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1 Introduction and Theorems

As the development of the Calderón-Zygmund singular integral operators and
their commutators, multilinear singular integral operators have been well studied
(see [4, 9, 16–19]). Let T be the Calderón-Zygmund singular integral operator. In
[1–3], Cohen and Gosselin studied the Lp (p > 1) boundedness of the multilinear
singular integral operator TA defined by

TA(f)(x) =
∫

Rn

Rm+1(A; x, y)
|x− y|m K(x, y)f(y)dy,

where
Rm+1(A; x, y) = A(x)−

∑

|α|≤m

1
α!

DαA(y)(x− y)α.

In [12], Hu and Yang proved a variant sharp estimate for the multilinear singular
integral operators. In the last years, a theory of Lp spaces with variable exponent
has been developed because of its connections with some questions in fluid dyna-
mics, calculus of variations, differential equations and elasticity(see [5–8,15] and their
references). Karlovich and Lerner have studied the boundedness of the commutators
of singular integral operators on Lp spaces with variable exponent (see [13]). In this
paper, we will study the boundedness properties for some vector-valued multilinear
singular integral operators on Lp spaces with variable exponent, whose definition is
the following.

Fix ε > 0. Let S and S′ be Schwartz space and its dual and T : S → S′ be a linear
operator. If there exists a locally integrable function K(x, y) on Rn×Rn \ {(x, y) ∈
Rn ×Rn : x = y} such that

T (f)(x) =
∫

Rn

K(x, y)f(y)dy
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for every bounded and compactly supported function f , where K satisfies:

|K(x, y)| ≤ C|x− y|−n

and
|K(y, x)−K(z, x)|+ |K(x, y)−K(x, z)| ≤ C|y − z|ε|x− z|−n−ε

when 2|y− z| ≤ |x− z|. Let mj be positive integers (j = 1, · · ·, l), m1 + · · ·+ml = m
and Aj be functions on Rn (j = 1, · · ·, l). For 1 < s < ∞, the vector-valued
multilinear operator related to T is defined by

|TA(f)(x)|s =

( ∞∑

i=1

|TA(fi)(x)|s
)1/s

,

where

TA(fi)(x) =
∫

Rn

∏l
j=1 Rmj+1(Aj ; x, y)

|x− y|m K(x, y)fi(y)dy

and
Rmj+1(Aj ; x, y) = Aj(x)−

∑

|α|≤mj

1
α!

DαAj(y)(x− y)α.

We also denote

|T (f)(x)|s =

( ∞∑

i=1

|T (fi)(x)|s
)1/s

and |f |s =

( ∞∑

i=1

|fi(x)|s
)1/s

.

Suppose that |T |s is weakly (L1, L1)-bounded.
Note that when m = 0, |TA|s is just the vector-valued multilinear commutator

of T and A (see [19]). While when m > 0, |TA|s is non-trivial generalizations of
the commutator. It is well known that multilinear operators are of great interest in
harmonic analysis and have been studied by many authors (see [1–4, 9]). In [12],
Hu and Yang proved a variant sharp estimate for the multilinear singular integral
operators. In [18], Pérez and Trujillo-Gonzalez proved a sharp estimate for some
multilinear commutator. The main purpose of this paper is to prove the boundedness
for the vector-valued multilinear singular integral operators |TA|s on Lp spaces with
variable exponent. To do this, we first prove a sharp inequality for the vector-valued
multilinear singular integral operators.

Now, let us introduce some notations. Throughout this paper, Q will denote a
cube of Rn with sides parallel to the axes. For any locally integrable function f and
δ > 0, the sharp function of f is defined by

f#
δ (x) = sup

Q3x

(
1
|Q|

∫

Q
|f(y)− fQ|δdy

)1/δ

,

where, and in what follows, fQ = |Q|−1
∫
Q f(x)dx. It is well-known that (see [11,20])

f#
δ (x) ≈ sup

Q3x
inf
c∈C

(
1
|Q|

∫

Q
|f(y)− c|δdy

)1/δ

.
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We write f# = f#
δ if δ = 1. We say that f belongs to BMO(Rn) if f# belongs to

L∞(Rn) and define ||f ||BMO = ||f#||L∞ . Let M be the Hardy-Littlewood maximal
operator defined by

M(f)(x) = sup
Q3x

|Q|−1

∫

Q
|f(y)|dy.

For k ∈ N , we denote by Mk the operator M iterated k times, i.e., M1(f)(x) =
M(f)(x) and

Mk(f)(x) = M(Mk−1(f))(x) when k ≥ 2.

Let Φ be a Young function and Φ̃ be the complementary associated to Φ. We
denote the Φ-average for a function f by

||f ||Φ,Q = inf
{

λ > 0 :
1
|Q|

∫

Q
Φ

( |f(y)|
λ

)
dy ≤ 1

}

and the maximal function associated to Φ by

MΦ(f)(x) = sup
Q3x

||f ||Φ,Q.

The Young functions to be used in this paper are Φ(t) = t(1 + logt)r and Φ̃(t) =
exp(t1/r), the corresponding average and maximal functions denoted by ||·||L(logL)r,Q,
ML(logL)r and || · ||expL1/r,Q, MexpL1/r . Following [16-19], we know the generalized
Hölder’s inequality:

1
|Q|

∫

Q
|f(y)g(y)|dy ≤ ||f ||Φ,Q||g||Φ̃,Q

and the following inequalities, for r, rj ≥ 1, j = 1, · · ·, l, with 1/r = 1/r1 + · · ·+1/rl,
and any x ∈ Rn, b ∈ BMO(Rn),

||f ||L(logL)1/r,Q ≤ ML(logL)1/r(f) ≤ CML(logL)l(f) ≤ CM l+1(f),

||b− bQ||expLr,Q ≤ C||b||BMO,

|b2k+1Q − b2Q| ≤ Ck||b||BMO.

The non-increasing rearrangement of a measurable function f on Rn is defined
by

f∗(t) = inf{λ > 0 : |{x ∈ Rn : |f(x)| > λ}| ≤ t} (0 < t < ∞).

For λ ∈ (0, 1) and a measurable function f on Rn, the local sharp maximal function
of f is defined by

M#
λ (f)(x) = sup

Q3x
inf
c∈C

((f − c)χQ)∗(λ|Q|).

Let p : Rn → [1,∞) be a measurable function. Denote by Lp(·)(Rn) the sets
of all Lebesgue measurable functions f on Rn such that m(λf, p) < ∞ for some
λ = λ(f) > 0, where

m(f, p) =
∫

Rn

|f(x)|p(x)dx.
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The sets becomes Banach spaces with respect to the following norm

||f ||Lp(·) = inf{λ > 0 : m(f/λ, p) ≤ 1}.

Denote by M(Rn) the set of all measurable functions p : Rn → [1,∞) such that the
Hardy-Littlewood maximal operator M is bounded on Lp(·)(Rn) and the following
holds

1 < p− = ess inf
x∈Rn

p(x), ess sup
x∈Rn

p(x) = p+ < ∞. (1)

In recent years, the boundedness of classical operators on spaces Lp(·)(Rn) have
attracted a great attention (see [5–8,15]). In this paper, we shall prove the following
theorems.

Theorem 1. Let 1 < s < ∞ and DαAj ∈ BMO(Rn) for all α with |α| = mj and
j = 1, · · ·, l. Then there exists a constant C > 0 such that for any f = {fi} ∈
L∞0 (Rn), 0 < δ < 1 and x̃ ∈ Rn,

(|TA(f)|s)#δ (x̃) ≤ C
l∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO


M l+1(|f |s)(x̃).

Theorem 2. Let 1 < s < ∞, p(·) ∈ M(Rn) and DαAj ∈ BMO(Rn) for all α with
|α| = mj and j = 1, · · ·, l. Then |TA|s is bounded on Lp(·)(Rn), that is

|||TA(f)|s||Lp(·) ≤ C
l∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO


 |||f |s||Lp(·) .

Remark 1. Let T be the Calderón-Zygmund operator (see [4, 11, 20]). Then Theo-
rem 1 and Theorem 2 hold for T .

2 Some Lemmas

We begin with some preliminary lemmas.

Lemma 1 (see [3]). Let A be a function on Rn and DαA ∈ Lq(Rn) for all α with
|α| = m and some q > n. Then

|Rm(A; x, y)| ≤ C|x− y|m
∑

|α|=m

(
1

|Q̃(x, y)|

∫

Q̃(x,y)
|DαA(z)|qdz

)1/q

,

where Q̃ is the cube centered at x and having side length 5
√

n|x− y|.
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Lemma 2 (see [11, p. 485]). Let 0 < p < q < ∞. We define that, for any function
f ≥ 0 and 1/r = 1/p− 1/q,

||f ||WLq = sup
λ>0

λ|{x ∈ Rn : f(x) > λ}|1/q, Np,q(f) = sup
E
||fχE ||Lp/||χE ||Lr ,

where the sup is taken for all measurable sets E with 0 < |E| < ∞. Then

||f ||WLq ≤ Np,q(f) ≤ (q/(q − p))1/p||f ||WLq .

Lemma 3 (see [18]). Let rj ≥ 1 for j = 1, ···, l and we denote 1/r = 1/r1+···+1/rl.
Then

1
|Q|

∫

Q
|f1(x) · · · fl(x)g(x)|dx ≤ ||f ||expLr1 ,Q · · · ||f ||expLrl ,Q||g||L(logL)1/r,Q.

Lemma 4 (see [13]). Let p : Rn → [1,∞) be a measurable function satisfying (1).
Then L∞0 (Rn) is dense in Lp(·)(Rn).

Lemma 5 (see [14]). Let f ∈ L1
loc(R

n) and g be a measurable function satisfying

|{x ∈ Rn : |g(x)| > α}| < ∞ for all α > 0.

Then ∫

Rn

|f(x)g(x)|dx ≤ Cn

∫

Rn

M#
λn

(f)(x)M(g)(x)dx.

Lemma 6 (see [14]). Let δ > 0, 0 < λ < 1 and f ∈ Lδ
loc(R

n). Then

M#
λ (f)(x) ≤ (1/λ)1/δf#

δ (x).

Lemma 7 (see [13]). Let p : Rn → [1,∞) be a measurable function satisfying (1).
If f ∈ Lp(·)(Rn) and g ∈ Lp′(·)(Rn) with p′(x) = p(x)/(p(x)−1), then fg is integrable
on Rn and ∫

Rn

|f(x)g(x)|dx ≤ C||f ||Lp(·) ||g||Lp′(·) .

Lemma 8 (see [13]). Let p : Rn → [1,∞) be a measurable function satisfying (1).
Set

||f ||′
Lp(·) = sup

{∫

Rn

|f(x)g(x)|dx : f ∈ Lp(·)(Rn), g ∈ Lp′(·)(Rn)
}

.

Then ||f ||Lp(·) ≤ ||f ||′
Lp(·) ≤ C||f ||Lp(·).
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3 Proof of Theorem

It suffices to prove that for f ∈ C∞
0 (Rn) and some constant C0, the following

inequality holds:

(
1
|Q|

∫

Q
||TA(f)(x)|s − C0|δdx

)1/δ

≤ C
l∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO


M l+1(|f |s)(x̃).

Without loss of generality, we may assume l = 2. Fix a cube Q = Q(x0, d) and x̃ ∈ Q.
Let Q̃ = 5

√
nQ and Ãj(x) = Aj(x) − ∑

|α|=m

1
α!(D

αAj)Q̃xα, then Rm(Aj ; x, y) =

Rm(Ãj ; x, y) and DαÃj = DαAj − (DαAj)Q̃ for |α| = mj . We split f = g + h =
{gi}+ {hi} for gi = fiχQ̃ and hi = fiχRn\Q̃. Write

TA(fi)(x) =
∫

Rn

∏2
j=1 Rmj+1(Ãj ; x, y)

|x− y|m K(x, y)fi(y)dy

=
∫

Rn

∏2
j=1 Rmj+1(Ãj ; x, y)

|x− y|m K(x, y)hi(y)dy

+
∫

Rn

∏2
j=1 Rmj (Ãj ; x, y)
|x− y|m K(x, y)gi(y)dy

−
∑

|α1|=m1

1
α1!

∫

Rn

Rm2(Ã2; x, y)(x− y)α1

|x− y|m Dα1Ã1(y)K(x, y)gi(y)dy

−
∑

|α2|=m2

1
α2!

∫

Rn

Rm1(Ã1; x, y)(x− y)α2

|x− y|m Dα2Ã2(y)K(x, y)gi(y)dy

+
∑

|α1|=m1, |α2|=m2

1
α1!α2!

∫

Rn

(x− y)α1+α2Dα1Ã1(y)Dα2Ã2(y)
|x− y|m K(x, y)gi(y)dy,

then, by Minkowski’ inequality,

[
1
|Q|

∫

Q

∣∣|TA(f)(x)|s − |TÃ(h)(x0)|s
∣∣δ dx

]1/δ

≤

 1
|Q|

∫

Q

( ∞∑

i=1

|TA(fi)(x)− TÃ(hi)(x0)|s
)δ/s

dx




1/δ

≤

 C

|Q|
∫

Q

( ∞∑

i=1

∣∣∣∣∣
∫

Rn

∏2
j=1 Rmj (Ãj ;x, y)
|x− y|m K(x, y)gi(y)dy

∣∣∣∣∣
s)δ/s

dx




1/δ

+ [
C

|Q|
∫

Q
(
∞∑

i=1

|
∑

|α1|=m1

∫

Rn

Rm2(Ã2; x, y)(x− y)α1

|x− y|m
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×Dα1Ã1(y)K(x, y)gi(y)dy|s)δ/sdx]1/δ

+ [
C

|Q|
∫

Q
(
∞∑

i=1

|
∑

|α2|=m2

∫

Rn

Rm1(Ã1; x, y)(x− y)α2

|x− y|m

×Dα2Ã2(y)K(x, y)gi(y)dy|s)δ/sdx]1/δ

+ [
C

|Q|
∫

Q
(
∞∑

i=1

|
∑

|α1|=m1, |α2|=m2

∫

Rn

(x− y)α1+α2Dα1Ã1(y)Dα2Ã2(y)
|x− y|m

×K(x, y)gi(y)dy|s)δ/sdx]1/δ

+


 C

|Q|
∫

Q

( ∞∑

i=1

∣∣TÃ(hi)(x)− TÃ(hi)(x0)
∣∣s

)δ/s

dx




1/δ

:= I1 + I2 + I3 + I4 + I5.

Now, let us estimate I1, I2, I3, I4 and I5, respectively. First, for x ∈ Q and y ∈ Q̃,
by Lemma 1, we get

Rmj (Ãj ; x, y) ≤ C|x− y|mj
∑

|αj |=mj

||DαjAj ||BMO,

thus, by Lemma 2 and the weak type (1,1) of |T |s, we obtain

I1 ≤ C
2∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO




(
1
|Q|

∫

Q
|T (g)(x)|δsdx

)1/δ

= C
2∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO


 |Q|−1 |||T (g)|sχQ||Lδ

|Q|1/δ−1

≤ C
2∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO


 |Q|−1|||T (g)|s||WL1

≤ C
2∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO


 |Q|−1|||g|s||L1

≤ C
2∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO


M(|f |s)(x̃).

For I2, by Lemma 2 and generalized Hölder’s inequality, we get

I2 ≤ C
∑

|α2|=m2

||Dα2A2||BMO

∑

|α1|=m1

(
1
|Q|

∫

Rn

|T (Dα1Ã1g)(x)|δsdx

)1/δ

≤ C
∑

|α2|=m2

||Dα2A2||BMO

∑

|α1|=m1

|Q|−1|||T (Dα1Ã1g)(x)|sχQ||WL1



10 JING DU, CHUANGXIA HUANG, LANZHE LIU

≤ C
∑

|α2|=m2

||Dα2A2||BMO

∑

|α1|=m1

1
|Q|

∫

Rn

|Dα1Ã1(x)||g(x)|sdx

≤ C
∑

|α2|=m2

||Dα2A2||BMO

∑

|α1|=m1

||Dα1A1 − (Dα1A1)Q̃||expL,Q̃|||f |s||L(logL),Q̃

≤ C
2∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO


M2(|f |s)(x̃).

For I3, similarly to the proof of I2, we get

I3 ≤ C

2∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO


M2(|f |s)(x̃).

Similarly, for I4, taking r, r1, r2 ≥ 1 such that 1/r = 1/r1 + 1/r2, we obtain, by
Lemma 3,

I4 ≤ C
∑

|α1|=m1, |α2|=m2

(
1
|Q|

∫

Rn

|T (Dα1Ã1D
α2Ã2f1)(x)|δsdx

)1/δ

≤ C
∑

|α1|=m1, |α2|=m2

|Q|−1|||T (Dα1Ã1D
α2Ã2g)|sχQ||WL1

≤ C
∑

|α1|=m1, |α2|=m2

1
|Q|

∫

Rn

|Dα1Ã1(x)Dα2Ã2(x)||g(x)|sdx

≤ C
∑

|α1|=m1,|α2|=m2

2∏

j=1

∣∣∣
∣∣∣DαjAj − (DαjAj)Q̃

∣∣∣
∣∣∣
expLrj ,Q̃

· |||f |s||L(logL)1/r,Q̃

≤ C

2∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO


M3(|f |s)(x̃).

For I5, we write

TÃ(hi)(x)− TÃ(hi)(x0) =
∫

Rn

(
K(x, y)
|x− y|m − K(x0, y)

|x0 − y|m
) 2∏

j=1

Rmj (Ãj ; x, y)hi(y)dy

+
∫

Rn

(
Rm1(Ã1;x, y)−Rm1(Ã1; x0, y)

) Rm2(Ã2;x, y)
|x0 − y|m K(x0, y)hi(y)dy

+
∫

Rn

(
Rm2(Ã2;x, y)−Rm2(Ã2; x0, y)

) Rm1(Ã1;x0, y)
|x0 − y|m K(x0, y)hi(y)dy

−
∑

|α1|=m1

1
α1!

∫

Rn

[
Rm2(Ã2;x, y)(x− y)α1

|x− y|m K(x, y)

−Rm2(Ã2; x0, y)(x0 − y)α1

|x0 − y|m K(x0, y)]Dα1Ã1(y)hi(y)dy
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−
∑

|α2|=m2

1
α2!

∫

Rn

[
Rm1(Ã1;x, y)(x− y)α2

|x− y|m K(x, y)

−Rm1(Ã1; x0, y)(x0 − y)α2

|x0 − y|m K(x0, y)]Dα2Ã2(y)hi(y)dy

+
∑

|α1|=m1, |α2|=m2

1
α1!α2!

∫

Rn

[
(x− y)α1+α2

|x− y|m K(x, y)− (x0 − y)α1+α2

|x0 − y|m K(x0, y)
]

×Dα1Ã1(y)Dα2Ã2(y)hi(y)dy

= I
(1)
5 + I

(2)
5 + I

(3)
5 + I

(4)
5 + I

(5)
5 + I

(6)
5 .

By Lemma 1 and the following inequality(see [20])

|bQ1 − bQ2 | ≤ C log(|Q2|/|Q1|)||b||BMO for Q1 ⊂ Q2,

we know that, for x ∈ Q and y ∈ 2k+1Q̃ \ 2kQ̃,

|Rmj (Ãj ; x, y)| ≤ C|x− y|mj
∑

|αj |=mj

(||DαjA||BMO + |(DαjA)Q̃(x,y) − (DαjA)Q̃|)

≤ Ck|x− y|mj
∑

|αj |=mj

||DαjA||BMO.

Note that |x− y| ∼ |x0 − y| for x ∈ Q and y ∈ Rn \ Q̃, we obtain, by the conditions
on K,

|I(1)
5 | ≤ C

∫

Rn

( |x− x0|
|x0 − y|m+n+1

+
|x− x0|ε

|x0 − y|m+n+ε

) 2∏

j=1

Rmj (Ãj ; x, y)||hi(y)|dy

≤ C

2∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO




×
∞∑

k=0

∫

2k+1Q̃\2kQ̃
k2

( |x− x0|
|x0 − y|n+1

+
|x− x0|ε
|x0 − y|n+ε

)
|fi(y)|dy

≤ C

2∏

j=1


 ∑

|α|=mj

||DαAj ||BMO




∞∑

k=1

k2(2−k + 2−εk)
1

|2kQ̃|

∫

2kQ̃
|fi(y)|dy,

thus, by Minkowski’ inequality,

( ∞∑

i=1

∣∣∣I(1)
5

∣∣∣
s
)1/s

≤ C
2∏

j=1


 ∑

|α|=mj

||DαAj ||BMO




∞∑

k=1

k2(2−k + 2−εk)

× 1
|2kQ̃|

∫

2kQ̃
|f(y)|sdy
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≤ C

2∏

j=1


 ∑

|α|=mj

||DαAj ||BMO


M(|f |s)(x̃).

For I
(2)
5 , by the formula (see [3]):

Rmj (Ã;x, y)−Rmj (Ã; x0, y) =
∑

|β|<mj

1
β!

Rmj−|β|(D
βÃ; x, x0)(x− y)β

and Lemma 1, we have

|Rmj (Ã; x, y)−Rmj (Ã;x0, y)| ≤ C
∑

|β|<mj

∑

|α|=mj

|x− x0|mj−|β||x− y||β|||DαA||BMO,

thus

( ∞∑

i=1

∣∣∣I(2)
5

∣∣∣
s
)1/s

≤ C
2∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO




×
∞∑

k=0

∫

2k+1Q̃\2kQ̃
k
|x− x0|

|x0 − y|n+1
|f(y)|sdy

≤ C
2∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO


M(|f |s)(x̃).

Similarly,

( ∞∑

i=1

∣∣∣I(3)
5

∣∣∣
s
)1/s

≤ C
2∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO


M(|f |s)(x̃).

For I
(4)
5 , similar to the proof of I

(1)
5 , I

(2)
5 and I2, we get

( ∞∑

i=1

∣∣∣I(4)
5

∣∣∣
s
)1/s

≤ C
∑

|α1|=m1

∫

Rn\Q̃

∣∣∣∣
(x− y)α1K(x, y)

|x− y|m − (x0 − y)α1K(x0, y)
|x0 − y|m

∣∣∣∣

×|Rm2(Ã2; x, y)||Dα1Ã1(y)||f(y)|sdy

+C
∑

|α1|=m1

∫

Rn\Q̃
|Rm2(Ã2; x, y)−Rm2(Ã2;x0, y)|

×|(x0 − y)α1K(x0, y)|
|x0 − y|m |Dα1Ã1(y)||f(y)|sdy
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≤ C
∑

|α2|=m2

||Dα2A2||BMO

∑

|α1|=m1

∞∑

k=1

k(2−k + 2−εk)
1

|2kQ̃|

∫

2kQ̃
|Dα1Ã1(y)||f(y)|sdy

≤ C
∑

|α2|=m2

||Dα2A2||BMO

∑

|α1|=m1

∞∑

k=1

k(2−k + 2−εk)

×||Dα1A1 − (Dα1A1)Q̃||expL,2kQ̃|||f |s||L(logL),2kQ̃

≤ C
2∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO


M2(|f |s)(x̃).

Similarly,
( ∞∑

i=1

∣∣∣I(5)
5

∣∣∣
s
)1/s

≤ C
2∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO


M2(|f |s)(x̃).

For I
(6)
5 , we obtain

( ∞∑

i=1

∣∣∣I(6)
5

∣∣∣
s
)1/s

≤ C
∑

|α1|=m1,|α2|=m2

∫

Rn\Q̃

∣∣∣∣
(x− y)α1+α2K(x, y)

|x− y|m − (x0 − y)α1+α2K(x0, y)
|x0 − y|m

∣∣∣∣

×|Dα1Ã1(y)||Dα2Ã2(y)||f(y)|sdy

≤ C
∑

|α1|=m1,|α2|=m2

∞∑

k=1

(2−k + 2−εk)
1

|2kQ̃|

∫

2kQ̃
|Dα1Ã1(y)||Dα2Ã2(y)||f(y)|sdy

≤ C
∑

|α1|=m1,|α2|=m2

2∏

j=1

∣∣∣
∣∣∣DαjAj − (DαjAj)Q̃

∣∣∣
∣∣∣
expLrj ,2kQ̃

· |||f |s||L(logL)1/r,2kQ̃

≤ C

2∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO


M3(|f |s)(x̃).

Thus

|I5| ≤ C
2∏

j=1


 ∑

|αj |=mj

||DαjAj ||BMO


M3(|f |s)(x̃).

This completes the proof of Theorem 1.
By Lemmas 4–7, we get, for f = {fi} ∈ L∞0 (Rn) and g ∈ Lp′(·)(Rn),

∫

Rn

|TA(f)(x)|sg(x)|dx ≤ C

∫

Rn

M#
λn

(TA(f)|s)(x)M(g)(x)|dx

≤ C

∫

Rn

(TA(f)|s)#δ (x)M(g)(x)dx
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≤ C

∫

Rn

M l+1(|f |s)(x)M(g)(x)dx

≤ C||M l+1(|f |s)||Lp(·) ||M(g)||Lp′(·)

≤ C|||f |s||Lp(·) ||g||Lp′(·) ,

thus, by Lemma 8,
|||TA(f)(x)|s||Lp(·) ≤ |||f |s||Lp(·) .

This completes the proof of Theorem 2.
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On Frattini subloops and normalizers of commutative
Moufang loops
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Abstract. Let L be a commutative Moufang loop (CML) with the multiplication
group M, and let F(L), F(M) be the Frattini subloop of L and Frattini subgroup of M.
It is proved that F(L) = L if and only if F(M) = M, and the structure of this CML
is described. The notion of normalizer for subloops in CML is defined constructively.
Using this it is proved that if F(L) 6= L, then L satisfies the normalizer condition and
that any divisible subgroup of M is an abelian group and serves as a direct factor for
M.

Mathematics subject classification: 20N05.

Keywords and phrases: Commutative Moufang loop, multiplication group, Frattini
subloop, Frattini subgroup, normalizer, loop with normalizer condition, divisible loop.

It is known that in many classes of algebras the Frattini subalgebras essentially
determine the structure of these algebras. In this paper this dependance is considered
in the class of commutative Moufang loops (CML) and their multiplication groups.
Let L be a CML with the multiplication group M, let F(L) and F(M) denote the
Frattini subloop of L and the Frattini subgroup of M. It is proved that F(L) = L
if and only if F(M) = M, and the structure of this CML and groups is described.
In particular, if L has the exponent 3, then F(L) = L if and only if L = L′, where
L′ denotes the associator subloop of L (Theorem 1). The existence of CML with
L′ = L is proved in [1].

The normalizer NL(H) is defined constructively for subloop H of commutative
Moufang loop L which, in general, has the same role as a normalizer for subgroups.
The normalizer NL(H) is the unique maximal subloop of L such that H is normal
in NL(H). By analogy with the group theory the notion of CML with normalizer
condition is defined: every proper subloop of CML differs from his normalizer. Using
essentially Theorem 1, it is proved that if a CML L satisfies the inequality F(L) 6= L
then L satisfies the normalizer condition. It is proved also that for multiplication
groups of CML an analogous situation does not take place. There exists a CML
L with multiplication group M such that F(M) 6= M, but M does not satisfy the
normalizer condition.

Again, using essentially Theorem 1 it is proved that every divisible subgroup
of multiplication group M of any CML is an abelian group and serves as a direct
factor for M (Theorem 2). A similar result for divisible subloops of CML is proved
in [2]. We note that in general case Theorem 2 is not true. In [3, Theorem 2.7

c© N. I. Sandu, 2012
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and Example 2.2] there is an example of a divisible non-periodic and non-abelian
ZA-group.

At last we note that the material of present article has been published earlier,
in [4].

1 Preliminaries

Let us bring some notions and results on the loop theory from [5,6].
The multiplication group M(L) of a loop L is the group generated by all

translations L(x), R(x), where L(x)y = xy, R(x)y = yx. The subgroup I(L)
of group M(L), generated by all inner mappings L(x, y) = L−1(xy)L(x)L(y),
R(x, y) = R−1(xy)R(y)R(x), T (x) = L−1(x)R(x) is called the inner mapping group
of loop L. A subloop H of a loop L is called normal in L if I(L)H = H. The set of
all elements x ∈ L which commute and associate with all elements of L so that for
all a, b ∈ L ax = xa, ab · x = a · bx, ax · b = a · xb, xa · b = x · ab is a normal subloop
Z(L) of L, its centre.

Lemma 1 (see [5, p. 63]). Let H be a normal subloop of loop L with the mul-
tiplication group M. Then M(L/H) ∼= M/H∗ where H∗ = {α ∈ M|(αx)H =
xH ∀x ∈ L}. Conversely, every normal subgroup N of M determines a normal
subloop H = N1 = {α1|α ∈ N} of L and N ⊆ H∗.

Proposition 1. Let (L, ·, 1) be a loop with centre Z(L), let M be its multiplication
group with centre Z(M) and let Z̃(L) = {ϕ1|ϕ ∈ Z(M)}, Z̃(M) = {L(ϕ1)|ϕ ∈
Z(M)}, Z(M) = {L(a)|a ∈ Z(L)}. Then Z(L) = Z(L) ∼= Z(M) = Z̃(M) = Z(M).

Proof. Let a ∈ Z(Q) and x, y ∈ L. Then R(a) = L(a), a·a−1x = x, L(a)L(a−1)x = x
L(a−1) = L−1(a) and a · xy = ax · y, L(a)L(y)x = L(y)L(a)x, L(a)L(y) =
L(y)L(a). Similarly, for a−1 ∈ Z(L) we obtain that L(a−1)R(y) = R(y)L(a−1).
Then (L(a−1)R(y))−1 = (R(y)L(a−1))−1, R−1(y)L−1(a−1) = L−1(a−1)R−1(y),
R−1(y)L(a) = L(a)R−1(y). Analogously, from yx · a = y · xa and R(a) = L(a)
we get L(a)L(y) = L(y)L(a), L(a)L−1(y) = L(y)−1L(a). Then from the definition
of the group M(L) it follows that L(a) ∈ Z(M). Similarly, for a−1 ∈ Z(L) we get
that L(a−1) = L−1(a) ∈ Z(M). We also have L(a)L(b) = L(ab) for a, b ∈ Z(L).
Then the set Z(M) is a subgroup of M, Z(M) ⊆ Z(M) and the isomorphism
Z(L) ∼= Z(M), defined by u → L(u), u−1 → L−1(u), u ∈ L, follows from the
equality L(a)L(b) = L(ab).

If ϕ ∈ Z(M), then ϕL(x) = L(x)ϕ, ϕL(x)y = L(x)ϕy, ϕ(xy) = x · ϕy and
ϕR(x) = R(x)ϕ, ϕR(x)y = R(x)ϕy, ϕ(yx) = ϕy · x for any x, y ∈ L. Hence
ϕ(xy) = x · ϕy and ϕ(yx) = ϕy · x. Let y = 1. Then ϕx = x · ϕ1, ϕx = ϕ1 · x,
i.e. x · ϕ1 = ϕ1 · x. Now, using the equality ϕ(xy) = x · ϕy we obtain that
xy · ϕ1 = ϕ(xy · 1) = ϕ(xy) = x · ϕy = x · ϕ(y · 1) = x(y · ϕ1) and using the equality
ϕ(yx) = ϕy · x we obtain that ϕ1 · xy = ϕ(1 · xy) = ϕ(xy) = ϕx · y = ϕ(1 · x)y =
(ϕ1 · x)y. Hence, if ϕ ∈ Z(M) then ϕ1 ∈ Z(L), i.e. Z̃(L) ⊆ Z(L). Conversely,
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let a ∈ Z(L). Then L(a) ∈ Z(M) and a = L(a)1 ∈ Z̃(L). Hence Z(L) ⊆ Z̃(L)
Consequently, Z(L) = Z̃(L) and therefore Z(M) = Z̃(M).

Let I(L) be the inner mapping group of M. In the proof of Lemma IV.1.2 from [5]
it is shown that each element α ∈ M has the form α = L(α1)θ where θ ∈ I(L);
moreover α ∈ I(L) if and only if L(α1) = e where e is the unit of M. Let J(L) =
I(L) ∩ Z(M). If α ∈ Z(M) then, by the cases considered above, L(α1) ∈ Z(M).
Then θ ∈ J(L). The subgroups Z(M) ⊆ Z(M) and J(L) ⊆ Z(M) are normal in
M. As Z(M) ∩ J(L) = ε then Z(M) = Z(M)× J(L). By Lemma 1 J(L)1 = 1 is a
normal subloop of L and J(L) ⊆ 1∗ where 1∗ = {α ∈ M|(αx)1 = x1 ∀x ∈ L}. But
1∗ = e, hence J(L) = e and Z(M) = Z(M), as required.

A system Σ of subloops of loop L will be called a subnormal system if:
1) it contains 1 and L;
2) it is linearly ordered by inclusion, i. e. for all A,B from Σ either A ⊆ B, or

B ⊆ A;
3) it is closed with respect to the unions and intersections, in particular, together

with each A 6= L it contains the intersection A] of all H ∈ Σ with the condition
H ⊃ A and together with each B 6= 1 it contains the union B[ of all H ∈ Σ with
the condition H ⊂ B;

4) it satisfies the condition: A is normal in A\ for all A ∈ Σ, A 6= L.
A system Σ is called ascending (respect. descending) if A] 6= A (respect. B[ 6= B)

for all A ∈ Σ, A 6= L (respect. B ∈ Σ, B 6= 1) and is called normal if the subloops
A ∈ Σ are normal in L.

A loop L may be called an SD-loop if it has a descending subnormal system Σ
such that the quotient loops A]/A are abelian groups for all A ∈ Σ, A 6= L. If a
loop L has an ascending normal system such that A]/A ⊆ Z(L/A) for all A ∈ Σ,
A 6= L then L is called a ZA-loop.

If the upper central series of the ZA-loop has a finite length, then the loop is
called centrally nilpotent. The least such length is called the class of the central
nilpotency. If the loop L is centrally nilpotent of class k then the upper central
series of L has the form

1 = Z0(L) ⊂ Z1(L) ⊂ · · · ⊂ Zk(L) = L, (1)

where Z1(L) = Z(L), Zi+1(L)/Zi(L) = Z(L/Zi(L)).
A commutative Moufang loop (CML) is characterized by the identity x2 · yz =

xy ·xz. The associator (a, b, c) of the elements a, b, c of the CML Q is defined by the
equality ab · c = (a · bc)(a, b, c). The identities

L(x, y)z = z(z, y, x), (2)

(x, y, z) = (y, z, x) = (y−1, x, z) = (y, x, z)−1, (3)

(xy, u, v) = (x, u, v)((x, u, v), x, y)(y, u, v)((y, u, v), y, x) (4)
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hold in the CML.
If A,B, C are subsets of CML L, (A,B,C) denotes the set of all associators

(a, b, c), a ∈ A, b ∈ B, c ∈ C. If A = B = C = L, then the normal subloop
L′ = (L, L,L) is called the associator subloop of CML L.

Lemma 2 (see [5]). Let L be a CML with centre Z(L) and let a ∈ L. Then
a3 ∈ Z(L).

Lemma 3. If Z2(L) 6= Z1(L) for a CML L then L′ 6= L.

Proof. If z ∈ Z2(L)\Z1(L) then ((x, y, z), u, v) = 1 for all x, y, u, v ∈ L and there
exist elements x0, y0 ∈ L such that (x0, y0, z) 6= 1. From (4) it follows that
(uv, y0, z) = (u, y0, z)(v, y0, z), which shows that the mapping ϕ : u → (u, y0, z)
is a homomorphism of L into Z1(L). The centre Z1(L) is an associative subloop
and as (x0, y0, z) 6= 1 then L′ ⊆ kerϕ and L/kerϕ is non-unitary. Hence L′ 6= L, as
required.

Lemma 4. Let L be a CML with the multiplication group M, let L′ be the associator
subloop of L and let M′ be the commutator subgroup of M. Then L′ ⊆ F(L) and
M′ ⊆ F(M).

Proof. The inclusion L′ ⊆ F(L) is proved in [7]. The group M is locally nilpotent [2],
then the proof of inclusion M′ ⊆ F(M) can be found, for example, in [8].

2 Frattini subloops

If S, T, . . . are subsets of elements of a loop L, let < S, T, . . . > denote the subloop
of L generated by S, T, . . . . An element x of a loop L is a non-generator of L if, for
every subset S of L, < x, S >= L implies < S >= L. The non-generators of L form
the Frattini subloop, F(L), of L. If L has at least one maximal proper subloop, then
F(L) is the intersection of all maximal proper subloops of L. In the contrary case,
F(L) = L [5].

Lemma 5. Let θ be a homomorphism of the loop L into a loop and let F(L) = L.
Then F(θL) = θL.

Proof. In [5] it is proved that if ϕ is a homomorphism of the loop L into a loop,
then ϕ(F(L)) ⊆ F(ϕ(L)). In our case we have θL = θ(F(L)) ⊆ F(θL) ⊆ θL. Hence
F(θL)) = θL, as required.

Lemma 6. For a CML L with the multiplication group M the following statements
are equivalent: 1) F(M) = M; 2) F(L) = L.

Proof. 1) ⇒ 2). Let F(M) = M and we assume that F(L) 6= L. Then L has
at least one maximal proper subloop H and F(L) is the intersection of all such
subloops. By Lemma 4 the associator subloop L′ lies in F(L). Hence H is a normal
subloop of L and the quotient loop L/H is a cyclic group of prime order p. Then
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M(L/H) is a cyclic group of order p too, and by Lemma 1 M/H∗ is a cyclic group of
order p. Consequently, H∗ is a maximal proper subgroup of M. Then F(M) 6= M.
Contradiction. Hence 1) implies 2).

Conversely, let F(L) = L and we assume that F(M) 6= M. Let N be a maximal
proper subgroup of M. M is a locally nilpotent group [2], then by Lemma 4 the
commutator subgroup M′ lies in F(M). Then N is a normal subgroup of M and
M/N is a cyclic group of prime order p. By Lemma 1 N1 = H is a normal subloop of
L and N ⊆ H∗. Then from M(L/H) ∼= M/H∗ it follows that L/H is a cyclic group
of order p. Hence H is a maximal subloop of L. Then F(L) 6= L. Contradiction.
Hence 2) implies 1).

Let M(H) denote the subgroup of multiplication group of CML L, generated by
{L(x)|∀x ∈ H}, where H is a subset of L.

Lemma 7 (see [9]). Let L be a CML with the multiplication group M(L) and the
inner mapping group I(L). Then M(L)′ =< I(L), M(L′) >= (L′)? = I(L), where
(L′)? = {α ∈ M(L)|αx · L′ = xL′ ∀x ∈ L}, I(L) is the normal subgroup of M(L),
generated by I(L).

Proposition 2. For a CML L with the multiplication group M the following state-
ments are equivalent: 1) F(L) = L and L satisfies the identity x3 = 1; 2) L = L′;
3) M = M′; 4) F(L) = L and Z(L) = {1}; 5)

F(M) = M and Z(M) = {e}.
Proof. 1) ⇔ 2). As F(L) = L then by Lemma 5 F(L/L′) = L/L′. In [10] it is proved
that for an abelian group G F(G) = G if and only if G is a divisible group. The
abelian group L/L′ satisfies the identity x3 = 1. L/L′ is a divisible group, then
L/L′ is a unitary group. Hence L′ = L, i.e. 1) implies 2). Conversely, let L′ = L.
By [5] the associator subloop L′ satisfies the identity x3 = 1 and from the relations
L = L′ ⊆ F(L) ⊆ L it follows that F(L) = L. Hence 2) implies 1).

1) ⇒ 3). By Lemma 6 F(L) = L implies F(M) = M. Like in the previous case
from here it follows that M/M′ is a divisible abelian group. By definition the group
M is generated by translations L(x), x ∈ L. Then from the identity x3 = 1 for L
and diassociativity of L it follows that the divisible abelian group M/M′ satisfies
the identity x3 = 1. Then M/M′ is a unitary group. Hence M′ = M, i.e. 1) ⇒ 3).

Conversely, let M′ = M. By Lemma 4 M′ ⊆ F(M). Then from the relations
M = M′ ⊆ F(M) ⊆ M it follows that F(M) = M. By Lemma 1 M(L/L′) ∼=
M/(L′)∗. M(L/L′) is an abelian group. Then M′ ⊆ (L′)∗ and from the relation
M′ = M it follows that M(L/L′) is unitary group. Hence L′ = L. Consequently, 3)
implies 2).

2) ⇒ 4). We consider the homomorphism α : L → L/Z(L). The elements
of quotient loop have the form aZ(L), a ∈ L. From L = L′ it follows that the
element a is a product of associators (u, v, w), u, v, w ∈ L. From the equalities
(u, v, w)Z(L) = (uZ(L), v, w) = (u, v, w), ab ·Z(L) = a · bZ(L) = aZ(L) · b it follows
that if aZ(L) = bZ(L) then a = b. But this means that α is an isomorphism. Then
Z(L) = {1}. Consequently, 2) implies 4).
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Conversely, let Z(L) = {1}. Then from Lemma 2 it follows that CML L satisfies
the identity x3 = 1. Hence 4) implies 1). Further, the equivalence of statements 4),
5) follows from Lemma 6 and Proposition 1, as required.

Theorem 1. For a CML L with the multiplication group M the following statements
are equivalent: 1) F(L) = L; 2) L is a direct product L = L′ × L3, where L′ is the
associator subloop of L and L3 = {x3|x ∈ L} is a divisible abelian group; 3) F(M) =
M; 4) M is a direct product M = M′ × D, where M′ is the commutator subgroup
of M and D is a divisible abelian group. In these cases F(L′) = L′, Z(L′) = {1},
Z(L) = L3, L3 ∼= D, Z(M) = D, F(M′) = M′ = M(L′) = (L′)? = I(L), where
(L′)? = {α ∈ M(L)|αx · L′ = xL′ ∀x ∈ L}, I(L) is the normal subgroup of M(L),
generated by the inner mapping group I(L), Z(M′) = {e}.
Proof. 1) ⇒ 2). Using the diassociativity of CML it is easy to prove that L3 is a
subloop of L. By Lemma 2 L3 ⊆ Z(L). Then L3 is a normal associative subloop of L.
The quotient loop L/L3 satisfies the identity x3 = 1. By Lemma 5 from F(L) = L
it follows that F(L/L3) = L/L3. Then by Proposition 1 L/L3 = (L/L3)′. But
(L/L3)′ = L′L3/L3. Then from L/L3 = L′L3/L3 it follows that L = L′L3. Hence
L/L3 = L′L3/L3 ∼= L′/(L′ ∩ L3). We have F(L′/(L′ ∩ L3)) = L′/(L′/(L′ ∩ L3))
and L′ ∩ L3 ⊆ Z(L). Then by analogy with the proof of implication 1) ⇒ 4) of
Proposition 2 it is easy to prove that L′∩L3 = {1}. But L = L′L3. Then L = L′×L3.
Further, by Lemma 5 we get that F(L′) ∼= F(L/L3) = F(L)/L3 = L/L3 ∼= L′,
F(L′) = L′ and by Proposition 2 Z(L′) = {1}. Analogously, F(L3) = L3. The
subloop L3 is associative. Then from F(L3) = L3 it follows that L3 is a divisible
abelian group [9]. Consequently, 1) implies 2) and F(L′) = L′, Z(L′) = {1}. Further,
from L = L′ × L3, Z(L′) = {1} it follows that Z(L) = L3.

Conversely, let L = L′ × L3 and let L3 ⊆ Z(L) be a divisible group. Then
F(L3) = L3 and L′ = (L′ × L3)′ = (L′)′. By Proposition 2 F(L′) = L′. Hence L =
F(L′)×F(L3). F(L′) and F(L3) do not have maximal proper subloops. From here it is
easy to see that L does not have a maximal proper subloop, either. Then F(L) = L.
Hence 2) implies 1) and, consequently, the statements 1), 2) are equivalent.

The equivalence of statements 1), 3) follows from Lemma 6.
2) ⇔ 4). Let L = L′ × L3. From here it follows that any element a ∈ L

has the form a = ud, where u ∈ L′, d ∈ L3. As by Lemma 2 L3 ⊆ Z(L), then
L(a) = L(u)L(d), therefore, M = M(L′)M(L3). Any element α ∈ M(L3) has the
form α = L(v), where v ∈ L3. Let α ∈ M(L′) ∩M(L3). Then α1 ∈ L′ ∩ L3 = {1},
α1 = 1, L(v)1 = 1, v = 1, L(v) = e, M(L′)∩M(L3) = {e}. Further, by Proposition 1
Z(L) = L3 implies Z(M) = M(L3) ∼= Z(L) ∼= D. M(L3) is a normal subgroup of
M. Then from M = M(L′)M(L3) it follows that M(L′) is also normal in M. Hence
M = M(L′) × D. The quotient loop M/M(L′) is abelian. Then M′ ⊆ M(L′).
By Lemma 7 M(L′) ⊆ M′. Hence M(L′) = M′. Consequently, M = M′ × D,
i.e. 2) implies 4). Conversely, if M = M′ × D then M = M(L′) ×M(L3), M1 =
M(L′)1×M(L3)1. Hence, 4) implies 2).

Finally, the equality F(M′) = M′ follows, by Lemma 5, from the relations
F(M) = M, M/M(L3) ∼= M′, the equalities M′ = (L′)? = I(L) follow from
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Lemma 7 and the equality Z(M′) = {e} follows from equalities M = M′ ×M(L3),
Z(M) = M(L3). This completes the proof of Theorem 1.

3 Normalizer condition

Let M be a subset, H be a subgroup of group G. The subgroup NH(M)
= {h|h ∈ H, h−1Mh = M} is called the normalizer of the set M in the subgroup
H [8]. Now, constructively, we define the notion of normalizer for the subloops of
CML. Let H, K, where H ⊆ K be subloops of CML L. We define inductively the
sequences of sets {Pα} and {Dα} as follows:

i) P1 = {x ∈ K|(H, H, x) ⊆ H} and D1 = {x ∈ K|(H,x, P1) ⊆ H};
ii) for any ordinal α, Pα+1 = {x ∈ K|(H,Dα, x) ⊆ H} and Dα+1 = {x ∈

K|(H, x, Pα+1) ⊆ H};
iii) if α is a limit ordinal, Pα =

⋂
β<α Pβ and Dα =

⋃
β<α Dβ.

Further, we will also denote the conditions of item ii) by (H, Dα, Pα+1) and
(H, Dα+1, Pα+1) respectively. H is a subloop of CML L, then from
(H, H, H) ⊆ H, (H, H,P ) it follows that H ⊆ P1, from H ⊆ P1, (H, D1, P1),
(H, H,P 1) it follows that H ⊆ D1, from (H, H,P 1), (H, D1, P 2), H ⊆ D1 it
follows that P1 ⊇ P2, from (H, D1, P2), (H, D2, P2), P1 ⊇ P2 it follows that
D1 ⊆ D2. Further, let α be a non-limit ordinal and we suppose by induc-
tive hypothesis that Dα ⊇ Dα+1 and Pα ⊆ Pα+1. Then from Dα ⊇ Dα+1,
(H, Dα, Pα+1), (H, Dα+1, Pα+2) it follows that Pα+1 ⊆ Pα+2 and from Pα+1 ⊆ Pα+2,
(H, Dα+2, Pαα+1), (H, Dα+2, Pαα+2) it follows that Dα+1 ⊇ Dα+2. Hence, if con-
sider also item iii), we get a sequence of subsets

P1 ⊇ P2 ⊇ . . . ⊇ Pα ⊇ . . .

D1 ⊆ D2 ⊆ . . . ⊆ Dα ⊆ . . . . (5)

The construction process of subsets Pα, Dα from (5) shall end with an ordinal
number, whose cardinality does not exceed the cardinality of CML K itself. We
suppose that Pα+1 = Pα+2 = . . . . From (H, Dα+1, Pα+1), (H, Dα+2, Pα+2) it follows
that Dα+1 = Dα+2. Then from (H, Dα+1, Pα+2), (H, Dα+2, Pα+2) it follows that
(H, Dα+2, Pα+2). We remind that the inscriptions Dα+2, Pα+2 denote the biggest
subsets Dα+2 and Pα+2 such that the relation (H,Dα+2, Pα+2) ⊆ H holds true. H
is a subloop of CML L, then from (3) it follows that Dα+2 = Pα+2 and using (3),
(4) it is easy to prove that Dα+2 is a subloop of CML L. Hence Dα+2 is the biggest
(and the only) subloop of CML K where by (2) H is a normal subloop. By analogy
with group theory the subloop Dα will be called the normalizer of subloop H in
subloop K of CML L and will be denoted by NK(H). If the subgroup where the
normalizer is taken from is not indicated, it means that it is taken from the entire
CML L. Consequently, from the construction of normalizer follows

Proposition 3. Let H, L, K, where H ⊆ L ⊆ K, be subloops of CML L and let H
be a normal subloop of L. Then L ⊆ NK(H).
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The group theory contains studies of the group that satisfies the normalizer
condition (see, for example,[8]). These are such groups, where every proper subgroup
differs from its normalizer. A similar notion can be introduced for CML. We will
say that a CML satisfies the normalizer condition or, in short, is an N -loop if every
proper subloop differs from its normalizer.

The CML L will be a N -loop if and only if an ascending subnormal system {Hα}
passes through each subloop H of CML L.

Really, we denote H0 = 1,H1 = H (respect. N0 = e, N1 = N). Further, for
non-limit α we take as Hα the normalizer of subloop Hα−1, and for limit α Hα will
be the union of all Hβ for β < α. This ascending subnormal system, obviously,
reaches CML L itself. Conversely, if all subloops of CML L are contained in some
ascending subnormal system, then all proper subloop will be normal in some bigger
subloop, and, consequently, by Proposition 3, will differ from its normalizer.

Using this result it is easy to prove that all subloops and all quotient loops of
N -loop will be N -loops themselves. Really, let A be a subloop of N -loop L, and let B
be a subloop of L such that B ⊆ A. By the aforementioned, an ascending subnormal
system {Bα} passes through B. Then {Bα ∩A} after removing the repetitions will
be an ascending subnormal system of A, passing through B. Hence A will be an
N -loop. The second statement is proved by analogy.

Theorem 2. If a CML L with the Frattini subloop F(L) satisfies the inequality
F(L) 6= L then it satisfies the normalizer condition.

Proof. As F(L) 6= L then the CML L has a maximal proper subloop. Let H be an
arbitrary proper subloop of CML L. If H is a maximal subloop of L then by [5] H
is normal in L. Hence H 6= NL(H) = L. Let now the subloop H be a non-maximal
subloop. By Zorn’s Lemma let M be a maximal subloop of L with respect to the
property H ⊆ M and let a /∈ L\M . We suppose that a3 = 1. Let K =< H, a >. M
is a maximal proper subloop of L, then by [5] the subloop M is normal in L. Let
ϕ be a restriction on K of homomorphism L → L/M . Obviously, Kerϕ = M ∩K.
As a3 = 1 then M∩ < a >= 1. Hence K\ < a >= H and then M ∩ K = H.
Consequently, H is a normal subloop of K, and as H 6= K then by Proposition 1
H 6= ZL(H), as required.

Let now a3 6= 1. By Lemma 1 a3 ∈ Z(L), hence < a3 > is a normal subloop of
L. Let a3 ∈ H. We denote L/ < a3 >= L. From a3 ∈ M , a /∈ M it follows that M
is a maximal proper subloop of L. Hence F(L) 6= L. Further, a3 = 1, then by the
previous cases H 6= N(H). As a3 ∈ H and a3 ∈ N(H) then the inverse images of H
and N(H) will be H and N(H) respectively. Hence from H 6= N(H) it follows that
H 6= N(H), as required.

If a3 /∈ H, then H 6= H < a3 >. By (3) and Lemma 1 we get
(H, H < a3 >, H < a3 >) = (H, H, H) ⊆ H. This means by Proposition 1 that
H < a3 >⊆ N(H). Hence H 6= N(H). This completes the proof of Theorem 2.

Any subloop of a ZA-loop is a ZA-loop. From Lemma 3 it follows that a non-
associative commutative Moufang ZA-loop has a non-trivial associative quotient
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loop. Hence it differs from its associator subloop. Hence any commutative Moufang
ZA-loop is a SD-loop.

Corollary 1. For a CML L let Z2(L) 6= Z1(L). In particular, let L be a ZA-loop
or a SD-loop. Then the CML L satisfies the normalizer condition.

Proof. We suppose that F(L) = L. Then by Theorem 1 L = L′ ×Z(L), F(L′) = L′,
Z(L′) = {1}. From here it follows that Z2(L) = Z1(L). Contradiction. Hence
F(L) 6= L and by Theorem 2 the CML L satisfies the normalizer condition, as
required.

In [5] it is proved that CML L is centrally nilpotent of class n if and only if the
group M is nilpotent of class 2n−1. Then Corollary 1 for M follows from the known
result about subnormal subgroups of nilpotent group (see, for example,[8]).

Proposition 4. If L is a centrally nilpotent CML of class n, then for any subloop
H ⊆ L (respect. subgroup N of group M) the sequence of consecutive normalizers
reaches L (respect. M) not later that after n (respect. 2n− 1) steps.

Proof. Let (1) be the upper central series of CML L. We denote H0 = H,
Hi+1 = NL(Hi). It is sufficient to check that Zi(L) ⊆ Hi. For i = 0, this is obvi-
ous. We suppose that Zi(L) ⊆ Hi. From the relation Zi+1(L)/Zi(L) = Z(L/Zi(L)
it follows that (Zi+1(L), L, L) ⊆ Zi(L). In particular, (Zi(L), Zi+1(L), Zi+1(L)) ⊆
Zi(L). As Zi(L) ⊆ Hi, then (Hi, Zi+1(L), Zi+1(L)) ⊆ Hi. But this means that
Zi+1(L) normalizes Hi. Hence Zi+1(L) ⊆ Hi+1. This completes the proof of
Proposition 4.

Remark. Theorem 1 (see, also, Theorem 3) reveals a strong analogy between the
Frattini subloops of CML and the Frattini subgroups of the multiplication groups
of CML. However for the multiplication group of CML the statement, analogous to
Theorem 2, is not true. In [5] there is an example of CML G of exponent 3, such
that G′ 6= G and Z(G) = 1. By Proposition 2 F(G) 6= G. Then by Proposition 1
Z(M) = e and by Lemma 6 F(M) 6= M, where M(G) denotes the multiplication
group of G. In [6] J. D. H. Smith showed that no group with trivial centre and
satisfying the normalizer condition can be the multiplication group of a quasigroup.
Hence the multiplication group M satisfies the inequality F(M) 6= M but it does
not satisfy the normalizer condition.

4 Divisible subgroups of multiplication group

We remind ([8] (respect.[2]) that the group (respect. CML) G is called divisible
or complete (by terminology of [3] radically complete) if the equality xn = a has at
least one solution in G, for any number n > 0 and any element a ∈ G.

Theorem 3. Any divisible subgroup N of a multiplication group M of a CML L is
an abelian group and serves as a direct factor for M, i.e. M = N× C for a certain
subgroup C of M.
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Proof. If F(M) = M then the statement follows from Theorem 1. Hence let F(M) 6=
M. Then M has a maximal proper subgroups. The group M is locally nilpotent [2],
then the maximal proper subgroups of M are normal in M [8]. Let H be a maximal
proper subgroup of M such that % /∈ H for some % ∈ N. We will consider two cases:
% has a finite order and % has an infinite order.

Let the element % have a finite order n. Then the element α = %n/p, where p is a
prime divisor of n, has the order p. The subgroup N is divisible. Then there exists
a sequence α = α1, α2, . . . , αk, . . . of elements in N such that αp

1 = e, αp
k+1 = αk,

where e is the unit of M. From here it follows that αpk

k = e, k = 1, 2, . . ..
We denote by C the subgroup of N generated by α1, α2, . . . , αk, . . .. It is easy to

prove that any element α ∈ C is a power of some generator αk, i.e. α = αn
k , and the

cyclic groups < αk > form a sequence

e ⊂< α1 >⊂< α2 >⊂ . . . ⊂< αk >⊂ . . . .

We prove that C ∩ H = e. < α1 > is a cyclic group of order p and α1 /∈ H.
Then < α1 > ∩H = e. We suppose that < αk > ∩H = e. We have < αk+1 >=
{αk+1, α

p
k+1, . . . , α

pk+1−1
k+1 }∪ < αk >. We suppose that αn

k+1 ∈ H (n = 1, 2, . . . , pk+1−
1). Then (αn

k+1)
p ∈ H. But (αn

k+1)
p = (αp

k+1)
n = αn

k . Hence αn
k ∈ H. But

this contradicts the supposition < αk > ∩H = e. Hence < αk+1 > ∩H = e and,
consequently, C ∩H = e. Let M′ denote the commutator subgroup of group M. By
Lemma 4 M′ ⊆ H. Then M′ ∩ C = e, C′ = e, hence C is an abelian group. More
concretely, C is isomorphic to a quasicyclic p-group. Further, the subgroup H as
maximal in M is normal in M. Then from M = HC, H ∩ C = e it follows that C is
normal in M. Hence M = H× C.

Let now % ∈ N be an element of infinite order. If Z(M) denotes the centre of M

then M/Z(M) is a locally finite 3-group [5]. Hence %n ∈ Z(M) for some n. Let H be
a maximal subloop of M such that %n /∈ H. N is a divisible group. Then there exists a
sequence %n = α1, α2, . . . , αk, . . . of elements in N such that αk+1

k+1 = αk, k = 1, 2, . . ..
We denote by Q the subgroup of N, generated by %n = α1, α2, . . . , αk, . . .. As
α1 ∈ Z(M) then it is easy to see that Q ⊆ Z(M). Hence the subgroup Q is normal
in M. The subgroup Q is without torsion. In [4] it is proved that the commutator
subgroup of the multiplication group of any CML is a locally finite 3-group. Then
Q ∩ M′ = e. From here it follows that Q′ = e, i.e. Q is an abelian group. More
concretely, Q is isomorphic to the additive group of rationales.

Thus, in both cases in group M there exists an abelian normal subgroup D ⊆ N,
which is isomorphic to quasicyclic p-group or additive group of rationales such that
M = H ×D. We will use this procedure of separating the divisible subgroup from
N as direct factor for defining the subgroups Mβ, Aβ of group Mβ−1.

Let M0 = M, M1 = H, D1 = D. For a non-limit ordinal β inductively we define
Mβ−1 = Mβ ×Dβ. We denote Aβ = D1 ×D2 × . . . ×Dβ. As D1, D2, . . . , Dβ ⊆ N

then Aβ ⊆ N. Further we consider the sequences of subgroups

A1 ⊂ A2 ⊂ . . . ⊂ Aβ ⊂ . . . ,
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M1 ⊃ M2 ⊃ . . . ⊃ Mβ ⊃ . . . , β < α,

where Mβ−1 = Mβ × Dβ if β is a non-limit ordinal and Aβ = ∪γ<βAγ , Mβ =
∩γ<βMγ if β is a limit ordinal.

It is clear that Mβ, Aβ are normal subgroups of M. We prove that M = Mβ×Aβ

for any β. If β is a non-limit ordinal, then by induction M = M1×D1 = M1×A1 =
Mβ−1 × Aβ−1 = Mβ ×Dβ × Aβ−1 = Mβ × Aβ. Hence M = Mβ × Aβ.

Let now β be a limit ordinal and let e 6= λ ∈ Mβ ∩Aβ. Then there exists a non-
ordinal δ < β such that λ ∈ Aδ. From λ ∈ Mβ = ∩γ<βMγ it follows that λ ∈ Mγ

for all γ < β. But δ < β. Then λ ∈ Mδ ∩ Aδ. Contradiction. Hence Mβ ∩ Aβ = e
and we may consider the direct product Mβ × Aβ.

Let λ ∈ M\(Mβ × Aβ). Then λ /∈ Mβ, λ /∈ Aβ, i.e. λ /∈ ∩γ<βMγ , λ /∈ ∪γ<βAγ .
Hence λ /∈ Mγ for all γ < β and from λ ∈ M, M = Mγ × Aγ it follows that
λ ∈ ∩γ<βAγ = Aβ. We wet a contradiction. Hence M = Mβ × Aβ for all β.

The process of inductive construction of Aα will end on the first number γ
for which Aγ = N. Consequently, M = Mγ × N. This completes the proof of
Theorem 3.

By Theorem 3 any multiplication group M of CML contains a maximal divisible
associative subloop D and M = D × R, where obviously R is a reduced CML,
meaning that it has no non-unitary divisible subgroups. Consequently, we obtain

Corollary 2. Any multiplication group M of CML L is a direct product of a divisible
abelian subgroup D and a reduced subgroup R. The subgroup D is uniquely defined,
the subgroup R is defined up to isomorphism.

Proof. Let us prove the last statement. As D is the maximal divisible subgroup of
the multiplication group M, then it is invariant with respect to the endomorphisms
of the group M. Let M = D′ × R′, where D′ is a divisible subgroup, and R′

is a reduced subgroup of the group M. We denote by ϕ,ψ the endomorphisms
ϕ : M → D′, ψ : M → R′. As D is invariant with respect to the endomorphisms
of the group M, then ϕD and ψD are subgroups of the group M. It follows from
the inclusions ϕD ⊆ D′ and ψD ⊆ R′ that ϕD ∩ ψD = 1. By Theorem 3 D is a
abelian group, therefore ϕD, ψD are normal in D. Then d = ϕd · ψd (d ∈ D) gives
D = ϕD · ψD, so D = ϕD × ψD. Obviously, ϕD ⊆ D ∩ D′, ψD ⊆ D ∩ R′, then
ϕD = D ∩D′, ψD = D ∩R′. Hence D = (D ∩D′)× (D ∩R′). But D ∩R′ = 1 as a
direct factor of a divisible group of a reduced group. Therefore, D∩D′ ⊆ D,D ⊆ D′,
i.e. D = D′. This completes the proof of Corollary 2.
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On a Method for Estimation of Risk Premiums Loaded
by a Fraction of the Variance of the Risk

Virginia Atanasiu

Abstract. In this paper we have obtained linear approximations which are unbiased
estimates for the expected value part, respectively for the variance part and finally
for the fluctuation part of the loading from the variance premium, using the greatest
accuracy theory. The article provides a means to approximate the separate parts of
the variance loaded premium by linear non-homogeneous credibility estimators. Apart
from the purpose of this paper, which is to simply add ”credibility” like estimators for
the separate parts of the variance premium, we have presented some basic theorems
from statistics and some basic results on finding estimators with minimal mean squared
error from probability theory. The fact that it is based on complicated mathematics,
involving conditional expectations, needs not bother the user more than it does when
he applies statistical tools like, discriminating analysis and scoring models.

Mathematics subject classification: 62P05.
Keywords and phrases: The linear estimator, the Esscher premium, the variance
premium.

Introduction

It is an original paper which describes techniques for estimating premiums for
risks, containing a fraction of the variance of the risk as a loading on the net risk
premium. An approach ”in this sense” is to consider the variance premium. The
problem under discussion is to get linear approximations, which are unbiased es-
timates for the expected value part, variance part, fluctuation part, i.e. for the
separate parts of the variance premium, using the classical model of Bühlmann and
the credibility for the Esscher premiums. The present article contains a method to
estimate risk premiums loaded by a fraction of the variance of the risk, as opposed
to the net premiums studied thus far in the credibility theory.

The first section shows that the Esscher premium approaches the variance prin-
ciple and that this premium is derived as an optimal estimator minimizing a suitable
loss function. In the first section it is shown that the Esscher premium can be used
as an approximation to the variance loaded premium, by truncating the development
of a power series. Also, the approach of the problem of Esscher premium, followed in
the first section is to consider the best linear credibility estimator which minimizes
the exponentially weighted squared error loss function. The second section analy-
ses and presents the linear non-homogeneous credibility estimators for the separate
parts of the variance premium.

c© Virginia Atanasiu, 2012
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It turns out that the linear credibility approximations for each of the parts in
the variance premium to coincide with the unbiased estimates for the expected value
part, the variance part and the fluctuation part from the variance premium.

The approach of the problem of loaded premiums, followed in the second section
is to simply add credibility - like estimators for the separate parts of the variance
premium.

1 Techniques for estimating premiums for risks, containing
a fraction of the variance of the risk as a loading on the net risk
premium

1.1 The classical model of Bühlmann

Consider a portfolio of contracts j = 1, . . . , k satisfying the constraints (B1) and
(B2). The index contract j is a random vector consisting of the structural variables
θj and the observable variables: Xj1, . . . Xjt, where j = 1, . . . , k.

(B1) E[Xjr|θj ] = µ(θj) - the net premium for a contract with risk parameter
θj-,Cov[Xj |θj ] = σ2(θj)I(t,t), j = 1, . . . , k, and:

(B2) the contracts j = 1, . . . , k are independent, the variables θ1, . . . , θk are iden-
tically distributed, and the observations Xjr have finite variance, then the optimal
non-homogeneous linear estimators µ̂(θj) for µ(θj), j = 1, . . . , k, in the least squares

sense read: µ̂(θj) = (1− z)m + zMj , where Mj =
1
t

t∑

s=1

Xjs denotes the individual

estimator for µ(θj). The resulting credibility factor z which appears in the cred-
ibility adjusted estimator µ̂(θj) is found as: z = at/(s2 + at), with the structural
parameters m, a and s2 as defined by the following formulae:

m = E[Xjr] = E[µ(θj)], a = Var[µ(θj)], s2 = E[σ2(θj)], j = 1, . . . , k.

Here the identity or unit matrix I denotes a matrix with unities on the diagonal and
zeros elsewhere.

1.2 The credibility for the Esscher premiums

Minimizing weighted mean squared error
When X and Y are two random variables, and Y must be estimated using a

function g(X) of X, the choice yielding the minimal weighted mean squared error
E[(Y − g(X))2ehY ] is the quantity:

E[Y ehY |X]/E[ehY |X].

Indeed:
E[(Y − g(X))2ehY ] = E{E[(Y − g(X))2ehY |X]} =

=
∫

E[(Y − g(x))2ehY |X = x] · dFX(x).
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For a fixed x, the integrand can be written as: E[(Z − p)2ehZ ], with p = g(x)

and Z distributed as Y , given X = x (Z
(P )≡ [Y |(X = x)]). This quadratic form in p

is minimized taking p = E[ZehZ ]/E[ehZ ] or what is the same g(x) = E[Y ehY |X =
= x]/E[ehY |X = x].

Indeed:

ϕ(p) not= E[(Z − p)2ehZ ] = E(Z2ehZ) + p2E(ehZ)− 2pE(ZehZ),

so ϕ(p) is the following quadratic form in p : E[(Z − p)2ehZ ]. We have to solve the
following minimization problem: Min

p
ϕ(p). Since this problem is the minimum of a

positive definite quadratic form, it suffices to find a solution with the first derivative
equal to zero. Taking the first derivative with respect to p, we get the equation:
2pE(ehZ)− 2E(ZehZ) = 0. So: p = E(ZehZ)/E(ehZ), because: ϕ′′(p) = 2E(ehZ) >
0. If the integrand is chosen minimal for each x, the integral over all x is minimized,
too.
Definition. The quantity E[Y ehY |X]/E[ehY |X], denoted by H[Y |X] and which
minimizes the weighted mean squared error E[(Y − g(X))2ehY ] in the above the-
oretical result, entitled ”Minimizing weighted mean squared error” is called the
Esscher premium for Y , given X.

Applying the formula H[Y |X] = E[Y ehY |X]/E[ehY |X] to Y = Xt+1, j and
X = Xj = (Xj1, . . . , Xjt)′, we see that the best risk premium - in the sense of
minimal weighted mean squared error - to charge for period (t + 1) is the Esscher
premium for Xt+1,j , given Xj = (Xj1, Xj2, . . . , Xjt)′:

H[Xt+1,j |Xj ]
not= g(Xj) = E[Xt+1,je

hXt+1,j |Xj ]/E[ehXt+1,j |Xj ]. (1.1)

Apart from the optimal credibility result (1.1) for this situation we can obtain
the Esscher premium as an optimal estimator minimizing a suitable loss function.

The linear credibility formula for exponentially weighted squared error loss func-
tion requires not just the knowledge of a few natural structure parameters, but it
is necessary that for the structure function some values of the moment generating
function are known.

This is why the less refined approach followed in Section 2, is more useful in
practice.

2 The credibility for the variance premiums

For a small h, the optimal credibility estimated for the variance loaded premium
can be approximated as:

g(Xj) ∼= (E[Xt+1,j |Xj ] + hE[X2
t+1,j |Xj ] + O(h2))/(1 + hE[Xt+1,j |Xj ] + O(h2)) ∼=

≈ (E[Xt+1,j |Xj ] + hE[X2
t+1,j |Xj ] + O(h2))(1− hE[Xt+1,j |Xj ] + O(h2)) =

= E[Xt+1,j |Xj ] + hVar[Xt+1,j |Xj ] + O(h2) ∼= E[Xt+1,j |Xj ]+

+hVar[Xt+1,j |Xj ] = E[µ(θj)|Xj ] + h{E[σ2(θj)|Xj ] + Var[µ(θj)|Xj}

(2.1)
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approximating numerator and denominator of g(Xj) up to the first order in h.
The purpose of this section is to get linear approximations for each of the terms

in the right-hand side. We will derive unbiased estimates for the:




expected value part E[µ(θj)|Xj ] (2.2)

variance part E[σ2(θj)|Xj ] (2.3)

fluctuation part Var[µ(θj)|Xj ] (2.4)

Remark. Another problem appears if we want to find an estimate for the random
variable:

p(θ) := µ(θ) + ασ2(θ).

Minimizing the squared error would lead to the following credibility estimator:

E[p(θ)|X] = E[µ(θ)|X] + αE[σ2(θ)|X], (2.5)

without the fluctuation part, because there is the following basic result on finding
estimators with minimal mean squared error.

Minimizing mean squared error for conditional distributions

When X and Y are random variables, the function g(·) of X estimating Y with
minimal mean squared error is:

g∗(X) = E[Y |X].

Applying this theorem to Y = p(θ) and X = X = (X1, . . . , Xt)′ we obtain that
the verification of the equality (2.5) is readily performed.

One might argue that this premium is more reasonable, since the policyholder,
having himself a fixed though unknown risk parameter, should not pay for the un-
certainty concerning his own risk parameter, only for the variation of his claims.

2.1 The main results of this paper

Here and as follows we present the main results leaving the detailed calculation
to the reader.

A) An approximation for the expected value part:

The expected value part has been dealt with in Subsection 1.1. We recall the
result:

µ̂(θj) = (1− z)m + zMj (2.6)

where

z = at/(s2 + at), Mj =
1
t

t∑

r=1

Xjr, a = Var[µ(θj)], s2 = E[σ2(θj)], (j = 1, k)
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(for more details, see [5] or [6]). One could approximate the expected value part by
its best linear non-homogeneous credibility estimator (2.6).

B) An approximation of the fluctuation part:

Next we consider the fluctuation part:

Var[µ(θj)|Xj ]
def
= E{(µ(θj)− E[µ(θj)|Xj ])

2|Xj}. (2.7)

It is difficult to estimate this expression because of the appearance of E[µ(θj)|Xj ].
However, one could approximate this expectation by its best linear non-

homogeneous credibility estimator (2.6), and try to estimate:

E{[µ(θj)− (1− z)m− zMj ]2|Xj} (2.8)

(see (2.6)), where z = at/(s2 + at).
To obtain an approximation for the fluctuation part, this quantity is ave-

raged once more over the entire collective (the averaging is representative for the
conditioned variance, because:

Var[µ(θj)|Xj ]
(2.7)
= E{(µ(θj)− E[µ(θj)|Xj ])2|Xj}

(2.6)
= E{[µ(θj)− (1− z)m− zMj ]2|Xj}) :

E[E{[µ(θj)− (1− z)m− zMj ]2|Xj}] = E[E{[µ(θj)−m− z(Mj −m)]2|Xj}] =

= E{[µ(θj)−m− z(Mj −m)]2} = E[µ2(θj) + m2 + z2(Mj −m)2 − 2mµ(θj)+

+2mz(Mj −m)− 2µ(θj)z(Mj −m)] = E[µ2(θj)] + m2 + z2E[(Mj −m)2]−
−2mE[µ(θj)] + 2mzE[(Mj −m)]− 2zE[µ(θj)(Mj −m)] = E[µ2(θj)] + m2+

+z2E{[Mj −E(Mj)]2} − 2m ·m− 2zE{[µ(θj)−m][Mj −m]} = E[µ2(θj)]−
−m2 + z2Var(Mj)− 2zE{(µ(θj)− E[µ(θj)])[Mj −E(Mj)]} = E[µ2(θj)]−
−E2[µ(θj)] + z2Var(Mj)− 2zCov[µ(θj), Mj ] = Var[µ(θj)] + z2Var(Mj)−
−2zCov[µ(θj),Mj ] = Var[µ(θj)]− 2zCov[µ(θj),Mj ] + z2Var(Mj) =

= a− 2za + z2(a + s2/t) = a(1− 2z + z2) + z2s2/t = a(1− z)2 + z2s2/t,

(2.9)

because:
E(Mj) = m (2.10)

E[µ(θj)] = E[E(Xjr|θj)] = E(Xjr) (2.11)

Var[µ(θj)] = a (2.12)

(see the definition of the structure parameter a).

Cov[µ(θj),Mj ] =
1
t

t∑

r=1

Cov[µ(θj), Xjr] =
1
t

t∑

r=1

a =
1
t
ta = a, (2.13)
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Var(Mj) = Cov(Mj , Mj) =
1
t2

∑

r,r′
Cov(Xjr, Xjr′) =

1
t2

∑

r,r′
(a + δrr′s

2) =

=
1
t2

∑
r


(a + δrrs

2) +
∑

r′,r′ 6=r

(a + δrr′s
2)


 =

1
t2

t∑

r=1

[(a + s2) + (t− 1)a] =

=
1
t2

t∑

r=1

(s2 + at) =
t(s2 + at)

t2
=

s2 + at

t
= a +

s2

t
.

(2.14)

But inserting the value of the credibility factor z in the right hand side of (2.9)
shows that it equals (1− z)a, so:

Var[µ(θj)|Xj ] ∼= E[E{[µ(θj)− (1− z)m− zMj ]2|Xj}] =

= a(1− z)2 +
z2s2

t
= a

(
1− at

at + s2

)2

+
s2

t
· a2t2

(at + s2)2
=

=
as4 + a2s2t

(at + s2)2
=

as2(s2 + at)
(at + s2)2

=
as2

at + s2
= a(1− z) = (1− z)a,

(2.15)

C) An approximation for the variance part:

For the variance part, there is in analogy with the expected value part,
E[σ2(θj)|Xj ] that is approximated as a non-homogeneous linear combination:

E[σ2(θj)|Xj ] ∼= c0 + c1S
2
j (2.16)

where

S2
j =

t∑

s=1

(Xjs −Xj)2/(t− 1). (2.17)

The following distance will be minimized:

E{[σ2(θj)− c0 − c1S
2
j ]2}. (2.18)

So, for each j = 1, k we have to solve the following minimization problem:

Min
c0,c1

E{[σ2(θj)− c0 − c1S
2
j ]2}. (2.19)

As (2.19) is the minimum of a positive definitive quadratic form, it is enough to
find a solution with all partial derivates equal to zero. Taking the partial derivative
with respect to c0 results in:

c0 = E[σ2(θj)](1− c1), (2.20)

because if:

f(c0, c1)
not.= E{[σ2(θj)− c0 − c1S

2
j ]2} = E{[σ2(θj)]2}+ c2

0 + c2
1E[(S2

j )2]−
−2c0E[σ2(θj)] + 2c0c1E(S2

j )− 2c1E[σ2(θj)S2
j ],
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then
∂f

∂c0
= 0 implies: 2c0 − 2E[σ2(θj)] + 2c1E(S2

j ) = 0, that is the verification of

the equality (2.20) that is readily performed (see (2.24)). Inserting the result (2.20)
in (2.19) we obtain:

Min
c1

E{[σ2(θj)−E(σ2(θj))(1− c1)− c1S
2
j ]2}. (2.21)

Taking the derivative with respect to c1, gives:

Cov[σ2(θj), S2
j ] = c1Cov[S2

j , S2
j ], (2.22)

because if:

f(c1)
not.= E{[σ2(θj)− E(σ2(θj))(1− c1)− c1S

2
j ]2} = E{[σ2(θj)]2 + E2[σ2(θj)]·

·(1− c1)2 + c2
1(S

2
j )2 − 2σ2(θj)E[σ2(θj)](1− c1)− 2σ2(θj)c1S

2
j +

+2E[σ2(θj)](1− c1)c1S
2
j } = E{[σ2(θj)]2}+ E2[σ2(θj)](1− c1)2 + c2

1E[(S2
j )2]−

−2E2[σ2(θj)](1− c1)− 2c1E[σ2(θj)S2
j ] + 2E[σ2(θj)](1− c1)c1E(S2

j ),

then
∂f

∂c1
= 0 implies:

−2E2[σ2(θj)](1− c1) + 2c1E[(S2
j )2] + 2E2[σ2(θj)]− 2E[σ2(θj)S2

j ]+

+2E[σ2(θj)]E(S2
j ) · (1− 2c1) = 0,

that is:

−E2[σ2(θj)] + c1E
2[σ2(θj)] + c1E[(S2

j )2] + E2[σ2(θj)]− E[σ2(θj)S2
j ]+

+E[σ2(θj)]E(S2
j )− 2E[σ2(θj)]E(S2

j )c1 = 0.
(2.23)

But

σ2(θj) = E(S2
j |θj) and so E[σ2(θj)] = E[E(S2

j |θj)] = E(S2
j ). (2.24)

Now after plugging (2.24) in (2.23) we obtain:

E[σ2(θj)S2
j ]− E[σ2(θj)]E(S2

j ) = c1{E[(S2
j )2]− E2(S2

j )},
that is

Cov[σ2(θj), S2
j ] = c1Cov(S2

j , S2
j ), or Cov[σ2(θj), S2

j ] = c1Var(S2
j )

and so the verification of the equality (2.22) is readily performed. But:

Cov[σ2(θj), S2
j ] = E{Cov[σ2(θj), S2

j |θj ]}+ Cov{E[σ2(θj)|θj ], E(S2
j |θj)} =

= E{E[σ2(θj)S2
j |θj ]−E[σ2(θj)|θj ]E(S2

j |θj)}+ Cov[σ2(θj), σ2(θj)] =

= E[σ2(θj)E(S2
j |θj)− σ2(θj)σ2(θj)] + Var[σ2(θj)] = E[σ2(θj)σ2(θj)−

−σ2(θj)σ2(θj)] + Var[σ2(θj)] = Var[σ2(θj)],

(2.25)
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Var(S2
j ) = Var[E(S2

j |θj)] + E[Var(S2
j |θj)] = Var[σ2(θj)] + E[Var(S2

j |θj)]. (2.26)

Inserting (2.25) and (2.26) in (2.22), the value of c1 follows as:

c1 = Var[σ2(θj)]/{Var[σ2(θj)] + E[Var(S2
j |θj)]}. (2.27)

We have
Var(S2

j |θj) = 2σ4(θj)/(t− 1) + O(t−2) ∼= 2σ4(θj)/(t− 1), (2.28)

for large values of t, and under the assumption of normality we get:

µ4(θj) = 3σ4(θj), (2.29)

because from statistics we recall some basic theorems:

(I) Suppose that X is a random variable, with Normal (µ, σ2) distribution and
in addition for all r ∈ N:

µ2r = E[(X − µ)2r],

then:
µ2r =

(2r)!
2rr!

σ2r.

(II) Suppose that X1, X2, . . . , Xn are independent random variables with the
same expectations µ and the variance σ2, and in addition for each r:

µ4 = E[(Xr − µ)4].

Let S̃2 be defined as: S̃2 =
1

n− 1

n∑

i=1

(Xi− X̄)2 the sample variance, where X̄ is

the sample mean of n i. i. d. random variables X1, X2, . . . , Xn , that is:

X̄ =
1
n

n∑

i=1

Xi.

Then the following relation is valid:

Var (S̃2) =
1
n

(
µ4 − n− 3

n− 1
σ4

)
.

Here (Xjs|θj), s = 1, t are n i. i. d. random variables, with: E(Xjs|θj) = µ(θj),
Var (Xjs|θj) = σ2(θj) and E{[Xjs − E(Xjs|θj)]4|θj} = µ4(θj) for all s = 1, t.

Let j be fixed. Under the assumption of normality we get: (Xjs|θj) ∈
N(µ(θj), σ2(θj)) for all s = 1, t. Applying result (I) to X = (Xjs|θj), for all s = 1, t
and r = 2 we have:

µ4(θj) =
(2 · 2)!
22 · 2!

(σ2(θj))2 = 3σ4(θj).

So the verification of the equality (2.29) is readily performed. Applying result
(II) to S̃2 = (S2

j |θj) we obtain:

Var (S2
j |θj) =

1
t

[
µ4(θj)− t− 3

t− 1
σ4(θj)

]
=

1
t

[
3σ4(θj)− t− 3

t− 1
σ4(θj)

]
=
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=
1
t
· 3(t− 1)− t + 3

t− 1
· σ4(θj) =

2t

t(t− 1)
σ4(θj) =

2σ4(θj)
t− 1

.

So the verification of the equality (2.28) is already performed.
Let a∗ = Var[σ2(θj)], s2∗ = E[σ4(θj)], then we obtain for large values of t the

following approximation:

c1
(2.27)
= a∗/{a∗+E[Var(S2

j |θj)]} (2.28)
= a∗/{a∗+2E[σ4(θj)]/(t−1)} = a∗/{a∗+2s2∗/(t−1)}.

Consequently one obtains the following linear estimator for the variance part of
the loading, i.e. the conditional expectation of σ2(θj):

E[σ2(θj)|Xj ] ∼= (1− c1)E[σ2(θj)] + c1S
2
j

(see (2.16) and (2.20)).

3 Conclusions

In this paper we have obtained linear approximations which are unbiased esti-
mates for the expected value part (i.e. for the conditional expectation of µ(θj)),
respectively for the variance part (i.e. for the conditional expectation of σ2(θj)) and
finally for the fluctuation part (the conditional variance of µ(θj)) of the loading from
the variance premium, using the greatest accuracy theory.

The present article contains a method to estimate risk premiums loaded by a
fraction of the variance of the risk, as opposed to the net premiums studied thus far
in the credibility theory.

The first section shows that the Esscher premium approaches the variance prin-
ciple and that this premium is derived as an optimal estimator minimizing a suitable
loss function. So, in the first section it is shown that it can be used as an approx-
imation to the variance loaded premium, by truncating a series expansion. Also,
the approach of the problem of Esscher premium, followed in the first section is
to consider the best linear credibility estimator which minimizes the exponentially
weighted squared error loss function.

The second section analyses and presents the linear non-homogeneous credibility
estimators for the separate parts of the variance premium. It happens that the
linear credibility approximations for each of the parts in the variance premium to
coincide with the unbiased estimates for the expected value part, the variance part
and the fluctuation part from the variance premium. The approach of the problem
of loaded premiums, followed in the second section is to simply add ”credibility” like
estimators for the separate parts of the variance premium.

So, the problem under discussion is to get linear approximations, which are un-
biased estimates for the expected value part, variance part, fluctuation part, i.e. for
the separate parts of the variance premium, using the classical model of Bühlmann
and the credibility for the Esscher premiums.
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Properties of covers in the lattice of group topologies
for nilpotent groups
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Abstract. A nilpotent group Ĝ and two group topologies τ̂ ′′ and τ̂∗ on Ĝ are
constructed such that τ̂∗ is a coatom in the lattice of all group topologies of the group
Ĝ and such that between inf{τ̂ ′′, τ̂d} and inf{τ̂ ′′, τ̂∗} there exists an infinite chain of
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1 Introduction

As is known, in any modular lattice, the lengths of any finite unrefinable chains
with the same ends are equal. Moreover, the lengths of finite unrefinable chains do
not become greater if we take the infimum or the supremum in these lattices.

The lattice of all group topologies for a nilpotent group need not be modular
[1]. However, as is shown in [2], in the lattice of all group topologies on a nilpotent
group, the lengths of any finite unrefinable chains which have the same ends are
equal. Moreover, in the same article it is shown that the lengths of any finite
unrefinable chains do not become greater if we take the supremum.

Given the above, it was natural to expect that the lengths of any finite unrefinable
chains do not become greater if in the lattice of all group topologies for a nilpotent
group we take the infimum. However, as shown in this article, it is not the case.

To present the further results we need the following known result (see [3],
page 203):

Theorem 1. Let B be a collection of subsets of a group G(·) such that the following
conditions are satisfied:

1) e ∈ V for any V ∈ B, where e is the unity element in the group G(·);
2) for any V1, V2 ∈ B there exists V3 ∈ B such that V3 ⊆ V1

⋂
V2;

3) for any V1 ∈ B there exists V2 ∈ B such that V2 · V2 ⊆ V1;
4) for any V1 ∈ B there exists V2 ∈ B such that V −1

2 ⊆ V1;
5) for any V1 ∈ B and any element g ∈ G there exists V2 ∈ B such that

g · V2 · g−1 ⊆ V1.

c© V. I. Arnautov, 2012
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Then there exists a unique group topology τ on the group G(·) for which the collection
B is a basis of neighborhoods of the unity element e 1 (see [3], page 26).

From Theorem 1 follows easily:

Corollary 2. Let group topologies τ1 and τ2 be defined on a group G(·). If B1

and B2 are bases of neighborhoods of the unity element in topological groups (G, τ1)
and (G, τ2), respectively, then the collection B = {U ⋂

V | U ∈ B1, V ∈ B2} is a
basis of neighborhoods of the unity element in the topological group (G, τ), where
τ = sup{τ1, τ2}.

2 Basic results

To state basic results we need the following notations:

Notations 3.
3.1. N is the set of all natural numbers, Z is the set of all integers and R(+, ·)

is the field of real numbers;

3.2. G is the set of all matrices




1 a1,2 a1,3

0 1 a2,3

0 0 1


 of the dimension 3× 3 over the

field R of real numbers such that ai,i = 1 for 1 ≤ i ≤ 3 and ai,j = 0 for 1 ≤ j < i ≤ 3,

G′ =








1 a1,2 a1,3

0 1 a2,3

0 0 1


 ∈ G | a1,3 = a2,3 = 0



 ;

G′′ =








1 a1,2 a1,3

0 1 a2,3

0 0 1


 ∈ G | a1,2 = a1,3 = 0



;

G(A) =








1 a1,2 a1,3

0 1 a2,3

0 0 1


 ∈ G | a1,2 = 0 and a1,3 ∈ A



 for any subgroup A(+)

of the group R(+);
3.3. Gi(·) = G(·), G′

i(·) = G′(·) and G′′
i (·) = G′′(·) for every natural number i;

3.4. Gi(A) = G(A) for every natural number i and any subgroup A(+) of the
group R(+);

3.5. Ĝ =
∞∑
i=1

Gi, Ĝ′ =
∞∑
i=1

G′
i and Ĝ′′ =

∞∑
i=1

G′′
i ;

3.6. Ṽn = {g̃ ∈ G̃ | pri(g̃) = ei if i ≤ n} for any n ∈ N;
3.7. Ĝk(A) = {ĝ ∈ Ĝ|prk(ĝ) ∈ G′′

k(A) and prj(ĝ) = {e} if j 6= k}, where k ∈ N
and A(+) is a subgroup of the group R(+);

3.8. Ĝ(A,S) = {ĝ ∈ Ĝ | pri(ĝ) ∈ Gi(A) if i ∈ S and prj(ĝ) ∈ G′′
j if j /∈ S},

where A(+) is a subgroup of the group R(+) and S ⊆ N;

1As usual, the set V is called a neighborhood of an element a in the topological space (X, τ) if
a ∈ U ⊆ V for some U ∈ τ .
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3.9. τi is discrete in the group Gi and τ̃ is Tikhonov topology of the direct

product G̃ =
∞∏
i=1

(Gi, τi).

Remark 4. It is easy to see that G with the usual operation of matrix multiplication
is a group.

Since




1 a b
0 1 c
0 0 1



−1

=




1 −a a · c− b
0 1 −c
0 0 1


 , then




1 a b
0 1 c
0 0 1


 ·




1 x y
0 1 z
0 0 1


 ·




1 a b
0 1 c
0 0 1



−1

·



1 x y
0 1 z
0 0 1



−1

=




1 0 −y · c + a · z
0 1 0
0 0 1


 ,

and as the center of the group G contains any matrix of the form




1 0 d
0 1 0
0 0 1


 for

d ∈ R, then G(·) is a nilpotent group and its nilpotency index is 2.

In addition, since




1 a a1,3

0 1 a2,3

0 0 1


 ·




1 0 b1,3

0 1 b2,3

0 0 1


 =




1 a a1,3 + b1,3

0 1 a2,3 + b2,3

0 0 1


 , then

G′(·), G′′(·) and G(A)(·) are subgroups of the group G(·) for any subgroup A(+) of
the additive group of the field R(+, ·).

Proposition 5. For the group Ĝ the following statements are true:
Statement 5.1. The collection B′ = {Ṽi

⋂
Ĝ′|i ∈ N} satisfies the conditions of

Theorem 1, and hence, it is a basis of neighborhoods of the unity element for a group
topology τ̂ ′ on the group Ĝ;

Statement 5.2. The collection B′′ = {Ṽi
⋂

Ĝ′′|i ∈ N} satisfies the conditions of
Theorem 1, and hence, is a basis of neighborhoods of the unity element for a group
topology τ̂ ′′ on the group Ĝ;

Statement 5.3. If A is a subgroup of the group R(+) of the field R(+, ·), and F
is the Frechet filter2 on the set N, then the collection B(A,F) = {Ĝ(A,F )

⋂
Ṽn|F ∈

F , n ∈ N} satisfies all the conditions of Theorem 1, and hence, it is a basis of
neighborhoods of the unity element for a group topology τ̂(A,F) on the group Ĝ.

Proof. Since Ĝ(A,F
⋂

S) ⊆ Ĝ(A,F )
⋂

Ĝ(A, S) for any subgroup A(+) of the group
R(+) and any subsets S ⊆ N and F ⊆ N for which Ṽi ⊆ Ṽk if k ≤ i, then any of the
mentioned collections satisfies condition 2 of Theorem 1.

In addition, taking into consideration the definitions of sets Ṽn, Ĝ′, Ĝ′′, and
Ĝ(A,F ) we obtain that any set from the collection B′⋃B′′⋃B(A,F) is a subgroup
of the group Ĝ(·), and hence, any collection B′, B′′, and B(A,F) satisfies conditions
1, 3 and 4 of Theorem 1.

2i.e. N \ {1, . . . , k} ∈ F for every k ∈ N.
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To complete the proof of the theorem it remains to verify that for any of the
mentioned collections condition 5 of Theorem 1 is also satisfied.

Let ĝ ∈ Ĝ, then there exists a natural number n such that pri(ĝ) = ei for i > m.
If Ṽk

⋂
Ĝ′ ∈ B′ and m = max{k, n}, then ĝ · â · ĝ−1 = â for any â ∈ Ṽm

⋂
Ĝ′,

and hence,
ĝ · (Ṽm

⋂
Ĝ′) · ĝ−1 = Ṽm

⋂
Ĝ′ ⊆ Ṽk

⋂
Ĝ′,

i.e. condition 5 of Theorem 1 holds for the collection B′.
Analogously, if Ṽk

⋂
Ĝ′′ ∈ B′′ and M = max{k, n}, then ĝ · â · ĝ−1 = â for any

â ∈ Ṽm
⋂

Ĝ′′, and hence,

ĝ · (Ṽm

⋂
Ĝ′′) · ĝ−1 = Ṽm

⋂
Ĝ′′ ⊆ Ṽk

⋂
Ĝ′′,

i.e. condition 5 of Theorem 1 holds for the collection B′′.
If V̂ (A,F )

⋂
Ṽk ∈ B(AF) and m = max{n, k}, then V̂ (A,F )

⋂
Ṽm ⊆ V̂ (A,F )

⋂
Ṽk

and ĝ · â · ĝ−1 = â for any â ∈ V̂ (A,F )
⋂

Ṽm, and hence,

ĝ · (V̂ (A,F )
⋂

Ṽm) · ĝ−1 = V̂ (A,F )
⋂

Ṽm ⊆ V̂ (A,F )
⋂

Ṽk

i.e. condition 5 of Theorem 1 holds for the collection B(A,F).
By this, the proposition is completely proved.

Proposition 6. Let τ̂ ′ and τ̂ ′′ be group topologies on the group Ĝ, defined in Propo-
sition 5, and n ∈ N. If τ is a non-discrete group topology on the group Ĝ such that
τ ≥ τ̂ ′, then for any neighborhood W of the unity element ê in the topological group
(Ĝ, inf{τ, τ̂ ′′}) there exists a natural number k ≥ n such that (see 3.7) Ĝk(R) ⊆ W .

Proof. Let W be a neighborhood of the unity element in the topological group
(Ĝ, inf{τ, τ̂ ′′}), and let W1 be a neighborhood of the unity element in the topological
group (Ĝ, inf{τ, τ̂ ′′}) such that W1 · (W1 ·W1 · (W1)−1 · (W1)−1) ⊆ W .

Then W1 is a neighborhood of the unity element in each of the topological groups
(Ĝ, τ) and (Ĝ, τ̂ ′′), and hence, there exists a natural number n0 ∈ N such that n0 ≥ n
and Ṽn0

⋂
Ĝ′′ ⊆ W1.

Since τ ≥ τ̂ ′, then Ĝ′⋂ Ṽn0 is a neighborhood of the unity element in the topo-
logical group (Ĝ, τ). Then, Ĝ′⋂ Ṽn0

⋂
W1 is a neighborhood of the unity element in

the topological group (Ĝ, τ).
Since τ is a non-discrete topology, then Ĝ′⋂ Ṽn0

⋂
W1 6= {0}. If 0 6= ĝ0 ∈

Ĝ′⋂ Ṽn0

⋂
W1 6= {0}, then there exists a natural number k ≥ n0 ≥ n such that

prk(ĝ0) 6= 0.

Since ĝ0 ∈ Ĝ′, then prk(ĝ0) =




1 a 0
0 1 0
0 0 1


 , and a 6= 0.
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For any numbers r, x ∈ R consider matrices




1 0 0
0 1 (a−1) · x
0 0 1


,




1 0 0
0 1 r
0 0 1


 ,

and




1 0 x
0 1 0
0 0 1


 . Then (see Remark 4)




1 0 x
0 1 r
0 0 1


 =




1 0 0
0 1 r
0 0 1


 ·




1 0 x
0 1 0
0 0 1


 =




1 0 0
0 1 r
0 0 1


·







1 a 0
0 1 0
0 0 1


 ·




1 0 0
0 1 a−1 · x
0 0 1


 ·




1 a 0
0 1 0
0 0 1



−1

·



1 0 0
0 1 a−1 · x
0 0 1



−1


 .

For any numbers r, x ∈ R we consider elements ĝr, ĝx ∈ Ĝ such that

prk(ĝr) =




1 0 0
0 1 r
0 0 1


 and pri(ĝ) = ei for i 6= k,

prk(ĝx) =




1 0 0
0 1 a−1 · x
0 0 1


 and pri(ĝ) = ei for i 6= k.

Since k ≥ n0, then ĝr ∈ Ṽn0

⋂
Ĝ′′ ⊆ W1 and ĝx ∈ Ṽn0

⋂
Ĝ′′ ⊆ W1 for any

numbers r, x ∈ R. Then ĝr · (ĝ0 · ĝx · ĝ−1
0 · ĝ−1

x ) ∈ W1 ·W1 ·W1 · (W1)−1 · (W1)−1 ⊆ W

for any numbers r, x ∈ R, and hence, Ĝk(R) = {ĝr · ĝ0 · ĝx · ĝ−1
0 · ĝ−1

x |r, x ∈ R} ⊆ W .
As prk(ĝr · ĝ0 · ĝx · ĝ−1

0 · ĝ−1
x ) =




1 0 0
0 1 r
0 0 1


·







1 a 0
0 1 0
0 0 1


 ·




1 0 0
0 1 a−1 · x
0 0 1


 ·




1 a 0
0 1 0
0 0 1



−1

·



1 0 0
0 1 a−1 · x
0 0 1



−1


 =




1 0 x
0 1 r
0 0 1


 for any r, x ∈ R, and pri(ĝi · ĝ0 · ĝx · ĝ−1

0 · ĝ−1
x ) = ei for any R, x ∈ R

and for any i 6= k, then prk(Âk) =








1 0 x
0 1 r
0 0 1


 |r and x ∈ R



 = Gk(R) and

pri(Âk) = {ei} for i 6= k.
By this, the proposition is completely proved.

Theorem 7. Let τ̂ ′ and τ̂ ′′ be group topologies on the group Ĝ, defined in Proposition
5, and F be the Frechet filter. Then the following statements are true:
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Statement 7.1. If τ is a group topology on the group Ĝ such that τ ≥ τ̂ ′, then

sup{τ̂(A,F), inf{τ̂ ′′, τ}} > sup{τ̂(B,F), inf{τ̂ ′′, τ}}.

for any subgroups A ⊂ B of the group R(+).
Statement 7.2. If τ̂d is the discrete topology on the group Ĝ, and τ̂∗ is a coatom

in the lattice of all group topologies on the group Ĝ such that τ̂∗ ≥ τ̂ ′, then between
the topologies inf{τ̂d, τ̂

′′} and inf{τ̂∗, τ̂ ′′}, there exists a chain of group topologies on
the group Ĝ which is infinitely decreasing and infinitely increasing.

Proof. Proof of Statement 7.1. Since A ⊂ B, then (see the notation at the begin-
ning of this article) V̂ (A,S) ⊆ V̂ (B,S) for any S ∈ F . Then (see Proposition 5)
τ̂(A,F) ≥ τ̂(B,F), and hence, sup{τ̂(A,F), inf{τ̂ ′′, τ}} ≥ sup{τ̂(B,F), inf{τ̂ ′′, τ}}.

We will show that sup{τ̂(A,F), inf{τ̂ ′′, τ}} > sup{τ̂(B,F), inf{τ̂ ′′, τ}}.
Assume the contrary, i.e. that

sup{τ̂(A,F), inf{τ̂ ′′, τ}} = sup{τ̂(B,F), inf{τ̂ ′′, τ}},

and let S0 ∈ F . Then V̂ (A,S0) is a neighborhood of the unity element in the topolog-
ical group (Ĝ, τ̂(A,F)), and hence, V̂ (A,S0) is a neighborhood of the unity element
in the topological group (Ĝ, sup{τ̂(A,F), inf{τ̂ ′′, τ}}) = (Ĝ, sup{τ̂(B,F), inf{τ̂ ′′, τ}}).
Then there exists a neighborhood W of the unity element in the topological group
(Ĝ, inf{τ̂ ′′, τ}) such that W

⋂
(V̂ (B,S1)

⋂
Ṽn) ⊆ V̂ (A,S0) for some S1 ∈ F and a

natural number n ∈ N.
Since F is the Frechet filter, then there exists a natural number m ∈ N such that

{i ∈ N | i > m} ⊆ S0
⋂

S1.
By Proposition 6, there exists a natural number k ≥ max{n, m} such that

Ĝk(R) ⊆ W , and hence, Ĝk(B) ⊆ Ĝk(R) ⊆ W .
As k ∈ {i ∈ N | i > m} ⊆ S1 then Ĝk(B) ⊆ V̂ (B,S1), and as k ≥ n then

Ĝk(B) ⊆ Ṽn. Then Ĝk(B) ⊆ W
⋂

V̂ (B, S1)
⋂

Ṽn ⊆ V̂ (A,S0).
Since k ∈ {i ∈ N | i > m} ⊆ S0, then (see 3.7) Gk(B) = prk(Ĝk(B)) ⊆

prk(V̂ (A,S0)) = Gk(A), but this contradicts that B * A.
By this, Statement 7.1 is proved.
Proof of Statement 7.2. There exists a chain {Ai | i ∈ Z} of subgroups Ai of

the group R(+) such that Ai ⊆ Ai+1 for any i ∈ Z, i.e. this chain of subgroups is
infinitely decreasing and infinitely increasing.

For any subgroup Ai let consider the topology τ̂(Ai,F). Since τ̂∗ ≥ τ̂ ′, then by
Statement 7.1,

sup{τ̂(Ai,F), inf{τ̂ ′′, τ̂∗}} > sup{τ̂(Ai+1,F), inf{τ̂ ′′, τ̂∗}},

and hence, the chain of group topologies {sup{τ̂(Ai,F), inf{τ̂ ′′, τ̂∗}} | i ∈ Z} is
infinitely decreasing and infinitely increasing.

To complete the proof of the theorem it remains to verify that

inf{τ̂∗, τ̂ ′′} ≤ sup{τ̂(Ai,F), inf{τ̂∗, τ̂ ′′}} ≤ inf{τ̂d, τ̂
′′}
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for any subgroup Ai(+) of the group R(+), where i ∈ Z.
In fact, from the definition of the sets G(A) and G′′ (see 3.2) it follows that

G(0) = G′′, and hence, Gk(0) = G′′
k for any k ∈ N. Then Ĝ({0}, S)

⋂
Ṽn = Ĝ′′⋂ Ṽn

for any subset S ⊆ N and any n ∈ N, and hence, the collection {Ĝ({0}, S)
⋂

Ṽn |
n ∈ N} is a basis of neighborhoods of the unity element in the topological group
(Ĝ, τ̂ ′′).

Since τ̂d is the discrete topology on the group Ĝ, then inf{τ̂ ′′, τ̂d} = τ̂ ′′, and
hence, the set {Ĝ({0}, S)

⋂
Ṽn | n ∈ N} is a basis of neighborhoods of the unity

element in the topological group (Ĝ, inf{τ̂ ′′, τ̂d}). Then τ̂({0},F) ≤ inf{τ̂ ′′, τ̂d}.
So, we have proved that sup{τ̂(Ai,F), inf{τ∗, τ̂ ′′}} ≤ inf{τd, τ̂

′′}. Since {0} ⊆ Ai

for any i ∈ Z, then

inf{τ̂∗, τ̂ ′′} ≤ sup{τ̂(Ai,F), inf{τ̂∗, τ̂ ′′}} ≤ inf{τ̂d, τ̂
′′}

for any subgroup Ai(+) of the group R(+).
By this, the theorem is proved.
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Abstract. A classification of full-rank affine subspaces of (real) three-dimensional Lie
algebras is presented. In the context of invariant control affine systems, this is exactly
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1 Introduction

In this note we exhibit a classification, under L-equivalence, of full-rank affine
subspaces of (real) three-dimensional Lie algebras. Two affine subspaces are
L-equivalent, provided there exists a Lie algebra automorphism mapping one to
the other. This classification is presented in three parts (see Theorems 1, 2,
and 3). Proofs are omitted. However, a full treatment of each part will appear
elsewhere [4–6]. Tables detailing these results are included as an appendix.

It turns out that two left-invariant control affine systems are detached feedback
equivalent if (and only if) their traces are L-equivalent. Therefore, a classification
under L-equivalence induces one under detached feedback equivalence.

2 Three-dimensional Lie algebras

The classification of three-dimensional Lie algebras is well known. The classifi-
cation over C was done by S. Lie (1893), whereas the standard enumeration of the
real cases is that of L. Bianchi (1918). In more recent times, a different (method
of) classification was introduced by C. Behr (1968) and others (see [12–14] and the
references therein). This is customarily referred to as the Bianchi-Behr classifi-
cation, or even the “Bianchi-Schücking-Behr classification”. Accordingly, any real
three-dimensional Lie algebra is isomorphic to one of eleven types (in fact, there
are nine algebras and two parametrised infinite families of algebras). In terms of an
(appropriate) ordered basis (E1, E2, E3), the commutation operation is given by

[E2, E3] = n1E1 − aE2

[E3, E1] = aE1 + n2E2

c© Rory Biggs, Claudiu C. Remsing, 2012
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[E1, E2] = n3E3.

The (Bianchi-Behr) structure parameters a, n1, n2, n3 for each type are given in
Table 1.

Type Notation a n1 n2 n3 Representatives

I 3g1 0 0 0 0 R3

II g3.1 0 1 0 0 h3

III = V I−1 g2.1 ⊕ g1 1 1 −1 0 aff(R)⊕ R
IV g3.2 1 1 0 0
V g3.3 1 0 0 0
V I0 g0

3.4 0 1 −1 0 se(1, 1)
V Ih, h<0

h6=−1 gh
3.4

√−h 1 −1 0
V II0 g0

3.5 0 1 1 0 se(2)
V IIh, h>0 gh

3.5

√
h 1 1 0

V III g3.6 0 1 1 −1 sl(2,R), so(2, 1)
IX g3.7 0 1 1 1 su(2), so(3)

Table 1. Bianchi-Behr classification

We note that for the two infinite families, V Ih and V IIh, each value of the
parameter h yields a distinct (i. e., non-isomorphic) Lie algebra. Furthermore, for
the purposes of this paper, type III = V I−1 will be considered as part of V Ih.

3 Affine subspaces and classification

An affine subspace Γ of a Lie algebra g is written as

Γ = A + Γ0 = A + 〈B1, B2, . . . , B`〉
where A,B1, . . . , B` ∈ g. Let Γ1 and Γ2 be two affine subspaces of g. We say that
Γ1 and Γ2 are L-equivalent if there exists a Lie algebra automorphism ψ ∈ Aut(g)
such that ψ · Γ1 = Γ2. L-equivalence is a genuine equivalence relation. An affine
subspace Γ is said to have full rank if it generates the whole Lie algebra (i.e., the
smallest Lie algebra containing Γ is g). Note that the full-rank property is invariant
under L-equivalence.

Clearly, if Γ1 and Γ2 are L-equivalent, then they are necessarily of the same
dimension. Furthermore, 0 ∈ Γ1 if and only if 0 ∈ Γ2. We shall find it convenient to
refer to an `-dimensional affine subspace Γ as an (`, 0)-affine subspace when 0 ∈ Γ
(i.e., Γ is a vector subspace) and as an (`, 1)-affine subspace, otherwise.

Remark 1. No (1, 0)-affine subspace has full rank. A (1, 1)-affine subspace has full
rank if and only if A, B1, and [A,B1] are linearly independent. A (2, 0)-affine
subspace has full rank if and only if B1, B2, and [B1, B2] are linearly independent.
Any (2, 1)-affine subspace or (3, 0)-affine subspace has full rank.
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There is only one affine subspace whose dimension coincides with that of the Lie
algebra g, namely the space itself. From the standpoint of classification, this case
is trivial and hence will not be covered explicitly.

Let us fix a three-dimensional Lie algebra g (together with an ordered basis). In
order to classify the affine subspaces of g, one requires the (group of) automorphisms
of g. These are well known (see, e. g., [7,8,14]); a summary is given in Table 2. For
each type of Lie algebra, one constructs class representatives (by considering the
action of automorphisms on a typical affine subspace). Finally, one verifies that
none of these representatives are equivalent.

Type Commutators Automorphisms

II

[E2, E3] = E1




yw − vz x u
0 y v
0 z w


 ; yw 6= vz[E3, E1] = 0

[E1, E2] = 0

IV

[E2, E3] = E1 − E2




u x y
0 u z
0 0 1


 ; u 6= 0[E3, E1] = E1

[E1, E2] = 0

V

[E2, E3] = −E2




x y z
u v w
0 0 1


 ; xv 6= yu[E3, E1] = E1

[E1, E2] = 0

V I0

[E2, E3] = E1




x y u
y x v
0 0 1


 ,




x y u
−y −x v
0 0 −1


 ; x2 6= y2[E3, E1] = −E2

[E1, E2] = 0

V Ih

[E2, E3] = E1 − aE2




x y u
y x v
0 0 1


 ; x2 6= y2[E3, E1] = aE1 − E2

[E1, E2] = 0

V II0

[E2, E3] = E1




x y u
−y x v
0 0 1


 ,




x y u
y −x v
0 0 −1


 ; x2 6= −y2[E3, E1] = E2

[E1, E2] = 0

V IIh

[E2, E3] = E1 − aE2




x y u
−y x v
0 0 1


 ; x2 6= −y2[E3, E1] = aE1 + E2

[E1, E2] = 0

V III

[E2, E3] = E1 M>JM = J

J = diag(1, 1,−1)
det M = 1

[E3, E1] = E2

[E1, E2] = −E3

IX

[E2, E3] = E1 M>M = I

I = diag(1, 1, 1)
det M = 1

[E3, E1] = E2

[E1, E2] = E3

Table 2. Automorphisms of three-dimensional Lie algebras
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Type Notation (`, ε) Equivalence representative Parameter

II g3.1

(1, 1) E2 + 〈E3〉
(2, 0) 〈E2, E3〉
(2, 1)

E1 + 〈E2, E3〉
E3 + 〈E1, E2〉

IV g3.2

(1, 1)
E2 + 〈E3〉

α 6= 0

αE3 + 〈E2〉
(2, 0) 〈E2, E3〉

(2, 1)
E1 + 〈E2, E3〉
E2 + 〈E3, E1〉
αE3 + 〈E1, E2〉

V g3.3

(1, 1) ∅
α 6= 0

(2, 0) ∅
(2, 1)

E1 + 〈E2, E3〉
αE3 + 〈E1, E2〉

V I0 g0
3.4

(1, 1)
E2 + 〈E3〉

α > 0

αE3 + 〈E2〉
(2, 0) 〈E2, E3〉

(2, 1)
E1 + 〈E2, E3〉

E1 + 〈E1 + E2, E3〉
αE3 + 〈E1, E2〉

V Ih gh
3.4

(1, 1)
E2 + 〈E3〉

α 6= 0

αE3 + 〈E2〉
(2, 0) 〈E2, E3〉

(2, 1)

E1 + 〈E2, E3〉
E1 + 〈E1 + E2, E3〉
E1 + 〈E1 −E2, E3〉

αE3 + 〈E1, E2〉

V II0 g0
3.5

(1, 1)
E2 + 〈E3〉

α > 0
αE3 + 〈E2〉

(2, 0) 〈E2, E3〉
(2, 1)

E1 + 〈E2, E3〉
αE3 + 〈E1, E2〉

V IIh gh
3.5

(1, 1)
E2 + 〈E3〉

α 6= 0
αE3 + 〈E2〉

(2, 0) 〈E2, E3〉
(2, 1)

E1 + 〈E2, E3〉
αE3 + 〈E1, E2〉

Table 3. Affine subspaces (types II to V II, solvable)
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We present our results for the solvable Lie algebras (types I to V II ) in the
following two theorems; a summary is given in Table 3. The classification of type I
is trivial and is therefore omitted.

Theorem 1. Any full-rank affine subspace of g3.1 (type II) is L-equivalent to ex-
actly one of E2 + 〈E3〉, 〈E2, E3〉, E1 + 〈E2, E3〉, and E3 + 〈E1, E2〉. Any full-
rank affine subspace of g3.2 (type IV ) is L-equivalent to exactly one of E2 + 〈E3〉,
αE3 + 〈E2〉, 〈E2, E3〉, E1 + 〈E2, E3〉, E2 + 〈E3, E1〉, and αE3 + 〈E1, E2〉. Any full-
rank affine subspace of g3.3 (type V ) is L-equivalent to exactly one of E1+〈E2, E3〉,
and αE3+〈E1, E2〉. Here α 6= 0 parametrises families of class representatives, each
different value corresponding to a distinct non-equivalent representative.

The automorphisms of g0
3.4, gh

3.4 (including h = −1), g0
3.5, and gh

3.5 are very
similar. Due to this similarity, we treat these types separately.

Theorem 2. Any full-rank affine subspace of g0
3.5 or gh

3.5 (type V II0 or V IIh,
respectively) is L-equivalent (with respect to the different ordered bases) to exactly
one of E2 + 〈E3〉, αE3 + 〈E2〉, 〈E2, E3〉, E1 + 〈E2, E3〉, and αE3 + 〈E1, E2〉, where
α > 0 for g0

3.5 and α 6= 0 for gh
3.5 . Any full-rank affine subspace of g0

3.4 (type V I0)
is L-equivalent to exactly one of the above formal list for g0

3.5 or E1+〈E1 + E2, E3〉.
Any full rank-affine subspace of gh

3.4 (type V Ih) is L-equivalent to exactly one of the
above formal list for gh

3.5, or one of E1+〈E1 + E2, E3〉 and E1+〈E1 − E2, E3〉. Here
α parametrises families of class representatives, each different value corresponding
to a distinct non-equivalent representative.

Remark 2. The Lie algebras of types II, III, IV , V , V I0, and V Ih are completely
solvable, whereas those of types V II0 and V IIh are not.

Type Notation (`, ε) Equivalence representative Parameter

V III g3.6

(1, 1)

E3 + 〈E2 + E3〉

α > 0

αE2 + 〈E3〉
αE1 + 〈E2〉
αE3 + 〈E2〉

(2, 0)
〈E1, E2〉
〈E2, E3〉

(2, 1)
E3 + 〈E1, E2 + E3〉

αE1 + 〈E2, E3〉
αE3 + 〈E1, E2〉

IX g3.7

(1, 1) αE1 + 〈E2〉
α > 0(2, 0) 〈E1, E2〉

(2, 1) αE1 + 〈E2, E3〉

Table 4. Affine subspaces (types V III and IX, semisimple)



50 RORY BIGGS, CLAUDIU C. REMSING

Now, consider the case of the semisimple algebras (types V III and IX). In
each of the two cases, we employ a bilinear product ω (the Lorentz product and
dot product, respectively) that is preserved by automorphisms. Most of the affine
subspaces can then be characterised as being tangent to a level set (submanifold)
{A ∈ g : ω(A,A) = α}. We present our classification in the following theorem; a
summary is given in Table 4.

Theorem 3. Any full-rank affine subspace of g3.6 (type V III) is L-equivalent to
exactly one of E3 + 〈E2 + E3〉, αE2 + 〈E3〉, αE1 + 〈E2〉, αE3 + 〈E2〉, 〈E1, E2〉,
〈E2, E3〉, E3 + 〈E1, E2 + E3〉, αE1 + 〈E2, E3〉, and αE3 + 〈E1, E2〉. Any full-rank
affine subspace of g3.7 (type IX) is L-equivalent to exactly one of αE1 + 〈E2〉,
〈E1, E2〉, and αE1 + 〈E2, E3〉. Here α > 0 parametrises families of class represen-
tatives, each different value corresponding to a distinct non-equivalent representative.

4 Control affine systems and classification

A left-invariant control affine system Σ is a control system of the form

ġ = g Ξ (1, u) = g (A + u1B1 + · · ·+ u`B`) , g ∈ G, u ∈ R`.

Here G is a (real, finite-dimensional) Lie group with Lie algebra g. Also, the
parametrisation map Ξ(1, ·) : R` → g is an injective affine map (i. e., B1, . . . , B`

are linearly independent). The “product” g Ξ (1, u) is to be understood as
T1Lg · Ξ (1, u), where Lg : G → G, h 7→ gh is the left translation by g. Note
that the dynamics Ξ : G × R` → TG are invariant under left translations, i. e.,
Ξ (g, u) = g Ξ (1, u). We shall denote such a system by Σ = (G,Ξ) (cf. [2]).

The admissible controls are piecewise-continuous maps u(·) : [0, T ] → R`. A
trajectory for an admissible control u(·) : [0, T ] → R` is an absolutely continuous
curve g(·) : [0, T ] → G such that ġ(t) = g(t) Ξ (1, u(t)) for almost every t ∈ [0, T ].
We say that a system Σ is controllable if for any g0, g1 ∈ G, there exists a trajectory
g(·) : [0, T ] → G such that g(0) = g0 and g(T ) = g1. For more details about
(invariant) control systems see, e. g., [1, 10,11,15,16].

The image set Γ = imΞ(1, ·), called the trace of Σ, is an affine subspace of g.
Specifically, Γ = A + Γ0 = A + 〈B1, . . . , B`〉. A system Σ is called homogeneous
if A ∈ Γ0, and inhomogeneous otherwise. Furthermore, Σ is said to have full rank
if its trace (as an affine subspace) has full rank. Henceforth, we assume that all
systems under consideration have full rank. (The full-rank condition is a necessary
condition for a system Σ to be controllable.)

An important equivalence relation for invariant control systems is that of de-
tached feedback equivalence. Two systems are detached feedback equivalent if there
exists a “detached” feedback transformation which transforms the first system to
the second (see [3, 9]). Two detached feedback equivalent control systems have
the same set of trajectories (up to a diffeomorphism in the state space) which are
parametrised differently by admissible controls. More precisely, let Σ = (G, Ξ)
and Σ′ = (G′, Ξ′) be left-invariant control affine systems. Σ and Σ′ are called
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locally detached feedback equivalent (shortly DFloc-equivalent) if there exist open
neighbourhoods N and N ′ of identity (in G and G′, respectively) and a diffeo-
morphism Φ : N × R` → N ′ × R`′ , (g, u) 7→ (φ(g), ϕ(u)) such that φ(1) = 1 and
Tgφ · Ξ (g, u) = Ξ′ (φ(g), ϕ(u)) for g ∈ N and u ∈ R`. It turns out that Σ and Σ′

are DFloc-equivalent if and only if there exists a Lie algebra isomorphism ψ : g → g′

such that ψ · Γ = Γ′ (see [3]).
For the purpose of classification, we may assume that Σ and Σ′ have the same

Lie algebra g. Then Σ and Σ′ are DFloc-equivalent if and only if their traces
Γ and Γ′ are L-equivalent. This reduces the problem of classifying under DFloc-
equivalence to that of classifying under L-equivalence. Suppose {Γi : i ∈ I} is
an exhaustive collection of (non-equivalent) class representatives (i.e., any affine
subspace is L-equivalent to exactly one Γi). For each i ∈ I, we can easily find
a system Σi = (G,Ξi) with trace Γi. Then any system Σ is DFloc-equivalent to
exactly one Σi.

Example. The Heisenberg group

H3 =








1 y x
0 1 z
0 0 1


 : x, y, z ∈ R





is a (nilpotent) three-dimensional Lie group. Its Lie algebra h3 has (ordered) basis

E1 =




0 0 1
0 0 0
0 0 0


 , E2 =




0 1 0
0 0 0
0 0 0


 , E3 =




0 0 0
0 0 1
0 0 0


 .

The commutator relations are [E2, E3] = E1, [E3, E1] = 0, and [E1, E2] = 0. Thus
h3

∼= g3.1. Hence, any system Σ = (H3, Ξ) is DFloc-equivalent to exactly one
Σi = (H3, Ξi), where

Ξ1(g, u) = g(E2 + uE3) Ξ2(g, u) = g(u1E2 + u2E3)
Ξ3(g, u) = g(E1 + u1E2 + u2E3) Ξ4(g, u) = g(E3 + u1E1 + u2E3).
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Let
Γ = 〈I; Xp, p ∈ I; Hp : X → R〉 (1)

be the strategic form or normal form of the static noncooperative games with com-
plete and imperfect information1 where I = {1, 2, ..., n} is the set of players, Xp is a
set of available alternatives of the player p ∈ I, Hp : Xp → R is the payoff function of
the player p ∈ I and X =

∏
p∈I

Xi is the set of strategy profiles for the game. In [1] the

author studied informational extensions of the games (1), generated by a one-way
directional informational flow, denoted by j

inf→ i, which means: the player i, and
only he, knows exactly what value of the strategy will be chosen by the player j, and

two-directional informational flow, denoted by i
inf
¿ j, which means2: at any time si-

multaneously player i knows exactly what value of the strategy will be chosen by the
player j and player j knows exactly what value of the strategy will be chosen by the
player i. We mention that the game is static, in other words, the order of the chosen
strategies is not significant. The players do not known the informational type of the
other players, so the player i (respectively j) does not know that the player j (respec-
tively i) knows what value of the strategies will be chosen. In the general case [2, 3]
the set of the informational extended strategies of the player i (respectively j) is
the set of the functions Θi = {θi : Xj → Xi} (respectively Θj = {θj : Xi → Xj})
c© Boris Hâncu, 2012

1So the players know exactly their and of the other players payoff functions and they know the
sets of strategies. Players do not know what kind of the strategy will be chosen by the players.

2Notation i
inf

¿ j means the following: ”the information about the concrete chosen value of the
strategies of player i will be transmitted to the player j” and vice versa ”the information about the
concrete chosen value of the strategies of player j will be transmitted to the player i”.
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such that ∀xj ∈ Xj , θi(xj) ∈ Xi (respectively ∀xi ∈ Xi, θj(xi) ∈ Xj). Fol-

lowing [1], if in the game Γ the sets of strategies Xi =
{

x1
i , ..., x

l
i, ..., x

|Xi|
i

}
and

Xj =
{

x1
j , ..., x

l
j , ..., x

|Xj |
j

}
of the players i and j are at most countable, Hp is the

discrete payoff function of the player p ∈ I, the sets of the informational extended
strategies can be represented as Θi = {θα

i : Xj → Xα
i , α = 1, ...,κi} and respectively

Θj =
{

θβ
j : Xi → Xβ

j , β = 1, ...,κj

}
, where

Xα
i =

{(
xα1

i , xα2
i , ..., xαl

i , ..., x
α|Xj|
i

)
: xαl

i ∈ Xi, ∀l = 1, |Xj |
}
⊆ Xi,

Xβ
j =

{(
xβ1

j , xβ2
j , ..., xβk

j , ..., x
β|Xj|
j

)
: xβk

j ∈ Xi, ∀k = 1, |Xj |
}
⊆ Xj

for any α = 1, ...,κi = |Xi||Xj |, β = 1, ...,κj = |Xj ||Xi|. Thereby, the informational
extended strategies of the player i are functions θα

i : Xj → Xα
i such that for all

xl
j ∈ Xj there is xαl

i ∈ Xi such that θα
i

(
xl

j

)
= xαl

i and it means the following: the

player i will choose the non-informational extended strategy xαl
i ∈ Xα

i in case the
player j will choose the non-informational extended strategy xl

j ∈ Xj . Accordingly
the informational extended strategies of the player j are functions θβ

j : Xi → Xβ
j

such that for all xk
i ∈ Xi there is xβk

j ∈ Xj such that θβ
j

(
xk

i

)
= xβk

j and it means the

following: the player j will choose the non-informational extended strategy xβk
j ∈ Xβ

j

in case the player i will choose the non-informational extended strategy xk
i ∈ Xi.

Under the assumption that the players want maximize their payoffs we define the
payoff functions of the player as follows:

Hp

(
θα
i , θβ

j , x[−ij]

)
=





max
(xi,xj)∈

[
grθα

i

⋂
grθβ

j

] Hp

(
xi, xj , x[−ij]

)
if X

(
θα
i , θβ

j

)
6= ∅,

−∞ if X
(
θα
i , θβ

j

)
= ∅.

Here X
(
θα
i , θβ

j

)
⊆ X is the set of the strategy profiles of the players in the game (1)

”generated” by the informational extended strategies θα
i and θβ

j , grθα
i , grθβ

j denotes

the graph of the function θα
i and θβ

j , x[−ij] = (x1, ..., xi−1, xi+1, ..., xj−1, xj+1, ..., xn) .

And finally, the normal form of the two-directional i
inf
¿ j informational extended

game will be Γ
(

i
inf
¿ j

)
=

〈
I, Θi, Θj , {X}p∈I\{i,j} , {Hp}p∈I

〉
. Also by [1] for the

bimatricial game H1 =
(

3 5 4
6 7 2

)
, H2 =

(
0 5 1
4 3 2

)
the normal form of the 1

inf
¿ 2

informational extended game will be the bimatricial game with the following payoff
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matrices for the player 1

H1 =




3 5 4 3 5 3 4 5 4
6 7 2 7 6 2 6 2 7
3 5 2 3 5 3 −∞ 3 −∞
3 7 4 7 −∞ 3 4 −∞ 7
6 5 4 −∞ 7 −∞ 3 5 4
3 7 2 7 −∞ 3 −∞ 2 7
6 7 4 −∞ 6 2 6 5 −∞
6 7 4 7 6 −∞ 6 −∞ 7




and for the player 2 correspondingly

H2 =




0 5 1 0 5 0 1 5 1
4 3 2 3 4 2 4 2 3
0 5 2 0 5 2 −∞ 5 −∞
0 3 1 3 −∞ 0 1 −∞ 3
4 5 1 −∞ 5 −∞ 0 5 1
0 3 2 3 −∞ 2 −∞ 2 3
4 5 2 −∞ 5 2 4 5 −∞
4 3 1 3 4 −∞ 4 −∞ 3




.

Below the correspondence between Nash equilibrium profiles in the Γ
(

1
inf
¿ 2

)
game

and profiles in the Γ game is shown:

(
θ1
1, θ

8
2

) ⇒ (1, 2) ;
(
θ2
1, θ

1
2

) ⇒ (2, 1) ;
(
θ2
1, θ

7
2

) ⇒ (2, 1) ;
(
θ4
1, θ

2
2

) ⇒ (2, 2) ;(
θ4
1, θ

4
2

) ⇒ (2, 2);
(
θ4
1, θ

9
2

) ⇒ (2, 2);
(
θ5
1, θ

5
2

) ⇒ (2, 1);
(
θ5
1, θ

8
2

) ⇒ (1, 2);(
θ6
1, θ

2
2

) ⇒ (2, 2) ;
(
θ6
1, θ

4
2

) ⇒ (2, 2);
(
θ6
1, θ

9
2

) ⇒ (2, 2);
(
θ7
1, θ

2
2

) ⇒ (1, 2) ;(
θ7
1, θ

8
2

) ⇒ (1, 2);
(
θ8
1, θ

1
2

) ⇒ (2, 1) ;
(
θ8
1, θ

7
2

) ⇒ (2, 1).

Here the informational extended strategy of the player 1 is the function with the
following values:

θ1
1(j) = 1 ∀j = 1, 2, 3; θ2

1(j) = 2 ∀j = 1, 2, 3; θ3
1(1) = θ3

1(2) = 1, θ3
1(3) = 2;

θ4
1(1) = θ4

1(3) = 1, θ4
1(2) = 2; θ5

1(2) = θ5
1(3) = 1, θ5

1(1) = 2; θ6
1(2) =

θ6
1(3) = 2, θ6

1(1) = 1; θ7
1(1) = θ7

1(3) = 2, θ7
1(2) = 1; θ8

1(1) = θ8
1(2) = 2,

θ8
1(3) = 1

and correspondingly for the player 2:

θ1
2(i) = 1 ∀i = 1, 2; θ2

2(i) = 2 ∀i = 1, 2; θ3
2(i) = 3 ∀i = 1, 2; θ4

2(1) = 1,
θ4
2(2) = 2; θ5

2(2) = 1, θ5
2(1) = 2; θ6

2(1) = 1, θ6
2(2) = 3; θ7

2(2) = 1,
θ7
2(1) = 3; θ8

2(1) = 2, θ8
2(2) = 3; θ9

2(1) = 3, θ9
2(2) = 2.
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Remark 1. We have to mention the following: the informational extended game
(considered in this article) is not a dynamic game (in terms of the choice of the
strategy, but not in terms of the strategies structure) because the strategies are
chosen simultaneously.

In this article we study the case when the informational strategies of the play-
ers have already been chosen and so appears the necessity to study the informa-
tional non-extended game generated by the chosen informational extended strate-
gies. These games differ in: a) the sets of the strategies that are the subsets of the
sets of strategies in the initial non-extended informational game; b) how the payoff
functions of the players will be constructed.

Let the payoff functions of the players be defined as H̃p :
∏
p∈I

Xp → R

where for all xi ∈ Xi, xj ∈ Xj , x[−ij] ∈ X[−ij] we have H̃p

(
xi, xj , x[−ij]

) ≡
Hp

(
θi(xj), θj (xi) , x[−ij]

)
.

Definition 1. The game with the following normal form

Γ (θi, θj) =
〈

I, {Xp}p∈I ,
{

H̃p

}
p∈I

〉
(2)

will be called informational non-extended game generated by the informational ex-
tended strategies θi and θj .

The game Γ (θi, θj) is played as follows: independently and simultaneously each
player p ∈ I chooses the informational non-extended strategy xp ∈ Xp, after that the
players i and j calculate the value of the informational extended strategies θi(xj) and
θj (xj) , after that each player calculates the payoff values Hp

(
θi(xj), θj (xj) , x[−ij]

)
,

and with this the game is finished. To all strategy profiles
(
xi, xj , x[−ij]

)
in the game

(2) the following realization
(
θi(xj), θj (xi) , x[−ij]

)
in terms of the informational

extended strategies will correspond.
We introduce the following definition of the Nash equilibrium profile for normal

form game Γ (θi, θj) .

Definition 2. The strategy profile
(
x∗i , x

∗
j , x

∗
−ij

)
∈ X is called the Nash equilibrium

of the game Γ (θi, θj) if and only if the following conditions are satisfied:





H̃i

(
x∗i , x

∗
j , x

∗
[−ij]

)
> H̃i

(
xi, x

∗
j , x

∗
[−ij]

)
for all xi ∈ Xi,

H̃j

(
x∗i , x

∗
i , x

∗
[−ij]

)
> H̃j

(
x∗i , xj , x

∗
[−ij]

)
for all xj ∈ Xj ,

H̃p

(
x∗i , x

∗
i , x

∗
p

)
> H̃p

(
x∗i , x

∗
j , xp

)
for all xp ∈ Xp and for all p ∈ I\{i, j}.

We denote by NE [Γ (θi, θj)] the set of Nash equilibrium profiles of the game

Γ (θi, θj) . According to Definition 1 we have that
(
x∗i , x

∗
j , x

∗
−ij

)
∈ NE [Γ (θi, θj)] if
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and only if




Hi

(
θi(x∗j ), θj (x∗i ) , x∗[−ij]

)
> Hi

(
θi(x∗j ), θj (xi) , x∗[−ij]

)
for all xi ∈ Xi,

Hj

(
θi(x∗j ), θj (x∗i ) , x∗[−ij]

)
> Hj

(
θi(xj), θj (x∗i ) , x∗[−ij]

)
for all xj ∈ Xj ,

Hp

(
θi(x∗j ), θj (x∗i ) , x∗[−ij]

)
> Hp

(
θi(x∗j ), θj (x∗i ) , xp

)
for all xp ∈ Xp p ∈ I\{i, j}.

Another, and some times more convenient way of defining Nash equilibrium is
via the best response correspondences Brp :

∏
k∈I\{p}

Xk → 2Xp such that:

• for player i :

Bri

(
x[−i]

)
=

{
xi ∈ Xi : Hi

(
θi(xj), θj (xi) , x[−ij]

) ≥ Hi

(
θi(xj), θj

(
x′i

)
,

x[−ij]

)
for all x′i ∈ Xi

}
;

• for player j :

Brj

(
x[−j]

)
=

{
xj ∈ Xj : Hj

(
θi(xj), θj (xi) , x[−ij]

) ≥ Hj

(
θi(x′j), θj (xi) ,

x[−ij]

)
for all x′j ∈ Xj

}
;

• for player p 6= i, j :

Brp

(
x[−p]

)
=

{
xp ∈ Xp : Hp

(
θi(xj), θj (xi) , xp, x[−ijp]

) ≥ Hp (θi(xj),
θj (xi) , x′p, x[−ijp]

)
for all x′p ∈ Xp

}
.

Here 2Xp denotes the set of all subsets of the set Xp and x[−ijp] denotes the
strategies profiles without the strategies of the players i, j and p. If the payoff
functions Hp (·) ,

(
p = 1, n

)
are continuous on the compact

∏
p∈I

Xp and the functions

θi : Xj → Xi, θj : Xi → Xj are continuous on the compact Xj (correspondingly Xi)
then the functions H̃p, p = 1, n are continuous on the compact

∏
p∈I

Xp as composite

functions. Then according to the Weierstrass theorem we can write

Bri

(
x[−i]

)
= Arg max

xi∈Xi

Hi

(
θi(xj), θj (xi) , x[−ij]

)
,

Brj

(
x[−j]

)
= Arg max

xj∈Xj

Hj

(
θi(xj), θj (xi) , x[−ij]

)
,

Brp

(
x[−p]

)
= Arg max

xp∈Xp

Hp

(
θi(xj), θj (xi) , xp, x[−ijp]

)

for all p ∈ I, p 6= i, j. In this case
(
x∗i , x

∗
j , x

∗
−ij

)
∈ NE [Γ (θi, θj)] if and only if





x∗i ∈ Bri

(
x∗[−i]

)
,

x∗j ∈ Brj

(
x∗[−j]

)
,

x∗p ∈ Brp

(
x∗[−p]

)
∀p 6= i, j.
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Construct the point to set mapping Br : X → 2X so that for all x ∈ X,

Br(x) =
(
Br1

(
x[−1]

)
, ..., Bri

(
x[−i]

)
, ..., Brn

(
x[−n]

)) ⊆ X.

Then (
x∗i , x

∗
i , x

∗
[−ij]

)
∈ NE [Γ (θi, θj)]

if and only if (
x∗i , x

∗
i , x

∗
[−ij]

)
∈ Br

(
x∗i , x

∗
i , x

∗
[−ij]

)
,

that is
(
x∗i , x

∗
i , x

∗
[−ij]

)
is the fixed point of the mapping Br.

We shall analyze in more details the case of the bimatricial game. So we consider
the following normal form game

Γ =
〈
I = {1, ..., n}, J = {1, ...,m},H1 = ‖aij‖j∈J

i∈I ,H2 = ‖bij‖j∈J
i∈I

〉
.

For this game we construct the game according to Definition 1. The informational
extended strategies are θ1 : J → I and θ2 : I → J, the payoff matrices are H̃1 =

‖ãij‖j∈J
i∈I , H̃2 =

∥∥∥b̃ij

∥∥∥
j∈J

i∈I
where ãij = aθ1(j)θ2(i) and b̃ij = bθ1(j)θ2(i) for all i ∈ I,

j ∈ J. So we will obtain the following normal form game

Γ (θ1, θ2) =
〈

I = {1, ..., n}, J = {1, ...,m}, H̃1 = ‖ãij‖j∈J
i∈I , H̃2 =

∥∥∥b̃ij

∥∥∥
j∈J

i∈I

〉
≡

≡
〈
I = {1, ..., n}, J = {1, ...,m}, H̃1 =

∥∥aθ1(j)θ2(i)

∥∥j∈J

i∈I
, H̃2 =

∥∥bθ1(j)θ2(i)

∥∥j∈J

i∈I

〉
.

The strategy profile (ie, je) ∈ NE (Γ (θ1, θ2)) if and only if
{

ãieje > ãije for all i ∈ I,

b̃ieje > b̃iej for all j ∈ J,

and according to Definition 1 we have that
{

aθ1(je)θ2(ie) > aθ1(je)θ2(i) for all i ∈ I,

bθ1(je)θ2(ie) > bθ1(j)θ2(ie) for all j ∈ J.

From the set of all informational extended strategies of the players i and j we
will highlight the following class of ”best responses” strategies

Θ̃i =
{

θ̃i : Xj → Xi | ∀xj ∈ Xj , θ̃i(xj) = arg max
xi∈Xi

Hi

(
xi, xj , x[−ij]

)}
, (3)

Θ̃j =
{

θ̃j : Xi → Xj | ∀xi ∈ Xi, θ̃j(xi) = arg max
xj∈Xj

Hj

(
xi, xj , x[−ij]

)}
. (4)

We consider now the following examples of the informational non-extended game
Γ (θi, θj) generated by the strategies type (3)-(4) of the players.
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Example 1. Let us consider the two person game for which X = [0, 1], Y =
[0, 1], H1(x, y) = 3

2xy − x2, H2(x, y) = 3
2xy − y2 are the sets of strategies and

the payoff functions of the players. We construct the normal form game Γ (θi, θj)
generated by the informational extended strategies type (3)-(4) and determine the
Nash equilibrium solution.

Solution. We determine the equilibrium profile using the ”best response” map-
ping. We derive the best response (reaction) function for each player given the
other players strategy. Because the problem is symmetric, first we will show only
for player 1 and then apply the result to the case for player 2. First order condition
will give us that Br1(y) = Arg max

x∈[0,1]
H1(x, y) =

{
x ∈ [0, 1]/x = 3

4y
}

where Br1(y)

is the best response correspondence for player 1. Similarly, the best response corre-
sponding to player 2 is Br2(x) = Arg max

y∈[0,1]
H2(x, y) =

{
y ∈ [0, 1]/y = 3

4x
}

. So the

solution of the problem
{

x∗ ∈ Br1(y∗)
y∗ ∈ Br2(x∗)

is x∗ = y∗ = 0. Consider the informational

non-extended game generated by the informational extended strategies of the two-

directional informational flow type 1
inf
¿ 2. As informational extended strategies we

will use the functions θ1 : Y → X where ∀y ∈ Y, θ1(y) = arg max
x∈X

H1(x, y), respec-

tively θ2 : X → Y where ∀x ∈ X, θ2(x) = arg max
y∈Y

H2(x, y). Using the necessary con-

dition of optimality we obtain that θ1(y) = 3
4y ∀y ∈ [0, 1] and θ2(x) = 3

4x ∀x ∈ [0, 1].
Thus H̃1(x, y) = 3

2θ1(y)θ2(x) − (θ1(y))2 = 3
2

(
3
4y

) (
3
4x

) − (
3
4y

)2 = 27
32xy − 9

16y2

and H̃2(x, y) = 3
2θ1(y)θ2(x) − (θ2(x))2 = 3

2

(
3
4y

) (
3
4x

) − (
3
4x

)2 = 27
32xy − 9

16x2.

So we obtain the following normal form game Γ (θ1, θ2) =
〈
X, Y, H̃1, H̃2

〉
. De-

termine the equilibrium profile of the game Γ (θ1, θ2) . According to the definition

(x∗, y∗) ∈ NE [Γ (θ1, θ2)] if and only if

{
H̃1(x∗, y∗) > H̃1(x, y∗) ∀x ∈ X,

H̃2(x∗, y∗) > H̃2(x∗, y) ∀y ∈ Y.
So we

have




3
2
θ1(y∗)θ2(x∗)− (θ1(y∗))2 > 3

2
θ1(y∗)θ2(x)− (θ1(y∗))2 ∀x ∈ X,

3
2
θ1(y∗)θ2(x∗)− (θ1(y∗))2 > 3

2
θ1(y)θ2(x∗)− (θ2(x∗))2 ∀y ∈ Y,

and finally 



27
32

x∗y∗ − 9
16

y∗2 = max
x∈[0,1]

{
27
32

xy∗ − 9
16

(y∗)2
}

,

27
32

x∗y∗ − 9
16

y∗2 = max
y∈[0,1]

{
27
32

x∗y − 9
16

(x∗)2
}

.

Thus the Nash equilibrium profile is (x∗, y∗) = (1, 1), that is NE [Γ (θ1, θ2)] =
{(1, 1)} while NE [Γ] = {(0, 0)} .

Example 2. We consider the following bimatricial game H1 =
(

3 5 4
6 7 2

)
, H2 =
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(
0 5 1
4 3 2

)
. We construct the normal form game generated by the informational ex-

tended strategies of type (3)-(4) and we determine the Nash equilibrium profiles.

Solution. The strategies of the type (3)-(4) in the game Γ
(

inf
2 ¿ 1

)
are i∗(j) =

arg max
i

aij =
{

1 if j = 3,
2 if j = 1, 2

and j∗(i) = arg max
j

bij =
{

2 if i = 1,
1 if i = 2.

We construct

the game Γ (i∗, j∗) according to Definition 1. In the table below the correspondence
between the strategies profile in the informational non-extended game (initial game)
and the strategies profile generated by the informational extended strategies i∗ and
j∗ is presented

(i, j) (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3)
(i∗(j), j∗(i)) (2, 2) (2, 2) (1, 2) (2, 1) (2, 1) (1, 1)

.

Then the payoff matrices will be H̃1 =
∥∥ai∗(j)j∗(i)

∥∥j∈J

i∈I
=

(
7 7 5
6 6 3

)
,

H̃2 =
∥∥∥b

i∗(j)j∗(i)

∥∥∥
j∈J

i∈I
=

(
3 3 5
4 4 0

)
and so we have the following normal form game

Γ (i∗, , j∗) =
〈

I = {1, 2}, J = {1, 2, 3}, H̃1 =
(

7 7 5
6 6 3

)
, H̃2 =

(
3 3 5
4 4 0

)〉
.

The game is done in the following way. In case the players choose the informational
extended strategies i∗ and j∗, then the game (for players 1 and 2) like ”if-then”
starts, i.e. ”if the player 1 chooses the line 1, then the player 2, knowing this,
chooses the column 2 and simultaneously, if the player 2 chooses the column 1, then
the player 1, knowing this, chooses the line 2 etc. We note that the equilibrium
profile in the game Γ (i∗, j∗) is (ie, je) = (1, 3) and H̃1 (1, 3) = 5, H̃2 (1, 3) =
5. To this profile corresponds the following profile in the informational extended
strategy (i∗(je), j∗(ie)) = (i∗(3), j∗(1)) = (1, 2) for which we have that H1 (1, 2) = 5,
H2 (1, 2) = 5. According to the definition of the Nash equilibrium profile (ie, je) we
have that {

ai∗(je)j∗(ie) > ai∗(je)j∗(i) for all i = 1, 2,

bi∗(je)j∗(ie) > bi∗(j)j∗(ie) for all j = 1, 2, 3,

from which we deduce the following relations:
{

ã13 = 5 = a
i∗(3)j∗(1) > ã23 = 3 = a

i∗(3)j∗(2) = a11 = 3,

{
b̃13 = 5 = b

i∗(3)j∗(1) > b̃11 = 3 = b
i∗(1)j∗(1) = b22 = 3,

b̃13 = 5 = b
i∗(3)j∗(1) > b̃12 = 3 = b

i∗(2)j∗(1) = b22 = 3.

So we have shown that NE [Γ (i∗, j∗)] = {(1, 3)}.
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Remark 2. If the normal form Γ (i∗, j∗) has already been constructed, then the
equilibrium profile is determined using the matrices H̃1 and H̃2, otherwise, using
the elements ai∗(j)j∗(i), bi∗(j)j∗(i) of the matrices of the game Γ.

We begin by proving Nash’s Theorem about the existence of a strategy equi-
librium profile in the normal form game Γ (θi, θj) first giving some remarks about
the Kakutani’s fixed point theorem. Kakutani’s theorem states [4]: Let S be a
non-empty, compact and convex subset of the Euclidean space Rn. Let ϕ : S → 2S

be a set-valued function on S with a closed graph and the property that ϕ(x) is
non-empty and convex for all x ∈ S. Then ϕ has a fixed point.

The Kakutani fixed point theorem is a fixed-point theorem for point-to-set map-
ping. It provides sufficient conditions for a point-to-set mapping defined on a con-
vex, compact subset of a Euclidean space to have a fixed point, i.e. a point which is
mapped to a set containing it. The Kakutani fixed point theorem is a generalization
of Brouwer fixed point theorem. The Brouwer fixed point theorem is a fundamental
result in topology which proves the existence of fixed points for continuous functions
defined on compact, convex subsets of Euclidean spaces. Kakutani theorem extends
this to point-to-set mapping.

Mathematician John Nash used the Kakutani fixed point theorem to prove a
major result in game theory. Stated informally, the theorem implies the existence
of a Nash equilibrium in every finite game with mixed strategies for any number of
players. In this case, S is the set of tuples of strategies chosen by each player in a
game. The function ϕ(x) gives a new tuple where each player’s strategy is his best
response to other players’ strategies at x. Since there may be a number of responses
which are equally good, ϕ is set-valued rather than single-valued. Then the Nash
equilibrium of the game is defined as a fixed point of ϕ, i.e. a tuple of strategies
where each player’s strategy is a best response to the strategies of the other players.
Kakutani’s theorem ensures that this fixed point exists.

Let us prove the following theorem.

Theorem. Let Γ (θi, θj) =
〈

I, {Xp}p∈I ,
{

H̃p

}
p∈I

〉
be the normal form of the

informational non-extended game generated by the informational extended strategies

using the i
inf
¿ j type flow of information, where for all xi ∈ Xi, xj ∈ Xj , x[−ij] ∈

X[−ij] we have H̃p

(
xi, xj , x[−ij]

) ≡ Hp

(
θi(xj), θj (xi) , x[−ij]

)
. Let this game satisfy

the following conditions:

1) the Xp is a non-empty compact and convex subset of the finite-dimensional
Euclidean space for all p ∈ I;

2) the functions θi (correspondingly θj) are continuous on Xj (correspondingly
on Xi) and the functions Hp are continuous on X for all p ∈ I.

3) the functions θi (correspondingly θj) are quasi-concave on Xj (correspondingly
on Xi), the functions Hp are quasi-concave on Xp, p ∈ I\{i, j} and monoton-
ically increasing on Xi ×Xj .
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Then NE [Γ (θi, θj)] 6= ∅.
Proof. If we define the following correspondence (point-to-set mapping) Br : X →
X such that Br (x) =

(
Br1

(
x[−1]

)
, ..., Bri

(
x[−i]

)
, ..., Brn

(
x[−n]

))
then if x∗ ∈

Br (x∗) , then x∗i ∈ Bri

(
x∗[−i]

)
for all i ∈ I and hence x∗ ∈ NE. To prove this

theorem we can show that: a) the X is a non-empty compact and convex subset of
the Euclidean finite-dimensional space and b) the set-valued mapping Br : X → X
has a closed graph, that is, if {xk, yk} → {x, y} with yk ∈ Br (xn), then y ∈ Br (x) ,
and the set Br (x) is nonempty, convex and compact for all x ∈ X. According to the
Tikhonov’s theorem: a product of a family of compact topological spaces X =

∏
p∈I

Xp

is compact, the item a) is fulfilled. For all x[−i] the set Bri

(
x[−i]

)
is non-empty be-

cause according to conditions 1) and 2) H̃i is continuous and Xi is compact (Weier-
strass’s theorem). According to condition 3) Bri

(
x[−i]

)
is also convex because H̃i is

quasi-concave on Xi. Hence the set Br (x)is nonempty convex and compact for all
x ∈ X. The mapping Br has a closed graph because each function H̃p is continuous
on X for all p ∈ I. Hence by Kakutani’s theorem, the set-valued mapping Br has a
fixed point. As we have noted, any fixed point is a Nash equilibrium.
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Stability analysis of Pareto optimal portfolio
of multicriteria investment maximin problem

in the Hölder metric

Vladimir Emelichev, Vladimir Korotkov

Abstract. We analyzed the stability of a Pareto-optimal portfolio of the multicriteria
discrete variant of Markowitz’s investment problem with Wald’s maximin efficiency
criteria. We obtained lower and upper bounds for the stability radius of such portfolio
in the case of the Hölder metric lp, 1 ≤ p ≤ ∞, in the three-dimensional space of
problem parameters. We also show the attainability of bounds in particular cases.
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In paper [1] we obtained lower and upper attainable bounds for the stability
radius of a Pareto-optimal portfolio of the multicriteria Boolean investment prob-
lem with Savage’s minimax risk criteria in the case of the Chebyshev metric l1
in the three-dimensional space of problem parameters. In the present paper we
obtained the results of similar nature for the stability radius of the multicriteria in-
vestment problem with Wald’s maximin efficiency criteria and any Hölder metric lp,
1 ≤ p ≤ ∞, in the spaces of criteria, portfolio and market states.

1 Problem statement and definitions

We consider the multicriteria discrete variant of Markowitz’s investment mana-
ging problem [2]. To this end, we introduce the following notations:

Nn = {1, 2, . . . , n} be a set of investment alternative projects (assets);
Nm be a set of market states (conditions, scenarios);
Ns be a set of project efficiency measures;
x = (x1, x2, . . . , xn)T ∈ X ⊆ En be an investment portfolio, where |X| ≥ 2,

E = {0, 1},
xj =

{
1 if the project j is implemented,
0 otherwise;

eijk be an assessment of efficiency of measure k ∈ Ns of investment project
j ∈ Nn in the situation when the market is in state i ∈ Nm;

E = [eijk] be a three-dimensional m× n× s matrix with elements from R.
Note that there are several approaches to evaluate efficiency of investment

projects (NPV, NFV, PI et al.), which take into account risk and uncertainty in

c© Vladimir Emelichev, Vladimir Korotkov, 2012
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different ways (see e.g. [3–5]). That way it is worth to consider a decision making
problem with multiple criteria (several measures of project efficiency).

Let the following vector objective function

f(x,E) = (f1(x,E1), f2(x,E2), . . . , fs(x,Es)),

be given on a set of investment portfolios X whose components are Wald’s maximin
criteria [6]

fk(x,Ek) = min
i∈Nm

Eikx = min
i∈Nm

∑

j∈Nn

eijkxj → max
x∈X

, k ∈ Ns,

where Ek ∈ Rm×n is the k-th cut of matrix E = [eijk] ∈ Rm×n×s, Eik =
(ei1k, ei2k, . . . , eink) is the i-th row of that cut. Thus, the investor, following Wald’s
criteria, takes extreme caution and optimizes portfolio efficiency Eikx (for the k-th
criteria), assuming that the market was in the worst state, namely the efficiency
is minimal. Obviously such pessimistic approach in the market state estimation is
justified when we are talking about the guaranteed result.

A multicriteria investment Boolean problem Zs(E), s ∈ N, with Wald’s criteria
means the problem of searching the set of Pareto-optimal investment portfolios (the
Pareto set)

P s(E) = {x ∈ X : @x′ ∈ X (g(x′, x, E) ≥ 0(s) & g(x′, x, E) 6= 0(s))},

where
g(x′, x, E) = (g1(x′, x, E1), g2(x′, x, E2), . . . , gs(x′, x, Es)),

gk(x′, x, Ek) = fk(x′, Ek)− fk(x, Ek) = max
i∈Nm

min
i′∈Nm

(Ei′kx
′ −Eikx), k ∈ Ns,

0(s) = (0, 0, . . . , 0) ∈ Rs.

It is easy to see, in the particular case for m = 1 our multicriteria investment
problem Zs(E) becomes the multicriteria problem of linear Boolean programming

Zs
B(E) : Ex → max

x∈X
, (1)

where X ⊆ En, E = [e1jk] ∈ R1×n×s is the matrix with rows Ek = (e11k, e12k, . . .
. . . , e1nk) ∈ Rn, k ∈ Ns. Such case can be interpreted as the situation when the
investor has not got another alternative market state.

For any positive integer d ≥ 2 in the real space Rd we introduce the Hölder
metric lp, 1 ≤ p ≤ ∞, where the norm of a = (a1, a2, . . . , ad) ∈ Rd is defined by the
formula

‖a‖p =





(∑
j∈Nd

|aj |p
)1/p

if 1 ≤ p < ∞,

max{|aj | : j ∈ Nd} if p = ∞,
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and by the norm of a matrix means the norm of the vector composed of all matrix
elements. Hence for matrix E ∈ Rm×n×s and any metric lp, 1 ≤ p ≤ ∞, we get the
equalities

‖E‖p = ‖(‖E1‖p, ‖E2‖p, . . . , ‖Es‖p)‖p, (2)

‖Ek‖p = ‖(‖E1k‖p, ‖E2k‖p, . . . , ‖Emk‖p)‖p, k ∈ Ns. (3)

Thus for p < ∞ the equations

‖E‖p = (
∑

k∈Ns

‖Ek‖p
p)

1/p, (4)

‖z‖p = ‖z‖1/p
1 for z ∈ {−1, 0, 1}n (5)

hold. In addition, from (2) and (3) it follows that

‖Eik‖p ≤ ‖Ek‖p ≤ ‖E‖p, i ∈ Nm, k ∈ Ns. (6)

It is known, that the metric lp defined in the space Rd includes the metric lq in
the dual space (Rd)∗, and p, q, as it is well known, are related by the formula

1
p

+
1
q

= 1, 1 < p < ∞. (7)

In addition, as usual, we set q = 1 if p = ∞ and q = ∞ if p = 1. Thus, in what
follows, we assume that the domain of variation of p and q is the interval [1,∞],
while p, q obey the above conditions, moreover, we assume 1/p = 0 for p = ∞.

Using (6) and the Hölder inequality

ab ≤ ‖a‖p‖b‖q,

where a = (a1, a2, . . . , an) ∈ Rn, b = (b1, b2, . . . , bn)T ∈ Rn, it is easy to see that for
x0, x ∈ X and 1 < p ≤ ∞ the following inequalities hold:

Ei′kx
0 − Eikx ≥ −‖Ek‖p(‖x0‖q + ‖x‖q), i, i′ ∈ Nm, k ∈ Ns, (8)

and for p = 1:

Ei′kx
0 − Eikx ≥ −‖Ek‖1, i, i′ ∈ Nm, k ∈ Ns. (9)

In addition, for any p ∈ [1,∞] the following equality is obvious:

‖a‖p = m1/pα (10)

if any component of a ∈ Rm is the number α > 0.
As usual [1, 7–9], the stability radius of the investment portfolio x0 ∈ P s(E) in

the Hölder metric lp is defined as follows:

ρs(x0, p, m) =
{

sup Ξp if Ξp 6= ∅,
0 if Ξp = ∅,
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where
Ξp = {ε > 0 : ∀E′ ∈ Ωp(ε) (x0 ∈ P s(E + E′))},

Ωp(ε) = {E′ ∈ Rm×n×s : ‖E′‖p < ε}.
Here Ω(ε) is the set of perturbing matrixes, and P s(E + E′) is the Pareto set of

the perturbed problem Zs(E + E′).
Thus, the stability radius defines an extreme level of problem initial data per-

turbations (elements of matrix E) preserving Pareto-optimality of the portfolio.

2 Lemmas

For the vector a = (a1, a2, . . . , as) ∈ Rs we introduce the positive cutoff function:

a+ = [a]+ = (a+
1 , a+

2 , . . . , a+
s ),

where a+
k = [ak]+ = max{0, ak}, k ∈ Ns.

Lemma 1. Let ϕ1 > 0, x0 6= x,

‖g+(x0, x, E)‖1 ≥ ϕ1. (11)

Then
∀E′ ∈ Ω1(ϕ1) ∃l ∈ Ns (gl(x0, x, El + E′

l) > 0). (12)

Proof. Suppose, to the contrary, that there exists the perturbing matrix E0 ∈ Ω1(ϕ1)
such that the inequalities

gk(x0, x, Ek + E0
k) ≤ 0, k ∈ Ns (13)

hold.
Then, involving (9), we derive

0 ≥ gk(x0, x, Ek + E0
k) = max

i∈Nm

min
i′∈Nm

(Ei′kx
0 − Eikx + E0

i′kx
0 − E0

ikx) ≥

≥ gk(x0, x, Ek)− ‖E0
k‖1,

i. e. g+
k (x0, x, Ek) ≤ ‖E0

k‖1, k ∈ Ns. Hence, taking into account E0 ∈ Ω1(ϕ1) it
follows that the inequality

‖g+(x0, x, E)‖1 =
∑

k∈Ns

g+
k (x0, x, Ek) ≤

∑

k∈Ns

‖E0
k‖1 = ‖E0‖1 < ϕ1

holds.
This inequality contradicts the condition (11) of Lemma 1.

Lemma 2. Let 1 < p ≤ ∞, ϕ2 > 0, x0 6= x,

‖g+(x0, x, E)‖p ≥ ϕ2(‖x0‖q + ‖x‖q). (14)

Then
∀E′ ∈ Ωp(ϕ2) ∃l ∈ Ns (gl(x0, x, El + E′

l) > 0). (15)
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Proof. We again suppose, to the contrary, that there exists the perturbing matrix
E0 ∈ Ωp(ϕ2) with the conditions (13) and for any index k ∈ Ns in view of (8) we
find

0 ≥ gk(x0, x, Ek + E0
k) = max

i∈Nm

min
i′∈Nm

(Ei′kx
0 − Eikx + E0

i′kx
0 − E0

ikx) ≥

≥ gk(x0, x, Ek)− ‖E0
k‖p(‖x0‖q + ‖x‖q),

i.e.
g+
k (x0, x, Ek) ≤ ‖E0

k‖p(‖x0‖q + ‖x‖q), k ∈ Ns.

Thus, taking into account (4) and E0 ∈ Ωp(ϕ2) for p < ∞ we have

‖g+(x0, x, E)‖p =
( ∑

k∈Ns

(g+
k (x0, x, Ek))p

)1/p
≤

≤
( ∑

k∈Ns

‖E0
k‖p

p

)1/p
(‖x0‖q + ‖x‖q) = ‖E0‖p(‖x0‖q + ‖x‖q) < ϕ2(‖x0‖q + ‖x‖q),

and for p = ∞ we derive

‖g+(x0, x, E)‖∞ = max
k∈Ns

g+
k (x0, x, Ek) ≤ max

k∈Ns

‖E0
k‖∞(‖x0‖1 + ‖x‖1) =

= ‖E0‖∞(‖x0‖1 + ‖x‖1) < ϕ2(‖x0‖1 + ‖x‖1).

This inequality is contrary to the condition (14).

By contradiction we can easily prove the following lemma.

Lemma 3. Let x0 ∈ P s(E), γ > 0 and 1 ≤ p ≤ ∞. If for any portfolio x ∈ X \{x0}
and any perturbing matrix E′ ∈ Ωp(γ) there exists l ∈ Ns such that the inequality
gl(x0, x, El + E′

l) > 0 is true, then the portfolio x0 is a Pareto-optimal portfolio of
the perturbing problem Zs(E + E′), i.e. x0 ∈ P s(E + E′) for E′ ∈ Ωp(γ).

Lemma 4. Let 1 ≤ p ≤ ∞, x0 6= x, δ = (δ1, δ2, . . . , δs), δk > 0, k ∈ Ns,

δk‖x0 − x‖q > g+
k (x0, x, Ek), k ∈ Ns. (16)

Then for any number ε > m1/p‖δ‖p there exists a matrix E0 ∈ Ωp(ε) such that
x0 6∈ P s(E + E0).

Proof. Using components of δ (see (16)), we define elements of the perturbing matrix
E0 = [e0

ijk] ∈ Rm×n×s as follows:

e0
ijk = δk

xj − x0
j

‖x0 − x‖p
, i ∈ Nm, j ∈ Nn, k ∈ Ns.
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Because all rows E0
ik, i ∈ Nm, of the cut E0

k ∈ Rm×n are equal, then denoting such
rows as Ak, we have

Ak = δk
(x− x0)T

‖x0 − x‖p
, k ∈ Ns. (17)

Thus ‖E0
ik‖p = ‖Ak‖p = δk, i ∈ Nm, k ∈ Ns. Hence, according to (2), (3) and (10)

we find
‖E0

k‖p = m1/pδk, k ∈ Ns,

‖E0‖p = m1/p‖δ‖p,

and, therefore, E0 ∈ Ωp(ε) for any ε > m1/p‖δ‖. Here 1/p = 0 is for p = ∞.
Further we prove that for any p ∈ [1,∞] and k ∈ Ns the equality

Ak(x0 − x) = −δk‖x0 − x‖q (18)

holds. Actually, for p = ∞ we have (in view of (17))

Ak(x0 − x) = −δk‖x0 − x‖1, k ∈ Ns,

and for 1 ≤ p < ∞, considering (5), (7) and (17), we get the following chain of
equalities

Ak(x0 − x) = −δk
‖x0 − x‖1

‖x0 − x‖p
=

= −δk
‖x0 − x‖1

‖x0 − x‖1/p
1

= −δk‖x0 − x‖1/q
1 = −δk‖x0 − x‖q, k ∈ Ns.

At last, using (16) and (18), we conclude that for any index k ∈ Ns the relations

gk(x0, x, Ek + E0
k) = min

i∈Nm

(Eik + Ak)x0 − min
i∈Nm

(Eik + Ak)x =

= gk(x0, x, Ek) + Ak(x0 − x) ≤ g+
k (x0, x, Ek)− δk‖x0 − x‖q < 0

hold.
Hence, x0 6∈ P s(E + E0).

3 Stability radius bounds

For a Pareto-optimal portfolio x0 of the problem Zs(E) denote

ϕ1 = ϕ1(x0, p, m) = min
x∈X\{x0}

‖g+(x0, x, E)‖p,

ϕ2 = ϕ2(x0, p,m) = min
x∈X\{x0}

‖g+(x0, x, E)‖p

‖x0‖q + ‖x‖q
,

ψ = ψ(x0, p,m) = min
x∈X\{x0}

‖g+(x0, x, E)‖p

‖x0 − x‖q
.

Evidently, ψ ≥ 0, ϕi ≥ 0, i ∈ N2, herewith ϕ1(x0, 1,m) = ψ(x0, 1, m) and
ϕ2(x0, p,m) ≤ ψ(x0, p,m) for 1 < p ≤ ∞.
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Theorem. For any m, s ∈ N and 1 ≤ p ≤ ∞ the stability radius ρs(x0, p, m) of the
investment portfolio x0 ∈ P s(E) in the Hölder metric lp has the following lower and
upper bounds

m1/pψ(x0, p,m) ≥ ρs(x0, p, m) ≥
{

ϕ1(x0, p, m), if p = 1,
ϕ2(x0, p, m), if 1 < p ≤ ∞.

(19)

Proof. Let x0 ∈ P s(E). First we will prove the validity of lower bounds (19).
Without loss of generality we assume that ϕi > 0, i ∈ N2 (otherwise, the inequalities
ρ ≥ ϕi, i ∈ N2, are obvious). We shall consider separately the two possible cases.

Case 1: p = 1. According to the definition of ϕ1 = ϕ1(x0, 1,m) for any portfolio
x 6= x0 the inequality

‖g+(x0, x, E)‖1 ≥ ϕ1,

holds. Therefore, due to Lemma 1 the formula (12) is valid. Then, according to
Lemma 3 the portfolio x0 ∈ P s(E + E′) for any perturbing matrix E′ ∈ Ω1(ϕ1).
Thus, ρs(x0, 1,m) ≥ ϕ1(x0, 1,m).

Case 2: 1 < p ≤ ∞. According to the definition of ϕ2 = ϕ2(x0, p, m) the
inequalities hold

‖g+(x0, x, E)‖p ≥ ϕ2(‖x0‖q + ‖x‖q), x ∈ X \ {x0}.

Applying Lemma 2 yields the conclusion that for any portfolio x 6= x0 the formula
(15) holds. Hence from Lemma 3 it follows that the portfolio x0 ∈ P s(E + E′) for
E′ ∈ Ωp(ϕ2). Therefore, ρs(x0, p, m) ≥ ϕ2(x0, p, m).

Further we will prove the validity of the upper bound (19) for any number p ∈
[1,∞]. Let ε > m1/pψ > 0, and a portfolio x∗ 6= x0 be such that

‖g+(x0, x∗, E)‖p = ψ‖x0 − x∗‖q.

Then, taking into account the continuous dependence of the norm of a vector
on its coordinates we find a vector δ ∈ Rs with positive components, which satisfy
inequalities (16) shach that ε/m1/p > ‖δ‖p > ψ. Hence, due to Lemma 4 there exists
a perturbing matrix E0 ∈ Ωp(ε) such that the portfolio x0 ∈ P s(E) is not a Pareto-
optimal portfolio of the perturbed problem Zs(E + E0). Thus, we proved that for
any number ε > m1/pψ the inequality ρs(x0, p, m) < ε holds, i.e. the inequality
ρs(x0, p, m) ≤ m1/pψ(x0, p, m) is true for any number p ∈ [1,∞].

4 Corollary

All of the following corollaries from Theorem are obvious and are valid for any
number of criteria s ∈ N.
Corollary 1. For any m ∈ N the following bounds are true:

mϕ1(x0, 1,m) ≥ ρs(x0, 1, m) ≥ ϕ1(x0, 1,m).
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Hence we get the following well-known result, which shows that lower and upper
bounds (19) are attainable for p = m = 1.
Corollary 2 [7, 10]. The following formula holds:

ρs(x0, 1, 1) = ϕ1(x0, 1, 1) = min
x∈X\{x0}

‖[E(x0 − x)]+‖1.

Corollary 3. For any m ∈ N the following bounds are true:

ψ(x0,∞,m) = min
x∈X\{x0}

max
k∈Ns

max
i∈Nm

min
i′∈Nm

Ei′kx
0 −Eikx

‖x0 − x‖1
≥ ρs(x0,∞,m) ≥

≥ min
x∈X\{x0}

max
k∈Ns

max
i∈Nm

min
i′∈Nm

Ei′kx
0 − Eikx

‖x0‖1 + ‖x‖1
= ϕ2(x0,∞,m). (20)

In paper [1] we proved the attainability of such bounds for the stability radius of
the Pareto-optimal portfolio of the multicriteria investment problem with Savage’s
minimax criteria in the metric l∞. Using the developed there techniques it is easy
to prove, that lower and upper bounds (20), obtained here, are also attainable. In
addition, the next statement follows from Corollary 3 and shows that lower and
upper bound are attainable for p = ∞.
Corollary 4. If for any portfolio x ∈ X\{x0} the inequality ‖x0‖1+‖x‖1 = ‖x0−x‖1

holds, then for index m ∈ N the following formula is true:

ρs(x0,∞,m) = ϕ2(x0,∞,m) = ψ(x0,∞,m).

Note that earlier in paper [7] (see also [8, 9]) the formula of the stability radius
of the Pareto-optimal solution x0 of the multicriteria linear Boolean programming
problem Zs

B(E) (see (1)) in the Hölder metric was obtained:

ρs(x0, p, 1) = ψ(x0, p, 1) = min
x∈X\{x0}

‖[E(x0 − x)]+‖p

‖x0 − x‖q
, 1 ≤ p ≤ ∞.

This result shows that upper bound (19) is attainable in the linear case (m = 1).
Corollary 5. For any parameters m ∈ N and p ∈ [1,∞] the stability radius
ρs(x0, p, m) > 0 if and only if

min
x∈X\{x0}

max
k∈Ns

g+
k (x0, x, Ek) > 0.

Remark. Due to equivalence of any two metrics in finite dimensional linear spaces
(see e. g. [11]), Corollary 5 is also valid not only for the Hölder metric lp, but for
another metrics in the space Rm×n×s of perturbing parameters of Zs(E).

This work was supported by the Republican Foundation of Fundamental Re-
search of Belarus (the project F11K-095).
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Invariant transformations of loop transversals. 2.
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Abstract. The investigation of special transformations of loop transversals is con-
tinued. These transformations correspond to arbitrary isotopies of loop transversal
operations (witch correspond to the considered loop transversals). Isotopies of loop
transversal operations with the same unit are investigated.
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1 Introduction

This article is a continuation of the research of some special class of loop transver-
sal transformations, begun in [5]. Transformations from the studied class correspond
to arbitrary isotopies of transversal operations (which correspond to the considered
loop transversals). We find a new class of loop transversal transformations which
preserve the property to be a loop transversal. This investigation (as it was men-
tioned in [5]) is important for solving some other problems – for example, it can be
used in the classification of G-loops.

2 Necessary definitions and statements

All necessary definitions and statements can be found in [5], §2. We remind the
most important ones.

Definition 1. Let G be a group and H be its subgroup. Let {Hi}i∈E be the set
of all left (right) cosets in G to H, and we assume H1 = H. A set T = {ti}i∈E

of representativities of the left (right) cosets (by one from each coset Hi and
t1 = e ∈ H) is called a left (right) transversal in G to H.

On any left transversal T in a group G to its subgroup H it is possible to define
the following operation (transversal operation) :

x
(T )· y = z

def⇐⇒ txty = tzh, h ∈ H,

Definition 2. If a system 〈E,
(T )· , 1〉 is a loop, then such left transversal

T = {tx}x∈E is called a loop transversal.

c© Eugene Kuznetsov, Serghei Botnari, 2012
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Further we are going to use the following permutation representation Ĝ of a group
G by the left cosets of its subgroup H (see [2, 3]):

ĝ(x) = y
def⇐⇒ gtxH = tyH.

For simplicity we assume that

CoreG(H) = ∩
g∈G

gHg−1 = {e},

then this representation is exact (see Lemma 6 in [3]), and we have Ĝ ∼= G. Notice
that Ĥ = St1(Ĝ).

Lemma 1 (see [3], Lemma 4). Let T = {tx}x∈E be a left transversal in G to H.
Then the following statements are true:

1. ĥ(1) = 1 ∀hεH;

2. ∀x, y ∈ E :

t̂x(y) = x
(T )· y = L̂x(y), t̂1(x) = t̂x(1) = x,

t̂−1
x (y) = x

(T )

�y = L̂−1
x (y), t̂−1

x (1) = x
(T )

�1, t̂−1
x (x) = 1,

where ”
(T )

�” is a left division for the operation 〈E,
(T )· , 1〉 (i.e. x

(T )

�y = z ⇐⇒
x

(T )· z = y).

Lemma 2 (see [3], Lemma 7). Let T = {tx}x∈E and P = {px}x∈E be left transversals
in G to H. Then there is a set of elements {h(x)}x∈E from H such that:

1. px = txh(x) ∀x ∈ E;

2. x
(P )· y = x

(T )· ĥ(x)(y).

This set {h(x)}x∈E is called (see [4]) a derivation set for the transversal T (and

for the transversal operation 〈E,
(T )· , 1〉).

Definition 3 (see [1]). A triple of permutations Φ = (α, β, γ) ( α, β, γ are permuta-
tions on a set E) is called an isotopy of the operation 〈E, ·〉 on the operation 〈E, ◦〉
if

γ(x ◦ y) = α(x) · β(y) ∀x, y ∈ E.

If Φ = (γ, γ, γ), then such an isotopy is called an isomorphism. If Φ = (α, β, id),
then such an isotopy is called a principal isotopy.

According to Lemma 1.2 from [1] we have
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Lemma 3. If a loop 〈E, ·, e1〉 is isotopic to a loop 〈E, ◦, e2〉, then it is isomorphic
to some principal isotope of a loop 〈E, ◦〉 (and this principal isotopy has the form
T0 = (R−1

b , L−1
a , id), a · b = e2).

Remark 1. If a loop 〈E, ·, 1〉 is principally isotopic to a loop 〈E, ◦, 1〉, then this
principal isotopy has the form T0 = (R−1

a�1, L
−1
a , id) for some a ∈ E (a−1 = a�1 is

the right inverse element to a in the loop 〈E, ·, 1〉).

3 Transformations of loop transversals which correspond to an
isotopy of their transversal operations

Let T = {tx}x∈E and P = {px}x∈E be two loop transversals in a group G to its

subgroup H, and 〈E,
(T )· , 1〉, 〈E,

(P )· , 1〉 be their transversal operations. Fix one of
these loop transversals, for example T = {tx}x∈E .

As follows from Lemma 3, to investigate loop transversals transformations which

correspond to an isotopy of operations 〈E,
(T )· , 1〉 and 〈E,

(P )· , 1〉 it is enough to study
the case of principal isotopy T0 = (R−1

a�1, L
−1
a , id) (because the transformations which

corresponds to an isomorphism of transversal operations were studied earlier in [5]).

Theorem 1. Let loops 〈E,
(T )· , 1〉 and 〈E,

(P )· , 1〉 be principally isotopic and this prin-
cipal isotopy has the form T0 = (R−1

b , L−1
a , id) for some a ∈ E (note that a, b ∈ E,

a
(T )· b = 1). Then

P̂ = T̂ · t̂−1
a .

Proof. Let the conditions of Theorem hold. Then

x
(P )· y = R−1

b (x)
(T )· L−1

a (y)

for some a, b ∈ E, a
(T )· b = 1, and La, Rb are left and right translations in the loop

〈E,
(T )· , 1〉. Then the left translation Lx in the loop 〈E,

(P )· , 1〉 has the form:

Lx(y) = x
(P )· y = R−1

b (x)
(T )· L−1

a (y) = LR−1
b (x)L

−1
a (y), ∀x, y ∈ E,

that is
Lx = LR−1

b (x)L
−1
a ∀x ∈ E. (1)

By Lemma 1 (item 2) we have

{Lx}x∈E ≡ {p̂x}x∈E = P̂

and
{Lx}x∈E ≡

{
t̂x

}
x∈E

= T̂ .

Since R−1
b is a permutation on the set E for every b ∈ E, then it follows from (1):

P̂ = T̂ · t̂−1
a for some a ∈ E.
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Lemma 4. Let loops 〈E,
(T )· , 1〉 and 〈E,

(P )· , 1〉 be isotopic. Then the following state-
ment holds:

P̂ = ĥ0T̂ t̂−1
a ĥ−1

0

for some h0 ∈ Ĥ and some a ∈ E.

Proof. Let loops 〈E,
(T )· , 1〉 and 〈E,

(P )· , 1〉 be isotopic. Then according to Lemma 3,
their isotopy can be represented in the form of composition of a principal isotopy
and an isomorphism:

(α, β, γ) = (R−1
b , L−1

a , id) ◦ (γ, γ, γ),

where γ(1) = 1, a
(T )· b = 1. Now our statement is a simple corollary from Theorem

1 and Lemma 7 of [5].

Theorem 2. Let T = {tx}x∈E be a fixed loop transversal in G to H, and a ∈ E
be an arbitrary element of the set E. Define the following set P = {px′}x′∈E of
permutations:

p̂x′
def
= t̂xt̂−1

a ∀x ∈ E.

Then

1. P = {px′}x′∈E is a left transversal in G to H;

2. A transversal operation 〈E,
(P )· , 1〉 is principally isotopic to the operation

〈E,
(T )· , 1〉, and the principal isotopy S has the following form: S = (R−1

a�1, L
−1
a , id);

3. P is a loop transversal in G to H.

Proof. 1. We have

x′ = p̂x′(1) = t̂xt̂−1
a (1) = t̂x(a�1) = x

(T )· (a�1) = Ra�1(x).

Since 〈E,
(T )· , 1〉 is a loop, then Ra�1 is a permutation on the set E for every a ∈ E.

Therefore the element x′ runs over all the set E. So there is at least one element of
P (element px′) in each left coset Hx′ . It means that P is a left transversal in G to
H. Moreover, e = tat

−1
a ∈ P .

2. Let us study the following set of elements:

p̂x′ = t̂xt̂−1
a , x ∈ E,

where a is an arbitrary fixed element of the set E. As we have seen,

x′ = x
(T )· (a

(T )

�1). (2)
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For the transversal operation 〈E,
(P )· , 1〉 we have (by the definition):

px′py′ = p
x′

(P )· y′
h∗, h∗ ∈ H.

Then by Lemma 1 and the definition of transversal operation we have

x′
(P )· y′ = p̂

x′
(P )· y′

ĥ∗(1) = p̂x′ p̂y′(1) =

= t̂xt̂−1
a t̂y t̂

−1
a (1) = x

(T )·
[
a

(T )

� (y
(T )· (a

(T )

�1))

]
. (3)

Using (2) in (3), we obtain
[
x

(T )· (a
(T )

�1)

]
(P )·

[
y

(T )· (a
(T )

�1)

]
= x

(T )·
[
a

(T )

� (y
(T )· (a

(T )

�1))

]
. (4)

We replace:




x = u
(T )

/ (a
(T )

�1)

y = v
(T )

/ (a
(T )

�1)
⇐⇒





u = x
(T )· (a

(T )

�1) = Ra�1(x)

v = y
(T )· (a

(T )

�1) = Ra�1(y).

Since Ra�1 is a permutation for every a ∈ E in the loop 〈E,
(T )· , 1〉, then u and v run

over all the set E. Then we have from (4):

u
(P )· v = (u

(T )

/ (a�1))
(T )·

[
a

(T )

� ((v
(T )

/ (a�1))
(T )· (a�1))

]
=

= (u
(T )

/ (a�1))
(T )· (a�v) = R−1

a�1(u)
(T )· L−1

a (v).

From the last equality it follows that the operation 〈E,
(P )· , 1〉 is principally isotopic

to the operation 〈E,
(T )· , 1〉 and this principal isotopy has the following form: S =

(R−1
a�1, L

−1
a , id).

3. According to item 2 the operation 〈E,
(P )· , 1〉 is a principal isotope of the loop

operation 〈E,
(T )· , 1〉, and this principal isotopy has the form S = (R−1

a�1, L
−1
a , id). It

is well known that any isotope of a loop is a quasigroup, so the operation 〈E,
(P )· , 1〉

is a quasigroup. Moreover, the element 1 is a unit element of this quasigroup, that

is the operation 〈E,
(P )· , 1〉 is a loop. It means that the transversal P = {px}x∈E is a

loop transversal.
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Lemma 5. Let T = {tx}x∈E and P = {px}x∈E be two transversals in G to H
which correspond to principally isotopic transversal operations. Let px = txh(x) and{
h(x)

}
x∈E

be a derivation set. Then

h(x) = t−1
x t

x
(T )

/ (a�1)

t−1
a

for some a ∈ E.

Proof. According to Theorem 2 (item 2) we have for every x ∈ E :

p̂
x
(T )· (a�1)

= t̂xt̂−1
a

for some element a ∈ E. Let us replace u = x
(T )· (a�1), so x = u

(T )

/ (a�1). Then

pu = t
u
(T )

/ (a�1)

t−1
a , ∀u ∈ E

On the other hand,
pu = tuh(u), ∀u ∈ E.

So
tuh(u) = tu/(a�1)t

−1
a ,

and our Lemma is proved.

Lemma 6. Let T = {tx}x∈E be a fixed loop transversal in G to H, and a ∈ E be
some element of the set E. Define the following set S = {sx′}x′∈E of elements:

sx′
def
= tatxt−1

a ∀x ∈ E.

Then:

1. S = {sx′}x′∈E is a left transversal in G to H;

2. A transversal operation 〈E,
(S)· , 1〉 is isotopic to the operation 〈E,

(T )· , 1〉, and
the isotopy S has the following form: S = (βα, α, β−1), where α = L−1

a ,
β = R−1

a�1;

3. S is a loop transversal in G to H.

Proof. 1. We have:

x′ = ŝx′(1) = t̂at̂xt̂−1
a (1) = t̂at̂x(a�1) = a

(T )· (x
(T )· (a�1)) = LaRa�1(x).

Since 〈E,
(T )· , 1〉 is a loop, then La and Ra�1 are permutations on the set E for every

a ∈ E. Therefore an element x′ runs over all the set E. So every left coset Hx′
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contains an element of S (element sx′). So S = {sx′}x′∈E is a left transversal in G
to H. Moreover, e = taet

−1
a = tat1t

−1
a ∈ E.

2. Let us examine the following set of elements

sx′ = tatxt−1
a , x ∈ E,

where a is an element of the set E. As we have seen,

x′ = a
(T )· (x

(T )· (a�1)). (5)

For the transversal operation 〈E,
(S)· , 1〉 we have

sx′sy′ = s
x′

(S)· y′
h∗, h∗ ∈ H.

Then

x′
(S)· y′ = ŝ

x′
(S)· y′

ĥ∗(1) = ŝx′ ŝy′(1) = (t̂at̂xt̂−1
a )(t̂at̂y t̂−1

a )(1) =

= t̂at̂xt̂y t̂
−1
a (1) = t̂at̂xt̂y(a�1) = a

(T )· (x
(T )· (y

(T )· (a�1))).

By (5) from the last equality we obtain:
[
a

(T )· (x
(T )· (a�1))

]
(S)·

[
a

(T )· (y
(T )· (a�1))

]
= a

(T )· (x
(T )· (y

(T )· (a�1))). (6)

We replace:




a
(T )· (x

(T )· (a�1)) = u

a
(T )· (y

(T )· (a�1)) = v
⇐⇒

{
x = (a�u)/(a�1)
y = (a�v)/(a�1)

⇐⇒
{

u = LaRa�1(x)
v = LaRa�1(y),

that is the elements u, v run over all the set E. Then from (6) we obtain:

u
(S)· v = a

(T )·
[
((a�u)/(a�1))

(T )·
[
((a�v)/(a�1))

(T )· (a�1)
]]

=

= a
(T )·

[
((a�u)/(a�1))

(T )· (a�v)
]

= La

[
(R−1

a�1L
−1
a (u))

(T )· (L−1
a (v))

]

and
L−1

a (u
(S)· v) = R−1

a�1L
−1
a (u)

(T )· L−1
a (v). (7)

It means that the operations 〈E,
(S)· , 1〉 and 〈E,

(T )· , 1〉 are isotopic and the isotopy S
has the form S = (βα, α, α), where α = L−1

a , β = R−1
a�1.

3. By item 2 the operation 〈E,
(S)· , 1〉 is an isotope of the loop operation and this

isotopy has the form S = (βα, α, α), where α = L−1
a , β = R−1

a�1. It is well known
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that any isotope of a loop is a quasigroup, so the operation 〈E,
(S)· , 1〉 is a quasigroup.

Moreover,
s1′ = tat1t

−1
a = ta · e · t−1

a = e = t1,

that is the element 1 is a unit element of this quasigroup. So the operation 〈E,
(S)· , 1〉

is a loop and S′ = {sx}x∈E is a loop transversal.

Lemma 7. Let T = {tx}x∈E be a fixed loop transversal in G to H and a ∈ E be an
arbitrary element in E. Define the following set M = {mx′}x′∈E of elements:

mx′
def
= t−1

a tx, ∀x ∈ E.

Then:

1. M = {mx′}x′∈E is a left transversal in G to H.

2. The transversal operation 〈E,
(M)· , 1〉 is isotopic to the operation 〈E,

(T )· , 1〉 and
the isotopy Q has the following form: Q = (La, id, La).

3. M is a loop transversal in G to H.

Proof. 1. We have

x′ = m̂x′(1) = t̂−1
a t̂x(1) = a�x = L−1

a (x). (8)

Since 〈E,
(T )· , 1〉 is a loop then L−1

a is a permutation on the set E for every a ∈ E.
So the element x′ runs over all the set E, and M is a loop transversal in G to H.

2. Let us examine the following set of elements:

mx′
def
= t−1

a tx, x ∈ E

where a is some element in E. As we have seen above, x′ = a�x. For the

transversal operation 〈E,
(M)· , 1〉 we have

mx′my′ = m
x′

(M)· y′
h∗, h∗ ∈ H.

Then

x′
(M)· y′ = m̂

x′
(M)· y′

ĥ∗(1) = m̂x′m̂y′(1) = (t̂−1
a t̂x)(t̂−1

a t̂y)(1) =

= t̂−1
a t̂x(a�y) = a�

[
x

(T )· (a�y)
]

.

By (8) we obtain:

(a�x)
(M)· (a�y) = a�

[
x

(T )· (a�y)
]

. (9)
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We use the change of variables:

{
a�x = u
a�y = v

⇐⇒




x = a
(T )· u

y = a
(T )· v

⇐⇒
{

u = L−1
a (x)

v = L−1
a (y)

So elements u, v run over all the set E. Then we have

u
(M)· v = a�

[
(a

(T )· u)
(T )· (a�(a

(T )· v))
]

= a�
[
(a

(T )· u)
(T )· v

]
,

that is
La(u

(M)· v) = La(u)
(T )· v.

It is an isotopy of the type (La, id, La).
3. Similar to the item 3 of Lemma 5 and Lemma 6.

References

[1] Belousov V. Foundations of quasigroup and loop theory. Nauka, Moscow, 1967 (in Russian).

[2] Hall M. Group theory. IL, Moscow, 1962 (in Russian).

[3] Kuznetsov E. Transversals in groups. 1. Elementary properties. Quasigroups and related
systems, 1994, 1, No. 1, 22–42.

[4] Kuznetsov E. Transversals in groups. 4. Derivation construction. Quasigroups and related
systems, 2002, 9, 67–84.

[5] Kuznetsov E., Botnari S. Invariant transformations of loop transversals. 1. The case of
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