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Early History of the Theory of Rings in Novosibirsk

L.A. Bokut

Abstract. It is a note on early history of ring theory in Novosibirsk. We mostly
cover the first 10-15 years of the existence of the A. I.Malcev department of algebra
and mathematical logic and A. I.Shirshov (1921–1981) laboratory of ring theory at the
Sobolev Institute of Mathematics. By all means, this note is far from being complete,
see also a survey by L.A. Bokut, I. P. Shestakov [16]. This article is written in a
cooperation with E. N. Kuzmin (1938–2011) who was the active participant of events
discussed below.
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1 Introduction

These notes are written thanks to an initiative of Dr. Larissa Sbitneva. At
the opening ceremony of the 5th International conference on Nonassociative Algebra
and its Applications, Oaxtepec, Morelos, Mexico, 2003, she asked me to say a few
words on the history of ring theory in Novosibirsk. Some other participants of the
conference supported this idea. I will restrict myself mostly to the first 10–15 years
of the existence of the department of algebra and mathematical logic at the Sobolev
Institute of Mathematics, Novosibirsk. By all means, these notes are far from being
complete, see also a survey L. A. Bokut, I. P. Shestakov [16]. This article is written
in cooperation with E.N. Kuzmin who was an active participant of events discussed
below.

2 A. I. Malcev (1909–1967) and A. I. Shirshov (1921–1981) are the
founders of ring theory in Novosibirsk

Let me recall that in 1957 prominent Russian mathematicians and me-
chanicians S.A. Khristianovich (1908–2000), M.A. Lavrentev (1900–1980), and
S. L. Sobolev (1908–1986) came up with the idea of organizing a Siberian branch of
the Soviet Academy of Sciences. Their idea was supported by the Russian leader at
that time, N. S. Khruschev. As a result, the Russian government decided to create
some 20 academic research institutes together with Novosibirsk State University and
build a special town, now known as Akademgorodok, near Novosibirsk.

c© L.A. Bokut, 2017
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Thus, (now Sobolev) Institute of Mathematics was founded in 1957 by S. L. Sobolev,
who had then been its director until 1983. He invited A. I. Malcev from Ivanovo (near
Moscow) Pedagogical Institute to organize a department of algebra and mathemat-
ical logic.

A. I. Malcev was a graduate student (1934–1937) of a great Russian mathemati-
cian A.N. Kolmogorov (1903–1987), who recognized his very first result, the locality
(compactness) theorem in mathematical logic, as the beginning of a new branch of
mathematics [53]. This prediction had been fully established. Later Malcev was
recognized as “a man who showed a road from logic to algebra” (A. Robinson).
By the way, Malcev graduated from the Moscow State University, the “mehmat”,
in 1931 and began to work at Ivanovo in the same year. It should be mentioned
that students of the MSU had to spend 4 years for undergraduate studies, had no
diploma works and had no scientific advisors at that time. Malcev studied himself
mathematical logic and philosophy at the MSU. He had proved the locality theorem
of mathematical logic in 1934 and had sent a manuscript with the proof to Kol-
mogorov. As the result, Kolmogorov invited him immediately for graduate study in
. . . algebra (it was a surprise for Malcev) at the MSU. Malcev had defended Candi-
date of Science Thesis at the MSU in 1937 (on the theory of abelian groups) and
Doctor of Science Thesis at the Steklov Mathematical Institute, Kazan, December,
1941 (on the theory of representations of infinite dimensional algebras and infinite
groups), with N.G. Chebotarev (1894–1947) (Kazan) and V. A. Tartakovskii (1901–
1973) (Leningrad) as official experts. By the way, S. L. Sobolev was the director of
the Steklov Mathematical Institute during the war in 1941–42 (the Institute had to
move from Moscow to Kazan; since 1943, Sobolev was the first deputy-director of
the Laboratory N2 of the Academy of Sciences of the USSR, now the Kurchatov
Institute for Nuclear Research).

In nonassociative algebra, Malcev is known as an author of the Levy-Malcev
theorem for Lie algebras, as the originator of the theory of Malcev algebras and
binary-Lie algebras. He made profound contributions to the theory of Lie groups.
Speaking about associative algebras, he was an author of the Malcev-Wedderburn
theorem on finite dimensional associative algebras, a founder with O. Ore of the
theory of imbedding of rings into skew fields (and semigroups into groups), an author
of the Malcev-Neumann division ring construction, a founder of the representation
theory of infinite algebras (and infinite groups) by matrices over fields. His collected
papers have been published in two volumes [71,72].

Also S. L. Sobolev invited A. I. Shirshov, a pupil of A.G. Kurosh (1908–1971),
from Moscow State University to be the first deputy-director of the new institute. No
doubt, the invitation was supported by Malcev who knew Shirshov’s results very well.
Malcev was an official expert on Shirshov’s Doctor of Science Thesis, MSU, 1958,
and admired it very much; as it happened, we with E.N. Kuzmin were at the defence
meeting and remember that Malcev called Shirshov’s Thesis “brilliant” (the other
expert was V. M. Glushkov (1923–1982) (Kiev), a prominent specialist in algebra
and cybernetics; by the way, his colleagues were trying to check some of Shirshov’s
calculations by computer). It worth to be mentioned, that A. I. Shirshov was the
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first deputy-dean of the faculty of mechanics and mathematics (the “mehmat”) of
the MSU at that time (the dean was A.N. Kolmogorov).

Novosibirsk was the home region for Shirshov, he had been born at Kolyvan
and grown up at Aleisk, small towns near (by the Siberian scale) Novosibirsk [110].
What is more, he studied for one year (1939–1940) at Tomsk State University, that
is also near Novosibirsk, and he had begun his high school teacher career at Aleisk.
By the way, Shirshov was a high school teacher for 7 years during 1940–1950, with
three years interruption, 1942–1945, for the Second World War. Shirshov graduated
from Voroshilovograd (Lugansk) Pedagogical Institute in Ukraine by the distance
education in 1949. He had started his graduate study at the MSU in 1950, had
defended his Candidate of Science Thesis in 1953, and his Doctor of Science Thesis
in 1958.

A. I. Shirshov is known for his contributions to the theories of free Lie algebras
(Shirshov-Witt theorem on subalgebras, Lyndon-Shirshov words, the Compositi-
on-Diamond lemma, Gröbner-Shirshov bases), of PI-algebras (the Shirshov height
theorem), of Jordan and alternative algebras (solution of the Kurosh problem, the
Shirshov theorem on special Jordan algebras). His collected papers had been pub-
lished in the book [107].

Shirshov had five students at the MSU: L. A. Bokut, G. V. Dorofeev, E.N. Kuzmin,
V.N. Latyshev, and K.A. Zhevlakov (we graduated from the MSU in 1958–1961).
Three of us (Kuzmin, Zhevlakov, and me) left Moscow for Novosibirsk with Shir-
shov, two others remained in Moscow. We had a number of students at Insti-
tute of Mathematics, Novosibirsk State University, Moscow State University and
Moscow Pedagogical Institute: I. P. Shestakov, A. M. Slinko, A. A. Nikitin, I.M. Mi-
heev, R. E. Roomeldi (1949–1999), A. S. Markovichev (students of Zhevlakov, and
after his death, students of Shirshov); V. T. Filippov (1948–2001), F. S. Kerd-
man, Sh.M. Kasymov, O. Saudi (Syria) (students of Kuzmin, the first one, Fil-
ippov, joint with Shirshov); S.V. Pchelintsev (student of Dorofeev); V.E. Barbau-
mov, S.A. Pikhtilkov, Mekei Abish (Mongolia), I. L. Guseva, T. Gateva (Bulgaria),
V.V. Borisenko, N. A. Iyudu, V. V. Schigolev (students of Latyshev); I. V. L’vov
(1947–2003), G. P. Kukin (1948–2004), Yu.N. Maltsev, A. V. Yagzhev (1950–2001),
V.K. Kharchenko, A. Z. Ananin, E.M. Zjabko (he had been excluded from the NSU
after two years of education, see below), V.N. Gerasimov, Ts. Dashdorzh (Mon-
golia), R. Gonchigdorzh (Mongolia), A. N. Grishkov, A.A. Urman, V. V. Talapov,
B. V. Tarasov, G. V. Kryazhovskikh, A. I. Valitskas, O.K. Bobkov, V. V. Vdovin,
A.V. Chehonadskikh, A.Ṡ. Stern, A. Ya. Vais, N.G. Nesterenko, A. V. Sidorov,
E.P. Petrov, A. T. Kolotov, A. R. Kemer, E. I. Zelmanov (my students, last three
joint with Shirshov). Next generation of Shirshov’s school include V. N. Zhelyabin
(student of Shestakov and Slinko); Yu. A. Medvedev, A. V. Iltyakov, O.N. Smirnov,
U.U. Umirbaev, I.M. Isaev, S.R. Sverchkov, V. G. Skosyrskii (1956–1995), S.V. Po-
likarpov, N. A. Pisarenko, S.Yu. Vasilovskii (students of Shestakov); A. P. Pozhi-
daev (student of Filippov); A. Ya. Belov (undergraduate student of Pchelintsev,
Belov participated A. V. Mikhalev and V.N. Latyshev’s seminar on ring the-
ory at the MSU for many years); A. N. Koryukin (student of Kharchenko), and
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many others. My students, V. B. Kulchinovskii (joint with S.N. Vasilev, Irkutsk),
E.N. Poroshenko, P. S. Kolesnikov (joint with I.V. L’vov and E. I. Zelmanov),
E. S. Chibrikov, I. A. Firdman, I. A. Dolguntseva (joint with P. S. Kolesnikov) have
got Candidate of Science Degrees at the Sobolev IM and the NSU. P. S. Kolesnikov
has got P. Deligne grant (2006–2008) for his study of associative conformal algebras.

There were a lot of activities in algebra and logic at Novosibirsk and the USSR
in 1960th. Some well known algebraists and logicians had visited Malcev and his
group at Novosibirsk in the 1960s: P. S. Novikov (Moscow), A. Tarsky (Berkeley),
B. Neumann (Canberra), P. G. Kontorovich (Sverdlovsk), L.A. Kaluzhnin (Kiev),
D. A. Suprunenko (Minsk), V.M. Glushkov (Kiev), B. I. Plotkin (Riga), V.A. An-
drunakievich (Kishinev), L. A. Skornyakov (Moscow), S. I. Adyan (Moscow), A. I. Ko-
strikin (Moscow), V. P. Platonov (Minsk), V. D. Belousov (Kishinev), A. L. Shmelkin
(Moscow), L.N. Shevrin (Sverdlovsk), Yu.M. Ryabuhin (Kishinev), V. I. Arnautov
(Kishinev). There was 5-th All-Union Algebra Colloquium at Novosibirsk in 1963
headed by A. I. Malcev. All leading specialists in Algebra and Logic of the USSR
came to it, including A. G. Kurosh (Moscow). The preceding All-Union Algebra
Colloquiums were: Moscow, 1958, 1959, A.G. Kurosh (Chair); Sverdlovsk, 1960,
P.G. Kontorovich (Chair); Kiev, Ukraine, 1962, L.A. Kaluzhnin (Chair). Further
All-Union Colloquiums were: Minsk, Belorussia, 1964, D. A. Suprunenko (Chair);
Kishinev, Moldavia, 1965, V. A. Andrunakievich (Chair); Riga, Latvia, 1967,
B. I. Plotkin (Chair); Gomel, Belorussia, 1968, V. A. Chunikhin (Chair); Novosi-
birsk, 1969, A. I. Shirshov (Chair). The last All-Union Mathematical Congress held
in Leningrad at 1961 with algebra section headed by D. K. Faddeev. N. Jacobson
(Yale) visited this Congress. A. I. Malcev was the head of Algebra Section of the
Moscow International Mathematical Congress (1966). S. Amitsur (Jerusalem) and
P.M. Cohn (London) came to this Congress. There was an All-Union Topological
Conference at Novosibirsk in 1967 headed by A. I. Malcev. All leading specialists
in topology from the USSR came to it, including P. S. Aleksandrov (Moscow). Also
K. Kuratovsky and A. Mostovsky from Poland and M. Katetov from Czech-Slovakia
had participated in the Topological Conference.

All of this stimulated the Novosibirsk Ring Theory group in a great respect.

Last but not least, N. Jacobson’s profound books on Ring Theory [41]–[45]
influenced all members of Shirshov’s school very much.

3 Alternative algebras. K.A.Zhevlakov (1939–1972)

K.A. Zhevlakov came to Novosibirsk after graduating from the MSU in 1961.
In his master degree work, Zhevlakov [129] proved a result all of us liked very much.
He proved an analogue for alternative algebras of the Nagata–Higman (–Dubnov–
Ivanov [24]) theorem: the solvability of any alternative algebra with an identity
xn = 0 of characteristic p > n (or p = 0). After moving to Novosibirsk at 1961, he
was trying to solve the analogous problem for Jordan algebras. Time was not ripe
for this problem; it was solved for characteristic 0 by Efim Zelmanov 30 years later
([121], 1991); for characteristic > 2n, it was solved by V. Skosyrskii and E. Zelmanov
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([102], 1983) only in the case of special Jordan algebras. We with E.N. Kuzmin re-
member that Zhevlakov had spent about two years trying to solve this problem
(actually, Kuzmin and Zhevlakov had shared a room at an apartment at that time).
Sometimes he thought that he had found a positive solution, other times he believed
that he constructed a counter-example to the problem. But each time, he was able
to find a mistake in his reasonings. At last, A. I. Malcev and A. I. Shirshov con-
vinced him to abandon this problem. I remember how Malcev was once telling to
Zhevlakov that the structure theory of rings, for example, alternative, is a good and
respectable issue. It should be mentioned the first among Shirshov’s students adored
combinatorial problems of ring theory more then structural problems. Probably it
was due to the influence of Shirshov’s beautiful combinatorial papers. Malcev was
trying to change this one-sided point of view. I should say also that N. Jacobson’s
book “Structure of rings” was very important for all members of Novosibirsk ring
theory group. As the result, one can see a harmonious combination of both theories
in papers by K.A. Zhevlakov and E.N. Kuzmin on the structure theory of alter-
native and Malcev algebras, later on in papers by I. P. Shestakov, V. T. Filippov,
A.N. Grishkov, S.V. Pchelintsev on the same classes of algebras and on binary-Lie
and (−1, 1)-algebras, and at last in works by E. I. Zelmanov on the structure theory
of Jordan and Lie algebras with brilliant applications to group theory.

K.A. Zhevlakov made fast progress in the structure theory of alternative alge-
bras, including the structure of alternative Artinian algebras [130], the existence of
Jacobson radical in the class of alternative algebras [131], and so on (see [132]).
He defended his Candidate of Science Thesis in 1965 and Doctor of Science Thesis
in 1967, soon after Malcev’s death. His work had been supported by S.P. Novikov,
a 1970 Fields Laureate, and he had got a prestigious Lenin Komsomol Prize in
1970. K.A. Zhevlakov attracted to ring theory a group of undergraduate stu-
dents including I.V. L’vov, Yu. N. Maltsev, G.P. Kukin, A.M. Slinko, A. A. Nikitin,
I. P. Shestakov. The first three became soon my students and participated in my
seminar “Associative rings and Lie algebras”, and the other three participated in
Zhevlakov’s seminar on nonassociative rings. It should be mentioned that at the
time we are speaking about (1960s) we had a hierarchy of seminars. At the top
was “Algebra and Logic” seminar directed by A. I. Malcev before his death, then
“Ring theory” seminar directed by A. I. Shirshov, and two student seminars in ring
theory. The same was in the group theory (M. I. Kargapolov (1928–1976), Yu. I. Mer-
zlyakov (1940–1995), V.N. Remeslennikov, A. I. Kokorin (1929–1987), V. M. Kop-
utov, V.D. Mazurov), in model theory and mathematical logic (A. D. Taimanov
(1917–1990), Yu. L. Ershov, A.V. Gladkii, D. M. Smirnov (1918–2005), M. I. Tai-
zlin, D. A. Zakharov (1925–1996), L. L. Maksimova, I. A. Lavrov). I have to mention
also Boris Abramovich Trakhtenbrot (born 1921) who was a student of the promi-
nent mathematician P. S. Novikov (1900–1976), he headed a seminar in logic and
computer science and was a chair of the automata theory department at the IM.

K.A. Zhevlakov has left a strong scientific trace in Novosibirsk school of ring
theory. A well known book [132] (English translation [133]) had been based on
lectures by Shirshov at the MSU and Zhevlakov at the NSU.
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I. P. Shestakov made a great progress in the theory of alternative algebras, es-
pecially for free alternative algebras [99, 100] (the latter publication is a summary
of his Doctor of Science Thesis, 1978). He had proved that the basis rank of the
variety of alternative algebras is infinite (it was a solution of Shirshov’s problem, see
Ch. 7 below for some details) [101]. In a joint paper ([102], 1990), I. P. Shestakov
and E. I. Zelmanov had described prime alternative super algebras over a field of
characteristic not 2, 3, and had applied this result to a proof of nilpotency of the
Jacobson radical of any free alternative algebra over a field of characteristic 0. The
latter result was a solution of a Zhevlakov problem. A description of prime alter-
native algebras had been done earlier by M. Slater, a student of I. Herstein ([98],
1972).

Yu.A. Medvedev, a student of Shestakov, had proved that a periodic loop is
locally finite if it is embeddable into an alternative PI-algebra [80].

Many results for alternative algebras had been done also by G.V. Dorofeev
(see Ch. 7), S.V. Pchelintsev, V. T. Filippov, A. V. Iltyakov, S.R. Sverchkov,
Yu.A. Medvedev, and others.

Recently I. P. Shestakov and U. U. Umirbaev [103]–[105] has solved one of the
fundamental problems for polynomial automorphisms. In 1942 H. W. E. Jung had
proved that any automorphism of an algebra k[x, y] of polynomials over a field of
characteristic 0 is tame (a product of elementary automorphisms). In 1972 M. Na-
gata had conjectured that the following polynomial automorphism over complex
numbers

(x, y, z) → (x − 2(xz + y2)y − (xz + y2)2z, y + (xz + y2)z, z)

is not tame. At last in 2003 Shestakov and Umirbaev have proved that the Nagata’s
conjecture is true!

4 Jordan algebras

Some radicals in the class of (special) Jordan algebras had been studied by
A.M. Slinko [114, 115]. He had proved that the Baer (lower) radical is locally
nilpotent in special Jordan algebras, and the Levitzki (local nilpotent) radical is
ideal-hereditary in the class of Jordan algebras.

The class of special Jordan algebras is not a variety, P. M. Cohn [18], but it is
a quasi-variety. S.R. Sverchkov [116] had proved that this quasi-variety can not be
defined by a finite number of quasi-identities. It is an analogue of a well known
Malcev’s result (1940) for the class of semigroups embeddable into groups.

V.N. Zhelyabin [127, 128] had proved theorems on splitting of the Jacobson
radical for Jordan and alternative algebras over a Hensel ring that are analogous to
the ones obtained for associative algebras by G. Azumaya (1951).

“Russian revolution in Jordan algebras” (these are K. McCrimmon’s words) had
been made by Efim Isaakovich Zelmanov at the end of 1970s-beginning of 1980s.
His firsts of these results had been done before Shirshov’s death. He had settled a
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long standing gap in the theory of Jordan algebras with minimal condition proving
that the Jacobson radical is nilpotent in such algebras ([119], 1978). Zelmanov had
proved local nilpotency of Jordan nil algebras of bounded index ([120], 1979). Pre-
viously it was proved by Shirshov (1957) for special Jordan algebras. Then he had
described Jordan division algebras giving a positive response to a longstanding prob-
lem of Jacobson ([121], 1979). Also he had described prime Jordan algebras without
nonzero nil ideals ([121], 1979). Some of these results of Zelmanov’s I had announced
in my talk at a Conference on Division Rings, Oberwolfach, 1978. P.M. Cohn and
G. Bergman were among the participants. P. M. Cohn was very astonished by Zel-
manov’s results. I had given a manuscript of my talk to G. Bergman and he had
sent it to N. Jacobson. I believe it was the first information about Zelmanov’s re-
sults to the West mathematicians. Later Jacobson [42] had lectured Zelmanov’s first
results on structure theory of Jordan algebras with a great enthusiasm. He had also
lectured on Skosyrskii’s theorem [112] that the Levitzki radical of a special Jordan
algebra J is the intersection of J with the Levitzki radical of an envelope.

A. I. Shirshov was very proud of Zelmanov’s results. It was long before Zelmanov
had obtained a solution of the Restricted Burnside Problem and long before he had
got a Fields Medal. But Shirshov had understand a phenomenon of Zelmanov very
well. He had told me once: “People will remember us for we save Zelmanov for
science”. By the way, I must say that Shirshov was very unhappy that Zelmanov
had failed (!) to defend his Candidate of Science Thesis “Jordan Division Algebras”
at a Science Counsel at the Institute of Mathematics on 25 of October, 1980. On
this very day Shirshov’s mother had died (they were living together for many years)
and this very day was the last day that Shirshov had visited his dear Institute of
Mathematics, when he was the first deputy-director since 1958 to 1973. Later on Zel-
manov was successful in this business due to the help of S. L. Sobolev in May 1981,
after Shirshov’s death on 28 of February, 1981. Shirshov’s Ring Theory Department
had been divided into two laboratories: my laboratory “Associative and Lie rings”
(with Ananin, Gerasimov, Kharchenko, Lvov, Zelmanov) and Shestakov’s labora-
tory “Nonassociative rings” (with Filippov, Gainov, Kuzmin, Medvedev, Skosyrskii,
together with two specialists in group theory, N. S. Romanovskii and S.A. Syskin).
I would like to say my thanks to the first deputy-director of the IM at that time, a
prominent specialist in Riemanian Geometry Viktor Andreevich Toponogov (1930–
2004) for his help to establish my laboratory. In three years, Zelmanov had finished
his “Jordan revolution” and had written his Doctor of Science Thesis “Jordan Sys-
tems and Graded Simple Lie algebras”. He had successfully defend this Thesis
at a Science Counsel headed by D. K. Faddeev, deputy-head was Z. I. Borevich,
at Leningrad State University in 1985 (with some supports from A. I. Kostrikin,
V.N. Latyshev, V.P. Platonov). The last Chapter 5 of his Dr.Sc. Thesis was “Burn-
side Type Problems: Algebraic Algebras” (algebraic Jordan algebras and algebraic
Lie algebras). It was a beginning of his thoughts on Lie nil (Engel) algebras and
finally on the Restricted Burnside Problem for finite groups, that was successfully
finished in another 4 years [125,126].

A lot of results for Jordan algebras had been proved by Yu. A. Medvedev [82–
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84] at the end of 1980th. The results in the paper [82] continue the researches of
I. P. Shestakov [Mat. Sb., Nov. Ser. 122 (164), No. 1 (9), 31–40 (1983)] concerning
polynomial identities in finitely generated Jordan and alternative algebras. Let J
be a finitely generated Jordan PI-algebra over a commutative ring R with 1

2 . Then:

1) The universal multiplicative enveloping algebra of J is a PI-algebra as well.

2) If the ring R is Noetherian then the nil radical of the algebra J is nilpotent.

3) The algebra of the multiplications of J is an associative PI-algebra.

In the paper [83], Medvedev proved that an absolute zero divisor in a finitely
generated Jordan algebra generates a nilpotent ideal.

Medvedev’s work [84] was based on the results and methods of his earlier study
of Jordan A-algebras [Algebra Logika 26, No. 6, 731–755 (1987)]. In particular, he
proved: The free Jordan algebra from more than two generators is not prime and
has a nonzero center.

5 Malcev algebras and binary-Lie algebras

In 1955, A. I. Malcev [70] invented two classes of nonassociative algebras:
Moufang–Lie algebras and binary-Lie algebras. A.A. Sagle [97] changed name
“Moufang-Lie algebras” to “Malcev algebras”. A great contribution to the theory of
Malcev algebras had been made by Evgenii Nikiforovich Kuzmin (born in 1938). In
the middle of the 1960s-beginning of 1970s, he proved some fundamental results on
structure theory of Malcev algebras and on connections of Malcev algebras and local
analytic Moufang loops [59–61], see also [63]. His results included a description of
central simple finite dimensional (f.d.) Malcev algebras over a field of characteristic
> 3. He had also proved the existence of local analytic Moufang loop with any
given tangent f.d. Malcev algebra over the real field. Some of these results had been
presented in a joint talk with A. I. Malcev at the All-Union Topological Conference
in Novosibirsk a few days before Malcev’s death. Kuzmin had defended his Doctor
of Science Thesis on the subject in 1972. F. S. Kerdman, a student of Kuznim,
had studied global analytic Moufang loops and their connections with Malcev alge-
bras [48]. Later on Kuzmin’s student Valerii Terentevich Filippov (1952–2001) was
very successful in his study of Malcev algebras and alternative algebras. He had
described central simple infinite dimensional Malcev algebras in [27]: all of them
are Lie algebras. Also he invented a new class of algebras, the n-Lie algebras [28],
which are now called Filippov algebras. Later Sh.M. Kasymov, a student of Kuzmin
from Uzbekistan, had proved that Cartan subalgebras of any f.d. n-Lie algebra are
conjugated in a case of algebraically closed field of characteristic 0 [46].

A.N. Grishkov [38] and E.N. Kuzmin [62] had independently proved an analogue
of Levi’s theorem for Malcev algebras.

Malcev algebras became a popular subject in Novosibirsk. Some important re-
sults on the subject have been made by I. P. Shestakov, A.N. Grishkov, S.V. Pche-
lintsev.
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A lot of papers for binary-Lie algebras have been published by E.N. Kuzmin,
A.N. Grishkov, V. T. Filippov, I. P. Shestakov. Kuzmin [58] had proved an analogue
of Engel theorem for binary-Lie algebras. Grishkov [39] had established that any
simple finite dimensional binary-Lie algebra over an algebraically closed field of
characteristic 0 is Malcev algebra.

6 Other classes of non-associative algebras

The class of mono-composition algebras was invented by Alexei Timofeevich
Gainov (born 1929). He was an Ivanovo student of A. I. Malcev. His first result [31]
was a characterization of binary-Lie algebras by two identities. Gainov moved to
Novosibirsk in 1960. He introduced mono-composition algebras as a generalization
of the composition algebras [32].

Raul Roomeldi (1949–1999) had graduated from Tartu University (Estonia). He
was a graduate student of Zhevlakov at the NSU and after his death a student of
Shirshov. He had proved an analogue of the Nagata–Higman (–Dubnov–Ivanov)
theorem for (−1, 1)-algebras [94].

I.M. Miheev, a student of Zhevlakov, had proved an analogue of the Wedderburn
principal theorem for (−1, 1)-algebras [85]. He had resolved a long-standing question
of A.A. Albert that there exists a simple, right alternative (infinite dimensional)
algebra that is not alternative [86]. Later V. G. Skosyrskii [113] had proved that any
simple, right alternative algebra either alternative or nil.

S.V. Pchelincev, a student of Dorofeev, had proved that the associator ideal of
a free finitely generated (−1, 1)-algebra is nilpotent [89].

A.A. Nikitin had proved an analogue of Wedderburn’s principal theorem for
(γ, δ)-algebras over a field of characteristic > 5 [87].

A. S. Markovichev had proved that radicals in (γ, δ)-algebras are hereditary [79].

7 Varieties of non-associative algebras

Georgii Vladimirovich Dorofeev (1938–2008) was as it was mentioned above
a student of Shirshov at the MSU. His first result was an example of a solvable
alternative algebra that is not nilpotent [21]. He constructed an identity that is
valid on any 3-generated alternative algebras of characteristic 0 but not valid in the
class of all alternative algebras [22]. This identity leads naturally to the question of
whether the basis rank of the class of alternative algebras is finite or infinite. The
question was known in Novosibirsk as a problem of Shirshov.

Later on I. P. Shestakov [100] proved that the basis rank is infinite. It means
that the series

Alt1 ⊆ Alt2 ⊆ · · · ⊆ Altn ⊆ Altn+1 ⊆ . . .

does not stabilize at a finite step, where Altn is the variety of alternative algebras
generated by he free alternative algebra of the rank n. V.T. Filippov [28, 29] had
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proved that the above series (over an associative-commutative ring) is strictly in-
creasing at any step but possibly n = 3. Actually, both Shestakov’s and Filippov’s
papers contain analogous results for the Malcev algebras.

At the end of 1970th, Dorofeev found identities that characterize the join of some
important varieties of non-associative algebras [23].

Valerii Anatolievich Parfenov (1944–2016) was a student of Shirshov in Novosi-
birsk. He proved [90] that varieties of Lie algebras over a field of characteristic
zero consist of a free semigroup under the Malcev-Neumann multiplication. It is
a Lie algebra analogue of the Neumann-Shmelkin theorem for groups. The same
kind of results have been obtained by my student Alexandr Aronovich Urman (born
1944) [117] for commutative varieties of (anticommutative) non-associative algebras.

8 Varieties of associative algebras

Viktor Nikolaevich Latyshev (born 1934) was a student of Shirshov at the
MSU. He is a specialist in PI-algebras. Since his university years, he had been
working on the Specht problem, whether every associative algebra over a field of
characteristic zero is finitely based in the sense of identities. It should be noted that
the Specht problem had been one of the most appreciated problems in Shirshov’s
school. A. I. Malcev also knew this problem and certainly recognized it as a central
problem of the theory of varieties of associative algebras. Latyshev had been working
on the problem for many years, doing more and more cases of varieties that are
finitely based [65,66]. Among other aspects, his works kept the Specht problem alive
not only in the USSR, but also in Bulgaria, (see M.B. Gavrilov (1940–1998) [36],
G. K. Genov [33], A. P. Popov [92, 93], V. S. Drensky [25, 26]). There were close
relations of Novosibirsk and Moscow algebraists with algebraists of this country.
The Specht problem was solved positively by Alexandr Robertovich Kemer in 1986
(see [47]). Recently A. Ya. Belov, A. V. Grishin and V.V. Shchigolev published
important results on the analogue of the Specht problem for associative algebras
in finite characteristic. In general, the last problem has negative solution even for
finitely generated algebras over finite fields, but for finitely generated algebras over
an infinite field of finite characteristic the solution is still positive (see [6]).

Igor Vladimorovich Lvov (1947–2003) was my student. His main results belong
to the theory of PI-algebras. He proved that any finite associative ring is finitely
based, the Lvov-Kruse theorem. Lvov proved it in 1969, and published in 1973 [67].
The last result is also valid for finite alternative rings (I.V. Lvov [69]), finite Lie rings
(Yu. A. Bahturin, A.Yu. Olshanskii, students of A. L. Shmelkin [4]), finite Jordan
rings (Yu.A. Medvedev [81]), but not valid in general for finite (nonassociative)
rings (S.V. Polin, a student of A.G. Kurosh [91]). All these positive results are
analogues of the Oates-Powell theorem for finite groups [88] (Sheila Oates-Macdonald
and M.B. Powel were students of G. Higman). Later I. V. Lvov, A. Z. Ananin,
Yu.N. Maltsev, and V.T. Markov (a student of A. V. Mikhalev from the MSU)
proved the following result in the middle of 1970th: Let M be a variety of associative
algebras over an infinite field k. Then the following properties are equivalent: (1)
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All finitely generated (f.g.) algebras from M are representable by matrices over
commutative algebras; (2) All f.g. algebras from M are weakly Noetherian (i.e., any
two-sided ideal is finitely generated); (3) All f.g. algebras from M are residually
finite; (4) All f.g. algebras from M are Hopfian; (5) M has an identity xynx =∑

i+j>0
αijy

ixyn−i−jxyj (αij ∈ k) (see a survey by Bokut, Kharchenko, Lvov [13]

translated in [54]). A variety M with these properties is sometimes called a Hilbert-
Malcev variety. Just before his death, Lvov published [69] a detailed proof of A.
Smoktunovich’s result on the existence of simple nil associative algebra.

Yu.N. Maltsev in his Candidate of Science Thesis, 1973, had proved the fol-
lowing interesting results. All identities of an algebra of all upper triangular
n × n matrices over a field of characteristic zero are the consequences of only one,
[x1, x2][x3, x4] . . . [x2n−1, x2n] = 0 [73]. If R is an algebra that is nil over a right
(algebra) ideal A satisfying an identity of degree d, then R satisfies a standard iden-
tity of degree d provided R has no nonzero nil ideals [74]. Actually Zelmanov [118]
had later proved that if an algebra has no nonzero nil ideals and is nil over a PI-
subalgebra then it is a PI-algebra. A ring R is said to be an H-extension of its
subring A if, for every x ∈ R, there is a natural n > 1 such that xn − x ∈ A. If
A is commutative, then the ring R satisfies the identity [[x1, x2], [x3, x4]] = 0; if R
is an algebra and A a right ideal of R satisfying an identity, then R satisfies an
identity [75]. Also Maltsev had described varieties of associative algebras with the
commutative product of subvarieties [76], just non-commutative varieties of rings
(Sib. Mat. J., 17, 803–810 (1976)) and found a basis of identities of the second
order matrices over a finite field (Algebra Logika, 17, 18–20 (1978)). Later (1986) he
had defended Doctor of Science Thesis at the LSU, Yu.N. Maltsev, Critical rings
and varieties of associative rings (see [77,78]).

9 Lie algebras, associative algebras, and groups

In 1958, published in [7], I found a basis of a free Lie algebra that is compatible
with the derived series (see also [95]). It gives a basis of a free solvable Lie algebra. In
the same paper, a basis of any free polynilpotent Lie algebra had been found. These
results are based on a Shirshov’s result from his Candidate of Science Thesis [106],
published in [107], on series of bases of free Lie algebras (see also [96]). Some
applications of my basis had been found by V. N. Latyshev [65], A. L. Shmelkin [111],
and Yu.M. Gorchakov [37]. In 1959, published in [8], I generalized a result by
J. Dixmier [20] on nilpotent Lie algebras. Those were my master degree results.
In my Candidate of Science Thesis, 1963, I proved that any Lie algebra can be
imbedded into an algebraically closed Lie algebra (in the sense that any equation
over the algebra has a solution in this algebra) [9]. It was initiated by P. M. Cohn’s
result [19] that any Lie algebra is embeddable into a division Lie algebra. The proof
used Shirshov’s method [108] on what is now called the Gröbner-Shirshov bases for
ideals of free Lie algebras. In [10], I had actually found Gröbner-Shirshov bases for
P. S. Novikov’s groups, and based on it, I had fully analyzed the conjugacy problem
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for these groups. As a result, I proved that for any Turing degree of insolvability
there exists a Novikov’s group with this degree of the conjugacy problem.

In [11], I had found an example of a semigroup S such that the multiplicative
semigroup of a semigroup algebra of S (namely, GF (2)〈S〉) can be imbedded into a
group but the algebra can not be imbedded into any division ring. Up to now, this
is the only known example of a semigroup with the property. The proof is based
on a (relative) Gröbner-Shirshov basis of the universal group of the multiplicative
semigroup of the algebra GF (2)〈〈S〉〉, of infinite power series over S with coefficients
in G(2). In particular, it gave a solution of a Malcev’s problem (see [71], p. 6).

Last two results consist of my Doctor of Science Thesis, 1969.

In [12], I had proved that some recursively presented Lie algebras can be imbed-
ded into finitely presented Lie algebras. It gave the existence of a finitely presented
Lie algebra with the unsolvable word (equality) problem (solution of a problem of
Shirshov [106]). A proof is based on Gröobner-Shirshov bases for Lie algebras.

Explicit examples of finitely presented Lie algebras with the unsolvable word
problem had been found by my student Georgii Petrovich Kukin (1948–2004) [55].
In [56], he proved that the Cartesian subalgebra of the free product of Lie algebras
is free. Also he had found a description of any subalgebra of the free (amalgamated)
product of Lie algebras by means of generators and defining relations [57]. Recently
E. S. Chibrikov [17] has solved Kukin’s problem of an explicit construction of a left
normed basis of a free Lie algebra.

Our joint book with G.P. Kukin [15] contains some of results mentioned above
in this chapter, see also my survey [14].

My student since 1970 Vladislav Kirillovich Kharchenko in his Master of Science
Diploma, 1974, had proved that if the ring of invariants RG of an associative ring
R with a finite group G of automorphisms is a PI-ring, then R is also a PI-ring,
provided R has no additive |G|-torsion [49]. He had described [50] the structure of
prime rings satisfying a generalized identity with automorphisms. This generalized
a theorem of W. S. Martindale (1969) and was in the same spirit as a theorem of
S.A. Amitsur on rings with involution (1969). In the same paper he had answered
in the affirmative a question studied by G. M. Bergman and I.M. Isaacs (1973):
Let G be a finite group of automorphisms of a ring R without nilpotent elements;
then RG 6= (0). There were main results of his Candidate of Science Thesis, 1976.
Kharchenko had published a survey “Groups and Lie algebras acting on noncom-
mutative rings” [51], 1980, and had got his Doctor of Science Degree on the subject
in 1984 at the Leningrad State University. Later Kharchenko published his results
on non-commutative Galois theory in his well known book [52].

Victor Nikolaevich Gerasimov was also my student since 1970 (in fact, Gerasimov
and Kharchenko were classmates). His 1974 Master of Science Diploma [34] contains
a deep study of one-relator associative algebras. From his results it follows that the
Hilbert series of any one-relator homogeneous associative algebra is rational [5].
His Candidate of Science Thesis, V.N. Gerasimov, Free associative algebras and
inverting homomorphisms of rings, had been translated by the AMS, together with
ones by N.G. Nesterenko, Representations of algebras by triangular matrices, and
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A. I. Valitskas, Embedding rings in (Jacobson) radical rings and rational identities
of (Jacobson) radical algebras [35].

Last but not least, Aleksandr Zigfridovich Ananin was my student since 1971.
His first paper with my other student Evgenii Mikhailovich Zjabko [1], 1974 had
contained a solution of a well known C. Faith problem. Let me give a review by
W. G. Leavitt, see (MR0360721 (50 13168)) of this paper that shows the real sig-
nificance of it (remember that the authors were 2nd year undergraduate students):
“For a ring R, consider the property: (∗) For an arbitrary pair x, y ∈ R there exist
positive integers m(x, y), n(x, y) such that xm(x,y) commutes with yn(x,y). The au-
thors show in a very ingenious way that if R has property (∗) and no nil ideals then
R is commutative. Even more, it is shown that if R is arbitrary with (∗) then the set
I of all nilpotent elements of R is an ideal of R, with R/I commutative. This paper
is the last in a long sequence of commutativity theorems by various authors, the
previous best result being that of A. I. Lihtman [Mat. Sb. (N. S.) 83 (125) (1970),
513–523; MR 42 6023] who proved the same two theorems for the special case of (∗)
in which m and n are functions, respectively, of x and y alone.” Later this theorem
had been reproved by I. Herstein [40]. Zjabko was a very promising mathematician.
It was a big tragedy for him and for us, that Zjabko had been excluded (1973) from
the NSU for “dirtiness in his dormitory room” despite our efforts with Shirshov to
save him (he was an excellent student but “worse luck”, he was a Jew (!?)). Later
Ananin had proved important results on (triangular) matrix representable varieties
of associative algebras [2, 3].

Acknowledgements. The author was supported by the RFBR, Russia.
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Abstract. This article contains the results on the pretorsions of the module category
R-Mod and on the closure operators defined by them. The pretorsions of R-Mod can
be described in diverse forms: by classes of modules, filters of left ideals of R, closure
operators, dense submodules, etc. In the set PT of pretorsions of R-Mod the main
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1 Introduction. Preliminary notions and facts

In this work the pretorsions of a module category R-Mod and the associated
closure operators are studied. The main operations in the set PT of pretorsions
of R-Mod are investigated. The multilateral descriptions of pretorsions of R-Mod
are accentuated. Pretorsions of R-Mod can be considered as subfunctors of the
identity functor of R-Mod (r); as pretorsion classes of R-Mod (Tr); as filters of left
ideals of R (Er); as closure operators of the lattice L(RR) of left ideals of R (tr);
as closure operators of the category R-Mod (Cr); as functions defined by dense
submodules (FFFr

s).

The main operations in PR are investigated and the representations of them by
corresponding constructions (Tr,Er, C

r, etc.) are indicated. For the given pretorsion
r ∈ PT the least jansian pretorsion or torsion containing r is shown.

Let R be a ring with unit 1 6= 0 and R-Mod be the category of unitary
left R-modules. A preradical r of R-Mod is a subfunctor of identity functor of
R-Mod, i.e. r(M) ⊆ M for every M ∈ R-Mod and f

(
r(M)

)
⊆ r(M ′) for every

R-morphism f : M → M ′ of R-Mod. A preradical r is hereditary (or pretorsion) if
r(N) = r(M) ∩ N for every N ∈ L(M), where L(M) is the lattice of submodules
of M [1–4].

© A. I.Kashu, 2017
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We denote by PR the class of all preradicals of R-Mod, and by PT the class
(set) of all pretorsions of R-Mod. Every preradical r ∈ PR defines two classes of
modules:

Tr = {M ∈ R-Mod | r(M) = M} – the class of r-torsion modules;

Fr = {M ∈ R-Mod | r(M) = 0} – the class of r-torsionfree modules.

The class K ⊆ R-Mod is called pretorsion class if it is closed under homomorphic
images and direct sums. If K ⊆ R-Mod is closed under submodules, it is called
hereditary class. It is well known the following description of pretorsions by classes
of modules [1–4].

Proposition 1.1. There exists a monotone bijection between the pretorsions of
R-Mod and hereditary pretorsion classes of R-Mod. It is defined by the rules:
r  Tr, T  rT, where rT(M) =

∑

α∈A

{Nα ∈ L(M) | Nα ∈ T}.

An important peculiarity of pretorsions consists in the fact that they can be
characterized by the special sets of left ideals of R ([1–4]). A set of left ideals
E ⊆ L(RR) is called a preradical filter (left linear topology, topologizing filter) if the
following conditions are satisfied:

(a1) If I ∈ E and a ∈ R, then (I : a) = {x ∈ R | xa ∈ I} ∈ E;

(a2) If I ∈ E and I ⊆ J , J ∈ L(RR), then J ∈ E;

(a3) If I, J ∈ E, then I ∩ J ∈ E.

Proposition 1.2. There exists a monotone bijection between the pretorsions of
R-Mod and the preradical filters of R. It is defined by the mappings:

r  Er = {I ∈ L(RR) | r(R/I) = R/I};

E r
E
, r

E
(M) = {m ∈ M | (0 : m) ∈ E}.

Remark. From the Proposition 1.2 follows that PT is a set, in contrast to PR which
in general case is a class.

Therefore investigating the pretorsions we can use the diverse form of their
expressions: r,Tr,Er. The other three forms of presentation of pretorsions will be
indicated in the following account.

2 Operations in the set of pretorsions PTPTPT

In the set PT of pretorsions of R-Mod can be defined the following operations:

– the meet
∧

α∈A

rα, where
( ∧

α∈A

rα

)
(M) =

⋂

α∈A

rα(M), {rα | α ∈ A} ⊆ PT;

– the join
∨

α∈A

rα, where
∨

α∈A

rα =
∧

{s ∈ PT | s ≥ rα ∀ α ∈ A};

– the product r · s, where (r · s)(M) = r
(
s(M)

)
;

– the coproduct r # s, where [(r # s)(M)]/s(M) = r
(
M/s(M)

)
.
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Remarks. 1. The product r · s of two pretorsions coincides with their meet r ∧ s,
since using the heredity of r we have:

(r · s)(M) = r (s(M)) = r(M) ∩ s(M) = (r ∧ s)(M).

So in continuation we consider the set PT (∧,∨,#) equipped by three operations,
where PT (∧,∨) is a complete lattice.

2. In [1] the operation (r : s) is defined in PR by the rule [(r : s)(M)]/r(M) =
r
(
M/s(M)

)
, so (r : s) = s # r. Our notation is more convenient and more

coordinated with the other notations.

A series of properties of the defined operations are indicated in [1, 4], etc.

Now we will show how can be expressed the operations of PT (∧,∨,#) by the
classes of modules Tr, corresponding to the pretorsions r ∈ PT. For that we remind
that P. Gabriel [5] defined the product C ·D of two closed (fermeé) classes of modules
as follows:

C · D = {M ∈ R-Mod | M/ DM ∈ C},

where DM =
∑

α∈A

{Nα ∈ L(M) | Nα ∈ D}. We will preserve this rule, changing only

the notation for hereditary pretorsion classes:

Tr # Ts = {M ∈ R-Mod | M/s(M) ∈ Tr}.

In parallels with the operations in PT, we define the following operations on the
classes of modules of the form Tr, where r ∈ PT:

– the meet :
∧

α∈A

Trα
=

⋂

α∈A

Trα
;

– the join:
∨

α∈A

Trα
=

⋂
{Ts | Ts ⊇ Trα

∀ α ∈ A};

– the coproduct : Tr # Ts = {M ∈ R-Mod | M/s(M) ∈ Tr}.

Now we indicate the concordance between the operations of PT and the operations
with the hereditary pretorsion classes of R-Mod.

Proposition 2.1. T∧

α∈A

rα
=

∧

α∈A

Trα
for every family {rα | α ∈ A} ⊆ PT.

Proof. By the definitions we have:

M ∈ T∧

α∈A

rα
⇔

( ∧

α∈A

rα

)
(M) = M ⇔

⋂

α∈A

rα(M) = M ⇔ rα(M) = M ∀α ∈ A ⇔

⇔ M ∈ Trα
∀α ∈ A ⇔ M ∈

∧

α∈A

Trα
.

Similarly from the definitions follows the

Proposition 2.2. T∨

α∈A

rα
=

∨

α∈A

Trα
. �
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Proposition 2.3. Tr# s = Tr # Ts for every pretorsions r, s ∈ PT.

Proof. By the definition of coproduct we obtain:

M ∈ Tr#s ⇔ (r # s)(M) = M ⇔ [(r # s)(M)]/s(M) = M/s(M) ⇔

⇔ r
(
M/s(M)

)
= M/s(M) ⇔ M/s(M) ∈ Tr ⇔ M ∈ Tr # Ts.

In continuation we will consider the expression of operations of PT by the cor-
responding preradical filters Er of pretorsions r ∈ PT. Denote PFPFPF the set of all
preradical filters of R and define in this set the following operations:

– the meet :
∧

α∈A

Erα
=

⋂

α∈A

Erα
;

– the join:
∨

α∈A

Erα
=

⋂
{E ∈ PFPFPF | E ⊇ Erα

∀ α ∈ A};

– the coproduct : Er # Es = {I ∈ L(RR) | ∃ H ∈ Er, I ⊆ H such that
(I : a) ∈ Es ∀ α ∈ H}.

Remark. The latter operation is defined in [4] by changing the order of terms. Our
notation is harmonized with the previous ones.

Now we show the relations between these operations and the operations of PT.

Proposition 2.4. E∧

α∈A

rα
=

∧

α∈A

Erα
for every family {rα | α ∈ A} ⊆ PT.

Proof follows from the Proposition 2.1. �

Proposition 2.5. E∨

α∈A

rα
=

∨

α∈A

Erα
.

Proof follows from the Proposition 2.2. �

Proposition 2.6. E r# s = Er # Es for every r, s ∈ PT.

Proof. (⊆) Let I ∈ E r# s. Then from the Proposition 2.3 follows:

R/I ∈ Tr#s = Tr # Ts = {M ∈ R-Mod | M/s(M) ∈ Tr}.

Therefore (R/I) / s(R/I) ∈ Tr.
Now we consider the left ideal H ⊆ R defined by the rule (H/I) = s(R/I).

Then (R/I) / (H/I) ∈ Tr, so R/H ∈ Tr, i.e. H ∈ Er. Moreover, from the definition
of H we have H/I ∈ Ts.

So we have a left ideal H ∈ Er, I ⊆ H with the condition H/I ∈ Ts (i.e.
(I : a) ∈ Es for every a ∈ H). By the definition this means that I ∈ Er # Es.

(⊇) Let I ∈ Er # Es, i.e. there exists a left ideal H ⊆ R such that I ⊆ H
and H/I ∈ Ts. Consider the left ideal H ′ ⊆ R defined by the rule H ′/I = s(R/I).
From the condition H/I ∈ Ts follows that H/I ⊆ s(R/I) = H ′/I, so H ⊆ H ′.
Since H ∈ E, now we have H ′ ∈ Er, i.e. R/H ′ ∈ Tr.
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From the other hand, by Proposition 2.3 and definitions we have:

E r# s =
{
I ∈ L(RR) | R/I ∈ Tr # s = Tr # Ts =

= {M ∈ R-Mod | M/s(M) ∈ Tr}
}

= {I ∈ L(RR) | (R/I)/ s(R/I) ∈ Tr} =

= {I ∈ L(RR) | (R/I)/ (H ′/ I) ∈ Tr} = {I ∈ L(RR) | R/H ′ ∈ Tr}.

Now from the relation R/H ′ ∈ Tr obtained above follows that I ∈ E r#s.

3 Pretorsions and closure operators in L(RR)L(RR)L(RR)

In this section we will indicate a new form of expression for pretorsions of R-Mod
by some closure operators of the lattice L(RR) of left ideals of R. With this
intention we consider a mapping t : L(RR) → L(RR) and the following conditions
on t:

1◦) t(I) ⊇ I (extension);

2◦) t
(
t(I)

)
= t(I) (idempotency);

3◦) I ⊆ J ⇒ t(I) ⊆ t(J) (monotony);

4◦) t(I : a) =
(
t(I) : a

)
∀ a ∈ R (modularity);

5◦) t(I ∩ J) = t(I) ∩ t(J) (linearity).

It is well known that the conditions 1◦) – 3◦) define the ordinary notion of closure
operator of the lattice L(RR).

Definition 3.1. If the mapping t satisfies the conditions 1◦) – 4◦), then it is
called the modular closure operator of L(RR) [3, 6]. If t satisfies the conditions
1◦), 3◦), 4◦), 5◦), then it will be called the modular preclosure operator of L(RR).

There exists a monotone bijection between the torsions of R-Mod and the
modular closure operators of L(RR) [3, 6]. This bijection is obtained as follows:

r  tr, tr(I) = {a ∈ R | (I : a) ∈ Er};

t rt, rt(M) = {m ∈ M | t(0 : m) = R}.

Now we will show the generalization of this result for the case of pretorsions [7].

Proposition 3.1. Let r ∈ PT and Er be the associated preradical filter. Define
the operator tr of L(RR) by the rule:

tr(I) = {a ∈ R | (I : a) ∈ Er}.

Then tr is a modular preclosure operator of L(RR).

Proof. Verify the conditions 1◦), 3◦), 4◦), 5◦) for tr.

1◦) If a ∈ I, then (I : a) = R, R ∈ Er, so a ∈ tr(I).

3◦) If I ⊆ J and a ∈ tr(I), then (I : a) ∈ Er. From the relation (I : a) ⊆ (J : a)
by (a2) it follows that (J : a) ∈ Er, so a ∈ tr(J).
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4◦) By the definitions we have:

tr(I : a) = {x ∈ R |
(
(I : a) : x

)
= (I : xa) ∈ Er};

(
tr(I) : a

)
= {x ∈ R | xa ∈ tr(I)} = {x ∈ R | (I : xa) ∈ Er},

so 4◦) is true.

5◦) The expressions of 5◦) have the form:

tr(I ∩ J) = {a ∈ R |
(
(I ∩ J) : a

)
∈ Er} = {a ∈ R | (I : a) ∩ (J : a) ∈ Er};

tr(I) ∩ tr(J) = {a ∈ R | (I : a) ∈ Er} ∩ {a ∈ R | (J : a) ∈ Er} =

= {a ∈ R | (I : a) ∩ (J : a) ∈ Er},

therefore 5◦) is true.

Proposition 3.2. Let t be a modular preclosure operator of L(RR). Define the
function rt by the rule:

rt(M) = {m ∈ M | t(0 : m) = R}

for every M ∈ R-Mod. Then rt is a pretorsion of R-Mod.

Proof. It is obvious that the set rt(M) forms a submodule of M . Moreover, for
every R-morphism f : M → M ′ we have f

(
rt(M)

)
= {f(m) | t(0 : m) = R}. Since(

0 : f(m)
)
⊇ (0 : m), we obtain t

(
0 : f(m)

)
⊇ t(0 : m) = R, so t

(
0 : f(m)

)
= R, i.e.

f(m) ∈ rt(M
′). Therefore f

(
rt(M)

)
⊆ rt(M

′) and rt is a preradical of R-Mod.
Finally, for every N ∈ L(M) we have:

rt(M) ∩ N = {n ∈ N | n ∈ rt(M)} = {n ∈ N | t(0 : n) = R} = rt(N),

so rt is hereditary, i.e. rt ∈ PT.

Theorem 3.3. The mappings r  rt and t  rt define a monotone bijection
between the pretorsions of R-Mod and the modular preclosure operators of L(RR).

Proof. Taking into account the Propositions 3.1 and 3.2, it is sufficient to prove that
the indicated mappings define a bijection, i.e. r = rtr and t = trt

.
Verify the first relation:

rtr(M) = {m ∈ M | tr(0 : m) = R} = {m ∈ M | {a ∈ R | (0 : am) ∈ Er} = R} =

= {m ∈ M | (0 : am) ∈ Er ∀ a ∈ R} = {m ∈ M |
(
(0 : m) : a

)
∈ Er ∀ a ∈ R}=

= {m ∈ M | (0 : m) ∈ Er} = r(M),

so r = rtr .
On the other hand, for every modular preclosure operator t of L(RR) we have:

trt
(I) = {a ∈ R | (I : a) ∈ Ert

},

where Ert
= {I ∈ L(RR) | t(I) = R}. Now using the modularity 4◦) we obtain:

trt
(I) = {a ∈ R | t(I : a) = R} = {a ∈ R |

(
t(I) : a

)
= R} =

= {a ∈ R | a ∈ t(I)} = t(I),
therefore t = trt

.
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We remark the fact that the preradical filter of a pretorsion rt has the form
Ert

= {I ∈ L(RR) | t(I) = R}, i.e. it coincides with the set of t-dense left ideals
of R.

In continuation we show haw can be obtained from the Theorem 3.3 the similar
result for the torsions, which was formulated above. We remind that by definition
a torsion is a hereditary radical. As the pretorsions, they can be described by the
filters of left ideals of R. Supplementing the conditions (a1)− (a3) which define the
preradical filters (see Section 1), we now consider the following conditions on the set
of left ideals E ⊆ L(RR):

(a4) If Iα ∈ E, α ∈ A, then
⋂

α∈A

Iα ∈ E;

(a5) If I ⊆ J, J ∈ E and (I : j) ∈ E for every j ∈ J , then I ∈ E.

If r ∈ PT and Er satisfies the condition (a4), then r is called jansian pretorsion.
Such pretorsions will be considered in Section 7.

The set of left ideals E ⊆ L(RR) is called a radical filter (Gabriel filter, left
Gabriel topology) if it satisfies the conditions (a1), (a2) and (a5). The description
of torsions of R-Mod by the radical filters of L(RR) consists in the following [1–5].

Proposition 3.4. The mappings

r  Er, Er = {I ∈ L(RR) | r(R/I) = R/I};

E r
E
, r

E
(M) = {m ∈ M | (0 : m) ∈ E}

define a monotone bijection between the torsions of R-Mod and radical filters
of L(RR). �

Now we will indicate the transition from the pretorsions to the torsions of R-Mod
in terms of the modular preclosure operators of L(RR).

Proposition 3.5. Let r ∈ PT and tr be the associated modular preclosure operator
of L(RR). Then the following conditions are equivalent:

1) r is a torsion;

2) tr satisfies the condition 2◦), i.e. it is idempotent.

Proof. 1) ⇒ 2) If r is a torsion with radical filter Er, then by the definitions we
have:

tr(I) = {a ∈ R | (I : a) ∈ Er};

tr
(
tr(I)

)
= {b ∈ R |

(
tr(I) : b

)
∈ Er}.

Let b ∈ tr
(
tr(I)

)
. From I ⊆ tr(I) follows (I : b) ⊆

(
tr(I) : b

)
∈ Er. Moreover,

for every d ∈
(
tr(I) : b

)
we have

(
(I : b) : d

)
∈ Er. Indeed, from d ∈

(
tr(I) : b

)

follows db ∈ tr(I), i.e. (0 : db) ∈ Er. Therefore
(
(I : b) : d

)
= (I : db) ∈ Er, so(

(I : b) : d
)
∈ Er.
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Now we can use the condition (a5) in the situation (I : b) ⊆
(
tr(I) : b

)
∈ Er,

from which follows that (I : b) ∈ Er, which means that b ∈ tr(I). So we have
tr

(
tr(I)

)
⊆ tr(I), which implies the condition 2◦).

2) ⇒ 1) Suppose that the operator tr is idempotent. By the definitions we
have:

tr(I) = {a ∈ R | (I : a) ∈ Er}, tr
(
tr(I)

)
= {b ∈ R |

(
tr(I) : b

)
∈ Er}.

Therefore the idempotence of tr means that from the
(
tr(I) : b

)
∈ Er follows

(I : b) ∈ Er.

It is sufficient to prove that the filter Er satisfies the condition (a5). Suppose
that I ⊆ J, J ∈ Er and (I : j) ∈ Er for every j ∈ J . From the last condition we
have J ⊆ tr(I) and from the J ∈ Er we obtain tr(I) ∈ Er, therefore

(
tr(I) : b

)
∈ Er

for every b ∈ R. By the idempotence of tr now follows (I : b) ∈ Er for every b ∈ R,
therefore I ∈ Er. So the condition (a5) is satisfied for Er, i.e. r is a torsion.

Applying Theorem 3.3 and Proposition 3.5, we obtain the mentioned above result
on torsions ([3, 6]).

Corollary 3.6. The mappings r  tr and t  rt define a monotone bijection
between the torsions of R-Mod and modular closure operators of L(RR). �

4 Pretorsions and closure operators of RRR-Mod

An important aspect of pretorsions of R-Mod, closely related by the previous,
consists in the description of pretorsions with the help of some closure operators of
the category R-Mod. We remind firstly the necessary definitions and facts ([8–10]).

A closure operator of R-Mod is defined as a function C, which associates to every
pair N ⊆ M , where N ∈ L(M) and M ∈ R-Mod, a submodule of M denoted by
CM (N), such that the following conditions are satisfied:

(c1) N ⊆ CM (N) (extension);

(c2) N1 ⊆ N2 ⇒ CM (N1) ⊆ CM (N2) (monotony);

(c3) f
(
CM (N)

)
⊆ CM ′

(
f(N)

)
for every R-morphism f : M → M ′ and N ⊆ M

(continuity).

We denote by CO the class of all closure operators of R-Mod. Define in this
class the following operations:

– the meet
∧

α∈A

Cα, where
( ∧

α∈A

Cα

)
M

(N) =
⋂

α∈A

[(
Cα

)
M

(N)
]
;

– the join
∨

α∈A

Cα, where
( ∨

α∈A

Cα

)
M

(N) =
∑

α∈A

[(
Cα

)
M

(N)
]
;

– the product C · D, where
(
C · D

)
M

(N) = C
M

(
D

M
(N)

)
;

– the coproduct C # D, where
(
C # D

)
M

(N) = CDm (N)(N).
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We remind also the main types of closure operators of R-Mod. An operator
C ∈ CO is called:

– weakly hereditary, if CM (N) = CCm (N)(N);

– idempotent, if CM (N) = CM

(
CM (N)

)
;

– hereditary, if CN (L) = CM (L) ∩ N , where L ⊆ N ⊆ M ;

– cohereditary, if
(
CM (N) + K

)
/K = CM/K

(
(N + K)/K

)
,

where K,N ∈ L(M);

– maximal, if CM (N)/N = CM/N ( 0̄ )
(
or: CM (N)/K = CM/K(N/K),

where K ⊆ N ⊆ M
)
;

– minimal, if CM (N) = CM (0) + N
(
or: CM (N) = CM (L) + N ,

where L ⊆ N ⊆ M
)
.

There exists a close relation between the class of preradicals PR and the class of
closure operators CO of R-Mod, which is expressed by the following mappings:

1) Φ: CO → PR, where Φ(C) = r
C

, r
C

(M) = CM (0);

2) Ψ1 : PR → CO, where Ψ1(r) = Cr, [(Cr)M (N)]/N = r(M/N);

3) Ψ2 : PR → CO, where Ψ2(r) = Cr, (Cr)M (N) = N + r(M).

The class of maximal closure operators Max (CO) coincides with the operators of
the form Cr, r ∈ PR, and the pair (Φ,Ψ1) establishes the bijection Max (CO) ∼= PR.
Dually, the class of minimal closure operators Min (CO) coincides with the class of
closure operators of the form Cr, r ∈ PR, and the pair (Φ,Ψ2) defines a bijection
Min (CO) ∼= PR.

In continuation we remind the effect of the defined above mappings to the class
PT of pretorsions of R-Mod. The following statements are proved in [9] (Part IV,
Propositions 2.7, 3.5).

Proposition 4.1. 1) The pair of mappings (Φ,Ψ1) defines a monotone bijection
between the pretorsions of R-Mod and the maximal and hereditary closure operators
of R-Mod.

2) The pair (Φ,Ψ2) determines a monotone bijection between the pretorsions of
R-Mod and the minimal and hereditary closure operators of R-Mod. �

Denoting by Max (HCO) the class of maximal and hereditary closure operators
of CO, we have the bijection PT ∼= Max (HCO).

Let r ∈ PT and Er be the associated preradical filter. Then the maximal and
hereditary closure operator Cr of R-Mod is defined by the rule [Cr

M (N)]/N =
r(M/N) and can be expressed by the filter Er as follows.
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Lemma 4.2. Cr
M (N)={m ∈ M | (N : m) ∈ Er}, where (N : m)={a ∈ R | am ∈N}.

Proof. It is obvious that the set {m ∈ M | (N : m) ∈ Er} is a submodule of M ,
containing N . Since

r(M/N) = {m + N ∈ M/N |
(
0 : (m + N)

)
= (N : m) ∈ Er},

by the definition of Cr
M (N) follows the statement.

For the subsequent investigations we need the following conditions on the closure
operator C ∈ CO:

(c4)
(
CM (N) : m

)
= CR(N : m) for every N ∈ L(M) and m ∈ M

(modularity);

(c5) CM (N ∩ L) = CM (N) ∩ CM (L) for every N,L ∈ L(M) (linearity).

Proposition 4.3. Let r ∈ PT and Cr be the respective maximal and hereditary
closure operator of R-Mod. Then Cr satisfies the conditions (c4) and (c5), i.e. it
is modular and linear.

Proof. (c4) From the definitions and Lemma 4.2 we have:
(
Cr

M (N) : m
)

= {a ∈ R | am ∈ Cr
M (N)} = {a ∈ R | (N : am) =

=
(
(N : m) : a

)
∈ Er},

Cr
R(N : m) = {a ∈ R |

(
(N : m) : a

)
= (N : am) ∈ Er},

so (c4) is true.

(c5) The expressions of (c5) have the form:

Cr
M (N ∩ L) = {m ∈ M |

(
(N ∩ L) : m

)
= (N : m) ∩ (L : m) ∈ Er},

Cr
M (N) ∩ Cr

M (L) = {m ∈ M | (N : m) ∈ Er} ∩ {m ∈ M | (L : m) ∈ Er} =

= {m ∈ M | (N : m) ∩ (L : m) ∈ Er}.

Now we mention the relation of these results with the facts of Section 3. Let
r ∈ PT with the corresponding closure operator Cr. If we consider the action of Cr

on the lattice L(RR) (i.e. we fix M = RR), then we obtain a closure operator Cr
R

of L(RR).

Corollary 4.4. If r ∈ PT, then the operator tr of L(RR) defined by the rule
tr(I) = {a ∈ R | (I : a) ∈ Er} coincides with the operator Cr

R, therefore Cr
R is a

modular preclosure operator of L(RR).

Proof. From the Lemma 4.2 we have Cr
R(I) = {a ∈ R | (I : a) ∈ Er}, therefore

Cr
R = tr. From Proposition 3.1 it now follows that Cr

R is a modular preclosure
operator of L(RR).

Now we show the similar results on the torsions of R-Mod. For that we use the
following



34 A. I.KASHU

Lemma 4.5. Let r ∈ PT and Cr be the associated maximal closure operator. Then
the following conditions are equivalent:

1) r is a torsion;

2) Cr is an idempotent closure operator.

Proof. 1) ⇒ 2) If r is a torsion, then Er is a radical filter, so it satisfies the
condition (a5). Let m ∈ Cr

M

(
Cr

M (N)
)
. Then

(
Cr

M(N) : m
)
∈ Er and it is obvious

that (N : m) ⊆
(
Cr

M (N) : m
)
. Moreover, for every a ∈

(
Cr

M (N) : m
)

we have
am ∈ Cr

M (N), so (N : am) =
(
(N : m) : a

)
∈ Er. Now we can apply the condition

(a5) in the situation (N : m) ⊆
(
Cr

M (N) : m
)
∈ Er, concluding that (N : m) ∈ Er,

i.e. m ∈ Cr
M (N). This proves the relation Cr

M

(
Cr

M (N)
)
⊆

(
Cr

M (N), which is
sufficient for the idempotence of Cr.

2) ⇒ 1) If Cr is idempotent, then the operator Cr
R = tr of L(RR) satisfies the

condition 2◦), i.e. it is idempotent. From the Proposition 3.5 this is equivalent to
the fact that r is a torsion.

From the Proposition 4.1 and Lemma 4.5 follows the

Corollary 4.6. The pair of mappings (Φ,Ψ1) define a monotone bijection between
the torsions of R-Mod and maximal, hereditary and idempotent closure operators of
R-Mod. �

It is interesting that the closure operators of the form Cr, where r ∈ PT (i.e.
maximal and hereditary) can be characterized by the conditions (c4) and (c5) in-
dicated above. By Proposition 4.3 every closure operator of such type satisfies the
conditions (c4) and (c5). Now we show that the inverse statement is also true.

Proposition 4.7. Let C ∈ CO and C satisfies the conditions (c4) and (c5), i.e. it is
modular and linear. Then the set of C-dense left ideals EC ={I∈L(RR) |CR(I)= R}
is a preradical filter, the pretorsion defined by EC coincides with r

C
= Φ(C) and

C = C
rc .

Proof. Verify the conditions (a1) − (a3) for EC .

(a1) If I ∈ EC and a ∈ R, then CR(I) = R and from (c4) we have

CR(I : a) =
(
CR(I) : a

)
= (R : a) = R,

therefore (I : a) ∈ EC .

(a2) If I ∈ EC and I ⊆ J , then CR(I) = R and from (c2) we have

CR(I) ⊆ CR(J), so CR(J) = R, i.e. J ∈ EC .

(a3) If I, J ∈ EC , then CR(I) = CR(J) = R, so from (c5) we obtain

CR(I ∩ J) = CR(I) ∩ CR(J) = R, i.e. I ∩ J ∈ EC .

This proves that EC is a preradical filter, therefore it defines a pretorsion r
Ec

.

It coincides with rc = Φ(C), since from the definitions and (c4) we have:
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r
Ec

(M) = {m ∈ M | (0 : m) ∈ EC} = {m ∈ M | CR(0 : m) = R} =

= {m ∈ M |
(
CM (0) : m

)
= R} = {m ∈ M | m ∈ CM (0)} = CM (0) = r

C
(M).

The similar arguments show that C r
C = C. Indeed, for every N ⊆ M using (c4)

we obtain:

(C r
C )M (N) = {m ∈ M | (N : m) ∈ EC} = {m ∈ M | CR(N : m) = R} =

= {m ∈ M |
(
CM (N) : m

)
= R} = {m ∈ M | m ∈ CM(N)} = CM (N).

From Propositions 4.3 and 4.7 follows the

Corollary 4.8. The pair of mappings (Φ,Ψ1) defines a monotone bijection between
the pretorsions of R-Mod and the modular and linear closure operators of CO. �

5 Relations between the operations of PTPTPT and COCOCO

By Proposition 4.1 the pair of mappings (Φ,Ψ1) defines a monotone bijection
PT ∼= Max (HCO). Now we specify the form of operations in Max (HCO):

– the meet :
( ∧

α∈A

Cα

)
M

(N) =
⋂

α∈A

[(
Cα

)
M

(N)
]
;

– the join:
∨

α∈A

Cα =
∧

{D ∈ Max (HCO) | D ⊇ Cα ∀ α ∈ A};

– the product : (C · D)M (N) = CM

(
DM (N)

)
.

In the case of pretorsions the relation r · s = r ∧ s was mentioned (Section 2).
Similarly, in the case of hereditary closure operators the coproduct coincides with
the meet.

Lemma 5.1. If C,D ∈ CO and C is hereditary, then C # D = C ∧ D.

Proof. For every N ⊆M from the heredity of C used in the situation N ⊆DM (N)⊆M
we obtain:

(C # D)M (N) = CDm (N)(N) = CM (N) ∩ DM (N) = (C ∧ D)M (N).

For this reason in the case of hereditary closure operators we consider only
three operations: meet, join and product, so we have the bijection: PT(∧,∨, #) ∼=
Max (HCO)(∧,∨, ·) . The following statements show the concordance of operations
in this bijection.

Proposition 5.2. C

∧

α∈A

rα

=
∧

α∈A

C rα for every family {rα | α ∈ A} ⊆ PT.

Proof. Since E∧

α∈A

rα
=

∧

α∈A

E rα
(Proposition 2.4) we have:

(
C

∧

α∈A

rα
)

M
(N) = {m ∈ M | (N : m) ∈ E∧

α∈A

rα
};

( ∧

α∈A

C rα

)
M

(N) =
⋂

α∈A

[
C rα

M (N)
]

=
⋂

α∈A

[
{m ∈ M | (N : m) ∈ Erα

}
]

=

= {m ∈ M | (N : m) ∈
∧

α∈A

E rα
= E∧

α∈A

rα
}.
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Proposition 5.3. C

∨

α∈A

rα

=
∨

α∈A

C rα for every family {rα | α ∈ A} ⊆ PT.

Proof follows from the Proposition 2.5. �

Proposition 5.4. C r # s = Cr · Cs for any pretorsions r, s ∈ PT.

Proof. We verify the relation C r # s
M (N) = Cr

M

(
Cs

M (N)
)
, where N ⊆ M .

(⊆) Let m ∈ C r # s
M (N). Then from the Proposition 2.6 and from the definitions

we have:

(N : m) ∈ E r # s = Er # Es =

= {I ∈ L(RR) | ∃ H ∈ Er, I ∈ H such that (I : a) ∈ Es ∀ a ∈ H}.

So there exists H ∈ Er such that (N : m) ⊆ H and
(
(N : m) : a

)
= (N : am) ∈ Es

for every a ∈ H. Therefore for every element am + N ∈ (Hm + N)/N we have(
0 : (am + N)

)
= (N : am) ∈ Es, which means that (Hm + N)/N ∈ Ts.

But then (Hm + N)/N ⊆ s(M/N) = C s
M (N)/N , so Hm ⊆ Cs

M (N) and
H ⊆

(
Cs

M (N) : m
)
. Since H ∈ Er, now we have

(
C s

M (N) : m
)
∈ Er, which means

that m ∈ C r
M

(
C s

M (N)
)
.

(⊇) Let m ∈ C r
M

(
C s

M (N)
)
. Then

(
C s

M (N) : m
)
∈ Er and denoting H =(

C s
M (N) : m

)
we have H ∈ Er and Hm ⊆ C s

M (N). From the relation N ⊆ C s
M (N)

follows (N : m) ⊆
(
C s

M (N) : m
)

= H. Moreover, for every a ∈ H we have
am ∈ C s

M (N), i.e. (N : am) =
(
(N : m) : a

)
∈ Es. By the definition this means

that (N : m) ∈ Er # Es = E r # s, therefore m ∈ C r # s
M (N).

From the previous statements we conclude that the mapping Ψ1 preserves the
meets and joins, but it converts the coproduct into the product.

6 Characterization of pretorsions by dense submodules

Let C ∈ CO. For every M ∈ R-Mod we denote:

FFFC
1 (M) = {N ∈ L(M) | CM (N) = M} – the set of C-dense submodules of M ;

FFFC
2 (M) = {N ∈ L(M) | CM (N) = N} – the set of C-closed submodules of M .

Thus the operator C ∈ CO defines two functions FFFC
1 and FFFC

2 , which distinguish
in every module M the set of C-dense submodules FFFC

1 (M) and the set of C-closed
submodules FFFC

2 (M). In some cases by the help of these functions the operator C
can be reestablished. More exactly, C can be restored by FFFC

1 if and only if it
is weakly hereditary. Dually, C can be reestablished by FFFC

2 if and only if it is
idempotent ([9], Part I).
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Now we remind some results on the function FFFC
1 defined by C-dense submodules.

For every C ∈ CO the function FFFC
1 satisfies the following conditions:

1) If N ∈ FFFC
1 (Mα), Mα ⊆ M, α ∈ A, then N ∈ FFFC

1

( ∑

α∈A

Mα

)
;

2) If N ⊆ P ⊆ M and N ∈ FFFC
1 (P ), then N + K ∈ FFFC

1 (P + K) for every
K ⊆ M ;

3) If f : M →M ′ is an R-morphism and N ∈ FFFC
1 (M), then f(N) ∈ FFFC

1

(
f(M)

)
.

An abstract function FFF which separates in every module M a set of submodules
FFF(M) is called a function of type FFF1, if it satisfies the conditions 1) − 3). Then FFF

defines a closure operator CFFF by the rule:

(CFFF)M (N) =
∑

α∈A

{Mα ⊆ M | N ∈ FFF(Mα)}.

The description of the weakly hereditary closure operators by the functions of type
FFF1 consists in the following ([9], Part I, Theorem 2.6).

Proposition 6.1. The mappings C  FFFC
1 and FFF  CFFF define a monotone bijec-

tion between the weakly hereditary closure operators of CO and the functions of
type FFF1 of R-Mod.

By the restriction of this bijection we obtain the similar result for the hereditary
closure operators of CO. For that the following condition on the abstract function
FFF is considered:

(Her) If N ⊆ P ⊆ M and N ∈ FFF(M), then N ∈ FFF(P ).

Proposition 6.2. The mappings C  FFFC
1 and FFF  CFFF define a mono-

tone bijection between the hereditary closure operators of CO and the abstract
functions of type FFF1 of R-Mod, which satisfy the condition (Her) ([9], Part II, Corol-
lary 2.3).

In a similar way from the Proposition 6.1 the description of weakly hereditary and
maximal closure operators can be obtained. With this aim the following condition
on a function FFF is considered:

(Max) If K ⊆ N ⊆ M and N/K ∈ FFF(M/K), then N ∈ FFF(M).

Proposition 6.3. The mappings C  FFFC
1 and FFF  CFFF define a monotone bijec-

tion between the weakly hereditary and maximal closure operators of CO and
the abstract functions of type FFF1, which satisfy the condition (Max) ([9], Part II,
Corollary 3.3).

From Propositions 6.2 and 6.3 we have

Corollary 6.4. The mappings C  FFFC
1 and FFF  CFFF establish a monotone bi-

jection between the hereditary and maximal closure operators of CO and the
abstract functions of type FFF1, which satisfy the conditions (Her) and (Max).
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Now we can use the fact that the pretorsions of R-Mod are described by the
maximal and hereditary closure operators of R-Mod, since by Proposition 4.1 we
have the bijection: PT ∼= Max(HCO). In one’s turn the operators of Max(HCO)
by Corollary 6.4 can be characterized by the abstract functions of type FFF1 with the
conditions (Max) and (Her). Therefore the followihg is true.

Proposition 6.5. There exists a monotone bijection between the pretorsions of
R-Mod and the abstract functions of type FFF1, which satisfy the conditions (Max)
and (Her).

This bijection has the form:

r  FFF r
1 , where FFF r

1 (M) = {N ∈ L(M) | (N : m) ∈ Er ∀ m ∈ M};

FFF rFFF, where rFFF(M) =
∑

{Mα ∈ L(M) | 0 ∈ FFF(Mα)}.

We mention also the fact that for every pretorsion r ∈ PT we have FFF r
1 (RR) = Er.

From the exposed above results follows that every pretorsion r ∈ PT can be
described not only by the class Tr and the filter E r, but also by the operator tr
of L(RR), by the operator Cr of R-Mod and by the function FFF r

1 , which selects the
dense submodules.

7 On some approximations of pretorsions

Concluding this work, we mention some simple methods of approximations of
pretorsions by jansian pretorsions and by torsions of R-Mod. By approximations
we means the constructions of the least jansian pretorsion or of the least torsion,
which contains the given pretorsion.

Let r ∈ PT. We denote Lr = ∩ {Iα ∈ L(RR) | Iα ∈ Er}. Then Lr is an ideal
of R and it is called the kernel of r. The following conditions for r ∈ PT are
equivalent ([1, 3, 4]):

1) r is jansian
(
see condition (a4), Section 3

)
;

2) L ∈ Er;

3) the class Tr is closed under products: if Mα ∈ Tr (α ∈ A), then
∏

α∈A

Mα ∈ Tr.

If r is a jansian pretorsion, then Er = {I ∈ L(RR) | I ⊇ Lr}.

There exists an antimonotone bijection between the jansian pretorsions of R-Mod
and two sided ideals of R. It is defined by the rules:

r  Lr, I  EI = {Iα ∈ L(RR) | Iα ⊇ I}.

It is obvious that if the pretorsion r ∈ PT is jansian, then the associated maximal and
hereditary closure operator Cr acts as follows: Cr

M (N) = {m ∈ M | (N : m) ⊇ Lr}.

It is easy to show how can be expressed by Cr the condition that the pretorsion
r ∈ PT is jansian. For that we consider the following condition to an arbitrary
C ∈ CO:
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(c6) CM

( ⋂

α∈A

Nα

)
=

⋂

α∈A

CM (Nα) for every family {Nα | α ∈ A} ⊆ L(M)

(complete linearity).

Proposition 7.1. For every r ∈ PT the following conditions are equivalent:

1) r is a jansian pretorsion;

2) the closure operator Cr satisfies the condition (c6).

Proof. 1) ⇒ 2) If r is jansian, then:

m ∈ Cr
M

( ⋂

α∈A

Nα

)
⇔

(
(
⋂

α∈A

Nα) : m
)
⊇ Lr ⇔

⋂

α∈A

(Nα : m) ⊇ Lr ⇔

⇔ m ∈
⋂

α∈A

Cr
M (Nα), so is true (c6).

2) ⇒ 1) If Cr is complete linear, then Cr
R (

⋂

Iα∈Er

Iα) =
⋂

Iα∈Er

[Cr
R(Iα)] = R,

so
⋂

Iα∈Er

Iα = Lr ∈ Er, i.e. r is jansian.

Let r ∈ PT and Lr be the kernel of the pretorsion r. Then the ideal Lr defines a
jansian pretorsion r̂, determined by the preradical filter Er̂ = {I ∈ L(RR) | I ⊇ Lr},
i.e. r̂(M) = {m ∈ M | (0 : m) ⊇ Lr} for every M ∈ R-Mod.

Proposition 7.2. r̂ is the least jansian pretorsion containing the pretorsion
r ∈ PT.

Proof. Since Er ⊆ Er̂, we have r ≤ r̂ and r̂ is a jansian pretorsion with the
kernel Lr. If s ∈ PT is jansian and r ≤ s, than Er ≤ Es, so Lr ⊇ Ls, therefore
r̂ ≤ s. This means that r̂ is the least jansian pretorsion containing r.

Taking into account this property, r̂ is called the jansian hull of the pretorsion
r ∈ PT [4]. For an ideal I of R we denote by rI the jansian pretorsion defined by
I, so that rI(M) = {m ∈ M | (0 : m) ⊇ I}.

Proposition 7.3.
∧

α∈A

r̂α = r ∑

α∈A

Lrα
for every family {rα | α ∈ A} ⊆ PT.

Proof. We compare the respective preradical filters:

E∧

α∈A

r̂α
=

⋂

α∈A

Er̂α
= {I ∈ L(RR) | I ∈ Er̂α

∀ α ∈ A} =

= {I ∈ L(RR) | I ⊇ Lrα
∀ α ∈ A} = {I ∈ L(RR) | I ⊇

∑

α∈A

Lrα
} = E r ∑

α∈A

Lrα

.

In continuation we show the other type of approximation of a pretorsion r ∈ PT,
namely by the help of torsions. Every pretorsion r ∈ PT is accompanied by two
classes of modules:

Tr = {M ∈ R-Mod | r(M) = M}, Fr = {M ∈ R-Mod | r(M) = 0}.
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It is well known that the class Tr uniquely reestablishes the pretorsion r, while the
class Fr not always determines r.

To clarify the situation it is convenient to use the following operators of
“orthogonality”, which act to the abstract classes of modules K ⊆ R-Mod ([1–3]):

K
↑

= {X ∈ R-Mod | HomR (X,Y ) = 0 ∀ Y ∈ K},

K
↓

= {Y ∈ R-Mod | HomR (X,Y ) = 0 ∀ X ∈ K}.

For every K ⊆ R-Mod the class K
↑

is a torsion class (i.e. it is closed under

homomorphic image, direct sums and extensions), and K
↓

is a torsionfree class (i.e.

it is closed under submodules, direct products and extensions). Moreover, K
↓↑

is

the least torsion class containing K, and K
↑↓

is the least torsionfree class containing

K. If r is an idempotent radical, then Tr = F
↑

r and Fr = T
↓

r . In this case Tr is
hereditary if and only if Fr is stable and this means that r is a torsion.

Lemma 7.4. If r is a pretorsion, then the class Fr = T
↓

r is closed under sub-
modules, direct products, extensions and injective envelopes, i.e. Fr is a torsionfree
stable class.

Proof. The first three properties of the class Fr = T
↓

r are obvious, since every class

of the form K
↓

is torsionfree. We verify the stability of Fr : M ∈ Fr implies
E(M) ∈ Fr, where E(M) is the injective envelope of M .

Let M ∈ Fr, i.e. r(M) = {m ∈ M | (0 : m) ∈ Er} = 0. Suppose that
r
(
E(M)

)
6= 0. Then there exists an element 0 6= x ∈ E(M) such that (0 : x) ∈ Er.

Since Rx 6= 0, we have Rx ∩ M 6= 0, so there exists an element 0 6= m = ax ∈ M ,
where a ∈ R, for which (0 : m) = (0 : ax) =

(
(0 : x) : a

)
∈ Er, therefore

0 6= m ∈ r(M), contradiction. This shows that r
(
E(M)

)
= 0, i.e. E(M) ∈ Fr and

the class Fr is stable.

Now we remind the relation between the torsions r of R-Mod and the associated
classes Tr and Fr ([1–3,6]).

Lemma 7.5. 1) The mappings r  Tr, and T  rT, where rT(M) =
∑

α∈A

{Nα ∈

L(M) | Nα ∈ T}, define a monotone bijection between the torsions of R-Mod and
the hereditary torsion classes of R-Mod.

2) The mappings r  Fr, and F  r
F
, where r

F
(M) =

⋂

α∈A

{Nα ∈ L(M) |

M/Nα ∈ F}, establish an antimonotone bijection between the torsions of R-Mod
and the stable torsionfree classes of R-Mod.

Let r ∈ PT. By the Lemma 7.4 the class Fr is a stable torsionfree class, so by
the Lemma 7.5 Fr defines a torsion r̃ such that Tr̃ = F

↑
r = T

↓↑
r and Fr̃ = Fr, i.e.

r̃(M) =
⋂

α∈A

{Nα ∈ L(M) | M/Nα ∈ Fr}.
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Proposition 7.6. Let r ∈ PT. Then the torsion r̃, defined by the class Fr, is the
least torsion containing r.

Proof. By the definitions the class of modules Tr̃ = F
↑
r = T

↓↑
r is the least hereditary

torsion class, which contains Tr. Therefore r̃ is the least torsion containing r.

The torsion r̃ constructed above is called the torsion hull of the pretorsion
r ∈ PT. Then Er̃ is the least radical filter of R, containing the preradical fil-
ter Er. It is obvious that class of modules Tr̃ can be directly described by the
class Tr, as well as the radical filter Er̃ can be expressed by Er. For example:
Er̃ = {I ∈ L(RR) | ∀ J ⊃ I, J 6= R, ∃ a /∈ J such that (J : a) ∈ Er} ([2],
Chapter VI, Proposition 5.4).

In particular, for the pretorsion Z defined by the preradical filter of essential left
ideals EZ = {I ∈ L(RR) | I ⊆′

RR}, the corresponding torsion hull is Z2 with the
radical filter (Goldie topology):

EZ2 = {I ∈ L(RR) | ∃ J ∈ EZ such that I ⊂ J and (I : b) ∈ EZ ∀ b 6= J} ([2],
Chapter VI, Proposition 6.3).
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Properties of accessible subrings of pseudonormed rings

when taking quotient rings
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Abstract. Let (R, ξ) and (R̄, ξ̄) be pseudonormed rings, ϕ : R → R̄ be a ring
isomorphism. We prove that ϕ : (R, ξ) → (R̄, ξ̄) is a superposition of a finite number
of semi-isometric isomorphisms if and only if it is a narrowing on an accessible subring
of some isometric homomorphism.
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phisms, canonical homomorphism.

We will say that a pseudonormed ring is a ring R which may be non-associative
and has a pseudonorm (see [1], Definition 2.3.1).

The following isomorphism theorem is widely applied in the general algebra and,
in particular, in the ring theory:

Theorem 1. If A is a subring of a ring R and I is an ideal of the ring R then
the quotient rings A/(A

⋂
I) and (A + I)/I are isomorphic rings. In particular, if

A
⋂
I = 0, then the ring A is isomorphic to the ring (A+ I)/I, i.e. the rings A and

(A+ I)/I possess identical algebraic properties.

Since it is necessary to take into account properties of pseudonorms when study-
ing the pseudonormed rings then one needs to consider isomorphisms which keep
pseudonorms. Such isomorphisms are called isometric isomorphisms.

The isomorphism theorem does not always take place for pseudonormed rings.
The following theorem was proved in the work [2]:

Theorem 2. Let (R, ξ) and (R̄, ξ̄) be pseudonormed rings, ϕ : R → R̄ be a ring
isomorphism. The inequality ξ̄(ϕ(r)) ≤ ξ(r) is satisfied for all r ∈ R if and only if:

– there exists a pseudonormed ring (R̂, ξ̂) such that (R, ξ) is a subring of the
pseudonormed ring (R̂, ξ̂);

– the isomorphism ϕ can be extended up to an isometric homomorphism ϕ̂ :(
R̂, ξ̂

)
→
(
R̄, ξ̄

)
of the pseudonormed rings, i. e. ξ̄ (ϕ̂ (r̂)) = inf

{
ξ̂ (r̂ + a) |a ∈ ker ϕ̂

}

for all r̂ ∈ R̂.

As it’s shown in Theorem 2 it is impossible to tell anything more than the validity
of the inequality ξ̄(ϕ(r)) ≤ ξ(r) in the case when A is a subring of a pseudonormed
ring (R, ξ).

c© S.A. Aleschenko, V. I. Arnautov, 2017
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The case when A is an ideal of a pseudonormed ring (R, ξ) was studied in the
work [2], the case when A is a one-sided ideal of a pseudonormed ring (R, ξ) was
studied in the work [3].

The following definition was introduced in [2]:

Definition 1. Let (R, ξ) and (R̄, ξ̄) be pseudonormed rings and ϕ : R → R̄ be a
ring isomorphism. The isomorphism ϕ : (R, ξ) → (R̄, ξ̄) is called a semi-isometric
isomorphism if there exists a pseudonormed ring (R̂, ξ̂) such that the following con-
ditions are valid:

1) the ring R is an ideal in the ring R̂;

2) ξ̂(r) = ξ(r) for any r ∈ R;

3) the isomorphism ϕ can be extended up to an isometric homomorphism
ϕ̂ : (R̂, ξ̂) → (R̄, ξ̄) of the pseudonormed rings.

The following theorem was proved in [2]:

Theorem 3. Let (R, ξ) and (R̄, ξ̄) be pseudonormed rings and ϕ : R → R̄ be a
ring isomorphism. Then the isomorphism ϕ : (R, ξ) → (R̄, ξ̄) is a semi-isometric
isomorphism of the pseudonormed rings iff the inequalities ξ(a · b) ≤ ξ̄(ϕ(a)) · ξ(b),
ξ(b · a) ≤ ξ̄(ϕ(a)) · ξ(b) and ξ̄(ϕ(a)) ≤ ξ(a) are true for any a, b ∈ R.

This paper is a continuation of [2] and [3] and it’s devoted to the study of the case
when A is an accessible subring of a pseudonormed ring (R, ξ) (see Definition 2). It’s
shown that a ring isomorphism is a superposition of semi-isometric isomorphisms iff
it is a narrowing on the accessible subring A of some isometric homomorphism.

Definition 2. As usual, a subring A of a rings R is called an accessible subring of the
stage no more than n of the ring R if there exists a chain A = R0 ⊆ R1 ⊆ R2 ⊆ . . . ⊆
Rn = R of subrings of the ring R such that Ri is an ideal in Ri+1 for i = 0, 1, . . . n−1.
Further we shall designate it as A = R0 ⊳ R1 ⊳ R2 ⊳ . . . ⊳ Rn = R.

Proposition 1. Let: 1) (R̂, ξ̂) be a pseudonormed ring; 2) R be an ideal in R̂;

3) Î be a closed ideal in (R̂, ξ̂) and I = Î
⋂
R; 4) Ĩ = [I]

(R̂,ξ̂)
and R̃ = R+ Ĩ;

5) ε̄ : R/I → (R + Î)/I be the natural embedding; 6) ω̂ : R̂ → R̂/I and ω̃ : R̂/I →
R̂/Ĩ be canonical homomorphisms. Then ω̃|R/I : (R̄, ξ̄) = (R, ξ̂|R)/I → (R̃, ξ̂|

R̃
)/Ĩ =

( ¯̃R, ¯̃ξ) is an isometric isomorphism.

Proof. Let’s consider the following diagram 1.

R ⊆ R̃= R+ Ĩ⊆ R̂

ω̂|R



y ω̂|

R̃



y ω̂



y

R/I
ε̄

−−−−→ R̃/I ⊆R̂/I
∥
∥
∥ ω̃|

R̃/I



y ω̃



y

R/I
ω̃|R/I

−−−−→ R̃/Ĩ ⊆R̂/Ĩ
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As I ⊆ Ĩ then inf{ξ̂(r + i)|i ∈ I} ≥ inf{ξ̂(r + i)|i ∈ Ĩ} for any r ∈ R. Therefore

ξ̄(r̄) ≥ ¯̃ξ(ω̃(r̄)) for any r̄ ∈ R̄.
We show that the reverse inequality is true.
Let r̄ be any element in the ring R̄ = R/I and ε be any positive number. If

r ∈ R is an element such that r̄ = r + I then there exists an element ĩ0 ∈ Ĩ such
that

¯̃
ξ(ω̃(r̄)) + ε

2 ≥ ξ̂(r + ĩ0). Since ĩ0 ∈ Ĩ = [I]
(R̂,ξ̂)

then there exists an element

i0 ∈ I such that ξ̂(i0 − ĩ0) <
ε
2 . Hence we have the inequality

ξ̄(r̄) = inf{ξ̂(r + i)|i ∈ I} ≤ ξ̂(r + i0) = ξ̂(r + ĩ0 − ĩ0 + i0) ≤

ξ̂(r + ĩ0) + ξ̂(i0 − ĩ0) <
¯̃ξ(ω̃(r̄)) + ε

2 + ε
2 = ¯̃ξ(ω̃(r̄)) + ε.

Passing to the limit in these inequalities when ε→ 0, we obtain ξ̄(r̄) ≤
¯̃
ξ(ω̃(r̄)).

Thus it follows from the inequalities ξ̄(r̄) ≥ ¯̃ξ(ω̃(r̄)) and ξ̄(r̄) ≤ ¯̃ξ(ω̃(r̄)) we have

the equality ξ̄(r̄) = ¯̃ξ(ω̃(r̄)), i.e. ω̃|R/I : (R̄, ξ̄) = (R, ξ̂|R)/I → (R̃, ξ̂|
R̃
)/Ĩ = ( ¯̃R, ¯̃ξ) is

an isometric isomorphism.
The proposition is proved.

Theorem 4. Let (R, ξ) and (R̄, ξ̄) be pseudonormed rings and ϕ : R→ R̄ be a ring
isomorphism. Then the following statements are equivalent:

1. There exists a pseudonormed ring (R̂, ξ̂) such that (R, ξ) is an accessible
subring of the stage no more than n of the pseudonormed ring (R̂, ξ̂) and the iso-
morphism ϕ can be extended up to an isometric homomorphism ϕ̂ : (R̂, ξ̂) → (R̄, ξ̄).

2. ϕ is a superposition of n semi-isometric isomorphisms, i.e. there exist
pseudonormed rings (R, ξ) = (R0, ξ0), (R1, ξ1), . . . , (Rn, ξn) = (R̄, ξ̄) and semi-
isometric isomorphisms ϕi : (Ri, ξi) → (Ri+1, ξi+1) for i = 0, 1, . . . , n − 1 such
that ϕ = ϕn ◦ ϕn−1 ◦ . . . ◦ ϕ0.

Proof 1 ⇒ 2. Let R = R̂0 ⊳ R̂1 ⊳ R̂2 ⊳ . . . ⊳ R̂n = R̂ be a chain of subrings such
that R̂i is an ideal in R̂i+1 for i = 0, 1, . . . n− 1 and the isomorphism ϕ : R→ R̄ can
be extended up to an isometric homomorphism ϕ̂ : (R̂, ξ̂) → (R̄, ξ̄).

If Î = ker ϕ̂ and ω̃ : Rk+1 → Rk+1/Î is the canonical homomorphism

(i.e. ω̃(r) = r+ Î) then there exists an isometric isomorphism η : (R̂n, ξ̂n)/Î → (R̄, ξ̄)
such that ϕ̂ = η ◦ ω̃.

Let’s consider the following diagram 2 (mappings entering into the diagram are
defined below).

R = R̂0 ⊳ . . . ⊳ R̂k ⊳ R̂k+1 = R̂k+1 = R̂

‖ ω|
R̂k



y ω



y

R
ϕ0

−−−−→ . . .
ϕk−1
−−−−→ R̂k/I ⊳ R̂k+1/I



yω̃



yϕ̂

ϕ



y ϕk



y ω̂



y

R̄ = R̂k+1/Î =R̂k+1/Î=R̂k+1/Î
η

−−−−→ R̄

The further proof will be done by induction on the number n.
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If n = 1 then (R, ξ) is an accessible subring of the stage 1 (i.e. it is an ideal)
of the pseudonormed ring (R̂, ξ̂) and the isomorphism ϕ can be extended up to an
isometric homomorphism ϕ̂ : (R̂, ξ̂) → (R̄, ξ̄), and hence ϕ : (R, ξ) → (R̄, ξ̄) is a
semi-isometric isomorphism.

Let’s assume that the theorem is true for n = k, and let n = k + 1. Since R̂k

and Î are ideals in R̂k+1 then I = R̂k

⋂
Î is an ideal in R̂k+1 too.

In the beginning let’s consider the case when I = R̂k

⋂
Î is a closed ideal

in (R̂k+1, ξ̂). If ω : R̂k+1 → R̂k+1/I is the canonical homomorphism, then
ω|

R̂k

: (R̂k, ξ̂|R̂k

) → (R̂k, ξ̂|R̂k

)/I is an isometric homomorphism. As R̂0
⋂

kerω|
R̂k

=

R̂0
⋂
I = R̂0

⋂
Î = R̂0

⋂
ker ϕ̂ = kerϕ = {0} and R̂k = R̂k

⋂
R̂ = R̂k

⋂
(R + Î) =

R + (R̂k

⋂
Î) = R + I then ω|

R̂0
: R̂0 → R̂k/I is an isomorphism and by the as-

sumption ω|
R̂0

is a superposition of k semi-isometric isomorphisms, i.e. there are

pseudonormed rings (R, ξ) = (R0, ξ0), (R1, ξ1), . . . , (Rk, ξk) = (R̂k, ξ̂|Rk
)/I and iso-

metric isomorphisms ϕi : (Ri, ξi) → (Ri+1, ξi+1) for i = 0, 1, . . . , k − 1 such that
ω|

R̂0
= ϕk−1 ◦ ϕk−2 ◦ . . . ◦ ϕ0.

As I = Î
⋂
Rk = (ker ϕ̂)

⋂
Rk = ker(ϕ̂|Rk

) and R = ϕ(R) = ϕ̂(R) then R̂k + Î =

R̂0 + Î = R̂k+1, and so ϕk = ω̂|
R̂k/I

: R̂k/I → R̂k+1/Î is an isomorphism.

Since R̂k/I is an ideal in R̂k+1/I then ϕk : (R̂k, ξ̂|R̂k

)/I → (R̂k+1, ξ̂)/Î is a semi-

isometric isomorphism. Hence η ◦ ϕk : (R̂k, ξ̂|R̂k
)/I → (Rk+1, ξ) is a semi-isometric

isomorphism, and (η◦ϕk)◦ϕk−1◦ϕk−2◦. . .◦ϕ0 = η◦ϕk ◦ω|R̂0
= η◦ω̃|R0 = ϕ̂|R0 = ϕ,

i.e. the isomorphism ϕ is a superposition of k + 1 semi-isometric isomorphisms in
the case when I is a closed ideal in (R̂k+1, ξ̂) .

Let’s consider now the case when I = R̂k

⋂
Î is non-closed ideal in (R̂k+1, ξ̂).

Let’s designate Ĩ = [I]
(R̂k+1,ξ̂)

and consider the diagram 3 which is obtained by

adding one line to the diagram 2 (definitions of unknown by now rings and mappings
see below).

R = R̂0 ⊳ . . . ⊳ R̂k ⊳ R̂k+1 = R̂k+1 = R̂

‖ ω|
R̂k



y ω



y

R
ϕ0

−−−−→ . . .
ϕk−1
−−−−→ R̂k/I ⊳ R̂k+1/I

η̄



y ω′



y

ϕ



y (R̂k + Ĩ)/Ĩ⊳ R̂k+1/Ĩ



yω̃



yϕ̂

ϕ′

k



y ω̄



y

R̄ = R̂k+1/Î =R̂k+1/Î=R̂k+1/Î
η

−−−−→ R̄

As R̂k is an ideal in R̂k+1 then I = R̂k

⋂
Î is an ideal in R̂, and hence Ĩ is

a closed ideal in (R̂, ξ̂) = (R̂k+1, ξ̂). Then (R̂k+1, ξ̂)/Ĩ and (R̂k + Ĩ , ξ̂|
R̂k+Ĩ

)/Ĩ are

pseudonormed rings. If ω : R̂ → R̂/I, ω′ : R̂/I → R̂/Ĩ and ω̄ : R̂/Ĩ → R̂/Î are
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the canonical homomorphisms then ω̃ = ω ◦ ω′ ◦ ω. As (R̂k + Ĩ)/Ĩ is an ideal in
R̂k+1/Ĩ then ϕ′

k = ω̄|(R̂k+Ĩ)/Ĩ
: (R̂k + Ĩ , ξ̂|

R̂k+Ĩ
)/Ĩ → (R̂k+1, ξ̂)/Î is a semi-isometric

isomorphism.
According to Proposition 1 η̄ = ω′|

(R̂k/I)
: (R̂k, ξ̂|R̂k

)/I → (R̂k + Ĩ , ξ̂|
R̂k+Ĩ

)/Ĩ is

an isometric isomorphism and hence η ◦ω|
R̂k

: (R̂k, ξ̂|R̂k

) → (R̂k + Ĩ , ξ̂|
R̂k+Ĩ

)/Ĩ is an
isometric homomorphism.

By the induction hypothesis, there exist pseudonormed rings (R, ξ) = (R0, ξ0),
(R1, ξ1), . . . , (Rk, ξk) = (R̂k, ξ̂|R̂k

)/I and semi-isometric isomorphisms ϕi : (Ri, ξi) →

(Ri+1, ξi+1) for i = 0, 1, 2, . . . , k − 1 such that η ◦ ω|
R̂0

= ϕk−1 ◦ ϕk−2 ◦ . . . ◦ ϕ0.
Since η, η are isometric isomorphisms and ϕ′

k is a semi-isometric isomorphism

then ϕ′′
k = η ◦ ϕ′

k ◦ η : (R̂k, ξ̂|R̂k
)/I → (R, ξ) is a semi-isometric isomorphism, at

that ϕ = ϕ̂|R = η ◦ ω̃|R = η ◦ ω ◦ ω′ ◦ ω|R = η ◦ ϕ′
k ◦ η ◦ ω|R = ϕ′′

k ◦ η ◦ ω|R =
ϕ′′

k ◦ ϕk−1 ◦ ϕk−2 ◦ . . . ◦ ϕ0, i.e. the isomorphism ϕ is a superposition of k + 1

semi-isometric isomorphisms in the case when I is a non-closed ideal in (R̂k+1, ξ̂).

Thus we have proved that 2 follows from 1 for any natural number n.

Proof 2 ⇒ 1. Let’s assume there are pseudonormed rings
(R, ξ) = (R0, ξ0), (R1, ξ1), (R2, ξ2) . . . , (Rn, ξn) = (R̄, ξ̄)

and semi-isometric isomorphisms ϕi : (Ri, ξi) → (Ri+1, ξi+1) for i = 0, 1, . . . ,
n − 1 such that ϕ is the superposition of these semi-isometric isomorphisms, i.e.
ϕ = ϕn−1 ◦ ϕn−2 ◦ . . . ◦ ϕ0.

For any 0 ≤ i ≤ j ≤ n we consider the isomorphism fi,j such that fi,j =
ϕj−1 ◦ . . . ◦ ϕi : Ri → Rj for i < j and fi,i : Ri → Ri is the identical mapping.

The further proof will be done in some stages.

I. The construction of the ring R̂ and checking of some its algebraic properties.

Let’s define on the set R̂ = {(r0, r1, . . . , rn) | ri ∈ Ri, i = 0, 1, . . . , n} the opera-
tions of addition and multiplication as follows:

(a0, a1, . . . , an) + (b0, b1, . . . , bn) = (a0 + b0, a1 + b1, . . . , an + bn)
and

(a0, a1, . . . , an) · (b0, b1, . . . , bn) = (r0, r1, . . . , rn),

where ri = ai · bi for i ∈ {0, n} and ri = ai · bi + (f0,i(a0) − ai) · ϕ
−1
i (bi+1) +

ϕ−1
i (ai+1) · (f0,i(b0) − bi) for 1 ≤ i ≤ n− 1.

As the mappings ϕi : Ri → Ri+1 and f0,i : R0 → Ri are isomorphisms then it’s
easily checked that:

I.1. R̂ is a non-associative ring with respect to these operations (even if the
initial rings are associative).

I.2. For any 0 ≤ k < n the set R̂k = {(r0, . . . , rn) ∈ R̂ | ri = 0 if i > k} is an
ideal in the ring R̂k+1 = {(r0, . . . , rn) ∈ R̂ | ri = 0 if i > k + 1}.

I.3. R̂0 = {(r0, . . . , rn) ∈ R̂ | ri = 0 if i ≥ 1} is an accessible subring of the stage
no more than n in the ring R̂n = R̂;

I.4. The mapping ψ : R̂0 → R0 = R which transfers the element (a, 0, . . . , 0) ∈
R̂0 into the element a ∈ R0 is isomorphic.
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I.5. From the definition of the operations of addition and multiplication in R̂ it
follows that Î = {(0, r1, . . . rn) | ri ∈ Ri, i = 1, . . . , n} is an ideal in the ring R̂ and
R̂0
⋂
Î = {0} and R̂0 + Î = R̂.

I.6. If ϕ̂ : R̂ → R̄ is a mapping such that ϕ̂(r0, r1, . . . , rn) = ϕ(r0) for any
(r0, r1, . . . , rn) ∈ R̂ then ϕ̂ : R̂→ R̄ is a ring homomorphism, and besides ker ϕ̂ = Î
and ϕ̂|R = ϕ.

Identifying any elements (a, 0, . . . , 0) ∈ R̂0 with the elements a ∈ R0, we shall
identify the ring R̂0 with the ring R0. Therefore we can consider that R = R0 is an
accessible subring of the stage no more than n of the ring R̂n = R̂.

II. The definition of a pseudonorm ξ̂ on the ring R̂ and checking of some
properties of the pseudonormed ring (R̂, ξ̂).

Let’s define ξ̂((r0, r1, . . . , rn)) =
n−1∑

i=0
ξi(ri − ϕ−1

i (ri+1)) + ξn(rn).

II.1. Let’s check that ξ̂ is a pseudonorm on the ring R̂.
It’s easy follows from the definition of the function ξ̂ that ξ̂((−r0,−r1, . . . ,−rn)) =

ξ̂((r0, r1, . . . , rn)) ≥ 0 for any (r0, r1, . . . , rn) ∈ R̂ and ξ̂((r0, r1, . . . , rn)) = 0 if and
only if (r0, r1, . . . , rn) = (0, 0, . . . , 0).

Let a = (a0, a1, . . . , an) ∈ R̂ and b = (b0, b1, . . . , bn) ∈ R̂. Then

ξ̂(a+ b) =
n−1∑

i=0
ξi(ai + bi − ϕ−1

i (ai+1 + bi+1)) + ξn(an + bn) ≤

n−1∑

i=0
(ξi(ai − ϕ−1

i (ai+1)) + ξi(bi − ϕ−1
i (bi+1))) + ξn(an) + ξn(bn) = ξ̂(a) + ξ̂(b).

If r = (r0, r1, . . . , rn) = a · b = (a0, a1, . . . , an) · (b0, b1, . . . , bn) then r0 = a0 · b0,
rn = an · bn, ri = ai · bi + (f0,i(a0) − ai) · ϕ

−1
i (bi+1) + ϕ−1

i (ai+1) · (f0,i(b0) − bi) for
i ∈ {1, 2, . . . , n− 1} and

ξ̂(a · b) = ξ̂((r0, r1, . . . , rn)) = ξn(rn) +
n−1∑

i=0
ξi(ri − ϕ−1

i (ri+1)).

Let’s consider each term of this sum. It’s obvious that ξn(rn) ≤ ξn(an) · ξn(bn).
Let hi = ai −ϕ

−1
i (ai+1) and h′i = bi −ϕ

−1
i (bi+1) for i ∈ {0, 1, . . . , n−1}; hn = an

and h′n = bn. Taking in consideration the definitions of mapping fi,j by induction
on the number j − i it’s easy proved that

fi,j(ai) − aj = fi,j(ai) − ϕj−1(ϕ
−1
j−1(aj)) =

fi,j(ai) − fi,j(ϕ
−1
i (ai+1)) + fi,j(ϕ

−1
i (ai+1)) − fj−1,j(ϕ

−1
j−1(aj)) =

fi,j(ai − ϕ−1
i (ai+1)) + fi,j(ϕ

−1
i (ai+1)) − fj−1,j(ϕ

−1
j−1(aj)) = fi,j(hi)+

fi,j(ϕ
−1
i (ai+1)) − fj−1,j(ϕ

−1
j−1(aj)) = . . . = fi,j(hi) + fi+1,j(hi+1) + . . .+ fj−1,j(hj−1)

for any 0 ≤ i < j ≤ n. Then for i ∈ {1, 2, . . . , n− 2} we have
ξi(ri −ϕ

−1
i (ri+1)) = ξi(ai · bi +(f0,i(a0)−ai) ·ϕ

−1
i (bi+1)+ϕ−1

i (ai+1) · (f0,i(b0)− bi)−
ϕ−1

i (ai+1 · bi+1 + (f0,i+1(a0)− ai+1) ·ϕ
−1
i+1(bi+2) +ϕ−1

i+1(ai+2) · (f0,i+1(b0)− bi+1))) =

ξi(ai · bi +
i−1∑

k=0

fk,i(hk) ·ϕ
−1
i (bi+1) +ϕ−1

i (ai+1) ·
i−1∑

k=0

fk,i(h
′
k)−ϕ−1

i (ai+1) ·ϕ
−1
i (bi+1)−

ϕ−1
i (

i∑

k=0

fk,i+1(hk) ·ϕ
−1
i+1(bi+2)+ϕ

−1
i+1(ai+2) ·

i∑

k=0

fk,i+1(h
′
k))) = ξi(ai ·bi +

i−1∑

k=0

fk,i(hk) ·
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ϕ−1
i (bi+1 −ϕ−1

i+1(bi+2)) +ϕ−1
i (ai+1 −ϕ−1

i+1(ai+2)) ·
i−1∑

k=0

fk,i(h
′
k)− (ai − hi) · (bi − h′i)−

hi ·ϕ
−1
i (bi+1−h

′
i+1)−ϕ

−1
i (ai+1−hi+1) ·h

′
i) = ξi(

i−1∑

k=0

fk,i(hk) ·ϕ
−1
i (h′i+1)+ϕ

−1
i (hi+1) ·

i−1∑

k=0

fk,i(h
′
k) + hi · (bi − ϕ−1

i (bi+1)) + (ai − ϕ−1
i (ai+1)) · h

′
i − hi · h

′
i + hi · ϕ

−1
i (h′i+1) +

ϕ−1
i (hi+1) · h

′
i) = ξi(

i−1∑

k=0

fk,i(hk) · ϕ
−1
i (h′i+1) + ϕ−1

i (hi+1) ·
i−1∑

k=0

fk,i(h
′
k) + hi · h

′
i + hi ·

ϕ−1
i (h′i+1) + ϕ−1

i (hi+1) · h
′
i).

If i = n− 1 then

ξn−1(rn−1−ϕ
−1
n−1(rn)) = ξn−1(an−1 ·bn−1+(f0,n−1(a0)−an−1) ·ϕ

−1
n−1(bn)+ϕ−1

n−1(an) ·

(f0,n−1(b0)− bn−1)−ϕ−1
n−1(an · bn)) = ξn−1(an−1 · bn−1 +

n−2∑

k=0

fk,n−1(hk) ·ϕ−1
n−1(h

′
n) +

ϕ−1
n−1(hn) ·

n−2∑

k=0

fk,n−1(h
′
k) − (an−1 − hn−1) · (bn−1 − h′n−1)) = ξn−1(

n−2∑

k=0

fk,n−1(hk) ·

ϕ−1
n−1(h

′
n)+ϕ−1

n−1(hn) ·
n−2∑

k=0

fk,n−1(h
′
k)+hn−1 ·(h

′
n−1 +ϕ−1

n−1(h
′
n))+(hn−1 +ϕ−1

n−1(hn)) ·

h′n−1 − hn−1 · h
′
n−1) = ξn−1(

n−2∑

k=0

fk,n−1(hk) · ϕ−1
n−1(h

′
n) + ϕ−1

n−1(hn) ·
n−2∑

k=0

fk,n−1(h
′
k) +

hn−1 · h
′
n−1 + hn−1 · ϕ

−1
n−1(h

′
n) + ϕ−1

n−1(hn) · h′n−1).

Since the isomorphism ϕi : (Ri, ξi) → (Ri+1, ξi+1) is a semi-isometric then ac-
cording to Theorem 3 the following inequalities are true:

ξi(ai · bi)

ξi(bi)
≤ ξi+1(ϕi(ai)) ≤ ξi(ai) and

ξi(ai · bi)

ξi(ai)
≤ ξi+1(ϕi(bi)) ≤ ξi(bi).

It’s follows from the definition of the isomorphisms fk,i:

ξi(fk,i(hk)) ≤ ξk(hk) and ξi(fk,i(h
′
k)) ≤ ξk(h

′
k)

for any 0 ≤ k ≤ i ≤ n. Then for i ∈ {1, 2, . . . , n− 1} we have

ξi(
i−1∑

k=0

fk,i(hk)·ϕ
−1
i (h′i+1)+ϕ

−1
i (hi+1)·

i−1∑

k=0

fk,i(h
′
k)+hi ·h

′
i+hi ·ϕ

−1
i (h′i+1)+ϕ

−1
i (hi+1)·

h′i) ≤
i−1∑

k=0

ξi(fk,i(hk)) ·ξi+1(h
′
i+1)+

i−1∑

k=0

ξi+1(hi+1) ·ξi(fk,i(h
′
k))+ξi(hi) ·ξi(h

′
i)+ξi(hi) ·

ξi+1(h
′
i+1) + ξi+1(hi+1) · ξi(h

′
i) ≤

i−1∑

k=0

ξk(hk) · ξi+1(h
′
i+1) +

i−1∑

k=0

ξi+1(hi+1) · ξk(h
′
k) +

ξi(hi) · ξi(h
′
i) + ξi(hi) · ξi+1(h

′
i+1) + ξi+1(hi+1) · ξi(h

′
i).

If i = 0 then

ξ0(r0−ϕ
−1
1 (r1)) = ξ0(a0 ·b0−ϕ

−1
0 (a1 ·b1 +(ϕ0(a0)−a1) ·ϕ

−1
1 (b2)+ϕ

−1
1 (a2) ·(ϕ0(b0)−

b1))) = ξ0(a0 · b0−ϕ
−1
0 (a1) ·ϕ

−1
0 (b1)− (a0−ϕ

−1
0 (a1)) ·ϕ

−1
0 (ϕ−1

1 (b2))−ϕ
−1
0 (ϕ−1

1 (a2)) ·
(b0−ϕ

−1
0 (b1))) = ξ0(a0 ·b0−(a0−h0)·(b0−h

′
0)−h0 ·ϕ

−1
0 (b1−h

′
1)−ϕ

−1
0 (a1−h1)·h

′
0) =

ξ0(h0 ·h
′
0+h0 ·ϕ

−1
0 (h′1)+ϕ

−1
0 (h1)·h

′
0) ≤ ξ0(h0)·ξ0(h

′
0)+ξ0(h0)·ξ1(h

′
1)+ξ1(h1)·ξ0(h

′
0).
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It follows from the proven inequalities that

ξ̂(a ·b) ≤ ξ0(h0) ·ξ0(h
′
0)+ξ0(h0) ·ξ1(h

′
1)+ξ1(h1) ·ξ0(h

′
0)+

n−1∑

i=1

( i−1∑

k=0

ξk(hk) ·ξi+1(h
′
i+1)+

i−1∑

k=0

ξi+1(hi+1) · ξk(h
′
k) + ξi(hi) · ξi(h

′
i) + ξi(hi) · ξi+1(h

′
i+1) + ξi+1(hi+1) · ξi(h

′
i)
)
+

ξn(an) · ξn(bn) =
n−1∑

i=0

n−1∑

j=0

ξi(hi) · ξj(h
′
j) + ξn(an) ·

n−1∑

j=0

ξj(h
′
j) +

n−1∑

i=0

ξi(hi) · ξn(bn)

+ξn(an) · ξn(bn) =

(
n−1∑

i=0

ξi(hi) + ξn(an)

)

·




n−1∑

j=0

ξj(h
′
j) + ξn(bn)



 = ξ̂(a) · ξ̂(b).

Thus we have shown the inequality ξ̂(a·b) ≤ ξ̂(a)·ξ̂(b) for any a, b ∈ R̂. Therefore
(R̂, ξ̂) ia a pseudonormed ring.

II.2. Since ξ̂(r, 0, . . . , 0) = ξ0(r−0)+ξ1(0)+ . . .+ξn(0) = ξ(r) for any r ∈ R and
any element r ∈ R is identifying with the element (r, 0, . . . , 0) ∈ R̂0 then ξ̂|R = ξ.

II.3. Let’s show that ϕ̂ : (R̂, ξ̂) → (R̄, ξ̄) is an isometric homomorphism, i.e.

ξ̄ (ϕ̂ (r̂)) = inf
{
ξ̂ (r̂ + â)

∣
∣
∣â ∈ ker ϕ̂

}
for all r̂ ∈ R̂. Let r̂ = (r0, r1, . . . , rn) ∈ R̂ and

b̂ = (0, f0,1(r0) − r1, . . . , f0,n(r0) − rn). Then b̂ ∈ Î and so

inf
{
ξ̂(r̂ + â)

∣
∣
∣â ∈ ker ϕ̂

}
≤ ξ̂(r̂ + b̂) = ξ̂((r0, r1, . . . , rn)+

(0, f0,1(r0) − r1, . . . , f0,n(r0) − rn)) = ξ̂((r0, f0,1(r0), . . . , f0,n(r0))) =

ξ0(r0 − ϕ−1
0 (f0,1(r0))) + ξ1(f0,1(r0)−

ϕ−1
1 (f0,2(r0))) + . . .+ ξn−1(f0,n−1(r0) − ϕ−1

n−1(f0,n(r0))) + ξn(f0,n(r0)) =

ξ0(0) + ξ1(0) + . . . + ξn−1(0) + ξn(ϕ(r0)) = ξ̄(ϕ(r0)) = ξ̄(ϕ̂(r̂)).

On the other hand, since f0,n = ϕ and ξi(di) ≥ ξn(fi,n(dn)) for every di ∈ Ri and

any i ∈ {0, 1, . . . , n} then for every element â = (o, a1, . . . , an) ∈ Î we have

ξ̂(r̂ + â) = ξ̂((r0, r1 + a1, . . . , rn + an) = ξ0(r0 − ϕ−1
0 (r1 + a1))+
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n−1∑

i=1

ξi(ri + ai −ϕ−1
i (ri+1 + ai+1)) + ξn(rn + an) ≥ ξn(f0,n(r0)− f0,n(ϕ−1

0 (r1 + a1)))+

n−1∑

i=1

ξn(fi,n(ri+ai)−fi,n(ϕ−1
i (ri+1+ai+1)))+ξn(rn+an) = ξn(f0,n(r0)−f1,n(r1+a1))+

n−1∑

i=1

ξn(fi,n(ri + ai) − fi+1,n(ri+1 + ai+1)) + ξn(rn + an) ≥

ξn

(

f0,n(r0) − f1,n(r1 + a1) +

n−1∑

i=1

(fi,n(ri + ai) − fi+1,n(ri+1 + ai+1)) + rn + an

)

=

ξn (f0,n(r0)) = ξn(ϕ(r0)) = ξ̄(ϕ̂(r̂)).

Since â ∈ Î is any element then inf
{
ξ̂ (r̂ + â)

∣
∣
∣â ∈ ker ϕ̂

}
≥ ξ̄(ϕ̂(r̂)) and so

inf
{
ξ̂ (r̂ + â)

∣
∣
∣â ∈ ker ϕ̂

}
= ξ̄(ϕ̂(r̂)). Therefore ϕ̂ : (R̂, ξ̂) → (R̄, ξ̄) is an isometric

homomorphism.

The theorem is completely proved.

Designation 1. Let R be a ring. Put R1 = R and for any natural number n define
Rn as the subgroup generated by the set {a · b|a ∈ Rs, b ∈ Rt, 0 < s, t < n, s+ t = n}.
It’s easy to note that Rn is an ideal in the ring R.

Definition 3. A ring R is called a nilpotent ring if Rn = 0 for some natural number
n. The minimal one from these natural numbers is called the index of nilpotence.

Theorem 5. Let (R, ξ) and (R̄, ξ̄) be associative pseudonormed rings, ϕ : R → R̄
be a ring isomorphism and Rn = 0. Then the following statements are equivalent:

1. ξ̄(ϕ(r)) ≤ ξ(r) for any r ∈ R.

2. ϕ is a superposition of n semi-isometric isomorphisms, i.e. there exist
pseudonormed rings (R, ξ) = (R0, ξ0), (R1, ξ1), . . . , (Rn, ξn) = (R̄, ξ̄) and semi-
isometric isomorphisms ϕi : (Ri, ξi) → (Ri+1, ξi+1) for i = 0, 1, . . . , n − 1 such
that ϕ = ϕn ◦ ϕn−1 ◦ . . . ◦ ϕ0.

3. There exists a non-associative pseudonormed ring (R̂, ξ̂) such that (R, ξ) is an
accessible subring of the stage no more than n of the pseudonormed ring (R̂, ξ̂) and
the isomorphism ϕ can be extended up to an isometric homomorphism ϕ̂ : (R̂, ξ̂) →
(R̄, ξ̄).

Proof 1 ⇒ 2.

Let Rk = R for k = 0, 1, · · · , n − 1 and Rn = R̄; let ϕn−1 = ϕ : R → R̄ and
ϕk = ε : R → R be the identical mapping for k = 0, 1, · · · , n − 2 ; let ξ0(r) = ξ(r),
ξn(r̄) = ξ̄(r̄), ξn−1(r) = ξ̄(ϕ(r)) and
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ξk(r) = sup

{

ξ̄(ϕ(r)),
ξk−1(r · a)

ξk−1(a)
,
ξk−1(a · r)

ξk−1(a)

∣
∣
∣a ∈ R\{0}

}

for k = 1, 2, · · · , n − 2.
Let’s prove by induction on the number k that each function ξk is a pseudonorm

on the ring Rk.
It’s obvious that ξk(−r) = ξk(r) ≥ 0 for any r ∈ Rk and ξk(r) = 0 if and only

if r = 0. Let’s show the validity of inequalities ξk(r1 + r2) ≤ ξk(r1) + ξk(r2) and
ξk(r1 · r2) ≤ ξk(r1) · ξk(r2) for any r1, r2 ∈ Rk.

Indeed, for any a ∈ R\{0} we have

ξk−1((r1 + r2) · a)

ξk−1(a)
≤
ξk−1(r1 · a)

ξk−1(a)
+
ξk−1(r2 · a)

ξk−1(a)
≤

sup

{
ξk−1(r1 · b)

ξk−1(b)

∣
∣
∣b ∈ R\{0}

}

+ sup

{
ξk−1(r2 · b)

ξk−1(b)

∣
∣
∣b ∈ R\{0}

}

≤ ξk(r1) + ξk(r2),

ξk−1(a · (r1 + r2))

ξk−1(a)
≤
ξk−1(a · r1)

ξk−1(a)
+
ξk−1(a · r2)

ξk−1(a)
≤

sup

{
ξk−1(b · r1)

ξk−1(b)

∣
∣
∣b ∈ R\{0}

}

+ sup

{
ξk−1(b · r2)

ξk−1(b)

∣
∣
∣b ∈ R\{0}

}

≤ ξk(r1) + ξk(r2)

and

ξ̄(ϕ(r1 + r2)) = ξ̄(ϕ(r1) + ϕ(r2)) ≤ ξ̄(ϕ(r1)) + ξ̄(ϕ(r2)) ≤ ξk(r1) + ξk(r2).

Therefore

ξk(r1+r2) = sup

{

ξ̄(ϕ(r1 + r2)),
ξk−1((r1 + r2) · a)

ξk−1(a)
,
ξk−1(a · (r1 + r2))

ξk−1(a)

∣
∣
∣a ∈ R\{0}

}

≤

ξk(r1) + ξk(r2).

For any a ∈ R\{0} we have

ξk−1((r1 · r2) · a)

ξk−1(a)
=
ξk−1(r1 · (r2 · a))

ξk−1(r2 · a))
·
ξk−1(r2 · a)

ξk−1(a)
≤

sup

{
ξk−1(r1 · b)

ξk−1(b)

∣
∣
∣b ∈ R\{0}

}

· sup

{
ξk−1(r2 · c)

ξk−1(c)

∣
∣
∣c ∈ R\{0}

}

≤ ξk(r1) · ξk(r2),

ξk−1(a · (r1 · r2))

ξk−1(a)
≤
ξk−1(a · r1)

ξk−1(a)
·
ξk−1((a · r1) · r2)

ξk−1(a · r1)
≤

sup

{
ξk−1(b · r1)

ξk−1(b)

∣
∣
∣b ∈ R\{0}

}

· sup

{
ξk−1(c · r2)

ξk−1(c)

∣
∣
∣c ∈ R\{0}

}

≤ ξk(r1) · ξk(r2)

and

ξ̄(ϕ(r1 · r2)) = ξ̄(ϕ(r1) · ϕ(r2)) ≤ ξ̄(ϕ(r1)) · ξ̄(ϕ(r2)) ≤ ξk(r1) · ξk(r2).
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Therefore

ξk(r1 · r2) = sup

{

ξ̄(ϕ(r1 · r2)),
ξk−1((r1 · r2) · a)

ξk−1(a)
,
ξk−1(a · (r1 · r2))

ξk−1(a)

∣
∣
∣a ∈ R\{0}

}

≤

ξk(r1) · ξk(r2).

Thus the function ξk is a pseudonorm on the ring Rk.

Let’s prove that ϕk : (Rk, ξk) → (Rk+1, ξk+1) is a semi-isometric isomorphism
for k = 0, 1, · · · , n − 2.

Let’s check the validity of inequality ξk+1(ϕk(r)) ≤ ξk(r).

Since

ξ̄(ϕ(r)) ≤ ξk(r),
ξk(r · a)

ξk(a)
≤ ξk(r) and

ξk(a · r)

ξk(a)
≤ ξk(r)

for any a ∈ R\{0} then

sup

{

ξ̄(ϕ(r)),
ξk−1(r · a)

ξk−1(a)
,
ξk−1(a · r)

ξk−1(a)

∣
∣
∣a ∈ R\{0}

}

≤ ξk(r)

and

ξk+1(ϕk(r)) = ξk+1(ε(r)) = ξk+1(r) ≤ ξk(r)

for any r ∈ Rk.

Let’s show that the inequalities ξk(r · q) ≤ ξk+1(ϕk(r)) · ξk(q) and ξk(q · r) ≤
ξk+1(ϕk(r)) · ξk(q) are true.

Indeed, for any q 6= 0 we have

ξk(r · q)

ξk(q)
≤ sup

{
ξk(r · a)

ξk(a)

∣
∣
∣a ∈ R\{0}

}

≤

sup

{

ξ̄(ϕ(r)),
ξk(r · a)

ξk(a)
,
ξk(a · r)

ξk(a)

∣
∣
∣a ∈ R\{0}

}

= ξk+1(r)

and
ξk(q · r)

ξk(q)
≤ sup

{
ξk(a · r)

ξk(a)

∣
∣
∣a ∈ R\{0}

}

≤

sup

{

ξ̄(ϕ(r)),
ξk(r · a)

ξk(a)
,
ξk(a · r)

ξk(a)

∣
∣
∣a ∈ R\{0}

}

= ξk+1(r).

Thus

ξk(r · q) ≤ ξk+1(r) · ξk(q) = ξk+1(ε(r)) · ξk(q) = ξk+1(ϕk(r)) · ξk(q)

and

ξk(q · r) ≤ ξk+1(r) · ξk(q) = ξk+1(ε(r)) · ξk(q) = ξk+1(ϕk(r)) · ξk(q).

All conditions of Theorem 3 are satisfied. Therefore ϕk : (Rk, ξk) → (Rk+1, ξk+1)
is a semi-isometric isomorphism for k = 0, 1, · · · , n − 2.
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Let’s consider ϕn−1 : (Rn−1, ξn−1) → (Rn, ξn). Since ξn−1(r) = ξ̄(ϕ(r)) for any
r ∈ R that the isomorphism ϕn−1 = ϕ : (Rn−1, ξn−1) = (R, ξn−1) → (Rn, ξn) =
(R̄, ξ̄) is isometric.

Therefore there exist pseudonormed rings (R, ξ) = (R0, ξ0), (R1, ξ1), . . . , (Rn, ξn) =
(R̄, ξ̄) and semi-isometric isomorphisms ϕi : (Ri, ξi) → (Ri+1, ξi+1) for i =
0, 1, . . . , n− 1 such that ϕ = ϕn ◦ ϕn−1 ◦ . . . ◦ ϕ0.

The implication 1 ⇒ 2 is proved.
The implication 2 ⇒ 3 follows from Theorem 4. The implication 3 ⇒ 1 follows

from Theorem 2.
The theorem is completely proved.
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Radicals and generalizations of derivations
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Abstract. By results of Slin’ko and of Anderson, the locally nilpotent and nil radicals
of algebras over a field of characteristic 0 are preserved by derivations. This note deals
with radical preservation by various generalizations of derivations.
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1 Introduction

It was shown by Slin’ko [17] that if d is a derivation on an associative algebra
A over a field of characteristic 0, then d(L(A)) ⊆ L(A) and d(N (A)) ⊆ N (A),
where L and N are, respectively, the locally nilpotent and nil radical classes. This
generalized a similar result proved earlier by Anderson [3] for a restricted class of
algebras. The behaviour of the Jacobson radical is quite different; e.g. if K is a
field, the Jacobson radical of the ring K[[X]] of formal power series is the principal
ideal generated by X, and this is not invariant under formal differentiation.

A contrasting result for algebras over a field of prime characteristic was obtained
by Krempa [13]: a hereditary radical class R is preserved by all derivations of all
algebras if and only if R consists of (hereditarily) idempotent algebras.

In this note we shall examine several generalizations of derivations and their
effects on certain radicals, mostly L and N , and also their effects on idempotent
ideals. Idempotent ideals are invariant under ordinary derivations, there are plenty
of radical classes consisting of idempotent rings (including the class of all idempotent
rings) and even the prime radical of a ring can be idempotent, so idempotent ideals
are pertinent to our investigation.

Confining attention to algebras over fields (as in [3, 13] and [17]) avoids some
complications, notably with ideal structure, but leaves some interesting questions
unexamined. We shall prove a number of results about (additively) torsion-free rings
A by using, or first proving, the results in the special case of an algebra over a field
of characteristic 0 and extending them to the general case by means of the divisible
hull D(A) of A. It is possible to extend some results without using D(A), though
not all, but we use a uniform approach.

All our rings and algebras are associative, but similar questions could be pur-
sued for non-associative structures of various kinds. Indeed Krempa’s investigations

c© E.P. Cojuhari, B. J. Gardner, 2017
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in [13] were more broadly based, and among other things he established a strong
connection between derivations and the ADS condition for Lie algebras.

Now for the types of mappings whose effects we shall study.

A derivation on a ring is an additive endomorphism d such that d(ab) = d(a)b+
ad(b) for all a, b.

A higher derivation is a sequence (d0, d1, . . . , dn, . . . ) of additive endomorphisms
such that for each n we have dn(ab) =

∑

i+j=n

di(a)dj(b) for all a, b (so that in partic-

ular, d0 is a ring endomorphism).
For ring endomorphisms α, β, an (α, β)-derivation is an additive endomorphism

d such that d(ab) = d(a)β(b) + α(a)d(b) for all a, b. (Thus for a higher derivation,
as d1(ab) = d1(a)d0(b) + d0(a)d1(b) for all a, b, d1 is a (d0, d0)-derivation).

Finally, a D-structure for a ring A with identity 1 and a monoid G with identity
e is a family of mappings σx,y : A → A, where x, y ∈ G, satisfying

Condition (A)

(0) For each x ∈ G and a ∈ R, we have σx,y(a) = 0 for almost all y ∈ G.
(i) Each σx,y is an additive endomorphism.
(ii) σx,y(ab) =

∑

z∈G

σx,z(a)σz,y(b).

(iii) σxy,z =
∑

uv=z

σx,u ◦ σy,v.

(iv1) σx,y(1) = 0 if x 6= y; (iv2) σx,x(1) = 1;
(iv3) σe,x(a) = 0 if x 6= e; (iv4) σe,e(a) = a.

For unexplained terms and ideas, see [9] for rings and radicals, [8] for abelian
groups.

2 Known results

The first result is well known and elementary.

Proposition 1. If I is an idempotent ideal of a ring R and d is a derivation on R
then d(I) ⊆ I.

The following two results were proved for algebras over fields of characteristic 0,
but they can be extended to all rings that are additively torsion-free, as we shall see
in the next section.

Theorem 1. (Anderson [3]) Let A be an algebra over a field K of characteristic 0
with DCC on ideals. For every hereditary radical class R we have d(R(A)) ⊆ R(A)
for all K-linear derivations d on A.

Theorem 2. (Slin’ko [17]) Let L(A), N (A) denote, respectively, the locally nilpotent
and nil radicals of an algebra A over a field K of characteristic 0. Then d(L(A)) ⊆
L(A) and d(N (A)) ⊆ N (A) for all K-linear derivations d on A.

The situation with algebras over a field of positive characteristic is rather differ-
ent.
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Theorem 3. (Krempa [13]) Let V be a variety of algebras over a field of prime
characteristic p which is closed under tensoring by commutative-associative algebras.
Let R be a hereditary radical class in V. Then d(R(A)) ⊆ R(A) for all derivations
d of all algebras A ∈ V if and only if R consists of idempotent algebras.

The varieties of associative and commutative-associate algebras satisfy the con-
ditions of V in this theorem.

3 Some results involving additive structure

For an (additively written) abelian group G, a positive integer n and a prime p,
let

nG = {nx : x ∈ G}; G[n] = {x ∈ G : nx = 0}; Gp =
⋃

n∈Z+

G[pn].

All of the indicated subsets are subgroups, and if G is the additive group of a ring
they are all ideals. Moreover, if G is a torsion group then G =

⊕
p Gp (where the

sum is taken over all primes p) and if G is the additive group of a torsion ring this
is also a ring direct sum. In general

⊕
p Gp is the torsion subgroup of G, which we

shall call T (G). When G is the additive group of a ring, T (G) is an ideal, which
we shall call the torsion ideal. In what follows, when referring to additive aspects
of rings, we shall not distinguish notationally between a ring and its additive group.
Thus, for instance, if A is a ring then A[n] = {a ∈ A : na = 0} ⊳ A.

Proposition 2. Let A be a ring, I = nA, A[n], Ap or T (A). If d is a derivation on
A, then d(I) ⊆ I and we get a derivation d on A/I by defining d(a + I) = d(a) + I
for all a ∈ A.

Proof. Since d is an additive endomorphism we have d(I) ⊆ I so d is well-defined.
The rest is straightforward.

Proposition 3. If A is a torsion ring and d is a derivation on A, then for each prime
p, the restriction of d defines a derivation dp of Ap. Conversely, if ep is a derivation
on Ap for each p, then we get a derivation e on A by defining e(

∑

p

ap) =
∑

p

ep(ap),

where ap is the component of a in Ap for each p.

Proof. The first part follows from Proposition 2. For the second part, if a =∑
ap, b =

∑
bp ∈ A, then

e(ab) = e
(∑

apbp

)
=

∑
ep(apbp) =

∑
(ep(ap)bp + apep(bp))

=
∑

ep(ap)
∑

bp +
∑

ap

∑
ep(bp) = e(a)b + ae(b),

and clearly e(a + b) = e(a) + e(b).

Corollary 1. Let A be a torsion ring, R a radical class of rings. Then R(A) is
preserved by all derivations on A if and only if for every p, R(Ap) is preserved by
all derivations on Ap.
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Proof. First note that R(A) =
⊕

p

R(Ap). If R(A) is preserved by derivations and δ

is a derivation on Ap, then δ extends to a derivation d on A, so d(R(A)) ⊆ R(A).
Also d(Ap) ⊆ Ap. Hence

δ(R(Ap)) = δ(Ap ∩R(A)) = d(Ap ∩R(A)) ⊆ Ap ∩R(A) = R(Ap).

If the action of R is preserved by derivations in all the Ap and e is any derivation
on A, then

e(R(A)) = e(
⊕

p

R(Ap)) =
⊕

p

ep(R(Ap)) ⊆
⊕

p

R(Ap) = R(A).

Thus the radical-preservation problem for torsion rings reduces to that for p-
rings. A p-ring R satisfying the stronger condition pR = 0 is an algebra over the
field Zp and all its ring ideals are Zp-algebra ideals. It is not known whether the
preservation property for Zp-algebras (for some or all radicals) has much influence
on that for p-rings generally. We shall prove one theorem related to this question.

Proposition 4. For every p-ring A we have pA ⊆ L(A) ⊆ N (A), whence
L(A/pA) = L(A)/pA and N (A/pA) = N (A)/pA

Proof. We only have to show that pA is locally nilpotent. For this it suffices to
prove that if S is a finite subset of pA then there is a positive integer m such that all
products of elements of S with m or more factors are zero. (This is straightforward
but tedious to prove by brute force; it is also contained in Theorem 4.1.5, p.186
of [9].) If a, b ∈ A, then (pa)b = (a + a + · · · + a)

︸ ︷︷ ︸
p terms

b = ab + ab + · · · + ab︸ ︷︷ ︸
p terms

= p(ab) and

similarly a(pb) = p(ab). Hence pa · pb = p(a · pb) = p(p(ab)) = p2ab and so on. If
a1, a2, . . . , an ∈ A, then for y1, y2, . . . , ym ∈ {a1, a2, . . . , an} we have py1 · py2 · . . . ·
pym = pmy1y2 . . . ym = 0 if pm ≥ max{o(a1), o(a2), . . . , o(an)}, where o(ai) is the
(additive) order of ai for each i.

In fact the same proof shows that if R is any radical class with L ⊆ R, then
R(A/pA) = R(A)/pA. This gives us

Theorem 4. Let d be a derivation on a p-ring A, d the induced derivation on A/pA.
Let R be a radical class containing L. If d(R(A) ⊆ R(A), then d(R(A/pA)) ⊆
R(A/pa).

Now let A be a torsion-free ring. Its divisible hull D(A) is a minimal divisible
group containing A. For each a ∈ A and each non-zero integer n there is an element
α ∈ D(A) such that nα = a, and as D(A) is torsion-free, α is unique. It is therefore

natural to give α the name
a

n
. Then

a

n
=

b

m
if and only if ma = nb. In D(A) we

similarly define elements
x

k
for x ∈ D(A) and non-zero k ∈ Z. We get a ring on D(A)
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by defining
a

n

c

k
=

ac

nk
and this ring has a subring

{a

1
: a ∈ A

}
which we identify

with A. We make D(A) into an algebra over the field Q by defining
m

n
x =

mx

n
for

m,n, k ∈ Z, x ∈ D(A). In particular,
m

n

a

k
=

ma

nk
for a ∈ A. For all this cf. Theorem

119.1, p.284 of [8], Vol. II.

Proposition 5. Let A be a torsion-free ring. Then L(D(A)) = D(L(A)) and
N (D(A)) = D(N (A)).

Proof. We shall prove the result for L. The proof for N is similar but simpler.

Let I = L(A). For n ∈ Z
+ let In = {a ∈ A : na ∈ I}. Then In ⊳ A. If

a1, a2, . . . , ak ∈ In then na1, na2, . . . , nak are in the locally nilpotent ideal I, so
there is a positive integer ℓ such that every ℓ-fold product of nais is zero. Such a
product has the form nℓc1c2 . . . cℓ, so since A is torsion-free, c1c2 . . . cℓ = 0. But the
cj are arbitrary elements of {a1, a2, . . . , ak}, so by Theorem 4.1.5 of [9] referred to
above, In is locally nilpotent, whence In ⊆ I and thus In = I. This being so for
every n, I, as an additive subgroup, is pure in A. If a ∈ A, c ∈ I, m,n are non-zero

integers and
a

n
=

c

m
, then ma = nc ∈ I, so a ∈ I. Thus without ambiguity we can

identify D(I) with the obvious subring of D(A). It is easily seen that D(I) ⊳ D(A).

If
c1

k1
,
c2

k2
, . . . ,

ct

kt

∈ D(I) (cj ∈ I, kj ∈ Z), then long enough products of cjs are

zero. But such products are multiples, by non-zero integers, of products of
cj

kj

s of

the same length. It follows that D(I) is locally nilpotent and thus D(I) ⊆ L(D(A)).

Let J/D(I) be a locally nilpotent ideal of D(A)/D(I). Then J is a locally
nilpotent ideal of D(A), so J∩A is a locally nilpotent ideal of A and hence J∩A ⊆ I.

If
g

s
∈ J , where g ∈ A, s ∈ Z, then g = s

g

s
∈ J ∩ A ⊆ I, so

g

s
∈ D(I) and so

J/D(I) = 0. Thus L(D(A))/D(I) = 0. It follows that L(D(A)) ⊆ D(I), so the two
ideals are equal, i.e. L(D(A)) = D(L(A)).

It follows that L(A) = A ∩ L(D(A)) and N (A) = A ∩ N (D(A)).

Note that the corresponding result for the Jacobson radical is false. For instance,

if A =

{
2n

2m + 1
: n,m ∈ Z

}

, then Q is a divisible hull for A, A is its own Jacobson

radical and Q has zero radical.

Lemma 1. If G is a torsion-free abelian group, each of its endomorphisms has a
unique extension to an endomorphism of D(G) and this is a Q-linear transformation
of D(A) as a Q-vector space.

Proof. For an endomorphism f of G define f̂ : D(G) → D(G) by setting f̂
(a

n

)
=

f(a)

n
for all a ∈ G, n ∈ Z\{0}. Then f̂ is well-defined, as if

a

n
=

b

m
, then mf(a) =

f(ma) = f(nb) = nf(b), i.e.
f(a)

n
=

f(b)

m
. Then for all a, c ∈ G, n, k ∈ Z\{0}
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we have f̂
(a

n
+

c

k

)
= f̂

(
ka + nc

nk

)

=
f(ka + nc)

nk
=

kf(a) + nf(c)

nk
=

kf(a)

nk
+

nf(c)

nk
=

f(a)

n
+

f(c)

k
= f̂

(a

n

)
+ f̂

( c

k

)
. Also f̂

(m

n

a

k

)
= f̂

(ma

nk

)
=

f(ma)

nk
=

mf(a)

nk
=

m

n

f(a)

k
=

m

n
f̂

(a

k

)
for a ∈ A,m,n, k ∈ Z. If f̃ is any extension of f , then

G ⊆ Ker(f̂ − f̃), so Im(f̂ − f̃) is a torsion group and hence zero.

Corollary 2. Let A be a torsion-free ring.
(i) Every derivation d on A has a unique extension to D(A) and this is Q-linear.
(ii) Every higher derivation on A has a unique extension to D(A) and all its maps
are Q-linear.
(ii) If α and β are endomorphisms of A, then every (α, β)-derivation on A has a
unique extension to an (α̂, β̂)-derivation on D(A) and this is Q-linear.

Proof. All the maps involved in (i), (ii) and (iii) are additive endomorphisms of A,
and so have unique extensions to additive endomorphisms of D(A). We just need
to show that these endomorphisms have all other properties required of them.

(ii) Let (d0, d1, . . . , dn . . . ) be a higher derivation on A. For each n let d̂n be the
extension of dn to D(A) as in the lemma. For each a, b ∈ A and non-zero k, ℓ ∈ Z,

we have d̂n

(
a

k

b

ℓ

)

= d̂n

(
ab

kℓ

)

=
dn(ab)

kℓ
=

∑

i+j=n

di(a)dj(b)

kℓ
=

∑

i+j=n

di(a)

k

dj(b)

ℓ
=

∑

i+j=n

d̂i

(a

k

)
d̂j

(
b

ℓ

)

.

Similar arguments show that extensions of ring endomorphisms and extensions
of derivations are derivations.

(iii) Let d be an (α, β)-derivation on A. Then for all a, b ∈ A and non-zero
k, ℓ ∈ Z, we have

d̂
(a

k

)
β̂

(
b

ℓ

)

+ α̂
(a

k

)
d̂

(
b

ℓ

)

=
d(a)

k

β(b)

ℓ
+

α(a)

k

d(b)

ℓ
=

d(a)β(b) + α(a)d(b)

kℓ

=
d(ab)

kℓ
= d̂

(
a

k

b

ℓ

)

.

Note that not every derivation on D(A) is an extension of one on A: consider
inner derivations, for example.

Now if A is a torsion-free ring, d a derivation on A, then by Corollary 2 d extends
to a Q-linear derivation d̂ on D(A), so

d(L(A)) = d(A ∩ L(D(A))) = d̂(A ∩ L(D(A))) ⊆ d̂(L(D(A))) ⊆ L(D(A))

and d(L(A)) ⊆ A, so

d(L(A)) ⊆ A ∩ L(D(A)) = L(A).

We can argue similarly for N (A). Thus we have
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Theorem 5. If d is a derivation on a torsion-free ring A then d(L(A)) ⊆ L(A) and
d(N (A)) ⊆ N (A).

4 Preservation by higher derivations

Proposition 6. Let (d0, d1, . . . , dn, . . . ) be a higher derivation on a ring A, I an
idempotent ideal of A with d0(I) ⊆ I. Then dn(I) ⊆ I for all n.

Proof. If dn(I) ⊆ I then for all a, b ∈ I we have

dn+1(ab) = d0(a)dn+1(b)+d1(a)dn(b) + d2(a)dn−1(b) + · · · + dn−1(a)d2(b)+

dn(a)d1(b) + dn+1(a)d0(b) ∈ I

if d0(I), d1(I), . . . , dn(I) ⊂ I.

Theorem 6. Let A be a torsion-free ring, (d0, d1, . . . , dn, . . . ) a higher derivation
on A. If d0 is an automorphism, then dn(L(A)) ⊆ L(A) and dn(N (A)) ⊆ N (A) for
all n.

Proof. We first treat the case where A is an algebra over a field of characteristic
0. Note that L(A) and N (A) (where A is treated as a ring) are algebra ideals (as
happens with all radicals) and so coincide with these radicals of A treated as an
algebra (see [7]).

It has been proved by many authors e.g. Heerema [11], Miller [15], Abu-Saymeh
[1],[2], Mirzavaziri [16], Hazewinkel [10]) that in the circumstances of the theorem, if
d0 = id then each dn (n ≥ 1) is a linear combination of compositions of derivations,
whence the result follows from Theorem 2. In general we have

d−1
0 ◦ dn(ab) =d−1

0 (d0(a)dn(b) + d1(a)dn−1(b) + · · · + dn−1(a)d1(b)+

dn(a)d0(b)) =d−1
0 ◦ d0(a)d−1

0 ◦ dn(b) + d−1
0 ◦ d1(a)d−1

0 ◦ dn−1(b) + · · ·+

d−1
0 ◦ dn−1(a)d−1

0 ◦ d1(b) + d−1
0 ◦ dn(a)d−1

0 ◦ d0(b)

for all n ≥ 1, so (d−1
0 ◦ d0, d

−1
0 ◦ d1, . . . , d

−1
0 ◦ dn, . . . ) is a higher derivation with the

identity as its zeroth term, whence d−1
0 ◦ dn(L(A)) ⊆ L(A) for all n. But L(A) is

invariant under automorphisms, so

dn(L(A)) = d0 ◦ d−1
0 ◦ dn(L(A)) ⊆ d0(L(A)) = L(A).

The argument for N (A) is the same.
Now turning to a general torsion-free ring A, by Corollary 2 (ii) we can extend

our higher derivation uniquely to a higher derivation (d̂0, d̂1, . . . , d̂n, . . . ) of D(A),
which is an algebra over the field Q of rational numbers. It is easy to see that if d0 is
an automorphism of A, then d̂0 is an automorphism of D(A). Hence by Proposition
5 and the first part of the proof we have

d̂n(L(D(A)) = d̂n(D(L(A))) ⊆ D(L(A)) for every n.
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Thus if a ∈ L(A), then

dn(a) = d̂n

(a

1

)
∈ D(L(A)) ∩ A = L(A)

for each n.
Again, the argument for N is the same.

A natural question is whether for a higher derivation (d0, d1, . . . , dn, . . . ), in
particular on a torsion-free ring, if d0 preserves one of our radicals the latter must
be preserved by every dn. We have an example of similar behaviour in a ring with
prime characteristic p; the radical involved is not L or N , but it is a hereditary
supernilpotent radical.

Example 1. (Cf. Krempa [12]) Let U be the upper radical class defined by the
field Kp with p elements. We get a higher derivation (d0, d1, . . . , dn, . . . ) on Kp[X]
by defining di(a0 + a1X + · · · + akX

k) = aiX
i for all i. Now U is special, so if

α ∈ U(Kp[X]) then α is taken to 0 by each homomorphism from Kp[X] to Kp.
In particular d0(α) = 0 (as the function which assigns the zeroth coefficient is a
homomorphism). Thus d0(U(Kp[X])) ⊆ U(Kp[X]). But X − Xp ∈ U(Kp[X]) and
d1(X − Xp) = X. If X were in U(Kp[X]) then the principal ideal (X) would be in
U . But Kp is a homomorphic image of (X) via X 7→ 1. Thus X /∈ U(Kp[X]) so
d1(U(Kp[X])) * U(Kp[X]).

For commutative rings we have a preservation result which does not depend on
additive properties.

Theorem 7. Let A be a commutative ring, (d0, d1, . . . , dn, . . . ) a higher derivation
on A. Then dn(L(A)) ⊆ L(A) and dn(N (A)) ⊆ N (A) for all n.

Proof. Since A is commutative, L(A) = N (A) = the set of nilpotent elements of A.

The correspondence a 7→
∞∑

n=0
dn(a)Xn defines a homomorphism f : A → A[[X]] (the

formal power series ring). If a is nilpotent then so is f(a) and then, by commutativity,
so are its coefficients. (This is presumably well known. Here is an outline of a proof.

If (
∞∑

n=0
anXn)m = 0, then am

0 = 0. By commutativity,
∞∑

n=1
anXn =

∞∑

n=0
anXn − a is

also nilpotent, whence a1 is nilpotent, and so on.) Thus each dn(a) is nilpotent and
therefore in L(A).

Presumably this result does not hold in the absence of any restriction on A,
though we do not have an example to show this. The following example shows that
higher derivations do not necessarily take nilpotent elements to nilpotent elements.

Example 2. We use an example of [4]. Let R be a ring with identity, A =
M2(R)[X]. We get a higher derivation on A[X] by defining dn(c0 + c1X + . . . ) =
cnXn for all n. Then (e12 +(e11 − e22)X − e21X

2)2 = 0, but d1(e12 +(e11 − e22)X −
e21X

2) = e11 − e22, which is a unit.
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Not much seems to be known about representing the terms of a general higher
derivation by combinations of some kind of derivations. Loy [14] remarks that if
(d0, d1, . . . , dn, . . . ) is a higher derivation, d0 is idempotent and d0 ◦ dn = dn ◦ d0

for all n, then the dn are expressible as linear combinations of compositions of
(d0, d0)−derivations δ with d0 ◦ δ = δ ◦ d0.

Note that there are related results expressing the maps of certain D-structures
in terms of endomorphisms and derivations of various kinds in Section 6 of [5] and
Section 3 of [6].

5 Preservation by (α, β)−derivations

It might be expected that ideals preserved by α and β and by derivations might
be preserved by (α, β)− derivations. The situation is more complicated, however.
The case of idempotent ideal is easy.

Proposition 7. If I is an idempotent ideal of a ring A, d an (α, β)−derivation on
A, where α(I) ⊆ I and β(I) ⊆ I, then d(I) ⊆ I.

Proof. For a, b ∈ I we have d(ab) = d(a)β(b) + α(a)d(b) ∈ I as β(b), α(a) ∈ I.

Theorem 8. If α is an automorphism of a torsion-free ring A then d(L(A)) ⊆ L(A)
and d(N (A)) ⊆ N (A) for all (α,α)−derivations d of A.

Proof. The proof uses Corollary 2 and is like part of that of Theorem 6: α−1 ◦d is an
ordinary derivation, so α−1 ◦ d(L(A)) ⊆ L(A). Hence d(L(A)) ⊆ α(L(A)) ⊆ L(A).
The same argument gives the result for the nil radical.

We do not know if there is an analogous theorem for (α, β)-derivations when α
and β are distinct automorphisms. We do however have counterexamples when α
and β are non-automorphisms, distinct or not.

Example 3. Let K be a field (any characteristic),

A =

{[
a b
0 a

]

: a, b ∈ K

}

and define f, δ : A → A by setting f

([
a b
0 a

])

=

[
a 0
0 a

]

, δ

([
a b
0 a

])

=
[

b 0
0 b

]

for all a, b ∈ K. Then f is an endomorphism and δ is an (f, f)-derivation.

We have L(A) = N (A) =

[
0 K
0 0

]

and the radicals are preserved by f but not by

δ.

Example 4. For a field K we consider the ring

[
K K
0 K

]

of upper trianglu-

lar 2 × 2 matrices. Let α

([
a b
0 c

])

=

[
a 0
0 a

]

, β

([
a b
0 c

])

=

[
c 0
0 c

]
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and d

([
a b
0 c

])

=

[
0 b
0 b

]

for all a, b, c ∈ K. Clearly α and β are endo-

morphisms. For all a, b, c, d, e and f ∈ K we have d

([
a b
0 c

])

β

([
d e
0 f

])

+

α

([
a b
0 c

])

d

([
d e
0 f

])

=

[
0 b
0 b

] [
f 0
0 f

]

+

[
a 0
0 a

] [
0 e
0 e

]

=

[
0 bf
0 bf

]

+
[

0 ae
0 ae

]

=

[
0 bf + ae
0 bf + ae

]

= d

([
ad ae + bf
0 cf

])

= d

([
a b
0 c

] [
d e
0 f

])

, so

d is an (α, β)−derivation. Now L

([
K K
0 K

])

= N

([
K K
0 K

])

=

[
0 K
0 0

]

and α

([
0 K
0 0

])

= β

([
0 K
0 0

])

= 0 so both radicals are preserved by α and

β. However, if b 6= 0 then d

([
0 b
0 0

])

=

[
0 b
0 b

]

/∈

[
0 K
0 0

]

, so the radicals

are not preserved by d.

6 Preservation by D-structures

Preservation by all mappings of an arbitrary D-structure is a very demanding
condition. We shall see that even for algebras over a field of characteristic 0, the lo-
cally nilpotent and nil radicals need not be preserved. We begin the section however
with a positive result.

Theorem 9. Let σ be a D-structure defined by a ring A and a free monoid G =
{e, x, x2, . . . , xn, . . . } and write σnm for σxn,xm. Suppose further that σnm = 0 for
n < m. If I is an idempotent ideal of A and σ11(I) ⊆ I then σij(I) ⊆ I for all i, j.

Proof. The conditions imposed imply that σ11 is an endomorphism and σnn = σn
11

for all n (see [5], Proposition 3.1 and (6.9)). Clearly we need only consider σij for
i ≥ j, and prove that σij(ab) ∈ I for all a, b ∈ I. It is given that σ11(I) ⊆ I. Now
for all a, b ∈ I we have σ10(ab) = σ11(a)σ10(b) + σ10(a)σ00(b) ∈ I, since σ11(I) ⊆ I.
Thus σ1j(I) ⊆ I for all j ≤ 1. Now we proceed by induction.

Suppose σij(I) ⊆ I for all j ≤ i when i < n. Then σnn(I) ⊆ I as σnn = σn
11. If

j < n then

σnj(ab) =
∑

n≥k≥j

σnk(a)σkj(b) = σnn(a)σnj(b) + σnj(a)σjj(b) +
∑

n>k>j

σnk(a)σkj(b).

But σnn(a) and σjj(b) ∈ I and for k < n we have σkj(b) ∈ I by the inductive
hypothesis. Hence σnj(I) ⊆ I for all j ≤ n. We have proved that for every i and for
all j ≤ i, we have σij(I) ⊆ I, and this is what we need.

It is not known how the mappings of a D-structure treat idempotent ideals in
general.
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Even in the presence of DCC for ideals, the mappings of a D-structure need
not preserve the locally nilpotent or the nil radical of an algebra over a field of
characteristic 0.

Example 5. The ring

[
Q Q

0 Q

]

is a Q−algebra and has DCC on ideals. Also

L

([
Q Q

0 Q

])

= N

([
Q Q

0 Q

])

=

[
0 Q

0 0

]

. For the cyclic group G =

{e, x} of order 2 we get a D-structure as follows: σx,x

([
a b
0 c

])

=

[
a 0
0 a

]

,

σx,e

([
a b
0 c

])

=

[
0 c − a
0 b

]

for all a, b, c ∈ Q, σe,e = id, σx,e = 0. Then σx,x

preserves the radicals, but σx,e does not.
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1 Introduction

In the monograph [2] (Chapter 5) the problem of topologization of rings and
modules is discussed. The aim of this paper is to construct examples of modules
which do not admit some types of topologies.

2 Notation and conventions

An elementary p-group A, where p is a prime number is an abelian group with
identity px = 0. By [6], Theorem 17.2 (Prüfer, Baer) A is a direct sum of cyclic
groups of order p. Rings are assumed to be associative with identity and modules
unitary. Topological rings are assumed to be Hausdorff, but topological modules are
not assumed to be Hausdorff.

Let R be a ring and M an (R,R)-bimodule. The product R × M is endowed
with the multiplication

(r,m)(r′,m′) = (rr′, rm′ + mr′).

If R is a topological ring and M a topological (R,R)-bimodule, then R × M
endowed with the product topology becomes a topological ring. It is called the
trivial extension of R by M and is denoted by R ⋉ M (see [8]).

3 Preliminaries

The problem of topologization of a module is stated as follows: Let RM be a
left R-module and T be a ring topology on R. Does there exist a group topology
U such that (R,T )(M,U) is a topological module? This problem has a satisfactory
solution in the case when T is the discrete topology.

c© Mihail Ursul, Adela Tripe, 2017
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It can be considered another problem: Let RM be a left R-module. Let U be a
group topology on M . Does there exist a ring topology T such that (R,T )(M,U) is
a topological module?

Recall that a left R-module M , where R is a topological ring and M a topological
group is called a topological module if the mapping

R × M → M, (r,m) 7→ rm

is continuous.

As a corollary we obtain that if (R,Td) is a ring with discrete topology Td and
U is a group topoloogy on M , then (R,Td)(M,U) is a topological module if and only
if the mapping M → M,m 7→ rm is continuous for every r ∈ R .

It follows from these statements Theorem 5.1.2, [2]: Every infinite module RM
admits a nondiscrete Hausdorff R-module topology if R is viewed as a topological
ring with the discrete topology.

A short proof: Consider on M the maximal totally bounded group topology. It
is well-known that every endomorphism of M is continuous [4], [5].

4 Examples

Example 1. A topological ring and an overring such that the topology of ring
cannot be extended to the overring.

Let R be a second countable connected Boolean topological ring with identity.
(The existence of such topological rings has been proved in [3]). Let M be a maximal
ideal of R. Then M is a dense subspace of R. Indeed, otherwise M will be open
and R/M will be a discrete connected space of cardinality 2, a contradiction.

Consider the simple R-module N = R/M and the trivial extension R⋉N . Then
(R, 0) is a subring of index 2 of R⋉N and we can identify it with R. We claim that
the topology of (R, 0) cannot be extended to a Hausdorff topology of R⋉N . Indeed,
otherwise (0, N) = (R, 0)(0, 1 + M) will be a nonzero connected discrete topological
group, a contradiction.

Remark 1. An example of a ring having a subring whose topology cannot be extended
has been constructed in [7].

Lemma 1 (folklore). If A is a dense subgroup of a connected abelian group G, then
A is generated by each of its neighborhoods V of zero.

Example 2. A countable topological ring R and a countable R-module RM such
that every module topology is the antidiscrete topology.

Let S be a connected second countable Boolean topological ring with identity and
R a dense countable subring containing identity. By Lemma 1 the additive group of
R is generated by each of its neighborhoods of zero. Let M be a maximal ideal of
R and N = R/M . Then the unique module topology on N will be antidiscrete.
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Indeed, if T is a module topology on N and L the intersection of all neighbor-
hoods of zero, then L is a submodule. If L = 0, then (N,T ) is Hausdorff, hence N is
a nonzero discrete group generated by each its neighborhood of zero, a contradiction.
Therefore, L = N , hence T is the antidiscrete topology.

Now let L = ⊕i∈NNi, where Ni = N(i ∈ N). We claim that every module
topology on L is the antidiscrete topology.

Indeed, assume that T is a module topology and let P be the intersection of
all neighborhoods of zero of (L,T ). Then P ⊇ Ni for every i ∈ N. Since P is a
submodule, P = L, hence T is the antidiscrete topology.

Another example of this kind has been constructed in [1].

Next example is related to the example 3.4 from [1].

Example 3. Let p be a prime number, A a countable elementary p-group, Td be
the discrete topology on EndA, and TBohr the Bohr topology on A , i.e., the finest
totally bounded group topology on A (see [5]). We notice that (A,TBohr) has a
fundamental system of neighborhoods of zero consisting of all subgroups of finite
index.
Then:

(i) End AA is a simple module.

(ii) Every (EndA,Td)-module topology on End AA is Hausdorff or discrete.

(iii) Every endomorphism α of (A,TBohr) is contintuous.

(iv) (End A,Td)(A,TBohr) is a topological module.

(v) TBohr ≤ T for each Hausdorff (End A,Td)-module topology T on A.

(vi) Every nondiscrete Hausdorff topological module (End A,Td)(A,T ) has no non-
trivial convergent sequence.

(vii) Every compact subspace of (End A,Td)(A,TBohr) is finite.

(viii) The topology TBohr is maximal in the set of all nondiscrete Hausdorff
(EndA,Td)-module topologies on A.

Proofs:

(i) Indeed, let 0 6= a ∈ A and b ∈ A. There exists α ∈ EndA such that αa = b.
Therefore End AA is a simple module.

(ii) Follows from (i).

(iii) This property was proved in [4], p. 39 for arbitrary abelian groups. We
recall here the proof: If H is a subgroup of finite index of A, then α−1(H) is a
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subgroup of finite index of A.

(iv) Follows from (iii).

(v) Indeed, let H be a subgroup of A of finite index. Let H ⊕ H ′ = A. Put
α ∈ EndA, α ↾H= 0, α ↾H′= 1H′ . Then α is a continuous endomorphism of (A,T ).
It follows that H = ker α is closed in (A,T ). Since H has a finite index, it is open
in (A,T ). We have proved that TBohr ≤ T .

(vi) Assume the contrary. Let {an}n∈N be a convergent sequence and let
lim

n→∞
an = a. Then lim

n→∞
(an − a) = 0. Therefore we can assume without loss of

generality that a = 0.

Since {an}n∈N is a nontrivial sequence there exists k1 ∈ N such that ak1 6= 0. The
group A has a structure of a vector Fp-space. Assume that the vectors ak1 , · · · , akn−1 ,
where k1 < · · · < kn−1, are linearly independent. Since the subgroup B generated
by the elements ak1, · · · , akn−1 is finite, there exists kn ∈ N such that kn−1 < kn and
akn

/∈ B. Since lim
n→∞

akn
= 0, we can assume without loss of generality that {an}n∈N

is a linearly independent system. Let 0 6= b ∈ A and let α ∈ EndA,αan = b for
every n ∈ N. Since α is a continuous endomorphism of A, 0 = lim

n→∞
αan = b, a

contradiction.

(vii) Assume on the contrary that (End A,Td)(A,TBohr) contains an infinite com-
pact subset K. Since K is countable, it contains nontrivial convergent sequence. A
contradiction with (vi).

(viii) Assume the contrary: let T be a nondiscrete Hausdorff (EndA,Td)-module
topology and T ≥ TBohr,T 6= TBohr. Let H be a subgroup of A such that
H ∈ T ,H /∈ TBohr. Let H ⊕ H ′ = A. Then H and H ′ are infinite and countable.
Let α be an isomorphism of H on H ′ and β ∈ EndA, β(h ⊕ h′) = α(h)(h, h′ ∈ H).
There exists a neighborhood U of zero of (End A,Td)(A,T ) such that U ⊆ H and
β(U) = α(U) ⊆ H. Thus α(U) = 0, a contradiction.
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Abstract. A nilpotent ring R̂ and two ring topologies τ̂ ′′ and τ̂∗ on R̂ are constructed
such that τ̂∗ is a coatom (i.e. between the discrete topology τd and τ̂∗ there no exists
ring topologies) and such that between inf{τ̂ ′′, τ̂d} and inf{τ̂ ′′, τ̂∗} there exists an

infinite chain of ring topologies in the lattice of all ring topologies of the ring R̂.
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1 Introduction

As is known, in any modular lattice, the lengths of any finite unrefinable chains
with the same ends are equal and the lengths of finite unrefinable chains do not
become greater if we take the infimum or the supremum in these lattices.

The lattice of all ring topologies for a nilpotent ring need not be modular [1].
However, as is shown in [2], in the lattice of all ring topologies on a nilpotent ring,
the lengths of any finite unrefinable chains which have the same ends are equal.

Given the above, it was natural to expect that the lengths of any finite unrefinable
chains do not become greater if for a nilpotent ring we take the infimum or the
supremum in the lattice of all ring topologies. However, as shown in this article, it
is not the case if we take the infimum.

An example of a nilpotent ring R and such ring topologies τ̂ ′′ and τ̂∗ that τ̂∗
is a coatom in the lattice of all ring topologies of the ring R (i.e. between the
discrete topology τd and τ̂∗ there exist no ring topologies) is constructed, and an
infinite chain of ring topologies, which are less than τ̂ ′′ = inf{τ ′′, τd} and more than
inf{τ̂ ′′, τ̂∗}, exists.

To present the further results we need the following known result (see [3],
page 39 and page 51):

Theorem 1. Let B be a collection of subsets of a ring R such that the following
conditions are satisfied:

1) {0} =
⋂

V ∈B

V ;

2) for any V1, V2 ∈ B there exists V3 ∈ B such that V3 ⊆ V1
⋂

V2;

3) for any V1 ∈ B there exists V2 ∈ B such that V2 + V2 ⊆ V1;

c© V. I.Arnautov, G.N.Ermakova, 2017
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4) for any V1 ∈ B there exists V2 ∈ B such that −V2 ⊆ V1;
5) for any V1 ∈ B there exists V2 ∈ B such that V2 · V2 ⊆ V1;
6) for any V1 ∈ B and any element r ∈ R there exists V2 ∈ B such that

r · V2 ⊆ V1 and V2 · r ⊆ V1.
Then there exists a unique ring topology τ on the ring R for which (R, τ) is a
Hausdorff space and the collection B is a basis of neighborhoods of zero 1.

2 Basic results

To state basic results we need the following notations:

Notations 2.

2.1. N is the set of all natural numbers, Z is the set of all integers and R(+, ·)
is the field of real numbers;

2.2. R is the set of all matrices of the dimension 3 × 3 over the field R of real

numbers of the form




0 a1,2 a1,3

0 0 a2,3

0 0 0





R′ =









0 a1,2 0
0 0 0
0 0 0




∣
∣
∣a1,2 ∈ R





;

R′′ =









0 0 0
0 0 a2,3

0 0 0




∣
∣
∣a2,3 ∈ R





;

R(A) =









0 0 a1,3

0 0 a2,3

0 0 0




∣
∣
∣ a1,3 ∈ A, a2,3 ∈ R





for any subgroup A(+) of the

group R(+) of the field R(+, ·);

2.3. Ri = R, R′
i = R′ and R′′

i = R′′ for every natural number i;

2.4. Ri(A) = R(A) for every natural number i and any subgroup A(+) of the
group R(+) of the field R(+, ·);

2.5. R̂ =
∞∑

i=1
Ri, R̂′ =

∞∑

i=1
R′

i and R̂′′ =
∞∑

i=1
R′′

i ; R̂(A) =
∞∑

i=1
Ri(A);

2.6. V̂n = {ĝ ∈ R̂ | pri(ĝ) = 0 if i ≤ n} for any n ∈ N;

2.7. R̂k(A) = {ĝ ∈ R̂|prk(ĝ) ∈ Rk(A) and prj(ĝ) = {0} if j 6= k}, where k ∈ N

and A(+) is a subgroup of the group R(+).

Remark 3. It is easy to see that R with the usual operation of matrix is a ring
and R3 = 0 and (R′)2 = (R′′)2 = (R(A))2 = 0.

1As usual, the set V is called a neighborhood of an element a in the topological space (X, τ ) if
a ∈ U ⊆ V for some U ∈ τ .
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In addition, since




0 a1,2 a1,3

0 0 a2,3

0 0 0



 ·




0 b1,2 b1,3

0 0 b2,3

0 0 0



 =




0 0 a1,2 · b2,3

0 0 0
0 0 0



 ,

then it is obvious that R3 = 0 and (R′)2 = (R′′)2 = (R(A))2 = 0.

Proposition 4. For the ring R̂(+, ·) the following statements are true:

1. The collection B′ = {V̂i

⋂
R̂′|i ∈ N} satisfies the conditions of Theorem 1,

and hence, it is a basis of neighborhoods of zero for a ring topology τ̂ ′ on the ring
R̂(+, ·);

2. The collection B′′ = {V̂i

⋂
R̂′′|i ∈ N} satisfies the conditions of Theorem

1, and hence, is a basis of neighborhoods of zero for a ring topology τ̂ ′′ on the ring
R̂(+, ·);

3. If A is a subgroup of the group R(+) of the field R(+, ·), then the collection
B(A) = {R̂(A)

⋂
V̂n|n ∈ N} satisfies all the conditions of Theorem 1, and hence, it

is a basis of neighborhoods of zero for a ring topology τ̂(A) on the ring R̂(+, ·).

Proof. In addition, taking into consideration the definitions of sets V̂n, R̂′, R̂′′, and
R̂(A) we obtain that any set from the collection B′

⋃
B′′

⋃
B(A,F) is a subring of

the ring R̂(+, ·), and hence, any collection B′, B′′, and B(A,F) satisfies conditions
1, 2, 3, 4 and 5 of Theorem 1.

To complete the proof of the theorem it remains to verify that for any of the
mentioned collections the condition 6 of Theorem 1 are also satisfied.

Let now ĝ ∈ R̂, then there exists a natural number n such that pri(ĝ) = 0 for
i > m.

If V̂k

⋂
R̂′ ∈ B′ and m = max{k, n}, then ĝ · â = 0 and â · ĝ = 0 for any

â ∈ V̂m

⋂
R̂′, and hence, ĝ · (V̂m

⋂
R̂′) ⊆ V̂k

⋂
R̂′ and (V̂m

⋂
R̂′) · ĝ ⊆ V̂k

⋂
R̂′, i.e.

the condition 6 of Theorem 1 holds for the collection B′.
Analogously, if V̂k

⋂
R̂′′ ∈ B′′ and m = max{k, n}, then ĝ · â = 0 ∈ V̂k

⋂
R̂′′ for

any â ∈ V̂m

⋂
R̂′′, and â·ĝ = 0 ∈ V̂k

⋂
R̂′′ for any â ∈ V̂m

⋂
R̂′′. Then ĝ ·(V̂m

⋂
R̂′′) ⊆

V̂k

⋂
R̂′′ and ĝ · (V̂m

⋂
R̂′′) ⊆ V̂k

⋂
R̂′′, i.e. the condition 6 of Theorem 1 holds for

the collection B′′.
If V̂ (A)

⋂
V̂k ∈ B(A) and m = max{n, k}, then V̂ (A)

⋂
Vm ⊆ V̂ (A)

⋂
V̂k and

â · ĝ = 0 for any â ∈ V̂ (A)
⋂

V̂m, and V̂ (A,F )
⋂

V̂k ∈ B(A) and m = max{n, k}.
Then V̂ (A)

⋂
V̂m ⊆ V̂ (A)

⋂
V̂k and â · ĝ = 0 for any â ∈ V̂ (A)

⋂
V̂m.

Hence, ĝ · (V̂ (A)
⋂

V̂m) = {0} ⊆ V̂ (A)
⋂

V̂k and (V̂ (A)
⋂

V̂m) · ĝ = {0} ⊆
V̂ (A)

⋂
V̂k, i.e. the condition 6 of Theorem 1 holds for the collection B(A).

By this, the proposition is completely proved.

Proposition 5. Let τ̂ ′ and τ̂ ′′ be ring topologies on the ring R̂, defined in Propo-
sition 5, and n ∈ N. If τ is a non-discrete ring topology on the ring R̂ such that
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τ ≥ τ̂ ′, then for any neighborhood W of zero in the topological ring (R̂, inf{τ, τ̂ ′′})
there exists a natural number k ≥ n such that R̂k(R) ⊆ W . (see 2.7)

Proof. Let W be a neighborhood of zero in the topological ring (R̂, inf{τ, τ̂ ′′}), and
let W1 be a neighborhood of zero in the topological ring (R̂, inf{τ, τ̂ ′′}) such that
W1 · W1 + W1 ⊆ W . Then W1 is a neighborhood of zero in each of the topological
ring (R̂, τ) and (R̂, τ̂ ′′), and hence, there exists a natural number n0 ∈ N such that
n0 ≥ n and V̂n0

⋂
R̂′′ ⊆ W1. Since τ ≥ τ̂ ′, then R̂′

⋂
V̂n0 is a neighborhood of zero

in the topological ring (R̂, τ). Hence R̂′
⋂

V̂n0

⋂
W1 is a neighborhood of zero in the

topological ring (R̂, τ).

Since τ is a non-discrete topology, then R̂′
⋂

V̂n0

⋂
W1 6= {0}.

If 0 6= ĝ0 ∈ R̂′
⋂

V̂n0

⋂
W1 6= {0}, then there exists a natural number k ≥ n0 ≥ n

such that prk(ĝ0) 6= 0.

Since ĝ0 ∈ R̂′, then prk(ĝ0) =




0 a 0
0 0 0
0 0 0



 , and a 6= 0. Now if ĝ1 ∈ R̂k(R) then

prk(ĝ1) =




0 0 r
0 0 a2,3

0 0 0



 and pri(ĝ1) = 0 for i 6= k.

If ĝ2 ∈ R̂′′ and ĝ3 ∈ R̂′′ are such elements that prk(ĝ2) =




0 0 0
0 0 a−1 · r
0 0 0



,

prk(ĝ3) =




0 0 0
0 0 a2,3

0 0 0



, and pri(ĝ2) = pri(ĝ3) = 0 for i 6= k, then ĝ2 ∈ R̂′′
k

⋂
V̂n0 ⊆

W1. Then ĝ0 · ĝ2 + ĝ3 ∈ W1 · W1 + W1 ⊆ W . As

prk(ĝ1) =




0 0 r
0 0 a2,3

0 0 0



 =




0 a 0
0 0 0
0 0 0



 ·




0 0 0
0 0 a−1 · r
0 0 0



 +




0 0 r
0 0 a2,3

0 0 0



 =

prk(ĝ0) · prk(ĝ2) + prk(ĝ3) and pri(ĝ1) = 0 = pri(ĝ0) · pri(ĝ2) + pri(ĝ2) for i 6= k then
ĝ1 = ĝ0 · ĝ2 + ĝ3 ∈ W . From the arbitrariness of the element ĝ1 it follows then that
R̂k(R) ⊆ W .

By this, the proposition is completely proved.

Theorem 6. Let τ̂ ′ and τ̂ ′′ be ring topologies on the ring R̂, defined in Proposition 5.
Then the following statements are true:

1. If τ is a ring topology on the ring R̂ such that τ ≥ τ̂ ′, then

sup{τ̂(A), inf{τ̂ ′′, τ}} > sup{τ̂ (B), inf{τ̂ ′′, τ}}.

for any subgroups A ⊂ B of the group R(+).
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2. If τ̂d is the discrete topology on the ring R̂, and τ̂∗ is a coatom in the lattice
of all ring topologies on the ring R̂ such that τ̂∗ ≥ τ̂ ′, then between the topologies
inf{τ̂d, τ̂

′′} and inf{τ̂∗, τ̂ ′′}, there exists a chain of ring topologies on the ring R̂
which is infinitely decreasing and infinitely increasing.

Proof. Proof of Statement 7.1. Since A ⊂ B, then (see the notation at the beginning
of this article) V̂n(A) ⊆ V̂n(B) for any a natural number n. Then (see Proposition
5) τ̂(A) ≥ τ̂(B), and hence,

sup{τ̂(A), inf{τ̂ ′′, τ}} ≥ sup{τ̂ (B), inf{τ̂ ′′, τ}}.

We will show that

sup{τ̂(A), inf{τ̂ ′′, τ}} > sup{τ̂ (B), inf{τ̂ ′′, τ}}.

Assume the contrary, i.e. that

sup{τ̂(A), inf{τ̂ ′′, τ}} = sup{τ̂ (B), inf{τ̂ ′′, τ}}.

Then R̂(A) is a neighborhood of zero in the topological ring (R̂, τ̂ (A)), and hence,
R̂(A) is a neighborhood of zero in the topological ring (R̂, sup{τ̂ (B), inf{τ̂ ′′, τ}}).
Then there exists a neighborhood W of zero in the topological ring (R̂, inf{τ̂ ′′, τ})
and a natural number n ∈ N such that W

⋂
(V̂ (B)

⋂
V̂n) ⊆ R̂(A).

By Proposition 5, there exists a natural number k ≥ n such that R̂k(R) ⊆ W ,
and hence, R̂k(B) ⊆ R̂k(R) ⊆ W . As k ≥ n then R̂k(B) ⊆ V̂n.

Since k > m, then (see 3.7)

Rk(B) = prk(R̂k(B)) ⊆ prk(R̂(A)) = Rk(A),

but this contradicts B * A.

By this, Statement 1 is proved.

Proof of Statement 2. There exists a chain {Ai | i ∈ Z} of subgroups Ai of
the group R(+) such that Ai ⊆ Ai+1 for any i ∈ Z, i.e. this chain of subgroups is
infinitely decreasing and infinitely increasing.

For any subgroup Ai let us consider the ring topology τ̂(Ai) on the ring R̂. Since
τ̂∗ ≥ τ̂ ′, then by statement 1, of this theorem

sup{τ̂(Ai), inf{τ̂ ′′, τ̂∗}} > sup{τ̂ (Ai+1), inf{τ̂ ′′, τ̂∗}},

and hence, the chain of ring topologies sup{τ̂ (Ai), inf{τ̂ ′′, τ̂∗}} is infinitely decreasing
and infinitely increasing.

To complete the proof of the theorem it remains to verify that

inf{τ̂∗, τ̂ ′′} ≤ sup{τ̂ (Ai), inf{τ̂∗, τ̂ ′′}} ≤ inf{τ̂d, τ̂
′′}

for any subgroup Ai(+) of the group R(+), where i ∈ Z.
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In fact, from the definition of the sets R(A) and R′′ (see 3.2) it follows that
R({0}) = R′′, and hence, τ̂({0}) = τ̂ ′′ = inf{τ̂d, τ̂

′′}. Then

inf{τ̂∗, τ̂ ′′} ≤ sup{τ̂ (R), inf{τ̂∗, τ̂ ′′}} ≤ sup{τ̂(Ai), inf{τ̂∗, τ̂ ′′}} ≤

sup{τ̂ ({0}), inf{τ̂d, τ̂
′′}} = inf{τ̂ ′′, τ̂d, τ̂

′′} = inf{τ̂d, τ̂
′′}

By this, the theorem is proved.
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On the inverse operations in the class of preradicals
of a module category, II
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Abstract. In the present work a new operation, called left coquotient with respect
to meet, in the class of preradicals PR of the category R-Mod of left R-modules is
defined and investigated. It is dual to the studied earlier left quotient with respect to
join [2]. Main properties of this operation and relations with lattice operations in PR

are shown. Connections with some constructions in the large complete lattice PR are
studied and some particular cases are mentioned.
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1 Introduction and preliminary facts

This work is devoted to the theory of radicals of modules ([1], [4]-[7]) and contains
the investigation of a new operation in the class of preradicals of a module category.

Let R be a ring with unity and R-Mod be the category of unitary left R-modules.
We remind that a preradical r of R-Mod is a subfunctor of identity functor of
R-Mod, i.e. r associates to every module M ∈ R-Mod a submodule r (M) ⊆ M
such that f (r (M)) ⊆ r (M ′) for every R-morphism f : M → M ′.

We denote by PR the class of all preradicals of the category R-Mod. In this
class four operation are defined [4]:

1) the meet ∧
α∈A

rα of a family of preradicals {rα}α∈A
:

(

∧
α∈A

rα

)

(M)
def
=

⋂

α∈A

rα (M), M ∈ R-Mod;

2) the join ∨
α∈A

rα of a family of preradicals {rα}α∈A
:

(

∨
α∈A

rα

)

(M)
def
=

∑

α∈A

rα (M), M ∈ R-Mod;

3) the product r · s of preradicals r, s ∈ PR:

(r · s) (M)
def
= r (s (M)), M ∈ R-Mod ;

4) the coproduct r # s of preradicals r, s ∈ PR:

[(r # s) (M)]/s (M)
def
= r (M/s (M) ), M ∈ R-Mod.

c© Ion Jardan, 2017
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In the class PR the partial order relation ” ≤ ” is defined by the rule:

r1 ≤ r2
def
⇔ r1 (M) ⊆ r2 (M) for every M ∈ R-Mod.

The class PR is a large complete lattice with respect to the operations of meet
and join.

We remark that in the book [4] the coproduct is denoted by (r : s) and is
defined by the rule [(r : s) (M)]/r (M) = s (M/r (M) ), so (r # s) = (s : r).

The following properties of distributivity hold [4]:

(1) (∧ rα) · s = ∧ (rα · s); (2) (∨ rα) · s = ∨ (rα · s);

(3) (∧ rα) # s = ∧ (rα # s); (4) (∨ rα) # s = ∨ (rα # s)

for every family {rα}α∈A
⊆ PR and s ∈ PR.

Using these relations some new inverse operations can be defined in the class
PR. One of them, the left quotient of product with respect to join, was defined and
investigated in [2]. In this work we will study another inverse operation, namely the
left coquotient of coproduct with respect to meet. In the case of pretorsions it was
investigated by J. S. Golan by other methods in [1] (see [3]). Similar questions are
discussed in [8], [9] and [10].

Now we remind the principal types of preradicals. A preradical r ∈ PR is called:

– idempotent preradical, if r (r (M)) = r (M) for every M ∈ R-Mod (or if
r · r = r);

– radical, if r (M/r (M)) = 0 for every M ∈ R-Mod (or if r # r = r);

– idempotent radical, if both previous conditions are fulfilled;

– pretorsion (hereditary preradical), if r (N) = N
⋂

r (M) for every N ⊆ M ,
M ∈ R-Mod;

– cohereditary, if r (M/N) = (r (M) + N)/N , for every N ⊆ M ∈ R-Mod;

– torsion, if r is a hereditary radical;

– coprime, if r 6= 0 and for any t1, t2 ∈ PR, t1 # t2 ≥ r implies t1 ≥ r or
t2 ≥ r [9];

– ∨-coprime, if for any t1, t2 ∈ PR, t1 ∨ t2 ≥ r implies t1 ≥ r or t2 ≥ r [9];

– coirreducible, if for any t1, t2 ∈ PR, t1 ∨ t2 = r implies t1 = r or t2 = r
[9].

The operations of meet and join are commutative and associative, while the
operations of product and coproduct are associative. By means of these operations
four preradicals are obtained which are arranged in the following order:

r · s ≤ r ∧ s ≤ r ∨ s ≤ r # s
for every r, s ∈ PR.

During this work we will use the following facts and notions from general theory
of preradicals (see [4]−[7]).

Lemma 1.1. (Monotony of the product) For any s1, s2 ∈ PR, s1 ≤ s2 implies that
r · s1 ≤ r · s2 and s1 · r ≤ s2 · r for every r ∈ PR. �
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Lemma 1.2. (Monotony of the coproduct) For any s1, s2 ∈ PR, s1 ≤ s2 implies
that r # s1 ≤ r # s2 and s1 # r ≤ s2 # r for every r ∈ PR. �

Lemma 1.3. If the preradical r is cohereditary, then r # s = r ∨ s for every
s ∈ PR. �

Lemma 1.4. For every r, s, t ∈ PR we have:

1) (r · s) # t ≥ (r # t) · (s # t);

2) (r # s) · t ≤ (r · t) # (s · t). �

Definition 1.1. The totalizer of preradical r is the preradical
t (r) = ∧{rα ∈ PR | rα # r = 1} .

Definition 1.2. The pseudocomplement of r in PR is a preradical r⊥ ∈ PR

with the properties:

1) r ∧ r⊥ = 0;

2) If s ∈ PR is such that s > r⊥, then r ∧ s 6= 0.

Lemma 1.5. Each r ∈ PR has a unique pseudocomplement r⊥ such that if s ∈ PR

and r ∧ s = 0, then s ≤ r⊥. �

Definition 1.3. The supplement of r in PR is a preradical r∗ ∈ PR with the
properties:

1) r ∨ r∗ = 1;

2) If s ∈ PR is such that s < r∗, then r ∨ s 6= 1.

Lemma 1.6. Let r ∈ PR and r possesses the supplement r∗. If s ∈ PR and
r ∨ s = 1, then s ≥ r∗. �

2 Left coquotient with respect to meet

Now we introduce and investigate the inverse operation of coproduct with respect
to meet in the class of preradicals PR of category R-Mod.

Definition 2.1. Let r, s ∈ PR. The left coquotient with respect to meet of r by
s is defined as the least preradical among rα ∈ PR with the property rα# s ≥ r.
We denote this preradical by r ∧/# s.

We will call r the numerator and s the denominator of the coquotient r ∧/# s.

Now we mention the existence of the left coquotient for every pair of preradicals.

Lemma 2.1. For every r, s ∈ PR there exists the left coquotient r ∧/# s with respect
to meet, and it can be presented in the form r ∧/# s = ∧{rα ∈ PR | rα# s ≥ r}.
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Proof. Since 1 # s ≥ r for every s ∈ PR, the family of preradicals {rα | rα # s ≥ r}
is not empty. By the distributivity of coproduct with respect to meet of preradicals

we have

(

∧
rα # s≥ r

rα

)

# s = ∧
rα # s≥ r

(rα # s). Since rα # s ≥ r for every preradical

rα it follows that ∧
rα # s≥ r

(rα # s) ≥ r, i.e.

(

∧
rα # s≥ r

rα

)

# s ≥ r. Therefore the

preradical ∧
rα # s≥ r

rα is one of rα and it is the least among rα with the property

rα # s ≥ r. So r ∧/# s = ∧{rα ∈ PR | rα # s ≥ r}.

Moreover, from the proof of Lemma 2.1 it follows that (r ∧/# s) # s ≥ r. We will
often use this relation futher.

Lemma 2.2. For every r, s ∈ PR we have r ∧/# s ≤ r.

Proof. By Lemma 2.1 r ∧/# s = ∧{rα ∈ PR | rα # s ≥ r}. Since r # s ≥ r it follows
that r is one of preradicals rα. Therefore r ≥ ∧{rα ∈ PR | rα # s ≥ r}, i.e.
r ≥ r ∧/# s.

Now we indicate the behaviour of the left coquotient with respect to the order
relation (≤) of PR.

Proposition 2.3. (Monotony in the numerator) If r1, r2 ∈ PR and r1 ≤ r2, then
r1

∧/# s ≤ r2
∧/# s for every s ∈ PR .

Proof. From Lemma 2.1 we have r1
∧/# s = ∧{rα ∈ PR | rα # s ≥ r1} and r2

∧/# s =

∧
{

r′β ∈ PR

∣
∣
∣ r′β # s ≥ r2

}
. The relations r1 ≤ r2 and r′β # s ≥ r2 imply r′β # s ≥ r1,

so each r′β is one of preradicals rα. This proves that ∧{rα ∈ PR | rα # s ≥ r1} ≤

∧
{

r′β ∈ PR

∣
∣
∣ r′β # s ≥ r2

}
, so r1

∧/# s ≤ r2
∧/# s.

Proposition 2.4. (Antimonotony in the denominator) If s1, s2 ∈ PR and s1 ≤ s2,
then r ∧/# s1 ≥ r ∧/# s2 for every s ∈ PR .

Proof. From Lemma 2.1 we have r ∧/# s1 = ∧{rα ∈ PR | rα # s1 ≥ r} and r ∧/# s2 =

∧
{

r′β ∈ PR

∣
∣
∣ r′β # s2 ≥ r

}
. Let s1 ≤ s2. Then from the monotony of coproduct we

have rα # s1 ≤ rα # s2. Since rα # s1 ≥ r, we obtain rα # s2 ≥ r. So each preradical
rα is one of preradicals r′β , therefore

∧{rα ∈ PR | rα # s1 ≥ r} ≥ ∧
{

r′β ∈ PR

∣
∣
∣ r′β # s2 ≥ r

}
,

i.e. r ∧/# s1 ≥ r ∧/# s2.

The following fact is very useful for the further investigations.

Proposition 2.5. For every r, s, t ∈ PR we have:

r ≤ t # s ⇔ r ∧/# s ≤ t.
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Proof. (⇒) By Lemma 2.1 r ∧/# s = ∧{rα ∈ PR | rα # s ≥ r}. If t # s ≥ r, then t
is one of preradicals rα, therefore t ≥ ∧{rα ∈ PR | rα # s ≥ r} = r ∧/# s.

(⇐) Let t ≥ r ∧/# s. From the monotony of coproduct t # s ≥ (r ∧/# s) # s and
by definition of left coquotient we have (r ∧/# s) # s ≥ r, therefore t # s ≥ r.

In continuation we show some properties of the studied operation.

Proposition 2.6. For every preradicals r, s ∈ PR we have:

(r # s) ∧/# s ≤ r.

Proof. From Lemma 2.1 we have (r # s) ∧/# s = ∧{tα ∈ PR | tα # s ≥ r # s}. Since
r # s ≥ r # s, the preradical r is one of preradicals tα, therefore we obtain r ≥
∧{tα ∈ PR | tα # s ≤ r # s}, i.e. r ≥ (r # s) ∧/# s.

Proposition 2.7. For every r, s, t ∈ PR the following relations are true:

1) (r ∧/# s) ∧/# t = r ∧/# (t # s);

2) (r # s) ∧/# t ≤ r # (s ∧/# t).

Proof. 1) From Lemma 2.1 we have r ∧/# (t # s) = ∧{rα ∈ PR | rα # (t # s) ≥ r}
and (r ∧/# s) ∧/# t = ∧{tβ ∈ PR | tβ # t ≥ r ∧/# s}.

(≤) Let rα # (t # s) ≥ r. Then (rα # t) # s ≥ r and from Proposition 2.5
we obtain rα # t ≥ r ∧/# s. So any preradical rα is one of preradicals tβ, there-
fore we obtain ∧{rα ∈ PR | rα # (t # s) ≥ r} ≥ ∧{ tβ ∈ PR | tβ # t ≥ r ∧/# s} , i.e.
r ∧/# (t # s) ≥ (r ∧/# s) ∧/# t.

(≥) Let tβ # t ≥ r ∧/# s. Using the monotony of coproduct we obtain
(tβ # t) # s ≥ (r ∧/# s) # s, but from the definition of left coquotient (r ∧/# s) # s ≥ r,
so tβ # (t # s) = (tβ # t) # s ≥ r. This shows that each preradical tβ is one of pre-
radicals rα, therefore ∧{tβ ∈ PR | tβ # t ≥ r ∧/# s} ≥ ∧{rα ∈ PR | rα # (t # s) ≥ r},
i.e (r ∧/# s) ∧/# t ≥ r ∧/# (t # s).

2) By definition of left coquotient s ≤ (s ∧/# t) # t. Using the monotony of
coproduct we have r # s ≤ r # [(s ∧/# t) # t ] = [ r # (s ∧/# t)] # t, and from Proposition
2.5 we obtain (r # s) ∧/# t ≤ r # (s ∧/# t).

Proposition 2.8. For every r, s, t ∈ PR the following relations hold:

1) (r ∧/# t) ∧/# (s ∧/# t) ≤ r ∧/# s;

2) (r # t) ∧/# (s # t) ≤ r ∧/# s.

Proof. 1) From Proposition 2.5 the relation of this statement is equivalent to the
relation r ∧/# t ≤ (r ∧/# s) # (s ∧/# t).

By definition of left coquotient r ≤ (r ∧/# s) # s and s ≤ (s ∧/# t) # t, therefore
from the monotony and the associativity of coproduct we obtain r ≤ (r ∧/# s) # s ≤
(r ∧/# s) # [(s ∧/# t) # t ] = [(r ∧/# s) # (s ∧/# t)] # t. Applying Proposition 2.5 we have
r ∧/# t ≤ (r ∧/# s) # (s ∧/# t).
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2) From Proposition 2.5 the relation of this statement is equivalent to the relation
r # t ≤ (r ∧/# s) # (s # t).

By definition of left coquotient r ≤ (r ∧/# s) # s. Using the monotony of coproduct
we obtain r # t ≤ [(r ∧/# s) # s ] # t = (r ∧/# s) # (s # t).

Now we will discuss the question of relations beetween the left coquotient with
respect to meet and the lattice operations of PR.

Proposition 2.9. (The left distributivity of left coquotient r ∧/# s relative to join)
Let s ∈ PR. Then for every family of preradicals {rα|α ∈ A} the following relation
holds:

(

∨
α∈A

rα

)
∧/# s = ∨

α∈A

(rα
∧/# s).

Proof. (≤) By definition of left coquotient we have rα ≤ (rα
∧/# s) # s for every

α ∈ A. Then ∨
α∈A

rα ≤ ∨
α∈A

[(rα
∧/# s) # s ]. From the distributivity of coproduct

of preradicals relative to join it follows that ∨
α∈A

rα ≤

[

∨
α∈A

(rα
∧/# s)

]

# s. Using

Proposition 2.5 we obtain

(

∨
α∈A

rα

)
∧/# s ≤ ∨

α∈A

(rα
∧/# s).

(≥) From Lemma 2.1 we have

(

∨
α∈A

rα

)
∧/# s = ∧

{

tβ ∈ PR | tβ # s ≥ ∨
α∈A

rα

}

and ∨
α∈A

(rα
∧/# s) = ∨

α∈A

(

∧
r′γ # s≥ rα

r′γ

)

.

Let tβ # s ≥ ∨
α∈A

rα. Since ∨
α∈A

rα ≥ rα for every α ∈ A we have

tβ # s ≥ rα, so each preradical tβ is one of preradicals r′γ . This implies the rela-

tion ∧

{

tβ ∈ PR | tβ # s ≥ ∨
α∈A

rα

}

≥ ∧{r′γ ∈ PR | r′γ # s ≥ rα} for every α ∈ A,

therefore ∧

{

tβ ∈ PR | tβ # s ≥ ∨
α∈A

rα

}

≥ ∨
α∈A

(∧{r′γ ∈ PR | r′γ # s ≥ rα}), which

means that

(

∨
α∈A

rα

)
∧/# s ≥ ∨

α∈A

(rα
∧/# s).

Proposition 2.10. In the class PR the following relations are true:

1)

(

∧
α∈A

rα

)
∧/# s ≤ ∧

α∈A

(rα
∧/# s);

2) r ∧/#

(

∧
α∈A

sα

)

≥ ∨
α∈A

(r ∧/# sα);

3) r ∧/#

(

∨
α∈A

sα

)

≤ ∧
α∈A

(r ∧/# sα).

Proof. 1) By the definition of left coquotient we have rα ≤ (rα
∧/# s) # s for every

α ∈ A, therefore ∧
α∈A

rα ≤ ∧
α∈A

[(rα
∧/# s) # s]. From the distributivity of coproduct
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of preradicals relative to meet it follows that ∧
α∈A

rα ≤

[

∧
α∈A

(rα
∧/# s)

]

# s and using

Proposition 2.5 we obtain

(

∧
α∈A

rα

)
∧/# s ≤ ∧

α∈A

(rα
∧/# s).

2) For every α ∈ A we have ∧
α∈A

sα ≤ sα. From the antimonotony in the

denominator of left coquotient it follows that r ∧/#

(

∧
α∈A

sα

)

≥ r ∧/# sα for all α ∈ A,

therefore r ∧/#

(

∧
α∈A

sα

)

≥ ∨
α∈A

(r ∧/# sα).

3) For every α ∈ A we have ∨
α∈A

sα ≥ sα. From the antimonotony in the

denominator of left coquotient it follows that r ∧/#

(

∨
α∈A

sα

)

≤ r ∧/# sα for all α ∈ A,

therefore r ∧/#

(

∨
α∈A

sα

)

≤ ∧
α∈A

(r ∧/# sα).

3 The left coquotient r ∧/# s in particular cases

In this section we study some particular cases of left coquotient with respect to
meet, its relations with special constructions in large complete lattice PR and the
connection with some types of preradicals (coprime, ∨-coprime, coirreducible ), as
well as the arrangement (relative position) of preradicals obtained by the studied
operation.

Proposition 3.1. For every preradicals r, s ∈ PR the following conditions are
equivalent:

1) r ≤ s;

2) r ∧/# s = 0.

Proof. 1) ⇒ 2) Let r ≤ s. So r ≤ 0 # s and from Proposition 2.5 we obtain
r ∧/# s ≤ 0, therefore r ∧/# s = 0.

2) ⇒ 1) Let r ∧/# s = 0. By definition of left coquotient we have (r ∧/# s) # s ≥ r,
so 0 # s ≥ r, i.e s ≥ r.

Proposition 3.2. Let r, s ∈ PR. Then:

1) 1 ∧/# s = t (s)(see Def. 1.1);

2) r ∧/# 0 = r.

Proof. From the definition of left coquotient we have:

1) 1 ∧/# s = ∧{rα ∈ PR | rα # s ≥ 1} = ∧{rα ∈ PR | rα # s = 1} = t (s);

2) r ∧/# 0 = ∧{rα ∈ PR | rα # 0 ≥ r} = ∧{rα ∈ PR | rα ≥ r} = r.
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From Propositions 3.1 and 3.2 such particular cases follow:

(1) 0 ∧/# 0 = 0; (2) r ∧/# r = 0 for every r ∈ PR;

(3) s ∧/# 1 = 0 for every s ∈ PR; (4) 1 ∧/# 1 = t (1) = 0.

As in Proposition 3.1 (r ∧/# r) # r = 0 # r = r for every r ∈ PR.
Moreover, the distributivity of coproduct of preradicals relative to meet implies

t (s) # s =

(

∧
rα # s =1

rα

)

# s = ∧
rα # s= 1

(rα # s) = 1 for every s ∈ PR.

Now we will indicate the relations between the totalizer t (r) of preradical r
and such constructions in the large complete lattice PR as pseudocomplement and
supplement (see Def. 1.2, Def. 1.3).

Proposition 3.3. For every preradical s ∈ PR we have t (s) ≥ s⊥.

Proof. By definition t (s) = ∧{rα | rα # s = 1}. The pseudocomplement s⊥ of
preradical s by definition has the property s ∧ s⊥ = 0. Since s · s⊥ ≤ s ∧ s⊥ = 0,
we obtain s · s⊥ = 0. We have that t (s) # s = 1, so s⊥ = 1 · s⊥ = (t (s) # s) · s⊥.
From Lemma 1.4 (t (s) # s) · s⊥ ≤

(
t (s) · s⊥

)
#

(
s · s⊥

)
=

(
t (s) · s⊥

)
# 0 = t (s) · s⊥.

Therefore s⊥ ≤ t (s) · s⊥, but t (s) · s⊥ ≤ t (s), so s⊥ ≤ t (s).

Moreover, we have s⊥ ≤ t (s) · s⊥, but s⊥ ≥ t (s) · s⊥, so s⊥ = t (s) · s⊥.

Proposition 3.4. Let s ∈ PR and s have the supplement s∗. Then t (s) ≤ s∗.

Proof. By definition t (s) = ∧{rα | rα # s = 1}. The supplement s∗ of s from the
definition has the property s∨ s∗ = 1. Since s∗ # s ≥ s∗ ∨ s = s∨ s∗ = 1, we obtain
s∗ # s = 1. So s∗ is one of preradicals rα, therefore s∗ ≥ ∧{rα | rα # s = 1}, i.e.
s∗ ≥ t (s).

Moreover, from Proposition 2.3 r ∧/# s ≤ 1 ∧/# s = t (s), therefore r ∧/# s ≤ s∗.
The next two statements show when the cancellation properties for left coquo-

tient hold (see Proposition 2.6).

Proposition 3.5. Let r, s ∈ PR. The following conditions are equivalent:

1) r = (r # s) ∧/# s;

2) r = t ∧/# s for some preradical t ∈ PR.

Proof. 1) ⇒ 2) If r = (r # s) ∧/# s, then r = t ∧/# s with t = r # s.
2) ⇒ 1) Let r = t ∧/# s for some preradical t. By definition of left coquotient

(t ∧/# s) # s ≥ t. From Proposition 2.3 we obtain [(t ∧/# s) # s] ∧/# s ≥ t ∧/# s. But from
Proposition 2.6 [(t ∧/# s) # s] ∧/# s ≤ t ∧/# s, therefore we have [(t ∧/# s) # s] ∧/# s = t ∧/# s.
Since t ∧/# s = r, we obtain (r # s) ∧/# s = r.

Proposition 3.6. Let r, s ∈ PR. The following conditions are equivalent:

1) r = (r ∧/# s) # s;

2) r = t # s for some preradical t ∈ PR.
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Proof. 1) ⇒ 2) If r = (r ∧/# s) # s, then r = t # s with t = r ∧/# s.
2) ⇒ 1) Let r = t # s for some preradical t. By Proposition 2.6 (t # s) ∧/# s ≤ t.

From the monotony of coproduct it follows that [(t # s) ∧/# s] # s ≤ t # s. But from the
definition of left coquotient [(t # s) ∧/# s] # s ≥ t # s, therefore [(t # s) ∧/# s] # s = t # s.
Since t # s = r, we have (r ∧/# s) # s = r.

Now we will study the behaviour of the left coquotient r ∧/# s in the cases of
such types of preradicals as coprime, ∨-coprime and coirreducible.

Proposition 3.7. The preradical r is coprime if and only if for every preradical
s we have r ∧/# s = 0 or r ∧/# s = r.

Proof. (⇒) Let r 6= 0. By definition (r ∧/# s) # s ≥ r and if r is coprime, then
we have r ∧/# s ≥ r or s ≥ r. If r ∧/# s ≥ r, then since by Lemma 2.2 r ∧/# s ≤ r, it
follows that r ∧/# s = r. If s ≥ r, then from Proposition 3.1 we have r ∧/# s = 0.

(⇐) Let t1 # t2 ≥ r for some preradicals t1, t2 ∈ PR. From Proposition 2.5
we obtain t1 ≥ r ∧/# t2. For the preradical t2 from the condition of this proposition
we have r ∧/# t2 = 0 or r ∧/# t2 = r. If r ∧/# t2 = 0, then from Proposition 3.1 it
follows that t2 ≥ r. If r ∧/# t2 = r, then t1 ≥ r ∧/# t2 = r. So for every t1, t2 ∈ PR

with t1 # t2 ≥ r we have t1 ≥ r or t2 ≥ r, which means that the preradical r is
coprime.

Proposition 3.8. If the preradical r is ∨-coprime, then the coquotient r ∧/# s is
∨-coprime for every s ∈ PR.

Proof. Suppose that t1 ∨ t2 ≥ r ∧/# s, for some t1, t2 ∈ PR. Then from Proposition
2.5 we obtain (t1 ∨ t2) # s ≥ r. From the distributivity of coproduct of preradicals
relative to join we have (t1 # s) ∨ (t2 # s) ≥ r. If r is ∨-coprime, then t1 # s ≥ r
or t2 # s ≥ r. From Proposition 2.5 we obtain that t1 ≥ r ∧/# s or t2 ≥ r ∧/# s. So
for every preradicals t1, t2 ∈ PR with t1 ∨ t2 ≥ r ∧/# s we have t1 ≥ r ∧/# s or
t2 ≥ r ∧/# s, which means that the preradical r ∧/# s is ∨-coprime.

Proposition 3.9. Let r, s ∈ PR and r = t # s for some preradical t ∈ PR. If
the preradical r is coirreducible, then the preradical r ∧/# s is coirreducible.

Proof. Let t1 ∨ t2 = r ∧/# s for some preradicals t1, t2 ∈ PR. If r = t # s for some
preradical t, then by Proposition 3.6 r = (r ∧/# s) # s, so r = (t1 ∨ t2) # s. From
the distributivity of coproduct of preradicals relative to join r = (t1 # s) ∨ (t2 # s).
If r is coirreducible, then t1 # s = r or t2 # s = r.

If t1 # s = r, then from Proposition 2.5 we have t1 ≥ r ∧/# s. But t1 ≤ r ∧/# s,
because t1 ∨ t2 = r ∧/# s, therefore t1 = r ∧/# s.

If t2 # s = r, then similarly we obtain t2 = r ∧/# s.
So for every preradicals t1, t2 ∈ PR with t1 ∨ t2 = r ∧/# s we have t1 = r ∧/# s

or t2 = r ∧/# s, which means that the preradical r ∧/# s is coirreducible.

The operation of left coquotient with respect to meet implies some order relations
between the associated preradicals. To see that we firstly prove
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Proposition 3.10. For every r, s, t ∈ PR the following relations are true:

1) r ∧/# s = (r ∨ s) ∧/# s;

2) (r ∧/# s) # s ≥ r ∨ s.

Proof. 1) From Proposition 2.9 we have that (r ∨ s) ∧/# s = (r ∧/# s) ∨ (s ∧/# s), but
s ∧/# s = 0, so (r ∨ s) ∧/# s = (r ∧/# s) ∨ 0 = r ∧/# s.

Moreover, since r # s ≥ r ∨ s from Proposition 2.3 we obtain
(r # s) ∧/# s ≥ (r ∨ s) ∧/# s = r ∧/# s.

2) By 1) we have r ∧/# s = (r ∨ s) ∧/# s and so (r ∧/# s) # s = ((r ∨ s) ∧/# s) # s.
From the definition of left coquotient we have ((r ∨ s) ∧/# s) # s ≥ r ∨ s, therefore
(r ∧/# s) # s ≥ r ∨ s.

Corollary 3.11. 1) For every preradicals r, s ∈ PR the following relations hold:
r ∧/# s ≤ (r # s) ∧/# s ≤ r ≤ r ∨ s ≤ (r ∧/#s) # s ≤ r # s;

2) If r is cohereditary, then
r ∧/# s = (r # s) ∧/# s ≤ r ≤ r ∨ s = (r ∧/#s) # s = r # s

for every s ∈ PR. �

We remark that the operations of left quotient with respect to join and left
coquotient with respect to meet are complete in the sense of existence for any two
preradicals.

In conclusion, we can say that in this work is introduced and studied a new (com-
plete) operation (left coquotient with respect to meet) in the class of preradicals PR

of R-Mod, which is dual the previous operation (left quotient with respect to join)
and possesses similar properties. The indicated facts dualise the results of paper [2].
In the particular case of pretorsions as corrolaries we obtain a series of results of J.
S. Golan [1], as is indicated in [3].
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Introduction

A well known theorem of L. Fuchs [7, Theorem 111.3] asserts that the endomor-
phism ring of an (abstract) abelian group X is right (respectively, left) artinian if and
only if X is the direct sum of a finite group and finitely many copies of the additive
group of rational numbers. F. Szász observed [15] that the same conclusion about
the structure of X remains true under weaker hypothesis that the endomorphism
ring of X satisfies DCC on principal right (respectively, left) ideals.

The purpose of the present paper is to extend these results to the more general
setting obtained by considering LCA groups and their rings of continuous endomor-
phisms. To be precise, let L be the class of all LCA groups. For X ∈ L, let E(X)
denote the ring of continuous endomorphisms of X, endowed with the compact-open
topology. We shall determine here the explicite structure of groups X ∈ L with the
property that the ring E(X) satisfies DCC on closed right (respectively, left) ideals,
and we shall show that the corresponding class of groups coincides with the class
of those groups X ∈ L whose ring E(X) satisfies DCC on topologically principal
right (respectively, left) ideals. We shall also determine the groups X ∈ L for which
E(X) is right (respectively, left) artinian.

1 Notation

Throughout the following, N is the set of natural numbers (including zero),
N0 = N \ {0}, and P is the set of prime numbers.

The groups in L which we shall mention frequently are the reals R, the p-adic
numbers Qp, the p-adic integers Zp (all with their usual topologies), the rationals

c© Valeriu Popa, 2017

88



DESCENDING CHAIN CONDITIONS IN E(X) 89

Q, the quasi-cyclic groups Z(p∞) and the cyclic groups Z(pn) of order pn (all with
the discrete topology), where p ∈ P and n ∈ N.

For X ∈ L, we let 1
X

, c(X), d(X), k(X), m(X), t(X), and X∗ denote respec-
tively the identity map on X, the connected component of zero in X, the maximal
divisible subgroup of X, the subgroup of compact elements of X, the smallest closed
subgroup K of X such that the quotient group X/K is torsion-free, the torsion
subgroup of X, and the character group of X.

We denote by E(X) the ring of continuous endomorphisms of X and by H(X,Y ),
where Y is another group in L, the group of continuous homomorphisms from X to
Y, both endowed with the compact-open topology.

For n ∈ N and p ∈ P, we let nX = {nx | x ∈ X}, X[n] = {x ∈ X | nx = 0},
Xp = {x ∈ X | limk→∞ pkx = 0}, and S(X) = {q ∈ P | (k(X)/c(X))q 6= 0}.

For a ∈ X and S ⊂ X, 〈a〉 is the subgroup of X generated by a, S is the closure
of S in X, and A(X∗, S) = {γ ∈ X∗ | γ(x) = 0 for all x ∈ S}.

Also, we write X = A ⊕ B (respectively, X = A ∔ B) in case X is a topological
(respectively, an algebraic) direct sum of its subgroups A and B.

If (Xi)i∈I is a family of groups in L, we write
∏

i∈I Xi for the topological direct
product of the groups Xi and

∏
i∈I(Xi;Ui) for the topological local direct product

of the groups Xi relative to the compact open subgroups Ui ⊂ Xi. We recall that∏
i∈I(Xi;Ui) consists of all (xi)i∈I ∈

∏
i∈I Xi with xi ∈ Ui for all but finitely many i,

topologized by declaring all neighbourhoods of zero in the topological group
∏

i∈I Ui

to be a fundamental system of neighbourhoods of zero in
∏

i∈I(Xi;Ui).
If F is a field, Mn(F ) stands for the ring of all n× n matrices with entries in F.

The symbol ∼= denotes topological group (ring) isomorphism.

2 Topological Morita context rings

In our study of groups X ∈ L with the property that E(X) satisfies DCC on
different types of closed ideals, we will frequently make use of topological Morita
context rings. Here we recall this construction and derive several facts about its
closed ideals.

Let M =
(
R,S, RPS , SQR, [·, ·]R, [·, ·]S

)
be a topological Morita context, that

is R and S are topological rings with identity, RPS is a unital topological (R,S)-
bimodule, SQR is a unital topological (S,R)-bimodule, [·, ·]R : RPS × SQR → RRR

is a continuous (R,R)-bilinear S-balanced mapping, and [·, ·]S : SQR × RPS → SSS

is a continuous (S, S)-bilinear R-balanced mapping such that

[p, q]Rp′ = p[q, p′]S and [q, p]Sq′ = q[p, q′]R

for all r ∈ R, s ∈ S, p, p′ ∈ P and q, q′ ∈ Q. By analogy with the case of abstract
Morita contexts, we can associate to M a topological ring, called the topological
Morita context ring of M. Specifically, we endow the set

M =

{(
r p
q s

)

| r ∈ R, p ∈ P, q ∈ Q, s ∈ S

}
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with the product topology of R×P ×Q×S, and define addition and multiplication
on M by setting:

(
r1 p1

q1 s1

)

+

(
r2 p2

q2 s2

)

=

(
r1 + r2 p1 + p2

q1 + q2 s1 + s2

)

and (
r1 p1

q1 s1

)(
r2 p2

q2 s2

)

=

(
r1r2 + [p1, q2]R r1p2 + p1s2

q1r2 + s1q2 [q1, p2]S + s1s2

)

for all r1, r2 ∈ R, p1, p2 ∈ P, q1, q2 ∈ Q, and s1, s2 ∈ S. As is well known, the
algebraic properties of operations of R,S, P and Q, and of mappings [·, ·]R and
[·, ·]S ensure that, with respect to the above addition and multiplication, M is a
ring with identity. It turns out that, in the considered topological situation, these
operations on M are also compatible with the topology of M. To see this, it suffices
in view of [3, Ch. I, §4, Proposition 1] to observe that composing the mentioned
operations on M with the canonical projections on the components of M we get
continuous mappings, because of the continuity of operations on R,S, P and Q, and
of mappings [·, ·]R and [·, ·]S . Thus M becomes a topological ring with identity, which

we will denote by

(
R P
Q S

)

. We will use frequently the special cases

(
R 0
Q S

)

and
(

R P
0 S

)

corresponding respectively to P = {0} or Q = {0}.

As we will be working with closed ideals of

(
R P
Q S

)

, it is desirable to relate

them to closed subobjects of the components R,P,Q, and S. For this purpose, we
need to introduce four mappings of M. Recall that if A and B are topological rings
and if h : A → B is a continuous ring homomorphism, then any topological right
(respectively, left) B-module X can be viewed as a topological right (respectively,
left) A-module via the scalar multiplication given by xa = xh(a) (respectively, ax =
h(a)x) for all a ∈ A and x ∈ X. For example, if hR : R × S → R and hS : R × S →
S are the canonical projections, then R,S, P,Q and hence their products can be
considered as topological right (respectively, left) modules over the topological direct
product ring R × S. We will use the following continuous mappings:

ϕR,Q,P : R×S((R × Q)R × RP )S → R×S(P × S)S , ((r, q), p) → (rp, [q, p]S),

ϕP,S,Q : R×S((P × S)S × SQ)R → R×S(R × Q)R, ((p, s), q) → ([p, q]R, sq),

ϕP,Q,S : R(PS × S(Q × S))R×S → R(R × P )R×S , (p, (q, s)) → ([p, q]R, ps),

ϕQ,R,P : S(QR × R(R × P ))R×S → S(Q × S)R×S , (q, (r, p)) → (qr, [q, p]S).

It is easy to see that ϕR,Q,P is R-balanced and (R × S, S)-bilinear, ϕP,S,Q is S-
balanced and (R ×S,R)-bilinear, ϕP,Q,S is S-balanced and (R,R× S)-bilinear, and
ϕQ,R,P is R-balanced and (S,R × S)-bilinear.

We have:
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Lemma 1. Let
(
R,S, RPS , SQR, [·, ·]R, [·, ·]S

)
be a topological Morita context.

(i) The closed right ideals of

(
R P
Q S

)

are of the form

(
A B

)
=

{(
r p
q s

)

| (r, q) ∈ A, (p, s) ∈ B

}

,

where A is a closed submodule of (R × Q)R and B is a closed submodule of
(P × S)S such that ϕP,S,Q(B × Q) ⊂ A and ϕR,Q,P (A × P ) ⊂ B.

(ii) The closed left ideals of

(
R P
Q S

)

are of the form

(
C
D

)

=

{(
r p
q s

)

| (r, p) ∈ C, (q, s) ∈ D

}

,

where C is a closed submodule of R(R × P ) and D is a closed submodule of

S(Q × S) such that ϕP,Q,S(P × D) ⊂ C and ϕQ,R,P (Q × C) ⊂ D.

(iii) The closed ideals of

(
R P
Q S

)

are of the form

(
I U
V J

)

=

{(
r p
q s

)

| r ∈ I, p ∈ U, q ∈ V, s ∈ J

}

,

where I is a closed ideal of R, J is a closed ideal of S, U is a closed subbimodule
of RPS , V is a closed subbimodule of SQR, and the following conditions hold:
[U,Q]R ⊂ I, [P, V ]R ⊂ I, [Q,U ]S ⊂ J, [V, P ]S ⊂ J, IP ⊂ U, PJ ⊂ U, QI ⊂ V,
JQ ⊂ V.

Proof. (i) Let A and B be as stated in (i). Clearly, the additive group of
(
A B

)
is a

closed subgroup of the additive group of

(
R P
Q S

)

. Given any

(
r0 p0

q0 s0

)

∈
(
A B

)

and

(
r p
q s

)

∈

(
R P
Q S

)

, we also have

(r0r, q0r) ∈ A, ([p0, q]R, s0q) = ϕP,S,Q((p0, s0), q) ∈ A,

(p0s, s0s) ∈ B and (r0p, [q0, p]S) = ϕR,Q,P ((r0, q0), p) ∈ B,

so (
r0 p0

q0 s0

)(
r p
q s

)

=

(
r0r + [p0, q]R r0p + p0s

q0r + s0q [q0, p]S + s0s

)

∈
(
A B

)
,

and hence
(
A B

)
is a closed right ideal of

(
R P
Q S

)

.
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To show the converse, we first make the following observations. Since, clearly,

r 7→

(
r 0
0 0

)

is a continuous ring homomorphism from R into

(
R P
Q S

)

,

(
R P
Q S

)

can be regarded as a topological right R-module. Then

(
R 0
Q 0

)

and

(
0 P
0 S

)

be-

come topological submodules of

(
R P
Q S

)

R, and

(
R P
Q S

)

R can be written in the

form (
R P
Q S

)

R =

(
R 0
Q 0

)

R ⊕

(
0 P
0 S

)

R.

In particular, the mapping

πR×Q :

(
R P
Q S

)

R → (R × Q)R,

(
r p
q s

)

7→ (r, q),

is a continuous morphism of R-modules whose restriction to

(
R 0
Q 0

)

R is an iso-

morphism of topological R-modules. Similarly, by using the ring homomorfism

s 7→

(
0 0
0 s

)

from S into

(
R P
Q S

)

,

(
R P
Q S

)

can be given the structure of topolog-

ical right S-module. Then

(
R 0
Q 0

)

and

(
0 P
0 S

)

become topological submodules of
(

R P
Q S

)

S , and

(
R P
Q S

)

S can be written in the form

(
R P
Q S

)

S =

(
R 0
Q 0

)

S ⊕

(
0 P
0 S

)

S .

In particular, the mapping

πP×S :

(
R P
Q S

)

S → (P × S)S ,

(
r p
q s

)

7→ (p, s),

is a continuous morphism of S-modules whose restriction to

(
0 P
0 S

)

S is an isomor-

phism of topological S-modules.

Now, let Y be an arbitrary closed right ideal of

(
R P
Q S

)

. It is clear that YR ⊂
(

R P
Q S

)

R and YS ⊂

(
R P
Q S

)

S . Given any

(
r p
q s

)

∈ Y, we have

(
r 0
q 0

)

=

(
r p
q s

)(
1 0
0 0

)

∈ Y

and (
0 p
0 s

)

=

(
r p
q s

)(
0 0
0 1

)

∈ Y.
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It follows that

YR =
(
Y ∩

(
R 0
Q 0

)
)
R ⊕

(
Y ∩

(
0 P
0 S

)
)
R.

and

YS =
(
Y ∩

(
R 0
Q 0

)
)
S ⊕

(
Y ∩

(
0 P
0 S

)
)
S.

In particular, A = πR×Q(Y ) = πR×Q(Y ∩

(
R 0
Q 0

)

) is a closed submodule of (R×Q)R

and B = πP×S(Y ) = πP×S(Y ∩

(
0 P
0 S

)

) is a closed submodule of (P × S)S .

It only remains for us to show that ϕP,S,Q(B×Q) ⊂ A and ϕR,Q,P (A×P ) ⊂ B.

Pick arbitrary (p, s) ∈ B and q′ ∈ Q. Then

(
0 p
0 s

)

∈ Y, so

(
[p, q′]R 0

sq′ 0

)

=

(
0 p
0 s

)(
0 0
q′ 0

)

∈ Y,

and hence ([p, q′]R, sq′) ∈ A. Since (p, s) ∈ B and q′ ∈ Q were arbitrary, we conclude

that ϕP,S,Q(B×Q) ⊂ A. Next pick arbitrary (r, q) ∈ A and p′ ∈ P. Then

(
r 0
q 0

)

∈ Y,

so (
0 rp′

0 [q, p′]S

)

=

(
r p
q s

)(
0 p′

0 0

)

∈ Y,

and hence (rp′, [q, p′]S) ∈ B. It follows that ϕR,Q,P (A × P ) ⊂ B.
(ii) The proof of (ii) is similar to that of (i).

(iii) The fact that

(
I U
V J

)

is a closed ideal of

(
R P
Q S

)

is clear. For the converse,

pick an arbitrary closed ideal Y of

(
R P
Q S

)

. Given any

(
r p
q s

)

∈ Y, we have

(
r 0
0 0

)

=

(
1 0
0 0

)(
r p
q s

)(
1 0
0 0

)

∈ Y

(
0 p
0 0

)

=

(
1 0
0 0

)(
r p
q s

)(
0 0
0 1

)

∈ Y

(
0 0
q 0

)

=

(
0 0
0 1

)(
r p
q s

)(
1 0
0 0

)

∈ Y

and (
0 0
0 s

)

=

(
0 0
0 1

)(
r p
q s

)(
0 0
0 1

)

∈ Y.

Set I ′ = Y ∩

(
R 0
0 0

)

, U ′ = Y ∩

(
0 P
0 0

)

, V ′ = Y ∩

(
0 0
Q 0

)

and J ′ = Y ∩

(
0 0
0 S

)

. It

follows that the additive group of Y is a topological direct sum of the additive groups
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of I ′, U ′, V ′ and J ′, proving the closeness of I = πR(I ′), U = πP (U ′), V = πQ(V ′),

and J = πS(J ′), where πR, πP , πQ, and πS are the canonical projections of

(
R P
Q S

)

onto R,P,Q, and S respectively. It is also clear that I is an ideal of R, J is an ideal
of S, U is a subbimodule of P, and V is a subbimodule of Q. Finally, the inclusions
in (iii) follow from the inclusions in (i) and (ii).

Specializing to

(
R P
0 S

)

, we obtain the following corollary.

Corollary 1. Let R and S be topological rings with identity, and let P be a unital
topological (R,S)-bimodule.

(i) The closed right ideals of

(
R P
0 S

)

are of the form

{(
r p
0 s

)

| r ∈ I, (p, s) ∈ B

}

,

where I is a closed right ideal of R and B is a closed submodule of (P × S)S
such that IP × {0} ⊂ B.

(ii) The closed left ideals of

(
R P
0 S

)

are of the form

{(
r p
0 s

)

| s ∈ J, (r, p) ∈ C

}

,

where J is a closed left ideal of S and C is a closed submodule of R(R × P )
such that {0} × PJ ⊂ C.

(iii) The closed ideals of

(
R P
0 S

)

are of the form

{(
r p
0 s

)

| r ∈ I, s ∈ J, p ∈ U

}

,

where I is a closed ideal of R, J is a closed ideal of S, and U is a closed
subbimodule of RPS such that IP + PJ ⊂ U.

Next we consider chain conditions in

(
R P
0 S

)

. In accordance with [10, (1.22)],

we have:

Lemma 2. Let R and S be topological rings with identity, and let P be a uni-

tal topological (R,S)-bimodule. The ring

(
R P
0 S

)

satisfies DCC on closed right

(respectively, left) ideals if and only if so does R (respectively, S), and the right
S-module (P × S)S (respectively, left R-module R(R × P )) satisfies DCC on closed
submodules.

The same statement is true if we replace throughout DCC by ACC.
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Proof. Assume

(
R P
0 S

)

satisfies DCC on closed right ideals, and let (In)n ⊂ RR

and (Bn)n ⊂ (P × S)S be descending chains of closed submodules. Passing to the

chain (
(
In × {0} Bn

)
)n of

(
R P
0 S

)

, we see that (In)n and (Bn)n must stabilise.

For the converse, let (Yn)n be a descending chain of closed right ideals of(
R P
0 S

)

. For each n, we can write Yn =
(
In × {0} Bn

)
, where In ⊂ RR and

Bn ⊂ (P ×S)S are closed submodules such that In ⊃ In+1 and Bn ⊃ Bn+1. As (In)n
and (Bn)n are stationary, (Yn)n must be stationary as well.

We close this section by pointing out the specific topological Morita context
rings, which we will be working with. Let X ∈ L. To any two closed subgroups A
and B of X such that X = A ⊕ B, we associate the topological Morita context

M(A,B) =
(
E(A), E(B), E(A)H(B,A)E(B), E(B)H(A,B)E(A), [·, ·]E(A), [·, ·]E(B)

)
,

where [f, g]E(A) = f ◦ g and [g, f ]E(B) = g ◦ f for all f ∈ H(B,A) and g ∈ H(A,B).

We write

(
E(A) H(B,A)

H(A,B) E(B)

)

for the topological Morita context ring of M(A,B).

Lemma 3. Let X be a group in L which can be written in the form X = A⊕B for
some closed subgroups A and B of X. Then

E(X) ∼=

(
E(A) H(B,A)

H(A,B) E(B)

)

.

If A is topologically fully invariant in X, then

E(X) ∼=

(
E(A) H(B,A)

0 E(B)

)

.

If A and B are both topologically fully invariant in X, then

E(X) ∼= E(A) × E(B).

Proof. Let ηA : A → X, ηB : B → X and πA : X → A, πB : X → B denote
respectively the canonical injections and the canonical projections corresponding to
the above decomposition of X. Define

ξ : E(X) →

(
E(A) H(B,A)

H(A,B) E(B)

)

by setting

ξ(u) =

(
πA ◦ u ◦ ηA πA ◦ u ◦ ηB

πB ◦ u ◦ ηA πB ◦ u ◦ ηB

)

for all u ∈ E(X). It is easy to see that ξ establishes a topological ring isomorphism

between E(X) and

(
E(A) H(B,A)

H(A,B) E(B)

)

.
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If A is topologically fully invariant, then πB ◦ u ◦ ηA = 0 for all u ∈ E(X),

so im(ξ) =

(
E(A) H(B,A)

0 E(B)

)

. If B is topologically fully invariant as well, then

im(ξ) =

(
E(A) 0

0 E(B)

)

.

3 Reduction to topological p-primary groups

In this section, we establish some necessary conditions in order for the ring E(X)
of a group X ∈ L satisfy DCC on topologically principal ideals, i.e. on ideals of the
form (f) with f ∈ E(X).

We begin by recalling that for any group X ∈ L, E(X) and E(X∗) are topolog-
ically anti-isomorphic [11, (2.1)]. Recall also that the group X is called residual if
d(X) ⊂ k(X) and c(X) ⊂ m(X), and that X is called topologically torsion in case
limn∈N(n!)x = 0 for all x ∈ X.

Theorem 1. Let X be a residual group in L such that the collection

E = {nE(X) | n ∈ N0}

has a minimal element with respect to set inclusion. Then X is a topological torsion
group, and there exists a finite subset S of S(X) such that the following conditions
hold:

(i) For each p ∈ S(X) \ S, Xp is densely divisible and torsionfree;

(ii) For each p ∈ S, there exists an n(p) ∈ N such that

m(Xp) = Xp[p
n(p)] and d(Xp) = pn(p)Xp.

Proof. Let n0E(X), where n0 ∈ N0, be a minimal element of E . Then

n0E(X) = pn0E(X) (1)

for all p ∈ P. Our first objective is to show that n0X and n0X∗ are densely divisible.
Fix any q ∈ P. We show first that

n0X = qn0X and n0X∗ = qn0X∗.

To this end, pick any x ∈ X and define δx : E(X) → X by setting δx(u) = u(x) for

all u ∈ E(X). In view of the equality (1), we can find a net (u
(q)
i )i∈Iq

of elements

in E(X) such that n01X = limi∈Iq
qn0u

(q)
i . Since δx is a continuous [5, Ch. X, §3,

Theorem 3, Corollary 1] group homomorphism, it follows that

n0x = δx(n01X) = lim
i∈Iq

δx(qn0u
(q)
i ) = lim

i∈Iq

qn0u
(q)
i (x),

and so n0x ∈ qn0X. As x was arbitrarily chosen in X, this gives n0X ⊂ qn0X, so
n0X ⊂ qn0X. It follows that n0X = qn0X because the reverse inclusion is obvious.
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On the other hand, the multiplication by q being continuous, we have qn0X ⊂ qn0X

[3, Ch. I, §2, Theorem 1], whence qn0X ⊂ qn0X. As the opposite inclusion is

obvious, it follows that qn0X = qn0X = n0X. Further, since E(X) and E(X∗) are
topologically anti-isomorphic, the equality (1) also gives n0E(X∗) = pn0E(X∗) for

all p ∈ P. Applying the preceding argument to X∗, we conclude that n0X∗ = qn0X∗.
Now we show that n0X and n0X∗ are densely divisible. By [8, (24.22) and

(22.17)], we have

(n0X)∗[q] = A((n0X)∗, qn0X) = A((n0X)∗, n0X) = {0}.

Analogously, (n0X∗)∗[q] = {0}. Since q ∈ P was arbitrary, it follows that (n0X)∗

and (n0X∗)∗ are torsion-free, so n0X and n0X∗ are densely divisible by [13, (5.2)].
In particular, d(X) ⊃ n0X and d(X∗) ⊃ n0X∗, whence d(X) = n0X and d(X∗) =
n0X∗ because the opposite inclusions are obvious. By taking annihilators, we also
obtain

m(X) = A(X, d(X)) = A(X,n0X) = X[n0]

and m(X∗) = X∗[n0]. Finally, since X and X∗ are residual groups, we must have

c(X) ⊂ m(X) = X[n0] and c(X∗) ⊂ m(X∗) = X∗[n0],

so c(X) = {0} = c(X∗) because X[n0] and X∗[n0] are totally disconnected [8,
(24.21)]. This implies that X is a topological torsion group [1, (3.5)], and hence
X ∼=

∏
p∈S(X)(Xp;Up), where, for each p ∈ S(X), Up is a compact open subgroup of

Xp [1, (3.13)]. Let

n0 = pn1
1 · · · pnt

t and S = {p1, . . . , pt},

where p1, . . . , pt are the distinct prime divisors of n0 and t, n1, . . . , nt ∈ N0. We can
write

X = Xp1 ⊕ · · · ⊕ Xpt
⊕ G and X∗ = X∗

p1
⊕ · · · ⊕ X∗

pt
⊕ H,

where G =
∑

p∤n0
Xp

∼=
∏

p∤n0
(Xp;Up) and H =

∑
p∤n0

X∗
p
∼=
∏

p∤n0
(X∗

p ;A(X∗
p , Up)).

It is clear that G and H ∼= G∗ are torsion-free, so (i) holds [13, (5.2)]. For each
i = 1, . . . , t, we also have m(Xpi

) = Xpi
[pni

i ] and m(X∗
pi

) = X∗
pi

[pni

i ], so (ii) holds as
well.

In order to deal with general groups X ∈ L, we need the following lemma which
is inspired by [7, p. 236, (b)] and [9, Lemma 64.1].

Lemma 4. Let X be a group in L for which there exist two sequences (An)n∈N and
(Bn)n∈N of non-zero closed subgroups such that

X = A0 ⊕ · · · ⊕ An ⊕ Bn and Bn = An+1 ⊕ Bn+1

for all n ∈ N. Then E(X) fails to satisfy DCC on topologically principal right
(respectively, left ) ideals.
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Proof. For n ∈ N, let εn ∈ E(X) denote the canonical projection of X onto Bn. As
in the proof of [7, p. 236, (b)] or [9, Lemma 64.1], one can see that

(
εnE(X)

)
n∈N

and
(
E(X)εn

)
n∈N

are strictly descending chains of right, respectively, left ideals. It
remains to observe that, for every n ∈ N, εnE(X) and E(X)εn are closed in E(X)
because εn is idempotent.

For general groups in L, we have:

Theorem 2. Let X be a group in L such that E(X) satisfies DCC on topologically
principal ideals. Then X = U ⊕V ⊕W ⊕Y, where U ∼= R

d for some d ∈ N, V ∼= Q
(µ)

and W ∼= (Q∗)ν for some cardinal numbers µ and ν, and Y is a topological torsion
group in L satisfying the following conditions:

(i) S(Y ) = S(X) is finite;

(ii) for each p ∈ S(Y ), there exists n(p) ∈ N such that

m(Yp) = Y [pn(p)] and d(Yp) = pn(p)Yp.

Proof. By [1, (9.3)], we can write X = U ⊕ V ⊕ W ⊕ Y, where U ∼= R
d for some

d ∈ N, V ∼= Q
(µ) and W ∼= (Q∗)ν for some cardinal numbers µ and ν, and Y is

residual. In particular, k(X) = W ⊕ k(Y ) and c(X) ∩ k(X) = W ⊕
(
c(Y ) ∩ k(Y )

)
,

so k(X)/
(
c(X) ∩ k(X)

)
∼= k(Y )/

(
c(Y ) ∩ k(Y )

)
, and hence S(Y ) = S(X). Our first

aim is to show that the collection E = {nE(Y ) | n ∈ N0} has a minimal element
with respect to inclusion. Let Z = U ⊕ V ⊕ W, so

E(X) ∼=

(
E(Z) H(Y,Z)

H(Z, Y ) E(Y )

)

,

as it follows from Lemma 3. For n ∈ N0, let In be the closed ideal of(
E(Z) H(Y,Z)

H(Z, Y ) E(Y )

)

generated by

(
0 0
0 n1Y

)

. We assert that

In =

((
H(Y,Z)H(Z, Y )

)
H(Y,Z)

H(Z, Y ) nE(Y )

)

,

where
(
H(Y,Z)H(Z, Y )

)
⊂ E(Z). To see that

In ⊂

((
H(Y,Z)H(Z, Y )

)
H(Y,Z)

H(Z, Y ) nE(Y )

)

,

it suffices to show that

((
H(Y,Z)H(Z, Y )

)
H(Y,Z)

H(Z, Y ) nE(Y )

)
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is a closed ideal of

(
E(Z) H(Y,Z)

H(Z, Y ) E(Y )

)

. We will show the later by applying

Lemma 1(iii). Clearly, we have

(
H(Y,Z)H(Z, Y )

)
H(Y,Z) ⊂ H(Y,Z),

H(Y,Z)nE(Y ) ⊂ H(Y,Z),

H(Z, Y )
(
H(Y,Z)H(Z, Y )

)
⊂ H(Z, Y ),

nE(Y )H(Z, Y ) ⊂ H(Z, Y ),

and [
H(Y,Z),H(Z, Y )

]
E(Z)

⊂
(
H(Y,Z)H(Z, Y )

)
.

Further, since 1
n
1Z is a continuous endomorphism of Z, every f ∈ H(Y,Z) and

g ∈ H(Z, Y ) can be written in the form f = n( 1
n
f) and g = n( 1

n
g). Consequently,

we also have

[
H(Z, Y ),H(Y,Z)

]
E(Y )

⊂ nE(Y ).

It follows that Lemma 1(iii) is applicable, so

((
H(Y,Z)H(Z, Y )

)
H(Y,Z)

H(Z, Y ) nE(Y )

)

is a closed ideal of

(
E(Z) H(Y,Z)

H(Z, Y ) E(Y )

)

, and hence

In ⊂

((
H(Y,Z)H(Z, Y )

)
H(Y,Z)

H(Z, Y ) nE(Y )

)

.

On the other hand, given any f ∈ H(Y,Z) and g ∈ H(Z, Y ), we have

(
0 f
0 0

)

=

(
0 1

n
f

0 0

)(
0 0
0 n1Y

)

∈ In,

(
0 0
g 0

)

=

(
0 0
0 n1Y

)(
0 0
1
n
g 0

)

∈ In,

and (
fg 0
0 0

)

=

(
0 f
0 0

)(
0 0
g 0

)

∈ In,

so

In ⊃

((
H(Y,Z)H(Z, Y )

)
H(Y,Z)

H(Z, Y ) nE(Y )

)

,
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and hence

In =

((
H(Y,Z)H(Z, Y )

)
H(Y,Z)

H(Z, Y ) nE(Y )

)

.

Now, since

(
E(Z) H(Y,Z)

H(Z, Y ) E(Y )

)

satisfies DCC on topologically principal ideals,

we conclude that the collection {In | n ∈ N0} has a minimal element, which implies
that the collection

E = {nE(Y ) | n ∈ N0}

has a minimal element as well. It follows that Theorem 1 is applicable to Y. In
particular, Y is a topological torsion group, so

Y ∼=
∏

p∈S(Y )

(Yp;Op),

where, for each p ∈ S(Y ), Op is a compact open subgroup of Yp [1, (3.13)]. It
remains to observe that if S(Y ) were infinite, say S(Y ) = {p0, p1, . . .}, then we
could construct, by setting An = Ypn

and Bn =
∑

i>n Ypi
, two sequences (An)n∈N

and (Bn)n∈N of closed subgroups of Y as in Lemma 4, a contradiction.

4 The necessary condition in case of topological p-primary groups

As we saw in the preceding section, the problem of determining the groups
X ∈ L for which the ring E(X) satisfies DCC on topologically principal right
(respectively, left) ideals reduces to the case of topological p-primary groups. In the
present section, we deal with this last type of groups.

We begin by extending and sharpening a result of L. Robertson, which asserts
that Qp is splitting in the class of torsion-free groups in L (see [1, Proposition 6.23]).

Theorem 3. Let X ∈ L and let D be a closed subgroup of X such that D ∼= Qp for
some p ∈ P. The following conditions are equivalent:

(i) D splits topologically from X.

(ii) D 6⊂
(
c(X) ∩ k(X)

)
+ m(X).

Proof. Assume (i). Then we can write X = D ⊕ G for some closed subgroup G
of X. Since X/G ∼= D is torsion-free, we have m(X) ⊂ G. Also, since X/G is totally
disconnected, we have c(X) ⊂ G. Consequently, c(X) + m(X) ⊂ G and hence (ii)
holds.

Assume (ii). By [1, (9.3)], we can write X = U ⊕ V ⊕W ⊕ Y, where U ∼= R
d for

some d ∈ N, V ∼= Q(µ) and W ∼= (Q∗)ν for some cardinal numbers µ and ν, and Y
is residual. Since D = k(D) and k(X) = W ⊕Y, we have D ⊂ W ⊕Y. Consequently,
it suffices to show that D splits topologically from W ⊕ Y.
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Now, since Y is residual, we have c(Y ) ⊂ m(Y ) = m(X), which implies

(c(X) ∩ k(X)) + m(X) = W ⊕ m(Y ).

Our assumption then gives D 6⊂ W ⊕ m(Y ), and hence W ⊕ Y \ W ⊕ m(Y ) must
contain elements of D. Denote by ϕ : W ⊕Y → (W ⊕Y )/(W ⊕m(Y )) the canonical
projection, and let f be the restriction of ϕ to D. By [8, (5.27)], we have D/ ker(f) ∼=
f(D). Since (W ⊕Y )/(W ⊕m(Y )) ∼= Y/m(Y ) is torsion-free and since every quotient
of Qp by a proper closed subgroup is torsion, we conclude that

D ∩ (W ⊕ m(Y )) = ker f = {0}.

In particular, f(D) ∼= Qp, and hence f(D) splits topologically from (W ⊕ Y )/(W ⊕
m(Y )) [1, (6.23)]. Write (W ⊕Y )/(W ⊕m(Y )) = f(D)⊕G for some closed subgroup
G of (W ⊕Y )/(W ⊕m(Y )), and set G0 = ϕ−1(G). We assert that W ⊕Y = D⊕G0.
Indeed, it is clear that G0 is a closed subgroup of W ⊕ Y. If a ∈ D ∩ G0, then
ϕ(a) ∈ ϕ(D) ∩ ϕ(G0) = f(D) ∩ G = {0}, so a ∈ D ∩

(
W ⊕ m(Y )

)
= {0}. Further,

given any z ∈ W ⊕ Y, we have ϕ(z) = ϕ(a) + ϕ(b) for some a ∈ D and b ∈ G0.
Consequently, z − a− b = t for some t ∈ W ⊕ m(Y ), and hence z = a + b + t. Since
b + t ∈ G0, we conclude that W ⊕ Y = D ∔ G0. Since Qp is σ-compact, it then
follows from [1, (6.5)] that W ⊕ Y = D ⊕ G0.

Corollary 2. Let X be a group in L such that t(X) is reduced and closed in X. If
D is a closed subgroup of X satisfying D ∼= Qp, then D splits topologically from X.

Proof. As in the proof of Lemma 3, write X = U ⊕ V ⊕ W ⊕ Y, where U ∼= R
d

for some d ∈ N, V ∼= Q
(µ) and W ∼= (Q∗)ν for some cardinal numbers µ and ν,

and Y is residual. Since t(X) is closed in X, we have m(X) = t(X) = t(Y ), so
(c(X) ∩ k(X)) + m(X) = W ⊕ t(Y ). It is also clear that D ⊂ k(X) = W ⊕ Y.
In order to apply Theorem 3, we have to show that D 6⊂ W ⊕ t(Y ). Assume this
is not so, and let ε ∈ E(X) denote the canonical projection of X onto Y. It follows
that ε(D) is a subgroup of t(Y ). Since ε(D) is divisible and t(Y ) is reduced, we
get ε(D) = {0}, so D ⊂ W, which is a contradiction because W is compact and D
is not.

We continue with the following

Lemma 5. Let p ∈ P, and let X be a non-reduced topological p-primary group in L
such that t(X) = X[pn0 ] for some n0 ∈ N. For any non-zero a ∈ d(X), let Da be the
smallest divisible subgroup of X containing a. Then Da

∼= Qp and X = Da ⊕ G for
some closed subgroup G of X.

Proof. Since t(X) = X[pn0 ], d(X) cannot contain copies of Z(p∞), so Da is alge-
braically isomorphic to Q. It follows from [2, Theorem 1] that Da is divisible. Since
X is a topological p-primary group, there exists a topological group isomorphism
f from Zp onto 〈a〉. Let η : 〈a〉 → Da denote the canonical injection, and set
h = η ◦ f. Since Zp is open in Qp, h extends to a continuous group homomorphism
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h0 : Qp → Da [8, (A.7)]. Now, since Qp is the minimal divisible extension of Zp,
Zp is essential in Qp [6, Lemma 24.3], and hence ker(h0) = {0} [6, Lemma 24.2].
We deduce that h0 is a topological isomorphism from Qp onto a closed subgroup
of Da [1, (4.21)]. Now, since h0(Qp) is divisible and a ∈ h0(Qp), we must have
h0(Qp) = Da, so Da

∼= Qp. It remains to apply Corollary 2.

Now we can concretize the structure of topological p-primary groups in L with
the property in question.

Theorem 4. Let p ∈ P, and let X be a topological p-primary group in L such that
E(X) satisfies DCC on topologically principal right (respectively, left) ideals. Then

X ∼=

k(p)∏

i=0

Z(pri(p)) × Q
l(p)
p

for some k(p), r0(p), . . . , rk(p)(p), l(p) ∈ N.

Proof. By Theorem 1, there exists an n(p) ∈ N such that m(X) = X[pn(p)] and

d(X) = pn(p)X. We will distinguish two cases: d(X) = {0} and d(X) 6= {0}.

First assume d(X) = {0}, so X = X[pn(p)]. To decompose X, pick an element
of maximal order x0 ∈ X, and set A0 = 〈x0〉. Clearly, A0

∼= Z(pr0(p)) for some
r0(p) ∈ N. By [12, Lemma 2], we can write X = A0 ⊕ B0 for some closed subgroup
B0 of X. If B0 6= {0}, choose an element of maximal order x1 ∈ B0 and write
X = A0 ⊕ A1 ⊕ B1, where A1

∼= Z(pr1(p)) for some r1(p) ∈ N and B1 is a closed
subgroup of B0. As Lemma 4 shows, if we continue in this way, we must arrive at
a step k(p) with Bk(p) = {0}.

Next assume d(X) 6= {0}. Picking any non-zero y0 ∈ d(X), let D0 be the closure
of the smallest divisible subgroup of X containing y0. By Lemma 5, D0

∼= Qp and
X = D0 ⊕ G0 for some closed subgroup G0 of X. If d(G0) 6= 0, pick any non-
zero y1 ∈ d(G0) and let D1 be the closure of the smallest divisible subgroup of D0

containing y1. As above, we have D1
∼= Qp and X = D0 ⊕ D1 ⊕ G1 for some closed

subgroup G1 of G0. By Lemma 4 again, this procedure must stop after a finite
number, say l(p), of steps, and so

X = D0 ⊕ · · · ⊕ Dl(p)−1 ⊕ Gl(p),

where Gl(p) is reduced. This shows that

d(X) = D0 ⊕ · · · ⊕ Dl(p)−1 = d(X) and X[pn(p)] ⊂ Gl(p).

Therefore

pn(p)Gl(p) ⊂ pn(p)X ∩ Gl(p) = d(X) ∩ Gl(p)

= (D0 ⊕ · · · ⊕ Dl(p)−1) ∩ Gl(p) = {0},
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so Gl(p) = X[pn(p)], and hence

X = D0 ⊕ · · · ⊕ Dl(p)−1 ⊕ X[pn(p)].

Since D0 ⊕ · · · ⊕ Dl(p)−1 and X[pn(p)] are fully invariant in X, we deduce from
Lemma 3 that

E(X) ∼= E(D0 ⊕ · · · ⊕ Dl(p)−1) × E(X[pn(p)]),

and hence E(X[pn(p)]) satisfies DCC on topologically principal ideals. It follows
that the first case applies to X[pn(p)], completing the proof.

5 Characterizations

In this last section, we establish our results. We begin with two lemmas, which
are needed in the proof of the main result. For the former, recall that every di-
visible torsion-free abelian group D can be considered as a vector space over the
field of rational numbers, Q, and this Q-vector space structure is the only one ex-
isting on D. Moreover, every group homomorphism between such groups is in fact
a homomorphism of Q-vector spaces.

We have:

Lemma 6. Let d, n, l1, . . . , ln ∈ N and p1, . . . , pn ∈ P. The Q-vector spaces R
d ×∏n

i=1 Q
li
pi

and (Q∗)d satisfy both ACC and DCC on closed Q-subspaces.

Proof. It is clear that in either of Q-vector spaces R
d and Q

l
p, where d, l ∈ N and

p ∈ P, the closed Q-subspaces are in fact R-subspaces and respectively Qp-subspaces.
As dimR(Rd) = d and dimQp

(Ql
p) = l, we conclude that R

d and Q
l
p satisfy ACC and

DCC on closed Q-subspaces. Now, write the Q-vector space G = R
d ×

∏n
i=1 Q

li
pi

in
the form

G = G0 ⊕ G1 ⊕ · · · ⊕ Gn,

where G0
∼= R

d, G1
∼= Q

l1
p1

, . . . , Gn
∼= Q

ln
pn

. Given a closed Q-subspace H of G, it is
clear that c(H) ⊂ c(G) = G0. It is also clear that, for any x ∈ G0∩H, the Q-subspace
Qx ⊂ G0 ∩ H, so Rx = Qx ⊂ G0 ∩ H, and hence G0 ∩ H is connected [3, Ch. 1,
§11, Proposition 2]. It follows that c(H) = G0 ∩H. Further, since H is torsion-free,
we can write H = H0 ⊕ K (a topological direct sum of topological groups), where
H0 = c(H) [1, (6.13)]. Moreover, since H0 ⊂ G0, we have K ⊂ G1 ⊕ · · · ⊕ Gn, so
K = H1⊕· · ·⊕Hn, where Hi ⊂ Gi for all i = 1, . . . , n [1, (3.13)]. Thus we obtained a
decomposition of H as a topological direct sum H = H0⊕H1⊕· · ·⊕Hn of Q-vector
spaces. Since the Q-vector spaces G0, G1, . . . , Gn satisfy ACC and DCC on closed
Q-subspaces, we conclude that so does G.

Now let us consider the case of (Q∗)d. It suffices to observe that a closed subgroup
C of (Q∗)d is a Q-subspace if and only if its annihilator A(Qd, C) is a Q-subspace of
Q

d. Indeed, if C is a Q-subspace of (Q∗)d and x ∈ A(Qd, C), then γ(p
q
x) = p

q
γ(x) = 0

for all γ ∈ C and p
q
∈ Q. Consequently, p

q
x ∈ A(Qd, C) for all p

q
∈ Q, so A(Qd, C)
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is a Q-subspace of Q
d. In a similar way, if A(Qd, C) is a Q-subspace of Q

d, then
C is a closed Q-subspace of (Q∗)d. Since Q

d is of finite dimension, the proof is
complete.

Lemma 7. Let R be a topological ring, M a topological (right or left) R-module,
and C a closed submodule of M.

(i) If M satisfies DCC on closed submodules, then so do C and M/C.

(ii) If C is either compact or open in M and if C and M/C satisfy DCC on closed
submodules, then so does M.

Proof. The proof follows the same pattern as in the abstract case (see, for examle,[9,
Proposition 27.1]). The requirement in (ii) that C is either compact or open in M
assures that the image through the canonical projection of any closed submodule of
M is closed in M/C.

We are now prepared to prove our main result.

Theorem 5. For a group X ∈ L, the following statements are equivalent:

(i) E(X) satisfies both ACC and DCC on closed right ideals.

(ii) E(X) satisfies DCC on closed right ideals.

(iii) E(X) satisfies DCC on topologically principal right ideals, i.e. ideals of the
form fE(X) with f ∈ E(X).

(iv) X ∼= R
d × Q

n × (Q∗)m ×
∏

p∈S1
Q

l(p)
p ×

∏
p∈S2

∏k(p)
i=0 Z(pri(p)), where S1, S2

are finite subsets of P, and d, n,m, the k(p)’s, the ri(p)’s and the l(p)’s are
natural numbers.

Proof. Clearly, (i) implies (ii) and (ii) implies (iii). The fact that (iii) implies (iv)
follows from Theorem 2 and Theorem 4.

Now assume (iv). We can write X = D ⊕ T, where

D ∼= R
d × Q

n × (Q∗)m ×
∏

p∈S1

Q
l(p)
p and T ∼=

∏

p∈S2

k(p)∏

i=0

Z(pri(p)).

It is clear that D = d(X) and T = t(X), so D and T are topologically fully invariant
subgroups of X. It follows from Lemma 3 that E(X) ∼= E(D) × E(T ). Since E(T )
is finite and since every right ideal J of E(D) × E(T ) is of the form J = Jd × Jt,
where Jd is a right ideal of E(D) and Jt is a right ideal of E(T ), it suffices to show
that E(D) satisfies ACC and DCC on closed right ideals. In order to do this, write
D = M ⊕ W, where

M ∼= Q
n and W ∼= R

d × (Q∗)m ×
∏

p∈S1

Q
l(p)
p .
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We have W = c(D) + k(D), so W is topologically fully invariant in D, and hence

E(D) ∼=

(
E(W ) H(M,W )

0 E(M)

)

by Lemma 3 again. It follows from Lemma 2 that we will achieve our goal if we
show that E(W )E(W ) and

(
H(M,W )×E(M)

)
E(M)

satisfy ACC and DCC on closed

submodules.
First we consider the case of

(
H(M,W ) × E(M)

)
E(M)

. Since E(M) ∼= Mn(Q),

we deduce that E(M) is discrete and satisfies ACC and DCC on right ideals. As
then H(M,W ) × {0} is open in H(M,W ) × E(M), it suffices by Lemma 7 to show
that H(M,W ) satisfies ACC and DCC on closed E(M)-submodules. To this end,
we write

W = V ⊕ K ⊕ L, (2)

where V ∼= R
d, K ∼= (Q∗)m, and L = ⊕p∈S1Lp with Lp

∼= Q
l(p)
p for all p ∈ S1. We

know from [8, (23.34)(d)] that

H(M,W ) ∼= H(M,V ) × H(M,K) ×
∏

p∈S1

H(M,Lp) (3)

as topological groups, and hence as topological E(M)-modules because the cor-
responding canonical isomorphism in (3) is easily seen to be an isomorphism of
E(M)-modules . Now, since M is discrete and K is compact, it follows by the
Ascoli theorem that H(M,K) is compact. Therefore to see that H(M,W ) satisfies
ACC and DCC on closed E(M)-submodules, it suffices by Lemma 7 to show that
so do H(M,K) and H(M,V ) ×

∏
p∈S1

H(M,Lp). For this purpose, we will con-
sider H(M,K) and H(M,V ) ×

∏
p∈S1

H(M,Lp) as vector spaces over Q, by using
the inclusion λ 7→ λIn of Q into Mn(Q) ∼= E(M). It is then clear that the closed
E(M)-submodules of H(M,K) and those of H(M,V )×

∏
p∈S1

H(M,Lp) are closed
Q-subspaces, so it will suffice to show that H(M,K) and H(M,V )×

∏
p∈S1

H(M,Lp)
satisfy both ACC and DCC on closed Q-subspaces. Now, since H(Q, Q∗) ∼= Q

∗,
H(Q, R) ∼= R, and H(Q, Qp) ∼= Qp for all p ∈ P, we deduce from [8, (23.34)(c, d)]
that

H(M,K) ∼= (Q∗)nm and H(M,V ) ×
∏

p∈S1

H(M,Lp) ∼= R
nd ×

∏

p∈S1

Q
nl(p)
p

as topological groups, and hence as topological vector spaces over Q. It follows from
Lemma 6 that both H(M,K) and H(M,V ) ×

∏
p∈S1

H(M,Lp) satisfy ACC and
DCC on closed Q-subspaces. This proves that H(M,W )×E(M) satisfies ACC and
DCC on closed E(M)-submodules.

Further, we consider the case of E(W ). Since K ⊕ L = k(W ) is topologically
fully invariant in W, we deduce from (2) and Lemma 3 that

E(W ) ∼=

(
E(K ⊕ L) H(V,K ⊕ L)

0 E(V )

)

.



106 VALERIU POPA

By Lemma 2, we have to show that the modules E(K ⊕ L)E(K⊕L) and
(
H(V,K ⊕

L) × E(V )
)
E(V )

satisfy ACC and DCC on closed submodules.

First we consider the case of
(
H(V,K ⊕ L) × E(V )

)
E(V )

. By use of the inclu-

sion λ 7→ λId ∈ Md(R) ∼= E(V ), the group H(V,K ⊕ L) × E(V ) can be given a
topological vector space structure over the field of reals, R. It is clear that every
E(V )-submodules of H(V,K ⊕ L) × E(V ) becomes an R-subspace. So to achieve
our goal, it suffices to show that H(V,K ⊕L)×E(V ) is of finite dimension. This is
clear for E(V ). On the other hand, H(V,K ⊕ L) = H(V,K) because V = c(V ) and
c(L) = {0}. Since, by [8, (23.34)(c,d)], H(V,K) ∼= R

md as topological groups and
hence as topological R-spaces, H(V,K) has finite dimension as well.

Next consider the case of E(K ⊕ L) = E(K ⊕ ⊕p∈S1Lp). We will proceed by
induction on n = card(S1). If S1 = ∅, then E(K ⊕ L) = E(K). Since E(K) and
E(K∗) are topologically anti-isomrphic, and since E(K∗) ∼= Mm(Q)opp, the fact that
E(K) satisfies ACC and DCC on closed right ideals is clear. Assume S1 = {p}, so
L = Lp. Since K = c(K ⊕ Lp) is topologically fully invariant in K ⊕ Lp, it follows
that

E(K ⊕ L) = E(K ⊕ Lp) ∼=

(
E(K) H(Lp,K)

0 E(Lp)

)

.

To see that E(K ⊕ Lp)E(K⊕Lp) satisfies ACC and DCC on closed submodules,

it suffices to show that so do E(K)E(K) and
(
H(Lp,K) × E(Lp)

)
E(Lp)

. The case of

E(K) is clear. Further, by use of the inclusion λ 7→ λIl(p) of the field Qp of p-adic
numbers into Ml(p)(Qp) ∼= E(Lp), the group H(Lp,K)×E(Lp) can be given a vector
space structure over Qp. Since every E(Lp)-submodule of

(
H(Lp,K)×E(Lp)

)
E(Lp)

is

a Qp-vector space, it suffices to show that
(
H(Lp,K)×E(Lp)

)
Qp

has finite dimension.

This is clear for E(Lp)Qp
because E(Lp) ∼= Ml(p)(Qp). Also, since H(Lp,K) ∼=

H(K∗, L∗
p)

∼= H(Q, Qp)
ml(p) ∼= Q

ml(p)
p , we have dimQp

H(Lp,K) = ml(p), proving
the case n = 1. Assume n ≥ 2 and that for every proper subset S′ of S1, the ring
E(K ⊕ ⊕p∈S′Lp) satisfies ACC and DCC on closed right ideals. Pick any p ∈ S1.
We have

E(K ⊕ L) ∼=

(
E(K ⊕⊕q∈S1\{p}Lq) H(Lp,K ⊕⊕q∈S1\{p}Lq)

0 E(Lp)

)

.

By the induction hypothesis, the ring E(K ⊕⊕q∈S1\{p}Lq) satisfies ACC and DCC
on closed right ideals. Observing that

H(Lp,K ⊕⊕q∈S1\{p}Lq) = H(Lp,K),

we conclude from the preceding case that H(Lp,K ⊕ ⊕q∈S1\{p}Lq)E(Lp) satisfies
ACC and DCC on closed submodules, Consequently, Lemma 2 is applicable, and
the proof is complete.

Corollary 3. For a group X ∈ L, the following statements are equivalent:

(i) E(X) satisfies both ACC and DCC on closed left ideals.
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(ii) E(X) satisfies DCC on closed left ideals.

(iii) E(X) satisfies DCC on topologically principal left ideals, i.e. ideals of the
form E(X)f with f ∈ E(X).

(iv) X ∼= R
d × Q

n × (Q∗)m ×
∏

p∈S1
Q

l(p)
p ×

∏
p∈S2

∏k(p)
i=0 Z(pri(p)), where S1, S2

are finite subsets of P, and d, n,m, the k(p)’s, the ri(p)’s and the l(p)’s are
natural numbers.

In particular, E(X) satisfies DCC on closed left ideals if and only if it satisfies
DCC on closed right ideals.

Proof. The assertion follows from the fact that E(X) and E(X∗) are topologically
anti-isomorphic.

Specializing to the case of discrete groups, we see that the result of L. Fuchs and
F. Szász, mentioned in Introduction, can be supplemented as follows.

Corollary 4. For a discrete group X ∈ L, the following statements are equivalent:

(i) E(X) is right (respectively, left) artinian.

(ii) E(X) satisfies DCC on principal right (respectively, left) ideals.

(iii) E(X) satisfies DCC on closed right (respectively, left) ideals.

(iv) E(X) satisfies DCC on topologically principal right (respectively, left) ideals.

(v) X ∼= Q
n ×

∏
p∈S Z(pk(p)), where n ∈ N, S is a finite subset of P and k(p) ∈ N

for all p ∈ S.

Proof. Since (i) ⇒ (ii) ⇒ (iv) ⇒ (v) and (i) ⇒ (iii) ⇒ (iv) ⇒ (v), it remains to
apply [7, Theorem 111.3].

In the following, we drop the assumption that the ideals are closed. First, we
consider the problem of determining the groups X ∈ L for which the ring E(X) is
right (respectively, left) artinian. We need the following

Lemma 8. Let Y be one of the groups R
d, (Q∗)m, or Q

l(p)
p , where d,m, l(p) ∈ N0

and p ∈ P. For any n ∈ N0, the module H(Qn, Y )E(Qn) fails to be artinian.

Proof. Let C be a Q-basis of Y and {γk | k ∈ N} a countable subset of C. For
i ∈ N, let

Hi = {h ∈ H(Qn, Y ) | im(h) ⊂ 〈γk | k ≥ i〉Q},

where 〈γk | k ≥ i〉Q is the Q-subspace of Y generated by the γk with k ≥ i. Then
(Hi)i∈N is a strictly decreasing sequence of E(Qn)-submodules of H(Qn, Y )E(Qn).

We have:
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Corollary 5. For a group X ∈ L, the following statements are equivalent:

(i) E(X) is right artinian.

(ii) X is topologically isomorphic with one of the groups

R
d × (Q∗)n ×

∏
p∈S1

Q
l(p)
p ×

∏
p∈S2

∏k(p)
i=0 Z(pri(p)),

or Q
n ×

∏
p∈S2

∏k(p)
i=0 Z(pri(p)), where S1, S2 are finite subsets of P

and d, n, k(p), l(p), ri(p) ∈ N for all i ∈ {0, . . . , k(p)} and p ∈ S1 ∪ S2.

Proof. Assume (i). Then, clearly, E(X) satisfies DCC on closed right ideals, so

X ∼= R
d × Q

n × (Q∗)m ×
∏

p∈S1

Q
l(p)
p ×

∏

p∈S2

k(p)∏

i=0

Z(pri(p))

for some finite subsets S1, S2 of P and natural numbers d, n,m, k(p), l(p), and
ri(p) with i ∈ {0, . . . , k(p)} and p ∈ S1 ∪ S2. Writing X = D ⊕ T, where

D ∼= R
d × Q

n × (Q∗)m ×
∏

p∈S1
Q

l(p)
p and T ∼=

∏
p∈S2

∏k(p)
i=0 Z(pri(p)). we have

E(X) ∼= E(D) × E(T ). It follows that E(D) is right artinian. Now, write

D = M ⊕ W, where M ∼= Q
n and W ∼= R

d × (Q∗)m ×
∏

p∈S1
Q

l(p)
p . Hence

E(D) ∼=

(
E(W ) H(M,W )

0 E(M)

)

, where H(M,W )E(Qn) is topologically isomorphic

with H(Qn, Rd)E(Qn) ×H(Qn, (Q∗)m)E(Qn) ×
∏

p∈S1
H(Qn, Q

l(p)
p )E(Qn), as easily fol-

lows from [8, (23,34)(d)]. If M and W were both non-zero, it would follow from
Lemma 8 and [10, (1,2)] that E(D) is not right artinian. This contradiction proves
(ii).

To see the converse, we have, by Corollary 4, to consider only the case of X =

R
d × (Q∗)n ×

∏
p∈S1

Q
l(p)
p ×

∏
p∈S2

∏k(p)
i=0 Z(pri(p)). Then writing X = C ⊕ T, where

C ∼= R
d × (Q∗)m ×

∏
p∈S1

Q
l(p)
p and T ∼=

∏
p∈S2

∏k(p)
i=0 Z(pri(p)). we have E(X) ∼=

E(C) × E(T ). Consequently, it suffices to show that E(C) is right artinian. Write

C = V ⊕ K ⊕ L, where V ∼= R
d, K ∼= (Q∗)n and L = ⊕p∈S1Lp with Lp

∼= Q
l(p)
p

for all p ∈ S1. Then E(C) ∼=

(
E(K) H(V ⊕ L,K)

0 E(V ⊕ L)

)

. Since E(K) ∼= Md(Q)opp

and E(V ⊕ L) ∼= Md(R) ×
∏

p∈S1
Ml(p)(Qp), it suffices by [10, (1.2)] to show that

H(V ⊕ L,K)E(V ⊕L) is artinian. It is clear from [8, (23,34)(c)] that

H(V ⊕ L,K)E(V ⊕L)
∼= H(V,K)E(V ⊕L) ×

∏

p∈S1

H(Lp,K)E(V ⊕L),

where the scalar multiplication of the modules H(V,K)E(V ⊕L) and respectively
H(Lp,K)E(V ⊕L) with p ∈ S1 is given by using the projection of E(V ⊕ L) ∼=
E(V ) ×

∏
q∈S1

E(Lq) onto E(V ) respectively E(Lp). Thus it suffices to show that
H(V,K)E(V ) and respectively H(Lp,K)E(Lp) with p ∈ S1 are artinian. Now, since
the field R embeds in E(V ) and the field Qp embeds in E(Lp), H(V,K) can be
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considered as a vector space over R and H(Lp,K)E(Lp) as a vector space over Qp.
The conclusion follows because these spaces are finite dimensional.

Corollary 6. For a group X ∈ L, the following statements are equivalent:

(i) E(X) is left artinian.

(ii) X is topologically isomorphic with one of the groups

R
d × Q

n ×
∏

p∈S1
Q

l(p)
p ×

∏
p∈S2

∏k(p)
i=0 Z(pri(p)),

or (Q∗)n ×
∏

p∈S2

∏k(p)
i=0 Z(pri(p)), where S1, S2 are finite subsets of P

and d, n, k(p), l(p), ri(p) ∈ N for all i ∈ {0, . . . , k(p)} and p ∈ S1 ∪ S2.

Proof. Since E(X) and E(X∗) are topologically anti-isomorphic, the assertion fol-
lows from Corollary 5 and duality.

We close the paper by determining the groups X ∈ L with the property that
E(X) satisfies DCC on principal right (respectively, left) ideals. It turns out that
this last condition on E(X) is equivalent to those of Theorem 5. First we establish
the following

Lemma 9. Let X = Q
n and Y = R

d × (Q∗)m ×
∏

p∈S1
Q

l(p)
p , where S is a subset

of P and d, n,m, and l(p) for p ∈ S are natural numbers. If u, v ∈ H(X,Y ) satisfy
v = u ◦ w for some w ∈ E(X) and dimQ im(v) = dimQ im(u), then v = u ◦ w′ for
some invertible w′ ∈ E(X).

Proof. It is clear that the morphisms in H(X,Y ) are Q-linear mappings. Since
dim im(v) = dim im(u), it follows by rank-nullity connection [14, Theorem 2.12]
that ker(u) and ker(v) have the same dimension, say k. Let e1, . . . , en and e′1, . . . , e

′
n

be bases in X such that e1, . . . , ek is a basis in ker(u) and e′1, . . . , e
′
k is a basis in

ker(v). Clearly, v(e′i) = u(w(e′i)) for all i = 1, . . . , n. We define w′ ∈ E(X) by setting

w′(e′i) =

{
ei, if i = 1, . . . , k;

w(ei), if i = k + 1, . . . , n.

Then w′ is invertible and (u ◦ w′)(e′i) = v(e′i) for all i = 1, . . . , n, so v = u ◦ w′.

We have:

Corollary 7. For a group X ∈ L, the following statements are equivalent:

(i) E(X) satisfies DCC on principal right (respectively, left) ideals.

(ii) X ∼= Rd ×Qn × (Q∗)m ×
∏

p∈S1
Q

l(p)
p ×

∏
p∈S2

∏k(p)
i=0 Z(pri(p)), where S1, S2 are

disjoint finite subsets of P, and d, n,m, the k(p)’s, the ri(p)’s and the l(p)’s
are natural numbers.
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Proof. The fact that (i) implies (ii) follows from Theorem 5. Assume (ii) and write

X = D⊕T, where D ∼= R
d×Q

n×(Q∗)m×
∏

p∈S1
Q

l(p)
p and T ∼=

∏
p∈S2

∏k(p)
i=0 Z(pri(p)).

Since E(X) ∼= E(D)×E(T ), it suffices to show that E(D) satisfies DCC on principal
right (respectively, left) ideals. We will first consider the case of principal right ideals.
Write D = M ⊕ W, where

M ∼= Q
n and W ∼= R

d × (Q∗)m ×
∏

p∈S1

Q
l(p)
p .

Since W is topologically fully invariant in D, it follows that

E(D) ∼=

(
E(W ) H(M,W )

0 E(M)

)

.

Let
(

f1 g1

0 h1

)(
E(W ) H(M,W )

0 E(M)

)

⊃ . . .⊃

(
fi gi

0 hi

)(
E(W ) H(M,W )

0 E(M)

)

⊃ . . .

be a descending chain of principal right ideals. For any i ∈ N0, we have
(

fi gi

0 hi

)(
E(W ) H(M,W )

0 E(M)

)

=

(
fiE(W ) fiH(M,W ) + giE(M)

0 hiE(M)

)

,

so
(
fiE(W )

)
i
,
(
fiH(M,W )+giE(M)

)
i
, and respectively

(
hiE(M)

)
i
are descending

chains of submodules in E(W )E(W ), H(M,W )E(M), and respectively E(M)E(M).
Moreover, the chain

(
fiH(M,W )

)
i

of submodules of H(M,W )E(M) decreases as

well, because so does the chain
(
fiE(W )

)
i
. Now, since E(W ) and E(M) are ar-

tinian rings by Corollary 5, the chains
(
fiE(W )

)
i
and

(
hiE(M)

)
i
are stationary. It

remains to show that the chain
(
fiH(M,W ) + giE(M)

)
i
stabilises as well. Fix any

i0 ∈ N0 such that fiE(W ) = fi0E(W ) for all i ≥ i0. Using this representation, we
get easily fiH(M,W ) = fi0H(M,W ) for all i ≥ i0. Observe also that, without loss
of generality, we may consider giE(M) ⊃ gi+1E(M) for all i ≥ i0. Indeed, given any
such i, we can write gi+1 = fi ◦ ui + gi ◦ vi for some ui, vi ∈ E(M). It follows easily
that, for g′i+1 = gi ◦ vi, we have

fi+1H(M,W ) + gi+1E(M) = fi+1H(M,W ) + g′i+1E(M).

Thus, replacing gi+1 with g′i+1, we get our claim by induction. Now, we clearly have
im(gi) ⊃ im(gi+1), so

dim im(gi0) ≥ dim im(gi0+1) ≥ . . . ,

and hence there is j0 ≥ i0 such that dim im(gi) = dim im(gj0) for all i ≥ j0. It follows
from Lemma 9 that for every i ≥ j0 there is an invertible wi ∈ E(M) such that
gi = gj0◦wi, whence gj0 = gi◦w−1

i . Consequently, the chain
(
fiH(M,W )+giE(M)

)
i

stabilises.
Next we consider the case of left principal ideals. Because of the form of D,

it is clear that the preceding argument can be applied to E(D∗) to conclude that
E(D∗) satisfies DCC on principal right ideals. As E(D) and E(D∗) are topologically
anti-isomorphic, it follows that E(D) must satisfy DCC on principal left ideals.
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for a class of bidimensional polynomial systems
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of the fourth degree
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Abstract. For the autonomous bidimensional polynomial systems of differential
equations with nonlinearities of the fourth degree the GL(2, R)-invariant recurrence
equations for determination of the Lyapunov quantities were established. Moreover,
the general form of Lyapunov quantities for the mentioned systems is obtained. For
a class of such systems the necessary and sufficient GL(2, R)-invariant conditions for
the existence of center are given.
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Let us consider the system of differential equations with nonlinearities of the
fourth degree

dx

dt
= P1(x, y) + P4(x, y) = P(x, y),

dy

dt
= Q1(x, y) + Q4(x, y) = Q(x, y), (1)

where Pi(x, y), Qi(x, y) are homogeneous polynomials of degree i in x and y with
real coefficients.

The goal of this paper is to determine the invariant recurrence formulas for con-
struction of the Lyapunov quantities for the system of differential equations with
nonlinearities of the fourth degree and to establish the invariant center conditions
for a class of these systems. The center-focus problem is one of the most impor-
tant problem in the Qualitative Theory of Differential Equations. This problem is
completely solved only for the bidimensional quadratic systems and for the systems
with nonlinearities of the third degree [1–3]. Also, this problem was solved for some
classes of cubic differential systems [4–7]. In [8] the center problem for a linear center
perturbed by homogeneous polynomials, more exactly for the systems of the form

dx

dt
= y,

dy

dt
= −x+ Q4(x, y)

was solved. In [9], the authors give some sufficient conditions for the integrability in
polar coordinates of a bidimensional polynomial systems with linear part of center
type and non-linear part given by homogeneous polynomials of the fourth degree.

c© Iurie Calin, Stanislav Ciubotaru, 2017
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Also they establish a conjecture that if it turns to be true then the integrable cases
they found are the only possible ones. In [10] the author gives some center conditions
for a class of bidimensional polynomial systems of the fourth degree.

1 Definitions and notations

The system (1) can be written in the following coefficient form:

dx

dt
= cx+ dy + gx4 + 4hx3y + 6kx2y2 + 4lxy3 + my4,

dy

dt
= ex+ fy + nx4 + 4px3y + 6qx2y2 + 4rxy3 + sy4. (2)

We denote by A the 14-dimensional coefficient space of the system (1), by a ∈ A
the vector of coefficients a = (c,d, e, f, g,h, k, l,m,n,p, q, r, s), by q ∈ Q ⊆ Aff(2,R)
a nondegenerate linear transformation of the phase plane of system (1), by q the
transformation matrix and by rq (a) the linear representation of the coefficients of
transformed system in the space A.

Definition 1 (see [11, 12]). A polynomial K(a,x) in coefficients of system (1) and

coordinates of the vector x =

(
x
y

)

∈ R
2 is called a comitant of system (1) with

respect to the group Q if there exists a function λ : Q → R such that

K(rq(a),qx) ≡ λ(q)K(a,x)

for every q ∈ Q, a ∈ A and x ∈ R
2.

If Q is the group GL(2,R) of nondegenerate linear transformations

u = qx, ∆q = detq 6= 0 (3)

of the phase plane of system (1), where u =

(
u
v

)

is a vector of new phase

variables and q =

(
q11 q12
q21 q22

)

is the transformation matrix, then the comitant is

called GL(2,R)-comitant or center-affine comitant. In what follows only GL(2,R)-
comitants are considered. If a comitant does not depend on coordinates of the vector
x, then it is called invariant.

The function λ(q ) is called a multiplicator. It is known [11] that the function
λ(q) has the form λ(q) = ∆−χ

q , where χ is an integer, which is called the weight of
the comitant K(a,x). If χ = 0, then the comitant is called absolute, otherwise it is
called relative.

We say that a comitant K(a,x) has the character (ρ; χ; δ) if it has the weight
χ, the degree δ with respect to the coefficients of the system (1) and the degree ρ
with respect to the coordinates of the vector x.
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Definition 2 (see [13]). Let ϕ and ψ be homogeneous polynomials in coordinates of

the vector x =

(
x
y

)

∈ R
2 of the degrees ρ1 and ρ2, respectively. The polynomial

(ϕ,ψ)(j) =
(ρ1 − j)!(ρ2 − j)!

ρ1!ρ2!

j∑

i=0

(−1)i
(
j

i

)
∂jϕ

∂xj−i∂yi
∂jψ

∂xi∂yj−i

is called the transvectant of index j of polynomials ϕ and ψ.

Using this formula we have the following remarks.

Remark 1 (see [14] ). If polynomials ϕ and ψ are GL(2,R)-comitants of system (1)
with the characters (ρϕ; χϕ; δϕ) and (ρψ; χψ; δψ), respectively, then the transvectant
of index j ≤ min{ρϕ, ρψ} is a GL(2,R)-comitant of system (1) with the character
(ρϕ + ρψ − 2j; χϕ + χψ + j; δϕ + dψ). If j > min{ρϕ, ρψ}, then (ϕ,ψ)(j) = 0.

Remark 2. If homogeneous polynomials f , g, ϕ and ψ have the degrees m, n, µ
and 0 ( m, n, µ ∈ N

∗), respectively, with respect to x and y and l, q ∈ N, α ∈ R,
then

a) (αf, g)(k) = (f, αg)(k) = α(f, g)(k), b) (f q, f)(2l+1) = 0,

c) (f + g, ϕ)(k) = (f, ϕ)(k) + (g, ϕ)(k), d) (ψ, f)(k) = 0,

e) (f · g, ϕ)(1) =
m

m+ n
(f, ϕ)(1)g +

n

m+ n
(g, ϕ)(1)f.

Remark 3. If homogeneous polynomials f and ϕ have the degrees m ∈ N∗ and 2,
respectively, with respect to x and y, then

((f, ϕ)(1), ϕ)(1) =
m− 1

m
(f, ϕ)(2)ϕ−

1

2
f(ϕ,ϕ)(2).

The GL(2,R)-comitants of the first degree with respect to the coefficients of the
system (1) have the form

Ri = Pi(x, y)y − Qi(x, y)x, Si =
1

i

(
∂Pi(x, y)

∂x
+
∂Qi(x, y)

∂y

)

, i = 1, 4. (4)

By using the comitants Ri and Si, i = 1, 4, the system (1) can be written [15] in
the form

dx

dt
=

1

2

∂R1

∂y
+

1

2
S1x+

1

5

∂R4

∂y
+

4

5
S4x,

dy

dt
= −

1

2

∂R1

∂x
+

1

2
S1y −

1

5

∂R4

∂x
+

4

5
S4y. (5)

For every homogeneous GL(2,R)-comitant K(x, y) with degree s ∈ N
∗ of the

system (1) from (5) we obtain the total derivative of K(x, y) with respect to t [16]:

dK

dt
=
∂K

∂x
·
dx

dt
+
∂K

∂y
·
dy

dt
=
∂K

∂x

(
1

2

∂R1

∂y
+

1

2
S1x+

1

5

∂R4

∂y
+

4

5
S4x

)

+
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+
∂K

∂y

(

−
1

2

∂R1

∂x
+

1

2
S1y −

1

5

∂R4

∂x
+

4

5
S4y

)

= (6)

= s(K, R1)
(1) +

s

2
KS1 + s(K, R4)

(1) +
4s

5
KS4,

where (K, Ri)
(1) is a Jacobian (the transvectant of the first index) of GL(2,R)-

comitants K and Ri. The representation (6) shows that the derivative with respect
to t of every homogeneous GL(2,R)-comitant with the degree s ≥ 1 of the system
(1) is a GL(2,R)-comitant too.

By using the comitants Ri and Si (i = 1, 4), and the notion of the transvectant
the following GL(2,R)-comitants and invariants of the system (1) were constructed
(in the list below, the bracket ”[[” is used in order to avoid placing the otherwise
necessary parenthesis ”(”):

I1 = S1, I2 = (R1, R1)
(2), I3 = [[S4, R1)

(2), R1)
(1), (S4, R1)

(2))(1),

I4 = [[R4, R1)
(2), R1)

(2), R1)
(1), ((R4, R1)

(2), R1)
(2))(1),

K1 = (S4, R1)
(1), K2 = ((S4, R1)

(2), R1)
(1), K3 = (R4, S4)

(3),

K4 = (K2
3 , S4)

(3), K5 = ((K3, S4)
(2), R1)

(2)

J1 = ((R4, R4)
(4), R1)

(2), J2 = ((R4, S4)
(3), R1)

(2), J3 = ((S4, S4)
(2), R1)

(2),

J4 = [[R4, R4)
(2), R1)

(2), R1)
(2), R1)

(2), J5 = [[R4, S4)
(2), R1)

(2), R1)
(2),

J6 = (K4,K5)
(1).

2 Lyapunov quantities for bidimensional polynomial systems of
differential equations with nonlinearities of the fourth degree
with S1 = 0, I2 6= 0

We will consider the system (1) with the conditions S1 = 0, I2 > 0. These
conditions mean that the eigenvalues of the Jacobian matrix at the singular point
(0, 0) are pure imaginary, i.e., the system has the center or a weak focus at (0, 0).
In these conditions the system (1) can be reduced, via a linear transformation and
time rescaling, to the system

dx

dt
= y + P4(x, y),

dy

dt
= −x+ Q4(x, y), (7)

which can be written in the form

dx

dt
=

1

2

∂R1

∂y
+

1

5

∂R4

∂y
+

4

5
S4x,

dy

dt
= −

1

2

∂R1

∂x
−

1

5

∂R4

∂x
+

4

5
S4y, (8)

where R1 = x2 + y2.
Let us consider the formal power series of the form

F (x, y) = x2 + y2 +

∞∑

j=3

Fj(x, y)
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where for each j, Fj(x, y) is a homogeneous polynomial of degree j, so that the
derivative of F (x, y) along the solutions of the system (7) (or (8)) satisfies

dF (x, y)

dt
=

∞∑

k=2

G2k(x
2 + y2)k,

where G2k are the polynomials in the coefficients of the system (7), called Lyapunov
quantities [17].

For establishing the center conditions for the system (7) we will determine Lya-
punov quantities. The polynomials Fj(x, y) and the constants G2k can be determined
from the identity:

∂

(

x2 + y2 +
∞∑

j=3
Fj(x, y)

)

∂x
(y + P4(x, y)) +

+

∂

(

x2 + y2 +
∞∑

j=3
Fj(x, y)

)

∂y
(−x+ Q4(x, y)) ≡

∞∑

k=2

G2k(x
2 + y2)k. (9)

Because for the system (7) R1 = x2 + y2 and by using (8), the identity (9) can
be written in the form:

∂

(

R1 +
∞∑

j=3
Fj(x, y)

)

∂x

(
1

2

∂R1

∂y
+

1

5

∂R4

∂y
+

4

5
S4x

)

+

+

∂

(

R1 +
∞∑

j=3
Fj(x, y)

)

∂y

(

−
1

2

∂R1

∂x
−

1

5

∂R4

∂x
+

4

5
S4y

)

≡

∞∑

k=2

G2kR
k
1 . (10)

Next, we analyze the identity (10) which is more general than the identity (9),
taking S1 = 0, I2 = (R1, R1)

(2) 6= 0. By using the notion of the transvectant and
Euler formula, the left side of the identity (10) can be written into the form:

1

5

(
∂R1

∂x
·
∂R4

∂y
−
∂R1

∂y
·
∂R4

∂x

)

+
4

5
S4

(
∂R1

∂x
· x−

∂R1

∂y
· y

)

+

+
1

2

∞∑

j=3

(
∂Fj(x, y)

∂x
·
∂R1

∂y
−
∂Fj(x, y)

∂y
·
∂R1

∂x

)

+

+
1

5

∞∑

j=3

(
∂Fj(x, y)

∂x
·
∂R4

∂y
−
∂Fj(x, y)

∂y
·
∂R4

∂x

)

+

+
4

5
S4

∞∑

j=3

(
∂Fj(x, y)

∂x
· x+

∂Fj(x, y)

∂y
· y

)

=
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= 2(R1, R4)
(1) + 2 ·

4

5
R1S4 +

∞∑

j=3

j · (Fj , R1)
(1) +

∞∑

j=3

j · (Fj , R4)
(1) +

4

5

∞∑

j=3

j · FjS4,

and the identity (10) is reduced to the form:

∞∑

j=3

j · (Fj , R1)
(1) +

∞∑

j=2

j ·W (Fj) ≡

∞∑

k=2

G2kR
k
1 , (11)

where F2 = R1, W (Fj) = (Fj , R4)
(1) +

4

5
FjS4.

Equaling in (11) polynomials with the same degree with respect to the coordi-
nates of the vector (x, y), the identity (11) can be reduced to the system of differential
equations in partial derivatives:

3(F3, R1)
(1) = 0,

4(F4, R1)
(1) = G4R

2
1,

5(F5, R1)
(1) + 2W (F2) = 0,

6(F6, R1)
(1) + 3W (F3) = G6R

3
1,

7(F7, R1)
(1) + 4W (F4) = 0,

8(F8, R1)
(1) + 5W (F5) = G8R

4
1,

9(F9, R1)
(1) + 6W (F6) = 0,

10(F10, R1)
(1) + 7W (F7) = G10R

5
1,

11(F11, R1)
(1) + 8W (F8) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

j(Fj , R1)
(1) + (j − 3)W (Fj−3) =






0, for j = 2l + 1, l ∈ N
∗,

GjR
j

2
1 , for j = 2l + 2, l ∈ N

∗,

(12)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Equations of the form j(Fj , R1)
(1) = 0, in the case when j is an odd number, have

the solution Fj ≡ 0 in the class of homogeneous polynomials with real coefficients.

In the case when j is an even number, the equations j(Fj , R1)
(1) = GjR

j

2
1 admit

the solution of the form Fj = CR
j

2
1 and then Gj = 0, where C is an arbitrary real

constant. Assuming C = 0, we can consider in this case that Fj ≡ 0. From the first
equation of the system (12), it follows that F3 ≡ 0. This implies W (F3) ≡ 0 and so,
F6 ≡ 0 and G6 = 0. In turn, F6 ≡ 0 implies W (F6) ≡ 0, and then F9 ≡ 0 and so on.
From the second equation of the system (12), it follows that F4 ≡ 0 and G4 = 0.
From F4 ≡ 0, it turns out that W (F4) ≡ 0 and then F7 ≡ 0. In turn, F7 ≡ 0 implies
W (F7) ≡ 0 and then F10 ≡ 0 and G10 = 0, and so on. Basing on those mentioned,
the system (12) is reduced to the following system:

5(F5, R1)
(1) + 2W (F2) = 0,
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8(F8, R1)
(1) + 5W (F5) = G8R

4
1,

11(F11, R1)
(1) + 8W (F8) = 0,

14(F14, R1)
(1) + 11W (F11) = G14R

7
1,

17(F17, R1)
(1) + 14W (F14) = 0,

20(F20, R1)
(1) + 17W (F17) = G20R

10
1 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3m+ 2)(F3m+2, R1)
(1) + (3m− 1)W (F3m−1) =

=






0, for m = 2l − 1, l ∈ N
∗,

G3m+2R
3m+2

2
1 , for m = 2l, l ∈ N

∗,

(13)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From the system (13) it follows that only the homogeneous polynomials
F3m−1(a,x), m ∈ N

∗ and the Lyapunov quantities G6l+2(a), l ∈ N
∗ participate

in solving the center-focus problem for the system (1). By solving consecutively the
equations of the system (13) the polynomials F5, F8, F11, F14, F17, F20, . . . , and
respectively the Lyapunov quantities G8, G14, G20, . . . , are determined.

F5 =
2∑

j=0

2 · 5! · 2j+1 ·Rj1 · [[W (F2),

j
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2), R1)

(1)

(4 − 2j)! ·
j∏

i=0

(
(5 − 2i)2 · (R1, R1)

(2)
) ,

F8 =
3∑

j=0

5 · 8! · 2j+1 ·Rj1 · [[W (F5),

j
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2), R1)

(1)

(7 − 2j)! ·
j∏

i=0

(
(8 − 2i)2 · (R1, R1)

(2)
) ,

F11 =
5∑

j=0

8 · 11! · 2j+1 · Rj1 · [[W (F8),

j
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2), R1)

(1)

(10 − 2j)! ·
j∏

i=0

(
(11 − 2i)2 · (R1, R1)

(2)
) ,

F14 =

6∑

j=0

11 · 14! · 2j+1 · Rj1 · [[W (F11),

j
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2), R1)

(1)

(13 − 2j)! ·
j∏

i=0

(
(14 − 2i)2 · (R1, R1)

(2)
) ,

F17 =

8∑

j=0

14 · 17! · 2j+1 · Rj1 · [[W (F14),

j
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2), R1)

(1)

(16 − 2j)! ·
j∏

i=0

(
(17 − 2i)2 · (R1, R1)

(2)
) ,
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F20 =
9∑

j=0

17 · 20! · 2j+1 · Rj1 · [[W (F17),

j
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2), R1)

(1)

(19 − 2j)! ·
j∏

i=0

(
(20 − 2i)2 · (R1, R1)

(2)
) ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F3m+2 =

=

[3m+1
2 ]∑

j=0

(3m− 1) · (3m+ 2)! · 2j+1 · Rj1 · [[W (F3m−1),

j
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2), R1)

(1)

(3m− 2j + 1)! ·
j∏

i=0

(
(3m− 2i+ 2)2 · (R1, R1)

(2)
) , (14)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where m ∈ N
∗, W (Fi) = (Fi, R4)

(1) +
4

5
FiS4.

G8 =
5 · 8! · 24 · [[W (F5),

4
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2)

3∏

i=0

(
(8 − 2i)2 · (R1, R1)

(2)
) ,

G14 =
11 · 14! · 27 · [[W (F11),

7
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2)

6∏

i=0

(
(14 − 2i)2 · (R1, R1)

(2)
) ,

G20 =
17 · 20! · 210 · [[W (F17),

10
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2)

9∏

i=0

(
(20 − 2i)2 · (R1, R1)

(2)
) ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G6l+2 =

=
(6l − 1) · (6l + 2)! · 23l+1 · [[W (F6l−1),

3l+1
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2)

3l∏

i=0

(
(6l − 2i+ 2)2 · (R1, R1)

(2)
) , (15)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where l ∈ N
∗, W (Fi) = (Fi, R4)

(1) +
4

5
FiS4.

Next we show that the polynomials F3m+2 (14) and Lyapunov quantities G6l+2

(15) satisfy the equations of system (13). Replacing in the right side of (13) the
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expresion for F3m+2 (14) and by using Remarks 1, 2 and 3 we obtain:

(3m+ 2)(3m − 1)(3m+ 2)!×

×

[ 3m+1
2 ]∑

j=0

2j+1 ·
(
Rj1 · [[W (F3m−1),

j
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2), R1)

(1), R1

)(1)

(3m− 2j + 1)! ·
j∏

i=0

(
(3m− 2i+ 2)2 · (R1, R1)

(2)
) +

+(3m− 1)W (F3m−1) =

applying Remark 2. e), taking f = Rj1,

g = [[W (F3m−1),

j
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2), R1)

(1) and ϕ = R1, we obtain

= (3m+ 2)(3m − 1)(3m+ 2)!×

×

[ 3m+1
2 ]∑

j=0

2j+1

(3m− 2j + 1)! ·
j∏

i=0

(
(3m− 2i+ 2)2 · (R1, R1)

(2)
)×

×






2j

3m+ 2
(Rj1, R1)

(1) · [[W (F3m−1),

j
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2), R1)

(1) +

+
3m− 2j + 2

3m+ 2
Rj1 · [[W (F3m−1),

j
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2), R1)

(1), R1)
(1)




+

+(3m− 1)W (F3m−1) =

according to Remark 2. b), the first term in square brackets is
equal to zero, because (Rj1, R1)

(1) = 0. For the second term, by

applying Remark 3, taking f = [[W (F3m−1),

j
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2) and

ϕ = R1, we obtain

= (3m+ 2)(3m − 1)(3m+ 2)!×

×

[ 3m+1
2 ]∑

j=0

2j+1

(3m− 2j + 1)! ·
j∏

i=0

(
(3m− 2i+ 2)2 · (R1, R1)

(2)
)×

×






(3m− 2j + 1)(3m− 2j + 2)

(3m− 2j + 2)(3m + 2)
Rj+1

1 · [[W (F3m−1),

j
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2), R1)

(2) −
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−
3m− 2j + 2

2(3m+ 2)
Rj1 · (R1, R1)

(2) · [[W (F3m−1),

j
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2)




+

+(3m− 1)W (F3m−1) =

= (3m− 1)(3m+ 2)!×

×








[ 3m+1
2 ]∑

j=0

2j+1 · (3m− 2j + 1) · Rj+1
1 · [[W (F3m−1),

j
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2), R1)

(2)

(3m− 2j + 1)! ·
j∏

i=0

(
(3m− 2i+ 2)2 · (R1, R1)

(2)
) −

−

[ 3m+1
2 ]∑

j=0

2j+1 · (3m− 2j + 2) ·Rj1 · (R1, R1)
(2) · [[W (F3m−1),

j
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2)

2(3m− 2j + 1)! ·
j∏

i=0

(
(3m− 2i+ 2)2 · (R1, R1)

(2)
)








+

+(3m− 1)W (F3m−1) =

because for j = 0, the term obtained from the second sum is equal
to −(3m− 1)W (F3m−1), we get

= (3m− 1)(3m+ 2)!×

×








[ 3m+1
2 ]∑

j=0

2j+1 · (3m− 2j + 1) · Rj+1
1 · [[W (F3m−1),

j+1
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2)

(3m− 2j + 1)! ·
[
(R1, R1)

(2)
]j+1

·
j∏

i=0
(3m− 2i+ 2)2

−

−

[ 3m+1
2 ]∑

j=1

2j · (3m− 2j + 3) ·Rj1 · [[W (F3m−1),

j
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2)

(3m− 2j + 2)! · (3m− 2j + 3) ·
[
(R1, R1)

(2)
]j

·
j−1∏

i=0
(3m− 2i+ 2)2








=

by changing the sum index in the second sum, we obtain

= (3m− 1)(3m+ 2)!×

×








[ 3m+1
2 ]∑

j=0

2j+1 · (3m− 2j + 1) · Rj+1
1 · [[W (F3m−1),

j+1
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2)

(3m− 2j + 1)! ·
[
(R1, R1)

(2)
]j+1

·
j∏

i=0
(3m− 2i+ 2)2

−

−

[ 3m+1
2 ]−1
∑

j=0

2j+1 · (3m− 2j + 1) ·Rj+1
1 · [[W (F3m−1),

j+1
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2)

(3m− 2j + 1)! ·
[
(R1, R1)

(2)
]j+1

·
j∏

i=0
(3m− 2i+ 2)2








=
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= (3m− 1)(3m+ 2)!×

×
2[

3m+3
2 ] · (3m− 2

[
3m+1

2

]
+ 1) ·R

[ 3m+3
2 ]

1 · [[W (F3m−1),

[ 3m+3
2 ]

︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2)

(3m− 2
[

3m+1
2

]
+ 1)! ·

[
(R1, R1)

(2)
][ 3m+3

2 ]
·
[ 3m+1

2 ]∏

i=0
(3m− 2i+ 2)2

. (16)

If m is an odd number, i.e. m = 2l− 1, l ∈ N
∗, the expression (16) is written in

the form:

(6l − 4)(6l − 1)! · 23l · 0 · R3l
1 · [[W (F6l−4),

3l
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2)

[
(R1, R1)

(2)
]3l

·
3l−1∏

i=0
(6l − 2i− 1)2

,

where the transvectant

[[W (F6l−4),

3l
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2)

is equal to 0, because the degree of comitant W (F6l−4) with respect to the coordi-
nates of the vector x is equal to 6l− 1, but the total index of transvectants with R1

is equal to 6l.

If m is an even number, i.e. m = 2l, l ∈ N
∗, the expression (16) is written in

the form:

(6l − 1)(6l + 2)! · 23l+1 · R3l+1
1 · [[W (F6l−1),

3l+1
︷ ︸︸ ︷
R1)

(2), . . . , R1)
(2)

[
(R1, R1)

(2)
]3l+1

·
3l∏

i=0
(6l − 2i+ 2)2

= G6l+2 · R
3l+1
1 , (17)

where G6l+2 coincides with the expression (15). So, for establishing the Lyapunov
quantities for the system (1) with the conditions S1 = 0, I2 6= 0, the formulas (14)
and (15) can be used.

Notice that, when m = 2l − 1, l ∈ N
∗, the respective equations of the system

(13) have a unique solution with respect to F3m+2, i.e. in this case F3m+2 are
determined unambiguously. In the case m = 2l, l ∈ N

∗, the solutions of respective
equations of the system (13) with respect to F3m+2 are determined up to a term of

the form CR
3m+2

2
1 , where C is an arbitrary real constant. This implies that Lyapunov

quantities G6l+2, l ∈ N
∗, are not determined unambiguously.

Notice that the numerators in formulas (14) and (15) are expressed by transvec-
tants constructed by using the comitants R1, R4 and S4, but the denominators
represent the powers of invariant I2 = (R1, R1)

(2). Based on Remark 1, it follows
that the numerators in formulas (14) and (15) are GL(2,R)-comitants for the system
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(1). Since the GL(2,R)-comitants in (15) does not depend on the coordinates of the
vector x it follows they are GL(2,R)-invariants for the system (1).

On the above analysis, it results that the system (1), with the conditions S1 =
0, I2 6= 0 and all Lyapunov quantities (15) being equal to zero, admits first formal
integral of the form:

F (x, y) =

∞∑

m=0

F3m+2(x, y),

where F2(x, y) = R1, but F3m+2(x, y), m ∈ N
∗ are expressions (14).

3 The center conditions for the class of bidimensional polynomial
systems of differential equations with nonlinearities of the fourth
degree with S1 = 0, I2 > 0, I3 = I4 = 0

Let us consider the bidimensional polynomial system of differential equations
with nonlinearities of the fourth degree (1).

By using the comitants Ri and Si (i = 1, 4) the system (1) can be written in the
form (5).

We will consider the system (5) (or (1)) with the conditions S1 = 0, I2 > 0 which
has a center or a weak focus at (0, 0).

Remark 4. If R4 · S4 ≡ 0 then the system (5) (or (1)) with S1 = 0 and I2 > 0 has
a singular point of the center type at the origin of coordinates.

Indeed, if R4 ≡ 0, then the system (5) has the invariant algebraic curve

Φ(x, y) = 32R1 ·K2 + 8I2 ·K1 − 5I2
2 = 0

and the first integral

|Φ|
2
3 · |R1|

−1 = c1,

where c1 is a real constant.
If S4 ≡ 0, then the system (5) has the first integral:

5R1 + 2R4 = c2,

where c2 is a real constant.
For the system (1) with S1 = 0, I2 > 0 and I3 = I4 = 0 the GL(2,R)-invariant

conditions for distinguishing between center and focus were established.

Theorem 1. The system (1) with the conditions S1 = 0, I2 > 0 and I3 = I4 = 0
has the center at the origin of coordinates if and only if the following conditions are
fulfilled

G8 = G26 = G32 = G38 = 0,

where G8, G26, G32 and G38 are Lyapunov quantities given in (15).
Moreover, the above conditions are equivalent to the following invariant ones:

J5 = J6 = 0.
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Proof. Necessity. The system (1) (or (2)) with S1 = 0, I2 > 0 can be reduced by a
centeraffine transformation and time scaling to the form

dx

dt
= y + gx4 + 4hx3y + 6kx2y2 + 4lxy3 + my4,

dy

dt
= − x+ nx4 + 4px3y + 6qx2y2 + 4rxy3 + sy4. (18)

By a transformation of rotation, in the system (18) can be obtained the equality

h + q = 0. (19)

By using the substitutions

g =
4P + 5H

5
, h =

10K + 6Q

10
, k =

30L+ 12R

30
, l =

5M + S

5
, m = N,

n = −G, p =
P − 5H

5
, q =

12Q− 30K

30
, r =

6R− 10L

10
, s =

4S − 5M

5

and using (19), the system (18) can be reduced to the form

dx

dt
= y +

5H + 4P

5
x4 + 4Kx3y +

30L+ 12R

5
x2y2 +

20M + 4S

5
xy3 +Ny4,

dy

dt
= −x−Gx4 +

4P − 20H

5
x3y − 6Kx2y2 +

12R− 20L

5
xy3 +

4S − 5M

5
y4, (20)

for which

R1 = x2 + y2,

R4 = Gx5 + 5Hx4y + 10Kx3y2 + 10Lx2y3 + 5Mxy4 +Ny5,

S4 = Px3 + 3Rxy2 + Sy3,

I3 = (P +R)2 + S2,

I4 = (G+ 2K +M)2 + (H + 2L+N)2.

So, I3 = 0 implies S = 0 and R = −P , and I4 = 0, implies G = −2K −M and
N = −2L − H, i.e., the system (1) with S1 = 0, I2 > 0 and I3 = I4 = 0 can be
reduced to the form

dx

dt
= y +

5H + 4P

5
x4 + 4Kx3y +

30L− 12P

5
x2y2 + 4Mxy3 − (H + 2L)y4,

dy

dt
= −x+ (2K +M)x4 +

4P − 20H

5
x3y − 6Kx2y2−

12P + 20L

5
xy3−My4, (21)

for which

R4 = −(2K +M)x5 + 5Hx4y + 10Kx3y2 + 10Lx2y3 + 5Mxy4 − (H + 2L)y5,

S4 = Px3 − 3Pxy2.
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Applying the formulas (14) and (15) for the system (21) we obtain the following
expresions for Lyapunov quantities G8, G14, G20:

G8 = (K +M)P = J5/4,

G14 = J5 (405I2J1 − 2160I2J2 + 952I2J3 + 2025J4) /14400,

G20 = J5

(
2815560I2

2J
2
1 − 19591875I2

2J1J2 + 63518400I2
2J

2
2 + 8637786I2

2J1J3−

58484160I2
2 J2J3 + 14084096I2

2 J
2
3 + 13454100I2J1J4 − 71938125I2J2J4+

29031030I2J3J4 − 3118500J2
4

)
/414720000.

Since the condition G8 = 0 for the system (21) is equivalent to the GL(2,R)- invari-
ant condition J5 = 0, we obtain the first GL(2,R)- invariant necessary condition to
have a center at the origin of coordinates of system (1) with S1 = 0, I2 > 0 and
I3 = I4 = 0.

So we have that G8 = 0 implies G14 = G20 = 0. Because for the system (21)
G8 = (K +M)P , then the condition G8 = 0 implies P = 0 or K +M = 0.

If, P = 0, then the comitant S4 ≡ 0. In this case, by Remark 4., the system has
center at the origin of coordinates.

So, next we consider the situation when K + M = 0. In this case, the system
(21) is reduced to the system:

dx

dt
= y +

5H + 4P

5
x4 + 4Kx3y +

30L− 12P

5
x2y2 − 4Kxy3 − (H + 2L)y4,

dy

dt
= −x+Kx4 +

4P − 20H

5
x3y − 6Kx2y2 −

12P + 20L

5
xy3 +Ky4. (22)

For the system (22) the Lyapunov quantities G26, G32, G38, calculated by using
the formulas (14) and (15), have the following form:

G26 = F0F1F2F3F4/84000000

G32 = G26(922393092509I2J1 − 7764307622400I2J2 + 4866278972800I2J3+

3192990020695J4)/3146766336000+

3F0F2F3F4(H + L)T1/36700160000+

F0F1F3F4(H + L)T2/3369074688000−

221F0F1F2F4(H + L)T3/23506452480000−

19F0F1F2F3(H + L)T4/580123856076800,

G38 = G26

(
1260330988434177209628113I2

2J
2

1 − 1565022781470031761945900I2

2J1J2+

3961006936844834443936320I2

2J1J3 − 8168120539265700752256 · 103I2

2J2J3+

2369232236068131016396800I2

2
J2

3
+ 10245606623605773424473980I2J1J4−

5406135013075353898294500I2J2J3 + 19179000607759206394593600I2J3J4+

19995035693675277842822075J2

4

)
/833778038297581977600000−

F0F2F3F4(H + L)
(
79683781250(H + L)4 + 16596426225(H + L)2T1−

142466T 2

1

)
/465032131379200000−

F0F1F3F4(H + L)
(
5162357307858086250(H + L)4+
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56310112366375(H+ L)2T2 − 29394738T 2

2

)
/250457744498759156367360000+

F0F1F2F4(H + L)
(
24262059975447656250(H+ L)4+

11785658137723675(H + L)2T3 + 12640691034T 2

3

)
/8656725653336988057600000+

F0F1F2F3(H + L)
(
36485669757340710580038147(H+ L)4 − 1810577808T 2

4+

22352124982450552136(H+ L)2T4 )/1534080025254517631690342400000,

where polynomials Fi, i = 0, 4, and Tj , j = 1, 4, have the forms

F0 = K(−3H2 + 16K2 + 18HL− 27L2)P,

F1 = 45H + 45L+ 8P,

F2 = 35H + 35L+ 24P,

F3 = 85H + 85L+ 24P,

F4 = 665H + 665L+ 116P,

T1 = − 2051H2 + 1584K2 − 4894HL − 1259L2,

T2 = − 373481H2 + 994704K2 − 1244314HL + 123871L2,

T3 = − 105177H2 + 36368K2 − 228538HL − 86993L2,

T4 = − 215747339H2 + 134963680K2 − 498976518HL − 148265499L2 .

If F0 = 0, then the Lyapunov quantities G26, G32 and G38 are equal to zero.

If F0 6= 0, then G26 = 0 if and only if F1F2F3F4 = 0. If at least two of
polynomials Fi, i = 1, 4, are equal to zero, then H +L = 0 and P = 0 which implies
G32 = G38 = 0. Moreover, this implies also F0 = 0.

We claim that even the equality with zero of only one of the polynomials Fi, i =
1, 4, together with G32 = G38 = 0 also implies F0 = 0. For the vanishing of G26, we
consider the following four cases:

1. F1 = 45H + 45L+ 8P = 0 with F2, F3, F4 6= 0,

2. F2 = 35H + 35L+ 24P = 0 with F1, F3, F4 6= 0,

3. F3 = 85H + 85L+ 24P = 0 with F1, F2, F4 6= 0 and

4. F4 = 665H + 665L + 116P = 0 with F1, F2, F3 6= 0.

Case 1. Let F1 = 45H + 45L+ 8P = 0 and F2, F3, F4 6= 0. In this case

G32 = 3F0F2F3F4(H + L)T1/36700160000

and for the vanishing of G32 we have the following subcases:

1.1. H + L = 0 and

1.2. T1 = 0.

Subcase 1.1. If H +L = 0 then together with the condition F1 = 45H +45L+
8P = 0 it leads to P = 0, which implies the comitant S4 ≡ 0. In this case the system
has a center at the origin of coordinates.

Subcase 1.2. If T1 = 0, then G38, up to a numerical factor, has the form
G38 = F0F2F3F4(H + L)5. Notice that the Lyapunov quantity G38 can be nonzero
and this implies that the condition G38 = 0 is a necessary condition for the existence
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of a center at the origin of coordinates. The condition G38 = 0 implies H + L = 0
then together with the condition F1 = 45H + 45L + 8P = 0 it leads to P = 0. In
this case the system has a center at the origin of coordinates.

So, in this case for the existence of a center at the origin of coordinates of the
phase plane of system (22) the vanishing of Lyapunov quantities G26, G32 and G38

is necessary , which implies

F0 = K(−3H2 + 16K2 + 18HL− 27L2)P = 0.

This condition is equivalent with the following invariant condition

J6 = 16K(−3H2 + 16K2 + 18HL− 27L2)P 5 = 0.

Cases 2, 3 and 4 can be analyzed by the same way described above and it leads
to the same result. So, we obtain that for the existence of a center at the origin of
coordinates of the phase plane of system (21) the realization of the conditions:

G8 = G26 = G32 = G38 = 0

is necessary, which leads to the invariant conditions:

J5 = J6 = 0.

Sufficiency. In proving the necessity, it was established that the condition

KP
[
(16K2 − 3(H − 3L)2

]
= 0 (23)

is the necessary one for the existence of a center at the origin of coordinates for
the system (22). Next we prove the sufficiency of this condition. Condition (23) is
verified if one of the following equalities is fulfilled:

(i) P = 0; (ii) K = 0; (iii) K =

√
3

4
(H − 3L); (iv) K = −

√
3

4
(H − 3L).

Case (i). If P = 0, then S4 ≡ 0 and the point (0; 0) is a singular point of center
type for the system (22). This case was analyzed above.

Case (ii). If K = 0, then in this case the system (22) takes the form:

dx

dt
= y +

5H + 4P

5
x4 +

30L− 12P

5
x2y2 − (H + 2L)y4,

dy

dt
= −x+

4P − 20H

5
x3y −

12P + 20L

5
xy3. (24)

For the system (24), the condition

Q(−x; y)P(x; y) = −P(−x; y)Q(x; y) (25)

is fulfilled, i.e. the straight line defined by the equation x = 0 is a symmetry axis
for the system (24). So, the point (0; 0) is a singular point of center type for the
system (24), i.e. for the system (22) with K = 0.
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Case (iii). If K =

√
3

4
(H − 3L), then the system (22) takes the form

dx

dt
= y +

5H + 4P

5
x4 + (

√
3H − 3

√
3L)x3y +

30L− 12P

5
x2y2−

(
√

3H − 3
√

3L)xy3 − (H + 2L)y4,

dy

dt
= − x+

√
3H − 3

√
3L

4
x4 +

4P − 20H

5
x3y −

3
√

3H − 9
√

3L

2
x2y2− (26)

12P + 20L

5
xy3 +

√
3H − 3

√
3L

4
y4.

The trajectories of the system (26) are symmetric with respect to the straight line
defined by the equation x−

√
3y = 0. With the rotation of axes

x1 = x cosα+ y sinα, y1 = −x sinα+ y cosα (27)

with the angle α = −
π

3
, the system (26) becomes as follows:

dx1

dt
= y1 −

5H + 45L+ 16P

20
x1

4 +
−45H + 75L+ 24P

10
x1

2y1
2 +

7H − L

4
y1

4,

dy1

dt
= −x1 +

5H + 45L− 4P

5
x1

3y1 +
15H − 25L+ 12P

5
x1y1

3. (28)

For the system (28) the condition (25) is verified in coordinates of x1 and y1, i.e.
the straight line defined by the equation x1 = 0 is a symmetry axis for the system
(28). Therefore, it follows that the straight line defined by the equation x−

√
3y = 0

is the symmetry axis for the system (26). So, the point (0; 0) is a singular point of

center type for the system (26), or for the system (22) with K =

√
3

4
(H − 3L).

Case (iv). If K = −

√
3

4
(H − 3L), then the system (22) takes the form

dx

dt
= y +

5H + 4P

5
x4 − (

√
3H − 3

√
3L)x3y +

30L− 12P

5
x2y2+

(
√

3H − 3
√

3L)xy3 − (H + 2L)y4,

dy

dt
= − x−

√
3H − 3

√
3L

4
x4 +

4P − 20H

5
x3y +

3
√

3H − 9
√

3L

2
x2y2− (29)

12P + 20L

5
xy3 −

√
3H − 3

√
3L

4
y4.

The trajectories of system (29) are symmetric with respect to the straight line defined

by the equation x+
√

3y = 0. With the rotation of axes (27) with the angle α =
π

3
,

the system (29) becomes like the system (28), for which the line defined by the
equation x1 = 0 is a symmetry axis. So, the point (0; 0) is a singular point of center

type for the system (29), or for the system (22) with K = −

√
3

4
(H − 3L).
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In such a way the conditions

G8 = G26 = G32 = G38 = 0 (30)

or the invariant conditions

J5 = J6 = 0 (31)

are sufficient conditions for the existence of a singular point of center type at the
origin of coordinates for the system (21). Because G8, G26, G32, G38, J5, J6 are
GL(2,R)-invariants and the system (21) was obtained from system (1), with con-
ditions S1 = 0, I2 > 0, I3 = I4 = 0 , by linear transformation and time scaling, it
follows that the conditions (30) and (31) are necessary and sufficient for the exis-
tence of a singular point of center type at the origin of coordinates for the system
(1) with S1 = 0, I2 > 0 and I3 = I4 = 0.

Theorems 1 is proved.
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