Academician Mitrofan M. Choban

FOUNDER OF THE MOLDAVIAN SCIENTIFIC
SCHOOL IN TOPOLOGY

On January 5, 2012, Academician Mitrofan Choban, Professor at Tiraspol State
University (located in Chisinau) and President of Mathematical Society of the Re-
public of Moldova, was honored for his achievements, in connection with the 70th
anniversary.

A work-tribute ” Academicianul Mitrofan Ciobanu la a 70-a aniversare” was pub-
lished in 2012 by the Academy of Sciences of Moldova and Tiraspol State University.
This book includes articles (in English, Russian, or Romanian) about the scientific
and social activity of M. Choban, written by scientists from different countries and
by public persons from Moldova, who know Professor M. Choban. Prominent mathe-
maticians in the area A.V. Arhangel’skii (”M. V. Lomonosov” Moscow State Univer-
sity, Russia; Ohio University, USA), Petar S. Kenderov (Academy of Sciences of Bul-
garia, Institute of Mathematics), S.I. Nedev (Institute of Mathematics, Bulgaria),
V.V.Fedorchuk ("M.V.Lomonosov” Moscow State University, Russia), R.Miron
(Tasi, Romania), M. Abel (University of Tartu, Estonia) highly appreciated Mitro-
fan Choban’s contribution in mathematics and education. They noted that Professor
M. Choban was one of the first mathematicians who studied the existence of spe-
cial set-valued selections for set-valued mappings and obtained important results



on the existence of measurable selections of multivalued mappings. A well known
problem of Hausdorff on Boolean classes was solved by M. Choban using his the-
ory of multivalued mappings. At present one of the methods of construction of
selections is known as ”Choban selection procedure”. A technique for the characte-
rization of various topological invariants (topological dimension, metacompactness,
etc.) was developed by him. Professor M. Choban essentially developed the general
descriptive theory of topological spaces; he solved the problem of zero-dimensional
representations of universal topological algebras and suggested an approximation
method for such algebras. A distinct idea in Choban’s research is the application
of topology to the study of functional spaces where he obtained deep results on
functional equivalence of spaces, on extensions of continuous functions in topolo-
gical spaces. A.V. Arhangel’skii also noted that M. Choban was continuing the line
of A.I. Mal’tsev in topological algebra and that ”the modern theory of free univer-
sal topological algebra is his creation”. The book also contains some M. Choban’s
memories and surveys of his scientific results.

Academician Mitrofan Choban is a leader of research in Topology and Topo-
logical Algebra and he published over 200 papers and 20 books in many branches
of mathematics. The following problems were solved by M. Choban: Hausdorff’s
problem on Borelian classes of sets; Alexandroff’s problem about the structure of
compact subsets of countable pseudocharacter in topological groups; Arhangel’skii’s
problem on the zero-dimensional representation of topological universal algebras;
two Maltsev’s problems on free topological universal algebras; two Michael’s prob-
lems about G -sections of open mappings of compact spaces and of the k-coverings of
open compact mappings of paracompact spaces; Phelps’ problem about the struc-
ture of the set of points of Gateaux differentiability of convex functionals (with
P.Kenderov and J.Revalski); Tichonoff’s problem about well-possedness of opti-
mization problems in the Banach spaces of continuous functions (with P. Kenderov
and J.Revalski); Confort’s problem about Baire isomorphism of compact groups;
Pasynkov’s problem about Raikov completion of topological groups; Arhangel’skii’s
problem on metrizability of o-metrizable topological groups (with S.Nedev); Pel-
czinski’s and Semadeni’s problems about structure of Banach spaces of continuous
functions on special compact subsets of quotient spaces of topological groups.

Detailed information about biography of Professor M. Choban and his scientific
activity can be found also in our journal ” Buletinul Academiei de Stiinte a Republicii
Moldova. Matematica”, No. 1(38), 2002, 118-123.

Most of the articles included in this issue are based on scientific results delivered
at the 20th Conference on Applied and Industrial Mathematics (see pp. 132-134)
dedicated to the 70th anniversary of Academician Mitrofan M. Choban.
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In 1847 Joseph Liouville presented in his lecture the following result (which was
published by A.L. Cauchy in 1844 but now is known as Liouville’s theorem): every
bounded entire function f : C — C is a constant function. In the theory of Ba-
nach algebras the following generalization of this result is used (see, for example,
[4, Theorem 3.12]): if X is a complex normed space and f a bounded weakly holo-
morphic X -valued map on C, then f is a constant map.

In 1947 (see [6, Theorem 1]) Richard Arens generalized this result to the case
of a locally convex Hausdorff space X and later on to the case of a topological
linear Hausdorff space X the topological dual of which has nonzero elements. It is
well-known (see, for example, [10, p. 158]) that topological linear spaces which are
not locally convex could not have any nonzero continuous functionals. In this case'
instead of X-valued holomorphic functions the X-valued analytic functions are used.

In 1973 (see [12, Corollary, p. 56]) Philippe Turpin gave the following generaliza-
tion of Liouville’s theorem: if X is an exponentially galbed Hausdorff space and f is
an analytic X -valued map on? Coo, then f is a constant map. In 2004 (see [2, The-
orem 2.1]) Mati Abel generalized this result to the case of strongly galbed Hausdorff
space X. Moreover, in 2008 he presented in [3, Theorem 3.1] the following result:

Theorem 1. Let X be a topological linear Hausdorff space over C. If the von
Neumann bornology By of X is strongly galbed, then every X -valued analytic map
on Cs 18 a constant map.

© Mati Abel, 2013

*Research is in part supported by Estonian Targeted Financing Project SF0180039s08.

Tn 1966 Lucien Waelbroeck (see [14]) gave conditions for X-valued holomorphic map f on C
to be constant in case of complete pseudoconvex space X, generalizing for it the integral theory
for such maps. Unfortunately, his results have been presented mostly without complete proofs. He
gave only hints for some parts how to prove.

?Here and later on Co = C U {o0}.
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A new detailed proof for this result is given in the present paper. Moreover, it
is shown that for several topological linear spaces the von Neumann bornology is
strongly galbed.

1 Introduction

1. Let X be a topological linear space over K, the field of real numbers R or
complex numbers C. By F-seminorm on X we mean a map ¢ : X — RT which has
the following properties:

(1) g(Az) < q(x) for each x € X and A € K with |A\| <1
(2) limy, o q( ) =0 for each =z € X;
(3) q(z+vy) < q(z)+ q(y) for each z,y € X.

If from ¢(z) = 0 it follows that z = 0x (the zero element of X), then ¢ is an
F-norm on X. In this case d with d(z,y) = q(z — y) for each z,y € X defines a
metric on X such that d(z + z,y + z) = d(z,y) for each z,y,z € X.

It is well-known (see, for example, [9, p. 39, Theorem 3|) that the topology of
any topological linear spaces coincides with the initial topology defined on by a col-
lection of F-seminorms. A topological linear space (X, 7) topology 7 of which has
been defined by a F-norm || || and X is complete with respect to || || is an F-space.
Moreover, if X is a locally pseudoconvez space (see, [11, p. 4], or [15, p. 4]), then
X has a base U = {Uy : A € A} of neighborhoods of zero consisting of balanced
(uUy C Uy when |p|< 1) and pseudoconvex (Uy + Uy C pUy for p > 2) sets.
This base defines a set of numbers {kyx : A € A} in (0,1] (see, for example,
[10, pp. 161-162] or [15, pp. 3-6]) such that

?«““H

Uy + Uy C 2k U,y

and
Iy, (Uy) C 20Uy
for each \ € A, where
I (U) =

n n
:{ZuuuyzneN,ul,...,uneU and pi,...,u, € K with Z\MV F< 1}
v=1 v=1

for any subset U of X and k € (0,1]. The set I'y(U) is the absolutely k-convexr hull
of U in X. A subset U C X is absolutely k-convez if U = T'y,(U) and is absolutely
pseudoconver if U = I'y(U) for some k € (0,1]. In the case when

inf{ky: A€ A} =k >0,

X is a locally k-convex space and when k = 1, then a locally conver space.
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It is known (see [15, pp. 3-6] or [7, pp. 189 and 195]) that the topology on a
locally pseudoconvex space X can be defined by a family P = {py : A € A} of
ky-homogeneous seminorms (that is, py(ua) =| p |*pa(a) for each A € A, p € K
and a € E), where the power of homogeneity k) € (0, 1] for each A € A and every
seminorm p) is defined by

pala) = inf{|u|™: a € pl'y, (UN)}

for each a € A.

Let now [ be the set of all K-valued sequences (z,,) for which Y 72 |z,| < o0,
1 be the subset of [ of sequences with only finite number of nonzero elements and
let Ip =1\ 1°.

A topological linear space X is a galbed space (see [2]) if there exists a sequence
() in Iy and for every neighbourhood O of zero in X there is another neighbourhood
U of zero such that?

U {Zn:akukiuo,...,uneU}co,
k=0

n€eNg =

In particular, when
ap#0 and a = inf |an|% > 0, (1)
n>0

a galbed space X is strongly galbed and X is exponentially galbed when o, = 2% for
each n € Ny. It is known (see [1, Proposition 2| or [3, Corollary 2.2]) that every
locally pseudoconvex space is exponentially galbed (hence strongly galbed too).

2. A bornology on a set X is a collection B of subsets of X which satisfies the
following conditions:

(@) X= U B;

BeB
(b) if Be Band C C B, then C € B;
(C) if B1,By € B, then B; U By € B.

If X is a linear space over K, a bornology B on X is called a linear or vector
bornology if the following conditions are satisfied:

(d) if By, By € B, then By + By € B;
(e) if Be Band A € K, then AB € B;

(f) U AB € B for every B € B.
[A<1

A linear bornology B on a linear space X is convez if I'1(U) € B for every U € B
and pseudoconvez if there exists a number k € (0, 1] such that I'y(U) € B for every

3Here and later on No = {0} UN.
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U € B. Moreover, a bornology B on a linear space X over K is a galbed bornology
(see [3]) if there is a sequence (o) in ly such that

S((an),B) = | J {Zakbk:bo,...,bneB}eB 2)

neNg k=0

for all B € B. In particular, when () satisfies the condition (1), B is a strongly
galbed bornology on X, and when «,, = 2% for each n € N, B is an exponentially galbed
bornology on X (see [5]). Moreover, we shall say that a bornology B is pseudogalbed
if for every B € B there exists a sequence (a,) € ly such that S((ay,),B) € B. In
particular, when («,) satisfies the condition (1), we shall say that the bornology B
is strongly pseudogalbed.

3. Let X be a topological linear space over C. An X-valued map f on C,, is
analytic at Ao € C if there exists a number ¢ > 0 and a sequence (z,) in X such
that

e e}
FQo+A) =D apA
k=0
whenever || < €, and is analytic at oo if there exists a number R > 0 and a sequence

(yx) in X such that
o~ Y
N =>"
k=0

whenever || > R.

If X is a topological linear space, then the set of all bounded sets forms a linear
bornology which is called the von Neumann bornology on X or the bornology on X
defined by the topology of X.

2 Topological linear spaces with strongly galbed and pseudogalbed
von Neumann bornology

First we describe these topological linear spaces, the von Neumann bornology
By of which is strongly galbed?.

Proposition 1 (see [3]). The von Neimann bornology of any strongly galbed space
is strongly galbed.

Proof. Let X be a strongly galbed space. Then there exists a sequence (ay,) €
which satisfies the condition (1), and for every neighbourhood O of zero in X there
is another neighbourhood U of zero such that S((ay,),U) € O. Moreover, for any
B € By there is a number pp > 0 such that B C pupU. Since

S((an),B) € S((an), usU) € upO,

then S((ay,), B) € By for every B € Bx. Hence By is strongly galbed. O

4Proposition 1 is proved in [3]. A modified proof for this result is given here.
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Corollary 1. The von Neumann bornology of every exponentially galbed apace is
strongly galbed.

Proposition 2. The von Neumann bornology of any metrizable topological linear
space is pseudogalbed.

Proof. Let X be a metrizable topological linear space. Then X has a countable
base Lx = {O,, : n € Ny} of balanced neighbourhoods of zero. We can assume that
On+1 + 0p11 C O, for each n € Ny (the addition in X is continuous). Let O be an
arbitrary neighbourhood of zero in X. Then there is a number ng € Ny such that
Op, € O and

U Z Ok-‘rl - Onm

n>=>no k=ng

because
On0+1+"'+0n+1 c Ono+1+”’+0n+0n - Ono+1+”’On—l+On—1 -

c...C Ono+1 + Ono+1 C Ono

for each n > ny.
Let B € By be a balanced set. Then for each k € Ny there exists a number
pr = pk(B) > 1 such that B C 3Oy 4k4+1. Here py < pg41 because Opyq C O, for

each n € Ny. Put
1

 max{fn, pf'}

for each n € Ny. Then |a,| < ﬁ for each n € Ny. Hence (ay,) € lp. Since

no+n

Zakbk € Z ( no—l—k—l—l) Z Ok+1
prt P maX{uk i} P
clU X Oomico,co
n>ng k=ng
for each n > 0 and each choice of elements bg, by, ...,b, € B, then
B =J {Zakbk by, by € B} co.
neNg k=0

Hence, S((aw,), B) € By, because of which By is pseudogalbed. O

Corollary 2. The von Neumann bornology of every F-space is pseudogalbed.
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3 Proof of Theorem 1

Now we give a new and detailed proof for Theorem 1.

Proof. Let X be a topological linear Hausdorff space and f an X-valued analytic
map on Co,. We can assume that X is complete, otherwise we consider X as a dense
subset in X, the completion of X, and f as X-valued analytic map on Cu.

Let first Ay € C. Then there is a number r > 0 and a sequence (z,) in X such
that

FOo+A) = ap\F
k=0

whenever |\| < r. By assumption, the von Neumann bornology By of X is strongly
galbed. Therefore there exists a sequence (o) € ly with a < 1 such that (2) holds
for any B € By. Take 79 € (0,%). Then the series

T

(07
o
Z :Ek(ozro)k
k=0

converges in X. Therefore the sequence (z,(arg)™) tends to zero in X. Hence, the
set {:En(oz’r'o)" 'n e No} is bounded in X. Let Uy, = {\o + A : |\ < a®rg} and

n
Xy, = U {Zwk(aro)ktk : (tg) is a sequence with |t;,] < o for each k:}
neNg k=0

Then X, is an absolutely convex and bounded set in A. Indeed, if A, p € C with
Al + |u| < 1 and z,y € X, then there exists n;,ny € Ny and ¢f,...,t; and
th, ..., thy such that [t¥| < of and [t]| < o for each F,

ni
T = Z x(arg)*tE
k=0

and

n2
y = Z . (arg)F Y.
k=0

If ny > no, then we put

ty

=y —
not1 = =1tp, =0

(otherwise we act similarly), then

ni

Mo+ py =Y ap(oro) (M + put]) € X,
k=0

because
IMEE + ] < IR+ [ullt]] < o (1A + |ul) < o
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for each k. Thus X, is an absolutely convex set.

To show that X, is bounded, let O be an arbitrary balanced neighbourdhood
of zero in X. Because (z,(arg)"”) is a bounded sequence in X, there is a number
p > 0 such that z,(arg)™ € pO for each n € Ny. Therefore

t ty ™ o
T (arg)"—= =z, (arg)" == — € p(——O) C pO
Qp o't ay a™ «

n

for all n € Ny and all (¢,) with %ﬁ' < 1 for every n, because Ig—n\ < 1 and O is
balanced. Hence, the set

t
B = {wn(aro)"—" :n € Ny, (t,) is a sequence with |t,| < o™ for each n} € By.
n
Thus, X, C S((an), B) € By, because the von Neumann bornology By is strongly
galbed. Moreover, it is easy to see that (.S;,), where

n
S, = Z :Ek(ozro)ktk
k=0

for each n € Ny and fixed sequence (t,) with |t,| < o™ for each n, is a Cauchy
sequence in X. To show this, let O be an arbitrary neighbourhood of zero in X and
m € N a fixed number. Then there exists a balanced neighbourhood O; of zero in
X such that
O1+---+0,CO
m summands
and a positive number p such that x,(arg)” C pO; for all n € Ny because the

sequence (z,(arg)™) is bounded. Since o < 1, then the sequence (a™) vanishes.
Hence, there is a number ng € Ny such that o” < % whenever n > ng. Since

n+m
Sntm = Sn =Y wglarg)’ty € pOrtni1 + -+ pOrtpsm C O1 4 -+ 0y C O
N———
k=n+1

m summands

whenever n > ng for every fixed m € Ny, then (S,) is a Cauchy sequence in X.
Hence, (S;,) converges in X. Therefore

)
Zxk(()ﬂ‘o)ktk e X
k=0

for every fixed (t,) such that |t,| < o™ for each n. It is easy to show that the closure
K, of the set X, in X is a closed, bounded and absolutely convex subset of X.
Therefore (see, for example,[8, pp. 8-9]), the linear hull Ay, in X, generated by K,
is a normed space with respect to the norm® D), defined by

Pro(a) =inf{A > 0:a € AK),}

= B .
°Here p», is a norm on Ay, because K, is bounded.
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for each a € A),. Taking this into account, we have

o0
€ {Zxk(aro)ktk : (tn) is a sequence with |t;| < o for each k‘} C Ky, C Ay,

whenever |\| < a?rg. Consequently, for any point A € C there is an open neighbour-
hood Uy of A and a normed subspace Ay of X such that the restriction f|y, of f to
U) has values in Ay.

Since f is also analytic at oo, then there is a sequence (z,) in X and a number

R > 0 such that -
2
k=0

whenever |\| > R. Let Ry € (aR,c0). Then the series
Sa
R§

k=0

converges in X. Therefore the sequence (Z’I‘%‘fin) is bounded in X.
0
Let Uso = {\: |\ > g%} and

2k
Xoo = U {Z i : (tg) is a sequence with [tg| < < aF for each k‘}
n&€Np =

Then X, is an absolutely convex and bounded set in X. Indeed, if A\, u € C with
Al + |p] < 1 and z,y € X, then there exist ni,ny € No and ¢§,...,t and

s bmq

th, ..., th, such that [t¥| < of and [t} < of for each k,
- ny Zkozk tz
- k
k=0 g
and
2 zpal
_ y
y= Z Rk bk
k=0 ~0
If ny > no, we put again
v _
tn2+1—---—t%1 0

(otherwise we act similarly). Therefore

ni k
ZEQ
k=0 0
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because
I+ ] < IMEE]+ [elltE] < o (A] + |ul) < o®
for each k.
Let O be again an arbitrary balanced neighbourhood of zero in X. Because
(zn%—g) is a bounded sequence in X, there is a number m > 0 such that zn%—g e w0
for each n € Ngy. Therefore

zpa t tn t, o
n@" tn Q" tn Q" 77(_"0‘_0> c 70
Ry Ry am oy, am ap
for all n € Ny and all (¢,) with % < 1 for each n, because ﬁ 1 and O is

balanced. Hence, the set

zna™ t
B = { }L% X :n € Ny, (t,) is a sequence with |¢,| < o™ for each n} € By.
0 %n

Hence, Xoo C S((a), B') € By because the von Neumann bornology By is strongly
galbed. Thus, the closure K, of the set X, in X is a closed, bounded and absolutely
convex subset of X. Therefore (similarly as above) the linear hull A, in X, gnerated
by K, is a normed space with respect to the norm p.,, defined by

Poo(a) =inf{A >0:a € \K}

for each a € Ay. The same way as in the first part of the proof,

sza tr € X

k=0 g

for every fixed (t,) such that |¢,| < o™ for each n. Since

ZZ'”‘( 2

k— 0
2z ak
€ {Z l;%k : (tg) is a sequence with |tz < o for each k‘} C Koo C Ao
k=0
whenever || > £ there is an open neighbourhood Uy of 0o and a normed subspace

As of X such that the restriction f|y_ of f to Uy has values in Ay
Now {U) : A € C} and Uy form an open cover of C. Since C is compact,
there are numbers n € N and Aq,..., A, € C such that

et (o).

Therefore

F(Co) = U(CJ UAk>cA1:AOOU(CJAAk>CAO,
k=1 k=1
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where Ag is the linear hull of A;. Without loss of generality we can assume that
every element
T=Mx1+ -+ Anxm € Ag

has been presented in the form

T=a1+ -+ ap+ any1,

where a, € Ay, for each k € {1,2,...,n} and ap41 € A, denoting by a; the zero
element if none of elements \iz1, ..., A2y, does not belong to Ay, or the sum of all
elements from Ay, ..., Ay, which belong to Ay, ; by as the zero element if none
of remainder elements from A\izy,..., A\, 2y, does not belong to Ay, or the sum of
all remainder elements from Ay, ..., A2y, which belong to Ay, and so on.

Now, for every x € Ay let
N(z)={ e {A\,..., \p,00} 1z € Ay}

and let p be the map on Ay, defined by

for every z = a1 + -+ + anpy1 € Ag. It is easy to check that p is a norm on Aj.
Hence f maps C, into the normed space Ag. Now, it is easy to show that ¢ o f
is a C-valued analytic function on C,, for each continuous linear functional ¢ on
Ap. Hence ¢ o f is a constant function by the classical Liouville’s Theorem. Since
continuous linear functionals separate the points of any normed space, then f is a
constant map. O

Now, by Theorem 1, Propositions 1 and Corollaries 1, we have the result of
Ph. Turpin (see [12]).

Corollary 3. If X is an exponentially galbed (in particular a locally pseudoconvex)
space, then every X -valued analytic map on C is a constant map.

4 Application

Using the classical Liouville’s Theorem, it is easy to prove the Gelfand-Mazur
Theorem, that is, every complex normed division algebra is topologically isomorphic
to C. This result has many generalizations to the case of locally convex and lo-
cally pseudoconvex division algebras. Next we give a characterization of complex
topological division algebras.

Theorem 2. A complex Hausdorff division algebra® A is topologically isomorphic
to C if and only if

SWe assume here that the multiplication in topological algebras is separately continuous.
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a) every element of A is bounded" ;
b) the von Neumann bornology of A is strongly galbed.

Proof. Let A be topologically isomorphic to C. Then every element of A has the
form Aey, where A € C and ey is the unit element of A and every bounded set in
A is in the form Ke4, where K is a bounded set in C. Therefore, every element of
A is bounded. To show that the von Neumann bornology of A is strongly galbed,
let (ay,) € lp be such that the condition (1) holds, and let L =", |oy|, M > 0 and
Ky ={X € C: |\ < M}. Moreover, let B be an arbitrary bounded set in A. Then
there is a number M > 0 such that B = Kjse4. Since

n n
Z QEHEEA = ( Z Oékuk) €A
k=0 k=0

for each n and uq, ..., u, € Kjr and

n n o
> | <D Nl < MY oyl = ML,
k=0 k=0 k=0

then

n
U {Z%MEA Ly P € KM} C Kyrea.
neNg k=0
Hence, the von Neumann bornology of A is strongly galbed.
Let now A be a complex Hausdorff division algebra. Then (see [3, proof of
Proposition 5.1]) A is topologically isomorphic to C by Theorem 1. O

Now by Proposition 1, Corollary 1 and Theorem 2 we have

Corollary 4. Every complex strongly galbed (in particular, exponentially galbed)
division algebra is topologically isomorphic to C if and only if every element in A is
bounded.
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Abstract. If a countable group G admits a non-discrete metrizable group topology
70, then in the group G, there are:

- Continuum of non-discrete metrizable group topologies stronger than 7o, and any
two of these topologies are incomparable;

- Continuum of non-discrete metrizable group topologies stronger than 79, and any
two of these topologies are comparable.
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1 Introduction

Researches on the possibility of the definition of a Hausdorff, group topologies
on countable groups were started in [1]. In this work also a method to define such
group topologies on any countable group was given.

Later, in [2] it was proved that any infinite Abelian group admits a non-discrete
Hausdorff group topology, and in [3] an example of a countable group which does
not admit non-discrete Hausdorff group topologies was constructed.

This article is a continuation of the research in this direction. The main results
of this article are Theorems 13 and 14.

2 Basic results

To highlight the main results we need the following well-known result (see [4],
p. 203, Proposition 1, and p. 205, Corollary):

Theorem 1. A set Q) of subsets of a group G is a basis of the filter of neighborhoods
of the unity element of a Hausdorff group topology on G if and only if the following
conditions are satisfied:

1) N V=A{e}
Ve
2) For any Vi and Va € Q, there exists V3 € Q such that V3 C Vi (| Va;

3) For any Vy € Q, there exists Vo € Q such that Vo - Vo C Vi;
4) For any Vi € Q, there exists Vo € Q such that V2_1 c Wy

© V.I. Arnautov, G.N.Ermakova, 2013
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18 V.I.ARNAUTOV, G.N.ERMAKOVA

5) For any Vi € Q and any element g € G, there exists Vo € ) such that
g-Va-gotC V.

Remark 2. From Theorem 1 it easily follows that if a countable group G admits a
non-discrete group topology 7y such that the topological space (G, 7p) is a Hausdorff
space, then the group G admits a non-discrete group topology 71 such that the
topological space (G, 1) is a Hausdorff space, and it has a countable basis of the
filter of neighborhoods of the unity element.

Remark 3. From ([5], Theorem 8.1.21) it easily follows that a topology 7 of topo-
logical group (G, ) is given by a metric if and only if the topological space (G, T) is
a Hausdorff space, and it has a countable basis of the filter of neighborhoods of the
unity element.

Such a topology is called a metrizable topology.

Notations 4. If V1, V5, ... and S1, .59, ... are some sequences of non-empty symmet-
ric subsets of a group G, then for each natural number k by induction we define a

subset Fk<V1,...,Vk;Sl,...,Sk> of G as follows: take Fj <V1;Sl> = {g-Vl'g_1|g €
51}UV1'V1 and Fj1q :Fl(‘/lUFk(V%---aVk+l§S2,---aSk+l)§Sl)-

Proposition 5. For subsets Fj, <V1, ey Vi S, . ,Sk) the following statements
are true:

5.1. Ife € Vy, then Vi C V1 -V C F1(V1;81) and g-Vy - g~ ' C F1(Vy;81) for any
g €51

5.2. If k € N and the sets S; and V; are finite for 1 < i < k, then
F <V1, ey Vi S, .0 ,Sk> is a finite symmetric set;

5.3. Fk<{e},...,{e};Sl,...,Sk> = {e} for any k € N;

54. If U; CVyand T; C S; forany 1 < i <k, thean<U1,...,Uk;Tl,...,Tk> C
Fk(‘/l)avlmslvask)a

55. If ke N and e € V; for all i < k and Viy; = {e} for 1 < j < p, then
Fk(‘/l)avkvslaask) :Fk-‘:—p(‘/lv"'avk-i-p;slv"'aSk-i-p);

5.6. For k > 2 the equality Fk<V1,...,Vk; 51,...,Sk> =
Fe(ViU Fior (Varo o Vis S,y Sk ) Viet U FL (Vi S), Vi S, S ) s trues

5.7. If e € V; for any 1 <1 <k, then V; C Fk<V1,...,Vk;Sl,...,Sk> for any
1<t <k

5.8. If e € V; for any 1 < i < k, then Fk+1(‘/;,...,Vk+s;55,...,5k+s> -
Fristy1 (Vt, co oy Vs S1, - .,Sk+5> for any k,s,t € N and t < s.
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Proof. Statement 5.1 follows easily from the definition of the set F} (Vl; Sl>.

Statements 5.2, 5.3 and 5.4 can be easily proved by induction on k, using
that the sets S; and V; for i € N are symmetric and the definition of the set

Fk<V1,...,Vk;Sl,...,Sk>.

We prove Statement 5.5 by induction on k.
If k = 1, then using Statement 5.3 we get F (Vl, {e},....{e};S1,... ,Sl+p> =

Fl(V1UFp({e},...,{e};SQ,...,SHp);Sl) - F1<V1 U{e};Sl) — Fl(Vl;Sl) for

any p € N.
Assume that the equality is proved for the number k£ and all p € N. Then

Fk-ﬁ-l—i—p(‘/h- . -7Vk+17{e}7’ ey {6};51,. .. 7Sk+1+p> =

Fl (‘/1 UFk—I—p(‘/Q7 ey Vk+17 {6}7 ey {6};527 e 7Sk+1+p); Sl) =
i) <V1 UB Vs Vigni o, Sea)i $1) =

Fk‘-i—l (‘/17‘/27' .. 7Vk‘+1;517527 s aSk‘-i-l)'

Statement 5.5 is proved for the number £+ 1, and hence, Statement 5.5 is proved
for any natural number.

We prove Statement 5.6 by induction on k.
If k& = 2, then F2<V1, Va; S, 52) = Fl(V1UF1(V2; 52); 51) =

Fy (Vl U (Vz; 52> U <V2; 52); 51) = I (Vl U (Vz; S2>, Va; 51, S2>.
Assume that the equality holds for the number k£ > 2. Then

Bt (Vi Vi St Sk ) = B (A B (Voo Vi o, 84)581 ) =

F((MUR (Vo Vis S 8) Y U (Voo Vi o, 80) )i 81) =
F1<(V1UFk<\/'2UFk_1<V§,,...,Vk+1;53,...,5k+1>),...,Vk_lu
Fk<V2UFk_1<V3,...,Vk+1;53,...,Sk+1),...,Vk_1U
Fy (Vi Sk), Vs S2, -+ k) )3.51) = B (Vi |

Fy <V2, ooy Vi1 Sz, ,Sk+1),- oy Vi UF1(Vk+1; Ska1)s Var1;51 - - Sk-l—l)-

Statement 5.6 is proved for the number k+ 1, and hence, Statement 5.6 is proved
for any integer k > 2.

We prove Statement 5.7 by induction on k.
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If kK =1, then t = 1. Then, by Proposition 2.1, F} (V1;51> o V.

Assume that the required inclusion is proved for the number k and all 1 < ¢ < k,
and let t < kK + 1.

If t > 1, then considering the induction assumption, we get that

Fra <V1, oo Vi 13515 ,Sk+1) 2B <V1 UFk(V% o Virns

527---7Sk+1>§51> QFl(V1UVt;51) 2V1UVt2Vt-

If t = 1, then applying Statements 5.4 and 5.3, and the induction assumption,
we see that
Frtq <V1, oo Veg1; 51, - aSk+1) 2

F (Vl UFk<V27---7Vk+13527---;Sk+1)§Sl) 2

By <V1 Uﬂ({e}a R {6};527---75k+1>;51> =B <V1;51> 2V

By this Statement 5.7 is proved.
We prove Statement 5.8 by induction on the number s — ¢.

If s—t = 0, then ¢t = s, and hence, Fk+1<Vs,...,Vk+5;53,...,5k+5) =

Frys—t41 <Vt, ooy Virs; Sty oo aSk-i-s)-
Assume that the required inclusion is proved for s —t = n and any k € N, and
let s —t =mn+ 1. Then, by the inductive assumption and Statement 5.7,

Fk+1(x@,...,vk+s;55,...,sk) C Fro(omt—1)11 (Vg,...,Vk+s;52,...,5k+s> c

ViU B oornin (Voo Viewss S, Sk ) €
Py (Vi | Frgs—t (V2, ooy Vieysi Sz, - ,Sk+s); S1) =

Frts—t+1 (Vl, ooy Viersi S1, - ,Sk+s)

for all s,k € N.
By this Statement 5.8 is proved, and hence, Proposition 5 is proved. O

Definition 6. Let G be a group and let x be a variable. An expression of the form
g1k gk oggafs - gey, where g; € G for 1 <i < s+1and k; are integers
for 1 < j <s, is called a word on the variable x over the group G.

The set of all words on the variable  over the group G will be denoted by G(z).

Remark 7. If we assume that 2 = e, then the set G(z) is a group under the
multiplication of words.

Adding, if it is necessary, the unity element of the group in the expression
gr-xf gy k2. gs-afs - go  we can assume that k; € {—1,0,1}.
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Definition 8. If f(z) is a word on the variable z over the group G, then an
expression of the form f(z) = g, where g € G, is called an equation over a group G.

Definition 9. An element b of a group G is called a root of the equation f(x) =g
over the group G if f(b) = g.

Notations 10. Let G be a countable group, and let G = {e,gfl,gécl, . } be a
numbering of elements of the group G (this numbering will follow throughout the
article).

For each natural number k, we put Si = {gfl,géd, e ,g,fl}, for each pair of

natural numbers (7, j) we define subsets V(; ;) and S, ;) of the group G, and for each
triple of natural numbers (i, j, k) such that 1 <k < j we define the set ®; j () of
the equations on the variable x over the group G as follows: V(; ;) = {e}, Sa,j) = Sjs
and @y ) (z) = {x =clce Sk} for all j,k € N and k < j.

Assume that the sets V{; j), Si; ;) and ®(; ;1) (z) for i < p and all j,k € N and
k < j are defined for a natural number p.

If p+ 1 is even, then we take:

Vipt1,j) = {e} for any j > p+1;

J
Vip1,5) = Vip.j) U{g, 971}, where g is an element of the set G\ SL:Jl S(pj) * for any

j<p+L
q>(p+l,j,k)(x) = q>(p,j,k)($) for all £ < j € N;

J
Sp41) = {g € G | g is a root of an equation from | <I>(p+1,j7k)} for all j € N.
k=1

If p+ 1 is odd, then we take:

Vip+1,4) = {e} for j 2 p+1; '

Vips1.) = Fpr15 (Vipjsns - Vippn)i Sivts -5 Spin) U Vi) for j <p+ 15

D) = {z =gl ge s} for all j €N and Py p(z) =
{f(.’,l') =g ’ f(x) € Fj—k(‘/(p—l—l,k+1)7 SRR ‘/(p—l—l,j—l)a ‘/(p,j) U {xax_l}; Sk—l-h e 75])
andgeSk} for all k < j € N;

Sp+1,5) = S(py) for any j € N.

So, we have identified the subsets V(; ;) and S(; ;) of the group G for each pair

of natural numbers (i, j) and the set ®; ; 1) () of equations over a group G for each
triple of natural numbers (i, j, k), such that 1 < k < j, respectively.

Theorem 11. If a countable group G admits a non-discrete Hausdorff group
topology T, then for any finite set M = {fl(az) =ay,..., fm(x) = am} of equations
over the group G for which the unity element e of the group G is not a root of any
of these equations, in the topological group (G,T) there exists a neighborhood W of
the unity element such that its any element is not a root of any of these equations.

J
f G\ U Sp.j) =0, then we take V11,5 = Vip.j)-
s=1
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Proof. For each positive integer 1 < i < m of the mapping f; : (G,7) — (G, 1) is
a continuous mapping. Since the topological group is a Hausdorff space, then the
set {g} is a closed set in the topological group (G, ) for any element g € G. Then

m
Vi = G\ f; " (a;) is an open set, and e € V; . If V.= (] V}, then V' is a neighborhood
j=1
of the unity element and a; ¢ f;(V') for any 1 < i < m, and hence any element from
V is not a root of any equation f;(x) = a; for any 1 <1i < m.
By this the theorem is proved. O

Proposition 12. (see the example 3.6.18 in [5]) There exists a set N of cardinality
continuum of infinite subsets of the set N of natural numbers such that ANB is a
finite set for any distinct A,B € N

Theorem 13. If a countable group G admits a non-discrete metrizable group topol-
ogy 1o, then G admits continuum of non-discrete metrizable group topologies stronger
than 1o, and any two of these topologies are incomparable.

Proof. Let G = {e,gfl, .. } be a numbering of elements of the group G and S, =

glﬂ, . ,g,jfl} for any n € N. There exists a countable basis {Vl,Vg, . } of the
filter of neighborhoods of the unity element in the topological group (G, 7y) such

that Vk_1 =Vi, ViN Sk =0 and g- Vi1 - g~ C V; for any g € Sk, k € N.
By induction on k one can easily prove that Fj, (Vi+1, vy Vi Sty -0y Si+k> -

V; for all i,k € N.
Further proof of the theorem will be realized in several steps.

STEP I. Construction of an auxiliary sequence of elements and a sequence of
natural numbers.

By induction, we construct a sequence ki,ks2,... of natural numbers such
that k; > 4 for all ¢ € N, and a sequence hi,ho,... of elements of the set
G\{e} such that {e,hi,hi_l} C Vg, and h; ¢ Fk({e,hl,hfl},...,{e, hi_l,hi__ll},
{e}, {e,hHl,h;_ll}, e {e,hk,hlzl};Sl, . ,Sk) for any integers 1 <1i < k.

We take k1 = 1, and as h; we take an arbitrary element of the set Vi\{e}.

Suppose that we have already defined natural numbers ky, ko, ...k,
such that k; > 4 and elements hi,ho,...,h, from the set G\{e} such
that {e, hy hi' } C Vi, and  h; ¢ Fo({e, ha, hi'} oo {eshict, b} {el,
{e,hi+1,hi_+11},..., {e,hn,h,jl};Sl,...,Sn) for any i € N, 1 < i < n and
hn Qé Fn—l ({6, hl, hl_l}, ey {6, hn_l, h;&l}; Sl, ce ,Sn_l) .

For any i€ N, i<n+1 we consider the set Qg1 5(7)=

Fn+1<{€, h17 h1_1}7"'7{67 h’i—17 hi__ll}a{e}a{e7 hi+17 hi__|_11}7"'7{e7 hna h;1}7

{x,x_l};Sl,...,SnH) of words on the variable z over the group G and the

set of equations @], ,(z) = |J {f(:z:) =g f(x) € Qny1,),9 € {hy h;l}} over the
i=1
group G.
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Since (see Statement 5.5) Fn+1({e, hi, hl_l},...,{e, hi—1, hi__ll},{e},
fes hivrs Wik e bbb dels St San) = Fa(fe, b AT
{e,hi_l,hi__ll},{e},{e, hi+1,hi_+11},...,{e,hn,hrjl};Sl,...,Sn>, and by the induc-
tion assumption, h; ¢ Fn({e,hl,hl_l},...,{e,hi_l,hi__ll},{e},{e,hHl,h;_ll},...,

{e,hn,hgl};Sl,...,Sn), then f(e) ¢ {hi,h;'} for any i < n and for any word

(3

f(z) of the set Q11 4)(x). Hence, the unity element e of the group G is not a root
of any equation of the set ®;, ().

So, we have proved that @], ;(z) is a finite set of equations over the group G' and
the unity element e of the group G is not a root of any equation of the set ®;,_,,(z).

Since the topology 7y is a non-discrete Hausdorff group topology, then by The-
orem 11, the topological group (G, 7) has a neighborhood W of the unity element
such that any its element is not a root of any equation of the set ®,_;(x).

The finiteness of the set F,,({e, h1, hl_l}, oo {e b, hi by 81, ..., Sy) and the fact
that 79 is a Hausdorff topology imply that there exists a number n 4+ 1 < kyy1 € N
such that Wy, ., € W and

Fo({e,ha, by 'Y e b, by} 1, Sn) () Wi = {e)-

We take as hj41 any element of the set Wy . \{e}.
We show that these conditions are statisfied for numbers kq, ks, .. ., ky+1 and for
elements hi, ho, ..., hyy1 of the group G.

Since hpy1 € Wi, \{e}, then h,q1 ¢ Fn<{e, hi, hl_l},...,{e,hn,hgl};
Sl,...,Sn). Moreover, by the inductive assumption, h; ¢ Fn<{e, hl,hl_l},...,

{6, hi—17 hl__ll}u {6}, {67 hi+17 hy,_4_11}7 vy {6, hna hr_Ll}a Sl7 cee Sn) =
Fn+1 ({6, h17 h1_1}7 "'7{67 h’i—17 hZ__ll}7 {6}, {67 hi+17 hi__|}1}7"'7{67 hna hgl}a{e}v
Slu"'asn-i-l)-

Since the element hyy; is not a root of any equation of the set @] (x) =
]L:Jl{f(:n) =g | f(ﬂj‘) € Q,(n+1’j)7g € {h]7h]_1}}7 then hl ¢ FTL—I—I <{€, h17h1_1}7"'>
feshi b b Aek es i Bt b e Bt by 1 St S )

Thus, we have constructed the sequence of natural numbers k1, ks, ... and the
sequence hy, ho, ... of elements of the group G such that k; > i, {e, h;, hi_l} C Wi,
for any i« € N and h; ¢ Fk({e,hl,hl_l},...,{e, hi_l,hi__ll},{e},{e,hHl,h;}l},...,
{e, hg, h,;l}; S1,- .. ,Sk) for any natural numbers 1 <1i < k.

STEP II. Construction of a metrizable group topology 7(A) for any infinite set
A of of natural numbers.

For any natural number i we consider the set U; 4 = {e} if i ¢ A, and
Uia = {e, hi,hi_l} if i € A, and for any pair (4,7) of natural numbers we con-
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sider the set U(i,j),A = Fj(Ui—i-l,Ay RN Ui+j,A§ Sit1y e Si+j)- We will show that for
the sets U(; j) 4 the following inclusions are true:

1. From Statements 5.3 and 5.4 it follows that e € U(; j) 4 for any i,j € N.
2. From Statement 5.5 it follows that U j) 4 C Ug,n),a for any j < n.
3. From Statement 5.8 it follows that U jy 4 C Uy j),.4 for any k <.

4. From Statement 5.2 it follows that Uy ;) 4 is a symmetric set, i. e.

-1
(U(ivj)vA) = Ulij),a for any i,j € N.

5. By induction on j, we prove that Uj;iqj)a - Uitrj),4 S Ugyjy,a and
g- U(i+17j)7A . g_1 - U(M),A for any i,5 € N, j>1and g € S;41.

In fact, if j = 2, then, applying in succession the definition of the sets Uy, j 4,
Statements 5.1, 3.4 and 3.6, we obtain:

Ugis1,2),4 - Ulit1,2),4 =
F1(Uito.4; Sit2) - F1 (Uit2,4; Siv2) C Fi(Fi(Uiya.a; Siva); Sit1) C
Fi(Uit1,4 UFl(Uz’+2,A§ Si42); Sis1) = Fa(Uip1.a Usyans Sigts Siva) = Uioya =
Uigra and g-Ugiia-g " =g Fi(Uir2,45Sir2) 9" C
A (FiUia.4; Sisa)i Si) € i <Ui+17A U F1(Uit2,4; Sit2); Si-i-l) —

F3(Uig1,4,Uiga,4; Siz1, Siv2) = Uii2).4

for any 7 € N.
Assume that the required inclusion is proved for j =n > 2 and any i € N.
Then

Ulir1,itnt1),4 - Ulitiens1),a = Fn (Ui+2,Aa ooy Uipnt1, A

Siy2,. .. 7Si+n+1> -, <Ui+2,A7 oy Uiyng1,45 Sigo, - - 7Si+n+1> -
F <Fn(Uz’+27A7 o Uibng1,43 Si2, -5 Signt1); Si+1> -

Fi(Uis1,4 U Fo(Uis2,4, - Uitnt1,45 Si425 - - -, Signt1); Sig1) =

For1(Uis1,a, -+ Uigna1,45 Sivts - -+ 5 Signt1) = Uing1),4

and
9 Ustitnina-9 " =9 Fo(Uis2,a, -, Uigng1,4; Sivas - - Signg1) -9~ C
By (Fn(Uit2,45 - -+ Uigng1,4; Siv2, - - 5 Signt1); Siv1) C

Fy <Ui+1,A U Fo(Uig2,4, -, Uitng1,45 Sig2, -+ s Sidns1); Si+1> =
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Fri (Ui-i-l,Aa ooy Uigng1,45 i1, -+ 7Si+n+1) = Ulint1),4

So, we have proved that Ugit1 )4 Utip1,).4 € Uigy.a and g-Ugpr a9~ €
U(i,j),A for any ZJJ € N; ] > 1 and g € S’i—‘rl'

Using the inclusions 1-5 proven above, one can prove that the set {UZ(A) =

o0
U Ui,j),A | i e N } satisfies the conditions of Theorem 1, and hence, this set is
j=1

a basis of the filter of neighborhoods of the unity element for a metrizable group
topology 7(A) in the group G.

STEP I1I. Construction of the continuum of group topologies.

For any subset A € N (for definition of the set N, see Proposition 12) we consider
the group topology 7(A), constructed in the proof of this Theorem, step II.

Since the set N has the cardinality of the continuum, then to complete the proof,
it remains to show that for any sets A, B € N the topologies 7(A) and 7(B) are
incomparable.

Suppose the contrary, for definiteness assume that 7(A4) < 7(B).

Let n € A. Since 7(A) < 7(B) and U, 4 is a neighborhood of the unity element
in the topological group (G,7(A)), then there exists a natural number k£ € B such
that Uk B C Un A, and since A () B is a finite set, then there exists a natural number
s € B\A, such that s > k and s > n. Then

hsEFk—s<Uk+1,B7"'7US7B;S/€+17"'7SS> CU gU

From the construction of the elements h; (see step I of this proof) we have
ho & Fi({es by b7 e homy bl b e fechorn b {es hoves Bk
Sl,...,SS+t) for any t € N.

Since s ¢ A, then Usa = {e}, and hence, hs ¢ E( Unt1,4, - Unyt,A;

Sntls---y Sn+t) Un,),a for any t € N. Then hg ¢ U Un,p),a = UmA-

We have arrived at a contradiction, so the topologles 7(A) and 7(B) are incom-
parable.
By this the theorem is proved. O

Theorem 14. Let a countable group G admit a non-discrete metrizable group topol-
ogy 1o, then there exists the continuum of non-discrete metrizable group topologies
on G stronger than Ty, and any two of these topologies are comparable.

Proof. Let P be the set of all prime numbers, let Q be the set of all rational numbers,
and let R be the set of all real numbers. Then there exists a bijection £ : Q — P.

For each positive real number r € R we consider the set A, =¢({g € Q| r < ¢})
of prime numbers, and let 7(A,) be group topology on the group G, constructed in
the proof of Theorem 13, step II.
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We will show that the set {7(A,) | r € R} is the required set of group topologies.
Since the set {UZ(AT) | i€ N} is a basis of the filter of neighborhoods of the

unity element for the group topology 7(A4;), then the topological group (G, T(Ar))
has a countable basis of the filter of neighborhoods of the unity element.

We show that for any distinct real numbers 7,7’ € R the topologies 7(A,) and
7(A,s) are different and comparable.

In fact, if » < 7/, then A,\A,  is an infinite set. Then, similarly as in the
proof of Theorem 13, step III we show that 7(A,) # 7(A4,), and hence, the set
{7(A;) | € R} has the cardinality of the continuum.

To finish the proof of the Theorem it remains to show that any two topologies
from the set {7(A,) | » € R} are comparable.

Let 7,7" € R and suppose (for definiteness) that r < 7’. Since

Ay ={{qeQ|r<qt Cé{qeQlr=q} =4,

then (see the definition of the sets U jy 4 in the proof of Theorem 13 step II)
Uiijy,a,, € Ugig),a, for any 4,5 € N. Then 0n,AT, C Un,Ar for any n € N, and , the
sets {Un,a,, | n € N} and {U, 4, | n € N} are basis of the filter of neighborhoods of
the unity element in topological groups (G, 7(A4,/)) and (G, 7(A,)), respectively. As
any group topology is determined by the basis of the filter of neighborhoods of the
unity element, then 7(A,) < 7(A4,/).

By this the theorem is proved. O
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Short signatures from the difficulty of factoring
problem
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Abstract. For some practical applications there is a need of digital signature schemes
(DSSes) with short signatures. The paper presents some new DSSes based on the dif-
ficulty of the factorization problem, the signature size of them being equal to 160
bits. The signature size is significantly reduced against the known DSS. The proposed
DSSes are based on the multilevel exponentiation procedures. Three type of the expo-
nentiation operations are used in the DSSes characterized in performing multiplication
modulo different large numbers. As modulus prime and composite numbers are used.
The latters are difficult for factoring and have relation with the prime modulus.

Mathematics subject classification: 11T71, 94A60.
Keywords and phrases: Information authentication, digital signature scheme, short
signature, factorization problem, discrete logarithm problem.

1 Introduction

There are digital signature schemes (DSSes) which are based on different hard
mathematical problems. The difficulty of factorizing a composite number n = gqr,
which is the product of two large unknown primes g and r, is used in the design
of the first DSSes which gained practical importance, the RSA cryptosystem [1],
Rabin’s DSS [2], and Fiat-Shamir’s DSS [3]. In the mentioned DSS the digital
signature length depends on the required security level estimated as the number
of group operations that should be performed to forge a signature, while using
sufficiently large but reasonable memory (for example up to 2°° bits). At present
the 280 operations security level can be accepted as the minimum one. The RSA
and Rabin’s DSS provide the minimum security level with the 1024-bit signature
length [4].

An important practical problem is the develop DSS with short signature length
[5]. A DSS based on the difficulty of discrete logarithm problem in the multiplicative
group [6] or in group of elliptic curve points allows the reduce the signature size
[7]. The DSA standard and Schnorr’s DSS based on difficulty of finding discrete
logarithm modulo large prime number provide comparatively short signatures which
have the 320-bit length and the security level of the 1024-bit RSA. The ECDSA
standard also requires the use of the 320-bit signature size [8] to get the same
security.

In the present paper we consider some ways to reduce the signature length in
DSS based on the difficulty of the factorization problem. In Section 2 we present
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DSSes with 320-bit and 240-bit signature lengths proposed in our previous works
[9, 10] using the factoring problem difficulty. In Section 3 we describe some new
signature formation mechanisms which are used to reduce the signature length to
the 160 bits value and present two DSSes with short signature. Section 4 presents
the comparison with the known signature algorithms. Section 5 concludes the paper.

2 Randomized signature schemes based on factorization problem

The well known cryptosystem RSA [1] is based on the calculations modulo n
which is the product of two randomly chosen strong prime numbers r and ¢ [11].
The public key is represented by a pair of numbers (n, e), where e is a random
number that is relatively prime with the Euler phi function p(n) = (p — 1)(¢ — 1).
The triple (p, ¢, d), whered = e~' mod ¢(n), is the private key. Data ciphering
with RSA is described as follows: ¢ = M¢ mod n (public-key encryption)
and M = C¢ mod n (decryption), where M < n is a plaintext and C is a
ciphertext. The RSA signature (S) generation and verification are performed as
follows: S = M% mod nand M = S° mod n, correspondingly.

Usually the signed documents are comparatively long. In such cases instead
of sign the document M we sign the hash function value H = Fg(M) which
corresponds to M : S = H? mod n. The RSA security is based on
the difficulty of factoring modulus n, which depends on the structure of primes
p and ¢. At present the requirements on the primes p and ¢ are well clari-
fied [4, 12, 14]. The RSA signature size is sufficiently large, 1024 bit in the
case of 80-bit security. The factoring problem is well studied, therefore it is a
trusted one for designing secure DSSes. However, other DSSes based on this
problem, for example Rabin’s DSS [2] and Fiat-Shamir’s DSS [3], also define
long signatures. Using the fact that computing discrete logarithm modulo n is
at least as difficult as factoring n the papers [9,10] propose the DSS with the
320-bit randomized signature. The paper [11] proposes the randomized DSS with
the 240-bit signature.

2.1 The 320-bit signature algorithm

In the DSS from [9] such strong primes r and ¢ are used that the numbers
p — 1l and ¢ — 1 contain different prime divisors 4" and ~"”, respectively. The
values 7/ and 4" should have the lengths at least equal to 80 bits. The se-
cret key is the triple (p, ¢, ). The public key is a pair of numbers (n, «),
where o is generated as follows. Select a random number 3 that is simultane-
ously a primitive element modulo p and a primitive element modulo ¢, compute

t = 71y en) = A1y Hp - D@ — Danda = F° mod n.
The number « is generator of the y-order group {& mod n, «o? mod n,...,a"
mod n},i.e. @ mod n = 1

The generation of the a parameter can be performed also in the following way:
1. Choose random 3 < n and calculate ¢ = 3' mod n.
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2. If o # 1 and ged(oc — 1, n) = 1, then a « o, otherwise go to step 1.

A document or the hash value corresponding to it are interpreted as integers M
and H, correspondingly.

Therefore, the required g-bit sequence H = (hg—1, hg—2, ..., h1, ho) is taken
as the number

H = hg12970 4+ hg9297% + ... + he2® + h2' + he2".
This scheme is described by the following verification equation:
g+ k= (@ mod n) mod 4,

where (g, k) is the signature and 6 > ~ is a prime number which has, for example,
the length of |[§| = |y| + 4 bits, where |d| denotes the bit size of the value 0. The
signature size is |k| + |g| = 10| + |y| = 2|yv| =2(]Y| + [7/']) = 320 bits.

The signature generation is performed as follows:

1. Given the M document calculate the hash value H = Fy(M).

2. Check whether H # 0 and ged(H, v) = 1. If H= 0 or ged(H, v) # 1,
then modify the document M and go back to step 1.

3. Select a random U < ~ and calculate Z = («
D= (Z%/4—U/H) mod ~.

4. Check whether D is a quadratic residue modulo ~. If not, then go back to
step 3.

5. Solve the following system which contains one congruence and one equation
relative to the unknowns ¢ and k:

Y mod n) mod ¢ and

kgH =U mod 7,
g+k=27.
The solution gives the following signature generation formulas:
6. Calculate the signature using the formulas ¢ = Z/2 + vD mod ~ and
k=272—g.
The signature verification is performed as follows:

1. Calculate the hash function H = Fy(M).
2. Check whether the following signature verification equation

g+ k= (" mod n) mod §

is satisfied. If g + k& # (o mod n) mod &, then reject the signature.
Proof that the signature verification works:
The left side of the signature verification equation is equal to:

g+ k=2= (@ modn) mod 4
The right side of the signature verification equation is equal to:

(@ mod n) mod 6 = (@ mod n) mod § = g + k,
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since we have

kgH = (Z — Z/2 F sqrtD)(Z/2 + VD)H = (Z*/4 — D)H =
(Z2%/4—Z°/A—U/H|H=U mod 1.

To explain the requirements imposed on parameters n and « it is useful to
consider the case of prime value « (for example: v | p — landy t ¢ — 1), for
which we have

a = gFM = (ﬁ(q—l))(p—l)/v mod n =
a= (BHP-D/ =1-D/7 =1 mod ¢ =
a—1= modg=gq|la—-—1= ged(la—1,n)=gq
where ged(a, b) denotes the greatest common divisor of the numbers a and b. Thus,
in the considered case it is possible to factorize the modulus using the extended
Euclidean algorithm. Therefore some restrictions imposed on generating the public
key are necessary. We can prevent this attack using a prime 7 that divides both
p — land ¢ — 1, but 42 does not divide p — 1 nor ¢ — 1. In this case we have:

(p—1)(g—1)

a=p8 2 Eﬂ“l“”( mod n),

where v does not divide each of the numbers v’ = (p — 1)/y and v/’ = (¢ — 1)/7.
If B is simultaneously a primitive element modulo p and a primitive element modulo
q, then we have « mod p # land @« mod ¢ # 1, i.e. ged(oa — 1, n) = 1.
Unfortunately, in the case of the prime secret element v can be calculated factor-
izing the n — 1 value. Indeed, we have: p = v~y + 1,q = u'v + 1, and
n = v'u''y? + (v + ')y + 1, hence v | (n —1). Therefore the composite value
~v = ~'9", where 7/ and +' # «// are different divisors of p— 1 and ¢ — 1, should be
used. If § is a “double primitive element”, then we have

(p—1)(q—1) s n
a=p4 " =" ( mod n),

where v/ = (p—1)/4 and v” = (¢ —1)/4”. Thus, in such way of the public
key formation we also have ged(aw — 1, n) = 1. If one of the primes 4" and ~”, for
example 7/, is small, then one can factorize n trying different values 4" and verifying
the relation ged(a” — 1, n) = p. Therefore both values 4/ and ~4” should be
sufficiently large. To define 80-bit security one has to use the 80-bit prime numbers
~" and ~+".

2.2 The 240-bit signature algorithm

The paper [11] proposes some modification of the DSS described in Subsec-
tion 2.1. The main feature of the DSS introduced in [11] is to apply the “two-level”
exponentiation procedure that provides the possibility to use a prime secret value
. In the DSS from [11] the value ~ is the order of the value & modulo the secret
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value ¢q. Due to hiding the modulus ¢ it becomes possible to use prime secret order
~. In this DSS the following verification equations are used:

R=p"" medn piod pr k = (R medn mod p) mod 6,

where p = 2n 4+ 1 is a prime; n is the product of two 512-bit primes ¢ and r
(n = rq); B is a number which has the order ¢ modulo p; and « is a number
which has the order v modulo ¢. The modulus § is a 80-bit prime. The private
key is represented by the pair (g,7), where v is the 160-bit prime number such that
~v|q — 1. The public key is the triple (o, 3, p). The 240-bit signature (k, g), where
|k| = 80 bits and |g| = 160 bits, corresponds to the 160-bit hash-function value
H and provides the 80-bit security.

The signature generation procedure includes the following steps:

1. Generate a random value U < 7.

2. Compute the value k using the formula k = (ﬁaU mod ¢ mod p) mod 4.

3. Compute the value g using the formula g = U/(kH + 1) mod ~.

The last formula is derived from the following system of two congruences:

t+g9g=U mod~y
t=kgH mod 7,

where ¢ is an auxiliary unknown.

Now prove that the signature verification works. Suppose a valid signature (k, g)
corresponding to the hash value H is given. Taking into account that a has the order
v modulo ¢ and substituting the values k and g in the verification equations we get

R= ﬁakgH mod n = ﬁakgH mod ¢q = ﬁa(kkgfl) mod ¢q mod p;

(Rag mod n mod p> mod § = (Rag mod g mod p> mod § =
a(%) mod ot moda
={(p 7 mod p mod p mod § =

STV ERFT  mod Y mod
= (B meC e mod p mod5:<ﬂo‘ modd mOdP> mod ¢ = F,

i.e. the signature verification result is positive, which means the DSS works correctly.

Let us consider some possible attacks. The first one includes finding the value
X = logg R mod p and calculating g as a divisor of the value (akgH mod n) - X.
Then the value v can be determined as one of divisors of the value ¢ — 1. Due to
the large values |p| and |g| this attack is computationally infeasible.

The second attack is to find the value X' = log, a*¥ mod n and then to
calculate 7 as one of divisors of the value kgH — X’. The second attack defines the
following requirement: the value « should have a large order A modulo n. Taking
into account the comments for selection of the value o in Subsection 2.1 the value
A should be equal to the product of two large primes: A = ~u, where p divides
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p — 1 and does not divide ¢ — 1; |u| > 160 bits. If this requirement is satisfied,
then the second attack is also computationally infeasible.

The most efficient is the third attack implementing a modification of the
Baby-Step-Giant-Step algorithm to compute the value z from the known value
y = ﬁa’” mod 7 11164 .

The algorithm is described as follows [10]:

1. Select a random value U > 2171410 and calculate Y= ﬁaU mod - mod p.

2. Fori = 0toD = [ﬂ] + 1 calculate 2/ = Bam mod n mod p. Save the
values 2’ in the table containing pairs 2’(i).

3. Order the table of pairs (i, /(7)) according to the value 2'(7) and set j = 0.

4. Calculate 2"(j) = y'/ modn mod p.

5. Check if in the table there exists 2’(ig) such that 2/(i) = 2 (j). If 2" (j) # 2/(4)
for ¢ = 0 to D, then increment the counter j: j = j+ 1 and go to step 4.

6. Calculate the value U’ = ig + j and factorize the value U — U’.

7. Select a divisor v such that g% ™" mod p = .

The difficulty of this algorithm is equal to W = 3,/7 exponentiation operations.
To provide the 80-bit security one should use the prime order v which has the size
equal to 160-bits.

3 Proposed 160-bit signature schemes

The proposed DSS is based on the three-level exponentiation procedure that

defines the following function
y= QP medm mod N o D

where p = eN +1; N = PQ; P = e¢/'n+ 1; n = gr; e is a 16-bit even integer; €’
is a 100-bit even integer; Q = 2Q’ + 1is a prime; r = 2r' + 1 is a prime;
q = €’y + 1isaprime; @', q, and ' are 512-bit primes; 7 is a 80-bit prime; P is a
1124-bit prime. The value € has order P modulo p; the value 8 has order ¢ modulo
P; the value a has order v modulo g. The values P, @, r, and -y are elements of the
private key.

The three-level exponentiation procedure makes the Baby-Step-Giant-Step algo-
rithm inefficient to compute the value x that defines the given value y. Indeed, we
have

a?  mod n
Y= 0P mod N 16d p=
— QﬁaiD+j mod n od N mod D —
aiDaj mod n
=0F mod N 1164 P,

i.e. it is not possible to transform the formula defining the function y(z) in the
formula the right side of which is free from the integer j and the left side is free from
the integer i. Below we propose two variants of the 160-bit signature scheme using
an additional 80-bit prime § as a specified parameter of the signature algorithm.
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3.1 The first scheme

The public key includes the values p, N,n,, 3, and «a.
The modulus p is generated as follows:

1. Generate 512-bit primes @Q, ¢, and r.

2. Generate a random 100-bit even integer €’ such that the value P = e'rq + 1

is prime.

3. Select such a 16-bit even integer e that the value p = eP@Q + 1 is prime.
The value 2 is generated as follows:

1. Generate a random number p < p and compute Q' = p°?@ mod p.

2. If Q' # 1, then output Q = Q.
The value 3 is generated as follows:

1. Generate a random number p < N and compute 8’ = p¢'” mod N.

2. If B is a primitive element modulo @ and 3’ # 1 mod ¢, then output 3 = 3’.
The value « is generated as follows:

1. Generate a random number p < n and compute o/ = p¢” mod n.

2. If « is a primitive element modulo r and a’ # 1 mod ¢, then output a = a’.

The first variant of the 160-bit DSS includes the following signature generation
procedure.

1. Compute the hash function value H from the message M to be signed
H=Fy(M).

2. Generate a random value t < v and compute the value R:

R = QBHQt mete mod Pnod p.

3. Compute the first signature element k: k = RH mod J.
4. Compute the second signature element ¢g: ¢ = k=t mod ~.
The corresponding signature verification procedure is as follows:
1. Compute the hash function value H = F(M) from the message M to which
the signature (k, g) is appended.
SO kg

2. Compute the value R: R = QA" med™ mod Ny p.
3. Compute the value k: k = RH mod 6.
If k = k the signature is valid. Otherwise the signature is rejected.
Correctness proof.

R= QBHng medt mod N pod p =

H(xkg mod g mod P

mod p =

oL
(Xt mo:
Q8" 9 mod P mod p = R —

—k=RH modd=RH modéd=k.
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3.2 The second scheme

The second variant of the 160-bit signature scheme uses an additional element
of the public key y = o mod ¢, where z is the additional 80-bit element of the
private key, and includes the following signature generation procedure.

1. Compute the hash function value H from the message M to be signed
H=Fy(M).

2. Generate a random value t < v and compute the value R:

R= QU™ "t mod P mod p.
3. Compute the first signature element k: kK = RH mod §.
4. Compute the second signature element g: ¢ =t — zk mod ~.
The corresponding signature verification procedure is as follows:

1. Compute the hash function value H = Fg(M) from the message M to which
the signature (k, g) is appended.

2. Compute the value R: R = QHBY ! modn mod N .

3. Compute the value k: k = RH mod 6.

If k = k, the signature is valid. Otherwise the signature is rejected.
Correctness proof.

Hﬁykag mod n mod N

R=0Q mod p =
kag mo:

— HBY 49 mod P mod p =
Oé:Ekag mo

:QH’B 49 mod P mod p =

aack:thfack: mod g
:QHB mod P modp:

Oét mo:
:QHB dg mod P modp:R:>

—k=RH modd§=RH modd=k.

4 Comparison with the known signature algorithms

The attacks against the DSS [10] which are described in Section 2 can be also
considered as attacks against the proposed in this section signature algorithm, which
are based on the three-level exponentiation procedure. Actually due to one added
exponentiation level it becomes impossible to apply the Baby-Step-Giant-Step algo-
rithm and it becomes possible to reduce the size of the order of the value «, which
leads to shortening the digital size to 160 bits. Table 1 illustrates the comparison of
some signature schemes related to Baby-Step-Giant-Step algorithm.

Table 1. Transformation of the base function using the representation of the
unknown z as x = iD + j where D = [(\/7)] +1,4,7= 0,1,2,...,D; ~ is order of
the value a modulo prime p.
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DSS Base function Representation of
of DSS the base formula
[7] y=a® modp ya~ P =aJ mod p
[10] y = ﬁoﬁ” mod n mod P yoFZD mod n _
— 5aj mod n modp
Propo— |y = Q8" Tt mod N0 P ?
sed
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The proposed DSSes are oriented to applications that require using short signa-
tures and the performance of the signature generation and verification procedures
is not of high significance. In the described signature generation and verification
procedures more exponentiation operations are used than in the known DSSes with
240-bit and 320-bit signatures. For comparison see Table 2.

Table 2. The performance comparison of the proposed signature scheme with the
DSSes of [7] and [10] for the case of the 80-bit security.

Signature properties DSS

The 1st | The 2nd | [10] | [7]

proposed | proposed
Signature generation performance, 5 5 30 | 100

arbitrary units
Signature verification performance, 2 2 11 | 50
arb. un.

Signature size, bits 160 160 240 | 320

5 Conclusion

This paper introduces an approach to design 160-bit signature schemes based on
the difficulty of factorization problem. Different variants of implementing the ap-
proach are possible applying the proposed three-level exponentiation procedure. We
estimate that the signature generation and verification performance can be increased
by factor = 3, however such implementations of the 160-bit signature algorithms rep-

resent an additional problem.
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Abstract. We present a selection of old problems from different domains of General
Topology. Formally, the number of problems is 20, but some of them are just versions
of the same question, so the actual number of the problems is 15 or less. All of
them are from 30 to 50 years old, and are known to have attracted attention of many
topologists. A brief survey of these problems, including some basic references to
articles and comments on their present status, are given.
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1 Introduction

There is more than one way to achieve progess in mathematics. One of them is to
introduce a good new concept, usually generalizing some classical concept. The next
step is to consider elementary natural questions arising from it. This may lead to
a success and recognition, depending on whether the new concept provides valuable
new insights in or not. Another, more standard and more widely spread, way is to
take a classical construction, procedure, and to modify some parameters involved in
it so that the construction becomes applicable to a wider class of objects.

But there is yet another, more secure and pleasant, way to gain immediately
recognition and to make an impact on mathematics: to solve a well-known, or
even famous, open problem in one of its fields. Whether a certain problem can be
recognized as famous depends on many objective and subjective factors. One of
them is how old is the problem, another factor is the history of it, in particular, who
has posed the problem, and who has worked on it.

Below I briefly survey a very finite set of inspiring open problems in General
Topology. The list is very selective. All of the problems in it are rather old, aged
from 30 to 50 years, and I will provide some basic references to the literature. The
brief survey I offer to the reader shows in many directions, it includes very different
problems. So trying to make this survey detailed and comprehensive would result
in a huge and non-focused text passing by many major topics in General Topology.
This is not the task I have in mind at this time, so that only very selective references
to results and articles are given in the comments.

© A.V.Arhangel’skii, 2013
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A 7space” below is a Tychonoff topological space. In particular, by a com-
pact space we mean a compact Hausdorff space. In terminology and notation we
follow [24].

2 The cardinality of Lindelof spaces

In the summer of 1923 P.S. Alexandroff and P. S. Urysohn, building up the the-
ory of compact spaces, came to the question: is it true that the cardinality of every
first-countable compact space is not greater than the cardinality of the set of real
numbers? This question became known as Alexandroff-Urysohn Problem. Appar-
ently, it has appeared in print for the first time in [3]. The work on the Problem gave
a good push to developing and refining set-theoretic methods in General Topology.

It is well-known that the cardinality of every metrizable uncountable compact
space is exactly 2¢. Alexandroff and Urysohn have been able to considerably gen-
eralize this fact: they proved, by a nice ramification method, that if every closed
subset of a compact space X is a Gs-set, then | X| <2“ [3]. Alexandroff-Urysohn’s
Problem had been solved only in 1969, in [7]: the cardinality of every first-countable
compact space is indeed not greater than 2¢. In fact, it was shown in [7] that this
inequality holds for Lindelof first-countable spaces as well. The following question
was raised at that time:

Problem 1 (A.V.Arhangel’skii, 1969). Suppose that X is a Lindeldf space such
that every point of X is a Gs-point. Then is it true that | X| < 2¥?

Of course, the author of this problem wanted to see its solution in ZFC. In
this sense, the problem still remains unsolved, even though it has been shown that,
consistently, the anwer to Problem 1 is "no”. We are still looking for an example in
ZFC of a large Lindelof space X in which every point is a G5. See [8,34] and [32]
for more about this question. It will definitely require new techniques and new
ideas to answer Problem 1. However, notice that the answer is "yes” if we add the
assumption that the tightness of X is countable.

3 Weakly first-countable spaces

Suppose that X is a space and 1, = (V,(x) : n € w) is a decreasing sequence of
subsets of X, for every x € X, such that z € V,,(z) and the following condition is
satisfied:

(wfe) A subset U of X is open if and only if for every 2z € U there exists n € w
such that V,(z) C U.

In this case, we will say that the family {n, : + € X} is a weakly basic wfc-
structure on the space X. A space X is called weakly first-countable if there exists
a weakly basic w fc-structure on X. The concept of a weakly first-countable space
was introduced in [5]. Note that the interiors of the sets V,,(z) in the above defini-
tion can be empty. There are many examples of weakly first-countable spaces that
are not first-countable. However, every weakly first-countable space is sequential,
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and therefore, the tightness of every weakly first-countable space is countable. In
connection with the next question, see [5] and [§].

Problem 2 (Arhangel’skii, 1966). Give an example in ZFC of a weakly first-
countable compact space X such that | X| > 2.

N. N. Jakovlev has constructed under C'H a weakly first-countable, but not first-
countable, compact space [33]. On the other hand, it has been shown [8], also under
CH, that every homogeneous weakly first-countable compact space is first-countable
and hence, the cardinality of it doesn’t exceed 2%.

However, the next question, closely related to Problem 2, remains open:

Problem 3 (Arhangel’skii, < 1978). Give an example in ZFC of a weakly first-
countable, but not first-countable, compact space X .

For consistency results on the existence of a weakly first-countable compact space
with the cardinality larger than 2, see [41] and [1].

A very interesting open question about weakly first-countable spaces arises in
connection with the well-known Hajnal-Juhasz theorem on the cardinality of first-
countable spaces with the countable Souslin number [32,34].

Problem 4 (Arhangel’skii, < 1980). Suppose that X is a weakly first-countable space
such that the Souslin number of X is countable. Then is it true that | X| <2“?

In topological groups weak first-countability turns out to be as strong as the
first-countability itself. Indeed, M. M. Choban and S.J.Nedev in [44] have shown
that every weakly first-countable topological group is metrizable.

4 Symmetrizable spaces

For the introduction to the theory of symmetrizable spaces, see [5] and [43]. A
closely related but less general concept of a semimetrizable space was introduced by
Alexandroff and Niemytzkii in [2], in 1927. A symmetric on a set X is a non-negative
real-valued function d(,) of two variables on X such that d(x,y) = 0 if and only if
x =y, and d(z,y) = d(y,z) for any z,y € X. Suppose that X is a space and d is a
symmetric on X such that a subset A of X is closed in X if and only if d(x, A) > 0
for every x € X \ A. Then we say that d generates the topology of the space X.
A space X is symmetrizable if the topology of X is generated by some symmetric
on X. Symmetrizable spaces naturally arise under quotient mappings with compact
fibers [5]. They constitute a much larger class of spaces than the class of metrizable
spaces. It is easily seen that every symmetrizable space is weakly first-countable.
Hence, every symmetrizable space is sequential. However, not every symmetrizable
space is first-countable. But the next question is still open:

Problem 5 (< 1970). Is every point in a symmetrizable space a Gs?
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If T remember correctly, this question was formulated for the first time in the
correspondence between E.Michael and A. Arhangel’skii in sixties. Of course, this
problem is motivated by the following fact: every metrizable space is first-countable.

However, in some situations symmetrizable spaces, indeed, behave in the same
way as metrizable spaces. In particular, every symmetrizable compact space is
metrizable [5]. For semimetrizable spaces (they can be characterized as first-
countable symmetrizable spaces) this statement was proved by V.V.Niemytzkii
in [45]. The main step in the proof of the last statement is to show that every
point in a symmetrizable compact space is a Gg. After that is done, it remains to
refer to Niemytzkii’s result mentioned above.

It should be noted that symmetrizable first-countable spaces are quite well be-
haved in general. In particular, a symmetrizable space X is first-countable if and
only if every subspace of X is symmetrizable [5]. The next case of Problem 5 is also
open.

Problem 6. Is every pseudocompact symmetrizable space first-countable?

The fact that every symmetrizable countably compact space X is metrizable [43]
makes the last Problem especially interesting.

A pseudocompact symmetrizable first-countable space needn’t be metrizable
(this is witnessed by Mrowka’s space), but every such space is a Moore space
(see [51]). Thus, the next question is a reformulation of Problem 6:

Problem 7. Is every pseudocompact symmetrizable space a Moore space?

5 Topological groups and topological invariants

A typical object of topological algebra can be described as a result of a happy
marriage of an algebraic structure with a topology. The ties arising from this mar-
riage strongly influence the properties of both structures. A classical example of this
situation is Birkgoff-Kakutani Theorem: a topological group G is metrizable if and
only if it is first-countable [18].

Every first-countable space X is Fréchet-Urysohn, that is, a point x € X is in
the closure of a subset A of X only if some sequence in A converges to x. Clearly,
every countable first-countable space is metrizable, but it is easy to construct a non-
metrizable countable Fréchet-Urysohn space. This shows that the class of Fréchet-
Urysohn spaces is much wider than the class of first-countable spaces. Therefore, it
is amazing that the next problem remains unsolved:

Problem 8 (V.I. Malykhin, < 1980). Construct in ZFC' a non-metrizable countable
Fréchet-Urysohn topological group.

It is known, however, that under M A + -CH one can find a dense subgroup of
D“1 with these properties (see [8,10]).

Another well-known open problem of topological algebra concerns the class of ex-
tremally disconnected topological groups. This class is apparently very narrow, un-
like the class of extremally disconnected spaces. Recall that a space X is extremally
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disconnected if the closure of every open subset of X is open. These spaces seem to
be quite special. In particular, none of them contains a non-trivial convergent se-
quence. Therefore, only discrete extremally disconnected spaces are first-countable.
Nevertheless, extremally disconnected spaces are rather easy to encounter in General
Topology, since every space can be represented as an image of an extremally discon-
nected space under an irreducible perfect mapping [48], see also [35,36]. A.Gleason
has characterized extremally disconnected compacta as projective objects in the
category of compact spaces [27].

On the other hand, it has been known for a long time that extremal disconnect-
edness is on quite bad terms with homogeneity: in 1968 Z.Frolik proved [26] that
every extremally disconnected homogeneous compact space is finite (see also [8]).
However, there exist non-discrete homogeneous spaces [25]. One may argue that the
highest degree of homogeneity is achieved in topological groups. Indeed, a space X
is said to be homogeneous if for any x,y € X there exists a homeomorphism A of
X onto itself such that h(x) = y. To verify homogeneity of topological groups, it is
enough to use left or right translations (shifts). The next problem, which remains
open today, has been posed 46 years ago in [6].

Problem 9 (A.V.Arhangel’skii, 1967). Construct in ZFC a non-discrete ex-
tremally disconnected topological group.

It was proved in [6] that every compact subspace of an arbitrary extremally
disconnected topological group is finite. Hence, if an extremally disconnected topo-
logical group G is a k-space, then the space G is discrete. S.Sirota was the first to
show that the existence of a non-discrete extremally disconnected topological group
is consistent with ZFC' [50]. More information on the vast and delicate research
around Problem 9 can be found in [37,39,40,52]. It was shown that extremal dis-
connectedness strongly influences the structure of a topological group. In particular,
every extremally disconnected topological group G has an open subgroup H such
that a® = e for every a € H, where e is the neutral element of G [40].

Another interesting and long standing open problem on topological groups I wish
to recall concerns free topological groups. For the definitions and basic facts on free
topological groups, see Chapter 7 in [18].

Problem 10 (A.V.Arhangel’skii, 1981). Is the free topological group F(X) of an
arbitrary paracompact p-space X paracompact?

This question is motivated by the fact established in [9], where the above problem
has been posed: the free topological group of any metrizable space is paracompact.
We remind that a paracompact p-space is a preimage of a metrizable space under a
perfect mapping [4].

The next question concerns the behaviour of topological properties of topological
groups under the product operation. We give two slightly different versions of this
question.

Problem 11. Construct in ZFC countably compact topological groups G and H
such that their product G x H is not countably compact.
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Problem 12. Construct in ZFC a countably compact topological group G such that
its square G X G is not countably compact.

The general idea behind the last two questions is that in topological groups many
topological properties improve so that some of them, which are not productive in
the general case, may become productive in the special case of topological groups.
For example, pseudocompactness is a property of this kind (W.W. Comfort and
K. A.Ross, see [22] and [18]). Observe that Problems 11 and 12 are not equivalent,
since, in general, the free topological sum of two topological groups is not a topolog-
ical group. Under M A + —~C H, there exists a countably compact topological group
G such that its square G x G is not countably compact [23]. See also [38] and [31].

6 Homogeneous compacta

Some of the most natural and oldest open problems in General Topology concern
homogeneous compacta. The next Problem had been posed by W.Rudin in 1956
in [49]:

Problem 13 (W.Rudin, 1956). Is it true that every infinite homogeneous compact
space contains a non-trivial convergent sequence?

A motivation for this unusual question comes from the well-known fact, estab-
lished by A.N.Tychonoff, that the Stone-Cech remainder of the discrete space of
natural numbers doesn’t contain non-trivial convergent sequences. In 1956 it was
an open question whether this remainder (which is compact) is homogeneous or not.
Obiously, a positive solution of Problem 13 would immediately provide the negative
answer to the last question as well. However, Problem 13 is still open, after more
than 55 years have passed since it had been published.

Of course, in the very special case of compact topological groups the answer to
Problem 13 is ”yes”, because every compact topological group is a dyadic compactum
(see [18]).

The next question came to my mind in eighties (see [10]). Later I learned from
Jan van Mill that Eric van Douwen also came to this question.

Problem 14. Is it possible to represent an arbitrary compact space Y as an image
of a homogeneous compact space X under a continuous mapping?

Observe that every nonempty metrizable compactum is a continuous image of
the Cantor set. The Cantor set is not only homogeneous, it is a compact topological
group. However, it is not possible to represent an arbitrary compact space Y as an
image of a compact topological group X under a continuous mapping, since only
dyadic compacta can be represented in this way.

The third open problem on homogeneity presented in this section is less known
than the other two, but is also very interesting, in my opinion. A compact space X is
w-monolithic if the closure of any countable subset of X is metrizable. For example,
every compact LOTS, that is, every compact space whose topology is generated by
a linear ordering, is w-monolithic.
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Problem 15 (Arhangel’skii, 1987). Is every homogeneous w-monolithic compact
space X first-countable?

This question was posed in [10]. It was shown there that the answer to it is
”yes” under the additional assumption that the tightness of X is countable. The
next closely related to the above question problem is also open:

Problem 16. Is the cardinality of every homogeneous w-monolithic compact space
X not greater than 2“7

If the answer to the last question is "yes”, then the answer to the preceding
question is "yes” under CH. It is not difficult to notice that behind the last two
question is hidden the next problem which is also open now (see [10]):

Problem 17. Is it true that every nonempty monolithic compact space is first-
countable at some point?

7 t-equivalence and t-invariants

Below C,(X) stands for the space of real-valued continuous functions with the
topology of pointwise convergence on a space X. These spaces, studied in C)-
theory [14], have many applications in mathematics. In C},(X) an algebraic structure
is naturally blended with a topology. To compare topological spaces X and Y,
we may use homeomorphisms between Cp(X) and C,(Y) which do not necessarily
preserve the algebraic operations in Cp,(X) and Cp(Y'). In particular, this approach
had been adopted in [14]. Following it, we say that spaces X and Y are t-equivalent
if there exists a homeomorphism h of C,(X) onto Cp(Y'). Note that h in the above
definition needn’t be a topological isomorphism, that is, A needn’t preserve the
operations.

One of the basic general questions in C),-theory is the next one: how close are
the properties of X and Y if X and Y are t-equivalent spaces [13,14]7 For example,
it has been established by S. Gul’ko and T. Khmyleva [30] that the usual space R of
real numbers is t-equivalent to the closed unit interval I. Amazingly, this is a very
non-trivial result! The reader may find even more unexpected that the answer to
the following two questions are still unknown:

Problem 18 (A. V. Arhangel’skii, < 1989). Is the unit segment I t-equivalent to the
square 1?7

Problem 19 (A. V. Arhangel’skii, < 1989). Is the unit segment I t-equivalent to the
Cantor set?

Solving the last two problems may lead to a solution of the next basic question:

Problem 20 (A.V.Arhangel’skii, < 1985). Is the dimension dim preserved by the
t-equivalence, at least in the class of separable metrizable spaces or in the class of
compacta?
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Gul’ko-Khmyleva’s result mentioned above shows that compactness is not t-

invariant. Local compactness, in general, is also not preserved by t-equivalence.
On the other hand, the dimension dim(X) is preserved by linear homeomorphisms
between Cp(X) and Cp(Y'). This is a deep result of V. G. Pestov [46]. In connection
with Pestov’s result and Problem 20, see also [29]. For more on C)-theory and
t-equivalence, see [11,14,15,19,21,42,47] and [12].
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1 Introduction

The present paper deals with clones of operations of a diagonalizable algebra
which are closed under definitions by existentially quantified systems of equations.
Such clones are called primitive positive clones [1] (in [2] they are referred to as
clones acting bicentrally, and are also called parametrically closed classes in [3,4]).
Diagonalizable algebras [5] are known to be algebraic models for the propositional
provability logic GL [6].

The proof that there are finitely many primitive positive clones in any k-
valued logic was given in [1]. In the case of 2-valued boolean functions, i.e.
card(A) = 2, A.V.Kuznetsov stated there are 25 primitive positive clones [3], and
A.F.Danil’¢enco proved there are 2986 primitive positive clones among 3-valued
functions [4]. In the present paper we construct a diagonalizable algebra, generated
by its least element, which has infinitely many primitive positive clones, moreover,
these primitive positive clones are maximal.

2 Definitions and notations

Diagonalizable algebras. A diagonalizable algebra [5] © is a boolean alge-
bra A = (A4;&,V,D,—,0,1) with an additional operator A satisfying the following
relations:

Az Dy) < Az D Ay,

Axr < AAzx,
A(Az D z) = Az,
Al =1,

© Andrei Rusu, 2013
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where 1 is the unit of 2.

We consider the diagonalizable algebra M = (M;&,V,D,—,A) of all infinite
binary sequences of the form o = (u1,pu2,...), ;i € {0,1}, ¢ = 1,2,.... The
boolean operations &, V, D, over elements of M are defined component-wise, and
the operation A over element « is defined by the equality Aa = (1,11, v9,...), where
vi =1 & - & p;. Let 9* be the subalgebra of 9t generated by its zero 0 element
(0,0,...). Remark the unite 1 of the algebra 9t* is the element (1,1,...).

As usual, we denote by z ~ y and A2z, ..., A"z ... the corresponding func-
tions (—z V y) & (-y V x) and AAx,...,AA"z,.... Denote by Oz the function
x & Ax and denote by Vz the function O-CO-Ozx.

Primitive positive clones. The term algebra 7 (D) of ® is defined as usual,
stating from constants 0,1 and variables and using operations &,V,D>,—, A. We
consider the set T'erm of all term operations of 9t*, which obviously forms a clone [7].

Let us recall that a primitive positive formula ® over a set of operations X of ®
is of the form

¢(:1}1’ ce ,:Em) = (EI:Em—l—l) cee (EI:En)((fl = 91) & & (fs = gs))a

where f1,91,..., fs,9s € T(D)UId4 and the formula (f1 = ¢1) & - & (fs = gs)
contains variables only from x1, ..., z,. Ann-ary term operation f of T (D) is (prim-
itive positive) definable over X if there is a primitive positive formula ®(z1, ..., z,,y)
over ¥ of 7 (D) such that for any ay,...,a,,b € ® we have f(ay,...,a,) ="bif and
only if ®(ay,...,an,b) on ® [8]. Denote by [X] all term operations of © which are
primitive positive definable over ¥ of ©. They say also [X] is a primitive positive
clone on ® generated by X. If [¥] contains 7 (®) then it is referred to as a complete
primitive positive clone on ®. A primitive positive clone C of © is mazimal in ® if
7(®) Z C and for any f € T(D)\ C we have T(D) C [C U{f}].

Let o € ©. They say f(z1,...,x,) € T (D) conserves the relation x = o on D if
f(a,...,a) = a. According to [9] the set of all functions that preserves the relation
T = « on an arbitrary k-element set is a primitive positive clone.

3 Preliminary results

We start by presenting some useful properties of the term operations A, and
V of M*.

Proposition 1. Let z,y be arbitrary elements of 9MM*. Then:

Oz > A0 if and only if Vo =1 (

Oz =0 if and only if Vo =0 (

For any x,y, either Oz < Oy or Oy < Ox (
Az = Alz (4

VO=0, V=1 (

Oz > AO if and only if O—-z =0 (



INFINITELY MANY MAXIMAL PRIMITIVE POSITIVE CLONES ... 49

Oz = 0 if and only if O-z > AOD (7)
Proof. The proof is almost obvious by construction of the algebra 9t*. O

Let us mention the following

Remark 1. Any function f of 7(®) is primitive positive definable on ® via the
system of functions x &y, x Vy, x Dy, —z,Ay.

Let us consider on ® the following functions (8) and (9) of 7 (®), denoted by
f-(x,y) and fa(z,y) correspondingly, where a;,& € ©, a; = —A'0, where £ # a;
and 1 # a;:

(V@ ~y) & (-~ y) ~8) vV (V(z~y) & o), (8)
(Vy & ((Az ~y) ~n)) vV (=Vy & a;). (9)
Proposition 2. Let arbitrary o, 8 € M*. If ~a = [ on IN*, then
f-la, B) =¢

on M*.
Proof. Since ~a = 3 we get « ~ 3 =0,-(a ~ ) =1 and by (5) we have
V(ia~p)=0, V-(a~fg) =1,

which implies

f~(e,B) = (& (1~ &) V(0 & a;) =&,

Proposition 3. Let arbitrary o, 8 € M*. If —~a # B on IN*, then

f-(a,B) #¢
on M*.

Proof. Since -« #  we get ~a ~ 0 # 1,a ~ 3 # 0. We distinguish two cases:
1) O(a~ pB) =0, and 2) O(a ~ 3) > AD.

In the case 1) by (7), (1) and (2) we get O-(a ~ ) > A0, V-(a ~ () =
1, and V(a ~ ) = 0, which implies

f~(a, ) = (Vala ~ B) & ((ma~ B) ~ ) V (Ve ~ B) & o
= Q& ((ra~B) ~V(0& o) = (o~ ) ~§F#E,
Thus the first case has already been examined.
Now consider the second case, when [z > A0. Again, since -« # 3 by (1), (2)
and (6) we obtain O-(a~ ) =0, V-o(a~ 3) =0, V(a ~ ) = 1. Then,
f~(a,8) = (Va(a~ B) & ((ma ~ 3) & §)) V (V(a ~ B) & i)
=0&((ra~p) &) V(L& o) =a; #&.
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Proposition 4. Let arbitrary o, 3 € 9" be such that Ao = 3. Then

fA(avﬂ) =1

Proof. Since Aa > 0 and Aa = [ we have G > A0, Aa ~ =1 and by (1) we
get VG =1,-V3 = 0. These ones imply the following relations:

fala,B) = (VB & ((Aa ~ B) ~ 1)) V (-VE & ;)
=&ML ~n)V(O0&aj)=1~n=n.

Proposition 5. Let arbitrary o, 8 € IM* be such that Aa # (3. Then

fA(Oé7ﬁ) 75 n.

Proof. We consider 2 cases: 1) O = 0, and 2) 05 > AO.
Suppose G = 0. In view of (2) we have V3 = 0 and =V = 1. Subsequently,

fala, B) = (VB & ((Aa ~ ) ~ 1) V (=VE & ai)
=0&((Aa~pF)~n)V(@I&a)=0Va =a; #n.

Suppose now O3 > AO. Let us note Aa ~ 3 # 1. Then considering (1) we get

fala, B) = (VB & ((Aa ~ B) ~ 1)) V (=VE & ai)
= (L& ((Aa~ ) ~n)V(0&ai) = (A~ ) ~n#1.

O
Proposition 6. Let arbitrary o € IM*. Then
fala,a) = ay.
Proof. Let us calculate f-(a,«). By (5) we obtain immediately:
fole,a) = (Va(a~ ) & ((ma ~a) &&)) V (V(a ~a) & ai)
=0&(0&¢)) V(1 &a;) =a.
O

Proposition 7. Let arbitrary o € M and Oa = 0. Then
falo, @) = a;.
Proof. Taking into account (2) we have

fala,a) = (Va & (Aa~a) ~n)) V (=Va & ;)
=0& ((Aa~a)~n)V(I1&a)=0Va; =
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4 Important properties of some primitive positive clones

Consider an arbitrary value i, ¢ = 1,2,.... Let K; be the primitive positive clone
of 9* consisting of all functions of 9M* which preserve the relation z = —A’0 on
M*. For example, K is defined by the relation = = (0,1,1,1,...).

Remark 2. The functions Oz, z &y, =V y, A0 € K;, and ~z, Az € K.

Remark 3. Since K; is a primitive positive clone it follows from the above statement
the functions —x and Az are not primitive positive definable via functions of K; on
M*, so T(M*) € K; and thus the clone K; is not complete in IMT*.

Remark 4. By Propositions 6 and 7 we have the earlier defined functions f-(x,y)
and fa(x,y) are in K.
Lemma 1. Suppose an arbitrary f(z1,...,xx) € T(IM*) and f ¢ K;. Then the func-
tions Az and —x are primitive positive definable via functions of K;U{f(x1,... ,x¢)}.
Proof. Let us note since f ¢ K; we have f(—=A'0,...,=A0) # ~A%0. Now consider
the next term operations f/ and f defined by terms (10) and (11):
(Va(z ~y) & (-2 ~y) ~ f(SA'D,...,=A)) V (V(z ~ y) & -A')  (10)
(Vy & (A ~ y) ~ F(=AWD, ..., ~AID))) v (~Vy & ~AiD) (11)

and examine the primitive positive formulas containing only functions from K;U{f}:

(f(@,y) = (AT, ~A'0)) and (fA(w,y) = F(-AD, .., =A%),
Let us note by Propositions 2 and 3 we have (—z = y) if and only if (f’(z,y) =
f(=A0,...,-A0)) and according to Propositions 4 and 5 we get (Az = y) if and
only if (fi(z,y) = f(=A%,...,~AD)).
Lemma, is proved. O

5 Main result

Theorem 1. There are infinitely many maximal primitive positive clones in the
diagonalizable algebra IT*.

Proof. The theorem is based on the example of an infinite family of maximal prim-
itive positive clones presented below.

Example 1. The classes Kj, K»,... of term operations of 7 (9t*), which preserve
on algebra 901* the corresponding relations = —AOQ, z = =A20, ..., constitute a
numerable collection of maximal primitive positive clones in 9Jt*.

Really, it is known [9] that these classes of functions represent primitive positive
clones. According to Remark 3 each clone Kj; is not complete in 91*. In virtue
of Lemma 1 these primitive positive clones are maximal. It remains to show these
clones are different. The last thing is obvious since

-AID € K; and -AD ¢ K;, when i # j.
The theorem is proved. O
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6 Conclusions

We can consider the logic LI of 9MM*, which happens to be an extension of
the propositional provability logic GL, and consider primitive positive classes of
formulas My, Ms, ... of the propositional provability calculus of GL preserving on
9* the corresponding relations x = ~A0Q, z = =A20,. ...

Theorem 2. The classes of formulas My, Ms, ... constitute an infinite collection
of primitive positive classes of formulas in the extension LIN* of the propositional
provability logic GL.

Proof. The statement of the theorem is just another formulation of the Theorem 1
above in terms of formulas of the calculus of GL, which follows the usual terminology
of [3]. O
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Abstract. We study the compactifcation of Tp-spaces generated by families of
special continuous mappings into a given standard space E. In this context we have
introduced the notions of E-thin and E-rough g-compactifications. The maximal E-
thin and E-rough g-compactifications are constructed.
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1 Introduction

In functional analysis and related areas of mathematics different dual pairs of
topologies are used. A bitopological structure on a set X is called a pair of topologies
{T,7% on X. In this case (X,7,7%) is a bitopological space. The general concept
of a bitopological structure was introduced by J. C.Kelly [7] and applied in distinct
domains by many authors (see [8, 9]).

If (X,7,7%) is a bitopological space, then we put 7/ = max{7,7%} and say
that 7 is the initial topology, 7@ is the dual topology and 7" is the final topology.
In many constructions the final topology is a Hausdorff topology.

Example 1. Let X be a set and Q = {p, : @ € A} be a family of functions on
X x X with the next properties:

— sup{pa(z,y) + pa(y,x) : a € A} =0 if and only if z = y;

— pa(z,y) + pa(y, 2) > palz,z) for all z,y,z € X and o € A.

Then we say that Q is a family of pseudo-quasimetrics on X. We put
V(z,pa,r) ={y € X : polz,y) < r}forall z € X, « € Aand r > 0. The in-
tersections of finite elements of the family {V (z, po,7) : 2 € X, a0 € A,r > 0} form a
base of the topology 7(Q) on X. The functions Q¢ = {pd(x,y) = pa(y, ) : a € A}
form the dual family of pseudo-quasimetrics on X and the dual topology 7 (Q%). The
functions Q° = {p%(z,y) = 27 (pa(z,y) + pa(y,r)) : @ € A} form the final fam-
ily of pseudo-metrics on X and the final topology 7(Q°) = sup{7(Q),7 (9%} =
T(QUQY). Then (X,T(Q),7T(Q%) is a bitopological space with the initial topology
T(Q), the dual topology 7(Q%) and the completely regular final topology 7 (Q%).

The first examples of bitopological spaces were constructed in this way [7-9]. In
many cases the family Q is a singleton set, i.e. is a quasimetric on X.

© Mitrofan M. Choban, Laurentiu I. Calmutchi, 2013
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For our aim the initial and the final topologies on X are important. From this
point of view, in the present article we suppose that any bitopological structure
{T,T'} on X has the following properties:

~-TCT;

— any compact subspace of the space (X,7") is Hausdorff and closed;

— the space (X, 7) is a Ty-space.

In this case we say that 7 is the initial or weak topology on X and 7" is the
final or strong topology on X. For any subset A of X consider two closures: the
initial closure clA = cl(x 7)A and the strong closure s — clA = cl(x 71 A.

We use the terminology from [5, 6].

Definition 1. A g-compactification of a space X is a pair (Y, f), where Y is a
compact Ty-space, f : X — Y is a continuous mapping, the set f(X) is dense in
Y. If the set {y} is closed in'Y for any pointy € Y \ f(X), then (Y, f) is called a
g-compactification of a space X with a T1-remainder. If f is an embedding, then we
say that Y is a compactification of X and consider that X C Y, where f(x) = x for
any x € X.

Let (Y, f) and (Z,g) be two g-compactifications of the space X. We consider
that (Y, f) < (Z,g) if there exists a continuous mapping ¢ : Z — Y such that
f=pog, ie [(x) = plg()) for cach x € X. If (Y, ) < (Z.g) and (X, f) < (¥,g),
then we say that g-compactifications (Y, f) and (Z,g) are equivalent. If ¢ is a
homeomorphism of Z onto Y, then we say that the g-compactifications (Y, f) and
(Z,g) are identical. We identify the identical g-compactifications.

The class of all compactifications of a given non-empty space is not a set
(see [3]).

A family £ of subsets of a space X is called a WS-ring if L is a family of closed
subsets of X, X € L, 0 e Land FNH,FUH € L for any F,H € L.

For any family £ of closed subsets of a space X denote by r£ the minimal
W S-ring of sets containing L.

Fix a family £ of closed subsets of X. Let £’ = {X} U L. Denote by M (L, X)
the family of all £'-ultrafilters £ € L. We put &p(x) = {H € L' : © € H}. Let
weX = M(ﬁ,X) U{fg X € X}

Consider the mapping w, : X — w, X, where we(z) = &2 (x) for any x € X. On
wre X consider the topology generated by the closed semibase wl = {< H >= {¢ €
weX:He&:He '} If LisaWS-ring, then wl is a closed base.

The pair (wz X, wr) is a g-compactification of the space X with a 7}-remainder.

If £ is a closed base of the space X, then (wsX,w,) is a compactification of the
space X with a Tj-remainder.

By virtue of the following theorem, it is sufficient to consider the g-compactifi-
cations w, X for W S-rings L.

Theorem 1 (see [3]). wyrX = w,X.

Definition 2. A g-compactification (Y, f) of a space X is called a Wallman-Shanin
g-compactification of the space X if (X,f) = (weX,wg) for some
WS-ring L.
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If £ is the family of all closed subsets of a space X, then wX = w,/X is the
Wallman compactification of the space X and wx : X — wX is the identical
mapping (see [3, 5]).

The compactifications of the Wallman-Shanin type were introduced by
N. A. Shanin [10] and studied by many authors (see [1-4, 11-13]). There exist Haus-
dorff compactifications of discrete spaces which are not Wallman—Shanin compacti-
fications [13].

2 Functional compactifications

A space E with the topology 7 is called a standard space if it has the next
properties:

— F is a commutative additive topological semigroup with the zero element 0 € E;

— there exist a point 1 € E and an open subset U of F such that 0 € U and
1¢U;

— on FE a topology 7’ is given such that the pair of topologies {7,7'} is a
bitopological structure on E.

In particular, 7 C 7’ and any compact subspace of the space (E,7T") is Hausdorff
and closed.

Fix a standard space E. Let E be the set F with the initial topology 7 and
Es be the set E with the final topology 7’. Denote by Cy(X, E) the space of
all continuous mappings f of a space X into the space (E,7) for which the set
s —clf(X) is a compact subset of the space (E,7"). Since 7 C 7', we consider that
Cy(X, By) C Cy(X, E).

We say that a space X is E-regular if for each closed subset B of X and any
point xg € X \ B there exists a mapping g € Cy(X, E) such that f(x¢) & clpg(B).
A space X is E-completely reqular if for each closed subset B of X and any point
xg € X \ B there exists a mapping g € Cy(X, Es) such that f(xg) € clgg(B) (in this
case f(xg) ¢ clp,g(B) too).

If the space X is E-completely regular, then the space X is a Tychonoff space.
Really, £y = s — cl f(X) is a Hausdorff compact subspace of the space E, and X is
a subspace of the Hausdorff compact space II{E; : f € Cy(X, Es)}.

Fix a non-empty space X.

Any non-empty set F C Cy(X, E) generates two mappings lr : X — E7 and
eF,x) 1 X — E7 where ex(z) = lr(x) = (f(z) : f € F) for any point z € X, and
the identical mapping ¢ : Esf — E¥. Now we put ex = €(F,X)-

Consider the family Br = {f~'(H) : S\ H € T} of closed subsets of X, the
compact space rxX which is the closure of the set ex(X) in Ef , the compact space
crX which is the closure of the set [x(X) in £/ and the compact space srX =
ir(rrX). Let (wrX,wr) = (wp,X,wB,).

The pairs (cx X, ex) are called the E-rough functional g-compactifications of the
space X. The pairs (sxX,ex) are called the E-thin functional g-compactifications
of the space X.
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By construction, (cxX,er) < (szgX,er) and sxX is a dense subspace of the
space crX.

If F = Cy(X,E), then we put (RgX,eg) = (crX,er) and (fpX,eg) =
(Sj:X, 6]-‘).

Theorem 2. Let ) # Fy C Fo C Co(X, E). Then (cr, X, ex) < cr,X,ex,) and
(spX,er) <spX,er).

Proof. Let p: E*2 — E71 and ¢ : E/2 — E7 be the natural projections. Then
p(er,X) Ccr X and q(rg,X) = rg, X. These facts complete the proof. O

Theorem 3. Let (Y, f) be a compactification of a space X and F C {go f : g €
Cy(Y,E)}. Then:

1. (crX,er) < (Y, f)).

2. If F ={gof:g€ CyY,E)} and the space Y is E-completely reqular, then
(srX,er) = (Y, f)).

3. IfH ={gof:g€CyY,Es)} and the space Y is E-completely reqular, then
(snX,exr) = (Y, f)).

Proof. By virtue of Theorem 2, we can assume that F = {gof : g € C3(Y, E)}. Then
there exists a continuous mapping h : Y — E7 such that ex = ho f: X — E7.
Thus h(Y) C ¢z X. The assertion 1 is proved. O

If the space Y is E-completely regular, then we put H = {go f : g € Cp(Y, Es)}.
Obviously, H C F and h is an embedding.

In this case ly(X) = iy (en (X)) C iy (en(h(Y))) and iy (e (h(Y)) is a com-
pact set. Then Y = ryX = i/ (en(h(Y))) and (sgX,ex) > (suX,en) > (Y, f).
The proof is complete.

Remark 1. The pair (RgpX,eg) is the unique maximal element of the set of g-
compactifications {(crX,er) : F C Cp(X, E)}.

Remark 2. The pair (BpX,ep) is the unique maximal element of the set of g-
compactifications {(szX,ex) : F C Cp(X,E)} U{(crX,ex) : F C Cp(X, E)}.

We say that a space X is an FE-extensible (respectively, a strong E-extensible)
space if for each mapping f € Cy(X, E) there exists a (respectively, exists a unique)
mapping wf € Cyp(wX, E) such that f = wf|X.

Theorem 4. Let ) # F C Cyo(X,E), (wrX,wr) < (wX,wx) and X is an E-
extensible space. Then (crX,er) < (wrX,wr).

Proof. By definition, ex(z) = (f(z) : f € F) € E¥ and czX is the closure of the
set ex(X) in B, Fix f € F and the continuous extension wf : wX — E of f.

We put Q = {II{U; : f € F} : Uy is open in E and the set {f : Uy # E} is
finite}. By construction, (2 is the standard open base of the space EZ. Moreover,
UNVeQforall U,V e If L = {X \wz'(H): HeQ}, then wrX = weX.

Consider the continuous mapping ¢ : wX — E7, where ¥(2) = (wf(z) : f € F)
for each z € wX. Obviously, ¥|X = er.
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There exists a continuous mapping ¢ : wX — wxX such that ¢(z) = wr(x)
for each x € X. In this case, for < H > = {{ € w, X : H € £} we have p~}(< H >)
= clyx(H) for each H € L. If z €= wr X\ = wr(X), then ¥(¢~1(2)) is a singleton
set and we put h(z) = (o~ 1(2)). The mapping h : ws(X) — (czX is continuous
and h(wg(x) = ex(x) for all x € X. The proof is complete. O

Remark 3. (RpX,ep) < wX for any F-extensible space X and each standard
space F.

Remark 4. Let Y be a non-empty subspace of a space X, H C Cy(X,E) and
F={g|Y : g € H}. Then:

1. FC G(Y, E).

2. (S}'Y - ClsHXeH(Y) - C]:Y = CchXeH(Y) - CHX.

3. 6(]:7y) = e(].—7X)|X.
Theorem 5. Let f: X — Y be a continuous mapping of a space X into a space Y .
Then there exist a continuous mapping wf : ReX — RpY and a unique continuous

mapping Bf : BpX — BrY such that Bf = wf|BeX and Bf o eEx) =€ery)°f.

Proof. By virtue of Remark 4, we can assume that Y = f(X). In this case:

1. For any E-thin compactification (Z, ) of the space Y the pair (Z,p o f) is
a F-thin compactification of the space X. Thus we can consider that any E-thin
compactification (Z, ¢) of the space Y is a E-thin compactification of the space X.
Then (BeY,ery)) < (BeX, er x))-

2. For any E-rough compactification (Z,¢) of the space Y the pair (Z,p o f) is
a E-rough compactification of the space X. Thus we can consider that any E-rough
compactification (Z,¢) of the space Y is a E-rough compactification of the space
X. Then (RgY, G(E’y)) < (RpX, e(E,X))-

The proof is complete. O

Example 2. Let F; be an infinite countable set 0 ¢ E; and E = E; U {0}.
Consider that 0+x =2+ 0 =0 for each x € F and x +y = « for all z,y € F;. On
E consider the topology 7 = {E,0} U{E \ F : F is a finite set} and the topology
7' =TU{H C Ey}. Then (E,T’) is the Alexandroff one-point compactification
of the discrete space Ej. Let X = {rq,rs,...} be the space of all rational numbers
in the usual topology. The space X is metrizable and wX = 3X is the Stone-Cech
compactification of the space X. Fix a countable subset A = {aj,as,...} of E; and
we suppose that a, # a;, for n % m. Then the mapping g : X — FE, where
g(rn) = ay, is continuous. Since the space E is countable, the mapping g is not
continuous extendable on wX. Thus the space X is not E-extensible. If F = {g},
then (crX,er) = (E,g) and sz X = {0} U A. In particular, (RgX,er) £ wX.

Example 3. Let Ej be an infinite set 0 ¢ E; and E = Ey U {0}. Consider that
0+x=x4+0=0foreach r € EF and x+y = «x for all z,y € F;. On E consider the
topology 7 = {E,0}U{E\F : F is a finite set} and the topology 7' = TU{H C F1}.
Then (E,7") is the Alexandroff one-point compactification of the discrete space Ej.
Assume that the cardinality |E| > exp(exp(Rg)). Let X = {ry,r2,...} be the space
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of all rational numbers in the usual topology. Obviously |wX| < |E|. Thus the space
X is E-extensible and not strong E-extensible. For each mapping f € Cy(X, E) we
fix a mapping wf : wX — FE such that wf(z) = f(x) forx € X and wf(y) # wf(z)
for distinct points y, 2z € wX \ X. Then wf is a continuous extension of f. There
exist many extensions of this kind. Hence (RgpX,ep) < wX. Since the space X is
countable, (fpX,ep) £ wX.

3 Examples

For any space X with a topology 7 denote by X} the set X with the topology
generated by the open semibase 7 U{X\ : U C X, U is an open compact subset}.

A space X is called a spectral space if the space X}, is compact and on X there
exists an open base B of open compact subsets and U NV € B for all U,V € B [3].

Definition 3. A g-compactification (Y, f) of a space X is called a spectral
g-compactification of the space X if Y is a spectral space and the set f(X) is dense
in the space Yy,.

Example 4. Denote by F the set {0,1} by the initial topology 7 = {0, {0},F}
and by the final discrete topology 7" = {0, {0}, {1},F}. On F consider the additive
operation 0+ 0=0and 0+1=1+0=1+1= 1. Then (F,7,7’) is a standard
space. Any Tp-space is F-regular and F-extensible. A space X is a F-completely
regular space if and only if indX = 0, i.e. X has a family of open-and-closed
sets which form an open base. In this case any zero-dimensional g-compactification
(Y, f) of a Ty-space X is a F-thin g-compactification. A g-compactification (Y, f) of
a space X is a F-thin g-compactification if and only if the g-compactification (Y, f)
is a spectral g-compactification. If the space X is not discrete, then the maximal
F-thin compactification GpX is not completely regular. If H C Cy(X,F), ¢ € X,
go € H, go(X) = {0}, f(xo) = 0 for any fH and er : X — F"* is an embedding
of X, then the F-rough compactification cyX is not F-thin. In this case
SHX 75 CHX = FH.

Example 5. Denote by D the set {0,1} by the initial and final discrete topologies
7 =T = {0,{0},{1}, F'}. On F consider the additive operation 0+0=1+1=0
and 0+1 =140 = 1. Then (D,7,7’) is a standard space. A space X is a
D-regular space if and only if indX = 0, i.e. X has a family of open-and-closed
sets which form an open base. A g-compactification (Y, f) of a space X is a D-thin
g-compactification if and only if the g-compactification (Y, f) is zero-dimensional.
Any D-rough g-compactification is D-thin.

Example 6. Denote by R the space of reals in the usual topology 7’ and by
R, the space of reals in the topology 7 generated by the open base {(—o0,t) :
t € R}. Then (Ry,7,7") is a standard space with the initial topology 7 and the
final topology 7’. Any Tpy-space is R,-regular space and R,-extensible. A space
X is a completely regular space if and only if X is a R,-completely regular space.
In this case any Hausdorff g-compactification (Y, f) of a Ty-space X is a R,-thin
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g-compactification. Any F-thin g-compactification is R,-thin. If (Y, f) is a Hausdorff
g-compactification of a Ty-space X and indY > 0, then (Y f) is a R,-thin and not
spectral g-compactification of the space X.

Example 7. Denote by R the space of reals in the usual topology 7’ = 7. Then
(R,7,7") is a standard space with the initial topology 7 and the final topology 7.
A space X is a completely regular space if and only if X is a R-regular space. In
this case only the Hausdorff g-compactifications (Y, f) of a Tp-space X are R-thin.
Any R-rough g-compactification is R-thin.

From the above examples it follows that the notions of thinness and roughness
depend on the standard space E and its initial and final topologies.

4 General case

In the present section we suppose that the bitopological structure {7,7'} on a
given standard space E has the following property: (F,7) is a subspace of the space
(E,T).

Theorem 6. Any F-thin g-compactification (syX,en) of a space X is an E-thin
g-compactification of X.

Proof. 1f H C Cy(X,F), then H C Cy(X, E). Obviously, F’* C E™ D" = F¥* C
EX clpn(Iy(X)) = clpn (X)) and clpr(en (X)) C clpr(en(X)). The proof is
complete. O
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On free groups in classes of groups with topologies

Mitrofan M. Choban, Liubomir L. Chiriac

Abstract. We study properties of free groups in distinct classes of groups with
topologies. The conditions under which the quasi-metric on the space of generators
X is extended to an invariant quasi-metric on a free group F'(X,V) in the fixed quasi-
variety V of groups with topologies are given. This result is applied to the study:

— of free paratopological groups;

— of free quasitopological groups;

— of free semitopological groups;

— of free left topological groups.

Mathematics subject classification: 22F30, 29J15, 54H11, 54E15.
Keywords and phrases: Paratopological group, semitopological group, qusitopo-
logical group, quasi-variety of groups with topologies, quasi-metric.

1 Introduction

By a space we understand a topological Ty-space. We use the terminology from
[3,9]. Let N ={1,2,...}. By clxH we denote the closure of a set H in a space X,
|A| is the cardinality of a set A.

A paratopological group is a group endowed with a topology such that the mul-
tiplication is jointly continuous. Recall that a semitopological group is a group with
a topology such that the multiplication is separately continuous. Every paratopo-
logical group is a semitopological group. A semitopological group with a continuous
inverse operation  — x~! is called a quasitopological group. A topological group is
a paratopological group with a continuous inverse operation x — 1.

The space S of reals R with the topology generated by the open base consisting
of the sets [a,b) = {z € R : a < x < b}, where a,b € R and a < b, is called the
Sorgenfrey line [9]. The Sorgenfrey line has the following properties [3]:

— S is an Abelian paratopological group with the Baire property;

— S is a hereditarily Lindelof first-countable hereditarily separable non-metrizable
space;

— S does not admit a structure of a topological group.

In this paper we study properties of free paratopological groups in a given
quasi-variety of paratopological groups W. The general theorem of existence of
free paratopological (semitopological, quasitopological) groups in distinct classes of
groups with topologies was proved in [7]. We follow [5,7,8,11,12] for the concept
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of a free object. The paratopological topology on a free group F(X, W) is con-
structed by the Markov—Graev method [10,13] developed in [15] for pseudo-quasi-
metrics. We develop this method for free groups in the non-Burnside quasi-varieties
of paratopological groups. In [15] the authors use the method of left (right) in-
variant pseudo-quasi-metrics. Since the topology generated by left (right) invariant
pseudo-quasi-metrics may not be a paratopological topology [3,4,14,15], this point
of view may create dangerous moments. For this we use the method of invariant
pseudo-quasi-metrics. The method of invariant pseudo-metrics on free objects was
developed in [6,10].

There exist distinct conditions under which a paratopological topology on a
group is topological (see the references in [1-3,15]). If G is a paratopological
group and z" = e for some natural number n, then G is a topological group. By
virtue of this fact, the method of invariant pseudo-quasi-metrics is useful in the non-
Burnside quasi-varieties of paratopological groups. In the Burnside quasi-varieties
of paratopological groups any invariant pseudo-quasi-metric is a pseudo-metric.

2 Quasi-metrics on groups

A function p : X x X — R is called a pseudo-quasi-metric if p(x,z) = 0 and
0 < p(x,z) < p(z,y) + p(y,2) for all z,y,z € X. If p is a pseudo-quasi-metric and
p(x,y) + p(y,z) > 0 for all distinct 2,y € X, then p is called a quasi-metric.

Any pseudo-quasi-metric p generates a topology T(p) with the open base
{B(z,p,r) ={y € X : p(z,y) < r} :x € X,r > 0}. The family P of pseudo-
quasi-metric generates the topology T(P) = sup{T(p) : p € P}. If P = (), then
T(P) = {0, X}. The topology T(P) is a Tp-topology if and only if for any two
distinct points z,y € X we have p(z,y) + p(y,y) > 0 for some p € P.

If p is a pseudo-quasi-metric on a space X and the sets from T(p) are open in
X, then we say that p is a continuous pseudo-quasi-metric.

Let U be an open subset of the space X. We put py(z,y) = 1if x € U and
y € X\ U, and py(x,y) = 0 otherwise. Then T(py) = {0,U, X}. Hence, any
topology is generated by some family of pseudo-quasi-metrics.

Let G be a group and p be a pseudo-quasi-metric on G. The pseudo-quasi-metric
p is called:

— left (respectively, right) invariantif p(xa, xb) = p(a,b) (respectively, p(ax, bx) =
p(a,b)) for all z,a,b € G;

— tnwariant if it simultaneously is both left and right invariant.

If p is a left (or right) invariant pseudo-quasi-metric on a paratopological group
G, then p is continuous if and only if the set B(e, p,r) is open in G for any r > 0.

If p is an invariant pseudo-quasi-metric on the group G, then (G,T(p)) is a
paratopological group and p(z~1,y~1) = p(y,z) for any 2,y € G. Thus any family
P of invariant pseudo-quasi-metrics generates a paratopological topology T(P) on
the group.

A pseudo-quasi-metric p on a group G is called a stable pseudo-quasi-metric if
p(r1z2,y192) < p(x1y1) + p(22y2) for all z1,z9,y1,y2 € G [6].
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Proposition 1. Let p be a pseudo-quasi-metric on a group G. The next assertions
are equivalent:

1. p is invariant.

2. p is stable.

Proof. Is obvious.

If p is a pseudo-quasi-metric on a group G and p(z,y) = p(y,x) for all
x,y € X, then p is a pseudo-metric. The pseudo-metric p is invariant if and only if

ply~'a™h) = pla,y) = p(zz, zy) = p(xz,y2) for all z,y,z € G.

Definition 1. A subset H of a group G is called invariant if zHx~' = H for any
zeG.

Proposition 2. Let U be an invariant open subset of a paratopological group G
with a topology T and e € U. We put dy(z,y) =0 if 2~y € U and dy(z,y) = 1 if
v~y ¢ U. Then dy is an invariant pseudo-quasi-metric and T(dy) C T.

Proof. If x € U, then dy(e,x) = 0 and dy(e,y) =1 if y ¢ U. Thus B(e,dy,r) =
U for 0 < r <1 and B(e,dy,r) = G for r > 1. By construction, dy(z,y) =
dy(e, 7 y) = dy(e, (z7'271) (2y)) = dy(zz, 2zy) for all z,y,2 € G. Let z,y € G.
Then x~ 1y € U if and only if (27 1271)(yz) € U for any z € G. Thus dy(z2,yz) =
dy(x,y). The proof is complete. O

Corollary 1. For a paratopological group G the following assertions are equivalent:
1. The topology on G is generated by a family of invariant pseudo-quasi-metrics.
2. There exists an open base B of G at e such that any U € B is invariant.

Remark 1. Let U be an open subset of a paratopological group G with a topology
T and e € U. We put diy(z,y) = 0 if 271y € U, and diy(a,y) = 1 if 271y &
U, dyy(z,y) = 0if 2y~ € U, and dy(z,y) = 1 if 2y~' ¢ U. Then dyy is a
continuous left invariant pseudo-quasi-metric on G and d,y is a continuous right
invariant pseudo-quasi-metric on GG. Thus:

- the topology of a paratopological group G is generated by a family of left
invariant pseudo-quasi-metrics;

- the topology of a paratopological group G is generated by a family of right
invariant pseudo-quasi-metrics.

As was established by A.S. Mishchenko [14] (see also [4]), the topology, generated
by a family of left (or right) invariant pseudo-metrics, may not be a paratopological
topology.

3 Free paratopological groups

A class 'V of groups with topologies is called a quasi-variety of groups if:
(F1) the class V is multiplicative;

(F2) if G € V and A is a subgroup of G, then A € V;

(F3) every space G € V is a Tp—space.
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Let 8 be a set of multiplicative and hereditary properties of groups with topolo-
gies. A class V of groups with topologies is called an S-complete quasi-variety of
groups with topologies if it is a quasi-variety with the next property:

(F4) if G €V, then G is a group with topology with the properties 8.

(F5) if G € V and T is a Tp-topology on G with the properties 8, then (G,T) € V
too.

A quasi-variety V of paratopological groups is called an S-complete variety of
paratopological groups if it is an S-complete quasi-variety with the next property:

(F6) if g: A — B is a continuous homomorphism of a paratopological group
A €V onto a Tp-paratopological group B with the property 8, then B € V.

Denote by I, the property to be a paratopological group with an invariant bases
at the identity e. If 8, is the property to be a paratopological group, then an
8,-complete variety is called a complete variety and an §,-complete quasi-variety is
called a complete quasi-variety of paratopological groups.

Let X be a non-empty topological space and V be a quasi-variety of groups with
topologies. In any space X the basic point px € X is fixed, i.e. any space is pointed.

A free group of a space X in a class 'V is a pair (F/(X,V), ex) with the properties:

- F(X,V) eV, ex : X — F(X,V) is a continuous mapping and e = ex(px) is
the neutral element of the group F(X,V);

— the set ex(X) generates the group F(X,V);

— for any continuous mapping f : X — G € V, where f(px) = e, there exists a
unique continuous homomorphism f : F(X,V) — G such that f = foey.

An abstract free group of a space X in the class V is a pair (F%(X,V),ax) with
the properties:

- FY(X,V) € X,ax : X — F%(X,V) is a mapping and e = a,(px);

— the set ax(X) generates the group F*(X,V);

— for any mapping g : X — G € V, where f(px) = e, there exists a unique
continuous homomorphism g : F*(X,V) — G such g =goax.

In the proof of the following assertion we use the Kakutani’s method [11].

Theorem 1 (see [7]). Let V be a quasi-variety of groups with topologies. Then for
each space X there exist:

- a unique free group (F(X,V),ex);

- a unique abstract free group (F*(X,V),ax);

- a unique continuous homomorphism rx : F*(X,V) — F(X,V) of F*(X,"V)
onto F(X,V) such that ex =rx oax.

Proof. Let T be an infinite cardinal number and |X| < 7. Then the class {f, : X —
Gqo : a € A} of all mappings f, : X — G, with G, € V and |G,| < 7 is a set.

Let B={8€ A: fg: X — G is continuous}. Consider the diagonal product
ax = AMfa :a € A} : X — H; = [[{Gy : @ € A} and the diagonal product
ex = A{fa : o« € A} : X — Hy = [[{Go : @ € B}. Let F*(X,V) be the
subgroup of H; generated by the set ax(X) and F(X,V) be the subgroup of Hy
generated by the set ex (X ). Since B C A there exists a unique continuous projection
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rx @ F*(X,V) — F(X,V) such that ex = rx oax. The objects (FI(X,V),ex),
(F*(X,V),ax) and rx are constructed. The proof is complete. O

The group F(X,V) is called abstract free if rx is a continuous isomorphism.
The next problems are important in the theory of universal algebras with topologies
(see [5,7,12]) .

Problem 1. Under which conditions the free group F'(X, V) is abstract free?
Problem 2. Under which conditions the mapping ex : X — F(X,V) is an embed-
ding?

These problems for varieties of topological algebras were posed by
A.T. Mal’cev [12].

Remark 2 (see [5,6,8]). A quasi-variety V is non-trivial if in 'V there exists an infinite
group G. If the variety V is non-trivial, then:

— ax is a one-to-one mapping of X onto ax(X).

Moreover, if V is a non-trivial I,-complete quasi-variety or a non-trivial
Sp-complete quasi-variety, then:

— for any completely regular space X the mapping ex is an embedding of X into
F(X,V) and the free group F(X,V) is abstract free (see [5,7]).

Proposition 3. Let G be a paratopological group, n € N and x™ = e for any x € G.
Then G is a topological group.

1 1

= 2" ! and the mapping z — 2"~ ! is continuous, the mapping
is continuous. The proof is complete. O

Proof. Since x~

x— x !

Let V be a quasi-variety of paratopological groups, X be a space and e € X.
On the free group F*(X,V,e) with the identity e consider the maximal paratopo-
logical topology T(X,V,e) for which the identical mapping ax : X — F*(X,V,e) is
continuous.

Proposition 4. Let V be a quasi-variety of semitopological groups, X be a space
and e,e; € X. Then:

1. The semitolopological groups F(X,V,e) and F(X,V,e1) are topologically iso-
morphic.

2. The semitolopological groups (F*(X,V,e),ax,T(X,V,e)) and (F*(X,V,e1),
bx,T(X,V,e1)) are topologically isomorphic.

Proof. Consider the natural continuous mappings ex : X — F(X,V,e) and
Ix : X — F(X,V,e1). We can assume that ex and lx are embeddings and
ex(z) = Ix(z) = =z for any x € X. There exist two continuous homomor-
phisms ¢ : F(X,V,e) — F(X,V,e1) and ¢ : F(X,V,e1) — F(X,V,e) such that
¢(2)) = ze~! and ¢(x) = ex(xe;!) for any € X. Since 9 is a homomorphism,
D(p(r)) = Pla-eh) = @) - Pple!) = () - p(e) ™! = (ver ') - (e- ey )™ = = for
x € X C F(X,V,e). Hence the composition ¢ o is a continuous homomorphism
such that (¢ o ¢)(z) = = for any « € X. Thus 9 o ¢ is the identical isomorphism
and 1) = ¢~ The assertion 1 is proved. The proof of the assertion 2 is similar.
The proof is complete. O
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4 Construction of the group F*(X,V)

Fix a non-trivial quasi-variety V of paratopological groups.

Consider a space X. Then we can assume that X C F*(X,V) as a subset and
ax(z) = x for each x € X. In particular e = px is the neutral element of the group
F*(X,V). In this case e € X C F*(X,V). The set X is called an alphabet.

Let X = X U XL Obviously, if z = px, then 27! =z =e.

Ifn>1and x1,z9,....,2, € )Z', then the symbol zixs...z, is called a word of the
length n in the alphabet X.

Any word 21%s...x,, where z1,Zs,...,x, € X, represents a unique element
[T129.. 2] = X1 - 29 - o - Ty € FYX, V).

A given element b € F%(X,V) is represented by many words. There exists a
word of the minimal length which represents the given element b. The length n of
this word is called the length of the element b and we put I(b) = n.

If an element b € F%(X,V) is represented by the words z1z2...Zn, Y1Y2...Ym
of the minimal length, then n = m and {x1,22,....,2,} = {y1,¥2, ., ym}. In
this case we say that the word xjxs...x, is irreducible and that Sup(b) = X N
{$1,$1_1,:E2,$2_1,...,:En,:nfll} is the support of the element b. The set Sup*(b) =
{e,xl,xfl,mg,xz_l, ey T, T, U} is the generalized support of the element b. Obvi-
ously, Sup(e) = {e} and e & Sup(b) if b #e. Ife € Y C X, b € FY(X,V) and
F%(Y,V) is the subgroup of F%(X,V) generated by the set Y, then b € F*(Y,V) if
any only if Sup(b) C Y. If V is the variety of all paratopological groups, then any
b€ F*X,V) is represented by a unique word of the minimal length. Moreover, in
this case any irreducible word is of the minimal length.

Let V, be the variety of all Tp-paratopological Abelian groups and V, be the
variety of all Th-paratopological groups.

For any n € N denote by B,, the Burnside variety of all Tp-paratopological groups
of the exponent (index) n: G € B, if and only if 2" = e for each z € G. The variety
B is the unique trivial variety of paratopological groups. If V is an Ip-variety of
Abelian paratopological groups, then either V =V, or V = V,NB,, for some n € N.

If V is a quasi-variety of paratopological groups and Z € V, where Z is the
group of integers, then V is a quasi-variety of the exponent 0. Obviously, if V is an
I,-complete variety of the exponent 0, then V, C V.

A class of paratopological Abelian groups is [,-complete if and only if it is
complete.

5 Extension of pseudo-quasi-metrics on free groups

Fix a non-trivial I,-complete quasi-variety V of paratopological groups. Consider
a non-empty set X with a fixed point e € X. We assume that e € X C F%(X,V)
and e is the identity of the group F*(X,V).

Let p be a pseudo-quasi-metric on the set X. Denote by Q(p) the set of all
invariant pseudo-quasi-metrics d on F%(X,V) for which d(z,y) < p(z,y) for all
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xz,y € X. The set Q(p) is non-empty, since it contains the trivial pseudo-quasi-
metric d(z,y) = 0 for all z,y. For all a,b € F*(X,V) we put p(a,b) = sup{d(a,b) :
d € Q(p)}. We say that p is the maximal extension of p on F*(X,V).

Property 1. p(a,a) =0 and p(a,b) < p(a,c) + p(c,b) for all a,b,c € F*(X,V).

Proof. We assume that co+ 00 =t4+ 00 =00+t = 00 < 0o and t < oo for
any real number ¢. In these conditions the assertion of Property 1 follows from the
construction of p. O

Property 2. p(z,y) < p(x,y) for all z,y € X.

Proof. Follows from the constructions of p. O
Property 3. p(za,zb) = p(azx,bx) = p(a,b) for all z,a,b € F*(X,V).

Proof. Follows from the invariance of the pseudo-quasi-metrics Q(p). O
Property 4. p(a,b) = p(ab=t,e) = p(e,a™1b).

Proof. Follows from Property 3. O
Property 5. p(aiaz,bibz) < p(ay,b1) + plaz, ba).

Proof. Follows from Proposition 1 and Property 3. g
Property 6. pla!,b7') = p(b,a) for all a,b € F*(X,V).

Proof. We have p(a™1,b71) = p(aa=1b,ab=1b) = p(b, a). O

Property 7. p(a,b) < oo for all a,b € F*(X,V).

Proof. For some n € N we have a = 25'25%..25" and b = y2y%2..40%. Fix i <
1 T2 n Y1 Y2 --Yn

n. If EZ = 0; = 1 then p(x? ,yfi) = p(zi,yi) < p(z,yy). e =0 = —1, then
plx; ,yz D= pla; iy ) = plyi,xi) < plyi,ai). If &g = —6;, then p(af ,yz ) <
plai,y ) + plat yi) < ple,as) + plaive) + ple,yi) + p(yire). Hence p(af, yl) <

p(wz,yz) + ( ;) + ple,x;) + p(wi,e) + ple,yi) + p(yi,e) < oo. Then pla,b) <

S Ayl si < n} < oo O

By

Example 1. Consider the variety Bs of paratopological groups. Any group G €
is commutative. Fix a space X with the fixed point e € X.

Let p(z,z) = p(z,e) = 0 for any z € X and p(e,x) = p(z,y) = 1 for all
z,y € X,x #y,x # e #y. Then p is a quasi-metric on X. In this case = = z for
xz € X. If zyx9...x, is an irreducible word, then [{z1,z2,...,2,}| = n, i.e. x; # z;
for distinct i, 7 < n. Consider the maximal extension p of the quasi-metric p on G =
FX,By). Then p(z,y) = ply~ L, 271 = p(y, ), i.e. pis a pseudo-metric. Hence
plx,e) = p(e,x) = p(x,e) = 0for any x € X. Thus 0 < p(x,y) < p(x,e)+p(e,y) =0
for all z,y € X. Therefore p(a,b) = 0 for all a,b € G. We proved that the pseudo-
quasi-metric p is trivial.

Example 2. Let Aj be the variety of all paratopological Abelian groups with the
identity 23 = e. Fix a space X with the basic point e € X. Let b € X \ {e}. Then
the words bb and b~! are irreducible, bb = b~!, the word bb is not of the minimal
length and the word b~! is of the minimal length.
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Proposition 5. Let p be a quasi-metric on X, p(z~ 4, y~!) = p(y,z), p(z,y~') =
maz{p(x,e), ple,y™ )} and p(y~t,z) = mazx{p(y~',e),ple,x)} for all z,y € X.
Then p(a,b) = inf{3{paf,y>) : i < n} :n € Na= a5 23> ..-25n,b =
y‘fl -ng oo oyln} for all a,b € FY(X,V).

Proof. Obviously pi(a,b) = mf{Z{f)(xf’,yfl) ti<n,n € N,a=zx] 3?25, b=
y‘f1 -yg2 -....y%} is an invariant pseudo-quasi-metric on F%(X,V) and py (z,7) < p(z,y)
for all z,y € F*(X,V). Ifa =2 - 252 - ... 25 and b = 2 - 452 - ... -y, then

pla,b) < Z{ﬁ(xfl,tfl) ;1 <n}. Thus p(a,b) < pi(a,b). The proof is complete. [

6 Elementary spaces and free groups

Fix a non-trivial quasi-variety V of paratopological groups. Consider the space
Ex =1{0,1,-1,2,-2,...n,—n,...} with the topology generated by the quasi-metric
Poo(z,y) = 1ifx <y, and poo(z,y) = 0if & < y. Let E,, = {0,1,—-1,2,-2,...n,—n}
and pp,(z,y) = poo(z,y) for all x,y € E,,. Then (E,, p,) is a subspace of the quasi-
metric space (Ex,poo). Assume that pp = pg, = 0 € E,, for each n. For any
n € N consider the continuous retraction 7, : Es, — E,, where r,(z) = z for any
x € By, rp(z) = —n for any © < —n and r,(z) = n for any = > n.

Proposition 6. The following assertions are equivalent:
1. eg, : By — F(FE1,V) is an embedding;
2. ep.. : Fsy — F(Ex,V) is an embedding;
3. ex : X — F(X,V) is an embedding for any space X.

Proof. Implications 3 — 2 — 1 are obvious. Assume that ep, is an embedding. Fix
a Tp-space X. There exist a cardinal number 7 and an embedding f : X — ET,
where f(px) = 0. We assume that E; C F(E;,V). Then E] C F(E;,V)". Consider
the continuous homomorphism f : F(X,V) — F(E1,V)" generated by the
mapping f. Since f = fo ex is an embedding, ex is an embedding too. The proof
is complete. O

Lemma 1. Let F be a finite set of a space X and |F| =n > 1. Then there exists a
continuous mapping sp : X — E, C Ey such that sp(px) =0 and sp(x) # sp(y)
for all distinct z,y € F.

Proof. We can assume that px € F. In any non-empty finite space Y there exists
a point y such that the set {y} is closed in Y. Thus in F there exists a well-
ordering F' = {x1,x2,...,x, } such that the set {z1,z2,...,2;} is closed in F for any
i < n. Assume that px = zg, where 1 < k < n. We put F} = clx{z1},F» =
cx{xy1,x2} \ cx{z1},..., Foo1 = cdx{r1,22,...;xn_1} \ cx{x1, 22, .cytpn_2}, F, =
X\cx{x1,x2,...,xn—1}. Obviously, there exists a continuous mapping sp : X — E,
such that sp(px = 0, sp(x;)) =1 —k < sp(z;) =j—kfor 1 < j <i<nand
sp(F;) = sp({x;}) for any i < n. The proof is complete. O

Proposition 7. For a quasi-variety V the following assertions are equivalent:
1. The free group F(Ew,V) is abstract free.
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2. For eachn € N the free group F(E,,V) is abstract free.
3. For each Ty-space X the free group F(X,V) is abstract free.

Proof. Implications 3 — 2 — 1 — 2 are obvious. Implication 1 — 3 follows from
Lemma 1. ]

The next assertion is obvious.

Proposition 8. For an I,-complete quasi-variety V the following assertions are
equivalent:

1. The mazimal extension do, of the quasi-metric po, on F?(Ex,V) is a quasi-
metric and p(x,y) = doo(z,y) for all x,y € Ex;

2. For anyn € N the mazximal extension d,, of the quasi-metric p, on F*(E,,"V)
is a quasi-metric and pn(x,y) = dp(z,y) for all x,y € E,.

Proposition 9. Let V be an I,-complete quasi-variety, n € N and the mazimal
extension d,, of the quasi-metric p, on F*(E,,V) is a quasi-metric. Then:

1. F(E,,V) is an abstract free group;

2. ep, : B, — F(E,,V) is an embedding;

3. dp(z,y) = pn(x,y) for al z,y € E,.

Proof. There exists r > 0 such that » < 1 and 1 = p,(x,y) > dy(z,y) > r
for any z,y € E, for which * < y. Then d'(z,y) = min{l,r~'d,(z,y)} is an
invariant quasi-metric on F*(E,,V) and d'(x,y) = pp(x,y) for all x,y € E,. Since
d(z,y) < dp(z,y) for all z,y € F*E,,V), we have d,(z,y) = pnp(x,y) for all
x,y € E,. The proof is complete. O

Corollary 2. IfV is an I,-complete quasi-variety and d is a quasi-metric on
F*(Ewx,V), then doo(z,y) = poo(x,y) for all x,y € Fu.

Corollary 3. Let V be an I,-complete quasi-variety. Assume that ds is a quasi-
metric on F*(Ex, V). Then for any Ty-space X the free group F(X,V) is abstract
free, ex : X — F(X,V) is an embedding and on F(X,V) there exists a To—topology
T which is generated by some family of invariant pseudo-quasi-metrics and ex is an
embedding of X into (F(X,V),T).

7 Free Abelian groups of spaces

Proposition 10. The mazimal extension d, of the quasi-metric poo on F*(Es,V4)
1S a quasi-metric.

Proof. On the group Z of integers consider the topology generated by the quasi-
metric p(z,y) = 1 for x < y and p(z,y) = 0 for y < x. Obviously, p is an invariant
quasi-metric and Z € V,.

The group G = {(z, : n € Z) € Z% : the set {n € Z : x,, # 0} is finite}, G € V,
is Abelian and on G consider the topology generated by the invariant quasi-metric
d((zn, :n € Z),(yn : n € Z)) = sup{d(xn,yn) : n € Z}. We put ag = (z,, : n € Z)
and x, =0 for any n € Z. If n € Z and n > 1, then a,, : (z,, : n € Z), where z; = 1
fori € {0,1,2,...,n — 1} and z; = 0 for each j € Z\ {0,1,2,...,n — 1}. If n € Z and
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n < —1, then a,, = (z,, : n € Z), where x; = —1 for each i € {—1,-2,...,—n} and
z; =0 for any j € Z\ {~1,-2,...,—n}. Consider the mapping h : Es, — Z%, where
d(n) = a,, for any n € E. By construction, ps(x,y) = d(h(z), h(y)) for all z,y €
FE. Thus h is an isometrical embedding of F., in ZZ. The set d (Ex) generated
the group G and the pair (G, h) is the abstract free group (F%(Ex,V4),ag,, ) of the
space En. In this case d(z,y) < doo(x,y) for any z,y € G = F*(Ex, Vo). Thus
dso 18 a quasi-metric. The proof is complete. O

Corollary 4. For any Ty-space X the free group F(X,V,) is abstract free,
ex : X — F(X,V,) is an embedding and the topology of the space F(X,V,) is
generated by some family of invariant pseudo-quasi-metric.

8 On the non-Burnside quasi-varieties

Let V be an I,-complete quasi-variety of paratopological groups. Assume that
ZeV, ie V, CVCV,.

We put F(X) = F(X,V) and F*(X) = F*(X,V) for any space X.

Fix two words x1xs...x, and y1y2...Ym, Where 1,22, ..., Tny Y1, Y2, s Ym € X.

If xy29...2, and y1y2...y,, are irreducible, then [ryxs...z,] = [y1Y2...Ym] if and
only if n = m and there exists a bijection h = {1,2,...,n} — {1,2,...,m} such that
T = Yp(;) for any i < n.

The words x1zs...2, and y1y2...y, are called equivalent if [x1z9...2,] = [y1y2...Ym].

The words x1zs...2, and y1ys2...y,, are called strongly equivalent if [zqxs...xz,] =
[Y1Y2.--Ym], n = m and there exists a bijection h : {1,2,....,n} — {1,2,...,m} such
that z; = yy(;) for any i <n.

Let N, = {1,2,...,n} for any n € N. If i < j, then we put [i,j] = [j,7] = {k €
N:i<k<j} Ifi,j € ACN, then [i,j]la = [i,5] N A.

A scheme for an element b € F*(X) is a word x125...2, and a mapping s : N,, —
N,, such that:

1. b= [x129...2];

2. s(i) # i and s(s(i)) = ¢ for any i < n;

3. There exist a word ¥1¥s...y, and a bijection h : N,, — N,, such that:

— b= [y1y2...yn] and y; = xp(;) for any i < n;

—if (i) = h=Y(s(h(i))) then for any i,j € {1,2,...,n} the sets [i,o(i)], [j,o(j)]
are either disjoint or one contains the other.

A mapping o from the definition of the scheme has the following properties:

4. There are no i,j € N,, such that : < j < (i) < o(j).

5. For some i < n we have o(i) =i+ 1.

6. The mappings s and o are bijections and involutions without fixed points.

7. The number n is even.

The method of scheme for pseudo-metric and V € {V,,V,} are due to the work
of M.I. Graev [10]. The problem of the extension of pseudo-metrics on F*(X,V)
for any quasi-variety V of topological algebras was examined in [6]. In the case
V € {V,,V,} the notion of the scheme for pseudo-quasi-metrics was defined in [15].
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We use the method of scheme from [15], in the general case, for any non-Burnside
quasi-variety.

On a space X fix a continuous pseudo-quasi-metric p. Assume that e €
X C F*X) and e is the identity of the group F%(X). For any z,y € X we
put p*(z~ 1y = p(y,x), p*a~ly) = p*(w‘lye) + p*(e,y) and p(z,y” ") =
p*(y~t, x) = p*(x,e) + p*(e,y~ ). Obviously, p* is a pseudo quasi-metric on X.

For any b € F*(X) we put N,(b) = inf{3>{p*(z; Tsy) 11 < 2m)rm €
N,s: N,, — Ny, is a scheme, b= [xlxg I}

As in [15] we say that the word xjzs...2, is almost irreducible if:

—x; € Sup*([x1,xa, ..., xy]) for any i < n;

— any word y1¥Ys...Yy, Which is strongly equivalent with the word zizs...z, does
not contain two consecutive symbols of the form u=tu, u € X \ {e}.

If b € F*(X) and 2m > I(b) > 1, then b = [z1,x9,...,T2y] for some almost
irreducible word x1x3...72,,. The next property of the function N, is important.

Lemma 2 (see [15], Claim 2). Ifb € F*(X) and l[(b) = n, then there exist an almost
irreducible word x1x9...29, and a scheme s : N, — N,, such that:

1. b= [x1m9...79,) and n < 2m < 2n;

2 2N, () = Sp (a5 ) £ < 2m).

Proof. Obviously, we can assume that b # e. Let b = [x1,x9...x9,,] and s : Ny, —
Ny, be a scheme.

Assume that the word z1xs...2,, is not almost irreducible. Then we can suppose
that there exist i < 2m and u € X such that z; = v and 2,41 = v, If h(i) = i+ 1,
then we put A = {1,....,i — 1,i+ 2,...,2m} and 0 = s|A. Then o is a scheme for
the element x = [zy29...2— 1mz+2 .Zom] and respective word L1 Lj—1Ti42.. L2m,
4 = 2 2 and "5 ) € 4) < TG ) 1 € Nand.
r=3s() #i+1and t = s(i + 1), then A = {1,.. 1z+2 L2m},o()) =

s(j) for j € Ny, \ {i,i + 1,7t} and o(r) = t, a(t) =r. Slnce p ( —1xy) +
pH(ay ) < p (wl cumh) At (uTh ) + ot () 4 p(u,m) = pt (i) +
p* (vt @) + ,0 (et x) + p*(:Ei_Jrll,:Et) o is a Scheme and > _{p*(7; -1 ZE@(])) 1 j €
A} < S {p*(x; mh(l)) : 1 € Ny, }. Thus we can assume that the Word T1X2... T2, 18
almost irreducible and for any ¢ < 2m we have x;11 # :172._1. In particular, if ¢ < 2m,
then x; - x;11 # e. In this conditions, the word x1xs...x2,, is almost irreducible
and 2m < 2n = 2I(a). Since there exists a finite set of almost irreducible words
of the length < 2I(b) which represents the given element b € F%(X), the proof is
complete. O

Lemma 3 (see [15], Claim 4). N,(z'y) = p(z,y) for all z,y € X.

Proof. Fix z,y € X. If z = y, then 271 -y = y- 27! = ¢,N,(e) = 0 = p(x,y).

Assume that  # y. Then I(z~'y) = 2 and for the element b = 2~ !y there exist only

the next possible almost irreducible words of the length < 4: z 7'y, ex ey, ™ eye,

ex e, ylx, ey lex, y~lexe, ey lae. If V # V,, then there exist only the next
possible almost irreducible words of the length < 4: 7'y, ez ey, z 'eye, exye.

The direct calculation permits to obtain N,(z71y) = p(z,y). O
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Lemma 4 (see [15], Claim 3). The function N, has the the next properties:
1. Ny(e) =0 and N,(b) >0 for any b € F*(X).
2. Ny(a- b)S ( )+ N,(b) for any a,b € F*(X).
3. Ny(xbx~t) = N,(b) for any b,z € F4(X).

Proof. Assertions (1) and (2) are obvious. Let biby...by,, be an almost irre-
ducible word, b = [biba...,ba], s : Nay,, — Ny, be a scheme and 2N, (b) =
S {p*(b; 1, bsiiy) : i € Nap}. Fix the irreducible word z1zg..73. Put x =
(21,22, ..., ﬂik] Yom1Yoma2Yomik = T102.-Thy Yomihtl-Yomiok = T 'y A =
{1,2,....2m,....2m + 2k}, ¢(i) = s(i) for i < 2m and (2m +1i) =2m +2k —i+ 1
for ¢ < k.

Let y1,vy2,--¥om = bi,b2,...,09;,. Then ¢ is a scheme on A for the
element z 'bz, x_ibx = [Yomtk+1-Y2mt2kY1---Y2mY2m+1---Y2m+k] and
Z{p*(yj_l,yh(j)) rje A= Z{p*(bi_l,bh(j)) : 4 € N }. Hence N,(z7tbz) < N,(b)
and N,(b) = M,((zz~1)b(zz™')) < N,(2~'bx). The property (3) is proved. O

Lemma 5. The function d(z,y) = N,(z71y) is an invariant pseudo-quasi-metric
on F*(X). Moreover, d(x,y) < p(x,y) and N,(b) < p(e,b), where p is the mazimal
extension of p on F*(X), for any z,y,b € F*(X).

Proof. Really, d(za,zb) = Ny(a 'z~ zb) = N,(a=1'b) = d(a,b) and d(ax,bx) =
Ny(z7ta"tbz) = N,y(a™'b) = d(a,b). Since d(z, y) = p(z,y) for z,y € X, we have
d(z,y) < p(x,y) for all z,y € F*(X). The proof is complete. O

Proposition 11. Let r > 0 and X be a linear ordered space with the topology
generated by the quasi-metric p(x,y) =r if © <y and p(z,y) =0 if y < x. Then
the maximal extension d of p on F*(X,e) is a quasi-metric for any point e € X.

Proof. We can assume that r = 1.

Let e € X and e; € X. We put Y = X U{e1}, p(er,e1) = 0 and p(z,e;1) =
pler,x) = 1 for any x € X. Then (X, p) is a quasi-metric subspace of the quasi-
metric space (Y, p). On F*(Y) = F*(Y,V,e;) consider the function N,(y). O

Claim 1. Ifbe€ F*(Y) \ {e1}, then N,(b) + N,(b=1) #£ 0.

Proof. Assume that N,(b) + N (b‘ ) =0, b = [bibs...b,] and the word bybs...b, is
irreducible. Then by, bg,...,b, € X C Y. Since N p(b) = 0, there exists an almost
irreducible word x12s...29,, of the mlmmal length and a scheme s : Ng,,, — Ng,,, such
that b = [r129...22m] and > _{p*(z; xs(l)) 24 < 2m} = 0. From the minimality of
the length of the word zizs...z, 1t follows that x; # ey for any i < 2m. Really,
if 7; = ey, then z,;) # e and p*(x S(Z),xl) = 1, a contradiction. Thus the words
T1X9...Tom and b1bs...b, are equivalent, n = 2m is an even number and s is a scheme
on Ny,,, for the element b. We can assume that x; = b; for any i < n. Therefore
> Ap"(bisbsiy) i < n} = 0. We can assume that for any 4,5 € {1,2,...,n} the sets
[i,s(1)], [4, ( j)] are either disjoint or one contains the other.
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Since N,(b~! ) =0and b = [b;'...b; 'b 1], there exists a scheme ¢ : N,, — N,, such
that > {p* (bz,bq_ ) 14 <n} =0. Since the word bybs...b, is irreducible, b1 # bi_1
for any i < n.

We affirm that s = ¢. Assume that iy € N and s(i1) # q(i1). Put j1 = s(i1).
Since S(jl) # Q(jl) and p ( x]l) = p*(j;17$i1) =0, XN {xi17$j1} a (0 and
XY 25} # 0. We can assume that z;;, € X and zj, € X~ . For any k > 1
we put ixr1 = q(jx) and jy41 = 8(ig41). For any k < 1 we have z;, # x1 # xi,,,
p (xpt an,) = pf(x ]kl,mzk) = p*(a:jk,mi_kil) = p*(xjﬂl,mj_kl). Let k be the first
number for which {ixy1, jkr1} N {i1,71,%2, 525 o iks Gt # 0. Suppose that igy; =
q(Jx) € {31, 71, s iy Ji b I i1 = 4p for some p < k, then ji = q(ig+1) = q(ip) =
Jp—1, a contradiction. If i54; = i, for some p < k, then ji = s(ig+1) = h(jp) =
ip+1. Since iy # ji, we have p+1 < k and ji € {ip+1,Jp+1}, a contradiction.
Now suppose that jri1 € {i1,41, ... %, Jk}- If jgp1 = ip for some p < k, then
ik+1 = S(Jr+1) = s(ip) = Jjp, a contradiction. If jp41 = j, for some p < k, then
ik+1 = S(ig+1) = s(jp) = ip, a contradiction. Therefore ¢(i) = s(i) for any i < n.

There exists i < n such that h(i) = (i) = i+1. Let 7; € X. Then z;41 € X ~!. Since
p*(x Z-_Jrll, i) = p*(m;(l)) = 0, we have a:;_ll < z;. Since p*(a:i,a;;_ll) = p*(mi,mq_é)) =
0, we have z; < x +1 Hence z; = z_+11 and x; - x;11 = e, a contradiction with the
condition of irreducibility of the word b1bs...b,,. Claim 1 is proved. O

Claim 2. On F*(Y,e1) there exists an invariant quasi-metric such that:
- di(w,y) = plx,y) for any x,y € X;
- di(z,y) € {0,1} for any 2,y € F*(Y, e1).

Proof. Let dy(z,y) = N,(z71y) forall z,y € F*(Y, e1). By construction, da(z,y) > 1

provided ds(x,y) > 0. From this fact and the Claim 1 it follows that di(x,y) =
min{1l,ds(z,y)} is the desired quasi-metric. O

Claim 3. Let e € X CY. Then on F®(Y,e) there exists a quasi-metric p; such
that:

- pu(@,y) = pla,y) for any x,y € X;

- pi(@,y) €{0,1} for any x,y € F*(Y,e).

Proof. Let dy be quasi-metric with the properties from Claim 2. In the proof of
Proposition 4 it was established that there exists an isomorphism ¢ : F*(X,e) —
F(Y,e1) such that ¢(z) = we™! for any = € Y. We put p1(z,y) = di(¢(x), p(y))
for any x,y € F%Y,e). Since the quasi-metric d; is continuous on the space
(F*(Y,e1),T(y,e1)), the quasi-metric p; is continuous on the space (F%(Y,e), T(Y,e)).
For any z,y € Y we have pi(x,y) € {0,1}. Let z,y € X and z < y. Then
ply,x) =0, p(z,y) = 1 and 1 € {pi(x,y),p(y,z)}. Since the quasi-metric p; is
continuous, we have p;(z,y) = 1 = p(x,y) and pi(y,z) = 0 = p(y,z). Claim 3 is
proved. O

Since F*(Y,e) is a subgroup of the group F*(Y,e), the proof is complete.

Corollary 5. For any n € N the mazimal extension d, of the quasi-metric p, on
F*(E,) is a quasi-metric.
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Corollary 6. The mazimal extension do, of the quasi-metric po, on F*(Ey) is a
quasi-metric.

From Corollary 5 it follows

Corollary 7. For any pointed Ty-space X the free group F(X) is abstract free and
ex : X — F(X) is an embedding. Moreover on F(X) there exists a topology T
which is generated by some family of almost invariant pseudo-quasi-metrics and ex
is an embedding of X into (F(X),T).

9 On quasi-varities of paratopological groups

Let S be a set of properties of paratopological groups, any paratopological group
with invariant base has the properties 8, W be a non-trivial S-complete quasi-variety
of paratopoligical groups. Denote by V the 8-complete variety of paratopoligical
groups generated by the quasi-variety W. We say that W is a Burnside quasi-variety
if V is a Burnside variety.

A quasi-variety W is a non-Burnside quasi-variety if and only if Z € W.

The next assertions affirm that the free objects of spaces in quasi-varieties are
the same as in varieties.

Proposition 12. For any pointed space X :

1. There exists an isomorphism ¢ : F*(X,V) — F%( X, W) such that p(z) = x
for any x € X.

2. There exists a topological isomorphism ¢ : F(X,V) — F(X,W) such that

V(e vy (@) = ex,w)(z) for any x € X.

Proof. The assertion 1 is obvious.

Fix a space X. Let (F'(X,V), e(x,v)) be the free object of the space X in the class
V and (F(X,W),ex,w)) be the free object of the space X in the class W. There
exists a continuous homomorphism ¢ : F(X,V) — F(X,W) such that p(z) = =
for any = € X.

Case 1. Z ¢ 'W.

In this case W C B,, for some n € N. By virtue of Proposition 3, W is a quasi-
variety of topological groups. For quasi-varieties of topological groups the assertions
of Proposition 12 are known (see [5,8]).

Case 2. Z € W.

In this case the variety V is not a Burnside variety. Then, by virtue of Corollary
7, the free objects F'(X,V), F'(X, W) are abstract free and the mappings e(x,y) and
e(x,w) are embeddings. The proof is complete. O

Theorem 2. If Z € W, then for any pointed space X we have:

1. The free topological group (F (X, W),ex) is abstract free and the mapping ex
is an embedding.

2. If p is a continuous pseudo-quasi-metric on the space X, then:

(2a) the maximal extension p of the pseudo-quasi-metric p on F(X,W) is a
continuous invariant pseudo-quasi-metric;
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('Qb) p(ﬂj‘,y) = ﬁ(eX(x)v eX(y)) fO’f’ all T,y € X;

(2¢c) if x,y € F(X,W) and p is a quasi-metric on Sup*(x) U Sup*(y), then
p(x,y) + ply,x) > 0;

(2d) if p is a quasi-metric, then p is a quasi-metric too.

Proof. We can assume that ex(z) = « for any 2 € X and X C (F(X,W).

On (F(X,W) consider the function N,(b) and the pseudo-quasi-metric d(x,y) =
Np(x_ly). By virtue of Lemma 5, d is an invariant pseudo-quasi-metric. From
Lemma 3 it follows that d(z,y) = N,(z7'y) = p(x,y) for all z,y € X. Thus
d(z,y) < p(x,y) for all z,y € F(X,W) and d(z,y) = p(x,y) for all z,y € X.

Let z,y € F(X,W) and p be a quasi-metric on Z = Sup*(z) U Sup*(y). We
put b = 7 ty. Then Sup*(b) C Z. Let r = min{p(u,v) : u,v € Z, p(u,v) > 0}.
Since the space Z is finite, we have r > 0 and there exists an ordering on Z such
that p(u,v) > 0 provided u < v. We have Z C F*(Z,' W) C F(X,W). By virtue of
Proposition 11, N,(c) + N,(c™!) > 0 for each ¢ € F4(Z, W). Since b € F4(Z, W),
0 < N,(b) + N,(b7") = d(z,y) + d(y,z) < p(z,y) + p(y,z). The assertions 1, (2a),
(2b) and (2¢) are proved. The assertion (2d) follows from the assertion (2c). The
proof is complete. U

10 Free groups of quasi-uniform spaces

A quasi-uniformity on a set X is a family U of entourages of the diagonal A(X) =
{(z,x) : x € X} and a family P of the pseudo-quasi-metrics on X, which satisfies
the following conditions:

(QU1) fVelUland VCW C X x X, then V € U.

(QU2) If V,IW € U, then VN € U.

(QU3) If V e U, then there exist p € P and r > 0 such that {(x,y) €
XxX:plx,y)<r}CV.

(QU4) {(z,y) € X x X : p(z,y) <r}eUforall pePandr >0.

(QUB) If p1, p2 € P, then there exists p € P such that max{pi(x,y), p2(z,y)} <
p(x,y) for all z,y € X.

(QU6) If 2,y € X and = # y, then p(z,y) + p(y,x) > 0 for some p € P.

Obviously, the quasi-uniformity U is generated by a family of pseudo-quasi-
metrics P.

Fix a non-trivial I-complete quasi-variety W of paratopological groups.

Let G € W. Denote by QP(G) the family of all continuous pseudo-quasi-metrics
on the space G, LQP(G) = {d € QP(G) : d is left invariant}, RQP(G) = {d €
QP(G) : d is right invariant} and IQP(G) = LQP(G) N RQP(G).

The pseudo-quasi-metrics LQP(G) generate the left quasi-uniformity U; on G
and the pseudo-quasi-metrics RQP(G) generate the left quasi-uniformity U, on G.
These quasi-uniformities generate the topology of the space G. If G is a paratopo-
logical group with the invariant base at the identity e, then U; = U,..

Assume that W is not a Burnside quasi-variety. Fix a quasi-uniformity pointed
space (X,U) generated by the pseudo-quasi-metrics P. For any p € P denote by p
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its maximal extension on F'(X, W). We put P= {p:p € P}. The family P generates
an invariant quasi-uniformity on F(X, W).

11 Free quasitopological groups

A class V of quasitopological groups is called a C-complete quasi-variety of qua-
sitopological groups if:

(QF1) the class V is multiplicative;

(QF2) if G €V and A is a subgroup of G, then A € V;

(QF3) every space G € V is a Ty-space;

(QF4) if G € V, T is a compact Tp-topology on G and (G, T) is a quasitopological
group, then (G,7T) € V.

Lemma 6. Let G be a quasitopological group. If G is a Ty-space, then G is a T} -space.
Proof. Tt is obvious. U

On any set X there exists the profinite topology Tp(X) = {X,0} U{X \ F: F
is a finite set}. The space (X, T,¢(X)) is a compact T-space.

Lemma 7. Let G be a group. Then (G,T,¢(G)) is a quasitopological group.
Proof. 1t is obvious. O

Theorem 3. Let W be a non-trivial C'-complete quasi-variety of quasitopological
groups. For any Ti-space X the free group F(X, W) is abstract free and ex : X —
F(X,W) is an embedding.

Proof. For any infinite cardinal 7 we fix a group G, € W of the cardinality 7 with
the profinite topology T,,s(G-). Further we fix an infinite group Go € W. Let F be
a non-empty closed subset of the space X and b & F.

Case 1. The set X \ F' is finite.

In this case the sets F' and X \ F' are open-and-closed. There exists a mapping
g: X — Ggsuch that g(px) = e, g(F) and g(X\ F) are singletons and g~ (g(F)) =
F'. Then the mapping g is continuous and ¢(b) & clg,9(F) = g(F).

Case 2. The set X \ F' is infinite.

Let 7 = |X \ F|. There exists a mapping g : X — G such that g(X) = G,
g Y g(F)) = F, g(F) is a singleton g(px) = e and g(x) # g(y) for distinct points
z,y € X \ F. Since X is a Tj-space, the mapping ¢ is continuous and g(b) ¢
clayg(F) = g(F).

Therefore the mapping ex : X — F(X,W) is an embedding. Thus we can
assume that e = px € X C F(X,W).

Assume that e = px € X C F*(X,W). On F(X,W) we consider the profinite
topology Tpr(F*(X,W)). Then the mapping ax : X — F%(X,W) is a continu-
ous injection. Therefore there exists a continuous homomorphism ¢ : F(X, W) —
F*(X, W) such that ¥(z) = = for any x € X. Hence 1 is an isomorphism. The
proof is complete. O
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12 Free left topological groups

A group G with topology is called a left (respectively, right) topological group
if the left translation L,(x) = ax (respectively, the right translation R,(z) = za) is
continuous for any a € G.

A class V of left topological groups is called an LI-complete quasi-variety of left
topological groups if:

(LF1) the class V is multiplicative;

(LF2) if G € V and A is a subgroup of G, then A € V;

(LF3) every space G € V is a Ty-space;

(LF4) if G €V, T is a compact Tp-topology on G and (G, T) is a left topological
group, then (G,7T) € V;

(SF5) if G € V, T is a Ty-topology on G and (G, T) is a paratopological group
with an invariant base, then (G,7T) € V.

From Theorem 2 it follows
Corollary 8. Let W be a non-trivial LI-complete quasi-variety of left topological

groups and Z € W. Then for any pointed space X the free left topological group
(F(X,W),ex) is abstract free and the mapping ex is an embedding.

From Theorem 3 it follows

Corollary 9. Let W be a non-trivial LI-complete quasi-variety of left topological
groups, n € N and 2" = e for any x € G and G € W. Then for any pointed T} -space
X the free left topological group (F (X, W), ex) is abstract free and the mapping ex
is an embedding.

The following assertion completes Corollary 9.

Lemma 8. Let G be a left topological group and for any x € G there ezists n(z) € N
such that 2"®) =e. Then G is a T} -space.

Proof. Any finite Ty-space contains a closed one-point subset. Thus any finite left
topological group is a Ti-space. By conditions, any point a € G is contained in a
finite subgroup G(a) = {a* : 0 <i < n(a)}. Thus {e} is a closed subset of the group
G and G is a Ti-space. O

Remark 3. The similar assertions are true for classes of right topological groups.

13 Free semitopological groups

A class V of semitopological groups is called a CI-complete quasi-variety of semi-
topological groups if:

(SF1) the class V is multiplicative;

(SF2) if G €V and A is a subgroup of G, then A € V;
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(SF3) every space G € V is a Ty-space;

(SF4) if G € 'V, T is a compact Tp-topology on G and (G, T) is a quasitopological
group, then (G,7T) € V;

(SF5) if G € V, T is a Ty-topology on G and (G, T) is a paratopological group
with an invariant base, then (G,7) € V.
From Theorem 2 it follows

Corollary 10. Let W be a non-trivial C'I-complete quasi-variety of semitopolog-
ical groups and Z € W. Then for any pointed space X the free topological group
(F(X,W),ex) is abstract free and the mapping ex is an embedding.

From Theorem 3 it follows

Corollary 11. Let W be a non-trivial C'I-complete quasi-variety of semitopological
groups, n € N and ™ = e for any x € G and G € W. Then for any pointed T -space
X the free topological group (F(X,W),ex) is abstract free and the mapping ex is
an embedding.

Lemma 6 completes Corollary 11.
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On a four-dimensional hyperbolic manifold
with finite volume

1.S. Gutsul

Abstract. In article [1] the authors construct and classify all the hyperbolic space-
forms H™ /T where I' is a torsion-free subgroup of minimal index in the congruence two
subgroup I'y for n = 3,4. In the present paper some hyperbolic 3- and 4-manifolds
are constructed that are absent in [1].
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In the works [1] and [2] some four-dimensional hyperbolic manifolds with finite
volume were constructed. They were obtained by identifying the faces of the regular
24-cells in H* with all vertices being on the absolute. The present article is devoted
to the construction of a four-dimensional hyperbolic manifold with finite volume
by identifying the faces of a four-dimensional hyperbolic polyhedron with all the
vertices being on the absolute. This polyhedron is not regular and its construction
is non-trivial.

1. The construction of a four-dimensional polyhedron

In the four-dimensional space H* consider the regular 24-cells R. As it is known
this polyhedron has 24 three-dimensional faces, 96 two-dimensional faces, 96 edges,
and 24 vertices. The three-dimensional faces of the polyhedron are regular octa-
hedra, two-dimensional faces are regular triangles. Inscribe in the polyhedron R a
three-dimensional sphere S2. Denote its radius by r. If we begin to enlarge the
radius r of the sphere S3, the polyhedron R will increase, but its dihedral angles at
the two-dimensional faces will decrease. Continuing the process, we ultimately come
to the case when for some 7 all the vertices of the polyhedron R become infinitely
removed, i.e. they get out on the absolute. In this case the three-dimensional faces
are regular octahedra with all the vertices being on the absolute. Then the dihe-
dral angles at the two-dimensional faces will be equal to 7/2. Indeed, consider a
three-dimensional horosphere centered at a vertex of the polyhedron R. Choose the
radius of the horosphere such that the horosphere intersects only one-dimensional
edges of the polyhedron which go to the center of the horosphere. Then the inter-
section of the horosphere and the polyhedron R is a cube. But the dihedral angles
at the two-dimensional faces of the polyhedron R are equal to the dihedral angles
at the edges of the obtained cube. Since the metric on the horosphere is Euclidean,
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the dihedral angles of the cube are equal to 7/2, i.e. the dihedral angles at the
two-dimensional faces of the polyhedron R are equal to 7/2. If we continue to en-
large the radis of the three-dimensional sphere, the vertices of the polyhedron R will
get out on the absolute. We obtain a four-dimensional polyhedron Ry with all the
vertices being infinitely removed. The polyhedron R, has three-dimensional faces
of two kinds: 24 cubes with all the vertices being on the absolute and 24 truncated
octahedra with all the vertices being infinitely removed. The polyhedron Rs has 94
infinitely removed vertices, 288 one-dimensional edges, two-dimensional faces of two
kinds: 144 squares with all the vertices being on the absolute and 96 triangles with
all the vertices being infinitely removed. Dihedral angles at two-dimensional faces
of this polyhedron are of two kinds: dihedral angles at the squares are equal to /2,
dihedral angles at the triangles are equal to 7/3, both facts can be easy proved.
Label infinitely removed vertices of the polyhedron Ry by the numbers from 1 to
94. Write all three-dimensional faces of the obtained polyhedron. First write cubes
with all the vertices being on the absolute:

Ko5(1,7,8,6,30,16,15,22) Ko6(13,21,91,39,5,1,2,12)
Ko7(7,2,10,3,28,17,19,44) Ko5(3,9,4,8,24, 26,49, 35)
Ko9(4,6,5,11,54, 33, 31, 40) K30(18,17,27,68,92,14,15,23)
K31(9,10,12,11,52,48,42,41)  K32(13,20,64, 38,36, 16, 14, 93)
Ks53(18,19,21,20,67,71,45,46)  K34(22,23,25,24, 34, 29,94, 73)
K35(50, 26, 25,96, 69,51,28,27)  K3(29,30,31,32, 75,95, 36, 37)
K37(74, 56,35, 34,32,76,55,33)  K3s(37, 38, 39,40,59, 77, 65, 58)
K39(66,46,91,58,57,63,43,41)  K49(45,70,51,44, 42,43, 60, 47)
K41(47,48,49,50,72,61,53,56) K42(53,62,78,55,54, 52,57, 59)
K43(61, 60, 86, 89,90, 62,63,87) K44(66,67,64,65,85,87,81,80)
K45(70,71,81,86,83,69,68,79) Ku(83,82,88,89,72,96,73,74)
K47(78,90,85,77,75,76,88,84)  K43(92,94,82,79,80,93,95,84)

The polyhedron Ry has also 24 truncated octahedra with all the vertices being
on the absolute. Write these faces:

01(1,2,3,4,5,6,7,8,9,10,11,12)
()2(15 16, 30,22, 23, 14, 36, 29, 92, 93, 95, 94)
03(1,7,15,16,13,2,17, 14, 20, 21, 19, 18)
4(7,8,22,15,17,3,24, 23, 25, 26, 28, 27)
5(8,6,30,22,24, 4, 31,29, 34, 35, 33, 32)
6(6,1,16,30,36,13,5,31,37, 38, 39, 40)
£(12,10,42,41,91,2, 44, 43, 45, 46, 21, 19)
(10,9, 48,42, 44, 3,49, 47, 50, 51, 28, 26)
0(9, 11,52, 48,49, 4, 54, 53, 55, 56, 35, 33)
Cho(ll,12,41,52,54,57,91,5,39,40,59,58)
011(62, 61,60, 63,57, 53,47, 43, 52, 48, 42, 41)
012(13,21,91, 39, 38, 20, 46, 58, 65, 66, 67, 64)
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013(17,19, 44, 28, 27, 18, 45, 51,69, 68, 71, 70)
014(72,74,73,96,50, 56, 34, 25, 26, 24, 35, 49)
015(78,76,75,77,59, 55,32, 37,40, 54, 33, 31)
016(18, 20,67, 71,68, 14, 64, 81,80, 79, 92, 93)
017(25, 27,69, 96, 73,83, 68, 23,92, 94, 82, 79)
015(38, 37, 77,65, 64, 36, 75, 85, 84, 80, 93, 95)
O19(45,46,67,71,70, 43,66, 81,86, 60, 63, 87)
040(32,34,74,76,75,29,73, 88,82, 84, 95,94)
041(50, 51,69, 96, 83, 70,47, 72, 89, 86, 60, 61)
045(55,56, 74,76, 78,53, 72, 88,90, 62, 61, 89)
043(58,59, 77, 65, 66,57, 78, 85,90, 62, 63, 87)
044(89, 88, 85, 81, 83, 86, 90, 87, 80, 84, 79, 82)

2. The construction of a four-dimensional hyperbolic manifold

Indicate motions ( isometries ) that identify faces of the polyhedron:

(1, 2, 3, 4, 5 6 7, 8 9, 10, 11, 12)
Pl (89, 88, 85, 81, 83, 86, 90, 87, 80, 84, 79, 82);

15, 16, 30, 22, 23, 14, 36, 29, 92, 93, 95, 94

Y21 (62, 61, 60, 63, 57, 53, 47, 43, 52, 48, 42, 41);

1, 7, 15 16, 13, 2, 17, 14, 20, 21, 19, 1

s 95, 56, T4, 76, 78, 53, 72, 88, 90, 62, 61, 8

8
9
(7, 8, 22, 15, 17, 3, 24, 23, 25, 26, 28, 27
P58, 59, 77, 65, 66, 57, 78, 85, 90, 62, 63, 87

8, 6, 30, 22, 24, 4, 31, 29, 34, 35, 33, 32
45, 46, 67, 71, 70, 43, 66, 81, 86, 60, 63, 87);

6, 1, 16, 30, 36, 13, 5, 31, 37, 38, 39, 40
1

6 (50, 51, 69, 96, 83, 70, 47, 72, 89, 86, 60, 6

12, 10, 42, 41, 91, 2, 44, 43, 45, 46, 21, 1

9
P15 (32, 34, 74, 76, 75, 29, 73, 88, 82, 84, 95, 94);

10, 9, 48, 42, 44, 3, 49, 47, 50, 51, 28, 2

s 38, 37, 77, 65, 64, 36, 75, 85, 84, &80, 93, 9

(
(
(
(
(
(
®s5 - E
(
(
(
(
( 6
( 5
(9, 11, 52, 48, 49, 4, 54, 53, 55, 56, 35, 33
( 3

P91 (18, 20, 67, 71, 68, 14, 64, 81, 80, 79, 92, 9

© (11, 12, 41, 52, 54, 57, 91, 5, 39, 40, 59, 58)
PO o5 27, 69, 96, 73, 83, 68, 23, 92, 94, 82, 79);
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67,
35,

71,
33,

83

Consider cycles of two-dimensional faces of the polyhedron Ry. As the dihedral
angles at the quadrangular faces are equal to 7/2, in order that the cycles of these
faces be inessential each of them must contain four faces. Write cycles of these faces.
We will present cycles of faces as follows: write a face, then write the motion that
transfers this face into another face, then again a face, again a motion, and so on.

(01N Ka5)(1,7,8,6) w13 (O12 N K39)(66,46,91,58) w11 (O14 N K34)

(24,34,73,25) @21 (O24 N K43)(89, 90, 87, 86) 4,01_1 (01N Ka5)(1,7,8.6);
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O3 N Kys)
31,6,4,33

Og N K35)
17,7.3.28

17 77 157 16) ¥13
o17 (O22 N K37

1,6, 30, 16) P13
15 (021 N K35

O5 N K35)(8,6,30,22) @13 (010 N K39)(91,58,57,41) @10 (O17 N Kys)
68,79,83,69) vy (O19 N K33)(45,46,67,71) @5 (O5 N Ka5)(8, 6,30,22);

04 N K25)(8, 7, 15, 22) ©13 (07 n Kgg)(gl, 46, 43, 41) w7 (020 N K47)
75,84,88,76) ¢ (O3 N K35)(59,58,65,77) @5 (O4 N Kas)(8,7,15,22);

Os N K25)(15, 16, 30, 22) ©13 (011 N Kgg)(43, 63,57, 41) (,02_1 (02 N K34)
29, 22, 23, 94) ©21 (011 N K43)(62, 61, 60, 63) (,02_1 (02 N K25)(15, 16, 30, 22);

01 N Ko6)(1,2,12,5) @14 (024 N K44)(87,81,80,85) ;! O N Kag)
8,4,9,3) pi16 (024 N K46)(89, 88, 82,83) (,01_1 (Ol N KQG)(l, 2,12,5);

O3 N Ko6)(1,2,21,13) 14 (O19 N K44)(87,81,67,66) o5 (05 N K36)
32,29,30,31) @a (092 N K4)(55,53,62,78) 3! (03N Kag)(1,2,21,13);

Op N Ko6)(1,5,39,13) 14 (O3 N K44)(87,85,65,66) ;" (04N K3p)
27,23,15,17) @15 (O N K40)(51,47,60,70) o5 (06 N Kag)(1,5,39,13);

O7 N Ka6)(91,21,2,12) @14 (O16 N K44)(64,67,81,80) g (Og N Ky3)

( O19 N K39)(66,46,43,63) o5 *
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(54,52,53,55) 0o (O20 N Ki36)(75,95,29,32) 7' (O7 N Kog)(91,21,2,12);
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(55,56,74,76) p3' (O3 N Ka5)

Oa3 N K39)(66,58,57,63) ;"
(51,50, 96,69) ¢g' (O N Ka5)

Os N Kyg)
1,7,15,16);

04N O27)
1,6,30, 16);

~— —~
A~~~/

O12 N K2)(91,21,13,39) 14 (O12 N K44)(64,67,66,65) 11 (O14 N Kag)
49, 35, 24, 26) P16 (014 M K46)(73, 74,72, 96) (,01_11 (012 N KQG)(91, 21,13, 39);

O10 N K26)(91,12,5,39) @14 (O15 N K44)(64,80,85,65) 5! (Os N Kyp)
44,51,47,42) (701_81 (O17 N K30)(68,27,23,92) 901_01 (O10 N K9)(91,12, 5, 3);
O N K27)(2, 7,3, 10) P15 (014 N K35)(26, 50, 96, 25) (,01_11 (012 N K38)

65, 38, 39, 58) 23 (024 M K47)(88, 90, 85, 84) (,01_1 (01 M K27)(2, 7,3, 10);
O3 N Ka7)(2,7,17,19) @15 (Os N K35)(26, 50,51, 28) g (O18 N Kys)
95,84,80,93) ¢y (Oa2 N K41)(53,56,72,61) @31 (O3 N Ka7)(2,7,17,19);
O7 N K27)(2, 10,44, 19) ©15 (04 N K35)(26, 25,27, 28) ©Ya (023 N K43)
62,90, 87,63) 902_11 (020 N K34)(29,34,73,94) (p7_1 (O7 N K97)(2,10,44,19);

Os N K97)(28,3,10,44) 15 (O17 N K35)(69, 96, 25,27) 75 (O190 N K3;)
41,52,11,12) @19 (O18 N K32)(93,36,38,64) @z ' (Os N Ko7)(28,3, 10, 44);

O13N K27)(28, 17,19, 44) ©15 (013 N K35)(69, 51,28, 27) ©12 (015 N Kgg)
40,37,77,59) 23 (Or5 N Ka7)(77,78,76,75) o7k (Or3 N Ka7)(28, 17, 19, 44);

Og N K98)(3,9,49,26) @16 (O17 N Ku6)(83,82,73,96) @19 (010 N Ka2)
57,59, 54,52) ¢ (O15 N K36)(36,37,75,95) ¢ (O N Kag)(3,9,49,26);

Os N Kog)(4,8,24,35) 16 (O N Ku)(88,89,72,74) w3 ' (03N K3p)
14,18,17,15) 15 (O19 N K49)(43,45,70,60) o5 ; (05 N Kog)(4, 8,24, 35);



Therefore a cycle of these faces will be inessential if it contains six faces.
cycles of these faces:
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Og N Kgg)(4 9, 49 35) ©16 (020 N K46)(88, 82,73, 74) (,07_1 (07 N K40)
43,45,44,42) 9018 (016 N K3)(14, 18,68, 92) ()09—1 (Og N K9g)(4,9,49, 35);

O4 N K98)(3,8,24,26) 16 (021 N Ku6)(83,89,72,96) o5 (O N K36)
36,37,51,30) oo (O23 N K42)(57,59,78,62) (,021 (04N K9g)(3,8,24,26);

01 ﬂKgg)(4 6,95, 11) P17 (014 ﬂK37)(74 56, 35 34) (,011 (012 N K33)
21,20, 67,46) 20 (04 N Ky5)(81,86,83,79) o7 (01 N Kag)(4,6,5,11);

Og N Ko9)(4,11,54,33) 17 (O N K37)(74, 34, 32,76) o7 (07 N K31)
42,10,12,41) @19 (O16 N K32)(14,20,64,93) @5 (Og N Kag)(4, 11,54, 33);

Og N Kgg)(5 6, 31 40) ©17 (Og N K37)(35, 56, 55, 33) ©9 (016 N K48)
92,79, 80,93) <,024 (O21 N K41)(47,50,72,61) cpgl (O N Ka9)(5,6,31,40);

O10 N Kgg)(5 11, 54 40) P17 (05 N K37)(35 34, 32 33) ©s (019 N K43)

60, 86,87, 63) ¢y, (O17 N K34)(23,25,73,94) 7y (010 N Ka9)(5, 11, 54, 40);

O1s5 ﬂKQg)(31 40, 54, 33) ©17 (015 N K37)(55 33,32, 76) (,012 (013 N K33)
18, 71,45, 19) 20 (O15 N K13)(70, 69,68, 71) 12 (Ors mKQQ)(:al 40,54, 33);

Os N Kgo)(14, 15,23, 92) ©18 (011 N K40)(43, 60,47, 42) (02 N Kg@)
29,30, 36,95) @a2 (O11 N K42)(53,62,57,52) (,02_1 (02N Kgo)(14, 15,23,92);

O13N K30)(17, 18, 68, 27) ©18 (013 N K40)(70, 45,44, 51) ©12 (015 N K36)

O1 N Kgl)(g, 10,12, 11) ©19 (012 N Kgg)(13, 20, 64, 38) Y11 (014 N K41)
72, 56, 49, 50) ©24 (024 M K48)(80, 84, 82, 79) (,01_1 (01 M Kgl)(g, 10, 12, 11);

Os N Kgl)(g, 10,42, 48) ©19 (03 N K32)(13, 20, 14, 16) ©3 (022 N K47)
78,90, 88,76) ¢y (O1s N K3s)(37,38,65,77) ¢ (O N K31)(9,10,42,48);
Og N Kgl)(g 11, 52 48) ©19 (06 N Kgg)(l?), 38, 36, 16) ©6 (021 N K45)

70, 86, 83, 69) (,020 (O16 N K33)(18,20,67,71) (,051 (Og N K31)(9,11,52,48);
O11 N K31)(41, 42,48, 52) ©19 (02 N K32)(93, 14,16, 36) ©2 (011 N K41)

48, 53,61,47) P24 (02 N K48) 94,95,93,92) P2 (011 N K31)(41,42,48, 52);

O3 N Kgg)(l& 19,21, 20) w20 (O19 N K45)(70 71 81 86) 5 (05 N K34)
24,22, 29, 34) ©21 (022 N Ky3 (89, 61,62, 90) (Og N Kgg) 18,19,21, 20);

O N K31)(22,23,25,24) 21 (O N Kis) (61,60, 86 ,89) w5t (06 N K3g)
40,39, 38,37) a3 (023 N K47)(77,85,90,78) @5 (O4 mK34) 22,23, 25, 24);

O10 N Kgg)(40, 39, 58, 59) ©23 (018 N K47)(77, 85, 84, 75) Vg (08 N K41)
48,47, 50, 49) P24 (017 N K48)(94, 92,79, 82) ©10 (010 N Kgg)(40, 39, 58, 59).

(
(
) (
O7 N Kgg)(l9, 21,46, 45) ©20 (016 N K45)(71 81 79 68) (Og N K41)
48, 53,56,49) oy (O20 N K45)(94,95,84,82) ¢ (07 N Kgg)(19, 21,46,45);
( (
) (

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(31, 32,75, 37) P22 (015 N K42)(78, 55, 54, 59) (,01_21 (013 N Kgo)(17, 18, 68, 27);
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
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The dihedral angles at the triangular faces of the polyhedron are equal to 7/3.

Write
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(01 M 03)(1 2 7) ©1 (022 M 024)(89 88 90) (03 N 016)
(18 14,20) g ' (04 mog)(9 4 11) ¢1 (O1 m024)(80 81,79)
(Og N 022)(55 93 56) (01 N 03)(1 2 7)

(01 N 06)(1, 0, 6) ©1 (021 N 024)(89, 83, 86) (,0(;1 (06 N 018)
(37,36, 38) (,05;1 (01N 0s)(9,3,10) ¢1 (O18 N O24)(80,85,84)
o1 (O3 N 091)(51,47,50) g * (01N O3)(1,5,6);

(Ol N0O5)(8,6,4) v1 (019 N 024)(87, 86, 81) (pgl (O5 N O9)
(32, 34, 29) (,07_1 (01 N 07)(12, 10, 2) ©1 (020 M 024)(82, 84, 88)
71 (07 M O19)(45,46,43) 5! (01N O5)(8,6,4);

(Ol N 04)(8, 7, 3) ©1 (023 N 024)(87, 90, 85) (le (04 N 017)
(27 25 23) (,010 (01 N 010)(12 11 5) 1 (017 ﬂ 024)(82, 79,83)
(,010 (010 N O23)(59,58,57) ¢ (01 NO04)(8,7,3);

(02N 03)(15,16,14) @, (011 N 093)(62,61,53) w3+ (03N 07)
(21, 19, 2) ok (02 N 020(95, 94, 29) Y2 (07 N 011)(41, 42, 43)
w7 (020 N 022(76, 74, 88) _1 (02 N 03)(15 16, 14)'

(02N 04)(15,22,23) o (011 N O23)(62,63,57) @5 (04 N Og)
(26,28,3) @ (02N Olg)(95 93 36) @9 (Og N 011)(42,48,47)
@3 (018 N O23)(65,77,85) 7! (03 N O4)(15,22,23);

(02N 04)(22,29,30) p2 (011 N 019)(63,43,60) @5 (O5 N Oy)
(33,4, 35) g (02N 016)(93 14 ,92) 3 (Og N 011)(48,53,52)
g (016N O19)(71,81,67) @3 (02 N O4)(22,29, 30);

(02 N O6)(16,36,30) ¢ (011 N 021)(61, 47,60) (pgl (O N O1p)
(40, 0, 39) ©10 (02 N 017)(94 23, 92) 2 (010 N 011(41, 57, 52)
©10 (017 N 021)(69, 83, 96) ©6 (02 N 06)(16, 36, 30)'

(03 N Oﬁ)(l, 16, 13) ©3 (015 N 022)(55, 76, 78) (,012 (03 N 013)
(18 19, 17) ©3 (021 N 022)(89, 61, 72) (,Dgl (06 N 015)(37, 40, 31)
1o (013 N 091)(51,69,70) ps* (O3 N O6)(1,16,13);

(03N 04)(15,17,7) 3 (O14 N Oa2)(74,72,56) ©7;" (03N O12)
(21,13,20) 5 (Oz2 0023><62 78,90) ;" (011 O11)(26,24,25)
(,011 (012 N 023)(65 66, 58) (03 N 04)(15, 17, 7)

(04 M 05)(8, 22, 24) P4 (015 N 023)(59, 77, 78) (,012 (04 N 013)
(27 28,17) ¢4 (O19 N 023)(87 63, 66) ' (05N 015)(32,33,31)
oia (013N O19)(45,71,70) @5t (04 1 O3)(8, 22 24

(05 N 014)(34 35 24) ©s (019 N 021)(86 60 70) (06 N 012)
(38 39, 13) P11 (014 N 021)(50 96, 72) (05 N 06)(6, 30, 31)
©5 (012 M O19)(46,67,66) 11 (O5 N 014)(347 35,24);

(07 N Og)(lo, 42, 44) Vol (014 N 020)(34, 74, 73) (,011 (07 N 012)
(46 21 91) Ookd (018 N 020)(84 95, 75) (,051 (08 N 014)(50, 26, 49)
(,011 (012 N 018)(38 65, 64) (07 N 08)(10, 42, 44);
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(07 N 010)(12, 41, 91) w7 (015 N 020)(32 76 75) (,012 (07 N 013)
(45 19, 44) Vol (017 N 020)(82 94 73) (,010 (Olo M 015)(59,40,54)
(,012 (013 N 017)(27, 69, 68) (,010 (07 M 010)(12, 41 91)

(08 N 09)(9,48,49) ws (O15 N O18)(37,77,75) 15 (Og N O13)
(51 28 44) ©s (016 N 018)(80, 93, 64) (,Dgl (Og N 015)(55, 33, 54)
©ls (013N 016)(18,71,68) g+ (O N Og)(9,48, 49);

(Og N Olo)(54, 52, 11) ©9 (012 N 016)(64 67 20) P11 (09 N 014)
(49, 35, 56) ©9 (016 N 017)(68 92 79) (,010 (010 N 012)(91, 39, 58)
©11 (014 N O17)(73,96,25) ¢ig (Og N O19)(54,52,11).

Finally write cycles of one-dimensional edges of the polyhedron Rs:

(1,2) 14 (87,81) 97" (8, 4) ¢16 (89,88) ¢ 5 (18,14)
o1 (45, 43) o7 (82, 85) g (9,4) <80 1)
(,014 (12 2) ®7 (32 29) ©22 (55,53) (1,2),

(1,5) 014 (87,85) 07" (8,3) s (89, 83) 5! (37,36)
9022 (59,57) ¢10 (82 83) 9016 (9,3) (80 85)
o1 (12,5) @10 (27,23) o1 (51,47) w5 (1,5);

(1,6) w13 (66, 58) e11 (24, 25) P21 (89 86) g ' (37,38)
e (78.90) 5" (13.20) i (0.10) 1 (30, 84)
cp24 (72, 56) (17 7) ¢15 (51,50) ¢ (1 6);

(1,7) ¢13 (66, 46) P11 (24,34) a1 (89, 90) 5 (18,20)
a0 (70.86) 5! (13.38) iy (9,11) o1 (80, 79)
9024 (72, 50) (31 6) 17 (55,56) ¢ (1 7);

(1,16) 13 (66 63) ¢3! (31,33) 7 <55,76> 1 (18,19)
020 (70,71) ' (24, 22) 021 (89,61) op (37 40)
o2 (T8.77) o1 (1T, %) 15 (51,60) ¢ 51 (1,16);

(1,13) 14 (87,66) ;" (27,17) g1s <51 70) @12 (37,31)
©22 (59 78) (8 24) ©16 (89 72) (18 17)
¢1s (45,70) cp12 (32,31) w22 (55, 78) 5 (1,13);

(2,10) @15 (26,25) ¢ ( ,90) wo; (29, 34) <P5(81 86) w3
(21720) P11 (747 56) (1017 (476) (43 46) (1013
(1577) Y4 (65758) ©23 (88 84) ( )

(2, 7) ¢15 (26,50) s (95, 84) 0o (53 56) 9 (81,79)
9020 (21,46) @11 (74,34) o1 (4,11) ¢ (14 20)

oo (42,10) s (65,38) va3 (88,90) 7' (2,7);

(2,19) 15 (26,28) 1 (62,63) 03 (29 94) 2 (43, 41)
g013 (15,22) i (65, 77) 23 (88,76) (14 16)

Pro (42,48) 5" (95,93) 5 (53, 61) ' (2,19);

87
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(2,21) 14 (81 67) =1 (29,30) a9 (53 62) ;" (14,15)
18 (43,60) L (4, 35) P16 (33,74) ¢ (43 42)
ore (14,92) o (53 52) gy (29, 95) ~1(2,21);

(3,7) p15 (96, 50) gpu (39, 38) a3 (85, 90) (23 25)
cpgl (60,86) ¢ (35 34) 4,017 (5,11) ¢ (83 79)
9020 (67, 46) (30 6) ¢13 (57,58) ¢ ( 7);

(3,10) ¢15 (967 25) e (39, 58) ©23 (85 84) gz (47,50)
P21 (92,79) ¢q (35 56) @17 (5,6) ¢ (83 86)
o5 (67, 20) ;! (51, 11) ©19 (36, 38) L3, 10)

(3,26) ©16 (83 96) ~1(36,30) @2 (57 62) 5! (23,15)
‘;018 (47 60) (5 39) (,014 (85 65) (47 42)
cp18 (23,92) ¢ (57, 52) 4,022 (36, 95) (3,26),

(3,28) 15 (96,69) 1o’ (52,41) 19 (36 93) 2 (47,48)
o1 (92,94) <P10 (39,40) 23 (85,77) ! (23, 22)
©a1 (60,61) @, (30,16) @13 (57,63) ;" (3,28);

(4, 33) ©17 (74 76) (15 16) ©13 (43 63) (29 22)
©o1 (62,61) o3 (21, 19) e (BL,71) ¢ 1 (53, 48)
©24 (95,94) 902 (42,41) 19 (14,93) ¢ (4 33);

(5,40) 17 (35,33) @5 (60,63) o5 (23 94) 5 (57,41)
cp1_3 (30,22) 5 (67,71) a0 (83,69) (36 16)
oro (52,48) o5 (92,93) w5, (47, 61) (5,40)7

(6,8) ¢13 (58 91) ©13 (25,73) a1 (86 87)
(34,32) o1 (11,54) 09 (20,64) oy (10 12) @1(84 82)
@31 (56,49) o(79, 68) v (46,45) 05! (6,8);

(7.8) 13 (46,91) r (84,75) oy (58, 59) P10 (79,82)

P21 (50,49) oy} (38.,64) i (11 12) 10 (25,27)
pra (10,44) o7 (34,73) a1 (90,87) @7 (7,8);

(8,22) 13 (91,41) @7 (75,76) 0y (59 77) 1o (27,28)
9015 (44,19) ¢ (73 94) V21 (87 63) ¢ (32 33)

9017 (54, 40) 9012 (68,69) 9020 (45, 71) (8 22);

(9, 49) V16 (82 73) (45 44) @18 (18 68) w12 (55, 54)
cp22 (32,75) ¢ (12 91) cp14 (80,64) ¢ (51 44)

9018 (27,68) 9012 (59, 54) 9022 (37,75) ¢ (9 49);

(9.48) 19 (13.16) 3 (78,76) ;' (37, 77) e (51,28)
cp15 (17,19) ¢ (72 61) w24 (80,93) ¢ (55 33)

17 (31,40) ¢py (70, 69) p20—1 (18, 71) ' (9,48);

(12,41) 19 <64 93) ¢y (54,33) 7 (32 76) i (45,19)
20 (68,71) gt (49,48) ooy (82,94) P (59,40)
a3 (75,77) ‘P12 (44,28) @15 (277 69) ‘P10 (12,41);
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(13,21) 14 (66,67) @11 (24,35) @16 (72,74) 3" (17,15)
@18 (70,60) g+ (13,39) @14 (66,65) @11 (24,26)
016 (72,96) g (31,30) w22 (78,62) @3 ' (13,21);

(95,75) a2 (52,54) g (67,64) o7, (21,91) 11 (74,73)
e1e (35,49) pg (92,68) p1s (42,44) @s (65,64)
o1i (39,91) @11 (96,73) pig (26,49) @5 (95,75).

As each cycle contains 12 edges, we have shown that cycles of one-dimensional
edges are inessential, too. Thus we have shown that identifying the faces of the
polyhedron Ry by the motions ¢1, @a, ..., (a4, the cycles both of two-dimensional
faces and one-dimensional edges are inessential. Therefore the group I' generated
by the motions 1, @2, ..., 24 does not contain elements of finite order, i.e. T’
is torsion-free. Then the quotient space of the space H* by the group I is a four-
dimensional hyperbolic manifold M with finite volume which is not closed. The
manifold M has four cusps, i.e. four ends of the form 7% x [0,00), where T° is a
three-dimensional torus.
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On spaces of densely continuous forms

D. M. Ipate, R.C.Lupu

Abstract. We study the structure of the domain of the minimal upper semicontinu-
ous extension of the set-valued mapping. It is proved that the set of all compact-valued
upper semicontinuous mappings is closed in the space of all set-valued mappings. A
similar assertion is true for the space of densely continuous forms.
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1 Introduction

Let (Y,U) be a uniform space and X be a topological space. By exp(Y) or 2V
we denote the space of all closed subsets of Y. The uniformity U is generated by a
family of uniformly continuous pseudometrics P(Uf). Consider that p(y,z) < 1 for
all pe P(U) and y,z € Y.

Let p € PU). If y € Y and L C Y, then N(y,p,r) = {z € Y : p(y,2) <
r} and N(L,p,r) = U{N(y,p,r) : y € L} for a real number r > 0. We put
o(L,M)=inf{r: L C N(M,p,r), M C N(L,p,r). If ) € {L, M} and L # M, then
hp(L, M) = 1. The families hP(U) = {hp : p € P(U)} generate the uniformity h(i)
on exp(Y).

A set-valued mapping g : X — Y assigns to each point z € X a closed subset
g(z) of Y.

Let g: X — Y be a set-valued mapping. The mapping ¢ is called:

— upper semicontinuous (us-continuous) at a point zy € X if for every open
V CY with g(xg) C V there exists an open set U of X such that zy € U and
F(z) CV for any z € U,

— lower semicontinuous (Is-continuous) at a point zp € X if for every open V C Y
with g(xo) NV # () there exists an open set U of X with g(x) NV # ) for each
x e U,

— continuous at a point x € X if g simultaneous by is us-continuous and ls-
continuous at the point x;

— weakly continuous (w-continuous) if the graphic Gr(g) = U{{z} xg(x) : z € X'}
is a closed subset of the space X x Y;

— minimal if the graphic Gr(g) is closed in X x Y, the set Dom(g) = {z € X :
g(x) # 0} is dense in X and for each closed subset F of Gr(g) such that F # Gr(g)
there exists a point € Dom(g) such that F N ({z} x g(z)) = 0.

© D.M.Ipate, R.C.Lupu, 2013
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Remark 1. The set Dom(g) = {x € X : g(x) # 0} is the domain of the mapping
g: X — Y. If the set Dom(g) is dense in X and z € X \ Dom(g) then g is not
us-continuous and not Is-continuous at the point xz € X.

A mapping g : X — Y is called:

— us-continuous if it is us-continuous at any point € Dom(g);

— Is-continuous if it is Is-continuous at any point = € Dom(g);

— continuous if it is continuous at any point x € Dom(g).

Denote by F(X,Y) the set of all single-valued mappings of the space X into the
space Y, by F(X,2") the set of all set-valued mappings of X into Y, by C(X,Y) =
{g € F(X,Y) : g is continuous} the set of all continuous mappings of X into Y.

Let A be a family of subsets of X which is closed under finite union and which
covers X.

We define on F(X,2Y) the topology of uniform convergence on sets in A as
follows.

For any pseudometric p € P(U) and each B € A on F(X,2") define the pseu-
dometric pp(f,g) = sup{hp(f(2), g(z)) : @ € B)}.

Then F(X,2Y) has the topology generated by the family of pseudometrics
AU) = {pp : B € A,p € P(U)}. The pseudometrics AU) form on F(X,2Y) a
Hausdorff uniform structure and the space F4(X,2") with this topology is com-
pletely regular and Hausdorff [3].

Whenever A consists of the all finite subsets of X, the topology generated by
the uniform structure A(U) is the topology of pointwise convergence on F(X,2")
and this space is denoted by F,(X,2Y).

Since A consists of the all compact subsets of X, then the topology generated
by the uniform structure A(U) is the topology of uniform convergence on compact
sets and this space is denoted by F.(X,2").

Whenever X € A, then this topology is called the topology of uniform conver-
gence and this space is denoted by F,(X,2Y).

On subspaces of the space F4(X,2Y) we consider the topology generated by the
uniform structure A(U) too.

2 Extensions of mappings

Fix a space X, a uniform space (Y,U) with the uniformity U generated by the
pseudometrics P(U) and a compactification ¢Y of Y.

Let g: X — Y be a set-valued mapping.

A set-valued mapping ¢ : X — Y is said to be an usc-extension of the mapping
g if ¢ is a compact-valued us-continuous mapping and g(x) C ¢(z) for any x € X.

A set-valued mapping ¢ : X — Y is said to be a minimal usc-extension of the
mapping g if ¢ is an usc-extension of the mapping g and for any usc-extension
Y : X =Y of g we have p(z) C ¢(x) for any = € X.

Remark 2. One can say that a set-valued mapping ¢ : X — Y is a maximal usc-
extension of the mapping g if ¢ is an usc-extension of g and Dom(¢)) C Dom(y) for
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any usc-extension ¥ : X — Y of g. If the space Y is compact, then the mapping
Imaz * X — Y, where gpmqz(z) =Y for any z € X, is the maximal usc-extension
of any mapping g : X — Y. If the space Y is not compact and ¢ : X — Y
is an usc-extension of the mapping g : X — Y, then ¢(z) # Y for any = € X.
Fix a compact subset F' of Y and put ¥p(x) = ¥(x) U F for each Uz € X. Then
Yp : X — Y is a usc-extension of the mapping g and Gr(¢)) C Gr(¢r). Hence,
for a non-compact space Y for each mapping g : X — Y does not exist maximal
usc-extension.

Proposition 1. Let g : X — Y be a set-valued mapping and the domain Dom(g)
is dense in X. The following assertions are equivalent:

1. The mapping g has some usc-extension.

2. For g there exists a unique minimal usc-extension meg: X — Y.

Proof. The implication 2 — 1 is obvious. Assume that ¢ : X — Y is an usc-
extension of g. Then ¢ is an us-continuous mapping of X into ¢Y. Denote by
mx : X XY — X the projection wx (z,y) = x for all (z,y) € X x Y. Since ¢Y is a
compact space, the projection wx is a perfect mapping. Denote by w.y : X X Y —
cY the projection onto cY. The mapping m.y is continuous.

Every subset M C X X ¢Y is the graphic of some concrete set-valued mapping
Oy 2 X — Y, where Op(z) =[] (M N ({2} x CY)) for any x € X. The mapping
0ps is us-continuous if and only if the set M is closed in the subspace mx (M) x ¢Y'.

In particular, if ) : X — Y is an usc-extension of g, then Gr(g) C Gr(¢) and
the set Gr(v) is closed in the subspace Dom(v¢) x ¢Y. Hence Gr(g) C Gr(y) and
the set Gr(yp) is closed in Dom(yp) x cY'.

Denote by @ the closure of the set Gr(g) in the space X x c¢Y.

Then the set &1 = & N (Dom(p) x cY') is the closure of Gr(g) in Dom(p) x ¢Y.
The mapping w : X — ¢Y, where Gr(w) = ®, is us-continuous. Moreover, g(x) C
w(xz) C p(x) CY for any x € Dom(g). Let H = {z € X : w(z) C Y}. By
construction, Dom(g) C Dom(y) C H. Denote by m.g : X — Y the mapping with
the domain Dom(m.g) = H and m.g(x) = w(zx) for any € H. Since Dom(w) = X,
the mapping m.g is correctly defined. Obviously, m.g is an usc-extension of g.

Let ¢ : X — Y be a usc-extension of g. Since Gr(g) C Gr(v), the set ® N Gr(v)
is the closure of the set Gr(g) in Dom(y)) x ¢Y. Thus m.g(x) = w(x) C ¢(x) for
any x € HN Dom(y) = Dom(mcg) N Dom() and Dom(¢) € Dom(m.g). Hence
meg is the minimal usc-extension of g. The existence of the minimal usc-extension
is proved. The uniqueness of the minimal usc-extension is obvious. The proof is
complete. O

Let g : X — Y be a set-valued mapping. The mapping m.g : X — Y with the
graphic Gr(meg) = clxxy Gr(g) is called the minimal w-continuous extension of the

mapping g.

Proposition 2. Let g : X — Y be a set-valued mapping and the set Dom(g) is
dense in X. Then:
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1. If ¢ : X — Y is a w-continuous mapping and g(x) C @(x) for any x €
Dom(g), then meg(z) C p(x) for any x € X.

2. If meg is the minimax usc-extension of g, then m.g(z) C meg(x) for any
reX.

Proof. Follows from the coincidence of the closures of the sets Gr(g), Gr(mcg), and
Gr(meg) in X x cY. O

Corollary 1. If the space Y is compact, then m.g = meg for any set-valued mapping
g: X — Y with the dense domain Dom(g) in X.

Remark 3. Let m.g : X — Y be the minimax usc-extension of a set-valued mapping
g : X — Y with the dense domain Dom(g) in X. If x ¢ Dom(g), then we say
that X is an essential point of usc-discontinuity of the mapping g. If = €
Dom(m.g) \ Dom(g), then z is inessential point of usc-discontinuits of the

mapping g.

3 m-metric and m-Baire spaces

Let m be an infinite cardinal number.

A uniform space (Y,U) is an m-metric space if the uniform structure U is gener-
ated by a family P(U) of pseudometrics of cardinality < m. In this case we assume
that the cardinality |P(U)| < m and for any p1,ps € P(U) there exists p € P(U)
such that sup{p1(z,y), p2(x,y)} < p(x,y) for all z,y € Y.

A set L of a space X is called a G,,,-set if L is the intersection of m open subsets
of X. For m = Ny the G,,-set is called a Gs-set. The complement of a G,,-set is an
F,,-set and of Gs-set is an F,-set.

A subset A of a space X is called m-meager if A is the union of m nowhere
dense subsets of X. The space X is called an m-Baire space if every non-empty
open subset of X is not m-meager.

For a space X the next three assertions are equivalent:

1 bm) X is an m-Baire space.

2 bm) The intersection of m open and dense subsets of X is dense in X.

3 bm) The intersection of m dense G,,-subsets is dense in X.

A space X is a Baire space if it is an Ny-Baire space.

A space X is called m-complete if X is a GG,,-subset of some compactification
cX of X.

Proposition 3. Let (Y,U) be an m-complete m-metric space, g : X — Y be a
set-valued mapping with a dense domain Dom(g) in X and m.g : X — Y be the
usc-extension of g. Then Dom(m.g) is a dense Gy,-set of X.

Proof. Let @ be the closure of the set Gr(g) in X xcY', where ¢Y is a compactification
of Y, and w : X — ¢Y be the us-continuous mapping with the graphic Gr(w) =
®. Then @ is the closure of the set Gr(m.g) in X x ¢Y too. By construction,
Dom(meg) ={z € X : w(z) CY} and m.g(z) = w(z) for all z € Dom(m.g). Fix a
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family {U, : a € A} of open subsets of Y for which |[A] <m and Y =nN{U, : a € A}.
For any v € A theset V, = {x € X : w(z) C Uy} is open in X and Dom(m.g) C V,.
Let L = N{V, : @ € A}. By construction, Dom.(g) C L and L is a Gp,-set of X.
Suppose that © ¢ Dom,(g). Then there exist a point y € w(z) \Y and a € A for
which y ¢ U,. Then = ¢ V,, and x ¢ L. Therefore L = Dom.(g). The proof is
complete. O

Proposition 4. Let g: X — Y be a minimal us-continuous mapping of a space X
into an m-metric space (Y,U). Then Doms(g) = {x € X : g(x) is a singleton set}
is a Gy, -subset of Dom(g).

Proof. We can assume that X = Dom(g). Consider the pseudometrics P(U) = {pq :
a € A} which generate the uniformity ¢ on Y. Assume that |A] < m.

For every n € N = {1,2,...}, « € Aand y € Y we put V(y,a,n) = {x €
X :g(z) € N(y,pa,27™)} and V(a,n) = W{V(y,a,n) : y € Y}. Since the set
N(y, pa,27™) is open in Y and the mapping ¢ is us-continuous, the set V(a,n) is
open in X. The set L =N{V(a,n):a € A,n € N} is a Gp,-set of X.

If © € Doms(g) and g(x) = y € Y, then z € V(y,a,n) for all « € A and
n € N. Hence Doms(g) C L. Let x ¢ Domg(g). Then there exist two distinct
points yp, z0 € g(x),a € A and n € N for which p,(yo, z0) > 27" > 0. In this case
g()\ V(y,a,n) # 0 for any y € Y. Thus = ¢ V(a, h). Therefore L = Domg(g).
The proof is complete. O

Corollary 2 Let g : X — Y be a us-continuous mapping of an m-Baire space X
into an m-complete m-metric uniform space (Y,U). The following assertions are
equivalent:

1. The mapping meg : X — Y, Y is minimal, i.e. g: Dom(g) — Y is a minimal
mapping.

2. Doms(g) is a dense Gp,-set of X.

Proof. Implication 2 — 1 is obvious. Let g : Dom(g) — Y be minimal. Then the
mapping m.g : X — Y is minimal. Proposition 4 completes the proof. O

4 Spaces of dense forms

Fix an infinite cardinal number m, an m-Baire space X and an m-complete m-
metric space (Y,U) with uniformity U generated by the family P(U) = {po : o € A}
of pseudometrics, where |A| < m.

A set-valued mapping g : X — Y is called a dence set-valued continuous form
from X to Y if Dom(g) is a dense subset of X and g = m.g.

A set-valued mapping g : X — Y is called a dense continuous form from X to
Y if Domg(g) is a dense subset of X and g = m.g.

Remark 4. From Corollary 2 it follows that for a set-valued mapping g : X — Y the
following assertions are equivalent:
1. g is a dense continuous form from X to Y.
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2. There exists a dense subspace Z of X and a continuous single-valued mapping
f:Z —Y such that g = m.f.

Hence our definition of a dense continuous form coincides with the definition of
a dense continuous form from [5].

Denote by DUC(X,Y) the family of all us-continuous compact-valued mappings
g : X — Y for which the domain Dom(g) is dense in X, by DU(X,Y) the family
of all dense set-valued continuous forms from X to Y, by DC(X,Y) the family
of all single-valued mappings g € DUC(X,Y) and by D(X,Y) the family of all
dense continuous forms from X to Y. It is obvious that D(X,Y) C DU(X,Y) C
DUC(X,Y).

There exists a single-valued mapping e : DUC(X,Y) — DU(X,Y), where e(g) =
mcg for any g € DUC(X,Y).

5 Completeness of the spaces of set-valued dense continuous forms

Fix a space X and a complete uniform space (Y,U) with the uniformity U gen-
erated by the family of pseudometrics P(U) = {po : o € A}.

Let FC(X,Y) be the set of all compact-valued us-continuous mappings of X
into Y. On X fix a family I" of subsets which is closed under finite union and which
covers X.

On F(X,exp(Y)) consider the topology and the uniformity generated by the
pseudometrics I'(U) = {pap : @« € A,B € T'}.

Theorem 1. Let X € T'. Then the set FC(X,Y) is closed in the space
Fr(X,exp(Y)).

Proof. Let g € F(X,exp(Y)\ FC(X,Y).

Case 1. g(xg) is not a compact set for some point zy € X.

Since Y is a complete uniform space, in this case there exist a € A, ¢ > 0 and
an infinite sequence {y, € g(xg) : n € N} such that ps(yn,ym) > € for all n,m € N
and n # m. Fix B € T for which 2o € B and 6§ < e~ ! such that 0 < 36 < e.

Let f € F(X :exp(Y)) and pap(f,9) < . Then for any n € N there exists a
point z,, € f(zo) such that po(yn, 2n) < 0. In this case po (2, 2m) > 6 foralln,m € N
and n # m. Thus the set f(x() is not precompact in Y. Since Y is complete, the set
f(xo) is not compact. Therefore the set V = {f € F(X,exp(Y)) : pan(g, f) < d} is
open in Fp(X,exp(Y)), g€ Vand VNFC(X,Y)=1.

Case 2. g(x) is a compact set of Y for each z € X.

In this case there exists a point g € Dom(g) such that g is not us-continuous
at xo. Thus there exists an open subset U of Y such that g(z¢) € U and for
any neighborhood W of zp in X there exists a point x € W N Dom(g) for which
g(x)\U # 0.

Since the set g(xo) is compact there exists ¢ > 0 and a € A such that
N(g(z0), pas4e) € U. Suppose that paz(g,f) < € and f € FC(X,Y). In this
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case f(x9) € N(9(20), Pa,€), the set W ={z € X : f(x) € N(g(z0),pa,€)} is open
in X and xy € W. There exists & € W such that g(z) \ U # 0. Fix y € g(z) \ U.
Since y € N(g(z0), pa,4€), then N(y, pa,4e) N g(zg) = 0. Since paz(g, f) < &,
there exists z € f(z) such that pax (g, f) < €. Hence z ¢ N(g(z0), pa,€) and ¢ W,
a contradiction. Therefore N(g(x¢), pa,e) NFC(X,Y) = 0 and the set FC(X,Y) is
closed. O

In the case 1 we have proved the following assertion.

Proposition 5. The set F°(X,expY) of all compact-valued mappings is closed in
the space Fr(X,expY') for any family T.

Proposition 6. The set DU(X,Y) is dense in the space F;(X, expY) of all
compact-valued mappings in the topology of pointwise convergence.

Proof. Fix a mapping g € F¢(X,expY),a € A,e > 0 and a finite subset F' =
{z1,29... 2y} of X. Fix a point b € Y and the open subsets {vq,va,...v,} of X
such that z; € V; and V; N'V; =0 for all 4,5 <n and ¢ # j.

We put f(z) = g(x;) for all i < n and z € V;, and f(x) = U{g(a;) : i < n}
for any z € (X \ U{V; : i« < n}). Then f is us-continuous, Dom(f) = X and
par (g, f) = 0 < e. The proof is complete. O

Proposition 7. The set F4(X,expY) of all set-valued mappings g : X — Y with a
dense domain Dom(g) in X is closed in F,(X,exp(Y)) in the topology of uniform
convergence.

Proof. Let g : X — Y be a set-valued mapping and the set Dom(g) be not dense in
X. Then the set V' = X \ clx Dom(g) is open and non—empty.

Fix a € A, f L =Y and L # 0, hpo(D,L) = 1. Theset U = {f €
F(X,exp(Y)) : hpalg,f) < 1} is open in F,(X,exp(Y)) and g € U. Let
f € FUX,exp(Y)). Since the set Dom(f) is dense in X, there exists a point
z € V.N Dom(f). In this case f(z) # 0 and g(z) = 0. Hence hp,(f(z),9(x)) =1
and f ¢ U. Therefore U N F4(X,expY) = (). The proof is complete. O

Corollary 3. The set F°(X,exp(Y)) of all compact-valued mappings with the dense
domain is dense in the space Fy(X,exp(Y)).

Proof. By virtue of Propositions 5 and 7, the set F¢¢(X,exp(Y)) = F¢(X :expY)N
F4(X,exp(Y)) is closed in F,(X,exp(Y)). O

Theorem 2. The set FC(X,Y) is closed in the space F,(X,exp(Y)).

Proof. Let exp.(Y) be the spaces of all compact subsets of Y in the topology gener-
ated by the pseudometrics hP(U). The uniform space exp.(Y') is complete [9]. Fix a
Cauchy sequence {g,, : © € M}, where M is a directed set. Since the space exp,(Y’) is
complete, for any x € X in exp.(Y') there exists the limit g(z) = lim{g,(z) : p € M.
In this case g = lim{g, : p € M} in the space F,,(X,exp(Y)). Fix a € A. There
exists A € M such that hp,(g(z),g.(x)) < 1 for all p > X and all z € X. Thus



ON SPACES OF DENSELY CONTINUOUS FORMS 97

Dom(g) = Dom(g,) for all p > X\. We can assume that Dom(g) = Dom(g,) = X
for all € M.

We affirm that the mapping ¢ : X — Y is us-continuous. Fix zg € X and
an open subset U of Y for which g(z¢g) C U. There exist « € A and 0 < ¢ < 1
such that N(g(xo),px,4e) C U. Fix now p € M for which hpa(g9(x),g.(z)) < €
for all z € X. Theset V = {z € X : gu(x) C N(g9u(0), pa,€)} is open in X
and xg € V. If € V, then hpa(g9u(z0),9.(2)) < €, hpa(g(zo), pu(xo)) < € and
hpa(9(@o), gu(x)) < 2e. Sice hpa(g(x), gu(x)) < €, then hpa(g(z0),g(x)) < 3¢ and
g(x) € N(g(z0), pas4e) C U. Hence g is us-continuous at the point zg. The proof
is complete. O

Corollary 4. The set DU(X,Y) of all set-valued o continuous forms M which are
closed in the space F,(X,exp(Y)) and in the uniformity of uniform convergence is
a complete uniform space.

6 Completeness of the space of dense continuous forms

Fix an infinite cardinal number m, an m-Baire space X and an m-complete m-
metric space (Y,U) with a complete uniformity U generated by the pseudometrics
PU) ={pa : a € A}, where |A| < m.

Theorem 3. The set D(X,Y) is closed in the space F,(X,exp(Y)).

Proof. Since D(X,Y) C DU(X,Y) and the set is closed in F,(X,expY), then it
is sufficient to prove that the set D(X,Y) is closed in the space DU,(X,Y). Let
{9, € D(X,Y) : p € M} be a Cauchy sequence where M is a directed set. Since Y
is an m-metric space we can assume that |[M| < m. Let g = lim{g, : p € M}. From
Theorem 2 it follows that g is a compact-valued us-continuous mapping. If o € A,
then there exists A € M such that hp,(g9(x),g,(x)) < 1forall z € X and p > o
Thus Dom(g) = Dom(g,,) for all > A.

Therefore g € DU(X,Y) and we can assume that Dom(g) = Dom(g,) = X
for all u € M. From Corollary 2 it follows that Domg(g,) = {z € X : gu(x) is a
singleton set} is a dense G,-set of X for any p € M. Since |[M| < m and X is an
m-Baire space, the subspace Z = N{Domy(g,) : p € M} is a dense Gp,-set of X.
Thus f, = gu|Z : Z — Y is a single-valued continuous mapping of Z into Y for any
uwe M.

Let f =9g|Z : Z — Y. Then f = lim{f, : p € M} and the uniform limit
of single-valued mappings is a single-valued mappings. Thus Z C Domg(g) and
Domg(g) is a dense subset of X. From Remark 4 it follows that ¢ € D(X;Y). The
proof is complete. O

Corollary 5. The space D(X;Y) in the uniformity of uniform convergence is
complete.
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A selection theorem for set-valued maps into normally
supercompact spaces
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Abstract. The following selection theorem is established:

Let X be a compactum possessing a binary normal subbase S for its closed subsets.
Then every set-valued S-continuous map ®: Z — X with closed S-convex values,
where Z is an arbitrary space, has a continuous single-valued selection. More gener-
ally, if A C Z is closed and any map from A to X is continuously extendable to a map
from Z to X, then every selection for ®|A can be extended to a selection for ®.

This theorem implies that if X is a k-metrizable (resp., k-metrizable and connected)
compactum with a normal binary closed subbase S, then every open S-convex surjec-
tion f: X — Y is a zero-soft (resp., soft) map. Our results provide some generaliza-
tions and specifications of Ivanov’s results (see [5-7]) concerning superextensions of
k-metrizable compacta
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1 Introduction

In this paper we assume that all topological spaces are Tychonoff and all single-
valued maps are continuous.

Recall that supercompact spaces and superextensions were introduced by de Groot
[4]. A space is supercompact if it possesses a binary subbase for its closed subsets.
Here, a collection S of closed subsets of X is binary provided any linked subfamily
of § has a non-empty intersection (we say that a system of subsets of X is linked
provided any two elements of this system intersect). The supercompact spaces with
binary normal subbase will be of special interest for us. A subbase & which is
closed both under finite intersections and finite unions is called normal if for every
Sy, S1 € § with Sy NS = & there exists Ty, 17 € S such that SoNTy = @ =TyN S,
and ToUT; = X. A space X possessing a binary normal subbase S is called normally
supercompact [9] and will be denoted by (X, S).

The superextension AX of X consists of all maximal linked systems of closed sets
in X. The family

Ut ={neXX:F CU for some F € n},

U C X is open, is a subbase for the topology of AX. It is well known that AX is
normally supercompact. Let 7., x € X, be the maximal linked system of all closed

© V. Valov, 2013
*The author was partially supported by NSERC Grant 261914-13.
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sets in X containing x. The map = — 7, embeds X into AX. The book of van Mill [9]
contains more information about normally supercompact space and superextensions,
see also Fedorchuk-Filippov’s book [3].

If S is a closed subbase for X and B C X, let Is(B) = ({S € S: B C S}.
A subset B C X is called S-conver if for all x,y € B we have Is({z,y}) C B.
An S-conver map f: X — Y is a map whose fibers are S-convex sets. A set-
valued map ®: Z — X is said to be S-continuous provided for any S € S both sets

{z€Z:®2(2)N(X\S) # 2} and {z € Z:P(z) C X\S} are open in Z.

Theorem 1. Let (X,S) be a normally supercompact space and Z an arbitrary space.
Then every S-continuous set-valued map ®: Z — X has a single-valued selection
provided all ®(z), z € Z, are S-convex closed subsets of X. More generally, if
A C Z is closed and every map from A to X can be extended to a map from Z to X,
then every selection for ®|A is extendable to a selection for ®.

Corollary 1. Let ®: Z — X be an S-continuous set-valued map such that each
®(z) C X s closed, where X is a space with a binary normal closed subbase S and Z
arbitrary. Then the map ¥: Z — X, U(z) = Is(®(z)), has a continuous selection.

A map f: X — Y is invertible if for any space Z and a map g: Z — Y there
exists a map h: Z — X with foh = g. If X has a closed subbase S, we say
f: X — Y is S-open provided f(X\S) C Y is open for every S € S. Theorem 1

yields next corollary.

Corollary 2. Let X be a space possessing a binary normal closed subbase S. Then
every S-conver S-open surjection f: X — Y is invertible.

Another corollary of Theorem 1 is a specification of Ivanov’s results [7] (see also [5]
and [6]). Here, a map f: X — Y is A-soft, where A is a class of spaces, if for any
7Z € A, its closed subset A and any two maps k: Z — Y, h: A — X with foh =k|A
there exists a map g: Z — X extending h such that fog = k. When A is the family
of all (O-dimensional) paracompact spaces, then .A-soft maps are called (0-)soft [11].

Corollary 3. Let A be a given class of spaces and X be an absolute extensor for
all Z € A. If X has a binary normal closed subbase S, then any S-convex S-open
surjection f: X —Y is A-soft.

Theorem 1 is also applied to establish the following proposition:

Proposition 1. Let X be a k-metrizable (resp., k-metrizable and connected) com-
pactum with a normal binary closed subbase S. Then every open S-convex surjection
f: X =Y is a zero-soft (resp., soft) map.

Corollary 4 (see [5,6]). Let X be a k-metrizable (resp., k-metrizable and connected)
compactum. Then \f: AX — AY is a zero-soft (resp., soft) map for any open
surjection f: X — Y.
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2 Proof of Theorem 1 and Corollaries 1-3

Recall that a set-valued map ® : Z — X is lower semi-continuous (br., lsc) if
the set {z € Z : ®(2) NU # @} is open in Z for any open U C X. & is upper
semi-continuous (br., usc) provided that the set {z € Z : ®(z) C U} is open in
Z whenever U C X is open. Upper semi-continuous and compact-valued maps are
called usco maps. If ® is both Isc and usc, it is said to be continuous. Obviously, every
continuous set-valued map ® : Z — X is S-continuous, where S is a binary closed
normal subbase for X. Let C(X,Y’) denote the set of all (continuous single-valued)
maps from X to Y.

Proof of Theorem 1. Suppose X has a binary normal closed subbase S and ¢: Z — X
is a set-valued S-continuous map with closed S-convex values. Let A C Z be a
closed set such that every f € C(A, X) can be extended to a map f € C(Z, X). Fix
a selection g € C(A, X) for ®|A and its extension g € C(Z,X). By [9, Theorem
1.5.18], there exists a (continuous) map & : X x exp X — X, defined by

£, F) = {Is({z,a}) s a € Fy N Is(F),

where exp X is the space of all closed subsets of X with the Vietoris topology. This
map has the following properties for any F' € exp X: (i) &{(x, F) = z if x € Is(F);
(i) &{(x, F) € Is(F), = € X. Because each ®(z), z € Z, is a closed S-convex
set, Is(®(z)) = ®(z), see [9, Theorem 1.5.7]. So, for all z € Z we have h(z) =
£(g(z),®(z)) € ®(2). Therefore, we obtain a map h: Z — X which is a selection
for ® and h(z) = g(z) for all z € A. It remains to show that h is continuous. We
can show that the subbase could be supposed to be invariant with respect to finite
intersections. Because ¢ is continuous, this would imply continuity of h. But instead
of that, we follow the arguments from the proof of |9, Theorem 1.5.18].

Let z9 € Z and xg = h(zp) € W with W being open in X. We may assume that
W = X\S for some S € S. Because x is the intersection of a subfamily of the binary
family S, there exists §* € S containing xg and disjoint from S. Since § is normal,
there exist Sp,S1 € S such that S C S1\So, g € S* C Sp\S; and Sy U S; = X.
Hence, zg € (X\S1)N®(z0). Because ® is S-continuous, there exists a neighborhood
O1(z0) of zyp such that ®(z) N (X\S1) # @ for every z € O1(zp). Observe that
g(z0) € X\S1 provided ®(zp) NS # &, otherwise zg € Is({g(z0),a}) C Si, where
a € ®(z9) NS;. Consequently, we have two possibilities: either ®(z9) C X\S; or
®(z) intersects both S; and X\S;. In the first case there exists a neighborhood
O2(z0) with ®(z) C X\S) for all z € Oz(zp), and in the second one take O2(2g) such
that g(O2(20)) € X\S1 (recall that in this case g(zo) € X\S1). In both cases let
O(z9) = O1(20)NO2(2p). Then, in the first case we have h(z) € ®(z) C X\51 € X\S
for every z € O(zp). In the second case let a(z) € ®(2) N (X\S1), 2 € O(2)-
Consequently, h(z) € Is({g(z),a(z)}) € X\S1 C So € X\S for any z € O(z).
Hence, h is continuous.

When the set A is a point a we define g(a) to be an arbitrary point in ®(a) and
g(x) = g(a) for all z € X. Then the above arguments provide a selection for ®. [
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Proof of Corollary 1. Since each ¥(z) is S-convex, by Theorem 1 it suffices to show
that ¥ is S-continuous. To this end, suppose that Fy € S and ¥ (zo)N(X\Fy) # @ for
some zg € Z. Then ®(z9) N (X \Fp) # @, for otherwise ®(zp) C Fy and ¥(zp), being
intersection of all F' € S containing ®(zp), would be contained in Fp. Since ® is S-
continuous, there exists a neighborhood O(zy) C Z of 2z such that ®(2)N(X\Fy) # @
for all z € O(zp). Consequently, ¥(z) N (X\Fp) # &, z € O(z).

Suppose now that ¥(zp) C X\Fp. Then ¥(z9) N Fy = &, so there exists Sy € S
with ®(z9) C Sy and Sy N Fy = @ (recall that S is binary). Since S is normal,
we can find Sy, F; € S such that Sy € S1\F1, Fy € F1\S; and F; U S; = X.
Using again that ® is S-continuous to choose a neighborhood U(zp) C Z of zy with
®(z) € X\Fy C S for all z € U(zp). Hence, ¥(z) C S; C X\Fp, z € U(2p), which
completes the proof. O

Proof of Corollary 2. Let X possess a binary normal closed subbase S, f: X — Y
be an S-open S-convex surjection, and g : Z — Y be a map. Since f is both S-open
and closed (recall that X is compact as a space with a binary closed subbase), the
map ¢: Y — X, ¢(y) = f~(y), is S-continuous and S-convex valued. So is the
map ® = ¢og: Z — X. Then, by Theorem 1, ® admits a continuous selection
h:Z — X. Obviously, g = f o h. Hence, f is invertible. O

Proof of Corollary 3. Suppose X is a compactum with a normal binary closed
subbase S such that X is an absolute extensor for all Z € A. Let us show that
every S-open S-convex surjection f: X — Y is A-soft. Take a space Z € A, its
closed subset A and two maps k: Z — Y, h: A — X such that k|A = f o h. Then
h can be continuously extended to a map h: Z — X. Moreover, the set-valued map
®:7 — X, ®(2) = f1(k(2)), is S-continuous and has S-convex values. Hence, by
Theorem 1, there is a selection g: Z — X for ® extending h. Then fog = k. So, f
is A-soft. O

3 Proof of Proposition 1 and Corollary 4

Proof of Proposition 1. According to Corollary 3, it suffices to show that X is a
Dugundji space (resp., an absolute retract) provided X is a xk-metrizable (resp.,
k-metrizable and connected) compactum with a normal binary closed subbase S
(recall that the class of Dugundji spaces coincides with the class of compact absolute
extensors for 0-dimensional spaces, see [8]). To this end, we follow the arguments
from the proof of [12, Proposition 3.2|. Suppose first that X is a k-metrizable
compactum with a normal binary closed subbase S. Consider X as a subset of
a Tyhonoff cube I". Then, by [10] (see also [12] for another proof), there exists a
function e: 7x — 7r- between the topologies of X and I” such that:

(el) e(@) =@ and e(U)N X = U for any open U C X;
(€2) e(U)Ne(V) = @ for any two disjoint open sets U,V C X.
Consider the set valued map 7: I” — X defined by
r(y) =({Is(0) 1y € e(U),U € Tx} if y € | J{e(U) : U € Tx} (1)
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and r(y) = X otherwise,

where U is the closure of U in X. According to condition (e2), the system Yy =
{U € Tx : y € e(U)} is linked for every y € I". Consequently, w, = {S € S: U C
S for some U € 7} is also linked. This implies 7(y) = ({5 : S € wy} # & because
S is binary.

Claim. r(z) = {z} for every z € X.

Suppose there is another point z € r(x). Then, by normality of S, there exist two
elements Sy, S1 € S such that x € Sp\ Sy, z € S1\Sp and Sy U S; = X. Choose an
open neighborhood V' of o with V' C Sy\S1. Observe that € e(V), so z € Is(V) C
So, a contradiction.

Finally, we can show that r is upper semi-continuous. Indeed, let r(y) C W with
y € I" and W € Tx. Then there exist finitely many U; € Tx, i = 1,2, .., k, such that
y € ﬂ:zlf e(U;) and ﬂ:zlf Is(U;) C W. Obviously, r(y) C W for all y/ € ﬂii’f e(U;).
So, r is an usco retraction from I” onto X. According to [1], X is a Dugundji space.

Suppose now, that X is connected. By [9], any set of the form Is(F) is S-
convex, so is each r(y). According to [9, Corollary 1.5.8], all closed S-convex subsets
of X are also connected. Hence, the map r, defined by (1), is connected-valued.
Consequently, by [1], X is an absolute extensor in dimension 1, and there exists a
map 71 : I — exp X with r(z) = {a} for all z € X, see [2, Theorem 3.2]. On
the other hand, since X is normally supercompact, there exists a retraction ry from
exp X onto X, see [9, Corollary 1.5.20]. Then the composition ryor;: I” — X is a
(single-valued) retraction. So, X € AR. O

Proof of Corollary 4. It is well known that A is a continuous functor preserving open
maps, see [3]. So, AX is k-metrizable. Moreover, AX is connected if so is X. On
the other hand, the family & = {FT : F' is closed in X}, where F* = {n € AX :
F € n}, is a binary normal subbase for AX. Observe that Af is S-convex because
)Y w) = N{f"(H)* : H € v} for every v € Y. Then, Proposition 1 completes
the proof. O

The next proposition shows that the statements from Proposition 1 and Corol-
lary 4 are actually equivalent. At the same time it provides more information about
validity of Corollary 3.

Proposition 2. For any class A the following statements are equivalent:

(i) If X is a compactum possessing a normal binary closed subbase S, then any
open S-convex surjection f: X —Y is A-soft.

(ii) The map A\f: AX — Y is A-soft for any compactum X and any open surjec-
tion f: X —-Y.

Proof. (i) = (i1) Let X be a compactum and f: X — Y be an open surjection.
It is easily seen that Af is an open surjection too. We already noted that
S = {Ft : F C X isclosed} is a normal binary closed subbase for AX and \f
is a S-convex and open map. Hence, by (i), Af is A-soft.
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(7i) = (i). Suppose X is a compactum possessing a normal binary closed subbase
S, and f: X — Y is an S-convex open surjection. To show that f is A-soft, take
a space Z € A, its closed subset A and two maps h : A — X, g: Z — Y with
foh = g|A. So, we have the following diagram, where ix and iy are embeddings
defined by z — 7, and y — 7, respectively.

A" x X ax

ia |7 |m

7 -9,y Y,y

Since, by (ii), Af is A-soft, there exists a map g1: Z — AX such that h = ¢1|A4
and A\f o g1 = g. The last equality implies that g;(Z) C (Af)~1(Y). According
to 9, Corollary 2.3.7|, there exists a retraction r: AX — X, defined by

rin)=({F esS:Fen} (2)

Consider now the map g = rog;: Z — X. Obviously, g extends h. Let us show that
fog=g. Indeed, for any z € Z we have

g1(z) € AT 9(2)) = (F Mg

Since f is S-convex, Is(f~(g(z))) = f~'(g(z)), see [9, Theorem 1.5.7]. Hence,
f~%(g(2)) is the intersection of the family {F € S : f~1(g(z)) C F} whose elements
belong to any 7 € (Af)~1(g(z)). It follows from (2) that 7(n) € f~1(g(2)), n €
(Af)"Y(g(2)). In particular, g(z) € f~1(g(2)). Therefore, fog = g. O

The following corollary follows from Corollary 3 and Proposition 2.

Corollary 5. If X is a compactum with a binary normal closed subbase S such that
AX is an absolute extensor for a given class A, then any open S-convez surjection
f: X =Y is A-soft.
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Minimal m-handle decomposition
of three-dimensional handlebodies
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Abstract. For the 3-dimensional handlebody we build an m-handle decomposition
with minimal number of handles and prove a criterion of minimality. It is proved
that two functions can be connected by a path in the m-function space without inner
critical points on the solid torus if they have the same number of critical points of
each index.
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Let M be a three-dimensional handlebody, i.e. a closed bounded domain in the
Euclidean space whose boundary is a smooth closed surface F' = M. In this paper,
we consider m-functions without inner critical points on M. For such functions, the
restriction of the function on the boundary is a Morse function. The index of critical
points of the Morse function is defined as the index of the quadratic form of Hesse
(Hessian matrix of this form consists of the second partial derivatives at the critical
point). In addition, the direction of the gradient field is given by the sign (e = +1)
at the critical point. The index of a critical point of an m-function is the pair (the
index of the restriction to the boundary, the number of €). ¢ = —1 if the gradient
field is directed to inside of the manifold and € = +1 if it is directed outside. Note
that, similar to a Morse function on a closed manifold, m-functions exist and form
an open set in the space of all functions.

V.Sharko [1] and S.Maksymenko [2] proved that two Morse functions can be
connected by a path in the space of Morse functions on a closed two-dimensional
manifold if and only if the functions have the same number of critical points of each
index.

Topological properties of the m-functions and the m-handle decomposition were
investigated in [3,4]. In [5] using m-handles the authors give a criterion of the
existence of a path between two m-functions on the three-dimensional body without
inner critical points.

The aim of this work is to construct an m-handle decomposition of the handle-
body with a minimal number of m-handles of each index, to study the conditions
when the decomposition is minimal, and to apply the minimal handle decomposi-
tions for the homotopy classification of m-functions without inner critical points on
the solid torus.
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1 m-handle decompositions

Let us start with the handle decomposition of a closed surface F'. A handle of
index A is the product H* = D* x D?=*. The curve dD* x D?*~* is called a gluing
curve, and D* x @D?*™* is called an inner curve. Thus, the gluing curve is 1) 0 for a
handle of index 0, 2) a pair of segments for a handle of index 1, and 3) a circle for a
handle of index 2. It is known from Morse Theory that if a function g : F — R has
one critical point on the interval [y, z] in the inner segment and only one critical point
of index A takes this value, then g~1 (2) & g~1 (y) U,H? is obtained from g~ (y) by
attaching a handle of index X for some embedding ¢ : 9D* x D?=* — g~ ().

m-handles can be obtained from ordinary handles by the multiplication with the
interval [0,1]. Denote them H} and HX. Thus, H}= H* = D* x D*™* x [0,1].

The boundary H? of a handle of index (), —1) is divided into three parts:

1) the outside region D* x D> x 0,

2) the attaching region dD* x D2~ x [0, 1],

3) the inside region D* x D* ™ x [0,1] U D* x D**x 1.

The boundary 0H j\r of a handle of index (), +1) is divided into two parts:

1) the outside region D* x D** x 1,

2) the attaching region d(D* x D27*) x [0,1] U D* x D2 x 0.

As a result of m-handle attaching, the boundary consists of inside and outside
regions. Their common boundary is called a corner of the manifold. The attaching
region of next handles is embedded in the inside region. Moreover, dD* x D?~* x 0 is
embedded in the corner for handles of index (A, —1) and dD* x D?~* x 1 is embedded
in the corner for handles of index (A, +1). Thus, outside regions of m-handles give
a handle decomposition of the surface F. Moreover, the union of attaching regions
is equal to the union of inside regions.

Like regular handle decompositions, one can perform the following operations
with m-handles:

1. A permutation of handles — if two handles are disjoint, they can be attached
in any order.

2. An isotopy of the attaching map of handles, if one of (1, £1) handle slides over
another (1,41) handle, in this case we say that it is added to this handle.

3. A reduction of pairs of additional handles — if a handle of index (1, —1) inter-
sects a (0,—1)- or (2,1)-handle along a 2-disk, then the pair of handles can
be reduced (we can build another handle decomposition without these two
handles). Similarly, a pair consisting of a (1,+1)-handle and a (0,+1)- or a
(2,+1)-handle whose intersection is an interval can be reduced. The inverse
operation to the reduction is the introduction of pairs of additional handles.

Note that m-handles will be additional if they have the same sign of € and that
additional handles are on the edge of their limits.
A criterion for homotopy equivalence of functions was proved in [5]:
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Theorem 1. Two functions on the three-dimensional handlebody are homotopy
equivalent if and only if they have the same number of handles for each index and
the m-handle decomposition of one manifold can be obtained from the m-handle de-
composition of another one using isotopy, permutations, additions, reductions and
the introduction of pairs of additional handles.

Our next task will be for an arbitrary handle decomposition using operations
1) — 3) to build a minimal handle decomposition and investigate its topological
properties.

2 Minimal m-handle decomposition

In the beginning, from an arbitrary handle decomposition we construct a de-
composition with minimal number of handles for each index. Since the boundary of
a manifold is connected, then for each (0, £ 1)-handle, except the first one, there
exists an additional (1, + 1)-handle. If they are of the same sign, then this pair of
handles can be reduced. Two (0, —1)-handles can not be connected by a (1,+1)-
handle. However, a (0,+1)-handle can be connected by a (1, —1)-handle with other
handles. In this case, this pair of handles is equivalent to a simple 1-handle on a
3-manifold. Similarly, (2,41)-handles, exept one (2,+1)-handle, can be connected
by (1,41)-handles. Pairs of the same sign are reduced, and the pair of (1,+1)- and
(2, —1)-handles is equivalent to a simple 2-handle. If the pair of (0,+1)- and (1, —1)-
handles forms a simple 1-handle, the unglued part of the border of the (0, +1)-handle
in the inside region is on the border of the surface. Then every (1, +1)-handle, with
attached at least one end to the boundary components, can be made additional
(0,1)-handles. We do the same in the case of a simple 2-handle. Thus, we construct
an m-handle decomposition with one (0, —1)-handle, without (0,41)- and (2, —1)-
handles and one (2,+1)-handle. Obviously, this decomposition has no additional
pairs of handles. A handle decomposition that does not contain pairs of additional
handles or handles which can be made additional after an isotopy, is called minimal.

Theorem 2. A handle decomposition is minimal if and only if it contains by one
(0,—1)- and (2,+1)-handles and no (0,+1)- and (2,—1)-handles.

Proof. Necessity. It follows from the previous discussion that if a handle decomposi-
tion has more than one (0, —1)- or (2, +1)-handle or has (0, +1)- and (2, —1)-handles,
all these handles can be reduced. At the same time as the boundary of a manifolds
is compact and the restriction of any function on the boundary has a minimum
point (of index 0) and a maximum point (of index 2), so the corresponding handle
decomposition has handles of index 0 and 2 and the m-handle decomposition has
handles of indexes (0,—1) and (2,+1).

Sufficiency. Let an m-handle decomposition have by one (0,—1)- and (2,+1)-
handles and no (0,+1)- and (2, —1)-handles. Since (0, —1)- and (2, +1)-handles can
not be reduced, they are not additional for other handles. The remaining (1,41)-
handles can not be reduced because they can not have additional handles. Thus,
the handle decomposition is minimal. O
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3 m-functions on the solid torus

On the solid torus we fix a parallel u, which is a curve on the boundary that
defines the generators of the fundamental group of the solid torus. We also fix
a meridian v which is a curve on the boundary that intersects transversally one
parallel at one point and is the boundary of a 2-disk on the solid torus. We fix the
orientation of these curves.

Theorem 3. Two m-functions without inner critical points on the solid torus can be
connected by a m-function space without inner critical points if they have the same
number of critical points of each indez.

Proof. Necessity follows from Theorem 1.

Sufficiency. Let the functions have the same number of points of each index.
Construct from them a minimal m-handle decomposition. Theorem 2 implies that
such a decomposition has four m-handles whose indexes are (0,—1), (1,—1), (1,1)
and (2,4+1).

Consider the union of (0,1)- and (1, —1)-handles for the first function. Let L be
the intersection of the boundary of their union with the inside region of the union
of (0,1)- and (1,1)-handles. Two components of the boundary dL are homotopic
to the meridian v in the solid torus. Let w; be one of the two components. We
choose its orientation to be parallel to the meridian. Then [w;] = [u] + n1[v] in the
one-dimensional homology group of the torus. For the second function, by analogy,
we have [wa] = [u] + na[v].

Since L is homeomorphic to a cylinder S* x [0, 1], and the attaching points of
(1,+1)-handle are on different bases of the cylinder (because after removing attach-
ing area of this handle from L it should remain a two-dimensional disk) an isotopy of
the attaching point of a (1, 1)-handle can ensure that the intersection of the (1, —1)-
and (1,41)-handles is empty.

Then we change the order of attaching handles so that a (1,+1)-handle be the
first attached one. The inside region of the union of (0, —1)- and (1,1)-handles is
homeomorphic to two 2-disks the boundaries of which v, and ~» are homotopic to the
meridian v on the torus. Slipping one of the two attaching points of (1, —1)-handle

ng —ny times in one of two directions along 7; and 72, achieve that [w,] = [w,]. We
have that the curves of w; and ws are isotopic. Then the m-handle decompositions
for two functions are isotopic, too. Applying Theorem 1 completes the proof. O

4 Conclusion

The m-handle decomposition expansion with the minimum number of handles
has been built and a criterion of minimality has been proved for the m-handle
decomposition of the 3-dimensional handlebody. This construction allowed us to
prove that two functions can be connected by a path in the m-function space without
inner critical points on the solid torus if and only if they have the same number of
critical points of each index.



110 ALEXANDER PRISHLYAK, ELENA VYATCHANINOVA

The authors expect that the minimal m-handle decomposition can be used for
homotopy classification of m-functions on other handlebodies. However, in this case
one may have a lot of non-isotopic minimal m-handle decompositions.
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Examples of quasitopological groups
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Abstract. In this paper we construct several examples of completely regular sub-
metrizable quasitopological groups with slightly different combinations of properties,
in particular, a countable quasitopological group G with countable w-weight, countable
tightness, countable d-character, but not first-countable, and a countable quasitopo-
logical group P with countable m-weight, countable tightness, but of uncountable
d-character.
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1 Introduction

All spaces considered below are assumed to be Tychonoff. In terminology and
notations we follow [7] and [8]. A space is submetrizable if its topology contains a
metrizable topology.

A group G with a topology T is a semitopological (paratopological, respectively)
group if the multiplication is separately continuous (jointly continuous, respectively).

If G is a semitopological and the inverse operation  — z ! is continuous, then
G is said to be a quasitopological group.

Recall that a m-base of a space X is a family 8 of non-empty open subsets of X
such that every open non-empty set U contains some member of 3. A m-base of a
space X at a point x € X is a family § of non-empty open subsets of X such that
every open neighborhood of x contains at least one element of 3.

We will say that the §-character of a space X at a point z € X is countable, if
there exists a sequence v = {U,, : n € N} of non-empty open subsets of X converging
to x.

2 The topologies T*, 7** and T4 on R?

Let R be the usual topological group of reals. Consider the group R? = R x R
with the Euclidean topology Tg.

For any (z,y) € G we put:

o V((I‘,y),?‘) = {(‘Tay)} U {(U,U) ‘U 7é a:,\u—a:\ <r0< (U _y)/(u_x) < 7’},
where 0 < 7;

o W((x,y),r) = {(.Z',y)}U{(U,U) ‘u 7é €, ’U—.Z" <r,—-r< (v—y)/(u—a:) < 7’},
where 0 < 7;
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- 8((x,y),r) ={U € Tg: U,-U+ (z,y) =U — (x,y),x <u<xz+r} CUC
W((x,y),r)}, where 0 < r;

- 8(z,y) = U{8((x,y),r) : 0 < r < oo}

In particular, U € §(0,0) if and only if U is open in R?, —U = U and {(¢,0) :
0<t<r}CUCW(0,0),r) for some r > 0. In this case, since U = —U, we have
{(t,0): —r <t < 0} C U too.

By construction, the sets V(x,y)\ {(x,%)} and W (z,y)\ {(z,y)} are open in R2.

Now, we put O((z,y),r,U) = V((z,y),r) WU, B*(z,y) = {O(z,y),r,U) : U €
8((z,y),7),0 <7 < oo} and B* = U{B*(z,y) : (z,y) € R?}.

The family B* is an open base of a new topology T* on the set R%. In particular,
(R%,T*) is a submetrizable space, and hence, any compact subset of (R? T*) is
metrizable.

A sequence s = {sy, : n € N} of real numbers is called an r-basic sequence if
0 < —spp1 < —8p < n~1 and ns,, > —r for each n € N. Consider an r-basic
sequence s = {s, : n € N}. We construct the continuous function hs : [0,1] — R,
where hy(z) = (5541 —5n)(n+1)" =n"1)(z—n"1)+s, for each z € [(n+1)"!, n~!]
and n € N. We put D¥((z,y),r,s) = {{(v,v) :u—2 <rz+(1+n)"! <uc<
r4+n"Lh(z) <v<yl:neN}, D ((x,9),s) = =Dt ((x,y),s) and D((z,y),s) =
DH((z,),5) U D™ ((3,1),5).

Now we put H((z,y),r,s) = V((z,y),r) UD((x,y),r,s) for each r > 0 and each
r-basic sequence s = {s,, : n € N}.

Property 2.1. The group R? with the topology T* is a quasitopological group.

Proof. By construction, O((0,0),r,U) = —O((z,y),r,U), O((0,0),,U) + (z,y)
= O((z,y),r,U) + (z,y) and U + (z,y) € 8((x,y),r) for all U € §((0,0),r) and
0<r<oo}.

Property 2.2. The family H(z,y) = {H((z,y),r,8)) : 0 < r < 1,s is an r-basic
sequence} is an open base of the space (R?,T*) at the point (z,y).

Proof. Fix O((0,0),r,U) = V((0,0),r) UU, where r > 0 and U € 8((z,y),r). Let
k be the first natural number for which 1/k < r. We put 1 = 1/k. The set U is
open and the sets F,, = {(¢,0) : 1/(n + 1) <t < 1/n} are compact in the space
(RQ,U’E). For each n > k we have F,, C U. Hence, there exists d,, > 0 such that
{(u,v) : 1/(n+1) <u<1/n,—d, <v <0} CU. We can assume that d,,4+1 < o, <
1/n for each n > k, 6, < 1/m fori < k and § = {J,, : n € N} is an r;-basic sequence.
By construction, H((z,y),r1) C O((z,y),r,U) and H((x,y),r1,9) € T1(0,0).

Property 2.3. If ro < r; <1, s = {s, : n € N} is an r;-basic sequence and
0 = {0, : n € N} is an ry-basic and 4,, < 1, for each n € N, then the closure of the
set H((z,y),r2,0) in the space (R?,T*) is a subset of the set H((x,y),r1,5).

Proof. Tt is obvious.
Property 2.4. The space (R?,T*) is completely regular.

Proof. Fix an r > 0, an r-basic sequence s = {s, : n € N} and the neighborhood
H = H((0,0),r,s) of the point (0, 0).
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Consider the function f : R? — [0, 1], where:
(1) f((0,0)) =1 and f((~z,~y)) = f((x,y)) for any point (z,y) € R?

(2) f((0,y)) = 0 for each y 6 R\ {0};

(3) if (z,y) € R? and > 7, then f((z,y)) = 0;

(4) if (z,y) € R?, x > 0 and y/x >, then f((z,y)) = 0;

(5) if (x,y) € ]R2, 0 <z <randy/z <7, then f((z,y)) =r 2z (r—z)(re—y);

(6)if (x,y) €ERZneEN, (n+1)"' <z <nlz<randy <0, then f((0,y)) =0
for y < hy(2) and f((21)) = 1~ hy(@)"L(r — 2)(hs(x) ) for y > hy(a).

By construction, f((0,0)) = 1 and R?>\ H = f~1(0). Moreover, if Z = R? \

{(0,y) : y € R} is a a subspace of the space (R?,Tg), the function f|Z : Z —
[0,1] is continuous on Z. From this fact, the condition H C W ((x,y),r) and the
construction (5) it follows that the function f is continuous on the space (R?,T*).
Hence, the space (R?,T*) is completely regular.

The family B> = {W((x,y),r) : (z,y) € R?r > 0} is an open base of the
topology T2 on R2.

Property 2.5. The group R? with the topology T% satisfies the following conditions:
It is a completely regular quasitopological group.

It is a first countable space with a countable 7-base.

It is a not normal space and has the Baire property.

It is submetrizable and Dieudonné complete.

. It is not a topological group.

Denote by T** the topology on the space R? generated by the open base B** =
{UU{(z,y)} : (z,y) € R, U € 8(z,y)}. By construction, Tp C T» C T* € T**. In
particular, (R2, 7**) is a submetrizable space and any compact subset of (R?, T7**) is
metrizable. Consider Z = R?\ {(0,y) : y € R} as a subspace of the space (R?, Tg).

G W=

Property 2.6. The group R? with the topology T** is a quasitopological group.
Proof. By construction, if U € 7(0,0), then U = —U and U + (z,y) € T(z,y).
Property 2.7. The space (R?,T7**) is completely regular. Proof. Fix U € §(0,0).

The set U is open in X and F' = ZN{(z,0) : —r <z < r} C U for some r > 0. Since
the set F' is closed in Z and the space Z is metrizable, there exists a continuous
function g : Z — [0, 1] such that X \U = ¢g7(0) and F = g~'(1). Put f((0,0)) =

F((0,1) = 0 for any y # 0 and f(#,)) = g((x,y)) for any (r,5) € Z. By
definition of the topology T**, the function f is continuous on G, f((0,0)) = 1 and

G\ (UU{(0,0)}) = f7(0).

3 Some subgroups of the group (R?, J7*)

Fix two dense subgroups A and B of the topological group R in the Euclidean
topology.

Put G = A x B. We will consider G as a subspace and subgroup of the qua-
sitopological group (R?, T*).
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Property 3.1. GG is a quasitopological group.

Proof. Use Property 2.1.

Property 3.2. The space G is completely regular, not first-countable.
Proof. The space G is completely regular, by Property 2.4.

Fix an infinite sequence {s¥ = {sp, : n € N} : k € N} of r,-basic sequences.
For each n € N fix a number s,, such that max{—n‘l,snn} < 8y < 0. Then s =
{sn : n € N} is a 1-basic sequence. Obviously (GNH ((0,0),7,,s™))\ H((0,0),1,s) #
() for each n € N. Thus, the space G is not first-countable.

Property 3.3. If indA = indB = 0, then indG = 0.

Proof. Assume that indA = indB = 0. Fixr > 0, U € §((0,0),r) and O((0,0),r,U)
= V((0,0),r) UU. Let G" = {(z,y) € G : z > 0} be a subspace of the space
(R2,Tg), F = {(z,y) € GT : 22 < 7,0 < 2y/z <7} and H = O((0,0),7,U). Then
G is a separable metrizable space, dimG™ = 0, the set H is open in G, the set I
is closed in G and F C H. Thus there exists an open-and-closed subset H; of the
space GT such that FF C H; C H. Then the set Hy = H; U (—H;) U {(0,0)} is an
open-and-closed subset of the space G such that (0,0) € Hy C H.

Property 3.4. GG is a space with a countable m-base.

Proof. If L is a base of (R?, Tg), then {U NG : U € L} is a m-base of G.
Property 3.5. GG is not a topological group.

Proof. Any topological group with a countable m-base is metrizable (see [7]). Pro-
perty 3.2 completes the proof.

Property 3.6. Any point of G has a countable §-character in G.

Proof. The family {{(u,v) € G : u?+v? <277 0 < v <27 "u} :n € N} is a strong
m-base of the space G at the point (0,0).

Property 3.7. If (a,b) € G, then:

1. The subspace {a} x B of G is discrete.

2. The subspace A x {b} of G is separable, metrizable and a subspace of the
space (R?,Tg).

Property 3.8. If the set B is countable, then the space G is Lindel6f and has a
countable network. Moreover, if the groups A and B are countable, the the group
G is countable too.

Proof. Clearly, G is a union of a countable family of separable metrizable subspaces.
Hence, G has a countable network.

Property 3.9. If B =R, then the space G is not normal.
Proof. The proof is similar to the proof for the Niemytski plane ([8], Example 1.5.9).

Property 3.10. The tightness of the space G is countable.
Proof. Let M C {(=,y) : # >0,y <0} and (0,0) € clgM. We put K = (cl(r2 7,)MnN
{(z,0) € G : x € R}) \ {(0,0)}. We have two possible cases.

Case 1. (0,0) ¢ clg2 g,) K.
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There exists k € N such that {(z,y) :x <k '} NK = oco. Fix 0 < r < (2k)~1.
and O > s; > —(2i)~r for each i < k. Since the sets Fy, = {(u,0): (n+1)"! <u <
n~1} are compact, there exists a sequence {s, : n > k} such that s, < —(2n)~'r <
Sp < Spe1 < 0and M N{(u,v) tu—x <mz+ (1+n)"t <u<az+nth(z) <
v <0} =0 for each n > k.

The sequence s = {s,, : n € N} is an r-basic sequence, M N DT ((z,y),r,s) =
MnH((x,y),r,s) =0. Thus, (0,0) & clgM. Hence, Case 1 is impossible.

Case 2. (0,0) € clg2 7,)K.

For each n € N fix a point (ay,0) € K such that 0 < a, < 27™. Since (a,,0) €
K, there exists a sequence {(@pm,bnm) € M : m € N} such that |anm, — an| —
bpm < 27"~ for each m € N. By construction, the set {(anm,bnm) : n,m € N} is
countable, L C M and (0,0) € clgL. The proof is complete.

A space X is Dieudonné complete if there exists a complete uniformity on the
space X, i.e the universal uniformity on X is complete [8].

Property 3.11. The space G is Dieudonné complete.
Proof. Any submetrizable space is Dieudonné complete.

Property 3.12. If the space A x B has the Baire property, then the space G has
the Baire property too.

Proof. Any dense open subset of GG contains a dense open subset of the space A x B
and any dense subset of A x B is dense in G too.

Property 3.13. If bG is a Hausdorff compactification of the space G, then the
remainder bG \ G is not Lindel6f and is not pseudocompact.

Proof. A space X is of countable type if every compact subset of X is contained
in a compact subset of countable character. M. Henriksen and J. R. Isbel [9] have
proved that a space X is of countable type if and only if any remainder of X is
Lindel6f. The character of any non-empty compact subset of G in G is uncountable.
Therefore, the remainders of G are not Lindelof.

Since the d-character of the space G in G is countable at some point, then any
remainder of G is not pseudocompact (see [3]).

4 Some subgroups of the group (R?, J**)

Fix two dense subgroups A and B of the topological group R in the Euclidean
topology.

Denote P = A x B. We consider P as a subspace and subgroup of the quasitopo-
logical group (R?, T**).
Property 4.1. GG is a quasitopological group.
Proof. Use Property 2.6.
Property 4.2. The space P is completely regular and the d-character of P is not
countable.
Proof. From Property 2.7 it follows that the space P is completely regular. If the
space P has countable J-character at the (0,0), then there exists a sequence S =
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{(an,bn) € P :n € N} such that a, - b, # 0 for each n € N and {(0,0)} = clpS\ S.
Then the set Z\ S is open in Z and {(0,0)}U(Z\ S) is open in P, a contradiction.
Property 4.3. If indA = indB = 0, then indP = 0.
Proof. The proof is similar to the proof of Property 3.3.
Property 4.4. P is a space with a countable m-base.
Proof. If L is a base of (R?, Tg), then {U NP :U € L} is a m-base of P.
Property 4.5. P is not a topological group.
Proof. Any topological group with a countable 7-base is metrizable (see [7]). Prop-
erty 4.4 completes the proof.
Property 4.6. If (a,b) € P, then:

1. The subspace {a} x B of P is discrete.

2. The subspace A x {b} of P is separable, metrizable and a subspace of the
space (R?,Tg).
Property 4.7. If the set B is countable, then the space P is Lindel6f and has a
countable network. Moreover, if the groups A and B are countable, the the group
P is countable too.
Proof. It is similar to the proof of Property 3.8.
Property 4.8. If B =R, then the space P is not normal.
Proof. The proof is as for the Niemytski plane ([8], Example 1.5.9).
Property 4.9. The tightness of the space P is countable.
Proof. 1t is similar to the proof of Property 3.10.
Property 4.10. The space P is Dieudonné complete.
Proof. Any submetrizable space is Dieudonné complete.

Property 4.11. If the space A x B has the Baire property, then the space P has
the Baire property too.

Proof. Any dense open subset of P contains a dense open subset of the space A x B
and any dense subset of A x B is dense in P too. The proof is complete.

5 General construction

Let E be a metrizable additive commutative topological group without isolated
points, dimFE = 0 and in F there exists an infinite sequence {¢,, : n € N} of distinct
points of E such that lim, ¢, = 0, where 0 is the neutral element of E. Fix a
sequence {O,, : n € N} of open-and-closed subsets of the space E such that:

— (On U (=0,)) N (0 U (=0y,)) = 0 for n,m € N and n # m;

— if U is open in E and 0 € U, then there exists n € N such that O,, C U for
all m > n.

Fix an open base {U, : n € N} of the space E at the point 0. We can assume
that Opy1 C Ups1 C Upy1 + Upg1 C U, = —U, and U, is open-and-closed in E for
each n € N.
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In F x E consider the family By = {V : V is open-and-closed in E x E \
{0} x E,U = —U, there exists m € N such that U{(O2,—1 x Up) U ((Up, \ {0}) x
{0}) : n € Nyn > m} C U} and the family By = {V : V is open-and-closed in
E x E\{0} x E,U = —U, there exists m € N such that (Up, \ {0}) x {0} CU}.

The family B° = {{z}U(U+z2): 2 € ExE,U € B} is a base of the topology T°
on E x E and the family B*° = {{z}U(U +z2) : 2 € Ex E,U € By} is a base of the
topology T°° on E x E . The sets from B° are open-and-closed in (E x E,T°) and
the sets from B°° are open-and-closed in (E x E,T°°). Thus the spaces (E x E,T°)
and (E x E,7°°) are zero-dimensional and completely regular. By construction,
T° C T°°).

Fix two subgroups A and B without isolated points of the topological group FE.
Assume that {c, :n € N} CclgA

We consider C' the set A x B as a subspace of the space (E x E,T°) and D the
set A X B as a subspace of the space (E x E,T°°).

Property 5.1. The group C with the topology T°|C' and the group D with the
topology T°°|D satisfy the following conditions:

1. Are completely regular zero-dimensional qvasitopological groups.

2. C is a space of the countable J-character and D is a space of the countable
m-character.

3. The space C is not first-countable and the §-character of D is uncountable.

4. The tightnesses of C' and D are countable.

5. If the space A x B has the Baire property, then C' and D have the Baire
property, too.

6. Are submetrizable, Dieudonné complete and with o-discrete mw-bases.

7. The m-weights of C' and D are equal with the weight of the space E.

8. Are not topological groups.

9. Any remainder of C is not Lindel6f and it is not pseudocompact, and any
remainder of D is pseudocompact and not Lindel6f.

10. If the space B is o-discrete, then C' and D are paracompact F,-metrizable
spaces. In particular, C' and D are paracompact o-spaces.

Proof. The proofs of the properties of C' are similar to the proof of Properties
3.1-3.13 and the proofs of the properties of D are similar to the proof of Properties
4.1-4.12.

6 Open Problems

In [9] M. Henriksen and J. R.Isbel have proved that a space X is of countable
type if and only if any remainder of X is Lindel6f. In [3] Arhangel’skii proved that
any remainder of a topological group is either pseudocomact or Lindeltf. Various
properties of remainders have been studied in [2-6]. Examples constructed in this
paper motivate the following open questions:

Problem 6.1. Is it true that there exists a completely regular sequential (Fréchet-
Urysohn) quasitopological group with countable d-character, but not first-countable?
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Problem 6.2. Is it true that there exists a completely regular bisequential non-
first-countable quasitopological group with a first-countable remainder?

Problem 6.3. Is it true that there exists a completely regular quasitopological
group G with countable m-character, but without countable J-character and such
that G, in addition, satisfies at least one of one of the following properties:

1) G is sequential;

2) G is Fréchet-Urysohn;

3) any remainder of G is not Lindeldf and it is not pseudocompact;

4) G has a first-countable remainder in some compactification.
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Certain differential superordinations using a multiplier
transformation and Ruscheweyh derivative

Alina Alb Lupas

Abstract. In the present paper we define a new operator, by means of convolution
product between Ruscheweyh derivative and the multiplier transformation I (m,A,1).
For functions f belonging to the class A we define the differential operator IRKfl :
A — A IR f (2) == (I(m, A\ 1)« R™) f(z), where A, = {f € H(U) : f(z) =
Z4ant12" T 4. .., z € U} is the class of normalized analytic functions, with A; = A.
We study some differential superordinations regarding the operator I R};.

Mathematics subject classification: 30C45, 30A20, 34A40.
Keywords and phrases: Differential superordination, convex function, best subor-
dinant, differential operator.

1 Introduction

Denote by U the unit disc of the complex plane U = {z € C : |z| < 1} and by
H(U) the space of all holomorphic functions in U.
Let

A(p,n) ={f € H(U): f(z)=2"+ > a;z/, z€U},
with A(1,n) = A,, A(1,1) = A; = A and

Hla,n] = {f e HU), f(2) =a+ an2" + ans 12" +..., 2€ U}

for a € C and p,n € N.

If f and g are analytic functions in U, we say that f is superordinate to g, written
g < f, if there is an analytic in U function w , with w(0) = 0 and |w(z)| < 1 for all
z € U, such that g(z) = f(w(z)) for all z € U. If f is univalent, then g < f if and
only if f(0) = g(0) and g(U) C f(U).

Let v : C> x U — C and h be an analytic function in U. If p and
¥ (p(z),2p (2);2) are univalent in U and satisfy the (first-order) differential su-
perordination

h(z) < b(p(2),2p(2);2),  for 2 €U, 1)
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then p is called a solution of the differential superordination. The analytic function
q is called a subordinant of the solutions of the differential superordination, or more
simply a subordinant, if ¢ < p for all p satisfying (1).

A univalent subordinant ¢ that satisfies ¢ < ¢ for all subordinants ¢ of (1) is said
to be the best subordinant of (1). The best subordinant is unique up to a rotation
of U.

Definition 1 [7]. For f € A(p,n), p,n € N, m € NU{0}, \,l > 0, the operator
I, (m, A\, 1) f(2) is defined by the following infinite series

AG-D+1\"
p+HAG-D+ e
p+1

L (m ) f(z) = 2"+ ) (

j=p+n

Remark 1. It follows from the above definition that

Ip (0’ A, l) f(Z) = f(Z),

P+ 1) I (m+1,010) f(2) = [p(1 = A) + 1] I (m, N 1) f(2) + Xz (I, (m, A1) £(2))
for z € U.

Remark 2. If p =1 and n = 1, then we have A(1,1) = Ay = A, I (m,\, 1) f(2) =
I (m, A1) and

I+DIm+1,ND)f(2)=[1+1=XNT(m,\I) f(2)+ 2T (m,\1)f(z),

for z € U.

Remark 3. If f € A and f(2) = 2z + Z;‘;Qajzj, then I (m,\1)f(z) = z +
> o (%)majzj, for z € U.

Remark 4. For [ =0 and X > 0, the operator DY* = I (m, A,0) was introduced and
studied by Al-Oboudi [6]. The study of this operator is reduced to the Salagean
differential operator S™ = I (m,1,0) [10] for X\ = 1.

Definition 2 [9]. For f € A and m € N the operator R™ is defined by R™ : A — A,

Rf(z) = f(z)
R'f(z) = zf'(2)

(m4+1DR™f(2) = 2(R™f(2)) + mR™f(z), z¢€U.

Remark 5. If f € A, f(2) = z 4 Y725 a;27, then R™f (2) = 2+ 372, Coty o a2,
zeU.

Definition 3 [8]. We denote by @ the set of all functions that are analytic and
injective on U\E (f), where E (f) = {¢ € 9U : limcf (2) = o0}, and f'(¢) # 0 for

¢ € OU\E (f). The subclass of @ for which f (0) = a is denoted by @ (a).
We will use the following lemmas.
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Lemma 1 [8]. Let h be a convex function with h(0) = a, and let v € C\{0} be a
complex number with Rey > 0. If p € Hla,n] N Q, p(z) + %zp’(z) s univalent in U
and )

h(z) < p(z) + ;zp'(z), for z e U,

then
q(z) < p(z), for zeU,
where q(z) = # foz h(t)tY/"=1dt, for z € U. The function q is convex and is the

best subordinant.
Lemma 2 [8]. Let q be a convex function in U and let h(z) = q(z) + %zq’(z), for

z € U, where Re v > 0. Ifpe Hla,n]NQ, p(z) + %zp’(z) is univalent in U and

1 1
q(z) + ;zq’(z) < p(2) + ;zp' (2), for z€U,

then
q(z) < p(z), for zeU,

where q(2) = —= I h(t)Y/"=1dt, for z € U. The function q is the best subordinant.

2 Main Results

Definition 4 [3]. Let m,\,l € N. Denote by IR}, the operator given by the
Hadamard product (the convolution product) of the operator I (m,A,l) and the
Ruscheweyh operator R™, I RY', A— A,

IRY f (2) = (I (m, A\, 1) x R™) f (2).

Remark 6. If f € A, f(2) = 24332, ajz’, then IRY f(2) = 2+3°72, (wy’l

I+1
Cnrffﬂ_la?zj, for z e U.
Remark 7. For | = 0, A > 0, we obtain the Hadamard product DRY [2] of the
generalized Salagean operator DY and Ruscheweyh operator R"™.

For [ = 0 and X\ = 1, we obtain the Hadamard product SR™ [1] of the Saldgean

operator S™ and Ruscheweyh operator R™.
Theorem 1. Let h be a convex function, h(0) = 1. Let m,\,l € N, f €

A and suppose that [A(l—ml;)l—(l+1)]z' [(m +1) IRAm’lJrl (2) = (m —2) IRY, f (z)] +

I+1 2(1+1)(m—1)—2xm pz IR f(O)—t . . . m
(1 — )\(l—m+—5)—(l+1))_ ,(\(l_,)fb+2)_)(l+1) 0 A ltz dt is univalent and (IRMf (z))

eH[L,1NQ. If

/

l+1
Al—m+2)—(+1)]

h(z) < [+ D IR (2) = (m = 2 IR S (2)] +

I+1 2(1+1)(m—1)—2xm [ IRV, f(t) —t
(5 )- [

l—m+2)—(1+1) Al—-m+2)—(+1) 12 dt, (2)
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for z € U, then
q(z) < (IRS:Llf (z))/, for z €U,

A(l=m+2)—(I+1) 2 _Alm=1)+(+1)
N E AL ()t AU+
A(l+1)z PY(ERY)

and it is the best subordinant.

where q(z) = dt. The function q is convex

Proof. With notation p (z) = (IRS:LIf (z)), =1+37%, (%) Ctyiyjasz ™!
and p (0) = 1, we obtain for f(2) = 2z + > 72, a;2 2,

p(2) +2p' (2) =ml+ 322, (%) Coyie 1]CL FZ N

2 i <_1+A§i_11)+l> Coyjad G =1 a3z~ =

1+327, (H/\%r_ll)ﬂ) Zgﬂ' jrazzl Tl =

z <z + 272 <—1+)\l{|—11)+_l) C;,?I]l milaﬁzj -

S0 (1G=DH)" o AMm—D=(41) 50

3=2 I+1 m+j-1" A(+1) I
o [(1HAG=D+H\" ~m m—2 2 _j

Zj: ( I+1 m4j—1"x 47—

2
5o HAG=D+H\™ ~m 204D (m=D=2xm o ) _
3=2 I+1 m+j—17—1 PY(ES) ajz’ | =

1 1+AG=D 41 ™ 1
z [m— <Z+zj =2 (#) CT%J—FJ ]Z]> N
52 (=4 o () Oyt )| +

1 1+A(7—1)+ A(m—1)—(1+1)
(12— 202) + <1+2y 2(%1)) Cryj—1035% )W_

A(m—l)—(l—i—l)_zoo HAG=DH\" ~m 124D (m=1)=2\m o j-1 _
X(I+1) J=2\" I+1 m+j—15—1 A1) fi -

/
% <m+1IRm+1f ( ) ;2IRT,lf (Z)) + A(m;(lll_—l()l+1) (IRT,lf (Z)) +

M=Am+22—21—2  2(I+1)(m—1)—2Am Eoo 1+A(j—1)+l Cm 1 a1 =
MI+1) A(I+1) j=2 +1 mtj—1;5-1%] o

/
L (LIRS () = 2IRT S (2) + 2l (1R f (2)) +

1 9 2(141)(m—1)—2Am z IRY, f(t)—t
(1 S X) - (1) o —E—dt.
A
Therefore p (z) + %zﬂ (2) =

ST [+ D IR () — (m = 2) TRYf ()] +

141 2(l+1)(m—1)—2 m rz IRmy f)—t
(1_ ,\(l—m+J5)—(l+1)) o )(\(l—1)’f(b+2)—)(l+1) 0 MtQ dt.
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Then (2) becomes

A(l+1)
Ai—m+2) - (1+1

h(z) <p(z)+ )zp/(z), for z € U.

By using Lemma 1 for y =1 — ﬁll — X and n = 1, we have

q(z) < p(z), for zeU, ie. q(z)< (IRT’lf(z)),, for z €U,

A(l—m+2)—(I41) _ A4+

where ¢(z) = i Jo B (t)t A+ dt. The function ¢ is convex
MI+1)z AU+D
and it is the best subordinant. O

Corollary 1 [5]. Let h be a convezr function and h(0) = 1. Let A > 0, m € N,

f € A and suppose that (m";\ﬁ) DRy f (2) — Z(/\IH’\ DRY f (2) is univalent and

(DR f (2)) e H[L,1]NQ. If

m+1 m(1—M\)
h — DR —— DR U 3
(Z)<(m)\—|—1)z > f(Z) ( A—l—l) )\f()v fOT’ZG ) ()
then
q(2) < (DRY'f ()", for z €U,
where q(z n:;*l fo t)tm- X dt. The function q is convex and it is the best
subordmant
Corollary 2 [4]. Let h be a convex function and h(0) = 1. Let n € N, f € A
and suppose that LSR"Lf (2) + gz (SR f (2))" is univalent and (SR™f (2)) €
HI[L1NQ. If
1 n+1 n "
h(z) < zSR f(z)+ — 12(SR f(z)", for z€U, (4)
then
q(z) < (SR™f(2)), for z€U,
where q(z) = 1 fo t)dt. The function q is convexr and it is the best subordinant.
Theorem 2. Let q be convexr in U and let h be defined by h(z) = q(z) +

%zq (2), my\,l e N. If f € A, suppose that

[)\(l—m—1{2)1—(l+1)]z [(m + 1) [Rm+1f (Z) — (m — 2) IRgrflf (Z):| + (1 — m)

/
_2>(\Z(Jlr—12r(b712_)1—)(_l-2+)¥)n N IR*’ltfz( 7t s univalent, (IRK:”lf (z)) € H[1,1]NQ and sat-

isfies the differential superordination

A(L+1)

Me) =@+ sy~ ar e @) =

I+1
NI—m+2) —(+1)]=z

[+ 1) TR f (2) = (m = 2) TREL S (2)
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I+1

(1 _2(z+1)(m_1)—2Am/21R3’j‘zf(t)—tdt
Al—m+2)—(1+1) A(l—m+2)—(1+1) Jo t2 ’
()
for z € U. Then
q(z) < (IRf\rflf(z))/, for zeU,
A(m—1)+(+41)
where q(z) = A(l_@?ﬁ;gtgﬂ) o h(t)t™ " 3T dt. The function q is the best
ALz D
subordinant.
/ .
Proof. Let p(z) = (IRf{flf(z)) =142, (%) Cmﬂ jaiz .
Differentiating, we obtain p (2)+2p’ (2) = 1 (m+1IRm+1f( ) — (z)) +
A(m—1)—(I+1 m ! . 2(14+1)(m—1)—2\m 2 [EY! f(t) —t
( ,\(l)+1() ) (IRxlf(Z)) + (1 o l+—1 o %) &(l+1)) 0 “tZ dt,

A+ ! m+1
p(z)+ mzﬁ (2) = P [(mJF IR f (2) -

m ! 2(1+1)(m—1)—2Am z IRY f(t)—t
(m —2) IRY f (2)} + (1 - A(z—m+J5§—(l+1)> - §\(l—212+2)—(l+1) 0 —r—dt,
for z € U, and (2) becomes

A(L+1)
Al—m+2)—(+1

A(L+1)
Al—m+2)—(+1

q(z) + )zq’(z) <p(2) + )zp’ (2),

for z € U.

Using Lemma 2 for v =1 — TT_:LI — % and n = 1, we have ¢(z) < p(2), z € U, i.e.

A(l—m+2)—(+1 z _A(m=1)+(+1) .
q(z) = ( )\(lzm+2()7(l+1)) / h(t)t AED T dt < (IRA,lf (Z))/, zeU,
> Jo

A(l+1) 2 A0

and ¢ is the best subordinant. O

Corollary 3 [5]. Let g be convex in U, h be defined by h(z) = q(z) + m)\qu’( z),

A>0,meN and f € A. Suppose that %DRTH]’ (2) — m(AT RY'f (2) is

univalent, (DRY' f (2)) € H[1,1] N Q and satisfies the differential superordination

A m+1

, m(l—2X)
h(Z)ZQ(Z)JFm)\Jrqu (@*m s

(mA+1)z

DR f (2)- DR f(2), (6)
for z € U. Then
q(2) < (DRY'f (2))',  for z€U,

m-i—% zn

= Jo R ()t 5 dt. The function q is the best subordinant.
PAARIDY

where q(z) =
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Corollary 4 [4]. Let q be convex in U and let h be deﬁned by h(z) = q(2) + 24/ (2).
Ifn € N and f € A, suppose that LSR"1f(z) + 2SR f(2))" is univalent,
(SR"f(2)) € H[1,1] N Q and satisfies the differential superordination

n
n+1

h(z) = q(z) + 2q'(2) < %SR"“f(z) + 2(SR"f(2))", for zeU. (7)

Then
q(z) < (SR"f((2))), for z€U,

where q(z =1 fo t)dt. The function q is the best subordinant.
Theorem 3. Let h be a convex function and h(0) = 1. Let m,\,l € N, f € A and

/ m 2
suppose that (IRS:LIf (z)> is univalent and IRA#J() eH[L,1]NQ. If
h(z) = (IRY,f (2))",  for z€U, (8)
then TR £ (2)
z
q(z) < )‘%, for zeU,

where q(z) = 2 Jo h(t)dt. The function q is convex and it is the best subordinant.

o (LHAG-D+I1\" .,
IRT,lf(Z)_Z+Zj=2< 1 4

Proof. Consider p (z) =

o [(1+X(G-1
1+Ej:2< 1+1

We have p (z) + zp’ (z) = <IRT’lf (z)) , for z € U. Then (8) becomes

z
l
)+ > G105 229=1, Evidently p € H[1,1].

h(z) < p(2) + 2p'(2), for ze€ U.

By using Lemma 1 for v =1 and n = 1, we have

. IRY,f (2)
q(z) < p(z), for zeU, ie q(z)<—"—— for z€U,
z
where ¢(z) = 1 fo t)dt. The function g is convex and it is the best subordinant. [

Corollary 5 [5]. Let h be a convex function, h(0) = 1. Let A\ >0, meN, f e A

and suppose that (DR f (2))" is univalent and %ﬂz) eH[LINQ. If
h(z) < (DRYf (2))", for z€U. 9)
Then DR™
q(z) < )\ff(Z)’ for zeU,

where q(z) = 1 [T h(t)dt. The function q is convex and it is the best subordinant.
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Corollary 6 [4]. Let h be a convex function, h(0) = 1. Let n € N, f € A and
suppose that (SR™f (2)) is univalent and Smff(z) eH[LINQ. If

h(z) < (SR"f (2)), for z€U, (10)
then .
q(z) < %, for ze€ U,

where q(z) = 2 Jo h(t)dt. The function q is convex and it is the best subordinant.
Theorem 4. Let q be convez in U, h be defined by h(z) = q(2)+2q (2), m,\,l € N
and f € A. Suppose that (IRS:LIf (z)), s univalent, %ﬂt(z) € H[1,1]NQ and
satisfies the differential superordination

h(z) = q(2) + 2¢ (2) < (IRK:”lf (z))/, for ze€U. (11)
Then IR
q(z) < %(2), for z €U,

where q(z) = 2 Jo h(t)dt. The function q is the best subordinant.

o) 1+)‘(]_1)+l " m 2.7
e (R Oty
Proof. Let p(z) = ’z =
L+ A -1 +1\" :
1+Z]°-°;2< * l(J—I—l )+ > C’;,’Zﬂ_la?zj_l. Evidently p € H][1, 1].

!/
Differentiating, we obtain p(z) + zp'(z) = (IRS\’:Llf(z)> , for z € U and (11)
becomes
q(2) + 2¢'(z) < p(z) + 2p' (2), for z€U.

Using Lemma 2 for v =1 and n = 1, we have
1 [* IRV f (2
q(z) < p(z), for ze€ U, ie q(z)= —/ h(t)dt < L(), for z €U,
0

and ¢ is the best subordinant. O

Corollary 7 [5]. Let q be convez in U, h be defined by h(z) = q(2)+ 24 (2), A >0,

m € N and f € A. Suppose that (DRY' f (2)) is univalent, DRif(z) EeH[LINQE
and satisfies the differential superordination
h(z) = q(2) + 2q (2) < (DRY'f (2)), for z€U. (12)
Then DR™
q(z) < Aff(z), for ze U,

where q(z) = = t)dt. e function q is the best subordinant.
h i Ozh dt. The f he b bord
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Corollary 8 [4]. Let q be convez in U and let h be defined by h (z) =q(2)+2¢ (2).
IfneN, f € A, suppose that (SR™f (2)) is univalent, SR f( e H[L,1]NQ and
satisfies the differential superordination

h(z) = q(2) +2¢ (2) < (SR™f (2))", for z€U. (13)
Then SR

q(z) < ff(z), for ze U,

where q(z =1 fo t)dt. The function q is the best subordinant.
Theorem 5. Let h(z) = % be a convex function in U, where 0 < 3 < 1.

/ m P
Let m, A\l € N, f € A and suppose that (IRS\’:Llf(z)> s univalent and m*'flf()

H[1,1]NQ. If

h(z) < (IRf\rflf(z)),, for ze€ U, (14)
then IR
q(z) < %(Z), for zeU,

where q is given by q(z) = 26 — 14 2(1 — ﬁ) In( 1+Z , for z € U. The function q is
convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 3 and considering p(z) =
IRY f(2)
z

, the differential superordination (14) becomes

1+(26—1)2<

T2 p(2) +2p'(2), for z e U.

h(z) =

By using Lemma 1 for v = 1 and n = 1, we have ¢(z) < p(2), i.e.,

1 /[? 1 (14 (28— 1)t IRY f (2)

= — h(t)dt = — — dt = 28-142(1 1 1 _—

o) = [ moae =< [ B-14201-0) 2 n(z41) < 27
for z € U.

The function g is convex and it is the best subordinant. O

Theorem 6. Let h be a convezr function, h(0) = 1. Let m,\,l € N, f € A and

IRerl ! m+1
suppose that <%> is univalent and mmif]z(j) eH[L,1]NQ. If

IRV (2))
h(z <W> s fOT’ S U, (15)
then Rme( )
q(Z < W, fO’I" S U,

where q(z) = 1 [T h(t)dt. The function q is convex and it is the best subordinant.
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m—+1
. _IRpPe) e, (PP ontale
Proof. Consider p(z) = TRy () Z+Zj:2(1+xgj+11)+z> et
; m+1
L (M) eppta
1+ZJ E1+A(j11)+l;77LCm Ja;zj* Evidently p € H[1, 1].
1+1 m+j—177
, IRy ) (IRY f(2))’ , B
We have p' (z) = CTRETG) p(z) - TR Hence p(z) + 2p’ (2) =
ARTEE)Y
TRY J(2)

Then (15) becomes
h(z) < p(2) + 2p'(z), for z € U.

By using Lemma 1 for v =1 and n = 1, we have

o 2cU IRy
€ €. < — e,
Q(Z) —< p(2)7 or z Y L.e q(Z) IR&rflf (Z) I or z
where ¢(z) = 1 fo t)dt. The function ¢ is convex and it is the best subordinant. [

Corollary 9 [5]. Let h be a convex function, h(0) = 1. Let A >0, meN, f e A

m+1 m—+1
and suppose that <%f€;§z)> is univalent and I?Tf(fé)) eH[LINQ. If

zDRTTf (2) ,
hz) < | =222\, for z€U, (16)
(2) ( DRY f (2)
then " »
DRY™ f (2
q(Z){W, fOT’ ZGU,
where q(z) = 1 fo t)dt. The function q is convexr and it is the best subordinant.

Corollary 10 [4]. Let h be a convez function, h(0) = 1. Let n € N, f € A and

n /
suppose that w s univalent and M eHI[L1INQ. If
SR f(z) SR f(2)

ZSR™Lf (2))

h — eU 17
O < (i) Jor e, (17)

then SRMF(2)

" z

q(Z){W, fOT’ ZEU,
where q(z) = 1 fo t)dt. The function q is convex and it is the best subordinant.

Theorem 7. Let q be convex in U, h be deﬁned byh(z) =q(z)+2¢ (2), my\,l €N

2IRT f(2) _ IRV f(2)
and f € A. Suppose that (W) 18 univalent, W e H[1,1]NQ and
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satisfies the differential superordination

h : AR () U 18
(2) =q(2) +2q (2) < W ; Jor zeU, (18)
then
( ) Rm+1f( ) f -
q(2) < =550—F—, for z€U,
TR (2)
where q(z) = 2 Jo h(t)dt. The function q is the best subordinant.
. m—+1
IRY ! f(2) Z+Z‘L(7HA§J?DH) Cpija3s
Proof. Let p(z) = —2& = J + i%%
f p(2) IR f(2) z+2?‘;2(—1+kgﬂ+}1)+l> Oy _qa329

%) j — m+1 m
135 (B ) opd g . Evidently p € H[1,1]

oo [(1HEAG=D+I\™ 2 i1
1+2j:2(l+71 Crtj—195%

zIR;njlf(z)

Differentiating, we obtain p(z) + 2p/(2) = <W
Al

!/
> , for z € U and (18)

becomes
q(z) + 2¢'(2) < p(2) + 2p' (2), for z€U.
Using Lemma 2 for v =1 and n = 1, we have
1 IRV (2)

q(z) < p(z), for z€U, ie gq(z)= ;/ h(t)dt < W, for ze U,
0 Al

and ¢ is the best subordinant. O

Corollary 11 [5]. Let q be convez in U, h be defined by h (z) = q (2)+2¢ (2), A > 0,

zDRerlf(z) ! DRerlf(z)
TDRYTG) Digre € ML NQ

and satisfies the differential superordination

m € Nand f € A. Suppose that is univalent,

!/
/ zDRYf (2)
= - o . 1
h(z) =q(z) + 2q (z)<< DRIT () ) for z€U (19)

Then o )

DRY™ f (2

q(z) < 7DRmf G) for zeU,

where q(z) = 1 fo t)dt. The function q is the best subordinant.

Corollary 12 [4]. Let q be convexr in U, h be defined by h(z) = q(z) + 2¢' (2),

s / s
neN, f e A. Suppose that (%) s univalent, %;(fz()) eH[1,1]NQ and

satisfies the differential superordination

2SR (2))
h(z) = q(2) + 24 (2) < (%) , for 2€U. (20)
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Then "
SR f (2)
_ U.
q(z) < SR () for ze€U,
where q(z =1 fo t)dt. The function q is the best subordinant.
Theorem 8. Let h(z) = % be a convex function in U, where 0 < 3 < 1.
SIR™FL£(5 ! mt1 g,
Let m,\,l € N, f € A and suppose that <%> is univalent, % €
HI[L1NQ. If
zmm“f( )
hz) < | —=—%————1|, for z€U, (21)
IR [ (2)
then o
Rm f
) for ze U,

1) = TRy )

where q is given by q(z) =20 — 1+ 2(1 — ﬂ) In 1+Z , for z € U. The function q is
convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 2 and considering p(z) =
IRm+1
Wff((;)), the differential superordination (21) becomes
1 20 —-1
+@E-1)z

/
12 p(z) + zp'(z), for zeU.

h(z) =

By using Lemma 1 for v = 1 and n = 1, we have ¢(z) < p(z), i.e.,

1 [ 1 (71 26 —1
q(z):;/o h(t)dt:;/o Ly

26—1+2(1—ﬁ)l1n(z—|—1) M for z€ U
z IRV, f (2) ’
The function ¢ is convex and it is the best subordinant. O

Acknowledgement. The author is grateful to Academician Mitrofan Choban
that he had formed me as a mathematician.

References

[1] ALB Lupas A. Certain differential subordinations using Salagean and Ruscheweyh operators.
Acta Universitatis Apulensis, 2012, No. 29, 125-129 .

[2] ALB Lupas A. Certain differential subordinations using a generalized Salagean operator and
Ruscheweyh operator. Journal of Mathematics and Applications, 2010, No. 33, 67-72.



3]

[4]
[5]
(6]

[7]

8]
[9]

[10]

CERTAIN DIFFERENTIAL SUPERORDINATIONS USING ... 131

ALB LupAs ALINA. A note on a certain subclass of analytic functions defined by multiplier
transformation. Journal of Computational Analysis and Applications, 2010, 12, No. 1-B,
369-373.

ALB LuPAS ALINA. Certain differential superordinations using Sdalagean and Ruscheweyh op-
erators. Analele Universitatii din Oradea, Fascicola Matematica, 2010 XVII, No. 2, 203-210.

ALB LupAs ALINA. Certain differential superordinations using a generalized Saldgean and
Ruscheweyh operators. Acta Universitatis Apulensis 2011, 25, 31-40.

AvL-OBouDI F. M. On univalent functions defined by a generalized Salagean operator, Ind. J.
Math. Math. Sci., 2004, 25, 1429-1436.

CATAS A. On certain class of p-valent functions defined by new multiplier transformations.
Proceedings Book of the International Symposium on Geometric Function Theory and Appli-
cations, August 20-24, 2007, TC Istanbul Kultur University, Turkey, 2007, 241-250.

MILLER S.S., MocaNu P.T. Subordinants of Differential Superordinations. Complex Vari-
ables, 2003, 48, No. 10, 815-826.

RUSCHEWEYH ST. New criteria for univalent functions. Proc. Amer. Math. Soc., 1975, 49,
109-115.

SALAGEAN G. ST. Subclasses of univalent functions. Lecture Notes in Math., Springer Verlag,
Berlin, 1983, 1013, 362-372.

ALINA ALB LUPAS Received March 15, 2018
Department of Mathematics and Computer Science

University of Oradea

1 Universitatii Street, 410087 Oradea, Romania

E-mail: dalb@uoradea.ro



The 20th Conference on Applied and Industrial Mathematics
(CAIM-2012)
dedicated to the 70th anniversary of Academician
Mitrofan M. Choban

"The 20th Conference on Applied and Industrial Mathematics” (CAIM 2012)
took place in Chigindu (Republic of Moldova) from August 22nd to 25th, 2012.
It was organized with the financial support of Romanian Society of Applied and
Industrial Mathematics (ROMAI), Mathematical Society of Moldova, Academy of
Sciences of Moldova, Tiraspol State University (Chiginau), Academy of Economic
Studies of Moldova, Institute of Mathematics and Computer Science of the Academy
of Sciences of Moldova, Moldova State University. The conference was dedicated to
the 70th anniversary of Professor Mitrofan Choban, President of the Mathematical
Society of Moldova and Vice-President of the Romanian Society of Applied and
Industrial Mathematics. This event was conceived to provide a discussion forum on
the achievements of the last decades in the fields of Mathematics, Computer Sciences,
Physics and its Applications in retrospective analysis, as well as to highlight the
present state of investigations and education in these fields.

CAIM 2012 was hosted by the Faculty of Physics, Mathematics and Information
Technologies of the Tiraspol State University, Chigindu.

During the conference over 190 reports were delivered at plenary (16) and parallel
sessions (175).

Sessions of the conference were held in five plenary sessions and eight parallel
scientific sessions:

1. Mathematical Analysis.

2. Differential Equations.

3. Algebra and Logic.

4. Geometry and Topology.
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5. Analytical and Numerical Methods in Partial Differential Equations.

6. Computer Science.

7. Mathematical Models in Industry, Physics and Biology.

8. Education. Didactics of Mathematics, Physics and Informatics.

The conference was attended by over 100 participants from abroad including
Romania, Ukraine, Bulgaria, Canada, Armenia, Estonia, Germany, Israel, Italy,
Russian Federation, Spain, Tajikistan, Belarus.

During the plenary sessions a number of well-known scholars presented their
papers, among them: Mati Abel (Estonia) "Main classes of Gelfand-Mazur alge-
bras”, Alexander Arhangel’skii (Russia) ”"A nice class of topological spaces”, Vasile
Berinde (Romania) ”"On the stability of multi-step fized point iteration procedures”,
Ilie Burdujan (Romania) ”Automorphisms and derivations of homogeneous quadratic
differential systems on R3”, Adrian Carabineanu (Romania) ”A complex bound-
ary element method for the study of the potential flow past submerged profiles”,
Sergiu Cataranciuc (Moldova) ”Algebraic topology of the multi-ary relation in the
applications”; Svetlana Cojocaru and Constantin Gaindric (Moldova) ”Research in
Computer Science and Information Technology at the Institute of Mathematics and
Computer Science”, Adrian Constantinescu (Romania) ”Some topological aspects of
the finite generation of subalgebras. I: Variations on a Theorem of Goodman and
Landman”, Ton Craciun (Romania) ”"Some problems of the linear theory of piezo-
electric micropolar thermoelasticity”, Peter Kenderov (Bulgaria) (in collaboration
with Mitrofan Choban (Moldova) and W. B. Moors (New Zeland)) ”Eberlein Theo-
rem for Sequences of Sets and Fragmentability of Function Spaces”, Mario Lefebvre
(Canada) ”First passage to a semi-infinite line for a two-dimensional Wiener pro-
cess”, Boris Loginov (Russia) ”Branching Equations and Branching Equations in
the root-subspaces potentiality conditions for Andronov-Hopf bifurcation II”, Radu
Miron (Romania) ”The generalized Lagrangian mathematical systems”, Gheorghe
Paun (Romania) "Membrane Computing Basics, Recent Developments, Applica-
tions”, Vesco Valov (Canada) "Homogeneous compacta”, Nicolae Vulpe (Moldova)
”Global analysis of infinite singularities of quadratic vector fields”.

A number of papers presented at different sessions aroused valuable and in-
sightful discussions: Yaroslav Bihun, Inessa Berezovska and Nataliya Romanenko
(Ukraine) ”Awveraging of a multifrequency boundary-value problem with constant de-
lay and linearly transformed argument”, Turie Calin and Valeriu Baltag (Moldova)
" Invariant center conditions for quadratic differential system with degenerate infinity
perturbed by cubic nonliniarities”, Dumitru Cozma (Moldova) ”Darbouz integrabil-
ity in cubic systems with two invariant straight lines”, Florin Damian (Moldova) ”
Involution without fixed points on hiperbolic manifolds”, Vasile Glavan (Moldova)
"Horseshoes as viable sets in set-valued dynamics”, Valeriu Gutu (Moldova) ”The
Pythagoras tree and Borsuk’s conjecture”, Anca Veronica Ion and Raluca Mihaela
Georgescu (Romania) ”"Numerical investigation of the Bautin-type bifurcation for a
delay differential equation”, Stelian Ton (Romania) "A soft package to estimate the
parameters in an ecological model”, Vladimir Izbash (Moldova) ”Polynomial mor-
phisms of medial quasigroups”, Nicolae Jitaragu (Moldova) ”On the boundary value
problem for elliptic and parabolic equations”, Alexandru Lazari ( Romania, Moldova)
” Polynomial algorithms for probabilistic characterization of composed stochastic sys-
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tems with final critical state”, Vadim E. Levit and Eugen Mandrescu (Israel) ”Crit-
ical sets in almost unicyclic Konig-Egervary graphs”, Dmitrii Lozovanu and Maria
Capcelea (Moldova) ”Determining the optimal stationary strategies for stochastic
positional games”, Ekaterina Mihaylova (Bulgaria) ”Co-homogenity and Klebanov
Spaces”, Gheorghe Mishkoy, L. Mitev and D. Begenari (Moldova) ”Numerical re-
sults for probability of states with PH distribution for Polling models”, Marcelina
Mocanu (Romania) ”A unifying approach to Sobolev-type spaces on metric measure
spaces”, Vasile Neagu (Moldova) 7Symbol of singular integral operators on piecewise
Lyapunov contours”, Andrei Perjan and Galina Rusu (Moldova) ”Some convergence
estimates for abstract second order singularly perturbed Cauchy problems with mono-
tone nonlinearities”, Mihail Popa (Moldova) ”Applications of algebraic methods to
the center-focus problem”, Mefodie Ratiu (Moldova) ”Ezpressibility of implication in
intuitionistic logic with the method of the formula realization of algebras”, Vladislav
Seichuc (Moldova) ”On appozimate solving of some nonlinear mized singular integral
equations”, Fidir Sokhatsky and Iren Fryz (Ukraine) ”About orthogonality of mul-
tiary operations”, Alexandru Suba and Vadim Repesco (Moldova) ”Cubic systems
with degenerate infinity and a triplet of parallel invariant straight lines”, Paras-
covia Syrbu (Moldova) ”Recursively differentiable quasigroups”, Marcel Teleuca, Ilie
Lupu, and Larisa Sali (Moldova) ”Didactical aspects of the organization of investi-
gation activities in mathematics”, Alexandra Tkachenko (Moldova) ”Fuzzy multicri-
teria transportation model”, Inga Titchiev (Moldova) ”Soundness and Equivalence
of Workflow Nets and Finite State Automata”, and other.

The morning plenary session of August 24, 2012 was dedicated to the presenta-
tion of the book ” Academicianul M. Ciobanu la a 70-a aniversare” (Academicin M.
Choban at the 70th anniversary).

The closing session of the conference took place on August 24, 2012. It was
dedicated to a broad discussion concerning the major present-day problems in the
field of Mathematics, Computer Science, Physics and its Applications encountered by
Moldovan and foreign researchers. The final session was followed by the traditional
General Assembly of ROMALI

The present edition of the journal ”Buletinul Academiei de Stiinte a Republicii
Moldova. Matematica” comprises some works presented at the Conference.

The Programme of the Conference and the research papers announced by the
participants (one book of communications with the volume of 242 pages in the
domains of Mathematics, Computer Science and its Applications and other book of
communications with the volume of 266 pages in the domains of Education) were
published in advance and distributed during the official opening of the Conference.

The Council of the Mathematical Society of the Republic of Moldova expresses
their gratitude to the Academy of Sciences of Moldova for the financial support of
the project.

Council of the Mathematical Society of the Republic of Moldova
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