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1 Introduction

The work here is considering the class F of functions analytic in
Ũ = {w : w ∈ C, |w| < 1}, and of the form

f(w) = w +
∞∑

n=2

anw
n, (1)

and suppose S̃ denotes the subclass of F consisting of all functions that are univalent
in Ũ . For f, g ∈ F , we say that f is subordinate to g written as f ≺ g if there exists
a holomorphic map h of the unit disk Ũ into itself with h(0) = 0 such that f = g ◦h.
Note that if g ∈ S̃, then f ≺ g is equivalent to the condition that f(0) = g(0) and
f(Ũ) ⊂ g(Ũ). Let P be the family of analytic functions p in Ũ with <{p(w)} > 0
which have the form p(w) = 1+q1w+q2w

2+... (w ∈ Ũ). The class P of functions with
positive real part plays a crucial role in geometric function theory. Its significance
can be seen from the fact that simple subclasses are class S̃∗ of starlike functions
and class K̃ of convex functions.

Definition 1. [10] For k ∈ N = {1, 2, ...}, let ε = e(
2πi

k
) denote the kth root of unity

for f ∈ F . Its k-weighted mean function is

Mf,k(w) =

k−1∑

v=1

ε−vf(εvw).
1

∑k−1
v=1 ε

−v
.

A function f in F is called k-symmetrical function for each w ∈ Ũ if
f (εw) = εf(w). The family of all k-symmetrical functions will be denoted by Fk.
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A function f in F is said to belong to the class S̃∗
k of functions starlike with respect

to k-symmetric points if for every r close to 1, r < 1, the angular velocity of f about
the point Mfk

(w0) is positive at w = w0 as z traverses the circle |w| = r in the

positive direction, that is <

(
zf ′(w)

f(w) −Mf,k(w0)

)
> 0 for w = w0, |w0| = r.

Definition 2. [27] For a positive integer k, let S∗
k denote the family of starlike

functions with respect to k-symmetric points f ∈ F which satisfy

<

{
wf ′(w)

fk(w)

}
> 0, w ∈ Ũ , (2)

where

fk(w) =
1

k
[f(w) −Mf,k(w)] . (3)

Remark 1. Equivalently, (3) can be written as

fk(w) =
1

k

k−1∑

v=0

ε−vf(εvw), (4)

or

fk(w) = w +

∞∑

n=2

ψnanw
n where ψn =

{
1 if n = lk + 1, l ∈ N0.

0 if n 6= lk + 1
. (5)

Let K̃k denote the subclass of functions f ∈ F which satisfies

f ∈ K̃k ⇔ wf ′ ∈ S̃∗
k . (6)

For more details, some interesting properties of the classes of functions with
respect to k-symmetric points have been discussed by the authors in [1, 2].

One of the most fundamental problems in geometric function theory is to find
the coefficient bounds for a certain class of functions. In this work, we study the
Hankel determinant H̃ϑ,n(f) (ϑ, n ∈ N) for the well-known class of starlike functions

S̃∗ which was introduced by Pommerenke [23,24], and is defined as follows:

H̃ϑ,n(f) =

∣∣∣∣∣∣∣∣

an an+1 ... an+ϑ−1

an+1 ... ... ...
... ... ... ...

an+ϑ−1 ... ... an+2ϑ−2

∣∣∣∣∣∣∣∣
.

We can easily note that H̃2,1(f) = a3 − a2
2, H̃2,2(f) = a2a4 − a2

3 and

H̃3,1(f) = 2a2a3a4 − a3
3 − a2

4 + a3a5 − a2
2a5.
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Many authors have studied and investigated the Hankel determinants for various
subclasses of F . The famous problem solved by using the Loewner technique
to determine the greatest value of the coefficient was investigated by Fekete and
Szegö in [9], they generalized the estimate |a3 − µa2

2| where µ is real and f ∈ S̃∗.
Later, Jae Ho Choi et al.[6] provided a new method for solving the Fekete-Szegö prob-
lem which opened up a lot of new opportunities for research in the related fields.
This determinant was studied for other classes of functions by many other authors
like Noor [21], Ehrenborg [8], and Layman [15]. For some other related works for
subclasses regarding symmetric points, one can look up Janteng et al.[11–13] who
have considered the functional |H̃2,2(f)| and studied the second Hankel determi-

nant and have shown that |H̃2,2(f)| ≤ 4/9, |H̃2,2(f)| ≤ 1, |H̃2,2(f)| ≤ 1/8 and

|H̃2,2(f)| ≤ 1, |H̃2,2(f)| ≤ 1/9, respectively, for the classes of analytic, starlike,
convex, close-to-starlike and close-to-convex functions concerning symmetric points.

The third-order Hankel determinant |H̃3,1(f)| for subclasses of F was studied
for the first time by Babalola [3]. In 2017, Zaprawa [28] improved the results of
Babalola [3] by proving |H̃3,1(f)| ≤ 1, |H̃3,1(f)| ≤ 49/540, |H̃3,1(f)| ≤ 41/60 for the
classes of starlike, convex and bounded turning functions respectively.

The estimation of the fourth Hankel determinant |H̃4,1(f)| for the bounded turn-
ing functions has been obtained by Arif et al.[16] and they proved
|H̃4,1(f)| ≤ 0.78050.

Recently, Barukab et al.[4] obtained the sharp bounds of |H̃3,1(f)| for a collection
of bounded turning functions associated with the petal-shaped domain. Khan et
al.[14] investigated the third Hankel determinant for a class of starlike functions
with respect to two symmetric points with a sine function. Other interesting topics
have been discussed in 2021 and 2022; see [25,26].

The aim of the present work is to determine the upper bound of the Hankel
determinants of order two for the functions belonging to the classes S̃∗

k and K̃k.

2 Preliminary Results

Lemma 1. [7] If p ∈ P, then |qn| ≤ 2, (n = 1, 2, ...).

Lemma 2. [17, 18] If p ∈ P, then

2q2 = q21 + (4 − q21)x,

4q3 = q31 + 2q1(4 − q21)x− q1(4 − q21)x
2 + 2(4 − q21)(1 − |x|2)w,

for some x and w satisfying |x| ≤ 1, |w| ≤ 1 and p1 ∈ [0, 2].
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3 Main Results

Theorem 1. Let f ∈ S̃∗
k , then

|a2a4 − a2
3| ≤

4

(3 − ψ3)2
, (7)

where ψn is defined by (5).

Proof. Since f ∈ S̃∗
k , then there exists p ∈ P such that

wf ′(w)

fk(w)
= p(w),

or
1 +

∑∞
n=2 nanw

n−1

∑∞
n=1 ψnanwn−1

= 1 + q1w + q2w
2 + q3w

3 + .... (8)

Equating coefficients in (8) yields

ψ1 = 1, a2 =
q1

2 − ψ2
, a3 =

1

3 − ψ3

[
q2 +

ψ2q
2
1

2 − ψ2

]
, (9)

a4 =
1

4 − ψ4

[
q3 +

ψ2q1q2
2 − ψ2

+
ψ3q1

3 − ψ3

(
q2 +

ψ2q
2
1

2 − ψ2

)]
. (10)

By (9) and (10) we get

|a2a4 − a2
3| =

∣∣∣∣∣
q1

(2 − ψ2)(4 − ψ4)

[
q3 +

ψ2q1q2
2 − ψ2

+
ψ3q1

3 − ψ3

(
q2 +

ψ2q
2
1

2 − ψ2

)]
−

1

(3 − ψ3)2

[
q2 +

ψ2q
2
1

2 − ψ2

]2
∣∣∣∣∣ .

Using Lemma (1) and Lemma (2) in the above equation we get

|a2a4 − a2
3| =

∣∣∣∣
q1

4(2 − ψ2)(4 − ψ4)

[
q31 + 2p1(4 − q21)x− q1(4 − q21)x

2 + 2(4 − q21)(1 − |x|2)w
]
+

q1
(2 − ψ2)(4 − ψ4)

[
ψ2q1

2(2ψ2)
{q21 + (4 − q21)x} +

ψ3q1
2(3 − ψ3)

{q21 + (4 − q21)x+
2ψ2q

2
1

2 − ψ2
}

]

−
1

(3 − ψ3)2

[
1

4
{q41 + 2q21(4 − q21)x+ (4 − q21)

2x2}

]

−
1

(3 − ψ3)2

[
(q21 + (4 − q21)x)

ψ2q
2
1

2 − ψ2
+

ψ2
2q

4
1

(2 − ψ2)2

]∣∣∣∣

=

∣∣∣∣
[

1

2(2 − ψ2)(4 − ψ4)

{
1 +

ψ2

2 − ψ2
+

ψ3

3 − ψ3

}
−

1

2(3 − ψ3)2
−

ψ2

(2ψ2)(3ψ3)2

]
q21(4 − q21)x
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−

[
q21

4(2 − ψ2)(4 − ψ4)
+

(4 − q21)

4(3 − ψ3)2

]
(4 − q21)x

2 +
q1(4 − q21)(1 − |x|2)w

2(2 − ψ2)(4 − ψ4)

+
q41

(2 − ψ2)(4 − ψ4)

{
1

4
+

ψ2

2(2 − ψ2)
+

ψ3

2(3 − ψ3)
+

ψ2ψ3

(2 − ψ2)(3 − ψ3)

}

−
q41

4((3 − ψ3)2
−

q41ψ2

(2 − ψ2)(3 − ψ3)2
−

q41ψ
2
2

(2 − ψ2)2(3 − ψ3)2

∣∣∣∣ .

Let q1 = q and 0 ≤ q ≤ 2, and utilizing the assumption |w| ≤ 1, we obtain

|a2a4 − a
2
3| ≤ R1(q) + R2(q)µ+ R3(q)µ

2 = G(q, µ), (11)

where µ = |x| ≤ 1 with

R1(q) = q
4

[
1

(2 − ψ2)(4 − ψ4)

{
1

4
+

ψ2

2(2 − ψ2)
+

ψ3

2(3 − ψ3)
+

ψ2ψ3

(2 − ψ2)(3 − ψ3)

}]

+q4
[

ψ2

(2ψ2)(3 − ψ3)2
−

1

4(3 − ψ3)2
−

ψ2
2

(2 − ψ2)2(3 − ψ3)2

]
+

q(4 − q2)

2(2 − ψ2)(4 − ψ4)
,

R2(q) =

[
1

2(2 − ψ2)(4 − ψ4)

{
1 +

ψ2

2 − ψ2
+

ψ3

3 − ψ3

}
+

ψ2

(2 − ψ2)(3 − ψ3)2
−

1

2(3 − ψ3)2

]
q
2(4−q2),

R3(q) =

[
q(q + 2)

4(2 − ψ2)(4 − ψ4)
+

(4 − q2)

4(3 − ψ3)2

]
(4−q2).

Now, we have to maximize G(q, µ) on the closed square [0, 2] × [0, 1].
By taking partial derivative of G(q, µ) in (11) with respect to µ, we get

∂G(q, µ)

∂µ
=

[
q(q + 2)

4(2 − ψ2)(4 − ψ4)
+

(4 − q2)

4(3 − ψ3)2

]
2(4 − q2)µ (12)

+
q2(4 − q2)

2(2 − ψ2)(4 − ψ4)

{
1 +

ψ2

2 − ψ2
+

ψ3

3 − ψ3

}

+
q2(4 − q2)ψ2

(2 − ψ2)(3 − ψ3)2
−
q2(4 − q2)

2(3 − ψ3)2
.

For µ ∈ (0, 1) and for fixed q ∈ (0, 1), from (12), we observe that ∂G(q,µ)
∂µ

> 0, and
then G(q, µ) is increasing in µ, for fixed p ∈ [0, 2], the maximum of G(q, µ) occurs
at µ = 1 and

max
0≤µ≤1

G(q, µ) = G(q, 1) = F (q). (13)

From (11) and (13), upon simplification, we get

F (q) = G(q, 1) =
ψ2ψ3q

4

(2 − ψ2)2(3 − ψ3)(4 − ψ4)
+

q4

2(3 − ψ3)2
−

ψ2
2q

4

(2 − ψ2)2(3 − ψ3)2

−
q4

2(2 − ψ2)(4 − ψ4)
− q3 +

2q2

4 − ψ4

{
1 +

ψ2

2 − ψ2
+

ψ3

3 − ψ3

}
−

q2

(3 − ψ3)2
(14)
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+
4q2ψ2

(2 − ψ2)(3 − ψ3)2
+

q2

(2 − ψ2)(4 − ψ4)
+

4

(2 − ψ2)(4 − ψ4)
q +

4

(3 − ψ3)2
.

Suppose that F (q) has a maximum value at q ∈ (0, 2). Now by differentiating
with respect to q and after some simple calculations we find

F ′(q) =
4ψ2ψ3q

3

(2 − ψ2)2(3 − ψ3)(4 − ψ4)
+

4q3

2(3 − ψ3)2
−

4q3ψ2
2

2 − ψ2)2(3 − ψ3)2

−
4q3

2(2 − ψ2)(4 − ψ4)
− 3q2 +

4q

(2 − ψ2)(4 − ψ4)

{
1 +

ψ2

2 − ψ2
+

ψ3

3 − ψ3

}

−
2q

(3 − ψ3)2
+

8qψ2

(2 − ψ2)(3 − ψ3)2
+

2q

(2 − ψ2)(4 − ψ4)
+

4

(2 − ψ2)(4 − ψ4)
.

Clearly, F ′(q) = 0 has no optimal solutions in (0, 2). Thus, F (q) achieves its
maximum value outside the interval, which contradicts our assumption of having
the maximum value at the interior point of q ∈ [0, 2]. Thus any maximum point of
F must be on the boundary of [0, 2].
It is clear that F (0) > F (2). Hence the maximum is achieved at q = 0. Therefore
the upper bound for (11) corresponds to µ = 1 and q = 0. Hence from (11) we
obtain (7).

For k = 1 in Theorem 7, we have the following result proved by Janteng [12].

Corollary 1. If f(w) ∈ S̃∗, then

|a2a4 − a2
3| ≤ 1.

We can prove on similar lines the following theorem.

Theorem 2. Let f ∈ K̃k, then

|a2a4 − a2
3| ≤

4

9(3 − ψ3)2
, (15)

where ψn is defined by (5).

Replacing k by 1 in Theorem 2, we have the following result proved by Janteng
[12].

Corollary 2. If f(w) ∈ K̃, then

|a2a4 − a2
3| ≤

1

9
.
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Relative Separation Axioms via Semi-Open Sets

Sehar Shakeel Raina and A. K. Das

Abstract. The concept of relative topological properties was introduced by
Arhangel’skii and Gennedi and was subsequently investigated by many authors for
different notions of general topology. In this paper few semi-separation axioms in
relative sense are introduced and studied by utilizing semi-open sets. Characteriza-
tions and preservation under mapping of these newly defined notions are provided.
Relationship that exists between these notions, with some of the absolute properties
and with the existing relative separation axioms are investigated.

Mathematics subject classification: 54D15.
Keywords and phrases: semi-open, s-regular, s-normal, relative topological prop-
erties, relatively regular, relatively normal.

1 Introduction and Preliminaries

The notions of semi-open set and semi-continuity were introduced by N. Levine
[14] and were subsequently utilized by several researchers in different settings. A
set A is said to be semi-open in a topological space X if there is an open set U
such that U ⊂ A ⊂ cl(U), where cl(U) is the closure of U in X. The condition of
being semi-open is weaker than the condition of being open. A function f : X → Y
is said to be semi-continuous if the inverse image of every open set is semi-open.
Semi-closed sets, semi-interior and semi-closure were defined by S. Gene Crossley
and S. K. Hildebrand in a manner analogous to the corresponding concepts of closed
set, interior and closure [6]. Semi-open and semi-closed functions were defined by
Biswas [5] and Noiri [19]. According to them a function f : X → Y is semi-open if the
image of every open set is semi-open and f : X → Y is said to be semi-closed if the
image of every closed set is semi-closed. Various separation axioms have been defined
using semi-open sets. Maheshwari and Prasad in [15–17] defined semi-Ti, i = 0, 1, 2,
s-regular, and s-normal spaces respectively just by replacing open sets by semi-open
sets in definition of Ti, i = 0, 1, 2, regular, and normal space. Charles Dosett in [10]
further investigated these separation axioms and established relationships with each
other and with other notions. Crossley and Hildebrand gave the concept of semi-
homeomorphism [7] and stated that a property of topological spaces is defined to
be a semi-topological property if it is preserved by semi-homeomorphism. They
showed that some of the topological properties like first category, Hausdorffness,
separability and connectedness are semi-topological properties. Hamlett showed that
the property of a topological space being a Baire space is semi-topological [11]. Nayar

c© Sehar Shakeel Raina and A. K. Das, 2023
DOI: https://doi.org/10.56415/basm.y2023.i2.p11
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and Arya [18] developed techniques which help to establish whether a topological
property is semi-topological or not. Till now a lot of work has been done in general
topology using semi-open sets.

In this paper we study some relative versions of semi-separation axioms. We es-
tablish the relationship of relative semi-separation axioms with the absolute proper-
ties and with the existing relative separation axioms. Characterizations of relatively
s-regular and relatively s-normal are also given. Behavior of these spaces under
mapping is also studied. In this paper we proved that for Y ⊂ X, Y is relatively
s-regular in X iff πR(Y ) is relatively s-regular in XR, where R is an equivalence
relation on X, XR denotes the quotient space X/R and πR : X → X/R is canonical
projection map defined by πR(x) = [x]. This result is similar to Dosett’s Theorem
3.3. [10] generalized in relative sense. A number of examples and counter examples
are also provided in support of various statements.

Let Y ⊂ X. Y is said to be T1 in X or relatively T1 [2] if for every y ∈ Y ,
{y} is closed in X. Y is said to be T2 in X or relatively T2 [2] if for every pair of
distinct points in Y there exist disjoint open sets in X separating them. Y is said
to be regular in X [2] or relatively regular if for every closed set A of X and a point
y ∈ Y such that y /∈ A, there exist disjoint open subsets U and V of X such that
A ∩ Y ⊂ U and y ∈ V . Y is said to be normal in X or relatively normal [2] if for
every pair of disjoint closed sets A and B of X, there exist disjoint open subsets U
and V of X such that A ∩ Y ⊂ U and B ∩ Y ∈ V .

Throughout this paper the semi-closure of A in X is denoted by scl(A) and the
semi-interior of A in X is denoted by sint(A).

2 Relative Semi-Separation Axioms

Semi-Ti, for i = 0, 1, 2, in relative sense can be defined in the same manner
as relatively Ti just by replacing open sets by semi-open sets. It is clear from the
definitions that the condition of being semi-Ti is stronger than the condition of
being relatively semi-Ti. Also the condition of being relatively Ti is stronger than
the condition of being relatively semi-Ti.

Definition 1. Y ⊂ X is said to be relatively s-regular if for every closed set A in
X and a point y ∈ Y such that y /∈ A, there exist disjoint semi-open sets U and V
in X such that y ∈ U and A ∩ Y ⊂ V .

Definition 2. Y ⊂ X is said to be relatively s-normal if for every pair of closed
sets A and B in X, there exist disjoint semi-open sets U and V in X such that
A ∩ Y ⊂ U and B ∩ Y ⊂ V .

It is clear from the definitions that Y is relatively s-normal if X is s-normal and
Y is relatively s-normal if Y is relatively normal. Similarly Y is relatively s-regular
if X is s-regular and Y is relatively s-regular if Y is relatively regular. The following
are some examples showing that none can be reversed.
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Example 1. Let X = {a, b, c, d} and τ = {φ,X, {b, c, d}, {a, b, d}, {b, d}, {d}, {b}}.
Let Y = {a, c}. Semi-open sets of X other than all open sets includes {a, d}, {c, d},
{a, b} and {a, c}. Clearly Y is relatively s-normal in X but Y is not relatively normal
in X as {a} and {c} are closed in X which cannot be separated by disjoint semi-open
sets in X.

Example 2. Let X = {a, b, c, } and τ = {{a}, {a, b}, {a, c},X, φ}. Let Y = {a}.
The only semi-open sets of X are all open sets. X is not s-normal because {b} and
{c} are disjoint closed sets in X which cannot be separated by disjoint semi-open
sets in X. But Y is relatively s-normal.

Theorem 1. Y ⊂ X is said to be relatively s-regular if and only if for every y ∈ Y
and every open set O in X containing y, there exists semi-open set U in X such

that y ∈ U ⊂ scl(U) ⊂ O ∩ X \ Y .

Proof. Let Y be a relatively s-regular space. Let y ∈ Y and O be an open set in
X such that y ∈ O. X \ O is closed in X and y /∈ X \ O. Since Y is relatively
s-regular, there exist disjoint semi-open sets U and V in X such that y ∈ U and
(X \O)∩Y ⊂ V , thus y ∈ U ⊂ X \V ⊂ O∪X \Y . X \V being semi-closed implies
y ∈ U ⊂ scl(U) ⊂ X \ V ⊂ O ∪ X \ Y .

Conversely let y ∈ Y and A be a closed set in X such that y /∈ A. X \ A
is open in X and y ∈ X \ A, there exists semi-open set U such that y ∈ U ⊂
scl(U) ⊂ (X \ A) ∩ X \ Y , which implies y ∈ U ⊂ scl(U) ⊂ X \ (A ∩ Y ) . Now let
V = X \ scl(U) = sint(X \U), therefore V is the largest semi-open set contained in
X \ U . Also scl(U) ⊂ X \ (A ∩ Y ) which implies A ∩ Y ⊂ X \ scl(U) = V . Hence
U and V are disjoint semi-open sets such that y ∈ U and A ∩ Y ⊂ V . Thus Y is
relatively s-regular space.

Theorem 2. Y ⊂ X is relatively s-normal if and only if for every closed set A of

X and every open set B of X containing A, there exists semi-open set U in X such

that A ∩ Y ⊂ U ⊂ scl(U) ⊂ B ∩ X \ Y .

Proof. Let Y be a relatively s-normal space. Let A be a closed set in X and B be an
open set in X containing A. Then A and X \B are disjoint closed sets in X. Since
Y is relatively s-normal, there exist disjoint semi-open sets U and V in X such that
A ∩ Y ⊂ U and (X \ B) ∩ Y ⊂ V , thus A ∩ Y ⊂ U ⊂ X \ V ⊂ B ∪ X \ Y . X \ V
being semi-closed implies A ∩ Y ⊂ U ⊂ scl(U) ⊂ X \ V ⊂ B ∪ X \ Y .

Conversely let A and B be disjoint closed sets in X. Since A ⊂ X \ B which is
open in X, there exists a semi-open set U in X such that A ∩ Y ⊂ U ⊂ scl(U) ⊂
(X \B)∩X \Y ⊂ X \ (B ∩Y ). Now let V = X \ scl(U) = sint(X \U), therefore V
is the largest semi-open set contained in X \ U . Also scl(U) ⊂ X \ (B ∩ Y ) which
implies B ∩ Y ⊂ X \ scl(U) = V . Here U and V are disjoint semi-open sets such
that A ∩ Y ⊂ U and B ∩ Y ⊂ V . Hence Y is relatively s-normal space.

Proof of the following theorem is obvious from definitions.

Theorem 3. Every relatively T0, relatively s-regular space is relatively semi-T2.
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Definition 3. A topological space X is said to be R0 if for every open set G in X,
x ∈ G implies cl({x}) ⊂ G.

Theorem 4. In an R0 space every relatively s-normal subset is relatively s-regular.

Proof. Let Y be relatively s-normal and X be an R0 space. Let A be a closed set
in X and y ∈ Y be such that y /∈ A. X being R0, cl{y} ∩ A = φ. Now A and cl{y}
are two disjoint open sets in X and Y is relatively s-normal, there exist disjoint
semi-open sets U and V in X such that cl{y} ⊂ U and A ∩ Y ⊂ V .

The following corollary follows from the fact that every T1 space is R0 space.

Corollary 1. In a T1 space any relatively s-normal space is relatively s-regular.

Theorem 5. Every relatively T1, relatively s-normal space is relatively s-regular.

In the above Corollary and Theorem, T1 and relatively T1 cannot be replaced by
semi-T2 and relatively semi-T2 respectively as is evident from the following example.

Example 3. Let X1 = {a, b, c} and X2 = [0, 1], T = {X1, φ, {a}, {a, b}, {c}, {a, c}}
be a topology on X1 and S be the usual topology on X2. Then (X1 × X2, P ),
where P denotes the product topology on X1 × X2, is s-normal, semi-T2 [10]. Let
Y = {a, b}×X2. Y is not relatively s-regular since C = {b}×X2 is closed in X and
y = (a, 1/2) ∈ Y , y /∈ C, and there do not exist disjoint semi-open sets containing
y and C, respectively.

Definition 4. [20] Y ⊂ X is said to be relatively almost normal if for any two
disjoint closed subsets A and B of X such that one of them is regularly closed, there
exist disjoint open sets U and V in X such that A ∩ Y ⊂ U and B ∩ Y ⊂ V.

Definition 5. [20] Y ⊂ X is said to be relatively κ-normal if for any two disjoint
regularly closed subsets A and B of X, there exist disjoint open sets U and V in X

such that A ∩Y ⊂ U and B ∩ Y ⊂ V.

Example 4. Relative almost normality does not imply relative s-normality.
Consider Example 2. Let Y = {b, c}. Y is relatively almost normal because the only
regularly closed sets are φ and X. But Y is not relatively s-normal.

Example 5. Relative s-normality does not imply relative κ-normality.
Let X be the set of integers. Define a topology τ on X, where every odd integer is
open and a set U is open if for even integer p ∈ U the successor and the predecessor
of p also belong to U . This topology is called odd-even topology. Let Y be the set
of all even integers. A = {4, 5, 6} and B = {8, 9, 10} are regularly closed in X. But
A∩Y = {4, 6} and B∩Y = {8, 10}, which cannot be separated by disjoint open sets
in X. Hence Y is not relatively κ-normal in X. If we denote any even integer by e
and any odd integer by o, then the semi-open sets of X are of the form {o, o, ...e},
{e, o, o.., o}, {e, o, o, ...e}, {o, o, ..., e, o, ..., o}, {o, o, ...., o} and the sets which are not
semi-open are the sets containing two consecutive even numbers and no odd number
between them, like {2, 4, 5} is not semi-open. Here in this case we can easily check
that Y is relatively s-normal.
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From the above examples we conclude that the concept of relatively s-normal is
independent of relatively almost normal and relatively κ-normal.

Definition 6. X is said to be β-normal [4] if for any two disjoint closed subsets A
and B of X, there exist open subsets U and V of X such that A ∩ U is dense in A
and B ∩ V is dense in B and cl(U) ∩ cl(V ) = φ.

Definition 7. [9] Y ⊂ X is said to be relatively super β-normal if for any two
disjoint subsets A and B closed in X, there exist open subsets U and V of X such
that (A∩Y )∩U is dense in A and (B ∩Y )∩V is dense in B and cl(U)∩ cl(V ) = φ.

Definition 8. [9] Y ⊂ X is said to be relatively strong by β-normal if for any two
disjoint subsets A and B closed in Y , there exist open subsets U and V of X such
that A ∩ U is dense in A and B ∩ V is dense in B and cl(U) ∩ cl(V ) = φ.

Theorem 6. [9] In the class of relatively super β-normal spaces, every κ-normal

space is normal.

Theorem 7. [9] In the class of β-normality (relative β-normality or relative strong

β-normality) every κ-normal space is relatively normal.

From above results the following results are obvious.

Theorem 8. In the class of relative super β-normality every κ-normal space is

s-normal.

Theorem 9. In the class of β-normality (relative β-normality or relative strong

β-normality) every κ-normal space is relatively s-normal.

Definition 9. [3] Y ⊂ X is said to be relatively superregular if for every closed set
A in X and a point y ∈ Y such that y /∈ A, there exist disjoint open sets U and V
in X such that A ⊂ U and y ∈ V .

Theorem 10. The image of a relatively superregular space under continuous, semi-

closed, semi-open and onto map is relatively s-regular.

Proof. Let f : (X1, T ) → (X2, S) be a continuous, semi-open, semi-closed and onto
map. Let Y ⊂ X be relatively superregular. Let O be an open set in X2 and
y2 ∈ f(Y ). Let y1 ∈ f−1(y2). Since f is continuous, f−1(O) is open in X1 and
y1 ∈ f−1(O). Since Y is relatively superregular, there exists an open set U in X1

such that y1 ∈ U ⊂ cl(U) ⊂ O which implies y2 ∈ f(U) ⊂ f(cl(U)) ⊂ f(O). Since
f is semi-open, cl(U) is closed in X1, f(cl(U)) is semi-closed in X2 and scl(f(U))
is the smallest semi-closed set containing f(U). Therefore y2 ∈ f(U) ⊂ scl(f(U)) ⊂
f(cl(U)) ⊂ f(O) ⊂ f(O) ∪ X2 \ f(Y ). Hence f(Y ) is relatively s-regular.

Remark 1. Relative supperregularity cannot be replaced by relative s-regularity in
the above theorem.
Let X1 = {a, b, c, d} with topology T = {{a, b, d}, {b, c, d}, {b, d}, {d}, {b},X1 , φ} and
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X2 = {e, f, g} with topology S = {{e, f}, {e, g}, {e}, X2 , φ}. Define f : X1 → X2

as f(a) = f , f(b) = e, f(c) = g and f(d) = e. Then this map is continuous, onto,
semi-open and semi-closed. Let Y = {a, c}. Clearly Y is relatively s-regular (not
relatively superregular) and f(Y ) is not relatively s-regular.

Theorem 11. Y ⊂ X is relatively s-normal if for every pair of disjoint closed sets

A and B in X, there exists a semi-continuous function f : X → [0, 1] such that

f(A) = {0} and f(B) = {1}.

The Theorem stated above is actually one-sided Urysohn’s Lemma type result and
can be proved easily.

Let X be a topological space and R be an equivalence relation on X defined as
xRy iff cl({x}) = cl({y}). The resulting quotient space X/R is actually T0 and is
called T0-identification of X. Also this quotient space is a decomposition space as
X/R is a set of equivalence classes of R which forms a partition of X. The canonical
projection map πR : X → X/R defined by πR(x) = [x] is the decomposition map.
For simplicity we are using XR instead of X/R.

Theorem 12. Y ⊂ X is relatively s-regular in X iff πR(Y ) is relatively s-regular

in XR.

Proof. Let Y ⊂ X be relatively s-regular. Let C be a closed set in XR and C ∈ πR

such that C /∈ C. Let y ∈ C, then [y] = C. Since πR is continuous, πR(C) is closed
in X. Also y /∈ π−1

R (C) and y ∈ Y . By relative s-regularity of Y in X, there exist
disjoint semi-open sets A and B in X such that y ∈ A and π−1

R (C) ∩ Y ⊂ B. Since
A and B are semi-open sets, there exist open sets U and V in X such that U ⊂ A ⊂
cl(U) and V ⊂ B ⊂ cl(V ) which implies that U ∪{y} and V ∪π−1

R (C)∩Y are disjoint
semi-open sets in X. Now since πR is open and continuous and π−1

R (πR(O)) = O for
all O open in X, D = πR(U ∪Y ) and E = πR(V ∪π−1

R (C)∩Y ) are disjoint semi-open
sets in XR containing [y] and C ∩ πR(Y ). Hence πR(Y ) is s-regular.

Conversely suppose that πR(Y ) is relatively s-regular in XR. Let C be a closed
set in X and y ∈ Y such that y /∈ C. Then [y] ∩ πR(C) = φ. Since πR is closed,
πR(C) is closed in XR. By relative s-regularity of πR(Y ) for [y] ∈ πR(Y ) and as
πR(C) is closed in XR and [y] ∩ πR(C), there exist semi-open sets U and V in XR

such that [y] ∈ U and πR(C)∩πR(Y ) ⊂ V . Since πR is continuous and open, π−1
R (U)

and π−1
R (V ) are disjoint semi-open sets in X containing y and C ∩ Y . Hence Y is

relatively s-regular in X.

Remark 2. The space XR in the above theorem is T0, πR(Y ) is relatively T0. By
Theorem 3 if πR(Y ) is relatively s-regular then πR(Y ) is relatively semi-T2.
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Abstract. In this paper, by using the Nevanlinna value distribution theory of
meromorphic functions on an annulus, we deal with the growth properties of solutions
of the linear differential equation f (k) +Bk−1 (z) f (k−1) + · · ·+B1 (z) f ′ +B0 (z) f = 0,
where k ≥ 2 is an integer and Bk−1 (z) , ..., B1 (z) , B0 (z) are analytic on an annulus.
Under some conditions on the coefficients, we obtain some results concerning the
estimates of the order and the hyper-order of solutions of the above equation. The
results obtained extend and improve those of Wu and Xuan in [16].
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1 Introduction and results

Throughout this article, we shall assume that the reader is familiar with the
standard notations and fundamental results of the Nevanlinna value distribu-
tion theory of meromorphic functions in the complex plane and in the unit disc
D = {z ∈ C : |z| < 1} , see [3, 4, 10,14,17].

Nevanlinna theory has appeared to be powerful tool in the field of complex
differential equations in the complex plane and in the unit disc which are simple
connected domains. In the year 2000, Heittokangas [5] firstly investigated the growth
and oscillation theory of second and higher order linear differential equations when
the coefficients are analytic functions in the unit disc D, by introducing the definition
of the function spaces. Recently, Wu [15], Long [11], Beläıdi [2], Zemirni and Beläıdi
[18] have obtained some results about the growth of analytic solutions of higher
order linear differential equations in a sector of the unit disc. It is well-known
that Nevanlinna theory of meromorphic functions in the complex plane and in the
unit disc can be extended in a modified form to multiply-connected plane domains,
in particular in the annulus [6–9, 12, 13] which is a doubly-connected domain. In
2005, Khrystiyanyn and Kondratyuk [6,7] gave an extension of the Nevanlinna value
distribution theory for meromorphic functions in annuli. In their extension the main
characteristics of meromorphic functions are one-parameter and possessing the same
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properties as in the classical case of a simply connected domain. From the doubly-
connected mapping theorem [1], we can get that each doubly-connected domain
is conformally equivalent to the annulus {z : r < |z| < R, 0 ≤ r < R ≤ +∞}. We
consider only two cases: r = 0, R = +∞ simultaneously and 0 ≤ r < R ≤ +∞. In
the latter case, the homothety z 7−→ z√

rR
reduces the given domain to the annulus

1
R0

< |z| < R0, where R0 =
√

R
r
. Thus, every annulus is invariant with respect to

the inversion z 7−→ 1
z

in two cases.

Before stating our main results, we give some notations and basic defini-

tions of meromorphic functions in the annulus A =
{

z : 1
R0

< |z| < R0

}
, where

1 < R0 ≤ +∞. Let f be a meromorphic function in the complex plane, we define

m (r, f) =
1

2π

∫ 2π

0
log+

∣∣f
(
reiϕ

)∣∣ dϕ,

N (r, f) =

∫ r

0

n (t, f) − n (0, f)

t
dt + n (0, f) log r

and
T (r, f) = m(r, f) + N(r, f) (r > 0)

is the Nevanlinna characteristic function of f , where log+ x = max (0, log x) for
x ≥ 0, and n (t, f) is the number of poles of f lying in {z : |z| ≤ t} , counted ac-
cording to their multiplicity. Now, we give the Nevanlinna theory in the annulus

A =
{
z : 1

R0
< |z| < R0

}
, where 1 < R0 ≤ +∞. Set

N1 (r, f) =

∫ 1

1
r

n1 (t, f)

t
dt, N2 (r, f) =

∫ r

1

n2 (t, f)

t
dt,

m0 (r, f) = m (r, f) + m

(
1

r
, f

)
− 2m (1, f) ,

N0 (r, f) = N1 (r, f) + N2 (r, f) ,

where n1 (t, f) and n2 (t, f) are the counting functions of poles of f lying in
{z : t < |z| ≤ 1} and {z : 1 < |z| ≤ t} respectively, counted according to their mul-
tiplicity. The Nevanlinna characteristic of f in the annulus A is defined by

T0 (r, f) = m0 (r, f) + N0 (r, f) .

Definition 1. ([16]) Let f be a nonconstant meromorphic function in the annu-

lus A =
{

z : 1
R0

< |z| < R0

}
, where 1 < R0 ≤ +∞. The function f is called a

transcendental or admissible in A provided that

lim sup
r→+∞

T0 (r, f)

log r
= +∞ if 1 < r < R0 = +∞
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or

lim sup
r→R−

0

T0 (r, f)

log 1
R0−r

= +∞ if 1 < r < R0 < +∞

respectively. The order of f is defined as

ρA (f) = lim sup
r→+∞

log T0 (r, f)

log r
if 1 < r < R0 = +∞

or

ρA (f) = lim sup
r→R−

0

log T0 (r, f)

log 1
R0−r

if 1 < r < R0 < +∞

respectively. The hyper-order of f is defined as

ρ2,A (f) = lim sup
r→+∞

log log T0 (r, f)

log r
if 1 < r < R0 = +∞

or

ρ2,A (f) = lim sup
r→R−

0

log log T0 (r, f)

log 1
R0−r

if 1 < r < R0 < +∞

respectively.

Now, we introduce the concepts of lower order, hyper lower order, type and
lower type of a meromorphic function f in the annulus A.

Definition 2. Let f be a meromorphic function in A. The lower order of f is defined
as

µA (f) = lim inf
r→+∞

log T0 (r, f)

log r
if 1 < r < R0 = +∞

or

µA (f) = lim inf
r→R−

0

log T0 (r, f)

log 1
R0−r

if 1 < r < R0 < +∞

respectively. The hyper lower order of f is defined as

µ2,A (f) = lim inf
r→+∞

log log T0 (r, f)

log r
if 1 < r < R0 = +∞

or

µ2,A (f) = lim inf
r→R−

0

log log T0 (r, f)

log 1
R0−r

if 1 < r < R0 < +∞

respectively.

Definition 3. Let f be a meromorphic function in A with order 0 < ρA (f) < +∞.
Then, the type of f is defined by

τA (f) = lim sup
r→+∞

T0 (r, f)

rρA(f)
if 1 < r < R0 = +∞
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or

τA (f) = lim sup
r→R−

0

T0 (r, f)
(

1
R0−r

)ρA(f)
if 1 < r < R0 < +∞

respectively. Similarly, let f be a meromorphic function in A with lower order
0 < µA (f) < +∞. Then, the lower type of f is defined by

τA (f) = lim inf
r→R−

0

T0 (r, f)

rµA(f)
if 1 < r < R0 = +∞

or

τA (f) = lim inf
r→R−

0

T0 (r, f)
(

1
R0−r

)µA(f)
if 1 < r < R0 = +∞

respectively.

For k ≥ 2, we consider the linear differential equation

f (k) + Bk−1 (z) f (k−1) + · · · + B1 (z) f ′ + B0 (z) f = 0, (1)

where Bk−1 (z) , ..., B1 (z) and B0 (z) are analytic in the annulus

A =

{
z :

1

R0
< |z| < R0

}
(1 < R0 ≤ +∞) .

Recently in [16], Wu and Xuan have studied the growth of solutions of higher order
linear complex differential equations in A and obtained the following result.

Theorem 1. ([16]) Let Bk−1 (z) , ..., B1 (z), B0 (z) be analytic functions in the an-

nulus A =
{

z : 1
R0

< |z| < R0

}
(1 < R0 ≤ +∞) such that

max{ρA (Bj) : j = 1, 2, ..., k − 1} < ρA (B0) .

Then every solution f 6≡ 0 of equation (1) satisfies ρA (f) = +∞ and

ρ2,A (f) ≥ ρA (B0) .

Note that the result of Theorem 1 occurs when there exists only one dominant
coefficient. Thus, the following question arises naturally: Whether the results similar
to Theorem 1 can be obtained in A if there are more than one dominant coefficients?
In this paper, we give some answers to the above question. In fact, by using the
concepts of the type and the lower type, we obtain some results which indicate
growth estimate of every non-trivial analytic solution of equation (1) by the growth
estimate of the coefficient B0 (z) . We mainly obtain the following results.
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Theorem 2. Let Bk−1 (z) , ..., B1 (z), B0 (z) (k ≥ 2) be analytic functions in the

annulus A =
{
z : 1

R0
< |z| < R0

}
(1 < R0 ≤ +∞). Suppose that there exist three

positive real numbers α, β and µ with 0 ≤ (k − 1) β < α, µ > 0, such that we have

T0(r,B0) ≥ αrµ (2)

and

T0(r,Bj) ≤ βrµ, j = 1, . . . , k − 1 (3)

if 1 < r < R0 = +∞ as |z| = r → +∞ for r ∈ Er which satisfies
∫
Er

dr
r

= +∞, or

T0 (r,B0) ≥
α

(R0 − r)µ
(4)

and

T0 (r,Bj) ≤
β

(R0 − r)µ
(j = 1, ..., k − 1) (5)

if 1 < r < R0 < +∞ as |z| = r → R−
0 for r ∈ Fr which satisfies

∫
Fr

dr
R0−r

= +∞.

Then every solution f 6≡ 0 of equation (1) satisfies ρA (f) = +∞ and ρ2,A (f) ≥ µ.

Theorem 3. Let Bk−1 (z) , ..., B1 (z), B0 (z) (k ≥ 2) be analytic functions in the

annulus A =
{
z : 1

R0
< |z| < R0

}
(1 < R0 ≤ +∞) such that

max{ρA (Bj) : j = 1, 2, ..., k − 1} ≤ ρA (B0) = ρ (0 < ρ < ∞)

and ∑

ρA(Bj)=ρA(B0)

τA (Bj) < τA (B0) = τ ( 0 < τ < ∞) .

Then every solution f 6≡ 0 of equation (1) satisfies ρA (f) = +∞ and ρ2,A (f) ≥
ρA (B0) .

Theorem 4. Let Bk−1 (z) , ..., B1 (z), B0 (z) (k ≥ 2) be analytic functions in the

annulus A =
{
z : 1

R0
< |z| < R0

}
(1 < R0 ≤ +∞) such that 0 < µA (B0) = µ ≤

ρA (B0) < ∞. Assume that

max{ρA (Bj) : j = 1, 2, ..., k − 1} ≤ µA (B0) = µ

and ∑

ρA(Bj)=µA(B0)

τA (Bj) < τA (B0) = τ ( 0 < τ < ∞) .

Then every solution f 6≡ 0 of equation (1) satisfies ρA (f) = µA (f) = +∞ and

ρ2,A (f) ≥ µ2,A (f) ≥ µA (B0) .
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Theorem 5. Let Bk−1 (z) , ..., B1 (z), B0 (z) (k ≥ 2) be analytic functions in the

annulus A =
{
z : 1

R0
< |z| < R0

}
(1 < R0 ≤ +∞) such that B0 (z) is admissible in

A and

lim sup
r→+∞

k−1∑
j=1

m0 (r,Bj)

m0 (r,B0)
< 1 if 1 < r < R0 = +∞

or

lim sup
r→R−

0

k−1∑
j=1

m0 (r,Bj)

m0 (r,B0)
< 1 if 1 < r < R0 < +∞.

Then every solution f 6≡ 0 of equation (1) satisfies ρA (f) = +∞ and ρ2,A (f) ≥
ρA (B0) .

2 Some Preliminary Lemmas

We need the following lemmas to prove our results.

Lemma 1. Let f be a meromorphic function with finite order 0 < ρA(f) < +∞
and finite type 0 < τA(f) < +∞. Then for any given η < τA(f), there exists a subset

Er of (1,+∞) with
∫
Er

dr
r

= +∞ such that for all r ∈ Er

T0(r, f) > ηrρA(f) if 1 < r < R0 = +∞

holds or there exists a subset E
/
r of (1, R0) with

∫

E
/

r

dr
R0−r

= +∞ such that for all

r ∈ E
/
r holds

T0(r, f) >
η

(R0 − r)ρA(f)
if 1 < r < R0 < +∞.

Proof. Case R0 = +∞ : By Definition 3, there exists an increasing sequence
{rm}∞m=1 (rm → +∞, m → +∞) satisfying (1 + 1

m
)rm < rm+1 and

lim
m→+∞

T0(rm, f)

r
ρA(f)
m

= τA(f).

So, there exists a positive integer m0 such that for all m ≥ m0 and for any given
0 < ε < τA(f) − η, we have

T0(rm, f) > (τA(f) − ε)rρA(f)
m . (6)

Since

lim
m→+∞

(
m

m + 1

)ρA(f)

= 1,
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then for any given η < τA(f)− ε, there exists a positive integer m1 such that for all
m ≥ m1, we have (

m

m + 1

)ρA(f)

>
η

τA(f) − ε
. (7)

Take m ≥ m2 = max{m1,m0}. By (6) and (7), for any r ∈
[
rm, (1 + 1

m
)rm

]

T0(r, f) ≥ T0(rm, f) > (τA(f) − ε)rρA(f)
m

≥ (τA(f) − ε)

(
m

m + 1
r

)ρA(f)

> ηrρA(f).

Set Er =
+∞⋃

m=m2

[rm, (1 + 1
m

)rm]. Then there holds

∫

Er

dr

r
=

+∞∑

m=m2

(1+ 1
m

)rm∫

rm

dt

t
=

+∞∑

m=m2

log(1 +
1

m
) = +∞.

Case R0 < +∞ : By Definition 3, there exists an increasing sequence {rm}∞m=1 ⊂
(1, R0) (rm → R−

0 , m → +∞) satisfying R0 −
(
1 − 1

m

)
(R0 − rm) < rm+1 and

lim
m→+∞

T0(rm, f)
(

1
R0−rm

)ρA(f)
= τA(f).

So, there exists a positive integer m3 such that for all m ≥ m3 and for any given
0 < ε < τA(f) − η, we have

T0(rm, f) > (τA(f) − ε)

(
1

R0 − rm

)ρA(f)

. (8)

Since

lim
m→+∞

(
1 −

1

m

)ρA(f)

= 1,

then for any given η < τA(f)− ε, there exists a positive integer m4 such that for all
m ≥ m4, we have (

1 −
1

m

)ρA(f)

>
η

τA(f) − ε
. (9)

Take m ≥ m5 = max{m3,m4}. By (8) and (9), for any r ∈ [rm, R0 −
(
1 − 1

m

)
(R0 −

rm)], we obtain

T0(r, f) ≥ T0(rm, f) > (τA(f) − ε)

(
1

R0 − rm

)ρA(f)
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≥ (τA(f) − ε)

(
1 − 1

m

R0 − r

)ρA(f)

>
η

(R0 − r)ρA(f)
.

Set E
/
r =

+∞⋃
m=m5

[rm, R0 −
(
1 − 1

m

)
(R0 − rm)]. Then there holds

∫

E
/

r

dr

R0 − r
=

+∞∑

m=m5

R0−(1− 1
m

)(R0−rm)∫

rm

dt

R0 − t
=

+∞∑

m=m5

log
m

m − 1
= +∞.

Lemma 2. ([7],[16]) (The lemma of the logarithmic derivative). Let f be a non-

constant meromorphic function in the annulus A =
{
z : 1

R0
< |z| < R0

}
, where

1 < r < R0 ≤ +∞, and k ≥ 1 be an integer. Then

m0

(
r,

f (k)

f

)
=





O (log r) , R0 = +∞ and ρA (f) < +∞,

O
(
log 1

R0−r

)
, R0 < +∞ and ρA (f) < +∞,

O (log r + log T0 (r, f)) , r /∈ ∆r, R0 = +∞,

O
(
log 1

R0−r
+ log T0 (r, f)

)
, r /∈ ∆′

r, R0 < +∞,

where ∆r and ∆′
r are sets with

∫
∆r

dr
r

< +∞ and
∫
∆′

r

dr
R0−r

< +∞ respectively.

Lemma 3. Let f be a meromorphic function with finite order ρA(f) < +∞. Then,

there exists a subset Er of (1,+∞) with
∫
Er

dr
r

= +∞ such that for all r ∈ Er holds

ρA(f) = lim
r→+∞

log T0 (r, f)

log r
if 1 < r < R0 = +∞

or there exists a subset E
/
r of (1, R0) with

∫

E
/

r

dr
R0−r

= +∞ such that for all r ∈ E
/
r

holds

ρA(f) = lim
r→R−

0

log T0 (r, f)

log 1
R0−r

if 1 < r < R0 < +∞.

Proof. Case R0 = +∞. The definition of ρA(f) implies that there exists a sequence
{rn}

∞
n=1 (rn → +∞, n → +∞) satisfying

(
1 + 1

n

)
rn < rn+1 and

lim
n→+∞

log T0 (rn, f)

log rn
= ρA(f).

Then, there exists an integer number n1 such that for all n ≥ n1 and for any
r ∈

[
rn,
(
1 + 1

n

)
rn

]
, we have

log T0 (rn, f)

log
(
1 + 1

n

)
rn

=
log T0 (rn, f)

log
(
1 + 1

n

)
+ log rn

≤
log T0 (r, f)

log r
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≤
log T0

((
1 + 1

n

)
rn, f

)

log rn
=

log T0

((
1 + 1

n

)
rn, f

)

log
(
1 + 1

n

)
rn

·
log
(
1 + 1

n

)
+ log rn

log rn
.

Setting Er =
+∞
∪

n=n1

[
rn,
(
1 + 1

n

)
rn

]
, then for any r ∈ Er, we get

lim
r→+∞

log T0 (r, f)

log r
= lim

n→+∞

log T0 (rn, f)

log rn
= ρA(f),

where

∫

Er

dr

r
=

+∞∑

n=n1

(1+ 1
n
)rn∫

rn

dt

t
=

+∞∑

n=n1

log

(
1 +

1

n

)
= +∞.

Case R0 < +∞ : By definition of ρA(f), there exists an increasing sequence
{rn}

∞
n=1 ⊂ (1, R0) (rn → R−

0 , n → +∞) satisfying R0 −
(
1 − 1

n

)
(R0 − rn) < rn+1

and

lim
n→+∞

log T0 (rn, f)

log 1
R0−rn

= ρA(f).

So, there exists a positive integer n2 such that for all n ≥ n2 and for any r ∈[
rn, R0 −

(
1 − 1

n

)
(R0 − rn)

]
, we have

log T0 (rn, f)

log 1

(1− 1
n
)(R0−rn)

≤
log T0 (r, f)

log 1
R0−r

≤
log T0

(
R0 −

(
1 − 1

n

)
(R0 − rn), f

)

log 1
R0−rn

.

It follows that
log T0 (rn, f)

log n
n−1 + log 1

R0−rn

≤
log T0 (r, f)

log 1
R0−r

≤
log T0

(
R0 −

(
1 − 1

n

)
(R0 − rn), f

)

log 1

(1− 1
n
)(R0−rn)

·
log 1

(1− 1
n
)(R0−rn)

log 1
R0−rn

.

Set E
/
r =

+∞⋃
n=n2

[rn, R0 −
(
1 − 1

n

)
(R0 − rn)]. Then for any r ∈ E

/
r , we get

lim
r→R−

0

log T0 (r, f)

log 1
R0−r

= lim
n→+∞

log T0 (rn, f)

log 1
R0−rn

= ρA(f),

where

∫

E
/

r

dr

R0 − r
=

+∞∑

n=n2

R0−(1− 1
n
)(R0−rn)∫

rn

dt

R0 − t
=

+∞∑

n=n2

log
n

n − 1
= +∞.



28 B. BELAÏDI

3 Proofs of the Theorems

Proof of Theorem 2

Proof. Let f 6≡ 0 be a solution of (1). We divide through equation (1) by f to get

−B0 (z) =
f (k) (z)

f (z)
+

k−1∑

j=1

Bj (z)
f (j) (z)

f (z)
. (10)

By (10) and Lemma 2, it follows that

m0 (r,B0) = T0 (r,B0) ≤

k−1∑

j=1

m0 (r,Bj) +

k∑

j=1

m0

(
r,

f (j)

f

)
+ O (1)

≤

k−1∑

j=1

m0 (r,Bj) +

{
O (log r + log T0 (r, f)) , R0 = +∞, r /∈ ∆r

O
(
log 1

R0−r
+ log T0 (r, f)

)
, R0 < +∞, r /∈ ∆′

r

=

k−1∑

j=1

T0 (r,Bj) +

{
O (log r + log T0 (r, f)) , R0 = +∞, r /∈ ∆r,

O
(
log 1

R0−r
+ log T0 (r, f)

)
, R0 < +∞, r /∈ ∆′

r,
(11)

where ∆r and ∆′
r are sets with

∫
∆r

dr
r

< +∞ and
∫
∆′

r

dr
R0−r

< +∞ respectively.

Case R0 = +∞. By substituting (2) and (3) into (11), we conclude for r ∈ Er\∆r

sufficiently large

αrµ ≤ (k − 1) βrµ + O(log r + log T0(r, f)). (12)

From (12), we obtain

(α − (k − 1) β) rµ ≤ O(log r + log T0(r, f))

and since α > (k − 1) β, this leads to ρA (f) = +∞ and ρ2,A (f) ≥ µ.

Case R0 < +∞. Let f 6≡ 0 be a solution of (1). By substituting (4) and (5) into
(11), we conclude for r ∈ Fr\∆

′
r, r → R−

0

α

(R0 − r)µ
≤ (k − 1)

β

(R0 − r)µ
+ O(log

1

R0 − r
+ log T0(r, f)). (13)

Then by (13), we obtain

α − (k − 1) β

(R0 − r)µ
≤ O(log

1

R0 − r
+ log T0(r, f))

and since α > (k − 1) β, this leads to ρA (f) = +∞ and ρ2,A (f) ≥ µ.
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Proof of Theorem 3

Proof. Let f 6≡ 0 be a solution of (1). If ρA (Bj) < ρA (B0) for all 1, 2, ..., k − 1,
then Theorem 3 reduces to Theorem 1. Thus, we assume that at least one of Bj

(1, 2, ..., k−1) satisfies ρA (Bj) = ρA (B0) = ρ. So, there exists a set J ⊆ {1, 2, ..., k−
1} such that for j ∈ J, we have ρA (Bj) = ρA (B0) = ρ with

∑
j∈J

τA (Bj) < τA (B0) = τ

and for j ∈ {1, 2, ..., k − 1}\J, we have ρA (Bj) < ρA (B0) = ρ. Hence, we can choose
α1, α2 satisfying

∑
j∈J

τA (Bj) < α1 < α2 < τ such that for sufficiently large r and any

given ε
(
0 < ε < α2−α1

k−1

)
, we have

T0 (r,Bj) = m0 (r,Bj) ≤ (τA (Bj) + ε) rρA(Bj) = (τA (Bj) + ε) rρ, j ∈ J (14)

and
T0 (r,Bj) = m0 (r,Bj) ≤ rρ0, j ∈ {1, 2, ..., k − 1} \J, (15)

where 0 < ρ0 < ρ. For r → R−
0 and any given ε

(
0 < ε < α2−α1

k−1

)
, we obtain

T0 (r,Bj) = m0 (r,Bj) ≤ (τA (Bj) + ε)

(
1

R0 − r

)ρA(Bj)

= (τA (Bj) + ε)

(
1

R0 − r

)ρ

, j ∈ J (16)

and

T0 (r,Bj) = m0 (r,Bj) ≤

(
1

R0 − r

)ρ0

, j ∈ {1, 2, ..., k − 1} \J, (17)

where 0 < ρ0 < ρ. By applying Lemma 1, there exists a subset Er of (1,∞) with∫
Er

dr
r

= +∞ such that for all r ∈ Er, we have

T0 (r,B0) = m0 (r,B0) > α2r
ρ if 1 < r < R0 = +∞ (18)

or there exists a subset E
/
r of (1, R0) with

∫

E
/

r

dr
R0−r

= +∞ such that for all r ∈ E
/
r

holds

T0 (r,B0) = m0 (r,B0) > α2

(
1

R0 − r

)ρ

if 1 < r < R0 < +∞. (19)

Case R0 = +∞ : By substituting the assumptions (14), (15) and (18) into (11), for

all sufficiently large r ∈ Er\∆r and any given ε
(
0 < ε < α2−α1

k−1

)
, we obtain

α2r
ρ ≤

∑

j∈J

(τA (Bj) + ε) rρ +
∑

j∈{1,...,k−1}\J

rρ0 + O (log r + log T0 (r, f))

≤ (α1 + (k − 1) ε) rρ + (k − 1) rρ0 + O (log r + log T0 (r, f)) .
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It follows that

(α2 − α1 − (k − 1) ε) rρ ≤ (k − 1) rρ0 + O (log r + log T0 (r, f)) . (20)

Since ε
(
0 < ε < α2−α1

k−1

)
, then from (20), we get ρA (f) = +∞ and ρ2,A (f) ≥

ρA (B0) = ρ.

Case R0 < +∞ : By substituting the assumptions (16), (17) and (19) into (11),

for all r ∈ E′
r\∆

′
r with r → R−

0 and any given ε
(
0 < ε < α2−α1

k−1

)
, we obtain

α2

(
1

R0 − r

)ρ

≤
∑

j∈J

(τA (Bj) + ε)

(
1

R0 − r

)ρ

+
∑

j∈{1,...,k−1}\J

(
1

R0 − r

)ρ0

+ O

(
log

1

R0 − r
+ log T0 (r, f)

)

≤ (α1 + (k − 1) ε)

(
1

R0 − r

)ρ

+ (k − 1)

(
1

R0 − r

)ρ0

+O

(
log

1

R0 − r
+ log T0 (r, f)

)
.

It follows that

(α2 − α1 − (k − 1) ε)

(
1

R0 − r

)ρ

≤ (k − 1)

(
1

R0 − r

)ρ0

+O

(
log

1

R0 − r
+ log T0 (r, f)

)
. (21)

Since ε
(
0 < ε < α2−α1

k−1

)
, then from (21), we obtain ρA (f) = +∞ and ρ2,A (f) ≥

ρA (B0) = ρ.

Proof of Theorem 4

Proof. Let f 6≡ 0 be a solution of (1). First, we suppose that b = max{ρA (Bj) : j =
1, 2, ..., k−1} < µA (B0) = µ. Then, for any given ε (0 < 2ε < µ− b) and sufficiently
large r, we have

T0 (r,B0) = m0 (r,B0) ≥ rµ−ε (22)

and

T0 (r,Bj) = m0 (r,Bj) ≤ rb+ε, j = 1, 2, ..., k − 1. (23)

For r → R−
0 and any given ε (0 < 2ε < µ − b) , we obtain

T0 (r,B0) = m0 (r,B0) ≥

(
1

R0 − r

)µ−ε

(24)
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and

T0 (r,Bj) = m0 (r,Bj) ≤

(
1

R0 − r

)b+ε

, j = 1, 2, ..., k − 1. (25)

Case R0 = +∞ : By substituting the assumptions (22) and (23) into (11), for any
given ε (0 < 2ε < µ − b) and sufficiently large r /∈ ∆r, we obtain

rµ−ε ≤ (k − 1) rb+ε + O (log r + log T0 (r, f)) . (26)

Since ε
(
0 < ε < µ−b

2

)
, then from (26) we get ρA (f) = µA (f) = +∞ and

ρ2,A (f) ≥ µ2,A (f) ≥ µA (B0) = µ.

Case R0 < +∞ : By substituting the assumptions (24) and (25) into (11), for
any given ε (0 < 2ε < µ − b) and r → R−

0 , r /∈ ∆′
r we obtain

(
1

R0 − r

)µ−ε

≤ (k − 1)

(
1

R0 − r

)b+ε

+ O

(
log

1

R0 − r
+ log T0 (r, f)

)
. (27)

Since ε
(
0 < ε < µ−b

2

)
, then from (27) we have ρA (f) = µA (f) = +∞ and

ρ2,A (f) ≥ µ2,A (f) ≥ µA (B0) = µ.

Assume

max{ρA (Bj) : j = 1, 2, ..., k − 1} = µA (B0) = µ

and τ1 =
∑

ρA(Bj)=µA(B0)

τA (Bj) < τA (B0) = τ . Then, there exists a set J ⊆

{1, 2, ..., k − 1} such that for j ∈ J, we have ρA (Bj) = µA (B0) = µ with
τ1 =

∑
j∈J

τA (Bj) < τA (B0) = τ and for j ∈ {1, 2, ..., k − 1}\J, we have ρA (Bj) <

µA (B0) = µ. Hence, we can choose β1, β2 satisfying
∑
j∈J

τA (Bj) < β1 < β2 < τ such

that for sufficiently large r and any given ε
(
0 < ε < β2−β1

k−1

)
, we have

T0 (r,Bj) = m0 (r,Bj) ≤ (τA (Bj) + ε) rρA(Bj) = (τA (Bj) + ε) rµ, j ∈ J (28)

and

T0 (r,Bj) = m0 (r,Bj) ≤ rρ1, j ∈ {1, 2, ..., k − 1} \J, (29)

where 0 < ρ1 < µ. By the definition of lower type for sufficiently large r, we have

T0 (r,B0) = m0 (r,B0) ≥ β2r
µ. (30)

For r → R−
0 and any given ε

(
0 < ε < β2−β1

k−1

)
, we obtain

T0 (r,Bj) = m0 (r,Bj) ≤ (τA (Bj) + ε)

(
1

R0 − r

)ρA(Bj)
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= (τA (Bj) + ε)

(
1

R0 − r

)µ

, j ∈ J (31)

and

T0 (r,Bj) = m0 (r,Bj) ≤

(
1

R0 − r

)ρ1

, j ∈ {1, 2, ..., k − 1} \J, (32)

where 0 < ρ1 < µ. By the definition of lower type, for r → R−
0 , we have

T0 (r,B0) = m0 (r,B0) ≥ β2

(
1

R0 − r

)µ

. (33)

Case R0 = +∞ : By substituting the assumptions (28), (29) and (30) into (11), for

all sufficiently large r /∈ ∆r any given ε
(
0 < ε < β2−β1

k−1

)
, we obtain

β2r
µ ≤

∑

j∈J

(τA (Bj) + ε) rµ +
∑

j∈{1,...,k−1}\J

rρ1 + O (log r + log T0 (r, f))

≤ (β1 + (k − 1) ε) rµ + (k − 1) rρ1 + O (log r + log T0 (r, f)) .

It follows that

(β2 − β1 − (k − 1) ε) rµ ≤ (k − 1) rρ1 + O (log r + log T0 (r, f)) . (34)

From (34), since ε
(
0 < ε < β2−β1

k−1

)
, we have ρA (f) = µA (f) = +∞ and ρ2,A (f) ≥

µ2,A (f) ≥ µA (B0) = µ.

Case R0 < +∞ : By substituting the assumptions (31), (32) and (33) into (11),

for all r /∈ ∆′
r with r → R−

0 and any given ε
(
0 < ε < β2−β1

k−1

)
, we obtain

β2

(
1

R0 − r

)µ

≤
∑

j∈J

(τA (Bj) + ε)

(
1

R0 − r

)µ

+
∑

j∈{1,...,k−1}\J

(
1

R0 − r

)ρ1

+ O

(
log

1

R0 − r
+ log T0 (r, f)

)

≤ (β1 + (k − 1) ε)

(
1

R0 − r

)µ

+ (k − 1)

(
1

R0 − r

)ρ1

+O

(
log

1

R0 − r
+ log T0 (r, f)

)
.

It follows that

(β2 − β1 − (k − 1) ε)

(
1

R0 − r

)µ

≤ (k − 1)

(
1

R0 − r

)ρ1

+O

(
log

1

R0 − r
+ log T0 (r, f)

)
. (35)

From (35), since ε
(
0 < ε < β2−β1

k−1

)
, we get ρA (f) = µA (f) = +∞ and ρ2,A (f) ≥

µ2,A (f) ≥ µA (B0) = µ.
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Proof of Theorem 5

Proof. Let f 6≡ 0 be a solution of (1). Suppose that

lim sup
r→+∞

k−1∑
j=1

m0 (r,Bj)

m0 (r,B0)
< 1 if 1 < r < R0 = +∞ (36)

or

lim sup
r→R−

0

k−1∑
j=1

m0 (r,Bj)

m0 (r,B0)
< 1 if 1 < r < R0 < +∞. (37)

Then for sufficiently large r or r → R−
0 , we have

k−1∑

j=1

m0 (r,Bj) < γm0 (r,B0) , 0 < γ < 1. (38)

Thus, by substituting (38) into (11), we obtain for sufficiently large r or r → R−
0

m0 (r,B0) ≤ γm0 (r,B0) +

{
O (log r + log T0 (r, f)) , R0 = +∞, r /∈ ∆r,

O
(
log 1

R0−r
+ log T0 (r, f)

)
, R0 < +∞, r /∈ ∆′

r.

(39)
From (39), it follows that

(1 − γ) m0 (r,B0) = (1 − γ) T0 (r,B0)

≤

{
O (log r + log T0 (r, f)) , R0 = +∞, r /∈ ∆r,

O
(
log 1

R0−r
+ log T0 (r, f)

)
, R0 < +∞, r /∈ ∆′

r.
(40)

Case R0 = +∞ : By (40), we obtain for r sufficiently large

(1 − γ)
T0 (r,B0)

log r
≤ O

(
1 +

log T0 (r, f)

log r

)
, r /∈ ∆r (41)

and

log (1 − γ)

log r
+

log T0 (r,B0)

log r
≤

log log r

log r
+

log log T0 (r, f)

log r
+

O (1)

log r
, r /∈ ∆r. (42)

Since B0 (z) is an admissible analytic function in the annulus A, then from (41) and
(42), we get ρA (f) = +∞ and ρ2,A (f) ≥ ρA (B0).

Case R0 < +∞ : By (40), we have for r → R−
0

(1 − γ)
T0 (r,B0)

log 1
R0−r

≤ O

(
1 +

log T0 (r, f)

log 1
R0−r

)
, r /∈ ∆′

r (43)
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and

log (1 − γ)

log 1
R0−r

+
log T0 (r,B0)

log 1
R0−r

≤
log log 1

R0−r

log 1
R0−r

+
log log T0 (r, f)

log 1
R0−r

+
O (1)

log 1
R0−r

, r /∈ ∆′
r.

(44)
Since B0 (z) is an admissible analytic function in the annulus A, then from (43) and
(44), we obtain ρA (f) = +∞ and ρ2,A (f) ≥ ρA (B0).
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On T -nilpotence of a matrix set
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Abstract. Let R be a ring and I be an arbitrary right T -nilpotent subset of R. In
the paper it is proved that in this case the set of all n×n-matrices with entries in I is
a right T -nilpotent subset of the ring of n×n-matrices with entries in R, where n ∈ N.
It is also showed that it is impossible to generalize this result for rings of matrices of
infinite dimension.
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1 Introduction

All rings are considered to be associative with 1 6= 0. The category of left K-
modules is denoted by K −Mod. The set of all n× n-matrices with entries in a set
I will be denoted by Mn(I), where n ∈ N.

Definition 1. ([5, p. 291]) A set A of elements of a ring R is called left (resp. right)
T -nilpotent, if for every family

(a1, a2, a3, ...), ai ∈ A

a k ∈ N exists with
akak−1...a1 = 0, (a1a2...ak = 0).

(See also [1, p. 313].)

The notion of T -nilpotence has the important applications in certain areas of the
Ring and Module Theory, especially in theory of perfect and semiartinian rings, but
not only (for example, see [8, p. 183–184, 189], [6, p. 60], [7, p. 67], [3, p. 86, 87]).

Recall the definition of the equivalence. Let C and D be categories. A functor
S : C → D is an equivalence if there exist a functor T : D → C and natural
equivalences TS → 1C and ST → 1D. (See [8, p. 82].)

In the paper [4] the following corollaries are obtained:

Corollary 1. (See Corollary 11 [4, p. 52]) Let R,S be equivalent rings, via an

equivalence F : R − Mod → S − Mod. If I is a right T -nilpotent two-sided ideal of

R, then so is the two-sided ideal {s ∈ S |∀x ∈ F (R/I) : sx = 0} of S.

c© Yu. P. Maturin, 2023
DOI: https://doi.org/10.56415/basm.y2023.i2.p36
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Corollary 2. (See Corollary 12 [4, p. 52]) Let R be a ring and let n ∈ N. If I is a

right T -nilpotent ideal of R, then Mn(I) is a right T -nilpotent ideal of Mn(R).

The aim of our paper is to obtain the stronger statement than Corollary 2.
Indeed, in this corollary an arbitrary subset of a ring instead of a two-sided ideal
can be considered.

2 Preliminaries

Lemma 1. (König’s Graph Lemma, [2, p. 40]) Start with a countable sequence

{Fn |n = 1, 2, ...}of finite sets, and for each n, assume that there is a map Φn of Fn

into Pow(Fn+1). In order to simplify notation, denote Φn by Φ, ∀n, and the union

of the given family of finite sets by F . A path in (the ordered pair) (F,Φ) is a finite

or infinite sequence of elements b1, ..., bn, ... of F such that bi ∈ Fi and bi+1 ∈ Φ(bi),
i = 1, 2, .... The length of a finite path b1, b2, ..., bm is m; the length of the infinite

path b1, b2, ...is infinite. Then if (F,Φ) has paths of ever greater length, then it has

a path of infinite length.

3 Main result

Theorem 1. Let R be a ring and I be a right T -nilpotent subset of R. Then Mn(I)
is a right T -nilpotent subset of Mn(R), where n ∈ N.

Proof. Let I be a right T -nilpotent subset of R and n ∈ N.

Assume Mn(I) is not right T -nilpotent. Then there is an infinite sequence of
matrices

||a
(1)
ij ||, ||a

(2)
ij ||, . . . , ||a

(k)
ij ||, . . .

belonging to Mn(I) such that for each k ∈ N

Ak 6= O, (1)

where Ak = ||a
(1)
ij ||||a

(2)
ij ||...||a

(k)
ij ||.

Let Ak = ||A
(k)
ij || for each k ∈ N.

Then it is obvious that

A
(1)
ij = a

(1)
ij and A

(k)
ij =

n∑

t1=1

n∑

t2=1

...
n∑

tk−1=1

a
(1)
it1

a
(2)
t1t2

...a
(k)
tk−1j for k ≥ 2. (2)

Consider the sets F1, F2, ..., Fk , ... defined as follows:

F1 = {(λ1, λ2)|λ1, λ2 ∈ {1, 2, ..., n}, a
(1)
λ1λ2

6= 0},

F2 = {(λ1, λ2, λ3)|λ1, λ2, λ3 ∈ {1, 2, ..., n}, a
(1)
λ1λ2

a
(2)
λ2λ3

6= 0},



38 YU. P. MATURIN

...
...

...

Fk = {(λ1, λ2, ..., λk+1)|λ1, λ2, ..., λk+1 ∈ {1, 2, ..., n}, a
(1)
λ1λ2

a
(2)
λ2λ3

...a
(k)
λkλk+1

6= 0},

...
...

...

(1)-(2) imply
∀k ∈ N : Fk 6= ∅.

Hence for each k ∈ N it is possible to consider the following mapping:

Φk :

{
Fk → Pow(Fk+1),

(λ1, λ2, ..., λk+1) 7→ {(λ1, λ2, ..., λk+1, λk+2)|a
(1)
λ1λ2

...a
(k+1)
λk+1λk+2

6= 0}.

Let u be an arbitrary integer greater than 0. Then Au 6= O. It follows from

this that for some i, j ∈ {1, 2, ..., n} A
(u)
ij 6= 0. It follows from (2) that for some

t1, ..., tu−1 ∈ {1, 2, ..., n}

a
(1)
it1

a
(2)
t1t2

...a
(u)
tu−1j 6= 0. (3)

Whence

a
(1)
it1

6= 0,

a
(1)
it1

a
(2)
t1t2

6= 0,

...
...

...

a
(1)
it1

a
(2)
t1t2

...a
(u−1)
tu−2tu−1

6= 0.

(4)

Put

b1 = (i, t1),

b2 = (i, t1, t2),

...
...

...

bu−1 = (i, t1, t2, ..., tu−1),

bu = (i, t1, t2, ..., tu−1, j).

(3)-(4) imply that b1 ∈ F1, b2 ∈ F2, . . . , bu ∈ Fu.
It is clear that

b2 ∈ Φ1(b1),

b3 ∈ Φ2(b2),

...
...

...

bu ∈ Φu−1(bu−1).
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The length of the path b1, b2, ..., bu is u. Since u is an arbitrary integer greater
than 0, we have paths of ever greater length. Therefore, by König’s Graph Lemma,
there exists a path of infinite length.

It means that there exists an infinite sequence of numbers λ1, λ2, ..., λp, ... be-
longing to {1, 2, ..., n} satisfying the following conditions:

(λ1, λ2) ∈ F1,

(λ1, λ2, λ3) ∈ F2,

...
...

...

(λ1, λ2, ..., λp+1) ∈ Fp,

...
...

...

(5)

Consider the sequence

a
(1)
λ1λ2

, a
(2)
λ2λ3

, ..., a
(s)
λsλs+1

, ... .

It follows from (5) that for an arbitrary p ∈ N

a
(1)
λ1λ2

a
(2)
λ2λ3

...a
(p)
λpλp+1

6= 0.

Hence I is not right T -nilpotent, which is a contradiction.

Now we will see that it is impossible to generalize our result for rings of matrices
of infinite dimension.

Example 1. Let K be a ring and S be a subset of K. Let RFMN(S) be the set
of all mappings f : N × N → S, where for each α ∈ N the set {f(α, β) 6= 0|β ∈ N}
is finite. Then RFMN(K) is a natural generalization of the matrix rings Mn(K)
(see [1, p. 19]).

Let k be a field. Consider the polynomial ring k[x1, x2, ..., xn, ...] in a countable
number of variables. Let M be the ideal of this ring spanned by the following
elements: x2

1, x3
2, ..., xn+1

n , ..., xixj, where i 6= j and i, j ∈ N. Denote the elements
a + M of the factor ring K := k[x1, x2, ..., xn, ...]/M by ā.

And now let I be the ideal of K spanned by the elements x̄1, x̄2,..., x̄n,... . It is
obvious that I is right T -nilpotent.

Define a function g : N × N → K as follows:

g(i, i) = x̄i, g(i, j) = 0̄,

for all i, j ∈ N, where i 6= j. It is clear that g ∈ RFMN(I), but g is not nilpotent.

Therefore RFMN(I) is not right T -nilpotent, although I is right T -nilpotent.
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On the Existence of Stationary Nash Equilibria for

Mean Payoff Games on Graphs

Dmitrii Lozovanu, Stefan Pickl

Abstract. In this paper we extend the classical concept of positional strategies for
a mean payoff game to a general mixed stationary strategy approach, and prove the
existence of mixed stationary Nash equilibria for an arbitrary m-player mean payoff
game on graphs. Traditionally, a positional strategy represents a pure stationary
strategy in a classical mean payoff game, where a Nash equilibrium in pure stationary
strategies in general may not exist. Based on a constructive proof of the existence
of specific equilibria for an m-player mean payoff game we propose a new approach
for determining the optimal mixed stationary strategies. Additionally we characterize
and extend the general problem of the existence of pure stationary Nash equilibria for
some special classes of mean payoff games.

Mathematics subject classification: 90B15, 91A15, 91A43.
Keywords and phrases: mean payoff game, pure stationary strategy, mixed sta-
tionary strategy, stationary Nash equilibrium.

1 Introduction

In [3,5,11] the following game of two players on a graph has been considered: Let
G = (X,E) be a finite directed graph in which every vertex x ∈ X has at least one
outgoing directed edge e = (x, y) ∈ E. On the edge set E a function c : E → R is
given which assigns a value c(e) to each edge e ∈ E. Furthermore, the vertex set X
is divided into two disjoint subsets X1 and X2 (X = X1 ∪X2, X1 ∩X2 = ∅) which
are regarded as position sets of the two players. The game starts in a given position
x0 ∈ X. If x0 ∈ X1 then the move is done by the first player, otherwise it is done
by second one. Move means the passage from position x0 to a neighbor position x1

through the directed edge e0 = (x0, x1) ∈ E. After that if x1 ∈ X1 then the move is
done by the first player, otherwise it is done by the second one and so on indefinitely.

The first player has the aim to maximize lim
t→∞

inf
1

t

t−1∑

τ=0

c(eτ ) while the second player

has the aim to minimize lim
t→∞

sup
1

t

t−1∑

τ=0

c(eτ ). In [3] it has been proven that for this

game there exists a value v(x0) such that the first player has a strategy (of moves)

that insures lim
t→∞

inf
1

t

t−1∑

τ=0

c(eτ ) ≥ v(x0) and the second player has a strategy that

c© Dmitrii Lozovanu, Stefan Pickl, 2023
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insures lim
t→∞

sup
1

t

t−1∑

τ=0

c(eτ ) ≤ v(x0). Furthermore it has been shown that players in

this games can achieve the values v(x0) applying the strategies of moves which do
not depend on t but depend only on the vertex (position) from which the player is
able to move. Therefore, in [3,11] such strategies are called positional strategies and
the game sometimes is called positional game; in [5, 10] these strategies are called
stationary strategies. More precisely the stationary strategies can be specified as
pure stationary strategies because each move through a directed edge at a vertex of
the game is chosen from the set of feasible strategies of moves by the corresponding
player with the probability equal to 1 and in each position such a strategy does not
change in time.

A generalization of a zero-sum mean payoff game to a non-zero-sum m-player
positional game, where m ≥ 2, is now the following: Consider a finite directed
graph G = (X,E) in which every vertex has at least one outgoing directed edge.
Assume that the vertex set X is divided into m disjoint subsets X1,X2, . . . ,Xm

( X = X1 ∪X2 ∪ · · · ∪Xm; Xi ∩Xj = ∅, i 6= j) which we regard as position sets of
the m players. Additionally, we assume that on the edge set m functions ci : F →
R, i = 1, 2, . . . ,m, are defined that assign to each directed edge e = (x, y) ∈ E the
values c1e, c

2
e, . . . , c

m
e that are regarded as the rewards for the corresponding players

1, 2, . . . ,m.

On G we consider the following m-person dynamic game: The game starts at a
given position x0 ∈ X at the moment of time t = 0 where the player i ∈ {1, 2, . . . ,m}
who is the owner of the starting position x0 makes a move from x0 to a neighbor
position x1 ∈ X through the directed edge e0 = (x0, x1) ∈ E. After that players
1, 2, . . . ,m receive the corresponding rewards c1e0

, c2e0
, . . . , cme0

. Then at the moment
of time t = 1 the player k ∈ {1, 2, . . . ,m} who is owner of position x1 makes a move
from x1 to a position x2 ∈ V through the directed edge e1 = (x1, x2) ∈ E, players
1, 2, . . . ,m receive the corresponding rewards c1e1

, c2e1
, . . . , cme1

, and so on, indefinitely.
Such a play of the game onG produces the sequence of positions x0, x1, x2, . . . , xt, . . .
where each xt is the position at the moment of time t.

An m-player mean payoff game on G is the game with payoffs

ωi
xo

= lim
t→∞

inf
1

t

t−1∑

τ=0

cieτ
, i = 1, 2, . . . ,m.

The positional game on graph G formulated above in the cas m = 2 and c1e =
−c2e = ce, ∀e ∈ E, is transformed into a a two-player zero-sum mean payoff game
on graph G for which Nash equilibria in pure stationary strategies exist. In general,
a non-zero-sum mean payoff game on a graph may have no Nash equilibrium in
pure stationary strategies. This fact has been shown in [5], where an example of
two-player non-zero-sum mean payoff game that has no Nash equilibria in pure
strategies is constructed. A pure stationary Nash equilibrium may exist only for
some special cases of non-zero mean payoff games (see [1, 5, 10]).



EQUILIBRIA FOR MEAN PAYOFF GAMES ON GRAPHS 43

In this contribution we consider the non-zero-sum positional games in mixed
stationary strategies. We define a mixed stationary strategy of moves in a position
x ∈ Xi for the player i ∈ {1, 2, . . . ,m}, as a probability distribution over the set
of feasible moves from x. We show that an arbitrary m-player mean payoff game
on a graph possesses a Nash equilibrium in mixed stationary strategies. Based on a
constructive proof of this result we propose an approach for determining the optimal
mixed stationary strategies of the players.

The paper is organized as follows: In Section 2 an average stochastic positional
game that generalizes non-zero-sum mean payoff games is formulated. Then in
Sections 3 the known results of the existence of stationary Nash equilibria for an
average stochastic positional game and an approach for determining the optimal
strategies of players in such a game are presented. In Sections 4, 5, based on results
from the Sections 3 the existence of Nash equilibria in mixed stationary strategies
for non-zero-sum mean payoff games is proven and an approach for determining the
optimal strategies of the players is proposed.

2 A Generalization of Mean Payoff Game on Graphs

to Average Stochastic Positional Games

The problem of determining Nash equilibria in mixed stationary strategies for
mean payoff games on graphs leads to a special class of stochastic games from [7–9]
called average stochastic positional games. In [8] it is shown that such class of games
possesses Nash equilibria in mixed stationary strategies. Therefore in the paper we
shall use the average stochastic positional games for studying the existence of mixed
stationary Nash equilibria in non-zero-sum mean payoff games. An m-player average
stochastic positional game consists of the following elements:

– a state space X (which we assume to be finite);

– a partition X = X1 ∪X2 ∪ · · · ∪Xm where Xi represents the position set
of player i ∈ {1, 2, . . . ,m};

– a finite set A(x) of actions in each state x ∈ X;

– a step reward f i(x, a) with respect to each player i ∈{1, 2, . . . ,m} in each
state x ∈ X and for an arbitrary action a ∈ A(x);

– a transition probability function p : X ×
∏

x∈X

A(x) ×X → [0, 1] that gives

the probability transitions pa
x,y from an arbitrary x ∈ X to an arbitrary

y ∈ X for a fixed action a ∈ A(x), where
∑

y∈X

pa
x,y = 1,∀x ∈ X,a ∈ A(x);

– a starting state x0 ∈ X.

The game starts at the moment of time t = 0 in the state x0 where the player
i ∈ {1, 2, . . . ,m} who is the owner of the state position x0 (x0 ∈ Xi) chooses an
action a0 ∈ A(x0) and determines the rewards f1(x0, a0), f

2(x0, a0),
. . . , fm(x0, a0) for the corresponding players 1, 2, . . . ,m. After that the game
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passes to a state y = x1 ∈ X according to a certain probability distribution {pa0
x0,y}.

At the moment of time t = 1 the player k ∈ {1, 2, . . . ,m} who is the owner of
the state position x1 (x1 ∈ Xk) chooses an action a1 ∈ A(x1) and players
1, 2, . . . ,m receive the corresponding rewards f1(x1, a1), f

2(x1, a1), . . . , f
m(x1, a1).

Then the game passes to a state y = x2 ∈ X according to a probability distribution
{pa1

x1,y} and so on indefinitely. Such a play of the game produces a sequence of
states and actions x0, a0, x1, a1, . . . , xt, at, . . . that defines a stream of stage rewards
f1(xt, at), f

2(xt, at), . . . , f
m(xt, at), t = 0, 1, 2, . . . .

The average stochastic positional game is the game with payoffs of the players

ωi
x0

= lim
t→∞

inf E

(1

t

t−1∑

τ=0

f i(xτ , aτ )
)
, i = 1, 2, . . . ,m

where E is the expectation operator with respect to the probability measure in the
Markov process induced by actions chosen by players in their position sets and given
starting state x0.

In the following we will consider the stochastic positional game when the players
use pure and mixed stationary strategies of choosing the actions in the states.

3 Existence and Determining Mixed Stationary Nash Equilibria for

Average Stochastic Positional Games

In this section we present the main results concerned with the existence of sta-
tionary Nash equilibria for stochastic positional games with average payoffs. Note
that in general for an average stochastic game a stationary Nash equilibrium may
not exist (see [4]).

3.1 Stochastic Positional Games in Pure and Mixed Stationary

Strategies

A strategy of player i ∈ {1, 2, . . . ,m} in a stochastic positional game is a mapping
si that gives for every state xt ∈ Xi a probability distribution over the set of actions
A(xt). If these probabilities take only values 0 and 1, then si is called a pure strategy,
otherwise si is called a mixed strategy. If these probabilities depend only on the
state xt = x ∈ Xi (i.e. si does not depend on t), then si is called a stationary

strategy, otherwise si is called a non-stationary strategy.

Thus, we can identify the set of mixed stationary strategies Si of player i with
the set of solutions of the system





∑
a∈A(x)

si
x,a = 1, ∀x ∈ Xi;

si
x,a ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x).

(1)

Each basic solution si of this system corresponds to a pure stationary strategy of
player i ∈ {1, 2, . . . ,m}. So, the set of pure stationary strategies Si of player i
corresponds to the set of basic solutions of system (1).
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Let s= (s1, s2, . . . , sm) ∈ S = S1×S2×· · ·×Sm be a profile of stationary strategies
(pure or mixed strategies) of the players. Then the elements of probability transition
matrix P s = (psx,y) in the Markov process induced by s can be calculated as follows:

psx,y =
∑

a∈A(x)

si
x,ap

a
x,y for x ∈ Xi, i = 1, 2, . . . ,m. (2)

If we denote by Qs = (qsx,y) the limiting probability matrix of matrix P s then the
average payoffs per transition ω1

x0
(s), ω2

x0
(s), . . . , ωm

x0
(s) for the players induced by

profile s are determined as follows

ωi
x0

(s) =

m∑

k=1

∑

y∈Xk

qsx0,yf
i(y, sk), i = 1, 2, . . . ,m, (3)

where

f i(y, sk) =
∑

a∈A(y)

sk
y,af

i(y, a), for y ∈ Xk, k ∈ {1, 2, . . . ,m} (4)

expresses the average reward (step reward) of player i in the state y ∈ Xk when
player k uses the strategy sk.

The functions ω1
x0

(s), ω2
x0

(s), . . . , ωm
x0

(s) on S = S1 × S2 × · · · × Sm, de-
fined according to (10), (11), determine a game in normal form that we denote
by 〈{Si}i=1,m, {ωi

x0
(s)}i=1,m 〉. This game corresponds to the average stochas-

tic positional game in mixed stationary strategies that in extended form is deter-
mined by the tuple ({Xi}i=1,m, {A(x)}x∈X , {f i(x, a)}i=1,m, p, x0). The func-

tions ω1
x0

(s), ω2
x0

(s), . . . , ωm
x0

(s) on S = S1 × S2 × · · · × Sm, determine the game
〈{Si}i=1,m, {ω

i
x0

(s)}i=1,m 〉 that corresponds to the average stochastic positional

game in pure strategies. In the extended form this game is also determined by
the tuple ({Xi}i=1,m, {A(x)}x∈X , {f

i(x, a)}i=1,m, p, x0).

A stochastic positional game can be considered also for the case when the starting
state is chosen randomly according to a given distribution {θx} on X. So, for a
given stochastic positional game we may assume that the play starts in the state
x ∈ X with probability θx > 0 where

∑
x∈X

θx = 1. If the players use mixed

stationary strategies then the payoff functions

ψi
θ(s) =

∑

x∈X

θxω
i
x(s), i = 1, 2, . . . ,m

on S define a game in normal form 〈{Si}i=1,m, {ψ
i
θ(s)}i=1,m 〉 that in extended form

is determined by ({Xi}i=1,m, {A(x)}x∈X , {f
i(x, a)}i=1,m, p, {θx}x∈X). In the case

θx = 0,∀x ∈ X \{x0}, θxo
= 1 the considered game becomes a stochastic positional

game with a fixed starting state x0.
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3.2 Stationary Nash Equilibria for an Average Stochastic Positional

Game and Determining the Optimal Strategies of the Players

We present a Nash equilibria existence result and an approach for determining
the optimal mixed stationary strategies of the players for the average stochastic
positional game when the starting state of the game is chosen randomly according
to a given distribution {θx} on the set of states X. In this case for the game
in normal form 〈{Si}i=1,m, {ψi

θ(s)}i=1,m 〉, the set of strategies Si and the payoff

functions ψi
θ(s), i = 1, 2, . . . ,m, can be specified as follows:

Let Si, i ∈ {1, 2, . . . m} be the set of solutions of the system




∑
a∈A(x)

si
x,a = 1, ∀x ∈ Xi;

si
x,a ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x).

(5)

On S = S1 × S2 × · · · × Sm we define m payoff functions

ψi
θ(s

1, s2, . . . , sm) =
m∑

k=1

∑

x∈Xk

∑

a∈A(x)

sk
x,af

i(x, a)qx, i = 1, 2, . . . ,m, (6)

where qx for x ∈ X are determined uniquely from the following system of linear
equations





qy −
m∑

k=1

∑
x∈Xk

∑
a∈A(x)

sk
x,a p

a
x,y qx = 0, ∀y ∈ X;

qy + wy −
m∑

k=1

∑
x∈Xk

∑
a∈A(x)

sk
x,a p

a
x,y wx = θy, ∀y ∈ X

(7)

for an arbitrary fixed profile s = (s1, s2, . . . , sm) ∈ S.

The functions ψi
θ(s

1, s2, . . . , sm), i = 1, 2, . . . ,m, represent the payoff func-
tions for the average stochastic game in normal form 〈{Si}i=1,m, {ψi

θ(s)}i=1,m 〉

determined by the tuple ({Xi}i=1,m, {A(x)}x∈X , {f i(x, a)}i=1,m, p, {θy}y∈X )
where θy for y ∈ X are given positive values such that

∑
y∈X θy = 1. If

θy = 0, ∀y ∈ X \ {x0} and θx0 = 1, then we obtain an average stochastic game
in normal form 〈{Si}i=1,m, {ωi

x0
(s)}i=1,m 〉 when the starting state x0 is fixed, i.e.

ψi
θ(s

1, s2, . . . , sm) = ωi
x0

(s1, s2, . . . , sm), i = 1, 2, . . . ,m. So, in this case the game
is determined by ({Xi}i=1,m, {A(x)}x∈X , {f

i(x, a)}i=1,m, p, x0).

In [8] it has been shown that if θx > 0,∀x ∈ X,
∑

x∈X = 1 then each pay-
off function ψi

θ(s), i ∈ {1, 2, . . . ,m} in the game 〈{Si}i=1,m, {ψi
θ(s)}i=1,m 〉 is

quasi-monotonic (quasi-convex and quasi-concave) with respect to si on a con-
vex and compact set Si for fixed s1, s2, . . . , si−1, si+1, . . . , sm. Moreover for the
game 〈{Si}i=1,m, {ψi

θ(s)}i=1,m 〉 it has been shown that each payoff function

ψi
θ(s), i ∈ {1, 2, . . . ,m}, is graph-continuous in the sense of Dasgupta and

Maskin [2]. Based on these properties in [8] the following theorem is proved.
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Theorem 1. The game 〈{Si}i=1,m, {ψ
i
θ(s)}i=1,m〉 with θx > 0,∀x ∈ X,

∑
x∈X = 1

possesses a Nash equilibrium s∗= (s1
∗
, s2

∗
, . . . , sm∗) ∈ S which is a Nash equilibrium

in mixed stationary strategies for the average stochastic positional game determined

by the tuple ({Xi}i=1,m, {A(x)}x∈X , {f
i(x, a)}i=1,m, p, {θy}y∈X). Moreover, s∗ =

(s1
∗
, s2

∗
, . . . , sm∗) is a Nash equilibrium in mixed stationary strategies for the average

stochastic positional game 〈{Si}i=1,m, {ω
i
y(s)}i=1,m 〉 with an arbitrary starting state

y ∈ X.

Thus, for an average stochastic positional game a Nash equilibrium in mixed
stationary strategies can be found using the noncooperative static game model
〈{Si}i=1,m, {ψ

i
θ(s)}i=1,m〉, where Si and ψi

θ(s), i = 1, 2, . . . ,m, are determined

according to (5)–(7). In the case m = 2, f(x, a) = f1(x, a) = −f2(x, a), ∀x ∈
X, ∀a ∈ A(x) this game corresponds to a two-player zero-sum average stochastic
positional game. In [7] it is shown that for a two-player zero-sum average stochastic
game there exist pure stationary equilibria. The proof of this results is similar to
the proof of the existence of pure stationary equilibria for two-player zero-sum mean
payoff games from [5]. Algorithms for determining the optimal stationary strategies
in such games are proposed in [5, 6, 9, 11].

4 Formulation of Mean Payoff Games in Mixed Stationary strate-

gies

Let us consider an m-player mean payoff game determined by the tuple
(G, {Xi}i=1,m, {c

i}i=1,m, x0), where G = (X,E) is a finite directed graph with a
vertex set X and an edge set E, X = X1 ∪ X2 ∪ · · · ∪ Xm (Xi ∩ Xj = ∅, i 6= j)
is a partition of X that determines the corresponding position sets of players and
ci : E → R1, i = 1, 2, . . . ,m, are the real functions that determine the rewards on
edges of graph G and x0 is the starting position of the game.

The pure and mixed stationary strategies in the mean payoff game on G can be
defined in a similar way as for the average stochastic positional game. We identify
the set of mixed stationary strategies Si of player i ∈ {1, 2, . . . ,m} with the set of
solutions of the system





∑
y∈X(x)

si
x,y = 1, ∀x ∈ Xi;

si
x,y ≥ 0, ∀x ∈ Xi, y ∈ X(x)

(8)

where X(x) represents the set of neighbor vertices for the vertex x, i.e. X(x) = {y ∈
X|e = (x, y) ∈ E}.

Let s = (s1, s2, . . . , sm) be a profile of stationary strategies (pure or mixed
strategies) of the players. This means that the moves in the mean payoff game from
an arbitrary x ∈ X to y ∈ X induced by s are made according to probabilities of
the stochastic matrix P s = (sx,y), where

sx,y =

{
si
x,y if e = (x, y) ∈ E, x ∈ Xi, y ∈ X; i = 1, 2, . . . ,m;

0 if e = (x, y) 6∈ E.
(9)
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Thus, for a given profile s we obtain a Markov process with the probability tran-
sition matrix P s = (sx,y) and the corresponding rewards cix,y, i = 1, 2, . . . ,m, on
edges (x, y) ∈ E. Therefore, if Qs = (qsx,y) is the limiting probability matrix of P s

then the average rewards per transition ω1
x0

(s), ω2
x0

(s), . . . , ωm
x0

(s) for the players
can be determined as follows

ωi
x0

(s) =

m∑

k=1

∑

y∈Xk

qsx0,yµ
i(y, sk), i = 1, 2, . . . ,m, (10)

where
µi(y, sk) =

∑

z∈X(y)

sk
y,zc

i(y, z), for y ∈ Xk, k ∈ {1, 2, . . . ,m} (11)

expresses the average step reward of player i in the state y ∈ Xk when player k
uses the mixed stationary strategy sk. The functions ω1

x0
(s), ω2

x0
(s), . . . , ωm

x0
(s) on

S = S1×S2×· · ·×Sm, defined according to (10), (11), determine a game in normal
form that we denote by 〈{Si}i=1,m, {ω

i
x0

(s)}i=1,m 〉. This game corresponds to the
mean payoff game in mixed stationary strategies on G with a fixed starting position
x0. So this game is determined by the tuple (G, {Xi}i=1,m, {c

i}i=1,m, x0).
In a similar way as for an average stochastic game here we can consider the mean

payoff game on G when the starting state is chosen randomly according to a given
distribution {θx} on X. So, for such a game we will assume that the play starts
in the states x ∈ X with probabilities θx > 0 where

∑
x∈X

θx = 1. If the players

in such a game use mixed stationary strategies of moves in their positions then the
payoff functions

ψi
θ(s) =

∑

x∈X

θxω
i
x(s), i = 1, 2, . . . ,m

on S define a game in normal form 〈{Si}i=1,m, {ψ
i
θ(s)}i=1,m 〉 that is determined

by the following tuple (G, {Xi}i=1,m, {ci}i=1,m, {θx}x∈X). In the case θx = 0,
∀x ∈ X \ {v0}, θv0 = 1 this game becomes a mean payoff game with fixed
starting state x0.

5 Nash Equilibria in Mixed Stationary Strategies for Mean Payoff

Games and Determining the Optimal Strategies of the Players

In this section we show how the results from the previous sections can be applied
for determining Nash equilibria and the optimal mixed stationary strategies of the
players for mean payoff games.

Let 〈{Si}i=1,m, {ψ
i
θ(s)}i=1,m〉 be the game in normal form for the mean payoff

game determined by (G, {Xi}i=1,m, {ci}i=1,m, {θx}x∈X). We show that Si and

ψi
θ(s) for i ∈ {1, 2, . . . ,m} can be defined as follows: Si represents a set of the

solutions of the system




∑
y∈X(x)

si
x,y = 1, ∀x ∈ Xi;

si
x,y ≥ 0, ∀x ∈ Xi, y ∈ X(x)

(12)
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and

ψi
θ(s

1, s2, . . . , sm) =
m∑

k=1

∑

y∈Xk

∑

y∈X(x)

sk
x,yc

i(x, y)qx, (13)

where qx for x ∈ X are determined uniquely (via sk
x,y) from the following system of

equations 



qy −
m∑

k=1

∑
x∈Xk

sk
x,y qx = 0, ∀y ∈ X;

qy +wy −
m∑

k=1

∑
x∈Xk

sk
x,y wx = θy, ∀y ∈ X.

(14)

Here θy for y ∈ X represent arbitrary fixed positive values where
∑

y∈X

θy = 1.

Using Theorem 1 we can prove now the following result.

Theorem 2. For a mean payoff game on graph G the corresponding game

in normal form 〈{Si}i=1,m, {ψ
i
θ(s)}i=1,m〉 possesses a Nash equilibrium s∗ =

(s1
∗
, s2

∗
, . . . , sm∗) ∈ S which is a Nash equilibrium in mixed stationary strate-

gies for the mean payoff game on G with an arbitrary starting position x0 ∈ X.

Proof. To prove the theorem it is sufficient to show that the functions ψi
θ(s),

i ∈ {1, 2, . . . ,m}, defined according to (13), (14) represent the payoff functions
for the mean payoff game determined by (G, {Xi}i=1,m, {c

i}i=1,m, {θx}x∈X). This

is easy to verify because if we replace in (6) the rewards f i(x, a) for x ∈ X
and a ∈ A(x) by rewards cix,y for (x, y) ∈ E and in (6), (7) we replace the
probabilities pa

x,y, x ∈ Xk, a ∈ A(x) for the corresponding players k = 1, 2, . . . , m

by pk
x,y ∈ {0, 1} according to the structure of graph G then we obtain that (6),

(7) are transformed into (13), (14). If we apply Theorem 1 after that then obtain
the proof of the theorem.

So, the optimal mixed stationary strategies of the players in a mean payoff game
can be found if we determine the optimal stationary strategies of the players for the
game 〈{Si}i=1,m, {ψi

θ(s)}i=1,m〉 where Si and ψi
θ(s) for i ∈ {1, 2, . . . , m}

are defined according to (12)–(14). If m = 2, cx,y = c1x,y = −c2x,y, ∀(x, y) ∈ E
then we obtain a game-theoretic model in normal form for the zero-sum two-player
mean payoff on graph G. In this case the equilibrium exists in pure stationary
strategies and the considered game model allows us to determine the optimal pure
stationary strategies of the players. The results from [9] related to antagonistic
average stochastic positional games can be also extended to antagonistic mean payoff
games on graphs if we take into account the transformations mentioned above in the
proof of Theorem 2, i.e. we should change the rewards f i(x, a) for x ∈ X, a ∈ A(x)
by rewards cix,y for (x, y) ∈ E and replace the probabilities pa

x,y, x ∈ Xk, a ∈

A(x), k = 1, 2, . . . ,m by probabilities pk
x,y ∈ {0, 1} according to the structure of

the graph G.
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6 Conclusion

The considered m-player non-zero mean payoff games on graphs generalize the
zero-sum two-player mean payoff games on graphs considered in [3, 5, 11]. For zero-
sum two-player mean payoff games on graphs there exist Nash equilibria in pure
stationary strategies that can be determined based on results from [5, 11]. For the
case of non-zero-sum mean payoff games on graphs Nash equilibria in pure station-
ary strategies may not exist, however there exist Nash equilibria in mixed stationary
strategies. Such equilibria can be determined and characterized as Nash equilibria
for the noncooperative static game models from Sections 5, 6.

The first author was supported by the State Program of the Republic of Moldova
”Deterministic and stochastic methods for solving optimization and control problems
(grant No.20.80009.5007.13)”.
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Abstract. The goal of the paper is to study the relationship between asymptotic
stability and exponential stability of the solutions of generalized homogeneous nonau-
tonomous dynamical systems. This problem is studied and solved within the frame-
work of general non-autonomous (cocycle) dynamical system. The application of our
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1 Introduction

This paper is dedicated to the study of the problem of asymptotic stability
of a class of nonautonomous dynamical systems with some property of symme-
try. Namely, we study this problem for so-called generalized homogeneous nonau-
tonomous dynamical systems, that is, a class of nonautonomous dynamical systems
invariant with respect to a group of transformations called dilations. We establish
our main results in the framework of general nonautonomous (cocycle) dynamical
systems.

The motive for writing of this article was the works of A. Bacciotti and L. Ro-
sier [2], A. Polyakov [16], V. I. Zubov [24] (see also the bibliography therein) and
the work of the author [5]. We prove the equivalence of uniform asymptotic sta-
bility and exponential stability for this class of nonautonomous dynamical systems.
If the phase space Y of driving system (Y,T, σ) for the cocycle dynamical systems
〈Rn, ϕ, (Y,T, σ)〉 is compact, then we prove that the asymptotic stability and uni-
form asymptotic stability are equivalent. If additionally the driving system (Y,S, σ)
with compact phase space Y is minimal, then for asymptotic stability the uniform
stability and the existence of a positive number a and an element y0 ∈ Y such that
lim

t→+∞
|ϕ(t, u, y0)| = 0 for any u ∈ B[0, a] are sufficient. We apply these results for

differential and difference equations.

The paper is organized as follows. In the second Section, we collect some known
notions and facts from dynamical systems that we use in this paper. Namely, we
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present the construction of shift dynamical systems, definitions of Poisson stable mo-
tions and some facts about compact global attractors of dynamical systems. In the
third Section we establish the relation between uniformly asymptotic stability and
exponential stability for general nonautonomous (cocycle) dynamical systems. The
fourth Section is dedicated to the relation between asymptotic stability and expo-
nential stability for the nonautonomous dynamical systems with the compact phase
space of their driving system. In the fifth Section, we study the nonautonomous
dynamical system with driving system (Y,S, σ), when Y is a compact and minimal
set. Finally, in the sixth Section we apply our general results, obtained in Sections
3-5 to differential/difference equations.

2 Preliminaries

Throughout the paper, we assume that X and Y are metric spaces and for
simplicity we use the same notation ρ to denote the metrics on them, which we
think would not lead to confusion. Let R = (−∞,+∞), Z := {0,±1,±2, . . .}, S = R

or Z, S+ := {s ∈ S| s ≥ 0} and T ⊆ S be a sub-semigroup of S such that S+ ⊆ T.

Let (X,T, π) be a dynamical system on X and M be some family of subsets from
X.

Definition 1. A dynamical system (X,T, π) is said to be M-dissipative if for every
ε > 0 and M ∈ M there exists L(ε,M) > 0 such that πtM ⊆ B(K, ε) for any
t ≥ L(ε,M), where K is a subset from X depending only on M. In this case we will
call K an attractor for M.

The most important for applications are the cases when K is a bounded or
compact set and M = {{x} | x ∈ X} or M = C(X), or M = {B(x, δx) | x ∈
X, δx > 0}, where

1. C(X) is the family of all compact subsets of X;

2. B(x0, δ) := {x ∈ X| ρ(x, x0) < δ}.

Definition 2. The system (X,T, π) is called:

− pointwise dissipative if there exists K ⊆ X such that for every x ∈ X

lim
t→+∞

ρ(xt,K) = 0; (1)

− compactly dissipative if the equality (1) takes place uniformly w.r.t. x on
the compact subsets from X;

− locally dissipative if for any point p ∈ X there exists δp > 0 such that the
equality (1) takes place uniformly w.r.t. x ∈ B(p, δp).



54 DAVID CHEBAN

Let (X,T, π) be compactly dissipative and K be a nonempty compact set that
is an attractor for compact subsets X. Then for every compact M ⊆ X the equality

lim
t→+∞

sup
x∈M

ρ(xt,K) = 0

holds. It is possible to show [7, Ch.I] that the set J defined by the equality

J := ω(K)

does not depend on the choice of the set K attracting all compact subsets of the
space X.

Lemma 1. [7, Ch.I] If the dynamical system (X,T, π) is pointwise dissipative, ΩX 6=
∅ and it is compact, then ΩX ⊆ J+(ΩX).

Theorem 1. [7, Ch.I] For the dynamical systems (X,T, π) with the locally compact

phase space X the pointwise, compact and local dissipativity are equivalent.

Definition 3. (Cocycle on the state space E with the base (Y,S, σ).) A triplet
〈E,φ, (Y,S, σ)〉 (or briefly φ if no confusion) is said to be a cocycle on state space
(or fibre) E with base (Y,S, σ) (or driving system (Y,S, σ)) if the mapping φ :
S+ × Y × E → E satisfies the following conditions:

1. φ(0, u, y) = u for all u ∈ E and y ∈ Y ;

2. φ(t+ τ, u, y) = φ(t, φ(τ, u, y), σ(τ, y)) for all t, τ ∈ S+, u ∈ E and y ∈ Y ;

3. the mapping φ is continuous.

Remark 1. If ϕ(t0, u1, y0) = ϕ(t0, u2, y0) (t0 > 0, u1, u2 ∈ E and y0 ∈ Y ), then
ϕ(t, u1, y0) = ϕ(t, u2, y0) for any t ≥ t0.

Condition (C). (Strong uniqueness condition.) If ϕ(t0, u1, y0) = ϕ(t0, u2, y0)
(t0 > 0, u1, u2 ∈ E and y0 ∈ Y ), then ϕ(t, u1, y0) = ϕ(t, u2, y0) for any t ∈ T+.

Everywhere below in this paper we consider the cocycles ϕ satisfying Condition
(C).

Definition 4. (Skew-product dynamical system.) Let 〈E,φ, (Y,S, σ)〉 be a cocycle
on E, X := E × Y and π be a mapping from S+ ×X to X defined by π := (φ, σ),
i.e., π(t, (u, y)) = (φ(t, u, y), σ(t, y)) for all t ∈ S+ and (u, y) ∈ E × Y . The triplet
(X,S+, π) is an autonomous dynamical system and is called skew-product dynamical

system.

Let x ∈ X. Denote by Σ+
x := {π(t, x) : t ≥ 0} (respectively, Σx := {π(t, x0) :

t ∈ T}) the positive semi-trajectory (respectively, the trajectory) of the point x and

H+(x) := Σ
+
x (respectively, H(x) := Σx) the semi-hull of x (respectively, the hull of

x), where by bar the closure of Σ+
x (respectively, Σx) in X is denoted.

Let (X,S, π) be a dynamical system. Let us recall the classes of Poisson stable
motions we study in this paper, see [20,23] for details.
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Definition 5. A point x ∈ X is called stationary (respectively, τ -periodic) if
π(t, x) = x (respectively, π(t+ τ, x) = π(t, x)) for all t ∈ S.

Definition 6. For given ε > 0, a number τ ∈ R is called an ε-shift of x (respectively,
ε-almost period of x) if ρ(π(τ, x), x) < ε (respectively, ρ(π(τ + t, x), π(t, x)) < ε for
all t ∈ R).

Definition 7. A point x ∈ X is called almost recurrent (respectively, almost pe-

riodic) if for any ε > 0 there exists a positive number l such that any segment of
length l contains an ε-shift (respectively, ε-almost period) of x.

Definition 8. If a point x ∈ X is almost recurrent and its trajectory Σx is precom-
pact, then x is called (Birkhoff) recurrent.

Remark 2. It is easy to see that every almost periodic point x ∈ X is recurrent, but
the reverse statement generally speaking is not true.

Denote by C(T × R
n,Rn) the family of all continuous functions f : T × R

n →
R

n equipped with the compact-open topology. This topology can be generated by
Bebutov distance (see, e.g., [3], [23, ChIV])

d(f, g) := sup
L>0

min{ max
|t|+|x|≤L

ρ(f(t, x), g(t, x)), 1/L}.

Denote by (C(T × R
n,Rn),T, σ) the shift dynamical system (or called Bebutov

dynamical system), i.e., σ(τ, f) := f τ , where f τ (t, x) := f(t+ τ, x) for any (t, x) ∈
T × R

n.
We will say that the function f ∈ C(T × R

n,Rn) possesses the property
(A) if the motion σ(t.f) possesses this property in the shift dynamical system
(C(T × R

n,Rn),T, σ). As the property (A) we will consider the Lagrange stabil-
ity, periodicity in time (respectively, almost periodicity, recurrence and so on).

Note that the function f ∈ C(T × R
n,Rn) is Lagrange stable if and only if

the function fK := f∣∣T×K
is bounded and uniformly continuous on T ×K for any

compact subset K from R
n (see, e.g., [21], [23, ChIV]).

Definition 9. Let (Rn,T, λ) be a linear dynamical system on R
n [7, Ch.II]. A

function F ∈ C(Y × R
n,Rn) is said to be λ-homogeneous if

F (y, λ(τ, w)) = λ(τ, F (y,w)) (or equivalently F (y, λτw) = λτF (y,w))

for any (y, τ, w) ∈ Y × T × R
n.

Example 1. Let (Y,T, σ) be a dynamical system on the metric space Y and T = R+

or R. Consider a differential equation

u′ = F (σ(t, y), u), (y ∈ Y ) (2)

where F ∈ C(Y × R
n,Rn) is a regular function, i.e., for any (u, y) ∈ R

n × Y there
exists a unique solution ϕ(t, u, y) of equation (2) defined on R+ with initial data
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ϕ(0, u, y) = u. Then (see, for example, [4], [20]-[22] the continuous mapping ϕ :
R+×R

n×Y → R
n satisfying the condition ϕ(t+τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for

any t, τ ∈ R+ and (u, y) ∈ R
n×Y is well defined . Then the triplet 〈Rn, ϕ, (Y,T, σ)〉

is a cocycle over (Y,T, σ) with the fibre R
n (shortly ϕ) generated by (2).

Lemma 2. Assume that the function F ∈ C(Y × R
n,Rn) is λ-homogeneous, then

the cocycle ϕ generated by (2) is also λ-homogeneous.

Proof. To prove this statement we consider the function ψ(t) := λτϕ(t, u, y). It is
easy to check that

ψ
′

(t) = λτϕ
′

(t, u, y) = λτF (σ(t, y), ϕ(t, u, y)) =

F (σ(t, y), λτϕ(t, u, y)) = F (σ(t, y), ψ(t))

for any t ∈ T. Since ψ(0) = λτu, then we obtain ψ(t) = ϕ(t, λτu, y), i.e.,
λτϕ(t, u, y) = ϕ(t, λτu, y) for any t, τ ∈ T and (u, y) ∈ R

n×Y . Lemma is proved.

3 Uniformly Asymptotical Stability of Nonautonomous General-

ized Homogeneous Dynamical Systems: General Case

Let X := R
n with euclidian norm |x| :=

√
x2

1 + . . .+ x2
n. Denote by

|x|r,p :=
(
Σn

i=1|xi|
p

ri

) 1
p ,

where r := (r1, . . . , rn), ri > 0 for any i = 1, . . . , n and p ≥ 1.
Denote by

1. ρ(x) := |x|r,p;

2. Sr,p := {x ∈ R
n| ρ(x) = 1};

3. K := {α ∈ C(R+,R+)| α(0) = 0 and α is strictly increasing} and

4. K∞ := {α ∈ K| α(t) → +∞ as t→ +∞}.

There exist a, b ∈ K∞ such that

a(|x|r,p) ≤ |x| ≤ b(|x|r,p) (3)

for any x ∈ R
n (see for example [10]).

A generalized weight is a vector r = (r1, . . . , rn) with ri > 0 for any i = 1, . . . , n.
The dilation associated to the generalized weight r is the action of the multiplicative
group R+ \ {0} on R

n given by:

Λr : R+ \ {0} → R
n

(
(µ, x) → Λr

µx
)
,

where Λr
µ := diag(µri)ni=1.

Remark 3. The following statements hold:
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1. Λr
1 = I, where I := diag(1, . . . , 1);

2. Λr
µ1

Λr
µ2

= Λr
µ1µ2

for any µ1, µ2 ∈ R+ \ {0};

3. the matrix Λr
µ (µ > 0) is invertible and Λr

µ−1 is its inverse, i.e., Λr
µ−1 =

(
Λr

µ

)−1
,

because Lr
µΛr

µ−1 = Λr
1 = I for any µ > 0;

4. ||Λr
µ|| → 0 as µ→ 0;

5.
|Λr

µx| ≥ µν |x| (4)

for any x ∈ R
n and µ > 0, where ν := min{ri| i = 1, . . . , n} > 0;

6.
ρ(Λr

µx) = µρ(x) (5)

for any (µ, x) ∈ (0,+∞) × R
n, where ρ(x) := |x|r,p;

7. Λ
(1,...,1)
µ = diag(µ, . . . , µ) = µI for any µ > 0.

Lemma 3. [7, Ch.II] Let D be a family of functions η : R+ → R+ satisfying the

conditions:

a. there exists M > 0 such that 0 < η(t) ≤M for all t ≥ 0 and η ∈ D;

b. η(t) → 0 as t → +∞ uniformly in η ∈ D, i.e., for any ε > 0 there exists

L(ε) > 0 such that η(t) < ε for any t ≥ L(ε) and η ∈ D .

Then we have the following statements:

1. if η(t + τ) ≤ η(t)η(τ) for any t, τ ≥ 0 and η ∈ D, then there exit positive

numbers N and ν such that

η(t) ≤ N e−νt

for any t ≥ 0 and η ∈ D;

2. if η(t + τ) ≤ η(t)η(τηm(t)) (m > 0) for any t, τ ≥ 0 and η ∈ D, then there

exist positive numbers a and b such that

η(t) ≤M(a+ bt)−
1
m

for any t ≥ 0 and η ∈ D.

Definition 10. Following [13, 16, 18, 24] a cocycle 〈Rn, ϕ, (Y,T, σ)〉 over dynamical
system (Y,T, σ) (driving system) with the fibre R

n is said to be r-homogeneous of
degree m ∈ R if

ϕ(t,Λr
µu, y) = µmΛr

µϕ(t, u, y) (6)

for any µ > 0 and (t, u, y) ∈ T+ × R
n × Y .
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In this subsection we suppose that the phase space Y of the driving system
(Y,R, σ), generally speaking, is not compact.

Definition 11. The trivial motion u = 0 of the cocycle ϕ is said to be:

1. uniformly stable if for arbitrary positive number ε there exists a positive num-
ber δ = δ(ε) such that |u| < δ implies

|ϕ(t, u, y)| < ε

for any (t, y) ∈ T+ × Y ;

2. uniformly attracting if there exists a positive number γ such that

lim
t→+∞

sup
|u|≤γ,y∈Y

|ϕ(t, u, y)| = 0;

3. uniformly asymptotically stable if it is uniformly stable and uniformly attract-
ing.

Lemma 4. The trivial motion u = 0 of the r-homogeneous cocycle ϕ of the degree

zero is uniformly stable if and only if for arbitrary ε > 0 there exists δ = δ(ε) > 0
such that ρ(u) < δ implies ρ(ϕ(t, u, y)) < ε for any (t, y) ∈ T+ × Y .

Proof. Let u = 0 be uniformly stable motion of ϕ, µ > 0 and ∆(µ) > 0 be a
positive number figuring in the definition of the uniform stability of u = 0. For any
ε > 0 we put δ(ε) := b−1(∆(a(ε))) > 0, where a and b are some functions from K∞

figuring in (3). If ρ(u) < δ, then we have |u| ≤ b(ρ(u)) < ∆(a(ε)) and, consequently,
|ϕ(t, u, y)| < a(ε) for any t ∈ T+. Note that ρ(ϕ(t, u, y)) ≤ a−(|ϕ(t, u, y)|) <
a−1(a(ε)) = ε for any t ≥ 0.

The inverse statement can be proved using the same arguments as above. Lemma
is proved.

Lemma 5. If the trivial motion u = 0 of the cocycle ϕ is uniformly stable, then

there exists a positive number M such that

|ϕ(t, u, y)| ≤ M̃

for any |u| ≤ 1 and (t, y) ∈ T+ × Y .

Proof. Since the trivial motion u = 0 of the cocycle ϕ is uniformly stable, then there
exists a positive number δ0 = δ(1) such that |u| ≤ δ0 implies

|ϕ(t, u, y)| ≤ 1

for any |u| ≤ δ0 and (t, y) ∈ T+ × Y . Since ‖Λr
µ−1‖ → 0 as µ → +∞, then there

exists a positive number µ0 such that

‖|Λr
µ−1‖ ≤ δ0
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for any µ ≥ µ0. Note that

|ϕ(t, u, y)| = |ϕ(t,Λr
µΛr

µ−1u, y)| = |Λr
µϕ(t,Λr

µ−1u, y)| ≤ ‖Λr
µ‖|ϕ(t,Λr

µ−1u, y)| (7)

for any µ ≥ µ0 and (t, u, y) ∈ T+ × R
n × Y . By (7) we have

|Λr
µ−1

0
u| ≤ δ0

for any |u| ≤ 1 and, consequently,

sup
|u|≤1

|ϕ(t,Λr
µ−1

0
u, y)| ≤ 1 (8)

for any (t, y) ∈ T+ × Y . Finally, we note that from (7) and (8) we obtain

|ϕ(t, u, y)| ≤ ‖Λr
µ−1

0
‖ := M̃

for any |u| ≤ 1 and (t, y) ∈ T+ × Y . Lemma is proved.

Corollary 1. Under the conditions of Lemma 5 for any R > 0 there exists a positive

constant M(R) such that

|ϕ(t, u, y)| ≤M(R)

for any u ∈ R
n with |u| ≤ R and (t, y) ∈ T+ × Y .

Proof. Let R be an arbitrary positive number. Since ‖Λr
µ−1‖ → 0 as µ→ +∞, then

there exists a positive number µ0 = m0(R) such that

‖Λr
µ−1‖ ≤ R−1 (9)

for any µ ≥ µ0 and, consequently,

|Λr
µ−1u| ≤ ‖Λr

µ−1
0
‖|u| ≤ R−1R = 1 (10)

for any |u| ≤ R. Note that

|ϕ(t, u, y)| = |ϕ(t,Λr
µ0

Λr
µ−1

0

u, y)| = |Λr
µ0
ϕ(t, λr

µ−1
0

u, y)| ≤

‖Λr
µ0
‖|ϕ(t,Λr

µ−1
0

u, y)| (11)

for any (t, u, y) ∈ T+ × R
n × Y . According to (9)-(11) we obtain

|ϕ(t, u, y)| ≤ ‖Λr
µ0
‖|ϕ(t,Λr

µ−1
0
u, y)| ≤ ‖Λr

µ−1
0
‖M̃ := M(R)

for any |u| ≤ R and (t, y) ∈ T+ × Y .

Corollary 2. Under the conditions of Lemma 5 there exists a positive constant M
such that

ρ(ϕ(t, u, y)) ≤M

for any u ∈ R
n with ρ(u) ≤ 1 and (t, y) ∈ T+ × Y .
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Proof. Let u ∈ R
n with ρ(u) ≤ 1 and a, b ∈ K∞ be the function from (3), then we

have
|u| ≤ b(ρ(u)) ≤ b(1)

and
a(ρ(ϕ(t, u, y)) ≤ |ϕ(t, u, y)| ≤M(b(1)) (12)

for any (t, y) ∈ T+ × Y . From (12) we obtain

ρ(ϕ(t, u, y)) ≤ a−1(M(b(1)) := M

for any ρ(u) ≤ 1 and (t, y) ∈ T+ × Y .

Lemma 6. Let 〈Rn, ϕ, (Y,T, σ)〉 be a cocycle over (Y,T, σ) with the fibre R
n. As-

sume that ϕ is an r-homogeneous of the degree zero cocycle.

Then

1.

ρ(ϕ(t+ τ, u, y)) = ρ(ϕ(τ, u, y))ρ(ϕ(t,Λr
µ−1ϕ(τ, u, y), σ(τ, y)) (13)

for any t, τ ∈ T+, where µ := ρ(ϕ(τ, u, y));

2.

ρ(ϕ(t, u, y)) = ρ(u)ρ(ϕ(t,Λr
ρ(u)−1u, y))

for any u ∈ R
n \ {0}, t ∈ T+ and y ∈ Y .

Proof. Note that

ρ(ϕ(t+ τ, u, y)) = ρ(ϕ(t, ϕ(τ, u, y), σ(τ, y)) =

ρ(ϕ(t,Λr
µΛr

µ−1ϕ(τ, u, y), σ(τ, y)) = ρ(Λr
µϕ(t,Λr

µ−1ϕ(τ, u, y), σ(τ, y)) =

µρ(ϕ(t,Λr
µ−1ϕ(τ, u, y), σ(τ, y)) (14)

for any µ > 0, t, τ ∈ T+ and (u, y) ∈ R
n × Y . In particular for µ = ρ(ϕ(τ, u, y)) > 0

we obtain from (14) the following equality

ρ(ϕ(t+ τ, u, y)) = ρ(ϕ(τ, u, y))ρ(ϕ(t,Λr
µ−1ϕ(τ, u, y), σ(τ, y).

The second statement of Lemma follows from the first one if we take τ = 0.

Theorem 2. Let 〈Rn, ϕ, (Y,T, σ)〉 be an r-homogeneous cocycle of the degree zero.

The following statements are equivalent:

1. the trivial motion u = 0 of the cocycle ϕ is uniformly stable;

2. there exists a positive number M such that

ρ(ϕ(t, u, y)) ≤Mρ(u) (15)

for any (t, u, y) ∈ T+ × R
n × Y .
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Proof. To prove this Theorem it is sufficient to show (i) implies (ii) because the
inverse implication, taking into account Lemma 4, is evident.

Let M be the positive number from Corollary 2 and (t, u, y) be an arbitrary
element from T+ × R

n × Y with u 6= 0, then by Lemma 6 (item (ii)) we have

ρ(ϕ(t, u, y)) = ρ(u)ρ(ϕ(t,Λr
ρ(u)−1u, y)). (16)

Since ρ(Λr
ρ(u)−1u) = ρ(u)−1ρ(u) = 1, then by Corollary 2 we have

ρ(ϕ(t,Λr
ρ(u)−1u, y)) ≤M. (17)

From (16) and (17) we obtain (15). Theorem is proved.

Lemma 7. If the trivial motion u = 0 of the cocycle ϕ is uniformly attracting, then

lim
t→+∞

sup
|u|≤1,y∈Y

|ϕ(t, u, y)| = 0. (18)

Proof. Since the trivial motion u = 0 of the cocycle ϕ is uniformly attracting, then
there exists a positive number γ such that

lim
t→+∞

sup
|u|≤γ,y∈Y

|ϕ(t, u, y)| = 0. (19)

Since ‖Λr
µ−1‖ → 0 as µ→ +∞, then there exists a positive number µ0 such that

‖|Λr
µ−1‖ ≤ γ (20)

for any µ ≥ µ0 and, consequently,

|Λr
µ−1

0
u| ≤ ‖Λr

µ−1
0
‖|u| ≤ γ (21)

for any |u| ≤ 1. From (7) we have

|ϕ(t, u, y)| ≤ ‖Λr
µ0
‖|ϕ(t,Λr

µ−1
0
u, y)| (22)

and taking into account (19)-(22) we obtain (18). Lemma is proved.

Corollary 3. Assume that the trivial motion u = 0 of the cocycle ϕ is uniformly

attracting, then

lim
t→+∞

sup
|u|≤R,y∈Y

|ϕ(t, u, y)| = 0 (23)

for any R > 0.

Proof. LetR be an arbitrary (fixed) positive number. Since ‖Λr
µ−1‖ → 0 as µ→ +∞,

then there exists a positive number µ0 such that

‖|Λr
µ−1‖ ≤ R−1 (24)
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for any µ ≥ µ0 and, consequently,

|Λr
µ−1

0
u| ≤ ‖Λr

µ−1
0
‖|u| ≤ R−1R = 1 (25)

for any |u| ≤ R. Taking into account (23)-(25) we obtain

|ϕ(t, u, y)| = |ϕ(t,Λr
µ0

Λr
µ−1

0

u, y)| = |Λr
µ0
ϕ(t,Λr

µ−1
0

u, y)| ≤

‖Λr
µ0
‖|ϕ(t,Λr

µ−1
0

u, y)| ≤ R−1 sup
|v|≤1,y∈Y

|ϕ(t, v, y)| → 0

as t→ +∞ uniformly with respect to |u| ≤ R and y ∈ Y .

Corollary 4. Under the conditions of Lemma 7 we have

lim
t→+∞

sup
ρ(u)≤1,y∈Y

ρ(ϕ(t, u, y)) = 0. (26)

Proof. Let u ∈ R
n with ρ(u) ≤ 1, then |u| ≤ b(1). Since

a(ρ(ϕ(t, u, y)) ≤ |ϕ(t, u, y)| ≤ sup
|u|≤b(1),y∈Y

|ϕ(t, u, y)| := η(t), (27)

and by Corollary 3
lim

t→+∞
η(t) = 0. (28)

From (27) we obtain

sup
ρ(u)≤1,y∈Y

ρ(ϕ(t, u, y)) ≤ a−1(η(t)) (29)

for any t ∈ T+. Passing to the limit in (29) and taking into account (28) we obtain
(26).

Theorem 3. Let ϕ be an r-homogeneous cocycle over dynamical system (Y,T, σ)
with the fibre. The following statements are equivalent:

1. the trivial motion u = 0 of the cocycle ϕ is uniformly asymptotically stable;

2. there are positive numbers N and ν such that

ρ(ϕ(t, u, y)) ≤ N e−νtρ(u) (30)

for any (t, u, y) ∈ T+ × R
n × Y .

Proof. It is evident that 2. implies 1.
Now we will establish that 1. implies 2. Indeed, denote by

m(t) := sup
ρ(u)≤1,y∈Y

ρ(ϕ(t, u, y)) (31)

for every t ∈ T+. By (31) the mapping m : T+ → R+ is well defined possessing the
following properties:
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a. 0 ≤ m(t) ≤M for any t ∈ T+, where M := a−1(M(b(1))) from Corollary 2;

b. m(t) → 0 as t→ +∞;

c. m(t+ τ) ≤ m(t)m(τ) for any t, τ ∈ T+.

The statement a. (respectively, statement b.) follows from Corollary 2 (respec-
tively, Corollary 4). To prove the statement c. we note that

m(t+ τ) = sup
ρ(u)≤1,y∈Y

ρ(ϕ(t + τ, u, y) =

sup
ρ(u)≤1,y∈Y

ρ(ϕ(t, ϕ(τ, u, y), σ(τ, y))) =

sup
ρ(u)≤1,y∈Y

ρ(ϕ(t,Λr
µΛr

µ−1ϕ(τ, u, y), σ(τ, y))) = (32)

sup
ρ(u)≤1,y∈Y

ρ(Λr
µϕ(t,Λr

µ−1ϕ(τ, u, y), σ(τ, y))),

where
µ := ρ(ϕ(τ, u, y)). (33)

By the equality (5) we have

sup
ρ(u)≤1,y∈Y

ρ(Λr
µϕ(t,Λr

µ−1ϕ(τ, u, y), σ(τ, y))) = (34)

µρ(ϕ(t,Λr
µ−1ϕ(τ, u, y), σ(τ, y))).

Note that
ρ(Λr

µ−1ϕ(τ, u, y)) = µ−1ρ(ϕ(τ, u, y) = 1 (35)

and, consequently,

ρ(ϕ(t,Λr
µ−1ϕ(τ, u, y), σ(τ, y))) ≤ sup

ρ(v)≤1,q∈Y

ρ(ϕ(t, v, q)) = m(t). (36)

From (32)-(36) we obtain
m(t+ τ) ≤ m(τ)m(t)

for any t, τ ∈ T+.
According to Lemma 6 (item (ii)) we have

ρ(ϕ(t, u, y)) = ρ(u)ρ(ϕ(t,Λr
ρ(u)−1u, y)) ≤ m(t)ρ(u)

for any u ∈ R
n \{0} and (t, y) ∈ T+×Y because ρ(Λr

ρ(u)−1u) = 1 and, consequently,

ρ(ϕ(t,Λr
ρ(u)−1u, y)) ≤ sup

ρ(v)≤1,y∈Y

ρ(ϕ(t, v, y)) = m(t). (37)

By Lemma 3 there are positive numbers N and ν such that m(t) ≤ N e−νt for any
t ∈ T+, and taking into account (37) we obtain (30). Theorem is proved.
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4 Asymptotic Stability of Nonautonomous Generalized Homoge-

neous Dynamical Systems: The Case of the Compact Phase

Space of Driving System

Let 〈Rn, ϕ, (Y,T, σ)〉 be a cocycle over (Y,T, σ) with the fibre R
n and Y be a

compact metric space. Assume that the cocycle ϕ admits the trivial motion 0, i.e.,
ϕ(t, 0, y) = 0 for any (t, y) ∈ T+ × Y .

Remark 4. Let 〈Rn, ϕ, (Y,T, σ)〉 be r homogeneous of order m, then ϕ admits the
trivial motion.

Denote by
W s

y (0) := {u ∈ R
n| lim

t→+∞
|ϕ(t, u, y)| = 0}.

Definition 12. A trivial motion 0 of the cocycle ϕ is said to be:

1. uniformly stable if for arbitrary ε > 0 there exists δ = δ(ε) > 0 such that
|u| < δ implies |ϕ(t, u, y)| < ε for any t ∈ T+ and y ∈ Y ;

2. attracting if there exists γ > 0 such that lim
t→+∞

|ϕ(t, u, y)| = 0 for any |u| < γ

and y ∈ Y ;

3. asymptotically stable if it is uniformly stable and attracting;

4. globally asymptotically stable if it is asymptotically stable and W s
y (0) = R

n

for any y ∈ Y .

Let 〈Rn, ϕ, (Y,T, σ)〉 be a cocycle over (Y,T, σ) with the fiber R
n and ϕ(t, 0, y) =

0 for any (t, y) ∈ T+ × Y .

Lemma 8. Let 〈Rn, ϕ, (Y,T, σ)〉 be an r ∈ (0,+∞)n homogeneous (of the degree

zero) cocycle over (Y,T, σ) with the fiber R
n. Assume that W s

y (0) is neighborhood of

0, then W s
y (0) = R

n.

Proof. Let u ∈ R
n be an arbitrary point. Under the condition of Lemma there exists

a positive number δy such thatB(0, δy) ⊆W s
y (0), whereB(0, δ) := {u ∈ R

n| |u| < δ}.
Since the cocycle ϕ is r homogeneous of the degree zero, then there exists a positive
number µ0 < 1 such that

Λr
µu ∈ B(0, δy) (38)

for any 0 < µ < µ0. Note that

ϕ(t, u, y) = ϕ(t,Λr
µ−1Λ

r
µu, y)) = Λr

µ−1ϕ(t,Λr
µu, y). (39)

From (38)-(39) we obtain u ∈W s
y (0), that is, R

n = W s
y (0). Lemma is proved.

Theorem 4. Let 〈Rn, ϕ, (Y,T, σ)〉 be a cocycle over (Y,T, σ) with the fibre Rn and

r ∈ (0,+∞)n. Assume that the cocycle ϕ is r homogeneous of the degree zero and

Y is compact. Then the following conditions are equivalent:
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1. the trivial motion u = 0 of the cocycle ϕ is attracting;

2. the skew-product dynamical system (X,T+, σ) generated by ϕ is pointwise dis-

sipative.

Proof. To prove this statement it is sufficient to show that (i) implies (ii). Let
x = (u, y) ∈ X = E × Y be an arbitrary point. By Lemma 8 we have W s

y (0) = R
n

and, consequently u ∈W s
y (0), i.e.,

lim
t→+∞

|ϕ(t, u, y)| = 0.

Since the space Y is compact, then the motion π(t, x) (x = (u, y) and π(t, x) =
(ϕ(t, u, y), σ(t, y))) is positively Lagrange stable and ∅ 6= ωx ⊆ Θ := {0} × Y . Thus
ΩX ⊆ Θ and, consequently, the dynamical system (X,T, σ) is pointwise dissipative.
Theorem is proved.

Theorem 5. Let ϕ be an r homogeneous cocycle over (Y,T, σ) of the degree zero

and Y be a compact metric space. Then the following statements are equivalent:

1. the trivial motion of ϕ is attracting;

2. the skew-product dynamical system (X,T+, π) generated by cocycle ϕ (X :=
R

n × Y and π = (ϕ, σ)) and its Levinson center J ⊆ Θ := {0} × Y .

Proof. To prove this statement it is sufficient to show that 1. implies 2. Indeed, by
Lemma 8 we have W s

y (0) = R
n × Y for any y ∈ Y . Since the space Y is compact,

then the skew-product dynamical system (X,T+, π) (X = R
n × Y and π = (ϕ, σ))

is pointwise dissipative. Since the phase space X = R
n ×Y is locally compact, then

by Theorem 1 the dynamical system (X,T+, π) is compactly dissipative. Denote by
J its Levinson center. Since J is a compact subset of X, then there exists a positive
number γ0 such that J ⊆ B[0, γ0] × Y , where B[0, γ0] := {u| |u| ≤ γ0}. Now we
will show that J ⊆ Θ. If we suppose that it is not true, then there exists a point
x0 = (u0, y0) ∈ J \ Θ. This means that u0 6= 0 and through the point x0 passes a
full trajectory {π(t, x0) = (ϕ(t, u0, y0), σ(t, y0)| t ∈ S} which belongs to J . Since the
cocycle ϕ is r-homogeneous of the degree zero, then

ϕ(t,Λr
µu0, y0) = Λr

µϕ(t, u0, y0) (40)

for any t ∈ S. From (40) it follows that the full trajectory {(ϕ(t,Λr
µu0, y0), σ(t, y0)| t ∈

S} is precompact and, consequently,

(Λr
µu0, y0) ∈ J

for any ε ∈ (0,+∞). Note that

|Λr
µu0| ≥ µν |u0| (41)

for any µ > 0, where ν = min{r1, . . . , rn} > 0. Passing to the limit in (41) as
µ → +∞ we conclude that the set J is not compact. This contradicts the fact
that the Levinson center is the maximal compact invariant set of (X,T+, π). The
obtained contradiction proves our statement. Theorem is completely proved.
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Theorem 6. Let ϕ be an r homogeneous cocycle over (Y,T, σ) of the degree zero

and Y be a compact metric space. Then the trivial motion u = 0 of the cocycle ϕ is

asymptotically stable if and only if it is uniformly asymptotically stable.

Proof. To prove this statement it is sufficient to show that the asymptotic stability
of the trivial motion u = 0 of ϕ implies its uniformly asymptotic stability. Assume
that the trivial motion u = 0 of the cocycle ϕ is asymptotically stable. Then by
Theorem 5 the skew-product dynamical system (X,T+, π) generated by cocycle ϕ
(X := R

n × Y , π = (ϕ, σ)) and its Levinson center J ⊆ Θ := {0} × Y . Let γ be an
arbitrary positive number, then

lim
t→+∞

sup
|u|≤γ,y∈Y

|ϕ(t, u, y)| = 0.

Suppose that it is not true, then there exist positive numbers ε0, γ0 and sequences
{uk} (with |uk| ≤ γ0 for any k ∈ N), {yk} ⊂ Y and tk ≥ k such that

|ϕ(tk, uk, yk)| ≥ ε0 (42)

for any k ∈ N. Since the set K0 := B[0, γ0] × Y is compact and the skew-product
dynamical system (X,T+, π) is compactly dissipative, then without loss of generality
we may assume that the sequences {uk}, {yk}, {σ(tk, yk)} and {ϕ(tk, uk, yk)} are
convergent. Denote by ȳ = lim

k→∞
σ(tk, yk) and

ū = lim
k→∞

ϕ(tk, uk, yk). (43)

It is clear π(tk, (uk, yk)) = (ϕ(tk, uk, yk), σ(tk, yk)) ∈ Σ+
K0

:=
⋃
{π(t,K0)| t ≥ 0} and

(ū, ȳ) ∈ ω(K0) ⊆ J ⊆ Θ := {0} × Y . This means, in particular, that

|ū| = 0. (44)

On the other hand passing to the limit in (42) as k → ∞ and taking into account
(43) we obtain

|ū| ≥ ε0 > 0

which contradicts (44). The obtained contradiction proves our statement. Theorem
is completely proved.

Theorem 7. Let ϕ be an r homogeneous cocycle over (Y,T, σ) of the degree zero

and Y be a compact metric space.

Then the trivial motion u = 0 of the cocycle ϕ is asymptotically stable if and

only if it is attracting.

Proof. To prove this statement it is sufficient to show that under the conditions
of Theorem if the trivial motion u = 0 of the cocycle ϕ is attracting, then it is
asymptotically stable. If we suppose that it is not true, then there are ε0 > 0,
δk → 0 (δk > 0) and tk → +∞ as k → ∞, uk ∈ R

n and yk ∈ Y such that

|uk| ≤ δk and |ϕ(tk, uk, yk)| ≥ ε0. (45)
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Reasoning as in the proof of Theorem 6 we can suppose that the sequence
{ϕ(tk, uk, yk)} converges. Denote its limit by ū = lim

k→∞
ϕ(tk, uk, yk). Passing to the

limit in (45) as k → ∞ we obtain ū 6= 0. On the other hand (ū, ȳ) ∈ J ⊆ Θ = {0}×Y
(see the proof of Theorem 6) and, consequently, ū = 0. The obtained contradiction
completes the proof of Theorem.

Corollary 5. Let r ∈ (0,+∞)n and ϕ be an r homogeneous cocycle over (Y,T, σ)
with the fibre R

n. If the space is compact, then the following statements are equiva-

lent:

1. the trivial motion u = 0 of the cocycle ϕ is asymptotically stable;

2. the skew-product dynamical system (X,T+, π) generated by ϕ is pointwise dis-

sipative.

Proof. This statement follows from Theorems 4 and 7.

Lemma 9. Let 〈Rn, ϕ, (Y,T, σ)〉 be a cocycle over (Y,T, σ) with the fibre R
n, then

the following statements hold:

1. the trivial motion u = 0 of the cocycle ϕ is positively uniformly stable if

and only if for any ε > 0 there exists δ(ε) > 0 such that ρ(u) < δ implies

ρ(ϕ(t, u, y)) < ε for any (t, u) ∈ T+ × Y ;

2. lim
t→+∞

|ϕ(t, u, y)| = 0 if and only if lim
t→+∞

ρ(ϕ(t, u, y)) = 0.

Proof. Assume that the trivial motion of the cocycle ϕ is positively uniformly sta-
ble, then for arbitrary ε > 0 there exists δ(ε) > 0 such that ρ(u) < δ implies
ρ(ϕ(t, u, y)) < ε for any (t, u) ∈ T+×Y . If we suppose that it is not true, then there
exist ε0 > 0, δk → 0 (δk > 0), ρ(uk) < δk (uk ∈ R

n), (tk, yk) ∈ T+ × Y such that

ρ(ϕ(tk, uk, yk)) ≥ ε0 (46)

for any k ∈ N. Let a, b ∈ K∞ be the functions figuring in (3), then from (3) and
(46) we obtain

0 < a(ε0) ≤ a(ρ(ϕ(tk, uk, yk))) ≤ |ϕ(tk, uk, yk)|. (47)

On the other hand by positively uniform stability of trivial motion for ϕ we can
choose a positive number δ(ε0) such that

|ϕ(t, u, y)| < a(ε0)

for any |u| < δ(ε0) and (t, y) ∈ T+ × Y . Note that |uk| ≤ b(ρ(uk)) < b(δk) → 0 as
k → ∞ and, consequently, there exists a number k0 ∈ N such that |uk| < δ(ε0) for
any k ≥ k0. Thus we have

|ϕ(t, uk, y)| < a(ε0) (48)
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for any k ≥ k0 and (t, y) ∈ T+ × Y . In particular, from (48) we receive

|ϕ(tk, uk, yk)| < a(ε0) (49)

for any k ≥ k0. The inequalities (47) and (49) are contradictory. The obtained
contradiction proves our statement. The converse statement can be proved using
absolutely the same arguments as above.

Let (u, y) ∈ R
n × Y be so that

lim
t→+∞

|ϕ(t, u, y)| = 0. (50)

Since a(ρ(ϕ(t, u, y))) ≤ |ϕ(t, u, y)|, then

ρ(ϕ(t, u, y)) ≤ a−1(|ϕ(t, u, y)|) (51)

for any (t, u, y) ∈ T+ × R
n × Y . Passing to the limit in (51) as t → +∞

and taking into account (50) we obtain lim
t→+∞

ρ(ϕ(t, u, y)) = 0. Then we have

|ϕ(t, u, y)| ≤ b(ρ(ϕ(t, u, y))) and, consequently, lim
t→+∞

|ϕ(t, u, y)| = 0. Lemma is

completely proved.

Theorem 8. Assume that the following conditions are fulfilled:

1. the cocycle 〈Rn, ϕ, (Y,T, σ)〉 is r-homogeneous of the degree zero;

2. the space Y is compact.

Then the following statements are equivalent:

a. the trivial motion of the cocycle ϕ is asymptotically stable;

b. there exit positive numbers N and ν such that

ρ(ϕ(t, u, y)) ≤ N e−νtρ(u)

for any u ∈ R
n, y ∈ Y and t ≥ 0.

Proof. To prove the theorem it is sufficient to establish the implication a.⇒ b., since
the converse statement is obvious.

Since the cocycle ϕ is r homogeneous of the degree zero and the trivial motion
u = 0 is attracting, then from Lemmas 9 and 6 we have W s

y (0) = R
n for any

y ∈ Y . Consider the skew-product dynamical system (X,T+, π) generated by the
cocycle ϕ (X := R

n × Y and π := (ϕ, σ)). Taking into account that Y is a compact
space and W s

y (0) = R
n (for any y ∈ Y ) according to Theorem 5 we conclude that

the dynamical system (X,T+, π) is compactly dissipative and its Levinson center
J ⊆ Θ := {0} × Y . This means that for any compact subset K ⊂ X = R

n × Y the
following statements hold:
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1.
M(K) := sup

(t,u,y)∈T+×K

|ϕ(t, u, y)| < +∞;

2.
mK(t) := sup

(u,y)∈K

|ϕ(t, u, y)| → 0

as t→ +∞.

Note that Sr,p × Y is a compact subset of X = R
n × Y , because Sr,p is a compact

subset of R
n. Denote by

m(t) := sup
(u,y)∈Sr,p×Y

ρ(ϕ(t, u, y)) (52)

and
M := sup

(t,u,y)∈T+×Sr,p×Y

ρ(ϕ(t, u, y)). (53)

Let a, b be the functions from K∞ figuring in (3), then we obtain

ρ(ϕ(t, u, y)) ≤ a−1(|ϕ(t, u, y)|) ≤ a−1(M(Sr,p)) (54)

and
ρ(ϕ(t, u, y)) ≤ a−1(|ϕ(t, u, y)|) ≤ a−1(mSr,p

(t)) (55)

for any t ∈ T+, u ∈ Sr,p and y ∈ Y . From (52)-(55) we have the following statements:

1. 0 < m(t) ≤M for any t ∈ T+;

2. m(t) → 0 as t→ +∞.

From Lemma 6 (item (ii)) we obtain

ρ(ϕ(t, u, y)) ≤ m(t)ρ(u)

for any t ∈ T+ and u 6= 0, where

m(t) := sup{ρ(ϕ(t, u, y))| (u, y) ∈ Sr,p × Y }.

Indeed, Λr
ρ(u)−1u ∈ Sr,p for any u 6= 0 and, consequently,

ρ(ϕ(t,Λr
ρ(u)−1u, y)) ≤ sup

(v,y)∈Sr,p×Y

ρ(ϕ(t, v, y)) = m(t) (56)

for any u 6= 0 and (t, y) ∈ T+ × Y . In particular from (56) we obtain

ρ(ϕ(t,Λr
ρ(ϕ(τ,u,y))−1ϕ(τ, u, y), σ(τ, y))) ≤ sup

(ũ,ỹ)∈Sr,p×Y

ρ(ϕ(t, ũ, ỹ) = m(t)

for any t, τ ∈ T+ and (u, y) ∈ Sr,p × Y .
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Finally, by the equality (13) we have

m(t+ τ) = sup
(u,y)∈Sr,p×Y

ρ(ϕ(t+ τ, u, y)) =

sup
(u,y)∈Sr,p×Y

ρ(ϕ(τ, u, y))ρ(ϕ(t,Λr
µ−1ϕ(τ, u, y), σ(τ, y))) ≤

sup
(u,y)∈Sr,p×Y

ρ(ϕ(τ, u, y)) × sup
(u,y)∈Sr,p×Y

ρ(ϕ(t,Λr
µ−1ϕ(τ, u, y), σ(τ, y))) ≤ m(τ)m(t)

because

Λr
µ−1ϕ(τ, u, y) ∈ Sr,p

if µ = ρ(ϕ(τ, u, y)) and

sup
(u,y)∈Sr,p×Y

ρ(ϕ(t,Λr
µ−1ϕ(τ, u, y), σ(τ, y))) ≤ sup

(ũ,ỹ)∈Sr,p×Y

ρ(ϕ(t, ũ, ỹ)) = m(t).

By Lemma 3 there exist positive numbers N and ν such that m(t) ≤ N e−νt for
any t ∈ T+.

5 Asymptotic Stability of Nonautonomous Generalized Homoge-

neous Dynamical Systems: The Case of the Compact and Mini-

mal Phase Space of Driving System

In this Section we suppose that the complete metric space Y is compact and the
dynamical system (Y,T, σ) is minimal, i.e., every trajectory Σy := {σ(t, y) : t ∈ T}
is dense in Y (this means that H(y) = Y for all y ∈ Y , where H(y) := Σy).

Theorem 9. [6, Ch.II, pp.94-95] Let 〈Rn, ϕ, (Y,S, σ)〉 be a cocycle over two-sided

dynamical system (Y,S, σ) with the fibre R
n. Assume that the following conditions

are fulfilled:

1. the trivial motion u = 0 of the cocycle ϕ is uniformly stable;

2. there exist positive number δ0 and point y0 ∈ Y such that B(0, δ0) ⊂ W s
y0
,

where B(0, r) := {u ∈ R
n| |u| < r}.

Then the trivial motion u = 0 of the cocycle ϕ is asymptotically stable, i.e., there

exists a positive number β such that B(0, β) ⊂W s
y (0) for any y ∈ Y .

Theorem 10. Let 〈Rn, ϕ, (Y,S, σ)〉 be a cocycle over two-sided dynamical system

(Y,S, σ) with the fibre R
n. Assume that the following conditions are fulfilled:

1. the cocycle 〈Rn, ϕ, (Y,T, σ)〉 is r-homogeneous of the degree zero;

2. the trivial motion u = 0 of the cocycle ϕ is stable;

3. there exit a point y0 ∈ Y and positive number δy0 such that B(0, δy0) ⊂W s
y0

(0).
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Then the trivial motion u = 0 of the cocycle ϕ is globally uniformly asymptotically

stable, i.e., W s
y (0) = R

n for any y ∈ Y .

Proof. By Theorem 9 there exists a positive number δ0 such that B(0, δ0) ⊂W s
y (0)

for any y ∈ Y . According to Lemma 8 we have W s
y (0) = R

n for any y ∈ Y . Theorem
is proved.

Theorem 11. Let 〈Rn, ϕ, (Y,S, σ)〉 be an r-homogeneous cocycle of the degree zero

over two-sided dynamical system (Y,S, σ).
Then the following statements are equivalent:

1. the trivial motion u = 0 of the cocycle ϕ is uniformly stable and there exists a

point y0 ∈ Y and positive number δy0 such that B(0, δy0) ⊂W s
y0

(0);

2. there exist positive numbers N and ν such that ρ(ϕ(t, u, y)) ≤ N e−νtρ(u) for

any u ∈ R
n, y ∈ Y and t ≥ 0.

Proof. According to Theorem 10 under the conditions of Theorem 11 the trivial
motion u = 0 of the cocycle ϕ is (globally) uniformly asymptotically stable. To
finish tha proof of Theorem it is sufficient to Apply Theorem 8.

6 Applications

6.1 Ordinary Differential Equations

Let R
n be n-dimensional real or complex Euclidean space. Let us consider a

differential equation
u′ = f(t, u), (57)

where f ∈ C(R × R
n,Rn). Along with the equation (57) we consider its H-class

[4, 15,21,22], i.e., the family of the equations

v′ = g(t, v), (58)

where g ∈ H(f) := {f τ | τ ∈ R}, f τ (t, u) = f(t + τ, u) for any (t, u) ∈ R × R
n

and by bar we denote the closure in C(R × R
n,Rn). We will suppose also that

the function f is regular [20, ChIV], i.e., for every equation (58) the conditions of
existence, uniqueness (on the maximal interval of definition of the solutions) and
extendability on R+ are fulfilled. Denote by ϕ(t, v, g) the solution of equation (58),
passing through the point v ∈ R

n at the initial moment t = 0. Then from the general
properties of solutions of ordinary differential equations (ODEs) it follows that the
mapping ϕ : R+ × R

n × H(f) → R
n is well defined and it satisfies the following

conditions (see for example [4, ChIV] and [20, ChIV]):

1) ϕ(0, v, g) = v for any v ∈ R
n and g ∈ H(f);

2) ϕ(t, ϕ(τ, v, g), gτ ) = ϕ(t+ τ, v, g) for every v ∈ R
n, g ∈ H(f) and t, τ ∈ R+;

3) the mapping ϕ : R+ × R
n ×H(f) → R

n is continuous.
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Denote by Y := H(f) and (Y,R, σ) the dynamical system of translations on Y ,
induced by the dynamical system of translations (C(R × R

n,Rn),R, σ). The triplet
〈Rn, ϕ, (Y,R, σ)〉 is a cocycle over (Y,R+, σ) with the fibre R

n. Thus the equation
(57) generates a cocycle 〈Rn, ϕ, (Y,R, σ)〉 satisfying Condition (C).

Note that under the conditions listed above the equation (57) (respectively, H-
class (58)) can be written in the form (2). Indeed, let Y := H(f) and (Y,R, σ) be
the dynamical system of translations on Y . Denote by F the mapping from Y ×R

n

into Rn defined by the equality

F (g, u) := g(0, u). (59)

It is not difficult to check that the mapping F : H(f) × R
n → R

n is continuous.
Finally, note that we can rewrite the equation (58) as follows

u′ = F (σ(t, g), u) (g ∈ H(f)). (60)

Definition 13. A function f ∈ C(R × R
n,Rn) is said to be r homogeneous (r ∈

(0,+∞)n) of degree m ∈ R if f(t,Λr
εu) = λmΛr

εf(t, u) for any (ε, t, u) ∈ (0,+∞) ×
R × R

n.

Remark 5. If the function f ∈ C(R × R
n,Rn) is r homogeneous of a degree m ≥ 0,

then f(t, 0) = 0 for any t ∈ R.

Lemma 10. If the function f ∈ C(R × R
n,Rn) is r homogeneous of a degree m,

then the mapping F : Y × R
n → R

n (Y = H(f)) defined by the equality (59) is r
homogeneous of a degree m with respect to u ∈ R

n uniformly in y ∈ Y .

Proof. Let g ∈ H(f), then there exists a sequence {tk} ⊂ R such that

g(t, u) = lim
k→∞

f(t+ tk, u)

uniformly with respect to (t, u) on every compact subset from R × R
n. Notice that

F (g,Λr
εu) = lim

k→∞
f(t+ tk,Λ

r
εu) = λmΛr

ε lim
k→∞

f(t+ tk, u) = λmΛr
εF (g, u)

for any (ε, g, u) ∈ (0,+∞) ×H(f) × R
n. Lemma is proved.

Corollary 6. Assume that the function f ∈ C(R×Rn,Rn) is r homogeneous of the

degree zero, then the cocycle 〈Rn, ϕ, (H(f),R, σ)〉 generated by the equation (57) is

r homogeneous of the degree zero.

Proof. This statement follows from Lemmas 2 and 10.

Let f(t, 0) ≡ 0 and the function f ∈ C(R × R
n,Rn) be regular.

Definition 14. The trivial solution of the equation (57) is said to be:

1. uniformly stable if for any positive number ε there exists a number δ = δ(ε)
(δ ∈ (0, ε)) such that |x| < δ implies |ϕ(t, x, f τ )| < ε for any t ∈ R+ and τ ∈ R;
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2. attracting (respectively, uniformly attracting) if there exists a positive number
a such that

lim
t→+∞

|ϕ(t, x, f τ )| = 0

for any |x| ≤ a and τ ∈ R (respectively, uniformly with respect to |x| ≤ a and
t ∈ R);

3. asymptotically stable (respectively, uniformly asymptotically stable, if it is uni-
formly stable and attracting (respectively, uniformly attracting).

Remark 6. If the function f ∈ C(R × R
n,Rn) is regular and f(t, 0) = 0 for any

t ∈ R, then it is easy to show that the trivial solution of equation (57) is uniformly
attracting if and only if there exists a positive number a such that

lim
t→+∞

sup
|x|≤a, g∈H(f)

|ϕ(t, u, g)| = 0. (61)

Remark 7. 1. Note that from the results given in the works [1, 19] it follows the
equivalence of standard definition (see, for example,[12, Ch.V]) of the uniform sta-
bility (respectively, global uniform asymptotically stability) and of the one given
above for the equation (57) with regular right hand side.

2. From the results of G. Sell [19,20] it follows that for the differential equations
(57) with the regular and Lagrange stable right hand side f the following statements
are equivalent:

1. the trivial solution of equation (57) is uniformly asymptotically stable;

2. the trivial motion of the cocycle 〈Rn, ϕ, (H(f),R, σ)〉 generated by (57) is
uniformly asymptotically stable.

Theorem 12. Let f ∈ C(R × R
n,Rn). Assume that the following conditions are

fulfilled:

1. the function f is regular and f(t, 0) = 0 for any t ∈ R;

2. the function f is r homogeneous of the degree zero.

Then the following statements are equivalent:

1. the trivial solution of the equation (57) is uniformly asymptotically stable;

2. there exit positive numbers N and ν such that

ρ(ϕ(t, u, g)) ≤ N e−νtρ(u)

for any u ∈ R
n, g ∈ H(f) and t ≥ 0, where ρ(u) = |u|r,p.
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Proof. Let Y := H(f) and (Y,R, σ) be the shift dynamical system on Y = H(f).
Denote by 〈Rn, ϕ, (H(f),R, σ)〉 (shortly ϕ) the cocycle generated by the differential
equation (57). Since the function f is r homogeneous of the degree zero, then by
Corollary 6 the cocycle ϕ generated by the equation (57) is r homogeneous of the
degree zero. To finish the proof of Theorem 12 it is sufficient to take into account
Remarks 6–7 and apply Theorem 3.

Theorem 13. Let f ∈ C(R × R
n,Rn) be a regular function. Assume that the

following conditions are fulfilled:

1. f(t, 0) = 0 for any t ∈ R;

2. the function f is r homogeneous of the degree zero and Lagrange stable.

Then the following statements are equivalent:

1. the trivial solution of the equation (57) is asymptotically stable;

2. there exit positive numbers N and ν such that

ρ(ϕ(t, u, g)) ≤ N e−νtρ(u)

for any u ∈ R
n, g ∈ H(f) and t ≥ 0.

Proof. Let Y := H(f) and (Y,R, σ) be the shift dynamical system on Y = H(f).
Note that the space Y is compact because the function f is Lagrange stable. Since
the function f is r homogeneous of the degree zero, then by Corollary 6 the cocycle
〈Rn, ϕ, (H(f),R, σ)〉 generated by the equation (57) is r homogeneous of the degree
zero. To finish the proof of Theorem 13 it suffices to take into account Remark 7
and apply Theorem 8.

Remark 8. 1. If the function f is τ -periodic, then the equivalence of the conditions
(i) and (ii) was established in the work [17].

2. If the function f is homogeneous of the degree zero (in the classical sense,
i.e., f(t, εx) = εf(t, x) for any ε > 0 and (t, x) ∈ R × R

n), then the equivalence
of the uniform asymptotically stability and exponential stability was established
in the work [12, Ch.VII]. If the function f is r homogeneous of the degree zero
the equivalence of the uniform asymptotic stability and exponential stability was
established in the work [9]

Recall that the function f ∈ C(T×R
n,Rn) is said to be recurrent in time if the

motion σ(t, f) generated by f in the shift dynamical system (C(T × R
n,Rn),T, σ)

is recurrent.

Remark 9. Note that the function f is recurrent in time if and only if its hull H(f)
is a compact and minimal set of the shift dynamical system (C(T × R

n,Rn),T, σ)
(see for example [8, Ch.I]).

Theorem 14. Let f ∈ C(R × R
n,Rn) be a regular function. Assume that the

following conditions are fulfilled:
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1. the function f is recurrent in time and f(t, 0) = 0 for any t ∈ R;

2. the function f is r homogeneous of the degree zero.

Then the following statements are equivalent:

1. the trivial solution of equation (57) is uniformly stable and there exists a pos-

itive number a such that

lim
t→+∞

|ϕ(t, u, f)| = 0 (62)

for any u ∈ B[0, a] := {u ∈ R
n| |u| ≤ a};

2. there exit positive numbers N and ν such that

ρ(ϕ(t, u, g)) ≤ N e−νtρ(u)

for any u ∈ R
n, g ∈ H(f) and t ≥ 0.

Proof. Let Y := H(f) and (Y,R, σ) be the shift dynamical system on Y = H(f).
Note that the space Y is a compact and minimal set because the function f is
recurrent in time (see Remark 9). Since the function f is r homogeneous of the
degree zero, then by Corollary 6 the cocycle 〈Rn, ϕ, (H(f),R, σ)〉 generated by the
equation (57) is r homogeneous of the degree zero. To finish the proof of Theorem
14 it is sufficient to take into account Remark 7 and to apply Theorem 11.

Here is an example illustrating the theorems proved in this subsection.

Example 2. Denote by C(R,R) the space of all continuous functions ψ : R → R

equipped with the compact-open topology and (C(R,R),R, σ) the shift dynamical
system on C(R,R). Consider the system of differential equations

{
ẋ1 = −x1 + p(t)

√
|x2|

ẋ2 = −x2
, (63)

where p ∈ C(R,R).
Note that the function F ∈ C(R×R

2,R2), where F (t, x) := (−x1+p(t)
√

|x2|,−x2)
and x := (x1, x2), is r = (1, 2) homogeneous. This means that F (t,Λµx)) =
ΛµF (t, x) for any (t, µ, x) ∈ R × (0,+∞) × R

n, where Λµx = (µx1, µ
2x2).

Recall that the function p is called Lagrange stable if the set H(p) := {ph| h ∈ R}
(ph(t) := p(t+ h) for any t ∈ R) is a compact subset of C(R,R).

Along this the system (63) we consider its H-class, i.e., the family of systems of
differential equations

{
ẋ1 = −x1 + q(t)

√
|x2|

ẋ2 = −x2
(q ∈ H(p)). (64)

Denote by Y := H(p), (Y,R, σ) the shift dynamical system on Y = H(p) and
ϕ(t, u, q) the unique solution of the system (64) passing through the point u ∈ R2

at the initial moment t = 0. Then 〈R2, ϕ, (Y,R, σ) is a cocycle over (Y,R, σ) with
the fibre R

2.
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Lemma 11. Assume that the function p is Lagrange stable, then the skew-product

dynamical system (X,R+, π) generated by the cocycle ϕ (X := R
2 × Y and π =

(ϕ, σ)) is pontwise dissipative.

Proof. Consider a function V : R
2 × Y → R+ defined by the equality

V (u1, u2, q) := u2
1 + u2

2

for any (u1, u2, q) ∈ R
2 ×H(p). Note that

dV

dt

∣∣
t=0

:= lim
t→0+

V (π(t, x)) − V (x)

t
= −2(u2

1 + u2
2) + 2q(0)u1

√
|u2|. (65)

Since the function p is bounded, then there exists a positive number R0 such
that

−2(u2
1 + u2

2) + 2q(0)u1

√
|u2| ≤ −u1

2 − u2
2 (66)

for any |u| := (u2
1 + u2

2)
1/2 ≥ R0. From (65) and (66) we obtain

dV

dt

∣∣
t=0

≤ −u2
1 − u2

2

for any |u| := (u2
1 + u2

2)
1/2 ≥ R0. According to Theorem 5.3 from [7, Ch.V] the

skew-product dynamical system (X,R+, π) generated by the cocycle ϕ is pointwise
dissipative. Lemma is proved.

Corollary 7. The trivial motion u = 0 of the cocycle ϕ generated by the system

(63) is attracting.

Proof. This statement follows from Lemma 11 and Theorem 4.

Corollary 8. If the function p is Lagrange stable, then there are positive numbers

N and ν such that

ρ(ϕ(t, u, q)) ≤ N e−νtρ(u)

for any (t, u, q) ∈ R+ × R
2 ×H(p), where ρ(u) := (u4

1 + u2
2)

1/4.

Proof. This statement follows from Corollary 7 and Theorems 13 and 7.

6.2 Difference Equations

6.2.1 Discrete Nonautonomous Dynamical Systems

Definition 15. Let T ⊆ Z and (Rn,T, λ) be a discrete linear dynamical system on
R

n. A function F ∈ C(Y × R
n,Rn) is said to be λ-homogeneous if

F (y, λ(τ, w)) = λ(τ, F (y,w)) (or equivalently F (y, λτw) = λτF (y,w))

for any (y, τ, w) ∈ Y × T × R
n.
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Consider the difference equation

u(t+ 1) = F (σ(t, y), u(t)), (y ∈ Y ) (67)

where F ∈ C(Y × R
n,Rn). We will suppose also that the function F is regu-

lar, i.e., for every equation (67) the conditions of existence and uniqueness (on
the maximal interval of definition of solutions) are fulfilled. Denote by ϕ(t, u, y)
the unique solution of the equation (67) with the initial data ϕ(0, u, y) = u,
then the continuous mapping ϕ : Z+ × R

n × Y → R
n satisfying the condition

ϕ(t + τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for any t, τ ∈ Z+ and (u, y) ∈ R
n × Y is

well defined. Then the triplet 〈Rn, ϕ, (Y,Z, σ)〉 is a cocycle generated by (67) and
satisfying Condition (C).

Lemma 12. Assume that the function F ∈ C(Y × R
n,Rn) is λ-homogeneous, then

the cocycle 〈Rn, ϕ, (Y,Z, σ)〉 generated by the equation (67) is λ-homogeneous.

Proof. To prove this statement we consider the function ψ(t) := λτϕ(t, u, y). It is
easy to check that

ψ(t+ 1) = λτϕ(t+ 1, u, y) = λτF (σ(t, y), ϕ(t, u, y)) =

F (σ(t, y), λτϕ(t, u, y)) = F (σ(t, y), ψ(t))

for any t ∈ Z+. Since ψ(0) = λτu, then we obtain ψ(t) = ϕ(t, λτu, y), i.e.,
λτϕ(t, u, y) = ϕ(t, λτu, y) for any t, τ ∈ Z+ and (u, y) ∈ R

n × Y . Lemma is
proved.

6.2.2 Homogeneous Difference Equations

Let us consider a difference equation

u(t+ 1) = f(t, u(t)), (68)

where f ∈ C(Z × R
n,Rn). Along with equation (68) we consider its H-class [4, 15,

21,22], i.e., the family of equations

v(t+ 1) = g(t, v(t)), (69)

where g ∈ H(f) := {f τ | τ ∈ Z}, f τ (t, u) = f(t + τ, u) for any (t, u) ∈ Z × R
n

and by bar we denote the closure in C(Z × R
n,Rn). Assume that the function

f ∈ C(Z × R
n,Rn) is regular, that is, for any u ∈ R

n and g ∈ H(f) the equation
(69) has a unique (on the maximal domain of definition) solution ϕ(t, v, g) passing
through the point v ∈ R

n at the initial moment t = 0. Then from the general
properties of solutions of difference equations (DEs) it follows that the mapping
ϕ : Z+ × R

n × H(f) → R
n is well defined and it satisfies the following conditions

(see for example [4, ChIV] and [20, ChIV]):

1) ϕ(0, v, g) = v for any v ∈ R
n and g ∈ H(f);
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2) ϕ(t, ϕ(τ, v, g), gτ ) = ϕ(t+ τ, v, g) for every v ∈ R
n, g ∈ H(f) and t, τ ∈ Z+;

3) the mapping ϕ : Z+ × R
n ×H(f) → R

n is continuous.

Denote by Y := H(f) and (Y,Z, σ) the dynamical system of translations on Y
induced by the dynamical system of translations (C(Z × R

n,Rn),Z, σ). The triplet
〈Rn, ϕ, (Y,Z, σ)〉 is a cocycle over (Y,Z, σ) with the fibre R

n. Thus equation (68)
generates a cocycle 〈Rn, ϕ, (Y,Z, σ)〉. Note that under the conditions listed above
the equation (68) (respectively, H-class (69)) can be written in the form

u(t+ 1) = F (σ(t, y), u(t)) (y ∈ Y = H(f)). (70)

Indeed, let Y := H(f) and (Y,Z, σ) be the dynamical system of translations on Y .
Denote by F the mapping from Y × R

n into R
n defined by the equality

F (g, u) := g(0, u). (71)

It is easy to check that the mapping F : H(f) × R
n → R

n is continuous.

Definition 16. A function f ∈ C(Z × R
n,Rn) is said to be r homogeneous (r ∈

(0,+∞)n) of the degree zero if f(t,Λr
µu) = Λr

µf(t, u) for any (µ, t, u) ∈ (0,+∞) ×
Z × R

n.

Remark 10. If the function f ∈ C(Z×R
n,Rn) is r homogeneous of the degree zero,

then f(t, 0) = 0 for any t ∈ Z.

Lemma 13. If the function f ∈ C(Z×R
n,Rn) is r homogeneous of the degree zero,

then the mapping F : Y × R
n → R

n (Y = H(f)) defined by the equality (70) is r
homogeneous of the degree zero with respect to u ∈ R

n uniformly in y ∈ Y .

Proof. This statement can be proved using the same arguments as in the proof of
Lemma 10.

Corollary 9. Assume that the function f ∈ C(Z×R
n,Rn) is r homogeneous of the

degree zero, then the cocycle 〈Rn, ϕ, (H(f),Z, σ)〉 generated by the equation (68) is

r homogeneous of the degree zero.

Proof. This statement follows from Lemmas 12 and 13.

6.2.3 Asymptotic Stability of Nonautonomous Difference Equations

Let f ∈ C(Z × R
n,Rn) and f(t, 0) ≡ 0 for any t ∈ Z.

Definition 17. The trivial solution of equation (68) is said to be:

1. uniformly stable if for any positive number ε there exists a number δ = δ(ε)
(δ ∈ (0, ε)) such that |x| < δ implies |ϕ(t, x, fτ )| < ε for any (t, τ) ∈ Z+ × Z;
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2. attracting (respectively, uniformly attracting) if there exists a positive number
a such that

lim
t→+∞

|ϕ(t, x, fτ )| = 0 (72)

for any |x| ≤ a and τ ∈ Z;

3. asymptotically stable if it is uniformly stable and attracting (respectively, the
equality (72) holds uniformly with respect to |u| ≤ a and τ ∈ Z).

Remark 11. If the function f ∈ C(Z × R
n,Rn) is regular and f(t, 0) = 0 for any

t ∈ Z, then it is easy to show that the trivial solution of the equation (68) is uniformly
attracting if and only if there exists a positive number a such that

lim
t→+∞

sup
|x|≤a, g∈H(f)

|ϕ(t, u, g)| = 0. (73)

Remark 12. 1. By slight modifications of the reasoning from the works [1,19] we can
establish the equivalence of the standard definition (see for example [11, Ch.V] and
[14, Ch.IV]) of uniform stability (respectively, global uniform asymptotic stability)
and of the one given above for the difference equation (68).

2. Using the same ideas as in the works of G. Sell [19, 20] we can prove that
for the difference equations (68) with the Lagrange stable right hand side f the
following statements are equivalent:

1. the trivial solution of the equation (68) is uniformly asymptotically stable;

2. the trivial motion of the cocycle 〈Rn, ϕ, (H(f),Z, σ)〉 generated by (68) is
uniformly asymptotically stable.

Theorem 15. Let f ∈ C(Z × R
n,Rn). Assume that the following conditions are

fulfilled:

1. the function f is regular and f(t, 0) = 0 for any t ∈ Z;

2. the function f is r homogeneous of the degree zero.

Then the following statements are equivalent:

1. the trivial solution of the equation (68) is uniformly asymptotically stable;

2. there exit positive numbers N and ν such that

ρ(ϕ(t, u, g)) ≤ N e−νtρ(u)

for any u ∈ R
n, g ∈ H(f) and t ∈ Z+.

Proof. Let Y := H(f) and (Y,Z, σ) be the shift dynamical system on Y = H(f).
Denote by 〈Rn, ϕ, (H(f),Z, σ)〉 the cocycle generated by the difference equation (68).
Since the function f is r homogeneous of the degree zero, then by Corollary 6 the
cocycle ϕ generated by the equation (68) is r homogeneous of the degree zero. To
finish the proof of Theorem 15 it suffices to take into account Remarks 11 – 12 and
apply Theorem 3.
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Theorem 16. Let f ∈ C(Z × R
n,Rn). Assume that the following conditions are

fulfilled:

1. f(t, 0) = 0 for any t ∈ Z;

2. the function f is r homogeneous of the degree zero and Lagrange stable.

Then the following statements are equivalent:

1. the trivial solution of the equation (68) is uniformly asymptotically stable;

2. the trivial solution of the equation (68) is globally uniformly asymptotically

stable;

3. there exit positive numbers N and ν such that

ρ(ϕ(t, u, g)) ≤ N e−νtρ(u) (74)

for any u ∈ R
n, g ∈ H(f) and t ≥ 0, where ρ(u) = |u|r,p.

Proof. Let Y := H(f) and (Y,Z, σ) be the shift dynamical system on Y = H(f).
Since the function f is Lagrange stable, then the set Y is compact. Denote by
〈Rn, ϕ, (H(f),Z, σ)〉 the cocycle generated by the difference equation (68). Since
the function f is r homogeneous of the degree zero, then by Corollary 9 the cocycle
ϕ generated by equation (68) is r homogeneous of the degree zero. To finish the
proof of Theorem 16 it suffices to take into account Remark 12 and apply Theorem
8.

Theorem 17. Let f ∈ C(Z × R
n,Rn) be a regular function. Assume that the

following conditions are fulfilled:

1. the function f is recurrent in time and f(t, 0) = 0 for any t ∈ Z;

2. the function f is r homogeneous of the degree zero.

Then the following statements are equivalent:

1. the trivial solution of the equation (68) is uniformly stable and there exists a

positive number a such that

lim
t→+∞

|ϕ(t, u, f)| = 0 (75)

for any u ∈ B[0, a];

2. there exit positive numbers N and ν such that

ρ(ϕ(t, u, g)) ≤ N e−νtρ(u)

for any u ∈ R
n, g ∈ H(f) and t ≥ 0.

Proof. Let Y := H(f) and (Y,Z, σ) be the shift dynamical system on Y = H(f).
Note that the space Y is a compact and minimal set because the function f is
recurrent in time (see Remark 9). Since the function f is r homogeneous of the
degree zero, then by Corollary 6 the cocycle 〈Rn, ϕ, (H(f),Z, σ)〉 generated by the
equation (68) is r homogeneous of the degree zero. To finish the proof of Theorem
17 it suffices to take into account Remark 12 and apply Theorem 8.
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The linear Fredholm integral equations with

functionals and parameters

L. R. Dreglea Sidorov, N. Sidorov and D. Sidorov

Abstract. The theory of linear Fredholm integral-functional equations of the sec-
ond kind with linear functionals and a parameter is considered. The necessary and
sufficient conditions are obtained for the coefficients of the equation and those param-
eter values in the neighbourhood of which the equation has solutions. The leading
terms of the asymptotics of the solutions are constructed. The constructive method
is proposed for constructing a solution both in the regular case and in the irregular
one. In the regular case, the solution is constructed as a Taylor series in powers of
the parameter. In the irregular case, the solution is constructed as a Laurent series in
powers of the parameter. The example is used to illustrate the proposed constructive
theory and method.

Mathematics subject classification: 45B05, 46N20.
Keywords and phrases: loaded equations, Fredholm equation, asymptotics, holo-
morphic solution.

1 Introduction

This paper deals with some issues in the theory of linear integral equations with
linear functionals. Modern views on the fundamental laws of nature are often stated
in terms of integral equations [1–5]. Many inverse problems in mathematical physics
can be formulated or reduced to nonclassical integral equations. In [6] the problem
for identification of external force and heat source density dynamics was reduced
to solution of Volterra integral equations of the first kind. The analysis of integral
operators includes questions of finding eigenvalues and adjoint functions [7], study-
ing the convergence of their asymptotics, existence and convergence theorems of
approximate methods [4,5]. At the end of 20th century, A. P. Khromov found a new
class of integral operators with discontinuous kernels and began a systematic study
of them [2]. Under very general assumptions, he derived the conditions under which
eigenfunction expansions of these operators behave like trigonometric Fourier series.
However, these conditions as well as the construction of the classical discontinuous
Fredholm resolvent in the form of the ratio of two integer analytic expansions over
a parameter are difficult to verify. In the works [5, 8, 9] a class of equations with
discontinuous kernels was distinguished and studied.

In [10] the branching solutions of the Cauchy problem for nonlinear loaded dif-
ferential equations with bifurcation parameters were studied. The purpose of this
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study is to prove the properties of the resolvent integral operator as applied to the
second kind Fredholm integral equations with local and integral loads, and to for-
mulate and prove constructive theorems of existence and convergence to the desired
solution of successive approximations.

Let us consider the equation

x − Lx − λKx = f, (1)

where linear operators L and K are given as follows

Lx :=
n∑

k=1

ak(t)〈γk, x〉,

Kx :=

∫ b

a

K(t, s)x(s) ds,

λ is a parameter. All the functions in equation (1) are assumed to be continuous.
Kernel K(t, s) can be symmetric and it is also continuous both in t and s. The
desired solution x(t) is constructed in C[a,b].

Linear functionals 〈γk, x〉 in applications corresponds to the loads imposed on
the desired solution. The loads can be local (〈γk, x〉 = x(tk), tk ∈ [a, b]) or integral

such as 〈γk, x〉 =
∫ b

a
γk(t)x(t) dt, where γk(t) are piecewise continuous functions for

t ∈ [a, b] or 〈γk, x〉 =
∫ b

a
x(t) dγk(t), γk(t) is a given function of limited variation.

The objective is to construct the solution x(t, λ) for λ ∈ R
1 of equation (1). For

operator Lx below the following brief notation

Lx :=

n∑

k=1

ak(t)〈γk, x〉 ≡ (~a(t), 〈~γ, x〉)

is used, where conventional notation (·, ·) for scalar product is used. Here ~a(t) =
(a1(t), · · · , an(t))T , ai(y) ∈ C[a,b], 〈~γ, x〉 = (〈γ1, x〉, . . . , 〈γn, x〉)T .

Loaded differential equations have been intensively studied during the last
decades. The term “loaded equation” was first used in the works of A. M. Nakhu-
shev, here readers may refer to his monograph [3]. Loaded equations appear in many
applications, see e.g.[11,12]. But theory and numerical methods for the loaded inte-
gral equations remained less developed. In paper [13] the problem statement for the
integral equation with single load is given. Then, in [14,15] theory of the Hammer-
stein integral equations with loads and bifurcation parameters was proposed. In [16]
the Fredholm resolvent was employed for computing H2-norm for linear periodic
systems.

The similar statement is addressed in the present paper and analytical method
is described which makes it possible to consider integral equations with arbitrary
finite number of local and integral loads. An example of functionals that generate
local and integral loads in the space C[a,b] is the functional

〈γ, x〉 :=

m∑

i=1

αix(ti) +

n∑

i=1

∫ bi

ai

mi(s)x(s) ds,
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where αi ∈ R
1, [ai, bi] ⊂ [a, b], mi(s) ∈ C[ai,bi], ti ∈ [a, b].

2 System of equations to determine the load

Let us introduce the following condition
I. 〈γk,K(t, s)〉 = 0, k = 1, . . . , n, s ∈ [a, b] and vectors ~xγ = (〈γ1, x〉, . . . , 〈γn, x〉)T ,
~fγ = (〈γ1, f〉, . . . , 〈γn, f〉)T .

Lemma 1. Let condition I be fuilfilled. Then load vector ~xj necesserily satisfies

system

(E − A0)~c = ~fγ , (2)

where A0 = [〈γi, ak〉]
n
i,k=1, E is (n × n) identity matrix.

Proof. Let us apply the functionals 〈γi, ·〉, i = 1, . . . , n, to both parts of equation
(1). Using I, the following system can be derived

〈γi, x〉 −
n∑

k=1

〈γi, ak〉〈γk, x〉 = 〈γi, f〉, i = 1, . . . , n. (3)

System of linear algebraic equations (3) is, in fact, system (2) presented in coordinate
system. Lemma is proved.

From this Lemma follows:

Corollary 1. Let condition I be fuilfilled and system (2) has no solution. Then

equation (1) has no solution in class of continuous functions.

Let condition I be fuilfilled and vector ~c∗ ∈ R
n satisfies system (2). Then solution

x(t, λ) of equation (1) depends on vector ~c∗ and satisfies the following Fredholm
integral equation of the 2nd kind

x(t, λ) − λ

∫ b

a

K(t, s)x(s, λ) ds = f(t) + (~a(t),~c∗).

Lemma 2. Solution of equation (1) for arbitrary λ, except the characteristic num-

bers λi of kernel K(t, s), is defined by the following formula

x(t, λ) = (~a(t), ~xγ(λ))+

∫ b

a

Γ(t, s, λ)(~a(s), ~xγ(λ)) ds+

∫ b

a

Γ(t, s, λ)f(s) ds+f(t). (4)

Here Γ(t, s, λ) = D(t,s,λ)
D(λ) , D(t, s, λ) and D(λ) are entire analytic functions of param-

eter λ, D(λi) = 0. Load vector ~xγ(λ) necesserily must satisfy the following system

of n linear algebraic equations

(E − A0 − A(λ))~xγ(λ) = ~b(λ) (5)
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with matrix

A(λ) =

〈
γi,

∫ b

a

Γ(t, s, λ)ak(s) ds

〉n

i,k=1

(6)

and vector

~b(λ) =

〈
γi, f(t) +

∫ b

a

Γ(t, s, λ)f(s) ds

〉n

i=1

.

The set of characteristic numbers {λi} is a finite and countable set .

Proof. It is known (see sec. 9 (3) in book [17]) that an inverse operator (I − λK)−1

is defined by Fredholm formula [18]:

(I − λK)−1 = I + λ

∫ b

a

D(t, s, λ)

D(λ)
[·] ds.

Functions D(t, s, λ) and D(λ) are entire analytical funcations with respect to λ,
defined for λ ∈ R

1. Moreover, the characteristic numbers of kernel K(t, s) of operator
K are zeros of denominator D(λ). Thus, the inverse operator (I − λK)−1 can be
called discontinuous operator. Indeed, the function Γ(t, s, λ) in solution (4) has the
2nd kind discontinuities at points {λi}. By solving system (5) and substituting its
solution into (4), we find the solution of the original problem (1). The lamma is
proved.

Remark 1. In system (5) in general case the matrix A(λ) and vector ~b(λ) will have
2nd kind discontinuities at points λ.

Let us distinguish the class of kernels K(t, s) when matrix A0 and vector ~b(λ)
can be specified. Let the kernel K(t, s) generate the nilpotency of the operator K.

Let |λ| < 1
||K||

. In that case the solution of equation x − λKx = f for arbitrary
source function f is defined uniquely as follows

x = f + λKf + λ2K2f + · · · + λpKpf.

Here

Knf =

∫ b

a

Kn(t, s)f(s) ds,

where

Kn(t, s) =

∫ b

a

K(t, z)Kn−1(z, s) dz.

Here K1(t, s) := K(t, s), Kp+1(t, s) = 0 due to the nilpotency of the operator K for
some p ≥ 1. Therefore, formula (4) can be presented in the following constructive
form

x(t, λ, ~xγ) = f(t) + (~a(t), ~xγ) +

∫ b

a

(
λK(t, s) + λ2K2(t, s) + · · · (7)
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· · · + λpKp(t, s)
)
(f(s) + (~a(s), ~xγ)) ds.

Correspondingly, we derive the refined system of linear algebraic equations (5)
with respect to the load vector because

A(λ) =
〈
γi,

∫ b

a

(λK(t, s) + λ2K2(t, s) + · · · + λpKp(t, s))ak(s) ds
〉n

i,k=1
, (8)

~b(λ) =
〈
γi, f(t) +

∫ b

a

(λK(t, s) + λ2K2(t, s) + · · · + λpKp(t, s))f(s) ds
〉n

i=1
. (9)

Thus, A(λ) and ~b(λ) are continuous in λ. It is to be noted that if 〈γi,K(t, s)〉 =
0, i = 1, . . . , n, then A(λ) = 0, and system (5) degenerates into system (2) intro-
duced in Lemma 1. Therefore, in this case vector ~xγ from solution (7) to given
problem (1) can be determined. Then the following theorem can be formulated.

Theorem 1. Let operator K be nilpotent and 〈γi,K(t, s)〉 = 0, i = 1, . . . , n, ∀s ∈
[a, b]. Then solution of equation (1) exists as functional polynomial (7) of p-th order

in parameter λ. Coefficients of polynomial (7) depend on selection of the load vector

~xγ in R
n.

If operator K is not nilpotent and the identity 〈γi,K(t, s)〉 = 0 is not satisfied,
then the solution x(t, λ) of equation (1) can be found in the class of continuous
in t functions. This solution can be represented in the punctured neighbourhood
0 < |λ| < ρ in the form of Laurent series with pole at point λ = 0.

3 Successive approximations

Let det(E − A0) 6= 0. Then there exists a neighbourhood of λ |λ| < ρ such that
system (5) has a solution ~xρ(λ) → (E − A0)

−1 ~fγ as λ → 0. Positive ρ exists since
||(E − A0)

−1A(λ)|| → 0 as λ → 0.

Let us call the case of det(E − A0) 6= 0 regular.

Theorem 2. In the regular case det(E−A0) 6= 0 there exists a neighbourhood |λ| < ρ
in which equation (1) has the unique solution continuous in t and holomorphic in λ.

Corollary 2. Let det(E−A0) 6= 0, ||(I−L)−1K|| ≤ l. Fix the scalar q < 1. Then for

|λ| ≤ q
l

equation (1) has the unique solution. Moreover, solution is holomorphic in

λ. The sequence {xn}, where xn = λ(I −L)−1Kxn−1 +(I −L)−1f , x0 = 0, uniformly

converges to the desired solution x(t, λ) of equation (1) at the rate of a geometric

progression with the denominator q < 1.
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Let us focus now on the irregular case of det(E − A0) = 0. Let A0 = E. Then

det(E−A0) = 0 and we have irregular case. Let di

dλi A(λ)
∣∣
λ=0

for i = 0, 1, . . . , p−1 be

zero matrices and dp

dλp A(λ)
∣∣
λ=0

6= 0. Then the load vector ~xγ satisfies the following
system

(
−E − A−1

p

∞∑

m=p+1

λm−pAm

)
~xγ = λ−pA−1~b(λ),

where

Ap =
1

p!

(
dp

dλp
A(λ)

)∣∣∣∣
λ=0

.

Let’s select neighbourhood |λ| < ρ such that

||A−1
p

∞∑

m=p+1

λm−pAm|| ≤ q < 1.

Then

λp~xγ = −

∞∑

n=0

(−A−1
p

∞∑

m=p

λm−pAm)nA−1
p

~b(λ),

which series converges to holomorphic function

~ν(λ) = −

∞∑

n=0

(−A−1
p

∞∑

m=p

λm−pAm)nA−1
p

~b(λ)

at the rate of a geometric sequence with the denominator q < 1 for |λ| ≤ ρ. Therefore,
the load ~xγ(λ) = λ−p~ν(λ) is a Laurent series with pth order pole. Then the following
theorem is true.

Theorem 3. Let A0 = E, A(λ) =
∑∞

m=p Amλm, p ≥ 1. Let the matrix Ap be not

singular. Then there exists punctured neighbourhood 0 < |λ| ≤ p such that the equa-

tion (1) has a solution x(t, λ) with pole at point λ = 0 of order less than or equal to p.

Example 1. Let us consider the equation

x(t, λ) − a(t)x(0, λ) = λ

∫ 1

0
b(t)m(s)x(s, λ) ds + f(t), t ∈ [0, 1].

Let us have irregular case of a(0) = 1. Let b(0) 6= 0, i.e. condition I is not
fulfilled,

d

dλ
A(λ)

∣∣
λ=0

= b(0)

∫ 1

0
m(s)a(s) ds.

Let ∫ 1

0
m(s)a(s) ds 6= 0.
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Then all the conditions of Theorem 3 are fulfilled for p = 1. Then equation has
solution x(λ) for |λ| > 0 with 1st order pole at point λ = 0. The desired solution is
the following

x(t, λ) = f(t, λ) −
b(t)

b(0)
f(0) + a(t)x(0, λ),

where the load x(0, λ) is constructed as follows

x(0, λ) ≡
1

(a,m)

[
−

f(0)

λb(0)
− (f,m) +

f(0)

b(0)
(b,m)

]
,

where (a,m) =
∫ 1
0 a(t)m(t)dt, (f,m) =

∫ 1
0 f(t)m(t)dt, (b,m) =

∫ 1
0 b(t)m(t)dt. In

this example the solution is constructed in an explicit form.

4 Conclusion and generalizations

The linear Fredholm integral functional equations of the second kind with linear
functionals are studied. Necessary and sufficient conditions are formulated. Con-
structive methods are proposed for both regular and irregular cases. The solution
in form of a Taylor series is constructed in terms of powers of the parameters. In
the irregular case, the solution is constructed as a Laurent series of powers of the
parameters. The constructive theory and methods are demonstrated using a model
example. The case of A0 6= E remained not addressed in this paper. The most
complete results can be derived for the case of symmetric matrix A0. In that case
solution of equation (1) can be also presented as Laurent series with pole at point
λ = 0. The corresponding sufficient condition can be derived based on generalized
Jordan chains of the theory of perturbed nonlinear operators [7]. The bifurcation
theory of nonlinear loaded integral equations, using the approach of this article in
combination with representation theory and group symmetry [19], will also be ad-
dressed in future works. Some results in this direction are published in [4, 5, 14].
The numerical solution of Fredholm integral-functional equations of the second kind
with linear functionals and parameter will be also addressed in future works.
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A REPUBLICII MOLDOVA. MATEMATICA
Number 2(102), 2023, Pages 92–101
ISSN 1024–7696, E-ISSN 2587–4322

B-spline collocation method for solving Fredholm

integral equations with discontinuous right-hand side
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Abstract. In this paper, we propose a method for approximating the solution
of the linear Fredholm integral equation of the second kind which is defined on a
closed contour Γ in the complex plane. The right-hand side of the equation is a
piecewise continuous function that is numerically defined on a finite set of points on
Γ. To approximate the solution, we use a linear combination of B-spline functions
and Heaviside step functions defined on Γ. We discuss both theoretical and practical
aspects of the pointwise convergence of the method, including its performance in the
vicinity of the points where discontinuities occur.
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1 Introduction and problem formulation

Let a closed and piecewise smooth contour Γ be the boundary of the simply con-
nected domain Ω+ ⊂ C, and let the point z = 0 ∈ Ω+. Consider the Riemann
function z = ψ (w) that performs the conformal map of the domain D− from the
outside of the circle Γ0 := {w ∈ C : |w| = 1} onto the domain Ω− from the outside
of the contour Γ, such that ψ (∞) = ∞, ψ′ (∞) > 0. The function ψ (w) transforms
the circle Γ0 onto the contour Γ. Next, we consider that the points of the contour
Γ are defined by means of the function ψ (w).

Let f : Γ → C be a continuous or piecewise continuous function on Γ, and in
this context, we will use the notation f ∈ PC (Γ). If the function f ∈ PC (Γ) is
discontinuous on Γ, we consider that it has finite jump discontinuities, being left-
continuous at the discontinuity points.

Let’s consider the linear Fredholm integral equation of the second kind

ϕ (t) − λ

∫

Γ
K (t, s)ϕ (s) ds = f (t) , t ∈ Γ, (1)

which is defined on the contour Γ described above. The kernel function is continuous
in both variables, K ∈ C (Γ × Γ). The right-hand side function f ∈ PC (Γ), and the
constant λ ∈ C satisfies the sufficient condition for equation (1) to have a unique
solution ϕ ∈ PC (Γ).

c© Maria Capcelea, Titu Capcelea, 2023
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Considering that the right-hand side f is numerically defined on the set of points
{tj} on the contour Γ, we aim to develop an efficient method for computing a
sequence of approximations ϕn to the solution ϕ which converges pointwise to ϕ on
Γ as n→ ∞.

Global or piecewise polynomial approximation is generally ineffective for ap-
proximating piecewise continuous functions, except when studying convergence in
the norm of Lebesgue spaces Lp, 1 < p <∞. In such cases, it is shown that the se-
quence of interpolation polynomials converges to the solution ϕ, with the exception
of a countable set of points [1].

It is known that if algebraic polynomials or spline functions of order m ≥ 2 are
used to approximate the piecewise continuous function ϕ, then in the vicinity of
the discontinuity points, the approximation error does not tend to zero, no matter
how much we increase the amount of informations required for constructing the
approximation.

For applications, it is of interest to define analytically a sequence of approxima-
tion functions ϕn that converge pointwise to the piecewise continuous function ϕ,
including in the vicinity of the discontinuity points.

Linear spline functions can be employed as an approximation technique, but in
this case, the convergence rate of the approximation process can be exceedingly slow
[2]. Some numerical results show that the oscillatory effect disappears and pointwise
convergence of the approximations is attained, even in the vicinity of discontinuity
points, when the approximation ϕn is constructed as a linear combination of B-spline
functions of order m ≥ 2 [2,3]. However, in the vicinity of discontinuity points, the
convergence rate of the approximations is exceedingly slow. Furthermore, it should
be noted that continuous curves in the complex plane frequently lead to a heavily
distorted approximation of discontinuous curves.

The proposed approximation method entails constructing a sequence of piecewise
continuous approximations for the function ϕ, with the objective of incorporating
the convergence properties of B-spline functions. Specifically, we define the sequence
of approximations ϕn as a linear combination of B-spline functions and Heaviside
step functions. Previous studies have examined these approximations on intervals
of the real axis [4]. In this paper, we investigate the case where the approximations
are defined on the contour Γ in the complex plane.

Let {tj}
nB

j=1 be the set of distinct points on the contour Γ where the values of
the function f ∈ PC (Γ) are defined. We consider that the points tj are generated
based on the relation

tj = ψ (wj) , wj = eiθj , θj = 2π (j − 1) /nB , j = 1, ..., nB .

We denote by Γj := arc [tj, tj+1] the set of points of the contour Γ, located
between the points tj and tj+1 (see Figure 1).

We admit that the values f
(
tdr
)

of the function f are known at the discontinuity
points tdr , r = 1, ..., npd, on the contour Γ. For the function f , defined numerically,
in [5] and [6] several algorithms have been proposed for establishing the locations of
the discontinuity points on Γ.
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Figure 1: The contour and notations used

2 The computational scheme for approximating the solution of the

integral equation

The algorithm we propose for approximating the solution ϕ of equation (1) is based
on the concept of B-spline functions of order m ≥ 2 which are defined at the points
tj of the contour Γ. These B-spline functions are defined using the recursive formula

Bm,j (t) :=
m

m− 1

(
t− tBj

tBj+m − tBj
Bm−1,j (t) +

tBj+m − t

tBj+m − tBj
Bm−1,j+1 (t)

)
, j = 1, ..., nB ,

(2)

where B1,j (t) =

{
1

tB
j+1−t

B

j

if t ∈ arc
[
tBj , t

B
j+1

)

0 otherwise
. The set of nodes

{
tBj

}nB+m

j=1
sat-

isfies the condition tBj = tj , j = 1, ..., nB , tBnB+1 = tB1 , t
B
nB+2 = tB2 , ..., t

B
nB+m = tBm

(see [3]). For a fixedm ≥ 2, the B-spline functions (2) have an explicit representation
[3].

We define the Heaviside step function H on the contour Γ, constructed using the
discontinuity points tdr , r = 1, ..., npd:

H
(
t− tdr

)
:=

{
0 if t ∈ Γ1 ∪ ... ∪ Γs−1 ∪ arc

[
tBs , t

d
r

)

1 if t ∈ arc
[
tdr , t

B
s+1

)
∪ Γs+1 ∪ ... ∪ ΓnB

,

where Γs = arc
[
tBs , t

B
s+1

]
, tdr ∈ Γs.

Taking into account that the solution ϕ of equation (1) is a function with jump
discontinuities on the contour Γ, and the linear combination of B-spline functions
generates a continuous curve, we will seek the approximation of the solution ϕ of
equation (1) in the form

ϕHnB
(t) :=

nB∑

k=1

αkBm,k (t) +

npd∑

r=1

βrH
(
t− tdr

)
, (3)
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where the coefficients αk ∈ C, k = 1, ..., nB , and βr ∈ C, r = 1, ..., npd, are deter-
mined by imposing the interpolation conditions

ϕHnB

(
tCj
)
− λ

∫

Γ
K
(
tCj , s

)
ϕHnB

(s) ds = f
(
tCj
)
, j = 1, ..., n. (4)

In relation (4), where n := nB +npd, the following elements of the B-spline knot set
are selected as interpolation points tCj , j = 1, ..., n:

1. the first nB interpolation points tCj , j = 1, ..., nB , are the nodes tBj = tj , j =
1, ..., nB ;

2. the remaining npd interpolation points tCj , j = nB + 1, ..., n, are the disconti-

nuity points tdr , r = 1, ..., npd, of the function f .

If among the interpolation points tCj , j = 1, ..., nB , there are discontinuity points

tdj = ψ
(
eiθ

d

j

)
of the function f on Γ, then instead of them we consider the points

t̃dj = ψ
(
ei(θ

d

j
−ε2)

)
, where ε2 > 0 is a small value, for example, ε2 = 0.01. Since the

function is left continuous, for a sufficiently small ε2, it can be considered that the
value of the function f at point t̃dj coincides with its value at point tdj .

Taking into account the representation

∫

Γ
K (t, s)ϕHnB

(s) ds =

∫

Γ
K (t, s)

(
nB∑

k=1

αkBm,k (s) +

npd∑

r=1

βrH
(
s− tdr

))
ds =

=

nB∑

k=1

αkI
1,m
k (t) +

npd∑

r=1

βrI
2
r (t) ,

where I1,m
k (t) :=

∫
ΓK (t, s)Bm,k (s) ds, I2

r (t) :=
∫
ΓK (t, s)H

(
s− tdr

)
ds, we can

write the interpolation conditions (4) in the form

nB∑

k=1

(
Bm,k

(
tCj
)
− λI1,m

k

(
tCj
))
αk +

npd∑

r=1

(
H
(
tCj − tdr

)
− λI2

r

(
tCj
))
βr =

= f
(
tCj
)
, j = 1, ..., n. (5)

The relation (5) can be written in matrix form as Bx̄ = f̄ , where

B = {mj,k}
n
j,k=1 , mj,k := Bm,k

(
tCj
)
− λI1,m

k

(
tCj
)
, j = 1, ..., n, k = 1, ..., nB ,

mj,k := H
(
tCj − tdr

)
− λI2

r

(
tCj
)
, j = 1, ..., n, k = nB + 1, ..., n,

x̄ =
(
α1, ..., αnB

, β1, ..., βnpd

)T
, f̄ =

(
f
(
tC1
)
, ..., f

(
tCn
))T

.
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If we consider tCj = tBj+1, j = 1, ..., nB , for m = 2, and tCj = tBj+2, j = 1, ..., nB ,
for m = 3 and m = 4, then the elements of the matrix B can be calculated as
follows:

B = B1 − λB2. (6)

The properties of matrix

B1 =




Bm,1
(
tC1
)

· · · Bm,nB

(
tC1
)

H
(
tC1 − td1

)
· · · H

(
tC1 − tdnpd

)

...
. . .

...
...

. . .
...

Bm,1
(
tCn
)

· · · Bm,nB

(
tCn
)

H
(
tCn − td1

)
· · · H

(
tCn − tdnpd

)




have been examined in [3], and the elements of matrix

B2 =




I1,m
1

(
tC1
)

· · · I1,m
nB

(
tC1
)

I2
1

(
tC1
)

· · · I2
npd

(
tC1
)

...
. . .

...
...

. . .
...

I1,m
1

(
tCn
)

· · · I1,m
nB

(
tCn
)

I2
1

(
tCn
)

· · · I2
npd

(
tCn
)




can be determined as follows:
For the elements I1,m

k

(
tCj

)
, j = 1, ..., n, k = 1, ..., nB , the following relations

hold:

I1,m
k

(
tCj
)

=

∫

Γ
K
(
tCj , s

)
Bm,k (s) ds =

∫

arc[tBk ,t
B

k+m]
K
(
tCj , s

)
Bm,k (s) ds =

=
m∑

r=1

∫

arc[tBk+r−1,t
B

k+r]
K
(
tCj , s

)
p
(r)
k (s) ds =

m∑

r=1

∫ θB

k+r

θB

k+r−1

grj,k (θ) dθ,

where grj,k := K
(
tCj , ψ

(
eiθ
))
p
(r)
k

(
ψ
(
eiθ
))
ψ′
(
eiθ
)
ieiθ, and p

(r)
k (s) represents the

components of the B-spline function Bm,k (s) of the corresponding order m. For
example, for m = 4, we have:

p
(1)
k (s) =

4
(
s− tBk

)3
(
tBk+4 − tBk

) (
tBk+3 − tBk

) (
tBk+2 − tBk

) (
tBk+1 − tBk

) ,

p
(2)
k (s) = 4 (I1 + I2) ,

where

I1 :=
s− tBk

tBk+4 − tBk

(
I1
1 + I2

1

)
,

I1
1 =

(
s− tBk

) (
tBk+2 − s

)
(
tBk+3 − tBk

) (
tBk+2 − tBk

) (
tBk+2 − tBk+1

) ,

I2
1 =

(
s− tBk+1

) (
tBk+3 − s

)
(
tBk+3 − tBk

) (
tBk+3 − tBk+1

) (
tBk+2 − tBk+1

) ,
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I2 :=

(
tBk+4 − s

) (
s− tBk+1

)2
(
tBk+4 − tBk

) (
tBk+4 − tBk+1

) (
tBk+3 − tBk+1

) (
tBk+2 − tBk+1

) ,

p
(3)
k (s) = 4 (I3 + I4) ,

and

I3 :=

(
tBk+3 − s

)2 (
s− tBk

)
(
tBk+4 − tBk

) (
tBk+3 − tBk

) (
tBk+3 − tBk+1

) (
tBk+3 − tBk+2

) ,

I4 :=
tBk+4 − s

tBk+4 − tBk

(
I1
4 + I2

4

)
,

I1
4 =

(
s− tBk+1

) (
tBk+3 − s

)
(
tBk+4 − tBk+1

) (
tBk+3 − tBk+1

) (
tBk+3 − tBk+2

)

I2
4 =

(
s− tBk+2

) (
tBk+4 − s

)
(
tBk+4 − tBk+1

) (
tBk+4 − tBk+2

) (
tBk+3 − tBk+2

) ,

p
(4)
k (s) =

4
(
tBk+4 − s

)3
(
tBk+4 − tBk

) (
tBk+4 − tBk+1

) (
tBk+4 − tBk+2

) (
tBk+4 − tBk+3

) .

The integrals
∫ θB

k+r

θB

k+r−1

grj,k (θ)dθ are approximated using the generalized trapezoidal

rule, which is also applicable to functions with complex values [7]:

I :=

∫ θf

θin

g (θ) dθ ≈ IN := h


0.5 (g (θin) + g (θf )) +

N−1∑

j=1

g (θin + jh)


 , (7)

h := (θf − θin) /N.

As N → ∞, it has been shown in [7] that IN → I at the rate of a geometric
progression.

For the elements I2
r

(
tCj

)
, j = 1, ..., n, r = 1, ..., npd, the relations

I2
r

(
tCj
)

=

∫

Γ
K
(
tCj , s

)
H
(
s− tdr

)
ds =

∫

arc[tdr ,ψ(1)]
K
(
tCj , s

)
ds =

∫ 2π

θd
r

qj (θ)dθ,

hold true, where qj (θ) := K
(
tCj , ψ

(
eiθ
))
ψ′
(
eiθ
)
ieiθ. Similarly, the integrals

∫ 2π
θd
r

qj (θ) dθ will be approximated using the generalized trapezoidal rule (7).

It should be noted that the functions grj,k (θ) and qj (θ) do not depend on the
function f (t). Therefore, they can be evaluated at any point θ ∈ [0, 2π], allowing

for the approximation of the integrals I1,m
k

(
tCj

)
and I2

r

(
tCj

)
, respectively.
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3 About the convergence of the method and a numerical example

After determining the solution αk, k = 1, ..., nB , βr, r = 1, ..., npd, of the system
(5), we construct the approximation (3) of the function ϕ (t) and calculate its values
at the points t ∈ Γ. The convergence of the approximation sequence ϕHnB

, defined
by (3), to the function ϕ ∈ PC (Γ) as nB → ∞ has been established in [3].

We exhibit the convergence of the proposed method through a numerical ex-
ample. Consider the Riemann function z = ψ (w) that performs the conformal
transformation of the set {w ∈ C : |w| > 1} on the domain Ω− from the outside of
the contour Γ as ψ (w) = w + 1

/ (
3w3

)
. Thus, ψ (w) transforms the unit circle Γ0

onto the astroid Γ (see Figure 2).

Figure 2: The contour and discontinuity

points Figure 3: Graph of the solution

For testing purposes, we consider in the integral equation (1) the kernel func-
tion K (t, s) = t2 + s2, the constant λ = 0.5, and the right-hand side f (t) given
analytically on Γ:

f (t) =





2t− λu if θ ∈
(
0, θd1

]

t3 + 2t− λu if θ ∈
(
θd1 , θ

d
2

]

t3 + 2t− λu if θ = 0
.

We have θd1 = 0.7π, θd2 = 2π and u := (0.78148 − 0.081271i) t2+0.91818+0.025237i.

The function f has npd = 2 jump discontinuity points on Γ, tdj = ψ
(
eiθ

d

j

)
, j = 1, 2

(see Figure 2 and Figure 3).

Likewise, the exact solution ϕ ∈ PC (Γ) for the given test problem is known to
be

ϕ (t) =





2t if θ ∈
(
0, θd1

]

t3 + 2t if θ ∈
(
θd1, θ

d
2

]

t3 + 2t if θ = 0
.

It has two discontinuity points, the same as the right-hand side f .

The approximation algorithm for the solution of equation (1) takes as initial data
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the values fj of the function f at the points

tj = ψ
(
eiθj

)
∈ Γ, θj = 2π (j − 1) /nB, nB ∈ N, k = 1, ..., nB .

The coefficients of the approximation for the solution of equation (1) are deter-
mined as a linear combination according to (3), where B-spline functions of order
m = 4 are considered. The number of points where the value of the function f is
given on Γ is nB = 320. Consequently, the solution to the system of equations Bx̄ =

f̄ is determined, where x̄ =
(
α1, ..., αnB

, β1, ..., βnpd

)T
, f̄ = (f (tc1) , ..., f (tcn))

T ,
n = nB + npd, and the matrix B has the form specified in (6).

The integrals I1,m
k

(
tCj

)
and I2

r

(
tCj

)
, which define the components of the matrix

B, are approximated using the generalized trapezoidal rule (7), with the parameter
N = 200.

For values nB = 160 and nB = 320 in Figure 4 and Figure 5 the error obtained
at the approximation of the solution ϕ by ϕHnB

is presented. It can be seen that the
maximum error decreases significantly for nB = 320.

Figure 4: The approximation error for nB=160
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Figure 5: The approximation error for nB=320
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On recursive 1-differentiability of the quasigroup

prolongations

Parascovia Syrbu, Elena Cuzneţov

Abstract. The recursive differentiability of finite binary quasigroups is investi-
gated. We consider the Bruck and Belousov constructions of prolongation of finite
quasigroups and give necessary and sufficient conditions when such prolongations are
recursively 1-differentiable.
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The first construction of a quasigroup prolongation was proposed by Bruck (see
[1]) for the case of idempotent quasigroups in 1944. However, the notion of prolonga-
tion was introduced by Belousov (see [2]) in 1967. Constructions of prolongations of
finite quasigroups have been given by Osborn (1961), Yamamoto (1961), Denes and
Pasztor (1963), Belousov and Belyavskaya (1968), Belyavskaya (1969), Deriyenko
and Dudek (2008, 2013) and others (see [7]).

Belousov considered a construction of prolongations based on complete mappings
[2]. Recall that a complete mapping of a quasigroup Q, ·) is a bijection x 7→ θ(x)
of Q onto Q such that x · θ(x) = θ1(x) is also a bijective mapping of Q onto Q.
The determination of all quasigroups, in particular groups, which possess a com-
plete mapping remains at present an open problem [7]. In finite case, the complete
mappings of quasigroups define transversals of their Cayley tables. A transversal of
a latin square of order q is a set of q cells, taken by one from each row and each
column, such that the elements in these cells are pairwise different.

Let (Q, ·) be a finite quasigroup of order q, and let σ : Q 7→ Q be a complete
mapping. Then {(x, σ(x))|x ∈ Q} is a transversal of the latin square given by the
Cayley table of (Q, ·). The prolongation (Q′, ◦) of (Q, ·), where Q′ = Q ∪ {ξ} and
ξ 6∈ Q, considered by Belousov, is defined as follows:

x ◦ y =





x · y if y 6= σ(x) and x, y ∈ Q;
ξ if y = σ(x) and x, y ∈ Q;
x · σ(x) if y = ξ and x ∈ Q;
σ−1(y) · y if x = ξ and y ∈ Q;
ξ if x = y = ξ.

Analogously, we may construct prolongations of order q + k if (Q, ·) has k pairwise
distinct transversals.

c© P. Syrbu, E. Cuzneţov, 2023
DOI: https://doi.org/10.56415/basm.y2023.i2.p102
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In the present work we study the recursive differentiability of Bruck and Belousov
prolongations, obtained by adding one element to a finite quasigroup.

The notions of recursive derivative and recursively r-differentiable k-quasigroup
(r ≥ 0, k ≥ 2) have been introduced in [3] in connection with complete k-recursive
codes.

Let Q be a finite set of q elements. Any nonempty subset C of Qn is called an n-
code (or a code of length n) over the alphabet Q. An n-code C ⊆ Qn, where |Q| = q,
with the minimum Hamming distance d, is called an [n, k, d]q-code if |C| = qk. It is
known that the parameters of an [n, k, d]q-code satisfy the inequality d ≤ n − k + 1
[7]. An [n, k, d]q-code with d = n − k + 1, i.e. which attains the Singleton bound,
is called an MDS-code. At present it is an open problem to determine all values of
the parameters q, n and d (for a fixed k ≥ 2) such that there exist [n, k, d]q-codes
meeting the Singleton bound.

A code C of length n over an alphabet Q is called a complete k-recursive code,
where 1 ≤ k ≤ n, if there exists a mapping f : Qk 7→ Q such that the components
of every code word u = (u0, u1, ..., un−1) ∈ C satisfy the conditions:

ui+k = f(ui, ui+1, ..., ui+k−1),

for every i = 0, 1, ..., n − k. So, if C is a complete k-recursive code of length n, over
an alphabet Q, then there exist the mappings f (0), f (1), ..., f (n−k−1) : Qk 7→ Q such
that C = {(x1, ..., xk, f (0)(xk

1), ..., f
(n−k−1)(xk

1)) | x1, ..., xk ∈ Q}, where

f (0)(xk
1) = f(xk

1),
f (1)(xk

1) = f(x2, ..., xk, f (0)(xk
1)),

..........
f (t)(xk

1) = f(xt+1, ..., xk, f (0)(xk
1), ..., f

(t−1)(xk
1)), for t < k, and

f (t)(xk
1) = f(f (t−k)(xk

1), ..., f
(t−1)(xk

1)), for t ≥ k.

The mapping f (t)(xk
1), where t ≥ 0, is called the recursive derivative of order

t of f . We say that a k-ary quasigroup (Q, f) is recursively s-differentiable if its
recursive derivatives f (1), ..., f (s) are quasigroup operations. A complete k-recursive
code C = {(x1, ..., xk, f (0)(xk

1), ..., f
(n−k−1)(xk

1)) | x1, ..., xk ∈ Q} is an MDS-code
if and only if the system of k-recursive derivatives {f (0), ..., f (n−k−1)} is strongly
orthogonal [3, 6]. As a corollary from this result we get that if the given above code
C attains the Singleton bound then the k-ary operation f is recursively (n− k− 1)-
differentiable.

As orthogonal systems of binary quasigroups are strongly orthogonal, we obtain
the following statement.
Theorem 1 [3] A complete 2-recursive code of length n

C = {(x, y, f (0)(x, y), ..., f (n−3)(x, y)) | x, y ∈ Q}

attains the Singleton bound if and only if (Q, f) is a recursively (n−3)-differentiable

quasigroup. In this case, {f (0), ..., f (n−3)} is an orthogonal system of quasigroups.

It follows from Theorem 1 that:
1) a binary finite quasigroup (Q, f) is recursively r-differentiable if and only if the
complete 2-recursive code
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C = {(x, y, f (0)(x, y), ..., f (r)(x, y)) | x, y ∈ Q}

is an MDS-code;
2) the maximum order r of recursive differentiability of a finite binary quasigroup
of order q satisfies the inequality r ≤ q − 2 (see [5]).

Various methods of construction of binary recursively differentiable quasigroups
are given in [3-6]. In particular, it is proved in [3] that, for every positive inte-
ger q, excepting 1, 2, 6, and possibly 14, 18, 24 and 42, there exist recursively 1-
differentiable binary quasigroups of order q. Later, in 2009, it was shown that there
exist recursively 1-differentiable quasigroups of order 42 (see [4]), but the question
is still opened for 14, 18 and 24.

Another open problem is to determine the maximum order r of the recursive
differentiability of a finite k-quasigroup. As it was mentioned above, in the binary
case we have r ≤ q − 2 and there exist recursively (q − 2)-differentiable binary
quasigroups of every primary order q ≥ 3 [3]. Necessary and sufficient conditions
when a binary finite abelian group is recursively r-differentiable, for r ≥ 1, are given
in [6]. A generalization of this result for a class of n-ary groups is considered in
[5]. Also a table with maximum known values of r for binary finite quasigroups of
order up to 200 is given in [5], where it is shown, in particular, that there exist finite
recursively 1-differentiable n-quasigroups of every odd order q ≥ 3, for every n ≥ 2.

Our aim in the present paper is to find necessary and sufficient conditions when
the prolongations of finite binary quasigroups, obtained using Bruck and Belousov
constructions, are recursively 1-differentiable. Let (Q, ·) be a finite quasigroup of
order n and Q = {1, 2, ..., n} such that the mapping x 7→ x · x is a bijection. Then
the main diagonal of the Cayley table of (Q, ·) is a transversal, which entries are
given by the mapping θ : Q 7→ Q, θ(x) = x · x. As it was mentioned above, Bruck
considered such prolongations for idempotent quasigroups, i.e. in the case θ = ε be
the identical mapping on Q.

Following Bruck’s idea, the operation of the prolongation (Q′, ◦) of a quasigroup
(Q, ·), where Q = {1, ..., n} and Q′ = Q ∪ {ξ}, ξ 6∈ Q, is defined as follows:

x ◦ y =





x · y if x 6= y and x, y ∈ Q;
ξ if x = y and x ∈ Q;
θ(x) if y = ξ and x ∈ Q;
θ(y) if x = ξ and y ∈ Q;
ξ if x = y = ξ.

(1)

So, the prolongation (Q′, ◦) is a quasigroup with the Cayley table:

◦ 1 ... n ξ

1 ξ ... ... θ(1)
... ... ... ... ...
n ... ... ξ θ(n)

ξ θ(1) ... θ(n) ξ

Table 1
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where x ◦ y = x · y, for every x 6= y from Q.

Remark that not every transversal on the main diagonal gives 1-differentiable
prolongations as it is shown in the following statement.

Proposition 1. Let (Q, ·) be a finite quasigroup such that the mapping θ : Q 7→ Q,
θ(x) = x · x is a bijection. If the prolongation (Q′, ◦), given by (1), where Q′ =
Q ∪ {ξ}, ξ 6∈ Q, is a quasigroup, then θ(x) 6= x,∀x ∈ Q.

Proof. Indeed, if there exists an element a ∈ Q such that a = θ(a) = a ·a, then using

(1) we get: a
1
◦ a = a · (a · a) = a · a = a and ξ

1
◦ a = a · (ξ · a) = a · θ(a) = a · a = a,

so (Q′, ◦) can not be a quasigroup.

Lemma 1. Let (Q, ·) be a finite quasigroup of order n, Q = {1, ..., n} and Q′ =
Q ∪ {ξ} where ξ 6∈ Q. If the mapping θ : Q 7→ Q, θ(x) = x · x is a bijection and

θ(x) 6= x, ∀x ∈ Q, then the recursive derivative of order 1 of the operation ” ◦ ”,
given in (1), is the following:

x
1
◦ y =





y · (x · y) if y 6= x · y, x 6= y, x, y ∈ Q;
ξ if y = x · y x 6= y, x, y ∈ Q;
θ(y) if x = y, x ∈ Q;
θ2(x) if y = ξ, x ∈ Q;
y · θ(y) if x = ξ, y ∈ Q;
ξ if x = y = ξ.

(2)

Proof. Using (1) and the fact that x
1
◦ y = y ◦ (x ◦ y),∀x, y ∈ Q′, we have:

x
1
◦ y =





y ◦ (x · y) if x 6= y and x, y ∈ Q;
y ◦ ξ if x = y, y ∈ Q;
ξ ◦ θ(x) if y = ξ, x ∈ Q;
y ◦ θ(y) if x = ξ, y ∈ Q;
ξ if x = y = ξ.

Now, using (1) for ” ◦ ” in the previous formulas, we get:

x
1
◦ y =





y · (x · y) if y 6= x · y, x 6= y and x, y ∈ Q;
ξ if y = x · y, x 6= y and x, y ∈ Q;
θ(y) if x = y, y ∈ Q;
θ2(x) if y = ξ, x ∈ Q;
y · θ(y) if x = ξ, y 6= θ(y), y ∈ Q;
ξ if x = ξ, y = θ(y), y ∈ Q;
ξ if x = y = ξ.

If the mapping θ : Q 7→ Q, θ(x) = x · x is a bijection and θ(x) 6= x, ∀x ∈ Q, then

the prolongation (Q′, ◦) is a quasigroup and its recursive derivative (
1
◦) is defined as

it is shown in (2).
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Remark 1. According to Lemma 1, the Cayley table of the recursive derivative

(Q′,
1
◦) is the following:

1
◦ ... x ... y ... ξ

... ... ... ... ... ... ...
x ... θ(x) ... z ... θ2(x)
... ... ... ... ... ... ...

ξ ... x · θ(x) ... ... ... ξ

Table 2

where

z =

{
y · (x · y) if y 6= x · y;
ξ if y = x · y.

Theorem 2. Let (Q, ·) be a finite quasigroup such that the mapping θ : Q 7→ Q,
θ(x) = x · x is a bijection and θ(x) 6= x,∀x ∈ Q. Then the prolongation (Q′, ◦)
obtained using Bruck’s construction, where Q′ = Q ∪ {ξ}, ξ 6∈ Q, is recursively 1-

differentiable if and only if the following conditions are satisfied:

1. {fx | x ∈ Q} = Q, where fx · x = x,∀x ∈ Q;

2. θ is a complete mapping of (Q, ·);
3. for each x ∈ Q, {θ(x), y · (x · y), θ2(x) | y ∈ Q, x 6= y, y 6= x · y} = Q.

Proof. According to Proposition 1, the condition θ(x) 6= x,∀x ∈ Q, implies the

fact that the prolongation (Q′, ◦) is a quasigroup, so the equation x
1
◦ a = b ⇔

a ◦ (x ◦ a) = b has a unique solution in (Q′,
1
◦) and consequently, the rows in Table

2 are permutations of Q′. For x, y ∈ Q, the entry of the cell (x, y) is ξ if and only
if y = x · y, i.e. if and only if x = fy is the left local unit of y. Thus ξ will appear
exactly once in each row and each column of Table 2 if and only if {fy | y ∈ Q} = Q.
The row of the element ξ in Table 2 is a permutation of Q′ if and only if x 7→ x ·θ(x)
is a bijection on Q, i.e. if and only if θ is a complete mapping of (Q, ·).

Finally, the row of x ∈ Q is a permutation of Q′ if and only if
{θ(x), y · (x · y), θ2(x) | x 6= y, y 6= x · y, y ∈ Q} = Q.

Example 1. The prolongation of the quasigroup (Q, ·), obtained using the transver-
sal T={(1,1),(2,2),(3,3)}, is recursively 1-differentiable.

· 1 2 3

1 2 1 3
2 1 3 2
3 3 2 1

◦ 1 2 3 ξ

1 ξ 1 3 2
2 1 ξ 2 3
3 3 2 ξ 1

ξ 2 3 1 ξ

1
◦ 1 2 3 ξ

1 2 1 ξ 3
2 ξ 3 2 1
3 3 ξ 1 2
ξ 1 2 3 ξ

As it was mentioned above, the Belousov’s idea of prolongation uses an arbitrary
transversal of the Cayley table, not necessarily one on the main diagonal.
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Let {(x, θ(x)) | x ∈ Q}, where θ ∈ SQ, be a transversal of a finite quasigroup
(Q, ·). Then the mapping θ′ : Q → Q, θ′(x) = x · θ(x) is a bijection. Following the
Bruck’s idea, Belousov considered the prolongation (Q′, ◦), where Q′ = Q∪{ξ}, ξ 6∈ Q
and

x ◦ y =





x · y if y 6= θ(x) and x, y ∈ Q;
ξ if y = θ(x) and x, y ∈ Q;
θ′(θ−1(y)) if x = ξ and y ∈ Q;
θ′(x) if y = ξ and x ∈ Q;
ξ if x = y = ξ.

(3)

Remark 2. If θ′ is a bijection then (Q′, ◦) is a quasigroup with the following Cayley
table:

◦ ... θ(x) ... y ... ξ

... ... ... ... ... ... ...
x ... θ′(x) ... x · y ... θ′(x)
... ... ... ... ... ... ...

ξ ... ... ... θ′(θ−1(y)) ... ξ

Table 3

Let (Q, ·) be a finite quasigroup and θ ∈ SQ such that θ′ : Q → Q, θ′(x) = x ·θ(x)

is a bijection. Then the recursive derivative (Q′,
1
◦) of the prolongation (Q′, ◦) given

in (3) is the following:

x
1
◦ y =





y · (x · y) if y 6= θ(x · y), y 6= θ(x) and x, y ∈ Q;
ξ if y = θ(x · y), y 6= θ(x) and x, y ∈ Q;
θ′(θ(x)) if y = θ(x) and x, y ∈ Q;
y · θ′(θ−1(y)) if y 6= θ(θ′(θ−1(y))), x = ξ and y ∈ Q;
ξ if y = θ(θ′(θ−1(y))), x = ξ and y ∈ Q;
θ′(θ−1(θ′(x))) if y = ξ and x ∈ Q;
ξ if x = y = ξ.

(4)

Proof. Indeed, (4) follows from (3), using the definition of the recursive derivative

x
1
◦ y = y ◦ (x ◦ y),∀x, y ∈ Q.

Remark 3. If y = θ(θ′(θ−1(y))), where y ∈ Q, then ξ
1
◦ y = ξ = ξ

1
◦ ξ, so (Q′,

1
◦) is

not a quasigroup.

Now, using (4) and Remark 3, we get the following statement.

Lemma 2. Let (Q, ·) be a finite quasigroup, θ ∈ SQ such that θ′ : Q 7→ Q, θ′(x) =
x · θ(x) is a bijection and y 6= θ(θ′(θ−1(y))),∀y ∈ Q. Then the recursive derivative
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(Q′,
1
◦) of the Belousov’s prolongation (Q′, ◦) is:

x
1
◦ y =





y · (x · y) if y 6= θ(x · y), y 6= θ(x) and x, y ∈ Q;
ξ if y = θ(x · y), y 6= θ(x) and x, y ∈ Q;
θ′(θ(x)) if y = θ(x) and x, y ∈ Q;
y · θ′(θ−1(y)) if x = ξ and y ∈ Q;
θ′(θ−1(θ′(x))) if y = ξ and x ∈ Q;
ξ if x = y = ξ.

(5)

Proof. The proof follows from (4) and the condition y 6= θ(θ′(θ−1(y))),∀y ∈ Q.

Remark 4. The Cayley table of (Q′,
1
◦), given in (5) is the following:

1
◦ ... θ(x) ... y ... ξ

... ... ... ... ... ... ...
x ... θ′(θ(x)) ... w ... θ′(θ−1(θ′(x))
... ... ... ... ... ... ...

ξ ... ... ... y · θ′(θ−1(y)) ... ξ

Table 4

where

w =

{
y · xy if y 6= θ(x · y), y 6= θ(x);
ξ if y = θ(x · y), y 6= θ(x).

Theorem 3. Let (Q, ·) be a finite quasigroup, θ ∈ SQ such that the mapping

θ′ : Q 7→ Q, θ′(x) = x · θ(x) is a bijection and θ−1(y) 6= θ′(θ−1(y)),∀y ∈ Q.

Then the Belousov’s prolongation (Q′, ◦) is recursively 1-differentiable if and only if

the following conditions hold:

1. {θ−1(y)/y | y ∈ Q} = Q;

2. the mapping y 7→ y · θ′(θ−1(y)) is a bijection on Q;

3. for each x ∈ Q, {θ′(θ(x)), y ·xy, θ′(θ−1(θ′(x)))|y 6= θ(x ·y), y 6= θ(x), y ∈ Q} = Q.

Proof. According to Belousov’s construction, (Q′, ◦) is a quasigroup, so the equation

x
1
◦ a = b ⇔ a ◦ (x ◦ a) = b has a unique solution in Q′, for every a, b ∈ Q′. Thus

the rows in the Cayley table (5) are permutations of Q′. The element ξ appears in

a cell (x, y) with x, y ∈ Q if y = θ(x · y), y 6= θ(x), i.e. if x = θ−1(y)/y. If (Q′,
1
◦) is

a quasigroup, then {θ−1(y)/y | y ∈ Q} = Q.

According to Table 4, the row of ξ is a permutation of Q′ if and only if the
mapping y 7→ y · θ′(θ−1(y)) is a bijection on Q.

Finally, the row of x ∈ Q in Table 4, is a permutation of Q′ if and only if the
third condition is fulfilled.
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Example 2. The prolongation of the quasigroup (Q, ·), obtained using the transver-
sal T={(1,2),(2,1),(3,3)}, is recursively 1-differentiable.

· 1 2 3

1 2 3 1
2 1 2 3
3 3 1 2

◦ 1 2 3 ξ

1 2 ξ 1 3
2 ξ 2 3 1
3 3 1 ξ 2

ξ 1 3 2 ξ

1
◦ 1 2 3 ξ

1 ξ 1 3 2
2 3 2 ξ 1
3 1 ξ 2 3
ξ 2 3 1 ξ
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Zero-Order Markov Processes

with Multiple Final Sequences of States

Alexandru Lazari

Abstract. A zero-order Markov process with multiple final sequences of states
represents a stochastic system with independent transitions that stops its evolution
as soon as one of the given final sequences of states is reached. The transition time of
the system is unitary and the transition probability depends only on the destination
state. It is proved that the distribution of the evolution time is a homogeneous linear
recurrent sequence and a polynomial algorithm to determine the initial state and the
generating vector of this recurrence is developed. Using the generating function, the
main probabilistic characteristics are determined.

Mathematics subject classification: 65C40, 60J22, 90C39, 90C40.
Keywords and phrases: zero-order Markov process, final sequence of states, evolu-
tion time, homogeneous linear recurrence, generating function.

1 Introduction and Problem Formulation

Let L be a discrete stochastic system with finite set of states V , |V | = ω. At
every discrete moment of time t ∈ N the state of the system is v(t) ∈ V . The system
L starts its evolution from the state v with the probability p∗(v), for all v ∈ V ,
where

∑
v∈V

p∗(v) = 1.

Also, the transition from one state u to another state v is performed according
to the same probability p∗(v) that depends only on the destination state v, for every
u ∈ V and v ∈ V . Additionally, we assume that r different sequences of states

X(`) = (x
(`)
1 , x

(`)
2 , . . . , x

(`)
m ) ∈ V m, ` = 1, r, are given and the stochastic system stops

transitions as soon as the states x
(`)
1 , x

(`)
2 , . . . , x

(`)
m are reached consecutively in given

order for an arbitrary ` ∈ {1, 2, . . . , r}. The time T , when the system stops, is
called evolution time of the stochastic system L with given final sequences of states
X = {X(1),X(2), . . . ,X(r)}.

The stochastic system L, described above, represents a zero-order Markov pro-
cess with final sequences of states X = {X(1),X(2), . . . ,X(r)}. For the particular
case r = 1, several interpretations of these Markov processes were analyzed in [8]
and [9]. Using these concepts, the zero-order Markov processes with final sequence
of state continued to be deeply studied in [3], with several further generalizations
for the games, compositions and optimization problems in [2], [4] and [6]. Also, the
obtained results were extended for stochastic systems with final sequence of states
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and interdependent transitions in [1], [5] and [7]. Based on polynomial algorithms
proposed in [3], the main probabilistic characteristics (expectation, variance, mean
square deviation, n-order moments) of evolution time and game duration were effi-
ciently determined.

Next, in this paper, the generalization of this problem for any r ≥ 1 is considered.
This generalized problem is a bit different than the parallel compositions, studied
in [2], because the dynamics of the systems are performed in a mixed one and they
are interdependent.

Our goal is to analyze the evolution time T of the stochastic system L. We
prove that the distribution of the evolution time T is a homogeneous linear recur-
rent sequence, and a polynomial algorithm to determine the initial state and the
generating vector of this recurrence is developed. Having the generating vector and
the initial state of the recurrence, we can use the related algorithm from [3], which
was mentioned above, for determining the main probabilistic characteristics of the
evolution time.

2 Determining the Distribution of the Evolution Time

In this section we will determine the distribution law of the evolution time T .
Initially, we consider the notations

X
(`)
k = {x

(`)
k }, π

(`)
k = p∗(x

(`)
k ), w

(`)
k =

k∏
j=2

π
(`)
j ,

Y
(`)
k = (x

(`)
1 , x

(`)
2 , . . . , x

(`)
k ), Yk = {Y

(1)
k , Y

(2)
k , . . . , Y

(r)
k },

(1)

for each k = 1,m and ` = 1, r.

Let a = (an)∞n=0 be the distribution of the evolution time T , i.e. an = P(T = n),
n = 0,∞. Since T ≥ m − 1, we have an = 0, n = 0,m − 2. If T = m − 1, then

∃` ∈ {1, 2, . . . , r} such that v(j) = x
(`)
j+1, j = 0,m − 1, that implies

am−1 = P(T = m − 1) =

r∑

`=1

m∏

j=1

p∗(x
(`)
j ) =

=

r∑

`=1

(
π

(`)
1 π

(`)
2 . . . π(`)

m

)
=

r∑

`=1

(
π

(`)
1 w(`)

m

)
. (2)

We consider ∀n ∈ Z. Let be S(V ) = {A | A ⊆ V }. Denote by P
(`)
Φ (n) the probability

that T = n and v(j) ∈ Φj, j = 0, t − 1, for all Φ = (Φj)
t−1
j=0 ∈ (S(V ))t, t ∈ N and

` = 1, r. We introduce the following functions on Z, k = 0,m, ` = 1, r:

β
(`)
k (n) = P

(X
(`)
1 ,X

(`)
2 ,...,X

(`)
k

)
(n),

γ
(`)
k (n) = P

(X
(`)
2 ,X

(`)
3 ,...,X

(`)
k

)
(n).

(3)
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For ∀n ≥ m, we have

β
(`)
k (n) = P

(X
(`)
1 ,X

(`)
2 ,...,X

(`)
k

)
(n) =

= π
(`)
1 P

(X
(`)
2 ,...,X

(`)
k

)
(n − 1) − π

(`)
1

r∑

j=1

u
(`)
j,kP(X

(j)
2 ,...,X

(j)
m )

(n − 1) =

= π
(`)
1


γ

(`)
k (n − 1) −

r∑

j=1

u
(`)
j,kγ

(j)
m (n − 1)


 , k = 0,m, ` = 1, r, (4)

where

u
(`)
j,k =

{
1, k = 0 or Y

(j)
k = Y

(`)
k

0, k 6= 0 and Y
(j)
k 6= Y

(`)
k

. (5)

We consider the sets

T (`)
s = {s + 1} ∪ {t ∈ {2, 3, . . . , s} | (x

(`)
t , x

(`)
t+1, . . . , x

(`)
s ) ∈ Ys+1−t},

for each s = 1,m and ` = 1, r. The minimal elements from these sets are

t(`)s = min
k∈T

(`)
s

k, s = 1,m, ` = 1, r. (6)

The value t
(`)
s represents the position in the sequence (x

(`)
1 , x

(`)
2 , . . . , x

(`)
s ) starting

with which, if we overlap a final sequence of states X(τ
(`)
s ) ∈ X, the superposed ele-

ments are equal. Here by τ
(`)
s we denote the minimal index from the set {1, 2, . . . , r}

that satisfies given condition.
Next, for s = 1,m and ` = 1, r, we obtain

γ(`)
s (n) = P

(X
(`)
2 ,X

(`)
3 ,...,X

(`)
s )

(n) =

= π
(`)
2 π

(`)
3 . . . π

(`)

t
(`)
s −1

P(X
t
(`)
s

,X
t
(`)
s +1

,...,Xs)(n − t(`)s + 2) =

= w
(`)

t
(`)
s −1

P
(X

(τ
(`)
s )

1 ,X
(τ

(`)
s )

2 ,...,X
(τ

(`)
s )

s+1−t
(`)
s

)
(n − t(`)s + 2) =

= w
(`)

t
(`)
s −1

β
(τ

(`)
s )

s+1−t
(`)
s

(n − t(`)s + 2). (7)

Particularly, for s = 0, we have

γ
(`)
0 (n) = an = γ

(`)
1 (n) = w

(`)
1 β

(τ
(`)
1 )

0 (n) = β
(`)
0 (n),

which implies

β
(`)
0 (n) = π

(`)
1


γ

(`)
0 (n − 1) −

r∑

j=1

u
(`)
j,0γ

(j)
m (n − 1)



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= π
(`)
1


β

(`)
0 (n − 1) −

r∑

j=1

u
(`)
j,0w

(j)

t
(j)
m −1

β
(τ

(j)
m )

m+1−t
(j)
m

(n − t(j)m + 1)


 (8)

and, for k = 1,m,

β
(`)
k (n) = π

(`)
1


γ

(`)
k (n − 1) −

r∑

j=1

u
(`)
j,kγ

(j)
m (n − 1)


 =

= π
(`)
1

(
w

(`)

t
(`)
k

−1
β

(τ
(`)
k

)

k+1−t
(`)
k

(n − t
(`)
k + 1)−

−

r∑

j=1

u
(`)
j,kw

(j)

t
(j)
m −1

β
(τ

(j)
m )

m+1−t
(j)
m

(n − t(j)m + 1)


 . (9)

Since 2 ≤ t
(`)
s ≤ s + 1 ≤ m + 1, s = 1,m, ` = 1, r, there exist some real coefficients

v
(i)
jks`, k, j, s = 0,m − 1, i, ` = 1, r, such that

β
(`)
k (n) =

r∑

i=1

m−1∑

j=0

m−1∑

s=0

v
(i)
jks` β(i)

s (n − 1 − j), k = 0,m − 1, ` = 1, r, ∀n ≥ m.

So, we have

βk(n) =
m−1∑

j=0

m−1∑

s=0

Vjks βs(n − 1 − j), k = 0,m − 1, ∀n ≥ m,

where Vjks = (v
(i)
jks`)`, i=1,r, βk(n) = (β

(`)
k (n))`=1,r, k, j, s = 0,m − 1. This recur-

rence relation can be written in the form

β(n) =

m−1∑

j=0

Vj β(n − 1 − j), ∀n ≥ m,

where Vj = (Vjks)k,s=0,m−1 and β(n) = ((βk(n))m−1
k=0 )T , j = 0,m − 1, ∀n ∈ Z. From

this relation, we obtain that β = (β(n))∞n=0 ∈ Rol∗[Mm(Mr(R))][m] with generating
vector V = (Vj)

m−1
j=0 ∈ G∗[Mm(Mr(R))][m](β). Using the results from [1], we have

β ∈ Rol∗[R][m2r], which implies that also

(β
(`)
k (n))∞n=0 ∈ Rol∗[R][m2r], k = 0,m − 1, ` = 1, r,

with the same generating vector. Since

an = β
(1)
0 (n), ∀n ≥ 0, (10)

we have
a = (an)∞n=0 ∈ Rol∗[R][m2r].
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Next, we will use only the relation a ∈ Rol∗[C][m2r], the minimal generating
vector being determined using the minimization method based on the matrix rank,
described in [3]. So, according to this method, we have that the minimal genera-
ting vector q = (q0, q1, . . . , qR−1) ∈ G∗[C][R](a) is obtained from the unique solution
x = (qR−1, qR−2, . . . , q0) of the system

A
[a]
R xT = (f

[a]
R )T , (11)

where

f
[a]
R = (aR, aR+1, . . . , a2R−1), A[a]

n = (ai+j)i,j=0,n−1, ∀n ∈ N
∗ (12)

and R is the rank of the matrix A
[a]
m2r

.

In order to apply this minimization method, we need to have only the values ak,
k = 0, 2m2r − 1. These values can be determined using the recurrences (8) and (9)
and the relations (1), (2), (5), (6) and (10).

3 Describing the developed algorithm

In previous section we theoretically grounded the following algorithm for deter-
mining the main probabilistic characteristics of the evolution time T : the distri-
bution (P(T = n))∞n=0, the expectation E(T ), the variance V(T ), the mean square
deviation σ(T ) and the k-order moments νk(T ), k = 1, 2, . . . .

Algorithm 1.

Input: X(`) = (x
(`)
1 , x

(`)
2 , . . . , x

(`)
m ) ∈ V m, π

(`)
k , k = 1,m, ` = 1, r;

Output: E(T ), V(T ), σ(T ), νk(T ), k = 1, t, t ≥ 2.

1. Determine the values ak, k = 0, 2m2r − 1, using the recurrences (8) and (9)
and the relations (1), (2), (5), (6) and (10);

2. Find the minimal generating vector q = (q0, q1, . . . , qR−1) ∈ G∗[R][R](a) by
solving the system (11), taking into account the relation (12);

3. Consider the distribution a = (an)∞n=0 = (P(T = n))∞n=0 of the evolution time

T as a homogeneous linear recurrence with the initial state I
[a]
R = (an)R−1

n=0 and
the minimal generating vector q = (qk)

R−1
k=0 , determined at the steps 1 and 2;

4. Determine the expectation E(T ), the variance V(T ), the mean square deviation
σ(T ) and the k-order moments νk(T ), k = 1, t, of the evolution time T by using
the corresponding algorithm from [3].

4 Conclusions

In this paper the zero-order Markov processes with multiple final sequences of
states were studied and the evolution time of these stochastic systems was analyzed.
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It was proved that the evolution time is a discrete random variable with homoge-
neous linear recurrent distribution. Based on this fact, the generating function is
applied for determining the main probabilistic characteristics of the evolution time.
The developed algorithm has polynomial complexity.

This research was supported by the State Program of the Republic of Moldova
”Deterministic and stochastic methods for solving optimization and control problems
(grant No.20.80009.5007.13)”.
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