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Abstract. The present article is devoted to the study of the connection between
the restriction of a pseudonorm of a pseudonormed ring on various subrings and the
pseudonorm of quotient ring. The basic results of this article were announced in [2].
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1 Introduction

1.1 Definition. A real function ξ on a ring R is called a pseudonorm if the following
conditions are satisfied:

1. ξ (x) > 0 for all x ∈ R;
2. ξ (x) = 0 iff x = 0;
3. ξ (x − y) 6 ξ (x) + ξ (y) for all x, y ∈ R;
4. ξ (x · y) 6 ξ (x) · ξ (y) for all x, y ∈ R.

1.2 Remark. The condition 3 is equivalent to the following conditions: ξ (x + y) 6

6 ξ (x) + ξ (y) and ξ (−x) = ξ (x) for all x, y ∈ R.

1.3 Definition. The pseudonorm ξ is called a norm if the condition ξ (x · y) =
= ξ (x) · ξ (y) is satisfied for all x, y ∈ R.

1.4 Remark. It is clear that any pseudonorm ξ defines some separated topology
on a ring R. However, the same topology can be defined by various pseudonorms.

1.5 Definition. Let (R, ξ) and
(
R̄, ξ̄

)
be pseudonormed rings. A homomorphism

ϕ : R → R̄ is called an isometric homomorphism if ξ̄(ϕ(x)) = inf{ ξ(x + a) | a ∈
∈ Kerϕ} for all x ∈ R.

If ϕ is also an isomorphism then the concept of isometric homomorphism coin-
cides with the concept of isometric isomorphism in usual sense.

The following isomorphism theorem is frequently applied in algebra.

1.6 Theorem. Let R be a ring and B be a subring of the ring R. If N is an ideal
of the ring R then the quotient rings B/(B ∩ N) and (B + N)/N are isomorphic.

1.7 Remark. In particular, if the condition B∩N = { 0} is satisfied in the theorem
1.6 then the rings B and (B + N)/N are isomorphic.
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1.8 Remark. Let (R, ξ) be a topological or pseudonormed ring. In order to for-
mulate analogues of this theorem it is natural to demand that the isomorphism
preserves the topology or the pseudonorm, respectively. So:

– if ξ is a topology then the isomorphism should be a homeomorphism;

– if ξ is a norm or a pseudonorm then the isomorphism should be an isometric
isomorphism.

Therefore situation is more difficult in this case.

First, it is necessary to define the corresponding structure ξ̄ (the topology or the
pseudonorm, respectively) on the quotient ring R/A.

We shall consider one of the most natural definitions of ξ̄ for the topology or the
pseudonorm ξ.

A. If ξ is a topology then the topology ξ̄ is defined by ξ̄ = sup{τ | τ is a ring
topology on R/A and the canonical homomorphism fA : (R, ξ) → (R/A, τ ) is a
continuous homomorphism } in topological algebra.

In this case fA : (R, ξ) →
(
R/A, ξ̄

)
is a surjective, continuous and open homo-

morphism. Such homomorphisms are called topological homomorphisms.

B. If ξ is a pseudonorm then the pseudonorm ξ̄ is defined by the equality
ξ̄ (x + A) = inf { ξ (x + a) | a ∈ A } in the theory of the normed rings, i.e. the
canonical homomorphism fA : (R, ξ) →

(
R/A, ξ̄

)
is an isometric homomorphism

(see Definition 1.5).

If ξ is a topology or a pseudonorm then the ring
(
R/A, ξ̄

)
is designated by

(R, ξ)/A hereinafter.

Second, theorem 1.6 is not always true for the above mentioned topology or the
pseudonorm on the quotient rings R/A.

This article is devoted to the study of analogues of Theorem 1.6 for pseudonormed
rings. (Analogues of Theorem 1.6 for topological rings have been investigated in [1]).

1.9 Remark. If (R, ξ) and
(
R̄, ξ̄

)
are the pseudonormed rings, f : (R, ξ) →

(
R̄, ξ̄

)
is

a surjection and an isometric homomorphism then the mapping f̃ : (R, ξ)/(Kerf) →
→

(
R̄, ξ̄

)
defined by the equality f̃ (r + Kerf) = f (r) is an isometric isomorphism.

1.10 Remark. The topology or the pseudonorm ξ̄ defined above on the quotient
ring R/A is a separated topology or a separated pseudonorm if and only if A is a
closed ideal in the topological ring (R, ξ) or (R, τξ), respectively.

If ξ is a pseudonorm then the topology τξ̄ coincides with the topology on the
topological ring (R, τξ)/A.

2 Basic results

2.1 Theorem. Let (R, ξ) and
(
R̃, ξ̃

)
be pseudonormed rings, ϕ : R 7→ R̃ be a ring

isomorphism. The inequality ξ̃ (ϕ (x)) 6 ξ (x) is satisfied for all x ∈ R iff there
exists:
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– A pseudonormed ring
(
R̂, ξ̂

)
such that the pseudonormed ring (R, ξ) is a sub-

ring of the pseudonormed ring
(
R̂, ξ̂

)
;

– An isometric homomorphism ϕ̂ :
(
R̂, ξ̂

)
→

(
R̃, ξ̃

)
such that ϕ̂ is an extension

of the isomorphism ϕ, i.e.

ϕ̂ (x) = ϕ (x) and ξ̃ (ϕ (x)) = inf
{

ξ̂ (x + a) | a ∈ Kerϕ̂
}

for all x ∈ R.

Proof. Necessity. Let the inequality ξ̃ (ϕ (x)) 6 ξ (x) be valid for all x ∈ R.
We shall consider the ring R̂ which is the direct product of rings R and R̃, i.e.

R̂ =
{

r̂ =
(
a, b̃

) ∣∣∣ a ∈ R, b̃ ∈ R̃
}

is a ring with operations of addition r̂1 + r̂2 =

=
(
a1 + a2, b̃1 + b̃2

)
and multiplication r̂1 · r̂2 =

(
a1 · a2, b̃1 · b̃2

)
, where

r̂1 =
(
a1, b̃1

)
and r̂2 =

(
a2, b̃2

)
.

Let’s define the pseudonorm ξ̂ on the ring R̂ as follows: ξ̂ (r̂) = max
{

ξ (a) , ξ̃
(
b̃
)}

,

where r̂ =
(
a, b̃

)
. It is clear that the function ξ̂ satisfies the axioms of pseudonorm.

Let’s consider the subring R′ = { a′ = (a, ϕ (a)) | a ∈ R} of the ring R̂. It follows
from the inequality ξ̃ (ϕ (a)) 6 ξ (a) that

ξ′
(
a′

)
= ξ̂ ((a, ϕ (a))) = max

{
ξ (a) , ξ̃ (ϕ (a))

}
= ξ (a) .

If we put in correspondence to an element a ∈ R the element (a, ϕ (a)) ∈ R′ then
the mapping defined by this rule is an isometric isomorphism of the pseudonormed
rings (R, ξ) and (R′, ξ′). Therefore we shall identify any element a ∈ R with the
element (a, ϕ(a)) ∈ R′. Hence, we shall not distinguish the pseudonormed rings
(R, ξ) and (R′, ξ′), i.e. we can assume that the pseudonormed ring (R, ξ) is a subring

of the pseudonormed ring
(
R̂, ξ̂

)
.

We shall consider as mapping ϕ̂ :
(
R̂, ξ̂

)
→

(
R̃, ξ̃

)
the mapping defined by the

equality ϕ̂
((

a, b̃
))

= b̃. Then ϕ̂ (a) = ϕ̂ ((a, ϕ (a))) = ϕ (a) for any a ∈ R, i.e. the

mapping ϕ̂ is an extension of the isomorphism ϕ.

Then Kerϕ̂ =
{

r̂ ∈ R̂ | ϕ̂ (r̂) = 0
}

=
{ (

a, b̃
)
∈ R̂

∣∣∣ b̃ = 0
}

= { (a, 0) | a ∈ R} is

an ideal of the ring R̂ and

inf
{

ξ̂ (r̂ + â) | â ∈ Kerϕ̂
}

= inf
{

ξ̂ ((r, r̃) + (a, 0)) | a ∈ R
}

=

= inf
{

ξ̂ ((r + a, r̃)) | a ∈ R
}

= inf
a∈R

{
max

{
ξ (r + a) , ξ̃ (r̃)

}}
6

6 max
{

ξ (0) , ξ̃ (r̃)
}

= ξ̃ (r̃) = ξ̃ (ϕ̂ ((r, r̃))) = ξ̃ (ϕ̂ (r̂)) .

Thus,

ξ̃ (ϕ̂ (r̂)) > inf
{

ξ̂ (r̂ + â) | â ∈ Kerϕ̂
}
. (1)
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On the other hand, for any a ∈ Kerϕ and r̂ = (r, r̃) ∈ R̂ the inequality

max
{

ξ (r + a) , ξ̃ (r̃)
}

> ξ̃ (r̃)

also takes place.

The set
{

max
{

ξ (r + a) , ξ̃ (r̃)
}
| a ∈ Kerϕ̂

}
is bounded below by the number

ξ̃ (r̃), therefore inf
{

max
{

ξ (r + a) , ξ̃ (r̃)
}
| a ∈ Kerϕ̂

}
> ξ̃ (r̃). We have

inf
{

ξ̂ (r̂ + â) | â ∈ Kerϕ̂
}

= inf
{

ξ̂ ((r + a, r̃)) | a ∈ R
}

=

= inf
a∈Kerϕ̂

{
max

{
ξ (r + a) , ξ̃ (r̃)

}}
> ξ̃ (r̃) = ξ̃ (ϕ̂ (r̂)) .

Hence,

inf
{

ξ̂ (r̂ + â) | â ∈ Kerϕ̂
}

> ξ̃ (ϕ̂ (r̂)) . (2)

From inequalities (1) and (2) we shall receive the required equality:

ξ̃ (ϕ̂ (r̂)) = inf
{

ξ̂ (r̂ + â) | â ∈ Kerϕ̂
}
, (3)

i.e. ϕ̂ :
(
R̂, ξ̂

)
→

(
R̃, ξ̃

)
is an isometric homomorphism.

Sufficiency. Let (R̂, ξ̂) be a pseudonormed ring and ϕ̂ :
(
R̂, ξ̂

)
→

(
R̃, ξ̃

)
be

an isometric homomorphism such that the pseudonormed ring (R, ξ) is a subring
of the pseudonormed ring (R̂, ξ̂) and the homomorphism ϕ̂ is an extension of the
isomorphism ϕ. Then

ξ (x) = ξ̂ (x) > inf
{

ξ̂ (x + a) | a ∈ Kerϕ̂
}

= ξ̃ (ϕ (x)) ,

i.e. the inequality ξ̃ (ϕ (x)) 6 ξ (x) is valid for any x ∈ R.

The theorem is proved.

2.2 Definition. Let (R, ξ) and
(
R̄, ξ̄

)
be pseudonormed rings. An isomorphism

f : R → R̄ is said to be a semi-isometric isomorphism if there exists a pseudonormed

ring
(
R̂, ξ̂

)
such that the following conditions are valid:

– the ring R is an ideal in the ring R̂;

– ξ̂
∣∣∣
R

= ξ;

– the isomorphism f can be extended up to an isometric homomorphism

f̂ :
(
R̂, ξ̂

)
→

(
R̄, ξ̄

)
of the pseudonormed rings, i.e.

ξ̄
(
f̂ (r̂)

)
= inf

{
ξ̂ (r̂ + i)

∣∣∣ i ∈ Kerf̂
}

for all r̂ ∈ R̂.
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2.3 Theorem. Let (R, ξ) and
(
R̄, ξ̄

)
be pseudonormed rings and f : R → R̄ be a

ring isomorphism. Then the following statements are equivalent:

I. The isomorphism f : (R, ξ) →
(
R̄, ξ̄

)
is a semi-isometric isomorphism of the

pseudonormed rings;

II.
ξ (a · b)

ξ (b)
6 ξ̄ (f (a)) 6 ξ (a) and

ξ (b · a)

ξ (b)
6 ξ̄ (f (a)) 6 ξ (a) for any a ∈ R

and b ∈ R\{ 0};

III. There exist a pseudonormed ring
(
R̃, ξ̃

)
and a homomormism f̃ : R̃ → R̄

such that:

a) R is an ideal in the ring R̃, ξ̃
∣∣∣
R

= ξ and f̃
∣∣∣
R

= f ;

b) ξ̄ (f (r)) = min
{

ξ̃ (r + a)
∣∣∣ a ∈ Kerf̃

}
for every r ∈ R, i.e. for every r ∈ R

there exists an element ar ∈ Kerf̃ such that ξ̄ (f (r)) = ξ̃ (r + ar).

Proof I ⇒ II.

1. Let f : (R, ξ) →
(
R̄, ξ̄

)
be a semi-isometric isomorphism. Then it follows

from Definition 2.2 that there exist a pseudonormed ring
(
R̂, ξ̂

)
and an isometric

homomormism f̂ :
(
R̂, ξ̂

)
→

(
R̄, ξ̄

)
such that R is an ideal of the ring R̂, ξ̂

∣∣∣
R

= ξ

and f̂
∣∣∣
R

= f .

Since f̂ is an isometric homomorphism then ξ̄(f̂(r̂)) = inf{ξ̂(r̂ + i) | i ∈ Kerf̂}
for any r̂ ∈ R̂. It means that this equality is valid also for r ∈ R, i.e.

ξ̄
(
f̂ (r)

)
= inf

{
ξ̂ (r + i)

∣∣∣ i ∈ Kerf̂
}

.

Since ξ̂
∣∣∣
R

= ξ and f̂
∣∣∣
R

= f then we have

ξ̄ (f (r)) = ξ̄
(
f̂ (r)

)
= inf

{
ξ̂ (r + i)

∣∣∣ i ∈ Kerf̂
}

6 ξ̂ (r + 0) = ξ̂ (r) = ξ (r) .

Thus the inequality ξ̄ (f (r)) 6 ξ (r) is valid for any r ∈ R.

2. Let’s show in the beginning that R ∩ Kerf̂ = { 0}.

Since f̂
∣∣∣
R

= f and f : R → R̄ is a ring isomorphism then R ∩ Kerf̂ =

=
{

i ∈ R
∣∣∣ f̂ (i) = 0

}
= { i ∈ R | f (i) = 0} = { 0}.

3. Let’s verify the inequality
ξ (r · a)

ξ (a)
6 ξ̄ (f (r)) for any r ∈ R, a ∈ R\{ 0}. Let

j ∈ Kerf̂ and r̂ = r + j ∈ R̂. Then r̂ · a = (r + j) · a = r · a + j · a.

Since R ∩ Kerf̂ = { 0} then (a · j) ∈ R ∩ Kerf̂ = { 0}. It means that r̂ · a =
= r · a + 0 = r · a ∈ R. Then

ξ (r · a) = ξ̂ (r · a) = ξ̂ (r̂ · a) 6 ξ̂ (r̂) · ξ̂ (a) = ξ̂ (r̂) · ξ (a) = ξ̂ (r + j) · ξ (a) .
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Hence
ξ (r · a)

ξ (a)
6 ξ̂ (r + j) for any j ∈ Kerf̂ .

The set
{

ξ̂ (r + j)
∣∣∣ j ∈ Kerf̂

}
is bounded below by the number

ξ (r · a)

ξ (a)
.

It means that the number
ξ (r · a)

ξ (a)
is one of the lower bounds of that set. Therefore

ξ (r · a)

ξ (a)
6 inf

{
ξ̂ (r + i)

∣∣∣ i ∈ Kerf̂
}

= ξ̄
(
f̂ (r)

)
= ξ̄ (f (r)) .

The inequality
ξ (a · r)

ξ (a)
6 ξ̄

(
f̂ (r)

)
= ξ̄ (f (r)) is similarly proved.

Hence I ⇒ II is proved.

Proof II ⇒ III.

Let the mapping f : (R, ξ) →
(
R̄, ξ̄

)
possesses the following properties:

f is an isomorphism;

ξ̄ (f (a)) 6 ξ (a) for any a ∈ R;

ξ (a · b)

ξ (b)
6 ξ̄ (f (a)) and

ξ (b · a)

ξ (b)
6 ξ̄ (f (a)) for any a ∈ R and b ∈ R\{ 0}.

Let’s prove that the statement III is valid.

Let’s consider the ring R̃ = R ⊕ R̄ =
{

(r, r̄)
∣∣ r ∈ R, r̄ ∈ R̄

}
which is the direct

sum of the rings R and R̄. Let’s define the real-valued function ξ̃ on R̃ as follows:

ξ̃ ((r, r̄)) = ξ
(
r − f−1 (r̄)

)
+ ξ̄ (r̄) .

Let’s define the mapping f̃ :
(
R̃, ξ̃

)
→

(
R̄, ξ̄

)
by the equality f̃ ((r, r̄)) = f (r) .

1. Let’s show that ξ̃ is a pseudonorm on the ring R̃.

1.1. It is obvious that ξ̃ ((r, r̄)) > 0 for all r ∈ R and r̄ ∈ R̄ because the
pseudonorms ξ and ξ̄ accept non-negative values, i.e. the condition 1 of the definition
of a pseudonorm is valid.

1.2. Since ξ (x) = 0 ⇔ x = 0 and ξ̄ (ȳ) = 0 ⇔ ȳ = 0 then ξ̃ ((r, r̄)) =

= 0 ⇔ ξ
(
r − f−1 (r̄)

)
+ ξ̄ (r̄) = 0 ⇔

{
ξ
(
r − f−1 (r̄)

)
= 0

ξ̄ (r̄) = 0
⇔

⇔

{
r − f−1 (r̄) = 0
r̄ = 0

⇔

{
r = 0
r̄ = 0

⇔ (r, r̄) = 0.

Thus, the condition 2 of the definition of a pseudonorm is valid, i.e. ξ̃ ((r, r̄)) = 0
iff (r, r̄) = 0.



QUOTIENT RINGS OF PSEUDONORMED RINGS 9

1.3. Since the inequalities ξ (x1 − x2) 6 ξ (x1) + ξ (x2) and ξ̄ (ȳ1 − ȳ2) 6 ξ̄ (ȳ1)+
+ξ̄ (ȳ2) are valid for any x1, x2 ∈ R and ȳ1, ȳ2 ∈ R̄ then

ξ̃ ((r − q, r̄ − q̄)) = ξ
(
r − q − f−1 (r̄ − q̄)

)
+ ξ̄ (r̄ − q̄) =

= ξ
(
r − q − f−1 (r̄) + f−1 (q̄)

)
+ ξ̄ (r̄ − q̄) =

= ξ
((

r − f−1 (r̄)
)
−

(
q − f−1 (q̄)

))
+ ξ̄ (r̄ − q̄) 6

6 ξ
(
r − f−1 (r̄)

)
+ ξ

(
q − f−1 (q̄)

)
+ ξ̄ (r̄) + ξ̄ (q̄) =

=
(
ξ
(
r − f−1 (r̄)

)
+ ξ̄ (r̄)

)
+

(
ξ
(
q − f−1 (q̄)

)
+ ξ̄ (q̄)

)
= ξ̃ ((r, r̄)) + ξ̃ ((q, q̄)) .

We have shown that the condition 3 of the definition of a pseudonorm is valid,
i.e. ξ̃ ((r − q, r̄ − q̄)) 6 ξ̃ ((r, r̄)) + ξ̃ ((q, q̄)) for all r, q ∈ R and r̄, q̄ ∈ R̄.

1.4. Let’s verify the inequality ξ̃ ((r · q, r̄ · q̄)) 6 ξ̃ ((r, r̄)) · ξ̃ ((q, q̄)) for any
r, q ∈ R and r̄, q̄ ∈ R̄.

Really,

ξ̃ ((r · q, r̄ · q̄)) = ξ
(
r · q − f−1 (r̄ · q̄)

)
+ ξ̄ (r̄ · q̄) =

= ξ
(
r · q − f−1 (r̄) · f−1 (q̄)

)
+ ξ̄ (r̄ · q̄) =

= ξ
((

r · q − r · f−1 (q̄)
)

+
(
r · f−1 (q̄) − f−1 (r̄) · f−1 (q̄)

))
+ ξ̄ (r̄ · q̄) .

Since the inequality ξ (x1 + x2) 6 ξ (x1) + ξ (x2) is valid for any x1, x2 ∈ R then

ξ
((

r · q − r · f−1 (q̄)
)

+
(
r · f−1 (q̄) − f−1 (r̄) · f−1 (q̄)

))
+ ξ̄ (r̄ · q̄) 6

6 ξ
(
r · q − r · f−1 (q̄)

)
+ ξ

(
r · f−1 (q̄) − f−1 (r̄) · f−1 (q̄)

)
+ ξ̄ (r̄ · q̄) =

= ξ
(
r ·

(
q − f−1 (q̄)

))
+ ξ

((
r − f−1 (r̄)

)
· f−1 (q̄)

)
+ ξ̄ (r̄ · q̄) .

Since the inequalities ξ (x1 · x2) 6 ξ̄ (f (x1)) · ξ (x2) and ξ (x1 · x2) 6

6 ξ (x1) · ξ̄ (f (x2)) are valid for any x1, x2 ∈ R then

ξ
(
r ·

(
q − f−1 (q̄)

))
+ ξ

((
r − f−1 (r̄)

)
· f−1 (q̄)

)
+ ξ̄ (r̄ · q̄) 6

6 ξ̄ (f (r)) · ξ
(
q − f−1 (q̄)

)
+ ξ

(
r − f−1 (r̄)

)
· ξ̄

(
f

(
f−1 (q̄)

))
+ ξ̄ (r̄ · q̄) .

The inequality ξ̄ (ȳ1 · ȳ2) 6 ξ̄ (ȳ1) · ξ (ȳ2) is valid for any ȳ1, ȳ2 ∈ R̄. Therefore

ξ̄ (f (r)) · ξ
(
q − f−1 (q̄)

)
+ ξ

(
r − f−1 (r̄)

)
· ξ̄ (q̄) + ξ̄ (r̄ · q̄) 6

6 ξ̄ (f (r)) · ξ
(
q − f−1 (q̄)

)
+ ξ

(
r − f−1 (r̄)

)
· ξ̄ (q̄) + ξ̄ (r̄) · ξ̄ (q̄) =

= ξ̄ ((f (r) − r̄) + r̄) · ξ
(
q − f−1 (q̄)

)
+ ξ

(
r − f−1 (r̄)

)
· ξ̄ (q̄) + ξ̄ (r̄) · ξ̄ (q̄) .

Since the inequality ξ̄ (ȳ1 + ȳ2) 6 ξ̄ (ȳ1) + ξ (ȳ2) is valid for any ȳ1, ȳ2 ∈ R̄ then

ξ̄ ((f (r) − r̄) + r̄) · ξ
(
q − f−1 (q̄)

)
+ ξ

(
r − f−1 (r̄)

)
· ξ̄ (q̄) + ξ̄ (r̄) · ξ̄ (q̄) 6

6
(
ξ̄ (f (r) − r̄) + ξ̄ (r̄)

)
· ξ

(
q − f−1 (q̄)

)
+ ξ

(
r − f−1 (r̄)

)
· ξ̄ (q̄) + ξ̄ (r̄) · ξ̄ (q̄) =
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=
(
ξ̄ (f (r) − r̄) + ξ̄ (r̄)

)
· ξ

(
q − f−1 (q̄)

)
+

(
ξ
(
r − f−1 (r̄)

)
+ ξ̄ (r̄)

)
· ξ̄ (q̄) .

Since the inequality ξ̄ (f (x)) 6 ξ (x) is valid for any x ∈ R then

(
ξ̄ (f (r) − r̄) + ξ̄ (r̄)

)
· ξ

(
q − f−1 (q̄)

)
+

(
ξ
(
r − f−1 (r̄)

)
+ ξ̄ (r̄)

)
· ξ̄ (q̄) 6

6
(
ξ
(
f−1 (f (r) − r̄)

)
+ ξ̄ (r̄)

)
· ξ

(
q − f−1 (q̄)

)
+

(
ξ
(
r − f−1 (r̄)

)
+ ξ̄ (r̄)

)
· ξ̄ (q̄) =

=
(
ξ
(
r − f−1 (r̄)

)
+ ξ̄ (r̄)

)
· ξ

(
q − f−1 (q̄)

)
+

(
ξ
(
r − f−1 (r̄)

)
+ ξ̄ (r̄)

)
· ξ̄ (q̄) =

=
(
ξ
(
r − f−1 (r̄)

)
+ ξ̄ (r̄)

)
·
(
ξ
(
q − f−1 (q̄)

)
+ ξ̄ (q̄)

)
= ξ̃ ((r, r̄)) · ξ̃ ((q, q̄)) .

Thus, the condition 4 of the definition of a pseudonorm is valid, i.e.
ξ̃ ((r · q, r̄ · q̄)) 6 ξ̃ ((r, r̄)) · ξ̃ ((q, q̄)) for any r, q ∈ R and r̄, q̄ ∈ R̄.

We have shown that the function ξ̃ ((r, r̄)) = ξ
(
r − f−1 (r̄)

)
+ ξ̄ (r̄) defines a

pseudonorm on the ring R̃.

2. Let’s identify the ring R with the set of pairs { (r, 0) | r ∈ R}. It is obvious
that R is an ideal of the ring R̂.

Let’s consider the restrictions of the pseudonorm ξ̃ and the homomorphism f̃ on
the ring R = { (r, 0) | r ∈ R}, i.e. ξ̃ ((r, 0)) = ξ

(
r − f−1 (0)

)
+ ξ̄ (0) = ξ (r − 0)+0 =

= ξ (r) and f̃ ((r, 0)) = f (r).

We have that ξ̃
∣∣∣
R

= ξ and f̃
∣∣∣
R

= f .

3. Let’s show that f̃ :
(
R̃, ξ̃

)
→

(
R̄, ξ̄

)
is an isometric homomorphism.

3.1. Since f is an isomorphism and f̃
∣∣∣
R

= f then

Kerf̃ =
{

r̃ ∈ R̃
∣∣∣ f̃ (r̃) = 0

}
=

{
(r, r̄) ∈ R̃

∣∣∣ f̃ ((r, r̄)) = 0
}

=

=
{

(r, r̄) ∈ R̃ | f (r) = 0
}

=
{

(r, r̄) ∈ R̃ | r = 0
}

=
{

(0, r̄)
∣∣ r̄ ∈ R̄

}
.

It means that the kernel of the homomorphism is Kerf̃ =
{

(0, r̄)
∣∣ r̄ ∈ R̄

}
.

3.2. Let’s take any (r, r̄) ∈ R̃ and (0, j̄) ∈ Kerf̃ . Then

ξ̃ ((r, r̄) + (0, j̄)) = ξ̃ ((r, r̄ + j̄)) = ξ
(
r − f−1 (r̄ + j̄)

)
+ ξ̄ (r̄ + j̄) =

= ξ
(
r − f−1 (r̄) − f−1 (j̄)

)
+ ξ̄ (r̄ + j̄) > ξ̄ (f (r) − r̄ − j̄) + ξ̄ (r̄ + j̄) > ξ̄ (f (r)) .

Thus, the inequality ξ̄ (f (r)) 6 ξ̃ ((r, r̄) + (0, j̄)) is valid for the element (r, r̄) ∈ R̃
and any element (0, j̄) ∈ Kerf̃ . It means that ξ̄ (f (r)) is one of the lower bounds

of the set
{

ξ̃ ((r, r̄) + (0, j̄))
∣∣∣ (0, j̄) ∈ Kerf̃

}
. Therefore, the inequality

ξ̄ (f (r)) 6 inf
{

ξ̃ ((r, r̄) + (0, j̄))
∣∣∣ (0, j̄) ∈ Kerf̃

}
(4)

is valid for any (r, r̄) ∈ R̃.
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3.3. Let’s take any element (r, r̄) ∈ R̃. Let j̄0 = f (r) − r̄ ∈ R̄. Then
(r, r̄) + (0, j̄0) = (r, r̄) + (0, f (r) − r̄) = (r, f (r)), that is

ξ̃ ((r, r̄) + (0, j̄0)) = ξ̃ ((r, f (r))) = ξ
(
r − f−1 (f (r))

)
+ ξ̄ (f (r)) =

ξ (r − r) + ξ̄ (f (r)) = ξ (0) + ξ̄ (f (r)) = 0 + ξ̄ (f (r)) = ξ̄ (f (r)) .

Thus, for any (r, r̄) ∈ R̃ there exists j̄0 = (0, f (r) − r̄) ∈ Kerf̃ such that
ξ̃ ((r, r̄) + (0, j̄0)) = ξ̄ (f (r)).

From here the inequality

inf
{

ξ̃ (r̃ + j)
∣∣∣ j ∈ Kerf̃

}
6 ξ̃ ((r, r̄) + (0, j̄0)) = ξ̄ (f (r)) (5)

follows. From inequalities (4) and (5) the equality ξ̄(f(r)) = inf{ξ̃((r, r̄) +
+(0, j̄)) | (0, j̄) ∈ Kerf̃} follows. Besides it follows from the equality ξ̃((r, r̄) +
+(0, j̄0)) = ξ̄(f(r)) that

ξ̄ (f (r)) = min
{

ξ̃ ((r, r̄) + (0, j̄))
∣∣∣ (0, j̄) ∈ Kerf̃

}
=

= min{ξ̃((r, 0) + (0, ī)) | (0, ī) ∈ Kerf̃}, where (0, ī) = (0, r̄) + (0, j̄) ∈ Kerf̃ .

We have shown that there exist a pseudonormed ring
(
R̃, ξ̃

)
and a homomor-

phism f̃ : R̃ → R̄ such that:

R is an ideal of the ring R̃, ξ̃
∣∣∣
R

= ξ and f̃
∣∣∣
R

= f ;

ξ̄(f(r)) = min{ξ̃((r, 0) + (0, ī)) | (0, ī) ∈ Kerf̃}, for every r ∈ R, i.e. for any
r ∈ R there exists an element (0, ār) ∈ Kerf̃ such that ξ̄ (f (r)) = ξ̃ ((r, 0) + (0, ār)).

Hence II ⇒ III is proved.

Proof III ⇒ I.
From the condition 3 of the theorem there exist a pseudonormed ring

(
R̃, ξ̃

)
and

a homomorphism f̃ : R̃ → R̄ such that:
R is an ideal of the ring R̃;

ξ̃
∣∣∣
R

= ξ, f̃
∣∣∣
R

= f ;

ξ̄ (f (r)) = min
{

ξ̃ (r + a)
∣∣∣ a ∈ Kerf̃

}
for every r ∈ R.

Let r̃ ∈ R̃. As f : R → R̄ is an isomorphism then there exists a unique element
r ∈ R such that f (r) = f̃ (r̃). Since the isomorphism f is the restriction of the
homomorphism f̃ on the ring R then f (r) = f̃ (r). It means that f̃ (r) = f̃ (r̃).
Then f̃ (r − r̃) = 0. Hence, the element r− r̃ belongs to the kernel of the homomor-
phism f̃ .

Then

ξ̄
(
f̃ (r̃)

)
= ξ̄ (f (r)) = min

{
ξ̃ (r + a)

∣∣∣ a ∈ Kerf̃
}

=

= min
{

ξ̃ (r + a + (r̃ − r̃))
∣∣∣ a ∈ Kerf̃

}
=
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= min
{

ξ̃ (r̃ + (a + (r − r̃)))
∣∣∣ a ∈ Kerf̃

}
= min

{
ξ̃ (r̃ + j)

∣∣∣ j ∈ Kerf̃
}
.

Since for any set of real numbers S having the least element this element coincides
with inf S then

ξ̄
(
f̃ (r̃)

)
= inf

{
ξ̃ (r̃ + j)

∣∣∣ j ∈ Kerf̃
}
.

Thus, f can be extended up to the isometric homomorphism f̃ :
(
R̃, ξ̃

)
→

(
R̄, ξ̄

)
,

and f : (R, ξ) →
(
R̄, ξ̄

)
is a semi-isometric isomorphism by Definition 2.2.

The theorem is proved.

2.4 Corollary. If (R, ξ) is a pseudonormed ring with the unit e and ξ (e) = 1 then
any semi-isometric isomorphism of (R, ξ) is isometric.

Let’s consider the inequality
ξ (a · b)

ξ (b)
6 ξ̄ (f (a)) 6 ξ (a) for b = e. We have

ξ (a) =
ξ (a · e)

1
=

ξ (a · e)

ξ (e)
6 ξ̄ (f (a)) 6 ξ (a). Therefore ξ̄ (f (a)) = ξ (a).

2.5 Corollary. If (R, ξ) is a normed ring then any semi-isometric isomorphism of
(R, ξ) is isometric.

Really, in normed rings the equality ξ (a · b) = ξ (a) · ξ (b) is valid. From this

equality it follows that ξ (a) =
ξ (a) · ξ (b)

ξ (b)
=

ξ (a · b)

ξ (b)
6 ξ̄ (f (a)) 6 ξ (a). It means

that ξ̄ (f (a)) = ξ (a).

2.6 Corollary. Let R and R̄ be rings with zero multiplication (i.e. a · b = 0 for all
a, b ∈ R and ā · b̄ = 0 for all ā, b̄ ∈ R̄). If ξ and ξ̄ are pseudonorms on R and R̄,
accordingly, and f : R → R̄ is a ring isomorphism such that ξ̄ (f (r)) 6 ξ (r) for
every r ∈ R then the isomorphism f is semi-isometric.

Really, since
ξ (r · q)

ξ (q)
= 0 6 ξ̄ (f (r)) 6 ξ (q) then from Theorem 2.3 it follows

that f : (R, ξ) →
(
R̄, ξ̄

)
is a semi-isometric isomorphism.

2.7 Corollary. Let (R, ξ) and
(
R̄, ξ̄

)
be pseudonormed rings and f : (R, ξ) →

(
R̄, ξ̄

)

be a semi-isometric isomorphism. If ξ̃ is a pseudonorm on R̄ such that ξ̄ (f (r)) 6

6 ξ̃ (f (r)) 6 ξ (r) for every r ∈ R then f : (R, ξ) →
(
R̄, ξ̃

)
is a semi-isometric

isomorphism.

Really,
ξ (r · q)

ξ (q)
6 ξ̄ (f (r)) 6 ξ̃ (f (r)) 6 ξ (q). It means that f : (R, ξ) →

(
R̄, ξ̄

)

is a semi-isometric isomorphism.

2.8 Theorem. Let (R, ξ) and
(
R̄, ξ̄

)
be pseudonormed rings and f : R → R̄ be a

ring isomorphism. Then the following statements are equivalent:
I. ξ (a) > ξ̄ (f (a)) and ξ (a · b) 6 ξ̄ (f (a)) · ξ̄ (f (b)) for any a, b ∈ R.

II. There exist a pseudonormed ring
(
R̂, ξ̂

)
and a homomormism f̂ : R̂ → R̄

such that:
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R is an ideal in the ring R̂, ξ̂
∣∣∣
R

= ξ and f̂
∣∣∣
R

= f ;

ξ̄ (f (r)) = min
{

ξ̂ (r + a)
∣∣∣ a ∈ Kerf̂

}
for every r ∈ R, i.e. for every r ∈ R

there exists an element ar ∈ Kerf̂ such that ξ̄ (f (r)) = ξ̂ (r + ar);

The annihilator of the ring R̂ contains Kerf̂ , i.e. Kerf̂ ⊆
{

a ∈ R̂
∣∣∣ a · R̂ =

= R̂ · a = 0
}

(in particular,
(
Kerf̂

)
2

= 0).

Proof I ⇒ II. Let the mapping f : (R, ξ) →
(
R̄, ξ̄

)
possesses the following pro-

perties:

f is an isomorphism;

ξ̄ (f (a)) 6 ξ (a) for any a ∈ R;
ξ (a · b) 6 ξ̄ (f (a)) · ξ̄ (f (b)) for any a ∈ R, b ∈ R\{ 0}.

Let’s prove that the statement II is valid.

Let
(
R̄′, ξ̄

)
be a ring with zero multiplication which elements belong to R̄. We

shall consider the ring R̂ = R ⊕ R̄′ =
{
(r, r̄)

∣∣ r ∈ R, r̄ ∈ R̄′
}

which is the direct

sum of the rings R and R̄′. Let’s define the real-valued function ξ̃ on R̃ as in
Theorem 2.3, i.e. ξ̂ ((r, r̄)) = ξ

(
r − f−1 (r̄)

)
+ ξ̄ (r̄) .

Let’s define the mapping f̃ :
(
R̃, ξ̃

)
→

(
R̄, ξ̄

)
by the equality f̃ ((r, r̄)) = f (r) .

Let’s show that ξ̂ is a pseudonorm on the ring R̂.
The conditions 1 – 3 of Definition 1.1 can be verified by analogy with

Theorem 2.3.

Let’s verify the condition 4 of the definition of a pseudonorm. Since R̄′ is a
ring with zero multiplication then ξ̂ ((r, r̄) · (q, q̄)) = ξ̂ ((r · q, r̄ · q̄)) = ξ̂ ((r · q, 0)) =
= ξ (r · q) for any r, q ∈ R and r̄, q̄ ∈ R̄′.

It follows from the inequality ξ (a · b) 6 ξ̄ (f (a)) · ξ̄ (f (b)) that

ξ (r · q) 6 ξ̄ (f (r)) · ξ̄ (f (q)) = ξ̄ ((f (r) − r̄) + r̄) · ξ̄ ((f (q) − q̄) + q̄) .

Since the inequality ξ̄ (ȳ1 + ȳ2) 6 ξ̄ (ȳ1) + ξ (ȳ2) is valid for any ȳ1, ȳ2 ∈ R̄′ then

ξ̄ ((f (r) − r̄) + r̄) · ξ̄ ((f (q) − q̄) + q̄) 6
(
ξ̄ (f (r) − r̄) + ξ̄ (r̄)

)
·
(
ξ̄ (f (q) − q̄) + ξ̄ (q̄)

)
.

It follows from the inequality ξ̄ (f (a)) 6 ξ (a) that

(
ξ̄ (f (r) − r̄) + ξ̄ (r̄)

)
·
(
ξ̄ (f (q) − q̄) + ξ̄ (q̄)

)
6

6
(
ξ
(
r − f−1 (r̄)

)
+ ξ̄ (r̄)

)
·
(
ξ
(
q − f−1 (q̄)

)
+ ξ̄ (q̄)

)
= ξ̂ ((r, r̄)) · ξ̂ ((q, q̄)) .

Thus, the condition 4 of the definition of a pseudonorm is valid, i.e. ξ̂ ((r · q, r̄ · q̄)) 6

6 ξ̂ ((r, r̄)) · ξ̂ ((q, q̄)) for any r, q ∈ R and r̄, q̄ ∈ R̄′.
We have shown that the function ξ̂ ((r, r̄)) = ξ

(
r − f−1 (r̄)

)
+ ξ̄ (r̄) defines a

pseudonorm on the ring R̂.
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Like in Theorem 2.3 let’s identify the ring R with the set of pairs { (r, 0) | r ∈ R}
which is an ideal in the ring R̂. Let’s consider the restrictions of the pseudonorm
ξ̂ and homomorphism f̂ on the ring R = { (r, 0) | r ∈ R}, i.e. ξ̂ ((r, 0)) =
= ξ

(
r − f−1 (0)

)
+ ξ̄ (0) = ξ (r − 0) + 0 = ξ (r) and f̂ ((r, 0)) = f (r).

We have that ξ̂
∣∣∣
R

= ξ and f̂
∣∣∣
R

= f .

Let’s show that the annihilator of the ring R̂ contains Kerf̂ .

Since f : R → R̄ is an isomorphism then Kerf̂ =
{

(r, r̄) ∈ R̂| f̂ ((r, r̄)) = 0
}

=

=
{

(r, r̄) ∈ R̂| f (r) = 0
}

=
{

(0, r̄) ∈ R̂| r̄ ∈ R̄′

}
.

Since (0, r̄) · (a, ā) = (0 · a, r̄ · ā) = (0, 0) and (a, ā) · (0, r̄) = (a · 0, ā · r̄) = (0, 0)
for any (0, r̄) ∈ Kerf̂ and (a, ā) ∈ R̂ then Kerf̂ ⊂ AnnR̂.

Let’s show that f̂ :
(
R̂, ξ̂

)
→

(
R̄, ξ̄

)
is an isometric homomorphism by analogy

with Theorem 2.3. Let (r, r̄) ∈ R̂ and (0, j̄) ∈ Kerf̂ . Then

ξ̂ ((r, r̄) + (0, j̄)) = ξ̂ ((r, r̄ + j̄)) = ξ
(
r − f−1 (r̄ + j̄)

)
+ ξ̄ (r̄ + j̄) =

= ξ
(
r − f−1 (r̄) − f−1 (j̄)

)
+ ξ̄ (r̄ + j̄) > ξ̄ (f (r) − r̄ − j̄) + ξ̄ (r̄ + j̄) > ξ̄ (f (r)) .

Thus, the inequality ξ̄ (f (r)) 6 ξ̂ ((r, r̄) + (0, j̄)) is valid for the element (r, r̄) ∈ R̂
and any element (0, j̄) ∈ Kerf̂ . It means that ξ̄ (f (r)) is one of the lower bounds

of the set
{

ξ̂ ((r, r̄) + (0, j̄))
∣∣∣ (0, j̄) ∈ Kerf̂

}
. Therefore, the inequality

ξ̄ (f (r)) 6 inf
{

ξ̂ ((r, r̄) + (0, j̄))
∣∣∣ (0, j̄) ∈ Kerf̂

}
(6)

is valid for any (r, r̄) ∈ R̂.
Let (r, r̄) ∈ R̂ and j̄0 = f (r)−r̄ ∈ R̄. Then (r, r̄)+(0, j̄0) = (r, r̄)+(0, f (r) − r̄) =

= (r, f (r)). It means that

ξ̂ ((r, r̄) + (0, j0)) = ξ̂ ((r, f(r))) = ξ
(
r − f−1(f(r))

)
+ ξ̄ (f(r)) =

= ξ(r − r) + ξ̄ (f (r)) = ξ (0) + ξ̄ (f (r)) = 0 + ξ̄ (f (r)) = ξ̄ (f (r)) .

Thus for any (r, r̄) ∈ R̂ there exists j̄0 = (0, f(r − r̄)) ∈ Kerf̂ such that
ξ̂ ((r, r̄) + (0, j̄0)) = ξ̄ (f (r)).

From here the inequality

inf
{

ξ̂ (r̂ + j)
∣∣∣ j ∈ Kerf̂

}
6 ξ̂ ((r, r̄) + (0, j̄0)) = ξ̄ (f (r)) (7)

follows.

From inequalities (6) and (7) the equality

ξ̄ (f (r)) = inf
{

ξ̂ ((r, r̄) + (0, j̄))
∣∣∣ (0, j̄) ∈ Kerf̂

}
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follows.
Besides it follows from the equality ξ̂ ((r, r̄) + (0, j̄0)) = ξ̄ (f (r)) that

ξ̄ (f (r)) = min
{

ξ̂ ((r, r̄) + (0, j̄))
∣∣∣ (0, j̄) ∈ Kerf̂

}
=

= min
{

ξ̂ ((r, 0) + (0, ī))
∣∣∣ (0, ī) ∈ Kerf̂

}
,

where (0, ī) = ((0, r̄) + (0, j̄)) ∈ Kerf̂ .

We have shown that there exist a pseudonormed ring
(
R̂, ξ̂

)
and a homomor-

phism f̂ : R̂ → R̄ such that:

R is an ideal of the ring R̂, ξ̂
∣∣∣
R

= ξ and f̂
∣∣∣
R

= f ;

ξ̄ (f (r)) = min
{

ξ̂ ((r, 0) + (0, ī))
∣∣∣ (0, ī) ∈ Kerf̂

}
for every r ∈ R, i.e. for any

r ∈ R there exist an element (0, ār) ∈ Kerf̂ such that ξ̄ (f (r)) = ξ̂ ((r, 0) + (0, ār));

The annihilator of the ring R̂ contains Kerf̂ .
Hence I ⇒ II is proved.

Proof II ⇒ I. Let (R, ξ) and
(
R̄, ξ̄

)
be pseudonormed rings, f : R → R̄ be

a ring isomorphism. Let
(
R̂, ξ̂

)
be a pseudonormed ring and f̂ : R̂ → R̄ be a

homomorphism such that the following conditions are valid:

a) R is an ideal in the ring R̂; ξ̂
∣∣∣
R

= ξ and f̂
∣∣∣
R

= f ;

b) ξ̄ (f (r)) = min
{

ξ̂ (r + a)
∣∣∣ a ∈ Kerf̂

}
for every r ∈ R;

c) The annihilator of a ring R̂ contains Kerf̂ .

It follows from Theorem 2.3 that the inequality ξ (a) > ξ̄ (f (a)) is valid for any
a ∈ R.

Let’s show that the inequality ξ (a · b) 6 ξ̄ (f (a))·ξ̄ (f (b)) is valid for any a, b ∈ R
as well.

The equalities ξ̄ (f (a)) = min
{

ξ̂ (a + i)
∣∣∣ i ∈ Kerf̂

}
= ξ̂ (a + ia) and ξ̄ (f (b)) =

= min
{

ξ̂ (b + j)
∣∣∣ j ∈ Kerf̂

}
= ξ̂ (b + jb) are valid for any a, b ∈ R, where ia, jb

are some elements from Kerf̂ . It means that

ξ̄ (f (a)) · ξ̄ (f (b)) = ξ̂ (a + ia) · ξ̂ (b + jb) > ξ̂ ((a + ia) · (b + jb)) =

= ξ̂ (a · b + a · jb + ia · b + ia · jb) .

Sinse ia, jb ∈ Kerf̂ ⊂ AnnR̂ then a · jb = ia · b = ia · jb = 0. Hence
ξ̄ (f (a)) · ξ̄ (f (b)) > ξ̂ (a · b + a · jb + ia · b + ia · jb) = ξ̂ (a · b) for any a, b ∈ R.

Thus, ξ (a) > ξ̄ (f (a)) and ξ (a · b) 6 ξ̄ (f (a)) · ξ̄ (f (b)) for any a, b ∈ R.
The theorem is proved.
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Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei str. 5, MD-2028 Kishinev
Moldova
E-mail: arnautov@math.md

Received May 18, 2006



BULETINUL ACADEMIEI DE ŞTIINŢE
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Numerical treatment of the Kendall equation

in the analysis of priority queueing systems
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Abstract. We investigate here how to treat numerically the Kendall functional equa-
tion occuring in the theory of branching processes and queueing theory. We discuss
this question in the context of priority queueing systems with switchover times. In
numerical analysis of such systems one deals with functional equations of the Kendall
type and efficient numerical treatment of these is necessary in order to estimate im-
portant system performance characteristics.
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1 Introduction

1.1 Preliminary notes

It is well known that the Kendall equation is one of fundamental functional equa-
tions which appear in the queueing theory and the theory of branching processes.

Consider a system M |G|1 with Poisson(λt) input flow of requests and random
service time B with c.d.f. B(t). The busy periods in such system are independent
and identically distributed (i.i.d.) random variables (r.v.’s) with some cumulative
distribution function (c.d.f.) Π(t). How does Π(t) depend on B(t) and λ? Let β(s)
be the Laplace-Stieltjes transform of B(t) and π(s)—the Laplace-Stieltjes transforms
of Π(t). It is well-known result that π(s) satisfies the following functional equation:

π(s) = β(s+ λ(1 − π(s))). (1)

The equation (1) is known as Kendall equation due to Kendall (1951). It is not
easy generally to obtain the analytical solution to this equation. Even in simple
cases (choice of B(t)) the solution π(s) may be analytically intractable. This, with
the fact that π(s) should be inverted in order to obtain full information on busy
periods’ distribution, leads to the necessity in numerical method for obtaining the
solution of (1) and providing the absolute error of the evaluation. Such method is
known and it is based on the fact that the right side of Kendall equation, being
considered as a functional operator, has a fixed point, see Abate and Whitt (1992).

The Kendall equation makes part of many analytical results regarding distribu-
tion of busy periods in priority queueing systems Mr|Gr|1—queueing systems with

c© A.Iu. Bejan, 2006
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Poisson input flows of requests distinguished by importance and one server. Often
such results are stated in the form of the systems of functional equations expressed
in terms of Laplace-Stieltjes transforms.

For example, the LST π(s) of the busy periods’ c.d.f. Π(t) in the priority queue-
ing system Mr|Gr|1 with switchover times under the scheme “with losses” (for the
description of such systems appeal to Mishkoy et al. (2006)) is determined by the
following system of functional equations (see Klimov and Mishkoy (1979)):






πk(s) =
σk−1

σk
{πk−1(s+ λk) + ∆k−1(s)νk(s+ λk[1 − πk(s)])} + λk

σk
πkk(s),

∆k−1(s) = πk−1(s+ λk[1 − πk(s)]) − πk−1(s+ λk),
πkk(s) = νk(s+ λk[1 − πk(s)])πk(s),
πk(s) = hk(s+ λk[1 − πk(s)]),
νk(s) = ck(s+ σk−1){1 −

σk−1

s+σk−1
[1 − ck(s+ σk−1)]πk−1(s)}

−1,

hk(s) = βk(s+ σk−1) +
σk−1

s+σk−1
[1 − βk(s+ σk−1)]πk−1(s)νk(s), k = 1, . . . , r,

π0(s) ≡ 0.

Here πr(s) ≡ π(s), λi is the parameter of the ith Poisson input flow, and σi stands

for
k∑

i=1

λi.

For the same model with zero switchover times as an immediate corollary the
following result follows:






σkπk(s) = σk−1πk−1(s+ λk[1 − πkk(s)]) + λkπkk(s),
πkk(s) = hk(s+ λk[1 − πkk(s)]),
hk(s) = βk(s+ σk−1) +

σk−1

s+σk−1
[1 − βk(s+ σk−1)]πk−1(s), k = 1, . . . , r,

π0(s) ≡ 0.

One can notice the presence of the Kendall equations in such systems.
In the light of these facts, is suggested an acceleration of the scheme of obtaining

a numerical solution to the Kendall equation which gives a gain in the number of
operations (iterations) needed to solve one-dimensional problem (the case of M |G|1
system) as well as multidimensional problem (the case of Mr|Gr|1 system).

1.2 Notations and supporting results

1.2.1 Laplace and Laplace-Stieltjes transforms

Definition 1. Let f(t) be a complex-valued function of real argument satisfying the
following conditions: (i) f(t) = 0 ∀t < 0, (ii) it is a function of bounded variation
on any segment [0, T ], (iii) ∃s0, A ∈ R s.t. |f(t)| ≤ Aes0t. The Laplace transform of
a function f(t) is denoted by f̂(s) and is given by

f̂(s)
∂ef
=

∞∫

0

e−stf(t)dt, (2)

where s ∈ C : ℜs > s0.
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This is a general definition. Conditions (i)-(iii) are required for correctness and
existence of the transform. The Laplace transform is analytical in the right half-
plane ℜs > s0. The infimum of all such s for which the Laplace transform exists is
called the abscissa of convergence and is denoted by σ0. The Laplace transform for
a real-valued function is defined automatically by Definition 1.

The Laplace transform is unique, in the sense that, given two functions f1(t) and
f2(t) with the same transform, i.e. f̂1(t) ≡ f̂2(t), the integral

T∫

0

N(t)dt

of the null function N(t)
∂ef
= f1(t)− f2(t) vanishes for all T > 0 (Lerch’s theorem for

integral transforms). The Laplace transform is linear:

af̂(t) + bĝ(t) = af̂(t) + bĝ(t) (3)

The Laplace transform of a convolution h(t) = f(t)∗g(t) =
∞∫

0

f(t−τ)g(τ)dτ is given

by

ĥ(t) = f̂(t)ĝ(t) (4)

Definition 2. The Laplace-Stieltjes transform of a real-valued function F (t) of real
argument is denoted by F̌ (s) and is given by

F̌ (s)
∂ef
=

∞∫

0

e−stdF (t), (5)

where s ∈ C, whenever this integral exists. The integral here is the Lebesgue-Stieltjes
integral.

Often s is a real variable, and then the LST is a real-valued function. If F (t)
is differentiable, i.e. dF (t) = f(t)dt, then the Laplace-Stieltjes transform of F (t) is
just a Laplace transform of its derivative.

Theorem 1. (Uniqueness) Two different probability distributions have different
Laplace-Stieltjes transforms.

Theorem 2. (Continuity) Let Fn(t) be a cumulative distribution function with LST
ϕn(s), n = 1, 2, . . .. If Fn → F , where F is a possibly improper distribution with
LST ϕ(s), then ϕn(s) → ϕ(s) ∀s > 0. Conversely, if a sequence {ϕn(s)} converges
to ϕ(s) for any s > 0, then ϕ is an LST of a possibly improper distribution F , s.t.
Fn → F . The limiting distribution F will be proper (or a probability distribution
indeed) iff ϕ(s) → 1 when s ↓ 0.
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For the proofs of Theorem 1 and Theorem 2 see Feller (1971).
The nth moment of the non-negative random variable X with p.d.f. fX(t) may

be obtained via its Laplace transform in the following way:

E[Xn] = (−1)nf̂
(n)

X (s)|s=0 (6)

Abate and Whitt (1996) investigated functional operators that map one or more
probability distributions on the positive real line into another using their Laplace-
Stieltjes transforms.

1.2.2 Complete monotonicity and Bernstein theorem

We introduce now an important notion for our further considerations—a notion
of complete monotonicity.

Definition 3. A real valued function ϕ on [0,∞) is said to be completely monotone
(c.m.) if

(−1)nϕ(n)(s) ≥ 0 ∀n ∈ N ∪ {0} ∀s ∈ (0,∞). (7)

Example 1. Functions s−α, e−αs (α ≥ 0), 1

1+s
, 1

s
are completely monotone func-

tions. Function ϕ(a+bs) is completely monotone when ϕ(s) is completely monotone
(a ≥ 0, b > 0).

We will make use of the following important properties of complete monotone
functions in our further exposition. Functions ϕ and ψ are considered to be defined
on R

+.

Property 1. If ϕ and ψ are two complete monotone functions, then their linear
combination αϕ+ βψ is a complete monotone function (α2 + β2 > 0).

Proof. The affirmation follows directly from the definition of complete monotone
function. �

Property 2. If ϕ and ψ are two complete monotone functions, then their product
ϕψ is a complete monotone function.

Proof. We use the method of mathematical induction to show that

(−1)n(ϕψ)(n) ≥ 0 ∀n = 0, 1, 2, ... (8)

Assume that first n derivatives of ϕψ alternate in sign. We first not that ϕψ is
nonnegative and −ϕ′ and −ψ′ are complete monotone functions. Therefore, (i)
−(ϕψ)′ = −ϕ′ψ − ϕψ′ ≥ 0 and this corresponds to the case n = 1 (the basis of
induction), and (ii) we can apply the induction hypothesis for the products −ϕ′ψ
and −ϕψ′. But this immediately means that ϕψ alternates in sign n+ 1 times. By
the principle of mathematical induction the property is proven. �

Property 3. If ϕ is complete monotone and ψ is a non-negative function, s.t. ψ′

is a complete monotone function, then ϕ(ψ) is complete monotone.



KENDALL EQUATION AND PRIORITY QUEUEING SYSTEMS 21

Proof. First, note that ϕ(ψ) is a nonnegative function on R
+. Then, notice that

−ϕ′(ψ) and ψ′ are complete monotone functions. This makes −ϕ′(ψ(s)) = −ϕ′(ψ)ψ′

to be complete monotone (Property 2). We have proven that − [ϕ(ψ)]′ is a complete
monotone function, i.e. ϕ(ψ) is necessarily complete monotone. The property is
proven. �

Laplace transforms of positive Borel measures on R
+ are completely character-

ized by the Bernstein theorem in terms of complete monotonicity.

Theorem 6. (Bernstein (1928)) Function ϕ is complete monotone iff there exists
a unique nonnegative Borel measure µ on [0,∞], s.t. µ([0,∞]) = ϕ(0+) and ∀s > 0

ϕ(s) =
∞∫

0

e−sxµ(dt). Here [0,∞] is a one-point compactification of [0,∞).

Remark 1. The theorem says that the class of complete monotone functions ϕ(s)
on half-line R

+, such that ϕ(0+) ≤ 1 coincides with Laplace-Stieltjes transforms of
cumulative distribution functions.

Example 2. It was mentioned above that the LST of the busy period in the system
M |G|1 satisfies the Kendall equation. It can be shown (Feller (1971), Gnedenko
et al (1971)), that Kendall equation determines a unique function π(s) which is
analytic in the right-half complex plane ℜs > 0. More of this, if the system workload
ρ = −β(0)

λ
< 1, then π(0) = 1, and the c.d.f. Π(t) is a proper cumulative distribution

function. The moments of the busy period Π in the system M |G|1 can be easily
calculated using (6). For example, evaluating the first and second derivatives of π(s)
at zero in (1), one gets:

E[Π] = −π′(0) = −
β′(0)

1 − ρ
=

E[B]

1 − ρ
,

E[Π2] = π′′(0) =
E[B2]

(1 − ρ)3
,

so that

var[Π] = E[Π2] − E[Π]2 =
E[B2] − E[B]2 + ρE[B]2

(1 − ρ)3
.

However, in order to obtain full information on the busy period Π one needs to
invert π(s). This should be found either analytically or evaluated numerically first.

In the case when ρ > 1, the following takes place: π(0) < 1, and Π(t) is an
improper c.d.f., i.e. lim

t→∞

Π(t) < 1, that means that a busy period is of indefinite

length with a positive probability. The case ρ = 1 is very special one.

A thorough discussion on Kendall equation treatment follows next.

2 Kendall equation: numerical treatment

2.1 Kendall fixed point operator

We discuss here in more detail the treatment of the Kendall equation

ϕ̂(s) = ĝ(s+ ρ− ρϕ̂(s)), (9)
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where ρ > 0 and ĝ(s) is a Laplace transform of some p.d.f. g(s) associated with
some proper c.d.f. G(s). In other words, in virtue of Bernstein theorem (Theorem
6 and Remark 1), we suppose ĝ(s) to be a complete monotone function, such that
ĝ(0+) ≤ 1. The coefficient ρ is some non-negative real number.

Denote by CM the set of all complete monotone functions, by CM1 the set
{ϕ(s) ∈ CM|ϕ(0+) ≤ 1}, i.e., CM1 is the subset of complete monotone functions
which correspond to proper or improper c.d.f.’s on R

+.
To analyze (9) we introduce the following operator, which we will call the Kendall

operator :

Kĝ[ϕ](s) : CM1 7→ CMĝ := Im(Kĝ) ⊆ CM1, (10)

Kĝ[ϕ](s)
∂ef
= ĝ(s+ ρ− ρϕ̂(s))), for some ĝ ∈ CM1, and ρ > 0. (11)

First, we show that indeed Im(Kĝ) ⊆ CM1. To see this, note that

ψϕ(s) = s+ ρ(1 − ϕ̂(s))

is a positive function with complete monotone derivative:

ψ′

ϕ(s) = 1 − ρ ˆϕ′(s) > 1 > 0,

ψ′′

ϕ(s) = −ρϕ̂′′(s) ≤ 0,

. . . .

We can apply Property 3 for ĝ(ψϕ(s)) to see that Kĝ[ϕ](s) is complete monotone.
Furthermore, this function is continuous as composition of continuous functions,
therefore

Kĝ[ϕ](0+) = ĝ(ρ(1 − ϕ̂(0+))) ≤ ĝ(0+) ≤ 1.

We conclude that Im(Kĝ) ⊆ CM1 for any given ĝ ∈ CM1.
The following theorem is well-known. Its proof is constructive and it is important

for us.

Theorem 7. The Kendall equation (9) has unique solution ϕ̂(s) ≤ 1, s.t. ϕ̂(s) is a
Laplace-Stieltjes transform of some (probability) distribution Φ which is proper (and
then it is a probability distribution) when −ρĝ′(0) ≤ 1, and improper otherwise.

Proof. Consider the following equation

Qs(x) = ĝ(s+ ρ− ρx) − x = 0 (12)

for a fixed s > 0 and for some x ∈ [0, 1]. The function Qs(x) is a convex function in
respect to x (for any given s > 0), since its second derivative ρ2ĝ′′(s+ ρ(1−x)) > 0.
Moreover, Qs(0) > 0 and Qs(1) < 0, therefore Qs(x) has a unique root x∗ in [0, 1].
Allowing s to take any value from R

+ one obtains the existence and uniqueness of
the solution to the Kendall equation.

We want to show now that this solution is a c.m. function. Denote by 0(s) and
1(s) functions identical to zero and one on R

+, corresp.
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Consider two functional sequences: U = {Kn
ĝ [0](s)}∞n=0

with K0

ĝ [0](s) ≡ 0 and

D = {Kn
ĝ [1](s)}∞n=0

with K0

ĝ [1](s) ≡ 1 ∀s > 0. We show that these sequences
converge in a point-wise sense to the solution ϕ̂(s) to the Kendall equation (9).

It is obvious that K0

ĝ [0](s) ≤ K1

ĝ [0](s) ∀s > 0, since ĝ is a c.m. function. Suppose

that Kn−1

ĝ [0](s) ≤ Kn
ĝ [0](s) ∀s > 0. Then,

Kn+1

ĝ [0](s) = ĝ(s+ ρ− ρKn
ĝ [0](s)) ≥ ĝ(s + ρ− ρKn−1

ĝ [0](s)) = Kn
ĝ [0](s) ∀s > 0.

By induction

Kn
ĝ [0](s) ≤ Kn+1

ĝ [0](s) ≤ ĝ(0) ≤ 1(s) ∀s > 0.

Thus, the sequence U is a monotone sequence of c.m. functions and is bounded
from above—it has a limit which is a c.m. function (by Theorem 2) and which
satisfies the Kendall equation, i.e. lim

n→∞

Kn
ĝ [0](s) = ϕ̂(s). This limit ϕ̂(s) is an LST

of some probability distribution Φ with a total mass Φ([0,∞]) = ϕ(0) ≤ 1.

One can show in a full analogy that D is a non-increasing sequence bounded
from below by 0(s) and its limit is the unique solution to the Kendall equation:

lim
n→∞

Kn
ĝ [1](s) = ϕ̂(s).

It remains to show that the probability distribution corresponding to the solution
of the Kendall equation is proper iff −ρĝ′(0) ≤ 1. To show this, consider

Q0(x) = ĝ(ρ(1 − x)) − x = 0, (13)

as in (12), for x = ϕ(0) = lim
n→∞

Kn
ĝ [0](s), and, thus, x = ϕ(0) is the smallest root of

(13) on [0, 1]. Moreover, since ĝ is an LST of a probability distribution, Q0(0) > 0
and Q0(1) = 0. So, the only possibility for (13) to have 2 roots on [0, 1] can be
realized when Q′

0
(1) > 0 (note that Q′′

0
(x) > 0 ∀x ∈ (0, 1)), see Figure 1. The

inequality Q′

0
(1) > 0 is equivalent to the condition −ρĝ′(0) > 1. If −ρĝ′(0) ≤ 1 then

ϕ(0) = 1 and Φ is a proper probability distribution. �

We might also wish to consider operator Kĝ[ϕ](s) as well as the Kendall equation
for complex argument s, s.t. ℜs ≥ 0. Once obtained a c.m. function of real
argument we can consider it as a function of complex arguments—this is justified
by the principle of analytic continuation.

Theorem 8.The sequence {Kn
ĝ [f̂ ](s)}∞n=0

, where f̂ is an LST of some possibly im-
proper c.d.f. F , converges to the unique solution ϕ(s) of the corresponding Kendall
equation. The claim holds for complex s, s.t. ℜs > 0.

Proof. Let first s be a real argument. It was proven in Theorem 7 that the
Kendall equation has a unique solution. Moreover, the evidence of convergence of
{ϕ̂n(s) := Kn

ĝ [f̂ ](s)}∞n=0
to the solution ϕ(s) for any real s > 0 can be obtained in

a constructive way exactly as it was made for the functions f̂(s) ≡ 0(s) and f̂(s) ≡
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Q0(0)

x=phi(0) 1 x

pik (a)

(b)

0

Q'0(1)>0

Q'0(1)<=0(a):

(b):

Figure 1. Alternative for x = ϕ(0).

1(s). Restricting attention to real s suffices to imply the point-wise convergence of
corresponding c.d.f.’s Φn to Φ—the c.d.f. of the solution ϕ (Theorem 2):

ϕ̂n(s) → ϕ̂(s) ⇒ Φn(t) → Φ(t).

However, the point-wise convergence for c.d.f.’s implies the transform convergence
for all complex s = x+ iy, s.t. ℜs = x > 0, since

ℜφ̂n(s) =

∞∫

0

ℜe−stdΦn(t) =

∞∫

0

e−st cos yt dΦn(t) →

∞∫

0

e−st cos yt dΦ(t), (14)

and

ℑφ̂n(s) =

∞∫

0

ℑe−stdΦn(t) =

∞∫

0

e−st sin yt dΦn(t) →

∞∫

0

e−st sin yt dΦ(t), (15)

so that

ℜφ̂n(s) → ℜφ̂(s),

ℑφ̂n(s) → ℑφ̂(s). (16)

We have the following result: φ̂n(s) → φ̂(s) for all complex s with ℜs > 0.
The existence and uniqueness of the solution to the Kendall equation for complex

s follows from the existence and uniqueness of the solution for non-negative real s
and the principle of analytic continuity. �

The result and construction similar to that given in Theorem 7 was well-known
for decades now. The fact that the iterations in the Kendall equation also work for
complex values of the argument s was empirically found by a few authors (e.g. Doshi
(1983)). The first proof of this result can be found in Abate and Whitt (1992). Our
proof is similar, although some of its parts are different. It is heavily based on the
notion of complete monotone function and the Bernstein theorem.
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2.2 Adjustments in iterations of the Kendall operator

We know that if β(s) is a complete monotone function and π(s) satisfies the
Kendall equation

π(s) = β(s+ ρ(1 − π(s))),

then π(s) is also a complete monotone function and can be numerically estimated
at the point s = s∗ ≥ 0 using the following iteration procedure:

π(s∗) = lim
n→∞

π(n)(s∗), where

π(n)(s∗) = β(s∗ + ρ(1 − π(n−1)(s∗))), with π(0)(s∗) ∈ [0, 1]. (17)

Here, the sequence {π(n)(s∗)}∞n=0
is non-increasing if π(0)(s∗) > π(s∗), and non-

decreasing if π(0)(s∗) < π(s∗).

Remark 2. Note that the convergence of {π(n)(s)}∞n=0
to the solution π(s) for

complex s is assured by Theorem 8. However, there is no general result on the
monotonicity of such convergence unless s is real. Abate and Whitt (1992) provided
an example with no monotonicity (in any sense) of iterations in the complex case.

Using the property of complete monotonicity of the solution to the Kendall
equation one can decrease the number of iterations to obtain the solution with a
given precision. The idea is to set initial guess π(0)(s∗) of π(s∗) closer to this value
(s∗ is a real non-negative number).

Suppose we are evaluating the solution to the Kendall equation on a regular grid
{0, h, 2h, . . . , (k− 2)h, (k − 1)h, kh, . . .}. Suppose that πk−2 and πk−1 are the values
which approximate π(s) at the points s = (k − 2)h and s = (k − 1)h. Then, let

π(0)(s∗ = kh) :=
πk−1 + max(0, 2πk−1 − πk−2)

2
(18)

be the initial value for the process of iterations to the Kendall equation to evaluate
π(s) at s = s∗. The simple rationale behind this setting can easily be seen from
Figure 2.

Alternatively, setting

π̃(0)(s∗) := πk−1 ≈ π(s∗ − h),

and

π
˜

(0)(s∗) := max(0, 2πk−1 − πk−2) ≈ max(0, 2π(s∗ − h) − π(s∗ − 2h)),

one may produce two sequences {π̃(n)(s∗)}∞n=0
ց π(s∗) and {π

˜
(n)(s∗)}∞n=0

ր π(s∗)
by iterating the Kendall equation:

π̃(n)(s∗) = β(s∗ + ρ(1 − π̃(n−1)(s∗))),

π
˜

(n)(s∗) = β(s∗ + ρ(1 − π
˜

(n−1)(s∗))), (19)
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(s*-2h,pik-1)

(s*-h,pik-1)

(l)

1

s*-2h s*-h s* s

pik

CB

A

new interval

for estimating pik

Figure 2. Improvement for iterations in Kendall equation

until

ǫn =
π̃(n)(s∗) − π

˜
(n)(s∗)

2
< ǫ,

where ǫ is a given precision. Finally, evaluate π(s∗) ≈
π̃(n)

(s∗)+π
˜

(n)
(s∗)

2
. The depen-

dence of the number of iterations on the order of accuracy in iterations of the Kendall
equation (for a particular value of s) is shown in Figure 3. The comparison between
improved and not improved iteration process for solving the Kendall equation (for
different types of service distribution) is shown in Figure 4.

3 Concluding remarks

It might seem the adjustments in iterations of the Kendall equation give non-
essential gain in the number of operations needed to perform the iterations in order
to achieve a solution with a certain level of precision in the case of M |G|1. However,
in the context of the study of priority queueing systems with switchover times one
needs to perform the iteration process quite many times. In the light of this, the
adjustment process can be efficiently used for the acceleration of the numerical
scheme’s performance. Using this acceleration procedure the algorithms of busy
period determination for priority queueing systems (e.g., the algorithm BPLST in
Bejan (2004)) can be reviewed and improved.

Acknowledgement. This work was done under support of the SCOPES grant
IB7320-110720.
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Figure 4. Comparison between improved and not improved iteration process for
solving the Kendall equation; order of accuracy is 15.
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On the Division of Abstract Manifolds in Cubes

Mariana Bujac, Sergiu Cataranciuc, Petru Soltan

Abstract. We prove that in the class of abstract multidimensional manifolds without
borders only torus V

n

1 of dimension n ≥ 1 can be divided in abstract cubes with the
property: every face I

m from V
n

1 is shared by 2n−m cubes, m = 0, 1, . . . , n − 1. The
abstract torus V

n

1 is realized in E
d
, n+1 ≤ d ≤ 2n+1, so it results that in the class of

all n-dimensional combinatorial manifolds [1] only torus respects this propriety. Torus
is autodual because of this propriety.

Mathematics subject classification: 18F15, 32Q60, 32C10.

Keywords and phrases: Abstract manifold, abstract cubic manifold, cubiliaj, Euler
characteristic.

In paper [7, p.402] the scheme of the main types of n-dimensional manifolds
it is presented, but the type of abstract manifolds which have been introduced
recently in the papers [3–5] is missing. These abstract n-dimensional manifolds
can be isomorphicly represented in Ed, n + 1 ≤ d ≤ 2n + 1. So we obtain combi-
natorial manifolds [1] which belong to the scheme mentioned above. We investigate
abstract manifolds, which are defined by multi-ary relations and do not investigate
directly combinatorial manifolds because we can obtain new results from abstract
and more general point of view [6]. The base of an abstract manifold’s definition
is an abstract simplex Sn, which is defined on the set of (n + 1) elements from the
(n + 1)-ary relation of distinct elements.

First let’s mention

Definition 1 [3]. The complex of multi-ary relations, Kn = {Sm
λ : λ ∈ Λ,

cardΛ < ∞, 0 ≤ m ≤ n}, denoted V n
∆

, is called an abstract n-dimensional

manifold without borders if it satisfies the following postulates:

A. any abstract simplex Sn−1 ∈ V n
∆

is a common face exactly for two abstract
n-dimensional simplexes;

B. for any simplexes Sn
i , Sn

j ∈ V n
∆

, i 6= j, there exists a sequence of n-dimensional

simplexes Sn
1

= Sn
i , Sn

2
, . . . , Sn

k = Sn
j , k ≥ 2, where Sn

r ∩ Sn
r+1

= Sn−1

r,r+1
,

r ∈ {1, 2, . . . , k − 1};

C. for ∀Sm ∈ V n
∆

it holds that ∃Sn ∈ V n
∆

, such that Sm is a face of Sn,
m ∈ {0, 1, . . . , n − 1};

c© Mariana Bujac, Sergiu Cataranciuc, Petru Soltan, 2006
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D. for any two disjoint simplexes ∀Sn
i , Sn

j ∈ V n
∆

, where Sn
i ∩ Sn

j = Sm, it holds

that ∃Sn
1

= Sn
i , Sn

2
, . . . , Sn

k = Sn
j , such that

k⋂
l=1

Sn
l = Sm.

We are interested only in the examination of oriented manifolds [3, 4]. Let’s
mention

Definition 2 [2, 6]. The cubic complex Kn = {Im
λ : λ ∈ Λ, cardΛ < ∞,

0 ≤ m ≤ n}, denoted V n
2

, is called an abstract cubic n-dimensional mani-

fold without borders if the following properties are satisfied:

A. any (n− 1)-dimensional cube is a common face exactly for two n-dimensional
cubes from Kn;

B. for ∀In
i , In

j ∈ Kn, i 6= j, there exists a sequence of cubes from Kn,

In
i1

= In
i , In

i2
. . . , In

iq
= In

j , where In
r ∩ In

r+1
= In−1

r,r+1
, r ∈ {i1, i2, . . . , iq−1};

C. for ∀Ip ∈ Kn, 0 ≤ p ≤ n − 1, it holds ∃In ∈ Kn, where Ip is a face of In;

D. for any disjoint cubes ∀In
i , In

j ∈ Kn, In
i ∩ In

j = Ip, 2 ≤ p < n, there exists
a sequence of abstract cubes from B., In

i1
= In

i , In
i2

, . . . , In
iq

= In
j , such that

q⋂
j=1

In
ij

= Ip.

We are interested also in the examination of oriented cubic manifolds [6].
Definition 1 is based on a finite complex of multi-ary relations, but Definition 2

is formulated using a finite number of abstract cubes, which are defined by abstract
simplexes. So Definition 1 and 2 are equivalent and in the following we use only the
notation V n.

Definition 3. The property of n-dimensional abstract manifold without borders V n
p ,

which is determined of a cubic complex Kn, such that every m-dimensional cube,
0 ≤ m ≤ n, belongs to 2n−m n-dimensional cubes, is called a normal cubiliaj1 of
V n

p .

Let’s define now a finite product of edges (abstract 1-dimensional cubes [4])
analogous with cartesian product.

Definition 4. Let I1

1
, I1

2
, . . . , I1

r be some 1-dimensional oriented abstract cubes. By
induction

1. I1

1
⊗ I1

2
= I2, where I2 is a 2-dimensional abstract cube [4] and

◦

I2 =
◦

I1

1
⊗

◦

I1

2

[4] is his vacuum.

(r-1). Let’s consider that Ir−1 = Ir−2 ⊗ I1

r−1
is defined, where Ir−1 is an (r − 1)-

dimensional abstract cube [4] and
◦

Ir−1 =
◦

Ir−2

1
⊗

◦

I1

r−2
is its vacuum.

1The notion of cubilaj was borrowed from the papers [10, 11].
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r. Inductively we define r-dimensional abstract cube Ir in the following way:

Ir = Ir−1 ⊗ I1
r , where

◦

Ir =
◦

Ir−1 ⊗
◦

I1
r . The cube Ir is called a cartesian

product of cubes I1

1
, I1

2
, . . . , I1

r and will be denoted by

Ir =

r∏

i=1

I1

i (1)

Let’s consider n abstract oriented circumferences (1-dimensional manifolds):
V 1

1
, V 1

2
, . . . , V 1

n with the length (the number of 1-dimensional cubes) d1, d2, . . . , dn.
Using (1), we consider the cartesian product:2

Kn =

n∏

i=1

V 1

i (2)

In accordance with Definition 2, it is obvious that (2) establishes an n-
dimensional abstract manifold without borders which posseses a normal cubiliaj.
Moreover, the Euler characteristic of V 1

i is χ(V 1

i ) = 0, i ∈ {1, 2, . . . , n}, so [7]:

χ(Kn) =
n∏

i=1

χ(V 1

i ) = 0. (3)

Consequently we have

Corollary 1. The product (2) establishes an abstract torus V n
1

(see Figure 1).
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Figure 1

This corollary results from the fact that for every n (odd or even) (3) is true.

It holds

Theorem 1. An abstract oriented manifold without borders which has a normal
cubiliaj is a torus V n

1
if and only if V n is established by the cartesian product (2).

2The formula (2) is realized in E
2n+1 [1], so it define an n-dimensional torus as a cartesian

product of n circumferences [13].
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Proof. The sufficiency is obvious because of Corollary 1.

The necessity is simple. Let V n be an abstract manifold which has a normal
cubiliaj and In an abstract cube of V n. a1, a2, . . . , an are n oriented arcs with
common origin which determine the manifold V n. Let’s consider the class of
equivalence of ”parallel” arcs A1 ([8 − 10, 12]) and the class of (n − 1)-dimensional
cubes of V n which are determined by elements from the class A1.

Let’s denote the last class by V n−1

1
. It is obvious that the last one is an

abstract submanifold of V n which possesses hereditarily a normal cubiliaj.
Coherently let’s move along the arc a1. The end of the arc a1 belongs to another
abstract submanifold V n−1

2
of V n which is ”parallel” with V n−1

1
. Suppose that the

manifold V n−1

2
is ”perpendicular” to another arc b1, coherent to a1 (otherwise we

give a new orientation to it). In the same reasoning we can obtain another manifold
V n

3
which has a normal cubiliaj. By induction we can construct a 1-dimensional

contour without cross points because of the finite number of cubes from V n. If the
intersections exists then V n doesn’t have a normal cubiliaj. So we obtain the first
oriented abstract circumference V 1

1
. By induction of the index i of ai, considering

the class of equivalence Ai of arcs ”parallel” to ai for V n−i
i , i ∈ {1, 2, . . . , n − 1},

we construct the (n − 1) oriented abstract circumference. So we have the abstract
circumferences V 1

1
, V 1

2
, . . . , V 1

n−1
. The submanifold V 1 of V n which is perpendicular

to a1, a2, . . . , an−1 (see figure 1, the thick meridian) possesses hereditarily a normal
cubiliaj. So we have V 1 = V 1

n . Using the formula (2) we obtain the proof of Theorem
1.

It holds

Theorem 2. Let V n
p , p 6= 1, be a coherent oriented abstract manifold without borders

[1]. This manifold does not possess a normal cubiliaj.

Proof. By contradiction. We consider a submanifold V n−1
p of V n

p , p 6= 1, which
can be obtain in the same way as in the proof of Theorem 2, using the arc a1 ∈ In.
Analogously to the proofs’ procedure of Theorem 2, we can obtain n n-dimensional
contours without autointersection, V 1

1
, V 1

2
, . . . , V 1

n , which cartesian product is

V n
p =

n∏

i=1

V i
i . (4)

In accordance with Theorem 1, the product (4) represents a torus V n
1

which possesses
a normal cubiliaj. This contradiction (for p 6= 1) results from a false assumption.
Theorem 2 is proved.

Form Theorems 1 and 2 we obtain

Fundamental theorem. A unique abstract n-dimensional manifold without
borders V n

p , where n ≥ 0, which possesses a normal cubiliaj is the torus V n
1

.

Remark 1. In parer [9] was established that the sphere S2 ⊂ E2 does not possess a
normal cubiliaj.
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It holds

Theorem 3. Only the abstract torus, V p
1
, which possesses a normal cubiliaj,

represents an autodual manifold corresponding to this cubiliaj.

Proof. Let α0, α1, . . . , αn be the numbers of abstract cubes of V n
1

, with respective
dimension 0, 1, 2, . . . , n. So we have:

χ(V n
1 ) =

n∑

i=1

(−1)iαi = 0. (5)

Considering the cubic complex Kn
d with the class of the cubes αn, αn−1, . . . , α0

having the dimensions 0, 1, . . . , n respectively and invariant incidences, we obtain
that Kn

d is isomorphic to the complex Kn = V n
1

. So V n
1

is determined uniquely by
Kn

d . From (5) it results:

χ(V n
1 ) = χ(Kn

d ) =

n∑

i=0

(−1)n−iαn−i = 0. (6)

So the initial normal cubiliaj of V n
1

is isomorphic to the normal cubiliaj which is
established by Kn

d (see Figure 2.)

Figure 2

So this fact represents the autoduality of the torus V n
1

. Only this one is represented
by a normal cubiliaj. In accordance with the Fundamental theorem such kind of
autodualism has only the abstract torus V n

1
. Theorem 3 is proved.

Remark 2. When the above results were obtained as something additional in the
solving of application problems, we were informed about the papers [11 − 13]. This
helped us to change the terms’ names. The problems formulated by the famous
mathematician Serghei Novikov inspired us to additional examinations. We do this
with gratitude.

In the following paper we will indicate the value of the Fundamental theorem in
the transmission, receiving and picking up of information.
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The numerical analysis of the

tense condition of a solid body with

the asymmetrical tensor of strains

Vasile Ceban, Ion Naval

Abstract. In this paper an approach permitting to make calculation of non-steady
fields of elastic bodies with an asymmetrical stress tensor is proposed. On the basis of
integral equations the explicit difference network, founded on S.K. Godunov method
named ”disintegrations of a gap” is constructed. The versions are considered, when the
difference network approximates an initial set of equations with the first and second
order of accuracy.
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The classical theory of elasticity is based on the model of a solid body in which
interaction between particles is realized only by central forces.

However, it is impossible to explain satisfactorily the regularities of some phe-
nomena, for instance, the spreading of the short acoustic waves in a crystalline solid
body, polycrystalline metal and high polymer.

The theoretical results do not give satisfactory concordance with experimental
data for a body with obviously expressed polycrystalline structure, in the complex
tense condition with high gradient of the tension.

The model elaborated for the explanation of these phenomena differers from
classical one by the fact that tense condition on elementary platform is characterized
alongside with the vector of the power tension by the vector of moment tension,
referred to the same unit platform as the vector of the usual tension.

The model of elastic moments medium was created in which infinitely small
volume possesses six degrees of freedom, and the interaction between elements of
the medium is realized by power and moments tensions [1–4].

Here we are concentrated on the consideration of the variant in which the motion
of the medium point is completely described by the vector of the onward displace-
ment , but the vector of the angular tumbling is equal to the local rotation of the
medium in the sense of the usual theory of elasticity, i.e.

−→ω =
1

2
rot−→u .

Such model is known under the name of continuum Kossera with straight rota-
tion [5–7]. Each point of the medium has 3 degrees of freedom, and its motion is

c© Vasile Ceban, Ion Naval, 2006
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completely defined by the vector −→u . In this variant of the moment theory of elas-
ticity four independent elasticity constants: λ, µ, l, k are considered ; λ, µ are the
Lame parameters, l is the constant with dimension of the length, k is a dimensionless
constant of the type of Poison coefficient.

The waves of the expansion in the Kossera medium with straight rotation do
not differ from the expansion waves in the classical theory of elasticity, however,
the tension moments influence essentially on the distortion waves consideration. We
shall present basic system of the equations for the case of the asymmetrical theory
of elasticity we are interested in.

The equations of the motion for the plane case in a rectangular coordinate system
will be of the form:

∂σxx

∂x
+

∂σxy

∂y
= ρ

∂2u

∂t2
,

∂σyx

∂x
+

∂σyy

∂y
= ρ

∂2v

∂t2
, (1)

where u, v are components of the displacement vector −→u , and σxx, σyy, σxy, σyx are
components of the tension tensor.

In this case σxy 6= σyx, and the relations between components of the tension and
deformation taking in account inertness of the medium’s particles rotation are of
the form [8]

σxx = λ(εxx + εyy) + 2µεxx, σyy = λ(εxx + εyy) + 2µεyy,

σxy = µ

[
εxy − l2

(
∂2ω

∂x2
+

∂2ω

∂y2
−

k2ρ

µ

∂2ω

∂t2

)]
(2)

σxy = µ

[
εxy + l2

(
∂2ω

∂x2
+

∂2ω

∂y2
−

k2ρ

µ

∂2ω

∂t2

)]
,

where ρ is the density, ω = ∂u/∂y − ∂v/∂x.
As a consequence of the relations (2) the equation of the medium particles rota-

tion is examined in the following form:

2k2ρl2
∂2ω

∂t2
=

∂Mzx

∂x
+

∂Mzy

∂y
+ (σxy − σyx) ,

where σxy + σyx = 2µεxy.
The internal moments Mzx and Mzy are expressed by ω as follows

Mzx = 2µl2
∂ω

∂x
, Mzy = 2µl2

∂ω

∂y
. (3)

The numerical integration of the hyperbolic system (4) is realized in the presence
of the initial and border conditions by the method, founded on approximations of
the equations by finite differences taking into account relations along characteristic
directions.
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For the numerical solution of the moment theory of elasticity equations, S. K.
Godunov [9] explicit difference scheme will be considered. It requires to pass to the
system of equations in first-order partial derivatives. Taking in consideration the
velocity of the displacement, and differentiating (2) by time, after uncomplicated
transformations (4) will be obtained.

Here with the bar the corresponding functions differentiated by time are marked.
From now on for convenience, the bar will be omitted. It is known that the method
requires the determination of the characteristic equations and relations for them. In
accordance with S.K. Godunov method for the determination of the characteristics
in x direction free terms and derivatives by y are excluded from the system (4).

It is easy to note that in the obtained system of equations we have:

a) Two equations form up closed group giving the unknown functions σxx, u;

b) Two equations form up closed group giving the unknown functions σxy, v;

c) Two equations form up closed group giving the unknown functions Mzx, ω

∂σxx

∂x
+

∂σxy

∂y
= ρ

∂u

∂t
,

∂σyx

∂x
+

∂σyy

∂y
= ρ

∂v

∂t
,

∂σxx

∂t
= λ

(
∂u

∂x
+

∂v

∂y

)
+ 2µ

∂u

∂x
,

∂σyy

∂t
= λ

(
∂u

∂x
+

∂v

∂y

)
+ 2µ

∂v

∂y
, (4)

∂σxy

∂t
+

∂σyx

∂t
= 2µ

(
∂u

∂y
+

∂v

∂x

)
,

2k2l2ρ
∂ω

∂t
=

∂Mzx

∂x
+

∂Mzy

∂y
+ σxy − σyx,

∂Mzx

∂t
= 2µl2

∂ω

∂x
,

∂Mzy

∂t
= 2µl2

∂ω

∂y
.

Father, following the known procedure, we shall multiply the first (the second)
equation of the obtained first group of ”one-dimensional” system on the α1 (α2) and
add both equations.

As a result we get

∂

∂ t
{α1ρ u + α2σxx} =

∂

∂ x
{α2(λ + 2µ)u + α1σxx}. (5)

Our purpose consists in obtaining the characteristic equation for the Reman
invariant F in the following form:

∂F

∂ t
= η

∂F

∂ x
.
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The linear combination of the velocity and tension (5) will be an invariant F if
the following conditions are fulfilled

α1ρ = α2(λ + 2µ)/η; α1/η = α2.

In this homogeneous system one needs to determine such a value η for which its
nonzero solution exists. Consequently,

(ρ − (λ + 2µ)/η2)α1 = 0; (ρ − (λ + 2µ)/η2)α2 = 0. (6)

Since for the existence of a nonzero solution either α1, or α2 must be different
from zero, we find eigenvalues ηi:

η1,2 = ±
√

(λ + 2µ)/ρ = ±c1,

where c1 is the velocity of the longitudinal wave spreading.
Proceeding similarly, for the second group of equations we shall get

η3,4 = ±
√

µ/ρ = ±c2,

where c2 is the velocity of the transversal wave spreading.
The third group of equations gives

∂

∂ t

{
α1Mzx + 2α2k

2ρl2ω
}

=
∂

∂ x

{
α2 Mzx + 2α1µl2ω

}
. (7)

The linear combination (7) will be an invariant F if the following conditions are
fulfilled:

α1 = α2/η, α1µ/η = α2k
2ρ. (8)

In homogeneous system (8) it is necessary to determine such value of η, for which
a nonzero solution for this system exists. Consequently,

(k2ρ − µ/η2)α1 = 0, (k2ρ − µ/η2)α2 = 0. (9)

Since the existence of a nonzero solution necessitates that either α1, or α2 must
be different from zero, we find eigenvalues ηi:

η5,6 = ±
√

µ/k2/ρ = ±c3.

Because in the medium only one transversal wave must be, we require k = 1 and
c3 = c2. Really, if the volume deformation δ = ∂u/∂x + ∂v/∂y will be introduced,
then it is possible to reduce the system of equations (4) to the following form:

∆δ −
1

c2

1

δtt = 0; ∆ω −
1

c2

2

ωtt − l2
(

∆ω −
k2

c2

2

ωtt

)
= 0. (10)

As can be seen from (10), this equation is a wave one relative to σ, as well as in
the classical linear theory of elasticity while shift deformation ω satisfies the fourth
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order equation. By the study of the flat waves spreading in the elastic medium three-
dimensional and shift deformation are expressed through four arbitrary functions
depending on the flat waves [10]

Z1,2 = t − θx ∓
√

c2

1
− θ2y, Z3,4 = t − θx ∓

√
c2

2
− θ2y,

where θ is an arbitrary parameter.
The equation (10) relative to δ allows arbitrary solutions for flat waves through

Z1,2.
We research the equation (10) for ω. Let ω = f (γt − αy − βx). Substituting in

equation (10), we shall get

(
α2 + β2 − γ2/c2

2

)
f

′′

− l2
(
α2 + β2

) (
α2 + β2 − k2γ2/c2

2

)
f IV = 0 (11)

From the given equation it follows that flat waves of the type ω = f (γt − αy − βx)
for arbitrary type of the functions f are possible only by the condition k = 1,
α2 + β2 − γ2/c2

2
= 0.

So, further we shall everywhere consider k = 1.
We shall consider further the case of η1,2 = ±c1. Then from (6) it follows that α1

is an arbitrary constant value, which we take equal to ±1, and the factor α2 = ±1/c1.
Then the invariant F1 = ρu ± σxx/c1.
Similarly it is possible to obtain F2 = ρv ± σxy/c2; F3 = Mzx ± 2α2ρl2/c2ω.
This means that along the characteristics ∂ x

∂ t
= ±ηk the relations Fk = const

are fulfilled, because

dFk =
∂Fk

∂ t
d t +

∂Fk

∂ x
dx =

(
∂Fk

∂ t
± ηk

∂Fk

∂ x

)
dt = 0.

By analogy with ”one-dimensional” system relative to the variable x, ”one-
dimensional” system relative to the variable y can be considered, obtained from
system (4) when excluding derivatives by y.

The direct comparison of these systems shows that they become completely
identical after establishing the correspondence:

x ↔ y, u ↔ v, σxx ↔ σyy, σxy ↔ σyx, Mzx ↔ Mzy, Fk ↔ Φk.

The characteristics and relations for them are automatically obtained with ac-
count of this correspondence.

The invariants Fk and Φk(k = 1, 2, 3) possess important features that along
straight line ±ckt + x = const they keep constant values.

These features are put in the base of the finite difference scheme construction.
In the domain of the arguments x and y variation we shall introduce uniform

differences schemes as follows. The area will be limited by the contour, given by the
restrictions 0 ≤ x ≤ a, 0 ≤ y ≤ b. We shall cover this square-wave area with the net
as follows: for x

hx = a/I, xi = i · hx, i = 1, 2, · · · , I,
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and for y

hy = a/J, yj = j · hy, j = 1, 2, · · · , J.

The nodes of the deference net, in which we shall define the unknown functions,
choose in the cell center, formed by orthogonal net. All unknown functions are
related to the center of accounting cell and are considered constant within a separate
cell. Since the problem is dynamic then in the difference scheme the function values
are present on two temporary stratums tn and tn+1, with step on time τn = tn+1−tn.

We shall mark the functions defined on upper temporary layer tn+1, by
ϕi−1/2,j−1/2 or ϕ, and on the under-stratums by ϕi−1/2,j−1/2 or ϕ. The approxima-
tion of the system of equations (4) is built on the base of integral identity, equivalent
to the system (4).

The solution will be defined in the three-dimensional space with coordinate x, y, t.

We shall consider the elementary volume V , formed by the coordinate planes
x = xi, x = xi−1, y = yj, y = yj−1, t = tn, t = tn−1. Let us take integral from the
first equation of the system (4) on volume V :

ρ

∫

V

∂u

∂t
dV =

∫

V

[
∂σxx

∂x
+

∂σxy

∂y

]
dV

Considering that dV = dxdydt and applying integrations formulas by parts, we
get

ρ

∫

S1

u|
tn+1

tn
dxdy =

∫

S2

σxx|
xi+1
xi

dtdy+

∫

S3

σxy|
yj+1
yj

dxdt.

Here through S1, S2, S3 we shall mark the areas sides of the elementary volume.
Approximating the obtained integrals on the areas S1, S2, S3 by square formula of
the central rectangle, get the following difference equation

ρ (u − u)hxhy =
(
Σxxi,j−1/2 − Σxxi−1,j−1/2

)
hyτ+

+
(
Σxyi−1/2,j − Σxyi−1/2,j−1

)
hxτ.

The functions u, σxx, σxy are determined on the lower temporary layer tn, and
u, σxx, σxy are determined on the temporary layer tn+1. In the center of the lateral
sides S1, S2 ”greater” values are defined, their expressions through ”small” values
are given below.

The obtained equation will be divided by hx · hy · τ

ρ
u − u

τ
=

Σxxi,j−1/2 − Σxxi−1,j−1/2

hx
+

Σxyi−1/2,j − Σxyi−1/2,j−1

hy
.

The rest of the equations are approximated similarly, and that gives

ρ
v − v

τ
=

Σyxi,j−1/2 − Σyxi−1,j−1/2

hx
+

Σyyi−1/2,j − Σyyi−1/2,j−1

hy
,
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σxx − σxx

τ
= (λ + 2µ)

Ui,j−1/2 − Ui−1,j−1/2

hx
+ λ

Vi−1/2,j − Vi−1/2,j−1

hy
,

σyy − σyy

τ
= λ

Ui,j−1/2 − Ui−1,j−1/2

hx
+ (λ + 2µ)

Vi−1/2,j − Vi−1/2,j−1

hy
,

σxy − σxy

τ
+

σyx − σyx

τ
= 2µ

(
Ui−1/2,j − Ui−1/2,j−1

hy
+

Vi,j−1/2 − Vi−1,j−1/2

hx

)
, (12)

2ρl2
ω − ω

τ
=

Mzxi,j−1/2 − Mzxi−1,j−1/2

hx
+

Mzyi−1/2,j − Mzyi−1/2,j−1

hy
+ σxy − σyx,

M zx − Mzx

τ
= 2µl2

Ωi,j−1/2 − Ωi−1,j−1/2

hx
,

Mzy − Mzy

τ
= 2µl2

Ωi−1/2,j − Ωi−1/2,j−1

hy
.

The built system of equations in finite differences (12) approximates the system
of the differential equations (4). For finishing of the equations in finite differences
building is required to indicate the way of the ”greater” values calculation through
”small”. ”Greater” values are defined in the center of the lateral sides of the volume
V . Their expression through ”small” values ϕ in internal nodes of the net are found
from characteristic correlations, considered above.

”Greater” values Φ in the x direction are calculated as follows . We shall con-
sider two nearby cells on temporary layer tn, the centers of which are marked by
i−1/2, j−1/2 and i+1/2, j−1/2. We shall conduct from these point characteristics
with slopping ±c1 , but from point of their intersection we shall lower characteristics
with slopping ±c2. Since along these straight linear combinations of the unknown
function maintain constant values, it is possible to write following correlations

ρUi,j−1/2 + Σxxi,j−1/2
/c1 = ρui+1/2,j−1/2 + σxxi+1/2,j−1/2

/c1,

ρUi,j−1/2 − Σxxi,j−1/2
/c1 = ρui−1/2,j−1/2 − σxxi−1/2,j−1/2

/c1. (13)

Solving system (13) relative to ”greater” values, we get

Ui,j−1/2 = (ui+1/2,j−1/2 + ui−1/2,j−1/2)/2+

+(σxxi+1/2,j−1/2
− σxxi−1/2,j−1/2

)/2/ρ/c1,

Σxxi,j−1/2 = ρc1(ui+1/2,j−1/2 − ui−1/2,j−1/2)/2+



42 VASILE CEBAN, ION NAVAL

+(σxxi+1/2,j−1/2
+ σxxi−1/2,j−1/2

)/2.

Doing similar discourses and transformations, we shall define the rest ”greater”
values, in direction y similarly as in direction x.

”Greater” values, on the border of the area are defined from three relations for
the characteristics and three border conditions.

The initial conditions for the examined scheme are written by change continuous
function by ”small” values, determined on the net.

By decompositions of the discrete function, entering into difference scheme, in
Taylor row in the neighborhood of the point (xi, yj , tn) it is possible to show that
built accounting scheme has a first approximation order. Stability condition can
be received in the base of the Churant-Fridrix-Levi criterion, which confirms that
velocity in differences of the wave spreading on each directions, must not be less,
than velocity of the wave for differential approach.

Then we get

τ ≤

(
1

τ1

+
1

τ2

)
−1

,

where τ1 ≤ hx

c1
, τ1 ≤

hy

c1
.

When execution of this condition is ensured, the solution of the built difference
problem will be converging with the first order accuracy to exact solution. In order
to study possibilities of the using at calculation of the second order accuracy schemes
we shall consider certain modification of the scheme built above. Increasing of the
scheme accuracy can be reached by account of centering differences function on
temporary interval and taking into account of the change tangent to the verge of
the sought function [11].

In obtained above grid-characteristic scheme, auxiliary ”greater” values on the
cell border were calculated at condition of constancy values of the vector solution
components within each elementary cell. In this case, for determination of the values
in cross point of the characteristics with lower time plane, in essence, is used zero
order interpolation that provides the first order accuracy and monotonicity of the
difference schemes. Increasing approximation till the second oder can be reached by
considering more exact interpolation formulas.

For calculation of intermediate values of the sought function on previous tempo-
rary layer nτ we use modified formula for square interpolations.

u± = uk±1/2 + g∗
(
uk∓1/2 − uk±1/2

)
+

+Ag∗ (1 − g∗)
(
uk∓1/2 − 2uk±1/2 + uk±3/2

)
/2.

For the bounded nodes formula with unilateral finite differences is truthful

u± = uk±1/2 + g∗
(
uk∓1/2 − uk±3/2

)
+

+Ag∗ (1 − g∗)
(
uk±1/2 − 2uk±3/2 + uk±5/2

)
/2.
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Here signs ”+”, ”–” correspond to positive and negative slopping of the char-
acteristics g∗ = (1 − τ c1/h) /2; A is the parameter, which value is defined from
condition ‖un − [u]h‖ → min, where un is obtained discrete solution; [u]h is projec-
tion of the sample problem exact solution on the grid; ‖·‖ is the norm in the space
of grid function; h is the spatial step.

It is known that schemes of the raised accuracy order to do not possess mono-
tonicity feature, but choice of the best value of the parameter A allows to minimize
the dispersion of the finite differences solutions comparatively exact and vastly re-
duce drid viscosity, which show the first-order accuracy scheme.

So, the second order accuracy difference scheme differs from first-order accuracy
scheme by way of expressing of the ”greater” values through ”small”.

For nodes of the grid, located in internal area, we write following caracteristics
correlations in x direction

ρUi,j−1/2 + Σxxi,j−1/2
/c1 = sk+1/2 + g∗

(
sk−1/2 − sk+1/2

)
+

+Ag∗ (1 − g∗)
(
sk−1/2 − 2sk+1/2 + sk+3/2

)
/2,

ρUi,j−1/2 − Σxxi,j−1/2
/c1 = sk−1/2 + g∗

(
sk+1/2 − sk−1/2

)
+

+Ag∗ (1 − g∗)
(
sk+1/2 − 2sk−1/2 + sk−3/2

)
/2,

were s± = ρui±1/2,j−1/2 + σ
xxi±1/2,j−1/2

/c1.

We shall mark the right parts of the last correlations through Si+1/2 and Si−1/2.
Then ”greater” values are expressed through ”small” by formula

Ui,j−1/2 = 0.5
(
Si+1/2 + Si+1/2

)
/ρ,

Σxxi,j−1/2 = 0.5c1

(
Si+1/2 − Si+1/2

)
.

Similarly all rest ”greater” values are got.
Study of the stability by Furie method gives condition

τ ≤ (a+/b−)τ+τ−/
√

τ2
−

+ (a+/b−)2τ2
+
,

were τ+ = max(τx, τy), τ− = min(τx, τy), a+ = max(λi, µi), b− = min(λi, µi),
(i = 1, 2), τx = hx/a+, τy = hy/a+ are the limiting steps, defined from condition of
stability corresponding to one dimentional scheme.

For square greed τ+ = τ− = τ0 = h/a+ and τ ≤ (a+/b−)τ0[1 + (a+/b−)2]−1/2.
A more severe condition have in the case of the first-order accuracy scheme

τ ≤ (a+/b−)τ+τ−[τ− + (a+/b−)τ+],

from which for square grid follows τ ≤ (a+/b−)τ0/[1 + (a+/b−)].
In order to obtain more high accuracy order results brings to expediency of the

hybrid difference schemes using with flows correction, taking as support, described
above scheme variants.
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On the coproducts of cyclics in commutative modular

and semisimple group rings

Peter Danchev

Abstract. We study certain properties of the coproducts (= direct sums) of cyclic
groups in commutative modular and semisimple group rings. Our results strengthen
a statement due to T. Zh. Mollov (Pliska, Stud. Math. Bulgar., 1981) and also they
may be interpreted as a natural continuation of a recent investigation of ours (Serdica
Math. J., 2003).
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1 Introduction

Let G be an arbitrary multiplicative abelian group and let R be an arbitrary
commutative unitary ring of any characteristic. By using standard abbreviations,
we now formally introduce the basic concepts. For such a group G, Gp denotes
its p-primary component of torsion which can be represented as Gp = ∪n<ωG[pn]
where G[pn] = {g ∈ G : gpn

= 1} is the pn-socle of G, and G1 denotes the first Ulm
subgroup of G. For such a ring R, char(R) denotes its characteristic which is a non-
negative integer m with the property that either m.1R = 0 and m 6= 0 is minimal
with this property, whence we write char(R) = m 6= 0, or otherwise char(R) = 0
whenever m 6= n implies m.1R 6= n.1R.

We recall that the field F is of the first kind with respect to the prime p if the
degree (F (ǫ1, ǫ2, · · · , ǫn, · · · ) : F ) = ∞, where ǫi are the primitive pi-roots of unity
for i = 1, 2, · · · , n, · · · . In the remaining variant when (F (ǫ1, ǫ2, · · · , ǫn, · · · ) : F ) <
∞, the field F is called a field of the second kind with respect to p.

An example of a field of the first kind with respect to any prime number is the
field Q of all rationals, while the fields R and C of all real and complex numbers,
respectively, are examples of fields of the second kind with respect to all primes.

Our attention in the present exploration is concentrated on the Sylow p-group
S(RG) consisting of all normalized p-elements in the group ring RG. For A ≤ G,
we denote by I(RG;A) the relative augmentation ideal of RG with respect to the
subgroup A.

All other unexplained exclusively notions and notation are standard and are in
agreement with the cited in the bibliography research papers.

c© Peter Danchev, 2006
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The work is structured as follows: In the second paragraph, divided into two
sections, we study the behavior of coproducts of cyclic groups in a modular and a
semisimple aspect.

The first section treats the modular case by finding a criterion for S(RG)/S(RA)
to be a coproduct of cyclic groups provided that char(R) = p, p is a prime, under
some additional restrictions on G and A; for instance such as G is torsion and∐

q 6=p Gq ⊆ A. As a consequence, we obtain a necessary and sufficient condition for
S(RG) to be a Cω+1-group in the sense of Megibben (= a pillared group in other
terms due to P. D. Hill). These criteria expand the corresponding ones of T. Mollov
in [12]. We also point out that a counterexample due to Mollov in his reviewer’s
report [16], concerning our assertion in [4], is an absurdity.

The second section deals with the semisimple case, where we establish criteria
for S(RG) to belong to major classes of abelian groups provided R is either a field
of the first kind or of the second kind with respect to p, both with char(R) 6= p. To
this aim, we deduce a new extension of a group-theoretic attainment of Dieudonné
[11].

We also eliminate some minor misprints in [4].

We end the paper with concluding discussion and remarks where we list certain
unanswered questions and conjectures.

2 Main Results

1. Modular group rings

The next affirmation was proved by Mollov [12, Proposition 6 b)] in a slightly
modified form for the case when R is a field. In his proof such a limitation on R
to be a field is essential. We now generalize this claim to an arbitrary commutative
ring R with 1 and prime characteristic p by the usage of a different and more smooth
approach.

We are now in a position to restate in an equivalent form the cited above Mollov’s
result.

Theorem 1. Suppose G is an abelian group with a subgroup A, suppose M is a
p-divisible group with Mp = 1 and suppose char(R) = p is a prime. Then S(R(Gp ×
M))/S(R(Ap×M)) is a coproduct of cyclic groups if and only if Gp/Ap is a coproduct
of cyclic groups.

Proof. Evidently, Gp/Ap
∼= GpS(R(Ap × M))/S(R(Ap × M)) ⊆ S(R(Gp ×

M))/S(R(Ap × M)) since Gp ∩ S(R(Ap × M)) = Ap. Thus the necessity obviously
holds.

In order to prove the sufficiency, we assume that Gp/Ap is a coproduct of cyclic
groups. Appealing to the classical Kulikov’s criterion, Gp/Ap = ∪n<ω(Gn/Ap), Ap ⊆

Gn ⊆ Gn+1 ≤ Gp and Gn ∩ Gpn

p ⊆ Ap that is equivalent to Gn ∩ Gpn

⊆ Ap.
Therefore, Gp = ∪n<ωGn and Gp × M = ∪n<ω(Gn × M), whence S(R(Gp ×
M)) = ∪n<ωS(R(Gn × M)) and S(R(Gp × M))/S(R(Ap × M)) = ∪n<ω[S(R(Gn ×
M))/S(R(Ap × M))]. Finally, by exploiting the modular law, we compute that
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S(R(Gn×M))∩Spn

(R(Gp×M)) = S(R(Gn×M))∩S(Rpn

(Gpn

p ×M)) = S(Rpn

[(Gn×

M) ∩ (Gpn

p × M)]) ⊆ S(R(M × Ap)), where the last inclusion holds because of the

relationships M ⊆ Gpn

and (Gn × M) ∩ (Gpn

p × M) = M((Gn × M) ∩ Gpn

p ) =
M((Gn×M)∩Gpn

) = M(Gn∩Gpn

) ⊆ M ×Ap which are fulfilled over every natural
n ∈ N. This substantiates the claim that the quotient S(R(Gp×M))/S(R(Ap×M))
is a coproduct of cyclic groups. Hence the theorem.

Corollary 1. Suppose G is an abelian group such that G = Gp × M , where M is
p-divisible, suppose A ≤ G such that M ⊆ A and suppose char(R) = p is a prime.
Then S(RG)/S(RA) is a coproduct of cyclic groups ⇐⇒ G/A is a coproduct of cyclic
groups ⇐⇒ Gp/Ap is a coproduct of cyclic groups.

Proof. It easily follows that A = Ap × M . Therefore Theorem 1 applies to show
that S(RG)/S(RA) is a coproduct of cycles only when so is G/A ∼= Gp/Ap.

Corollary 2. Suppose that G is a torsion abelian group with
∐

q 6=p Gq ⊆ A ≤ G, and
suppose that char(R) = p is a rational prime. Then S(RG)/S(RA) is a coproduct
of cyclic groups ⇐⇒ G/A ∼= Gp/Ap is a coproduct of cyclic groups.

Proof. It follows immediately from Theorem 1 because G = Gp ×
∐

q 6=p Gq, where
the latter direct component is p-divisible.

We come now to the original formulation of the Mollov’s statement from [12].

Corollary 3 (Mollov, 1981). Assume that G is an abelian group, p a prime,
G = Gp × M,A ≤ Gp, and that R is a field of char(R) = p. If M is a p-divisible
group, then S(RG)/S(R(A × M)) is a coproduct of cyclic groups ⇐⇒ Gp/A is a
coproduct of cyclic groups.

Proof. The assertion follows at the substitutions G = Gp × M and A = Ap.

Remark. Proposition 6 a) in [12] was firstly extended in [2] to arbitrary abelian
groups and commutative rings with identity of prime characteristic p without nilpo-
tent elements. When G is a p-group, similar expansions of Propositon 6 b) were
given by us in [3]. The real advantage here is that we have considered a more
general coefficient ring.

For any ordinal number λ an abelian p-group H is termed by C. Megibben a
Cλ-group if H/Hpα

is totally projective for all α < λ. Apparently, every abelian
p-group is a Cω-group.

Our next statement concerns the finding of a criterion when S(RG) is a Cω+1-
group, that is, the first Ulm factor S(RG)/S1(RG) is a coproduct of cyclic groups
(these groups are called also pillared by P.D. Hill).

Proposition 1. Let G be a torsion abelian group and R a perfect commutative ring
with 1 of prime char(R) = p. Then S(RG) is a Cω+1-group ⇐⇒ Gp is a Cω+1-group.

Proof. Follows directly from Theorem 1 by putting Ap = G1
p.

We close the modular case with some special critical commentaries (for a conve-
nience, the symbols are as in [4]): The purported in [16] counterexample of Mollov
on the Proof 2 of Proposition 1 from [4] is demonstrably false. In fact, Mollov
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constructed an abelian p-group A so that A = H × L where H is an infinite co-
product of cycles and L is finite cyclic of order p. Henceforth, Ap = Hp ⊆ H.
Besides, the Mollov’s choice Hk = H is tendentious since in our proof in [4]
H = ∪∞

k=1
Hk,Hk ⊆ Hk+1 and Hk ∩ Hps

k = 1, for each k < ω and some sk ∈ N,
where Hk are proper subgroups of H (see, for instance, the well-known criterion of
Kulikov for coproducts of torsion cyclic groups).

2. Semi-simple group rings

We start here with the specification that in [4] (e.g. the Abstract of [4]) the
letter K denotes the first kind field with respect to p of char(K) 6= p with the extra
restriction that its spectrum sp(K) about p contains all naturals that is valid only
in the situations when we consider the purity or the direct factor properties of G in
S(KG) (i.e. in Lemma on purity on p.38, Theorem 7, Corollary 8, Claim 13, and
the comments after Problem 17).

Moreover, as it was truly noted in [16], the criteria (4) and (5), respectively (4’)
and (5’), of [4] are true only in the infinite case. The word ”infinite” was omitted
involuntarily. Also in (5) and (5’) the condition that the abelian p-group A is a
”direct sum of cyclics” follows at once by the relation Api

= 1, which means that A
is bounded, so it is out of use and can be dropped.

As usual, (pt) designates a cyclic group of order pt.

Now, we shall prepare the finite case.

Claim 1. Let G be an abelian p-group and let R be a field of the first kind with
respect to p of char(R) 6= p. Then S(RG) cannot be non-trivial finite elementary or
finite reduced homogeneous no elementary.

Proof. If G is a finite abelian p-group with exponent exp(G) = pj , j ≥ 1 and
R is a field of the first kind with respect to p of char(R) 6= p, consulting with
([13], [15]), we write S(RG) ∼=

∐
δi0

−1
(pi0) ×

∐
δi1

(pi1) × · · · ×
∐

δir

(pir), where

i0, i1, · · · , ir ∈ sp(R) = {i0, i1, i2, · · · |i0 < i1 < i2 < · · · }, ir is the minimal number
so that ir ≥ j, i′ ∈ sp(R) plus the condition that i′ < i is the minimal number with
this property if it generally exists and where the numbers δi are described in the
following manner: δi = (|G[pi]| − |G[pi′ ]|)/(R(εi) : R), i 6= i0; δi = |G[pi0 ]|, i = i0.
Moreover, δi = 0 whenever i > ir and i ∈ sp(R), since for any t ∈ N : G[pt] =

G[pt+1] ⇐⇒ Gpt

= 1 ⇐⇒ G = G[pt] as well as δi0 = 1 ⇐⇒ G[pi0 ] = 1 ⇐⇒ G = 1
because i0 ≥ 1. This shows that our claim really holds true.

Claim 2. Let G be a finite abelian p-group and R a field of the second kind with
respect to p of char(R) 6= p. Then S(RG) is elementary ⇐⇒ p = 2, R 6= R(ε2) and
Gp = 1.

Proof. Referring to [13,14] it follows that S(RG) ∼=
∐

|G|−1
(p), where p = 2, R 6=

R(ε2) and |G| = |G[p]|. Since G is finite and G[p] ⊆ G, we have G = G[p], so Gp = 1.

Remark. In the criteria (5) and (5’) from [4] we observe that i = exp(G) /∈ sp(K),
otherwise S(KA) is not, never, reduced homogeneous no elementary. Hence we
conclude that sp(K) does not contain all naturals in that situation.
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We strongly emphasize that in assertions (7) and (7’) of [4] there is a typos.
Below we give the correct formulating.

In fact, ”S(KA), respectively Up(KA), is pα-projective for some α ≥ ω ⇐⇒
A is a direct sum of cyclics” should be written and read as ”S(KA), respectively
Up(KA), is pα-projective for some α ≤ ω ⇐⇒ A is (a bounded or an unbounded)
direct sum of cyclics”.

For the case when α ≥ ω + 1, the problem seems to be very difficult. In the
next lines, we obtain some partial advantage in this way. In order to do this, we
foremost note the classical fact that in [11] it was firstly constructed by Dieudonné
the existence of a separable pω+1-projective abelian p-group which is not a coproduct
of cycles.

We formulate the following conjecture, namely:

Conjecture 1. Assume that G is an abelian p-group and that R is the first kind
field with respect to p of char(R) 6= p. Then S(RG) is pα-projective for α ≥ ω + 1
⇐⇒ S(RG) is separable pα-projective ⇐⇒ G is separable pα-projective.

The first implication follows easily, because by [14] we have that S1(RG) = 1
since S(RG) reduced. The second one is difficult. This difficulty ensues via the
following reason, thus contrasting with the modular case (see [2]). Utilizing the
Nunke’s criterion for pω+n-projectivity where n ∈ N0 = N ∪ {0} (see, for instance,
[17]), if G is pω+n-projective then there is P ≤ G[pn] so that G/P is a coproduct of
cyclic groups. On the other hand, S(RG)/[(1 + I(RG;P )) ∩ S(RG)] ∼= S(R(G/P ))
is a coproduct of cyclic groups according to [14], whereas (1+ I(RG;P ))∩S(RG) is
not always bounded at pn (i.e. equivalently is not always a subgroup of S(RG)[pn]).

Now, we shall verify the second implication of the foregoing stated conjecture
under the truthfulness of another conjecture (see [4, Problem 17]). Indeed, we
assume that the Generalized Direct Factor Conjecture ([4, Problem 17]), which says
that S(RG)/G is a coproduct of cyclic groups whenever G1 = 1 under the same
circumstances on R and G as in Conjecture 1, holds in the affirmative and also
additionally assume that the spectrum sp(R) of R about p, defined as in ([13-15]),
contains all natural numbers, that is N ⊆ sp(R). Invoking [7] or the Lemma from
[4], G is pure in S(RG). When there are gaps in the sp(R), we know that G is not
always pure in S(RG).

Furthermore, we distinguish two different approaches.

First Approach. Bearing in mind a classical theorem of L.Ya. Kulikov, G must be
a direct factor of S(RG), thus writing S(RG) ∼= G × S(RG)/G. Thereby S(RG) is
completely characterized by making use of [8].

Consequently, S(RG) is separable pα-projective for any ordinal α ⇐⇒ G is sep-
arable pα-projective for that α.

Second Approach. We shall apply successfully the following new version of the
Generalized Dieudonné Criterion (for a strengthening in other ways see also [9] and
[10]).

Criterion. Suppose A ≤ G so that G/A is a coproduct of cyclic groups. Then, for
some m ≥ 0, G is pω+m-projective ⇐⇒ ∃ C ≤ A[pm] : A = ∪n<ωAn, C ⊆ An ⊆ An+1
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and for every n ∈ N: An ∩Gpn

⊆ C ⇐⇒ ∃ C ≤ A[pm] : A[p] = ∪n<ωBn, Bn ⊆ Bn+1

and for each n ∈ N: Bn ∩ Gpn

⊆ C.

Proof. ”⇒”. With the aid of the Nunke’s criterion [17], there is a p-group T such
that T ≤ G[pm], G = ∪n<ωGn, T ⊆ Gn ⊆ Gn+1 and Gn ∩ Gpn

⊆ T . Therefore
A = ∪n<ωAn, where An = Gn ∩A, and we subsequently compute An ∩Gpn

= Gn ∩
Gpn

∩A ⊆ A∩T . So, by the setting A∩T = C, we are done. For the second equivalent
form of the criterion, we observe that A[p]C/C ⊆ (A/C)[p] = ∪n<ω(En/C) where
En ⊆ En+1 ⊆ A and En ∩ Gpn

⊆ C, hence A[p] = ∪n<ωEn[p] where Bn = En[p].

”⇐”. Under the assumptions, there is C ≤ A[pm] ≤ G[pm] so that A/C is a
countable union of an ascending chain of subgroups with bounded in G/C heights.
After this, because of the isomorphism G/C/A/C ∼= G/A, the latter factor-group
is a coproduct of cycles. Consequently, with the Dieudonné criterion [11] in hand
(see [9] and [10] as well), we derive that G/C must be a coproduct of cyclic groups.
Finally, Nunke’s criterion in [17] is applicable to obtain the claim.

This terminates the proof of the criterion.

And so, since by hypotheses S(RG)/G is a coproduct of cycles whenever G1 = 1
and G is pure in S(RG), the preceding criterion applies to show that S(RG) is
separable pω+m-projective if and only if so does G; m ∈ N.

Remark. If G/A is a coproduct of cycles and A is pω+m-projective, it does not
follow in general that G is pω+m-projective as well.

Major consequences arise for various choices of the subgroup A, specifically when
A = Gp; or A = G[p] so G/G[p] ∼= Gp; or A = L, a large subgroup of G (see [6]) -
we notice that G/L is a coproduct of cyclic groups.

Finally, we remark that when R is a field of the second kind with respect to p
of char(R) 6= p, S(RG) is pα-projective for some arbitrary ordinal α ⇐⇒ S(RG)
is pω-projective (= a coproduct of cycles). This is so since, by consulting with
[14], S(RG) is ever a coproduct of cyclic and quasi-cyclic groups (= a coproduct of
cocyclic groups). But, on the other hand, it is reduced as being pα-projective too.

We continue with two minor specifications of technical character.

Firstly, after ”Lemma [9]” in [4], the sentence ”... is a direct factor of S(KA),
hence of V (KA) by [10]” should be more precise by ”... is a direct factor of S(KA),
hence of V (KA) by [10] and [17]”. Moreover, in Proposition 9 of [4] the subgroup H
should be pure in the separable p-group A, which condition on ”purity” was omitted
involuntarily.

Secondly, in [16], Mollov has criticized that we have not showed in Lemma 6 of
[4] that I = (1 + I(RG;C)) ∩ S(RG) is a group whenever C ≤ G. Of course, that
this intersection I is a group follows plainly either owing to the mentioned after
Conjecture 1 fact that I is the kernel of the homomorphism S(RG) → S(R(G/C))
or in the following manner: Given u1 ∈ I and u2 ∈ I. Hence u1 = 1 + v1 and
u2 = 1 + v2, where v1, v2 ∈ I(RG;C). Furthermore, u1u2 = 1 + v1 + v2 + v1v2 ∈ I
since it is a p-element and I(RG;C) is a ring being an ideal. On the other hand,

since u1 ∈ S(RG), there exists k ∈ N such that upk

1
= 1, whence u−1

1
= upk

−1

1
∈ I

employing inductively the previous step. So, the claim is true.
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Finally, we answer two problems posed by us in [4] asked when S(RG) is quasi-
pure projective (q. p. p.) and quasi-pure injective (q. p. i.), provided R is the first
kind field with respect to p of char(R) 6= p.

To this goal, we quote the following necessary and sufficient conditions argued
in [1].

Criteria (Berlinghoff–Reid, 1977)

(1) The p-group G is q. p. i. ⇐⇒ G is a coproduct of a divisible p-group and a
torsion complete p-group.

(2) A non-reduced p-group G is q. p. p. ⇐⇒ G is an algebraically compact
p-group. A reduced p-group G is q. p. p. ⇐⇒ G is a coproduct of cyclic p-groups.

And so, we proceed by proving the following.

Theorem 2. Suppose G is an abelian p-group and R is a field of the first kind with
respect to p of characteristic not equal to p. Then

(1’) S(RG) is q. p. i. ⇐⇒ G is algebraically compact, provided N ⊆ sp(R).

(2’) The non-reduced S(RG) is q. p. p. ⇐⇒ G is non-reduced algebraically
compact. The reduced S(RG) is q. p. p. ⇐⇒ G is a coproduct of cyclic groups.

Proof. Point (1’) follows directly from (1) and [5] (see [7] as well). The first part
half of (2’) holds in virtue of (2) combined with ([4], dependence 12) (see also [5]).
The second one follows again by (2) along with [14].

The proof is completed.

3 Concluding Discussion

We conclude with certain questions and conjectures of interest. We mainly dis-
cuss here a problem related to [4] and pertaining to finding the explicit form of basic
subgroups in semisimple group rings. The isomorphism classification of such basic
subgroups was firstly established in ([4], Proposition 11). Nevertheless, the explicit
type of these subgroups will definitely be of some importance.

We state the following:

Conjecture 2. Suppose that G is a separable abelian p-group with an arbitrary
but fixed basic subgroup B and that R is the first kind field with respect to p of
char(R) 6= p so that N ⊆ sp(R). Then B′ = [1 + I(RG;B)] ∩ S(RG) is a basic
subgroup of S(RG).

We attack our claim like this: That B′ is pure in S(RG) and that S(RG)/B′ ∼=
S(R(G/B)) is divisible follow not so hard from [4] and more especially subsequently
referring to Lemma 6 and relation (8) of [4].

More complicated is the question how to derive that B′ is a coproduct of cyclic
groups. We show now that such a construction naturally depends on the foregoing
used Generalized Direct Factor Conjecture (Problem 17 of [4]). Indeed, if we have
a priori that S(RG)/G is a coproduct of cyclic groups, we observe that B′/B ∼=
B′G/G ⊆ S(RG)/G possesses this property as well. Moreover, appealing to [7], B
being pure in G is pure even in S(RG) whence in B′. Finally, the application of a
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classical theorem of L. Kulikov, used also above, ensures that B′ ∼= B × B′/B is a
coproduct of cyclic groups, in fact, as wanted.

However, the complete proof is a theme of another research investigation, where
a new simpler approach might work.

Acknowledgment: The author would like to thank the referee for the expert sug-
gestions made.
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Abstract. It is proved that the maximum condition for subloops in a commutative
Moufang loop Q is equivalent with conditions of the finite generating of different
subloops of the loop Q and different subgroups of the multiplication group of the loop
Q. An analogue equivalence is set for commutative Moufang ZA-loops.
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It is said that the maximum condition (respect. minimum condition) for subalge-
bras with the property α holds in an algebra A if any ascending (respect. descending)
system of subalgebras with the property α A1 ⊆ A2 ⊆ . . . (respect. A1 ⊇ A2 ⊇ . . .)
breaks, i.e. An = An+1 . . . for a certain n. It is well known that the fulfillment of
the maximum condition for subalgebras of an arbitrary algebra is equivalent to the
fact that both the algebra and any of its subalgebras are finitely generated.

Commutative Moufang loops (CML’s) with maximum condition for subloops are
considered in this paper. It is proved that for a non-associative CML Q this condition
is equivalent to one of the following equivalent conditions: a) if Q contains a centrally
nilpotent subloop of class n, then all its subloops of this type are finitely generated;
b) if Q contains a centrally solvable subloop of class s, then all its subloops of this
type are finitely generated; c) all invariant subloops of Q are finitely generated; d)
all non-invariant associative subloops of Q are finitely generated; e) at least one
maximal associative subloop of Q is finitely generated. This list is completed with
the condition of the finite generating of various subgroups of the multiplication group
of Q. If Q is a ZA-loop, then the list a) – e) is completed with the condition of the
finite generating of the center of Q, as well with the condition of the finite generating
of other subloops of Q and various subgroups of the multiplication group of Q.

It is worth mentioning that the following statement is proved in [1, 2].

Lemma 1. The following conditions are equivalent for an arbitrary CML Q:
1) Q is finitely generated;
2) the maximum condition for subloops holds in Q.

In [2] the list a) – e) is completed with equivalent statements: h) the CML Q
satisfies the maximum condition for invariant subloops; i) the CML Q is a subdirect
product of a finite CML of exponent 3 and a finitely generated abelian group; j) the
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CML Q possesses a finite central series, whose factors are cyclic groups of simple or
infinite order.

Let us bring some notions and results on the theory of commutative Moufang
loops, needed for further research.

A commutative Moufang loop (CML’s) is characterized by the identity x2 · yz =
= xy ·xz. The multiplication group M(Q) of a CML Q is the group generated by all
the translations L(x), where L(x)y = xy. The subgroup I(Q) of the group M(Q),
generated by all the inner mappings L(x, y) = L(xy)−1L(x)L(y) is called the inner
mapping group of the CLM Q. The subloop H of a CML Q is called normal (in-
variant) in Q if I(Q)H = H.

Lemma 2 [3]. Let Q be a commutative Moufang loop with the multiplication group
M. Then M/Z(M), where Z(M) is the centre of the group M, and M

′ = (M,M)
are locally finite 3-groups and will be finite if Q is finitely generated.

Lemma 3. The multiplication group M of an arbitrary CML is locally nilpotent.

Proof. Let N be the image of finitely generated subgroup of group M under
the homomorphism M → M/Z(M). It follows from Lemma 2 that N is a finite
3-group, therefore it is nilpotent. Let us write N in the form NZ(M)/Z(M). We
have NZ(M)/Z(M) ∼= N/(N ∩Z(M)). It is obvious that N ∩Z(M) ⊆ Z(N). Then

N/Z(N) ∼= (N/(N ∩ Z(M)))/(Z(N)/(N ∩ Z(M))).

Therefore N/Z(N) is nilpotent, as a homomorphic image of the nilpotent group
N/(N∩Z(M)). Then the group N is nilpotent as well. Consequently, the group M

is locally nilpotent, as required.

The center Z(Q) of a CML Q is an invariant subloop Z(Q) = {x ∈ Q|x · yz =
= xy · z∀y, z ∈ Q}.

Lemma 4 [3]. The quotient loop Q/Z(Q) of an arbitrary CML Q by its center
Z(Q) has the index three.

Lemma 5 [3]. A periodic CML is locally finite.

The associator (a, b, c) of the elements a, b, c in CML Q is defined by the
equality ab · c = (a · bc)(a, b, c). We denote by Qi (respect. Q(i)) the subloop
of the CML Q, generated by all associators of the form (x1, x2, . . . , x2i+1) (re-
spect. (x1, . . . , x3i)(i)), where (x1, . . . , x2i−1, x2i, x2i+1) = ((x1, . . . , x2i−1), x2i, x2i+1)
(respect. (x1, . . . , x3i)(i) = ((x1, . . . , x3i−1)(i−1), (x3i−1+1, . . . , x2·3i−1)(i−1),
x2·3i−1+1, . . . , x3i)(i−1)), where (x1, x2, x3)

(1) = (x1, x2, x3) . The series of normal
subloops 1 = Q0 ⊆ Q1 ⊆ . . . ⊆ Qi ⊆ . . . (respect. 1 = Q(o) ⊆ Q(1) ⊆ . . .
. . . ⊆ Q(i) ⊆ . . .) is called the lower central series (respect. derived series) of
the CML Q. We will also use for associator loop the designation Q(1) = Q′.

A CML Q is centrally nilpotent (respect. centrally solvable) of class n if and
only if its lower central series (respect. derived series) has the form 1 ⊂ Q1 ⊂ . . .
. . . ⊂ Qn = Q (respect. 1 ⊂ Q(1) ⊂ . . . ⊂ Q(n) = Q) [3].
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An ascending central series of CML Q is a linearly ordered by the inclusion
system

1 = Q0 ⊆ Q1 ⊆ . . . ⊆ Qα ⊆ . . . ⊆ Qγ = Q

of invariant subloops of Q, satisfying the conditions:
1) Qα =

∑
β<α Qβ for limit ordinal α;

2) Qα+1/Qα ⊆ Z(Q/Qα).
A CML, possessing an ascending central series is called ZA-loop. If the ascending

central series of CML is finite, then it is centrally nilpotent [3].
We will often use the following statements in our further proofs.

Lemma 6. The following statements are equivalent for an arbitrary CML Q:
1) Q satisfies the minimum condition for subloops;
2) Q is a direct product of a finite number of quasicyclic groups, belonging to the

center CML Q, and a finite CML;
3) Q satisfies the minimum condition for invariant subloops;
4) Q satisfies the minimum condition for non-invariant associative subloops;
5) if Q contains a centrally nilpotent subloop of class n, then it satisfies the

minimum condition for centrally nilpotent subloops of class n;
6) if Q contains a centrally solvable subloop of class s, then it satisfies the mini-

mum condition for centrally solvable subloops of class s;
7) at least one maximal associative subloop of Q satisfies the minimum condition

for subloops.

The equivalence of conditions 1), 2), 3) is proved in [4], the equivalence of conditions
1), 4), 5), 6) is proved in [5] and the equivalence of conditions 1), 7) is proved in [6].

Lemma 7 [4]. The following statements are equivalent for an arbitrary non-
associative CML Q with a multiplication group M:

1) Q satisfies the minimum condition for subloops;
2) M satisfies the minimum condition for subgroup;
3) M is a product of a finite number of quasicyclic groups, lying in the center of

M, and a finite group;
4) M satisfies the minimum condition for invariant subgroup;
5) at least one maximal abelian subgroup of M satisfies the minimum condition

for subgroups;
6) if M contains a nilpotent subgroup of class n, then M satisfies the minimum

condition for nilpotent subgroups of class n.
7) if M contains a solvable subgroup of class s, then M satisfies the minimum

condition for solvable subgroups of class s.
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Lemma 8 [4]. If the center Z(Q) of a commutative Moufang ZA-loop Q sati-
sfies the minimum condition for subloops, then Q satisfies the minimum condition
for subloop itself.

Let us now consider an arbitrary non-periodic CML Q. Let Q3 = {x3|x ∈
∈ Q}. CML is di-associative [3], then it is easy to show that Q3 is a subloop.
It follows from Lemma 4 that Q3 ⊆ Z(Q), where Z(Q) is the center of CML Q,
therefore Q3 is an invariant subloop of Q. Let us suppose that the subloop Z(Q) is
finitely generated. Then the abelian group Q3 is also finitely generated. Therefore
it decomposes into a direct product of cyclic groups Q3 =< r1 > × . . .× < rk > ×
× < s1 > × . . .× < sm >=< R > × < S >, where < ri > are cyclic groups
of infinite order, < sj > are finite cyclic groups [7]. The group R is free abelian,
therefore it is without torsion. It is shown in [3] that the associator loop Q′ has the
exponent three, then

R ∩ Q′ = {1}. (1)

Lemma 9. Let Q be a CML, R be its subloop, which is considered above, and let
H be a subloop of CML Q/R = Q. The subloop H satisfies one of the properties:
1) H is centrally nilpotent of class n; 2) H is centrally solvable of class s; 3) H is
a maximal associative subloop of CML Q; 4) H is the center of CML Q; 5) H is
a non-invariant subloop of CML Q; 6) H is an invariant subloop of CML Q if and
only if the inverse image H of subloop H has the same property as the subloop H,
under the homomorphism ϕ : Q → Q/R.

Proof. Let us suppose that the subloop H is centrally nilpotent of class n. Let
h1, h2, . . . , h2n+1 be arbitrary elements from H. Let us denote ϕ(hi) = hi, ϕ(1) = 1.
Then hi = hiR, 1 = R. We have (h1, h2, . . . , h2n+1) = 1, (h1R,h2R, . . . , h2n+1R) =
= R. But R ⊆ Z(Q). Therefore, if u ∈ R, then (au, b, c) = (a, b, c) for any elements
a, b, c ∈ Q. Then (h1, h2, . . . , h2n+1) = r, where r ∈ R. It follows from (1) that
r = 1. We have obtained that (h1, h2, . . . , h2n+1) = 1, i.e. the subloop H is centrally
nilpotent of class n.

Conversely, let us suppose that the subloop H is centrally nilpotent of class n.
Then there exist such elements h1, h2, . . . , h2n−1 from H that (h1, h2, . . . , h2n−1) 6= 1.
It follows from (1) that (h1, h2, . . . , h2n−1) /∈ R. Therefore (h1, h2, . . . , h2n−1) /∈ 1.
Consequently H, as homomorphic image of subloop H, will be a centrally nilpotent
subloop of class n. It proves the statement 1). The statement 2) is proved by
analogy.

Let us now suppose that H is a maximal associative subloop of CML Q and
the inverse image H is not a maximal associative subloop of CML Q. Then there
exists such an element a /∈ H that (a, h1, h2) = 1 for all h1, h2 ∈ H. Obviously
R ⊆ H. Then ϕa = a /∈ H and (a, h1, h2) = 1 for all h1, h2 ∈ H. We have obtained
that the non-associative subloop < a,H >, generated by the set {a,H}, strictly
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contains H, i.e. H is not a maximal associative subloop of CML Q. Contradiction.
Consequently, H is a maximal associative subloop of CML Q.

Conversely, let us suppose that H is a maximal associative subloop of CML Q
and H is not a maximal associative subloop of CML Q. Then there exists such
an element a /∈ H that (a, h1, h2) = 1 for all h1, h2 ∈ H. We have obtained that
(aR, h1R,h2R) = R for all h1, h2 ∈ H. As R ⊆ Z(Q), then (a, h1, h2) = r, where
r ∈ R. It follows from (1) that r = 1, therefore (a, h1, h2) = 1 for all h1, h2 ∈ H and
a /∈ H. It means that the subloop H is strictly contained in the associative subloop
< a,H >. We have obtained a contradiction with the fact that the subloop H is a
maximal associative subloop. This proves statement 3). Statement 4) is proved by
analogy.

Statements 5), 6) follow from the fact that the natural homomorphism Q → Q/R
sets a one-to-one mapping between all non-invariant (respect. invariant) subloops
of CML Q, with contained R, and all non-invariant (respect. invariant) subloops of
CML Q/R. This completes the proof of Lemma 9.

Theorem 1. The following statements are equivalent for an arbitrary non-associ-
ative CML Q:

1) Q satisfies the maximum condition for subloops;

2) if Q contains a centrally nilpotent subloop of class n, then all its subloops of
this type are finitely generated;

3) if Q contains a centrally solvable subloop of class s, then all its subloops of
this type are finitely generated;

4) at least one maximal associative subloop of Q is finitely generated;

5) non-invariant associative subloops of Q are finitely generated;

6) invariant subloops of Q are finitely generated.

Proof. Let us suppose that the CML Q is non-periodic. It follows from Lemma
4 that the subloop Q3 belongs to the center of CML Q. If H is a centrally nilpo-
tent subloop of class n either a centrally solvable subloop of class s, or a maximal
associative subloop, or a non-invariant associative subloop, or an invariant subloop,
then the subloop < H,Q3 > will be of this type too. Therefore it follows from the
justice of one of the statements 2) – 6) of the theorem that the abelian group Q3

is finitely generated. Then it decomposes into a direct product Q3 = R × S, where
R is an abelian group without torsion, S is a finite abelian group [7]. It is obvious
that CML Q/R is periodic. Then by Lemma 5 it is locally finite.

If the CML Q satisfies one of the conditions 2) – 6) of theorem, then by Lemma
9 CML Q/R satisfies this condition as well. Then all centrally nilpotent subloops of
class n either all centrally solvable subloops of class s, or at least one maximal as-
sociative subloop, or all non-invariant associative subloops, or all invariant subloops
are respectively finite in CML Q/R. Therefore by Lemma 6 the CML Q/R sat-
isfies the minimum condition for subloops in any case. The center of CML Q/R
is finite. Then by 2) of Lemma 6 the CML Q/R is finite. Therefore the CML
Q is finitely generated and by Lemma 1, the condition 1) holds in it. It proves
the implications 2) → 1), 3) → 1), 4) → 1), 5) → 1), 6) → 1). The case when the
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CML Q is periodic is contained in the proof of previous case. As the implications
1) → 2), 1) → 3), 1) → 4), 1) → 5), 1) → 6) are obvious, the theorem is proved.

Theorem 2. The following statements are equivalent for an arbitrary non-associ-
ative CML Q with the multiplication group M:

1) Q satisfies the maximum condition for subloops;

2) M is finitely generated;

3) M satisfies the maximum condition for subgroups;

4) all invariant subgroups of M are finitely generated;

5) at least one maximal abelian subgroup of M is finitely generated;

6) if M contains a nilpotent subgroup of class n, then all its subgroups of this
type are finitely generated;

7) if M contains a solvable subgroup of class s, then all its subgroups of this type
are finitely generated.

Proof. If the CML Q satisfies the condition 1), then it is finitely generated, and by
[3] the associator loop Q′ is finite. By Lemma 2 the inner mapping group I(Q) of
Q is also finite. It is show in [8] that the relation

M(G/G′) ∼= M(G)/ < I(G),M(G′) >, (2)

holds in an arbitrary CML G, where M(G′) denotes a subgroup of the group M(G),
generated by the set {L(a)|a ∈ G′}. It is obvious that the group < I(Q),M(Q′) > is
finitely generated in our case. As the abelian group M(Q/Q′) is finitely generated,
then it follows from (2) that the group M is finitely generated as well. Consequently,
1) → 2).

If the group M is finitely generated, then by Lemma 3 it is nilpotent. It is
known (for instance, see [7]) that the maximum condition for subgroups holds in
such groups.

Let Z(Q) be the center of an arbitrary CML Q, {Z(M)} be the upper central
series of its multiplication group M(Q). Then

Z(Q) ∼= Z(M). (3)

Indeed, if ϕ ∈ Z(M), then ϕL(x) = L(x)ϕ for any x ∈ Q. Further, ϕL(x)y =
= L(x)ϕy, ϕ(xy) = xϕy. Let y = 1. Then ϕx = xϕ1, ϕx = L(ϕ1)x, ϕ = L(ϕ1).
Now, using the equality ϕ(xy) = xϕy we obtain that xy · ϕ1 = ϕ(xy) = x · ϕy =
= x · ϕ(y · 1) = x · yϕ1. Consequently, if ϕ ∈ Z(M), then ϕ = L(a) and a ∈ Z(Q).
Conversely, let a ∈ Z(Q). Then a · xy = ax · y, L(a)L(y)x = L(y)L(a)x,L(a)L(y) =
= L(y)L(a). It follows from the definition of group M that L(a) ∈ Z(M). Finally,
if a, b ∈ Z(Q), then the homomorphism (3) follows from the equalities a · bx =
= ab · x,L(a)L(b)x = L(ab)x,L(a)L(b) = L(ab).

In order to prove the implication 3) → 1) we use the relation

M/Z2(M) ∼= M(Q/Z(Q)) (4)
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which takes place in an arbitrary CML [3]. By Lemma 2 the group M/Z(M) is peri-
odic. Then the group M/Z2(M), as an homomorphic image of the group M/Z(M),
is also periodic. If the group M satisfies the maximum condition for subgroups, then
the center Z(M) and by (3), also the center Z(Q), are finitely generated. By Lemma
3 the group M is nilpotent. Then the group M/Z2(M) is also nilpotent and, as it
is periodic, then is finite. Hence it follows from (4) that the CML Q/Z(Q) is also
finite. Therefore the CML Q is finitely generated and by Lemma 1, the condition
1) holds in it. Consequently, 3) → 1).

Let us now suppose that the group M is non-periodic. By Lemma 2 the group
M/Z(M) is locally finite. It α is an element of infinite order in M, then αn ∈ Z(M)
for a certain natural number n. We denote by R the subgroup of group M, generated
by all elements of the form αn. It is obvious that the abelian group Z(M) is finitely
generated if the group M satisfies one of the conditions 4) – 7). Then Z(M) = N×S,
where N is a finitely generated abelian group without torsion, S is a finite abelian
group [7] and R = N. As N ∩ S = {1}, then Z(M)/N = (N × S) ∼= S. By Lemma
2 the group M/Z(M) is locally finite. It follows from the relation M/Z(M) ∼=
∼= (M/N)/(Z(M)/N) that the group M/N is the extension of the finite group
Z(M)/N by locally finite group M/Z(M). Therefore the group M/N is locally
finite.

By Lemma 2 the commutator group M
′ is locally finite and as the group N is

without torsion, then

N ∩ M
′ = {1}.

Let either the condition 4), or 5), or 6), or 7) hold in group M. By analogy with
the proof of Lemma 9 we can show that in the group M/N a condition analogue
with either conditions 4), or 5), or 6), or 7) holds. We have already shown that
group M/N is locally finite. Then either all invariant subgroups, or at least one
maximal abelian subgroup, or all nilpotent of class n subgroups, or all solvable of
class s subgroups are finite respectively in M/N. The group Z(M)/N is finite, then
it follows from the relation

M/Z(M) ∼= (M/N)/(Z(M)/N)

that in the group M/Z(M) the same condition as in group M/N holds. Further, it
follows from the relation

M/Z2(M) ∼= (M/Z1(M))/(Z2(M)/Z1(M)) = (M/Z1(M))/Z(M/Z1(M))

that M/Z2(M) satisfies the same condition as the group M/Z1(M), and it follows
from (4) that M(Q/Z(Q)) satisfies this condition as well, i.e. either all its invariant
subgroups are finite, or at least one maximal abelian subgroup is finite, or all its
nilpotent subgroups of class n are finite, or all its solvable subgroups of class s are
finite. In such a case, by Lemma 7 the group M(Q/Z(Q)) satisfies the minimum
condition for subgroups. It is obvious that the center of the group M(Q/Z(Q)) is
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finite. Then by 2) of Lemma 7 the group M(Q)/Z(Q) is finite, and consequently, the
CML Q/Z(Q) is also finite. The center Z(M) of the group M is finitely generated,
then it follows from (3) that the center Z(Q) of Q is finitely generated, too. Then
the CML Q is finitely generated and by Lemma 1 it satisfies the condition 1).
Consequently, if the group M is non-periodic the implications 4) → 1), 5) → 1),
6) → 1), 7) → 1) hold.

The case when the group M is periodic is proved by analogy for N = {1}.
Further, as the implications 3) → 4), 3) → 5), 3) → 6), 3) → 7) are obvious, the
theorem is proved.

Theorem 3. The following conditions are equivalent for an arbitrary non-associ-
ative commutative Moufang ZA-loop Q with the multiplication group M:

1) Q satisfies the maximum condition for subloops;

2) if Q contains a non-invariant (respect. invariant) centrally nilpotent subloop
of class n, then at least one maximal non-invariant (respect. invariant) centrally
nilpotent subloop of class n is finitely generated;

3) if Q contains a non-invariant (respect. invariant) centrally solvable subloop
of class s, then at least one maximal non-invariant (respect. invariant) centrally
solvable subloop of class s is finitely generated;

4) if Q contains a non-invariant (respect. invariant) centrally nilpotent subloop
of class n, then it satisfies the maximum condition for non-invariant (respect. in-
variant) centrally nilpotent subloops of class n;

5) if Q contains a non-invariant (respect. invariant) centrally solvable subloop
of class s, then it satisfies the maximum condition for non-invariant (respect. in-
variant) centrally solvable subloops of class s;

6) the center Z(Q) of CML Q is finitely generated;

7) the group M is finitely generated;

8) if M contains a non-invariant (respect. invariant) nilpotent subgroup of class
n, then at least one maximal non-invariant (respect. invariant) nilpotent subgroup
of class n is finitely generated;

9) if M contains a non-invariant (respect. invariant) solvable subgroup of class
s, then at least one maximal non-invariant (respect. invariant) solvable subgroup of
class s is finitely generated;

10) if M contains a non-invariant (respect. invariant) nilpotent subgroup of class
n, then it satisfies the maximum condition for non-invariant (respect. invariant)
nilpotent subgroups of class n;

11) if M contains a non-invariant (respect. invariant) solvable subgroup of class
s, then it satisfies the maximum condition for non-invariant (respect. invariant)
solvable subgroups of class s;

12) the center Z(M) of group M is finitely generated.

Proof. The implications 1) → 2), 1) → 3), 1) → 4), 1) → 5), 1) → 6) are obvious. If
H is a non-invariant (respect. invariant) centrally nilpotent of class n (or centrally
solvable of class s) subloop of the CML Q, then the subloop < N,Z(Q) > will
be of this type too. Therefore by Lemma 1 the implications 2) → 6), 3) → 6),
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4) → 6), 5) → 6) hold. Let us now suppose that the condition 6) holds in the CML Q
and let R be an invariant subloop, defined in Lemma 9. By 4) of Lemma 9 the center
Z(Q/R) is finitely generated and periodic. If follows from Lemma 5 that Z(Q/R)
is finite, and it follows from Lemma 8 that the CML Q/R satisfies the minimum
condition for subloops. As the center Z(Q/R) is finite, then by 2) of Lemma 6,
the CML Q/R is finite. By its construction, the subloop L is finitely generated,
therefore the CML Q is also finitely generated and the justice of condition 1) follows
from Lemma 1. Consequently, the conditions 1), 2), 3), 4), 5), 6) are equivalent.

The equivalence of conditions 7), 8), 9), 10), 11), 12) is proved by analogy, using
1), 2) of theorem 2. Finally, the equivalence of conditions 6), 12) follows from (3).
Therefore the theorem is fully proved.
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Discontinuous term of the distribution

for Markovian random evolution in R3

Alexander D. Kolesnik

Abstract. We consider the random motion at constant finite speed in the space R
3

subject to the control of a homogeneous Poisson process and with uniform choice of
directions on the unit 3-sphere. We obtain the explicit forms of the conditional cha-
racteristic function and conditional distribution when one change of direction occurs.
We show that this conditional distribution represents a discontinuous term of the
transition function of the motion.
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In this note we obtain the discontinuous term of the distribution for the three-
dimensional random motion at arbitrary finite speed (so-called, random evolution).
This is motivated by the previous works on planar random motions by Stadje (1987),
Masoliver et al. (1993), Kolesnik and Orsingher (2005) where the explicit form of the
transition function of the process was obtained by substantially different methods. It
was shown that the transition density of the motion is discontinuous on the boundary
of the diffusion area, and the discontinuous term of the distribution is the Green’s
function to the two-dimensional wave equation. Amazingly, this discontinuous term
is determined by the conditional distribution, corresponding to the case when only
one change of direction occurs (see Kolesnik and Orsingher (2005, Remark 1)). The
three-dimensional motion with unit speed was examined by Stadje (1989) where the
transition density was derived by means of recurrent arguments. This transition
density consists of two terms (see Stadje (1989, formulae (1.3) and (4.21)). The first
one is a continuous function and has the form of a fairly complicated integral, which
can scarcely be exactly evaluated. The second term is a logarithmic function which
is discontinuous on the boundary of the diffusion area.

Here we derive this discontinuous term for a motion at arbitrary finite speed by
means of characteristic functions and show that, similarly to the planar case, it is
determined by the conditional distribution corresponding to the case when only one
change of direction occurs. Such a behaviour of the distribution near the border of
diffusion area is a very interesting feature of the two and three-dimensional motions.
However, the nature of this phenomenon is not entirely clear.

Let’s consider a particle starting its motion from the origin x1 = x2 = x3 = 0 of
the space R3 at time t = 0. The particle is endowed with constant, finite speed c.

c© Alexander D. Kolesnik, 2006
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The initial direction is a three-dimensional random vector with uniform distribution
on the unit 3-sphere

S1 =
{
(x1, x2, x3) ∈ R3 : x2

1
+ x2

2
+ x2

3
= 1

}
.

The particle changes direction at random instants which form a homogeneous Pois-
son process of rate λ > 0. At these moments it instantaneously takes on the new
direction with uniform distribution on S1, independently of its previous motion.

Let X(t) = (X1(t),X2(t),X3(t)) be the position of the particle at an arbitrary
time t > 0. Consider the conditional distributions

Pr{X(t) ∈ dx | N(t) = n} =

= Pr{X1(t) ∈ dx1,X2(t) ∈ dx2,X3(t) ∈ dx3 | N(t) = n}, n ≥ 1,

where N(t) is the number of Poisson events that have occurred in the interval (0, t)
and dx = dx1dx2dx3 is the infinitesimal volume of the space R3.

At any time t > 0 the particle, with probability 1, is located in the three-
dimensional ball of radius ct

Bct =
{
(x1, x2, x3) ∈ R3 : x2

1
+ x2

2
+ x2

3
≤ c2t2

}
.

The distribution Pr {X(t) ∈ dx} , x ∈ Bct, t ≥ 0, consists of two components.
The singular component corresponds to the case when no Poisson event occurs in
the interval (0, t) and is concentrated on the sphere

Sct = ∂Bct =
{
(x1, x2, x3) ∈ R3 : x2

1 + x2

2 + x2

3 = c2t2
}

.

In this case the particle is located on the sphere Sct and the probability of this event
is

Pr {X(t) ∈ Sct} = e−λt.

If one or more than one Poisson events occur, the particle is located strictly
inside the ball Bct, and the probability of this event is

Pr {X(t) ∈ Int Bct} = 1 − e−λt.

The part of the distribution Pr {X(t) ∈ dx} corresponding to this case is concen-
trated in the interior

Int Bct =
{
(x1, x2, x3) ∈ R3 : x2

1
+ x2

2
+ x2

3
< c2t2

}
,

and forms its absolutely continuous component.
Therefore there exists the density p(x, t) = p(x1, x2, x3, x4, t), x ∈ Int Bct, t >

0, of the absolutely continuous component of the distribution Pr {X(t) ∈ dx}.
If N(t) = n, the displacement of the particle X(t) at any time t > 0 is determined

by the coordinates

Xk(t) = c

n+1∑

j=1

(sj − sj−1)x
k
j , k = 1, 2, 3, (1)
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where xk
j are the components of the independent random vectors xj = (x1

j , x
2

j , x
3

j ),
j = 1, ..., n + 1, uniformly distributed on the unit sphere S1; the sj, j = 1, ..., n,
represent the instants at which Poisson events occur, and s0 = 0, sn+1 = t.

The conditional characteristic function can be written as follows:

Hn(α, t) = E
{
ei(α,X(t))| N(t) = n

}
, n ≥ 1, (2)

where α = (α1, α2, α3) ∈ R3 is the real vector of inversion parameters and (α,X(t))
denotes the scalar (inner) product of the vectors α and X(t).

By substituting (1) into (2) we have

Hn(α, t) = E




exp



ic

3∑

k=1

αk

n+1∑

j=1

(sj − sj−1)x
k
j








 =

= E




exp



ic
n+1∑

j=1

(sj − sj−1)(α, xj)








 ,

where (α, xj) is the scalar (inner) product of the vectors α and xj. Computing the
expectation in this last equality we obtain

Hn(α, t) =
n!

tn

∫ t

0

ds1

∫ t

s1

ds2 . . .

∫ t

sn−1

dsn






n+1∏

j=1

[
1

mes S1

∫

S1

eic(sj−sj−1)(α,xj) dxj

]


 .

The surface integral over the unit sphere S1 in the last equality can easily be
computed by passing to three-dimensional polar coordinates, and it is

∫

S1

eic(sj−sj−1)(α,xj) dxj = 4π
sin(c(sj − sj−1)‖α‖)

c(sj − sj−1)‖α‖
, (3)

where ‖α‖ =
√

α2

1
+ α2

2
+ α2

3
. Taking into account that mes S1 = 4π, we obtain

Hn(α, t) =
n!

tn

∫ t

0

ds1

∫ t

s1

ds2 . . .

∫ t

sn−1

dsn






n+1∏

j=1

sin(c(sj − sj−1)‖α‖)

c(sj − sj−1)‖α‖




 . (4)

This expression can scarcely be explicitly computed for arbitrary n ≥ 1. How-
ever, for the important particular case n = 1 this expression can be evaluated, and
its inverse Fourier transform leading to the conditional distribution, corresponding
to the case when only one change of direction occurs, can be explicitly given.

Theorem. For any t > 0 the conditional distribution corresponding to the only
change of direction has the form

Pr{X(t) ∈ dx | N(t) = 1} =
1

4π(ct)2‖x‖
ln

(
ct + ‖x‖

ct − ‖x‖

)
dx, (5)
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x = (x1, x2, x3) ∈ Int Bct, ‖x‖ =
√

x2

1
+ x2

2
+ x2

3
, dx = dx1dx2dx3.

Proof. From (4) we have
H1(α, t) =

=
1

t

∫ t

0

sin(cs‖α‖)

cs‖α‖

sin(c(t − s)‖α‖)

c(t − s)‖α‖
ds =

=
1

(ct‖α‖)2

∫ t

0

sin(cs‖α‖) sin(c(t − s)‖α‖)

[
1

s
+

1

t − s

]
ds =

=
2

(ct‖α‖)2

∫ t

0

sin(cs‖α‖) sin(c(t − s)‖α‖)

s
ds =

=
sin(ct‖α‖)

(ct‖α‖)2

∫ t

0

2 sin(cs‖α‖) cos(cs‖α‖)

s
ds −

cos(ct‖α‖)

(ct‖α‖)2

∫ t

0

2 sin2(cs‖α‖)

s
ds =

=
sin(ct‖α‖)

(ct‖α‖)2

∫ t

0

sin(2cs‖α‖)

s
ds −

cos(ct‖α‖)

(ct‖α‖)2

∫ t

0

1 − cos(2cs‖α‖)

s
ds =

=
sin(ct‖α‖)

(ct‖α‖)2
Si(2ct‖α‖) +

cos(ct‖α‖)

(ct‖α‖)2
Ci(2ct‖α‖), (6)

where Si(x) and Ci(x) are the modified integral sine and cosine, respectively, given
by

Si(x) =

∫ x

0

sin z

z
dz, Ci(x) =

∫ x

0

cos z − 1

z
dz. (7)

To prove the statement of the theorem, we need to show that the inverse Fourier
transform of (6) with respect to α = (α1, α2, α3) leads to the conditional distribution
(5). However, it is simpler to show that, inversely, the Fourier transform of function
(5) in the ball Bct coincides with (6). Passing to three-dimensional polar coordinates
we have ∫

Bct

ei(α,x) Pr{X(t) ∈ dx | N(t) = 1} =

=
1

4π(ct)2

∫ ct

0

dr

{
r ln

(
ct + r

ct − r

)
×

×

∫ π

0

∫
2π

0

eir(α1 sin θ1 sin θ2+α2 sin θ1 cos θ2+α3 cos θ1) sin θ1 dθ1 dθ2

}
.

According to formula 4.624 of Gradshteyn and Ryzhik (1980)

∫ π

0

∫
2π

0

eir(α1 sin θ1 sin θ2+α2 sin θ1 cos θ2+α3 cos θ1) sin θ1 dθ1 dθ2 = 4π
sin(r‖α‖)

r‖α‖
.
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Therefore, applying the auxiliary Lemma (see below), we obtain

∫

Bct

ei(α,x) Pr{X(t) ∈ dx | N(t) = 1} =

=
1

(ct)2‖α‖

∫ ct

0

sin(r‖α‖) ln

(
ct + r

ct − r

)
dr =

=
1

ct‖α‖

∫
1

0

sin(ct‖α‖z) ln

(
1 + z

1 − z

)
dz =

=
1

(ct‖α‖)2

[
sin(ct‖α‖) Si(2ct‖α‖) + cos(ct‖α‖) Ci(2ct‖α‖)

]
,

and this coincides with (6). The theorem is proved.

Remark 1. Taking into account the well-known equality

Arcth(z) =
1

2
ln

(
1 + z

1 − z

)

we can rewrite (5) as follows:

Pr{X(t) ∈ dx | N(t) = 1} =
1

2π(ct)2‖x‖
Arcth

(
‖x‖

ct

)
dx,

and, for c = 1, this is similar to the second term of formulae (1.3) and (4.21) of Stadje
(1989). The first (integral) term of these formulae, obviously, is determined by the
conditional distributions corresponding to the case when more than one change of
direction occurs.

Remark 2. The function (5) represents the discontinuous term of the distribution
of the process X(t). Formula (5) shows that the density near the border of the
ball Bct is large and this corresponds to the case when only one change of direction
occurs. In other words, if only one change of direction occurs, the conditional density
is minimal in the neighbourhood of the origin and increases as we approach to the
border. This is similar to the behaviour of the analogous conditional density in the
planar case (see Kolesnik and Orsingher (2005, Remark 1)).

Finally, we establish an auxiliary lemma which has been used in the proof of our
theorem.

Lemma. For arbitrary a > 0 the following relation holds

∫
1

0

sin(ax) ln

(
1 + x

1 − x

)
dx =

1

a

[
sin a Si(2a) + cos a Ci(2a)

]
, (8)

where the integral is treated in the improper sense.
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Proof. We have ∫
1

0

sin(ax) ln

(
1 + x

1 − x

)
dx =

=

∫
1

0

sin(ax) ln(1 + x) dx −

∫
1

0

sin(ax) ln(1 − x) dx. (9)

Let’s evaluate separately the integrals in the right-hand side of (9). Integrating
by parts and applying formula 2.641(2) of Gradshteyn and Ryzhik (1980) we obtain
for the first integral of (9):

∫
1

0

sin(ax) ln(1 + x) dx =

= −
1

a

(
cos a ln 2 −

∫
1

0

cos(ax)

1 + x
dx

)
=

= −
cos a

a
ln 2 +

1

a

[
cos a (ci(2a) − ci(a)) + sin a (si(2a) − si(a))

]
. (10)

Here si(x) and ci(x) are the standard integral sine and cosine, respectively, given by

si(x) = −
π

2
+ Si(x), ci(x) = C + ln x + Ci(x), (11)

and C = 0.5772 . . . being the Euler constant. From (11) we easily obtain

ci(2a) − ci(a) = ln 2 + Ci(2a) − Ci(a),

si(2a) − si(a) = Si(2a) − Si(a).

Substituting these expressions into (10) we obtain the first integral of (9):

∫
1

0

sin(ax) ln(1 + x) dx =

=
cos a

a

(
Ci(2a) − Ci(a)

)
+

sin a

a

(
Si(2a) − Si(a)

)
, (12)

where Ci(x) and Si(x) are given by (7).
The function in the second integral of (9) is unbounded at the point x = 1.

Therefore we can evaluate this integral in the improper sense only. Similarly, inte-
grating by parts and applying formula 2.641(2) of Gradshteyn and Ryzhik (1980)
we have

∫
1

0

sin(ax) ln(1 − x) dx = lim
ε→0+

∫
1−ε

0

sin(ax) ln(1 − x) dx =

= −
1

a
lim

ε→0+

{
cos (a(1 − ε)) ln ε +

∫
1−ε

0

cos(ax)

1 − x
dx

}
=
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= −
1

a
lim

ε→0+
{cos (a(1 − ε)) ln ε −

− [cos a (ci(−aε) − ci(−a)) − sin a (si(−aε) − si(−a))]} . (13)

Using (11) and the well-known equalities

si(−x) = −si(x) − π, Ci(−x) = Ci(x),

we get
ci(−aε) − ci(−a) = ln ε + Ci(aε) − Ci(a),

si(−aε) − si(−a) = Si(a) − Si(aε).

Substituting this into (13) we obtain the second integral in the right-hand side of
(9): ∫

1

0

sin(ax) ln(1 − x) dx =

= −
1

a
lim

ε→0+
{(cos (a(1 − ε)) − cos a) ln ε −

− cos a (Ci(aε) − Ci(a)) + sin a (Si(a) − Si(aε))} =

= −
1

a
[sin a Si(a) + cos a Ci(a)] . (14)

Substituting now (12) and (14) into (9) we obtain (8). The lemma is proved.
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On an algebraic method in the study

of integral equations with shift

Vasile Neaga

Abstract. The work is centred on the sdudy of algebra A generated by singular
integral operators with shifts with continuous coefficients. We determine the set of
maximal ideals of quotient algebra Â, Â = A/T, with respect to the ideal of compact
operators. Prove that the bicompact of maximal ideals of Â is isomorphic to the
topological product (Γ × j) × (Γ × k), where j = ±1 and k = ±1. Necessary and
sufficient condition are established for operators of A to be noetherian and to admit
equivalent regularization in space Lp(Γ, ρ), regularizators for noetherian operators are

constructed. The study is done in the space Lp(Γ, ρ) with weight ρ(t) =
n
Q

k=1

|t− tk|
β

k

and is based on the theory of Ghelfand [1] concerning Banach algebras.

Mathematics subject classification: 45E05.
Keywords and phrases: Banach algebras, noetherian singular operators, regulari-
zation of operator.

I. We remind that an operator A ∈ L(B) admits a regularization if there
exists an operator M ∈ L(B) so that AM = I + T1,MA = I + T2, where T1 and
T2 are compact operators in the space B. The class of operators which admit a
regularization is of special interest due to the fact that operators of this class have
the fallowing properties (E.Noether theorems):

1) Ecuations Ax = 0 and A∗ϕ = 0 have a finite number of linear independent
solutions.

2) Ecuation Ax = y is solvable if and ouly if the right hand part is orthogonal to
all solutions of equation A∗ϕ = 0.

Operators with properties 1) and 2) are called noetherian and are essential
generalizations of the class of operators of the form I + T, T compact, for which
theorems similar to that of Fredholm are true.

Let A ∈ L(B) be a noetherian operator. If it is known the operator M, the
regularizator for A, then the problem of solvability of the equation

Ax = y (1)

can be reduced to the solvability of the equation

MAx = My, (2)

where the operator MA − I is compact. To the last equation different methods
to solve equations of the form (I + T )x = y can be applied, where T is a compact

c© Vasile Neaga, 2006

69



70 VASILE NEAGA

operator. Of special interest is the case when the ecuations Ax = y and MAx = My
are equivalent1 for every y. This is true if and only if kerM = {0}.

We say that an operator A admits an equivalent regularization if it possesses a
regularizator M for which equations (1) and (2) are equivalent for every y ∈ B. In
this case the operator M is called equivalent regularizator for the operator A. From
what we said above it results that operator M is an equivalent regularizator for A
if it is a regularizator for A and is left invertible.

It is well known [2] that a singular integral operator2 A = aI + bS + T admits
a regularization if and only if a2(t) − b2(t) 6= 0 for all t ∈ T. For example, as

a regularizator one can take the operator R =
a

a2 − b2
I −

b

a2 − b2
S. Under these

conditions the operator A∗, obviously, also admits a regularization and thus for A
and A∗ E.Noether theorems hold.

The main result of this work is given by (see [3])

Theorem 1. The operator

A = aI + bS + (cI + dS)V + T, a, b, c, d ∈ Cα(Γ) (3)

admits a regularization in Lp(Γ, ρ) if and only if

(a(t) + b(t))2 − (c(t) + d(t))2 6= 0, (a(t) − b(t))2 − (c(t) − d(t))2 6= 0 (4)

for every t ∈ T. Under conditions (4) the operator

R =
α

α2 − δ2
P +

β

β2 − γ2
Q − (

δ

α2 − δ2
P +

γ

β2 − γ2
Q)V, (5)

where α = a + b, β = a − b, δ = c + d, γ = c − d, P =
1

2
(I + S), Q =

1

2
(I − S), is a

regularizator for A.

II. Denote by Cω(Γ)(⊂ C(Γ) the set of functions a(t) continuous on Γ and
satifying the condition a(ω(t)) = a(t). Evidently, this set forms a commutative
algebra with identity and the norm ||a||Cω(Γ) = ||a||C(Γ). It is also obvious that
every function of the form a(t) = b(t) · b(ω(t)), where b ∈ C(Γ), is contained in
Cω(Γ). The converse of this statement is also true: every function a ∈ Cω(Γ) may
be represented in the form a(t) = b(t) · b(ω(t)) where b ∈ C(Γ). We can join these
remarks in the assertion that the algebra Cω(Γ) is characterized by the relation

Cα(Γ) = {b(t) · b(ω(t))|b ∈ C(Γ)}.

Representation of functions from Cω(Γ) in the form a(t) = b(t) ·b(ω(t)) is unique
up to some constant factors c1 and c2, c1 · c2 = 1. Later on we shall assume that
c1 = c2 = 1. Thus, for example, if Γ is the unit circle and ω(t) = −t, then the

1Equations Ax = y and MAx = My are called equivalent if they have the same set of solutions.
2By T with indices we denote compact operators.
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functions a1(t) = −t2, a2(t) = t2 belong to Cω(Γ) and they can be represented as
a1(t) = t · (−t) and, respectively a2(t) = it · (−it).

Let Γ be a closed Liapunov type contour, S a singular integral operator with
Cauchy kernel and V an operator of shifting, (V ϕ)(t) = ϕ(α(t)), where the function
ω : Γ → Γ satisfies conditions:

a) ω(ω(t)) ≡ ω(t), (ω(t) 6= t);

b) there exists derivative ω
′

(t) 6= 0;

c) ω
′

(t) ∈ Hµ(Γ).

Denote by A the algebra generated by S, V and the set of alle operators of
multiplication by functions a(t), a ∈ Cω(Γ). A is a subalgebra of algebra L(Lp(Γ, ρ))
formed by the set of linear and bounded operators acting in the space Lp(Γ, ρ).

Theorem 2. A is a closed algebra.

In the proof of this theorem we use properties of S and V, caracterization of
algebra Cω(Γ) and the following result [2].

Lemma 1. If the operator (Mϕ) = a(t)ϕ(t) of multiplication by function a(t)
continuuous on Γ, can be represented in the form M = B + T, where B is invertible
and T is an operator compact in Lp(Γ, ρ), then a(t) is not vanished on Γ.

Remark. The norm in algebra A, defined as operator norm, is topologically equi-
valent to the norm

||A||1 = max |a(t)| + max |b(t)| + max |c(t)| + max |d(t)| + ||T ||.

The set T = T(L(Lp(Γ, ρ))) of compact operators in the space Lp(Γ, ρ) is included

in A and form a twosided closed ideal. Consider the quotient algebra Â = A/T, which
is also a Banach algebra. Four continuous functions a(t), b(t), c(t) and d(t) define
uniquely a coset Â and; conversely, every element belonging to some coset of Â is of
the form aI + bS + (cI + dS)V + T, where T is a compact operator. Really, if the
elements aI +bS+(cI+dS)V +T and a1I +b1+(c1I +d1S)V +T1 are in some coset,
then their difference (a−a1)I +(b−b1)S +((c−c1)I +(d−d1)S)V +T −T1 must be
a compact operator. Under these condutions from Theorem 2 one can deduce that
the operators (a− a1)I, (b− b1)I, (c− c1)I, (d− d1)I are compact, but from Lemma
1 this is possible if and only if a(t) ≡ a1(t), b(t) ≡ b1(t), c(t) ≡ c1(t), d(t) ≡ d1(t).

Let us return to algebra Â. The element of Â determined by the functions
a(t), b(t), c(t) and d(t) is denoted by {aI + bS + (cI + dS)V }. From properties of
operators S and V [4–6] and by direct calculations we get

Theorem 3. The algebra Â is commutative and, besides, the equality

{aI + bS + (cI + dS)V } · {a1I + b1S + (c1I + d1S)V } =

= {aa1 + bb1 + cc1 + dd1)I + (ab1 + a1b + cd1 + c1d)S+ (6)
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+((ac1 + a1c + bd1 + b1d)I + (ad1 + a1d + bc1 + b1c)S)V }

is true.

The norm in Â is defined by the equality

|{aI + bS + (cI + dS)V }| = inf
T∈T

||aI + bS + (cI + dS)V ||

and it is topologically equivalent to the norm

|{aI + bS + (cI + dS)V }|1 = max |a(t)| + max |b(t)| + max |c(t)| + max |d(t)|.

III. Further, elements of algebra Â will be expressed in the form

{aP + bQ + (cP + dQ)V }, a, b, c, d ∈ Cω(Γ), (7)

where P =
1

2
(I + S) and Q =

1

2
(I − S).

We shall describe all maximal ideals of Â. This result will enable us to establish
necessary and sufficient condition under which elements of Â are invertible. Using
this result we shall also construct regularizators for noetherian operators.

Theorem 4. The set of elements {ap + bQ + (cP + dQ)V } ∈ Â does form a
maximal ideal of Â if the function a(t) + c(t) is vanished at the same point t0 ∈ Γ.
The set of elements {aP + bQ + (cP + dQ)V } ∈ Â for which one of the functions
a(t)− c(t), b(t) + d(t), or b(t)− d(t) is vanished at the same point (every function at
its own point) also form a maximal ideal. There are no other maximal ideals.

By virtue of I.Ghelfand [1] results, according to which an element of some Banach
algebra is invertible if and only if it does not belong to ony maximal ideal, we obtain
the following

Theorem 5. An element {aP + bQ + (cP + dQ)V } ∈ Â is invertible in Â if and
only if the functions a(t) ± c(t) and b(t) ± d(t) are not vanished on contour Γ.

We shall establish some other properties of algebra Â. Observe that the intersec-
tion of all maximal ideals of Â coincides to the null ideal. In fact, by Theorem 4, if
{aP + bQ+(cP +dQ)V } ∈ ∩M1, then a(t)+ c(t) ≡ 0, a(t)− c(t) ≡ 0, b(t)+d(t) ≡ 0
and b(t) − d(t) ≡ 0, that is {aP + bQ + (cP + dQ)V } = {0}. Consequently,

1o. Algebra has no radical.

2o. Â is an involution algebra.

Define involution by

{aP + bQ + (cP + dQ)V }
′

= {āP + b̄Q + (c̄P + d̄Q)V }.

All properties of involution are evident. We shall show only that for every element
{aP + bQ + (cP + dQ)V } ∈ Â there exists in Â the element

[I + {(aP + bQ + (cP + dQ)V ) · (āP + b̄Q + (c̄P + d̄Q)V }]−1.
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Compute

[I + {ap + bQ + (cP + dQ)V ) · (āP + b̄Q + (c̄P + d̄Q)V }] =

= {(1 + |a|2 + |c|2)P + (1 + |b|2 + |d|2)Q + ((ac̄ + āc)P + +(bd̄ + b̄d)Q)V },

I + |b(t)|2 + |d(t)|2 ± (b(t)d̄(t) + b̄(t)d(t) = 1 + |b(t) ± d(t)|2 > 0.

Hence, there exists

[I + {aP + bQ + (cP + dQ)V ) · (āP + b̄Q + (c̄P + d̄Q)V }]−1 =

=






1 + |a|2 + |c|2

(1 + |a − c|2)(1 + |a + c|2)
P +

1 + |b|2 + |d|2

(1 + |b − d|2)(1 + |b + d|2)
Q−

−
ac̄ + āc

(1 + |a − c|2)(1 + |a + c|2)
P +

bd̄ + b̄d

(1 + |b − d|2)(1 + |b + d|2)
Q)V






and this element belougs to Â. Property 2o is proved.
Denote by M the bicompact of maximal ideals of Â.

3o. M is isomorphic to the topological product (Γ × j) × (Γ × k) : M = (Γ ×
j) × (Γ × k), where j = ±1 and k = ±1.

It is known [1] that every commutative Banach algebra without radical is isomor-
phically mapped into an algebra of functions defined on bicompact of maximal ideals.
It is easy to observe that in our case to the element A = {aP +bQ+(cP +dQ)V } ∈ Â

the function A(M) = (a(t) + jc(t))(b(t) + kf(t)) corresponds.

4o. Algebra Â is a symmetric algebra without radical.
In commutative and symmetric algebra R every element is invertible or is a

generalized zero divisor (see [1]), that is, there exists a sequence (yn), yn ∈ R, |yn| = 1
and lim

n→∞

||ynx|| = 0. Thus, every element A = {aP + bQ + (cP + dQ)V }, for which

one of the functions a(t) + c(t), a(t)− c(t), b(t) + d(t) or b(t)− d(t) is vanished on Γ,
is a generalized zero divisor.

Obviously, L(Lp(Γ, ρ)) \ T is a (noncommutative) Banach algebra including Â.

5o. An element A ∈ A is invertible in L(Lp(Γ, ρ))\T if and only if it is invertible

in Â.
In fact, let A be invertible in L(Lp(Γ, ρ)) \ T and suppose it is not invertible

in Â, A−1 6∈ Â. Then, by virtue of 4o, A is a generalized zero divisor. But this is
impossible, since in this case the invertible operator A should be a generalized zero
divisor in L(Lp(Γ, ρ)) \ T.

IV. Let us approach the problem of regularization of singular integral operators
with shift ω, A = aI + bS = (cI + dS)V + T. It is easy to observe that the operator
A admits a regularization in algebra L(Lp(Γ, ρ)) if and only if the element {aI +

bS + (cI + dS)V } ∈ Â is invertibile in L(Lp(Γ, ρ)) \ T. In order to apply assertions
of Theorem 5 and property 5o we use the operators P = 1

2
(I + S), Q = 1

2
(I − S),

I = P + Q and S = P −Q. Then the operators A is transcribed as, A = αP + βQ+
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(δP +γQ)V +T, where α = a+b, β = a−b, δ = c+d, γ = c−d. From Theorem 5 and
property 5o it results that {αP + βQ + (δP + γQ)V } is invertible in L(Lp(Γ, ρ)) \T

if and only if the functions α2(t) − δ2(t) and β2(t) − γ2(t) do not vanish on Γ. In
other words, a singular integral operator A with shift, A = ai+bS +(cI +dS)V +T,
admits a regularization in L(Lp(Γ, ρ)) if only if

α2(t) − δ2(t) = (a(t) + b(t))2 − (c(t) + d(t))2 6= 0,

β2(t) − γ2(t) = (c(t) + d(t))2 − (c(t) + d(t))2 6= 0.

Thus, condition (4) of Theorem 1 are satisfied. With the help of judgements
used in the proof of Theorem 5 it is supplementary obtained that AR = I + T1 and
RA = I + T2, where R is defined by relation (5) and T1, T2 are compact operators.

Theorem 6. The operator A = αP + βQ + (δP + γQ)V + T admits an equivalent
regularization if and only if the following conditions

α2(t) − δ2(t) 6= 0, β2(t) − γ2(t) 6= 0, ind
α2(t) − δ2(t)

β2(t) − γ2(t)
≤ 0

are verified. Under these conditions

IndA = −
1

2
ind

α2(t) − δ2(t)

β2(t) − γ2(t)
.

For IndA < 0 all solutions to equation Ax = y are obtained from the relation
x = Rz, where z runs all solutions to equation RAz = y and R is defined by (5).

Cases when the function of shifting, ω, changes the orientation of contour Γ and
systems of singular integral equation with shift will be approached, possibly, in other
works of the author.
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A REPUBLICII MOLDOVA. MATEMATICA
Number 2(51), 2006, Pages 75–86
ISSN 1024–7696
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Abstract. A class of planar perturbed Hamiltonian systems are studied in the
present work in order to identify the limit cycles. The closed curves of the unperturbed
associated Hamiltonian system are described. Using the Abelian integral method we
find the detection functions. Numerical explorations are presented to illustrate the
distribution of the limit cycles.
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1 Introduction

In [1] the authors study a family of dynamical systems given by

ẋ = yP0(x), ẏ = −x + P2(x)y2 + P3(x)y3, (1)

for some particular polynomials P0, P2, P3 proving the existence of eight limit cycles.
Considering first a more general class of dynamical systems of the form

ẋ = yP0(x, y), ẏ = P1(x, y) + P2(x, y)y2 + P3(x, y)y3, (2)

and particularizing P0(x, y), P1(x, y), P2(x, y), P3(x, y) we get a system given by

ẋ = 4by
(
−y2 + ax2 + 1

)
, ẏ = 4ax

(
x2 − by2 − 1

)
. (3)

This system is a Hamiltonian system with the Hamilton function given by

H (x, y) = −(ax4 + by4) + 2abx2y2 + 2
(
ax2 + by2

)
. (4)

Indeed, given the Hamilton function (4), the associated Hamiltonian system is

ẋ =
∂H

∂y
, ẏ = −

∂H

∂x
, (5)

which easily leads to (3). A similar Hamiltonian system has been studied in [2–4].
In this work we study the existence of the limit cycles of some perturbations of
the system (5). The problem of the existence of limit cycles in a planar differential
system of a given degree is known as the Hilbert‘s 16th problem. This problem is

c© Gheorghe Tigan, 2006
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still unsolved even for the quadratic polynomial differential systems. A method used
to deal with such problems is the Abelian integral method [5]. Other methods can
be found in [6, 7] and [8]. Further reading on limit cycles can be found in [9–15]

This paper is organized as follows. In Section 2, we give some preliminary re-
sults. In Section 3, we study the global portrait of the unperturbed system. In the
last Section 4, we find the numerical values of the detection functions of the per-
turbed system. Finally, we present the distribution of the limit cycles in a particular
representative case.

2 Preliminary results

It is known that one way to produce limit cycles is by perturbing an Hamiltonian
system which has one or more centers, in such a way that limit cycles bifurcate in
the perturbed system from some of the periodic orbits in the original system.

The following perturbed Hamiltonian system

{
ẋ = y(1 + x2 − ay2) + εx(uxn + vyn − λ),
ẏ = −x(1 − cx2 + y2) + εy(uxn + vyn − λ)

(6)

where ac > 1, a > c > 0, 0 < ε ≪ 1, u, v, λ are the real parameters and n = 2k, k
integer positive, has been studied in [16–19].

The following result is reported in [17].

Theorem 1. Consider the perturbed Hamiltonian system

ẋ =
∂H

∂y
+ P (x, y, ε), ẏ = −

∂H

∂x
+ Q(x, y, ε). (7)

Assume that P (x, y, ε), Q(x, y, ε) are polynomials of given degree (perturba-
tions of the Hamiltonian system), P (x, y, 0) = Q(x, y, 0) = 0, the closed curve
Γh : H(x, y) = h defined by the Hamiltonian H(x, y) of the system (7) is a pe-
riodic orbit that extends outside as h increasing, and Γh(D) is the area inside Γh. If
there exists h0 such that function

A(h) =

∫

Γh(D)

[P ′′

xε(x, y, 0) + Q′′

yε(x, y, 0)]dxdy (8)

satisfies A(h0) = 0, A′(h0) 6= 0, εA′(h0) < 0(> 0), then system (7) has only one
stable (unstable) limit cycle nearby Γh0 for ε very small. If Γh constricts inside as
h increasing, the stability of the limit cycle is opposite with above. If A(h) 6= 0, then
system (7) has no limit cycle.

The integral A(h) is called the Abelian integral [5].
If the form of the system (7) is:
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ẋ =
∂H

∂y
+ εx(p(x, y) − λ),

ẏ = −
∂H

∂x
+ εy(q(x, y) − λ)

(9)

where p(0, 0) = q(0, 0) = 0, then, using the above Theorem 1, from A(h) = 0, we
get:

λ = λ(h) =

∫

Γh(D)

f(x, y)dxdy

2
∫

Γh(D)

dxdy
(10)

where f(x, y) = xp′x(x, y) + yp′y(x, y) + p(x, y) + q(x, y).
This function λ(h) is called the detection function of the system (9).
From Theorem 1 and using the detection function λ(h) we get the following

result:

Proposition 2. a) If (h0, λ(h0)) is an intersecting point of line λ = λ0 and the
detection curve λ = λ(h), and λ′(h0) > 0(< 0), then system (9) has only one stable
(unstable) limit cycle nearby Γh0 when λ = λ0; b) If line λ = λ0 and the detection
curve λ = λ(h) have no intersecting point, then the system (9) has no limit cycle
when λ = λ0. If the Γh constricts inside as h increasing, the stability of the limit
cycle is opposite with above.

Consider in the following the perturbed Hamiltonian system given by:

{
ẋ = 4by

(
−y2 + ax2 + 1

)
+ P (x, y, ε) ,

ẏ = 4ax
(
x2 − by2 − 1

)
+ Q (x, y, ε)

(11)

where P (x, y, ε) = εx((n + 2)vyn − c
s + 1

r + 1
xrys − ux2y2 − λ), Q (x, y, ε) = εy((n +

2)uxn + cxrys − ux2y2 − λ), r + s = n, 0 < a < b, ab < 1, 0 < ε ≪ 1 u, v, λ, c are
the real parameters and n = 2k, k positive integer.

3 The behavior of the unperturbed system

The unperturbed system corresponding to system (11) is the system (11) in the
case ε = 0.

System (3) has nine finite singular points and they are:

A1

(
1

ab − 1

√
(1 − ab) (1 + b),

1

ab − 1

√
(1 − ab) (a + 1)

)
,

A2

(
1

ab − 1

√
(1 − ab) (1 + b),

1

ab − 1

√
(1 − ab) (a + 1)

)
,

A3

(
−

1

ab − 1

√
(1 − ab) (1 + b),

1

ab − 1

√
(1 − ab) (a + 1)

)
,
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A4

(
−

1

ab − 1

√
(1 − ab) (1 + b),

1

ab − 1

√
(1 − ab) (a + 1)

)
,

B1,2 (0,±1) ; C1,2 (±1, 0) and O (0, 0) .

By computing eigenvalues at each singular point we have that O, A1, A2, A3, A4

are centers while the other singular points B1, B2, C1, C2 are hyperbolic saddle
points.

As we said above, the Hamiltonian of the system (3) is

H (x, y) = −(ax4 + by4) + 2abx2y2 + 2
(
ax2 + by2

)
= h. (12)

Hence H (Ai) =
a + b + 2ab

1 − ab
, i = 1, 4, H (Ck) = a, H (Bk) = b, k = 1, 2 and

H (O) = 0.
Because 0 < a < b we get that: H (O) < H (B1) < H (C1) < H (A1) .
In polar coordinates, x = r cos θ, y = r sin θ, the system (3) becomes:

r′ = −r3p′(θ) + rq′(θ), θ′ = −q (θ) + r2p(θ) (13)

and the Hamiltonian (12)

H(r, θ) = −r4p(θ) + 2r2q(θ) = h, (14)

where

p(θ) = a cos4 θ + b sin4 θ − 2ab cos2 θ sin2 θ, q(θ) = a cos2 θ + b sin2 θ. (15)

Remark. The equilibrium points A1, A2, A3, A4 lie on the lines d± : θ =

± arctan

√
a + 1

b + 1
.

Theorem 3. ([2,20])
As h varies on the real line, the level curves defined by Hamiltonian (14) can be

divided as follows:
1. Γh

1
: −∞ < h < 0, this corresponds to an orbit that surrounds all critical

points, Fig. 1 a).
2. Γh

2
∪Γh

1
: 0 < h < a, this corresponds to an orbit

(
Γh

2

)
that surrounds only the

origin and a curve of type
(
Γh

1

)
, Fig. 1 b)-a).

3. Γh
3

: a < h < b, this corresponds to two symmetric orbits that do not intersect
the Ox axis but encircle the rest of critical points, Fig. 2 b).

If h = a we get four heteroclinic orbits connecting two critical fixed points C1

and C2, Fig.2 a).

4. Γh
4

: b < h <
a + b + 2ab

1 − ba
, this corresponds to four orbits that surround

respectively the Ai, i = 1, 4, equilibrium points, Fig.3 b). If h = b we get four
homoclinic orbits connecting two critical fixed points B1 and B2, Fig.3 a).
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Figure 1. Orbit of type a) L1 (left) b) L2 and L1 (right) .
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Figure 2. a) Four heteroclinic orbits connecting two critical points C1 and C2 (left)
b) Two orbits of type L3 (right) .

4 Numerical explorations

In this section for precisely chosen parameters a and b we numerically compute
the detection curves. The four detection curves for a given h depend on the param-
eters u and v, (see Tables 1-4). Then for two given values of u and v, the detection
curves can be plotted on the (h, λ)-plane, as can be seen in Figs.4, 5. By the Propo-
sition 2 and the detection function graphs, we deduce the number and distribution
of limit cycles. We consider here the case n = 8, that corresponds to perturbation
of nine order.

From (14), we get

r1,2 = r2

±
(θ, h) =

1

p (θ)

(
q (θ) ±

√
q2 (θ) − hp (θ)

)
(16)

and from θ̇ = −1 + r2p(θ) = 0 we have:

θ1(h) =
1

2
arccos

[(
−B +

√
B2 − AC

)
/A

]
,

θ2(h) =
1

2
arccos

[(
−B −

√
B2 − AC

)
/A

]
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Figure 3. a) Four homoclinic orbits connecting the critical points B1 and B2 (left)
b) Four orbits of type L4 (right) .

where A = a2 − ah − 2ab (h + 1) + b2 − bh, B = a2 − ah − b2 + bh, C = a2 − ah +
2ab (h + 1) + b2 − bh.

From the form of the perturbation terms

P (x, y, ε) = εx((n + 2)vyn − c
s + 1

r + 1
xrys − ux2y2 − λ), Q (x, y, ε) = εy((n +

2)uxn + cxrys − ux2y2 − λ) we have
∂2P (x, y, ε)

∂x∂ε
+

∂2Q (x, y, ε)

∂y∂ε
= u (n + 2) xn +

v (n + 2) yn − 6ux2y2 − 2λ.

Therefore, the four detection functions corresponding to the four closed curves
Γh

j , j = 1, 4, for the above perturbations are :

λj(h) =

∫

Γ
h

j
(D)

[
(n + 2) (uxn + vyn) − 6ux2y2

]
dxdy

2
∫

Γ
h

j
(D)

dxdy
, j = 1, 4 (17)

In polar coordinates and for a =
1

3
, b = 2 and n = 8, (17) leads to:

λ1(h) =

2π∫

0

(
r4

1
(θ, h) g (θ) − r3

1
(θ, h) g1 (θ)

)
dθ

2π∫

0

r1 (θ, h) dθ

, −∞ < h < 1/3,

λ2(h) =

2π∫

0

(
r4

2
(θ, h) g (θ)− r3

2
(θ, h) g1 (θ)

)
dθ

2π∫

0

r2 (θ, h) dθ

, 0 < h < 1/3,
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λ3(h) =

π−θ2(h)∫

θ2(h)

[(
r4

1
(θ, h) − r4

2
(θ, h)

)
g (θ)−

(
r3

1
(θ, h) − r3

2
(θ, h)

)
g1 (θ)

]
dθ

π−θ1(h)∫

θ1(h)

(r1 (θ, h) − r2 (θ, h)) dθ

,

1/3 < h < 2,

λ4(h) =

θ2(h)∫

θ1(h)

[(
r4

1
(θ, h) − r4

2
(θ, h)

)
g (θ)−

(
r3

1
(θ, h) − r3

2
(θ, h)

)
g1 (θ)

]
dθ

θ2(h)∫

θ1(h)

(r1 (θ, h) − r2 (θ, h)) dθ

,

2 < h < 11,

where g (θ) = u cos8 θ + v sin8 θ, g1 (θ) = u cos2 θ sin2 θ and r1,2 (θ, h) = r2
±

(θ, h) .

Table 1
The values of the detection function λ1(h) when a = 1/3, b = 2, n = 8

h λ1(h) h λ1(h) h λ1(h)

-20 6.87u+1800.40v -19 6.21u+1676.58v -18 5.58u+1556.51v

-17 4.98u+1440.23v -16 4.41u+1327.76v -15 3.87u+1219.13v

-14 3.35u+1114.37v -13 2.87u+1013.53v -12 2.43u+916.64v

-11 2.01u+823.75v -10 1.62u+734.91v -9 1.27u+650.16v

-8 0.95u+569.56v -7 0.66u+493.20v -6 0.41u+421.13v

-5 0.19u+353.45v -4 0.007u+290.27v -3 -0.139u+231.71v

-2 -0.247u+177.93v -1 -0.314u+129.12v 0. -0.335u+85.66v

0.01 -0.335u+ 85.26v 0.04 -0.335u+ 84.05v 0.07 -0.335u+ 82.85v

0.1 -0.335u+ 81.65v 0.13 -0.334u+ 80.47v 0.16 -0.334u+ 79.29v

0.19 -0.334u+ 78.12v 0.22 -0.334u+ 76.96v 0.25 -0.333u+ 75.81v

0.31 -0.332u+ 73.56v 0.32 -0.332u+ 73.20v 0.33 -0.332u+72.85v

Table 2
The values of the detection function λ2(h) when a = 1/3, b = 2, n = 8

h λ2(h) h λ2(h)

0. 0 0.033 −3.32−6u + 2.77−8v

0.066 −0.0000129u + 4.49−7v 0.099 −0.0000274u + 2.30−6v

0.132 −0.0000432u + 7.37−6v 0.165 -0.0000530u +0.0000182v

0.198 -0.0000935u+ 0.0000305v 0.231 -0.0003127u+ 0.0000558v

0.264 -0.0003479u+ 0.0000938v 0.297 -0.0002976u+0.0001508v

0.33 0.0001670u+0.0002286v
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Table 3
The values of the detection function λ3(h) when a = 1/3, b = 2, n = 8

h λ3(h) h λ3(h) h λ3(h)

0.33 -0.348u+ 76.25v 0.43 -0.352u+ 73.63v 0.53 -0.353u+ 70.60v

0.63 -0.353u+ 67.42v 0.73 -0.352u+ 64.15v 0.83 -0.350u+ 60.84v

0.93 -0.347u+ 57.48v 1.03 -0.344u+ 54.10v 1.13 -0.340u+ 50.69v

1.23 -0.335u+ 47.25v 1.33 -0.329u+ 43.78v 1.43 -0.323u+ 40.27v

1.53 -0.315u+ 36.70v 1.63 -0.306u+ 33.03v 1.73 -0.296u+ 29.20v

1.83 -0.283u+ 25.07v 1.93 -0.269u+ 20.24v 1.98 -0.261u+ 17.021v

Table 4
The values of the detection function λ4(h) when a = 1/3, b = 2, n = 8

h λ4(h) h λ4(h) h λ4(h)

2 -0.259u+ 15.35v 2.1 -0.223u+ 9.40v 2.12 -0.213u+ 8.71v

2.14 -0.202u+ 8.10v 2.16 -0.191u+ 7.55v 2.2 -0.168u+ 6.61v

2.4 -0.055u+ 3.76v 2.6 0.044u+2.393v 2.8 0.126u+1.641v

3 0.193u+1.189v 3.2 0.246u+0.898v 3.6 0.320u+0.563v

4 0.365u+0.386v 4.4 0.391u+0.281v 4.8 0.403u+0.215v

5 0.405u+0.190v 5.2 0.405u+0.170v 5.4 0.404u+0.152v

5.6 0.401u+0.138v 5.8 0.397u+0.125v 6. 0.392u+0.114v

6.4 0.380u+ 0.096v 6.8 0.364u+0.082v 7.2 0.347u+ 0.071v

7.6 0.327u+0.062v 8. 0.307u+0.054v 8.4 0.285u+0.048v

8.8 0.263u+ 0.042v 9.2 0.240u+0.038v 9.6 0.216u+0.034v

10 0.192u+0.030v 10.4 0.168u+0.027v 10.8 0.143u+0.024v

From Tables 1–4 we have the discrete values of the four detection functions,
which can now be plotted as shown in Figs. 4, 5. Using Proposition 2 and from
these Figures (4, 5), one gets the following theorem:

4 6 8 10

-2

-1.5

-1

-0.5

2.1 2.2 2.3 2.4 2.5

-0.2
-0.1

0.1
0.2

Figure 4. Detection curve λ4 of system (11) for a = 1/3, b = 2, n = 8, u = −5
and v = −0.1.
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Figure 5. Detection curve λ3 (left), λ2 (middle), λ1 (right) of system (11) for
a = 1/3, b = 2, n = 8, u = −5 and v = −0.1.

Theorem 4. For a = 1/3, b = 2, n = 8, u = −5, v = −0.1 and 0 < ε ≪ 1, we
have the following distribution of limit cycles:

a) If λ < −5.88, the system (11) has at least one limit cycle in the neighborhood of
the orbit of type Γh

1
, Fig.6a),

b) If −5.88 < λ < −2.045, the system (11) has at least two limit cycles in the
neighborhood of each orbit of type Γh

3
, Fig.6b),

c) If −2.045 < λ < −0.72, the system (11) has at least ten limit cycles, two of
which in the neighborhood of each orbit of type Γh

4
and one in the neighborhood of

each orbit of type Γh
3
, Fig.6c),

d) If −0.72 < λ < −0.236, the system (11) has at least six limit cycles, one of
which in the neighborhood of each orbit of type Γh

4
and Γh

3
, Fig.7a),

e) If −0.236 < λ < −0.000858, the system (11) has at least eight limit cycles,
two of which in the neighborhood of each orbit of type Γh

4
, Fig.7b),

f) If −0.000858 < λ < 0, the system (11) has at least nine limit cycles, two of
which in the neighborhood of each orbit of type Γh

4
and one in the neighborhood of

the orbit of type Γh
2
, Fig.7c),

g) If 0 < λ < 0.00173, the system (11) has at least ten limit cycles, two of which in
the neighborhood of each orbit of type Γh

4
and Γh

2
, Fig.8,
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h) If 0.00173 < λ < 0.202, the system (11) has at least eight limit cycles, two
of which in the neighborhood of each orbit of type Γh

4
, Fig.7b),

i) If λ > 0.202, the system (11) has no limit cycles,

where the last point of λ1 is (0.33,−5.88), the first point of λ2 is (0, 0), the max-
imum of λ2 is (0.264, 0.00173), the last point of λ2 is (0.33,−0.000858), the first
point of λ3 is (0.33,−5.88), the last point of λ3 is (2,−0.236), the first point of λ4

is (2,−0.236), the maximum of λ4 is (2.14, 0.202), the minimum of λ4 is (5,−2.04),
and the last point computed of λ4 is (10.8,−0.72).
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Figure 6. Distribution diagram corresponding to: a) one (left), b) two (middle) c)
ten (right) limit cycles of system (11).
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Figure 7. Distribution diagram corresponding to: a) six (left), b) eight (middle) c)
nine (right) limit cycles of system (11).
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Figure 8. Distribution diagram corresponding to ten limit cycles of system (11).
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5 Conclusion

In this paper we investigated a planar perturbed Hamiltonian system. The sys-
tem possesses nine equilibria, five of type centers and four of type hyperbolic. The
unperturbed system displays four different level curves, depending on the values of
the parameter h on the real line. The Abelian integral method was employed to
study the perturbed Hamiltonian system. By numerical explorations we illustrated
the existence, number and distribution of limit cycles. In further papers, naturally
we intend to deal with perturbations of higher order as n = 10 and n = 12.
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The solvability and properties of solutions

of an integral convolutional equation

A.G. Scherbakova

Abstract. The work defines the conditions of solvability of one integral convolutional
equation with degreely difference kernels. This type of integral convolutional equations
was not studied earlier, and it turned out that all methods used for the investigation
of such equations with the help of Riemann boundary problem at the real axis are not
applied there. The investigation of such type equations is based on the investigation
of the equivalent singular integral equation with the Cauchy type kernel at the real
axis. It is determined that the equation is not a Noetherian one. Besides, there shown
the number of the linear independent solutions of the homogeneous equation and the
number of conditions of solvability for the heterogeneous equation. The general form
of these conditions is also shown and there determined the spaces of solutions of that
equation. Thus the convolutional equation that wasn’t studied earlier is presented at
that work and the theory of its solvability is built there. So some new and interesting
theoretical results are got at that paper.

Mathematics subject classification: 45E05, 45E10.
Keywords and phrases: Integral convolutional equation, singular integral equa-
tion, Cauchy type kernel, a Noetherian equation, conditions of solvability, index, the
number of the linear independent solutions, spaces of solutions..

The present work is devoted to defining conditions of solvability and some pro-
perties of solutions of the next integral equation

Pm(x)ϕ(x)+
1

√
2π

+∞∫

0

k(t, x−t)ϕ(t) dt+
1

√
2π

0∫

−∞

n(t, x−t)ϕ(t) dt = h(x), x ∈ R, (1)

where R is the real axis;

k(t, x− t) =

n∑

j=0

kj(x− t)tj , n(t, x− t) =

s∑

ν=0

nν(x− t)tν ,

where

Pm(x) =
m∑

k=0

Akx
k

is the known polynomial with degree m and kj(x), nν(x) ∈ L, j = 1, n, ν = 1, s,
h(x) ∈ L2 are known functions.

c© A.G. Scherbakova, 2006
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Let D+ = {z ∈ C : Imz > 0} be an upper half plane and D− = {z ∈ C : Imz <
0} be a lower half plane of the complex plane C. According to the properties of
Fourier transformation [1, p. 77], [2, p. 16] the investigation of the equation (1)
reduces to the investigation of the following differential boundary problem




m∑

k=0

Ak(−1)kΦ+(k)(x) +
n∑

j=0

(−1)jKj(x)Φ
+(j)(x)



−

−

[
m∑

k=0

Ak(−1)kΦ−(k)(x) +

s∑

ν=0

(−1)νNν(x)Φ
−(ν)(x)

]

= H(x), x ∈ R, (2)

where Kj(x), Nν(x),H(x) are the Fourier transformations of functions kj(x), nν(x),
h(x), j = 1, n, ν = 1, s accordingly. Φ+(p)(x) and Φ−(q)(x) are the boundary values
at R of the functions Φ+(p)(z) and Φ−(q)(z) accordingly, where Φ+(z), Φ−(z) are
unknown functions, which are analytical at the domains D+ and D− accordingly.
As all the transformations of the differential boundary problem (2) and the equation
(1) are identical, then the problem and the equation are equivalent in such a sense
that they are solvable or unsolvable at the same time, and there is one and only
one solution Φ±(x) of the differential boundary problem (2) for every solution ϕ(x)
of the equation (1) and vice versa. The solutions of the equation (1) are expressed
over solutions of the problem (2) according to the formula

ϕ(x) =
1

√
2π

∫

R

[
Φ+(t) − Φ−(t)

]
e−ixt dt, x ∈ R. (3)

Later on we will consider that the functions Kj(x), Nν(x) ∈ H
(r)
α , r ≥ 0, 0 < α ≤ 1,

H
(0)

α = Hα, j = 1, n, ν = 1, s and the function H(x) ∈ L
(r)
2

, r ≥ 0, L
(0)

2
= L2.

As the functions kj(x), nν(x) ∈ L, j = 1, n, ν = 1, s, then according to Riemann-
Lebesgue theorem [1, p. 42] lim

x→∞

Kj(x) = 0, lim
x→∞

Nν(x) = 0, j = 1, n, ν = 1, s. The

equation (1) is a generalization of a convolutional type equation ”with two kernels”,
and we will study it basing on the investigation of the differential boundary problem
(2). The investigation of the solvability of the problem (2) we will do basing on the
investigation of the singular integral equation at the real axis. The investigation of
the differential boundary problem (2) reduces to the investigation of the singular
integral equation with the help of integral representations for the functions and
derivatives of them built in [4]. Let construct functions Φ+(z) and Φ−(z) such that
they are analytical at the domains D+, D− accordingly and disappearing at infinity.
Besides, the boundary values at R of functions Φ+(p)(z) and Φ−(q)(z) satisfy the

following condition Φ+(p)(x),Φ−(q)(x) ∈ L
(r)
2

, r ≥ 0, p ≥ 0, q ≥ 0. According to [4]
these conditions satisfy such functions as:

Φ±(z) = (2πı)−1

∫

R

P±(x, z)ρ(x) dx, z ∈ D±, (4)

where
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P+(x, z) =
(−1)p(x+ ı)−p

(p− 1)!
×

×

[

(x− z)p−1 ln

(
1 −

x+ ı

z + ı

)
−

p−2∑

k=0

dp−k−2(x+ ı)k+1(z + ı)p−k−2

]

,

x ∈ R, z ∈ D+;

P−(x, z) =
(−1)q(x− ı)−q

(q − 1)!
×

×

[
(x− z)q−1 ln

(
1 −

x− ı

z − ı

)
−

q−2∑

k=0

lq−k−2(x− ı)k+1(z − ı)q−k−2

]
,

x ∈ R, z ∈ D−;

dp−k−2 = (−1)k+1

k∑

j=0

Cp−1−j
p−1

(k − j + 1)−1,

lq−k−2 = (−1)k+1

k∑

j=0

Cq−1−j
q−1

(k − j + 1)−1,

where Cm
n are binomial coefficients and the function ln

[
1 −

x+ ı

z + ı

]
is the main

branch (ln 1 = 0) of the logarithmic function in the complex plane with the cut
connecting such points as z = −ı and z = ∞, following the negative direction of the

axis of ordinate. The function ln

[
1 −

x− ı

z − ı

]
is the main branch (ln 1 = 0) of the

logarithmic function in the complex plane with the cut connecting such points as
z = ı and z = ∞, following the positive direction of the axis of ordinate. It’s easy to
verify, that defined by (4) functions Φ+(z) and Φ−(z) are unique analytical functions
in the domains D+, D− accordingly. According to the method from the work [4],
it’s easy to check that the function ρ(x) ∈ L2 or the density of the integral repre-
sentations, is defined uniquely by the functions Φ+(z) and Φ−(z) and vice versa, so
with the help of the given function ρ(x) ∈ L2 both functions Φ+(z) and Φ−(z) are
constructing uniquely. According to the work [4] the following representations take
place:

Φ+(p)(z) = (2πı)−1

∫

R

(z + ı)−p(x− z)−1ρ(x) dx, z ∈ D+,

Φ−q)(z) = (2πı)−1

∫

R

(z − ı)−q(x− z)−1ρ(x) dx, z ∈ D−. (5)

We consider the case, whenm = n = s. Using the properties [4] of partial derivatives
of functions P±(x, z) with respect to z and Sohotski formulas for derivatives from
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[7, p. 42], with the help of the representations (4), (5), we will transform the diffe-
rential boundary problem (2) into the following singular integral equation and later
on investigate it. The singular integral equation is

A(x)ρ(x) +B(x)(πı)−1

∫

R

(t− x)−1ρ(t) dt + (Tρ)(x) = H(x), x ∈ R, (6)

where

A(x) = 0, 5(−1)m
{
[Am +Km(x)](x + ı)−m + [Am +Nm(x)](x − ı)−m

}
,

B(x) = 0, 5(−1)m
{
[Am +Km(x)](x+ ı)−m − [Am +Nm(x)](x− ı)−m

}
, (7)

(Tρ)(x) =

∫

R

K(x, t)ρ(t) dt, x ∈ R, (8)

K(x, t) =
1

2πı




m−1∑

j=0

(−1)j
[
[Aj +Kj(x)]

∂jP+(t, x)

∂xj
− [Aj +Nj(x)]

∂jP−(t, x)

∂xj

]]
,

(9)

and
∂jP±(t, x)

∂xj
is a limiting value at R of the function

∂jP±(t, z)

∂zj
, j = 0,m− 1.

1 Lemma. If the functions Kj(x), Nν(x) ∈ H
(r)
α , j = 1, n, ν = 1, s, then the

operator

T : L
(r)

2
→ L

(r)

2
,

r ≥ 0, defined by the formula (8) is a compact operator.

The proof of lemma follows from Frechet-Kolmogorov-Riesz criterion of com-
pactness of integral operators at the real axis in the space Lp,p > 1, the properties
of functions P±(x, z) from [4] and the results of the work [8].

According to the work [9, p. 406], the problem (2) and the singular integral
equation (6) are equivalent in such a sense that they are solvable or unsolvable at
the same time, and for every solution ρ(x) of the equation (6) there exists maybe
unique solution Φ±(x) of the problem (2) and vice versa. In order to make this accord
unique it is necessary to set initial conditions for the problem (2). As its solutions
Φ±(x) are found in spaces of disappearing at infinity functions, then according to
the properties of Cauchy type integral the solutions of the problem (2) are such that
Φ±(j)(∞) = 0, j = 0,m− 1, that is the initial conditions of (2) are trivial and set
automatically. Thus it follows that the differential boundary problem (2) and the
singular integral equation (6) are equivalent in such a sense that they are solvable
or unsolvable at the same time, and there is one and only one solution ρ(x) of the
equation (6) for every solution Φ±(x) of the problem (2) and vice versa. By the
force of formula (4), the solutions of the problem (2) are expressed over solutions of
the equation (6) according to the formula

Φ±(x) =
1

√
2π

∫

R

P±(t, x)ρ(t) dt, x ∈ R, (10)
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where p = q = m; P±(t, x) are the boundary values at x ∈ R of functions P±(t, z),
and ρ(x) is the solution of the equation (6). As the equation (1) and the problem (2)
are equivalent, the problem (2) and the singular integral equation (6) are equivalent,
too, it follows that the equation (1) and the equation (6) are equivalent in such a
sense that they are solvable or unsolvable at the same time, and there is one and
only one solution ϕ(x) of the equation (1) for every solution ρ(x) of the equation (6)
and vice versa. Thus the solutions of the equation (1) are expressed over solutions
of the equation (6) according to the formulas (10), (3). That is why the equation
(1) we will call a Noetherian if the equation (6) is a Noetherian one.

2 Theorem. The equation (1) is not a Noetherian one.

Proof. According to the work [7, p. 208–212] the equation (6) is a Noetherian one
if and only if when A(x) +B(x) 6= 0, A(x) −B(x) 6= 0 at x ∈ R. From the formula
(7) it follows that

A(x) +B(x) = (−1)m[Am +Km(x)](x + ı)−m,

A(x) −B(x) = (−1)m[Am +Nm(x)](x − ı)−m.

So we have got that the functions A(x)+B(x), A(x)−B(x) have a null at least with
order m in infinity. It means that the equation (6) is not a Noetherian one. Then as
the equations (1) and (6) are equivalent, the equation (1) is not a Noetherian one,
too. The theorem is proved. �

Firstly we consider the case when Am +Km(x) 6= 0, Am +Nm(x) 6= 0 at R. Let

determine κ = ind
Am +Nm(x)

Am +Km(x)
.

3 Theorem. Let the functions kj(x), nν(x) ∈ L, j, ν = 1,m, h(x) ∈ L2; the func-

tions Kj(x), Nν(x) ∈ H
(r)
α , j, ν = 1,m, H(x) ∈ L

(r)
2

, r ≥ m; Am + Km(x) 6= 0,
Am +Nm(x) 6= 0 at R. If κ −m ≥ 0, then the homogeneous equation (1) has not
less than κ − m linearly independent solutions; the heterogeneous equation (1) is
an unconditionally solvable one and its general solution depends upon not less than
κ −m arbitrary constants. If κ −m < 0, then generally speaking the heterogeneous
equation (1) is an unsolvable one. It will be a solvable one when not less than m−κ

conditions of solvability ∫

R

H(x)ψj(x) dt = 0, (11)

will be executed. Here H(x) is a right part of the equation (6), and ψj(x) are linearly
independent solutions of the homogeneous equation

A(x)ψ(x) − (πı)−1

∫

R

(t− x)−1B(t)ψ(t) dt +

∫

R

K(t, x)ψ(t) dt = 0,

allied to the equation (6), where the functions A(x), B(x),K(x, t) are defined by the
formulas (7), (9) accordingly.
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Proof. According to the work [7, p. 208–212] if κ −m ≥ 0, then the homogeneous
equation (6) has not less than κ − m linearly independent solutions; the hetero-
geneous equation (6) is an unconditionally solvable one and its general solution
depends upon not less than κ−m arbitrary constants. If κ−m < 0, then generally
speaking the heterogeneous equation (6) is an unsolvable one. It will be a solvable
one when not less than m−κ conditions of solvability (11) will be executed. As the
equations (6) and (1) are equivalent, then theorem is proved. �

According to the work [2, p. 262], let define by L2[−µ; 0] the space of functions
ϕ(x) ∈ L2 which satisfy such condition as (x+ ı)µϕ(x) ∈ L2.

4 Theorem. Let the functions kj(x), nν(x) ∈ L, j, ν = 1,m, h(x) ∈ L2; the func-

tions Kj(x), Nν(x) ∈ H
(r)
α , j, ν = 1,m, H(x) ∈ L

(r)
2

, r ≥ m; Am + Km(x) 6= 0,
Am + Nm(x) 6= 0 at R and the equation (1) is a solvable one. Then its solutions
belong the space L2[−r; 0], r ≥ m.

Proof. According to the work [3, p. 139] the solutions of the equation (6) ρ(x) ∈

L
(r−m)

2
, r ≥ m in conditions of the theorem. Then in virtue of the representations

(5) and the properties of Cauchy type integral the limiting values Φ±(m)(x) at R of

functions Φ±(m)(z) belong the space L
(r−m)

2
, r ≥ m. From the properties of Fourier

transformation [2, p. 262] we have that the solutions of the equation (1) given by
the formula (3) belong the space L2[−r; 0], r ≥ m. The theorem is proved. �

Let the conditions Am + Km(x) 6= 0, Am + Nm(x) 6= 0 at R are not executed.
Then we suppose that the functions Am +Km(x), Am +Nm(x) go to zero at the real
axis in such points as a1, a2, . . . , au and b1, b2, . . . , bω with accordingly integer orders
γ1, γ2, . . . , γu, µ1, µ2, . . . , µω. Then in virtue of the work [3, p. 199] the following
representations take place

A(x) +B(x) = (x+ ı)−mM(x)ρ+(x), A(x) −B(x) = (x− ı)−mN(x)ρ−(x), (12)

where the functions M(x) 6= 0, N(x) 6= 0 at R, M(x), N(x) ∈ H
(r)
α and the functions

ρ+(x), ρ−(x) look as

ρ+(x) =

u∏

k=1

(
x− ak

x+ ı

)γk

, ρ−(x) =

ω∏

k=1

(
x− bk
x− ı

)µk

. (13)

Let
r0 = max{γ1, γ2, . . . , γu, µ1, µ2, . . . , µω,m}, (14)

γ =

u∑

k=1

γk, µ =

ω∑

j=1

µk,κ = ind
N(x)

M(x)
. (15)

5 Theorem. Let the functions kj(x), nν(x) ∈ L, j, ν = 1,m, h(x) ∈ L2; the func-

tions Kj(x), Nν(x) ∈ H
(r)
α , j, ν = 1,m, H(x) ∈ L

(r)
2

, r ≥ r0, where the num-
ber r0 is defined by the formula (14) and the representations (12) take place. If
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κ −m− γ−µ ≥ 0, where the numbers κ, γ, µ are defined by the formulas (15), then
the homogeneous equation (1) has not less than κ −m− γ − µ linearly independent
solutions; the heterogeneous equation (1) is an unconditionally solvable one and its
general solution depends upon not less than κ −m − γ − µ arbitrary constants. If
κ − m − γ − µ < 0, then generally speaking the heterogeneous equation (1) is an
unsolvable one. It will be a solvable one when not less than m+γ+µ−κ conditions
of solvability (11) will be executed.

Proof. According to the work [3, p. 248–278] if κ − m − γ − µ ≥ 0, then the
homogeneous equation (6) has not less than κ − m − γ − µ linearly independent
solutions; the heterogeneous equation (6) is an unconditionally solvable one and its
general solution depends upon not less than κ −m− γ − µ arbitrary constants. If
κ −m − γ − µ < 0, then generally speaking the heterogeneous equation (6) is an
unsolvable one. It will be a solvable one when not less than m+γ+µ−κ conditions
of solvability (11) will be executed. As the equations (6) and (1) are equivalent,
then theorem is proved. �

6 Theorem. Let the functions kj(x), nν(x) ∈ L, j, ν = 1,m, h(x) ∈ L2; the func-

tions Kj(x), Nν(x) ∈ H
(r)
α , j, ν = 1,m, H(x) ∈ L

(r)
2

, r ≥ r0, where the number r0
is defined by the formula (14). Besides the representations (12) take place and the
equation (1) is a solvable one. Then its solutions belong the space L2[−r−m+r0; 0],
r ≥ r0.

The proof follows from the work [3, p. 248–298] because the equation’s (6) solu-
tions belong the space L2[r − r0; 0] at that case.

Let consider the other cases of numbers’ m,n, s correlation.
If m > n,m > s, then it will be p = q = m in formulas (4), (5). So we have

A(x)+B(x) = (−1)mAm(x+ ı)−m, A(x)−B(x) = (−1)mAm(x− ı)−m and theorems
like 3, 4 take place.

If m < n = s, then it will be p = q = n in formulas (4), (5). The representations

A(x) +B(x) = (x+ ı)−nM(x)ρ+(x), A(x) −B(x) = (x− ı)−nN(x)ρ−(x), (16)

where

ρ+(x) = (x+ ı)−γ0

u∏

k=1

(
x− ak

x+ ı

)γk

, ρ−(x) = (x− ı)−µ0

ω∏

k=1

(
x− bk
x− ı

)µk

(17)

take place. Besides,

r0 = max{γ1, γ2, . . . , γu, γ0 +n, µ1, µ2, . . . , µω, µ0 +n}, γ =

u∑

k=0

γk, µ =

ω∑

j=0

µk. (18)

The numbers γ0, µ0 are integer orders of nulls in infinity of functions Kn(x) and
Nn(x) accordingly.

Thus theorems like 5, 6 take place.
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Ifm < n < s, then it will be p = n, q = s in formulas (4), (5). The representations
(16) take place where ρ+(x), ρ−(x) are like in (17). The numbers γ, µ are defined
by (18) and the number r0 is

r0 = max{γ1, γ2, . . . , γu, γ0 + n, µ1, µ2, . . . , µω, µ0 + s}. (19)

Theorems like 5, 6 take place there.
Ifm = n < s, then it will be p = n, q = s in formulas (4), (5). The representations

(16) take place where ρ+(x) is like in (13) and ρ−(x) is like in (17). The number r0
is:

r0 = max{γ1, γ2, . . . , γu, µ1, µ2, . . . , µω, µ0 + s}. (20)

The number µ we define by the formula (18), and the number γ – by the formula
(15). Theorems like 5, 6 take place there.

Ifm < s < n, then it will be p = s, q = n in formulas (4), (5). The representations

A(x) +B(x) = (x+ ı)−sM(x)ρ+(x), A(x) −B(x) = (x− ı)−nN(x)ρ−(x) (21)

take place, where ρ+(x), ρ−(x) are like in (17). The numbers γ, µ are defined by
(18) and the number r0 - by the formula

r0 = max{γ1, γ2, . . . , γu, γ0 + s, µ1, µ2, . . . , µω, µ0 + n}. (22)

Theorems like 5, 6 take place there.
Ifm = s < n, then it will be p = n, q = s in formulas (4), (5). The representations

(16) take place where ρ+(x) 1s like in (17), and ρ−(x) is like in (13).The number r0
is defined by the formula

r0 = max{γ1, γ2, . . . , γu, γ0 + n, µ1, µ2, . . . , µω}. (23)

The number µ is defined by (15) and the number γ – by the formula (18). Theorems
like 5, 6 take place there.
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On commutative Moufang loops with some restrictions

for subgroups of its multiplication groups

N.T. Lupashco

Abstract. Let M be the multiplication group of a commutative Moufang loop Q.
In this paper it is proved that if all infinite abelian subgroups of M are normal in M,
then Q is associative. If all infinite nonabelian subgroups of M are normal in M, then
all nonassociative subloops of Q are normal in Q, all nonabelian subgroups of M are
normal in M and the commutator subgroup M

′ is a finite 3-group.

Mathematics subject classification: 20N05.

Keywords and phrases: Commutative Moufang loop, minimum condition, multi-
plication IH-group, multiplication IH-group, metahamiltonian group.

While considering different classes of algebras (groups, rings, loops) it is of crucial
importance to analyze the existence of their subalgebras with certain predefined
features. To this end, it is advisable to consider the construction of algebras under
condition that they don’t have any subalgebras with predefined features. Before
providing the findings that we’ll need further, we will remind some notions from
group’s theory and commutative Moufang loops (abbreviated CMLs), found in [1]
and [2] respectively.

A finite nonabelian group is called a Miller-Moreno’s group if all its proper
subgroups are abelian. An IP-group (respect. IH-group) is an infinite group if all
its proper infinite abelian (respect. nonabelian) groups are normal within. But if all
its nonabelian subgroups are normal, then such a group is called a metagamiltonian
group.

In [1] the construction of IH-groups is described, elements of infinite order and
periodic IH-group, which does not satisfy the minimum condition for abelian sub-
groups. It also describes the solvable IH-groups with finite or infinite commuta-
tor subgroup and the (solvable) metagamiltonian or the non-metagamiltonian IH-
groups are characterized.

A commutative Moufang loop (abbreviated CMLs) is characterized by the iden-
tity x2 · yz = xy · xz.

The multiplicative group M(Q) of the CML Q is the group generated by all
the translations L(x), where L(x)y = xy. The subgroup I(Q) of the group M(Q),
generated by all the inner mappings L(x, y) = L−1(xy)L(x)L(y) is called the inner
mapping group of the CLM Q. The inner mappings are automorphisms in the CML.
A subloop H of the CML Q is called normal in Q if x · yH = xy· for all x, y ∈ Q.
The subloop H is normal in Q if I(Q)H = H.

c© N.T. Lupashco, 2006
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The associator (a, b, c) of the elements a, b, c of the CML Q is defined by the
equality ab · c = (a · bc)(a, b, c). The associator subloop Q′ of CML Q is generated
by all associators (x, y, z), x, y, z ∈ Q. The centre Z(Q) of the CML Q is a normal
subloop Z(Q) = {x ∈ Q|(x, y, z) = 1∀y, z ∈ Q}.

Let Q be an arbitrary CML and let H be a subset of the set Q. Let M(H)
denote a subgroup of the multiplicative group M(Q) of the CML Q, generated by
the set {L(x)|∀x ∈ H}. Takes place

Lemma 1 [3]. Let the commutative Moufang loop Q with the multiplicative group
M, Z(M), which is the centre of the group M and the centre Z(Q) decompose into
a direct product Q = D × H, moreover, D ⊆ Z(Q). Then M = M(D) × M(H),
besides, M(D) ⊆ Z(M),M(D) ∼= D.

Further, in papers [3–5] the CML is characterized with the help of various systems
of subloops of CML, and also various systems of multiplication groups of CML. In
particular, is proved

Lemma 2. The following statements are equivalent for an arbitrary non-associative
CML Q with the multiplication group M:

1) Q satisfies the minimum condition for subloops;

2) M satisfies the minimum condition for subgroups;

3) Q is a direct product of a finite number of quasicyclic groups, lying in the
centre of Q, and a finite loop;

4) M is a direct product of a finite number of quasicyclic groups, lying in the
centre of M, and a finite group;

5) Q satisfies the minimum condition for non-normal subloops;

6) M satisfies the minimum condition for non-normal subgroups;

7) M satisfies the minimum condition for nonabelian subgroups;

8) M satisfies the minimum condition for abelian subgroups.

The following are a natural reducing of statements 5) and 6):

i) all infinite associative subloops of Q are normal in Q;

ii) all infinite nonassociative subloops of Q are normal in Q;

iii) M is an IH-group;

iv) M is an IH-group;

The structure of CML with conditions i), ii) is examined in [5]. It is proved
that the CML with condition i) is associative, the CML with condition ii) has a
finite associator subloop and in such a CML any nonassociative (finite or infinite)
subloops are normal. In this paper it is proved that the CML with condition iii) is
associative. It is proved also that the CML with condition iv) satisfies the condition
ii), its multiplication group M is metagamiltonian and it commutators subgroup M

′

is a finite 3-group.

Lemma 3. If the element a of an infinite order or of order three of the multiplication
group M of arbitrary CML generates a normal subgroup, then it belongs to the centre
Z(M) of the group M.
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Proof. We denote (x, y) = x−1y−1xy, xy = y−1xy. Then xy = x(x, y). If the
element 1 6= a ∈ M generates a normal subgroup, then ab = ak for a certain natural
number k and for arbitrary fixed element b ∈ M. We have a(a, b) = ak, (a, b) = ak−1.
If k = 1, then (a, b) = 1. Hence a ∈ Z(M). Let us now suppose that k > 1. Let
a3 = 1. Then k = 2 and a = (a, b). The multiplication group M is locally nilpotent
[3]. Then a = (a, b) = ((a, b), b) = (((a, b), b), b) = . . . = 1. We have obtained
a contradiction, as a 6= 1. By [2, Theorem 11.4] the commutator subgroup of the
group M is locally finite 3-group. If a has an infinite order, then for a certain natural
number n (ak−1)3

n

= (a, b)3
n

= 1, a = 1. We have obtained a contradiction again.
Therefore the case of k > 1 is impossible. This completes the proof of Lemma 3.

Theorem 1. If the multiplication group M of CML Q is a IH-group, then M is
abelian and, consequently, the CML Q is associative.

Proof. We suppose that the group M is nonabelian. In this cases M must be
periodic. We suppose the contrary, that the group M, then the CML Q, is not
periodic as well. Let a be an element of infinite order in Q. By [2] the element a3

belongs to the centre Z(Q) of CML Q. Then it is easy to show, considering the
definition of group M, that the element α = L(a3) belongs to the centre Z(M) of
group M. Hence, the group A =< α > is an infinite abelian normal subgroup of
group M. Let β be an arbitrary periodic element of group M and let B =< β >. As
A ⊆ Z(M), then it is easy to show that the product AB will be an infinite abelian
subgroup of the group M. By supposition the subgroup AB is normal in M, hence
if ϕ is an inner automorphism of group M, then AB = ϕ(AB) = ϕ(A) · ϕ(B) =
A ·ϕ(B). Consequently, AB = A ·ϕ(B). Let β1 be an arbitrary element in B. Then
there exists such elements α1 ∈ A, β2 ∈ B that ϕ(β1) = α1β2 or ϕ(β1)β

−1

2
= α1.

As β1 is a periodic element then ϕ(β1) also is a periodic element and α1 as an
element of infinite cyclic group is not periodic. Further, as ϕ(β1), β2 ∈ M, then
let ϕ(β1) = L(u1) . . . L(uk), β−1

2
= L(v1) . . . L(vn), where ui, vj ∈ Q. We denote

by H the subloop of CML Q generated by the set {a, u1, . . . , uk, v1, . . . , vn}. The
CML H is finitely generated, then by Bruck-Slaby’s Theorem [2, Theorem 10.1] it
is centrally nilpotent. Again by [2, Theorem 11.5] its multiplication group M(H) is

nilpotent. Further, we denote by ϕ(β1), β
−1

2 , α1 the restriction on H of mappings

ϕ(β1), β
−1

2
, α1 of set Q. It is obvious that ϕ(β1), β

−1

2
, α1 ∈ M(H), that ϕ(β1), β

−1

2

are periodic elements and α1 is an element of infinite order. The periodic elements

form a subgroup in nilpotent groups, hence the product ϕ(β1) · β
−1

2
is a periodic

element. From the equality ϕ(β1)β
−1

2
= α1 follows the equality ϕ(β1) ·β

−1

2
= α1 and

further α1 = 1, ϕ(β1) = β2, ϕ(B) = B. We get that any element in M generates
a normal subgroup. Hence any subgroup from M is normal in M. Then M is a
hamiltonian group.

Indeed, arbitrary hamiltonian groups are described by the next theorem. A
hamiltonian group can be decomposed into a direct product of the group of quater-
nions and abelian groups, whose each element’s order is not higher than 2. Con-
versely, a group that has such a decomposition is hamiltonian. A group of quater-
nions is the group generated by the generators a, b and that satisfies the identical
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relations α4 = 1, α2 = β2, β−1αβ = α−1. In [2, Theorem 11.4] it is proved that the
quotient group M/Z(M) is a locally finite 3-group. Then from α4 = 1 it follows
α ∈ Z(M), from β−1αβ = α−1 it follows α2 = 1, from α2 = β2 it follows β2 = 1
and, finally, from β2 = 1 it follows β ∈ Z(M). We get that the hamiltonian subgroup
of multiplication group of CML is abelian.

It follows from the aforementioned that the multiplication group M of CML
Q is abelian. But this contradicts our supposion about the nonabelian group M.
Consequently, the group M is periodic.

From Lemmas 1.4 and 3.1 of [3] it follows that the periodic multiplication group
M of CML Q decomposes into a direct product of its maximal p-subgroups Mp,
in addition Mp belongs to the centre Z(M) for p 6= 3. We denote M = N × M3,
where N =

∏
p 6=3

Mp. We suppose that N is an infinite group and let α be an
arbitrary element in M3. If A =< α > then by supposition the infinite abelian
group N × A is normal in M. Let ϕ be an inner automorphism of M. Then
N × A = ϕ(N × A) = ϕN × ϕA = N × ϕA, i.e. N × A = N × ϕA. Then for
a certain α1 ∈ A there exist such elements α2 ∈ A, β ∈ N that βα2 = ϕα1.
Further, β3α3

2
= ϕα3

1
, β3

k

α3
k

2
= ϕα3

k

1
and for a certain integer n α3

n

2
= ϕα3

n

1
= 1.

Hence β3
k

= 1. But the order of β doesn’t divide 3. Hence β = 1 and we get
ϕα1 = α2, ϕA = A. From here it follows that the subgroup M3 is hamiltonian.
Hence, as in the above case, M3, then also M, are abelian groups. Consequently,
in the decomposition M = N × M3 we should consider the case when the subgroup
N is finite. Further, without breaking the generality, we will consider that M is a
3-group.

We suppose that the CML M doesn’t satisfy the minimum condition for sub-
groups. Then by 8) of Lemma 2 M contains an abelian subgroup that doesn’t
satisfy the minimum condition for subgroups. Then it contains an infinite elemen-
tary abelian group H. Let H = H1×H2×. . .×Hn×. . . be a decomposition of H into a
direct product of cyclic groups of order 3. For any element α ∈ H there will be such
an infinite subgroup H(α) ⊆ H that < α > ∩H(x) = 1. Let H(α) = H

1(α) × H
2(α)

be a certain decomposition of group H(α) in direct product of two infinite factors.
As the cyclic group < α > is, obvious, the intersection of two infinite associative
subgroups < α > H

1(α) and < α > H
2(α), then it is normal in M. Given the

arbitrary element α ∈ H it follows that all factors Hn are normal in M. Every factor
Hn is a cyclic group of order 3 and by Lemma 3 belongs to the centre Z(M). Hence
H ⊆ Z(M). Let now β be an arbitrary element from M, let H(β) be an infinite
subgroup of H such that < β > ∩H(β) = 1, and let H(β) = H

1(β) × H
2(β) be a

certain decomposition of group H(β) into a direct product of two infinite factors. As
H(β) ⊆ Z(M), then H

1(β),H2(β) are normal in M and the products βH
1(β), βH

2(β)
are infinite abelian subgroups. Then βH

1(β), βH
2(β) are normal subgroups, hence

also < β >=< β > H
1(y) ∩ βH

2(β) is also normal subgroup. We get that any ele-
ment in M generates a normal subgroup in M. Consequently, M is a hamiltonian
group and, as proved above, it is abelian. This contradicts our assumption about
nonabelian group M. Hence M satisfies the minimum condition for subgroups.
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From minimum condition for subgroups for M it follows by Lemma 2 that M =
B × C, where C ⊆ Z(M) and B is a finite group. If γ is an arbitrary element in
M then < γ > C is an infinite abelian subgroup. Further, from the normality of
< γ > C in M follows the normality of < γ > in M. Hence M is a hamiltonian
group. According to the above proofs M is an abelian group. This completes the
proof of Theorem 1.

Let us now consider a CML with certain restriction on nonabelian subgroups of
it multiplication group. We suppose that the multiplication group M of the CML
Q doesn’t have proper infinite nonabelian subgroups. Then by Lemma 2 M satisfies
the minimum condition for subgroups and M = K × G, where K is a direct product
of a finite number of quasicyclic groups, lying in the centre Z(M) of the group M,
G is a finite group. But as M doesn’t have proper infinite nonabelian subgroups
then K is a quasicyclic group, G is a Miller-Moreno group.

By Lemma 2 the CML Q satisfies the minimum condition for sublooops and
Q = D × H, where D is a direct product of a finite number of quasicyclic groups,
lying in the centre Z(Q) of the CML Q, H is a finite loop. Further, by Lemma 1
M = M(D) × M(H) and M(D) ∼= D. Consequently, M(H) ∼= G. Further, if for
certain a, b, c ∈ H ab · c 6= a · bc then L(c)L(a)b 6= L(a)L(c)b, L(c)L(a) 6= L(a)L(c).
Hence if the CML H contains proper nonassiciative subloops, then the group M(H)
contains proper nonabelian subgroups. A CML is diassociative [2]. Then from the
relation M(H) ∼= G it follows that the CML H is generated by three elements.
Consequently, we proved.

Proposition 1. A multiplication group M of infinite nonassociative CML Q does
not contain proper infinite nonabelian subgroups if and only if Q = D×H, where D
is a quasicyclic group, H is a nonassociative 3-generate loop or M = D × G, where
G is a Miller-Moreno group.

Theorem 2. If the multiplication group M of the CML Q is an IH-group, then:

1) M is a metagamiltonian group;

2) all nonassociative sibloops of CML Q are normal in it;

3) if M is non-periodic, then the commutator subgroup M
′ of group M is a finite

abelian 3-group;

4) if M is periodic, then the commutator subgroup M
′ of group M is solvable of

a class not greater tha three finite 3-group;

Proof. By [3] the multiplication group M of an arbitrary CML is locally nilpo-
tent. Then by [1, Theorem 1.18] M posed a centrally system with cyclic factors of
simple orders. In this cases, if M is an IH-group, then by [1, Proposition 6.5] M

is solvable. Corollary 6.11 from [1] stipulated that a non-metagamiltonian solvable
IH-group satisfies the minimum condition for subgroups. Then from Lemma 2 it
follows that the multiplication IH-group M is metagamiltonian. Consequently, the
item 1) is proved.
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Now let H be an arbitrary nonassociative subloop of the CML Q and let its mul-
tiplication group M be an IH-group. Then the subgroup N, generated by mappings
L(a), a ∈ Q, is nonabelian and by item 1) is normal in M. The set Na, a ∈ Q,
partitions Q and

Na · Nb = L(Nb)Na = NL(Nb)a = N(Nb · a) =

= N(L(a)Nb) = N(NL(a)b) = NL(a)b = N(ab).

If N(ba) = N(ca), then

Nb · a = L(a)Nb = NL(a)b = N(ba) = N(ca) = NL(a)c = L(a)Nc = Nc · a,

so Nb = Nc. Hence the mapping ϕ defined by ϕa = Na is a homomorphism of the
CML Q upon a loop ϕQ and the kernel N1 = H, of ϕ, is a normal subloop of Q.
Consequently, any nonassociative subloop H of Q is normal in Q, i.e. the item 2) is
proved.

By Theorem 6.3 from [1] the commutator subgroup M
′ of non-periodic IH-group

is a finite abelian p-group. But the commutator subgroup of multiplication group
of arbitrary CML is a 3-group [2, Theorem 11.4]. Hence the commutator subgroup
M

′ is a finite abelian 3-group, i.e. the item 3) is proved.

By Theorem 6.7 from [1] all solvable IH-groups with infinite commutator sub-
group satisfy the minimum condition for subgroups. But from 4) of Lemma 2 it
follows that in these cases the commutator subgroup M

′ of M is finite. Hence the
commutator subgroup M

′ of IH-group M is finite and by [2, Theorem 11.4] is a
finite 3-group.

Now let us suppose that the second commutator subgroup M
(2) of the group

M is nonabelian. Then any subgroup that contains M(2) is nonabelian, and by
item 2), it is normal in M. Obviously, the group M/M(2) is hamiltonian and as
shown during the proof of Theorem 1, it is an abelian group. Therefore, M

′ ⊆ M
(2),

i.e. M
′ = M

(2). But the commutator subgroup M
′ is a finite 3-group, hence it is

nilpotent. Therefore M
′ 6= M

(2). Contradiction. Consequently, M
(2) is an abelian

subgroup, and the group M is solvable of class not greater than three. This completes
the proof of Theorem 2.

As by Theorem 2 the commutator subgroup M
′ of the multiplication IH-group

is finite, then from [6, 7] it follows that M is a group with finite classes of conju-
gate elements and the number of elements in each class doesn’t exceed the number
| M

′ |. Further, in [3] it is proved that the quotient group M/Z(M) of an arbitrary
multiplication group M by it centre Z(M) is a locally finite 3-group. Thus
from [6, 8] it follows that if M is an IH-group, then any element in M/Z(M) is
contained in a normal finite 3-group.
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The property of universality for some monoid algebras

over non-commutative rings

Elena P. Cojuhari

Abstract. We define on an arbitrary ring A a family of mappings (σx,y) subscripted
with elements of a multiplicative monoid G. The assigned properties allow to call these
mappings derivations of the ring A. A monoid algebra of G over A is constructed
explicitly, and the universality property of it is shown.
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In this note we consider monoid algebras over non-commutative rings. First,
we introduce axiomatically a family of mappings σ = (σx,y) defined on a ring A
and subscripted with elements of a multiplicative monoid G. Due to their assigned
properties these mappings can be called derivations of A. Next, we construct a
monoid algebra A〈G〉 by means of the family σ, and the universality of it is shown.

1. Let A be a ring (in general non-commutative) and G a multiplicative monoid.
Throughout the paper we consider 1 6= 0 (where 0 is the null element of A, and 1
is the unit element for multiplication), the unit element of G is denoted by e. We
introduce a family of mappings of A into itself by the following assumption.

(A) For each x ∈ G there exists a unique family σx = (σx,y)y∈G of mappings
σx,y : A −→ A such that σx,y = 0 for almost all y ∈ G (here and thereafter, almost
all will mean all but a finite number, that is, σx,y 6= 0 only for a finite set of y ∈ G)
and for which the following properties are fulfilled:

(i) σx,y(a + b) = σx,y(a) + σx,y(b) (a, b ∈ A;x, y ∈ G);

(ii) σx,y(ab) =
∑

z∈G σx,z(a)σz,y(b) (a, b ∈ A;x, y ∈ G);

(iii) σxy,z =
∑

uv=z σx,u ◦ σy,v (x, y, z ∈ G);

(iv1) σx,y(1) = 0 (x 6= y;x, y ∈ G); (iv2) σx,x(1) = 1 (x ∈ G);

(iv3) σe,x(a) = 0 (x 6= e;x ∈ G); (iv4) σe,e(a) = a (a ∈ A).

In (ii) the elements are multiplied as in the ring A, but in (iii) the symbol ◦
means the composition of maps.

Examples. 1. Let A be a ring and let G be a multiplicative monoid, and let σ be
a monoid-homomorphism of G into End(A), i.e. σ(xy) = σ(x) ◦σ(y) (x, y ∈ G) and
σ(e) = 1A. We define σx,y : A −→ A such that σx,x = σ(x) for x ∈ G and σx,y = 0
for y 6= x. The properties (i) − (iv4) of (A) are verified at once.
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2. Let A be a ring, and let α be an endomorphism of A and δ be an
α-differentiation of A, i.e.

δ(a + b) = δ(a) + δ(b), δ(ab) = δ(a)b + α(a)δ(b)

for every a, b ∈ A. Denote by G the monoid of elements xn (n = 0, 1, ...) endowed
with the law of composition defined by xnxm = xn+m (n,m = 0, 1, ...; x0 := e). We
write σnm instead of σxn,xm

by defining σnm : A −→ A as the following mappings
σ00 = 1A, σ10 = δ, σ11 = α, σnm = 0 for m > n and σnm =

∑
j1+...+jn=m σ1j1 ◦

... ◦ σ1jn
(m = 0, 1, ..., n; n = 1, 2, ...), where jk = 0, 1 (k = 1, ..., n). The family

σ = (σnm) satisfies the axioms (i) − (iv4) of (A).

2. Next, we consider an algebra A〈G〉 connected with the structure of differ-
entiation σ = (σx,y). Let A〈G〉 be the set of all mappings α : G −→ A such that
α(x) = 0 for almost all x ∈ G. We define the addition in A〈G〉 to be the ordinary
addition of mappings into the additive group of A and define the operation of A
on A〈G〉 by the map (a, α) −→ aα (a ∈ A), where (aα)(x) = aα(x) (x ∈ G). Note
that, in respect to these operations, A〈G〉 forms a left module over A. Following
notations made in [1] we write an element α ∈ A〈G〉 as a sum α =

∑
x∈G ax · x,

where by a ·x (a ∈ A, x ∈ G) is denoted the mapping whose value at x is a and 0 at
elements different from x. Certainly, the above sum is taken over almost all x ∈ G.
A〈G〉 becomes a ring if for elements of the form a · x (a ∈ A;x ∈ G) we define their
product by the rule

(a · x)(b · y) =
∑

z∈G

aσx,z(b) · zy (a, b ∈ A;x, y ∈ G)

and then extend for α, β ∈ A〈G〉 by the property of distributivity. We let

αa =
∑

x∈G

(∑

y∈G

ayσy,x(a)
)
·x, (a ∈ A, alpha ∈ A〈G〉)

for a ∈ A and α ∈ A〈G〉, and thus we obtain an operation of A on A〈G〉 and in
such a way we make A〈G〉 into a right A-module. Thus, we may view A〈G〉 as an
algebra over A.

Remark. Let us consider the situation described in Example 1. Then the law of
multiplication in A〈G〉 is given as follows

(∑

x∈G

ax · x
)(∑

x∈G

bx · x
)
=

∑

x∈G

∑

y∈G

axσx,x(by) · xy.

In this case, the monoid algebra A〈G〉 represents a crossed product [2, 3] of the
multiplicative monoid G over the ring A with respect to the factors ρx,y = 1
(x, y ∈ G). If G is a group, and σ : G −→ End(A) is such that σ(x) = 1A for
all x ∈ G, we evidently obtain an ordinary group ring [4] (the commutative case see
also [5]).
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3. In this subsection we show that A〈G〉 is a free G - algebra over A. Let
B be another ring. Given a ring-homomorphism f : A −→ B it can be defined
on the ring B a structure of A-module, defining the operation of A on B by the
map (a, b) −→ f(a)b for all a ∈ A and b ∈ B. We denote this operation by
a ∗ b. The axioms for a module are trivially verified. Let now ϕ : G −→ B be
a multiplicative monoid-homomorphism. Denote by 〈B; f, ϕ〉 the module formed by
all linear combinations of elements ϕ(x) (x ∈ G) over A in respect to the operation
∗. The axioms for a left A-module are trivially verified.

We assume that the homomorphisms f and ϕ satisfy the following assumption.

(B) ϕ(G)f(A) ⊂ 〈B; f, ϕ〉.

Thus, it is postulated that an element ϕ(x)f(a) (a ∈ A,x ∈ G) can be written
as a linear combination of the form

∑
b∈B,y∈G b ϕ(y). The coefficients b depend on

ϕ(x), ϕ(y) and f(a). To designate this fact we denote the corresponding coefficients
by σϕ(x),ϕ(y)(f(a)). Therefore, it can be considered that there are defined a family
of mappings σϕ(x),ϕ(y) : B −→ B such that

ϕ(x)f(a) =
∑

y∈G

σϕ(x),ϕ(y)(f(a))ϕ(y) (a ∈ A,x ∈ G).

By these considerations, we may view 〈B; f, ϕ〉 as a right A-module. In order to make
the module 〈B; f, ϕ〉 to be a ring we require the following additional assumption.

(C) The homomorphisms f and ϕ are such that the following diagram

A
f

−→ B
σx,y ↑ ↑ σϕ(x),ϕ(y)

A
f

−→ B

is commutative for every x, y ∈ G, i.e. σϕ(x),ϕ(y) ◦ f = f ◦ σx,y (x, y ∈ G).

We define multiplication in 〈B; f, ϕ〉 by the rules
(∑

x∈G

ax ∗ ϕ(x)
)(∑

x∈G

bx ∗ ϕ(x)
)
=

∑

x∈G

∑

y∈G

(ax ∗ ϕ(x))(by ∗ ϕ(y)),

(ax ∗ ϕ(x))(by ∗ ϕ(y)) = f(ax)
∑

z∈G

σϕ(x),ϕ(z)(f(by))ϕ(zy).

The verification that 〈B; f, ϕ〉 is a ring under the above laws of composition is direct.
Thus, we have made 〈B; f, ϕ〉 into an algebra over A (in general, non-commutative).

Next, we define a category C whose objects are algebras 〈B; f, ϕ〉 constructed
as above, and whose morphisms between two objects 〈B; f, ϕ〉 and 〈B

′

; f
′

, ϕ
′

〉 are
ring-homomorphisms h : B −→ B

′

making the diagrams commutative:

G === G
ϕ ↓ ↓ ϕ′

B
h

−→ B′

f ↑ ↑ f ′

A === A
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The axioms for a category are trivially satisfied. We call a universal object in
the category C a free G-algebra over A, or a free (A,G)-algebra. It turns out that
the monoid algebra A〈G〉 represents a free (A,G)-algebra. To this end, we observe
that the mapping ϕ0 : G −→ A〈G〉 given by ϕ0(x) = 1 · x (x ∈ G) is a monoid-
homomorphism. The mapping ϕ0 is embedding of G into A〈G〉. In addition, we have
a ring-homomorphism f0 : A −→ A〈G〉 given by f0(a) = a · e (a ∈ A). Obviously, f0

is also an embedding. We identify A〈G〉 with the triple 〈A〈G〉; f0, ϕ0〉 and in this
sense we treat A〈G〉 as an object of the category C. The property of the universality
of A〈G〉 is formulated by the following assertion.

Theorem 1. Let A be a ring, and G a multiplicative monoid for which the assump-
tions (A), (B) and (C) are satisfied. Then for every object 〈B; f, ϕ〉 of the category
C there exists a unique ring-homomorphism h : A〈G〉 −→ B making the following
diagram commutative

G === G
ϕ0 ↓ ↓ ϕ

A〈G〉
h

−→ B
f0 ↑ ↑ f

A === A

The relation with the theory of skew polynomial rings [6–8] and with those
obtained by Yu. M. Ryabukhin [9] (see also [10]), and further properties of the
general derivation mappings σx,y (x, y ∈ G) will be given in a subsequent publication.
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Junior spatial groups of (22′1)-symmetry
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Abstract. All junior space groups of (22′1)-symmetry are obtained with the help of
junior space groups of the three-fold antisymmetry.
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I. The problem of generalization of 230 spatial Fedorov symmetry groups G3 with
32 crystallographic P -symmetries (P ∼= G30) includes junior and middle groups. All
the junior groups have already been obtained [1]. Only 2- and 3-middle groups of
(421)- and (621)-symmetries, respectively, are not known.

Consider the generalization of k symmetry groups of any category Gr... with 32
crystallographic P -symmetries in geometric classification. Groups GP

r... are divided
in senior ones, among which for 1-symmetry k groups are symmetry groups of the
category Gr... (generating groups), junior and Q-middle groups. The derivation of
senior groups is trivial, as G = S × P , where S is a classical (generating) group,
P is the permutation group of indices that characterizes the P -symmetry under
consideration, and × is the symbol of the direct product of groups. The derivation
of junior groups of P -symmetry in the case when S has a normal divisor H such that
the factor group P/H ∼= P must be realized in detail. The calculation of Q-middle
groups can be done using the relation between the number of Q-middle groups of
some P -symmetries and the number of junior groups of others P -symmetries. To
make this relation more precise A. M. Zamorzaev [1] introduced the concept of the
strong isomorphism of groups.

Two transformations of a symmetry group S are called undistinguishable if they
are of the same geometric type and generate groups of the same order. So, in the
symmetry group of a rectangular 2 · m = (1, 2,m1,m2) the elements m1 and m2

are undistinguishable and distinct from the element 2. In the symmetry group of a
right parallelepiped 2 : m = (1, 2,m, 2̃) all elements are distinct. In the permutation
group of indices or indices with signs two elements are called undistinguishable if
one of them can go over into the other by means of reindexing. For example, in
the group P1 = {(1, 2)(3, 4), (1, 3)(2, 4)} = (I, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)),
which defines (22)-symmetry, all three non-identical permutations, going over
into each other cyclically by a cyclic change of the indices 2, 3, 4 (or other
three of indices) undistinguishable are, and in the permutation group P2 =
{(1+, 2+)(1−, 2−), (1+, 1−)(2+, 2−)} = (I, (1+, 2+)(1−, 2−), (1+, 1−)(2+, 2−),
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(1+, 2−)(1−, 2+)), which defines (21)-symmetry, there are no undistinguishable el-
ements, as from one of non-identical permutations changes only indices, the other
one – only signs, and the third one – both indices and signs. In the factor group S/H
or P/Q cosets are undistinguishable (as factor group elements) if they contain undis-
tinguishable elements, respectively. So, in the rotation group of a regular quadran-
gular prism S = 4 : 2 = (1, 4, 2(= 42), 4−1, 21, 22, 23, 24) the subgroup H = 2 = (1, 2)
is the normal divisor; in the factor group S/H = (H, 4 ·H, 21 · H1, 22 ·H) (which is
isomorphic to 2 : 2) the cosets 21 · H = (21, 23) and 22 · H = (22, 24) are undistin-
guishable and distinct from the coset 4 · H = (4, 4−1).

Two elements of a group are called equally included in this group if there exists
an automorphism of the group that maps one element into the other. So, in the
group 4 : 2 though the elements 2(= 42) and 21 are undistinguishable, they are not
equally included in this group, and the elements 21, 22, 23, 24 are undistinguishable
and are equally included in 4 : 2. Equally included elements not necessarily are
undistinguishable; so, the elements 2,m and 2̃ are equally included in the group
2 : m, but all these elements are distinct.

An isomorphism of the group G1 onto G2 is called strong if under this iso-
morphism to any undistinguishable and equally included in G1 elements undistin-
guishable elements correspond, and to distinct and equally included in G1 elements
distinct elements correspond. In this case the groups G1 and G2 are called strong
isomorphic (the designation: G1

∼= G2).
P1-symmetry and P2-symmetry are called isomorphic if the permutation groups

P1 and P2, defining these P -symmetries, are strong isomorphic (the designation:
P1

∼= P2).
Among 32 crystallographic P -symmetries in geometric classification only 22 are

not isomorphic. Let enumerate permutation groups that define these P -symmetries,
grouping them by strong isomorphism: 1)1; 2)2 ∼= 1 ∼= 2; 3)3; 4)4 ∼= 4;
5)6 ∼= 31 ∼= 6; 6)22; 7)21; 8)22; 9)32 ∼= 32; 10)42 ∼= 42; 11)42; 12)62 ∼= 62;
13)321 ∼= 62; 14)41; 15)61; 16)221; 17)421; 18)621; 19)23; 20)43 ∼= 43;
21)231; 22)431.

In [1] the following affirmations are proved: 1) The number of different Q-
middle groups of P -symmetry in the family is equal to the number of different
junior groups of P ′-symmetry with the same generating group if P/Q ∼= P ′; 2)
If P1

∼= P2, then the numbers of different junior groups of P1-symmetry and P2-
symmetry with the same generating group are equal. Hence, to calculate the num-
ber of junior and Q-middle groups of all 32 crystallographic P -symmetries by the
generalization of any category of classical groups it is enough to study the groups of
2−, 3−, 4−, 6−, (22)−, (21)−, (22)−, (32)−, (42)−, (42)−, (62)−, (62)−, (41)−, (61)−,
(221)−, (421)−, (621)−, (23)−, (43), (231)- and (431)-symmetry.

To finish this task it is necessary to study different junior groups of hypercrystal-
lographic (22′1)-symmetry (P ∼= G430), as by means of these groups we can calculate
2-middle groups of (421)-symmetry and 3-middle groups of (621)-symmetry, because
421/2 ∼= 621/3 ∼= 22′1.
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II. The symbol 22′1 is a symbol of three-dimensional point group of the CM
kind generated by rotations around two two-fold antirotational and one two-fold
rotational axes which are pairwise orthogonal and by antiidentical transformation
1. One of the hypercrystallographic P -symmetries that models junior symmetry
and antisymmetry group mm′m′ (22′1 ≈ 22′2′1 ≈ mm′ m′), generated by reflec-
tions in three pairwise orthogonal planes (one reflection plane and two antireflection
planes), is denoted by this symbol (1 is interpreted as reflection in a point, i.e. as
an inversion).

The groups mm′m′ and E3 = {1} × {1′} × {∗1} are isomorphic, where the
group E3 is the direct product of three groups of order 2, generated by antiidentical
transformations of kind 1, kind 2 and kind 3, respectively. The existence of such
isomorphism makes it possible to reduce the problem of searching junior space groups
of (22′1)-symmetry to the problem of searching junior space groups of three-fold
antisymmetry.

However, to different received junior space groups of the type M3 from one
family correspond the same groups of (22′1)-symmetry, as the group E3 =
(e, 1, 1′, ∗1, 1′, ∗1, ∗1′, ∗1′) contains 7 different kinds of antisymmetry transforma-
tions, and in the group mm′m′ = m1m

′

2
m′

3
= (e,m1,m

′

2
, m′

3
, m1m

′

2
= 2′

12
, m1m

′

3
=

2′
13

, m′

2
m′

3
= 223, m1m

′

2
m′

3
= i123) only five transformations are essentially diffe-

rent, for example, m1,m
′

2
, 2′

12
, 223, i123, as the transformations m′

2
,m′

3
and 2′

12
, 2′

13

play the same geometric role, respectively.
Consequently, for example, to the group {a, b, c}(2′ ·∗ m : 2) and to five groups,

received from this group by all permutations of signs –, /, * (which mean the trans-
formations of antisymmetry of kind 1, kind 2 and kind 3, respectively),

{a, b, c}(∗2 · m′ : 2) {a′, b, c}(2 · ∗m : 2)

{a′, b, c}(∗2 · m : 2) {∗a, b, c}(2 · m′ : 2) {∗a, b, c}(2′ · m : 2),

i.e. to six different junior groups of three-fold antisymmetry from family 18s corre-
spond three different groups of (22′1)-symmetry:

{a1, b, c}(23 · m2 : 2) {a3, b, c}(21 · m2 : 2) {a3, b, c}(22 · m1 : 2).

To the group {a, b, c}(∗2 · m : ∗2′) and to two groups, received from this group
by all even permutations of signs –, /, * (which mean the transformations of anti-
symmetry of kind 1, kind 2 and kind 3, respectively),

{a′, b, c}(2 · m : ∗2) {∗a, b, c}(2′ · m : 2′),

i.e. to three different junior groups of three-fold antisymmetry from family 18s
correspond two different groups of (22′1)-symmetry:

{a1, b, c}(23 · m : 223) {a2, b, c}(21 · m : 213).

To the groups {
a, b,

a + b + c

2

} (
c

2
∗2 ·

b

2
m :

a

2
∗2′b

4

)
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and {
a, b,

a + b + c

2

}(
c

2
∗2 ·

b

2
∗m :

a

2
2′b

4

)
,

i.e. to two different junior groups of three-fold antisymmetry from family 21a there
corresponds one group of (22′1)-symmetry:

{
a, b,

a + b + c

2

}(
c

2
213 ·

b

2
m1 :

a

2
212

b

4

)
.

Consequently, to receive all different junior groups of (22′1)-symmetry it is nec-
essary to receive all different junior groups of three-fold antisymmetry, to collect
them in nests and to replace 6 by 3, 3 by 2, 2 by 1 and 1 by 1.

Hence, as the number of different junior groups of three-fold antisymmetry is
equal to 16937∗6+2490∗3+5∗2+37∗1 = 109139, then the number of different junior
space groups of (22′1)-symmetry is equal to 16937∗3+2490∗2+5∗1+37∗1 = 55833.

To be sure of this result it is enough to use the numeric table from the work [1]
in which in the second column the quantity of groups in the corresponding equiv-
alence class (including a group-representative) is given, and in the third column –
the numeric distribution of groups of type M3 (obtained from the given group-
representative) in 6, 3, 2 and 1 group.

As the number of different junior space groups of (22′1)-symmetry gives us the
number of 2- and 3-middle groups of (421)- and (621)-symmetries respectively, then
we obtain 55833 2-middle groups of (421)-symmetry and 55833 3-middle groups of
(621)-symmetry.

Thus, for (421)-symmetry 55833+52761=108594 groups, and for (621)-symmetry
55833+55637=111470 groups are derived.

So, the number of all possible space groups GP
3

of complete 32 crystallographic
P -symmetries in geometric classification is equal to 436011.

References

[1] Shenesheutskaia A.A. Junior spatial groups of (221)-symmetry. Buletinul Academiei de
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