · 33n/4+1/2
. (12)

Substituting the inequalities (10), (11), (12) in the inequality (9), and taking into
account that 1

e3/(2(m−k)) ≥ 1
e3/(2(m−3)) , 1 < e3/(2(m−3)) < 1, 35 for m ≥ 8, 1

(m−k)3/2 ≥
1

m3/2 , we obtain the bound

D >
37 · e4

105 · π3/2 · 1, 35
·
β(k)δ(k)

hk
·

hm

m3/2
. (13)

Since 37·e4

105·π3/2·1,35
> 0, 1588, minimal value for β(k)δ(k)

hk is at k = 3 and equals to 0,21,

the last inequality is transformed into the bound (6).

Obtained lower bound (6) on the product (1) of binomial coefficients is exact
theoretical bound and comparable with the corresponding value from [3]. Taking
into account in (6) that 5, 7556 < 4 · 55/4/33/2 < 5, 7557, we have the following
corollary.

Corollary 2. For m ≥ 8 the following inequality holds: D > 5,7556m

30m3/2 .

Clearly for big enough m the main contribution on the right side of the last inequality
is given by the term (5, 7556)m.

Remark that our result is a lower bound on D for m ≥ 8 with constant 5,7556. If
allow m to be bigger, say m ≥ 32, then one obtains similar lower bound with constant
5,8230. To achieve this, choose in the proof of the theorem d− = m/4 + m/32,
d = m/2. For m ≥ 1024, taking d− = m/4 + m/32 + m/128 + m/512 + m/1024,
d = m/2, one can obtain a bound with constant 5,8284.
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On 2-absorbing Primary Subsemimodules over

Commutative Semirings

Manish Kant Dubey, Poonam Sarohe

Abstract. In this paper, we define 2-absorbing primary subsemimodules of a semi-
module M over a commutative semiring S with 1 6= 0 which is a generalization of
primary subsemimodules of semimodules. A proper subsemimodule N of a semimod-
ule M is said to be a 2-absorbing primary subsemimodule of M if abm ∈ N implies
ab ∈

√

(N : M) or am ∈ N or bm ∈ N for some a, b ∈ S and m ∈ M . It is

proved that if K is a subtractive subsemimodule of M and
√

(K : M) is a subtrac-
tive ideal of S, then K is a 2-absorbing primary subsemimodule of M if and only if
whenever IJN ⊆ K for some ideals I, J of S and a subsemimodule N of M , then
IJ ⊆

√

(K : M) or IN ⊆ K or JN ⊆ K. In this paper, we prove a number of results
concerning 2-absorbing primary subsemimodules.

Mathematics subject classification: 16Y30, 16Y60.
Keywords and phrases: Semimodule, subtractive subsemimodule, 2-absorbing pri-
mary subsemimodule, Q-subsemimodule..

1 Introduction

The notion of a semiring was first introduced by H. S. Vandiver in 1934 [16].
After that various research have been done in this area and several applications
have been found in various branches of mathematics and computer science. The
concepts of prime and primary ideals are essential ingredients in ideal theory and
algebraic geometry. Prime subsemimodule and primary subsemimodules have been
used in soft mathematics and studied by many authors (for example see [3], [4], [7],
[8] and [10]) during the last decade. The concept of 2-absorbing subsemimodule
which is a generalization of a prime subsemimodule was studied in [13]. In this
paper, we introduce the concept of 2-absorbing primary subsemimodule which is a
generalization of the primary subsemimodule. Throughout the paper, a semiring
S will be considered as commutative with identity 1 6= 0 and a left S-semimodule
means a unitary semimodule.

A commutative semiring is a commutative semigroup (S, ·) and a commutative
monoid (S,+, 0S) in which 0S is the additive identity and 0S · x = x · 0S = 0S for
all x ∈ S, both are connected by ring like distributivity. A non-empty subset I of
a semiring S is called an ideal of S if whenever a, b ∈ I and s ∈ S, then a + b ∈ I
and sa, as ∈ I. An ideal I of S is said to be proper if I 6= S. A left S-semimodule
M is a commutative monoid (M,+) which has a zero element 0M , together with
an operation S × M → M , denoted by (a, x) → ax such that for all a, b ∈ S and

c© Manish Kant Dubey, Poonam Sarohe 2015
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x, y ∈ M ,
(i) a(x + y) = ax + ay,
(ii) (a + b)x = ax + bx,
(iii) (ab)x = a(bx),
(iv) 0S · x = 0M = a · 0M .

A non-empty subset N of an S-semimodule M is a subsemimodule of M if N
is closed under addition and scalar multiplication. A proper subsemimodule N of
an S-semimodule M is called subtractive if whenever a, a + b ∈ N , b ∈ M then
b ∈ N . Let N be a subsemimodule of M . Then, an associated ideal of N is
defined as (N :S M) or simply (N : M) denote the ideal {s ∈ S : sM ⊆ N}
and (N : m) = {a ∈ S : am ∈ Nandm ∈ M}. Recall ([3], [4], [9], [10], [13],
[15]) the following: A non-zero proper ideal I of S is said to be a 2-absorbing
ideal of S if whenever abc ∈ I for any a, b, c ∈ S, then ab ∈ I or ac ∈ I or
bc ∈ I. A proper ideal I of S is said to be a 2-absorbing primary ideal of S if
whenever a, b, c ∈ S with abc ∈ I, then ab ∈ I or ac ∈

√
I or bc ∈

√
I, where√

I = {s ∈ S: there exists n ∈ N with sn ∈ I} denotes the radical of I. A proper
subsemimodule N of an S-semimodule M is said to be a prime subsemimodule if
for a ∈ S, m ∈ M, and am ∈ N , either m ∈ N or a ∈ (N :S M). A proper
subsemimodule N of M is said to be a 2-absorbing subsemimodule of M if whenever
a, b ∈ S, m ∈ M with abm ∈ N , then ab ∈ (N :S M) or am ∈ N or bm ∈ N. A
proper subsemimodule N of M is said to be a primary subsemimodule of M if
whenever a ∈ S, m ∈ M and am ∈ N, then a ∈

√

(N : M) or m ∈ N , where
√

(N : M) = {a ∈ S : anM ⊆ N for somen ≥ 1}. A proper subsemimodule N of
an S-semimodule M is said to be a strong subsemimodule if for each x ∈ N there
exists y ∈ N such that x + y = 0.

2 2-absorbing primary subsemimodules

In this section, we introduce the concept of 2-absorbing primary subsemimodule
of a semimodule M over a commutative semiring S and investigate some properties
and results.

Definition 1. Let M be a semimodule over a commutative semiring S and N
be a proper subsemimodules of M . Then N is said to be a 2-absorbing primary
subsemimodule of M if whenever abm ∈ N where a, b ∈ S and m ∈ M, then
ab ∈

√

(N : M) or am ∈ N or bm ∈ N .

It is easy to see that every 2-absorbing subsemimodule of a semimodule M
over a commutative semiring S is a 2-absorbing primary subsemimodule of M but
converse need not be true. For instance, consider a Z+

0 -semimodule M = Z16 =
{0, 1, 2, ..., 15}. Take a subsemimodule N = {0, 8}, generated by 8. Then (N : M) =
{a ∈ S : aM ⊆ N}= {0, 8, 16, ...} and

√

(N : M) = {a ∈ S : an ∈ (N : M)} =
{0, 2, 4, 8....}. Now, 2.2.2 ∈ N but 2.2 /∈ N and 2.2 /∈ (N : M). Therefore, N is not a
2-absorbing subsemimodule of M but it is a 2-absorbing primary subsemimodule of
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M , as 2.2 ∈
√

(N : M). Also, every primary subsemimodule of M is a 2-absorbing
primary subsemimodule but converse need not be true. For example, let S be Z∗ =
Z+

0 and let M = Z∗ × Z∗ be a semimodule over S. If we take the subsemimodule
N = {0} × 4Z∗ of M , then (N : M)={0} and

√

(N : M) = {0}. Here, N is a
2-absorbing primary subsemimodule of M but N is not a primary subsemimodule
of M . Because 2 · (0, 2) ∈ N but 2 6∈

√

(N : M) and (0, 2) 6∈ N .

Result 1. Let M be a semimodule and N be a proper subtractive subsemimodule of

M and let m ∈ M . Then the following holds:

(i) (N : M) is a subtractive ideal of S.

(ii) (0 : M) and (N : m) are subtractive ideals of S, where (0 : M)={a ∈ S : aM ⊆
{0}}.

Proof. Proof is straightforward.

Theorem 1. Let N be a subtractive 2-absorbing primary subsemimodule of a semi-

module M . Then, (N : M) is a 2-absorbing primary ideal of S.

Proof. Let abc ∈ (N : M) for some a, b, c ∈ S. Let ab /∈ (N : M) and bc /∈
√

(N : M). This implies ab /∈ (N : M) and bc /∈ (N : M). Therefore, there exists
x, y ∈ M such that abx /∈ N and bcy /∈ N but ac(bx + by) ∈ N. Since N is
a 2-absorbing primary subsemimodule of M , we have either ac ∈

√

(N : M) or
a(bx + by) ∈ N or c(bx + by) ∈ N. If ac ∈

√

(N : M), then there is nothing to
prove. If a(bx + by) ∈ N, then aby /∈ N (as N is a subtractive). Consider abcy ∈ N .
Since N is a 2-absorbing primary subsemimodule and aby /∈ N , bcy /∈ N , we have
ac ∈

√

(N : M). Similarly, if c(bx + by) ∈ N , then we have cbx /∈ N. Consider
abcx ∈ N. Since N is a 2-absorbing primary subsemimodule and abx /∈ N , bcx /∈ N ,
we have ac ∈

√

(N : M). This implies that (N : M) is a 2-absorbing primary ideal
of S.

Theorem 2. Let N be a 2-absorbing primary subsemimodule of an S-semimodule

M . Then
√

(N : M) is a 2-absorbing ideal of S.

Proof. Let N be a 2-absorbing primary subsemimodule of an S-semimodule M .
Then by Theorem 1, we have (N : M) is a 2-absorbing primary ideal of S. By
[Theorem 2, [15]], we have

√

(N : M) is a 2-absorbing ideal of S.

Theorem 3. Let N be a 2-absorbing primary subsemimodule of a semimodule M
such that

√

(N : M) = P for some prime ideal P of S. Then for some m ∈ M \N ,
√

(N : m) is a prime ideal of S.

Proof. Let N be a 2-absorbing primary subsemimodule of M . Then by Theorem 2,
√

(N : M) is a 2-absorbing ideal of S. Let a, b ∈ S be such that ab ∈
√

(N : m),
where m ∈ M \N . Therefore, (ab)n ∈ (N : m), that is, anbnm ∈ N for some positive
integer n. This gives, either anm ∈ N or bnm ∈ N or anbn ∈

√

(N : M) since N
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is a 2-absorbing primary subsemimodule of M . If anm ∈ N or bnm ∈ N , that is,
an ∈ (N : m) or bn ∈ (N : m), then

√

(N : m) is prime. If anbn ∈
√

(N : M), we
have (anbn)m ∈ (N : M) for some positive integer m. Thus, ab ∈

√

(N : M) = P .
Therefore, either a ∈ P or b ∈ P since P is prime. Hence a ∈

√

(N : M) ⊆
√

(N : m)
or b ∈

√

(N : M) ⊆
√

(N : m). Consequently,
√

(N : m) is a prime ideal of S.

Theorem 4. Let f : M 7→ M ′ be a homomorphism of a S-semimodules M and

M ′. If N is a 2-absorbing primary subsemimodule of M ′, then f−1(N) is also a

2-absorbing primary subsemimodule of M .

Proof. Let abm ∈ f−1(N) for some a, b ∈ S and m ∈ M . Then f(abm) ∈ N , that
is, abf(m) ∈ N . Since N is a 2-absorbing primary subsemimodule of M ′, therefore
ab ∈

√

(N : M ′) or af(m) ∈ N or bf(m) ∈ N . Hence, ab ∈ f−1(
√

(N : M ′)) or

am ∈ f−1(N) or bm ∈ f−1(N). Since f−1(
√

(N : M ′)) ⊆
√

f−1(N : M ′), we have
f−1(N) is a 2-absorbing primary subsemimodule of M .

Theorem 5. Let M be an S-semimodule, N be a 2-absorbing primary subsemimod-

ule of M and K be a subsemimodule of M such that K * N. Then N ∩ K is a

2-absorbing primary subsemimodule of K.

Proof. Clearly, N ∩ K is a proper subsemimodule of K. Let abx ∈ N ∩ K where
a, b ∈ S and x ∈ K. Since abx ∈ N and N is a 2-absorbing primary subsemimodule
of M , therefore either ax ∈ N or bx ∈ N or ab ∈

√

(N : M). If ax ∈ N or bx ∈ N ,
then ax ∈ N ∩ K or bx ∈ N ∩ K. If ab ∈

√

(N : M), then (ab)nM ⊆ N for some
positive integer n. In particular, (ab)nK ⊆ N which implies (ab)nK ⊆ N ∩ K for
some positive integer n. Thus, ab ∈

√

(N ∩ K : K). Hence N ∩ K is a 2-absorbing
primary subsemimodule of K.

Theorem 6. Let M and M ′ be S-semimodules, f : M 7→ M ′ be an epimorphism

such that f(0) = 0 and N be a subtractive strong subsemimodule of M . If N is a 2-
absorbing primary subsemimodule of M with kerf ⊆ N , then f(N) is a 2-absorbing

primary subsemimodule of M ′

Proof. Let N be a 2-absorbing primary subsemimodule of M and abx ∈ f(N) for
some a, b ∈ S and x ∈ M ′. Since abx ∈ f(N), there exists an element x′ ∈ N
such that abx = f(x′). Since f is an epimorphism and x ∈ M ′, then there exists
y ∈ M such that f(y) = x. As x′ ∈ N and N is a strong subsemimodule of M ,
therefore there exists x′′ ∈ N such that x′ + x′′ = 0, which gives f(x′ + x′′) = 0.
Therefore, abx + f(x′′) = 0 or f(aby) + f(x′′) = 0 implies aby + x′′ ∈ kerf ⊆ N .
Thus, we have aby ∈ N , since N is a subtractive subsemimodule of M . Since N
is a 2-absorbing primary, we conclude that ab ∈

√

(N : M) or ay ∈ N or by ∈ N .
Thus, ab ∈ f(

√

(N : M)) ⊆
√

f(N : M) or f(ay) ∈ f(N) or f(by) ∈ f(N) and
hence ab ∈

√

(f(N) : M ′) or ax ∈ f(N) or bx ∈ f(N). Thus, f(N) is a 2-absorbing
primary subsemimodule of M ′.
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A subsemimodule N of an S-semimodule M is said to be irreducible if N =
N1 ∩ N2, where N1 and N2 are subsemimodules of M , then either N = N1 or
N = N2. We now give a characterization of 2-absorbing primary subsemimodule of
an S-semimodule of M , when N is irreducible.

Theorem 7. Let N be a proper subtractive subsemimodule of an S-semimodule M .

Let
√

(N : M) be a 2-absorbing ideal of S. If N is an irreducible subsemimodule of

M , then N is a 2-absorbing primary subsemimodule of M if and only if (N : r) =
(N : r2) for all r ∈ S \

√

(N : M).

Proof. Let N be a 2-absorbing primary subsemimodule of M and let r ∈ S \
√

(N : M). We will show that (N : r) = (N : r2). Clearly, (N : r) ⊆ (N : r2). Let
x ∈ (N : r2), so r2x ∈ N. Therefore, either rx ∈ N or r2 ∈

√

(N : M), since N is
a 2-absorbing primary subsemimodule. If rx ∈ N , then x ∈ (N : r). Otherwise,
r2 ∈

√

(N : M) gives r ∈
√

(N : M), a contradiction. Thus (N : r) = (N : r2).
Conversely, let r1r2x ∈ N for some r1, r2 ∈ S and x ∈ M . Let r1r2 /∈

√

(N : M).
Then we will show that r1x ∈ N or r2x ∈ N . We claim that r1 /∈

√

(N : M)
and r2 /∈

√

(N : M) because if r1 ∈
√

(N : M) and r2 ∈
√

(N : M), then
r1r2 ∈ (

√

(N : M))2 ⊆
√

(N : M), which is a contradiction. Therefore we may
assume that either (N : r1) = (N : r2

1) or (N : r2) = (N : r2
2). Suppose (N :

r1) = (N : r2
1). Let r1x /∈ N and r2x /∈ N , then N ⊆ (N + Sr1x) ∩ (N + Sr2x). Let

y ∈ (N +Sr1x)∩(N +Sr2x). Then y = n1+s1r1x = n2+s2r2x where n1, n2 ∈ N and
s1, s2 ∈ S. Now, r1y = r1n1 + s1r

2
1x = r1n2 + r1r2s2x and s2r1r2x, rn1, rn2 ∈ N, so

s1r
2
1x ∈ N , as N is subtractive. This implies s1x ∈ (N : r2

1) but (N : r1) = (N : r2
1).

Therefore s1xr1 ∈ N and so y ∈ N . Hence (N + Sr1x) ∩ (N + Sr2x) ⊆ N . Conse-
quently, (N + Sr1x) ∩ (N + Sr2x) = N , a contradiction (since N is an irreducible
subsemimodule). Hence N is a 2-absorbing primary subsemimodule of M .

Lemma 1. Let N be a subtractive 2-absorbing primary subsemimodule of an S-

semimodule M . Suppose that abJ ⊆ N for some subsemimodule J of M . If ab /∈
√

(N : M), then aJ ⊆ N or bJ ⊆ N .

Proof. Let abJ ⊆ N for some a, b ∈ S and for some subsemimodule J of M . Suppose
aJ * N and bJ * N , then aj1 /∈ N and bj2 /∈ N for some j1, j2 ∈ J . Since abj1 ∈ N
and ab /∈

√

(N : M) and aj1 /∈ N , we have bj1 ∈ N . Again, since abj2 ∈ N
and ab /∈

√

(N : M) and bj2 /∈ N , we have aj2 ∈ N . Now, ab(j1 + j2) ∈ N and
ab /∈

√

(N : M), we have either a(j1 + j2) ∈ N or b(j1 + j2) ∈ N . If a(j1 + j2) ∈ N
and aj2 ∈ N , we get aj1 ∈ N , a contradiction. Similarly, if b(j1 + j2) ∈ N and
bj1 ∈ N , then bj2 ∈ N (since N is subtractive), a contradiction. Thus, aJ ⊆ N or
bJ ⊆ N .

We know that, if K is a subtractive subsemimodule, then (K : M) is also sub-
tractive. In the next theorem, we will assume that K and

√

(K : M) are subtractive
subsemimodule of M and subtractive ideal of S respectively.
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Theorem 8. Let K be a subtractive subsemimodule of M and
√

(K : M) be a

subtractive ideal of S. If K is a 2-absorbing primary subsemimodule of M , then

whenever IJN ⊆ K for some ideals I, J of S and a subsemimodule N of M , then

IJ ⊆
√

(K : M) or IN ⊆ K or JN ⊆ K.

Proof. Let K be a 2-absorbing primary subsemimodule of M and let IJN ⊆ K for
some ideals I, J of S and a subsemimodule N of M , such that IJ *

√

(K : M). We
show that IN ⊆ K or JN ⊆ K. If possible, suppose that IN * K and JN * K.
Then there exist a1 ∈ I and b1 ∈ J such that a1N * K and b1N * K. Since
a1b1N ⊆ K and a1N * K and b1N * K, we have a1b1 ∈

√

(K : M) by Lemma 1.
Next, we have IJ *

√

(K : M), therefore for some a ∈ I and b ∈ J , ab /∈
√

(K : M).
Since abN ⊆ K and ab /∈

√

(K : M), we have aN ⊆ K or bN ⊆ K by Lemma 1.
Here three cases arise.

Case I: aN ⊆ K but bN * K. Since a1bN ⊆ K and bN * K and a1N * K,
by Lemma 1 we have a1b ∈

√

(K : M). Now, aN ⊆ K but a1N * K, there-
fore (a + a1)N * K. Since (a + a1)bN ⊆ K and bN * K and (a + a1)N * K
implies (a + a1)b ∈

√

(K : M) by Lemma 1. Since (a + a1)b ∈
√

(K : M) and
a1b ∈

√

(K : M), we have ab ∈
√

(K : M), as
√

(K : M) is subtractive, a contra-
diction.

Case II: When bN ⊆ K but aN * K. Since ab1N ⊆ K and aN * K and
b1N * K, then by Lemma 1, ab1 ∈

√

(K : M). Since bN ⊆ K and b1N * K, we
have (b + b1)N * K. Since a(b + b1)N ⊆ K and aN * K and (b + b1)N * K,
we have a(b + b1) ∈

√

(K : M) by Lemma 1. Since a(b + b1) ∈
√

(K : M) and
ab1 ∈

√

(K : M), we have ab ∈
√

(K : M) (since
√

(K : M) is subtractive), a con-
tradiction.

Case III: When aN ⊆ K and bN ⊆ K. Since bN ⊆ K and b1N * K it implies
(b + b1)N * K. Since a1(b + b1)N ⊆ K and (b + b1)N * K and a1N * K, we
conclude that a1(b + b1) ∈

√

(K : M), by Lemma 1. Since a1b1 ∈
√

(K : M) and
a1(b + b1) ∈

√

(K : M), we have a1b ∈
√

(K : M), as
√

(K : M) is subtractive.
Again, aN ⊆ K and a1N * K implies (a + a1)N * K. Since (a + a1)b1N ⊆ K
and (a + a1)N * K and b1N * K, then we have (a + a1)b1 ∈

√

(K : M) by Lemma
1. Since a1b1 ∈

√

(K : M) and (a + a1)b1 ∈
√

(K : M), then ab1 ∈
√

(K : M).
Since (a + a1)(b + b1)N ⊆ K and (a + a1)N * K and (b + b1)N * K, then by
Lemma 1 (a + a1)(b + b1) ∈

√

(K : M). Since ab1, a1b, a1b1 ∈
√

(K : M), we have
ab ∈

√

(K : M) (since
√

(K : M) is subtractive), a contradiction. Hence IN ⊆ K
or JN ⊆ K.

Definition 2. ([3], Definition 1) A subsemimodule N of an S-semimodule M is
called a partitioning subsemimodule (=Q-subsemimodule) if there exists a non-
empty subset Q of M such that
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(i) SQ ⊆ Q, where SQ = {rq : r ∈ S, q ∈ Q};
(ii) M = ∪{q + N : q ∈ Q};
(iii) If q1, q2 ∈ Q, then (q1 + N) ∩ (q2 + N) 6= ∅ if and only if q1 = q2.

Let M be an S-semimodule, and let N be a Q-subsemimodule of M . Define
M/N(Q) = {q + N : q ∈ Q}. Then M/N(Q) forms an S-semimodule under the
operations ⊕ and ⊙ defined as follows: (q1 +N)⊕ (q2 +N) = q3 +N where q3 ∈ Q is
the unique element such that q1+q2+N ⊆ (q3+N) and r⊙(q1+N) = q4+N , where
r ∈ S and q4 ∈ Q is the unique element such that rq1 + N ⊆ q4 + N . Then, this S-
semimodule M/N(Q) is called the quotient semimodule of M by N . By the definition
of Q-subsemimodule, there exists a unique q0 ∈ Q such that 0M + N ⊆ q0 + N .
Then q0 + N is a zero element of M/N . But, for every q ∈ Q from (i) one obtains
0M = 0sq ∈ Q; hence q0 = 0M .
For deeper understandings of Q-subsemimodules of semimodule, we refer ([3],[4],
[8],[14]).

Theorem 9. Let M be an S-semimodule, N be a Q-subsemimodule of M and P
be a subtractive subsemimodule of M such that N ⊆ P . Then P is a 2-absorbing

primary subsemimodule of M if and only if P/N(Q∩P ) is a 2-absorbing primary

subsemimodule of M/N(Q).

Proof. Let P be a 2-absorbing primary subsemimodule of M . Let a, b ∈ S and
q + N ∈ M/N(Q) be such that ab ⊙ q + N = q1 + N ∈ P/N(Q∩P ) where q1 ∈ Q ∩ P
is a unique element such that abq + N ⊆ q1 + N . So abq = q1 + x1, for some
x1 ∈ N ⊆ P . Since P is a 2-absorbing primary subsemimodule of M , either
(ab)n ∈ (P : M) or aq ∈ P or bq ∈ P for some positive integer n. First, let
anbn ∈ (P : M). Consider, anbn ⊙ q2 + N = q3 + N where q2 + N ∈ M/N(Q) and
q3 ∈ Q is a unique element such that anbnq2 + N ⊆ q3 + N . So, anbnq2 = q3 + x2

for some x2 ∈ N ⊆ P . Since anbn ∈ (P : M), we have anbnq2 ∈ P , which
gives q3 ∈ P , as P is subtractive. Thus, we have q3 ∈ Q ∩ P which gives

anbn ⊙ q2 + N = q3 + N ∈ P/N(Q∩P ) and hence ab ∈
√

(P/N(Q∩P ) : M/N(Q)).

If aq ∈ P , consider a ⊙ q + N = q4 + N where q4 ∈ Q is a unique element such
that aq + N ⊆ q4 + N . This gives, aq = q4 + x3 for some x3 ∈ N ⊆ P . Since P is
subtractive, we have q4 ∈ P Hence a⊙ (q + N) = q4 + N ∈ P/N(Q∩P ). Similarly, we
can prove that b ⊙ (q + N) ∈ P/N(Q∩P ). Consequently, P/N(Q∩P ) is a 2-absorbing
primary subsemimodule of M/N(Q).

Conversely, let P/N(Q∩P ) be a 2-absorbing primary subsemimodule of M/N(Q).
Let abx ∈ P for some a, b ∈ S and x ∈ M . Since, N is a Q-subsemimodule of
M and x ∈ M , we have x ∈ q + N where q ∈ Q. So abx ∈ abq + N . Now, let
ab⊙ (q +N) = q5 +N where q5 ∈ Q is a unique element such that abq +N ⊆ q5 +N .
This gives, abx = q5 + x4 for some x4 ∈ N ⊆ P . Therefore, we have q5 ∈ P ,
since P is subtractive. Thus, q5 ∈ Q ∩ P and hence ab ⊙ (q + N) = q5 + N ∈
P/N(Q∩P ). Thus, we have ambm ∈ (P/N(Q∩P ) : M/N(Q)) or a⊙ (q+N) ∈ P/N(Q∩P )
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or b ⊙ (q + N) ∈ P/N(Q∩P ) for some positive integer m, since P/N(Q∩P ) is a 2-
absorbing primary subsemimodule. Let ambm ∈ (P/N(Q∩P ) : M/N(Q)) for some
positive integer m. Let y ∈ M . Then there exists a unique element q6 ∈ Q such
that y ∈ q6 + N ∈ M/N(Q). Now, ambm ⊙ (q6 + N) ∈ P/N(Q∩P ). Therefore, there
exists a unique element q7 ∈ Q ∩ P such that ambmq6 + N ⊆ q7 + N which gives
ambmy ∈ ambmq6 + N ⊆ q7 + N . Thus, ambmy = q7 + x5 ∈ P for some x5 ∈ N ⊆ P .
Hence ambmy ∈ P and hence ambm ∈ (P : M). Let a⊙ (q + N) ∈ P/N(Q∩P ). Then,
there exists unique q8 ∈ Q ∩ P such that aq + N ⊆ q8 + N . We have, x ∈ q + N
implies ax ∈ aq + N ⊆ q8 + N . Therefore, ax = q8 + x6 for some x6 ∈ N ⊆ P .
Hence ax ∈ P . Similarly, bx ∈ P .

Theorem 10. Let M be an S-semimodule, N be a Q-subsemimodule of M and P
be a subtractive subsemimodule of M such that N ⊆ P . If N and P/N(Q∩P ) are

2-absorbing primary subsemimodules of M and M/N(Q) respectively, then P is a

2-absorbing primary subsemimodule of M.

Proof. Let N and P/N(Q∩P ) be 2-absorbing primary subsemimodules of M and
M/N(Q) respectively. Let abx ∈ P for some a, b ∈ S and x ∈ M . If abx ∈ N ,
then we are done (since N is a 2-absorbing primary subsemimodule of M). So, let
abx /∈ N . Since x ∈ M , there exists a unique element q1 ∈ Q such that x ∈ q1 + N
gives abx ∈ ab⊙ (q1 +N). This gives, abx ∈ abq1 +N ⊆ q2 +N where q2 is a unique
element of Q. Since abx ∈ P and N ⊆ P , we have q2 ∈ P . Therefore, ab⊙(q1+N) ∈

P/N(Q∩P ). Thus, either ab ∈
√

(P/N(Q∩P ) : M/N(Q)) or a ⊙ (q1 + N) ∈ P/N(Q∩P )

or b ⊙ (q1 + N) ∈ P/N(Q∩P ). Now, it is similar to the proof of the converse part of
the last theorem.
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Solvability of a nonlinear integral equation arising

in kinetic theory

A.Kh.Khachatryan, Kh.A.Khachatryan

Abstract. In the paper the question of solvability of an Urysohn type nonlinear
integral equation arising in kinetic theory of gases has been studied. We prove the
existence of a positive and bounded solution and also suggest an approach for the
construction of a solution. We also show that there is a qualitative difference between
solutions in the linear and nonlinear cases. In the nonlinear case the solution is a posi-
tive and bounded function, while the corresponding linear equation has an alternating
solution, which possesses linear growth at infinity.
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1 Introduction

The paper is devoted to the study and solution of the following Urysohn nonlinear
integral equation

F (x) = g(x) +

∞
∫

0

W (x, t, F (t))dt, (1.1)

with respect to the unknown function F (x), where

g(x) =
2εc

3
√

π

∞
∫

0

e−xse−
1
s2 (s2 + 1)

ds

s4
, (1.2)

W (x, t, F (t)) =
2

3
√

π

√

F (t)×

×

∞
∫

0

[

e−|x−t|s + (1 − ε)e−(x+t)s
]

e
− 1

s2F (t)

[

1

s2F (t)
+ 1

]

ds

s
.

(1.3)

Equation (1.1), as well as its intrinsic mathematical interest, has important applica-
tions in kinetic theory of gases (see [1–3]). Equation (1.1) may be derived from the
Boltzmann model equation. By equation (1.1) the flow of a rarefied gas in the half-
space x > 0 bounded by flat plate x = 0 is described. The function F (x) represents

temperature distribution near the wall. Here x is the distance from the wall, c =
β

α

c© A.Kh.Khachatryan, Kh.A.Khachatryan, 2015
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(0 < c ≤ 1), where α is the mean value of density in the boundary layer and β is
the density of particles reflected from the wall. We will assume that c is previously
known. ε is the accomodation coefficient (0 < ε ≤ 1).

In the present note we prove the existence theorem of a positive and bounded
solution of equation (1.1) and also suggest the approach for the construction of
a solution. We also show that there is a qualitative difference between solutions
in the nonlinear and linear cases. In the nonlinear case the solution is a positive
and bounded function, while the corresponding linear equation has an alternating
solution, which possesses linear growth at infinity.

2 The existence of a bounded solution for an Urysohn type

nonlinear integral equation

Below we formulate the theorem of global solvability of equation (1.1) in the
space of bounded functions for arbitrary values of c > 0 and α > 0.

We consider the following function

ξ(t) = t4 − ct3 − 1, t ∈ R
+ ≡ [0,+∞). (2.1)

We note that ξ(0) = −1, ξ′(t) = 4t3 − 3ct2 ≥ 0 if t ∈

[

3c

4
,+∞

)

and ξ′(t) ≤ 0 if

t ∈

[

0,
3c

4

]

, ξ(c) < 0, lim
t→∞

ξ(t) = +∞, then there exists a unique point t0 > c such

that ξ(t0) = 0, moreover, for t > t0, ξ(t) > 0.
We introduce the following iterations for equation (1.1):

Fn+1(x) = g(x) +

∞
∫

0

W (x, t, Fn(t))dt, (2.2)

F0(x) = t20 = c0. (2.3)

It is easy to verify that the function W defined by (1.3) is monotone increasing in
the third argument, i. e.

W (x, t, z) ↑ w.r.t.z. (2.4)

Indeed, since ρ(z) =
(

s2

z + 1
)√

ze−
s2

z ↑ w.r.t. z, z ≥ 0, then from the representation

of W it follows that W ↑ w.r.t. z.
Below we prove by induction that Fn(x) is monotone decreasing in n

1) F (n) ↓ w.r.t. n and 2) F (n)(x) ≥ g(x). (2.5)

Let n = 0. We have

F1(x) = g(x) +

∞
∫

0

W (x, t, F0(t))dt =

= J1(x) + c0 − J2(x) = F0(x) + J1(x) − J2(x),

(2.6)
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where

J1(x) =
2εc

3
√

π

∞
∫

0

e−xse−
1
s2

(

1

s2
+ 1

)

ds

s2
, (2.7)

J2(x) =
2ε

3
√

π

√
c0

∞
∫

0

e−xse
− 1

s2c0

(

1

s2c0
+ 1

)

ds

s2
. (2.8)

We must prove that J2(x) ≥ J1(x) for each x ∈ R
+. It is sufficient to prove that for

each x ∈ R
+ the inequality holds

ce−
1

s2

(

1

s2
+ 1

)

≤

√

1

c0
e
− 1

s2c0

(

c0 +
1

s2

)

. (2.9)

Let us consider the following function

ϕ(s2) = c
√

c0e
1
s2

(

1
c0

−1
) (

1

s2
+ 1

)

, s2 ∈ R
+. (2.10)

Note that s2
0 = c0 − 1 is the unique maximum point for ϕ. Therefore

ϕ(s2) ≤ ϕ(s2
0) = c

√
c0

(

1

c0 − 1
+ 1

)

e
− 1

c0 . (2.11)

Using the well-known inequality

e−x ≤
1

1 + x
, x ≥ 0, (2.12)

from (2.11) we obtain

ϕ(s2) ≤
cc2

0
√

c0

(c2
0 − 1)

. (2.13)

First we prove that
c
√

c0c0

(c2
0 − 1)

≤ 1. (2.14)

Since c0 = t20 > 1 (because t40 = ct30 + 1 > 1 ⇒ t20 > 1), then inequality (2.14) is
equivalent to the following inequality:

c
√

c0c0 ≤ (c2
0 − 1). (2.15)

As ξ(t) ↑ in t on [t0,+∞), then ξ(
√

c0) ≥ ξ(t0) = 0 or ξ(
√

c0) = c2
0 − c

√
c0c0 − 1 ≥ 0,

i. e. (2.14) is proved. Taking into consideration (2.14), from (2.13), we obtain

ϕ(s2) =
cc2

0
√

c0

(c2
0 − 1)

≤ c0 ≤ c0 +
1

s2
. (2.16)

From (2.16) follows (2.9). Therefore we have J2(x) ≥ J1(x). Considering the last
inequality and relation (2.6) we come to the inequality F1(x) ≤ F0(x). We assume
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that Fn(x) ≤ Fn−1(x) for some n ∈ N. Since W (x, t, z) monotonically increases in
the third argument z then from (2.2) it follows that

Fn+1(x) ≤ Fn(x). (2.17)

Now we prove that the sequence of functions {Fn(x)}∞n=0 is bounded by g(x).

First, we show that t20 >
c

2
. Assume the contrary: t20 ≤

c

2
. Since t0 > c then we

have c <

√

c

2
or

c <
1

2
. (2.18)

On the other hand,
0 = t40 − ct30 − 1 < t40 − 1.

Hence, we obtain t20 > 1. But since t20 <
c

2
then we obtain inequality c > 2.

Taking into consideration (2.18), from the last inequality we come to contradic-
tion. Therefore,

t20 >
c

2
. (2.19)

Now, due to (2.19) from (2.3), we have

F0(x) = t20 >
c

2
≥ g(x),

because

g(x) ≤
2

3
√

π
c

∞
∫

0

e−
1

s2

(

s2 + 1

s4

)

ds =
c

2
.

Let Fn(x) ≥ g(x) for some n ∈ N. Then taking into consideration monotonicity and
nonnegativity of the function W , we obtain

Fn+1(x) ≥ g(x) +

∞
∫

0

W (x, t, g(t))dt ≥ g(x). (2.20)

Therefore the sequence of functions {Fn(x)}∞n=0 has a pointwise limit as n → ∞.
In accordance with B.Levi‘s theorem the function F satisfies equation (1.1) and the
double inequalities

g(x) ≤ F (x) ≤ c0 ≡ t20. (2.21)

Thus the following theorem holds

Theorem 1. Let 0 < c ≤ 1 is a given number. Then nonlinear integral equation

(1.1) has a positive measurable and bounded solution F (x). The following inequalities

hold

g(x) ≤ F (x) ≤ c0 ≡ t20, (2.22)

where t0 is the unique positive root of the following algebraic equation t4−ct3−1 = 0.
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3 Linearization of a Urysohn nonlinear integral equation (1.1).

Qualitative difference between solutions in the linear and

nonlinear cases

Usually in kinetic theory in linear approximation the function F (x) is represented
as:

F (x) = 1 + ∆f(x), (3.1)

where ∆f(x) is the temperature perturbation (∆f(x) ≪ 1) . Taking into account
(3.1), expanding the function W (x, t, F (t)) by the third argument in a power series
about zero and holding the first expansion term, we obtain the following Wiener-
Hopf-Hankell type linear integral equation with respect to ∆f(x):

∆f(x) = g1(x) +

∞
∫

0

[K(x − t) + (1 − ε)K(x + t)]∆f(t)dt. (3.2)

Here

K(x) =

∞
∫

0

e−|x|sG(s)ds,

G(s) =
2

3

1
√

π

1

s
e−

1
s2

(

1

s4
+

1

2s2
+

1

2

)

,

(3.3)

g1(x) =

∞
∫

0

e−xsG1(s)ds,

G1(s) =
2ε

3
√

πs4
(c − 1)(s2 + 1)e−

1
s2 .

(3.4)

It is easy to check that kernel (3.3) satisfies the conservative condition

K ≥ 0,

+∞
∫

−∞

K(x)dx = 1. (3.5)

Due to linearity the solution of equation (3.2) can be written as:

△f(x) = −△f1(x) + △f2(x), (3.6)

where △f1(x) and △f2(x) are the solutions of inhomogeneous and homogeneous
equations, respectively

∆f1(x) = −g1(x) +

∞
∫

0

[K(x − t) + (1 − ε)K(x + t)]∆f1(t)dt (3.7)

(−g1(x) ≥ 0 because of c ∈ (0, 1]),

∆f2(x) =

∞
∫

0

[K(x − t) + (1 − ε)K(x + t)]∆f2(t)dt. (3.8)
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There are numerous works devoted to study and solutions of equations (3.7) and
(3.8) (see [4, 5] and references therein). Without going into details we note that
equation (3.7) has positive bounded solution, which possesses finite limit at infinity
(see [4, 6]).

The solution of corresponding homogeneous equation (3.8) has the form (see [5])

△f2(x) =
1

√
ν2

x + q(x), (3.9)

here q(x) is the well-known Hopf function, and ν2 is the second moment of the kernel
K(x). Thus we have

△f(x) =
1

√
ν2

x + q(x) −△f1(x) and

△f(x) ∼
1

√
ν2

x, as x → +∞.
(3.10)

Conclusion. Note that the linear equation (3.2) possesses an alternating so-
lution with the asymptotic O(x) as x tends to +∞, while the solution of initial
nonlinear equation (1.1) is a positive bounded function F (x). Moreover, g(x) ≤
F (x) ≤ c0, x ∈ R

+. The qualitative difference between the solutions is conditioned
by linearization of equation (1.1). In fact the linearization can distort the problem
and the corresponding linear equation can not adequately describe the problem from
a physical point of view.
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Abstract. In this paper we prove the analogues of Birkhoff’s theorem for one-
sided dynamical systems (both with continuous and discrete times) with noncompact
space having a compact global attractor. The relation between Levinson center, chain
recurrent set and center of Birkhoff is established for compact dissipative dynamical
systems.
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1 Introduction

Let X be a compact metric space, (X, R, π) be a flow on X, M ⊆ X
be a nonempty compact and invariant subset of X. Denote Ω(M) := {x ∈
M : there exist {xn} ⊂ M and {tn} ⊂ R such that xn → x, tn → +∞ as
n → ∞ and π(tn, xn) → x}. Recall that the point x ∈ X is called Poisson sta-
ble if x ∈ ωx

⋂

αx, where by ωx (respectively, αx) the ω (respectively, α)-limits set
of x is denoted. The following result is well known (see, for example, [1, 14]).

Theorem 1 (Birkhoff’s theorem). The following statements hold:

1. there exists a nonempty, compact and invariant subset B(π) ⊆ X with the

properties:

(i) Ω(B(π)) = B(π);

(ii) B(π) is the maximal compact invariant subset of J with the property (i).

2. B(π) = P(π), i. e., the set of all Poisson stable points P(π) of the dynamical

system (X, R, π) is dense in B(π).

Remark 1. 1. The set B(π) is called the Bikkhoff center of dynamical system
(X, R, π).

2. Note that Birkhoff theorem remains true also for the discrete dynamical
systems (X, Z, π). This fact was established in the work of V. S.Bondarchuk and
V.A. Dobrynsky [1].

c© David Cheban, 2015
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3. The second statement of Theorem 1 remains true if we replace the center
of Birkhoff B(π) by arbitrary compact invariant set M ⊆ J with the property
Ω(M) = M . Namely the following equality takes place: M = P(π)

⋂

M .

The main result of this paper is the proof of the analogues of Birkhoff theorem
for the one-sided dynamical systems (both with continuous and discrete times) with
noncompact phase space having a compact global attractor.

2 Birkhoff center

Definition 1. A dynamical system (X, T, π) is said to be:

1. pointwise dissipative if there exists a nonempty compact subset K ⊆ X such
that

lim
t→+∞

ρ(π(t, x),K) = 0 (1)

for all x ∈ X;

2. compactly dissipative if there exists a nonempty compact subset K ⊆ X such
that (1) holds uniformly with respect to x on every compact subset from X.

Remark 2. Every compact dissipative dynamical system is pointwise dissipative.
The converse, generally speaking, is not true (see, for example, [4, Ch.I]).

Theorem 2 (see [4, Ch.I]). Suppose that (X, T, π) is a compact dissipative dynamical

system, then there exists a nonempty, compact, invariant subset J ⊆ X possessing

the following properties:

1. J attracts every compact subset A from X, i. e.,

lim
t→+∞

ρ(π(t, x), J) = 0

uniformly with respect to x ∈ A;

2. J is orbitally stable, i.e., for all ε > 0 there exists a δ = δ(ε) > 0 such that

ρ(x, J) < δ implies ρ(π(t, x), J) < ε for all t ≥ 0;

3. J is the maximal compact invariant subset of X.

Let M be a positively invariant and closed subset of X. Denote by J+
x (M) :=

{p ∈ X : there exist {xn} ⊆ M and tn → +∞ such that xn → x and π(tn, xn) → p
as n → +∞ }.

Lemma 1. Let M be a positively invariant and closed subset of X. If pn → p,
xn → x as n → ∞ and pn ∈ J+

xn
(M), then p ∈ J+

x (M).
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Proof. Let ε be an arbitrary positive number, pn → p and xn → x as n → ∞. Then
there exists a number n0 = n0(ε) ∈ N such that

ρ(pn, p) < ε/3 and ρ(xn, x) < ε/3

for all n ≥ n0. Since pn ∈ J+
xn

(M) for all n ∈ N, then there exist {xm
n } ⊆ M and

{tmn } (for all m ∈ N) such that xm
n → xn, tmn → +∞ and π(tmn , xm

n ) → pn as m → ∞.
In particular, for given ε there exists n < mn = mn(ε) ∈ N such that

ρ(xm
n , xn) < ε/3 and ρ(π(tmn , xm

n ), pn) < ε/3

for all m ≥ mn. Denote by x̄n := xmn
n and t̄n := tmn

n > n. Note that {x̄n} ⊆ M ,
t̄n → +∞ as n → ∞ and

ρ(x̄n, x) = ρ(xmn
n , x) ≤ ρ(xmn

n , xn) + ρ(xn, x) < ε/3 + ε/3 < ε

for all n ≥ n0(ε), i.e., x̄n → x as n → ∞. In addition we have

ρ(π(t̄n, x̄n), p) = ρ(π(tmn
n , xmn

n ), p) ≤ ρ(π(tmn
n , xmn

n ), pn) + ρ(pn, p) < ε/3 + ε/3 < ε

for all n ≥ n0. Thus for the point p we find the sequence {x̄n} ⊆ M and x̄n → +∞
as n → ∞ such that x̄n → x and π(t̄n, x̄n) → p as n → ∞, i. e., p ∈ J+

x (M). Lemma
is proved.

Lemma 2. Let M be a positively invariant and closed subset of X and x ∈ X. The

following statements hold:

1. J+
x (M) ⊆ M for all x ∈ M ;

2. the set J+
x (M) is closed and positively invariant;

3. if M is compact, then J+
x (M) is invariant.

Proof. Let p ∈ J+
x (M) and t ∈ T, then there are {xn} and tn → +∞ such that

xn → x and π(tn, xn) → p as n → ∞. Then we have π(t, p) = lim
n→∞

π(t, π(tn, xn)) =

lim
n→∞

π(t + tn, xn) and, consequently, π(t, p) ∈ J+
x (M) because xn ∈ M and M is

closed and positively invariant. Finally, it is evident that J+
x (M) ⊆ M for all x ∈ M .

Now we will establish the second statement of Lemma. Let {pn} be a sequence
from J+

x (M) such that pn → p as n → ∞, then pn ∈ J+
xn

(M) where xn := x for all
n ∈ N. By Lemma 1 p ∈ J+

x (M) because pn → p and xn → x as n → ∞. Let us show
now that the set J+

x (M) is positively invariant. Indeed, let t ∈ T and p ∈ J+
x (M),

then there are {xn} ⊆ M and tn → +∞ as n → ∞ such that π(tn, xn) → p as
n → ∞. Note that π(t, p) = lim

n→∞
π(t + tn, xn) and, consequently, π(t, p) ∈ J+

x (M).

Suppose that the set M is compact and p ∈ J+
x (M), then there are {xn} ⊆ M and

tn → +∞ as n → ∞ such that π(tn, xn) → p as n → ∞. Let t ∈ T be an arbitrary
number, then for sufficiently large n ∈ N we have tn − t ∈ T because tn → +∞ as
n → ∞. Since the set M is positively invariant and compact, then without loss of
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generality we can suppose that the sequence {π(tn − t, xn)} is convergent. Denote
by pt its limit, then we obtain p = lim

n→∞
π(tn − t + t, xn) = lim

n→∞
π(t, π(tn − t, xn)) =

π(t, pt) and, consequently, p ∈ π(t, J+
x (M)), i. e., J+

x (M) ⊆ π(t, J+
x (M)) for all t ∈ T.

Thus J+
x (M) is positively and negatively invariant, i.e., it is invariant.

Definition 2. Let M be a subset of X. A point x ∈ X is said to be non-wandering
with respect to M if x ∈ J+

x (M).

Denote by Ω(M) := {x ∈ M : x ∈ J+
x (M)} the set of all non-wandering points

of M with respect to M .

Remark 3. Let A and B be two closed and positively invariant subsets of X, then
Ω(A) ⊆ Ω(B).

Definition 3. A point p ∈ X is said to be:

– Poisson stable in the positive direction if x ∈ ωx;

– Poisson stable in the negative direction if there exists an entire trajectory
γx ∈ Φx such that x ∈ αγx , where αγx := {q ∈ X : there exists tn →
−∞ such that γx(tn) → q as n → ∞};

– Poisson stable if it is Poisson stable in the both directions.

Lemma 3. Let M be a nonempty, closed and positively invariant set, then the

following statements hold:

1. the set Ω(M) is closed;

2. if p ∈ M is Poisson stable in the positive direction, then p ∈ Ω(M);

3. if the point p ∈ M and γ ∈ Φp is an entire trajectory such that γ(S) ⊂ M and

p ∈ αγ, then p ∈ Ω(M).

Proof. The first statement directly follows from Lemma 1 and definition of Ω(M).
Let p ∈ M and p ∈ ωp, then there exists a sequence tn → +∞ such that

π(tn, p) → p as n → ∞. Let pn := p for all n ∈ N, then pn → p and π(tn, pn) → p
as n → ∞. This means that p ∈ J+

p (M), i.e., p ∈ Ω(M).
Let p ∈ M , γ ∈ Φp, γ(S) ⊂ M and p ∈ αγ . Then there exists a sequence

tn → +∞ such that γ(−tn) → p as n → ∞. Denote by pn := γ(−tn), then
pn → p and p = π(tn, pn) → p as n → ∞. Thus p ∈ J+

p (M) and, consequently,
p ∈ Ω(M).

Lemma 4. Suppose that M is a nonempty, compact positively invariant set and M
is a nonempty, compact minimal subset of M , then M ⊆ Ω(M).

Proof. Let p ∈ M and γ ∈ Φp be an entire trajectory of (X, T, π) passing through
p at the initial moment such that γ(S) ⊆ M . Since M is minimal, ωp and αγ are
nonempty, compact and invariant we have αγ = ωp = M. In particular there exists a
sequence τn → +∞ such that pn := γ(−τn) → p as n → ∞. Note that π(τn, pn) = p
for all n ∈ N and, consequently, p ∈ Ω(M) ⊆ Ω(M).
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Corollary 1. If M is a nonempty, compact positively invariant set, then Ω(M) 6= ∅.

Proof. Let M be a nonempty, compact and positively invariant set of (X, T, π). By
Birkhoff theorem there exists a nonempty minimal subset M ⊆ M and by Lemma 4
we have M ⊆ Ω(M).

Denote by Φx the set of all entire trajectories γx of (X, T, π) passing through the
point x at the initial moment t = 0.

Lemma 5. Suppose that M is a nonempty, compact and positively invariant set.

Then Ω(M) is a nonempty, compact and positively invariant subset of M .

Proof. By Corollary 1 the set Ω(M) is a nonempty subset. By Lemma 1 the set Ω(M)
is closed. Since Ω(M) ⊆ M and M is compact, then Ω(M) is so. Let now p ∈ Ω(M)
and t ∈ T, then there are pn → p (pn ∈ M) and tn → +∞ as n → ∞ such that
p = lim

n→∞
π(tn, pn). Note that π(t, p) = lim

n→∞
π(t, π(tn, pn)) = lim

n→∞
π(tn, π(t, pn))

and, consequently, π(t, p) ∈ J+
π(t,p)(M) because lim

n→∞
π(t, pn) = π(t, p) and

{π(t, pn)} ⊆ M . This means that π(t, p) ∈ Ω(M), i. e., Ω(M) is positively
invariant.

Lemma 6. Let M be a nonempty positively invariant subset of X, then the following

statements hold:

1. if (X, T, π) is pointwise dissipative, then Ω(M) is nonempty, closed and posi-

tively invariant;

2. if the dynamical system (X, T, π) is compactly dissipative and J is its Levin-

son center, then the set Ω(M) is nonempty, compact, positively invariant and

Ω(M) ⊆ J ;

3. if the dynamically system (X, T, π) is point dissipative (but not compactly dis-

sipative), then the set Ω(X), generally speaking, is not compact.

Proof. Since (X, T, π) is pointwise dissipative, then ΩM :=
⋃

{ωx : x ∈ M} ⊆ X
is a nonempty compact invariant subset of (X, T, π) and by Birkhoff’s theorem in
ΩM there exists at least one compact minimal subset M ⊆ Ω ⊆ X. By Corollary
1 Ω(M) 6= ∅. Let us show that Ω(M) is closed. If p = lim

n→∞
pn and pn ∈ Ω(M),

then pn ∈ J+
pn

(M). By Lemma 1 we have p ∈ J+
p (M), i.e., p ∈ Ω(M). If p ∈ Ω(M)

and t ∈ T, then there are pn ∈ M and tn → +∞ such that p = lim
n→∞

π(tn, pn)

and, consequently, π(t, p) = lim
n→∞

π(t, π(tn, pn)) = lim
n→∞

π(tn, π(t, pn)), i. e., π(t, p) ∈

J+
π(t,p)(M) because lim

n→∞
π(t, pn) = π(t, p). This means that π(t, p) ∈ Ω(M), i. e.,

Ω(M) is positively invariant.
Let (X, T, π) be compactly dissipative and x ∈ Ω(M), then there exist {xn} ⊆ M

and tn → +∞ such that xn → x and π(tn, xn) → x as n → ∞. Denote K0 := {xn},
where by bar the closure in X is denoted. Then we have

ρ(π(tn, xn), J) ≤ sup
p∈K0

ρ(π(tn, p), J), (2)
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where J is Levinson center of (X, T, π). Passing to limit in (2) we obtain x ∈ J . By
the first item the set Ω(X) is nonempty, compact and positively invariant.

To prove the third item it is sufficient to construct an example with the corre-
sponding properties. To this end we note that in the works [5] and [8] a dynamical
system (X, T, π) with the following properties was constructed:

1. (X, T, π) is point dissipative, but it is not compactly dissipative;

2. Ω(X) is an unbounded set and, consequently, it is not compact.

Lemma is proved.

Let (X, T, π) be a compact dissipative dynamical system and J be its Levinson
center and M ⊆ X be a nonempty, closed and positively invariant subset from X.
Denote by M1 := Ω(M) the set of all non-wandering (with respect to M) points of
(X, T, π). By Lemma 6 the set M1 is a nonempty, compact and positively invariant
subset of J . We denote by M2 := Ω(M1) ⊆ M1 the set of all non-wandering (with
respect to M1) points. By Corollary 1 and Lemma 5 the set M2 is nonempty, compact
and positively invariant. Analogously we define the set M3 := Ω(M2) ⊆ M2 which is
also a nonempty, compact and positively invariant set. We can continue this process
and we will obtain Mn := Ω(Mn−1) for all n ∈ N. Thus we have a sequence {Mn}n∈N

possessing the following properties:

1. for all n ∈ N the set Mn is nonempty, compact and positively invariant;

2. J ⊇ M1 ⊇ M2 ⊇ M3 ⊇ . . . ⊇ Mn ⊇ Mn+1 ⊇ . . ..

Denote by Mλ :=
∞
⋂

n=1
Mn, then Mλ is a nonempty, compact (since the set J is

compact) and invariant subset of J . Now we define the set Mλ+1 := Ω(Mλ) and we
can continue this process to obtain the following sequence

J ⊇ M1 ⊇ M2 ⊇ M3 ⊇ . . . ⊇ Mn ⊇

Mn+1 ⊇ . . . ⊇ Mλ ⊇ Mλ+1 ⊇ . . . ⊇ Mλ+k ⊇ . . . .

Now construct the set Mµ :=
∞
⋂

k=1

Mµ+k and we denote by Mµ+1 := Ω(Mµ) and so

on. Thus we will obtain a transfinite sequence of nonempty, compact and positively
invariant subsets

J ⊇ M1 ⊇ M2 ⊇ M3 ⊇ . . . ⊇ Mn ⊇ (3)

Mn+1 ⊇ . . . ⊇ Mλ ⊇ . . . ⊇ Mλ ⊇ . . . ⊇ Mµ ⊇ . . . .

Since J is a nonempty compact set, then in the sequence (3) there is at most a
countable family of different elements, i.e., there exists a γ such that Mν+1 = Mν .

Definition 4. The set B(M) := Mν is said to be the center of Birkhoff for the
closed and positively invariant set M . If M = X, then the set B(π) := B(X) is
said to be the Birkhoff center of compact dissipative dynamical system (X, T, π).
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Let (X, T, π) be a compact dissipative dynamical system and J be its Levinson
center. Denote P (π) := {p ∈ X : p ∈ ωx}, then by Lemma 3 we have P (π) ⊆
B(π) ⊆ J .

Let K be a nonempty subset of X. Denote by C(T,K) the set of all continuous
mappings f : T 7→ K equipped with the compact-open topology.

Lemma 7. Let (X, T, π) be a compact dissipative dynamical system and B(π) be its

Birkhoff center. Then the following statements hold:

1. B(π) is a nonempty, compact and invariant set;

2. B(π) is a maximal compact invariant subset M of X such that Ω(M) = M .

Proof. By Lemma 6 B(π) is a nonempty, compact and positively invariant set.
To finish the proof of the first statement it is sufficient to establish that the set
B(π) is negatively invariant, i.e., B(π) ⊂ π(t,B(π)) for all t ∈ T. To this end it is
sufficient to show that for all x ∈ B(π) the set of all entire trajectories γx of (X, T, π)
passing through the point x at the initial moment with the condition γx(S) ⊆ B(π)
is nonempty. Let x ∈ B(π). Since Ω(B(π)) = B(π), then there are {xn} ⊆ B(π)
and {τn} ⊆ T such that xn → x, τn → +∞ and π(τn, xn) → x. Denote by γn

the function from C(S,B(π)) defined by the equality γn(t) = π(t + τn, xn) for all
t ≥ −τn and γn(t) = xn for all t ≤ −τn. We will show that the sequence {γn} is
relatively compact in C(S,B(π)). Let l > 0. Since the set B(π) is compact, then it
is sufficient to check that the sequence {γn} is equi-continuous on the interval [−l, l].
If we suppose that it is not true then there exist ε0 > 0, δn → and t1n, t2n ∈ [−l, l]
such that

|t1n − t2n| < δn and ρ(γn(t1n), γn(t2n)) ≥ ε0 (4)

for all n ∈ N. Without loss of generality we may consider that the sequence {γn(−l)}
is convergent and denote its limit by x̄. From inequality (4) we have

ε0 ≤ ρ(γn(t1n), γn(t1n)) = ρ(π(l + t1n, γn(−l)), π(l + t2n, γn(−l))). (5)

Passing to limit in inequality (5) as n → ∞ and taking into consideration (4), we
obtain ε0 ≤ ρ(π(l+ t̄, x̄), π(l+ t̄, x̄)) = 0, where t̄ := lim

n→∞
t1n = lim

n→∞
t2n. The obtained

contradiction proves our statement. Thus the sequence {γn} is equi-continuous
on [−l, l] and the set ∪∞

n=1γn([−l, l]) ⊆ B(π) is relatively compact. Taking into
account that l is an arbitrary positive number we conclude that the sequence {γn}
is relatively compact in C(S,B(π)). We may suppose that the sequence {γn} is
convergent. Denote by γ := lim

n→∞
γn, then γ(0) = x := lim

n→∞
π(τn, xn) and γ ∈ Φx

such that γ(S) ⊆ B(π) = Ω(B(π)), because by construction γn(S) ⊆ B(π) for all
n ∈ N.

Let now M ⊆ X be an arbitrary nonempty, compact and invariant subset of X
with the property Ω(M) = M . Then by construction of B(M) we have B(M) = M .
On the other hand M ⊆ J , where J is the Levinson center of the compact dissipative
dynamical system (X, T, π) and, consequently, B(M) ⊆ B(X) = B(π). Lemma is
completely proved.
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Definition 5. Recall that the mapping f : X 7→ X is said to be open if for all
p ∈ X and δ > 0 the set f(B(p, δ)) is open.

Let p ∈ B(π) and ε > 0. Denote by B̃(p, ε) := B(p, ε)
⋂

B(π).

Lemma 8. Let (X, T, π) be a compact dissipative dynamical system and B(π) be its

Birkhoff center. Then the following statements hold:

1. for all p ∈ B(π), ε > 0 and t0 ∈ T there exists a number t = t(p, ε, t0) > t0
such that π(t, B̃(p, ε))

⋂

B̃(p, ε) 6= ∅;

2. for all ε > 0, L > 0 and p ∈ B(π) there are q ∈ B̃(p, ε), δ = δ(L, ε) > 0 and

t > L such that

B̃(q, δ)
⋃

π(t, B̃(q, δ)) ⊂ B̃(p, ε).

Proof. Suppose that under the conditions of Lemma the first statement is not true.
Then there exist p0 ∈ B(π), ε0 > 0 and t0 ∈ T such that

π(t, B̃(p0, ε0))
⋂

B̃(p0, ε0) = ∅ (6)

for all t ≥ t0. On the other hand since p0 ∈ B(π), then there exist {pn} ⊆ B(π)
and tn → +∞ such that π(tn, pn) → p as n → ∞ and, consequently,

π(tn, B̃(p, ε0))
⋂

B̃(p, ε0) 6= ∅ (7)

for all n ∈ N. Conditions (6) and (7) are contradictory. The obtained contradiction
proves our statement.

Now we will establish the second statement. Let ε > 0, L > 0 and p ∈ B(π).
Since p ∈ J+

p (B(π)), then there are q ∈ B̃(p, ε) and t > L such that π(t, q) ∈ B̃(p, ε).

Let µ be a positive number such that B̃(π(t, q), µ) ⊂ B̃(p, ε). By continuity of the
map π(t, ·) : B(π) 7→ B(π) there exists a positive number δ = δ(t, q, ε) such that
B̃(q, δ) ⊂ B̃(p, ε) and π(t, B̃(q, δ)) ⊂ B̃(π(t, q), µ) ⊂ B̃(p, ε).

Lemma 9. Suppose that (X, T, π) is a dynamical system and the following condi-

tions hold:

1. the space X is compact;

2. X is an invariant set, i. e., π(t,X) = X for all t ∈ T;

3. Ω(X) = X.

Then for all x ∈ X, ε > 0 and l > 0 there exists a number t > l such that

π−tB(x, ε)
⋂

B(x, ε) 6= ∅.
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Proof. Let x ∈ X and l, ε be two arbitrary positive numbers. Since x ∈ J+
x , then

there are sequences {xn} ⊆ X and {tn} ⊆ T such that

xn → x, tn → +∞ and π(tn, xn) → x (8)

as n → ∞. For the sufficiently large n ∈ N we have

tn > l and xn, π(tn, xn) ∈ B(x, ε). (9)

Let γn ∈ Φπ(tn,xn) be a full trajectory of (X, T, π) passing through π(tn, xn) at
the initial moment t = 0 such that γn(s) = π(s + tn, xn) for all s ≥ −tn. Then
γn(−tn) = xn ∈ B(x, ε) and xn = γn(−tn) ∈ π−tn(xn) ⊆ π−tnB(x, ε). Thus we will
have

xn ∈ π−tnB(x, ε)
⋂

B(x, ε) 6= ∅ (10)

for all sufficiently large n ∈ N.

Corollary 2. Under the conditions of Lemma 9 for all x ∈ X, ε > 0 and l > 0
there exists t > l such that B(x, ε)

⋂

πtB(x, ε) 6= ∅.

Proof. By Lemma 9 for all x ∈ X, ε > 0 and l > 0 there exists t > l such that
π−tB(x, ε)

⋂

B(x, ε) 6= ∅ and, consequently,

πt(π−tB(x, ε)
⋂

B(x, ε)) ⊆ B(x, ε)
⋂

πtB(x, ε) 6= ∅.

Corollary 3. Suppose that the dynamical system (X, T, π) is compact dissipative

and B(π) is its Birkhoff’s center, then for all x ∈ B(π), ε > 0 and l > 0 there exists

a number t > l such that π−tB̃(x, ε)
⋂

B̃(x, ε) 6= ∅.

Proof. This statement directly follows from Lemmas 7 and 9.

Theorem 3. Suppose that (X, T, π) is a compact dissipative dynamical system, for

all t > 0 the mapping π̃(t, ·) := π(t, ·)∣
∣

B(π)
is open, then the set of all Poisson stable

in the positive direction points of (X, T, π) is dense in B(π), i. e., B(π) = P (π).

Proof. By Lemma 3 we have P (π) ⊆ B(π) and, consequently, P (π) ⊆ B(π). To
finish the proof of Theorem it is sufficiently to show that P (π) ⊇ B(π).

Let p ∈ B(π) and ε be an arbitrary (sufficient small) positive number. Let {tn}
be an increasing sequence such that τn → +∞. By Lemma 8 (item 2) there exists
t1 > τ1 such that

B̃[x1, ε1] ⊆ B̃[p, ε] and π(t1, B̃[x1, ε1]) ⊆ B̃[p, ε].

Since the mapping π(t1, ·) is open, then we can choose x1 ∈ B(π) and ε1 > 0 such
that

B̃[x1, ε1] ⊂ π(t1, B̃[p, ε]) ⊆ B̃[p, ε].
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By Lemma 8 there is t2 > τ2 such that we will have

B̃[x2, ε2] ⊆ B̃[x1, ε1] and π(t2, B̃[x2, ε2]) ⊆ B̃[x1, ε1].

Since the mapping π(t2, ·) is open we can again choose x2 ∈ B(π) and 0 < ε2 < ε1/2
such that

B̃[x3, ε3] ⊆ B̃[x2, ε2] and π(t3, B̃[x3, ε3]) ⊆ B̃[x2, ε2].

Reasoning analogously we can construct sequences {xn} ⊆ B(π) and {εn} such that
εn < εn−1/2, B̃[xn, εn] ⊂ B̃[xn−1, εn−1] and π(tn, B̃[xn, εn]) ⊆ B̃[xn−1, εn−1] for all
n ∈ N, where ε0 := ε and x0 := p. Since B(π) is a nonempty compact set, then

Λ :=
∞
⋂

n=0
B̃(xn, εn) 6= ∅ and it consists of a unique point. Let {x} = Λ. We will show

that the point x is Poisson stable in the positive direction. In fact, if L > 0 is a
sufficiently large number and δ > 0, respectively, sufficiently small number, then we
choose a natural number m ∈ N with the condition that tm > L and εm < δ, then
π(tn, B̃[xn, εn]) ⊆ B̃[xm, εm] ⊆ B̃[x, δ] for all n > m. In particular π(tn, x) ∈ B̃[x, δ]
for all n > m, i. e., x ∈ ωx. Thus x ∈ B̃(p, ε) and, consequently, B(π) ⊆ P (π).
Theorem is proved.

Remark 4. 1. Note that the mappings π̃(t, ·) (t ∈ T) are open, if on B(π) the
dynamical system (X, T, π) is invertible, i. e., for all t ∈ T the mapping π̃(t, ·) :
B(π) 7→ B(π) is a homeomorphism.

2. If the dynamical system (X, T, π) is invertible on B(π), then by Theorem 1.14
[14, Ch.III] (see also Proposal 1.1 from [1], where the analogue of Theorem 1.4 for
the discrete dynamical systems was proved) in the set B(π) the set of all Poisson
stable (both in the positive and negative directions) points from X is dense.

Let (X, T, π) be a compact dissipative dynamical system. Recall that a compact
set M ⊆ X is called a weak attractor of the dynamical system (X, T, π) if ωx∩M 6= ∅
for all x ∈ X. In this section we establish the relationship between weak attractors
of the dynamical system (X, T, π) and its Levinson center.

Theorem 4 (see [4, Ch.I]). Let (X, T, π) be compactly dissipative, J be its Levinson

center and M be a compact weak attractor of the dynamical system (X, T, π). Then

J = J+(M).

Denote by J+
x := {p ∈ X : there exist the sequences xn → x and tn → +∞ such

that π(tn, xn) → p as n → ∞} and J+(M) :=
⋃

{J+
x : x ∈ M}.

Lemma 10. Let M ⊆ X be a nonempty, compact, positively invariant and minimal

subset of X. Then the following statements hold:

1. the set M is invariant, i.e., π(t,M) = M for all t ∈ T;

2. for every x ∈ M each full trajectory γ ∈ Φx is Poisson stable, i. e.,

x ∈ ωx = αγ.
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Proof. Let t0 ∈ T and M ′ := π(t0,M), then M ′ ⊆ M and π(t,M ′) = π(t + t0,M) ⊆
M . Since M is a nonempty, compact and positively invariant set, then the set
M ′ is so. Taking into consideration that M is a minimal set we conclude that
M = π(t0,M) for all t0 ∈ T and, consequently, it is invariant.

Let now x ∈ M be an arbitrary point from M , then ωx is a nonempty, compact
and positively invariant subset of M . Since the set M is minimal, then we have
ωx = M . Let now γ ∈ Φx be an arbitrary full trajectory of (X, T, π) with the
properties: γ(0) = x and γ(S) ⊆ M , then its α-limit set αγ ⊆ M is a nonempty and
compact subset of ωx = M . If p ∈ αγ , then there exists a sequence sn → −∞ such
that p = lim

n→∞
γ(sn). For all t ∈ T the sequence {γ(t+sn)} ⊆ M is relatively compact

and, consequently, without loss of generality, we may suppose that {γ(t + sn)}
converges. Denote by pt its limit, i.e., pt := lim

n→∞
γ(t + sn). Note that

π(t, p) = lim
n→∞

π(t, γ(sn)) = lim
n→∞

γ(t + sn) ∈ αγ ⊆ M

for all t ∈ T and, consequently, ωp is a nonempty, compact, positively invariant
subset of M . On the other hand we have ωp ⊆ αγ ⊆ M . Since the set M is minimal,
then we obtain M = ωp ⊆ αγ ⊆ M and, consequently, αγ = M . Thus we have
x ∈ ωx = αγ = M . Lemma is completely proved.

Theorem 5. Let (X, T, π) be a compact dissipative dynamical system, J be its Levin-

son center and B(π) be the Birkhoff center of (X, T, π). Then the following equality

takes place: J = J+(B(π)).

Proof. By Lemmas 3 and 6 we have P(π) ⊆ B(π) ⊆ J and P(π) is a nonempty and
compact subset of J . It is not difficult to show that the set P(π) is a weak attractor
for (X, T, π). In fact, let x ∈ X be an arbitrary point of X. Since the dynamical
system (X, T, π) is compact dissipative, then the ω-limit set ωx of the point x is a
nonempty, compact and positively invariant subset of X. By theorem of Birkhoff
in ωx there exists a nonempty, compact, positively invariant and minimal subset
M ⊆ ωx. By Lemma 10 every point p from M is Poisson stable and, consequently,
M ⊆ P(π) ⊆ P(π) ⊆ B(π). Thus we have M ⊆ ωx

⋂

B(π) for each x ∈ X, i. e.,
B(π) is a weak attractor of (X, T, π). Now to finish the proof of Theorem it is
sufficient to apply Theorem 4.

3 Chain recurrent motions

Let Σ ⊆ X be a compact positively invariant set, ε > 0 and t > 0.

Definition 6. The collection {x = x0, x1, x2, . . . , xk = y; t0, t1, . . . , tk} of the
points xi ∈ Σ and the numbers ti ∈ T such that ti ≥ t and ρ(xiti, xi+1) < ε (i =
0, 1, . . . , k− 1) is called (see, for example, [2,3,6,7,12] and the bibliography therein)
a (ε, t, π)-chain joining the points x and y.

Remark 5. Without loss of generality we can suppose always that ti ≤ 2t, where ti
and t the numbers figuring in Definition 6 (see, for example, [2, Ch.I]).
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We denote by P (Σ) the set {(x, y) : x, y ∈ Σ,∀ ε > 0 ∀ t > 0 ∃ (ε, t, π)-chain
joining x and y}. The relation P (Σ) is closed, invariant and transitive [2, 6, 10–12].

Definition 7. The point x ∈ Σ is called chain recurrent (in Σ) if (x, x) ∈ P (Σ).

We denote by R(Σ) the set of all chain recurrent (in Σ) points from Σ.

Remark 6. Note that if Σ1 and Σ2 are two positively invariant subsets of (X, T, π)
with condition Σ1 ⊆ Σ2, then R(Σ1) ⊆ R(Σ2).

Definition 8. Let A ⊆ X be a nonempty positively invariant set. The set A is
called (see, for example, [9]) internally chain recurrent if R(A) = A, and internally
chain transitive if the following stronger condition holds: for any a, b ∈ A and any
ε > 0 and t > 0, there is an (ε, t, π)-chain in A connecting a and b.

The set of all chain recurrent points for (X, T, π) is denoted by R(Σ), i. e.,
R(Σ) := {x ∈ Σ : (x, x) ∈ P (Σ)}. On R(Σ) we will introduce a relation ∼ as
follows: x ∼ y if and only if (x, y) ∈ P (Σ) and (y, x) ∈ P (Σ). It is easy to check
that the introduced relation ∼ on R(Σ) is a relation of equivalence and, consequently,
it is easy to decompose it into the classes of equivalence {Rλ : λ ∈ L} (internally
chain transitive subsets), i. e., R(Σ) = ⊔{Rλ : λ ∈ L}. By Proposal 2.6 from [2]
(see also [6] and [10–12] for the semi-group dynamical systems) the defined above
components of the decomposition of the set R(Σ) are closed and positively invariant.

Lemma 11 (see [9]). Let x ∈ X and γ ∈ Φx. The ω-limit (respectively, α-limit)

set of positive (respectively, negative) pre-compact orbit of the point x is internally

chain transitive, i. e., R(ωx) = ωx (respectively, R(αγ) = αγ).

Let (X, T, π) be a compact dissipative dynamical system and J be its Levinson
center. Denote by R(π) := R(J).

Problem. Suppose that (X, T, π) is a compact dissipative dynamical system and J
is its Levinson center. To prove that R(π) = R(X) or to construct a corresponding
counterexample.

Remark 7. In the connection with the Problem formulated above it is interesting to
note that in the works [5,8] an example of dynamical system (X, T, π) is constructed
which posses the following properties:

1. (X, T, π) is point dissipative;

2. (X, T, π) is asymptotically compact;

3. (X, T, π) is not compact dissipative;

4. R(X) is an unbounded subset of X.

Denote by C(T × X,X) the set of all continuous functions π : T × X 7→ X
equipped with the compact-open topology. If K ⊂ X is a compact subset from X,
then we denote by

dK(f, g) := sup
L>0

min{ sup
0≤t≤L, x∈K

ρ(f(t, x), g(t, x)), L−1} (11)
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and D := {dK : K ∈ C(X)} a family of pseudo-metrics which generates the
compact-open topology on C(T × X,X), where C(X) is the family of all compact
subsets from X.

Remark 8. Note that for all ε > 0 the inequality dK(f, g) < ε is equivalent to
sup

0≤t≤ε−1, x∈K

ρ(f(t, x), g(t, x)) < ε (see, for example,[13, Ch.I] or [14, Ch.IV]).

Definition 9. Recall [2, Ch.I] that the collection [x1, x2, . . . , xk := y; t1, t2, . . . , tk−1]
is called a generalized chain joining x and y if the following conditions are fulfilled:

1. ti ≥ t;

2. ρ(x, x1) < ε;

3. ρ(π(ti, xi), xi+1) < ε (1 = 1, . . . , k − 1).

Remark 9. In the book [2, Ch.I] it is shown that in the definition of chain recurrence
the (ε, t, f)-chains can be replaced by generalized (ε, t, f)-chains.

Theorem 6. Suppose that the following conditions hold:

1. M ⊂ C(T × X,X) is a compact subset from C(T × X,X);

2. for all π ∈ M the dynamical system (X, T, π) is compact dissipative and Jπ is

its Levinson center;

3. the set J :=
⋃

{Jπ : π ∈ M} is compact.

Then the mapping F : M 7→ 2J defined by equality F (π) := R(π) is upper semi-

continuous, where by 2J the space of all compact subsets from J equipped with the

Hausdorff metric is denoted.

Proof. Let πn, π ∈ M and dJ(πn, π) → 0, an ∈ R(πn) and an → a as n → ∞. We
need to show that a ∈ R(π). Let ε be an arbitrary positive number and 0 < δ < ε/4.
There exists a number n0 ∈ N such that ρ(an, a) < δ and dJ(πn, π) < δ for all n ≥ n0.
Since an ∈ R(πn), then there is a (δ, ε−1, πn)-chain from an to an, i.e., there exists
a collection {x0 = an, x1, . . . , xk−1, xk = an; t0, . . . , tk−1} such that

ρ(πn(ti, xi), xi+1) < δ, ε−1 ≤ ti ≤ 2ε−1 (i = 0, 1, . . . , k − 1).

Thus the collection [x0, x1, . . . , xk−1, a; t0, t1, . . . , tk−1] is a generalized (2δ, ε−1, πn)-
chain joining a with a. From the inequality dJ (πn, π) < δ it follows that

ρ(πn(t, x), π(t, x)) < δ (x ∈ J, 0 ≤ t ≤ δ−1 < 4ε−1)

and, consequently, the above indicated generalized (2δ, ε−1, πn)-chain is also a gen-
eralized (ε, ε−1, π) chain from a to a. Since ε is an arbitrary positive number, then
a ∈ R(π).
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Lemma 12. Suppose that (X, T, π) is compact dissipative and J if its Levinson

center, then ωx ⊆ R(J) = R(π) for all x ∈ X.

Proof. Let x ∈ X be an arbitrary point. Since (X, T, π) is compact dissipative, then
ωx is a nonempty, compact, and invariant subset of J , then R(ωx) ⊆ R(J) = R(π).
By Lemma 11 we have ωx = R(ωx) and, consequently, ωx ⊆ R(π).

Lemma 13 (see [4, Ch.IV]). If the compact invariant set Σ from X contains only a

finite number of minimal sets, then the relation ∼ decomposes the set R(Σ) into the

finite number of different classes of equivalence (internally chain transitive sets).

Remark 10. 1. Lemma 13 was established in [4, Ch.IV] for the two-sided (group)
dynamical systems.

2. For the one-sided (semi-group) dynamical systems this statement may be
proved by slight modifications of the arguments from [4, Ch.IV].

3. For two-sided dynamical systems (T = S) with infinite number of compact
minimal subsets Lemma 13 remains true if in addition the dynamical system (X, S, π)
satisfies some condition of hyperbolicity (see Theorem 4.1 [4, Ch.IV]).

Lemma 14 (see [9]). Let M be an isolated (local maximal) invariant set and R be

a compact internally chain transitive set for (X, T, π). Assume that M
⋂

R 6= ∅ and

M ⊆ R.

Then

a. there exists a point u ∈ R \ M such that ωu ⊆ M ;

b. there exists a point w ∈ R \ M and an entire trajectory γ ∈ Φw such that

αγ ⊆ M .

Theorem 7. Assume that the following conditions hold:

1. the dynamical system (X, T, π) is compactly dissipative and J is its Levinson

center;

2. there exists a finite number n of compact minimal subsets Mi ⊆ J (i =
1, 2, . . . , k) of (X, T, π);

3. the collection of subsets {M1,M2, . . . , n} does not admit k-cycles;

4. for all x ∈ X there exists a number i ∈ {1, 2, . . . , n} such that ωx = Mi.

Then any compact internally chain transitive set Rλ(π) is a minimal set of

(X, T, π), i. e., there exists i ∈ {1, 2, . . . , n} such that Rλ = Mi.

Proof. Let Rλ(π) be a compact internally chain transitive set for (X, T, π). Since
Rλ(π) is a compact positively invariant set, then by Birkhoff’s theorem in Rλ(π)
there exists a nonempty compact minimal set Mi ⊆ Rλ(π) (i1 ∈ {1, 2, . . . , n}). We
will show that Rλ(π) = Mi1 . If we suppose that it is not true, then by Lemma 14
there exists a point x1 ∈ Rλ(π) \ Mi1 and an entire trajectory γ1 ∈ Φx1 such that
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αγ1 ⊆ Mi1 . By conditions of Theorem there exists a number i2 ∈ {1, 2, . . . , n}
such that ωx1 = Mi2 . Since Mi2 ⊆ Rλ(π) and Rλ(π) 6= Mi2 then by Lemma 14
there exists a point x2 ∈ Rλ(π) \ Mi2 and an entire trajectory γ2 ∈ Φx2 such that
αγ2 = Mi2 and there exists a number i3 ∈ {1, 2, . . . , n} such that ωx2 = Mi3 . Since
there is only a finite number of Mi’s, we will eventually arrive at a cyclic chain of
some minimal sets of (X, T, π), which contradicts our assumption.

Corollary 4. Under the conditions of Theorem 7 we have R(π) =
∐n

i=1 Mi.

Theorem 8. Suppose that (X, T, π) is a bounded dissipative dynamical system and

J is its Levinson center. Then for every δ > 0 and B ∈ B(X) there exists L =
L(δ,B) > 0 (L ∈ T) such that

π([0, L], x)
⋂

B(R(J), δ) 6= ∅ for all x ∈ B,

i. e., for all x ∈ B there exists l = l(x) ∈ [0, L] such that

π(l, x) ∈ B(R(J), δ).

Proof. If we suppose that the statement of Theorem is not true, then there are
δ0 > 0, B0 ∈ B(X), Ln ≥ n and xn ∈ B0 such that

ρ(π(t, xn),R(J)) ≥ δ0 (12)

for all t ∈ [0, Ln]. Let sn := [Ln/2] and x̃n := π(sn, xn). Note that

ρ(x̃n, J) = ρ(π(sn, xn), J) ≤ β(π(sn, B0), J) → 0 (13)

as n → ∞, because sn → ∞ and J attracts the bounded subset B0 as t → +∞.
From (13) it follows that the sequence {x̃n} is relatively compact. Thus, without
loss of generality we can suppose that the sequence {x̃n} is convergent. Denote
x̃ = lim

n→∞
x̃n, then by (13) we obtain x̃ ∈ J . On the other hand by (12) we obtain

ρ(π(t, x̃n),R(J)) = ρ(π(t + sn, xn),R(J)) ≥ δ0 (14)

for all t ∈ [−sn, sn]. Let γ ∈ Fx̃ be the full trajectory of dynamical system (X, T, π)
passing through {x} at the initial moment t = 0 and defined by equality γ(t) =
lim

n→∞
π(t + sn, xn) for all t ∈ S. Note that γ(S) ⊆ J because for every t ∈ S we have

ρ(π(t + sn, xn), J) ≤ ρ(π(t + sn, B0), J) (15)

for sufficiently large n, and passing to limit in (15) as n → ∞ we obtain γ(t) ∈ J for
all t ∈ S. By Lemma 12 we have ωx̃ ⊆ R(J). But from (14) it follows that γ(t) /∈
R(J) for all t ∈ S and, consequently, ωx̃

⋂

R(J) = ∅. The obtained contradiction
proves our statement. Theorem is proved.

Corollary 5. Suppose that the following conditions hold:
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1. (X, T, π) is a bounded dissipative dynamical system and J its Levinson center;

2. (X, T, π) is a gradient system;

3. Fix(π) = {p1, p2, . . . , pm};

4. Fix(π) does not contain any k-cycle (k ≥ 1).

Then for every δ > 0 and B ∈ B(X) there exists L = L(δ,B) > 0 (L ∈ T) such

that

π([0, L], B)
⋂

B(Fix(π), δ) 6= ∅,

i. e., for all x ∈ B there exists l = l(x) ∈ [0, L] such that

π(l, x) ∈ B(Fix(π), δ).

Proof. This statement follows from Theorems 7 and 8.

Theorem 9. Suppose that the following conditions are fulfilled:

1. the dynamical system (X, T, π) admits a compact global attractor J which at-

tracts every bounded subset B ∈ B(X);

2. R(J) consists of finite number of different classes of equivalence

R1 R2, . . . , Rk.

Then for every δ̃ > 0 there exists δ ∈ (0, δ̃) such that for every x ∈ B(Ri, δ)
(i = 1, k) with π(t, x) ∈ B(Ri, δ) for all t ∈ [0, T ) and π(T, x) /∈ B(Ri, δ) we have

π(t, x) /∈ B(Ri, δ) for each t ≥ T (i. e., never returns again in B(Ri, δ) for all

t ≥ T ).

Proof. By Lemma 4.3 [4, Ch.IV] in the collection {R1,R2, . . . ,Rk} there is no
r-cycles (r ≥ 1). We will show that if we suppose that the statement of Theo-
rem is not true, then we will have a contradiction this the fact formulated above.
In fact. Suppose that Theorem is wrong, then there are Ri0 , B(Ri0 , δ0) (δ0 > 0),
Tn ∈ T, T ′

n > Tn and a sequence {xn} ⊂ B(Ri0 , δ0) such that

π(Tn, xn) /∈ B(Ri0, δ0) and π(T ′
n, xn) ∈ B(Ri0 , 1/n).

Without loss of generality we can suppose that π(t, xn) ∈ B(Ri0 , δ0) for all
t ∈ [0, Tn).

Note that Tn → ∞ as n → ∞. If we suppose that it is not so, then we can
consider that {Tn} is bounded (otherwise we can extract a subsequence {Tkn

} which
converges to +∞ as n goes to ∞), i. e., there exists a number L > 0 such that

π(t, xn) /∈ B(Ri0 , δ0) (16)
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for all t ≥ L and n ∈ N. Since xn ∈ B(Ri0 , 1/n), then without loss of generality
we can suppose that {xn} is convergent. Denote by p := lim

n→∞
xn, then p ∈ Ri0 and

passing into limit in (16) as n → ∞ we obtain

π(t, p) /∈ B(Ri0 , δ0) (17)

for all t ≥ L. On the other hand

π(t, p) ∈ Ri0 (18)

for all t ≥ 0 because the set Ri0 is invariant. Relations (17) and (18) are contradic-
tory. The obtained contradiction proves our statement.

Denote by x̃n := π(Tn, xn), then we have

1. x̃n /∈ B(Ri0 , δ0) for all n ∈ N;

2. π(t, x̃n) = π(t + Tn, xn) ∈ B(Ri0 , δ0) for all −Tn ≤ t < 0;

3. π(T̃ ′
n, x̃n) ∈ B(Ri0 , 1/n) for all n ∈ N, where T̃ ′

n := T ′
n − Tn > 0.

Since xn ∈ B(Ri0 , 1/n), Tn → +∞ and (X, T, π) is compactly dissipative, then the
sequence {x̃n} is relatively compact and without loss of generality we can suppose
that it is convergent. Denote by x̃ := lim

n→∞
x̃n and consider γ ∈ Φx̃, where γ(t) :=

lim
n→∞

π(t + Tn, xn) for all t ∈ S.

Note that T̃ ′
n → +∞ as n → ∞. In fact, if we suppose that it is not true,

then without loss of generality we can consider that {T̃ ′
n} is bounded, for example,

T̃ ′
n ∈ [0, L] for all n ∈ N, where L is some positive number. Let l := lim

n→∞
T̃ ′

n, then

l ∈ [0, L] (if it is necessary we can extract a convergent subsequence from {T̃ ′
n}).

Then from (iii) we obtain π(l, x̃) ∈ Ri0 and, consequently, x̃ ∈ Ri0 because Ri0 is
invariant. The obtained contradiction proves our statement.

We will show that γ(t) ∈ J for all t ∈ S. In fact

ρ(π(t + Tn, xn), J) ≤ β(π(t + Tn,K), J) → 0

as n → ∞, where K := {xn} and by bar the closure in the space X is denoted.
Now we note that γ(t) ∈ B(Ri0 , δ0) for all t < 0. Since the set Ri0 is local maximal,
then without loss of generality we can suppose that in B(Ri0, δ0) the invariant set
Ri0 is maximal and, consequently, αγ ⊆ Ri0 . On the other hand ωx̃ ⊆ R(J) and,
consequently, there exists a number i1 ∈ {1, 2, . . . , k} such that ωx̃ ⊆ Ri1 . Since the
collection {R1,R2, . . . ,Rk} has not r-cycles (r ≥ 1), then i1 6= i0.

Since x̃n → x̃ as n → ∞ and ωx̃ ⊆ Ri1 , then by integral continuity for all
n ∈ N there exists a number T 1

n > 0 such that π(T 1
n , x̃n) ∈ B(Ri1 , 1/n). Taking into

account that T̃ ′
n → +∞ as n → ∞ and Theorem 8 we can consider that T 1

n ≤ T̃ ′
n.

On the other hand by Theorem 8 for all n ∈ N there exists T 2
n ∈ (T 1

n , T̃ ′
n) such

that π(T 2
n , x̃n) /∈ B(Ri1 , δ0). Repeating the reasoning above for the set Ri1 and the



RELATION BETWEEN LEVINSON CENTER, CHAIN RECURRENT SET . . . 59

sequence {x̃n} we can find a full trajectory γ1 so that αγ1 ⊆ Ri1 and ωx̃1 ⊆ Ri2 ,
where i2 6= i0, i1 and x̃1 := γ1(0).

Reasoning analogously we will construct a sequence {γ, γ1, . . . , γp} (p ≤ k − 1)
so that αγp ⊆ Rip and ωx̃p ⊆ Rip+1 (γ0 := γ). Since the family {R1,R2, . . . ,Rk}
contains a finite number of sets Rp, then after the finite number q ≤ k of steps
we will have Rip = Ri0 , i. e., we will obtain a q-cycle. The obtained contradiction
proves our Theorem.

Corollary 6. Suppose that the following conditions hold:

1. (X, T, π) is a bounded dissipative dynamical system and J its Levinson center;

2. (X, T, π) is a gradient system;

3. Fix(π) = {p1, p2, . . . , pm};

4. Fix(π) does not contain any k-cycle (k ≥ 1).

Then for every δ̃ > 0 there exists δ ∈ (0, δ̃) such that for every x ∈ B(Ri, δ)
(i = 1, k) with π(t, x) ∈ B(Ri, δ) for all t ∈ [0, T ) and π(T, x) /∈ B(Ri, δ) we have

π(t, x) /∈ B(Ri, δ) for each t ≥ T (i. e., never returns again in B(Ri, δ) for all

t ≥ T ).

Proof. This statement follows from Theorems 8 and 9.
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1 Introduction

Recall that a vector space (set) T equipped with three binary associative oper-
ations ⊣, ⊢ and ⊥ that satisfy the following axioms: (x ⊣ y) ⊣ z = x ⊣ (y ⊢ z) (T1),
(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z) (T2), (x ⊣ y) ⊢ z = x ⊢ (y ⊢ z) (T3), (x ⊣ y) ⊣ z = x ⊣
(y ⊥ z) (T4), (x ⊥ y) ⊣ z = x ⊥ (y ⊣ z) (T5), (x ⊣ y) ⊥ z = x ⊥ (y ⊢ z) (T6),
(x ⊢ y) ⊥ z = x ⊢ (y ⊥ z) (T7), (x ⊥ y) ⊢ z = x ⊢ (y ⊢ z) (T8) for all x, y, z ∈ T, is
called a trialgebra (trioid) [1]. So, the notion of a trialgebra is based on the notion
of a trioid and all results obtained for trioids can be applied to trialgebras. This
connection between trioids and trialgebras gives a motivation for studying trioids.
Another reason for our interest in trioids is their connection with dimonoids [2, 3].
For a general introduction and basic theory see [1, 4].

The first step in the study of idempotent semigroups has been made by David
McLean [5] who used rectangular bands for the description of the structure of an
arbitrary band. Rectangular dimonoids (rectangular dibands) first appeared in the
researches of the structure of dibands of subdimonoids (see [6]). Using rectangular
dibands, a structure theorem on idempotent dimonoids was given in [7]. The free
rectangular diband was constructed in [8].

In this paper we introduce the notion of a rectangular triband and give exam-
ples of rectangular tribands (Lemmas 1–4). We also construct a free rectangular
triband (Theorem 1), describe its structure (Theorems 3–4) and the automorphism
group (Lemma 5). As a consequence of Theorem 2, some least congruences on free
rectangular tribands are described (Corollary 2).

2 Preliminaries

A nonempty subset A of a trioid (T, ⊣,⊢,⊥) is called a subtrioid if for any
a, b ∈ T , a, b ∈ A it follows that a ⊣ b, a ⊢ b, a ⊥ b ∈ A. An idempotent semigroup

c© Yuliia V. Zhuchok, 2015
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S is called a rectangular band if

xyx = x (1)

for all x, y ∈ S. It is clear that in any rectangular band the identity

xyz = xz (2)

holds.
A trioid (T,⊣,⊢,⊥) is called an idempotent trioid or a triband [9] if semigroups

(T,⊣), (T,⊢) and (T,⊥) are idempotent semigroups. A trioid (T,⊣,⊢,⊥) will be
called a rectangular trioid or a rectangular triband, if semigroups (T,⊣), (T,⊢) and
(T,⊥) are rectangular bands.

Note that the class of all rectangular tribands is a subvariety of the variety of all
trioids. A trioid which is free in the variety of rectangular tribands will be called a
free rectangular triband.

Recall the definition of a triband of subtrioids which was introduced in [9].
If f : T1 → T2 is a homomorphism of trioids, then the corresponding congruence

on T1 will be denoted by ∆f .
Let S be an arbitrary trioid, J be some idempotent trioid and let α : S → J :

x 7→ xα be a homomorphism. Then every class of the congruence ∆α is a subtrioid
of the trioid S, and the trioid S itself is a union of such trioids Sξ, ξ ∈ J , that

xα = ξ ⇔ x ∈ Sξ = ∆x
α = {t ∈ S | (x, t) ∈ ∆α},

Sξ ⊣ Sε ⊆ Sξ⊣ ε, Sξ ⊢ Sε ⊆ Sξ ⊢ε, Sξ ⊥ Sε ⊆ Sξ ⊥ε,

ξ 6= ε ⇒ Sξ ∩ Sε = ∅.

In this case we say that S is decomposable into a triband of subtrioids (or S is a
triband J of subtrioids Sξ (ξ ∈ J)). If J is an idempotent semigroup (band), then
we say that S is a band J of subtrioids Sξ (ξ ∈ J). If J is a commutative band,
then we say that S is a semilattice J of subtrioids Sξ (ξ ∈ J). If J is a left (right)
zero semigroup, then we say that S is a left (right) band J of subtrioids Sξ (ξ ∈ J).

Observe that the notion of a triband of subtrioids generalizes the notion
of a diband of subdimonoids [6] (see also [7]) and the notion of a band of semi-
groups [10].

Recall that a nonempty set D equipped with two binary associative operations ⊣
and ⊢ satisfying the axioms (T1)− (T3) is called a dimonoid [2, 3]. If D = (D,⊣,⊢)
is a dimonoid, then the trioid (D,⊣,⊢,⊣) (respectively, (D,⊣,⊢,⊢)) will be denoted
by (D)⊣ (respectively, (D)⊢). It is clear that (D)⊣ and (D)⊢ are different as trioids
but they coincide as dimonoids.

Consider the following dimonoids from [8] which will be used in Section 4.
Let X be an arbitrary nonempty set. Let Xℓz = (X,⊣), Xrz = (X,⊢), Xrb =

Xℓz ×Xrz be a left zero semigroup, a right zero semigroup and a rectangular band,
respectively. By [8] Xℓz,rz = (X,⊣,⊢) is the free left zero and right zero dimonoid
(or the free left and right diband).
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Define operations ⊣ and ⊢ on X2 by

(x, y) ⊣ (a, b) = (x, b), (x, y) ⊢ (a, b) = (a, b)

for all (x, y), (a, b) ∈ X2. By [8] (X2,⊣,⊢) is a free (rb, rz)-dimonoid. It is denoted
by Xrb,rz.

Define operations ⊣ and ⊢ on X2 by

(x, y) ⊣ (a, b) = (x, y), (x, y) ⊢ (a, b) = (x, b)

for all (x, y), (a, b) ∈ X2. By [8] (X2,⊣,⊢) is a free (ℓz, rb)-dimonoid. It is denoted
by Xℓz,rb.

Define operations ⊣ and ⊢ on X3 by

(x1, x2, x3) ⊣ (y1, y2, y3) = (x1, x2, y3),

(x1, x2, x3) ⊢ (y1, y2, y3) = (x1, y2, y3)

for all (x1, x2, x3), (y1, y2, y3) ∈ X3. The algebra (X3,⊣,⊢) is denoted by FRct(X).
According to Theorem 1 from [8] FRct(X) is a free rectangular diband.

As usual, N denotes the set of all positive integers.

3 Rectangular tribands

In this section we give new examples of rectangular tribands and construct a free
rectangular triband of an arbitrary rank.

We first give examples of rectangular tribands.
It is immediate to prove the following three lemmas.
Let In = {1, 2, ..., n}, n > 1, and let {Xi}i∈In be a family of arbitrary nonempty

sets Xi, i ∈ In. Define operations ⊣, ⊢ and ⊥ on
∏

i∈I3
Xi by

(a1, b1, c1)⊣(a2, b2, c2) = (a1, b1, c1),

(a1, b1, c1)⊢(a2, b2, c2) = (a1, b2, c2),

(a1, b1, c1, )⊥(a2, b2, c2) = (a1, b1, c2)

for all (a1, b1, c1), (a2, b2, c2) ∈
∏

i∈I3
Xi. It is clear that (

∏

i∈I3
Xi,⊥,⊢) is a rectan-

gular diband [8] and (
∏

i∈I3
Xi,⊣) is a left zero semigroup.

Lemma 1. (
∏

i∈I3
Xi,⊣,⊢,⊥) is a rectangular triband.

If Xi = X for all i ∈ I3, then denote the algebra (
∏

i∈I3
Xi,⊣,⊢,⊥) by Xlz,rd.

Define operations ⊣, ⊢ and ⊥ on
∏

i∈I3
Xi by

(a1, b1, c1)⊣(a2, b2, c2) = (a1, b1, c2),

(a1, b1, c1)⊢(a2, b2, c2) = (a2, b2, c2),

(a1, b1, c1, )⊥(a2, b2, c2) = (a1, b2, c2)

for all (a1, b1, c1), (a2, b2, c2) ∈
∏

i∈I3
Xi. It is clear that (

∏

i∈I3
Xi,⊣,⊥) is a rectan-

gular diband [8] and (
∏

i∈I3
Xi,⊢) is a right zero semigroup.
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Lemma 2. (
∏

i∈I3
Xi,⊣,⊢,⊥) is a rectangular triband.

If Xi = X for all i ∈ I3, then denote the algebra (
∏

i∈I3
Xi,⊣,⊢,⊥) by Xrd,rz.

Define operations ⊣, ⊢ and ⊥ on
∏

i∈I2
Xi by

(a1, b1)⊣(a2, b2) = (a1, b1), (a1, b1)⊢(a2, b2) = (a2, b2),

(a1, b1)⊥(a2, b2) = (a1, b2)

for all (a1, b1), (a2, b2) ∈
∏

i∈I2
Xi. It is clear that (

∏

i∈I2
Xi,⊣,⊢) is a left zero and

right zero dimonoid [8] and (
∏

i∈I2
Xi,⊥) is a rectangular band.

Lemma 3. (
∏

i∈I2
Xi,⊣,⊢,⊥) is a rectangular triband.

If Xi = X for all i ∈ I2, then denote (
∏

i∈I2
Xi,⊣,⊢,⊥) by Xrb

lz,rz. Note that the

trioid Xrb
lz,rz was first constructed in [9].

Define operations ⊣, ⊢ and ⊥ on
∏

i∈I2k
Xi, where k ∈ N, by

(x1, x2, ..., x2k)⊣(y1, y2, ..., y2k) = (x1, x2, ..., x2k−1, y2k),

(x1, x2, ..., x2k)⊢(y1, y2, ..., y2k) = (x1, y2, ..., y2k),

(x1, x2, ..., x2k)⊥(y1, y2, ..., y2k) = (x1, x2, ..., xk, yk+1, ..., y2k)

for all (x1, x2, ..., x2k), (y1, y2, ..., y2k) ∈
∏

i∈I2k
Xi.

Lemma 4. For any k > 1,
(

∏

i∈I2k
Xi,⊣,⊢,⊥

)

is a rectangular triband.

Proof. By Lemma 4 from [8] (
∏

i∈I2k
Xi,⊣,⊢,⊥) satisfies the axioms (T1) − (T3)

of a trioid and the associativity of operations ⊣,⊢. For all (x1, x2, ..., x2k),
(y1, y2, ..., y2k), (z1, z2, ..., z2k) ∈

∏

i∈I2k
Xi obtain

((x1, x2, ..., x2k)⊥(y1, y2, ..., y2k))⊥(z1, z2, ..., z2k) =

= (x1, x2, ..., xk, yk+1, ..., y2k)⊥(z1, z2, ..., z2k) =

= (x1, x2, ..., xk , zk+1, ..., z2k) = (x1, x2, ..., x2k)⊥(y1, y2, ..., yk, zk+1, ..., z2k) =

= (x1, x2, ..., x2k)⊥((y1, y2, ..., y2k)⊥(z1, z2, ..., z2k)),

((x1, x2, ..., x2k)⊣(y1, y2, ..., y2k))⊣(z1, z2, ..., z2k) =

= (x1, x2, ..., x2k−1, y2k)⊣(z1, z2, ..., z2k) =

= (x1, x2, ..., x2k−1, z2k) = (x1, x2, ..., x2k)⊣(y1, y2, ..., yk, zk+1, ..., z2k) =

= (x1, x2, ..., x2k)⊣((y1, y2, ..., y2k)⊥(z1, z2, ..., z2k)),

((x1, x2, ..., x2k)⊥(y1, y2, ..., y2k))⊣(z1, z2, ..., z2k) =

= (x1, x2, ..., xk , yk+1, ..., y2k)⊣(z1, z2, ..., z2k) =

= (x1, x2, ..., xk, yk+1, ..., y2k−1, z2k) = (x1, x2, ..., x2k)⊥(y1, y2, ..., y2k−1, z2k) =
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= (x1, x2, ..., x2k)⊥((y1, y2, ..., y2k)⊣(z1, z2, ..., z2k)),

((x1, x2, ..., x2k)⊣(y1, y2, ..., y2k))⊥(z1, z2, ..., z2k) =

= (x1, x2, ..., x2k−1, y2k)⊥(z1, z2, ..., z2k) =

= (x1, x2, ..., xk, zk+1, ..., z2k) = (x1, x2, ..., x2k)⊥(y1, z2, ..., z2k) =

= (x1, x2, ..., x2k)⊥((y1, y2, ..., y2k)⊢(z1, z2, ..., z2k)),

((x1, x2, ..., x2k)⊢(y1, y2, ..., y2k))⊥(z1, z2, ..., z2k) = (x1, y2, ..., y2k)⊥(z1, z2, ..., z2k) =

= (x1, y2, ..., yk, zk+1, ..., z2k) = (x1, x2, ..., x2k)⊢(y1, y2, ..., yk, zk+1, ..., z2k) =

= (x1, x2, ..., x2k)⊢((y1, y2, ..., y2k)⊥(z1, z2, ..., z2k)),

((x1, x2, ..., x2k)⊥(y1, y2, ..., y2k))⊢(z1, z2, ..., z2k) =

= (x1, x2, ..., xk , yk+1, ..., y2k)⊢(z1, z2, ..., z2k) =

= (x1, z2, ..., z2k) = (x1, x2, ..., x2k)⊢(y1, z2, ..., z2k) =

= (x1, x2, ..., x2k)⊢((y1, y2, ..., y2k)⊢(z1, z2, ..., z2k)).

Thus, (
∏

i∈I2k
Xi,⊣,⊢,⊥) satisfies the axioms (T4) − (T8) of a trioid and the

associativity of ⊥ and so, it is a trioid. Obviously, (
∏

i∈I2k
Xi,⊣,⊢,⊥) is idempotent.

Show that it is a rectangular triband. We have

(x1, x2, ..., x2k)⊣(y1, y2, ..., y2k)⊣(x1, x2, ..., x2k) =

= (x1, x2, ..., x2k−1, y2k)⊣(x1, x2, ..., x2k) = (x1, x2, ..., x2k),

(x1, x2, ..., x2k)⊢(y1, y2, ..., y2k)⊢(x1, x2, ..., x2k) =

= (x1, y2, ..., y2k)⊢(x1, x2, ..., x2k) = (x1, x2, ..., x2k),

(x1, x2, ..., x2k)⊥(y1, y2, ..., y2k)⊥(x1, x2, ..., x2k) =

= (x1, x2, ..., xk, yk+1, ..., y2k)⊥(x1, x2, ..., x2k) = (x1, x2, ..., x2k).

Thus, (
∏

i∈I2k
Xi,⊣,⊢,⊥) is a rectangular triband.

Obviously, operations of (
∏

i∈I2
Xi,⊣,⊢,⊥) coincide and it is a rectangular band.

Let X be an arbitrary nonempty set. We denote the trioid (X4,⊣,⊢,⊥) by
FRT (X).

The main result of this section is the following

Theorem 1. FRT (X) is a free rectangular triband.
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Proof. By Lemma 4 FRT (X) is a rectangular triband. Let (T,⊣
′

,⊢
′

,⊥
′

) be an
arbitrary rectangular trioid and σ : X → T be an arbitrary map. Define the map

τ : FRT (X) → (T,⊣
′

,⊢
′

,⊥
′

) :

(a, b, c, d) 7→ (a, b, c, d)τ = (aσ⊢
′

bσ)⊥
′

(cσ⊣
′

dσ).

In order to prove that τ is a homomorphism we will use axioms of a trioid and
the identities (1), (2). One can get

((a1, b1, c1, d1)⊣(a2, b2, c2, d2))τ = (a1, b1, c1, d2)τ = (a1σ⊢
′

b1σ)⊥
′

(c1σ⊣
′

d2σ) =

= (a1σ⊢
′

b1σ)⊥
′

((c1σ⊣
′

d1σ)⊣
′

(c2σ⊣
′

d2σ)) =

= ((a1σ⊢
′

b1σ)⊥
′

(c1σ⊣
′

d1σ))⊣
′

(c2σ⊣
′

d2σ) =

= ((a1σ⊢
′

b1σ)⊥
′

(c1σ⊣
′

d1σ))⊣
′

(a2σ⊢
′

b2σ)⊣
′

(c2σ⊣
′

d2σ) =

= ((a1σ⊢
′

b1σ)⊥
′

(c1σ⊣
′

d1σ))⊣
′

⊣
′

((a2σ⊢
′

b2σ)⊥
′

(c2σ⊣
′

d2σ)) = (a1, b1, c1, d1)τ⊣
′

(a2, b2, c2, d2)τ,

((a1, b1, c1, d1)⊢(a2, b2, c2, d2))τ = (a1, b2, c2, d2)τ = (a1σ⊢
′

b2σ)⊥
′

(c2σ⊣
′

d2σ) =

= a1σ⊢
′

(b2σ⊥
′

(c2σ⊣
′

d2σ)) = a1σ⊢
′

((b2σ ⊢
′

a2σ ⊢
′

b2σ) ⊥
′

(c2σ⊣
′

d2σ)) =

= a1σ⊢
′

((b2σ ⊢
′

(a2σ ⊢
′

b2σ)) ⊥
′

(c2σ⊣
′

d2σ)) =

= a1σ⊢
′

(b2σ ⊢
′

((a2σ ⊢
′

b2σ) ⊥
′

(c2σ⊣
′

d2σ))) =

= a1σ⊢
′

((a2σ ⊢
′

b2σ) ⊥
′

(c2σ⊣
′

d2σ)) =

= a1σ⊢
′

b1σ⊢
′

(c1σ⊣
′

d1σ)⊢
′

((a2σ ⊢
′

b2σ) ⊥
′

(c2σ⊣
′

d2σ)) =

= (a1σ⊢
′

b1σ)⊢
′

((c1σ⊣
′

d1σ)⊢
′

((a2σ ⊢
′

b2σ) ⊥
′

(c2σ⊣
′

d2σ))) =

= ((a1σ⊢
′

b1σ)⊥
′

(c1σ⊣
′

d1σ))⊢
′

((a2σ⊢
′

b2σ)⊥
′

(c2σ⊣
′

d2σ)) =

= (a1, b1, c1, d1)τ⊢
′

(a2, b2, c2, d2)τ,

((a1, b1, c1, d1)⊥(a2, b2, c2, d2))τ = (a1, b1, c2, d2)τ = (a1σ⊢
′

b1σ)⊥
′

(c2σ⊣
′

d2σ) =

= ((a1σ⊢
′

b1σ)⊥
′

(c1σ⊣
′

d1σ))⊥
′

((a2σ⊢
′

b2σ)⊥
′

(c2σ⊣
′

d2σ)) =

= (a1, b1, c1, d1)τ⊥
′

(a2, b2, c2, d2)τ.

Thus, τ is a homomorphism and FRT (X) is free.

Corollary 1. The free rectangular triband FRT (X) generated by a finite set X is

finite. Specifically, if |X| = n, then |FRT (X)| = n4.

Denote the symmetric group on X by ℑ[X] and the automorphism group of a
trioid M by Aut M . It is not difficult to see that the set {(a, a, a, a) | a ∈ X} is gener-
ating for FRT (X). From here obtain the following description of the automorphism
group of the free rectangular triband.

Lemma 5. Aut FRT (X) ∼= ℑ[X].
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4 Decompositions of FRT (X)

In this section we describe the structure of free rectangular tribands and cha-
racterize some least congruences on free rectangular tribands.

For all i, j ∈ X put

Λ(i) = {(a, b, c, d) ∈ FRT (X) | a = i} ,

Λ[i] = {(a, b, c, d) ∈ FRT (X) | d = i} ,

Λ(i,j) = {(a, b, c, d) ∈ FRT (X) | (a, d) = (i, j)} .

The following theorem gives decompositions of FRT (X) into bands of subtrioids.

Theorem 2. Let FRT (X) be a free rectangular triband. Then

(i) FRT (X) is a left band Xlz of subtrioids Λ(i), i ∈ Xlz, such that Λ(i)
∼= Xrd,rz

for every i ∈ Xlz;

(ii) FRT (X) is a right band Xrz of subtrioids Λ[i], i ∈ Xrz, such that Λ[i]
∼= Xlz,rd

for every i ∈ Xrz;

(iii) FRT (X) is a rectangular band Xrb of subtrioids Λ(i,j), (i, j) ∈ Xrb, such

that Λ(i,j)
∼= Xrb

lz,rz for every (i, j) ∈ Xrb.

Proof. (i) By Theorem 1 the map πlz : FRT (X) → Xlz : (a, b, c, d) 7→ a is a
homomorphism. Then Λ(i), i ∈ Xlz, is a class of ∆πlz

which is a subtrioid of FRT (X).
It is immediate to check that for every i ∈ Xlz the map

Λ(i) → Xrd,rz : (i, b, c, d) 7→ (b, c, d)

is an isomorphism.
(ii) By Theorem 1 the map πrz : FRT (X) → Xrz : (a, b, c, d) → d is a homomor-

phism. Then Λ[i], i ∈ Xrz, is a class of ∆πrz which is a subtrioid of FRT (X). It is
clear that for every i ∈ Xrz the map

Λ[i] → Xlz,rd : (a, b, c, i) 7→ (a, b, c)

is an isomorphism.
(iii) By Theorem 1 the map πrb : FRT (X) → Xrb : (a, b, c, d) → (a, d) is a

homomorphism. Then Λ(i,j), (i, j) ∈ Xrb, is a class of ∆πrb
which is a subtrioid of

FRT (X). It can be shown that for every (i, j) ∈ Xrb the map

Λ(i,j) → Xrb
lz,rz : (i, b, c, j) 7→ (b, c)

is an isomorphism.

If ρ is a congruence on a trioid (T,⊣,⊢,⊥) such that operations of (T,⊣,⊢,⊥)/ρ
coincide and it is a left zero semigroup (respectively, right zero semigroup, rectan-
gular band, semilattice), then we say that ρ is a left zero congruence (respectively,
right zero congruence, rectangular band congruence, semilattice congruence).

From Theorem 2 we obtain
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Corollary 2. Let FRT (X) be a free rectangular triband. Then

(i) ∆πlz
is the least left zero congruence on FRT (X);

(ii) ∆πrz is the least right zero congruence on FRT (X);
(iii) ∆πrb

is the least rectangular band congruence on FRT (X).

Proof. (i) It is well-known that every left zero semigroup is a free left zero semigroup.
By Theorem 2 (i) we obtain (i).

The proofs of (ii) and (iii) are similar.

From Theorem 5 [11] it follows that any rectangular triband is semilattice inde-
composable, i.e. the least semilattice congruence on a rectangular triband coincides
with the universal relation on this trioid.

For all i, j, k ∈ X put

Λ(i,j,k) = {(a, b, c, d) ∈ FRT (X) | (a, b, c) = (i, j, k)} ,

Λ[i,j,k] = {(a, b, c, d) ∈ FRT (X) | (b, c, d) = (i, j, k)} ,

Λ[i,j] = {(a, b, c, d) ∈ FRT (X) | (b, c) = (i, j)} .

The following theorem gives decompositions of FRT (X) into tribands of sub-
semigroups.

Theorem 3. Let FRT (X) be a free rectangular triband. Then

(i) FRT (X) is a triband Xlz,rd of subsemigroups Λ(i,j,k), (i, j, k) ∈ Xlz,rd, such

that Λ(i,j,k)
∼= Xrz for every (i, j, k) ∈ Xlz,rd;

(ii) FRT (X) is a triband Xrd,rz of subsemigroups Λ[i,j,k], (i, j, k) ∈ Xrd,rz, such

that Λ[i,j,k]
∼= Xlz for every (i, j, k) ∈ Xrd,rz;

(iii) FRT (X) is a triband Xrb
lz,rz of subsemigroups Λ[i,j], (i, j) ∈ Xrb

lz,rz, such that

Λ[i,j]
∼= Xrb for every (i, j) ∈ Xrb

lz,rz.

Proof. (i) By Theorem 1 the map

πlz,rd : FRT (X) → Xlz,rd : (a, b, c, d) 7→ (a, b, c)

is a homomorphism. Then Λ(i,j,k), (i, j, k) ∈ Xlz,rd, is a class of ∆πlz,rd
which is a

subtrioid of FRT (X). If (a1, b1, c1, d1), (a2, b2, c2, d2) ∈ Λ(i,j,k), then (a1, b1, c1) =
(a2, b2, c2) = (i, j, k) and

(a1, b1, c1, d1)⊣(a2, b2, c2, d2) = (a1, b1, c1, d2) = (i, j, k, d2),

(a1, b1, c1, d1)⊢(a2, b2, c2, d2) = (a1, b2, c2, d2) = (i, j, k, d2),

(a1, b1, c1, d1)⊥(a2, b2, c2, d2) = (a1, b1, c2, d2) = (i, j, k, d2).

Hence operations of Λ(i,j,k) coincide and so, it is a semigroup. It is easy to cheek that
for every (i, j, k) ∈ Xlz,rd the map Λ(i,j,k) → Xrz : (i, j, k, d) 7→ d is an isomorphism.

(ii) By Theorem 1 the map

πrd,rz : FRT (X) → Xrd,rz : (a, b, c, d) 7→ (b, c, d)
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is a homomorphism. Then Λ[i,j,k], (i, j, k) ∈ Xrd,rz, is a class of ∆πrd,rz
which is a

subtrioid of FRT (X). If (a1, b1, c1, d1), (a2, b2, c2, d2) ∈ Λ[i,j,k], then (b1, c1, d1) =
(b2, c2, d2) = (i, j, k) and

(a1, b1, c1, d1)⊣(a2, b2, c2, d2) = (a1, b1, c1, d2) = (a1, i, j, k),

(a1, b1, c1, d1)⊢(a2, b2, c2, d2) = (a1, b2, c2, d2) = (a1, i, j, k),

(a1, b1, c1, d1)⊥(a2, b2, c2, d2) = (a1, b1, c2, d2) = (a1, i, j, k).

Hence operations of Λ[i,j,k] coincide and so, it is a semigroup. One can check that
for every (i, j, k) ∈ Xrd,rz the map Λ[i,j,k] → Xlz : (a, i, j, k) 7→ a is an isomorphism.

(iii) By Theorem 1 the map

πrb
lz,rz : FRT (X) → Xrb

lz,rz : (a, b, c, d) 7→ (b, c)

is a homomorphism. Then Λ[i,j], (i, j) ∈ Xrb
lz,rz, is a class of ∆πrb

lz,rz
which is a sub-

trioid of FRT (X). If (a1, b1, c1, d1), (a2, b2, c2, d2) ∈ Λ[i,j], then (b1, c1) = (b2, c2) =
(i, j) and

(a1, b1, c1, d1)⊣(a2, b2, c2, d2) = (a1, b1, c1, d2) = (a1, i, j, d2),

(a1, b1, c1, d1)⊢(a2, b2, c2, d2) = (a1, b2, c2, d2) = (a1, i, j, d2),

(a1, b1, c1, d1)⊥(a2, b2, c2, d2) = (a1, b1, c2, d2) = (a1, i, j, d2).

Hence operations of Λ[i,j] coincide and so, it is a semigroup. An immediate verifica-

tion shows that for every (i, j) ∈ Xrb
lz,rz the map Λ[i,j] → Xrb : (a, i, j, d) 7→ (a, d) is

an isomorphism.

For all i, j, k ∈ X put

V(i) = {(a, b, c, d) ∈ FRT (X) | b = i} ,

V[i] = {(a, b, c, d) ∈ FRT (X) | c = i} ,

V(i,j,k) = {(a, b, c, d) ∈ FRT (X) | (a, b, d) = (i, j, k)} ,

V[i,j,k] = {(a, b, c, d) ∈ FRT (X) | (a, c, d) = (i, j, k)} ,

V(i,j) = {(a, b, c, d) ∈ FRT (X) | (a, b) = (i, j)} ,

V[i,j] = {(a, b, c, d) ∈ FRT (X) | (a, c) = (i, j)} ,

V(i,j] = {(a, b, c, d) ∈ FRT (X) | (b, d) = (i, j)} ,

V[i,j) = {(a, b, c, d) ∈ FRT (X) | (c, d) = (i, j)}.

The following theorem gives decompositions of FRT (X) into tribands of
subtrioids.
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Theorem 4. Let FRT (X) be a free rectangular triband. Then

(i) FRT (X) is a triband (Xlz,rz)
⊣ of subtrioids V(i), i ∈ (Xlz,rz)

⊣, such that

V(i)
∼= (FRct(X))⊢ for every i ∈ Xlz,rz;

(ii) FRT (X) is a triband (Xlz,rz)
⊢ of subtrioids V[i], i ∈ (Xlz,rz)

⊢, such that

V[i]
∼= (FRct(X))⊣ for every i ∈ Xlz,rz;

(iii) FRT (X) is a triband (FRct(X))⊣ of subtrioids V(i,j,k), (i, j, k) ∈ (FRct(X))⊣,

such that V(i,j,k)
∼= (Xlz,rz)

⊢ for every (i, j, k) ∈ FRct(X).

(iv) FRT (X) is a triband (FRct(X))⊢ of subtrioids V[i,j,k], (i, j, k) ∈ (FRct(X))⊢,

such that V[i,j,k]
∼= (Xlz,rz)

⊣ for every (i, j, k) ∈ FRct(X);

(v) FRT (X) is a triband (Xlz,rb)
⊣ of subtrioids V(i,j), (i, j) ∈ (Xlz,rb)

⊣, such that

V(i,j)
∼= (Xrb,rz)

⊢ for every (i, j) ∈ Xlz,rb;

(vi) FRT (X) is a triband (Xlz,rb)
⊢ of subtrioids V[i,j], (i, j) ∈ (Xlz,rb)

⊢, such that

V[i,j]
∼= (Xrb,rz)

⊣ for every (i, j) ∈ Xlz,rb;

(vii) FRT (X) is a triband (Xrb,rz)
⊣ of subtrioids V(i,j], (i, j) ∈ (Xrb,rz)

⊣, such

that V(i,j]
∼= (Xlz,rb)

⊢ for every (i, j) ∈ Xrb,rz;

(viii) FRT (X) is a triband (Xrb,rz)
⊢ of subtrioids V[i,j), (i, j) ∈ (Xrb,rz)

⊢, such

that V[i,j)
∼= (Xlz,rb)

⊣ for every (i, j) ∈ Xrb,rz.

Proof. (i) By Theorem 1 the map

π⊣
lz,rz : FRT (X) → (Xlz,rz)

⊣ : (a, b, c, d) 7→ b

is a homomorphism. Then V(i), i ∈ Xlz,rz, is a class of ∆π⊣

lz,rz
which is a subtrioid of

FRT (X). If (a1, b1, c1, d1), (a2, b2, c2, d2) ∈ V(i), then b1 = b2 = i and

(a1, b1, c1, d1)⊣(a2, b2, c2, d2) = (a1, b1, c1, d2) = (a1, i, c1, d2),

(a1, b1, c1, d1)⊢(a2, b2, c2, d2) = (a1, b2, c2, d2) = (a1, i, c2, d2),

(a1, b1, c1, d1)⊥(a2, b2, c2, d2) = (a1, b1, c2, d2) = (a1, i, c2, d2).

Hence operations ⊢ and ⊥ of V(i) coincide. It is easy to cheek that for every i ∈ Xlz,rz

the map
V(i) → (FRct(X))⊢ : (a, i, c, d) 7→ (a, c, d)

is an isomorphism.
(ii) By Theorem 1 the map

π⊢
lz,rz : FRT (X) → (Xlz,rz)

⊢ : (a, b, c, d) 7→ c

is a homomorphism. Then V[i], i ∈ Xlz,rz, is a class of ∆π⊢

lz,rz
which is a subtrioid of

FRT (X). If (a1, b1, c1, d1), (a2, b2, c2, d2) ∈ V[i], then c1 = c2 = i and

(a1, b1, c1, d1)⊣(a2, b2, c2, d2) = (a1, b1, c1, d2) = (a1, b1, i, d2),

(a1, b1, c1, d1)⊢(a2, b2, c2, d2) = (a1, b2, c2, d2) = (a1, b2, i, d2),
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(a1, b1, c1, d1)⊥(a2, b2, c2, d2) = (a1, b1, c2, d2) = (a1, b1, i, d2).

Hence operations ⊣ and ⊥ of V[i] coincide. It is easy to cheek that for every i ∈ Xlz,rz

the map

V[i] → (FRct(X))⊣ : (a, b, i, d) 7→ (a, b, d)

is an isomorphism.

(iii) By Theorem 1 the map

π⊣
FRct : FRT (X) → (FRct(X))⊣ : (a, b, c, d) 7→ (a, b, d)

is a homomorphism. Then V(i,j,k), (i, j, k) ∈ FRct(X), is a class of ∆π⊣

F Rct
which is

a subtrioid of FRT (X). If (a1, b1, c1, d1), (a2, b2, c2, d2) ∈ V(i,j,k), then (a1, b1, d1) =
(a2, b2, d2) = (i, j, k) and

(a1, b1, c1, d1)⊣(a2, b2, c2, d2) = (a1, b1, c1, d2) = (i, j, c1, k),

(a1, b1, c1, d1)⊢(a2, b2, c2, d2) = (a1, b2, c2, d2) = (i, j, c2, k),

(a1, b1, c1, d1)⊥(a2, b2, c2, d2) = (a1, b1, c2, d2) = (i, j, c2, k).

Hence operations ⊢ and ⊥ of V(i,j,k) coincide. It is clear that for every (i, j, k) ∈
FRct(X) the map

V(i,j,k) → (Xlz,rz)
⊢ : (i, j, c, k) 7→ c

is an isomorphism.

(iv) By Theorem 1 the map

π⊢
FRct : FRT (X) → (FRct(X))⊢ : (a, b, c, d) 7→ (a, c, d)

is a homomorphism. Then V[i,j,k], (i, j, k) ∈ FRct(X), is a class of ∆π⊢

F Rct
which is

a subtrioid of FRT (X). If (a1, b1, c1, d1), (a2, b2, c2, d2) ∈ V[i,j,k], then (a1, c1, d1) =
(a2, c2, d2) = (i, j, k) and

(a1, b1, c1, d1)⊣(a2, b2, c2, d2) = (a1, b1, c1, d2) = (i, b1, j, k),

(a1, b1, c1, d1)⊢(a2, b2, c2, d2) = (a1, b2, c2, d2) = (i, b2, j, k),

(a1, b1, c1, d1)⊥(a2, b2, c2, d2) = (a1, b1, c2, d2) = (i, b1, j, k).

Hence operations ⊣ and ⊥ of V[i,j,k] coincide. One can verify that for every (i, j, k) ∈
FRct(X) the map

V[i,j,k] → (Xlz,rz)
⊣ : (i, b, j, k) 7→ b

is an isomorphism.

(v) By Theorem 1 the map

π⊣
lz,rb : FRT (X) → (Xlz,rb)

⊣ : (a, b, c, d) 7→ (a, b)



72 YULIIA V. ZHUCHOK

is a homomorphism. Then V(i,j), (i, j) ∈ Xlz,rb, is a class of ∆π⊣

lz,rb
which is a sub-

trioid of FRT (X). If (a1, b1, c1, d1), (a2, b2, c2, d2) ∈ V(i,j), then (a1, b1) = (a2, b2) =
(i, j) and

(a1, b1, c1, d1)⊣(a2, b2, c2, d2) = (a1, b1, c1, d2) = (i, j, c1, d2),

(a1, b1, c1, d1)⊢(a2, b2, c2, d2) = (a1, b2, c2, d2) = (i, j, c2, d2),

(a1, b1, c1, d1)⊥(a2, b2, c2, d2) = (a1, b1, c2, d2) = (i, j, c2, d2).

Hence operations ⊢ and ⊥ of V(i,j) coincide. One can cheek that for every (i, j) ∈
Xlz,rb the map

V(i,j) → (Xrb,rz)
⊢ : (i, j, c, d) 7→ (c, d)

is an isomorphism.
(vi) By Theorem 1 the map

π⊢
lz,rb : FRT (X) → (Xlz,rb)

⊢ : (a, b, c, d) 7→ (a, c)

is a homomorphism. Then V[i,j], (i, j) ∈ Xlz,rb, is a class of ∆π⊢

lz,rb
which is a subtrioid

of FRT (X). If (a1, b1, c1, d1), (a2, b2, c2, d2) ∈ V[i,j], then (a1, c1) = (a2, c2) = (i, j)
and

(a1, b1, c1, d1)⊣(a2, b2, c2, d2) = (a1, b1, c1, d2) = (i, b1, j, d2),

(a1, b1, c1, d1)⊢(a2, b2, c2, d2) = (a1, b2, c2, d2) = (i, b2, j, d2),

(a1, b1, c1, d1)⊥(a2, b2, c2, d2) = (a1, b1, c2, d2) = (i, b1, j, d2).

Hence operations ⊣ and ⊥ of V[i,j] coincide. It can be shown that for every (i, j) ∈
Xlz,rb the map

V[i,j] → (Xrb,rz)
⊣ : (i, b, j, d) 7→ (b, d)

is an isomorphism.
(vii) By Theorem 1 the map

π⊣
rb,rz : FRT (X) → (Xrb,rz)

⊣ : (a, b, c, d) 7→ (b, d)

is a homomorphism. Then V(i,j], (i, j) ∈ Xrb,rz, is a class of ∆π⊣

rb,rz
which is a sub-

trioid of FRT (X). If (a1, b1, c1, d1), (a2, b2, c2, d2) ∈ V(i,j], then (b1, d1) = (b2, d2) =
(i, j) and

(a1, b1, c1, d1)⊣(a2, b2, c2, d2) = (a1, b1, c1, d2) = (a1, i, c1, j),

(a1, b1, c1, d1)⊢(a2, b2, c2, d2) = (a1, b2, c2, d2) = (a1, i, c2, j),

(a1, b1, c1, d1)⊥(a2, b2, c2, d2) = (a1, b1, c2, d2) = (a1, i, c2, j).

Hence operations ⊢ and ⊥ of V(i,j] coincide. Clearly, for every (i, j) ∈ Xrb,rz the
map

V(i,j] → (Xlz,rb)
⊢ : (a, i, c, j) 7→ (a, c)
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is an isomorphism.
(viii) By Theorem 1 the map

π⊢
rb,rz : FRT (X) → (Xrb,rz)

⊢ : (a, b, c, d) 7→ (c, d)

is a homomorphism. Then V[i,j), (i, j) ∈ Xrb,rz, is a class of ∆π⊢

rb,rz
which is a sub-

trioid of FRT (X). If (a1, b1, c1, d1), (a2, b2, c2, d2) ∈ V[i,j), then (c1, d1) = (c2, d2) =
(i, j) and

(a1, b1, c1, d1)⊣(a2, b2, c2, d2) = (a1, b1, c1, d2) = (a1, b1, i, j),

(a1, b1, c1, d1)⊢(a2, b2, c2, d2) = (a1, b2, c2, d2) = (a1, b2, i, j),

(a1, b1, c1, d1)⊥(a2, b2, c2, d2) = (a1, b1, c2, d2) = (a1, b1, i, j).

Hence operations ⊣ and ⊥ of V[i,j) coincide. Evidently, for every (i, j) ∈ Xrb,rz the
map

V[i,j) → (Xlz,rb)
⊣ : (a, b, i, j) 7→ (a, b)

is an isomorphism.
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Abstract. We consider multiple objective combinatorial linear problem in the situa-
tion where parameters of objective functions are exposed to perturbations. We study
quantitative characteristic of stability (stability radius) of the problem assuming that
there are Hölder metrics in the space of solutions and the criteria space.
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1 Introduction

The main difficulty while studying stability of discrete optimization problems is
their combinatorial complexity. Small changes of initial data make a model behave
in an unpredictable manner. In addition, in the case of several conflicting objectives
the problem complexity may only be increased (see e.g. [1, 2]).

There are a lot of papers devoted to different approaches dealing with uncertainty
in discrete models, both in single and multicriteria cases (see e.g. [3–5]). One of
such approaches is known as quantitative approach. This approach aims to derive
quantitative bounds for feasible initial data changes preserving a given property of
the solution set (or of a single solution) or/and create algorithms for the bounds
calculation. The limit level of perturbations of problem parameters which preserve
the property of invariance is called stability radius. The present work continues a
line of investigations initiated in [6–9] that focuses on studying the stability radius
of multicriteria Boolean optimization problems with various types of metrics in the
parameter space. We have obtained the lower and upper bounds for the stability
radius of the multicriteria combinatorial linear problem on the assumption that
Hölder norms are specified in the space of solutions and in the space of criteria.

2 Problem statement and basic definitions

Let Rm be the space of criteria, Rn be the space of solutions, C be an m × n
matrix with the rows Ci = (ci1, ci2, . . . , cin) ∈ Rn, i ∈ Nm = {1, 2, . . . ,m}, x =
(x1, x2, . . . , xn)T ∈ X ⊆ En, n ≥ 2, E = {0, 1}, |X| ≥ 2. Let a linear vector
criterion

c© Vladimir A.Emelichev, Kirill G. Kuzmin, Vadim I.Mychkov, 2015
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Cx = (C1x,C2x, . . . , Cmx)
T → min

x∈X

be specified on the set of Boolean vectors (solutions) X.

Under a m-criterion problem Boolean problem Zm(C), C ∈ Rm×n, we under-
stand the problem of finding the Pareto set, i.e. the set of efficient (Pareto optimal)
solutions

Pm(C) = {x ∈ X : X(x,C) = ∅},

where

X(x,C) = {x′ ∈ X : Cx′ ≤ Cx & Cx′ 6= Cx}.

Since X is finite, the set Pm(C) is not empty for any matrix C ∈ Rm×n.

We will perturb elements of the matrix C by adding matrices C ′ from Rm×n to
it. Thus, the perturbed problem Zm(C + C ′) has the form

(C + C ′)x→ min
x∈X

and the Pareto set of such a problem has the form Pm(C + C ′).

For any natural number d in the real space Rd, we specify the Hölder norm lp,
p ∈ [1,∞], i. e., the norm of a vector y = (y1, y2, . . . , yd) is understood to be the
number

‖y‖p =















(

∑

i∈Nd

|yi|
p
)1/p

if 1 ≤ p <∞,

max
i∈Nd

|yi| if p = ∞.

For any p, q ∈ [1,∞], let us define the Hölder norm lp in the space of solutions
Rn and the Hölder norm lq in the criteria space Rm. Thereby, the norm ‖C‖pq of
the matrix C ∈ Rm×n is defined as the norm of the vector whose components are
the norms of the matrix rows C1, C2, . . . , Cm, i.e.

‖C‖pq =
∥

∥

(

‖C1‖p, ‖C2‖p, . . . , ‖Cm‖p

)T ∥

∥

q
.

It is easy to see that for any p, q ∈ [1,∞] the following inequalities hold

‖Ci‖p ≤ ‖C‖pq, i ∈ Nm. (1)

Obviously, for each α ≥ 0, p ∈ [1,∞] and vector a = (a1, a2, . . . , an) ∈ Rn with
components |ai| = α, i ∈ Nn, the following equality holds

‖a‖p = αn1/p. (2)

Let lp′ be a conjugate norm in the space of solutions Rn and, as is well known,
the numbers p and p′ are related by the condition

1/p+ 1/p′ = 1.
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As usual, we assume that p′ = 1 if we have p = ∞ and that p′ = ∞ if we have
p = 1. Thus, henceforth, we assume that the domain of varying the numbers p and
p′ is the interval [1,∞] and that the numbers p and p′ themselves are related by the
above-mentioned condition. In addition, we impose that 1/p = 1 if p = ∞.

We will use the well-known Hölder inequality

ab ≤ ‖a‖p‖b‖p′ , (3)

where a = (a1, a2, . . . , an) ∈ Rn and b = (b1, b2, . . . , bn)T ∈ Rn.

As usually (see e. g. [6–9]), by the radius of stability of the problem Zm(C) we
mean the quantity

ρm(p, q) =

{

supΞ if Ξ 6= ∅,

0 if Ξ = ∅,

where

Ξ =
{

ε > 0 : ∀C ′ ∈ Ωpq(ε)
(

Pm(C + C ′) ⊆ Pm(C)
)}

,

Ωpq(ε) = {C ∈ Rm×n : ‖C‖pq < ε}.

Thus, the stability radius of the problem Zm(C) is the limiting perturbation of
elements of the matrix C in the space Rm×n that does not produce new efficient
solutions. The set Ωpq(ε) is called the set of perturbing matrices.

In the trivial case, where Pm(C) = X, the inclusion Pm(C+C ′) ⊆ Pm(C) holds
for any perturbing matrix C ′ ∈ Ωpq(ε), ε > 0. Therefore, no one perturbation of
the problem parameters can cause appearance of new efficient solutions, i. e. sta-
bility radius of such problem is unbounded above. The problem Zm(C) for which
Pm(C) 6= X will be called non-trivial.

3 Estimates of the stability radius

For a non-trivial problem Zm(C) and any p, q ∈ [1,∞] we assume

ϕm(p) = min
x∈X\P m(C)

max
x′∈P m(x,C)

min
i∈Nm

Ci(x− x′)

‖x− x′‖p′
,

ψm(p, q) = min
{

σm(p), n1/pm1/qϕm(∞)
}

,

where

Pm(x,C) = Pm(C) ∩X(x,C),

σm(p) = min{‖Ci‖p : i ∈ Nm}.

Theorem 1. For any p, q ∈ [1,∞] and m ∈ N, the stability radius ρm(p, q) of a

non-trivial problem Zm(C) has the following bounds:

ϕm(p) ≤ ρm(p, q) ≤ ψm(p, q).
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Proof. First, let us prove the inequality ρm(p, q) ≥ ϕm(p) which is trivial in the case
ϕm(p) = 0. Assume ϕm(p) > 0. Let C ′ ∈ Ωpq(ϕ

m(p)) be a perturbing matrix with
rows C ′

i, i ∈ Nm. By the definition of the number ϕm(p) and according to (1), for
any solution x ∈ X \ Pm(C), there exists an effective solution x0 ∈ Pm(x,C) such
that

Ci(x− x0)

‖x − x0‖p′
≥ ϕm(p) > ‖C ′‖pq ≥ ‖C ′

i‖p, i ∈ Nm.

Whence, using the Hölder inequality (3) we find

(Ci + C ′
i)(x− x0) ≥ Ci(x− x0) − ‖C ′

i‖p‖x− x0‖p′ > 0, i ∈ Nm.

Thus, x 6∈ Pm(C + C ′). Therefore, every ineffective solution of the problem Zm(C)
retains its ineffectiveness in perturbed problem Zm(C + C ′). Hence Pm(C + C ′) ⊆
Pm(C) for every perturbing matrix C ′ ∈ Ωpq(ϕ

m(p)), i. e. ρm(p, q) ≥ ϕm(p).
Now, let us prove the inequality ρm(p, q) ≤ n1/pm1/qϕm(∞). According to the

definition of the number ϕm(∞) there exists a solution x0 ∈ X \ Pm(C) such that
for each solution x ∈ Pm(x0, C) there exists an index k = k(x) ∈ Nm satisfying

Ck(x
0 − x) ≤ ϕm(∞)‖x0 − x‖1. (4)

Choose an arbitrary number ε that obeys the condition ε > n1/pm1/qϕm(∞) and
specify elements of the perturbing matrix C0 = [c0ij ] ∈ Rm×n with rows C0

i , i ∈ Nm,
as follows

c0ij =

{

−δ if i ∈ Nm, x
0
j = 1,

δ if i ∈ Nm, x
0
j = 0,

where ϕm(∞) < δ < ε/n1/pm1/q. Using (2) we derive

‖C0
i ‖p = δn1/p, i ∈ Nm,

‖C0‖pq = δn1/pm1/q, C0 ∈ Ωpq(ε),

C0
i (x0 − x) = −δ‖x0 − x‖1 < 0, i ∈ Nm. (5)

Therefore, taking into account inequality (4) we obtain

(Ck +C0
k)(x0 − x) = Ck(x

0 − x) + C0
k(x0 − x) ≤ (ϕm(∞) − δ)‖x0 − x‖1 < 0.

As a result we have

∀x ∈ Pm(x0, C)
(

x 6∈ X(x0, C + C0)
)

. (6)

If X(x0, C + C0) = ∅, then x0 ∈ Pm(C + C0). Assume X(x0, C + C0) 6=
∅. In this case, due to external stability of the Pareto set Pm(C + C0) (see e. g.
p. 34 in [10]) there exists a solution x∗ ∈ Pm(x0, C + C0). Let us prove that
x∗ 6∈ Pm(C). Assume to the contrary that x∗ ∈ Pm(C). According to (6) this
yields x∗ ∈ Pm(C) \ Pm(x0, C). Therefore, there are only two cases: the equality
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Cx∗ = Cx0 holds or the inequality Cx∗ ≤ Cx0 does not hold. In the first case,
taking into account (5) we have

(Ci + C0
i )(x0 − x∗) < 0, i ∈ Nm.

In the second case, there exists an index l ∈ Nm such that Clx
∗ > Clx

0. Taking into
account (5) again we obtain

(Cl + C0
l )(x0 − x∗) < 0.

In both cases we obtained contradictions with the inclusion x∗ ∈ Pm(x0, C + C0).
Summarizing the above we state that for any number ε > n1/pm1/qϕm(∞) there

exist perturbing matrix C0 ∈ Ωpq(ε) and an inefficient solution (x0 or x∗) of the
problem Zm(C) such that it becomes efficient in perturbed problem Zm(C + C0).
Hence

∀ε > n1/pm1/qϕm(∞) ∃C0 ∈ Ωpq(ε)
(

Pm(C + C0) 6⊆ Pm(C)
)

,

i. e.
ρm(p, q) ≤ n1/pm1/qϕm(∞).

It remains to prove that ρm(p, q) ≤ σm(p). Let x0 be an inefficient solution of
the problem Zm(C) and the index k ∈ Nm be such that

σm(p) = ‖Ck‖p. (7)

Assuming that ε > σm(p) we denote a number δ with the conditions

0 < δn1/p < ε− σm(p). (8)

We define the vector η = (η1, η2, . . . , ηn) by

ηj =

{

−δ if x0
j = 1,

δ if x0
j = 0.

Then we have
‖η‖p = δn1/p (9)

and for each solution x ∈ X \ {x0} we obtain

η(x0 − x) = −δ‖x0 − x‖1 < 0. (10)

We specify the rows C0
i ∈ Rn, i ∈ Nm, of the perturbing matrix C0 ∈ Rm×n by

the rule

C0
i =

{

η − Ci if i = k,

0 if i ∈ Nm \ {k}.

Hence, taking into account (10) we derive

C0
k(x0 − x) = (η −Ck)(x

0 − x) = −δ‖x0 − x‖1 − Ck(x
0 − x).
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It follows from equalities (7) and (9) and inequality (8) that

‖C0‖pq = ‖C0
k‖p = ‖η − Ck‖p ≤ ‖η‖p + ‖Ck‖p = δn1/p + σm(p) < ε.

Consequently, for each solution x ∈ X \ {x0} we deduce

(Ck + C0
k)(x0 − x) = −δ‖x0 − x‖1 < 0,

i.e. x 6∈ X(x0, C + C0), where C0 ∈ Ωpq(ε). Using x0 6∈ X(x0, C + C0) we get
X(x0, C + C0) = ∅, which implies x0 ∈ Pm(C + C0). Due to x0 6∈ Pm(C) the
inequality ρm(p, q) ≤ ε is true for any number ε > σm(p). Thus we have proved that
ρm(p, q) ≤ σm(p). This with proved inequality ρm(p, q) ≤ n1/pm1/qϕm(∞) implies
ρm(p, q) ≤ ψm(p, q).

4 Corollaries

As corollaries of Theorem 1 we obtain the following results.

Corollary 1 [11]. ϕm(p) ≤ ρm(p, p) ≤ (nm)1/pϕm(∞).

Corollary 2 [6]. ρm(∞,∞) = ϕm(∞) = min
x∈X\P m(C)

max
x′∈P m(x,C)

min
i∈Nm

Ci(x− x′)

‖x− x′‖1
.

Corollary 3 [12]. ϕm(p) ≤ ρm(p,∞) ≤ n1/pϕm(∞).

Corollary 4 [13]. ϕm(∞) ≤ ρm(∞, q) ≤ m1/qϕm(∞).

Note that the paper [13] describes a class of problems Zm(C) for which the
following formula holds

ρm(∞, q) = m1/qϕm(∞), q ∈ [1,∞].

This means that the upper-bound of Corollary 4 is achievable.

The following known result proves that the lower-bound estimate of the stability
radius is achievable.

Theorem 2 [9]. If |Pm(C)| = 1, then for any numbers p, q ∈ [1,∞] the stability

radius is expressed by the formula

ρm(p, q) = ϕm(p).

We denote the stability radius of scalar problem Z1(C)

Cx→ min
x∈X

, C ∈ R1×n, X ⊆ En,

by ρ1(p), p ∈ [1,∞].

Corollary 5. ϕ1(p) ≤ ρ1(p) ≤ n1/pϕ1(∞).
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The paper [12] describes a class of scalar linear problems Z1(C) for which the
following formula holds

ρ1(p) = n1/pϕ1(∞), p ∈ [1,∞].

Therefore, the upper-bound of Corollary 5 is achievable.
Corollaries 2 and 5 imply the following known result.

Corollary 6 [14, 15]. ρ1(∞) = ϕ1(∞).

This work has been done with partial support of the Belarusian Republican Fund
of Fundamental Research (Project F13K-078) and European Community Mobility
Programme (Project 204289-EM-1-2011-1-FI-ERA MUNDUS-EMA21).
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Abstract. In this paper, we introduce the notions of soft trees, soft cycles, soft
bridges, soft cutnodes, and describe various methods of construction of soft trees. We
investigate some of their fundamental properties.
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1 Introduction and Preliminaries

In 1975, Rosenfeld [11] first discussed the concept of fuzzy graphs whose basic
idea was introduced by Kauffmann [8] in 1973. Rosenfeld also proposed the fuzzy
relations between fuzzy sets and developed the structure of fuzzy graphs, obtaining
analogs of several graph theoretical concepts. Moreover, Bhattacharya [5] gave some
remarks on fuzzy graphs. Bhutani and Rosenfeld [6] introduced the concept of M−
strong fuzzy graphs and described some of their properties. Recently, Thumbakara
and George [13] discussed the concept of soft graphs in the specific way. On the other
hand, Akram and Nawaz [4] have introduced the concepts of soft graphs and vertex-
induced soft graphs in broad spectrum. In this paper, we introduce the concepts
of soft trees, soft cycles, soft bridges, soft cutnodes and investigate some of their
properties. We discuss some interesting properties of soft trees as a generalization
of crisp trees. We also introduce some operations including union, intersection, AND
operation and OR operation on soft trees.

Soft sets were proposed by Molodtsov in 1999, which provides a general mech-
anism for uncertainty modelling in a wide variety of applications [8, 12]. Let U be
an initial universe of objects and P be the set of all parameters associated with
objects in U , called a parameter space. In most cases parameters are considered to
be attributes, characteristics or properties of objects in U . The power set of U is
denoted by P(U).

Definition 1 (see [10]). A pair S = (F,A) is called a soft set over U , where A ⊆ P
is a parameter set and F : A → P(U) is a set-valued mapping, called the approximate

function of the soft set S.

Let G∗ = (V,E) be a crisp graph and A be any nonempty set. Let subset R of
A × V be an arbitrary relation from A to V . A mapping (or set-valued function)
from A to P(V ) written as F : A → P(V ) can be defined as F (x) = {y ∈ V : xRy}.
The pair (F,A) is a soft set over V.

c© Muhammad Akram, Fariha Zafar, 2015
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Definition 2 (see [3]). A soft graph G = (G∗, F,K,A) is a 4-tuple such that

(a) G∗ = (V,E) is a simple graph,

(b) A is a non-empty set of parameters,

(c) (F,A) is a soft set over V,

(d) (K,A) is a soft set over E,

(e) H(x) = (F (x),K(x)) is a subgraph of G∗ for all x ∈ A.

In what follows, we will use G∗ for a simple graph, G for a soft graph and H(x)
for subgraph.

Definition 3 (see [3]). Let G be a soft graph of G∗. Then G is said to be a complete

soft graph if every H(x) is a complete graph for all x ∈ A.

2 Soft Trees

Definition 4. Let G be a soft graph of G∗. Then G is said to be a soft tree if every
H(x) is a tree for all x ∈ A.

Example 1. Consider a simple graph G∗ = (V,E), where V = {v1, v2, v3, v4, v5, v6}
and E = {v1v2, v2v3, v3v5, v3v4, v4v5, v5v6, v6v1}. Let A = {v2, v6} ⊆ V. We define an
approximate function

F : A → P(V ) by F (x) = {y ∈ V : xRy ⇔ d(x , y) ≤ 1}.

That is, F (v2) = {v1, v2, v3}, F (v6) = {v1, v5, v6}. Thus, (F,A) = {F (v2), F (v6)} is
a soft set over V. We now define an approximate function K : A → P(E) by

K(x) = {xy ∈ E : xRxy ⇔ xy ⊆ F (x)}.

That is, K(v2) = {v1v2, v2v3}, K(v6) = {v5v6, v6v1}. Thus, (K,A) = {K(v2),K(v6)}
is a soft set over E. By routine calculations, it is easy to see that H(v2) =
(F (v2),K(v2)), H(v6) = (F (v6),K(v6)) are connected subgraphs of G∗ and also
trees as shown in Fig. 1.

Hence, G = {H(v2) = (F (v2),K(v2)),H(v6) = (F (v6),K(v6))} is a soft tree
of G∗.

Theorem 1. Let H(x) be subgraph with n ≥ 3 vertices of G∗ and G a soft tree of

G∗. Then G is not a complete soft graph.

Proof. Suppose on contrary that G is a complete soft graph, then every subgraph
H(x), for all x ∈ A is complete. Suppose u, v be arbitrary nodes of H(x) and they
are connected by an edge uv. Since H(x) is a graph with n ≥ 3 vertices, then we
can always find at least one vertex w which is connected to v by an edge wv and
to u by an edge wu, because H(x) is a complete graph. Then there exists a cycle
uvw. Therefore, H(x) cannot be a tree which contradicts the fact that H(x) is a
connected subgraph of soft tree G. Hence, G can not be a complete soft graph.
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Figure 1. Subtrees

Definition 5. Let G be a soft graph of G∗. Then G is said to be a soft cycle if H(x)
is a cycle for all x ∈ A.

Example 2. Consider a simple graph G∗ = (V,E), where V = {v1, v2, v3, v4, v5}
and E = {v1v2, v1v4, v2v4, v2v3, v3v4, v4v5, v5v1}. Let A = {v3, v5} ⊆ V. We define an
approximate function F : A → P(V ) by

F (x) = {y ∈ V : xRy ⇔ d(x , y) ≤ 1}.

That is, F (v3) = {v2, v3, v4}, F (v5) = {v1, v4, v5}. Thus, (F,A) = {F (v3), F (v5)} is
a soft set over V. We now define an approximate function K : A → P(E) by

K(x) = {xy ∈ E : xRxy ⇔ xy ⊆ F (x)}.

That is, K(v3) = {v2v3, v3v4, v4v2}, K(v5) = {v1v4, v4v5, v5v1}. Thus, (K,A) =
{K(v3),K(v5)} is a soft set over E. By routine calculations, it is easy to see that
H(v3) = (F (v3),K(v3)), H(v5) = (F (v5),K(v5)) are connected subgraphs of G∗ and
also cycles as shown in the Fig. 2. Hence, G = {H(v3) = (F (v3),K(v3)),H(v5) =
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Figure 2. Subcycles

(F (v5),K(v5))} is a soft cycle of G∗.

Definition 6. Let G be a soft graph of G∗. Let u, v be two nodes and H(x) a
subgraph of G∗, then an edge uv ∈ H(x) is called a soft bridge of G if removal of uv
disconnects the H(x).
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Definition 7. Let G be a soft graph of G∗. Let u be a node of G∗, then u is called
a soft cutnode of G if deletion of it from some H(x), a subgraph of G, disconnects
the H(x).

In other words, we can say that u is a soft cutnode if it is a cutnode of some
H(x), x ∈ A.

Example 3. Consider a simple graph G∗ = (V,E), where V = {v1, v2, v3, v4, v5, v6}
and E = {v1v2, v2v6, v2v3, v3v4, v5v6}. Let A = {v1, v4} ⊆ V. We define an approxi-
mate function F : A → P(V ) by

F (x) = {y ∈ V : xRy ⇔ e(y) ≤ e(x )},

where e(v1) = e(v3) = e(v6) = 3, e(v2) = 2, e(v4) = e(v5) = 4,., That is, F (v1) =
{v1, v2, v3, v6}, F (v4) = {v1, v2, v3, v4, v5, v6}. Thus, (F,A) = {F (v1), F (v4)} is a
soft set over V. We now define an approximate function K : A → P(E) by

K(x) = {xy ∈ E : xRxy ⇔ xy ⊆ F (x)}.

That is, K(v1) = {v1v2, v2v6, v2v3}, K(v4) = {v1v2, v2v6, v2v3, v3v4, v5v6}. Thus,
(K,A) = {K(v1),K(v4)} is a soft set over E. By routine calculations, it is
easy to see that H(v1) = (F (v1),K(v1)) and H(v4) = (F (v4),K(v4)) are con-
nected subgraphs of G∗ as shown in Fig. 3. Therefore, G = {H(v1) =
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Figure 3. Connected subgraphs

(F (v1),K(v1)),H(v4) = (F (v4),K(v4))} is a soft graph. In H(v1), all edges
v2v6, v1v2, v2v3 are bridges because removal of any edge from H(v1) disconnects
it as shown in Fig. 4. In H(v4), v1v2, v2v6, v2v3, v3v4, v5v6 are bridges, because
removal of any edge from H(v4) disconnects it as shown in Fig. 5. Therefore,
v1v2, v2v6, v2v3, v3v4, v5v6 are soft bridges of G. v2 is a cutnode of H(v1) be-
cause deletion of it from H(v1) disconnects the H(v1) as shown in Fig. 6. Here
v2, v3, v6 are cutnodes of H(v4) because deletion of each of them from H(v4) dis-
connects the H(v4) as shown in Fig. 7. Therefore, v2, v3, v6 are soft cutnodes
of G.

Theorem 2. If w is a common node of at least two soft bridges, then w is a soft

cutnode.
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Figure 4. Disconnected subgraphs of H(v1)
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Figure 5. Disconnected subgraph of H(v4)
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Figure 6. Disconnected subgraphs of H(v1)

Proof. Let v1w and wv2 be two soft bridges of G. Then v1w and wv2 are bridges
of some H(x), that is, there exist some u, v such that v1w is on every u − v path.
Clearly, if we delete w, then all the edges associated with it get removed. Then
every u − v path is disconnected. Thus, H(x) is disconnected and w is a cutnode.
Hence, w is a soft cutnode.

Remark 1. The converse statement of Theorem 2 is not true as it can be seen in the
following example.
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Figure 7. Disconnected subgraphs of H(v4)

Example 4. Consider a simple graph G∗ = (V,E), where V = {v1, v2, v3, v4, v5} and
E = {v1v2, v2v3, v3v1, v3v4, v4v5}. Let A = {v1, v2} ⊆ V. We define an approximate
function F : A → P(V ) by

F (x) = {y ∈ V : xRy ⇔ d(x , y) ≥ 0}.

That is, F (v1) = {v1, v2, v3, v4, v5} = F (v2). Thus, (F,A) = {F (v1) = F (v2)} is a
soft set over V. We now define an approximate function K : A → P(E) by

K(x) = {xy ∈ E : xRxy ⇔ xy ⊆ F (x)}.

That is, K(v1) = {v1v2, v2v3, v1v3, v3v4, v4v5} = K(v2). Thus, (K,A) = {K(v1) =
K(v2)} is a soft set over E.

Thus, H(v1) = (F (v1),K(v1)) and H(v2) = (F (v2),K(v2)) are connected sub-
graphs of G∗ as shown in Fig. 8. In both H(v1) and H(v2), v3v4, v4v5 are bridges as
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Figure 8. Connected subgraphs

shown in Fig. 9. Therefore, v3v4, v4v5 are soft bridges of G. v3, v4 are cutnodes as
shown in Fig. 10. Therefore, v3, v4 are soft cutnodes of G. Here v3 is a soft cutnode
but it is not a common node of two soft bridges.
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Figure 9. Disconnected subgraphs of H(v1) = H(v2)
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Figure 10. Disconnected subgraphs of H(v1) = H(v2)

We state the following theorems without their proofs.

Theorem 3. A complete soft graph has no soft cutnodes.

Theorem 4. If G is a soft tree, then all edges of G are the soft bridges of G.

Theorem 5. If G is a soft tree, then internal nodes of G are the soft cutnodes

of G.

2.1 Operations on soft trees

Definition 8. Let G1 = (G∗, F1,K1, A) and G2 = (G∗, F2,K2, B) be two soft
trees of G∗. The union of two soft trees G1 and G2 is a soft graph and defined as
G = G1 ∪ G2 = (G∗, F,K,C) if H(x) = (F (x),K(x)) for all x ∈ C is a subgraph,
where C = A ∪ B and for all x ∈ C,

F (x) =







F1(x) if x ∈ A − B,
F2(x) if x ∈ B − A,

F1(x) ∪ F2(x) if x ∈ A ∩ B.

K(x) =







K1(x) if x ∈ A − B,
K2(x) if x ∈ B − A,

K1(x) ∪ K2(x) if x ∈ A ∩ B.

Theorem 6. Let G1 = (G∗, F1,K1, A) and G2 = (G∗, F2,K2, B) be two soft trees

of G∗ such that A ∩ B = ∅, then G1 ∪ G2 is a soft tree.
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Proof. The union of G1 = (G∗, F1,K1, A) and G2 = (G∗, F2,K2, B) is defined as

G = G1 ∪ G2 = (G∗, F,K,C),

where C = A ∪ B and for all x ∈ C,

F (x) =







F1(x) if x ∈ A − B,
F2(x) if x ∈ B − A,

F1(x) ∪ F2(x) if x ∈ A ∩ B.

K(x) =







K1(x) if x ∈ A − B,
K2(x) if x ∈ B − A,

K1(x) ∪ K2(x) if x ∈ A ∩ B.

Since A ∩ B = ∅, then A − B = A and B − A = B. Thus,

F (x) =

{

F1(x) if x ∈ A,
F2(x) if x ∈ B.

K(x) =

{

K1(x) if x ∈ A,
K2(x) if x ∈ B.

H1(x) = (F1(x),K1(x)) and H2(x) = (F2(x),K2(x)) are trees, since G1 and G2 are
soft trees. Therefore, H = (F (x),K(x)) is a tree and G = (G∗, F,K,C) is a soft
tree.

Remark 2. If A ∩ B 6= ∅, then union of two soft trees may not be a soft tree as it
can be seen in the following example.

Example 5. Consider a simple graph G∗ = (V,E), where V = {v1, v2, v3, v4, v5} and
E = {v1v2, v2v3, v3v4, v4v5, v5v1}. Let G1 = (G∗, F1,K1, A) and G2 = (G∗, F2,K2, B)
be two soft trees of G∗.

Let A = {v3, v4} ⊆ V and B = {v4} ⊆ V. We define approximate functions
F1 : A → P(V ) and F2 : B → P(V ) by

F1(x) = {y ∈ V : xRy ⇔ d(x , y) ≤ 1} ∀x ∈ A,

i. e., F1(v3) = {v2, v3, v4}, F1(v4) = {v3, v4, v5}, and

F2(x) = {y ∈ V : xRy ⇔ d(x , y) ≥ 1} ∀x ∈ B ,

i. e., F2(v4) = {v1, v2, v3, v5}, respectively. Thus, F (v3) = F1(v3) = {v2, v3, v4},
F (v4) = F1(v4)∪F2(v4) = {v1, v2, v3, v4, v5}. Thus, (F,A) = {F (v3), F (v4)} is a soft
set over V.

We now define approximate functions K1 : A → P(E) and K2 : B → P(E) by

K1(x) = {xy ∈ E : xRxy ⇔ xy ⊆ F1(x)} ∀x ∈ A,
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i. e., K1(v3) = {v2v3, v3v4}, K1(v4) = {v3v4, v4v5}, and

K2(x) = {xy ∈ E : xRxy ⇔ xy ⊆ F2(x)} ∀x ∈ B,

i. e., K2(v4) = {v1v2, v2v3, v5v1}, respectively. Thus, K(v3) = K1(v3) =
{v2v3, v3v4}, K(v4) = K1(v4) ∪ K2(v4) = {v1v2, v2v3, v3v4, v4v5, v5v1}. Thus,
(K,A) = {K(v3),K(v4)} is a soft set over E. By routine calculations, it is easy
to see that H(v3) = (F (v3),K(v3)) and H(v4) = (F (v4),K(v4)) are connected sub-
graphs of G∗. H(v3) = (F (v3),K(v3)) is a tree but H(v4) = (F (v4),K(v4)) is a cycle
as shown in Fig. 11. Hence, G = {H(v3) = (F (v3),K(v3)),H(v4) = (F (v4),K(v4))}

v
2

v
3

v
4

H(v )3

v
1

v
2

v
3

v
4

v
5

H(v )4

Figure 11. Connected subgraphs

is not a soft tree of G∗.

Definition 9. Let G1 = (G∗, F1,K1, A) and G2 = (G∗, F2,K2, B) be two soft trees
of G∗. The intersection of two soft trees G1 and G2 is a soft graph and defined as
G = G1 ∩ G2 = (G∗, F,K,C) if H(x) = (F (x),K(x)) for all x ∈ C is a subgraph,
where C = A ∪ B and for all x ∈ C,

F (x) =







F1(x) if x ∈ A − B,
F2(x) if x ∈ B − A,

F1(x) ∩ F2(x) if x ∈ A ∩ B.

K(x) =







K1(x), if x ∈ A − B,
K2(x), if x ∈ B − A,

K1(x) ∩ K2(x), if x ∈ A ∩ B.

Theorem 7. Let G1 = (G∗, F1,K1, A) and G2 = (G∗, F2,K2, B) be two soft trees

of G∗ such that A ∩ B = ∅, then G1 ∩ G2 is a soft tree.

Proof. The intersection of G1 = (G∗, F1,K1, A) and G2 = (G∗, F2,K2, B) is defined
as

G = G1 ∩ G2 = (G∗, F,K,C),

where C = A ∪ B and for all x ∈ C,

F (x) =







F1(x) if x ∈ A − B,
F2(x) if x ∈ B − A,

F1(x) ∩ F2(x) if x ∈ A ∩ B.
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K(x) =







K1(x) if x ∈ A − B,
K2(x) if x ∈ B − A,

K1(x) ∩ K2(x) if x ∈ A ∩ B.

Since A ∩ B = ∅, then A − B = A and B − A = B. Thus,

F (x) =

{

F1(x) if x ∈ A,
F2(x) if x ∈ B.

K(x) =

{

K1(x) if x ∈ A,
K2(x) if x ∈ B.

H1(x) = (F1(x),K1(x)) and H2(x) = (F2(x),K2(x)) are trees, since G1 and G2 are
soft trees. Therefore, H = (F (x),K(x)) is a tree and G = (G∗, F,K,C) is a soft
tree.

Remark 3. If A ∩ B 6= ∅, then intersection of two soft trees may not be a soft tree
as it can be seen in the following example.

Example 6. Consider a simple graph G∗ = (V,E), where V = {v1, v2, v3, v4} and
E = {v1v2, v2v3, v3v4, v4v1}. Let G1 = (G∗, F1,K1, A) and G2 = (G∗, F2,K2, B)
be two soft trees of G∗. Let A = {v2, v4} ⊆ V and B = {v3, v4} ⊆ V. We define
approximate functions F1 : A → P(V ) and F2 : B → P(V ) by

F1(x) = {y ∈ V : xRy ⇔ d(x , y) ≥ 1} ∀x ∈ A,

i. e., F1(v2) = {v1, v3, v4}, F1(v4) = {v1, v2, v3}, and

F2(x) = {y ∈ V : xRy ⇔ d(x , y) ≤ 1} ∀x ∈ B ,

i. e., F2(v3) = {v2, v3, v4}, F2(v4) = {v1, v3, v4}, respectively. Thus, F (v2) =
F1(v2) = {v1, v3, v4}, F (v3) = F2(v3) = {v2, v3, v4}, F (v4) = F1(v4) ∩ F2(v4) =
{v1, v3}. Thus, (F,A) = {F (v2), F (v3), F (v4)} is a soft set over V. We now define
approximate functions K1 : A → P(E) and K2 : B → P(E) by

K1(x) = {xy ∈ E : xRxy ⇔ xy ⊆ F1(x)} ∀x ∈ A,

i. e., K1(v2) = {v3v4, v4v1}, K1(v4) = {v1v2, v2v3}, and

K2(x) = {xy ∈ E : xRxy ⇔ xy ⊆ F2(x)} ∀x ∈ B,

i. e., K2(v3) = {v2v3, v3v4}, K2(v4) = {v3v4, v4v1}, respectively. Thus, K(v2) =
K1(v2) = {v3v4, v4v1}, K(v3) = K2(v3) = {v2v3, v3v4}, K(v4) = K1(v4) ∩ K2(v4) =
{}. Thus, (K,A) = {K(v2),K(v3),K(v4)} is a soft set over E. By routine calcula-
tions, it is easy to see that H(v2) = (F (v2),K(v2)) and H(v3) = (F (v3),K(v3)) are
connected subgraphs of G∗ as well as trees as shown in Fig. 12. But H(v4) =
(F (v4),K(v4)) is not a connected subgraph and hence, not a tree as shown in
Fig. 13. Hence, G = {H(v2) = (F (v2),K(v2)),H(v3) = (F (v3),K(v3)),H(v4) =
(F (v4),K(v4))} is not a soft tree of G∗.
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Figure 13. Disconnected subgraph

Definition 10. Let G1 = (G∗, F1,K1, A) and G2 = (G∗, F2,K2, B) be two soft trees
of G∗. The OR operation on two soft trees G1 and G2 is a soft tree and defined as

G = G1 ∨ G2 = (G∗, F,K,C),

if the subgraph H(a, b) = (F (a, b),K(a, b)), for all (a, b) ∈ C is a tree, where C =
A × B and for all (a, b) ∈ C, F (a, b) = F1(a) ∪ F2(b) and K(a, b) = K1(a) ∪ K2(b).

Example 7. Consider a simple graph G∗ = (V,E), where V = {v1, v2, v3, v4, v5} and
E = {v1v2, v2v3, v3v4, v4v5, v5v1}. Let G1 = (G∗, F1,K1, A) and G2 = (G∗, F2,K2, B)
be two soft trees of G∗.

Let A = {v2, v5} ⊆ V and B = {v1, v3} ⊆ V. Then A × B = {(v2, v1), (v2, v3),
(v5, v1), (v5, v3)}.

We define approximate functions F1 : A → P(V ) and F2 : B → P(V ) by

F1(x) = {y ∈ V : xRy ⇔ d(x , y) ≤ 1} ∀x ∈ A,

i. e., F1(v2) = {v1, v2, v3}, F1(v5) = {v1, v4, v5}, and

F2(x) = {y ∈ V : xRy ⇔ d(x , y) > 1} ∀x ∈ B ,

i. e., F2(v1) = {v3, v4}, F2(v3) = {v1, v5}, respectively. Thus, F (v2, v1) = F1(v2) ∪
F2(v1) = {v1, v2, v3, v4}, F (v2, v3) = F1(v2) ∪ F2(v3) = {v1, v2, v3, v5}, F (v5, v1) =
F1(v5) ∪ F2(v1) = {v1, v3, v4, v5}, F (v5, v3) = F1(v5) ∪ F2(v3) = {v1, v4, v5}. Thus,
(F,A) = {F (v2, v1), F (v2, v3), F (v5, v1), F (v5, v3)} is a soft set over V.
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We now define approximate functions K1 : A → P(E) and K2 : B → P(E) by

K1(x) = {xy ∈ E : xRxy ⇔ xy ⊆ F1(x)} ∀x ∈ A,

i. e., K1(v2) = {v1v2, v2v3}, K1(v5) = {v4v5, v5v1}, and

K2(x) = {xy ∈ E : xRxy ⇔ xy ⊆ F2(x)} ∀x ∈ B,

i. e., K2(v1) = {v3v4}, K2(v3) = {v5v1}, respectively. Thus, K(v2, v1) = K1(v2) ∪
K2(v1) = {v1v2, v2v3, v3v4}, K(v2, v3) = K1(v2) ∪ K2(v3) = {v1v2, v2v3, v5v1},
K(v5, v1) = K1(v5) ∪ K2(v1) = {v3v4, v4v5, v5v1}, K(v5, v3) = K1(v5) ∪ K2(v3) =
{v4v5, v5v1}. Thus, (K,A) = {K(v2, v1),K(v2, v3),K(v5, v1),K(v5, v3)} is a soft set
over E. Hence, H(v2, v1) = (F (v2, v1),K(v2, v1)), H(v2, v3) = (F (v2, v3),K(v2, v3)),
H(v5, v1) = (F (v5, v1),K(v5, v1)) and H(v5, v3) = (F (v5, v3),K(v5, v3)) are con-
nected subgraphs of G∗ and are also trees as shown in Fig. 14. Hence, G =

v
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H(v ,v )2 1 H(v ,v )2 3 H(v ,v )5 1 H(v ,v )5 3

Figure 14. Subtrees

{H(v2, v1) = (F (v2, v1),K(v2, v1)),H(v2, v3) = (F (v2, v3),K(v2, v3)),H(v5, v1) =
(F (v5, v1),K(v5, v1)), H(v5, v3) = (F (v5, v3),K(v5, v3))} is a soft tree.

Definition 11. Let G1 = (G∗, F1,K1, A) and G2 = (G∗, F2,K2, B) be two soft trees
of G∗. The AND operation on two soft trees G1 and G2 is a soft tree and defined as

G = G1 ∧ G2 = (G∗, F,K,C)

if the subgraph H(a, b) = (F (a, b),K(a, b)), for all (a, b) ∈ C, is a tree, where
C = A×B and for all (a, b) ∈ C, F (a, b) = F1(a)∩F2(b) and K(a, b) = K1(a)∩K2(b).

Example 8. Consider a simple graph G∗ = (V,E), where V = {v1, v2, v3, v4, v5} and
E = {v1v2, v2v3, v3v4, v4v5, v5v1}. Let G1 = (G∗, F1,K1, A) and G2 = (G∗, F2,K2, B)
be two soft trees of G∗. Let A = {v1, v3} ⊆ V and B = {v2, v4} ⊆ V. Then A×B =
{(v1, v2), (v1, v4), (v3, v2), (v3, v4)}. We define approximate functions F1 : A → P(V )
and F2 : B → P(V ) by

F1(x) = {y ∈ V : xRy ⇔ d(x , y) ≤ 1} ∀x ∈ A,

i. e., F1(v1) = {v1, v2, v5}, F1(v3) = {v2, v3, v4}, and

F2(x) = {y ∈ V : xRy ⇔ d(x , y) ≥ 1} ∀x ∈ B ,
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i. e., F2(v2) = {v1, v3, v4, v5}, F2(v4) = {v1, v2, v3, v5}, respectively. Thus,
F (v1, v2) = F1(v1) ∩ F2(v2) = {v1, v5}, F (v1, v4) = F1(v1) ∩ F2(v4) = {v1, v2, v5},
F (v3, v2) = F1(v3)∩F2(v2) = {v3, v4}, F (v3, v4) = F1(v3)∩F2(v4) = {v2, v3}. Thus,
(F,A) = {F (v1, v2), F (v1, v4), F (v3, v2), F (v3, v4)} is a soft set over V.

We now define approximate functions K1 : A → P(E) and K2 : B → P(E) by

K1(x) = {xy ∈ E : xRxy ⇔ xy ⊆ F1(x)} ∀x ∈ A,

i. e., K1(v1) = {v1v2, v5v1}, K1(v3) = {v2v3, v3v4}, and

K2(x) = {xy ∈ E : xRxy ⇔ xy ⊆ F2(x)} ∀x ∈ B,

i. e., K2(v2) = {v3v4, v4v5, v5v1}, K2(v4) = {v1v2, v2v3, v5v1}. Thus, K(v1, v2) =
K1(v1) ∩ K2(v2) = {v5v1}, K(v1, v4) = K1(v1) ∩ K2(v4) = {v1v2, v5v1},
K(v3, v2) = K1(v3)∩K2(v2) = {v3v4}, K(v3, v4) = K1(v3)∩K2(v4) = {v2v3}. Thus,
(K,A) = {K(v1, v2),K(v1, v4),K(v3, v2),K(v3, v4)} is a soft set over E. Hence,
H(v1, v2) = (F (v1, v2),K(v1, v2)), H(v1, v4) = (F (v1, v4),K(v1, v4)), H(v3, v2) =
(F (v3, v2),K(v3, v2)) and H(v3, v4) = (F (v3, v4),K(v3, v4)) are connected sub-
graphs of G∗ and are also trees as shown in Fig. 15. Hence, G = {H(v1, v2) =
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v
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3
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H(v ,v )1 2 H(v ,v )1 4 H(v ,v )3 2 H(v ,v )3 4

Figure 15. Subtrees

(F (v1, v2), K(v1, v2)), H(v1, v4) = (F (v1, v4), K(v1, v4)), H(v3, v2) = (F (v3, v2),
K(v3, v2)), H(v3, v4) = (F (v3, v4),K(v3, v4))} is a soft tree.

References

[1] Akram M. Bipolar fuzzy graphs. Information Sciences, 2011, 181, 5548–5564.

[2] Akram M., Dudek W.A. Regular bipolar fuzzy graphs. Neural Computing & Applications,
2012, 21, 197–205.

[3] Akram M., Nawaz S. Operations on soft graphs. Fuzzy Information and Engineering (under
process).

[4] Ali M. I., Feng F., Liu X.Y., Min W.K., Shabir M. On some new operations in soft

set theory. Computers and Mathematics with Applications, 2009, 57, 1547–1553.

[5] Bhattacharya P. Some remarks on fuzzy graphs. Pattern Recognition Letter, 1987, 6,
297–302.

[6] Bhutani K. R., Rosenfeld A. Strong arcs in fuzzy graphs. Information Sciences, 2003,
152, 319–322.



ON SOFT TREES 95

[7] Feng F., Akram M., Davvaz B., Fotea V.L. A new approach to attribute analy-

sis of information systems based on soft implications. Knowledge-Based Systems, 2014, 70,
281–292.

[8] Kauffman A. Introduction a la Theorie des Sous-emsembles Flous. Masson et Cie, 1973, 1.

[9] Maji P. K., Biswas R., Roy A.R. Soft set theory. Computers and Mathematics with
Applications, 2003, 45, 555–562.

[10] Molodtsov D. A. Soft set theory – first results. Computers and Mathematics with Appli-
cations, 1999, 37, 19–31.
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1 Introduction

Let L be the class of locally compact abelian groups. For X ∈ L, let E(X)
denote the ring of continuous endomorphisms of X, taken with the compact-open
topology.

In the present paper, we continue our work begun in [17] concerning the problem
of characterizing the groups X ∈ L for which E(X) is locally compact. Our main
results are as follows. We establish some necessary conditions and, respectively,
some sufficient conditions on X in order for E(X) be locally compact. For groups
in L containing a lattice and for densely divisible torsion-free groups in L, we give
a complete solution to the considered problem. We also determine the topological
torsion groups X ∈ L with the property that E(A/B) is locally compact for all
closed subgroups A,B of X such that A ⊃ B.

2 Notation

We will follow the notation used in [17]. In addition, for X,Y ∈ L and
f ∈ H(X,Y ), we denote by f∗ the transpose of f, i.e. the homomorphism
f∗ ∈ H(Y ∗,X∗) defined by the rule f∗(γ) = γ ◦ f for all γ ∈ Y ∗. If C is a closed
subgroup of X and n ∈ N0, we set 1

nC = {x ∈ X | nx ∈ C}. We will also make use of
the discrete group Z of integers, and of the groups of reals R and of p-adic numbers
Qp, where p ∈ P, all taken with their usual topologies. Finally, if (Xi)i∈I is a family
of topological groups (rings) such that, for each i ∈ I, Xi admits an open subgroup
(subring) Ui, then

∏

i∈I(Xi;Ui) stands for the local direct product of (Xi)i∈I with
respect to (Ui)i∈I . Recall that

∏

i∈I(Xi;Ui) is the subgroup (subring) of
∏

i∈I Xi

consisting of all families (xi)i∈I such that xi ∈ Ui for all but finitely many i ∈ I,

c© Valeriu Popa, 2015
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topologized by declaring all neighborhoods of zero in the topological group (ring)
∏

i∈I Ui to be a fundamental system of neighborhoods of zero in
∏

i∈I(Xi;Ui).

3 Local compactness of some homomorphism groups

In this preparatory section, we determine the groups X ∈ L with the property
that the topological groups H(X, R), H(R,X), H(X, Q), H(Q,X), H(X, Q∗), and
H(Q∗,X) are locally compact.

We first recall the following definition, due to V. Charin [4].

Definition 1. A topological group X is said to be a group of finite (special) rank
if there exists a natural number r such that every finite subset F of X topo-
logically generates a subgroup with no more than r topological generators, i.e.
〈F 〉 = 〈x1, . . . , xk〉 for some x1, . . . , xk ∈ X and k ≤ r. The smallest r with this
property is called the special rank of X. In case no such r exists, X is said to have
infinite special rank.

As is well known, a discrete torsion-free group X ∈ L has finite special rank r
if and only if its torsion-free rank is equal to r. It is also known that if X ∈ L is
a topologically p-primary group for some p ∈ P, then X has finite special rank r if
and only if

X ∼= G1 × · · · × Gr,

where every Gi, 1 ≤ i ≤ r, is topologically isomorphic with one of the groups Qp,
Zp, Z(p∞), or Z(pn) for some n ∈ N0 [5, Theorem 5].

We now begin the study of local compactness of the mentioned homomorphism
groups. For H(X, R) and H(X, Q), we have

Theorem 1. Let X be a group in L containing a compact open subgroup. The

following conditions are equivalent:

(i) H(X, R) is locally compact.

(ii) H(X, Q) is locally compact.

(iii) X/k(X) has finite rank.

Proof. The fact that (i) and (iii) are equivalent follows from [15, Lemma 3.2]. Let us
establish the equivalence of (ii) and (iii). Assume (ii), and let Ω be a compact neigh-
borhood of zero in H(X, Q). By the definition of the compact-open topology, there
is a compact subset K of X such that ΩX,Q(K, {0}) ⊂ Ω. Let π : X → X/k(X)
be the canonical projection. Since X has a compact open subgroup, X/k(X) is
discrete, and hence π(K) is finite. Let G = 〈π(K)〉∗. It is clear that G has finite
rank [12, p. 41]. We shall show that G = X/k(X). Assume the contrary, and pick an
arbitrary non-zero b ∈

(

X/k(X)
)

/G. Since G is pure in X/k(X), the quotient group
(

X/k(X)
)

/G is torsion-free, so o(b) = ∞. Letting ϕ : X/k(X) →
(

X/k(X)
)

/G de-
note the canonical projection, write b = ϕ(b′) for some b′ ∈ X/k(X). Now, given any



98 VALERIU POPA

r ∈ Q, let ξr :
(

X/k(X)
)

/G → Q be the extension of the group homomorphism from
〈b〉 to Q which carries b to r [8, Theorem 21.1]. Then ξr ◦ ϕ ◦ π ∈ ΩX,Q(K, {0}),
so r ∈ Ωb′. Since r ∈ Q was chosen arbitrarily, we get Q ⊂ Ωb′, which is a contra-
diction because Ωb′ is finite and Q is infinite. This proves that G = X/k(X), so (i)
implies (iii).

To see the converse, assume (iii), and pick any elements a1, . . . , am ∈ X such
that a1 + k(X), . . . , am + k(X) form a basis in X/k(X). We claim that

ΩX,Q

(

{a1, . . . , am}, {0}
)

= {0},

which means that H(X, Q) is discrete. To see this, fix any a ∈ X \k(X). Then there
exist n ∈ N0 and l1, . . . , lm ∈ Z such that

n(a + k(X)) =

m
∑

i=1

li(ai + k(X)),

and hence

na−

m
∑

i=1

liai ∈ k(X).

Pick any f ∈ ΩX,Q

(

{a1, . . . , am}, {0}
)

. Since k(Q) = {0}, we have k(X) ⊂ ker(f).
It follows that

nf(a) =

m
∑

i=1

lif(ai) = 0,

so f(a) = 0. Since a ∈ X \ k(X) was chosen arbitrarily, it follows that f = 0, and
hence (iii) implies (ii).

As a direct consequence, we derive the following:

Corollary 1. Let X be a group in L containing a compact open subgroup. The

following conditions are equivalent:

(i) H(R,X) is locally compact.

(ii) H(Q∗,X) is locally compact.

(iii) c(X) has finite dimension.

Proof. Since H(R,X) ∼= H(X∗, R) and H(Q∗,X) ∼= H(X∗, Q) [11, Ch. IV, Theorem
4.2, Corollary 2], the assertion follows from Theorem 1 and duality.

For H(Q,X), we have:

Theorem 2. For a group X ∈ L, the following statements are equivalent:

(i) H(Q,X) is locally compact.
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(ii) There is a symmetric open neighborhood V of zero in X such that ( 1
nV )∩d(X)

is relatively compact for all n ∈ N0.

(iii) There is an open subgroup F of d(X) such that ( 1
nF ) ∩ d(X) is compactly

generated for all n ∈ N0.

Proof. Assume (i), and let Ω be a compact neighborhood of zero in H(Q,X). Then
there is a finite subset K = {a1, . . . , ak} of Q and an open neighborhood U of zero
in X such that ΩQ,X(K,U) ⊂ Ω. As is well known, the finitely generated subgroups
of Q are cyclic [8, p. 17], so 〈K〉 = 〈a〉 for some a ∈ Q. Write ai = mia with mi ∈ Z

for all i = 1, . . . , k. Further, set m = max1≤i≤k |mi|, and choose a symmetric open
neighborhood V of zero in X such that

V + · · · + V
︸ ︷︷ ︸

m

⊂ U.

We claim that ( 1
nV ) ∩ d(X) is relatively compact for all n ∈ N0. Indeed, given any

f ∈ ΩQ,X({a}, V ), we have

f(ai) = mif(a) ∈ V + · · · + V
︸ ︷︷ ︸

m

⊂ U

for all i = 1, . . . , k. Consequently,

ΩQ,X({a}, V ) ⊂ ΩQ,X(K,U) ⊂ Ω,

proving that ΩQ,X({a}, V ) has compact closure in H(Q,X). It follows from the
Ascoli’s theorem that for each q ∈ Q, the orbit ΩQ,X({a}, V )q is relatively com-
pact in X. Now, fix any n ∈ N0 and any x ∈ ( 1

nV ) ∩ d(X). Then nx ∈ V. Define
h ∈ H(〈 a

n〉, d(X)) by setting h( a
n ) = x. Since d(X) is divisible, h extends to a ho-

momorphism ̂h ∈ H(Q, d(X)) [8, Theorem 21.1]. Let j be the canonical injection of
d(X) into X. We have ̂h(a) = n̂h( 1

na) = nx ∈ V, so j ◦̂h ∈ ΩQ,X({a}, V ), and hence

x ∈ ΩQ,X({a}, V )
a

n
.

Since x ∈
(

1
nV

)

∩ d(X) was chosen arbitrarily, we get

( 1

n
V

)

∩ d(X) ⊂ ΩQ,X({a}, V )
a

n
,

proving that
(

1
nV

)

∩ d(X) is relatively compact in X. So (i) implies (ii).
Now assume (ii), and fix an arbitrary n ∈ N0. It follows from [7, Exercise 1.3.D(a)]

that
( 1

n
V

)

∩ d(X) =
( 1

n
V

)

∩ d(X),

so
(

1
nV

)

∩ d(X) is compact, and hence the subgroup
〈(

1
nV

)

∩ d(X)
〉

is compactly

generated in d(X) [9, (5.13)]. Since
(

1
nV

)

∩d(X) is open in d(X), it also follows that
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〈(

1
nV

)

∩ d(X)
〉

is closed in X [9, (5.5)]. In a similar manner, 〈V ∩ d(X)〉 is open

in d(X), so closed in X, and hence 1
n〈V ∩d(X)〉 is closed in X because multiplication

by n is continuous. We assert that

〈( 1

n
V

)

∩ d(X)
〉

=
1

n

〈

V ∩ d(X)
〉

∩ d(X). (1)

Indeed, if x ∈
(

1
nV

)

∩ d(X), then nx ∈ V ∩ d(X), so x ∈
〈(

1
nV

)

∩ d(X)
〉

∩ d(X),
proving that

〈( 1

n
V

)

∩ d(X)
〉

⊂
1

n

〈

V ∩ d(X)
〉

∩ d(X).

To see the inverse inclusion, pick an arbitrary x ∈ 1
n

〈

V ∩ d(X)
〉

∩ d(X). Since

〈

V ∩ d(X)
〉

=
〈

V ∩ d(X)
〉

=
〈

V ∩ d(X)
〉

=
〈

V ∩ d(X)
〉

,

we conclude that there exist m ∈ N0, l1, . . . , lm ∈ Z, and a1, . . . , am ∈ V ∩d(X) such
that

nx −
m

∑

i=1

liai ∈ V.

Further, since d(X) is divisible, we can write ai = nbi with bi ∈ d(X) for all
i = 1, . . . ,m. It follows that

n(x −

m
∑

i=1

libi) ∈ V,

so

x −

m
∑

i=1

libi ∈
1

n
V,

and hence

x −

m
∑

i=1

libi ∈
( 1

n
V

)

∩ d(X).

As b1, . . . , bm ∈
(

1
nV

)

∩ d(X), this proves that x ∈
〈(

1
nV

)

∩ d(X)
〉

, so

1

n

〈

V ∩ d(X)
〉

∩ d(X) ⊂
〈( 1

n
V

)

∩ d(X)
〉

,

proving (1). Finally, taking F =
〈

V ∩ d(X)
〉

, we conclude that (ii) implies (iii).

Next assume (iii), and let U be a symmetric open neighborhood of zero in X such
that U is compact and F = 〈U ∩d(X)〉 [9, (5.13)]. We shall show that ΩQ,X({1}, U)
is relatively compact in H(Q,X). Since Q is discrete, it is clear that ΩQ,X({1}, U)
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is equicontinuous. Fix any l, n ∈ N0. To show that ΩQ,X({1}, U) l
n is relatively

compact in X, observe first that

ΩQ,X({1}, U)
l

n
⊂ l

(

( 1

n
U

)

∩ d(X)
)

. (2)

Indeed, for any f ∈ ΩQ,X({1}, U), we have nf( 1
n) = f(1) ∈ U, so f( 1

n) ∈
(

1
nU

)

∩d(X)
because Q is divisible, and hence

f(
l

n
) = lf(

1

n
) ∈ l

(

( 1

n
U

)

∩ d(X)
)

.

Since
( 1

n
U

)

∩ d(X) =
1

n

(

U ∩ d(X)
)

∩ d(X)

it is clear that the inclusion (2) will assure the compactness of ΩQ,X({1}, U) l
n

if we show that 1
n

(

U ∩ d(X)
)

has compact closure. Now, since G =
(

1
nF

)

∩ d(X)
is compactly generated, we can write G = A⊕B⊕C, where A ∼= R

d and B ∼= Z
s for

some d, s ∈ N, and C is a compact subgroup of G [9, (9.8)]. Let πA, πB , πC ∈ E(G) be
the canonical projections of G onto A,B, and C, respectively. Since

(

1
nV

)

∩d(X) ⊂ G
and 1G = πA + πB + πC , where 1G is the identity mapping on G, we have

1

n

(

U ∩ d(X)
)

⊂ πA

( 1

n

(

U ∩ d(X)
))

+ πB

( 1

n

(

U ∩ d(X)
))

+ πC

( 1

n

(

U ∩ d(X)
))

.

But

πA(
1

n

(

U ∩ d(X)
)

) ⊂
1

n
πA(U ∩ d(X)) ∩ A,

πB(
1

n

(

U ∩ d(X)
)

) ⊂
1

n
πB(U ∩ d(X)) ∩ B

and

πC(
1

n

(

U ∩ d(X)
)

) ⊂
1

n
πC(U ∩ d(X)) ∩ C,

so

1

n

(

U ∩ d(X)
)

⊂
1

n
πA(U ∩ d(X)) ∩ A +

1

n
πB(U ∩ d(X)) ∩ B +

1

n
πC(U ∩ d(X)) ∩ C,

proving that 1
n

(

U ∩ d(X)
)

has compact closure in X. It follows by the Ascoli’s
theorem that ΩQ,X({1}, U) is relatively compact in H(Q,X), and hence (iii) implies
(i).

In order to dualize the preceding theorem, we will need the following lemma.

Lemma 1. Let X ∈ L. For every closed subgroup C of X and every n ∈ N0,
A(X∗, nC) = 1

nA(X∗, C).
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Proof. We have

A(X∗, nC) = {γ ∈ X∗ | γ(nx) = 0 for all x ∈ C}

= {γ ∈ X∗ | nγ(x) = 0 for all x ∈ C}

= {γ ∈ X∗ | nγ ∈ A(X,C)}

=
1

n
A(X∗, C).

Corollary 2. For a group X ∈ L, the following statements are equivalent:

(i) H(X, Q∗) is locally compact.

(ii) There is a closed subgroup C of X such that m(X) ⊂ C, C/m(X) is compact,

and X/nC + m(X) has no small subgroups for all n ∈ N0.

Proof. Assume (i). Since H(Q,X∗) ∼= H(X, Q∗) [11, Ch. IV, Theorem 4.2, Corol-
lary 2], it follows from Theorem 2 that there is an open subgroup F of d(X∗) such
that

(

1
nF

)

∩d(X∗) is compactly generated for all n ∈ N0. Set C = A(X,F ). Clearly,

m(X∗) ⊂ C and C/m(X∗) ∼=
(

d(X∗)/F
)∗

[6, Exercise 3.8.7], so C/m(X∗) is com-

pact [9, (5.21) and (23,17)]. By Lemma 1, we have

A(X∗, nC) =
1

n
A(X∗, C) =

1

n
F,

so nC = A(X, 1
nF ), and hence

A
(

X,
( 1

n
F

)

∩ d(X∗)
)

= A(X,
1

n
F ) + A(X, d(X∗))

= nC + m(X)

for all n ∈ N0. It follows from [9, (23.25)] that

(

X/nC + m(X)
)∗

∼=
( 1

n
F

)

∩ d(X∗),

so X/nC + m(X) has no small subgroups [1, Proposition 7.9] for all n ∈ N0. Conse-
quently, (i) implies (ii).

Now assume (ii), and set F = A(X∗, C). Since m(X) ⊂ C, we clearly have
F ⊂ d(X∗). Further, since d(X∗)/F ∼=

(

C/m(X)
)∗

, it is also clear that F is open

in d(X∗). Finally, given any n ∈ N0. we have

(

( 1

n
F

)

∩ d(X∗)
)∗

∼= X/nC + m(X),

so
(

1
nF

)

∩d(X∗) is compactly generated [1, Proposition 7.9]. It follows from Theorem
2 that H(Q,X∗), and hence H(X, Q∗), is locally compact, proving that (ii) implies
(i).
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4 Some necessary and some sufficient conditions

In this section, we reduce the study of local compactness of the ring E(X) for
general groups X ∈ L to some more special groups. We also establish some sufficient
conditions for local compactness of E(X).

Definition 2. A group X ∈ L is caled residual if d(X) ⊂ k(X) and c(X) ⊂ m(X).

Theorem 3. Let X ∈ L. If E(X) is locally compact, then

X ∼= R
d × Q

r × (Q∗)s × T,

where d, r, s ∈ N and T is a residual group in L such that E(T ) is locally compact.

In addition, if d 6= 0, then T/k(T ) is of finite rank and c(T ) is of finite dimension.

If r 6= 0, then T/k(T ) is of finite rank and d(T ) admits an open subgroup F such

that ( 1
nF ) ∩ d(T ) is compactly generated for all n ∈ N0.

If s 6= 0, then c(T ) is of finite dimension and T admits a compact subgroup C

such that m(T ) ⊂ C, C/m(T ) is compact, and T/nC + m(T ) has no small subgroups

for all n ∈ N0.

Proof. By [1, Theorem 9.3], we can write X = C ⊕ D ⊕ S ⊕ T, where C ∼= R
d for

some d ∈ N, D ∼= Q
(r) and S ∼= (Q∗)s for some cardinal numbers r and s, and T

is a residual group in L. Since D, S, and T are topological direct summands of X,
we conclude from [17, Lemma 2] that E(D), E(S), and E(T ) are locally compact.
Further, r and s must be finite by virtue of [17, Corollary 2 and Corollary 4]. Taking
account of [9, (23,34)(c) and (23,34)(d)], the remaining assertions follow from the
results of Section 3.

We also have

Theorem 4. Let X be a residual group in L. If E(X) is locally compact, then X
satisfies one of the following conditions:

(i) X/k(X) is of finite rank and c(X) is of finite dimension.

(ii) X/k(X) is of finite rank, c(X) is of infinite dimension, and m(x) = k(X).

(iii) X/k(X) is of infinite rank, c(X) is of finite dimension, and d(X) = c(X).

(iv) X/k(X) is of infinite rank, c(X) is of infinite dimension, d(X) = c(X),
and m(x) = k(X).

Proof. Let E(X) be locally compact. We show first that if X/k(X) is of infinite rank,
then d(X) = c(X). Indeed, assume X/k(X) is of infinite rank. By the local com-
pactness of E(X), there exist a compact subset K of X and an open neighborhood
U of zero in X such that U ⊂ K and ΩX(K,U) is relatively compact in E(X). Since
X is residual and 〈K〉 is compactly generated, we can write 〈K〉 = A⊕B, where A
is compact and B ∼= Z

n for some n ∈ N0. Clearly, A ⊂ k(X) and k(X) ∩ B = {0}.
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Let π : X → X/k(X) be the canonical projection. Since B ∼= π(B), the pure
subgroup π(B)∗ has finite rank in X/k(X) [12, p. 41], so X/k(X) 6= π(B)∗, and
hence

(

X/k(X)
)

/π(B)∗ is a non-zero torsion-free group. Fix an arbitrary c ∈ X
such that π(c) /∈ π(B)∗. It follows by the Ascoli’s theorem that ΩX(K,U)c is rela-
tively compact in X. Our goal is to show that d(X) ⊂ ΩX(K,U)c. To this end,
pick any z ∈ d(X), and define ξz ∈ H(〈ϕ(π(c))〉, d(X)) by setting ξ(ϕ(π(c))) = z,
where ϕ : X/k(X) →

(

X/k(X)
)

/π(B)∗ is the canonical projection. Let us denote

by ̂ξz ∈ H
((

X/k(X)
)

/π(B)∗, d(X)
)

the extension of ξz to
(

X/k(X)
)

/π(B)∗ and by

j the canonical injection of d(X) into X. We have j ◦ ̂ξz ◦ ϕ ◦ π ∈ ΩX(K,U) and
z = (j ◦ ̂ξz ◦ ϕ ◦ π)(c), so z ∈ ΩX(K,U)c. Since z ∈ d(X) was picked arbitrarily, we
deduce that d(X) ⊂ ΩX(K,U)c, so d(X) is compact, and hence d(X) = c(X) by [9,
(24.24)]. Consequently, if X/k(X) is of infinite rank, then d(X) = c(X) [9, (24.25)].
Now, since E(X∗) is locally compact too [17, Lemma 1], we conclude as above for
X that if X∗/k(X∗) is of infinite rank, then d(X∗) = c(X∗). It follows by duality
that if c(X) is of infinite dimension, then m(X) = k(X).

We further combine these facts, to get the conclusion. First suppose that X/k(X)
is of finite rank. If X∗/k(X∗) is of finite rank too, then c(X) is of finite dimension,
and hence we have (i). On the other hand, if X∗/k(X∗) is of infinite rank, then
c(X) is of infinite dimension and, as we know from the above, also m(X) = k(X),
so in this case we have (ii). Next suppose that X/k(X) is of infinite rank. Then we
know from the above that d(X) = c(X). Thus, if X∗/k(X∗) is of finite rank, then
c(X) is of finite dimension, and in this case we are led to (iii). Finally, if X∗/k(X∗)
is of infinite rank, we are led to (iv).

We will need the following lemma, which is an adaption of Lemma 3 from [10].

Lemma 2. For any groups X,Y ∈ L, the following statements are equivalent:

(i) There is a neighborhood Ω of zero in H(X,Y ) such that Ωx is compact in Y
for all x ∈ X.

(ii) There is a neighborhood Ω of zero in H(Y ∗,X∗) which operates equiconti-

nuously on Y ∗.

Proof. Assume (i). By the definition of the compact-open topology, there exist
a compact subset K of X and an open neighborhood U of zero in Y such that
ΩX,Y (K,U) ⊂ Ω. Since X and Y are locally compact, we can choose an open
neighborhood V of zero in X and an open neighborhood W of zero in Y such
that V and W are compact. Let K0 = K ∪ V and U0 = U ∩ W. It is clear that
ΩX,Y (K0, U0) ⊂ ΩX,Y (K,U), so ΩX,Y (K0, U0) has compact closure in H(X,Y ).
Moreover, for any compact subset C of X, the set

ΩX,Y (K0, U0)C = {f(x) | f ∈ ΩX,Y (K0, U0) and x ∈ C}

has compact closure in Y. Indeed, by the compactness of C, there exist elements
x1, . . . , xm ∈ C such that C ⊂ ∪m

i=1(xi + V ). Given any x ∈ C, we then have
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x − xi0 ∈ V for some i0 ∈ {1, . . . ,m}, whence

f(x) ∈ f(xi0) + f(V ) ⊂ ΩX,Y (K0, U0)xi + U0

for all f ∈ ΩX,Y (K0, U0). Consequently,

ΩX,Y (K0, U0)C ⊂
m
⋃

i=1

ΩX,Y (K0, U0)xi + U0,

proving that ΩX,Y (K0, U0)C has compact closure in Y. We shall show that the set

ΩX,Y (K0, U0)
∗ = {f∗ ∈ H(Y ∗,X∗) | f ∈ ΩX,Y (K0, U0)}

is equicontinuous in H(Y ∗,X∗). Let O be an arbitrary neighborhood of zero in X∗.
We may assume that O = ΩX,T(C,D), where C is a compact subset of X and D

is an open neighborhood of zero in T. For this C, let C ′ = ΩX,Y (K0, U0)C. Then
C ′ is a compact subset of Y, so O′ = ΩY,T(C ′,D) is a neighborhood of zero in Y ∗.
Now, it is easily seen that f∗(O′) ⊂ O for all f ∈ ΩX,Y (K0, U0), so ΩX,Y (K0, U0)

∗

is equicontinuous at zero, and hence on Y ∗. This proves that (i) implies (ii).
Now assume (ii), and let Φ be the neighborhood of zero in H(X,Y ) such that

Ω = {f∗ | f ∈ Φ} [11, Ch. IV, Theorem 4.2, Corollary 2]. We claim that Φ
operates with relatively compact orbits. Pick any a ∈ X. It suffices to show that
ξY (Φa) is relatively compact in Y ∗∗, where ξY : Y → Y ∗∗ is the canonical topological
isomorphism of Y, i.e. ξY (y)(γ) = γ(y) for all y ∈ Y and γ ∈ Y ∗. Observe that

ξY (Φa) =
{

ξX(a) ◦ f∗ | f ∈ Φ
}

,

where ξX : X → X∗∗ is the canonical topological isomorphism of X. To see that
ξY (Φa) is equicontinuous, pick an arbitrary neighborhood D of zero in T, and set
O = {γ ∈ X∗ | ξ(a)(γ) ∈ D}. Since ξ(a) is continuous, O is a neighborhood of zero
in X∗. Further, since Φ∗ = Ω is equicontinuous, there is a neighborhood W of zero
in Y ∗ such that f∗(W ) ⊂ O for all f ∈ Φ∗. It follows that (ξ(a)◦f∗)(W ) ⊂ D for all
f ∈ Φ∗, proving that ξY (Φa) is equicontinuous. Finally, since T is compact, it is also
clear that ξY (Φa) operates with relatively compact orbits. Consequently, ξY (Φa) is
relatively compact in Y ∗∗ by the Ascoli’s theorem.

We now establish some sufficient conditions for the local compactness of E(X).

Theorem 5. Let X be a group in L satisfying the following conditions:

i) c(X) ∩ k(X) has finite dimension.

ii) For each p ∈ S(X),
(

k(X)/
(

c(X) ∩ k(X)
)

)

p
has finite rank.

iii) X/
(

c(X) + k(X)
)

has finite rank.

Then E(X) is locally compact.
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Proof. We can write X = C ⊕ Y, where C ∼= R
d for some d ∈ N and Y contains

a compact open subgroup. Then

E(X) ∼=

(

E(Rd) H(Y, Rd)
H(Rd, Y ) E(Y )

)

.

Now, since H(Y, Rd) ∼= H(Y, R)d and H(Rd, Y ) ∼= H(R, Y )d [9, (23.34)(c) and
(23.34)(d)], we conclude from Theorem 1 and Theorem 2 that H(Y, Rd) and
H(Rd, Y ) are locally compact. As E(Rd) is locally compact too, it suffices to show
that E(Y ) is locally compact. To this purpose, pick any elements a1, . . . , am of Y
such that a1 + k(Y ), . . . , am + k(Y ) form a basis in Y/k(Y ), and a compact open
subgroup U of Y. We claim that

Ω = ΩY ({a1, . . . , am} ∪ U,U)

is relatively compact in E(Y ). Let a be an arbitrary element in Y. Then there exist
n ∈ N0, l1, . . . , lm ∈ Z, and b ∈ k(Y ) such that na = b +

∑m
i=1 liai. Moreover, by

multiplying the above equation through by the order of b+U in k(Y )/U, if necessary,
we may assume that b ∈ U. Now, given any f ∈ Ω, we have

nf(a) = f(b) +

m
∑

i=1

lif(ai) ⊂ U,

so f(a) ∈ 1
nU. Consequently, to conclude that Ω operates with relatively compact

orbits, it suffices to show that 1
nU is compact. It is clear that

(

1
nU

)

/U is a torsion
group of bounded order, so 1

nU ⊂ k(Y ), and hence
(

1
nU

)

/U is a subgroup of bounded
order of k(Y )/U. Since

k(Y )/U ∼=
(

k(Y )/c(Y )
)

/
(

U/c(Y )
)

,

we deduce from condition (ii) that the primary components of k(Y )/U have finite
rank. Further, since

(

1
nU

)

/U is a subgroup of bounded order of k(Y )/U, we conclude
that

(

1
nU

)

/U is finite, so 1
nU is compact. Consequently, Ω operates with relatively

compact orbits.
Further, observe that X∗ too satisfies the hypotheses of the theorem. Indeed,

by [9, (24,17)],[6, Proposition 3.3.3], and [9, (23,25)], we have

c(X∗) ∩ k(X∗) = A(X∗, c(X) + k(X))

∼=
(

X/
(

c(X) + k(X)
)

)∗
,

so c(X∗) ∩ k(X∗) has finite dimension by (iii) and [9, (24.28)]. Similarly, since

(

X∗/
(

c(X∗) + k(X∗)
)

)∗
∼= c(X) ∩ k(X),

we deduce from (i) that X∗/
(

c(X∗)+k(X∗)
)

has finite rank. Finally, we see from [6,
Exercise 3.8.7] and [9, (6.9)] that
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(

k(X∗)/
(

c(X∗) ∩ k(X∗)
)

)∗
∼=

(

c(X) + k(X)
)

/c(X)

=
(

C ⊕ k(X)
)

/
(

C ⊕
(

c(X) ∩ k(X)
))

∼= k(X)/
(

c(X) ∩ k(X)
)

.

Given any p ∈ S(X), we then have
(

k(X∗)/
(

c(X∗) ∩ k(X∗)
)

)

p

∼=
(

k(X)/
(

c(X) ∩ k(X)
)

)∗

p
,

so
(

k(X∗)/
(

c(X∗) ∩ k(X∗)
)

)

p
has finite rank by (ii) and [5, Theorem 4]. It follows

that X∗ too satisfies the hypotheses of the theorem. Consequently, we can conclude
by using the same argument as with X that E(X∗) admits a neighborhood of zero,
which operates with relatively compact orbits. It follows from Lemma 2 that E(X)
admits a neighborhood of zero, which operates equicontinuously on X. It remains
to apply the Ascoli’s theorem.

Remark 1. In [10, n◦ 9], M. Levin has shown that A
(

∏

n∈N0

(

Z(p2n); pn
Z(p2n)

)

)

is locally compact although
∏

n∈N0

(

Z(p2n); pn
Z(p2n)

)

has infinite rank. With similar

arguments, it is easy to see that E
(

∏

n∈N0

(

Z(p2n); pn
Z(p2n)

)

)

is locally compact

as well, so the inverse of Theorem 5 is not valid.

5 Groups containing a lattice

Let X be a group in L. A subgroup L of X is called a lattice in X if L is discrete
and X/L is compact. If there exists such a subgroup L in X, then X is said to contain
a lattice. If X decomposes as a topological direct sum of a discrete subgroup and
a compact one, then it is said to contain a lattice trivially. If X contains a lattice but
cannot be decomposed as a topological direct sum of a discrete group and a compact
one, it is said to contain a lattice non-trivially.

In the present section, we answer the question of the local compactness of E(X)
in the case when X contains a lattice. In preparation for this we first establish
a lemma, which introduces a topology, called the Birkhoff topology, on the group of
units of a topological ring and shows how this topology is related to the topology of
that ring.

Lemma 3. Let E be a topological ring with identity 1, and let E× be the group of

invertible elements of E.

(i) If B is a filter base of neighborhoods of zero in E, then the set

B× =
{[

(1 + B) ∩ E×
]

∩
[

(1 + B) ∩ E×
]−1

| B ∈ B
}

is a filter base of neighborhoods of 1 for a group topology on E×, which we call

the Birkhoff topology of E×.
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(ii) If Eop is the opposite topological ring of E and E×Eop is the topological direct

product of topological rings E and Eop, then E× with the Birkhoff topology

is topologically isomorphic to a closed subgroup of the multiplicative monoid

of E × Eop. In particular, if E is locally compact, then E× with its Birkhoff

topology is locally compact too.

Proof. (i) Since B 6= ∅, it is clear that B× 6= ∅ as well. Also, since every B ∈ B
contains 0, we see that every element of B× contains 1, so ∅ /∈ B×. Further, given
any B1, B2 ∈ B, there is B3 ∈ B such that B3 ⊂ B1 ∩ B2. It follows that

[(1 + B3) ∩ E×] ⊂ [(1 + B1) ∩ E×] ∩ [(1 + B2) ∩ E×],

so

[(1 + B3) ∩ E×]−1 ⊂ [(1 + B1) ∩ E×]−1 ∩ [(1 + B2) ∩ E×]−1,

and hence [(1 + B3) ∩ E×] ∩ [(1 + B3) ∩ E×]−1 is contained in the set

(

[(1 + B1) ∩ E×] ∩ [(1 + B1) ∩ E×]−1
)

∩
(

[(1 + B2) ∩ E×] ∩ [(1 + B2) ∩ E×]−1
)

.

Consequently, B× is a filter base on E×.

Next we show that B× satisfies the conditions (GV ′
I ), (GV ′

II), and (GV ′
III) of [2,

Ch. III, §1, n◦ 2]. Let U be a neighborhood of zero in E. We can choose neigh-
borhoods O and V of zero in E such that O + O ⊂ U, V + V ⊂ O, and V V ⊂ O.
Then

[(1 + V ) ∩ E×][(1 + V ) ∩ E×] ⊂ [(1 + U) ∩ E×],

so

(

[(1 + V ) ∩ E×] ∩ [(1 + V ) ∩ E×]−1
)(

[(1 + V ) ∩ E×] ∩ [(1 + V ) ∩ E×]−1
)

⊂ [(1 + U) ∩ E×] ∩ [(1 + U) ∩ E×]−1,

and hence (GV ′
I ) holds. Further, since

(

[(1 + U) ∩ E×] ∩ [(1 + U) ∩ E×]−1
)−1

= [(1 + U) ∩ E×]−1 ∩ [(1 + U) ∩ E×],

it is clear that (GV ′
II) holds too. Finally, given any a ∈ E×, we can choose neighbor-

hoods Φ and W of zero in E such that Φa ⊂ U and a−1W ⊂ Φ, whence a−1Wa ⊂ U.
But then

a−1[(1 + W ) ∩ E×]a ⊂ [(1 + U) ∩ E×],

so

a−1[(1 + W ) ∩ E×]−1a ⊂ [(1 + U) ∩ E×]−1,

and hence

a−1
(

[(1 + W ) ∩ E×] ∩ [(1 + W ) ∩ E×]−1
)

a ⊂ [(1 + U) ∩ E×] ∩ [(1 + U) ∩ E×]−1.
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This proves (GV ′
III). It follows that there is a unique group topology on E×, admit-

ting B× as a filter base of neighborhoods of 1.
(ii) Recall that Eop is the topological ring in which the underlying set, the

additive structure, and the topology are those of E, and whose multiplication is
obtained by multiplying in E with reverse order. Consider the topological direct
product E×Eop. Since the mappings (u, v) → u ◦ v and (u, v) → v ◦u from E×Eop

to E are continuous, the sets

S = {(u, v) ∈ E × Eop | u ◦ v = 1}

and

T = {(u, v) ∈ E × Eop | v ◦ u = 1}

are closed in E × Eop. It follows that S ∩ T is closed in E × Eop. Clearly,

S ∩ T = {(u, u−1) ∈ E × Eop | u ∈ E×}.

Moreover, S ∩ T has a group structure with respect to component-wise multiplica-
tion. Further, if we endow S ∩ T with the induced topology, then S ∩ T becomes a
topological group. Indeed, the multiplication in S ∩ T is the restriction to S ∩ T of
the multiplication in E ×Eop, and hence is continuous. Similarly, taking of inverses
in S ∩ T is the restriction to S ∩ T of the mapping (u, v) → (v, u) from E × Eop

onto E ×Eop, and hence is continuous too. It remains to observe that the mapping
ξ : u → (u, u−1) is an isomorphism of topological groups from E× onto S∩T. Indeed,
ξ is, clearly, an isomorphism of groups. Now, if U is a neighborhood of zero in E,
then

ξ
(

[(1 + U) ∩ E×] ∩ [(1 + U) ∩ E×]−1
)

=
(

(1 + U) × (1 + U)
)

∩ (S ∩ T ),

so ξ is bicontinuous.

Specializing to the case E = E(X), we have the following

Corollary 3. Let X ∈ L. Then A(X) coincides with E(X)× taken with its Birkhoff

topology, and hence A(X) is topologically isomorphic to a closed subgroup of the

multiplicative monoid of E(X) × E(X)op.

We are now prepared to describe all the groups X ∈ L containing a lattice for
which E(X) is locally compact. First, we consider the case when X contains a lattice
non-trivially.

Theorem 6. Let X be a group in L containing a lattice non-trivially. The following

statements are equivalent:

(i) E(X) is locally compact.

(ii) A(X) is locally compact.
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(iii) X satisfies the following conditions:

1) c(X) ∩ k(X) has finite dimension.

2) For each p ∈ S(X),
(

k(X)/
(

c(X) ∩ k(X)
)

)

p
has finite rank.

3) X/
(

c(X) + k(X)
)

has finite rank.

Proof. The fact that (i) implies (ii) follows from Corollary 3, the fact that (ii) implies
(iii) follows from [10, Theorem 5], and the fact that (iii) implies (i) follows from
Theorem 5.

For the case of groups containing a lattice trivially, we have:

Theorem 7. Let X be a group in L containing a lattice trivially, say X = L ⊕ C
with L discrete and C compact. Then E(X) is locally compact if and only if E(L)
and E(C) are both locally compact.

Proof. We have

E(X) ∼=

(

E(L) H(C,L)
H(L,C) E(C)

)

.

Since L is discrete, H(L,C) is equicontinuous. Since C is compact, H(L,C) operates
with relatively compact orbits. Consequently, H(L,C) is compact by the Ascoli’s
theorem. On the other hand, H(C,L) is discrete because ΩC,L(C, {0}) = {0}. It
follows that E(X) is locally compact if and only if E(L) and E(C) are both locally
compact.

Remark 2. Taking account of the results in [17], the problem of determining the
groups X ∈ L containing a lattice for which the ring E(X) is locally compact
is completely solved. In a similar way, the results of [17] and those of Section 3 can
be used to describe the structure of any group X ∈ L with locally compact ring
E(X), which decomposes as a topological direct product of a finite number of copies
of R, Q, Q

∗, and a group containing a lattice trivially. For example, this can be
done for compactly generated groups [9, (9.8)], for groups with no small subgroups
[1, Proposition 7.9], for groups with open connected component [1, Corollary 6.8],
and for groups with compact subgroup of compact elements [1, Corollary 6.10],
respectively.

We close this section by transferring to E(X) a result of P. Plaumann for A(X).
We need the following definition from [13].

Definition 3. Let X ∈ L. A factor of X is a quotient of the form A/B, where A
and B are closed subgroups of X such that A ⊃ B.

Theorem 8. For a topological torsion group X ∈ L, the following statements are

equivalent:

(i) E(F ) is locally compact for every factor F of X.
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(ii) A(F ) is locally compact for every factor F of X.

(iii) For each p ∈ S(X), Xp has finite rank.

Proof. The fact that (i) implies (ii) follows from Corollary 3, the fact that (ii) implies
(iii) follows from [13, Theorem 3.6 and Lemma 3.1], and the fact that (iii) implies
(i) follows from Theorem 5 because every factor of X has primary components of
finite rank [4, 1)].

6 Densely divisible torsion-free groups

In this final section, we answer the question of local compactness of the ring
E(X) for densely divisible torsion-free groups X ∈ L. We begin with a special case.

Theorem 9. Let p ∈ P, and let X be a densely divisible, torsion-free, topological

p-primary group in L. The ring E(X) is locally compact if and only if X ∼= Q
r
p for

some r ∈ N.

Proof. Let E(X) be locally compact. Then E(X∗) is locally compact as well. It
is also clear that X∗ is densely divisible and torsion-free. Let Ω be a compact
neighborhood of zero in E(X∗). By the definition of the compact-open topology,
there exist a compact subset K of X∗ and an open neighborhood U of zero in
X∗ such that ΩX∗(K,U) ⊂ Ω. Since X∗ is totally disconnected [1, Theorem 3.5],
there is a compact open subgroup V of X∗ such that V ⊂ U [9, (7.5)], whence
ΩX∗(K,V ) ⊂ ΩX∗(K,U), and hence ΩX∗(K,V ) is compact in E(X∗).

We claim that 1
pn V is compact for all n ∈ N. To see this, fix any non-zero

character α ∈ d(X∗), and let Dα be the minimal divisible subgroup of X∗ containing
α. Then Dα

∼= Qp [14, Lemma 2.4], so X∗ = Dα ⊕ Γ for some closed subgroup Γ
of X∗ [1, Proposition 6.23]. Let πα, πΓ ∈ E(X∗) be the canonical projections of X∗

onto Dα and Γ, respectively. As πα(K) is compact in Dα, we have πα(K) ⊂ 1
pnK

〈α〉

for some nK ∈ N0. Pick any n ∈ N0 and any β ∈ d(X∗) ∩ 1
pn V, and let α′ ∈ Da

be the unique element satisfying pn+nKα′ = α. Further, define f ∈ H(〈α′〉 ⊕ Γ,Dα)
by setting f(α′) = β and f(γ) = 0 for all γ ∈ Γ. Since 〈α′〉 ⊕ Γ is open in X∗, f
extends to continuous group homomorphism f̂ : X∗ → Dα, so j ◦ f̂ ∈ E(X∗), where
j : Dα → X∗ is the canonical injection. Now, given any χ ∈ K, we have

f̂(χ) = f̂(πα(χ)) ∈ f̂
( 1

pnK
〈α〉

)

= f̂
(

〈
1

pnK
α〉

)

= f̂
(

〈pnα′〉
)

⊂ 〈pnβ〉 ⊂ V,

so j ◦ f̂ ∈ ΩX∗(K,V ). Since β ∈ d(X∗) ∩ 1
pn V was chosen arbitrarily, it follows

from [7, Theorem 1.3.6] that

1

pn
V = d(X∗) ∩

1

pn
V ⊂ ΩX∗(K,V )α′,
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so 1
pn V is compact.
Next, let W = A(X,V ). Clearly, W is compact and open in X [1, P. 22(e)].

Given any n ∈ N0, we deduce from Lemma 1 that

A(X∗, pnW ) =
1

pn
A(X∗,W ),

so pnW = A(X, 1
pn V ). It follows that pnW is open in X, and hence in W. But

W ∼= Z
ν
p for some cardinal number ν [3, Ch. III, §1, Proposition 3]. Consequently,

ν must be finite, i.e. ν = r for some r ∈ N.
The converse is clear, because E(Qr

p) is topologically isomorphic to the matrix
ring Mr(Qp) over the field of p-adic numbers Qp, taken with its usual product topo-
logy.

With this preparation, we can prove:

Theorem 10. Let X be a densely divisible, torsion-free group in L. The ring E(X)
is locally compact if and only if

X ∼= R
d × Q

r × (Q∗)s ×
∏

p∈S(X)

(Q
rp
p ; Z

rp
p ),

where d, r, s, and the rp’s are natural numbers.

Proof. Assume that E(X) is locally compact. It follows from Theorem 3 that

X ∼= R
d × Q

r × (Q∗)s × T,

where d, r, s ∈ N and T is a residual in L such that E(T ) is locally compact. Now,
in view of our hypotheses, d(T ) = T and m(T ) = {0}, whence k(T ) = T and
c(T ) = {0}. Consequently, T is a topological torsion group in L, and hence

E(T ) ∼=
∏

p∈S(X)

(E(Tp); ΩTp(Up, Up)),

where, for each p ∈ S(X), Up is a compact open subgroup of Tp [16, (2.2)]. It follows
that, for every p ∈ S(X), E(Tp) is locally compact ([3, p. 9] or [9, (6.16)(c)]), so Tp

∼=
Q

rp
p for some rp ∈ N0 by virtue of Theorem 9, and hence T ∼=

∏

p∈S(X)(Q
rp
p ; Z

rp
p )

by [3, Ch. III, Proposition 4].
To show the converse, we write

X = A ⊕ B ⊕ C ⊕ D,

where A ∼= R
d, B ∼= Q

r, C ∼= (Q∗)s, and D ∼=
∏

p∈S(X)(Q
rp
p ; Z

rp
p ). It is clear that

c(X) = A ⊕ C and k(X) = C ⊕ D, so c(X) ∩ k(X) = C. We also have

c(X) + k(X) = A ⊕ C ⊕ D,

so X/
(

c(X) + k(X)
)

∼= B. Finally, given any p ∈ S(X), we have
(

k(X)/
(

c(X) ∩ k(X)
)

)

p

∼= Q
rp
p .

It remains to apply Theorem 5.
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A note on weak structures due to Császár

A. K. Das

Abstract. Weak structures has been introduced by Á. Császár and it has been shown
that every generalized topology and every minimal structure is a weak structure.
Recently E. Ekici introduced and studied the structure r(w) in a weak structure w on
X. In general the structure r(w) need not be a topology on X. In this paper we have
shown that under some conditions r(w) is a topology on X. Further, comparision of
two weak structures has been studied.

Mathematics subject classification: 54A05.

Keywords and phrases: weak structures, generalized topology, r(w).

In [2], Császár introduced and studied generalized stuctures and in [1, 3] intro-
duced generalized operators. Recently in [4], Császár introduced a new notion called
weak structures. Let X be a non-empty set and P be its power set. A structure on
X is a subset of P and an operation on X is a function from P to P. A structure
w on X is called a weak structure on X if and only if ∅ ∈ w [4]. Weak structures
are briefly notrd as WS. If w is a WS on X, then every member of w is known as
w-open and complement of a w-open set is known as w-closed. Let w be a WS on
X and A ⊂ X then the union of all w-open subsets of A is denoted as iwA and the
intersection of all w-closed sets containing A is denoted as cwA. Further with the
help of iw and cw, several other structures such as α(w), β(w), σ(w), π(w) and ρ(w)
have been introduced and studied in [4]. E. Ekici in [5], studied properties of the
structures α(w), β(w), σ(w), π(w) and ρ(w) and introduced r(w) and rc(w). It is
also shown that if w is a WS on X then each of the structures α(w), β(w), σ(w),
π(w) and ρ(w) is a generalized topology. So it is natural to ask which structure
under which condition becomes topology. In this paper, we have shown that under
some conditions r(w) is a topology.

Definition 1. [5] Let w be a WS on X and A ⊂ X. Then

(i) A ∈ r(w) if A = iw(cw(A)),

(ii) A ∈ rc(w) if A = cw(iw(A)).

Lemma 1. Let w be a WS on X, then ∅ ∈ r(w) if any one of the followings holds:

(i) there exist U, V ∈ w such that (X − U) ∩ (X − V ) = ∅.

(ii)
⋂

X−U∈w

U = ∅.

(iii) for
⋂

X−U∈w

U = V 6= ∅ there does not exist any W ∈ w such that W ⊂ V .
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Proof. (i) Let w be a WS on X and U, V ∈ w be such that (X − U) ∩ (X − V ) = ∅.
Since (X−U) and (X−V ) are two disjoint w-closed sets, cw(∅) = ∅. So iw(cw(∅)) = ∅.
Hence ∅ ∈ r(w).

(ii) If
⋂

X−U∈w

U = ∅, then cw(∅) = ∅. Thus iw(cw(∅)) = ∅. Hence ∅ ∈ r(w).

(iii) If
⋂

X−U∈w

U = V 6= ∅, then cw(∅) = V . Since there does not exist any W ∈ w

such that W ⊂ V , iw(V ) = ∅. Thus iw(cw(∅)) = iw(V ) = ∅ = ∅. Hence ∅ ∈ r(w).

Lemma 2. Let w be a WS on X, then X ∈ r(w) if either X ∈ w or
⋃

U∈w

U = X.

Lemma 3. If w is a WS on X and U ∈ w is such that for every V ∈ w, V ⊂ (X−U),
then X ∈ rc(w).

Lemma 4. Let w be a WS on X in which every pair of members of w is disjoint

and
⋃

U∈w

U = X. Then every member of w belongs to r(w).

Proof. Let w be a WS on X. Let every pair of members of w be disjoint and
⋃

U∈w

U = X. Then for every A ∈ w, cwA = ∩{B : B ∈ w, A ⊂ (X − B)} = A. Since

A ∈ w, iwcwA = iwA = A. Thus A ∈ r(w).

Lemma 5. Let w be a WS on X in which every pair of members of w is disjoint

and
⋃

U∈w

U = X. Then arbitrary union of members of w belongs to r(w).

Proof. Let w be a WS on X and let Aα be a collection of members of w. Since
⋃

U∈w

U = X and every pair of members of w, cw(∪Aα) = ∩{B : (X −B) ∈ w,∩Aα ⊂

B} = ∪Aα. So iwcw(∪Aα) = iw(∪Aα) = ∪Aα. Thus ∪Aα ∈ w.

Theorem 1. Let w be a WS on X in which every pair of members of w is disjoint

and
⋃

U∈w

U = X. Then r(w) is a topology on X.

Proof. Since every pair of members of w is disjoint and
⋃

U∈w

U = X, either (ii) or

(iii) of Lemma 1 holds. Thus ∅ ∈ r(w). Since
⋃

U∈w

U = X, by Lemma 2, X ∈ r(w).

By Lemma 4, every member of w belongs to r(w) and arbitrary union of members
of w also belogs to w by Lemma 5. Since the intersection of members of w is empty,
finnite intersection of members of w belongs to r(w). Hence r(w) is a topology on
X.

Remark 1. Let w be a WS on X in which every pair of members of w is disjoint
and

⋃

U∈w

U = X. Then it can also be shown that rc(w) is a topology on X.

Let w and ν be two structures on X. The structure ν is said to be finer than
w if for every member of w is a member of ν. The power set P of X is the finest
structure on X and {∅} is the weakest structure on X. Two structures w and ν are
said to be non-comparable if neither w is finer than ν nor ν is finer than w.
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Observation 1. Let w and ν be two WSs on X and ν is finer than w. Then r(w) and
r(ν) are non-comparable.

Observation 2. Let w and ν be two WSs on X. Then
(i) r(w) ∩ r(ν) 6= r(w ∩ ν).
(ii) r(w) ∪ r(ν) 6= r(w ∪ ν).

The above observations are established by the following example.

Example 1. Let X = {a, b, c}, w = {∅, {a}, {b}} and ν = {∅, {a}, {b}, {b, c}.
(i) Then ν is finer than w but r(w) = {∅, {a}, {b}, {a, b}} and r(ν) =

{∅, {a}, {b, c},X} are non-comparable.
(ii) r(w ∩ ν) = {∅, {a}, {b}, {a, b}} and r(w) ∩ r(ν) = {∅, {a}}.
(iii) r(w∪ ν) = {∅, {a}, {b, c},X} and r(w)∪ r(ν) = {∅, {a}, {b}, {a, b}, {b, c},X}

Lemma 6. Let w and ν be two WSs on X and ν is finer than w. Then r(w)∩r(ν) ⊂
r(w ∩ ν) and r(w ∪ ν) ⊂ r(w) ∪ r(ν) .

If WSs w and ν are non-comparable then the above result need not hold can be
seen from the following example.

Example 2. Let X = {a, b, c}, w = {∅, {a}, {b}} and ν = {∅, {a}, {c}.
r(w) = {∅, {a}, {b}, {a, b}} and r(ν) = {∅, {a}, {c}, {a, c}}.
r(w ∪ ν) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c},X} and

r(w) ∪ r(ν) = {∅, {a}, {b}, {c}, {a, b}, {a, c}}.
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