
BULETINUL ACADEMIEI DE ŞTIINŢE
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Abstract. In this article we survey new developments which occurred during the past ten

years on planar polynomial differential equations, developments based on the theory of algebraic

invariants founded by C. S. Sibirschi for such systems.

In 2003 on the occasion of the 75th birthday of C. S. Sibirschi, my article entitled
”The mathematical legacy of C. S. Sibirsky, basis for future work” appeared in the
Bulletin of the Academy of Sciences of Moldova [29]. Ten years have since passed
and it is now time to cast a glance over the work based on Sibisrchi’s mathematical
legacy which has been done in these years. On the occasion of the 85th anniversary
of his birthday this year, there cannot be a better way of honoring his memory
than by showing that the field founded by him, the invariant theory of polynomial
differential equations, is an active area of research today and that many new results
were obtained during these past ten years in this area.

Planar polynomial differential equations are systems of the form:

(S)
dx

dt
= p(x, y),

dy

dt
= q(x, y), (1)
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where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R. We call degree of
a system (1) the integer n = max(deg p, deg q). In particular we call quadratic,
respectively cubic, a differential system (1) with n = 2, respectively n = 3, and we
denote by QS the class of all quadratic systems.

Problems on polynomial differential systems are usually easy to state but ex-
tremely difficult to solve. Thus of the three famous classical problems on these
differential systems which have been open for over a hundred years, Hilbert’s 16th
problem (1900,[18]), Poincaré’s problem of the center (1885,[23]) and Poincaré’s
problem of algebraic integrability (1891,[24,25]), only the problem of the center was
solved and this only for linear and quadratic differential systems or some very partic-
ular cases of higher degrees. These problems in their general context are daunting at
this stage and for this reason let us recall the following words from Hilbert’s address
at the Paris International Congress of Mathematicians in 1900:

”In dealing with mathematical problems, specialization plays, as I believe, a still
more important part than generalization. Perhaps in most cases where we seek in
vain the answer to a question, the cause of the failure lies in the fact that problems
simpler and easier than the one in hand have been not at all or incompletely solved.”

Considering the three classical problems mentioned above, stated in the context
of general polynomial differential equations, the simplest case is clearly the quadratic
one for which the problem of the center was already solved.

At this stage however, the global study of the quadratic class is still a very hard
problem. There are several reasons which support this statement. One of them is
the elusive nature of limit cycles. Indeed, unlike singularities, limit cycles are usu-
ally very hard if not impossible to pin down and the history of their study for the
quadratic class includes some notorious errors. Another reason is the large number
of parameters involved in the study of this class. Indeed, planar quadratic differen-
tial systems depend on 12 parameters, the coefficients of the systems. On QS acts
the group of affine transformations and time homotheties and due to this action, the
study of QS ultimately depends on five parameters. To obtain the bifurcation dia-
gram for this class thus means that we have to work in this 5-dimensional topological
space which is not R

5 but a much more complicated space.

The third reason for the difficulties in this study lies in the necessity to perform
complicated calculations. Indeed, consider for example the study of the bifurcation
hypersurfaces of singularities of quadratic systems. These bifurcation hypersurfaces
are algebraic but they sit in a 12-dimensional space or in a 5-dimensional space if we
use the group action. Some of these hypersurfaces are of a high degree. Finding the
singularities of these hypersurfaces means solving systems of polynomial equations
of high degrees. Also we need to know the intersection points of these hypersurfaces
and even more, namely how they intersect, in other words their intersection numbers.
Of course, studying the singularities is just the beginning. What comes afterwards
is not less complicated, namely the study of the analytic (non-algebraic) bifurcation
hypersurfaces. This is mainly done by numerical analysis.

In our work on the quadratic class (see for example [2, 20]), the computations
were done by using Mathematica, Maple or the program P4 (see [14]). There are
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also other computer programs such as Macauley 2, CoCoa and Singular. These
high level programming languages are used for Commutative Algebra and Algebraic
Geometry but some begin to be used also for Dynamical Systems. One of the
ingredients occurring in these specialized programs is the theory of Gröbner bases
and the Buchberger’s algorithm for computing them. In the future it would be
wise to appropriate these programs for problems on polynomial differential systems.
However, faced with the challenges mentioned above it seems that the computer
programs we have, come still short of expectations.

This however does not mean that we should give up. Indeed, fortunately we
can point out some achievements in the direction of computations. An example is
the successful computer program P4 (see [14]) allowing us to construct phase por-
traits and determine the nature of singularities for individual polynomial differential
systems.

The first subclass studied globally was the family of all of quadratic systems
with a center. The phase portraits for this class were obtained by N. Vulpe (see [39])
followed by the bifurcation diagram of this class (see [22,28,41]).

The next subclass studied globally, using global geometric concepts was the class
QW3 of quadratic systems with a third order weak focus (see [20]). This family
depends on two parameters. Systems in QW3 are important for Hilbert’s 16th
problem since weak foci of third order produce up to a maximum of three limit
cycles, close to the foci, in quadratic perturbations. The work on QW3 in [20] was
based on the theorem saying that no limit cycle could surround a weak focus of
third order of a quadratic system (see [19]) and on work (see [1]) done with usual
techniques which do not involve global geometric concepts. In our study [20], global
topological invariants were used for the classification.

A family which is again important for Hilbert’s 16th problem is the class QW2 of
quadratic differential systems with a weak focus of second order. Indeed, a quadratic
system with a second order weak focus could produce up to a maximum of two limit
cycles close to the focus in quadratic perturbations of the system. The study of this
family was more challenging since this is a three parameter subclass of QS, modulo
the group action. In this study both topological and polynomial invariants were
used in the classification.

So far no global studies of families of quadratic systems which depend on four or
five parameters were done, using global concepts and in particular topological and
polynomial invariants.

However a large number of articles on classification problems for quadratic fami-
lies of systems were done, but not from a global geometric viewpoint. These studies
are tied down to fixed normal forms and cannot readily be applied to other presen-
tations of the systems. They employ usual techniques which are not global, and in
particular they do not use topological and polynomial invariants. This is a major
drawback for several reasons. Firstly because the results cannot be applied in other
contexts, for different presentations (normal forms) of the systems. Secondly, in a
study several normal forms could occur but no mention is made of how the results
obtained in one specific normal form relate to those obtained in another normal
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form. There is no global viewpoint tying up the results in a single whole so as to
lead us to a global understanding of the phenomena occurring in the specific family.

In recent years progress has however been made and the mathematical tools
developed by the school of Sibirschi, the theory of polynomial invariants, played a
major role. They are important because they allow us to study a family in its full
parameter space independent of the several particular normal forms in which the
systems are presented and which are necessary for their study. In particular they al-
low us to pass easily from one normal form to another and thus glue results obtained
with respect to several such normal forms in a single global picture. Examples or
works where this approach was taken are: [30,32–37]. The family of Lotka-Volterra
differential systems is important since these systems occur in many areas of applied
mathematics. The two studies [36] and [37] of this family not only produced the only
complete and correct list of phase portraits of this family known in the literature but
also characterized each one of the phase portraits in terms of invariant conditions
with respect to the affine group and time homotheties. This was possible since the
topological study done in [37] was based on the study of all possible configurations
of invariants straight lines of this family which was done in [36]. The configuration
of invariant lines is a concept introduced by the authors and this notion turned out
to be a powerful geometric classification tool for this family. This last study was
achieved because of the series of articles [30, 32–35] where the classification of all
quadratic systems possessing invariant lines of total multiplicity at least four was
achieved.

We mentioned above subclasses of QS for which we have obtained the topological
classification and in some cases also the characterization of phase portraits in terms
of invariant conditions.

We now turn to work done on classifying the whole class QS according to a
specific feature such as for example according to their singularities. Recently the
study of the whole class QS according to the global geometric configurations of
singularities at infinity was completed (see [3]). This work was based on [31]. In [7],
Artés, Llibre and Vulpe classified QS according to their finite singularities. They did
not distinguish among the strong or weak foci, or among weak foci of various orders,
or among the strong or weak saddles. Hence this work needs to be augmented
so as to include all these distinctions which are important in the production of
limit cycles. This is going to be done within the larger frame of classifying QS with
respect to the global geometric configurations of both finite and infinite singularities.
Work in this direction has already begun. Thus in the two articles (see [4, 5]) the
global geometric configurations of both finite and infinite singularities were given for
quadratic systems having the total multiplicity mf of finite singularities less than
three. Work is now in progress for the remaining two cases, i.e. mf = 3 and mf = 4.

We pass now to the second classical problem, namely the problem of the center.
Invariant conditions with respect to the general linear group GL(2, R) were given first
by Sibirschi [38] for having quadratic systems with a center, when the center is placed
at the origin. Then the invariant conditions with respect to the group Aff (2, R) of
affine transformations were determined by Boularas, Sibirschi and Vulpe [12] for
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having quadratic systems with a center (or two centers) arbitrarily located on the
phase plane.

Romanovski and Shafer wrote a book (see [27]) on the problem of the center
which takes a computational approach. The work of Sibirschi is cited in their book
which contains a chapter on invariants of the rotational group.

Three years ago the complete characterization of all weak singularities (foci,
centers and saddles) via invariant theory, for the family of quadratic systems was
done by Vulpe [40]. In this paper necessary and sufficient conditions for a real
quadratic system to possess a fixed number of weak singularities of a specific order
are given. The conditions are stated in terms of affine invariant polynomials in the
12-dimensional space of the coefficients. These results play an important role in the
determination of global geometric configurations of singularities mentioned above.

The third classical problem mentioned at the beginning is Poincaré’s problem
of algebraic integrability. This problem, stated by Poincaré in [25], asks for giving
necessary and sufficient conditions for a planar polynomial system (1) to have a
rational first integral. Such a system generates a foliation with singularities on the
plane such that all its leaves are algebraic. This is a special case of the theory of in-
variant algebraic curves of polynomial differential equations developed by Darboux.
Poincaré was very enthusiastic about this theory as it can be seen from the following
lines of Poincaré which appeared in [24]:

”La question de l’intégrabilité algégrique des équations différentielles du premier
ordre et du premier degré n’a pas attiré l’attention des géomètres autant qu’elle
méritait. la voie a été ouverte, il y a vingt ans, par un admirable travail de
M.Darboux;...”

In recent years the theory of Darboux has flourished and numerous new results
were obtained on algebraic curves of differential equations. The theory of polynomial
invariants has begun to intervene in some of the publications on this theme. We
only mention here some of them.

The problem of characterizing in terms of invariant polynomials the class of
quadratic systems which possess a polynomial first integral was completely solved
in [8].

The problem of determining necessary and sufficient conditions for quadratic
systems to possess a rational first integral of degree two was completely solved in
terms of polynomial invariants in [6] where the first integral is a quotient of invariant
polynomials.

In [11] the algebraic theory of invariants of differential equations is applied to
construct the first integrals for the family of real polynomial differential systems of
the form x′ = cx + dy + xCr(x, y), y′ = ex + fy + yCr(x, y), where Cr(x, y) is a real
homogeneous polynomial of degree r ≥ 1.

Within the mathematical school created by Sibirschi we observe a new direction
of studies on applications of Lie algebras to the study of differential systems. For
example we have [26] where such applications are developed. Using this theory a set
of new results for various families of systems of differential equations where obtained.
We mention here the articles [13,16,17,21].
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In conclusion we can safely say that during the ten years which have passed since
the publication of [29], a wealth of new material appeared in print in which the
invariant theory of planar polynomial differential systems founded by C. S. Sibirschi
has played a major role. This field of studies is alive and other works are now in
progress.

Acknowledgement. This work is supported by NSERC.
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Asymptotic Stability of Infinite-Dimensional
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Abstract. This paper is dedicated to the study of the problem of asymptotic stabil-
ity for general non-autonomous dynamical systems (both with continuous and discrete
time). We study the relation between different types of attractions and asymptotic
stability in the framework of general non-autonomous dynamical systems. Specially
we investigate the case of almost periodic systems, i.e., when the base (driving sys-
tem) is almost periodic. We apply the obtained results we apply to different classes
of non-autonomous evolution equations: Ordinary Differential Equations, Functional
Differential Equations (both with finite retard and neutral type) and Semi-Linear
Parabolic Equations.

Mathematics subject classification: 34D05, 34D20, 34D23, 34D45, 34K20, 34K58,
37B25, 37B55, 37C55, 37C60, 37C75, 39A11, 39C10, 39C55.
Keywords and phrases: Global attractor; non-autonomous dynamical system;
asymptotic stability,almost periodic motions, semi-linear parabolic equation.

1 Introduction

The aim of this paper is the study the problem of asymptotic stability (both
local and global) for non-autonomous differential systems. We study this problem in
the framework of general non-autonomous dynamical systems (NDS). We formulate
and prove our results for general (abstract) non-autonomous dynamical systems.
We apply the obtained results to the study the problem of asymptotic stability for
ordinary differential equations (ODEs), functional-differential equations (FDEs) and
semi-linear parabolic equations (SLPEs).

Let R := (−∞, +∞), E be a Banach space with the norm | · |, W be an open sub-
set of E containing the origin, C(R×W,E) be the space of all continuous functions
f : R×W 7→ E equipped with compact open topology.

Consider a differential equation

u′ = f(t, u), (1)

where f ∈ C(R×W,E). Denote by (C(R×W,E),R, σ) the shift dynamical system
[7, 14] on the space C(R × W,Rn) (dynamical system of translations or Bebutov’s
dynamical system), i.e. σ(τ, f) := fτ for any τ ∈ R and f ∈ C(R × W,E), where
fτ (t, x) := f(t + τ, x) for any (t, x) ∈ R×W .

Below we will use the following conditions:

c© David Cheban, 2013
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(A): for any (t0, x0) ∈ R+ × W equation (1) admits a unique solution x(t; t0, x0)
with initial data (t0, x0) defined on R+ := [0, +∞), i.e. x(t0; t0, x0) = x0;

(B): the right hand side f is positively compact if the set Σ+
f := {fτ : τ ∈ R+} is

a relatively compact subset of C(R×W,E);

(C): the equation
v′ = g(t, v), g ∈ Ωf (2)

is called a limiting equation for (1), where Ωf is the ω-limit set of f with
respect to the shift dynamical system (C(R × W,E),R, σ), i.e. Ωf := {g :
there exists a sequence {τk} → +∞ such that fτk

→ g as k →∞};
(D): equation (1) (or its right hand side f) is regular if for all p ∈ H+(f) the

equation
x′ = p(t, x)

admits a unique solution ϕ(t, x0, p) defined on R+ with initial condition
ϕ(0, x0, p) = x0, where H+(f) := {fτ : τ ∈ R+} and by bar the closure in
the space C(R×W,E) is denoted;

(E): equation (1) admits a null (trivial) solution, i.e. f(t, 0) = 0 for all t ∈ R+.

The null solution of equation (1) is said to be:

1. uniformly stable if for any positive number ε there exists a number δ = δ(ε)
(δ ∈ (0, ε)) such that |u| < δ implies |ϕ(t, u, fτ )| < ε for any t, τ ∈ R+;

2. uniformly attracting, if there exists a positive number a

lim
t→+∞ |ϕ(t, u, fτ )| = 0

uniformly with respect to |u| ≤ a and τ ∈ R+;

3. uniformly asymptotically stable if it is uniformly stable and uniformly attract-
ing;

4. globally asymptotically stable if it is asymptotically stable and

lim
t→+∞ |ϕ(t, v, g)| = 0

for any (v, g) ∈ E × H+(f), where ϕ(t, v, g) is a unique solution of equation
(2) with initial data ϕ(0, v, g) = v.

The main results are contained in the following three theorems. The firs two
(Theorems 1 and 2) are related to equation (1) and the third (Theorem 3) to equation
(1) with almost periodic right hand side f .

Let E be a Banach space with the norm | · |.
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Theorem 1. Let f ∈ C(R×E, E). Assume that the following conditions are fulfilled:

1. the function f is regular;

2. the set H+(f) is compact;

3. f(t, 0) = 0 for all t ∈ R+;

4. the cocycle ϕ generated by equation (1) is locally compact, i.e. for every point
u ∈ E there exists a neighborhood U of the point u and a positive number l
such that the set ϕ(l, U,H+(f)) is relatively compact.

Then the null solution of equation (1) is globally asymptotically stable if and only
if the following conditions hold:

1.
lim

t→+∞ sup
v∈K,g∈Ωf

|ϕ(t, v, g)| = 0

for every compact subset K of E;

2. for every v ∈ E and g ∈ H+(f) the solution ϕ(t, v, g) of equation (2) is
relatively compact on R+.

Theorem 1 generalizes a statement (Theorem 2.6) established in the work [2] for
finite-dimensional equation (1) (see also [13, Ch.I] and the bibliography therein).

Theorem 2. Let f ∈ C(R×E, E). Assume that the following conditions are fulfilled:

1. the function f is regular;

2. the set H+(f) is compact;

3. f(t, 0) = 0 for all t ∈ R+;

4. the cocycle ϕ generated by equation (1) is completely continuous, i.e., for ev-
ery bounded subset M ⊆ E there exists a positive number l such that the set
ϕ(l,M, H+(f)) is relatively compact.

Then the null solution of equation (1) is globally asymptotically stable if and only if
the following conditions hold:

a) for every g ∈ Ωf limiting equation (2) does not admit nontrivial bounded on R
solutions;

b) for every v ∈ E and g ∈ H+(f) the solution ϕ(t, v, g) of equation (2) is bounded
on R+.
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Recall that a function f ∈ C(R ×W,E) is called almost periodic (respectively,
almost recurrent) in t ∈ R uniformly in u on every compact subset K of W if for an
arbitrary number ε > 0 and compact subset K ⊆ W there exists a positive number
L = L(K, ε) such that on every segment [a, a + L] (a ∈ R) of the length L there
exists at least one number τ such that

max
u∈K, |t|≤1/ε

|f(t + s + τ, u)− f(t + s)| < ε

(respectively,
max

u∈K, |t|≤1/ε
|f(t + τ, u)− f(t, u)| < ε)

for all s ∈ R. If the function f ∈ C(R × W,E) is almost recurrent and H(f) :=
{fτ : τ ∈ R} is compact, then f is called recurrent (in t ∈ R uniformly in u on every
compact subset K of W ).

Theorem 3. Suppose that the following conditions are fulfilled:

1. the function f ∈ C(R ×W,E) is recurrent in t ∈ R uniformly in u on every
compact subset of W ;

2. f(t, 0) = 0 for all t ∈ R+;

3. the function f is regular;

4. the cocycle ϕ associated by equation (1) is asymptotically compact;

5. the null solution of equation (1) is uniformly stable;

6. there exists a positive number a such that

lim
t→+∞ |ϕ(t, u, f)| = 0

for any |u| ≤ a.

Then the null solution of equation (1) is asymptotically stable.

Remark 1. For finite-dimensional equation (1) with almost periodic hand right side
f Theorem 3 was established by Z. Artstein [3] (see also [1, 12] and [13, Ch.I]).

We establish also analogical results for the functional-differential equations and
for semi-linear parabolic equations.

The paper is organized as follows.
In Section 2 we collect some notions (global attractor, stability, asymptotic sta-

bility, uniform asymptotic stability, minimal set, recurrence, shift dynamical sys-
tems, cocycles, non-autonomous dynamical systems, etc) and facts from the theory
of dynamical systems which will be needed in this paper.

Section 3 is devoted to the analysis of different types of stabilities for non-
autonomous dynamical systems (NDSs). We prove that from the uniform attractiv-
ity the uniform asymptotic stability follows. It is proved that for an asymptotically



ASYMPTOTIC STABILITY OF DYNAMICAL SYSTEMS 15

compact dynamical system the asymptotic stability and the uniform asymptotic
stability are equivalent. We formulate and prove some tests of asymptotic stability
(global asymptotic stability) for infinite-dimensional NDSs (Theorem 6, Theorem 7
and Theorem 8).

In Section 4 we present some results about NDSs with minimal base (driving
system). The main result of this Section (Theorem 11) gives a sufficient condition
of global asymptotic stability for this type of systems.

Finally, Section 5 contains a series of applications of our general results from
Sections 3-4 for Ordinary Differential Equations (Theorem 12, Theorem 13 and
Theorem 14), Functional-Differential Equations (both Functional-Differential Equa-
tions with finite delay (Theorem 17, Theorem 18 and Theorem 19) and Neutral
Functional-Differential Equations (Theorem 20)) and Semi-Linear Parabolic Equa-
tions (Theorem 21, Theorem 22 and Theorem 23).

2 Some Notions and Facts from Dynamical Systems

2.1 Stable and asymptotically stable sets. Global attractors and
Levinson center

Let (X, ρ) be a complete metric space with the metric ρ, R (Z) be the group
of real (integer) numbers, R+ (Z+) be the semi-group of nonnegative real (integer)
numbers, S be one of the two sets R or Z and T ⊆ S be one of the sub-semigroups
R+ (respectively, Z+) or R (respectively, Z).

A triplet (X,T, π), where π : T×X → X is a continuous mapping satisfying the
following conditions: π(0, x) = x and π(s, π(t, x)) = π(s+ t, x) is called a dynamical
system. If T = R (R+) or Z (Z+), then (X,T, π) is called a group (semi-group)
dynamical system. In the case when T = R+ or R the dynamical system (X,T, π) is
called a flow, but if T ⊆ Z, then (X,T, π) is called a cascade (discrete flow).

The function π(·, x) : T → X is called a motion passing through the point x at
moment t = 0 and the set Σx := π(T, x) is called a trajectory of this motion.

A nonempty set M ⊆ X is called positively invariant (respectively, nega-
tively invariant, invariant) with respect to dynamical system (X,T, π) or, simply,
positively invariant (respectively, negatively invariant, invariant) if π(t,M) ⊆ M
(M ⊆ π(t,M), π(t,M) = M) for every t ∈ T+ := {t ∈ T : t ≥ 0}.

A closed positively invariant set (respectively, invariant set) which does not con-
tain own closed positively invariant (respectively, invariant) subset is called minimal.

Let M ⊆ X. The set
Ω(M) :=

⋂

t≥0

⋃

τ≥t

π(τ, M)

is called ω-limit for M . If the set M consists of single point x, i.e. M = {x}, then
Ω({x}) := ωx is called the ω-limits set of the point x.

The set W s(Λ), defined by the equality

W s(Λ) := {x ∈ X| lim
t→+∞ ρ(π(t, x),Λ) = 0}
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is called a stable manifold (or domain of attraction) of the set Λ ⊆ X.
The set M is called:

- orbitally stable, if for every ε > 0 there exists δ = δ(ε) > 0 such that ρ(x,M) <
δ implies ρ(π(t, x), M) < ε for all t ≥ 0;

- attracting if there exists γ > 0 such that B(M, γ) ⊂ W s(M), where B(M, γ) :=
{x ∈ X : ρ(x,M) < γ};

- asymptotically stable if it is orbital stable and attracting;

- global asymptotic stable, if it is asymptotically stable and W s(M) = X;

- uniformly attracting if there exists γ > 0 such that

lim
t→+∞ sup

x∈B(M,γ)
ρ(π(t, x),M) = 0.

The system (X,T, π) is called:

− point dissipative if there exists a nonempty compact subset K ⊆ X such that
for every x ∈ X

lim
t→+∞ ρ(π(t, x),K) = 0; (3)

− compactly dissipative if equality (3) takes place uniformly in x on the compact
subsets from X;

− locally dissipative if for any point p ∈ X there exists δp > 0 such that equality
(3) takes place uniformly in x ∈ B(p, δp);

− bounded dissipative if equality (3) holds uniformly in x on every bounded subset
of X;

− locally completely continuous (compact) if for any point p ∈ X there are two
positive numbers δp and lp such that the set π(lp, B(p, δp)) is relatively com-
pact.

Let (X,T, π) be compactly dissipative and K be a compact set attracting every
compact subset of X. Let us set

J = Ω(K). (4)

It can be shown [7, Ch.I] that the set J defined by equality (4) does not depend
on the choice of the attractor K, but it is characterized only by the properties of
the dynamical system (X,T, π) itself. The set J is called the Levinson center of the
compactly dissipative dynamical system (X,T, π).

Lemma 1 (see [8]). Let (X,T, π) be a dynamical system and x ∈ X be a point
with relatively compact semi-trajectory Σ+

x := {π(t, x) : t ≥ 0}. Then the following
statements hold:
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1. the dynamical system (X,T, π) induces on H+(x) := Σ+
x a dynamical system

(H+(x),T+, π);

2. the dynamical system (H+(x),T+, π) is compactly dissipative;

3. the Levinson center JH+(x) of (H+(x),T+, π) coincides with the ω-limit set ωx

of the point x.

2.2 Almost periodic and recurrent points (motions)

Given ε > 0, a number τ ∈ T is called an ε−shift (respectively, an ε−almost
period) of x if ρ(π(τ, x), x) < ε (respectively, ρ(π(τ + t, x), π(t, x)) < ε for all t ∈ T).

A point x ∈ X is called almost recurrent (respectively, Bohr almost periodic) if
for any ε > 0 there exists a positive number l such that in any segment of length l
there is an ε−shift (respectively, an ε−almost period) of the point x ∈ X.

If the point x ∈ X is almost recurrent and the set H(x) := {π(t, x) | t ∈ T} is
compact, then x is called recurrent.

Remark 2. Suppose that the phase space X of dynamical system (X,T, π) is not
a metric-space, but it is a pseudo metric space with the family of pseudo-metrics
P. For ε > 0 and ρ ∈ P a number τ is called (ε, ρ)-shift (respectively, (ε, ρ)-almost
period) of x ∈ X, if ρ(π(τ, x), x) < ε (respectively, ρ(π(t + τ, x), π(t, x)) < ε for
all t ∈ T). Now it is easy to modify the notion of almost recurrence (respectively,
almost periodicity, recurrence) for a pseudo-metric space.

2.3 Bebutov’s dynamical system

Let X, W be two metric spaces. Denote by C(T ×W,X) the space of all con-
tinuous mappings f : T ×W 7→ X equipped with the compact-open topology and
by σ the mapping from T×C(T×W,X) into C(T×W,X) defined by the equality
σ(τ, f) := fτ for all τ ∈ T and f ∈ C(T×W,X), where fτ is the τ -translation (shift)
of f with respect to variable t, i.e. fτ (t, x) = f(t + τ, x) for all (t, x) ∈ T × W .
Then [7, Ch.I],[15, Ch.I] the triplet (C(T × W,X),T, σ) is a dynamical system on
C(T×W,X) which is called a shift dynamical system (dynamical system of transla-
tions or Bebutov’s dynamical system).

A function f ∈ C(T×W,X) is said to be almost periodic (respectively, recurrent
in t ∈ T uniformly in x ∈ W on every compact subset of W ) if f ∈ C(T×W,X) is an
almost periodic (respectively, recurrent) point of the Bebutov’s dynamical system
(C(T×W,X),T, σ).

2.4 Cocycles

Let T1 ⊆ T2 ⊆ S be two sub-semigroups of S and (Y,T2, σ) be a dynamical
system on the metric space Y . Recall that a triplet 〈W,ϕ, (Y, T2, σ)〉 (or shortly ϕ),
where W is a metric space and ϕ is a mapping from T1 ×W × Y into W , is said to
be a cocycle over (Y,T2, σ) with the fiber W if the following conditions are fulfilled:
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1. ϕ(0, u, y) = u for all u ∈ W and y ∈ Y ;

2. ϕ(t + τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for all t, τ ∈ T1, u ∈ W and y ∈ Y ;

3. the mapping ϕ : T1 ×W × Y 7→ W is continuous.

Example 1. Consider differential equation (1) with regular right hand side f ∈
C(R×W,Rn), where W ⊆ Rn. Denote by (H+(f),R+, σ) a semi-group shift dynam-
ical system on H+(f) induced by Bebutov’s dynamical system (C(R×W,Rn),R, σ),
where H+(f) := {fτ : τ ∈ R+}. Let ϕ(t, u, g) be a unique solution of the equation

y′ = g(t, y), (g ∈ H+(f)),

then from the general properties of the solutions of non-autonomous equations it
follows that the following statements hold:

1. ϕ(0, u, g) = u for all u ∈ W and g ∈ H+(f);

2. ϕ(t + τ, u, g) = ϕ(t, ϕ(τ, u, g), gτ ) for all t, τ ∈ R+, u ∈ W and g ∈ H+(f);

3. the mapping ϕ : R+ ×W ×H+(f) 7→ W is continuous.

From above it follows that the triplet 〈W,ϕ, (H+(f),R+, σ)〉 is a cocycle over
(H+(f), R+, σ) with the fiber W ⊆ Rn. Thus, every non-autonomous equation (1)
with regular f naturally generates a cocycle which plays a very important role in the
qualitative study of equation (1).

Suppose that W ⊆ E, where E is a Banach space with the norm | · |, 0 ∈ W
(0 is the null element of E) and the cocycle 〈W,ϕ, (Y, T2, σ)〉 admits a trivial (null)
motion/solution, i.e., ϕ(t, 0, y) = 0 for all t ∈ T1 and y ∈ Y .

The trivial motion/solution of cocycle ϕ is said to be:

1. uniformly stable, if for any positive number ε there exists a number δ = δ(ε)
(δ ∈ (0, ε)) such that |u| < δ implies |ϕ(t, u, y)| < ε for all t ≥ 0 and y ∈ Y ;

2. uniformly attracting if there exists a positive number a such that

lim
t→+∞ |ϕ(t, u, y)| = 0

uniformly with respect to |u| ≤ a and y ∈ Y ;

3. uniformly asymptotically stable if it is uniformly stable and uniformly attract-
ing.
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2.5 Nonautonomous Dynamical Systems (NDS)

Recall [7] that a triplet 〈(X,T1, π), (Y,T2, σ), h〉 is said to be a nonautonomous
dynamical system (NDS), where (X,T1, π) (respectively, (Y,T2, σ)) is a dynami-
cal system on X (respectively, Y ) and h is a homomorphism from (X,T1, π) onto
(Y,T2, σ).

Below we will give some examples of nonautonomous dynamical systems which
play a very important role in the study of nonautonomous differential equations.

Example 2. (NDS generated by cocycle.) Note that every cocycle 〈W, ϕ, (Y,
T2, σ)〉 naturally generates a NDS. In fact, let X := W×Y and (X,T1, π) be a skew-
product dynamical system on X (i.e. π(t, x) := (ϕ(t, u, y), σ(t, y)) for all t ∈ T1 and
x := (u, y) ∈ X). Then the triplet 〈(X,T1, π), (Y,T2, σ), h〉, where h := pr2 : X 7→ Y
is the second projection (i.e. h(u, y) = y for all u ∈ W and y ∈ Y ), is a NDS.

Remark 3. There are Examples of NDS which are not generated by cocycles (see,
for instance, [8]).

Let (X, h, Y ) be a vector bundle [11]. Denote by θy the null element of the
vectorial space Xy := {x ∈ X : h(x) = y} and Θ := {θy : y ∈ Y } the null section
of (X, h, Y ).

A vectorial bundle (X, h, Y ) is said to be locally trivial with fiber F if for every
point y ∈ Y there exists a neighborhood U of the point y (U is an open subset of
Y containing y) such that h−1(U) and U × F are homeomorphic, i.e. there exists a
homeomorphism α : h−1(U) 7→ U × F (trivialization).

Lemma 2 (see [8]). Let (X, h, Y ) be a vector bundle and Θ be its null section.
Suppose that the following conditions hold:

1. the space Y is compact;

2. the vectorial bundle (X,h, Y ) is locally trivial.

Then the trivial section Θ is compact.

Consider a NDS 〈(X,T1, π), (Y,T2, σ), h〉 on the vector bundle (X, h, Y ). Every-
where in this paper we suppose that the null section Θ of (X, h, Y ) is a positively
invariant set, i.e. π(t, θ) ∈ Θ for all θ ∈ Θ and t ≥ 0 (t ∈ T1).

The null (trivial) section Θ of NDS 〈(X,T1, π), (Y,T2, σ), h〉 is said to be:

1. uniformly stable if for every ε > 0 there exists a δ = δ(ε) > 0 such that |x| < δ
implies |π(t, x)| < ε for all t ≥ 0 (t ∈ T1);

2. attracting if there exists a number ν > 0 such that B(Θ, ν) ⊆ W s(Θ), where
B(Θ, ν) := {x ∈ X : |x| < ν};

3. uniformly attracting if there exists a number ν > 0 such that

lim
t→+∞ sup{|π(t, x)| : |x| ≤ ν} = 0;
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4. asymptotically stable (respectively, uniformly asymptotically stable) if Θ is uni-
formly stable and attracting (respectively, uniformly attracting);

5. globally asymptotically (respectively, uniformly asymptotically) stable if
Θ is asymptotically (respectively, uniformly asymptotically) stable and
W s(Θ) = X.

3 Some Tests of Global Asymptotical Stability of NDS

Let (Y,T2, σ) be a compactly dissipative dynamical system, JY its Levinson
center and 〈(X,T1, π), (Y,T2, σ), h〉 be a NDS. Denote by X̃ := h−1(JY ) = {x ∈
X : h(x) = y ∈ JY }, then evidently the following statements are fulfilled:

1. X̃ is closed;

2. π(t, X̃) ⊆ X̃ for all t ∈ T1 and, consequently, on the set X̃ a dynamical system
(X̃,T1, π)) is induced by (X,T1, π) ;

3. the triplet 〈(X̃,T1, π), (JY ,T2, σ), h〉 is a NDS.

A dynamical system (X,T1, π) is said to be:

1. completely continuous (compact) if for every bounded subset B ⊆ X there
exists a number l = l(B) > 0 such that the set π(l,M) is relatively compact,
where π(l, M) := {π(l, x) : x ∈ M};

2. locally completely continuous (locally compact) if for every point p ∈ X there
exit positive numbers l = l(p) and δ = δ(p) such that the set π(l, B(p, δ)) is
relatively compact, where B(p, δ) := {x ∈ X : ρ(x, p) < δ};

3. asymptotically compact if for any positively invariant subset M ⊆ X there
exists a compact subset K ⊆ X such that lim

t→+∞β(π(t,M),K) = 0, where

β(A,B) := sup
a∈A

ρ(a, B) and ρ(a,B) := inf
b∈B

ρ(a, b).

Remark 4. 1. The dynamical system (X,T1, π) is completely continuous if one of
the following conditions is fulfilled:

1. the space X possesses the property of Heine-Borel, i.e. every bounded set
B ⊆ X is relatively compact;

2. for some t0 ∈ T1 the mapping πt0 : X 7→ X, defined by the equality πt0(x) :=
π(t0, x) (∀ x ∈ X) is completely continuous, i.e. for any bounded subset B of
X the set πt0(B) is relatively compact.

2. Every completely continuous dynamical system (X,T1, π) is locally completely
continuous and asymptotically compact.

3. Let (X,T, π) be a dynamical system associated by cocycle 〈(W,ϕ, (Y,T, σ)〉
and Y be a compact space. Then (X,T, π) is asymptotically compact if and only
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if for every bounded sequence {un} ⊆ W , {yn} ⊆ Y and tn → +∞ the sequence
{ϕ(tn, un, yn)} is relatively compact if it is bounded. In this case the cocycle ϕ is
called asymptotically compact.

Theorem 4 (see [8]). Let 〈(X,T1, π), (Y,T2, σ), h〉 be a NDS. Suppose that the
following conditions are fulfilled:

1. Y is compact;

2. the dynamical system (X,T1, π) is locally compact;

3. the trivial section Θ of (X,h, Y ) is positively invariant;

4. the trivial section Θ̃ of NDS 〈(X̃,T1, π), (JY ,T2, σ), h〉 is uniformly attracting.

Then the trivial section Θ of non-autonomous dynamical system 〈(X,T1, π),
(Y,T2, σ), h〉 is uniformly stable.

Remark 5. Theorem 4 remains true:

1. if we replace the condition of uniform attraction of Θ by the following one:
there exists a positive number α̃ such that for any compact subset K ⊆ B[Θ̃, α̃]
we have

lim
t→+∞ sup{|π(t, x)| : x ∈ K} = 0,

where B[M, r] := {x ∈ X : ρ(x,M) ≤ r};
2. if we replace the condition of local compactness for (X,T1, π) by the following:

there are positive numbers α and l such that the set π(l, B(Θ, α)) is relatively
compact, where B(M, r) := {x ∈ X : ρ(x,M) < r}.

Corollary 1 (see [8]). Under the conditions of Theorem 4 the trivial section Θ of
NDS 〈(X,T1, π), (Y,T2, σ), h〉 is uniformly asymptotically stable.

Theorem 5. Let 〈(X,T1, π), (Y,T2, σ), h)〉 be a NDS and the following conditions
hold:

1. the trivial section Θ of (X,h, Y ) is positively invariant;

2. Y is compact.

Then the following statements are equivalent:

a) 〈(X,T1, π), (Y,T2, σ), h)〉 is compactly dissipative and its Levinson center JX

is included in Θ;

b) the trivial section Θ is globally asymptotically stable;

c) the equality
lim

t→+∞ |π(t, x)| = 0

holds for all x ∈ X uniformly in x on every compact subset M of X.
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Proof. Suppose that condition a. is fulfilled. We will show that Θ is globally asymp-
totically stable. Under condition a. it is sufficient to show that Θ is stable. If we
suppose that it is not true, then there are ε0 > 0, 0 < δn → 0, |xn| < δn and
tn → +∞ such that

|π(tn, xn)| ≥ ε0. (5)

By Lemma 2 the set Θ is compact, then the sequence {xn} is relatively com-
pact. Since (X,T1, π) is compactly dissipative, then the sequence {π(tn, xn)} is
relatively compact. Thus, without loss of generality, we can suppose that the se-
quence {π(tn, xn)} is convergent. Denote by x̄ := lim

n→∞π(tn, xn). Then x̄ ∈ JX ⊆ Θ

and, consequently, |x̄| = 0. On the other hand, passing to limit in (5) as n →∞ we
obtain 0 = |x̄| ≥ ε0. The obtained contradiction proves our statement.

Now we will prove that condition b) implies a). Indeed, according to Theorem
3.6 [6] the set Θ is orbitally stable. By Theorem 1.13 [7, Ch.I] the dynamical system
(X,T1, π) is compactly dissipative and its Levinson center JX is included in Θ.

Suppose that condition c). is fulfilled. We will show that c. implies a). Let M
be an arbitrary compact subset of X, then by condition c). we have the following
equality

lim
t→+∞ sup

x∈M
ρ(π(t, x), Θ) = 0. (6)

In fact

ρ(π(t, x),Θ) ≤ ρ(π(t, x), θh(π(t,x))) = |π(t, x)| ≤ max
x∈M

|π(t, x)| → 0

as t → +∞. Since the sets M and Θ are compact, then by Lemma 1.3 [7, Ch.I] we
have:

1. the set Σ+
M :=

⋃{π(t, x) : t ≥ 0, x ∈ M} is relatively compact;

2. the set Ω(M) is nonempty, compact and invariant;

3.
lim

t→+∞ sup
x∈M

ρ(π(t, x), Ω(M)) = 0. (7)

From (6) and (7) we obtain Ω(M) ⊆ Θ for any compact subset M of X, i.e. the
compact subset Θ attracts every compact subset M of X. This means that the
dynamical system (X,T1, π) is compactly dissipative and, evidently, its Levinson
center JX is included in Θ, i.e. c) implies a).

Finally we will establish the implication a) ⇒ c). Suppose that it is not true,
then there are a compact subset M0 ⊆ X, a sequence {xn} ⊆ M0, tn → +∞ and
ε0 > 0 such that

|π(tn, xn)| ≥ ε0. (8)

Since (X,T1, π) is compactly dissipative and Y is compact, then without loss of
generality, we can consider that the sequences {π(tn, xn)} and {σ(tn, yn)} are con-
vergent, where yn := h(xn). Denote by ȳ = lim

n→∞σ(tn, yn) and x̄ = lim
n→∞π(tn, xn),
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then x̄ ∈ JX and h(x̄) = ȳ. Since JX ⊆ Θ, then |x̄| = 0. Taking into account the
last equality and passing to limit in (8) as n →∞ we will have ε0 ≤ 0. The obtained
contradiction proves our statement. Theorem is proved.

A continuous mapping γ : S 7→ X is called an entire motion (trajectory) of the
semi-group dynamical system (X,T, π) passing through the point x if γ(0) = x and
π(t, γ(s)) = γ(t + s) for all t ∈ T and s ∈ S.

Denote by Fx(π) the set of all entire trajectories of (X,T, π) passing through
the point x and F(π) :=

⋃
x∈X

Fx(π).

Theorem 6. Let Y be a compact metric space and (X,T1, π) be asymptotically
compact. The following statements hold:

1. if the trivial section Θ of 〈(X,T1, π), (Y,T2, σ), h)〉 is globally asymptotically
stable, then:

a) every motion of (X,T1, π) is bounded on T+
1 , i.e. sup

t∈T+
1

|π(t, x)| < +∞ for

all x ∈ X, where T+
1 := {t ∈ T1 : t ≥ 0};

b) the dynamical system (X,T1, π) does not have nontrivial entire bounded
on S motions;

2. if (X,T1, π) is locally compact, then under conditions a) and b) the trivial
section Θ of NDS 〈(X,T1, π), (Y,T2, σ), h)〉 is globally asymptotically stable.

Proof. Let Y be compact, (X,T1, π) be asymptotically compact and the trivial
section Θ of 〈(X,T1, π), (Y,T2, σ), h)〉 be globally asymptotically stable. Accord-
ing to Theorem 5 the dynamical system (X,T1, π) is compactly dissipative and
its Levinson center JX is included in Θ. Hence, every positive semi-trajectory
Σ+

x := {π(t, x) : t ≥ 0} is relatively compact and, in particular, it is bounded.
Let now γ ∈ F(π) be an arbitrary entire trajectory of dynamical system (X,T1, π)
bounded on S. Since the dynamical system (X,T1, π) is asymptotically compact,
then γ(S) is relatively compact. Taking into account that the Levinson center JX is a
maximal compact invariant set of dynamical system (X,T1, π), then γ(S) ⊆ JX ⊆ Θ.
Thus the first statement of the theorem is proved.

Now we will establish the second statement of the theorem. From condition a)
and asymptotical compactness of (X,T1, π) it follows that every semi-trajectory Σ+

x

is relatively compact and, consequently, every ω–limit set ωx (x ∈ X) is non-empty,
compact and invariant. Note that ωx ⊆ Θ. In fact, let x ∈ X and p ∈ ωx be an
arbitrary point from ωx. Since the set ωx is compact and invariant, then there exists
an entire trajectory γ ∈ Fx such that γ(S) ⊆ ωx. According to condition b. we have
γ(0) = p ∈ γ(S) ⊆ Θ. Thus we established the inclusion ΩX :=

⋃{ωx : x ∈ X} ⊆ Θ.
This means that the dynamical system (X,T1, π) is point dissipative. By Theorem
1.10 [7, Ch.I] it is also compactly dissipative. Let JX be its Levinson center and
x ∈ JX . Since JX is a compact invariant set of dynamical system (X,T1, π), then
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there exists an entire motion γ ∈ Fx such that γ(S) ⊆ JX . According to condition
b. we obtain x ∈ γ(S) ⊆ Θ and, consequently, JX ⊆ Θ. Now to finish the proof of
Theorem it is sufficient to apply Theorem 5.

Remark 6. 1. Under the conditions of Theorem 6 condition a) is equivalent to the
following one: lim

t→+∞ |π(t, x)| = 0 for all x ∈ X.-

2. It is not difficult to check that Theorem 6 remains true if we replace condition
b) by the following one:

b′) the dynamical system (X̃,T1, π) does not have nontrivial entire bounded on S
motions.

The second statement of Remark 6 directly follows from Theorem 6. In fact
if γ ∈ F(π) is a bounded on S motion of (X,T1, π), then under the conditions of
Theorem 6 the set γ(S) is relatively compact and, consequently, ν := h ◦ γ; (i.e.
ν(s) := h(γ(s)) ∀ s ∈ S) is an entire trajectory with relatively compact rank ν(S).
This means that ν(S) ⊆ JY and, consequently, γ(S) ⊆ X̃.

From Theorem 6 and Remark 4 follows the following statement follows immedi-
ately.

Corollary 2. Let 〈(X,T1, π), (Y,T2, σ), h〉 be a NDS and the following conditions
hold:

1. Y is compact;

2. the dynamical system (X,T1, π) is completely continuous.

Then the trivial section Θ is globally asymptotically stable if and only if conditions
a) and b) of Theorem 6 hold.

Remark 7. Corollary 2 was established in [4] in the particular case when (X, h, Y )
is finite-dimensional and Y is a compact and invariant set.

Theorem 7. Let 〈(X,T1, π), (Y,T2, σ), h〉 be a NDS and Y be compact. The trivial
section Θ of 〈(X,T1, π), (Y,T2, σ), h〉 is globally asymptotically stable if and only if
the following conditions hold:

1. the trivial section Θ̃ of 〈(X̃,T1, π), (JY ,T2, σ), h〉 is globally asymptotically sta-
ble;

2. for any compact subset K ⊆ X the set Σ+
K is relatively compact.

Proof. Necessity. Suppose that the trivial section Θ of 〈(X,T1, π), (Y,T2, σ), h〉 is
globally asymptotically stable, then by Theorem 5 the dynamical system (X,T1, π)
is compactly dissipative and its Levinson center JX is contained in Θ. Since the
Levinson center JY of (Y,T2, σ) is its maximal compact invariant set, then the set
Θ̃ is also invariant and, consequently, JX = Θ̃. Taking into account that Θ ⊇ Θ̃ =
JX , then it is easy to check that Θ̃ is a globally asymptotically stable set of NDS
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〈(X̃,T1, π), (JY ,T2, σ), h〉. To finish the proof of the first statement it is sufficient
to note that since the dynamical system (X,T1, π) is compactly dissipative, then
by Theorem 1.5 [7, Ch.I] for every compact subset K ⊆ X the set Σ+

K is relatively
compact.

Sufficiency. Let the trivial section Θ̃ of NDS 〈(X̃,T1, π), (JY ,T2, σ), h〉 be glob-
ally asymptotically stable. By Theorem 5 the dynamical system (X̃,T1, π) is com-
pactly dissipative and its Levinson center JX̃ is included in Θ̃. Reasoning as in the
proof of the first statement of Theorem and taking into account the invariance of
the set JY we conclude that JX̃ = Θ̃. Now we will establish that the dynamical
system (X,T1, π) is also compactly dissipative. To prove this statement, according
to Theorem 1.15 [7, Ch.I], it is sufficient to establish that (X,T1, π) is point dissi-
pative. Let x be an arbitrary point of X, since the positive semi-trajectory Σ+

x of
x is relatively compact, then its ω–limit set ωx is a non-empty, compact, invariant
set, and

lim
t→+∞ ρ(π(t, x), ωx) = 0.

Note that h(ωx) ⊆ JY , since JY is a maximal compact invariant set of (Y,T2, σ),
and, consequently, ωx ⊆ X̃. On the other hand Θ̃ is a maximal compact invariant
set of (X̃,T2, σ), hence ωx ⊆ Θ̃. Thus ΩX := {ωx : x ∈ X} is a compact set,
i.e. the dynamical system (X,T1, π) is point dissipative and, consequently, it is
compactly dissipative, too. Let now JX be its Levinson center, then h(JX) ⊆ JY

and, consequently, JX ⊆ X̃. On the other hand, JX̃ = Θ̃ is a maximal compact
set of (X̃,T1, π) and, consequently, JX ⊆ Θ̃. Now we will prove that the set Θ
is uniformly stable. Suppose that it is not true, then there are δn → 0 (δn > 0),
{xn} ⊆ X and tn → +∞ such that

|xn| < δn and |π(tn, xn)| ≥ ε0 (9)

for any n ∈ N. By Lemma 2 Θ is a compact set and the dynamical system (X,T1, π)
is compactly dissipative, then without loss of generality, we can suppose that the
sequences {xn} and {π(tn, xn)} are convergent. Denote by x0 (respectively, by x̄0)
the limit of {xn} (respectively, {π(tn, xn)}). Then by (9) we have x0 ∈ Θ and
|x̄| ≥ ε0 > 0. On the other hand x̄ ∈ JX ⊆ Θ̃ and, consequently, |x̄| = 0. The
obtained contradiction proves our statement. Let now x be an arbitrary point from
X, then lim

t→+∞ |π(t, x)| = 0. In fact if we suppose the contrary, then there exist

x0 ∈ X, ε0 > 0, and tn → +∞ such that

|π(tn, x0)| ≥ ε0 (10)

for any n ∈ N. Since the semi-trajectory Σ+
x0

of x0 is relatively compact, then we
can suppose that the sequence {π(tn, x0)} is convergent. Let x̄0 be its limit, then
from (10) we have |x̄0| ≥ ε0 > 0. On the other hand, x̄0 ∈ ωx0 ⊆ JX ⊆ Θ̃ and,
consequently, |x̄0| = 0. The obtained contradiction completes the proof of the global
asymptotic stability of trivial section Θ. Theorem is proved.
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Theorem 8. Let 〈(X,T1, π), (Y,T2, σ), h〉 be a NDS, Y be compact and (X,T1, π) be
locally compact. The trivial section Θ of 〈(X,T1, π), (Y,T2, σ), h〉 is globally asymp-
totically stable if and only if the following conditions hold:

1. the trivial section Θ̃ of 〈(X̃,T1, π), (JY ,T2, σ), h〉 is globally asymptotically sta-
ble;

2. for any x ∈ X the set Σ+
x is relatively compact.

Proof. The necessity of Theorem follows from Theorem 7. To prove the sufficiency,
according to Theorem 7, it is enough to show that the set Σ+

K is relatively compact
for any compact subset K ⊆ X. To this end we note (reasoning as in the proof
of Theorem 7) that the dynamical system (X,T1, π) is point dissipative. Since
dynamical system (X,T1, π) is locally compact, then by Theorem 1.10 [7, Ch.I] this
system is also compactly dissipative. Due to Theorem 1.15 [7, Ch.I] for any compact
subset K ⊆ X the set Σ+

K is relatively compact.

Corollary 3. Let 〈(X,T1, π), (Y,T2, σ), h〉 be a NDS, Y be compact and (X,T1, π) be
completely continuous. The trivial section Θ of 〈(X,T1, π), (Y,T2, σ), h〉 is globally
asymptotically stable if and only if the following conditions hold:

1. the trivial section Θ̃ of 〈(X̃,T1, π), (JY ,T2, σ), h〉 is globally asymptotically sta-
ble;

2. for any x ∈ X the set Σ+
x is bounded.

Proof. This statement follows directly from Theorem 8. To this end it is sufficient
to note that every completely continuous dynamical system is locally compact and
every bounded semi-trajectory Σ+

x is relatively compact if (X,T1, π) is completely
continuous.

Lemma 3. Suppose that the following conditions hold:

1. 〈(X,T1, π), (Y,T2, σ), h〉 is a NDS;

2. Y is compact;

3. the trivial section Θ of (X,h, Y ) is positively invariant.

Then the following two statements are equivalent:

1. Θ is uniformly stable;

2. Θ is orbitally stable with respect to (X,T1, π).

Proof. Let Θ be uniformly stable, then it is orbitally stable with respect to (X,T1, π).
If we suppose that it is not true, then there are ε0 > 0, 0 < δn → 0, {xn} and
tn → +∞ such that

ρ(xn,Θ) < δn and ρ(π(tn, xn), Θ) ≥ ε0. (11)
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Since Θ is compact then, without loss of generality, we can suppose that the sequence
{xn} is convergent. Denote its limit by x0, then y0 = lim

n→∞ yn, where yn := h(xn).

Denote by δ0 = δ(ε0/2) a positive number chosen for ε0/2 from the uniform stability
of Θ, i.e. |x| < δ0 implies |π(t, x)| < ε0/2 for all t ≥ 0 (t ∈ T1). Since |xn| =
ρ(xn, θyn) ≤ ρ(xn, θy0) + ρ(θy0 , θyn) → 0 as n → ∞. Thus, there exists a number
n0 ∈ N such that |xn| < δ0 for all n ≥ n0 and, consequently, we obtain

|π(tn, xn)| < ε0/2. (12)

On the other hand from (11) we receive

|π(tn, xn)| ≥ ρ(π(tn, xn), Θ) ≥ ε0. (13)

The inequalities (12) and (13) are contradictory. The obtained contradiction proves
our statement.

Now we will show that from the orbital stability of Θ it follows that it is uniformly
stable. This statement may be proved using the same reasoning as in the proof of
Theorem 5.

Let M ⊂ X. Denote by D+(M) :=
⋂

ε>0

⋃{π(t, B(M, ε))|t ≥ 0}.
Theorem 9. Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous dynamical system,
Y be a compact metric space, (X,h, Y ) be a finite-dimensional vector bundle and
Θ be its null section. If Θ is uniformly stable, then the following properties are
equivalent:

1. for every ε > 0 and x ∈ X there exists a number τ = τ(ε, x) > 0 such that
|π(τ, x)| < ε;

2. for every ε > 0 and x ∈ X there exists a number l = l(ε, x) > 0 such that
|π(t, x)| < ε for any t ≥ l;

3. the dynamical system (X,T1, π) is point dissipative and ΩX ⊆ Θ;

4. ωx
⋂

Θ 6= ∅ for any x ∈ X;

5. for any ε > 0 and r > 0 there exists L = L(ε, r) > 0 such that

|π(t, x)| < ε for any t ≥ L(ε, r) and |x| ≤ r. (14)

Proof. It is easy to check that, under the conditions of Theorem, the following
implications 2. ⇐⇒ 3. ⇒ 4. ⇐⇒ 1. hold. Now we will establish the implication
4. ⇒ 3. To this end we note that by Lemma 3 the set Θ is orbitally stable and,
consequently, D+(Θ) = Θ. According to Theorem 1.13 [7, Ch.I] the dynamical
system (X,T1, π) is compactly dissipative and its Levinson center JX is included in
D+(Θ). Thus we obtain JX ⊆ Θ. Since (X,T1, π) is point dissipative and ΩX ⊆ JX

we obtain the necessary statement.
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To finish the proof of Theorem it is sufficient, for example, to show that 3. ⇐⇒ 5.
The implication 5. ⇒ 3. is evident. According to condition 3. the dynamical system
(X,T1, π) is point dissipative and ΩX ⊆ Θ. By Theorem 1.10 [7, Ch.I] the dynamical
system (X,T1, π) is compactly dissipative and JX = D+(ΩX) ⊆ Θ, since the set Θ
is uniformly stable. Since the Levinson center JX attracts every compact subset of
JX we have (14). Indeed if we suppose that it is not true, then there are ε0 > 0,
r0 > 0, {xn} and tn → +∞ such that

|xn| ≤ r0 and |π(tn, xn)| ≥ ε0 (15)

for any n ∈ N. Since Y is compact, (X, h, Y ) is finite-dimensional and (X,T1, π) is
compact dissipative, then we can suppose that the sequence {π(tn, xn)} is conver-
gent. Denote by x̄ its limit, then passing to limit in (15) we obtain |x̄| ≥ ε0 > 0. On
the other hand x̄ ∈ JX ⊆ Θ and, consequently, |x̄| = 0. The obtained contradiction
completes the proof of Theorem.

Remark 8. 1. Note that Theorem 9 remains true also for the infinite-dimensional
case too (i.e. (X, h, Y ) is infinite-dimensional) if we suppose that the dynamical
system (X,T1, π) is completely continuous.

2. Theorem 9 remains true if we replace the uniform stability of the set Θ by
the uniform stability of Θ̃ = h−1(JY )

⋂
Θ.

4 Asymptotic Stability of NDS with Minimal Base

In this section we suppose that the complete metric space Y is compact and the
dynamical system (Y,T2, σ) is minimal, i.e. every trajectory Σy := {σ(t, y) : t ∈ T2}
is dense in Y (this means that H(y) = Y for any y ∈ Y , where H(y) := Σy).

Theorem 10. Suppose that the following conditions are fulfilled:

1. the trivial section Θ is uniformly stable with respect to NDS 〈(X,T1, π),
(Y,T2, σ), h〉;

2. L+(X) = X, where L+(X) := {x ∈ X : Σ+
x is relatively compact };

3. there exists a point y0 ∈ Y such that Xs
y0

= Xy0 , where Xy := {x ∈ X : h(x) =
y} and Xs

y := {x ∈ Xy : lim
t→+∞ |π(t, x)| = 0}.

Then Xs
y = Xy for any y ∈ Y .

Proof. Suppose that there exists ỹ ∈ Y such that Xs
ỹ 6= Xỹ and let x̃ ∈ Xỹ \ Xs

ỹ .
Since Σ+

x̃ is relatively compact, then the ω-limit set ωx̃ of the point x̃ is a nonempty
compact and invariant set. According to the choice of the point x̃ there exists at
least one point x̄ ∈ ωx̃ such that |x̄| 6= 0. Let γ ∈ Fx̄(π) be an entire trajectory of
(X,T1, π) passing through the point x̄ at initial moment with the condition γ(S) ⊆
ωx̃. We will show that

α := inf
s≤0

|γ(s)| > 0. (16)
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If we suppose that (16) is not true, then there exists a sequence sn → −∞ such
that |γ(sn)| → 0 as n → ∞. Since Θ is uniformly stable then for all 0 < ε < |x̄|/2
there exists a positive number δ = δ(ε) such that |x| < δ implies the inequality
|π(t, x)| < ε for all t ≥ 0. Let n0 ∈ N be a sufficiently large number (such that
|γ(sn)| < δ for all n ≥ n0), then we have |x̄| = |π(−sn0 , γ(sn0))| < ε < |x̄|/2. The
obtained contradiction proves our statement. Denote by ν the entire trajectory of
the dynamical system (Y,T2, σ) defined by the equality ν := h◦γ, i.e. ν(s) = h(γ(s))
for all s ∈ S, then ν ∈ Fȳ(σ), where ȳ := h(x̄). Since Y is minimal, then there exists
a sequence {τn} from S such that τn → −∞ and ν(τn) → y0. Under the conditions of
Theorem, without loss of generality, we may suppose that the functional sequences
{γ(t + τn)}t∈S and {ν(t + τn)}t∈S are convergent (uniformly with respect to t on
every compact subset of S). Let γ̃ (respectively, ν̃) be the limit of the sequence
{γ(t + τn)}t∈S (respectively, {ν(t + τn)}t∈S). Then it is clear that γ̃ ∈ Fγ̃(0)(π), γ̃(S)
⊆ αγ := {z : there exists a sequence sn → −∞ such that γ(sn) → z} and |γ̃(s)| ≥ α
for all s ∈ S. On the other hand γ̃(t) = π(t, γ̃(0)) for any t ≥ 0, γ̃(0) ∈ Xy0 and,
consequently, lim

t→+∞ |π(t, γ̃(0))| = 0. The obtained contradiction completes the proof

of Theorem.

Lemma 4. Suppose that the trivial section Θ is uniformly stable with respect to
NDS 〈(X,T1, π), (Y,T2, σ), h〉. Let y0 ∈ Y be an arbitrary point, then the following
conditions are equivalent:

1. Xs
y0

= Xy0;

2. for every x ∈ Xy0 the semi-trajectory Σ+
x is relatively compact and ωx ⊆ Θ;

3. ωx
⋂

Θ 6= ∅ for any x ∈ Xy0;

4. for arbitrary ε > 0 and x ∈ Xy0 there exists a positive number τ = τ(x, ε) such
that |π(τ, x)| < ε.

Proof. Note that the implications 1. =⇒ 2. =⇒ 3. =⇒ 4. are evident. To finish the
proof of Lemma it is sufficient to show that 4. implies 1.. Indeed, let ε > 0 be an
arbitrary positive number, x ∈ X, εk := 1/k (k ∈ N), and τk be a positive number
such that |π(τk, x)| < 1/k. Denote by δ(ε) the positive number from the uniform
stability of Θ for ε (i.e. |x| < δ implies |π(t, x)| < ε for any t ≥ 0), then for the
sufficiently large k (1/k < δ) we have |π(t+ τk, x)| < ε for any t ≥ 0. Thus for ε > 0
there exists l(ε, x) > 0 such that |π(t, x)| < ε for any t ≥ l(ε, x), i.e. x ∈ Xs

y0
.

Remark 9. 1. The implications 1. =⇒ 2. =⇒ 3. =⇒ 4. are true without assumption
of uniform stability of Θ.

2. Lemma 4 remains true without compactness and minimality of Y .

From Theorem 10 and Lemma 4 we have the following statement.

Corollary 4. Suppose that the following conditions are fulfilled:
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1. the trivial section Θ is uniformly stable with respect to NDS 〈(X,T1, π),
(Y,T2, σ), h〉;

2. L+(X) = X;

3. there exists a point y0 ∈ Y such that one of the conditions 1.–4. of Lemma 4
is fulfilled.

Then Xs
y = Xy for all y ∈ Y .

Below we give a local version of Theorem 10.

Theorem 11. Suppose that the following conditions are fulfilled:

1. the dynamical system (X,T1, π) is asymptotically compact;

2. the trivial section Θ is uniformly stable with respect to NDS 〈(X,T1, π),
(Y,T2, σ), h〉;

3. there exist positive number δ0 and point y0 ∈ Y such that B(θy0 , δ0) ⊂ Xs
y0

,
where B(θy, r) := {x ∈ Xy : |x| < r}.

Then the trivial section Θ is asymptotically stable, i.e. there exists a positive
number β such that B(Θ, β) ⊂ Xs, where B(Θ, β) :=

⋃{B(θy, β) : y ∈ Y } and
Xs :=

⋃{Xs
y : y ∈ Y }.

Proof. Since Θ is uniformly stable, then there exists a positive number δ1 such that
|π(t, x)| ≤ δ0 for any t ≥ 0 and x ∈ X with |x| ≤ δ1. Let now β := min{δ0, δ1}. We
will show that B(Θ, β) ⊂ Xs. If we suppose that it is not so, then using the same
reasoning as in the proof of Theorem 10 we obtain a contradiction which proves our
statement.

Remark 10. All results of Sections 3–4 remain true if:
1. we replace the positive invariance of the trivial section Θ by the following

condition: there exists a compact positively invariant set M ⊆ X such that My :=
{x ∈ M : h(x) = y} consists of a single point for any y ∈ Y ;

2. we the compact metric space Y by an arbitrary compact regular topological
space.

5 Some Applications

5.1 Ordinary differential equations

Consider a differential equation

u′ = f(t, u), (17)

where f ∈ C(R×W,E).
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Applying general results from Sections 3-4 we will obtain a series of results for
equation (17). Below we formulate some of them.

Denote by Ωf := {g ∈ H+(f) : there exists a sequence τn → +∞ such that
g = lim

n→∞ fτn} the ω-limit set of f .

A trivial solution of equation (17) is called uniformly attracting (respectively,
eventually uniformly attracting [2]) if for every compact subset K ⊂ E and for every
ε > 0 there exists L = L(K, ε) > 0 (respectively, there exist γ = γ(K) > 0 and
L = L(K, ε) > 0) such that

x0 ∈ K, t ≥ t0 + L implies |xf (t; t0, x0)| < ε

(respectively,

x0 ∈ K, t0 ≥ γ, t ≥ t0 + L implies |xf (t; t0, x0)| < ε),

where by xf (t; t0, x0) a unique solution x(t) of equation (17) with initial data x(t0) =
x0 is denoted.

The solutions of equation (17) are said to be uniformly bounded [2] if for any
α > 0 there exists β = β(α) > 0 such that

|x0| ≤ α, t0 ∈ R+, t ≥ t0 ⇒ |xf (t; t0, x0)| ≤ β.

Lemma 5. Suppose that the following conditions are fulfilled:

1. f ∈ C(R× E,E);

2. the function f is regular;

3. the set H+(f) is compact;

4. f(t, 0) = 0 for any t ∈ R+.

Let ϕ be a cocycle, generated by equation (17) (see Example 1), then the following
statements hold:

1. if the trivial solution of equation (17) is uniformly attracting, then the trivial
solution/motion of the cocycle ϕ is uniformly attracting;

2. if the trivial solution of equation (17) is eventually uniformly attracting, then
the trivial solution/motion of the cocycle ϕ possesses the following property:

lim
t→+∞ max

x∈K,g∈Ωf

|ϕ(t, x, g)| = 0 (18)

for any compact subset K of E;

3. if the solutions of equation (17) are uniformly bounded, then the solu-
tions/motions of the cocycle ϕ are uniformly bounded, i.e. for any α > 0
there exists β = β(α) > 0 such that |x| ≤ α implies |ϕ(t, x, g)| ≤ β for any
t ∈ R+ and g ∈ H+(f).



32 DAVID CHEBAN

Proof. The first statement of Lemma is well known [14, Ch.VIII].
To prove the second statement we note that ϕ(t, x, ft0) = x(t + t0; t0, x) for any

t, t0 ∈ R+ and x ∈ E. Let now K be an arbitrary compact subset of E and ε > 0
be an arbitrary positive number. Denote by γ = γ(K) and L = L(K, ε) positive
numbers from eventually uniform attractivity of null solution for equation (17). Let
now x ∈ K and g ∈ Ωf , then there exists a sequence tn → +∞ such that ftn → g
(in the space C(R × E, E)) and, consequently, tn ≥ γ for sufficiently large n. Note
that

|ϕ(t, x, g)| = lim
n→+∞ |ϕ(t, x, ftn)| = lim

n→+∞ |xf (t + tn; tn, x)| ≤ ε (19)

for all t ≥ L(K, ε).

From (19) evidently follows (18).
Finally we will prove the third statement. Let α > 0 and β = β(α) > 0 is taken

from the uniform boundedness of the solutions of (17). Let |x| ≤ α, g ∈ H+(f) and
t ∈ R+, then there exists a sequence {tn} ⊆ R+ such that g = lim

t→+∞ ftn . Note that

|ϕ(t, x, g)| = lim
n→∞ |ϕ(t, x, ftn)| = lim

n→∞ |xf (t + tn; tn, x)| ≤ β(α).

Lemma is completely proved.

Theorem 12. Let f ∈ C(R × E, E). Assume that the following conditions are
fulfilled:

1. the function f is regular;

2. the set H+(f) is compact;

3. f(t, 0) = 0 for any t ∈ R+;

4. the cocycle ϕ generated by equation (17) is locally compact, i.e. for every point
u ∈ E there exists a neighborhood U of the point u and a positive number l
such that the set ϕ(l, U,H+(f)) is relatively compact.

Then the null solution of equation (17) is globally asymptotically stable if and only
if the following conditions hold:

1.
lim

t→+∞ sup
v∈K,g∈Ωf

|ϕ(t, v, g)| = 0 (20)

for every compact subset K of E;

2. for every v ∈ E and g ∈ H+(f) the solution ϕ(t, v, g) of equation (2) is
relatively compact on R+.
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Proof. Consider the dynamical system (H+(f),R+, σ). Since the space H+(f)
is compact, then (H+(f),R+, σ) is compactly dissipative and its Levinson cen-
ter (maximal compact invariant set) JH+(f) by Lemma 1 coincides with ω-limit
set Ωf of f . Let Y := H+(f) and (Y,R+, σ) be the shift dynamical system on
Y . Denote by X := W × Y and (X,R+, π) the skew-product dynamical system
generates by (Y,R+, σ) and cocycle ϕ, i.e. π(t, (v, g)) := (ϕ(t, v, g), σ(t, g)) for
all t ∈ R+ and (v, g) ∈ X. Now consider a non-autonomous dynamical system
〈(X,R+, π), (Y,R+, π), h〉 (h := pr2) associated with equation (17). It is easy to
check that under the conditions of Theorem 12 this NDS possesses the following
properties:

1. by Lemma 1 the dynamical system (Y,R+, σ) is compactly dissipative and its
Levinson center JY coincides with Ωf ;

2. the null section Θ of 〈(X,R+, π), (Y,R+, π), h〉 coincides with {0} × Y ;

3. Θ is a positively invariant subset of (X,R+, π);

4. according to (20) the null section Θ̃ of NDS 〈(X̃,R+, π), (JY ,R+, σ), h〉 is
uniformly attracting because |π(t, x)| = |ϕ(t, v, g)| for any t ∈ R+ and
x := (v, g) ∈ X;

5. every trajectory Σ+
(u,g) ((u, g) ∈ E × H+(f)) of the skew-product dynamical

system (X,R+, π), generated by equation (17), is relatively compact.

Now to finish the proof it is sufficient to apply Theorem 5 and Theorem 8.

Corollary 5. Let f ∈ C(R × E, E). Assume that the following conditions are
fulfilled:

1. the function f is regular;

2. the set H+(f) is compact;

3. f(t, 0) = 0 for any t ∈ R+;

4. the cocycle ϕ generated by equation (17) is locally compact;

5. the null solution of equation (17) is eventually uniformly attracting;

6. for every v ∈ E and g ∈ H+(f) the solution ϕ(t, v, g) of equation (2) is
relatively compact on R+.

Then the null solution of equation (17) is globally asymptotically stable.

Proof. This statement follows from Theorem 12. Indeed, according to Lemma 5
from the uniform eventual attraction of the null solution of equation (17) follows
condition (20). Now to finish the proof of this statement it is sufficient to apply
Theorem 12.
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Remark 11. 1. For finite-dimensional equation (17) Corollary 5 generalizes a state-
ment (Theorem 2.6) established in the work [2] (see also [13, Ch.I] and the bibliog-
raphy therein).

2. If the cocycle ϕ associated with equation (17) is asymptotically compact
(in particular if it is completely continuous), then Theorem 12 remains true if we
replace condition (ii) by the following one: for any v ∈ E and g ∈ H+(f) the solution
ϕ(t, v, g) is bounded on R+.

Theorem 13. Let f ∈ C(R × E, E). Assume that the following conditions are
fulfilled:

1. the function f is regular;

2. the set H+(f) is compact;

3. f(t, 0) = 0 for any t ∈ R+;

4. the cocycle ϕ generated by equation (17) is completely continuous, i.e. for
every bounded subset M ⊆ E there exists a positive number l such that the set
ϕ(l,M, H+(f)) is relatively compact.

Then the null solution of equation (17) is globally asymptotically stable if and only
if the following conditions hold:

a) for every g ∈ Ωf limiting equation (2) does not have nontrivial bounded on R
solutions;

b) for every v ∈ E and g ∈ H+(f) the solution ϕ(t, v, g) of equation (2) is bounded
on R+.

Proof. This statement follows from Corollary 2 and can be proved using the same
arguments as in the proof of Theorem 12.

Remark 12. Theorem 13 remains true if we replace the completely continuity by the
following two conditions:

1. the cocycle ϕ is asymptotically compact:

2. the cocycle ϕ is locally completely continuous.

Theorem 14. Suppose that the following conditions are fulfilled:

1. the function f ∈ C(R ×W,E) is recurrent in t ∈ R uniformly in u on every
compact subset from W ;

2. f(t, 0) = 0 for any t ∈ R+;

3. the function f is regular;

4. the cocycle ϕ associated with equation (17) is asymptotically compact;
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5. the null solution of equation (17) is uniformly stable;

6. there exists a positive number a such that

lim
t→+∞ |ϕ(t, u, f)| = 0

for any |u| ≤ a.

Then the null solution of equation (17) is asymptotically stable.

Proof. This statement follows directly from Theorem 11 using the same arguments
as in the proof of Theorem 12.

Remark 13. For finite-dimensional equation (17) with almost periodic right hand
side f Theorem 14 was established by Z. Artstein [3] (see also [1,12] and [13, Ch.I]).

5.2 Difference equations

Consider a difference equation

u(t + 1) = f(t, u(t)), (21)

where f ∈ C(Z×W,E).
Along with equation (21) we consider the family of equations

v(t + 1) = g(t, v(t)), (22)

where g ∈ H+(f) := {fτ : τ ∈ Z+}. Let ϕ(t, v, g) be a unique solution of equation
(22) with initial data ϕ(0, v, g) = v. Denote by (H+(f),Z+, σ) the shift dynamical
system on H+(f), then the triplet 〈W,ϕ, (H+(f),Z+, σ)〉 is a cocycle (with discrete
time) over (H+(f),Z+, σ) with the fibre W .

Applying the results from Sections 3-4 we will obtain a series of results for
difference equation (21). Below we formulate two of them.

Theorem 15. Let f ∈ C(Z × W,E). Assume that the following conditions are
fulfilled:

1. the set H+(f) is compact;

2. f(t, 0) = 0 for any t ∈ Z+;

3. there exists a neighborhood U of 0 and a positive number l such that ϕ(l, U,H+(f))
is relatively compact;

4. there exists a positive number a such that

lim
t→+∞ sup

|v|≤a,g∈Ωf

|ϕ(t, v, g)| = 0.
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Then the null solution of equation (21) is uniformly asymptotically stable.

Theorem 16. Let f ∈ C(Z × W,E). Assume that the following conditions are
fulfilled:

1. the function f ∈ C(Z+×W,E) is recurrent in t ∈ Z+ uniformly in u on every
compact subset of W ;

2. f(t, 0) = 0 for any t ∈ Z+;

3. the null solution of equation (21) is uniformly stable;

4. there exists a positive number a such that

lim
t→+∞ |ϕ(t, u, f)| = 0

for any |u| ≤ a.

Then the null solution of equation (21) is uniformly asymptotically stable.

5.3 Functional-differential equations

We will apply now the abstract theory developed in the previous Sections to the
analysis of a class of functional differential equations.

5.3.1 Functional-differential equations (FDEs) with finite delay

Let us first recall some notions and notations from [9]. Let r > 0, C([a, b],Rn)
be the Banach space of all continuous functions ϕ : [a, b] → Rn equipped with the
sup–norm. If [a, b] = [−r, 0], then we set C := C([−r, 0],Rn). Let σ ∈ R, A ≥ 0 and
u ∈ C([σ− r, σ +A],Rn). We will define ut ∈ C for any t ∈ [σ, σ +A] by the equality
ut(θ) := u(t + θ), −r ≤ θ ≤ 0. Consider a functional differential equation

u̇ = f(t, ut), (23)

where f : R× C → Rn is continuous.
Denote by C(R × C,Rn) the space of all continuous mappings f : R × C 7→ Rn

equipped with the compact open topology. On the space C(R×C,Rn) is defined (see,
for example,[7, ChI] and [15, ChI]) a shift dynamical system (C(R × C,Rn),R, σ),
where σ(τ, f) := fτ for any f ∈ C(R×C,Rn) and τ ∈ R and fτ is τ -translation of f ,
i.e. fτ (t, φ) := f(t + τ, φ) for any (t, φ) ∈ R×C. Let us set H+(f) := {fs : s ∈ R+}.

Along with equation (23) let us consider the family of equations

v̇ = g(t, vt), (24)

where g ∈ H+(f).
Below, in this subsection, we suppose that equation (23) is regular.
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Remark 14. 1. Denote by ϕ̃(t, u, f) the solution of equation (23) defined on R+

(respectively, on R) with the initial condition ϕ(0, u, f) = u ∈ C, i.e. ϕ(s, u, f)
= u(s) for any s ∈ [−r, 0]. By ϕ(t, u, f) we will denote below the trajectory of
equation (23), corresponding to the solution ϕ̃(t, u, f), i.e. the mapping from R+

(respectively, R) into C, defined by ϕ(t, u, f)(s) := ϕ̃(t + s, u, f) for any t ∈ R+

(respectively, t ∈ R) and s ∈ [−r, 0].
2. Due to item 1. of this remark, below we will use the notions of ”solution”

and ”trajectory” for equation (23) as synonymous concepts.

It is well known [5, 14] that the mapping ϕ : R+ × C × H+(f) 7→ Rn possesses
the following properties:

1. ϕ(0, v, g) = v for any v ∈ C and g ∈ H+(f);

2. ϕ(t + τ, v, g) = ϕ(t, ϕ(τ, v, g), σ(τ, g)) for any t, τ ∈ R+, v ∈ C and g ∈ H+(f);

3. the mapping ϕ is continuous.

Thus, a triplet 〈C, ϕ, (H+(f),R+, σ)〉 is a cocycle which is associated to equation
(23). Applying the results from Sections 3-4 we will obtain a series of results for
functional differential equation (23). Below we formulate some of them.

Lemma 6 (see [8]). Suppose that the following conditions hold:

1. the function f ∈ C(R× C,Rn) is regular;

2. the set H+(f) is compact;

3. the function f is completely continuous, i.e. the set f(R+ ×A) is bounded for
any bounded subset A ⊆ C.

Then the cocycle ϕ associated with (23) is completely continuous, i.e. for any
bounded subset A ⊆ W there exists a positive number l = l(A) such that the set
ϕ(l, A, H+(f)) is relatively compact in C.
Theorem 17. Let f ∈ C(R × C,Rn). Assume that the following conditions are
fulfilled:

1. the function f is regular and completely continuous;

2. the set H+(f) is compact;

3. f(t, 0) = 0 for any t ∈ R+.

Then the null solution of equation (23) is globally asymptotically stable if and
only if the following conditions hold:

a) for every a > 0
lim

t→+∞ sup
|v|≤a,g∈Ωf

|ϕ(t, v, g)| = 0; (25)
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b) for every v ∈ C and g ∈ H+(f) the solution ϕ(t, v, g) of equation (24) is
bounded on R+.

Proof. Consider the dynamical system (H+(f),R+, σ). Since the space H+(f) is
compact, then (H+(f),R+, σ) is compactly dissipative and by Lemma 1 its Levinson
center JH+(f) coincides with the ω-limit set Ωf of f . Let Y := H+(f) and (Y,R+, σ)
be the shift dynamical system on Y . Denote X := C × Y and (X,R+, π) the skew-
product dynamical system generates by (Y,R+, σ) and cocycle ϕ. Now consider a
NDS 〈(X,R+, π), (Y,R+, π), h〉 (h := pr2) associated with equation (23). It is easy
to verify that this NDS has the following properties:

1. the dynamical system (Y,R+, σ) is compact dissipative and its Levinson center
JY coincides with Ωf ;

2. the null section Θ of 〈(X,R+, π), (Y,R+, π), h〉 coincides with {0} × Y ;

3. Θ is a positively invariant subset of (X,R+, π);

4. according to (25) the null section Θ̃ of NDS 〈(X̃,R+, π), (JY ,R+, σ), h〉 is
uniformly attracting because |π(t, x)| = |ϕ(t, v, g)| for any t ∈ R+ and
x := (v, g) ∈ X;

5. according to Lemma 6 the dynamical system (X,R+, π) is completely contin-
uous;

6. every positive semi-trajectory Σ+
x of the skew-product dynamical system (X,

R+, π) is relatively compact.

Now to finish the proof it is sufficient to apply Corollary 3.

Theorem 18. Let f ∈ C(R × C,Rn). Assume that the following conditions are
fulfilled:

1. the function f is regular and completely continuous;

2. the set H+(f) is compact;

3. f(t, 0) = 0 for any t ∈ R+.

Then the null solution of equation (23) is globally asymptotically stable if and only
if the following conditions hold:

a. for every g ∈ Ωf limiting equation (24) does not have nontrivial bounded on R
solutions;

b. for every v ∈ C and g ∈ H+(f) the solution ϕ(t, v, g) of equation (24) is
bounded on R+.

Proof. This statement follows from Corollary 2 and can be proved using the same
arguments as in the proof of Theorem 17.
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Theorem 19. Suppose that the following conditions are fulfilled:

1. the function f ∈ C(R × C, C) is recurrent in t ∈ R uniformly in u on every
compact subset of C;

2. f(t, 0) = 0 for any t ∈ R+;

3. the function f is regular and completely continuous;

4. the null solution of equation (23) is uniformly stable;

5. there exists a positive number a such that

lim
t→+∞ sup

|u|≤a
|ϕ(t, u, f)| = 0.

Then the null solution of equation (23) is asymptotically stable.

Proof. This statement follows directly from Theorem 11 using the same arguments
as in the proof of Theorem 17.

5.3.2 Neutral functional-differential equations

Now consider the neutral functional-differential equation

d

dt
Dut = f(t, ut), (26)

where f ∈ C(R×C, C) is a regular function and the operator D : C 7→ Rn is atomic at
zero [9, p.67]. Like (23), equation (26) generates a NDS 〈(X,R+, π), (Y,R+, σ), h〉,
where X := C × Y, Y := H+(f), and π := (ϕ, σ).

An operator D is said to be stable if the zero solution of difference equation
Dyt = 0 is uniformly asymptotically stable (see, for example,[9, p.337]).

Lemma 7. Let H+(f) be compact. If the function f ∈ C(R × C,Rn) is com-
pletely continuous, then the NDS (X,R+, π), (Y,R, σ), h〉 generated by equation (26)
is asymptotically compact.

Proof. This statement can be proved by slight modification of the proof of Theorem
12.6.3 and Lemma 12.6.1 from [9, Ch.XII] and taking into account that Y = H+(A)
is compact.

Theorem 20. Suppose that the following conditions are fulfilled:

1. the function f ∈ C(R × C, C) is recurrent in t ∈ R uniformly in u on every
compact subset of C;

2. f(t, 0) = 0 for any t ∈ R+;

3. the function f is regular and completely continuous;
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4. the null solution of equation (26) is uniformly stable;

5. there exists a positive number a such that

lim
t→+∞ |ϕ(t, u, f)| = 0 (27)

for any |u| ≤ a.

Then the null solution of equation (26) is asymptotically stable, i.e., there exists a
positive number δ such that lim

t→+∞ |ϕ(t, v, g)| = 0 for any |v| < δ and g ∈ H+(f).

Proof. Let (X,R+, π), (Y,R, σ), h〉 be a NDS generated by equation (26). It is easy
to check that under the conditions of Theorem 20 the following statements hold:

1. the dynamical system (Y,R+, σ) is compactly dissipative and its Levinson
center JY coincides with Y = H+(f) = Ωf ;

2. the null section Θ of 〈(X,R+, π), (Y,R+, π), h〉 coincides with {0} × Y ;

3. Θ is a positively invariant subset of (X,R+, π);

4. according to (27) we have B(0f , a) ⊂ Xs
f , where 0f := (0, f), 0 is the null

element of C and B(x0, a) := {x ∈ C : |x− x0| < a};
5. according to Lemma 7 the dynamical system (X,R+, π) is asymptotically com-

pact.

Now to finish the proof of Theorem it is sufficient to apply Theorem 11.

5.4 Semi-linear parabolic equations

Let E be a Banach space, and let A : D(A) → E be a linear closed operator
with the dense domain D(A) ⊆ E.

An operator A is called [10] sectorial if for some φ ∈ (0, π/2), some M ≥ 1, and
some real a, the sector

Sa,φ := {λ : φ ≤ | arg(λ− a)| ≤ π, λ 6= a}

lies in the resolvent set ρ(A) and ‖(Iλ−A)−1‖ ≤ M |λ− a|−1 for all λ ∈ Sa,ϕ.
If A is a sectorial operator, then there exists an a1 ≥ 0 such that Re σ(A + a1I)

> 0 (σ(A) := C \ ρ(A)). Let A1 = A + a1I. For 0 < α < 1, one defines the
operator [10]

A−α
1 :=

sinπα

π

+∞∫

0

λ−α(λI + A1)−1dλ,

which is linear, bounded, and one-to-one. Set Eα := D(Aα
1 ), and let us equip the

space Eα with the graph norm |x|α := |Aα
1 x| (x ∈ E), E0 := E, and E1 := D(A).
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Then Eα is a Banach space with the norm | · |α and is densely and continuously
embedded in E.

Consider the differential equation

x′ + Ax = F (t, x), (28)

where F ∈ C(R × Eα, E) and C(R × Eα, E) is the space of all the continuous
functions equipped with compact open topology.

Along with equation (28), consider the family of equations

y′ + Ay = G(t, y), (29)

where G ∈ H+(F ) := {Fτ : τ ∈ R+}.
Recall that a function F is said to be regular if for every (v, G) ∈ Eα ×H+(F )

equation (29) admits a unique solution [10, Ch.III] ϕ(t, v, G) with initial data
ϕ(0, v, G) = v and the mapping ϕ : R+ ×Eα ×H+(F ) 7→ Eα is continuous.

Regularity conditions for F are given in Theorems 3.3.3, 3.3.4, 3.3.6, and 3.4.1
in [10, Ch.III].

Assuming that F is regular, a non-autonomous dynamical system can be as-
sociated in a natural way with equation (28). Namely, we set Y := H+(F ) and
by (Y,R+, σ) denote the dynamical system of translations on Y . Further, let
X := Eα × Y , and let (X,R+, π) be the dynamical system on X defined by the
relation πτ (v, G) = 〈ϕ(τ, v, G), Gτ 〉. Finally, by setting h = pr2 : X → Y , we obtain
the non-autonomous system 〈(X,R+, π), (Y,R+, σ), h〉 determined by equation (28).

Applying results from Sections 3-4 we obtain a series of results for evolution
equation (28). Now we will formulate some of them.

Recall that a function F ∈ C(R×Eα, E) is said to be locally Hölder continuous in
t and locally Lipschitz in x if for every (t0, x0) ∈ R×Eα there exists a neighborhood
V ((t0, x0) ∈ V ) and positive numbers L and θ such that

|F (t1, x1)− F (t2, x2)| ≤ L(|t1 − t2|θ + |x1 − x2|α)

for any (ti, xi) ∈ V (i = 1, 2).

Lemma 8. Suppose that the following conditions are fulfilled:

1. A is a sectorial operator;

2. the resolvent of operator A is compact;

3. 0 ≤ α < 1 and F ∈ C(R× Eα, E);

4. the function F is locally Hölder continuous in t and locally Lipschitz in x.

Under the conditions listed above if the function F is regular and the set H+(F )
is compact, then the cocycle ϕ associated with equation (28) is completely continuous.

Proof. This statement can be proved with the slight modification of the proof of
Theorem 3.3.6 [10, Ch.III].
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Theorem 21. Assume that the following conditions are fulfilled:

1. the function F is regular;

2. the set H+(F ) is compact;

3. F (t, 0) = 0 for any t ∈ R+;

4. 0 ≤ α < 1 and F ∈ C(R× Eα, E);

5. the function F is locally Hölder continuous in t and locally Lipschitz in x.

Then the null solution of equation (28) is globally asymptotically stable if and
only if the following conditions hold:

1.
lim

t→+∞ sup
|v|≤a,g∈Ωf

|ϕ(t, v, G)| = 0

for every a > 0;

2. for every v ∈ Eα and G ∈ H+(F ) the solution ϕ(t, v, G) of equation (28) is
bounded on R+.

Proof. Consider the dynamical system (H+(F ),R+, σ). Since the space H+(F )
is compact, then (H+(f),R+, σ) is compactly dissipative and its Levinson center
JH+(F ) coincides with the ω-limit set ΩF of F . Let Y := H+(F ) and (Y,R+, σ)
be the shift dynamical system on Y . Denote by X := Eα × Y and (X,R+, π) the
skew-product dynamical system generated by (Y,R+, σ) and cocycle ϕ. Consider a
non-autonomous dynamical system 〈(X,R+, π), (Y,R+, π), h〉 (h := pr2) associated
with equation (28). It is easy to verify that for this NDS the following properties
hold:

1. the dynamical system (Y,R+, σ) is compactly dissipative and by Lemma 1 its
Levinson center JY coincides with ΩF ;

2. the null section Θ of 〈(X,R+, π), (Y,R+, π), h〉 coincides with {0} × Y ;

3. Θ is a positively invariant subset of (X,R+, π);

4. according to (30) the null section Θ̃ of NDS 〈(X̃,R+, π), (JY ,R+, σ), h〉 is
uniformly attracting because |π(t, x)| = |ϕ(t, v, g)| for any t ∈ R+ and
x := (v, g) ∈ X;

5. by Lemma 8 the cocycle ϕ (and, consequently, the skew-product dynamical
system (X,R+, π) too) is completely continuous;

6. every positive semi-trajectory Σ+
x of the skew-product dynamical system (X,

R+, π) is relatively compact.

Now to finish the proof it is sufficient to apply Theorem 8.
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Theorem 22. Assume that the following conditions are fulfilled:

1. the function F is regular;

2. the set H+(F ) is compact;

3. F (t, 0) = 0 for any t ∈ R+;

4. 0 ≤ α < 1 and F ∈ C(R× Eα, E);

5. the function F is locally Hölder continuous in t and locally Lipschitz in x.

Then the null solution of equation (28) is globally asymptotically stable if and
only if the following conditions hold:

a. for every G ∈ ΩF limiting equation (29) does not have nontrivial bounded on
R solutions;

b. for every v ∈ C and G ∈ H+(F ) the solution ϕ(t, v, g) of equation (29) is
bounded on R+.

Proof. This statement can be proved using the same arguments as in the proof of
Theorem 21 plus applying Corollary 2.

Theorem 23. Suppose that the following conditions are fulfilled:

1. 0 ≤ α < 1 and F ∈ C(R× Eα, X);

2. the function F is locally Hölder continuous in t and locally Lipschitz in x;

3. the function F is recurrent in t ∈ R uniformly in u on every compact subset
of W ⊆ Eα;

4. F (t, 0) = 0 for any t ∈ R+;

5. the function F is regular;

6. the null solution of equation (28) is uniformly stable;

7. there exists a positive number a such that

lim
t→+∞ |ϕ(t, u, F )| = 0

for any |u| ≤ a.

Then the null solution of equation (28) is asymptotically stable.

Proof. This statement follows directly from Theorem 11 using the same arguments
as in the proof of Theorem 21.
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1 Introduction

The nonlinear differential system

dx

dt
=

∑̀

i=0

Pmi(x, y),
dy

dt
=

∑̀

i=0

Qmi(x, y) (1)

is considered, where Pmi and Qmi are homogeneous polynomials of degree mi ≥ 1
in x and y, m0 = 1. The set {1,m1,m2, ...,m`} consists of a finite number (l < ∞)
of distinct natural numbers. The coefficients and variables in polynomials Pmi and
Qmi take values from the field of the real numbers R.

It is known that if the roots of characteristic equation of the singular point O(0, 0)
of the system (1) are imaginary, then the singular point O is a center (surrounded
by closed trajectories) or a focus (surrounded by spirals) [1,5]. In this case the origin
of coordinates is a singular point of the second type.

Hereafter we denote the system (1) by s(1,m1,m2, ..., m`).
The center-focus problem can be formulated as follows: Let for the system

s(1,m1,m2, ..., m`) the origin of coordinates be a singular point of the second type
(center or focus). Find the conditions which distinguish center from focus. This
problem was posed by A.Poincaré [1,2]. The basic results were obtained by A.M.
Lyapunov [5]. It was shown that the conditions for center are the vanishing of an
infinite sequence of polynomials (focal quantities)

L1, L2, ..., Lk, ... (2)

in the coefficients of right side of the system (1). If at least one of the quantities
(2) is not zero, then the origin of coordinates for the system (1) is a focus. These
conditions are necessary and sufficient.

In the case of the system (1) from Hilbert’s theorem on the finiteness of basis of
polynomial ideals it follows that in the mentioned sequence (2) only a finite number
of conditions for center are essential, the rest are consequences of them. Then the
center-focus problem for the system (1) takes the following formulation: How many
polynomials (essential conditions for center)

Ln1 , Ln2 , ..., Lnω , ... (ni ∈ {1, 2, ..., k, ...}; i = 1, ω; ω < ∞) (3)

from (2) must be equal to zero in order that all other polynomials (2) would vanish?
The problem of determining the number ω of essential conditions for center (3)

is complicated. It is completely solved for the systems s(1, 2) and s(1, 3) [8,11], for
which we have respectively ω = 3 and 5. Until now ω has not been known for the
system s(1, 2, 3). There exists only a Zolâdek hypothesis, which is based mostly on
intuition, that for the system s(1, 2, 3) the number ω ≤ 13. To the present day
this hypothesis has not been disproved. But in [12] it is proved that for the system
s(1, 2, 3) 12 focal quantities are not enough for solving the center-focus problem in
the complex plane.



APPLICATIONS OF ALGEBRAIC METHODS TO THE CENTER-FOCUS PROBLEM 47

It is natural to ask why there is still no answer about the value of ω from (3) for
any system s(1, m1,m2, ..., m`)?

We can explain this failure as follows: searching for a finite ω from (3), till now
the researchers have used basically a known approach, i. e. with the help of certain
calculations they constructed the explicit form of the first focal quantities from (2),
without knowing a priori the number ω. Sometimes the existence of some geometric
properties for the system (1) was assumed, for example, the existence of integral
straight lines, conics and other curves. Then with their help the attempts were
made to show that the vanishing of the available quantities implies the vanishing of
other members of the sequence (2), often there was only a vague idea about their
expressions.

This approach gave quite unsatisfactory results. One of the reasons is due to the
enormous computing for focal quantities, which can not be overcome using super-
computers even for the system s(1, 2, 3), not to mention more complicated systems
s(1,m1,m2, ..., m`). Therefore, it is clear that the results obtained in this direction
refer more to the systems (1) of special forms.

From what has been said above the following conclusion can be drawn: solving
the center-focus problem is equivalent to finding the essential conditions for center
(3), that requires knowledge of the number ω, the finiteness of which follows from
Hilbert’s theorem on the finiteness of basis of polynomial ideals.

Therefore, the problem of finding the number ω < ∞ or obtaining for it an
argued numerical upper bound (even as a hypothesis), which is still absent, is a very
important condition of the complete solving of the center-focus problem for the
system (1).

The last affirmation can be considered as a generalized center-focus problem for
the systems s(1,m1,m2, ...,m`), and obtaining an answer to it will be qualified as
perhaps one of the sufficient conditions in solving the mentioned problem.

2 Graded algebras of comitants of the system (1)

In [5,6,7] the type of center-affine polynomial comitant with respect to the center-
affine group GL(2,R) for any differential system s(m0,m1,m2, ...,m`) was deter-
mined, and it is denoted as follows:

(d) = (δ, d0, d1, ..., d`), (4)

where δ is the degree of homogeneity of this comitant in phase variables x, y, and
di (i = 1, l) is the degree of homogeneity of the same comitant in the coefficients of
the polynomials Pmi(x, y), Qmi(x, y) from the right side of the system (1).

In [7] the following affirmations were proved:
Proposition 1. The set of center-affine comitants of the system (1) of the same type
(4) forms a finite linear space V

(d)
m0,m1,m2,...,m` , i. e. it has a finite maximal system of

linearly independent comitants of the given type (linear basis), all the rest are linearly
expressed trough them.
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Proposition 2. In order that any homogeneous polynomial of the type (4) in phase
variables and coefficients of the system (1) would be a center-affine comitant of this
system, it is necessary and sufficient that it be an unimodular comitant (invariant
polynomial with respect to the unimodular group SL(2,R)) of the same type (4) for
the given system.
Proposition 3. [6] For any center-affine comitant of differential system of the type
(4) the following equality holds:

2g =
∑̀

i=0

di(mi − 1)− δ, (5)

where g is usually called the weight of given comitant, and it is an integer number.
Following Propositions 1–2 and according to [7] we denote the space of unimod-

ular comitants of the type (4) for the system s(1,m1,m2, ..., m`) by

S
(d)
1,m1,m2,...,m`

∼= V
(d)
1,m1,m2,...,m`

.

Let us consider the linear space

S1,m1,m2,...,m`
=

∑

(d)

S
(d)
1,m1,m2,...,m`

, (6)

which is a graded algebra of comitants of the system s(1,m1,m2, ...,m`), where its
components satisfy the inclusion

S
(d)
1,m1,m2,...,m`

S
(e)
1,m1,m2,...,m`

⊆ S
(d+e)
1,m1,m2,...,m`

, S
(0)
1,m1,m2,...,m`

= R.

We denote by SI1,m1,m2,...,m`
a graded algebra of unimodular invariants (comi-

tants that do not depend on the phase variables x, y) of the system s(1, m1,m2, ..., m`),
which satisfies the inclusion

SI1,m1,m2,...,m`
⊂ S1,m1,m2,...,m`

. (7)

As for the first time the comitants and invariants for systems of the form (1)
were introduced by K. S. Sibirsky [14], hereafter we will refer to these and similar
algebras as Sibirsky algebras.

3 Krull dimension for Sibirsky graded algebras

From the theory of invariants and tensors [5,13] it results that the Sibirsky graded
algebras S1,m1,m2,...,m`

and SI1,m1,m2,...,m`
are commutative and finitely determined

algebras. If for these algebras we introduce a unified notation A, then the last
affirmation can be written as

A =< a1, a2, ..., am | f1 = 0, f2 = 0, ..., fn = 0 > (m,n < ∞), (8)

where ai are generators for this algebra, and fj are defining relations (syzygies).
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It is known from [7] that for the simplest differential system s(0, 1) of the form

ẋ = a + cx + dy, ẏ = b + ex + fy (9)

the finitely defined graded algebras of comitants S0,1 and invariants SI0,1 can be
written respectively

S0,1 =< i1, i2, i3, k1, k2, k3 | (i1k1 − k3)2 + k2
3 − i2k

2
1 − 2i3k2 = 0 >,

SI0,1 =< i1, i2, i3 >, (10)

where
i1 = c + f, i2 = c2 + 2de + f2, i3 = −ea2 + (c− f)ab + db2,

k1 = −bx + ay, k2 = −ex2 + (c− f)xy + dy2,

k3 = −(ea + fb)x + (ca + db)y.

(11)

We note that using the system (9) the whole theory of center-affine (unimodular)
comitants and invariants for two-dimensional polynomial differential systems can be
illustrated.
Definition 1. [15] Elements a1, a2, ..., ar of the algebra A are called algebraically
independent if for any non-trivial polynomial F in these r elements the following
inequality holds:

F (a1, a2, ..., ar) 6= 0.

Definition 2. The maximal number of algebraically independent elements of an
graded algebra A is called the Krull dimension of this algebra and is denoted by %(A).

It is known [7] that for an algebra A of the form (8) the equality n = m−
−%(A) holds. However, this equality is not very effective because it is impossible to
determine the numbers m and n for most algebras of invariants and comitants for
systems of the form (1).

In the classical theory of invariants [16] a set of elements a1, a2, ..., a%(A) from A
which define the Krull dimension of the algebra A is called an algebraic basis. This
means that for any a ∈ A (a 6= aj) there exists a natural number p such that the
following identity holds:

P0a
p + P1a

p−1 + ... + Pp = 0, (12)

where Pk (k = 0, p) are polynomials in aj (j = 1, %(A)). We note that in general
P0 6≡ 1.

If for any a ∈ A in (12) we have P0 ≡ 1, then this basis is called integer algebraic
basis. The existence a basis was shown by D.Hilbert (see [16]). We denote the
number of its elements by %′(A).

We note that in general the numbers of elements in the mentioned bases does
not always coincide. For example, from [7] we have that for the system s(4) the
Krull dimension %(SI4) = 7, but from [17] for the same system we obtain that the
number of elements in the integer algebraic basis of the same algebra is %′(SI4) = 9,



50 M.N. POPA, V.V. PRICOP

i. e. %(SI4) < %′(SI4). From [7] we have that for the system s(0, 1) the equality
%(S0,1) = %′(S0,1) = 5 holds, and %(SI0,1) = %′(SI0,1) = 3. Also from [5,6,7] and
[18] it follows that for the systems s(2) and s(3) we have %(SI2) = %′(SI2) = 3,
%(SI3) = %′(SI3) = 5. From [7] and [19] we find that for the system s(1, 2) the
equalities %(SI1,2) = %′(SI1,2) = 7 are valid. However, for the system s(1, 2, 3)
according to [7,20] we have that %(SI1,2,3) = 15, but %′(SI1,2,3) = 21.

The mentioned examples lead us to the relation

%(A) ≤ %′(A).

This inequality accentuates that the integer algebraic basis contains an algebraic
basis of an algebra A. The proof of this fact can be easily obtained by an indirect
proof.
Remark 1. The main property of an integer algebraic basis of an algebra A of
invariants is that it is the minimum number of elements of the algebra A such that
if they are equal to zero, all elements of the algebra A vanish.

Hereafter we need some evident affirmations:
Proposition 4. If B is a graded subalgebra of an algebra A, then between the Krull
dimensions of these algebras the following inequality holds:

%(B) ≤ %(A).

It is evident
Proposition 5. If the Krull dimension of an algebra A is %(A), then on any variety
V = {a = 0, b < 0} with fixed a, b ∈ A (b has no effect on the mentioned variety)
in the algebra A there are not more than %(A) algebraically independent elements
(possibly no more than %(A) elements which form an integer algebraic basis) of this
algebra.

4 Hilbert series for Sibirsky graded algebras S1,m1,m2,...,m`
and

SI1,m1,m2,...,m`

According to Proposition 1 for the spaces of the algebra S1,m1,m2,...,m`
from (5) we

have dimRS
(d)
1,m1,m2,...,m`

< ∞. Then, following [7], by the generalized Hilbert series
of the algebra S1,m1,m2,...,m`

we mean a formal series

H(S1,m1,m2,...,m`
; u, z0, z1, ..., z`) =

∑

(d)

dimRS
(d)
1,m1,m2,...,m`

uδzd0
0 zd1

1 ...zd`
` , (13)

which is said to reflect a u, z–graduation of the considered algebra.
From the definition of the algebra of invariants SI1,m1,m2,...,m`

and (13) it follows
that

H(SI1,m1,m2,...,m`
, z0, z1, ..., z`) = H(S1,m1,m2,...,m`

, 0, z0, z1, ..., z`), (14)

and the common Hilbert series will be written respectively

HS1,m1,m2,...,m`
(u) = H(S1,m1,m2,...,m`

, u, u, u, ..., u),

HSI1,m1,m2,...,m`
(z) = H(SI1,m1,m2,...,m`

, z, z, ..., z).
(15)
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The last series contain meaningfull information about asymptotic character of the
behavior of the considered algebras.

The method of construction of the generalized Hilbert series (13)–(15) for the
algebras S1,m1,m2,...,m`

and SI1,m1,m2,...,m`
was developed in [7].

For example, the generalized Hilbert series for the algebras S0,1 and SI0,1 of
unimodular comitants and invariants of the system s(0, 1) have, respectively, the
forms

H(S0,1, u, z0, z1) =
1 + uz0z1

(1− uz0)(1− z1)(1− z2
1)(1− z2

0z1)(1− u2z1)
,

H(SI0,1, z0, z1) =
1

(1− z1)(1− z2
1)(1− z2

0z1)
,

and the corresponding common Hilbert series will be written as

HS0,1(u) =
1− u + u2

(1− u)2(1− u2)(1− u3)2
, HSI0,1(z) =

1
(1− z)(1− z2)(1− z3)

.

Remark 2. We note, following [21], that the Krull dimension %(S1,m1,m2,...,m`
)

(respectively %(SI1,m1,m2,...,m`
)) of the graded algebra S1,m1,m2,...,m`

(respectively
SI1,m1,m2,...,m`

) is equal to the multiplicity of the pole of the common Hilbert se-
ries HS1,m1,m2,...,m`

(u) (respectively HSI1,m1,m2,...,m`
(z)) at the unit.

For example, considering the above mentioned common Hilbert series HS0,1(u)
and HSI0,1(z) for the Krull dimension of the algebras S0,1 and SI0,1 we obtain
%(S0,1) = 5 and %(SI0,1) = 3, respectively.

In other cases, when there is no explicit form of the common Hilbert series, but
the power series expansion is known, then we can use the following
Remark 3. Accept that the comparison of series with non-negative coefficients is
performed coefficient-wise (

∑
antn ≤ ∑

bntn ⇔ an ≤ bn; ∀n). Taking this into
account, if for commutative graded algebras A and B we have

HA(t) ≤ HB(t), (16)

then for their Krull dimensions we also have %(A) ≤ %(B).
It is also evident that if for the common Hilbert series of a commutative graded

algebra A we have

HA(t) ≤ C

(1− t)m
, (17)

where C is a fixed constant, then we obtain %(A) ≤ m.
The extended theory and bibliography about Hilbert series for graded algebras

can be found in [22].
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5 Lie algebras of operators admitted by polynomial differential
systems

It is shown in [7] that any differential system s(m0,m1,m2, ..., m`) from (1) ad-
mits a four-dimensional reductive Lie algebra L4, which consists of operators

X1 = x
∂

∂x
+ D1, X2 = y

∂

∂x
+ D2, X3 = x

∂

∂y
+ D3, X4 = y

∂

∂y
+ D4, (18)

where the differential operators D1, D2, D3, D4 are operators of the representation of
the center-affine group GL(2,R) in the space of the coefficients of the polynomials
Pmi and Qmi (i = 1, `) of the system (1).

In [7] it is proved
Theorem 1. For a polynomial k in the coefficients of the system s(m0,m1, m2, ..., m`)
from (1) and phase variables x, y to be a center-affine comitant of this system with
the weight g, it is necessary and sufficient that it satisfies the equations

X1(k) = X4(k) = −gk, X2(k) = X3(k) = 0.

With the help of this theorem and properties of rational absolute center-affine
comitants of the system (1) from [7], following the classical theory of these invariants
[16], it can be shown that for the number of elements in an algebraic basis of center-
affine comitants of the system s(m0, m1,m2, ..., m`) the following formula holds:

% = 2

(∑̀

i=0

mi + `

)
+ 1. (19)

In the theory of center-affine comitants of polynomial differential systems [6] it
is shown that if S is a semi-invariant in the center-affine comitant k, then

k = Sxδ −D3(S)xδ−1y +
1
2!

D2
3(S)xδ−2y2 + ... +

(−1)δ

δ!
Dδ

3(S)yδ, (20)

where D3 is defined in [7].
Remark 4. [6] With the help of this equality it can be shown that the center-affine
comitants k1, k2, ..., k%(Sm0,m1,m2,...,m`

) ∈ Sm0,m1,m2,...,m`
which belong to the system

s(m0,m1,m2, ..., m`) are algebraically independent if and only if their semi-invariants
are algebraically independent.

6 An invariant variety in the center-focus problem of the system
s(1, m1, m2, ..., m`)

The center-focus problem for systems of the form (1) has the following classical
formulation: for an infinite system of polynomials

{(x2 + y2)k}∞k=1 (21)
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there exists a function

U(x, y) = x2 + y2 +
∞∑

k=3

fk(x, y), (22)

where fk(x, y) are homogeneous polynomials of degree k in x, y, and such constants

L1, L2, ..., Lk, ... (2)

that the identity
dU

dt
=

∞∑

k=1

Lk(x2 + y2)k+1 (23)

(with respect to x and y) holds along the trajectories of the system

ẋ = y +
∑̀

i=1

Pmi(x, y), ẏ = −x +
∑̀

i=1

Qmi(x, y). (24)

The constants (2) are polynomials in coefficients of the system (24), and are called
focal quantities.

We note that the algebra S1,m1,m2,...,m`
for any differential system s(1,m1,m2, ..., m`),

written in the form

ẋ = cx + dy +
∑̀

i=1

Pmi(x, y), ẏ = ex + fy +
∑̀

i=1

Qmi(x, y) (25)

contains among its generators the polynomials

i1 = c + f, i2 = c2 + 2de + f2, k2 = −ex2 + (c− f)xy + dy2, (26)

which are given already in (11).
Remark 5. We note that the set

V = {i1 = c + f = 0, Discr(k2) = 2i2 − i21 < 0} (27)

is a Sibirsky invariant variety for center and focus for the system (25), because the
comitant k2 from (26) through a real center-affine transformation of the plane xOy
can be brought to the form

x2 + y2, (28)

and the system (25) can be brought to the form (24) [5], for which the roots of the
characteristic equation are imaginary, i. e. the origin of coordinates for this system
is a singular point of the second type (center or focus).

Considering Remark 5 we have
Remark 6. Taking into account the comitant k2 from (26) and the fact that its
expression through a real center-affine transformation on the invariant variety V can
be brought to the form (28), then formally this variety for the system (25) can be
written as

V = {f = −c} ∪ {c = 0, d = −e = 1}. (29)
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7 Null focal pseudo-quantity of the system (25) and relations
between the quantities Gk and the focal quantities Lk of the
system (24)

Let us consider for the system (25) the identity

[
cx + dy +

∑̀

i=1

Pmi(x, y)

]
∂U

∂x
+

[
ex + fy +

∑̀

i=1

Qmi(x, y)

]
∂U

∂y
=

∞∑

k=1

Gkk
k+1
2 ,

(30)
where

U(x, y) = k2 +
∞∑

r=3

Fr(x, y), (31)

(k2 6≡ 0 from (26)), which splits by powers of x and y into an infinite number
of algebraic equations, where the variables are the coefficients of the homogeneous
polynomials Fr(x, y) of degree r in x, y, and also the quantities G1, G2, ..., Gk, ....

For any system (25) from the identity (30) with k2 from (26) we find that the
first three equations have the following form:

x2 : e(c + f) = 0, xy : (c− f)(c + f) = 0, y2 : d(c + f) = 0.

These equalities are equivalent to one of two sets of the conditions: 1) c + f = 0;
2) e = c − f = d = 0. Since k2 6≡ 0, then, according to (26), these conditions are
equivalent to the condition c + f = 0, which is contained in the variety V from (27).

In this way from Definition 3 and formulation of the center-focus problem for the
system (24) we conclude: for Lk from (2) and Gk from (30) the following equalities
take place:

Lk = Gk|V (k = 1, 2, ...), (32)

where V is from (27).
Hereafter some concretizations for these equalities will be done.
From the above mentioned follows

Remark 7. The identity (30) with function (31) on the variety V from (27) guarantees
that the system (25) has at the origin of coordinates a singular point of the second
type (center or focus).

We denote the expression c + f , which is contained in the variety V from (27),
by

G0 ≡ i1 = c + f, (33)

and will call it the null focal pseudo-quantity. We note that G0 from (33) is a center-
affine (unimodular) invariant of the system s(1,m1, m2, ..., m`) of the type

(0, 1, 0, ..., 0︸ ︷︷ ︸).
`

To get a more clear idea about the quantities G1, G2, ..., Gk, ... from the identity (30)
with the function (31), we write the remaining equations, in which this identity is
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splitted by powers x3, x2y, xy2, y3, ... without taking into consideration the equality
i1 = c + f = 0 on the variety V.

To explain the further way of implementation of this scenario, we consider the
identity (30) with unknown constants G1, G2, ... for the example of the simplest
differential system s(1, 2) with the quadratic nonlinearities

ẋ = cx + dy + gx2 + 2hxy + ky2,

ẏ = ex + fy + lx2 + 2mxy + ny2,
(34)

with the finitely defined graded algebra of unimodular comitants S1,2 [7]. For this
algebra we write the function (31) as

U(x, y) = k2 + a0x
3 + 3a1x

2y + 3a2xy2 + a3y
3 + b0x

4 + 4b1x
3y+

+6b2x
2y2 + 4b3xy3 + b4y

4 + c0x
5 + 5c1x

4y + 10c2x
3y2+

+10c3x
2y3 + 5c4xy4 + c5y

5 + d0x
6 + 6d1x

5y + 15d2x
4y2+

+20d3x
3y3 + 15d4x

2y4 + 6d5xy5 + d6y
6 + e0x

7 + 7e1x
6y+

+21e2x
5y2 + 35e3x

4y3 + 21e5x
2y5 + 7e6xy6 + e7y

7 + f0x
8+

+8f1x
7y + 28f2x

6y2 + 56f3x
5y3 + 70f4y

4 + 56f5x
3y5+

+28f6x
2y6 + 8f7xy7 + f8y

8 + ...,

(35)

where k2 is from (26) and a0, a1, ..., f7, f8, ... are unknown constants. Then without
taking into consideration the variety V, the identity (30) along the trajectories of the
system (34) with the function (35) splits into the following systems of equations

x3 : 3ca0 + 3ea1 = 2eg − (c− f)l,

x2y : 3da0 + 3(2c + f)a1 + 6ea2 = (f − c)(g + 2m)− 2dl + 4eh,

xy2 : 6da1 + 3(2f + c)a2 + 3ea3 = (f − c)(2h + n) + 2ek − 4dm,

y3 : 3da2 + 3fa3 = (f − c)k − 2dn;

(36)

x4 : 4cb0 + 4eb1 − e2G1 = −3ga0 − 3la1,

x3y : 4db0 + 4(f + 3c)b1 + 12eb2 + 2e(c− f)G1 = −6ha0−
− 6(g + m)a1 − 6la2,

x2y2 : 12db1 + 12(c + f)b2 + 12eb3 + [2de− (c− f)2]G1 =
= −3ka0 − 3(4h + n)a1 − 3(g + 4m)a2 − 3la3,

xy3 : 12bd2 + 4(3f + c)b3 + 4eb4 + 2d(f − g)G1 = −6ka1−
− 6(h + n)a2 − 6ma3,

y4 : 4db3 + 4fb4 − d2G1 = −3ka2 − 3na3;

(37)

x5 : 5cc0 + 5ec1 = −4gb0 − 4lb1,

x4y : 5dc0 + 5(4c + f)c1 + 20ec2 = −8hb0 − 4(3g + 2m)b1−
− 12lb2,



56 M.N. POPA, V.V. PRICOP

x3y2 : 20dc1 + 10(3c + 2f)c2 + 30ec3 = −4kb0 − 4(6h + n)b1−
− 12(g + 2m)b2 − 12lb3,

x2y3 : 30dc2 + 10(2c + 3f)c3 + 20ec4 = −12kb1 − 12(2h+
+ n)b2 − 4(g + 6m)b3 − 4lb4,

xy4 : 20dc3 + 5(c + 4f)c4 + 5ec5 = −12kb2 − 4(2h + 3n)b3−
− 8mb4,

y5 : 5dc4 + 5fc5 = −4kb3 − 4nb4;

(38)

x6 : 6cd0 + 6ed1 + e3G2 = −5gc0 − 5lc1,

x5y : 6dd0 + 6(5c + f)d1 + 30ed2 + 3e2(f − c)G2 = −10hc0−
− 10(2g + m)c1 − 20lc2,

x4y2 : 30dd1 + 30(2c + f)d2 + 60ed3 + 3e[(c− f)2 − de]G2 =
= −5kc0 − 5(8h + n)c1 − 10(3g + 4m)c2 − 30lc3,

x3y3 : 60dd2 + 60(c + f)d3 + 60ed4 + (f − c)[(c− f)2−
− 6de]G2 = −20kc1 − 20(3h + n)c2 − 20(g + 3m)c3 − 20lc4,

x2y4 : 60dd3 + 30(c + 2f)d4 + 30ed5 + 3d[de− (c− f)2]G2 =
= −30kc2 − 10(4h + 3n)c3 − 5(g + 8m)c4 − 5lc5,

xy5 : 30dd4 + 6(c + 5f)d5 + 6ed6 + 3d2(f − c)G2 = −20kc3−
− 10(h + 2n)c4 − 10mc5,

y6 : 6dd5 + 6fd6 − d3G2 = −5kc4 − 5nc5;

(39)

x7 : 7ce0 + 7ee1 = −6gd0 − 6ld1,

x6y : 7de0 + 7(6c + f)e1 + 42ee2 = −12hd0 − 6(5g + 2m)d1−
− 30ld2,

x5y2 : 42de1 + 7(15c + 6f)e2 + 105ee3 = −6kd0 − 6(10h+
+ n)d1 − 60(g + m)d2 − 60ld3,

x4y3 : 105de2 + 5(28c + 21f)e3 + 140ee4 = −30kd1 − 30(4h+
+ n)d2 − 60(g + 2m)d3 − 60ld4,

x3y4 : 140de3 + 35(3c + 4f)e4 + 105ee5 = −60kd2 − 60(2h+
+ n)d3 − 30(g + 4m)d4 − 30ld5,

x2y5 : 105de4 + 7(6c + 15f)e5 + 42ee6 = −60kd3 − 60(h+
+ n)d4 − 6(g + 10m)d5 − 6ld6,

xy6 : 42de5 + 7(c + 6f)e6 + 7ee7 = −30kd4 − 6(2h + 5n)d5−
− 12md6,

y7 : 7de6 + 7fe7 = −6kd5 − 6nd6;

(40)

x8 : 8cf0 + 8ef1 − e4G3 = −7ge0 − 7le1,
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x7y : 8df0 + 8(7c + f)f1 + 56ef2 + 4e3(c− f)G3 =
= −14he0 − 14(3g + m)e1 − 42le2,

x6y2 : 56df1 + 56(3c + f)f2 + 168ef3 + 2e2[2de− 3(c− f)2]G3 =
= −7ke0 − 7(12h + n)e1 − 21(5g + 4m)e2 − 105le3,

x5y3 : 168df2 + 56(5c + 3f)f3 + 280ef4 + 4e(f − c)[3de− (c−
− f)2]G3 = −42ke1 − 42(5h + n)e2 − 70(2g + 3m)e3 − 140le4,

x4y4 : 280df3 + 280(c + f)f4 + 280ef5 + [12de(c− f)2 − 6d2e2−
− (c− f)4]G3 = −105ke2 − 35(8h + 3n)e3 − 35(3g+
+ 8m)e4 − 105le5,

x3y5 : 280df4 + 56(3c + 5f)f5 + 168ef6 + 4d(f − c)[(c− f)2−
− 3de]G3 = −140ke3 − 70(3h + 2n)e4 − 42(g + 5m)e5 − 42le6,

x2y6 : 168df5 + 56(c + 3f)f6 + 56ef7 + 2d2[2de− 3(c− f)2]G3 = −
− 105ke4 − 21(4h + 5n)e5 − 7(g + 12m)e6 − 7le7,

xy7 : 56df6 + 8(c + 7f)f7 + 8ef8 + 4d3(f − c)G3 = −42ke5−
− 14(h + 3n)e6 − 14me7,

y8 : 78df7 + 8ff8 − d4G3 = −7ke6 − 7ne7.

(41)

It is evident that the linear systems of equations (36)–(41) in variables a0, a1, a2, a3,
b0, b1, ..., b4, c0, c1, ..., c5, d0, d1, ..., d6, e0, e1, ..., e7, f0, f1, ..., f8, ..., G1, G2, G3, ... can be
extended by adding, after the last equation from (41), an infinite number of equa-
tions, obtained from the equality of coefficients of xαyβ for α + β > 8 in the identity
(30) along the trajectories of the system (34).

8 Determining the quantities G1, G2, G3 from the systems
(36)–(41) and the corresponding focal quantities

To obtain the quantity G1 we write the equations (36)–(37) in the matrix form

A1B1 = C1, (42)

where

A1 =




3c 3e 0 0 0 0 0 0 0 0
3d 3(2c+f) 6e 0 0 0 0 0 0 0
0 6d 3(2c+f) 3e 0 0 0 0 0 0
0 0 3d 3f 0 0 0 0 0 0
3g 3l 0 0 4c 4e 0 0 0 −e2

6h 6(g+m) 6l 0 4d 4(f+3c) 12e 0 0 2e(c−f)
3k 3(4h+n) 3(g+4m) 3l 0 12d 12(c+f) 12e 0 2de−(cf)2

0 6k 6(h+n) 6m 0 0 12d 4(3f+c) 4l 2d(f−c)
0 0 3k 3n 0 0 0 4d 4f −d2




,
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B1 =




a0

a1

a2

a3

b0

b1

b2

b3

b4

G1




, C1 =




2eg + (f − c)l
(f − c)(g + 2m)− 2dl + 4eh
(f − c)(2h + n) + 3ek − 4dm

(f − c)k − 2dn
0
0
0
0
0




. (43)

Sice the dimension of the matrix A1 is 9 × 10, clearly we have at least one free
parameter. Therefore choosing as a free parameter bi (i ∈ {0, 1, ..., 4}) with the help
of Cramer’s rule from the system (42) for each fixed i we obtain

G1 =
G1,i + B1,ibi

σ1,i
(44)

where G1,i, B1,i, σ1,i are polynomials in the coefficients of the system (34), and bi are
undetermined coefficients of the function U(x, y) from (35).

By studying the matrices (43) of the system (42) we conclude that G1,i from
(44) are homogeneous polynomials of degree 8 with respect to the linear part, and
of degree 2 with respect to the quadratic part of the system (34).

Because G1,i from (44) are homogeneous polynomials in the coefficients of the sys-
tem (34), then, according to [6,23], for i = 0, 1, 2, 3, 4 we can determine respectively
and isobarity

(3,−1), (2, 0), (1, 1), (0, 2), (−1, 3).

According to the formula (5) (for the system (34) and the theory of invariants of
differential systems [5,6]) it suggests that the numerators of the fractions (44) can
be coefficients in comitants of the weight −1 of the type (4, 8, 2). This means that
according to (20) with the help of the Lie differential operator D3 for the system
(34) from [7] and the numerator of the fraction (44) we obtain a redefined system of
four linear non-homogeneous differential equations

D3(G1,0 + B1,0b0) = G1,1 + B1,1b1, D3(G1,1 + B1,1b1) = −G1,2 −B1,2b2,

−D3(G1,2 + B1,2b2) = G1,3 + B1,3b3, D3(G1,3 + B1,3b3) = −G1,4 −B1,4b4
(45)

with five unknowns b0, b1, b2, b3, b4. We can note that a particular solution to this
system is b0 = b1 = b2 = b3 = b4 = 0, for which the polynomial

f ′4(x, y) = G1,0x
4 + 4G1,1x

3y + 2G1,2x
2y2 + 4G1,3xy3 + G1,4y

4 (46)

is a center-affine comitant of the system (34). This fact is also confirmed by Theorem
1 with the operators X1 −X4 from [7] for the system (34), for which

X1(f ′4) = X4(f ′4) = f ′4, X2(f ′4) = X3(f ′4) = 0.
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Similarly, one can see that another particular solution for the system (45) is given
by the following expressions:

b0 =
−e(g2 + 2hl + m2)

3c2 − 4de + 10cf + 3f2
,

b1 =
(c− f)(g2 + 2hl + m2)− 2e(gh + kl + hm + mn)

4(3c2 − 4de + 10cf + 3f2)
,

b2 =
2(c− f)(gh + kl + hm + mn)− e(h2 + 2km + n2) + d(g2 + 2hl + m2)

6(3c2 − 4de + 10cf + 3f2)
,

b3 =
(c− f)(h2 + 2km + n2) + 2d(gh + kl + hm + mn)

4(3c2 − 4de + 10cf + 3f2)
,

b4 =
d(h2 + 2km + n2)

3c2 − 4de + 10cf + 3f2
,

whose denominators are different from zero on the variety V from (27). They define
the center-affine comitant

f ′′4 (x, y) = (G1,0 + B1,0b0)x4 + 4(G1,1 + B1,1b1)x3y + 2(G1,2+

+B1,2b2)x2y2 + 4(G1,3 + B1,3b3)xy3 + (G1,4 + B1,4b4)y4.
(47)

It is evident that the differential system (45) has an infinite number of solutions
b0, b1, b2, b3, b4, which define center-affine comitants of the type (47).

In view of the above, the comitants (46)–(47) belong to the space

S
(4,8,2)
1,2 .

Remark that the comitants (46)–(47) on the variety V from (27) for the system (34)
have the following form:

f ′4(x, y)|V = f ′′4 (x, y)|V = −8L1(x2 + y2), (48)

where
L1 =

1
2

[g(l − h)− k(h + n) + m(l + n)]

is the first focal quantity of the system (34) on the invariant variety V (see [4, p. 110]).
Similarly to the previous case, for determining the quantity G2 we write the

equations (36)–(39) in the matrix form

A2B2 = C2, (49)

from which we find

G2 =
G2,i,j + B2,i,jbi + D2,i,jdj

σ2,i,j
, (i = 0, 4, j = 0, 6). (50)

By studying the matrix equality (49) we obtain that degG2,i,j = 24, and using the
system (36)–(39) we obtain that G2,i,j from (50) has the type (0, 20, 4), i. e. G2,i,j



60 M.N. POPA, V.V. PRICOP

are homogeneous polynomials of degree 20 in coefficients of the linear part and of
degree 4 in coefficients of the quadratic part of the system s(1, 2) from (34).

Computing the expressions G2,i,j for each i = 0, 4 and j = 0, 6, according to
[6,23], we obtain for their isobarity the following table:

Table 1

G2,i,j d0 d1 d2 d3 d4 d5 d6

b0 (7,-3) (6,-2) (5,-1) (4,0) (3,1) (2,2) (1,3)
b1 (6,-2) (5,-1) (4,0) (3,1) (2,2) (1,3) (0,4)
b2 (5,-1) (4,0) (3,1) (2,2) (1,3) (0,4) (-1,5)
b3 (4,0) (3,1) (2,2) (1,3) (0,4) (-1,5) (-2,6)
b4 (3,1) (2,2) (1,3) (0,4) (-1,5) (-2,6) (-3,7)

By studying the isobarity of G2,i,j top-down for each line of this table, according to
the theory of invariants of differential systems [5,6], we find that the numerators of
the fraction (50) can be coefficients in center-affine comitants with the corresponding
weights −3,−2,−1, 0, 1. Using these weights and the formula (5) for the system (34),
as well as the fact that G2,i,j have the type (0, 20, 4), we obtain that the mentioned
comitants correspond to the types

(10, 20, 4), (8, 20, 4), (6, 20, 4), (4, 20, 4), (2, 20, 4). (51)

As the quantity G2 in (30) is the coefficient in front of the homogeneity of degree
6 in the phase variables x and y, then it is logical to choose from (51) the type

(6, 20, 4), (52)

which corresponds to the expression G2,2,j (j = 0, 6) in Table 1.
This means that according to (20) using the Lie differential operator D3 for the

system (34) from [7] and the numerator of the fraction (50) for fixed i = 2, we obtain
one redefined system of six linear non-homogeneous differential equations

D3(G2,2,0 + B2,2,0b0 + D2,2,0d0) = −(G2,2,1 + B2,2,1b1 + D2,2,1d1),
−D3(G2,2,1 + B2,2,1b1 + D2,2,1d1) = G2,2,2 + B2,2,2b2 + D2,2,2d2,

D3(G2,2,2 + B2,2,2b2 + D2,2,2d2) = −(G2,2,3 + B2,2,3b3 + D2,2,3d3),
−D3(G2,2,3 + B2,2,3b3 + D2,2,3d3) = G2,2,4 + B2,2,4b4 + D2,2,4d4,

D3(G2,2,4 + B2,2,4b4 + D2,2,4d4) = −(G2,2,5 + B2,2,5b5 + D2,2,5d5),
−D3(G2,2,5 + B2,2,5b5 + D2,2,5d5) = G2,2,6 + B2,2,6b6 + D2,2,6d6,

(53)

with eight unknowns b2, d0, d1, ..., d6. From these six equations it results that the
expressions contained in them can be coefficients in comitants of the type (6, 20, 4).
Observe that obtaining an explicit form for solutions of the system (53) is a difficult
task. We will show the importance of homogeneities of G2,2,j from (50) in obtaining
the focal quantities for the system (34) on the invariant variety V for center and
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focus from (27). According to (52) the system (53) defines center-affine comitants
belonging to the space

S
(6,20,4)
1,2 . (54)

According to (20) and (53) such a comitant, belonging to this space, can be written
as

f ′6(x, y) = (G2,2,0 + B2,2,0b2 + D2,2,0d0)x6 − (G2,2,1 + B2,2,1b2 + D2,2,1d1)x5y+

+
1
2!

(G2,2,2 + B2,2,2b2 + D2,2,2d2)x4y2 − 1
3!

(G2,2,3 + B2,2,3b2 + D2,2,3d3)x3y3+

+
1
4!

(G2,2,4 + B2,2,4b2 + D2,2,4d4)x2y4 − 1
5!

(G2,2,5 + B2,2,5b2 + D2,2,5d5)xy5+

+
1
6!

(G2,2,6 + B2,2,6b2 + D2,2,6d6)y6.

Observe that on the variety V from (27) for the system (34) the expressions G2,2,j (j =
0, 6) have the following expressions:

G2,2,0|V = G2,2,2|V = G2,2,4|V = G2,2,6|V = −2304L2,

G2,2,1|V = G2,2,3|V = G2,2,5|V = 0
(55)

where

24L2 = 62g3h− 2gh3 + 95g2hk − 2h3k + 38ghk2 + 5hk3 − 62g3l+

+27gh2l − 39g2kl + 29h2kl − 15gk2l − 8ghl2 + 15hkl2 − 5gl3+

+53g2hm + 66ghkm + 13hk2m− 127g2lm− 6h2lm− 68gklm−
−15k2lm− 13hl2m− 5l3m + 6ghm2 + 6hkm2 − 63glm2 − 29klm2+

+2lm3 + 6g3n + 61gh2n + 72g2kn + 63h2kn + 33gk2n + 5k3n−
−10ghln + 68hkln− 33gl2n + 15kl2n− 72g2mn− 6h2mn+

+10gkmn + 8k2mn− 66hlmn− 38l2mn− 61gm2n− 27km2n+

+2m3n + 72ghn2 + 127hkn2 − 72gln2 + 39kln2 − 53hmn2−
−95lmn2 − 6gn3 + 62kn3 − 62mn3

is the second focal quantity of the system (34) on the invariant variety V for center
and focus (see [4, p. 110]).

Now we concentrate our attention to the construction of the quantity G3 which
is in front of the homogeneity of degree 8 in x and y in (50). Writing the system
(36)–(41) in the matrix form

A3B3 = C3,

we obtain

G3 =
G3,i,j,k + B3,i,j,kbi + D3,i,j,kdj + F3,i,j,kfk

σ3,i,j,k
, (i = 0, 4; j = 0, 6; k = 0, 8).

(56)
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Similarly to the previous case, we choose a comitant of the weight −1 of the
system s(1, 2) from (34) which contains as semi-invariant the expression G3,2,j,k +
+B3,2,j,kb2 +D3,2,j,kdj +F3,2,j,kfk (k = 0, 8), and we find that it belongs to the space

S
(8,37,6)
1,2 .

9 General type of comitants which have as coefficients expressions
with generalized focal pseudo-quantities of the system (34)

Let’s consider the extension of the system (36)–(41) obtained from the identity
(30) for the system (34) and the function (35) which contains the quantity Gk, which
we write in a matrix form as follows AkBk = Ck. We denote by mGk

the number of
equations and by nGk

the number of unknowns of this system. Observe that these
numbers can be written as

mGk
= 4 + 5︸ ︷︷ ︸

G1

+6 + 7︸ ︷︷ ︸
G2

+8 + 9︸ ︷︷ ︸
G3

+ · · ·+ (2k + 2) + (2k + 3)︸ ︷︷ ︸
Gk

, (k = 1, 2, 3, ...),

nGk
= 4 + 6︸ ︷︷ ︸

G1

+6 + 8︸ ︷︷ ︸
G2

+8 + 10︸ ︷︷ ︸
G3

+ · · ·+ (2k + 2) + (2k + 4)︸ ︷︷ ︸
Gk

.

Hence we obtain

mGk
= k(2k + 7), nGk

= mGk
+ k > mGk

. (57)

Similarly to the previous cases, from this system we have

Gk =
Gk,i1,i2,...,ik + Bk,i1,i2,...,ikbi1 + · · ·+ Zk,i1,i2,...,ikzik

σk,i1,i2,...,ik

, (58)

Now it is important to determine the degree of the polynomial Gk,i1,i2,...,ik in
coefficients of the differential system (34).

Observe that the degree of non-zero polynomial coefficient of Gi (i = 1, k) in co-
efficients of the system (34) in the matrix of Cramer’s determinant of the order mGk

,
when the column corresponding to the last quantity Gk is replaced with the column
corresponding to free members, forms the following diagram (the last quantity Gk

has the degree 2 according to the substitution):

G1, G2, G3, ..., Gk−1, Gk.

↓ ↓ ↓ ↓ ↓
2 3 4 k 2

Then the degree of the polynomial Gk,i1,i2,...,ik in coefficients of the system (34),
denoted by NGk

, can be written as

NGk
= mGk

− k +
k(k + 1)

2
+ 1,
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hence according to (57) we have

NGk
=

1
2
(5k2 + 13k + 2). (59)

It is the degree of homogeneity of Gk,i1,i2,...,ik in coefficients of the linear and the
quadratic parts of the differential system (34) which is contained in a polynomial of
the type (d) = (δ, d1, d2). Since δ = 2(k+1) and d2 = 2k, then d1 = NGk

−2k. So we
obtain that a comitant of the weight −1 of the system s(1, 2) from (34), containing
the semi-invariant Gk,i1,i2,...,ik+Bk,i1,i2,...,ikbi1+· · ·+Zk,i1,i2,...,ikzik , which corresponds
to the quantity Gk for k = 1, 2, 3, ..., belongs to the type

(
2(k + 1),

1
2
(5k2 + 9k + 2), 2k

)
, (60)

where 2(k + 1) is the degree of homogeneity of the comitant in phase variables x, y;
1
2
(5k2 + 9k + 2) is the degree of homogeneity of the comitant in coefficients of the

linear part c, d, e, f and 2k is the degree of homogeneity of the comitant in coefficients
of the quadratic part of the system (34).

Hereafter the expressions Gk,i1,i2,...,ik , which determine the types of comitants
(60) corresponding to the quantity Gk (k = 1, 2, 3, ...) will be called the defining focal
quantities. The comitants of the type (60) for k = 1, 2, 3, ... which contains as the
coefficients expressions with the generalized focal pseudo-quantities

Gk,i1,i2,...,ik + Bk,i1,i2,...,ikbi1 + · · ·+ Zk,i1,i2,...,ikzik .

will be called the comitants associated to generalized focal pseudo-quantities.
For G0 from (32), which for the system s(1, 2) from (34) has the type (0, 1, 0),

we retain the name a null focal pseudo-quantity.
The space of comitants of the system s(1, 2) from (34), corresponding to the type

(60), will be denoted by

S
(2(k+1), 1

2
(5k2+9k+2),2k)

1,2 . (61)

10 Comitants which have as coefficients expressions with
generalized focal pseudo-quantities of the system s(1,2,3)

Let us consider the system s(1, 2, 3) of the form

ẋ = cx + dy + gx2 + 2hxy + kx2 + px3 + 3qx2y + 3rxy2 + sy3,

ẏ = ex + fy + lx2 + 2mxy + ny2 + tx3 + 3ux2y + 3cxy2 + wy3
(62)

with finitely determined Sibirsky graded algebra of unimodular comitants S1,2,3 [7],
for which the function (31) will be write in the form (35), where K2 is from (26) and
a0, a1, ..., f7, f8, ..., G1, G2, ... are unknowns. Similarly as in the Sections 6 and 7 for
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determining the quantity G1 we write the equations in which splits the identity (30)
in the case of the system (62) in the matrix form

Ã1B̃1 = C̃1, (63)

where

Ã1 =




3c 3e 0 0 0 0 0 0 0 0
3d 6c+3f 6e 0 0 0 0 0 0 0
0 6d 3c+6f 3e 0 0 0 0 0 0
0 0 3d 3f 0 0 0 0 0 0
3g 3l 0 0 4c 4e 0 0 0 −e2

6h 6g+6m 6l 0 4d 12c+4f 12e 0 0 2ce−2ef
3k 12h+3n 3g+12m 3l 0 12d 12c+12f 12e 0 −c2+2de+2cf−f2

0 6k 6h+6n 6m 0 0 12d 4c+12f 4e −2cd+2df
0 0 3k 3n 0 0 0 4d 4f −d2




,

B̃1 =




a0

a1

a2

a3

b0

b1

b2

b3

b4

G1




, C̃1 =




2eg − cl + fl
−cg + fg + 4eh− 2dl − 2cm + 2fm
−2ch + 2fh + 2ek − 4dm− cn + fn

−ck + fk − 2dn
2ep− ct + ft

−cp + fp + 6eq − 2dt− 3cu + 3fu
−3cq + 3fq + 6er − 6du− 3cv + 3fv
−3cr + 3fr + 2es− 6dv − cw + fw

−cs + fs− 2dw




(64)

For each fixed i ∈ {0, 1, ..., 4} using the Cramer’s rule from the system (63) we find

G̃1 =
G̃1,i + B̃1,ibi

σ̃1,i
, (65)

where G̃1,i, B̃1,i, σ̃1,i are polynomials in the coefficients of the system (62) and bi are
undetermined coefficients of the function U(x, y) from (35).

By studying the matrices (63)–(64) of the system (62) we conclude that the focal
pseudo-quantity G̃1,i for fixed i from (65) can be write as

G̃1,i = G̃′
1,i + G̃′′

1,i, (i = 0, 1, 2, 3, 4), (66)

where G̃′
1,i (respectively G̃′′

1,i) are homogeneous polynomials of degree 8 (respectively
9) in coefficients of the linear part and of degree 2 in the coefficients of the quadratic
part (respectively of degree 1 in the coefficients of the cubic part) of the differential
system (62).

Using here the operators (18) of Lie algebra L4 from [7] for the system (62) we con-
struct the corresponding operators which we denote respectively by X1,X2,X3,X4.
Applying these operators under the expressions from (66) we find

X1(f̃ ′4) = X4(f̃ ′4) = f̃ ′4, X2(f̃ ′4) = X3(f̃ ′4) = 0,

X1(f̃ ′′4 ) = X4(f̃ ′′4 ) = f̃ ′′4 , X2(f̃ ′′4 ) = X3(f̃ ′′4 ) = 0,
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where

f̃ ′4(x, y) = G̃′
1,0x

4 − 4G̃′
1,1x

3y + 2G̃′
1,2x

2y2 + 4G̃′
1,3xy3 − G̃′

1,4y
4,

f̃ ′′4 (x, y) = G̃′′
1,0x

4 − 4G̃′′
1,1x

3y + 2G̃′′
1,2x

2y2 + 4G̃′′
1,3xy3 − G̃′′

1,4y
4,

(67)

are comitants of the weight −1 of the system (62) and G̃′
1,i, G̃′′

1,i are from (65).
According to the above mentioned and (4) the given comitants (67) belongs

respectively to the linear spaces

S
(4,8,2,0)
1,2,3 , S

(4,9,0,1)
1,2,3 , (68)

which are components of Sibirsky graded algebra of comitants S1,2,3 for the system
(62).

Taking into account (65) for bi = 0 (i = 0, 4) on the variety V from (27) and also
(66), (67) we find out that the first focal quantity L1 of the system (62) is related to
the comitants (67) as follows

[
f̃ ′4(x, y) + f̃ ′′4 (x, y)

]
|V = 8L1(x2 + y2)2,

where
L1 =

1
4
{[g(l − h)− k(h + n) + m(l + n)]− 3[p + r + u + v]} .

Similarly to the previous case, for determining the quantity G2 for the system
(62), from the identity (30) we obtain the following equation in the matrix form

Ã2B̃2 = C̃2. (69)

For each fixed i ∈ {0, 1, ..., 4}, j ∈ {0, 1, 2, ..., 6} we find the expression

G̃2 =
G̃2,i,j + B̃2,i,jbi + D̃2,i,jdj

σ̃2,i,j
. (70)

By studying the matrix equality (69) we find that the focal pseudo-quantity from
(70) can be written in the form of homogeneity of degree 24 that can be represented
in the form

G̃2,i,j = G̃′
2,i,j + G̃′′

2,i,j + G̃′′′
2,i,j , (71)

where G̃′
2,i,j , G̃′′

2,i,j and G̃′′′
2,i,j , are homogeneity of the type (4) respectively of the

form (0, 20, 4, 0), (0, 21, 2, 1) and (0, 22, 0, 2). We note that on the variety V from
(27) for the system (62) the quantities G̃2,2,j (j = 0, 6) have the expressions

G̃2,2,j |V = 2304L2, (j = 0, 2, 4, 6), G̃2,2,j |V = 0, (j = 1, 3, 5).

On the other hand, the second focal quantity L2 of the system (62) can be written
with the terms from (71) as follows

24L2 = G̃′
2,2,j |V + G̃′′

2,2,j |V + G̃′′′
2,2,j |V , (j = 0, 2, 4, 6),
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where

G̃′
2,2,j |V = 4(62g3h− 2gh3 + 95g2hk − 2h3k + 38ghk2 + 5hk3 − 62g3l + 27gh2l−
−39g2kl + 29h2kl − 15gk2l − 8ghl2 + 15hkl2 − 5gl3 + 53g2hm + 66ghkm+

+13hk2m− 127g2lm− 6h2lm− 68gklm− 15k2lm− 13hl2m− 5l3m+

+6ghm2 + 6hkm2 − 63glm2 − 29klm2 + 2lm3 + 6g3n + 61gh2n + 72g2kn+

+63h2kn + 33gk2n + 5k3n− 10ghln + 68hkln− 33gl2n + 15kl2n− 72g2mn−
−6h2mn + 10gkmn + 8k2mn− 66hlmn− 38l2mn− 61gm2n− 27km2n+

+2m3n + 72ghn2 + 127hkn2 − 72gln2 + 39kln2 − 53hmn2 − 95lmn2−
−6gn3 + 62kn3 − 62mn3),

G̃′′
2,2,j |V = −2(186g2p + 10h2p + 117gkp + 45k2p + 59hlp + 15l2p + 159gmp+

+75kmp + 18m2p + 143hnp + 89lnp + 196n2p− 69ghq − 57hkq + 69glq+

+12klq + 9lmq + 60gnq + 3knq + 21mnq + 168g2r − 6h2r + 69gkr + 15k2r+

+87hlr + 45l2r + 123gmr + 39kmr + 18m2r + 171hnr + 129lnr + 222n2r−
−13ghs− 17hks− 15gls− 16hms− 15lms− 16gns− 17kns− 19mns−
−19ght− 15hkt− 17glt− 16hmt− 17lmt− 16gnt− 15knt− 13mnt+

+222g2u + 18h2u + 129gku + 45k2u + 39hlu + 15l2u + 171gmu + 87kmu−
−6m2u + 123hnu + 69lnu + 168n2u + 21ghv + 9hkv + 3glv + 12klv − 57lmv+

+60gnv + 69knv − 69mnv + 196g2w + 18h2w + 89gkw + 15k2w + 75hlw+

+45l2w + 143gmw + 59kmw + 10m2w + 159hnw + 117lnw + 186n2w),

G̃′′′
2,2,j |V = −9(11pq + 15qr − 5ps− rs + pt + 5rt + 3qu− 5su + tu− 7pv − 3rv−

−15uv + 7qw − sw + 5tw − 11vw).

Similarly to the technique described in the Sections 6 and 7 we choose a comitant
of the weight −1 of the system s(1, 2, 3) from (62) which contains as a semi-invariant
the expression G̃2,i,j + B̃2,i,jbi + D̃2,i,jdj . According to the decomposition (71) and
the types shown below we find that this comitant is a sum of comitants belonging to
the spaces

S
(6,20,4,0)
1,2,3 , S

(6,21,2,1)
1,2,3 , S

(6,22,0,2)
1,2,3 . (72)

Following this process with the help of the matrix equation

Ã3B̃3 = C̃3

for each fixed i ∈ {0, 1, ..., 4}, j ∈ {0, 1, ..., 6}, k ∈ {0, 1, ..., 8} we obtain

G̃3 =
G̃3,i,j,k + B̃3,i,j,kbi + D̃3,i,j,kdj + F̃3,i,j,kfj

σ̃3,i,j,k
. (73)

Similarly to the previous case we find that the focal pseudo-quantity G̃3,i,j,k splits
into a sum of four terms of the same degree 43 in the coefficients of the system (62),
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which according to (4) belongs to the types (0, 37, 6, 0), (0, 38, 4, 1), (0, 39, 2, 2) and
(0, 40, 0, 3). Then it results that the comitant of the weight −1 having as a semi-
invariant one of the expressions (73) consists of the sum of comitants of the system
(62) which belongs to the spaces

S
(8,37,6,0)
1,2,3 , S

(8,38,4,1)
1,2,3 , S

(8,39,2,2)
1,2,3 , S

(8,40,0,3)
1,2,3 . (74)

Following this process we obtain the sequence of linear spaces (68), (72), (74)
etc. of comitants of the system (62). It remain to underline that the generalized
focal pseudo-quantities corresponding to Gk of the given system is exactly a sum of
coefficients of these comitants.

It is not difficult to deduce that the generic formula of the types of the comitants
in which the generalized focal pseudo-quantities corresponding to Gk splits as a sum,
has the form:

(
2(k + 1),

1
2
(5k2 + 9k + 2) + i, 2(k − i), i

)
, (i = 0, k).

11 Graded algebra of comitants whose spaces contain comitants
associated to generalized focal pseudo-quantities of the system
(34) and (62)

Thus we obtain for the system (34) the set of spaces of center-affine (unimodular)
comitants

R = S
(0,0,0)
1,2 , S

(0,1,0)
1,2 , S

(4,8,2)
1,2 , S

(6,20,4)
1,2 , ..., S

(2(k+1), 1
2
(5k2+9k+2),2k)

1,2 , ... ⊂ S1,2, (75)

were S1,2 is Sibirsky graded algebra of the system (34).
Let’s consider the graded algebra S′1,2, generated by the space S

(δ′,d′1,d′2)
1,2 from

(75), which can be written as

S′1,2 =
⊕

(d′)

S
(d′)
1,2 . (76)

Here S
(d′)
1,2 denote linear spaces, contained in S

(δ′,d′1,d′2)
1,2 for all (d′), as well as the

spaces from S1,2 which contains all possible products of spaces (75).
Since the algebra S′1,2 is a graded subalgebra of the algebra S1,2 for the system

(34), according to Proposition 4, we obtain that for the Krull dimensions of these
algebras the following inequality takes place:

%(S′1,2) ≤ %(S1,2). (77)

Taking into account this inequality, and the fact that from [7] we have %(S1,2) = 9,
according to Definition 2, we have
Lemma 1. The maximal number of algebraically independent generalized focal
pseudo-quantities in the center-focus problem for the system (34) does
not exceed 9.
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According to the equalities (32), (48), (55) etc. and the conclusion, resulting
from Proposition 5, that the number of algebraically independent focal quantities
Lk (k = 0,∞) can not exceed the maximal number of algebraically independent
generalized focal pseudo-quantities, using Lemma 1, we have
Theorem 2. The maximal number of algebraically independent focal quantities of
the system (34) on the variety V from (27) or, equivalently, from (29), that take part
in solving the center-focus problem, does not exceed 9.

With the help of Hilbert series of the algebras S1,2, S′1,2, SI1,2 [23] and Remark
3 it can be shown that the predicted upper bound of algebraically independent focal
quantities of the system (34) on the variety V from (27) ((29)) can be much less than
9, and can be equal to 7 or, may be, even 5.

We note that the similar studies that for the system s(1, 2) from (34) were realized
in the works [27,28,31] for the systems s(1, 3), s(1, 4), s(1, 5) respectively. This
scenario is confirmed for the system s(1, 2, 3) by studies in the case 9 which allow to
form the algebra S′1,2,3 with the same properties as the algebra S′1,2.

12 Main results

Similarly to the considered cases, for any system s(1,m1,m2, ..., m`) from (1)
we have that the algebras similar to the obtained in the above mentioned examples
satisfy the inclusion condition

S′1,m1,m2,...,m`
⊂ S1,m1,m2,...,m`

,

hence according to Proposition 5, for their Krull dimensions we have

%(S′1,m1,m2,...,m`
) ≤ %(S1,m1,m2,...,m`

). (78)

By the formula (19) we obtain

%(S1,m1,m2,...,m`
) = 2

(∑̀

i=1

mi + `

)
+ 3. (79)

Analogously to Lemma 1 and other considered examples, with the help of (78) and
(79) it can be shown that the following lemma is true:
Lemma 2. The maximal number of algebraically independent generalized focal
pseudo-quantities in the center-focus problem for the system (1) does not exceed the
number from (79).
Remark 8. According to the Remarks 5 and 6 and formulation of center-focus prob-
lem given in Section 5, as well as the identities (32) we can say that the generalized
focal pseudo-quantities, being semi-invariants in above mentioned comitants, have
as projections on the variety V from (27) ((29)) the focal quantities Lk (k = 1, 2, ...).

From identity (30) and Lyapunov’s function (35) it results that for any system
s(1,m1,m2, ..., m`) we can write the identities of the type (58) for quantities Gk

(k = 1, 2, ...), which have as numerators the generalized focal pseudo-quantities.
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Using these quantities and the operator D3 from (18) of system s(1,m1,m2, ..., m`)
we can determine comitants of the given system, having as coefficients the above
mentioned focal pseudo-quantities.

According to the Remark 8 we conclude that the following statement take place:
Theorem 3. The maximal number of algebraically independent focal quantities of
the system (1) on the variety V from (27) or, equivalently, from (29), that take part
in solving the center-focus problem does not exceed the number from (79).

We recall that in the introduction it was told that for the systems s(1, 2) and
s(1, 3) the number of essential conditions for center ω = 3 and 5, respectively, but
for the system s(1, 2, 3) there is an assumption that ω ≤ 13.

From Theorem 3 we obtain that the maximal number of algebraically independent
focal quantities for the system s(1, 2) does not exceed 9, for s(1, 3) does not exceed
11, and for s(1, 2, 3) does not exceed 17.

These arguments and Proposition 5 with V from (27) or, equivalently, from (29),
and the defined above algebra S′1,m1,m2,...,m`

suggest that is true
The main hypothesis. The number ω of essential conditions for center from (3)
which solve the center-focus problem for the system (1), having at the origin of co-
ordinates a singular point of the second type, does not exceed the number from (79).
Remark 9. The equality (79) shows that the quantity % is equal to the number of
coefficients of the right parts of the system (1) minus one.

Besides [23], the authors have published their vision of the center-focus problem
in the theses [24-33].
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Geometric configurations of singularities for quadratic

differential systems with total finite multiplicity

lower than 2

J.C.Artés, J. Llibre, D. Schlomiuk, N.Vulpe

Abstract. In [3] we classified globally the configurations of singularities at infinity of
quadratic differential systems, with respect to the geometric equivalence relation. The
global classification of configurations of finite singularities was done in [2] modulo the
coarser topological equivalence relation for which no distinctions are made between
a focus and a node and neither are they made between a strong and a weak focus
or between foci of different orders. These distinctions are however important in the
production of limit cycles close to the foci in perturbations of the systems. The
notion of geometric equivalence relation of configurations of singularities allows us to
incorporates all these important purely algebraic features. This equivalence relation
is also finer than the qualitative equivalence relation introduced in [20]. In this article
we initiate the joint classification of configurations of singularities, finite and infinite,
using the finer geometric equivalence relation, for the subclass of quadratic differential
systems possessing finite singularities of total multiplicity mf ≤ 1. We obtain 84
geometrically distinct configurations of singularities for this family. We also give here
the global bifurcation diagram, with respect to the geometric equivalence relation, of
configurations of singularities, both finite and infinite, for this class of systems. This
bifurcation set is algebraic. The bifurcation diagram is done in the 12-dimensional
space of parameters and it is expressed in terms of polynomial invariants. The results
can therefore be applied for any family of quadratic systems, given in any normal form.
Determining the configurations of singularities for any family of quadratic systems,
becomes thus a simple task using computer algebra calculations.

Mathematics subject classification: Primary 58K45, 34C05, 34A34.
Keywords and phrases: Quadratic vector fields, infinite and finite singularities,
affine invariant polynomials, Poincaré compactification, configuration of singularities,
geometric equivalence relation.

1 Introduction and statement of main results

We consider here differential systems of the form

dx

dt
= p(x, y),

dy

dt
= q(x, y), (1)

where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R. We call degree of
a system (1) the integer m = max(deg p, deg q). In particular we call quadratic a
differential system (1) with m = 2. We denote here by QS the whole class of real
quadratic differential systems.
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The study of the class QS has proved to be quite a challenge since hard problems
formulated more than a century ago, are still open for this class. The complete
characterization of the phase portraits for real quadratic vector fields is not known,
and attempting to topologically classify these systems, which occur rather often in
applications, is a very complex task. This is partly due to the elusive nature of
limit cycles and partly to the rather large number of parameters involved. This
family of systems depends on twelve parameters but due to the group action of
real affine transformations and time homotheties, the class ultimately depends on
five parameters, still a rather large number of parameters. For the moment only
subclasses depending on at most three parameters were studied globally, including
global bifurcation diagrams (for example [2]). On the other hand we can restrict
the study of the whole quadratic class by focusing on specific global features of the
systems in this family. We may thus focus on the global study of singularities and
their bifurcation diagram. The singularities are of two kinds: finite and infinite.
The infinite singularities are obtained by compactifying the differential systems on
the sphere or on the Poincaré disk as they are defined in Section 6.1 (see also [17]).

The global study of quadratic vector fields in the neighborhood of infinity was
initiated by Coll in [13] where he characterizes all the possible phase portraits in a
neighborhood of infinity. Later Nikolaev and Vulpe in [23] classified topologically
the singularities at infinity in terms of invariant polynomials. Schlomiuk and Vulpe
used geometrical concepts defined in [30], and also introduced some new geometrical
concepts in [31] in order to simplify the invariant polynomials and the classifica-
tion. To reduce the number of phase portraits in half, in both cases the topological
equivalence relation was taken to mean the existence of a homeomorphism carrying
orbits to orbits and preserving or reversing the orientation. In [4] the authors clas-
sified topologically (adding also the distinction between nodes and foci) the whole
quadratic class, according to configurations of their finite singularities.

In the topological classification no distinction was made among the various types
of foci or saddles, strong or weak of various orders. However these distinctions,
of algebraic nature, are very important in the study of perturbations of systems
possessing such singularities. Indeed, the maximum number of limit cycles which
can be produced close to the weak foci in perturbations depends on the orders of
the foci.

The distinction among weak saddles is also important since for example when a
loop is formed using two separatrices of one weak saddle, the maximum number of
limit cycles that can be obtained close to the loop in perturbations is the order of
the weak saddle (see, for example,[26]).

There are also three kinds of simple nodes as we can see in Figure 1 below
where the local phase portraits around the singularities are given.

In the three phase portraits of Figure 1 the corresponding three singularities
are stable nodes. These portraits are topologically equivalent but the solution curves
do not arrive at the nodes in the same way. In the first case, any two distinct non-
trivial phase curves arrive at the node with distinct slopes. Such a node is called
a star node. In the second picture all non-trivial solution curves excepting two of
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Figure 1. Different types of nodes

them arrive at the node with the same slope but the two exception curves arrive at
the node with a different slope. This is the generic node with two directions. In the
third phase portrait all phase curves arrive at the node with the same slope.

We recall that the first and the third types of nodes could produce foci in pertur-
bations because their eigenvalues are equal. The linear part of the first is diagonal
and the one of the third is not. We can distinguish algebraically among the three
types of nodes. Here algebraic means that the linearization matrices at these nodes
and their eigenvalues, distinguish the nodes in Figure 1. The first type of nodes
is also involved in the existence of invariant straight lines of differential systems.
For example it can be shown that if a quadratic differential system has two finite
star nodes then necessarily the system possesses invariant straight lines of total
multiplicity 6, see [32].

Furthermore, a generic node may or may not have the two exceptional curves
lying on the line at infinite. This leads to two situations which geometrically are
different. Indeed, in the case when the two exceptional curves lie on the line at
infinity, all the other phase curves have a common asymptote while in the case the
two exceptional curves lie in the affine plane, all other phase curves are tangent to
the line at infinity. From the geometric viewpoint these two situations are different.
Polynomial vector fields should not be viewed just as particular cases of analytic
vector fields. They are also algebraic and geometric objects in their own right and
as such the algebraic and geometric behavior of their phase curves matters. For this
reason we split the generic nodes at infinity in two types.

The distinctions among the nilpotent and linearly zero singularities finite or
infinite can also be refined, as it will be seen in Section 4. Such singularities are
usually called degenerate singularities so here too we call them degenerate.

The geometric equivalence relation for finite or infinite singularities, introduced
in [3], takes into account such distinctions. This equivalence relation is finer than
the qualitative equivalence relation introduced by Jiang and Llibre in [20] since it
distinguishes among the foci of different orders and among the various types of
nodes. This equivalence relation also induces a finer distinction among the more
complicated degenerate singularities.

To distinguish among the foci (or saddles) of various orders we use the algebraic
concept of Poincaré-Lyapounov constants. We call strong focus (or strong saddle) a
focus with non–zero trace of the linearization matrix at this point. Such a focus (or
saddle) will be considered to have the order zero. A focus (or saddle) with trace zero
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is called a weak focus (weak saddle). For details on Poincaré-Lyapounov constants
and weak foci we refer to [21].

The finer distinctions of singularities are also algebraic in nature through the
Lyapounov-Poincaré constants. In fact the whole bifurcation diagram of the global
configurations of singularities, finite and infinite, in quadratic vector fields and more
generally in polynomial vector fields can be obtained by using only algebraic means,
among them, the algebraic tool of polynomial invariants.

Algebraic information may not be significant for the local (topological) phase
portrait around a singularity. For example, topologically there is no distinction
between a focus and a node or between a weak and a strong focus. However, as
indicated before, algebraic information plays a fundamental role in the study of
perturbations of systems possessing such singularities.

In [14] Coppel wrote: “Ideally one might hope to characterize the phase portraits
of quadratic systems by means of algebraic inequalities on the coefficients. However,
attempts in this direction have met with very limited success...”

This proved to be impossible to realize. Indeed, Dumortier and Fiddelaers [16]
and Roussarie [27] exhibited examples of families of quadratic vector fields which
have non-algebraic bifurcation sets. However, the following is a legitimate question:

How far can we go in the global theory of quadratic (or more generally polyno-
mial) vector fields by using mainly algebraic means?

For certain subclasses of quadratic vector fields the full description of the phase
portraits as well as of the bifurcation diagrams can be obtained using only algebraic
tools. Examples of such classes are:

• the quadratic vector fields possessing a center [24,28,40,43];

• the quadratic Hamiltonian vector fields [1, 5];

• the quadratic vector fields with invariant straight lines of total multiplicity at
least four [32,33];

• the planar quadratic differential systems possessing a line of singularities at
infinity [34];

• the quadratic vector fields possessing an integrable saddle [6];

• the family of Lotka-Volterra systems [35,36], once we assume Bautin’s analytic
result saying that such systems have no limit cycles.

In the case of other subclasses of the quadratic class QS, such as the subclass
of systems with a weak focus of order 3 or 2 (see [2, 21]) the bifurcation diagrams
were obtained by using an interplay of algebraic, analytic and numerical methods.
These subclasses were of dimensions 2 and 3 modulo the action of the affine group
and time rescaling. So far no 4-dimensional subclasses of QS were studied globally
so as to produce also bifurcation diagrams and such problems are very difficult due
to the number of parameters as well as the increased complexities of these classes.
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Although we now know that in trying to understand these systems, there is
a limit to the power of algebraic methods, these methods have not been used far
enough. For example the global classification of singularities, finite and infinite,
using the geometric equivalence relation, which is finer than the qualitative equiva-
lence relation, can be done by using only algebraic methods. The first step in this
direction was done in [3] where the study of the whole class QS, according to the
configurations of the singularities at infinity was obtained by using only algebraic
methods. This classification was done with respect to the geometric equivalence
relation. Our work in [3] can be extended by incorporating also the finite singular-
ities. In this way we can obtain the global geometric classification of all possible
configurations of singularities, finite and infinite, of quadratic differential systems,
by purely algebraic means.

Our goal in this work is to take the first step in this direction by joining the
results for infinite singularities in [3] with finite singularities of total multiplicity
mf ≤ 1, of quadratic differential systems.

We extend here below the notion of configuration of singularities defined in
[3] only for infinite singularities, to all singularities, both finite and infinite. We
distinguish two cases.

1) If we have a finite number of infinite singular points and a finite number
of finite singularities, we call configuration of singularities, finite and infinite, the
set of all these singularities each endowed with its own multiplicity together with
their local phase portraits endowed with additional geometric structure involving
the concepts of tangent, order and blow–up equivalences defined in Section 4 and
using the notations described in Section 5.

2) If the line at infinity Z = 0 is filled up with singularities, in each one of the
charts at infinity X 6= 0 and Y 6= 0, the system is degenerate and we need to do a
rescaling of an appropriate degree of the system, so that the degeneracy be removed.
The resulting systems have only a finite number of singularities on the line Z = 0. In
this case we call configuration of singularities, finite and infinite, the union of the set
of all points at infinity (they are all singularities) with the set of finite singularities
– taking care of singling out the singularities of the “reduced” system at infinity
–, taken together with the local phase portraits of finite singularities endowed with
additional geometric structure as above and of the infinite singularities of the reduced
system.

We continue to use here ISPs as a shorthand for “infinite singular points”.

We obtain the following

Main Theorem. (A) The configurations of singularities, finite and infinite, of
all quadratic vector fields with finite singularities of total multiplicity mf ≤ 1 are
classified in Diagrams 1 and 2 according to the geometric equivalence relation.
We have 84 geometrically distinct configurations of singularities, finite and infinite.
More precisely 32 configurations with mf = 0 and 52 with mf = 1.

(B) For mf = 1 we have only two configurations with a center but 5 configu-
rations with a finite integrable saddle, and the maximum order of a weak focus (or
of a weak saddle) is one.
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(C) For mf = 1 we have: 4 configurations with a weak focus of order one but
only 2 configurations with a weak finite saddle of order one; 6 configurations with a
strong focus but 7 configurations with a strong finite saddle.

(D) Necessary and sufficient conditions for each one of the 84 different equiv-
alence classes can be assembled from Diagrams 1 and 2 in terms of 30 invariant
polynomials with respect to the action of the affine group and time rescaling, given
in Section 7.

(E) The Diagrams 1 and 2 actually contain the global bifurcation diagram in
the 12-dimensional space of parameters, of the global configurations of singularities,
finite and infinite, of this family (mf ≤ 1) of quadratic differential systems.

(F ) The phase portraits in the neighborhood of the line at infinity corresponding
to mf = 0 and to mf = 1 are given in Figure 1. More precisely we have:

mf = 0: Configs - 3; 4; 5; 30; 18; 28; 17; 13; 8; 24; 11; 15; 36; 35; 32; 46;

mf = 1: Configs - 2; 6; 31; 20; 14; 26; 25; 9; 23; 16; 12; 21; 39; 37; 33;
38; 45.

We note that the case mf = 1 was considered in [37], were all 52 possible
geometrically distinct configurations of singularities are given but without proof.
The complete proof is done here below.

The invariants and comitants of differential equations used for proving our
main results are obtained following the theory of algebraic invariants of polyno-
mial differential systems, developed by Sibirsky and his disciples (see for instance
[7, 12,25,38,41]).

2 Some geometrical concepts

In this section we use the same concepts we considered in [3] such as orbit γ
tangent to a semi–line L at p, well defined angle at p, characteristic orbit at a
singular point p, characteristic angle at a singular point, characteristic direction at
p. Since these are basic concepts for the notion of geometric equivalence relation we
recall here their definitions.

We assume that we have an isolated singularity p. Suppose that in a neighbor-
hood U of p there is no other singularity. Consider an orbit γ in U defined by a
solution Γ(t) = (x(t), y(t)) such that limt→+∞ Γ(t) = p (or limt→−∞ Γ(t) = p). For

a fixed t consider the unit vector C(t) = (
−−−−−→
Γ(t) − p)/‖

−−−−−→
Γ(t) − p‖. Let L be a semi–

line ending at p. We shall say that the orbit γ is tangent to a semi–line L at p if
limt→+∞C(t) (or limt→−∞C(t)) exists and L contains this limit point on the unit
circle centered at p. In this case we call a well defined angle of Γ at p the angle
between the positive x–axis and the semi–line L measured in the counterclockwise
sense. We may also say that the solution curve Γ(t) tends to p with a well defined
angle. A characteristic orbit at a singular point p is the orbit of a solution curve
Γ(t) which tends to p with a well defined angle. We call a characteristic angle at
the singular point p a well defined angle of a solution curve Γ(t). The line through
p extending the semi-line L is called a characteristic direction.
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Diagram 1. Global configurations: case µ0 = µ1 = µ2 = µ3 = 0, µ4 6= 0
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Diagram 2. Global configurations: case µ0 = µ1 = µ2 = 0, µ3 6= 0
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Diagram 2 (continued). Global configurations: case µ0 = µ1 = µ2 = 0,

µ3 6= 0

If a singular point has an infinite number of characteristic directions, we will call
it a star–like point.

It is known that the neighborhood of any isolated singular point of a polyno-
mial vector field which is not a focus, a center or a star-like point, is formed by a
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Figure 2. Topologically distinct local configurations of ISPs ([31,34])

finite number of sectors which could only be of three types: parabolic, hyperbolic
and elliptic (see [17]). It is also known that any degenerate singular point can be
desingularized by means of a finite number of changes of variables, called blow–up’s,
into elementary singular points (for more details see Section 3 or [17]).

Consider the three singular points given in Figure 3. All three are topologically
equivalent and their neighborhoods can be described as having two elliptic sectors
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and two parabolic ones. But we can easily detect some geometric features which
distinguish them. For example (a) and (b) have three characteristic directions and (c)
has only two. Moreover in (a) the solution curves of the parabolic sectors are tangent
to only one characteristic direction and in (b) they are tangent to two characteristic
directions. All these properties can be determined algebraically.

Figure 3. Some topologically equivalent singular points

The usual definition of a sector is of a topological nature and it is local with
respect to a neighborhood around the singular point. We work with a new notion,
namely of geometric local sector, introduced in [3] (we will improve that definition
in this paper) which distinguishes the systems of Figure 3 as well as the nodes in
Figure 1. This notion is characterized by algebraic means.

We consider first the case of an elemental star-node p. This is a very special case
because this has an infinite number of characteristic directions. Literally speaking
we have no parabolic sectors here although each orbits is tangent to a half-line at p.
We shall consider that this node has just one geometric local parabolic sector which
is the complement of {p} in an open neighborhood of p.

We introduce an equivalence relation for the orbits of solutions Γ(t) tending to a
singular point p when t tends to either +∞ or to −∞. We say that two such orbits
are equivalent if and only if after the complete desingularization, these orbits lifted
to the final stage are tangent to the same half-line at the same singular point, or end
as an orbit of a star-node on the same half-plane. We will call borsec a representative
of an equivalence class, with the exception of the case when in the desingularized
picture the characteristic direction is the same as the direction of the blow-up, and
in addition the singular point in the desingularization picture is a two directions
node or a saddle-node.

We call geometric local sector of a singular point p with respect to a neighborhood
V as a region in V delimited by two consecutive borsecs.

A semi–elemental saddle–node can be topologically described as a singular point
having two hyperbolic sectors and a single parabolic one. But if we add a borsec
which is an orbit of the parabolic sector (any orbit in that sector could be this
borsec), then the description consists of two hyperbolic sectors and two parabolic
ones. This distinction will be significant when trying to describe a singular point like
the one in Figure 4 which is an intricate singularity, topologically a saddle–node
but different from a semi–elemental saddle–node. Indeed, in an elemental saddle-
node in the parabolic sector all orbits are tangent to just one half-line at p, while in
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Figure 4. Local phase portrait of a saddle-node

Figure 4 some of the orbits of the parabolic sector are tangent to one half-line at
p while others are tangent to a different half-line at p.

Generically a geometric local sector is defined by two consecutive borsecs tangent
to two distinct half-lines at the singular point p with two different well defined angles.
If this sector is parabolic, then the solutions can arrive at the singular point p with
one of the two half-lines at p on the characteristic direction lines at p and this is a
geometrical information than can be revealed with the blow–up.

There is also the possibility that two borsecs defining a geometric local sector
are tangent to the same half-line at the singular point. Such a sector will be called
a cusp–like sector which can either be hyperbolic, elliptic or parabolic respectively
denoted by Hf, Ef and Pf.

In the case of parabolic sectors we want to include the information as to whether
the orbits arrive tangent to one or to the other borsec. We distinguish the two cases

writing by
x

P if they arrive tangent to the borsec limiting the previous sector in

clockwise sense or
y

P if they arrive tangent to the borsec limiting the next sector.
In the case of a cusp–like parabolic sector, all orbits must arrive with only one well

determined angle, but the distinction between
x

P and
y

P is still valid because it occurs
at some stage of the desingularization and this can be algebraically determined.
Thus complicated degenerate singular points like the two we see in Figure 5 may

be described as
y

PE
x

P HHH (case (a)) and E
x

PfHH
y

PfE (case (b)), respectively.

Figure 5. Two phase portraits of degenerate singular points
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3 The blow–up technique

To draw the phase portrait around an elementary hyperbolic singularity of a
smooth planar vector field we just need to use the Hartman-Grobman theorem. For
an elementary non-hyperbolic singularity the system can be brought by an affine
change of coordinates and time rescaling to the form dx/dt = −y+ ..., dy/dt = x+ ...
and it is well known that in this case the singularity is either a center or a focus.
One way to see this is by the Poincaré-Lyapounov theory. In the quadratic case we
can actually determine using the Poincaré-Lyapounov constants if it is a focus or
a center and then the local phase portrait is known (see [28, 40]). For higher order
systems we have the center-focus problem: we can only say that the phase portrait
around the singularity is of a center or of a focus but we cannot determine with
certainty which one of the two it is.

In the case of a more complicated singularity, such as a degenerate one, we
need to use the blow–up technique. This is a well known technique but since it
plays such a crucial role in this work, we shall briefly describe it here. We are
using this technique in a slightly modified (actually simplified) way to lighten the
calculations. This slightly modified way is in complete agreement with the usual
blow–up procedure.

The idea behind the blow–up technique is to replace a singular point p by a circle
or by a line on which the “composite” degenerate singularity decomposes (ideally)
into a finite number of simpler singularities pi. For this idea to work we need to
construct a new surface, on which we have a diffeomorphic copy of our vector field
on R

2\{p} or at least on the complement of a line passing through p, and whose
associated foliation with singularities extends also to the circle (or to a line) which
replaces the point p on the new surface.

One way to do this is to use polar coordinates. Clearly we may assume that
the singularity is placed at the origin. Consider the map φ : S

1 × R −→ R
2 defined

by φ(θ, r) 7→ (r cos θ, r sin θ). Restrictions of this map φ on S
1 × (0,∞) and on

S
1 × (−∞, 0) are diffeomeorphisms, mapping the upper, respectively lower part of

the cylinder on R
2\{(0, 0)}. But φ−1(0, 0) is the circle S

1 × {0}. This application
defines a diffeomorphic vector field on the upper part of the cylinder S

1 ×R. In fact
this is the passing to polar coordinates. The resulting smooth vector field extends
to the whole cylinder just by allowing r to be negative or zero. This full vector field
on the cylinder has either a finite number of singularities on the circle (this occurs
when the initial singular point is nilpotent) or the circle is filled up with singularities
(when we start with a point for which the linear part of the system at this point
vanishes). In this latter case we need to work with the reduced system obtained by
dividing the right hand side of the equations by a factor rs with an adequate s to
obtain a finite number of singularities. Since R

2 \ {(0, 0)} is diffeomorphic to the
upper part of the cylinder we only need to consider r > 0 for which this factor rs

is also positive. Removing this factor does not affect the nature of the orbits and
their orientation. The map φ collapses the circle on the cylinder (and hence the
singularities located on this circle) to the origin of coordinates in the plane. In case
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the phase portraits around the singularities on the circle can be drawn then the
inverse process of blowing down the upper side of the cylinder completed with the
circle allows to draw the portrait around the origin of R

2. In case the singularities
on the circle are still degenerate, we need to repeat this process a finite number
of times. This is guaranteed by the theorem of desingularization of singularities
(see [10] and [15], or [20]).

The blow–up by polar coordinates is simple, leading to a simple surface (the
cylinder), on which a diffeomorphic copy of our vector field on R

2\{(0, 0)} extends
to a vector field on the full cylinder. The origin of the plane ”blows-up” to the
circle φ−1(0, 0) on which the singularity splits into several simpler singularities. The
visualization of this blow–up is easy. But this process has the disadvantage of using
the transcendental functions: cos and sin and in case several such blow–ups are
needed this is computationally very inconvenient.

It would be more advantageous to use a construction involving rational functions.
More difficult to visualize, this algebraic blow–up is computationally simpler, using
only rational transformations. The blow-up in this case starts with a directional
blow–up of a point of the plane, by this meaning that in this case to replace the point
with a line sitting on a manifold playing the role of the cylinder in the preceding
case.

Consider the algebraic surface S in R
3 defined by the equation y = xz. We

may think of this surface as being here the analogue of the cylinder in the polar
blow-up. Like the cylinder, S is a differentiable manifold. Indeed, the projection
π1,2 : S → R

2, π1,2(x, xz, z) = (x, xz), is a global chart for this manifold. We observe
that the line Lz = {(0, 0, z)|z ∈ R} (the z-axis in R

3), lies on S. The projection
π1,2 collapses the z-axis to the point (0, 0). The line Lz may be thought here as the
analogue of the circle in the polar blow-up construction. The restriction

ψ = π1,2

∣∣
S\Lz

: S \ Lz −→ R
2
\ {x = 0}

of π1,2 to S\Lz is a diffeomorphism with inverse ψ−1(x, y) = (x, y, y/x) transferring
our vector field restricted to the open set x 6= 0 of the plane (x, y) to a diffeomorphic
vector field on S\Lz. The map π1,3 ◦ψ

−1 carries our vector field on the plane (x, y),
restricted to x 6= 0, to a diffeomorphic vector field on the open set x 6= 0 of the plane
(x, z). This is actually the vector field on S \ Lz calculated in the chart given by
π1,3.

We now compute this vector field on the plane (x, z). We start with a polynomial
differential system of the form (1) with a degenerate singular point at the origin
(0, 0). We have p(x, y) = p1(x, y)+. . .+pn(x, y) and q(x, y) = q1(x, y)+. . .+qn(x, y)
where pi(x, y) and qi(x, y) (for i = 1, . . . , n) are the sums of the homogeneous terms
involving xryl with r+l = i of p and q. We call the starting degree of (1) the positive
integer m such that (pm(x, y), qm(x, y)) 6= (0, 0) but (pi(x, y), qi(x, y)) = (0, 0) for
i = 0, 1, . . . ,m− 1.

This differential system when transferred on S and calculated in the chart π1,3
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by using y = xz becomes:

dx/dt = xm(pm(1, z) + . . .+ xn−mpn(1, z)),

dz/dt = xm−1[qm(1, z) + . . .+ xn−mqn(1, z) − zx(pm(1, z) + . . .+ xn−mpn(1, z))],

because dy/dt = d(xz)/dt = zdx/dt+xdz/dt. This system is defined over the whole
plane (x, z) and when m > 1 the line x = 0 (the z-axis in the plane (x, z)) is filled
up with singularities. If m = 1 then p1(x, y) and q1(x, y) cannot be both identically
zero. If q1(x, y) ≡ 0 then q1(1, z) ≡ 0, and again we must have the z-axis filled up
with singularities. But if q1(x, y) = ax+by is not identically zero, then (a, b) 6= (0, 0).
If b 6= 0 then q1(1, z) = a + bz and (0,−a/b) is the unique singular point on the
z-axis. If however b = 0 then q1(x, y) = ax and hence q1(1, z) = a 6= 0, and we have
no singular point on the z-axis. So for a nilpotent point with m = 1 we either get
an infinite number of singularities, or a unique singularity, or no singularity on the
z-axis.

Just like in the polar blow-up when we eliminated the common factor rs, here
we eliminate the common factor xm−1 (or xm in case qm(x, y) ≡ 0 but pm is not
identically zero). But in doing so we need to take some precautions which we explain
below. Consider the system above and its associated “reduced” system

dx/dt = x
[
pm(1, z) + . . .+ pn(1, z)

]
,

dz/dt = qm(1, z) + . . .+ xn−mqn(1, z) − z
[
pm(1, z) + . . .+ xn−mpn(1, z)

]
,

(2)

obtained by removing the common factor xm−1 on the right side of the equations.
We observe that for x > 0 the two systems have the same orbits and their orbits
have the same orientations, but the orbits are described by the solutions of the two
systems with different speeds so we have a time change (rescaling). If m is even then
m−1 is odd, and hence xm−1 is negative for x < 0 and the orbits of the two systems
for x < 0 are described by the solutions of the two differential systems with opposite
orientations. We need to take care of this when at the end we blow down the line to
the point (0, 0). At the points on the z-axis (x = 0) for which qm(1, z) = 0 we have
singularities. The finite number of singularities obtained in this way for the reduced
system is analogous to the finite number of singularities on the circle we obtained
in the reduced system in the polar blow-up. Thus the singular point at the origin
is blown-up to a finite number of singularities on the z-axis of the plane (x, z). We
call this the directional blow-up in the direction of y-axis of the plane (x, y).

In this blow-up construction the y-axis was excluded. Indeed, the surface S

does not contain the y-axis and we have a copy of our vector field on S only for
the complement in the plane (x, y) of the y-axis, i.e. only on the open set x 6= 0.
However, by doing an analogous blow-up in the direction of x-axis, the y-axis can be
included. The two blow-ups can then be glued so as to obtain a complete blow-up on
a Möbius band which will in this case be the full analogue of the cylinder in the polar
blow-up. The circle at the center of the Möbius band is then viewed as the space
P1(R) of all directions in the plane (x, y). To see here the need of this twisting on
the Möbius band we observe that the map π1,3 ◦ψ

−1 sends the left side of the y-axis
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of the (x, y) plane to the left side of the z-axis of the (x, z) plane. While sending
the semi-line y = 0 and x < 0 to the semi-line z = 0 and x < 0 this map flips the
second and third quadrant in the (x, z) plane. Indeed, the second (respectively third)
quadrant in the (x, y) plane are sent to the third (respectively second) quadrant in
the (x, z) plane. In this work we use a procedure, a sort of shortcut, to be explained
further below which enables to manage without the Möbius band.

The equation giving the singular points on the z-axis in the (x, z) plane according
to (2) is zpm(1, z)−qm(1, z) = 0 and going back to the (x, y) coordinates by replacing
z = y/x (for x 6= 0) we get the equation ypm(x, y) − xqm(x, y) = 0.

The polynomial PCD(x, y) = ypm(x, y)−xqm(x, y), where m is the starting de-
gree of a system of the form (1), is called the Polynomial of Characteristic Directions
of (1). In case PCD(x, y) 6≡ 0 the factorization of PCD(x, y) gives the characteristic
directions at the origin. So, in order to be sure that the y–axis is not a characteristic
direction we only need to show that x is not a factor of PCD(x, y). In case it is, we
need to do a linear change of variables which moves this direction out of the vertical
axis and does not place any other characteristic direction on this axis. If all the
directions are characteristic, i.e. PCD(x, y) ≡ 0, then the degenerate point will be
star–like and at least two blow–ups must be done to obtain the desingularization.
Anyway, in quadratic systems there are no degenerate star–like singular points. So,
the number of characteristic directions is finite and there exists the possibility to do
such a linear change. We will use changes of the type (x, y) → (x + ky, y) where
k is some number (usually 1). It seems natural to call this linear change a k–twist
as the y–axis gets twisted with some angle depending on k. It is obvious that the
phase portrait of the degenerate point which is studied cannot depend on the set of
k’s used in the desingularization process.

Once we are sure that we have no characteristic direction on the y–axis we do
the directional blow–up (x, y) = (x, xz). This change sends the x–axis of the (x, y)
plane to the X–axis of the (x, z) plane and replaces the singular point (0, 0) with a
whole vertical axis in the (x, z) plane. The old orbits which arrived at (0, 0) with
a well defined slope s now arrive at the singular point (0, s) of the new system.
Studying these new singular points, one can determine the local behavior around
them and their separatrices which after the blow–down describe the behavior of the
orbits around the original singular point up to geometrical equivalence (for definition
see next section). Often one needs to do a tree of blow–up’s (combined with some
translation and/or twists) if some of the singular points which appear on x = 0 after
the first blow–up are also degenerate.

4 Equivalence relations for singularities of planar polynomial

vector fields

We first recall the topological equivalence relation as it is used in most of the
literature. Two singularities p1 and p2 are topologically equivalent if there exist open
neighborhoods N1 and N2 of these points and a homeomorphism Ψ : N1 → N2

carrying orbits to orbits and preserving their orientations. To reduce the number
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of cases, by topological equivalence we shall mean here that the homeomorphism Ψ
preserves or reverses the orientation. We observe that this second notion which is
usually used in the literature on classification problems of polynomial vector fields
(see [2, 20]), does not conserve stability.

In [20] Jiang and Llibre introduced another equivalence relation for singularities,
which is finer than the topological equivalence:

We say that p1 and p2 are qualitatively equivalent if i) they are topologically
equivalent through a local homeomorphism Ψ, and ii) two orbits are tangent to the
same straight line at p1 if and only if the corresponding two orbits are also tangent
to the same straight line at p2.

We say that two simple finite nodes, with the respective eigenvalues λ1, λ2 and
σ1, σ2, of a planar polynomial vector field are tangent equivalent if and only if they
satisfy one of the following three conditions: a) (λ1−λ2)(σ1−σ2) 6= 0; b) λ1−λ2 =
0 = σ1 − σ2 and both linearization matrices at the two singularities are diagonal; c)
λ1−λ2 = 0 = σ1−σ2 and the corresponding linearization matrices are not diagonal.

We say that two infinite simple nodes P1 and P2 are tangent equivalent if and
only if their corresponding singularities on the sphere are tangent equivalent and in
addition, in case they are generic nodes, we have (|λ1| − |λ2|)(|σ1| − |σ2|) > 0 where
λ1 and σ1 are the eigenvalues of the eigenvectors tangent to the line at infinity.

Finite and infinite singular points may either be real or complex. In case we have
a complex singular point we will specify this with the symbols c© and c© for finite
and infinite points respectively. We point out that the sum of the multiplicities of
all singular points of a quadratic system with a finite number of singular points, is
always 7 (here of course we refer to the compactification on the complex projective
plane P2(C) of the foliation with singularities associated to the complexification
of the vector field, see Section 6.1). The sum of the multiplicities of the infinite
singular points is always at least 3, more precisely it is always 3 plus the sum of the
multiplicities of the finite points disappeared at infinity.

We use here the following terminology for singularities:

We call elemental a singular point with its both eigenvalues not zero;

We call semi–elemental a singular point with exactly one of its eigenvalues
equal to zero;

We call nilpotent a singular point with both its eigenvalues zero but with its
Jacobian matrix at that point not identically zero;

We call intricate a singular point with its Jacobian matrix identically zero.

The intricate singularities are usually called in the literature linearly zero. We
use here the term intricate to indicate the rather complicated behavior of phase
curves around such a singularity.

Roughly speaking a singular point p of an analytic differential system χ is a
multiple singularity of multiplicity m if p generates m singularities, as close to p as we
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wish, in analytic perturbations χε of this system and m is the maximal such number.
In polynomial differential systems of fixed degree n we have several possibilities
for obtaining multiple singularities. i) A finite singular point splits into several
finite singularities in n-degree polynomial perturbations. ii) An infinite singular
point splits into some finite and some infinite singularities in n-degree polynomial
perturbations. iii) An infinite singularity splits only in infinite singular points of
the systems in n-degree perturbations. To all these cases we can give a precise
mathematical meaning using the notion of intersection multiplicity at a point p of
two algebraic curves (see [29,30]).

We will say that two foci (or saddles) are order equivalent if their corresponding
orders coincide.

Semi–elemental saddle–nodes are always topologically equivalent.

To define the notion of geometric equivalence relation of singularities we first
define for nilpotent and intricate singular points, the notion of blow–up equivalence.
We start by having a degenerate singular point p1 at the origin of the plane of
coordinates (x0, y0), such that p1 has a positive number of characteristic directions.
We define an ε-twist as a k-twist with k small enough so that no characteristic
direction (or special characteristic direction in the case of a star point) with negative
slope is moved to positive slope. Then if x0 = 0 is a characteristic direction, we do
an ε-twist. After the blow–up (x0, y0) = (x1, y1x1) the singular point is replaced by
the straight line x1 = 0 in the plane (x1, y1). The neighborhood of the straight line
x1 = 0 in the projective plane obtained identifying the opposite infinite points of
the Poincaré disk is a Möbius band M1.

The straight line x1 = 0 will be invariant and may be formed by a continuum of
singular points. In that case, with a time change, this degeneracy may be removed
and the y1–axis will remain invariant.

Now we have a number k1 of singularities located on the affine axis x1 = 0.
We do not include the infinite singular point which is the origin of the local chart
U2 at infinity (Y 6= 0) because we already know that it does not play any role in
understanding the local phase portrait of the singularity p1. We can then list the
k1 singularities as p1,1, p1,2, ..., p1,k1 with decreasing order of the y1 coordinate. The
p1,i is adjacent to p1,i+1 in the usual sense and p1,k1 is also adjacent to p1,1 on the
Möbius band.

Assume now that we have a degenerate singular point p1 at the origin of the
plane (x0, y0) with an infinite number of characteristic directions. Then if x0 = 0
is a special characteristic direction, we do an ε-twist. After the blow–up (x0, y0) =
(x1, y1x1) the singular point is replaced by the straight line x1 = 0 in the plane
(x1, y1). The neighborhood of the straight line x1 = 0 in the projective plane
obtained identifying the opposite infinite points of the Poincaré disk is a Möbius
band M1.

The straight line x1 = 0 will be invariant and formed by a continuum of singular
points. In that case, with a time change, this degeneracy may be removed and the
y1–axis will no longer be invariant.

Now we have a set of cardinality k1 formed by singularities located on the axis
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x1 = 0 plus contact points of the flow with the axis x1 = 0. Again we do not include
the infinite singular point at the origin of the local chart U2 at infinity (Y 6= 0)
because we already know that it does not play any role in understanding the local
phase portrait of the singularity p1. We list again the k1 points as p1,1, p1,2, ..., p1,k1

with decreasing order of the y1 coordinate. The p1,i is adjacent to p1,i+1 in the usual
sense and p1,k1 is also adjacent to p1,1 by the Möbius band.

Let p2 be a degenerate singularity of another polynomial vector field and suppose
that it is located at the origin of the plane (x̄0, ȳ0).

The next definition works whether the singular points are star–like or not.

We say that p1 and p2 are one step blow–up equivalent if modulus a rotation
with center p2 (before the blow–up) and a reflection (if needed) we have:

(i) the cardinality k1 from p1 equals the cardinality k2 from p2;

(ii) we can construct a homeomorphism φ1
p1

: M1 → M2 such that φ1
p1

({x1 =
0}) = {x̄1 = 0}, φ1

p1
sends the points p1,i to p2,i and the phase portrait in

a neighborhood U of the axis x1 = 0 is topologically equivalent to the phase
portrait on φ1

p1
(U);

(iii) φ1
p1

sends an elemental (respectively semi–elemental, nilpotent or intricate)
singular point to an elemental (respectively semi–elemental, nilpotent or intri-
cate) singular point;

(iv) φ1
p1

sends a contact point to a contact point.

Assuming p1,j and φ1
p1

(p1,j) = p2,j are both intricate or both nilpotent, then the
process of desingularization (blow–up) must be continued.

We do exactly the same study we did before for p1 and p2 now for p1,j and p2,j .
We move them to the respective origins of the planes (x1, y1) and (x̄1, ȳ1) and we
determine whether they are one step blow–up equivalent or not.

If successive degenerate singular points appear from desingularization of p1 we do
the same kind of changes that we did for p1,j and apply the corresponding definition
of one step blow–up equivalence. This is repeated until after a finite number of
blow–up’s all the singular points that appear are elemental or semi–elemental.

We say that two singularities p1 and p2, both nilpotent or both intricate, of two
polynomial vector fields χ1 and χ2, are blow–up equivalent if and only if

(i) they are one step blow–up equivalent;

(ii) at each level j in the process of desingularization of p1 and of p2, two singu-
larities which are related via the corresponding homeomorphism are one step
blow–up equivalent.

Definition 1. Two singularities p1 and p2 of two polynomial vector fields are locally
geometrically equivalent if and only if they are topologically equivalent, they have the
same multiplicity and one of the following conditions is satisfied:
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• p1 and p2 are order equivalent foci (or saddles);

• p1 and p2 are tangent equivalent simple nodes;

• p1 and p2 are both centers;

• p1 and p2 are both semi–elemental singularities;

• p1 and p2 are blow–up equivalent nilpotent or intricate singularities.

We say that two infinite isolated singularities P1 and P2 of two polynomial vector
fields are blow–up equivalent if they are blow–up equivalent finite singularities in the
corresponding infinite local charts and the number, type and ordering of sectors on
each side of the line at infinity of P1 coincide with those of P2.

Definition 2. Let χ1 and χ2 be two polynomial vector fields each having a finite
number of singularities. We say that χ1 and χ2 have geometricallyequivalent config-
urations of singularities if and only if we have a bijection ϑ carrying the singularities
of χ1 to singularities of χ2 and for every singularity p of χ1, ϑ(p) is geometricallye-
quivalent with p.

5 Notations for singularities of polynomial differential systems

In this work we encounter all the possibilities we have for the geometric features
of both the finite and the infinite singularities in the whole quadratic class as well as
the way they assemble in systems of this class. Since we want to describe precisely
these geometric features and in order to facilitate understanding, it is important to
have a clear, compact and congenial notation which conveys easily the information.
The notation we use, even though it is used here to describe finite and infinite
singular points of quadratic systems, can easily be extended to general polynomial
systems.

We describe the finite and infinite singularities, denoting the first ones with lower
case letters and the second with capital letters. When describing in a sequence both
finite and infinite singular points, we will always place first the finite ones and only
later the infinite ones, separating them by a semicolon‘;’.

Elemental points: We use the letters ‘s’,‘S’ for “saddles”; ‘n’, ‘N ’ for “nodes”;
‘f ’ for “foci”; ‘c’ for “centers” and c© (respectively c©) for complex finite (respectively
infinite) singularities. In order to augment the level of precision we will distinguish
the finite nodes as follows:

• ‘n’ for a node with two distinct eigenvalues (generic node);

• ‘nd’ (a one–direction node) for a node with two identical eigenvalues whose
Jacobian matrix is not diagonal;

• ‘n∗’ (a star–node) for a node with two identical eigenvalues whose Jacobian
matrix is diagonal.
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Moreover, in the case of an elemental infinite generic node, we want to dis-
tinguish whether the eigenvalue associated to the eigenvector directed towards the
affine plane is, in absolute value, greater or lower than the eigenvalue associated to
the eigenvector tangent to the line at infinity. This is relevant if we consider the
geometric behavior of the phase curves around the node (see page 74). We will
denote them as ‘N∞’ and ‘Nf ’ respectively.

Finite elemental foci and saddles are classified as strong or weak foci, respectively
strong or weak saddles. When the trace of the Jacobian matrix evaluated at those
singular points is not zero, we call them strong saddles and strong foci and we
maintain the standard notations ‘s’ and ‘f .’ But when the trace is zero, except for
centers and saddles of infinite order (i.e. saddles with all their Poincaré-Lyapounov
constants equal to zero), it is known that the foci and saddles, in the quadratic case,
may have up to 3 orders. We denote them by ‘s(i)’ and ‘f (i)’ where i = 1, 2, 3 is the
order. In addition we have the centers which we denote by ‘c’ and saddles of infinite
order (integrable saddles) which we denote by ‘$’.

Foci and centers cannot appear as singular points at infinity and hence there is
no need to introduce their order in this case. In the case of saddles, we can have weak
saddles at infinity but the maximum order of weak singularities in cubic systems is
not yet known. For this reason, a complete study of weak saddles at infinity cannot
be done at this stage. Due to this, in this work we shall not even distinguish between
a saddle and a weak saddle at infinity.

All non–elemental singular points are multiple points, in the sense that there
are perturbations which have at least two elemental singular points as close as we
wish to the multiple point. For finite singular points we denote with a subindex
their multiplicity as in ‘s(5)’ or in ‘ês(3)’ (the notation ‘ ’ indicates that the saddle
is semi–elemental and ‘ês(3)’ indicates that the singular point is nilpotent). In order
to describe the various kinds of multiplicity for infinite singular points we use the
concepts and notations introduced in [31]. Thus we denote by ‘

(
a
b

)
...’ the maximum

number a (respectively b) of finite (respectively infinite) singularities which can be

obtained by perturbation of the multiple point. For example ‘
(
1

1

)
SN ’ means a saddle–

node at infinity produced by the collision of one finite singularity with an infinite

one; ‘
(
0

3

)
S’ means a saddle produced by the collision of 3 infinite singularities.

Semi–elemental points: They can either be nodes, saddles or saddle–nodes,
finite or infinite. We will denote the semi–elemental ones always with an overline, for
example ‘sn’, ‘s’ and ‘n’ with the corresponding multiplicity. In the case of infinite
points we will put ‘ ’ on top of the parenthesis with multiplicities.

Moreover, in cases that will be explained later (see page 94), an infinite saddle–

node may be denoted by ‘
(
1

1

)
NS’ instead of ‘

(
1

1

)
SN ’. Semi–elemental nodes could

never be ‘nd’ or ‘n∗’ since their eigenvalues are always different. In the case of an
infinite semi–elemental node, the type of collision determines whether the point is

denoted by ‘Nf ’ or by ‘N∞’ where ‘
(
2

1

)
N ’ is an ‘Nf ’ and ‘

(
0

3

)
N ’ is an ‘N∞’.

Nilpotent points: They can either be saddles, nodes, saddle–nodes, elliptic–
saddles, cusps, foci or centers. The first four of these could be at infinity. We denote
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the nilpotent singular points with a hat ‘̂’ as in ês(3) for a finite nilpotent elliptic–
saddle of multiplicity 3 and ĉp(2) for a finite nilpotent cusp point of multiplicity 2. In
the case of nilpotent infinite points, we will put the ‘̂’ on top of the parenthesis with

multiplicity, for example
(̂
1

2

)
PEP −H (the meaning of PEP −H will be explained

in the next paragraph). The relative position of the sectors of an infinite nilpotent
point, with respect to the line at infinity, can produce topologically different phase
portraits. This forces to use a notation for these points similar to the notation which
we will use for the intricate points.

Intricate points: It is known that the neighborhood of any singular point of
a polynomial vector field (except for foci and centers) is formed by a finite number
of sectors which could only be of three types: parabolic, hyperbolic and elliptic
(see [17]). Then, a reasonable way to describe intricate and nilpotent points is to
use a sequence formed by the types of their sectors. The description we give is the
one which appears in the clockwise direction (starting anywhere) once the blow–
down of the desingularization is done. Thus in non-degenerate quadratic systems,
we have just seven possibilities for finite intricate singular points of multiplicity four
(see [4]) which are the following ones:

• a) phpphp(4);

• b) phph(4);

• c) hh(4);

• d) hhhhhh(4) ;

• e) peppep(4);

• f) pepe(4);

• g) ee(4).

We use lower case letters because of the finite nature of the singularities and add
the subindex (4) since they are all of multiplicity 4.

For infinite intricate and nilpotent singular points, we insert a dash (hyphen)
between the sectors to split those which appear on one side or the other of the
equator of the sphere. In this way we will distinguish between

(
2

2

)
PHP −PHP and(

2

2

)
PPH − PPH.
Whenever we have an infinite nilpotent or intricate singular point, we will always

start with a sector bordering the infinity (to avoid using two dashes). When one
needs to describe a configuration of singular points at infinity, then the relative
positions of the points, is relevant in some cases. In [3] this situation only occurs
once for systems having two semi–elemental saddle–nodes at infinity and a third
singular point which is elemental. In this case we need to write NS instead of SN
for one of the semi–elemental points in order to have coherence of the positions of the
parabolic (nodal) sector of one point with respect to the hyperbolic (saddle) of the
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other semi–elemental point. More concretely, Figure 3 from [31] (which corresponds

to Config. 3 in Figure 1) must be described as
(
1

1

)
SN,

(
1

1

)
SN, N since the elemental

node lies always between the hyperbolic sectors of one saddle–node and the parabolic
ones of the other. However, Figure 4 from [31] (which corresponds to Config. 4 in

Figure 1) must be described as
(
1

1

)
SN,

(
1

1

)
NS, N since the hyperbolic sectors of

each saddle–node lie between the elemental node and the parabolic sectors of the
other saddle–node. These two configurations have exactly the same description of
singular points but their relative position produces geometrically (and topologically)
different portraits.

For the description of the topological phase portraits around the isolated singular
points the information described above is sufficient. However we are interested
in additional geometrical features such as the number of characteristic directions
which figure in the final global picture of the desingularization. In order to add this
information we need to introduce more notation. If two borsecs (the limiting orbits
of a sector) arrive at the singular point with the same slope and direction, then the
sector will be denoted byHf, Ef or Pf. The index in this notation refers to the cusp–
like form of limiting trajectories of the sectors. Moreover, in the case of parabolic
sectors we want to make precise whether the orbits arrive tangent to one borsec or

to the other. We distinguish the two cases by
x

P if they arrive tangent to the borsec

limiting the previous sector in clockwise sense or
y

P if they arrive tangent to the
borsec limiting the next sector. Clearly, a parabolic sector denoted by P ∗ would
correspond to a sector in which orbits arrive with all possible slopes between the
those of the borsecs. In the case of a cusp–like parabolic sector, all orbits must arrive

with only one slope, but the distinction between
x

P and
y

P is still valid if we consider
the different desingularizations we obtain from them. Thus, complicated intricate

singular points like the two we see in Figure 5 may be described as
(
4

2

) y

PE
x

P−HHH

(case (a)) and
(
4

3

)
E

x

PfH−H
y

PfE (case (b)), respectively.
The lack of finite singular points will be encapsulated in the notation ∅. In the

cases we need to point out the lack of an infinite singular point, we will use the
symbol ∅.

Finally there is also the possibility that we have an infinite number of finite or of
infinite singular points. In the first case, this means that the polynomials defining
the differential system are not coprime. Their common factor may produce a line
or conic with real coefficients filled up with singular points.

Line at infinity filled up with singularities: It is known that any such sys-
tem has in a sufficiently small neighborhood of infinity one of 6 topologically distinct
phase portraits (see [34]). The way to determine these portraits is by studying the
reduced systems on the infinite local charts after removing the degeneracy of the
systems within these charts. In case a singular point still remains on the line at
infinity we study such a point. In [34] the tangential behavior of the solution curves
was not considered in the case of a node. If after the removal of the degeneracy in
the local charts at infinity a node remains, this could either be of the type Nd, N
and N⋆ (this last case does not occur in quadratic systems as it was shown in [3]).
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Since no eigenvector of such a node N (for quadratic systems) will have the direction
of the line at infinity we do not need to distinguish Nf and N∞. Other types of
singular points at infinity of quadratic systems, after removal of the degeneracy, can
be saddles, centers, semi–elemental saddle–nodes or nilpotent elliptic–saddles. We
also have the possibility of no singularities after the removal of the degeneracy. To
convey the way these singularities were obtained as well as their nature, we use the

notation [∞; ∅], [∞; N ], [∞; Nd], [∞; S], [∞; C], [∞;
(
1

0

)
SN ] or [∞;

(̂
3

0

)
ES].

Degenerate systems: We will denote with the symbol ⊖ the case when the
polynomials defining the system have a common factor. This symbol stands for the
most generic of these cases which corresponds to a real line filled up with singular
points. The degeneracy can also be produced by a common quadratic factor which
defines a conic. It is well known that by an affine transformation any conic over
R can be brought to one of the following forms: x2 + y2 − 1 = 0 (real ellipse),
x2 + y2 + 1 = 0 (complex ellipse), x2 − y2 = 1 (hyperbola), y − x2 = 0 (parabola),
x2−y2 = 0 (pair of intersecting real lines), x2 +y2 = 0 (pair of intersecting complex
lines), x2 − 1 = 0 (pair of parallel real lines), x2 + 1 = 0 (pair of parallel complex
lines), x2 = 0 (double line).

We will indicate each case by the following symbols:

•⊖[|] for a real straight line;

•⊖[◦] for a real ellipse;

•⊖[ c©] for a complex ellipse;

•⊖[ )( ] for an hyperbola;

•⊖[∪] for a parabola;

•⊖[×] for two real straight lines intersecting at a finite point;

•⊖[· ] for two complex straight lines which intersect at a real finite point.

•⊖[‖] for two real parallel lines;

•⊖[‖c] for two complex parallel lines;

•⊖[|2] for a double real straight line.

Moreover, we also want to determine whether after removing the common factor
of the polynomials, singular points remain on the curve defined by this common
factor. If the reduced system has no finite singularity on this curve, we will use
the symbol ∅ to describe this situation. If some singular points remain we will use
the corresponding notation of their types. As an example we complete the notation
above as follows:

•
(
⊖ [|];∅

)
denotes the presence of a real straight line filled up with singular

points such that the reduced system has no singularity on this line;
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•
(
⊖ [|]; f

)
denotes the presence of the same straight line such that the reduced

system has a strong focus on this line;

•
(
⊖ [∪];∅

)
denotes the presence of a parabola filled up with singularities such

that no singular point of the reduced system is situated on this parabola.

Degenerate systems with non–isolated singular points at infinity,

which are however isolated on the line at infinity: The existence of a common
factor of the polynomials defining the differential system also affects the infinite sin-
gular points. We point out that the projective completion of a real affine line filled
up with singular points has a point on the line at infinity which will then be also a
non–isolated singularity.

In order to describe correctly the singularities at infinity, we must mention also
this kind of phenomena and describe what happens to such points at infinity after
the removal of the common factor. To show the existence of the common factor we
will use the same symbol ⊖ as before, and for the type of degeneracy we use the
symbols introduced above. We will use the symbol ∅ to denote the non–existence
of real infinite singular points after the removal of the degeneracy. We will use
the corresponding capital letters to describe the singularities which remain there.
We take note that a simple straight line, two parallel lines (real or complex), one
double line or one parabola defined by the common factor (all taken over the reals)
imply the existence of one real non–isolated singular point at infinity in the original
degenerate system. However a hyperbola and two real straight lines intersecting at a
finite point imply the presence of two real non–isolated singular points at infinity in
the original degenerate system. Finally, a complex ellipse and two complex straight
lines which intersect at a real finite point imply the presence of two complex non–
isolated singular points at infinity in the original degenerate system. Thus, in the
reduced system these points may disappear as singularities and in case they remain,
they must be described. For the first four cases mentioned above we will give the
description of the corresponding infinite point. In the next four cases we will give
the description of the corresponding two singular points. According to our notation,
we will use capital letters to denote them since they are on the line at infinity. We
give below some examples:

• Nf , S,
(
⊖ [|]; ∅

)
means that the system has a node at infinity such that an

infinite number of orbits arrive tangent to the eigenvector in the affine part,
a saddle, and one non–isolated singular point which belongs to a real affine
straight line filled up with singularities, and that the reduced linear system
has no infinite singular points in that position;

• S,
(
⊖ [|];N∗

)
means that the system has a saddle at infinity, and one non–

isolated singular point which belongs to a real affine straight line filled up
with singularities, and that the reduced linear system has a star node in that
position;



CONFIGURATIONS OF SINGULARITIES FOR QUADRATIC SYSTEMS 97

• S,
(
⊖ [ )( ]; ∅, ∅

)
means that the system has a saddle at infinity, and two non–

isolated singular points which belong to a hyperbola filled up with singularities,
and that the reduced constant system has no singularities in those positions;

•
(
⊖ [×];N∗, ∅

)
means that the system has two non–isolated singular points

at infinity which belong to two real intersecting straight lines filled up with
singularities, and that the reduced constant system has a star node in one of
those positions and no singularities in the other;

• S,
(
⊖ [◦]; ∅, ∅

)
means that the system has a saddle at infinity, and two non–

isolated (complex) singular points which are located on the complexification
of a real ellipse which has no real points at infinity, and the reduced constant
system has no singularities in those positions.

When there is a non–isolated infinite singular point such that the reduced system
has a singularity at that position, it may happen that one or several characteristic
directions at this point, directed towards the affine plane, could coincide with a
tangent line to the curve of singularities at this point. This situation could produce
many different geometrical (or even topological) combinations but in the quadratic
case we only have a few of them for which we introduce a coherent notation. This
notation can be further developed for higher degree systems. In quadratic systems
we only need to distinguish among some situations in which, after the removal of
the degeneracy, a characteristic direction of the infinite singular point may coincide
or may not coincide with a tangent line to the curve of singularities at this point.
We show in Figure 6 two cases that need to be distinguished (case (a) and (b)).
Here we will use a numerical subscript which denotes the cardinal number K of the
union of the set of characteristic directions, together with the set of tangent lines to
the curve of singularities at this point, all of them considered in a neighborhood of
the point at infinity on the Poincaré sphere. The singularities at infinity of examples
(a) and (b) of Figure 6 would then be denoted by S,

(
⊖ [|];N∞

3

)
(case (a)) and

S,
(
⊖ [|];N∞

2

)
(case (b)).

Figure 6.

Degenerate systems with the line at infinity filled up with singularities:

For a quadratic system this implies that the polynomials must have a common linear
factor and there are only two possible phase portraits, which can be seen in Figure
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6 (the portraits (c) and (d)). In order to be consistent with our notation and
considering generalization to higher degree systems, we describe the two cases in a
way coherent with what we have done up to now.

The case (c) is denoted by [∞;
(

⊖ [|]; ∅3

)
] which means:

• the line at infinity is filled up with singular points;

• the reduced quadratic system has on one of the infinite local charts a non–
isolated singular point on the line at infinity due to the affine line of degeneracy;

• once the original system at infinity is reduced to a linear one by removing the
common factor, the infinity continues to be filled up with singular points;

• once the system on a local chart around the singularity which is common to
both lines filled up with singular points, is reduced by completely removing
the degeneracy, there is no singular point on that intersection;

• the cardinal number K is 3. This means that apart from the line of singulari-
ties and the line at infinity, we have another characteristic direction pointing
towards the affine plane.

The second case is denoted by [∞;
(

⊖ [|]; ∅2

)
], which means exactly the same

items as above with the exception that cardinal number K is 2. That is, beyond the
line of singularities and the line at infinity, we have no other characteristic direction.

6 Assembling multiplicities for global configurations

of singularities at infinity using divisors

The singular points at infinity belong to compactifications of planar polynomial
differential systems, defined on the affine plane. We begin this section by briefly
recalling these compactifications.

6.1 Compactifications associated to planar polynomial differential

systems

6.1.1 Compactification on the sphere and on the Poincaré disk

Planar polynomial differential systems (1) can be compactified on the sphere.
For this we consider the affine plane of coordinates (x, y) as being the plane Z = 1
in R

3 with the origin located at (0, 0, 1), the x–axis parallel with the X–axis in
R

3, and the y–axis parallel to the Y –axis. We use central projection to project this
plane on the sphere as follows: for each point (x, y, 1) we consider the line joining the
origin with (x, y, 1). This line intersects the sphere in two points P1 = (X,Y,Z) and
P2 = (−X,−Y,−Z) where (X,Y,Z) = (1/

√
x2 + y2 + 1)(x, y, 1). The applications

(x, y) 7→ P1 and (x, y) 7→ P2 are bianalytic and associate to a vector field on the
plane (x, y) an analytic vector field Ψ on the upper hemisphere and also an analytic
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vector field Ψ′ on the lower hemisphere. A theorem stated by Poincaré and proved
in [18] says that there exists an analytic vector field Θ on the whole sphere which
simultaneously extends the vector fields on the two hemispheres. By the Poincaré
compactification on the sphere of a planar polynomial vector field we mean the
restriction Ψ̄ of the vector field Θ to the union of the upper hemisphere with the
equator. For more details we refer to [21]. The vertical projection of Ψ̄ on the plane
Z = 0 gives rise to an analytic vector field Φ on the unit disk of this plane. By
the compactification on the Poincaré disk of a planar polynomial vector field we
understand the vector field Φ. By a singular point at infinity of a planar polynomial
vector field we mean a singular point of the vector field Ψ̄ which is located on the
equator of the sphere, respectively a singular point of the vector field Φ located on
the circumference of the Poincaré disk.

6.1.2 Compactification on the projective plane

To a polynomial system (1) we can associate a differential equation ω1 =
q(x, y)dx − p(x, y)dy = 0. Assuming the differential system (1) is with real coeffi-
cients, we may associate to it a foliation with singularities on the real, respectively
complex, projective plane as indicated below. The equation ω1 = 0 defines a foliation
with singularities on the real or complex plane depending if we consider the equation
as being defined over the real or complex affine plane. It is known that we can com-
pactify these foliations with singularities on the real respectively complex projective
plane. In the study of real planar polynomial vector fields, their associated complex
vector fields and their singularities play an important role. In particular such a
vector field could have complex, non-real singularities, by this meaning singularities
of the associated complex vector field. We briefly recall below how these foliations
with singularities are defined.

The application Υ : K
2 −→ P2(K) defined by (x, y) 7→ [x : y : 1] is an injection

of the plane K
2 over the field K into the projective plane P2(K) whose image is the

set of [X : Y : Z] with Z 6= 0. If K is R or C this application is an analytic injection.
If Z 6= 0 then (Υ)−1([X : Y : Z]) = (x, y) where (x, y) = (X/Z, Y/Z). We obtain a
map i : K

3 \ {Z = 0} −→ K
2 defined by [X : Y : Z] 7→ (X/Z, Y/Z).

Considering that dx = d(X/Z) = (ZdX − XdZ)/Z2 and dy = (ZdY −

Y dZ)/Z2, the pull-back of the form ω1 via the map i yields the form i ∗ (ω1) =
q(X/Z, Y/Z)(ZdX −XdZ)/Z2 − p(X/Z, Y/Z)(ZdY − Y dZ)/Z2 which has poles on
Z = 0. Then the form ω = Zm+2i ∗ (ω1) on K3 \ {Z = 0}, K being R or C and m

being the degree of systems (1) yields the equation ω = 0:

A(X,Y,Z)dX +B(X,Y,Z)dY + C(X,Y,Z)dZ = 0

on K3 \ {Z = 0} where A, B, C are homogeneous polynomials over K with
A(X,Y,Z) = ZQ(X,Y,Z), Q(X,Y,Z) = Zmq(X/Z, Y/Z), B(X,Y,Z) = ZP (X,Y,Z),
P (X,Y,Z) = Zmp(X/Z, Y/Z) and C(X,Y,Z) = Y P (X,Y,Z) −XQ(X,Y,Z).

The equation AdX + BdY + CdZ = 0 defines a foliation F with singularities
on the projective plane over K with K either R or C. The points at infinity of the
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foliation defined by ω1 = 0 on the affine plane are the points [X : Y : 0] and the line
Z = 0 is called the line at infinity of the foliation with singularities generated by
ω1 = 0.

The singular points of the foliation F are the solutions of the three equations
A = 0, B = 0, C = 0. In view of the definitions of A,B,C it is clear that the
singular points at infinity are the points of intersection of Z = 0 with C = 0.

6.2 Assembling data on infinite singularities in divisors of the line

at infinity

In the previous sections we have seen that there are two types of multiplicities
for a singular point p at infinity: one expresses the maximum number m of infinite
singularities which can split from p, in small perturbations of the system and the
other expresses the maximum number m′ of finite singularities which can split from
p, in small perturbations of the system. In Section 2 we mentioned that we shall
use a column (m,m′)t to indicate this situation.

We are interested in the global picture which includes all singularities at infinity.
Therefore we need to assemble the data for individual singularities in a convenient,
precise way. To do this we use for this situation the notion of cycle on an algebraic
variety as indicated in [24] and which was used in [21] as well as in [31].

We briefly recall here the definition of this notion. Let V be an irreducible
algebraic variety over a field K. A cycle of dimension r or r− cycle on V is a formal
sum

∑
W nWW , where W is a subvariety of V of dimension r which is not contained

in the singular locus of V , nW ∈ Z, and only a finite number of the coefficients nW

are non-zero. The degree deg(J) of a cycle J is defined by
∑

W nW . An (n−1)-cycle
is called a divisor on V . These notions were used for classification purposes of planar
quadratic differential systems in [21,24,31].

To a system (1) we can associate two divisors on the line at infinity Z = 0
of the complex projective plane: DS(P,Q;Z) =

∑
w Iw(P,Q)w and DS(C,Z) =∑

w Iw(C,Z)w where w ∈ {Z = 0} and where by Iw(F,G) we mean the intersection
multiplicity at w of the curves F (X,Y,Z) = 0 and G(X,Y,Z) = 0, with F and G

homogeneous polynomials in X,Y,Z over C. For more details see [21].

Following [31] we assemble the above two divisors on the line at infinity into just
one but with values in the ring Z

2:

DS =
∑

ω∈{Z=0}

(
Iw(P,Q)
Iw(C,Z)

)
w.

This divisor encodes the total number of singularities at infinity of a system (1) as
well as the two kinds of multiplicities which each singularity has. The meaning of
these two kinds of multiplicities are described in the definition of the two divisors
DS(P,Q;Z) and DS(C,Z) on the line at infinity.
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7 Invariant polynomials and preliminary results

Consider real quadratic systems of the form:

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y),

(3)

with homogeneous polynomials pi and qi (i = 0, 1, 2) of degree i in x, y:

p0 = a00, p1(x, y) = a10x+ a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q1(x, y) = b10x+ b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

Let ã = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) be the 12-tuple of the
coefficients of systems (3) and denote R[ã, x, y] = R[a00, . . . , b02, x, y].

7.1 Affine invariant polynomials associated to infinite singularities

It is known that on the set QS of all quadratic differential systems (3) acts
the group Aff (2,R) of the affine transformations on the plane (cf.[31]). For every
subgroup G ⊆ Aff (2,R) we have an induced action of G on QS. We can identify the
set QS of systems (3) with a subset of R

12 via the map QS−→ R
12 which associates

to each system (3) the 12–tuple (a00, . . . , b02) of its coefficients.

For the definitions of a GL–comitant and invariant as well as for the definitions of
a T–comitant and a CT–comitant we refer the reader to the paper [31] (see also [38]).
Here we shall only construct the necessary T–comitants and CT–comitants associ-
ated to configurations of infinite singularities (including multiplicities) of quadratic
systems (3).

Consider the polynomial Φα,β = αP ∗ + βQ∗ ∈ R[ã,X, Y, Z, α, β], where
P ∗ = Z2P (X/Z, Y/Z), Q∗ = Z2Q(X/Z, Y/Z), P, Q ∈ R[ã, x, y] and
max(deg(x,y)P,deg(x,y)Q) = 2. Then

Φα,β =s11(ã, α, β)X2 + 2s12(ã, α, β)XY + s22(ã, α, β)Y 2 + 2s13(ã, α, β)XZ

+ 2s23(ã, α, β)Y Z + s33(ã, α, β)Z2

and we denote
D̃(ã, x, y) =4det ||sij(ã, y,−x)||i,j∈{1,2,3} ,

H̃(ã, x, y) =4det ||sij(ã, y,−x)||i,j∈{1,2} .

We consider the polynomials

Ci(ã, x, y) = ypi(ã, x, y) − xqi(ã, x, y),

Di(ã, x, y) =
∂

∂x
pi(ã, x, y) +

∂

∂y
qi(ã, x, y),

(4)
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in R[ã, x, y] for i = 0, 1, 2 and i = 1, 2 respectively. Using the so–called transvectant
of order k (see [19],[22]) of two polynomials f, g ∈ R[ã, x, y]

(f, g)(k) =

k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h
,

we construct the following GL—comitants of the second degree with the coefficients
of the initial system

T1 = (C0, C1)
(1)
, T2 = (C0, C2)

(1)
, T3 = (C0,D2)

(1)
,

T4 = (C1, C1)
(2)
, T5 = (C1, C2)

(1)
, T6 = (C1, C2)

(2)
,

T7 = (C1,D2)
(1)
, T8 = (C2, C2)

(2)
, T9 = (C2,D2)

(1)
.

(5)

Using these GL—comitants as well as the polynomials (4) we construct the
additional invariant polynomials (see also [31])

M̃(ã, x, y) =(C2, C2)
(2)

≡ 2Hess
(
C2(ã, x, y)

)
;

η(ã) =(M̃ , M̃)(2)/384 ≡ Discrim
(
C2(ã, x, y)

)
;

K̃(ã, x, y) =Jacob
(
p2(ã, x, y), q2(ã, x, y)

)
;

K1(ã, x, y) =p1(ã, x, y)q2(ã, x, y) − p2(ã, x, y)q1(ã, x, y);

K2(ã, x, y) =4(T2, M̃ − 2K̃)(1)+ 3D1(C1, M̃ − 2K̃)(1)−

− (M̃ − 2K̃)
(
16T3 − 3T4/2 + 3D2

1

)
;

K3(ã, x, y) =C2

2
(4T3 + 3T4) + C2(3C0K̃ − 2C1T7) + 2K1(3K1 − C1D2);

L̃(ã, x, y) =4K̃ + 8H̃ − M̃ ;

L1(ã, x, y) =(C2, D̃)(2);

R̃(ã, x, y) =L̃+ 8K̃;

κ(ã) =(M̃ , K̃)(2)/4;

κ1(ã) =(M̃ ,C1)
(2);

Ñ(ã, x, y) =K̃(ã, x, y) + H̃(ã, x, y);

θ6(ã, x, y) =C1T8 − 2C2T6.

The geometrical meaning of the invariant polynomials C2, M̃ and η is revealed
in the next lemma (see [31]).

Lemma 1. The form of the divisor DS(C,Z) for systems (3) is determined by
the corresponding conditions indicated in Table 1, where we write wc

1
+ wc

2
+ w3 if

two of the points, i.e. wc
1
, wc

2
, are complex but not real. Moreover, for each form

of the divisor DS(C,Z) given in Table 1 the quadratic systems (3) can be brought
via a linear transformation to one of the following canonical systems (SI) − (SV )
corresponding to their behavior at infinity.
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Table 1

Case Form of DS(C,Z)
Necessary and

sufficient conditions
on the comitants

1 w1 + w2 + w3 η > 0

2 wc
1
+ wc

2
+ w3 η < 0

3 2w1 + w2 η = 0, M̃ 6= 0

4 3w M̃ = 0, C2 6= 0

5 DS(C,Z) undefined C2 = 0

{
ẋ = a+ cx+ dy + gx2 + (h− 1)xy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SI)

{
ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SIII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy − x2 + gxy + hy2,
(SIV )

{
ẋ = a+ cx+ dy + x2,

ẏ = b+ ex+ fy + xy.
(SV )

7.2 Affine invariant polynomials associated to finite singularities

Consider the differential operator L = x·L2−y·L1 acting on R[a, x, y] constructed
in [9], where

L1 = 2a00
∂

∂a10
+ a10

∂
∂a20

+ 1

2
a01

∂
∂a11

+ 2b00
∂

∂b10
+ b10

∂
∂b20

+ 1

2
b01

∂
∂b11

,

L2 = 2a00
∂

∂a01
+ a01

∂
∂a02

+ 1

2
a10

∂
∂a11

+ 2b00
∂

∂b01
+ b01

∂
∂b02

+ 1

2
b10

∂
∂b11

.

Using this operator and the affine invariant µ0 = Res x

(
p2(ã, x, y), q2(ã, x, y)

)
/y4 we

construct the following polynomials

µi(ã, x, y) =
1

i!
L

(i)(µ0), i = 1, .., 4,

where L(i)(µ0) = L(L(i−1)(µ0)).
These polynomials are in fact comitants of systems (3) with respect to the group

GL(2,R) (see [9]). Their geometrical meaning is revealed in Lemmas 2 and 3 below.

Lemma 2. ([8]) The total multiplicity of all finite singularities of a quadratic system
(3) equals k if and only if for every i ∈ {0, 1, . . . , k − 1} we have µi(ã, x, y) = 0 in
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R[x, y] and µk(ã, x, y) 6= 0. Moreover a system (3) is degenerate (i.e. gcd(P,Q) 6=
constant) if and only if µi(ã, x, y) = 0 in R[x, y] for every i = 0, 1, 2, 3, 4.

Lemma 3. ([9]) The point M0(0, 0) is a singular point of multiplicity k (1 ≤ k ≤ 4)
for a quadratic system (3) if and only if for every i ∈ {0, 1, . . . , k − 1} we have
µ4−i(ã, x, y) = 0 in R[x, y] and µ4−k(ã, x, y) 6= 0.

We denote

σ(ã, x, y) =
∂P

∂x
+
∂Q

∂y
= σ0(ã) + σ1(ã, x, y) (≡ D1(ã) +D2(ã, x, y))

and observe that the polynomial σ(ã, x, y) is an affine comitant of systems (3). It
is known that if (xi, yi) is a singular point of a system (3) then for the trace of its
respective linear matrix we have ρi = σ(xi, yi).

Applying the differential operators L and (∗, ∗)(k) (i.e. transvectant of index k)
we shall define the following polynomial function which governs the values of the
traces for finite singularities of systems (3).

Definition 3 ([39]). We call trace polynomial T(w) over the ring R[ã] the polynomial
defined as follows:

T(w) =

4∑

i=0

1

(i!)2

(
σi

1,
1

i!
L

(i)(µ0)

)(i)

w4−i =

4∑

i=0

Gi(ã)w
4−i, (6)

where the coefficients Gi(ã) =
1

(i!)2
(σi

1
, µi)

(i) ∈ R[ã], i = 0, 1, 2, 3, 4
(
G0(ã) ≡ µ0(ã)

)

are GL–invariants.

Using the polynomial T(w) we could construct the following four affine invariants
T4, T3, T2, T1, which are responsible for the weak singularities:

T4−i(ã)=
1

i!

diT

dwi

∣∣∣
w=σ0

∈ R[ã], i = 0, 1, 2, 3
(
T4 ≡ T(σ0)

)
.

The geometric meaning of these invariants is revealed by the next lemma (see
[39]).

Lemma 4. Consider a non-degenerate system (3) and let a ∈ R
12 be its 12-tuple

of coefficients. Denote by ρs the trace of the linear part of this system at a finite
singular point Ms, 1 ≤ s ≤ 4 (real or complex, simple or multiple). Then the
following relations hold, respectively:
(i) For µ0(a) 6= 0 (total multiplicity 4):

T4(a) = G0(a)ρ1ρ2ρ3ρ4,

T3(a) = G0(a)(ρ1ρ2ρ3 + ρ1ρ2ρ4 + ρ1ρ3ρ4 + ρ2ρ3ρ4),

T2(a) = G0(a)(ρ1ρ2 + ρ1ρ3 + ρ1ρ4 + ρ2ρ3 + ρ2ρ4 + ρ3ρ4),

T1(a) = G0(a)(ρ1 + ρ2 + ρ3 + ρ4);

(7)
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(ii) For µ0(a) = 0, µ1(a, x, y) 6= 0 (total multiplicity 3):

T4(a) = G1(a)ρ1ρ2ρ3, T3(a) = G1(a)(ρ1ρ2 + ρ1ρ3 + ρ2ρ3),
T2(a) = G1(a)(ρ1 + ρ2 + ρ3), T1(a) = G1(a);

(8)

(iii) For µ0(a) = µ1(a, x, y) = 0, µ2(a, x, y) 6= 0 (total multiplicity 2):

T4(a) = G2(a)ρ1ρ2, T3(a) = G2(a)(ρ1 + ρ2),
T2(a) = G2(a), T1(a) = 0;

(9)

(iv) For µ0(a) = µ1(a, x, y) = µ2(a, x, y) = 0, µ3(a, x, y) 6= 0 (one singularity):

T4(a) = G3(a)ρ1, T3(a) = G3(a), T2(a) = T1(a) = 0. (10)

In order to be able to calculate the values of the needed invariant polynomials
directly for every canonical system we shall define here a family of T–comitants
(see [31] for detailed definitions) expressed through Ci (i = 0, 1, 2) and Dj (j = 1, 2):

Â =
(
C1, T8 − 2T9 +D2

2

)(2)
/144,

D̂ =
1

36

[
2C0(T8 − 8T9 − 2D2

2
) + C1(6T7 − T6 − (C1, T5)

(1) +

+6D1(C1D2 − T5) − 9D2

1
C2

]
,

Ê =
[
D1(2T9 − T8) − 3 (C1, T9)

(1)
−D2(3T7 +D1D2)

]
/72,

F̂ =
[
6D2

1(D
2

2 − 4T9) + 4D1D2(T6 + 6T7) +48C0 (D2, T9)
(1)

− 9D2

2T4+288D1Ê

− 24
(
C2, D̂

)
(2)

+120
(
D2, D̂

)
(1)

−36C1 (D2, T7)
(1)+8D1 (D2, T5)

(1)

]
/144,

B̂ =
{
16D1 (D2, T8)

(1) (3C1D1 − 2C0D2 + 4T2) + 32C0 (D2, T9)
(1) (3D1D2−

−5T6 + 9T7) + 2 (D2, T9)
(1)

(
27C1T4 − 18C1D

2

1 −32D1T2 + 32 (C0, T5)
(1)

)

+ 6 (D2, T7)
(1) [8C0(T8 − 12T9) − 12C1(D1D2 + T7) +D1(26C2D1 + 32T5)+

+C2(9T4 + 96T3)] + 6 (D2, T6)
(1) [32C0T9 − C1(12T7 + 52D1D2) −32C2D

2

1

]

+ 48D2 (D2, T1)
(1)

(
2D2

2
− T8

)

− 32D1T8 (D2, T2)
(1) + 9D2

2T4 (T6 − 2T7) − 16D1 (C2, T8)
(1)

(
D2

1 + 4T3

)

+ 12D1 (C1, T8)
(2) (C1D2 − 2C2D1) + 6D1D2T4

(
T8 − 7D2

2 − 42T9

)

+ 12D1 (C1, T8)
(1) (T7 + 2D1D2) + 96D2

2

[
D1 (C1, T6)

(1) +D2 (C0, T6)
(1)

]

− 16D1D2T3

(
2D2

2 + 3T8

)
− 4D3

1D2

(
D2

2 + 3T8 + 6T9

)
+ 6D2

1D
2

2 (7T6 + 2T7)

−252D1D2T4T9} /(2
833),

K̂ =(T8 + 4T9 + 4D2

2
)/72 ≡ K̃/4,

Ĥ =(8T9 − T8 + 2D2

2)/72 ≡ −H̃/4,

M̂ =T8.
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These polynomials in addition to (4) and (5) will serve as bricks in constructing
affine invariant polynomials for systems (3).

The following 42 affine invariants A1, . . . , A42 form the minimal polynomial basis
of affine invariants up to degree 12. This fact was proved in [11] by constructing
A1, . . . , A42 using the above bricks.

A1 = Â, A22 = 1

1152

[
C2, D̂)(1),D2

)(1)
,D2

)(1)
,D2

)(1)
D2

)(1)
,

A2 = (C2, D̂)(3)/12, A23 =
[
F̂ , Ĥ)(1), K̂

)
(2)
/8,

A3 =
[
C2,D2)

(1),D2

)
(1)
,D2

)
(1)
/48, A24 =

[
C2, D̂)(2), K̂

)
(1)
, Ĥ

)
(2)
/32,

A4 = (Ĥ, Ĥ)(2), A25 =
[
D̂, D̂)(2), Ê

)(2)
/16,

A5 = (Ĥ, K̂)(2)/2, A26 = (B̂, D̂)(3)/36,

A6 = (Ê, Ĥ)(2)/2, A27 =
[
B̂,D2)

(1), Ĥ
)(2)

/24,

A7 =
[
C2, Ê)(2),D2

)
(1)
/8, A28 =

[
C2, K̂)(2), D̂

)
(1)
, Ê

)
(2)
/16,

A8 =
[
D̂, Ĥ)(2),D2

)
(1)
/8, A29 =

[
D̂, F̂ )(1), D̂

)
(3)
/96,

A9 =
[
D̂,D2)

(1),D2

)(1)
,D2

)(1)
/48, A30 =

[
C2, D̂)(2), D̂

)(1)
, D̂

)(3)
/288,

A10 =
[
D̂, K̂)(2),D2

)
(1)
/8, A31 =

[
D̂, D̂)(2), K̂

)
(1)
, Ĥ

)
(2)
/64,

A11 = (F̂ , K̂)(2)/4, A32 =
[
D̂, D̂)(2),D2

)
(1)
, Ĥ

)
(1)
,D2

)
(1)
/64,

A12 = (F̂ , Ĥ)(2)/4, A33 =
[
D̂,D2)

(1), F̂
)(1)

,D2

)(1)
,D2

)(1)
/128,

A13 =
[
C2, Ĥ)(1), Ĥ

)
(2)
,D2

)
(1)
/24, A34 =

[
D̂, D̂)(2),D2

)
(1)
, K̂

)
(1)
,D2

)
(1)
/64,

A14 = (B̂, C2)
(3)/36, A35 =

[
D̂, D̂)(2), Ê

)
(1)
,D2

)
(1)
,D2

)
(1)
/128,

A15 = (Ê, F̂ )(2)/4, A36 =
[
D̂, Ê)(2), D̂

)(1)
, Ĥ

)(2)
/16,

A16 =
[
Ê,D2)

(1), C2

)
(1)
, K̂

)
(2)
/16, A37 =

[
D̂, D̂)(2), D̂

)
(1)
, D̂

)
(3)
/576,

A17 =
[
D̂, D̂)(2),D2

)
(1)
,D2

)
(1)
/64, A38 =

[
C2, D̂)(2), D̂

)
(2)
, D̂

)
(1)
, Ĥ

)
(2)
/64,

A18 =
[
D̂, F̂ )(2),D2

)(1)
/16, A39 =

[
D̂, D̂)(2), F̂

)(1)
, Ĥ

)(2)
/64,

A19 =
[
D̂, D̂)(2), Ĥ

)
(2)
/16, A40 =

[
D̂, D̂)(2), F̂

)
(1)
, K̂

)
(2)
/64,

A20 =
[
C2, D̂)(2), F̂

)
(2)
/16, A41 =

[
C2, D̂)(2), D̂

)
(2)
, F̂

)
(1)
,D2

)
(1)
/64,

A21 =
[
D̂, D̂)(2), K̂

)(2)
/16, A42 =

[
D̂, F̂ )(2), F̂

)(1)
,D2

)(1)
/16.

In the above list, the bracket “[” is used in order to avoid placing the otherwise
necessary up to five parenthesizes “(”.

Using the elements of the minimal polynomial basis given above we construct
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the affine invariants

F1(ã) =A2,

F2(ã) = − 2A2

1A3 + 2A5(5A8 + 3A9) +A3(A8 − 3A10 + 3A11 +A12)−

−A4(10A8 − 3A9 + 5A10 + 5A11 + 5A12),

F3(ã) = − 10A2

1A3 + 2A5(A8 −A9) −A4(2A8 +A9 +A10 +A11 +A12)+

+A3(5A8 +A10 −A11 + 5A12),

F4(ã) = 20A2

1
A2 −A2(7A8 − 4A9 +A10 +A11 + 7A12) +A1(6A14 − 22A15)−

− 4A33 + 4A34,

F(ã) =A7,

B(ã) = − (3A8 + 2A9 +A10 +A11 +A12),

H(ã) = − (A4 + 2A5),

as well as the CT -comitants:

B1(ã) =
{(
T7,D2

)(1)[
12D1T3 + 2D3

1
+ 9D1T4 + 36

(
T1,D2

)(1)]

− 2D1

(
T6,D2

)(1)[
D2

1
+12T3] +D2

1

[
D1

(
T8, C1

)(2)
+

+ 6
((
T6, C1

)
(1)
,D2

)
(1)

]}
/144,

B2(ã) =
{(
T7,D2

)(1)[
8T3

(
T6,D2

)(1)
−D2

1

(
T8, C1

)(2)
− 4D1

((
T6, C1

)(1)
,D2

)(1)]
+

+
[(
T7,D2

)
(1)

]2

(8T3 − 3T4 + 2D2

1)
}
/384,

B3(ã, x, y) = −D2

1
(4D2

2
+ T8 + 4T9) + 3D1D2(T6 + 4T7) − 24T3(D

2

2
− T9),

B4(ã, x, y) = D1(T5 + 2D2C1) − 3C2(D
2

1 + 2T3).

We note that the invariant polynomials Ti, Fi, Bi (i=1,2,3,4), and B, F , H and σ are
responsible for weak singularities of the family of quadratic systems (see [39, Main
Theorem]).

Now we need also the invariant polynomials which are responsible for the types
of the finite singularities. These were constructed in [4]. Here we need only the
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following ones (we keep the notations from [4]):

W4(ã) =
[
1512A2

1(A30 − 2A29) − 648A15A26 + 72A1A2(49A25 + 39A26)

+ 6A2

2
(23A21 − 1093A19) − 87A4

2
+ 4A2

2
(61A17 + 52A18 + 11A20)

− 6A37(352A3 + 939A4 − 1578A5) − 36A8(396A29 + 265A30)

+ 72A29(17A12 − 38A9 − 109A11) + 12A30(76A9 − 189A10 − 273A11

− 651A12) − 648A14(23A25 + 5A26) − 24A18(3A20 + 31A17)

+ 36A19(63A20 + 478A21) + 18A21(2A20 + 137A21) − 4A17(158A17

+ 30A20 + 87A21) − 18A19(238A17 + 669A19)
]
/81,

W7(ã) =12A26(A26−2A25)+(2A29 −A30)(A
2

2−20A17−12A18 + 6A19 + 6A21)

+ 48A37(A
2

1 −A8 −A12),

W8(ã) = 64D1

[((
T6, C1

)
(1)
,D2

)
(1)

]
2
[
16

(
C0, T6

)
(1)

− 37
(
D2, T1

)
(1)

+ 12D1T3

]

+ 4(108D4

1 − 3T 2

4 − 128T3T4 + 42D2

1T4)
[((

T6, C1

)
(1)
,D2

)
(1)

]
2

+ 36D1

((
T6, C1

)
(1)
,D2

)
(1)

[
4D1

(
C0, T6

)
(1)

−D2

1(4T3 + T4)

+ 24T 2

3

](
C1, T8

)
(2)

+ 64
[((

T6, C1

)
(1)
,D2

)
(1)

]
2
[
27T 2

3

+ 16
((
T6, C1

)(1)
, C0

)(1)]
− 54

[
8D4

1
+D2

1
T4 − 8D1

(
C0, T6

)(1)

+ 8D2

1
T3+8T 2

3

]((
T6, C1

)(1)
, T6

)(1)(
C1, T8

)(2)
+108D1T3

[(
C1, T8

)(2)]2
×

×
[
D1T3 − 2

(
C0, T6

)(1)]
+ 576

((
T6, C1

)(1)
,D2

)(1)
×

×
((
T6, C1

)
(1)
, T6

)
(1)

[
2
(
D2, T1

)
(1)

− 5D1T3

]

− 27
[(
C1, T8

)
(2)

]
2
[
T 4

4 /8 +
(
C0, T1

)
(1)

]
,

F4(ã, x, y) = µ3(ã, x, y),

F5(ã, x, y) = T5 + 2C1D2 − 3C2D1,

G3(ã) = A2.

Finally we need the invariant polynomials which are responsible for the existence
of one (or two) star node(s) arbitrarily located on the phase plane of a system (3).
We have the following lemma (see [42]):

Lemma 5. A quadratic system (3) possesses one star node if and only if one of the
following sets of conditions hold:

(i) U1 6= 0, U2 6= 0, U3 = Y1 = 0;
(ii) U1 = U4 = U5 = U6 = 0, Y2 6= 0;

and it possesses two star nodes if and only if

(iii) U1 = U4 = U5 = 0, U6 6= 0, Y2 > 0,
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where
U1 = Ñ , U2 = (C1, H̃ − K̃)(1) − 2D1Ñ ,

U3 = 3D̃(D2

2 − 16K̃) + C2

[
(C2, D̃)(2) − 5(D2, D̃)(1) + 6 F̃

]
,

U4 = 2T5 + C1D2, U5 = 3C1D1 + 4T2 − 2C0D1,

U6 = H̃, Y1 = A1, Y2 = 2D2

1
+ 8T3 − T4.

We base our work here on results obtained in [3] and [4].

8 The proof of the Main Theorem

8.1 The family of systems without finite singularities

The total multiplicity mf of finite singularities of every system in this family
is zero. In [3] we gave the full global geometric classification of the whole class
of quadratic systems according to their singularities at infinity. Since only infinite
singularities occur in this family (mf = 0), we can extract from [3] the classification
of the configurations of singularities of this family. In fact from [3] we obtain more.
Indeed, we extract from [3] the part of the global bifurcation diagram of configu-
rations of singularities at infinity of QS, the fragment covering the case we need
here, i.e. mf = 0. We obtain the bifurcation diagram (see Diagram 1) of config-
urations of singularities of this class, done in the 12-parameter space of coefficients
and obtained with the help of invariant polynomials. The proof for this diagram is
completely covered in [3] and thus there is no need for a proof here. We shall only
give here examples, one for each kind of distinct geometric configurations occurring
in this family.

1) Systems with η < 0;

•
(
4

1

)
N, c©, c© : Example ⇒ (ẋ = 1 + xy; ẏ = −x2);

• N∗,
(
2

1

)
c©,

(
2

1

)
c© : Example ⇒ (ẋ = 1; ẏ = −x2 − y2).

2) Systems with η > 0;

•
(
4

1

)
N, S, N∞ : Example ⇒ (ẋ = −1 + xy; ẏ = 1 − xy + 2y2);

•
(
4

1

)
S, Nf , Nf : Example ⇒ (ẋ = 1 − xy; ẏ = 2 − 2xy + y2);

•
(
3

1

)
SN,

(
1

1

)
SN, Nd : Example ⇒ (ẋ = 1 + x− xy; ẏ = 1 − xy);

•
(
3

1

)
SN,

(
1

1

)
NS, Nd : Example ⇒ (ẋ = 1 − x+ xy; ẏ = 1 + xy);

•
(
2

1

)
S,

(
2

1

)
N, N∗ : Example ⇒ (ẋ = 1 − xy; ẏ = −xy).

3) Systems with η = 0, M̃ 6= 0;

•
(
0

2

)
SN,

(
4

1

)
N : Example ⇒ (ẋ = 1 + xy; ẏ = −1 − xy + y2);

•
(
4

2

) y

P Hf

x

P −
y

P Hf

x

P , Nf : Example ⇒ (ẋ = x2/4; ẏ = 1 − 3xy/4);

•
(
4

2

) y

P
x

PfH−H
y

Pf

x

P , Nf : Example ⇒ (ẋ = 2x2/3; ẏ = 1 − xy/3);
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•
(
4

2

) y

P H−H
x

P , Nf : Example ⇒ (ẋ = x2/2; ẏ = 1 − xy/2);

•
(
4

2

) x

P
y

PfE−E
x

Pf

y

P , S : Example ⇒ (ẋ = −x2; ẏ = 1 − 2xy);

•
(
4

2

) y

P
x

PfH−H
y

Pf

x

P , N∞ : Example ⇒ (ẋ = 2x2; ẏ = 1 + xy);

•
(̂
4

2

) y

Pf

x

P Hf−H, N∗ : Example ⇒ (ẋ = y + x2; ẏ = 1);

•
(
4

2

)
H−H, Nd : Example ⇒ (ẋ = 1 + x2; ẏ = x);

•
(
4

2

)
H−H, N∗ : Example ⇒ (ẋ = 1 + x2; ẏ = 1);

•
(
4

2

) y

PE
x

P −HHH, Nd : Example ⇒ (ẋ = −2 + x2; ẏ = 1 + x);

•
(
4

2

) y

P
x

PH−H
y

P
x

P , Nd : Example ⇒ (ẋ = −1 + x2; ẏ = 2 + x);

•
(
4

2

) y

P
x

PH−H
y

P
x

P , N∗ : Example ⇒ (ẋ = −1 + x2; ẏ = 1);

•
(
4

2

) y

P
x

PfH−H
y

Pf

x

P , Nd : Example ⇒ (ẋ = x2; ẏ = 1 + x);

•
(
4

2

) y

P
x

PfH−H
y

Pf

x

P , N∗ : Example ⇒ (ẋ = x2; ẏ = 1);

•
(̂
1

2

) y

PfE
x

Pf−H,
(
3

1

)
SN : Example ⇒ (ẋ = y; ẏ = 1 − xy);

•
(
3

2

)
E

x

P −
x

P H,
(
1

1

)
SN : Example ⇒ (ẋ = x; ẏ = 1 − xy);

•
(
2

2

)
E−E,

(
2

1

)
S : Example ⇒ (ẋ = −1; ẏ = 1 − xy);

•
(
2

2

)
H−H,

(
2

1

)
N : Example ⇒ (ẋ = 1. ẏ = 1 − xy);

4) Systems with η = M̃ = 0;

•
(
4

3

)
E

x

PfH−H
y

PfE : Example ⇒ (ẋ = x2; ẏ = 1 − x2 + xy);

•
(
4

3

) x

P
y

Pf

x

P −
y

P
x

Pf

y

P : Example ⇒ (ẋ = x2; ẏ = −1 − x2 + xy);

•
(
4

3

) y

PfEE
x

Pf−HH : Example ⇒ (ẋ = x; ẏ = 1 − x2);

•
(
4

3

) y

Pf

x

P
y

P
x

Pf−
y

P
x

P : Example ⇒ (ẋ = 1 + x; ẏ = −x2);

•
(
4

3

) y

PfEHf−
y

P : Example ⇒ (ẋ = 1; ẏ = y − x2);

•
(
4

3

) y

Pf

x

P −
y

P
x

Pf : Example ⇒ (ẋ = 1; ẏ = −x2);

•

[
∞;

(̂
3

0

)
ES

]
: Example ⇒ (ẋ = x2; ẏ = 1 + xy).

8.2 The family of quadratic differential systems with only one finite

singularity which in addition is elemental

In this subsection we consider all quadratic vector fields with total multiplicity
mf of finite singularities equal to 1. Since we have only one finite singular point,
this point is of course real. To obtain the full global classification of configurations
of singularities with respect to the geometric equivalence relation for this family,
we need to: i) deepen the topological classification of all configurations of finite
singularities done in [2] by using the finer geometric equivalence relation; ii) to
integrate this with the geometric classification of infinite singularities done in [3]
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and iii) to search for a minimal set of invariants which allow to obtain for this
family the bifurcation diagram with respect to the geometric equivalence relation
of configurations of singularities, finite and infinite, in the 12-dimensional space of
parameters.

According to [39] in this case the conditions µ0 = µ1 = µ2 = 0 and µ3 6= 0 must
be satisfied and according to [3] the following lemma is valid.

Lemma 6. The configurations of singularities at infinity of the family of quadratic
systems possessing one elemental (real) finite singularity (i.e. µ0 = µ1 = µ2 = 0 and
µ3 6= 0) are classified in Diagram 3 according to the geometric equivalence rela-
tion. Necessary and sufficient conditions for each one of the 22 different equivalence
classes can be assembled from this diagram in terms of 14 invariant polynomials with
respect to the action of the affine group and time rescaling, given in Section 7.

According to [39] the family of quadratic systems with one elemental finite sin-
gularity could be brought via an affine transformation to one of the two canonical
forms in [39], governed by invariant polynomial K̃ 6= 0. In what follows we consider
two cases: K̃ 6= 0 and K̃ = 0.

8.2.1 Systems with K̃ 6= 0

In this case by [39] via an affine transformation quadratic systems in this family
could be brought to the systems

ẋ = cx+ dy + (2c + d)x2 + 2dxy,

ẏ = ex+ fy + (2e + f)x2 + 2fxy,
(11)

possessing the singular points M1(0, 0). For these systems calculations yield

µ0 = µ1 = µ2 = 0, µ3 = (cf − de)2x3, κ = 256d2(de− cf). (12)

We remark that for the systems above we have µ3 6= 0 and therefore in what follows
we assume that the condition cf − de 6= 0 holds (i.e. the singular point M1(0, 0) is
elemental).

8.2.1.1 The case κ 6= 0. Then d 6= 0 and due to a time rescaling we may
assume d = 1. So we consider the 3-parameter family of systems:

ẋ = cx+ y + (2c + 1)x2 + 2xy,

ẏ = ex+ fy + (2e+ f)x2 + 2fxy, cf − e 6= 0,
(13)

for which calculations yield

µ0 = µ1 = µ2 = 0, µ3 = (cf − e)2x3, K̃ = 8(cf − e)x2,

η = 4
[
(2c+ 1 + 2f)2 + 16(e − cf)

]
, κ = 256(e − cf),

T4 = −8(c+ f)(cf − e)2, T3 = −8(cf − e)2, F1 = 6(e− cf),

W4 = 64(cf − e)4
[
(c− f)2 + 4e

]
= 64(cf − e)4

[
(c+ f)2 + 4(e− cf)

]
,

M̃ = −8
[
(1 + 2c− 2f)2 + 6(2e+ f)

]
x2

− 16(1 + 2c− 2f)xy − 32y2.

(14)
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Diagram 3. The case µ0 = µ1 = µ2 = 0, µ3 6= 0
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Considering (14) we make the remark:

Remark 1. Assume that the condition κ 6= 0 holds. Then

(i) T3F1 6= 0 and sign (K̃) = −sign (κ);

(ii) the condition κ > 0 implies η > 0 and W4 > 0;

(iii) in the case T4 = 0 we have W4 6= 0 and sign (W4) = sign (κ).

The first two statements follow obviously from (14). In the case T4 = 0 we get
f = −c and then κ = 256(c2 + e), W4 = 256(c2 + e)5 and this proves the last
assertion.

8.2.1.1.1 The subcase κ < 0. Then by Remark 1 we obtain K̃ > 0.

1) The possibility W4 < 0. In this case considering the condition K̃ > 0, accord-
ing to [4] (see Table 1, line 184) the finite singularity is a focus.

a) Assume first T4 6= 0. Then by [39] the focus is strong. As κ < 0 according to
Lemma 6 we get the following three global configurations of singularities:

• f ;
(
3

1

)
SN, c©, c© : Example ⇒ (c = 0, e = −1, f = 1) (if η < 0);

• f ;
(
3

1

)
SN,S,N∞: Example ⇒ (c = 0, e = −1, f = 7/4) (if η > 0);

• f ;
(
0

2

)
SN,

(
3

1

)
SN : Example ⇒ (c = 0, e = −1, f = 3/2) (if η = 0).

b) Suppose now T4 = 0. Then f = −c and since by Remark 1 we have T3F1 6=
0, then by [39] the finite singularity is a first order weak focus. Considering the
types of the infinite singularities mentioned above we obtain the following three
configurations

• f (1);
(
3

1

)
SN, c©, c© : Example ⇒ (c = 0, e = −1, f = 0) (if η < 0);

• f (1);
(
3

1

)
SN,S,N∞: Example ⇒ (c = 0, e = −1/18, f = 0) (if η > 0);

• f (1);
(
0

2

)
SN,

(
3

1

)
SN : Example ⇒ (c = 0, e = −1/16, f = 0) (if η = 0).

2)The possibility W4 > 0. Since K̃ > 0, according to [4] systems (13) possess
a node which is generic (due to W4 6= 0). So considering Lemma 6 we have the
configurations

• n;
(
3

1

)
SN, c©, c© : Example ⇒ (c = 0, e = −1, f = −9/4) (if η < 0);

• n;
(
3

1

)
SN,S,N∞: Example ⇒ (c = 0, e = −1, f = −3) (if η > 0);

• n;
(
0

2

)
SN,

(
3

1

)
SN : Example ⇒ (c = 0, e = −1, f = −5/2) (if η = 0).

3)The possibility W4 = 0. Then the singular point M1(0, 0) of systems (13)
is a node with coinciding eigenvalues which could not be a star node (due to the
respective linear matrix). Considering the types of the infinite singularities given by
Lemma 6 we get the next three configurations

• nd;
(
3

1

)
SN, c©, c© : Example ⇒ (c = 0, e = −1/4, f = −1) (if η < 0);

• nd;
(
3

1

)
SN,S,N∞: Example ⇒ (c = 0, e = −1/4, f = 1) (if η > 0);

• nd;
(
0

2

)
SN,

(
3

1

)
SN : Example ⇒ (c = 0, e = −1/64, f = −1/4) (if η = 0).
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8.2.1.1.2 The subcase κ > 0. According to Remark 1 we obtain K̃ < 0
and according to [4] (see Table 1, line 178) the finite singularity is a saddle. By
Remark 1, in this case we have η > 0 and considering Lemma 6 we have the unique

configuration of infinite singularities
(
3

1

)
SN, Nf , Nf .

1) Assume first T4 6= 0. In this case by [39] the saddle is strong and we arrive
at the configuration

• s;
(
3

1

)
SN, Nf , Nf : Example ⇒ (c = 0, e = 1, f = 1).

2) Suppose now T4 = 0. Then f = −c and as by Remark 1, we have T3F1 6= 0.
Considering [39] we deduce that the finite singularity is a weak saddle of the first
order. So we obtain the configuration

• s(1);
(
3

1

)
SN, Nf , Nf : Example ⇒ (c = 0, e = 1, f = 0).

8.2.1.2 The case κ = 0. Then by (13) we have d = 0 and considering the
condition µ3 = c2f2x3 6= 0 we obtain cf 6= 0. So doing a time rescaling we may
assume f = 1 and we consider the 2-parameter family of systems:

ẋ = cx+ 2cx2, ẏ = ex+ y + (2e+ 1)x2 + 2xy, c 6= 0, (15)

for which calculations yield

µ0 = µ1 = µ2 = 0, µ3 = c2x3, K̃ = 8cx2, η = κ = 0, M̃ = −32(c− 1)2x2,

C2 = −(1 + 2e)x3 + 2(c− 1)x2y, σ = 1 + c+ 2(1 + 2c)x,

Ti = 0, i = 1, 2, 3, 4, F1 = H = B = B1 = B2 = 0,

B3 = −288c3(1 + c)x2 W4 = 0, L̃ = 32c(c − 1)x2.

(16)

Remark 2. We observe that the corresponding matrix for the singular point M1(0, 0)

is

(
c 0
e 1

)
and hence this singular point is i) a saddle if c < 0; ii) a node with two

direction if c > 0 and c 6= 1; iii) a node with one direction if c = 1 and e 6= 0; iv) a
star node if c = 1 and e = 0.

8.2.1.2.1 The subcase K̃ < 0. Then c < 0 and by the remark above the
finite singularity is a saddle. Considering (16) according to [39] the saddle is weak
if and only if B3 = 0 (see the statement e3[γ] of Main Theorem. Moreover in this
case we have an integrable saddle.

Since c < 0 we have M̃ 6= 0. Then according to Lemma 6 at infinity we get the

unique configuration of singularities given by
(
3

2

) y

P E
x

P −
y

P
x

P H, Nf . So we arrive
at the next two global configurations of singularities

• s ;
(
3

2

) y

P E
x

P −
y

P
x

P H, Nf : Example ⇒ (c = −2, e = 0) (if B3 6= 0);

• $ ;
(
3

2

) y

P E
x

P −
y

P
x

P H, Nf : Example ⇒ (c = −1, e = 0) (if B3 = 0).
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8.2.1.2.2 The subcase K̃ > 0. Then c > 0 and by Remark 2 the finite
singularity is a node. We observe that due to µ3 6= 0 the condition c = 1 is equivalent
to L̃ = 0.

1) The possibility L̃ 6= 0. Then M̃ 6= 0 and by Remark 2 we have a generic
node. On the other hand as K̃ > 0 we obtain sign (L̃) = sign (c− 1) and considering
Lemma 6 we get the following two configurations

• n ;
(
3

2

) x

P H
y

P −
x

P
y

P E, S: Example ⇒ (c = 1/2, e = 0) (if L̃ < 0);

• n ;
(
3

2

)
H

y

P
x

P −HHH, N∞: Example ⇒ (c = 2, e = 0) (if L̃ > 0).

2) The possibility L̃ = 0. Then c = 1 and this implies M̃ = 0. By Remark 2
we have a node with coinciding eigenvalues. On the other hand for c = 1 we obtain
C2 = −(1 + 2e)x3, U3 = −24ex5.

a) Assume first C2 6= 0. Then we have a single real infinite singularity of
multiplicity six and according to Lemma 6 the type of this singularity depends on
the sign of the invariant polynomial K3 = 6(1 + 2e)x6, which is nonzero due to
C2 6= 0.

Thus taking into consideration Remark 2 and Lemma 6 we arrive at the next
configurations

• nd ;
(
3

3

)
H

y

P E−
x

P HH: Example ⇒ (c = 1, e = −1) (if K3 < 0);

• nd ;
(
3

3

)
HH

y

P −
x

P
y

P
x

P : Example ⇒ (c = 1, e = 1) (if K3 > 0, U3 6= 0);

• n∗ ;
(
3

3

)
HH

y

P −
x

P
y

P
x

P : Example ⇒ (c = 1, e = 0) (if K3 > 0, U3 = 0).

b) Suppose now C2 = 0. Then e = −1/2 and we get the system

ẋ = x(1 + 2x), ẏ = −x/2 + y + 2xy,

possessing a node nd and the infinite line filled up with singularities. Considering
Lemma 6 we obtain the configuration

• nd ;
[
∞;

(
2

0

)
SN

]
: Example ⇒ (c = 1, e = −1/2).

8.2.2 Systems with K̃ = 0

In this case, according to [39] we consider the following family of systems

ẋ = x+ dy,

ẏ = ex+ fy + lx2 + 2mxy − d(dl − 2m)y2,
(17)

possessing the singular points M1(0, 0). For these systems calculations yield

η = 4d2(dl −m)2(dl − 2m)2, L̃ = 8d(2m − dl)(x+ dy)
[
lx− (dl − 2m)y

]
. (18)

We consider two cases: η 6= 0 and η = 0.
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8.2.2.1 The case η 6= 0. Then d(dl − m)(dl − 2m) 6= 0 and we may assume
d = l = 1 and m = 0 due to the transformation

x1 = (dl − 2m)x, y1 = −
(dl − 2m)m

dl −m
x+

d(dl − 2m)2

dl −m
y, t1 =

dl −m

dl − 2m
t.

So we consider the 2-parameter family of systems

ẋ = x+ y, ẏ = ex+ fy + x2
− y2, (19)

for which calculations yield

µ0 = µ1 = µ2 = 0, µ3 = (f − e)(x− y)(x+ y)2, K̃ = κ = 0,

η = 4, K1 = (x− y)(x+ y)2, F4F5 = 6(f − e)(x− y)2(x+ y)4,

G3 = 2(e − f), W4 = 64(e − f)2
[
(f − 1)2 + 4e

]
,

T4 = 8(f − e)(1 + f), T3 = 8(f − e), F1 = 2(e− f).

(20)

Remark 3. In the case η 6= 0 the condition µ3 6= 0 implies T3F1F4F5G3 6= 0 and
sign (µ3K1) = sign (F4F5).

8.2.2.1.1 The subcase µ3K1 < 0. By Remark 3 we have F4F5 < 0 and
according to [4] (see Table 1, line 179) the finite singularity is a saddle. Clearly this
saddle is weak if and only if f = −1 and this is equivalent to T4 = 0. On the other
hand by Remark 3 we have T3F1 6= 0 and according to [39] the weak saddle could
be only of the first order. So considering Lemma 6 we get the following two global
configurations of singularities

• s ;
(
2

1

)
N,

(
1

1

)
SN, Nd: Example ⇒ (e = 2, f = 1) (if T4 6= 0);

• s(1) ;
(
2

1

)
N,

(
1

1

)
SN, Nd: Example ⇒ (e = 2, f = −1) (if T4 = 0).

8.2.2.1.2 The subcase µ3K1 > 0. In this case we have F4F5 > 0 and as
G3 6= 0 by [4] we have a focus or a center if W4 < 0 and a node if W4 ≥ 0.

1) The possibility W4 < 0. Then we have a focus which is strong if T4 6= 0 and
it is weak of the first order if T4 = 0 (due to [39] and T3F1 6= 0, see Remark 3).
Considering Lemma 6 we arrive at the next two configurations

• f ;
(
2

1

)
S,

(
1

1

)
SN, Nd: Example ⇒ (e = −2, f = 1) (if T4 6= 0);

• f (1) ;
(
2

1

)
S,

(
1

1

)
SN, Nd: Example ⇒ (e = −2, f = −1) (if T4 = 0).

2) The possibility W4 > 0. In this case we have a generic node (as W4 6= 0) and
hence we get

• n ;
(
2

1

)
S,

(
1

1

)
SN, Nd: Example ⇒ (e = 0, f = 2).

3) The possibility W4 = 0. Then we have a node with coinciding eigenvalues
and due to the linearization matrix at the singularity M1(0, 0) this is a one-direction
node, and we have the configuration

• nd ;
(
2

1

)
S,

(
1

1

)
SN, Nd: Example ⇒ (e = −1/4, f = 0).
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8.2.2.2 The case η = 0. Then d(dl − m)(dl − 2m) 6= 0 and we consider two
subcases: L̃ 6= 0 and L̃ = 0.

8.2.2.2.1 The subcase L̃ 6= 0. Considering (18) we obtain d(dl − 2m) 6= 0
and then the condition η = 0 gives m = dl. In this case we have L̃ = 8d2l2(x+dy)2 6=
0 and then via the rescaling (x, y) 7→

(
x/(dl), y/(d2l)

)
we obtain the following 2-

parameter family of systems:

ẋ = x+ y, ẏ = ex+ fy + (x+ y)2. (21)

For these systems calculations yield

µ0 = µ1 = µ2 = η = 0, µ3 = (f − e)(x+ y)3, L̃ = 8(x+ y)2 = −M̃,

K̃ = Ñ = κ = 0, K1 = (x+ y)3, F4F5 = 6(f − e)(x+ y)6,

G3 = 0, W8 = 21433(e− f)4
[
(f − 1)2 + 4e

]
, Ti = 0, i = 1, 2, 3, 4,

σ = 1 + f + 2x+ 2y, F1 = H = 0, B1 = 4(e− f)2(1 + f), B2 = 4(e− f)3

(22)

and we again have sign (µ3K1) = sign (F4F5).

1) The possibility µ3K1 < 0. Then we have F4F5 < 0 and according to [4] (see
Table 1, line 179) the finite singularity is a saddle. Clearly this saddle is weak if
and only if f = −1 and this is equivalent to B1 = 0. On the other hand considering
(22) we obtain B2 > 0 and according to [39] the weak saddle is an integrable one.
So considering Lemma 6 we get the following two configurations

• s ;
(̂
3

2

) y

PfE
x

Pf−H, Nd: Example ⇒ (e = 2, f = 1) (if B1 6= 0);

• $ ;
(̂
3

2

) y

PfE
x

Pf−H, Nd: Example ⇒ (e = 2, f = −1) (if B1 = 0).

2) The possibility µ3K1 > 0 In this case we have F4F5 > 0 and as G3 = Ñ = 0
by [4] we have a focus or a center if W8 < 0 and a node if W8 ≥ 0.

a) The case W8 < 0. Then we have a focus which is strong if B1 6= 0. Considering
(22) we have B2 < 0 and according to [39] in the case B1 = 0 we have a center. So
considering Lemma 6 we arrive at the configurations

• f ;
(̂
3

2

)
HfHHf−H, Nd: Example ⇒ (e = −2, f = 1) (if B1 6= 0);

• c ;
(̂
3

2

)
HfHHf−H, Nd: Example ⇒ (e = −2, f = −1) (if B1 = 0).

b) The case W8 > 0. In this case we have a generic node (as the condition
W8 6= 0 implies δ1 = (f − 1)2 + 4e 6= 0) and hence we get the configuration

• n ;
(̂
3

2

)
HfHHf−H, Nd: Example ⇒ (e = 0, f = 2).

c) The case W8 = 0. Then we have a node with coinciding eigenvalues and due
to the matrix of the linearization of the system at the singularity M1(0, 0), this is a
one-direction node, providing the configuration

• nd ;
(̂
3

2

)
HfHHf−H, Nd: Example ⇒ (e = −1/4, f = 0).
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8.2.2.2.2 The subcase L̃ = 0. Considering (18) we obtain d(dl − 2m) = 0
and as for systems (17) we have

M̃ = −32m2x2
− 8d(dl − 2m)(3lx2

− 2mxy + d2ly2
− 2dmy2).

The condition above gives M̃ = −32m2x2. We consider two possibilities: M̃ 6= 0
and M̃ = 0.

1) The possibility M̃ 6= 0. Then m 6= 0 and as the condition d(dl − 2m) = 0
holds, applying the transformation

x1 = dlx, y1 = dl(x+ dy),

when d 6= 0 (then m = dl/2 6= 0 due to M̃ 6= 0), or the transformation

x1 = 2mx, y1 = lx/(2m) + y,

when d = 0, we arrive at the following family of systems

ẋ = ε1x+ ε2y, ε1ε2 = 0,

ẏ = ex+ fy + xy, ε1 + ε2 = 1.
(23)

For these systems calculations yield

µ0 = µ1 = µ2 = 0, µ3 = (ε1f − ε2e)xy(ε1x+ ε2y), K̃ = κ = L̃ = 0,

Ñ = −x2, η = 0, M̃ = −8x2, κ1 = −32ε2, K1 = xy(ε1x+ ε2y),

F4F5 = 6(ε1f − ε2e)x
2y2(ε1x+ ε2y)

2, W7 = 3ε2e
2(4ε2e+ f2)/16,

G3 = 0, Ti = 0, i = 1, 2, 3, 4, σ = ε1 + f + x, F1 = H = 0,

B1 = −ε2ef, B2 = ε2e/4.

(24)

So we obtain again sign (µ3K1) = sign (F4F5) and we consider two cases: µ3K1 < 0
and µ3K1 > 0.

a) Assume first µ3K1 < 0. Then we have F4F5 < 0 and according to [4] (see
Table 1, line 179) the finite singularity is a saddle. Clearly this saddle is weak if and
only if ε1 + f = 0.

α) The case κ1 6= 0. Then by (24) we have ε2 = 1, ε1 = 0 and the condition
µ3K1 < 0 yields e > 0. So B2 > 0 and we have B1 = 0 if and only if f = 0. In
this case according to [39] we have an integrable saddle. Therefore considering the
condition κ1 6= 0 and Lemma 6 we get the following two global configurations of
singularities

• s ;
(̂
1

2

) y

PfE
x

Pf−H,
(
2

1

)
N : Example ⇒ (ε2 = 1, e = 1, f = 1) (if B1 6= 0);

• $ ;
(̂
1

2

) y

PfE
x

Pf−H,
(
2

1

)
N : Example ⇒ (ε2 = 1, e = 1, f = 0) (if B1 = 0).
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β) The case κ1 = 0. Then we have ε2 = 0, ε1 = 1 and the condition µ3K1 < 0
yields f < 0. We observe that in this case the saddle is a weak one if and only if
f + 1 = 0. On the other hand calculations yield

F1 = H = B1 = B2 = B3 = 0, B4 = 6(1 + f)x2y. (25)

So according to [39] in the case of weak saddle (i.e. f = −1) we have an integrable
saddle. Therefore considering the condition κ1 = 0 and Lemma 6 we obtain the
configurations

• s ;
(
2

2

) y

P E−
y

P E,
(
1

1

)
SN : Example ⇒ (ε2 = 0, e = 0, f = −2) (if B4 6= 0);

• $ ;
(
2

2

) y

P E−
y

P E,
(
1

1

)
SN : Example ⇒ (ε2 = 0, e = 0, f = −1) (if B4 = 0).

b) Suppose now µ3K1 > 0. In this case we have F4F5 > 0 and as G3 = 0 and
Ñ 6= 0, according to [4] (see Table 1, lines 182, 186, 188) we have a focus or a center
if W7 < 0 and a node if W7 ≥ 0.

α) The case W7 < 0. Then we have ε2 = 1, ε1 = 0 (i.e. κ1 6= 0) and e < 0.
So the finite singularity is a focus and according to [39] we have a strong focus if
B1 6= 0 and we have a center if B1 = 0.

Thus considering Lemma 6 we arrive at the following two configurations

• f ;
(̂
1

2

) y

PfE
x

Pf−H,
(
2

1

)
S: Example ⇒ (ε2 = 1, e = −1, f = 1) (if κ1 6= 0,

B1 6= 0);

• c ;
(̂
1

2

) y

PfE
x

Pf−H,
(
2

1

)
S: Example ⇒ (ε2 = 1, e = −1, f = 0) (if κ1 6= 0,

B1 = 0).

β) The case W7 > 0. Then we again have ε2 = 1, ε1 = 0 and hence κ1 6= 0. So
the singular point is a generic node and by Lemma 6 we get the configuration

• n ;
(̂
1

2

) y

PfE
x

Pf−H,
(
2

1

)
S: Example ⇒ (ε2 = 1, e = −1, f = 3).

γ) The case W7 = 0. Then by (24) we have ε2e(4ε2e+ f2) = 0 and we consider
two subcases: κ1 6= 0 and κ1 = 0.

γ1) The subcase κ1 6= 0. Then we have ε2 = 1, ε1 = 0 and the condition W7 = 0
gives e = −f2/4. Considering the linearization matrix of the singularity M1(0, 0)
we conclude that systems (23) possess a node nd. So by Lemma 6 we have the
configuration

• nd ;
(̂
1

2

) y

PfE
x

Pf−H,
(
2

1

)
S: Example ⇒ (ε2 = 1, e = −1, f = 2).

γ2) The subcase κ1 = 0. In this case we have ε2 = 0, ε1 = 1 and the linearization

matrix of the singularity M1(0, 0) is

(
1 0
e f

)
with f > 0 due to µ3K1 > 0. So

systems (23) possess i) a generic node if f 6= 1; ii) a one-direction node if f = 1 and
e 6= 0, and iii) a star node if f = 1 and e = 0. On the other hand for these systems
in the considered case we have

U7 = 12(f − 1)x4, U3 = −3x4
[
efx+ (1 − f)y

]
,
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and clearly these invariant polynomials govern the possibilities mentioned above. So
considering the condition κ1 = 0 and Lemma 6 we get the following three configu-
rations

• n ;
(
2

2

) x

P H−
x

P H,
(
1

1

)
SN : Example ⇒ (ε2 = 0, e = 1, f = 2) (if U7 6= 0);

• nd ;
(
2

2

) x

P H−
x

P H,
(
1

1

)
SN : Example ⇒ (ε2 = 0, e = 1, f = 1) (if U7 = 0,

U3 6= 0);

• n∗ ;
(
2

2

) x

P H−
x

P H,
(
1

1

)
SN : Example ⇒ (ε2 = 0, e = 0, f = 1) (if U7 = 0,

U3 = 0).

2) The possibility M̃ = 0. In this case m = 0 and then the condition M̃ = 0
yields dl = 0. As l 6= 0 (due to µ3 6= 0) we get d = 0 and then via the rescaling
(x, y) 7→ (x/l, y/l) we may assume l = 1. Therefore we obtain the family of systems

ẋ = x, ẏ = ex+ fy + x2, (26)

for which calculations yield

µ0 = µ1 = µ2 = 0, µ3 = fx3, η = M̃ = 0, C2 = −x3, K1 = x3,

K̃ = κ = L̃ = Ñ = 0, G3 = W8 = 0, K3 = 6(2 − f)fx6,

F4F5 = 6fx6, Ti = 0, i = 1, 2, 3, 4, σ = 1 + f.

(27)

a) The case µ3K1 < 0. Then we have F4F5 < 0 and according to [4] (see Table
1, line 179) the finite singularity is a saddle. Clearly this saddle is weak if and only if
f = −1 and this is equivalent to σ = 0. However in the last case we get Hamiltonian
systems and hence the weak saddle is an integrable one. So considering Lemma 6
we arrive at the configurations

• s ;
(
3

3

) y

PfEE
x

Pf−
y

P
x

P : Example ⇒ (e = 0, f = −2) (if σ 6= 0);

• $ ;
(
3

3

) y

PfEE
x

Pf−
y

P
x

P : Example ⇒ (e = 0, f = −1) (if σ = 0).

b) The case µ3K1 > 0. In this case we have F4F5 > 0 (i.e. f > 0) and considering
the matrix of the linearization at the singular point, we conclude that the singular
point M1(0, 0) is a node. Moreover, this node is: i) generic if f 6= 1; ii) one-direction
node if f = 1 and e 6= 0, and iii) it is a star node if f = 1 and e = 0. On the other
hand for these systems in the considered case we have

U4 = −6(f − 1)x3, U5

∣∣
f=1

= −6ex2.

The behavior of the trajectories in the vicinity of the infinite singularity (which
is of multiplicity six) according to Lemma 6 is governed by the invariant polynomial
K3. By (27) as f > 0 we have sign (K3) = sign (2 − f). Thus we arrive at the
following five geometrically distinct global configurations of singularities

• n ;
(
3

3

)
Hf

x

P
y

P Hf−
x

P
y

P : Example ⇒ (e = 0, f = 3) (if K3 < 0);

• n ;
(
3

3

)
HH−

x

P
y

P : Example ⇒ (e = 0, f = 2) (if K3 = 0);
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• n ;
(
3

3

) y

Pf

x

P
y

P
x

Pf−HH: Example ⇒ (e = 0, f = 1/2) (if K3 > 0, U4 6= 0);

• nd ;
(
3

3

) y

Pf

x

P
y

P
x

Pf−HH: Example ⇒ (e = 1, f = 1) (if K3 > 0, U4 = 0,
U5 6= 0);

• n∗ ;
(
3

3

) y

Pf

x

P
y

P
x

Pf−HH: Example ⇒ (e = 0, f = 1) (if K3 > 0, U4 = 0,
U5 = 0).

As all the cases have been considered we have got 52 possible geometrically
distinct global configurations of singularities of the family of quadratic systems with
only one finite singularity which in addition is elemental.
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[43] Żo la̧dek H. Quadratic systems with center and their perturbations, J. Differential Equations,
1994, 109, 223–273.

Joan C. Artes, Jaume Llibre

Departament de Matemàtiques
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Abstract. In this paper, we consider the classes of the univalent functions denoted
by SH(β), SP and SP(α, β). On these classes we study the order of convexity of the

integral operator
∫ z

0

(
tef(t)

)γ

dt, where the function f belongs to these classes.
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1 Introduction and Preliminaries

Let A denote the class of all functions of the form

f (z) = z +

∞∑

k=2

akz
k,

which are analytic in the open unit disk

U = {z ∈ C : |z| < 1}

and satisfy the following usual normalization condition

f(0) = f ′(0) − 1 = 0.

We denote by S the subclass of A consisting of functions f which are univalent
in U.

A function f ∈ A is the starlike function of order α, 0 ≤ α < 1 if f satisfies the
inequality

Re

(
zf ′(z)

f(z)

)
> α, z ∈ U.

We denote this class by S∗(α).

A function f ∈ A is a convex function of order α, 0 ≤ α < 1, if f satisfies the
inequality

Re

(
zf ′′(z)

f ′(z)
+ 1

)
> α, z ∈ U.

We denote this class by K(α).

c© Laura Stanciu, Daniel Breaz, 2013
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In [4], J. Stankiewicz and A. Wisniowska introduced the class of univalent func-
tions SH(β), β > 0, defined by

∣∣∣∣
zf ′(z)

f(z)
− 2β

(√
2 − 1

)∣∣∣∣ < Re

{
√

2
zf ′(z)

f(z)

}
+2β

(√
2 − 1

)
(1)

for all z ∈ U.

Also, in [3], F. Ronning introduced the class of univalent functions SP , defined
by ∣∣∣∣

zf ′(z)

f(z)
− 1

∣∣∣∣ < Re

(
zf ′(z)

f(z)

)
(2)

for all z ∈ U.

The geometric interpretation of the relation (2) is that the class SP is the class
of all functions f ∈ S for which the expression zf ′(z)/f(z), z ∈ U, takes all values
in the parabolic region

Ω = {ω : |ω − 1| ≤ Reω}

= {ω = u + iv : v2
≤ 2u − 1}.

In [2], F.Ronning introduced the class of univalent functions SP(α, β), α > 0,
β ∈ [0, 1), as the class of all functions f ∈ S which have the property

∣∣∣∣
zf ′(z)

f(z)
− (α + β)

∣∣∣∣ ≤ Re

(
zf ′(z)

f(z)

)
+ α − β, (3)

for all z ∈ U.

Geometric interpretation: f ∈ SP(α, β) if and only if zf ′(z)/f(z), z ∈ U, takes
all values in the parabolic region

Ωα,β = {ω : |ω − (α + β)| ≤ Reω + α − β}

= {ω = u + iv : v2
≤ 4α (u − β)}.

In the present paper, we will obtain the order of convexity of the following
integral operator:

F (z) =

∫ z

0

(
tef(t)

)γ

dt (4)

where the function f ∈ A and γ ∈ C.

Remark 1. The integral operator defined by (4) was introduced by Frasin and Ahmad
in [1].
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2 Main results

Theorem 1. Let f ∈ A be in the class SH(β), β > 0 and f satisfies the condition

|f(z)| ≤ M, for M a positive real number, M ≥ 1 for all z ∈ U. If Re
(

zf ′
(z)

f(z)

)
≤ 1,

z ∈ U, then the integral operator F (z) defined by (4) is in K(δ), where

δ = 1 − |γ| [(4β(
√

2 − 1) +
√

2)M + 1]

and
|γ| [(4β(

√
2 − 1) +

√
2)M + 1] < 1, γ ∈ C.

Proof. We calculate for F (z) the derivatives of the first and second order. From (4)
we obtain

F ′(z) =
(
zef(z)

)γ

and

F ′′(z) = γ
(
zef(z)

)γ−1 (
ef(z) + zf ′(z)ef(z)

)
.

After the calculus, we obtain that

zF ′′(z)

F ′(z)
= γ

(
1 + zf ′(z)

)

= γ

(
zf ′(z)

f(z)
f(z) + 1

)
. (5)

It follows from (5) that

∣∣∣∣
zF ′′(z)

F ′(z)

∣∣∣∣ ≤ |γ|

(∣∣∣∣
zf ′(z)

f(z)

∣∣∣∣ |f(z)| + 1

)

≤ γ

((∣∣∣∣
zf ′(z)

f(z)
− 2β

(√
2 − 1

)∣∣∣∣ + 2β
(√

2 − 1
))

|f(z)| + 1

)
. (6)

Because f ∈ SH(β), β > 0 and |f(z)| ≤ M, M ≥ 1 for all z ∈ U, we apply in the
condition (6) the inequality (1) and we obtain

∣∣∣∣
zF ′′(z)

F ′(z)

∣∣∣∣ ≤ |γ|

((
Re

{
√

2
zf ′(z)

f(z)

}
+4β

(√
2 − 1

))
M + 1

)

≤ |γ|

((
√

2Re

(
zf ′(z)

f(z)

)
+ 4β

(√
2 − 1

))
M + 1

)

From the hypothesis of Theorem 1 we have Re
(

zf ′
(z)

f(z)

)
≤ 1 and we obtain

∣∣∣∣
zF ′′(z)

F ′(z)

∣∣∣∣ ≤ |γ| [(4β(
√

2 − 1) +
√

2)M + 1] = 1 − δ

which implies that the integral operator F (z) defined by (4) is in the class K(δ).
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Theorem 2. Let the function f ∈ SP , where f satisfies the condition |f(z)| ≤ M,

for M a positive real number, M ≥ 1, z ∈ U. If Re
(

f ′
(z)

f(z)

)
≤ 1, z ∈ U, then the

integral operator F (z) defined by (4) is in K(δ), where

δ = 1 − |γ| (2M + 1)

and
|γ| (2M + 1) < 1, γ ∈ C.

Proof. Following the same steps as in Theorem 1, we have

zF ′′(z)

F ′(z)
= γ

(
zf ′(z)

f(z)
f(z) + 1

)
. (7)

It follows from (7) that

∣∣∣∣
zF ′′(z)

F ′(z)

∣∣∣∣ ≤ |γ|

(∣∣∣∣
zf ′(z)

f(z)

∣∣∣∣ |f(z)| + 1

)

≤ γ

((∣∣∣∣
zf ′(z)

f(z)
− 1

∣∣∣∣ + 1

)
|f(z)| + 1

)
. (8)

Because f ∈ SP and |f(z)| ≤ M, M ≥ 1 for all z ∈ U, we apply in the condition (8)
the inequality (2) and we obtain

∣∣∣∣
zF ′′(z)

F ′(z)

∣∣∣∣ ≤ |γ|

((
Re

(
zf ′(z)

f(z)

)
+ 1

)
M + 1

)
.

Because Re
(

zf ′
(z)

f(z)

)
≤ 1, we obtain that

∣∣∣∣
zF ′′(z)

F ′(z)

∣∣∣∣ ≤ |γ| (2M + 1) = 1 − δ

which implies that the integral operator F (z) defined by (4) is in the class K(δ).

Theorem 3. Let the function f ∈ SP(α, β), α > 0, β ∈ [0, 1), where f satisfies the

condition |f(z)| ≤ M, for M a positive real number, M ≥ 1, z ∈ U. If Re
(

f ′
(z)

f(z)

)
≤ 1,

z ∈ U then the integral operator F (z) defined by (4) is in K(δ), where

δ = 1 − |γ| [(1 + 2α)M + 1)

and
|γ| [(1 + 2α)M + 1) < 1, γ ∈ C.

Proof. From the proof of Theorem 1, we have

∣∣∣∣
zF ′′(z)

F ′(z)

∣∣∣∣ ≤ |γ|

(∣∣∣∣
zf ′(z)

f(z)

∣∣∣∣ |f(z)| + 1

)
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≤ |γ|

((∣∣∣∣
zf ′(z)

f(z)
− (α + β)

∣∣∣∣ + (α + β)

)
|f(z)| + 1

)
. (9)

Because f ∈ SP(α, β), α > 0, β ∈ [0, 1) and |f(z)| ≤ M, M ≥ 1 for all z ∈ U, we
apply in the condition (9) the inequality (3) and we obtain

∣∣∣∣
zF ′′(z)

F ′(z)

∣∣∣∣ ≤ |γ|

((
Re

(
zf ′(z)

f(z)

)
+ α − β + α + β

)
M + 1

)

≤ |γ|

((
Re

(
zf ′(z)

f(z)

)
+ 2α

)
M + 1

)
.

Because Re
(

zf ′
(z)

f(z)

)
≤ 1, z ∈ U, we obtain that

∣∣∣∣
zF ′′(z)

F ′(z)

∣∣∣∣ ≤ |γ| [(1 + 2α)M + 1] = 1 − δ

which implies that the integral operator F (z) defined by (4) is in the class K(δ).
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A REPUBLICII MOLDOVA. MATEMATICA
Number 1(71), 2013, Pages 130–134
ISSN 1024–7696

Semilattice decompositions of trioids

Anatolii V. Zhuchok

Abstract. We describe all semilattice congruences on an arbitrary trioid and define
the least semilattice congruence on this trioid. We also show that every trioid is a
semilattice of s-simple subtrioids.

Mathematics subject classification: 17A30, 20M10.
Keywords and phrases: Trioid, semilattice congruence, semilattice of subtrioids,
dimonoid, semigroup.

1 Introduction

Trioids were introduced by J.-L. Loday and M. O.Ronco [1] for the study of
ternary planar trees. Trialgebras, which are based on the notion of a trioid, have
been studied in different papers (see, for example, [1–3]). It is well known that
the notion of a trioid generalizes the notion of a dimonoid [4, 5]. Dimonoids play a
prominent role in problems from the theory of Leibniz algebras. Trioids were studied
in some papers of the author (see, for example, [6–8]). Note that if the operations
of a trioid coincide then it becomes a semigroup. So, trioids are a generalization of
semigroups.

In this work we describe semilattice decompositions of trioids. In Section 2
we give necessary definitions, auxiliary results (Proposition 1 and Lemma 1) and
describe some connections between trioids and dimonoids (Lemma 2). Yamada [9]
described all semilattice congruences on an arbitrary semigroup and proved that
every semigroup is a semilattice of s-simple semigroups. These results were genera-
lized to dimonoids in [10]. In Section 3 we extend results from [10] to the case of
trioids (Theorems 1 and 2).

2 Preliminaries

A nonempty set T equipped with three binary associative operations ⊣, ⊢ and
⊥ satisfying the following axioms:

(x ⊣ y) ⊣ z = x ⊣ (y ⊢ z), (T1)

(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z), (T2)

(x ⊣ y) ⊢ z = x ⊢ (y ⊢ z), (T3)

(x ⊣ y) ⊣ z = x ⊣ (y ⊥ z), (T4)

c© Anatolii V. Zhuchok, 2013
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(x ⊥ y) ⊣ z = x ⊥ (y ⊣ z), (T5)

(x ⊣ y) ⊥ z = x ⊥ (y ⊢ z), (T6)

(x ⊢ y) ⊥ z = x ⊢ (y ⊥ z), (T7)

(x ⊥ y) ⊢ z = x ⊢ (y ⊢ z) (T8)

for all x, y, z ∈ T , is called a trioid. If the operations of a trioid coincide, then the
trioid becomes a semigroup.

Recall that a nonempty set T equipped with two binary associative operations
⊣ and ⊢ satisfying the axioms (T1) − (T3) is called a dimonoid (see, for example,
[4, 5]).

Let (T,⊥) be an arbitrary semigroup. Define operations ⊣ and ⊢ on T by

x ⊣ y = x, x ⊢ y = y

for all x, y ∈ T .

Proposition 1. ([8], Proposition 10). (T,⊣,⊢,⊥) is a trioid.

The trioid (T,⊣,⊢,⊥) will be denoted by T⊥
lr .

Other examples of trioids can be found in [1, 6–8].
A commutative idempotent semigroup is called a semilattice.

Lemma 1. ([7], Lemma 1). The operations of a trioid (T,⊣,⊢,⊥) coincide if (T,⊣)
is a semilattice.

Let X = {1, 2, 3}. For every pair (x, y) ∈ X × X let T (x,y) = (T, ∗x, ∗y) be an
ordered triple, where T is a nonempty set and ∗x, ∗y are binary operations on T .
Let

B = {(1, 1), (2, 2), (3, 3), (1, 2)} ⊂ X × X.

The following lemma describes connections between trioids and dimonoids.

Lemma 2. For any trioid (T, ∗1, ∗2, ∗3) the algebra T (x,y), (x, y) ∈ X × X, is a
dimonoid if (x, y) ∈ B. There exists some trioid (T, ∗1, ∗2, ∗3) for which the algebra
T (x,y), (x, y) ∈ X2\B, is not a dimonoid.

Proof. Let (T, ∗1, ∗2, ∗3) be a trioid. It is easy to see that the algebras T (1,1), T (2,2),
T (3,3) and T (1,2) are dimonoids.

Now we shall prove the second part of the lemma.

Let F [A] be the free semigroup on a set A and F [A]⊥lr be a triod (see Proposi-

tion 1) such that ⊥ is the concatenation on F [A]. Assume (T, ∗1, ∗2, ∗3) = F [A]⊥lr
and show that for any (x, y) ∈ X2\B the algebra T (x,y) is not a dimonoid.

Let w, u, ω ∈ T (x,y).

For T (1,3) check the axiom (T3):

(w ∗1 u) ∗3 ω = w ∗3 ω = wω 6= wuω = w ∗3 (u ∗3 ω).
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As the axiom (T3) does not hold, then T (1,3) is not a dimonoid.

For T (2,1), T (2,3), T (3,1) and T (3,2) check the axiom (T1).

For T (2,1) we have

(w ∗2 u) ∗2 ω = ω 6= u = w ∗2 u = w ∗2 (u ∗1 ω ).

For T (2,3):

(w ∗2 u) ∗2 ω = ω 6= uω = w ∗2 (u ∗3 ω).

For T (3,1):

(w ∗3 u) ∗3 ω = wuω 6= wu = w ∗3 (u ∗1 ω).

For T (3,2):

(w ∗3 u) ∗3 ω = wuω 6= wω = w ∗3 (u ∗2 ω).

The axiom (T1) does not hold for all fourth cases, so T (2,1), T (2,3), T (3,1) and T (3,2)

are not dimonoids.

The notion of a triband of subtrioids was introduced and investigated in [7].
Recall this definition.

A trioid (T,⊣,⊢,⊥) is called an idempotent trioid or a triband if x ⊣ x =
x ⊢ x = x ⊥ x = x for all x ∈ T . If ϕ : S → M is a homomorphism of trioids, then
the corresponding congruence on S will be denoted by ∆ϕ.

Let S be an arbitrary trioid, J be some idempotent trioid and

α : S → J : x 7→ xα

be a homomorphism. Then every class of the congruence ∆α is a subtrioid of the
trioid S, and the trioid S itself is a union of such trioids Sξ, ξ ∈ J that

xα = ξ ⇔ x ∈ Sξ = ∆x
α = {t ∈ S |(x, t) ∈ ∆α},

Sξ ⊣ Sε ⊆ Sξ⊣ ε, Sξ ⊢ Sε ⊆ Sξ ⊢ε, Sξ ⊥ Sε ⊆ Sξ ⊥ε,

ξ 6= ε ⇒ Sξ

⋂
Sε = ∅.

In this case we say that S is decomposable into a triband of subtrioids (or S is a
triband J of subtrioids Sξ, ξ ∈ J). If J is a band (=idempotent semigroup), then
we say that S is a band J of subtrioids Sξ, ξ ∈ J . If J is a commutative band, then
we say that S is a semilattice J of subtrioids Sξ, ξ ∈ J .

Observe that the notion of a triband of subtrioids generalizes the notion of a
diband of subdimonoids [5] and the notion of a band of semigroups [11].

Examples of trioids which are decomposed into a triband of subtrioids can be
found in [7].
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3 Main results

In this section we describe all semilattice congruences on an arbitrary trioid and
define the least semilattice congruence on this trioid. We also show that every trioid
is a semilattice of s-simple subtrioids.

Let (T,⊣,⊢,⊥) be an arbitrary dimonoid. Yamada introduced the notion of a
P -subsemigroup of an arbitrary semigroup (see [9]). We denote by Ω the collection
of all P -subsemigroups of (T,⊣) and by Tα, Tβ, ... the elements of Ω.

If ρ is a congruence on a trioid (T,⊣,⊢,⊥) such that the operations of
(T,⊣,⊢,⊥)/ρ coincide and it is a semilattice, then we say that ρ is a semilattice
congruence.

For every subset Γ of Ω define a relation Γ⊣ on (T,⊣,⊢,⊥) by

aΓ⊣b if and only if
{(x, y)|x ⊣ a ⊣ y ∈ Tα} = {(x, y)|x ⊣ b ⊣ y ∈ Tα}

for every Tα ∈ Γ.

Theorem 1. The relation Γ⊣ on any trioid (T,⊣,⊢,⊥) is a semilattice congruence.
Conversely, any semilattice congruence on (T,⊣,⊢,⊥) can be obtained by this way.

Proof. The fact that the relation Γ⊣ is a semilattice congruence on a dimonoid
(T,⊣,⊢) has been proved in [10]. Show that Γ⊣ is compatible concerning the opera-
tion ⊥.

Let aΓ⊣b, a, b, c ∈ T . As a ⊣ cΓ⊣b ⊣ c, then

{(x, y)|x ⊣ (a ⊣ c) ⊣ y ∈ Tα} = {(x, y)|x ⊣ (b ⊣ c) ⊣ y ∈ Tα}

for every Tα ∈ Γ. By the associativity of the operation ⊣ and the axiom (T4) of a
trioid we obtain

x ⊣ (a ⊣ c) ⊣ y = ((x ⊣ a) ⊣ c) ⊣ y =

= (x ⊣ (a⊥c)) ⊣ y = x ⊣ (a⊥c) ⊣ y,

x ⊣ (b ⊣ c) ⊣ y = ((x ⊣ b) ⊣ c) ⊣ y =

= (x ⊣ (b⊥c)) ⊣ y = x ⊣ (b⊥c) ⊣ y.

So, a⊥cΓ⊣b⊥c. Analogously, we can prove that c⊥aΓ⊣c⊥b. Thus, Γ⊣ is a con-
gruence on (T, ⊣, ⊢, ⊥).

As (T,⊣)/Γ⊣
is a semilattice, then by Lemma 1 the operations of (T,⊣,⊢,⊥)/Γ⊣

coincide and so, it is a semilattice.
The converse statement follows from [9] (see also [10]).

Theorem 1 generalizes Yamada’s theorem [9] about the structure of all semilattice
congruences on an arbitrary semigroup and the description [10] of all semilattice
congruences on an arbitrary dimonoid.

A trioid (T,⊣,⊢,⊥) will be called s-simple if its least semilattice congruence
coincides with the universal relation on T .
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Theorem 2. The relation Ω⊣ on any trioid (T,⊣,⊢,⊥) is the least semilattice con-
gruence. Every trioid (T,⊣,⊢,⊥) is a semilattice of s-simple subtrioids.

Proof. By Theorem 1 Ω⊣ is a semilattice congruence. If aΩ⊣b, a, b ∈ T , then it is
easy to see that aΓ⊣b for any Γ ⊆ Ω. So, Ω⊣ ⊆ Γ⊣.

Now we shall prove the second statement of the theorem.

Since Ω⊣ is a congruence on (T,⊣,⊢,⊥) and (T,⊣,⊢,⊥)/Ω⊣
is a semilattice, then

(T,⊣,⊢,⊥) → (T,⊣,⊢,⊥)/Ω⊣
: x 7→ [x]

is a homomorphism ([x] is a class of the congruence Ω⊣ which contains x). From
[10] it follows that every class A of the congruence Ω⊣ is an s-simple dimonoid
concerning operations ⊣ and ⊢. Hence we obtain s-simplicity of the subtrioid A of
a trioid (T,⊣,⊢,⊥).

Theorem 2 generalizes Yamada’s theorem [9] about the structure of the least
semilattice congruence on an arbitrary semigroup and the description [10] of the
least semilattice congruence on an arbitrary dimonoid.
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