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Abstract. The aim of this paper is to study the notion of lacunary I-convergence
in probabilistic normed spaces as a variant of the notion of ideal convergence. Also
lacunary I-limit points and lacunary I-cluster points have been defined and the rela-
tion between them has been established. Furthermore, lacunary Cauchy and lacunary
I-Cauchy sequences are introduced and studied. Finally, we provided example which
shows that our method of convergence in probabilistic normed spaces is more general.
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1 Introduction

Steinhaus [45] and Fast [13] independently introduced the notion of statistical
convergence for sequences of real numbers. Over the years and under different names
statistical convergence has been discussed in the theory of Fourier analysis, ergodic
theory and number theory. Later on it was further investigated from various points
of view. For example, statistical convergence has been investigated in summability
theory by (Connor [7], Fridy [15], S̆alát [40]), number theory and mathematical
analysis by (Buck [1], Mitrinović et al. [37]), topological groups (Çakalli [2, 3]),
topological spaces (Di Maio and Koc̆inac [34]), function spaces (Caserta and Koc̆inac
[5]), measure theory (Cheng et al. [6], Connor and Swardson [8], Miller [36]). Fridy
and Orhan [16] introduced the concept of lacunary statistical convergence. Some
work on lacunary statistical convergence can be found in [2,17,20,33].

Kostyrko, et al. [28] introduced the notion of I-convergence as a generalization
of statistical convergence which is based on the structure of an admissible ideal I
of subset of natural numbers N. Kostyrko et al. [29] gave some of basic properties
of I-convergence and dealt with extremal I-limit points. Further details on ideal
convergence can be found in [4, 11, 12, 21–25, 32, 41, 46], and many others. The
notion of lacunary ideal convergence of real sequences was introduced in [47, 48],
and Hazarika [18, 19] introduced the lacunary ideal convergent sequences of fuzzy
real numbers and studied some properties. Debnath [10] introduced the notion of
lacunary ideal convergence in intuitionistic fuzzy normed linear spaces. Recently,
Yamanci and Gürdal [49] introduced the notion of lacunary ideal convergence in
random n-normed space.
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A family I of subsets of N, positive integers, i. e. I ⊂ 2N, is an ideal on N if and
only if

(i) φ ∈ I,

(ii) A ∪ B ∈ I for each A,B ∈ I,

(iii) each subset of an element of I is an element of I.

A non-empty family of sets F ⊂ 2N is a filter on N if and only if

(a) φ /∈ F ,

(b) A ∩ B ∈ F for each A,B ∈ F,

(c) any superset of an element of F is in F .

An ideal I is called non-trivial if I 6= φ and N /∈ I. Clearly I is a non-trivial ideal
if and only if F = F (I) = {N−A : A ∈ I} is a filter in N, called the filter associated
with the ideal I.

A non-trivial ideal I is called admissible if and only if {{n} : n ∈ N} ⊂ I. A non-
trivial ideal I is maximal if there cannot exist any non-trivial ideal J 6= I containing
I as a subset.

Recall that a sequence x = (xk) of points in R is said to be I-convergent to a
real number ℓ if {k ∈ N : |xk − ℓ| ≥ ε} ∈ I for every ε > 0 [28]. In this case we
write I − lim xk = ℓ.

By a lacunary sequence θ = (kr), where k0 = 0, we shall mean an increasing
sequence of non-negative integers with kr − kr−1 → ∞ as r → ∞. The intervals
determined by θ will be denoted by Jr = (kr−1, kr] and we let hr = kr − kr−1. The
space of lacunary strongly convergent sequences Nθ was defined by Freedman et al.
[14] as follows:

Nθ =







x = (xk) : lim
r

1

hr

∑

k∈Jr

|xk − L| = 0, for some L







.

Menger [35] proposed the probabilistic concept of the distance by replacing the
number d(p, q) as the distance between points p, q by a probability distribution
function Fp,q(x). He interpreted Fp,q(x) as the probability that the distance between
p and q is less than x. This led to the development of the area now called probabilistic
metric spaces. This is S̆erstnev [44] who first used this idea of Menger to introduce
the concept of a PN space. For an extensive view on this subject, we refer to
[9, 26, 31, 42, 43]. Subsequently, Mursaleen and Mohiuddine [38] and Rahmat[39]
studied the ideal convergence in probabilistic normed spaces and V.Kumar and
K.Kumar [30] studied I-Cauchy and I∗-Cauchy sequences in probabilistic normed
spaces.
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The notion of statistical convergence depends on the density (asymptotic or
natural) of subsets of N. A subset E of N is said to have natural density δ (E) if

δ (E) = lim
n→∞

1

n
|{k ≤ n : k ∈ E}| exists.

Definition 1. A sequence x = (xk) is said to be statistically convergent to ℓ if for
every ε > 0

δ ({k ∈ N : |xk − ℓ| ≥ ε}) = 0.

In this case, we write S − lim x = ℓ or xk → ℓ(S) and S denotes the set of all
statistically convergent sequences.

Definition 2. ([47,48]) Let I ⊂ 2N be a non-trivial ideal. A real sequence x = (xk)
is said to be lacunary I-convergent or Iθ-convergent to L ∈ R if, for every ε > 0 the
set







r ∈ N :
1

hr

∑

k∈Jr

|xk − L| ≥ ε







∈ I.

L is called the Iθ-limit of the sequence x = (xk) , and we write Iθ − lim x = L.

In this paper we study the concept of lacunary I-convergence in probabilistic
normed spaces. We also define lacunary I-limit points and lacunary I-cluster points
in probabilistic normed space and prove some interesting results.

2 Basic definitions and notations

Now we recall some notations and basic definitions that we are going to use in
this paper.

Definition 3. A distribution function (briefly a d.f.) F is a function from the
extended reals (−∞,+∞) into [0, 1] such that

(a) it is non-decreasing;

(b) it is left-continuous on (−∞,+∞);

(c) F (−∞) = 0 and F (+∞) = 1.

The set of all d.f.’s will be denoted by ∆. The subset of ∆ consisting of
proper d.f’s, namely of those elements F such that ℓ+F (−∞) = F (−∞) = 0 and
ℓ−F (+∞) = F (+∞) = 1 will be denoted by D. A distance distribution function
(briefly, d.d.f.) is a d.f. F such that F (0) = 0. The set of all d.d.f.f’s will be denoted
by ∆+, while D+ := D ∩ ∆+ will denote the set of proper d.d.f.’s.

Definition 4. A triangular norm or, briefly, a t-norm is a binary operation
T : [0, 1] × [0, 1] → [0, 1] that satisfies the following conditions (see [27]):
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(T1) T is commutative, i. e., T (s, t) = T (t, s) for all s and t in [0, 1];

(T2) T is associative, i. e., T (T (s, t), u) = T (s, T (t, u)) for all s, t and u in [0, 1];

(T3) T is nondecreasing, i. e., T (s, t) ≤ T (s′, t) for all t ∈ [0, 1] whenever s ≤ s′;

(T4) T satisfies the boundary condition T (1, t) = t for every t ∈ [0, 1].

T ∗ is a continuous t-conorm, namely, a continuous binary operation on [0, 1] that
is related to a continuous t-norm through T ∗(s, t) = 1− T (1− s, 1− t). Notice that
by virtue of its commutativity, any t-norm T is nondecreasing in each place. Some
examples of t-norms T and its t-conorms T ∗ are: M(x, y) = min{x, y},Π(x, y) = x.y
and M∗(x, y) = max{x, y},Π∗(x, y) = x + y − x.y.

Definition 5. A Menger PN space under T is a PN space (X, ν, τ, τ∗), denoted
by (X, ν, T ), in which τ = τT and τ∗ = τT ∗ , for some continuous t-norm T and its
t-conorm T ∗.

Definition 6. Let (X, ν, T ) be a PN space and x = (xk) be a sequence in X. We
say that (xk) is convergent to ℓ ∈ X with respect to the probabilistic norm ν if for
each ε > 0 and α ∈ (0, 1) there exists a positive integer m such that νxk−ℓ(ε) > 1−α
whenever k ≥ m. The element ℓ is called the limit of the sequence (xk) and we shall
write ν − lim xk = ℓ or xk

ν
→ ℓ as k → ∞.

Definition 7. A sequence (xk) in X is said to be Cauchy with respect to the
probabilistic norm ν if for each ε > 0 and α ∈ (0, 1) there exists a positive integer
M = M(ε, α) such that νxk−xp(ε) > 1 − α whenever k, p ≥ M.

Definition 8. Let (X, ν, T ) be a probabilistic normed space, and let r ∈ (0, 1) and
x ∈ X. The set

B (x, r; t) = {y ∈ X : νy−x(t) > 1 − r}

is called the open ball with center x and radius r with respect to t.

Throughout the paper, we denote I as an admissible ideal of subsets of N and
θ = (kr) as a fixed lacunary sequence, respectively, unless otherwise stated.

3 Main results

We now obtain our main results.

Definition 9. Let I ⊂ 2N and (X, ν, T ) be a PNS. A sequence x = (xk) in X is said
to be Iθ-convergent to L ∈ X with respect to the probabilistic norm ν if, for every
ε > 0 and α ∈ (0, 1) the set







r ∈ N :
1

hr

∑

k∈Jr

νxk−L(ε) ≤ 1 − α







∈ I.

L is called the Iθ−limit of the sequence x = (xk) in X, and we write Iν
θ − lim x = L.
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Example 1. Let (R, |.|) denote the space of all real numbers with the usual norm,
and let T (a, b) = ab for all a, b ∈ [0, 1] . For all x ∈ R and every t > 0, consider
νx(t) = t

t+|x| . Then (Rν, T ) is a PNS. If we take I = {A ⊂ N : δ (A) = 0} , where

δ (A) denotes the natural density of the set A, then I is a non-trivial admissible
ideal. Define a sequence x = (xk) as follows:

xk =

{

1 if k = i2, i ∈ N,
0 otherwise.

Then for every α ∈ (0, 1) and for any ε > 0, the set

K =







r ∈ N :
1

hr

∑

k∈Jr

νxk
(ε) ≤ 1 − α







will be a finite set. Hence, δ (K) = 0 and consequently K ∈ I, i.e., Iν
θ − lim x = 0.

Lemma 1. Let (X, ν, T ) be a PNS and x = (xk) be a sequence in X. Then, for
every ε > 0 and α ∈ (0, 1) the following statements are equivalent:

(i) Iν
θ − lim x = L,

(ii)
{

r ∈ N : 1
hr

∑

k∈Jr
νxk−L(ε) ≤ 1 − α

}

∈ I,

(iii)
{

r ∈ N : 1
hr

∑

k∈Jr
νxk−L(ε) > 1 − α

}

∈ F (I) ,

(iii) Iθ − lim νxk−L(ε) = 1.

Theorem 1. Let (X, ν, T ) be a PNS and if a sequence x = (xk) in X is Iθ-convergent
to L ∈ X with respect to the probabilistic norm ν, then Iν

θ − lim x is unique.

Proof. Suppose that Iν
θ − lim x = L1 and Iν

θ − lim x = L2 (L1 6= L2) . Given α > 0
and choose β ∈ (0, 1) such that

T (1 − β, 1 − β) > 1 − α. (1)

Then for ε > 0, define the following sets:

K1 =







r ∈ N :
1

hr

∑

k∈Jr

νxk−L1

(ε

2

)

≤ 1 − β







,

K2 =







r ∈ N :
1

hr

∑

k∈Jr

νxk−L2

(ε

2

)

≤ 1 − β







.

Since Iν
θ − lim x = L1, using Lemma 1, we have K1 ∈ I. Also, using Iν

θ − lim x = L2,
we get K2 ∈ I. Now let

K = K1 ∪ K2.
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Then K ∈ I. This implies that its complement Kc is a non-empty set in F (I). Now
if r ∈ Kc, let us consider r ∈ Kc

1 ∩ Kc
2. Then we have

1

hr

∑

k∈Jr

νxk−L1

(ε

2

)

> 1 − β and
1

hr

∑

k∈Jr

νxk−L2

(ε

2

)

> 1 − β.

Now, we choose an s ∈ N such that

νxs−L1

(ε

2

)

>
1

hr

∑

k∈Jr

νxk−L1

(ε

2

)

> 1 − β

and

νxs−L2

(ε

2

)

>
1

hr

∑

k∈Jr

νxk−L2

(ε

2

)

> 1 − β

e. g., consider max
{

νxk−L1

(

ε
2

)

, νxk−L2

(

ε
2

)

: k ∈ Jr

}

and choose that k as s for
which the maximum occurs. Then from (1), we have

νL1−L2(ε) ≥ T
(

νxs−L1

(ε

2

)

, νxs−L2

(ε

2

))

> T (1 − β, 1 − β) > 1 − α.

Since α > 0 is arbitrary, we have νL1−L2(ε) = 1 for all ε > 0, which implies that
L1 = L2. Therefore, we conclude that Iν

θ − lim x is unique.

Here, we introduce the notion of θ-convergence in a PNS and discuss some
properties.

Definition 10. Let (X, ν, T ) be a PNS. A sequence x = (xk) in X is θ-convergent
to L ∈ X with respect to the probabilistic norm ν if, for α ∈ (0, 1) and every ε > 0,
there exists ro ∈ N such that

1

hr

∑

k∈Jr

νxk−L(ε) > 1 − α

for all r ≥ ro. In this case, we write νθ − lim x = L.

Theorem 2. Let (X, ν, T ) be a PNS and let x = (xk) in X. If x = (xk) is θ-
convergent with respect to the probabilistic norm ν, then νθ − lim x is unique.

Proof. Suppose that νθ−lim x = L1 and νθ−limx = L2 (L1 6= L2) . Given α ∈ (0, 1)
and choose β ∈ (0, 1) such that T (1 − β, 1 − β) > 1 − α. Then for any ε > 0, there
exists r1 ∈ N such that

1

hr

∑

k∈Jr

νxk−L1 (ε) > 1 − α

for all r ≥ r1. Also, there exists r2 ∈ N such that

1

hr

∑

k∈Jr

νxk−L2 (ε) > 1 − α
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for all r ≥ r2. Now, consider ro = max {r1, r2} . Then for r ≥ ro, we will get an
s ∈ N such that

νxs−L1

(ε

2

)

>
1

hr

∑

k∈Jr

νxk−L1

(ε

2

)

> 1 − β

and

νxs−L2

(ε

2

)

>
1

hr

∑

k∈Jr

νxk−L2

(ε

2

)

> 1 − β.

Then, we have

νL1−L2(ε) ≥ T
(

νxs−L1

(ε

2

)

, νxs−L2

(ε

2

))

> T (1 − β, 1 − β) > 1 − α.

Since α > 0 is arbitrary, we have νL1−L2(ε) = 1 for all ε > 0, which implies that
L1 = L2.

Theorem 3. Let (X, ν, T ) be a PNS and let x = (xk) in X. If νθ − lim x = L, then
Iν
θ − lim x = L.

Proof. Let νθ − lim x = L, then for every ε > 0 and given α ∈ (0, 1), there exists
r0 ∈ N such that

1

hr

∑

k∈Jr

νxk−L(ε) > 1 − α

for all r ≥ r0. Therefore the set

B =







r ∈ N :
1

hr

∑

k∈Jr

νxk−L(ε) ≤ 1 − α







⊆ {1, 2, ..., n0 − 1} .

But, with I being admissible, we have B ∈ I. Hence Iν
θ − lim x = L.

Theorem 4. Let (X, ν, T ) be a PNS and x = (xk) , y = (yk) be two sequence in X.
(i) If Iν

θ − lim xk = L1 and Iν
θ − lim yk = L2, then Iν

θ − lim(xk ± yk) = L1 ± L2;
(ii) If Iν

θ − lim xk = L and a be a non-zero real number, then Iν
θ − lim axk = aL.

If a = 0, then result is true only if I is admissible of N .

Proof. (i) We shall prove, if Iν
θ −lim xk = L1 and Iν

θ −lim yk = L2, then Iν
θ −lim(xk+

yk) = L1 + L2, only. The proof of the other part follows similarly.

Take ε > 0, α ∈ (0, 1) and choose β ∈ (0, 1) such that the condition (1) holds. If
we define

A1 =







r ∈ N :
1

hr

∑

k∈Jr

νxk−L1

(ε

2

)

≤ 1 − β







and

A2 =







r ∈ N :
1

hr

∑

k∈Jr

νyk−L2

(ε

2

)

≤ 1 − β







,
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then Ac
1 ∩ Ac

2 ∈ F (I). We claim that

Ac
1 ∩ Ac

2 ⊂







r ∈ N :
1

hr

∑

k∈Jr

ν(xk−L1)+(yk−L2)(ε) > 1 − α







.

Let n ∈ Ac
1 ∩ Ac

2. Now, using (1), we have

1

hr

∑

n∈Jr

ν(xn−L1)+(yn−L2)(ε) ≥ T

(

1

hr

∑

n∈Jr

νxn−L1

(ε

2

)

,
1

hr

∑

n∈Jr

νyn−L2

(ε

2

)

)

> T (1 − β, 1 − β) > 1 − α.

Hence

Ac
1 ∩ Ac

2 ⊂







r ∈ N :
1

hr

∑

k∈Jr

ν(xk−L1)+(yk−L2)(ε) > 1 − α







.

As Ac
1 ∩ Ac

2 ∈ F (I), so







r ∈ N :
1

hr

∑

k∈Jr

ν(xk−L1)+(yk−L2)(ε) ≤ 1 − α







∈ I.

Therefore Iν
θ − lim(xk + yk) = L1 + L2.

(ii) Suppose a 6= 0. Since Iν
θ − lim xk = L, for each ε > 0 and α ∈ (0, 1), the set

A(ε, α) =







r ∈ N :
1

hr

∑

k∈Jr

νxk−L(ε) < 1 − α







∈ F (I).

If n ∈ A(ε, α), then we have

1

hr

∑

k∈Jr

νaxk−aL(ε) =
1

hr

∑

k∈Jr

νxk−L

(

ε

|a|

)

≥ T





1

hr

∑

k∈Jr

νxk−L(ε), ν0

(

ε

|a|
− ε

)





≥ T





1

hr

∑

k∈Jr

νxk−L(ε), 1



 ≥
1

hr

∑

k∈Jr

νxk−L(ε) > 1 − α.

Hence

A(ε, α) ⊂







r ∈ N :
1

hr

∑

k∈Jr

νaxk−aL(ε) > 1 − α






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and






r ∈ N :
1

hr

∑

k∈Jr

νaxk−aL(ε) > 1 − α







∈ F (I).

It follows that






r ∈ N :
1

hr

∑

k∈Jr

νaxk−aL(ε) ≤ 1 − α







∈ I.

Hence Iν
θ − lim axk = aL.

Next suppose that a = 0. Then for each ε > 0 and α ∈ (0, 1), we have

1

hr

∑

k∈Jr

ν0xk−0L(ε) =
1

hr

∑

k∈Jr

ν0(ε) = 1 > 1 − α,

it follows that νθ − lim x = ℓ. Hence from Theorem 3, Iν
θ − lim x = ℓ.

Theorem 5. Let (X, ν, T ) be a PNS and let x = (xk) in X. If νθ − lim x = L, then
there exists a subsequence (xmk

) of x = (xk) such that ν − lim xmk
= L.

Proof. Let νθ − lim x = L. Then, for every ε > 0 and given α ∈ (0, 1), there exists
r0 ∈ N such that

1

hr

∑

k∈Jr

νxk−L(ε) > 1 − α

for all r ≥ r0. Clearly, for each r ≥ r0, we can select an mk ∈ Jr such that

νxmk
−L(ε) >

1

hr

∑

k∈Jr

νxk−L(ε) > 1 − α.

It follows that ν − lim xmk
= L.

Definition 11. Let (X, ν, T ) be a PNS and let x = (xk) be a sequence in X. Then,

(1) An element L ∈ X is said to be Iθ-limit point of x = (xk) if there is a set M =
{m1 < m2 < ... < mk < ...} ⊂ N such that the set M ı = {r ∈ N : mk ∈ Jr} /∈
I and νθ − lim xmk

= L.

(2) An element L ∈ X is said to be Iθ-cluster point of x = (xk) if for every ε > 0
and α ∈ (0, 1) , we have







r ∈ N :
1

hr

∑

k∈Jr

νxk−L(ε) > 1 − α







/∈ I.

Let ΛIθ
ν (x) denote the set of all Iθ-limit points and ΓIθ

ν (x) denote the set of all
Iθ-cluster points in X, respectively.
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Theorem 6. Let (X, ν, T ) be a PNS. For each sequence x = (xk) in X, we have
ΛIθ

ν (x) ⊂ ΓIθ
ν (x) .

Proof. Let L ∈ ΛIθ
ν (x) , then there exists a set M ⊂ N such that M ı /∈ I, where M

and M ı are as in Definition 5, satisfies νλ − lim xmk
= L. Thus, for every ε > 0 and

α ∈ (0, 1) , there exists r0 ∈ N such that

1

hr

∑

k∈Jr

νxmk
−L(ε) > 1 − α

for all r ≥ r0. Therefore,

B =







r ∈ N :
1

hr

∑

k∈Jr

νxk−L(ε) > 1 − α







⊇ M ı \ {m1,m2, ...,mn0} .

Now, with I being admissible, we must have M ı \ {m1,m2, ...,mk0} /∈ I and as such
B /∈ I. Hence L ∈ ΓIθ

ν (x) .

Theorem 7. Let (X, ν, T ) be a PNS. For each sequence x = (xk) in X, the set
ΓIθ

ν (x) is a closed set in X with respect to the usual topology induced by the proba-
bilistic norm νθ.

Proof. Let y ∈ ΓIθ
ν (x). Take ε > 0 and α ∈ (0, 1) . Then there exists L0 ∈ ΓIθ

ν (x) ∩
B (y, α, ε) . Choose δ > 0 such that B (L0, δ, ε) ⊂ B (y, α, ε) . We have

G =







r ∈ N :
1

hr

∑

k∈Jr

νxk−y(ε) > 1 − α







⊇







r ∈ N :
1

hr

∑

k∈Jr

νxk−L0(ε) > 1 − δ







= H.

Thus H /∈ I and so G /∈ I. Hence y ∈ ΓIθ
ν (x) .

Theorem 8. Let (X, ν, T ) be a PNS and let x = (xk) in X. Then the following
statements are equivalent:

(1) L is an Iθ−limit point of x,

(2) There exist two sequences y and z in X such that x = y+z and νθ−lim y = L
and

{

r ∈ N : k ∈ Jr, zk 6= θ
}

∈ I, where θ is the zero element of X.

Proof. Suppose that (1) holds. Then there exist sets M and M ı as in Definition 11
such that M ı /∈ I and νθ − lim xmk

= L. Define the sequences y and z as follows:

yk =

{

xk if k ∈ Jr; r ∈ M ı,
L otherwise
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and

zk =

{

θ if k ∈ Jr; r ∈ M ı,
xk − L otherwise.

It sufficies to consider the case k ∈ Jr such that r ∈ N�M ı. Then for each
α ∈ (0, 1) and ε > 0, we have νyk−L(ε) = 1 > 1 − α. Thus, in this case,

1

hr

∑

k∈Jr

νyk−L(ε) = 1 > 1 − α.

Hence νθ − lim y = L. Now {r ∈ N : k ∈ Jr, zk 6= θ} ⊂ N�M ı and so
{r ∈ N : k ∈ Jr, zk 6= θ} ∈ I.

Now, suppose that (2) holds. Let M ı = {r ∈ N : k ∈ Jr, zk = θ} . Then,
clearly M ı ∈ F (I) and so it is an infinite set. Construct the set M =
{m1 < m2 < ... < mk < ...} ⊂ N such that mk ∈ Jr and zmk

= θ. Since xmk
= ymk

and νθ − lim y = L we obtain νθ − lim xmk
= L. This completes the proof.

Theorem 9. Let (X, ν, T ) be a PNS and x = (xk) be a sequence in X. Let I be an
admissible ideal in N. If there is an Iν

θ -convergent sequence y = (yk) in X such that
{k ∈ N : yk 6= xk} ∈ I then x is also Iν

θ -convergent.

Proof. Suppose that {k ∈ N : yk 6= xk} ∈ I and Iν
θ − lim y = ℓ. Then for every

α ∈ (0, 1) and ε > 0, the set







r ∈ N :
1

hr

∑

k∈Jr

νyk−L(ε) ≤ 1 − α







∈ I.

For every 0 < α < 1 and ε > 0, we have







r ∈ N :
1

hr

∑

k∈Jr

νxk−L(ε) ≤ 1 − α







(2)

⊆ {k ∈ N : yk 6= xk} ∪







r ∈ N :
1

hr

∑

k∈Jr

νyk−L(ε) ≤ 1 − α







.

As the both sets of right-hand side of (2) are in I, therefore we have that







r ∈ N :
1

hr

∑

k∈Jr

νxk−L(ε) ≤ 1 − α







∈ I.

This completes the proof of the theorem.
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Definition 12. Let (X, ν, T ) be a PNS. A sequence x = (xk) in X is said to be
θ-Cauchy sequence with respect to the probabilistic norm ν if, for every ε > 0 and
α ∈ (0, 1) , there exist r0,m ∈ N satisfying

1

hr

∑

k∈Jr

νxk−xm(ε) > 1 − ε

for all r ≥ r0.

Definition 13. Let I be an admissible ideal of N. Let (X, ν, T ) be a PNS. A sequence
x = (xk) in X is said to be Iθ-Cauchy sequence with respect to the probabilistic
norm ν if, for every ε > 0 and α ∈ (0, 1) , there exists m ∈ N satisfying







r ∈ N :
1

hr

∑

k∈Jr

νxk−xm(ε) > 1 − ε







∈ F (I) .

Definition 14. Let I be an admissible ideal of N. Let (X, ν, T ) be a PNS. A sequence
x = (xk) in X is said to be I∗θ -Cauchy sequence with respect to the probabilistic
norm ν if there exists a set M = {m1 < m2 < ... < mk < ...} ⊂ N such that the
set M ı = {r ∈ N : mk ∈ Jr} ∈ F (I) and the subsequence (xmk

) of x = (xk) is a
θ-Cauchy sequence with respect to the probabilistic norm ν.

The following theorem is an analogue of Theorem 3, so the proof is omitted.

Theorem 10. Let I be an admissible ideal of N. Let (X, ν, T ) be a PNS. If a
sequence x = (xk) in X is θ-Cauchy sequence with respect to the probabilistic norm
ν, then it is Iθ-Cauchy sequence with respect to the same norm.

The proof of the following theorem is similar to that of Theorem 5.

Theorem 11. Let (X, ν, T ) be a PNS. If a sequence x = (xk) in X is θ-Cauchy
sequence with respect to the probabilistic norm ν, then there is a subsequence of
x = (xk) which is ordinary Cauchy sequence with respect to the same norm.

The following theorem can be proved easily using similar techniques as in the
proof of Theorem 6.

Theorem 12. Let I be an admissible ideal of N. Let (X, ν, T ) be a PNS. If a
sequence x = (xk) in X is I∗θ -Cauchy sequence with respect to the probabilistic norm
ν, then it is Iθ-Cauchy sequence as well.

References

[1] Buck R. C. The measure theoretic approach to density. Amer. J. Math., 1946, 68, 560–580.
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The multiplicative Zagreb co-indices on two graph

operators

Mansoureh Deldar, Mehdi Alaeiyan

Abstract. Let G be a graph with vertex set V (G) and edge set E(G). The first and
second multiplicative Zagreb co-indices are defined as:

∏

1
(G) =

∏

uv/∈E(G)
[dG(u) + dG(v)] ,

∏

2
(G) =

∏

uv /∈E(G)
[dG(u)dG(v)],

respectively, where dG(u) is the degree of the vertex u of G. The aim of this paper is
to investigate the multiplicative Zagreb co-indices of the subdivision graphs of tadpole
graphs and wheel graphs

Mathematics subject classification: 05C05, 05C07, 05C90, 05C020.
Keywords and phrases: Multiplicative Zagreb co-indices, Subdivision graph,
Zagreb indices.

1 Introduction

Throughout the paper, we consider connected finite graphs without any loops
or multiple edges. Let G be a graph with vertex set V (G) and edge set E(G). The
degree of v ∈ V (G), denoted by dG(v), is the number of vertices in G adjacent to v.
A graphical invariant is a number related to a graph which is a structural invariant,
in other words, it is a fixed number under graph automorphisms. In chemical graph
theory, these invariants are also known as the topological indices. The Zagreb indices
are among the oldest topological indices, and were introduced in 1972 [13]. Gutman
and Trinajstic examined the dependence of total π-electron energy on molecular
structure, elaborated in [12]. The first and second Zagreb indices of G are denoted
by M1(G) and M2(G), respectively, and defined as follows:

M1(G) =
∑

v∈V (G)

d2
G(v) and M2(G) =

∑

uv∈V (G)

dG(u)dG(v).

The first Zagreb index can be also expressed as a sum over edges of G:

M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)].

The main properties of the Zagreb indices were summarized in [4, 5, 10]. In particu-
lar, Deng [5] gave a unified approach to determine extremal values of Zagreb indices

c© Mansoureh Deldar, Mehdi Alaeiyan, 2016
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for trees, unicyclic graphs and bicyclic graphs. Other recent results on ordinary Za-
greb indices can be found in [15]. Note that the contribution of non-adjacent vertex
pairs should be taken into account when computing the weighted Wiener polynomi-
als of certain composite graphs [4]. The first and second Zagreb co-indices, as the
sums involved run over the edges of the complement of G, are denoted by M1(G)
and M2(G) and were defined in 2010 [1] as follows:

M1(G) =
∑

uv/∈E(G)

[dG(u) + dG(v)] and M2 =
∑

uv/∈E(G)

[dG(u)dG(v)].

The multiplicative versions of Zagreb indices were introduced by Gutman in 2012
[9]. The first and second multiplicative Zagreb indices of G are denoted by

∏

1(G)

and
∏

2(G), respectively, and are defined as:
∏

1
(G) =

∏

u∈V (G)
dG(u)2 and

∏

2
(G) =

∏

uv∈E(G)
[dG(u)dG(v)].

The first and second multiplicative Zagreb indices were extensively studied in [9,
18, 19]. In particular, Gutman have determined the extremal tree with respect to
multiplicative Zagreb indices. In 2012 Xu and Hua [19] provided a unified approach
to extremal trees, unicyclic and bicyclic graphs with respect to this multiplicative
version of Zagreb indices. Xu et al. introduced the first and second multiplicative
Zagreb co-indices of G [14]. The first and second multiplicative Zagreb co-indices of
G are denoted by

∏

1(G) and
∏

2(G), respectively, and defined as:

∏

1
(G) =

∏

uv/∈E(G)
[dG(u) + dG(v)] and

∏

2
(G) =

∏

uv/∈E(G)
[dG(u)dG(v)].

The subdivision graph S(G) is the graph obtained from G by replacing each of its
edges by a path of length 2, or equivalently, by inserting an additional vertex into
each edge of G, and the operator R(G) is the graph obtained from G by adding
a new vertex corresponding to each edge of G and by joining each new vertex to
the end vertices of the edge corresponding to it [16]. The tadpole graph, Tn,k, is
the graph obtained by joining a cycle graph Cn to a path of length k [17]. The
wheel graph Wn+1 is defined as the graph K1 +Cn, where K1 is the singleton graph
and Cn is the cycle graph. In this paper we will calculate the multiplicative Zagreb
co-indices of Tn,k, Wn+1 and the subdivision S(G) and R(G) on these graphs.

2 The multiplicative Zagreb co-indices on S(G) and R(G) for

tadpole graph

In this section, we compute the multiplicative Zagreb co-indices on two graph
operators S(G) and R(G) for tadpole graph Tn,k. At first we prove the following
lemma, which plays an important role in the proofs.

Proposition 1. For a connected graph G, we have
∏

2
(G) =

∏

v∈V (G)

dG(v)(n−1−dG(v)).
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Proof. By definition of complement graph of G we find that for each vertex v ∈ V (G),
the factor dG(v) occurs n − 1 − dG(v) times in

∏

2(G). Thus this theorem follows
immediately.

Theorem 1. For the tadpole graph, the multiplicative Zagreb co-indices satisfy the
following equations:

∏

1
(Tn,k) = (2n2+k2+2nk−7n−7k+16)(5n+k−5)(3k+n−4)

and
∏

2
(Tn,k) = (2n2+k2−5n−5k+2nk+6)(3n+k−4).

Proof. The tadpole graph Tn,k contains n + k − 2 vertices of degree 2, one vertex
of degree 3 and a pendent vertex. The subdivision graph S(Tn,k) contains n + k
additional vertices of degree 2. In Tn,k, let vl be a vertex of degree 3 and v1′ and v2′

be the neighbors of vl in the cycle Cn and vj be the neighbor of vl in the path Pk+1.

Let v1 be the pendent vertex in Tn,k. We calculate
∏

1[dG(u) + dG(v)]:
1. Among the vertices in Cn.
2. From cycle Cn to the path Pk+1.
3. Among the vertices in the path Pk+1.

Case I. In Cn, v1′ and v2′ are non-adjacent with n − 3 vertices of degree 2. Re-
maining n−3 vertices in Cn are non-adjacent with n−4 vertices of degree 2 and one
vertex of degree 3. Also vl is non-adjacent with n − 3 vertices of degree 2. Hence
in Cn,

∏

1[dG(u) + dG(v)] = (4n2−5n+6)(52n−6). Since one edge is shared between a

pair of vertices,
∏

1[dG(u) + dG(v)] in Cn is

∏

1
[dG(u) + dG(v)] = (4n2−5n+652n−6)

1
2 . (2.1)

Case II. From cycle Cn to path Pk+1, all the n − 1 vertices other than vl in Cn

are non-adjacent with v1. Also all of n− 1 vertices except vl in Cn are non-adjacent
with k − 1 vertices of degree 2 and one vertex of degree 1. Hence

∏

1
[dG(u) + dG(v)] = (4(k−1)(n−1))(3(n−1)). (2.2)

Case III: In the path Pk+1, the vertex vl is non-adjacent with k − 2 vertices of

degree 2 and one vertex of degree 1. The neighbor of vl in Pk+1 is non-adjacent with
k − 3 vertices of degree 2 and one vertex of degree 1. The vertex vj is non-adjacent
with k − 4 vertices of degree 2 and one vertex of degree 1 and one vertex of degree
3 for 3 ≤ j ≤ k − 1. Also the vertex v2 has k − 3 non-adjacent vertices of degree 2
and one vertex of degree 3. The vertex v2 has k − 2 non-adjacent vertices of degree
2 and one vertex of degree 3. Thus

∏

1[dG(u) + dG(v)] = (52k−4)(4k2−5k+8)(32k−6).
Since one edge is shared between a pair of vertices,

∏

1
[dG(u) + dG(v)] = 5k−22k2−5k+83k−3. (2.3)
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The product of equations (2.1), (2.2) and (2.3) implies that

∏

1
(Tn,k) = (2n2+k2+2nk−7n−7k+16)(5n+k−5)(3k+n−4).

By Proposition 1,
∏

2(Tn,k) can be easily obtained,

∏

2
(Tn,k) = (2n2+k2−5n−5k+2nk+6)(3n+k−4).

Theorem 2. For the subdivision graph S(G) of a tadpole graph, the multiplicative
Zagreb co-indices are:

∏

1
(S(Tn,k)) = (24n2+4k2−14n−14k+8nk+16)(52n+2k−5)(32k+2n−5)

and
∏

2
(S(Tn,k)) = (24n2+4k2−10n−10k+8nk+6)(32n+2k−4).

Proof. S(Tn,k) contains 2(n + k − 1) vertices of degree 2, one vertex of degree 3 and
a pendent vertex. In S(Tn,k), let vl be the vertex of degree 3 and v1′ and v2′ be the
neighbors of vl in the cycle S(Cn) and vj be the neighbor of v1 in the path S(Pk+1).

Let v1 be the pendent vertex in S(Tn,k). We calculate
∏

1[dG(u) + dG(v)]:
1. Among the vertices in S(Cn).
2. From cycle S(Cn) to the path S(Pk+1).
3. Among the vertices in the path S(Pk+1).
In S(Cn), v1′ and v2′ are non-adjacent with 2n − 3 vertices of degree 2. Remaining
2n − 3 vertices in S(Cn) are non-adjacent with 2n − 4 vertices of degree 2 and one
vertex of degree 3. Also v1 is non-adjacent with 2n − 3 vertices of degree 2. Hence
in S(Cn),

∏

1[dG(u) + dG(v)] = (4(4n2−10n+6))(54n−6). Since one edge is shared

between a pair of vertices,
∏

1[dG(u) + dG(v)] in S(Cn) is

∏

1
[dG(u) + dG(v)] = 24n2−10n+652n−3. (2.4)

From cycle S(Cn) to path S(Pk+1), all the 2n−1 vertices other than vl in S(Cn) are
non-adjacent with v1. Also all of 2n−1 vertices except vl in S(Cn) are non-adjacent
with 2k − 1 vertices of degree 2 and one vertex of degree 1. In the S(Pk+1), the
vertex vl is non-adjacent with 2k−2 vertices of degree 2 and pendent vertex. Hence

∏

1
[dG(u) + dG(v)] = (44nk−2n−2k+2)(3(2n−1))(52k−2). (2.5)

In the path S(Pk+1), the neighbor of v1 in S(Pk+1) is non-adjacent with 2k − 3
vertices of degree 2 and one vertex of degree 1. The vertex vj is non-adjacent with
2k − 4 vertices of degree 2 and one vertex of degree 1 for 3 ≤ j ≤ 2k − 1. Also the
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vertex v2 has 2k − 3 non-adjacent vertices of degree 2. Thus
∏

1[dG(u) + dG(v)] =

(44k2−18k++18)(34k−4). Since one edge is shared between a pair of vertices,

∏

1
[dG(u) + dG(v)] = (24k2−18k+18)(32k−2). (2.6)

By multiplying equations (2.4), (2.5) and (2.6) we have:

∏

1
(S(Tn,k)) = (24n2+4k2−14n−14k+8nk+16)(52n+2k−5)(32k+2n−5).

By Proposition 1, it can be easily obtained:

∏

2
(S(Tn,k)) = (24n2+4k2−10n−10k+8nk+6)(32n+2k−4).

Theorem 3. For the tadpole graph Tn,k we have:

∏

1
(R(Tn,k)) = (2

1
2
(7n2+7k2−23k−17n+23))(3k2+n2−4k−3n+3)(5k+n−5)

and
∏

2
(R(Tn,k)) = (26(n+k)2−17(n+k)+17)(32(n+k)−7).

Proof. The vertices which are of degree l in S(Tn,k) are of degree 2l in R(Tn,k). All
the subdivision vertices are of the same degree in both S(Tn,k) and in R(Tn,k).
In the cycle R(Cn), the vertices which are adjacent to v1 make the sum 8 with
remaining n− 3 vertices in the cycle and the remaining n− 3 vertices make the sum
8 with n− 4 vertices in the cycle. Also v1 makes the sum 10 with the n− 3 vertices.
All the n subdivision vertices make the sum 4 with the remaining n− 1 subdivision
vertices. The vertex v1 makes the sum 8 with n− 2 subdivision vertices. The n− 1
vertices other than v1 make the sum 6 with the n−2 subdivision vertices. Therefore
in R(Cn),

∏

1
[dG(u) + dG(v)] = [(27n2−15n+4)(3n2−3n+2)(52n−6)]

1
2 . (2.7)

To calculate
∏

1[dG(u)+ dG(v)] from R(Cn) to R(Pk+1), all the n− 1 vertices in the
cycle other than v1 make the sum 6 with vl and k subdivision vertices in the path.
All the n subdivision vertices in the cycle make the sum 4 with vl and k subdivision
vertices in the path. Also all n subdivision vertices in R(Cn) make the sum 6 with
k − 1 vertices in the path. So from cycle to path,

∏

1
[dG(u) + dG(v)] = (27nk−4k−n+2)(32nk−k−1). (2.8)

In the path R(Pk+1), vertex v1 makes the sum 8 with k − 1 subdivision vertices in
the path as well as with vl. Also v1 makes the sum 10 with k − 2 vertices in the
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path. The subdivision vertex vj in the path makes the sum 4 with the remaining
k − 1 subdivision vertices as well as with vl. It also makes the sum 6 with k − 2
vertices in the path. The neighbors of vj in the path make the sum 8 with k − 3
vertices and 6 with k − 2 vertices and so on. Thus in the path,

∏

1
[dG(u) + dG(v)] = [(27k2−15k+15)(32k2−6k+4)(52k−4)]

1
2 . (2.9)

By multiplying equations (2.7), (2.8) and (2.9) we have:

∏

1
(R(Tn,k)) = (2

1
2
(7n2+7k2−23k−17n+23))(3k2+n2−4k−3n+3)(5k+n−5).

By Proposition 1,
∏

2(R(Tn,k)) = (26(n+k)2−17(n+k)+17)(32(n+k)−7).

3 The multiplicative Zagreb co-indices on S(G) and R(G) for

wheel graph

In this section we compute the multiplicative Zagreb co-indices on two graph
operators S(G) and R(G) for wheel graph Wn+1.

Theorem 4. The multiplicative Zagreb co-indices for the wheel graph Wn+1 are

∏

1
(Wn+1) = 6

n2
−3n
2 ,

∏

2
(Wn+1) = 3n(n−3).

Proof. In Wn+1, the hub of the wheel is of degree n and the remaining vertices are
of degree 3. Each vertex on Cn has n − 3 non-adjacent vertices of degree 3. Hence
∏

1[dG(u) + dG(v)] = 6n2−3n. Since one edge is shared between a pair of vertices,
then

∏

1
(Wn+1) = 6

n2
−3n
2 .

Proposition 1 implies that

∏

2
(Wn+1) = 3n(n−3).

Theorem 5. For the subdivision graph S(G) of a wheel graph, the multiplicative
Zagreb co-indices are

∏

1
S(Wn+1) = [54n−6 44n−2 6n−1 (2 + n)

2
(n + 3)2]

n
2

and
∏

2
S(Wn+1) = (33n−343n−2n3)

n
.
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Proof. S(Wn+1) contains n vertices of degree 3, 2n vertices of degree 2 and one
vertex of degree n. Each vertex of degree 3 has n−1 non-adjacent vertices of degree
3, 2n − 3 non-adjacent vertices of degree 2 and one vertex of degree n. So,

∏

1
[dG(u) + dG(v)] = [6n−1 52n−3 (3 + n)]n. (3.1)

The subdivision vertices of degree 2 on S(Cn) are non-adjacent with n − 2 vertices
of degree 3, 2n − 1 vertices of degree 2 and one vertex of degree n. Hence

∏

1
[dG(u) + dG(v)] = [5n−2 42n−1 (2 + n)]n. (3.2)

The remaining subdivision vertices of degree 2 are non-adjacent with n − 1 vertices
of degree 3 and 2n − 1 vertices of degree 2. So,

∏

1
[dG(u) + dG(v)] = [5n−1 42n−1]

n
. (3.3)

The hub of the wheel has n non-adjacent vertices of degree 3 and n non-adjacent
vertices of degree 2. Hence

∏

1
[d(u) + d(v)] = [n + 2(3 + n)]n. (3.4)

The equations (3.1), (3.2), (3.3) and (3.4) make the product

∏

1
[d(u) + d(v)] = [54n−6 44n−2 6n−1 (2 + n)

2
(n + 3)2]

n
.

Since one edge is shared between a pair of vertices, then

∏

1
S(Wn+1) = [54n−6 44n−2 6n−1 (2 + n)

2
(n + 3)2]

n
2 .

Proposition 1 implies that

∏

2
S(Wn+1) = (33n−343n−2n3)

n
.

Theorem 6. For the subdivision graph R(G) of a wheel graph, the multiplicative
Zagreb co-indices are

∏

1
R(Wn+1) = [(2n + 2)2 224n−28 3n−3]

n
2

and
∏

2
R(Wn+1) = 26n2+6k2+12nk−17n−17k+932n+2k−7.
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Proof. In R(Wn+1), n vertices are of degree 6, hub of the wheel is of degree 2n and
all subdivision vertices are of degree 2. Hence,

∏

1[d(u) + d(v)] with respect to the
hub of the wheel is

∏

1
[d(u) + d(v)] = (2n + 2)n. (3.5)

The product of [d(u)+d(v)] degrees with respect to all the n vertices of Cn is
given by

∏

1
[d(u) + d(v)] = [82n−3 12n−3]

n
. (3.6)

With respect to the n subdivision vertices on the spokes of the wheel,
∏

1[d(u)+d(v)]
is

∏

1
[d(u) + d(v)] = [42n−1 8n−1]

n
. (3.7)

The calculation with respect to n subdivision vertices on the edge of the cycle Cn

of R(Wn+1) is
∏

1
[d(u) + d(v)] = [8n−2 42n−1 (2n + 2)]

n
. (3.8)

The equations (3.5), (3.6), (3.7) and (3.8) make the product

∏

1
[d(u) + d(v)] = [(2n + 2)2 222n−28 3n−3]

n
.

Since one edge is shared by a pair of vertices, then

∏

1
R(Wn+1) = [(2n + 2)2 224n−28 3n−3]

n
2 .

Proposition 1 implies that

∏

2
R(Wn+1) = 26n2+6k2+12nk−17n−17k+932n+2k−7.
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Abstract. In this paper the properties of Lagrange algorithm for expansion of alge-
braic number are refined. It has been shown that for reduced algebraic irrationalities
the quantity of elementary arithmetic operations which needed for the computation
of next incomplete quotient does not depend on the value of this incomplete quotient.

It is established that beginning with some index all residual fractions for an arbi-
trary reduced algebraic irrationality are the generalized Pisot numbers. An asymptotic
formula for conjugate numbers to residual fractions is obtained.

The definition of generalized Pisot numbers differs from the definition of Pisot
numbers by absence of the requirement to be integer.
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Keywords and phrases: Minimal polynomial, reduced algebraic irrationality, gene-
ralized Pisot number, residual fractions, continued fractions.

1 Introduction

The continued fraction expansion of algebraic irrationalities is one of the most
difficult questions in the modern number theory. Various aspects of this theory can
be seen in the papers [1–9, 11–13] Even in such developed theory as the theory
of continued fractions of quadratic irrationalities one can find new interesting facts
(see [10,14]). The paper [17] describes the set of reduced algebraic irrationalities of
n-th degree and asserts that this set has the property of rational convexity.

The aim of this paper is the refinement of properties of Lagrange algorithm for
reduced algebraic irrationalities of n-th degree and for Pisot numbers in general case.

The case of the reduced algebraic irrationalities of n-th degree is very impor-
tant for us. This case is connected with totally real algebraic fields of n-th degree
which underly the construction of algebraic lattice used in quadrature formulas with
weights in K.K. Frolov’s method (see [5–7, 15, 16]).

2 Necessary definitions and facts

We begin with the definition of a reduced algebraic irrationality of n-th degree.
Here we follow [8,9, 17].
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Definition 1. Let

f(x) =

n
∑

k=0

akx
k ∈ Z[x], an > 0

be irreducible polynomial with integer coefficients 1 such that all its roots α(k) (k =
1, 2, . . . , n) are different real numbers satisfying the following condition

−1 < α(n) < . . . < α(2) < 0, α(1) > 1.

The algebraic number α = α(1) is called a reduced algebraic irrationality of n-th
degree.

Note that for minimal polynomial f(x) that defines a reduced algebraic irra-
tionality α of n-th degree we always have a0 < 0, since f(x) has only one root α
belonging to [0;∞) and f(x) > 0 for x > α, so f(0) < 0. Besides the following
inequalities hold

an + an−1 + . . . + a1 + a0 = f(1) < 0,

an − an−1 + . . . + (−1)n−1a1 + (−1)na0 = (−1)nf(−1) > 0.

For any real number α which is a reduced algebraic irrationality of n-th degree
consider infinite continued fraction expansion

α = α0 = q0 +
1

q1 +
1

. . . +
1

qn +
1

.. .

= q0 +
1

q1 +
1

. . . +
1

qk +
1

αk+1

.

As usually by Pk and Qk we denote numerator and denominator of k-th order
convergent of continued fraction and by αk we denote its residual fraction of
order k.

Thus α = α0 and the equality

α =
αk+1Pk + Pk−1

αk+1Qk + Qk−1
, k ≥ −1,

is valid if we assume as usually that P−1 = 1, P−2 = 0 and Q−1 = 0, Q−2 = 1.

It is easy to show that

αk+1 =
αQk−1 − Pk−1

Pk − αQk

, k ≥ −1.

1In particular, the irreducibility of a polynomial means that (a0, . . . , an) = 1.
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Lemma 1. For an arbitrary reduced algebraic irrationality α of n-th degree its resid-
ual fractions α1 is a reduced algebraic irrationality of n-th degree too that satisfies
the irreducible polynomial

f1(x) =
n
∑

k=0

ak,1x
k ∈ Z[x], an,1 > 0,

where

ak,1 =
bk

d
, d = (b0, . . . , bn), bk = −

n
∑

m=n−k

amCm+k−n
m qm+k−n

0 (0 ≤ k ≤ n).

Proof. See [8].

Theorem 1. For an arbitrary reduced algebraic irrationality α of n-th degree all its
residual fractions αm are reduced algebraic irrationalities of n-th degree, satisfying
the irreducible polynomials

fm(x) =

n
∑

k=0

ak,mxk ∈ Z[x], an,m > 0,

where

ak,m =
bk,m

dm

, dm = (b0,m, . . . , bn,m),

bk,m = −
n
∑

l=n−k

al,m−1C
l+k−n
l ql+k−n

m−1 (0 ≤ k ≤ n).

Proof. See [8].

Theorem 2. An incomplete quotient qk is uniquely defined as an integer which
satisfies the following condition

fk(qk) < 0, fk(qk + 1) > 0.

Proof. See [8].

It is not hard to see that to compute qk we need to calculate O(ln qk) values of
polynomial fk(x). Indeed, consider the sequence fk(1), fk(2), . . . , fk(2

m), fk(2
m+1),

where m = [log2(qk)]. It is clear that fk(2
j) < 0 for all 0 ≤ j ≤ m and fk(2

m+1) > 0.
Further using the method of interval bisection contract the segment [2m; 2m+1] to
the segment [qk; qk + 1], that will require to compute yet m values of fk(x). 2

Here in fact Lagrange algorithm of expansion for algebraic irrationality of arbi-
trary degree n ≥ 2 is described.

Theorem 1 is generalized to the case for continued fraction of arbitrary totally
real algebraic irrationality α of degree n. First we shall show Lemma on the trans-
formation of the roots.
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Lemma 2. Let

f(x) =

n
∑

k=0

akx
k ∈ Z[x], an > 0

be irreducible polynomial with integral coefficients such that all its roots α(k) (k =
1, 2, . . . , n) are different real number satisfying the following condition

α(n) < . . . < α(2) < α(1),

and for integer number q the following inequalities hold:






α(k) < q for k ≥ k0,

q < α(k) < q + 1 for k0 > k ≥ k1,

α(k) > q + 1 for k1 > k ≥ 1.

Then the polynomial

g(x) = −f

(

q +
1

x

)

· xn =
n
∑

k=0

bkx
k.

has roots β(k) = 1
α(k)−q

(k = 1, 2, . . . , n) satisfying the following inequalities







β(k) < 0 for k ≥ k0,

1 < β(k) for k0 > k ≥ k1,

0 < β(k) < 1 for k1 > k ≥ 1.

Proof. See [8].

Theorem 3. For an arbitrary totally real algebraic irrationality α of n-th degree all
its residual fractions αm are reduced algebraic irrationalities of n-th degree beginning
with some index m0 + 1.

Proof. See [8].

3 Refinement of Lagrange algorithm for reduced algebraic

irrationalities

Denote by PZn[x] the set of all irreducible polynomials with integer coefficients
of n-th degree considered in Definition 1.

Lemma 3. If polynomial

f0(x) = anxn + an−1x
n−1 + . . . + a1x + a0 ∈ PZn[x]

and α(1) > α(2) > . . . > α(n) are its roots, then for the continued fraction expansion

α(1) = α0 = q0 +
1

q1 +
1

. . . +
1

qn +
1

. . .
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we have
[

−
an−1

an

]

≤ q0 < −
an−1

an

+ n − 1. (1)

Proof. Indeed, using Viete’s formula we have

−
an−1

an

= α(1) + α(2) + . . . + α(n).

Since α(1) is a reduced algebraic irrationality of degree n, then

−1 < α(n) < . . . < α(2) < 0, α(1) > 1.

So

−n + 1 < α(2) + . . . + α(n) < 0

and

−
an−1

an

< α(1) < −
an−1

an

+ n − 1.

Since q0 < α(1) < q0 + 1 we get the statement of Lemma.

Revise Lemma 1.

Lemma 4. For a reduced algebraic irrationality α of degree n its residual fraction
α1 is a reduced algebraic irrationality of n-th degree too that satisfies the irreducible
polynomial

f1(x) =

n
∑

k=0

ak,1x
k ∈ Z[x], an,1 > 0,

where

ak,1 =
bk

d0
, d0 = (b0, . . . , bn), bk = −

n
∑

m=n−k

amCm+k−n
m qm+k−n

0 (0 ≤ k ≤ n).

The polynomial f1(x) has the roots

α
(j)
1 =

1

α(j) − q0
(1 ≤ j ≤ n)

and the following equality holds:

f1(x) =
−f0(q0)

d0

n
∏

j=1

(

x −
1

α(j) − q0

)

∈ PZn[x].

Proof. Consider the polynomial

g(x) = −xnf

(

q0 +
1

x

)

.
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We have:

g(x) = −an

n
∏

j=1

(

q0x + 1 − α(j)x
)

=

= −an

n
∏

j=1

(

q0 − α(j)
)

n
∏

j=1

(

x −
1

α(j) − q0

)

=

= −f0(q0)

n
∏

j=1

(

x −
1

α(j) − q0

)

and α1 = 1
α(1)−q0

.

On the other hand

g(x) = −
n
∑

j=0

aj(q0x + 1)jxn−j = −
n
∑

j=0

aj

j
∑

ν=0

Cν
j qν

0xn−j+ν =

= −
n
∑

k=0

xk

n
∑

m=n−k

amCk+m−n
m qk+m−n

0 =

n
∑

k=0

bkx
k,

where

bk = −
n
∑

m=n−k

amCk+m−n
m qk+m−n

0 ∈ Z (0 ≤ k ≤ n).

Since 1 ≤ q0 < α(1) < q0 + 1 we obtain

bn = −
n
∑

m=0

amqm
0 = −f0(q0) > 0,

1

α(1) − q0
> 1, −1 <

1

α(j) − q0
< 0 (2 ≤ j ≤ n).

So for d0 = (b0, . . . , bn) the polynomial f1(x) = 1
d0

g(x) ∈ PZn[x] and Lemma is
completely proved.

Theorem 4. Let α = α0 be a reduced algebraic irrationality of n-th degree satisfying
the irreducible polynomial

f0(x) =
n
∑

k=0

ak,0x
k ∈ Z[x], an,0 > 0.

And let a sequence of the polynomials fm(x) (m ≥ 1) and a sequence of natural
numbers qm (m ≥ 0) define the recurrence relations

fm−1(qm−1) < 0, fm−1(qm−1 + 1) > 0 (m ≥ 1), (2)
[

−
an−1,m−1

an,m−1

]

≤ qm−1 < −
an−1,m−1

an,m−1
+ n − 1 (m ≥ 1), (3)
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fm(x) =

n
∑

k=0

ak,mxk ∈ Z[x], an,m > 0,

ak,m =
bk,m

dm−1
, dm−1 = (b0,m, . . . , bn,m),

bk,m = −
n
∑

ν=n−k

aν,m−1C
ν+k−n
ν qν+k−n

m−1 (0 ≤ k ≤ n). (4)

Then:

(1) the polynomials fm(x) have the roots

α(j)
m =

α(j)Qm−2 − Pm−2

Pm−1 − α(j)Qm−1
(1 ≤ j ≤ n); (5)

(2)

fm(x) =
−fm−1(qm−1)

dm−1

n
∏

j=1

(

x − α(j)
m

)

∈ PZn[x];

(3) α has the following continued fraction expansion

α = α0 = q0 +
1

q1 +
1

. . . +
1

qn +
1

. . .

.

Proof. The proof is by induction on m.

For m = 1 the statements of theorem are valid by Lemma 4 and the equalities
Q0 = 1, P0 = q0, Q−1 = 0 and P−1 = 1.

Suppose the statements are valid for m ≥ 1, applying Lemma 4 to reduced

algebraic irrationality α
(1)
m we get the statements (2) – (4).

Further we obtain

α
(j)
m+1 =

1

α
(j)
m − qm

=
1

α(j)Qm−2−Pm−2

Pm−1−α(j)Qm−1
− qm

=
α(j)Qm−1 − Pm−1

Pm − α(j)Qm

and the statement (5) holds.

By (5) numbers α
(1)
m are the residual fractions for α (m = 0, 1, . . .), so a sequence

q0, q1, . . . is a sequence of incomplete quotients for α. This completes the proof.

It is easy to show that we need to calculate O(ln n) values of fm(x) for the

computation of qm. Indeed, for A =
[

−
an−1,m

an,m

]

consider a sequence of fm(A),

fm(A + 1), . . . , fm(A + n − 1) consisting of n members. It is clear that if fm(A +
n − 1) < 0 then qm = A + n − 1. Otherwise using the method of interval bisection
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contract the segment [A;A + n − 1] to the segment [qm; qm + 1] that will require to
compute yet O(ln n) values of fm(x).

Thus the new version of Lagrange algorithm for expansion of an algebraic irra-
tionality of arbitrary degree n ≥ 2 in the case of reduced algebraic irrationality of
n-th degree has a new property: for the computation of next incomplete quotient of
continued fraction expansion of this irrationality we need to calculate at most O(ln n)
values of polynomial fm(x). Since for the computation of coefficients of a polynomial
fm(x) via the coefficients of a polynomial fm−1(x) we need at most O

(

n2
)

elemen-
tary arithmetic operations then the quantity of operations for the computation of
next incomplete quotient does not depend on the value of this incomplete quotient.

Make an essential remark. If we will not use the greatest common divisor dm−1

in formula (4), then all coefficients will be increased and time for practical realisa-
tion using symbolic arithmetic will increase too. The calculation of dm−1 requires
additional time, but it is compensated by range extension for calculations of incom-
plete quotients. On the other hand, even establishing that dm−1 = 1 requires time
which depends on the polynomial coefficients, but it does not depend on the value
of incomplete quotient.

4 The case of generalized Pisot numbers

Now we give the definition of generalized Pisot numbers.

Definition 2. Let

f(x) =
n
∑

k=0

akx
k ∈ Z[x], an > 0,

be an arbitrary irreducible polynomial with integer coefficients such that its roots
α(k) (k = 1, 2, . . . , n) satisfy the following conditions

|α(j)| < 1 (2 ≤ j ≤ n), α(1) > 1.

The algebraic number α = α(1) is called a generalized Pisot number of n-th
degree.

It is easy to see that the definition of generalized Pisot numbers differs from the
definition of Pisot numbers by absence of the requirement to be integer.

Theorem 5. Let α = α0 be a real algebraic irrationality of n-th degree satisfying
the irreducible polynomial

f0(x) =

n
∑

k=0

ak,0x
k ∈ Z[x], an,0 > 0,
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and α have the following continued fraction expansion

α = α0 = q0 +
1

q1 +
1

. . . +
1

qn +
1

. . .

.

Let a sequence of the polynomials fm(x) (m ≥ 1) be defined by the recurrence rela-
tions

fm(x) =
n
∑

k=0

ak,mxk ∈ Z[x], an,m > 0,

ak,m =
bk,m

dm−1
, dm−1 = (b0,m, . . . , bn,m),

bk,m = −
n
∑

ν=n−k

aν,m−1C
ν+k−n
ν qν+k−n

m−1 (0 ≤ k ≤ n). (6)

Then:
(1) the polynomials fm(x) have the following roots

α(j)
m =

α(j)Qm−2 − Pm−2

Pm−1 − α(j)Qm−1
(1 ≤ j ≤ n). (7)

(2)

fm(x) =
−fm−1(qm−1)

dm−1

n
∏

j=1

(

x − α(j)
m

)

. (8)

(3) beginning with some index m0 all residual fractions α
(1)
m are generalized Pisot

numbers (m ≥ m0).

Proof. Consider a sequence of the polynomials

gm(x) = −xnfm−1

(

qm−1 +
1

x

)

(m ≥ 1).

Repeating arguments of Lemma 4 and Theorem 4 we get (7) and (8).
To prove the last statement of Theorem, transforming expression (7) we obtain:

α(j)
m =

Qm−2

Qm−1

α(j) − Pm−2

Qm−2

Pm−1

Qm−1
− α(j)

(1 ≤ j ≤ n). (9)

For j = 1 we have the obvious inequality α
(1)
m > 1 using the definition of a residual

fraction.
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Let 2 ≤ j ≤ n, then

α(j)
m =

Qm−2

Qm−1

(

−1 +

Pm−1

Qm−1
− Pm−2

Qm−2

Pm−1

Qm−1
− α(j)

)

=
Qm−2

Qm−1



−1 +

(−1)m

Qm−1Qm−2

Pm−1

Qm−1
− α(j)



 =

=
Qm−2

Qm−1



−1 +
(−1)m

Qm−1Qm−2

(

Pm−1

Qm−1
− α(j)

)



 . (10)

Since

lim
m→∞

∣

∣

∣

∣

Pm−1

Qm−1
− α(j)

∣

∣

∣

∣

=
∣

∣

∣α(1) − α(j)
∣

∣

∣ ,

and all roots are distinct, it follows that

|α(j)
m | ≤

Qm−2

Qm−1

(

1 +
2

Qm−1Qm−2δ

)

=
Qm−2

Qm−1
+

2

Q2
m−1δ

< 1, (11)

for m > m0, where

δ = min
2≤j≤n

∣

∣

∣α(1) − α(j)
∣

∣

∣ > 0.

By (11) we obtain that beginning with index m0 all residual fractions α
(1)
m are

generalized Pisot numbers. This completes the proof.

The importance of generalized Pisot numbers for Lagrange algorithm of contin-
ued fraction expansion of an algebraic number is explained by the following gener-
alization of Lemma 3.

Lemma 5. If

f0(x) = anxn + an−1x
n−1 + . . . + a1x + a0 ∈ Z[x]

is a minimal polynomial for generalized Pisot number α(1) = α0, then for the con-
tinued fraction expansion

α(1) = α0 = q0 +
1

q1 +
1

. . . +
1

qn +
1

. . .

the following inequality holds

[

−
an−1

an

]

+ 1 − n ≤ q0 < −
an−1

an

+ n − 1. (12)
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Proof. Indeed, using Viete’s formula we have:

−
an−1

an

= α(1) + α(2) + . . . + α(n).

Since a minimal polynomial f0(x) is irreducible it follows that

α(2) + α(3) + . . . + α(n) 6= 0,

for otherwise we have α(1) = −an−1

an
∈ Q and get a contradiction with the irreducibil-

ity of minimal polynomial f0(x).

As α(1) is a generalized Pisot number then

|α(j)| < 1 (2 ≤ j ≤ n).

So

0 < |α(2) + . . . + α(n)| < n − 1

and

−
an−1

an

+ 1 − n < α(1) < −
an−1

an

+ n − 1.

Since q0 < α(1) < q0 + 1 we obtain the statement of Lemma.

Thus, from Theorem 5 and Lemma 5 it follows that beginning with some index
m0 all incomplete quotients qm (m ≥ m0) require for their calculations at most
O(ln n) computations of values of polynomial fm(x).

5 Conclusion

The results of this paper show that reduced algebraic irrationalities in the case
of totally real algebraic fields and generalized Pisot numbers in general case play
a fundamental role in the continued fraction expansion of algebraic irrationalities.
Beginning with some index all residual fractions are the reduced algebraic numbers
in the first case and generalized Pisot numbers in the second case.

The formulas (10) and (11) imply that beginning with some index m0 a peculiar
asymptotic formula for the conjugate to residual fractions takes place

α(j)
m = −

Qm−2

Qm−1
+ O

(

2

Q2
m−1δ

)

.

Hence beginning with index m0 some more powerful analog of Lemma 3 holds, which
is valid for any real irrationality. The next article will be devoted to the study of
this phenomenon.
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Abstract. In this paper, we describe a new approach for building an asymmetric
ID-based encryption (IBE) system and an authentication protocol without disclosure,
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1 Introduction

This paper proposes a new approach for creating ID-based systems, using the
Explicit Pairing Reciprocity Law from works [1, 2]. The Reciprocity Law was first
examined by P. Fermat, when he proved that x2 + 1 is divisible by a prime num-
ber p, for some integer x, if and only if p = 4k + 1. The Quadratic Reciprocity
Law for Legendre exponential symbols was formulated by L. Euler and proved by
C.F. Gauss in the 18th century. In the 19th century attempts were made to obtain
an explicit formula for the product of the symbols of power residues in an arbitrary
number field, containing the necessary roots of 1. Partial results were obtained by
Kummer, Dirichlet and Eisenstein. After new insight about the deep analogy of
algebraic numbers and algebraic functions was proposed by L. Kroneker, Hilbert
implemented this idea and devised a plan to obtain an Explicit Reciprocity Law
(Hilbert’s 9th problem, 1900). The first part of this plan was the construction of
field theory of classes which was completed in the early 20th century by mathe-
maticians such as W. Furtwängler, T. Takagi, E. Artin, and H. Hasse. This theory
reduces the calculation of the product of global power residues to the product of local
normed residue symbols (pairing or Hilbert symbol). The first explicit, but not com-
plete formula for this pairing in the circumferential extension of the p-adic numbers
of field Qp, were found in 1928 by E. Artin and H. Hasse. In 1950 I.R. Shafarevich
constructed the basis of the multiplicative group of a local field (finite extension
of the p-adic Qp numbers), on the elements of which he proposed the method for
calculating the Hilbert pairing. Definitive and complete formulas for the Hilbert
Pairing were obtained by S. Vostokov in 1978 [1], and later independently by
H. Bruckner [3].

c© S.V. Vostokov, R.P. Vostokova, I. A. Budanaev, 2016
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In this paper we use the Explicit Hilbert Pairing from [1], in the case of a
circular field Qp(ξ), where ξ is a primitive root of degree p of 1 (see Section 2), for
the authentication protocol without disclosure (see Section 3).

2 Explicit Hilbert Pairing

Consider the multiplicative group of power series U = 1 + XZp[X]. Let ∆ be
the Frobenius Operator on the ring of Laurent Series Zp[X], acting on series f(X)
of Zp[X] as follows:

∆f(X) = f∆(X) = f(Xp).

Further, we define the function l(f(X)) for series f(X) from the group U(X):

l(f(X)) =
1

p
log

f(X)p

f(X)∆
.

Lemma 1. The function l(f) has integer coefficients in Zp. In addition, l(f) has
the following properties:

1. l(f(X)g(X)) = l(f(X)) + l(g(X))

2. l(f(X)a) = al(f(X))

for series f(X) and g(X) of group U(X) and the integer a of Zp.

Proof. The first property was proven in ([4], Lemma 2). The second property follows
from the corresponding property of the logarithm and the additive property of the
operator ∆.

We now define the pairing < ∗, ∗ > on U(X) × U(X) by the formula

< f(X), g(X) >= {resx(l(f(X))
d

dX
log g(X)−l(g(X))

d

dX

∆

p
log f(X))X−p} mod p.

Proposition 1. The pairing < ∗, ∗ > has the following properties:

1. It is bilinear, i.e.
< f1f2, g >=< f1, g > + < f2, g >,
< fa, g >= a < f, g >
for series f1,f2,g, of U(X) and an integer a of Zp, and similar equalities for
the second argument.

2. It is skew-symmetric, i.e.
< f, g > + < g, f >= 0.

Proof. Bilinearity of the pairing follows from the corresponding properties of the
function l(f) and logarithm. Let us now prove the skew-symmetry. We denote

Φ(f, g) = l(f)d log g − l(g)d∆ log f.



42 S.V. VOSTOKOV, R.P. VOSTOKOVA, I.A. BUDANAEV

From the definition of the function l(f) it follows that

Φ(f, g) = l(g)dl(f) − l(g)d log f + l(f)d log g,

therefore

Φ(f, g) + Φ(g, f) = l(f)dl(g) + l(g)dl(f) = d(l(f)l(g)).

We conclude that

< f, g > + < g, f >= {resx(d(l(f)l(g))X−p} ≡ {resx(d(l(f)l(g))X(−p)} ≡ 0 mod p

and skew-symmetry of the pairing is proved.

Remark 1. The pairing < ∗, ∗ > has the property of independence of each of the
arguments too. For that, let Eis(X) be the Eisenstein irreducible polynomial of
degree p − 1,

Eis(X) =
((1 + X)p − 1)

Xp
,

and let r(X) be the remainder from the division of f(X) − 1 by polynomial u(X).
Then

< f(X), g(X) >=< r(X), g(X) > .

Remark 2. Properties of the pairing < ∗, ∗ > from Proposition 2, are similar to
those of the Weil pairing and are proven in [1, 2]. For the general case see [5],
Chapter V II).

3 Authentication Protocol without Disclosure

Proof of security of the protocol under discussion is determined by the properties
of the proposed pairing function and non-polynomial complexity problem of the
discrete logarithm in a polynomial ring with integer coefficients, which in general
case is polynomially reduced to the discrete logarithm in finite fields [4].

3.1 Protocol Parameters and its Members

Let A (Alice) and V (verifier) be the members of the protocol. The secret
known by Alice is some polynomial a(X) of the group U(X). Both parties of
the protocol know the number s, the polynomial Eis(X) and the polynomial
A(X) = as mod Eis(X). According to the classical problem of authentication pro-
tocol without disclosure, Alice must prove to the verifier her knowledge of the secret
polynomial a(X), without disclosing it.
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3.2 The Choreography of the Protocol

1. Alice selects a random polynomial r(X) and determines the polynomial
R(X) = r(X)s mod Eis(X)

2. Alice sends to the verifier the value of R(X)

3. V can request from A one of the following responses

• the first response is the polynomial

z(X) :< z(X), R(X) >= s < z(X), z(X) >

• the second response is the polynomial

y(X) :< y(X), R(X)A(X) >= s < y(X), y(X) > .

4. For the first response, A uses the known polynomial r(X) and forms the poly-
nomial z(X) = r(X). For the second response, Alice uses the secret polynomial
a(X) to calculate the polynomial y(X) = r(X)a(X) mod Eis(X)

5. V verifies the correctitude of the answers of A

• for the first response

< z(X), R(X) >=< r(X), r(X)s >= s < r(X), r(X) >,

• for the second response:

< y(X), R(X)A(X) > =< r(X)a(X), R(X)A(X) >

= s < r(X)a(X), r(X), a(X) >

= s < y(X), y(X) > .

The above steps are performed until the verifier is convinced that Alice knows the
secret polynomial a(X). All the properties of the given protocol correspond to the
properties of the classic authentication protocol without disclosure.

4 Final Remarks

In this paper, we propose a new system authentication protocol without disclo-
sure. The system uses the idea of Explicit Hilbert Pairing of the Reciprocity Law
(see [1, 2]). Explicit Hilbert pairing is used because it is bilinear and skew-symmetric
(see Section 2). These properties make it interesting and paramount to building the
system’s protocol. The principle described in this paper can not only be used in
other applications, like digital signature, but also as an extension to other security
models.
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1 Introduction

The aim of the present article is to study the compactifications of topological
universal algebras generated by special functions. Any space is considered to be
Tychonoff and non-empty. We use the terminology from [8].

The discrete sum Ω = ⊕{Ωn : n ∈ N = {0, 1, 2, ...}} of the pairwise disjoint
discrete spaces {Ωn : n ∈ N} is called a signature. A topological Ω-algebra or a
topological universal algebra of the signature Ω is a family {G, enG : n ∈ N}, where
G is a non-empty topological space and enG : Ωn×G

n → G is a continuous mapping
for each n ∈ N .

Subalgebras, homomorphisms, isomorphisms and Cartesian products of topolo-
gical Ω-algebras are defined in traditional way [4,5, 7, 9].

Let G be a topological space and n ∈ N. A continuous mapping λ : Gn → G is
called an n-ary operation on G.

If G is a topological Ω-algebra and ω ∈ Ωn, then ω : Gn → G, where ω(x) =
enG(ω, x) for every x ∈ Gn, is an n-ary operation on G.

A pair (Y,ϕ) is a generalized compactification or a g-compactification of a topo-
logical space X if Y is a compact space, ϕ : X → Y is a continuous mapping and
the set ϕ(X) is dense in Y . If (Z,ϕ) and (Y, ψ) are g-compactifications of X, then
(Z,ϕ) ≤ (Y, ψ) if and only if there exists a continuous mapping g : Y → Z such
that ϕ = g ◦ ψ. If ϕ : X → Y is an embedding, then a pair (Y,ϕ) is called a
compactification and we consider that X ⊆ Y and ϕ(x) = x for each x ∈ X.

If (Y,ϕ) and (Z,ψ) are g-compactifications of X, (Y,ϕ) ≤ (Z,ψ) and (Z,ψ) ≤
(Y,ϕ), then the g-compactifications (Y,ϕ), (Z,ψ) are called equivalent and there
exists a unique homeomorphism g : Y → Z such that ψ = g ◦ ϕ. We identify the
equivalent g-compactifications. In this case the class of all g-compactifications of
the space X is a set.

c© Mitrofan M. Choban, Dorin I. Pavel, 2016
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A pair (E,ϕ) is an algebraical g-compactification or an ag-compactification of
a topological Ω-algebra G if E is a compact topological Ω-algebra, ϕ : G → E is a
continuous homomorphism and the set ϕ(G) is dense in E. If (Z,ϕ) and (Y, ψ) are
ag-compactifications of G and (Y,ϕ) ≤ (Z,ψ), then the unique continuous mapping
g : Y → Z, for which ψ = g ◦ ϕ, is a continuous homomorphism of Y onto Z. If
(Y,ϕ) ≤ (Z,ψ) and (Z,ψ) ≤ (Y,ϕ), then the ag-compactifications (Y,ϕ), (Z,ψ) are
called equivalent and there exists a unique topological isomorphism g : Y → Z such
that ψ = g ◦ ϕ.

If a pair (E,ϕ) is an ag-compactification and a compactification of a topological
Ω-algebra G, then (E,ϕ) is called an a-compactification of G. If Ω = Ω0, then any
g-compactification of a topological Ω-algebra G is an ag-compactification.

If G is a topological Ω-algebra, then ComΩ(G) is the set of all ag-compactificati-
ons of the topological Ω-algebra G.

The following properties are obvious.

Property 1. The set ComΩ(G) is a complete lattice for every topological Ω-algebra
G and for every non-empty subset L ⊆ ComΩ(X) there exist the maximal element
∨L and the minimal element ∧L.

Property 2. In the lattice of all ag-compactifications of a topological Ω-algebra
G there exists the maximal a-compactification (βΩG,βG), which is called the Bohr
compactification of the topological Ω-algebra G.

Property 3. In the lattice of all ag-compactifications of a topological Ω-algebra
G there exists the minimal ag-compactification (µaG,µG), which is the singleton
Ω-algebra.

As a rule, the Bohr compactification of a topological Ω-algebra G is an ag-
compactification of G.

Fix a topological space G. Let C(G) be the space of real-valued continuous
functions on the space G in the topology of uniform convergence. The topology on
C(G) is generated by the metric d(f, g) = sup{|f(x) − g(x)| : x ∈ X}. Let C◦(G)
be the subspace of bounded functions. Then C◦(G) is a Banach algebra (ring) with
the norm ||f || = sup{|f(x)| : x ∈ G}. For some f, g ∈ C(G) it is possible that
d(f, g) = ∞. We have C(G) = C◦(G) if and only if the space G is pseudocompact.
If C(G) 6= C◦(G), then C(G) is a linear space, but is not a topological linear space.
The space C(G) is a topological ring relative to the operations f + g and f · g. For
any number λ ∈ R the correspondence tλ(f) = λf is a continuous mapping of C(G)
into C(G). For λ 6= 0, the correspondence tλ : C(G) → C(G) is a homeomorphism.

Compactifications of the spaces can be produced in a variety of ways. One way
is by use of subspaces of the space C◦(G).

Let F ⊆ C◦(G) be a non-empty subspace. Consider the mapping eF : G→ RF ,
where eF (x) = (f(x) : f ∈ F ). Denote by bFG the closure of the set eF (G) in RF .
Then (bFG, eF ) is a g-compactification of G and βG = βC◦(G)G is the Stone-C̆ech
maximal compactification of G [8]. Moreover, the family of functions F̄ = {g ∈
C(bFG) : g ◦ eF ∈ F} separates points of the space bFG. Hence, if F is a ring which
contains all constant functions and is closed in C◦(G), then, by Stone-Weierstrass
theorem ([8], Theorem 3.2.21), we have C(bFG) = F̄ and F = {g ◦eF : g ∈ C(bFG}.
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Let (E,ϕ) be a g-compactification of a topological Ω-algebra G. If CE(G) =
{f ◦ ϕ : f ∈ C(E)}, then CE(G) is the maximal subalgebra of the Banach algebra
C◦(G) such that (E,ϕ) = (bCE(G)G, eCE(G)). Denote CΩ(G) = CβΩG(G).

Question A. Let G be a topological Ω-algebra and F ⊆ C◦(G). Under which
conditions (bFG, eF ) is an Ω-algebra ag-compactification of G and eF : G→ bFG is
a homomorphism?

Question B. Let G be a topological Ω-algebra and f ∈ C(G). Under which condi-
tions f ∈ CΩ(G)?

In [9] J. E. Hart and K. Kunen had formulated the next problems for the class
E of all compact Ω-algebras:

Problem 1. To define the compactification βΩG as for groups directly with some
notion of almost periodicity for functions ([9], Remark 2.4.1).

Problem 2. To give a method of construction of the Bohr compactification of an
arbitrary algebra ([9], Remarks 2.4.1 and 3.1.6).

In this paper these problems are considered for arbitrary algebras.

We need the following elementary assertion.

Lemma 1. Let (X, d) be a complete metric space. For a non-empty subset L of the
space X the following assertions are equivalent:

1. The closure H = clXL of the set L in X is a compact subset of X.

2. For every ǫ > 0 there exists a finite subset S(ǫ) of X such that d(x, S(ǫ)) =
inf{d((x, y) : y ∈ S(ǫ)} ≤ ǫ for each x ∈ L.

Proof. Follows immediately from Theorem 4.3.29 from [8], which affirms that a
metrizable space Y is compact if and only if on Y there exists a metric ρ which is
both totally bounded and complete.

2 Almost periodicity on topological spaces

Fix a topological space G. Denote by Π(G) the set of all continuous mappings
ϕ : G → G. Relative to the operation of composition ϕ ◦ ψ, where (ϕ ◦ ψ)(x) =
ϕ(ψ(x)) for ψ,ψ ∈ Π(G) and x ∈ G, the set Π(G) is a semigroup with identity eG,
where eG(x) = x for each x ∈ G. A semigroup with identity is called a monoid. We
say that Π(G) is the monoid of all continuous translations of G. If f ∈ C(G) and
ϕ ∈ Π(G), then fϕ = f ◦ϕ (fϕ(x) = f(ϕ(x)) for any x ∈ G). Evidently, fϕ ∈ C(G).

Fix a non-empty subset P ⊆ Π(G). We say that P is a set of continuous
translations of G. The set P is called a transitive set of translations of G if for any
two points x, y ∈ G there exists ϕ ∈ P such that ϕ(x) = y. Obviously, the monoid
Π(G) is transitive.

For any function f ∈ C(G) we put P (f) = {fϕ : ϕ ∈ P}. If f ∈ C◦(G), then
P (f) ⊆ C◦(G).

Definition 1. A function f ∈ C(G) is called a P -periodic function on a space G if
the closure P̄ (f) of the set P (f) in the space C(G) is a compact set.
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Denote by P -ap(G) the subspace of all P -periodic functions of a space G and
P ◦-ap(G) = P -ap(G) ∩ C◦(G).

If the set P is finite, then P -ap(G) = C(G).

Theorem 1. Let P be a set of continuous translations of G. Then P -ap(G) has the
following properties:

1. P -ap(G) is a linear subspace of the linear space C(G).
2. P -ap(G) is a topological subring of the topological ring C(G).
3. P -ap(G) is a closed subspace of the complete metric space C(G). In particular,

P -ap(G) is a complete metric space.
4. If f ∈ C(G) is a constant function, then f ∈ P -ap(G).
5. If f ∈ P -ap(G), then for any x ∈ G there exists a number c(f, x) > 0 such

that |f(ϕ(x))| ≤ c(f, x) for any ϕ ∈ P .
6. If f ∈ P -ap(G), ψ ∈ Π(G) and g(x) = f(ψ(x)) for each x ∈ G, then g ∈ P -

ap(G). In particular, P (f) ⊆ P -ap(G) and fψ ∈ P -ap(G) for all f ∈ P -ap(G) and
ψ ∈ Π(G).

7. P ◦-ap(G) is a Banach algebra of continuous functions.

Proof. Fix f, g ∈ P -ap(G). Since P̄ (f), P̄ (g), −P̄ (f), P̄ (f) + P̄ (g) and P̄ (f) · P̄ (g)
are compact subsets of P -ap(G) and −P̄ (f) = P̄ (−f), P̄ (f + g) ⊆ P̄ (f) + P̄ (g),
P̄ (f ·g) ⊆ P̄ (f)·P̄ (g), then −f, f+g, f ·g ∈ P -ap(G). Hence P -ap(G) is a topological
subring of the topological ring C(G).

If f ∈ P -ap(G) and λ ∈ R, then the correspondence tλ(f) = λf is a continuous
mapping of C(G) into C(G) and P̄ (λf) = tλ(P̄ (f)). Hence λf ∈ P -ap(G) and
P -ap(G) is a linear subspace of the linear space C(G).

Let {fn ∈ P -ap(G) : n ∈ N} and f = limn→∞fn. It is well known that f ∈ C(G).
Fix ǫ > 0. There exist n ∈ N and a finite subset S of C(G) such that:

– |fn(x) − f(x)| ≤ ǫ/3 for each x ∈ G;
– d(g, S) ≤ ǫ/3 for each g ∈ P (fn).
Fix ϕ ∈ P . For a given ǫ > 0 there exists g ∈ S such that |g(x)−fn(ϕ(x)) ≤ ǫ/3+

ǫ/3 for each x ∈ G. Then |g(x)−f(ϕ(x))| ≤ |g(x)−fn(ϕ(x))| + |fn(ϕ(x))−f(ϕ(x))|
< ǫ/3 + ǫ/3 + ǫ/3 = ǫ. Hence d(h, S) ≤ ǫ for each h ∈ P (f). By virtue of Lemma
1, f ∈ P -ap(G). Hence, P -ap(G) is a closed subspace of the complete metric space
C(G).

The Assertion 4 is obvious.
Assume that f ∈ C(G), b ∈ G and the set {f(ϕ(x)) : ϕ ∈ P} is unbounded.

Then there exists a sequence {ϕn ∈ P : n ∈ N} such that |f(ϕ1(b))| ≥ 2 + |f(b)|
and |f(ϕn+1(b))| ≥ 2 + |f(ϕn(b))| for each n ∈ N. We put gn(x) = f(ϕn(x)). Then
d(f, gn) ≥ 2n for each n ∈ N. Hence P (f) is an unbounded subset of C(G) and
f 6∈ P -ap(G). The Assertion 5 is proved.

Fix ψ ∈ Π(G). Consider the mapping Φ : C(G) −→ C(G), where Φ(h)(x) =
h(ψ(x)) for all h ∈ C(G) and x ∈ G. We have d(Φ(f),Φ(g)) ≤ d(f, g) for all
f, g ∈ C(G). Fix now f ∈ P -ap(G) and put g(x) = f(ψ(x)) for each x ∈ G. Let
ǫ > 0. Then there exists a finite subset S of C(G) such that d(h, S) ≤ ǫ for each
h ∈ P (f). We have gϕ(x) = g(ϕ(x)) = f(ϕ(ψ(x))) for each x ∈ G and each ϕ ∈ P .
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Assume that ϕ ∈ P , δ > 0, h ∈ C(G) and d(fϕ, h) ≤ δ. Since |f(ϕ(x)−h(x)| ≤ δ for
any x ∈ G, we have |f(ϕ(ψ(x)) − h(ψ(x))| ≤ δ for any x ∈ G. Hence, the set Φ(S)
is finite and d(h,Φ(S)) ≤ ǫ for each h ∈ P (g). By virtue of Lemma 1, the Assertion
6 is proved. The Assertion 7 is obvious.

Corollary 1. If P is a transitive set of translations of G, then any function f ∈ P -
ap(G) is bounded and P -ap(G) is a Banach algebra of continuous functions.

Theorem 2. Let P be a set of continuous translations of G and F be a compact
subset of the complete metric space P -ap(G). Then the closure H of the set P (F )
= ∪{P (f) : f ∈ F} is a compact subset of the space P -ap(G).

Proof. Fix ǫ > 0. There exists a finite subset S1 of F such that d(h, S1) ≤ ǫ/2
for each h ∈ F . For each f ∈ F there exists a finite subset Sf of P (f) such that
d(h, Sf ) ≤ ǫ/2 for each h ∈ P (f). We put S = ∪{Sf : f ∈ S1}. Fix h ∈ F and
ϕ ∈ P . There exists f ∈ S1 such that d(f, h) ≤ ǫ/2. In continuation, there exists
g ∈ Sf such that d(fϕ, g) ≤ ǫ/2. Since d(hϕ, fϕ) ≤ d(h, f), we have d(hϕ, g) ≤
d(hϕ, fϕ) + d(fϕ, g) ≤ ǫ. Hence d(h, S) ≤ ǫ for each h ∈ P (F ). Lemma 1 completes
the proof.

Definition 2. Let G be a space and Γ = {Pα : α ∈ A} be a non-empty family
of non-empty subsets of the semigroup Π(G). A function f ∈ C(G) is called a
Γ-periodic function of a space G if the function f ∈ C(G) is Pα-periodic for any
α ∈ A.

Let G be a space and Γ = {Pα : α ∈ A} be a non-empty family of non-empty
subsets of the semigroup Π(G). Denote by Γ-ap(G) the subspace of all Γ-periodic
functions of a space G. By definition, we have Γ-ap(G) = ∩{Pα-ap(G) : α ∈ A}.

From Theorem 1 follows

Corollary 2. Let G be a space and Γ = {Pα : α ∈ A} be a non-empty family of non-
empty subsets of the semigroup Π(G). Then Γ-ap(G) has the following properties:

1. Γ-ap(G) is a linear subspace of the linear space C(G).

2. Γ-ap(G) is a topological subring of the topological ring C(G).

3. Γ-ap(G) is a closed subspace of the complete metric space C(G). In particular,
Γ-ap(G) is a complete metric space.

4. If f ∈ C(G) is a constant function, then f ∈ Γ-ap(G).

5. If f ∈ Γ-ap(G), ψ ∈ Π(G) and g(x) = f(ψ(x)) for each x ∈ G, then g ∈ Γ-
ap(G). In particular, fψ ∈ Γ-ap(G) for all f ∈ Γ-ap(G) and ψ ∈ Π(G).

6. Γ◦-ap(G) is a Banach algebra of continuous functions.

Let G be a space and Γ = {Pα : α ∈ A} be a non-empty family of non-
empty subsets of the semigroup Π(G). A finite oriented set (α1, α2, ..., αn), where
α1, α2, ..., αn ∈ A and n ≥ 1, is called an A-cortege of the length n. For any A-
cortege β = (α1, α2, ..., αn) we put Bβ = {ϕα1 ◦ ϕα2 ◦ ... ◦ ϕαn : (ϕα1 , ϕα2 , ...ϕαn) ∈
Pα1 × Pα2 × ... × Pαn}. Denote by A∞ the set of all A-corteges and Γ∞ =
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{Bβ : β ∈ A∞}. Then Γ∞ is a non-empty family of non-empty subsets of the
monoid Π(G), A ⊆ A∞ and ∪{Bβ : β ∈ A∞} is a semigroup of the monoid Π(G).

From Theorem 2 follows

Corollary 3. Let G be a space and Γ = {Pα : α ∈ A} be a non-empty family of
non-empty subsets of the semigroup Π(G). Then Γ∞-ap(G) = Γ-ap(G).

3 Almost periodicity on dynamical systems

A topological monoid is a topological space A with a continuous mapping
· : A × A → A for which there exists a point 1 ∈ A such that 1 · x = x · 1 = x
and x · (y · z) = (x · y) · z for each x, y, z ∈ X. The element 1 is the unity of monoid
A and we say that xy = x · y is the product of x, y.

A dynamical system is a triple (G,S,m), where S is a topological monoid, G is a
Tychonoff space andm : S×G→ G is a continuous action onG, i. e. m(s,m(t, x)) =
m(st, x) and m(1, x) = x for all s, t ∈ S and x ∈ G. In theory of finite state machines
and in automata theory the dynamical system (G,S,m) is called a semiautomaton,
where S is called the input alphabet, G is called the set of states and m is the
transition function.

Remark 1. Let G be a non-empty space. Then the semigroup Π(G) is a monoid.
Consider the evaluation action eG : Π(G) × G −→ G, where eG(ϕ) = ϕ(x) for all
x ∈ G and ϕ ∈ Π(G). If S is a submonoid of the monoid Π(G) and m = eG|S ×G,
then (G,S,m) is a dynamical system. In particular, (G,Π(G), eG) is a dynamical
system.

Fix a discrete monoid S and a dynamical system (G,S,m). Then G is a topo-
logical universal algebra of the signature S. All operations from S are unary.

For any continuous real-valued function f : G → R and any s ∈ S we consider
the function fs : G→ R, where fs(x) = f(m(s, x)) for each x ∈ G, and put S(f) =
{fs : s ∈ S}.

A continuous function f : X → R is called an almost periodic function of the
dynamical system (G,S,m) if the closure clC(G)S(f) is a compact subset of C(G).
Denote by S(m)-ap(G) the class of all almost periodic functions on G and S(m)◦-
ap(G) = S(m)-ap(G) ∩ C◦(G).

Remark 2. Any element s ∈ S generates the continuous mapping ms : G −→ G,
where ms(x) = m(s, x) for any point x ∈ G. We put SG = {ms : s ∈ G}. Then
SG is a submonoid of the monoid Π(G). By construction, fs = fms for all s ∈ S
and f ∈ C(G). Hence S(f) = SG(f) for any function f ∈ C(G). In particular,
S(m)-ap(G) = SG-ap(G).

The continuous action m : S × G −→ G generates the continuous action mC :
S × C(G) −→ C(G), where mC(s, f) = fs for all s ∈ S and f ∈ C(G). Hence
(S,C(G),mC) is a dynamical system generated by the continuous action m : S ×
G −→ G. From Theorem 2 it follows that mC(S-ap(G) = S(m)-ap(G). Therefore
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(S-ap(G), S,mC ) is a dynamical system too, generated by the continuous action
m : S ×G −→ G.

From Theorem 1 follows

Corollary 4. Let G be a space, S be a discrete monoid and (G,S,m) be a dynamical
system. Then the space S-ap(G) has the following properties:

1. S(m)-ap(G) is a linear subspace of the linear space C(G).
2. S(m)-ap(G) is a topological subring of the topological ring C(G).
3. S(m)-ap(G) is a closed subspace of the complete metric space C(G). In

particular, S-ap(G) is a complete metric space.
4. If f ∈ C(G) is a constant function, then f ∈ S-ap(G).
5. If f ∈ S(m)-ap(G), ψ ∈ Π(G) and g(x) = f(ψ(x)) for each x ∈ G, then

g ∈ S(m)-ap(G). In particular, S(f) ⊆ S(m)-ap(G) for any f ∈ S(m)-ap(G).
6. S(m)◦-ap(G) is a Banach algebra of continuous functions.

If ρ is a pseudometric on G, x ∈ G and r > 0, then B(x, ρ, r) = {y ∈ G :
ρ(x, y) < r} is the r-ball with the center x. The pseudometric ρ is continuous if the
sets B(x, ρ, r) are open in G.

A pseudometric ρ on G is totally bounded if for any real number r > 0 there
exists a finite subset F of G such that ρ(x, F ) = min{ρ(x, y) : y ∈ F} < r for each
x ∈ G.

A pseudometric ρ on (G,S,m) is totally S-bounded if it is totally bounded and
for any real number r > 0 there exists a finite subset L of S such that: for each
s ∈ S there exists sr ∈ L such that ρ(m(s, x),m(sr, x)) < r for each x ∈ G.

A pseudometric ρ : G × G → R is S-invariant on (G,S,m) if ρ is continuous,
ρ(x, y) <∞ and ρ(m(s, x),m(s, y)) ≤ ρ(x, y) for all x, y ∈ G and s ∈ S.

If f : G → R is a function, then we put ρf (x, y) = sup{|fs(x) − fs(y)| : s ∈ S}
for all x, y ∈ G.

Theorem 3. Fix a dynamical system (G,S,m) and f ∈ S-ap(G). Then:
1. ρf is an S-invariant pseudometric.
2. ρf is a continuous pseudometric on G.
3. ρf is a totally bounded pseudometric if and only if the function f is bounded.
4. ρf is a totally S-bounded pseudometric provided the function f is bounded

and for any real number r > 0 there exists a finite subset L of S such that: for each
s ∈ S there exists sr ∈ L such that |f(m(ts, x) − f(m(tsr, x))| < r for each x ∈ G
and every t ∈ S.

Proof. 1. Fix two points x, y ∈ G. By virtue of the Assertion 5 from Theorem 1,
there exists a number c > 0 such that |fs(x))| ≤ c and |fs(y))| ≤ c for any s ∈
S. Hence ρf (x, y) ≤ 2c < ∞. Let µ ∈ S and g = fµ. Then g ∈ S-ap(G),
gs = fsµ for any s ∈ G and ρf (m(s, x),m(s, y)) = sup{|gs(x) − gs(y)| : s ∈ S} =
sup{|fsµ(x) − fsµ(y)| : s ∈ S} ≤ sup{|fs(x) − fs(y)| : s ∈ S} = ρf (x, y). Hence the
pseudometric ρf is S-invariant.

2. Now fix a number r > 0 and a point b ∈ G. Then there exists a finite
subset L of S such that 1 ∈ L and for each s ∈ S there exists l(s) ∈ L such
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that d(fs, fl(s)) < r/3. Since the set L is finite, the set U(b, L, r) = {x ∈ G :
|fs(x) − fs(b)| < r/3, s ∈ L} is open in G. Hence |fs(x) − fs(b)| ≤ |fs(x) − fs(l)(x)|
+ |fs(l)(x) − fs(l)(b)| + |fs(l)(b) − fs(b)| < r for all s ∈ L and x ∈ U(b, L, r).
Therefore U(b, L, r) ⊆ B(b, ρf , r) and B(b, ρf , r) is an open subset of G. Thus
ρf is a continuous pseudometric on G. By construction, ρf (m(s, x),m(l(s), x)) =
sup{|ft(m(s, x))− ftm(l(s), x)| : t ∈ S} = sup{ρf ((m(t · s, x),m(t · l(s), x)) : t ∈ S}.

3. Assume that the function f is bounded and r > 0. There exists a finite
subset L of S such that 1 ∈ L and for each s ∈ S there exists l(s) ∈ L such that
d(fs, fl(s)) < r/3. Since the functions fs are bounded and the set L is finite, there
exists a finite subset F of G such that for each x ∈ G there exists x(f) ∈ F such
that |fs(x)− fs(x(f))| < r/3 for each s ∈ L. Hence ρf (x, F ) < r for each x ∈ G and
ρf is a totally bounded pseudometric.

4. Fix b ∈ G. Since |f(x) − f(b)| ≤ ρf (b, x) the function f is bounded if and
only if the pseudometric ρf is bounded (i.e. sup{ρf (x, y) : x, y ∈ G} <∞).

5. Assume that the function f is bounded and for any real number r > 0 there
exists a finite subset Lr of S such that: for each s ∈ S there exists sr ∈ Lr such that
|f(m(ts, x) − f(m(tsr, x))| < r for each x ∈ G and every t ∈ S.

Fix r > 0 and s ∈ S. Then ρf (m(s, x),m(sr, x)) = sup{|f(m(ts, x) −
f(m(tsr, x))| : t ∈ S} ≤ r. The proof is complete.

If ρ is a bounded pseudometric on G and a ∈ G, then we put f(ρ,a)(x) = ρ(a, x)
for any x ∈ G.

Theorem 4. If ρ is a totally S-bounded S-invariant pseudometric on a dynamical
system (G,S,m) and a ∈ G, then f(ρ,a) ∈ S(m)-ap(G) and the function f(ρ,a) is
bounded for each a ∈ G.

Proof. Fix a ∈ G and r > 0. Let g = f(ρ,a). We have gs(x) = ρ(a,m(s, x)) for
all x ∈ G and s ∈ S. Obviously, the function g is bounded. By assumption,
there exists a finite subset L of S such that: for each s ∈ S there exists sr ∈ L
such that ρ(m(s, x),m(sr, x)) < r for each x ∈ G. We have |gs(x) − gsr(x)| =
|ρ(a,m(s, x)) − ρ(a,m(sr, x))| ≤ ρ(m(s, x),m(sr, x)) < r. By virtue of Lemma 1,
the assertion is proved.

Theorem 5. Fix a dynamical system (G,S,m). Then there exist a dynamical system
(βap(S,m)G,S,mG) and a continuous mapping ϕ : G −→ ap(S,m)G such that:

1. βap(S,m)G is a compact space and the set ϕ(G) is dense in bap(S,m)G.
2. ϕ is a homomorphism, i.e. ϕ(m(s, x) = m(s, ϕ(x)) for all s ∈ S and x ∈ G.
3. S(m)◦-ap(G) = {g ◦ ϕ : g ∈ C(βap(S,m)G)}.
4. C(βap(S,m)G)} = S(m)-ap(βap(S,m)G)}.
5. The topology of the space βap(S,m)G is induced by the family of all S-invariant

pseudometrics on the dynamical system (βap(S,m)G,S,mG).

Proof. Let F = S(m)◦-ap(G). Consider the mapping eF : G → RF , where eF (x) =
(f(x) : f ∈ F ). Denote by bFG = βap(S,m)G the closure of the set eF (G) in RF . We
put ϕ = eF . Then (bFG, eF ) is a compactification of G. For any f ∈ F consider
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the pseudometric ρf (x, y) = sup{|fs(x) − fs(y)| : s ∈ S} for all x, y ∈ G. By virtue
of Theorem 3, the pseudometric ρf is continuous, stable and totally bounded on
(G,S,m). Since |f(y) − f(x)| ≤ ρf (x, y) for all x, y ∈ G, there exists a continuous
pseudometric ρ̄f on bFG such that ρf (x, y) = ρ̄f (ϕ(x), ϕ(y)) for all x, y ∈ G. We
say that ρ̄f is the continuous extension of ρf on bFG. The topology of the compact
space is induced by the pseudometrics {ρ̄f : f ∈ F}.

For every f ∈ F there exists a unique function f̄ ∈ C(bFG) such that f = f̄ ◦ϕ.
Hence F̄ = {f̄ : f ∈ F} is a closed subalgebra of the Banach algebra C(bFG).

Fix s ∈ S. The mapping ms : G→ G, where ms(x) = m(s, x) for every x ∈ G is
continuous. If x ∈ G, then we put µs(ϕ(x)) = ϕ(ms(x)). For x, y ∈ G with ϕ(x) =
ϕ(y) we have 0 ≤ ρf (ms(x),ms(y)) ≤ ρf (x, y) = 0 for any f ∈ F and ϕ(ms(x)) =
ϕ(ms(y)). Therefore µs is a single-valued continuous mapping of ϕ(G) into ϕ(G).

We have ρf (ms(x),ms(y)) ≤ ρf (x, y) for all x, y ∈ G. Hence the mapping ms

is uniformly continuous for every pseudometric ρ̄f , f ∈ F . Therefore there exists
a continuous extension νs : bFG −→ bFG of µs. By construction, νs ◦ νt = νs·t.
We prove that (βap(S,m)G,S,mG), where mG(s, x) = νs(x) for each x ∈ bFG =
βap(S,m)G, is a dynamical system.

By construction, ϕ is a homomorphism.

The mapping ψ : F −→ C(bFG), where ψ(f) = f̄ for each f ∈ F is an isometrical
embedding. Hence ψ(F ) ⊆ S(m)-ap(βap(S,m)G)}. It is obvious that g ◦ ϕ ∈ F for
any g ∈ S(m)-ap(βap(S,m)G)}. Therefore S(m)◦-ap(G) = {g ◦ ϕ : g ∈ S(m) −
ap(βap(S,m)G)}.

Since {f̄ : f ∈ F} = {g|ϕ(G) : g ∈ S(m)-ap(βap(S,m)G)}, by Stone-Weierstrass
theorem ([8], Theorem 3.2.21), we have S(m)-ap(βap(S,m)G) = C(βap(S,m)G). The
topology of the space βap(S,m)G is induced by the family of S-invariant pseudometrics
{ρg : g ∈ C(βap(S,m)G)} on the dynamical system (βap(S,m)G,S,mG). The proof is
complete.

Remark 3. We say that the dynamical system (βap(S,m)G,S,mG) is the maximal
a-compactification of the dynamical system (G,S,m).

4 Almost periodicity on universal algebras

Fix a discrete signature Ω = ⊕{Ωn : n ∈ N = {0, 1, 2, ...}}, where {Ωn : n ∈ N}
is a non-empty family of pairwise disjoint discrete spaces.

Let P (Ω) be a minimal set of operations on Ω-algebras for which:

P1. Ω ⊆ P (Ω).

P2. If n ≥ 1, ω ∈ Ωn, p1, ..., pn ∈ P (E), pi is an mi-ary operation and m
= m1 + ... + mn, then p = ω(p1, ..., pn) is an m-ary operation, p(x1, ..., xm) =
ω(p1(x1, ..., xm), ..., pn(xm−mn+1, ..., xm)).

P3. If u0(x) = x for any Ω-algebra G and every x ∈ G, then u0 ∈ P (Ω).

The set P (Ω) is called the set of Ω-polynomials. If G is a topological Ω-algebra
and p ∈ P (Ω) is an n-ary polynomial, then p : Gn → G is a continuous operation.
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Let λ : Gn → G be an n-ary operation. If n = 0, then we put λ(x) = λ(G0) for
each x ∈ G and Tλ(G) = {λ}. If n = 1, then Tλ(G) = {λ}. Let n ≥ 2 and 1 ≤ i ≤ n.
For every a = (a1, ..., an) ∈ Gn we put tiaλ(x) = λ(a1, ..., ai−1, x, ai+1, ..., an) for
each x ∈ G. We put Tiλ(G) = {tiaλ : a ∈ Gn} and Tλ(G) = ∪{Tiλ(G) : i ≤ n}.
Therefore Tλ(G) is a set of translations on a space G. If λ is a continuous operation,
then Tλ(G) ⊆ Π(G).

Now we put TΩ(G) = ∪{Tω(G) : ω ∈ P (Ω)} for any topological Ω-algebra G.
By construction, TΩ(G) is a monoid of continuous translations of the space G and
TΩ(G) ⊆ Π(G).

If G is a topological Ω-algebra and mΩ = eG|TΩ(G)×G, then (G,TΩ(G),mΩ) is
a dynamical system, generated by the structure of Ω-algebra on G.

Definition 3. Let G be a topological Ω-algebra. The set Ω-AP (G) = TΩ(G)(mΩ)-
ap(G) is called the algebra of almost periodic continuous functions on the topological
Ω-algebra G.

All statements proved in the above two Sections are true for almost periodic
continuous functions on the topological Ω-algebras. The set Ω◦-AP (G) = C◦(G)∩(Ω-
AP (G)) is a Banach algebra of continuous functions on G.

Definition 4. An Ω-algebra G is called Ω-finite if there exists a finite subset F ⊆
P (Ω) such that TΩ(G) = ∪{Tω(G) : ω ∈ F}.

Any finite Ω-algebra is Ω-finite. If Ω is a structure of a semigrup, or of a monoid,
or a group on G, then G is is Ω-finite.

Definition 5. An Ω-algebra G is called a right (left) Mal’cev algebra if there exists
a ternary operation p ∈ P (Ω) such that p(x, x, y) = y (respectively p(y, x, x) = y) for
all x, y ∈ G. If p(x, x, y) = p(y, x, x) = y, then G is called a Mal’cev algebra [4, 10].

Proposition 1. Let G be a right (left) Mal’cev topological Ω-algebra. Then the
monoid TΩ(G) is transitive on G. Moreover, any almost periodic function f ∈
Ω-AP (G) is bounded and Ω-AP (G) is a Banach algebra of continuous functions
on G.

Proof. Assume that p ∈ P (Ω) is a ternary operation and p(x, x, y) = y for all
x, y ∈ G. Fix a, b ∈ G. If ϕ(x) = p(x, a, b), then ϕ ∈ TΩ(G) and ϕ(a) = b. Hence
the monoid TΩ(G) is transitive on G. Corollary 1 completes the proof.

A pseudometric ρ : G × G → R is stable on a topological Ω-algebra G if ρ is
continuous, ρ(x, y) < ∞ and ρ(ω(x1, ..., xn), ω(y1, ..., yn)) ≤ Σ{ρ(xi, yi) : i ≤ n} for
all x1, y1, ..., xn, yn ∈ G, n ≥ 1 and ω ∈ Ω.

If ρ is a stable pseudometric on a topological Ω-algebra G, n ≤ 1 and p ∈ P (Ω)
is an n-ary polynomial, then ρ(p(x1, ..., xn), p(y1, ..., yn)) ≤ Σ{ρ(xi, yi) : i ≤ n} for
all x1, y1, ..., xn, yn ∈ G.

In [5] the following theorem was proved:
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Theorem 6. Let ρ be a continuous pseudometric on a topological Ω-algebra G. The
pseudometric ρ is stable if and only if it is TΩ(G)-invariant.

From Theorems 6 and 5 follows

Corollary 5. Fix a topological Ω-algebra G. Then there exist an Ω-algebra βap(Ω)G
and a continuous homomorphism αG : G −→ βap(Ω)G such that:

1. βap(Ω)G is a compact Ω-algebra and the set αG(G) is dense in βap(Ω)G.

2. Ω◦-AP (G) = {g ◦ ϕ : g ∈ C(βap(Ω)G)}.
3. C(βap(Ω)G)} = Ω-AP (βap(S,m)G).

4. The topology of the space βap(Ω)G) is induced by the family of all stable
pseudometrics on the topological Ω-algebra βap(Ω)G).

5. The a-compactification (βap(Ω)G,αG) = (bFG, eF ), where F = Ω◦-AP (G).

Remark 4. We say that the topological Ω-algebra βap(Ω)G is the maximal almost
periodic a-compactification of the topological Ω-algebra G.

Lemma 2. Let G be a topological Ω-algebra and ρ be a stable totally bounded pseu-
dometric on G. If ω ∈ P (Ω), c ∈ G and h(x) = ρ(c, x) for any x ∈ G, then the
function h is bounded and the closure of the set {hϕ : ϕ ∈ Tω(G)} in C◦(G) is a
compact set.

Proof. Since ρ is totally bounded, by construction, h ∈ C◦(G). Fix ǫ > 0. If ω
is n-ary polynomial and n ≤ 1, then the assertion of Lemma is obvious. Assume
that n ≥ 2 and ω is an n-ary polynomial. There exists a finite subset L ⊆ G
such that ρ(x,L) < ǫ/2 for any x ∈ G. For every i ≤ n we put T(i,ω,L) = {tiaλ :
a = (a1, ..., an) ∈ Ln} and T(ω,L)(G) = ∪{T(i,ω,L)(G) : i ≤ n}. Obviously, the set
T(ω,L)(G) is finite. Fix ϕ ∈ Tω(G). Then ϕ(x) = ω(x1, ..., xi−1, x, xi+1, ..., xn) for
some i ≤ n and x = (x1, ..., xn) ∈ Gn. There exists a = (a1, ..., an) ∈ Ln such that
ρ(xj , aj) < ǫ/n for each j ≤ n. Let ψ = tiaω. Then ψ ∈ T(ω,L)(G) and hϕ(x)−hψ(x)
< Σ{ρ(xj , aj) : j ≤ n, j 6= i} < ǫ. Lemma 1 completes the proof.

Lemma 3. Let G be a a compact topological Ω-algebra, n ∈ N and ω ∈ P (Ω) be
an n-ary polynomial. If h ∈ C(G), then the set {hϕ : ϕ ∈ Tω(G)} in C◦(G) is a
compact set.

Proof. If n ≤ 1, then the assertion of Lemma is obvious. Assume that n ≥ 2. Let h ∈
C(G). Fix i ≤ n. Let Gk = G for any k and Zi = Π{Gj : j ≤ n, j 6= i}. For any z =
(z1, ..., zi−1, ..., zi+1, ..., zn) ∈ Zi we put Ψi(z)(x) = h(ω(z1, ..., zi−1, x, zi+1, ..., zn))
for each x ∈ G. Then Ψi : Zi −→ C(G) is a continuous mapping. Since Ψi(Zi) =
{hψ : ψ ∈ Tiω}, the set {hψ : ψ ∈ Tiω} is compact. Hence the set {hϕ : ϕ ∈ Tω(G)}
is compact too.

Corollary 6. Let G be an Ω-finite topological Ω-algebra and ρ be a stable totally
bounded pseudometric on G. If c ∈ G and h(x) = ρ(c, x) for any x ∈ G, then
h ∈ Ω◦-AP (G).
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Corollary 7. Let G be a compact Ω-finite topological Ω-algebra. Then:
1. The topology of G is induced by a family of stable pseudometrics.
2. Ω◦-AP (G) = C(G).

Corollary 8. Let G be an Ω-finite topological Ω-algebra. For any bounded continu-
ous pseudometric ρ on G we put C(G, ρ) = {a+ b · ρ(z, x) : z ∈ G, a, d ∈ R}. Then
the set ∪{C(G, ρ) : ρ is a totally bounded stable pseudometric on G} is a dense
subset of the Banach algebra Ω◦-AP (G).

5 Weakly almost periodic functions on algebras

Fix a discrete signature Ω = ⊕{Ωn : n ∈ N = {0, 1, 2, ...}}.

Definition 6. Let G be a topological Ω-algebra. A function f ∈ C(G) is called a
weakly almost periodic function on G if the closure of the set {ft = f ◦t : t ∈ Tω(G)}
in C(G) is compact for every ω ∈ P (Ω).

If Γ(Ω) = {Tω(G) : ω ∈ P (Ω)}, then Ω-wAP (G) = Γ(Ω)-ap(G) is the algebra of
weakly almost periodic continuous functions on the topological Ω-algebra G. Hence
Corollary 2 is true for the algebra of weakly almost periodic continuous functions
on the topological Ω-algebra G. Moreover, if Γ0(Ω) = {Tω(G) : ω ∈ Ω}, then from
Corollary 3 it follows that Ω-wAP (G) = Γ0(Ω)-ap(G). Obviously, Ω-AP (G) ⊆ Ω-
wAP (G). Let Ω◦-wAP (G) = Ω-wAP (G) ∩ C◦(G).

Theorem 7. Let G be a a compact topological Ω-algebra. Then Ω-wAP (G) = C(G).

Proof. Follows from Lemma 3.

Example 1. Let G be the compact space of all complex numbers z with |z| =
1. Relatively to the multiplicative operation {·} and inverse operation {−1} the
space G is a compact commutative group with the unite 1. Let g : G −→ G be a
homeomorphism and ωg(x, y) = x · y for all x, y ∈ G. Then (G,ωg) is a topological
quasigroup. Denote by P (g) the translations of the topological quasigroup (G,ωg).
Obviously, g ∈ P (g).

In [6] such homeomorphism g0 was constructed for which only constant func-
tions are continuous almost periodic on (G,ωg0) and every stable pseudometric ρ on
(G,ωg0) is trivial (ρ(x, y) = 0 for all x, y ∈ G). Let Ω1 = {−1, g0, g

−1
0 }, Ω2 = {·} and

Ω = Ω1 ∪ Ω2. Then ωg0,
−1 , g0, g

−1
0 ∈ P (Ω) and only constant functions are contin-

uous almost periodic on the Ω-algebra G. In particular, every stable pseudometric
ρ on the Ω-algebra G is trivial. Therefore the Ω-algebra G is not Ω-finite. Since G
is a compact space, then, by virtue of Theorem 7, we have Ω-wAP (G) = C(G).

Definition 7. Let {ρµ : µ ∈ M} be a family of pseudometrics on an Ω-algebra G.
The family {ρµ : µ ∈ M} is called a stable set of pseudometrics if the set M is
non-empty and for every α ∈ M , every n ≥ 1 and every λ ∈ Ωn there exists β =
β(λ, α) ∈ M such that ρα(x1, y1) ≤ ρβ(x1, y1) and ρα(λ(x1, ...xn), λ(y1, ..., yn)) ≤
∑

{ρβ(xi, yi) : i ≤ n} for all x1, y1, ..., xn, yn ∈ G.
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Remark 5. Let T (R) be the topology induced by a stable set of pseudometrics R =
{ρµ : µ ∈M} on an Ω-algebra G. Then for each n ≥ 1 and ω ∈ Ωn the operation ω
is continuous relative to the topology T (R).

Lemma 4. Let {ρµ : µ ∈ M} be a stable net of pseudometrics on an Ω-
algebra G. Then for every α ∈ M , every n ≥ 1 and every n-ary polynomial
λ ∈ P (Ω) there exists β = β(λ, α) ∈ M such that ρα(x1, y1) ≤ ρβ(x1, y1) and
ρα(λ(x1, ...xn), λ(y1, ..., yn)) ≤

∑

{ρβ(xi, yi) : i ≤ n} for all x1, y1, ..., xn, yn ∈ G.

Proof. Assume that n,m1,m2, ...,mn ≥ 1, λ ∈ Ωn, p1, p2, ..., pn ∈ P (Ω) and for each
i ≤ n the polynomial pi is mi-ary and for every α ∈M there exists βi = β(pi, α) ∈M
such that ρα(x1, y1) ≤ ρβi

(x1, y1) and ρα(pi(x1, ...xmi
), pi(y1, ..., ymi

)) ≤
∑

{ρβi
(xi, yi) : i ≤ mi} for all x1, y1, ..., xmi

, ymi
∈ G. Put p = λ(p1, ..., pn) and

m = m1 + ...+mn. Then p is m-ary polynomial.
Fix α ∈ M . We put α1 = β(p1, α), α2 = β(p2, α1),..., αn = β(pn, αn−1) and

β = β(λ, αn). Then ρα(x1, y1) ≤ ρβ(x1, y1) and ρα(p(x1, ...xm), p(y1, ..., ym)) ≤
∑

{ρβ(xi, yi) : i ≤ m} for all x1, y1, ..., xm, ym ∈ G. The proof is complete.

Lemma 5. Let A be a non-empty set and {ρµ : µ ∈ Mα} be a stable set of pseudo-
metrics on an Ω-algebra G for each α ∈ A. If M = ∪{Mα : α ∈ A}, then the family
{ρµ : µ ∈M} is a stable set of pseudometrics on the Ω-algebra G.

Proof. It is obvious.

Proposition 2. Let R = {ρµ : µ ∈M} be a stable set of continuous totally bounded
pseudometrics on a topological Ω-algebra G. Then there exist a compact topological
Ω-algebra G/R, a continuous homomorphism pR : G −→ G/R and a stable set
of continuous totally bounded pseudometrics R̄ = {ρ̄µ : µ ∈ M} on a topological
Ω-algebra G/R such that:

1. The topology of the space G/R is induced by the family of pseudometrics R̄.
2. ρ̄µ(pR(x), pR(y)) = ρµ(x, y) for all x, y ∈ G and µ ∈M .

3. (G/R, pR) is an a-compactification of the topological Ω-algebra G.

Proof. Fix µ ∈ M . Then there exists a metric space (Yµ, dµ) and a mapping pµ :
G→ Yµ of G onto Yµ such that dµ(pµ(x), pµ(y)) = ρµ(x, y) for all x, y ∈ G. Denote
by (Gµ, d̄µ) the completion of the metric space (Yµ, dµ). Since the metric dµ is totally
bounded, Gµ is a compact space.

Consider the continuous mapping pR : G −→ Π{Gµ : µ ∈ M}, where pR(x) =
(pµ(x) : µ ∈ M} for each point x ∈ G. We put Y = pR(G) and by G/R denote
the closure of Y in the compact space Π{Gµ : µ ∈ M}. For each µ ∈ M on G/R
there exists a continuous pseudometric ρ̄µ such that ρ̄µ(pR(x), pR(y)) = ρµ(x, y) for
all x, y ∈ G.

Fix n ≥ 1 and ω ∈ Ωn. Let a = (a1, ..., an) ∈ Y n. Fix b = (b1, ..., bn) ∈ Gn

such that pR(bi) = ai for any i ≤ n. We put ω(a) = p(ω(b)). We affirm that the
mapping ω : Y n −→ Y is single-valued. Let c = (c1, ..., cn) ∈ Gn and pR(ci) = ai
for any i ≤ n. Suppose that pR(ω(c) 6= pR(ω(b)). Then there exists α ∈ M such
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that ρα(ω(c), ω(b)) > 0. Since R is a stable set of pseudometrics, there exists β =
β(ω,α) ∈ M such that ρα(x1, y1) ≤ ρβ(x1, y1) and ρα(ω(x1, ...xn), ω(y1, ..., yn)) ≤
∑

{ρβ(xi, yi) : i ≤ n} for all x1, y1, ..., xn, yn ∈ G. In particular, 0 < ρα(ω(c), ω(b)) ≤
∑

{ρβ(ci, bi) : i ≤ n}. Thus ρβ(ci, bi) > 0 for some i ≤ n. Since pR(ci) = pR(ai),
we have ρµ(ci, bi) = 0, a contradiction. Thus ω : Y n → Y is an n-ary operation
on Y and on Y there exists the structure of Ω-algebra relative to which pR is a
homomorphism.

By construction, the pseudometrics R̄ forms a stable set of pseudometrics on
Y . Hence Y is a topological algebra and pR is a continuous homomorphism of G
onto Y .

Let U(R̄) be the uniformity generated by the pseudometrics R̄ on G/R and
(Y,U(R̄)Y ) be the uniform subspace of the uniform space (G/R,U(R̄)). By the def-
inition of a stable set of pseudometrics, the operation ω : Y n −→ G/R is a uniformly
continuous mapping for each n ≥ 1 and every ω ∈ Ωn. Hence the operation ω is
continuous extendable on G/Rn and on G/R there exists a structure of topological
Ω-algebra such that Y is a subalgebra of the compact Ω-algebra G/R. The proof is
complete.

Assume that v is a unary operation and v(x) = x for each Ω-algebra G and any
point x ∈ G. Let MΩ be the family of all finite ordered subsets of Ω∪{v} such that
v is the first element in each α ∈ MΩ. If α = (α1, ..., αn), β = (β1, ..., βm) ∈ MΩ,
then:

– α ≤ β if and only if n ≤ m and αiβi for any i ≤ n;

– c(α) = n and c(β) = m.

The set {v} is the minimal element of the set MΩ and c({v}) = 1. If λ ∈ Ω, then
(λ), (λ, λ),..., (λ, λ, ..., λ) are distinct elements.

Let α ∈MΩ and c(α) = 1. Then {v} ⊆ α ⊆ {v}∪Ω0. We put P (α) = α∪{v(ω) :
ω ∈ α}.

Assume that α, β ∈ MΩ, α ≤ β, c(β) = c(α) + 1 and the polynomials P (α) are
constructed. Then P (β) = β∪P (α)∪{ω(p1, p2, ..., pn) : p1, p2, ..., pn ∈ P (α)∪β, ω ∈
β ∩Ωn, n ≥ 1}. By induction, the set P (α) is constructed for each α ∈MΩ. Any set
P (α) is finite, P (α) ⊆ P (β) for α ≤ β and P (Ω) = ∪{P (β) : β ∈MΩ}. Let T (α) =
∪{T (λ) : λ ∈ α} for each α ∈MΩ.

Assume that f is a function on an Ω-algebra G. For each α ∈ MΩ we put
ρ(f,α)(x, y) = sup{|ft(y) − ft(x)| : t ∈ T (α)} for all x, y ∈ G.

Proposition 3. Let G be a topological Ω-algebra and f ∈ Ω-wAP (G). Then:

1. R(f) = {ρ(f,α) : α ∈MΩ} is a stable set of continuous pseudometrics on G.

2. If the function f is bounded, then the pseudometrics {ρ(f,α)} are totally
bounded.

3. ρ(f,α)(x, y) ≥ |f(x) − f(y) for all x, y ∈ G.

Proof. 1. Since v ∈ α, we have ρ(f,α)(x, y) ≥ |f(x) − f(y)| for all x, y ∈ G.
2. Since f is a weakly almost periodic continuous function and the set of poly-

nomials P (α) is finite for any α ∈ MΩ, the closure of the set α(f) = {tf : t ∈ T (α}
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in C(G) is a compact set. From this fact it follows that the pseudometric ρ(f,α) is
continuous and ρ(f,α)(x, y) <∞ for all α ∈MΩ and x, y ∈ G.

3. Fix α ∈ MΩ, n ≥ 1 and ω ∈ Ωn. Assume that α = (α1, ..., αm) for some
m ≥ 1. We put β = (α1, ..., αn, ω). Then α < β and c(β) = c(α) + 1.

Since T (α) ⊆ T (β), we have ρ(f,α)(x, y) ≤ ρ(f,β)(x, y) for all x, y ∈ G.
Fix x1, y1, ..., xn, yn ∈ G. Since ϕ ◦ ψ ∈ T (β) for any ϕ ∈ T (α) and each

αψ ∈ T (ω), we have ρ(f,α)(ω(x1, ...xm), ω(y1, ..., ym)) ≤
∑

{ρ(f,β)(xi, yi) : i ≤ m}.
Hence R(f) is a stable set of continuous pseudometrics on G.

4. Assume now that the function f is bounded. Fix ǫ > 0 and α ∈MΩ.

Since the closure of the set α(f) = {ft : t ∈ T (α} in C(G) is a compact set, there
exists a finite set L = {t1, t2, ..., tk} ⊆ T (α) such that for each t ∈ T (α) there exists
i ≤ k such that d(ft, fti) < ǫ/3. Assume that v ∈ L.

We put g(x) = Σ{|ft(x)| : t ∈ L}. The function g is continuous and bounded.
There exists a finite subset F of G such that min{|g(x) − g(y)| : y ∈ F} < ǫ/6
for any x ∈ G. Hence for each x ∈ G there exists x(f) ∈ F such that |ft(x) −
ft(x(f))| < ǫ/3 for any t ∈ L. We affirm that d(f,α)(x, x(f)) < ǫ. Suppose that
x ∈ G and d(f,α)(x, x(f)) ≥ ǫ > 0. Then there exist ϕ ∈ T (α) and t ∈ L such
that |fϕ(x) − fϕ(x(f))| > ǫ and d(fϕ, ft) < ǫ/3. By construction, we have |fϕ(x) −
fϕ(x(f))| = |fϕ(x)−ft(x)+ft(x)−ft(x(f))+ft(x(f))−fϕ(x(f))| ≤ |fϕ(x)−ft(x)|
+ |ft(x) − ft(x(f))| + |ft(x(f)) − fϕ(x(f))| < ǫ/3 + ǫ/3 + ǫ/3 = ǫ, a contradiction.
Therefore the pseudometrics {ρ(f,α)} are totally bounded. The proof is complete.

Corollary 9. Let G be a topological Ω-algebra. Then the maximal a-compactification
(βΩG,βG) = (bFG, eF ), where F = Ω◦-wAP (G).

Corollary 10. Let G be a compact Ω-finite topological Ω-algebra. Then Ω-wAP (G)
= Ω-AP (G).

Remark 6. Let G be a topological Ω-algebra and F be a closed subalgebra of the
algebra Ω◦-wAP (G) with the following proprieties:

– if f is a constant function, then f ∈ F ;
– if ∈ F and t ∈ T (Ω), then ft ∈ F .
Then (bFG, eF ) is an a-compactification of G. Any a-compactification can be

constructed in this way.

6 Cartesian product of topological algebras

Let Ω = ⊕{Ωn : n ∈ N} be a discrete signature.

For any nulary polynomial ω ∈ P (Ω) and any Ω-algebra G there exists a unique
neutral element ωG ∈ G such that e0G(ω,G0) = ωG.

Fix a class K of topological Ω-algebras with the following properties:

1. If A ∈ K, then A is a Tychonoff space.
2. The Cartesian product of algebras from K is an algebra from K.
3. There exists a nulary polynomial 1 ∈ P (Ω) such that for the point 1G =

e0G(1, G0), each n ≥ 1 and every λ ∈ Ωn we have λ(1G, ...1G) = 1G for every G ∈ K.
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4. There exists a ternary polynomial p ∈ P (Ω) such that p(x, x, y) = p(y, x, x) =
y for all G ∈ K and x, y ∈ G.

5. There exists a binary polynomial v ∈ P (Ω) such that v(1G, x) = v(x, 1G) = x
for all G ∈ K and x ∈ G.

6. If G is a Tychonoff topological Ω-algebra with the properties 3-5, then G ∈ K.
We may assume that 1 ∈ Ω0, p ∈ Ω3 and v ∈ Ω2.

A mapping ϕ : X → Y is injective if f(x) 6= f(y) for every two distinct points
x, y ∈ X.

Lemma 6. Let ϕ : A → B be a homomorphism of a topological Ω-algebra A ∈ K
into an Ω-algebra B, A1 be a dense subset of A and ϕ1 = ϕ|A1 : A1 → B be an
injective mapping. Then ϕ is injective too.

Proof. We may consider that B = ϕ(A). On B we consider the quotient topology
{U ⊆ B : ϕ−1(U) is open in A}. Since A ∈ K, B is a topological Ω-algebra and
ϕ : A → B is an open continuous mapping (see [4]). Suppose that a, b ∈ A, a 6= b
and ϕ(a) = ϕ(b). We fix two open subsets U , V of A for which a ∈ U , b ∈ V
and U ∩ V = ∅. Then the set W = ϕ(U) ∩ ϕ(V ) is open in B, ϕ(A1) is a dense
subset of B, ϕ(a) = ϕ(b) ∈ W and W ∩ ϕ(A1) = ∅, a contradiction. The proof is
complete.

Lemma 7. Let A ∈ K and A be a dense subalgebra of the topological Ω-algebra B.
Then B ∈ K.

Proof. Is obvious.

Theorem 8. Let {Gµ ∈ K : µ ∈M} be a non-empty family of topological Ω-algebras
and G = Π{Gµ ∈ K : µ ∈M}. Then:

1. βap(Ω)G = Π{βap(Ω)Gµ : µ ∈ M} and αG(x) = (αGµ(xµ) : µ ∈ M) for each
point x = (xµ) : µ ∈M) ∈ G.

2. (βΩG,βG) = Π{βΩGµ : µ ∈ M} and βG(x) = (βGµ(xµ) : µ ∈ M) for each
point x = (xµ) : µ ∈M) ∈ G.

Proof. From Lemma 7 it follows that βap(Ω)A ∈ K for any A ∈ K.

Let M = {1, 2}. Then G = G1 ×G2. There exists a continuous homomorphism
ψ : βap(Ω)G −→ βap(Ω)G1 × βap(Ω)G2 such that ψ(αG(x, y) = (αG1(x), αG2(y)) for
every point (x, y) ∈ G.

We can identify x ∈ G1 with (x, 1G2) ∈ G and y ∈ G2 with (1G1 , y) ∈ G. In this
case 1G = (1G1 , 1G2) and G1, G2 are subalgebras of the algebra G. If h ∈ Ω-AP (G),
then:

– for each y ∈ G2 there exists hy ∈ Ω-AP (G1) such that hy(x) = h(x, y) for each
x ∈ G1;

– for each x ∈ G1 there exists hx ∈ Ω-AP (G2) such that hx(y) = h(x, y) for each
y ∈ G2.

Hence ψ|αG(G) is an injective mapping. From Lemma 6 it follows that ψ is an
isomorphism. Hence the assertions 1 of theorem are true for any finite set M .
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Suppose that the set M is infinite. If B ⊆M , then we put GB = Π{Gµ : µ ∈ B}.
Let G = GM and πB : G→ GB be the natural projection. We identify GB with the
subalgebra {x = (xµ : µ ∈ M) ∈ G : xµ = 0Gµ for any µ ∈ M \ B}. In this case
πB : G→ GB is the retraction.

Let rEGB = Π{rEGµ : µ ∈ M} and identity rEGB with the subalgebra {x =
(xµ : µ ∈ M) : xµ = 0rEGµ for every µ ∈ M\B} of the algebra rEG = rEGM . Let
πB : rEG → rEGB be the natural projection. We put G′ = ∪{GB ⊆ G : B is a
finite subset of M}. Then G′ is a dense subalgebra of the topological Ω-algebra G. If
B ⊆ M, then G′′

B = rB(GB) and G′′ = ∪{G′′
B : B is a finite subset of M} = rµ(G

′).
For every finite subset B ⊆ M the mapping νM |G′′

B : G′′
B → rEGB is a topological

isomorphism. Hence νM : G′′ → rEGM is an injection. Lemma 6 completes the proof
of Assertions 1. The proof of Assertions 2 is similar. The proof is complete.

Theorem 9. Let G ∈ K be a pseudocompact topological Ω-algebra B. Then:

1. On βG there exists a structure of topological Ω-algebra such that βG ∈ K and
G is a dense subalgebra of the Ω-algebra βG.

2. Ω-wAP (G) = C(G) = C◦(G).

Proof. In [12] it was proved that for any pseudocompact topological Mal’cev E-
algebra G and each n ∈ N the space Gn is pseudocompact. From the I. Glicksberg’s
theorem ([8], Problem 3.12.20 (d), p. 299) it follows that β(Gn) = (βG)n for each
n ∈ N. Thus for each n ∈ N and every ω ∈ Ωn there exists a continuous extension
ω : β(Gn) −→ βG of the mapping ω : Gn −→ G. Therefore on βG there exists a
structure of topological Ω-algebra such that G is a dense subalgebra of the Ω-algebra
βG. From Lemma 7 it follows that βG ∈ K. Theorem 7 completes the proof.
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A REPUBLICII MOLDOVA. MATEMATICA
Number 2(81), 2016, Pages 63–70
ISSN 1024–7696

Lattice of all topologies of countable module

over countable rings
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Abstract. For any countable ring R with discrete topology τ0 and any countable
R-module M the lattice of all (R, τ0)-module topologies contains:
– A sublattice which is isomorphic to the lattice of all real numbers with the usual
order;
– Two to the power of continuum (R, τ0)-module topologies each of which is a coatom.
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1 Introduction

For any ring R with discrete topology τ0 and any R-moduleM the question of the
existence of non-discrete Hausdorff (R, τ0)-module topologies was considered in [1]
and [2]. In particular, it was proved that any infinite module over any discrete ring
R admits non-discrete Hausdorff module topology and an example of a topological
ring (R, τ0) and an R-module M was constructed for which the lattice of all (R, τ0)-
module topologies does not contain Hausdorff topologies.

In fact (see below Remark 3.1) for this topological ring (R, τ0), the lattice of all
(R, τ0)-module topologies on this R-module M contains only anti-discrete topology.

The present paper is a continuation of these works and is devoted to the study
of properties of the lattice of all topologies on countable modules over discrete ring.

The main result of this article is Theorem 3.2, in which it is proved that for
any countable ring R with discrete topology τ0 and any countable R-module M , the
lattice of all (R, τ0)-module topologies contains a sublattice which is isomorphic to
the lattice of real numbers with the usual order and contains two to the power of
continuum coatoms.

Similar results for countable groups and countable rings were obtained in [3, 4]
and [5], respectively.

Furthermore, it was shown that the condition that the ring should be countable
is essential in Theorem 3.2, namely, we constructed an example of an infinite discrete
ring (R, τ0) and a countable R-module M such that every (R, τ0)-module topology
on M which has a countable or finite basis of the filter of neighbourhoods of zero is
anti-discrete.

c© V. I.Arnautov, G.N.Ermakova, 2016
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2 Preliminary results

To present the main results we recall the following two well known theorems (see,
for example, [1]).

Theorem 2.1. A set Ω = {Vγ |γ ∈ Γ} of subsets of a ring R is a basis of the filter
of neighbourhoods of zero for some ring topology τ on the ring R if and only if the
following conditions are satisfied:

1. 0 ∈
⋂

γ∈Γ
Vγ ;

2. For any subsets V1 and V2 ∈ Ω there exists a subset V3 ∈ Ω such that
V3 ⊆ V1 ∩ V2;

3. For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that V2 + V2 ⊆ V1;

4. For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that −V2 ⊆ V1;

5. For any subset V1 ∈ Ω and any element r ∈ R there exists a subset V2 ∈ Ω
such that r · V2 ⊆ V1 and V2 · r ⊆ V1;

6. For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that V2 · V2 ⊆ V1.

Theorem 2.2. If (R, τ) is a topological ring and M is an R-module, then a set
Λ = {Uδ |δ ∈ ∆} of subsets of the module M is a basis of the filter of neighborhoods of
zero for some (R, τ)-module topology τ1 of the module M if and only if the following
conditions are satisfied:

1. 0 ∈
⋂

δ∈∆

Uδ;

2. For any subsets U1 and U2 ∈ Λ there exists a subset U3 ∈ Λ such that
U3 ⊆ U1 ∩ U2;

3. For any subset U1 ∈ Λ there exists a subset U2 ∈ Λ such that U2 +U2 ⊆ U1;

4. For any subset U1 ∈ Λ there exists a subset U2 ∈ Λ such that −U2 ⊆ U1;

5. For any subset U1 ∈ Λ and any element r ∈ R there exists a subset U2 ∈ Λ
such that r · U2 ⊆ U1;

6. For any subset U1 ∈ Λ and any element m ∈ M there exists a neighborhood
V2 of zero of the topological ring (R, τ) such that V2 ·m ⊆ U1;

7. For any subset U1 ∈ Λ there exists a neighborhood V2 of zero of the topological
ring (R, τ) and a subset U2 ∈ Λ such that V2 · U2 ⊆ U1.

Theorem 2.3. (see the proof in [5], Theorem 3.1) If R is a countable ring and τ0
is a non-discrete, Hausdorff ring topology such that the topological ring (R, τ0) has
a countable basis of the filter of neighborhoods of zero, then the following statements
are true:

1. For any infinite set A of natural numbers there exists a ring topology τ(A)
such that the topological ring (R, τ(A)) has a countable basis of the filter of neigh-
borhoods of zero and such that τ0 ≤ τ(A);

2. sup{τ(A), τ(B)} is the discrete topology for any infinite sets A and B of
natural numbers such that A ∩B is a finite set;
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3. There exist the continuum of Hausdorff ring topologies each having a countable
basis of the filter of neighbourhoods of zero and stronger than τ0 and such that any
two of them are comparable;

4. There are two to the power of continuum topologies such that sup{τ1, τ2} is
the discrete topology for any two different topologies;

5. There are two to the power of continuum coatoms in the lattice of all ring
topologies.

Remark 2.4. From the proof of Theorem 3.1 in [5] it is easy to see that all topologies
which are indicated in this theorem are stronger than the topology τ0.

Remark 2.5. As in the proof of the Statement 3.1.3 of Theorem 3.1 in [5] ring
topology τr is defined for every real number r and τt ≤ τs if and only if s ≤ t, then
the lattice of all ring topologies contains a sublattice which is anti-isomorphic to the
lattice of all real numbers with the usual order for any countable ring.

In addition, since the mapping σ such that σ(r) = −r is an anti-isomorphism
of the lattice of all real numbers on itself, then the lattice of all ring topologies
contains a sublattice which is isomorphic to the lattice of all real numbers with the
usual order for any countable ring.

3 Basic results

Remark 3.1. We will show that for the topological ring (R, τ0) and for the R-
module M , which are constructed in [3] and [4], any (R, τ0)-module topology of the
module M is anti-discrete.

Thus, let:

– R be the ring of polynomials of an argument x over the field of rational
numbers Q;

– M = {r · z|r ∈ Q} be a one-dimensional vector space over the field of rational
numbers Q;

–

(

n
∑

i=0
ri · x

i

)

· (r · z) =

(

n
∑

i=0
ri · r

)

· z for any element
n
∑

i=0
ri · x

i ∈ R and any

element r · z ∈M ;

– The set Ω = {R · xn|n = 1, 2, . . .} is a basis of the filter of neighbourhoods of
zero in the topological ring (R, τ0).

Now let τ be an (R, τ0)-module topology of the module M and let U be an
arbitrary neighbourhood of zero in the topological module (M, τ).

If r · z ∈ M , then according to the condition 6 of Theorem 2.2, there exists a
neighbourhood V of zero in the topological ring (R, τ0) such that V · (r ·z) ⊆ U , and
hence (R · xn) · (r · z) ⊆ V · (r · z) ⊆ U for some natural number n.
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Then (r ·z) = xn · (r ·z) ∈ (R ·xn) · (r ·z) ⊆ V · (r ·z) ⊆ U . From the arbitrariness
of the element r · z it follows that U = M , and hence the topology τ is anti-discrete.

Theorem 3.2. If (R, τ0) is a countable ring with the discrete topology τ0 and M is
a countable R-module then the following statements are true:

1. For any infinite set A of natural numbers there exists an (R, τ0)-module
topology τ(A) which has a countable basis of the filter of neighborhoods of zero and
such that sup{τ(A), τ(B)} is the discrete topology for any infinite sets A and B of
natural numbers such that A ∩B is a finite set;

2. There exist continuum of (R, τ0)-module topologies which have a countable
basis of the filter of neighbourhoods of zero and such that any two of them are com-
parable;

3. There exist two to the power of continuum coatoms in the lattice of all (R, τ0)-
module topologies on the module M ;

4. The lattice of all (R, τ0)-module topologies on the module M contains a sub-
lattice which is anti-isomorphic to the lattice of all real numbers with the usual order,
and contains a sublattice which is isomorphic to the lattice of all real numbers with
the usual order.

Proof. We define the operation of multiplication on the group R̂(+) = {(r,m)|r ∈
R,m ∈ M}, which is the direct sum of the groups R(+) and M(+), as follows:
(r1,m1) · (r2,m2) = (r1 · r2, r1 ·m2) for any elements r1, r2 ∈ R and any elements
m1,m2 ∈M .

It is easy to see that R̂(+, ·) is a ring, and the set Î = {(0,m)|m ∈ M} is an
ideal of the ring R̂.

If ψ(0,m) = m, then ψ : Î → M is a bijective mapping. Then putting ψ̂(Û) =
{ψ(0,m)|(0,m) ∈ Û} for each subset Û ⊆ Î, we define a bijective mapping ψ̂ of the
set of all subsets of the set Î on the set of all subsets of the set M .

Let ∆̂ be the lattice of all ring topologies on the ring R̂ such that the ideal Î
is open, and let ∆ be the lattice of all (R, τ0)-module topologies on the module M .
We show that the lattices ∆̂ and ∆ are isomorphic.

Let τ̂ ∈ ∆̂. As Î is an open ideal in the topological ring (R̂, τ̂ ) then the topological
ring (R̂, τ̂) has a basis Ω̂ of the filter of neighborhoods of zero such that V̂ ⊆ Î for
any V̂ ∈ Ω̂.

Since τ0 is the discrete topology, then from Theorems 2.1 and 2.2 it follows that
the set {ψ̂(V̂ )|V̂ ∈ Ω̂} is a basis of the filter of neighborhoods of zero for some
(R, τ0)−module topology on the module M , and any (R, τ0)-module topology on
the module M can be obtained in this way.

Since any module topology is given in a unique way by any basis of the filter of
neighborhoods of zero, we have identified mapping ˜ψ : Ω̂ → Ω. It is easy to see that
this map is bijective, and τ̂1 ≤ τ̂2 if and only if ˜ψ(τ̂1) ≤ ˜ψ(τ̂2), i.e. ˜ψ : (Ω̂,≤) →
(Ω,≤) is a lattice isomorphism.

As noted above (see Introduction), there exists a non-discrete Hausdorff (R, τ0)-
module topology τ̄0 on the module M . If τ̂0 = Ψ̂−1(τ̄0), then Î is an open ideal in
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the topological ring (R̂, τ̂0). Then the topological ring (R̂, τ̂0) has a basis B̂ of the
filter of neighborhoods of zero such that Û ⊆ Î for every Û ∈ B̂ and

⋂

Û∈B̂

Û = {0}.

From countability of the ring R̂, it follows that there exists a countable subset
B̂0 ⊆ B̂ such that

⋂

Û∈B̂0

Û = {0} and the conditions of Theorem 2.1 are satisfied.

Hence, there is a Hausdorff topology τ̃0 ∈ Ω̂ such that topological ring (R̂, τ̃0) has a
countable basis of the filter of neighborhoods of zero and Î is an open ideal.

Then Statements 1 – 5 of Theorem 2.3 are true for the topological ring (R̂, τ̃0),
and from Remark 2.4 it follows that Î is an open ideal for any topology, which is
obtained according of Statements 1 – 5 of Theorem 2.3, i.e. all these topologies
belong to Ω̂. As the lattice Ω̂ is isomorphic to the lattice Ω, then Statements 1 – 3
of Theorem 3.2 are true.

In addition, the Statement 4 of Theorem 3.2 follows from Remark 2.5.
The theorem is proved.

Remark 3.3. We will construct an example of a ring (R, τ0) with discrete ring
topology τ0 and countable R-module M such that every non-discrete (R, τ0)-module
topology which has a finite or countable basis of the filter of neighborhoods of zero,
is anti-discrete.

This example shows that the requirement that the ring R should be countable
is essential in Statements 1 and 2 of Theorem 3.2.

As for any ring R with the discrete topology τ0 any infinite module allows a non-
discrete Hausdorff (R, τ0)-module topology, then the lattice of all (R, τ0)-module
topologies contains coatoms.

However, the following questions remain unresolved:
– How many coatoms are in the lattice of all module topologies on any infinite

module over any ring with discrete topology?
– Do there exist a ring with discrete topology and an infinite module for which

the lattice of all module topologies has only one coatom?
– Do there exist a ring with discrete topology and an infinite module for which

the lattice of all module topologies is a chain?

Example 3.4. Let X be a set with the cardinality of continuum and let Y =
{y1, y2, . . .} be a countable set. We consider the free associative algebra R over the
two-element field Z2 which is generated by the set X and the linear space M over
Z2 for which the set Y is a basis.

We consider the set Ñ of all countable strictly increasing sequences of natural
numbers.

If ω0 is the smallest countable transfinite number and ωc is the smallest transfinite
number with the cardinality of continuum, then:

Ñ = {m̃α|ω0 ≤ α < ωc} and X = {xα|1 ≤ α < ωc}.
We define the multiplication of elements of the set Y ∪ {0} by elements of the

set X as follows:
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– If α < ωc, then we let xα · 0 = 0;
– If α < ω0, i.e. α is a natural number, then we let xα · yk = yα+k−1 for any

natural number k;
– If ω0 ≤ α < ωc, then m̃α is an increasing sequence of natural numbers, i.e.

m̃α = (m1,m2, . . .), and then we let xα · yk = y1 if k ∈ {m1,m2, . . .} and xα · yk = 0
if k /∈ {m1,m2, . . .}.

Then, using the associative and distributive laws, we can extend the operation
of the multiplication of elements of the ring R on the elements of the group M so
that the group M will be a R-module.

We show now that every non-discrete module topology on theR-moduleM which
has a finite or countable basis of the filter of neighbourhoods of zero is anti-discrete.

Assume the contrary, i.e. that on the R-module M there exists a non-discrete
module topology τ which has a finite or countable basis Ω of the filter of neighbour-
hoods of zero and which is not anti-discrete.

If {0} 6=
⋂

V ∈Ω
V and 0 6= g ∈

⋂

V ∈Ω
V }, then there exists a natural number n such

that g = k1 · y1 + k2 · y2 + . . .+ kn · yn and kn 6= 0, i.e. kn = 1.
Since the sequence (n, n+ 1, n + 2, . . .) ∈ Ñ , then (n, n+ 1, n+ 2, . . .) = m̃α for

some transfinite number ω0 ≤ α < ωc.
Now if V ∈ Ω, then (see Theorem 2.2, the property 5) for the element xα ∈ R,

there exists a neighbourhood V1 ∈ Ω such that xα · V1 ⊆ V . Then (see above, the
definition of multiplication of elements from M by elements from R) y1 = xα · yn =
xα · g = xα · V1 ⊆ V .

So, we have proved that y1 ∈ V for every neighbourhood V ∈ Ω.
If V ∈ Ω and h = yk1 + yk2 + . . . + yks

∈ M , then there exists a neighbour-
hood V ′

1 ∈ Ω such that V ′
1 + V ′

1 + . . . V ′
1

︸ ︷︷ ︸

s items

⊆ V and there exist neighbourhoods of

Vk1, Vk2 , . . . , Vks
∈ Ω such that xki

· Vki
⊆ V ′

1 for every natural number 1 ≤ i ≤ s.
Then

h = yk1 + yk2 + . . .+ yks
= xk1 · y1 +xk2 · y1 + . . .+xks

· y1 ⊆ V ′
1 + V ′

1 + . . .+ V ′
1

︸ ︷︷ ︸

s items

⊆ V.

The arbitrariness of the element h ∈ M implies that V = M , and from the arbi-
trariness of the neighbourhood V we have that the topology τ is anti-discrete for
the case when {0} 6=

⋂

V ∈Ω
V .

Now let {0} =
⋂

V ∈Ω

V . The further proof will be realized in several steps.

Step I. We show that for any natural number n and any neighborhood V0 ∈ Ω there
exists an element h ∈ V0 such that

h = kn+1 · yn+1 + kn+2 · yn+2 + . . . + kn+t · yn+t

and ki ∈ {0, 1} for n+ 1 ≤ i ≤ n+ t.
Let V1 be a neighbourhood of zero in (M, τ) such that V1 − V1 ⊆ V0.
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As for the natural number n the set

Mn = {l1 · y1 + l2 · y2 + . . .+ ln−1 · yn−1|li ∈ {0, 1}, 1 ≤ i ≤ n− 1}

is finite, then there exist elements g = k1 · y1 + k2 · y2 + . . . + km · ym ∈ V1 and
g′ = k′1 · y1 + k′2 · y2 + . . .+ k′m · ym ∈ V1 such that ki = k′i for 1 ≤ i ≤ n. Then

h = g−g′ = (kn+1−k
′
n+1)·yn+1+(kn+2−k

′
n+2)·yn+2+. . .+(km−k′m)·ym ∈ V1−V1 ⊆ V0.

By this the statement indicated in Step I is proved.

Step II. By induction we construct an increasing sequence n1, n2, . . . of natural
numbers and a sequence g1, g2, . . . of elements of the module M .

If Ω = {V1, V2, . . .}, then we take an element

g1 = k1 · y1 + k2 · y2 + . . .+ kn1 · yn1 ∈ V1.

According to the statement indicated in Step I, for the natural number n1 and the
neighbourhood V2 there exists an element

g2 = kn1+1 · yn1+1 + kn1+2 · yn1+2 + . . .+ kn2 · yn2 ∈ V2.

Assume that for any number 2 ≤ i ≤ k we have constructed a natural number
ni and an element

gi = kni−1+1 · yni−1+1 + kni−12 · yni−1+2 + . . . + kni
· yni

∈ Vi.

Then according to the statement indicated in Step I, for the natural number nk

and the neighbourhood Vk+1 there exists an element

gk+1 = knk+1 · ynk+1 + knk+2 · ynk+2 + . . .+ knk+1
· ynk+

∈ Vk+1.

So, we have identified an increasing sequence n1, n2, . . . of natural numbers and the
sequence g1, g2, . . . of elements of the module M such that

gi = kni−11 · yni−1+1 + kni−1+2 · yni−1+2 + . . .+ kni
· yni

∈ Vi

for any natural number i.

Step III. We verify that y1 ∈
∞
⋂

i=1
Vi.

If n1, n2, . . . is the sequence of natural numbers which was built in the second
Step, then it belongs to Ñ , and hence, (n1, n2, . . .) = m̃α for some transfinite number
ω0 ≤ α < ωc.

If i is any natural number, then for the element xα and the neighbourhood
of zero Vi there exists a natural number j such that xα · Vj ⊆ Vi. Then, the
definition of multiplication of elements from M by elements from R implies that
y1 = xα · gj ∈ xα · Vj ⊆ Vi.

The arbitrariness of the natural number i implies that y1 ∈
∞
⋂

i=1
Vi. This contra-

dicts the assumption that {0} =
∞
⋂

i=1
Vi, and hence the case {0} =

∞
⋂

i=1
Vi is impossible.

Thus, any non-discrete module topology on R-module M which has a finite or
countable basis of the filter of neighbourhoods of zero is anti-discrete.
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Stationary Nash Equilibria for Average Stochastic

Games with Finite State and Action Spaces

Dmitrii Lozovanu

Abstract. We study the problem of the existence of stationary Nash equilibria in
infinite n-person stochastic games with limiting average payoff criteria for the players.
The state and action spaces in the games are assumed to be finite. We present some
results for the existence of stationary Nash equilibria in a multichain average stochastic
game with n players. Based on constructive proof of these results we propose an
approach for determining the optimal stationary strategies of the players in the case
when stationary Nash equilibria in the game exist.

Mathematics subject classification: 91A15, 93E20.

Keywords and phrases: Markov decision processes, Stochastic games, Average
payoffs, Stationary Nash equilibria, Optimal strategies.

1 Introduction

In this paper we investigate n-person average stochastic games with finite state
and action spaces. The problem we are interested in is the existence of Nash equi-
libria in stationary strategies. This problem has been studied by many authors
(see [4–6, 8, 9, 12, 13, 19–21]) however the existence of stationary Nash equilibria or
ε-Nash equilibrium have been proved only for some classes of average stochastic
games. Rogers [16] and Sobel [19] showed that stationary Nash equilibria exist for
nonzero-sum stochastic games with average payoffs when the transition probability
matrices induced by any stationary strategies of the players are unichain. Mertens
and Neyman [12] proved the existence of uniform ε-optimal strategies in two-player
zero-sum games, i.e. they showed that for every ε > 0 each of the two players has
a strategy that guarantees the discounted value up to ε for every discount factor
sufficiently close to 0. Important results for two-person non-zero sum games with
average payoffs have been obtained by Vieille [20] where he shows the existence
of ε-Nash equilibria. Flesch et al.[7] constructed a three-player average stochastic
game with given starting state for which stationary Nash equilibria does not exist,
however a cyclic Markov equilibrium for such a game exists. In general case the
existence of Nash equilibria for an arbitrary stochastic game with average payoffs is
an open problem. Here we formulate a condition for the existence of stationary Nash
equilibria in n-person average stochastic games and based on constructive proof of
this condition we propose a continuous model for the considered games that allows
determining stationary Nash equilibria if such equilibria exist.

c© Dmitrii Lozovanu, 2016
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2 Formulation of average stochastic game

We present the general formulation of n-person average stochastic game and
specify some basic notions that we shall use in the paper.

2.1 The framework of n-person stochastic game

A stochastic game with n players consists of the following elements:

– a state space X (which we assume to be finite);

– a finite set Ai(x) of actions with respect to each player i ∈ {1, 2, . . . , n}

for an arbitrary state x ∈ X;

– a payoff f i(x, a) with respect to each player i ∈ {1, 2, . . . , n} for each

state x ∈ X and for an arbitrary action vector a ∈
∏

i

Ai(x);

– a transition probability function p : X ×
∏

x∈X

n
∏

i=1
Ai(x) ×X → [0, 1]

that gives the probability transitions pa
x,y from an arbitrary x ∈ X

to an arbitrary y ∈ Y for a fixed action vector a ∈
∏

i

Ai(x), where

∑

y∈X

pa
x,y = 1, ∀x ∈ X, a ∈

∏

i

Ai(x);

– a starting state x0 ∈ X.

The game starts in the state x0 and the play proceeds in a sequence of stages. At
stage t players observe state xt and simultaneously and independently choose actions
ai

t ∈ Ai(xt), i = 1, 2, . . . , n. Then nature selects state y = xt+1 according to proba-
bility transitions pat

xt,y
for the given action vector at = (a1

t , a
2
t , . . . , a

n
t ). Such a play

of the game produces a sequence of states and actions x0, a0, x1, a1, . . . , xt, at, . . .
that defines the corresponding stream of stage payoffs f1

t = f1(xt, at), f2
t =

f2(xt, at), . . . , f
n
t = fn(xt, at), t = 0, 1, 2, . . . . The infinite average stochastic

game is the game with payoffs of players

ωi
x0

= lim
t→∞

inf E

(

1

t

t−1
∑

τ=0

f i
τ

)

, i = 1, 2, . . . , n,

where ωi
xo

expresses the average payoff per transition of player i in infinite game.
In the case n = 1 this game becomes the average Markov decision problem with
a transition probability function p : X ×

∏

x∈X

A(x) × X → [0, 1] and immediate

rewards f(x, a) = f1(x, a) in the states x ∈ X for given actions a ∈ A(x) = A1(x).

In the paper we will study the stochastic games when players use pure and mixed
stationary strategies of selection of the actions in the states.
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2.2 Pure and mixed stationary strategies of the players

A strategy of player i ∈ {1, 2, . . . , n} in a stochastic game is a mapping si that
for every state xt ∈ X provides a probability distribution over the set of actions
Ai(xt). If these probabilities take only values 0 and 1, then si is called a pure
strategy, otherwise si is called a mixed strategy. If these probabilities depend only
on the state xt = x ∈ X (i. e. si do not depend on t), then si is called a stationary
strategy. This means that a pure stationary strategy of player i ∈ {1, 2, . . . , n} can
be regarded as a map

si : x→ ai ∈ Ai(x) for x ∈ X

that determines for each state x an action ai ∈ Ai(x), i.e. si(x) = ai. Obviously,
the corresponding sets of pure stationary strategies S1, S2, . . . , Sn of the players in
the game with finite state and action spaces are finite sets.

In the following we will identify a pure stationary strategy si(x) of player i with
the set of boolean variables si

x,ai ∈ {0, 1}, where for a given x ∈ X si
x,ai = 1 if and

only if player i fixes the action ai ∈ Ai(x). So, we can represent the set of pure
stationary strategies Si of player i as the set of solutions of the following system:







∑

ai∈Ai(x)

si
x,ai = 1, ∀x ∈ X;

si
x,ai ∈ {0, 1}, ∀x ∈ X, ∀ai ∈ Ai(x).

If in this system we change the restriction si
x,ai ∈ {0, 1} for x ∈ X, ai ∈ Ai(x) by

the condition 0 ≤ si
x,ai ≤ 1 then we obtain the set of stationary strategies in the

sense of Shapley [17], where si
x,ai is treated as the probability of choices of the

action ai by player i every time when the state x is reached by any route
in the dynamic stochastic game. Thus, we can identify the set of mixed stationary
strategies of the players with the set of solutions of the system







∑

ai∈Ai(x)

si
x,ai = 1, ∀x ∈ X;

si
x,ai ≥ 0, ∀x ∈ X, ∀ai ∈ Ai(x)

(1)

and for a given profile s = (s1, s2, . . . , sn) of mixed strategies s1, s2, . . . , sn of the
players the probability transition ps

x,y from a state x to a state y can be calculated
as follows

ps
x,y =

∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

sk
x,akp

(a1,a2,...,an)
x,y . (2)

In the sequel we will distinguish stochastic games in pure and mixed stationary
strategies.

2.3 Average stochastic games in pure stationary strategies

Let s = (s1, s2, . . . , sn) be a profile of pure stationary strategies of the players

and denote by a(s) = (a1(s), a2(s), . . . , an(s)) ∈
∏

x∈X

n
∏

i=1
Ai(x) the action vector that
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corresponds to s and determines the probability distributions ps
x,y = p

a(s)
x,y in the

states x ∈ X. Then the average payoffs per transition ω1
x0

(s), ω2
x0

(s), . . . , ωn
x0

(s)
for the players are determined as follows

ωi
x0

(s) =
∑

y∈X

qs
x0,yf

i(y, a(s)), i = 1, 2, . . . , n,

where qs
xo,y represent the limiting probabilities in the states y ∈ X for the Markov

process with probability transition matrix P s = (ps
x,y) when the transitions start

in x0. So, if for the Markov process with probability matrix P s the correspond-
ing limiting probability matrix Qs = (qs

x,y) is known then ω1
x, ω

2
x, . . . , ω

n
x can be

determined for an arbitrary starting state x ∈ X of the game. The functions
ω1

x0
(s), ω2

x0
(s), . . . , ωn

x0
(s) on S = S1 × S2 × · · · × Sn define a game in nor-

mal form that corresponds to an infinite average stochastic game in pure stationary
strategies. This game is determined by the set of states X, the sets of actions
of the players {Ai(x)}i=1,n, the probability function p, the set of stage payoffs

{f i(x, a}i=1,n and the starting position of the game x0. Therefore we denote this

game by (X, {Ai(x)}i=1,n, {f
i(x, a}i=1,n, p, x0). If the starting position of the game

is chosen randomly according to distribution probabilities {θx} in X then such a
game we denote (X, {Ai(x)}i=1,n, {f

i(x, a}i=1,n, p, {θx}).

If an arbitrary profile s = (s1, s2, . . . , sn) of pure stationary strategies in a
stochastic game induces a probability matrix P s that corresponds to a Markov
unichain then we say that the game possesses the unichain property and shortly
we call it unichain stochastic game; otherwise we call it multichain stochastic game.

For an average stochastic game in pure strategies a Nash equilibrium may not
exist. Therefore in this paper we study stochastic games in the case when players
use mixed stationary strategies.

2.4 Stochastic games in mixed stationary strategies

Let s = (s1, s2, . . . , sn) be a profile of mixed stationary strategies of the play-
ers. Then elements of probability transition matrix P s = (ps

x,y) in the Markov
process induced by s can be calculated according to (2). Therefore if Qs = (qs

x,y)
is the limiting probability matrix of P s then the average payoffs per transition
ω1

x0
(s), ω2

x0
(s), . . . , ωn

x0
(s) for the players are determined as follows

ωi
x0

(s) =
∑

y∈X

qs
x0,yf

i(y, s), i = 1, 2, . . . , n,

where

f i(y, s) =
∑

(a1,a2,...,an)∈A(y)

n
∏

k=1

sk
y,akf

i(y, a1, a2, . . . , an)

expresses the average payoff (immediate reward) in the state y ∈ X of player
i when the corresponding stationary strategies s1, s2, . . . , sn have been applied by
players 1, 2, . . . , n in y.
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Let S
1
, S

2
, . . . , S

n
be the corresponding sets of mixed stationary strategies for

the players 1, 2, . . . , n, i.e. each S
i

for i ∈ {1, 2, . . . , n} represents the set of
solutions of system (1). Then the functions ω1

x0
(s), ω2

x0
(s), . . . , ωn

x0
(s) on S =

S
1
× S

2
× · · · × S

n
, define a game in normal form. This game corresponds to an

infinite average stochastic game in mixed stationary strategies.

3 Preliminaries

We present some results for the average Markov decision problem and for the
average stochastic game with unichain property that we shall use for the multichain
average stochastic games.

3.1 A continuous model for the average Markov decision problem

with unichain property

In [9] it has been shown that an average Markov decision problem with unichain
property can be formulated as the following optimization problem:
Maximize

ψ(s, q) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,a qx (3)

subject to














































qy −
∑

x∈X

∑

a∈A(x)

pa
x,ysx,aqx = 0, ∀y ∈ X;

∑

x∈X

qx = 1;

∑

a∈A(x)

sx,a = 1, ∀x ∈ X;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(4)

Here f(x, a) represents the immediate reward in the state x ∈ X for a given action
a ∈ A(x) in the unichain problem and pa

x,y expresses the probability transition from
x ∈ X to y ∈ X for a ∈ A(x). The variables sx,a correspond to strategies of
selection of the actions a ∈ A(x) in the states x ∈ X and qx for x ∈ X represent
the corresponding limiting probabilities in the states x ∈ X for the probability
transition matrix P s = (ps

x,y) induced by stationary strategy s.
In this problem the average reward ψ(s, q) is maximized under the conditions

(4) that determines the set of feasible stationary strategies in the unichain problem.
An optimal solution (s∗, q∗) of problem (3), (4) with s∗x,a ∈ {0, 1} corresponds to an
optimal stationary strategy s∗ : X → A where a∗ = s∗(x) for x ∈ X if s∗x,a = 1.
Using the notations αx,a = sx,aqx, for x ∈ X,a ∈ A(x), problem (3), (4) can be
easily transformed into the following linear programming problem:
Maximize

ψ(α) =
∑

x∈X

∑

a∈A(x)

f(x, a)αx,a (5)
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subject to














































qy −
∑

x∈X

∑

a∈A(x)

pa
x,yαx,a = 0, ∀y ∈ X;

∑

x∈X

qx = 1;

∑

a∈A(x)

αx,a − qx = 0, ∀x ∈ X;

αx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(6)

This problem can be simplified by eliminating qx from (6) and finally we obtain the
problem in which it is necessary to maximize the objective function (5) on the set
of solutions of the following system:



























∑

a∈A(y)

αy,a −
∑

x∈X

∑

a∈A(x)

pa
x,y αx,a = 0, ∀y ∈ X;

∑

x∈X

∑

a∈A(x)

αx,a = 1;

αx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(7)

Based on the mentioned above relationship between problem (3), (4) and problem
(5), (7) in [9] the following lemma is proven.

Lemma 1. Let an average Markov decision problem be given, where an arbitrary
stationary strategy s generates a Markov unichain, and consider the function

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,a qx

where qx for x ∈ X satisfy the condition






















qy −
∑

x∈X

∑

a∈A(x)

pa
x,ysx,aqx = 0, ∀y ∈ X;

∑

x∈X

qx = 1.

Then the function ψ(s) on the set S of solutions of the system










∑

a∈A(x)

sx,a = 1, ∀x ∈ X;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x)

depends only on sx,a for x ∈ X,a ∈ A(x), and ψ(s) is quasi-monotone on S.

Thus, the average unichain decision problem can be represented as the problem
of the maximization of a quasi-monotone function ψ(s) on a compact set S. Using
this result in [10] it has been shown that an average stochastic game with unichain
property can be formulated as a continuous game with quasi-monotone payoffs.
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3.2 Determining stationary Nash equilibria for average stochastic

games with unichain property

An average stochastic game with unichain property can be formulated in the
terms of stationary strategies as follows.

Let S = S
1
×S

2
×· · ·×S

n
, where each S

i
for i ∈ {1, 2, . . . , n} represents the set

of solutions of system (1), i.e. S
i

represents the set of mixed stationary strategies
for player i. On S we define the average payoffs for the players as follows:

ψi(s1, s2, . . . , sn) =
∑

x∈X

∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

sk
x,akf

i(x, a1, a2, . . . , an)qx,

i = 1, 2, . . . , n,

where qx for x ∈ X are determined uniquely from the following system of linear
equations



























∑

x∈X

∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

sk
x,akp

(a1,a2,...,an)
x,y qx = qy, ∀y ∈ X;

∑

x∈X

qx = 1,

where si ∈ S
i
, i = 1, 2, . . . , n.

The functions ψi(s1, s2, . . . , sn), i = 1, 2, . . . , n on S define a game in
normal form that corresponds to a stationary average stochastic game with unichain
property. For this game in [11] the following results are proven.

Lemma 2. For an arbitrary unichain stochastic game each payoff func-
tion ψi(s1, s2, . . . , sn), i ∈ {1, 2, . . . , n} possesses the property that

ψi(s1, s2, . . . , si−1, si, si+1, . . . , sn) is quasi-monotone with respect to si ∈ S
i
for

arbitrary fixed sk ∈ S
k
, k = 1, 2, . . . , i− 1, i + 1, . . . , n.

Based on this lemma in [11] the following theorem is proven.

Theorem 1. Let (X, A, {Xi}i=1,n, {f i(x, a)}i=1,n, p, x) be a stochastic game
with a given starting position x ∈ X and average payoff functions

ψ1(s1, s2, . . . , sm), ψ2(s1, s2, . . . , sn), . . . , ψm(s1, s2, . . . , sm)

of players 1, 2, . . . , n, respectively. If for an arbitrary s = (s1, s2, . . . , sn) ∈ S of
the game the transition probability matrix P s = (ps

x,y) corresponds to a Markov

unichain then for the continuous game on S there exists a Nash equilibrium s∗ =
(s1

∗
, s2

∗
, . . . , sn∗) which is a Nash equilibrium for an arbitrary starting state x ∈ X of

the game and ψi(s1
∗
, s2

∗
, . . . , sm∗) = ωi

x(s
1∗, s2

∗
, . . . , sm∗), ∀x ∈ X, i = 1, 2, . . . , n.
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4 Some auxiliary results for multichain average decision problem

In this section we propose a continuous model for the multichain average decision
problem and extend the results from Section 3.1 for the general case of decision
problem. We shall use these results in the next section for the multichain average
stochastic games.

4.1 Linear programming approach for multichain decision problem

It is well-known that the optimal stationary strategies for a multichain average
Markov decision problem can be found using the following linear programming prob-
lem (see [11,14]):
Maximize

ψ(α, β) =
∑

x∈X

∑

a∈A(x)

f(x, a)αx,a (8)

subject to






























∑

a∈A(y)

αy,a −
∑

x∈X

∑

a∈A(x)

pa
x,y αx,a = 0, ∀y ∈ X;

∑

a∈A(y)

αy,a +
∑

a∈A(y)

βy,a −
∑

x∈X

∑

a∈A(x)

pa
x,yβx,a = θy, ∀y ∈ X;

αx,a ≥ 0, βy,a ≥ 0, ∀x ∈ X, a ∈ A(x),

(9)

where θy for y ∈ X represent arbitrary positive values that satisfy the condition
∑

y∈X

θy = 1. Recall that f(x, a) denotes the immediate cost in a state x ∈ X for a

given action a ∈ A(x) in the decision problem and pa
x,y represent the corresponding

probability transitions from a state x ∈ X to the states y ∈ X for a ∈ A(x), where
∑

y∈X

pa
x,y = 1.

This problem generalizes the unichain linear programming model (5), (7) from
Section 3.1. In (9) the restrictions

∑

a∈A(y)

αy,a +
∑

a∈A(y)

βy,a −
∑

x∈X

∑

a∈A(x)

pa
x,yβx,a = θy, ∀y ∈ X (10)

with the condition
∑

y∈X

θy = 1 generalize the constraint

∑

x∈X

∑

a∈A(y)

αy,a = 1 (11)

in the unichain model. Condition (11) is obtained if we sum (10) over y.

The relationship between feasible solutions of problem (8),(9) and stationary
strategies in the average Markov decision problem can be established on the basis
of the following randomized stationary decision rule (see [14]):
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Let (α, β) be a feasible solution of the linear programming problem (8), (9)
and denote Xα = {x ∈ X|

∑

a∈X

αx,a > 0}. Then (α, β) possesses the properties that
∑

a∈A(x)

βx,a > 0 for x ∈ X \Xα and a stationary randomized decision rule dα,β(x)

for a feasible solution (α, β) is defined by

sdα,β(x)(a) =



































αx,a
∑

a∈A(x)

αx,a

if x ∈ Xα;

βx,a
∑

a∈A(x)

βx,a

if x ∈ X \Xα,
(12)

where sdx,y(x)(a) expresses the probability of choosing the actions a ∈ A(x) in the
states x ∈ X for the average decision problem under decision rule d. This means
that for a given feasible solution (α, β) the decision rule d determines a stationary
strategy sx,a = sdα,β(x)(a) of choosing the actions a ∈ A(x) in the states x ∈ X. If
for each x ∈ Xα it holds αx,a > 0 for a single a ∈ A(x) and for each x ∈ X \Xα

it holds βx,a > 0 for a single a ∈ A(x) then (12) generates a deterministic
decision rule

dα,β(x) =

{

a if αx,a > 0 and x ∈ Xα;

a′ if βx,a′> 0 and x ∈ X \Xα

that corresponds to a pure stationary strategy s, where sx,a = sdα,β(x)(a) for x ∈ X
and a ∈ A(x).

Remark 1. In [14] problem (8), (9) is regarded as the dual model of the following
linear programming problem:
Minimize

φ(ε, ω) =
∑

x∈X

θxωx (13)

subject to











εx + ωx ≥ f(x, a) +
∑

y∈X

pa
x,yεy, ∀x ∈ X, ∀a ∈ A(x);

ωx ≥
∑

y∈X

pa
x,yωy, ∀x ∈ X, ∀a ∈ A(x).

(14)

The optimal value of objective function in this problem as well as the optimal value
of objective function in problem (8), (9) express the optimal average reward when
the initial state is chosen according to distribution {θx}. Solving problem (13), (14)
we obtain the value ω∗

x for each x ∈ X that represents the optimal average reward
when transition starts in x with probability equal to 1. This means that if (α∗, β∗) is
the optimal solution of problem (8), (9) then we can determine the optimal strategy
s∗ and the optimal values of object functions of problems (13), (14) and (8), (9),
where φ(ε∗, ω∗) = ψ(α∗, β∗).
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4.2 Multichain decision model in the terms of stationary strategies

The continuous model we propose for the multichain average decision problem
that generalizes the unichain continuous model (3), (4) is the following:
Maximize

ψ(s, q, w) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,aqx (15)

subject to


















































qy −
∑

x∈X

∑

a∈A(x)

pa
x,y sx,aqx = 0, ∀y ∈ X;

qy + wy −
∑

x∈X

∑

a∈A(x)

pa
x,ysx,awx = θy, ∀y ∈ X;

∑

a∈A(y)

sy,a = 1, ∀y ∈ X;

sx,a ≥ 0, ∀x ∈ X, ∀a ∈ A(x); wx ≥ 0, ∀x ∈ X,

(16)

where θy are the same values as in problem (8), (9) and sx,a, qx, wx for x ∈ X,
a ∈ A(x) represent the variables that must be found.

Theorem 2. Optimization problem (15), (16) determines the optimal stationary
strategies of the multichain average Markov decision problem.

Proof. Indeed, if we assume that each action set A(x), x ∈ X contains a single action
a′ then system (9) is transformed into the following system of equations











qy −
∑

x∈X

px,yqx = 0, ∀y ∈ X;

qy + wy −
∑

x∈X

px,ywx = θy, ∀y ∈ X

with conditions qy, wy ≥ 0 for y ∈ X, where qy = αy,a′ , wy = βy,a′ , ∀y ∈ X
and px,y = pa′

x,y, ∀x, y ∈ X. This system uniquely determines qx for x ∈ X and
determines wx for x ∈ X up to an additive constant in each recurrent class of
P = (px,y) (see [14]). Here qx represents the limiting probability in the state x
when transitions start in the states y ∈ X with probabilities θy and therefore the
condition qx ≥ 0 for x ∈ X can be released. Note that wx for some states may
be negative, however always the additive constants in the corresponding recurrent
classes can be chosen so that wx became nonnegative. In general, we can observe that
in (16) the condition wx ≥ 0 for x ∈ X can be released and this does not influence
the value of objective function of the problem. In the case |A(x)| = 1, ∀x ∈ X the
average cost is determined as ψ =

∑

x∈X

f(x)qx, where f(x) = f(x, a),∀x ∈ X.

If the action sets A(x), x ∈ X may contain more than one action then for a given
stationary strategy s ∈ S of selection of the actions in the states we can find the
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average cost ψ(s) in a similar way as above by considering the probability matrix
P s = (ps

x,y), where

ps
x,y =

∑

a∈A(x)

pa
x,ysx,a (17)

expresses the probability transition from a state x ∈ X to a state y ∈ X when the
strategy s of selections of the actions in the states is applied. This means that we
have to solve the following system of equations











qy −
∑

x∈X

ps
x,yqx = 0, ∀y ∈ X;

qy + wy −
∑

x∈X

ps
x,ywx = θy, ∀y ∈ X.

If in this system we take into account (17) then this system can be written as follows















qy −
∑

x∈X

∑

a∈A(x)

pa
x,y sx,aqx = 0, ∀y ∈ X;

qy + wy −
∑

x∈X

∑

a∈A(x)

pa
x,ysx,awx = θy, ∀y ∈ X.

(18)

An arbitrary solution (q, w) of the system of equations (18) uniquely determines qy
for y ∈ X that allows us to determine the average cost per transition

ψ(s) =
∑

x∈X

∑

a∈X

f(x, a)sx,aqx (19)

when the stationary strategy s is applied. If we are seeking for an optimal stationary
strategy then we should add to (18) the conditions

∑

a∈A(x)

sx,a = 1, ∀x ∈ X; sx,a ≥ 0, ∀x ∈ X,a ∈ A(x) (20)

and to maximize (19) under the constraints (18), (20). In such a way we obtain
problem (15), (16) without conditions wx ≥ 0 for x ∈ X. As we have noted the
conditions wx ≥ 0 for x ∈ X do not influence the values of the objective function
(15) and therefore we can preserve such conditions that show the relationship of the
problem (15), (16) with problem (8), (9).

The relationship between feasible solutions of problem (8), (9) and feasible solu-
tions of problem (15), (16) can be established on the basis of the following lemma.

Lemma 3. Let (s, q, w) be a feasible solution of problem (15), (16). Then

αx,a = sx,aqx, βx,a = sx,awx, ∀x ∈ X,a ∈ A(x) (21)

represent a feasible solution (α, β) of problem (8), (9) and ϕ(s, q, w) = ψ(α, β). If
(α, β) is a feasible solution of problem (8), (9) then a feasible solution (s, q, w) of
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problem (15), (16) can be determined as follows:

sx,a =



































αx,a
∑

a∈A(x)

αx,a

for x ∈ Xα, a ∈ A(x);

βx,a
∑

a∈A(x)

βx,a

for x ∈ X \Xα, a ∈ A(x);
(22)

qx =
∑

a∈A(x)

αx,a, wx =
∑

a∈A(x)

βx,a for x ∈ X.

Proof. Assume that (s, q, w) is a feasible solution of problem (15), (16) and (α, β)
is determined according to (21). Then by introducing (21) in (8),(9) we can observe
that (9) is transformed in (16) and ψ(s, q, w) = ψ(α, β), i.e. (α, β) is a feasible
solution of problem (8), (9). The second part of lemma follows directly from the
properties of feasible solutions of problems (8),(9) and (15),(16).

Note that an arbitrary pure stationary strategy s of problem (15), (16) corre-
sponds to a basic solution (α, β) of problem (8), (9) for which (22) holds, however
system (9) may contain basic solutions for which stationary strategies determined
through (22) do not correspond to pure stationary strategies. Moreover two different
feasible solutions of problem (8), (9) may generate through (22) the same stationary
strategy. Such solutions of system (9) are considered equivalent solutions for the
decision problem.

Corollary 1. If (αi, βi), i = 1, k, represent the basic solutions of system (9) then
the set of solutions

M =
{

(α, β)| (α, β) =

k
∑

i=1

λi(αi, βi),

k
∑

i=1

λi = 1, λi > 0, i = 1, k
}

determines all feasible stationary strategies of problem (15), (16) through (22).

An arbitrary solution (α, β) of system (9) can be represented as follows: α =
∑k

i=1 λ
iαi, where

∑k
i=1 λ

i = 1; λi ≥ 0, i = 1, k, and β represents a solution of the
system











∑

a∈A(y)

βx,a −
∑

z∈X

∑

a∈A(z)

pa
z,xβz,a = θx −

∑

a∈A(x)

αx,a, ∀x ∈ X;

βy,a ≥ 0, ∀x ∈ X, a ∈ A(x).

If (α, β) is a feasible solution of problem (8), (9) and (α, β) 6∈M then there exists a
solution (α′, β′) ∈M that is equivalent to (α, β) and ψ(α, β) = ψ(α′, β′).
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4.3 The main property of the object function

Using problem (15), (16) we can now extend the results from Section 3.1 for the
general case of average decision problem.

Theorem 3. Let an average Markov decision problem be given and consider the
function

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x,a)sx,a qx, (23)

where qx for x ∈ X satisfy the condition















qy −
∑

x∈X

∑

a∈A(x)

pa
x,y sx,aqx = 0, ∀y ∈ X;

qy + wy −
∑

x∈X

∑

a∈A(x)

pa
x,ysx,awx = θy, ∀y ∈ X.

(24)

Then on the set S of solutions of the system







∑

a∈A(x)

sx,a = 1, ∀x ∈ X;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x)

(25)

the function ψ(s) depends only on sx,a for x ∈ X,a ∈ A(x) and ψ(s) is
quasi-monotone on S .

Proof. For an arbitrary s ∈ S system (24) uniquely determines qx for x ∈ X and
determines wx for x ∈ X up to a constant in each recurrent class of P s = (ps

x,y),
where ps

x,y =
∑

a∈A(x)

pa
x,ysx,a, ∀x, y ∈ X. This means that ψ(s) is determined

uniquely for an arbitrary s ∈ S, i.e. the first part of the theorem holds.

Now let us prove the second part of the theorem.

Consider arbitrary two strategies s′, s′′ ∈ S and assume that s′ 6= s′′. Then
according to Lemma 3 there exist feasible solutions (α′, β′) and (α′′, β′′) of linear
programming problem (8), (9) for which

ψ(s′) = ψ(α′, β′), ψ(s′′) = ψ(α′′, β′′′), (26)

where

α′
x,a = s′x,aq

′
x, α′′

x,y = s′′x,aq
′′
x, ∀x ∈ X, a ∈ A(x);

β′x,a = s′x,aw
′
x, β′′x,y = s′′x,aq

′′
x, ∀x ∈ X, a ∈ A(x);

q′x =
∑

a∈A(x)

α′
x,a w′

x,a =
∑

a∈A(x)

β′x,a, ∀x ∈ X;

q′′x =
∑

a∈A(x)

α′′
x,a w′′

x,a =
∑

a∈A(x)

β′′x,a, ∀x ∈ X.
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The function ψ(α, β)) is linear and therefore for an arbitrary feasible solution
(α, β) of problem (8), (9) holds

ψ(α, β) = tψ(α′, β′) + (1 − t)ψ(α′′, β′′) (27)

if 0 ≤ t ≤ 1 and

(α, β) = t(α′, β′) + (1 − t)(α′′, β′′).

Note that (α, β) corresponds to a stationary strategy s for which

ψ(s) = ψ(α, β), (28)

where

sx,a =















αx,a

qx

if x ∈ Xα;

βx,a

wx

if x ∈ X \Xα.

(29)

Here Xα = {x ∈ X|
∑

a∈A(x)

αx,a > 0} is the set of recurrent states induced by

P s = (ps
x,y), where ps

x,y are calculated according to (17) for s = s and

qx = tq′x + (1 − t)q′′, wx = tw′
x + (1 − t)w′′

x, ∀x ∈ X.

We can see that Xα = Xα′ ∪ Xα′′ , where Xα′ = {x ∈ X|
∑

a∈A(x)

α′
x,a > 0} and

Xα′′ = {x ∈ X|
∑

a∈A(x)

α′′
x,a > 0}.

The value

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,aqx

is determined by f(x, a), sx,a and qx in recurrent states x ∈ Xα and it is equal to
ψ(α, β). If we use (29) then for x ∈ Xα and a ∈ A(x) we have

sx,a =
tα′

x,a + (1 − t)α′′
x,a

tq′x + (1 − t)q′′x
=
ts′x,aq

′
x + (1 − t)s′′x,aq

′′
x

tq′x + (1 − t)q′′x
=

=
tq′x

tq′x + (1 − t)q′′x
s′x,a +

(1 − t)q′′x
tq′x + (1 − t)q′′x

s′′x,a

and for x ∈ X \Xα and a ∈ A(x) we have

sx,a =
tβ′x,a + (1 − t)β′′x,a

tw′
x + (1 − t)w′′

x

=
ts′x,aw

′
x + (1 − t)s′′x,aw

′′
x

tw′
x + (1 − t)w′′

x

=

=
tw′

x

tw′
x + (1 − t)w′′

x

s′x,a +
(1 − t)w′′

x

tw′
x + (1 − t)w′′

x

s′′x,a.
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So, we obtain

sx,a = txs
′
x,a + (1 − tx)s′′x,a, ∀a ∈ A(x), (30)

where

tx =















tq′x
tq′x + (1 − t)q′′x

if x ∈ Xα;

tw′
x

tw′
x + (1 − t)w′′

x

if x ∈ X \Xα.

(31)

and from (26)–(28) we have

ψ(s) = tψ(s′) + (1 − t)ψ(s′′). (32)

This means that if we consider the set of strategies

S(s′, s′′) = {s| sx,a = txs
′
x,a + (1 − tx)s

′′
x,a, ∀x ∈ X,a ∈ A(x)}

then for an arbitrary s ∈ S(s′, s′′) holds

min{ψ(s′), ψ(s′′)} ≤ ψ(s) ≤ max{ψ(s′), ψ(s′′)}, (33)

i.e ψ(s) is monotone on S(s′, s′′). Moreover, using (30)–(33) we obtain that s pos-
sesses the properties

lim
t→1

sx,a = s′x,a,∀x ∈ X,a ∈ A(x); lim
t→0

sx,a = s′′x,a,∀x ∈ X,a ∈ A(x). (34)

and respectively

lim
t→1

ψ(s) = ψ(s′); lim
t→0

ψ(s) = ψ(s′′).

In the following we show that the function ψ(s) is quasi-monotone on S. To
prove this it is sufficient to show that for an arbitrary c ∈ R the sublevel set

L−
c (ψ) = {s ∈ S| ψ(s) ≤ c}

and the superlevel set

L+
c (ψ) = {s ∈ S| ψ(s) ≥ c}

of function ψ(s) are convex. These sets can be obtained respectively from the sublevel
set

L−
c (ψ) = {(α, β)| ψ(α, β)) ≤ c}

and the superlevel set

L+
c (ψ) = {(α, β)| ψ(α, β)) ≥ c}

of function ψ(α, β) for linear programming problem (8), (9) using (22).

Denote by (αi, βi), i = 1, k the basic solutions of system (9). According to
Corollary 1 all feasible strategies of problem (8), (9) can be obtained trough (22)
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using the basic solutions (αi, βi), i = 1, k. Each (αi, βi), i = 1, k, determines a
stationary strategy

si
x,a =



















αi
x,a

qi
x

, for x ∈ Xαi , a ∈ A(x);

βi
x,a

wi
x

, for x ∈ X \Xαi , a ∈ A(x)

(35)

for which ψ(si) = ψ(αi, βi) where

Xαi ={x ∈ X|
∑

a∈A(x)

αi
x,a > 0}, qi

x =
∑

a∈A(x)

αi
x,a, wi

x =
∑

a∈A(x)

βi
x,a, ∀x ∈ X. (36)

An arbitrary feasible solution (α, β) of system (9) determines a stationary strategy

sx,a =







αx,a
qx , for x ∈ Xα, a ∈ A(x);

βx,a
wx

, for x ∈ X \Xα, a ∈ A(x),
(37)

for which ψ(s) = ψ(α, β) where

Xα = {x ∈ X|
∑

a∈A(x)

αx,a > 0}, qx =
∑

a∈A(x)

αx,a, wx =
∑

a∈A(x)

βx,a, ∀x ∈ X.

Taking into account that (α, β) can be represented as

(α, β) =

k
∑

i=1

λi(αi, βi), where

k
∑

i=1

λi = 1, λi ≥ 0, i = 1, k (38)

we have ψ(α, β) =
k
∑

i=1
ψ(αi, βi)λi and we can consider

Xα =

k
⋃

i=1

Xαi ; α =

k
∑

i=1

λiαi; q =

k
∑

i=1

λiqi; w =

k
∑

i=1

λiwi. (39)

Using (35)–(39) we obtain:

sx,a =
αx,a

qx
=

∑k
i=1 λ

iαk
x,a

qx
=

∑k
i=1 λ

isi
x,aq

i
x

qx
=

k
∑

i=1

λiqi
x

qx
si
x,a, ∀x ∈ Xα, a ∈ A(x);

sx,a =
βx,a

wx

=

∑k
i=1 λ

iβk
x,a

wx

=

∑k
i=1 λ

isi
x,aw

i
x

wx

=
k
∑

i=1

λiwi
x

wx

si
x,a, ∀x ∈ X\Xα, a ∈ A(x)

and

qx =

k
∑

i=1

λiqi
x, wx =

k
∑

i=1

λiwi
x for x ∈ X. (40)
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So,

sx,a =



























k
∑

i=1

λiqi
x

qx
si
x,a if qx > 0;

k
∑

i=1

λiwi
x

wx

si
x,a if qx = 0,

(41)

where qx and wx are determined according to (40).

We can see that if λi, si, qi, i = 1, k are given then the strategy s defined by (41) is
a feasible strategy because sx,a ≥ 0,∀x ∈ X,a ∈ A(x) and

∑

a∈A(x) sx,a = 1, ∀x ∈ X.

Moreover, we can observe that qx =
k
∑

i=1
λiqi

x, wx =
k
∑

i=1
λiwi

x for x ∈ X represent

a solution of system (24) for the strategy s defined by (41). This can be verified by
introducing (40) and (41) in (24); after such a substitution all equations from (24)
are transformed into identities. For ψ(s) we have

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,aqx =
∑

x∈Xα

∑

a∈A(x)

f(x, a)

k
∑

i=1

(

λiqi
x

qx
si
x,a

)

qx =

k
∑

i=1

(

∑

x∈X
αi

∑

a∈A(x)

f(x, a)si
x,aq

i
x

)

λi =

k
∑

i=1

ψ(si)λi,

i.e.

ψ(s) =

k
∑

i=1

ψ(si)λi, (42)

where s is the strategy that corresponds to (α, β).

Thus, assuming that the strategies s1, s2, . . . , sk correspond to basic solutions
(α1, β1), (α2, β2), . . . , (αk, βk) of problem (8), (9) and s ∈ S corresponds to an arbi-
trary solution (α, β) of this problem that can be expressed as convex combination of
basic solutions of problem (8), (9) with the corresponding coefficients λ1, λ2, . . . , λk,
we can express the strategy s and the corresponding value ψ(s) by (40)–(42). In
general the representation (40)–(42) of strategy s and of the value ψ(s) is valid for
an arbitrary finite set of strategies from S if (α, β) can be represented as convex
combination of the finite number of feasible solutions (α1, β1), (α2, β2), . . . , (αk, βk)
that correspond to s1, s2, . . . , sk; in the case k = 2 from (40)–(42) we obtain (30)–
(32). It is evident that for a feasible strategy s ∈ S the representation (40), (41) may

be not unique, i.e. two differen vectors Λ = (λ
1
, λ

2
, . . . , λ

k
) and Λ = λ

1
, λ

2
, . . . , λ

k

may be that determine the same strategy s via (40), (41). In the following we will
assume that s1, s2, . . . , sk represent the system of linear independent basic solutions
of system (25), i.e. each si ∈ S corresponds to a pure stationary strategy.
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Thus, an arbitrary strategy s ∈ S is determined according to (40), (41) where
λ1, λ2, . . . , λk correspond to a solution of the following system

k
∑

i=1

λi = 1; λi ≥ 0, i = 1, k.

Consequently, the sublevel set L−
c (ψ) of function ψ(s) represents the set of strategies

s determined by (40), (41), where λ1, λ2, . . . , λk satisfy the condition



















k
∑

i=1
ψ(si)λi ≤ c;

k
∑

i=1
λi = 1; λi ≥ 0, i = 1, k

(43)

and the superlevel set L+
c (ψ) of ψ(s) represents the set of strategies s determined

by (40),(41), where λ1, λ2, . . . , λk satisfy the condition



















k
∑

i=1
ψ(si)λi ≥ c;

k
∑

i=1
λi = 1; λi ≥ 0, i = 1, k.

(44)

Respectively the level set Lc(ψ) = {s ∈ S| ψ(s) = c} of function ψ(s) represents the
set of strategies s determined by (40), (41), where λ1, λ2, . . . , λk satisfy the condition



















k
∑

i=1
ψ(si)λi = c;

k
∑

i=1
λi = 1; λi ≥ 0, i = 1, k.

(45)

Let us show that L−
c (ψ), L+

c (ψ), Lc(ψ) are convex sets. We present the proof
of convexity of sublevel set L−

c (ψ). The proof of convexity of L+
c (ψ) and Lc(ψ) is

similar to the proof of convexity of L−
c (ψ).

Denote by Λ the set of solutions (λ1, λ2, . . . , λk) of system (43). Then from (40),
(41), (43) we have

L−
c (ψ) =

∏

x∈X

Ŝx

where Ŝx represents the set of strategies

sx,a =



























∑k
i=1 λ

iqi
xs

i
x,a

∑k
i=1 λ

iqi
x

if
∑k

i=1 λ
iqi

x > 0,

∑k
i=1 λ

iwi
xs

i
x,a

∑k
i=1 λ

iwi
x

if
∑k

i=1 λ
iqi

x = 0,

a ∈ A(x)
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in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ.
For an arbitrary x ∈ X the set Λ can be represented as follows Λ = Λ+

x ∪Λ0
x,

where

Λ+
x = {(λ1, λ2, . . . , λk) ∈ Λ|

k
∑

i=1

λiqi
x > 0},

Λ0
x = {(λ1, λ2, . . . , λk) ∈ Λ|

k
∑

i=1

λiqi
x = 0}

and
∑k

i=1 λ
iwi

x > 0 if
∑k

i=1 λ
iqi

x = 0.

Therefore Ŝx can be expressed as follows Ŝx = Ŝ+
x ∪ Ŝ0

x, where Ŝ+
x represents

the set of strategies

sx,a =

∑k
i=1 λ

iqi
xs

i
x,a

∑k
i=1 λ

iqi
x

, for a ∈ A(x) (46)

in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ+
x and Ŝ0

x represents the set of
strategies

sx,a =

∑k
i=1 λ

iwi
xs

i
x,a

∑k
i=1 λ

iwi
x

, for a ∈ A(x) (47)

in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ0
x.

Therefore Ŝx can be expressed as follows Ŝx = Ŝ+
x ∪ Ŝ0

x, where Ŝ+
x represents

the set of strategies

sx,a =

∑k
i=1 λ

iqi
xs

i
x,a

∑k
i=1 λ

iqi
x

, for a ∈ A(x) (48)

in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ+
x and Ŝ0

x represents the set of
strategies

sx,a =

∑k
i=1 λ

iwi
xs

i
x,a

∑k
i=1 λ

iwi
x

, for a ∈ A(x) (49)

in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ0
x.

Thus, if we analyze (48) then observe that sx,a for a given x ∈ X represents
a linear-fractional function with respect to λ1, λ2, . . . , λk defined on convex set Λ+

x

and Ŝ+
x is the image of sx,a on Λ+

x . Therefore Ŝ+
x is a convex set. If we analyze

(49) then observe that sx,a for given x ∈ X represents a linear-fractional function
with respect to λ1, λ2, . . . , λk on convex set Λ0

x and Ŝ0
x is the image of sx,a on Λ0

x.
Therefore Ŝ0

x is a convex set (see [1]). Additionally we can observe that Λ+
x ∩Λ0

x = ∅
and in the case Λ+

x ,Λ
0
x, 6= ∅ the set Λ0

x represents the limit inferior of Λ+
x . Using this

property and taking into account (34) we can conclude that each strategy sx ∈ Ŝ0
x

can be regarded as the limit of a sequence of strategies {st
x} from Ŝ+

x . Therefore we
obtain that Ŝx = Ŝ+

x ∪ Ŝ0
x is a convex set. This involves the convexity of the sublevel

set L−
c (ψ). In analogues way using (44) and (45) we can show that the superlevel

set L+
c (ψ) and the level set Lc(ψ) a convex set. This means that the function ψ(s)

is quasi-monotone on S.
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5 Existence of stationary Nash equilibria for the multichain average

stochastic game

In this section we present an result concerned with the existence of stationary
Nash equilibria in a multichain average stochastic game with n players. We prove
this result using a continuous model for the considered game that generalizes the
continuous model from Section 3.

5.1 A continuous model for the multichain stochastic game

The continuous model for a multichain average stochastic game that generalizes
the continuous model (23)–(25) is the following:

Let S
i
, i ∈ {1, 2, . . . n} be the set of solutions of the system







∑

ai∈Ai(x)

si
x,ai = 1, ∀x ∈ X;

si
x,ai ≥ 0, ∀x ∈ X, ai ∈ Ai(x).

(50)

that determines the set of stationary strategies of player i. Each S
i

is a convex
compact set and an arbitrary its extreme point corresponds to a basic solution si

of system (50), where si
x,ai ∈ {0, 1}, ∀x ∈ X, ai ∈ A(x), i.e each basic solution

of this system corresponds to a pure stationary strategy of player i. On the set

S = S
1
× S

2
× · · · × S

n
we define n payoff functions















ψi(s1, s2, . . . , sn) =
∑

x∈X

∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

sk
x,akf

i(x, a1, a2 . . . an)qx,

i = 1, 2, . . . , n,

(51)

where qx for x ∈ X are determined uniquely from the following system of linear
equations























qy −
∑

x∈X

∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

sk
x,akp

(a1,a2,...,an)
x,y qx = 0, ∀y ∈ X;

qy + wy −
∑

x∈X

∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

sk
x,akp

(a1,a2,...,an)
x,y wx = θx,∀y ∈ X,

(52)

for an arbitrary profile (s1, s2, . . . , sm) ∈ S. Each (s1, s2, . . . , sn) ∈ S in the
considered continuous game corresponds to a profile of mixed stationary strategies
of the players and ψi(s1, s2, . . . , sn), i = 1, 2, . . . , n, defined by (51), (52) represent
the corresponding average payoffs of the players in the case when the staring state
is chosen according to distribution {θx}. If θx = 0, ∀x ∈ X \ {x0} and θx0 = 1 then
we obtain the continuous game model for the average stochastic game with given
starting state x0, i.e. ψi(s1, s2, . . . , sn) = ωi

x0
(s1, s2, . . . , sn), i = 1, 2, . . . , n.
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5.2 The main result

From Theorem 3 as a corollary we can obtain the following lemma.

Lemma 4. For an arbitrary average stochastic game with θx > 0,∀x ∈ X each
payoff function ψi(s1, s2, . . . , sn), i ∈ {1, 2, . . . , n} possesses the property that

ψi(s1, s2, . . . , si−1, si, si+1, . . . , sn) is quasi-monotone with respect to si ∈ S
i

for

arbitrary fixed sk ∈ S
k
, k = 1, 2, . . . , i− 1, i+ 1, . . . , n.

Proof. Indeed, if players 1, 2, . . . , i−1, i+1, . . . , n fix their stationary strategies sk ∈

S
k
, k = 1, 2, . . . , i−1, i+1, . . . , n, then we obtain an average decision problem with

respect to si ∈ S
i

and average cost function ψi(s1, s2, . . . , si−1, si, si+1, . . . , sn).
According to Theorem 3 this function possesses the property that the value of the

function is uniquely determined by si ∈ S
i
and it is quasi-monotone with respect to

si on S
i
.

Theorem 4. Let (X,A, {Xi}i=1,n, {f
i(x, a)}i=1,n, p, {θx}) be an average stochas-

tic game with given distribution {θx} for the initial state and consider the con-
tinuous game with average payoffs ψi(s1, s2, . . . , sn), i = 1, 2, . . . , n for the
players. If for an arbitrary profile s = (s1, s2, . . . , sn) ∈ S each payoff function
ψi(s1, s2, . . . , sn), i ∈ {1, 2, . . . , n} possesses the property that

lim
si→si

ψi(s1, s2, . . . , si−1, si, si+1, . . . , sn) = ψi(s1, s2, . . . , si−1, si, si+1, . . . , sn)

then for the considered continuous game there exists a Nash equilibrium s∗ =
(s1

∗
, s2

∗
, . . . , sn∗) ∈ S that is a stationary Nash equilibrium for the average stochas-

tic game (X, A, {Xi}i=1,n, {f i(x, a)}i=1,n, p, x}) with an arbitrary initial state
x ∈ X.

Proof. According to Lemma 4 each function ψi(s1, s2, . . . , sn), i ∈ {1, 2, . . . , n}
satisfies the condition that ψi(s1, s2, . . . , si−1, si, si+1, . . . , sn) is quasi-monotone

with respect to si ∈ S
i

for an arbitrary fixed sk ∈ S
k
, k = 1, 2, . . . , i− 1,

i + 1, . . . , n. In the considered game each subset S
i

is convex and compact and
according to the conditions of the theorem each payoff function ψi(s1, s2, . . . , sn)

is continue with respect to si in S
i
. Therefore, these conditions (see [2, 3, 15, 18])

provide the existence of a Nash equilibrium s∗ = (s1
∗
, s2

∗
, . . . , sn∗) for the game with

payoff functions ψi(s1, s2, . . . , sn), i ∈ {i, 2, . . . , n} on S
1
× S

2
× · · · × S

n
.

6 Conclusion

The results presented in the paper show that for finite state space stochastic
games with average payoffs stationary Nash equilibria exist if the conditions of The-
orem 4 are satisfied. For determining stationary Nash equilibria in the considered
games the continuous model from Section 5.1 can be used. For average stochastic
games with unichain property the continuous model from Section 3.2 can be used.
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General form transversals in groups

Eugene Kuznetsov

Abstract. The classical notion of transversal in group to its subgroup is generalised.
It is made with the help of reducing any conditions on the choice of representatives
of the left (right) cosets in group to its subgroup. Obtained general form transversals
are investigated and some its properties are studied.
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1 Introduction

In the theory of quasigroups and loops the following notion of left (right)
transversal in group to its subgroup is well-known [1–4].

Definition 1. Let G be a group and H be its subgroup. Let {Hi}i∈E be the set
of all left (right) cosets in G to H (E is a set of indexes with distinguished element
1), and we assume H1 = H. A set T = {ti}i∈E of representativities of the left
(right) cosets (by one from each coset Hi and t1 = e ∈ H) is called a left (right)

transversal in G to H.

As is easy to see, in this definition the choice of representatives of left (right)
cosets in G to H is not free – there exist two conditions: H1 = H and t1 = e ∈ H.
Let us reduce these two conditions and investigate obtained below general form
transversals in group to its subgroup.

2 General form transversals in group to its subgroup

2.1 Definitions and elementary properties

Let G be a group and H be its subgroup. Below we shall use the following
notations:

E is an index set (E contains a distinguished element 1);
left (right) cosets in the group G to its subgroup H are numbered by the indexes

from E;
{Hi}i∈E is the set of all left (right) cosets in G to H;

e is the unit of group G;
Below all definitions and propositions will be formulated for the left cosets in G

to H; for the right cosets in G to H it may be done analogously.

c© Eugene Kuznetsov, 2016
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Definition 2. Let G be a group and H be its subgroup. Let {Hi}i∈E be the set of
all left cosets in G to H. A set T = {ti}i∈E of representativities of the left (right)
cosets (by one from each coset Hi, i.e. ti ∈ Hi) is called a left general form

transversal in G to H (see also [6, 7]).

Remark 1. Generally speaking the numbering of left cosets {Hi}i∈E in G to H may
be such that the subgroup H obtain an index a ∈ E which is different from 1, i.e.
H = Ha 6= H1.

Remark 2. Generally speaking the unit e of the group G (and subgroup H) may not
belong to the left general form transversal T in G to H, i.e. e /∈ T .

Definition 3. If for left general form transversal T = {ti}i∈E in G to H the following
condition holds: ti0 = e for some i0 ∈ E, then such transversal T is called a left

reduced transversal in G to H. In opposite case T is called a left non-reduced

transversal in G to H.

Definition 4. If for left general form transversal T = {ti}i∈E in G to H the following
condition holds: H = H1 (i.e. the index of the subgroup H in the set of left cosets in
G to H is equal to 1), then such transversal T is called a left ordered transversal

in G to H. In opposite case T is called a left non-ordered transversal in G to
H.

Definition 5. A left general form transversal T = {ti}i∈E in G to H which is a left
reduced and ordered transversal in G to H is usually called a left transversal in
G to H.

Example 1. Let us have:

G = S3 = {id, (12), (13), (23), (123), (132)},

H = St1(S3) = {id, (23)}.

Left cosets in G to H:

Hi1 = H = {id, (23)},

Hi2 = {(12), (123)},

Hi3 = {(13), (132)},

E = {i1, i2, i3} ≡ {1, 2, 3}.

1. i1 6= 1 and T = {(23), (12), (132)}. Then T is a left non-reduced non-ordered
general form transversal in G to H.

2. i1 = 1 and T = {(23), (12), (132)}. Then T is a left non-reduced ordered
general form transversal in G to H.

3. i1 6= 1 and T = {id, (123), (132)}. Then T is a left reduced non-ordered general
form transversal in G to H.
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4. i1 = 1 and T = {id, (12), (13)}. Then T is a left (reduced and ordered)
transversal in G to H.

Theorem 1. For an arbitrary left general form transversal T = {ti}i∈E in G to H
the folloving statements are true:

1. For every h ∈ H the set Th = Th = {tih}i∈E is a left general form transversal
in G to H too.

2. There exists an element h0 ∈ H such that the set Th0 = Th0 is a left reduced
(maybe non-ordered) general form transversal in G to H.

3. For every π ∈ G the set πT = πT = {πti}i∈E is a left general form transversal
in G to H too.

4. There exists an element π0 ∈ G such that the set π0T = π0T = {π0ti}i∈E is a
left (reduced and ordered) transversal in G to H.

Proof. 1. For every i ∈ E and h ∈ H we have

ti ∈ Hi =⇒ tih ∈ Hi,

and so
(Th) ∩ Hi = {tih},

i.e. Th is a left general form transversal in G to H.
2. Let

T ∩ H = h∗,

i.e. h∗ is a representative of general form transversal T in the subgroup H. Then
we put

h0 = (h∗)−1.

We obtain
h∗ ∈ T =⇒ e = h∗ · (h∗)−1 ∈ (Th0),

i.e. due to item 1 general form transversal T1 = Th0 is a left reduced (maybe
non-ordered) general form transversal in G to H

3. Let us take an arbitrary element π ∈ G and consider the set

πT = πT = {πti}i∈E .

Because T is a left general form transversal in G to H then

G =
⋃

i∈E

(tiH).

So we obtain

G = πG = π ·

(

⋃

i∈E

(tiH)

)

=
⋃

i∈E

((πti)H),
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i.e. every element g ∈ G may be presented in the form g = t∗h, where h ∈ H and
t∗ ∈ πT .

Now let us show that for every i, j ∈ E, i 6= j, the following equality is true

((πti)H) ∩ ((πtj)H) = ∅.

Let us assume that it is not true, and so

πtih1 = πtjh2 = g0

for some h1, h2 ∈ H. Then we obtain

tih1 = tjh2 =⇒ ti = tjh2h
−1
1 ∈ tjH =⇒ (tiH) ∩ (tjH) 6= ∅,

that is in contradiction to the fact that T is a left general form transversal in G to
H.

4. Let us consider the left coset H1 and take the element

π∗ = t1 = H1 ∩ T.

Then we may take π0 = (π∗)−1. Really we have

e = (π∗)−1 · π∗ = π0t1 ∈ π0T,

i.e. with the help of item 3 the left general form transversal π0T is a left (reduced
and ordered) transversal in G to H.

2.2 A transversal operation

Definition 6. Let T = {ti}i∈E be a left general form transversal in G to H. Define
the following operation on the set E:

x
(T )
· y = z ⇔ txty = tzh, h ∈ H.

Theorem 2. For an arbitrary left general form transversal T = {ti}i∈E in G to H
the following statements are true:

1. There exists an element a0 ∈ E such that the system

〈

E,
(T )
· , a0

〉

is a left

quasigroup with right unit a0.

2. If a left general form transversal T = {ti}i∈E is a reduced (but non-ordered)
transversal in G to H, then there exists an element a0 ∈ E such that the system
〈

E,
(T )
· , a0

〉

is a left loop with unit a0.

3. If a left general form transversal T = {ti}i∈E is an ordered (but non-reduced)

transversal in G to H, then the system

〈

E,
(T )
· , 1

〉

is a left quasigroup with

right unit 1.
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4. If a left general form transversal T = {ti}i∈E is an ordered and reduced

transversal in G to H, then the system

〈

E,
(T )
· , 1

〉

is a left loop with

unit 1.

Proof. 1. For any arbitrary a, b ∈ E consider the following equivalent equations on
the set E:

a
(T )
· x = b,

tatx = tbh, h ∈ H,

tx = t−1
a tbh = tch

∗, h∗ ∈ H,

x = c,

for some c ∈ E; moreover, the element c = c(a, b) is uniquely determined by the

elements a, b ∈ E. So the system

〈

E,
(T )
·

〉

is a left quasigroup. If a0 is the index of

subgroup H as a left coset in G to H, i.e. H ≡ Ha0 , then ta0 = h0 ∈ H for some
element h0. For every x ∈ E we have the following equivalent equations on the set
E:

x
(T )
· a0 = u,

txta0 = tuh, h ∈ H,

txh0 = tuh, h ∈ H,

tx = tuhh−1
0 = tuh∗, h∗ ∈ H,

u = x,

i.e. for every x ∈ E: x
(T )
· a0 = x. It means that the system

〈

E,
(T )
· , a0

〉

is a left

quasigroup with right unit a0.
2. If a left general form transversal T = {ti}i∈E is a reduced (but non-ordered)

transversal in G to H, then ta0 = e ∈ H. For every x ∈ E we have the following
equivalent equations on the set E:

a0
(T )
· x = u,

ta0tx = tuh, h ∈ H,

etx = tuh, h ∈ H,

tx = tuh, h ∈ H,

u = x,

i.e. for every x ∈ E: a0
(T )
· x = x. It means that the system

〈

E,
(T )
· , a0

〉

is a left

loop with two-sided unit a0.
3. If a left general form transversal T = {ti}i∈E is an ordered (but non-reduced)

transversal in G to H, then the proof is analogous to the proof of the item 1, but we
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have a0 = 1 too (because H1 ≡ Ha0 ≡ H). So we obtain that the system

〈

E,
(T )
· , 1

〉

is a left loop with unit 1.
4. It is an evident corollary of the items 2 and 3

2.3 Permutation representation

Definition 7. Let G be a group and H be its subgroup. A permutation repre-

sentation Ĝ of the group G by left cosets to its subgroup H is the following map
ϕ:

ϕ : G → SE,

ϕ : g → ĝ,

ĝ (x) = y
def
⇔ g · (Hx) = Hy, x, y ∈ E.

If some left general form transversal T = {ti}i∈E in G to H is chosen, then the
last formula may be rewritten in the following form:

ĝ (x) = y
def
⇔ g · (tx · H) = ty · H.

The map ϕ is a homomorphism from the group G to the symmetric group SE. The
kernel of this homomorphism is called a core of G to H:

CoreGH =
⋂

π∈G

(πHπ−1).

If CoreGH = {e}, then the above-mentioned representation is a strict representation
and ϕ is an isomorphism.

It is easy to show that with the help of factorisation on the core it is always
possible to take into consideration the strict permutation representation Ĝ of the
group G by left cosets to its subgroup H. So below we assume that the above-
mentioned representation is a strict representation.

Theorem 3. For an arbitrary left general form transversal T = {ti}i∈E in G to H
the following statements are true:

1. There exists an element a0 ∈ E such that for every h ∈ H: ĥ (a0) = a0.

2. The following identities are fulfilled:

(a) For all x, y ∈ E: ̂tx(y) = x
(T )
· y;

(b) For all x, y ∈ E: ̂t−1
x (y) = x

(T )

�y, where ”
(T )

�” is a left division for

the operation

〈

E,
(T )
· , a0

〉

(i.e. x
(T )

�y = z ⇐⇒ x
(T )
· z = y);

(c) For every x ∈ E: ̂tx(a0) = x.
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3. If a left general form transversal T = {ti}i∈E is a reduced (but non-ordered)
transversal in G to H, then the following identities are fulfilled:

(a) For all x, y ∈ E: ̂tx(y) = x
(T )
· y;

(b) For all x, y ∈ E: ̂t−1
x (y) = x

(T )

�y;

(c) For every x ∈ E: ̂tx(a0) = ̂ta0(x) = x.

4. If a left general form transversal T = {ti}i∈E is an ordered (but non-reduced)
transversal in G to H, then the following identities are fulfilled:

(a) For all x, y ∈ E: ̂tx(y) = x
(T )
· y;

(b) For all x, y ∈ E: ̂t−1
x (y) = x

(T )

�y;

(c) For every x ∈ E: ̂tx(1) = x.

5. If a left general form transversal T = {ti}i∈E is an ordered and reduced
transversal in G to H, then the following identities are fulfilled:

(a) For all x, y ∈ E: ̂tx(y) = x
(T )
· y;

(b) For all x, y ∈ E: ̂t−1
x (y) = x

(T )

�y;

(c) For every x ∈ E: ̂tx(1) = ̂t1(x) = x.

Proof. 1. According to item 1 of Theorem 2 there exists an element a0 ∈ E such
that H ≡ Ha0 (i.e. ta0 = h0 ∈ H). Then for every h ∈ H we have the following
equivalent equalities:

ĥ (a0) = a1,

hta0 = ta1h
∗, h∗ ∈ H,

hh0 = ta1h
∗, h∗ ∈ H,

ta1 = hh0(h
∗)−1 ∈ H,

ta1 = ta0 ,

a1 = a0.

So we obtain that ĥ (a0) = a0.
2. a. For all x, y ∈ E we have the following equivalent equalities:

x
(T )
· y = u,

txty = tuh, h ∈ H,

txtyH = tuH,

̂tx(y) = u.
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So we obtain that ̂tx(y) = x
(T )
· y.

b. For all x, y ∈ E we have the following equivalent equalities:

̂t−1
x (y) = u,

̂tx(u) = y,

x
(T )
· u = y,

u = x
(T )

�y,

where ”
(T )

�” is a left division for the operation

〈

E,
(T )
· , a0

〉

(i.e. x
(T )

�y = z ⇐⇒

x
(T )
· z = y). So we obtain that ̂t−1

x (y) = x
(T )

�y.
c. According to item 1 of Theorem 2 there exists an element a0 ∈ E such that

for every x ∈ E x
(T )
· a0 = x. Then due to item 2a we have for every x ∈ E

̂tx(a0) = x
(T )
· a0 = x.

3. Let the left general form transversal T = {ti}i∈E be a reduced (but non-
ordered) transversal in G to H. Then ta0 = e. So all identities from the item 2 of
present Theorem are true; moreover, we have for every x ∈ E

̂ta0(x) = ê(x) = id(x) = x.

4. Let the left general form transversal T = {ti}i∈E be an ordered (but non-
reduced) transversal in G to H. Then a0 = 1. So all identities from the item 2 of
present Theorem are true; moreover, we have for every x ∈ E

̂tx(1) = x.

5. It is an evident corollary of the items 3 and 4.

Theorem 4. For an arbitrary left general form transversal T = {ti}i∈E in G to H
the folloving statements are true:

1. If P = {pi}i∈E is a left general form transversal in G to H such that for every
x ∈ E:

P = Th0,

px′ = txh0,

where h0 ∈ H is an arbitrary fixed element (see item 1 from Theorem 1),

then the transversal operation

〈

E,
(P )
·

〉

is isotopic to the transversal operation
〈

E,
(T )
·

〉

, and this isotopy has the form (id, ĥ0, id).
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2. If S = {si}i∈E is a left general form transversal in G to H such that for every
x ∈ E:

S = πT,

sx′ = πtx,

where π ∈ G is an arbitrary fixed element (see item 3 from Theorem 1),

then the transversal operation

〈

E,
(S)
·

〉

is isotopic to the transversal operation
〈

E,
(T )
·

〉

, and this isotopy has the form (π−1, id, π).

Proof. 1. Let P = {pi}i∈E be a left general form transversal in G to H such that
for every x ∈ E:

P = Th0,

px′ = txh0,

where h0 ∈ H is an arbitrary fixed element. According to items 1 and 2 from
Theorem 3 there exists an element a0 ∈ E such that for every h ∈ H

ĥ (a0) = a0,

̂tx(a0) = x,

p̂x′(a0) = x′,

for all x, x′ ∈ E. Then we have for all x ∈ E

x′ = p̂x′(a0) = t̂xĥ0(a0) = ̂tx(a0) = x,

i.e. for all x ∈ E

px = txh0.

According to item 2 from Theorem 3 we obtain for all x, y ∈ E:

x
(P )
· y = p̂x(y) = t̂xĥ0(y) = x

(T )
· ĥ0(y),

i.e. the transversal operation

〈

E,
(P )
·

〉

is isotopic to the transversal operation
〈

E,
(T )
·

〉

, and this isotopy has the form (id, ĥ0, id).

2. Let S = {si}i∈E be a left general form transversal in G to H such that for
every x ∈ E:

S = πT,

sx′ = πtx,
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where π ∈ G is an arbitrary fixed element. Analogously to the item 1 of this
Theorem we have

x′ = ŝx′(a0) = π̂ t̂x(a0) = π̂(x),

i.e. for every x ∈ E

sπ(x) = πtx,

sx = πtπ−1(x).

Then according to item 2 from Theorem 3 we obtain for all x, y ∈ E:

x
(S)
· y = ŝx(y) = π̂ t̂π̂−1(x)(y) = π̂(π̂−1(x)

(T )
· y),

i.e. the transversal operation

〈

E,
(S)
·

〉

is isotopic to the transversal operation
〈

E,
(T )
·

〉

, and this isotopy has the form (π−1, id, π).

Remark 3. The last statement allows us to see a new sense of Theorem 2. Now
it is evident that the transition from a general form transversal to the reduced (or
ordered) transversal is just a transition from a left quasigroup transversal operation
to a left loop transversal operation (which is its isotope).

3 Quasigroup and loop general form transversals

Definition 8. Let T = {ti}i∈E be a left general form transversal in G to H. If its

transversal operation

〈

E,
(T )
·

〉

is a quasigroup, then the transversal T is called a

left quasigroup general form transversal in G to H (in [5] such transversal is called
a stable transversal in G to H).

Remark 4. According to item 1 from Theorem 2 there exists an element a0 ∈ E

such that a0 is a right unit in the operation

〈

E,
(T )
·

〉

; so if T is a left quasigroup

general form transversal in G to H, then the system

〈

E,
(T )
· , a0

〉

is a quasigroup

with the right unit a0.

Theorem 5. If T = {ti}i∈E is a left quasigroup general form transversal in G to

H, then there exists an element a0 ∈ E such that the system

〈

E,
(T )
· , a0

〉

is a loop.

Proof. It is an evident corollary from the item 2 of Theorem 2.

Definition 9. A left reduced quasigroup general form transversal in G to H is
usually called a left loop general form transversal in G to H.
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Theorem 6. The following statements are equivalent:

1. A set T = {tx}x∈E is a left quasigroup general form transversal in G to H;

2. For every π ∈ G the set Tπ = {txπ}x∈E is a left general form transversal in
G to H;

3. For all π1, π2 ∈ G the set π1Tπ2 = {π1txπ2}x∈E is a left general form transver-
sal in G to H;

4. For every π ∈ G the set T = {tx}x∈E is a left general form transversal in G
to Hπ = πHπ−1.

Proof. 1⇒2. Let a set T = {tx}x∈E be a left quasigroup general form transversal

in G to H. Then the system

〈

E,
(T )
·

〉

is a quasigroup. Let an element π ∈ G be

an arbitrary fixed element from G. We shall consider the set Tπ = {txπ}x∈E and
prove that this set is a left general form transversal in G to H.

Because T = {tx}x∈E is a left quasigroup general form transversal in G to H,
then

π = tc0h0

for some tc0 ∈ T and h0 ∈ H. Because the operation

〈

E,
(T )
·

〉

is a quasigroup, then

for every x ∈ E we have

txπ = txtc0h0 = t
x
(T )
· c0

h1 = tRc0(x)h1

for some h1 ∈ H. Then every element g ∈ G may be represented in the following
form:

g = tc1h
∗ = tRc0 (c1/c0)h1h

−1
1 h∗ = tc1/c0πh−1

1 h∗ = (tc1/c0π)h∗∗, h∗∗ ∈ H.

Let us assume that this representation is not unique, i.e. there exist a, b ∈ E,
a 6= b and h1, h2 ∈ H such that

taπh1 = g = tbπh2.

According to item 1 of Theorem 3 there exists an element a0 ∈ E such that we have
the following equivalent equalities

t̂aπ̂ ĥ1(a0) = t̂bπ̂ ĥ2(a0)

t̂aπ̂ (a0) = t̂bπ̂ (a0)

t̂at̂c0 ĥ0(a0) = t̂bt̂c0ĥ0(a0)

t̂at̂c0(a0) = t̂bt̂c0(a0)

t̂a(c0) = t̂b(c0)
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a
(T )
· c0 = b

(T )
· c0

a = b

because the operation

〈

E,
(T )
·

〉

is a quasigroup. We obtain a contradiction and so

the above mentioned representation is unique. Then the set Tπ = {txπ}x∈E is a left
general form transversal in G to H.

2⇒3. It is evident due to item 3 of Theorem 1.
3⇒4. If the condition of item 3 holds then a fortiori is true that for every π ∈ G

the set πTπ−1 = {πtxπ−1}x∈E is a left general form transversal in G to H. So for
all a, b ∈ E, a 6= b we have the following equivalent statements:

{

G =
⋃

x∈E

(πtxπ−1)H,

∅ = (πtaπ
−1H) ∩ (πtbπ

−1H),







G = π−1Gπ = π−1

(

⋃

x∈E

(πtxπ−1)H

)

π =
⋃

x∈E

tx(π−1Hπ),

∅ = π−1 · ∅ · π = π−1((πtaπ
−1H) ∩ (πtbπ

−1H))π = (ta(π
−1Hπ)) ∩ (tb(π

−1Hπ)).

Because the element π ∈ G is an arbitrary element from G then the element π−1

will be an arbitrary element from G too. So the set T = {tx}x∈E is a left general
form transversal in G to Hπ′

= π′Hπ′−1 for every π′ ∈ G (where π′ = π−1).
4⇒1. Let for every π ∈ G a set T be a left general form transversal in G to

Hπ = πHπ−1. In order to prove that the set T is a left quasigroup general form
transversal in G to H, it is sufficient to prove that for all arbitrary fixed elements
a, b ∈ E the equation

x
(T )
· a = b

has unique solution in the set E.
We have the following equivalent equalities:

x
(T )
· a = b

txta = tbh, h ∈ H

tx = tbht−1
a = (tbt

−1
a ) · (taht−1

a ) (1)

Because the set T is a left general form transversal in G to Hta = taHt−1
a (when

π = ta), then there exists the unique element c = c(a, b) ∈ E such that

tbt
−1
a ∈ tc · (taHt−1

a ).

Substituting this product in (1) we obtain:

tx = tc · (tah
′t−1

a ) · (taht−1
a ) = tc · (tah

∗t−1
a ), h∗ ∈ H.

Because the set T is a left general form transversal in G to Hta = taHt−1
a , then

x = c. The proof is finished.
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Corollary 1. The following statements are equivalent:

1. A set T = {tx}x∈E is a left quasigroup general form transversal in G to H;

2. For every π ∈ G the set Tπ = {txπ}x∈E is a left quasigroup general form
transversal in G to H;

3. For all π1, π2 ∈ G the set π1Tπ2 = {π1txπ2}x∈E is a left quasigroup general
form transversal in G to H.

Theorem 7. The following statements are equivalent:

1. A set T = {tx}x∈E is a left loop general form transversal in G to H;

2. For every π ∈ G the set Tπ = {txπ}x∈E is a left general form transversal in
G to H;

3. For all π ∈ G the set πTπ−1 = {πtxπ−1}x∈E is a left reduced general form
transversal in G to H;

4. For every π ∈ G the set T = {tx}x∈E is a left reduced general form transversal
in G to Hπ = πHπ−1.

Proof. It is an evident corollary from Theorems 1 and 6.

Corollary 2. The following statements are equivalent:

1. A set T = {tx}x∈E is a left loop general form transversal in G to H;

2. For every π ∈ G the set Tπ = {txπ}x∈E is a left quasigroup general form
transversal in G to H;

3. For all π ∈ G the set πTπ−1 = {πtxπ−1}x∈E is a left loop general form
transversal in G to H.

Theorem 8. Let T = {tx}x∈E be a left loop general form transversal in G to H.
According to Definition 9 and Theorem 3 there exists an element a0 ∈ E such that
̂ta0 = id. Then for every x ∈ E, x 6= a0, the permutation ̂tx is a fixed-point-free
permutation on the set E.

Proof. Let the conditions of Theorem hold and assume that it is not true, i.e. there
exist c0 ∈ E and a1 ∈ E, a1 6= a0, such that

{

̂ta1(c0) = c0,
a1 6= a0.

Then according to Theorem 2 we have the following equivalent equalities

̂ta1(c0) = c0,
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a1
(T )
· c0 = c0 = a1

(T )
· c0,

a1
(T )
· c0 = a1

(T )
· c0,

a1 = a0,

since the system

〈

E,
(T )
· , a0

〉

is a loop. But the last equality contradicts to the

assumption that a1 6= a0. The proof is finished.
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1 Introduction

The theory of graphs is an extremely useful tool for solving numerous problems
in different areas such as geometry, algebra, operations research, optimization, and
computer science. In many cases, some aspects of a graph-theoretic problem may be
uncertain. For example, the vehicle travel time or vehicle capacity on a road network
may not be known exactly. In such cases, it is natural to deal with the uncertainty
using the methods of fuzzy sets, and fuzzy logic. But, the using of fuzzy graphs as
models of various systems (social, economics systems, communication networks and
others) leads to difficulties. In many domains, we deal with bipolar information. It
is noted that positive information represents what is granted to be possible, while
negative information represents what is considered to be impossible. The bipolar
fuzzy sets as an extension of fuzzy sets were introduced by Zhang [20, 21] in 1994.
In a bipolar fuzzy set, the membership degree range is [−1, 1], the member degree 0
of an element shows that the element is irrelevant to the corresponding property. If
membership degree of an element is positive, it means that the element somewhat
satisfies the property, and a negative membership degree shows that the element
somewhat satisfies the implicit counter-property. The bipolar fuzzy graph model is
more precise, flexible, and compatible as compared to the classical and fuzzy graph
models. This is the motivation to generalize the notion of fuzzy graphs to the notion
of bipolar fuzzy graphs. In 1965, Zadeh [19] introduced the notion of a fuzzy subset
of a set as a method for representing uncertainty. Now, the theory of fuzzy sets has
become a vigorous area of research in different disciplines including medical, life sci-
ence, management sciences, engineering, statistics, graph theory, signal processing,
pattern recognition, computer networks and expert systems. Fuzzy graphs and fuzzy
analogs of several graph theoretical notions were discussed by Rosenfeld [13], whose
basic idea was introduced by Kauffmann [7] in 1973. Rosenfeld considered the fuzzy
relations between fuzzy sets and developed the structure of fuzzy graphs. Some op-
erations on fuzzy graphs were introduced by Mordeson and Peng [11]. Akram and

c© W.A. Dudek, A.A. Talebi, 2016
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Dudek [3] generalized some operations to interval-valued fuzzy graphs. The concept
of intuitionistic fuzzy graphs was introduced by Shannon and Atanassov [16], they
investigated some of their properties in [17]. Parvathi et al. defined operations on
intuitionistic fuzzy graphs in [12]. Akram introduced the concept of bipolar fuzzy
graphs in [1], he discussed the concept of isomorphism of these graphs, and inves-
tigated some of their important properties, also defined some operations on bipolar
fuzzy graphs (see also [2, 4–6]).

In this paper, we define the notion of level graphs of a bipolar fuzzy graph and
investigate some of their properties. Next we show that level graphs can be used to
the characterization of various products of two bipolar fuzzy graphs.

2 Preliminaries

In this section, we review some definitions that are necessary for this paper.

Let V be a nonempty set. Denote by ˜V 2 the collection of all 2-element subsets

of V. A pair (V,E), where E ⊆ ˜V 2, is called a graph.

Further, for simplicity, the subsets of the form {x, y} will be denoted by xy.

Definition 1. Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2) be two graphs and let
V = V1 × V2.

• The union of graphs G∗
1 and G∗

2 is the graph (V1 ∪ V2, E1 ∪ E2).

• The graph (V1 ∪V2, E1 ∪E2 ∪E′), where E′ is the set of edges joining vertices
of V1 and V2, is denoted by G∗

1+G∗
2 and is called the join of graphs G∗

1 and G∗
2.

• The Cartesian product of graphs G∗
1 and G∗

2, denoted by G∗
1 ×G∗

2, is the graph
(V,E) with
E = {(x, x2)(x, y2) |x ∈ V1 , x2y2 ∈ E2} ∪ {(x1, z)(y1, z) | z ∈ V2 , x1y1 ∈ E1}.

• The cross product of graphs G∗
1 and G∗

2, denoted by G∗
1∗G∗

2, is the graph (V,E)
such that E = {(x1, x2)(y1, y2) |x1y1 ∈ E1 , x2y2 ∈ E2}.

• The lexicographic product of graphs G∗
1 and G∗

2, denoted by G∗
1 • G∗

2, is the
graph (V,E) such that
E = {(x, x2)(x, y2) |x∈V1, x2y2∈E2}∪{(x1, x2)(y1, y2) |x1y1∈E1, x2y2∈E2}.

• The strong product of graphs G∗
1 and G∗

2, denoted by G∗
1 ⊠ G∗

2, is the graph
(V,E) such that
E = {(x, x2)(x, y2) |x ∈ V1 , x2y2 ∈ E2} ∪ {(x1, z)(y1, z) | z ∈ V2 , x1y1 ∈
E1} ∪ {(x1, x2)(y1, y2) |x1y1 ∈ E1 , x2y2 ∈ E2}.

• The composition of graphs G∗
1 and G∗

2, denoted by G∗
1[G

∗
2], is the graph (V,E)

such that
E = {(x, x2)(x, y2) |x ∈ V1 , x2y2 ∈ E2} ∪ {(x1, z)(y1, z) | z ∈ V2 , x1y1 ∈
E1} ∪ {(x1, x2)(y1, y2) |x2, y2 ∈ V2, , x2 6= y2 , x1y1 ∈ E1}.
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One can find the corresponding examples clarifying the above concepts in [9,10,
14,15,18].

Definition 2. Let X be a set, a mapping A = (µN
A , µP

A) : X → [−1, 0] × [0, 1]
is called a bipolar fuzzy set on X. For every x ∈ X, the value A(x) is written as
(µN

A (x), µP
A(x)).

We use the positive membership degree µP
A(x) to denote the satisfaction degree of

elements x to the property corresponding to a bipolar fuzzy set A, and the negative
membership degree µN

A (x) to denote the satisfaction degree of an element x to some
implicit counter-property corresponding to a bipolar fuzzy set A.

Definition 3. A fuzzy graph of a graph G∗ = (V,E) is a pair G = (σ, µ), where σ

and µ are fuzzy sets on V and ˜V 2, respectively, such that µ(x, y) ≤ min(σ(x), σ(y))

for all xy ∈ E and µ(xy) = 0 for xy ∈ ˜V 2 \ E.

Let G∗ = (V,E) be a crisp graph and let A,B be bipolar fuzzy sets on V and
E, respectively. The pair (A,B) is called a bipolar fuzzy pair of a graph G∗.

Definition 4. ([1]) A bipolar fuzzy graph of a graph G∗ = (V,E) is a bipolar fuzzy
pair G = (A,B) of G∗, where A = (µN

A , µP
A) and B = (µN

B , µP
B) are such that

µP
B(xy) ≤ min(µP

A(x), µP
A(y)), µN

B (xy) ≥ max(µN
A (x), µN

A (y)) for all xy ∈ E.

A fuzzy graph (σ, µ) of a graph G∗ can be considered as an bipolar fuzzy graph
G = (A,B), where µN

A (x) = 0 for all x ∈ V , µN
B (xy) = 0 for all xy ∈ E and µP

B = µ,
µP

A = σ.

Definition 5. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy pair of graphs
G∗

1 = (V1, E1) and G∗
2 = (V2, E2), respectively. Consider two bipolar fuzzy sets

A = (µN
A , µP

A) and B = (µN
B , µP

B).

• The union G1 ∪ G2 is defined as the pair (A,B) of bipolar fuzzy sets deter-
mined on the union of graphs G∗

1 and G∗
2 such that

(i) µP
A(x) =







µP
A1

(x) if x ∈ V1 and x 6∈ V2

µP
A2

(x) if x ∈ V2 and x 6∈ V1

max(µP
A1

(x), µP
A2

(x)) if x ∈ V1 ∩ V2,

(ii) µN
A (x) =







µN
A1

(x) if x ∈ V1 and x 6∈ V2

µN
A2

(x) if x ∈ V2 and x 6∈ V1

min(µN
A1

(x), µN
A2

(x)) if x ∈ V1 ∩ V2,

(iii) µP
B(xy) =







µP
B1

(xy) if xy ∈ E1 and xy 6∈ E2

µP
B2

(xy) if xy ∈ E2 and xy 6∈ E1

max(µP
B1

(xy), µP
B2

(xy)) if xy ∈ E1 ∩ E2,
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(iv) µN
B (xy) =







µN
B1

(xy) if xy ∈ E1 and xy 6∈ E2

µN
B2

(xy) if xy ∈ E2 and xy 6∈ E1

min(µN
B1

(xy), µN
B2

(xy)) if xy ∈ E1 ∩ E2.

• The join G1 + G2 is the pair (A,B) of bipolar fuzzy sets defined on the join
G∗

1 + G∗
2 such that

(i) µP
A(x) =







µP
A1

(x) if x ∈ V1 and x 6∈ V2

µP
A2

(x) if x ∈ V2 and x 6∈ V1

max(µP
A1

(x), µP
A2

(x)) if x ∈ V1 ∩ V2,

(ii) µN
A (x) =







µN
A1

(x) if x ∈ V1 and x 6∈ V2

µN
A2

(x) if x ∈ V2 and x 6∈ V1

min(µN
A1

(x), µN
A2

(x)) if x ∈ V1 ∩ V2,

(iii) µP
B(xy) =















µP
B1

(xy) if xy ∈ E1 and xy 6∈ E2

µP
B2

(xy) if xy ∈ E2 and xy 6∈ E1

max(µP
B1

(xy), µP
B2

(xy)) if xy ∈ E1 ∩ E2

min(µP
A1

(x), µP
A2

(x)) if xy ∈ E′,

(iv) µN
B (xy) =















µN
B1

(xy) if xy ∈ E1 and xy 6∈ E2

µN
B2

(xy) if xy ∈ E2 and xy 6∈ E1

min(µN
B1

(xy), µN
B2

(xy)) if xy ∈ E1 ∩ E2

max(µN
A1

(x), µN
A2

(y)) if xy ∈ E′.

• The Cartesian product G1 ×G2 is the pair (A,B) of bipolar fuzzy sets defined
on the Cartesian product G∗

1 × G∗
2 such that

(i) µP
A(x1, x2) = min(µP

A1
(x1), µ

P
A2

(x2)),

µN
A (x1, x2) = max(µN

A1
(x1), µ

N
A2

(x2)) for all (x1, x2) ∈ V1 × V2,

(ii) µP
B((x, x2)(x, y2)) = min(µP

A1
(x), µP

B2
(x2y2)),

µN
B ((x, x2)(x, y2)) = max(µN

A1
(x), µN

B2
(x2y2)) for all x∈V1 and x2y2∈E2,

(iii) µP
B((x1, z)(y1, z)) = min(µP

B1
(x1y1), µ

P
A2

(z)),

µN
B ((x1, z)(y1, z)) = max(µN

B1
(x1y1), µ

N
A2

(z)) for all z∈V2 and x1y1∈E1.

• The cross product G1 ∗ G2 is the pair (A,B) of bipolar fuzzy sets defined on
the cross product G∗

1 ∗ G∗
2 such that

(i) µP
A(x1, x2) = min(µP

A1
(x1), µ

P
A2

(x2)),

µN
A (x1, x2) = max(µN

A1
(x1), µ

N
A2

(x2)) for all (x1, x2) ∈ V1 × V2,

(ii) µP
B((x1, x2)(y1, y2)) = min(µP

B1
(x1y1), µ

P
B2

(x2y2)),

µN
B ((x1, x2)(y1, y2)) = max(µN

B1
(x1y1), µ

N
B2

(x2y2)) for all x1y1 ∈ E1 and
for all x2y2 ∈ E2.

• The lexicographic product G1•G2 is the pair (A,B) of bipolar fuzzy sets defined
on the lexigographic product G∗

1 • G∗
2 such that
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(i) µP
A(x1, x2) = min(µP

A1
(x1), µ

P
A2

(x2)),

µN
A (x1, x2) = max(µN

A1
(x1), µ

N
A2

(x2)) for all (x1, x2) ∈ V1 × v2,

(ii) µP
B((x, x2)(x, y2)) = min(µP

A1
(x), µP

B2
(x2y2)),

µN
B ((x, x2)(x, y2)) = max(µN

A1
(x), µN

B2
(x2y2)) for all x ∈ V1 and for all

x2y2 ∈ E2,

(iii) µP
B((x1, x2)(y1, y2)) = min(µP

B1
(x1y1), µ

P
B2

(x2y2)),

µN
B ((x1, x2)(y1, y2)) = max(µN

B1
(x1y1), µ

N
B2

(x2y2)) for all x1y1 ∈ E1 and
for all x2y2 ∈ E2.

• The strong product G1⊠G2 of G1 is the pair (A,B) of bipolar fuzzy sets defined
on the strong product G∗

1 ⊠ G∗
2 such that

(i) µP
A(x1, x2) = min(µP

A1
(x1), µ

P
A2

(x2)),

µN
A (x1, x2) = max(µN

A1
(x1), µ

N
A2

(x2)) for all (x1, x2) ∈ V1 × V2,

(ii) µP
B((x, x2)(x, y2)) = min(µP

A1
(x), µP

B2
(x2y2)),

µN
B ((x, x2)(x, y2)) = max(µN

A1
(x), µN

B2
(x2y2)) for all x ∈ V1 and for all

x2y2 ∈ E2,

(iii) µP
B((x1, z)(y1, z)) = min(µP

B1
(x1y1), µ

P
A2

(z)),

µN
B ((x1, z)(y1, z)) = max(µN

B1
(x1y1), µ

N
A2

(z)) for all z ∈ V2 and for all
x1y1 ∈ E1,

(iv) µP
B((x1, x2)(y1, y2)) = min(µP

B1
(x1y1), µ

P
B2

(x2y2)),

µN
B ((x1, x2)(y1, y2)) = max(µN

B1
(x1y1), µ

N
B2

(x2y2)) for all x1y1 ∈ E1 and
for all x2y2 ∈ E2.

• The composition G1[G2] is the pair (A,B) of bipolar fuzzy sets defined on the
composition G∗

1[G
∗
2] such that

(i) µP
A(x1, x2) = min(µP

A1
(x1), µ

P
A2

(x2)),

µN
A (x1, x2) = max(µN

A1
(x1), µ

N
A2

(x2)) for all (x1, x2) ∈ V1 × V2,

(ii) µP
B((x, x2)(x, y2)) = min(µP

A1
(x), µP

B2
(x2y2)),

µN
B ((x, x2)(x, y2)) = max(µN

A1
(x), µN

B2
(x2y2)) for all x ∈ V1 and for all

x2y2 ∈ E2,

(iii) µP
B((x1, z)(y1, z)) = min(µP

B1
(x1y1), µ

P
A2

(z)),

µN
B ((x1, z)(y1, z)) = max(µN

B1
(x1y1), µ

N
A2

(z)) for all z ∈ V2 and for all
x1y1 ∈ E1,

(iv) µP
B((x1, x2)(y1, y2)) = min(µP

A2
(x2), µ

P
A2

(y2), µ
P
B1

(x1y1)),

µN
B ((x1, x2)(y1, y2)) = max(µN

A2
(x2), µ

N
A2

(y2), µ
N
B1

(x1y1)) for all x2, y2 ∈
V2, where x2 6= y2 and for all x1y1 ∈ E1.



112 W.A. DUDEK, A.A. TALEBI

3 Level graphs of bipolar fuzzy graphs

In this section we define the level graph of a bipolar fuzzy graph and discuss some
important operations on bipolar fuzzy graphs by characterizing these operations by
their level counterparts graphs.

Definition 6. Let A : X → [−1, 0] × [0, 1] be a bipolar fuzzy set on X. The set
A(a,b) = {x ∈ X |µP

A(x) ≥ b , µN
A (x) ≤ a}, where (a, b) ∈ [−1, 0] × [0, 1], is called the

(a, b)-level set of A.

The following theorem is important in this paper. It is substantial modification
of the transfer principle for fuzzy sets described in [8].

Theorem 1. Let V be a set, and A = (µN
A , µP

A) and B = (µN
B , µP

B) be bipolar fuzzy

sets on V and ˜V 2, respectively. Then G = (A,B) is a bipolar fuzzy graph if and
only if (A(a,b), B(a,b)), called the (a, b)-level graph of G, is a graph for each pair
(a, b) ∈ [−1, 0] × [0, 1].

Proof. Let G = (A,B) be a bipolar fuzzy graph. For every (a, b) ∈ [−1, 0]× [0, 1], if
xy ∈ B(a,b), then µN

B (xy) ≤ a and µP
B(xy) ≥ b. Since G is a bipolar fuzzy graph,

a ≥ µN
B (xy) ≥ max(µN

A (x), µN
A (y))

and

b ≤ µP
B(xy) ≤ min(µP

A(x), µP
A(y)),

and so a ≥ µN
A (x), a ≥ µN

A (y), b ≤ µP
A(x), b ≤ µP

A(y), that is, x, y ∈ A(a,b). Therefore,
(A(a,b), B(a,b)) is a graph for each (a, b) ∈ [−1, 0] × [0, 1].

Conversely, let (A(a,b), B(a,b)) be a graph for all (a, b) ∈ [−1, 0]× [0, 1]. For every

xy ∈ ˜V 2, let µN
B (xy) = a and µP

B(xy) = b. Then xy ∈ B(a,b). Since (A(a,b), B(a,b))

is a graph, we have x, y ∈ A(a,b); hence µN
A (x) ≤ a, µP

A(x) ≥ b, µN
A (y) ≤ a and

µP
A(x) ≥ b. Therefore,

µN
B (xy) = a ≥ max(µN

A (x), µN
A (y))

and

µP
B(xy) = b ≤ min(µP

A(x), µP
A(y)),

that is G = (A,B) is a bipolar fuzzy graph.

Theorem 2. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs of
G∗

1 = (V1, E1) and G∗
2 = (V2, E2), respectively. Then G = (A,B) is the Carte-

sian product of G1 and G2 if and only if for each pair (a, b) ∈ [−1, 0] × [0, 1] the
(a, b)-level graph (A(a,b), B(a,b)) is the Cartesian product of ((A1)(a,b), (B1)(a,b)) and
((A2)(a,b), (B2)(a,b)).
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Proof. Let G = (A,B) be the Cartesian product of bipolar fuzzy graphs G1 and G2.
For every (a, b) ∈ [−1, 0] × [0, 1], if (x, y) ∈ A(a,b), then

min(µP
A1

(x), µP
A2

(y)) = µP
A(x, y) ≥ b

and
max(µN

A1
(x), µN

A2
(y)) = µN

A (x, y) ≤ a,

hence x ∈ (A1)(a,b) and y ∈ (A2)(a,b); that is (x, y) ∈ (A1)(a,b) × (A2)(a,b).
Therefore, A(a,b) ⊆ (A1)(a,b) × (A2)(a,b). Now if (x, y) ∈ (A1)(a,b) × (A2)(a,b),

then x ∈ (A1)(a,b) and y ∈ (A2)(a,b). It follows that min(µP
A1

(x), µP
A2

(y)) ≥ b

and max(µN
A1

(x), µN
A2

(y)) ≤ a. Since (A,B) is the Cartesian product of G1

and G2, µP
A(x, y) ≥ b and µN

A (x, y) ≤ a; that is (x, y) ∈ A(a,b). Therefore,
(A1)(a,b) × (A2)(a,b) ⊆ A(a,b) and so (A1)(a,b) × (A2)(a,b) = A(a,b).

We now prove B(a,b) = E, where E is the edge set of the Cartesian product
(G1)(a,b) × (G2)(a,b) for all (a, b) ∈ [−1, 0]× [0, 1]. Let (x1, x2)(y1, y2) ∈ B(a,b). Then,

µP
B((x1, x2)(y1, y2)) ≥ b and µN

B ((x1, x2)(y1, y2)) ≤ a. Since (A,B) is the Cartesian
product of G1 and G2, one of the following cases holds:

(i) x1 = y1 and x2y2 ∈ E2,

(ii) x2 = y2 and x1y1 ∈ E1.

For the case (i), we have

µP
B((x1, x2)(y1, y2)) = min(µP

A1
(x1), µ

P
B2

(x2y2)) ≥ b,

µN
B ((x1, x2)(y1, y2)) = max(µN

A1
(x1), µ

N
B2

(x2y2)) ≤ a,

and so µP
A1

(x1) ≥ b, µN
A1

(x1) ≤ a, µP
B2

(x2y2) ≥ b and µN
B2

(x2y2) ≤ a. It follows that
x1 = y1 ∈ (A1)(a,b), x2y2 ∈ (B2)(a,b); that is (x1, x2)(y1, y2) ∈ E. Similarly, for the
case (ii), we conclude that (x1, x2)(y1, y2) ∈ E. Therefore, B(a,b) ⊆ E. For every

(x, x2)(x, y2) ∈ E, µP
A1

(x) ≥ b, µN
A1

(x) ≤ a, µP
B2

(x2y2) ≥ b and µN
B2

(x2y2) ≤ a. Since
(A,B) is the Cartesian product of G1 and G2, we have

µP
B((x, x2)(x, y2)) = min(µP

A1
(x), µP

B2
(x2y2)) ≥ b,

µN
B ((x, x2)(x, y2)) = max(µN

A1
(x), µN

B2
(x2y2)) ≤ a.

Therefore, (x, x2)(x, y2) ∈ B(a,b). Similarly, for every (x1, z)(y1, z) ∈ E, we have
(x1, z)(y1, z) ∈ B(a,b). Therefore, E ⊆ B(a,b), and so B(a,b) = E.

Conversely, suppose that the (a, b)-level graph (A(a,b), B(a,b)) is the Cartesian
product of ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)) for all (a, b) ∈ [−1, 0]× [0, 1].

Let min(µP
A1

(x1), µ
P
A2

(x2)) = b and max(µN
A1

(x1), µ
N
A2

(x2)) = a for some (x1, x2) ∈
V1 ×V2. Then x1 ∈ (A1)(a,b) and x2 ∈ (A2)(a,b). By the hypothesis, (x1, x2) ∈ A(a,b),
hence

µP
A((x1, x2)) ≥ b = min(µP

A1
(x1), µ

P
A2

(x2))
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and

µN
A ((x1, x2)) ≤ a = max(µN

A1
(x1), µ

N
A2

(x2)).

Now let µN
A (x1, x2) = c and µP

A(x1, x2) = d, then we have (x1, x2) ∈ A(c,d).
Since (A(c,d), B(c,d)) is the Cartesian product of levels ((A1)(c,d), (B1)(c,d)) and
((A2)(c,d), (B2)(c,d)), then x1 ∈ (A1)(c,d) and x2 ∈ (A2)(c,d). Hence,

µP
A1

(x1) ≥ d = µP
A(x1, x2), µN

A1
(x1) ≤ c = µN

A (x1, x2),

µP
A2

(x2) ≥ d = µP
A(x1, x2) and µN

A2
(x2) ≤ c = µN

A (x1, x2).

It follows that
min(µP

A1
(x1), µ

P
A2

(x2)) ≥ µP
A(x1, x2)

and

max(µN
A1

(x1), µ
N
A2

(x2)) ≤ µN
A (x1, x2).

Therefore,

µP
A(x1, x2) = min(µP

A1
(x1), µ

P
A2

(x2))

and

µN
A (x1, x2) = max(µN

A1
(x1), µ

N
A2

(x2)) for all (x1, x2) ∈ V1 × V2.

Similarly, for every x ∈ V1 and every x2y2 ∈ E2, let

min(µP
A1

(x), µP
B2

(x2y2)) = b, max(µN
A1

(x), µN
B2

(x2y2)) = a,

µP
B((x, x2)(x, y2)) = d and µN

B ((x, x2)(x, y2)) = c.

Then we have µP
A1

(x) ≥ b, µP
B2

(x2y2) ≥ b, µN
A1

(x) ≤ a, µN
B2

(x2y2) ≤ a and
(x, x2)(x, y2) ∈ B(c,d), i.e., x ∈ (A1)(a,b), x2y2 ∈ (B2)(a,b) and (x, x2)(x, y2) ∈ B(c,d).
Since (A(a,b), B(a,b)) (respectively, (A(c,d), B(c,d))) is the Cartesian product of le-
vels ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)) (respectively, ((A1)(c,d), (B1)(c,d))
and ((A2)(c,d), (B2)(c,d))), we have (x, x2)(x, y2) ∈ B(a,b), x ∈ (A1)(c,d), and

x2y2 ∈ (B2)(c,d), which implies (x, x2)(x, y2) ∈ B(a,b), µP
A1

(x) ≥ d, µN
A1

(x) ≤ c,

µP
B2

(x2y2) ≥ d and µN
B2

(x2y2) ≤ c. It follows that

µN
B ((x, x2)(x, y2)) ≤ a = max(µN

A1
(x), µN

B2
(x2y2)),

µP
B((x, x2)(x, y2)) ≥ b = min(µP

A1
(x), µP

B2
(x2y2)),

min(µP
A1

(x), µP
B2

(x2y2)) ≥ d = µP
B((x, x2)(x, y2)),

and

max(µN
A1

(x), µN
B2

(x2y2)) ≤ c = µN
B ((x, x2)(x, y2)).

Therefore,

µP
B((x, x2)(x, y2)) = min(µP

A1
(x), µP

B2
(x2y2)),

µN
B ((x, x2)(x, y2)) = max(µN

A1
(x), µN

B2
(x2y2))
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for all x ∈ V1 and x2y2 ∈ E2.

As above we can show that

µP
B((x1, z)(y1, z)) = min(µP

B1
(x1y1), µ

P
A2

(z)),

µN
B ((x1, z)(y1, z)) = max(µN

B1
(x1y1), µ

N
A2

(z))

for all z ∈ V2 and for all x1y1 ∈ E1. This completes the proof.

Now by Theorem 1 and Theorem 2 we have the following corollary.

Corollary 1. If G1 = (A1, B1) and G2 = (A2, B2) are bipolar fuzzy graphs, then
the Cartesian product G1 × G2 is a bipolar fuzzy graph.

Theorem 3. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs of
G∗

1 = (V1, E1) and G∗
2 = (V2, E2), respectively. Then G = (A,B) is the composition

of G1 and G2 if and only if for each (a, b) ∈ [−1, 0] × [0, 1] the (a, b)-level graph
(A(a,b), B(a,b)) is the composition of ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)).

Proof. Let G = (A,B) be the composition of bipolar fuzzy graphs G1 and G2.
By the definition of G1[G2] and the same argument as in the proof of Theorem 2,
we have A(a,b) = (A1)(a,b) × (A2)(a,b). Now we prove B(a,b) = E, where E is the
edge set of the composition (G1)(a,b)[(G2)(a,b)] for all (a, b) ∈ [−1, 0] × [0, 1]. Let

(x1, x2)(y1, y2) ∈ B(a,b). Then µP
B((x1, x2)(y1, y2)) ≥ b and µN

B ((x1, x2)(y1, y2)) ≤ a.
Since G = (A,B) is the composition G1[G2], one of the following cases holds:

(i) x1 = y1 and x2y2 ∈ E2,

(ii) x2 = y2 and x1y1 ∈ E1,

(iii) x2 6= y2 and x1y1 ∈ E1.

For the cases (i) and (ii), similarly as in the cases of (i) and (ii) in the proof of
Theorem 2, we obtain (x1, x2)(y1, y2) ∈ E. For the case (iii), we have

µP
B((x1, x2)(y1, y2)) = min(µP

A2
(x2), µ

P
A2

(y2), µ
P
B1

(x1y1)) ≥ b,

µN
B ((x1, x2)(y1, y2)) = max(µN

A2
(x2), µ

N
A2

(y2), µ
N
B1

(x1y1)) ≤ a.

Thus, µP
A2

(x2) ≥ b, µP
A2

(y2) ≥ b, µP
B1

(x1y1) ≥ b, µN
A2

(x2) ≤ a, µN
A2

(y2) ≤ a and

µN
B1

(x1y1) ≤ a. It follows that x2, y2 ∈ (A2)(a,b) and x1y1 ∈ (B1)(a,b); that is
(x1, x2)(y1, y2) ∈ E. Therefore, B(a,b) ⊆ E.

For every (x, x2)(x, y2) ∈ E, µP
A1

(x) ≥ b, µN
A1

(x) ≤ a, µP
B2

(x2y2)) ≥ b and

µN
B2

(x2y2) ≤ a. Since G = (A,B) is the composition G1[G2], we have

µP
B((x, x2)(x, y2)) = min(µP

A1
(x), µP

B2
(x2y2)) ≥ b,

µN
B ((x, x2)(x, y2)) = max(µN

A1
(x), µN

B2
(x2y2)) ≤ a.
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Therefore, (x, x1)(x, y2) ∈ B(a,b). Similarly, for every (x1, z)(y1, z) ∈ E, we have
(x, x2)(x, y2) ∈ B(a,b). For every (x1, x2)(y1, y2) ∈ E, where x2 6= y2, is x1 6= y1,

µP
B1

(x1y1) ≥ b, µN
B1

(x1y1) ≤ a, µP
A2

(y2) ≥ b, µN
A2

(y2) ≤ a, µP
A2

(x2) ≥ b and

µN
A2

(x2) ≤ a. Since G = (A,B) is the composition G1[G2], we have

µP
B((x1, x2)(y1, y2)) = min(µP

A2
(x2), µ

P
A2

(y2), µ
P
B1

(x1y1)) ≥ b,

µN
B ((x1, x2)(y1, y2)) = max(µN

A2
(x2), µ

N
A2

(y2), µ
N
B1

(x1y1)) ≤ a,

hence (x1, x2)(y1, y2) ∈ B(a,b). Therefore E ⊆ B(a,b), and so E = B(a,b).
Conversely, suppose that (A(a,b), B(a,b)), where (a, b) ∈ [−1, 0] × [0, 1], is the

composition of ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)). By the definition of the
composition and the proof of Theorem 2, we have

(i) µP
A(x1, x2) = min(µP

A1
(x1), µ

P
A2

(x2)),

µN
A (x1, x2) = max(µN

A1
(x1), µ

N
A2

(x2)) for all (x1, x2) ∈ V1 × V2,

(ii) µP
B((x, x2)(x, y2)) = min(µP

A1
(x), µP

B2
(x2y2)),

µN
B ((x, x2)(x, y2)) = max(µN

A1
(x), µN

B2
(x2y2)) for all x ∈ V1 and x2y2 ∈ E2,

(iii) µP
B((x1, z)(y1, z)) = min(µP

B1
(x1y1), µ

P
A2

(z)),

µN
B ((x1, z)(y1, z)) = max(µN

B1
(x1y1), µ

N
A2

(z)) for all z ∈ V2 and x1y1 ∈ E1.

Similarly, by the same argumentation as in the proof of Theorem 2, we obtain

µP
B((x1, x2)(y1, y2)) = min(µP

A2
(x2), µ

P
A2

(y2), µ
P
B1

(x1y1)),

µN
B ((x1, x2)(y1, y2)) = max(µN

A2
(x2), µ

N
A2

(y2), µ
N
B1

(x1y1))

for all x2, y2 ∈ V2 (x2 6= y2) and for all x1y1 ∈ E1. This completes the proof.

Corollary 2. If G1 = (A1, B1) and G2 = (A2, B2) are bipolar fuzzy graphs, then
their composition G1[G2] is a bipolar fuzzy graph.

Theorem 4. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs of
G∗

1 = (V1, E1) and G∗
2 = (V2, E2), respectively, and V1 ∩ V2 = ∅. Then G = (A,B)

is the union of G1 and G2 if and only if each (a, b)-level graph (A(a,b), B(a,b)) is the
union of ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)).

Proof. Let G = (A,B) be the union of bipolar fuzzy graphs G1 and G2. We show
that A(a,b) = (A1)(a,b) ∪ (A2)(a,b) for each (a, b) ∈ [−1, 0] × [0, 1]. Let x ∈ A(a,b),

then x ∈ V1 \ V2 or x ∈ V2 \ V1. If x ∈ V1 \ V2, then µP
A1

(x) = µP
A(x) ≥ b and

µN
A1

(x) = µN
A (x) ≤ a, which implies x ∈ (A1)(a,b). Analogously x ∈ V2 \ V1 implies

x ∈ (A2)(a,b). Therefore, x ∈ (A1)(a,b)∪ (A2)(a,b), and so A(a,b) ⊆ (A1)(a,b)∪ (A2)(a,b).
Now let x ∈ (A1)(a,b) ∪ (A2)(a,b). Then we have x ∈ (A1)(a,b) and x 6∈ (A2)(a,b)

or x ∈ (A2)(a,b) and x 6∈ (A1)(a,b). For the first case, we have µP
A(x) = µP

A1
(x) ≥ b

and µN
A (x) = µN

A1
(x) ≤ a, which implies x ∈ A(a,b). For the second case, we have
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µP
A(x) = µP

A2
(x) ≥ b and µN

A (x) = µN
A2

(x) ≤ a. Hence x ∈ A(a,b). Consequently,
(A1)(a,b) ∪ (A2)(a,b) ⊆ A(a,b). To prove that B(a,b) = (B1)(a,b) ∪ (B2)(a,b) for all
(a, b) ∈ [−1, 0] × [0, 1] consider xy ∈ B(a,b). Then xy ∈ E1 \ E2 or xy ∈ E2 \ E1.

For xy ∈ E1 \ E2 we have µP
B1

(xy) = µP
B(xy) ≥ b and µN

B1
(xy) = µN

B (xy) ≤ a. Thus
xy ∈ (B1)(a,b). Similarly xy ∈ E2 \ E1 gives xy ∈ (B2)(a,b). Therefore B(a,b) ⊆
(B1)(a,b) ∪ (B2)(a,b). If xy ∈ (B1)(a,b) ∪ (B2)(a,b), then xy ∈ (B1)(a,b) \ (B2)(a,b) or

xy ∈ (B2)(a,b) \ (B1)(a,b). For the first case, µP
B(xy) = µP

B1
(xy) ≥ b and µN

B (xy) =

µN
B1

(xy) ≤ a, hence xy ∈ B(a,b). In the second case we obtain xy ∈ B(a,b). Therefore,
(B1)(a,b) ∪ (B2)(a,b) ⊆ B(a,b).

Conversely, let for all (a, b) ∈ [−1, 0] × [0, 1] the level graph (A(a,b), B(a,b)) be

the union of ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)). Let x ∈ V1, µP
A1

(x) = b,

µN
A1

(x) = a, µP
A(x) = d and µN

A (x) = c. Then x ∈ (A1)(a,b) and x ∈ A(c,d). But by

the hypothesis x ∈ A(a,b) and x ∈ (A1)(c,d). Thus, µP
A(x) ≥ b, µN

A (x) ≤ a, µP
A1

(x) ≥ d

and µN
A1

(x) ≤ c. Therefore, µP
A1

(x) ≤ µP
A(x), µN

A (x) ≥ µN
A1

(x), µP
A1

(x) ≥ µP
A(x) and

µN
A1

(x) ≤ µN
A (x). Hence µP

A1
(x) = µP

A(x) and µN
A (x) = µN

A1
(x). Similarly, for every

x ∈ V2, we get µP
A2

(x) = µP
A(x) and µN

A (x) = µN
A2

(x). Thus, we conclude that

(i)

{

µP
A(x) = µP

A1
(x) if x ∈ V1

µP
A(x) = µP

A2
(x) if x ∈ V2,

(ii)

{

µN
A (x) = µN

A1
(x) if x ∈ V1

µN
A (x) = µN

A2
(x) if x ∈ V2.

By a similar method as above, we obtain

(iii)

{

µP
B(xy) = µP

B1
(xy) if xy ∈ E1

µP
B(xy) = µP

B2
(xy) if xy ∈ E2,

(iv)

{

µN
B (xy) = µN

B1
(xy) if xy ∈ E1

µN
B (xy) = µN

B2
(xy) if xy ∈ E2.

This completes the proof.

Corollary 3. If G1 and G2 are bipolar fuzzy graphs of G∗
1 = (V1, E1) and G∗

2 =
(V2, E2), respectively, in which V1 ∩ V2 = ∅, then G1 ∪ G2 is a bipolar fuzzy graph.

Theorem 5. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs of
G∗

1 = (V1, E1) and G∗
2 = (V2, E2), respectively, and V1 ∩ V2 = ∅. Then G = (A,B)

is the join of G1 and G2 if and only if each (a, b)-level graph (A(a,b), B(a,b)) is the
join of ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)).

Proof. Let G = (A,B) be the join of bipolar fuzzy graphs G1 and G2. Then by the
definition and the proof of Theorem 4, A(a,b) = (A1)(a,b) ∪ (A2)(a,b) for all (a, b) ∈
[−1, 0] × [0, 1]. We show that B(a,b) = (B1)(a,b) ∪ (B2)(a,b) ∪ E′

(a,b) for all (a, b) ∈

[−1, 0] × [0, 1], where E′
(a,b) is the set of all edges joining the vertices (A1)(a,b) and

(A2)(a,b).



118 W.A. DUDEK, A.A. TALEBI

From the proof of Theorem 4 it follows that (B1)(a,b) ∪ (B2)(a,b) ⊆ B(a,b). If

xy ∈ E′
(a,b), then µP

A1
(x) ≥ b, µN

A1
(x) ≤ a, µP

A2
(y) ≥ b and µN

A2
(y) ≤ a. Hence

µP
B(xy) = min(µP

A1
(x), µP

A2
(y)) ≥ b

and
µN

B (xy) = max(µN
A1

(x), µN
A2

(y)) ≤ a.

It follows that xy ∈ B(a,b). Therefore, (B1)(a,b)∪ (B2)(a,b) ∪E′
(a,b) ⊆ B(a,b). For every

xy ∈ B(a,b), if xy ∈ E1 ∪E2, then xy ∈ (B1)(a,b) ∪ (B2)(a,b), by the proof of Theorem
4. If x ∈ V1 and y ∈ V2, then

min(µP
A1

(x), µP
A2

(y)) = µP
B(xy) ≥ b

and
max(µN

A1
(x), µN

A2
(y)) = µN

B (xy) ≤ a,

hence x ∈ (A1)(a,b) and y ∈ (A2)(a,b). So, xy ∈ E′
(a,b). Therefore, B(a,b) ⊆ (B1)(a,b) ∪

(B2)(a,b) ∪ E′
(a,b).

Conversely, let each level graph (A(a,b), B(a,b)) be the join of ((A1)(a,b), (B1)(a,b))
and ((A2)(a,b), (B2)(a,b)). From the proof of Theorem 4, we have

(i)

{

µP
A(x) = µP

A1
(x) if x ∈ V1

µP
A(x) = µP

A2
(x) if x ∈ V2,

(ii)

{

µN
A (x) = µN

A1
(x) if x ∈ V1

µN
A (x) = µN

A2
(x) if x ∈ V2,

(iii)

{

µP
B(xy) = µP

B1
(xy) if xy ∈ E1

µP
B(xy) = µP

B2
(xy) if xy ∈ E2,

(iv)

{

µN
B (xy) = µN

B1
(xy) if xy ∈ E1

µN
B (xy) = µN

B2
(xy) if xy ∈ E2.

Let x ∈ V1, y ∈ V2, min(µP
A1

(x), µP
A2

(y)) = b, max(µN
A1

(x), µN
A2

(y)) = a,

µP
B(xy) = d and µN

B (xy) = c. Then x ∈ (A1)(a,b), y ∈ (A2)(a,b) and xy ∈ B(c,d). It

follows that xy ∈ B(a,b), x ∈ (A1)(c,d) and y ∈ (A2)(c,d). So, µP
B(xy) ≥ b, µN

B (xy) ≤ a,

µP
A1

(x) ≥ d, µN
A1

(x) ≤ c, µP
A2

(y) ≥ d and µN
A2

(y) ≤ c. Therefore,

µP
B(xy) ≥ b = min(µP

A1
(x), µP

A2
(y)) ≥ d = µP

B(xy),

µN
B (xy) ≤ a = max(µN

A1
(x), µP

A2
(y)) ≤ c = µN

B (xy).

Thus,

µP
B(xy) = min(µP

A1
(x), µP

A2
(y)), µN

B (xy) = max(µN
A1

(x), µN
A2

(y)),

as desired.
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Theorem 6. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs of
G∗

1 = (V1, E1) and G∗
2 = (V2, E2), respectively. Then G = (A,B) is the cross

product of G1 and G2 if and only if each (a, b)-level graph (A(a,b), B(a,b)) is the cross
product of ((A1)(a,b), (B1)(a,b) and ((A2)(a,b), (B2)(a,b)).

Proof. Let G = (A,B) be the cross product of G1 and G2. By the definition of
the Cartesian product G1 × G2 and the proof of Theorem 2, we have A(a,b) =
(A1)(a,b) × (A2)(a,b) for all (a, b) ∈ [−1, 0] × [0, 1]. We show that

B(a,b) = {(x1, x2)(y1, y2) |x1y1 ∈ (B1)(a,b) , x2y2 ∈ (B2)(a,b)}

for all (a, b) ∈ [−1, 0] × [0, 1]. Indeed, if (x1, x2)(y1, y2) ∈ B(a,b), then

µP
B((x1, x2)(y1, y2)) = min(µP

B1
(x1y1), µ

P
B2

(x2y2)) ≥ b,

µN
B ((x1, x2)(y1, y2)) = max(µN

B1
(x1y1), µ

P
B2

(x2y2)) ≤ a,

hence µP
B1

(x1y1) ≥ b, µP
B2

(x2y2) ≥ b, µN
B1

(x1y1) ≤ a and µP
B2

(x2y2) ≤ a. So,
x1y1 ∈ (B1)(a,b) and x2y2 ∈ (B2)(a,b). Now if x1y1 ∈ (B1)(a,b) and x2y2 ∈ (B2)(a,b),

then µP
B1

(x1y1) ≥ b, µN
B1

(x1y1) ≤ a, µP
B2

(x2y2) ≥ b and µN
B2

(x2y2) ≤ a. It follows
that

µP
B((x1, x2)(y1, y2)) = min(µP

B1
(x1y1), µ

P
B2

(x2y2)) ≥ b,

µN
B ((x1, x2)(y1, y2)) = max(µN

B1
(x1y1), µ

N
B2

(x2y2)) ≤ a,

because G = (A,B) is the cross product G1 ∗G2. Therefore, (x1, x2)(y1, y2) ∈ B(a,b).
Conversely, let each (a, b)-level graph (A(a,b), B(a,b)) be the cross product

of ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)). In view of the fact that the
cross product (A(a,b), B(a,b)) has the same vertex set as the cartesian product of
((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)), and by the proof of Theorem 2, we
have

µP
A((x1, x2)) = min(µP

A1
(x1), µ

P
A2

(x2)),

µN
A ((x1, x2)) = max(µN

A1
(x1), µ

N
A2

(x2)),

for all (x1, x2) ∈ V1 × V2.

Let min(µP
B1

(x1y1), µ
P
B2

(x2y2)) = b, max(µN
B1

(x1y1), µ
N
B2

(x2y2)) = a,

µP
B((x1, x2)(y1, y2)) = d and µN

B ((x1, x2)(y1, y2)) = c for x1y1 ∈ E1, x2y2 ∈ E2. Then
µP

B1
(x1y1) ≥ b, µP

B2
(x2y2) ≥ b, µN

B1
(x1y1) ≤ a, µN

B2
(x2y2) ≤ a and (x1, x2)(y1, y2) ∈

B(c,d), hence x1y1 ∈ (B1)(a,b) , x2y2 ∈ (B2)(a,b), and consequently, x1y1 ∈ (B1)(c,d),
x2y2 ∈ (B2)(c,d) since B(c,d) = {(x1, x2)(y1, y2) |x1y1 ∈ (B1)(c,d) , x2y2 ∈ (B2)(c,d)}.

It follows that (x1, x2)(y1, y2) ∈ B(a,b), µP
B1

(x1y1) ≥ d, µN
B1

(x1y1) ≤ c, µP
B2

(x2y2) ≥ d

and µN
B2

(x2y2) ≤ c. Therefore,

µP
B((x1, x2)(y1, y2)) = d ≤ min(µP

B1
(x1y1), µ

P
B2

(x2y2)) = b ≤ µP
B((x1, x2)(y1, y2)),

µN
B ((x1, x2)(y1, y2)) = c ≥ max(µN

B1
(x1y1), µ

N
B2

(x2y2)) = a ≥ µN
B ((x1, x2)(y1, y2)).
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Hence

µP
B((x1, x2)(y1, y2)) = min(µP

B1
(x1y1), µ

P
B2

(x2y2)),

µN
B ((x1, x2)(y1, y2)) = max(µN

B1
(x1y1), µ

N
B2

(x2y2)),

which completes our proof.

Corollary 4. The cross product of two bipolar fuzzy graphs is a bipolar fuzzy graph.

Theorem 7. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs of
G∗

1 = (V1, E1) and G∗
2 = (V2, E2), respectively. Then G = (A,B) is the lexicographic

product of G1 and G2 if and only if G(a,b) = (G1)(a,b) • (G2)(a,b) for all (a, b) ∈
[−1, 0] × [0, 1].

Proof. Let G = (A,B) = G1•G2. By the definition of the Cartesian product G1×G2

and the proof of Theorem 2, we have A(a,b) = (A1)(a,b) × (A2)(a,b) for all (a, b) ∈
[−1, 0] × [0, 1]. We show that B(a,b) = E(a,b) ∪ E′

(a,b) for all (a, b) ∈ [−1, 0] × [0, 1],

where E(a,b) = {(x, x2)(x, y2) |x ∈ V1 , x2y2 ∈ (B2)(a,b)} is the subset the edge set
of the direct product (G1)(a,b) × (G2)(a,b), and E′

(a,b) = {(x1, x2)(y1, y2) |x1y1 ∈

(B1)(a,b) , x2y2 ∈ (B2)(a,b)} is the edge set of the cross product (G1)(a,b) ∗ (G2)(a,b).
For every (x1, x2)(y1, y2) ∈ B(a,b), x1 = y1, x2y2 ∈ E2 or x1y1 ∈ E1, x2y2 ∈ E2. If
x1 = y1, x2y2 ∈ E2, then (x1, x2)(y1, y2) ∈ E(a,b), by the definition of the Cartesian
product and the proof of Theorem 2. If x1y1 ∈ E1, x2y2 ∈ E2, then (x1, x2)(y1, y2) ∈
E′

(a,b), by the definition of the cross product and the proof of Theorem 6. Therefore,

B(a,b) ⊆ E(a,b) ∪ E′
(a,b). From the definition of the Cartesian product and the proof

of Theorem 2, we conclude that E(a,b) ⊆ B(a,b), and also from the definition of the
cross product and the proof of Theorem 6, we obtain E′

(a,b) ⊆ B(a,b). Therefore,

E(a,b) ∪ E′
(a,b) ⊆ B(a,b).

Conversely, let G(a,b) = (A(a,b), B(a,b)) = (G1)(a,b) • (G2)(a,b) for all (a, b) ∈
[−1, 0] × [0, 1]. We know that (G1)(a,b) • (G2)(a,b) has the same vertex set as the
Cartesian product (G1)(a,b) × (G2)(a,b). Now by the proof of Theorem 2, we have

µP
A((x1, x2)) = min(µP

A1
(x1), µ

P
A2

(x2)),

µN
A ((x1, x2)) = max(µN

A1
(x1), µ

N
A2

(x2))

for all (x1, x2) ∈ V1 × V2.

Assume that for some x ∈ V1 and x2y2 ∈ E2 is min(µP
A1

(x), µP
B2

(x2y2)) = b,

max(µN
A1

(x), µN
B2

(x2y2)) = a, µP
B((x, x2)(x, y2)) = d and µN

B ((x, x2)(x, y2)) = c.
Then, in view of the definitions of the Cartesian and lexicographic products, we
have

(x, x2)(x, y2) ∈ (B1)(a,b) • (B2)(a,b) ⇔ (x, x2)(x, y2) ∈ (B1)(a,b) × (B2)(a,b),

(x, x2)(x, y2) ∈ (B1)(c,d) • (B2)(c,d) ⇔ (x, x2)(x, y2) ∈ (B1)(c,d) × (B2)(c,d).
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From this, by the same argument as in the proof of Theorem 2, we can conclude

µP
B((x, x2)(x, y2)) = min(µP

A(x), µP
B2

(x2y2)),

µN
B ((x, x2)(x, y2)) = max(µN

A (x), µN
B2

(x2y2)).

Suppose now that we have µP
B((x1, x2)(y1, y2)) = d, µN

B ((x1, x2)(y1, y2)) = c,
min(µP

B1
(x1y1), µ

P
B2

(x2y2)) = b, max(µN
B1

(x1y1), µ
N
B2

(x2y2)) = a for x1y1 ∈ E1 and
x2y2 ∈ E2. Then, in view of the definitions of the cross product and the lexicographic
product, we have

(x1, x2)(y1, y2) ∈ (B1)(a,b) • (B2)(a,b) ⇔ (x1, x2)(y1, y2) ∈ (B1)(a,b) ∗ (B2)(a,b),

(x1, x2)(y1, y2) ∈ (B1)(c,d) • (B2)(c,d) ⇔ (x1, x2)(y1, y2) ∈ (B1)(c,d) ∗ (B2)(c,d).

By the same argument as in the proof of Theorem 6, we can conclude

µP
B((x1, x2)(y1, y2)) = min(µP

B1
(x1y1), µ

P
B2

(x2y2)),

µN
B ((x1, x2)(y1, y2)) = max(µN

B1
(x1y1), µ

N
B2

(x2y2)),

which completes the proof.

Corollary 5. The lexicographic product of two bipolar fuzzy graphs is a bipolar fuzzy
graph.

Lemma 1. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs of G∗
1 =

(V1, E1) and G∗
2 = (V2, E2), respectively, such that V1 = V2, A1 = A2 and E1 ∩E2 =

∅. Then G = (A,B) is the union of G1 and G2 if and only if (A(a,b), B(a,b)) is the
union of ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)) for all (a, b) ∈ [−1, 0] × [0, 1].

Proof. Let G = (A,B) be the union of bipolar fuzzy graphs G1 and G2. Then by the
definition of the union and the fact that V1 = V2, A1 = A2, we have A = A1 = A2,
hence A(a,b) = (A1)(a,b)∪(A2)(a,b). We now show that B(a,b) = (B1)(a,b)∪(B2)(a,b) for

all (a, b) ∈ [−1, 0] × [0, 1]. For every xy ∈ (B1)(a,b) we have µP
B(xy) = µP

B1
(xy) ≥ b

and µN
B (xy) = µN

B1
(xy) ≤ a, hence xy ∈ B(a,b). Therefore, (B1)(a,b) ⊆ B(a,b).

Similarly, we obtain (B2)(a,b) ⊆ B(a,b). Thus, (B1)(a,b) ∪ (B2)(a,b) ⊆ B(a,b). For every

xy ∈ B(a,b) either xy ∈ E1 or xy ∈ E2. If xy ∈ E1, µP
B1

(xy) = µP
B(xy) ≥ b and

µN
B1

(xy) = µN
B (xy) ≤ a and hence xy ∈ (B1)(a,b). If xy ∈ E2, we have xy ∈ (B2)(a,b).

Therefore, B(a,b) ⊆ (B1)(a,b) ∪ (B2)(a,b).
Conversely, suppose that the (a, b)-level graph (A(a,b), B(a,b)) be the union of

((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)). Let µP
A(x) = b, µN

A (x) = a, µP
A1

(x) = d

and µN
A1

(x) = c for some x ∈ V1 = V2. Then x ∈ A(a,b) and x ∈ (A1)(c,d), so x ∈
(A1)(a,b) and x ∈ A(c,d), because A(a,b) = (A1)(a,b) and A(c,d) = (A1)(c,d). It follows

that µP
A1

(x) ≥ b, µN
A1

(x) ≤ a, µP
A(x) ≥ d and µN

A (x) ≤ c. Therefore, µP
A1

(x) ≥ µP
A(x),

µN
A1

(x) ≤ µN
A (x), µP

A(x) ≥ µP
A1

(x) and µN
A (x) ≤ µN

A1
(x). So, µP

A(x) = µP
A1

(x) and

µN
A (x) = µN

A1
(x). Since A1 = A2, V1 = V2, then A = A1 = A1 ∪ A2.

By a similar method, we conclude that
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(i)

{

µP
B(xy) = µP

B1
(xy) if xy ∈ E1

µP
B(xy) = µP

B2
(xy) if xy ∈ E2,

(ii)

{

µN
B (xy) = µN

B1
(xy) if xy ∈ E1

µN
B (xy) = µN

B2
(xy) if xy ∈ E2.

This completes the proof.

Theorem 8. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs of
G∗

1 = (V1, E1) and G∗
2 = (V2, E2), respectively. Then G = (A,B) is the strong

product of G1 and G2 if and only if each G(a,b), where (a, b) ∈ [−1, 0] × [0, 1], is the
strong product of (G1)(a,b) and (G2)(a,b).

Proof. According to the definitions of the strong product, the cross product and the
Cartesian product, we obtain G1 ⊠ G2 = (G1 × G2) ∪ (G1 ∗ G2) and

(G1)(a,b) ⊠ (G2)(a,b) = ((G1)(a,b) × (G2)(a,b)) ∪ ((G1)(a,b) ∗ (G2)(a,b))

for all (a, b) ∈ [−1, 0] × [0, 1]. Now by Theorem 6, Theorem 2 and Lemma 1, we see
that

G = G1 ⊠ G2 ⇐⇒ G = (G1 × G2) ∪ (G1 ∗ G2)

⇐⇒ G(a,b) = (G1 × G2)(a,b) ∪ (G1 ∗ G2)(a,b)

⇐⇒ G(a,b) = ((G1)(a,b) × (G2)(a,b)) ∪ ((G1)(a,b) ∗ (G2)(a,b))

⇐⇒ G(a,b) = (G1)(a,b) ⊠ (G2)(a,b)

for all (a, b) ∈ [−1, 0] × [0, 1].

Corollary 6. The strong product of two bipolar fuzzy graphs is a bipolar fuzzy graph.

4 Conclusion

Graph theory is one of the branches of modern mathematics applied to many
areas of mathematics, science, and technology. In computer science, graphs are used
to represent networks of communication, computational devices, image segmenta-
tion, clustering and the flow of computation. In many cases, some aspects of a
graph theoretic problem may be uncertain, and we deal with bipolar information.
Bipolarity is met in many areas such as knowledge representation, reasoning with
conditions, inconsistency handling, constraint satisfaction problem, decision, learn-
ing, etc. In this paper, we define the notion of level graph of a bipolar fuzzy graph
and investigate some of their properties. We define three kinds of new operations
of bipolar fuzzy graphs and discuss these operations and some defined important
operations on bipolar fuzzy graphs by characterizing these operations by their level
counterparts graphs.
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Abstract. A repeated bijection in an isotopism of quasigroups is called a companion
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Isotopy coincides with pseudoisomorphy∗ in the class of inverse property loops and
with isomorphy in the class of commutative inverse property loops. This result is
a generalization of the corresponding theorem for commutative Moufang loops. A
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all its middle translations are automorphisms. In every quasigroup two identities of
distributivity (left, right and middle) imply the third. This fact and some others help
us to find a short proof of a theorem which gives necessary and sufficient conditions for
a quasigroup to be distributive. There is but a slight difference between this theorem
and the well-known Belousov’s theorem.
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This article is dedicated to the me-

mory of my dear teacher professor

Valentin Danilovich Belousov

Introduction

V. D. Belousov’s monograph [1] was published almost 50 years ago and became
very popular among mathematicians. It is still a desk book for many algebraists.

The growth of applications of the quasigroup theory in information processing,
and expansion of research methods by computer tools and nascence of computer
algebra have increased the need to form a coherent quasigroup theory. The author
hopes that the proposed article will promote the development of this theory.

Here, a different approach to the proof of Belousov’s theorem is suggested. Due to
this approach, it became possible to significantly simplify the proof of the theorem
and all related statements. The article is self-contained, i. e., it includes all the
necessary properties with proofs despite the fact that some of them are well known
and can be found in [1], [2]. A historical overview of the results of distributive
quasigroups is not discussed here because it has already been done in [4].

In the first part of the paper, some properties of loop isotopy are established
and they are applied in the second part. The importance of study of isotopy rela-
tion in quasigroup theory is explained by the following fact: each homotopism of

∗isotopy, pseudoisomorphy, isomorphy denote relation among groupoids and isotopism, psuedoi-
somorphism, isomorphism are the corresponding sequence of bijections
c© F. M. Sokhatsky, 2016
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quasigroups can be represented as a composition of isotopisms from quasigroups to
loops and homomorphisms of loops. V. D. Belousov [1] has proposed a programm
of development of the quasigroup theory in problems, which are mainly related to
the study of isotopy.

Isotopisms with two coinciding components are proposed to be considered. The
repeated bijection is called a companion of the third component. The third compo-
nent is called a pseudoisomorphism. This notion is a generalization of the notion of
pseudoautomorphism, its companions are bijections, but not elements. The following
fact shows the importance of the concept: isotopy coincides with pseudoisomorphy
for inverse property loops (Corollary 3). It is easy to deduce that isotopy coin-
cides with isomorphy for commutative inverse property loops (Corollary 5). This
result is a generalization of the corresponding theorem for commutative Moufang
loops [1, Theorem 6.7], [2, Theorem IV.5.6].

Questions about the relations between different types of isotopy arise. For ex-
ample, when are pseudoisomorphic quasigroups isomorphic? A partial answer is
given in Theorem 1: pseudoisomorphic commutative loops with coinciding nuclei
are isomorphic. Or what properties are invariant under pseudoisomorphy? Etc.

It is suggested to consider also the middle distributivity identity, defining it in
the similar way as the identities of the left and right distributivity: a quasigroup is
middle distributive if all its middle translations are automorphisms of the quasigroup.
It is proved that in every quasigroup two identities of distributivity imply the third
(Theorem 9). Therefore, any distributive quasigroup satisfies left, right and middle
distributive identities. This fact and some others help us to give a short proof of
Theorem 3, which gives necessary and sufficient conditions for a quasigroup to be
distributive. There is but a slight difference between this theorem and the well-
known Belousov’s theorem (Corollary 11).

The theorem implies that every distributive quasigroup is defined over some
commutative Moufang loop by an automorphism of the loop which satisfies (16).
This identity is equivalent to all identities of distributivity in the loop. Finally, it
is proved that any two automorphisms defining distributive quasigroups over the
same commutative Moufang loop 1) differ in a central endomorphism of the loop
(Corollary 13); 2) define isomorphic distributive quasigroups if and only if they are
conjugate by an automorphism of the loop (Corollary 14).

1 Preliminaries

Let Q be an arbitrary set and (·) be an invertible operation defined on Q, then
the pair (Q; ·) is called a quasigroup. Invertibility means that for arbitrary a, b ∈ Q
each of the equations x · a = b and a · y = b is uniquely solvable in Q.

A τ -parastrophe (Q;
τ
·) of a quasigroup (Q; ·) is defined by

x1τ
τ
· x2τ = x3τ :⇔ x1 · x2 = x3
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for every τ ∈ S3 := {ι, ℓ, r, s, sℓ, sr}, where s := (12), ℓ := (13), r := (23). Special

notation: (∗) := (
s
·), (\) := (

r
·), (/) := (

ℓ
·). All parastrophes can be defined by

identities. Some of them are the following

(x · y)/y = x, (x/y) · y = x, x\(x · y) = y, x · (x\y) = y. (1)

A left La,τ , right Ra,τ and middle Ma,τ translations of the quasigroup (Q;
τ
· ) are

defined by

La,τ (x) := a
τ
· x, Ra,τ (x) := x

τ
· a, Ma,τ (x) = y :⇔ x

τ
· y = a (2)

for any a ∈ Q and τ ∈ S3. As usual, the translations La,ι, Ra,ι, Ma,ι are denoted
by La, Ra, Ma respectively. In general, there are six parastrophes of a quasigroup.
The set of all their translations consists of the following six transformations:

La(x) = a · x = a
ι
· x, Ra(x) = x · a = x

ι
· a, Ma(x) = x\a = x

r
· a,

L−1
a (x) = a\x = a

r
· x, R−1

a (x) = x/a = x
ℓ
· a, M−1

a (x) = a/x = a
ℓ
· x.

(3)

The relations among translations of parastrophic operations are easily verifiable (see,
for example [3]) and can be expressed in the following table:

. . . τ ι s ℓ r sℓ sr

La,τ La Ra M−1
a L−1

a R−1
a Ma

Ra,τ Ra La R−1
a Ma M−1

a L−1
a

Ma,τ Ma M−1
a L−1

a Ra La R−1
a

(4)

A triplet (α, β, γ) of mappings from a set Qo into a set Q is called a homotopism
of a groupoid (Qo; ◦) into a groupoid (Q; ·) if

γ(x ◦ y) = αx · βy

holds for all x, y ∈ Qo. A homotopism (α, β, γ) is called an isotopism if α, β, γ are
bijections. If in addition Qo = Q and (·) = (◦), then it is an autotopism of (Q; ·).

A triplet (Q; ·, e) is called a loop if (Q; ·) is a quasigroup and e is its neutral
element, i.e., e · x = x · e = x holds for all x ∈ Q.

Left, right and middle nuclei of a loop (Q; ·, e) are defined by

N
(·)
ℓ := {a | ax · y = a · xy} = {a | (La, ι, La) is an autotopism of (Q; ·, e)},

N
(·)
r := {a | x · ya = xy · a} = {a | (ι, Ra, Ra) is an autotopism of (Q; ·, e)},

N
(·)
m := {a | xa · y = x · ay} = {a | (R−1

a , La, ι) is an autotopism of (Q; ·, e)}.

(5)

An element of a loop is called central if it commutes and associates with all elements
of the loop. In other words, c is central if

c ∈ N
(·)
ℓ ∩N (·)

r ∩N (·)
m ∩ {a | ax = xa}.
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An element a of a loop (Q; ·, e) is called a Moufang element if there exists a
bijection λ of Q such that (La;Ra;λ) is an autotopism of the loop, i.e.,

ay · za = λ(y · z) (6)

for all y, z ∈ Q. Remark that if we put y = e, thereafter z = e, we obtain λ =
LaRa = RaLa. A loop is called a Moufang loop if its every element is Moufang, i.e.
if one of the identities

xy · zx = x(y · z) · x, xy · zx = x · (y · z)x (7)

hold.

2 Pseudoisomorphy

Let (Qo; ◦) and (Q; ·) be groupoids, α, β : Qo → Q be bijections, then α will be
called

• a left pseudoisomorphism if (β, α, β) is an isotopism of the groupoids;

• a right pseudoisomorphism if (α, β, β) is an isotopism of the groupoids;

• a middle pseudoisomorphism if (β, β, α) is an isotopism of the groupoids;

• a pseudoisomorphism if it is both left and right pseudoisomorphism.

In these cases, the bijection β will be called a companion of the corresponding
pseudoisomorphism. If α = β the pseudoisomorphism is an isomorphism.

It is easy to see that the set of all left (right and middle) pseudoautomorphisms
of a quasigroup as well as their corresponding companions forms groups Ψℓ, Ψ∗

ℓ (Ψr,
Ψ∗

r and Ψm, Ψ∗
m respectively).

Relationships between pseudoisomorphy and neutrality are given in the following
proposition.

Proposition 1. Let (Q; ·) be a quasigroup and θ be its

1) left pseudoautomorphism with a companion β, then (Q; ·) has a left neutral
element if and only if β = Laθ for some element a ∈ Q;

2) right pseudoautomorphism with a companion β, then (Q; ·) has a right neutral
element if and only if β = Rbθ for some element b ∈ Q;

3) middle pseudoautomorphism with a companion β, then (Q; ·) has a neutral
element if and only if β = L−1

c θ for some element c ∈ Q such that xc = cx for
all x ∈ Q.
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Proof. Let θ be a left pseudoautomorphism of a quasigroup (Q; ·) with a companion
β, then (β; θ;β) is an autotopism of (Q; ·), i.e.,

βx · θy = β(x · y)

Putting x := e and a := βe, where e denotes the left neutral element of (Q; ·), we
obtain β = Laθ. Conversely, let the previous equality be true for some a ∈ Q, i.e.,

(a · θx) · θy = a · θ(x · y).

Substituting x = e := θ−1L−1
a a, we obtain

(a · L−1
a a) · θy = a · θ(e · y), i.e. a · θy = a · θ(e · y).

Cancelling out, we have y = e · y. The item 2) can be proved analogously.

To prove 3) suppose that (β;β; θ) is an autotopism of (Q; ·) and let e denote its
neutral element, i.e.,

βx · βy = θ(x · y)

for all x, y ∈ Q. When x = e and y = e the equality implies Lcβ = θ and Rcβ = θ re-
spectively, where c := βe, so xc = cx for all x ∈ Q. Conversely, since (L−1

c θ, L−1
c θ, θ)

is an autotopism of (Q; ·), then

L−1
c θx · L−1

c θy = θ(x · y)

holds. As c commutes with all elements of Q, i.e. Lc = Rc, it is easy to verify that
e := θ−1Lc(c) is a neutral element in (Q; ·) replacing successively x and y with e in
the centralized formula.

Note. Proposition 1 implies that for loops the introduced concept of pseudoau-
tomorphism coincides with the well-known notion, except the notion of companion.
A companion is a bijection in the definition given here, and an element in the well-
known notion, but both of them uniquely define each other. Indeed, let a bijection
β be a companion of θ, then

βx · θy = β(x · y) or θy · βx = β(y · y)

holds. Let e denote the neutral element of the loop and let x := e, we obtain
Lβeθ = β or Rβeθ = β. In both cases βe is a companion element of the pseudoau-
tomorphism θ. Conversely, if an element c is a companion of θ, then the bijection
Laθ is its companion, in the case when θ is a left pseudoautomorphism; and Raθ is
its companion if θ is a right pseudoautomorphism. We will use both companions:
an element and a bijection, but companion-element does not exist in the case when
the quasigroup has no left and no right neutral elements.
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2.1 Isotopism of loops

Some relations between isotopy and pseudoisomorphy for loops are given in the
following lemma.

Lemma 1. Let (α;β; γ) be an arbitrary isotopism of a loop (Qo; ◦, e) on a quasigroup
(Q; ·) and let a := αe, b := βe. Then the following statements are true.

1. α = R−1
b γ, β = L−1

a γ;

2. β is a left pseudoisomorphism, i.e. α = γ if and only if b is a right neutral
element in (Q; ·);

3. If β is a left pseudoisomorphism, then

(a) the loops (Q; ◦) and (Q;⊙) are isomorphic, where x ⊙ y := L−1
a (ax · y),

i.e., (α;β; γ) = (Laβ;β;Laβ),

(b) β is an isomorphism of (Q; ◦) and (Q; ·) if and only if a ∈ N
(·)
ℓ ;

4. α is a right pseudoisomorphism, i.e. β = γ if and only if a is a left neutral
element in (Q; ·);

5. If α is a right pseudoisomorphism, then

(a) the loops (Q; ◦) and (Q; •) are isomorphic, where x • y := R−1
b (x · yb),

i.e., (α;β; γ) = (α;Rbα;Rbα);

(b) α is an isomorphism of the quasigroups (Q; ◦) and (Q; ·) if and only if

b ∈ N
(·)
r ;

6. γ is a middle pseudoisomorphism, i.e. α = β, if and only if a := αe = βe and
a · x = x · a for all x ∈ Q.

7. If γ is a middle pseudoisomorphism, then

(a) the loops (Q; ◦) and (Q; ⋆) are isomorphic, where x ⋆ y := L−1
a x · L−1

a y,
i.e., (α;β; γ) = (L−1

a γ;L−1
a γ; γ);

(b) γ is an isomorphism between (Q; ◦) and (Q; ·) if and only if a ∈ N
(·)
m and

a · a is a neutral element of the quasigroup (Q; ·);

8. α = β = γ is an isomorphism if and only if αe = βe is a neutral element of
the quasigroup (Q; ·).

Proof. The condition of the lemma means the truth of the equality

γ(x ◦ y) = αx · βy (8)

for all x, y ∈ Q. We successively put x := e, y := e and obtain

γy = α(e) · βy = a · βy, γx = αx · β(e) = αx · b.
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Herefrom β = L−1
a γ and α = R−1

b γ, that is why the items 1, 2 are obvious.

Now suppose that β is a left pseudoisomorphism, i.e., α = γ. But α = R−1
b γ, so

Rb = ι, then the equality (8) can be written as follows

Laβx · βy = Laβ(x ◦ y). (9)

Applying L−1
a to the equality and replacing x with β−1x, y with β−1y, we obtain

L−1
a (Lax · y) = β(β−1x ◦ β−1y). (10)

So, β is an isomorphism between (Q; ◦) and (Q;⊙).

If β is an isomorphism of (Q; ◦) and (Q; ·), then (10) implies

L−1
a (Lax · y) = x · y.

It means that a ∈ N
(·)
ℓ .

Thus, items 3a, 3b have been proved. The other statements of the lemma can
be proved in the same way.

This lemma immediately implies the following corollary.

Corollary 1. Let (α;β; γ) be an isotopism of a loop (Q; ◦; e1) on a loop (Q; ·, e),
then

• β is a left pseudoisomorphism if and only if βe1 = e;

• α is a right pseudoisomorphism if and only if αe1 = e;

• γ is a middle pseudoisomorphism if and only if a := αe1 = βe1 and ax = xa
for all x ∈ Q;

• γ is an isomorphism if and only if αe1 = βe1 = e.

Lemma 2. Let θ be a left (or right) pseudoisomorphism with a companion c of a
commutative loop (Q;⊕) on a commutative loop (Q; +) with coinciding neclei, then
θ is an isomorphism and c is a central element in the loop (Q; +).

Proof. Conditions of the lemma imply that

(c+ θx) + θy = c+ θ(x⊕ y) (11)

is true for all x, y ∈ Q. Using commutativity of both operations, we obtain

θy + (c+ θx) = c+ θ(y ⊕ x).

Mutually relabeling x and y, we have

θx+ (c+ θy) = c+ θ(x⊕ y).
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So, the left sides of this equality and (11) are equal:

(c+ θx) + θy = θx+ (c+ θy).

It means that c belongs to the middle nucleus of (Q; +). But, according to the
lemma’s condition, the middle nucleus coincides with the center of the loop. There-
fore, we can cancel out c in (11) and conclude that the pseudoisomorphism θ is an
isomorphism of these loops.

This lemma immediately implies the following theorem.

Theorem 1. Pseudoisomorphic commutative loops with coinciding nuclei are iso-
morphic.

3 Inverse property loops

Inverse property loop (briefly IP -loop) is a loop (Q; ·, e) that has a transformation
I of Q such that

Ix · (x · y) = y, (x · y) · Iy = x

for all x, y ∈ Q. It is easy to verify that Ix = x−1, I−1 = I and x ·x−1 = x−1 ·x = e.

IP -loop (Q; ·) with a neutral element e and unary operation I(x) := x−1 will be
denoted by (Q; ·, I, e).

Lemma 3. Let (α;β; γ) be an isotopism of an IP -loop (Q; ◦, I1, e1) on an IP -loop
(Q; ·, I, e), then both the triplets (IαI1; γ;β) and (γ; IβI1;α) are isotopisms of the
same loops.

Proof. The conditions of the lemma imply the equality αx · βy = γ(x ◦ y). We put
here successively y := I1x ◦ u and x = v ◦ I1y:

αx · β(I1x ◦ u) = γu, α(v ◦ I1y) · βy = γv.

In the first equality, we replace x with I1t, in the second one y with I1z:

β(t ◦ u) = IαI1t · γu, α(v ◦ z) = γv · IβI1z.

Thus, (IαI1; γ;β) and (γ; IβI1;α) are isotopisms of (Q; ◦, I1, e1) on (Q; ·, I, e).

Corollary 2. Nuclei of an inverse property loop coincide.

Proof. Let (Q; ·, I, e) be an IP -loop. Belonging of an element a to the left nucleus

N
(·)
ℓ of the loop means that the triplet (La;La; ι) is an autotopism of (Q; ·, I, e).

Lemma 3 implies that both

(ILaI;La; ι) and (ι; ILaI; ILaI)
−1
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are its autotopisms. Using the equality ILaI = R−1
a , we conclude that both

(R−1
a ;La; ι) and (ι;Ra;Ra)

are autotopisms. So, an arbitrary element a ∈ Q belongs to the left and middle
nucleus as well as to the left and right nucleus simultaneously, i.e., the nuclei coincide.

Lemma 4. The sets of all left and right pseudoisomorphisms between inverse
property loops coincide. If α is a pseudoisomorphism of an inverse property loop
(Q; ◦, I1, e1) on an inverse property loop (Q; ·, I, e), then αe1 = e; Iα = αI1.

Proof. Let (α;β;β) be an isotopism of an IP -loop (Q; ◦) on an IP -loop (Q; ·).
Applying Lemma 3, we conclude that (IβI1;α; IβI1) and (IαI1, β, β) are isotopisms
of these loops. So, α is a left pseudoisomorphism of these loops. Since any two
components of an isotopism of quasigroups uniquely define the third, then IαI1 = α,
i.e., Iα = αI1.

Theorem 2. Let T := (α;β; γ) be an isotopism of an inverse property loop
(Q1; ◦, e1) on an inverse property loop (Q; ·; e) and let a := α(e1), b := β(e1), then:

1. θ := L−1
a α is a pseudoisomorphism of (Q1; ◦, I1, e1) on (Q; ·; I, e) with the right

companion c := b · a−1;

2. the elements a, b, a · b are Moufang;

3. (α;β; γ) = (La;Ra;LaRa)(θ;Rcθ;Rcθ).

Proof. Lemma 1 and Lemma 3 imply that α = R−1
b γ, β = L−1

a γ and the triplet
T1 := (IαI1; γ;β) is an isotopism of these loops. Hence, the triplet

TT−1
1 = (R−1

b γ;L−1
a γ; γ)(I1γ

−1RbI; γ
−1; γ−1La) = (λ;L−1

a ;La)

is an autotopism of (Q; ·, e) for some bijection λ of the set Q. According to Lemma 3,

T2 := (La; IL
−1
a I;λ) = (La;Ra;λ)

is an autotopism of (Q; ·, e). So, a is Moufang in (Q; ·, e) and λ = LaRa = RaLa.
Lemma 3 implies that (γ; IβI1;α) and (β; IγI1; IαI1) are autotopisms, conse-

quently, the elements ab = α(e1) · β(e1) = γ(e1 ◦ e1) = γ(e1) and b = β(e1) are
Moufang too. Hence, the item 2. has been proved.

Then T−1
2 T is an isotopism of (Q1; ◦, I1, e1) on (Q; ·, I, e) and

T−1
2 T = (L−1

a α;R−1
a β;L−1

a R−1
a γ).

As L−1
a α(e1) = L−1

a a = e, by virtue of Corollary 1 and Proposition 1, L−1
a α =: θ is a

pseudoisomorphism with the right companion c := R−1
a β(e1) = b · a−1. This proves

the item 1). Thus, T−1
2 T = (θ;Rcθ;Rcθ). Therefrom, we obtain the item 3.
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Corollary 3. Isotopic inverse property loops are pseudoisomorphic.

Proof. It follows from the item 1 of Theorem 2.

Corollary 4. Let (α, β, γ) be an isotopism of a commutative inverse property loop
(Qo; ◦, e) on a commutative inverse property loop (Q; +, 0), then there exists an
isomorphism θ of (Qo; ◦, e) on (Q; +, 0), a central element c in (Q; +, 0) and a
Moufang element a ∈ Q such that α = Laθ, β = LaLcθ, γ = L2

aLcθ.

Proof. According to Theorem 2 there exists a pseudoisomorphism θ of (Qo; ◦, e) on
(Q; +, 0) with a companion c and a Moufang element a such that

α = Laθ, β = RaRcθ, γ = LaRaRcθ.

Since the nuclei coincide in these loops (Corollary 2), then by virtue of Lemma 2
θ is an isomorphism of these loops and c is a central element in the loop (Q; +, 0).
Commutativity means Lx = Rx for all x.

Corollary 5. Isotopic commutative inverse property loops are isomorphic.

Proof. The proof follows from Corollary 4.

Since every Moufang loop has the inverse property, then the following statement
is true.

Corollary 6. Isotopic commutative Moufang loops are isomorphic.

Corollary 7. In an arbitrary inverse property loop the set of all Moufang elements
form a subloop, which is a Moufang loop.

Proof. Let a, b be Moufang elements of an IP -loop (Q; ·, I, e), i.e.

(La, Ra, LaRa) and (Lb, Rb, LbRb)

are autotopisms. Then their inverses and composition are autotopisms too. By
virtue of the item 2 of Theorem 2, the elements a−1 = L−1

a (e) and a · b = LaLb(e)
are Moufang. Consequently, Moufang elements form a subloop.

4 Distributive quasigroups

A quasigroup is called left (right, middle) distributive if every its left (right,
middle) translations is its automorphism.

In other words, such quasigroups are defined by the identity of left, right, middle
distributivity :

x · yz = xy · xz, (12)

yz · x = yx · zx, (13)

yz\x = (y\x) · (z\x) (14)

respectively.
A quasigroup is called distributive if it is both left and right distributive.
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Lemma 5. For any element a ∈ Q of a distributive quasigroup (Q; ·), the transla-
tions La, Ra, Ma are pairwise commuting automorphisms of every parastrophe of
the quasigroup.

Proof. The left and right distributivity mean that La and Ra are automorphisms of
(Q; ·). Since automorphism groups of all parastrophes coincide, then La, Ra as well
as L−1

a , R−1
a are automorphisms of all parastrophes of the quasigroup.

Multiply the equality z · (z\y) = y (see (1)) by z\u from the right and use (13):

z(z\u) · (z\y)(z\u) = y(z\u).

As z(z\u) = u and L−1
z , Ly are automorphisms of (Q; ·) (see (3)), then

u · z\(yu) = yz\yu.

Let yu = a, i.e., y\a = u, then

(y\a)(z\a) = yz\a.

It means that for arbitrary a ∈ Q the middle translation Ma is an automorphism of
(Q; ·), and, consequently, of every its parastrophe.

Every of the identities (12), (13), (14) implies idempotency xx = x (when x =
y = z). The previous identity implies the equalities La(a) = Ra(a) = Ma(a) = a,
that is why

LaRa(x) = La(xa) = La(x) · La(a) = La(x) · a = RaLa(x),

MaLa(x) = Ma(ax) = Ma(a) ·Ma(x) = a ·Ma(x) = LaMa(x).

Analogously, MaRa = RaMa.

Corollary 8. All parastrophes of a distributive quasigroup are distributive and pair-
wise distributive.

In other words, for every σ, τ ∈ S3 the follow identities are true

x
σ
· (y

τ
· z) = (z

σ
· y)

τ
· (x

σ
· z), (y

τ
· z)

σ
· x = (y

σ
· x)

τ
· (z

σ
· x).

Proof. From the table (4), we conclude that Lx, Rx, Mx, L−1
x , R−1

x , M−1
x , where

x ∈ Q, are all translations of all parastrophes of a quasigroup (Q; ·). That is why
Lemma 5 implies this corollary.

Corollary 9. Every two of the identities (12), (13), (14) imply the third.

Proof. If a quasigroup (Q; ·) satisfies (12) and (13), then Lemma 5 implies (14). If
(12) and (14) hold in the quasigroup, then the table (4) implies that (Q; \) is left and
right distributive and, according to Lemma 5, it is middle distributive. Relations
between translations (the table (4)) induce right distributivity of (Q; ·), i.e., (13)
holds.

The implication (13) & (14) ⇒ (12) can be proved in the same way.
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Corollary 10. A quasigroup is distributive if and only if all its translations are its
automorphisms.

The following theorem is a specification of the corresponding Belousov’s result.

Theorem 3. A quasigroup (Q; ·) is distributive if and only if there exists a com-
mutative Moufang loop (Q; +) and its automorphism ϕ such that ψ := ι − ϕ is an
automorphism of (Q; +) and

x · y = ϕx+ ψy, (15)

x+ (y + z) = (ϕx+ y) + (ψx+ z). (16)

Proof. Let (Q; ·) be an arbitrary distributive quasigroup and 0 be an arbitrary fixed
element from Q. In this proof, we will write L, R, M instead of L0, R0, M0. We
define an operation (+) on the set Q putting

x+ y := R−1(x) · L−1(y). (17)

Herefrom

x · y = R(x) + L(y). (18)

Idempotency of (Q; ·) implies that 0 is a neutral element in (Q; +).
Since L and R are commuting automorphisms of (Q; ·), then they are automor-

phisms of the loop (Q; +). For example,

L(x+ y)
(17)
= L(R−1(x) · L−1(y))

Lemma 5
= LR−1(x) · LL−1(y) =

Lemma 5
= R−1L(x) · L−1L(y)

(17)
= L(x) + L(y).

We show that (Q; +) is a right IP -loop, i.e., for some mapping I the identity

(y + x) + I(x) = y (19)

holds. Put I := LMR−1 and, for brevity, we denote u := R−2(y), t := R−1L−1(x).
Hence, we have

(y + x) + I(x)
(17)
= R−1

(

R−1(y) · L−1(x)
)

· L−1LMR−1(x) =

Lemma 5
=

(

R−2(y) · R−1L−1(x)
)

· LMR−1L−1(x) = ut ·
(

0 ·M(t)
)

=

(12)
= (ut · 0)

(

ut ·M(t)
) (13)

= (ut · 0)
(

uM(t) · tM(t)
)

= (ut · 0)
(

uM(t) · 0
)

=

(13)
=

(

ut · uM(t)
)

· 0
(12)
= R

(

u · tM(t)
)

= R(u · 0) = R2R−2(y) = y.

To prove commutativity of (+), we note that for all x, y ∈ Q the equality

(x+ y) + I(x) = y (20)
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holds. Denote z := R−2(x), v := R−1L−1(y), then

(x+ y) + I(x)
(17)
= R−1

(

R−1(x) · L−1(y)
)

· L−1LMR−1(x) =

=
(

R−2(x) · R−1L−1(y)
)

·M
(

R−2(x) · 0
)

= zv ·M(z0) =

= L−1
z0

(

z0 ·
(

zv ·M(z0)
)

)

(12)
= L−1

z0

(

(z0 · zv) ·
(

z0 ·M(z0)
)

)

=

= L−1
z0

(

(z0 · zv) · 0
)

(12)
= L−1

z0

(

(z · 0v) · 0
)

=

(13)
= L−1

z0

(

z0 · (0v · 0)
)

= 0v · 0 = RLR−1L−1(y) = y.

The equality of the right sides of (19) and (20) implies the equality of their left
sides: (y+ x) + I(x) = (x+ y) + I(x), that is why y+ x = x+ y. Hence, (Q; +) is a
commutative IP -loop.

Using (18), we replace the second and the forth appearances of the operation (·)
with (+) in (12):

x · (Ry + Lz) = R(xy) + L(xz).

Replacing Ry with y and Lz with z, we obtain:

Lx(y + z) = RLxR
−1(y) + LLxL

−1(z).

It means that the triplet (RLxR
−1;LLxL

−1;Lx) is an autotopism of the IP -loop
(Q; +) for all x ∈ Q. Theorem 2 implies that the element Lx(0) = x · 0 = R(x) is
a Moufang element in (Q; +). As R is a bijection of Q, then an arbitrary element
from Q is Moufang, so (Q; +) is a commutative Moufang loop.

Idempotency x · x = x of (·) means that ϕx+ ψx = x, i.e., ψ = ι− ϕ.

It remains to prove that in a commutative Moufang loop (Q; +) which has two
commuting automorphisms ϕ and ψ such that the equality (15) holds, two identities
of distributivity (12) and (13) are equivalent to the identity (16). For this purpose,
we replace (·) with (+) in (12) and (13):

ϕx+ (ψϕy + ψ2z) = (ϕ2x+ ϕψy) + (ψϕx + ψ2z),

(ϕ2y + ϕψz) + ψx = (ϕ2y + ϕψx) + (ψϕz + ψ2x).

In the first identity, we replace ϕx with x, ψϕy with y and ψ2z with z, and in the
second one ϕ2y with y, ϕψz with z and ψx with x. Since ϕψ = ψϕ, then we obtain
identities being equivalent to above mentioned:

x+ (y + z) = (ϕx+ y) + (ψx+ z),

(y + z) + x = (y + ϕx) + (z + ψx).

Commutativity of (+) implies coincidence of both of them with (16).
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Remark that it is easy to verify that middle distributivity (14) coincides with
(16) if we replace (·) with (+).

Corollary 11 (V. D. Belousov [1]). Every distributive quasigroup is isotopic to a
commutative Moufang loop.

Note that Theorem 3 implies that any distributive quasigroup can be considered
as a corresponding algebra (Q; +, ϕ) which satisfies the conditions:

1) (Q; +) is a commutative Moufang loop;

2) ϕ and ι− ϕ := ψ are automorphisms of (Q; +);

3) the identity (16) holds.

(Compare with Belousov-Onoi module [4].) We will also say that “the automorphism
ϕ defines a distributive quasigroup (Q; ·) on the commutative Moufang loop (Q; +)”.

Theorem 3 creates a possibility for studying distributive quasigroups via com-
mutative Moufang loops. For example, we have to answer questions like “When
distributive quasigroups are isotopic? isomorphic?” and so on. The next three
propositions give answers to some of such questions.

Corollary 12. Distributive quasigroups are isotopic if and only if the corresponding
commutative Moufang loops are isomorphic.

Proof. The truth of the corollary follows from Corollary 5.

Taking into account Corollary 12, we may restrict our attention to distributive
quasigroups defined on the same commutative Moufang loop and the first question
that arises is the following: “What relation between automorphisms of the same
commutative Moufang loop which define distributive quasigroups?”

Corollary 13. Let an automorphism ϕ of a commutative Moufang loop (Q; +) de-
fine a distributive quasigroup on (Q; +). Then a bijection ϕo defines a distributive
quasigroup on (Q; +) if and only if there exists a homomorphism ν from (Q; +) into
its center such that ϕo = ϕ+ ν and ψo = ι− ϕ− ν are bijections of Q.

Proof. Let automorphisms ϕ and ϕo define distributive quasigroups on a commuta-
tive Moufang loop (Q; +). It implies that (16) and

x+ (y + z) = (ϕox+ y) + (ψox+ z)

hold. Consequently, the right sides of these identities are equal:

(ϕx+ y) + (ψx+ z) = (ϕox+ y) + (ψox+ z).

Replace z with −ψox+ z and y with −ϕx+ y:

y + (ψx+ (−ψox+ z)) = (ϕox+ (−ϕx+ y)) + z. (21)
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Let ν := ϕo − ϕ, then ψ − ψo = (ι− ϕ) − (ι − ϕo) = ϕo − ϕ = ν. When y = 0 and
when z = 0 the equality (21) implies

ψx+ (−ψox+ z) = νx+ z and y + νx = ϕox+ (−ϕx+ y).

So, (21) can be written as follows

y + (νx+ z) = (y + νx) + z.

So, ν is a mapping from the loop (Q; +) into its center and ϕo = ϕ+ ν.
Since ϕo is an automorphism of the loop (Q; +), then

(ϕ+ ν)x+ (ϕ+ ν)y = (ϕ+ ν)(x+ y),

i.e.,
(ϕx+ νx) + (ϕy + νy) = (ϕx+ ϕy) + ν(x+ y).

As νx is a central element for all x ∈ Q, then we can change the left side of the
equality:

(ϕx+ ϕy) + νx+ νy = (ϕx+ ϕy) + ν(x+ y).

Cancelling out ϕx+ ϕy, we obtain a homomorphic property for ν.
Vice versa, let ν be an arbitrary homomorphism from a commutative Moufang

loop (Q; +) into its center and let ν + ϕ and ι − ϕ − ν be bijections of Q. Define
transformations

ϕo := ϕ+ ν and ψo := ι− ϕ− ν = ι− ϕo = ψ − ν.

Both of them are automorphisms of (Q; +). Indeed, they are bijections according to
the assumption. In the following proof of the homomorphic property of ϕo we are
using the fact that νx is a central element of (Q; +) for arbitrary x ∈ Q:

ϕo(x+ y) = (ϕ+ ν)(x+ y) = ϕ(x+ y) + ν(x+ y) = (ϕx+ ϕy) + (νx+ νy) =

= (ϕx+ νx) + (ϕy + νy) = (ϕ+ ν)x+ (ϕ+ ν)y = ϕox+ ϕoy.

As ψo = ψ − ν, we have

ψox+ ψoy = (ψ − ν)x+ (ψ − ν)y = (ψx− νx) + (ψy − νy) =

= (ψx+ ψy) − (νx+ νy) = ψ(x+ y) − ν(x+ y) = (ψ − ν)(x+ y) =

= ψo(x+ y).

It remains to prove that (16) is true for ϕo. For this purpose, we add the neutral
element 0 in the form 0 = νx+ (−νx) to the right side of (16):

x+ (y + z) = (ϕx+ νx+ y) + (ψx− νx+ z) = (ϕox+ y) + (ψox+ z).

Thus, according to Theorem 3, the automorphism ϕo defines a distributive quasi-
group on the commutative Moufang loop (Q; +).
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The next theorem gives a isomorphy criterion of distributive quasigroups (it is
close to [5, Lemma 12.3]).

Theorem 4. Distributive quasigroups are isomorphic if and only if their correspond-
ing algebras are isomorphic.

Proof. Let (Q; ◦) and (Q; ·) be distributive quasigroups, which are defined on com-
mutative Moufang loops (Qo;⊕, 0

′) and (Q; +, 0) by their automorphisms ϕo and ϕ
respectively, that is (Qo;⊕, ϕo) and (Q; +, ϕ) are corresponding algebras. According
to Theorem 3, the mappings ψ := ι − ϕ and ψo := ι ⊖ ϕo are automorphisms of
(Q; +, 0) and (Qo;⊕, 0

′) respectively, besides (15) and

x ◦ y = ϕox⊕ ψoy

hold.
Let α be an isomorphism from (Qo; ◦) onto (Q; ·), i.e.,

αx · αy = α(x ◦ y)

for all x, y ∈ Q. This equality can be written as follows

ϕαx+ ψαy = α(ϕox⊕ ψoy).

Replace x with ϕ−1
o (x) and y with ψ−1

o (y):

ϕαϕ−1
o (x) + ψαψ−1

o (y) = α(x⊕ y).

The obtained equality means that the triplet (ϕαϕ−1
o , ψαψ−1

o , α) is an isotopism from
the Moufang loop (Qo;⊕) onto the Moufang loop (Q; +). According to Corollary 4,
there exists an isomorphism θ from (Qo;⊕, 0

′) onto (Q; +, 0), a central element c of
(Q; +) and an element a ∈ Q such that the equalities

ϕαϕ−1
o = Laθ, ψαψ−1

o = LaLcθ, α = L2
aLcθ

are true. Using the third equality, we substitute L2
aLcθ for α in the first one:

ϕL2
aLcθϕ

−1
o = Laθ.

Using Moufang identity (7), centrality of c and diassociativity of (Q; +), we have

L2
aLc(x) = a+ (a+ (c+ x)) = (a+c) + (a+x) = L−1

c ((a+c) + ((a+c) + x)) =

= L−1
c (((a+c) + (a+c)) + x) = L−1

c L2(a+c)(x).

Consequently,
ϕL−1

c L2(a+c)θϕ
−1
o = Laθ.

As ϕ is an automorphism of (Q; +), then

L−1
ϕcLϕ(2(c+a))ϕθϕ

−1
o = Laθ.
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Therefrom
Lϕ(2(c+a))ϕθϕ

−1
o = Lϕc+aθ.

Since ϕθϕ−1
o (0′) = 0 and θ(0′) = 0, the previous equality implies ϕ(2(c+a)) = ϕc+a.

Therefore, ϕθϕ−1
o = θ, i.e., ϕθ = θϕo. Thus, θ is an isomorphism from the algebra

(Qo;⊕, ϕo) onto the algebra (Q; +, ϕ).

Vice versa, let θ be an isomorphism from (Qo;⊕, ϕo) onto (Q; +, ϕ). It means,
that θ is an bijection from Qo onto Q and the following relations hold:

θ(x) + θ(y) = θ(x⊕ y), ϕθ = θϕo

for all x, y ∈ Qo. These equalities imply ψθ = θψo. Indeed,

ψθ(x) = (ι− ϕ)θ(x) = θ(x) − ϕθ(x) =

= θ(x) ⊖ θϕo(x) = θ(x⊖ ϕo(x)) = θ(ι⊖ ϕo)(x) = θψo(x).

That is why, we have

θx · θy = ϕθx+ ψθy = θϕox+ θψoy = θ(ϕx⊕ ψy) = θ(x ◦ y).

Hence, θ is an isomorphism from (Q; ◦) onto (Q; ·).

Corollary 14. Let distributive quasigroups (Q; ◦) and (Q; ·) be defined on a com-
mutative Moufang loop (Q; +) by its automorphisms ϕo and ϕ respectively. Then
the quasigroups are isomorphic if and only if there exists an automorphism θ of the
loop (Q; +) such that ϕo = θ−1ϕθ.

This corollary immediately implies that there exist exactly p− 3 non-isomorphic
distributive quasigroups of a prime power p > 3.
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Abstract. There exist medial T2-quasigroups of any order of the form
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where k1 ≥ 2, k2, . . . , k10 ≥ 1, pi are prime numbers of the form 6t + 1, αi ∈ N,
i ∈ {1, . . . , m}. Some other results on T2-quasigroups are given.
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Keywords and phrases: Quasigroup, medial, spectrum, T2-quasigroup, parastro-
phe, orthogonal quasigroups.

1 Introduction

Definitions and elementary properties of quasigroups can be found in [1, 2, 18].
Most of presented here results are given in [20]. Quasigroups have some applica-
tions in cryptology [24]. The most usable in cryptology quasigroup property is the
property of orthogonality of quasigroups [9].

V.D. Belousov [3, 4] (see also [10]) by the study of orthogonality of quasigroup
parastrophes proved that there exist exactly seven parastrophically non-equivalent
identities which guarantee that a quasigroup is orthogonal to at least one its paras-
trophe: s

x(x · xy) = y (C3 law) (1)

x(y · yx) = y of typeT2 [3] (2)

x · xy = yx (Stein’s 1st law) (3)

xy · x = y · xy (Stein’s 2nd law) (4)

xy · yx = y (Stein’s 3rd law) (5)

xy · y = x · xy (Schroder’s 1st law) (6)

yx · xy = y (Schroder’s 2nd law). (7)

The names of identities (3)–(7) originate from Sade’s paper [19]. We follow [6]
in the name of identity (1).

All these identities can be obtained in a unified way using criteria of orthogo-
nality and quasigroup translations [15]. For example, identity (2), which guarantees

c© A.V. Scerbacova, V.A. Shcherbacov, 2016
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orthogonality of a quasigroup (Q, ·) and its (2 3)-parastrophe, can be obtained from
the following translation identity

L2
yx = Pyx. (8)

Using table of translations of quasigroup parastrophes [23] we can rewrite identity
(8) in the following parastrophically equivalent [4] forms:

R2
yx = P−1

y x,

P−2
y x = L−1

y x,

L−2
y x = Ryx,

R−2
y x = Lyx,

P 2
y x = R−1

y x.

(9)

Passing to ”standard” identities we obtain from the identities (9) the following iden-
tities that are parastrophically equivalent to the identity (2):

(xy · y)x = y,

(y\x)(y/x) = y,

y(y · xy) = x,

(yx · y)y = x,

x(y/(x/y)) = y.

(10)

A quasigroup (Q, ·) with the identity x ·x = x is called idempotent. The set Q of
natural numbers for which there exist quasigroups with a property T , for example,
the property of idempotency, is called the spectrum of the property T in the class
of quasigroups. Often the following phrase is used: spectrum of quasigroups with a
property T . Therefore we can say that spectra of quasigroups with identities (3)–(7)
were studied in [5, 6, 8, 12,17,25].

It is clear that the identity (2) and any from identities (10) have the same
spectrum because order of any parastroph of a quasigroup (Q, ·) is equal to the
order of quasigroup (Q, ·).

Idempotent models of the identity (yx · y)y = x can be associated with a class of
resolvable Mendelsohn designs [5]. In [5] ”it is shown that the spectrum of (yx·y)y =
x contains all integers n ≥ 1 with the exception of n = 2, 6 and the possible exception
of n ∈ {10, 14, 18, 26, 30, 38, 42, 158}. It is also shown that idempotent models of
(yx · y)y = x exist for all orders n > 174”.

Here we study in the main the spectrum of medial T2-quasigroups. Such quasi-
groups can be easy constructed and they can be used in cryptology.

2 Medial T2-quasigroups

The problem of the study of T2-quasigroups is posed in [3,4]. In [26] the following
proposition (Proposition 7) is proved. We formulate this proposition in a slightly
changed form.
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Theorem 1. If a T2-quasigroup (Q, ·) is isotopic to an abelian group (Q,⊕), then
for every element b ∈ Q there exists an isomorphic copy (Q,+) ∼= (Q,⊕) such that
x · y = IL3

b(x) + Lb(y) + b, for all x, y ∈ Q, where x+ Ix = 0 for all x ∈ Q.

Definition 1. A quasigroup (Q, ·) of the form x · y = ϕx+ ψy + b, where (Q,+) is
an abelian group, ϕ,ψ are automorphisms of the group (Q,+), b is a fixed element
of the set Q is called T -quasigroup. If, additionally, ϕψ = ψϕ, then (Q, ·) is called
medial quasigroup [1,2, 16,18].

Theorem 2. A T-quasigroup (Q, ·) of the form

x · y = ϕx+ ψy + b (11)

satisfies T2-identity if and only if ϕ = Iψ3, ψ5+ψ4+1 = (ψ2+ψ+1)(ψ3−ψ+1) = 0,
where 1 is identity automorphism of the group (Q,+) and 0 is zero endomorphism
of this group, ψ2b+ ψb+ b = 0.

Proof. We rewrite T2-identity using the right part of the form (11) as follows:

ϕx+ ψ(ϕy + ψ(ϕy + ψx+ b) + b) + b = y (12)

or, taking into consideration that (Q,+) is an abelian group, ϕ,ψ are its automor-
phisms, after simplification of equality (12) we have

ϕx+ ψϕy + ψ2ϕy + ψ3x+ ψ2b+ ψb+ b = y. (13)

If we put in the equality (13) x = y = 0, then we obtain

ψ2b+ ψb+ b = 0, (14)

where 0 is the identity (neutral) element of the group (Q,+).
Therefore we can rewrite equality (13) in the following form

ϕx+ ψϕy + ψ2ϕy + ψ3x = y. (15)

If we put in the equality (15) y = 0, then we obtain that ϕx + ψ3x = 0. Therefore
ϕ = Iψ3, where, as above, x+ Ix = 0 for all x ∈ Q.

Notice in any abelian group (Q,+) the map I is an automorphism of this group.
Really, I(x+ y) = Iy + Ix = Ix+ Iy.

Moreover, Iα = αI for any automorphism of the group (Q,+). Indeed, αx +
Iαx = 0. On the other hand αx + αIx = α(x + Ix) = α0 = 0. Comparing the left
sides we have αx+ Iαx = αx+ αIx, Iαx = αIx, αI = Iα.

It is well known that I2 = ε, i.e., −(−x) = x. Indeed, from the equality x+Ix = 0
using commutativity we have Ix + x = 0. On the other hand I(x + Ix) = 0,
Ix+ I2x = 0. Then Ix+ x = Ix+ I2x, x = I2x for all x ∈ Q.

If we put in the equality (15) x = 0, then we obtain that

ψϕy + ψ2ϕy = y. (16)
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If we substitute in the equality (16) the expression Iψ3 for ϕ, then we have Iψ5y +
Iψ4y = y, ψ5y + ψ4y = Iy, ψ5y + ψ4y + y = 0. The last condition can be written
in the form ψ5 + ψ4 + 1 = 0, where 1 is identity automorphism of the group (Q,+)
and 0 is zero endomorphism of this group.

It is easy to check that ψ5 + ψ4 + 1 = (ψ2 + ψ + 1)(ψ3 − ψ + 1).

Converse. If we take into consideration that ψ2b+ψb+b = 0, then from equality
(13) we obtain equality (15). If we substitute in equality (15) the following equality
ϕ = Iψ3, then we obtain ψIψ3y+ψ2Iψ3y = y, ψ4Iy+ψ5Iy = y which is equivalent to
the equality ψ5y+ψ4y+ y = 0. Therefore T -quasigroup (Q, ·) is T2-quasigroup.

Remark 1. Proposition 6 in [8] states almost the same as Theorem 2.

Corollary 1. Any T2-T -quasigroup is medial.

Proof. The proof follows from the equality ϕ = Iψ3 (see Theorem 2).

Corollary 2. A T-quasigroup (Q, ·) of the form x ·y = ϕx+ψy satisfies T2-identity
if and only if ϕ = Iψ3, ψ5 + ψ4 + 1 = 0.

Proof. It is easy to see.

Corollary 3. A T-quasigroup (Q, ·) of the form x · y = ϕx + ψy + b satisfies T2-
identity if ϕ = Iψ3, ψ2 + ψ + 1 = 0.

Proof. The proof follows from Theorem 2 and the following fact: if ψ2 + ψ + 1 = 0,
then ψ5 + ψ4 + 1 = 0. In this case the following equality ψ2b + ψb + b = 0 is also
true.

Corollary 4. A T-quasigroup (Q, ·) of the form x · y = ϕx + ψy + b satisfies T2-
identity if ϕ = Iψ3, ψ3 − ψ + 1 = 0, ψ2b+ ψb+ b = 0.

Proof. The proof follows from Theorem 2 and the following fact: if ψ3 − ψ + 1 = 0,
then ψ5 + ψ4 + 1 = 0.

Lemma 1. Any T-quasigroup of the form x · y = ϕx+ ψy + b is idempotent if and
only if ϕ+ ψ = ε, b = 0.

Proof. It is easy to see. See also [16].

Corollary 5. Any T2-T -quasigroup of the form x · y = ϕx + ψy + b is idempotent
if and only if ϕ = Iψ3, ψ3 − ψ + 1 = 0, b = 0.

Proof. We can use Theorem 2 and Lemma 1. Indeed, from the equality Iψ3 = ε−ψ
we have that ψ3 = I + ψ, ψ3 − ψ + 1 = 0.
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Example 1. The following T2-quasigroup is non-medial and therefore it is not a
T -quasigroup (see Corollary 1). It is clear that this quasigroup is not idempotent.

∗ 0 1 2 3 4 5 6 7 8

0 0 1 3 4 2 5 6 7 8
1 2 0 1 6 7 3 5 8 4
2 1 4 5 8 0 6 2 3 7
3 7 3 0 5 8 1 4 2 6
4 6 2 8 0 5 7 3 4 1
5 8 7 2 3 4 0 1 6 5
6 4 8 7 1 6 2 0 5 3
7 3 5 6 7 1 4 8 0 2
8 5 6 4 2 3 8 7 1 0

3 T2-quasigroups from the rings of residues

We use rings of residues modulo n, say (R,+, ·, 1), and Theorem 2 to construct
T2-quasigroups. Here (R,+) is cyclic group of order n, i.e., it is the group (Zn,+)
with the generator element 1. It is clear that in many cases the element 1 is not a
unique generator element, (R, ·) is a commutative semigroup [13].

Multiplication of an element b ∈ R by all elements of the group (R,+) induces
an endomorphism of the group (R,+), i.e., b · (x+y) = b ·x+ b ·y. If g.c.d.(b, n) = 1,
then the element b induces an automorphism of the group (R,+) and it is called an
invertible element of the ring (R,+, ·, 1).

Next theorem is a specification of Theorem 2 on medial T2-quasigroups defined
using rings of residues modulo n. We denote by the symbol Z the set of integers, we
denote by |n| module of the number n.

Theorem 3. Let (Zr,+, ·, 1) be a ring of residues modulo r such that f(k) = (k5 +
k4 + 1) ≡ 0 (mod r) for some k ∈ Z. If g.c.d.(|k|, r) = 1, k2 · b + k · b + b ≡ 0
(mod r) for some b ∈ Zr, then there exists T2-quasigroup (Zr, ◦) of the form x ◦ y =
−k3 · x+ k · y + b and of order r.

Proof. We can use Theorem 2. The fact that g.c.d.(|k|, r) = 1 guarantees that the
multiplication by the number k induces an automorphism of the group (Zr,+). In
this case the map −k3 is also a permutation as a product of permutations.

Example 2. Let k = −3. Then f(−3) = (−3)5 + (−3)4 + 1 = −161 = −(7) · (23).
Therefore −161 ≡ 0 (mod 7) and −161 ≡ 0 (mod 23) and we have theoretical
possibility to construct T2 quasigroups of order 7, 23, 161.

Case 1. Let r = 7. Then k = −3 = 4 (mod 7). In this case −(k3) = −(−3)3 =
27 = 6 (mod 7). It is clear that the elements 6 and 4 are invertible elements of the
ring (Z7,+, ·, 1). Therefore the quasigroup (Z7, ∗) with the form x ∗ y = 6 · x+ 4 · y
is T2-quasigroup of order 7.
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Check. We have 6x+ 4(6y + 4(6y + 4x)) = y, 70x+ 24y + 96y = y, y = y, since
70 ≡ 0 (mod 7), 120 ≡ 1 (mod 7).

In order to construct T2-quasigroups over the ring (Z7,+, ·, 1) with non-zero
element b we must solve congruence (−3)2 · b + (−3) · b + b ≡ 0 (mod 7). We have
7 · b ≡ 0 (mod 7). The last equation is true for any possible value of the element b.
Therefore the following quasigroups are T2-quasigroups of order 7: x◦y = 6·x+4·y+i,
for any i ∈ {1, 2, . . . , 5, 6}.

Case 2. Let r = 23. Then k = −3 = 20 (mod 23). In this case −(k3) =
−(−3)3 = 27 = 4 (mod 23). It is clear that the elements 20 and 4 are invertible
elements of the ring (Z23,+, ·, 1). Therefore quasigroup (Z23, ∗) with the form x∗y =
4 · x+ 20 · y is T2-quasigroup of order 23.

Check. We have 4x+ 20(4y + 20(4y + 20x)) = y, 4x+ 80y + 1600y + 8000x = y,
y = y, since 8004 ≡ 0 (mod 23), 1680 ≡ 1 (mod 23). This quasigroup is idempotent.
Indeed, 4 + 20 = 24 ≡ 1 mod 23.

In order to construct T2-quasigroups over the ring (Z23,+, ·, 1) with non-zero
element b we must solve congruence (−3)2 · b+ (−3) · b+ b ≡ 0 (mod 23). We have
7 ·b ≡ 0 (mod 23). This congruence modulo has unique solution b ≡ 0 mod 23, since
g.c.d.(7, 23) = 1.

Case 3. Let r = 161. Then k = −3 = 158 (mod 161). Recall the number 161
is not prime. In this case −(k)3 = −(−3)3 = 27 (mod 161), g.c.d.(27, 161) = 1,
the elements 158 and 27 are invertible elements of the ring (Z161,+, ·, 1). Therefore
quasigroup (Z161, ◦) with the form x ◦ y = 27 · x+ 158 · y is medial T2-quasigroup of
order 161.

Check. 27x + 4266y + 674028y + 3944312x = y, y = y, since 3944339 ≡ 0
(mod 161), 678294 ≡ 1 (mod 161).

In order to construct T2-quasigroups over the ring (Z7,+, ·, 1) with non-zero
element b we must solve congruence 7 · b ≡ 0 (mod 161). It is clear that
g.c.d.(7, 161) = 7. Therefore this congruence has 6 non-zero solutions, namely,
b ∈ {23, 46, 69, 92, 115, 138} = D.

The following quasigroups are T2-quasigroups of order 161: x◦y = 27·x+158·y+i,
for any i ∈ D.

Example 3. We list some values of the polynomial f :

f(−20) = −3039999, f(−19) = −2345777, f(−18) = −1784591,

f(−17) = −1336335, f(−16) = −983039, f(−15) = −708749,

f(−14) = −499407, f(−13) = −342731, f(−12) = −228095,

f(−11) = −146409, f(−10) = −89999, f(−9) = −52487,

f(−8) = −28671, f(−7) = −14405, f(−6) = −6479, f(−5) = −2499,

f(−4) = −767, f(−3) = −161, f(−2) = −15, f(−1) = 1, f(1) = 3,

f(2) = 49, f(3) = 325, f(4) = 1281, f(5) = 3751,

f(6) = 9073, f(7) = 19209, f(8) = 36865, f(9) = 65611,

f(10) = 110001, f(11) = 175693, f(12) = 269569, f(13) = 399855,
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f(14) = 576241, f(15) = 810001, f(12) = 269569, f(17) = 1503379,

f(18) = 1994545, f(19) = 2606421, f(20) = 3360001.

The set of prime divisors of the numbers of the set {f(−20), f(−19), . . . , f(−1),
f(1), . . . , f(20)} contains the following primes:

{3, 5, 7, 13, 19, 23, 37, 43, 59, 61, 73, 101, 157, 211, 241, 307, 347,

421, 503, 719, 833, 977, 991, 1163, 1319, 2729, 3359, 5813, 6841}.

It is possible to use presented numbers for the construction of T2-quasigroups over
the rings of residues.

Theorem 4. There exist medial T2-quasigroups of any prime order p such that
p = 6m+ 1, where m ∈ N.

Proof. We use Corollary 3. Let (Zp,+, ·, 1) be a ring (a Galois field) of residues
modulo p, where p is prime of the form 6t+1, t ∈ N. Quadratic equation ψ2+ψ+1 =
0 has two roots h1 = (−1−

√
−3)/2 and h2 = (−1+

√
−3)/2. Since p is prime, then

g.c.d(h1, p) = g.c.d(h2, p) = 1.

It is known [11] that the number −3 is a quadratic residue modulo any prime p
such that p = 6m+ 1. Finally, if the number (−1 −

√
−3) is odd, then the number

(−1 −
√
−3 + p) is even.

We prove the fact that the number −3 is a quadratic residue modulo any prime
p such that p = 6m+ 1 additionally in the following

Lemma 2. The number −3 is quadratic residue modulo of odd prime p if p can be
presented in the form 6t+ 1, where t ∈ N.

Proof. We use for proving this fact information from [7, p. 187-188]. We represent
prime p, p > 2, in the following form: p = 4qt+r, where 1 ≤ r < 4q, g.c.d.(r, 4q) = 1,
q or −q is a prime. The number q or −q is a quadratic residue modulo p if and only
if

(−1)
r−1
2

· q−1
2

(

r

q

)

= 1,

where
(

r
q

)

is Legendre symbol, or, speaking more formally, Legendre-Jacobi-

Kronecker symbol.

If r = 1, then (−1)
1−1
2

·−3−1
2

(

1
−3

)

=
(

1
−3

)

= 1.

If r = 5, then (−1)
5−1
2

·−3−1
2

(

5
−3

)

=
(

5
−3

)

= −1.

If r = 7, then (−1)
7−1
2

·−3−1
2

(

7
−3

)

=
(

7
−3

)

= 1.

If r = 11, then (−1)
11−1

2
·−3−1

2

(

11
−3

)

=
(

11
−3

)

= −1.

Therefore prime p has the form p = 12t + 1 or p = 12t+ 7. Combining the last
equalities we have that p = 6t+ 1.
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In order to construct T2-quasigroups it is possible to use direct products of
T2-quasigroups. It is clear that direct product of T2-quasigroups is a T2-quasigroup.

It is possible to use also the following arguments. The class of T2 quasigroups
is defined using T2-identity, and it forms a variety in signature with three binary
operations, namely, with the operations ·, /, and \ [13]. It is known that any variety
is closed relative to the operator of direct product [13].

Therefore we can formulate the following

Theorem 5. There exist medial T2-quasigroups of any order of the form pα1
1 pα2

2 . . .
pαm

m , where pi are prime numbers of the form 6t+ 1, αi ∈ N, i ∈ {1, . . . ,m}.

Notice that in this section and in the next section examples of medial quasigroups
of prime order of the form 6 · t+ 5 (for example, 5, 11, 23, 59) are given.

Example 4. Using Corollary 5 and ideas of Example 2 we construct medial idem-
potent T2-quasigroups over some cyclic groups Zr (r < 174). Notice that such
quasigroups are distributive [1, 16]. We have:

x · y = −2x+ 3y mod 5; x · y = −x+ 2y mod 7;

x · y = −4x+ 5y mod 11; x · y = −11x+ 12y mod 17;

x · y = −12x+ 13y mod 19; x · y = −19x+ 20y mod 23;

x · y = −2x+ 3y mod 25; x · y = −22x+ 23y mod 35;

x · y = −23x+ 24y mod 37; x · y = −32x+ 33y mod 43;

x · y = −36x+ 37y mod 49; x · y = −15x+ 16y mod 53;

x · y = −37x+ 38y mod 55; x · y = −16x+ 17y mod 59;

x · y = −45x+ 46y mod 59; x · y = −3x+ 4y mod 61;

x · y = −59x+ 60y mod 67; x · y = −15x+ 16y mod 77;

x · y = −58x+ 59y mod 79; x · y = −16x+ 17y mod 83;

x · y = −62x+ 63y mod 85; x · y = −71x+ 72y mod 89;

x · y = −12x+ 13y mod 95; x · y = −45x+ 46y mod 97;

x · y = −7x+ 8y mod 101; x · y = −11x+ 12y mod 101;

x · y = −8x+ 9y mod 103; x · y = −72x+ 73y mod 107;

x · y = −82x+ 83y mod 109; x · y = −58x+ 59y mod 113;

x · y = −12x+ 13y mod 115; x · y = −113x+ 114y mod 119;

x · y = −4x+ 5y mod 121; x · y = −102x+ 103y mod 125;

x · y = −50x+ 51y mod 133; x · y = −63x+ 64y mod 137;

x · y = −118x+ 119y mod 149; x · y = −46x+ 47y mod 157;

x · y = −127x+ 128y mod 161; x · y = −32x+ 33y mod 167;

x · y = −33x+ 34y mod 173; x · y = −75x+ 76y mod 173.
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Using Mace 4 [14] we construct the following examples of medial T2-quasigroups.

∗ 0 1 2

0 0 1 2
1 2 0 1
2 1 2 0

⊠ 0 1 2 3

0 0 2 3 1
1 1 3 2 0
2 2 0 1 3
3 3 1 0 2

◦ 0 1 2 3 4

0 0 2 4 1 3
1 2 1 3 4 0
2 4 3 2 0 1
3 1 4 0 3 2
4 3 0 1 2 4

⋄ 0 1 2 3 4 5 6 7

0 0 2 4 1 6 3 7 5
1 6 1 5 2 0 7 3 4
2 7 4 2 5 3 6 0 1
3 4 7 0 3 5 1 2 6
4 5 3 6 7 4 2 1 0
5 2 0 7 6 1 5 4 3
6 3 5 1 4 7 0 6 2
7 1 6 3 0 2 4 5 7

We recall (see Section 1) that in [5] it is proved that idempotent models of
identity (yx · y)y = x (therefore also idempotent models of T2-quasigroups) exist for
all orders n > 174.

Remark 2. From Example 4 and the example of medial idempotent T2-quasigroup
of order 8 we obtain partial spectrum of idempotent medial T2-quasigroups of order
less than 174.

Lemma 3. There exist medial T2-quasigroups of order 2 k for any k ≥ 2.

Proof. It follows since T2-quasigroup with the operation ⊠ is medial quasigroup of
order 22 and T2-quasigroup with the operation ⋄ is medial quasigroup of order 23

and g.c.d.(2, 3) = 1.

Example 5. There exists medial T2-quasigroup of order 211 since 11 = 2 · 1 + 3 · 3.

Example 6. Quasigroup (Z341, ◦), x◦y = −125x+5y, is an example of medial non-
idempotent T2-quasigroup. Notice, in this example 52 +5+1 = 31, 53−5+1 = 121,
but 31 · 121 ≡ 0 mod 341, i.e. 55 + 54 + 1 ≡ 0 mod 341.

It is possible to check that quasigroup (Z341, ◦) is isomorphic to the direct product
of quasigroup (Z31, ∗), where x ∗ y = −x + 5y, and quasigroup (Z11, ⋆), where
x ⋆ y = −4x+ 5y.

Quasigroup with operation x · y = 13x+ 18y mod 35 is isomorphic to the direct
product of quasigroup of order five with the operation x ∗ y = −2x+ 3y mod 5 and
quasigroup of order seven with the operation x ⋆ y = −x+ 4y mod 7.

See [21,22] about direct products of medial quasigroups.

Combining Lemma 3, Theorem 5, and constructed examples we formulate the
following
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Theorem 6. There exist medial T2-quasigroups of any order of the form

2 k13k25k311k417k523k653k759k883k9101k10pα1
1 pα2

2 . . . pαm
m ,

where k1 ≥ 2, k2, . . . , k10 ≥ 1, pi are prime numbers of the form 6t + 1, αi ∈ N,
i ∈ {1, . . . ,m}.

Notice that direct calculation demonstrates that no solution of the equations
x2 + x+ 1 = 0, x3 − x+ 1 = 0, x5 + x4 + 1 = 0 exists in the field GF (29).

4 Annex

Computer calculations show that there exist the following medial idempotent
T2-quasigroups of order r of the form r = 6t + 5. Such quasigroups of orders less
than 174 are given in Example 4 and we omit them here. We give such quasigroups
up to r = 1155. We present triplets in which the permutations ϕ, ψ and the order
r of quasigroup (Zr, ϕ, ψ, 0) are given:

(−97, 98, 185); (−153, 154, 191); (−202, 203, 209); (−32, 33, 215);

(−33, 34, 227); (−232, 233, 245); (−208, 209, 251); (−118, 119, 263);

(−202, 203, 275); (−151, 152, 281); (−59, 60, 293); (−247, 248, 305);

(−170, 171, 317); (−164, 165, 323); (−327, 328, 335); (−22, 23, 347);

(−312, 313, 359); (−15, 16, 371); (−39, 40, 383); (−66, 67, 389);

(−137, 138, 395); (−309, 310, 401); (−356, 357, 407); (−113, 114, 413);

(−55, 56, 419); (−402, 403, 425); (−310, 311, 431); (−12, 13, 437);

(−249, 250, 449); (−313, 314, 467); (−290, 291, 473); (−197, 198, 479);

(−142, 143, 485); (−494, 495, 503); (−317, 318, 515); (−127, 128, 521);

(−477, 478, 539); (−82, 83, 545); (−233, 234, 557); (−237, 238, 563);

(−109, 110, 569); (−127, 128, 575); (−99, 100, 581); (−111, 112, 593);

(−71, 72, 599); (−367, 368, 605); (−538, 539, 617); (−71, 72, 623);

(−504, 505, 629); (−552, 553, 641); (−266, 267, 659); (−582, 583, 665);

(−125, 126, 671); (−591, 592, 677); (−354, 355, 701); (−484, 485, 707);

(−117, 118, 719); (−419, 420, 731); (−59, 60, 737); (−436, 437, 743);

(−393, 394, 749); (−66, 67, 773); (−517, 518, 785); (−736, 737, 791);

(−225, 226, 797); (−424, 425, 809); (−322, 323, 821); (−150, 151, 827);

(−232, 233, 833); (−541, 542, 839); (−134, 135, 851); (−532, 533, 869);

(−477, 478, 875); (−389, 390, 881); (−512, 513, 905); (−165, 166, 911);

(−147, 148, 935); (−709, 710, 941); (−210, 211, 953); (−337, 338, 959);

(−706, 707, 971); (−957, 958, 977); (−208, 209, 983); (−548, 549, 989);

(−542, 543, 995); (−810, 811, 1007); (−180, 181, 1019); (−637, 638, 1031);



ON SPECTRUM OF MEDIAL T2-QUASIGROUPS 153

(−674, 675, 1037); (−267, 268, 1043); (−82, 83, 1049); (−427, 428, 1055);

(−433, 434, 1067); (−269, 270, 1091); (−536, 537, 1097); (−889, 890, 1103);

(−761, 762, 1109); (−382, 383, 1115); (−753, 754, 1121); (−134, 135, 1127);

(−1038, 1039, 1133); (−997, 998, 1139); (−872, 873, 1145); (−561, 562, 1151).
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[9] Dénes J., Keedwell A.D. Latin Squares and their Applications. Académiai Kiadó,
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Acad. Ştiinţe Repub. Moldova, Mat., 2007, No. 2(54), 43–54.

[24] Shcherbacov V. A. Quasigroups in cryptology. Comput. Sci. J. Moldova, 2009, 17, No. 2,
193–228.

[25] Syrbu P., Ceban D. On π-quasigroups of type T1. Bul. Acad. Ştiinţe Repub. Moldova,
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Moldova, Mat., 2009, No. 3(61), 109–117.

A. V. Scerbacova

Gubkin Russian State Oil and Gas University
Leninsky Prospect, 65, Moscow 119991
Russia
E-mail: scerbik33@yandex.ru

V.A. Shcherbacov

Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei str. 5, MD−2028 Chişinău
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