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It is said that images bear the greatest density of natural informa-
tion of all ways of human communication, and biomedical images do
not make any exception to this assertion, at least when dealing with
morphologic information. The recent rapid advances in medical imag-
ing and automated image analysis will continue and allow us to make
significant advances in our understanding of life and disease processes,
and our ability to deliver quality healthcare.

Medical imaging and image processing domains mainly manage and
process missing, ambiguous, inconsistent, complementary, contradic-
tory, redundant and distorted data, and information has a strong struc-
tural character. The processes of human and artificial understanding
of any image involve the matching of features extracted from the image
with pre-stored models. From the information technology point of view
the production of a high-level symbolic model requires the representa-
tion of knowledge about the objects to be modeled, their relationships,
and how and when to use the information stored within the model.

In general, a distinction is made between (bio)medical imaging and
image processing technologies, even if between these fields of knowledge
a strong interrelation may be established.

Biomedical imaging concentrates on the capture and display of im-
ages for both diagnostic and therapeutic purposes, and modern imaging
technology is 100% digital. Snapshots of in vivo physiology and physi-
ological processes can be garnered through advanced sensors and com-
puter technology. Biomedical imaging technologies utilize either x-rays
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(CT scans), sound (ultrasound), magnetism (magnetic resonance imag-
ing – MRI), radioactive pharmaceuticals (nuclear medicine: SPECT,
PET) or light (endoscopy, OCT) to assess the current condition of an
organ or tissue and can monitor a patient over time for diagnostic and
treatment evaluation. From the information type point of view, med-
ical imaging can be structural (or morphologic, e.g. CT, MRI, OCT)
or functional (PET, SPECT).

Biomedical image processing is similar in concept to biomedical sig-
nal processing in multiple dimensions (2D, 3D). It includes the enhance-
ment, analysis and display of images captured via the above mentioned
x-ray, ultrasound, MRI, nuclear medicine and optical imaging technolo-
gies. Related procedures, like image reconstruction and modeling tech-
niques allow quick processing of 2D signals to create 3D images. Image
processing software helps to automatically identify and analyze what
might not be apparent to the human eye, even of an expert. Comput-
erized algorithms can provide temporal and spatial analysis to detect
patterns and characteristics indicative of tumors and other ailments.
Depending on the imaging technique and what diagnosis is being con-
sidered, image processing and analysis can be used to determine, for
instance, the diameter, volume and vasculature of a tumor or organ,
flow parameters of blood or other fluids and microscopic changes that
have yet to raise any otherwise discernible flags.

Nowadays some key components of clinical activity are image-
guided therapy (IGT) and image-guided surgery (IGS), where localiza-
tion, targeting, monitoring, and control are main issues. Specifically, in
medical imaging and medical image processing we have four key prob-
lems: (1) Image Segmentation – dealing with (semi)automated meth-
ods that lead to creating patient-specific models of relevant anatomy
from images; (2) Image Registration – automated methods that align
multiple data sets, eventually coming from different imaging modali-
ties, with each other; (3) Visualization – the technological environment
in which image-guided procedures can be displayed; (4) Simulation –
software that can be used to rehearse and plan procedures, evaluate
access strategies, and simulate planned treatments.

In fact, all traditional and advanced techniques of image processing
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and computational vision, analysis and understanding may be used
to process medical images, in order to extract useful information for
diagnosis and treatment.

A special approach, including that of the editor of this journal issue,
directs to the use of Artificial Intelligence (AI), which has proved to
yield promising results in medical image processing and analysis. The
structural character of information may successfully be approached by
using methods of AI such as Knowledge Based Systems, Expert Sys-
tems, Decision Support Systems, Neural Networks, Fuzzy Logic and
Systems, Neuro-Fuzzy Systems, Evolutionary and Genetic (or bio-
inspired) Algorithms, Data Mining, Knowledge Discovery, Semantic
Nets, Symbolic Calculus for knowledge representation, etc. The data
fusion methods successfully solve the aggregation of numerical and lin-
guistic information, and are able to cope with ambiguous, uncertain,
conflicting, complementary, imprecise and redundant information, like
that occurring in biomedical imaging domain, in order to provide a
more accurate and less uncertain interpretation.

One of the main characteristic of the Medical Image Process-
ing domain is its inter- and multidisciplinary nature. In fact, in
this field, methodologies of several fundamental and applicative sci-
ences, such as Informatics, Mathematics, Physics, Statistics, Com-
puter science, Medicine, Engineering, Psychology, Artificial Intelli-
gence, (Bio)Mechanics are regularly used. Besides this characteristic,
one of the main rationale that promotes the continuous effort being
made in this area of human knowledge is the huge number of useful
applications in the medical area, some of them being illustrated here-
inafter.

This special issue of Computer Science Journal of Moldova contains
six invited papers that illustrate new trends and outcomes in medical
image processing. It gathers together prominent researches that align
to the state-of-the-art of Computational Vision and Medical Image Pro-
cessing, contributing to the development of both these knowledge areas,
and of medical research and clinical activity.

Probably is somehow justified that two of the invited articles deal
with retinal images processing. The first one, “Detection of Blood
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Vessels in Retinal Fundus Images”, of Oloumi, Dhara, Rangayyan,
and Mukhopadhyay approaches automatic detection of blood vessels
in retinal fundus images, in order to perform computer-aided diag-
nosis of some pathologies of the eye such as diabetic retinopathy
(DR), retinopathy of prematurity, and maculopathy. The vessels detec-
tion techniques include a mix of multiscale and multifeature methods,
like multiscale vesselness measures, Gabor filters, line operators, and
matched filters. An adaptive threshold selection method is crucial for
precise detection of retinal blood vessels. The accuracy of detection is
improved by an original postprocessing technique for removal of false-
positive pixels around the optic nerve head. The results of detection
of blood vessels, evaluated in terms of the area under the receiver op-
erating characteristic curve of up to 0.961, were obtained using the 20
test images of the DRIVE database (which is considered as containing
low-resolution retinal images). These results have double meaning: on
one hand they outperform other approaches of the chosen topic, and
on the other hand they show that a single-scale Gabor filter is capable
of detecting blood vessels with accuracy not much different from the
best value obtained by means of multifeature and multiscale methods.
In this way the authors prove once again the famous Latin saying “non
multa, sed multum”.

The second article, “Optic Disc Identification Methods for Retinal
Images”, written by Rotaru, Bejinariu, Niţă, Luca, and Lazăr, pro-
poses some original methods to identify and model the optic disc in
colour retinal images, as well as the blood vessels network, to evaluate
different retina diseases such as diabetic macular edema, glaucoma, etc.
The paper represents an extension of some early researches of the same
authors, in which they heuristically apply certain traditional image
processing methods (low-pass filtering, Maximum Difference Method,
texture analysis, voting algorithms, morphologic filtering, Otsu bina-
rization) on 40 clinically validated retinal images of high resolution
(2592×1728 pixels), 386 images of 720×576 resolution, and more than
100 images from STARE database. The obtained results in terms of
accuracy are comparable with the best outcomes in the literature, the
proposed techniques are implemented as a Windows application writ-
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ten in C++ using Microsoft Visual Studio, and for image manipulation
and some processing functions the OpenCV library was used.

The next invited article, “Characterization and Pattern Recogni-
tion of Color Images of Dermatological Ulcers: a Pilot Study”, writ-
ten by L.C. Pereyra, S.M. Pereira, Souza, Frade, Rangayyan, and
Azevedo-Marques, approaches content-based image retrieval (CBIR)
and computer-aided diagnosis (CAD) applied in dermatological ulcers
detection and analysis, which is a very difficult task of color image
processing and of tissue composition analysis, respectively. Unsuper-
vised automatic segmentation was performed by using Gaussian mix-
ture modeling, and its performance was assessed by computing the Jac-
card coefficient between the automatically and manually segmented im-
ages. A retrieval engine was implemented using the k-nearest-neighbor
method, and classification was made by means of a logistic regression.
The performance of CBIR was measured in terms of precision of re-
trieval, with average values of up to 0.617 obtained with the Chebyshev
distance, and the average value of correctly classified instances divided
by the total number of instances was 0.738. Results were obtained on
a database containing 172 dermatologic images with high geometric
and intensity resolution, obtained in a clinical environment and an-
notated by an expert. Even if the obtained segmentation accuracy
is not very high, from clinical and educational utility points of view
“objective analysis of color images of skin ulcers using the proposed
methods might overcome some of the limitations of visual analysis and
lead to the development of improved protocols for the treatment and
monitoring of chronic dermatological lesions.”

The last three articles are dedicated to some image processing topics
useful in research and clinical practice, but which do not approach im-
age segmentation or classification. They refer to image reconstruction,
registration and human genome sequencing, respectively.

“A platform for Image Reconstruction in X-ray Imaging: Medi-
cal Applications using CBCT and DTS algorithms”, by Kamarianakis,
Buliev, Pallikarakis, presents the architecture of a software platform
for the purpose of testing and evaluation of reconstruction algorithms
in X-ray imaging. The main elements of the platform are classes, re-
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lated together in a logical hierarchy. Real world objects can be de-
fined and implemented as instances of corresponding classes. Different
image processing routines (e.g. 3D transformations, loading, saving,
filtering of images, etc.) have been incorporated in the software tool
as class methods, too. The platform is viewed as a basic tool for fu-
ture investigations of new reconstruction methods in combination with
various scanning configurations. The current tests on Reconstruction
Techniques Class Library (RTCL) and the Platform for Image Recon-
struction in X-ray Imaging (PIRXI) prove the accuracy and flexibility
of this new approach for image reconstruction research and algorithms
implementation.

Bejinariu, Costin, Rotaru, Luca, Niţă, and Lazăr authored the ar-
ticle “Parallel Processing and Bio-inspired Computing for Biomedical
Image Registration”, that deals with image transformations aiming at
overlaying one or more image sources to a given model by maximiz-
ing a similarity measure. Some bio-inspired metaheuristic optimiza-
tion algorithms, such as Bacterial Foraging Optimization Algorithm
(BFOA), Genetic Algorithms (GAs) and Clonal Selection Algorithm
(CSA), are compared in terms of registration accuracy and execution
time for area-based and feature-based image registration. Normalized
correlation (NCC) and normalized mutual information (NMI) are used
as similarity measures. Implementation was made on many images
from a publicly available database, mainly using MRI brain images
with 256 × 256 pixels and 8 bits/pixels resolutions, without and with
“salt & pepper” noise, respectively. In general, BFOA and GAs yielded
comparable results in terms of registration accuracy, GAs performed
about three times faster than BFOA, and CSA is too slow for feature-
based registration and also with lower registration precision. Even the
feature-based image registration performs faster, its use for multimodal
images is limited by the procedure’s capability to find common and sta-
ble features in the images to be registered.

Last but not least, Voina, Pop, Vaida wrote the article “A New
Algorithm for Localized Motif Detection in Long DNA Sequences”,
that comes from bioinformatics research domain and approaches hu-
man genome sequencing, i.e. the identification of the DNA segments

152



Recent trends in Medical Image Processing. Preface

that have a certain biological significance. The study presents a new
algorithm optimized for finding motifs in long DNA sequences and
some experiments done to evaluate the performance of the proposed
algorithm in comparison with other motifs finding algorithms are de-
scribed. Some optimizations are introduced, that increase detection
accuracy and lower the execution time. Thus, the proposed algorithm
proved to have a clear advantage among other similar algorithms due
to the detection accuracy of the motifs in long DNA sequences, such
as those found in the human genome.

In conclusion we can say that the fundamental, engineering and
life sciences are all contributing to a remarkable synergy of efforts to
achieve dynamic, quantitative (structural or functional) imaging of the
body using minimally invasive, non-invasive or even virtual methods.
The structural and functional relationships between the cells, tissues,
organs and organ systems of the body are being advanced by molecular
imaging, and laboratory imaging techniques. With continuing evolu-
tionary progress in biomedical imaging, visualization and analysis, we
can fully expect to benefit from new knowledge about life and disease
processes, and from new and efficient methods of diagnosis therapy and
prevention.

Iaşi, 30-th of June, 2014 Prof. Hariton Costin
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Abstract

Detection of blood vessels in retinal fundus images is an im-
portant initial step in the development of systems for computer-
aided diagnosis of pathologies of the eye. In this study, we per-
form multifeature analysis for the detection of blood vessels in
retinal fundus images. The vessel detection techniques imple-
mented include multiscale vesselness measures, Gabor filters, line
operators, and matched filters. The selection of an appropriate
threshold is crucial for accurate detection of retinal blood vessels.
We evaluate an adaptive threshold selection method along with
several others for this purpose. We also propose a postprocess-
ing technique for removal of false-positive pixels around the optic
nerve head. Values of the area under the receiver operating char-
acteristic curve of up to 0.961 were obtained using the 20 test
images of the DRIVE database.

Keywords: Gabor filter, line operator, matched filter, mul-
tiscale analysis, retinal fundus image, vessel detection, vesselness
measure.
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1 Introduction

Retinal fundus images are used by ophthalmologists for the diagnosis
of several disorders, such as diabetic retinopathy (DR), retinopathy of
prematurity, and maculopathy [2–4]. Detection of blood vessels is an
important initial step in the development of computer-aided diagnostic
(CAD) systems and analysis of retinal fundus images. It is possible to
detect other anatomical landmarks such as the optic nerve head (ONH)
and the macula in the retina with respect to the vascular architecture.
The location and certain characteristics of such landmarks can help in
the derivation of features for the detection of abnormalities. A variety
of methods have been proposed for the detection of blood vessels; some
of these methods are reviewed in the following paragraphs.

Chaudhuri et al. [5] proposed an algorithm based on two-dimensional
(2D) matched filters for vessel detection. Their method is based on
three assumptions: (i) the intensity profile of a vessel can be approx-
imated by a Gaussian function, (ii) vessels can be approximated by
piecewise linear segments, and (iii) the width of vessels is relatively
constant. Detection of blood vessels was performed by convolving the
given image with the matched filter rotated in several orientations.
The maximum filter response over all orientations was assigned to each
pixel.

Staal et al. [6] extracted the ridges in the images which roughly
coincide with the vessel centerlines. In the next step, image primitives
were obtained by grouping image ridges into sets that model straight-
line elements, which were used to partition the image by assigning each
pixel to the closest primitive set. Feature vectors were then computed
for every pixel using the characteristics of the partitions and their line
elements. The features were used for classification using a k-nearest-
neighbor classifier. Staal et al. achieved an area under the receiver
operating operating characteristic (ROC) curve of Az = 0.9520 with
20 images of the test set of the DRIVE database [7].

Soares et al. [8] applied complex Gabor filters for feature extraction
and supervised classification for the detection of blood vessels in retinal
fundus images. In this method, the magnitude outputs at several scales
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obtained from 2D complex Gabor filters were assigned to each pixel as a
feature vector. Then, a Bayesian classifier was applied for classification
of the results into vessel or nonvessel pixels. Soares et al. reported
Az = 0.9614 for the 20 test images of the DRIVE database.

Blood vessels can be considered as dark elongated curvilinear struc-
tures of different width and orientation on a brighter background. Sev-
eral types of vesselness measures have been developed for the detection
of blood vessels based on the properties of the eigenvalues of the Hessian
matrix computed at each pixel. Because blood vessels are of varying
width, different scales are used to calculate the eigenvalues and the
maximum response at each pixel over all scales is used for further ana-
lysis. Frangi et al. [9] and Salem et al. [10] proposed different vesselness
measures to highlight vessel-like structures. Wu et al. [11] applied the
vesselness measure of Frangi et al. to the 40 training and testing images
of the DRIVE database and reported Az = 0.9485. Salem et al. [10]
reported Az = 0.9450 using 20 images of the STARE database [12].

Lupaşcu et al. [13] performed multifeature analysis using previously
proposed features [6,8,9,14,17], combined with new features that rep-
resent information about the local intensity, the structure of vessels,
spatial properties, and the geometry of the vessels at different scales
of length. They used a feature vector containing a total of 41 features
obtained at different scales to train a classifier, which was then applied
to the test set. They reported Az = 0.9561 using the 20 test images of
the DRIVE database.

Rangayyan et al. [15] performed multiscale analysis for the detec-
tion of blood vessels using Gabor filters and classified pixels using mul-
tilayer perceptron (MLP) neural networks and reported Az of 0.9597
with the test set of the DRIVE database. Oloumi [16] used multi-
scale Gabor filter magnitude responses, coherence, and the inverted
green channel as features to train an MLP and achieved an Az value
of 0.9611 using the test set of the DRIVE database.

Other available methods in the literature that do not employ a
filtering technique for the detection of the blood vessels include, but are
not limited to, segmentation using multiconcavity modeling [18]; fractal
analysis [19]; mathematical morphology and curvature evaluation [20];
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and geometrical models and analysis of topological properties of the
blood vessels [21].

In the present work, we perform vessel segmentation by multifea-
ture analysis, using multiscale Gabor filters as proposed by Rangayyan
et al. [15], multiscale vesselness measures as proposed by Frangi et
al. [9] and Salem et al. [10], matched filters as proposed by Chaudhuri
et al. [5], line operators [22], and a gamma-corrected version of the
inverted green channel. Thresholding and binarization of the result
of vessel detection is a crucial step for further analysis of the char-
acteristics of blood vessels such as thickness and tortuosity [23]; we
propose an adaptive thresholding technique by analyzing the intensity
values of the boundary pixels of retinal blood vessels and compare the
results against several automated thresholding methods. Most of the
reported methods for the detection of blood vessels cause false-positive
(FP) pixels associated with the boundary of the ONH. We propose a
postprocessing technique for removal of FP pixels around the ONH.

2 Database of Retinal Images

In this work, retinal fundus images from the DRIVE database were
used to assess the performance of the methods. The images of the
DRIVE database [6, 7] were acquired during a screening program for
DR in the Netherlands and show signs of mild DR. The images have
a size 565× 584 pixels and a field of view (FOV) of 45◦. The DRIVE
images are considered to be low-resolution retinal images; the images
have an approximate spatial resolution of 20 µm per pixel. The DRIVE
database consists of 40 images, which are labeled in two sets of 20
images for training and testing. A manually segmented image (ground-
truth) of the vasculature is available for each image in the DRIVE
database. Figure 1 shows the original color image 12 of the DRIVE
database and its ground-truth image.
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(a) (b)

Figure 1. (a) Original color image 12 of the DRIVE database.
(b) Ground-truth of the image in part (a), as provided in the database.

3 Detection of Retinal Blood Vessels

In the present study, we review and implement several methods for the
detection of blood vessels and investigate their combined application
for multifeature analysis.

3.1 Vesselness Measures

Frangi et al. [9] defined a vesselness measure to detect pixels having
vessel-like structures based on the properties of the eigenvalues of the
Hessian matrix. A numerical estimate of the Hessian matrix, H, at
each pixel of the given image, L(x, y), is obtained as

H =




∂2L
∂x2

∂2L
∂x∂y

∂2L
∂y∂x

∂2L
∂y2


 . (1)

The entries of H can be obtained at multiple scales by convolving the
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image L(x, y) with the Gaussian kernel G(x, y; σ) of different scales σ,
defined as

G(x, y; σ) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
. (2)

The width of retinal blood vessels varies from 50 µm to 200 µm
in retinal fundus images, which translates to the range of about 2 to
10 pixels, given a spatial resolution of 20 µm for the DRIVE images.
Gaussian kernels can be used to generate a suitable scale space with an
amplitude range of σ related to the range of vessel width. Multiscale
derivatives of the image L(x, y) can be obtained by linear convolution of
the image with the scale-normalized derivatives of the Gaussian kernel
as ∂2L

∂x2 = L(x, y) ∗ σ2Gxx = Lxx , ∂2L
∂x∂y = ∂2L

∂y∂x = L(x, y) ∗ σ2Gxy =

Lxy = Lyx, and ∂2L
∂y2 = L(x, y) ∗ σ2Gyy = Lyy. Here Gxx, Gxy, and Gyy

are the second derivatives of the Gaussian kernel G, and the symbol
‘∗’ represents the 2D convolution operation.

The Hessian matrix is symmetrical with real eigenvalues. The signs
and ratios of the eigenvalues can be used as signatures of a local struc-
ture. Let λ1 and λ2 represent the eigenvalues of the Hessian matrix,
with the condition |λ2| ≥ |λ1|. The larger eigenvalue, λ2, corresponds to
the maximum principal curvature at the location (x, y). A larger value
of λ2 compared to λ1 represents a vessel-like structure. The eigenvalues
and eigenvectors of the Hessian matrix can be computed by solving the
following equation:

∣∣∣∣
Lxx − λ Lxy

Lyx Lyy − λ

∣∣∣∣ = 0, (3)

where λ represents the two eigenvalues λ1 and λ2. The eigenvalues λ1

and λ2 can be obtained as

λ1 =
Lxx + Lyy − α

2
, (4)

and

λ2 =
Lxx + Lyy + α

2
, (5)
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where α =
√

(Lxx − Lyy)
2 +4L2

xy. Based on the property of the eigen-
values of the Hessian matrix, Frangi et al. [9] defined a vesselness mea-
sure to highlight pixels belonging to vessel-like structures as

VF =





exp
(
− R2

β

2β2

)[
1− exp

(
− S2

2γ2

)]
if λ1, λ2 < 0,

0 otherwise,
(6)

where Rβ = λ1
λ2

, S =
√

λ1
2 + λ2

2 is the Frobenius norm of the Hessian
matrix, β = 0.5 (as used by Frangi et al. [9]), and γ is equal to one-half
of the maximum of all of the Frobenius norms computed for the whole
image. The Frobenius norm is expected to be low in background areas
where no vessels are present and the eigenvalues are low, because the
magnitude of the derivatives of the intensities will be small. On the
other hand, in regions with high contrast as compared to the back-
ground, the Frobenius norm will become larger, because at least one of
the eigenvalues will be large.

The vesselness measure proposed by Salem et al. [10] uses the eigen-
values of the Hessian matrix to detect the orientation of blood vessels.
Let ~e1 and ~e2 be the eigenvectors corresponding to the eigenvalues λ1

and λ2, respectively, and let θ1 and θ2 be the angles of the eigenvectors
with respect to the positive x-axis. The orientations of the eigenvec-
tors corresponding to the larger and smaller eigenvalues for every fifth
pixel are shown in Figure 2. It can be noted from Figure 2 that the
variation of the orientation of the eigenvectors corresponding to the
smaller eigenvalues is smaller inside the blood vessels as compared to
that outside the blood vessels. The eigenvectors corresponding to the
smaller eigenvalues are mainly oriented along the blood vessels; hence,
the angle θ1 is used to analyze the orientation of blood vessels. The
orientation of the eigenvector ~e1 can be represented as

θ1 = arctan
(
− 2Lxy

Lyy − Lxx + α

)
. (7)

Detection of blood vessels can be accomplished by assuming that
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(a) (b)

Figure 2. Orientation of the eigenvectors corresponding to (a) the
larger eigenvalue and (b) the smaller eigenvalue at each pixel for a part
of a retinal fundus image with parts of blood vessels. Straight lines
corresponding to the eigenvectors are shown for every fifth pixel. The
size of the image is 50× 50 pixels.

the maximum value of λ2 (λmax) over several scales of σ is at the center
of the vessel. Salem et al. [10] defined a vesselness measure as

VS =
λmax

θstd + 1
, (8)

where θstd is the standard deviation (STD) of θ1 over all scales used for
the pixel under consideration. The larger the value of VS for a pixel,
the higher the probability that the pixel belongs to a vessel.

In this work, the range of scales σ = [1, 6] with steps of 0.05 was
determined to be the most suitable range for the vesselness measures
of Frangi et al. and Salem et al. using the training set of the DRIVE
database, and was used for subsequent analysis. Note that the two ves-
selness measures implemented in this work perform multiscale analysis
by taking the maximum intensity value among all the available scales
of σ. The implementation of the method of Frangi et al. used in this
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work was provided by Dirk-Jan Kroon of University of Twente [36].
Figure 3 shows the magnitude response images of the result of ap-

plying the vesselness measures of Frangi et al. and Salem et al. to the
image in Figure 1 (a).

(a) (b)

Figure 3. Magnitude response images of the result of filtering the image
in Figure 1 (a) obtained using (a) vesselness measure of Frangi et al.
and (b) vesselness measure of Salem et al. Note that the result of the
method of Frangi et al. provides lower intensity values as compared to
the method of Salem et al. and the detected vessels may not be clearly
visible in the result.

3.2 Gabor Filters

Rangayyan et al. [15] applied multiscale Gabor filters for the detection
of blood vessels by considering the fact that blood vessels are elongated,
piecewise-linear, or curvilinear structures with a preferred orientation.
Gabor filters are sinusoidally modulated Gaussian functions that are
suitable for the analysis of oriented structures because they provide
optimal localization in both the frequency and space domains. The real
Gabor filter kernel oriented at the angle θ = −π/2 can be represented
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as [15]

g(x, y) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)]
cos(2πfox) . (9)

In this equation, the frequency of the modulating sinusoid is given
by fo, and σx and σy are the STD values in the x and y directions.
For simplicity of design, a variable τ is used to represent the average
thickness of the vessels to be detected. The value of σx is defined based
on τ as σx = τ

2
√

2 ln 2
and σy = lσx, where l represents the elongation of

blood vessels. A bank of K Gabor filters may be obtained by rotating
the main Gabor filter kernel given in Equation 9 over the range [−π/2,
π/2]. For a given pixel, the maximum output value over all K filters
is saved as the Gabor magnitude response at that particular pixel; the
corresponding angle is saved as the Gabor angle response.

Values of τ = 8 pixels, l = 2.9, and K = 180 were determined to
provide the best single-scale results, as determined using the training
set of the DRIVE database. Values of τ = 4, 8, and 12 were used
to perform multiscale and multifeature analysis as described in Sec-
tion 3.5. Figure 4 shows the magnitude and angle responses of Gabor
filters with τ = 8 pixels, l = 2.9, and K = 180 as obtained for the
image in Figure 1 (a). It is seen that the magnitude response is high
at pixels belonging to vessels and that the angle response agrees well
with the angle of the vessel at the corresponding pixel.

3.3 Line Operators

Line operators were proposed by Dixon and Taylor [24] and used by
Zwiggelaar et al. [25] for the detection of linear structures in mammo-
grams. The main line operator kernel detects horizontal lines. Assume
that N(x, y) is the average gray-level of M pixels along a horizontal
line centered at (x, y). Next, assume that S(x, y) is the average gray-
level of pixels in a square of width M pixels that is horizontally aligned
and centered at (x, y). The main line operator kernel is defined as
L(x, y) = N(x, y) − S(x, y). Detecting lines with various orientations
is achieved by rotating the main kernel. Let Lk(x, y) be the line opera-
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(a) (b)

Figure 4. (a) Gabor magnitude and (b) angle responses of the image
in Figure 1 (a). The Gabor angle information is shown for every fifth
pixel over a portion of the original color image.

tor kernel rotated to the angles αk = −π/2+πk/K, k = 0, 1, ..., K−1.
Given Wk(x, y) as the result of filtering the image, I(x, y), with
Lk(x, y), the orientation of the detected line is obtained as [22]

θ(x, y) = αkmax ,where kmax = arg{max[Wk(x, y)]}. (10)

The magnitude response of the result is obtained as Wkmax(x, y).
The line operator does not provide a specific parameter for scaling;
multiscale analysis is performed by applying the line operator to each
level of the Gaussian pyramid decomposition of the original image.

In the present work, values of M = 15 and K = 180 were de-
termined to provide the best results for detection of vessels using the
training set of the DRIVE database, and were employed for further
analysis. Figure 5 shows the magnitude response of line operators as
applied to the image in Figure 1 (a).
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Figure 5. Magnitude response of line operators for the image in Fig-
ure 1 (a), obtained using M = 15 and K = 180.

3.4 Matched Filters

The method of Chaudhuri et al. [5], as explained in Section 1, was
implemented in the present work for the detection of blood vessels.
The method assumes that blood vessels have a negative contrast with
respect to the background, so the Gaussian template will need to be
inverted. The main kernel of the matched filter is expressed as

M(x, y) = − exp
(−x2

/
2σ2

)
, for − L/2 ≤ y ≤ L/2, (11)

where L represents the length of the vessel segment that is assumed
to have a constant orientation and σ is the STD of the Gaussian. The
main kernel of the filter is oriented along the y-axis; in order to detect
blood vessels at different orientations, the main kernel is rotated at
multiple angles.

In this work, detection of blood vessels using matched filters is
performed by taking the maximum filter response of a bank of K = 180
filters over the range [−π/2, π/2] with L = 15 and σ = 1, as determined

166



Detection of Blood Vessels in Retinal Fundus Images

using the training set of the DRIVE database. Figure 6 represents
the magnitude response of matched filters obtained for the image in
Figure 1 (a).

Figure 6. Magnitude response of matched filters obtained using L = 15,
σ = 1, and K = 180 for the image in Figure 1 (a).

3.5 Multifeature Analysis

In the present work, various features are combined using pattern clas-
sification methods [multilayer neural networks (MNN)] in order to dis-
tinguish pixels belonging to blood vessels from the background. The
features used are:

• the vesselness measure of Frangi et al. [9],

• the vesselness measure of Salem et al. [10],

• the magnitude response of line operators [22],

• the magnitude response of matched filters [5],
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• the gamma-corrected [26] inverted green component, and

• the magnitude responses of Gabor filters for τ = {4, 8, 12} [15].

The inverted green (G) component of the RGB color space pro-
vides high contrast for blood vessels. Therefore, a gamma-corrected
version [26] of the inverted G-component image is also used as a fea-
ture in order to improve the result of classification of blood vessels.
The value of gamma used for gamma correction in this work is 2.4,
with the pixel values normalized to the range [0, 1].

All the MNNs used in this work for multifeature analysis contain
two hidden layers with 15 nodes per hidden layer. The number of
input layer nodes is equal to the number of features being used and
the output layer always contains one node. A tangent sigmoid (tansig)
function was used as the training function for each hidden layer and a
pure linear function was used at the output layer of the MNN. In each
case, the MNN was trained using 10% of the available training data.

Sequential feedforward feature selection was used to determine
which combination of the features listed above would provide the best
results for multifeature analysis; the feature selection method selected
all eight available features.

3.6 Thresholding for Segmentation of Vessels

The histogram of the intensity values of the result of vessel detection
is not bimodal with a clear separation of the pixels belonging to blood
vessels from the background pixels. Considering the ground-truth data
provided for the 20 training images of the DRIVE database within their
FOV, only 13% of an image is covered by vessel pixels. As a result,
thresholding the gray-scale output images of vessel detection methods
with high accuracy is a rather difficult task. Several automated thresh-
olding methods, including Otsu’s method [27], a moment-preserving
thresholding method [28], the Ridler-Calvard thresholding method [31],
the Rutherford-Appleton threshold selection (RATS) method [29], and
an entropy-based thresholding method [30] are explored in this work.
Additionally, it is possible to use a single fixed-value threshold for each
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single feature or the discriminant result of multifeature analysis, ob-
tained as the value of the point on the ROC curve that is closest to the
point [0, 1], with the ROC curve obtained by using the training set of
images.

Considering that the majority of the pixels in a retinal image are
background pixels and possess a low intensity value in the results of
vessel detection methods, it could be beneficial to select a binarization
threshold by analyzing only the pixels that belong to the boundaries
of the vessels. We propose an adaptive thresholding method in which
the boundaries of blood vessels are detected using Gabor filters with
a low value of τ = 3 pixels. The result is then thresholded at 0.2
of the normalized intensity to obtain the boundaries of blood vessels.
Morphological dilation is then applied to the binary image of the ves-
sel boundaries using a disk-shaped structuring element of radius two
pixels to identify the adjacent regions of boundaries of blood vessels.
The histogram of the pixels (with 25 bins) in the selected regions was
observed to have an abrupt change in the values for two adjacent bins.
The two adjacent bins with the largest probabilities of values are iden-
tified and their corresponding pixel intensity values are noted. An
adaptive threshold for each image is obtained as the average of the
intensity values corresponding to the two identified bins.

The performance of the proposed and selected thresholding tech-
niques was analyzed in terms of the sensitivity (SE), specificity (SP),
and accuracy (Acc) of the segmentation of blood vessels with reference
to the ground-truth images provided in the DRIVE database.

3.7 Postprocessing for Removal of FP Pixels Around the
ONH

In the results obtained using various vessel detection techniques, the
boundary and edges of the ONH are also detected since they represent
an abrupt change in intensity, i.e., an edge, which can lead to artifacts
(FP pixels) when the gray-scale results are thresholded. In the present
work, the FP pixels associated with the boundary of the ONH are
identified using an angular difference index (ADI), defined as [1]
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ADI = cos
[
θ(i, j)− γ(i, j)

]
, (12)

where θ(i, j) is the Gabor angle response and γ(i, j) is the radial angle
with respect to the center of the ONH, as shown in Figures 7(a) and
(b), respectively. The ranges of θ and γ are limited to [−π/2, π/2].
The values of ADI are computed for each pixel within the annular re-
gion limited by two circles of radii 0.75r and 2r, where r = 0.8 mm
is the average radius of the ONH [16]. The center of the ONH was
automatically detected using phase portrait analysis of the Gabor an-
gle response [32]. The pixels for which ADI is less than 0.15, i.e., the
difference between the Gabor angle and the radial angle is greater than
81◦, are removed from the output of the classifier, because they rep-
resent artifacts related to the ONH. This step may cause the loss of a
few pixels belonging to vessels.

(a) (b)

Figure 7. (a) Gabor angle response and (b) radial angle with respect
to the center of the ONH for the selected annular region.

4 Results

In order to obtain each feature mentioned in Section 3.5, the luminance
component, Y , of the Y IQ color space, defined as
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Y = 0.299R + 0.587G + 0.114B, (13)

where R, G, and B represent the red, green, and blue color components
in the RGB color space, respectively, was used as the input to the vessel
detection methods.

The performance of the proposed methods was tested with the set
of 20 test images of the DRIVE database. The training set of 20 images
was used to determine the best values for the parameters of the filters
(Section 3), to perform the training of the MNNs (Section 3.5), and to
determine a suitable threshold for segmentation of vessels (Section 3.6).
The ground-truth images of blood vessels were used as reference to
perform ROC analysis.

The results of detection of blood vessels were evaluated in terms of
the area under the ROC curve (Az), which are provided in Table 1.
For comparative analysis, the result of another previously proposed
method [6], as discussed in Section 1, that was not implemented in this
work is also presented in Table 1.

Table 1. Comparison of the efficiency of detection of blood vessels
in the retina obtained by different methods, as implemented in this
work, and another method, for the test set (20 images) of the DRIVE
database [7].

Detection method Az

Vesselness measure of Salem et al. 0.892
Vesselness measure of Frangi et al. 0.896
Line operators 0.905
Matched filters 0.928
Single-scale Gabor filters 0.950
Ridge-based segmentation [6] 0.952

Table 2 presents the results of performing vessel classification with
MNN classifiers using various combinations of the proposed features,
as mentioned in Section 3.5. For comparative analysis, the results of
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the works of Soares et al. [8] and Lupaşcu et al. [13], who performed
multiscale and multifeature analysis, respectively, are also presented in
Table 2 (see Section 1 for the details of the methods).

Table 2. Results of detection of blood vessels in terms of Az with
the test set (20 images) of the DRIVE database. For all cases, MNN
classifiers were used. Multiscale Gabor filters include the magnitude
response images with scales of τ = {4, 8, 12} pixels. In order to keep
the table entries short, the following acronyms for different features
are used: Gabor filters (GF), vesselness measure of Frangi et al. (VF),
vesselness measure of Salem et al. (VS), gamma-corrected green com-
ponent (GC), matched filters (MF), and line operators (LO).

Detection method Az

VF, VS, GC, MF, and LO 0.948
Multiscale GF 0.960
Multiscale GF and LO 0.960
Multiscale GF and MF 0.960
Multiscale GF and VS 0.960
Multiscale GF and VF 0.960
Multiscale GF, VF, and GC 0.961
Multiscale GF, VF, VS, GC, MF, and LO 0.961
Multiscale complex GF [8] 0.961
Multifeature analysis (41 features) [13] 0.956

Figure 8 shows the result of multifeature and multiscale analysis
for the image in Figure 1 (a) using four of the combinations given in
Table 2.

Table 3 provides the performance of the three methods of entropy-
based [30] thresholing, adaptive thrsholding, and fixed-value thresh-
olding. The methods of Otsu [27], moment-preserving thresholding
method [28], Ridler-Calvard thresholding method [31], and the RATS
method [29] were also tested in this work; however, since they did not
provide better results than the three methods mentioned above, their
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(a) (b)

(c) (d)

Figure 8. Results of multifeature and multiscale analysis using MNNs:
(a) multiscale Gabor filters, (b) multiscale Gabor filters, vesselness
measure of Frangi et al., and gamma-corrected inverted G-component,
(c) vesselness measure of Frangi et al., vesselness measure of Salem et
al., gamma-corrected inverted G-component, matched filters, and line
operators, (d) multiscale Gabor filters, vesselness measure of Frangi
et al., vesselness measure of Salem et al., gamma-corrected inverted
G-component, matched filters, and line operators.
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results are not presented in this table.

Figure 9 shows the results of thresholding the magnitude responses
of single-scale Gabor filters (τ = 8) [Figure 4 (a)] and the vesselness
measure of Frangi et al. [Figure 3 (a)] using the fixed-value threshold,
as well as the entropy-based thresholding method. It can be seen that
the entropy-based method provides higher specificity [higher number
of true-negative (TN) pixels] at the expense of lower sensitivity [lower
number of true-positive (TP) pixels]. It can be seen that the boundary
of the ONH is not segmented when using the entropy-based method in
part (b) of the figure. However, the entropy-based method is incapable
of segmenting the majority of the vessel pixels in the case of the ves-
selness measure of Frangi et al., which is likely due to the low intensity
values provided by the method.

Figure 10 shows the results of thresholding the discriminant im-
ages in Figures 8 (b) and (d) obtained using multifeature analysis.
Both thresholding methods perform well with the results of multifea-
ture analysis, with the fixed-value threshold having a higher SE and the
entropy-based method a higher SP. It can be seen that the boundary
of the ONH is not segmented when using the entropy-based method.
Note that the thresholds for parts (a) and (c) of the figure are negative,
because the MNN is trained using a tansig function which maps the
discriminant values to the range [−1, 1].

The method for removing the FP pixels around the ONH was eval-
uated in combination with the methods for the detection of blood ves-
sels based on the vesselness measures and multiscale Gabor filters. For
removal of artifacts, the Gabor magnitude response image was thresh-
olded using the fixed threshold as explained in Section 3.6, and the
postprocessing technique was applied to the binarized image. The pro-
posed postprocessing technique was applied to the 20 test images of
the DRIVE database and was able to remove 224 FP pixels per image
on the average, at the cost of losing 22 TP pixels per image on the
average. Examples of removal of FP pixels around the ONH are shown
in Figure 11.
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(a) (b)

(c) (d)

Figure 9. Binarized versions of the image in Figure 4 (a) (single-scale
Gabor filter) using: (a) the fixed-value threshold t = 0.0024 of the max-
imum intensity value, with SE = 0.867, SP = 0.908, and Acc = 0.903;
and (b) the entropy-based method (t = 0.196 of the normalized inten-
sity value), with SE = 0.397, SP = 0.996, and Acc = 0.919. Binarized
versions of the image in Figure 3 (a) (vesselness measure of Frangi et
al.) using: (c) the fixed-value threshold t = 3.22×10−8 of the maximum
intensity value, with SE = 0.810, SP = 0.889, and Acc = 0.879; and
(d) the entropy-based method (t = 0.290 of the normalized intensity
value), with SE = 0.050, SP = 1.000, and Acc = 0.871.
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(a) (b)

(c) (d)

Figure 10. Binarized versions of the image in Figure 8 (b) using: (a) the
fixed-value threshold t = −0.743 of the maximum intensity value, with
SE = 0.893, SP = 0.909, and Acc = 0.907; and (b) the entropy-based
method (t = 0.263 of the normalized intensity value), with SE = 0.837,
SP = 0.950, and Acc = 0.936. Binarized versions of the image in
Figure 8 (d) using: (c) the fixed-value threshold t = −0.740 of the
maximum intensity value, with SE = 0.895, SP = 0.909, and Acc =
0.908; and (d) the entropy-based method (t = 0.302 of the normalized
intensity value), with SE = 0.870, SP = 0.933, and Acc = 0.925.

177



F. Oloumi, A. Dhara, R. Rangayyan, S. Mukhopadhyay

(a) (b)

Figure 11. Example of removal of ONH artifacts: (a) thresholded Ga-
bor magnitude response image, and (b) the same region after the re-
moval of ONH artifacts.

5 Discussion

As evident from the results in Table 1, even the use of a combination of
large number of features (41) [13], does not lead to substantial increase
in the value of Az. The large number of FP pixels caused by over
segmentation of small blood vessels seems to be the limiting factor in
achieving higher Az values. The accuracy of detection of blood vessels
could be increased if thin, single-pixel-wide blood vessels are detected
accurately. However, thin blood vessels may not be important in the
analysis of retinal vasculature as only changes in the major vessels have
been observed to be clinically significant [23,33].

Based on the results obtained in this work, a single-scale Gabor
filter is capable of detecting blood vessels with accuracy (Az = 0.950)
not substantially different from the highest Az value obtained with the
result of multifeature analysis in this work (Az = 0.961). It would be
of interest to determine if the difference between the Az values given
above is statistically significant.

Using a Lenovo Thinkpad T510, equipped with an Intel Core i7
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(Hyper-threaded-dual-core) 2.67-GHz processor, 4 MB of level 2 cache,
8 GB of DDR3 RAM, running 64-bit Windows 7 Professional, and
using 64-bit Matlab software, the run time for single-scale Gabor filters
with K = 180, for a single color image from the DRIVE database is
approximately 13.5 seconds. The preprocessing step takes about 8.8
seconds to execute.

Although the reduction of FP pixels is visible in the example shown
in Figure 11, the result did not lead to a substantial increase in speci-
ficity. This is mainly because the total number of FP pixels removed
(224 pixels, on the average, per image) by the postprocessing step is
small compared to the total number of FP pixels (20, 038 pixels, on the
average, per image) and the total number of TP pixels (24, 888 pixels,
on the average, per image). Such a postprocessing step is most benefi-
cial when applied to a skeleton of the vasculature in applications where
it is important to process only pixels that belong to vessels, such as
tracking the major branches of vessels [34] and measurement of vessel
thickness [35].

The problem of segmentation of vessels via thresholding is crucial
to applications that deal with measurement and analysis of the statis-
tics of blood vessels. In this work, we have analyzed seven different
thresholding methods. Based on the results presented in Table 3, the
thresholding method using a fixed value obtained using the ROC curve
for the training set of images provides the most consistent results in
terms of SE, SP, and accuracy. The entropy-based thresholding method
provides a higher SP and similar SE in comparison to the fixed-value
method when applied to the results of multifeature analysis. However,
the entropy-based method has low sensitivity when applied to single
features. The proposed adaptive thresholding method does not per-
form better than the other two methods. Depending on the desired
application, either the fixed-value method, the entropy-based method,
or a combination of the two could be employed.
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6 Conclusion

In this study, we have analyzed multiscale and multifeature methods
for the detection of blood vessels in retinal fundus images, and achieved
a maximum Az value of 0.961 using the 20 test images of the DRIVE
database. The results of the present study indicate that the state-of-
the-art methods for the detection of blood vessels perform at high levels
of efficiency and that combining several features may not yield better
results. The result of the fixed-value thresholding or the entropy-based
method could be helpful in analyzing the thickness and tortuosity of
blood vessels.
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Abstract

Presented are the methods proposed by authors to identify
and model the optic disc in colour retinal images. The first three
our approaches localized the optic disc in two steps: a) in the
green component of RGB image the optic disc area is detected
based on texture indicators and pixel intensity variance analysis;
b) on the segmented area the optic disc edges are extracted and
the resulted boundary is approximated by a Hough transform.
The last implemented method identifies the optic disc area by
analysis of blood vessels network extracted in the green channel of
the original image. In the segmented area the optic disc edges are
obtained by an iterative Canny algorithm and are approximated
by a circle Hough transform.

Keywords: optic disc, retinal images, vessel segmentation,
Hough transform.

1 Introduction

Proposed in the last years, there is a huge literature on automatic
analysis of retinal images, the optic disc evaluation being part of this
work. The recognition and assessment of optic disc in retinal images
are important tasks to evaluate retina diseases as diabetic macular
edema, glaucoma, etc. The uneven quality and diversity of the acquired
retinal images and the large variations between individuals made the

c©2014 by F. Rotaru, S.I. Bejinariu, C.D. Niţă, R. Luca, C. Lazăr
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automatic analysis a strongly context dependent task. Even so valuable
methods were proposed and the authors have reported their results
lately using public retinal images databases as DRIVE (40 images),
DIARETDB1 (89 images) or STARE (402 images).

Part of the proposed techniques, called bottom-up methods, first
locate the optic disc and then starting from that area track the retinal
vessels and do the required measurements [1], [2], [3], [8]. There is
another approach of retinal image analysis that tracks the retinal ves-
sels and gets the optic disc as the root of the vessels tree. The second
one is called top-down approach [4], [5], [7], [17]. Besides these two
trends, there are mixed approaches, independently detecting the optic
disc centre and retinal vessels, as the ones proposed in [15], [23]. In
these ones the blood vessel network analysis is combined with other
methods to locate optic disc area.

A bottom-up technique is presented in [1]. The optic disc recog-
nition and modelling were done in two steps. The first one locates
the optic disc area using a voting procedure. There were implemented
three methods: the maximum difference method that computes the
maximum difference between the maximum and minimum grey lev-
els in working windows, the maximum variance method and frequency
low pass filter method. The green channel of the RGB input image was
used. The first method filters the image using a 21× 21 median filter
and then for each pixel in the filtered image the difference between the
maximum and minimum grey levels in a 21 × 21 window centred on
the current pixel is computed. The pixel with the maximum difference
is chosen optic disc centre candidate. Second method calculates the
statistical variance for every pixel of the green channel using a 71× 71
window. Then, the blue channel image is binarized by Otsu technique.
The pixel in the green channel with the maximum statistical variance
and having at least 10 white neighbours pixels in a 101× 101 area cen-
tred on it but in the blue binarized channel is proposed as disc centre.
The third voting method transforms the green channel from spatial
domain to frequency domain, by a Fourier transform. The magnitude
image of the transform is filtered using a Gaussian low-pass filter and
the result image is transformed back to the spatial domain. The bright-
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est pixel in result image is taken as the third optic disc centre candidate.
Finally the voting procedure chooses the estimated disc centre from the
three candidates: 1) if all three candidates are close to their centre of
mass, the centre of mass is proposed as an approximate disc centre; 2)
if only two from three candidates are close to the centre of mass of all
three points, the centre of mass of these two candidates is chosen; 3)
if all candidates are far apart from their centre of mass, the candidate
proposed by the second method is chosen, the most reliable considered
by the authors.

Part of this optic disc area segmentation was also implemented in
our first system to process retinal images.

In the second step of the whole methodology proposed in [1] a 400×
400 window is centred on the estimated disc centre, and extracted from
green and red channels of the original image. A morphological filter is
employed in [6] to erase the vessels in the new window and a Prewitt
edge detector is then applied. Then, by the same Otsu technique,
the image is binarized. The result is cleaned by morphological erosion
and finally a Hough transform is applied to get the final optic disc
boundary. The boundary with the best fitting from the two channels
is chosen. The authors report for 1200 retinal images a score of 100%
for approximated localisation and a score of 86% for final optic disc
localisation.

Another bottom up approach to locate optic disc area was proposed
in [8]. The method combines two algorithms: a pyramidal decomposi-
tion using Haar wavelet transform and an optic disc contour detection
based on Haussdorf distance. Areas, usually white patches that might
disturb the right disc area detection are eliminated during the pyramid
synthesis. In the end, the low resolution level contains only the useful
information. Finally the disc is selected from ten optic disc candidates.

In [3] another automatic optic disc detection was proposed based on
majority voting for a set of optic disc detectors. There were employed
five methods to detect optic disc centre: pyramidal decomposition [8],
edge detection [8], entropy filter [14], fuzzy model [5] and Hough trans-
form [10]. Each of the five methods is applied on the whole working
image. A circular template is fit on each pixel in the initial image to
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count the outputs of these algorithms that fall within the radius. The
circle with the maximum number of optic disc detector outputs in its
radius is the chosen area to refine the optic disc detection. An improved
version of the voting method was proposed in [2].

From the top down methods the one proposed in [4] detects the
retinal vessels convergence using a voting-type algorithm named fuzzy
convergence. In another paper [5], in a first step there are identified the
four main vessels in the image. Then the four branches are modelled
by two parabolas whose common vertex is identified as the optic disc
centre.

Another top down approach is proposed in [17]. The blood vessel
network is segmented after a sequence of morphological operations:

a) the bright areas, associated with diabetic lesions, are removed ap-
plying a morphological operator to detect regional minima pixels
and then the resulted image is reconstructed by dilation;

b) the result background image is enhanced by a morphological con-
trast operation and then a Gaussian filter is applied;

c) the elongated low intensities regions, associated with vascular
tree, are extracted with a top-hat by closing operator;

d) the maximum of openings are retained for a structuring element
of 80 pixels long segment and 24 orientations. These are the main
branches of the vessels tree;

e) the vascular tree is then estimated by reconstruction by dilation
using the result image from step d) as marker image and the
result image from step c) as mask element;

f) the grey level image resulted in previous step is binarized using
a morphological operator to detect regional minima pixels as in
step a). The result is complemented;

g) the skeleton of the vessel tree is obtained in the binary image by
morphological operation;

h) the useless short vessels branches are eliminated by a 20 step
pruning operation.
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In the resulted vessel tree image a point close to optic disc is calcu-
lated: a) the holes of the vessel network are filled; b) the tree branches
are thinned; c) a recursive pruning operation is applied until no more
reduction is possible, so only the main parabolic branch remains. The
mass centre of the parabolic branch is considered the point closest to
the optic disc.

In [17] other optic disc detection methods taxonomy is proposed.
There is identified a first group of methods, [7], [18 – 21], that local-
izes the optic disc centre as the convergence point of the main blood
vessels. However, these methods can be assimilated to the top-down
category. From the second category group identified in [17], M. Niemei-
jer [23] uses a mixed algorithm combining the vessel network analysis
and other segmentation method to locate optic disc area. The rest of
the methods proposed in the second group of papers, [13], [22], [24 –
28] can be assimilated to the bottom-up methods. For two of these
papers, [27] and [28], the main purpose is the exudate detection, so
the optic disc detection and elimination are mandatory. While in [28]
the optic disc area is identified using morphological operators, in [27],
besides morphological filtering techniques, the watershed transforma-
tion is used. Another approach [22] from the second group identifies
the optic disc using specialized template matching and segmentation
by a deformable contour model. In [25] a genetic algorithm is proposed
to localize the optic disc boundary. In [26] the authors utilize texture
descriptors and a regression based method to find the most likely circle
fitting the optic disc.

Most of the papers mentioned in the taxonomy proposed in [17]
report very good results of detecting optic disc area for images from
DRIVE or DIARETDB1 database or both.

2 Optic disc area segmentation methods

To locate the optic disc area we started following a similar methodology
as the one proposed in [1]. In the first attempt tests have been done on
720× 576 RGB retinal images [11], provided by our collaborators from
Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
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(UMP). From the three methods of the voting procedure presented
in [1] we obtained good optic disc area localisation with a modified
Low-Pass Filter Method and the Frequency Low Pass Filter Method.

The first method was implemented as in [1]. The green channel of
the input image was transformed in frequency domain and on the image
of the magnitude of the FFT transform a Gaussian low-pass filter was
applied:

H(u, v) = exp
(
−D2 (u, v)

2D2
0

)
, (1)

where D (u, v) is the Euclidean distance from point (u, v) to the origin
of frequency domain and D0 is the cutoff frequency, of 25 Hz. The result
was transformed back to the spatial domain and the brightest pixel of
the result image was chosen as an optic disc area centre candidate.

For the second voting procedure we tried the Maximum Difference
Method proposed in [1]. But good results were obtained with an ap-
proach derived from this one. As in [1], a 21 × 21 median filter was
applied on the green channel of the input image to eliminate isolated
peaks. Then for each (i, j) pixel of the filtered green channel I(x, y) the
difference between the maximum grey value and minimum grey value
of the pixels inside a 21× 21 window centred on the current (i, j) pixel
is calculated:

Diff(i, j) = Imax
W (i, j)− Imin

W (i, j). (2)

There are stored four pixels with the greatest values Diff(i, j). Then,
starting from texture operators:

L5 =
[

1 4 6 4 1
]
,

E5 =
[ −1 −2 0 2 1

]
,

S5 =
[ −1 0 2 0 −1

]
,

(3)

where:
L5 – mask to assess the grey level average;
E5 – edge mask;
S5 – corner mask,
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the following masks, as in [8], are synthesized:

L5txE5 =




−1 −2 0 2 1
−4 −8 0 8 4
−6 −12 0 12 6
−4 −8 0 8 4
−1 −2 0 2 1




,

L5txS5 =




−1 0 2 0 1
−4 0 8 0 4
−6 0 12 0 6
−4 0 8 0 4
−1 0 2 0 1




,

E5txL5 =




−1 −4 −6 −4 −1
−2 −8 −12 −8 −2
0 0 0 0 0
2 8 12 8 2
1 4 6 4 1




, (4)

S5txL5 =




−1 −4 −6 −4 −1
0 0 0 0 0
2 8 12 8 2
0 0 0 0 0
−1 −4 −6 −4 −1




.

For each pixel of the filtered green channel I(x, y) the texture pa-
rameter f(i, j) is computed:

f(i, j) = (5)
√

(fL5txE5(i, j))2 + (fL5txS5(i, j))2 + (fE5txL5(i, j))2 + (fS5txL5(i, j))2.

The value f(i, j) is then normalized:

F (i, j) =
f(i, j)− fmin

fmax − fmin
, (6)

where fmax = max{f(i, j)}, fmin = min{f(i, j)}, 0 ≤ i ≤ H − 1,
0 ≤ j ≤ W − 1, H is the image height and W is the image width.
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From the four pixels with the greatest values Diff(i, j) selected in
the first stage it is retained the one with the largest average of F (i, j)
computed on the 21× 21 window centred on the processed pixel.

From our tests we concluded that on the retinal images of healthy
patients or in the early stages of affection this second voting method
provides a closer point to the real optic disc centre than the first one.
However, on the retinal images strongly affected it fails. Finally, if the
two methods to approximate the optic disc centre provide close centres,
it is chosen the one computed by the second method. Otherwise the
centre computed by the first method is chosen. The results obtained
with the two procedures are illustrated in Figure 1, where the little
cross is the point found out by maximum difference method and the
big cross is the point provided by the second algorithm.

In a second step, we tried to apply the same methodology on images
of resolution 2592×1728 [12]. Good optic disc area localization results
were obtained only with the Low-Pass Filter Method (1), the third
method of the voting procedure in [1].

Results of detecting approximate optic centre position by two voting
procedures for low resolution image are illustrated by Figures 2.a and
2.b. A result using Low-Pass Filter Method for high resolution image
is depicted in Figure 2.d.

The optic disc zone identification using the same voting procedure
as in [12] failed for a third set of retinal images, of resolution 720×576,
provided by our collaborators from a different acquisition system. In
the new set, the green channel was not always consistent in term of
contrast. For some images the red channel is more suited to locate the
optic disc area, for other ones the green channel is desirable.

The right channel selection was done using a square window scan-
ning the whole red and green channels. The pixel intensity variance of
the scanning window centre was computed. The window side length
is the maximum expected circle diameter, estimated as a fraction of
image width. The channel with the greatest maximum variance was
chosen as working image to locate the optic disc area.

To identify the optic disc area in the selected image a new method
was proposed [13]: the image was transformed in frequency domain
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a) b)

c)

Figure 1. Results of detecting approximate optic centre position by
two voting procedures. Point marked with little cross is provided by
the first method and the one indicated by large cross is computed by
the second voting algorithm. When the two points are far apart, as in
the c) image, the centre computed by the first method is chosen – [11].
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a) b)

c) d)

Figure 2. Results of detecting approximate optic centre position by two
voting procedures for low resolution image, figures a) and b). Point
marked with little cross is provided by the first method and the one
indicated by large cross is computed by the second voting algorithm.
When the two points are far apart, as in the b) image, the centre
computed by the first method is chosen. A result using Low-Pass Filter
Method for high resolution image is depicted in figure d). Part of
original high resolution image is illustrated in figure c) – [12].
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and the magnitude result of the FFT transform was filtered by Gaus-
sian low-pass filter (1). The filtered result was transformed back to the
spatial domain. Using the histogram of the new image, noted I (i, j), a
binarization threshold was computed. On each “bright” pixel (having
a grey value greater than the binarization threshold) a square win-
dow of the same dimension as the one used in the channel selection
step was centred. Then for every window centred in the “bright” pix-
els, intensity pixel variance, noted V ar(i, j), was calculated. Also, for
every pixel I (i, j) a texture measure was computed, using the same
technique, Modified Maximum Difference Method, presented at the
beginning of paragraph 2. A new image F (i, j), of normalized texture
values, was created. Finally, the pixel O (m,n) of image I (i, j) with
F (m,n) > F (i, j)

0≤i≤H−1
0≤j≤W−1

and V ar(m,n) > 0.7max (V ar(i, j)) was declared

as the centre of a window containing the optic disc.
Results of the new identification optic disc area procedure are de-

picted in Figure 3. The original image is 3.a. The images I (i, j) and
F (i, j) are illustrated by Figures 3.b and 3.c. Black pixels in Figure 3.c
are “dark” pixels of I (i, j) not considered as possible optic disc centre
candidates. The final result is depicted in Figure 3.d, where the cross
indicates the centre of the working window in the selected channel.

Our previous methods to identify and model the optic disc pro-
vided very good results on retinal images of patients in early stages
of ophthalmic pathologies as diabetic retinopathy or glaucoma. Tests
have been made on three databases provided by our collaborators from
UMP, Iaşi. We obtained good results also on images seriously affected
by ophthalmic pathologies [12], [13].

The method proposed in [13] was tested on more than 100 images
from STARE database of an image selection based on optic disc visi-
bility. The results were good on the majority of these images but on
other ones the optic disc was not correctly localized. Another method
to segment the optic disc area was implemented based on the main
blood vessels convergence point identification in the green channel.

Based on a technique employed from [6], in a first step the vessel
tree of the green channel was iteratively segmented. A line of 27 pixels
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a) b)

c) d)

Figure 3. Result of detecting approximate optic centre position. a)
Original RGB image; b) Gaussian filtering result in frequency domain
I(i, j); c) F (i, j) image, where black pixels are “dark” pixels of I(i, j);
d) the cross indicates the working window centre – [13].
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length and 1 pixel width was used as structuring element for an opening
operation applied on the green channel for 12 different orientations of
the element:

IC = min
i=1,...12

(γBi (I)) , (7)

where I is the input image, Bi is the structuring element and γBi (I) is
the result of the opening for orientation i of the structuring element.

Then, using IC as marker image and the green channel as mask
image a morphological reconstruction was performed:

IC = RI

(
min

i=1,...12
(γBi (I))

)
. (8)

An image containing only background (large homogenous areas) results
from:

IB = max
i=1,...12

(γBi (I)) . (9)

Subtracting IB from IC an image containing only blood vessels is gen-
erated:

IV = IC − IB. (10)

Then an Otsu binarization of the IV image is iteratively applied until
one of the vessel configurations is obtained: a) a vessel tree with a big
ratio (number of white pixels)/(surrounding tree rectangle area) and
with surrounding tree rectangle area at least half of the input image;
b) two big vessel branches as illustrated in Figure 4; c) a single large
branch with a low ratio (number of white pixels)/(surrounding tree
rectangle area) but with surrounding tree rectangle area at least half
of the input image.

For cases b) and c) the principal axis of the binarized vessels is
computed. A search region is computed considering the distances to
principal axis of the endpoints of the branches in two branch case or
of the distances to principal axis of the parabola points in case c).

For configuration a) the search area was considered the minimum
surrounding rectangle. The search area for case b) is illustrated in
Figure 5.
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a) b)

c) d)

Figure 4. Results of IV image binarization for two branch case. a) Ori-
ginal image; b) first step binarization; c) second step binarization; d)
final step binarization.
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a) b)

c) d)

Figure 5. Search region for two branch case. a) original image; b) two
final branches; c) search region in the working image; d) search region
in the green channel were the next step is to approximately find the
disc centre.
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On the area established above, except of the FFT transform and
Gaussian filtering, the procedure proposed in [13] was applied to iden-
tify a point to be declared the centre of a new window containing the
optic disc.

Results of the new window centre calculation are depicted in Fi-
gure 6.

a) b)

c) d)

Figure 6. Results of the new window centre calculation. Green channels
a), c); new window centre b), d).
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3 Optic disc recognition

As in [1], [11], [12] and [13] the further work was done on a square
window centred on the optic centre candidate computed previously.
The searching window side is a fraction of image height. The tests have
been done on the green channel of the first two sets of retinal images
(86 retinal images of 720 × 576 size and 40 images of 2592 × 1728
resolutions), on chosen channel of the last set (300 of RGB retinal
images of 720 × 576 size) from our collaborators (UMP, Iaşi) and on
100 images from STARE database where the optic disc is visible.

Following the same technique employed in [6] in the established
window I the blood vessels were eliminated (7).

Results of the vessels erasing operation are illustrated by Figure 7,
for last set of retinal images received from our collaborators (UMP,
Iaşi).

a) b)

Figure 7. The result of vessels erasing. a) Selected channel b) Cleaned
working window – [13].

In order to perform a circle fitting the disc, edges have to be ex-
tracted. This is done by applying on image IC an iterative Canny filter
followed by binarisation. The same technique proposed in [12] and [13]
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was employed to do this:

1. Compute a binarization threshold using Otsu method, [9], on
image IC , without performing the binarization.

2. Choose a value close to Otsu threshold as a primary threshold
for Canny filtering.

3. Perform Canny filtering.

4. If there are not enough white pixels (less than a predefined thresh-
old) adapt the threshold for Canny filtering and resume process
from step 3.

5. Compute rmin and rmax, the minimum and maximum values of
circles radius, as fractions of the original image width.

6. For an interval [rmin, rmax] of circle radius compute a circle fitting
by Hough transform applied on window pixels with grey level
close to the window centre level.

7. Choose the centre radius with the best fitting score and best
distribution of fitting points.

8. If the fitting score is not desirable or there are few points to
perform the fitting, decrease the Canny threshold by a certain
amount (constant in our implementation) and perform Canny
filtering on IC and resume the process from step 6. Do this not
more than a predefined number of iterations.

9. If the detected circles have comparable fitting scores and fitting
point distributions, choose the circle with the longest radius.

Canny filtering was done using the OpenCV function. Hough trans-
form was performed by implementing our own method in order to get
more control on the distribution of the fitting points [12], [13]. The
distance between the current fitted circle centre and the mass centre
of the fitting points was used to evaluate the point distribution. In

203



F. Rotaru, S.I. Bejinariu, C.D. Niţă, R. Luca, C. Lazăr

this way some configurations can be rejected even they are generated
by an acceptable number of fitting points if the points are not equally
distributed around circle centre.

4 Results and conclusions

Tests have been done on two first sets of 86 RGB retinal images of
720× 576 resolution and 40 images of 2592× 1728 resolution provided
by our collaborators (UMP, Iaşi). The method [13] to detect the optic
disc area worked well, with the same results as the one presented in
[12]: the rough optic disc localization has been successful on both image
sets. The final circle fitting failed on two low resolution images strongly
affected. Because the previous method [12] is faster we opted to keep
it for the old sets and use the approach presented in [13] only for the
last set of 300 retinal images of 720 × 576 resolution. The optic disc
localization has been successful on 280 images of the last set. The
final circle fitting failed on 10 images of the 280 images previously
mentioned.

The last method based on vessel tree analysis was tested on the
set of 300 RGB retinal images of 720× 576 size provided lately by our
collaborators (UMP, Iaşi) and on 100 images from STARE database
where the optic disc is visible. The new optic disc localization has
been successful on 282 images of the first set, a little bit better than the
previous method [13]. However, from 100 images chosen from STARE
database the method [13] failed to localize to optic disc area on 20
images while the new method was successful on 90 STARE images.

Figure 8 illustrates some final circle localization results for images
from the three sets from Grigore T. Popa University of Medicine and
Pharmacy Iasi and an image from STARE database.

The optic disk localization and modelling procedure was imple-
mented and tested in an image processing framework developed by
authors. It is implemented as a Windows application, in C++ using
Microsoft Visual Studio. For image manipulation and some processing
functions, the OpenCV library is used.
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a) b)

c) d)

e) f)
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g) h)

Figure 8. On the left column: original retinal images. On the right:
the final optic disc localization results. a), b) image from the first set
of 720× 576 resolution – [11]; c), d) image from the set of 2592× 1728
resolution – [12]; e), f) image from the last set of 720× 576 size – [13];
g), h) image from the STARE.

Acknowledgments The work was done as part of research collabo-
ration with Grigore T. Popa University of Medicine and Pharmacy Iasi
to analyse retinal images for early prevention of ophthalmic diseases.
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disc localization approach in retinal images, The 4th IEEE Inter-
national Conference on E-Health and Bioengineering, EHB 2013,
21-23 November 2013, Iasi, Romania.

[14] A. Sopharak, K. Thet Nwe, Y. Aye Moe, M. N. Dailey, B.
Uyyanonvara. Automatic exudate detection with a naive Bayes
classifier, International Conference on Embedded Systems and
Intelligent Technology, Grand Mercure Fortune Hotel, Bangkok,
Thailand, pp.139–142, 2008.

[15] G.C. Manikis, V. Sakkalis, X. Zabulis, P. Karamaounas, A. Tri-
antafyllow, S. Douma, Ch. Zamboulis, K. Marias. An Image
Analysis Framework for the Early Assessment of Hypertensive
Retinopathy Signs, Proceedings of the 3rd IEEE International Con-
ference on E-Health and Bioengineering - EHB 2011, 24th-26th
November, 2011, Iaşi, Romania.
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Cristina Diana Niţă, Ramona Luca, Camelia Lazăr
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Abstract

We present color image processing methods for the charac-
terization of images of dermatological lesions for the purpose of
content-based image retrieval (CBIR) and computer-aided diag-
nosis. The intended application is to segment the images and per-
form classification and analysis of the tissue composition of skin
lesions or ulcers, in terms of granulation (red), fibrin (yellow),
necrotic (black), callous (white), and mixed tissue composition.
The images were analyzed and classified by an expert dermatolo-
gist following the red-yellow-black-white model. Automatic seg-
mentation was performed by means of clustering using Gaussian
mixture modeling, and its performance was evaluated by deriving
the Jaccard coefficient between the automatically and manually
segmented images. Statistical texture features were derived from
cooccurrence matrices of RGB, HSI, L∗a∗b∗, and L∗u∗v∗ color
components. A retrieval engine was implemented using the k-
nearest-neighbor classifier and the Euclidean, Manhattan, and
Chebyshev distance metrics. Classification was performed by
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means of a metaclassifier using logistic regression. The aver-
age Jaccard coefficient after the segmentation step between the
automatically and manually segmented images was 0.560, with
a standard deviation of 0.220. The performance in CBIR was
measured in terms of precision of retrieval, with average values
of up to 0.617 obtained with the Chebyshev distance. The meta-
classifier yielded an average area under the receiver operating
characteristic curve of 0.772.

Keywords: Color image processing, color medical images,
color texture, content-based image retrieval, computer-aided di-
agnosis, image segmentation, dermatological ulcers, tissue com-
position analysis.

1 Introduction

1.1 Computer-Aided Analysis of Medical Images

Recent developments in information and communication technologies
have led to the creation and use of huge archives of multimedia data
in diverse application areas, such as medical imaging, remote sensing,
entertainment, education, and online information services. Traditional
database management systems were designed to organize alphanumeric
data into interrelated collections so that information storage and re-
trieval could be performed conveniently and efficiently. However, such
methods are not well suited for the organization, management, and
efficient use of multimedia information [1]. In many practical appli-
cations, the retrieval of a specific image from a database of images
could be an important task [2]. Several search engines are available
for searching and retrieval of textual and pictorial information [2–5].
However, general-purpose tools for searching and retrieval of data are
not suitable for specialized medical applications. For this reason, spe-
cific methods and systems for the characterization, searching, and re-
trieval of image-based data are being developed for particular medical
imaging applications [6, 7], such as mammography [8–11], chest and
other radiographic imaging [12,13], dermatological lesions [14–17], and
pathology [18].
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The traditional approach of indexing images using manual notes
(textual annotation) is slow, labor-intensive, and expensive. In addi-
tion, textual annotations cannot effectively encode all of the informa-
tion available in a given image. Furthermore, image features based on
huge amounts of pixel data, complex concepts of application-specific
patterns, and domain-specific notions may not lend themselves to easy
or efficient textual description. Thus, there is a need to develop ad-
vanced methods of image processing, feature extraction, quantitative
representation, and pattern recognition for effective and efficient inde-
xing and retrieval of images based on their content.

Content-based image retrieval (CBIR) refers to searching, selection,
and retrieval of images from a database that are similar to a query im-
age, using measures of information derived from the images themselves,
rather than relying on the accompanying text or annotation [6,19]. To
facilitate CBIR, the contents of the images need to be characterized
by quantitative features. The features of the query image may then
be compared with the features of each image in the database, and im-
ages having high similarity with respect to the computed features of
the query image may be retrieved and displayed [19]. CBIR of medical
images is a useful tool, and could provide physicians with assistance in
the form of a display of relevant past cases with proven pathology, along
with the associated clinical, diagnostic, and other information [19].

The potential use of automated image categorization techniques to
assist physicians in diagnosis led to intense research in the field of med-
ical image processing classification [19–21]. This approach usually con-
sists of mapping images into predefined classes and involves the steps
of representation (description of image content by feature extraction),
adaptation (selection of the most representative subset of features to
classify information) and, generalization (the training and evaluation
of a classifier) [19,21,22].

The same steps mentioned above may also be used to assist in
clinical decision making and lead towards computer-aided diagnosis
(CAD) [19,21,23]. The medical domain has specific requirements (high
sensitivity and low false-negative as well as false-positive rates) and
errors in detection are extremely costly, making the development of a
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computerized scheme to aid diagnosis with broad application in clinical
practice a challenge [19,20].

1.2 Analysis of Dermatological Ulcers

Ulcers on the lower limbs can be described as the irregular loss of the
epidermis, also possibly involving the dermis and subcutaneous tissue.
They affect approximately 1% of the population, causing considerable
morbidity [24]. This condition is usually ascribed to a deficiency in
blood flow due to venous or arterial insufficiency, and can be caused
by ailments such as diabetes mellitus, autoimmune diseases, and local
infections. The ulceration may be referred to as a wound, lesion, or
ulcer, and medical professionals in dermatology base the diagnosis of
skin lesions mainly on visual assessment of pathological regions and
the evaluation of macroscopic features. This fact indicates that correct
diagnosis is highly dependent on the observer’s experience and visual
perception [16, 25]. Accurate wound assessment is a critical task in
patient care and important for the reduction of costs of care in hospi-
tals. However, this task still relies on manual procedures and tedious
practices. Wound shape is measured with rulers and tracing paper, or
rarely with alginate castings and serum injection.

Healing is a complex cascade of cellular events operating to recon-
struct damaged tissues, and also an individual process that exhibits
considerable interpatient variability. As the different tissues may over-
lap and be difficult to distinguish, wound assessment is not straightfor-
ward. The lack of quantitative data affects the coordination of health-
care staff and hinders clinical studies focused on healing. Digital ca-
meras, though now widespread in clinical centers, are used mostly for
basic patient data recording and not image processing [17].

The appearance of a wound, lesion, or ulcer provides important
clues that can help with the diagnosis, determination of severity, and
the prognosis of healing [26, 27]. Chronic skin lesions, wounds, or ul-
cers typically have a nonuniform mixture of red granulation, yellow
fibrin (slough), and black necrotic scar tissue. Thus, a red-yellow-
black (RYK) model is used by physicians in a descriptive manner
[15, 17, 26–29]. In clinical assessment, the category of callous lesions,
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composed predominantly of white tissue, is also used. Therefore, an
extended version of the RYK model, including white (RYKW) one,
may be of interest. The quantification of texture and color distribution
in lesions by image processing techniques could assist in the analysis of
the dynamics of the pathological process, as well as of healing and res-
ponse to treatment [17, 27, 29, 30]. Such quantitative analysis, in turn,
can be used to design optimized and personalized treatment protocols
for each patient.

In a clinical scenario, the possibility of retrieving images from an
established database that are similar to the case on hand, based on
digital image processing techniques that characterize the color com-
position of lesions, could facilitate understanding how dermatological
lesions are classified and assist in arriving at a diagnostic or therapeutic
decision. In this context, efficient systems for content-based indexing
and retrieval [6, 27, 31], as well as methods to perform classification of
wounds based on the types of tissue present in the wound are useful
and could help health professionals assess lesions for any of the afore-
mentioned purposes.

Celebi et al. [32] described a system to retrieve skin lesion images
based on shape similarity, using a database with 184 skin ulceration
images in cases of melanoma. The agreement between computer as-
sessment and human perception was indicated by values of up to 0.73,
when similarity functions were optimized using a genetic algorithm.
Dorileo et al. [14] proposed a CBIR system for images of dermatologic
ulcers. Features based on histogram and multispectral cooccurrence
matrices were used for image retrieval. Performance was evaluated
based on precision values with a database of 215 images. The best pre-
cision result was 70% for mixed tissue composition images. Rahman
et al. [33] presented a CBIR system for dermatoscopic images. Image
processing, segmentation, feature extraction (color and texture), and
similarity matching were performed on a database comprising 358 im-
ages of pigmented skin lesions in three categories (benign, dysplastic
nevi and, melanoma). The analysis of precision curves displayed the
ability of their system to retrieve visually similar lesions with an aver-
age precision value of 60%.
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The variability and inhomogeneity of tissues makes color analysis
for tissue classification innefective if the methods are applied directly
on the pixels with simple thresholds on separate color components.
Spatial continuity needs to be incorporated, which suggests that the
classification process should be guided by a segmentation step [34].
Color histograms are commonly utilized as descriptors for statistical
data analysis [35], and the use of hybrid tissue classes and limiting
classification to a reduced number of tissue types have also been re-
ported, with an average accuracy of 88.7% using a k-nearest-neighbor
(kNN) classifier [29].

In previous related work, we evaluated the performance of different
distance metrics for CBIR of dermatological images [31]. A database of
172 manually segmented images was used. CBIR using a kNN classi-
fier and the Euclidean, Manhattan, Chebyshev, cosine, and correlation
distances was performed. The best results were obtained with the co-
sine and correlation distances, with average precision of 75%. We also
performed automatic segmentation using methods of color clustering
and mathematical morphology [36]. The same database of 172 images
was used. The average Jaccard coefficient between automatically and
manually segmented regions was 0.56, with a standard deviation of
0.22.

The present work, which is an expanded and updated version of
recent conference presentations [31, 36], focuses on quantitative as-
sessment of color components in images of ulcers on the lower limbs.
We present techniques to perform analysis of color components, tex-
ture analysis, and automatic segmentation. Results are presented
and discussed in the context of CBIR and computer-aided diagnosis
CAD [15–17,27,28,30,31,36].

2 Materials and Methods

2.1 Database of Images

A database consisting of 172 dermatologic images has been prepared
to date, based on 63 consecutive medical examinations of outpatients
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at the University Medical Center at the Ribeirão Preto Medical School
of the University of São Paulo, Brazil. Approval was obtained from
the Medical Center Ethics Committee for this research. Images were
obtained based on a specific protocol that was determined after initial
tests [14]. All images were obtained with the same digital camera
(Canon EOS 5D0, 2 Megapixels), a 50-mm macro lens, and a pola-
rization filter; see Figure 1 for examples of images of various types
of ulcers. The typical size of the color images is 1747×1165 pixels
with 24 bits/pixel. The tissue composition of each lesion was classified
independently by an expert dermatologist (MACF), based on the color
composition, as granulation (red), fibrin (yellow), and mixed tissue.
The 172 images in the database include 51 images of lesions predomi-
nantly composed of granulation, 31 images of fibrin, three images of
callous, three images of necrotic, and 84 images of mixed tissue. The
dermatologist also drew the boundaries of the lesions.

A blue cloth was used to create a background in a color not ex-
pected within the ulcer or on the part of the body being imaged, as
can be seen in Figure 1, parts (c) and (d). Color patches and rulers
were included in the images (see Figure 1) to facilitate color normali-
zation and calibration of the images. A suite of color image processing
techniques, pattern analysis, classification methods, and graphical user
interfaces (GUIs) is being developed to facilitate image analysis, CAD,
and CBIR [14,27,28,31,37].

2.2 Automatic Segmentation of the Ulcer Region

A color clustering process using an expectation maximization (EM)
procedure based on a multivariate Gaussian mixture model [37,38] was
applied to each hue-saturation (HS) histogram [39]. The EM algorithm
implemented in the present work is an iterative method for finding
maximum-likelihood or maximum-a-posteriori (MAP) estimates of pa-
rameters in statistical models. The EM iteration alternates between
performing an expectation (E) step, which creates a function for the ex-
pectation of the log-likelihood evaluated using the current estimate for
the parameters, and a maximization (M) step, which computes param-
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Figure 1. Examples of images of various types of ulcers: (a) pre-
dominantly granulation, (b) predominantly fibrin, (c) predominantly
necrotic tissue, and (d) mixed tissue composition.

eters maximizing the expected log-likelihood found in the E step. The
initialization assumes that the whole set of values in the HS histogram
can be clustered into just one Gaussian distribution. This hypothesis
is tested based on the values of the mean and standard deviation of
a sample of 1,000 values obtained randomly from the HS histogram,
considering an estimation error of 0.0001%. If the hypothesis is not
true, that is, if the Gaussian adjustment error for the sample is greater
than the specified error, a new iteration is performed, assuming the
mixture of two Gaussians. The procedure is iterated until every pixel
in the sample belongs to a cluster, or the number of iterations reaches
a specified limit (100 cycles). The clustering procedure was developed
using the Waikato Environment for Knowledge Analysis (WEKA) [41].
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After color clustering, the set of clusters representing the tissue com-
position of the ulcer was manually selected. A GUI was implemented
using the Java programming language and the NetBeans1 environment
to facilitate cluster selection. To fill any residual gap, a method based
on mathematic morphology and automatic delineation of the convex
hull was implemented using ImageJ plugins and applied to determine
the final lesion area. The convex hull is defined as the smallest con-
vex polygon that encompasses a set of points [42]. Figure 2 shows
an example of an image of an ulcer and the corresponding result of
segmentation.

Figure 2. Example of ulcer segmentation. The clustering process re-
sulted in six clusters (e) to (j). (a) shows the original image, (b) the
segmentation mask generated by manual cluster selection followed by
application of mathematic morphology operations, (c) is the partial
segmented area, and (d) is the final lesion area after automatic delin-
eation of the convex hull.

1https://netbeans.org/. Accessed on 01/04/2014.
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2.3 Feature Extraction and Indexing of Images

Feature extraction was based on the automatically segmented regions.
For each region representing a lesion, in addition to the basic RGB color
components, six images were generated. According to the HSI repre-
sentation, an image (I) was generated based on the hue (H) component
and another was generated based on the saturation (S) component [39]:

I = R+G+B
3

,

S = 1−
(

3
(R+G+B)

)
∗ a,

where a is the minimum of R, G, and B,

H = cos−1 (0.5∗(R−G)+(R−B))(
((R−G)2+(R−B)(G−B))

0.5
) .

The next color representations are based on the CIE XYZ color
space. The conversion from RGB to XYZ is performed as follows [40]:

[R]
[G]
[B]

=
[3.240479 − 1.537150 − 0.498535]

[−0.969256 1.875992 0.041556]
[0.055648 − 0.204043 1.057311]

∗
[X]
[Y ]
[Z],

x = X
(X+Y +Z) ,

y = Y
(X+Y +Z) .

According to the L∗u∗v∗ color representation, an image was gener-
ated based on the u∗ component and another was generated based on
the v∗ component:
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u′ = 2x
(6y−x+1.5) ,

v′ = 4.5y
(6y−x+1.5) ,

L∗





116
(

Y
Yn

) 1
3 − 16 if Y

Yn
> 0.008856,

903.3
(

Y
Yn

)
if Y

Yn
≤ 0.008856,

u∗ = 13 (L∗)
(
u
′ − u

′
n

)
,

v∗ = 13 (L∗)
(
v
′ − v

′
n

)
.

Similarly, according to the L∗a∗b∗ color representation, an image
was generated based on the a∗ component and another was generated
based on the b∗ component:

L∗





116
(

Y
Yn

) 1
3 − 16 if Y

Yn
> 0.008856,

903.3
(

Y
Yn

)
if Y

Yn
≤ 0.008856,

a∗ = 500 ∗ (f (X/Xn)− f (Y/Yn)),

b∗ = 200 ∗ (f (Y/Yn)− f (Z/Zn)),

where f (t) =

{
t

1
3 if t ≤ 0.008856,

7.787 ∗ t + 16/116 if t ≤ 0.008856.

Values of the mean, standard deviation, skewness, and kurtosis were
computed from the histogram of each of the R, G, B, H, S, u∗, v∗, a∗,
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and b∗ components. In addition, the five most discriminative features
of the 14 texture features proposed by Haralick et al. [43] were de-
rived from an averaged cooccurrence matrix (CoM) computed from
four CoMs for a distance of one pixel at 0, 45, 90, and 135 degrees.
The features are homogeneity, contrast, correlation, entropy, and lo-
cal homogeneity, as suggested by Conners and Harlow [44], and were
computed for each of the R, G, B, H, S, u∗, v∗, a∗, and b∗ compo-
nents. Furthermore, the five texture features mentioned above were
computed from multispectral or color cooccurrence matrices (CCMs),
obtained from the RG, GB, BR, HS, u∗v∗, and a∗b∗ components, using
the method proposed by Arvis et al. [45]. The method is an extension of
the method of Haralick et al. [43], and was developed for application to
color images to take into account the correlation existing between the
color components, as shown in Figure 3. Thus, a total of 111 features
were extracted from the R, G, B, H, S, u∗, v∗, a∗, and b∗ components
to characterize and index each color image [27,31,36].

Figure 3. Color cooccurrence matrices (CCMs) obtained from the
RGB, HS, u∗v∗, and a∗b∗ components

222



Characterization of Dermatological Ulcers . . .

2.4 CBIR Experiment

A retrieval engine was developed using the kNN classifier based on the
Euclidean, Manhattan, and Chebyshev metrics between the features
of the query image and those of each image in the database. The
definitions of the metrics are summarized in Table 1. The value of k
was varied from 1 to 7 in steps of 2.

Table 1. Distance metrics used in CBIR experiments. In the equations,
x is the feature vector of size n of the query image, y the feature vector
of size n of an image being considered for retrieval, and dxy is the
distance between the two vectors.

Metric Name Formula

Euclidean dxy =
√∑n

j=1 (xj − yj)
2

Manhattan dxy =
∑n

j=1 |xj − yj |
Chebyshev dxy = maxn

j=1 {|xj − yj |}

For every value of k, all images in the database were used, one by
one, as the query image. The mean value of the precision of retrieval
was computed for each retrieval experiment and for each distance or
metric. Precision values for the categories of necrotic and callous ulcers
were not computed due to the small numbers of samples available. The
precision of retrieval was computed in each experiment as the ratio of
the number of relevant images retrieved to the total number of im-
ages retrieved. In computing precision, each retrieved image received
a binary weight of unity or zero, representing a relevant image or not,
respectively; the sum of such scores for all of the retrieved images was
then divided by the total numbers of retrieved images. Ten-fold cross
validation was the chosen validation method. An image was conside-
red to be relevant when it belonged to the same class as the query
image, according to the classification provided independently by the
expert dermatologist (MACF). It should be noted that, in a medical
application, a clinician would not be interested in the retrieval of a
large number of images or cases. A small number of highly relevant
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cases, such as 3 or 5 cases, retrieved from a large database along with
the related clinical reports, would serve the purpose of assisting in the
diagnosis of the current query case. It would not be of interest to
retrieve all relevant cases that exist in the database. Thus, in a clinical
application, precision would be, in general, more important than other
measures of performance of CBIR, such as recall or area under the
precision-versus-recall curve.

2.5 Classification Experiment

Classification of images was performed by means of a metaclassifier for
handling multiclass datasets with two-class classifiers, as a proxy to the
main classifier which it wraps to provide additional data preprocessing
before actually training and/or testing of the wrapped classifier. Logis-
tic regression was used as the wrapped classifier. In order to improve
the parameters of the estimates and reduce the prediction error, ridge
estimators are used to pool highly correlated covariates and reduce
overfitting and colinearity [46]. The classification experiment did not
include the categories of necrotic and callous ulcers due to the small
number of samples available. Validation was also performed using ten-
fold cross validation.

3 Results

3.1 Automatic Segmentation of the Ulcer Region

The Gaussian mixture modeling procedure applied to 172 images re-
sulted in a clustering process with the number of clusters varying from
3 to 9, before the manual selection step using the GUI. Processing
times for the clustering process ranged from 3 to 5 minutes per image.
After cluster selection, the evaluation of the segmentation step indi-
cated an average Jaccard coefficient of 0.56 with a standard deviation
of 0.22 between the lesion area obtained computationally and the same
lesion region manually delineated by the dermatologist. The Jaccard
coefficient (J) is calculated by computing the ratio of the intersection
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to the union of the manually and computationally derived regions and
has a value range from zero to one, where zero means a total failure
of the computational segmentation process and one indicates a per-
fect segmentation, based on comparison with the manually segmented
regions:

J (A,B) = |A∩B|
|A∪B| .

3.2 Analysis of Tissue Composition and Classification of
Ulcers

To compare the tissue composition within the lesion regions segmented
computationally and manually, a measurement approach was applied
based on thresholding of HSI values [31,36,39]. White tissue component
was defined as the number of pixels within the lesion with S ≤ 0.2
and I ≥ 0.75 (independent of H and with the S and I components
normalized to the range 0 to 1); black tissue component was defined as
the number of pixels within the lesion with S ≤ 0.2 and I ≤ 0.2; red
tissue component was defined as the number of pixels within the lesion
with S > 0.2 and −30◦ < H < 30◦ (independent of I); and yellow
tissue component was defined as the number of pixels within the lesion
with S > 0.2 and 30◦ < H < 90◦. A low average root-mean-squared
error (RMSE) [36] of 4% with a standard deviation of 5% was obtained
between the RYKW tissue composition vectors of computationally and
manually segmented lesions.

Classification results with the metaclassifier using logistic regres-
sion were analyzed in terms of correctly classified instances and the
average area under the receiver operating characteristic curve (AUC).
The ratio between the number of correctly classified instances and the
total number of instances was 0.638, and the average AUC value was
0.772. The processing time using all the images from the dataset was
less than 3 seconds.
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3.3 CBIR

Based on the retrieval experiments performed using different distance
measures, precision values were calculated for each image class and
an average precision value was derived. The Processing time was less
than 1 second for all CBIR experiments. The most significant distance
regarding precision values was the Chebyshev distance. For k = 1,
the average precision was 0.617 (as compared to 0.587 and 0.550 us-
ing Manhattan and Euclidean distances, respectively), and for k = 3,
the average precision was 0.609 (as compared to 0.566 and 0.538 us-
ing Manhattan and Euclidean distances, respectively). The rates of
precision for values of k = 5 and 7 were lower than those previously
mentioned, for all of the distances considered in this study. Tables 2
and 3 display the confusion matrices for the kNN procedure with k = 1
and 3 and using the Chebyshev distance, respectively.

Table 2. Confusion matrix for the CBIR experiment, using a kNN
classifier with k = 1 and the Chebyshev distance.

Red Yellow Mixed Retrieved for
31 3 17 Red
3 20 8 Yellow
26 8 50 Mixed

Table 3. Confusion matrix for the CBIR experiment, using a kNN
classifier with k = 3 and the Chebyshev distance.

Red Yellow Mixed Retrieved for
30 5 16 Red
9 15 7 Yellow
24 6 54 Mixed
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4 Discussion

Assessment of tissue composition provides crucial information to mon-
itor the effects of treatment in patients with chronic ulcers. Quanti-
tative measures can contribute to objective assessment of the healing
process, and may be used for pattern recognition, CAD, and CBIR.
Pattern recognition focuses on the classification of ulcers based on tis-
sue composition to help enhance the diagnostic process and follow-up
to treatment. CBIR is an approach to information retrieval and is
more commonly used for medical decision-making based on previous
and proven cases. If the results of a CBIR query bring images with
one or more types of tissue composition, the clinician will be able to
analyze them, determine which images are relevant, review the clinical
reports associated with the retrieved images, and decide on the diag-
nostic classification of the image on hand. The clinician could also gain
an understanding on why some of the retrieved images were classified
into certain categories, either by an expert dermatologist or by the
CBIR process. In this manner, the CBIR system could assist in arriv-
ing at a decision when the image on hand is at the boundaries between
different categories. The concept of similarity is important because no
two images may be expected to be identical, even when belonging to
the same diagnostic category, and a perfect or exact match to a query
image is unlikely. The use of vectors of quantitative parameters or
features to index images facilitates the application of simple distance
measures to select images that are most similar to the query sample,
that is, to evaluate the similarity between images. Classification and
CBIR applications may share the same set of image processing proce-
dures, such as preprocessing, image segmentation, feature extraction,
and categorization [11,19,21].

In a previous work based on the same images of manual segmen-
tation of the ulcers by an experienced dermatologist [27], we obtained
average AUC values of 0.820, and an average value of correctly classi-
fied instances divided by the total number of instances of 0.738. Results
using automatic segmentation were observed to be poorer than those
using manually segmented images. Therefore, our efforts to perform
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automatic segmentation have yielded poorer results in terms of correct
classification, which indicates that further improvements are needed.
Nonetheless, our results of classification using a metaclassifier (average
AUC value of 0.772) are encouraging.

Limitations of this work reside in the difficulty in applying the im-
aging protocol in a consistent manner. The images were not acquired
in laboratory facilities, but in a clinical environment. In some cases,
the patient’s mobility affected positioning and imaging of the ulcers.
Such difficulties also affected the distance and orientation of the cam-
era, the illumination of the ulcer and the composition of the image.
Procedures for color correction and normalization of images [39] need
to be incorporated.

Another difficulty related to the current database is the variation
of the size and position of the ulcers. It was observed that the cluste-
ring procedure tends to give better results when the ulcers are small,
properly centered in the image, and without significant curvature. In
such a situation, the number of Gaussians obtained by the clustering
procedure was usually small, in the range of 3 to 5.

The segmentation results obtained in this pilot study have lower
accuracy than desired, but are encouraging. Although the results are
not very good in terms of the Jaccard coefficient, the small value ob-
tained for the RMSE indicates that the estimation of tissue composition
was not substantially affected by the limitations of the segmentation
process. To improve the segmentation results, it would be desirable
to include procedures for comparative analysis of an ulcer region with
reference to the color characteristics of the surrounding normal skin
of the patient. Further work is planned with a larger database of im-
ages, especially for the callous and necrotic categories of lesions, and
also including longitudinal series of images of the same patients under
treatment.

Clinical interpretation of images of dermatological ulcers is com-
monly based on visual analysis of the tissue composition as indicated
by their color characteristics. This, however, is a qualitative approach
that is affected by interobserver and intraobserver variability. Accurate
estimation of the fractional composition of an ulcer in terms of tissue
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types, such as granulation and fibrin, is nearly impossible via visual
analysis. Quantitative evaluation of tissue composition provides key
information for monitoring the response to treatment of patients with
chronic ulcers and can assist in the evaluation of the healing process.
In the present study, we have proposed the potential use of methods
of digital image processing to achieve image segmentation focused on
facilitating the characterization of the tissue composition of skin ulcers.
We believe that objective analysis of color images of skin ulcers using
the proposed methods can overcome some of the limitations of visual
analysis and lead to the development of improved protocols for the
treatment and monitoring of chronic dermatological lesions. Such ad-
vances, in turn, can assist in the design of optimized and personalized
therapy for each patient.
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Abstract
This paper presents the architecture of a software platform

implemented in C++, for the purpose of testing and evaluation
of reconstruction algorithms in X-ray imaging. The fundamen-
tal elements of the platform are classes, tightened together in
a logical hierarchy. Real world objects as an X-ray source or
a flat detector can be defined and implemented as instances of
corresponding classes. Various operations (e.g. 3D transforma-
tions, loading, saving, filtering of images, creation of planar or
curved objects of various dimensions) have been incorporated in
the software tool as class methods, as well. The user can easily
set up any arrangement of the imaging chain objects in 3D space
and experiment with many different trajectories and configura-
tions. Selected 3D volume reconstructions using simulated data
acquired in specific scanning trajectories are used as a demon-
stration of the tool. The platform is considered as a basic tool
for future investigations of new reconstruction methods in com-
bination with various scanning configurations.

Keywords: Computed Tomography, Digital Tomosynthesis,
CBCT, image reconstruction, class library.

1 Introduction

Virtual instrumentation has become a valuable tool for testing or eval-
uating different approaches, methods, and techniques in any research
field. In the field of Medical Imaging this is especially valid for the

c©2014 by Z. Kamarianakis, I. Buliev, N. Pallikarakis
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radiography, nuclear imaging, computed tomography, etc., where due
to the hazardous nature of the radiation and the limited access to in-
strumentation, organizing experiments is often difficult. There exist
software packages [1-6], which can be used for simulation of X-ray im-
ages. For producing series of realistic projections these packages usually
assume known, well-studied scanning trajectories, and the development
or testing of new approaches is usually related to a significant additional
programming work.

The idea to develop a dedicated library to be used in simulations
in the field of X-ray imaging originates in the past [7]. Since its earlier
implementation showed some drawbacks, the authors have started to
develop a new such library – RTCL: Reconstruction Techniques Class
Library [12] based on the experience acquired in the field of X-ray
imaging algorithms and taking into account the much larger variety
of possible applications. During the creation of the library two main
application aspects were considered. Firstly, in many cases, known
image reconstruction algorithms need to be applied over various pro-
jection data. Therefore, the possibility for fast development of such
type of applications has been targeted. Secondly, it would be valuable
to possess a tool for convenient programming and testing of new re-
construction techniques, using modified or completely new projection
acquisition trajectories, etc. and this has been the main driving force
to create the RTCL.

This paper describes the current structure of the RTCL library and
the way it can be used for developing software applications within the
field of the X-ray Computed Tomography (CT). The library is now
the core component of an ambitious software application – the Plat-
form for Image Reconstruction in X-ray Imaging (PIRXI). An initial
version of the platform has already been developed and is currently
used in research projects of the team. The present paper also describes
key points in the development of PIRXI and the adopted approach of
defining tasks, accessing projection data from different sources. Finally,
the paper includes examples of reconstructed images with the help of
PIRXI, from simulated data used in medical imaging, after applying
Cone-beam CT (CBCT) or Digital Tomosynthesis (DTS) reconstruc-
tion algorithms.
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2 Materials & Methods

2.1 The RTCL

In RTCL, with respect to its predecessor, assignment, inheritance of
geometrical and functional properties, and the use of all library compo-
nents have been implemented in a different and more practical way. An
overview of the different groups of classes and relations is represented
by the simplified diagram in Figure 1. An object-oriented programming
approach, which perfectly complies with the object-oriented composi-
tion and functioning of the CT imaging systems, has been followed.

Figure 1. Basic components of the RTCL library

Components in a real CT imaging chain usually include X-ray
source(s), X-ray detector(s), mechanical construction able to move
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the source-detector pair(s) along a specific trajectory, data processing
unit(s), dedicated image reconstruction processor and object motion-
correction techniques. RTCL provides the programmer with software
equivalents of those components, allowing intuitively and easily to re-
peat and simulate any imaging setup and eventually use the available
projection images to reconstruct tomograms at arbitrary orientations.
RTCL offers different types of classes, which combine content and in-
herit properties in a hierarchical sequence. The Containers group com-
prises classes for handling 2D/3D coordinates (of pixels, voxels, vectors,
etc.) either locally on a surface (e.g. detector plane) or globally in the
3D space. Grid classes carry analytical description of different sur-
faces and contain arrays of the coordinates of their nodes. The latter
can belong to a flat surface, thus are equidistantly distributed over
a plane, or they can belong to a curved (cylindrical, spherical) sur-
face, therefore following a different description. Sets of Euler angles
describe the orientation of objects in space. Images are separate con-
tainers for different types of image data. The Methods group of classes
provides mostly functions to facilitate handling and processing projec-
tion or reconstruction data. It includes common 1D/2D functions (e.g.
signal windows, filter kernels, filter responses), FFT/IFFT routines,
convolution/filtering routines, for image processing in the frequency
and the spatial domain. Projection/backprojection routines are also
implemented in order to help in the validation or development of an-
alytical reconstruction methods or in the production of experimental
projection images. Specific classes form the Imaging Chain Compo-
nents group. Detectors represent the variety of image sensors used
in the CT imaging, fluoroscopic or any other direct way of imaging.
Within a 2D detector, pixels are uniquely identified by their indices or
by their local or global coordinates. It is always possible to convert
any type of coordinates to any other type, using the a priori informa-
tion for the imaging system. Trajectory classes incorporate geometry
and motion of different setups of source-detector pairs and simplify
their positioning in space. Examples include circular isocentric trajec-
tory, spiral/helical, partial isocentric along a limited arc, linear, etc.
Slices are utilized in the representation of tomographic images or 3D
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volumes, while the X-ray source class, for example, describes a point
source in terms of its coordinates, focal spot size, energy, field distribu-
tion, etc. The Imaging Chains group is intended to contain functional
aggregations (e.g. scanners, C-arms, etc.) of the above classes. The
last two groups are considered quite open (from the user’s/developer’s
aspect) and any new development (e.g. trajectories, geometrical con-
figurations) can be added.

Figure 2 helps to illustrate the example definition of a simple CArm
scanner class. As it is shown, the class is defined initially by inher-
iting most of the functionality from a ready abstract class, the Ba-
seXrayScanner. This parent class contains abstract components like a
base-source, a base-detector, a base-trajectory as well as virtual meth-
ods (e.g the function that is expected to implement the relevant move-
ment – moveTo(...)) that the children classes should override accord-
ingly. The constructor of the derived CArm class is written in a forward
manner, as it is shown on the right. The input arguments in the defi-
nition of the constructor are already specific for the derived class e.g.
the source to isocenter distance (SID), the source to detector distance
(SDD), the number of nodes along the principal axes of the detector
as well as the size of its pixels. In the implementation, these argu-
ments can be used to create and retrieve specific components, like an
XrayPointSource, and a FlatXrayDetector, where the S and D denote
pointers to abstract equivalents of these components.

The rotation of the gantry is translated into motion of the source-
detector pair. The rules for that could be provided by the Circular Tra-
jectory Class. With the help of an overloaded function (e.g moveTo(...)
in Figure 2) the source-detector pair is instructed to move along a circu-
lar arc synchronously, defined exactly by the Circular Trajectory Class.
The backprojection operation is performed with the help of a univer-
sal projector/backprojector function. The arguments of this function
include a Projection Set Description object, which fully describes the
acquisition and geometrical setup of an imaging scenario and a Slice
object on which the backprojection process will be performed. The
compactness of the code proves the robust implementation of the ini-
tial idea of RTCL.
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2.2 Integrating RTCL into PIRXI

The idea of integrating the library into a multi-purpose application
for image reconstruction is a logical follow-up of the first medical and
non-medical (e.g in the area of NDT) imaging applications based on it.
The library is now a core component of a larger software application:
the Platform for Image Reconstruction in X-ray Imaging – PIRXI. An
initial version of the platform has been already created and is currently
being used in the implementation of various image reconstruction tasks
in the research activities of the team.

The GUI of PIRXI is developed in C/C++ and Qt. This allows a
good portability of the code along different computing platforms and
OSs. It has been tested on Windows and Ubuntu Linux.

It is a common situation when a researcher obtains CT projection
data from external sources and spends significant amount of time trying
to convert them into an appropriate format of the application he/she
uses. PIRXI tries to deal with this problem and can provide a solution
to reconstruction tasks using a wide range of scanning geometries and
projection image formats. Based on the system of the .INI files and
with the help of a rich set of keys, a large number of projection file
naming, contents and data formats are transparently handled by the
platform and the projections can be loaded and further used.

A snapshot of the GUI of the PIRXI platform running under Win-
dows is shown in Figure 3. The GUI currently allows the definition of a
whole reconstruction job. The user can interactively describe such a re-
construction task by providing information to the system (e.g. through
a Dialogue), where he/she describes the general settings of the task.
Common parameters include the description of the projection set (by
means of data format, geometric acquisition settings, description of
the detector’s pixel size and metrics, location of data and destination
of the processed files, etc.). The projection processing/preprocessing
(e.g. filtering) follows, where again the task is easily performed through
buttons on the GUI. Finally, the user can easily perform experiments
and gain an understanding of the loaded/processed available data by
choosing to reconstruct either central positioned slices or tomograms
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of arbitrary orientation. Moreover, the possibility for a direct volumet-
ric reconstruction is given. The image reconstruction method can be
chosen from the already implemented ones through the GUI, where fur-
ther options are provided in case the reconstruction algorithm demands
additional input from the user (e.g. the arc in DTS or the projection
angle spacing used for reconstruction).

2.3 Examples of using PIRXI in medical applications

Selected reconstructed tomograms using simulated data acquired in
specific scanning trajectories are used as a demonstration of the tool.
The use of simulated data is particularly useful in studying and ana-
lyzing reconstruction algorithms in principle, since data are free from
distortions and mechanical inaccuracies inherent to radiographic units.
Noise-free monoenergetic projection images of three simulated phan-
toms were acquired using an in-house developed tool, the XRAYImag-
ingSimulator [2].

The first phantom is a modified (high contrast) version of the well
known analytical Shepp-Logan phantom that approximates the human
head and consists of 12 ellipsoids. The phantom was included in a cubic
volume of size 190x190x190 and voxel size 1.

The second phantom is a 3D voxelized model of a metallic cylin-
drical implant (e.g. intramedullary tibial nail) used in interventional
procedures in orthopedic surgery for the treatment of bone fractures.
The implant consists of 8 screw holes at various locations and orien-
tations, and is placed in three other cylinders that model a human leg
(e.g. red bone marrow, bone and muscle). A detailed study on accurate
localization of hole canals using CBCT, is presented in [9].

As a third example, a simulated 8cm complex uncompressed breast
phantom [3] approximating the medium-sized breast was used. The
model contains four clusters of microcalcifications (µCs) delivered in
two different groups. In two different layers of the phantom, two
clusters of 5µCs in one layer and two clusters of 6µCs, modeled as
spheres/ellipsoids of calcium carbonate and of size 0.2 mm and 0.4 mm,
are placed. The simulation parameters for image acquisition as well as
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the reconstruction settings used for all the phantoms are presented in
table [1].

Table 1. Acquisition and reconstruction settings used along with the
three simulated phantoms

Phantoms

Parameter/
Settings

Shepp-Logan Metallic im-
plant

Uncompressed
Breast

Source-isocenter
distance (SID)

1000 mm 1000 mm 600 mm

Source-detector
distance (SDD)

1300 mm 1300 mm 665 mm

Number of
views/Projections

360 121 25

Detector size 512x512 (pixels) 480x480 (pixels) 500x500 (pixels)

Pixel pitch 0.5mm 0.5mm 0.2 mm

Magnification
factor

1.3 1.3 1.108

Reconstruction
matrix/slice size

190x190x190 370x370 500x500

Source/Detector
trajectory

Full 360o circular
trajectory, angu-
lar step 1o

Circular isocen-
tric rotation,
121o limited arc,
angular step 1o

Circular isocen-
tric rotation, 48o

limited arc, an-
gular step 2o

Reconstruction
algorithm

FDK FBP FBP & SAA

2.3.1 CBCT reconstruction using the FDK algorithm

For the case of Shepp-Logan phantom, 360 projections images, acquired
every 1o step, were used for volumetric reconstruction using the FDK
algorithm [10]. The main advantage of cone beam algorithms is the
reduction in data collection time. With a single source, ray integrals
are measured through every point in the object, in the time it takes to
measure a single slice in a conventional two-dimensional scanner. The
projection data can be expressed as a function of the source angle and
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the horizontal and vertical positions on the detector plane. The FDK
algorithm is an approximate formula and represents a generalization of
the 2D fan-beam reconstruction formula to the 3D case. The volume
reconstruction is based on initial filtering and subsequent length cor-
rection weighting of the projection data followed by backprojecting a
single plane within the cone, for each elevation along the z-axis. The
final three-dimensional reconstruction is obtained by summing the con-
tribution to the object from all tilted fan beams [8], which involves a
final weighting that accounts for this tilt during backprojection. The
FDK algorithm can be implemented with moderate computational re-
quirements and delivers a satisfactory reconstruction quality for small
cone angles (e.g. up to 10o). The individual steps of this algorithm are
already implemented in the RTCL.

2.3.2 DTS reconstruction using Shift and Add & Filtered
Backprojection algorithms

For the breast phantom and the metallic implant phantom, DTS image
reconstruction techniques were applied. DTS is a limited angle method
of image reconstruction, where projection images acquired at regular
angular intervals, and during a single acquisition pass, are used for re-
construction of planar sections [11]. In many applications (e.g. mam-
mography) the source trajectory traces a limited circular arc, while
the detector usually remains stable. In the current investigation, the
acquisition geometry is isocentric. The acquisition geometry of isocen-
tric Digital Tomosynthesis setup resembles that of the C-arm shown in
Figure 2, but the angular range of the source-detector pair is usually
much smaller. Important parameters for this acquisition geometry are
once again the SID and SDD, as well as the acquisition range (denoted
with φ) and the angular step θ. With the parameter α in Figure 2, the
fan-beam angle is indicated. In the present example, 25 images of an
uncompressed simulated breast were acquired in the limited arc −24o

to 24o, with 2o step (Table 1). Tomograms were further reconstructed
using a simple backprojection technique (Shift and Add algorithm –
SAA), similar to that of [11] and a Filtered Backprojection (FBP) al-
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gorithm. Both of these algorithms are implemented in RTCL. In both
cases, the purpose was to bring in focus the planes of interest (e.g. the
µCs). The Simple Backprojection algorithm was utilized, as it requires
a straightforward implementation and minimal computational power
and processing time efforts. However, since this technique introduces
additional reconstruction artifacts (e.g. out-of-plane structures with
high contrast tend to appear as low-contrast replicas in reconstruction
planes), the FBP algorithm was also applied in an attempt to recover
the loss of contrast especially for the small structures (e.g. the µCs).
For the case of metallic implant phantom, a larger acquisition arc of
121o was used with step of 1o. In this case, only a FBP approach was
followed for the reconstruction.

3 Results

Figure 4 demonstrates the outcome of the FDK reconstruction of the
first phantom. Using projection images of the modified Shepp-Logan
phantom, central three orthogonal to each other reconstructed slices
(axial, coronal, saggital) and a slice at a plane Z = −24 mm away
from the central plane, are presented.

Accordingly, below each reconstructed slice, line plot profiles (cor-
responding positions are marked with a white solid line in each recon-
struction), are presented as compared to the original (dashed line).

The visual inspection of the reconstructed images and especially
the comparison of the selected line profiles (in the reconstructions as
compared to the original phantom) validate the correct implementation
of the reconstruction algorithm using the RTCL.

In Figure 5, DTS reconstructions of a simulated uncompressed
breast are shown. In the upper row, a FBP algorithm implemented
with the help of the RTCL library is used for reconstruction, while in
the bottom row, results after applying a SAA approach in correspond-
ing locations, are presented. In both reconstruction approaches the
µCs were found to be in-focus in the planes at Z = −21mm below and
Z = 9mm above the central plane, which is considered at the isocenter.
In the right part of Figure 5 and from up to down, zoomed recon-
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structed regions of interest containing the features under investigation
are presented, at Z = −21mm and Z = 9mm, after applying a FBP
algorithm and after using SAA, respectively. Both groups of larger
µCs (4mm diameter) are well visualized in the reconstructed planes.
Regarding the smaller in diameter µCs (2mm), 2 out of the group of
5µCs from the plane at Z = −21mm and 1 out of the group of 6µCs
were not observed at all in any of the reconstructed slices.

This is a common situation in Breast imaging tomography, since
µCs with size smaller than 0.25mm are reported to have difficulties
in detection. Moreover, tomographic reconstruction further away from
the central plane of the isocenter introduces additional artifacts that
overlay in some cases the features under investigation.

Figure 5. DTS reconstruction of a simulated breast using an implemen-
tation of a FBP reconstruction algorithm in RTCL (upper row) and a
corresponding Shift and Add technique (bottom)
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In Figure 6, DTS reconstructions of a simulated metallic implant
are shown. Reconstructions were performed as previously with a FBP
reconstruction algorithm using the RTCL library. 2D tomograms were
reconstructed at “arbitrary” orientations by feeding the platform with
Euler angles close to those that describe the phantom rotation around
the principal axes, but not with their exact values.

The results present reconstructed slices almost “parallel” to the
main axis of the implant, providing useful information for further image
processing and analysis. The openings (e.g. hole canals) are in most
cases well visualized.

Figure 6. DTS reconstruction of a simulated metallic surgical implant

4 Conclusions

This paper describes the current structure of the RTCL library and
the way it can be used for developing software applications within the
field of the X-ray Computed Tomography (CT). The library is consid-
ered as the core component of an integrated software application – the
Platform for Image Reconstruction in X-ray Imaging (PIRXI). Selected
reconstructed slices from simulated data used in medical imaging, af-
ter applying CBCT or DTS reconstruction algorithms, were used for
demonstration purposes. The current tests of both RTCL and PIRXI
prove the flexibility of the new approach to image reconstruction re-
search and algorithms implementation. The tools aim to facilitate
any experimentation, study and development/implementation of re-
construction algorithms and scanning geometries and configurations in
the Computed Tomography field.
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Abstract

Image Registration (IR) is an optimization problem comput-
ing optimal parameters of a geometric transform used to overlay
one or more source images to a given model by maximizing a simi-
larity measure. In this paper the use of bio-inspired optimization
algorithms in image registration is analyzed. Results obtained
by means of three different algorithms are compared: Bacterial
Foraging Optimization Algorithm (BFOA), Genetic Algorithm
(GA) and Clonal Selection Algorithm (CSA). Depending on the
images type, the registration may be: area based, which is slow
but more precise, and features based, which is faster. In this pa-
per a feature based approach based on the Scale Invariant Feature
Transform (SIFT) is proposed. Finally, results obtained using se-
quential and parallel implementations on multi-core systems for
area based and features based image registration are compared.

Keywords: image registration, clonal selection algorithm,
bacterial foraging algorithm, genetic algorithm, parallel comput-
ing.

1 Introduction

Image registration is the process of geometric overlaying or alignment
of two or more images of the same scene taken at different times, from
different viewpoints, and/or by different sensors [1]. Image registration

c©2014 by Silviu Ioan Bejinariu, Hariton Costin, Florin Rotaru, Ramona

Luca, Cristina Niţă, Camelia Lazăr
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(IR) is the first step in image fusion procedures, which combine relevant
information from one or more images to create a single image with more
informational content. Image registration and fusion methods are used
in remote sensing applications, geographic information systems, mul-
tispectral image analysis, medical image analysis and other domains.
Image fusion may be applied at pixel, feature or decision levels. In the
first case, when pixel level image fusion have to be applied, the input
images must be registered, because they may differ by the view angle,
subject position and also some geometric distortions may be added by
the capture device.

There are two different approaches in IR: area (pixel intensity)
based methods and feature-based methods [1]. The geometric trans-
form that must be computed may be global (for the entire image) or
local in case the images are locally deformed. The most frequently
used transforms are the shape preserving mappings (rotation, transla-
tion, scaling and the affine transform).

In this paper three different optimization methods are used for the
geometric transform parameters estimation: Bacterial Foraging Opti-
mization Algorithm (BFOA), Genetic Algorithm (GA) and Clonal Se-
lection Algorithm (CSA). The foraging model is suitable for optimiza-
tion problems because animals search for nutrients and try to avoid
noxious substances in a way that maximize their energy intake per
unit time spent foraging [2]. Computational methods can provide deci-
sion models for optimal foraging. The Bacterial Foraging Optimization
Algorithm (BFOA) proposed by Passino uses the Escherichia coli bac-
teria model because it is the most understood microorganism [2], [3],
[4]. BFOA is used in image processing to solve also other optimization
problems: edge detection in combination with a probabilistic derivative
technique [5]; fuzzy entropy based image segmentation [6]. A modified
version of BFOA used for multilevel thresholding segmentation was
compared to genetic algorithms and particle swarm optimization algo-
rithm [7]. Image registration BFOA based methods were proposed in
[8], [9] and [10] Parallel implementations of BFOA were proposed in [11]
and [12]. Genetic Algorithms are search techniques that emulate evo-
lutionary processes to solve optimization problems [13]. Like BFOA,
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GAs start with a population of individuals (points) in the problem do-
main and use these points to approximate the optimal solution. The
difference is that instead moving in the problem domain, GAs use the
recombination of two or more parents to produce offspring [14]. GAs
are often used in biomedical or remote sensing image registration [13].
The Clonal Selection Algorithm (CSA) belongs to the field of Artificial
Immune Systems that include computational methods inspired by the
mechanisms of the biological immune system [15]. Like GAs, CSA may
use binary solution coding and real coding. In [16] a real coded clonal
selection algorithm is used in electromagnetic design optimization. It
is also suitable for high dimensional optimization problems. CSA is
effective, in terms of accuracy, capable of solving large-scale problems
[17] and is comparable to other optimization algorithms. A perfor-
mance comparison of CSA and GA is presented in [18] and conclusion
is that each one has better performance depending on the function to
optimize.

The paper is organized as follows. In the second section the mea-
sures used for area based and features based IR methods are described.
In case of features based IR, a short description of SIFT transform
and procedure to find the SIFT key points correspondences are also
included. In the third section, the optimization algorithms – BFOA,
GA and CSA – are shortly presented. In the fourth section the pro-
posed parallel versions of BFOA and GA are presented. In the fifth
section the results obtained by applying the optimization procedures
for biomedical image registration are shown in both sequential and
parallel versions. The last section concludes the paper.

2 Image Registration

There are two different approaches in IR: area (pixel intensity) based
methods and feature-based methods [1]. Almost all methods consist of
four steps: feature detection, feature matching, transform estimation
and image resampling. The feature detection step is specific to feature
based registration methods and distinctive and stable features (points,
lines, contours, regions) have to be detected. Because the transform es-
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timation is performed while looking for the correspondent features, the
second and third steps are usually combined. In the image resampling
step, different interpolation methods are used: the nearest neighbor
function, the bilinear and bicubic functions, quadratic splines, cubic
and higher-order B-splines [1].

2.1 Area Based IR

In case of area based IR methods, to evaluate the similarity between
images the normalized correlation (NCC), the Fourier representation
or normalized mutual information (NMI) are used. In this study, the
Mutual Information is used to evaluate the similarity in case of area
based registration.

Mutual information is a robust measure used in image registration
[1], [10]. It evaluates the relative independence of two images and does
not depend on the specific dynamic range or intensity scaling of the
images. High values of mutual information indicate high dependence
between images. It is defined as

MI(A,B) = H(A) + H(B)−H(A,B), (1)

where H(.) is the image entropy and H(A,B) is the joint entropy of the
two images. Because mutual information based registration methods
are sensitive to changes that occur in the distributions as a result of
difference in overlapping regions, normalized mutual information can
be used:

NMI(A,B) =
H(A) + H(B)

H(A,B)
. (2)

Registration of two images A and B requires maximization of mutual
information, thus maximization of the entropies H(A) and H(B), and
minimization of the joint entropy H(A,B).

Usually, optimization in image registration means to maximize sim-
ilarity. If the optimization algorithm is oriented on cost function min-
imization, then the value of (−1) ∗MI is used to evaluate the cost of
the transform for a certain solution.
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2.2 Feature based IR

In case of feature based IR methods, spatial relations, invariant descrip-
tors, relaxation methods and multiresolution transforms (pyramids and
wavelets) are used. In this paper, the features based IR will use key
points determined using the Scale Invariant Feature Transform (SIFT)
[19], [20]. SIFT is used to select distinctive features, used in pattern
recognition, localization, 3D mapping, tracking and image registration.
It allows scale and rotation invariant features detection, with good re-
sults for affine distortions. The SIFT algorithm has 4 distinctive stages:
extrema detection in the scale space of the image, key points selection
and localization, key points orientation assignment and description gen-
eration. The identified features have to be distinctive.

a. Scale-space extrema detection. Key point candidates selection is
performed by finding the extrema of the Difference of Gaussians (DOG)
function computed as the difference of two scaled images separated by
a multiplicative factor k.

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) =
= (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y), (3)

where L(x, y, σ) is the scale space of the image I(x, y) obtained by con-
volving it with the Gaussian kernel G(x, y, σ). Extrema points depend
on the frequency sampling in the scaled space and the initial value of σ.

b. Key points localization. Key points are selected from the most
stable and accurately localized candidates. Key point candidates hav-
ing low contrast or strong edge response in one direction only are re-
moved. Because the candidates obtained in higher scales correspond
to several pixels in the original image, for an exact localization is per-
formed by computing the extrema points of the Taylor expansion up
to quadratic terms of the scale space function D(x, y, σ) [19].

c. Orientation assignment. To make key point descriptions invari-
ant to rotation, their orientations are computed using the orientation
histogram of local gradients of the closest smoothed image L(x, y, σ).
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The gradient magnitude and orientation are computed using pixel dif-
ferences:

m(x, y) =

=
√

(L(x− 1, y)− L(x + 1, y))2 + (L(x, y − 1)− L(x, y + 1))2, (4)

θ(x, y) = arctg
L(x, y + 1)− L(x, y − 1)
L(x + 1, y)− L(x− 1, y)

. (5)

Each point is added to the histogram weighted by the gradient mag-
nitude m(x, y) and by a circular Gaussian. To obtain a more accurate
orientation, the dominant peaks in the histogram are interpolated with
their neighbors.

d. Key point descriptor computing. The key point descriptor con-
tains 128 = 4× 4 × 8 values obtained using 16 orientation histograms
computed in a 4× 4 grid. Each histogram contains 8 orientation bins.
The descriptor is computed in a support window of 16 × 16 pixels
around the key point [19].

To evaluate the similarity between two images the key points cor-
respondences have to be established. The Euclidian distances between
SIFT descriptors of each key point from source image and those of the
model image are computed. By sorting the computed values for source
images key points, a match is established when the minimum computed
distance is less than a certain percentage from the second distance. In
our experiment a percent of 30% is used [20].

For IR, in the similarity evaluation step, the coordinates of the key
points in the source image are transformed accordingly to the values
of transform parameters and the sum of Euclidean distances between
positions of key points in the model and transformed source image is
used as similarity value [12].

3 Bio-inspired computing in IR

In this paper three different bio-inspired optimization methods are used
in order to compute the optimal geometric transform that allows the
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source image to overlay the model image: Clonal Selection Algorithm,
Bacterial Foraging Optimization Algorithm and Genetic Algorithm.

3.1 Clonal Selection Algorithm

The Clonal Selection Algorithm (CSA) belongs to the field of Artificial
Immune Systems which includes computational methods inspired by
the mechanisms of the biological immune system. A simplified descrip-
tion of the immune system is an organ system intended to protect the
host organism from the threats posed to it from pathogens and toxic
substances.

CSA is inspired by the Clonal Selection theory of acquired immu-
nity. It is a population based stochastic method with binary representa-
tion of variables [16] which may be used for multimodal optimization.
In some cases, also real encoding of variables may be used to solve
numerical problems.

Clonal Selection Algorithm can be listed as follows [18]:

1. Randomly generate a set of solution candidates: antibodies.

2. Compute the affinity values of each candidate solutions.

3. While the minimum error criterion is not met

3.1 Sort the antibodies starting from the lowest affinity. The
lowest affinity means better matching between antibody
and antigen.

3.2 Clone the better matching antibodies more with some
predefined ratio.

3.3 Mutate the antibodies with some predefined ratio. This
ratio is obtained in a way that better matching clones
mutated less and weakly matching clones mutated much
more in order to reach the optimal solution.

3.4 Compute affinity values of each antibody.
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It starts with an initial set of adaptive units: the general immune
cells. Each cell represents a possible solution of the problem and par-
ticipates in a competitive selection process. The algorithm involves the
selection of antibodies based on affinity against a pattern, computed by
a cost function. Selected antibodies are cloned and resulted clones are
subject of hypermutation. The hypermutation is inverse proportional
to computed clone affinity. The resulted set competes with the already
existing antibodies in the next generation of the evolution process. The
low-affinity population members are replaced by new randomly gener-
ated antibodies.

3.2 Bacterial Foraging Optimization Algorithm

The Bacterial Foraging Optimization Algorithm belongs to the field
of Bacteria Optimization Algorithms and Swarm Optimization. There
have been many extensions of the approach that attempt to hybridize
the algorithm with other Computational Intelligence algorithms and
Metaheuristics such as Particle Swarm Optimization, Genetic Algo-
rithm.

The bacterial foraging paradigm [2], [3], [4] is suitable as model
for optimization algorithms because animals / bacteria behavior is to
search for nutrients and avoid noxious substances to maximize their
energy. BFOA is based on a colony of evolving bacteria which are
replicated if have a good strategy to find nutrients or die in the other
case. Each bacterium is characterized by its position and quantity of
accumulated nutrients or healthy status.

In optimization problems, the possible solutions are encoded in the
bacteria position and the movement of the colony members tends to
approximate the optimal solution. The final solution is specified by
the position in which a bacterium is in the best healthy state or the
nutrients amount is the highest.

According to BFOA approach, the bacteria colony moves in the
n-dimensional space, where n is the optimization problem dimen-
sion and the quantity of nutrients / healthy status is described by
a cost function defined according to the optimization problem. Dur-

260



Parallel Processing and Bio-inspired Computing for . . .

ing its evolution, the bacteria colony proceeds through four foraging
steps: chemotaxis, swarming, reproduction and elimination-dispersal.
In the following paragraphs, the colony consists of S individuals;
P (j, k, l) = {θi(j, k, l), i = 1...S} is the position of colony members in
the jth chemotactic step, kth – reproduction step and lth – elimination-
dispersal step; J(i, j, k, l) – the cost of the ith bacterium in position
θi(j, k, l).

Chemotaxis. In the chemotactic step, a bacterium can move in
two ways: tumble and swim. First, a tumble is executed in a random
direction. The new position of the ith bacterium is:

θi(j + 1, k, l) = θi(j, k, l) + C(i)ϕ(i), (6)

where C(i) is the size of the chemotactic step and ϕ(i) is a unit length
of randomly generated direction [4]. The movement continues in the
same direction while the value of the cost function decreases but not
more than a maximum number of steps.

Swarming. The bacteria tend to swarm together if they have the
possibility to signal to each other the presence of a favorable or poi-
sonous environment (social behavior). The cell to cell attraction or re-
jection is modeled by modifying the value of the cost function J(i, j, k, l)
by a value that depends on the status of all the other bacteria in the
colony.

Reproduction. After a number of chemotactic steps, all bacteria
accumulate a quantity of nutrients that is usually expressed as the cost
function computed in the current position. Those which accumulated
a greater quantity of nutrients are in a healthier state and split into
two bacteria. Those which accumulated a smaller amount of nutrients
die. In BFOA, to keep constant the size of the colony, the number of
bacteria which split is equal to the number of bacteria which die. The
new bacteria are created without mutation in the same position as the
parent bacteria [4].

Elimination and Dispersal. After a number of reproduction steps,
with a specified probability Ped, some bacteria are removed from colony
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(elimination) regardless their healthy state and new bacteria are cre-
ated in random positions (dispersal) [4].

The optimization algorithm starts with a colony of S bacteria placed
in randomly generated positions. The evolutionary process consists of
Ned elimination-dispersal steps, each of these consists of Nre reproduc-
tion steps and each reproduction step consists of NC chemotactic steps.
In each chemotactic step a bacterium may do at most NS swarming
steps while the cost function value decreases.

Bacterial Foraging Optimization Algorithm can be listed as follows:

Initialize bacteria colony
for l = 1 to Ned (elimination dispersal loop)

for k = 1 to Nre (reproduction loop)
for j = 1 to NC (chemotaxis loop)

for i = 1 to S (each bacterium)
perform tumble and change bacteria position to θi(j+1, k, l)
compute cost function in new position
m = 0
while cost function value decreases and m < NS

perform swarm and change bacteria position
compute cost function in new position

end while
end for

end for
end for

end for

The position in which a bacterium reaches the lowest value of the
cost function (greatest healthy status) is the solution of the optimiza-
tion problem. In case of image registration, the size of the search space
is equal to the number of parameters of the geometric transform.
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3.3 Genetic Algorithms

Genetic Algorithm is an adaptive strategy used for global optimization
problems. Inspired by population genetics, GA is based on a set of
individuals in which the possible solutions of the problem are encoded
as chromosome strings. The general structure of GAs is: (a) selection
of the appropriate encoding method and fitness function, (b) genera-
tion of a random initial population and (c) the evolution loop of the
algorithm: fitness function evaluations, application of genetic operators
and creation of the new generation. After a number a generations, the
population is expected to contain chromosomes that approximate the
global maximum value of the fitness function. In each generation chro-
mosomes with best fitness values are retained and generate offspring
that replaces chromosomes with the lowest values of the fitness func-
tion. Genetic operators used for new generation creation are: selection,
crossover and mutation.

1. Randomly generate a set of individuals.

2. Compute fitness for all individuals.

3. While the stop criterion and maximum generation number are
not met
(Evolution loop)

3.1 Apply reproduction
3.2 Mutation
3.3 Crossover.

In [13] it is proposed an IR procedure using the string encoding of
chromosomes. The parameters of the geometric transform are encoded
as bit fields in a 32 bit value. In the procedure described below, the real
encoding is used and each chromosome is characterized by a number
of real values equal to the number of geometric transform parameters.
Discrete, average and simplex crossover operators are used depending
on user defined probabilities (pd, pa and ps).
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4 Parallel approach for bio-inspired IR

Analyzing the optimization procedures execution, it must be noticed
that most of the processing time is spent in the cost function evalua-
tions. In case of BFOA based registration, about 99% of the execution
time is spent in the cost evaluation function and more detailed, about
83% for mutual information computing and 16% of total time is spent
in when the geometric transform is applied to source image. The same,
in case of GA optimization: 96% of the execution time is spent in the
cost evaluation (81% to compute mutual information and 15% to ap-
ply the geometric transform). Because both BFOA and GA procedures
were executed using the sequential implementation, only about 25% of
the computing power is used in case of a Core i5 processor.

To optimize the IR procedure parallel implementations based on
the computing power of multi-core processors were proposed in [12].

A closer look at BFOA reveals that it contains 4 nested loops:
elimination/dispersal, reproduction and chemotaxis for each bacterium
in the colony. The body of the inner loop is executed Ned×Nre×NC×S
times, which may be a fairly large number. In fact, the cost function
evaluation is performed more than two times this number due to the
fact that each bacterium may perform more swim steps in a single
chemotactic step. While the calculations performed for each individual
bacterium in the inner loop are independent, the bacteria colony may
perform the chemotactic steps simultaneously.

In case of GA optimization, the cost function evaluation is called
from two different places. First, it is called from the main evolution
loop of the algorithm (about 41% of execution time) only for the new
created chromosomes evaluation, and second, in the simplex crossover
function (about 53% of execution time). In the first case, the cost
function is called for all not already evaluated chromosomes, so this
task is easily parallelized. In case of simplex crossover that involves
more than one chromosome, the crossover function will be executed in
parallel for each group of chromosomes [12].

The IR procedure that uses the Clonal Selection Algorithm was
not parallelized because there are few tasks completely independent,

264



Parallel Processing and Bio-inspired Computing for . . .

suitable for parallel execution.
The parallel implementation was evaluated on an Intel Core i5 3.10

GHz processor and is detailed in the next section.

5 Experiments

In this section a comparison of results obtained using image registra-
tion procedures based on Bacterial Foraging Optimization Algorithm,
Clonal Selection Algorithm and Genetic Algorithm is presented. The
optimization procedures were applied for area based registration and
features based registration. In the second case the SIFT features are
used.

The image registration procedure was tested on a large set of DI-
COM medical images from a database available at http://www.osirix-
viewer.com/datasets/ [21]. Below, only the results obtained using the
Brainix image as model are described. It is a gray level image (8 bits
per pixel) and size 256× 256 pixels. Brainix is a MR image of a brain
tumor.

The image registration procedure was applied also to the image
after it was modified by adding “salt & pepper” noise.

Figure 1. Original image BRAINIX (from [21])
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The source images were obtained by applying a rotation (angle
θ = 10◦) against the rotation center (cx = −20 and cy = 20) followed
by an isotropic scaling (scale = 1.2). While the transform is defined
by 4 parameters, the search space in the optimization problem is R4.
The actual value of the transform matrix is

T =

=




α β (1− α) cx − β cy

−β α β cx + (1− α) cy

0 0 1


=




1.1818 0.2084 −0.5322
−0.2084 1.1818 −7.8029
0 0 1


, (7)

where α = scale · cos θ and β = scale · sin θ.
The inverse transform matrix is

T−1 =




0.8207 −1.1447 −0.6924
1.1447 0.8207 6.4807
0 0 1




that corresponds to an affine transform with the following parameters:
θ′ = −10◦, c′x = −20, c′y = 20 and scale′ = 0.8333.

To evaluate the similarity between model image and registered
source image, the normalized mutual information is used.

The BFO parameters values used in the experiment are: bacteria
colony size S = 400; number of chemotactic steps Nc = 20; maximum
number of swim steps Ns = 10; number of reproduction steps Nre =
16; number of elimination / dispersal steps Ned = 2; probability of
dispersal Ped = 0.25; length of the move step Ci = 0.005.

In case of GA optimization, the real encoding is used, and each
chromosome is characterized by four real values representing the num-
ber of geometric transform parameters. Discrete, average and sim-
plex crossover operators are used depending on user defined probabil-
ities (pd, pa and ps). The GA parameters are: number of generations
nGen = 500 and number of chromosomes nCr = 1500. The crossover
probabilities are: pd = 0.05, pa = 0.15 and ps = 0.2.

Two different source images were used. The first one was obtained
by applying the transform described above to the model image. The
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second source image was obtained from the first one by applying “salt
& pepper” noise. The signal-to-noise ratio in these images is about
−1 dB.

In Figure 2, source images and some samples of registered images
are presented.

In Tables 1 and 2 the results of both sequential and parallel area
based registration are presented. The column ‘# cost eval’ shows the
total number of cost function evaluations; the column ‘best cost eval’
shows the cost function evaluation in which the best value was obtained;
column ‘ex MI’ (expected MI) shows the expected cost value obtained
by measuring the similarity between model image and the source image
after the computed inverse transform was applied; column ‘c MI’ (com-
puted MI) shows the cost value obtained by measuring the similarity
between model image and source image after the approximated inverse
transform was applied. In both tables 1 and 2, ‘Brainix’ denotes the
source image and ‘Brainix+SP’ denotes the source image altered by
adding the “salt & pepper” noise.

Table 1. Results of area based image registration, sequential version

Mode Image Opt. Time
(sec)

# cost
eval

best
cost
eval

ex MI c MI

Seq Brainix BFOA 811.3 591686 469054 1.3218 1.3202
GA 135.8 99148 63176 1.3218 1.3215

Brainix+
SP

BFOA 820.9 563561 546678 1.1394 1.1382

GA 140.2 95371 60.348 1.1402 1.1387
Paral-
lel

Brainix BFOA 253.4 595365 249742 1.3218 1.3177

GA 46.6 98894 79889 1.3218 1.3191
Brainix+
SP

BFOA 254.9 566433 269008 1.1398 1.1390

GA 47.4 95042 86093 1.1398 1.1388
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a. Source image, no noise added b. Registered image

c. Source image, salt and pepper
noise added, SNR = 1.03 dB

d. Registered image

Figure 2. Results of image registration procedure
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As noted in Table 1, the GA optimization requires about 6 times
less cost function evaluations and this is the reason for which the IR
procedure is faster in this case. In case of area based IR, the Clonal
Selection Algorithm was not used for optimization because it requires
about 100 times more cost function evaluations, consequently the reg-
istration is not achieved within a reasonable time interval. In fact,
in case CSA is used as optimization method, the duration of features
based registration is comparable to duration of area based registration
using BFOA / GA as optimization algorithm.

On the Intel Core i5 processor which was used in experiments,
the parallel implementations of the optimization procedures are about
three times faster than the sequential versions, while the number of
cost evaluations in close.

The expected value of similarity measure in Table 2 has different
values due to the “salt & pepper” noise randomly added into images.
The best values were obtained using sequential GA optimization in
case of ‘Brainix’ image and parallel BFOA optimization in case of
‘Brainix+SP’ image.

In Table 2 the parameters of the approximated geometric transform
are presented for both sequential and parallel implementation. The
values determined by computing the inverse geometric transform are:
θ′ = −10◦, c′x = −20, c′y = 20 and scale′ = 0.8333.

In Table 3 the results of features based IR are presented. While
in this case the cost function evaluation requires applying the approx-
imated inverse transforms to a small number of pixel coordinates, the
registration process is faster. The last column of Table 2 contains the
number of correspondent key points between model and source images,
i.e. the number of key points for which the geometric transform must
be applied. If source image is not altered by noise, there are 188 cor-
respondent key points. In case the source image is randomly altered
by noise, the number of correspondences is between 11 and 16. But,
features based registration is not a solution for noisy images, by in-
creasing the noise in the source images, it is possible to don’t find any
correspondent key points pairs. This is the case for images obtained
using different types of sensors or acquisition methods.
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Table 2. Parameters of inverse affine transform computed using area
based registration

Mode Image Opt. c′x c′y θ′ scale′

Seq Brainix BFOA -19.69 20.17 -10.02 0.83
GA -20.10 20.12 -9.99 0.83

Brainix+SP BFOA -20.40 18.79 -9.98 0.83
GA -19.12 19.35 -10.07 0.83

Parallel Brainix BFOA -20.16 19.90 -9.98 0.83
GA -20.26 20.30 -9.98 0.83

Brainix+SP BFOA -19.85 19.41 -9.99 0.83
GA -19.10 20.13 -10.06 0.83

In Table 4 the values of the approximated transform parameters
are presented. It must be noticed that in two cases the results are not
so near to expected values: when the noisy image ‘Bainix+SP’ is used
as source and in case CSA is used as optimization method.

The charts presented in Figure 4 show compare the sequential and
parallel execution time for all the experiments presented before. It is
obvious that for long tasks, as area based IR, the gain obtained by
using the parallel versions is greater. For short tasks, as features based
IR, the speedup is lower. This happens because the processing time
becomes comparable to that of the synchronization tasks required by
the parallel implementation and also because shorter time intervals are
affected by all other processes and events that occur in the operating
system. The results obtained in case of CSA optimization are not
included in charts because in this case the duration was too long.

In Figure 4, the parallelization evaluation is presented. The most
common evaluation of parallel algorithms is performed using the par-
allel efficiency E = ts

tp×n , where ts is the time used by the sequential
version of the algorithm, tp is the processing time for the parallel ver-
sion and n is the number of used processors. As it was already said,
better efficiency (> 74%) is obtained for area based IR parallelization
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Table 3. Results of features based image registration, sequential version

Mode Image Opt. Time
(sec)

# cost
eval

best
cost
eval

ex MI c MI key-
points

Seq Brainix BFOA 1.9 660726 391414 1.3218 1.3145 188
GA 2.4 118359 17701 1.3218 1.3173 188
CSA 353.3 73240500 - 1.3218 1.2948 188

Brainix BFOA 0.7 662137 378711 1.1400 1.1365 15
+SP GA 2.2 111775 40274 1.1405 1.1240 11

CSA 191.5 65687973 - 1.1392 1.1187 12
Paral-
lel

Brainix BFOA 0.9 658684 636958 1.3218 1.3171 188

GA 2.2 115568 39971 1.3218 1.3168 188
CSA 139.9 71315426 - 1.3218 1.2916 188

Brainix BFOA 0.6 640345 528443 1.1398 1.1234 12
+SP GA 2.1 104900 26898 1.1389 1.1174 16

CSA 102.9 70095946 - 1.1405 1.1305 11

which has a longer execution time. In case of CSA optimization used
for features based IR, the efficiency is between 47% and 68% which
may lead to the conclusion that the procedure was not completely par-
allelized. In all other cases (BFOA and GA for features based IR), the
lower parallelization efficiency is not relevant, while the execution time
is too short.

The image registration procedures were implemented and tested in
an image processing framework developed by authors of this paper. It
is implemented in C++ as a Windows application and uses OpenCV
library [22] for images manipulation and the parallel programming sup-
port available in Microsoft Visual Studio 2010 [23].

6 Conclusions

This paper is focused on the use of some bio-inspired optimization
methods for medical images registration. Three different approaches
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Table 4. Parameters of inverse affine transform computed using fea-
tures based registration

Mode Image Opt. c′x c′y θ′ scale′

Seq Brainix BFOA -20.85 20.14 -9.93 0.83
GA -19.81 20.10 -9.99 0.83
CSA -20.35 19.15 -9.97 0.83

Brainix+SP BFOA -20.01 20.20 -9.97 0.83
GA -22.48 19.33 -9.96 0.84
CSA -17.99 16.93 -10.22 0.84

Parallel Brainix BFOA -19.88 19.54 -9.99 0.83
GA -19.82 20.01 -9.99 0.83
CSA -17.33 20.11 -10.16 0.83

Brainix+SP BFOA -25.43 21.66 -9.45 0.83
GA -11.73 19.72 -10.77 0.83
CSA -20.31 20.64 -9.85 0.83

are presented: Bacterial foraging optimization algorithm, genetic algo-
rithm and clonal selection algorithm. Since image registration may be
a time consuming task, different optimization strategies were applied:
the use of scale invariant features transform key points and full usage
of computing power of multi-core processors. The obtained results may
be summarized as follows:

• BFOA and GA allow to obtain comparable results in terms of
registration precision;

• GAs perform faster the image registration about three times
faster than BFOA;

• CSA is too slow for features based registration (comparable to
area based IR combined with BFOA and GA) and also with lower
precision, provided that algorithm’s parameters were not enough
tuned;
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Figure 4. Parallel efficiency obtained in all experiments

• Even the features based IR performs faster, it’s usage for multi-
modal images is limited by the procedure’s capability to find com-
mon and stable features in the images to be registered;

• Parallel implementations are suitable in image registration, while
cost function evaluations are independent and time consuming
tasks.
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[16] F.Campelo, F.G. Guimarães, H.Igarashi, J.A. Ramı́rez. A Clonal
Selection Algorithm for Optimization in Electromagnetics, IEEE
Transactions on Magnetics, Vol. 41, no. 5, 2005, pp.1736–1739.

[17] M. Pavone, G. Narzisi, G. Nicosia. Clonal selection: an immuno-
logical algorithm for global optimization over continuous spaces,
Journal of Global Optimization, Springer Science+Business Me-
dia, LLC. 2011.
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Abstract

The evolution in genome sequencing has known a spectacu-
lar growth during the last decade. One of the main challenges
for the researchers is to understand the evolution of the genome
and in particular to identify the DNA segments that have a bi-
ological significance. In this study we present a new algorithm
– ADMSL – optimized for finding motifs in long DNA sequences
and we emphasize some experiments done in order to evaluate
the performance of the proposed algorithm in comparison with
other motifs finding algorithms.

Index Terms: motifs search algorithms, motifs identifica-
tion, transcriptions factor binding site, biological data analysis.

1 Introduction

The identification of novel cis-regulatory motifs in DNA sequences ex-
perienced a spectacular development in the recent years. As a conse-
quence, an important number of algorithms have been developed with
the scope to detect transcriptional regulatory elements from genes that
belong to a specific genome [1].

The main scope of these algorithms is to identify the transcriptional
regions and to find the motifs which are repeating most because those
are good candidates for functional elements in genome. Phylogenetic
footprinting is a particular method that is used to identify transcription
factor binding sites in a set of orthologous noncoding DNA sequences.

c©2014 by Alin G. Voina, Petre G. Pop, Mircea F. Vaida
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The algorithms elaborated so far are capable of analyzing multiple DNA
sequences and some of them can perform also over an entire gene.
The process of regulating gene expression is an important challenge in
molecular biology. The main task in this challenge is to identify the
DNA binding sites for transcription factors. Computational methods
have a special place in researcher’s studies as are expected to offer the
most promising results.

The problem of motifs detection can be formulated as: having a
group of S sequences, search for a pattern M of length l which is spread
more often. If the pattern M of length l is present in each sequence
from the group of S sequences, then by enumerating the l letters of
the pattern we obtain the regulatory element. The mutations of the
nucleotides can affect the identification of transcription factor binding
sites from a set of DNA sequences.

The identification of sequence motifs is an important step for under-
standing the process behind gene expression. A DNA motif is a short,
well conserved pattern that usually has a biological significance [2].
Some of the motifs are included in complex RNA processes like tran-
scription termination, mRNA processing, ribosome binding [3]. The
length of the motif can vary from five base pairs (bp) to twenty (bp)
and can be identified within the same gene or in different genes. Motifs
can be classified based on their length but can be split also in palin-
dromic motifs and gapped (space dyad) motifs [4]. We classify a motif
as palindromic if its complementary read backwards is identical with
the motif itself (e.g. ‘AGAGCGCTCT’ is a palindromic motif). Space
dyed (gapped) motifs are usually formed from two sites of relatively
short length, well conserved and usually separated by a spacer. The
gap is usually located in the middle of the motif due to the fact that
transcription factor (TF) usually binds as a dimer. The length of the
sites where TF binds to the DNA varies from three to five bp which
are usually well conserved.

In the past, binding sites determination was performed with gel-
shift and footprinting methods or reported construct assays [3].

In the recent years, for determining motifs in a sequence or a set of
sequences, computational methods are used increasingly more.
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The development of DNA motifs search algorithms was materialized
into more than seventy elaborated methods for motifs identification.
A good part of these methods are based on phylogenetic footprinting
and/or probabilistic models.

The algorithms dealing with motifs identification can be organized
into three main groups:

• algorithms that use promoter sequences from co-regulated genes
of a single genome;

• algorithms that use phylogenetic footprinting;

• a combination of the above algorithms.

In this study we present a new algorithm (ADMSL) for motifs iden-
tification in long DNA sequences and we compare the results with the
ones obtained with six popular tools: MEME, Weeder, AlignACE,
YMF, Scope and Improbizer which are presented in the table below
(Table 1).

2 Motifs localization in long sequences

The detection of motifs in case of long-range regulatory sequences be-
came a requirement in ChIP experiments [5] – especially when search-
ing for vertebrate promoters. If we refer to long DNA sequences, some
recent studies [6] [7], reported that stochastic patterns may behave as
real motifs. This can lead to false positive motifs which can eclipse
the motifs identified as real. The length of the analyzed DNA sequence
has a large influence over memory and time requirements for algorithms
that search for motifs.

The binding sites are specifically bound by one or more DNA-
binding proteins and are usually localized in specific positions [5]. Most
of the Transcription Factor Binding Sites-TFBS are positioned relative
to TSS to allow the transcription factors to anchor at specific positions
with respect to each other and the TSS [8]. For this particular situ-
ation, the detection of the motif can be performed by searching into
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Table 1. Analyzed Tools-Operation Principles

Analyzed
tool

Principle of
functionality

Observations

AlignAce It uses an iter-
ative masking
procedure to-
gether with
Gibbs sampling.

The detection of motifs is accom-
plished using an iterative masking
procedure [6].

MEME Uses statisti-
cal modeling
techniques.

Motif detection consists in per-
forming expectation maximiza-
tion from starting points derived
from each subsequence occurring
in the input dataset [15].

Improbizer Uses Expectac-
tion Maximiza-
tion.

In particular, Improbizer is us-
ing a variation of the expec-
tation maximization (EM) algo-
rithm [16].

Weeder Consensus-based
method.

It has options for “post-
processing” i.e. analysis of
location and significance of the
motifs [17].

YMF Finds motifs
with the great-
est z-score.

Identifies candidates for binding
sites by searching for statistically
over-represented motifs.

SCOPE Uses three pro-
grams behind
the scenes to
identify different
kind of motifs.

Utilizes three algorithms to
identify sequence motifs: BEAM-
finds non degenerate motifs,
PRISM-finds degenerate motifs
and SPACER – finds bipartite
motifs [18].
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an appropriate interval after the sequence is aligned relative to an an-
chor point. In this way, the regions that are not containing any motif
are removed and the probability of reporting false positive motifs is
decreased.

One solution would be to divide the long sequences into short over-
lapping sequences of the same length and to analyze each subsequence
with a motif finding algorithm. But this approach can lead us into
several problems:

• in most of the situations we have no prior information regarding
the regulatory region where motifs may be localized;

• it is a big challenge to localize the motifs which are most signif-
icant for the whole DNA sequence when a considerable number
of motifs were reported over a range of intervals;

• the length of the subsequences has a big influence over the motif
identification process – in case of a short length the motif may
not be visible and in case of a long length, the motif may be
eclipsed;

• the analyzed sequence must be divided automatically; otherwise
it will take considerable time and also may be predisposed to
errors.

In the proposed algorithm of this research, we’ve taken the decision
to not use subsequences of the original DNA sequence and to make the
analysis over the entire sequence as we get it from genome repositories.

The problem of motif detection is well defined in the literature.
One of the most common definitions is the one described in [9]. So, the
main task is to determine all the instances of the pattern M of length
l with d substitutions that occur into the set of analyzed sequences.
The pattern M is known as a motif and each instance of the motif M
represents a binding site.

Positional weight matrix (PWM) is another representation that can
be used for motif detection, especially for the motifs that have particu-
lar instances localized over DNA sequences. For initial motif detection,
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the consensus representation (l, d) proved to be more efficient, in par-
ticular for the motifs which are not having a consistent instance across
the sequences [9].

The definition of motif referenced above is taking into consideration
the fact that instances of a motif can be distributed over the entire
sequence which is true, in particular for short sequences. For long
sequences it is considered that most of the motif instances are found
into a specific interval, relative to an anchor point (Figure 1).

Figure 1. Motifs detection of pattern (6,1) into a set of N sequences,
each one of length L. The random pattern TTTAAA hides the real
motif TTGACA

The problem of motif detection, in fact, is a variation of the above
definition:

• for a set of S sequences S = S1, S2, . . . , SN , each of length L,
we have to find all instances of pattern M of length l across the
interval (p1, p2) of the sequences S;

• known values: S – the set of sequences, l – length of the pattern,
d – maximum number of substitutions.

3 ADMSL – Algorithm description

The scope of the ADMSL algorithm is to identify candidate motifs from
different intervals of the analyzed sequence and to report the ones which
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have the best score. An exhaustive enumeration strategy will require
the computation of the score functions for 4l patterns from all possible
intervals of the sequences which gets to an increased complexity. One
of the goals of the ADMSL algorithm is to process faster long data
sequences.

In order to make judgments if a candidate pattern is a motif or
not we’ve used several score functions. The motifs are expected to be
distinct from the general nucleotide composition of the regulatory se-
quences – known as background – since the transcription factors can
distinguish them from other neighborhood nucleotide patterns. One
score function that we’ve used in order to measure the difference be-
tween the motif M and the background model B is the relative entropy
score [10] [11] measured as Kullback-Leibler divergence:

D norm(M‖B) =
1

l ln 4

L∑

i=1

∑

b

fb,i ln(fb,i)− 1
ln 4

∑

b

fb ln pb , (1)

where

fb =
1
l

L∑

i=1

fb,i. (2)

fb,i – represents the average frequency of occurrence on each nucleotide
b ∈ {A,C, G, T} at each position i = 1, 2, ..., l. To measure the statisti-
cal deviation between the observed and expected occurrences of a motif
we’ve used the Z-score function [12]:

Z − score =
( n

NL)− e

δ
, (3)

where n is the number of observed instances, N – is the total number of
input sequences, L – is the average length of input sequence, e – is the
probability to generate a motif instance according to the background
model and δ – represents the standard deviation.

In order to make decisions regarding the distribution and localiza-
tion of motifs into a certain interval (p1, p2) we’ve used the following
score function defined by the mathematical definition from relation (4):

284



A New Algorithm for Localized Motif Detection in . . .

D(p̂‖p0) = p̂ ln(
p̂

p0
) + (1− p̂ ln(

1− p̂

1− p0
), (4)

where p̂ – represents the observed proportion of the motifs that is found
in (p1, p2) interval, (1− p̂) – the observed proportion of the motifs that
lies outside of (p1, p2); p0 and 1−p0 are the proportions that correspond
to uniform distribution.

The combined score function may be calculated as a sum of the
above scoring functions (Hamming measure) or as an Euclidean mea-
sure – root mean square of the above score functions.

The algorithm contains several optimizations which are presented
in the next paragraphs.

One of the optimizations that we’ve done is to create a position dic-
tionary. The main role of the dictionary is to optimize the computation
of the number of candidate pattern instances from a specific position
interval of the sequence. The dictionary is formed from all unique char-
acter arrays, with the length l, identified in input sequences. One of
the particularities of the dictionary is the fact that the patterns which
overlap are excluded: e.g. if the array ‘ACACACAC’ is found in each
input sequence and we are interested to find just the patterns of 4 nu-
cleotides length, then into the dictionary we’ll have just two instances
for the pattern ‘ACAC’ instead of three. Another particularity of the
proposed dictionary is the fact that the patterns which are having a
Hamming distance d or lower than d are interconnected. This inter-
connection allows a fast enumeration of all instances for each pattern
of a specific length.

Another optimization that we’ve used in the algorithm is to ac-
celerate the calculation of the score functions that we’ve used. Score
functions calculations for each candidate pattern in all positions inter-
vals (p1, p2,), where 0 ≤ p1 ≤ p2 ≤ L, will be ideal. In the current
algorithm implementation we’ve taken into consideration the intervals
(p1, p2,); p1 < p2, p1, p2 ∈ {0, i, 2i, 3i, . . . , L}, where i represents the
step size of the search. The score functions are being determined in-
dividually for each position interval. The score for a long interval can
be directly determined from the scores of the shorter intervals from
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which it is formed. The necessary computations are made in two steps:
the score functions for all intervals of size i are being computed in the
first step, then in the second step, the scores for longer intervals are
computed from the scores of the constituent intervals obtained in first
step. The most time consuming is the first step; in the second step the
time and complexity are significantly reduced due to the fact that it is
just a direct computation from the results obtained previously. This
is why the proposed computational method is efficient also in case of
long sequences.

The filtering of the similar patterns is another optimization that
accompanies the proposed algorithm. As the scores of the candidate
patterns are being determined for different intervals, the algorithm is
maintaining a list with the scores in descending order. The similar pat-
terns which are having a relative low score, and the ones which have
position intervals which overlap, are removed from the list of possible
motifs. In this way we maintain only the n motifs where n is user de-
fined and represents a percentage from the total number of candidate
motifs. These filters are leading to an important reduce of memory re-
quirements for ADMSL algorithm. The similarity between two patterns
of length l is evaluated by using the Needleman-Wunsch algorithm for
global alignment. The similarity score is evaluated based on length l.

At each run, the ADMSL algorithm finds motifs for specific values
of l and d. To combine the results at each run of the algorithm, for
different (l, d) values, a post processing algorithm is needed. Since the
score functions used in ADMSL algorithm don’t depend on l or d, the
motifs with different values for length l and substitutions number d,
can be compared directly based on their scores. The motifs which are
having a similar pattern can be determined using Needleman-Wunsch
alignment algorithm. In this way, if we build motif groups with a sim-
ilarity greater than 65% (relatively measured for the shortest motif),
the motif with the lowest score is being removed. If two motifs have a
high similarity (greater than 90%) and localization intervals are over-
lapping, these are combined into a single motif which has as localization
interval the union of the two intervals.
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4 Experiments and Results

The first test that we’ve done with the scope to get an overview of the
ADMSL algorithm was by generating with [13] a dataset which contains
50 DNA sequences, each of them of 3000 nucleotides length. Randomly,
we’ve inserted the motif GCATG (5,1) in 75% of the sequences at dif-
ferent positions. The obtained sequences were analyzed using ADMSL
configured to search for motifs of length l = 5 and a maximum of d = 1
substitutions. The motif instances have been determined by ADMSL
algorithm as localized in [900, 1500] interval.

From the analysis of other researchers [7] [14], the motif (5,1) is a
subtle motif and is almost impossible to detect through a sequence of
3000 nucleotides because there actually are like a few thousands possi-
ble random motifs. The first ten motifs detected by ADMSL (together
with the afferent scores) are presented in Table 2.

Table 2. The first 10 motifs reported by ADMSL algorithm when
running over a dataset of 50 DNA sequences of 3000 nucleotides each

Pattern Interval SER SSR SIS Score
GCATG [900, 950] 0.469 0.345 0.432 1.246
CGCGA [400, 450] 0.471 0.325 0.423 1.219
GTCGA [900, 950] 0.424 0.342 0.359 1.125
ATCGT [1200, 1250] 0.425 0.297 0.398 1.12
CTTCG [2100, 2150] 0.378 0.432 0.295 1.105
TACGC [2850, 2900] 0.421 0.305 0.292 1.018
CCGAT [2650, 2700] 0.397 0.297 0.291 0.985
TACCG [1800, 1850] 0.345 0.348 0.287 0.98
CGTCG [900, 950] 0.451 0.276 0.251 0.978
CGATC [950, 1000] 0.411 0.324 0.237 0.972

The pattern (5,1) was correctly identified as the most prominent
motif and the localization interval was detected with accuracy.

This first test was performed to get an overview of the ADMSL
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performance before getting to more representative tests.
In the next paragraphs we’ll present the ADMSL performance in

case of short sequences, long sequences and real sequences.

4.1 Short DNA sequences

The tests performed on short DNA sequences have the role to evalu-
ate the detection accuracy of ADMSL algorithm and to emphasize the
robustness of the algorithm. Each set of sequences was having N se-
quences of nucleotides, each of them with a length L < 1000, randomly
generated using [13]. All of the sequences were artificially implanted
with a motif M which has the characteristics l = 6 and d = 1 along of
a randomly position interval (p1, p2). We have generated 10 datasets
by varying the number of sequences N and the length of the sequence
L. The parameters and their values are presented in Table 3.

Table 3. The value of the parameters used in performance analysis over
short DNA sequences

Parameter N L l d

Value 10..50 200-1000 6 1

In Figure 2 it is presented the detection accuracy of the ADMSL
algorithm in case of short DNA sequences (randomly generated) im-
planted with motif M =′ CGATGC ′.

The ADMSL algorithm was configured to report the first 50 possible
motifs for each DNA sequence. From the reported motifs, we’ve chosen
the motif most closely of the implanted motif M and we had retained –
based on the score – the position occupied in the list of reported motifs.

The motifs reported in this case are presented in Table 4.
From Figure 2 we can observe that the detection accuracy is de-

creasing while the length of the sequence is increasing but the average
detection accuracy value was around 83.6%. So, we can observe that
the detection accuracy of the ADMSL algorithm is relatively high. This
is because the ADMSL algorithm is not dependent upon the length of
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Figure 2. ADMSL detection accuracy in case of short DNA sequences
randomly generated

Table 4. Detected motifs by ADMSL algorithm in case of short DNA
sequences. Detection accuracy for the considered dataset

DNA Se-
quence

Motif Position (in the list of 50
motifs reported)

Detection
accuracy

N10L200 GCATGC 3 97%
N10L300 GCATGC 39 62%
N20L400 TCATGC 4 97%
N20L500 ATGCTT 39 62%
N30L600 CATGCG 27 74%
N30L700 GCATGC 5 97%
N40L800 GTGCTA 24 77%
N50L800 CATGTA 16 85%
N50L900 CCATGC 15 86%
N50L1000 ATGCGT 2 99%
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the sequence but rather of the motif localization interval. The localized
search reduces the number of concurrent random patterns and increases
the possibility of comparing motifs.

4.2 Long DNA sequences

The analysis of detection accuracy in case of ADMSL algorithm for
long sequences was performed using data sequences as it follows:

• we’ve generated using [13] ten data sets of 30 random sequences
by varying the length of the sequences from 1000 to 6000 of base
pairs;

• in each data set we’ve randomly inserted, in the interval position
[200-800], the motif CATGCT.

The ADMSL algorithm was executed directly on the sequences pre-
viously obtained, with a maximum length of the interval set to 500
nucleotides. We must specify that the fragmentation of the analyzed
sequences was not needed (even if their length hit almost 180000 nu-
cleotides), because the ADMSL algorithm automatically determines
the localization interval of the motif.

In case of other motif detection algorithms (like MEME, Weeder)
there is necessary a fragmentation of the long sequences and to maintain
the accuracy, these fragments need to have an overlapping rate of about
50%.

Each run of the ADMSL algorithm was performed using the pa-
rameters specified in Table 5.

Table 5. The value of the parameters used in performance analysis over
long DNA sequences

Parameter N L l d
Value 30 1000-6000 6 1
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The detection accuracy of the randomly implanted motif, in case
of the long sequences is presented in Figure 3. The detection accuracy
was evaluated as the detection sensitivity based on the combined score
function of the reported motif.

Figure 3. ADMSL detection accuracy in case of long DNA sequences
randomly generated

As we can observe, the detection accuracy is maintained over 60%
also in case of the long sequences. It is interesting to observe the
fluctuation of the accuracy detection once the length of the analyzed
sequences grows – we can notice that the accuracy value is increasing
and decreasing randomly for the sequences that have a length between
200 and 4500 nucleotides. These fluctuations appeared due to the fact
that we had randomly inserted the implanted motif and also because
the analyzed sequences were randomly generated.

The motifs detected by ADMSL algorithm, as being the most closest
to the implanted motif, are presented in Table 6.

In Table 6, we can observe that motifs similar to the implanted
motif were detected and reported in localization intervals where the in-
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Table 6. Detected motifs by ADMSL algorithm in case of short DNA
sequences. Localization interval

DNA Se-
quence

Motif Position (in the list of
50 motifs reported)

Localization
interval

N30L1000 CATGCG 2 [300,550]
N30L1500 GCATGC 9 [250,300]
N30L2000 CATGCG 10 [250,600]
N30L2500 CATGCT 48 [450,500]
N30L3000 ATGCTC 34 [1050,1100]
N30L3500 ATGCTG 22 [2700,2750]
N30L4000 GCATGC 33 [1550,1600]
N30L4500 ACATGC 44 [300,350]
N30L5000 GCATGC 3 [400,450]
N30L6000 CATGCA 1 [250,350]

sertion of the random motif did not occurred – the motif was implanted
only in the positions interval [200, 800]. Those reported motifs have
been detected as valid motifs because they were present in the initial
sequences, randomly generated.

4.3 Real DNA sequences

Motifs detection in long regulatory sequences it is an actual require-
ment especially in ChIP experiments for determining the promoters for
vertebrates [5]. Some recent studies [7] [14] are highlighting that ran-
dom patterns from DNA sequences may become remarkable as if the
real motifs. In this specific case, the algorithms used for motif detec-
tion are returning false positives hiding the real motif. For most of the
algorithms, the necessary resources – memory requirements and execu-
tion time – are proportionally increasing with the size of the analyzed
sequence.

In the literature, it is known the fact that the motif instances are
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found to be localized at specific positions, relatively to a reference po-
sition (anchor point) [5]. Most of the transcriptions factors are being
localized relatively to a transcription start site to allow the transcrip-
tion factors to be localized in specific positions. In these conditions,
the motif detection can be done by searching into a specific interval
after the alignment of the sequences relatively to the anchor point.

The localization of motifs has an important advantage by remov-
ing the regions which are not containing motifs and by decreasing the
possibility of returning false positives.

One possibility is to divide the DNA sequences into short overlap-
ping subsequences of the same size. Some problems may occur:

• in most of the cases we don’t have prior information regarding
the regions where the motifs are distributed;

• in case of a big number of reported motifs in a range of intervals
it is really a challenge to identify and extract those motifs which
have the greatest importance for the analyzed sequence;

• depending on the chosen length for the sequences the motifs might
not be so obvious if the length is short and might be poorly
demarcated if the length is too big;

• the division of the analyzed sequence in subsequences must be
done automatically otherwise it will require time and it will be
more susceptible to errors.

In the performance evaluation for real data sequences, to not disad-
vantage any of the algorithms, we’ve chosen to not split the sequence
into subsequences. The analysis was performed on the entire sequence
in order to make judgments regarding performance directly over long
DNA sequences as we found them in genomic repositories.

A big challenge in this research was to choose the right datasets
with the scope to not favor or disfavor any of the algorithms that
we’ve used in comparison with ADMSL. Tompa [12] presents a few
solutions for DNA datasets selection but each of them have several
drawbacks. In order to pass these drawbacks we’ve used transcription
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factors reported as real in TRANSFAC repository. From the biological
database previously mentioned, we had chosen only the transcription
factors which were having also a consensus sequence defined.

We’ve executed tests on different sequences corresponding to the
following species: Saccaromyches Cerevisiae, Drosophila Melanogaster
and Homo Sapiens. All the algorithms used in this assessment
(ADMSL, MEME, AlignAce, YMF, Improbizer, Weeder and SCOPE)
have been configured to detect motifs that have a length in the range
of six to ten nucleotides. In this performance evaluation we took into
account the first ten motifs detected by each of the analyzed algorithm.
In order to obtain an overview of each algorithm we’ve run the appli-
cations/algorithms over each dataset. Besides the proposed algorithm
– ADMSL – all others have been used without modifying the source
code of the applications and the evaluations were performed over their
official web sites or by running the application locally.

In the next figures we present the detection accuracy of the consid-
ered algorithms.

If we consider the Drosophila Melanogaster dataset (Figure 4), a big
majority of the reported motifs had a length between 3bp (Improbizer)
and 10bp (MEME, YMF).

Most of the motifs reported had a corresponding real transcription
factor in TRANSFAC database (the motifs reported by Improbizer
were not found in TRANSFAC database – that’s why the accuracy is set
to 0). From the performance point of view we can confirm that ADMSL
had reported the most motifs for which we had found a corresponding
transcription factor in TRANSFAC database. Also, we’ve noticed that
YMF and SCOPE had good performances.

For Homo Sapiens dataset (Figure 5) we’ve used sequences with
more than 36000 nucleotides. We’ve observed that the algorithm had
reported motifs that we had found as transcription factors in biological
database (TRANSFAC). Over 90% of the motifs reported by ADMSL
were identified as real transcription factors in TRANSFAC genome
repository. Once the length of the analyzed sequence had increased,
the number of false positives had also increased.

Also in case of Saccaromyches Cerevisiae dataset (Figure 6) the
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Figure 4. Detection accuracy for Drosophila Melanogaster dataset

ADMSL algorithm had proved to be more accurate than the other
analyzed algorithms. MEME and YMF had accuracy close to ADMSL
algorithm.

5 Conclusions

The main purpose of this research was to design and develop a new
algorithm for detecting DNA motifs especially in long sequences where
the performance of existing applications is relatively poor. The algo-
rithm proposes an innovative way for detection and localization of DNA
motifs by combining multiple score functions to evaluate the existence
of a motif.

ADMSL had been optimized to fast process long DNA sequences.
The results obtained on synthetic or real data confirmed us that
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Figure 5. Detection accuracy in case of Homo Sapiens dataset

ADMSL has a definite advantage beside other algorithms due to the
detection accuracy of the motifs in long DNA sequences.

In the recent years, considerable efforts were made in elaborating
computational methods and more and more species have a complete
DNA sequence. Nevertheless, the identification of the elements that
are part of the cis-regulatory process continues to be an important
challenge for scientists.

At the beginnings, the algorithms focused on motifs searching were
combining the phylogenetic data with co-regulated genes in order to
find regulatory motifs. In the present, most of the algorithms are ori-
ented to computational methods and researchers are designing new
approaches to better identify the motifs from the analyzed DNA se-
quences.

Due to the big number of algorithms and multitude of the methods
designed for motif identification, for a user, it will be helpful a set of
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Figure 6. Detection accuracy in case of Saccaromyches Cerevisiae
dataset

instructions for choosing the best algorithm/method before starting the
analysis of the DNA sequence.

One of the drawbacks when providing instructions for deciding to
a method or another is the number of settings and parameters which
need to be chosen for each algorithm. The main advantage of ADMSL
algorithm is the fact that the DNA sequences, even if they have a
considerable length, don’t need to be divided in order to obtain motif
localization information. Another plus of ADMSL algorithm is the
fact that needs just a few parameters (e.g. length of the search motif,
allowed substitutions, size of interval search) which have also default
values set in the application that runs ADMSL algorithm. In this way
a user can obtain a first set of results with a minimum effort.

Performance evaluation of a motif search algorithm by comparing
with other algorithms is especially problematic. This is because we
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don’t have yet a complete understanding of the process that regulates
gene activity and expression. Also, there is no standardized model
against to evaluate the efficiency of an algorithm. In the tests done
in this research we must consider the fact that in case of the other
algorithms used in comparison with ADMSL, the parameters were set
with values to reflect as much as accurate the configurations done for
ADMSL algorithm. Because this was done through human interaction
– it is susceptible to errors.

Most of the algorithms used in comparison to evaluate the per-
formance of ADMSL algorithm, have good results in case of lower
organisms, especially when they are set to report short motifs (of 6-
8 nucleotides). The ADMSL algorithm, through the computed score
functions, highlights the motifs conservation through different species.
The performances of ADMSL algorithm have proved to be much bet-
ter especially for long DNA sequences like the ones that we’ve analyzed
from human genome.
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