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On stability of multicriteria investment Boolean

problem with Wald’s efficiency criteria
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Abstract. Based on Markowitz’s portfolio theory we construct the multicriteria
Boolean problem with Wald’s maximin efficiency criteria and the Pareto-optimality
principle. We obtained lower and upper attainable bounds for the stability radius
of the problem in the cases of linear metric l1 in the portfolio and the market state
spaces and of the Chebyshev metric l∞ in the criteria space.
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Back in the early XX century J.Hadamard included the stability in the concept
of the correct mathematical problem as a necessary condition that reflects some
physical reality. Subsequently it was found that many mathematical problems are
unstable to small changes in input data (parameters). In 1960 this led to the creation
of the theory of ill-posed problems, basics of which were laid by A. N.Tikhonov,
M. M.Lavrentiev, V.K. Ivanov and others (see e. g. [1–3]).

Usually, the stability of the optimization problem (both scalar and vector) is
understood as one of the classical properties of continuity or semi-continuity optimal
mapping [4–7]. In the case of the discrete problem the definition of the stability
rephrases easily in terms of the existence of ’the stability ball’, i. e. a surroundings
of the initial data in the problem parameter space, that any ’perturbed’ problem
with the parameters from this surroundings has some property of invariance to the
original problem.

The widespread occurrence of discrete optimization models has given a start to
the interest of many experts to studying various types of stability aspects, paramet-
ric and post-optimal analysis of both scalar (single criterion) and vector (multicri-
teria) discrete optimization problems (e. g. monographs [7–9], surveys [10–12], and
annotated bibliographies [13,14]).

One of the well-known approaches to the stability analysis of multicriteria dis-
crete optimization problems is focused on obtaining quantitative characteristics of
the stability and consists in finding an ultimate level of perturbations of the initial
data of the problem that do not result in new Pareto-optimal solutions. The ma-
jority of the results in this field is related to deriving formulas or estimates for the
stability radius of multicriteria problems of Boolean and integer programming with
linear criteria [12,15–18].
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In the present paper we continue the started in [19–25] research of varies types of
the stability of multicriteria non-linear investment problems, formulation of which is
based on Markowitz’s classical portfolio theory. Here we obtained lower and upper
attainable bounds for the stability radius of the multicriteria investment problem
with Wald’s maximin economic efficiency criteria and the Pareto-optimal principle
in the case of the linear metric l1 in the portfolio and the market state spaces, and
the Chebyshev metric l∞ in the efficiency criteria space. We notice that in [26]
with such combination of metrics l1 and l∞ i the similar lower and upper bounds
of the stability radius of the multicriteria investment problem with Wald’s ordered
minimax criteria were announced.

1 Problem statement and basic definitions

We consider the multicriteria discrete variant of Markowitz’s investment man-
aging problem [27]. To this end, we introduce the following notations. Let
Nn = {1, 2, . . . , n} be the set of alternative investment projects (assets); Nm be
the set of possible market states (situation); x = (x1, x2, . . . , xn)T ∈ X ⊆ En be
the investment portfolio with components xj = 1 if investment project j ∈ Nn is
implemented, and xj = 0 otherwise. Here E = {0, 1}.

There are several approaches to evaluate the efficiency of investment projects
(NPV, NFV, PI et al.), which take into account risk and uncertainty in different ways
(see e. g. [28–31]). Let Ns be the set of project efficiency indicator. An investment
portfolio x is evaluated by

∑

j∈Nn

eijkxj , where eijk is the predicted economic efficiency

of the indicator k ∈ Ns of the investment project j ∈ Nn in the case when the
market is in the state i ∈ Nm. In this context the initial data of the problem is a
3-dimensional matrix of the project efficiency E of the size m×n× s with elements
eijk from R.

Let the following vector objective function

f(x,E) = (f1(x,E1), f2(x,E2), . . . , fs(x,Es)),

be given on a set of investment portfolios X whose components are Wald’s maximin
criteria (extreme pessimism) [32]

fk(x,Ek) = min
i∈Nm

Eikx = min
i∈Nm

∑

j∈Nn

eijkxj → max
x∈X

, k ∈ Ns,

where Ek ∈ Rm×n is the k-th cut of the 3-dimension matrix E = [eijk] ∈ Rm×n×s,
Eik = (ei1k, ei2k, ..., eink) is the i-th row of that cut. Thus, the investor in the unsta-
ble economic state, following Wald’s criteria, takes extreme caution and optimizes
portfolio efficiency Eikx assuming that the market is in the worst state. Such cau-
tion is appropriate, because the investment is the exchange of a certain value today
for an uncertain value in the future.

A multicriteria investment Boolean problem Zs(E), s ≥ 1, means the problem
of searching the Pareto set P s(E), i. e. the Pareto-optimal investment portfolios,
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where

P s(E) = {x ∈ X : P s(x,E) = ∅},

P s(x,E) = {x′ ∈ X : x′ ≻
E

x},

x′ ≻
E

x ⇔ g(x′, x,E) ≥ 0(s) & g(x′, x,E) 6= 0(s),

g(x′, x,E) = (g1(x
′, x,E1), g2(x

′, x,E2), . . . , gs(x
′, x,Es)),

gk(x
′, x,Ek) = fk(x

′, Ek) − fk(x,Ek) = max
i∈Nm

min
i′∈Nm

(Ei′kx
′ − Eikx), k ∈ Ns,

0(s) = (0, 0, . . . , 0)T ∈ Rs.

In the portfolio space Rn and the market state space Rm we define the linear
metric l1, and in the efficiency criteria space Rs we define the Chebyshev metric l∞,
i. e. for any matrix E ∈ Rm×n×s

‖Eik‖1 =
∑

j∈Nn

|eijk|, i ∈ Nm, k ∈ Ns,

‖Ek‖11 =
∑

i∈Nm

‖Eik‖1 =
∑

i∈Nm

∑

j∈Nn

|eijk|, k ∈ Ns,

‖E‖11∞ = max
k∈Ns

‖Ek‖11 = max
k∈Ns

∑

i∈Nm

‖Eik‖1 = max
k∈Ns

∑

i∈Nm

∑

j∈Nn

|eijk|.

Thus, for any indexes i ∈ Nm and k ∈ Ns ,the following inequalities are true:

‖Eik‖1 ≤ ‖Ek‖11 ≤ ‖E‖11∞.

Apart from that, using the evident relation Eikx ≥ −‖Eik‖1, x ∈ En, it is easy to
see that for any portfolios x, x′ the following inequalities hold:

Eikx − Ei′kx
′ ≥ −‖Ek‖11, i, i′ ∈ Nm, k ∈ Ns. (1)

As usually [12,15,17], the stability radius of the problem Zs(E), s ≥ 1, is defined
as the number

ρ = ρ(m,n, s) =

{

sup Ξ, if Ξ 6= ∅,
0, if Ξ = ∅,

where
Ξ = {ε > 0 : ∀E′ ∈ Ω(ε) (P s(E + E′) ⊆ P s(E))},

Ω(ε) = {E′ ∈ Rm×n×s : 0 < ‖E′‖11∞ < ε} is the set of perturbing matrices,
P s(E + E′) is the Pareto set of the perturbed problem Zs(E + E′). Thus, the
stability radius defines an extreme level of perturbations of the elements of the
matrix E such that new Pareto-optimal portfolios do not appear. In this context
the stability of the problem Zs(E) is when the set Ξ is not empty, i. e. ρ(m,n, s) > 0.

Thus, the problem stability Zs(E) can be considered as the discrete analogue of
the upper Hausdorff semicontinuity problem [5–7] at point E of the optimal mapping

P s : Rm×n×s → 2E
n

,
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i.e. the point-set mapping which puts in correspondence the set of Pareto-optimal
portfolios to each point of the space of problem parameters.

Obviously, if the equality P s(E) = X holds, the stability radius of the problem
Zs(E) equals infinity. Therefore, in what follows, we will not consider this case and
will call the problem Zs(E) for which the set X \P s(E) is nonempty nontrivial one.

2 Stability radius bounds

For a nontrivial problem Zs(E) denote

ϕ = ϕ(m,n, s) = min
x 6∈P s(E)

max
x′∈P s(x,E)

min
k∈Ns

max
i∈Nm

min
i′∈Nm

(Ei′kx
′ − Eikx).

Whereas for any portfolio x 6∈ P s(E) the set P s(x,E) is not empty, then we have
the formula

∀x 6∈ P s(E) ∀x′ ∈ P s(x,E) (x′ ≻
E

x).

Therefore, ϕ ≥ 0.

Theorem 1. Given Zs(E). The stability radius ρ(m,n, s) of the multicriteria non-

trivial investment problem Zs(E), s ≥ 1, has the following lower and upper bounds:

ϕ(m,n, s) ≤ ρ(m,n, s) ≤ mnϕ(m,n, s).

Proof. To prove Theorem 1, we will first prove the inequality ρ ≥ ϕ. This inequality
is obvious if ϕ = 0. Let ϕ > 0. According to the definition of ϕ for any portfolio
x 6∈ P s(E) there exists a Pareto-optimal portfolio x0 ∈ P s(x,E) such that

max
i∈Nm

min
i′∈Nm

(Ei′kx
0 − Eikx) ≥ ϕ, k ∈ Ns.

Hence, considering inequality (1), for any matrix E′ ∈ Rm×n×s and any index k ∈ Ns

we have

gk(x
0, x,Ek + E′

k) = max
i∈Nm

min
i′∈Nm

(Ei′kx
0 − Eikx + E′

i′kx
0 − E′

ikx)

≥ max
i∈Nm

min
i′∈Nm

(Ei′kx
0 − Eikx) − ‖E′

k‖11 ≥ ϕ − ‖E′
k‖11.

Therefore, assuming that E′ ∈ Ω(ϕ), we obtain gk(x0, x,Ek +E′
k) > 0, k ∈ Ns. This

means that x0 ≻
E+E′

x, i. e. x is not the Pareto-optimal portfolio of the perturbed

problem Zs(E +E′). Summarizing and taking into account x 6∈ P s(E), we conclude
that

∀E′ ∈ Ω(ϕ) (P s(E + E′) ⊆ P s(E)).

Hence, the inequality ρ(m,n, s) ≥ ϕ(m,n, s) is true.
Then let us prove the inequality ρ ≤ mnϕ. According to the definition of the

number ϕ there exists a portfolio x∗ 6∈ P s(E) such that for any portfolio x ∈
P s(x∗, E) there exists an index l = l(x) ∈ Ns such that

max
i∈Nm

min
i′∈Nm

(Ei′lx − Eilx
∗) ≤ ϕ. (2)
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Then we assume ε > mnϕ and consider the perturbing matrix E0 = [e0
ijk] ∈

Rm×n×s, elements of which we define as follows:

e0
ijk =

{

δ, if i ∈ Nm, x∗
j = 1, k ∈ Ns,

−δ otherwith,

where ϕ < δ < ε/mn. We note that the elements of the matrix E0 do not depend on
a portfolio x, and therefore they do not depend on an index l. Taking into account
the structure of the matrix E0, we obtain

‖E0
ik‖1 = nδ, i ∈ Nm, k ∈ Ns,

‖E0‖11∞ = ‖E0
k‖11 = mnδ, k ∈ Ns.

Therefore, E0 ∈ Ω(ε). Moreover, all the rows E0
ik, i ∈ Nm of any cuts E0

k , k ∈ Ns,
are the same and consist of the components δ and −δ. We denote the same row by
A and obtain

A(x − x∗) = −δ‖x − x∗‖1 ≤ −δ < −ϕ ≤ 0. (3)

Hence, considering (2) and the structure of the perturbing matrix E0, we conclude
that for any portfolio x ∈ P s(x∗, E) the following relations are true:

gl(x, x∗, El + E0
l ) = min

i∈Nm

(Eil + A)x − min
i∈Nm

(Eil + A)x∗

= max
i∈Nm

min
i′∈Nm

(Ei′lx − Eilx
∗) + A(x − x∗) < 0.

Therefore, we obtain

∀x ∈ P s(x∗, E) (x 6∈ P s(x∗, E + E0)). (4)

Let now the portfolio x 6∈ P s(x∗, E). Then the following two cases are possible.

Case 1. g(x, x∗, E) = 0(s). Then according to relations (3) for any index k ∈ Ns

we have

gk(x, x∗, Ek + E0
k) = min

i∈Nm

(Eik + A)x − min
i∈Nm

(Eik + A)x∗

= gk(x, x∗, Ek) + A(x − x∗) < 0.

Case 2. There exists an index p ∈ Ns such that gp(x, x∗, Ep) < 0. Then using
again (3) we obtain gp(x, x∗, Ep + E0

p) < 0.
Thus, x 6∈ P s(x∗, E+E0) if x 6∈ P s(x∗, E). Considering (4), as a result we obtain

P s(x∗, E + E0) = ∅, i.e. x∗ is a Pareto-optimal portfolio of the perturbed problem
Zs(E + E0). Since x∗ 6∈ P s(E) we may conclude that

∀ε > mnϕ ∃E0 ∈ Ω(ε) (P s(E + E0) 6⊆ P s(E)).

Hence, the inequality ρ(m,n, s) ≤ mnϕ(m,n, s) is true.

Corollary 1. The stability radius ρ(m,n, s) equals zero if and only if ϕ(m,n, s)
equals zero.
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3 Attainability of the lower bound

Let us show that the lower bound for the problem stability radius, indicated in
Theorem 1, is attainable.

Theorem 2. There exists a class of multicriteria investment problems Zs(E), s ≥ 1
such that for the stability radius of every problem of this class the following formula

is true:

ρ(m,n, s) = ϕ(m,n, s). (5)

Proof. We will consider the class of problems Zs(E) such that the following terms
are right:

X = {x0, x∗}, P s(x∗, E) = {x0},

i.e. x0 ≻
E

x∗, x∗ 6∈ P s(E), x0 ∈ P s(E). Then there exists an index l ∈ Ns such that

gl(x
0, x∗, El) = ϕ. (6)

We also suppose that there exists an index p ∈ Nn such that x0
p = 1 and x∗

p = 0.
Further we introduce the notation

i(x0) = argmin{Eilx
0 : i ∈ Nm},

i(x∗) = argmin{Eilx
∗ : i ∈ Nm}.

The numbers i(x0) and i(x∗) can be either the same or different. The further
proof does not depend on it.

For any number ε > ϕ we define the elements of the perturbing matrix E0 =
[e0

ijk] ∈ Rm×n×s by the rule

e0
ijk =

{

−δ, if i = i(x0), j = p, k = l,
0 otherwise,

(7)

where
ϕ < δ < ε. (8)

Then the next equalities are obvious:

E0
i(x0)lx

0 = −δ, (9)

E0
ilx

0 = 0, i ∈ Nm \ {i(x0)}, (10)

E0
ilx

∗ = 0, i ∈ Nm, (11)

‖E0‖11∞ = ‖E0
l ‖11 = ‖E0

il‖1 = δ, i ∈ Nm.

Therefore, E0 ∈ Ω(ε).
Using (9) and (10), we obtain

fl(x
0, El + E0

l ) = min
{

(Ei(x0)l + E0
i(x0)l)x

0, min
i6=i(x0)

(Eil + E0
il)x

0
}

=
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= min
{

fl(x
0, El) − δ, min

i6=i(x0)
Eilx

0
}

= fl(x
0, El) − δ. (12)

And from (11) the following relations are true:

fl(x
∗, El + E0

l ) = min
{

(Ei(x∗)l + E0
i(x∗)l)x

∗, min
i6=i(x∗)

(Eil + E0
il)x

∗
}

=

= min
{

fl(x
∗, El), min

i6=i(x∗)
Eilx

∗
}

= fl(x
∗, El).

Hence, consistently applying (12), (6) and (8), we have

gl(x
0, x∗, El + E0

l ) = gl(x
0, x∗, El) − δ = ϕ − δ < 0.

Therefore, x0 6∈ P s(x∗, E + E0), i. e. P s(x∗, E + E0) = ∅. It proves that x∗ is a
Pareto-optimal investment portfolio of the perturbed problem Zs(E +E0). Thence,
because of x∗ 6∈ P s(E) we derive

∀ε > ϕ ∃E0 ∈ Ω(ε) (P s(E + E0) 6⊆ P s(E)).

Thus, ρ(m,n, s) ≤ ϕ(m,n, s). Hence, by Theorem 1 the formula (5) is true.

Remark 1. If m = 1 then i(x0) = i(x∗). Therefore, as we noted earlier, the proof
of Theorem 2 given above is true in this case. Hence, there exists a class of multi-
criteria linear Boolean programming problems Zs

B(E) whose stability radius equals
ϕ(1, n, s).

We give a numerical example that illustrates the statement of Theorem 2.

Example. Let m = 2, n = 3, s = 2; X = {x0, x∗}, x0 = (0, 1, 1)T , x∗ = (1, 1, 0)T ;
E ∈ R2×3×2 is the matrix with cuts

E1 =

(

5 1 2
2 0 4

)

, E2 =

(

6 2 3
2 1 5

)

.

Then p = 3, f(x0, E) = (E1x
0, E2x

0) = (3, 5), f(x∗, E) = (E1x
∗, E2x

∗) = (2, 3),
g(x0, x∗, E) = (1, 2). Hence, x∗ 6∈ P 2(E), {x0} = P 2(x∗, E), l = 1, i(x0) = 1,
i(x∗) = 2. Therefore, ϕ = ϕ(2, 3, 2) = min{1, 2} = 1. Further we will show that
ρ(2, 3, 2) ≤ ϕ = 1.

Since e0
i(x0)pl

= e0
131 then defining the cuts E0

1 and E0
2 of the perturbing matrix

E0 according to the rule (7), we obtain

E0
1 =

(

0 0 −δ
0 0 0

)

, E0
2 =

(

0 0 0
0 0 0

)

,

where δ > ϕ = 1. Then it is easy to see in view of l = 1 that

g1(x
0, x∗, E1 + E0

1) = g1(x
0, x∗, E1) − δ = 1 − δ < 0.

Hence, x∗ ∈ P 2(E + E0). This inclusion and ‖E0‖11∞ = δ > 1, x∗ 6∈ P 2(E) gives
ρ(2, 3, 2) ≤ 1. Therefore, considering Theorem 1, we conclude that ρ(2, 3, 2) =
ϕ(2, 3, 2) = 1.
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4 Attainability of the upper bound

Let us show that the upper bound of the stability radius of the problem Zs(E) is
attainable for m = s = 1. It is easy to see that in the particular case for m = 1 our
problem Zs(E) transforms into a multicriteria linear Boolean programming problem,
which we will write in the convenient form

Zs
B(E) : fk(x,Ek) = Ekx → max

x∈X
, k ∈ Ns,

where X ⊆ En, Ek is the k-th row of the matrix E = [ekj] ∈ Rs×n. Such case can
be interpreted as the situation when the investor has not another alternative market
state. As earlier, the metric l∞ is in the criteria space Rs, and the metric l1 is in
the solution space Rn.

Theorem 3. For m = s = 1 there exists a class of scalar linear Boolean programin

problems Z1
B(E), E ∈ R1×n such that for the stability radius of every problem of

this class the following formula is true:

ρ(1, n, 1) = nϕ(1, n, 1). (13)

Proof. Let us show that there exists a class with X = {x∗, x1, x2, . . . , xn} ⊂ En,
n ≥ 2, where x∗ = 0(n), xj = ej , j ∈ Nn. Here ej is the j-th column of an identity
matrix of size n × n. Let E = (a, a, . . . , a) ∈ Rn in view of m = s = 1, where
a > 0. Therefore, we have f(x∗, E) = Ex∗ = 0, f(xj, E) = Exj = a, j ∈ Nn, i. e.
x∗ 6∈ P 1(E), xj ∈ P 1(E) = P 1(x∗, E), j ∈ Nn. Hence according to the definition of
ϕ(1, n, 1) the inequality ϕ = ϕ(1, n, 1) = a is valid.

Let now E′ = (e′1, e
′
2, . . . , e

′
n) be a perturbing row vector from the row set Ω(na),

i.e. ‖E′‖1 =
∑

j∈Nn

|e′j | < na. It is easy to prove by contrary that there exists an index

p such that |e′p| < a. Therefore, we derive

g(xp, x∗, E + E′) = (E + E′)(xp − x∗) = a + e′p > 0.

Hence we see that for any perturbing row E′ ∈ Ω(nϕ) the portfolio x∗ is not a
Pareto-optimal portfolio of the perturbed problem Z1(E + E′). Thus, in view of
x∗ 6∈ P 1(E) we get ρ(1, n, 1) ≥ nϕ(1, n, 1). Therefore, according to Theorem 1 the
equality (13) is true.

From Theorems 1–3 following Remark 1 the well-known result followws.
Corollary 2 [33]. The stability radius ρ(1, n, s), s ≥ 1, of the multicriteria non-

trivial linear Boolean programing problem Zs
B(E) has the following lower and upper

bounds:

ϕ(1, n, s) ≤ ρ(1, n, s) ≤ nϕ(1, n, s).

Remark 2. We note that in [18] lower and upper bounds of the stability radius of
the multicriteria linear Boolean programing problem Zs

B(E), which is searching the
Pareto set, were obtained when X = {x ∈ En : Ax ≤ b}, every problem parameter
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is under perturbation, i.e. both the elements of the matrix E ∈ Rs×n and the
elements of the matrix A ∈ Rq×n and the vector b ∈ Rq are perturbed, while the
same Chebyshev metric l∞ is in every space of problem parameters Rn, Rs and Rq.

5 Stability conditions

Let us introduce the Slater set [34] of the problem Zs(E):

Sls(E) = {x ∈ X : Sls(x,E) = ∅},

where Sls(x,E) = {x′ ∈ X : ∀k ∈ Ns (gk(x′, x,Ek) > 0)}. It is obvious that
P s(E) ⊆ Sls(E) and P s(x,E) ⊇ Sls(x,E) for any E ∈ Rm×n×s and x ∈ X.

Theorem 4. For a multicriteria nontrivial investment problem Zs(E), s ≥ 1, the

statements below are equivalent:

(i) problem Zs(E) is stable,

(ii) P s(E) = Sls(E),

(iii) ϕ(m,n, s) > 0.

Proof. (i) ⇒ (ii). Assume that problem Zs(E) is stable but P s(E) 6= Sls(E). Then
there exists an investment portfolio x∗ ∈ Sls(E) \ P s(E). Therefore, Sls(x∗, E) = ∅
and P s(x∗, E) 6= ∅. This means that

∀x ∈ P s(x∗, E) ∃l ∈ Ns (gl(x, x∗, El) = 0).

Hence, ϕ(m,n, s) = 0 and according to Corollary 1 ρ(m,n, s) = 0, which contradicts
the stability of the problem Zs(E).

(ii) ⇒ (iii). If P s(E) = Sls(E), then for any portfolio x 6∈ P s(E) the set
Sls(x,E) is empty. Therefore, there exists a portfolio x0 ∈ X such that the inequal-
ities gk(x

0, x,Ek) > 0, k ∈ Ns, are true, i.e. x0 ∈ P s(x,E). Thus,

∀x 6∈ P s(E) ∃x0 ∈ P s(x,E) ∀k ∈ Ns (gk(x0, x,Ek) > 0).

Hence, ϕ(m,n, s) > 0.

(iii) ⇒ (i). According to Theorem 1, this implication is obvious.

Since P 1(E) = Sl1(E), from Theorem 4 follows

Corollary 3. A scalar investment problem Z1(E) is stable for any matrix E ∈
Rm×n.

Remark 3. Since any two norms are equivalent in finite-dimensional linear spaces
[35], the result of Theorem 4 is true for any norms in the space Rm×n×s of problem
parameters.

This work was supported by the Republican Foundation of Fundamental Re-
search of Belarus (project F11K-095).
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Determining the Optimal Paths in Networks

with Rated Transition Time Costs

Dmitrii Lozovanu

Abstract. We formulate and study the problem of determining the optimal paths
in networks with rated transition time costs on edges. Polynomial time algorithms
for determining the optimal solution of this problem are proposed and grounded. The
proposed algorithms generalize algorithms for determining the optimal paths in the
weighted directed graphs.
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1 Introduction and Problem Formulation

In this paper we formulate and study an optimal path problem on networks that
extends the minimum cost path problem in the weighted directed graphs.

Let G = (X,E) be a finite directed graph with vertex set X, |X| = n and
edge set E where to each directed edge e = (u, v) ∈ E a cost ce is associated.
Assume that for two given vertices x, y there exists a directed path P (x, y) = {x =
x0, e0, x1, e1, x2, e2, . . . , xk = y} from x to y. For this directed path we define the
total rated cost

C(x0, xk) =
k−1
∑

t=0

λtcet
,

where λ is a positive value. So, in this path the costs cet
of directed edges et are

rated by λtcte when we pass from x to y. We consider the problem of determining
a path from x to y with minimal total rated cost in the case with fixed number
of transitions on the edges and in the case with free number of transitions on the
edges. If λ = 1 then the formulated problem becomes the well known problem of
determining the shortest path from x to y. The considered problem can be regarded
as the problem of determining the optimal paths in a dynamic network determined
by the graph G = (X,E) with cost functions ce(t) = λtce on edges e ∈ E that
depend on time. Therefore if the number k of edges for the optimal path is fixed
then we can apply the dynamic programming algorithm or time-expanded network
method from [1, 3–5] which determines the solution of the problem using O(|x|3k)
elementary operations. In this paper we show that for the considered problem the
linear programming approach can be applied which allows us to ground more efficient
polynomial time algorithms for determining the optimal paths.

c© Dmitrii Lozovanu, 2014
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2 Algorithms for Solving the Problem with Free Number

of Transitions on Edges

In this section we consider the optimal path problem without restrictions on the
number of transitions on edges and show that it can be efficiently solved using the
linear programming approach. The basic linear programming model we shall use for
this problem is the following:
Minimize

φ(α) =
∑

e∈E

ceαe (1)

subject to






















∑

e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = 1, u = x;

∑

e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = 0, ∀u ∈ X \ {x, y};

αe ≥ 0, ∀e ∈ E,

(2)

where E−(u) is the set of directed edges that originate in the vertex u ∈ X and
E+(u) is the set of directed edges that enter u.

The following theorem holds.

Theorem 1. If λ ≥ 1 and in G there exists a directed path P (x, y) from a given

starting vertex x to a given final vertex y then for nonnegative costs ce of edges

e ∈ E the linear programming problem (1), (2) has solutions. If α∗
e for e ∈ E

represents an optimal basic solution of this problem then the set of directed edges

E∗ = {e ∈ E|α∗
e > 0} determines an optimal directed path from x to y.

Proof. Assume that λ ≥ 1 and in G there exists at least a directed path
P (x, y) = {x = x0, e0, x1, e1, x2, e2, . . . , xk = y} from x to y. Denote by EP =
{e0, e1, e2, . . . , ek−1} the set of edges of directed path P (x, y). Then it is easy to
check that

αe =







λt, if e = et ∈ EP ;

0, if e ∈ E \ EP
(3)

represents a solution of system (2). Moreover we can see that if the directed path
P (x, y) does not contain directed cycles then the solution determined according to
(3) corresponds to a basic solution of system (2). So, if in G there exists a directed
path from x to y then the set of solutions of system (3) is not empty. Taking into
account that the costs ce, e ∈ E are nonnegative we obtain that the optimal value
of objective function (1) is bounded, i.e. the linear programming problem (1), (2)
has solutions.

Now let us prove that an arbitrary basic solution of system (2) corresponds
to a simple directed path P (x, y) from x to y. Let α = (αe1 , αe2 , . . . , αem

) be a
feasible solution of problem (1), (2) and denote Eα = {e ∈ E|αe > 0}. Then it is
easy to observe that the set of directed edges Eα ⊆ E in G induces a subgraph
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Gα = (Xα, Eα) in which vertex x is a source and y is a sink vertex. Indeed, if this is
not so then we can determine a subset of vertices X ′

α from Xα that can be reached
in Gα from x and X ′

α does not contain vertex y. In Gα we can select the subgraph
G′

α = (X ′
α, E

′
α) induced by the subset of vertices X ′

α and we can calculate

S =
∑

u∈X′

α

∑

e∈E−(u)

αe,

where E′−(u) = {e = (v, u) ∈ E′|v ∈ X ′
α}. It is easy to observe that the value S can

be also expresses as follows

S =
∑

u∈X′

α

∑

e∈E+(u)

αe,

where E′+(u) = {e = (u, v) ∈ E′|v ∈ X ′
α}. If we sum the equalities from (3) that

correspond to u ∈ X ′
α then we obtain

∑

u∈X′

alpha

∑

e∈E−(u)

αe − λ
∑

u∈X′

alpha

∑

e∈E+(u)

αe = 1

which involves (1 − λ)S = 1. However this couldn’t take place because λ ≥ 1 and
S ≥ 0, i.e. we obtain the contradiction. So, if α ≥ 1 then in Gα there exists at least
a directed path from x to y. Taking into account that an arbitrary vertex u in Gα

contains at least an entering edge e = (v, u) and at least an outgoing directed edge
e = (u,w) we may conclude that Gα has a structure of directed graph, where x is a
source and y is a sink.

Thus, to prove that a basic solution α = (αe1 , αe2 , . . . , αem
) corresponds to a

directed graph Gα that has a structure of a simple directed path from x to y it
is sufficient to show that Gα has a structure of an acyclic directed graph and G
does not contain parallel directed paths P ′(u,w), P ′′(u,w) from a vertex u ∈ Xα

to w ∈ Xα. We can prove the first part of the mentioned property as follows.
If α is a basic solution and Gα contains a directed cycles then there exists a di-
rected path P (x, y) = {x = x0, e0, x1, e1, x2, e2, . . . , xr, er, . . . xk = y} from x
to y that contains a directed cycle {xr, er, xr+1, er+1, . . . , xr+s−1, er+s−1, xr} with
the set of edges E0 = {er, er+1, . . . , er+s−1}. If we denote the set of edges of
the directed path P 1(x, xr) = {x = x0, e0, x1, e1, x2, e2, . . . , xr} from x to xr by
E1 = {e0, e1, e2, . . . , er−1} and we denote the set of edges of the directed path
P 2(xr, y) = {xr = xr+s, er+s, xr+s+1, er+s+1, . . . , xk = y} from xr = xr+s to xk = y
by E2 = {er+s, er+s+1, . . . , ek−1} then for a small positive θ we can construct the
following feasible solution

α′
e =















αe, ∀e ∈ Eα \ (E0 ∪ E2);

αer+i
− λiθ, i = 0, 1, . . . , s− 1;

αer+s+i
− λs+iθ + λiθ, i = 0, 1, . . . , k − r − s− 1.
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Here θ can be chosen in such a way that α′
e = 0 at least for an edge e ∈ E0 ∪E2.

So, the number of nonzero components of the solution α′ = (α′
e1
, α′

e2
, . . . , α′

em

) is
less than the number of nonzero components of solution α.

Now let us show that for a basic solution the graph Gα couldn’t contain par-
allel directed paths from vertex xr to vertex w ∈ Xα. We prove this again by
contradiction. We assume that in Gα we have two directed paths P ′(xr, w) =
{xr, e

′
r, x

′
r+1, . . . , e

′
k, x

′
k = w} and P ′′(xr, y) = (xr, y){xr, er+1, x

′′
r+1, . . . , e

′′
l , x

′′
l = w}

from x to w with the corresponding edge sets E′ = {e′r, e
′
r+1, . . . , e

′
k} and E′′ =

{e′′r , e
′′
r+1, . . . , e

′′
k}. Then for a small positive θ we can construct the following solu-

tion

α′
e =















αe, if e ∈ Eα \ (E′ ∪ E′′);

αe′
r+i

− λiθ, if e = e′r+i ∈ E
′, i = 0, 1, . . . , k − r;

αe′′
r+i

+ λiθ, if e = er+i” ∈ E′′, i = 0, 1, . . . , l − r.

Here we can chose θ in such a way that α′
e
l

= 0 at least for an edge el ∈ E′ ∪
E′′, i. e. we obtain that the number of nonzero components of the solution α′ is
less then the number of nonzero components of α. Thus, if α is a basic solution
then the corresponding graph Gα has a structure of a simple directed path from x
to y. This means that if α∗ = (α∗

e1
, α∗

e2
, . . . , α∗

em

) is an optimal basic solution α∗ =
(α∗

e1
, α∗

e2
, . . . , α∗

em

) of problem (1), (2) then the set of directed edges E∗ = {e ∈
E|α∗

e > 0} determines an optimal directed path from x to y.

Corollary 1. If α ≥ 1 and vertex y is reachable in G from x then for an arbitrary

basic solution α of system (2) the corresponding graph Gα has a structure of directed

path from x to y.

Corollary 2. Assume that 0 < λ < 1 and the graph G contains directed cycles. Then

for a basic solution α of system (2) either the corresponding graph Gα has a structure

of directed path from x to y or this graph does not contain directed paths from x to y;
in the second case Gα contains a unique directed cycle that can be reached from x by

using a unique directed path that connects vertex x with this cycle. Moreover, if Gα

does not contain directed paths from x to y then it consists of the set of vertices and

edges {x = x0, e0, x1e1, x2, e2, . . . , xr, er, xr+1, er+1, . . . , xr+s−1, er+s−1, xr} with

a unique directed cycle {xr, er, xr+1, er+1, . . . , xr+s−1, er+s−1, xr} where the nonzero

components αe of α can be expressed as follows

αe =

{

λt, if e = et, t = 0, 1, . . . , r − 1;

λr+i/(1 − λs), if e = er+i, i = 0, 1, . . . , s− 1.
(4)

Remark 1. If 0 < λ < 1 then the linear programming problem (1), (2) may have an
optimal basic solution α∗ for which the graph Gα∗ does not contain a directed path
from x to y. This corresponds to the case when in G the optimal path from x to y
does not exist.
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Now we show that the linear programming model (1), (2) can be extended for
the problem of determining the optimal paths from every x ∈ X{y} to y. We can
see that if λ ≥ 1 then there exists the tree of optimal paths from every x ∈ X{y} to
y and this tree of optimal paths can be found on the basis of the following theorem.

Theorem 2. Assume that λ ≥ 1 and in G for an arbitrary u ∈ X \ {y} there exists

at least a directed path P (u, y) from u to y. Additionally we assume that the costs

ce of edges e ∈ E are nonnegative. Then the linear programming problem:

Minimize

φ(α) =
∑

e∈E

ceαe (5)

subject to






∑

e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = 1, ∀u ∈ X \ {y},

αe ≥ 0, ∀e ∈ E
(6)

has solutions. Moreover, if α∗ = (α∗
e1
, α∗

e2
, . . . , α∗

em

) is an optimal basic solution of

problem (5), (6) then the set of directed edges E∗ = {e ∈ E|α∗
e > 0} determines a

tree of optimal directed paths Gα∗ from every u ∈ X \ {y} to y.

Proof. Let α = (αe1 , αe2 , . . . , αem
) be a feasible solution of problem (5), (6) and

consider the set of directed edges Eα = {e ∈ E|αe > 0} that corresponds to this
solution. Then in the graph Gα = (X,Eα) induced by the set of edges Eα the
vertex y is attainable from every x ∈ X. An arbitrary basic solution α of system (6)
corresponds to a graph Gα which has a structure of directed tree with sink vertex
y. Moreover the optimal value of the objective function of the problem is bounded.
Therefore if we find an optimal basic solution α∗ of the problem (5), (6) then we
determine the corresponding tree of optimal paths Gα∗ .

If the graph G = (X,E) does not contain directed cycles then Theorem 1 and
Theorem 2 can be extended for an arbitrary positive λ, i.e. in this case the following
theorem holds.

Theorem 3. If G = (X,E) has a structure of an acyclic directed graph with sink

vertex y then for an arbitrary λ ≥ 0 and arbitrary costs ce, e ∈ E there exists the

solution of the linear programming problem (1), (2). Moreover, if α∗ is an optimal

basic solution of this problem then the set of directed edges E∗ = {e ∈ E|α∗
e > 0}

determines an optimal directed path from x to y.

Proof. The proof of this theorem is similar to the proof of Theorems 2. In this
case the set of edges Eα for a basic solution of problem (5), (6) induces the graph
Gα = (Xα, Eα) that has a structure of directed tree with sink vertex y. Therefore
the set of edges Eα∗ for an optimal basic solution of problem (5), (6) corresponds
to a directed tree Gα∗ = (Xα∗ , Eα∗) of optimal paths from every u ∈ X to sink
vertex y.
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As we have shown (see Corollary 2 and Remark 1) if 0 < λ < 1 and the graph
G = (X,E)) contains directed cycles then the linear programming problem (1),
(2) may not find the optimal path from x to y even for the case with positive
costs ce,∀e ∈ E because such an optimal path in G may not exist. Below we il-
lustrate an example of the problem with λ = 1/2 and the network represented in
Figure 1. In the considered network the vertices are represented by circles and edges
by arcs. Inside the circles the numbers of the vertices are written and near the
arcs the values α∗

e that corresponds to the optimal solution of the problem with
x = 4, y = 1 and c(4,2) = 1, c(2,1) = 10, c(2,3) = 1, c(3,2) = 1 are written. The
optimal basic solution of the linear programming problem (1), (2) for the considered
example is α∗

(4,2) = 1, α∗
(2,1) = 0, α∗

(2,3) = 2/3, α∗
(3,2) = 1/3 and the graph Gα∗ is

induced by the set of edges {(4, 2), (2, 3), (3, 2)}. Here we can see that the values
α∗

(4,2) = 1, α∗
(2,3) = 2/3, α∗

(3,2) = 1/3 satisfy condition (4). The corresponding graph
Gα∗ does not contain the directed path from vertex 4 to 1, i.e the optimal path from
vertex 4 to 1 does not exist.

Figure 1. Figure 2.

In Figure 2 the optimal solution of problem (1), (2) with x = 4, y = 1 and
c(4,2) = 1, c(2,1) = 1, c(2,3) = 2, c(3,2) = 2 is represented. In this case the optimal
basic solution of problem (1), (2) is α∗

(4,2) = 1, α∗
(2,1) = 1/2, α∗

(2,3) = 0, α∗
(3,2) = 0.

The corresponding nonzero components of this solution generate in G the subgraph
Gα∗ = (Xα, Eα∗), where Eα∗ = {(4, 2), (2, 1)}. The set of edges Eα∗ generates a
unique directed path from vertex 4 to 1, i.e. in the considered case there exists the
optimal path from vertex 4 to 1.

If for problem (5), (6) we consider the dual problem then on the basis of duality
theorems of linear programming we can prove the following result.

Theorem 4. Assume that λ ≥ 1 and the costs ce, e ∈ E are strict positive. Let

β∗u, ∀u ∈ X be a solution of the following linear programming problem:

Maximize

ψ(β) =
∑

x∈X\{x}

βx (7)



20 DMITRII LOZOVANU

subject to

βu − λβv ≤ cu,v,∀(u, v) ∈ E0, (8)

where

E0 = {e = (u, v) ∈ E|u ∈ X \ {y}, v ∈ X.

If β∗u u ∈ X is an optimal basic solution of problem (7), (8) then an arbitrary tree

T = (X,E′
β∗) with sink vertex y of the graph Gβ∗ = (X,Eβ∗) induced by the set of

directed edges

Eβ∗ = {e = (x, y) ∈ E|β∗u − λβ∗v = cu,v}

represents the tree of optimal paths from x ∈ X \{y} to y. An optimal basic solution

of problem (7), (8), can be found starting with β∗v = 0 for v = y and β∗u = ∞ for

u ∈ X \ {y} and then repeat |X| − 1 tames the following calculation procedure:

replace β∗u for u ∈ X \ {y} by β∗u = min
v∈X(u)

{

λβ∗v + cu,v

}

, where X(v) = {u ∈

X|(u, v) ∈ E}.

Proof. Assume that α∗
e, e ∈ E and β∗u, u ∈ X represent the optimal solutions of

the primal linear programming problem (5), (6) and the dual linear programming
problem (7), (8), respectively. Then according to dual theorems of linear program-
ming these solutions satisfy the following condition:

α∗
u,v(β

∗
u − λβ∗v − cu,v) = 0 ∀(u, v) ∈ E0. (9)

So, if α∗
e, e ∈ E is an optimal basic solution then β∗u − λβ∗v − cu,v = 0 for an

arbitrary e = (u, v) ∈ Eα∗ . Taking into account that the corresponding graph Gα∗

for an optimal basic solution α∗ has a structure of the directed tree with sink vertex y
then we obtain this tree coincides with the tree of optimal paths Tβ∗ that determines
the solution β∗u, u ∈ X of the problem (7), (8).

Now let us prove that the procedure for calculating the values β∗x determines
correctly the optimal solution of the dual problem. Indeed, if in G the vertex y
is attainable from each v ∈ X then the rank of system (8) is equal to |X| − 1.
This means that for an arbitrary optimal basic solution not more than |X| − 1 its
components may be different from zero. Therefore we can take β∗y = 0. After that
taking into account the condition (9) we can find β∗u for u ∈ X \ {y} using the
calculation procedure from the theorem starting with β∗v = 0 for v = y and β∗u = ∞
for u ∈ X \ {y}.

Thus, based on Theorem 4 we can find the tree of optimal paths in G for the
problem with free number of transitions as follow.

We determine the values β∗u for u ∈ X using the following steps:

Preliminary step (step 0): Fix β∗y = 0, and β∗u = ∞ for u ∈ X \ {y};
General step (step k ( k ≥ 1)): For every u ∈ X \ {y} replace the value β∗u by

β∗u = min
v∈X(u)

{

λβ∗v + cu,v

}

, where X(v) = {u ∈ X|(u, v) ∈ E}. If k < |X| − 1 then

go to next step; otherwise stop.
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If β∗u for u ∈ X are known then we determine the set of directed edges Eβ∗ and the
corresponding directed graph Gβ∗ = (X,Eβ∗). After that we find a directed tree
Tβ∗ = (X,E′

β∗) in Gβ∗ . Then Tβ∗ represents the tree of optimal paths from x ∈ X
to y.

It is ease to observe that the proposed algorithm allows us to solve the considered
problems in general case with the same complexity as the problem with λ = 1, i.e
this algorithm in the case λ ≥ 1 extends the algorithm for shortest path problems
(see [2, 3]).

3 Algorithms for Solving the Problem with Fixed Number

of Transitions on Edges

The optimal path problem with fixed number of transitions from starting vertex
to final one can be formulated and studied using the following linear programming
model:
Minimize

φx,y(α) =
∑

e∈E

ceαe (10)

subject to











































∑

e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = 1, u = x;

∑

e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = 0, ∀u ∈ X \ {x, y};

∑

e∈E−(u)

αe − λ
∑

e∈E+(u)

αe = −λk−1, u = y;

αe ≥ 0, ∀e ∈ E.

(11)

This model is valid for an arbitrary λ > 0 (λ 6= 1). If we solve the linear programming
problem (10), (11) then find an optimal solution α∗ that determines the optimal value
of objective function and the corresponding graph Gα∗ . However such an approach
for solving this problem does not allow to determine the order of the edges from Gα∗

that form the optimal path P (x, y) with fixed number of transitions from x to y.
The algorithms based on linear programming in this case determine in polynomial
time only the optimal cost of the optimal path and the corresponding graph Gα∗ .

In order to determine the optimal path P (x, y) with a given number of tran-
sitions K from x to y it is necessary to solve the sequence of K|X − 1| linear
programming problem (10), (11) with fixed starting vertex for k = 1, 2, . . . ,K and
for an arbitrary final vertex y ∈ X \ {x}.For each such a problem we determine the
optimal value w φx,y(α

k∗) and the corresponding graph Gαk . After that starting
from final vertex y we find the optimal path P (x, y) as follows: we fix a directed
edge eK−1 = (uK−1, uK = y) for which φx,y(α

K∗
) = φx,uK−1(αK−1∗ + λK−1ceK−1),

then find a directed edge eK−2 = (uK−2, uK = y) for which φx,uK−1(αK−1∗) =
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φx,uK−2(αK−1∗ + λK−2ceK−2) and so on. In such a way we find the vertices

x = uo, u1, . . . , uk = y of the path P (x, y).
More useful algorithms for solving the problem with fixed number of transitions

on edges of the network are the dynamic programming algorithms and the time-
expanded network method from [4–6]. To apply these algorithms it is sufficient to
consider the network with cost functions ce(t) = λtce on edges e ∈ E.

4 Conclusion

The optimal paths problem on networks with rated transition time costs on edges
generalizes the shortest path problem in weighted directed graphs. The proposed
linear programming approach for studying this problem allows to ground polynomial
time algorithms for determining the optimal paths in networks with rated costs on
edges. The elaborated algorithms generalizes algorithms for determining the optimal
paths in weighted directed graphs and may be useful for determining the solution
for the dynamic version of minimum cost flow problem on networks with the costs
on edges that depend on flow and on time (the case with separable cost functions).
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Abstract. Six-dimensional planar Hermitian submanifolds of Cayley algebra are
considered. It is proved that if such a submanifold of the octave algebta satisfies
the U -Kenmotsu hypersurfaces axiom, then it is Kählerian. It is also proved that
a symmetric non-Kählerian Hermitian six-dimensional submanifold of the Ricci type
does not admit totally umbilical Kenmotsu hypersurfaces.
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1 Introduction

The almost Hermitian structures (AH-structures) belong to the most impor-
tant and meaningful differential-geometrical structures. The existence of 3-vector
cross products on Cayley algebra gives a lot of substantive examples of almost Her-
mitian manifolds. As it is well known, every 3-vector cross product on Cayley
algebra induces a 1-vector cross product (or, what is the same in this case, an al-
most Hermitian structure) on its six-dimensional oriented submanifold (see [10–12]).
Such almost Hermitian structures (in particular, Hermitian, special Hermitian,
nearly-Kählerian, Kählerian etc) were studied by a number of remarkable geome-
ters: E.Calabi, J.-T.Cho, R. Deszcs, F. Dillen, N.Ejiri, S.Funabashi, A.Gray,
Guoxin Wei, Haizhong Li, H.Hashimoto, V. F. Kirichenko, J. S. Pak, K. Sekigawa,
L.Verstraelen, L.Vranchen and others. For example, a complete classification of
nearly-Kählerian [15], Kählerian [16] and locally symmetric Hermitian structures [17]
on six-dimensional submanifolds of the octave algebra has been obtained.

The almost contact metric structures are also remarkable and very important
differential-geometrical structures. These structures are studied from the point of
view of differential geometry as well as of modern theoretical physics. We mark out
the close connection of almost contact metric and almost Hermitian structures. For
instance, an almost contact metric structure is induced on an oriented hypersurface
of an almost Hermitian manifold [22].

In the present paper, we consider six-dimensional Hermitian planar submanifolds
of Cayley algebra. We shall prove the following main results.

c© Mihail B.Banaru, Galina A.Banaru, 2014
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Theorem 1. If a six-dimensional Hermitian planar submanifold of Cayley algebra

satisfies the U-Kenmotsu hypersurfaces axiom, then it is Kählerian.

Theorem 2. A symmetric non-Kahlerian Hermitian six-dimensional submanifold

of the Ricci type does not admit totally umbilical Kenmotsu hypersurfaces.

This article is the continuation of the authors’ researches in the area of planar
Hermitian submanifolds of Cayley algebra (see [2, 6, 7] and others).

2 Preliminaries

Let us consider an almost Hermitian manifold, i. e. a 2n-dimensional manifold
M2n with a Riemannian metric g = 〈·, ·〉 and an almost complex structure J . More-
over, the following condition must hold

〈JX, JY 〉 = 〈X, Y 〉 , X, Y ∈ ℵ(M2n),

where ℵ(M2n) is the module of smooth vector fields on M2n. All considered mani-
folds, tensor fields and similar objects are assumed to be of the class C∞.

The specification of an almost Hermitian structure on a manifold is equivalent
to the setting of a G-structure, where G is the unitary group U(n) [19]. Its elements
are the frames adapted to the structure (A-frames). They look as follows:

(p, ε1, . . . , εn, ε1̂, . . . , εn̂ ),

where εa are the eigenvectors corresponding to the eigenvalue i =
√
−1, and εâ are

the eigenvectors corresponding to the eigenvalue −i. Here the index a ranges from
1 to n, and we state â = a + n.

Therefore, the matrices of the operator of the almost complex structure and of
the Riemannian metric written in an A-frame look as follows, respectively:

(

Jk
j

)

=

(

iIn 0

0 −iIn

)

, (gkj) =

(

0 In

In 0

)

,

where In is the identity matrix; k, j = 1, . . . , 2n.
We recall that the fundamental form (or Kählerian form) of an almost Hermitian

manifold is determined by the relation

F (X, Y ) = 〈X, JY 〉 , X, Y ∈ ℵ(M2n).

By direct computing it is easy to obtain that in A-frame the fundamental form
matrix looks as follows:

(Fkj) =

(

0 iIn

−iIn 0

)

.

An almost Hermitian manifold is called Hermitian if its structure is integrable.
The following identity characterizes the Hermitian structure [13,19]:
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∇X(F )(Y,Z) −∇JX(F )(JY,Z) = 0,

where X,Y,Z ∈ ℵ(M2n). The first group of the Cartan structural equations of a
Hermitian manifold written in an A-frame looks as follows [19]:

dωa = ωa
b ∧ ωb + Bab

c ωc ∧ ωb,

dωa = −ωb
α ∧ ωb + Bc

abωc ∧ ωb,

where
{

Bab
c

}

and {Bc
ab} are components M2n of the Kirichenko tensors of [1, 5];

a, b, c = 1, ..., n.

We recall also that an almost contact metric structure on an odd-dimensional
manifold N is defined by the system of tensor fields {Φ, ξ, η, g} on this manifold,
where ξ is a vector field, η is a covector field, Φ is a tensor of the type (1, 1) and
g = 〈·, ·〉 is the Riemannian metric [8, 9]. Moreover, the following conditions are
fulfilled:

η(ξ) = 1, Φ(ξ) = 0, η ◦ Φ = 0, Φ2 = −id + ξ ⊗ η,

〈ΦX,ΦY 〉 = 〈ΦX,ΦY 〉 − η (X) η (Y ) , X, Y ∈ ℵ(N),

where ℵ(M2n) is the module of smooth vector fields on N . As an example of an
almost contact metric structure we can consider the cosymplectic structure that is
characterized by the following condition:

∇η = 0, ∇Φ = 0,

where ∇ is the Levi-Civita connection of the metric. It has been proved that the
manifold which admits the cosymplectic structure is locally equivalent to the product
M × R, where M is a Kählerian manifold [20].

As it was mentioned, the almost contact metric structures are closely connected
to the almost Hermitian structures. For instance, if (N, {Φ, ξ, η, g}) is an almost
contact metric manifold, then an almost Hermitian structure is induced on the
product N × R [8]. If this almost Hermitian structure is integrable, then the input
almost contact metric structure is called normal. As it is known, a normal contact
metric structure is called Sasakian [8]. On the other hand, we can characterize the
Sasakian structure by the following condition [19]:

∇X(Φ)Y = 〈X,Y 〉 ξ − η(Y )X, X, Y ∈ ℵ(N).

For example, Sasakian structures are induced on totally umbilical hypersurfaces in
a Kahlerian manifold [8]. As it is well known, the Sasakian structures have many
remarkable properties and play a fundamental role in contact geometry.

In 1972 Katsuei Kenmotsu introduced a new class of almost contact metric struc-
tures [14] defined by the condition:

∇X(Φ)Y = 〈ΦX,Y 〉 ξ − η(Y )ΦX, X, Y ∈ ℵ(N).
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The Kenmotsu manifolds are normal and integrable, but they are not contact,
consequently, they can not be Sasakian. In spite of the fact that the conditions
for these kinds of manifolds are similar, the properties of Kenmotsu manifolds are
to some extent antipodal to the Sasakian manifolds properties [18]. Note that the
remarkable investigation [18] in this field contains a detailed description of Kenmotsu
manifolds as well as a collection of examples of such manifolds. We mark out also
the recent fundamental and profound work by G. Pitis that contains a survey of
most important results on geometry of Kenmotsu manifolds [21].

3 Proof of theorems

At first, we remind that an almost Hermitian manifold M2n satisfies the
U -Kenmotsu hypersurfaces axiom if a totally umbilical Kenmotsu hypersurface
passes through every point of this manifold.

Let O ≡ R8 be the Cayley algebra. As it is well-known [12], two non-isomorphic
three-fold vector cross products are defined on it by means of the relations:

P1(X, Y, Z ) = −X(Ȳ Z) + 〈X, Y 〉Z + 〈Y, Z〉X − 〈Z,X〉Y,

P2(X, Y, Z ) = −(XȲ )Z + 〈X, Y 〉Z + 〈Y, Z〉X − 〈Z,X〉Y,

where X, Y, Z ∈ O, 〈·, ·〉 is the scalar product in O and X → X̄ is the conjugation
operator. Moreover, any other three-fold vector cross product in the octave algebra
is isomorphic to one of the above-mentioned two.

If M6 ⊂ O is a six-dimensional oriented submanifold, then the induced almost
Hermitian structure {Jy, g = 〈·, ·〉} is determined by the relation

Jt(X) = Pt(X, e1, e2), t = 1, 2,

where {e1, e2} is an arbitrary orthonormal basis of the normal space of M6 at the
point p, X ∈ Tp(M

6) [12].
We recall that the point p ∈ M6 is called general [16,17], if

e0 /∈ Tp(M
6),

where e0 is the unit of Cayley algebra. A submanifold M6 ⊂ O, consisting only
of general points, is called a general-type submanifold [16]. In what follows, all
submanifolds M6 that will be considered are assumed to be of general type.

Let N be an arbitrary oriented hypersurface of a six-dimensional Hermitian
submanifold M6 ⊂ O of Cayley algebra, let σ be the second fundamental form of
immersion of N into M6. The Cartan structural equations of the almost contact
metric structure on such a hypersurface look as follows [22]:

dωα = ωα
β ∧ ωβ + Bαβ

γ ωγ ∧ ωβ+

+
(√

2Bα3
β + iσα

β

)

ωβ ∧ ω +

(

−
1
√

2
Bαβ

3 + iσαβ

)

ωβ ∧ ω,
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dωα = −ωβ
α ∧ ωβ + Bγ

αβωγ ∧ ωβ+

+
(√

2Bβ
α3 − iσβ

α

)

ωβ ∧ ω +

(

−
1
√

2
B3

αβ − iσαβ

)

ωβ ∧ ω,

dω =
(√

2B3α
β −

√
2Bα

3β − 2iσα
β

)

ωβ ∧ ωα +
(

B3β
3 − iσβ

3

)

ω ∧ ωβ.

Here the indices α, β, γ range from 1 to 2. Taking into account that the Cartan
structural equations of a Kenmotsu structure look as follows [18]:

dωα = ωα
β ∧ ωβ + ω ∧ ωα;

dωα = −ωβ
α ∧ ωβ + ω ∧ ωα;

dω = 0,

we get the conditions whose simultaneous fulfillment is a criterion for the structure
induced on N to be Kenmotsu:

1) Bαβ
γ = 0;

2)
√

2Bα3
β + iσα

β = −δα
β ;

3) −
1
√

2
Bαβ

3 + iσαβ = 0; (1)

4)
√

2B3α
β −

√
2Bα

3β − 2iσα
β = 0;

5) B3β
3 − iσβ

3 = 0;

and the formulae, obtained by complex conjugation (no need to write them
explicitly).

From (1)3 we obtain:

σαβ = −
i
√

2
Bαβ

3 .

By alternating this relation we get:

0 = σ[αβ] = −
i
√

2
B

[αβ]
3 = −

i

2
√

2

(

Bαβ
3 − Bβα

3

)

= −
i
√

2
Bαβ

3 .

That is why Bαβ
3 = 0, therefore

σαβ = 0.

Similarly, from (1)5 we obtain:

σβ
3 = 0.

So, we can rewrite the conditions (1) as follows:

1) Bαβ
γ = 0; 2) σαβ = 0; 3) σβ

3 = 0; 4) σα
β = i

√
2Bα3

β + iδα
β (2)

and the formulae, obtained by complex conjugation.
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Next, let us use the expressions for Kirichenko tensors of six-dimensional
Hermitian submanifolds of Cayley algebra [3, 4, 16]:

Bab
c =

1
√

2
εabh Dhc, Bc

ab =
1
√

2
εabh Dhc, (3)

where
εabc = εabc

123, εabc = ε123
abc

are the components of the third-order Kronecher tensor [16] and

Dhc = ±T 8
hc + iT 7

hc,

Dhc = D
ĥĉ

= ±T 8
ĥĉ

− iT 7
ĥĉ

.

Here {Tϕ
hc} are the components of the configuration tensor (in A. Gray’s notation)

of the Hermitian submanifold M6 ⊂ O; the index ϕ ranges from 7 to 8 and the indices
a, b, c, h range from 1 to 3 [3, 4, 16].

Taking into account (2) and (3), we get:

σ1̂1 = σ1
1 = i

√
2B13

1 + iδ1
1 = i

√
2(

1
√

2
ε13γDγ1) + i = −iD12 + i;

σ2̂2 = σ2
2 = i

√
2B23

2 + iδ2
2 = i

√
2(

1
√

2
ε23γDγ2) + i = iD12 + i;

σ1̂2 = σ1
2 = i

√
2B13

2 + iδ1
2 = i

√
2(

1
√

2
ε13γDγ2) = −iD22; (4)

σ2̂1 = σ2
1 = i

√
2B23

1 + iδ2
1 = i

√
2(

1
√

2
ε23γDγ1) = iD11.

If N is a totally umbilical submanifold of M6, then for its second fundamental
form we have:

σps = λgps, λ − const, p, s = 1, 2, 3, 4, 5. (5)

Taking into account that the matrix of the contravariant metric tensor of the
hypersurface N looks as follows [2]:

(gps) =













0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0













,

we conclude from (2), (4), and (5) that

B2
31 = 0 , B1

32 = 0.

Consequently,
1
√

2
ε31h Dh2 = 0 ⇔ ε312 D22 = 0 ⇔
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⇔ D22 = 0 ⇔ D22 = 0;

1
√

2
ε32h Dh1 = 0 ⇔ ε321 D11 = 0 ⇔

⇔ D11 = 0 ⇔ D11 = 0.

Knowing the identity from [4]

(D12)
2 = D11D22, (6)

we conclude that Dαβ = 0. Moreover, from (2) it follows that

Bαβ
γ = 0 ⇔

1
√

2
εαβ3 D3γ = 0 ⇔ D3γ = 0;

Bαβ
3 = 0 ⇔

1
√

2
εαβ3 D33 = 0 ⇔ D33 = 0.

So, the matrix (Dab) vanishes:

Dab ≡ 0. (7)

As we can see the condition (7) is fulfilled at every point of totally umbilical
Kenmotsu hypersurface of six-dimensional Hermitian submanifold of the octave al-
gebra. But this condition is a criterion for the six-dimensional submanifold M6 ⊂ O
to be Kählerian [3, 16]. That is why if M6 ⊂ O satisfies with the U -Kenmotsu hy-
persurfaces axiom, then it is a Kählerian manifold. So, the Theorem 1 is completely
proved.

As it was mentioned above, the paper [17] by V. F. Kirichenko contains a
complete classification of six-dimensional Kählerian submanifolds of Cayley alge-
bra. Now, we can state that this paper contains a complete classification of
six-dimensional planar Hermitian submanifolds of Cayley algebra satisfying the
U -Kenmotsu hypersurfaces axiom. We remark also that the property to satisfy
the U -Kenmotsu hypersurfaces axiom essentially simplify the structure of the six-
dimensional planar Hermitian submanifold of the octave algebra.

Locally symmetric M6 ⊂ O are important and substantive examples of six-
dimensional Hermitian planar submanifolds of Cayley algebra [4]. As we have just
mentioned, the most interesting work on this subject is the article by V. F. Kirichenko
[17]. In this paper, the notion of six-dimensional Hermitian Ricci type submanifolds
was introduced. We note that the point p ∈ M6 is called special if

Tp(M
6) ⊂ L(e0)

⊥,

where L(e0)
⊥ is the orthogonal supplement of the unit of Cayley algebra. Otherwise,

the point p is called simple. It is evident that the set of all simple points in M6

forms an open submanifold M6
0 ⊂ M6, on which canonically is determined the

one-dimensional distribution Z induced by the orthogonal projections of e0 on the
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tangent spaces Tp(M
6) for all points p ∈ M6

0 . Such a distribution Z as well as the
one-dimensional space Zp ∈ Tp(M

6), p ∈ M6
0 , are called exceptional [17].

In accordance with the definition [4,17], a Hermitian M6 ⊂ O is called a manifold
of the Ricci type if its Ricci curvature at every point p ∈ M6

0 in the direction of the
exceptional space Zp gets the minimum value.

Now, we use the complete classification of locally symmetric Hermitian M6 ⊂ O
of the Ricci type obtained by V. F.Kirichenko: every Hermitian locally symmetric
submanifold M6 ⊂ O of the Ricci type is locally holomorphically isometric either to
C3 or to the product of Kählerian manifolds C2 and CH1 , “twisted” along CH1.
(Here CH1 denotes the complex hyperbolic space.)

In [17] it is also proved that the matrices (Dab), (T 8
ab) and T 8

ab with a correspon-
ding choice of the frame look as follows, respectively:





D11 0 0
0 0 0
0 0 0



 ;





T 8
ab 0 0
0 0 0
0 0 0



 ;





T 7
ab 0 0
0 0 0
0 0 0



 .

Moreover, for the case of C2 × CH1 the conditions

D11 6= 0; T 8
ab 6= 0; T 7

ab 6= 0

are simultaneously fulfilled.
Applying (4) and (6), we obtain the matrix of the second fundamental form of

the immersion of Kenmotsu hypersurface in such a locally symmetric submanifold
M6 ⊂ O of the Ricci type:

(σps) =













0 0 0 −i −iD11

0 0 0 0 −i
0 0 σ33 0 0
i 0 0 0 0

iD11 i 0 0 0













.

It is easy to see that the condition (5) can not hold. That is why we conclude
that the Kenmotsu hypersurface in a non-Kählerian locally symmetric submanifold
M6 ⊂ O of the Ricci type can not be totally umbilical. So, Theorem 2 is also
completely proved.

Computing the determinant of the matrix of the second fundamental form of the
immersion of Kenmotsu hypersurface in a non-Kahlerian locally symmetric subma-
nifold M6 ⊂ O of the Ricci type we have:

det(σps) = σ33

∣

∣

∣

∣

∣

∣

∣

∣

0 0 −i −iD11

0 0 0 −i
i 0 0 0

iD11 i 0 0

∣

∣

∣

∣

∣

∣

∣

∣

= i σ33

∣

∣

∣

∣

∣

∣

0 −i −iD11

0 0 −i
i 0 0

∣

∣

∣

∣

∣

∣

= σ33.

We obtain that the matrix is degenerate if and only if σ33 = 0. Knowing that
this equality is equivalent to the condition of minimality of a Kenmotsu hypersurface
in a Hermitian manifold σ(ξ, ξ) = 0 [2], we get the following additional result.
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Corollary. The Kenmotsu hypersurface of a locally symmetric submanifold M6 ⊂ O
of the Ricci type is minimal if and only if its second fundamental form matrix is

degenerate.

Acknowledgment. The authors sincerely thank Professor Aligadzhi R. Rustanov
(Moscow State Pedagogical University) for the useful discussion on the subject of
this paper.

References

[1] Abu-Saleem A., Banaru M. Some applications of Kirichenko tensors. Analele Univ.
Oradea, 2010, 17, No. 2, 201–208.

[2] Banaru M. On Kenmotsu hypersurfaces in a six-dimensional Hermitian submanifold of
Cayley algebra. Contemporary Geometry and Related Topics. Proceedings of the Workshop.
Belgrade. Yugoslavia 15–21 May, 2002. World Scientific., Singapore, 2004, 33–40.

[3] Banaru M. On the Gray-Hervella classes of AH-structures on six-dimensional submanifolds
of Cayley algebra. Annuaire de l’universite de Sofia ≪St. Kl. Ohridski≫, 2004, 95, 125–131.

[4] Banaru M. On the type number of six-dimensional planar Hermitian submanifolds of Cayley
algebra. Kyungpook Math. Journal, 2003, 43, No. 1, 27–35.

[5] Banaru M. On Kirichenko tensors of nearly-Kählerian manifolds. Journal of Sichuan Uni-
versity of Science & Engineering, 2012, 25, No. 4, 1–5.

[6] Banaru M., Banaru G. About six-dimensional planar Hermitian submanifolds of Cayley
algebra. Bul. Stiintific Univ. “Politehnica” Timisoara, 2001, 46(60), No. 1, 3–17.

[7] Banaru M., Banaru G. On spectra of some tensors of planar six-dimensional Hermitian
submanifolds of Cayley algebra. Proceedings of VII International Seminar “Discrete Mathe-
matics and Its Application”. Moscow State University, 2001, 250–253 (in Russian).

[8] Blair D. E. Contact manifolds in Riemannian geometry. Lect. Notes Math., 1976, 509, 1–145.

[9] Blair D. E. Riemannian geometry of contact and symplectic manifolds. Progress in Math.
Birkhauser. Boston-Basel-Berlin, 2002.

[10] Gray A. Some examples of almost Hermitian manifolds. Illinois Journal Math., 1966, 10,
No. 2, 353–366.

[11] Gray A. Six-dimensional almost complex manifolds defined by means of three-fold vector cross
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Estimation of the extreme survival probabilities

from censored data

Ion Grama, Jean-Marie Tricot and Jean-François Petiot

Abstract. The Kaplan-Meier nonparametric estimator has become a standard tool
for estimating a survival time distribution in a right censoring schema. However, if
the censoring rate is high, this estimator does not provide a reliable estimation of the
extreme survival probabilities. In this paper we propose to combine the nonparametric
Kaplan-Meier estimator and a parametric-based model into one construction. The
idea is to fit the tail of the survival function with a parametric model while for the
remaining to use the Kaplan-Meier estimator. A procedure for the automatic choice
of the location of the tail based on a goodness-of-fit test is proposed. This technique
allows us to improve the estimation of the survival probabilities in the mid and long
term. We perform numerical simulations which confirm the advantage of the proposed
method.

Mathematics subject classification: 62N01, 62N02, 62G32.
Keywords and phrases: Adaptive estimation, censored data, model selection,
prediction, survival analysis, survival probabilities.

1 Introduction

Let (Xi, Ci, Zi)
′ , i = 1, ..., n be i.i.d. replicates of the vector (X,C,Z)′ , where

X and C are the survival and right censoring times and Z is a categorical covariate.
It is supposed that Xi and Ci are conditionally independent given Zi, i = 1, ..., n.
We observe the sample (Ti,∆i, Zi)

′ , i = 1, ..., n, where Ti = min {Xi, Ci} is the
observation time and ∆i = 1{Xi≤Ci} is the failure indicator. Let F (x|z) , x ≥ x0 ≥ 0
and FC (x|z) , x ≥ x0 be the conditional distributions of X and C, given Z = z,
respectively. In this paper we address the problem of estimation of the survival
function SF (x|z) = 1−F (x|z) when x ≥ x0 is large. The function SF is traditionally
estimated using the Kaplan-Meier nonparametric estimator (Kaplan and Meier [14]).
Its properties have been extensively studied by numerous authors, including Fleming
and Harrington [7], Andersen, Borgan, Gill and Keiding [2], Kalbfleisch and Prentice
[13], Klein and Moeschberger [16]. However, in various practical applications, when
the time x is close or exceeds the largest observed data, the predictions based on
the Kaplan-Meier and related estimators are rather uninformative.

For illustration purposes we consider the well known PBC (primary biliary cir-
rhosis) data from a clinical trial analyzed in Fleming and Harrington [7]. In this
trial one observes the censored survival times of two groups of patients: the first
one (Z = 1) was given the DPCA (D-penicillamine drug) treatment and the second
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Figure 1. We compare two types of prediction of the survival probabilities in DPCA and placebo
groups: on the top picture the prediction is based on the Kaplan-Meier estimation and on the bottom
picture the prediction uses a semiparametric approach. The points on the curves correspond to the
largest observation time in each group.

one is the control group (Z = 0). The overall censoring rate is about 60%. Here we
consider only the group covariate and we are interested to compare the extreme sur-
vival probabilities of the patients under study in the two groups. In Figure 1 (top
picture) we display the Kaplan-Meier nonparametric curves of the treatment and
the control (placebo) groups. From these curves it seems difficult to infer whether
the DPCA treatment has an effect on the survival probability. For instance at time
x = 4745 (13 years) using the Kaplan-Meier nonparametric estimator (KM), one
gets an estimated survival probability ̂SKM (x|z = 0) = 0.3604 for the control group
and ̂SKM (x|z = 1) = 0.3186 for the DPCA treatment group. In this example and
in many other applications one has to face the following two drawbacks. First, the
estimated survival probabilities ̂SKM (x|z) are constant for x beyond the largest
(non-censored) survival time, which is not quite helpful for prediction purposes.
Second, for this particular data set, the Kaplan-Meier estimation suggests that the
DPCA treatment group has an estimated long term survival probability slightly
lower than that of the control group, which can be explained by the high variability
of ̂SKM (x|z) for large x. These two points clearly rise the problem of correcting the
behavior of the tail of the Kaplan-Meier estimator.

A largely accepted way to estimate the survival probabilities SF (x|z) for large
x, is the parametric-based model fitting the hole data starting from the origin. Its
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advantages are pointed out in Miller [18], however, it is well known that the bias
model can be high if it is misspecified. The more flexible nonparametric Kaplan-
Meier estimator would generally be preferred for estimating certain functionals of
the survival curve, as argued in Meier, Karrison, Chappell and Xie [17]. In this
paper we propose to combine the nonparametric Kaplan-Meier estimator and the
parametric-based model into one construction which we call semiparametric Kaplan-
Meier estimator (SKM). Our new estimator incorporates a threshold t in such a
way that SF (x|z) is estimated by the Kaplan-Meier estimator for x ≤ t and by a
parametric-based estimate for x > t. The main theoretical contribution of the paper
is to show that with an appropriate choice of the threshold t such an estimate is
consistent if the tail is correctly specified. In the case when the tail is misspecified we
show by simulations that the method is robust. Denote by ̂St the resulting estimator
of SF , where the parametric-based model is the exponential distribution with mean
θ. By simulations we have found that ̂S

̂t, endowed with a data driven threshold
̂t, outperforms the Kaplan-Meier estimator. As it is seen from Figure 1 (bottom
picture), we obtain at x = 4745 the estimated survival probability ̂S

̂t0
(x|z = 0) =

0.2739 for the control group and ̂S
̂t1

(x|z = 1) = 0.3150 for the DPCA treatment

group, where ̂t0 and ̂t1 are the corresponding data driven thresholds. Our predictions
are recorded in Table 2 and seem to be more adequate than those based on the
Kaplan-Meier estimation. We refer to Section 7, where this example is described in
more details.

In Figures 2 we display the root of the mean squared error of the predictions
of SF (x|z) based on the Kaplan-Meier and the proposed semiparametric Kaplan-
Meier estimators as functions of the observation time x. This is an example where
the exponential model for survival and censoring tails are misspecified. The errors
are computed within a Monte-Carlo simulation study of size M = 2000 with a
gamma distribution modeling the survival and censoring times which do not exhibit
exponential behavior in the tail (see Section 6 and Example 2 of Section 2 for details).
The advantage of the proposed semiparametric estimator over the Kaplan-Meier
estimator can be clearly seen by comparing the two MSE curves. The MSE of the
semiparametric estimator is much smaller than that of the Kaplan-Meier estimator
for large observation times x > q0.99 but also for mid range observation time values,
for example x ∈ [8, q0.99] , where q0.99 is the 0.99-quantile of the distribution F.
The proposed extensions of the nonparametric curves are particularly suited for
predicting the survival probabilities in the case when the proportion of the censored
times is large. This is the case of the mentioned simulated data where the mean
censoring rate is about 77%. Note also that we get an improvement over the Kaplan-
Meier estimator even for very low sample sizes like n = 20.

The proposed estimator ̂St is sensible to the choice of the threshold t. The main
difficulty is to choose t small enough, so that the parametric-based part contains
enough observation times to ensure a reliable prediction in the tail. At the same
time one should choose t large enough in order to prevent from a large bias due to an
inadequate tail fitting. The very important problem of the automatic choice of the
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Figure 2. The lines 1, 3 (from the top) display simulated root MSE’s of the Kaplan-Meier and
semiparametric Kaplan-Meier estimators as functions of the time x. On the lines 2, 4 we show the
ratio of the two root MSE’s displayed on the lines 1, 3. The vertical dashed line is the 0.99 quantile
of the true distribution of the survival time. The sample sizes are either n = 20 or n = 500.
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threshold ̂t is treated in Section 5, where a procedure which we call testing-pursuit-

selection is performed in two stages: First we test sequentially the null hypothesis
that the proposed parametric-based model fits the data until we detect a chosen
alternative. Secondly we select the best model among the accepted ones by penalized
model selection. Therefore our testing-pursuit-selection procedure is actually also
a goodness-of-fit test for the proposed parametric-based model. The resulting data
driven estimator of the tail depends heavily on the testing procedure.

The approach developed here can be applied in conjunction with other techniques
of prediction such as accelerated life testing, see Wei [22], Tseng, Hsieh and Wang
[21], Escobar and Meeker [6] and extreme values estimation, see Hall [10], Hall and
Welsh [11, 12], Dress [5], Grama and Spokoiny [8]. We refer also to Grama, Tricot
and Petiot [9] for a related result concerning the approximation of the tail by the
Cox model [4].

The case of continuous multivariate covariate Z in the context of a Cox model
and the use of fitted tails other than the exponential can be treated by similar
methods. The models which take into account the cure effects can be reduced to
ours after removing the cure fraction. However, these problems are beyond the scope
of the paper.

The paper is organized as follows. In Section 2 we introduce the main nota-
tions and give the necessary background. The main results of the paper about the
consistency of the proposed estimators are stated in Sections 3 and 4. The auto-
matic threshold selection procedure is described in Section 5. In Section 6 we give
some simulation results and analyze the performance of the studied estimators. An
application to real data is done in Section 7 and a conclusion in Section 8.

2 The model and background definitions

Assume that the survival and right censoring times arise from variables X and
C which take their values in [x0,∞), where x0 ≥ 0. Consider that X and C may
depend on the categorical covariate Z with values in the set Z = {0, ...,m} . The
related conditional distributions F (x|z) and FC (x|z) , x ≥ x0, given Z = z, are
supposed to belong to the set F of distributions with strictly positive density on
[x0,∞). Let fF (·|z) and SF (·|z) = 1−F (·|z) be the conditional density and survival
functions of X, given Z = z. The corresponding conditional hazard function is
hF (·|z) = fF (·|z) /SF (·|z) , given Z = z. Similarly, C has the conditional density
fC (·|z) , survival function SC (·|z) and hazard function hC (·|z) = fC (·|z) /SC (·|z) ,
given Z = z. We also assume the independence between X and C, conditionally
with respect to Z. Let the observation time and the failure indicator be

T = min {X,C} and ∆ = 1{X≤C},

where 1B is the indicator function taking the value 1 on the event B and 0 otherwise.
Let PF,FC

(dx, dδ|z) , x ∈ [x0,∞), δ ∈ {0, 1} be the conditional distribution of the
vector Y = (T,∆)′ , given Z = z. The density of PF,FC

is

pF,FC
(x, δ|z) = fF (x|z)δ SF (x|z)1−δ fC (x|z)1−δ SC (x|z)δ , (2.1)
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where x ∈ [x0,∞), δ ∈ {0, 1} .
Let zi ∈ Z be the observed value of the covariate Zi, where Zi, i = 1, ..., n

are i.i.d. copies of Z, and let Yi = (Ti,∆i)
′ , i = 1, ..., n be a sample of n vectors,

where each vector Yi has the conditional distribution PF,FC
(·|zi) , given Zi = zi, for

i = 1, ..., n. It is clear that, given Z = z ∈ Z, the vectors Yi, i ∈ {j : zj = z} are
i.i.d. .

In this paper the problem is to improve the nonparametric Kaplan-Meier esti-
mators of the m + 1 survival probabilities SF (x|z) = 1 − F (x|z) , z ∈ Z, for large
values of x. To this end, we fit the tail of F (·|z) by the exponential distribution with
mean θ > 0. Consider the following conditional semiparametric quasi-model

Fθ,t (x|z) =

{

F (x|z) , x ∈ [x0, t],
1 − (1 − F (t|z)) exp

(

−x−t
θ

)

, x > t,
(2.2)

where t ≥ x0 is a nuisance parameter and F (·|z) ∈ F , z ∈ Z are functional param-
eters. The conditional density, survival and hazard functions of Fθ,t are denoted by
fF

θ,t
, SF

θ,t
and hF

θ,t
, respectively. Note that hF

θ,t
(x|z) = 1/θ, for x > t.

The χ2 entropy between two equivalent probability measures P and P0 is defined
by χ2 (P,P0) =

∫

dP/dP0dP − 1. By Jensen’s inequality χ2 (P,P0) ≥ 0.

Definition 2.1. Let F,FC ∈ F and z ∈ Z. The tail of the distribution F (·|z) belongs

to the domain of attraction of the exponential model under the right censoring schema

if there exists a constant θz > 0 such that

lim
t→∞

χ2
(

PF,FC
(·|z) , PF

θz ,t
,FC

(·|z)
)

= 0. (2.3)

Below we give two examples when (2.3) is verified.
Example 1 (asymptotically constant hazards). Consider asymptotically constant

survival and censoring hazard functions. This model can be related to the families of
distributions in Hall [10], Hall and Welsh [11], Dress [5] and Grama and Spokoiny [8]
for the extreme value models. Let A > 0, θmax > θmin > 0 be some constants.
Consider that the survival time X has a hazard function hF (·|z) such that for some
θz ∈ (θmin, θmax) and αz > 0,

|θzhF (θzx|z) − 1| ≤ A exp (−αzx) , x ≥ x0. (2.4)

Condition (2.4) means that hF (x|z) converges to θ−1
z exponentially fast as x→ ∞.

Substituting αz = α′
zθz, (2.4) gives

∣

∣hF (x|z) − θ−1
z

∣

∣ ≤ A′ exp (−α′
zx) , where A′ =

A/θmin.
Similarly, let M > 0, γmax > γmin > 0, µ > 1 be some constants. Assume

that the hazard function hC (·|z) of the censoring time C satisfies for some γz ∈
(γmin, γmax) ,

|θzhC (θzx|z) − γz| ≤M (1 + x)−µ , x ≥ x0. (2.5)

Condition (2.5) is equivalent to saying that hC (x|z) approaches γz/θz polynomially
fast as x → ∞. Substituting γz = γ′zθz, (2.5) gives |hC (x|z) − γ′z| ≤ M ′x−µ, where
M ′ = Mθµ

max/θmin.
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For example, conditions (2.4) and (2.5) are satisfied if F and FC coincide with
the re-scaled Cauchy distribution Kµ,θ defined below. Let ξ be a variable with the
positive Cauchy distribution K (x) = 2π−1 arctan (x) , x ≥ 0. We define the re-

scaled Cauchy distribution by Kµ,θ (x) = 1 − 1−K(exp((x−µ)/θ))
1−K(exp(−µ/θ)) , where µ and θ are

the location and scale parameters. The distribution Kµ,θ can be seen as the excess
distribution of the variable θ log ξ+ µ over the threshold 0. The plots of the density
fK

µ,θ
related to Kµ,θ for various values of parameters are given in Figure 4 (lines 1,

3). We leave to the reader the verification that Kµ,θ fulfills (2.4) with θz = θ, αz = 2
and (2.5) with γz = 1. The distribution Kµ,θ will be used in Section 6 to simulate
survival and censoring times.

Example 2 (non-constant hazards). Now we consider the case when the hazard
functions are not asymptotically constant. For instance, this is the case when the
survival and censoring times have both gamma distributions. The numerical results
presented in Figure 2 and Table 1 and discussed in Section 6 show that the approach
of the paper works when conditions (2.4) and (2.5) are not satisfied.

The heuristic argument behind these experimental findings is as follows. Denote
by Q(t) (x) = P (ξ ≤ t+ x|ξ ≥ t) , x ≥ 0, the excess distribution of ξ over the thresh-
old t, where ξ is a random variable with distribution Q. Let Gθ be the exponential

distribution with mean θ. Obviously G
(t)
θ = Gθ. By simple re-normalization, the χ2

entropy in (2.3) can be rewritten as follows:

χ2
(

PF,FC
(·|z) , PF

θz,t
,FC

(·|z)
)

= SF (t|z)SC (t|z) × (2.6)

χ2(P
F (t),F

(t)
C

(·|z) , P
G

θz
,F

(t)
C

(·|z)).

Clearly from (2.6), Definition 2.1 is fulfilled if, as t→ ∞,

χ2(P
F (t),F

(t)
C

(·|z) , P
G

θz
,F

(t)
C

(·|z)) → 0, (2.7)

which means that beyond the threshold t, the excess distribution F (t) (·|z) is ”well”
approximated by an exponential distribution with parameter θz, for some t > 0.
However (2.3) can be satisfied even if (2.7) may not hold, more precisely when

χ2(P
F (t),F

(t)
C

(·|z) , P
G

θz
,F

(t)
C

(·|z)) = o

(

1

SF (t|z)

)

, (2.8)

where SF (t|z) → 0 as t→ ∞. This means that the tail probabilities can be estimated
by our approach even if the exponential model is misspecified for the tail.

3 Consistency of the estimator with fixed threshold

Define the quasi-log-likelihood by Lt (θ|z) =
∑n

i=1 log pF
θ,t

,FC
(Ti,∆i|zi) 1{zi=z},

where Fθ,t is defined by (2.2) with parameters θ > 0, t ≥ x0 and F (·|z) ∈ F ,
z ∈ Z. Taking into account (2.1) and dropping the terms related to the censoring,
the partial quasi-log-likelihood is

Lpart
t (θ|z) =

∑

Ti≤t, zi=z

∆i log hF
θ,t

(Ti|z) −
∑

Ti>t, zi=z

∆i log θ (3.1)
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−
∑

Ti≤t, zi=z

∫ Ti

x0

hF
θ,t

(v|z) dv −
∑

Ti>t, zi=z

(
∫ t

x0

hF
θ,t

(v) dv + θ−1 (Ti − t)

)

,

for fixed z ∈ Z and t ≥ x0.Maximizing Lpart
t (θ|z) in θ, obviously yields the estimator

̂θz,t =

∑

Ti>t, zi=z (Ti − t)

n̂z,t

, (3.2)

where by convention 0/0 = ∞ and n̂z,t =
∑

Ti>t, zi=z ∆i is the number of observed
survival times beyond the threshold t.

The estimator of SF (x) , for x0 ≤ x ≤ t, is easily obtained by standard non-
parametric maximum likelihood approach due to Kiefer and Wolfowiz [15] (see also
Bickel, Klaassen, Ritov and Wellner [3], Section 7.5). We use the product Kaplan-
Meier (KM) estimator (with ties) defined by

̂SKM (x|z) =
∏

Ti≤x

(1 − di (z) /ri (z)) , x ≥ x0,

where ri (z) =
∑n

j=1 1{Tj≥Ti, zj=z} is the number of individuals at risk at Ti and
di (z) =

∑n
j=1 1{Tj=Ti,∆j=1, zj=z} is the number of individuals died at Ti (see Klein

and Moeschberger [16], Section 4.2 and Kalbfleisch and Prentice [13]). The semi-

parametric fixed-threshold Kaplan-Meier estimator (SFKM) of the survival function
takes the form

̂St (x|z) =

{

̂SKM (x|z) , x ∈ [x0, t],

̂SKM (t|z) exp
(

−x−t
̂θz,t

)

, x > t,
(3.3)

where exp
(

− (x− t) /̂θz,t

)

= 1 if ̂θz,t = ∞. Similarly, it is possible to use the

Nelson-Aalen nonparametric estimator (Nelson [19, 20], Aalen [1]) instead of the
Kaplan-Meier one.

Consider the Kullback-Leibler divergence K (θ′, θ) =
∫

log (dGθ′/dGθ) dGθ′ be-
tween two exponential distributions with means θ′ and θ. By convention, K (∞, θ) =
∞. It is easy to see that K (θ′, θ) = ψ (θ′/θ − 1) , with ψ (x) = x−log (x+ 1) , x > −1
and that there are two constants c1 and c2 such that (θ′/θ − 1)2 ≤ c1K (θ′, θ) ≤
c2 (θ′/θ − 1)2 , when |θ′/θ − 1| is small enough.

The following theorem provides a rate of convergence of the estimator ̂θz,t as
function of the χ2-entropy between PF,FC

and PF
θ,t

,FC
. Let P be the joint distribution

of the sample Yi, i = 1, ..., n and E be the expectation with respect to P. In the
sequel, the notation αn = OP (βn) means that there is a positive constant c such
that P (αn > cβn, βn <∞) → 0 as n→ ∞, for any two sequences of positive possibly
infinite variables αn and βn.

Theorem 3.1. Let z ∈ Z. For any θz > 0 (possibly depending on z) and t ≥ x0, it

holds

K
(

̂θz,t, θz

)

= OP

(

n

n̂z,t

χ2
(

PF,FC
(·|z) , PF

θz,t
,FC

(·|z)
)

+
4 log n

n̂z,t

)

. (3.4)
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For any z ∈ Z and θz > 0 the optimal rate of convergence is obtained when the
terms in the right hand side of (3.4) are balanced, i.e. when t = tz,n is chosen such
that

χ2
(

PF,FC
(·|z) , PF

θz ,tz,n
,FC

(·|z)
)

= O

(

log n

n

)

as n→ ∞, (3.5)

where tz,n may depend on z. It is easy to verify that, if the tail of the distribution
F (·|z) belongs to the domain of attraction of the exponential model under the right
censoring schema, a sequence tz,n ≥ x0 satisfying (3.5) always exists.

From Theorem 3.1 we deduce the following:

Theorem 3.2. Let z ∈ Z. Assume that the distribution F (·|z) belongs to the domain

of attraction of the exponential model under the right censoring schema and tz,n is

a sequence satisfying (3.5). Then

K
(

̂θz,tz,n
, θz

)

= OP

(

log n

n̂z,tz,n

)

. (3.6)

Using the two sided bound for the Kullback-leibler entropy between exponential
laws stated before, from Theorem 3.2 we conclude that ̂θz,tz,n

converges to θz at the

usual
(

n̂z,tz,n

)−1/2
rate up to a log n factor:

(

̂θz,tz,n
− θz

)2
= OP

(

log n
n̂z,tz,n

)

, provided

that there are two constants θmin and θmax such that 0 < θmin ≤ θz ≤ θmax <∞.

Furthermore, the rate of convergence of the estimator ̂θz,tz,n
can be expressed in

terms of SF (·|z) , SC (·|z) and the sample size n, by giving a lower bound for n̂z,tz,n
.

To ensure such a bound we have to introduce two additional assumptions.

The first assumption involves the conditional censoring rate function

qF,FC
(t|z) =

∫ ∞

t

SF,t (x|z) fC,t (x|z) dx ≤ 1, t ≥ x0, z ∈ Z, (3.7)

where SF,t (x|z) = SF (x|z) /SF (t|z) , x ≥ t is the conditional survival function re-
lated to the survival time X, given X > t, and fC,t (x|z) = fC (x|z) /SC (t|z) , x ≥ t
is the conditional density function related to the censoring time C, given C > t. The
quantity qF,FC

(t|z) controls the proportion of the censored times among the obser-
vation times exceeding t. In particular if t = x0, then qF,FC

(x0|z) = Prob(X > C|z)
is simply the mean censoring rate (given Z = z).

We assume that the conditional censoring rate function qF,FC
(·|z) is separated

from 1, i.e. that there are constants r0 ≥ x0 and q0 < 1, such that, for any z ∈ Z
and any t ≥ r0,

qF,FC
(t|z) ≤ q0. (3.8)

Assumption (3.8) is verified, for instance, if F (·|z) and FC (·|z) are exponential with
intensities λX and λC respectively: in this case qF,FC

(t|z) = λC/ (λC + λX) , t ≥ 0.
It is also verified if distributions F and FC meet (2.4) and (2.5). The trajectory of
qF,FC

(·|z) with F and FC satisfying the two last conditions is plotted in Figure 4
(lines 2, 4).
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The second assumption involves the number of individuals with profile z ∈ Z :
nz =

∑n
i=1 1 (zi = z) . We assume that there is a constant κ ∈ (0, 1] such that, for

any z ∈ Z,

nz ≥ κn. (3.9)

Lemma 3.3. Assume that conditions (3.8) and (3.9) are satisfied. Then for ev-

ery t ≥ r0, it holds En̂z,t ≥ κ n (1 − q0)SC (t|z)SF (t|z) and P (n̂z,t < En̂z,t/2) ≤
exp (−En̂z,t/8) . Moreover, if the sequence tz,n is such that En̂z,tz,n

→ ∞ as n→ ∞,
then it holds P

(

n̂z,tz,n
≥ En̂z,tz,n

/2
)

→ 1 as n→ ∞.

As a simple consequence of Theorem 3.2 and Lemma 3.3 we have:

Theorem 3.4. Assume conditions (3.8) and (3.9). Assume that the distribution

F (·|z) belongs to the domain of attraction of the exponential model under the right

censoring schema, tz,n is a sequence satisfying (3.5) and

nSC (tz,n|z)SF (tz,n|z) → ∞ as n→ ∞. (3.10)

Then

K
(

̂θz,tz,n
, θz

)

= OP

(

log n

nSC (tz,n|z)SF (tz,n|z)

)

.

4 Explicit computation of the rate of convergence

The results of the previous section show that the rate of convergence of the
estimator ̂θz,tz,n

depends on the survival functions SF (·|z) and SC (·|z) and on the
sequences tz,n. In order to derive a rate of convergence expressed only in terms of the
sample size n we have to make additional assumptions on F and FC . Moreover, we
find minimal (up to one term expansion) threshold tz,n for which (3.5) holds true.

Our first result concerns the case when hC (·|z) is separated from 0.

Theorem 4.1. Assume conditions (3.8) and (3.9). Assume that hF (·|z) satisfies

(2.4), that there are positive constants tmin and cmin such that hC (x|z) ≥ cmin for

any x ≥ tmin and that

SC (tz,n|z)n
2αz

1+2αz log
1

1+2αz n→ ∞ as n→ ∞. (4.1)

Then,

K
(

̂θz,tz,n
, θz

)

= OP





(

n−1 log n
)

2αz

1+2αz

SC (tz,n|z)



 , (4.2)

where

tz,n =
θz

1 + 2αz

log n+ o (log n) .
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Assume additionally that SC (tz,n|z) ≥ c0 > 0, which means that with positive
probability there are large censoring times. Then the rate of convergence in (4.2)

becomes
(

n−1 log n
)

2αz

1+2αz for any z ∈ Z.

Under the additional condition that hC (·|z) satisfies (2.5) we have the following
result:

Theorem 4.2. Assume condition (3.9). Assume that hF (·|z) satisfies (2.4) and

hC (·|z) satisfies (2.5). Then,

K
(

̂θz,tz,n
, θz

)

= OP

(

(

log n

n

)
2αz

1+γz+2αz

)

, (4.3)

where

tz,n =
θz

1 + γz + 2αz

log n+ o (log n) .

We give some hints about the optimality of the rate in (4.3). Assume that the
survival time X is exponential, i.e. hF (x|z) = θ−1

z for all x ≥ x0 and z ∈ Z.
This ensures that condition (2.4) is satisfied with any α > 0. Assume conditions
(2.5) and (3.9). If there are two constants θmin and θmax such that 0 < θmin ≤

θz ≤ θmax < ∞, (4.3) implies
∣

∣

∣

̂θz,tz,n
− θz

∣

∣

∣
= OP

(

(

n−1 log n
)

α

1+γz+2α

)

, for any

α > 0. This rate becomes arbitrarily close to the n−1/2 rate as α → ∞, since
limα→∞ α/ (1 + γz + 2α) → 1/2. Thus the estimator ̂θz,tz,n

almost recovers the usual
parametric rate of convergence as α becomes large whatever is γz > 0.

In the case when there are no censoring (γz = 0), after an exponential rescaling
our problem can be reduced to that of the estimation of extreme index. If γz → 0

our rate becomes close to n−
2αz

1+2αz , which is known to be optimal in the context of
the extreme value estimation, see Dress [5] and Grama and Spokoiny [8]. So our
result nearly recovers the best possible rate of convergence in this setting.

5 Testing and automatic selection of the threshold

In this section a procedure of selecting the adaptive estimator ̂θz = ̂θz,̂tz,n

from

the family of fixed threshold estimators ̂θz,t, t ≥ x0 is proposed. Here the adaptive
threshold ̂tz,n is obtained by a sequential testing procedure followed by a selection
using a penalized maximum likelihood. This motivates our condensed terminology
testing-pursuit-selection used in the sequel. The testing part is actually a multiple
goodness-of-fit testing for the proposed parametric-based models, while the threshold
̂tz,n can be seen as a data driven substitute for the theoretical threshold tz,n defined
in Theorems 4.1 and 4.2 and in more general Theorems 3.2 and 3.4. For a discussion
on the proposed approach we refer the reader to Section 3 of Grama and Spokoiny [8].
In the sequel, for simplicity of notations, we abbreviate ̂tz = ̂tz,n.
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Define a semiparametric change-point distribution by

Fµ,s,θ,t (x|z) =















F (x|z) , x ∈ [x0, s],

1 − (1 − F (s|z)) exp
(

−x−s
µ

)

, x ∈ (s, t],

1 − (1 − F (s|z)) exp
(

− t−s
µ

)

exp
(

−x−t
θ

)

, x > t,

for µ, θ > 0, x0 ≤ s < t and F (·|z) ∈ F . As in Section 3 we find the maximum
quasi-likelihood estimators ̂θz,t of θ and µ̂z,s,t of µ for fixed z ∈ Z and x0 ≤ s < t,
which are given by (3.2) and

µ̂z,s,t =
n̂z,s

̂θz,s − n̂z,t
̂θz,t

n̂z,s,t

,

where n̂z,s,t =
∑

s<Ti≤t, zi=z ∆i and by convention 0 · ∞ = 0 and 0/0 = ∞.
Consider a constant D > 0, which will be the critical value in the testing pro-

cedure below. Let k0 ≥ 3 be a starting index and kstep be an increment for k. Let
δ′, δ′′ be two positive constants such that 0 < δ′, δ′′ < 0.5. The values k0, kstep, δ

′, δ′′

and D are the parameters of the procedure to be calibrated empirically. Without
loss of generality, we consider that the Ti’s are arranged in the decreasing order:
T1 ≥ ... ≥ Tn. The threshold t will be chosen in the set {T1, ..., Tn} .

The testing-pursuit-selection procedure which we propose is performed in two
stages. First we test the null hypothesis HT

k
(z) : F = Fθ,T

k
(·|z) against the al-

ternative ˜HT
k
(z) : F = Fµ,T

k
,θ,T

l
(·|z) for some δ′k ≤ l ≤ (1 − δ′′) k, sequentially

in k = k0 + ikstep, i = 0, ..., [n/kstep], until HT
k
(z) is rejected. Denote by ̂kz the

obtained break index and define the break time ŝz = T
̂kz

. Second, using ̂kz and ŝz

define the adaptive threshold by ̂tz = T
̂lz

with the adaptive index

̂lz = argmax
δ′̂kz≤l≤(1−δ′′)̂kz

{

LT
l

(

̂θz,T
l
|z
)

− LT
l

(

̂θz,ŝz
|z
)}

, (5.1)

where the term LT
l

(

̂θz,ŝz
|z
)

is a penalty for getting close to the break time ŝz. The

resulting adaptive estimator of θz is defined by ̂θz = ̂θz,̂tz
and the semiparamet-

ric adaptive-threshold Kaplan-Meier estimator (SAKM) of the survival function is
defined by ̂S

̂tz
(·|z) .

For testing HT
k
(z) against ˜HT

k
(z) we use the statistic

LRmax (Tk|z) = max
δ′k≤l≤(1−δ′′)k

LR (Tk, Tl|z) , (5.2)

where LR (s, t|z) is the quasi-likelihood ratio test statistic for testing Hs (z) : F =
Fθ,s (·|z) against the alternative ˜Hs,t (z) : F = Fµ,s,θ,t (·|z) . To compute (5.2), note
that by simple calculations, using (3.1) and (3.2),

Lt

(

̂θz,t|z
)

− Lt (θ|z) = n̂z,tK
(

̂θz,t, θ
)

, (5.3)
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where by convention 0 · ∞ = 0. Similarly to (5.3), the quasi-likelihood ratio test
statistic LR (s, t|z) is given by

LR (s, t|z) = n̂z,s,tK
(

µ̂z,s,t, ̂θz,s

)

+ n̂z,tK
(

̂θz,t, ̂θz,s

)

(5.4)

with the same convention. Note that, by (5.3), the second term in (5.4) can be
viewed as the penalized quasi-log-likelihood

LRpen (s, t|z) = Lt

(

̂θz,t|z
)

− Lt

(

̂θz,s|z
)

= n̂z,tK
(

̂θz,t, ̂θz,s

)

.

Our testing-pursuit-selection procedure reads as follows:

Step 1. Set the starting index k = k0.

Step 2. Compute the test statistic for testing HT
k
(z) against ˜HT

k
(z) :

LRmax (Tk|z) = max
δ′k≤l≤(1−δ′′)k

LR (Tk, Tl|z)

Step 3. If k ≤ n − kstep and LRmax (Tk|z) ≤ D, increase k by kstep and go to

Step 2. If k > n− kstep or LRmax (Tk|z) > D, let ̂kz = k,

̂lz = argmax
δ′̂kz≤l≤(1−δ′′)̂kz

LRpen

(

T
̂kz

, Tl|z
)

,

take the adaptive threshold as ̂tz = T
̂lz

and exit.

It may happen that with k = k0 it holds LRmax (Tk0 |z) > D, which means
that the hypothesis that the tail is fitted by the exponential model, starting from
Tk0, is rejected. In this case we resume the procedure with a new augmented k0,
say with k0 replaced by [ν0k0], where ν0 > 1. Finally, if for each such k0 it holds
LRmax (Tk0|z) > D, we conclude that the tail of the model cannot be fitted with the
proposed parametric tail and we estimate the tail by the Kaplan-Meier estimator.
Therefore our testing-pursuit-procedure can be seen as well as a goodness-of-fit test
for the tail.

Note that the Kullback-Leibler entropy K (θ′, θ) is scale invariant, i.e. satisfies
the identity K (θ′, θ) = K (αθ′, αθ) , for any α > 0 and θ′, θ > 0. Therefore the
critical value D can be determined by Monte Carlo simulations from standard expo-
nential observations. The choice of parameters of the proposed selection procedure
is discussed in Section 6.

6 Simulation results

We illustrate the performance of the semiparametric estimator (3.3) with fixed
and adaptive thresholds in a simulation study. The survival probabilities SF (x|z) ,
for large values of x, are of interest.
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Figure 3. The lines 1, 3 (from the top) display the root type I MSE’s of the Kaplan-Meier estimator
(KM), of the semiparametric fixed-threshold Kaplan-Meier estimator (SFKM) with threshold fixed
at 0 (which coincides with the exponential model) and of the semiparametric adaptive-threshold
Kaplan-Meier estimator (SAKM) with D = 1, 2, 3, 4, 5. The lines 2, 4 display the same but with
D = 5, 6, 7, 8, 9, 10, 11, 12. The mean censoring rate is either 33.3% or 77.8%.
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The mean squared error (MSE) of an estimator ̂S (·|z) of the true survival func-

tion SF (·|z) is defined byMSE
̂S
(x|z) = E

(

̂S (x|z) − SF (x|z)
)2
. The quality of the

estimator ̂S (·|z) with respect to the Kaplan-Meier estimator ̂SKM (·|z) is measured
by the ratio R

̂S
(x|z) = MSE

̂S
(x|z) /MSE

̂SKM

(x|z) .

Without loss of generality, we can assume that the covariate Z takes a fixed
value z. In each study developed below, we perform M = 2000 Monte-Carlo simu-
lations.

We start by giving some hints on the choice of the parameters k0, kstep, δ
′, δ′′

of the testing-pursuit-selection procedure in Section 5. The initial value k0 controls
the variability of the test statistic LRmax (Tk|z) , k ≥ k0. We have fixed k0 as a
proportion of the initial sample size: k0 = n/10. The choice kstep = 5 is made to
speed up the computations. The parameters δ′ and δ′′ restrict the high variability
of the test statistic LR (Tk, Tl|z) when the change point Tl ∈ [Tk, Tk0 ] is close to the
ends of the interval. The values δ′ = 0.3 and δ′′ = 0.1 are retained experimentally.
Our simulations show that the adaptive procedure does not depend much on the
choice of the parameters k0, kstep, δ

′, δ′′.

To choose the critical value D we analyze the type I MSE of the SAKM esti-
mator, i.e. the MSE under the null hypothesis that the survival times X1, ...,Xn

are i.i.d. standard exponential. We perform two simulations using i.i.d. exponential
censoring times C1, ..., Cn with rates 0.5 and 3.5. The size is fixed at n = 200, but
the results are quite similar for other sizes. The root MSE’s as functions of the time
x are given in Figure 3. For comparison, in Figure 3 we also included the MSE’s
corresponding to the parametric-based exponential modeling which coincides with
the SFKM estimator having the threshold fixed at 0. Note that the MSE’s calculated
when the critical values are D = 1, 2, 3, 4, 5, decrease as D increases (see the lines 1,
3), while for D = 5, 6, 7, 8, 9, 10, 11, 12 the MSE’s almost do not depend on D (see
the lines 2, 4). The simulations show that the type I MSE decreases as D increases
and stabilizes for D ≥ 5. From these plots we conclude that the limits for the critical
value D can be set between D0 = 5 and D1 = 7 without important loss in the type
I MSE.

It is interesting to note that the adaptive threshold ̂tz is relatively stable to
changes of D. A typical trajectory of the test statistic LRmax (Tk|z) as function
of Tk is drawn in Figure 7 (top). Despite the fact that the break time ŝz = T

̂kz

strongly depends on the critical value D (in this picture D = 5.8), we found that
the adaptive threshold ̂tz = T

̂lz
, which maximizes the penalized quasi-log-likelihood

LRpen

(

T
̂kz

, Tl|z
)

in Figure 7 (bottom), is stable to the local changes of the break

time ŝz = T
̂kz

and thus is also quasi-stable to relatively small changes of D.

For our simulations we fix the value D = 6. Below we give some evidence that
the SAKM estimator with this critical value has a reasonable type II MSE, under
the hypothesis that the Xi’s have a distribution F alternative to the standard expo-
nential. Our simulations show that the type II MSE’s are quite similar for several
families we have tested. We have chosen the following two typical cases which are
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representative for all these families.

Study case 1 (low tail censoring rate). We generate a sequence of n = 200
i.i.d. survival times Xi, i = 1, ..., n from the re-scaled Cauchy distribution KµX ,θX

with location parameter µX = 40 and scale parameter θX = 5 (see Section 2).
The censoring times Ci, i = 1, ..., n are i.i.d. from the re-scaled Cauchy distribution
KµC ,θC

with location parameter µC = µX−20 = 20 and scale parameter θC = 2θX =
10. To give an overview of the variation of the censoring rate along the magnitude of
Xi, we display the density functions of the survival and censoring times Xi and Ci in
Figure 4. We also display the conditional censoring rate curve qF,FC

(t|z) as function
of t. The (overall) mean censoring rate in this example corresponds to the starting
point of the curve and is about 88% (horizontal dashed line in Figure 4, line 2). As
t → ∞ this curve decreases to the limit limt→∞ qF,FC

(t|z) = θX/ (θC + θX) = 1/3,
which means that the censoring rate for high observation times is about 33% (the
right limit of the curve in Figure 4, line 2).

Study case 2 (high tail censoring rate). We take the same sample size
n = 200. The Xi’s, i = 1, ..., n are i.i.d. from KµX ,θX

with µX = 30 and θX = 20.
The Ci’s, i = 1, ..., n are i.i.d. from KµC ,θC

with µC = µX + 10 = 40 and θC =
θX/10 = 2. In this case the (overall) mean censoring rate is about 40% (horizontal
dashed line), however the conditional censoring rate in the tail is nearly equal to the
limit limt→∞ qF,FC

(t|z) = θX/ (θC + θX) = 10/11, i.e. is about 91% (see Figure 4,
line 4).

We evaluate the performance of the SFKM and SAKM estimators ̂St (x|z) and
̂S
̂tz

(x|z) with respect to the KM estimator ̂SKM (x|z). In Figure 5 we display
the root MSE

̂S
(x|z) (lines 1, 3) and the ratio R

̂S
(x|z) (lines 2, 4) for the three

estimators as functions of the time x. From these plots we can see that both root
MSE

̂St

(x|z) and root MSE
̂S
̂tz

(x|z) are equal to the root MSE
̂SKM

(x|z) for small

values of x and become smaller for large values of x, which shows that the SFKM
and SAKM estimators improve the KM estimator.

In Figure 6 (lines 1, 3), for each fixed x, we show the confidence bands containing
90% of the values of ̂SKM (x|z) and ̂S

̂tz
(x|z). From these plots we see the ability

of the model to fit the data and at the same time to give satisfactory predictions.
Compared to those provided by the KM estimator which predicts a constant survival
probability for large x, our predictions are more realistic.

In Figure 6 (lines 2, 4) we show the bias square and the variance of ̂SKM (·|z)
and ̂S

̂tz
(·|z) . From these plots we see that the variance of ̂S

̂tz
(·|z) is smaller than

that of ̂SKM (·|z) in the two study cases. We conclude the same for their biases.
However, the bias of ̂SKM (·|z) is large in the study case 2 (Figure 6, Line 4) because
of a high conditional censoring rate in the tail (see Figure 4, line 4).

The case of non-constant hazards (see Example 2 of Section 2). The
previous study is performed for models satisfying conditions (2.4) and (2.5). Now we
consider the case when these conditions are not satisfied. Let X and C be generated
from gamma distributions whose hazard rate function can be easily verified not to be
asymptotically constant (in fact it is slowly varying at infinity). The survival time
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Figure 4. The lines 1, 3 (from the top) display the density functions of the survival and censoring
times for study cases 1 and 2 (low and high tail censoring rates respectively). The lines 2, 4 display
the conditional censoring rate qF,FC

(t|z) as function of the threshold t, for the two cases.
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Figure 5. The lines 1, 3 (from the top) display the root type II MSE’s of three estimators: ̂SKM

(KM), ̂St (SFKM) and ̂S
̂tz

(SAKM). The lines 2, 4 display the corresponding ratios of the root
type II MSE’s on the lines 1, 3. The critical value D in the SAKM is set to 6.
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Study case 1:  bias square and variance of the estimators
n=200,  M=2000,  Mean censoring rate=88%
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Figure 6. The lines 1, 3 (from the top) display the true survival SF and the estimated means of
̂SKM (KM) and ̂S

̂tz
(SAKM). We give confidence bands containing 90% of the trajectories for each

fixed time x. The lines 2, 4 display the corresponding biases square and variances.
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Table 1. Simulations with gamma distributions for survival and censoring times

x 5 6 7 8 9 10 11 12 13
SF (x|z) 0.9682 0.9161 0.8305 0.7166 0.5874 0.4579 0.3405 0.2424 0.1658

Mean of ̂S
̂tz

(x|z) 0.9679 0.9159 0.8318 0.7107 0.5686 0.4504 0.3575 0.2853 0.2287

Mean of ̂SKM (x|z) 0.9679 0.9159 0.8306 0.7160 0.5875 0.4581 0.3399 0.2472 0.1888
Root MSE

̂S
̂tz

(x|z) 0.0135 0.0225 0.0336 0.0461 0.0552 0.0606 0.0702 0.0831 0.0940

Root MSE
̂SKM

(x|z) 0.0135 0.0225 0.0345 0.0466 0.0604 0.0758 0.0933 0.1144 0.1284

x 14 15 16 17 18 19 20 21 22
SF (x|z) 0.1094 0.0699 0.0433 0.0261 0.0154 0.0089 0.0050 0.0028 0.0015

Mean of ̂S
̂tz

(x|z) 0.1841 0.1487 0.1205 0.0979 0.0798 0.0652 0.0534 0.0439 0.0361

Mean of ̂SKM (x|z) 0.1586 0.1453 0.1411 0.1403 0.1402 0.1402 0.1402 0.1402 0.1402
Root MSE

̂S
̂tz

(x|z) 0.0997 0.0998 0.0952 0.0876 0.0785 0.0690 0.0599 0.0515 0.0441

Root MSE
̂SKM

(x|z) 0.1384 0.1503 0.1627 0.1731 0.1804 0.1850 0.1877 0.1893 0.1902

X is gamma with shape parameter 10 and rate parameter 1 and the censoring time
C is gamma with shape parameter 8.5 and rate parameter 1.2. The mean censoring
rate in this example is about 77%. The results of the simulations are given in Figure
2 (n = 20 and n = 500) and Table 1 (n = 500) for ̂SKM (·|z) and ̂S

̂tz
(·|z) . They

show that for these distributions the SAKM estimator gives a smaller root MSE
than the KM estimator even when the sample size is low (n = 20) and x is in the
range of the data.

7 Application to real data

As an illustration we deal with the well known randomized trial in primary
biliary cirrhosis (PBC) from Fleming and Harrington [7] (see Appendix D.1). PBC
is a rare but fatal chronic liver disease and the analyzed event is the patient’s death.
The trial was open for patient registration between January 1974 and May 1984.
The observations lasted until July 1986, when the disease and survival status of the
patients where recorded. There where n = 312 patients registered for the clinical
trial, including 125 patients who died. The censored times where recorded either
for patients which had been lost to follow up or had undergone liver transplantation
or was still alive at the study analysis time (July 1986). The number of censored
times is 187 and the censoring rate is about 59.9%. The last observed time is 4556
which is a censored time. Ties occur for the following three times: 264, 1191 and
1690. So there are 122 separate times for which we can observe at least one event.
Two treatment groups of patients where compared: the first one (Z = 1) of size
n1 = 158 was given the DPCA (D-penicillamine drug). The second group (Z = 0)
of size n0 = 154 was the control (placebo) group. In this example we consider only
the group covariate. We are interested to predict the survival probabilities of the
patients under study in both groups.

The survival curves based on the KM and SAKM estimators for each group are
displayed in Figure 1 (top and bottom pictures respectively). The numerical results
on the predictions appear in Table 2. In this table, the time is running from 3 years
(x = 1095 days) up to 20 years (x = 7300) with the step 1 year equivalent to 365
days for convenience.
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Figure 7. For the placebo group of PBC data we display the test statistics LRmax(Tk|z) as function
of Tk (top) and LRpen(T

̂

k
, Tl|z) as function of Tl (bottom). The tested interval and the testing

window are given by [T
̂

k
, Tk0

] and [T(1−δ
′′)̂k, T

δ
′̂
k
] respectively. The critical value D is fixed to 5.8.

Based on the usual KM estimator, the following two conclusions can be made:
A1) The constant predictions for extreme survival probabilities in both groups ap-
pear to be too optimistic after the largest (non-censored) survival time. B1) The
DPCA treatment appears to be less efficient than placebo in the long term. The
statistical analysis with the SAKM estimator leads to more realistic conclusions:
A2) The survival probabilities of each group extrapolate the tendency of the KM
estimator as the time is increasing, and B2) the DPCA treatment is more efficient
than placebo. For example, from the results in Table 2 we obtain that the survival
probability in 20 years is about 2 times higher for the DPCA group than for the

Table 2. Predicted survival probabilities for PBC data

x : years 3 4 5 6 7 8 9 10 11
x : days 1095 1460 1825 2190 2555 2920 3285 3650 4015
DPCA: KM 0.8256 0.7635 0.7077 0.6613 0.5842 0.5417 0.4778 0.4247 0.4247
DPCA: SAKM 0.8256 0.7635 0.7077 0.6595 0.5934 0.5340 0.4805 0.4323 0.3890
Placebo: KM 0.7911 0.7398 0.7146 0.6950 0.6566 0.6055 0.5461 0.4563 0.3604
Placebo: SAKM 0.7911 0.7398 0.7146 0.6950 0.6566 0.6055 0.5497 0.4619 0.3881
x : years 12 13 14 15 16 17 18 19 20
x : days 4380 4745 5110 5475 5840 6205 6570 6935 7300
DPCA: KM 0.3186 0.3186 0.3186 0.3186 0.3186 0.3186 0.3186 0.3186 0.3186
DPCA: SAKM 0.3501 0.3150 0.2834 0.2550 0.2295 0.2065 0.1858 0.1672 0.1505
Placebo: KM 0.3604 0.3604 0.3604 0.3604 0.3604 0.3604 0.3604 0.3604 0.3604
Placebo: SAKM 0.3260 0.2739 0.2302 0.1934 0.1625 0.1365 0.1147 0.0964 0.0810
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Figure 8. For PBC data, we display the pointwise bootstrap 90% confidence intervals for predicted
probabilities: DPCA group (on top) and placebo (control) group (on bottom). We also display 100
bootstrap trajectories of the predicted probabilities for each group.

control group.

From the top picture of Figure 7 we see that the test statistic LRmax (Tk|0) for the
control group (Z = 0) reaches the critical value D = 5.8 ∈ [D0,D1] for k = ̂k0 = 90.
Thus the hypotheses Hs0 (0) was rejected for the break time ŝ0 = T

̂k0
= 1542. The

adaptive threshold ̂t0 is chosen via the maximization of the penalized quasi-log-
likelihood (5.1). In the bottom picture of Figure 7 we see that the maximum is
attained for the adaptive index ̂l0 = 30 and threshold ̂t0 = T

̂l0
= 3149. Thus, our

testing-pursuit-selection procedure has captured the ”convex bump” on the control
Kaplan-Meier curve (for Z = 0) between the times 2000 and 3500, which is easily
seen in the bottom picture of Figure 1.

The pointwise (in x) 0.9-confidence bootstrap intervals for the predicted prob-
abilities ̂S

̂t1
(x|1) and ̂S

̂t0
(x|0) are displayed in Figure 8 (top for DPCA treatment

group Z = 1 and bottom for control group Z = 0). Here ̂t1 = 2033 and ̂t0 = 3149
are the adaptive thresholds computed from the original sample. The adaptive es-
timators of the mean parameters θ1 and θ0 are respectively ̂θ1,̂t1

= 3457.85 and

̂θ0,̂t0
= 2096.22. We generated M = 2000 bootstrap samples of size n = 312 taken

at random from the general sample gathering the data coming from the two groups.

For the m-th bootstrap sample the SAKM estimators ̂S
(m)

̂t
(m)
1

(x|1) and ̂S
(m)

̂t
(m)
0

(x|0) are
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computed as functions of x with their own adaptive thresholds ̂t
(m)
1 and ̂t

(m)
0 .

8 Conclusion

This article deals with estimation of the survival probability in the framework
of censored survival data. While the Kaplan-Meier estimator provides a flexible
estimate of the survival function in the range of the data it can be improved for
prediction of the extreme values, especially when the censoring rate is high. We
propose a new approach based on the Kaplan-Meier estimator by adjusting a para-
metric correction to the tail beyond a given threshold t.

First we determine the rate of convergence of the corresponding estimators of the
parameters in the adjusted model for a sequence of deterministic thresholds t = tz,n

for each category z of the model covariate. This is done under the assumption that
the hazard function is fitted by a constant in the sense that conditions (2.4) and
(2.5) are satisfied. It is interesting to note that the rate of convergence depends not
only on the class of survival time distributions but also on the class of censoring time
distributions. By simulations we show that our approach is robust if the (survival
and censoring) fitted tails are misspecified.

In applications the threshold t usually is not known. To overcome this we propose
a testing-pursuit-selection procedure which yields an adaptive threshold t = ̂tz,n in
two stages: a sequential hypothesis testing and an adaptive choice of the threshold
based on the maximization of a penalized quasi-log-likelihood. This testing-pursuit-
selection procedure provides also a goodness-of-fit test for the parametric-based part
of the model.

We perform numerical simulations with both the fixed and adaptive threshold
estimators. Our simulations show that both estimators improve the Kaplan-Meier
estimator not only in the long term, but also in a mid range inside the data. Com-
paring the fixed threshold and adaptive threshold estimators, we found that the
adaptive choice of the threshold significantly improves on the quality of the predic-
tions of the survival function.

We have seen that the quality of estimation of the extreme survival probabilities
depends on the conditional censoring rate function, which describes the variations
of the censoring rate as the time increases. The improvement over the Kaplan-Meier
estimator is especially effective when the conditional censoring rate is high in the
tail.

A Appendix: Proofs of the results

A.1 Auxiliary assertions

The following lemma plays the crucial role in the proof of our main results.
Assume that Y1, ...,Yn are i.i.d. with common distribution Q. Let Q be the joint
distribution of Y = (Y1, ...,Yn) . Let Q1, Q0 be two probability measures on R such
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that Q, Q0 and Q1 are equivalent. Define the quasi-log-likelihood ratio by

L (Q1, Q0) =

n
∑

i=1

log
dQ1

dQ0
(Yi) .

Lemma A.1. For any x ≥ 0, n ≥ 1, we have

Q
(

L (Q1, Q0) > x+ nχ2 (Q,Q0)
)

≤ exp
[

−
x

2

]

.

Proof. By exponential Chebyshev’s inequality, for any y > 0,

Q (L (Q1, Q0) > y) ≤ exp

[

−y/2 + log Q exp

(

1

2
L (Q1, Q0)

)]

. (A.1)

Since Y1, ...,Yn are i.i.d. with common distribution Q, we get

log Q exp

(

1

2
L (Q1, Q0)

)

= n logQ

√

dQ1

dQ0
. (A.2)

By Holder’s inequality Q
(

√

dQ1/dQ0

)

≤
√

Q (dQ/dQ0) =
√

1 + χ2 (Q,Q0). Using

the last bound and (A.1), (A.2), it follows

Q (L (Q1, Q0) > y) ≤ exp
{

−
y

2
+
n

2
log
(

1 + χ2 (Q,Q0)
)

}

≤ exp
{

−
y

2
+
n

2
χ2 (Q,Q0)

}

.

Letting y = x+ nχ2 (Q,Q0) completes the proof.

Now we produce an exponential bound for the quasi-log-likelihood ratio

Lt

(

θ′|z
)

− Lt (θ|z) =
∑

zi=z

log
pF

θ
′
,t

,FC

pF
θ,t

,FC

(Yi|z) .

Lemma A.2. For any θ, θ′ ∈ R, z ∈ Z and any x ≥ 0 it holds

P
(

Lt

(

θ′|z
)

− Lt (θ|z) > x+ nχ2
(

PF,FC
(·|z) , PF

θ,t
,FC

(·|z)
))

≤ exp
(

−
x

2

)

.

Proof. Let Iz = {i : zi = z} . Note that Yi = (Ti,∆i)
′ , i ∈ Iz, are i.i.d. variables. We

apply Lemma A.1 with Y = {Yi : i ∈ Iz} and Q = PF,FC
(·|z) , Q0 = PF

θ,t
,FC

(·|z) ,
Q1 = PF

θ
′
,t

,FC
(·|z) , which ends the proof.

Next, we give an exponential bound for the maximum quasi-log-likelihood ratio
which permits to obtain a rate of convergence of ̂θz,t.

Lemma A.3. For any θ > 0, t ≥ x0 and any x ≥ 0 it holds

P

(

n̂z,tK
(

̂θz,t, θ
)

> x+ nχ2
(

PF,FC
(·|z) , PF

θ,t
,FC

(·|z)
)

+ 2 log n
)

≤ 2 exp
(

−
x

2

)

,

where z ∈ Z and by convention 0 · ∞ = 0.
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Proof. We prove that

P

(

n̂z,tK
(

̂θz,t, θ
)

> y
)

≤ 2n exp (−x/2) = 2 exp (−x/2 + log n) , (A.3)

where y = x+ nχ2
(

PF,FC
(·|z) , PF

θ,t
,FC

(·|z)
)

≥ 0.

Since n̂z,t
̂θz,t =

∑

Ti>t, zi=z (Ti − t) , by direct calculations, we have Lt (θ′|z) −

Lt (θ|z) = n̂z,tΛz (θ′) , where Λz (u) = log (θ/u) −
(

u−1 − θ−1
)

̂θz,t. Using that

K (θ′, θ) = θ′/θ − 1 − log (θ′/θ) , we deduce K
(

̂θz,t, θ
)

= Λz

(

̂θz,t

)

. Denote for

brevity g (u, k) = (log (θ/u) − y/k) /
(

u−1 − θ−1
)

, u 6= θ. Note that, for 0 < u < θ

the inequality kΛz (u) > y is equivalent to g (u, k) > ̂θz,t and for u > θ the inequal-

ity kΛz (u) > y is equivalent to g (u, k) < ̂θz,t. Moreover the function g (u, k) has a
maximum for 0 < u < θ and a minimum for u > θ.

Let θ+ (k) = arg max0≤u<θ g (u, k) and θ− (k) = arg minu>θ g (u, k) . Then

{

n̂z,tΛz

(

̂θz,t

)

> y, ̂θz,t < θ
}

=
{

g
(

̂θz,t, n̂z,t

)

> ̂θz,t, ̂θz,t < θ
}

⊂
{

g
(

θ+ (n̂z,t) , n̂z,t

)

> ̂θz,t, ̂θz,t < θ
}

=
{

n̂z,tΛz

(

θ+ (n̂z,t)
)

> y, ̂θz,t < θ
}

⊂
{

n̂z,tΛz

(

θ+ (n̂z,t)
)

> y
}

.

In the same way, we get
{

n̂z,tΛz

(

̂θz,t

)

> y, ̂θz,t > θ
}

⊂ {n̂z,tΛz (θ− (n̂z,t)) > y} .

Since Λz

(

̂θz,t

)

= K
(

̂θz,t, θ
)

and K
(

̂θz,t, θ
)

= 0 if ̂θz,t = θ, these inclusions imply

{

n̂z,tK
(

̂θz,t, θ
)

> y
}

⊂
{

n̂z,tΛz

(

θ+ (n̂z,t)
)

> y
}

∪
{

n̂z,tΛz

(

θ− (n̂z,t)
)

> y
}

. (A.4)

From (A.4), we get

P

(

n̂z,tK
(

̂θz,t, θ
)

> y
)

≤ P
(

n̂z,tΛz

(

θ+ (n̂z,t)
)

> y
)

+ P
(

n̂z,tΛz

(

θ− (n̂z,t)
)

> y
)

≤
n
∑

k=1

P
(

n̂z,tΛz

(

θ+ (k)
)

> y
)

+
n
∑

k=1

P
(

n̂z,tΛz

(

θ− (k)
)

> y
)

. (A.5)

By Lemma A.2, it follows, for k = 1, ..., n, P (n̂z,tΛz (θ± (k)) > y) ≤ exp (−x/2) .
Then, by (A.5), we get (A.3), which ends the proof.

A.2 Proof of Theorems 3.1 and 3.2

Theorem 3.1 follows immediately from Lemma A.3 if we set x = 2 log n. Theorem
3.2 is a consequence of Theorem 3.1 and (3.5).
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A.3 Proof of Lemma 3.3

By (2.1) it follows that En̂z,t =
∑

zi=z

∫∞

t
fF (x|z)SC (x|z) dx. Therefore, inte-

grating by parts, we have En̂z,t = nzSF (t|z)SC (t|z) (1 − qF,FC
(t|z)) . Using (3.8)

proves the first assertion.

Denote, for brevity, ξi = 1{Ti>t,∆i=1} and p = P (Ti > t,∆i = 1) 1{zi=z}. Then
n̂z,t =

∑

zi=z ξi and En̂z,t = nzp. Using exponential Chebyshev’s inequality, for any
x > 0 and any u > 0, we obtain

P (n̂z,t ≤ En̂z,t − x) ≤ exp

(

−ux+ nzp
u2

2

)

.

Choosing u = 1/2 and x = En̂z,t/2, we get P (n̂z,t ≤ En̂z,t/2) ≤ exp (−nzp/8) , which
proves the second assertion.

A.4 Proof of Theorem 4.1

Lemma A.4. Assume that Q and Q0 are two equivalent probability measures on a

measurable space. Then

χ2 (Q,Q0) ≤

∫
(

log
dQ0

dQ

)2

exp

(
∣

∣

∣

∣

log
dQ0

dQ

∣

∣

∣

∣

)

dQ.

Proof. Consider the convex function g (x) = (x − 1)2/x. Then χ2 (Q,Q0) =
∫

g (dQ0/dQ) dQ. Since (x− 1)2 ≤ x2 log2 x = exp (2 log x) log2 x for x ≥ 1, and
(x− 1)2 ≤ log2 x for x ∈ (0, 1) , we get g (x) ≤ log2 x exp (|log x|) for x > 0.

We deduce Theorem 4.1 from Theorem 3.4. Let z ∈ Z and t ≥ x0. Consider
the distance ρt (h1, h2) = supx>t |h1 (x) − h2 (x)| , where h1, h2 are two non-negative
functions. First we prove the following bound:

χ2
(

PF,FC
(·|z) , PF

θz ,t
,FC

(·|z)
)

= O
(

SC (t|z)SF (t|z) ρ2
t

)

as t→ ∞. (A.6)

By Lemma A.4,

χ2
(

PF,FC
(·|z) , PF

θz ,t
,FC

(·|z)
)

≤

∫ ∞

x0

(

log
dPF,FC

dPF
θz ,t

,FC

(x, δ|z)

)2

(A.7)

× exp

(∣

∣

∣

∣

log
dPF,FC

dPF
θz ,t

,FC

(x, δ|z)

∣

∣

∣

∣

)

PF,FC
(dx, dδ|z) .

According to (2.1), for any x > t,

log
dPF,FC

dPF
θz ,t

,FC

(x, δ|z) = log
hF (x|z)δ SF (x|z)

hF
θz,t

(x|z)δ SF
θz,t

(x|z)

= δ log
hF (x|z)

θ−1
z

−

∫ x

t

(

hF (v|z) − θ−1
z

)

dv.
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For brevity, we denote ρt = ρt

(

hF (·|z) , θ−1
z

)

. Since log (1 + u) ≤ 2 |u| , for u >
−1/2, it follows that

∣

∣

∣

∣

log
dPF,FC

dPF
θz ,t

,FC

(x, δ|z)

∣

∣

∣

∣

≤ cρt (1 + (x− t)) , (A.8)

whenever ρt ≤ 1/ (2θmin) , where c = max {2θmax, 1} .
Denoting gρt

(x) = (1 + x)2 exp (cρt (1 + x)) , from (A.7) and (A.8), we get

χ2
(

PF,FC
(·|z) , PF

θz ,t
,FC

(·|z)
)

≤ c2ρ2
t

∫

(t,∞)×{0,1}
gρt

(x− t) pF,FC
(x, δ|z) ν (dx, dδ)

= c2ρ2
t

∫ ∞

t

∑

δ∈{0,1}

gρt
(x− t) fF (x|z)δ SF (x|z)1−δ fC (x|z)1−δ SC (x|z)δ dx.

Since SC (x) ≤ SC (t) and SF (x) ≤ SF (t) , for x ≥ t, we obtain

χ2
(

PF,FC
(·|z) , PF

θz ,t
,FC

(·|z)
)

≤ c2ρ2
tSF (t|z)SC (t|z)

∫ ∞

t

gρt
(x− t)

(

fF (x|z)

SF (t|z)
+
fC (x|z)

SC (t|z)

)

dx.

From (2.4), hF (x|z) is bounded from below for x large enough:

hF (x|z) ≥ θ−1
z (1 − |θzhF (x|z) − 1|)

≥ θ−1
max

(

1 −A exp

(

−αmin
x

θz

))

≥ 1/ (2θmax) ,

whenever x ≥ tmin = θmax log (2A) /αmin, where αmin = minz∈Z αz. This implies

SF (x|z)

SF (t|z)
= exp

(

−

∫ x

t

hF (v|z) dv

)

≤ exp (−c0 (x− t)) ,

where c0 = 1/ (2θmax) . Integrating by parts, for any t ≥ tmin,

∫ ∞

t

gρt
(x− t)

fF (x|z)

SF (t|z)
dx

=

[

−gρt
(x− t)

SF (x|z)

SF (t|z)

]∞

t

+

∫ ∞

t

SF (x|z)

SF (t|z)
g′ρt

(x− t) dx.

If ρt ≤ c0/ (2c) , we have

∫ ∞

t

gρt
(x− t)

fF (x|z)

SF (t|z)
dx

≤ exp (cρt) +

∫ ∞

0
(1 + x) (2 + cρt (1 + x)) exp (cρt (1 + x) − c0x) dx
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≤ exp
(c2

2

)

(

2 +
8

c0
+

16

c20

)

= O (1) .

In the same way, conditions hC (x|z) ≥ cmin, for x ≥ tmin and ρt ≤ cmin/ (2c) imply,
for t ≥ tmin,

∫ ∞

tz,n

gρtz,n

(x− t)
fC (x|z)

SC (t|z)
dx = O (1) .

Putting together these bounds, yields (A.6).

Next, we find a sequence tz,n which verifies (3.5) and (3.10).

Since SC (t|z) ≤ 1, for verifying (3.5), it remains to find t = tz,n such that

SF (tz,n|z) ρ
2
tz,n

= O

(

log n

n

)

. (A.9)

Recall that α′
z = αz/θz and γ′z = γz/θz (see Example in Section 2). To prove (A.9),

we note that, by (2.4),

SF (tz,n) = exp

(

−

∫ tz,n

x0

hF (v|z) dv

)

≤ exp

(

−

∫ tz,n

x0

(

θ−1
z − θ−1

z Ae−α′

z
v
)

dv

)

= O
(

exp
(

−θ−1
z (tz,n − x0)

))

(A.10)

and, again by condition (2.4),

ρ2
tz,n

= O
(

exp
(

−2α′
ztz,n

))

. (A.11)

Using (A.9), (A.10) and (A.11) we find tz,n from the following equation

exp
(

−
(

θ−1
z + 2α′

z

)

tz,n

)

= O

(

log n

n

)

.

The solution has the following expansion:

tz,n =
1

θ−1
z + 2α′

z

log n+ o (log n) . (A.12)

Thus (A.9) and consequently (3.5) are verified.

Now we prove (3.10). In the same way as in (A.10), we get

SF (tz,n) ≥ exp

(

−θ−1
z (tz,n − x0) −

A

αz

exp
(

−α′
zx0

)

)

. (A.13)

From (A.13) and (A.12), we get the following lower bound

nSF (tz,n|z) ≥ n exp
(

−θ−1
z tz,n − c1

)
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≥ n exp

(

−
log n− log log n

1 + 2αz

− c1

)

≥ c2n
1− 1

1+2αz log
1

1+2αz n

= c2n
2αz

1+2αz log
1

1+2αz n, (A.14)

where c1, c2 are some positive constants and n is large enough. Now condition (3.10)
follows from (A.14) and from (4.1).

Assertion (4.2) follows from Theorem 3.4 using (A.14).

A.5 Proof of Theorem 4.2

As in the proof of Theorem 4.1 we verify (3.5) and (3.10). From (2.5) it follows

SC (tz,n|z) ≤ exp

(

−γ′z (tz,n − x0) +
M

µ− 1
(1 + x0)

−µ+1

)

. (A.15)

From (A.6), (A.10), (A.11) and (A.15), we have

χ2
(

PF,FC
(·|z) , PF

θz,tz,n
,FC

(·|z)
)

= O
(

SC (tz,n|z)SF (tz,n|z) ρ
2
tz,n

)

= O
(

exp
(

−
(

γ′z + θ−1
z + 2α′

z

)

tz,n

))

.

We find tz,n as the solution of the equation

exp
(

−
(

γ′z + θ−1
z + 2α′

z

)

tz,n

)

= O

(

log n

n

)

,

which gives tz,n =
(

θ−1
z + γ′z + 2α′

z

)−1
log n + o (log n) . Thus (3.5) is verified. Con-

dition (3.10) follows from

nSC (tz,n|z)SF (tz,n|z) ≥ n exp
(

−γ′z − θ−1
z tz,n − c1

)

≥ n exp

(

−
(

θ−1
z + γ′z

) log n− log log n

θ−1
z + γ′z + 2α′

z

− c1

)

≥ c2n
1− 1+γz

1+γz+2αz log
1+γz

1+γz+2αz n

= c2n
2αz

1+γz+2αz log
1+γz

1+γz+2αz n, (A.16)

where c1, c2 are some positive constants and n is large enough.
The proof of (3.8) is based on similar arguments as in Section A.4.
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Abstract. The classical form of Grüss’ inequality, first published by G.Grüss in
1935, gives an estimate of the difference between the integral of the product and the
product of the integrals of two functions. In the subsequent years, many variants
of this inequality appeared in the literature. The aim of this paper is to introduce
a new approach, presenting a new Chebyshev-Grüss-type inequality and applying to
different well-known linear, not necessarily positive, operators. Some conjectures are
presented. We also compare the new inequalities with some older results. In some
cases this new approach gives better estimates than the ones already known.
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1 Introduction

Here we list some classical results which we will need in the sequel.

The functional given by

T (f, g) :=
1

b− a

∫ b

a

f(x)g(x)dx −
1

b− a

∫ b

a

f(x)dx ·
1

b− a

∫ b

a

g(x)dx,

where f, g : [a, b] → R are integrable functions, is well known in the literature as the
classical Chebyshev functional (see [7]).

We first recall the following result.

Theorem 1 (see [20]). Let f, g : [a, b] → R be bounded integrable functions, both

increasing or both decreasing. Furthermore, let p : [a, b] → R+
0 be a bounded and

integrable function. Then

∫ b

a

p(x)dx

∫ b

a

p(x) · f(x) · g(x)dx ≥

∫ b

a

p(x) · f(x)dx

∫ b

a

p(x) · g(x)dx. (1)

If one of the functions f or g is nonincreasing and the other nondecreasing, then

inequality (1) is reversed.

c© Heiner Gonska, Ioan Raşa, Maria-Daniela Rusu, 2014
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Remark 1. Inequality (1) is known as Chebyshev’s inequality. It was first introduced
by P. L. Chebyshev in 1882 in [6]. If p(x) = 1 for a ≤ x ≤ b, then inequality (1) is
equivalent to

1

b− a

∫ b

a

f(x) · g(x)dx ≥

(

1

b− a

∫ b

a

f(x)dx

)

·

(

1

b− a

∫ b

a

g(x)dx

)

.

The next result is the Grüss-type inequality for the Chebyshev functional.

Theorem 2. (Grüss, 1935, see [14]) Let f, g be integrable functions from [a, b] into

R, such that m ≤ f(x) ≤M , p ≤ g(x) ≤ P , for all x ∈ [a, b], where m,M, p, P ∈ R.

Then

|T (f, g)| ≤
1

4
(M −m)(P − p).

The functional L, given by L(f) := 1
b−a

∫ b

a
f(x)dx, is linear and positive and

satisfies L(e0) = 1; here we denote ei(x) = xi, for i ≥ 0. In the sequel, we recall
some bounds for what we call the generalized Chebyshev functional

TL(f, g) := L(f · g) − L(f) · L(g) (2)

and give some new results.

Remark 2. We will use the terminology ”Chebyshev-Grüss-type inequalities”, re-
ferring to Grüss-type inequalities for (special cases of) generalized Chebyshev func-
tionals. These inequalities have the general form

|TL(f, g)| ≤ E(L, f, g),

where E is an expression in terms of certain properties of L and some kind of
oscillations of f and g.

Another result we recall is a special form of a theorem given by D. Andrica and
C.Badea (see [3]):

Theorem 3. Let I = [a, b] be a compact interval of the real axis, B(I) be the space of

real-valued and bounded functions defined on I and L be a linear positive functional

satisfying L(e0) = 1 where e0 : I ∋ x 7→ 1. Assuming that for f, g ∈ B(I) one has

m ≤ f(x) ≤M , p ≤ g(x) ≤ P for all x ∈ I, the following holds:

|TL(f, g)| ≤
1

4
(M −m)(P − p).

Remark 3. Note that the positive linear functional is not present on the right hand
side of the estimate.

The following pre-Chebyshev-Grüss inequality was given by A. Mc. D. Mercer and
P.R. Mercer (see [18]) in 2004.
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Theorem 4. For a positive linear functional L : B(I) → R, with L(e0) = 1, one

has:

|TL(f, g)| ≤
1

2
min{(M −m)L (|g −G|) , (P − p)L (|f − F |)}

where m ≤ f(x) ≤M , p ≤ g(x) ≤ P for all x ∈ I, F := Lf and G := Lg.

Remark 4. This is a more adequate result, considering that the positive linear func-
tional appears on both the left and the right hand side of the inequality.

Let C(X) = CR((X, d)) be the Banach lattice of real-valued continuous functions
defined on the compact metric space (X, d) and consider positive linear operators
H : C(X) → C(X) reproducing constant functions. For x ∈ X we take L = ǫx ◦H,
so L(f) = H(f ;x). We are interested in the degree of non-multiplicativity of such
operators. Consider two functions f, g ∈ C(X) and define the positive bilinear
functional

T (f, g;x) := H(f · g;x) −H(f ;x) ·H(g;x).

Definition 1. Let f ∈ C(X). If, for t ∈ [0,∞), the quantity

ωd(f ; t) := sup {|f(x) − f(y)| , d(x, y) ≤ t}

is the usual modulus of continuity, then its least concave majorant is given by

ω̃d(f, t) =

{

sup0≤x≤t≤y≤d(X),x 6=y
(t−x)ω

d
(f,y)+(y−t)ω

d
(f,x)

y−x
for 0 ≤ t ≤ d(X) ,

ωd(f, d(X)) if t > d(X) ,

and d(X) <∞ is the diameter of the compact space X.

In [24] (see Theorem 3.1.) the following was shown.

Theorem 5. If f, g ∈ C(X), where (X, d) is a compact metric space, and x ∈ X is

fixed, then the inequality

|T (f, g;x)| ≤
1

4
ω̃d

(

f ; 4
√

H(d2(·, x);x)
)

· ω̃d

(

g; 4
√

H(d2(·, x);x)
)

holds, where ω̃d is the least concave majorant of the usual modulus of continuity and

H(d2(·, x);x) is the second moment of the operator H.

For X = [a, b], we have a slightly better result (see Theorem 4.1. in [24]); a
slightly weaker inequality had been obtained earlier in [1].

Theorem 6. If f, g ∈ C[a, b] and x ∈ [a, b] is fixed, then the inequality

|T (f, g;x)| ≤
1

4
ω̃
(

f ; 2
√

H((e1 − x)2;x)
)

· ω̃
(

g; 2
√

H((e1 − x)2;x)
)

(3)

holds.
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Remark 5. Here the moduli of continuity are oscillations defined with respect to
functions f on the whole domain X = [a, b]. In order to improve some results, we
propose a new approach, in which the oscillations are related to the support of the
involved functional.

Remark 6. The inequality (3) is sharp in the sense that a positive linear operator
reproducing constant and linear functions and functions f, g ∈ C[a, b] exist such that
equality occurs.

Example 1. Consider f = g := e1. Then we have

ω(f, t) = ω(e1, t) = sup{|x− y| : |x− y| ≤ t} = t.

Since ω(f, ·) is linear, we get ω̃(f, ·) = ω(f, ·). The left-hand side in Theorem 6 is

|T (f, g;x)| = H(e2;x) − (H(e1;x))
2

and the right-hand side is

1

4
ω̃
(

f ; 2
√

H((e1 − x)2;x)
)

· ω̃
(

g; 2
√

H((e1 − x)2;x)
)

=
1

4
· (2
√

H((e1 − x)2;x))2

= H((e1 − x)2;x).

By choosing a positive linear operator H : C[a, b] → [a, b] such that He0 = e0 and
He1 = e1, we get

H((e1 − x)2;x) = H(e2 − 2xe1 + x2;x)

= H(e2;x) − 2xH(e1;x) + x2 = H(e2;x) − x2

= H(e2;x) − (H(e1;x))
2,

so we obtain equality between the two sides.

2 A Chebyshev-Grüss-type inequality: new approach

2.1 The compact topological space case

Let µ be a (not necessarily positive) Borel measure on the compact topological
space X.

Let
∫

X

dµ(x) = 1, and set L(f) =
∫

X

f(x)dµ(x), for f ∈ C(X). Then, for f, g ∈

C(X), we have

L(fg) − L(f)L(g) =

∫

X

f(x)g(x)dµ(x) −

∫

X

f(x)dµ(x) ·

∫

X

g(y)dµ(y)

=

∫∫

X2

f(x)g(x)d(µ ⊗ µ)(x, y) −

∫∫

X2

f(x)g(y)d(µ⊗ µ)(x, y)
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=

∫∫

X2

f(x)(g(x) − g(y))d(µ ⊗ µ)(x, y).

Similarly,

L(fg) − L(f)L(g) =

∫∫

X2

f(y)(g(y) − g(x))d(µ ⊗ µ)(x, y).

By addition,

2(L(fg) − L(f)L(g)) =

∫∫

X2

(f(x) − f(y))(g(x) − g(y))d(µ ⊗ µ)(x, y). (4)

Let
oscL(f) := max{|f(x) − f(y)| : (x, y) ∈ supp(µ⊗ µ)},

where supp(µ⊗µ) is the support of the tensor product of the Borel measure µ with
itself (see [2]) and let ∆ := {(x, x) : x ∈ X}. From (4) we get

L(fg) − L(f)L(g) =
1

2

∫∫

X2\∆

(f(x) − f(y))(g(x) − g(y))d(µ ⊗ µ)(x, y).

Then we have the following result.

Theorem 7. The Chebyshev-Grüss-type inequality in this case is given by

|L(fg) − L(f)L(g)| ≤
1

2
· oscL(f) · oscL(g) |µ⊗ µ| (X2 \ ∆),

for f, g ∈ C(X) and |µ⊗ µ| is the absolute value of the tensor product of the Borel

measure µ with itself (see Chapter 1 in [2]).

Example 2. Let X = [0, 1] and consider the functional

L(f) = a

∫ 1

0
f(t)dt + (1 − a)f

(

1

2

)

, for 0 ≤ a ≤ 1.

Then L(f) =
∫ 1
0 f(t)dµ, where the Borel measure µ is given by

µ = aλ+ (1 − a)ε 1
2

on X, with λ the Lebesgue measure on [0, 1] and ε 1
2

the measure concentrated at 1
2 .

Then the tensor product of µ with itself is

µ⊗ µ =
(

aλ+ (1 − a)ε 1
2

)

⊗
(

aλ+ (1 − a)ε 1
2

)

= a2(λ⊗ λ) + a(1 − a)(λ⊗ ε 1
2
) + (1 − a)a(ε 1

2
⊗ λ) + (1 − a)2(ε 1

2
⊗ ε 1

2
).
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µ⊗ µ is a positive measure, so |µ⊗ µ| = µ⊗ µ, and

µ⊗ µ
(

[0, 1]2 \ ∆
)

= [a2(λ⊗ λ) + a(1 − a)(λ⊗ ε 1
2
)

+ a(1 − a)(ε 1
2
⊗ λ) + (1 − a)2(ε 1

2
⊗ ε 1

2
)]
(

[0, 1]2 \ ∆
)

= a2 + 2a(1 − a) = a(2 − a).

The inequality becomes :

|L(fg) − L(f)L(g)| ≤
1

2
· a(2 − a) · oscL(f) · oscL(g),

for two functions f, g ∈ C[0, 1].

2.2 The discrete linear functional case

Let X be an arbitrary set and B(X) the set of all real-valued, bounded functions
on X. Take an ∈ R, n ≥ 0, such that

∑∞
n=0 |an| < ∞ and

∑∞
n=0 an = 1. Further-

more, let xn ∈ X, n ≥ 0 be arbitrary mutually distinct points of X. For f ∈ B(X)
set fn := f(xn). Now consider the functional L : B(X) → R, Lf =

∑∞
n=0 anfn. L

is linear and Le0 = 1.

Then the relations

L(f · g) − L(f) · L(g) =

∞
∑

n=0

anfngn −
∞
∑

n=0

anfn ·
∞
∑

m=0

amgm

=

∞
∑

n=0

(

∞
∑

m=0

am

)

anfngn −
∞
∑

n,m=0

anamfngm

=
∞
∑

n=0

a2
nfngn +

∞
∑

n,m=0;m6=n

amanfngn

−
∞
∑

n=0

a2
nfngn −

∞
∑

n,m=0;m6=n

anamfngm

=

∞
∑

n,m=0;m6=n

anamfn(gn − gm)

=
∑

0≤n<m<∞

anamfn(gn − gm) +
∑

0≤n>m<∞

anamfn(gn − gm)

=
∑

0≤n<m<∞

anamfn(gn − gm) −
∑

0≤n<m<∞

anamfm(gn − gm)

=
∑

0≤n<m<∞

anam(fn − fm)(gn − gm)

hold.
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Theorem 8. The Chebyshev-Grüss-type inequality for the above linear, not neces-

sarily positive, functional L is given by:

|L(fg) − L(f) · L(g)| ≤ oscL(f) · oscL(g) ·
∑

0≤n<m<∞

|anam|,

where f, g ∈ B(X) and we define the oscillations to be:

oscL(f) := sup{|fn − fm| : 0 ≤ n < m <∞},

oscL(g) := sup{|gn − gm| : 0 ≤ n < m <∞}.

Theorem 9. In particular, if an ≥ 0, n ≥ 0, then L is a positive linear functional

and we have:

|L(fg) − Lf · Lg| ≤
1

2
·

(

1 −
∞
∑

n=0

a2
n

)

· oscL(f) · oscL(g),

for f, g ∈ B(X) and the oscillations given as above.

Remark 7. The above inequality is sharp in the sense that we can find a functional
L such that equality holds.

Example 3. Let us consider the following functional

Lf := (1 − a)f(0) + af(1), for 0 ≤ a ≤ 1.

For this functional we have

L(fg)−Lf ·Lg = (1−a)f(0)g(0)+af(1)g(1)−[(1−a)f(0)+af(1)]·[(1−a)g(0)+ag(1)],

so after some calculations we get that the left-hand side is

|L(fg) − Lf · Lg| =

∣

∣

∣

∣

∣

∣

∣

a(1 − a)
︸ ︷︷ ︸

≥0

·[f(0) − f(1)] · [g(0) − g(1)]

∣

∣

∣

∣

∣

∣

∣

= a(1 − a) |f(0) − f(1)| · |g(0) − g(1)|

and the right-hand side is

1

2

(

1 −
∞
∑

n=0

a2
n

)

· oscL(f) · oscL(g) =
1

2
· [1 − a2 − (1 − a)2] · |f(0) − f(1)| · |g(0) − g(1)|

= a(1 − a) |f(0) − f(1)| · |g(0) − g(1)| .
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3 A new Chebyshev-Grüss-type inequality for the Bernstein

operator

Consider the classical Bernstein operators

Bnf(x) :=

n
∑

k=0

f

(

k

n

)

bnk(x), f ∈ R[0,1], x ∈ [0, 1],

where bnk(x) :=
(

n
k

)

xk(1 − x)n−k. According to Theorem 9, for each x ∈ [0, 1],
f, g ∈ B[0, 1] we have

|Bn(f · g)(x) −Bnf(x) ·Bng(x)| ≤
1

2

(

1 −
n
∑

k=0

b2nk(x)

)

· oscBn
(f) · oscBn

(g), (5)

where
oscBn

(f) := max{|fk − fl| : 0 ≤ k < l ≤ n}

and fk := f
(

k
n

)

; similar definitions apply to g.

Example 4. If we consider f, g ∈ B[0, 1] to be Dirichlet functions defined by

f(x) :=

{

1 for x ∈ Q,

0 for x ∈ R \ Q

and analogously for g, with fk := f
(

k
n

)

(the same for g), then we observe that the
oscillations in the above inequality vanish, so the right hand-side is zero.

Let ϕn(x) :=
∑n

k=0 b
2
nk(x), x ∈ [0, 1]. Since

(

1

n+ 1

n
∑

k=0

b2nk(x)

)
1
2

≥
1

n+ 1

n
∑

k=0

bnk(x) =
1

n+ 1
,

we get

ϕn(x) ≥
1

n+ 1
, x ∈ [0, 1], (6)

and therefore

|Bn(f · g)(x) −Bnf(x) ·Bng(x)| ≤
n

2(n+ 1)
· oscBn

(f) · oscBn
(g), x ∈ [0, 1]. (7)

Let us remark that equality is attained in (6) iff n = 1 and x = 1
2 . In fact, inspired

also by some computations with Maple, we make the following conjectures:
Conjecture 1. ϕn is convex on [0, 1].

Conjecture 2. ϕn is decreasing on
[

0, 1
2

]

and increasing on
[

1
2 , 1
]

.
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Conjecture 3. ϕn(x) ≥ ϕn

(

1
2

)

, x ∈ [0, 1].

Since ϕn

(

1
2 − t

)

= ϕn

(

1
2 + t

)

, t ∈
[

0, 1
2

]

, we see that Conjecture 1 ⇒ Conjecture
2 ⇒ Conjecture 3.

On the other hand, it can be proved that

ϕn

(

1

2

)

= 4−n

(

2n

n

)

, ϕ′
n

(

1

2

)

= 0, ϕ′′
n

(

1

2

)

= 42−n

(

2n− 2

n− 1

)

,

and so 1
2 is a minimum point for ϕn. Conjecture 3 claims that it is an absolute

minimum point; in other words,

ϕn(x) ≥
1

4n

(

2n

n

)

, x ∈ [0, 1]. (8)

The following confirmation of Conjecture 3 is due to Dr. Th. Neuschel (Katho-
lieke Universiteit Leuven).

Lemma 1. For n ∈ N and x ∈ [0, 1], we have

n
∑

k=0

(

n

k

)2

x2k(1 − x)2(n−k) ≥
1

4n

(

2n

n

)

.

Proof. For symmetry reasons, it suffices to prove the statement only for 0 ≤ x ≤ 1
2 .

In the sequel we denote Pn to be the n−th Legendre polynomial, given by

Pn(x) :=
1

2n

n
∑

k=0

(

n

k

)2

(x+ 1)k(x− 1)n−k.

We make a change of variable, namely set y := 1−2x+2x2

1−2x
≥ 1 and we get

(y −
√

y2 − 1)n · Pn(y) =

n
∑

k=0

(

n

k

)2

x2k(1 − x)2(n−k) := ϕn(x),

so we have to show that

(y −
√

y2 − 1)n · Pn(y) ≥
1

4n

(

2n

n

)

holds, for y ≥ 1. The inequality holds for y = 1 and y = ∞. In the last case, the
inequality is even sharp. Now it is enough to show :

d

dy
{(y −

√

y2 − 1)nPn(y)} ≤ 0 for y > 1.

This is equivalent to the following statement

P ′
n(y) ≤

n
√

y2 − 1
Pn(y) for y > 1.
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Using the formula
y2 − 1

n
P ′

n(y) = yPn(y) − Pn−1(y),

we now have to prove the following:

(y −
√

y2 − 1)Pn(y) ≤ Pn−1(y) for y > 1,

which is equivalent to

Pn(y) ≤ (y +
√

y2 − 1)Pn−1(y) for y > 1. (9)

The inequality (9) can be proved by induction. For n = 1 the inequality holds. We
assume that the inequality holds also for n and we want to show:

Pn+1(y) ≤ (y +
√

y2 − 1)Pn(y) for y > 1.

Using Bonnet’s recursion formula

Pn+1(y) =
2n+ 1

n+ 1
yPn(y) −

n

n+ 1
Pn−1(y),

we now have to show that the following holds:

(

2n+ 1

n+ 1
y − (y +

√

y2 − 1)

)

Pn(y) ≤
n

n+ 1
Pn−1(y).

After evaluation
(

2n + 1

n+ 1
y − (y +

√

y2 − 1)

)

Pn(y) ≤
n

n+ 1
(y −

√

y2 − 1)Pn(y)

≤
n

n+ 1
(y −

√

y2 − 1)(y +
√

y2 − 1)Pn−1(y)

=
n

n+ 1
Pn−1(y),

we obtain the result.

In order to compare (6) and (8), it is not difficult to prove the inequalities

1

n+ 1
<

1

2
√
n
<

1

4n

(

2n

n

)

<
1

√
2n+ 1

, n ≥ 2.

More precise inequalities can be found in [9]:

1
√

π(n+ 3)
<

1

4n

(

2n

n

)

<
1

√

π(n− 1)
, n ≥ 2.

Because we have proved that Conjecture 3 is true, we have the following result.
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Theorem 10. The new Chebyshev-Grüss-type inequality for the Bernstein operator

is:

|Bn(f · g)(x) −Bnf(x) · Bng(x)| ≤
1

2

(

1 −
1

4n

(

2n

n

))

·oscBn
(f)·oscBn

(g), x ∈ [0, 1].

(10)

In comparison, using the second moment of the Bernstein polynomial

Bn((e1 − x)2;x) =
x(1 − x)

n
,

and letting H = Bn in Theorem 6, the classical Chebyshev-Grüss-type inequality
looks as follows:

|Bn(f · g)(x) −Bnf(x) · Bng(x)| ≤
1

4
ω̃

(

f ; 2

√

x(1 − x)

n

)

· ω̃

(

g; 2

√

x(1 − x)

n

)

,

(11)
which implies

|Bn(f · g)(x) −Bnf(x) ·Bng(x)| ≤
1

4
ω̃

(

f ;
1
√
n

)

· ω̃

(

g;
1
√
n

)

, (12)

for two functions f, g ∈ C[0, 1] and x ∈ [0, 1] fixed.

Remark 8. In (5) and (11), the right-hand side depends on x and vanishes when
x→ 0 or x→ 1. The maximum value of it, as a function of x, is attained for x = 1

2 ,
and (7), (10), (12) illustrate this fact. On the other hand, in (5) the oscillations of
f and g are relative only to the points 0, 1

n
, . . . , n−1

n
, 1, while in (11) the oscillations,

expressed in terms of ω̃, are relative to the whole interval [0, 1].

4 Grüss-type inequalities for the Lagrange operator

Consider f ∈ C[−1, 1] and the infinite matrix X = {xk,n}
n ∞
k=1 n=1 with

−1 ≤ x1,n < x2,n < . . . < xn,n ≤ 1, for n = 1, 2, . . . .

The Lagrange fundamental functions are given by

lk,n(x) =
ωn(x)

ω′
n(xk,n)(x− xk,n)

, 1 ≤ k ≤ n,

where ωn(x) =
∏n

k=1 (x− xk,n) and the Lagrange operator (see [26]) Ln : C[−1, 1] →
Πn−1 is

Ln(f ;x) :=

n
∑

k=1

f(xk,n)lk,n(x).
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The Lebesgue function of the interpolation is:

Λn(x) :=
n
∑

k=1

|lk,n(x)|.

It is also known (see [8], p. 13) that ‖Ln‖ <∞ and

‖Ln‖ = ‖Λn‖∞

hold.

Proposition 1 (Properties of the Lagrange operator).

i) The Lagrange operator is linear but only in exceptional cases positive.

ii) Ln(f ;xk,n) = f(xk,n), 1 ≤ k ≤ n.

iii) The Lagrange operator is idempotent: L2
n = Ln.

iv) Ln satisfies
∑n

k=1 lk,n(x) = 1.

Remark 9. The Lebesgue function has been studied for different node systems. In
the sequel, we will use some known results for Chebyshev nodes and give classical
and new Chebyshev-Grüss-type inequalities.

4.1 A Chebyshev-Grüss-type inequality for the Lagrange operator

at Chebyshev nodes

The Lagrange operator with Chebyshev nodes (see [5, 8]) is given as follows.
Let Tn(x) = cos(n cos−1 x) and X = {cos[π(2k − 1)/2n]}, i. e., when

xk,n = cos tk,n = cos
2k − 1

2n
· π (k = 1, 2, . . . , n;n = 1, 2, . . .)

are the Chebyshev roots.

Remark 10. It can be shown that the Lebesgue constant for Chebyshev nodes is a
lot smaller than for equidistant nodes. That’s why we concentrate on this case in
our paper.

A Chebyshev-Grüss-type inequality for the Lagrange operator with this node
system, similar to the one in Theorem 5, is given by:

Theorem 11. For f, g ∈ C[−1, 1] and all x ∈ [−1, 1], the inequality

|T (f, g;x)| ≤
1

4
‖Ln‖ (1 + ‖Ln‖)ω̃ (f ; 2) · ω̃ (g; 2)

≤
1

2

(

1 +
3

π
log n+

2

π
log2 n

)

ω(f ; 2) · ω(g; 2)

holds; here ω denotes the first order modulus.
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Proof. The idea of this proof is similar to the one of Theorem 2 in [1] and that of
Theorem 3.1. in [24]. Recall, however, that we have to work without the assumption
of positivity. We consider the bilinear functional

T (f, g;x) := Ln(f · g;x) − Ln(f ;x) · Ln(g;x).

Let f, g ∈ C[−1, 1] and r, s ∈ Lip1, where Lip1 = {f ∈ C[−1, 1] : supx 6=x0

|f(x)−f(x0)|
|x−x0|

<

∞} and the seminorm on Lip1 is defined by |f |Lip1
:= supx 6=x0

|f(x)−f(x0)|
|x−x0|

. We are
interested in estimating

|T (f, g;x)| = |T (f − r + r, g − s+ s;x)|

≤ |T (f − r, g − s;x)| + |T (f − r, s;x)| + |T (r, g − s;x)| + |T (r, s;x)| .

(13)

First note that for f, g ∈ C[−1, 1] one has

|T (f, g;x)| ≤ ‖Ln‖ (1 + ‖Ln‖) ‖f‖ · ‖g‖ .

For r, s ∈ Lip1 we have the estimate

|T (r, s;x)| = |T ((r − r(0)), (s − s(0);x)|

= |Ln((r − r(0)) · (s− s(0));x) − Ln(r − r(0);x) · Ln(s − s(0);x)|

≤ ‖Ln‖ · ‖r − r(0)‖ · ‖s− s(0)‖ + ‖Ln‖
2 · ‖r − r(0)‖ · ‖s− s(0)‖

≤ ‖Ln‖ (1 + ‖Ln‖) · |r|Lip1
· |s|Lip1

.

Moreover, for r ∈ Lip1 and g ∈ C[−1, 1] the inequality

|T (r, g;x)| = |T (r − r(0), g;x)|

= |Ln((r − r(0)) · g;x) − Ln(r − r(0);x) · Ln(g;x)|

≤ ‖Ln‖ · ‖(r − r(0)) · g‖ + ‖Ln‖
2 · ‖r − r(0)‖ · ‖g‖

≤ ‖Ln‖ (1 + ‖Ln‖) · ‖g‖ · ‖r − r(0)‖

≤ ‖Ln‖ (1 + ‖Ln‖) · ‖g‖ · |r|Lip1

holds. Note that in both cases considered so far we used

|r(x) − r(0)| =
|r(x) − r(0)|

|x− 0|
· |x− 0|

≤ |r|Lip1
· |x| ,

for x ∈ [−1, 1], i.e.,
‖r(x) − r(0)‖ ≤ |r|Lip1

.

Similarly, if f ∈ C[−1, 1] and s ∈ Lip1 we have

|T (f, s;x)| ≤ ‖Ln‖ (1 + ‖Ln‖) · ‖f‖ · |s|Lip1
.
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Then inequality (13) becomes

|T (f, g;x)| ≤ |T (f − r, g − s;x)| + |T (f − r, s;x)| + |T (r, g − s;x)| + |T (r, s;x)|

≤ ‖Ln‖ (1 + ‖Ln‖) ·
{

‖f − r‖ + |r|Lip1

}

·
{

‖g − s‖ + |s|Lip1

}

.

The latter expression involves terms figuring in the K – functional

K(f, t;C[−1, 1], Lip1)

= inf{‖f − g‖ + t · |g|Lip1
: g ∈ Lip1},

for f ∈ C[−1, 1], t ≥ 0. It is known that (see, e. g., [22])

K

(

f,
t

2

)

=
1

2
· ω̃(f ; t),

an equality to be used in the next step.
We now pass to the infimum over r and s, respectively, which leads to

|T (f, g;x)| ≤ ‖Ln‖ (1 + ‖Ln‖) ·K(f, 1;C,Lip1) ·K(g, 1;C,Lip1)

= ‖Ln‖ (1 + ‖Ln‖) ·
1

2
· ω̃(f ; 2) ·

1

2
· ω̃(g; 2)

=
1

4
‖Ln‖ (1 + ‖Ln‖)ω(f ; 2) · ω(g; 2).

T. Rivlin (see [23]) proved the following inequality in the case of Lagrange interpo-
lation at Chebyshev nodes:

0.9625 < ‖Ln‖ −
2

π
log n < 1,

so using this result we get

‖Ln‖ <
2

π
log n+ 1

⇒ 1 + ‖Ln‖ < 2

(

1

π
log n+ 1

)

⇒ ‖Ln‖ (1 + ‖Ln‖) < 2

(

1 +
3

π
log n+

2

π2
log2 n

)

which implies the result.

4.2 A new Chebyshev-Grüss-type inequality for the Lagrange

operator with Chebyshev nodes

Theorem 12. For f, g ∈ C[−1, 1] and x ∈ [−1, 1] fixed, the following inequality

|T (f, g;x)| ≤ oscLn
(f) · oscLn

(g) ·
∑

1≤k<m≤n

|lk,n(x) · lm,n(x)|
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≤ oscLn
(f) · oscLn

(g) ·







Λ2
n(x) − c

[

1 + (cos2 nt) · π2

6

]

2







holds, for a suitable constant c and x = cos t.

Proof. The first inequality follows from Theorem 8 (with an obvious modification).
The sum on the right-hand side of the first inequality can be expressed as follows:

∑

1≤k<m≤n

|lk,n(x) · lm,n(x)| =





(

n
∑

i=1

|li,n(x)|

)2

−

(

n
∑

i=1

l2i,n(x)

)



 /2

=

[

Λ2
n(x) −

(

n
∑

i=1

l2i,n(x)

)]

/2.

In order to estimate the sum
∑n

i=1 l
2
i,n(x), we use the proof of Theorem 2.3. from [15]

to get (case α = 2):

n
∑

i=1

l2i,n(x) ≥ c

(

1 + |cosnt|2
n
∑

i=1

i−2

)

,

where x = cos t and c is a suitable constant. After some calculation, the sum becomes

∑

1≤k<m≤n

|lk,n(x) · lm,n(x)| =
Λ2

n(x)

2
−
c
(

1 + (cos nt)2 · π2

6

)

2
,

so we obtain our desired inequality.

5 Chebyshev-Grüss-type inequalities for piecewise linear

interpolation at equidistant knots

We consider the operator S∆n
: C[0, 1] → C[0, 1] (see [12]) at the points

0, 1
n
, . . . , k

n
, . . . , n−1

n
, 1, which can be explicitely described as

S∆n
(f ;x) =

1

n

n
∑

k=0

[

k − 1

n
,
k

n
,
k + 1

n
; |α− x|

]

α

f

(

k

n

)

,

where [a, b, c; f ] = [a, b, c; f(α)]α denotes the divided difference of a function
f : D → R on the (distinct knots) {a, b, c} ⊂ D, w. r. t. α.

Proposition 2 (Properties of S∆n
).

i) S∆n
is a positive, linear operator preserving linear functions.

ii) S∆n
preserves monotonicity and convexity/concavity.
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iii) S∆n
(f ; 0) = 0, S∆n

(f ; 1) = f(1).

iv) If f ∈ C[0, 1] is convex, then S∆n
f is also convex and we have: f ≤ S∆n

f .

The operator S∆n
can also be defined as follows:

S∆n
f(x) :=

n
∑

k=0

f

(

k

n

)

un,k(x),

for f ∈ C[0, 1] and x ∈ [0, 1], where un,k ∈ C[0, 1] are piecewise linear continuous
functions, such that

un,k

(

l

n

)

= δkl, k, l = 0, . . . , n.

5.1 A Chebyshev-Grüss-type inequality for S∆n

In order to obtain a classical Chebyshev-Grüss-type inequality using S∆n
, we

need the second moment of the operator. For x ∈
[

k−1
n
, k

n

]

, this is given by

S∆n
((e1 − x)2;x) = n

(

x−
k − 1

n

)(

k

n
− x

)[(

k

n
− x

)

−

(

k − 1

n
− x

)]

=

(

x−
k − 1

n

)(

k

n
− x

)

,

which is maximal when x = 2k−1
2n

. This implies

S∆n
((e1 − x)2;x) ≤

1

4n2
.

By taking H = S∆n
in Theorem 6, the Chebyshev-Grüss-type inequality for S∆n

is given in the following.

Theorem 13. If f, g ∈ C[0, 1] and x ∈ [0, 1] is fixed, then the inequality

|T (f, g;x)| ≤
1

4
ω̃
(

f ; 2 ·
√

S∆n
((e1 − x)2;x)

)

· ω̃
(

g; 2 ·
√

S∆n
((e1 − x)2;x)

)

≤
1

4
ω̃

(

f ;
1

n

)

· ω̃

(

g;
1

n

)

holds.

5.2 A new Chebyshev-Grüss-type inequality for S∆n

In this case, we need to find the minimum of the sum τn(x) :=
∑n

k=0 u
2
n,k(x).

For a particular interval
[

k−1
n
, k

n

]

, we get that

τn(x) :=

n
∑

k=0

u2
n,k(x) = (nx− k + 1)2 + (k − nx)2, for k = 1, . . . , n.
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For k = 1, we have x ∈
[

0, 1
n

]

and τn(x) = (nx − 1)2, while for k = n, we get
x ∈

[

n−1
n
, 1
]

and τn(x) = (nx − n + 1)2. So τn(x) = (nx − k + 1)2 + (k − nx)2 is

minimal if and only if x = 2k−1
2n

and the minimum value of τn(x) is 1
2 .

Theorem 14. The new Chebyshev-Grüss-type inequality for S∆n
is

|T (f, g;x)| ≤
1

2

(

1 −
n
∑

k=0

u2
n,k(x)

)

· oscS∆n

(f) · oscS∆n

(g)

≤
1

2

(

1 −
1

2

)

· oscS∆n

(f) · oscS∆n

(g)

≤
1

4
· oscS∆n

(f) · oscS∆n

(g),

with

oscS∆n

(f) := max {|fk − fl| : 0 ≤ k < l ≤ n} ,

oscS∆n

(g) := max {|gk − gl| : 0 ≤ k < l ≤ n} ,

where fk := f
(

k
n

)

.

Remark 11. This inequality implies the classical Chebyshev-Grüss-type inequality
because |fk − fl| ≤ M − m and |gk − gl| ≤ P − p, respectively. It is easy to give
examples in which our approach gives strictly better inequalities.

6 Chebyshev-Grüss-type inequalities for Mirakjan-Favard-Szász

operators

The Mirakjan-Favard-Szász operators (see [2]) were introduced by G. M. Mirakjan
(see [19]) and studied by different authors, e. g., J. Favard and O. Szász (see [10]
and [27]). The classical n−th Mirakjan-Favard-Szász operator Mn is defined by

Mn(f ;x) := e−nx

∞
∑

k=0

(nx)k

k!
f

(

k

n

)

, (14)

for f ∈ E2, x ∈ [0,∞) ⊂ R and n ∈ N. E2 is the Banach lattice

E2 := {f ∈ C([0,∞)) :
f(x)

1 + x2
is convergent as x→ ∞},

endowed with the norm

‖f‖∗ := sup
x≥0

|f(x)|

1 + x2
.

The series on the right-hand side of (14) is absolutely convergent and E2 is isomor-
phic to C[0, 1]; (see [2], Sect. 5.3.9).
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6.1 A new Chebyshev-Grüss-type inequality for Mirakjan-Favard-

Szász operators

This is our first application of Theorem 9 for operators defined for functions
given on an infinite interval. We set

σn(x) := e−2nx

∞
∑

k=0

(nx)2k

(k!)2

and we want to find the infimum:

inf
x≥0

σn(x) := ι ≥ 0.

Because σn(x) ≥ ι, we obtain the following result.

Theorem 15. For the Mirakjan-Favard-Szász operator we have

|T (f, g;x)| ≤
1

2
(1 − σn(x)) · oscMn

(f) · oscMn
(g)

≤
1

2
(1 − ι) · oscMn

(f) · oscMn
(g),

where f, g ∈ Cb[0,∞), oscMn
(f) = sup{|fk − fl| : 0 ≤ k < l <∞}, with fk := f

(

k
n

)

and a similar definition applying to g. Cb[0,∞) is the set of all continuous, real-

valued, bounded functions on [0,∞).

Lemma 2. The relation infx≥0 σn(x) = ι = 0 holds.

Proof. We first need to prove that

lim
x→∞

e−2nxI0(2nx) = 0

holds, for a fixed n and I0 being the modified Bessel function of the first kind of
order 0. The power series expansion for modified Bessel functions of the first kind
of order 0 is

I0(x) =
∞
∑

k=0

x2k

22k(k!)2
,

so for a fixed n we have

I0(2nx) =

∞
∑

k=0

(nx)2k

(k!)2

and

e−2nx · I0(2nx) = e−2nx ·
∞
∑

k=0

(nx)2k

(k!)2
= ϕn(x).

We now use Lebesgue’s dominated convergence theorem and the integral expression

I0(2nx) =
1

π

∫ 1

−1
e−2ntx ·

1
√

1 − t2
dt,
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e−2nx · I0(2nx) =
1

π

∫ 1

−1
e−2nx(1+t) ·

1
√

1 − t2
dt,

for n fixed and we conclude that σn(x) → 0, as x→ ∞, because we see from above
that e−2nx · I0(2nx) → 0, for x→ ∞.

Corollary 1. The new Chebyshev-Grüss-type inequality for the Mirakjan-Favard-

Szász operator is:

|T (f, g;x)| ≤
1

2
· oscMn

(f) · oscMn
(g),

where f, g ∈ Cb[0,∞), oscMn
(f) = sup{|fk − fl| : 0 ≤ k < l < ∞} and a similar

definition applying to g.

7 Chebyshev-Grüss-type inequalities for Baskakov operators

In the book of F. Altomare and M. Campiti [2] (Sect. 5.3.10), the classical
positive, linear Baskakov operators (An)n∈N are defined as follows:

An(f ;x) :=

∞
∑

k=0

f

(

k

n

)(

n+ k − 1

k

)

xk

(1 + x)n+k
,

for every f ∈ E2, x ∈ [0,∞) and n ≥ 1.

7.1 A new Chebyshev-Grüss-type inequality for Baskakov

operators

The procedure in this subsection completely parallels that of Section 6.1. We set

ϑn(x) :=
1

(1 + x)2n

∞
∑

k=0

(

n+ k − 1

k

)2( x

1 + x

)2k

, for x ≥ 0.

We need to find the infimum:

inf
x≥0

ϑn(x) := ǫ ≥ 0.

Because ϑn(x) ≥ ǫ, we obtain the following result.

Theorem 16. For the Baskakov operator one has

|T (f, g;x)| ≤
1

2
(1 − ϑn(x)) · oscAn

(f) · oscAn
(g)

≤
1

2
(1 − ǫ) · oscAn

(f) · oscAn
(g),

where f, g ∈ Cb[0,∞), oscAn
(f) = sup{|fk − fl| : 0 ≤ k < l < ∞}, fk := f

(

k
n

)

and

a similar definition applying to g.
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Lemma 3. The relation infx≥0 ϑn(x) = ǫ = 0 holds for all n ≥ 1.

Proof. In [4] the following functions were defined. For Ic = [0,∞)(c ∈ R, c ≥ 0),
n > 0, k ∈ N0 and x ∈ Ic, we have

p
[c]
n,k(x) := (−1)k

(

−n
c

k

)

(cx)k(1 + cx)−
n

c
−k, c 6= 0.

For c = 1, we get

p
[1]
n,k

(x) = pn,k(x) = (−1)k
(

−n

k

)

xk(1+x)−n−k =

(

n+ k − 1

k

)

xk(1+x)−n−k =: an,k(x),

so we obtain the fundamental functions of the Baskakov operator. The following
kernel function was defined in [4]:

Tn,c(x, y) =

∞
∑

k=0

p
[c]
n,k(x) · p

[c]
n,k(y), for x, y ∈ Ic.

We are interested in the case c = 1 and x = y, so the above kernel becomes

Tn,1(x, x) =

∞
∑

k=0

p2
n,k(x) =

∞
∑

k=0

a2
n,k(x) =: ϑn(x). (15)

For n = 1, we get

ϑ1(x) = T1,1(x, x) =
1

(1 + x)2

∞
∑

k=0

(

x

1 + x

)2k

=
1

1 + 2x
−→ 0, for x→ ∞.

For n > 1,

Tn,1(x, x) =
1

π

∫ 1

0
(φ(x, x, t))n

dt
√

t(1 − t)
,

where, for φ(x, x, t) = [1 + 4x(1 − t) + 4x2(1 − t)]−1, it holds:

0 < φ(x, x, t) ≤ 1,∀t ∈ [0, 1],∀x ≥ 0.

Therefore
T2,1(x, x) ≥ T3,1(x, x) ≥ T4,1(x, x) ≥ . . . ≥ 0,∀x ≥ 0. (16)

Now for n = 2, we have

T2,1(x, x) =

∞
∑

k=0

p2
2,k(x) =

1

(1 + x)4

∞
∑

k=0

(k + 1)2
(

x

1 + x

)2k

.

Let
(

x
1+x

)2
= y. Then

∞
∑

k=0

(k + 1)2yk =
1 + y

(1 − y)3
.
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Thus

T2,1(x, x) =
2x2 + 2x+ 1

(2x+ 1)3
→ 0, for x→ ∞. (17)

For n ≥ 3 it holds from (16) that 0 ≤ Tn,1(x, x) ≤ T2,1(x, x). Combining this with
(17), we get

lim
x→0

Tn,1(x, x) = 0,∀n ≥ 1,

and so the proof is finished.

An inequality analogous to the one in Corollary 1 is now immediate.

8 Chebyshev-Grüss-type inequalities for Bleimann-Butzer-Hahn

operators

In the same book [2] (Sect. 5.2.8), the Bleimann-Butzer-Hahn operators are also
presented. For every n ∈ N the positive linear operatorHn : Cb([0,∞)) → Cb([0,∞))
is defined by

Hn(f ;x) :=
1

(1 + x)n

n
∑

k=0

f

(

k

n− k + 1

)(

n

k

)

xk,

for every f ∈ Cb([0,∞)), x ≥ 0, n ∈ N, n ≥ 1.

8.1 A new Chebyshev-Grüss-type inequality for Bleimann-Butzer-

Hahn operators

We set

ψn(t) =
1

(1 + t)2n

n
∑

k=0

(

n

k

)2

t2k,

for t ≥ 0. We make a change of variable, namely set x = t
t+1 ∈ [0, 1). Then we get

ψn(t) =

n
∑

k=0

(

n

k

)2( t

t+ 1

)2k ( 1

t+ 1

)2n−2k

=

n
∑

k=0

(

n

k

)2

x2k(1 − x)2n−2k.

So ψn(t) = ϕn(x), i.e., inft≥0 ψn(t) = infx∈[0,1] ϕn(x) = 1
4n

(2n
n

)

, as shown in Lemma
1.

This leads to

Theorem 17. The new Chebyshev-Grüss-type inequality in this case is:

|T (f, g;x)| ≤
1

2

(

1 −
1

4n

(

2n

n

))

· oscHn
(f) · oscHn

(g), (18)
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with f, g ∈ Cb[0,∞), x ∈ [0,∞) and

oscHn
(f) := sup {|fk − fl| : 0 ≤ k < l ≤ n} ,

for fk := f
(

k
n−k+1

)

and a similar definition applying to g.

9 Chebyshev-Grüss-type inequalities for King-type operators

P. P.Korovkin [17] introduced in 1960 a theorem saying that if {Ln} is a sequence
of positive linear operators on C[a, b], then

lim
n→∞

Ln(f)(x) = f(x)

for each f ∈ C[a, b] if and only if

lim
n→∞

Ln(ei(x)) = ei(x)

for the three functions ei(x) = xi, i = 0, 1, 2. There are a lot of well-known opera-
tors, like the Bernstein polynomials, the Mirakjan-Favard-Szász and the Baskakov
operators, that preserve e0 and e1 (see [16]). However, these operators do not repro-
duce e2. We are now interested in a non-trivial sequence of positive linear operators
{Ln} defined on C[0, 1], that preserve e0 and e2:

Ln(e0)(x) = e0(x) and Ln(e2)(x) = e2(x), n = 0, 1, 2, . . . .

In [16] J. P. King defined the King-type operator as follows.

Definition 2. (see [16]) Let {rn(x)} be a sequence of continuous functions with
0 ≤ rn(x) ≤ 1. Let Vn : C[0, 1] → C[0, 1] be defined by

Vn(f ;x) =

n
∑

k=0

(

n

k

)

(rn(x))k(1 − rn(x))n−kf

(

k

n

)

=

n
∑

k=0

vn,k(x) · f

(

k

n

)

,

for f ∈ C[0, 1], 0 ≤ x ≤ 1. vn,k are the fundamental functions of the Vn operator.

Remark 12. For rn(x) = x, n = 1, 2, . . ., the positive linear operators Vn given above
reduce to the Bernstein operators.

Proposition 3 (Properties of Vn).

i) Vn(e0) = 1 and Vn(e1;x) = rn(x);

ii) Vn(e2;x) = rn(x)
n

+ n−1
n

(rn(x))2;
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iii) limn→∞ Vn(f ;x) = f(x) for each f ∈ C[0, 1], x ∈ [0, 1], if and only if

lim
n→∞

rn(x) = x.

For special (”right”) choices of rn(x) = r∗n(x), J. P. King showed in [16] that the
following theorem holds.

Theorem 18. (see Theorem 1.3. in [13]) Let {V ∗
n }n∈N be the sequence of operators

defined before with

r∗n(x) :=







r∗1(x) = x2 , for n = 1,

r∗n(x) = − 1
2(n−1) +

√

(

n
n−1

)

x2 + 1
4(n−1)2 , for n = 2, 3, . . . .

Then we get V ∗
n (e2;x) = x2, for n ∈ N, x ∈ [0, 1] and V ∗

n (e1;x) 6= e1(x). V
∗
n is not

a polynomial operator.

The fundamental functions of this operator, namely

v∗n,k(x) =

(

n

k

)

(r∗n(x))k(1 − r∗n(x))n−k

satisfy
∑n

k=0 v
∗
n,k(x) = 1, for n = 1, 2, . . ..

Proposition 4 (Properties of r∗n).

i) 0 ≤ r∗n(x) ≤ 1, for n = 1, 2, . . ., and 0 ≤ x ≤ 1.

ii) limn→∞ r∗n(x) = x for 0 ≤ x ≤ 1.

9.1 The classical Chebyshev-Grüss-type inequality for King-type

operators

The second moments of the special King-type operators V ∗
n are given by

V ∗
n ((e1 − x)2;x) = 2x(x− r∗n(x)),

so we discriminate between two cases.
The first case is n = 1, so r∗n(x) = x2 and the second moment is

V ∗
1 ((e1 − x)2;x) = 2x2(1 − x),

so the classical Chebyshev-Grüss-type inequality is given as follows.

Theorem 19. For L = V ∗
1 , we have the inequality:

|T (f, g;x)| ≤
1

4
ω̃
(

f ; 2x
√

2(1 − x)
)

· ω̃
(

g; 2x
√

2(1 − x)
)

.
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For the second case, n = 2, 3, . . ., we have

r∗n(x) = −
1

2(n− 1)
+

√

(

n

n− 1

)

x2 +
1

4(n− 1)2
,

so the second moments look more complicated:

V ∗
n ((e1 − x)2;x) = 2x(x− r∗n(x)).

In this case we get the following:

Theorem 20. For L = V ∗
n (x) and n = 2, 3, . . ., the inequality

|T (f, g;x)| ≤
1

4
ω̃
(

f ; 2
√

2x(x− r∗n(x))
)

· ω̃
(

g; 2
√

2x(x− r∗n(x)
)

holds.

9.2 A new Chebyshev-Grüss-type inequality for King-type

operators

We need
∑n

k=0 (v∗n,k(x))
2 to be minimal. Let ϕn(x) :=

∑n
k=0 (v∗n,k(x))

2.
For n = 1, we have that

ϕ1(x) =
1
∑

k=0

(v∗1,k(x))
2 = (v∗1,0(x))

2 + (v∗1,1(x))
2 = 2x4 − 2x2 + 1

and this attains its minimum for x =
√

2
2 . This minimum is

ϕ1

(√
2

2

)

=
1

2
.

Theorem 21. The new Chebyshev-Grüss-type inequality for n = 1 then looks as

follows:

|T (f, g;x)| ≤
1

4
· oscV ∗

1
(f) · oscV ∗

1
(g)

=
1

4
· |f0 − f1| · |g0 − g1| .

For n = 2, 3, . . ., the problem of finding the minimum is more difficult, since

ϕn(x) =

n
∑

k=0

(v∗n,k(x))
2

=

n
∑

k=0

(

n

k

)2

(r∗n(x))2k(1 − r∗n(x))2(n−k).
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In any case, the estimate

ϕn(x) =
n
∑

k=0

(v∗n,k(x))
2 ≥

1

n+ 1

holds, for x ∈ [0, 1] and n = 2, 3, . . .. As a proof for this,

√

∑n
k=0 v

∗
n,k(x))

2

n+ 1
≥

∑n
k=0 v

∗
n,k(x)

n+ 1
=

1

n+ 1
.

Then we get

1 −
n
∑

k=0

(v∗n,k(x))
2 ≤ 1 −

1

n+ 1
=

n

n+ 1
.

Theorem 22. For n = 2, 3, . . . there holds

|V ∗
n (fg)(x) − V ∗

n (f ;x) · V ∗
n (g;x)| ≤

n

2(n + 1)
· oscV ∗

n

(f) · oscV ∗

n

(g).

Note added in proof: Regarding the conjectures from Section 3,
Dr.Th.Neuschel (Katholieke Universiteit Leuven) also validated Conjecture 2 (see
paper of G. Nikolov [21] for more details). Conjecture 1 was discussed and proved
in recent papers by I. Gavrea and M. Ivan in [11], and by G.Nikolov in [21], inde-
pendently. Conjecture 3 is the weakest of the three, but sufficient for our purposes.
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[14] Grüss G. Über das Maximum des absoluten Betrages von 1
b−a

∫

b

a
f(x)g(x)dx −

1
(b−a)2

∫

b

a
f(x)dx ·

∫

b

a
g(x)dx. Math. Z., 1935, 39, 215–226.
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Part III (Operations in CO and their properties)
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Abstract. This article is a continuation of the works [1] and [2] (Part I and Part II)
and contains some results on the family CO of all closure operators of a module
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1 Introduction. Preliminary notions

Continuing the investigation of closure operators of a module category [1, 2], in
this part of the work the principal operations are analyzed, which are defined in the
family of all closure operators CO of a module category R-Mod: the meet, join,
product and coproduct [1–5]. The properties of these operations will be studied, as
well as the relations between them. Moreover, the types of operators are indicated
(weakly hereditary, idempotent, hereditary, maximal, minimal, cohereditary) which
are preserved by the application of these operations.

The main definitions and some preliminary results can be found in [1–6]. For
convenience we would remind some necessary definitions and facts.

Let R be a ring with unit and R-Mod be the category of unitary left R-modules.
For the module M ∈ R-Mod we denote by L(M) the lattice of all submodules of
M . A closure operator in R-Mod is a function C which associates to every pair
N ⊆ M , where N ∈ L(M), a submodule of M denoted by C

M
(N) with the

conditions: (c1) N ⊆ C
M

(N); (c2) if N,P ∈ L(M) and N ⊆ P , then C
M

(N) ⊆
C

M
(P ) (monotony); (c3) if f : M → M ′ is an R-morphism and N ⊆ M , then

f
(

C
M

(N)
)

⊆ C
M

′

(

f(N)
)

(continuity). We denote by CO the family of all closure
operators of a category R-Mod.

The principal operations in CO are defined as follows, where N ∈ L(M):
1. The meet

∧

α∈A

Cα of a family {Cα ∈ CO | α ∈ A}:

(

∧

α∈A

Cα

)

M

(N) =
⋂

α∈A

[

(Cα)
M

(N)
]

; (1.1)

© A. I.Kashu, 2014
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2. The join
∨

α∈A

Cα of a family {Cα ∈ CO | α ∈ A}:

(

∨

α∈A

Cα

)

M

(N) =
∑

α∈A

[

(Cα)
M

(N)
]

; (1.2)

3. The product C · D of two closure operators C,D ∈ CO:
(

C · D)
M

(N) = C
M

(

D
M

(N)
)

; (1.3)

4. The coproduct C # D of two closure operators C,D ∈ CO:
(

C # D)
M

(N) = C
D

M
(N)(N). (1.4)

It is easy to observe that by the rules (1.1)–(1.4) we obtain the closure operators
and the family CO of all closure operators of R-Mod is a complete “big lattice”
with respect to the meet and join (which will be named the lattice operations). As
to the other two operations we can remark that they are associative and for every
C,D ∈ CO we have: C · D ≥ C ∨ D, C # D ≤ C ∧ D [3].

We remind in continuation the most important types of closure operators [1–3].
The operator C ∈ CO is called:

1) weakly hereditary if for every N ⊆ M is true the relation:

C
C

M
(N)(N) = C

M
(N); (1.5)

2) idempotent if for every N ⊆ M we have:

C
M

(

C
M

(N)
)

= C
M

(N); (1.6)

3) hereditary if for every submodules L ⊆ N ⊆ M the relation holds:

C
N
(L) = C

M
(L) ∩ N ; (1.7)

4) cohereditary if for every submodules K,N ∈ L(M) we have:
(

C
M

(N) + K
)

/K = C
M/ K

(

(N + K)/K
)

; (1.8)

5) maximal if for every N ⊆ M is true the relation:

C
M

(N)/N = C
M/N

(0̄); (1.9)

or: for every submodules K ⊆ N ⊆ M we have:

C
M

(N)/K = C
M/K

(N/K); (1.9′)

6) minimal if for every N ⊆ M is true the relation:

C
M

(N) = C
M

(0) + N ; (1.10)

or: for every submodules L ⊆ N ⊆ M we have:

C
M

(N) = C
M

(L) + N. (1.10′)

We remark the following known facts:
a) every hereditary closure operator is weakly hereditary;
b) every cohereditary closure operator is idempotent;
c) the operator C ∈ CO is cohereditary if and only if it is maximal and minimal

([2], Lemma 6.2).
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2 Operations in CO : distributivity

In this section we will study the interaction between the lattice operations
(∧), (∨) of CO and the operations (·), (#) of product and coproduct. We be-
gin with the following relations of distributivity.

Proposition 2.1. For every family of closure operators {Cα ∈ CO | α ∈ A} and

for every operator D ∈ CO the following relations hold:

(

∧

α∈A

Cα

)

· D =
∧

α∈A

(Cα · D); (2.1)

(

∨

α∈A

Cα

)

· D =
∨

α∈A

(Cα · D); (2.2)

(

∧

α∈A

Cα

)

# D =
∧

α∈A

(Cα # D); (2.3)

(

∨

α∈A

Cα

)

# D =
∨

α∈A

(Cα # D). (2.4)

Proof. (2.1). For every N ⊆ M from the definitions of operations it follows:

[(
∧

α∈A

Cα

)

· D
]

M

(N) =
(

∧

α∈A

Cα

)

M

(

D
M

(N)
)

=
⋂

α∈A

[(

Cα

)

M

(

D
M

(N)
)]

=

=
⋂

α∈A

[(

Cα · D
)

M

(N)
]

=
[

∧

α∈A

(Cα · D)
]

M

(N),

therefore the relation (2.1) is true.

(2.2). By definition for every N ⊆ M we have:

[(
∨

α∈A

Cα

)

· D
]

M

(N) =
(

∨

α∈A

Cα

)

M

(

D
M

(N)
)

=
∑

α∈A

[(

Cα

)

M

(

D
M

(N)
)]

=

=
∑

α∈A

[(

Cα · D
)

M

(N)
]

=
[

∨

α∈A

(Cα · D)
]

M

(N),

hence the relation (2.2) holds.

(2.3). For N ⊆ M by definition we obtain:

[(
∧

α∈A

Cα

)

# D
]

M

(N) =
(

∧

α∈A

Cα

)

D
M

(N)
(N) =

⋂

α∈A

[(

Cα

)

D
M

(N)
(N)

]

=

=
⋂

α∈A

[(

Cα # D
)

M

(N)
]

=
[

∧

α∈A

(Cα # D)
]

M

(N),

which proves (2.3).
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(2.4). Similarly, for every N ⊆ M we have:
[(

∨

α∈A

Cα

)

# D
]

M

(N) =
(

∨

α∈A

Cα

)

D
M

(N)
(N) =

∑

α∈A

[(

Cα

)

D
M

(N)
(N)

]

=

=
∑

α∈A

[(

Cα # D
)

M

(N)
]

=
[

∨

α∈A

(Cα # D)
]

M

(N),

hence (2.4) is true.

The other relations of distributivity of the indicated types can be obtained by
some supplementary conditions on the operators. To concretize this idea we need
the following two auxiliary statements.

Lemma 2.2. If C ∈ CO is a hereditary closure operator, then it preserves

the intersection in the superior term, i.e. for every family of submodules {Nα ∈
L(M) |α ∈ A} and every submodule K ⊆ Nα (α ∈ A) the following relation holds:

C ⋂

α∈A

Nα
(K) =

⋂

α∈A

[

C
Nα

(K)
]

. (2.5)

Proof. From the heredity of C ∈ CO
(

see (1.7)
)

in the situation K ⊆ Nα ⊆ M
we obtain C

Nα
(K) = C

M
(K) ∩ Nα for every α ∈ A, therefore

⋂

α∈A

[

C
Nα

(K)
]

=

C
M

(K) ∩
(

⋂

α∈A

Nα

)

.

On the other hand, by the hereditary of C in the situation K ⊆
⋂

α∈A

Nα ⊆ M we

have C ⋂

α∈A

Nα
(K) = C

M
(K) ∩

(
⋂

α∈A

Nα

)

and comparing with the previous relation

we obtain (2.5).

Lemma 2.3. If C ∈ CO is a minimal closure operator, then it preserves the sum

in the inferior term, i.e. for every family of submodules {Nα ∈ L(M) | α ∈ A} the

relation is true:

C
M

(

∑

α∈A

Nα

)

=
∑

α∈A

[

C
M

(Nα)
]

. (2.6)

Proof. Let L ⊆ Nα ⊆ M . From the minimality of C
(

see (1.10′)
)

it follows that
∑

α∈A

[

C
M

(Nα)
]

=
∑

α∈A

[

C
M

(L) + Nα

]

= C
M

(L) +
(

∑

α∈A

Nα

)

.

By the minimality of C in the situation L ⊆
∑

α∈A

Nα ⊆ M we have

C
M

(
∑

α∈A

Nα

)

= C
M

(L) +
(

∑

α∈A

Nα

)

,

hence (2.6) is true.

Using the Lemmas 2.2 and 2.3 we obtain the following relations of distributivity.
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Proposition 2.4. a) If the closure operator C ∈ CO is hereditary, then for every

family of closure operators {Dα ∈ CO | α ∈ A} the following relation holds:

C #
(

∧

α∈A

Dα

)

=
∧

α∈A

(C # Dα). (2.7)

b) If the closure operator C ∈ CO is minimal, then for every family of closure

operators {Dα ∈ CO | α ∈ A} the relation is true:

C ·
(

∨

α∈A

Dα

)

=
∨

α∈A

(C · Dα). (2.8)

Proof. a) For every N ⊆ M from the definitions it follows that:
[

C #
(

∧

α∈A

Dα

)]

M

(N) = C (
∧

α∈A

Dα)
M

(N)(N) = C ⋂

α∈A

[(Dα)
M

(N)](N);

[
∧

α∈A

(

C # Dα

)]

M

(N) =
⋂

α∈A

[(C # Dα)
M

(N)] =
⋂

α∈A

[C(Dα)
M

(N)(N)].

By assumption the operator C is hereditary, therefore it preserves the intersec-
tion in superior term (Lemma 2.2). The application of (2.5) in our case shows that
the right sides of the previous relations coincide, therefore (2.7) is true.

b) For every N ⊆ M we have:
[

C ·
(

∨

α∈A

Dα

)]

M

(N) = C
M

[(
∨

α∈A

Dα

)

M

(N)
]

= C
M

[
∑

α∈A

(

(Dα)
M

(N)
)]

;

[
∨

α∈A

(C · Dα)
]

M

(N) =
∑

α∈A

[(

C · Dα

)

M

(N)
]

=
∑

α∈A

[

C
M

(

(Dα)
M

(N)
)]

.

The operator C is minimal, hence it preserves the sum in the inferior term
(Lemma 2.3). By the relation (2.6) we obtain that the right sides of the previous
equalities coincide. This proves (2.8).

To give a complete picture we can mention also the last two possible cases of
distributivity of considered operations, which are obtained by some supplementary
assumptions on the closure operators.

Proposition 2.5. a) If the closure operator C ∈ CO preserves the intersection in

the inferior term, i.e.

C
M

(

⋂

α∈A

Nα

)

=
⋂

α∈A

[

C
M

(Nα)
]

, (2.9)

where {Nα | α ∈ A} ⊆ L(M), then for every family of closure operators {Dα ∈
CO | α ∈ A} the relation holds:

C ·
(

∧

α∈A

Dα

)

=
∧

α∈A

(

C · Dα

)

. (2.10)
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b) If the closure operator C ∈ CO preserves the sum in the superior term, i.e.

C ∑

α∈A

(Nα)(N) =
∑

α∈A

[

CNα
(N)

]

, (2.11)

where {Nα | α ∈ A} ⊆ L(M), N ⊆ Nα (α ∈ A), then for every family of closure

operators {Dα ∈ CO | α ∈ A} the relation is true:

C #
(

∨

α∈A

Dα

)

=
∨

α∈A

(

C # Dα

)

. (2.12)

Proof. a) For every N ⊆ M we have:

[

C ·
(

∧

α∈A

Dα

)]

M

(N) = C
M

[(
∧

α∈A

Dα

)

M

(N)
]

= C
M

[
⋂

α∈A

(

(Dα)
M

(N)
)]

;

[
∧

α∈A

(

C · Dα

)]

M

(N) =
⋂

α∈A

[(C · Dα)
M

(N)] =
⋂

α∈A

[C
M

(

(Dα)
M

(N)
)]

.

By assumption the operator C preserves the intersection in the inferior term,
and so applying the relation (2.9) we see that the right sides of the previous equalities
coincide, therefore (2.10) is true.

b) Similarly, for every N ⊆ M we have:
[

C #
(

∨

α∈A

Dα

)]

M

(N) = C (
∨

α∈A

Dα)
M

(N)(N) = C ∑

α∈A

[(Dα)
M

(N)](N);

[
∨

α∈A

(

C # Dα

)]

M

(N) =
∑

α∈A

[(C # Dα)
M

(N)] =
∑

α∈A

[C(Dα)
M

(N)(N)
]

.

By hypothesis C preserves the sum in the superior term, and applying (2.11)
now we obtain (2.12).

3 Principal operations and preservation of types of operators

Now we will study the question on the behaviour of closure operators when the
principal operations are applied. For that we consider consecutively all principal
operations of CO and show the types of closure operators which are preserved by
the application of given operation. Some similar facts are mentioned in [3].

a) The join in CO

Proposition 3.1. If the closure operators Cα (α ∈ A) of CO are weakly heredi-

tary, then the operator
∨

α∈A

Cα also is weakly hereditary.
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Proof. By the monotony and weak heredity of Cα

(

see (1.5)
)

, for every N ⊆ M
and α ∈ A we have:

(Cα) ∑

α∈A

[(Cα)
M

(N)](N) ⊇ (Cα)(Cα)
M

(N)(N) = (Cα)
M

(N),

and from the relation
∑

α∈A

[(Cα)
M

(N)] ⊆ M the inverse inclusion follows. Therefore

(Cα) ∑

α∈A

[(Cα)
M

(N)](N) = (Cα)
M

(N)

for every α ∈ A, consequently

∑

α∈A

[(Cα) ∑

α∈A

[(Cα)
M

(N)](N)] =
∑

α∈A

[(Cα)
M

(N)].

From the definition of join in CO now we have:

(
∨

α∈A

Cα

)

(
∨

α∈A

Cα)
M

(N)
(N) =

(
∨

α∈A

Cα

)

M

(N),

i.e. the operator
∨

α∈A

Cα is weakly hereditary.

Proposition 3.2. If the closure operators Cα (α ∈ A) of CO are maximal, then

the operator
∨

α∈A

Cα is also maximal.

Proof. By definition
(

see (1.9′)
)

for every submodules K ⊆ N ⊆ M and every
α ∈ A we have [(Cα)

M
(N)] /K = (Cα)

M/K
(N/K). Using this relation we obtain:

[(
∨

α∈A

Cα

)

M

(N)
]

/K =
[

∑

α∈A

(

(Cα)
M

(N)
)]

/K =
∑

α∈A

[(

(Cα)
M

(N)
)

/K
]

=

=
∑

α∈A

[

(Cα)
M/K

(N/K)
]

=
(

∨

α∈A

Cα

)

M/K

(N/K),

which means that the operator
∨

α∈A

Cα is maximal.

Proposition 3.3. If the closure operators Cα (α ∈ A) of CO are minimal, then

the operator
∨

α∈A

Cα is also minimal.

Proof. We consider the situation: L ⊆ N ⊆ M . The minimality of Cα

(

see (1.10′)
)

implies (Cα)
M

(N) = (Cα)
M

(L) + N . Using this relation we obtain:
(

∨

α∈A

Cα

)

M

(N) =
∑

α∈A

[

(Cα)
M

(N)
]

=
∑

α∈A

[

(Cα)
M

(L) + N
]

=

=
[

∑

α∈A

(

(Cα)
M

(L)
)]

+ N =
[(

∨

α∈A

Cα

)

M

(L)
]

+ N,

therefore the operator
∨

α∈A

Cα is minimal.



CLOSURE OPERATORS IN THE CATEGORIES OF MODULES, III 97

Taking into account that C ∈ CO is cohereditary if and only if it is maximal
and minimal (see Section 1), from Propositions 3.2 and 3.3 follows

Corollary 3.4. If the operators Cα (α ∈ A) are cohereditary, then the operator
∨

α∈A

Cα is also cohereditary. �

b) The meet in CO

Proposition 3.5. If the operators Cα (α ∈ A) of CO are hereditary, then the

operator
∧

α∈A

Cα is also hereditary.

Proof. By definition
(

see (1.7)
)

the heredity of Cα means that for every submodules
L ⊆ N ⊆ M we have (Cα)

N
(L) = (Cα)

M
(L) ∩ N . Therefore:

[(
∧

α∈A

Cα

)

M

(L)
]

∩ N =
[

⋂

α∈A

(

(Cα)
M

(N)
)]

∩ N =
⋂

α∈A

[(

(Cα)
M

(L)
)

∩ N
]

=

=
⋂

α∈A

[(

Cα)
N

(L)
]

=
(

∧

α∈A

Cα

)

N

(L),

so
∧

α∈A

Cα is hereditary.

Proposition 3.6. If the operators Cα (α ∈ A) of CO are maximal, then the

operator
∧

α∈A

Cα is also maximal.

Proof. In the situation K ⊆ N ⊆ M the maximality of Cα

(

see (1.9′)
)

implies
the relation [(Cα)

M
(N)] /K = (Cα)

M/K
(N/K). Therefore

⋂

α∈A

[(

(Cα)
M

(N)
)

/K
]

=

⋂

α∈A

[

(Cα)
M/K

(N/K)
]

, and so
[
⋂

α∈A

(

(Cα)
M

(N)
)]

/K =
⋂

α∈A

[

(Cα)
M/K

(N/K)
]

. Now

by the definition of the meet in CO it is clear that
[(

∧

α∈A

Cα

)

M

(N)
]

/K =
(

∧

α∈A

Cα

)

M/K

(N/K), i.e. the operator
∧

α∈A

Cα is maximal.

c) The product in CO

Proposition 3.7. If the closure operators C,D ∈ CO are maximal, then the

operator C · D is also maximal.

Proof. Let K ⊆ N ⊆ M . The maximality of C and D implies the relations
C

M
(N)/K = C

M/K
(N/K) and D

M
(N)/K = D

M/K
(N/K), which permit to obtain:

[

(C · D)
M

(N)
]

/K = [C
M

(

D
M

(N)
)]

/K = C
M/K

[

D
M

(N)/K
]

=

= C
M/K

[

D
M/K

(N/K)
]

= (C · D)
M/K

(N/K).

This shows that the operator C · D is maximal.
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Proposition 3.8. If the closure operators C,D ∈ CO are minimal, then the

operator C · D is also minimal.

Proof. Let L ⊆ N ⊆ M . By the minimality of C and D we have C
M

(N) =
C

M
(L) + N and D

M
(N) = D

M
(L) + N . From the second relation we obtain

(C · D)
M

(N) = C
M

(

D
M

(N)
)

= C
M

(

D
M

(L) + N
)

, and from the first relation in the
situation D

M
(L) ⊆ D

M
(L) + N ⊆ N we have:

C
M

(

D
M

(L) + N
)

= C
M

(

D
M

(L) + (D
M

(L) + N)
)

=
[

C
M

(

D
M

(L)
)]

+ N.

Since
[(

C ·D
)

M

(L)
]

+N =
[

C
M

(

D
M

(L)
)]

+ N , now it is clear that
(

C ·D
)

M

(N) =
(

C · D
)

M

(L) + N , i.e. the operator C · D is minimal.

From Propositions 3.7 and 3.8 follows

Corollary 3.9. If the closure operators C,D ∈ CO are cohereditary, then the

operator C · D is also cohereditary. �

The preservation of some properties of closure operators under the application
of the operation of product can be obtained by some addititional conditions on the
operators. We show in continuation two examples of such situations.

Example 1. Let C,D ∈ CO and C · D = D · C. If the operators C and D are
idempotent, then the operator C · D is also idempotent.

Example 2. Let C ∈ CO preserves the intersection in the inferior term: C
M

(N1 ∩
N2) = C

M
(N1) ∩ C

M
(N2), where N1, N2 ∈ L(M). If the operators C,D ∈ CO

are hereditary, then the operator C · D is also hereditary. Indeed, if L ⊆ N ⊆ M ,
then by hypotheses C

N
(L) = C

M
(L) ∩ N and D

N
(L) = D

M
(L) ∩ N . Since C

preserves the intersections, we have C
M

[

D
M

(L) ∩ N
]

=
[

C
M

(

D
M

(L)
)]

∩ C
M

(N).
This relation together with the heredity of C and D implies:

(

C · D
)

N

(L) = C
N

(

D
N
(L)

)

= C
N

[

D
M

(L) ∩ N
]

=

=
[

C
M

(

D
M

(L) ∩ N
)]

∩ N =
[(

C
M

(D
M

(L))
)

∩ C
M

(N)
]

∩ N =

=
[

C
M

(

D
M

(L)
)

] ∩ N =
[(

C · D
)

M

(L)
]

∩ N,

i.e. C · D is hereditary.

d) The coproduct in CO

Proposition 3.10. If the closure operators C,D ∈ CO are hereditary, then the

operator C # D is also hereditary.
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Proof. Let L ⊆ N ⊆ M . By the definition of coproduct and heredity of C in the
situation L ⊆ D

N
(L) ⊆ M we obtain:

(C # D)
N
(L) = C

D
N

(L)(L) = C
M

(L) ∩ D
N
(L).

On the other hand, by definition we have:
[

(C # D)
M

(L)
]

∩ N =
[

C
D

M
(L)(L)

]

∩ N,

and applying the heredity of C in the situation L ⊆ D
M

(L) ⊆ M , we obtain
C

D
M

(L)(L) = C
M

(L) ∩ D
M

(L). These facts together with the heredity of D
(

i.e. D
M

(L) ∩ N = D
N
(L)

)

show that
[(

C # D
)

M

(L)
]

∩ N =
[

C
D

M
(L)(L)

]

∩ N =

=
[

C
M

(L) ∩ D
M

(L)
]

∩ N = C
M

(L) ∩ D
N
(L).

Comparing with the foregoing, we conclude that (C # D)
N
(L)=

[

(C # D)
M

(L)
]

∩ N ,
i.e. C # D is hereditary.

Proposition 3.11. If the operators C,D ∈ CO are maximal, then the operator

C # D is also maximal.

Proof. Let K ⊆ N ⊆ M . By the maximality of C and D we have C
M

(N)/K =
C

M/K
(N/K) and D

M
(N)/K = D

M/K
(N/K). These relations and the definition of

coproduct imply:
[

(C # D)
M

(N)
]

/K =
[

C
D

M
(N)(N)

]

/K = C
D

M
(N)/K(N/K) =

= C
D

M/K
(N/K)(N/K) = (C # D)

M/K
(N/K),

therefore C # D is maximal.

Proposition 3.12. If the closure operators C,D ∈ CO are cohereditary, then the

operator C # D is also cohereditary.

Proof. Let K,N ∈ L(M). Since C and D are cohereditary we have:
[

C
M

(N) + K
]

/K = C
M/K

[

(N + K)/K
]

;
[

D
M

(N) + K
]

/K = D
M/K

[

(N + K)/K
]

.

From these relations and the definition of coproduct we obtain:
[(

(C # D)
M

(N)
)

+ K
]

/K =
[(

C
D

M
(N)(N)

)

+ K
]

/K =

= C(D
M

(N)+K)/K

(

(N + K)/K
)

= C
D

M/K
((N+K)/K)

(

(N + K)/K
)

=

= (C # D)
M/K

(

(N + K)/K
)

,

hence the operator C # D is cohereditary.
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Similarly to the case of product (see Example 1) the commutativity C # D =
D # C implies the preservation of weak heredity, i.e. if C,D are weakly hereditary,
then the operator C # D is also weakly hereditary, which can be proved by the direct
verification.
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On the number of group topologies on countable groups
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Abstract. If a countable group G admits a non-discrete Hausdorff group topology,
then the lattice of all group topologies of the group G admits:
– continuum c of non-discrete metrizable group topologies such that sup{τ1, τ2} is the
discrete topology for any two of these topologies;
– two to the power of continuum of coatoms in the lattice of all group topologies.
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1 Introduction

This article is a continuation of article [1]. Main results of this article are
Theorems 3.1 and 3.2.

Statements 3.1.2 and 3.1.3 of Theorem 3.1 are stronger than Theorem 14 from
[1], and Statement 3.1.4 affirms that if a countable group G admits a non-discrete
Hausdorff group topology, then the lattice of all group topologies of the group G
admits two to the power of continuum of coatoms.

Moreover (see Theorem 3.2), for a countable group the requirement of the exi-
stence of a non-discrete Hausdorff group topology in Theorem 14 and Theorem 13
from [1] can be weakened to the requirement of the existence of a group topolo-
gy in which the topological group does not have a finite basis of the filter of all
neighborhoods of the unity element.

2 Notations and preliminaries

For proof of the main results we need the following notations and results:

Notations 2.1.
– |A| is the cardinality of the set A;
– N is the set of all natural numbers;
– c is the continuum cardinality and ω(c) is the minimal transfinite number of

the cardinality c;
– Ñ is a set of cardinality c of infinite subsets of the set N such that A

⋂
B = ∅

for any A,B ∈ Ñ and A 6= B (the existence of such a set Ñ is proved in [3, Example
3.6.18]);

c© V. I. Arnautov, G. N.Ermakova, 2014
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Notation 2.2. If G(·) is a group and x is some variable, then the free product of
the group G(·) and of the free cyclic group generated by the element x is denoted
by G(x), i.e. G(x) consists of elements of the form g1 ·xk1 · g2 ·xk2 · . . . · gs ·xks · gs+1,
where gi ∈ G for 1 ≤ i ≤ s + 1 and kj is an integer for 1 ≤ j ≤ s.

Definitions 2.3.
– Elements of the group G(x) are called words in the variable x over the group

G(·);
– If g ∈ G(·) and f(x) ∈ G(x), then the expression f(x) = g will be called an

equation over the group G(·);
– An element a ∈ G(·) is called a root of the equation f(x) = g if f(a) = g.

Definitions 2.4.
– A partially ordered set (X,≤) is called a lattice if for any elements a, b ∈ X

there exist inf{a, b} and sup{a, b};
– A lattice (X,≤) is called complete if for any non-empty subset S ⊆ X there

exist inf S and supS;
– Lattices (X,≤) and (Y,≤) are called anti-isomorphic if there exists a bijec-

tive mapping Ψ : (X,≤) → (Y,≤) such that Ψ(inf{a, b}) = sup{Ψ(a), Ψ(b)} and
Ψ(sup{a, b}) = inf{Ψ(a), Ψ(b)} for all elements a, b ∈ X.

The map Ψ : (X,≤) → (Y,≤) will be called a lattice anti-isomorphism;
– If a lattice (X,≤) has the greatest element 1, then an element a 6= 1 of the

lattice (X,≤) is called a coatom if b = 1 for any element b ∈ X such that a < b.

Notation 2.5. If A1, A2, . . . and B1, B2, . . . are sequences of symmetrical subsets

of a group G(·) (i.e. (Ai)−1 = Ai and (Bi)−1 = Bi) such that e ∈
∞⋂
i=1

Bi, then for

any natural number n by induction we define the set Fn(B1, . . . , Bn; A1, . . . An): we
take F1(B1; A1) = {g · h · g−1|g ∈ A1, h ∈ B1}

⋃
B ·B and

Fn+1(B1, . . . , Bn+1; A1, . . . An+1) = F1

(
(B1

⋃
Fn(B2, . . . , Bn+1;A2, . . . An+1);A1

)
.

Theorem 2.6 (see for example [2, page 203 and page 205]). A set Ω of subsets of
a group G(·) is a basis of the filter of all neighborhoods of the unity element e for
a Hausdorff group topology on the group G(·) if and only if the following conditions
are satisfied:

1)
⋂

V ∈Ω

V ⊇ {e};

2) For every V1 and V2 ∈ Ω there exists V3 ∈ Ω such that V3 ⊆ V1 ∩ V2;

3) For every V1 ∈ Ω there exists V2 ∈ Ω such that V2 · V2 ⊆ V1;

4) For every V1 ∈ Ω there exists V2 ∈ Ω such that V −1
2 ⊆ V1;

5) For every V1 ∈ Ω and any element g ∈ G there exists V2 ∈ Ω such that
g · V2 · g−1 ⊆ V1.

Moreover, this group topology is Hausdorff if and only if
⋂

V ∈Ω

V = {e}
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Proposition 2.7 (see [1]). If V1, V2, . . . and S1, S2, . . . are some sequences of subsets
of a group (G, (·)), then (see I.5) for subsets Fk(V1, . . . , Vk; S1, . . . , Sk) the following
statements are true:

2.7.1. If e ∈ V1, then V1 ⊆ V1 · V1 ⊆ F1(V1;S1) and g · V1 · g−1 ⊆ F1(V1; S1) for
any g ∈ S1;

2.7.2. If k ∈ N and Si and Vi are symmetric and finite sets for 1 ≤ i ≤ k, then
Fk

(
V1, . . . , Vk; S1, . . . , Sk

)
is a symmetric and finite set;

2.7.3. Fk

({e}, . . . , {e}; S1, . . . , Sk

)
= {e} for any k ∈ N;

2.7.4. If Ui ⊆ Vi and Ti ⊆ Si for each 1 ≤ i ≤ k, then

Fk

(
U1, . . . , Uk; T1, . . . , Tk

) ⊆ Fk

(
V1, . . . , Vk; S1, . . . , Sk

)
;

2.7.5. If k, p ∈ N, and e ∈ Vi for i ≤ k and Vk+j = {e} for 1 ≤ j ≤ p, then

Fk (V1, . . . , Vk; S1, . . . , Sk) = Fk+p (V1, . . . , Vk+p; S1, . . . , Sk+p) ;

2.7.6. If an integer k ≥ 2, then the equality

Fk

(
V1, . . . , Vk;S1, . . . , Sk

)
=

Fk

(
V1 ∪ Fk−1

(
V2, . . . , Vk; S2, . . . , Sk

)
, . . . , Vk−1 ∪ F1(Vk; Sk), Vk; S1, . . . , Sk

)

is true;

2.7.7. If e ∈ Vi for each 1 ≤ i ≤ k, then Vt ⊆ Fk

(
V1, . . . , Vk; S1, . . . , Sk

)
for

each 1 ≤ t ≤ k;

2.7.8. If k, s ∈ N and e ∈ Vi for each 1 ≤ i ≤ k + s, then

Fk+1

(
Vs, . . . , Vk+s;Ss, . . . , Sk+s

)
⊆ Fk+s−t+1

(
Vt, . . . , Vk+s; S1, . . . , Sk+s

)

for any k, s, t ∈ N and t ≤ s.

Notation 2.8. Let G(·) = {e, g±1
1 , . . .} be a countable group, and for each positive

integer n let be Sn = {g±1
1 , g±1

2 , . . . , g±1
n }.

For each pair of natural numbers (i, j) we define subsets V(i,j) and S(i,j) of the
group G(·) and for each three natural numbers (i, j, k) such that 1 ≤ k ≤ j define a
set Φ(i,j,k)(x) of equations in the variable x over the group G(·) as follows:

V(1,j) = {e}, S(1,j) = Sj and Φ(1,j,k)(x) =
{
x = c

∣∣c ∈ Sk

}
for all j, k ∈ N

and k ≤ j.
Suppose that for a natural number p the sets V(i,j), S(i,j) and Φ(i,j,k)(x) are

defined for i ≤ p and all j, k ∈ N such that k ≤ j.
If p + 1 is an even natural number, then we take:
V(p+1,j) = {e} for j ≥ p + 1;
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V(p+1,j) = V(p,j) ∪ {g, g−1}, where g ∈ G \
j⋃

s=1
S(p,j) (if G \

j⋃
s=1

S(p,j) = ∅, then we

take V(p+1,j) = V(p,j)) for all j < p + 1;

Φ(p+1,j,k)(x) = Φ(p,j,k)(x) for all k < j ∈ N;

S(p+1,j) =
{
g ∈ G|g ∈

j⋃
k=1

Φ(p+1,j,k)

}
for all j ∈ N.

If p + 1 is an odd natural number, then we take:
V(p+1,j) = {e} for j ≥ p + 1;

V(p+1,j) = Fp+1−j

(
V(p,j+1), . . . , V(p,p+1); Sj+1, . . . , Sp+1

)⋃
V(p,j) for j < p + 1;

Φ(p+1,j,j)(x) =
{
x = g

∣∣g ∈ Sj

}
for all j ∈ N and Φ(p+1,j,k)(x) ={

f(x) = g
∣∣ f(x) ∈ Fj,k

(
V(p+1,k+1), . . . , V(p+1,j−1), V(p,j) ∪ {x, x−1}; Sk+1, . . . , Sj

)
and g ∈ Sk

}
for any k, j ∈ N and k < j;

S(p+1,j) = S(p,j) for every j ∈ N.

So, we identified subsets of V(i,j) and S(i,j) of the group G(·) for each pair of
positive integers (i, j) and the set Φ(i,j,k)(x) of equations on the group G(·) for each
triples of positive integers (i, j, k) such that 1 ≤ k ≤ j.

Theorem 2.9 (see [1, Theorem 11]). If a countable group G(·) admits a non-discrete
Hausdorff group topology τ and M =

{
f1(x) = a1, . . . , fm(x) = am

}
is a finite set

of equations over the group G(·) for which the unity element e is not a root of any
of these equations, then in the topological group (G, τ) there exists a neighborhood
W of the unity element e such that each its element is not a root of any of these
equations.

From Theorem 2.6 follows

Theorem 2.10. If Ω is a set of group topologies on a group G(·) and for each topo-
logy τ ∈ Ω in a topological group (G(·), τ) a basis Bτ of the filter of all neighborhoods
of the unity element e is given, then the set

{ ⋂

τ∈M

Vτ |M is a finite subset in Ω and Vτ ∈ Bτ

}

is a basis of the filter of all neighborhoods of the unity element in the topological
group (G(·), supΩ).

From the definition of the prototype of any topology follows

Theorem 2.11. Let f : G(·) → G(·) be some group homomorphism from
the group G(·) in the group G(·). If τ is a group topology on the group G(·)
and τ is the prototype of the topology τ relative to the homomorphism f (i. e.
τ = {f−1(U)|U ∈ τ}), then τ is a group topology on the group G(·) and for any
basis B of the filter of neighborhoods of the unity element in the topological group
(G(·), τ), the set B = {f−1(V )|V ) ∈ B} is a basis of the filter of neighborhoods of
the unity element in the topological group (G(·), τ).
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Similarly to the proof of step II of Theorem 13 in [1], is proved:

Theorem 2.12. Let G(·) = {e, g±1
i | ∈ N} be a countable group and let

{hk = gik |k ∈ N} be a sequence of elements of the group G(·) such that

hi /∈ Fn

({e, g±1
1 }, . . . , {e, g±1

i−1}, {e}{e, g±1
i+1, . . . , {e, g±1

n }; S1, . . . , Sn}
)

for every i, n ∈ N. Then the following statements are true:
2.12.1. If C is an infinite subset of the set of all natural numbers N and

Ui,C =
{ {hki , e, h

−1
ki
} if i ∈ C,

{e} if i /∈ C

for every i ∈ N, then the set

{
Ûi(C) | Ûi(C) =

∞⋃

j=1

Fj+1

(
Ui,C , . . . Ui+j,C ; Si, . . . , Si+j

)
, i ∈ N}

is a basis of the filter of neighborhoods of the unity element for some group topology
τ(C) in the group G(·);

2.12.2. If A,B are subsets of the set N such that A \B and B \A are infinite
subsets, then the topologies τ(A) and τ(B) are incomparable.

Definition 2.13. An element d ∈ X is called a maximal element in a partially
ordered set (X,≤) if d = z for any element z in X such that d ≤ z.

Theorem 2.14 (see [3, page 28, the Kuratowski-Zorn’s lemma]). If (X,≤) is a
partially ordered set such that for any linearly ordered subset (A,≤) ⊆ (X,≤) there
exists an element a ∈ X such that x ≤ a for every x ∈ A, then for any y ∈ X there
exists a maximal element d ∈ X in the partially ordered set (X,≤) such that y ≤ d.

Proposition 2.15(see [3, Corollary 3.6.12]). If (βN, τ) is Stone-Čech compacifica-
tion, then the following statements are true:

2.15.1. The set N is a dense subset of the topological space (βN, τ);
2.15.2. The topological space (βN, τ) is Hausdorff;
2.15.3. The cardinality of the set βN is equal to 2c.

Proposition 2.16. For any element a ∈ βN \ N and any neighborhood U of the
element a in the topological space (βN, τ), the set U

⋂
N is infinite.

Proof. Assume the contrary, i. e. that some element a ∈ βN \N has a neighborhood
U such that U

⋂
N is a finite set.

Since every finite set is closed in any Hausdorff space and a /∈ N, then
V = U \(N

⋂
U) is a neighborhood of the element a in the topological space (βN, τ),

and V
⋂
N = ∅.

This contradicts the Statement 2.15.1.
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3 Basic results

Theorem 3.1. Let a countable group G(·) admit some Hausdorff non-discrete
group topology τ0 such that the topological group (G, τ0) has a countable basis of the
filter of all neighborhoods of the unity element. Then:

3.1.1. The group G(·) admits a continuum of non-discrete group topologies
stronger than τ0 and such that the following conditions are true:

– the space of the topological group is Hausdorff;

– the unity element has a countable basis of the filter of all neighborhoods;

– any two of these topologies are comparable.

3.1.2. The group G(·) admits a continuum of non-discrete group topologies
stronger than τ0 and such that for each of these topologies the following conditions
are true:

– the space of the topological group is Hausdorff;

– the unity element has a countable basis of the filter of all neighborhoods;

– sup{τ1, τ2} is the discrete topology for any two of these topologies τ1 6= τ2;

3.1.3. There exist 2c (two to the power of continuum) non-discrete group
topologies stronger than τ0 and such that sup{τ1, τ2} is the discrete topology for any
two of these topologies τ1 6= τ2;

3.1.4. There exist 2c coatoms in the lattice of all group topologies on the
group G(·).

Proof. Proof of Statement 3.1.1 see in the proof of Theorem 14 in [1].

Proof of Statement 3.1.2. Let G =
{
e, g±1

1 , . . .
}

be a numbering of elements
of the group G(·) and let Sn =

{
g±1
1 , . . . , g±1

n

}
for any n ∈ N. Then there exists a

countable basis {V1, V2, . . .} of the filter of neighborhoods of the unity element in the
topological group (G, τ0) which consists of symmetric subsets such that Vk ∩Sk = ∅
and g · Vk+1 · g−1 ⊆ Vk for any k ∈ N and any g ∈ Sk.

It is easily proved by induction on k that Fk

(
Vi+1, . . . , Vi+k; Si+1, . . . , Si+k

) ⊆ Vi

for any i, k ∈ N.
The proof of the theorem will be realized in several steps.

Step I. Construction of an auxiliary sequence h1, h2, . . . of elements of G(·) and
of an increasing sequence k1, k2, . . . of natural numbers.

By induction on n we construct a sequence k1, k2, . . . of natural numbers such that
ki ≥ i for every i ∈ N and a sequence h1, h2, . . . of elements of the set G\{e} such that
{e, hi, h

−1
i } ⊆ Vki for any positive integer i and for any subsets of A ⊆ {k1, . . . , kn}

and B ⊆ {k1, . . . , kn} such that A
⋂

B = ∅ and the condition holds:

Fn(U1,A, . . . , Un,A; S1, . . . , Sn)
⋂

Fn(U1,B, . . . , Un,B; S1, . . . , Sn) = {e},
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where

Ui,C =
{ {hi, e, h

−1
i } if i ∈ C,
{e} if i /∈ C

for any subset C ⊆ {1, . . . , n}.
If n = 1, then we take k1 = 2 and h1 an arbitrary element of the set V2 \ {e}.
If A and B are subsets of {1} such that A

⋂
B = ∅, then either A = ∅ or

B = ∅, and hence (see Statement 2.7.3), either F1(U1,A;S1) = F1({e}; S1) = {e} , or
F1(U1,B; S1) = F1({e}; S1) = {e}. So F1(U1,A; S1)

⋂
F1(U1,B; S1) = {e}, and hence,

for the natural number k1 = 2 and the element h1 all conditions specified above are
true.

Suppose that we have already defined positive integers k1 < k2, . . . < kn such
that ki > i and elements h1, h2, . . . , hn from the set G\{e} such that all conditions
specified above are true.

For any sets A ⊆ {1, . . . , n} and B ⊆ {1, . . . , n} such that A
⋂

B = ∅ we consider
the set Ψ(A,B)(x) of equations over the group G(·) of the form f(x) = g, where

f(x) ∈ Fn+1(U1,A, . . . , Un,A, {x, e, x−1}; S1, . . . , Sn+1)

and g ∈ Fn(U1,B, . . . , Un,B}; S1, . . . , Sn) \ {e}.
We prove that the unity element e is not a root for any equation of the set

Ψ(A,B)(x).
Assume the contrary, i.e. that f(e) = g for some equation f(x) = g from the

set Ψ(A,B)(x). Then g ∈ Fkn(U1,B, . . . , Un,B}; S1, . . . , Sn) \ {e} , and (see State-
ment 2.7.5)

g = f(e) ∈ Fn+1(U1,A, . . . , Un,A, {e}; S1, . . . , Sn+1) = Fn(U1,A, . . . , Un,A, ; S1, . . . , Sn),

and hence,

g ∈ Fn(U1,A, . . . , Un,A, ; S1, . . . , Sn)
⋂ (

Fn(U1,B, . . . , Un,B}; S1, . . . , Sn) \ {e}).

We have the contradiction with the inductive assumption that

Fn(U1,A, . . . , Un,A; S1, . . . , Sn)
⋂

Fn(U1,B, . . . , Un,B; S1, . . . , Sn) = {e},

and hence the unity element e is not a root of any equation of the set Ψ(A,B)(x).
Then, by Theorem 2.9 there exists a neighborhood W(A,B) of the unity element

in the topological group (G(·), τ0) such that any element h ∈ W{A,B} is not a root
of any equation of the set Ψ(A,B)(x).

If now M̃ =
{
(A,B)|A,B ⊆ {1, . . . , n + 1} and A

⋂
B = ∅}, then from the

finiteness of the set M̃ it follows that
⋂

(A,B)∈M̃

W(A,B) is a neighborhood of the unity

element in a topological group (G(·), τ0), and any element h ∈ ⋂
(A,B)∈M̃

W(A,B) \ {e}

is not a root of any equation of the set
⋃

(A,B)∈M̃

Ψ(A,B)(x).
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Since the set {V1, V2, . . .} is a basis of the filter of neighborhoods of the unity ele-
ment in the topological group (G(·), τ0), then there exists a natural number kn+1 > n
such that Vkn+1 ⊆

⋂
(A,B)∈M̃

W(A,B).

We take any element hn+1 ∈ Vkn+1 ⊆ Vn+1, and prove that the conditions spec-
ified above are true also for the number n + 1, i.e. these conditions are satisfied
for the sequence of natural numbers k1, k2, . . . kn+1 and the sequence of elements
h1, . . . , hn+1.

Since kn+1 > n + 1 and hn+1 ∈ Vkn+1 , then it remains only to prove that

Fn+1(U1,A, . . . , Un+1,A; S1, . . . , Sn+1

⋂
Fn+1(U1,B, . . . , Un+1,B;S1, . . . , Sn+1 = {e},

for any of subsets A,B of the set {1, . . . , n + 1} for which A
⋂

B = ∅.
Assume the contrary, i.e. that

Fn+1(U1,A, . . . , Un+1,A;S1, . . . , Sn+1)
⋂

Fn+1(U1,B, . . . , Un+1,B; S1, . . . , Sn+1) 6= {e}

for some subsets A,B ⊆ {1, . . . , n + 1} such that A
⋂

B = ∅.
Then either A * {1, 2, . . . , n} or B * {1, . . . , n}.
Suppose, for definiteness, that A * {1, . . . , n}.
Since A

⋂
B = ∅ then B ⊆ {1, . . . , n} and since n + 1 ∈ A then Un+1,A =

{hn+1, e, hn+1}.
Then since the element hn+1 6= e and it is not a root of any equation of the set

Ψ(A,B)(x) then from the definition of the set Ψ(A,B)(x) and Statement I.7.5 it follows
that {e} =

Fn+1(U1,A, . . . , Un,A, {hn+1, e, h
−1
n1 }; S1, . . . , Sn+1)

⋂
Fn(U1,B, . . . , Un,B; S1, . . . , Sn) =

Fn+1(U1,A, . . . , Un,A, {hn+1, e, h
−1
n+1}; S1, . . . , Sn+1)

⋂

Fn+1(U1,B, . . . , Un,B, {e}; S1, . . . , Sn+1) =

Fn+1(U1,A, . . . , Un+1,A; S1, . . . , Sn+1)
⋂

Fn+1(U1,B, . . . , Un+1,B; S1, . . . , Sn+1) 6= {e}.
We have a contradiction, and hence the conditions specified above are true

for the sequence of natural numbers k1, k2, . . . kn+1 and the sequence of elements
h1, h2, . . . , hn+1.

So, we have constructed the sequence k1, k2, . . . of natural numbers ki ≥ i and
the sequence h1, h2, . . . of elements of the set G \ {e} such that {e, hi, h

−1
i } ⊆ Vki

and which satisfy the following condition:

Fm(U1,A, . . . , Um,A; S1, . . . , Sm)
⋂

Fm(U1,B, . . . , Um,B; S1, . . . , Sm) = {e}

for any positive integer m and any subsets A,B ⊆ {1, . . . , m} such that A
⋂

B = ∅.
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Step II. Construction of a set T of group topologies of cardinality of contin-
uum and such that sup{τ1, τ2} is the discrete topology for all different topologies
τ1, τ2 ∈ T.

If j ∈ N, A = {kj} and B = N \ {kj}, then A
⋂

B) = ∅, and hence,

Fn(U1,A, . . . , Un,A;S1, . . . , Sn)
⋂

Fn(U1,B, . . . , Un,B; Sk1 , . . . , Skn) = {e}

for any positive integer n. Then

hj /∈ Fn

(
{e, h1, h

−1
1 }, . . . , {e, hj−1, h

−1
j−1}, {e}, {e, hj+1, h

−1
j+1}, . . . , {e, hn, h−1

n };

S1, S2, . . . , Sn

)
and hence, the sequence k1, k2, . . . of natural numbers and the se-

quence of elements h1, h2, . . . satisfy the conditions specified in the proof of Theorem
13 from [1].

Now we consider:
– the set Ui,A = {e} if ki /∈ A and Ui,A = {hi, e, h

−1
i } if ki ∈ A for any positive

integer i and any set A ∈ Ñ (for the definition of the set Ñ, see I.1);
– the set U(i+1,j),A = Fj(Ui+1,A, . . . , Ui+j,A;Si+1, . . . , Si+j) for every pair (i, j) of

natural numbers.
Then (see [1, Step II of the proof of Theorem 13]) the set {Ûi(A) =

∞⋃
j=1

U(ij),A|i ∈
N} is a basis of the filter of neighborhoods of the unity element for some group
topology τ(A) on the group G(·) such that the following conditions are true:

– the space of the topological group (G(·), τ(A)) is Hausdorff;
– the unity element has a countable basis of the filter of neighborhoods;
– the topology τ(A) is stronger than the topology τ0 for any set A ∈ Ñ.
We show that if A,B ∈ Ñ and A 6= B, then sup{τ(A), τ(B)} is the discrete

topology.
In fact, since A

⋂
B = ∅, then {e} ⊆ U(1,m),A

⋂
U(1,s),B ⊆

Fn+m(U1,A, . . . , Un+m,A; S1, . . . , Sn+m)
⋂

Fn+s(U1,B, . . . , Un+s,B; S1, . . . , Sn+s) ⊆

Fn+m+s(U1,A, . . . , Un+m+s,A;S1, . . . , Sn+m+s)
⋂

Fn+m+s(U1,B, . . . , Un+m+s,B; S1, . . . , Sn+m+s) = {e}
for any positive integers m and s, and hence,

Û1(A)
⋂

Û1(B) =
( ∞⋃

j=1

U(1,j),A

) ⋂( ∞⋃

j=1

U(1,j),B

)
= {e}.

Since Û1(A) and Û1(B) are neighborhoods of the unity element in the topo-
logical group (G(·)sup{τ(A), τ(B)}), then {e} = Û1(A)

⋂
Û1(B) is a neighbor-

hood of the identity in the topological group (G(·), sup{τ(A), τ(B)}), and hence,
sup{τ(A), τ(B)} is the discrete topology for any different sets A,B ∈ Ñ.
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From the fact that the topology τ(A) is non-discrete for any set A ∈ Ñ it follows
that τ(A) 6= τ(B) for any different sets A,B ∈ Ñ.

Statement 3.1.2 is proved.

Proof of Statement 3.1.3. Since the set A = U
⋂
N is infinite (see Proposition

2.16) for each element a ∈ βN \ N and any neighborhood U of the element a of the
topological space (βN, τ), then we consider the topology τa,U = τ(U

⋂
N), which

was defined in the proof of Statement 3.1.2.
If a ∈ βN \ N and Ωa is the set of all neighborhoods U of the element a in

the topological space (βN, τ), we consider the topology τa = sup{τa,U |U ∈ Ωa}, and
show that sup{τa, τb} is the discrete topology for any distinct elements a, b ∈ βN\βN.

From the fact that the space (βN, τ) is Hausdorff it follows that there exist
neighborhoods U and V of points a and b, respectively, such that U

⋂
V = ∅, and

hence, (U
⋂
N)

⋂
(V

⋂
N) = ∅. Then (see the end of the proof of Statement 3.1.2),

sup{τa,U , τa,V } is the discrete topology, and as sup{τa, τb} ≥ sup{τa,U , τa,V }, then
sup{τa, τb} is the discrete topology.

Since for each c ∈ βN \N the topology τc is a non-discrete topology, then the set
{τc|c ∈ βN \N} has cardinality 2c, and since sup{τa, τb} is the discrete topology for
any distinct elements a, b ∈ βN \ N then Statement 3.1.3 is proved.

Proof of Statement 3.1.4. If T′ is the set of all group topologies on the
group G(·) and τ∗d is the discrete topology, then (T′,⊆) is a complete lattice. From
Theorem 2.10 it follows that for any linearly ordered subset (T ,⊆) of non-discrete
topologies the set {e} is not a neighborhood of the unity element in the topological
group (G(·), sup T ), and hence, sup T ∈ T′ \ {τ∗d}. Then, by Theorem 2.14, for any
topology τa where a ∈ βN\N, which is defined in the proof of Statement 3.1.3, there
exists a maximum element τ ′a in partially ordered set ∈ T′ \ {τ∗d} such that τa ≤ τ ′a.
Then for each a ∈ βN \ N the topology τ ′a is a coatom in the lattice (T′,⊆).

Since τ∗d = sup{τa, τb} ≤ sup{τ ′a, τ ′b} ≤ τ∗d for different a, b ∈ βN\N, then τ ′a 6= τ ′b
for different a, b ∈ βN\N, and hence, the set {τ ′a | a ∈ βN\N} has the cardinality 2c

(two to the power of continuum).
Statement 3.1.4 is proved and, hence, the theorem is completely proved.

Theorem 3.2. Let G(·) be a countable group and let T0 be the set of all group
topologies on the group G(·) and T1 be the set of all group topologies on the group G(·)
such that for any of these topologies the topological group (G(·), τ) has a finite basis
of the filter of all neighborhoods of unity element. Then the following statements are
true:

3.2.1. The partially ordered set (T1,⊆) is a lattice which is anti-isomorphic to
the lattice (N ,⊆) of all normal subgroups of the group G(·);

3.2.2. If T0 6= T1, then in the group G(·) there exist continuum of group
topologies in each of which the topological group has a countable basis of the filter of
all neighborhoods of the unity element such that any two topologies are comparable;
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3.2.3. If T0 6= T1, then in the group G(·) there are 2 c (two to the power of
continuum) of group topologies any two of which are incomparable.

Proof. Proof of Statement 3.2.1. As for any normal subgroup N of the group
G(·) the set {N} satisfies all conditions of Theorem 2.6, then it is a basis if the
filter of neighborhoods of the group G(·) for some group topology τ(N), and in this
topology the topological group has a finite basis of the filter of all neighborhoods of
the unity element, i. e. τ(N) ∈ T1.

Now, if τ0 ∈ T1 and B is some finite basis of the filter of all neighborhoods of
unity element in the topological group (G(·), τ0), then N(τ0) =

⋂
V ∈B

V is an open

normal subgroup of G(·), and hence, N(τ0), is a neighborhood of the unity element
in the topological group (G(·), τ0). Then τ(N(τ0)) = τ0.

So, we have proved that T1 = {τ(N)|N ∈ N}. As τ(N1) ≤ τ(N2) if and only if
N1 ⊇ N2, then (T1,≤) is a lattice, which is anti-isomorphic (see I.4) to the lattice
(N ,⊆).

Statement 3.2.1 is proved.

Proof of Statement 3.2.2. Let G(·) be a group such that T0 6= T1 and
τ0 ∈ T0 \T1. If B is some basis of the filter of all neighborhoods of the unity element
in the topological group (G(·), τ0), and N =

⋂
V ∈B

V , then N is a closed normal

subgroup of the topological group (G(·), τ0).

Since τ0 /∈ T1, then N is not a neighborhood of the unity element in the topo-
logical group (G(·), τ0) (otherwise the set {N} would be a basis of the filter of
neighborhoods of unity element in the topological group (G(·), τ0)).

Then the factor-group (G(·), τ0) = (G(·), τ0)/N is a non-discrete, Hausdorff topo-
logical group, and by Statement 3.1.1, a set T of cardinality of continuum of group
topologies exists on the group G(·)/N, in each of which a topological group has a
countable basis of the filter of neighborhoods of the unity element and any two of
them are comparable.

Since the canonical homomorphism f : G(·) → G(·)/N is a surjective map, then
f
(
f−1(V )

)
= V for any subset V ⊆ G(·)/N.

Let now τ1, τ2 ∈ T, and let τ1 and τ2 be the prototype topologies τ1 and τ2 with
respect to the homomorphism f , respectively.

If τ1 ≤ τ2, then τ1 = {f−1(U)|U ∈ τ1} ⊆ {f−1(V )|V ∈ τ2} = τ2, and if
τ1 ≤ τ2, then τ1 = {f(

f−1(U)
)|U ∈ τ1} = {f(U)|U ∈ τ1} ⊆ {f−1(V )|V ∈ τ2} =

{f(
f−1(V )

)|U ∈ τ2} = τ2, and hence, τ1 ≤ τ2 if and only if τ1 ≤ τ2.

Then a set of cardinality of continuum of group topologies exists on the group
G(·) in each of which the respective topological group has a countable basis of the
filter of neighborhoods of the unity element and any two of them are comparable.

Statement 3.2.2 is proved.
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Statement 3.2.3 can be proved by analogy with the proof of Statement 3.2.2
if you use Statement 3.1.3 and the fact that if sup{τ1, τ2} = τ∗d for non-discrete
topologies τ1 and τ2, then the topologies τ1 and τ2 are incomparable.

This theorem is proved.
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Invariant transformations of loop transversals. 1a.

The case of automorphism

Eugene Kuznetsov, Serghei Botnari

Abstract. One special class of invariant transformations of loop transversals in
groups is investigated. Transformations from this class correspond to arbitrary auto-
morphisms of transversal operations of loop transversals mentioned above.
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1 Introduction

The notion of a transversal in a group to its own subgroup is well known and has
been studied during the last 70 years (since R. Baer’s work [1]). Loop transversals
(transversals whose transversal operations are loops) in some fixed groups to their
own subgroups present special interest.

This investigation is a continuation and important part of [6]. In the present work
we will investigate such transformations of loop transversals which correspond to the
most symmetric transformation of transversal operations – to an automorphism. We
will use the statements from [6] and obtain the basic results of this work as corollaries.

Let us remember some necessary definitions and preliminary statements.

2 Necessary definitions and statements

Definition 1. A system < E, · > is called a left (right) quasigroup if the equation
(a · x = b) (the equation (y · a = b)) has exactly one solution in the set E for any
fixed a, b ∈ E. If for some element e ∈ E we have

e · x = x · e = x ∀x ∈ E,

then a left (right) quasigroup < E, ·, e > is called a left (right) loop (the element
e ∈ E is called a unit). A left quasigroup < E, · > which is simultaneously a
right quasigroup is called simply a quasigroup. Similarly, a left loop which is
simultaneously a right loop is called a loop.

c© Eugene Kuznetsov, Serghei Botnari, 2014
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Definition 2. Let G be a group and H be its subgroup. Let {Hi}i∈E be
the set of all left (right) cosets in G to H, and we assume H1 = H. A set
T = {ti}i∈E of representativities of the left (right) cosets (by one from each coset Hi

and t1 = e ∈ H) is called a left (right) transversal in G to H. If a left transversal
T is simultaneously a right one, it is called a two-sided transversal.

On any left transversal T in a group G to its subgroup H it is possible to define
the following operation (transversal operation) :

x
(T )
· y = z

def
⇐⇒ txty = tzh, h ∈ H.

Definition 3. If a system < E,
(T )
· , 1 > is a loop, then such left transversal

T = {tx}x∈E is called a loop transversal.

At last remind the definitions of a left multiplicative group and of a left inner
permutation group of a loop.

Definition 4. Let < E, ·, e > be a loop. Then a group

LM(< E, ·, e >)
def
= < La | a ∈ E >,

generated by all left translations La of loop < E, ·, e >, is called a left multiplica-
tive group of the loop < E, ·, e >. Its subgroup

LI(< E, ·, e >)
def
= < la,b | la,b = L−1

a·bLaLb, : a, b ∈ E >

generated by all permutations la,b, is called a left inner permutation group of
the loop < E, ·, e >.

Definition 5 (see [2]). A mapping Φ = (α, β, γ) ( α, β, γ are permutations on a
set E) of the operation < E, · > on the operation < E, ◦ > is called an isotopy if

γ(x · y) = α(x) ◦ β(y) ∀x, y ∈ E.

If Φ = (γ, γ, γ), then such an isotopy is called an isomorphism. If Φ = (γ, γ, γ),
and < E, · >=< E, ◦ > then such an isomorphism is called an automorphism.

3 The transformations which correspond to automorphisms

of the transversal operations of loop transversals

Let T = {tx}x∈E be a loop transversal in a group G to its subgroup H, and

< E,
(T )
· , 1 > is its transversal operation. Consider the following group:

MG(T )
def
= < α | α ∈ St1(SE), LM(< E,

(T )
· , 1 >) ⊆ α ̂Gα−1 >,
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it is generated by all permutations α ∈ St1(SE) which satisfy the condition

LM(< E,
(T )
· , 1 >) ⊆ α ̂Gα−1.

Lemma 1. The following propositions are true:

1. NSt1(SE)( ̂G) ⊆ MG(T ) ⊆ St1(SE),

2. MG(T ) is maximal among subgroups M ⊆ St1(SE) which satisfy the following

property:

LM(< E,
(T )
· , 1 >) =

⋂

α∈M

(α ̂Gα−1).

Proof. See Lemma 6 from [6].

Lemma 2. Let ϕ : E → E be an automorphism of the loop < E,
(T )
· , 1 > (note that

ϕ(1) = 1). Then

1. ̂T = h−1
0

̂Th0 for some h0 ∈ H∗ = MG(T );

2. ϕ ≡ h0 and LI(< E,
(T )
· , 1 >) ⊆ h0

̂Hh−1
0 .

Proof. It is an evident corollary of the Lemma 7 from [6].

Lemma 3. Let T = {tx}x∈E be a fixed loop transversal in G to H. Let h0 ∈
NSt1(SE)(H) be an element such that:

tx′

def
= h−1

0 txh0 ∀x ∈ E.

Then ϕ ≡ h0 ∈ Aut(< E,
(T )
· , 1 >).

Proof. It is an evident corollary of the Lemma 8 from [6].
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