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On a class of weighted composition operators

on Fock space

Namita Das

Abstract. Let Tφ be the Toeplitz operator defined on the Fock space L2
a(C) with

symbol φ ∈ L∞(C). Let for λ ∈ C, kλ(z) = e
λ̄z

2
−

|λ|2

4 , the normalized reproducing
kernel at λ for the Fock space L2

a(C) and tα(z) = z−α, z, α ∈ C. Define the weighted
composition operator Wα on L2

a(C) as (Wαf)(z) = kα(z)(f ◦ tα)(z). In this paper
we have shown that if M and H are two bounded linear operators from L2

a(C) into
itself such that MTψH = Tψ◦tα for all ψ ∈ L∞(C), then M and H must be constant
multiples of the weighted composition operator Wα and its adjoint respectively.

Mathematics subject classification: 47B35, 32M15.

Keywords and phrases: Fock space; Toeplitz operators; weighted composition
operators.

1 Introduction

For x, y ∈ C
N (for some integer N ≥ 1), we write x̄y =

∑N
n=1 x̄nyn and |x| =

(x̄x)
1
2 . Thus, |x−y| is the usual Euclidean distance between x and y. The symbol dz

denotes the Lebesgue measure in C
N for all N ≥ 1. The Gaussian measure on C

N

is, by definition, dµ(z) = (2π)−N e−
|z|2

2 dz. Denote Lp(CN , dµ) the usual Lebesgue
spaces on C

N with respect to the measure µ; L∞(CN , dµ) shall be occasionally
abbreviated to L∞(CN ) = L∞(CN , dz), since they happen to coincide [5]. Set, for
1 ≤ p ≤ ∞,

Lpa(C
N ) = {f ∈ Lp(CN , dµ) : f is an entire function on C

N}.

The space Lpa(CN ) is a closed subspace of Lp(CN , dµ), L∞
a (CN ) = H∞(CN ). For

p = 2, L2
a(C

N ) is a Hilbert space, called the Fock or Siegal-Bargmann space.

For a multiindex n = (n1, n2, · · · , nN ) ∈ N
N , the following abbreviations will be

employed:

an = an1,n2,··· ,nN ,

zn = zn1
1 zn2

2 · · · znNN ( for z ∈ C
N ),

n! = n1!n2! · · · nN !,

2n = 2n1+n2+···+nN .
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If f is an entire function, f(z) =
∑

n∈NN
fnz

n, then

∫

CN

|f(z)|2dµ(z) =
∑

n∈NN

n!2n|fn|2.

Consequently, f ∈ L2
a(C

N ) if and only if the last expression is finite. The inner
product of f and g(z) =

∑
n∈NN

gnz
n, f, g ∈ L2

a(C
N ), is given by

〈f, g〉 =
∑

n∈NN

n!2nfnḡn.

The set {(n!2n)−
1
2 zn}n∈NN is an orthonormal basis of L2

a(C
N ). The polynomials are

dense in L2
a(C

N ). The space L2
a(C

N ) is a reproducing kernel space; the reproducing

kernel at λ ∈ C
N is given by gλ(z) = e

λ̄z
2 , and ‖gλ‖2 = e

|λ|2

4 . For φ ∈ L∞(CN , dµ) =
L∞(CN ), the Toeplitz operator Tφ is defined from L2

a(C
N ) into itself as Tφf = P (φf)

where P is the orthogonal projection from L2(CN , dµ) onto L2
a(C

N ). Further, for
φ ∈ L∞(CN ), define the Hankel operatorHφ from L2

a(C
N ) into (L2

a(C
N ))⊥ byHφf =

(I−P )(φf). Here (L2
a(C

N ))⊥ denotes the orthogonal complement of L2
a(C

N ). Define

for λ ∈ C
N , kλ(z) = gλ(z)

‖gλ‖
= e

λ̄z
2
−

|λ|2

4 , the normalized reproducing kernel at λ for

the Fock space L2
a(C

N ). In this paper we shall only concentrate our attention on the
Fock space L2

a(C). Notice that it has an orthonormal basis {en}∞n=0 where

en(z) = (n!2n)−
1
2 zn.

For α ∈ C, define Wα from L2
a(C) into itself by (Wαf)(z) = kα(z)f(z −α). Note for

f ∈ L2
a(C),W ∗

αf = (f ◦ t−α)k−α = W−αf and therefore the operator Wα is a unitary
operator on L2

a(C) for each α ∈ C and the operator can be defined on L2(C).

2 The forward shift operator and Toeplitz algebra on Fock space

Let Z be the forward shift operator with respect to the basis {en}∞n=0, and let
Φ(z) = z

|z| = ei arg z. Let L(L2
a(C)) be the space of all bounded linear operators from

L2
a(C) into itself and LC(L2

a(C)) be the space of all compact operators in L(L2
a(C)).

For M,T ∈ L(L2
a(C)), let [M,T ] = MT − TM. Let

A(TΦ) = {T ∈ L(L2
a(C)) : [T, TΦ] ∈ LC(L2

a(C))}

and
A(Z) = {T ∈ L(L2

a(C)) : [T,Z] ∈ LC(L2
a(C))}.

Lemma 2.1. The following hold.

(i) The operator TΦ is a compact perturbation of Z and A(TΦ) = A(Z).

(ii) The Toeplitz operator TΨ ∈ A(TΦ) for every Ψ ∈ L∞(C).
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Proof. (i) Notice that

〈TΦz
n, zm〉 =

∫

C

z

|z|z
nz̄mdµ(z)

=
1

2π

∫ ∞

0

∫ 2π

0
rn+mei(n−m+1)te−

r2

2 rdtdr.

This is zero unless m = n+ 1, and in that case it equals

∫ ∞

0
r2n+1e−

r2

2 rdr =

∫ ∞

0
2n+ 1

2 tn+ 1
2 e−tdt = 2n+ 1

2 Γ

(
n+

3

2

)
,

where Γ is Euler’s gamma function. Thus

〈TΦen, em〉 =

{
0 if m 6= n+ 1;

(n!2n)−
1
2 (m!2m)−

1
2 2n+ 1

2 Γ(n+ 3
2) if m = n+ 1.

Consequently, TΦen = cnen+1, where cn =
Γ(n+ 3

2
)

Γ(n+1)
1
2 Γ(n+2)

1
2
. Let diag(1 − cn) be the

diagonal matrix whose nth diagonal entry is 1 − cn. Now it follows that Z − TΦ =
Z · diag(1 − cn), and in order to verify our claim it suffices to show that cn → 1 as
n→ +∞. According to Stirling’s formula [1],

Γ(x+ 1) ∼
√

2πxx+
1
2 e−x,

where “∼” means that the ratio of the right-hand to the left-hand side approaches
1 as x→ +∞. Substituting this into the expression for cn produces

cn ∼
(
n+ 1

2

)n+1
e−n−

1
2

√
2π

n
n
2
+ 1

4 e−
n
2 (2π)

1
4 (n+ 1)

n
2
+ 3

4 e−
n
2
− 1

2 (2π)
1
4

.

The terms containing π cancel, as well as those containing e, and what remains is
the product of (

n+ 1
2

n

)n
2

,

(
n+ 1

2

n+ 1

)n+1
2

and

(
n+ 1

2

) 1
2

n
1
4 (n+ 1)

1
4

,

which tend to e
1
4 , e−

1
4 and 1, respectively. So, cn → 1 and the assertion (i) follows.

Now we shall prove (ii). The formulas

Tψθ − TψTθ = H∗
ψ
Hθ, (1)

TψTθ − TθTψ = H∗
θ
Hψ −H∗

ψ
Hθ, (2)

hold for arbitrary ψ, θ ∈ L∞(C). Owing to (2),

TψTΦ − TΦTψ = H∗
Φ
Hψ −H∗

ψ
HΦ
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will be compact for arbitrary ψ ∈ L∞(C) if HΦ,HΦ are compact. The latter is
equivalent to H∗

ΦHΦ,H
∗
Φ
HΦ are compact, respectively, and from (1) it follows that

this is equivalent to I−T ∗
ΦTΦ and I−TΦT

∗
Φ are compact, respectively. Owing to (i),

the last two operators are compact perturbations of I − Z∗Z = 0 and I − ZZ∗ =
〈., e0〉e0, respectively and the result follows. 2

Let T denote the unit circle in the complex plane C. Let L∞(T) be the space of all
essentially bounded measurable functions on T with the essential supremum norm.
LetH2 be the Hardy space on the unit circle T. For φ ∈ L∞(T), the Toeplitz operator
Bφ with symbol φ is the operator on H2 sending f ∈ H2 to P+(φf), where P+ is
the orthogonal projection of L2(T) onto H2. It is easy to check that B∗

zBφBz = Bφ
for any φ ∈ L∞(T). According to a classical result [3], the converse holds: if an
operator T ∈ L(H2) satisfies B∗

zTBz = T, then T = Bφ for some φ ∈ L∞(T). This
result serves as a starting point for the theory of symbols of operators. It is also
shown in [3], that the only compact Toeplitz operator is the zero Toeplitz operator.
If φ ∈ H∞(T) then Bφ ∈ L(H2) is called an analytic Toeplitz operator and B∗

φ = Bφ̄
is called a coanalytic Toeplitz operator. Let

A(Bz) = {T ∈ L(H2) : T −B∗
zTBz ∈ LC(H2)}

= {T ∈ L(H2) : [T,Bz] ∈ LC(H2)},

the essential commutant of the forward shift operator Bz on H2. It is known [2] that
A(Bz) is a C∗−subalgebra of L(H2) and Bφ ∈ A(Bz) for all φ ∈ L∞(T).

Lemma 2.2. There exists a unitary operator U : H2 → L2
a(C) such that the

transformation T 7→ U∗TU is a C∗-isomorphism of A(Z) onto A(Bz).

Proof. Define U : H2 → L2
a(C) by mapping the standard basis of H2 onto the basis

{en}n∈N of L2
a(C),

U : zn ∈ H2 7→ zn√
n!2n

∈ L2
a(C).

This operator is unitary and the transformation T → U∗TU maps Z to Bz; hence,

T ∈ A(Z) ⇔ [T,Z] ∈ LC(L2
a(C))

⇔ U∗TZU − U∗ZTU ∈ LC(H2)
⇔ (U∗TU)(U∗ZU) − (U∗ZU)(U∗TU) ∈ LC(H2)
⇔ (U∗TU)Bz −Bz(U

∗TU) ∈ LC(H2)
⇔ U∗TU ∈ A(Bz).

The proof is complete. 2

3 Main result

We now prove the main result of the work.

Theorem 3.1. Let α ∈ C and define the translation operator on C as tα(z) = z−α.
Suppose M and H are two linear bounded operators from L2

a(C) into itself such that
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MTψH = Tψ◦tα for all ψ ∈ L∞(C, dz). Then M = cWα and H = 1
c
W ∗
α and MH = I,

the identity operator on L2
a(C).

Proof. Notice that the Fock space L2
a(C) is an invariant subspace for Wα and W ∗

α =
W−α and therefore PWα = WαP. For f ∈ L2

a(C) and α ∈ C, we have

TψWαf = Tψ [(f ◦ tα) kα]
= P (ψ (f ◦ tα) kα)
= P ((ψ ◦ t−α ◦ tα) (f ◦ tα)kα)
= P [(((ψ ◦ t−α)f) ◦ tα)kα]
= PWα [(ψ ◦ t−α)f ]
= WαP [(ψ ◦ t−α)f ]
= WαTψ◦t−αf.

Thus we get W ∗
αTψWαf = Tψ◦t−αf, for α ∈ C. Now let Rα = W ∗

αM and Sα = HWα.

Since MTψH = Tψ◦tα it follows that RαTψSα = W ∗
αMTψHWα = W ∗

αTψ◦tαWα = Tψ
for all ψ ∈ L∞(C). It is known [4] that the norm closure of the set of all Toeplitz
operators in L(L2

a(C)) contains LC(L2
a(C)). In fact, if T1 = {Tφ : φ ∈ D(C)} then

closT1 = LC(L2
a(C)) where D(C) is the set of all infinitely differentiable functions on

C whose supports are compact subsets of C. Thus

RαTψSαTΦ = TψTΦ = TψΦ +G (for some G ∈ LC(L2
a(C)))

= RαTψΦSα +G

= Rα(TψTΦ −G)Sα +G

= Rα(TψTΦ − lim
n→∞

Tφn)Sα +G (where G = lim
n→∞

Tφn)

= RαTψTΦSα − lim
n→∞

RαTφnSα +G

= RαTψTΦSα − lim
n→∞

Tφn +G

= RαTψTΦSα −G+G

= RαTψTΦSα.

It follows therefore that RαTψ(SαTΦ − TΦSα) = 0. We shall now show that SαTΦ −
TΦSα = 0. Suppose on the contrary that there is some x 6= 0 in Ran(SαTΦ − TΦSα).
Then, by the last relation, RαTψx = 0 for all ψ ∈ L∞(C), so the kernel of Rα
contains the set {Tψx : ψ ∈ L∞(C)}. Consider some y ∈ L2

a(C) orthogonal to this

set. Then 0 = 〈y, Tψx〉 = 〈y, P (ψx)〉 =
∫

C
y(z)ψ(z)x(z)dµ(z) for all ψ ∈ L∞(C);

because x̄y ∈ L1(C, dµ), we conclude that x̄y = 0, and this is only possible if at
least one of the analytic functions x, y is identically zero. But x 6= 0 by assumption,
so y must be zero, which means that our set is dense in L2

a(C). Because this set is
contained in kerRα, we have Rα = 0, so Tψ = RαTψSα = 0 for all ψ – a contradiction.
This proves that SαTΦ − TΦSα = 0. Hence SαT

n
Φ = T nΦSα for all n ∈ N. Therefore

Sα(Z + K̃)n = (Z + K̃)nSα as TΦ = Z + K̃ for some K̃ ∈ LC(L2
a(C)). Hence, it

follows that SαZ
n − ZnSα = Kn for some Kn ∈ LC(L2

a(C)). Thus

(U∗SαU)(U∗ZnU) − (U∗ZnU)(U∗SαU) = Cn
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for some Cn ∈ LC(H2) for all n ∈ N. Hence U∗SαU lies in the essential commutant of
all analytic Toeplitz operators in L(H2). Thus U∗SαU = Bφ+K for some φ ∈ H∞(T)
and K ∈ LC(H2).

Similarly one can show that U∗RαU = Bθ̄ +K ′, for some θ ∈ H∞(T) and K ′ ∈
LC(H2). This is because RαTψSα = Tψ for all ψ ∈ L∞(C) implies S∗

αTψR
∗
α = Tψ for

all ψ ∈ L∞(C). Now (U∗RαU)(U∗SαU) = Bθ̄φ + C, for some C ∈ LC(H2). Hence
I = (U∗RαSαU) = Bθ̄φ + C and therefore B1−θ̄φ = C. This implies 1 − θ̄φ = 0 as

the only compact Toeplitz operator in L(H2) is the zero Toeplitz operator. Thus
C = 0 and θ̄ = 1

φ
. This implies θ ∈ H∞(T) and θ̄ ∈ H∞(T). Thus θ̄ = d and

φ = 1
d

for some constant d. Hence it follows that U∗RαU = Bd +K ′ = dI +K ′ and
U∗SαU = B 1

d
+K = 1

d
I +K. Thus I = (dI +K ′)(1

d
I +K) and therefore

dK +
K ′

d
+K ′K = 0. (3)

On the other hand, U∗SαU = 1
d
I + K implies Sα = 1

d
+ UKU∗ = 1

d
+ E where

E = UKU∗ ∈ LC(L2
a(C)). Hence

Z∗nSαZ
n → 1

d
(4)

as Z∗nEZn → 0 (see [2] for the proof) strongly. Further, since SαZ
n − ZnSα = Kn

for some Kn ∈ LC(L2
a(C)), hence

Z∗nSαZ
n − Sα = Jn (5)

for some Jn = Z∗nKn ∈ LC(L2
a(C)). Since {Jn} converges strongly to 0, we obtain

from (4) and (5) that Sα = 1
d
. Hence E = 0 and therefore K = 0. It follows hence

from (3) that K ′ = 0. Thus U∗SαU = 1
d

and U∗RαU = d. Hence Sα = 1
d

and Rα = d.

Thus M = WαRα = dWα and H = SαW
∗
α = 1

d
W ∗
α and the theorem follows. 2
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Abstract. In the present paper invariant characteristics of geodesic, chebyshevian
and quasi-chebyshevian compositions Xn1

×Xn2
×· · ·×Xnp

in Weyl spaces WN(n1 +
n2 + · · ·+ np = N) are found with the help of the prolonged covariant differentiation.
The characteristics of the spaces WN which contain such special compositions are
found.
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1 Preliminary

1. A prolonged covariant differentiation in WN.
Let WN (gαβ , Tσ) be Weyl space with a fundamental tensor gαβ and a comple-

mentary covector Tσ. Let us accept that the fundamental tensor gαβ is normed by
the law (see [1], p.152)

ğαβ = λ2gαβ , (1)

where λ is a function of the point. It is known (see [1], p.153) that after renormal-
ization (1): the complementary covector Tσ transforms by the law T̆σ = Tσ +∂σlnλ,

which means Tσ is a normalizer; the reciprocal tensor gαβ to gαβ transforms by the
law gαβ = λ−2gαβ . The coefficients of the connectedness Γσ

αβ of the Weyl space WN

have the presentation Γσ
αβ = 1

2g
σν(∂αgβν +∂βgαν−∂νgαβ)−(Tαδ

σ
β +Tβδ

σ
α−Tνg

νσgαβ)
(see [1], p.154).

Let N independent fields of directions v
σ

α (σ, α = 1, 2, . . . , N) be given in WN .

Renorm the fields of directions v
σ

α by the condition [8]

gαβv
σ

αv
σ

β = 1. (2)

The reciprocal covectors
σ
vα are defined by the following equalities

v
σ

α σ
vβ = δα

β ⇐⇒ v
β

σ α
vσ = δα

β . (3)

The renormalization of the fundumental tensor accompanies with the following

renorming v̆
σ

α = λ−1v
σ

α,
σ̆
vα = λ

σ
vα.

c© Georgi Zlatanov, Bistra Tsareva, 2014
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According to (see [1], p.152) the fundamental tensor gαβ and the complementary
covector Tσ satisfy the equalities

∇σ gαβ = 2Tσ gαβ , ∇σ g
αβ = −2Tσ g

αβ (4)

According to [7] the pseudo-quantities A ∈ WN which after renormalization of
the fundamental tensor gαβ by the formula (1) transform by the law Ă = λkA are

called satellites of gαβ with a weight {k}. Hence gαβ{−2}, v
σ

α{−1} σ
vα{1}.

The existence of the normalizer Tσ allows to introduce a prolonged covariant

differentiation of the satellites A {k} of the tensor gαβ by the formula
◦
∇σ A =

∇σA− kTσA [8]. According to [8, 9] we have.

◦
∇σ gαβ = 0 ,

◦
∇σ g

αβ = 0 ,
◦
∇σ v

α

β = ∇σ v
α

β + Tσv
α

β,
◦
∇σ

α
vβ = ∇σ

α
vβ − Tσ

α
vβ . (5)

Ozdeger obtained significant results in the understanding the geometry of Weyl and
Einstein-Weyl manifolds [11], using the prolonged covariant differentiation, intro-
duced in [8].

2. Compositions in WN.

Consider in the space WN the composition Xm ×XN−m of two base manifolds
Xm and XN−m, i.e. their topological product. Two positions P (Xm) and P (XN−m)
of these base manifolds pass through any point of the space WN (Xm ×XN−m) [2].
According to [2] and [3] any composition is completely defined with the field of the

affinor aβ
α, satisfying the condition

aσ
αa

β
σ = δβ

α. (6)

According to [4] the projecting affinors
m
a

β
α ,

N−m
a

β
α are defined by the equalities

m
a

β
α = 1

2(δβ
α + a

β
α),

N−m
a

β
α = 1

2(δβ
α − a

β
α) . For an arbitrary vector vα we have

vα =
m
a α

σ vσ +
N−m
a α

σ vσ = V
m

α + V
N−m

α, where V
m

α =
m
a α

σ vσ ∈ P (Xm), V
N−m

α =

N−m
a α

σ vσ ∈ P (XN−m). The partial projections or the full ones of an arbitrary
tensor are defined analogously.

3. Derivative equations in WN.

For the independent fields of directions v
σ

α (σ, α = 1, 2, . . . , N) and their recipro-

cal covectors
σ
vα, defined by (3), are fulfilled the following derivative equations [8,9]

◦
∇σ v

α

β =
ν

T
α

σv
ν

β ,
◦
∇σ

α
vβ = −

α

T
ν

σ
ν
vβ , (7)

where
β

T
α

β {0}. We obtain, using the integrability condition of (7), the next equality

∇[α

σ

T
σ

β ] +
σ

T
ν

[β

ν

T
σ

α] =0 [8]. Let us denote by (v
β
) the lines, defined from the field
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of directions v
β

α and by (v
1
, v
2
, . . . , v

N
) the net, defined from the independent fields

of directions v
σ

α, (σ = 1, 2, . . . , N). It is known that the field of directions v
σ

α is

parallelly translated along the lines (v
β
) if and only if ∇ν v

σ

αv
β

ν = µv
σ

α, where µ is an

arbitrary function of the point. According to (5) the last equality can be written in
the form

◦
∇ν v

σ

αv
β

ν = µv
σ

α. (8)

2 Coordinate net in WN

Let us chose the net (v
1
, v
2
, . . . , v

N
) as a coordinate one. From (2) and gαβv

σ

αv
ν

β =

cosω
σν

it follows that in the parameters of the coordinate net

gαβ = f
α
f
β

cosω
αβ
,

v
1

α( 1
f
1

, 0, 0, . . . , 0), v
2

α(0, 1
f
2

, 0, . . . , 0), . . . , v
N

α(0, 0, 0, . . . , 1
f
N

),

1
vα(f

1
, 0, 0, . . . , 0),

2
vα(0, f

2
, 0, . . . , 0), . . . ,

N
vα(0, 0, 0, . . . , f

N

),

(9)

where f
α

= f
α
(
σ
u), f

α
{1}, ω

αβ
= ω

αβ
(
σ
u) , ω

αβ
{0}, σ = 1, 2, . . . , N.

Lemma 1. When the net (v
1
, v
2
, . . . , v

N
) is chosen as a coordinate one then there exist

the following relations between the coefficients
β

T
α

σ from the derivative equations (7)

and the coefficients of the connection Γσ
αβ

β

T
α

σ =

f
β

f
α

Γβ
σα , α 6= β ;

α

T
α

σ = Γα
σα − ∂σln(f

1
f
2
. . . f

N

) +NTσ . (10)

Proof. Using (3), (5) and (7) we obtain

β

T
α

σ = ∂σv
α

ν β
vν + Γτ

σνv
α

ν β
vτ + Tσδ

β
α . (11)

After applying (9) in (11) we establish the validity of (10).
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3 Weyl spaces of compositions Xn1
× Xn2

× · · · × Xnp

Let us introduce the notations:

α, β, γ, δ, σ, ν, τ = 1, 2, . . . , N ; i1, j1, k1, s1 = 1, 2, . . . , n1;

i1, j1, k1, s1 = n1 + 1, n1 + 2, . . . , N ;

i2, j2, k2, s2 = n1 + 1, n1 + 2, . . . , n1 + n2;

i2, j2, k2, s2 = 1, 2, . . . , n1, n1 + n2 + 1, n1 + n2 + 2, . . . , N ;

i3, j3, k3, s3 = n1 + n2 + 1, n1 + n2 + 2, . . . , n1 + n2 + n3;

i3, j3, k3, s3 = 1, 2, . . . , n1 + n2 + n3 + 1, n1 + n2 + n3 + 2, . . . , N ;

............................................................................

ip, jp, kp, sp = n1 + n2 + · · · + np−1 + 1,

n1 + n1 + n2 + · · · + np−1 + 2, . . . , N ;

ip, jp, kp, sp = 1, 2, . . . , n1 + n2 + · · · + np−1 .

(12)

Following [10] we shall consider the affinors

nm
a β

α = v
im

β im
v α − v

im

β im
v α for any m = 1, 2, . . . , p. (13)

The affinors (13) have weight {0}. According to (3) the affinors (13) satisfy (6), i.e.
they define the following compositionsXn1×XN−n1 , Xn2×XN−n2, . . . , Xnp×XN−np .

Let us consider the composition Xn1×Xn2×· · ·×Xnp and let us denote the positions
of the manifolds Xn1 ,Xn2 , . . . ,Xnp , by P (Xn1), P (Xn2), . . . , P (Xnp), respectively.

The affinors
m
a β

α = v
im

β im
v α , m = 1, 2, . . . , p, (14)

with weight {0} will be called the projective affinors of the composition Xn1×
Xn2 × · · · ×Xnp .

From (3) and (14) follow
1
a

β
α +

2
a

β
α + · · · +

p
a

β
α = δ

β
α,

m
a

β
α

m
a α

σ =
m
a

β
σ ,

m
a

β
α

l
a α

σ = 0, where m, l = 1, 2, . . . , p, m 6= l. If vβ is an arbitrary vector, then

vβ =
1
a

β
αv

α +
2
a

β
αv

α + · · ·+ p
a

β
αv

α = V
1

β +V
2

β + · · ·+V
p

β , where V
1

β =
1
a

β
αv

α ∈ P (Xn1),

V
2

β =
2
a

β
αv

α ∈ P (Xn2), . . . , V
p

β =
p
a

β
αv

α ∈ P (Xnp).

With the help of the projective affinors (14) the fundamental tensor gαβ can be

presented in the form gαβ =
1
Gαβ +

2
Gαβ + · · ·+

p

Gαβ +2
12
Gαβ +2

13
Gαβ + · · ·+2

p−1p

G αβ ,

where
m

Gαβ =
m
a σ

α

m
a ν

β gσν ,
ml

Gαβ =
m
a σ

(α

l
a ν

β) gσν and m, l = 1, 2, . . . , p, m 6= l.
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The tensors
m

Gαβ are full projections of the fundamental tensor gαβ on the positions

P (Xnm) and they define metrics on these positions. Following [5] the tensors
m

Gαβ

will be called positional fundamental tensors. They satisfy the equalities
m
a σ

α

m

Gσβ =

m
a σ

β

m

Gασ =
m

Gαβ ,
m
a σ

α

l

Gσβ =
m
a σ

β

l

Gασ = 0, when m 6= l. Following [5] the tensors
ml

Gαβ will be called hybridian tensors. They satisfy the equalities
m
a σ

α

l
a ν

β

ml

Gσν =

1
2

m
a σ

α

l
a ν

β gσν ,
m
a σ

α

m
a ν

β

ml

Gσν = 0.

4 Special compositions Xn1
× Xn2

× · · · × Xnp
in WN

Definition 1. The composition Xn1 ×Xn2 ×· · ·×Xnp ∈WN will be called geodesic
if for any m = 1, 2, . . . , p the position P (Xnm) is parallelly translated along any line
of the manifold Xnm .

Theorem 1. The composition Xn1 ×Xn2 × · · · ×Xnp ∈WN is geodesic if and only

if the coefficients from the derivative equations (7) satisfy the equalities

km

T
im

σ v
sm

σ = 0 , for any m = 1, 2, . . . , p. (15)

Proof. According to (8) the composition Xn1 ×Xn2 × · · · ×Xnp is geodesic if and

only if
◦
∇σ v

im

α v
sm

σ = µ v
im

α for any m = 1, 2, . . . , p. From (7) and the last equality we

obtain
ν

T
im

σ v
ν

α v
sm

σ = µ v
im

α. Now after contraction by
τ
vα we find

τ

T
im

σ v
sm

σ = µ δτ
im
,

from where (15) follows.

From (9), (10) and Theorem 1 follows the validity of the following statement:

Corollary 1. If the composition Xn1 ×Xn2 × · · · ×Xnp ∈WN is geodesic then:

i) In the parameters of the coordinate net the coefficients of the derivative equa-

tions (7) satisfy the equalities
km

T
im

sm = 0 for any m = 1, 2, . . . , p;

ii) In the parameters of the coordinate net the coefficients of the connection

satisfy the equalities Γkm

smim
= 0 for any m = 1, 2, . . . , p.

If the compositionXn1×Xn2×· · ·×Xnp ∈WN is geodesic and the net (v
1
, v
2
, . . . , v

N
)

is chosen as a coordinate one, then using Corollary 1, for the components of the
tensor of the curvature Rαβγ

δ. we obtain Rimjmkm
sm. = 0 for any m = 1, 2, . . . , p.

Definition 2. The composition Xn1 ×Xn2 × · · · ×Xnp ∈WN will be called cheby-
shevian if for any m, l = 1, 2, . . . , p and m 6= l, the position P (Xnm) is parallelly
translated along any line of the manifold Xnl

.
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Theorem 2. The composition Xn1 ×Xn2 × · · · ×Xnp ∈WN is chebyshevian if and

only if the coefficients from the derivative equations (7) satisfy the equalities

km

T
im

σ v
sl

σ = 0 , for any m, l = 1, 2, . . . , p,m 6= l. (16)

Proof. According to (8) the composition Xn1 ×Xn2 × · · · ×Xnp is chebyshevian if

and only if
◦
∇σ v

im

αv
sl

σ = µ v
im

α for any m = 1, 2, . . . , p. From (7) and the last equality

we obtain (16).

From (9), (10) and Theorem 2 follows the validity of the following statement:

Corollary 2. If the composition Xn1 ×Xn2 ×· · ·×Xnp ∈WN is chebyshevian then:

i) In the parameters of the coordinate net the coefficients of the derivative equa-

tions (7) satisfy the equalities
km

T
im

sl
= 0 for any m, l = 1, 2, . . . , p, m 6= l;

ii) In the parameters of the coordinate net the coefficients of the connection

satisfy the equalities Γkm

sl im
= 0 for any m, l = 1, 2, . . . , p, m 6= l .

Theorem 3. If the composition Xn1 ×Xn2 × · · · ×Xnp ∈WN is chebyshevian then

the space WN is Riemannian and the metric tensor has in the chosen coordinate

system the presentation

gilim = f
il

(
il
u) f

im

(
im
u ) cos ω

ilim
(
il
u,

im
u ) . (17)

Proof. Let the composition Xn1 ×Xn2 ×· · ·×Xnp ∈WN be chebyshevian. We chose
the net (v

1
, v
2
, . . . , v

N
) as a coordinate one. Then from (4) and Corollary 2 we obtain

∂imgilir = 2Timgilir , for any m, l, r = 1, 2, . . . , p, m 6= l, m 6= r. (18)

From (18) it follows Tσ = grad, i. e. Wn is Riemannian. Let us renormalize the
fundumental tensor gαβ such that Tσ = 0, (see [1], p.157). Then the equalities (18)
accept the form ∂imgilir = 0, from where (17) follows.

Let now the composition Xn1 × Xn2 × · · · × Xnp ∈ WN be chebyshevian and
Xnm are one-dimensional manifolds. Then the composition defines a chebyshevian
net (v

1
, v
2
, . . . , v

N
). According to Theorem 3 WN is Riemannian. Using (17) and

changing the variables, we obtain for the metric tensor of the Riemannian space

gαβ = cos ω
αβ

(
α
u,

β
u).

Let us consider an orthogonal composition Xn1 ×Xn2 × · · · ×Xnp ∈WN , which
means that at any point of the space any two directions V

m

α ∈ P (Xnm) and V
l

α ∈
P (Xnl

), when m, l = 1, 2, . . . , p, m 6= l, are orthogonal. In this case gαβV
m

αV
l

β = 0.

Since V
m

α =
m
a α

σ vσ, V
l

α =
l
a α

σ vσ, then gαβV
m

αV
l

β = 0 ⇐⇒ gαβ
m
a α

σ

l
a

β
ν vσuν =



INVARIANT CHARACTERISTICS OF SPECIAL COMPOSITIONS . . . 15

gαβ
l
a α

σ

m
a

β
ν v

σuν = 0. Because vα and uα are arbitrary vector fields, then gαβ
m
a α

σ

l
a

β
ν =

gαβ
l
a α

σ

m
a

β
ν = 0, from where it follows

ml

Gαβ = 0. Hence gαβ =
1
Gαβ +

2
Gαβ + · · ·+

p

Gαβ .

Theorem 4. The orthogonal composition Xn1 ×Xn2 × · · · ×Xnp ∈ WN is cheby-

shevian if and only if it is geodesic one.

Proof. Let the composition Xn1 ×Xn2 × · · · ×Xnp ∈WN be orthogonal. Then from
v
im

α ∈ P (Xnm), v
ik

α ∈ P (Xnk
) it follows gαβ v

im

αv
ik

β = 0 for any m,k = 1, 2, . . . , p, m 6=
k. After prolonged covariant differentiation of the last equality and taking into

account (5) and (7) we find gαβ

jk

T
im

σ v
jk

αv
ik

β + gαβ

jm

T
ik

σ v
im

α v
jm

β = 0. Now after contraction

by v
sk

σ we obtain

gαβ

jk

T
im

σ v
sk

σ v
jk

αv
ik

β + gαβ

jm

T
ik

σ v
sk

σ v
im

α v
jm

β = 0. (19)

From (19), Theorem 1 and Theorem 2 the validity of the Theorem 4 follows.

The compositions Xm×XN−m for which the positions P (Xm) and P (XN−m) are
quasi-parallelly translated along any line of the manifoldXN−m andXm, respectively
are studied in [2, 5, 6].

Let us consider the composition Xn1×Xn2×· · ·×Xnp ∈WN . According to [2,5,6]
and (7) the positions P (Xnm) will be quasi-parallelly translated along any line of
the manifold Xnk

if and only if

◦
∇σ v

im

α v
jk

σ = λim v
jk

α +
sm

T
im

σ v
sm

α v
jk

σ, m 6= k. (20)

The vector λim has the weight {−1}.

Definition 3. The composition Xn1 ×Xn2 × · · · ×Xnp ∈WN will be called quasi-
chebyshevian if for any m,k = 1, 2, . . . , p, m 6= k, the positions P (Xnm) are quasi-
parallelly translated along any line of the manifold Xnk

.

Theorem 5. The composition Xn1 ×Xn2 × · · · ×Xnp ∈WN is quasi-chebyshevian

if and only if the coefficients from the derivative equations (7) satisfy the equalities

sm

T
im

σ v
jk

σ = λimδ
sm

jk
, for any m, k = 1, 2, . . . , p, m 6= k. (21)

Proof. According to (7) and (20) the composition Xn1 ×Xn2 × · · · ×Xnp ∈WN will

be quasi-chebyshevian if and only if
sm

T
im

σ v
sm

α v
jk

σ = λim v
jk

α. The last equalities are

equivalent to (21).

From (9), (10) and Theorem 5 follows the validity of the following statement:
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Corollary 3. If the composition Xn1 ×Xn2 ×· · ·×Xnp ∈WN is quasi-chebyshevian

then:

i) In the parameters of the coordinate net the coefficients of the derivative equa-

tions (7) satisfy the equalities 1
f
jk

sm

T
im

jk
= λimδ

sm

jk
, for any m, k = 1, 2, . . . , p, m 6= k.

ii) In the parameters of the coordinate net the coefficients of the connection

satisfy the equalities Γsm

jk im
= ψimδ

sm

jk
for any m,k = 1, 2, . . . , p, m 6= k, where

the vector ψim =
λim

fim
has the weight {0}.

Following [2] the vector ψim will be called a vector of the quasi-parallel trans-
lation. If for any m,k = 1, 2, . . . , p ψim = 0, then according to Theorem 2 the
composition Xn1 ×Xn2 × · · · ×Xnp ∈WN will be chebyshevian.

Theorem 6. The composition Xn1 ×Xn2 × · · · ×Xnp ∈ WN is geodesic or cheby-

shevian, or quasi-chebyshevian if and only if the projecting affinors (14) satisfy for

any m,k = 1, 2, . . . , p, m 6= k the equalities

m
a σ

α

m
a ν

δ

◦
∇σ

m
a

β
ν = 0,

k
a σ

α

m
a ν

δ

◦
∇σ

m
a

β
ν = 0,

k
a σ

α

m
a ν

δ

◦
∇σ

m
a

β
ν − ψσ

m
a σ

δ

k
a

β
α = 0,

(22)

respectively.

Proof. Let the net (v
1
, v
2
, . . . , v

N
) be chosen as a coordinate one. In the parameters of

this coordinate net we have
m
a

β
α = δim

sm
,

k
a

β
α = δik

sk
. For the components of the tensors

m
a σ

α

m
a ν

δ

◦
∇σ

m
a

β
ν ,

k
a σ

α

m
a ν

δ

◦
∇σ

m
a

β
ν ,

k
a σ

α

m
a ν

δ

◦
∇σ

m
a

β
ν −ψσ

m
a σ

δ

k
a

β
α, which are diffrent

from zero, we find

m
a σ

im

m
a ν

jm

◦
∇σ

m
a sm

ν = Γsm

imjm
,

k
a σ

im

m
a ν

jk

◦
∇σ

m
a sm

ν = Γsm

imjk
,

k
a σ

ik

m
a ν

jm

◦
∇σ

m
a sm

ν − ψσ
m
a σ

jm

k
a sm

lk
= ψjmδ

sm

ik
.

(23)

From Corollaries 1, 2, 3 and (23) follows (22).
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Interpolating Bézier spline curves with local control

A.P.Pobegailo

Abstract. The paper presents a technique for construction of interpolating spline
curves in linear spaces by means of blending parametric curves. A class of polynomi-
als which satisfy special boundary conditions is used for blending. Properties of the
polynomials are stated. An application of the technique to construction of interpolat-
ing Bézier spline curves with local control is considered. The presented interpolating
Bézier spline curves can be used in on-line geometric applications or for fast sketching
and prototyping of spline curves in geometric design.

Mathematics subject classification: 65D05, 65D07, 65D17.

Keywords and phrases: Blending parametric curves, interpolating curves, spline
curves, Bezier curves.

1 Introduction

Blending curves is an important technique for smoothing corners of curves in
computer-aided geometric design. Besides the technique can be applied to the design
of parametric spline curves which have local shape control. Firstly the construction
of spline curves by linear blending of parabolic arcs was proposed by Overhauser
[5] and considered by Rogers and Adams [8]. The construction of spline curves by
linear blending of circular arcs was considered by Zavjalov, Leus, Skorospelov [15],
Wenz [10] and Liska, Shashkov, Swartz [3]. The construction of spline curves by
trigonometric blending of circular arcs was considered by Szilvási-Nagy, Vendel [12],
Séquin, Kiha Lee, Jane Yen [11]. Using linear blending of conics for the construction
of spline curves was considered by Chuan Sun, Huanxi Zhao [1]. The paper presents
an approach to the construction of interpolating spline curves by means of blending
quadric Bezier curves using a class of polynomials which ensure a necessary conti-
nuity of the designed curves. The properties of the polynomials are stated. The
presented approach can be considered as a generalization of the linear blending.

2 Polynomials approximating a jump function

The purpose is to determine polynomials which can be used for smooth deforma-
tion of parametric curves in linear spaces. To solve the problem define polynomials

c© A.P.Pobegailo, 2014
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which smoothly approximate the jump function

δ(u) =





0, 0 ≤ u < 1/2

1/2, u = 1/2

1, 1/2 < u ≤ 1

.

It can be seen that the jump function δ(u) is infinitely smooth at the boundaries but
has a discontinuity at the middle of the domain. In order to avoid the discontinuity
approximate the jump function δ(u) by means of Bernstein polynomials

bn,m(u) =
n!

m!(n − m)!
(1 − u)n−mum, u ∈ [0, 1].

For this purpose introduce the following knot sequences:

(0, 0, . . . , 0︸ ︷︷ ︸
n

, 1, 1, . . . , 1︸ ︷︷ ︸
n

), n ∈ N

and define the polynomials

wn(u) =

n−1∑

i=0

0 · b2n−1,i(u) +

2n−1∑

i=n

1 · b2n−1,i(u) =

2n−1∑

i=n

b2n−1,i(u)

for n ∈ N . It follows from this definition that the polynomials wn(u) have the
following boundary values:

wn(0) = 0, wn(1) = 1 (1)

and their derivatives satisfy the following boundary conditions:

w(m)
n (0) = w(m)

n (1) = 0 (2)

for m ∈ {1, 2, ..., n − 1} . The following polynomials:

w1(u) = u, w2(u) = 3(1 − u)u2 + u3, w3(u) = 10(1 − u)2u3 + 5(1 − u)u4 + u5

are usually used in geometric applications. The polynomials wn(u) have the following
properties.

Property 1. The polynomials wn(u) satisfy the equation

wn(u) + wn(1 − u) = 1.

Proof. This property follows from the property of Bernstein polynomials

n∑

m=0

bn,m(u) = 1, ∀n ∈ N.
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Property 2. The polynomials wn(u) are symmetric with respect to the point u = 1/2.

Proof. It follows from Property 1 that

wn(1/2 + v) + wn(1/2 − v) = 1, ∀v ∈ [−1/2, 1/2].

This means that polynomials wn(u) are symmetric with respect to the point u = 1/2.

Property 3.

lim
n→∞

∫ 1/2

0
wn(u)du = 0.

Proof. It is obvious that the polynomials wn(u) can be represented by linear combi-
nations of polynomials from the power polynomial basis un, un+1, . . . , u2n−1 with
coefficients linearly depending on n. Then the indefinite integral of the polynomial
wn(u) is a linear combination of the polynomials un+1, un+2, . . . , u2n whose coeffi-
cients also linearly depend on n. Therefore the limit of the definite integrals equals
zero.

It follows from Properties 2 and 3 that the polynomial wn(u) indefinitely close
approaches the jump function δ(u) while its degree is rising.

Property 4. The polynomial wn(u) is a minimum of the functional

Jn(f) =

∫ 1

0
|f (n)(u)|2du, ∀n ∈ N

where the function f(u), u ∈ [0, 1], satisfies the following boundary conditions:

f(0) = 0, f(1) = 1, f (m)(0) = f (m)(1) = 0 (3)

for m ∈ {1, 2, ..., n − 1} .

Proof. Assume that a function g(u) is a minimum of the functional Jn(f). Consider
the function

(g − wn)(u) = g(u) − wn(u).

Then

|(g − wn)(n)|2 = |g(n) − w(n)
n |2 = (g(n))2 − 2g(n)w(n)

n + (w(n)
n )2.

or equivalently

|(g − wn)(n)|2 = (g(n))2 − (w(n)
n )2 − 2(g(n) − w(n)

n )w(n)
n .

It follows from the last equation that

Jn(g − wn) = Jn(g) − Jn(wn) − 2

∫ 1

0
(g(n)(u) − w(n)

n (u))w(n)
n (u)du.
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The last integral can be computed by parts as follows:

∫ 1

0
(g(n)(u) − w(n)

n (u))w(n)
n (u)du =

∫ 1

0
w(n)

n (u)d(g(n−1)(u) − w(n−1)
n (u)) =

= w(n)
n (u)(g(n−1)(u) − w(n−1)

n (u))
∣∣∣
1

0
−

∫ 1

0
(g(n−1)(u) − w(n−1)

n (u))w(n+1)
n (u)du =

= −
∫ 1

0
(g(n−1)(u) − w(n−1)

n (u))w(n+1)
n (u)du

taking into account that

g(n−1)(0) = w(n−1)
n (0) = 0, g(n−1)(1) = w(n−1)

n (1) = 0.

Recurrently computing the obtained integrals by parts and taking into account that

the function w
(2n−1)
n (u) is a constant it is obtained that

∫ 1

0
(g(n−1)(u) − w(n−1)

n (u))w(n+1)
n (u)du =

= (−1)n
∫ 1

0
(g

′)(u) − w
′)
n (u))w(2n−1)

n (u)du =

= (−1)n(g(u) − wn(u))w(2n−1)
n (u)

∣∣∣
1

0
= 0

because
g(0) = wn(0) = 0, g(1) = wn(1) = 1.

Thus it is proven that
Jn(g − wn) = Jn(g) − Jn(wn).

The last equation can be rewritten as follows:

Jn(g) = Jn(wn) + Jn(g − wn).

It follows from the definition of the functional Jn(f) that

Jn(g − wn) ≥ 0.

Therefore
Jn(wn) ≤ Jn(g).

But the function g(u) is a minimum of the functional Jn(f) by assumption, therefore

g(u) = wn(u).

Thus it is proven that the polynomial wn(u) is a minimum of the functional Jn(f).
Now prove that this minimum is unique. Suppose the opposite. Let there exist

such a function g(u) which satisfies the condition

Jn(g) = Jn(wn).
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It follows from this equation that

Jn(g − wn) = 0,

which is equivalent to

g(n)(u) = w(n)
n (u), ∀u ∈ [0, 1].

It follows from the last equation that

g(u) = wn(u) +

n−1∑

i=0

aiu
i.

But the coefficients ai are equal to zero ∀i ∈ {0, 1, ..., n − 1} taking into account
boundary conditions which must be satisfied by the function g(u). Therefore

g(u) = wn(u).

Thus the property is proven.

The functional Jn(f) can be considered as energy of n−th derivative of the func-
tion which satisfies boundary conditions (3). Property 4 shows that the polynomial
wn(u) is a minimum of the functional Jn(f).

The polynomials wn(u) were firstly introduced by the author [7, 8] for the con-
struction of spline curves by blending of circular arcs and linear segments. Then
the polynomials were used by the author for the construction of spline curves on
smooth manifolds [9]. The polynomials were also used by Jakubiak, Leite and Ro-
drigues [3] for smooth spline generation on Riemannian manifolds and by Hartmann
[2] for parametric Gn blending of curves and surfaces. Wiltsche [14] proposed Bézier
representation of the considered polynomials.

3 Polynomial blending of parametric curves

Consider two parametric curves p1(u) and p2(u), u ∈ [0, 1], which have the same
boundary points, that is

p1(0) = p2(0), p1(1) = p2(1). (4)

The problem is to construct a parametric curve p(u), u ∈ [0, 1], which has the
boundaries

p(0) = p1(0), p(1) = p2(1) (5)

and derivatives of the parametric curve p(u) satisfy the following boundary condi-
tions:

p(m)(0) = p
(m)
1 (0), p(m)(1) = p

(m)
2 (1), ∀m ∈ {1, 2, ..., n}, (6)

where n ∈ N. In topology a parametric curve p(u) which satisfies conditions (5) is
called a deformation of the parametric curve p1(u) into the parametric curve p2(u).
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In this case the parametric curves p1(u) and p2(u) are called homotopic. In geomet-
ric design the parametric curve p(u) must satisfy additional boundary conditions
(6) and in this case p(u) is called a parametric curve blending the parametric curves
p1(u) and p2(u).

Using the polynomials wn(u) define a blending parametric curve p(u) as follows:

p(u) = (1 − wn(u))p1(u) + wn(u)p2(u), u ∈ [0, 1]. (7)

It follows form the definition of the polynomials wn(u) that the parametric curve
p(u) satisfies conditions (5) because

p(0) = (1 − wn(0))p1(0) + wn(0)p2(0) = p1(0) (8)

and
p(1) = (1 − wn(1))p1(1) + wn(1)p2(1) = p2(1). (9)

Derivatives of the parametric curve p(u) can be computed as follows:

p(m)(u) =

m∑

i=0

m!

i!(m − i)!
((1 − wn(u))(i)p

(m−i)
1 (u) + w(i)

n (u)p
(m−i)
2 (u)), ∀m ∈ N.

Substitution of equations (2) into the last equation yields that

p(m)(0) = (1 − wn(0))p
(m)
1 (0) + wn(0)p

(m)
2 (0) = p

(m)
1 (0), ∀m ∈ {1, 2, ..., n − 1}

and

p(m)(1) = (1 − wn(1))p
(m)
1 (1) + wn(1)p

(m)
2 (1) = p

(m)
2 (1), ∀m ∈ {1, 2, ..., n − 1}.

Besides taking into account Equations (4) it is obtained that

p(n)(0) = −w(n)
n (0)p1(0) + (1 − wn(0))p

(n)
1 (0)+

+w(n)
n (0)p2(0) + wn(0)p

(n)
2 (0) = p

(n)
1 (0)

and

p(n)(1) = −w(n)
n (1)p1(1) + (1 − wn(1))p

(n)
1 (1)+

+w(n)
n (1)p2(1) + wn(1)p

(n)
2 (1) = p

(n)
2 (1).

Therefore the boundary conditions described by Equations (6) are also fulfilled.
The polynomials wn(u) can be considered as a generalization of the polynomial

w1(u), which is widely used in geometric applications for blending. Blending by
means of the polynomials w1(u) and (1 − w1(u)) is called linear. It can be seen
that the proposed approach for blending parametric curves ensures Cn parametric
continuity of a blending curve with the blended curves at its boundaries. Polynomial
blending which ensures Gn geometric continuity is considered in other articles by
Hartmann [2], Meek and Walton [5].
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4 Construction of spline curves by curve blending

The considered approach to blending of parametric curves can be used for the
construction of spline curves in a linear space. Suppose that it is necessary to
construct a spline curve p(u) ∈ Cn, n ∈ N, interpolating a sequence of knot points
pi, i ∈ {1, 2, ..., l}, which belong to a linear space. In this case segments pi(u),
0 < i < l, of the spline curve are constructed by blending two predefined parametric
curves pi,1(u) and pi,2(u) using Equation (7) as follows:

pi(u) = (1 − wn(u))pi,1(u) + wn(u)pi,2(u) (10)

where the parametric curves pi,1(u) and pi,2(u) must satisfy the following conditions:

pi,1(0) = pi,2(0) = pi, pi,1(1) = pi,2(1) = pi+1. (11)

Besides in order to ensure Cn continuity of the spline curve p(u) the parametric
curves pi−1,2(u) and pi,1(u) must be smoothly joined at the point pi that is

pi−1,2(1) = pi,1(0) = pi (12)

and
p

(m)
i−1,2(1) = p

(m)
i,1 (0), ∀m ∈ {1, 2, ..., n}. (13)

Therefore in order to apply the proposed technique to the construction of spline
curves the following problem must be solved: how to choose the parametric curves
pi−1,2(u) and pi,1(u) which satisfy Equations (12) and (13). A solution of this
problem depends on the application which uses the technique or more precisely
on the modeled physical process. For example, circular arcs have been using for
blending curves in the paper [7] because the application was intended for robot
trajectory planning. At that time most robots supported only techniques for the
interpolation of circular arcs and therefore it was not difficult to use deformation of
circular arcs for the construction of spline trajectories. Generally, since spline curves
constructed by the proposed technique have local shape control it is reasonable to
suppose that the proposed technique will be very suitable to solve problems for
on-line point interpolation.

5 Interpolating Bézier spline curves with local control

In geometric design a problem of choosing the model curve is motivated by two
reasons: shape and smoothness control of modeled curves. Nowadays it is accepted
that Bézier and B-spline curves are most suitable for this purpose. Taking into
account these considerations and since the polynomials wn(u) are represented by
means of Bernstein polynomials, Bézier curves are chosen for representation of the
parametric curves pi,1(u) and pi,2(u) used for blending.

In order to reduce degree of the designed Bézier spline curve it is reasonable
to use Bézier curves of the most low degree for blending. Therefore quadric Bézier
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curves are chosen for parametric curves pi,1(u) and pi,2(u). In order to ensure unique
choice of the parametric curves pi,1(u) and pi,2(u) it is supposed that the parametric
curves pi−1,2(u) and pi,1(u) are smoothly joined at the knot point pi. Analytical
representation of such quadric Bézier curves pi−1,1(u) and pi,2(u) can be obtained
from the following conditions:

pi−1,2(1) = pi,1(0), p
′

i−1,2(1) = p
′

i,1(0), p
′′

i−1,2(1) = p
′′

i,1(0). (14)

In order to simplify index notations consider two quadric Bézier curves

pj(u) = (1 − u)2pj,0 + 2(1 − u)upj,1 + u2pj,2, j ∈ {1, 2},

which have the following boundary points:

p1(0) = p0, p1(1) = p2(0) = p1, p2(1) = p2 (15)

and are smoothly joined at the point p1, that is

p
′

1(1) = p
′

2(0), p
′′

1(1) = p
′′

2(0) (16)

Resolution of these equations yields the following values of unknown knot and control
points of the quadric Bézier curves p1(u) and p2(u):

p1,0 = p0, p1,2 = p2,0 = p1, p2,2 = p2, (17)

p1,1 = p1 −
p2 − p0

4
, p2,1 = p1 +

p2 − p0

4
. (18)

It follows from these constructions that the quadric Bézier curves p1(u) and p2(u) are
smoothly joined at the knot point p1 and therefore can be used for the construction
of spline curves with any degree of continuity. Actually the parametric curves p1(u)
and p2(u) are two segments of the same parabola. Besides the segments are joined
at such the point p1 that the distance from the point to the line connecting the
points p0 and p2 is maximal for all points belonging to the parabola.

Using Equations (17) and (18) Bézier curves pi,1(u) and pi,2(u) which are used
for the construction of a Bézier spline curve can be determined as follows:

pi,k(u) = (1 − u)2pi + 2(1 − u)upi,k + u2pi+1, k ∈ {1, 2}, (19)

where

pi,1 = pi +
pi+1 − pi−1

4
, pi,2 = pi+1 −

pi+2 − pi

4
. (20)

That is the parametric curves pi,1(u) and pi,2(u) are blended in Equation (10) for
the construction of the spline curve segment pi(u).

Find another representation of the spline curve segment pi(u) which clarifies its
geometric construction. For this purpose substitute the obtained expressions for
parametric curves pi,1(u) and pi,2(u) into Equation (10). It is obtained that

pi(u) = (1 − u)2pi + 2(1 − u)u((1 − wn(u))pi,1 + wn(u)pi,2) + u2pi+1
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where the control points pi,1 and pi,2 are defined by Equations (20). This repre-
sentation shows that the spline curve segment pi(u) can be considered as a quadric
Bézier curve with a smoothly modified control point.

A spline curve segment pi(u) can be also represented as a Bézier curve. To
obtain this representation modify Equation (10) using Equations (19) and taking
into account Property 1 of the polynomials wn(u) as follows:

pi(u) = (1 − wn(u))pi,1(u) + wn(u)pi,2(u) =

= wn(1 − u)pi,1(u) + wn(u)pi,2(u) =

=
n−1∑

k=0

b2n−1,k(u)pi,1(u) +
2n−1∑

k=n

b2n−1,k(u)pi,2(u) =

=
n−1∑

k=0

b2n−1,k(u)(b2,0(u)pi + b2,1(u)pi,1 + b2,2(u)pi+1)+

+
2n−1∑

k=n

b2n−1,k(u)(b2,0(u)pi + b2,1(u)pi,2 + b2,2(u)pi+1) =

=
2n−1∑

k=0

b2n−1,k(u)b2,0(u)pi +
n−1∑

k=0

b2n−1,k(u)b2,1(u)pi,1+

+

2n−1∑

k=n

b2n−1,k(u)b2,1(u)pi,2 +

2n−1∑

k=0

b2n−1,k(u)b2,2(u)pi+1 =

=

2n−1∑

k=0

b2n+1,k(u)c0,kpi +

n∑

k=1

b2n+1,k(u)c1,kpi,1+

+

2n∑

k=n+1

b2n+1,k(u)c1,kpi,2 +

2n+1∑

k=2

b2n+1,k(u)c2,kpi+1

where

c0,k =
(2n − k)(2n − k + 1)

2n(2n + 1)
, 0 ≤ k ≤ 2n − 1,

c1,k =
k(2n − k + 1)

n(2n + 1)
, 1 ≤ k ≤ 2n,

c2,k =
(k − 1)k

2n(2n + 1)
, 2 ≤ k ≤ 2n + 1.

It follows from the obtained equations that the segment pi(u) has the following
Bézier representation:

pi(u) = b2n+1,0(u)pi + b2n+1,1(u)(c0,1pi + c1,1pi,1)+

+

n∑

k=2

b2n+1,k(u)(c0,kpi + c1,kpi,1 + c2,kpi+1)+
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+
2n−1∑

k=n+1

b2n+1,k(u)(c0,kpi + c1,kpi,2 + c2,kpi+1)+

+b2n+1,2n(u)(c1,2npi,2 + c2,2npi+1) + b2n+1,2n+1(u)pi+1.

For example, segments of C1 and C2 continuous spline curves have the following
Bézier representations:

pi(u) = b3,0(u)pi + b3,1(u)
1

3
(pi + 2pi,2) + +b3,2(u)

1

3
(2pi,1 + pi+1) + b3,3(u)pi+1,

pi(u) = b5,0(u)pi + b5,1(u)
1

5
(3pi + 2pi,2) + b5,2(u)

1

10
(3pi + 6pi,2 + pi+1)+

+b5,3(u)
1

10
(pi + 6pi,1 + 3pi+1) + b5,4(u)

1

5
(2pi,1 + 3pi+1) + b5,5(u)pi+1,

respectively.

It can be seen that a segment pi(u) of a Cn continuous spline curve is a Bézier
curve of degree 2n+1. Let pi,k, k ∈ {1, 2, . . . , 2n}, denote control points of the spline
curve segment pi(u). It is known that Bézier curves have convex hull property, that
is a Bézier curve lies completely in the convex hull of its control points. It follows
from this property that deviation of a spline curve segment pi(u) from the line
segment PiPi+1 can be estimated as follows:

ε < max(dist(PiPi+1,pi,k)), ∀k ∈ {1, 2, . . . , 2n}.

6 Conclusions

The approach to the construction of Cn continuous interpolating spline curves
by means of blending quadric Bézier curves is introduced. Properties of the polyno-
mials which are used for blending are considered. The considered spline curves are
constructed locally, that ensures local shape control of the constructed spline curves.
Bézier representations of the introduced spline curves is presented. The considered
interpolating spline curves can be used in on-line geometric applications or for fast
sketching and prototyping of spline curves in geometric design. It also can be noted
that the proposed approach enables drawing of Bézier spline curves of C1 continuity
by means of any software packages which support drawing of cubic Bézier curves.
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Composition followed by differentiation between

weighted Bergman spaces and weighted Banach spaces

of holomorphic functions

Elke Wolf

Abstract. Let φ be an analytic self-map of the open unit disk D in the complex plane.
Such a map induces through composition a linear composition operator Cφ : f 7→ f ◦φ.
We are interested in the combination of Cφ weith the differentiation operator D, that
is in the operator DCφ : f 7→ φ′ · (f ◦φ) acting between weighted Bergman spaces and
weighted Banach spaces of holomorphic functions.
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Keywords and phrases: Composition operator, differentiation operator, weighted
Bergman spaces, weighted Banach spaces of holomorphic functions.

1 Introduction

Let D denote the open unit disk in the complex plane. For an analytic self-map
φ of D the classical composition operator Cφ is given by

Cφ : H(D) → H(D), f 7→ f ◦ φ,

where H(D) denotes the set of all analytic functions on D. Combining this with
differentiation we obtain the operator

DCφ : H(D) → H(D), f 7→ φ′ · (f ′ ◦ φ).

Composition operators occur naturally in various problems and therefore have been
widely investigated. An overview of results in the classical setting of the Hardy
spaces as well as an introduction to composition operators is given in the excellent
monographs by Cowen and MacCluer [5] and Shapiro [8].

Next, let us explain the setting in which we are interested. Bounded and contin-
uous functions v : D →]0,∞[ are called weights. For such a weight v we define

H∞
v := {f ∈ H(D); ‖f‖v := sup

z∈D

v(z)|f(z)| < ∞}.

Since, endowed with the weighted sup-norm ‖.‖v , this is a Banach space, we say that
H∞

v is a weighted Banach space of holomorphic functions. These spaces arise nat-
urally in several problems related to e. g. complex analysis, spectral theory, Fourier
analysis, partial differential and convolution equations. Concrete examples may be

c© Elke Wolf, 2014
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found in [3]. Weighted Banach spaces of holomorphic functions have been studied
deeply in [2], but also in [4] and [1].

The weighted Bergman space is defined to be the collection of all analytic func-
tions f ∈ H(D) such that

Av,p := {f ∈ H(D); ‖f‖v,p :=

(∫

D

|f(z)|pv(z) dA(z)

) 1
p

< ∞}, 1 ≤ p < ∞

where dA(z) denotes the normalized area measure. The investigation of Bergman
spaces has quite a long and rich history. An excellent introduction to Bergman
spaces is given in [6].

In this article we characterize boundedness and compactness of operators
DCφ : Av,p → H∞

w in terms of the involved self-map φ and the weights v

and w.

2 Basics

We study weighted spaces generated by the following class of weights. Let ν be
a holomorphic function on D that does not vanish and is strictly positive on [0, 1[.
Moreover, we assume that limr→1 ν(r) = 0. Then we define the weight v in the
following way

v(z) := ν(|z|2) for every z ∈ D. (1)

Examples include all the famous and popular weights, such as

1. the standard weights v(z) = (1 − |z|2)α, α ≥ 1,

2. the logarithmic weights v(z) = (1 − log(1 − |z|2))β , β > 0.

3. the exponential weights v(z) = e
− 1

(1−|z|2)α , α ≥ 1.

For a fixed point a ∈ D, we introduce a function

va(z) := ν(az) for every z ∈ D.

Since ν is holomorphic on D, so is the function va. Moreover, in particular, we will
often assume that there is a constant C > 0 such that

sup
a∈D

sup
z∈D

v(z)

|va(z)| ≤ C. (2)

In the sequel we analyze which role condition (2) plays in the zoo of conditions on
weights. Lusky [7] studied weights satisfying the following conditions (L1) and (L2)
(renamed after the author) which are defined as follows

(L1) inf
n∈N

v(1 − 2−n−1)

v(1 − 2−n)
> 0 and (L2) lim sup

n→∞

v(1 − 2−n−j)

v(1 − 2−n)
< 1 for some j ∈ N.
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Actually, weights which enjoy both conitions (L1) and (L2) are normal weights in
the sense of Shields and Williams (see [9]). Obviously condition (2) is connected
with contiion (L2) in the following way. If we change (2) as follows

sup
a∈D

sup
z∈D

v(z)

|va(z)| < 1, (3)

then (L2) is equivalent with (3) if we assume that |ν(z)| ≥ ν(|z|) for every z ∈ D.
To show this, let us first assume that (L2) holds. Hence we can find j ∈ N such that

v(1 − 2−n−j)

v(1 − 2−n)
< 1 for every n ∈ N.

Next, we fix z ∈ D and a ∈ D. Then we can find n ∈ N such that

|z| ≥ 1 − 2−n−j and |az| < 1 − 2−n.

Now,
v(z)

|ν(az)| ≤
v(1 − 2−n−j)

v(1 − 2−n)
< 1 for every n ∈ N.

Conversely, we suppose that (3) is satisfied. We take j = 1, fix n ∈ N and select

an :=
(1 − 2−n)2

(1 − 2−n−1)
.

We obtain
v(1 − 2−n−1)

v(1 − 2−n)
≤ v(z)

|ν(az)| ≤ sup
a∈D

sup
z∈D

v(z)

|va(z)| < 1.

Thus, under some additional assumptions (2) is a weaker verson of (L2). Calcu-
lations show that the standard weights as well as the logarithmic weights satisfy
condition (2), while the exponential weights do not fulfill condition (2).

Finally, we need some geometric data of the unit disk. A very important tool
when dealling with operators such as defined above is the so-called pseudohyberbolic

metric given by
ρ(z, a) := |σa(z)|,

where σa(z) = a−z
1−az

, z, a ∈ D, is the Möbius transformation which interchanges
a and 0.

3 Results

Lemma 1. Let v(z) = f(|z|) for every z ∈ D, where f ∈ H(D) is a function whose

Taylor series (at 0) has nonnegative coefficients. We assume additionally that v

satisfies condition (2). Then there is a constant C > 0 such that

|f(z)| ≤ C
1
p

‖f‖v,p

v(0)
1
p (1 − |z|2)

2
p v(z)

1
p

.
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Proof. Recall that a weight v as defined above may be written as

v(z) := max{|g(λz)|; |λ| = 1} for every z ∈ D.

We will write gλ(z) := g(λz) for every z ∈ D. Next, fix λ ∈ C with |λ| = 1.
Moreover, let α ∈ D be an arbitrary point. We consider the map

Tα,λ : Ap
v → Ap

v, Tα,λf(z) = f(σα(z))σ′
α(z)

2
p gλ(σα(z))

1
p .

Then a change of variables yields

‖Tα,λf‖p
v,p =

∫

D

v(z)|f(σα(z))|p|σ′
α(z)|2|gλ(σα(z))| dA(z)

≤
∫

D

|f(σα(z))| v(z)

v(σα(z))
|σ′

α(z)| dA(z)

≤ C

∫

D

|f(σα(z))|v(σα(z))|σ′
α(z)|2 dA(z)

≤ C

∫

D

v(t)|f(t)|p dA(t) = C‖f‖p
v,p.

Now put hλ(z) := Tα,λ(z) for every z ∈ D. By the mean value property we obtain

v(0)|hλ(0)|p ≤
∫

D

v(z)|hλ(z)|p dA(z) = ‖hλ‖p
v,p ≤ C‖f‖p

v,p.

Hence
v(0)|hλ(0)|p = v(0)|f(α)|p(1 − |α|2)2|gλ(α)| ≤ C‖f‖p

v,p.

Since λ was arbitrary we obtain that

v(0)|f(α)|p(1 − |α|2)2v(α) ≤ C‖f‖p
v,p

Thus,

|f(α)| ≤ C
1
p

‖f‖v,p

v(0)
1
p (1 − |α|2)

2
p v(α)

1
p

.

Since α was arbitrary, the claim follows.

Lemma 2. Let v(z) = f(|z|) for every z ∈ D, where f ∈ H(D) is a function whose

Taylor series (at 0) has nonnegative coefficients. We assume additionally that v

satisfies condition (2). Then for every f ∈ A
p
v there is Cv > 0 such that

|f(z) − f(w)| ≤ Cv‖f‖v,p max

{
1

(1 − |z|2)
2
p v(z)

1
p

,
1

(1 − |w|2)
2
p v(w)

1
p

}
ρ(z,w)

for every z,w ∈ D.

Proof. The proof is completely analogous to the proof given in [10]. Hence we omit
it here.
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Lemma 3. Let v(z) = f(|z|) for every z ∈ D, where f ∈ H(D) is a function whose

Taylor series (at 0) has nonnegative coefficients. We assume additionally that v

satisfies condition (2). Then for f ∈ H∞
v and z ∈ D:

|f ′(z)| ≤ M

v(0)
1
p (1 − |z|2)1+

2
p v(z)

1
p

‖f‖v,p.

Proof. By Lemma 2 we have that

|f(z) − f(w)| ≤ M

v(0)
1
p

max

{
1

(1 − |z|2)
2
p v(z)

1
p

,
1

(1 − |w|2)
2
p v(w)

1
p

}
ρ(z,w)‖f‖v,p.

Now

∣∣∣∣
f(z + h) − f(z)

|h|

∣∣∣∣ ≤

≤ M

v(0)
1
p |h|

max

{
1

(1 − |z + h|2)
2
p v(z + h)

1
p

,
1

(1 − |z|2)
2
p v(z)

1
p

}
ρ(z + h, z)‖f‖v,p

=
M

v(0)
1
p |h|

max

{
1

(1 − |z + h|2)
2
p v(z + h)

1
p

,
1

(1 − |z|2)
2
p v(z)

1
p

}∣∣∣∣
z + h − z

1 − z + hz

∣∣∣∣ ‖f‖v,p

=
M

v(0)
1
p

max

{
1

(1 − |z + h|2)
2
p v(z + h)

1
p

,
1

(1 − |z|2)
2
p v(z)

1
p

}∣∣∣∣
1

1 − z + hz

∣∣∣∣ ‖f‖v,p.

Finally, let h tend to zero and obtain

|f ′(z)| ≤ M

v(0)
1
p (1 − |z|2)1+

2
p v(z)

1
p

‖f‖v,p.

Proposition 1. Let v(z) = f(|z|) for every z ∈ D, where f ∈ H(D) is a function

whose Taylor series (at 0) has nonnegative coefficients. We assume additionally that

v satisfies condition (2). Then DCφ : Av,p → H∞
w is bounded if and only if

sup
z∈D

w(z)|φ′(z)|
(1 − |φ(z)|2)1+

2
p v(φ(z))

1
p

< ∞. (4)

Proof. First, we assume that (4) is satisfied. Applying Lemma 1 we obtain

‖DCφf‖w = sup
z∈D

w(z)|φ′(z)||f ′(φ(z))| ≤ C sup
z∈D

w(z)|φ′(z)|
(1 − |φ(z)|2)1+

2
p v(φ(z))

1
p

.

Hence DCφ : Av,p → H∞
w must be bounded.

Conversely, let a ∈ D be arbitrary. Then there exists f
p
a in the unit ball of H∞

v

such that |fa(a)|p = 1
ṽ(a) . Now put

ga(z) := fa(z)σa(z) for every z ∈ D.
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Then ‖ga‖p
v,p =

∫
D
|ga(z)|pv(z) dA(z) ≤ supz∈D v(z)|fa(z)|p

∫
D
|σ(z)|p dA(z) ≤ K.

Moreover,

g′a(z) = f ′
a(z)σa(z) + fa(z)σ′

a(z) for every z ∈ D.

Next, we assume that there is a sequence (zn)n ⊂ D such that |φ(zn)| → 1 and

w(zn)|φ′(zn)|
(1 − |φ(zn)|2)1+

2
p v(φ(zn))

1
p

≥ n for every n ∈ N.

Thus consider now gn(z) := gφ(zn)(z) for every n ∈ N as defined above. Obviously
(gn)n is contained in the closed unit ball of Av,p and

c ≥ w(zn)|φ′(zn)||g′n(φ(zn))| =
w(zn)|φ′(zn)|

v(φ(zn))
1
p (1 − |φ(zn)|2)1+

2
p

≥ n

for every n ∈ N which is a contradiction.

Proposition 2. Let v(z) = f(|z|), z ∈ D, where f ∈ H(D) is a function whose Tay-

lor sereis (at 0) has nonnegative coefficients. Moreover, we assume that v satisfies

(2). Then the operator DCφ : Av,p → H∞
w is compact if and only if

lim sup
|φ(z)|→1

w(z)|φ′(z)|
(1 − |φ(z)|2)1+

2
p v(φ(z))

1
p

.

Proof. Let (fn)n be a bounded sequence in Av,p that converges to zero uniformly on
the compact subsets of D. Let M := supn ‖fn‖v,p < ∞. Given ε > 0 there is r > 0
such that if |φ(z)| > 0, then

w(z)|φ′(z)|
(1 − |φ(z)|2)1+

2
p v(φ(z))

1
p

≤ ε

2Cv

.

On the other hand, since fn → 0 uniformly on {u; |u| ≤ r}, there is an n0 ∈ N such
that if |φ(z)| ≤ r and n ≥ n0, then w(z)|f ′

n(φ(z))||φ′(z)| < ε
2 . Now, an application

of Lemma 3 yields

sup
z∈D

w(z)|f ′
n(φ(z))||φ′(z))| ≤ sup

|φ(z)|≤r

w(z)|f ′
n(φ(z))||φ′(z)| +

+ sup
|φ(z)|>r

w(z)|f ′
n(φ(z))||φ′(z)| ≤ ε

2
+ sup

|φ(z)|>r

Cvw(z)|φ′(z)|
(1 − |φ(z)|2)

2
p
+1

v(φ(z))
1
p

< ε.

Thus, the claim follows.

Conversely, we suppose that DCφ : Av,p → H∞
w is compact and that there are

δ > 0 and (zn)n ⊂ D with |φ(zn)| → 1 such that

w(zn)|φ′(zn)|
(1 − |φ(zn)|2)1+

2
p v(φ(zn))

1
p

≥ δ.
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Since |φ(zn)| → 1 there exist natural numbers α(n) with limn→∞ α(n) = ∞ such
that |φ(zn)|α(n) ≥ 1

2 for every n ∈ N.
Next, for every n ∈ N we consider the function

gn(z) := fn(z)σ
1+ 2

p

φ(zn)z
α(n),

where f
p
n ∈ H∞

v such that ‖fp
n‖v ≤ 1 and |fn(φ(zn))|p = 1

ṽ(φ(zn)) . Then we obtain

‖DCφfn‖w ≥ w(zn)|φ′(zn)||f ′
n(φ(zn))|

≥ w(zn)|φ′(zn)||φ(zn)|α(n)

ṽ(φ(zn))
1
p (1 − |φ(zn)|2)1+

2
p

≥ 1

2

w(zn)|φ′(zn)|
ṽ(φ(zn))

1
p (1 − |φ(zn)|2)1+

2
p

≥ 1

2
δ.

This is a contradiction.
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On π-quasigroups of type T1
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Abstract. Quasigroups satisfying the identity x(x ·xy) = y are called π-quasigroups
of type T1. The spectrum of the defining identity is precisely q = 0 or 1(mod 3),
except for q = 6. Necessary conditions when a finite π-quasigroup of type T1 has the
order q = 0 (mod 3), are given. In particular, it is proved that a finite π-quasigroup
of type T1 such that the order of its inner mapping group is not divisible by three
has a left unit. Necessary and sufficient conditions when the identity x(x · xy) = y is
invariant under the isotopy of quasigroups (loops) are found.

Mathematics subject classification: 20N05.
Keywords and phrases: Minimal identity, π-quasigroup of type T1, spectrum, inner
mapping group, invariants under isotopy.

Let Σ(Q) be the set of all binary quasigroup operations defined on a nonempty
set Q. V. Belousov proved in [1] that the minimal length of nontrivial identities
w1 = w2 in Σ(Q), of two free elements, is five and that any such minimal identity
can be represented in the form: A(x,B(x,C(x, y))) = y. Moreover, every identity of
the given above form implies the orthogonality of some pairs of parastrophes of the
quasigroup operations A, B and C.

A binary quasigroup (Q,A) is called a π-quasigroup of type [α, β, γ], where
α, β, γ ∈ S3, if it satisfies the identity:

αA(x, βA(x, γA(x, y))) = y (1)

(where σA denotes the σ-parastrophe of A).

V.Belousov (1983) and, independently, F. Bennett (1989) gave a classification of
all identities (1), consisting of seven classes. Denoting A by ” ·”, the representatives
of these classes are the following (their types are given according to [1]): x(x·xy) = y

(of type T1 = [ε, ε, ε]); x(y · yx) = y (of type T2 = [ε, ε, l]); x · xy = yx (of type T4 =
[ε, ε, lr]); xy ·x = y ·xy (of type T6 = [ε, l, lr]); xy ·y = x ·xy (of type T8 = [ε, rl, lr]);
xy · yx = y (of type T10 = [ε, lr, l]); yx · xy = y (of type T11 = [ε, lr, rl]), where
l = (13), r = (23). Quasigroups satisfying identities from this classification have
been studied by many authors (see, for example, [1, 4–6, 10]). An open problem is
to describe groups isotopic to π-quasigroups of different types.

π-Quasigroups of type T1, i.e. binary quasigroups (Q, ·) satisfying the identity:

x · (x · xy) = y, (2)

are studied in the present work. It is known that the spectrum of the defining identity
is precisely q = 0 or 1(mod 3), except for q = 6 ([5]). Necessary conditions when a

c© P. Syrbu, D.Ceban, 2014
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finite π-quasigroup of type T1 has the order q = 0 (mod 3) are given. In particular,
we prove that a π-quasigroup of type T1 for which the order of inner mapping group
is not divisible by three always has a left unit. Necessary and sufficient conditions
when the identity (2) is invariant under the isotopy of quasigroups (loops) are proved.
Also, π-quasigroups of type T1 isotopic to groups, in particular π-T -quasigroups of
type T1, are considered.

Proposition 1. A quasigroup (Q, ·) is a π-quasigroup of type T1 if and only if its

parastrophe (Q, \), where ”\” is the right division in (Q, ·), is a π-quasigroup of

type T1.

Proof. If (Q, ·) is a quasigroup, then the identity (2) is equivalent to the identity
x\[x\(x\y)] = y. 2

Remark that the identity (2) in a quasigroup (Q, ·) is equivalent to the condition
L3

x = ε, ∀x ∈ Q, where Lx : Q 7→ Q,Lx(a) = x · a,∀a ∈ Q, is the left translation in
(Q, ·). We will denote by M(Q, ·) (respectively, LM(Q, ·), RM(Q, ·)) the multipli-
cation group (respectively, left multiplication group, right multiplication group) of
a quasigroup (Q, ·).

A mapping α ∈ M(Q, ·) is called an inner mapping of a quasigroup (Q, ·) with
respect to an element h ∈ Q if α(h) = h. The group of inner mappings of the
quasigroup (Q, ·) with respect to h will be denoted by Ih [2, 9].

Proposition 2. If (Q, ·) is a finite π-quasigroup of type T1 without a left unit, then

| Ih | ≡ 0 (mod 3), for every h ∈ Q.

Proof. Let (Q, ·) be a π-quasigroup of type T1, h ∈ Q and let fh be the local left
unit of the element h: fh · h = h. Then Lfh

(h) = h, so Lfh
∈ Ih. If (Q, ·) has

not a left unit, then Lfh
6= ε and, using the equality L3

fh
= ε, we get | Ih | ≡

0 (mod 3). 2

Proposition 3. Let (Q, ·) be a π-quasigroup of type T1 and h ∈ Q. If | Ih | ≡
1 or 2 (mod 3), then (Q, ·) has a left unit.

Proof. As it was remarked above, Lfh
∈ Ih and L3

fh
= ε, where fh is the local left

unit of the element h. If | Ih | ≡ 1 or 2 (mod 3), then every element of Ih has the
order not divisible by three, so the order of the mapping Lfh

has the form 2k + 1
or 2k + 2. In both cases we get Lfh

= ε, which means that fh is a left unit in
(Q, ·). 2

Proposition 4. If a π-quasigroup (Q, ·) of type T1 has a left unit and is isotopic to

an abelian group, then its left multiplication group LM(Q, ·) is abelian.

Proof. Let (Q, ·) be a π-quasigroup of type T1, with the left unit f . If (Q, ·) is
isotopic to an abelian group then, according to [3], the corresponding e-quasigroup
(Q, ·, \, /) satisfies the identity

x\(y(u\v)) = u\(y(x\v)).
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On the other hand, the equality x\y = x·xy follows from (2), so the previous identity
is equivalent to:

x · x(y(u · uv)) = u · u(y(x · xv)),

which, for x = f , implies

y(u · uv) = u · (u · yv),

i. e. LyL
2
u = L2

uLy. So as L2
u = L−1

u , ∀u ∈ Q, we get LyLu = LuLy, for every
y, u ∈ Q. 2

Let (Q, ·) be a quasigroup. Following [2,9], the left (resp. middle) nucleus of
(Q, ·) is the set Nl = {a ∈ Q | a · xy = ax · y,∀x, y ∈ Q} (resp. Nm = {a ∈ Q |
xa · y = x · ay,∀x, y ∈ Q}). A mapping λ : Q 7→ Q is called a left regular mapping
of the quasigroup (Q, ·) if λ(x · y) = λ(x) · y, ∀x, y ∈ Q .

Proposition 5. Let (Q, ·) be a π-quasigroup of type T1. The following statements

hold:

1) if (Q, ·) has a left unit, then λ3 = ε, for every left regular mapping λ of (Q, ·);
2) if (Q, ·) is finite and its left nucleus Nl contains at least two elements, then

|Q| ≡ 0(mod 3);

3) if (Q, ·) is a finite π-loop of type T1 and its middle nucleus contains at least

two elements, then |Q| ≡ 0(mod 3).

Proof. 1. Let (Q, ·) be a π-quasigroup of type T1 with the left unit f and let λ
be a left regular mapping of (Q, ·). Taking x 7→ λ(x) in (2), get: y = λ(x) · (λ(x) ·
(λ(x) · y)) = λ(x ·λ(x ·λ(x · y))), ∀x, y ∈ Q. Now, for x = f , from the last equalities
follows: λ3(y) = y,∀y ∈ Q, i.e. λ3 = ε.

2. Let |Nl| ≥ 2 and a ∈ N
(·)
l . Then a · xy = ax · y,∀x, y ∈ Q. Using the identity

(2), have: a · (a · ay) = y ⇒ a · (a2 · y) = y ⇒ (a · a2) · y = y, so a · a2 = f , where f
is the left unit of (Q, ·). So as (Nl, ·) is a group, we get that a3 = e,∀a ∈ Nl. From
|Nl| ≡ 0(mod 3) and the fact that |Nl| divides |Q| follows |Q| ≡ 0(mod 3).

3. Let (Q, ·) be a finite π-loop of type T1 with the unit f . If the middle nucleus
Nm contains at least two elements, then there exists a ∈ Nm\{f} which satisfies
the equality x · ay = xa · y, ∀x, y ∈ Q, hence y = a(a · ay) = a2 · ay = (a2 · a)y =
a3 · y,∀y ∈ Q ⇒ a3 = f,∀a ∈ Nm (Nm is a group), which implies |Nm| ≡ 0(mod 3)
and |Q| ≡ 0(mod 3). 2

Corollary. If the group of left regular mappings of a finite π-quasigroup (Q, ·) of

type T1 with a left unit has at least two elements, then |Q| ≡ 0(mod 3).

Proof. In this case the group of left regular mappings will contain at least one element
of order three, so its order will be a multiple of three and then |Q| ≡ 0(mod 3). 2

A loop (Q, ·) is called an LPA-loop (or a left power alternative loop) if, for
∀m,n ∈ Z and ∀x, y ∈ Q, the following equality holds:

xm · xny = xm+ny.
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It is known that LPA-loops are power associative, i.e. each element of an LPA-loop
generates an associative subloop [8]. For example, left Bol loops are LPA-loops.

Proposition 6. An LPA-loop (Q, ·) is a π-loop of type T1 if and only if x3 =
e,∀x ∈ Q, where e is the unit of (Q, ·).
Proof. Let (Q, ·) be an LPA-loop with the unit e. If (Q, ·) is a π-loop of type T1,
then y = x · (x · xy) = x3 · y,∀x, y ∈ Q, so x3 = e. Conversely, if x3 = e,∀x ∈ Q,
then x · (x · xy) = x3 · y = e · y = y,∀x, y ∈ Q, i.e. (Q, ·) is a π-loop of type T1. 2

Corollary 1. A left Bol loop (Q, ·) is a π-loop of type T1 if and only if x3 = e,∀x ∈
Q, where e is the unit of (Q, ·).
Corollary 2. A group (Q, ·) is a π-group of type T1 if and only if x3 = e, ∀x ∈ Q,
where e is the unit of the group (Q, ·).
Proposition 7. Let (Q, ·) be a π-quasigroup of type T1 and let (Q, ◦) be its isotope

with the isotopy (α, β, γ). Then (Q, ◦) is a π-quasigroup of type T1 if and only if,

for every x, y ∈ Q, the following equality holds:

γβ−1[x · (x · y)] = x · βγ−1(x · βγ−1y). (3)

Proof. The isotope (Q, ◦) is a π-quasigroup of type T1 if and only if it satisfies the
identity

x ◦ (x ◦ (x ◦ y)) = y. (4)

Using the isotopy x ◦ y = γ−1(α(x) · β(y)), the identity (4) gets the form:

γ−1(α(x) · βγ−1(α(x) · βγ−1(α(x) · β(y))) = y.

Taking x 7→ α−1x and y 7→ β−1y in the last identity, we have the equality:

γ−1(x · βγ−1(x · βγ−1(x · y))) = β−1(y),

which is equivalent to

x · βγ−1(x · βγ−1(x · y)) = γβ−1(y).

So as (Q, ·) satisfies (2), the last equality implies

βγ−1(x · βγ−1(x · y)) = x · (x · γβ−1(y)),

hence
x · βγ−1(x · y) = γβ−1(x · (x · γβ−1(y))), (5)

for ∀x, y ∈ Q. Denoting x · y = z and using (2), have y = x · xz, so (5) takes the
form:

x · βγ−1(z) = γβ−1(x · (x · γβ−1(x · xz))),
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which implies βγ−1(x·βγ−1(z)) = x·(x·γβ−1(x·xz)), hence x·(βγ−1(x·βγ−1(z))) =
γβ−1(x · xz), for ∀x, z ∈ Q.

Conversely, if the π-quasigroup (Q, ·) of type T1 satisfies (3) then, taking y 7→
γβ−1(y), we have:

x · βγ−1(x · y) = γβ−1(x · (x · γβ−1(y))),

which, for y = βγ−1(x · y), implies

x · βγ−1(x · βγ−1(x · y)) = γβ−1(x · (x · xy)) = γβ−1(y).

Using the isotopy x · y = γ(α−1(x) ◦ β−1(y)), from the last equalities we get:

γ(α−1(x) ◦ (α−1(x) ◦ (α−1(x) ◦ β−1(y)))) = γβ−1(y),

or, replacing x 7→ α(x), y 7→ β(y) and using the fact that γ is a bijection, we obtain:
x ◦ (x ◦ (x ◦ y)) = y, i.e. (Q, ◦) is a π-quasigroup of type T1. 2

Corollary 1. Let (Q, ·) be a π-loop of type T1. If the isotope (Q, ◦), where (◦) =
(·)(α,β,ε), is a π-quasigroup of type T1, then β3 = ε.

Proof. If (Q, ◦) is a π-loop of type T1, then (Q, ·) satisfies the equality (3). Taking
x = e in (3), where e is the unit of the loop (Q, ·), we get β(y) = β−2(y),∀y ∈ Q,
so β3 = ε. 2

Corollary 2. The identity (2) is invariant under quasigroup isotopies with equal

second and third components.

Proof. Let (Q, ·) be a quasigroup satisfying the identity (2) and let consider the
isotope (◦) = (·)(α,β,β). Using the equality x · y = β(α−1(x) · β−1(y)), from (2)
follows

β(α−1x ◦ (α−1x ◦ (α−1x ◦ β−1y))) = y,

∀x, y ∈ Q, which, for x 7→ α(x) and y 7→ β(y), implies:

x ◦ (x ◦ (x ◦ y)) = y,

∀x, y ∈ Q, so (Q, ◦) is a π-quasigroup of type T1. 2

Proposition 8. The identity (2) is universal in a loop (Q, ·) if and only if (Q, ·)
satisfies the identity:

x · b(b · x(b(b · xy))) = by. (6)

Proof. Let (Q, ·) be a loop with universal identity (2). Then (Q, ·) and every its loop

isotope satisfy (2). Let a, b ∈ Q and (◦) = (·)(R−1
a ,L−1

b
,ε). According to Proposition

5, the loop (Q, ·) satisfies (3):

Lb(x · xy) = x · L−1
b (x · L−1

b (y)),
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∀x, y ∈ Q. Taking y 7→ x · y and using (2), from the last identity follows

Lb(y) = x · L−1
b (x · L−1

b (x · y)), (7)

∀x, y ∈ Q. So as the loop (Q, ·) satisfies the equality L3
b = ε, for ∀b ∈ Q, (7) is

equivalent to
Lb(y) = x · L2

b(x · L2
b(x · y)),

∀x, y ∈ Q. Conversely, if a loop (Q, ·) satisfies the identity (6) then, taking b = e,
where e is the unit of (Q, ·), we get the identity (2), i.e. (Q, ·) is a π-loop of type T1.
So as every loop isotope of a loop is isomorphic to an LP-isotope, we may consider

only LP-isotopes of (Q, ·). Let a, b ∈ Q and (◦) = (·)(R−1
a ,L−1

b
,ε). Using (6) and the

equality L3
b = ε, have: x ·L−1

b (x ·L−1
b (x · y)) = b · y ⇒ R−1

a x ·L−1
b (R−1

a x ·L−1
b (R−1

a x ·
L−1

b y)) = b · L−1
b y = y ⇒ x ◦ (x ◦ (x ◦ y)) = y, i. e. (Q, ◦) is a π-loop of type T1. 2

Example 1. The couple (Z3
3 , ◦), where Z3 is the field of residues modulo 3 and the

operation (◦) is defined as follows:

(i, j, k) ◦ (p, q, r) = (i+ p, j + q, k + r + ijp),

∀(i, j, k), (p, q, r) ∈ Z3
3 , is a non-associative loop for which the identity (2) is uni-

versal. Remark that the left nucleus of (Z3
3 , ◦) is Nl = {(0, 0, 0), (0, 0, 1), (0, 0, 2)}.

Example 2. The loop (Q, ∗), where Q = {0, 1, 2, 3, 4, 5, 6, 7, 8} and the operation
” ∗ ” is given by the table below, is a π-loop of type T1, for which the identity (2) is
not universal.

∗ 0 1 2 3 4 5 6 7 8

0 2 0 1 4 6 8 3 5 7
1 0 1 2 3 4 5 6 7 8
2 3 2 4 5 1 0 7 8 6
3 4 3 5 6 8 7 1 2 0
4 8 4 6 0 7 2 5 1 3
5 7 5 8 1 2 3 0 6 4
6 5 6 7 2 0 4 8 3 1
7 1 7 3 8 5 6 4 0 2
8 6 8 0 7 3 1 2 4 5

T -Quasigroups are defined and partially studied in [7]. A quasigroup (Q, ·) is called
a T -quasigroup if there exists an abelian group (Q,+), its automorphisms ϕ,ψ ∈
Aut(Q,+), and an element g ∈ Q such that, for every x, y ∈ Q, the following equality
holds:

x · y = ϕ(x) + ψ(y) + g.

The tuple ((Q,+), ϕ, ψ, g) is called a T -form and the group (Q,+) is called a T -group
of the T -quasigroup (Q, ·).
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Proposition 9. A T -quasigroup (Q, ·), with a T -form T = ((Q,+), ϕ, ψ, g), is a

π-quasigroup of type T1 if and only if ψ2 + ψ + ε = ω, where ω : Q→ Q, ω(x) = 0,
∀x ∈ Q, 0 is the neutral element of the group (Q,+).

Proof. Let (Q, ·) be a T -quasigroup with a T -form T = ((Q,+), ϕ, ψ, g). Then

x · y = ϕ(x) + ψ(y) + g, (8)

∀x, y ∈ Q. If (Q, ·) is a π-quasigroup of type T1, then if satisfies the identity (2).
Using (8), the identity (2) takes the form:

ϕ(x) + ψϕ(x) + ψ2ϕ(x) + ψ3(y) + ψ2(g) + ψ(g) + g = y, (9)

∀x, y ∈ Q. Taking x = y = 0 in (9), where 0 is the neutral element of the group
(Q,+), we get:

ψ2(g) + ψ(g) + g = 0. (10)

Also, taking x = 0 in (9), we have ψ3(y) = y,∀y ∈ Q, i. e.

ψ3 = ε, (11)

where ε : Q 7→ Q, ε(x) = x,∀x ∈ Q. Now, using (10) and (11), the equality (9)
implies: ϕ(x) + ψϕ(x) + ψ2ϕ(x) = 0, hence (ε+ ψ + ψ2)ϕ(x) = 0, ∀x ∈ Q. So as ϕ
is a bijection, the last equality implies

ε+ ψ + ψ2 = ω. (12)

Conversely, if the equality (12) holds, then

ψ3 − ε = (ψ − ε)(ε + ψ + ψ2) = ω,

hence (11) holds. Using (11) and (12), we get: y = ω(x) + ψ3(y) + ω(g) = (ε +
ψ + ψ2)ϕ(x) + ψ3(y) + ψ2(g) + ψ(g) + g = x · (x · xy) = y, ∀x, y ∈ Q, so (Q, ·) is a
π-quasigroup of type T1. 2

The following example shows that the class of π-T -quasigroups of type T1 is not
empty.

Example 3. The quasigroup (Z7, ·), where

x · y = 5̄x+ 2̄y + 3̄,

∀x, y ∈ Q, is a π-T -quasigroup of type T1 with the T -form ((Z7,+), ϕ, ψ, 3̄), where
ϕ(x) = 5̄x, ψ(x) = 2̄x, ∀x ∈ Z7.

Proposition 10. If (Q, ·) is a finite π -T -quasigroup of type T1 with a left unit,

then |Q| ≡ 0(mod 3).

Proof. Let (Q, ·) be a finite π-T -quasigroup of type T1 with a T -form T =
((Q,+), ϕ, ψ, g) and with the left unit f . Then,
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x = f · x = ϕ(f) + ψ(x) + g, (13)

so, taking x = 0 where 0 is the neutral element of the T -group (Q,+), we get
ϕ(f) = −g. From the last equality and (13), we obtain ψ = ε, where ε is the
identical mapping on Q. According to Proposition 9, if (Q, ·) is a π-quasigroup of
type T1, then ψ2 + ψ + ε = ω, hence 3ε = ω, i.e. x + x + x = 0, ∀x ∈ Q, which
implies |Q| ≡ 0(mod 3). 2
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1 Introduction

Let S ∈ {Sg, Nk} be the closed orientable surface Sg of genus g or the closed
non-orientable surface Nk of non-orientable genus k. In particular, S0 is the sphere
and N1 is the projective plane. Let D be an open disk in S and let S − D denote
S with D removed; therefore, the boundary ∂(S −D) (=∂D) is homeomorphic to a
circle. In particular, S0 −D is the disk and N1 −D is the Möbius band. We use the
notation Σ whenever we assume the general case: Σ ∈ {S, S − D} .

If a graph G is 2-cell embedded in Σ, the components of Σ−G are called faces. A
triangulation of Σ with a simple graph G (without loops or multiple edges) is a 2-cell
embedding T : G → Σ in which each face is bounded by a 3-cycle (that is, a cycle of
length 3) of G and any two faces are either disjoint, share a single vertex, or share a
single edge. We denote by V = V (T ), E = E(T ), and F = F (T ) the sets of vertices,
edges, and faces of T , respectively. The cardinality |V (T )| is called the order of
T . By G(T ) we denote the graph (V (T ), E(T )) of triangulation T . Two triangula-
tions T1 and T2 are called isomorphic if there is a bijection, called an isomorphism,
ϕ : V (T1) → V (T2) such that uvw ∈ F (T1) if and only if ϕ(u)ϕ(v)ϕ(w) ∈ F (T2).
Throughout this paper we distinguish triangulations only up to isomorphism. For
Σ = S −D, let ∂T (= ∂D) denote the boundary cycle of T . The vertices and edges
of ∂T are called boundary vertices and boundary edges of T .

A triangulation is called irreducible if no edge can be shrunk without producing
multiple edges or changing the topological type of the underlying surface. The
term “irreducible triangulation” is more accurately introduced in Section 2. The
irreducible triangulations of Σ form a basis for the family of all triangulations of
Σ, in the sense that any triangulation of Σ can be obtained from a member of

c© M.-J. Chávez, S. Lawrencenko, A.Quintero, M.-T. Villar, 2014
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the basis by repeatedly applying the splitting operation (introduced in Section 2)
a finite number of times. Barnette and Edelson [2] and independently Negami [9]
have proved that for every closed surface S the basis of irreducible triangulations
is finite. At present such bases are known for seven closed surfaces: the sphere
(Steinitz and Rademacher [10]), projective plane (Barnette [1]), torus (Lawrencenko
[6]), Klein bottle (25 Lawrencenko and Negami’s [8] triangulations plus 4 more
irreducible triangulations found later by Sulanke [12]) as well as S2, N3, and N4

(Sulanke [13, 14]). Boulch, Colin de Verdière, and Nakamoto [3] have established
upper bounds on the order of an irreducible triangulation of S − D. In this paper
we obtain a complete list of irreducible triangulations of N1 − D.

2 Preliminaries

Let T be a triangulation of Σ. An unordered pair of distinct adjacent edges vu

and vw of T is called a corner of T at vertex v, denoted by 〈u, v,w〉. The splitting of
a corner 〈u, v,w〉, denoted by sp〈u, v,w〉, is the operation which consists in cutting
T open along the edges vu and vw and then closing the resulting hole with two
new triangular faces, v′v′′u and v′v′′w, where v′ and v′′ denote the two images of
v appearing as a result of cutting. Under this operation, vertex v is extended to
the edge v′v′′ and the two faces having this edge in common are inserted into the
triangulation. Especially in the case {Σ = S − D ∧ uv ∈ E(T ) ∧ v ∈ V (∂T )}, the
operation sp〈u, v] of splitting a truncated corner 〈u, v] produces a single triangular
face uv′v′′, where v′v′′ ∈ E(∂(sp〈u, v](T ))).

Under the inverse operation, shrinking the edge v′v′′, denoted by sh〉v′v′′〈, this
edge collapses to a single vertex v, the faces v′v′′u and v′v′′w collapse to the edges vu

and vw, respectively. Therefore sh〉v′v′′〈◦ sp〈u, v,w〉(T ) = T . It should be noticed
that in the case {Σ = S − D ∧ v′v′′ ∈ E(∂T )}, there is only one face incident with
v′v′′, and only that single face collapses to an edge under sh〉v′v′′〈. Clearly, the
operation of splitting doesn’t change the topological type of Σ. We demand that
the shrinking operation must preserve the topological type of Σ as well; moreover,
multiple edges must not be created in a triangulation. A 3-cycle of T is called
nonfacial if it doesn’t bound a face of T . In the case in which an edge e ∈ E(T )
occurs in some nonfacial 3-cycle, if we still insist on shrinking e, multiple edges would
be produced, which would expel sh〉e〈(T ) from the class of triangulations. An edge
e is called shrinkable, or a cable if sh〉e〈(T ) is still a triangulation of Σ; otherwise the
edge is called unshrinkable, or a rod. The subgraph of G(T ) made up of all cables is
called the cable-subgraph of G(T ).

The only impediment to edge shrinkability in a triangulation T of a closed surface
S is identified in [1, 2, 6]: an edge e ∈ E(T ) is a rod if and only if e satisfies the
following condition:

(2.1) e is in a nonfacial 3-cycle of G(T ).
The impediments to edge shrinkability in a triangulation T of a punctured surface

S −D are identified in [3]: an edge e ∈ E(T ) is a rod if and only if e satisfies either
condition (2.1) or the following condition:
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(2.2) e is a chord of D — that is, the end vertices of e are in V (∂D) but
e /∈ E(∂D).

A triangulation is said to be irreducible if it is free of cables or in other words,
each edge is a rod. For instance, a single triangle is the only irreducible triangulation
of the disk S0−D although its edges don’t meet either of conditions (2.1) and (2.2).
Thus, we have yet one more impediment to edge shrinkability:

(2.3) e is a boundary edge in the case the boundary cycle is a 3-cycle.

Although condition (2.3) is a specific case of condition (2.1) (unless S = S0) and
is not explicitly stated in [3], it deserves especial mention.

3 The structure of irreducible punctured triangulations

In the remainder of this paper we assume that S 6= S0. Let T be an irreducible
triangulation of S −D. Let us restore the disk D in T , add a vertex p in D and join
p to the vertices in ∂D. We thus obtain a triangulation, T ∗, of the closed surface
S. In this setting we call D the patch, call p the central vertex of the patch, and
say that T is obtained from the corresponding triangulation T ∗ of S by the patch

removal. Notice that T ∗ may turn out to be an irreducible triangulation of S, but
not necessarily.

A vertex of a triangulation R of S is called a pylonic vertex if that vertex is
incident with all cables of R. A triangulation that has at least one cable and at
least one pylonic vertex is called a pylonic triangulation. It should be noticed that
there exist triangulations of the torus with exactly one cable, and thereby with two
different pylonic vertices; however, if a pylonic triangulation R has at least two
cables, R has a unique pylonic vertex.

Lemma 1. If T ∗ has at least two cables, then the central vertex p of the patch is

the only pylonic vertex of T ∗.

Proof. Using the assumption that T is irreducible and the fact that each cable of
T ∗ fails to satisfy condition (2.1), it can be easily seen that in the case T ∗ is not
irreducible, all cables of T ∗ have to be entirely in D ∪ ∂D and, moreover, there is
no cable that is entirely in ∂D. In particular, we observe that any chord of D is a
rod in T because it meets condition (2.2), and is also a rod in T ∗ because it meets
condition (2.1).

4 Irreducible triangulations of the Möbius band

Barnette’s theorem [1] states that there exist two irreducible triangulations of
N1; those are presented in Figure 1: P1 and P2. (For each hexagon identify each
antipodal pair of points in the boundary to obtain an actual triangulation of N1.)
By repeatedly applying the splitting operation to P1 and P2, we can generate all
triangulations of N1. Sulanke [11] has generated by computer all triangulations of
N1 with up to 19 vertices; in particular, among them there are 20 triangulations with



IRREDUCIBLE TRIANGULATIONS OF THE MÖBIUS BAND 47

up to 8 vertices. Independently, the authors of the present paper have identified the
same list of 20 triangulations by hand (Figure 1), using the automorphisms of P1

and P2. An automorphism of a triangulation P is an isomorphism of P with itself.
The set of all automorphisms of P forms a group, called the automorphism group of
P (denoted Aut(P )).
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Figure 1. All projective plane triangulations with up to 8 vertices
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Lemma 2 (see [11]). There are precisely one (up to isomorphism) triangulation of

N1 with 6 vertices, three with 7 vertices, and sixteen with 8 vertices. They are shown

in Figure 1, in which the bold edges indicate the cable-subgraphs of the triangulations.
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Figure 2. Irreducible triangulations of the Möbius band

Theorem 1. There are precisely six non-isomorphic irreducible triangulations of

the Möbius band, namely M1 to M6, shown in Figure 2 in which the left and right

sides of each rectangle are identified with opposite orientation to obtain an actual

triangulation of the Möbius band.

Proof. Observe that in Figure 1 only the following three non-irreducible members
have a pylonic vertex: P3 and P4 with pylonic vertex 6′′, and P19 with pylonic vertex
7′′. It can be easily proved that if a triangulation of N1 has at least two cables but has
no pylonic vertex, then no pylonic vertex can be created under further splitting of the
triangulation. On the other hand, it can be easily seen that any one splitting applied
to the pylonic triangulations P3, P4, or P19 destroys their pylonicity. Therefore, by
Lemma 1, each irreducible triangulation of N1 −D is obtainable either by removing
a vertex from an irreducible triangulation in {P1, P2}, or by removing the pylonic
vertex from a pylonic triangulation in {P3, P4, P19}. It is known [4,5,7] that Aut(P1)
acts transitively on the vertex set V (P1), while under the action of Aut(P2) the set
V (P2) breaks into two orbits as follows: orbit1 = {1, 2, 3, 7}, orbit2 = {4, 5, 6}.
Therefore, all irreducible triangulations of N1 − D are covered by the followings:
M1 = P1 minus vertex 1 (subtracted with the incident edges and faces), M2 = P2

minus vertex 1, M3 = P2 minus vertex 4, M4 = P4 minus vertex 6′′, M5 = P3 minus
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vertex 6′′, M6 = P19 minus vertex 7′′. To see that these triangulations are pairwise
non-isomorphic, observe that they have different vertex degree sequences except
for the pair {M3, M4}; however, all boundary vertices have degree 5 in M3 but
not all in M4.
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50 M.J. CHÁVEZ, S.LAWRENCENKO, A.QUINTERO, M.-T. VILLAR

[14] Sulanke T. Irreducible triangulations of low genus surfaces. arXiv e-print service, Cornell
University Library, Paper No. arXiv:math/0606690v1, 10 p., 1 fig., 5 tabs., electronic only
(2006).
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On 2-primal Ore extensions over Noetherian Weak

σ-rigid rings
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Abstract. Let R be a ring, σ an endomorphism of R and δ a σ-derivation of R. In
this article, we discuss skew polynomial rings over 2-primal weak σ-rigid rings. We
show that if R is a 2-primal Noetherian weak σ-rigid ring, then R[x; σ, δ] is a 2-primal
Noetherian weak σ-rigid ring.
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1 Introduction

A ring R always means an associative ring with identity 1 6= 0. The fields of
complex numbers and rational numbers are denoted by C and Q respectively. The
set of prime ideals of R is denoted by Spec(R). The set of minimal prime ideals of
R is denoted by Min.Spec(R). The prime radical and the set of nilpotent elements
of R are denoted by P (R) and N(R), respectively.

Let R be a ring, σ an endomorphism of R and δ a σ-derivation of R, i. e.
δ : R → R is an additive mapping satisfying δ(ab) = δ(a)σ(b) + aδ(b). Recall
that the skew polynomial ring R[x;σ, δ] is the set of polynomials

{∑n
i=0 xiai: ai ∈ R, n ∈ N}

with usual addition of polynomials and multiplication subject to the relation
ax = xσ(a) + δ(a) for all a ∈ R. We denote R[x;σ, δ] by O(R). If I is an ideal
of R such that I is σ-stable (i. e. σ(I) = I) and is also δ-invariant (i. e. δ(I) ⊆ I),
then clearly I[x;σ, δ] is an ideal of O(R), and we denote it as usual by O(I). We
note that O(I) = I(O(R)). This article concerns the study of skew polynomial rings
(Ore extensions) in terms of 2-primal rings.

2-Primal Rings

Recall that a ring R is 2-primal if and only if N(R) = P (R), i. e. if the prime
radical is a completely semiprime. An ideal I of a ring R is called completely
semiprime if a2 ∈ I implies a ∈ I. We note that a reduced ring (a ring with no

c© Vijay Kumar Bhat, 2014
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non zero nilpotent elements) is 2-primal and so is a commutative ring. Also let

R =

(
F F

0 F

)
, where F is a field. Then R is 2-primal.

2-Primal rings have been studied in recent years and are being treated by au-
thors for different structures. In [10], Greg Marks discusses the 2-primal property
of R[x;σ, δ], where R is a local ring, σ an automorphism of R and δ a σ-derivation
of R. In Greg Marks [10], it has been shown that for a local ring R with a nilpotent
maximal ideal, the Ore extension R[x;σ, δ] will or will not be 2-primal depending on
the δ-stability of the maximal ideal of R. In the case where R[x;σ, δ] is 2-primal, it
will satisfy an even stronger condition; in the case where R[x;σ, δ] is not 2-primal, it
will fail to satisfy an even weaker condition. Minimal prime ideals of 2-primal rings
have been discussed by Kim and Kwak in [7].

σ(∗)-rings

Let R be a ring and σ an endomorphism of R. Then σ is said to be a rigid
endomorphism if aσ(a) = 0 implies that a = 0, for a ∈ R, and R is said to be a
σ-rigid ring (Krempa [8]).

For example let R = C, and σ : C → C be the map defined by σ(a+ ib) = a− ib,
a, b ∈ R. Then it can be seen that σ is a rigid endomorphism of R.

In Theorem 3.3 of [8], Krempa has proved the following:

Let R be a ring, σ an endomorphism of R and δ a σ-derivation of R. If σ is
a monomorphism, then the skew polynomial ring R[x;σ, δ] is reduced if and only
if R is reduced and σ is rigid. Under these conditions any minimal prime ideal
(annihilator) of R[x;σ; δ] is of the form P [x;σ; δ] where P is a minimal prime ideal
(annihilator) in R.

Definition 1 (see [9], Kwak). Let R be a ring and σ an endomorphism of R. Then
R is said to be a σ(∗)-ring if aσ(a) ∈ P (R) implies a ∈ P (R) for a ∈ R.

Example 1. Let R =

(
F F

0 F

)
, where F is a field. Then P (R) =

(
0 F

0 0

)
.

Let σ : R → R be defined by σ

((
a b

0 c

))
=

(
a 0
0 c

)
. Then it can be seen that

σ is an endomorphism of R and R is a σ(∗)-ring.

Remark 1. A σ(∗)-ring need not be a σ-rigid. For let 0 6= a ∈ F in above example
(Example 1). Then

(
0 a

0 0

)
σ

(
0 a

0 0

)
=

(
0 0
0 0

)
, but

(
0 a

0 0

)
6=

(
0 0
0 0

)
.

Kwak in [9] establishes a relation between a 2-primal ring and a σ(∗)-ring. The
property is also extended to the skew polynomial ring R[x;σ]. It has been proved in
Theorem 5 of [9] that if R is a 2-primal ring and σ is an automorphism of R, then
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R is a σ(∗)-ring if and only if σ(P ) = P for all P ∈ Min.Spec(R). In Theorem 12
of [9] it has been proved that if R is a σ(∗)-ring with σ(P (R)) = P (R), then R[x;σ]
is 2-primal if and only if P (R)[x;σ] = P (R[x;σ]).

2 Preliminaries

We have the following:

Proposition 1. Let R be a Noetherian ring and σ an automorphism of R. If R is

a σ(∗)-ring, then R is 2-primal.

Proof. Let a ∈ R be such that a2 ∈ P (R). Then aσ(a)σ(aσ(a)) = aσ(a)σ(a)σ2(a) =
aσ(a2)σ2(a) ∈ σ(P (R)). Now R is Noetherian, so σ(P (R)) = P (R). Therefore
aσ(a)σ(aσ(a)) ∈ P (R) which implies that aσ(a) ∈ P (R) and so a ∈ P (R). Hence R

is 2-primal.

The following example shows that a 2-primal ring need not be a σ(∗)-ring:
Let R = F [x] be the polynomial ring over a field F . Then R is an integral

domain and so is 2-primal with P (R) = 0. Let σ : R → R be an endomor-
phism defined by σ(f(x)) = f(0) for f(x) ∈ F [x]. Let f(x) = xa, a ∈ F . Then
f(x)σ(f(x)) = 0 ∈ P (R), but f(x) /∈ P (R).

Weak σ-rigid rings:

Definition 2 (see Ouyang [12]). Let R be a ring and σ an endomorphism of R.
Then R is said to be a weak σ-rigid ring if aσ(a) ∈ N(R) if and only if a ∈ N(R)
for a ∈ R.

Example 2 (see Example 2.1 of Ouyang [12]). Let σ be an endomorphism of a ring
R such that R is a σ-rigid ring. Let

A =

{ 


a b c

0 a d

0 0 a




∣∣∣∣ a, b, c, d ∈ R

}

be a subring of T3(R), the ring of upper triangular matrices over R. Now σ can be
extended to an endomorphism σ of A by σ((aij)) = (σ(aij)). Then it can be seen
that A is a weak σ-rigid ring.

Ouyang has proved in [12] that if σ is an endomorphism of a ring R, then R is
σ-rigid if and only if R is weak σ-rigid and reduced.

Let R be a Noetherian ring and σ an automorphism of R. We now give a
characterization for R to be a weak σ-rigid ring.

Theorem 1. Let R be a commutative Noetherian ring. Let σ be an automorphism

of R. Then R is a weak σ-rigid ring if and only if N(R) is a completely semiprime

ideal of R.
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Proof. R is commutative implies that N(R) is an ideal of R. We show that
σ(N(R)) = N(R). We have σ(N(R)) ⊆ N(R) as σ(N(R)) is a nilpotent ideal
of R. Now for any n ∈ N(R), there exists a ∈ R such that n = σ(a). So

I = σ−1(N(R)) = {a ∈ R such that σ(a) = n ∈ N(R)}

is an ideal of R. Now I is nilpotent, so I ⊆ N(R), which implies that N(R) ⊆
σ(N(R)). Hence σ(N(R)) = N(R).

Now let R be a weak σ-rigid ring. Let a ∈ R be such that a2 ∈ N(R). Then

aσ(a)σ(aσ(a)) = aσ(a)σ(a)σ2(a) ∈ σ(N(R)) = N(R).

Therefore, aσ(a) ∈ N(R) and hence a ∈ N(R). So N(R) is completely semiprime.

Conversely let N(R) be completely semiprime. Let a ∈ R be such that aσ(a) ∈
N(R). Now aσ(a)σ−1(aσ(a)) ∈ N(R) implies that a2 ∈ N(R), and so a ∈ N(R).
Hence R is a weak σ-rigid ring.

Completely prime ideals

Let R be a ring. Recall that an ideal P 6= R is completely prime if R/P is a
domain or equivalently if ab ∈ P implies a ∈ P or b ∈ P for a, b ∈ R (McCoy [11]).
In commutative rings completely prime and prime have the same meaning. We also
note that every completely prime ideal of a ring R is a prime ideal, but the converse
need not be true.

We note that in a 2-primal ring R, for example a reduced ring, all minimal prime
ideals are completely prime.

Regarding the relation between the completely prime ideals of a ring R and those
of O(R), the following result has been proved in Bhat [1]:

Theorem 2.4 of [1]. Let R be a ring, σ an automorphism of R and δ a σ-derivation
of R. Then:

1. For any completely prime ideal P of R with δ(P ) ⊆ P and σ(P ) = P , O(P )
is a completely prime ideal of O(R).

2. For any completely prime ideal U of O(R), U ∩ R is a completely prime ideal
of R.

The following result gives a characterization of a Notherian σ(∗)-ring R, where
σ is an automorphism of R.

Theorem 2 (see [2]). Let R be a Noetherian ring and σ an automorphism of R.

Then R is a σ(∗)-ring if and only if for each minimal prime U of R, σ(U) = U and

U is a completely prime ideal of R.
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Proof. To make the paper self contained, we give a sketch of the proof.

Let R be a Noetherian ring such that for each minimal prime U of R, σ(U) = U

and U is a completely prime ideal of R. Let a ∈ R be such that aσ(a) ∈ P (R) =
∩n

i=1Ui, where Ui are the minimal primes of R. For each i, a ∈ Ui or σ(a) ∈ Ui

and Ui is completely prime. Now σ(a) ∈ Ui = σ(Ui) implies that a ∈ Ui. Therefore
a ∈ P (R). Hence R is a σ(∗)-ring.

Conversely, suppose that R is a σ(∗)-ring and let U = U1 be a minimal prime
ideal of R. Let U2, U3, ..., Un be the other minimal primes of R. Suppose that
σ(U) 6= U . Then σ(U) is also a minimal prime ideal of R. Renumber so that
σ(U) = Un. Let a ∈ ∩n−1

i=1 Ui. Then σ(a) ∈ Un, and so aσ(a) ∈ ∩n
i=1Ui = P (R).

Therefore a ∈ P (R), and thus ∩n−1
i=1 Ui ⊆ Un, which implies that Ui ⊆ Un for some

i 6= n, which is impossible. Hence σ(U) = U .

Now suppose that U = U1 is not completely prime. Then there exist a, b ∈ R\U

with ab ∈ U . Let c be any element of b(U2∩U3∩...∩Un)a. Then c2 ∈ ∩n
i=1Ui = P (R).

Now c ∈ P (R) by Proposition 1 and, thus b(U2 ∩ U3 ∩ ... ∩ Un)a ⊆ U . Therefore
bR(U2 ∩ U3 ∩ ... ∩ Un)Ra ⊆ U and, as U is prime, a ∈ U , Ui ⊆ U for some i 6= 1 or
b ∈ U . None of these can occur, so U is completely prime.

From now onwards, we deal with σ-derivation δ and its higher orders, therefore,
the ring R is also taken as an algebra over Q.

Proposition 2. Let R be a Noetherian σ(∗)-ring which is also an algebra over Q and

δ a σ-derivation of R such that δ(σ(a)) = σ(δ(a)), for all a ∈ R. Then δ(U) ⊆ U

for all U ∈ MinSpec(R).

Proof. Let U ∈ MinSpec(R). Then σ(U) = U by Theorem 2. Consider the set

T = {a ∈ U | δk(a) ∈ U for all integers k ≥ 1}.
First of all, we will show that T is an ideal of R. Let a, b ∈ T . Then δk(a) ∈ U

and δk(b) ∈ U for all integers k ≥ 1. Now δk(a − b) = δk(a) − δk(b) ∈ U for all
k ≥ 1. Therefore a − b ∈ T . Now let a ∈ T and r ∈ R. We see that δk(ar) ∈ U

and δk(ra) ∈ U for some k ≥ 1 as both are sums of terms involving δj(a) for some
j ≥ 1. So T is a δ-invariant ideal of R.

We will now show that T ∈ Spec(R). Suppose the contrary. Let a /∈ T , b /∈ T

be such that aRb ⊆ T . Let t, s be least positive integers such that δt(a) /∈ U and
δs(b) /∈ U . Now there exists c ∈ R such that

δt(a)cσt(δs(b)) /∈ U (1)

as otherwise δt(a) ∈ U or δs(b) ∈ U . Let d = σ−t(c). Now aRb ⊆ T implies that
acb ⊆ T . Therefore δt+s(adb) ∈ U . This implies on simplification that

δt(a)σt(d)σt(δs(b)) + u ∈ U (2)

where u is a sum of terms involving δl(a) or δm(b), where l < t and m < s.
Therefore by assumption u ∈ U which implies that δt(a)σt(d)σt(δs(b)) ∈ U , i. e.
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δt(a)cσt(δs(b)) ∈ U . This is a contradiction to 1. Therefore T ∈ Spec(R). Now
T ⊆ U , so T = U as U ∈ Min.Spec(R). Hence δ(U) ⊆ U .

Remark 2. In above proposition the condition that δ(σ(a)) = σ(δ(a)), for all a ∈ R

is necessary. For example if s = t = 1, then a ∈ U , b ∈ U and therefore, σi(a) ∈ U ,
σi(b) ∈ U for all integers i ≥ 1 as σ(U) = U . Now δ2(adb) ∈ U implies that

δ(a)σ(d)δ(σ(b)) + δ(a)σ(d)σ(δ(b)) + u ∈ U .

where u is a sum of terms involving a or b, or σi(b). Therefore by assumption u ∈ U .
This implies that

δ(a)σ(d)δ(σ(b)) + δ(a)σ(d)σ(δ(b)) ∈ U .

If δ(σ(a)) 6= σ(δ(a)), for all a ∈ R, then we get nothing out of it and if δ(σ(a)) =
σ(δ(a)), for all a ∈ R, we get δ(a)σ(d)σ(δ(b)) ∈ U which gives a contradiction.

We now give a relation between a σ(∗)-ring and a weak σ-rigid ring:

Proposition 3. Let R be a Noetherian ring and σ an automorphism of R. Then

1. R is a σ(∗)-ring implies that R is a weak σ-rigid ring.

2. R is a 2-primal weak σ-rigid ring implies that R is a σ(∗)-ring.

Proof. 1. Let σ be an automorphism of R such that R is a σ(∗)-ring. Now Propo-
sition 1 implies that R is 2-primal, i.e. N(R) = P (R). Thus aσ(a) ∈ N(R) = P (R)
implies that a ∈ P (R) = N(R). Hence R is a weak σ-rigid ring.

2. Let R be 2-primal weak σ-rigid ring. Then N(R) = P (R) and aσ(a) ∈ N(R)
implies that a ∈ N(R). Therefore, aσ(a) ∈ P (R) implies that a ∈ P (R). Hence R

is a σ(∗)-ring.

Corollary 1. Let R be a Noetherian ring. Let σ be an automorphism of R. Then

R is a 2-primal weak σ-rigid ring if and only if for each minimal prime U of R,

σ(U) = U and U is a completely prime ideal of R.

Proof. Combine Theorem 2 and Proposition 3.

3 Skew polynomial rings over 2-primal weak σ-rigid rings

Proposition 4. Let R be a Noetherian ring which is also an algebra over Q and σ an

automorphism of R such that R is a σ(∗)-ring. Let δ be a σ-derivation of R such that

δ(σ(a)) = σ(δ(a)) for all a ∈ R. If U ∈ Min.Spec(R), then U(O(R)) = U [x;σ, δ] is

a completely prime ideal of O(R) = R[x;σ, δ].

Proof. Let U ∈ Min.Spec(R). Then σ(U) = U by Theorem 2 and δ(U) ⊆ U by
Proposition 2. Now R is 2-primal by Proposition 1 and furthermore U is completely
prime by Theorem 2. Now consider canonical maps σ and δ between R/U associ-
ated to σ and δ. It is well known that O(R)/U(O(R)) ≃ (R/U)[x;σ, δ] and hence
U(O(R)) is a completely prime ideal of O(R).
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Theorem 3. Let R be a Noetherian ring which is also an algebra over Q and σ

an automorphism of R such that R is a σ(∗)-ring. Let δ be a σ-derivation of R

such that δ(σ(a)) = σ(δ(a)) for all a ∈ R. If P1 ∈ Min.Spec(R), then O(P1) ∈
Min.Spec(O(R)).

Proof. Let P1 ∈ Min.Spec(R). Now by Theorem 2 σ(P1) = P1, and by Proposition 2
δ(P1) ⊆ P1. Now Proposition 3.3 of [5] implies that O(P1) ∈ Spec(O(R)). Suppose
O(P1) /∈ Min.Spec(O(R)) and P2 ⊂ O(P1) be a minimal prime ideal of O(R). Then

P2 = O(P2 ∩ R) ⊂ O(P1) ∈ Min.Spec(O(R)).

Therefore P2 ∩ R ⊂ P1 which is a contradiction, as P2 ∩ R ∈ Spec(R). Hence
O(P1) ∈ Min.Spec(O(R)).

Theorem 4 (see [3]). Let R be a Noetherian ring which is also an algebra over Q

and σ an automorphism of R such that R is a σ(∗)-ring. Let δ be a σ-derivation of

R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R. Then R[x;σ, δ] is 2-primal if and only

if P (R)[x;σ, δ] = P (R[x;σ, δ]).

Proof. Let R[x;σ, δ] be 2-primal. Now Theorem 3 implies that P (R[x;σ, δ]) ⊆
P (R)[x;σ, δ]. Let

f(x) =
∑n

j=0 xjaj ∈ P (R)[x;σ, δ].

Now R is a 2-primal subring of R[x;σ, δ] by Proposition 1, which implies that aj is
nilpotent and thus

aj ∈ N(R[x;σ, δ]) = P (R[x;σ, δ]).

So we have xjaj ∈ P (R[x;σ, δ]) for each j, 0 ≤ j ≤ n, which implies that
f(x) ∈ P (R[x;σ, δ]). Hence P (R)[x;σ, δ] = P (R[x;σ, δ]).

Conversely suppose that P (R)[x;σ, δ] = P (R[x;σ, δ]). We will show that
R[x;σ, δ] is 2-primal. Let

g(x) =
∑n

i=0 xibi ∈ R[x;σ, δ], bn 6= 0

be such that

(g(x))2 ∈ P (R[x;σ, δ]) = P (R)[x;σ, δ].

We will show that g(x) ∈ P (R[x;σ, δ]). Now the leading coefficient σ2n−1(bn)bn ∈
P (R) ⊆ P , for all P ∈ Min.Spec(R). Also σ(P ) = P and P is completely prime by
Theorem 3. Therefore we have bn ∈ P , for all P ∈ Min.Spec(R), i. e. bn ∈ P (R).
Since δ(P ) ⊆ P for all P ∈ Min.Spec(R) by Proposition 2, we get

(
∑n−1

i=0 xibi)
2 ∈ P (R[x;σ, δ]) = P (R)[x;σ, δ]

and as above we get bn−1 ∈ P (R). With the same process in a finite number of
steps we get bi ∈ P (R) for all i, 0 ≤ i ≤ n. Thus we have g(x) ∈ P (R)[x;σ, δ],
i.e. g(x) ∈ P (R[x;σ, δ]). Therefore, P (R[x;σ, δ]) is completely semiprime. Hence
R[x;σ, δ] is 2-primal.
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Proposition 5. Let R be a 2-primal Noetherian ring which is also an algebra over

Q and σ an automorphism of R such that R be a σ(∗)-ring. Let δ a σ-derivation of

R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R. Then O(N(R)) = N(O(R)).

Proof. The proof is on the same lines as in Proposition 5 of [2]. We take R to be
2-primal in place of commutative.

It is easy to see that O(N(R)) ⊆ N(O(R)). We will show that N(O(R)) ⊆
O(N(R)). Let

f =
∑m

i=0 xiai ∈ N(O(R)).

Then (f)(O(R)) ⊆ N(O(R)), and (f)(R) ⊆ N(O(R)). Let ((f)(R))k = 0, k > 0.
Then equating the leading term to zero, we get

(xmamR)k = 0.

After simplification and equating the leading term to zero, we get

xkmσ(k−1)m(amR).σ(k−2)m(amR).σ(k−3)m(amR)...amR = 0.

Therefore,

σ(k−1)m(amR).σ(k−2)m(amR).σ(k−3)m(amR)...amR = 0 ⊆ P ,

for all P ∈ Min.Spec(R). This implies that σ(k−j)m(amR) ⊆ P , for some j, 1 ≤
j ≤ k. Therefore, amR ⊆ σ−(k−j)m(P ). But σ−(k−j)m(P ) = P by Theorem 2, so
we have amR ⊆ P , for all P ∈ Min.Spec(R). Therefore, am ∈ P (R), and R being
2-primal implies that am ∈ N(R). Now xmam ∈ O(N(R)) ⊆ N(O(R)) implies that∑m−1

i=0 xiai ∈ N(O(R)), and with the same process, in a finite number of steps, it
can be seen that ai ∈ P (R) = N(R), 0 ≤ i ≤ m − 1. Therefore, f ∈ O(N(R)).
Hence N(O(R)) ⊆ O(N(R)) and the result follows.

Let σ be an endomorphism of a ring R and δ a σ-derivation of R such that
σ(δ(a)) = δ(σ(a)) for all a ∈ R. Then σ can be extended to an endomorphism
(say σ) of R[x;σ, δ] by σ(

∑m
i=0 xiai) =

∑m
i=0 xiσ(ai). Also δ can be extended to a

σ-derivation (say δ) of R[x;σ, δ] by δ(
∑m

i=0 xiai) =
∑m

i=0 xiδ(ai).

We note that if σ(δ(a)) 6= δ(σ(a)) for all a ∈ R, then the above does not hold.
For example let f(x) = xa and g(x) = xb, a, b ∈ R. Then

δ(f(x)g(x)) = x2{δ(σ(a))σ(b) + σ(a)δ(b)} + x{δ2(a)σ(b) + δ(a)σ(b)},

but

δ(f(x))σ(g(x))+f(x)δ(g(x)) = x2{σ(δ(a))σ(b)+σ(a)δ(b)}+x{δ2 (a)σ(b)+δ(a)σ(b)}.

Theorem 5. Let R be a 2-primal Noetherian ring, which is also an algebra over

Q. Let σ be an automorphism of R such that R is a weak σ-rigid ring and δ a

σ-derivation of R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R. Then O(R) = R[x;σ, δ]
is a 2-primal Noetherian weak σ-rigid ring.
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Proof. O(R) is Noetherian by the Hilbert Basis Theorem (see for example, The-
orem 1.12 of Goodearl and Warfield [6]). Now R being 2-primal weak σ-rigid
ring implies that R is a σ(∗)-ring by Proposition 3. Now by Theorem 1.3 of [4]
P ∈ Min.Spec(O(R)) implies that P ∩ R ∈ Min.Spec(R). Now use Theorem 3 to
get that P (R)[x;σ, δ] = P (R[x;σ, δ]). Therefore, Theorem 4 implies that O(R) is
2-primal. Also Theorem 7 of [2] implies that O(R) is a weak σ-rigid ring. Hence
O(R) is a 2-primal Noetherian weak σ-rigid ring.
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1 Preliminary results

In this paper we present two new families of distribution, namely the Max-
Erlang power series (MaxErlPS) distribution, respectively the Min-Erlang power
series (MinErlPS) distribution. These are obtained by mixing the distribution of
the maximum or the minimum of a fixed number of independent Erlang distributed
random variables, where the combination is obtained by the techniques that have
been treated by Adamidis and Loukas (1998, [1]) and more generally by Chahkandi
and Ganjali (2009, [6]) or Baretto-Souza and Cribari (2009, [3]). Recently, the new
distributions that model the reliability systems were obtained by exponential dis-
tribution with several discrete distributions (the families of the power series distri-
butions). For example, the distribution of the minimum of a sample of random size
with the exponential distribution was obtained. In this connection, the geometric
distribution, the Poisson distribution and the logarithmic distribution were consid-
ered by Adamidis and Loukas (1998, [1]), Kus (2007, [10]), Tahmasbi and Rezaei
(2008, [19]).

Then, the previous results have been generalized by Chahkandi and Ganjali
(2009, [6]) using the compounding exponential distribution with the power series
distribution, thus obtaining the exponential power series distribution (EPS) type.
Later, Morais and Baretto-Souza (2011, [16]) replaced the exponential distribution
with the Weibull power series distribution (WPS) of the minimum of a sequence of
the independent and identically distributed random variables (i. i. d. r. v.) in a ran-
dom number, studying the distribution of the strength of 1.5 cm glass fibers. The
case of the maximum has been discussed and analyzed by Munteanu (2013, [17]),
introducing the Max Weibull power series (MaxWPS) distribution that particular-
izes the complementary exponential geometric (CEG) distribution introduced by

c© A.Leahu, B. Gh.Munteanu, S.Cataranciuc, 2014
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Louzada, Roman and Cancho (2011, [14]), the complementary exponential Pois-
son (CEP) distribution introduced by Cancho, Louzada and Barriga (2011, [5]) and
the complementary exponential logaritmic (CEL) distribution introduced by Flores,
Borges, Cancho and Louzada (2013, [8]).

The geometric distribution which contains a power parameter was considered by
Adamidis, Dimitrakopoulou and Loukas (2005, [2]) and later generalized by Silva,
Baretto-Souza and Cordeiro (2010, [18]). The Poisson distribution being treated
by Cancho, Louzada and Barriga (2011, [5]) and which then was generalized by
Cordeiro, Rodriques and Castro (2011, [7]) as the COMPoisson distribution, this
contains a parameter power, the power series distribution type is not considered
because the maximum number will being one deterministic.

The methodology and techniques used in this article are shown in the paper of
Leahu, Munteanu and Cataranciuc (2013, [12]), general framework illustrating the
particular cases treated in the works of Adamidis and Loukas (1998, [1]), Kus (2007,
[10]), Tahmasbi and Rezaei (2008, [19]), Leahu and Lupu (2010, [11]), Baretto-
Souza, Morais and Cordeiro (2011, [4]), Morais and Baretto-Souza (2011, [16]), Can-
cho, Louzada and Barriga (2011, [5]), Louzada, Roman and Cancho (2011, [14]),
Flores, Borges, Cancho and Louzada (2013, [8]).

Let ′ s consider r.v. Z such that P (Z ∈ {1, 2, . . .}) = 1.

Definition 1 (see [9]). We say that r. v. Z has a power series distribution if:

P (Z = z) =
azΘ

z

A(Θ)
, z = 1, 2, . . . ; Θ ∈ (0, τ), (1)

where a1, a2, . . . are nonnegative real numbers, τ is a positive number bounded by the
convergence radius of power series (series function) A (Θ) =

∑
z≥1

azΘ
z, ∀ Θ ∈ (0, τ),

and Θ is power parameter of the distribution (Table 1).

PSD denotes the power series distribution functions families. If the r. v. Z has
the distribution from relationship (1), then we write that Z ∈ PSD.

Table 1. The representative elements of the PSD families for various truncated dis-
tributions

Distribution az Θ A(Θ) τ

Binom∗(n, p)
(
n
z

)
p

1−p
(1 + Θ)n − 1 ∞

Poisson∗(α) 1
z! α eΘ − 1 ∞

Log(p) 1
z

p −ln(1 − Θ) 1

Geom∗(p) 1 1 − p Θ
1−Θ 1

Pascal(k, p)
(
z−1
k−1

)
1 − p

(
Θ

1−Θ

)k

1

Bineg∗(k, p)
(
z+k−1

z

)
p (1 − Θ)−k − 1 1
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2 On the properties of the Max-Erlang and the Min-Erlang power

series distributions

We consider that Xi ∼ Erlang(k, λ), k ∈ N, k ≥ 1, λ > 0, where (Xi)i≥1

i. i. d. r. v. with the distribution function FXi
(x) ≡ FErl(x) = 1−

k−1∑
i=0

(λx)i

i! e−λx, x > 0

and the pdf fXi
(x) ≡ fErl(x) = λkxk−1e−λx

(k−1)! , x > 0. We note that UErl =

max {X1, X2, . . . ,XZ} and VErl = min {X1, X2, . . . ,XZ}.
The results in this section are obtained using the general framework of the work

[12], for which reason some proofs are not presented.

Proposition 1. If r. v. UErl = max {X1, X2, . . . ,XZ} and VErl = min{X1,

X2, . . . ,XZ}, where (Xi)i≥1 are nonnegative i. i. d. r. v., Xi ∼ Erlang(k, λ),

k ∈ N, k ≥ 1, λ > 0 and Z ∈ PSD with P (Z = z) = azΘz

A(Θ) , z = 1, 2, . . . ;

Θ ∈ (0, τ), τ > 0, r. v. (Xi)i≥1 and Z being independent, then the distribution

functions of the r. v. UErl, respectively VErl are the following:

UErl(x) =

A

[
Θ

(
1 − e−λx

k−1∑
i=0

(λx)i

i!

)]

A(Θ)
, x > 0, (2)

VErl(x) = 1 −
A

[
Θe−λx

k−1∑
i=0

(λx)i

i!

]

A(Θ)
, x > 0. (3)

We denote a r. v. UErl following Max-Erlang power series (MaxErlPS) distribu-
tion with parameters k, λ and Θ by UErl ∼ MaxErlPS(k, λ,Θ), respectively a r. v.
VErl following Min-Erlang power series (MinErlPS) distribution with parameters
k, λ and Θ by VErl ∼ MinErlPS(k, λ,Θ).

The following results characterize the survival functions and the probability den-
sity functions (pdf) for the maximum, respectively minimum of a sequence of inde-
pendent Erlang distributed random variables in a random number.

Consequence 1. If r. v. UErl ∼ MaxErlPS(k, λ,Θ) and VErl ∼ MinErlPS(k, λ,Θ),
then the survival functions of the r. v. UErl, respectively VErl are the following:

SUErl
(x) = 1 −

A

[
Θ

(
1 − e−λx

k−1∑
i=0

(λx)i

i!

)]

A(Θ)
, x > 0, (4)

SVErl
(x) =

A

[
Θe−λx

k−1∑
i=0

(λx)i

i!

]

A(Θ)
, x > 0. (5)



MAX-ERLANG AND MIN-ERLANG POWER SERIES DISTRIBUTIONS. . . 63

Consequence 2. The pdf ′ s of the r. v. UErl, respectively VErl are the following:

uErl(x) =

Θλkxk−1e−λxA
′

[
Θ

(
1 − e−λx

k−1∑
i=0

(λx)i

i!

)]

A(Θ)
, x > 0 (6)

and

vErl(x) =

Θλkxk−1e−λxA
′

[
Θe−λx

k−1∑
i=0

(λx)i

i!

]

A(Θ)
, x > 0. (7)

Proposition 2. The hazard rates for the r. v. UErl, respectively VErl are character-

ized by the following relations:

hUErl
(x) =

uErl(x)

1 − UErl(x)
=

Θλkxk−1e−λxA
′

[
Θ

(
1 − e−λx

k−1∑
i=0

(λx)i

i!

)]

A(Θ) − A

[
Θ

(
1 − e−λx

k−1∑
i=0

(λx)i

i!

)]

and

hVErl
(x) =

vErl(x)

1 − VErl(x)
=

Θλkxk−1e−λxA
′

[
Θe−λx

k−1∑
i=0

(λx)i

i!

]

A

[
Θe−λx

k−1∑
i=0

(λx)i

i!

] .

The next result shows a characteristic of the MaxErlPS and MinErlPS distribu-
tions.

Proposition 3. If (Xi)i≥1 is a sequence of independent, identically Erlang dis-

tributed r. v., with parameters λ > 0, k ∈ {1, 2, . . .} and Z ∈ PSD with

P (Z = z) = azΘz

A(Θ) , where (az)z≥1 is a sequence of nonnegative real numbers,

A (Θ) =
∑
z≥1

azΘ
z, ∀ Θ ∈ (0, τ), then

lim
Θ→0+

UErl(x) =

[
1 −

k−1∑

i=0

(λx)i

i!
e−λx

]m

, x > 0,

considering m = min {n ∈ N
∗, an > 0}.

Proof. By applying the l ′ Hospital rule m-time, we have:

lim
Θ→0+

UErl(x) = lim
Θ→0+

A(m)

[
Θ

(
1 − e−λx

k−1∑
i=0

(λx)i

i!

)]
·
(

1 − e−λx
k−1∑
i=0

(λx)i

i!

)m

A(m)(Θ)

=

m!am

(
1 − e−λx

k−1∑
i=0

(λx)i

i!

)m

m!am

=

(
1 − e−λx

k−1∑

i=0

(λx)i

i!

)m

, x > 0

and m = min {n ∈ N
∗, an > 0} .
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Applying the same method of proof of Proposition 3, we obtain:

Proposition 4. Under the conditions of the Proposition 3, when Θ → 0+, we have

that

lim
Θ→0+

VErl(x) = 1 −
[

k−1∑

i=0

(λx)i

i!
e−λx

]l

, x > 0,

where l = min {n ∈ N
∗, an > 0}.

Consequence 3. The rth moments, r ∈ N, r ≥ 1 of the r.v. UErl ∼
MaxErlPS(k, λ,Θ) and VErl ∼ MinErlPS(k, λ,Θ) are given by

EU r
Erl =

∑

z≥1

azΘ
z

A(Θ)
E [max {X1, X2, . . . ,Xz}]r (8)

and

EV r
Erl =

∑

z≥1

azΘ
z

A(Θ)
E [min {X1, X2, . . . ,Xz}]r , (9)

where pdf ′ s fmax{X1, X2,...,Xz}(x) = zfErl(x) [FErl(x)]z−1
and fmin{X1, X2,...,Xz}

(x) =

zfErl(x) [1 − FErl(x)]z−1
.

The distribution functions and pdf ′ s of the r.v. UErl ∼ MaxErlPS(k, λ,Θ) for
different combinations of the r.v. Z ∈ PSD (Table 1), are the following:

• Z ∼ Binom∗(n, p); UErlB ∼ MaxErlB(k, λ, n, p), λ > 0; k, n ∈ {1, 2 . . .};
p ∈ (0, 1):

UErlB(x) =

(
1 − pe−λx

k−1∑
i=0

(λx)i

i!

)n

− 1

1 − (1 − p)n
, x > 0,

uErlB(x) =

npλkxk−1e−λx

(
1 − pe−λx

k−1∑
i=0

(λx)i

i!

)n−1

1 − (1 − p)n
, x > 0.

• Z ∼ Poisson∗(α); UErlP ∼ MaxErlP(k, λ, α), λ, α > 0; k ∈ {1, 2 . . .}:

UErlP (x) =
e
−αe−λx

k−1∑
i=0

(λx)i

i! − e−α

1 − e−α
, x > 0,

uErlP (x) =
αλkxk−1e

−λx−αe−λx
k−1∑
i=0

(λx)i

i!

1 − e−α
, x > 0.
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• Z ∼ Log(p); UErlLog ∼ MaxErlLog(k, λ, p), λ > 0; k ∈ {1, 2 . . .}; p ∈ (0, 1):

UErlLog(x) = ln

[
1 − p + p e−λx

k−1∑

i=0

(λx)i

i!

]−a

, x > 0,

uErlLog(x) =
apλkxk−1e−λx

[
1 − p + p e−λx

k−1∑
i=0

(λx)i

i!

] , x > 0,

where a = −1/ ln(1 − p).

• Z ∼ Geom∗(p); UErlG ∼ MaxErlG(k, λ, p), λ > 0; k ∈ {1, 2 . . .}; p ∈ (0, 1) :

UErlG(x) =

p

(
1 − e−λx

k−1∑
i=0

(λx)i

i!

)

p + (1 − p)e−λx
k−1∑
i=0

(λx)i

i!

, x > 0,

uErlG(x) =
pλkxk−1e−λx

[
p + (1 − p)e−λx

k−1∑
i=0

(λx)i

i!

]2 , x > 0.

• Z ∼ Pascal(k⋆, p); UErlPas ∼ MaxErlPas(k, λ, k⋆, p), λ > 0; k, k⋆ ∈ {1, 2 . . .};
p ∈ (0, 1) :

UErlPas(x) =




p

(
1 − e−λx

k−1∑
i=0

(λx)i

i!

)

p + (1 − p)e−λx
k−1∑
i=0

(λx)i

i!




k⋆

, x > 0,

uErlPas(x) =

k⋆pk⋆

λkxk−1e−λx

(
1 − e−λx

k−1∑
i=0

(λx)i

i!

)k⋆−1

[
p + (1 − p)e−λx

k−1∑
i=0

(λx)i

i!

]k⋆+1
, x > 0.

• Z ∼ Bineg∗(k⋆, p); UErlBineg ∼ MaxErlBineg(k, λ, k⋆, p), λ > 0; k, k⋆ ∈
{1, 2 . . .}; p ∈ (0, 1) :

UErlBineg(x) =

(
1 − p + pe−λx

k−1∑
i=0

(λx)i

i!

)−k⋆

− 1

(1 − p)−k⋆ − 1
, x > 0,

uErlBineg(x) =

k⋆pλkxk−1e−λx

(
1 − p + pe−λx

k−1∑
i=0

(λx)i

i!

)−k⋆−1

(1 − p)−k⋆ − 1
, x > 0.
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The above results shows that the following result is valid:

Proposition 5. If (Xi)i≥1, Xi ∼ Erlang(k, λ), k ∈ {1, 2, . . .}, λ > 0 and (Yj)j≥1

are i. i. d. r. v., Yj ∼ MaxErlG(k, λ, p), p ∈ (0, 1), then the r. v. max {Y1, Y2, . . . , Yk⋆}
has the same distribution as the r.v. max {X1,X2, . . . ,XZ}, where Z ∼ Pascal(k⋆, p),
k⋆ ∈ {1, 2, . . .}, p ∈ (0, 1).

Proof. Indeed, it is known that if (Yj)j≥1 are independent r.v. Max-Erlang-
Geometric (MaxErlG) distributed, with the distribution function UErlG(x), x > 0,
we have:

Fmax{Y1,Y2,...,Yk⋆}(x) = (UErlG(x))k⋆

= UErlPas(x), ∀ x > 0,

where UErlPas(x) represents the distribution function of the Max-Erlang-Pascal
(MaxErlPas) distribution.

The distribution functions and pdf ′ s of the r. v. VErl ∼ MinErlPS(k, λ,Θ) for
different combinations of the r. v. Z ∈ PSD (Table 1), are the following:

• Z ∼ Binom∗(n, p); VErlB ∼ MinErlB(k, λ, n, p) λ > 0; k, n ∈ {1, 2 . . .}; p ∈
(0, 1):

VErlB(x) =

1 −
(

1 − p + pe−λx
k−1∑
i=0

(λx)i

i!

)n

1 − (1 − p)n
, x > 0,

vErlB(x) =

npλkxk−1e−λx

(
1 − p + pe−λx

k−1∑
i=0

(λx)i

i!

)n−1

1 − (1 − p)n
, x > 0.

• Z ∼ Poisson∗(α); VErlP ∼ MinErlP(k, λ, α), λ, α > 0; k ∈ {1, 2 . . .}:

VErlP (x) =
1 − e

−α

(
1−e−λx

k−1∑
i=0

(λx)i

i!

)

1 − e−α
, x > 0,

vErlP (x) =
αλkxk−1e

−λx−α+αe−λx
k−1∑
i=0

(λx)i

i!

1 − e−α
, x > 0.

• Z ∼ Log(p); VErlLog ∼ MinErlLog(k, λ, p), λ > 0; k ∈ {1, 2 . . .}; p ∈ (0, 1):

VErlLog(x) = 1 + ln

[
1 − p e−λx

k−1∑

i=0

(λx)i

i!

]a

, x > 0,

vErlLog(x) =
apλkxk−1e−λx

[
1 − p e−λx

k−1∑
i=0

(λx)i

i!

] , x > 0,

where a = −1/ ln(1 − p).
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• Z ∼ Geom∗(p); VErlG ∼ MinErlG(k, λ, p), λ > 0; k ∈ {1, 2 . . .}; p ∈ (0, 1) :

VErlG(x) =

1 − e−λx
k−1∑
i=0

(λx)i

i!

1 − (1 − p)e−λx
k−1∑
i=0

(λx)i

i!

, x > 0,

vErlG(x) =
pλkxk−1e−λx

[
1 − (1 − p)e−λx

k−1∑
i=0

(λx)i

i!

]2 , x > 0.

• Z ∼ Pascal(k⋆, p); VErlPas ∼ MinErlPas(k, λ, k⋆, p) λ > 0; k, k⋆ ∈ {1, 2 . . .};
p ∈ (0, 1) :

VErlPas(x) =




1 − e−λx
k−1∑
i=0

(λx)i

i!

1 − (1 − p)e−λx
k−1∑
i=0

(λx)i

i!




k⋆

, x > 0,

vErlPas(x) =

k⋆pk⋆

λkxk−1e−k⋆λx

(
k−1∑
i=0

(λx)i

i!

)k⋆−1

[
1 − (1 − p)e−λx

k−1∑
i=0

(λx)i

i!

]k⋆+1
, x > 0.

• Z ∼ Bineg∗(k⋆, p); VErlBineg ∼ MinErlBineg(k, λ, k⋆, p), λ > 0; k, k⋆ ∈
{1, 2 . . .}; p ∈ (0, 1) :

VErlBineg(x) =

(1 − p)−k⋆ −
(

1 − pe−λx
k−1∑
i=0

(λx)i

i!

)−k⋆

(1 − p)−k⋆ − 1
, x > 0,

vErlBineg(x) =

k⋆pλkxk−1e−λx

(
1 − pe−λx

k−1∑
i=0

(λx)i

i!

)−k⋆−1

(1 − p)−k⋆ − 1
, x > 0.

Figure 1 shows several representations of pdf ′ s of some particular MaxErlPS
distributions (MaxErlB(k, λ, n, p), MaxErlP(k, λ, α)), for different values of their
parameters: k = 2, λ = 3.5, α = 7, n = 21, p = 1/4.

Figure 2 shows the behavior of the pdf ′ s of the MinErlB(k, λ, n, p), MinErlP(k, λ, α)
for some values of the parameters: k = 2, λ = 0.5, α = 5, n = 25, p = 1/6.
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Figure 1. Pdf ′ s for Max-Erlang-Binomial and Max-Erlang-Poisson distributions

Figure 2. Pdf ′ s for Min-Erlang-Binomial and Min-Erlang-Poisson distributions
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3 Special cases

In this section, we shall illustrate the characteristics of four distributions: the
Max-Erlang-Binomial (MaxErB) distribution, the Min-Erlang-Binomial (MinErlB)
distribution, the Max-Erlang-Poisson (MaxErlP) distribution, respectively the Min-
Erlang-Poisson (MinErlP) distribution, so that later we can formulate a Poisson
limit theorem.

3.1 The MaxErlB and MinErlB distributions

The MaxErlB and MinErlB distributions is defined by the distribution functions
(2) and (3), with A(Θ) = (Θ + 1)n − 1, namely:

UErlB(x) =

(
1 + Θ − Θe−λx

k−1∑
i=0

(λx)i

i!

)n

− 1

(1 + Θ)n − 1
, x > 0 (10)

and

VErlB(x) =

(1 + Θ)n −
(

1 + Θe−λx
k−1∑
i=0

(λx)i

i!

)n

(1 + Θ)n − 1
, x > 0, (11)

where n is integer pozitive.

The survival functions, defined by the relationships (4), (5), for the r.v. UErlB,
respectively VErlB are the following:

SUErlB
(x) =

(1 + Θ)n −
(

1 + Θ − Θe−λx
k−1∑
i=0

(λx)i

i!

)n

(1 + Θ)n − 1
, x > 0

and

SVErlB
(x) =

(
1 + Θe−λx

k−1∑
i=0

(λx)i

i!

)n

− 1

(1 + Θ)n − 1
, x > 0.

By using the relationships (6), (7) and Proposition 2, the pdf ′ s and hazard
rates are given by:

uErlB(x) =

nΘλkxk−1e−λx

(
1 + Θ − Θe−λx

k−1∑
i=0

(λx)i

i!

)n−1

(1 + Θ)n − 1
, x > 0,

vErlB(x) =

nΘλkxk−1e−λx

(
1 + Θe−λx

k−1∑
i=0

(λx)i

i!

)n−1

(1 + Θ)n − 1
, x > 0
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and

hUErlB
(x) =

nΘλkxk−1e−λx

(
1 + Θ − Θe−λx

k−1∑
i=0

(λx)i

i!

)n−1

(1 + Θ)n −
(

1 + Θ − Θe−λx
k−1∑
i=0

(λx)i

i!

)n , x > 0,

respectively

hVErlB
(x) =

nΘλkxk−1e−λx

(
1 + Θe−λx

k−1∑
i=0

(λx)i

i!

)n−1

(
1 + Θe−λx

k−1∑
i=0

(λx)i

i!

)n , x > 0.

3.2 The MaxErlP and MinErlP distributions

The MaxErlP and MinErlP distributions is defined by the distribution functions
(2) and (3) with A(Θ) = eΘ − 1, and Θ = α > 0, namely:

UErlP (x) =
e
−Θe−λx

k−1∑
i=0

(λx)i

i! − e−Θ

1 − e−Θ
, x > 0 (12)

and

VErlP (x) =
1 − e

−Θ

(
1−e−λx

k−1∑
i=0

(λx)i

i!

)

1 − e−Θ
, x > 0. (13)

By using Consequences 1, the survival functions for the r. v. UErlP , respectively
VErlP are the following:

SUErlP
(x) =

1 − e
−Θe−λx

k−1∑
i=0

(λx)i

i!

1 − e−Θ
, x > 0

and

SVErlP
(x) =

e
−Θ

(
1−e−λx

k−1∑
i=0

(λx)i

i!

)

− e−Θ

1 − e−Θ
, x > 0.

With the formulas (6), (7) and Proposition 2, the pdf ′ s and the hazard rates are
given by:

uErlP (x) =
Θλkxk−1e

−λx−Θe−λx
k−1∑
i=0

(λx)i

i!

1 − e−Θ
, x > 0,
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vErlP (x) =
Θλkxk−1e

−λx−Θ+Θe−λx
k−1∑
i=0

(λx)i

i!

1 − e−Θ
, x > 0

and

hUErlP
(x) =

Θλkxk−1e
−λx−Θe−λx

k−1∑
i=0

(λx)i

i!

1 − e
−Θe−λx

k−1∑
i=0

(λx)i

i!

, x > 0,

respectively

hVErlP
(x) =

Θλkxk−1e
Θe−λx

k−1∑
i=0

(λx)i

i!

e
Θe−λx

k−1∑
i=0

(λx)i

i!

, x > 0.

3.3 On the Poisson limit theorem

The next proposition shows that the MaxErlP and MinErlP distributions approx-
imate the MaxErlB, respectively MinErlB distributions under certain conditions.

Proposition 6. (Poisson limit theorem). The MaxErlP and MinErlP distribu-

tions can be obtained as limiting of the MaxErlB, respectively MinErlB distributions

with ditribution functions given by (10) and (11) if nΘ → α > 0 when n → ∞ and

Θ → 0+.

Proof. We shall study the convergence in terms of the distributions UErlB(x),
VErlB(x), UErlP (x) and VErlP (x), x > 0 of the two types of distributions.

By calculating separately three elementary limits:

lim
n→∞

Θ→0+

(1 + Θ)n = lim
n→∞

Θ→0+

[
(1 + Θ)1/Θ

]nΘ
= eα,

lim
n→∞

Θ→0+

[1 + ΘA(k, λ, x)]n =

= lim
n→∞

Θ→0+

{
[1 + ΘA(k, λ, x)]

1
ΘA(k,λ,x)

}nΘA(k,λ,x)

= eαA(k,λ,x)

and

lim
n→∞

Θ→0+

[1 + Θ (1 − A(k, λ, x))]n =
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= lim
n→∞

Θ→0+

{
[1 + Θ (1 − A(k, λ, x))]

1
Θ(1−A(k,λ,x))

}nΘ(1−A(k,λ,x))

= eα(1−A(k,λ,x)),where A(k, λ, x) = e−λx

k−1∑

i=0

(λx)i

i!
,

we obtain:

lim
n→∞

Θ→0+

UErlB(x) = lim
n→∞

Θ→0+

(
1 + Θ − Θe−λx

k−1∑
i=0

(λx)i

i!

)n

− 1

(1 + Θ)n − 1

=
e
α

(
1−e−λx

k−1∑
i=0

(λx)i

i!

)

− 1

eα − 1
= UErlP (x)

and

lim
n→∞

Θ→0+

VErlB(x) = lim
n→∞

Θ→0+

(1 + Θ)n −
(

1 + Θe−λx
k−1∑
i=0

(λx)i

i!

)n

(1 + Θ)n − 1

=
eα − e

αe−λx
k−1∑
i=0

(λx)i

i!

eα − 1
= VErlP (x).
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A semi-isometric isomorphism on a ring of matrices

Svetlana Aleschenko

Abstract. Let (R, ξ) be a pseudonormed ring and Rn be a ring of matrices over
the ring R. We prove that if 1 ≤ γ, σ ≤ ∞ and 1

γ
+ 1

σ
≥ 1, then the function ηξ,γ,σ

is a pseudonorm on the ring Rn. Let now ϕ : (R, ξ) → (R̄, ξ) be a semi-isometric
isomorphism of pseudonormed rings. We prove that Φ : (Rn, ηξ,γ,σ) → (R̄n, ηξ̄,γ,σ) is
a semi-isometric isomorphism too for all 1 ≤ γ, σ ≤ ∞ such that 1

γ
+ 1

σ
≥ 1.

Mathematics subject classification: 16W60, 13A18.
Keywords and phrases: Pseudonormed rings, quotient rings, ring of matrices,
isometric homomorphism, semi-isometric isomorphism, canonical homomorphism.

The following theorem on isomorphism is often applied in algebra and, in par-
ticular, in the ring theory:

Theorem 1. If A is a subring of a ring R and I is an ideal of the ring R, then the

quotient rings A/ (A
⋂

I) and (A + I) /I are isomorphic rings.

In particular, if A
⋂

I = 0, then the ring A is isomorphic to the ring (A + I) /I,
i.e. the rings A and (A + I) /I possess identical algebraic properties.

Since it is necessary to take into account properties of pseudonorms when study-
ing the pseudonormed rings then one needs to consider isomorphisms which keep
pseudonorms. Such isomorphisms are called isometric isomorphisms.

Theorem 1 does not always take place for pseudonormed rings. As is shown in
Theorem 2.1 from [1] it is impossible to tell anything more than the validity of the
inequality ξ̄ (ϕ (r)) ≤ ξ (r) in case A

⋂
I = 0.

The case when A is an ideal of a pseudonormed ring (R, ξ) was studied in [1],
the case when A is a one-sided ideal of a pseudonormed ring (R, ξ) was studied in
[2].

The following definition was introduced in [1]:

Definition 1. Let (R, ξ) and
(
R̄, ξ̄

)
be pseudonormed rings. An isomorphism

ϕ : R → R̄ is called a semi-isometric isomorphism if there exists a pseudonormed

ring
(
R̂, ξ̂

)
such that the following conditions are valid:

1) the ring R is an ideal in the ring R̂;
2) ξ̂ (r) = ξ (r) for any r ∈ R;
3) the isomorphism ϕ can be extended up to an isometric homomorphism

ϕ̂ :
(
R̂, ξ̂

)
→
(
R̄, ξ̄

)
of the pseudonormed rings, i.e. ξ̄ (ϕ̂ (r̂)) = inf

{
ξ̂ (r̂ + a) |a ∈ ker ϕ̂

}

for all r̂ ∈ R̂.

c© Svetlana Aleschenko, 2014
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The following theorem was proved in [1]:

Theorem 2. Let (R, ξ) and
(
R̄, ξ̄

)
be pseudonormed rings and ϕ : R → R̄ be a

ring isomorphism. Then the isomorphism ϕ : (R, ξ) →
(
R̄, ξ̄

)
is a semi-isometric

isomorphism of the pseudonormed rings iff the inequalities ξ (a · b) ≤ ξ̄ (ϕ (a)) · ξ (b),
ξ (b · a) ≤ ξ̄ (ϕ (a)) · ξ (b) and ξ̄ (ϕ (a)) ≤ ξ (a) are true for any a, b ∈ R.

This paper is a continuation of [1] and [2] and it is devoted to the study of
pseudonorms on a ring of matrices which keep a semi-isometric isomorphism.

We will use the following propositions. The proof of Propositions 1 – 3 can be
found in [3]; the proof of Propositions 4, 5 can be found in [4].

Proposition 1. Let λ and λ∗ be positive real numbers such that λ > 1, λ∗ > 1 and
1
λ

+ 1
λ∗ = 1. Then the inequality

n∑
k=1

akbk ≤
(

n∑
k=1

aλ
k

) 1
λ

·
(

n∑
k=1

bλ∗

k

) 1
λ∗

is true for all ak ≥ 0 and bk ≥ 0.

Proposition 2. Let aik ≥ 0 for 1 ≤ i ≤ m, 1 ≤ k ≤ n. Then the inequality

(
n∑

k=1

(
m∑

i=1
aik

)λ
) 1

λ

≤
m∑

i=1

(
n∑

k=1

aλ
ik

) 1
λ

is true for any λ > 1.

Proposition 3. Let ak ≥ 0 for all 1 ≤ k ≤ n and Gλ (a1, a2, . . . , an) be a real

function such that

Gλ (a1, a2, . . . , an) =

(
n∑

k=1

aλ
k

) 1
λ

for 1 ≤ λ < ∞,

G∞ (a1, a2, . . . , an) = max
1≤k≤n

ak for λ = ∞.

Then the family of functions {Gλ|1 ≤ λ ≤ ∞} has the following properties:

1) if λ1 ≤ λ2, then Gλ1 (a1, a2, . . . , an) ≥ Gλ2 (a1, a2, . . . , an) for all ak ≥ 0;

2) lim
λ→+∞

Gλ (a1, a2, . . . , an) = G∞ (a1, a2, . . . , an) for all ak ≥ 0;

3) sup
λ>1

Gλ (a1, a2, . . . , an) = G1 (a1, a2, . . . , an) for all ak ≥ 0.

Definition 2. A direction is a partially ordered set (Γ,≤) that satisfies the following
condition: for any two elements γ1, γ2 ∈ Γ there exists the third element γ3 ∈ Γ such
that γ1 ≤ γ3 and γ2 ≤ γ3.
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Proposition 4. Let Γ be some set and R be a ring. If {ξγ |γ ∈ Γ} is a family of

pseudonorms on the ring R, then the following statements are valid:

1. If Γ is a direction and for every r ∈ R there exists lim
γ∈Γ

ξγ (r) such that

lim
γ∈Γ

ξγ (r) 6= 0 for every r 6= 0, then the function ξ (r) = lim
γ∈Γ

ξγ (r) is a pseudonorm

on the ring R;

2. If the set {ξγ (r) |γ ∈ Γ} is bounded from above for every r ∈ R, then the

function ξ (r) = sup
γ∈Γ

ξγ (r) is a pseudonorm on the ring R.

Proposition 5. Let R and R̄ be rings and let ϕ : R → R̄ be a ring isomorphism.

If {ξγ |γ ∈ Γ} and
{
ξ̄γ |γ ∈ Γ

}
are families of pseudonorms such that ϕ : (R, ξγ) →(

R̄, ξ̄γ

)
is a semi-isometric isomorphism for any γ ∈ Γ, then the following statements

are true:

1. If Γ is a direction and there exist lim
γ∈Γ

ξγ (r), lim
γ∈Γ

ξ̄γ (r̄) for every r ∈ R, r̄ ∈ R̄

such that lim
γ∈Γ

ξ̄γ (r̄) 6= 0 for every r̄ 6= 0 and ξ (r) = lim
γ∈Γ

ξγ (r), ξ̄ (r̄) = lim
γ∈Γ

ξ̄γ (r̄) for

every r ∈ R, r̄ ∈ R̄, then ϕ : (R, ξ) →
(
R̄, ξ̄

)
is a semi-isometric isomorphism;

2. If the set {ξγ (r) |γ ∈ Γ} is bounded from above for every r ∈ R and ξ (r) =
sup
γ∈Γ

ξγ (r), ξ̄ (r̄) = sup
γ∈Γ

ξ̄γ (r̄) for every r ∈ R, r̄ ∈ R̄, then ϕ : (R, ξ) →
(
R̄, ξ̄

)
is a

semi-isometric isomorphism.

We will consider a ring of matrices Rn over a pseudonormed ring (R, ξ) and a
family of functions {ηξ,γ,σ|1 ≤ γ, σ ≤ ∞} on Rn such that

ηξ,γ,σ(A) =




n∑
i=1

(
n∑

j=1
(ξ (aij))

σ

) γ

σ




1
γ

,

ηξ,γ,∞(A) =

(
n∑

i=1

(
max

1≤j≤n
ξ (aij)

)γ) 1
γ

,

ηξ,∞,σ(A) = max
1≤i≤n

(
n∑

j=1
(ξ (aij))

σ

) 1
σ

,

ηξ,∞,∞(A) = max
1≤i,j≤n

ξ (aij)

for any A =




a11 . . . a1n

. . . . . . . . .

an1 . . . ann


 ∈ Rn.

The following theorem gives conditions for γ and σ such that the functions ηξ,γ,σ

define pseudonorms on the ring Rn.
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Theorem 3. Let (R, ξ) be a pseudonormed ring and let Rn be a ring of matrices

over the ring R with the natural operations of addition and multiplication. Then the

function ηξ,γ,σ is a pseudonorm on the ring Rn for all γ and σ such that 1 ≤ γ, σ ≤ ∞
and 1

γ
+ 1

σ
≥ 1 .

Proof. Let A =




a11 . . . a1n

. . . . . . . . .

an1 . . . ann


, B =




b11 . . . b1n

. . . . . . . . .

bn1 . . . bnn


 and η = ηξ,γ,σ,

1 < γ, σ < ∞ and 1
γ

+ 1
σ
≥ 1.

It is obvious that:

1) η(A) = 0 ⇔ A = 0;

2) η(−A) = η(A) for any A ∈ Rn.

Since ξ is a pseudonorm on the ring R then ξ (aij + bij) ≤ ξ (aij) + ξ (bij) for all
1 ≤ i, j ≤ n, and hence




n∑
i=1

(
n∑

j=1
(ξ (aij + bij))

σ

) γ

σ




1
γ

≤




n∑
i=1

(
n∑

j=1
(ξ (aij) + ξ (bij))

σ

) γ

σ




1
γ

.

It follows from Proposition 2 that

(
n∑

j=1
(ξ (aij) + ξ (bij))

σ

) 1
σ

≤
(

n∑
j=1

(ξ (aij))
σ

) 1
σ

+

(
n∑

j=1
(ξ (bij))

σ

) 1
σ

.

Then




n∑
i=1

(
n∑

j=1
(ξ (aij) + ξ (bij))

σ

) γ

σ




1
γ

≤




n∑
i=1



(

n∑
j=1

(ξ (aij))
σ

) 1
σ

+

(
n∑

j=1
(ξ (bij))

σ

) 1
σ




γ


1
γ

.

Using Proposition 2 we obtain




n∑
i=1



(

n∑
j=1

(ξ (aij))
σ

) 1
σ

+

(
n∑

j=1
(ξ (bij))

σ

) 1
σ




γ


1
γ

≤




n∑
i=1

(
n∑

j=1
(ξ (aij))

σ

) γ

σ




1
γ

+




n∑
i=1

(
n∑

j=1
(ξ (bij))

σ

) γ

σ




1
γ

.

Therefore, η(A + B) ≤ η(A) + η(B) for any A,B ∈ Rn.

Verify the inequality η(A · B) ≤ η(A) · η(B) for any A,B ∈ Rn. We consider
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η(A · B) =




n∑
i=1

(
n∑

j=1

(
ξ

(
n∑

k=1

aik · bkj

))σ
) γ

σ




1
γ

.

Since ξ is a pseudonorm then

ξ

(
n∑

k=1

aik · bkj

)
≤

n∑
k=1

ξ (aik · bkj) ≤
n∑

k=1

ξ (aik) · ξ (bkj).

Hence



n∑
i=1

(
n∑

j=1

(
ξ

(
n∑

k=1

aik · bkj

))σ
) γ

σ




1
γ

≤




n∑
i=1

(
n∑

j=1

(
n∑

k=1

ξ (aik) · ξ (bkj)

)σ
) γ

σ




1
γ

.

Let σ∗ be a positive real number such that 1
σ

+ 1
σ∗ = 1. It follows from Proposition

2 that
(

n∑
j=1

(
n∑

k=1

ξ (aik) · ξ (bkj)

)σ
) 1

σ

≤
n∑

k=1

(
n∑

j=1
(ξ (aik) · ξ (bkj))

σ

) 1
σ

=

n∑
k=1


ξ (aik) ·

(
n∑

j=1
(ξ (bkj))

σ

) 1
σ


.

Using Proposition 1 we obtain

n∑
k=1


ξ (aik) ·

(
n∑

j=1
(ξ (bkj))

σ

) 1
σ


 ≤

(
n∑

k=1

(ξ (aik))
σ

) 1
σ

·




n∑
k=1

(
n∑

j=1
(ξ (bkj))

σ

)σ∗

σ




1
σ∗

.

Then

(
n∑

j=1

(
n∑

k=1

ξ (aik) · ξ (bkj)

)σ
) 1

σ

≤
(

n∑
k=1

(ξ (aik))
σ

) 1
σ

·




n∑
k=1

(
n∑

j=1
(ξ (bkj))

σ

)σ∗

σ




1
σ∗

and



n∑
i=1

(
n∑

j=1

(
n∑

k=1

ξ (aik) · ξ (bkj)

)σ
) γ

σ




1
γ

≤

(
n∑

i=1

(
n∑

k=1

(ξ (aik))
σ

) γ

σ

) 1
γ

·




n∑
k=1

(
n∑

j=1
(ξ (bkj))

σ

)σ∗

σ




1
σ∗

.

We have the inequality
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η(A · B) =




n∑
i=1

(
n∑

j=1

(
ξ

(
n∑

k=1

aik · bkj

))σ
) γ

σ




1
γ

≤




n∑
i=1

(
n∑

j=1

(
n∑

k=1

ξ (aik) · ξ (bkj)

)σ
) γ

σ




1
γ

≤
(

n∑
i=1

(
n∑

k=1

(ξ (aik))
σ

) γ

σ

) 1
γ

·




n∑
k=1

(
n∑

j=1
(ξ (bkj))

σ

)σ∗

σ




1
σ∗

= η(A) ·




n∑
k=1

(
n∑

j=1
(ξ (bkj))

σ

)σ∗

σ




1
σ∗

.

Since 1
γ

+ 1
σ
≥ 1 and 1

σ
+ 1

σ∗ = 1 then 1
γ
≥ 1

σ∗ and so γ ≤ σ∗. Hence it follows from
Proposition 3 that




n∑
k=1

(
n∑

j=1
(ξ (bkj))

σ

)σ∗

σ




1
σ∗

≤




n∑
k=1

(
n∑

j=1
(ξ (bkj))

σ

) γ

σ




1
γ

.

Therefore η(A · B) ≤ η(A) · η(B) for any A,B ∈ Rn.

Thus, the function η = ηξ,γ,σ is a pseudonorm on the ring Rn for all γ and σ

such that 1 < γ, σ < ∞ and 1
γ

+ 1
σ
≥ 1 .

It follows from Proposition 3 that

ηξ,1,σ = sup
1<γ≤ σ

σ−1

ηξ,γ,σ = sup
γ>1

ηξ,γ,σ,

ηξ,γ,1 = sup
1<σ≤ γ

γ−1

ηξ,γ,σ = sup
σ>1

ηξ,γ,σ,

ηξ,1,1 = sup
γ>1

ηξ,γ,1 = sup
σ>1

ηξ,1,σ,

ηξ,1,∞ = lim
σ→+∞

ηξ,1,σ,

ηξ,∞,1 = lim
γ→+∞

ηξ,γ,1.

Therefore by Proposition 4 the functions ηξ,1,σ, ηξ,γ,1, ηξ,1,1, ηξ,1,∞, ηξ,∞,1 are
pseudonorms on the ring Rn too for all 1 < γ, σ < ∞.

Thus, the function η = ηξ,γ,σ is a pseudonorm on the ring Rn for any γ and σ

such that 1 ≤ γ, σ ≤ ∞ and 1
γ

+ 1
σ
≥ 1.

Remark 1. The conditions γ, σ ≥ 1 and 1
γ

+ 1
σ
≥ 1 are essential. Consider examples

which show that if these conditions are not satisfied, then the function ηξ,p,q is not
a pseudonorm on the ring Rn .

Let R be the ring of real numbers and ξ(r) = |r| be a norm on the ring R ; let

R2 be the ring of real matrices A =

(
a11 a12

a21 a22

)
, γ, σ > 0 and η = ηξ,γ,σ be a

pseudonorm on the ring R2.
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1. If A = B =

(
1 1
1 1

)
and 1

γ
+ 1

σ
< 1, then

η(A · B) = 2
1
γ
+ 1

σ
+1

> 2
1
γ
+ 1

σ · 2
1
γ
+ 1

σ = η(A) · η(B).

2. If A =

(
1 1
0 1

)
, B =

(
1 1
1 1

)
and γ = ∞, σ > 1, then

η(A · B) = 2
1
σ

+1 > 2
1
σ · 2 1

σ = η(A) · η(B).

3. If A =

(
1 1
1 1

)
, B =

(
1 1
0 1

)
and σ = ∞, γ > 1, then

η(A · B) = 2
1
γ
+1

> 2
1
γ · 2

1
γ = η(A) · η(B).

4. If A = B =

(
1 1
0 1

)
and γ = σ = ∞, then

η(B · A) = 2 > 1 · 1 = η(B) · η(A).

5. If A =

(
0 1
0 1

)
, B =

(
1 0
1 0

)
and σ < 1, then

η(A + B) = 2
1
γ
+ 1

σ > 2
1
γ + 2

1
γ = η(A) + η(B).

6. If A =

(
0 0
1 1

)
, B =

(
1 1
0 0

)
and γ < 1, then

η(A + B) = 2
1
γ
+ 1

σ > 2
1
σ + 2

1
σ = η(A) + η(B).

7. If A =

(
0 1
0 1

)
, B =

(
1 0
1 0

)
and γ = ∞, σ < 1, then

η(A + B) = 2
1
σ > 1 + 1 = η(A) + η(B).

8. If A =

(
0 0
1 1

)
, B =

(
1 1
0 0

)
and σ = ∞, γ < 1, then

η(A + B) = 2
1
γ > 1 + 1 = η(A) + η(B).

So ηξ,γ,σ is not a pseudonorm on the ring R2 if the conditions γ, σ ≥ 1 and
1
γ

+ 1
σ
≥ 1 are violated.

Theorem 4. Let (R, ξ), (R̄, ξ̄) be pseudonormed rings, ϕ : (R, ξ) → (R̄, ξ) be a

semi-isometric isomorphism, Rn and R̄n be rings of matrices over the rings R and

R̄ with the pseudonorms ηξ,γ,σ and ηξ̄,γ,σ, respectively, where 1 ≤ γ, σ ≤ ∞ and
1
γ

+ 1
σ
≥ 1 . Then the mapping Φ : (Rn, ηξ,γ,σ) → (R̄n, ηξ̄,γ,σ) given by
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Φ




a11 . . . a1n

. . . . . . . . .

an1 . . . ann


 =




ϕ(a11) . . . ϕ(a1n)
. . . . . . . . .

ϕ(an1) . . . ϕ(ann)




is a semi-isometric isomorphism too.

Proof. Let 1 < γ, σ < ∞, 1
γ
+ 1

σ
≥ 1 and let η = ηξ,γ,σ and η = ηξ,γ,σ be pseudonorms

on the rings Rn and R̄n. We verify the conditions of Theorem 2 for the mapping
Φ : (Rn, η) → (R̄n, η) .

Let us show that the inequality η(A · B) ≤ η(Φ(A)) · η(B) is valid for any

A =




a11 . . . a1n

. . . . . . . . .

an1 . . . ann


 , B =




b11 . . . b1n

. . . . . . . . .

bn1 . . . bnn


 ∈ Rn.

Since ξ(a + b) ≤ ξ(a) + ξ(b) and ξ(a · b) ≤ ξ(ϕ(a)) · ξ(b) by Theorem 2 then

ξ

(
n∑

k=1

aik · bkj

)
≤

n∑
k=1

ξ (aik · bkj) ≤
n∑

k=1

ξ (ϕ (aik)) · ξ (bkj),

and hence

η(A · B) =




n∑
i=1

(
n∑

j=1

(
ξ

(
n∑

k=1

aik · bkj

))σ
) γ

σ




1
γ

≤




n∑
i=1

(
n∑

j=1

(
n∑

k=1

ξ (ϕ (aik)) · ξ (bkj)

)σ
) γ

σ




1
γ

.

It follows from Proposition 2 that

(
n∑

j=1

(
n∑

k=1

ξ (ϕ (aik)) · ξ (bkj)

)σ
) 1

σ

≤
n∑

k=1


ξ (ϕ (aik)) ·

(
n∑

j=1
(ξ (bkj))

σ

) 1
σ


.

Let σ∗ be a positive real number such that 1
σ

+ 1
σ∗ = 1. Using Proposition 1 we

obtain the ineguality

n∑
k=1


ξ (ϕ (aik)) ·

(
n∑

j=1
(ξ (bkj))

σ

) 1
σ


 ≤

(
n∑

k=1

(
ξ (ϕ (aik))

)σ
) 1

σ

·




n∑
k=1

(
n∑

j=1
(ξ (bkj))

σ

)σ∗

σ




1
σ∗

.

Then
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


n∑
i=1

(
n∑

j=1

(
n∑

k=1

ξ (ϕ (aik)) · ξ (bkj)

)σ
) γ

σ




1
γ

≤

(
n∑

i=1

(
n∑

k=1

(
ξ (ϕ (aik))

)σ
) γ

σ

) 1
γ

·




n∑
k=1

(
n∑

j=1
(ξ (bkj))

σ

)σ∗

σ




1
σ∗

.

Since 1
γ

+ 1
σ
≥ 1 and 1

σ
+ 1

σ∗ = 1 then γ ≤ σ∗. Hence it follows from Proposition 3
that




n∑
k=1

(
n∑

j=1
(ξ (bkj))

σ

)σ∗

σ




1
σ∗

≤




n∑
k=1

(
n∑

j=1
(ξ (bkj))

σ

) γ

σ




1
γ

= η(B).

We have the inequality

η(A · B) ≤




n∑
i=1

(
n∑

j=1

(
n∑

k=1

ξ (ϕ (aik)) · ξ (bkj)

)σ
) γ

σ




1
γ

≤

(
n∑

i=1

(
n∑

k=1

(
ξ (ϕ (aik))

)σ
) γ

σ

) 1
γ

·




n∑
k=1

(
n∑

j=1
(ξ (bkj))

σ

)σ∗

σ




1
σ∗

≤ η(Φ(A)) · η(B).

Let us show that the inequality η(B ·A) ≤ η(Φ(A)) · η(B) is true for any A,B ∈
Rn. Since ξ

(
n∑

k=1

bik · akj

)
≤

n∑
k=1

ξ (bik · akj) ≤
n∑

k=1

ξ (bik) · ξ (ϕ (akj)), then




n∑

i=1




n∑

j=1

(
ξ

(
n∑

k=1

bik · akj

))σ



γ

σ




1
γ

≤




n∑

i=1




n∑

j=1

(
n∑

k=1

ξ (bik) · ξ (ϕ (akj))

)σ



γ

σ




1
γ

. It follows from Proposition 2 that

(
n∑

j=1

(
n∑

k=1

ξ (bik) · ξ (ϕ (akj))

)σ
) 1

σ

≤
n∑

k=1


ξ (bik) ·

(
n∑

j=1

(
ξ (ϕ (akj))

)σ
) 1

σ


.

Using Proposition 1 we have

n∑
k=1


ξ (bik) ·

(
n∑

j=1

(
ξ (ϕ (akj))

)σ
) 1

σ


 ≤

(
n∑

k=1

(ξ (bik))
σ

) 1
σ

·




n∑
k=1

(
n∑

j=1

(
ξ (ϕ (akj))

)σ
)σ∗

σ




1
σ∗

.
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Then

(
n∑

j=1

(
n∑

k=1

ξ (bik) · ξ (ϕ (akj))

)σ
) 1

σ

≤

(
n∑

k=1

(ξ (bik))
σ

) 1
σ

·




n∑
k=1

(
n∑

j=1

(
ξ (ϕ (akj))

)σ
)σ∗

σ




1
σ∗

,

and hence




n∑
i=1

(
n∑

j=1

(
n∑

k=1

ξ (bik) · ξ (ϕ (akj))

)σ
) γ

σ




1
γ

≤

(
n∑

i=1

(
n∑

k=1

(ξ (bik))
σ

) γ

σ

) 1
γ

·




n∑
k=1

(
n∑

j=1

(
ξ (ϕ (akj))

)σ
)σ∗

σ




1
σ∗

.

Since γ ≤ σ∗ then it follows from Proposition 3 that




n∑
k=1

(
n∑

j=1

(
ξ (ϕ (akj))

)σ
)σ∗

σ




1
σ∗

≤




n∑
k=1

(
n∑

j=1

(
ξ (ϕ (akj))

)σ
) γ

σ




1
γ

= η(Φ(A)).

We obtain the inequality

η(B · A) ≤




n∑
i=1

(
n∑

j=1

(
n∑

k=1

ξ (bik) · ξ (ϕ (akj))

)σ
) γ

σ




1
γ

≤

(
n∑

i=1

(
n∑

k=1

(ξ (bik))
σ

) γ

σ

) 1
γ

·




n∑
k=1

(
n∑

j=1

(
ξ (ϕ (akj))

)σ
)σ∗

σ




1
σ∗

≤ η (B) · η(Φ(A)).

The inequality η(Φ(A)) ≤ η(A) follows from the inequality ξ(ϕ(aij)) ≤ ξ(aij).

All conditions of Theorem 2 are valid. Therefore the mapping Φ : (Rn, ηξ,γ,σ) →
(R̄n, ηξ̄,γ,σ) is a semi-isometric isomorphism when 1 < γ, σ < ∞ and 1

γ
+ 1

σ
≥ 1.

Since ηξ,1,σ = sup
1<γ≤ σ

σ−1

ηξ,γ,σ, ηξ,γ,1 = sup
1<σ≤ γ

γ−1

ηξ,γ,σ, ηξ,1,1 = sup
γ>1

ηξ,γ,1 =

sup
σ>1

ηξ,1,σ, ηξ,1,∞ = lim
σ→+∞

ηξ,1,σ and ηξ,∞,1 = lim
γ→+∞

ηξ,γ,1 then it follows

from Proposition 5 that Φ : (Rn, ηξ,1,σ) → (R̄n, ηξ̄,1,σ) for any 1 < σ < ∞,
Φ : (Rn, ηξ,γ,1) → (R̄n, ηξ̄,γ,1) for any 1 < γ < ∞, Φ : (Rn, ηξ,1,∞) → (R̄n, ηξ̄,1,∞),
Φ : (Rn, ηξ,∞,1) → (R̄n, ηξ̄,∞,1) and Φ : (Rn, ηξ,1,1) → (R̄n, ηξ̄,1,1) are semi-isometric
isomorphisms too.

Thus the mapping Φ : (Rn, ηξ,γ,σ) → (R̄n, ηξ̄,γ,σ) is a semi-isometric isomorphism

for any γ and σ such that 1 ≤ γ, σ ≤ ∞ and 1
γ

+ 1
σ
≥ 1 .
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Compact Global Attractors of Non-Autonomous

Gradient-Like Dynamical Systems

David Cheban

Abstract. In this paper we study the asymptotic behavior of gradient-like non-
autonomous dynamical systems. We give a description of the structure of the Levinson
center (maximal compact invariant set) for this class of systems.
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1 Introduction

Denote by S the set of all real (R) or integer (Z) numbers and S+ :=
{s ∈ S : s ≥ 0}. Let T := R+ or Z+, X be a complete metric space and (X,T, π)
be a dynamical system.

A continuous function V : X 7→ R is said to be a (global) Lyapunov function
for (X,T, π) if V (π(t, x)) ≤ V (x) for all x ∈ X and t ∈ T.

If π(t, x) = x for all t ≥ 0, then x ∈ X is called a fixed (stationary) point of the
dynamical system (X,T, π), and by Fix(π) we will denote the set of all fixed points
of (X,T, π).

A dynamical system (X,T, π) with the Lyapunov function V is called a gradient
system if the equality V (π(t, x)) = V (x) (for all t ≥ 0) implies x ∈ Fix(π).

The simplest example of gradient dynamical system is defined by the differential
equation

x′ = −∇V (x) (x ∈ R
n), (1)

where V : R
n 7→ R is a continuously differentiable function and ∇ := {∂x1 , . . . , ∂xn}.

Indeed, if we suppose that equation (1) admits a unique solution π(t, x) passing
through the point x ∈ R

n at the initial moment t = 0 and defined on R+, then

d

dt
V (π(t, x)) = −|∇V (π(t, x)|2 ≤ 0 (2)

for all x ∈ R
n and t > 0. From (2) we obtain V (π(t, x)) ≤ V (x) for all t ≥ 0 and if

V (π(t, x)) = V (x) for all t ≥ 0, then from (1) we have x ∈ Fix(π), i. e., (Rn,R+, π)
(the dynamical system generates by equation (1).

The asymptotic behavior of gradient dynamical systems is well studied (see, for
example, [2], [3, ChIII], [9, ChV], [16, ChIII], [17], [24, ChIX] and the bibliography
therein).

c© David Cheban, 2014
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The aim of this paper is to study the asymptotic behavior of a class of abstract
non-autonomous (gradient-like) dynamical systems. The paper is organized as fol-
lows. In the second section we give with the proof some (more or less) known results
for general autonomous gradient-like semi-group dynamical systems (Lemma 1).

The third section is dedicated to the gradient systems. The main result (Theo-
rem 2) of this section contains the sufficient conditions when a gradient dynamical
system admits a compact global attractor.

In the fourth section we study the gradient dynamical systems with finite number
of fixed points. For the compact dissipative gradient dynamical system we give a
description of the structure of its Levinson center (Lemma 4).

The fifth section is dedicated to the study of the relation between the set of
all fixed points and chain recurrent points (Theorem 4) for the gradient dynamical
systems admitting a compact global attractor.

In the sixth section we introduce the notion of gradient-like non-autonomous
dynamical systems. The main result of this section is Theorem 7 which contains
a description of the structure of compact global attractor for a gradient-like non-
autonomous dynamical system with minimal base.

2 Gradient-like systems

Denote by ωx := {y ∈ X : there exists a sequence {tn} ⊂ T such that tn → +∞
and π(tn, x) → y as n→ +∞ } and J+

x := {y ∈ X : there exist sequences {tn} ⊂ T

and {xn} ⊂ X such that tn → +∞, xn → x and π(tn, xn) → y as n→ +∞ }.

Definition 1. A continuous function γ : S 7→ X is called a full trajectory of dyna-
mical system (X,T, π) passing through the point x ∈ X at the initial moment t = 0
if γ(0) = x and π(t, γ(s)) = γ(t+ s) for all t ∈ T and s ∈ S.

By Φx we denote the set of all full trajectories of (X,T, π) passing through the
point x at the initial moment and αγ := {y ∈ X : there exists a sequence tn → −∞
such that γ(tn) → y}.

Definition 2. A dynamical system (X,T, π) is said to be a gradient-like dynamical
system if it has a global Lyapunov function.

Lemma 1. Let (X,T, π) be a gradient-like dynamical system and V be its Lyapunov

function, then the following statements hold:

1) for all x ∈ X there exists a constant Cx ∈ R such that V (p) = Cx for any

p ∈ ωx if the positive semi–trajectory π(T+, x) is relatively compact;

2) if γ ∈ Φx and the negative semi–trajectory γ(T−) is relatively compact, then

there exists cγ ∈ R such that V (q) = cγ for all q ∈ αγ;

3) if x ∈ X is a non-wandering point (i.e., x ∈ J+
x ), then V (π(t, x)) = V (x) for

all t ∈ T+.
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Proof. Consider the continuous function ψ : T+ 7→ R defined by the equality ψ(t) :=
V (π(t, x)) for all t ≥ 0. Since ψ(t2) ≤ ψ(t1) for all t2 ≥ t1 and V is upper-bounded
along trajectories of (X,T, π), then there exists lim

t→+∞
V (π(t, x)) = Cx. Let now

p ∈ ωx, then there exist tn → +∞ such that p = lim
t→+∞

π(tn, x) and, consequently,

V (p) = lim
n→∞

V (π(tn, x)) = Cx.

Consider the function ψ : T− 7→ R defined by the equality ψ(s) := V (γ(s)) for
all s ∈ T−, where γ ∈ Φx. Since ψ(s1) ≥ ψ(s2) for all s1 ≤ s2 (s1, s2 ∈ T−) and
ψ is upper-bounded on T−, then there exists lim

t→+∞
V (γ(t)) = cγ . If q ∈ αγ then

there exists a sequence {sn} ⊆ T− with sn → −∞ such that q = lim
n→∞

γ(sn) and

V (q) = lim
n→∞

V (γ(sn)) = cγ .

Let p ∈ J+
x . Since J+

x ⊆ J+
π(t,x) for all t ∈ T, then we have p = lim

n→∞
π(tn, x̃n),

where tn → +∞ and x̃n → π(t, x). Thus we obtain

V (p) = lim
n→∞

V (π(tn, x̃n)) ≤ lim
n→∞

V (x̃n) = V (π(t, x)).

In particular, V (x) ≤ V (π(t, x)) since x ∈ J+
x . On the other hand V (π(t, x)) ≤ V (x)

for all x ∈ X and t ≥ 0 and, consequently, we have V (π(t, x)) = V (x) for all
t ≥ 0.

Let M be a subset of X. Denote by W u(M) := {x ∈ X : there exists γ ∈ Φx

such that lim
t→−∞

ρ(γ(t),M) = 0}.

Remark 1. The first and second statements of Lemma 1 are well known (LaSalle’s
invariance principle).

2. The third statement is a slight modification of a result from [4, p.131].

3 Gradient systems

Definition 3. x ∈ X is called a stationary point (fixed point, singular point) if
π(t, x) = x for all t ∈ T.

Denote by Fix(π) the set of all fixed points of dynamical system (X,T, π) and
J+
x := {p ∈ X : there are xn → x and tn → +∞ such that π(tn, xn) → p}.

Definition 4. (X,T, π) is called a gradient dynamical system if there exists a Lya-
punov function V : X 7→ R with the following property: if V (π(t, x)) = V (x) for all
t ≥ 0 then x ∈ Fix(π).

Lemma 2. Let (X,T, π) be a gradient dynamical system, then ΩX = Ω(π) =
Fix(π), where ΩX :=

⋃{ωx : x ∈ X} and Ω(π) = {x ∈ X : x ∈ J+
x }.

Proof. The inclusions Fix(π) ⊆ ΩX ⊆ Ω(π) are evident and take place for arbitrary
dynamical systems (including gradient systems too). To finish the proof of Lemma
it is sufficient to establish the inclusion Ω(π) ⊆ Fix(π) for gradient systems. Let
x ∈ Ω(π), then x ∈ J+

x and by Lemma 1 (item 3) we have V (π(t, x)) = V (x) for all
t ≥ 0 and, consequently, x ∈ Fix(π).



88 DAVID CHEBAN

Definition 5. A subset M ⊆ X is called bounded if its diameter d(M) :=
sup{d(p, q) : p, q ∈M} is finite.

Remark 2. 1. A subset M ⊆ X is bounded if and only if for every x0 ∈ X there
exists a number Cx0 ≥ 0 such that ρ(x0, x) ≤ Cx0 for all x ∈M .

2. A subset M ⊆ X is unbounded if and only if there exist a point x0 ∈ X and
a sequence {xn} ⊆M such that ρ(xn, x0) → +∞ as n→ ∞.

Let A and B be two bounded subsets from X. Denote by β(A,B) :=
sup{ρ(a,B) : a ∈ A}, where ρ(a,B) := inf{ρ(a, b) : b ∈ B}.

Definition 6. A dynamical system (X,T, π) is said to be:

– point dissipative if there exists a nonempty compact subset K ⊆ X such that

lim
t→∞

ρ(π(t, x),K) = 0 (3)

for all x ∈ X;

– compact dissipative if it is point dissipative and equality (3) takes pace uni-
formly with respect to x ∈ X on every compact subset from X.

Remark 3. If the dynamical system (X,T, π) is compact dissipative, then in X there
exists a maximal compact invariant set J (Levinson center [10, ChI]) which attracts
every compact subset from X.

Theorem 1 (see [10, ChI]). Suppose that (X,T, π) is a point dissipative dynamical

system, then it will be compact dissipative if and only if for any compact subset

K ⊆ X the set Σ+
K := {π(t, x) : t ≥ 0, x ∈ K} is relatively compact.

Theorem 2. Suppose that the following conditions hold:

1) (X,T, π) is asymptotically compact;

2) (X,T, π) is a gradient dynamical system and V : X 7→ R is its Lyapunov

function;

3) the set Fix(π) is bounded;

4) for any sequence {xn} with the property ρ(xn, x0) → +∞ as n → ∞ we have

V (xn) → +∞, where x0 is some point from X.

Then the following statements hold:

1) the dynamical system (X,T, π) is compact dissipative;

2) if the Lyapunov function V is bounded on every bounded subset from X, then

the Levinson center J of (X,T, π) attracts every bounded subset M from X,

i.e.,

lim
t→+∞

β(πtM,J) = 0.
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Proof. Let x ∈ X be an arbitrary point. Note that the positive semi-trajectory Σ+
x

of point x is a bounded set. In fact, if we suppose that it is not so, then there exist a
point x0 ∈ X and a sequence tn → +∞ such that ρ(π(tn, x), x0) → +∞ as n→ ∞.
Under the conditions of Theorem we have V (π(tn, x)) → +∞. On the other hand
we have V (π(tn, x)) ≤ V (x) for all n ∈ N. The obtained contradiction proves our
statement. Since the dynamical system (X,T, π) is asymptotically compact, then
the semi-trajectory Σ+

x is relatively compact, and consequently, ωx is a nonempty
compact set. According to Lemma 2 we have ωx ⊆ Fix(π). Note that the set Fix(π)
is closed and invariant. Since the dynamical system (X,T, π) is asymptotically
compact and Fix(π) is bounded, then it is compact. Thus every semi-trajectory
Σ+
x of (X,T, π) is relatively compact and there exists a nonempty compact subset

K := Fix(π) ⊂ X such that ΩX ⊆ K. This means that the dynamical system
(X,T, π) is point-wise dissipative.

Let now M be an arbitrary nonempty compact subset from X. We will prove
that the positive semi-trajectory Σ+

M of the set M is relatively compact. To this
end under the conditions of Theorem it is sufficient to establish that it is bounded.
Denote by c := max{V (x) : x ∈ M} and Mc := {x ∈ X : V (x) ≤ c}. Note that
Mc is a bounded subset of X. Indeed, if we suppose that it is not true, then there
exists a point x0 ∈ X and sequence {xn} ⊆ Mc such that ρ(xn, x0) → +∞ and,
consequently, V (xn) → +∞ as n → +∞. On the other hand xn ∈ Mc and, conse-
quently, V (xn) ≤ c for all n ∈ N. The obtained contradiction proves our statement.
Thus the dynamical system (X,T, π) is point dissipative and semi-trajectory Σ+

M

is relatively compact for any compact subset M ⊆ X. By Theorem 1 (X,T, π) is
compact dissipative.

Denote by J its Levinson center and consider an arbitrary bounded subset M
from X then, under the conditions of Theorem 2, the set V (M) ⊂ R is bounded.
Now we will prove that the semi-trajectory Σ+

M is a bounded subset of X for every
bounded set M ⊆ X. Indeed, denote by c := sup{V (x) : x ∈ M}, then we have
V (π(t, x)) ≤ V (x) ≤ c for all x ∈ M and t ≥ 0 and, consequently Σ+

M ⊆ Mc. Thus
the set Σ+

M is bounded and positive invariant. Since the dynamical system (X,T, π)
is asymptotically compact, then the set Ω(M) is nonempty, compact and it attracts
the set M , i.e.,

lim
t→+∞

β(πtM,Ω(M)) = 0,

where

Ω(M) :=
⋂

t≥0

⋃

τ≥t

π(τ,M).

Since J is a maximal compact invariant of the dynamical system (X,T, π), then
Ω(M) ⊆ J and, consequently, J attracts M . The theorem is proved.

Remark 4. Note that the second statement of Theorem 2 remains true (see Theorem
3.8.5 [16, ChIII] and [21]) if we replace the condition of boundedness of the function
V on every bounded subset from X by the following: for every bounded subset M



90 DAVID CHEBAN

from X there exists a number τ ≥ 0 such that the set {π(t, x) : x ∈ M, t ≥ τ} is
bounded.

4 Gradient systems with finite number of fixed points

In this section we will study the gradient dynamical systems (X,T, π) with finite
set Fix(π) of fixed points.

Lemma 3. Let (X,T, π) be a dynamical system and the following conditions hold:

1) every positive semi-trajectory Σ+
x is relatively compact;

2) ΩX ⊆ Fix(π);

3) the set Fix(π) is finite, i.e., there are a finite number of stationary points

p1, p2, . . . , pm of dynamical system (X,T, π) such that ΩX = {p1, p2, . . . , pm}.

Then every point x ∈ X is asymptotically stationary, i.e., there exists a point

pi ∈ Fix(π) (1 ≤ i ≤ m) such that

lim
t→+∞

ρ(π(t, x), pi) = 0. (4)

Proof. Let x ∈ X. Since Σ+
x is relatively compact, then the set ωx is nonempty,

compact, invariant, and it attracts the point x. On the other hand ωx ⊆ ΩX =
{p1, p2, . . . , pm}. Thus there are 1 ≤ i1 < i2 < . . . < ik ≤ m such that
ωx = {pi1, pi2 , . . . , pik}. Taking into account that the set ωx is dynamically un-
decomposable we conclude that the set ω contains a single stationary point pi and,
consequently, we have the equality (4).

We put Ax :=
⋃
{αγ : γ ∈ Φx}, AX :=

⋃
{αx : x ∈ X} and ∆X := ΩX

⋃
AX .

If p ∈ Fix(π), then by W u(p) := {y ∈ X : lim
t→−∞

ρ(γ(t), p) = 0 for certain γ ∈ Φy}
we denote the unstable ”manifold” of p.

Lemma 4. Suppose that the following conditions are fulfilled:

1) the dynamical system (X,T, π) is compact dissipative and J is its Levinson

center;

2) ∆X ⊆ Fix(π);

3) the set Fix(π) is finite, i.e., Fix(π) = {p1, p2, . . . , pm}.

Then the following equality

J =
⋃

{W u(p) : p ∈ Fix(π)}

takes place.



COMPACT GLOBAL ATTRACTORS OF NON-AUTONOMOUS GRADIENT-LIKE . . . 91

Proof. Since J is a maximal compact invariant set of (X,T, π), then Fix(π) ⊆ J and
W u(p) ⊆ J for all p ∈ Fix(π). Thus to finish the proof it is sufficient to establish
that J ⊆ ⋃{W u(p) : p ∈ Fix(π)}. Since J ⊆ X is a compact invariant set, then
every motion γ ∈ Φ :=

⋃{Φx : x ∈ J} is defined on S and Φ is compact with
respect to compact-open topology. Consider a two-sided shift dynamical system
(with uniqueness) (Φ,S, σ). We note that Fix(σ) = {p1, p2, . . . , pm}. The inclusion
{p1, p2, . . . , pm} ⊆ Fix(σ) is evident. Thus to prove our statement it is sufficient to
show the inclusion Fix(σ) ⊆ {p1, p2, . . . , pm}. Let ψ ∈ Fix(σ), then ψ(t) = ψ(0)
for all t ∈ S and, consequently, ψ ∈ Φψ(0) and ψ(0) ∈ αψ ⊆ ∆X ⊆ Fix(π) =
{p1, p2, . . . , pm}. Thus there exists a number 1 ≤ i ≤ m such that ψ(0) = pi and,
consequently, ψ(t) = pi for all t ∈ S, i.e., ψ = pi ∈ {p1, p2, . . . , pm}. Let x ∈ J

and γ ∈ Φx. Denote by α̃γ the α–limit set of the point γ ∈ Φ with respect to
shift dynamical system (Φ,S, σ). If ψ ∈ α̃γ , then there exists a sequence tn → −∞
such that ψ(t) = lim

n→∞
γ(t + tn) and the last equality takes place uniformly on

every compact from S. Thus ψ(0) ∈ αγ ⊆ {p1, p2, . . . , pm} and ψ ∈ Φψ(0). Thus
there exists a number i such that ψ(0) = pi and, consequently, ψ = pi, i.e., α̃γ ⊆
{p1, p2, . . . , pm}. Taking into account that the set α̃γ is dynamically undecomposable
we conclude that the set α̃γ consists of a single stationary point pj and, consequently,
lim

t→−∞
ρ(γ(t), pj) = 0. Thus we have x ∈ W u(pj) and, consequently, J ⊆ ⋃{W u(p) :

p ∈ Fix(π)}.

Remark 5. Lemma 4 remains true if we replace the condition ∆X ⊆ Per(π) by
AX ⊆ Per(π), where AX :=

⋃{αγ : γ ∈ Φ(π)}.
Remark 6. The statements close to Lemma 4 (see also Remark 5) were published in
the works [3, ChIII] and [23].

Lemma 5 (see [1]). Let x ∈ X and y ∈ ωx, then J+
x ⊆ J+

y = D+
y .

Lemma 6. Suppose that (X,T, π) is a compact dissipative dynamical system and J

is its Levinson center, then the following statements hold:

1) ωx ⊆ Ω(π) for all x ∈ X;

2) αγ = ∅ for all γ ∈ Φx and x /∈ J ;

3) αγ ⊆ Ω(π) for all γ ∈ Φx and x ∈ J .

Proof. Let x ∈ X. Since the dynamical system (X,T, π) is compact dissipative, then
ωx is a nonempty, compact and invariant set. If y ∈ ωx, then according to Lemma
5 we have J+

y = D+
y . Since y ∈ D+

y , then y ∈ J+
y , i.e., ωx ⊆ Ω(π).

Let now x /∈ J , γ ∈ Φx and p ∈ αγ , then there exists a sequence tn → −∞ such
that p = lim

n→∞
γ(tn). Denote byK := {γ(tn)}

⋃{p}, then the setK is compact. Since

the dynamical system (X,T, π) is compact dissipative and J its Levinson center, then
Ω(K) is a nonempty compact set and Ω(K) ⊆ J . Note that x = γ(0) = π(−tn, γ(tn))
and, consequently, x ∈ Ω(K) ⊆ J . The obtained contradiction proves our statement.



92 DAVID CHEBAN

If x ∈ J, γ ∈ Φx and p ∈ αγ , then there exists a sequence tn → −∞ such that
p = lim

n→∞
γ(tn). Consider the sequence {σ(tn, γ)} ⊆ Φ. Since the space Φ is compact

(with respect to compact-open topology) without loss of generality we may suppose
that the sequence {σ(tn, γ)} is convergent. Denote by ψ its limit, then ψ ∈ α̃γ and,
consequently, ψ ∈ J+

ψ . This means that there are sequence {ψn} → ψ and tn → +∞
such that ψ = lim

n→∞
σ(tn, ψn). In particular, we have p = ψ(0) = lim

n→∞
σ(tn, ψn)(0) =

lim
n→∞

ψn(tn) = lim
n→∞

π(tn, ψn(0)). Since ψn(0) → ψ(0) = p as n → ∞, then we have

p ∈ J+
p .

Corollary 1. Suppose that (X,T, π) is a compact dissipative dynamical system and

J is its Levinson center, then we have ∆X ⊆ Ω(π).

Definition 7. Let p, q ∈ Fix(π). The point p is said to be chained to q, written
q 7→ p, if there exists a full trajectory γ ∈ Φx for some x /∈ {p, q} such that αγ = q

and ωx = {p}. A finite sequence {p1, p2, . . . , pk} ⊆ Fix(π) is called a k-chain if
p1 7→ p2 7→ . . . 7→ pk. The k-chain is called a k-cycle if pk = p1.

Definition 8. Recall that:

– a nonempty compact invariant subset M of X is said to be locally maximal
for (X,T, π) if it is the maximal compact invariant set in some neighborhood
of itself;

– a dynamical system (X,T, π) is called asymptotically compact if for every
bounded positive invariant subset B ⊆ X its ω-limit set Ω(B) is nonempty,
compact and

lim
t→∞

β(π(t, B),Ω(B)) = 0.

Lemma 7. Suppose that the following conditions hold:

1) (X,T, π) is a compact dissipative dynamical system and J its Levinson center;

2) (X,T, π) is a gradient system and Fix(π) = {p1, p2, . . . , pm};

3) the set Fix(π) does not contain any 1-cycles.

Then every set Mi := {pi} (i = 1, 2, . . . ,m) is locally maximal.

Proof. We will show that every subset Mi (i = 1, 2, . . . ,m) is locally maximal.
Denote by d := min{dij : i, j = 1, 2, . . . ,m and i 6= j}, where dij = ρ(pi, pj) is the
distance between pi and pj . We will show that Mi is the maximal invariant set in
B(pi, δ) := {x ∈ X : ρ(x, pi) < δ}, where 0 < δ < d/3. Indeed, suppose that it is
not true, then there exists a compact invariant set M ⊂ B(pi, δ) such that M 6= Mi.
Let x ∈ M \Mi, then there exists a full trajectory γ ∈ Φx such that γ(S) ⊆ M .
By Lemma 3 and Lemma 4 there exist points p, q ∈ Fix(π) such that αγ = {p}
and ωx = {q}. Since p, q ∈ M ⊂ B(pi, δ), then according to the choice of δ we
have p = q = pi, i.e., we obtain a 1-cycle pi 7→ pi. Thus the obtained contradiction
completes the proof of Lemma.
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5 Chain-recurrent motions

Let Σ ⊆ X be a compact positive invariant set, ε > 0 and t > 0.

Definition 9. The collection {x = x0, x1, x2, . . . , xk = y; t0, t1, . . . , tk} of the points
xi ∈ Σ and the numbers ti ∈ T such that ti ≥ t and ρ(xiti, xi+1) < ε (i = 0, 1, . . . ,
k− 1) is called (see, for example, [7,8], [14,15] and [24]) a (ε, t, π)–chain joining the
points x and y.

We denote by P (Σ) the set {(x, y) : x, y ∈ Σ,∀ ε > 0 ∀ t > 0 ∃ (ε, t, π)-chain
joining x and y}. The relation P (Σ) is closed, invariant and transitive
[7, 14,19,22,24].

Definition 10. The point x ∈ Σ is called chain-recurrent (in Σ) if (x, x) ∈ P (Σ).

We denote by R(Σ) the set of all chain-recurrent (in Σ) points from Σ.

Definition 11. Let A ⊆ X be a nonempty positive invariant set. The set A is
called (see, for example, [18]) internally chain recurrent if R(A) = A, and internally
chain transitive if the following stronger condition holds: for any a, b ∈ A and any
ε > 0 and t > 0, there is an (ε, t, π)-chain in A connecting a and b.

The set of all chain recurrent points for (X,T, π) is denoted by R(Σ), i.e.,
R(Σ) := {x ∈ Σ : (x, x) ∈ P (Σ)}. On R(Σ) we will introduce a relation ∼ as
follows: x ∼ y if and only if (x, y) ∈ P (Σ) and (y, x) ∈ P (Σ). It is easy to check
that the introduced relation ∼ on R(Σ) is a relation of equivalence and, consequently,
it is easy to decompose it into the classes of equivalence {Rλ : λ ∈ L} (internally
chain transitive subsets), i.e., R(Σ) = ⊔{Rλ : λ ∈ L}. By Proposition 2.6 from [7]
(see also [14] and [19,22,24] for the semi-group dynamical systems) the defined above
components of the decomposition of the set R(Σ) are closed and positive invariant.

Lemma 8 (see [18]). Let x ∈ X, γ ∈ Φx and the positive (respectively, negative)

semi-trajectory of the point x ∈ X is relatively compact. Then the ω (respectively, α)-

limit set of the point x is internally chain-transitive, i. e., R(ωx) = ωx (respectively,

R(αγ) = αγ).

Theorem 3 (see [18]). Assume that each fixed point of (X,T, π) is a locally max-

imal invariant set, that there is no k-cycle (k ≥ 1) of fixed points, and that every

pre-compact orbit converges to some fixed point of (X,T, π). Then any compact

internally chain-transitive set is a fixed point of (X,T, π).

Remark 7. 1. Theorem 3 was established in [18] for the dynamical systems with
discrete time, i. e., T ⊆ Z.

2. Theorem 3 for the dynamical systems with continuous time (i.e., R+ ⊆ T)
may be established with slight modifications of the proof of Theorem 3.2 [18] and
using some results from [19].

Theorem 4. Suppose that the following conditions hold:
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1) (X,T, π) is a compact dissipative dynamical system and J its Levinson center;

2) (X,T, π) is a gradient system and Fix(π) = {p1, p2, . . . , pm};

2) the set Fix(π) does not contain any k-cycles (k ≥ 1).

Then R(J) = {p1, p2, . . . , pm}.

Proof. By Lemma 7 the set Mi := {pi} (i = 1,m) is locally maximal.

Since Fix(π) ⊆ R(π), then to prove this statement it is sufficient to show that
R(π) ⊆ Fix(π). Indeed, let {Rλ(π) : λ ∈ Λ} be the family of all chain transitive
components of R(π), then R(π) =

∐{Rλ(π) : λ ∈ Λ}. By Lemma 3 and Theorem 3
for any λ ∈ Λ there exists a number i ∈ {1, . . . ,m} such that Rλ(π) = {pi} and
consequently R(π) ⊆ Fix(π). Theorem is proved.

Remark 8. Note that using the same arguments as in the proof of Theorem 4 and
some properties of the chain current set we can establish a more general statement.
Namely, the following statement holds.

Suppose that the following conditions hold:

1) (X,T, π) is a compact dissipative dynamical system and J its Levinson center;

2) M is a closed and invariant subset of R(π);

3) M =
⋃m
k=1Mk, Mi

⋂
Mj = ∅ (for all i 6= j) and Mk (k = 1, . . . ,m) is closed

and invariant;

3) ∆X ⊆M ;

4) the family M1, . . . ,Mm of subsets does not contain any l-cycles (l ≥ 1).

Then R(J) = M .

6 Non-autonomous gradient-like dynamical systems

Definition 12. Let (X,T1, π) and (Y,T2, σ) be two dynamical systems and T1 ⊆ T2.
A triplet 〈(X,T1, π), (Y,T2, σ), h〉 is called a non-autonomous dynamical system,
where h : X 7→ Y is a homomorphism from (X,T1, π) onto (Y,T2, σ), i. e.,
h(π(t, x)) = σ(h(x), t) for all x ∈ X and t ∈ T1.

Definition 13. A mapping φ : Y 7→ X is called:

1) a section of bundle space (X,h, Y ) if h ◦ φ = IdY , i.e., h(φ(y)) = y for all
y ∈ Y ;

2) an invariant section of non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ),
h〉 if h ◦ φ = IdY and φ(σ(t, y)) = π(t, φ(y)) for all y ∈ Y and t ∈ T1.
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Definition 14. A positive invariant (respectively, negative invariant or invariant)
subset M of dynamical system (X,T, π) is called dynamically decomposable if there
are two positive invariant (respectively, negative invariant or invariant) subsets Mi

(i = 1, 2) of M such that:

1) M1
⋂
M2 = ∅;

2) M = M1
⋃
M2.

Otherwise M is called dynamically indecomposable.

Definition 15. A dynamical system (X,T, π) is called minimal if H(x) = X for all
x ∈ X, where H(x) := {π(t, x) : t ∈ T}.

Definition 16. The non-autonomous dynamical system 〈(X,T1, π), (Y,T2, σ), h〉 is
called gradient-like if the following conditions hold:

1) the space Y is compact and (Y,T2, σ) is minimal;

2) the dynamical system (X,T1, π) is compact dissipative and J is its Levinson
center;

3) there are a finite number of invariant sections φ1, φ2, . . . , φm of non-autono-
mous dynamical system (X,T1, π) such that ∆X =

∐m
i=1 φi(Y ).

Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous dynamical system, Xy :=
h−1(y) = {x ∈ X : h(x) = y} (y ∈ Y ) and p ∈ X. Denote by W s

y (p) := {x ∈ Xy :
lim

t→+∞
ρ(π(t, x), π(t, p)) = 0} and W u

y (p) := {x ∈ Xy : lim
t→−∞

ρ(γ(t), π(t, p)) = 0 for

certain γ ∈ Φx }.

Theorem 5. Let 〈(X,T, π), (Y,T, σ), h〉 be a gradient-like non-autonomous dynam-

ical system, then the following statements take place:

1) for all y ∈ Y and x ∈ Xy there exists a unique invariant section φi such that

x ∈W s
y (φi(y)), i.e.,

lim
t→+∞

ρ(π(t, x), φi(σ(t, y))) = 0; (5)

2) Jy =
⋃m
i=1W

u
y (φi(y)) for all y ∈ Y .

Proof. Let y ∈ Y and x ∈ Xy. Since (X,T, π) is compact dissipative, then the
positive semi-trajectory Σ+

x := {π(t, x) : t ≥ 0} of point x is relatively compact and,
consequently, its ω–limit set ωx is a nonempty, compact, invariant and dynamically
indecomposable set. Under the conditions of Theorem 5 we have ωx ⊆ ∆X =⋃m
i=1 φi(Y ). Note that

φi(Y )
⋂
φj(Y ) = ∅

for all i 6= j (1 ≤ i, j ≤ m). In fact, if we suppose the contrary, then there are i0 6= j0
(1 ≤ i0, j0 ≤ m) and y0 such that φi0(y0) = φj0(y0). Since Y is minimal, then for
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any y ∈ Y there exists a sequence {tn} ⊆ T such that y = lim
t→+∞

σ(tn, y0) and,

consequently, φi0(y) = lim
t→+∞

φi0(σ(tn, y0)) = lim
t→+∞

φj0(σ(tn, y0)) = φj0(y). The

obtained contradiction proves our statement. Thus there exists a unique natural
number 1 ≤ i ≤ m such that ωx = φi(Y ) because φi(Y ) is a minimal set of the
dynamical system (X,T, π) and, consequently,

ωx
⋂
Xy = φi(y)

for all y ∈ Y . Now we will establish the equality (5). If we suppose that it is not
true, then there are y0 ∈ Y , x0 ∈ Xy0 , ε0 > 0, and tn → +∞ such that

ρ(π(tn, x0), φi(σ(tn, y0))) ≥ ε0. (6)

Under the conditions of Theorem 5 we may suppose that the sequences {σ(tn, y0)}
and {π(tn, x0)} are convergent. Denote by ȳ and x̄ their limits respectively then
from (6) we obtain x̄ 6= φi(ȳ). On the other hand x̄ ∈ Xȳ

⋂
ωx0 = {φi(ȳ)}, i.e.,

x̄ = φi(ȳ). The obtained contradiction completes the proof of the first statement of
Theorem 5.

Now we will prove the second statement of Theorem 5. Let y ∈ Y , x ∈W u
y (φi(y))

and γ ∈ Φx, then x ∈ J . In fact, γ(S) is relatively compact. Since αγ ⊆ ∆X ⊆ J ,
then there exists a sequence τn → −∞ such that γ(τn) → p ∈ J . Since the Levinson
center J of dynamical system (X,T, π) attracts every compact subset from X, then
in particular it attracts also the compact subset γ(S) and, consequently, we have
ρ(x, J) = lim

n→∞
ρ(π(−τn, γ(τn)), J) = 0. This means that x ∈ J . Thus to finish

the proof it is sufficient to show that Jy ⊆ ⋃m
i=1W

u
y (φi(y)) for all y ∈ Y . Let

y ∈ Y, x ∈ Jy and γ ∈ Φx. Note that αγ
⋂
Xy 6= ∅. In fact, let τn → −∞ such

that σ(τn, y) → y. Since γ(S) ⊆ J we may suppose that the sequence {γ(τn)} is
convergent, then its limit p belongs to αγ

⋂
Xy. Evidently, under the conditions

of Theorem 5 we have αγ
⋂
Xy ⊆ {γ1(y), γ2(y), . . . , γm(y)}. Thus there are natural

numbers 1 ≤ i1 < i2 < . . . < ik ≤ m such that αγ
⋂
Xy = {γi1(y), γi2(y), . . . , γik(y)}.

Note that the following equality

lim
t→−∞

inf
1≤l≤k

ρ(γ(t), φil(σ(t, y))) = 0

takes place. Suppose that it is not true, then there are ε0 > 0 and τn → −∞ such
that

ρ(γ(τn), φil(σ(τn, y))) ≥ ε0 (7)

for all l = 1, 2, . . . , k. Under the conditions of Theorem 5 we may suppose that the
sequences {σ(τn, y)} and {γ(τn)} converge. Denote by ȳ (respectively, x̄) the limit
of the sequence {σ(τn, y)} (respectively, {γ(τn)}), then x̄ ∈ Xȳ and x̄ ∈ αγ

⋂
Xȳ =

{γi1(ȳ), γi2(ȳ), . . . , γik(ȳ)}. On the other hand, passing to the limit in (7) as n→ ∞
we obtain x̄ /∈ {γi1(ȳ), γi2(ȳ), . . . , γik(ȳ)}. The obtained contradiction proves our
statement. Let us show that there exists a number 1 ≤ i0 ≤ k such that

lim
t→−∞

ρ(γ(t), φi0(σ(t, y)) = 0.
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Denote by r := inf{ρ(φi(y), φj(y)) : y ∈ Y, 1 ≤ i, j ≤ m; i 6= j}. From (6) it follows
that the number r is positive. For a number ε, 0 < ε < r/3, we will find L(ε) > 0
such that

inf{ρ(γ(t), φil(σ(t, y)) : 1 ≤ l ≤ k} < ε

for all t < −L(ε). Let t0 < −L(ε), then there exists 1 ≤ il0 ≤ k such that

ρ(γ(t0), φil0 (σ(t0, y))) < ε.

Assume δ(t0) := sup{δ̃ : ρ(γ(t0), φil0 (σ(t0, y))) < ε for all t ∈ [t0 − δ̃, t0]}. Let us
show that δ(t0) = +∞. Suppose the contrary, then

ρ(γ(t′0), φil0 (σ(t′0, y))) ≥ ε

where t′0 = t0 − δ(t0), and there exists k0 6= i0 (1 ≤ k0 ≤ k) such that

ρ(γ(t′0), φil0 (σ(t′0, y))) < ε.

On the other hand,

ρ(γ(t′0), φik0
(σ(t′0, y))) ≥ ρ(φil0 (σ(t′0, y)), φik0

(σ(t′0, y))) −
ρ(φi0(σ(t′0, y), γ(t

′
0)) > r − ε > 2ε. (8)

Inequality (8) contradicts the assumption. So, we found L(ε) > 0 and 1 ≤ i0 ≤ k

such that
ρ(γ(t), φi0(σ(t, y))) < ε

for all t ≤ −L(ε). Let us show that the number i0 does not depend on the choice
of ε. In fact, if we suppose the contrary, then we can find numbers ε1 and ε2, natural
numbers i1 and i2 (1 ≤ i1 6= i2 ≤ k), and L(ε1) > 0 and L(ε2) > 0 satisfying the
conditions mentioned above. Assume L := max(L(ε1), L(ε2)), then

ρ(φi1(σ(t, y)), φi2(σ(t, y))) ≤ ρ(φi1(σ(t, y)), γ(t)) +

ρ(γ(t), φi2(σ(t, y))) ≤ ε1 + ε2 < 2r/3 < r. (9)

Inequality (9) contradicts the choice of r. Theorem is completely proved.

Definition 17. Let 〈(X,T, π), (Y,T, σ), h〉 be a non-autonomous dynamical system
and Y be a compact minimal set. A compact minimal set M ⊆ X is called [20, 25]
an m–fold covering of Y if card h−1(y) = m for all y ∈ Y .

Theorem 6 (see [6, 20, 25, 26]). Let 〈(X,T, π), (Y,T, σ), h〉 be a non-autonomous

dynamical system and Y be a compact minimal set, then the following statements

are equivalent:

1) a compact minimal set M ⊆ X is an m–fold covering of Y ;

2) (a) there exists a y0 ∈ Y such that card h−1(y0) = m;
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(b) the minimal set M is distal with respect to 〈(X,T, π), (Y,T, σ), h〉, i.e.,

inf
t∈T

ρ(π(t, x1), π(t, x2)) > 0 for all (x1, x2) ∈ X
⊗
X := {(x1, x2) :

x1, x2 ∈ X with condition h(x1) = h(x2)}.

Theorem 7. Let 〈(X,T, π), (Y,T, σ), h〉 be a non-autonomous dynamical system

satisfying the following conditions:

1) Y is a compact minimal set;

2) the dynamical system (X,T, π) is compact dissipative and J is its Levinson

center;

3) there are a finite number of minimal compact subsets M1,M2, . . . ,Mk ⊆ X

such that ∆X ⊆ ⋃k
i=1M

i;

4) for every i = 1, 2, . . . , k there exists a natural number mi such that cardM i
y =

mi for all y ∈ Y, where My := h−1(y).

Then the following statements take place:

1) for all y ∈ Y and x ∈ Xy there exist a unique natural number 1 ≤ i ≤ k and a

point pi ∈M i
y such that x ∈W s

y (pi), i.e.,

lim
t→+∞

ρ(π(t, x), π(t, pi)) = 0; (10)

2) Jy =
⋃m
i=1

⋃
p∈M i

y

W u
y (p) for all y ∈ Y .

Proof. This statement can be proved with slight modification of the proof of
Theorem 5.

Definition 18. The point x of dynamical system (X,T, π) is called τ (τ ∈ T)
periodic if Φx contains a motion γ such that γ(t+ τ) = γ(t) for all t ∈ S.

Denote by Per(π) the set of all periodic points of (X,T, π), W s(p) := {x ∈
X : lim

t→+∞
ρ(π(t, x), π(t, p)) = 0} and W u(p) := {x ∈ X : lim

t→−∞
ρ(γ(t), π(t, p)) =

0 for certain γ ∈ Φx}.

Corollary 2. Suppose that (X,T, π) is an autonomous dynamical system with dis-

crete time (i.e., T ⊆ Z) and the following conditions are fulfilled:

1) the dynamical system (X,T, π) is compact dissipative and J is its Levinson

center;

2) the set Per(π) contains a finite number of points, i. e., Per(π) = {p1, p2, . . . ,

pm};

3) ∆X ⊆ Per(π).
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Then the following statements hold:

1) for all x ∈ X there exists a unique natural number 1 ≤ i ≤ m such that

x ∈W s
y (pi), i. e.,

lim
t→+∞

ρ(π(t, x), π(t, pi)) = 0;

2) J =
⋃m
i=1W

u(pi).

Proof. Formulated statements directly follow from Theorem 7.

Remark 9. If the dynamical system (X,T, π) with continuous time (i. e., T = R or
T = R+) admits at least one nontrivial periodic point, then:

1. Per(π) contains a continuum subset. In fact, if p ∈ Per(π) is a τ–periodic
point, then π(t, t1) 6= π(t2, p) for all t1, t2 ∈ (0, τ) (t1 6= t2) and, consequently,
{π(t, p) : t ∈ [0, τ ]} ⊆ Per(π) and {π(t, p) : t ∈ [0, τ ]} is homeomorphic to
[0, τ ].

2. Corollary 2 does not take place.

The last statement (second item of Remark 9) can be confirmed by the following
example.

Example 1. Let us consider the dynamical system defined on the plane R
2 by the

following rule. Let the origin O(0, 0) be a stationary point, the unit circumference
S1 be the trajectory of the periodic motion with the period τ = 1. The rest of
motions will be not singular. And besides we assume that every semi-trajectory Σ+

x

is not un. st. L+Σ+
x for every point x ∈ R

2 \ (S1 ∪ O). The described dynamical
system is given by the system of differential equations which in polar coordinates
looks as the following: {

ṙ = (r − 1)2

ϕ̇ = r.

It is easy to see that ω–limit set of the point x is a trajectory of 1–periodic point
for all x ∈ R

2 \ O, but the point x itself is not asymptotically 1–periodic, since
Σ+
x is not un.st. L+Σ+

x (see Theorem 1.3.1 from [11]). In this example we have
∆X = S1 ∪ {O}.
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One new class of cubic systems with maximum number
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Abstract. We present a new class of cubic systems with invariant lines of total
multiplicity 9, including the line at infinity endowed with its own multiplicity. This
class is different from the 23 classes included in the classification given in [4] by J. Llibre
and N.Vulpe.
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Consider real cubic systems, i. e. systems of the form:

ẋ = p0 + p1(x, y) + p2(x, y) + p3(x, y) ≡ P (a, x, y),

ẏ = q0 + q1(x, y) + q2(x, y) + q3(x, y) ≡ Q(a, x, y)
(1)

with real coefficients and variables x and y. The polynomials pi and qi (i = 0, 1, 2, 3)
are homogeneous polynomials of degree i in x and y.

Let

X = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y

be the polynomial vector field corresponding to systems (1).
A straight line f(x, y) = ux + vy + w = 0, (u, v) 6= (0, 0) satisfies

X(f) = uP (x, y) + vQ(x, y) = (ux + vy + w)R(x, y)

for some polynomial R(x, y) if and only if it is invariant under the flow of the
systems. If some of the coefficients u, v, w of an invariant straight line belongs to
C\R, then we say that the straight line is complex; otherwise the straight line is real.

Note that, since systems (1) are real, if a system has a complex invariant straight
line ux + vy + w = 0, then it also has its conjugate complex invariant straight line
ūx + v̄y + w̄ = 0.

Definition 1. We say that an invariant affine straight line f(x, y) = ux+vy+w = 0
(respectively the line at infinity Z = 0) for a cubic vector field X has multiplicity
m if there exists a sequence of real cubic vector fields Xk converging to X, such

c© Cristina Bujac, 2014
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that each Xk has m (respectively m − 1) distinct invariant affine straight lines
f

j
i = u

j
ix + v

j
i y + w

j
i = 0, (uj

i , v
j
i ) 6= (0, 0), (uj

i , v
j
i , w

j
i ) ∈ C

3, converging to f = 0 as
k → ∞ (with the topology of their coefficients), and this does not occur for m + 1
(respectively m).

Definition 2 ( see [5]). Consider a planar cubic system (1). We call configuration

of invariant straight lines of this system, the set of (complex) invariant straight
lines (which may have real coefficients) of the system, each endowed with its own
multiplicity and together with all the real singular points of this system located on
these invariant straight lines, each one endowed with its own multiplicity.

According to [1] the maximum number of invariant straight lines taking into
account their multiplicities (including the line at infinity) for cubic systems is 9.
A classification of all cubic systems possessing the maximum number of invariant
straight lines taking into account their multiplicities have been made in [4]. In
this paper the authors have detected 23 classes of such cubic systems and have
constructed the corresponding canonical forms. Moreover they proved that modulo
affine group and time rescaling each such class is represented by a specific cubic
system without parameters.

We are interested in the classification of cubic systems which possess invariant
lines of total multiplicity 8. For this purpose we split the whole family of cubic sys-
tems in four subfamilies, depending on the number of distinct infinite singularities.

It is well known that the infinite singularities (real or complex) of systems (1)
are determined by the linear factors of the polynomial

C3 = yp3(x, y) − xq3(x, y).

In the paper [2] the cubic systems with 4 distinct infinite singularities are examined
and it was proved that there exist 17 classes of such cubic systems with invariant
lines of total multiplicity 8. All possible distinct configurations of invariant straight
lines are determined and the corresponding necessary and sufficient conditions are
constructed in terms of affine invariant polynomials (see for instance [6, 7]).

The second family of cubic systems which possess 3 distinct infinite singularities
has been examined in [3]. We proved that this family of systems can only have 5
distinct configurations of invariant lines of total multiplicity 8 and determined the
corresponding affine invariant criteria.

Now the family of cubic systems with two distinct infinite singularities is under
examination. And in the case when infinite singularities of cubic systems are de-
termined by one simple and one triple factors of C3, we have detected a new class
of cubic systems with maximum number (nine) of invariant straight lines. In what
follows we show that this class is omitted in the classification given by J. Llibre and
N.Vulpe in [4].

Indeed, considering the family of cubic systems with 8 invariant lines (including
the line at infinity and including multiplicities) which in addition possesses two
infinite singularities, we found out that a subfamily of these systems could be brought
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via affine transformation and time rescaling to the canonical form

ẋ = x(r + 2x + x2), ẏ = y(r + 2x), 0 6= r ∈ R, (2)

depending on one parameter. We observe that these systems possess invariant lines
of total multiplicity 8. More precisely, we have the invariant affine lines: x = 0
(triple), y = 0, x2 + 2x + r = 0 (simple real or complex or real double) and the line
at infinity (Z = 0), which is double.

We detected that in the case r = 8/9 the obtained system

ẋ = x(2 + 3x)(4 + 3x)/9, ẏ = 2(4 + 9x)y/9 (3)

possesses invariant lines of total multiplicity 9, and namely: x = 0 (triple), x = −2/3
(double), x = −4/3 and y = 0 (both simple) and the line at infinity (Z = 0) (double).

To prove this it is sufficient to present the following corresponding perturbed
systems

ẋ = x(2 + 3x)(4 + 3x)/9, ẏ = 2y(1 + εy)(4 + 9x − 4εy)/9,

which possess the following 8 invariant affine lines:

x = 0, y = 0, x = −2/3, x = −4/3, 3x − 4εy = 0,

3x − 2εy = 0, 1 + εy = 0, 3x − 2εy + 2 = 0

Thus system (3) indeed possesses invariant lines of total multiplicity 9 (including
the infinite one).

On the other hand in [4] nine classes of cubic systems with two infinite singu-
larities determined by one simple and one triple factors of C3 are given and their
corresponding configurations are presented in Figures 14–22.

Considering the configuration of invariant lines of system (3) given in Fig. 1
we observe that this configuration is different from configurations given in
Figures 14–22 [4].

Figure 1. The configuration of invariant lines corresponding to system (3)

Remark. In the above configuration if an invariant straight line has multiplicity
k > 1, then the number k appears near the corresponding straight line and this line
is in bold face. We indicate next to the real singular points of the system, located
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on the invariant straight lines, their corresponding multiplicities. In the case of
infinite singularities we denote by ’(a, b)’ the maximum number a (respectively b)
of infinte (respectively finite) singularities which can be obtained by perturbation of
the multiple point.
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