
Computer Science Journal of Moldova, vol.20, no.3(60), 2012

Toward the Soundness of Sense Structure
Definitions in Thesaurus-Dictionaries. Parsing

Problems and Solutions∗

Neculai Curteanu, Alex Moruz

Abstract

In this paper we point out some difficult problems of thesaurus-
dictionary entry parsing, relying on the parsing technology of
SCD (Segmentation-Cohesion-Dependency) configurations, suc-
cessfully applied on six largest thesauri – Romanian (2), French,
German (2), and Russian. Challenging Problems: (a) In-
tricate and / or recursive structures of the lexicographic seg-
ments met in the entries of certain thesauri; (b) Cyclicity (re-
cursive) calls of some sense marker classes on marker sequences;
(c) Establishing the hypergraph-driven dependencies between
all the atomic and non-atomic sense definitions. Classical ap-
proach to solve these parsing problems is hard mainly because
of depth-first search of sense definitions and markers, the sub-
stantial complexity of entries, and the sense tree dynamic con-
struction embodied within these parsers. SCD-based Pars-
ing Solutions: (a) The SCD parsing method is a procedu-
ral tool, completely formal grammar-free, handling the recur-
sive structure of the lexicographic segments by procedural non-
recursive calls performed on the SCD parsing configurations of
the entry structure. (b) For dealing with cyclicity (recursive)
calls between secondary sense markers and the sense enumera-
tion markers, we proposed the Enumeration Closing Condition,
sometimes coupled with New_Paragraphs typographic markers

∗This paper is dedicated to Prof. Svetlana Cojocaru, IMI Director, as a tribute
to her high professionalism, genuine friendship, passion and devotion to the special
guild of researchers. The authors, with gratitude and best wishes for her sixtieth
anniversary!
c©2012 by N. Curteanu, A. Moruz

275

N. Curteanu, A. Moruz

transformed into numeral sense enumeration. (c) These prob-
lems, their lexicographic modeling and parsing solutions are ad-
dressed to both dictionary parser programmers to experience the
SCD-based parsing method, as well as to lexicographers and the-
sauri designers for tailoring balanced lexical-semantics granular-
ities and sounder sense tree definitions of the dictionary entries.

Keywords: dictionary entry parsing; parsing method of SCD
configurations; recursive lexicographic segments; recursive calls
of sense markers; Enumeration Closing Condition; soundness of
sense structure definitions.

1 Thesaurus-Dictionary Parsing with SCD Con-
figurations

This section goal is two-fold: to briefly introduce the parsing method of
SCD (Segmentation-Cohesion-Dependency) configurations, which was
applied to parse six largest Romanian, French, German, and Russian
dictionaries [7], [4], [3], [5], [6], and to outline the issue of the present
paper.

The parsing method of SCD configurations consists in applying
breadth-first (completed with depth-first, stack-type) searching algo-
rithms for the recognition and establishing the dependencies between
the sense marker classes of dictionary entries [4], [3], [5], [6], [7]. In
general, an SCD configuration (hereafter, SCDconfig) has the following
computational components: • A set of marker classes: a marker is a
boundary for a specific linguistic category; • A hypergraph-like hier-
archy that pre-establishes the dependencies among the marker classes;
• A searching (parsing) algorithm.

When applied to dictionary entry parsing, the method of SCD con-
figurations merges the following sequence of (at least) three specific
configurations (i.e. lexical-semantics sense levels): (a) The first one,
abbreviated hereafter SCDconfig1, performs the segmentation and de-
pendencies for the lexicographic segments [11 :2], [10] of each dictionary
entry [4], [5], [7]. (b) Stepping down into the lexicographic segments
of a thesaurus-dictionary entry, the second SCD configuration (SCD-

276

Toward the Soundness of Sense Structure Definitions in . . .

config2) usually parses the sense description segment, extracting its
sense tree structure [4], [3], [5], [7]. Actually, the SCDconfig2 parses
the entry sense definitions of larger lexical-semantics granularity in the
sense description segment: primary, secondary, and literal / numeral
enumeration senses. (c) The third SCD configuration (henceforth
SCDconfig3) continues to refine the sense definitions of SCDconfig2,
parsing each node in the generated sense-tree for obtaining the atomic
definitions / senses (i.e. finest-grained meanings) of the dictionary en-
try.

We experienced the method of SCD configurations for modeling and
parsing, with outstanding results (over 90% accuracy), on six largest,
complex, and sensibly different thesaurus-dictionaries for Romanian:
DLR (The Romanian Thesaurus – new format) [3], [4], [7], and DAR
(The Romanian Thesaurus – old format) [4], [7], [16]; for French: TLF
(Le Trésor de la Langue Française) [4], [7], [12]; for German: DWB
(Deutsches Wörterbuch – GRIMM) [4], [7], [8], and GWB (Göthe-
Wörterbuch) [4], [7], [8]; and for Russian – DMLRL (Dictionary of
the Modern Literary Russian Language) [5], [6], [7].

The paper is organized as follows: Section 2 discusses the problems
met in SCDconfig1 for recognizing the intricate or recursive structure
of the lexicographic segments in German DWB, Romanian DAR, and
French TLF thesauri. Section 3 examines situations of cyclicity (recur-
sive) calls that may occur between secondary sense markers and sense
enumeration(s) in DAR, DMLRL, and DLR, the transformation of
the typographic New_Paragraphs into sense enumeration markers (e.g.
in DLR, DAR, and DMLRL), and the solution provided by the Enu-
meration Closing Condition when recursive calls occur [5], [6], [4], [7].
Section 4 points out few examples of (atomic) definition parsing prob-
lems in DLR, TLF, and DMLRL [5], [4], [7]. Section 5 outlines the
impact of the discussed parsing problems and solutions on both the
robust parser construction and the soundness of lexicographic design
for the largest thesaurus-dictionaries, obtained within the optimal and
portable framework of SCD configurations.

277

N. Curteanu, A. Moruz

2 Parsing the Lexicographic Segments on SCD-
Config1

2.1 Intricate Lexicographic Segments in German DWB

The German DWB (Deutsches Wörterbuch – GRIMM) entries com-
prise a complex structure of the lexicographic segments, which provide
a non-uniform and non-unitary composition [8]. A special feature is
that DWB (Deutsches Wörterbuch) and GWB (Göthe-Wörterbuch)
[8] lexicographic segments are composed of two parts: a first (optional)
root-sense subsegment, and the body subsegment, which contains the
explicit sense markers, easily recognizable. For DWB, the parsing of
lexicographic segments is not at all a comfortable task since they are
defined by three distinct means, displaying a rather intricate structure:

(A) After the root-sense of a DWB entry, or after the root-sense
of a lexicographic segment, (a list of) italicized-and-spaced key-words
are placed to constitute the label of the lexicographic segment that fol-
lows. Samples of such key-word labels for DWB lexicographic seg-
ments are: “Form, Ausbildung und Ursprung”, “Formen”, “Ableitun-
gen”, “Verwandtschaft”,“Verwandtschaft und Form”, “Formelles und Et-
ymologisches”, “Gebrauch”, “Herkunft”, “Grammatisches”, etc., or, for
DWB (most important) sense-description segment: “Bedeutung und
Gebrauch” (or just “Bedeutung”). In the example below, they are
marked in 25% grey.

Example 2.1.1. GRUND, m., dialektisch auch f. gemeingerm.
wort; fraglich ist das geschlecht von got. ∗grundus in grunduwaddjus,
vgl. afgrundiþa; sonst meist masc.: ahd. grunt, crunt; mhd. grunt;
as. grund; mnd. grunt meist f., selten m.; mnl. gront meist m., selten
f.; ndl. grond; afries. grund, grond; ofries. grund; wfries. groun,
grùwn; ags. grund; engl. ground; anord. grunnr m., grund f.; dän.
grund comm. gen.; schwed. grund; als dem german. entlehnt gelten lit.
gruntas m., preusz. gruntan acc. m., grunte f., lett. grunts m., grunte
f., poln. russ. slov. nlaus. grunt m. f o r m u n d h e r k u n f t .

1) für das verständnis der vorgeschichte des wortes ist die
z w i e g e s c h l e c h t i g k e i t

278

Toward the Soundness of Sense Structure Definitions in . . .

. .
H. V. SACHSENHEIM spiegel 177, 30;

die neuen grundt zu der kirchen zimm. chron.2 2, 539, 36; du findest
noch vil gar alter meür und grunt und thürn SIGMUND MEISTERLIN
in städtechron. 3, 51, 14. auszerschwäb. im obd. nur selten: mosige
grunde SEBIZ feldbau (1579) 149. anders, als rein graphische erschei-
nung versteht sich das fehlen des umlautzeichens in md. texten; häufig
z. b. bei LUTHER: grebt die grunde 1, 148; drey starcke grund 6,
290. b e d e u t u n g. die bedeutungsgeschichte des wortes läszt sich
schwer aufbauen, weil ihre wesentlichsten etappen in vorgeschichtliche
zeit fallen. die auch auszerdeutsch altbezeugten verwendungen im sinne
von ’tiefe’ (s. u. I) und im sinne ron ’erde’ (II) stellen offenbar die
beiden cardinalen bedeutungsstränge dar. aber auch die bedeutung ’tal-,
wiesengrund ’ (III), anscheinend auf der

. .

.hat (s. u. II A 1 a). nach JAC. GRIMM liegt
der unterschied darin, ’dasz gr. mehr nach innen geht, boden die ober-
fläche bezeichnet ’ (th. 2, 211). das trifft mehrfach zu; doch erschöpft
diese unterscheidung einer mehr räumlichen und mehr flächenhaften
vorstellung die sache nicht.

I. grund bezeichnet die feste untere begrenzung eines dinges.
A. grund von gewässern; seit ältester zeit belegbar: profundum (sc.

mare) crunt ahd. gl. 1, 232, 18; latid thea odra (fisch) eft an gr. faran
Hel. 2633.

1) am häufigsten vom meer (in übereinstimmung mit dem anord.
gebrauch):

. .
In Ex. 2.1.1 above, these notions are illustrated as follows: between

the entry lemma GRUND and the label “f o r m u n d h e r k u n f t“,
it spans the root-sense subsegment of the first lexicographic segment for
the entry “GRUND“. The key-words “f o r m u n d h e r k u n f t“ rep-
resent the first label for the first segment of the lemma, described with
several sense markers, among which the first one is “1)“. The segment
“f o r m u n d h e r k u n f t“ ends when the label “b e d e u t u n g“
occurs for the next lexicographic segment. Between this label and the

279

N. Curteanu, A. Moruz

effective description of the segment senses, which begins with the sense
markers “I.“ . . . “A.“ . . . etc., it spans the root-sense of the segment la-
beled with “b e d e u t u n g“. Thus each lexicographic segment inDWB
may contain, optionally, in a “preamble”, the root-sense (subsegment)
description of that segment. The key-words (or a list of key-words)
placed at the end of a segment correspond to (and represent) the label
of the lexicographic segment that follows.

(B) The second way to specify the lexicographic segments inDWB
is expressed as follows: after the primary sense markers, there are spec-
ified those key-words representing the label of the lexicographic segment
that follows. The example 2.1.2 is enlightening:

Example 2.1.2. GEBEN, dare.
I. Formen, ableitungen, verwandtschaft .
1) es ist ein allgemein, aber ausschlieszlich germanisches wort:

goth. giban (praet. gaf), ahd.
. .
II. Bedeutung und gebrauch.
1) geben und nehmen, die beiden sich ergänzenden gegenstücke,

verdienen die erste. . .
. .
The entry GEBEN of DWB has the Latin definition “dare”, which

is at the same time the root-sense of the entry. The first segment
(which begins with the marker ”I.”) is labeled with ”Formen, ableitun-
gen, verwandtschaft”, while the the second segment (which begins with
the marker ”II.”) has the label “Bedeutung und gebrauch”. This is the
proper sense description segment of the lemma GEBEN from DWB,
actually.

(C) The third (and most frequent) way to identify the lexical de-
scription segment(s) of a DWB entry is simply the lack of a segment
label at the beginning of the sense description segment. By default,
after the entry root-sense segment (which can be reduced to the Latin
definition, i.e. the translation of the German word-lemma), the sense-
description segment comes without any “Bedeutung” label, introducing
explicit sense markers and definitions.

Example 2.1.3. BESUCHEN, ahd. pisuochan (GRAFF 6, 84),

280

Toward the Soundness of Sense Structure Definitions in . . .

mhd. besuochen, nnl. bezoeken, schw. besöka, dän. besöge.
1) den jägern, das wild besuchen, aufspüren.
2) einen ort besuchen, mhd. einen turnei besuochen. Engelh. 2359;

nhd. die kirchen, spielhäuser, theater besuchen, franz. fréquenter; das
sie dein haus und deiner unterthanen . . .

. .
While the lexicographic segment structure is not easy to be ob-

tained for DWB (SCD-config1), as shown in this subsection, the de-
pendency hypergraph for the sense description segment (SCDconfig2),
represented in [4 :Fig. 6], looks more feasible when the former task has
been achieved.

2.2 Recursive Structure of Lexicographic Segments in
DAR

We present here the recursive configuration for two lexicographic seg-
ments in DAR (the old format of DLR): the French and Nest seg-
ments.

The French segment [4], [7] “looks” like the sense description seg-
ment, while the Nest (Romanian “cuib”) segment delivers, at smaller
dimensions, a similar (thus recursive) lexicographic structure as that of
DAR general entry.

Example 2.2.1. The entry LĂMURÍ [Eng: elucidate, explane,
clear up] in DAR, followed by the French segment, the sense descrip-
tion SenseSeg segment, and a Nest segment (the segment and sense
markers are highlighted in 25% grey:

LĂMURÍ vb. IVa. 1◦. Purifier, raffiner. 2◦. Préciser; fixer;
éclairer; s’éclairer, s’élucider. 3. Expliquer. 4◦. Distinguer, apercevoir.

1◦. T r a n s. (Despre metale, etc.) A curăţi prin foc de corpurile
necurate; p. g e n e r. a c u r ă ţ i, a l i m p e z i, a p u r i f i c a.
Ca aurul în ulcea i-au lămurit. mineiul (1776) 1542/1. În cuptoriul
înfrânării ţi-ai lămurit trupul. ib. 451/2. Argintarul lucrează argintul
lămurindu-l prin foc cu plumb, care trage arama. i. ionescu, m. 714.

. .

281

N. Curteanu, A. Moruz

[Şi: lămurá † vb. Ia. Hierul (= fierul) ce lămura [făurarul].
herodot, 28. || A d j e c t i v e: lămurít (cu negativul nelămurit),
-ă = curăţit, limpezit, purificat; clarificat, desluşit, limpezit, explicat,
clar, limpede. (Ad 1◦) Argintul lămuritu iaste cuvântul lu Dumnezeu.
coresi, ev. 318/5; cf. dosofteiu, ps. 38. Tăia iarăşi bani de argint
lămurit. herodot, 262. Argintul cel cu foc lămurit. biblia (1688) 3722.
Laptele cel lămurit. mineiul (1776)

. .

.Să-şi facă o idee lămurită de sine însuşi. marcovici, c. 11/1.
Adevăruri lămurite. i. ionescu, c. vi. Să-i dea mai lămurit răspuns. c.
negruzzi, i 197. Hotărirea împărătesei era lămurită. ispirescu, l. 307;
– (în poezia populară cu caracter mistic) lămurát, -ă. Să rămână
curat, Lămurat, Cum Dumnezeu l-o dat. marian, d. 34, 39, 125;
– lămuritór,-oáre adj. = curăţitor, limpezitor, purificator; care lă-
mureşte, care desluşeşte, care clarifică. Dovezi lămuritoare. donici, f.
44. Lămuritoare cuvinte de dreptate. c. negruzzi, II 297. | A b s t r a c t:
lămuríre s. f. = acţiunea de a lămuri; limpezire, curăţire, purificare;
claritate, desluşire, explicaţiune. Cu lămurire loc. adv. = în mod lă-
murit, clar, limpede. Urmează a se face socotealile tovărăşiei cu multă
lămurire. pravila (1814) 87. Am văzut cu lămurire. uricariul, i 216/2.
Acest adevăr rămâne cu lămurirea cuvenită. i. ionescu, c. 243. Trebue
să dăm mai întâi o lămurire despre acest rege. c. negruzzi, i. 177. Să
aibă la cine alerga la lămuriri, când lecţia ar fi fost prea grea. g. vifor,
luc. iv 309. (Învechit) Lămurire a socotelelor = lichidare. pontbriant,
barcianu. Despre Bârlad... iarăşi avem preţioase lămuriri. bogdan, c.
m. 2.].

2.3 Recursive Configuration of Lexicographic Segments
in TLF

Example 2.3.1. “Rem.“, “Étymol. et Hist.“, and “DÉR.“ lexico-
graphic segments in the TLF entry ÉLÉPHANT. Along with lexical-
semantics sense trees (with primary, secondary, and enumeration-
described subsenses) inside several lexicographic segments, see also the
Rem. segment inside the last DÉR. segment!

282

Toward the Soundness of Sense Structure Definitions in . . .

. .
Rem. On rencontre ds la docum. a) Éléphantarque, subst. masc.,

antiq. Chef d’une compagnie de soldats montés sur des éléphants.
Deux armées entières : trente mille hommes d’un côté, onze mille de
l’autre, sans compter les éléphants avec leurs éléphantarques (FLAUB.,
Corresp., 1860, p. 384). b) Éléphante, subst. fém. rare. Femelle de
l’éléphant. Emploi métaph. Femme lourde qui manque de souplesse (cf.
HUYSMANS, Art mod., 1883, p. 133). c) Éléphas, subst. masc. Nom
scientifique de l’éléphant. L’“ Elephas meridionalis”, comme d’ailleurs
la plupart des éléphants qui se baladaient autrefois en Europe, n’avait
pas de fourrure (FARGUE. Piéton Paris, 1939, p. 129).

Prononc. et Orth. : [e l e f Ä]. Ds Ac. dep. 1694. Étymol. et
Hist. 1. 1121 elefant (Ph. Thaon Best., 1416 ds T.-L. : une beste
truvum qu’elefan apelum); 2. 1825 p. ext. “ personne à la démarche
lourde et peu gracieuse ” (BRILLAT-SAV., Physiol. goût, p. 227); 3.
1560 elephant de mer (PARÉ, éd. Malgaigne, Discours de la licorne,
III, chap. XI, p. 502). Empr. au lat. elephantus “ éléphant ”, en a. fr.
on rencontre plus souvent la forme olifant*. Fréq. abs. littér. : 926.
Fréq. rel. littér. : XIXe s. : a) 1 789, b) 2 429; XXe s. : a) 678, b)
701.

DÉR. 1. Éléphanteau, subst. masc. Petit de l’éléphant; jeune
éléphant. Des éléphanteaux se séchant au soleil (GREEN, Journal,
1938, p. 144). – [e l e f Ä t o] – 1re attest. XVIe s. (Ant. du Pinet
ds DELB. Rec. ds DG); de éléphant, suff. -eau*. – Fréq. abs. littér. :
1. 2. Éléphantesque, adj. Comparable à l’éléphant; qui est, en poids
et en taille, supérieur à la moyenne. Synon. énorme, gigantesque, gros,
monumental. C’est une dame [la comtesse Fontaine] aux proportions
éléphantesques, dans la fleur de la soixantaine (COPPÉE, Toute une
jeun., 1890, p. 220). – [e l e f Ä t E s k] – 1re attest. 1890 id.; de éléphant,
suff. -esque*. 3. Éléphantin, ine, adj. a) Relatif à l’éléphant; qui rap-
pelle l’éléphant. L’épiderme éléphantin des mendiants (HUYSMANS,
Là-bas, t. 2, 1891, p. 20). Belle autrefois [Taïtou], de cette beauté grasse
que recherchent les Orientaux, mais devenue avec le temps d’une corpu-
lence éléphantine (THARAUD, Passant Éthiopie, 1936, p. 110).
. .

283

N. Curteanu, A. Moruz

. .
L’énorme Suédoise beauté éléphantique (SIMONIN, BAZIN, Voilà

taxi! 1935, p. 141). Qui est atteint d’éléphantiasis. Synon. éléphanti-
asique, éléphantiaque. Attesté ds LITTRÉ, Ac. Compl. 1842, BESCH.
1845, Lar. 19 e − 20e et QUILLET 1965. Rem. Certains dict. attes-
tent l’emploi subst. dans le sens de “ éléphantiasique, éléphantiaque ”.
– Dernière transcr. ds LITTRÉ : é-lé-fan-ti-k’. – 1res attest. a) XVe

s. subst. (Valenciennes, ap. La Fons. ds GDF.), b) adj. “ d’éléphant ”
1506-1516 (FOSSETIER, Chron. Marg., ms. Bruxelles, 10512, IX, II, 5
ds GDF. Compl.); de éléphant, suff. -ique*.
BBG. – GILI GAYA (S.). Miscelánea. Revista de Filologia española.
1949, t. 33, pp. 145-146. – GOTTSCH. Redens. 1930, p. 42, 121. –
GRIMAUD (F.). Pt gloss. du jeu de boules. Vie Lang. 1968, p. 194.
– ROG. 1965, p. 42, 178, 180. – ROMMEL 1954, p. 98. – SPITZER
(L.). Über einige Wörter der Liebessprache. Leipzig, 1918, p. 56. –
VAGANAY (H.). Qq. mots peu connus. In : [Mél. Chabaneau (C.)].
Rom. Forsch. 1907, t. 23, p. 226 (s.v. éléphantin).

Example 2.3.2. Highly refined description of the sense tree for the
“Étymol. et Hist.“ lexicographic segment in the TLF entry VENIR.

. .
Prononc. et Orth.: [v @ n : R], (il) vient [-v j Ë]. Att. ds Ac.

dep. 1694. Conjug. ind. prés.: je viens, tu viens, il vient, nous venons,
vous venez, ils viennent ; imp.: je venais; passé simple: je vins; fut.: je
viendrai ; passé composé: je suis venu; plus-que-parfait: j’étais venu;
passé ant.: je fus venu; futur ant.: je serai venu, cond.: je viendrais;
cond. passé: je serais venu; subj. prés.: que je vienne; imp.: que
je vinsse ; passé que je fus venu; plus-que-parfait: que je fusse venu:
impér.: viens, venons, venez ; passé: sois venu, soyons venu, soyez
venu; inf. prés.: venir ; passé: être venu; part. prés.: venant ; passé:
venu, -ue; étant venu. Étymol. et Hist. A. 1. Venir a + subst. mar-
quant le terme du mouvement a) ca 880 “ se déplacer pour arriver près
du point de référence ” (Eulalie, 28 ds HENRY Chrestomathie, p. 3); ca
1050 en venir “ id. ” (Alexis, éd. Chr. Storey, 113); spéc. 1690 “ attein-
dre un certain point ” (FUR.); 1842 mar. (Ac. Compl.: Venir au vent
[...]. Venir à bâbord ou à tribord); b) 1176-81 fig. venir à + subst. ab-

284

Toward the Soundness of Sense Structure Definitions in . . .

str. “ apparaître dans l’esprit, être conçu ” (CHRÉTIEN DE TROYES,
Charrete, éd. M. Roques, 495); 2. venir de + subst. indiquant l’origine
du mouvement a) ca 1050 “ arriver en provenance de ” (Alexis, 251); b)
ca 1170 fig. “ provenir, découler de ” (CHRÉTIEN DE TROYES, Erec,
éd. M. Roques, 4392); spéc. ca 1250 “ descendre (de quelqu’un) ” (Grant
mal fist Adam, I, 28 ds T.-L.); 1606 “ dériver (d’un mot) ” (NICOT, s.v.
bohourd); c) loc. 1176-81 don vos vient? (CHRÉTIEN DE TROYES,
Charrete, 137); 1580 d’où venoit celà (MONTAIGNE, Essais, I, 20, éd.
P. Villey et V.-L. Saulnier, p. 96); 1664 d’où vient que (MOLIÈRE,
Tartuffe, I, 1); 3. a) ca 1050 venir sans compl. de lieu (Alexis, 467); ca
1050 faire venir qqn “ lui demander de venir ” (ibid., 335); 1539 venir
au secours (EST.);

. .

D. Avec l’inf. venir servant de simple auxil. 1. fin Xe s. venir + inf.
“ faire en sorte de ” (Passion, 407); 2. ca 1050 venir a surtout à la 3e

pers. + inf. “ se trouver en train de ” (Alexis, 47); 3. ca 1225 venir de
+ inf. “ avoir juste fini de ” (GAUTIER DE COINCI, Mir., éd. V. Fr.
Koenig, I Mir 12, 44). Du lat. venire “ venir ”, “ arriver, se présenter ”,
“ parvenir à ”, “ venir à quelque chose, venir dans tel ou tel état ” et “ en
venir à ”. Fréq. abs. littér.: 98 961. Fréq. rel. littér.: XIXe s.: a)
142 843, b) 153 800; XXe s.: a) 144 519, b) 129 650. Bbg. BAMBECK
(M.). Galloromanische Lexikalia aus volksprachlichen mittelalterlichen
Urkunden. Mél. Gamillscheg (E.) 1968, p. 69. – DABÈNE (L.). Aller
et venir : de la ling. à la didact. Mél. Pottier (B.) 1988, pp. 217–224.
– DEJAY (D.). Les Rel. actancielles appréhendées à travers un corpus
de verbes fr. Thèse, Nancy, 1986, pp. 37–42.
. .

It is clear that any dictionary parser should recognize first (explicitly
expressed or by default) the lexicographic segments within the first SCD
parsing configuration.

285

N. Curteanu, A. Moruz

3 Parsing Problems at the Level of Primary
and Secondary Sense Definitions on the SCD-
Config2

3.1 Cyclicity Calls between Secondary Sense Markers
and Literal Enumeration in DMLRL

Example 3.1.1. It is common in DMLRL that (primary and)
secondary senses to be refined by literal enumeration. For the reverse,
atypical and uncommon situation, where the literal enumeration is
further refined through secondary sense markers // and ♦, the most
interesting case we met in DMLRL is the entry БЫ [9 :844], under
the primary sense no. ”3.”.

.
2. В придаточной части сложного предложения обозначает дей-

ствие, обусловливающее собой то, о чем сообщается в главной части.
Когда б разбойника облавою не взяли, То многие еще бы пострада-
ли. Михалк. Бешен, пес

3. Обозначает различные оттенки желаемости действия; а) Соб-
ственно желаемость. Учился бы сын. Были бы дети здоровы. ♦ Ес-
ли бы, когда бы, хоть бы и т. п. О, если бы когда-нибудь Сбылись
поэта сновиденья! Пушк. Посл. к Юдину. [Николка:] Хоть бы ди-
визион наш был скорее готов. Булгаков, Дни Турб. ♦ С неопр. ф.
глаг. Полететь бы пташечке К синю морю; Убежать бы молодцу
в лес дремучий. Дельв. Пела, пела пташечка.. [Настя:] Ах, тетень-
ка, голубок! Вот бы поймать! А. Остр. Не было ни гроша. . .—
Жара, дедушка Лодыжкин .. Нет никакого терпения! Искупаться
бы! Купр. Бел. пудель. // Употр. для выражения опасения по пово-
ду какого-л. нежелательного действия (с отрицанием). Не заболел
бы он. ♦ С неопр. ф. глаг., имеющей перед собой отрицание. —
Гляди, — говорю, — бабочка, не кусать бы тебе локтя! Так-таки
оно все на мое вышло. Леск. Воительница. ♦ Только бы (б) не. — По
мне жена как хочешь одевайся, .. только б не каждый месяц зака-
зывала себе новые платья, а прежние бросала новешенькие. Пушк.
Арап Петра Вел. [Варя:] Не опоздать бы только к поезду. Чех.

286

Toward the Soundness of Sense Structure Definitions in . . .

Вишн. сад. б) Пожелание. Условие я бы предпочел не подписывать.
Л. Толст. Письмо А. Ф. Марксу, 27 марта 1899. ♦ С неопр. ф. глаг.
Поохотиться бы по-настоящему, на коня бы денег добыть, — меч-
тал старик. Г. Марков, Строговы. ♦ В сочетании с предикативны-
ми наречиями со знач. долженствования, необходимости, возмож-
ности. [Алеша Бровкин] сверкнул глазами и понесся .. по гнилым
полам приказной избы. Вслед ему косились плешивые повытчики:
“Потише бы надо, бесстрашной, здесь не конюшня”. А. Н. Толст.
Петр I. ♦ Только бы (б), лишь бы, Употр. со знач. желательности
действия. [Скалозуб:] Мне только бы досталось в генералы. Гриб.
Горе от ума. в) Желание-просьба, совет или предложение (обычно
при мест. 2л.). [Марина:] И чего засуетился? Сидел бы: Чех. Дя-
дя Ваня. — Пошел бы ты к ним счетоводом, полковник. Павлен.
Счастье. — Ты бы, Сережа, все-таки поговорил с Лидией: Пришв.
Кащ. цепь. г) Желаемость целесообразного и полезного действия.
♦ С неопр. ф, глаг. Вам бы вступиться за Павла-то! — воскликну-
ла мать, вставая. — Ведь он ради всех пошел. М. Горький, Мать. ♦
С неопр. ф. глаг., имеющей перед собой отрицание. [Лиза:] А вам,
искателям невест, Не нежиться и не зевать бы. Гриб, Горе от
ума.

∼ Во что бы то ни стало. См. Стать. Как бы не так.
См. Как. Кто бы ни был, что бы ни было, как бы то ни
было. См. Быть. Хоть бы хны. См. Хоть. Хоть бы что. См.
Хоть.

— Срезневский: бы; Лекс. 1762: бы.

The parsing result of this part of БЫ entry is the following:
<entry>
<list>БЫ 1.♦ ♦ ♦ ♦ ♦ 2. 3. а)♦ ♦ //♦ ♦ б)♦ ♦ ♦

в) г) ♦ ♦ n-23</list>
<sense value="БЫ"class="0">
<definition> (сокращенно Б), частица. В сочетании с

глаголами в форме прошедшего времени образует сослагательное
наклонение. </definition>

<sense value="1."class="4">
. .. .

287

N. Curteanu, A. Moruz

<sense value="3."class="4">
<definition> Обозначает различные оттенки желаемости дей-

ствия; </definition>

<sense value="а)"class="5">
<definition> Собственно желаемость. Учился бы сын. Были бы

дети здоровы. </definition>

<sense value="♦"class="8">
<definition> Если <spaced> б ы </spaced>, когда <spaced> б ы

</spaced>, хоть <spaced> б ы </spaced><spaced> и </spaced>
т. п. О, если бы когда-нибудь Сбылись поэта сновиденья! Пушк.
Посл. к Юдину. [Николка:] Хоть бы дивизион наш был скорее готов.
Булгаков, Дни Турб. </definition>

< /sense>
<sense value="♦"class="8">
<definition> С неопр. ф. глаг. Полететь бы пташечке К синю

морю; Убежать бы молодцу в лес дремучий. Дельв. Пела, пела пта-
шечка.. </definition>

< /sense>
<sense value="//"class="6">
<definition> Употр. для выражения опасения по поводу

. . . </definition>

<sense value="♦"class="8">
<definition> С неопр. ф. глаг., имеющей перед собой отрицание.

– Гляди, – говорю, – бабочка, не кусать бы тебе локтя!
Так-таки оно все на мое вышло. Леск. Воительница. </definition>

< /sense>
<sense value="♦"class="8">
<definition> Только <spaced> б ы</spaced> (б) не. - По мне

жена как хочешь одевайся, .. только б не каждый месяц
</definition>

< /sense>
< /sense>
< /sense>
<sense value="б)"class="5">

288

Toward the Soundness of Sense Structure Definitions in . . .

<definition> Пожелание. Условие я бы предпочел не подписы-
вать. Л. Толст. Письмо А. Ф. Марксу, 27 марта 1899. </definition>

<sense value="♦"class="8">
<definition> С неопр. ф. глаг. Поохотиться бы по-настоящему,

на коня бы денег добыть, - мечтал старик. Г. Марков, Строговы.
</definition>

< /sense>
<sense value="♦"class="8">
<definition> В сочетании с предикативными наречиями со знач.

долженствования, необходимости, возможности.
</definition>

< /sense>
<sense value="♦"class="8">
<definition> Только <spaced> б ы</spaced> (б), лишь бы,

Употр. со знач. желательности действия. [Скалозуб:] Мне только
бы досталось в генералы. Гриб. Горе от ума. </definition>

< /sense>
< /sense>
<sense value="в)"class="5">
<definition> Желание-просьба, совет или предложение.

. </definition>
. .. .
< /sense>
< /sense>
< /sense>
<EtymologicalPart>
<p> – Срезневский: <spaced> б ы</spaced>; Лекс. 1762:

<spaced> б ы</spaced>.</p>
< /EtymologicalPart>
< /entry>

The Enumeration Closing Condition (ECC) represents a determin-
istic, computational constraint devoted to check the sound termination
(i.e. in a deterministic, finite number of steps) of the literal or numeral
enumeration marker list, when higher-level sense markers break into this
list. When this happens, contextual look-ahead verifications are needed

289

N. Curteanu, A. Moruz

to obtain the correct closing of the enumeration list. More precisely,
ECC means that whether after a certain (let us say, current) letter
in the sense enumeration marker list occur higher-level sense markers
(on the dependency hypergraph), then one should look ahead in the
sense marker sequence until the next letter of the same enumeration
type occurs. If such a letter does exist and follows monotonously (in
the alphabetic order) the current one in the enumeration list, then the
enumeration should continue. Otherwise, i.e. the letter does not exist
or it begins another enumeration, of the same or another kind as the
current one, then the ECC holds and the current literal enumeration
must be closed. For instance, in the Romanian DLR, with the filled
and empty diamonds ¨, ♦ as secondary sense markers, the enumera-
tion list a) b) c) ♦ ¨ ♦ ♦¨ ♦ d). . . should continue, while the
marker sequence a) b) c) ♦ ¨ ♦ ♦¨ ♦ a). . . should close the
first literal enumeration (see also [5], [4], [6], [7]).

The same is true if non-enumerable sense markers (such as ¨, ♦)
are replaced by another enumeration of sense markers, be it of numeral
or another literal type. Two different enumerations, a standard, literal
one, and a numeral one coming from transforming the New_Paragraphs
into sense markers, are illustrated by the entry CAL of the Romanian
DAR thesaurus.

3.2 Cyclicity Calls between Secondary Sense Markers,
Literal Enumeration, and New_Paragraphs in DAR
and DLR

Example 3.2.1. [7 :Chap. 9] In the DAR entry of the preposition
DE (En: of, by, for, to, from. . . , Fr: de) we encounter the situation of
the NewPrg (New_Paragraph) use as numeral enumeration, pursued or
not by another sense marker: NewPrg introduces component subsenses
in the (Romanian) RomSeg segment, which follows the (French) FreSeg
segment.

<FreSeg>

NewPrgDEprep.A. I. 1◦. a).Marque le lieu d’où part une action. . .
. .

290

Toward the Soundness of Sense Structure Definitions in . . .

NewPrg F. Elément de nombreaux mots composés.
< /FreSeg>
<RomSeg>
NewPrg De neaccentuat în frază şi proclitic, formează o singură

unitate fonetică. . .
NewPrg Substantivul în legătură cu de rămâne de obiceiu neartic-

ulat, dacă nu e urmat de un atribut al său. . .
NewPrg Cuvântul de sub regimul lui de are de cele mai multe. . .

. .
{RomSeg contains 14 paragraphs introduced by NewPrg, followed

by RomSeg and SenseSeg. Hence:}
. .
< /RomSeg>
<SenseSeg>
NewPrg A. Construcţia prepoziţională are funcţiunea sintactică. . .
NewPrg I. Ca determinare privitoare la spaţiu sau la timp.
NewPrg 10. Complemente circumstanţiale de loc.
NewPrg a) Complementul circumstanţial de loc răspunde la între-

barea u n d e?...
. . .
< /SenseSeg>

Example 3.2.2. [7 :Chap. 9] The illustrative example of entry
CAL from DAR is important and rather complex, showing the use of
NewPrg markers as sense numeral enumeration, interleaving with the
already existing sense literal enumeration.

NewPrg CAL s.m. Cheval.
NewPrg 1◦. Numele generic al speţei cavaline; s p e c. individ

masculin...
. . .
NewPrg Adecă amù cailoru zăbalele în gură lă. . .
. . . {a large block of definitions and DefExems of the entry CAL}
NewPrg În compoziţii:
NewPrg a.) (Entom.) Cal-de-apă = o specie a c a l u l u i -

d r a c u l u i, numită. . .
. . .

291

N. Curteanu, A. Moruz

NewPrg Calul-dracului = a.) insectă cu corpul lung. . . | (De aici)
Babă rea. . . ; –b.) = cal-de-apă. . .

. . .
NewPrg Calul-popii = a.) c a l u l-d r a c u l u i. . . ; –b.) =

cal-de-apã. . . Insectă lungă şi cu aripile pătate. . .
NewPrg Cal-turtit = c a l u l-d r a c u l u i. . .
NewPrg b.) (Zool.; la românii din A.-U.) Cal-de apă s. (după

germ. Nilpferd) –cal-de-Nil = h i p o p o t a m LB., BARCIANU . . .
. . .
NewPrg Cal-de-mare = hyppocampus brevirostris. . .
. . .
NewPrg 2◦. P. a n a l. (Mor.) Caii cu spetezele ţin coşul şi al-

cătuesc. . .
. . .
The sense dependency subtree between the sense markers ”1◦.” and

”2◦.” looks as follows (Fig. 1. below):

Figure 1. Partial sense dependency subtree of the CAL entry in DAR

A good exercise of solving this problem is to parse correctly the entry
CAL in DAR, partially shown below. This complete representation
extends a slightly less refined output obtained by the automatic SCD-
based parser.

<entry>
<sense value="CAL" class="0">

292

Toward the Soundness of Sense Structure Definitions in . . .

<definition> s.m. <i>Cheval.</i></definition>

<sense value="1◦." class="12">
<definition> Numele generic al speţei cavaline; s p e c. individ

masculin... M â n z u l dacă nu se ţine de prasilă</definition>

...
<sense value="NewPrg" class="1◦.+i.">
<definition><i>Adecă amù cailoru zăbalele în gură lă </i>[=

le]<i>băgăm COD. VOR. 122/13.</i>
<i>Nu fireţi</i>...</definition>

< /sense>
<sense value="NewPrg" class="1˚.+ii.">
<definition>În compoziţii:</definition>

< /sense>
<sense value="a.)" class="16">
<definition> (entom.) Cal-de-apă = o specie a c a l u

l u i-d r a c u l u i, numită şì c ă l u ţ - d e - a p ă, c a l u l - d
r a c u l u i, c a l u l - p o p i i, c ă l u ţ, p ă u n i ţ ă, p i ţ i n g
ă u l - d r a c u l u i, s c ă l u ş - d e - a p ă, ţ â n ţ a r - d e -apă
(<i>Calopteryx splendens</i>). MARIAN, INS. 559-560, cfr. H. XI
195.</definition>

< /sense>
<sense value="NewPrg" class="a+i.">
<definition>Calul-dracului =
<sense value="a.)" class="16"> <definition> insectă cu corpul

lung şi turtit, de coloare galbenă închisă, cu aripile lungi şi late, şi
străvezii ca o păioară. Zboară foarte iute, mai ales pe de-asupra apelor.
Se mai numeşte: c a l u l - p o p i i, c a l-t u r t i t, c o b i l i ţ ă, c ă l
u g ă r i ţ ă (H. x 355) (<i>Libellula depressa</i>). MARIAN, INS.
558 ž. u., „un fel de ţânţar mare” H. IX 52. Cfr. H. I 59, IV 54, V 116,
IX 437, 473, x 259, XII 27, 374.</definition>

< /sense>
<sense value="#" class="22"> <definition> <i>A fi ca calul-

dracului</i>, se zice de un om neastâmpărat. marian, ins. 565.
</definition>

< /sense>

293

N. Curteanu, A. Moruz

<sense value="|" class="20"> <definition> (De aici) Babă rea,
cfr. n e a g a r e a. Cfr. coşbuc, b. 92. <i>Baba asta (vrăjitoare) erà
calul-dracului<i>: afurisită şi rea. PAMFILE, J. I, cfr. ZANNE, P. II
3;– </definition>

< /sense>
<sense value="b.)" class="16"> <definition> c a l-d e-a p ã.

MARIAN, INS. 559. </definition>

< /sense>
< /definition>

< /sense>
<sense value="NewPrg" class="a+ii.">
<definition>Calul-popii =
<sense value="a.)" class="16">
<definition> c a l u l - d r a c u l u i. MARIAN, INS. 558;

</definition>

< /sense>
<sense value="b.)" class="16">
<definition> c a l-d e-a p ă. id. ib. 559. Insectă lungă şi cu aripile

pătate, având ochii mari. H. VII 481; cfr. H. I 59, II 307, 227, 117, V
280, X 151, 355, 498, XII 226, 429, XIV 350, 397, 467. </definition>

< /sense>
< /definition>

< /sense>
<sense value="NewPrg" class="a+iii.">
<definition> Cal-turtit = c a l u l - d r a c u l u i.

MARIAN, INS. 558.
< /definition>

< /sense>
<sense value="NewPrg" class="b+i."="a+iv.">
<sense value="b.)" class="16">
<definition> (Zool.; la Românii din A.-U.) Cal-de apă

s. (după germ. Nilpferd) -de-Nil = h i p o p o t a m LB.,
BARCIANU. </definition>

< /sense>
<sense value="NewPrg" class="1◦.+iii."="b+ii.">

294

Toward the Soundness of Sense Structure Definitions in . . .

<definition> Cal-de-mare= <i>hyppocampus breviro-
stris</i>. BARCIANU. <i>Cai-de-mare, albi ca spuma</i>, EMI-
NESCU, p. 114. </definition>

< /sense>
< /sense>
<sense value="2◦." class="12">
<definition> P. a n a l. (Mor.) <i>Caii</i> cu spetezele ţin coşul

şi alcătuesc... </definition>

<sense value="||" class="20">
<definition> (Dulgh.) S c a u n u l cu cleştele de strâns...

</definition>

< /sense>
< /sense>
..
<sense value="4◦." class="12">
<definition> (Cor.) Numele unui danţ ţărănesc...</definition>

< /sense>
< /sense>
< /entry>

The partial sense marker sequence in the above representation is
the following: 1◦. i. ii. a.) BoldDefMark i. BoldDefMark a.)

| b.) ii. BoldDefMark a.) b.) iii. BoldDefMark i. b.) BoldDefMark
ii. BoldDefMark 2◦.|| We remark the distinct role of NewPrg
typographic-type sense marker in the context of subsequences New-
Prg DefMark Enum and NewPrg Enum DefMark : the first sequence
introduces lower, local level dependencies, while the second one defines
higher level ones, all depending on the look-ahead sense markers. The
subsequence contextual analysis and two passages along the whole sense
marker sequence provide the correct sense dependencies.

Such an approach would be rather difficult to be implemented within
the classical, formal grammar-based grammars, since it works depth-
first search on all the dictionary forms, definition bodies, and sense
markers, while ECC and the emphasized contextual analyses on the

295

N. Curteanu, A. Moruz

marker subsequences are performed on the bare sequence of the ex-
tracted sense markers from the entry. Dependency structures such as
in the entry CAL of DAR represent, in our evaluation, lexicographic
mistakes or inadequacies at the dictionary design stage; parsing it cor-
rectly with the method of SCD configurations is both a technical chal-
lenge and also a warning for more sound and careful sense structure
constructions in the greatest thesaurus-dictionaries.

Example 3.2.3. While the secondary sense markers are nat-
urally refined through literal enumeration in DLR thesaurus, we
found yet the reverse, atypical situation, e.g. for the entries DOAR,
DOÁSCĂ (fragment below), and especially LUMÍNĂ (fragment be-
low), where the recursive calls for literal enumeration is mixing with sec-
ondary sense markers. The first literal enumeration is notably further
marked by another, numeral enumeration, introduced by the NewPrg
(New_Paragraph) markers.

DOÁSCĂ s. f. 1. Nume dat unor scânduri, unor bucăţi de lemn
sau unor obiecte făcute din acestea:

a) (Popular) Scândură (1). Strunga de muls e închisă cu o doscă,
scândură, până se pun la muls păcurarii. dr. ii, 336. Şi-a lăsat abatajul
nearmat ... şi coperişul fără doasce. davidoglu, m. 70. Îl pun caşul
undeva pe-o doscă. Com. din lugaşu de jos – aleşd, cf. alr i
1 853/61, 65, 80, 107. ¨ Gard de doşte = gard de scânduri. Cf. alr
ii/i h 267/64, alrm ii/i h 359/64. .
. .

g) (Învechit) Copertă de carte, confecţionată din lemn şi învelită
în piele. Mi se încredinţase un dulap nou-nouţ ... Era încărcat cu fel
de fel de bucoavne vechi, cu doascele de lemn. ciauşanu, r. scut.
55, cf. arh. folk. vii, 121. ♦ Loc. adv. Din doască-n doască
= în întregime, de la un capăt la altul. Secretarul întreprinderii luă
traducerea şi o citi din doască-n doască. agîrbiceanu, a. 53.

2. (Regional) Perete subţire (Bonţ – Gherla). Cf. paşca, gl. 3.
(Regional) Vas făcut din coajă de dovleac. Sus pe corlată . . . trei doaşte
de dovlete. plopşor, c. 39. .

LUMÍNĂ s.f.A. (Predomină sensul concret de radiaţie; în opoziţie

296

Toward the Soundness of Sense Structure Definitions in . . .

cu î n t u n e r i c)
I. (Adesea cu determinări calificative) Radiaţie care face corpurile

vizibile.
1. (Ca atribut al universului, al naturii ambiante; componentă a lu-

mii înconjurătoare) Lăudaţil toate stealele şi .
gonească Cât va fi câmp de gonit Şi lumină de zărit”. ALECSANDRI,
O. I, 8.

a) (Ca radiaţie solară, element al peisajului diurn) Voi întoarce
lumira soarelui de cătră voi, de va fi întunrearecu (a. 1600). CUV. D.
BĂTR. II, 49/9. Lumina soarelui face dzua. PRAV. 141.
Deopotrivă se găseşte-n toate Amestecată umbră şi lumină. ISANOS,
V. 281. ¨ L o c. a d j. De lumină = a) luminos, sclipitor; s p e c.
(despre ochi) strălucitor. Deunăzi ... mă simţii cufundat ca într-un nor
întunecos ... Ancuţo! tu ai prefăcut acel nor în soare de lumină! Tu
ai deşteptat în sufletu-mi o viaţă necunoscută! ODOBESCU, S. I, 143.
. .
Ochi de lumină avea fiul lui Ieronim, privirea lui în noapte fulgera.
ROMÂNIA LITERARĂ, 1970, nr. 93, 17/3 ; b) (despre un spaţiu,
un loc) în care pătrunde lumina (A I 1), plin de lumină Acest loc ...
era pe atunci, în 1650, un ochi de lumină în mijlocul marelui codru al
Căpoteştilor. IORGA, C. I. II, 5 ; c) (despre plante) care trăieşte la
lumină (A I 1). După o fază de 2-3 ani cu floră de buruieni de lumină,
urmează faza de fâneaţă cu ierburi cu rizomi. CHIRIŢĂ, P. 71. ¨ L o c.
a d v. Pe (sau, rar, la) lumină = în timpul zilei (I 2), de
. .

. ARHIVA R. I, 87/20. A înviat din morţi ..., Lumina
ducându-o Celor din morminte! EMINESCU, O. IV, 359. Zâmbetul
sfânt al martirului care-ntrevede ... lumina vieţii eterne. CARAGIALE,
O. II, 64. (Contextul aduce sensul figurat privind viaţa interioară a
individului) Cine va îmbla zioa nu se va poticni ...; iară cine va îmbla
noapte poticni-se-va, că lumină nu iaste întru el. CORESI, EV. 95.

b) (Ca radiaţie reflectată de lună; element al peisajului nocturn)
Luna, ... fire are lumina ce iase den ea să turbure udăturile trupului.
CORESI, EV. 81. .
. .

297

N. Curteanu, A. Moruz

Mare şi minunată este lucrarea luminii lunii asupra feţii pământului
şi a sănătăţii locuitorilor lui. EPISCUPESCU, PRACTICA, 335/2. . . .
. .

The discussion and solution is similar as that for the entry CAL
from DAR.

Example 3.2.4. In this DLR entry, the ¨ secondary sense is
inserted within the literal enumeration and, irregularly, subordinated
to it!

LÚBENE s.m. (Munt.) Numele dat unor plante din familia cucur-
bitaceelor: a) (şi în sintagma lubene turcesc, H II 326, ALR I 855/725,
ib. 856/725, 730, 735, 740) dovleac (Cucurbita maxima). ¨ Lubene
scoromic = pepene galben (Cucurbita melo). Cf. ALR I 857/740. Era
nouă morţi. Şedea ca lubenii. GEORGESCU-TISTU, B. 35. Cf. ALR
I 856/710, 725, 730, 735, 740, ALR SN I h 198/723, ALRM SN I h
137/723; b) dovleac, bostan (Cucurbita pepo). Cf. DDRF, SCRIBAN,
D., ALR I 855/710, 725, 730, 735, 740. Cf. H II 79, 326, XI 321. .Al-
bina zbărrr! dup-o floare de lubene, unde se pitise ca s-audă ce va zice.
POP., ap. HEM 1 650

4 Parsing the Atomic Sense Definitions on SCD-
Config3

The complete parsing of atomic definitions of a dictionary entry relies
essentially on the pre-established dependency hypergraph of the SCD-
Config3, as that in [5 :Fig. 2, p. 75], connected to the hypergraph(s) on
SCDConfig2. In this section we point out only few problems that may
generate unsound dependencies within the sense trees of the parsed en-
tries on the SCDConfig3 level: (1) Reliable recognition of the atomic
sense definitions, including context-depending ones (e.g. TildaDef in
DMLRL [5 :48], BoldDef and ItalDef in DLR, DAR [4], [3], [7]);
(2) Cycling calls between atomic sense definitions and literal enumer-
ation, marked or not by NewPrg ; (3) New kinds, non-standard types
of sense definitions and examples-to-definitions; (4) Various situations

298

Toward the Soundness of Sense Structure Definitions in . . .

of definition inheritance, either explicit ones (e.g. with the inheritance-
dash marker) as in TLF or GWB, or by implicit (non-marked) defini-
tion inheritance, as frequently occur in DLR or DAR, along with the
sense dependencies they generate.

Remark 4.1. Atomic definitions BoldDef and ItalDef in DLR-
DAR may often be refined through literal enumeration. Since the
reverse situation is also frequent, when met together they may cause
dependency assignment disagreements, as illustrated in examples 3.2.3
and 3.2.4 above.

Example 4.2. Here it is a sample of ‘new’ atomic definition, some-
thing between ItalDef and DefExem (excerpt from LÍMBĂ in DLR).
Another (this time, very useful) case: Indexed DefExem (excerpt from
BRAVE in TLF) [4], [7]. “Unknown” definition species may always be
invented, either useful or not, but they may involve recognition prob-
lems in the parsing process.

. .
Limba oase n-are (= poţi spune cuiva ceva, îl poţi sfătui, ştiind

însă că nu va lua în seamă, nu se va conforma spuselor tale). I. CR.
IV, 22. Limba oase n-are, dar oase sfarmă (= cu cuvântul mari lucruri
săvârşim). I. GOLESCU, ap. ZANNE, P. II, 217, PANN, P. V. I,
21. Limba izbeşte în dintele ce te doare (= te defaimă unde îţi pasă).
I. GOLESCU, ap. ZANNE, P. II, 223. Toată pasărea pe limba ei piere (=
într-un fel sau altul, fiecare suportă consecinţele vorbelor, ale faptelor
proprii). PANN, P. V. I, 25, NEGRUZZI, S. I, 247, LĂCUSTEANU,
A. 127, ODOBESCU, S. III, 10, CREANGĂ,
. .

A. — 1. Homme courageux qui ne craint pas les dangers ou les
entreprises difficiles, qui les a affrontés. Il n’y a pas d’heures pour les
braves (VERLAINE,Œuvres posthumes, t. 1, Souvenirs, 1896, p. 206) :

• 11. tu es sûr du cœur et du bras de ce gladiateur?
Il faut un brave pour défaire Sigognac, lequel, je l’avoue, bien
que je le haïsse, n’est point lâche, puisqu’il a bien osé se mesurer
contre moi-même. T. GAUTIER, Le Capitaine Fracasse, 1863, p.
347. .

299

N. Curteanu, A. Moruz

Example 4.3. When explicitly marked (as in TLF, GWB), the
sense definition inheritance means to establish the correct mother-node
in the sense tree from where the definition should be handed down.
When inheritance is ‘marked’ by the lack of definition (as in DLR),
the work on the entry sense tree is more complex and challenging. This
is an exacting topic.

. .
3. Titlu purtat de conducătorii Ţărilor Române; persoană care

avea acest titlu; domnitor (1), vodă, voievod (3), (învechit) gospodar,
vlădică, biruitor. V. principe1 (1), prinţ. La putenciosul domnu Pătru-
Vodă amu fost de multe ori (a. 1593). doc. î. (XVI), 181.
. .
¨ (Atribuind calitatea ca un adjectiv) Un părinte domnu să aşaze pe
un fiiu al său în scaonul părintescu. gheorgachi, cer. (1762), 271.
♦ Spec. Conducător al unui principat sau al unui cnezat; principe1 (1),
prinţ, cneaz. Cf. mardarie, l. 159/14. Domnilor de Ardeal dzicem
crai ungureşti. m. costin, o. 43. .

5 Toward the Soundness of Sense Structures in
Thesauri

This paper discussed a series of parsing problems and solutions in the
context of parsing six very large and sensibly different dictionaries of
four European languages. The typical parsing problems presented are
related to the cyclicity (recursive) calls of sense markers on the parsing
layers of three SCD configurations. Working on modules (SCD configu-
rations), reducing the parsing problems (almost only) to sense marker
sequence analysis, transforming the typographical New_Paragraphs
into sense numeral enumeration, which interleaves with literal enumera-
tion and other sense marker classes, employing the Enumeration Closing
Condition to check the sound and deterministic (and possibly multiple)
use of the sense enumeration device represent the solutions and novelty
contributions of the present paper. They are addressing both the dic-
tionary parser designers and thesauri lexicographers, since almost all

300

Toward the Soundness of Sense Structure Definitions in . . .

the raised problems can be seen as irregularities and / or inadequa-
cies of the sense structure definitions, affecting their lexical-semantic
soundness.

References

[1] N. Curteanu, E. Amihăesei (2004). Grammar-based Java Parsers
for DEX and DTLR Romanian Dictionaries. ECIT-2004 Confer-
ence, Iasi, Romania.

[2] N. Curteanu (2006). Local and Global Parsing with Functional
FX-bar Theory and SCD Linguistic Strategy. (I.+II.), Computer
Science Journal of Moldova, Academy of Science of Moldova,
Vol. 14 no. 1 (40): pp. 74–102 and no. 2 (41): pp. 155–182,
http://www.math.md/files/csjm/v14-n2/v14-n2-(pp155-182).pdf.

[3] N. Curteanu, A. Moruz, D. Trandabăţ (2008). Ex-
tracting Sense Trees from the Romanian Thesaurus by
Sense Segmentation & Dependency Parsing, Proceed-
ings of CogAlex-I Workshop, COLING 2008, Manchester,
United Kingdom, pp. 55–63, ISBN 978-1-905593-56-9,
http://aclweb.org/anthology/W/W08/W08-1908.pdf.

[4] N. Curteanu, D. Trandabăţ, A. Moruz (2010). An Optimal
and Portable Parsing Method for Romanian, French, and Ger-
man Large Dictionaries, Proceedings of COGALEX-II Work-
shop, COLING-2010, Beijing, China, August 2010, pp. 38–47,
http://www.aclweb.org/anthology-new/W/W10/W10-3407.pdf.

[5] N. Curteanu, S. Cojocaru, E. Burcă (2012). Parsing the
Dictionary of Modern Literary Russian Language with the
Method of SCD Configurations. The Lexicographic Mod-
eling. Computer Science Journal of Moldova, Academy
of Sciences of Moldova, Vol. 20, No.1(58), pp. 42–81,
http://www.math.md/files/csjm/v20-n1/v20-n1-(pp42-82).pdf.

301

N. Curteanu, A. Moruz

[6] N. Curteanu, S. Cojocaru, A. Moruz (2012). Lexicographic Model-
ing and Parsing Experiments for the Dictionary of Modern Literary
Russian Language, ConsILR-2012, Bucharest, The Editorial House
of ”Al. I. Cuza” University, Iaşi, pp. 189–198.

[7] N. Curteanu. (2012). The Segmentation-Cohesion-Dependency
Parsing Strategy and Linguistic Theory, TehnoPress, Iaşi, Româ-
nia, xix + 420 p., ISBN: 987-973-702-928-7.

[8] Das Woerterbuch-Netz (2010).
http://germazope.uni-trier.de/Projects/WBB/woerterbuecher/.

[9] Dictionary of Modern Literary Russian Language (20 volumes –
1994). M.: Russian language; Second edition, revised and supple-
mented, 864 p.; 1991 – 1994. ISBN: 5-200-01068-3 (in Russian).

[10] R. Hauser, A. Storrer (1993). Dictionary Entry Parsing Using the
LexParse System. Lexikographica 9 (1993), pp.174–219.

[11] M. Kammerer (2000). Wöterbuchparsing Grundsätzliche Über-
legungen und ein Kurzbericht über praktische Erfahrungen,
http://www.matthias-kammerer.de/content/WBParsing.pdf.

[12] Le Trésor de la Langue Française informatisé (2010).
http://atilf.atilf.fr/tlf.htm.

[13] L. Lemnitzer, C. Kunze (2005). Dictionary Entry Parsing, ESSLLI
2005.

[14] C. Mărănduc (2010). Dictionary of expressions, locutions, and
phrases, Corint Editorial House, Bucharest, 560 p., ISBN 973-135-
570-2 (in Romanian).

[15] M. Neff, B. Boguraev (1989). Dictionaries, Dictionary Grammars
and Dictionary Entry Parsing, Proc. of the 27th annual meeting
on Association for Computational Linguistics Vancouver, British
Columbia, Canada Pages: pp. 91 – 101.

302

Toward the Soundness of Sense Structure Definitions in . . .

[16] S. Puşcariu, et al. (1906). Dictionary of the Romanian Language
(Dictionary of the Romanian Academy – DAR), Bucharest, Edi-
tion 1940 (old format).

[17] D. Tufiş (2001). From Machine Readable Dictionaries to Lexical
Databases, RACAI, Romanian Academy, Bucharest, Romania.

[18] XCES TEI Standard, Variant P5 (2007).
http://www.tei-c.org/Guidelines/P5/

Neculai Curteanu, Alex Moruz Received June 27, 2012

Neculai Curteanu

Institute of Computer Science,
Romanian Academy, Iaşi Branch
Str. Gh. Asachi, Nr. 3,
700483 Iaşi, România
E–mails: ncurteanu@yahoo.com,

nicu.curteanu@iit.academiaromana-is.ro

Alex Moruz

Institute of Computer Science,
Romanian Academy, Iaşi Branch,
Faculty of Computer Science,
“Al. I. Cuza” University of Iaşi,
E–mails: alex.moruz@gmail.com,

alex.moruz@iit.academiaromana-is.ro

303

Computer Science Journal of Moldova, vol.20, no.3(60), 2012

Gröbner Basis Approach to Some

Combinatorial Problems

Victor Ufnarovski

Abstract

We consider several simple combinatorial problems and dis-
cuss different ways to express them using polynomial equations
and try to describe the Gröbner basis of the corresponding ideals.
The main instruments are complete symmetric polynomials that
help to express different conditions in rather compact way.

Keywords: Gröbner basis, zero-dimensional ideal, finite con-
figuration, complete symmetric polynomials.

1 Introduction

As far as it was found that Gröbner basis is a nice instrument to solve
polynomial systems of equations, there appear many ideas how to trans-
late problems that do not look as suitable object for the Gröbner basis
approach to non-trivial system of equations. A classical example is
graph coloring (see [1], where many other interesting problems can be
found). In this article we want to consider some elementary instru-
ments that can be applied for easy combinatorial problems. The main
of them is the complete symmetric polynomial.

2 How to describe a finite set?

Let us try Gröbner basis approach to some combinatorial problems in
order to understand when such approach can be useful.

We start from a magic square of size m. It can be described as m×m
matrix, elements of which are different integers between 1 and m2 and

c©2012 by V. Ufnarovski

304

GB Approach to Some Combinatorial Problems

such that the sums in every row, column and two main diagonals are
the same. The sum conditions are nothing else than linear equations,
thus the only difficulty is to express the conditions that all elements
belong to the given finite set A and are different. Let us try to express
this condition in equations as well.

If A = {a1, a2, . . . , an} is an arbitrary finite set of different numbers,
then the condition x ∈ A is trivially expressed as the equation pA(x) =
0, where

pA(x) = (x− a1)(x− a2) · · · (x− an) = xn + A1x
n−1 + ... + An.

Note that the coefficients Ak are (up to sign (−1)k) elementary sym-
metric polynomials in a1, . . . , an.

If y is another element from A then, of course, p(y) = 0, but to
express the condition y 6= x we need the equation p2(x, y) = 0, where

p2(x, y) =
p(x)− p(y)

x− y
.

This already allows us to write all necessary equations for the magic
square, but we prefer a shorter way to express that {x1, . . . , xn} is the
set A.

Theorem 1. The conditions
∑

xk
i =

∑
ak

i , k = 1, . . . n.

are equivalent to condition that all xi are different and belong to A.

Proof. Obviously we have the similar equality for the elementary
symmetric polynomials and therefore xi are all different solutions of
the equation pA(x) = 0.

For example, it is easy now to find all magic squares of size 3 :

x1 x2 x3

x4 x5 x6

x7 x8 x9

305

V.Ufnarovski

Simply write
x1 + · · ·+ x9 = 1 + 2 + · · ·+ 9,

x2
1 + · · ·+ x2

9 = 12 + 22 + · · ·+ 92,

· · ·
x9

1 + · · ·+ x9
9 = 19 + 29 + · · ·+ 99,

add all sum equations

x1 + x2 + x3 = x4 + x5 + x6 = x7 + x8 + x9 = x1 + x4 + x7 =

x2 + x5 + x8 = x3 + x6 + x9 = x1 + x5 + x9 = x3 + x5 + x7

and start Gröbner basis calculations! Here is the result.

[x9
4 − 20x9

3 + 140x9
2 − 400x9 + 384,

x8
2 + 2 x8x9 + 2 x9

2 − 20x8 − 30x9 + 115,

x7 + x8 + x9 − 15, x6 + x8 + 2 x9 − 20, x5 − 5, x4 − x8 − 2x9 + 10,

x3 − x8 − x9 + 5, x2 + x8 − 10, x1 + x9 − 10].

We see that we have four choices for x9 and two for x8 – the rest is
determined uniquely. Note that x5 = 5 in any magic square.

When returning to general case note that in fact some ai could be
equal – the equations still describe the set A but in this case with the
multiplicities.

The next step is to obtain the Gröbner basis for the ideal I, gen-
erated by the polynomials

∑
i x

k
i −

∑
i a

k
i . It is not an easy task for

computer for large n, thus the following result can replace the calcula-
tions.

Let hi(x1, . . . , xk) =
∑
|α1+···αk|=i x

α1
1 · · ·xαk

k be complete symmet-
ric functions in k variables. We put additionally A0 = h0 = 1.

Theorem 2. The set

gk(x1, . . . , xk) =
n−k+1∑

i=0

Aihn+1−k−i(x1, . . . , xk)

for k = 1, . . . , n describes the reduced Gröbner basis of the ideal I in
the lexicographical ordering xn > xn−1 > · · · > x1.

306

GB Approach to Some Combinatorial Problems

Proof. First we need to show that gk = 0 is valid in K[x1, . . . , xn]/I.
As usual, the easiest way to prove is to use the generating function. If
we rewrite the evident equality

(1−tx1) · · · (1−txn) = (1−ta1) · · · (1−tan) = 1+A1t+A2t
2+· · ·+Antn

as

(1+h1(x1, . . . , xk)t+h2(x1, . . . , xk)t2+· · ·)(1+A1t+A2t
2+· · ·+Antn) =

1
(1− tx1) · · · (1− txk)

(1+A1t+A2t
2 · · ·+Antn) = (1−txk+1) · · · (1−txn)

then the coefficient with tn+1−k is gk(x1, . . . , xk) at the beginning and
zero at the end.

Second, note that the leading monomial of gk is xn+1−k
k which gives

n! different solutions for the system of equations gk = 0, k = 1, . . . , n.
Thus this set should be a minimal Gröbner basis and it is easy to check
that this Gröbner basis is reduced as well.

For n = 3 we have

g1(x1) = x3
1 − (a1 + a2 + a3)x2

1 + (a1a2 + a1a3 + a2a3)x1 − a1a2a3,

g2(x1, x2) = x2
1+x1x2+x2

2−(a1+a2+a3)(x1+x2)+a1a2+a1a3+a2a3 =

x2
2− (a1 +a2 +a3−x1)x2 +(a1a2 +a1a3 +a2a3− (a1 +a2 +a3)x1 +x2

1),

g3(x1, x2, x3) = x1+x2+x3−(a1+a2+a3) = x3−(a1+a2+a3−x1−x2).

Note that if we take the elements gk with k ≥ l we get the reduced
Gröbner basis for the ideal Il, generated by polynomials

∑
i x

k
i −

∑
i a

k
i

with k ≤ l. This follows from the fact that the terms of higher degrees
do not influence the reduction process. Naturally, I1 = I but for l > 1
we have infinitely many solutions of the corresponding system.

More interesting are the remaining equations.

Theorem 3. The condition that m different numbers x1, . . . , xm be-
long to A is expressed as a system of equations:

gk(x1, · · · , xk) = 0, k = 1, . . . , m.

307

V.Ufnarovski

Proof. We already know that the conditions are valid. It remains
to note that the equations have n(n− 1) · · · (n−m + 1) solutions and
this exactly the number of ways to choose m ordered elements from n.

Note that for m = 2 we get our familiar conditions pA(x1) = 0,
p2(x1, x2) = 0, but we do not need the condition pA(x2) = 0, which
follows from them. More generally it follows from the proof that the
polynomials gk form the reduced Gröbner basis of the corresponding
ideal.

If some ai are equal, the theorem is still valid if we allow the equality
of xi up to multiplicity (e.g. if xi = xj = xk = a, then a should appear
at least three times in A). For example, if a1 = a2 = 0, a3 = a4 = 1,
then our equation is x4−2x3+x2 = 0 and the condition that x1, x2, x3 ∈
A looks as

x4
1−2x3

1+x2
1 = 0, x3

1+x2
1x2+x1x

2
2+x3

2−2(x2
1+x1x2+x2

2)+(x1+x2) = 0,

x2
1 + x1x2 + x1x3 + x2

2 + x2x3 + x2
3 − 2(x1 + x2 + x3) + 1 = 0.

The last equation does not allow x1 = x2 = x3 = 0, but x1 = x2 = 0,
x3 = 1 is a perfect solution.

If A = {0, 1, . . . , n − 1} then a standard way to simplify the equa-
tions (see [1]) is to replace this set by B = {1, ε, . . . , εn−1} with εn = 1.
In this case g1(x1) = xn

1 − 1 and gk(x1, . . . , xk) = hk(x1, . . . , xk) for
k > 1.

If the size of A is not too large the equations are rather robust – we
can easily create bounds δk such that if all |gk| < δk, then |xi− aj | < ε
for some j. Thus the equations have some practical applications. For
large A the number of terms makes this approach impractical and the
equations from Theorem 1 are probably more convenient.

It would be interesting to understand how to obtain the intersec-
tions. If B is another finite set we can create the similar equations.
Together two systems of equations describe the intersection A

⋂
B, but

it is rather unclear how these two Gröbner bases cooperate to form the
Gröbner basis , which describes A

⋂
B. Understanding this probably

could open new ways to optimize Gröbner basis calculations.

308

GB Approach to Some Combinatorial Problems

One possible application of this approach is sudoku. The experi-
ments on sudoku examples show that the computations are much less
efficient than direct combinatorial searching of the solution. Again, we
need the correct interpretation of the elimination process to improve
the efficiency of Gröbner basis approach.

Another remark. As we will see later, it is possible to express even
more difficult conditions, e.g. x > y. One way to do it is to write that
x−y belongs to the known finite set S of differences, thus pS(x−y) = 0.
But what is the Gröbner basis interpretation of transitivity law:

x > y, y > z ⇒ x > z?

Why such trivial things are so difficult to obtain?

3 Points on the plane

Suppose now that we have a set S consisting of n different points
(aj , bj) in the plane and want to describe the conditions that m given
points Pk = (xk, yk) belong to S. The simplest case is when we deal
with real numbers. Then it is sufficient to introduce complex numbers
wj = aj + ibj and use Theorem 3 to get necessary equations in the
complex form. Of course, using their real and imaginary parts we can
get the equations in the real form as well. For example, to describe
that P1, P2 are different and belong to the set (0, 0), (0, 1), (1, 0), (1, 1)
we introduce first four complex numbers w1 = 0, w2 = 1, w3 = i,
w4 = 1 + i. The corresponding equation having wi as roots is

w4 − (2 + 2 i) w3 + 3 iw2 + (1− i)w = 0.

Thus the equations

z1
4 − (2 + 2 i) z1

3 + 3 iw2 + (1− i) z1 = 0,

z1
3 + z1

2z2 + z1z2
2 + z2

3 − (2 + 2 i)
(
z1

2 + z1z2 + z2
2
)
+

+3 i (z1 + z2) + 1− i = 0

309

V.Ufnarovski

describe the situation. Converting this to real equations does not look
attractive, as we already can see in the case of the first equation:

x1
4−6x1

2y1
2+y1

4−2x1
3+6 x1

2y1+6 x1y1
2−2 y1

3−6x1y1+x1+y1 = 0,

6x1y1
2−6x1

2y1+y1−2x1
3−4x1y1

3+2y1
3−x1+3x1

2+4x1
3y1−3y1

2 = 0.

The situation is more difficult when the numbers are not real. Nev-
ertheless in the generic case we can also find some approach, though
not so obvious. As in the previous section we can easy describe the
conditions that x1, . . . , xm belong to A = {a1, . . . , an} and similarly
that y1, . . . , ym belong to B = {b1, . . . , bn}. The trouble is to coordi-
nate the choices. In the generic case we have an easy solution: because
all the numbers ai + bj are different, all that we need to say is that the
numbers xk + yk belong to the set C = {a1 + b1, a2 + b2, . . . , an + bn}
and we can express this according to the previous section.

We illustrate this in the following case. Suppose that the set S
consists of two different points (a, b), (c, d) with the “generic” coordi-
nates. We need to describe the conditions that two given points (x, y)
and (z, t) belong to S and are different. We use Theorem 1 to describe
the corresponding elements in the ideal shorter. Here the first line de-
scribes the condition that coordinates belong to A and B and the last
ones that x + y and z + t belong to C:

{
x2 + z2 − a2 − c2, x + z − a− c, y2 + t2 − b2 − d2, y + t− b− d,

x + y + z + t− a− b− c− d, x2 + 2 xy + y2 + z2 + 2 zt

+t2 − a2 − 2 ab− b2 − c2 − 2 cd− d2
}

.

We can easily obtain Gröbner basis using the generic condition:

[t2 + (−b− d) t + bd, (−d + b) z + (c− a) t− cb + ad,

y + t− b− d, (−d + b) x + (−c + a) t− ab + cd].

Note that this is a Gröbner basis so long as b 6= d.
In the case b = d the Gröbner basis is different:

[t− d, z2 + (−a− c) z + ac, y − d, x + z − a− c],

but this is obviously not a generic case.

310

GB Approach to Some Combinatorial Problems

4 Small combinatorial problem

In this section we want to so consider very small combinatorial example
to illustrate some ways to translate other conditions on the Gröbner
basis language.

The problem is to find a word, consisting of 5 different letters
A,B, C,D, E and satisfying the following conditions:

1. Exactly one consonant is written between two vowels.

2. Every vowel is placed on an odd place.

3. The letter C is placed before D, which itself is placed before A.

4. The letter B is placed before E.

5. The number of letters between C and E is odd.

No one condition looks as an equation, but we want to find the
equations that equivalently describe the problem.

First of all we have a permutation of letters, which means that we
can suppose that every letter has some value – its place in the word.
From the first section we know how to describe this shortly:

Ak + Bk + Ck + Dk + Ek = 1k + 2k + 3k + 45 + 5k

for k = 1, . . . 5.
The first condition now can be expressed as

|A−E| = 2 ⇔ (A− E)2 = 22.

The second condition we could express using Theorem 3, but if we note
that it is equivalent with the condition that the third letter is a vowel,
we get a trivial equation (A− 3)(E − 3) = 0.

How to express the condition D > C as an equation? A possible
way is to say that D − C belongs to the set {1, 2, 3, 4} and this is an
equation. Similarly we express the remaining conditions (note that the
last one means that |C −E| = 2 or |C −E| = 4.)

311

V.Ufnarovski

Now we are ready to start Maple session to implement this. The
only difficulty is that the letter D is reserved in Maple and we replace it
by T . To see the result directly we use the command solve, that (with
the help of Gröbner basis) finds the solution of the system. The last
two lines we need to print our nice result using the found substitution.

> S := {X − T + B, Y − T + C, Z −A + T,
A + B + C + T + E − (1 + 2 + 3 + 4)− 5,
A2 + B2 + C2 + T 2 + E2 − 12 − 22 − 32 − 42 − 52,
A3 + B3 + C3 + T 3 + E3 − 13 − 23 − 33 − 43 − 53,
A4 + B4 + C4 + T 4 + E4 − 14 − 24 − 34 − 44 − 54,
A5 + B5 + C5 + T 5 + E5 − 15 − 25 − 35 − 45 − 55,
expand((A− 3) ∗ (E − 3)), expand((C − E + 2)2 ∗ (C − E + 4)2),
expand((Y −1)∗(Y −2)∗(Y −3)), expand((Z−1)∗(Z−2)∗(Z−3)),
expand((X−1)∗(X−2)∗(X−3)∗(X−4)), expand((A−E)2−4)} :
> R := solve(S);

R := {A = 5, B = 2, C = 1, E = 3, T = 4, X = 2, Y = 3, Z = 1}
> f := (x, y) − > subs(R, x) < subs(R, y):
> sort([A, B, C, T, E], f);

[C, B, E, T, A]

References

[1] W. Adams and P. Loustaunau, An Introduction to Gröbner Bases,
Amer Mathematical Society, 1994,

Victor Ufnarovski Received June 11, 2012

Centre for Mathematical Sciences, Mathematics,
Lund University, LTH
P.O. Box 118, SE-22100, Lund, Sweden
E–mail: ufn@maths.lth.se

312

Computer Science Journal of Moldova, vol.20, no.3(60), 2012

References and arrow notation instead of

join operation in query languages

Alexandr Savinov

Abstract

We study properties of the join operation in query languages
and describe some of its major drawbacks. We provide strong
arguments against using joins as a main construct for retrieving
related data elements in general purpose query languages and ar-
gue for using references instead. Since conventional references are
quite restrictive when applied to data modeling and query lan-
guages, we propose to use generalized references as they are de-
fined in the concept-oriented model (COM). These references are
used by two new operations, called projection and de-projection,
which are denoted by right and left arrows and therefore this ac-
cess method is referred to as arrow notation. We demonstrate
advantages of the arrow notation in comparison to joins and ar-
gue that it makes queries simpler, more natural, easier to under-
stand, and the whole query writing process more productive and
less error-prone.

Keywords: Data modeling, query languages, concept-oriented
model, join, reference, arrow notation, data semantics.

1 Introduction

The main goal of a data model is providing suitable structure for rep-
resenting things and connections between them. Operations for data
access and analysis are performed by means of some kind of query lan-
guage which reflects and relies on these structural principles. For a
general purpose data model and query language, the key problem is in
finding the simplest and most natural structure and operations which

c©2012 by A. Savinov

313

A. Savinov

cover a wide range of patterns of thought and mechanisms being used
in data modeling.

Most data models are very similar in how they represent things but
they are quite different in representing connections. There exist several
major ways for representing connectivity such as relationships, links,
references, keys, joins. A relationship is a thing which may have its
own properties and identity. Relationships can connect many things
but they do not have a direction. A link is a directed binary relation-
ship, that is, a thing that connects two other things with special roles:
an origin and a destination. A reference is also a directed connection
between two things but in contrast to links it is not a thing and has
neither separate identity nor properties. A key is a number of prop-
erties of the thing which are used for identification purposes. Join is
an operation which relies on thing properties in order to establish a
connection between them at the level of queries.

One of the main motivating factors for developing the relational
model [1] was the desire to get rid of (physical) identifiers and to focus
on the data itself rather than on how it is represented and accessed.
However, removing physical identifiers led to removing connectivity
from the model. As a consequence, data was broken into several iso-
lated sets of tuples and the question was how to retrieve related (con-
nected) tuples. The solution was extremely simple: tuples containing
the same values were supposed to be related. For example, if both
an employee record and a department record have an attribute with
the value ’HR’ then this employee was supposed to be related to this
department. The operation which finds and combines such tuples was
called join.

Although join was introduced as one of the main operations of the
relational algebra, now it is used in almost any data model so it can
be characterized as a pillar of data modeling. It is one of the most
frequently used words in the literature on query languages and can be
found in almost any data related context. The main purpose of join
consists in connecting data elements which are modeled as existing sep-
arately in different relations. It can be viewed as a means of activating
implicit relationship at the level of queries. Since joins are not declared

314

References and arrow notation . . .

at the level of the model, they provide almost arbitrary control over
the data at query time. This property makes it very powerful opera-
tion but at the same time rather difficult to use and even dangerous
for inexperienced users. In this sense, join is analogous to the goto
(jump) operator in programming languages which is also a powerful
low level operator providing high freedom in programming but leading
to unstructured code and difficult to find errors [2].

Another wide-spread mechanism of connectivity is reference. One
of the most important properties of references is that they are not part
of the represented thing. For example, a class in object-oriented mod-
els does not describe references that will be used for representing its
instances. References are not stored as part of the object in any of its
fields but rather are provided separately. Another important property
is that things cannot be accessed without some kind of reference. In-
deed, if a property needs to be accessed then it is not possible to use
another property for this purpose just because it is not accessible yet.
The pattern ”accessing properties using properties” obviously contains
a cycle and therefore it cannot be directly implemented. Therefore, it
is always necessary to have something that exists separately from and
is intended to provide access to object properties. This is precisely
what references are intended for. The question is only whether they
are described explicitly as integral part of the model, provided by the
platform as it is done in object-oriented models, or completely removed
and replaced by some other mechanism like primary keys as it is done
in the relational model. Essentially, the question is whether references
are data and hence the model has to provide adequate means for their
modeling or references are not data and should be excluded from the
model.

References have numerous advantages in comparison to joins. They
are extremely easy to understand because they are widely used in ev-
eryday life where all things have some unique identifiers. They are also
very easy in use. It is enough to know a reference in order to get the
contents of the represented thing. There is no need in specifying what
and how has to be compared and what criteria have to be satisfied to
access the represented thing. For example, given an employee record

315

A. Savinov

we could retrieve its department by using the reference stored in one
of the employee properties. The use of join operation means that a
database is a set of things with common values. To access data, it
is necessary to specify a criterion which has to be satisfied by all ele-
ments. For example, to get a publisher we need to specify that both
the book and the publisher must have the same value in some property
(publisher id). Although references are very natural and simple to use,
joins are much more powerful when it is necessary to manipulate sets
of elements rather than their individual instances. For this reason, it is
not that easy to replace joins by references and this is why join is still
dominating in the area of data modeling and query languages although
it is quite difficult to use.

This paper is devoted to comparing joins and references. We
demonstrate that join operation has some significant drawbacks which
make it difficult to use and error-prone in comparison to references.
Therefore, we ask the question whether it is possible to eliminate joins
from data modeling (or at least diminish their use) by retaining most of
the possibilities this operation provides. Obviously, it is a highly non-
trivial task and one difficulty is that thinking of data in terms of joins is
so deeply penetrated into our minds that it is considered more a dogma
than one of the alternatives in data modeling and querying. Another
difficulty is that join is a set-oriented operation while references are
instance-oriented and this is why references are not so popular in data
modeling. As a reference-based solution to the problem of joins, we de-
scribe a novel approach to data modeling, called the concept-oriented
model (COM) [8, 9, 10], which generalizes references. In particular, it
allows for modeling domain-specific references which replace primary
keys. What is more important, COM provides two novel operations,
called projection and de-projection, which can be viewed as set-oriented
analogue of the classical dot notation. These two operations are de-
noted by left and right arrows and therefore this approach is referred
to as arrow notion. We demonstrate how typical tasks can be (eas-
ier) implemented using COM references and arrow notation without
using joins. The paper has the following layout. Section 2 describes
the operation of join, references and arrow notation in COM. Section

316

References and arrow notation . . .

3 describes drawbacks of joins and how these problems can be solved
by means of COM references. Section 4 makes concluding remarks.

2 Joins and references

2.1 Joins and common value approach

In mathematics, a Cartesian product is an operation which allows us to
build a new set out of a number of given sets by producing all possible
combinations of their members. Given two sets U and V , the Cartesian
product U × V is defined as the set of all possible 2-tuples: U × V =
{〈u, v〉|u ∈ U∧v ∈ V }. Each element of the Cartesian product connects
two input elements. Including all combinations of the input tuples in
the result set means that all these tuples are considered related, that is,
every element of one set is associated with every element of the other
set.

Normally, not all input tuples are related and therefore a mecha-
nism is needed which would allow us to restrict the Cartesian product
by specifying which tuples from two sets should match. This task is
performed by join operation the basic idea of which is that only those
combinations of tuples are included in the result set which both satisfy
some common criterion. In most practical cases, the selection of related
tuples is performed by using the equality condition (this join is therefore
referred to as equijoin). Tuples in the relational model are composed of
values which are accessed by means of attribute names. In this case, re-
lated (matching) tuples produced by join must contain equal values in
the specified attributes: U ./p=q V = {〈u, v〉|u ∈ U∧v ∈ V ∧u.p = v.q},
where p and q are attributes which have to contain the same values in
both tuples.

In order to be matched, two data elements have to contain the same
value in some attributes and therefore we will refer to this mechanism
as a common value approach. Thus records which store common values
are considered related in the database. For example, records from two
tables Employees and Departments could be defined as related if
they have the same value in the city attribute.

317

A. Savinov

Note also that the general idea of the common value approach is
also present in formal logic and deductive databases [11]. In predicate
calculus, if two predicates have the same free variable then they have to
match (to be bound to the same value) in order for the resulting propo-
sition to be true. Since relations can be represented as n-place predi-
cates, join can be written in logical form. For example, given two predi-
cates Employees(#e, cname, city) and Departments(#d, ename, city)
representing relations Employees and Departments, respectively,
we can find all combinations of free variables where the matching vari-
able city takes the same value.

The common value approach has the following properties:

• The relationship defined by join (via common values) does not
have a direction. We simply say that two records match because
they have the same property. Although some variants of join like
left and right outer join have a direction, it cannot be easily se-
mantically interpreted and should be viewed as variations of one
operation. In particular, we cannot say that one record is refer-
enced or linked to the other. In this sense, the common value ap-
proach is similar to relationships in the entity-relationship model
which also do not have a direction.

• It is defined in terms of values and attribute domains, that is, a
connection between two relations is specified via some common
domain. There is no direct way to define join in terms of other
relations. For example, we cannot directly find Employees and
Departments which have the same address attribute which
represents a record from the Addresses table rather than a
domain. The reason is that attributes contain values and cannot
contain tuples.

2.2 References and dot notation

Reference is one of the corner stones of the object-oriented paradigm
where it is assumed that any object has a unique identity which is

318

References and arrow notation . . .

used to represent and access it. References have the following main
properties:

• References are values which are passed by-copy. It is enough to
store this value in order to represent the object and then access it.
When a reference is copied, the contents of the object is not copied
but can be accessed later by using this reference. References do
not have their own references.

• References are not object properties (not included in the object
contents) and not part of the object. They exist separately from
the objects they represent.

• References hide the details of object identity so that different ob-
jects may have different structure of their references which how-
ever are not visible when they are accessed.

• References provide transparent access to objects by hiding its
internal mechanics which can be quite complex. They create the
illusion of instantaneous access.

• References are used along with a very convenient access pattern,
called dot notation, where the result of access is considered a
reference which can be used for the next access operation.

References make excellent job in the area of programming but they
have a rather limited use in data modeling. So what is the problem
in introducing references in query languages and combining features of
object-oriented and relational approaches? In fact, it is a rather old
idea and almost any new query language tries to use references and dot
notion to make data manipulations easier. But the fact is that they
all fail in eliminating joins which means that not everything can be
done by references in the area of data modeling. The primary reason
(for the failure of references in data modeling) is that references and
dot notation were designed to manipulate instances rather than sets.
In other words, programing is an instance-oriented area while data
modeling is a set-oriented area. Indeed, only individual objects can

319

A. Savinov

reference each other, not sets. We cannot easily adopt dot notation
for manipulating sets. Another reason is that tuples in the relational
model do not have identities because any tuple is unique and identifies
itself by its own contents. In the next section we describe an approach
to data modeling which does not have these drawbacks.

2.3 References in the concept-oriented model

The concept-oriented data model (COM) is a unified general purpose
model the main goal of which is to radically simplify data modeling
by reducing a large number of existing data modeling methods to a
few novel structural principles. One of its principles is that identities
and entities are supposed to be equally important. This distinguishes
it from most other models which have a strong bias towards modeling
entities while identities (references, addresses, surrogates, OIDs) are
considered secondary elements which are either modeled by means of
entities or provided by the platform.

COM makes identities and entities equally important parts of a
data element both being in the focus of data modeling. An element in
COM is defined as consisting of two parts, identity and entity, which
are also called reference and object, respectively. Identity is passed
by-value while entity is passed by-reference. Both constituents have
arbitrary domain-specific structure which is modeled by means of a
novel construct, called concept (hence the name of the model). Concept
is defined as a pair of two classes: one identity class and one entity class.
For example, if employees are identified by their passport number and
characterized by name then they are described by the following concept:

CONCEPT Employees
IDENTITY

CHAR(10) passNo
ENTITY

CHAR(64) name

Note that objects (entities) of this concept will have only one field
and these objects will be represented by a reference (identity) also
consisting of one field. However, identity part is passed by-value and

320

References and arrow notation . . .

stored in variables while entity part is passed by-reference. A concept
can be thought of as a conventional class with an additional class for
describing the format of references.

COM provides several benefits which are important in the context
of this paper:

• COM does not distinguish between sets of values and sets of
objects or, in relational terms, between domains and relations.
There is only one type construct, concept, which is used for defin-
ing both domains and relations. In particular, relation attributes
can be both relation typed and value typed.

• Concepts make it possible to describe arbitrary domain-specific
references what is not possible in object-oriented models. In this
sense, references in COM are similar to primary keys in the re-
lational model. However, the difference is that they are treated
and behave like true references while primary keys are treated as
integral part of the entity used for identification purposes (more
about these difference can be found in [10], Section 2).

COM introduces an operation of projection which is analogous to
dot notation but is applied to sets. In the concept-oriented query lan-
guage (COQL) it is denoted by right arrow and returns a set of elements
which are referenced by the elements from the given set. Sets in COQL
are enclosed in parentheses and can also include a condition for con-
straining its elements. For example, all publishers for a set of books
can be obtained by projecting this set of books to the set of publishers:

(Books | year > ’2005’)
-> publisher -> (Publishers)

COM also introduces the opposite operation of de-projection which
can be viewed as a set-oriented reversed dot notation. It is denoted by
left arrow and returns a set of elements referencing the elements from
the given set. For example, given a set of publishers we can get all
their books:

(Publishers | country = ’MD’)
<- publisher <- (Books)

321

A. Savinov

Projection and de-projection can be applied to the result set re-
turned by the previous operation and such an approach is referred to
as arrow notation. Arrow notation has the following main properties:

• Operations are applied to sets rather than instances

• It uses domain-specific instances as they are defined in concepts
rather than only primitive references

• The structure of references is hidden and is not exposed in the
query

In the rest of the paper we describe how these two operations are
used for querying instead of joins.

3 References for solving join problems

3.1 Connectivity

Perhaps the main use of joins consists in implementing what references
are intended for. A database is thought of as a set of objects referencing
each other. However, if the database is unaware of references and
manipulates only values then these connections have to be expressed
by means of joins. For example, if each employee record references its
department then a set of departments for all employees in one country
is retrieved by means of the following join-based query:

SELECT D.name FROM Departments D, Employees E
WHERE D.dept = E.dept AND E.country = ’MD’

Here we immediately see one problem: join is a symmetric construct
while references are directed. Indeed, if we look at the above query then
it is difficult to understand whether departments reference employees or
employees reference departments. It is not surprising because joins have
quite different purpose but this fact makes them not very appropriate
for implementing references. The mechanism of foreign and primary
keys can help here but it is optional and is used at the level of schema
rather than in queries.

322

References and arrow notation . . .

Another problem of joins is that they expose the structure of refer-
ences by explicitly specifying all the details which actually do not be-
long to the domain-specific part of the query. Effectively, the low level
mechanics of references becomes integral and explicit part of each and
every query that involves more than one table. If the structure of con-
nections changes then all queries where it is used have to be updated.
Such program logic or query fragments which are scattered throughout
the whole source code are referred to as cross-cutting concern. This
problem is well known in programming [4] because it makes programs
difficult to maintain and error prone. Such functions as logging, trans-
action management, persistence and security are typical examples of
cross-cutting concerns because they are used in the same form across
the whole program. The main goal here is to separate these functions
or query fragments from the main business logic.

Join operation is a typical example of a cross-cutting concern
because many queries solving different domain specific tasks involve
the same fragments in the form of join conditions. The reason
is that database schemas always follow certain structure of connec-
tions and relationships while joins simply materialize them at query
time. In the previous example, the schema contains two tables
Departments and Employees which are connected via the join con-
dition D.dept=E.dept. Note however that this join is specified along
with the second condition for selecting employees of one country only.
The problem is that the first condition is a cross-cutting concern be-
cause it depends on the schema structure only and will be repeated in
the same form in many queries involving these two tables. The sec-
ond condition reflects business logic and is unique for each query. In
a good query language they should be at least separated and, ideally,
the join condition should be modularized so that it does not appear in
explicit form in each query. This problem can be partially solved by
using a dedicated JOIN clause for connectivity and WHERE clause for
domain-specific conditions. However, this use is optional and the join
condition will still be repeated for each and every query.

The mechanism of foreign and primary keys could help in hiding
the structure of references at the level of schema. Once a foreign key

323

A. Savinov

has been declared, it is then enough to specify its name instead of
enumerating all the columns it (and the corresponding primary key)
is composed of. However, foreign keys do not solve the problem of
joins at the level of queries because we still have to write them as
some condition within WHERE or JOIN clause along with other domain-
specific conditions. Another possible solution consists in defining user-
defined types (UDT) in the case of complex primary keys and the
corresponding foreign keys. Here again, UDTs allow us to simplify join
conditions but do not eliminate them completely so that all queries
have to specify how two or more tables have to be joined.

In contrast to joins, the logic of conventional references and refer-
encing is completely hidden so that we see only what has to be retrieved
and not how it has to be done. Business logic is effectively separated
from the mechanism of implementing references. For example, given
an employee we can get the department name by using dot notation:

emp.dept.name

Here we see neither the structure of references nor the conditions used
to match the objects. References can be implemented as 64-bit integers,
character strings or more complex structures. Matching related objects
could be implemented via look up tables or more complex indexes but
these details are also not visible in the access statement. The benefit is
that if the structure of references and connections between departments
and employees changes then this line of code will still work without any
modifications because it does not involve any details of how employees,
departments and other objects are connected.

The question is then why not to use references instead of translating
them into the representation via joins? One problem is that references
need identities to be explicitly declared in referenced elements and ref-
erencing attributes have to be appropriately typed. Only in this case
the reference structure can be hidden. This problem can be solved by
adopting the mechanism of primary keys for identification and foreign
keys for typing referencing attributes. One difficulty with this solu-
tion is that primary keys are not true references (they are identifying
attributes [10]) and also they are optional. A more serious problem
is that references cannot be applied to sets while joins are inherently

324

References and arrow notation . . .

set-oriented. Indeed, if we apply dot notation to sets then what kind
of result should be returned by such expressions?

The solution is provided by introducing COM concepts. First, they
provide a mechanism for defining domain-specific references which are
used instead of primary keys. Once a concept has been defined, it is
used as a type of attributes in other concepts by replacing the mecha-
nism of foreign keys. Thus COM references combine features of primary
keys (which are not references) and object-oriented (true) references.
For example, the structure of departments and employees can be de-
clared as follows:

CONCEPT Departments
IDENTITY // True reference

INT dept
ENTITY

CHAR(64) name

CONCEPT Employees
IDENTITY // True reference

INT emp
ENTITY

Departments dept

Note that the last line does not expose the structure of connection, that
is, how employees are connected to departments. If the department
identity changes then all other attributes referencing it will not be
changed.

Concepts not only allow us to remove the structure of references
from schema but also remove it from set-oriented queries by using arrow
notation. For example, all departments for a set of employees in one
country can be retrieved as follows:

(Employees | country = ’MD’)
-> dept -> (Departments)

This roughly corresponds to the following instance-based query using
dot notation:

employee.dept

References can also be followed in the opposite direction by means

325

A. Savinov

of de-projection operation. For example, all employees of a set of de-
partments located in one country is found as follows:

(Departments | country = ’MD’)
<- dept <- (Employees)

Operations of projection and de-projection can be applied consec-
utively and many fragments can be omitted because they can be easily
reconstructed from the schema. Thus rather complex queries involv-
ing many tables with numerous joins can be written in a very simple
and natural form [6]. What is more important, these queries are set-
oriented and do not expose the structure of connections.

3.2 Semantics

One problem of joins is that they appear only at the level of queries and
the database is unaware of possible and meaningful joins at the level of
the model. For that reason join can be characterized as an application-
specific operation. Every new application can issue its own query with
arbitrary joins. On one hand, it is an advantage because applications
are not restricted in the use of data and can do whatever they need.
However, if the meaning and consistency of results is important, it
is a drawback because arbitrary joins lead to arbitrary results. The
database is unaware of what operations are meaningful and therefore
cannot restrict applications from producing meaningless results. For
instance, the database is not able to prevent an application or user
from joining integer department ids with the number of product items
which is obviously a meaningless operation. From the performance
point of view, it is also a disadvantage because the database engine
is not able to optimize its operations for executing predefined joins
declared at the level of schema.

From this point of view, joins are somewhat analogous to the goto
operator in programming which also ignores the program structure and
provides the possibility to organize arbitrary control flow. It was clearly
shown that such style of programming without any constraints is harm-
ful [2] because goto not only ignores the semantics behind program
structure but also the compiler is not able to restrict programmers

326

References and arrow notation . . .

from making errors. The freedom in using joins has the same effect:
the database is not able to restrict users and applications from issu-
ing meaningless queries and cannot restrict them from making errors.
The mechanism of joins essentially assumes that the meaning of data
is described at the level of queries rather than in the model structure.
In particular, by looking at queries we can get more information about
data semantics then by looking at the schema. One way to overcome
this problem is to use foreign keys which can be viewed as a way to
declare what is meaningful in the database. Yet, this mechanism has
significant limitations when used in queries and should be viewed as a
workaround.

Since join is a low level operation, it can be used to implement many
different patterns which are difficult to reconstruct from the query. For
example, the join condition WHERE A.id=B.id (where A and B are
two tables) says almost nothing about the real intention of the query.
We do not know whether table A references table B or maybe it is not
about referencing at all. We do not know whether the purpose of this
query is to build a multidimensional space for OLAP analysis or to find
related records connected via some relationships. And if this operation
uses a relationship then is it containment or general-specific? Join is
not an operation which can be easily semantically interpreted. Given a
join we cannot say what kind of semantic relation it represents and how
the joined elements are related. On the other hand, assume that we
want to use existing relationships in the model. How should we join the
tables in order to represent them in the query? The answer is not clear
because the translation procedure is ambiguous and does not cover all
possible situations. This problem has been studied in semantic data
models [3, 5] but these models focus more on conceptual representation
issues and less on query languages. Although many operations can be
expressed at conceptual level, joins cannot be removed completely just
because the lower logical level of the model is supposed to always exist.

COM allows us to remove the gap between low level join and high
level query semantics because it is also a conceptual model with main
constructs having some semantics behind them. In particular, refer-
ences in COM are not simply a means of connectivity but rather a way

327

A. Savinov

to represent semantics. More specifically, references in COM have the
following semantic interpretations [9, 10]:

General-specific A referenced element is more general than the refer-
encing (more specific) element. For example, if table Products
references table Categories then products are more specific
elements than their categories.

Containment A referenced element is interpreted as a container
where the referencing element exists. For example, if an employee
record references a department then this employee is supposed to
be included in this department as one of its elements.

Relationships An element referencing other elements is interpreted as
a relationship between them. For example, if a marriage record
references two persons then it is interpreted as a relationship
between them.

Multidimensional An element referencing other elements is inter-
preted as a point while the referenced elements are its coordi-
nates. For example, since sales record references a product item
and its price, this sale is considered a point while its characteris-
tics are coordinates along some axes.

According to this interpretations, projection operation applied to
a set means getting more general elements, containing elements, de-
pendent elements (connected via this relationship) and coordinates for
these elements. And de-projection has the opposite meaning by pro-
ducing more specific elements, members of a container, relationships
and points with these coordinates. As a result, references are used not
only for navigating through a graph but rather for semantic naviga-
tion. This makes queries much more semantically rich and much easier
to write and understand. For example, projecting a set of employees
to departments means getting containers for employees because a de-
partment is interpreted as a container for a set of employees. At the
same time, a department can be treated as a coordinate for employees
which are points in a multidimensional space.

328

References and arrow notation . . .

3.3 Common value approach

There is one pattern which cannot be modeled by references, namely,
the original common value approach directly supported by join oper-
ation. This pattern cannot be ignored because in many cases it is
precisely what needs to be done. The common value pattern has its
own value and the question is how it can be implemented by means of
references without joins. For example, if it is necessary to find depart-
ments and employees having the same location then it is not clear how
it can be done without join operation.

This task can be solved by using product operation which takes
two or more collections as input and returns all combinations of their
elements as a result collection. In COQL, input collections along with
their instance variables are written in parentheses (instance variables
are analogous to table aliases in SQL). For example, all combinations
of departments and employees are built as follows:

(Departments D, Employees E)

If we need to return records having some common value then this con-
dition is specified as an additional constraint:

(Departments D, Employees E | D.city = E.city)

Obviously, it is very similar to how join operation works:

SELECT D.*, E.* FROM Departments D, Employees E
WHERE D.city = E.city

So the question is why COM is better. The difference is that product
in COM is used exclusively to produce combinations of elements. In
particular, it is not used for referencing and navigation purposes. Its
typical application is in data analysis where it is necessary to produce a
multidimensional cube. For that reason, queries in COM much easier to
interpret because the purpose of operations is clearer: arrow notation
is used for set-based navigation while product is used to build multidi-
mensional space with combinations of records. In other words, COM
reflects the real purpose of each operation. Also, product in COM is
more general because there is no difference between value domains and
relations (see [10], Section 2, for more information). In particular, it is

329

A. Savinov

possible to use any common collection rather than only direct domains
of two relations. The following query retrieves all employees who live
in the city where their department is located:

(Employees E | E.city = E.dept.city)

Here we do not use product operation at all although its relational
analogue would require joining two tables. The next query finds a set
of departments which have at least one employee living in a different
city than this department location:

(Employees E | E.city != E.dept.city)
-> dept -> (Departments)

Again, here we do not use product operation but still can do what
would require joining in SQL.

Since product operation constrained by some common values is a
quite frequent pattern, it can be simplified and generalized. Instead of
explicitly specifying a condition the combined elements have to satisfy,
it is easier to just specify a common greater collection for the input
collections. The paths from the input collections to this common col-
lection are then reconstructed automatically from the schema. (In the
case of multiple alternative paths, the condition has to be specified
explicitly.) For example, the query

(Departments, Employees | (Cities))

returns all combinations of departments and employees which have the
same city where Cities is their common greater collection. Note that
Cities need not be a direct greater collection and a longer path can
lead from the input collections to the Cities collection.

An interesting use of product operation restricted by common val-
ues consists in implementing inference which is a procedure where con-
straints can be automatically propagated through the model [7]. For
example, assume that we want to relate departments and employees
by the city they are located in. The final goal is to impose constraints
on departments and then automatically find employees living in these
cities (by ignoring departments people work in). Inference is always
performed via some common lesser collection. In our example it is de-
fined as a product of employees and departments with the condition

330

References and arrow notation . . .

that they have to belong to the same city. Inference consists of two
steps: first de-project to the common lesser collection and then project
to the target collection:

(Departments | name = ’HR’)
<- (Departments D, Employees E | (Cities))
-> (Employees)

Note how simple and natural this query is. It specifies only collection
names and has no indication how they have to be joined. Even if it
is necessary to specify connections, they are specified as paths rather
than explicit joins. If the schema changes and the collections will be
connected differently then in many cases this query will still work.

4 Conclusion

In this paper we have provided a critical analysis of join operation and
its use for data querying and retrieving related elements. Although
join is an extremely powerful operation which makes it possible to
dynamically (at the level of query) relate arbitrary tuples and retrieve
quite complex result sets it has several major problems:

• Join is not appropriate for implementing references which is one
of its main uses and one of the main data modeling mechanisms.
Join exposes the details of reference implementation and is a
cross-cutting concern of query languages which cannot be eas-
ily modularized.

• Join is not appropriate for representing semantics behind the
higher level operation or pattern it implements. From join struc-
ture, it is quite difficult to understand what kind of relationship is
used in this query. Joins do not reflect their purpose and cannot
be unambiguously interpreted from the point of view of business
purpose of the query.

Of course, these are not absolute flaws but rather consequences of
the low level character of this operation which makes it inappropriate
for domain-specific queries in general purpose query languages where

331

A. Savinov

the criteria of simplicity, closeness to the domain concepts, structural
and semantic consistency are of primary importance. Therefore, joins
not only require high expertise but also can easily result in semantic
bugs which are very difficult to find.

Data access via references and dot notation does not have the prob-
lems of join – it is more intuitive, much easier to use and more reli-
able. Yet, this approach is intended for manipulating instances rather
than sets and therefore its benefits in the context of query languages
are very limited. To overcome these limitations, we proposed to use
generalized references and arrow notation as they are defined in the
concept-oriented model. This new representation and access method
allows us to combine set-orientation of joins with the simplicity and
naturalness of references. The use of generalized references and arrow
notation instead of join will result in simpler queries, more natural and
structured model design, less errors and higher productivity in query
writing.

References

[1] E.Codd. A Relational Model for Large Shared Data Banks. Com-
munications of the ACM, 13(6): 377–387, 1970.

[2] E.W.Dijkstra. Go To Statement Considered Harmful. Communi-
cations of the ACM, 11(3): 147–148, 1968.

[3] R.Hull, R.King. Semantic database modeling: survey, applica-
tions, and research issues. ACM Computing Surveys (CSUR),
19(3): 201–260, 1987.

[4] G.Kiczales, J.Lamping, A.Mendhekar, C.Maeda, C.Lopes, J.-
M.Loingtier, J.Irwin. Aspect-Oriented Programming. ECOOP’97,
LNCS 1241: 220–242, 1997.

[5] J.Peckham, F.Maryanski. Semantic data models. ACM Computing
Surveys (CSUR), 20(3): 153–189, 1988.

332

References and arrow notation . . .

[6] A.Savinov. Logical Navigation in the Concept-Oriented Data
Model. Journal of Conceptual Modeling, Issue 36, 2005.

[7] A.Savinov. Query by Constraint Propagation in the Concept-
Oriented Data Model. Computer Science Journal of Moldova,
14(2): 219–238, 2006.

[8] A.Savinov. Concept-Oriented Query Language for Data Model-
ing and Analysis. Advanced Database Query Systems: Techniques,
Applications and Technologies, L.Yan, Z.Ma (Eds.), IGI Global,
2010, 85–101.

[9] A.Savinov. Concept-Oriented Model: Extending Objects with
Identity, Hierarchies and Semantics. Computer Science Journal
of Moldova, 19(3): 254–287, 2011.

[10] A.Savinov. Concept-Oriented Model: Classes, Hierarchies and
References Revisited. Journal of Emerging Trends in Computing
and Information Sciences, 3(4): 456–470, 2012.

[11] J.D.Ullman, C.Zaniolo. Deductive databases: achievements and
future directions. ACM SIGMOD Record, 19(4): 75–82. 1990.

Alexandr Savinov, Received June 28, 2012

SAP Research Dresden,
SAP AG
Chemnitzer Str. 48,
01187 Dresden, Germany
E–mail: alexandr.savinov@sap.com
Home page: http : //conceptoriented.org/savinov

333

Computer Science Journal of Moldova, vol.20, no.3(60), 2012

Basics of Intensionalized Data: Presets, Sets,

and Nominats

Mykola Nikitchenko, Alexey Chentsov

Abstract

In the paper we consider intensional aspects of the notion
of data. We advocate an idea that traditional set-theoretic plat-
form should be enhanced with new data structures having explicit
intensional component. Among such data we distinguish the no-
tions of preset and nominat. Intuitively, presets may be consid-
ered as collections of “black boxes”, nominats may be considered
as collections of “grey boxes” in which “white boxes” are names
and “black boxes” are their values, while sets may be treated as
collections of “white boxes”. We describe intensions and prop-
erties of the introduced notions. We define operations over such
data as functions computable in a special intensionalized sense.

Keywords: Set theory, alternative set theories, notion inten-
sion, intensionality, presets, nominats, computability, intension-
alized computability.

1 Introduction

Formal methods of software development require precise specifications
of the system under construction. Such specifications are usually
grounded on set-theoretic platform [1]. For example, well-known B
Method [2] and Z Notation [3] declare that they are based on Zermelo-
Fraenkel set theory (ZF theory).

The set-theoretic platform is understandable, elaborated, and pow-
erful formalism for describing systems and investigating their proper-
ties. Its expressive power is confirmed by the fact that main parts
of mathematics can be presented in a unified form within set theory

c©2012 by M. Nikitchenko, A. Chentsov

334

Basics of Intensionalized Data: Presets, Sets, and Nominats

[1]. But at the same time this power is often excessive and cumbrous.
Therefore there were various attempts to restrict classical set theory or
even to construct alternative set theories. These attempts were inspired
both by immanent development of set theory and by its application for
problem domains. Some of these proposals will be considered in section
5 devoted to related work.

Our approach for constructing modified set theory aims to support
the software development process which usually starts from abstract
system specification and proceeds to concrete implementation. At the
abstract levels many system components are described only partially
thus objects under investigation are underdetermined. In this case
many conventional properties of sets may fail. In particular this con-
cerns the extensionality principle. Recall that this principle is sup-
ported by the very first axiom of set theory – the extensionality axiom:
two sets are equal if they consist of the same elements [1]. But now
we can see more and more facts when a pure extensional orientation
becomes restrictive for further development of computer science, arti-
ficial intelligence, knowledge bases, and other disciplines dealing with
the notions of data, information, and knowledge. Therefore it seems
reasonable to enhance extensional definitions of the notion of set and
its derivatives (such as data and function) with intensional compo-
nents. In a broad sense the intension of a notion means properties
which specify that notion, and the extension means objects which fall
under the notion, i.e. have the properties specified by the notion in-
tension. The intension/extension dichotomy was studied primarily in
logic, semiotics, and linguistics; we advocate more active investigations
of this dichotomy in computer science too. In this paper we continue
our investigations on intensionality of basic computer science notions
initiated in [4]. Being oriented on computer science, we are inspired
by mathematical constructivism with its emphasis on finiteness of ob-
jects and constructions. Therefore we restrict our considerations to 1)
intensionalized data with finite structure, and 2) computable (in the
intensionalized sense) operations over such data.

The rest of the paper is structured in the following way. In section
2 we introduce the general idea of intensionalized data and intuitively

335

M. Nikitchenko, A. Chentsov

define intensions of objects which can be considered as collections of
elements. In section 3 intensions (properties and operations) of special
collections called presets, sets, and nominats, are described. In section
4 formal definitions of intensions of collections that have finite structure
are given. Based on these definitions, special computability of function
over intensionalized data with finite structure is defined; computable
functions over presets, sets, and nominates are specified. Section 5 is
devoted to related work. In conclusions we summarize obtained results
and discuss directions for future work.

2 Intensionalized data

Considering computer science notions in integrity of their intensional
and extensional aspects we obtain new possibilities to define more first-
level notions as basic notions of mathematical formalisms. Here we will
focus on the notion of data trying to transform set theory to a theory
of intensionalized data. Such data can be considered as certain objects
with prescribed intensions. This idea is similar to the notion of typed
data, but the latter is usually understood in the extensional sense while
we aim to emphasize intensional features of data. The first steps in
developing the notion of intensionalized data were made in [5, 6].

The main difficulty in constructing theories of intensionalized data
is concerned with the definition of data intension. We start with in-
tuitive understanding of intensions, and then construct their formal
explications. We will move from abstract understanding of data to
their more concrete representations.

At the most abstract level of consideration data are understood as
some objects. Objects can be considered as unstructured (as wholes
with intension IW) or as structured (with parts, intension IP). An
object with the intension IW can be regarded as a “black box” (in-
tuitively it means that nothing is “visible”, and therefore nothing is
known about the object, intension IWB) or as a “white box” (every-
thing is “visible” and recognizable, intension IWW). An intermediate
intension is denoted by IWBW (“black” or “white box”).

To come to richer intensions we should treat objects as structured

336

Basics of Intensionalized Data: Presets, Sets, and Nominats

(with intension IP). We start with simple structures: all parts of an
object are identified and fixed. In this case each part can be regarded
as a whole. Relations within the object are also identified and fixed.
The above specification of object structure permits to call it hard struc-
ture. Thus, we divide intension IP into two subintensions IPH and IPS

specifying objects with hard and soft structures respectively.
We continue with IPH concretization caused by possible relation-

ships between object parts. Such relationships are classified along the
line tight–loose. Loose relationships mean that parts are not connected
with each other (intension IPHL); tight relations mean that parts are
connected (intension IPHT). In this paper we will primarily consider
objects with intension IPHL. In this case such objects are called col-
lections; their parts are called elements. Empty collection is denoted
in a traditional way as ∅.

Considering elements as unstructured wholes, we can treat them
with intensions of “black” and/or “white boxes”. Thus, three new
intensions stem from this: IPHLB, IPHLW , and IPHLBW .

Objects with intension IPHLB should be regarded as collections of
“black boxes”. Such objects we call presets. Collections of “white
boxes” (intension IPHLW) are called explicit multisets; if repetition
of elements is not allowed then we obtain explicit sets. Collections
with intension IPHLBW contain “black” and “white” elements (mixed
presets).

A collection of playing cards is a good example for the introduced
notions. Each playing card has two sides: the face and the back. Nor-
mally, the backs of the cards should be indistinguishable (identical).
As to the faces of the cards, they may all be unique, or there can be
duplicates. If all cards of a collection are placed face down on the ta-
ble (are “black boxes”), then such collection is a preset. If some cards
are exposed (placed face up on the table) while others are not exposed
(placed face down), then we obtain a mixed preset. If all cards are
exposed (are “white boxes”), then we get an explicit multiset, or a set
if duplicates are not allowed.

We will make here one more concretization of intension IPHLB.
Under this concretization we treat each element as constructed of a

337

M. Nikitchenko, A. Chentsov

“white box” and “black box”. The “white box” is considered as a
name of the “black box”; thus, the “black box” is the value of this
name. We call such collections nominats (from Latin nomen – name)
and denote a corresponding intension as IND.

A good example of nominats is a collection of addressed envelopes.
The address (“white box”) written on an envelope may be considered as
a name of the letter (“black box”) inserted (placed) into the envelope.

Nominats are a special case of nominative data [7]. It is impor-
tant to admit that nominative data can model the majority of data
structures used in computer science [7, 8].

Thus, we propose to introduce additionally to the notion of set
the above specified notions: presets, mixed presets, and nominats as
the basic mathematical notions. These notions are enriched with in-
tensional components and are non-extensional. Please also note that
these notions are related with each other, say, sets and nominates can
be treated as concretizations of presets.

To realize the idea of introducing these notions we have to describe
their intensions in more detail.

3 Intensions of presets, sets, and nominats

Data intensions specify properties of corresponding data. Operations
over such data should be defined in such a way that they use only those
possibilities that are prescribed by the intension. In this paper we in-
troduce the notions of “weak” operation, operation with copying, and
“strong” operation. For weak operations it is allowed to construct the
result of these operations using only those data components that are
present in the input data; for operations with copying it is also allowed
to make copies of existing components; and for strong operations it is
additionally possible to generate new components. For example, the
card game players are not allowed to make copies of cards or generate
new cards; thus, they must use only weak operations. In computer
science we also meet situations when we usually do not have possibil-
ities to copy existing objects (say, for hardware components) or have
such possibilities (say, for software components) or even have tools to

338

Basics of Intensionalized Data: Presets, Sets, and Nominats

produce new objects. These situations correspond to weak operations,
operations with copying, and strong operations respectively.

3.1 Preset intension

Intuitively, presets can be understood as collections of externally undis-
tinguishable objects (elements) which have hidden content.

One more example of presets is a collection of tickets of an instant
lottery. The surfaces of tickets should be covered by opaque material
making them “black boxes” that hide the content of tickets.

Having this example in mind we can specify our understanding of
presets by the following intuitive properties:

• each element of a preset is some whole;

• elements are separated from one another;

• elements are independent of one another, i.e., close relations be-
tween them are absent;

• all elements “are available”, i.e., each element can be obtained
for processing;

• exhaustive processing of all elements of a preset is possible;

• elements do not vary until it is explicitly mentioned (the law of
identity of elements).

Let us admit that these properties are very weak and do not spec-
ify membership relation, so, given a preset and an element, it is not
possible to say whether this element belongs to the preset. Also the
equality relation is not specified. It is possible to have many hidden
equal elements (duplicates) in a preset, thus, extensionality axiom is
not valid. These properties of presets have a negative character re-
stricting possibilities for processing of presets. But what operations for
preset processing are available?

Analysis of the above formulated properties leads to the conclusion
that the following operations are allowed for presets with the intension
IPHLB:

339

M. Nikitchenko, A. Chentsov

• union ∪ which given presets pr1 and pr2 yields a new preset con-
sisting of elements of pr1 and pr2 ;

• nondeterministic choice ch which given a preset pr yields some
element e of pr;

• nondeterministic choice with deletion chd which given a preset pr
yields some element e of pr and a preset pr′ without this element;

• empty function ∅̄ which given a preset pr yields an empty preset
∅;

• cardinality operation card which given a preset pr yields the num-
ber of elements in pr.

The above defined operations conform to the intension (respect
the intesion) IPHLB (are preset-conforming operations). It means that
during their execution these operations will not require additional in-
formation hidden in “black boxes” thus they use only that information
which is prescribed by the intension. According to this, the intersection
of presets is not available, contrary to set theory.

Still, the idea of a preset says that elements contain some hidden
content; therefore operations working with this content are also re-
quired. The most natural of such operations is open operation. Given
a preset pr this operation constructs a multiset ms which consists of
“white box” elements that are content of the elements of the initial pre-
set. We use multisets here because cardinality of pr and ms are to be
the same. It means that duplicates should be preserved. The open oper-
ation does not conform to the intension IPHLB because it opens “black
boxes”. Therefore, theory of presets should contain two parts: one
part describes operations that conform to the intension IPHLB while
the other part specifies more powerful operations which can change
intensions of preset elements.

3.2 Set intension

The notion of set can be considered as the “final” concretization of
the notion of preset. The main new feature of sets is that their ele-

340

Basics of Intensionalized Data: Presets, Sets, and Nominats

ments are considered as “white boxes”, thus no hidden information is
present. From this follows that elements are “recognizable” and can be
compared upon distinction and equality. Therefore, to the previously
formulated properties of presets (to the preset intension) we add the
following new property:

• each element of a set is “recognizable” and can be checked upon
distinction and equality with any other element.

Usually this property is formalized via set membership relation ∈.
From this follows that we additionally have new operations for set pro-
cessing, for example, intersection and difference of sets. Still, the pow-
erset operation will be not considered here as it should have possibility
to construct copies of elements.

Set intension IPHLW will also be denoted as IST . As the notion of
set is well studied we will not go further into detail of set properties
and operations.

3.3 Nominat intension

Intuitively, a nominat can be considered as a concretization of a pre-
set in which each element consists of “white box” and “black box”.
To make this abstract consideration more concrete we should involve
practical observations which permit to say that the “white box” can be
considered as a name of the “black box”; and their relation is a naming
(nominative) relation. In Slavic languages the term ‘nominat’ has two
different meanings: a naming expression or a value of such expression;
thus our treatment unites these meanings, because nominat is a unity
of names and values. Nominats are also called flat nominative data [7].

Nominats have the dual nature: first, they may be considered as
certain collections of elements; second, they may be considered as func-
tions due to relation that connects names and their values.

Traditionally, notations of functional style are chosen to represent
nominats. For example, a nominat with names v1, . . . , vn and values
a1, . . . , an respectively, is denoted by [v1 7→ a1, . . . , vn 7→ an]. If values
themselves are nominats, then we get the notion of hierarchic nominats

341

M. Nikitchenko, A. Chentsov

(hierarchic nominative data); for example

[v1 7→ [u1 7→ b1, . . . , uk 7→ bk] , . . . , vn 7→ [t1 7→ c1, . . . , tm 7→ cm]]

is a 2-level nominat.
It is important to admit that nominats can model the major-

ity of data structures used in computer science [7]. For example, a
set {e1, . . . , em} can be represented as [1 7→ e1, . . . , 1 7→ em], where
1 is a standard name which has different values e1, . . . , em; a tu-
ple (e1, . . . , em) can be represented as [1 7→ e1, . . . , m 7→ em] with
1, . . . , m as standard names; a sequence 〈e1, . . . , em〉 can be represented
as [1 7→ e1, 2 7→ [. . . , 2 7→ [1 7→ em, 2 7→ ∅] . . .]], where 1, 2 are standard
names.

The main new operations over nominats are the following:

• naming ⇒v (with name v ∈ V as a parameter) which given a
value a yields a nominat [v 7→ a];

• denaming v⇒ (partial multivalued operation with name v ∈ V
as a parameter) which given a nominat d yields a value of v in d
if it exists;

• checking v! (with name v ∈ V as a parameter) which given a
nominat d yields d if the value of v exists in d; or yields ∅ if such
a value does not exist;

• overriding ∇ which given two nominats d1 and d2 yields a new
nominat d consisting of named values of d2 and those of d1, the
names of which do not occur in d2.

These operations conform to the intension IND (are nominat-
conforming operations). Thus, these operations are allowed for nomi-
nats processing.

Now we will describe briefly the distinctions between the notions
of set and nominat as mathematical primitives. To do this, various
criteria can be used. First, nominats, contrary to sets, have hidden
content. This permits to make their further concretizations not possible

342

Basics of Intensionalized Data: Presets, Sets, and Nominats

for sets. Second, nominats have functional “spirit” of naming relation
simplifying nominat processing. We will illustrate this statement by
the following observations. We start with the notion of ordered pair
(a, b) that can be defined as nominat [1 7→ a, 2 7→ b] where 1 and 2 are
standard names. The notion of ordered pair in set theory has many
definitions:

• (a, b) = {{{a}, ∅}, {{b}}} – Norbert Wiener, 1914;

• (a, b) = {{a, 1}, {b, 2}} – Felix Hausdorff, 1914 (1 and 2 are two
distinct objects different from a and b);

• (a, b) = {{a}, {a, b}} – Kuratowski, 1921;

• etc.

It seems that these definitions do not look fully adequate to the in-
tuitive notion of ordered pair, because they require detailed analysis of
bracket structure (Wiener’s definition), or are restrictive (Hausdorff’s
definition), or collapse to singleton {{a}} when a = b (Kuratovski’s def-
inition). It is interesting to admit that in Principia Mathematica the
notion of ordered pair was considered as primitive, and even N. Bour-
baki took the same position. So, introduction of special primitives like
ordered pairs (and nominats in our case) is not a new idea.

Concerning further relationships of ordered pairs and tuples with
nominats, we would like to emphasize that nominats are more adequate
to computer science practice than tuples. To make this claim more
understandable, let us consider questions of operating with tuples and
nominats. Indeed, given two tuples (a1, . . . , am) and (b1, . . . , bn) we can
combine them practically only as concatenation (a1, . . . , am, b1, . . . , bn)
or (b1, . . . , bn, a1, . . . , am). But concatenation is a coarse operation that
ignores possible coincidence of some values from {a1, . . . , am, b1, . . . , bn}
representing the same attributes. Thus, we are forced to make finer
combinations of (a1, . . . , am) and (b1, . . . , bn) manually that complicates
processing of such data. Instead of this data structure (tuples) we pro-
pose to consider nominats. In this case we have more natural combin-
ing operations, for example, given nominats [x 7→ 7, y 7→ 5, z 7→ 8] and

343

M. Nikitchenko, A. Chentsov

[t 7→ 7, u 7→ 5, x 7→ 8] we obtain [y 7→ 5, z 7→ 8, t 7→ 7, u 7→ 5, x 7→ 8] as
their overriding combination (cf. with combination of tuples (7, 5, 8)
and (7, 5, 8)). Also, other combining operations can be defined. This
richness of combining operations simplifies processing of nominats com-
pared with tuples. The reason of this is that the abstraction level of
“position” in a tuple is lower than that of “name” in a nominat since po-
sition depends more strongly on other positions than a name depends
upon other names. Thus, operating with names (with nominats) is
more “soft” with respect to data transformations. The above consid-
erations shortly argue in favour of using nominats as one more basic
data structure in computer science.

Properties of intensionalized data and operations over them were
discussed in this section informally. To make the proposed approach
more precise we need formal definitions of these notions.

4 Formal definitions of intensionalized data

To give formal definitions of intensionalized data we will use reduction
methods. Roughly speaking it means that given data class D with
intension ID, we construct a reduction procedure to some data class D′

that has an understandable and well studied intension. Also, operations
over D will be reduced to operations over D′. In our case we will use
several reduction steps.

Still, this idea is difficult to be realized if no restrictions are imposed
on intension ID. Taking into consideration that computer science is the
intended application domain for intensionalized data, we restrict our-
selves to data having finite structures (intension IPHF) and to opera-
tions that are computable in a special intensionalized sense. Note that
this intension is subintension of IPH ; thus, data with intension IPHF

can have loose relations between their components (intension IPHL),
or can have tight relations (intension IPHT), for example, in finite lists
their components are tightly related.

In the sequel we will use the following notations for classes of func-
tions from D to D′:

344

Basics of Intensionalized Data: Presets, Sets, and Nominats

• D
p−→ D′ – the class of partial single-valued functions;

• D
b−→ D′ – the class of total single-valued bijective functions;

• D
m−→ D′ – the class of partial multi-valued functions. Func-

tion f is multi-valued (non-deterministic) if being applied to the
same input data d it can yield different results during different
applications to d (and possibly be also undefined);

• D
t−→ D′ – the class of total functions. Function f is total if the

value f on d is always defined;

• D
i−→ D′ – the class of injective functions. A multi-valued func-

tion is injective, if it yields different values on different arguments.
The inverse of injective function is a single-valued function;

• D
ν−→ D′ – the class of total multi-valued injective functions.

4.1 Intensionalized data with finite structures

Let D be a class of data with intension ID. Assume that we treat data
of D as finite structured data. Our intuitive understanding of such a
data is the following: any such data d consists of several basic (atomic)
components b1, . . . , bm, organised (connected) in a certain way. If there
are enumerably many different forms of organisation, each of these data
can be represented in the (possibly non-unique) form (k, 〈b1, . . . , bm〉),
where k is the data code and the sequence 〈b1, . . . , bm〉 is the data base.
Data of this form are called natural data [9]. More precisely, if B is any
class and Nat is the set of natural numbers, then the class of natural
data over B is the class Nat(B) = Nat×B∗. An implicit assumption
is that the code represents 1) all information that can be “extracted”
from those elements of B which are contained in d, and 2) interrelations
between such elements. (This will be discussed in more detail in the
next subsection.) These properties specify a fixed intension of natural
data: they have the form (k, 〈b1, . . . , bm〉) where k is a natural number
and 〈b1, . . . , bm〉 is a list of elements treated as “black boxes”. As finite

345

M. Nikitchenko, A. Chentsov

structured data can have different representations, we should use total
multi-valued injective functions for constructing such representations.

Note that we use the term ‘class’ for collections of intensionalized
data; term ‘set’ is used for collections, the intensions of which are
subintensions of sets.

Now we are ready to give the formal definition of a class of in-
tensionalized data with some intension ID which is a subintension of
IPHF . A class D is called a class of finite structured data, if a class
B and a total multi-valued injective mapping nat : D

ν−→ Nat(B) are
given. This mapping nat is called the naturalization mapping. Nat-
uralization mapping is actually an analysing mapping: it finds in a
data d its components and their interrelations according to the prop-
erties of data prescribed by its intension. Dually to nat we introduce
denaturalization mapping denat which reconstructs (synthesizes) data
of class D from natural data. For simplicity’s sake we assume that
denat = nat−1. Denaturalization mapping is a partial single-valued
mapping. Naturalization and denaturalization mapping are also called
concretization and abstraction mappings respectively.

Example 1 (naturalization mapping for a class B of basic elements).
As nothing is known about elements of B, we treat such elements as
“black boxes”; therefore B is a preset with intension IPHLB. Thus, we
define natB : B

t−→ Nat(B) to be such mapping that natB(b) = (0, 〈b〉)
for any b of B. It means that nothing is known about b (its code is 0)
and b has no parts except itself (its base is 〈b〉).

Example 2 (naturalization mapping for the set Nat of natural num-
bers). These numbers are treated as “white boxes” without parts.
Thus, we define natNat : Nat

t−→ Nat(B) to be such mapping that
natNat(n) = (n, 〈〉) for any n of Nat. It means that n is known (its
code is n) and n has no parts (its base is empty sequence 〈〉).

Example 3 (naturalization mapping for an enumerated set S). The
set S is considered as enumerated set (has the intension of enumerated
set) if a bijective mapping u : Nat

b−→ S is given. In this case we define

346

Basics of Intensionalized Data: Presets, Sets, and Nominats

natS : S
t−→ Nat(B) to be such mapping that natS(e) = (u−1(e), 〈〉)

for any e of S.

Example 4 (naturalization mapping for the class B∗ of finite sequences
over preset B). For any element 〈b1, . . . , bn〉 of B∗ we know its structure
(which is a list of length n), but we know nothing about elements of
B. Thus, we define natB∗ : B∗ t−→ Nat(B) to be such mapping that
natB∗(〈b1, . . . , bn〉) = (n, 〈b1, . . . , bn〉).

The above given definitions may be considered as a special formal
definition of intension ID: given a finite structured data class D a pair
(B,nat) is called naturalized intension of D; a tuple (D, (B, nat)) is
called a naturalized class of intensionalized data.

Still, these definitions which reduce intuitive understanding of data
of D to Nat(B) lack precise description of their intensions because we
did not define operations over D and over Nat(B); in other words,
we do not have complete description of the intensions of these classes.
As mentioned earlier, we are oriented on mathematical constructivism,
thus, we will treat operations over D and over Nat(B) as computable in
a special sense. Computabillity considered here is called weak natural
computability.

4.2 Weak natural computability over intensionalized
data

To formalize operations that conform to data intensions we will use a
special computability called intensionalized computability. This com-
putability will be reduced in several steps to traditional computability
of n-ary functions defined on integers or strings. Traditional com-
putability may be called Turing computability. In the light of our in-
vestigations traditional computability does not pay much attention to
the variety of data intensions, because it concentrates on computability
over integers (or strings) which have fixed intensions.

The idea behind intensionalized computability is the following: for
data processing it is allowed to use only those operations that conform

347

M. Nikitchenko, A. Chentsov

to their intensions. Thus, intensionalized computability is intension-
ally restricted computability. In fact, such computability is a relative
computability – relative to data intensions.

Defining this computability we follow [5] with several modifications:
1) we define computability for functions of the type D

m−→ D′ instead of
D

m−→ D, 2) we consider weak computability (without copying) instead
of computability with copying.

Introduction of naturalization mapping is a crucial moment for
defining intensionalized computability. This mapping is regarded as
a formalization of data intension; and this enables us to explicate an
intuitive notion of intensionalized computability over D with inten-
sion ID via formally defined weak natural computability over D. The
latter is then reduced to a new special computability over Nat(B)
called weak code computability. To define this type of computability we
should recall that natural data has a fixed intension under which the
code collects all known information about data components and their
interrelations, and the base is treated as a list of “black boxes”. Thus,
weak code computability should be independent of any specific manip-
ulation (processing) operations of the elements of B and can use only
information that is explicitly exposed in the natural data. The only
explicit information is the data code and the length of the data base.
Therefore in code computability the data code plays a major role, while
the elements of the data base virtually do not affect the computations.
These elements may be only used to form the base of the resulting
data. To describe the code of the resulting data and the order in which
elements of the initial base are put into the base of resulting data, a
special function of type Nat2

m−→ Nat×Nat∗ should be defined. Such
a function is called weak index-computable. These considerations lead
to the following definition.

A multi-valued function g : Nat(B) m−→ Nat(B) is called weak
code-computable if there exists a weak index-computable multi-valued
function h : Nat2

m−→ Nat × Nat∗ such that for any k, m from Nat,
b1, . . . , bm from B, m ≥ 0, we have g(k, 〈b1, . . . , bm〉) = (k′, 〈bi1 , ..., bil〉)
if and only if h(k,m) = (k′, 〈i1, . . . , il〉), 1 ≤ i1 ≤ m, . . . , 1 ≤ il ≤ m,
l ≥ 0, and all indexes i1, . . . , il are distinct. If one of the indexes

348

Basics of Intensionalized Data: Presets, Sets, and Nominats

i1, . . . , il lies outside the interval [1,m], or there are equal indexes in
the sequence i1, . . . , il, or h(k, m) is undefined, then g(k, 〈b1, . . . , bm〉)
is also undefined.

In other words, in order to compute g on (k, 〈b1, . . . , bm〉), we have
to compute h on (k,m), generate a certain value (k′, 〈i1, . . . , il〉), and
then try to form the value of the function g by selecting the components
of the sequence 〈b1, . . . , bm〉 pointed to by the indexes i1, . . . , il.

This definition actually completes our formalization of the natural
data intension because it specifies operations over natural data as weak
code-computable.

Note that weak computability defined here differs from the com-
putability with copying defined in [4, 5] by the requirement that all
evaluated indexes should be distinct.

It is clear that index computability of h : Nat2
m−→ Nat×Nat∗ may

be reduced by traditional methods of recursion theory to conventional
computability of a certain function r : Nat

m−→ Nat.
We are ready now to give the formal definition of a weak natural

computable function.
Let (D, (B, nat)) and (D′, (B, nat′)) be naturalized classes of in-

tensionalized data (w.l.o.g. we treat these classes as based on one
class B). A function f : D

m−→ D′ is called weak natural computable
(with respect to naturalized intensions (B,nat) and (B,nat′)) if there
is a weak code-computable function g : Nat(B) m−→ Nat(B) such that
f = denat′ ◦ g ◦ nat.

This definition completes our formalization of the data intension of
the class D because it gives possibility to formalize operations over D
as weak natural computable.

Thus, intensionalized computability has been defined via a sequence
of the following reductions: intensionalized computability – weak natu-
ral computability – weak code computability – weak index computabil-
ity – partial recursive computability. Analysing the definitions we can
also conclude that weak natural computability is a generalization (rel-
ativization) of enumeration computability. In fact, for B = ∅ weak
code computability is reduced to partial recursive computability on
Nat, and weak natural computability is reduced to enumeration com-

349

M. Nikitchenko, A. Chentsov

putability [10]. Therefore, the notions of weak code and weak natural
computability defined above are quite rich.

In the sequel weak natural computability will also be denoted as
wn-computability.

Example 5 (wn-computability over preset B). The naturalization
mapping natB was defined in Example 1. To define the complete
class of wn-computable functions over (B, (B,natB)) of type B

m−→ B,
we have to describe all weak index-computable function of the type
h : Nat2

m−→ Nat×Nat∗. It is easy to understand that under the nat-
uralization mapping natB we need to know the results of weak index-
computable function only on the element (0, 1). On this input data a
weak index-computable function can 1) yield (0, 〈1〉), 2) yield a value
distinct from (0, 〈1〉), or 3) be undefined. For cases 2) and 3) the denat-
uralization mapping will be undefined. This induces the following func-
tions of type B

m−→ B: 1) the identity function id, 2) the everywhere
undefined function und, and 3) the multi-valued (non-deterministic)
function und-id such that und-id(d) is equal to d or is undefined. Ac-
tually it means that the following result was proved: the complete class
of weak natural computable partial multi-valued functions over preset
B consists of functions und, id, and und-id. In other words, the three
functions defined above are the only computable functions over “black
box” intensionalized data.

Example 6 (wn-computability over the set Nat of natural numbers).
The naturalization mapping natNat was defined in Example 2. Under
this naturalization we are interested in weak index-computable func-
tions defined on the sets of elements of the form (n, 0). This set is
isomorphic to Nat. Thus (as expected), the set of all wn-computable
functions over Nat is exactly the set of all partial recursive functions.

Example 7 (wn-computability over the enumerated set S). The nat-
uralization mapping natS was defined in Example 3. Under this natu-
ralization we are again interested in weak index-computable functions
defined on the sets of elements of the form (n, 0), n ∈ Nat. This set is
isomorphic to Nat. Thus (as expected), the wn-computability over S
coincides with the enumeration computability over S [10].

350

Basics of Intensionalized Data: Presets, Sets, and Nominats

Example 8 (wn-computability over the class B∗). The naturalization
mapping natB∗ was defined in Example 4. Under this naturalization
we are again interested in weak-index computable functions defined
on the sets of elements of the form (n, n) with results of the form
(k, 〈i1, · · · , ik〉), where k ∈ Nat, k ≤ n, 1 ≤ i1 ≤ n, . . . , 1 ≤ ik ≤ n,
and all indexes i1, · · · , ik are distinct. One among such functions is
a function htail such that htail(n, n) = (n − 1, 〈2, . . . , n〉). It means
that tail operation (such that tail(〈b1, . . . , bn〉) = 〈b2, . . . , bn〉, n > 0)
is wn-computable. Note that doubling operation doubl(〈b1, . . . , bn〉) =
(〈b1, . . . , bn, b1, . . . , bn〉) is not wn-computable.

Having defined the notion of natural computability, we can now
check whether operations over intensionalized data (presets, sets, and
nominats) intuitively defined in the previous section indeed conform to
the corresponding intensions.

As domains and ranges of operations can be constructed with the
help of Cartesian product, now we will give definition of the intension
for such a product. Let (D1, (nat1, B)), . . . , (Dn, (natn, B)) be nat-
uralized classes of intensionalized data. Then naturalization mapping
natD1×···×Dn : D1 × · · · ×Dn

ν−→ Nat(B) is defined as follows (d1 is of
D1, . . . , dn is of Dn):

natD1×···×Dn(d1, . . . , dn) =
(c(n, c(c(k1, l1), c(. . . c(c(kn−1, ln−1), c(kn, ln)) . . .)))),
〈b11, . . . , b1l1 , . . . , bn1, . . . , bnln〉),

where natj(dj) = (kj ,
〈
bj1, . . . , bjlj

〉
), 1 ≤ j ≤ n; c is a pairing func-

tion that uniquely encodes two natural numbers into a single natural
number, say, the Cantor pairing function.

The idea behind this definition is simple: given a tuple (d1, . . . , dn)
we first find naturalizations natj(dj) = (kj ,

〈
bj1, . . . , bjlj

〉
), then con-

struct the code of the resulting natural data by encoding codes and
lengths of tuple components, and at last we construct the base by con-
catenating components’ bases.

351

M. Nikitchenko, A. Chentsov

4.3 Computability of preset operations

First, we should define naturalization mapping for presets. Let B be a
class of elements and PreF (B) be a class of finite presets with elements
of B. Naturalization mapping natPS : PreF (B) ν−→ Nat(B) is defined
as follows: given a preset pr with elements e1, . . . , en function natPS

on pr can yield any natural data of the form (n, 〈ei1 , . . . , ein〉), where
ei1 , . . . , ein is a permutation of e1, . . . , en.

Example 9 (wn-computability of choice function ch : PreF (B) m−→ B).
The naturalization mapping natPS was defined in this section and
the mapping natB was defined in Example 1. For choice operation
ch a weak index-computable multi-valued function hch : Nat2

m−→
Nat × Nat∗ is defined by the formula: hch(n, n) = (0, 〈i〉), where
1 ≤ i ≤ n. This function is obviously Turing computable; therefore
ch is wn-computable.

Example 10 (wn-computability of union ∪ : PreF (B)2 t−→ PreF (B)).
Let preset pr1 of PreF (B) consists of elements b1, . . . , bn and pre-
set pr2 of PreF (B) consists of elements e1, . . . , em; natPS(pr1) =
(n, 〈bi1 , . . . , bin〉) and natPS(pr2) = (m, 〈ej1 , . . . , ejm〉), where bi1 , . . . ,
bin and ej1 , . . . , ejm are permutations of b1, . . . , bn and e1, . . . , em

respectively. According to the definition of naturalization of Carte-
sian product, we obtain the following natural data for the pair
(pr1, pr2): (c(2, c(c(n, n), c(m,m))), 〈bi1 , . . . , bin , ej1 , . . . , ejm〉). Index-
computable function h∪ such that

h∪(c(2, c(c(n, n), c(m,m))), n + m) = (n + m, 〈1, 2, . . . , n + m〉)

is partial recursive and determines wn-computable binary function. It
is clear that the result does not depend on permutations of b1, . . . , bn

and e1, . . . , em, thus obtained union function is single-valued.

In the same way we can prove that other operations over presets
defined in section 3 are computable. Thus, the following statement is
valid.

352

Basics of Intensionalized Data: Presets, Sets, and Nominats

Proposition 1. The following operations over presets: union ∪, choice
ch, nondeterministic choice with deletion chd, empty function ∅̄, and
cardinality card, are weak natural computable.

It means that these operations conform to preset intension.
Actually, using such techniques we can formally describe all preset-

conforming operations of different types. For example, any preset-
conforming operation op of type PreF (B) m−→ Nat can be represented
as a composition of a certain multi-valued partial recursive function
na : Nat

m−→ Nat and a cardinality operation card, thus, op = na ◦
card.

We can also prove that some operations, say, intersection of two
presets, are not preset-conforming operations.

4.4 Computability of set operations

Set intensions assume that elements of sets are “white boxes”. The
naturalization approach requires that such elements can be encoded.
It means that we should consider B as an enumerated set B =
{b0, b1, . . . }. Thus, bijective enumeration function u : Nat

b−→ B is
given. Let SetF (B) be a class of finite sets with elements of enumer-
ated set B.

We can define two naturalization mappings: weak and strong.
The weak naturalization mapping natSFW : SetF (B) ν−→ Nat(B)

is defined as follows: given a set s with elements e1, . . . , en, mapping
natSF on s, can yield any natural data of the form (k, 〈ei1 , . . . , ein〉),
where k = c(n, c(k1, . . . c(kn, 0) . . .)), u(k1) = ei1 , . . . , u(kn) = ein ; and
ei1 , . . . , ein is a permutation of e1, . . . , en.

The idea behind this definition is very simple: we encode the car-
dinality of s and numbers of its elements according to the enumeration
function; as to the base we include in it all elements of s. (The definition
may be simpler if we take into account ordering of elements induced
by enumeration function, cf. with definitions in the next subsection.)

The strong naturalization mapping natSFS : SetF (B) ν−→ Nat(B)
is defined as follows: given a set s with elements e1, . . . , en, mapping
natSFS on s, can yield any natural data of the form (k, 〈〉), where

353

M. Nikitchenko, A. Chentsov

k = c(n, c(k1, . . . c(kn, 0) . . .)), u(k1) = ei1 , . . . , u(kn) = ein ; and ei1 ,
. . . , ein is a permutation of e1, . . . , en. The base of the obtained natural
data is empty.

The difference between these naturalization concerns the possibility
of producing new elements. In the first case this is not allowed because
code-computable functions construct the base of result using only the
base of initial natural data. In the second case we can evaluate any
code and then (using denaturalization mapping) produce any elements
of S.

These naturalization mappings define different intensions of the
class SetF (B).

Example 11 (wn-computability of intersection ∩ : SetF (B)2 t−→
SetF (B)). Let set s1 of SetF (B) consists of elements b1, . . . , bn and set
s2 consists of elements e1, . . . , em; natSFW (s1) = (q1, 〈bi1 , . . . , bin〉) and
natSFW (s2) = (q2, 〈ej1 , . . . , ejm〉), where q1 = c(n, c(k1, . . . c(kn, 0) . . .)),
u(k1) = bi1 , . . . , u(kn) = bin ; q2 = c(m, c(r1, . . . c(rm, 0) . . .)),
u(r1) = ej1 , . . . , u(rm) = ejm ; bi1 , . . . , bin and ej1 , . . . , ejm are per-
mutations of b1, . . . , bn and e1, . . . , em respectively. According to the
definition of naturalization of Cartesian product, we obtain the follow-
ing natural data for the pair (s1, s2):

(c(2, c(c(q1, n), c(q2,m))), 〈bi1 , . . . , bin , ej1 , . . . , ejm〉).
How to define an index-computable function h∩? The following

algorithm can be proposed. First, the code c(2, c(c(q1, n), c(q2,m)))
should be analyzed and all pairs (ki, rj) such that ki = rj should be
identified. Then a list of their positions (say, in s1) should be formed
(this list is a list of indexes in the result of index-computable function).
At last, a code of the result should be evaluated; in this code we include
the numbers (under naturalization mapping) of the elements of the
intersections and its cardinality. Defined function is partial recursive,
the results do not depend on permutations of the elements of the initial
sets. So, intersection is wn-computable.

In the same way we can prove that conventional operations over
sets are computable. Thus, the following statement is valid.

354

Basics of Intensionalized Data: Presets, Sets, and Nominats

Proposition 2. The following operations over sets: union ∪, intersec-
tion ∩, difference \, choice ch, nondeterministic choice with deletion
chd, empty function ∅̄, and cardinality card are weak natural com-
putable.

So, we have proved that these operations conform to set intension.
But some operations over sets, say powerset operation, are not wn-
computable. Still, this operation is natural computable with copying.

4.5 Computability of nominat operations

Nominat intensions assume that elements of a nominat are constructed
of names (“white boxes”) and their values (“black boxes”). Thus, nat-
uralization mapping of nominats is constructed of naturalizations for
names and values. We assume that the set of names V = {v0, v1, . . . }
is enumerated by bijective enumeration function u (see the previous
subsection). It is also reasonable to choose a strong naturalization
mapping natSFS because normally any name can be generated. As to
values, we assume that they are elements of a preset (with intension
IPHLB).

Let NomF (V, B) be a class of finite nominats constructed over
V and B and nm = [v1 7→ b1, . . . , vn 7→ bn] be a nominat of this
class. W.l.o.g. we can assume that names are ordered according to
their numbers with respect to enumeration mapping, that is u−1(v1) <
u−1(v2) < · · · < u−1(vn). Under this assumption weak (with respect
to B) naturalization mapping natNMW : NomF (V,B) t−→ Nat(B) is
defined as follows: given a nominat nm = [v1 7→ b1, . . . , vn 7→ bn] map-
ping natNMW on nm yields natural data of the form (k, 〈b1, . . . , bn〉),
where k = c(n, c(k1, . . . c(kn, 0) . . .)), u(k1) = v1, . . . , u(kn) = vn.

Example 12 (wn-computability of denaming v⇒ : NomF (V, B) m−→
B). The naturalization natNMW has been defined just now and the
mapping natB was defined in Example 1. For denaming function v ⇒
a weak index-computable multi-valued function hv⇒ : Nat2

m−→ Nat×
Nat∗ is defined by the formula: hv⇒(c(n, c(k1, . . . c(kn, 0) . . .)), n) =
(0, 〈ki〉), where 1 ≤ i ≤ n, u(ki) = v; in other cases the value is

355

M. Nikitchenko, A. Chentsov

undefined. This function is obviously Turing computable; therefore
v⇒ is wn-computable.

In the same way we can prove that other operations over nominats
defined in the previous section are computable. Thus, the following
statement is valid.

Proposition 3. The following operations over nominats: naming ⇒v,
denaming v⇒, checking v!, and overriding ∇ are weak natural com-
putable.

As to computability with copying, in [4, 9] several theorems were
proved that may be considered as descriptions of complete classes of
natural computable (with copying) functions over various kinds of in-
tensionalized data, and hierarchic nominats, in particular.

Summing up, we can say that proposed naturalization approach
permits to define preset-, set-, and nominat-conforming operations (for
finite collections), thus giving possibility for further development of the
theory of intensionalized data.

5 Related work

The notion of data, being one the main notion of computer science,
has many aspects, definitions, and explications. The analysis of such
diversity of data concepts is worth a special investigation the authors
plan to fulfill in forthcoming papers. In this paper, oriented on en-
hancement of the notion of set, we will consider only those works that
are related to set theory variations.

Set theory, being a primary foundation for mathematical research,
has been debated for decades. Paradoxes, controversies and inconsis-
tencies with mathematical practice in some areas have led to multi-
plicity of set theories as well as rise of quite uncommon alternative
theories. The approaches used by different “schools of thoughts” can
be classified by many criteria like extensionality, kind of logic employed,
intensionality, finiteness, well-foundedness, characteristics of member-
ship relation, predicativity, incompleteness of knowledge, information

356

Basics of Intensionalized Data: Presets, Sets, and Nominats

hiding, etc. Most “radical” departures from standard set theory con-
cern base logic. Less radical ones modify or reject some principle of
ZFC through system of axioms or more informally.

We start with variations caused by set theory paradoxes. If U is a
set-theoretic universe then it should satisfy equation that can be stated
in the abstract form as P∗(U) ' U . In order to avoid paradoxes, P∗(U)
cannot be powerset of U but rather collection of some distinguished
subsets of U . The solution of this equation U = 〈U, f〉, where f : U '
P∗(U), is called Frege structure. It determines abstract set-theoretic
universe where membership relation is interpreted as follows: u ∈U v
iff u ∈ f(v).

Conventional remedy to paradoxes was in limitation of the cardinal-
ity of the sets. This limitation was quite restrictive turning ZF theory
(with axiom of foundation) into the theory of small and iterative sets
[11]. Some alternative theories do not reject ZF completely but rather
look for extensions of ZF that avoid paradoxes by other means than
limitation of size.

In [12] class of subsets P∗(U) is selected from topological consid-
erations to be either open or closed subsets of topological space U .
Moreover bijection in this case can be required to be homeomorphism.

A few alternatives (in order to avoid Russell’s paradox) are based
on modification of the concept of (co-)extension. Formalizing notion
of ‘partial information’ in [13] a concept of partial set was proposed.
Though partial set extension and coextension are disjoint, they do not
necessarily cover the universe. The theory of partial sets introduces new
primitive operators 6∈, 6=. Construction of sets and abstraction axioms
are allowed only for formulas without negations – positive formulas.
Extensionality principle cannot be used to identify partial sets (it is
possible to express positively negative properties). Intensionality can
be used instead implying some sort of set naming and pure term models
[14].

Positive sets can be seen as simplification of partial sets (though
have their own motivation) [15]. In this case operators 6∈, 6= and ab-
stractors are dropped while extensionality is restored. This theory has
models known as ‘hyperuniverses’ constructed using topological set-

357

M. Nikitchenko, A. Chentsov

theoretic structures [16]. [17, 18] studied the first-order generalization
of positive sets theory known as GPK+∞. In this theory additionally
axiom of infinity and existence of least set that contains “extension” for
given (arbitrary) formula (closure principle) are postulated. This the-
ory disproves axiom of choice and class of its hereditary well-founded
sets interprets ZF. Some peculiar constructions are possible in GPK+

models like self containing singleton (auto-singleton) [19].
Paradoxical set theory is another consistent theory without exten-

sionality. It is dual to theory of partial sets. In it set extension and
coextension are not necessarily disjoint but cover the universe [20].
Analogously set theory HF (Hyper-Frege) is counterpart to the GPK+

[21]. Its models are built on the same bases as GPK. Stronger theory
HF∞ (with axiom of infinity) is capable of interpreting ZF.

In double extension set theory to avoid classical paradoxes the con-
cept of extension was bifurcated [22]. There are two membership re-
lations ∈, ∈′. Extensionality axiom for this theory is formulated as
follows: ∀z(z ∈ x ↔ z ∈′ y) → x = y. Some analog of infinite or-
dinal is possible to construct in this theory without explicitly stating
axiom of infinity. Also it is possible to interpret ZF in some form in
the theory [23]. Serious shortcoming of this theory is lack of proof of
its consistency.

Rough set theory [24] presumes incomplete knowledge which is for-
malized using equivalence relation of indiscernibility. Based on this ap-
proach, [11] proposed generalized Proximal Frege Structures which are
universes of sets with additional modal operators. This gives prospects
for axiomatic modal set theory.

Another line of research is related to category theory. Category the-
ory emphasizes external properties of objects. Concept of morphism or
function is abstract and primitive in category theory and is not reduced
to sets. Typically objects of a category are instances of the structure of
certain kind, and morphisms are structure-preserving functions [25, 26].
Structure of objects and properties of morphisms are described in terms
of other objects and morphisms only.

Sets together with functions between sets form a category. It is
possible to give purely category-theoretic characterization to this cat-

358

Basics of Intensionalized Data: Presets, Sets, and Nominats

egory which leads to a concept of elementary topos. Toposes can be
provided with internal language which is very similar to that of set the-
ory and can be interpreted inside the topos in category-theoretic terms
[27]. Thus topos may be regarded as a mathematical domain of dis-
course or “world” in which mathematical concepts can be interpreted
and mathematical constructions performed [28]. This idea was further
developed in local set theory [28].

Frege structure can be considered in categorical framework. In
Heyting categories (some generalization of toposes) it is possible to
introduce the notion of “smallness” defining sets. If such category has
a powerclass functor of subsets then its free algebras are models of set
theory [29, 30]. Membership relation in these models is determined
algebraically. Field, known as algebraic set theory, researches some
aspects of set theory through these models. Primarily intuitionistic ZF
theory is targeted. But models of other set theories can be constructed
by the same algebraic method simply varying particular category and
notion of “smallness”.

As a contrary Lawere advocates that set theory should not be based
on membership but rather on isomorphism-invariant structures. He
proposed an Elementary Theory of the Category of Sets (ETCS) for this
purpose [31, 32]. Objects of ETCS are abstract sets. In short, abstract
set is an assemblage of featureless but distinct “dots”. From technical
standpoint ETCS is non-degenerate well-pointed topos with natural
numbers object for which axiom of choice holds. It is argued that
strong case can be made for ETCS logical and conceptual autonomy
[33].

Martin-Löf type theory emphasizes constructivity [34]. It follows
Curry-Howard correspondence to represent propositions as sets thus
interpreting predicate logic. Sets also can be seen as problem descrip-
tions. The equality between sets is intensional which means it is def-
initional or syntactical. Theory has formal language that is used as
programming language, specification language and programming logic.
Axiom of choice is provable in Martin-Löf type theory [35] while in
constructive or intuitionistic set theory it implies the law of excluded
middle.

359

M. Nikitchenko, A. Chentsov

The admissible set theory [36] aims to present a weaker axiomatic
system more adequate for processing of finite domains. Additionally
this theory includes basic elements (praelements).

Now we would like to say a few words about the term ‘preset’.
Probably Bishop [37] was the first who introduced this term. Toby
Bartels explains that for Bishop a preset is like a set without an equality
relation; conversely, a set is a preset equipped with an equality relation.
This understanding stems from Bishop’s three steps definition of a set:
you should first state how to construct an element of the set; then you
should describe how to prove that two elements are equal; and at last
you should prove that this (equality) relation is reflexive, symmetric,
and transitive. If you only do the first step, then you don’t have a
set, according to Bishop; you only have a preset. A given preset may
define many different sets, depending on the equality relation. From
this follows that a membership relation is defined for Bishop’s presets,
but extensionality axiom fails. Thus, our understanding of presets is
weaker and different from Bishop’s treatment.

Such numerous examples (of course, not exhaustive) of set theory
variations give good evidence that many scientists are aware of restrict-
edness of traditional set theory. We argue for intensional approach to
constructing set theory variants. We also emphasize constructiveness
of such variants through explicit computability aspects.

Summing up, we would like to admit that the proposed notions of
preset and nominat differ from the conventional notion of set in sev-
eral aspects: from the one side, theories of presets and nominats are
weaker than conventional set theory, in particular, extensionality fails,
also membership relation and equality are not definable; but on the
other hand, these notions seem to be more adequate to computer sci-
ence domain because operations are defined as computable in a special
intensionalized sense, presets and nominats are constructed over ba-
sic elements (praelements) which may have hidden content, from this
stems a possibility to change levels of abstraction of data consideration
(up to non-wellfoundedness). Still, investigation on the topic should be
continued in order to establish more precise relations between theories
under investigations.

360

Basics of Intensionalized Data: Presets, Sets, and Nominats

6 Conclusions

Set theory is the main formal system that is used for construction of
problem domain models. Being well-developed and studied, it gives
a powerful mathematical instrument for investigations of models con-
structed on the set-theoretic platform. But at the same time more and
more examples demonstrate that in certain cases set theory is not ad-
equate to problem domain formalization especially when only partial
information about domain is available. The reason of this inadequacy
lies in the fundamentals of set theory, in particular, in membership
relation and extensionality principle. For problem domains with in-
complete information a membership relation cannot be defined, also
the extensionality principle fails. We propose to consider a weaker
“set” theory with explicit intensional component. Such a theory may
be called theory of intensionalized data. The first-level notions of this
theory are notions of preset, set, and nominat. Presets may be consid-
ered as collections of “black boxes”, sets may be treated as collections
of “white boxes”, and nominats are collections of “grey boxes” in which
“white boxes” are names and “black boxes” are their values. In the pa-
per we have defined these notions and described their main properties.
Being oriented on mathematical constructivism we have defined oper-
ations over such data as computable in a special intensionalized sense.
Obtained computability has been called weak natural computability. It
has been defined via several steps of reduction to conventional Turing
computability.

The results presented in the paper can be considered as the initial
steps in developing the theory of intensionalized data.

In the forthcoming papers we plan to construct complete classes of
weak/strong natural computable functions over classes with different
intensions and demonstrate how these notions can be used for describ-
ing intensionalized semantics of specification languages and program
logics.

361

M. Nikitchenko, A. Chentsov

References

[1] N. Bourbaki. Theory of Sets. Berlin: Springer-Verlag, 2004.

[2] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996.

[3] J.M. Spivey. The Z Notation: A Reference Manual, 2nd ed. Pren-
tice Hall, 1992.

[4] N.S. Nikitchenko. Intensional aspects of the notion of program.
Problems of Programming, No. 3–4 (2001), pp. 5–13. [In Russian]

[5] M.S. Nikitchenko. Gnoseology-based Approach to Foundations of
Informatics. In: Ermolayev, V. et al. (eds.) Proc. 7-th Int.
Conf. ICTERI 2011, Kherson, Ukraine, May 4-7, 2011, CEUR-
WS.org/Vol-716, ISSN 1613-0073, pp. 27–40.

[6] M.S. Nikitchenko. Intensional aspects of main mathematical no-
tions. In: Contemporary problems of mathematics, mechanics
and computing sciences: N.N. Kizilova, G.N. Zholtkevych (eds).
Kharkov: Apostrophe Publ. (2011), pp. 183–191.

[7] N.S. Nikitchenko. A Composition-nominative approach to program
semantics. Technical Report IT-TR 1998-020, Technical Univer-
sity of Denmark, ISSN 1396-1608, 1998.

[8] I.A. Basarab, N.S. Nikitchenko, V.N. Redko. Composition
Databases. Kiev: Lybid Publ., 1992. [In Russian]

[9] N.S. Nikitchenko. Abstract computability of non-deterministic pro-
grams over various data structures. In: Perspectives of System In-
formatics. LNCS, vol. 2244, Berlin: Springer (2001), pp. 471–484.

[10] Yu. L. Ershov. Enumeration Theory. Nauka Publ., Moscow, 1977.
[In Russian]

[11] P. Apostoli, R. Hinnion, A. Kanda, T. Libert. Alternative set the-
ories. In: Philosophy of Mathematics: Irvine A.D. (ed.). Elsevier
(2009), pp. 461–491.

362

Basics of Intensionalized Data: Presets, Sets, and Nominats

[12] O. Esser and T. Libert. On topological set theory. Mathematical
Logic Quarterly, vol. 51 (2005), pp. 263–273.

[13] P. C. Gilmore. The consistency of partial set theory without exten-
sionality. In: Axiomatic Set Theory: Jech, Th., (ed.). American
Mathematical Society (1974), pp. 147–153.

[14] R. Hinnion. Intensional solutions to the identity problem for partial
sets. Reports on Mathematical Logic, 42 (2007), pp. 47–69

[15] R.J. Malitz. Set theory in which the axiom of foundation fails.
Ph.D. thesis, UCLA, 1976.

[16] M. Forti, R. Hinnion. The consistency problem for positive com-
prehension principles. Journal of Symbolic Logic, 54 (1989), pp.
1401–1418.

[17] O. Esser. On the consistency of a positive theory. Mathematical
Logic Quarterly, 45, No. 1 (1999), pp. 105–116.

[18] O. Esser. Une theorie positive des ensembles. Cahiers du Centre
de Logique, 13, Academia-Bruylant, Louvain-la-Neuve (Belgium),
2004.

[19] R. Hinnion. Stratified and positive comprehension seen as super-
class rules over ordinary set theory. Zeitschrift für mathematische
Logik und Grundlagen der Mathematik, 36 (1990), pp. 519–534.

[20] M. Crabbé. Soyons positifs: la complétude de la théorie näive des
ensembles. Cahiers du Centre de Logique, vol. 7 (1992), pp. 51–68.

[21] T. Libert. ZF and the axiom of choice in some paraconsistent set
theories. Logic and Logical Philosophy, vol. 11 (2003), pp. 91–114.

[22] A. Kisielewicz. Double extension set theory. Reports on Mathe-
matical Logic, 23 (1989), pp. 81–89.

[23] M. Holmes. The structure of the ordinals and the interpretation of
ZF in double extension set theory. Studia Logica, vol. 79 (2005),
pp. 357–372.

363

M. Nikitchenko, A. Chentsov

[24] Z. Pawlak. Rough sets. International Journal of Computer and
Information Sciences, vol. 11, No. 5 (1982), pp. 341–356.

[25] S. Awodey. Category theory. Oxford: Clarendon Press, 2006.

[26] J. Goguen. A categorical manifesto. Mathematical Structures in
Computer Science, 1 (1991), pp. 49–67.

[27] P. Johnstone. Topos theory. London Mathematical Society Mono-
graphs, vol. 10, Academic Press, London, New York, San Fran-
cisco, 1977.

[28] J. L. Bell. Toposes and local set theories: An introduction. Oxford:
Clarendon Press, 1988.

[29] A. Joyal and I. Moerdijk. Algebraic Set Theory. Cambridge Uni-
versity Press, 1995.

[30] S. Awodey. A brief introduction to algebraic set theory. Bulletin of
Symbolic Logic, 14, No. 3 (2008), pp. 281–298.

[31] F. W. Lawvere, R. Rosebrugh. Sets for Mathematics. Cambridge
University Press, 2003.

[32] J. L. Bell. Abstract and Variable Sets in Category Theory. In:
What is Category Theory? Polimetrica Publisher, Italy (2006),
pp. 9–16.

[33] Ø. Linnebo, R. Pettigrew. Category Theory as an Autonomous
Foundation. Philosophia Mathematica, vol. 19, No. 3 (2011), pp.
227–254.

[34] B. Nordström, K. Petersson, J. M. Smith. Programming in Martin-
Löf ’s Type Theory. Oxford University Press, 1990.

[35] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli,
1984.

[36] J.Barwise. Admissible sets and structures. Perspectives in Mathe-
matical Logic, Volume 7. Berlin: Springer-Verlag, 1975.

364

Basics of Intensionalized Data: Presets, Sets, and Nominats

[37] E. Bishop. Foundations of Constructive Analysis. New York:
McGraw-Hill, 1967.

Mykola Nikitchenko, Alexey Chentsov, Received July 5, 2012

Mykola Nikitchenko
Taras Shevchenko National University of Kyiv
01601, Kyiv, Volodymyrska st, 60
Phone: +38044 2590519
E–mail: nikitchenko@unicyb.kiev.ua

Alexey Chentsov
Taras Shevchenko National University of Kyiv
01601, Kyiv, Volodymyrska st, 60
Phone: +38044 2590511
E–mail: chentsov@ukr.net

365

Computer Science Journal of Moldova, vol.20, no.3(60), 2012

P systems based on tag operations

Yurii Rogozhin Sergey Verlan

Abstract

In this article we introduce P systems using Post’s tag oper-
ation on strings. We show that the computational completeness
can be achieved even if the deletion length is equal to one.

1 Introduction

The tag operation was invented by E. Post during his Procter fellowship
at Princeton during the academic year 1920-21 [12, 13]. This operation
deletes first n letters of a word and appends an appendant depending on
the first deleted letter. Computational devices based on this operation,
the tag systems, are one of the simplest examples of universal devices [8,
3]. The number of deleted symbols, the deletion number, permits to
establish a frontier between decidability and undecidability – if it is
equal to two, then the corresponding class is undecidable, while if it
is equal to one, then the corresponding class is decidable. There exist
other interesting properties of tag systems, we refer to [7] for a review
on the recent results in this field.

P systems [10, 11] are distributed computational devices inspired
from the structure and the functioning of a living cell. The cell is con-
sidered as a set of compartments (membranes) nested one in another
and which contain objects and evolution rules. The base model does
not specify neither the nature of these objects, nor the nature of rules.
Numerous variants specify these two parameters by obtaining a lot of
different models of computing, see [15] for a comprehensive bibliogra-
phy.

In the case of P systems with tag operations the basic objects are
strings and the operations in membranes are tag operations. In a formal

c©2012 by Yu. Rogozhin, S. Verlan

366

P systems based on tag operations

way, an n-tag P systems can be considered like a graph, whose nodes
contain sets of strings and sets of tag rules with the deletion number
n. Every rule permits to perform a tag operation and to send the
result to some other node. Such an approach is close to the idea of
graph-controlled or programmed grammars, where a similar control
mechanism is used, but for rewriting rules. We show that using P
systems permits to strictly increase the power of the tag operation and
to achieve the universality with the deletion number equal to one.

2 Definitions

In this section we recall some very basic notions and notations we use
throughout the paper. We assume the reader to be familiar with the
basics of formal language theory. For more details, we refer to [14].

A tag system of degree m > 0, see [3] and [9], is the triplet T =
(m,V, P), where V = {a1, . . . , an+1} is an alphabet and where P is a
set of productions (tag operations) of form ai → Pi, 1 ≤ i ≤ n, Pi ∈ V ∗.
We remark that for every ai, 1 ≤ i ≤ n, there is exactly one production
in P . The value m is also called the deletion number of T . The symbol
an+1 is called the halting symbol. A configuration of the system T is
a word w. The application of the tag operation permits to pass from a
configuration w = ai1 . . . aimw′ to the next configuration z by erasing
the first m symbols of w and by adding Pi1 to the end of the word:
w =⇒ z, if z = w′Pi1 .

The computation of T over the word x ∈ V ∗ is a sequence of config-
urations x =⇒ . . . =⇒ y, where either y = an+1ai1 . . . aim−1y

′, or y′ = y
and |y′| < m. In this case we say that T halts on x and that y′ is the
result of the computation of T over x. We say that T recognizes the
language L if there exist a recursive coding φ such that for all x ∈ L,
T halts on φ(x), and T halts only on words from φ(L).

We note that tag systems of degree 2 are able to recognize the family
of recursively enumerable languages [3, 9]. Moreover, the construction
in [3] has non-empty productions and halts only by reaching the symbol
an+1 in the first position. It is also known that tag systems of degree 1
are decidable [6, 16]. It thus follows that the deletion number m is

367

Yu. Rogozhin, S. Verlan

one decidability criterion [5] for tag systems with m = 2 as the frontier
value.

Now we introduce the notion of the circular Post machine (CPM).

Definition 1 A circular Post machine (of type 0) is a tuple (Σ, Q,q1,
qf , R) with a finite alphabet Σ where 0 ∈ Σ is the blank, a finite set of
states Q, the initial state q1 ∈ Q, the final state qf ∈ Q, and a finite set
of instructions R with all instructions having one of the forms px → q
(erasing the symbol read by deleting a symbol), px → yq (overwriting
and moving to the right), p0 → yq0 (overwriting and inserting a blank
symbol), where x, y ∈ Σ and p,q ∈ Q, p 6= qf .

We also refer to all instructions with qf in the right hand side as
halt instructions. The storage of this machine is a circular tape, the
read and write head moves only in one direction (to the right), and
with the possibility to delete a cell or to create and insert a new cell
with a blank.

Notice that a circular tape can be thought of as a finite string of
symbols (from the one following the state to the one preceding the
state in the circular representation). In this way, CPM0 is a finite-
state machine, which reads the leftmost symbol of the string, possibly
consuming it, and uses the symbol+state information to change the
state, possibly writing a symbol on the right.

There are several other variants of CPM [4, 1] which differ in the
way the lengthening instructions work. All these variants are compu-
tationally equivalent, although their descriptional complexity can be
different.

Now we define P systems that use the tag operation.
An n-tag P system is the construct

Π = (O, T, µ, M1, · · · ,Mn, R1, · · · , Rn), where

• O is a finite alphabet,

• T ⊆ O is the terminal alphabet,

368

P systems based on tag operations

• µ is the membrane (tree) structure of the system which has n
membranes (nodes) and it can be represented by a word over the
alphabet of correctly nested marked parentheses,

• Mi, for each 1 ≤ i ≤ n is a finite language associated to the
membrane i,

• Ri, for each 1 ≤ i ≤ n is a set of rules associated to membrane i,
of the following forms: a → Pa; tar, a ∈ O where a → Pa is a tag
rule and tar is the target indicator from the set {here, inj , out |
1 ≤ j ≤ n}, where j is a label of the immediately inner membrane
of membrane i.

An n-tuple (N1, · · · , Nn) of finite languages over O is called a con-
figuration of Π. The transition between the configurations consists of
applying the tag rules (with the deletion length n) in parallel to all pos-
sible strings, non-deterministically, and following the target indications
associated with the rules.

More specifically, if w = aa2 . . . anw′ ∈ Ni and r = a → Pa; tar then
the word w′Pa will go to the region indicated by tar. If tar = here,
then the string remains in Ni, if tar = out, then the string is moved
to the region immediately outside the membrane i (maybe, in this way
the string leaves the system), if tar = inj , j = 1, ..., n, then the string
is moved to the immediately below j-th region.

A sequence of transitions between configurations of a given insertion-
deletion P system Π, starting from the initial configuration (M1, . . . ,
Mn), is called a computation with respect to Π. The result of a com-
putation consists of all strings over T which are sent out of the system
at any time during the computation. We denote by L(Π) the language
of all strings of this type. We say that L(Π) is generated by Π.

We denote by ELSPk(n − tag) the family of languages L(Π) gen-
erated by n-tag P systems with k ≥ 1 membranes.

3 Results

Theorem 1 Any CPM0 M can be simulated by a 1-tag P system.

369

Yu. Rogozhin, S. Verlan

Proof. Consider a CPM0 M = (Σ, Q, q1, qf , R) with symbols Σ =
{aj | 0 ≤ j ≤ n}, where a0 = 0 is the blank symbol, and states
Q = {qi | 1 ≤ i ≤ f}, where q1 is the initial state and the only terminal
state is qf ∈ Q; let Q′ = Q \ {qf}.

Consider the following 1-tag P system

Π = (V,Σ, µ, Mms , . . . , Mmf
, Ris , . . . , Rif) :

V = Σ ∪Q,

µ = [
∏

qiaj∈Q×Σ

(
[]mij

)
]ms

,

Mi = ∅, i 6= ms, and the rules are given and explained below.

Hence the membrane structure of Π consists of the skin membrane ms

and inner membranes mij , 1 ≤ i ≤ f, 0 ≤ j ≤ n. The set of rules is
defined as follows:

Rms = {1.ij : qi → ε; mij | 1 ≤ i ≤ f − 1, 0 ≤ j ≤ n}
∪ {2.j : aj → aj ; here | aj ∈ Σ}
∪ {3 : qf → ε; out},

Rmij = {4.ij : aj → akql; out | qiaj → akql ∈ R, j > 0}
∪ {5.ij : aj → ql; out | qiaj → ql ∈ R, j > 0}
∪ {6.i : a0 → akqla0; out | qia0 → akqla0 ∈ R}.

A configuration v = qiajW of M describes that M in state qi ∈ Q
considers symbol aj ∈ Σ to the left of W ∈ Σ∗. This configuration is
encoded by the string v in the skin membrane ms of Π.

The machine M starts a computation from a configuration q1ajW
and Π starts computation from the corresponding string q1ajW in
membrane ms (other regions of Π are empty). We shall show now
how the rules of M are simulated in Π.

Consider rule qiaj → akql ∈ R, qi ∈ Q′, ql ∈ Q, aj , ak ∈ Σ of M. It
is simulated in Π as follows.

370

P systems based on tag operations

Let qiajW
qiaj→akql=⇒ qlW be a computation step in M , i.e., rule

qiaj → akql is applied to configuration qiajW yielding qlWak (W ∈
Σ∗).

This rule is simulated in Π as follows. One of rules 1.ip is non-
deterministically applied to string qiajW and the resulting string ajW
moves to region mip. We denote this action as follows:

(ms, qiajW)
1.ip
=⇒ (mip, ajW).

If p 6= j, then the corresponding string cannot evolve anymore as there
is no applicable rule in membrane mip. If p = j, then the following
evolution is possible yielding Wakql in the skin membrane:

(mij , ajW)
4.ij
=⇒ (ms,Wakql).

Next, the only possibility to continue is to apply the group of rules
2.j until string qlWak is obtained:

(ms,Wakql)
2.j1=⇒ . . .

2.jt=⇒ (msqlWak).

Thus we showed that Π correctly simulates rule qiaj → akql of M .
It is not difficult to see that rules of type qiaj → ql, qi ∈ Q′, ql ∈

Q, aj ∈ Σ, resp. qia0 → akqla0, qi ∈ Q′, ql ∈ Q, aj ∈ Σ, can be
simulated in a similar manner replacing 4.ij by 5.ij, resp. 6.ij.

We observe that for a string that reached a halting configuration
qfW in M , only rule 3 is applicable on the corresponding string qfW
of Π. This leads to the word W that is sent out of the system.

Hence we obtain that for any transition w =⇒ w′ in M there
is a unique sequence of transitions (ms, w) =⇒ (mij , w1) . . . =⇒
(ms, wk) =⇒ (ms, w

′) in Π, for some wj ∈ O∗ and k > 0. ¤

Corollary 1 There exists a universal 1-tag P system with 73 instruc-
tions.

Proof. Consider the universal CPM0 from [2]. It has 6 states and 6
symbols. By applying Theorem 1 to this machine we obtain a universal
1-tag P system with 73 rules. ¤

371

Yu. Rogozhin, S. Verlan

4 Conclusion

In this article we considered the tag operation in the context of P sys-
tems. The obtained variant is universal even with the deletion num-
ber equal to one. Moreover, the obtained system has 73 instructions
while best actually known constructions for universal tag systems have
around 480 [7]. An open problem is if this number can be decreased.

P systems framework for the tag operation can be considered as
a particular variant of the graph-controlled derivation using the tag
operation. We observe that the particular structure of the graph from
Theorem 1 corresponds to a matrix control with the depth (size of the
matrices) equal to two. Hence Corollary 1 also holds for matrix tag
systems. It could be interesting to consider other control mechanisms
like random-context control with the tag operation.

References

[1] A. Alhazov, A. Krassovitskiy, Yu.Rogozhin. Circular Post Ma-
chines and P Systems with Exo-insertion and Deletion. Lecture
Notes in Computer Science, 7184 (2011), pp. 73–86.

[2] A. Alhazov, M. Kudlek, Yu. Rogozhin. Nine Universal Circular
Post Machines. Computer Science Journal of Moldova, 10, no.3
(2002), pp. 247–262.

[3] J. Cocke, M. Minsky. Universality of tag systems with p=2. Jour-
nal of the ACM, 11, 1, (1964), pp. 15–20.

[4] M. Kudlek, Yu. Rogozhin. Small Universal Circular Post Ma-
chines. Computer Science Journal of Moldova, 9(1) (2001), pp.
34–52.

[5] M. Margenstern. Frontier between decidability and undecidability:
A survey, Theoretical Computer Science, 231(2) (2000), pp. 217–
251.

[6] S. Maslov. On E. L. Posts Tag problem., (In Russian) Trudy
Matematicheskogo Instituta imeni V.A. Steklova (1964b), no. 72,
pp. 5-56, English translation in: American Mathematical Society
Translations Series 2, 97, pp. 1–14, 1971.

372

P systems based on tag operations

[7] L. De Mol. On the complex behavior of simple tag systems – An
experimental approach. Theoretical Computer Science, 412(1-2)
(2011), pp. 97–112.

[8] M. Minsky. Recursive unsolvability of Posts problem of tag and
other topics in the theory of Turing machines, Annals of Mathe-
matics, 74 (1961), pp. 437–455.

[9] M. Minsky. Computations: Finite and Infinite Machines. Pren-
tice Hall, Englewood Cliffts, NJ (1967).

[10] G. Păun. Membrane Computing. An Introduction. Springer, 2002.
[11] G. Păun, G. Rozenberg, A. Salomaa (Eds.): The Oxford Hand-

book of Membrane Computing. Oxford University Press, 2010.
[12] E. Post. Formal reductions of the general combinatorial decision

problem, American Journal of Mathematics, 65(2) (1943), pp.
197–215.

[13] E. Post. Absolutely unsolvable problems and relatively undecidable
propositions – account of an anticipation, The Undecidable. In
Martin Davis, ed., Basic papers on undecidable propositions, un-
solvable problems and computable functions, Raven Press, 1965,
pp. 340–433.

[14] G. Rozenberg, A. Salomaa. Handbook of Formal Languages, 3
volumes. Springer Verlag, Berlin, Heidelberg, New York (1997).

[15] The P systems Web page. http://ppage.psystems.eu/
[16] H. Wang. Tag systems and lag systems, Mathematische Annalen,

152 (1963a), pp. 65–74.

Yu. Rogozhin1, S. Verlan2,1, Received July 9, 2012

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
5 Academiei str., Chişinău, MD-2028, Moldova

2 LACL, Departement Informatique
UFR Sciences et Technologie
Universite Paris Est – Créteil Val de Marne
61, av. Géńeral de Gaulle
94010 Creteil, France

E–mails:
Dr.hab. Yurii Rogozhin: rogozhin@math.md,
Dr.hab. Sergey Verlan: verlan@univ-paris12.fr,

373

Computer Science Journal of Moldova, vol.20, no.3(60), 2012

Static and Dynamic Membrane Structures

Sergiu Ivanov

Abstract

While originally P systems were defined to contain multiset
rewriting rules, it turned out that considering different types of
rules may produce important results, such as increasing the com-
putational power of the rules. This paper focuses on factoring
out the concept of a membrane structure out of various P system
models with the goal of providing useful formalisations. Both
static and dynamic membrane structures are considered.

Keywords: Computing model, P system, membrane struc-
ture, semi-lattice, active membranes.

1 Introduction

P systems are computational models inspired from the structure of liv-
ing cells, introduced by Gh. Păun in 1998 [1]. The principal idea behind
this model is that the chemical reactions happening in a biological cell
can be interpreted as applications of rewriting rules to multisets of ob-
jects. Since formal grammars can be treated as computational devices,
a cell can be basically viewed as a collection of compartments, each
hosting computation. Further, communication between compartments
is allowed, which binds the computing devices into a network where
information is produced and consumed to be eventually combined into
the final result. For a more thorough introduction to the subject the
reader may turn to [2].

One of P systems types which is commonly brought about in ex-
amples is the transitional P systems [3]. In transitional P systems, the
compartments of P systems hold multiset rewriting rules. It has been
shown (see Chapter 4 of [4] for a summary) that membrane structure

c©2012 by S. Ivanov

374

Static and Dynamic Membrane Structures

does not add any computational power to what is already provided by
the class of multiset rewriting rules in use. The idea behind this result
is simple: since a membrane structure is finite and static in this case,
it can very well be dropped by considering “labelled” symbols: instead
of having a in compartment 1, have the symbol a1, for example. In
this way, one can simulate any communication between the computing
compartments which can happen in a transitional P system and which
could enhance the overall computational power.

While this conclusion may look rather disconcerting in what con-
cerns the utility of transitional P systems, static membrane structures
may actually be rather significant in certain situations. The authors
of [5] show that, if one places insertion-deletion rules in the compart-
ments of a membrane structure, one obtains a computational device
which is more powerful than the class of insertion-deletion rules in use.
In fact, this is not the only well-known example of placing other types
of rules in compartments of membrane structures; consider, for exam-
ple, splicing P systems (Chapter 8 of [4]) and P systems with string
objects (Chapter 7 of [4]). Note that in these cases, the rules placed
in the compartments of the membrane system do make sense outside
of the context of membrane structures. I find it necessary to explicitly
contrast this with communication P systems (Chapter 5 of [4]) and
P systems with active membranes (Chapter 11 of [4]), in which cases
the investigated rules seem to be very intimately connected with the
membrane structure itself.

The reasoning exposed in the previous paragraph brings attention
to the membrane structure, rather than to the P system that results
from combining a membrane structure and rules. Some basic formal
representations are widely used in which membrane structures are con-
sidered as rooted trees [3, 4]. However, as this paper shows, the un-
derlying tree of a membrane structure is a skeleton which, while being
essential, is far from covering all the features associated with the mem-
branes. Further note that, while formalising static membrane struc-
tures is an interesting and useful task in itself, it is the dynamic mem-
brane structures arising in different flavours of P systems with active
membranes that are the most attractive object of formalisation.

375

S. Ivanov

This paper focuses on studying membrane structures as separate
objects, apart from the containing context of P systems. An approach
to formalising static and dynamic membrane structures as algebraic
structures is suggested, and then applications of the obtained formali-
sation are shown.

2 Preliminaries

2.1 Multisets

Given a finite set A, by |A| one understands the number of elements in
A.

Let V be a finite alphabet; then V ∗ is the set of all finite strings of a
V , and V + = V ∗−{λ}, where λ is the empty string. By N one denotes
the set of all non-negative integers, by Nk – the set of all vectors of
non-negative integers.

Let V be a finite set, V = {a1, . . . , ak}, k ∈ N. A finite multiset
M over V is a mapping M : V → N. For each a ∈ V , M(a) indicates
the number of “occurrences” of a in M . The value M(a) is called the
multiplicity of a in M . The size of the multiset M is |M | = ∑

a∈V M(a),
i.e., the total count of the entries of the multiset. A multiset M over V
can also be represented by any string x which contains exactly M(ai)
instances of ai, 1 ≤ i ≤ k. The support of M is the set supp(M) =
{a ∈ V | M(a) ≥ 1}, which is the set which contains all elements of
the multiset. For example, the multiset over {a, b, c} defined by the
mapping {(a, 3), (b, 1), (c, 0)} can be written as a3b. The support of
this multiset is {a, b}.

Let x, y be two multisets over V . Then x is called a submultiset
of y, written as x ⊆ y, if and only if ∀a ∈ V . x(a) ≤ y(a). The
union of x and y, denoted by x] y is defined in the following way:
∀a ∈ V . (x] y)(a) = x(a) + y(a). The difference of x and y, denoted
by x\y, is defined similarly: ∀a ∈ V . (x\y)(a) = x(a)− y(a).

376

Static and Dynamic Membrane Structures

2.2 P Systems

A transitional membrane system is defined by a tuple (Chapter 1 of
[4])

Π = (O, µ,w1, w2, . . . , wm, R1, R2, . . . , Rm, i0), where
O is a finite set of objects,
µ is a hierarchical structure of m membranes, bijectively

labelled with 1, . . . , m,
wi is the initial multiset in region i, 1 ≤ i ≤ m,

Ri is the set of rules of region i, 1 ≤ i ≤ m,

i0 is the output region.

The rules have the form u → v, where u ∈ O+, v ∈ (O×Tar)∗. The
target indications from Tar = {here, out}∪{inj | 1 ≤ j ≤ m}, where j
are the labels of the corresponding inner membranes. The target here
is typically omitted. In case of non-cooperative rules, u ∈ O.

The rules are applied in a maximally parallel way: no further rule
should be applicable to the idle objects. In the case of non-cooperative
systems, all objects evolve by the associated rules in the corresponding
regions (except objects a in regions i such that Ri does not contain
any rule a → u, but these objects do not contribute to the result).
Rules are non-deterministically chosen at each moment in time when
a change occurs in the configuration of the P system. The process of
choosing which rules should be applied does not take any time.

A P system with active membranes is defined by a tuple (Chapter
11 of [4]):

Π = (O, H, E, µ, w1, w2, . . . , wm, R, i0), where
O is a finite set of objects,
H is the alphabet of names of membranes,
E is the set of electrical charges,
µ is the initial hierarchical structure of m membranes,

bijectively labelled by 1, . . . ,m;

377

S. Ivanov

wi is the initial multiset in region i, 1 ≤ i ≤ m,

R is the set of rules,
i0 is the output region.

The rules in P systems with active membranes can be of the fol-
lowing five basic types:

(a) [a → v]eh, h ∈ H, e ∈ E, a ∈ O, v ∈ O∗;

(b) a[]e1
h → [b]e2

h , h ∈ H, e1, e2 ∈ E, a, b ∈ O;

(c) [a]e1
h → []e2

h b, h ∈ H, e1, e2 ∈ E, a, b ∈ O;

(d) [a]eh → b, h ∈ H\{s}, e ∈ E, a, b ∈ O;

(e) [a]e1
h → [b]e2

h [c]e3
h , h ∈ H\{s}, e1, e2, e3 ∈ E, a, b, c ∈ O.

It is often considered that E = {0,−, +}. The rules apply to elementary
membranes, i.e., membranes which do not contain other membranes
inside.

The rules are applied in the usual non-deterministic maximally par-
allel manner, with the following details: any object can be subject of
only one rule of any type and any membrane can be subject of only
one rule of types (b)–(e). Rules of type (a) are not counted as applied
to membranes, but only to objects. This means that when a rule of
type (a) is applied, the membrane can also evolve by means of a rule
of another type. If a rule of type (e) is applied to a membrane, and its
inner objects evolve at the same step, it is assumed that first the inner
objects evolve and then the division takes place, so that the result of
applying rules inside the original membrane is replicated in the two
new membranes.

2.3 Semilattices

A binary relation ≤ is a partial order if it is reflexive, symmetric, and
transitive. A set (S,≤) endowed with such a binary relation is called

378

Static and Dynamic Membrane Structures

a partially ordered set. If x, y ∈ S such that (x, y) 6∈≤, the elements x
and y are called incomparable; this is written as x 6≤ y. The interval
between two comparable elements x, y ∈ L, denoted by [x, y] is the set
of all elements in L which are “between” x and y:

∀x, y ∈ S . x ≤ y . [x, y]
def
= {a ∈ L | x ≤ a and a ≤ y}

An interval is called simple if it only includes its “endpoints”:

∀x, y ∈ L . [x, y] – simple
def⇐⇒ [x, y] = {x, y}.

In this case x is called the predecessor of y (or y – the successor of x),
which is denoted by x ≺ y.

A partially ordered set (S,≤) is a meet-semilattice, if for any x, y ∈
S the greatest lower bound x ∧ y (the meet) of the two exists:

∀x, y ∈ S . ∃x ∧ y ∈ S . ∀z ∈ S . (z ≤ x and z ≤ y) =⇒ z ≤ x ∧ y.

Dually, one defines the join-semilattice. A partially ordered set (S,≤)
is a join-semilattice, if for any x, y ∈ S the least upper bound x ∨ y
(the join) of the two exists:

∀x, y ∈ S . ∃x ∨ y ∈ S . ∀z ∈ S . (x ≤ z and y ≤ z) =⇒ x ∨ y ≤ z.

Any of these two can be defined as an algebraic structure. For
example, a meet-semilattice is the structure (S,∧) in which the binary
operation is idempotent, commutative, and associative:

(S,∧)– semilattice
def⇐⇒ ∀x, y, z ∈ S . x ∧ x = x

and x ∧ y = y ∧ x
and x ∧ (y ∧ z) = (x ∧ y) ∧ z.

3 Static Membrane Structures

3.1 Construction of Static Membrane Structures

Consider a finite meet-semilattice (L,∧) with the properties that the
semilattice includes the minimal element, denoted by 0:

∃0 ∈ L . ∀x ∈ L . 0 ≤ x, (1)

379

S. Ivanov

and that any element of L except 0 has only one predecessor:

∀x ∈ L\{0} . ∃!y ∈ L . y ≺ x. (2)

The following lemma shows that finite semilattices with these two prop-
erties are essentially trees.

Lemma 1. Let (L,∧) be a finite meet-semilattice. Consider the graph
G = (V, E) with vertexes all elements of L and edges all corresponding
simple intervals:

V = L, E = {(x, y) ∈ L× L | x ≺ y},
If (L,∧) has the properties (1) and (2), then G is a tree.

Proof. Let n = |L| = |V | be the number of elements in the set L = V .
Since any element a ∈ L\{0} has exactly one predecessor, the count
of edges in G is |E| = n − 1. Further, G is connected, because ∀x ∈
L = V . 0 ≤ x, which means that there exists a sequence of elements
(xi)m

i=1 ⊆ L, m ∈ N, such that

0 = x1 ≺ x2 ≺ . . . ≺ xm = x,

which gives the path in G connecting 0 and x. Since G is a connected
graph in which |E| = |V | − 1, G is a tree [7].

In particular, if L satisfies the properties (1) and (2), then L con-
tains no meets for any incomparable elements: ∀x, y ∈ L . x 6≤ y =⇒
x ∧ y 6∈ L.

For a set S and a set H, a mapping l : S → H will be called a
labelling of S with the label set H. Note that l is not required to be
injective, which means that several objects in S may have the same
label.

Definition 1. The following tuple will be called a membrane structure:

M = ((L,∧),H, l) , where
(L,∧) is a meet-semilattice with the properties (1) and (2),

H is a set of labels,
l is a labelling of L with H.

The elements of L will be called membranes.

380

Static and Dynamic Membrane Structures

It is easy to see that a membrane structure in this definition is
exactly the same thing as what is defined in numerous articles on P
systems (for example, Chapter 1 of [4]). The important part is that
the meet-semilattice (L,∧) was shown to be a tree. The set of labels
H and the corresponding labelling l obviously corresponds to the usual
labelling of membranes.

Example 1. Consider the structure

[[[]3]2[]4]1,

in which the membrane with label 1 contains a membrane with label 4
and a membrane with label 2, which, in its turn, contains a membrane
with label 3, will be translated to the membrane structure M = ((L =
{a, b, c, d},∧),H = {1, 2, 3, 4}, l,∅), where l(a) = 1, l(b) = 2, l(c) = 3,
l(d) = 4, and the partial order on L is given by the following set of
pairs:

≤= {(a, b), (a, d), (a, c), (b, c)} .

(L,∧) satisfies the properties (1) and (2). Indeed, ∀x ∈ L . a ≤ x,
thus a = 0 in the terminology introduced in this section. Further, it
is easy to check that each element in L, except for a, has exactly one
predecessor. Thus, M is a valid membrane structure.

It should be clear now that, if x, y ∈ L and x ≺ y, then x is the
parent membrane of y.

Note that while the definition given in this paper generalises the
majority of other definitions of tree-like membrane structures, it does
not cover much more than what is covered by the said definitions. Thus,
the notion of membrane structure as introduced in the present paper
is sufficiently narrow.

Remark that there has not been any mentioning of the environment,
which is sometimes considered as a compartment with some limitations
(Chapter 1 of [4]). It is easy, however, to extend the semi-lattice (L,∧)
by adding an element 0′ with the property that ∀x ∈ L . 0′ ≤ x to
represent the environment.

Also note that a join-semilattice could have been chosen instead of a
meet-semilattice. Obviously, any reasoning about membrane structures

381

S. Ivanov

considered as meet-semilattices can be converted to join-semilattices
by substituting the word “meet” for “join”, ∧ for ∨ and reversing the
direction of comparisons.

Finally, I would like to discuss the usefulness of the new formal-
isation. While it has been shown that the principal component of a
membrane structure, the semilattice (L,∧), is always a tree, the ad-
vantage of this approach is that a membrane structure is defined as an
algebraic structure, which makes it easier to define morphisms, as will
be shown in the concluding sections of this paper.

3.2 Construction of P Systems with Static Membrane
Structures

Consider a finite set O and a set of rules R over this alphabet. No other
restrictions on the two sets are imposed, i.e., any type of rules over O
is allowed. Define the application σ : R×O → O ∪ {⊥}, ⊥6∈ O, in the
following way: if a rule r ∈ R is applicable to an object o ∈ O, then
σ(r, o) is the result of application of r to o. If r is not applicable to o,
σ(r, o) is defined to be ⊥. The terms “applicable” and “application”
are expected to be defined during the construction of the sets O and
R. For the purposes of this article, the inner structure of the rules and
objects is inessential, as long as some basic statements can be asserted
about either of them.

Consider a membrane structure M = ((L,∧),H, l, A, a) and two
labellings of L: object : L → O and rules : L → 2R, where 2X is the
set of all subsets (the power set) of X. Setting up such labellings can be
intuitively perceived as creating a system of nested compartments, with
an object and rules in each compartment. Note that since no restriction
has been imposed on O, an object may be anything, including a set, a
multiset, a string, a set of strings, etc.

Further, introduce the function outer : L → L ∪ {⊥}, which yields
the containing membrane for the given membrane, or ⊥ if the argument
is 0:

m ∈ L\{0} =⇒ outer(m)
def
= p, p ≺ m;

outer(0)
def
=⊥ .

382

Static and Dynamic Membrane Structures

Similarly, the function inner : L → 2L yields the immediately inner
membranes of the given membrane:

inner(m)
def
= {c ∈ L | m ≺ c}.

To simplify further expressions, the convenience function adjacent :
L → 2L will be introduced:

m ∈ L\{0} =⇒ adjacent(m)
def
= inner(m) ∪ outer(m);

adjacent(0)
def
= inner(0).

Now define two applications iLabels, oLabels : L× R → 2H in the
following way: if m ∈ L and r ∈ rules(m), then iLabels(m, r) is the
set of input labels for the rule r in membrane m, and oLabels(m, r) is

the set of output labels for r. If r 6∈ rules(m), then iLabels(m, r)
def
=

oLabels(m, r)
def
= ∅. These functions annotate a rule with the informa-

tion about the labels of the membranes whose contents it may use or
modify. To ensure the validity of the labels in the context of the mem-
brane structure, one defines the function validLabels : L × 2H → 2H

in the following way:

validLabels(m,H ′) def
= H ′ ∩ {l(b) | b ∈ adjacent(m)}.

Thus, validLabels insures that a set of labels only contains the labels of
the outer and inner membranes of m, enforcing the well-known pattern
of communication along the tree in P systems.

Finally, define the applications

buildInput : L×R → O ∪{⊥},
outputBuilder : L×R → homSet(O × L, O) ∪{⊥}.

where homSet(A,B) is the set of applications between the sets A and
B.

To understand the meaning of the last two applications, consider
again a membrane m ∈ L, and a rule r in the associated set of rules

383

S. Ivanov

rules(m). buildInput(m, r) constructs the objects belonging to the
compartments the rule r depends on:

{object(m) | m ∈ adjacent(r) and l(m) ∈ iLabels(m, r)},

then “combines” these objects and object(m). The meaning of the verb
“combine” should be defined in the description of the rules R and how
they act on the objects in O.

The value outputBuilder(m, r) is a function f : O×O → O which,
for an object o and a membrane b ∈ adjacent(m), returns the “combi-
nation” of the object o with object(b), or produces other modifications
to object(b). Again, the term “combination” should be defined in the
description of the rules R and of how they act on the objects in O.

In the case when r does not belong to the set of rules associated
with m, the last two applications take the value ⊥:

r 6∈ rules(m) =⇒ buildInput(m, r)
def
=⊥

and outputBuilder(m, r)
def
=⊥

If some input conditions are not satisfied in buildInput, this func-
tion should take the value ⊥.

Definition 2. The following construction will be referred to as a P
system with static (tree-like) membrane structure:

Π = (M,O, R, σ, object, rules, iLabels,
oLabels, buildInput, outputBuilder, i0),

where i0 ∈ H is the label of the output membrane (s).

Similarly to the usual definition, a configuration C : L → O of
Π is the collection of the contents of the compartments, indexed by
membranes: C(m) = object(m).

Before proceeding to extending the formalisation to the semantics of
the P systems, an example would be helpful in showing how the static
structure of familiar constructs of P systems maps to the definition
given in the current paper.

384

Static and Dynamic Membrane Structures

Example 2. Consider a transitional P system

Π′ = (O′, µ, w1, w2, . . . , wn, R1, R2, . . . , Rn, i0).

In the previous sections it has already been shown how µ maps to the
semilattice (L,∧). The set of labels H is the set of numbers 1 through
n: H = {i ∈ N | 1 ≤ i ≤ n} and the (bijective) labelling l is defined in
the obvious way.

The set of objects O is the set of multisets over O′′ = O′ ∪ {(o, t) |
o ∈ O′ and t ∈ Tar}. The set of rules R contains all multiset rewriting
rules over the alphabet O′′, whose left-hand sides do not include target
indications:

R = {u → v | u ∈ O′∗ and v ∈ O′′∗},

where X∗ was used to denote the set of multisets over X. The applica-
tion σ carries out the usual application of a multiset rewriting rule to a
multiset. The labelling object associates to the membrane labelled with
i, 1 ≤ i ≤ m, the multiset wi. Similarly, the labelling rules associates
to the membrane with label i, 1 ≤ i ≤ n, the set of rules Ri.

The application iLabels takes the value ∅ for any valid combination
of arguments. For m ∈ L and r ∈ rules(m), the function oLabels(m, r)
is the set of labels mentioned in target indications of the right-hand side
of the rule r, excluding the label of m. The application buildInput is
trivially defined as buildInput(m, r) = object(m).

The value f : O × L → O of outputBuilder(m, r) is defined in the
following way. For every b ∈ {b ∈ L | b ∈ adjacent(m) and l(b) ∈
oLabels(m, r)}, and an object o ∈ O, f(o, b) will result in multi-
set union of object(b) and the multiset of all objects of o with tar-
get indications l(b). The value f(o,m) will result in constructing a
multiset o′ by subtracting the left-hand side of r from object(m) and
then performing multiset union of o′ and the multiset of objects of o
which have no target indications or have the indication here. For all
other membranes x, the value of the function is trivially defined as
f(o, x) = object(x). Thus, buildObject distributes the symbols across
the corresponding membranes.

385

S. Ivanov

3.3 Computation in P Systems with Static Membrane
Structure

With the necessary tools set up, it is now possible to completely de-
scribe how a P system with static membrane structure, as defined in
this paper, transitions from one configuration into another configura-
tion. This will eventually make it possible to define computation.

The reasoning exposed in this section is loosely based on the con-
siderations in [8], which provides a different approach to generalising P
systems with static membrane structures, whereby the tree-like mem-
brane structure is almost wholly dismissed.

Consider a P system Π, as defined in the previous section. Re-
mark that different configurations of Π are given by different mappings
C = object. To avoid confusion, as well as to specify the origin of the
corresponding functions, subscripts will be henceforth supplied which
show which P system and which configuration thereof is being consid-
ered.

Define the function applyRuleΠ,C : L×R → homSet(L,O) ∪ {⊥}.
Its purpose is to produce a new configuration by applying a rule asso-
ciated to a membrane. For m ∈ L, r ∈ rulesΠ(m), under the condi-
tions that buildInputΠ,C(m, r) 6=⊥ and σ(r, buildInputΠ, C(m, r)) 6=⊥,
applyRuleΠ,C is defined as follows:

applyRuleΠ,C(m, r)(b)
def
= doOutput(result, b), where

result
def
= σ(r, buildInputΠ,C(m, r)),

doOutput
def
= outputBuilderΠ,C(m, r).

If the enumerated conditions are not satisfied, applyRuleΠ,C(m, r) =⊥.
According to this definition, applyRuleΠ,C(m, r) is a function which

maps every membrane to the objects contained within, after the appli-
cation of the rule r ∈ rulesΠ(m). If applying the rule is not possible,
applyRuleΠ,C(m, r) takes the special signal value ⊥.

Note that, while the description of the process of applying a rule by
σ is done rather generally and informally, quite a bit of effort is invested
into specifying the modifications induced by the associated membrane
structure in as detailed a way as possible.

386

Static and Dynamic Membrane Structures

Definition 3. A rule r ∈ rulesΠ(m), for an m ∈ L, is said to be
applicable in the configuration C if applyRuleΠ,C(m, r) 6=⊥.

In a given configuration given by the mapping C = object, the set
of applicable rules is defined as

applicableRules(Π, C)
def
= {r ∈ rulesΠ(m) | m ∈ L

and applyRuleΠ,C(m, r) 6=⊥}.

It is would now be desirable to construct the analog of the marking
algorithm introduced in [8]. To do this, it should be remarked that an
application of a rule r ∈ R is made possible because certain “premises”
are satisfied. The action of applying r may entail removal of some of
these premises. To account for this, define the application

premisesEraserΠ,C : L×R → homSet(O × L,O) ∪ {⊥},

which, in parallel to outputBuilderΠ,C , produces a function which re-
moves, if possible, the premises which made the rule r ∈ rulesΠ(m),
m ∈ L, applicable. These considerations lead to the definition of the
application erasePremisesΠ,C : L × R → homSet(L, O) ∪ {⊥}, in
parallel to applyRuleΠ,C :

erasePremisesΠ,C(m, r)(b)
def
= doErase(result, b), where

result
def
= σ(r, buildInputΠ,C(m, r)),

doErase
def
= premisesEraserΠ,C(m, r).

This definition is valid when r ∈ rulesΠ(m), m ∈ L. If this does not
hold, or if buildInputΠ,C(m, r) =⊥, or if σ(r, buildInputΠ,C(m, r)) =⊥,

then erasePremisesΠ,C
def
=⊥.

The are now sufficient instruments to construct the marking al-
gorithm. Consider a multiset ρ of pairs rules and the corresponding
membranes:

ρ = {((m, r), n) | m ∈ L and r ∈ rulesΠ(m) and n ∈ N}.

387

S. Ivanov

Define the function

isApplicableMultisetΠ : homSet(L,O)× (L×R)∗ → {true, false}
to be true if all rules in ρ can be applied the corresponding number of
times in the supplied configuration and to be false otherwise:

isApplicableMultisetΠ(C, λ)
def
= true

(m, r) ∈ ρ =⇒
isApplicableMultisetΠ(C, ρ)

def
= r ∈ applicableRules(Π, C)

and isApplicableMultisetΠ(C ′, ρ′),

where C ′ def
= erasePremisesΠ,C(m, r),

ρ′ def
= ρ\{(m, r)}.

Here λ was used to denote the empty multiset.
The function isApplicableMultisetΠ essentially performs the same

procedure as does the marking algorithm in [8]. It checks the appli-
cability of every rule in the multiset ρ and removes the rules found
applicable one by one. If the multiset becomes empty, the conclusion
is drawn that all rules in ρ can be applied the corresponding number of
times in the current configuration. Otherwise, the function is false.

Once the multiset of membranes and rules ρ has been decided to
be applicable, the rules in ρ may obviously be applied one by one, by
invoking applyRuleΠ,C for all of them. Thus, the basic semantics has
been constructed. Further definitions provided in [8] like, for example,
derivation modes, halting conditions, etc., can be easily adapted to the
algorithms described in this section, which eventually completes the
formalisation of P systems with static (tree-like) membrane structure.

4 Dynamic Membrane Structures

4.1 Construction of P systems with Dynamic Membrane
Structure

In this section the definition of a membrane structure will be extended
to cover the dynamic membrane structures arising in P systems with
active membranes, for example.

388

Static and Dynamic Membrane Structures

Definition 4. The following tuple will be called a (dynamic) membrane
structure:

M = ((L,∧),H, l, A, a) , where
(L,∧) is a meet-semilattice with the properties (1) and (2),

H is a set of labels,
l is a labelling of L with H,

A is a set of attributes,
a is a labelling of L with A.

If A = ∅, by convention, the last two components of the tuple will
not be written. Thus, the definition introduced in Subsection 3.1 can
be regarded as a special case of this definition.

The need for the set of attributes arises from the fact that, in
P systems with active membranes, the membranes sometimes carry
charge (Chapter 11 of [4]). To model this feature, one can define
A = {0,−, +}; then, for a membrane m ∈ L, a(m) ∈ A will give
the charge.

In the previous parts of the paper it has been shown how the
membrane structure M , together with the sets yielded by iLabels and
oLabels, directs the way rule applications happen. However, as it can
be seen in Subsection 2.2, rules that influence the membrane structure
itself are in very tight connection with the membranes, which makes
it quite difficult to construct the parallel to the mappings iLabels and
oLabels which would indicate how a rule acts on the membrane struc-
ture. A possible solution is to even further decouple the action of a
rule on a membrane structure for the nature of the rule itself. More
concretely, a rule in a P system with dynamic membrane structure
will be written as two rules: a rule which works as described in the
Subsection 3.3, and another rule, acting on the membrane structure.
The coming paragraphs will provide further details, as well as a formal
explanation.

In order to better describe the semantics of dynamic membrane
structure, the reasoning will start in the frame of a P system with the
(yet static) membrane structure M , as defined in Subsection 3.2. Thus,

389

S. Ivanov

consider the P system

Π = (M, O, R, σ, object, rules, iLabels,
oLabels, buildInput, outputBuilder).

To benefit from the attributes in M , for a membrane m ∈
L and an associated rule r ∈ rules(m), define the application
contextChecker : L×R → homSet(A, {true, false}) in the following
way: contextChecker(m, r) is a function, which checks the attributes
of the membrane r, and decides whether the context is “suitable” or
not. The meaning of this function will become clearer in the next
section.

Fix a membrane m ∈ L and a rule r ∈ rules(m) associated with it.
Consider the set of pairs of labels and attributes, valid in the context
of the membrane m:

labsAttrs(m)
def
=

{(
l(m′), attr)

) | m′ ∈ adjacent(m) and attr ∈ A
}

.

Definition 5. A membrane structure rule in the context of a mem-
brane m is a multiset rewriting rule of the form u → v, where
u, v ∈ labAttrs(m)∗, where X∗ was used to denote the set of all multi-
sets over X.

The set of membrane structure rules valid in the context of a
given membrane m is given by the application validMSRules : L →
labAttrs(m)∗ naturally defined as

validMSRules(m)
def
= {u → v | u, v ∈ labAttrs(m)∗}.

The set of all valid membrane structure rules is defined in the following
way:

allMSRules
def
=

⋃

m∈L

validMSRules(m).

What a membrane structure rule is should become clear from an
informal example.

390

Static and Dynamic Membrane Structures

Example 3. Consider the construction [[]+2 []−3]+1 . Then

(2, +)(3,−) → (2, +)(3,−)(2,−)

is a valid membrane structure rule for the membrane with label 1. From
the notation, it should be intuitively understood that this rule produces a
new membrane with label 2 and charge “−” if the membrane 1 contains
a membrane 2 with charge “+” and a membrane 3 with charge “−”.
What exactly is the action of such a rule, in particular, how it acts upon
the inner membranes of the involved membrane and the corresponding
rules and objects, will be defined in the next section.

A conclusion to this subsection is the definition of a P system with
dynamic (tree-like) membrane structure.

Definition 6. The following construct will be referred to as P system
with dynamic (tree-like) membrane structure:

Π = (M, O,R, σ, object, rules, iLabels, oLabels, buildInput,
outputBuilder, contextChecker,msRule, λO, i0),

where λO ∈ O is a “default” object to be attached to newly created
membranes, i0 ∈ H is the label of the output membrane, and msRule :
L × R → allMSRules ∪ {⊥} is defined to be the membrane structure
rule associated with the rule r associated in its turn with a membrane
m.

If r 6∈ rules(m), then msRule(m, r)
def
=⊥. If the rule r does not

influence the membrane structure, msRule(m, r)
def
=⊥.

4.2 Computation in P Systems with Dynamic Mem-
brane Structure

It is now possible to describe the computation in P systems with dy-
namic membrane structures.

Among the first things, the exact semantics of membrane structure
rules should be described. Consider a P system Π with dynamic mem-
brane structure as defined in the previous section, a membrane m ∈ L,

391

S. Ivanov

a rule r ∈ rulesΠ(m), and the corresponding membrane structure rule
g = msRuleΠ(m, r) (assume that it exists, for the purposes of this ex-
planation). Define the utility functions lhsΠ, rhsΠ : allMSRulesΠ →
(H ×A)∗ as lhsΠ(u → v) = u and rhsΠ(u → v) = v.

Before making this visible from the formal description of seman-
tics, it will be helpful to state that a configuration of P system with
dynamic membrane structure includes the mappings between mem-
branes and objects, labels, attributes, as well as the relations between
the membranes

C = (object, (L,∧), l, a).

Next define the function labAttrsMultisetΠ,C : L → (H × A)∗ to
return the pairs of labels and attributes the number of times they occur
in inner membranes of a given membrane a:

labAttrsMultisetΠ,C(m)
def
= buildMultiset(innerΠ(m)),

where buildMultiset(∅)
def
= λ,

b ∈ adj =⇒ buildMultiset(adj)
def
= (l(m), a(m))

]buildMultiset(adj′),

adj′ def
= adj\{b}.

Here] was used to denote multiset union. Note the similarity between
this function and the notation labsAttrs, introduced in the previous
section.

Proceed now with defining the function msRuleApplicableΠ,C :
L × allMSRules → {true, false} to decide whether a membrane
structure rule g is applicable to the membrane m or not:

msRuleApplicableΠ,C(m, g)
def
= lhsΠ(g) ⊆ labAttrsMultisetΠ,C(m),

where ⊆ was used to denote multiset inclusion.
Now that applicability of a membrane structure rule can be de-

cided, it is time to describe how such a rule is applied. Define the
function labelMembranesMapΠ,C : L × H → homSet(H, 2L) to pro-
duce a mapping between some labels in H and the corresponding inner

392

Static and Dynamic Membrane Structures

membranes of a membrane:

labelMembranesMapΠ,C(m,H ′)(h)
def
= l−1(h) ∩ inner(m),

where l−1 : H → 2L provides the set of membranes labelled with a
given label: l−1(h)

def
= {m ∈ L | l(m) = h}.

Again, consider a membrane m ∈ L, one of its rules r ∈ rulesΠ(m),
and the corresponding membrane structure rule g ∈ msRuleΠ(m, r).
Define the function involvedMembranesΠ,C : L × allMSRules → 2L

to produce the set of membranes involved by the labels in left-hand
side of the membrane structure rule:

involvedMembranes(m, g)
def
=

⋃
(h,attr)∈I

map(h), where

map
def
= labelMembranesMap(m, labels),

labels
def
= {h ∈ H | ∃attr ∈ A . (h, attr) ∈ I},

I
def
= lhsΠ(g).

If g is not a membrane structure rule associated with one of the rules
of the membrane m, the function is defined to take the value ⊥:

(@r ∈ rulesΠ(m) . g = msRule(r))=⇒
involvedMembranesΠ,C(m, g)

def
=⊥ .

Suppose msRuleApplicableΠ,C(m, g) = true. In this case, define
the function applyMSRuleΠ,C(m, g) in the following way:

applyMSRuleΠ,C(m, g)
def
= (object′, (L′,∧′), l′, a′) = C ′.

If msRuleApplicableΠ,C(m, g) = false, or @r ∈ rulesΠ(m) . g =

msRule(r), applyMSRuleΠ,C(m, g)
def
=⊥.

The underlying set L′ of the new semilattice (L′, wedge) is obtained
by removing first all the membranes involved in the left-hand side of
the rule g, and all their inner membranes:

L′1
def
= L\ ({b ∈ L | ∃b′ ∈ I . b′ ≤ b}) ,

∧′1
def
= ∧\{(b′, b′′) | b′ ∈ I or b′′ ∈ I}, where

I
def
= involvedMembranesΠ,C(m, g).

393

S. Ivanov

The symbol removeMSRuleLHS will be used to refer to this opera-
tion, i.e.,

(L′1,∧′1) = removeMSRuleLHS((L,∧)).

Now, define the function reAddMembranes in the following way:

reAddMembranes(λ, i, (P,∧))
def
= (P,∧),

and the value i ∈ N is not used in this case. If the first argument α of
the function is not an empty multiset and (h, a) ∈ α, then

reAddMembranes(α, i, (P,∧))
def
=

reAddMembranes(α′, i + 1, (P ′,∧′)), where

α′ def
= α\((h, a), 1),

P ′ def
= P ∪ S′,

∧′ def
= ∧ ∪ {(m′, b) ∈ L× S | m′ ≤ m},

S′ def
= {b′i ∈ L | ∃b ∈ S . b ≤ b′},

S
def
= l−1(h) ∪ inner(m).

Thus, according to the definition,

(L′2,∧′2) = reAddMembranes(rhsΠ(g), 0, L′1)

reintroduces to the membrane structure all those membranes which
have been removed during the construction of L′1 and which are men-
tioned in the right-hand side of g, together with all their inner mem-
branes. However, in the process, unique labels are attached to each of
the new membranes, which makes it possible to actually duplicate a
membrane together with all its inner membranes.

To keep the new labellings synchronised, along with all other iden-
tities in reAddMembranes, consider the following included among the

394

Static and Dynamic Membrane Structures

definitions in this function:

bi ∈ S =⇒ l′(bi)
def
= h

and l′(bi)
def
= a,

bi ∈ S′\S =⇒ l′(bi)
def
= l(bi)

and a′(bi)
def
= a(bi),

object′(bi)
def
= object(b).

Thus, reAddMembranes also updates the labellings for the immedi-
ately inner membranes of m which are involved with the membrane
structure rule, but leaves the labellings intact for the membranes fur-
ther down the tree.

Lastly, define the function addMembranes in the following way:

addMembranes(λ, (P,∧))
def
= (P,∧)

(h, a) ∈ α =⇒
addMembranes(α, (P,∧))

def
= addMembranes(α′, (P ′,∧′)),

where α′ def
= α\{((h, l), 1)},

P ′ def
= P ∪ {mh},

∧′ def
= ∧ ∪ {(m′,mh) | m′ ∈ L

and m′ ≤ m},
mh 6∈ P.

This function adds a new symbol mh for each new label h in the right-
hand side of the membrane structure rule g. Consequently,

(L′,∧′) = addMembranes(newMems, (L′2,∧′2))
is the new semilattice, representing the underlying tree of the dynamic
membrane structure.

Again, to update the labellings of the membrane structure, the fol-
lowing definitions should be added to the definition of addMembranes:

l′(mh)
def
= h,

a′(mh)
def
= a,

object′(mh)
def
= λO.

395

S. Ivanov

Thus, the newly added membranes are labelled with default objects,
specified in the definition of the P system.

Finally, to complete the definitions of the new labellings of the
membrane structures, the following is stated:

m ∈ L0 =⇒ l′(m)
def
= l(m) and a′(m)

def
= a(m)

and object′(m)
def
= object(m).

The conclusion at this point is that applyMSRuleΠ,C formally de-
scribes the semantics of a membrane structure rule by constructing a
new configuration C ′ in the context of a P system with dynamic mem-
brane structure Π and a reference configuration C of it.

No types have been provided for applyMSRuleΠ,C and utilities used
to construct it, because it returns functions whose domains belong to
proper classes (for example, the function object′ whose domain is a
lattice) and the notations introduced in this paper are insufficient to
express this fact. This is irrelevant to the present formalisation, though.

It is now possible to move to defining an evolution step of a P system
with dynamic membrane structure. As in Subsection 3.3, only the
marking algorithm and one step of evolution will be described in detail.
This will create sufficient foundation for continuing the reasoning along
the lines shown in [8] and presents little interest in the context of this
paper.

Before describing the marking algorithm itself, note that the set of
rules employed in P system with dynamic membrane structure is par-
titioned into two sets: the rules that do not have membrane structure
rules associated, and the rules that have:

R¬µ
def
= {r ∈ R | ∃m ∈ L . r ∈ rulesΠ(m) and msRuleΠ(r) =⊥},

Rµ
def
= {r ∈ R | ∃m ∈ L . r ∈ rulesΠ(m) and msRuleΠ(r) 6=⊥}.

These two types of rules will always be treated in certain order: the
rules in R¬µ will always be analysed first.

Consider a multiset ρ of pairs rules and the corresponding mem-
branes:

ρ = {((m, r), n) | m ∈ L and r ∈ rulesΠ(m) and n ∈ N}.

396

Static and Dynamic Membrane Structures

According to the classification of rules above, split ρ into two multisets:

ρ¬µ
def
= {((m, r), n) ∈ ρ | r ∈ R¬µ},

ρµ
def
= {((m, r), n) ∈ ρ | r ∈ Rµ}.

While it is tempting to declare that the function
isApplicableMultisetΠ,C can be used to decide the applicability
of ρ¬µ, it is not exactly so since, in P systems with dynamic membrane
structures, the attributes of the membrane a rule is associated with
must also be checked. Therefore, define the following simple function
ruleApplicableΠ,C : L×R → {true, false}:

ruleApplicableΠ,C(m, r)
def
=
applyRuleΠ,C(m, r) 6= ⊥

and contextChecker(m, r)(a(m)) = true.

As usual, for r 6∈ rules(m), ruleApplicableΠ,C(m, r) =⊥. Now, if
one redefines isApplicableMultisetΠ to use ruleApplicableΠ,C instead
of checking the condition r ∈ applicableRules(Π, C), one may use
isApplicableMultisetΠ to check the applicability of ρ¬µ in a P system
with dynamic membrane structure.

The current question is how to decide the applicability of ρµ.
The answer to this question is constructed pretty much along
the same line as is isApplicableMultisetΠ,C . Define the function
ruleApplicableGΠ,C : L × R → {true, false} to return true if, for
a membrane m ∈ L and its rule r ∈ rulesΠ(m), both r and msRule(r)
are applicable (here G stands for “generalised”):

ruleApplicableGΠ,C(m, r)
def
= msRuleApplicable(m,msRule(r))

and ruleApplicableΠ,C(m, r).

As usually defined in the situations when r is not a rule associated with
the membrane m:

r 6∈ rules(m) =⇒ ruleApplicableGΠ,C(m, r)
def
=⊥ .

397

S. Ivanov

Further, if msRule(r) =⊥, for consistency,

ruleApplicableGΠ,C
def
= ruleApplicableΠ,C(m, r).

Now define the function erasePremisesG which, quite in parallel to
erasePremises and applyMSRule, produces a configuration without
the premises which made the rule r and the corresponding msRule(r)
applicable:

erasePremisesGΠ,C(m, r)
def
= (objects′, (L′,∧′), l, a), where

objects′ def
= erasePremisesΠ,C(m, r),

and (L′,∧′) is defined as follows:

(L′,∧′) def
= removeMSRulesLHSΠ,C(m, msRule(r)).

Again, r 6∈ rules(m) =⇒ erasePremisesGΠ,C(m, r)
def
=⊥.

Now, define isApplicableMSMultisetΠ to decide whether ρµ is ap-
plicable in the supplied configuration. For an empty multiset, the def-
inition is trivial:

isApplicableMSMultisetΠ(C, λ)
def
= true.

For a nonempty multiset ρµ and (m, r) ∈ ρµ:

isApplicableMSMultisetΠ(C, ρµ)
def
=

ruleApplicableGΠ,C(m, r) and isApplicableMSMultisetΠ(C ′, ρ′µ),

where C ′ def
= erasePremisesGΠ,C(m, r), ρ′µ

def
= ρµ\{(m, r)}.

Finally, the function isApplicableMultisetGΠ,C decides whether
the multiset of rules ρ is applicable in the given configuration:

isApplicableMultisetGΠ,C(ρ)
def
=

isApplicableMultisetΠ(C, ρ¬µ)
and isApplicableMSMultisetΠ(C ′, ρµ),

398

Static and Dynamic Membrane Structures

where C ′ = (object′, (L,∧), l, a) and object′ is the labelling of the mem-
brane structure with objects at which isApplicableMultisetΠ(C, λ) has
arrived.

Now, the application of an applicable multiset of rules ρ to config-
uration of P system with dynamic membrane structure is performed
in two stages. First, the multiset of rules ρ¬µ is applied as described
in Subsection 3.3. Then, the rules in ρµ are applied one by one, using
the function applyRuleGΠ,C(m, r), defined in the following way. For
r ∈ rules(m) and g = msRule(r) 6=⊥,

applyRuleGΠ,C(m, r)
def
= applyRuleΠ,C′(m, r), where

C ′ def
= applyMSRuleΠ,C(m, g).

When msRule(r) =⊥, applyRuleGΠ,C = applyRuleΠ,C . For r 6∈
rules(m), applyRuleGΠ,C

def
=⊥.

4.3 P Systems With Active Membranes

This section will show how the five types of rules in P systems with
active membranes are translated into the suggested formalism.

The rules of type (a), [a → v]eh, will be translated to rules in R¬µ,
whose context checkers will assure check the charge of the containing
membrane.

The rules of type (b), a[]e1
h → [b]e2

h , will be modelled in the following
way. All parent membranes of h will have a rule which will take an
instance of a and will place it into the membrane h: a → (a, h). The
corresponding membrane structure rule will be (h, e1) → (h, e2).

Similarly, for the rules of type (c), [a]e1
h → []e2

h b, the parent mem-
brane of h will contain a rule (a, h) → b, with the corresponding mem-
brane structure rule being again (h, e1) → (h, e2).

For the dissolution rules of type (d), [a]eh → b, the system will
include a rule a → b, for which buildInput will fetch the whole mul-
tiset contained in the inner membrane h, so that the contents of this
membrane get merged with the contents of the parent membrane. The
associated membrane structure rule will be (h, e) → λ.

399

S. Ivanov

Finally, for the division rules of type (e), [a]e1
h → [b]e2

h [c]e3
h , the

parent membrane of h will contain a rule (a, h) → (b, h)(c, h) with the
corresponding membrane structure rule (h, e1) → (h, e2)(h, e3). The
function provided by outputBuilder for such a rule will take care of
distributing the symbols b and c across the compartments in the correct
order.

Note that, in this setup, the rules which do not have membrane
structure rules associated, are applied first, just required by the defini-
tion of a P system with active membranes (Chapter 11 of [4]).

5 Conclusion

Instead of focusing on certain kinds of P systems, constructed by com-
bining membrane structures with a certain type of rules, this paper has
brought attention to the membrane structures themselves, as separate
objects of study. This approach was motivated by the observation that
it has become quite popular with researchers in the domain of com-
putational devices to combine a known type of rules with membrane
structures. A generalisation of membrane structures was provided in
terms of algebraic structures and mappings and a number of known
concrete P systems models were shown to be covered by the introduced
formalisation.

Importantly enough, the constructs suggested in this paper do not
focus on the nature of the rules on which the membrane structure acts.
In fact, only some basic statements are made about the rules and the
objects placed in the compartments of the membrane structure. This
makes it possible to fit the majority of known P system models in the
suggested formalisation.

Even more importantly, it turns out that membrane structures can
indeed be quite easily separated from the rules associated with the
membranes. Static membrane structures turned out to be simpler to
factor out than dynamic membrane structures, a lot less additional
constructions are required in the former case. However, as visible in
Subsection 4.3, actually fitting a P system model with active mem-
branes in the suggested formalisation is fairly straightforward. In fact,

400

Static and Dynamic Membrane Structures

the majority of rules shown in [9] can be fit into the constructions
shown in this paper.

A remarkable feature of the formalised models suggested in the
present work is that they are rather considerably narrowed down to
cover as little as possible extra capabilities. As different from the pow-
erful, generalised interaction rules shown in [8], the constructions in
this paper only allow for tree-like membrane structures, with commu-
nication limited to the parent membranes and the immediately inner
membranes.

While the formalisations exposed in this paper may not themselves
come to know wide usage, the point of view will hopefully make more
researchers consider membrane structures without the context of con-
crete P system models. There are two major reasons motivating such
a shift of perspective. The first reason is that membrane structures are
not just trees, as it has been shown in this paper, and have the full
right to be studied on their own. The second reason is that such a view
on membrane structures opens further possibilities for placing different
types of rules in compartments and thus obtaining a potential plethora
of results.

References

[1] Gh. Păun. Computing with membranes. TUCS Report 208, Turku
Center for Computer Science, 1998.

[2] Gh. Păun. Membrane Computing. An Introduction. Springer-
Verlag, 2002.

[3] M. J. Pérez-Jiménez, F. Sancho-Caparrini. A formalization of
transition P Systems. Fundamenta Informaticae – Membrane com-
puting, Volume 49 Issue 1, January 2002.

[4] Gh. Păun, G. Rozenberg, A. Salomaa, Eds. The Oxford Handbook
of Membrane Computing. Oxford University Press, 2010.

401

S. Ivanov

[5] A. Krassovitskiy, Yu. Rogozhin, S. Verlan. Computational power
of insertion-deletion (P) systems with rules of size two. Journal
Natural Computing, Volume 10 Issue 2, June 2011.

[6] B. A. Davey, H. A. Priestley. Introduction to Lattices and Order
(second ed.). Cambridge University Press, 2002.

[7] Eric W. Weisstein. Tree. From MathWorld – A Wolfram Web Re-
source, http://mathworld.wolfram.com/Tree.html.

[8] R. Freund and S. Verlan. A Formal Framework for Static (Tissue)
P Systems. G. Eleftherakis, P. Kefalas, G. Paun, G. Rozenberg,
A., Salomaa, eds., 8th International Workshop on Membrane Com-
puting, WMC2007. vol 4860 of LNCS, 2007.

[9] E. Csuhaj-Varjú, A. Di Nola, Gh. Păun, M. J. Pérez-Jiménez, G.
Vaszil. Editing Configurations of P Systems. Fundamenta Infor-
maticae, Volume 82 Issue 1-2, July 2008.

[10] The P systems web page. http://ppage.psystems.eu/

Sergiu Ivanov, Received July 6, 2012

Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
E–mail: sivanov@math.md

University of Academy of Sciences of Moldova
Faculty of Real Sciences
Academiei 3/2, MD-2028 Chişinău, Republic of Moldova

402

Computer Science Journal of Moldova, vol.20, no.3(60), 2012

Abstracts of Doctor Habilitatus Thesis

(doctor habilitatus thesis in computer science, Chisinau, 2012)

Title: Models, algorithms and tools for database design and analysis
Author: Cotelea Vitalie
Date of defence: 18th of May, 2012
Place of defence: Academy of Economic Studies

The thesis is comprised of an introduction, four chapters, conclusions and
recommendations, bibliography (234 titles), 7 annexes and consists of 230
pages, from which 186 pages cover the main part, including 29 figures. Ob-
tained results are published in 72 scientific papers.

Keywords: Schema database design, functional dependencies, covers, nor-
mal forms, nonessential attributes, recoverable attributes, equivalence classes
of attributes, degree of acyclicity, polynomial algorithms.

The area of study refers to the design of information systems in general,
and databases in particular.

The aim of this work is to develop models and methods, techniques and
efficient algorithms that could be applied to automate the design process and
evaluation of the database schema. Achieving this goal involves the follow-
ing key objectives: to examine and analyze the characteristics of database
structures used in information systems, to determine and describe the prob-
lems which occur in the design of the database schema, investigation of the
research level and available solutions for the identified problems, analysis of
existing algorithms, presentation of scientific arguments, models, techniques,
algorithms, their implementation and application in testing.

The scientific novelty and originality of obtained results consists of the
presented models, methods, techniques and algorithms which are essentially
new or are improving existing tools necessary for the design and analysis of
database schemas. All these results have a direct contribution to the shaping
of a direction of research - elaboration of adaptable databases, adaptable to
changing environment in which it activates.

The theoretical signification of research presented in this thesis consists
of the proved theoretical foundations of modeling and design techniques and
analysis of schemes.

Solved scientific problems include: tools of functional dependencies effi-
cient inference; techniques and algorithms to design schemes that satisfy a
number of desirable features; model of attributes that dictate the behavior of
relational schemes; techniques and polynomial algorithms for testing of the

403

degree of database normalization; efficient heuristic detection methods of de-
terminants in database schemes; techniques and models for analysis of acyclic
schemes and their adjustment in order to obtain desired and more efficient
characteristics.

The practical value of the work : proposed algorithms in this thesis can
be used to automate the design process of databases, create feasible and ad-
justable to changes databases. The results are of practical importance because
software products are extensible and allow their integration in various appli-
cation fields.

The scientific results of the work are implemented in several projects de-
veloped by the IT company Estcomputer SRL and in computer assisted train-
ing of students of the Academy of Economic Studies of Moldova and of the
Technical University of Moldova.

Vitalie COTELEA is Associate Professor at Faculty of Cybernetics,
Statistics and Economic Informatics from the Academy of Economic Studies
of Moldova. He is the author and co-author of over 100 scientific works,
including two monographs and more than 10 books. His work focuses on
Databases and Information Systems Design and Declarative Programming.
He has graduated the Faculty of Mathematics and Cybernetics in 1974 of
State University of Moldova, Chisinau. He holds a PhD diploma in Computer
Science from 1988 of Kiev State University, Ukraine. He defended the Doctor
Habilitatus Thesis in Computer Science on the 18th of May 2012.

404

	1.Toward the Soundness of Sense Structure.pdf
	2.Graobner Basis Approach to Some
	3.References and arrow notation instead
	4.Basics of Intensionalized Data_Presets_Sets
	5.P systems based on tag operations
	6.Static and Dynamic Membrane Structures
	7.Abstracts of Doctor Habilitatus Thesis

