
Computer Science Journal of Moldova, vol.20, no.1(58), 2012

The Set of Pareto-Nash Equilibria in

Multicriteria Strategic Games

Victoria Lozan, Valeriu Ungureanu

Abstract

The paper investigates the notion of Pareto-Nash equilibrium
as continuation of the works [2–4]. Problems and basic theoretical
results are exposed. Method of intersection of graphs of best
response mappings [3] is applied to solve the dyadic two-criteria
games.

Mathematics Subject Classification 2000: 91A05, 91A06,
91A10, 91A43, 91A44.

Keywords: Noncooperative game, graph of best response
mapping, intersection, multicriteria game, Pareto-Nash equilib-
rium, set of Pareto-Nash equilibria, dyadic game with mixed
strategies.

1 Introduction

Consider the noncooperative strategic form game:

Γ = 〈N, {Xp}p∈N, {f i
p(x)}mp

i=1, p ∈ N〉,
where

• N = {1, 2, ..., n} is a set of players;

• Xp ∈ Rkp is a set of strategies of player p ∈ N;

• kp < +∞, p ∈ N;

• and {f i
p(x)}mp

i=1 are the pth player cost functions defined on the
Cartesian product X = ×p∈NXp.

c©2012 by V. Lozan, V. Ungureanu

3

V. Lozan, V. Ungureanu

Remark that each player has to solve singly the multi-criteria
parametric optimization problem, where the parameters are strategic
choices of the others players.

To exclude uncertainty, the well known definitions 1–3 and the cor-
responding notations are presented.

Definition 1. Strategy x
′
p is ”better” than x

′′
p , if

{f i
p(x

′
p, x−p)}mp

i=1 ≥ {f i
p(x

′′
p , x−p)}mp

i=1, ∀x−p ∈ X−p,

and there exist at least one index j ∈ {1, ..., mp} and a joint strategy
x−p ∈ X−p for which

f j
p (x

′
p, x−p) > f j

p (x
′′
p , x−p);

the last relationship is denoted as x
′
p º x

′′
p .

Player problem. The player p selects from his set of strategies
the strategy x∗p ∈ Xp, p ∈ N, for which all of his cost functions
{f i

p(xp, x
∗−p)}mp

i=1 reach maximum values.

2 Pareto optimality

Definition 2. Strategy x∗p is named effective (optimal in the sense of
Pareto), if there does not exist other strategy xp ∈ Xp so that xp º x∗p.

Let us denote the set of effective strategies (solutions) of the player p
by ef Xp. Any two effective strategies are equivalent or incomparable.

Theorem 1. If the sets Xp ∈ Rkp, p = 1, n, are compact and the cost
functions are continuous (f i

p(x) ∈ C(Xp), i = 1,mp, p = 1, n), then
the sets ef Xp, p = 1, n, are non empty (ef X 6= ∅).

The proof follows from the known results [1, 2].

Definition 3. Every element x∗ = (x∗1, x
∗
2, ..., x

∗
n) ∈ ef X = ×p∈Nef Xp

is named effective or Pareto outcome (situation).

4

Set of Pareto-Nash equilibria

3 Synthesis Function

Solution of multi-criteria problem may be found by applying synthesis
function, which may be interpreted as unique cost function of the player
p (p = 1, n):

Fp(x) =
∑

i=1,mp

λif
i
p(xp, x−p) −→ max,

xp ∈ Xp,
∑

i=1,mp

λi = 1, λi ≥ 0, i = 1,mp.

Theorem 2. If x∗p is a solution of mono-criterion problem

Fp(x) =
∑

i=1,mp

λif
i
p(xp, x−p) −→ max, xp ∈ Xp

with λi > 0, i = 1,mp,
∑

i=1,mp
λi = 1, then x∗p is the eficient point for

the given x−p ∈ X−p.

The theorem’s proof follows from the sufficient Pareto condition
with linear synthesis function [1, 2].

4 Pareto-Nash equilibriun

Consider the convex game Γ for which the sets of strategies are con-
vex and the cost functions are concave in relation to respective player
strategies, when the strategies of the other players are fixed.

Definition 4. The point x∗ = (x∗1, x
∗
2, ..., x

∗
n) ∈ X is a Pareto-Nash

equilibrium, if and only if for any player p the relations

Fp(xp, x
∗
−p) ≤ Fp(x∗p, x

∗
−p) ≡ Fp(x∗), ∀xp ∈ Xp,

are verified.

5

V. Lozan, V. Ungureanu

As a corollary of the precedent two theorems follow.

Theorem 3. If the sets Xp, p = 1, n, of the convex game Γ are compact
and the functions {f i

p(x)}mp

i=1 are continuous on X = ×p∈NXp, then the
convex game Γ has the Pareto-Nash equilibrium.

Proof of the Theorem 3 follows from the known result [3].
The definition 4 may be formulated in other equivalent form:

Definition 5. The point x∗ = (x∗1, x
∗
2, ..., x

∗
n) ∈ X is a Pareto-Nash

equilibrium, if and only if

F (x∗) =
(

max
x1∈X1

F1(x1, x
∗
−1), ..., max

xn∈Xn

Fn(xn, x∗−n)
)

,

where (xp, x
∗−p) ≡ (x∗1, x

∗
2, ..., x

∗
p−1, xp, x

∗
p+1, ..., x

∗
n), p = 1, n.

So, the Pareto-Nash equilibrium requires from each player to choose
his own strategy as the Pareto best response to the strategies chosen
by other players.

Let us denote the graph of the mapping

Argmaxxp∈XpFp(xp, x−p) : X-p −→ Xp

by

Grp = {(xp, x−p) ∈ X : x−p ∈ X-p, xp = argmaxyp∈XpFp(yp, x−p)}.

In such notation, by [4], the set of Pareto-Nash equilibrium is:

PNE =
⋂

p=1,n

Grp,

where X−p = ×i∈N\{p}Xi.

As an illustration of previous notions and method of PNE set de-
termination, let us consider the following example.

6

Set of Pareto-Nash equilibria

Example 1. Consider the discrete game of two players. Each player
has two strategies and two cost functions. The players have to maximize
the values of both cost functions. The values of the cost functions are
associated with the matrix elements:

A =
(

4, 3 7, 7
6, 6 8, 4

)
,

B =
(

5,−1 2, 4
4, 3 6, 2

)
.

First of all the sets of effective strategies ef X and ef Y are deter-
mined. Elements of ef X and ef Y are included in angle brackets.

A =
(

4, 3 〈7, 7〉
6, 6 〈8, 4〉

)
, B =

(
5,−1 〈2, 4〉
〈4, 3〉 〈6, 2〉

)
.

PNE = ef X
⋂

ef Y = {(1, 2), (2, 2)}
with the costs {((7, 7), (2, 4)), ((8, 4), (6, 2))}.

Theorem 4. If the sets Xp, p = 1, n, in the convex game Γ are compact
and the functions Fp(x) are continuous on X = ×p∈NXp, then the
convex game Γ has the Pareto-Nash equilibrium.

The proof follows from [4, 2, 5] and the theorems 1–3, also.

5 Dyadic two-criteria game with mixed strate-
gies

Consider dyadic two-criteria game with mixed strategies. The sets of
strategies are:

X = {(x1, x2) : x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0},
Y = {(y1, y2) : y1 + y2 = 1, y1 ≥ 0, y2 ≥ 0}.

7

V. Lozan, V. Ungureanu

The cost functions are bilinear, i.e. the functions are linear for fixed
opponent strategy:

f1
1 (x,y) = xT Ay,

f2
1 (x,y) = xT By,

f1
2 (x,y) = xT Cy,

f2
2 (x,y) = xT Dy,

where x,y ∈ R2, A,B, C,D ∈ R2×2. For each player consider the
synthesis function:

F1(x) = λ1f
1
1 (x) + λ2f

2
1 (x) −→ max,

F2(x) = µ1f
1
2 (x) + µ2f

2
2 (x) −→ max .

By applying substitutions: λ1 = λ > 0, and λ2 = 1 − λ > 0,
µ1 = µ > 0 and µ2 = 1− µ > 0, we obtain:

F1(x,y) = λf1
1 (x,y) + (1− λ)f2

1 (x,y) = λxT Ay + (1− λ)xT By,

F2(x,y) = µf1
2 (x,y) + (1− µ)f2

2 (x,y) = µxT Cy + (1− µ)xT Dy.

By applying obvious transformations:

x1 = x, x2 = 1− x, 1 ≥ x ≥ 0,

y1 = y, y2 = 1− y, 1 ≥ y ≥ 0,

the second equivalent game is obtained:

F1(x, y) = (α(λ)y + β(λ))x + α0(λ)y + β0(λ),

F2(x, y) = (γ(µ)x + δ(µ))y + γ0(µ)x + δ0(µ),

x, y ∈ [0, 1], λ, µ ∈ [0, 1],

where:

α(λ) = (a11−a12−a21+a22−b11+b12+b21−b22)λ+b11−b12−b21+b22,

β(λ) = (a12 − a22 − b12 + b22)λ + b12 − b22,

8

Set of Pareto-Nash equilibria

α0(λ) = (a21 − a22 − b21 + b22)λ + b21 − b22,

β0(λ) = (a22 − b22)λ + b22,

γ(µ) = (c11−c12−c21+c22−d11+d12+d21−d22)µ+d11−d12−d21+d22,

δ(µ) = (c21 − c22 − d21 + d22)µ + d21 − d22,

γ0(µ) = (c12 − c22 − d12 + d22)µ + d12 − d22,

δ0(µ) = (c22 − d22)µ + d22.

The graphs of Pareto best response mappings are:

Gr1 =





(1, y), if α(λ)y + β(λ) > 0,

(0, y) if α(λ)y + β(λ) < 0,

[0, 1]× y, if α(λ)y + β(λ) = 0,

Gr2 =





(x, 1), if γ(µ)x + δ(µ) > 0,

(x, 0), if γ(µ)x + δ(µ) < 0,

x× [0, 1], if γ(µ)x + δ(µ) = 0.

The solutions of equations α(λ)y + β(λ) = 0 and γ(µ)x + δ(µ) =
0 are y(λ) = −β(λ)

α(λ) and x(µ) = − δ(µ)
γ(µ) . Vertical asymptotes of the

respective hyperboles are determined by relations α(λ) = 0 and γ(µ) =
0 and they are denoted by λα and µγ , respectively.

If the solution λα does not belong to the interval (0, 1), then y
belongs to the interval with extremities [y(0), y(1)]. If the extremity
value is negative, it is replaced by 0, if it is greater than 1, it is replaced
by 1.

If λα belongs to the interval (0, 1), then the graph Gr1 will be rep-
resented by two rectangles and one edge ([(0, 0), (0, 1)] or [(1, 0), (1, 1)])
of the square [0, 1]× [0, 1] or two edges and one rectangle of the square
[0, 1] × [0, 1]. Other graphs are possible in the case when λα does not
belong to the interval (0, 1) and they are described below.

Similar reasoning is applied for µγ and graph Gr2.
For the first player and his Gr1 the following cases are possible

also:

9

V. Lozan, V. Ungureanu

1. If α(λ) > 0, β(λ) < 0, α(λ) > −β(λ), then
Gr1 = [(0, 0), (0, y(λ))]

⋃
[(0, y(λ)), (1, y(λ))]

⋃
[(1, y(λ)), (1, 1)];

2. If α(λ) < 0, β(λ) > 0, −α(λ) > β(λ), then
Gr1 = [(0, 1), (0, y(λ))]

⋃
[(0, y(λ)), (1, y(λ))]

⋃
[(1, y(λ)), (1, 0)];

3. If α(λ) > 0, β(λ) < 0, α(λ) = −β(λ), then
Gr1 = [(0, 0), (0, 1)]

⋃
[(0, 1), (1, 1)];

4. If α(λ) < 0, β(λ) > 0, −α(λ) = β(λ), then
Gr1 = [(0, 1), (1, 1)]

⋃
[(1, 1), (1, 0)];

5. If α(λ) > 0, β(λ) = 0, then Gr1 = [(0, 0), (1, 0)]
⋃

[(1, 0), (1, 1)];

6. If α(λ) < 0, β(λ) = 0, then Gr1 = [(0, 1), (0, 0)]
⋃

[(0, 0), (1, 0)];

7. If α(λ) > 0, β(λ) < 0, α(λ) < −β(λ) or α(λ) < 0, β(λ) < 0 or
α(λ) = 0, β(λ) < 0, then Gr1 = [(0, 0), (0, 1)];

8. If α(λ) < 0, β(λ) > 0, −α(λ) < β(λ) or α(λ) > 0, β(λ) > 0 or
α(λ) = 0, β(λ) > 0, then Gr1 = [(1, 0), (1, 1)];

9. If α(λ) = 0, β(λ) = 0, then Gr1 = [0, 1]× [0, 1].

For the second player the following cases are possible:

1. If γ(µ) > 0, δ(µ) < 0, γ(µ) > −δ(µ), then
Gr2 = [(0, 0), (x(µ), 0)]

⋃
[(x(µ), 0), (x(µ), 1)]

⋃
[(x(µ), 1), (1, 1)];

2. If γ(µ) < 0, δ(µ) > 0, −γ(µ) > δ(µ), then
Gr2 = [(0, 1), (x(µ), 1)]

⋃
[(x(µ), 1), (x(µ), 0)]

⋃
[(x(µ), 0), (1, 0)];

3. If γ(µ) > 0, δ(µ) < 0, γ(µ) = −δ(µ), then
Gr2 = [(0, 0), (1, 0)]

⋃
[(1, 0), (1, 1)];

4. If γ(µ) < 0, δ(µ) > 0, −γ(µ) = δ(µ), then
Gr2 = [(0, 1), (1, 1)]

⋃
[(1, 1), (1, 0)];

5. If γ(µ) > 0, δ(µ) = 0, then Gr2 = [(0, 0), (0, 1)]
⋃

[(0, 1), (1, 1)];

10

Set of Pareto-Nash equilibria

6. If γ(µ) < 0, δ(µ) = 0, then Gr2 = [(0, 1), (0, 0)]
⋃

[(0, 0), (1, 0)];

7. If γ(µ) > 0, δ(µ) < 0, γ(µ) < −δ(µ) or γ(µ) < 0, δ(µ) < 0 or
γ(µ) = 0, δ(µ) < 0, then Gr2 = [(0, 0), (1, 0)];

8. If γ(µ) < 0, δ(µ) > 0, −γ(µ) < δ(µ) or γ(µ) > 0, δ(µ) > 0 or
γ(µ) = 0, δ(µ) > 0, then Gr2 = [(0, 1), (1, 1)];

9. If γ(µ) = 0, δ(µ) = 0, then Gr2 = [0, 1]× [0, 1].

Note. For drawing the graphs, the expressions α(0), β(0), y(0) and
α(1), β(1), y(1) are calculated for the first player and γ(0), δ(0), x(0)
and γ(1), δ(1), x(1) for the second player. When the player’s graph
depends only on one of the matrix, it is constructed exactly as in the
case of Nash equilibrium [2]. If the expressions y(0) and y(1) do not
depend on parameter λ and y(0) = y(1), the graph of the first player
will be all the square [0, 1]× [0, 1]. The similar argument is true for the
second player.

Based on the above, Gr1 and Gr2 can be drawn.
The set of Pareto-Nash equilibria (PNE) is obtained as the inter-

section of the player’s graphs, that is PNE = Gr1
⋂

Gr2.

Example 2. Consider the following matrices:

(A,B) =
(

4, 3 7, 7
6, 6 8, 4

)
; (C, D) =

(
5,−1 2, 4
4, 3 6, 2

)
.

After simplifications, the synthesis functions of the players are:

F1(x, y) = [(5λ− 6)y − 4λ + 3]x + (4λ + 10)y + 4λ + 4,

F2(x, y) = [(11µ− 6)x− 3µ + 1]y + (2µ + 6)x + 4µ + 2.

In conformity with the described method, the following 4 steps are
provided:

1. α(λ) = 5λ − 6, β(λ) = −4λ + 3, y(λ) = 4λ−3
5λ−6 ; γ(µ) = 11µ − 6,

δ(µ) = −3µ + 1, x(µ) = 3µ−1
11µ−6 .

11

V. Lozan, V. Ungureanu

2. The values λα and µγ are the solutions of equations α(λ) = 0 and
γ(µ) = 0, respectively. λα = 6

5 6∈ (0, 1) and µγ = 6
11 ∈ (0, 1).

3. The values on the interval extremities are calculated:

(a) y(0) = 1
2 , α(0) = −6 < 0, β(0) = 3 > 0 and −α(0) > β(0) -

the case 2; y(1) = −1, α(1) = −1 < 0 and β(1) = −1 < 0
- the case 7. The lines are drawn and the interval between
them is hatched. The following result is obtained

Gr1 = Rectangle : [(0, 0), (0, y(0)), (1, y(0)), (1, 0)]
⋃

[(0, 0), (0, 1)],

where y(0) = 1
2 .

(b) x(0) = 1
6 ∈ (0, 1), γ(0) = −6 < 0, δ(0) = 1 > 0 and

−γ(0) > δ(0) - the case 2; x(1) = 2
5 ∈ (0, 1), γ(1) = 5 > 0,

δ(0) = −2 < 0 and γ(0) > −δ(0) - the case 1. The respective
lines are drawn and the interval between the respective sides
of the square is hatched [0, 1]× [0, 1]. The following result is
obtained

Gr2 = Rectangle : [(0, 0), (0, 1), (x(0), 1), (x(0), 0)]
⋃

Rectangle : [(1, 0), (1, 1), (x(0), 1), (x(0), 0)]
⋃

[(0, 0), (1, 0)],

where x(0) = 1
6 and x(1) = 2

5 .

4. By determining the intersection of the graphs obtained above, the
following set of Pareto-Nash equilibrium in mixed strategies is
obtained:

PNE = [(0, 1), (0, 0)]
⋃

[(0, 0), (1, 0)]
⋃

Rectangle :
[
(0, 0),

(
0,

1
2

)
,

(
1
6
,
1
2

)
,

(
1
6
, 0

)]⋃

Rectangle :
[(

2
5
, 0

)
,

(
2
5
,
1
2

)
,

(
1,

1
2

)
, (1, 0)

]
.

12

Set of Pareto-Nash equilibria

6 Wolfram Mathematica Program for Two Cri-
teria Dyadic Games with Mixed Strategies

The method of graph intersection was realized as Wolfram Mathemat-
ica Program for Two Criteria Dyadic Games with Mixed Strategies.
The program was published on Wolfram Demonstration Project [6]. It
may be used online, after the installation of CDF player. The program
code may be downloaded at the same address [6], also. The results
obtained in the example 2 may be tested online at the same address
[6].

7 Concluding remarks

By applying the generalization of the well known notions and by apply-
ing the combination of the synthesis function method and the method
of intersection of best response graph, the conditions for the Pareto-
Nash solutions existence are deduced. The method for determining
Pareto-Nash Equilibrium Set in dyadic two criteria games with mixed
strategy is clarified from elaboration to final Wolfram Mathematica
Program publication. Illustration examples are presented for easier
reading. Since the investigated problems have an exponential com-
plexity, a further development of the method in games with bigger
dimensions, with implication of the computer science technologies, will
be welcome.

References

[1] V.V. Podinovskii, V.D. Noghin, Pareto-optimal decisions in mul-
ticriteria optimization problems., Nauka, Moscow (1982) (in Rus-
sian).

[2] M. Sagaidac, V. Ungureanu, Operational research. Chisinau, CEP
USM (2004), pp. 178–256.

13

V. Lozan, V. Ungureanu

[3] V. Ungureanu, Nash equilibrium set computing in finite extended
games. Computer Science Journal of Moldova, 14 (2006), pp. 345–
365.

[4] V. Ungureanu, Solution principles for simultaneous and sequential
games mixture. ROMAI Journal, 4 (2008), pp. 225–242.

[5] V. Lozan, V. Ungureanu, Principles of Pareto-Nash equilibrium.
Studia Universitatis, 7 (2009), pp. 52–56.

[6] V. Lozan, V. Ungureanu, Pareto-Nash Equilibria
in Bicriterial Dyadic Games with Mixed Strategies.
http://demonstrations.wolfram.com/ParetoNashEquilibriaIn
BicriterialDyadicGamesWithMixedStrateg/, Wolfram Demon-
strations Project, Published: October 13, 2011.

Victoria Lozan, Valeriu Ungureanu, Received October 23, 2011

Victoria Lozan
State University of Moldova
A. Mateevici str., 60, Chişinău, MD-2009, Republic of Moldova
E–mail: victoria@gmail.com

Valeriu Ungureanu
State University of Moldova
A. Mateevici str., 60, Chişinău, MD-2009, Republic of Moldova
E–mail: v.ungureanu@ymail.com

14

Computer Science Journal of Moldova, vol.20, no.1(58), 2012

Analytically determining of the relative

inaccuracy (error) of indirectly measurable

variable and dimensionless scale characterising

quality of the experiment ∗

Kiril Kolikov, Georgi Krastev†,
Yordan Epitropov, Andrei Corlat

Abstract

In the following paper we present an easily applicable new
method for analytical representation of the maximum relative
inaccuracy (error) of an indirectly measurable variable f =
f(x1, x2, ..., xn) as a function of the maximum relative inaccu-
racies (errors) of the directly measurable variables x1, x2, ..., xn.
Our new approach is more adequate for the objective real-
ity. The gist of it is that in order to find the analyti-
cal form of the maximum relative inaccuracy of the variable
f we take for being fixed variables statistical mean values∣∣∣∣
x1

f
· ∂f

∂x1

∣∣∣∣,
∣∣∣∣
x2

f
· ∂f

∂x2

∣∣∣∣, ...,
∣∣∣∣
xn

f
· ∂f

∂xn

∣∣∣∣ of the modules of the coeffi-

cients of influence of relative inaccuracies
∆x1

x1
,

∆x2

x2
, ...,

∆xn

xn
in

f . The numerical value of the maximum relative inaccuracy of
the variable f is found using the statistical mean values of the ab-

solute values of the relative inaccuracies
∣∣∣∣
∆x1

x1

∣∣∣∣,
∣∣∣∣
∆x2

x2

∣∣∣∣, ...,
∣∣∣∣
∆xn

xn

∣∣∣∣.
Moreover, we look into functions which are continuous but are
not differentiable in respect to certain arguments in some points.
Having this in mind we develop the theory of errors, which we
will call with what we feel is a more precise term – theory of in-
accuracies. We introduce some new terms – space of the relative

c©2012 by K. Kolikov, G. Krastev†, Y. Epitropov, A. Corlat
∗This work was supported by the Fund ”Scientific Studies” of the Bulgarian

Ministry of Education, Youth and Science as part of the contract DTK 02/35

15

K. Kolikov, G. Krastev†, Y. Epitropov, A. Corlat

inaccuracy and plane of the relative inaccuracy of f . We also
define a sample plane of the ideal absolutely accurate experiment
and using it we define a universal numerical characteristic – a di-
mensionless scale for evaluation of the quality (accuracy) of the
experiment.

Keywords: Indirectly measurable variable, maximum rela-
tive error, dimensionless scale.

1 Introduction

Many natural and social processes are described by indirectly mea-
surable variables dependent on a finite number of directly measurable
variables. As it is known, the measuring of the values of each directly
measurable variable is accompanied by inaccuracies. With respect to
their alteration characteristics, the inaccuracies are systematic or ran-
dom [1].

The systematic inaccuracies are permanent or their alteration can
be described by a law. They are the result of certain constant influences
which cannot be foreseen. Towards the random accuracies we shall
also account what we call hidden inaccuracies that are the result of
influences of measured active objects [2] that appear in a time interval
and change the natural progress of the observed process (such as objects
that have their own sources of energy; living organisms with their own
will, etc.).

Thus each measurable variable is determined with a total inac-
curacy that is caused by both systematic and random inaccuracies.
Therefore, it is of great importance to develop a reliable method for
finding the total inaccuracy of given measurable variable.

In respect of the way a certain inaccuracy is represented it can
be absolute or relative. An absolute inaccuracy is expressed in units of
the measured variable. A relative inaccuracy is a dimensionless variable
and is represented by the ratio of the absolute inaccuracy and the value
of the measured experimental variable.

Usually the processes that are being studied are mathematically
modelled with real functions that are differentiable in their domains.

16

Analytically determining of the relative inaccuracy (error) of . . .

(Even non-continuous functions can be viewed as differentiable in a
certain sense.)

Here is a real differentiable function

f = f(x1, x2, ..., xn) 6= 0 (1)

of n real independent variables x1, x2, ..., xn, which help one to be able
to model directly measurable variables (with the help of measuring
tools or methods). Then the function f models one indirectly measur-
able variable.

In order to calculate the absolute and the relative inaccuracies of in-
directly measurable variable f which has continuous first partial deriva-
tives in respect to all its variables there are two principles [3, 4, 5] given
in scientific and academic literature.

The first principle gives the maximum absolute inaccuracy ∆f of
the function f . Initially we have to determine the full differential

df =
n∑

i=1

∂f

∂xi
dxi (2)

of the function (1). When the inaccuracies of the measurements are
small enough in formula (2) the differential d can be replaced with the
finite difference ∆, and in this substitution every minus is replaced with
a plus to reach the maximum value of the inaccuracy. Thus one obtains

∆f =
n∑

i=1

∣∣∣∣
∂f

∂xi

∣∣∣∣ · |∆xi| , (3)

where ∆xi is the maximum absolute inaccuracy of the directly mea-
sureable variable xi(i = 1, 2, ..., n). The maximum relative inaccuracy
fr is then determined by the expression

fr =
∆f

|f | =
1
|f |

n∑

i=1

∣∣∣∣
∂f

∂xi

∣∣∣∣ · |∆xi| . (4)

17

K. Kolikov, G. Krastev†, Y. Epitropov, A. Corlat

By the second principle, we initially find the maximum relative in-
accuracy fr of the function f . In order to do this, we find the logarithm
of the function (1) and then we determine full differential of the result.
Further we replace the differential d in the same way with the finite
difference ∆ and again replace every minus with a plus to reach the
maximum value of the inaccuracy. Thus, we get the maximum rel-
ative inaccuracy fr. Then the maximum absolute inaccuracy ∆f is
determined from the expression ∆f = f · fr.

Since in the set of real numbers we can find only the logarithms of
positive variables, the second principle limits the class of functions for
which we can find the respective inaccuracies.

In [1], based solely on differentiation we define a simple method
for representing the maximum absolute (total) inaccuracy of an indi-
rectly measurable variable f(x1, x2, ..., xn) as a function of the maxi-
mum absolute (total) inaccuracies of the directly measurable variables
x1, x2, ..., xn. Based on this method we introduce a numerical charac-
teristic – dimensionless scale for evaluation of the quality (accuracy) of
the experiment.

The purpose of this paper is to apply this procedure for the maxi-
mum relative inaccuracy of f(x1, x2, ..., xn). Moreover, we extend the
type of the function f by also looking into the case when it is not
differentiable but is continuous in respect to some arguments in some
points.

2 Analytic representation of the maximum rel-
ative inaccuracy of an indirectly measurable
variable

Firstly, let the function f has continuous partial derivatives in respect
to all its variables. Let us present formula (4) in this way

fr =
n∑

i=1

∣∣∣∣
xi

f
· ∂f

∂xi

∣∣∣∣ ·
∣∣∣∣
∆xi

xi

∣∣∣∣ (xi 6= 0, i = 1, 2, ..., n). (5)

This shows that evaluation of the relative inaccuracy of the indi-

18

Analytically determining of the relative inaccuracy (error) of . . .

rectly measurable variable f(x1, x2, ..., xn) is dependant not only on
the relative inaccuracies with which the directly measureable vari-
ables x1, x2, ..., xn are determined, but also on the analytical form
of the function f itself. For i = 1, 2, ..., n every addend of the form∣∣∣∣
xi

f
· ∂f

∂xi

∣∣∣∣ ·
∣∣∣∣
∆xi

xi

∣∣∣∣ is the partial relative inaccuracy of the result of the

indirect measurement of the function f , caused by the inaccuracy
∆xi

xi
with which the variable xi is determined.

The variable
∣∣∣∣
xi

f
· ∂f

∂xi

∣∣∣∣ is in fact the coefficient of influence of

the inaccuracy
∆xi

xi
when determining the relative inaccuracy of

f(x1, x2, ..., xn).

Let us now assume the function f(x1, x2, ..., xn) is not differentiable
in respect to its argument xk (1 ≤ k ≤ n) in some points akj , but is
continuous in respect to this argument in akj . The partial derivative
∂f

∂xk
does not exist in the points akj .

However, if for f there are right and left derivatives given xk → akj ,
then in order to compute the maximum relative inaccuracy in the for-

mula (5) the variable
∂f

∂xk
is replaced by the one of the two limits in

which the coefficient of influence
∣∣∣∣
xk

f
· ∂f

∂xk

∣∣∣∣ has greater value. (The

values of the two limits are different, otherwise f would be differ-
entiable in respect to xk). An example for such function would be
f = A arcsin(sinx) representing the voltage of triangle signal [6]. In
Figure 1 we have shown the graphics of the function when A = 500 V

and x = 2πvt ∈
[
0,

13
4

π

]
, where v = 15 kHz is the linear frequency

and t is the time.

19

K. Kolikov, G. Krastev†, Y. Epitropov, A. Corlat

-
x

6f

0 π 2π 3π

−250π

250π

¢
¢
¢
¢
¢¢A

A
A
A
A
A
A
A
A
AA¢

¢
¢
¢
¢
¢
¢
¢
¢
¢¢A

A
A
A
A
A
A

Figure 1. Graphics of the function f = 500 arcsin(sinx), x ∈
[
0,

13
4

π

]

We would like to point out that this procedure for indifferentiable
but continuous functions in respect to its arguments in some points is
proposed for the first time in the theory of inaccuracies.

Moreover, a novelty in our approach for determining the analyti-
cal form of the maximum relative (total) inaccuracy of the indirectly
measureable variable f(x1, x2, ..., xn) is that in formula (5) we take for

fixed variables the mean values
∣∣∣∣
x1

f
· ∂f

∂x1

∣∣∣∣,
∣∣∣∣
x2

f
· ∂f

∂x2

∣∣∣∣, ...,
∣∣∣∣
xn

f
· ∂f

∂xn

∣∣∣∣ of

the absolute values of the coefficients of influence of the relative inaccu-
racies

∆x1

x1
,
∆x2

x2
, ...,

∆xn

xn
of the indirectly measurable variable f and

the maximum relative inaccuracies
∆x1

x1
,
∆x2

x2
, ...,

∆xn

xn
of the directly

measurable variables x1, x2, ..., xn are considered to be variables.
Thus according to (5) the maximum relative inaccuracy fr of the

indirectly measurable variable f is a linear function of the maximum rel-

ative inaccuracies
∆x1

x1
,
∆x2

x2
, ...,

∆xn

xn
of the directly measurable vari-

ables x1, x2, ..., xn.

If we look at
∆x1

x1
,
∆x2

x2
, ...,

∆xn

xn
,±fr as a system of generalized

orthogonal coordinates, for n > 2 we get an n + 1-dimensional metric
hyperspace Fn+1

r , where (5) is the equation of a hyperplane that passes
through the origin of the coordinate system. The hyperspace Fn+1

r will

20

Analytically determining of the relative inaccuracy (error) of . . .

be called space of the relative inaccuracy of f , and fr will be called plane
of the relative inaccuracy of f .

For n = 2, according to formula (5) we have

fr =
∣∣∣∣
x1

f
· ∂f

∂x1

∣∣∣∣ ·
∣∣∣∣
∆x1

x1

∣∣∣∣ +
∣∣∣∣
x2

f
· ∂f

∂x2

∣∣∣∣ ·
∣∣∣∣
∆x2

x2

∣∣∣∣ .

Thus the equation fr = fr

(
∆x1

x1
,
∆x2

x2

)
is an equation of the plane of

the relative inaccuracy in the three-dimensional metric space F 3
r of the

relative inaccuracy of f .
For n = 1 formula (5) becomes

fr =
∣∣∣∣
x

f
· ∂f

∂x

∣∣∣∣ ·
∣∣∣∣
∆x

x

∣∣∣∣ .

Thus the equation fr = fr

(
∆x

x

)
is an equation of the line of the rela-

tive inaccuracy in the two-dimensional metric space F 2
r of the relative

inaccuracy of f .
The term space of the relative inaccuracy is introduced for the first

time in this paper. Moreover, as we pointed in [1], in a certain sense it
is an analogy of the imaginary configurative space in the Hamiltonian
reformulation of the classical mechanics [7]. In that same sense the sys-

tem
∆x1

x1
,
∆x2

x2
, ...,

∆xn

xn
,±fr can be viewed as generalised orthogonal

coordinates.

3 Determining the numerical value of the max-
imum relative inaccuracy of an indirectly
measurable variable

Let us have an experiment where k measurements of the directly mea-
sureable variables x1, x2, ..., xn are made. On the m-th measurement
(m = 1, 2, ..., k) the absolute values of the coefficients of influence

21

K. Kolikov, G. Krastev†, Y. Epitropov, A. Corlat

∣∣∣∣
x1

f
· ∂f

∂x1

∣∣∣∣
m

,

∣∣∣∣
x2

f
· ∂f

∂x2

∣∣∣∣
m

, ...,

∣∣∣∣
xn

f
· ∂f

∂xn

∣∣∣∣
m

and of the relative inaccura-

cies
∣∣∣∣
∆x1

x1

∣∣∣∣
m

,

∣∣∣∣
∆x2

x2

∣∣∣∣
m

, ...,

∣∣∣∣
∆xn

xn

∣∣∣∣
m

are calculated. After this the mean

values
∣∣∣∣
xj

f
· ∂f

∂xj

∣∣∣∣ =
1
k

k∑

m=1

∣∣∣∣
xj

f
· ∂f

∂xj

∣∣∣∣
m

(j = 1, 2, ..., n) are calculated

and from formula (5) one can get the analytical representation (equa-
tion) of the plane of the inaccuracies.

Furthermore, if
∣∣∣∣
∆xi

xi

∣∣∣∣ =
1
k

k∑

m=1

∣∣∣∣
∆xi

xi

∣∣∣∣
m

, then according to formula

(5) the numerical value of the maximum relative inaccuracy

fr =
n∑

i=1

∣∣∣∣
xi

f
· ∂f

∂xi

∣∣∣∣ ·
∣∣∣∣
∆xi

xi

∣∣∣∣

is determined, as the point

(∣∣∣∣
∆x1

x1

∣∣∣∣,
∣∣∣∣
∆x2

x2

∣∣∣∣, ...,
∣∣∣∣
∆xn

xn

∣∣∣∣, fr

)
lies in the

plane of the relative inaccuracy.
The function f(x1, x2, ..., xn) can be considered as a random vari-

able of random independent variables. In that sense the suggested by
us method for computing fr is more adequate to the objective real-
ity because the statistical mean value of a random variable is actually
its most probable value. Again in that sense the plane of the relative
inaccuracy of f is a stochastic plane.

The numerical value of the maximum absolute inaccuracy ∆f of
the experiment can be determined directly using [1] or using formula
(4) and the known numerical value of fr.

If the function f(x1, x2, ..., xn) is not differentiable in respect to
an argument xk (1 ≤ k ≤ n) in some points akj , but is continuous
in respect to this argument in akj , then the method is applied to the
maximum absolute inaccuracy analogically to the already described
way.

22

Analytically determining of the relative inaccuracy (error) of . . .

4 Scale characterising the quality of the exper-
iment

It is very important and advantageous for every measuring method
to have a numerical characteristic – a scale which is used to evaluate
the quality of the experiment, i. e. its accuracy. For the first time
in the theory of the inaccuracies we suggested this kind of scale in
[1]. Here we suggest analogical scale which has the important property
dimensionless, i. e. the quality of the experiment is expressed only
with a number, not with the units of measurements.

Let us look at the stochastic plane α of the relative inaccuracy of
f . According to (5) its general equation is of the following type

α :
n∑

i=1

Ai ·
∣∣∣∣
∆xi

xi

∣∣∣∣− fr = 0,

where Ai =
∣∣∣∣
xi

f
· ∂f

∂xi

∣∣∣∣ = const ≥ 0. As we have already emphasised,

this is the equation of a hyperplane in the hyperspace Fn+1
r going

through the beginning of the coordinate system.
Let us also take a look at the hyperplane

ε : fr = 0.

It is obvious that the equation fr = 0 is possible if and only if
x1

f
· ∂f

∂x1
=

x2

f
· ∂f

∂x2
= ... =

xn

f
· ∂f

∂xn
= 0, i. e. if and only if

∂f

∂x1
=

∂f

∂x2
= ... =

∂f

∂xn
= 0. Thus we take ε for sample plan in the

space of the relative inaccuracy which represents an imaginary ideal
perfectly accurate experiment even though this experiment is impossi-
ble and the sample plane ε is unreachable. However, by increasing the
accuracy of the real experiment the plane α approximates ε. Thus the
smaller the deviation of the plane α of the experiment from the sample
plane ε of the ideal experiment is, i. e. the smaller the angle between
these two planes is, the more accurate the experiment is. This angle

23

K. Kolikov, G. Krastev†, Y. Epitropov, A. Corlat

can be always calculated as it is equal to the angle between the normal
vectors −→nα(A1, A2, ..., An,−1) of the plane α and −→nε(0, 0, ..., 0,−1) of
the plane ε. Then the value of the cosine

kα = cos∠(−→nα,−→nε) =
1√

A2
1 + A2

2 + ... + A2
n + 1

(6)

of this angle can be chosen for a coefficient of accuracy in a dimen-
sionless scale, i. e. for a numerical characteristic of the quality of the
experiment.

The scale for evaluating the quality of the experiment is the interval
[0, 1]. An experiment is as accurate as the value of the coefficient of
accuracy kα is closer to 1 and is as inaccurate as the value of the
coefficient of accuracy kα is closer to 0. The value kα = 1 represents
the ideal perfectly accurate experiment and the value kα = 0 – the
ideal absolutely inaccurate experiment.

Then from formula (6) we get the following
Criterion for accuracy of an experiment – An experiment is as ac-
curate as possible if and only if the sum of the squares of the coefficients

A2
1 + A2

2 + ... + A2
n =

(
x1

f
· ∂f

∂x1

)2

+
(

x2

f
· ∂f

∂x2

)2

+ ... +
(

xn

f
· ∂f

∂xn

)2

is the least possible.
The accuracy of the experiment can, of course, be interpreted using

the angle between the stochastic plane α of the relative inaccuracy
and the sample plane ε. Then the scale for evaluating the quality of
the experiment is the interval

[
0,

π

2

]
. An experiment is as accurate

as the value of arccos kα is closer to 0, and is as inaccurate as the
value of arccos kα is closer to

π

2
. The value 0 corresponds to the ideal

perfectly accurate experiment and the value
π

2
– to the ideal absolutely

inaccurate experiment.
We take for basic scale the interval [0, 1] and for basic measurement

of the accuracy of the experiment the value of the coefficient of accu-
racy kα = cos∠(−→nα,−→nε) since both of them are dimensionless variables
contrary to the second scale and measurement which are measured in
radians.

24

Analytically determining of the relative inaccuracy (error) of . . .

5 An example and computations

We will present an example which illustrates our method and scale. It
is known that the coefficient η of the viscosity of a liquid with density
ρ can be determined using the Stokes’ method when a sphere with
radius r and density ρ1 is put in a cylindrical container filled in with
the examined liquid. In a given moment of time the sphere starts to
descent steadily with a constant speed ν and its weight is the same as
the buoyancy and the force of internal friction (viscosity) of the liquid

as the following holds η =
2r2g

9ν
(ρ1 − ρ), where g = 9.8 m·s−2 is the

gravity of Earth.

We made an experiment for measuring the viscosity of glycerine
(under temperature t = 18o C) using lead spheres having measured the
density of the glycerine and the lead in advance. In Table 1 experi-
mental data from the measurements and the corresponding calculated
values of the viscosity with accuracy of four digits in the decimal part
are given.

Table 1. Experimental data from the measurements of the viscosity of
glycerine using the Stokes’ method.

m-th
mea-
sure-
ment

rm[m] νm[m·s−1] ρm[kg·m−3] ρ1m[kg·m−3] ηm[Pa·s]

1 5× 10−4 4.54×10−3 1.262×103 1.1341×104 1.2087
2 5× 10−4 4.52×10−3 1.262×103 1.1341×104 1.214
3 5× 10−4 4.5× 10−3 1.262×103 1.1341×104 1.2194
4 4.8×10−4 4.22×10−3 1.26× 103 1.134× 104 1.1944
5 4.8×10−4 4.2× 10−3 1.26× 103 1.134× 104 1.2003

25

K. Kolikov, G. Krastev†, Y. Epitropov, A. Corlat

5.1 Computing the maximum relative inaccuracy ηr, us-
ing the classical method

According to (4) we have

ηr =
∣∣∣∣
2
r

∣∣∣∣ · |∆r|+
∣∣∣∣
1
ν

∣∣∣∣ · |∆ν|+
∣∣∣∣

1
ρ1 − ρ

∣∣∣∣ · |∆ρ|+
∣∣∣∣

1
ρ1 − ρ

∣∣∣∣ · |∆ρ1|.

We firstly compute the mean values

r =
1
5

5∑

m=1

rm = 4.92× 10−4 m,

ν =
1
5

5∑

m=1

νm = 4.396× 10−3 m · s−1,

ρ =
1
5

5∑

m=1

ρm = 1.2612× 103 kg ·m−3,

ρ1 =
1
5

5∑

m=1

ρ1m = 1.13406× 104 kg ·m−3.

Then |∆r|1 = |r1 − r| = 0.08 × 10−4 m, |∆ν|1 = |ν1 − ν| =
= 0.144 × 10−3 m·s−1, |∆ρ|1 = |ρ1 − ρ| = 0.0008 × 103 kg·m−3,
|∆ρ1|1 = |ρ11 − ρ1| = 0.00004× 104 kg·m−3 and thus we get the value
of

ηr,1 =
2
r1
·|∆r|1+

1
ν1
·|∆ν|1+

1
ρ11 − ρ1

·|∆ρ|1+
1

ρ11 − ρ1
·|∆ρ1|1 = 0.0779.

Analogically, we compute ηr,2 = 0.0737, ηr,3 = 0.0694, ηr,4 = 0.1172,

ηr,5 = 0.1224. We finally get ηr =
1
5

5∑

m=1

ηr,m = 0.0921.

26

Analytically determining of the relative inaccuracy (error) of . . .

5.2 Computing the maximum relative inaccuracy ηr, us-
ing the method introduced by us

According to Section 2 under the same measurements we compute

the absolute values of the coefficients of influence
∣∣∣∣
r

η
· ∂η

∂r

∣∣∣∣ = 2,
∣∣∣∣
ν

η
· ∂η

∂ν

∣∣∣∣ = 1,
∣∣∣∣
ρ

η
· ∂η

∂ρ

∣∣∣∣
m

=
ρm

ρ1m − ρm
,

∣∣∣∣
ρ1

η
· ∂η

∂ρ1

∣∣∣∣
m

=
ρ1m

ρ1m − ρm
and

the ones of the relative inaccuracies
∣∣∣∣
∆r

r

∣∣∣∣
m

,

∣∣∣∣
∆ν

ν

∣∣∣∣
m

,

∣∣∣∣
∆ρ

ρ

∣∣∣∣
m

,

∣∣∣∣
∆ρ1

ρ1

∣∣∣∣
m

.

The results can be seen in Table 2.

Table 2. The values of the non-constant coefficients of influence and
the relative inaccuracies of the variables in the experiment

m-th
mea-
sure-
ment

∣∣∣∣
ρ

η
· ∂η

∂ρ

∣∣∣∣
m

∣∣∣∣
ρ1

η
· ∂η

∂ρ1

∣∣∣∣
m

∣∣∣∣
∆r

r

∣∣∣∣
m

∣∣∣∣
∆ν

ν

∣∣∣∣
m

∣∣∣∣
∆ρ

ρ

∣∣∣∣
m

∣∣∣∣
∆ρ1

ρ1

∣∣∣∣
m

1 0.1252 1.1252 0.016 0.0317 6.339× 10−4 3.52× 10−5

2 0.1252 1.1252 0.016 0.0274 6.339× 10−4 3.52× 10−5

3 0.1252 1.1252 0.016 0.0231 6.339× 10−4 3.52× 10−5

4 0.125 1.125 0.025 0.0417 9.523× 10−4 5.29× 10−5

5 0.125 1.125 0.025 0.0467 9.523× 10−4 5.29× 10−5

We compute the statistical mean values

∣∣∣∣
ρ

η
· ∂η

∂ρ

∣∣∣∣ =
1
5

5∑

m=1

∣∣∣∣
ρ

η
· ∂η

∂ρ

∣∣∣∣
m

= 0.1251,

∣∣∣∣
ρ1

η
· ∂η

∂ρ1

∣∣∣∣ =
1
5

5∑

m=1

∣∣∣∣
ρ1

η
· ∂η

∂ρ1

∣∣∣∣
m

= 1.1251.

Then according to (5) the analytical form of ηr is

ηr = 2
∣∣∣∣
∆r

r

∣∣∣∣ +
∣∣∣∣
∆ν

ν

∣∣∣∣ + 0.1251
∣∣∣∣
∆ρ

ρ

∣∣∣∣ + 1.1251
∣∣∣∣
∆ρ1

ρ1

∣∣∣∣ .

27

K. Kolikov, G. Krastev†, Y. Epitropov, A. Corlat

Following Section 3 we compute the statistical mean values∣∣∣∣
∆r

r

∣∣∣∣ =
1
5

5∑

m=1

∣∣∣∣
∆r

r

∣∣∣∣
m

= 0.0196,

∣∣∣∣
∆ν

ν

∣∣∣∣ =
1
5

5∑

m=1

∣∣∣∣
∆ν

ν

∣∣∣∣
m

= 0.0341,

∣∣∣∣
∆ρ

ρ

∣∣∣∣ =
1
5

5∑

m=1

∣∣∣∣
∆ρ

ρ

∣∣∣∣
m

= 7.6126 × 10−4 and
∣∣∣∣
∆ρ1

ρ1

∣∣∣∣ =
1
5

5∑

m=1

∣∣∣∣
∆ρ1

ρ1

∣∣∣∣
m

=

= 4.228 × 10−5. For numerical value of the maximum relative inaccu-

racy we get ηr = 2
∣∣∣∣
∆r

r

∣∣∣∣ +
∣∣∣∣
∆ν

ν

∣∣∣∣+ 0.1251
∣∣∣∣
∆ρ

ρ

∣∣∣∣ +1.1251
∣∣∣∣
∆ρ1

ρ1

∣∣∣∣ = 0.0734.

We can see that there is a certain difference between the classic
method and our method which gives more adequate to the reality re-
sults.

Furthermore, let A1 =
∣∣∣∣
∂η

∂r

∣∣∣∣ = 2, A2 =
∣∣∣∣
∂η

∂ν

∣∣∣∣ = 1,

A3 =
∣∣∣∣
∂η

∂ρ

∣∣∣∣ = 0.1251 and A4 =
∣∣∣∣
∂η

∂ρ1

∣∣∣∣ = 1.1251. According to Sec-

tion 4 the stochastic plane α of the relative inaccuracy of η in the

space
(

∆r

r
,
∆ν

ν
,
∆ρ

ρ
,
∆ρ1

ρ1
,±ηr

)
of the relative inaccuracy has general

equation α : A1

∣∣∣∣
∆r

r

∣∣∣∣ + A2

∣∣∣∣
∆ν

ν

∣∣∣∣ + A3

∣∣∣∣
∆ρ

ρ

∣∣∣∣ + A4

∣∣∣∣
∆ρ1

ρ1

∣∣∣∣− ηr = 0, i. e.

α : 2
∣∣∣∣
∆r

r

∣∣∣∣ +
∣∣∣∣
∆ν

ν

∣∣∣∣ + 0.1251
∣∣∣∣
∆ρ

ρ

∣∣∣∣ + 1.1251
∣∣∣∣
∆ρ1

ρ1

∣∣∣∣− ηr = 0.

According to (6) the value of the coefficient of accuracy of the ex-
periment is

kα = cos∠(−→nα,−→nε) =
1√

A2
1 + A2

2 + A2
3 + A2

4 + 1
= 0.3706.

Conclusion 1. The experiment is not very accurate because the
coefficient of accuracy kα is closer to 0, not 1. It is important to point
out that this does not necessarily mean that the experimental data for
the directly measurable variables are very inaccurate. But when these

conditions are met, small alterations of the values of the variables
∆ρ

ρ

28

Analytically determining of the relative inaccuracy (error) of . . .

and
∆ρ1

ρ1
lead to substantial alterations of the values of the function

ηr = ηr

(
∆r

r
,
∆ν

ν
,
∆ρ

ρ
,
∆ρ1

ρ1

)
.

Conclusion 2. The Criterion for accuracy from Section 4 gives
conditions under which the accuracy of the experiment can be in-
creased, namely: to select such values of the directly measureable vari-
ables ρ and ρ1, under which the values of the coefficients of influence
ρ

η
· ∂η

∂ρ
=

ρ

ρ1 − ρ
and

ρ1

η
· ∂η

∂ρ1
=

ρ1

ρ1 − ρ
are smaller, i. e. the accuracy

of the experiment can be increased if the sphere which is put in the
glycerine is with higher density. It is important to point out that if that
condition was met, this does not mean that the experimental data for
ρ and ρ1 were going to be more accurate, but that small alterations of

the values of the variables
∆ρ

ρ
and

∆ρ1

ρ1
would lead to small alterations

of the values of the function ηr = ηr

(
∆r

r
,
∆ν

ν
,
∆ρ

ρ
,
∆ρ1

ρ1

)
.

6 Discussion

The advantages of the presented in this paper method for analytically
representing the maximum relative inaccuracy of an indirectly measur-
able variable and for computing its value can be summarised in the
following basic directions.

(i) More adequate to the objective reality quantity value of the
maximum relative inaccuracy of the indirectly measureable variable.

(ii) Using the Criterion of the accuracy of the experiment, the
method shows conditions under which the accuracy of the experiment
is the greatest possible one.

(iii) Universality, because this method can be applied in different
scientific fields, in experiments held using various utensils and methods,
in mathematical models described even with indifferential functions.

(iv) Clarity and observability of the results when n = 1 or n = 2
using a computer generated graphical representation, accordingly, using
a line or a plane.

29

K. Kolikov, G. Krastev†, Y. Epitropov, A. Corlat

We have to point out that natural processes are described by contin-
uous functions which are either differentiable or indifferentiable in some
points, but there are left and right derivatives in these points. How-
ever, in mathematical models describing these processes this might not
be the case. In these models the method is not applicable.

Each utensil for measurement measures a real and not mathemati-
cally modeled variable. The real variables are always finite and no mat-
ter how fast (or even explosive) their alteration is, it is never (strictly)
jumping but rather smooth in a small enough interval of time. The
representations of jumps in the behavior of a function and of an in-
finite value of a real variable are only theoretical (model). They are
reasonable abstractions when describing the objective reality.

Moreover, the dimensionless scale of the quality of an experiment
gives an opportunity for:

(i) Quality evaluation of the experiment;
(ii) Comparison between the efficiency of different experimental

methods in one research can be compared. Moreover, the method
makes it possible to even compare the efficiency of experimental meth-
ods from different scientific fields.

7 Conclusion

While in the classical method the mean arithmetic values of the in-
directly measurable variable fr are used, in our method we use the
statistical mean values of the random variables that f is composed of.
Thus we get the most probable value for fr.

Moreover, in practice the maximum relative inaccuracy of a mea-
surable variable finds a much wider application than the maximum
absolute relative inaccuracy because it is a dimensionless variable and
can be presented in percentages.

The suggested by us method is of great importance for every ex-
perimental science – physics, chemistry, biology, medicine, sociology,
economics, etc. in which the studied processes are described by dif-
ferentiable functions. Using it, not only more adequate to the reality
numerical value of the maximum relative inaccuracy can be determined

30

Analytically determining of the relative inaccuracy (error) of . . .

given a certain experiment, but also using the dimensionless scale a
quantity evaluation of the quality (accuracy) of the experiment can be
given and the conditions, under which this accuracy can be increased,
can be determined. The dimensionless scales used in the experimental
science have certain advantages compared to the unit ones. An im-
portant one is that results from measurements of essentially different
variables can be compared.

References

[1] K. Kolikov, G. Krastev, Y. Epitropov, D. Hristozov. Analytically
Determining of the Absolute Inaccuracy (Error) of Indirectly Mea-
surable Variable and Dimensionless Scale Characterising the Qual-
ity of the Experiment. Chemometr Intell Lab, 102 (2010), pp. 15–
19.

[2] K. Kolikov, G. Krustev. Hidden Parameters in the Laws of Motion
of Material Points. Scientific Research of the Union of Scientists in
Bulgaria – Plovdiv, series C. Technics and Technologies, Vol. VII.,
Union of Scientists, 60th Anniversary Jubilee Scientific Session,
November 4-5, 2008, pp. 232–237.

[3] J. Epperson. An Introduction to Numerical Methods and Analysis.
Wiley-Interscience, 2007.

[4] G. Squires. Practical Physics. Cambridge University Press, 2008.

[5] J. Taylor. An Introduction to Error Analysis: the Study of Un-
certainties in Physical Measurements. University Science Books,
1997.

[6] P. Horowitz, W. Hill. The Art of Electronics. Cambridge Univer-
sity Press, 1989.

[7] H. Goldstein, C. Poole, J. Safko. Classical Mechanics. Addison
Wesley, 2001.

31

K. Kolikov, G. Krastev†, Y. Epitropov, A. Corlat

Kiril Kolikov, Georgi Krastev†, Received November 14, 2011
Yordan Epitropov, Andrei Corlat

Kiril Kolikov
Plovdiv University ”P. Hilendarski”
24 Tzar Asen Street, 4000 Plovdiv, Bulgaria
Phone: +359 886966562
E–mail: kolikov@uni-plovdiv.bg

Yordan Epitropov
Plovdiv University ”P. Hilendarski”
24 Tzar Asen Street, 4000 Plovdiv, Bulgaria
Phone: +359 888854943
E–mail: epitropov@uni-plovdiv.bg

Andrei Corlat
Moldova State University
60 Alexei Mateevici Street, MD 2009, Chisinau, Moldova
Phone: +373 69173271
E–mail: an.corlat@gmail.com

32

Computer Science Journal of Moldova, vol.20, no.1(58), 2012

Mathematical modeling of high-speed loads
effects on underground storage tanks∗

Elena Gutuleac

Abstract

The purpose of this paper is to provide a numerical modeling
of intense dynamic loads on engineering materials. Numerical
results illustrate the evolution of the state of elastic-plastic shells
(filled with fluid or elastic-plastic material), which are subjected
to explosive loads.

Keywords: numerical modeling, elastic-plastic media, high-
speed loads, numerical method.

1 Introduction

The elements of thin-wall constructions are used in various fields of
engineering practice and most of them function in conditions of rather
high operational load [1-3]. These objects include different shell con-
tainers constructed of materials with diverse physical and mechanical
properties and intended to store flammable, toxic and chemical sub-
stances. Their stress-strain state exposed to a wide range of external
forces and force-majeure circumstances represents a significant interest
for analysis in order to level down the accidental risk and environmen-
tal impact. In this paper the behavior of shell containers deepened
in ground and exposed to intense dynamic loads is considered [4, 5].
To adequately describe all the processes arising under intense dynamic
loads of the material it is important to choose a particular mathemat-
ical model of the environment. This model should take into account
a noninvertible nature of deformation, the dependence on strain rates

c©2012 by E. Gutuleac
∗This work was supported by STCU project Ref. Nr. 4624

33

E. Gutuleac

and other processes associated with an explosive loading. The behavior
of various materials is described within the framework of state equa-
tion in the form of Mie-Gruneisen, taking into account the complex
stress-strain behavior of the matter. The ground is represented as a
three-component substance consisting of solid granules, water and air
[3]. Computer modeling of deformation under explosive loading sup-
poses setting a numerical method and obtaining a picture of internal
parameters’ evolution. In this paper following Wilkins [6-8] we con-
sider a second order accurate finite-difference scheme and provide its
modification to solving specific problems. The use of adaptive meshes,
parallel numerical algorithms and multiprocessor clusters allows one to
reduce computing time [9].

2 Setting of the problem and mathematical
model

Assume an underground container is subjected to explosive loading.
Note that explosives are situated inside and/or outside the shell. The
behavior of theses structures under intense dynamic loads is of unsteady
nature and is described with the help of environment models and phys-
ical laws of loading. Let us examine the dynamics of explosive load-
ing within the framework of two-dimensional model of elastic-plastic
medium and solve the following basic equations [6]:

σ′ = k0

(
εkk − αν (T − T0)− Λ

3

∫ ω

0

∂ω̇

∂σ
∂ω

)

(τ́ij)
∇ + λτ́ij = 2µ0 ˙eij , τ́ij τ́ij ≤ 2

3
Y 2

0 ,

ρc0Ṫ + αν σ̇T = τij ˙εij
p + Λω̇2 − divq̄, (1)

ω̇ = B(σ′ − σ∗)mH(σ′ − σ∗),

τij = Sij + Γεij , τ́ij = τij/(1− ω), σ′ = σ/(1− ω).

Here the symbol T denotes temperature; ρ – density; q̄ – heat trans-
fer rate; σij = σδij + sij – stress component, divided into two mutually

34

Mathematical modeling of high-speed loads effects on storage tanks

orthogonal tensors, spherical tensor σδij = σkkδij/3 and deviator sij ;
εij , ε

e
ij , ε

p
ij – elastic and plastic strain components; eii = εij − 1/3εkkδij

– strain deviator components; ω – structural parameter describing the
origin and growth of material’s vulnerability; H(x) – Heviside func-
tion; δii – Kronecker delta; k0 and µ0 – bulk modulus and shear modu-
lus of undamaged material; αν – cubic expansion coefficient; cσ – heat
at constant pressure; τij – components of the "active" stress tensor;
A,B, m,Γ – material’s characteristics. We assume εij = εe

ij + εp
ij and

εp
kk = 0, then plastic flow is incompressible. ∇ is a Yauman’s derivative
of tensor components:

S∇ij = Ṡij − Sikωjk − Sjkωik; (2)

ώij = 1/2(
∂νi

∂xj
− ∂νj

∂xi
),

ν – velocity components, x – Cartesian coordinates; λ is determined by
the Mises plastic’s:

λ = 0 in elastic region,
λ = 3µ0τ́ij ėijH(τ́ij ėij)/Y 2 in the region of plastic flow.

The model used in this work generalizes the Prandtl-Reiss elastoplastic
flow model along with the Mises plasticity criterion, as well as accounts
for the anisotropy of plastic deformation (for Γ 6= 0), the formation
of microdamages in rarefaction waves, and thermal effects [5]. It is
supposed that the flow limit Y , modules k0 and µ0 depend on the
temperature, pressure and other state parameters (Steinberg-Guinan
model) [7]:

Y = Y0(1 + βεp
u)n(1− bσ(

ρ0

ρ
)1/3 − h(T − T0)),

Y0(1 + βεp
u)n ≤ Ymax, Y0 = 0 at T > Tm, (3)

Tm = Tm0(
ρ0

ρ
)2/3 exp(2γ0(1− ρ0

ρ
)),

µ0 = µ00(1− bσ(
ρ0

ρ
)1/3 − h(T − T0)),

35

E. Gutuleac

where εp
u =

√
2εp

ijε
p
ij/3 – is the plastic deformation tensor intensity;

Tm – melting temperature of the material; Y0, Ymax, Tm0, β, b, γ0, µ00 –
material constants. It is considered that σ∗ = σ0∗Y/Y 0, σ0∗ is a material
constant. Numerical modeling of impulsive impacts gives a possibility
to neglect strain anisotropy of the materials (in case of adiabatic flow)
and to assume divq = 0 and Γ = 0 in equation (1). Thus from equation
(1) it follows that:

s∇ij + λsij = 2µėij , sijsij ≤ 2
3
Y 2. (4)

Equations (4) written for the deviator components of strain tensor are
amplified with state equation for the spherical part of strain tensor
σ = −p (p – pressure):

p = p(ρ, U), (5)

here U – specific internal energy. State equation is considered in Mie-
Gruneisen type [2,7] written in the form:

p = l1(1− ρ0

ρ
) + l2(1− ρ0

ρ
)2 + l3(1− ρ0

ρ
)3 + γ0ρ0U, (6)

where l1, l2, l3, γ0 are material constants that are known for the wide
class of materials used in calculations. The whole variety of grounds
with different mechanical and physical properties is presented as porous
multicomponent medium consisting of solid particles, liquid (water)
and gas (air). Characteristics of different types of grounds depend on
structure, shape and location of solid particles, percentage of gas and
liquid. Following Lyakhov, a ground is called non water-saturated (or
air-dry grounds) [3] if air content by volume is much higher than the
water content in it. Otherwise the ground is called water-saturated.
Thus the ground may be considered as three-component medium (solid
particles, water and air) and its characteristics depend on the volume
content of each component which can vary over a wide range. Let di

denote respectively a volume content of air (i = 1), water (i = 2),
and solid (i = 3) components in the ground. These values are related:
d1 + d2 + d3 = 1. If ρ0 is an initial density and p0 is an initial pressure

36

Mathematical modeling of high-speed loads effects on storage tanks

then

ρ0 =
3∑

i=1

diρi.

On this assumption, following Lyakhov, we have ground’s state equation
[3]:

ρ0

ρ
=

3∑

i=1

di[
ki(p− p0)

ρic2
i

+ 1]−
1
ki . (7)

Here ki – isentropic exponents, ci – sound velocities in these components
for the case of initial pressure (atmospheric pressure).

In actual numerical calculations instead of formula (7) it is more
convenient to use the dependence of pressure on density in an explicit
form. This dependence can be approximated by a cubic polynomial
with respect to compression µ = ρ0

ρ − 1 :

p = a0 + a1µ + a2µ
2 + a3µ

3. (8)

Polynomial coefficients are determined on account on (7) using Newton
interpolation polynomial or the method of least squares.

3 Numerical results

Initial values of other parameters are as follows: air – k1 = 1, 4,
ρ1 = 12 ∗ 104 gr/sm3, c1 = 300 m/sec; water – k2 = 3, 0, ρ2 = 1, 0
gr/sm3, c2 = 1500 m/sec; quartz – k3 = 3, 0, ρ3 = 2, 65 gr/sm3,
c3 = 4500 m/sec. At small values of pressure ground’s compressibility
depends on compressibility of air which significantly exceeds the com-
pressibility of water and quartz. At higher values of pressure ground’s
compressibility depends on compressibility of liquid and solid compo-
nents. The discrepancy between the data obtained from expressions (7)
and (8) is equal to less than 10 percent.

Consider a water-saturated ground with the following composition:
10 percent of air, 32 percent of water and 58 percent of quartz. Various
numerical experiments were conducted to study the behavior of shells
in the ground which are exposed to intense dynamic loading. These

37

E. Gutuleac

Figure 1. The strain corresponding to different state equations.

studies include an approximation of equations (1)-(6) using a finite-
difference scheme of the second order of accuracy that is a development
of Wilkins’ scheme [2]. Relation (8) is taken as a ground’s state equa-
tion. It approximates the equation of state with a cubic polynomial.
Equation of state (8) is tested for the various cases of a-priory known
state equations of medium. Let’s consider the case of water and calcu-
late the stress dynamics at a certain point on the computational domain
using state equation in Mie-Gruneisen form (solid line in Fig.1), and
equation (8) (dotted line in Fig. 1). The expansion of detonation prod-
ucts, shell loading and other physical processes are modeled as well.
Some results are presented in the Figures 2–5. The computational do-
main is a two-dimensional rectangle 21 × 4 cm. A water-filled steel
shell, 0,2 cm thick, is situated in this domain (double fat black lines
in the Fig. 2 and Fig. 4). Its dimensions are 16 × 7 cm. The shell is
surrounded with a ground consisting of 10 percent air, 30 percent wa-
ter and 60 percent quartz. The explosive charge TNT (0, 3 × 0, 1 cm)
closely fits the outside of the envelope (deflected contour in the Fig. 2
and Fig. 4). Certain points are selected to monitor the behavior of the
elastoplastic medium parameters. These points are called indicators

38

Mathematical modeling of high-speed loads effects on storage tanks

Figure 2. Stress state, t=100 mks Figure 3. Stress distribution.

and are marked as follows: I-1, I-2, . . . , I-7. They are situated in the
inside of the shell.

Figure 4. Stress state, t=150 mks Figure 5. Stress distribution.

Qualitative change in the physical state of the shell and the medium
inside and outside it over the time is displayed in Fig. 2 and Fig. 4 at
the t = 100 mks and t = 150 mks correspondingly. Figure 2 displays a
wave pattern and the shell’s state at t = 100 mks in two dimensions.
Stress dynamics for the early stages of the loading process up to the
t = 100 мks is displayed in the Fig. 3. Indicators I-1, I-2 are located
directly under the explosive charge (Fig. 2). Thus experimental results
for these indicators (Fig. 3) are close enough and have more pronounced

39

E. Gutuleac

wave profile compared to the indicators I-3, I-4 located farther. The
stress state of the shell at the t = 150 mks is displayed in the Fig. 4.
It is easy to observe that the shell exposed to an explosive loading is
deformed and the wave reflected from hard walls of the computational
domain. Stress distribution for the later stages of the loading process
up to time t = 150 mks is displayed in the Fig. 5. One may observe a
new surge at the t = 110 mks caused by the reflected wave.

4 Conclusions

A new mathematical model was developed. A stress-strain state of un-
derground storage tanks, exposed to intense dynamic loads and filled
in with water or other materials was simulated. The ground was con-
sidered as a three-component medium (solid particles, water and air)
and its characteristics depended on the volume content of each compo-
nent which can vary over a wide range. State equation for the ground
is approximated by a cubic polynomial with respect to the degree of
compression. Numerical results illustrate the evolution of the coupled
problem, namely the interaction of ground and elastoplastic shell un-
der explosive loading. This work is supported by STCU (grant 4624)
project.

References

[1] Baum F.A., Orlenko L.P., Staniukovich K.P., et al., Physics of
Explosion, [in Russian] Nauka, Moscow (1975) pp. 704.

[2] Wilkins M.L. Modeling the behavior of materials. Struct. Impact
and Grashworth. Proceeding of International Conference.V.2, Lon-
don, New York, 1984, pp. 243–277.

[3] Lyakhov G.M., Pokrovskii G.I., Blast Waves in Soils, [in Russian]
Gosgortekhizdat (1962), pр. 99.

[4] Rybakin B. Computer Modeling of Dynamic Processes. CSJM, v.8,
N 2(23), 2000, pp.150–180.

40

Mathematical modeling of high-speed loads effects on storage tanks

[5] Kiselev A.B., Yumashev M.V. Deforming and fracture under im-
pact loading. The model of thermoelastoplastic medium. J. Appl.
Mech. Tech. Phys., vol. 31 no. 5, 1990, pp. 116–123.

[6] Lugovoi P.Z., Meish V. F., Rybakin B. P., Secrieru G. V. Numerical
simulation of the dynamics of a reinforced shell subject to nonsta-
tionary load. In: Springer, International Applied Mechanics, 2008.
Vol.44. No 7, pp. 788–793.

[7] Lugovoi P., Meish V., Rybakin B., Secrieru G. The numerical in-
vestigation of reinforced shell undergo dynamic load. in: Annual
symp. Of the Institute of Solid Mechanics of Romanian Academy
(SISOM), May 28-29, Bucharest (2009), pp. 125–129.

[8] Rybakin B., Russeva E., Secrieru G. Numerical investigation of the
process of detonation waves interaction with an elastoplastic target.
Buletinul ASM, Matematica, N.2(42), 2003, pp. 113-122.

[9] Rybakin B. Numerical methods for multi-processor computers.
Chisinau: USM, CECMI, 2008. рp. 348. [in Russian]

Elena Gutuleac Received January 9, 2012

Elena Gutuleac
Institution: Institute of Mathematics and Computer Science of the Academy of
Sciences of Moldova
Address: Chisinau, str. Academiei 5, of.301
Phone: 73-81-05
E–mail: russevaelena@gmail.com

41

Computer Science Journal of Moldova, vol.20, no.1(58), 2012

Parsing the Dictionary of Modern Literary
Russian Language with the Method of SCD
Configurations. The Lexicographic Modeling

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

Abstract

This paper extends the experience of parsing other five, sen-
sibly different, Romanian, French, and German largest dictio-
naries, to DMLRL (Dictionary of Modern Literary Russian
Language) [18], using the optimal and portable parsing method
of SCD (Segmentation-Cohesion-Dependency) configurations [7],
[11], [15]. The purpose of the present paper is to elaborate the
lexicographic modeling of DMLRL, which necessarily precedes
the sense tree parsing dictionary entries. The following three
SCD configurations are described: the first one has to sepa-
rate the lexicographic segments in a DMLRL entry, the sec-
ond SCD-configuration concentrates on the SCD marker classes
and their hypergraph hierarchy for DMLRL primary and sec-
ondary senses, while the third SCD configuration hands down
the same modeling process to the atomic sense definitions and
their examples-to-definitions. The dependency hypergraph of the
third SCD configuration, interconnected to the one of the second
SCD configuration, is specified completely at the atomic sense
level for the first time, exceeding the SCD configuration model-
ing for other five dictionaries [15], [14]. Numerous examples from
DMLRL and comparison to DLR-DAR Romanian thesaurus-
dictionary support the proposed DMLRL lexicographic model-
ing.

Keywords: new approach to dictionary entry parsing; the
parsing method of SCD configurations; parsing the largest Ro-
manian, German, French, and Russian dictionaries; lexicographic
modeling.

c©2012 by N. Curteanu, S. Cojocaru, E. Burcă

42

Parsing the Dictionary of Modern Literary Russian Language with . . .

1 Dictionary Entry Parsing with SCD Configu-
rations

The general idea behind parsing a thesaurus or dictionary can be re-
duced to transforming a raw text entry into an indexable linguistic re-
source. The typical representation of the parsing result of a dictionary
entry is its sense tree structure.

The aim of this paper is to prepare the DMLRL (Dictionary of
Modern Literary Russian Language) [18] for parsing with the method
of SCD (Segmentation-Cohesion-Dependency) configurations [7], [15],
starting with its necessary lexicographic modeling [16], [1]. We rely
on the experience of modeling and parsing very efficiently other five
largest, complex, and sensibly different thesaurus-dictionaries [11], [15]:
DLR (The Romanian Thesaurus – new format) [2], [11], DAR (The
Romanian Thesaurus – old format) [28], TLF (Le Trésor de la Langue
Française) [23], DWB (Deutsches Wörterbuch – GRIMM) [17], GWB
(Göthe-Wörterbuch) [17].

An SCD configuration has the following computational components
[7], [15], [27]: • A set of marker classes: a marker is a boundary for
a specific linguistic category; • A hypergraph-like hierarchy that es-
tablishes the dependencies among the marker classes; • A searching
(parsing) algorithm. The parsing algorithm is designed to perform the
following actions: recognize the markers within the text, identify the
text structures / spans they bound, and classify these structures ac-
cording to the pre-assigned hierarchy of marker classes. The algorithm
is applied to a specific SCD configuration of marker classes and hier-
archy, strictly depending on the semantics standing behind that SCD
configuration. Such a semantics involves specific markers, marked cat-
egories, and their (partial ordering) hierarchies to be applied along the
corresponding text span (or lexicographic segment) to be parsed.

The developed parsing strategy merges the following three SCD
configurations: the first one has to separate the main lexicographic seg-
ments [22 :2] of a thesaurus entry; the second SCD-configuration should
parse each entry segment, concentrating on the sense description seg-
ment and its sense-tree extraction [11], [12], [14], [15], [16]. This partic-

43

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

ularly important SCD-configuration, which obtains the entry sense tree
exclusively from the sense marker sequences, coincides with the DSSD
algorithm in [11]. This algorithm (and SCD-configuration) continues
with a third SCD-configuration that parses each node in the generated
sense-tree for obtaining the atomic definitions / senses (i.e. finest-
grained meanings) of the entry, according to the lexical-semantics mod-
eling of the thesaurus-dictionary; e.g. for DLR-DAR [11], [14], [15],
for DMLRL [16], [1], and also the remarks concerning the new types of
definitions / senses, definition examples, etc.), i.e. their lexicographic
types and dependencies.

Parsing with SCD configurations means a good (sometimes, thor-
ough) measure of prerequisite semantic modeling of the text, establish-
ing of the marker classes for syntactic-discursive structures driven by
certain precise semantics, determining the dependency hypergraph(s)
for the considered marker classes, recognition of the markers in the
text, and extraction of the marker sequences (only). In such a con-
crete SCD configuration, parsing means to compute the dependency
relations between (among) the markers in the marker sequences of the
text, according to the dependencies incorporated ab initio in the pre-
established dependency hypergraphs for the marker classes of the con-
figuration.

To notice the important computational characteristic that parsing
with SCD configurations is a procedural -oriented tool and a completely
formal grammar-free one, the latter device being proved to be cumber-
some and inefficient when applied to free, general, or specialized (such
as dictionary entry) kinds of natural language texts.

2 Homonymic Entries in DMLRL

The homonymic entries in DMLRL (Dictionary of Modern Literary
Russian Language) are discriminated by indexing each of the homonyms
with Arabic numerals followed by dot, all in Arial font, Regular and
Bold format. These indexes are positioned in front of each homonym-
word lemma, enumerating increasingly all the homonyms of the same
word-lemma in the dictionary. An example of four homonymic entries

44

Parsing the Dictionary of Modern Literary Russian Language with . . .

of the word ”БЫЧОК” is present in DMLRL [18 :860-861].
The first two of these entries may cause the same possible ambi-

guity between the second sense of ”БЫЧОК” first entry, introduced
by the sense marker ”2.” (font Arial; correct font: Times New Ro-
man), and the index of the second homonymic entry, starting with the
similar but slightly different marker ”2.” (Times New Roman; correct
font: Arial). If the parsing program works properly and associates un-
equivocally the homonymy index to the DMLRL entry lemma (which
is written with bolded capital Cyrillic letters), then there should not
appear ambiguities when discriminating and parsing the lexically inde-
pendent homonymic entries in DMLRL. The (ambiguity-introducing)
original example is [18 :861]:

1. БЫЧОК, чка, м. 1. Разг. Уменьш.-ласк. к бык
(1. Бык в 1 знач.); молодой бык. В стайке у Кузнецовых рос
бычок, низколобый, красный, с рожками, похожими на шишки.
Задорн. Амур-Батюшка. Лоси сбрасывают рога; старые самцы в
декабре — январе, молодые бычоки — в конце февраля — в марте.
Формоз. Спутн. Следопыта. ♦ В сравн. [Сергей] выслушивал
предложения молча, насупившись, склонив, как бычок, голову и
напружинив шею. Первенц. Дир. Томилин. ♦ Смотреть, глядеть и
т. п. бычком. Смотреть хмуро, исподлобья.— Ну, а парнишку-то!..
сажай и его! Что, смотрю, он у тебя таким бычком глядит,
слова не скажет. Григор. Рыбаки. Лешка смотрел на него [мир]
не как прежде — широко открытыми, ясными серыми глазами,—
а бычком, исподлобья и ожидал от него одних неприятностей.
Дубов, Горе одному. ♦ Пить бычком. См. Пить.∼ Сказка про
белого бычка. См. Сказка.

2. Перен. Разг. О молодом упрямом человеке (обычно в
функции сказуемого).— Эх ты, бычок несуразный .. грохотал
Сиволап шатающемуся Кромулину. Леон. Конец мелк. чел. Всех
широковцев обозвал он кротами, а Яшку — бычком, бездельником-
буяном. Панфер. Бруски. ∼ Быть бычку на веревочке. См.
Быть.

— Поликарпов, 1704: бычҷк; Нордстет, 1780: бычок.
2. БЫЧОК, чка, м. 1. Рыба отряда окунеобразных.

45

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

Черноморские, каспийские бычки. Я и механик удили с палубы
рыбу и нам попадались очень крупные, толстоголовые бычки. Чех.
Остр. Сахалин. Они поймали .. одну горбушу и двух бычков-
подкаменщиков с пестрой окраской и оранжевой каймой на темно-
оливковом спинном плавнике. Арсен. Дерсу Узала. До чего ж
прозрачна байкаль

3 The Main Lexicographic Segments in DMLRL

In [11], [12], [14], [15] there have been analyzed the first and second SCD
configurations of the following five thesaurus-dictionaries: DLR (The
Romanian Thesaurus – new format) [2], [11], DAR (The Romanian
Thesaurus – old format) [28], [13], [15], TLF (Le Trésor de la Langue
Française) [23], [15], DWB (Deutsches Wörterbuch – GRIMM) [17],
[15], and GWB (Göthe-Wörterbuch) [17], [15]. This knowhow is ap-
plied and extended in this paper to DMLRL (Dictionary of Modern
Literary Russian Language) [18].

The first SCD configuration has to recognize the lexicographic seg-
ments of a DMLRL entry. DMLRL comprises (at least) five types
of lexicographic packages / segments: (1) a morpho-lexical package /
segment, (2) the sense description segment, (3) a TildaDef pack-
age or segment of definitions (see subsection 3.3), (4) the morpho-
syntactic variant segment, and (5) the etymology segment of the word-
lemma. The morpho-lexical definition package is obligatorily present at
the beginning of each entry, immediately after the word-lemma. The
morpho-lexical package may occur also at the sense lower-levels of the
entry sense tree. The TildaDef package can be attributed not only
to any (sub)sense description level of the entry but also to the root-
sense (zero-level sense hierarchy). When this package / segment begins
at new paragraph (NewPrg typographic marker), the TildaDef package
is assigned to the entry root-sense. The same NewPrg lexicographic
marker is met in DAR thesaurus-dictionary [15], [14] (see subsections
3.2, 5.2).

In the following subsections, some examples of DMLRL lexico-
graphic segments are given. We notice that the structure of lexico-

46

Parsing the Dictionary of Modern Literary Russian Language with . . .

graphic segments for large thesaurus-dictionaries, recognized within the
first SCD configuration, is linear and simple, in general [14], [15]. How-
ever, remarkable exceptions are the oldest dictionaries studied, namely
the German DWB [17] and the Romanian DAR [28], [15], whose de-
sign began in 19-th century for both.

3.1 The Morpho-Lexical Segment of a DMLRL Entry

The entry БЫТЬ is enlightening for the morpho-lexical segment: this
lexicographic package / segment covers the first rows, from the word-
lemma until the first primary sense introduced by the marker ”I.”, in
bold [18 :856]. With this marker begins the most important lexico-
graphic segment of DMLRL entries (and in any dictionary), viz. the
segment containing the lexical-semantics descriptions of entry senses,
called the sense description segment.

БЫТЬ, наст. не употр. кроме 3 л. ед. е с т ь и (устар.) 3л.
мн. с у т ь, буд. б у д у, б у д е ш ь, прош. б ы л, б ы л а, б ы л о
(с отрицанием: н е б ы л, н е б ы л а, н е б ы л о), повел. б у д ь
(т е), прич. действ. прош. б ы в ш и й, деепр. б у д у ч и, несов.,
неперех.

I. Как самостоятельный глагол означает: 1. Существовать.
Не говори с тоской: их нет; Но с благодарностию: были. Жук.
Воспоминание. В дымном зареве вставал рассвет. Город был.
Сегодня нет его. Сурк. Город О. Прошлое человечества —
драгоценная сокровищница неисчислимых богатств .. Эти богат-
ства были, то есть существовали когда-то реально во времени.
Шагинян, Воскреш. из мертвых. ♦Жил-б ы л, жила-б ы л а и т. п.
жил да б ы л. Нар.-поэт. Употр. как начало повествования, сказки
и т. п. Жила-была вдова, Тому лет восемь, бедная старушка.
Пушк. Домик в Коломне. Во время оно жил да был В Москве
боярин Михаил, Прозваньем Орша. Лерм. Боярин Орша. ♦ О
каком-л. времени, периоде, поре и т. п. Была осень. Был полдень.
Была та смутная пора, Когда Россия молодая, В бореньях силы
напрягая, Мужала с гением Петра. Пушк. Полтава.

47

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

Other examples of DMLRL morpho-lexical segments are the fol-
lowing (shaded part) ones [18 :781]:

БРОШЮРОВАТЬ, р у ю, р у е ш ь, прич. страд, прош.
б р о ш ю р о в а н н ы й, а я, о е, несов. перех. Сшивать, скреплять
отпечатанные листы в книгу или брошюру соответственно нумера-
ции. При издании журнала мне доверялось только брошюровать
тираж, написанный под копирку в несколько экземпляров. А.
Гусев, От Эльбр. до Антаркт.

— С иным (устар.) напис. и произнош.: б р о ш и р о в а т ь.—
Даль: брошировать; Ушаков, 1934: брошюровать.— От франц.
brocher — сшивать листы книги.

БРОСАТЬ, а ю, а е ш ь, несов.; бросить, б р о ш у, б р о с и ш ь,
прич. страд, прош. б р о ш е н н ы й, а я, о е, сов.; перех. и неперех.
1. Перех. Резким движением, взмахом заставлять перемещаться
в воздухе в каком-л. направлении копн, что-л.; кидать (в 1 знач.).
Бросить камень, палку.

Within MorfDefs of the morpho-lexical segment, several SpecDefs,
SpSpecDefs, LexVarDefs etc. may be inserted (see subsection 5.2).

3.2 The Sense-Description Segment

The investigation of the lexicographic segment devoted to the lexical-
semantics sense description is focused in Sections 4 and 5 below, which
contain interesting examples for sense and definition description mark-
ers, together with their dependencies, represented as procedural, inter-
connected hypergraphs. The complete analysis of this segment consti-
tutes the second and third SCD configurations, which is naturally the
most important enterprise for the lexicographic modeling of the dictio-
nary entry parsing process.

3.3 The TildaDef Package / Segment of Definitions

The TildaDef definition is introduced by the DMLRL-specific marker
tilda ”∼” , being written in bolded and italics Times New Roman font,

48

Parsing the Dictionary of Modern Literary Russian Language with . . .

at the end of a sense / subsense description. The TildaDef package is
NewPrg non-marked when attached to an entry having just the sense-
root or to the proper subsenses of the word-lemma, but NewPrg marked
when assigned to the root-sense of an entry with proper subsenses.

In the present DMLRL lexicographic modeling associated to the
parsing method of SCD configurations, the TildaDef definition header
is defined as the bold and italic text span situated between the Tilda
”∼” marker and: (1) a literal enumeration marker, (2) the first
RegDef, or (3) the first RefDef (Ref erence Def inition) part that fol-
lows (see Fig. 2). Samples of TildaDef headers (see the example be-
low): Бросать/бросить деньги на ветер.; Бросать оружие.;
. . . Будет и на нашей, моей и т. п. улице праздник.

In general, the TildaDef package of definitions is attached to a
proper subsense (at least one level below the root-sense level) of the
dictionary entry, but it is also possible that TildaDef (package) to be
the single definition of the entry root-sense. When in final position, the
TildaDef package is actually assigned to the root-sense of the entry,
usually also NewPrg marked; in this situation, it may be considered as
a special lexicographic segment of that DMLRL entry.

For instance, the TildaDef definition package for the entry БЫТЬ
spans on almost two pages of the DMLRL thesaurus-dictionary. It
ends up with etymological description segment of the entry (see previous
subsection), thus the TildaDef package assigned to the entry БЫТЬ
can be assimilated to a root-sense segment of the entry. Here there
are examples of TildaDefs associated both to proper subsenses, as in
БРОСАТЬ [18 :772]:

. ♦ Б р о с а т ь напрасно, зря; б р о с а т ь
направо и налево.— Весь разговор из-за каких-то десяти-двадцати
лир .. — Зачем напрасно бросать двадцать лир! Верес. Паутина.
Деньги не залеживались у него: он бросал их направо и налево,
не отказывая никому. Пермитин, Перв. любовь. // Переставать
пользоваться чем-л. как ненужным, бесполезным. Повелено было
всем генералам и офицерам уменьшить, по возможности, свои
экипажи и жечь все ими бросаемое. Пушк. Зап. Моро де-
Бразе. Последний уцелевший немецкий танк был бесславно брошен

49

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

экипажем. Левченко, Капли воен. грозы. ∼ Бросать/бросить
деньги на ветер. См. Д е н ь г и. Бросать оружие. Сдаваться,
отказываться воевать. [Суконщики] последние бросили оружие и
уступили превосходной силе. Пушк. Ист. Пугачева. Оторви да
брось. См. О т р ы в а т ь. Поднять да бросить. См.
П о д н и м а т ь. Хоть брось. О ком-, чем-л. плохом, никуда
не годном, не поддаю-щемся исправлению и т. п. [Хлестова:] А ты,
мой батюшка, неисцелим, хоть брось. Изволил вовремя явиться!
Гриб. Горе от ума.— Ну, что там? — Ось сломалась.— Барин для
порядка ее потрогал. — Да, хоть брось. Тург. Помещик.

4. Перех. Класть что-л. небрежно, не на свое место; кидать
(в 3 знач.).— Ты, Оксана, смотри, не бросай так ключа от твоей
комнаты; не пропало бы что у тебя. Данил. Беглые в Новороссии
.

or to the root-sense, as in БЫТЬ [18 :857]:

5. Разг. Употр. в формах будущего времени в знач. связки
настоящего времени. ♦ При выяснении происхождения,
родства, имени, социального положения и т. п.— Гостит у
нас .. Иван Иваныч Мизинчиков, тебе будет двоюродный брат,
кажется. Дост. Село Степанчиково.. — Ты сам откуда же
будешь? — Мы рязанские. Сераф. В пути.— Тетя,— окликает
ее [женщину] Вика храбро,— вы будете художница? Лидина,
Леванти.

∼ Будет и на нашей, моей и т. п. улице праздник. См.
П р а з д н и к. Будь здоров. См. З д о р о в ы й. Будь не
во гнев; не во гнев будь сказано. См. Г н е в. Будь спокоен,
будьте спокойны. См. С п о к о й н ы й. Будь то..., или...;
будет лито..., или... Употр. для выражения предположения при
перечислении, сопоставлении и т. п. чего-л. Начиная работать над
каким-нибудь портретом, будь то изображение самое известное
и документальное, или, наоборот, утерявшее свое имя, всегда
можно ожидать любых осложнений.Немилова,Загад.стар.картин.
Но всякая материальная сила, будь то сила мужского тела илиже
сила машины, нуждается еще в духовном водительстве. Горыш.

50

Parsing the Dictionary of Modern Literary Russian Language with . . .

Водопад. Будь (ты, он, она) (трижды) проклят, проклята.
См. П р о к л и н а т ь.

The lexicographic Tilda package / segment illustrated above con-
tains:

(a) Several TildaDef headers, namely: “Будет и на нашей,
моей и т. п. улице праздник.”; ”Будь здоров.”; ”Будь не
во гнев; не во гнев будь сказано.”; ”Будь спокоен, будьте
спокойны.”; ”Будь то..., или...; будет ли то..., или...”;

(b) Several RefDefs (Reference Definitions), namely: “См. П р а з д-
н и к.”; ”См. З д о р о в ы й.”; ”См. Г н е в.”; etc., completing the
TildaDefs;

(c) A general form of the TildaDef shape, made up of a TildaDef
header, followed by a RegDef and two DefExems (quoted text and
its sigle – i.e. its bibliographic source reference(s); the term sigle is
assumed from French): ”Будь то..., или...; будет ли то...,
или... Употр. для выражения предположения при перечислении,
сопоставлении и т. п. чего-л. Начиная работать над каким-нибудь
портретом, будь то изображение самое известное и документаль-
ное, или, наоборот, утерявшее свое имя, всегда можно ожидать
любых осложнений. Немилова, Загад. стар. картин. Но всякая
материальная сила, будь то сила мужского тела или же сила
машины, нуждается еще в духовном водительстве. Горыш.
Водопад.”. . .

(d) Other TildaDefs of the package; see the hypergraph in Fig. 2,
showing the (sequences and) dependencies for the atomic definitions
and examples-to-definitions within the lexical-semantics projection of
the primary and secondary senses into atomic senses of DMLRL.

A special situation, interesting from several points of view, demon-
strates the following entry [18]:

ÁВГИЕВЫ. ∼ Áвгиевы конюшни (чего-л.). а) Об очень
загрязненном, захламленном месте, помещении. Письменный стол
наш представляет авгиевы конюшни, и только теперь я мог
обрести клочок бумаги. Мусорг. Письмо В. В. Стасову, 31 марта
1972. б) О чем-л. находящемся в крайне запущенном состоянии;

51

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

о беспорядке, неразберихе где-л. — Говорят, ревизор энергически
принялся за очистку авгиевых конюшен попечительства над учили-
щем. Гл. Усп. Бог грехам терпит.

This TildaDef package can express, by itself (even with a single
component definition), the lexical-semantics sense contents of DMLRL
entry. The entry ÁВГИЕВЫ above, whose sense is defined basically
through a TildaDef definition header, is further refined by literal enu-
meration. A similar type of entry sense definition can also be met
in DLR-DAR, where entries can be described exclusively through a
BoldDef or ItalDef definition [10], [11], [12], [13]. Equally, the literal
enumeration may refine such zero-level definitions of atomic kind. Thus,
in case of DMLRL dictionary, RegDef, TildaDef, and RefDef are au-
tonomous definitions, in the sense described in subsection 5.2, initially
proposed for DLR-DAR dictionaries [12], [14]. Section 5 comes into
details on the atomic definitions / senses and types of examples-to-
definitions.

3.4 The Morpho-Syntactic Variant Segment

The Morpho-Syntactic Variant Segment describes an independent
subentry, associated as a syntactic variant to the basic entry. Typi-
cal examples are adverbial forms (По-бычьи) associated to certain
adjectives (БЫЧИЙ), as in the following sample [18 :860, 772]. The
Morpho-Syntactic Variant Segment is located between the sense de-
scription segment, possibly ended with a Tilda package (or segment),
and the etymology segment of DMLRL entry.

БЫЧАЧИЙ , ья, ье. Разг. 1. Относящ. к быку, быкам (1.
Бык в 1 знач.),. . .

2. Свойственный быку; такой, как у быка.
По-бычачьи, нареч. То же, что по-бычьи. Гараська по бычачьи

мотнул головой. Аник. Гараська-диктатор.
— Слов. XI—XVII вв.: бычатий; Вейсманн, 1731, с. 454: бычачий; Росс.

Целлариус 1771,

52

Parsing the Dictionary of Modern Literary Russian Language with . . .

БЫЧИЙ , ь е, ь я. 1. Относящ. к быку, быкам (1. Бык в 1
знач.),

3. В составных народных названиях растений. Бычья трава.
Бычий ноготок.

По-бычьи, нареч. Как бык (1. Бык в 1 знач.), подобно быку.
Старший сержант по.

— Срезневский: б ы ч и й; Вейсманн, 1731, с. 609: б ы ч и й; Нордстет,
1780: б ы ч и й; БАС 1948: п о-б ы ч ь и.

3.5 The Etymology Segment

The etymological description segment (shaded part), which always ends
aDMLRL entry, is illustrated here also on the entry БЫТЬ [18 :856].
The DMLRL etymology segment is always introduced by the specific
etymological-dash, NewPrg (New Paragraph) marked, and written with
(two points) smaller font than the (Times New Roman) common text
font measure of DMLRL dictionary entries.

. Чтоб тебе, ему и т. п. пусто было. См. П у с т о.
Чтобы духу твоего, вашего и т. п. не было. См. Д у х.
Чтобы неповадно было. См. Н е п о в а д н о. (Я) не
я буду, если не... Употр. для выражения твердой уверенности
или решительного намерения.— А где ж она, родительница-то?
али спряталась? Не я б у д у, если не сидит где-нибудь там, за
ширмами. Дост. Село Степанчиково.. — Я не я б у д у, если не
окажется [в рапорте], что мы вырвались после отчаянной борьбы
против охраны. Мстислав. Грач — птица весенняя.

— В иной (разг.) форме: деепр. б ы в ш и; в иной (устар.) форме: деепр.
б ы в.— Срезневский: б ы т и; Берында, 1627: б ы с т ь; Вейсманн, 1731, с. 351:
да б ы т ь так, не б у д е т, не б ы т ь удаче; Лекс. 1762: б ы т ь.

53

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

4 The Dependency Hypergraph at Sense Marker
Classes in DMLRL

4.1 Primary and Secondary Senses in DMLRL. Exam-
ples, Dependencies

The primary sense markers inDMLRL pointed out so far by the lexico-
graphic analysis are: (1) capital Roman numerals followed by a dot (I.,
II., III.,...etc.), in bold (LatCapNumb_Mark), and (2) Arabic numer-
als followed by a dot (1., 2., 3.,... etc.), in bold (ArabNumb_Mark).
The markers of these classes are positioned at the beginning of the text
row, in fact, at new paragraph (NewPrg marker), except for the first
sense markers (I., 1.), which usually does not occur at new paragraph.

The sense markers of the class denoting Roman capital numerals
followed by a dot (I., II., III.,...etc. or simply, LatCapLett_Enum)
represent the top of the sense hierarchy in DMLRL. These markers
establish the lexicographic limits for the most general senses of the
word-lemma. To notice that they are the equivalent of the marker class
denoted by bolded Latin capital letters A., B., etc. (abbreviated as
LatCapLett_Enum) in DLR [9], [11], 12].

The sense marker class of Arabic numerals followed by dot, point
(1., 2., 3.,... etc.), in bold (ArabNumb_Enum) stands for the sec-
ond level of primary sense representation in DMLRL. The place of
these two sense marker classes is displayed within the hypergraph of
Fig. 1 below. The sense marker classes LatCapNumb_Enum and Arab-
Numb_Enum are considered to be the set of DMLRL primary senses,
similarly to DLR-DAR lexicographic modeling [9], [11], [15].

We placed the two-oblique-bars ”//” sense marker, which is specific
to DMLRL, on the third level of the hierarchical dependency structure
of DMLRL senses (Fig. 1). In the same time, the sense marker ”//”
is considered to be the first element of the two-markers set {//, ♦}
denoting the secondary senses in DMLRL. The sense marked by ”//”
is in lexical-semantics subordination to (or subsumed by) any other
primary sense marked by an element in the marker classes {LatCap-
Numb_Enum, ArabNumb_Enum}, when they exist in the entry text.

54

Parsing the Dictionary of Modern Literary Russian Language with . . .

Otherwise (when a primary super-ordinated sense lacks), the secondary
sense marker ”//” may occur immediately under the topmost level of the
DMLRL sense hierarchy. The marker ”//” is embodied explicitly into
the entry text, even for the case when this level has only one element
of this type. For instance [18]:

АБРИКОСОВЫЙ, а я, о е. 1. Относящийся к абрикосу,
абрикосам (в 1 знач.). ♦ А б р и к о с о в о е дерево. То же, что
абрикос. // Состоящий из абрикосов. Абрикосовый сад.

2. Относящ к абрикосу, абрикосам (во знач 2.) Абрикосовая
косточка. // Приготовленный из абрикосов, с абрикосами. Абрико-
совый сироп. Абрикосовое варенье.

We notice that RegDefs in the //-marked subsenses to the pri-
mary senses in the above entry are refined by the so-called DictExem,
i.e. examples-to-definitions given by the DMLRL authors. Usually,
DictExems are separated from DefExems that follows through the
DMLRL-specific marker traverse ”2”. See subsection 5.1-(ii) for fur-
ther discussion on “2” marker, the first sense description “1.” of entry
ВЕДУЩИЙ that follows (and Fig. 2). In this entry, the secondary
sense ”//” is refined through literal enumeration. In analogy with the
DLR hypergraph of sense dependencies, we associate the DMLRL
”//” marker with the DLR ”¨” sense marker: they are both secondary
sense markers and subsume the similar secondary sense marker denoted
in both dictionaries by the empty-diamond ”♦” (see below) [11], [15],
[18].

ВЕДУЩИЙ, а я, е е. 1. Идущий впереди; головной. Ведущий
самолет. Каждый из ведущих броненосцев больше всего осыпался
неприятельскими снарядами. Нов.-Прибой, Цусима. // В знач.
сущ. В е д у щ и й, е г о, м, В е д у щ а я, е й, ж. а) Тот,
кто ведет, возглавляя какую-л. группу. В тайге заблудиться легко,
если к тому же окажется самонадеянным и не очень опытным
ведущим. Ворон. Волев. прием. Последнее время Драченко ходит
у нас в качестве разведчика. А теперь думаем посылать его
ведущим. Кудреватых, Стр. нашей жизни. б) Летчик, летящий на
головном самолете, направляющий действия своего ведомого. За

55

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

те немногие минуты, что они провели в воздухе, Петров сумел
оценить уверенную и поистине мастерскую манеру полета своего
ведущего. Б. Полев. Пов. о наст. чел.

Actually, the second marker in the secondary sense marker set
used by DMLRL is the ”horizontal-empty-diamond ”, which will be re-
placed in the DMLRL entry text, for the ease of graphical representa-
tion, lexical-semantic role, and uniformity, with the DLR-DAR sense
marker ”♦”, i.e. the ”vertical-empty-diamond ” or, simply, the empty-
diamond ”♦” marker. The lexical-semantics sense defined by the ”♦”
marker is subsumed (thus subordinated) by the DMLRL sense defined
with the sense marker ”//”.

We associate the secondary sense marker set {¨, ♦} in DLR-DAR
with the corresponding set of markers {//, ♦} in DMLRL, relying on
the following facts supported by the current stage of our investigation:
(a) ¨ subsumes ♦, thus ¨ subordinates ♦ in DLR-DAR (actually,
these relations refer to the entry senses introduced by these markers)
[11]. (b) Similarly, // subsumes ♦, thus // subordinates ♦ inDMLRL.
(c) The senses introduced by these markers are considered to be sec-
ondary senses, each pair in its corresponding dictionary, because of the
high similarity of their lexical-semantics description refinement (a con-
cept which we called lexical -semantic granularity of dictionary entry
senses) [11], [14]. (d) Another argument for the proposed relationship
is that these sense markers behave likewise when related to the sense
refinement technique of literal enumeration: both markers in the above
pairs of secondary sense markers, for the dictionaries DLR-DAR and
DMLRL, are interleaving with the literal enumeration, recursively call-
ing each other on several (but finite number of) levels. Typical examples
are the entry ”CAL” in DAR, demonstrated in [15], [14], and the entry
”БЫ” [18 :844] in subsection 4.3 below. (e) Finally, preserving similar
measures of lexical-semantic granularities in the thesaurus-dictionaries
DLR-DAR andDMLRL, the primary senses (A., B., . . . ; I., II., . . . ;
1., 2., . . .) in DLR-DAR and (I., II., . . . ; 1., 2., . . .) in DMLRL
do not interleave with the literal enumeration(s), while the secondary
senses, {¨, ♦} in DLR-DAR and {//, ♦} in DMLRL do, as noticed
in (d) above.

56

Parsing the Dictionary of Modern Literary Russian Language with . . .

If there is no other higher-level sense marker, the ”♦” marker may
occur immediately below the root-sense of the entry sense tree, as in
the following example [18 :781]:

БРОШЮРНЫЙ, ая, ое. Относящ. к брошюре, брошюрам,
связанный с их производством. Брошюрное шитье. ♦ Брошюрная
литература. Устар. Литература, издаваемая в виде брошюр.

Besides, the sense derived immediately from the empty-diamond
marker ”♦” can be refined by literal enumeration, as in the example
”БРАТЬ” below, for the subsense no. “14.” (the shaded part) [18
:742].

.

14. Перех. С некоторыми существительными (с предлогами
и без предлогов) обозначает: производить какое-л. действие в
соответствии со значением существительного. Брать на буксир. . .
. . . ♦ Брать на прицел, на мушку. Целясь, готовиться к стрельбе.
Завтра они будут ползти по окопам, закладывать мины, брать
на мушку фрица. Эренб. Буря. Глядит Громак и молвит: —
Есть! Заметил вражью точку, Берет тот кустик на прицел,
Припав к ружью наводчик. Твард. Ив. Громак. ♦ Брать на учет.
а) Заносить в списки лиц, входящих в состав чего-л. (обычно в
официальной речи). Лейтенант брал Бондарева на учет. Родичев,
Стоял старик на обочине. б) Устанавливать наличие, количество
кого-, чего-л. [Двенадцать комсомольцев] ушли..брать на учет
богатства, которые надо будет вывозить из мест затопления.
Песков, Счастье перв. тропы. в)Принимать во внимание, учитывать
что-л. Те, кто работал с ним в лаборатории, удивлялись тщатель-
ности его экспериментов — он брал на учет все мелочи, исключал
возможность малейшей ошибки. Гранин, Вар. второй.♦ Брать под
вопрос. См. Вопрос.

57

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

Figure 1. The Dependency Hypergraph at Sense Marker Classes in
DMLRL

58

Parsing the Dictionary of Modern Literary Russian Language with . . .

4.2 The Literal Enumeration and Its Recursive Depen-
dency with DMLRL Sense Markers

The problem of literal enumeration in DMLRL is, for the moment,
the most challenging one concerning the sense dependencies introduced
by DMLRL marker classes. This is because one may find entry sam-
ples that display a recursion between the literal enumeration and the
secondary senses “//” and ”♦” (at least these markers). This level of re-
cursion can be raised towards the higher (primary) senses, or may step
down to the atomic senses / definitions. The solution of reducing these
recursions to a finite number of cycles, and disambiguation of the cyclic
application of secondary sense markers and of the literal enumeration
should be consistent with the possible extension of the literal enumera-
tion recursion to the higher or lower levels on the DMLRL hypergraph
of marker class dependencies, pre-established for DMLRL (Fig. 1).

The following lexicographic sense description levels in DMLRL are
specifiable through literal enumeration:

(1) Refinement of the primary senses; for this situation we de-
liver examples concerning the lexical-semantics refinement introduced
by Arabic numerals (ArabNumb_Enum), but not the senses marked
with Roman numerals (LatCapNumb_Enum class). A logical expla-
nation would be that, for the lexical-semantics granularity measure of
senses introduced by the LatCapNumb_Enum markers, the literal enu-
meration should not be an adequate refinement tool but rather the
immediately lower, still primary or secondary levels of sense specifica-
tion, managed by the ArabNumb_Enum marker class, ”//” and ”♦”
markers.

(2) Refinement of the secondary senses ”//” and ”♦” by literal
enumeration; for instance, in the entry ВЕДУЩИЙ, subsection 4.1.

(3) Refinement of atomic senses / definitions by literal
enumeration. We have the DMLRL entry example of БЫBШИЙ
[18 :846], where the sense introduced by ”♦”, which details the entry
root-sense definition, is refined by literal enumeration. Another exam-
ple is the entry ÁВГИЕВЫ (subsection 3.3 above), whose root-sense
is described by a TildaDef atomic definition, refined at its turn through

59

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

literal enumeration.

4.3 Which Sense Levels Could Refine the Literal Enu-
meration?

We are interested now in the reverse situation: which are the sense
levels that could refine the lexical-semantics sense / definition(s) of a
letter marker (or several, for instance) belonging to the sense refinement
procedure of literal enumeration? The most interesting case we met
(until now) is the entry ”БЫ” [18 :844], under the primary sense no.
”3.” This subsense begins to be refined through literal enumeration, the
first sense marker letter ”a)” being further detailed with the following
sequence of secondary sense markers ♦, //, ♦, ♦. This marker sequence
is followed by literal enumeration second letter ”б)”, further refined by
the sequence ♦, ♦, ♦ of (secondary) sense markers. The next letter-
marker is ”в)”, with some atomic definitions, followed by the letter
marker ”г)”, which is specified by two secondary subsenses: ♦, ♦. The
entry excerpt of ”БЫ” [18 :844] is illustrative:

.
2. В придаточной части сложного предложения обозначает

действие, обусловливающее собой то, о чем сообщается в главной
части. Когда б разбойника облавою не взяли, То многие еще бы
пострадали. Михалк. Бешен, пес

3. Обозначает различные оттенки желаемости действия; а)
Собственно желаемость. Учился бы сын. Были бы дети здоровы. ♦
Если бы, когда бы, хоть бы и т. п. О, если бы когда-нибудь Сбылась
поэта сновиденья! Пушк. Посл. к Юдину. [Николка:] Хоть бы
дивизион наш был скорее готов. Булгаков, Дни Турб. ♦ С
неопр. ф. глаг. Полететь бы пташечке К синю морю; Убежать
бы молодцу в лес дремучий. Дельв. Пела, пела пташечка..
[Настя:] Ах, тетенька, голубок! Вот бы поймать! А. Остр. Не
было ни гроша. . .— Жара, дедушка Лодыжкин .. Нет никакого
терпения! Искупаться бы! Купр. Бел. пудель. // Употр. для
выражения опасения по поводу какого-л. нежелательного действия
(с отрицанием). Не заболел бы он. ♦ С неопр. ф. глаг., имеющей

60

Parsing the Dictionary of Modern Literary Russian Language with . . .

перед собой отрицание. — Гляди, — говорю, — бабочка, не кусать
бы тебе локтя! Так-таки оно все на мое вышло. Леск. Воительни-
ца. ♦ Только бы (б) не. — По мне жена как хочешь одевайся,
.. только б не каждый месяц заказывала себе новые платья, а
прежние бросала новешенькие. Пушк. Арап Петра Вел. [Варя:]
Не опоздать бы только к поезду. Чех. Вишн. сад. б) Пожелание.
Условие я бы предпочел не подписывать. Л. Толст. Письмо А. Ф.
Марксу, 27 марта 1899. ♦ С неопр. ф. глаг. Поохотиться бы по-
настоящему, на коня бы денег добыть, — мечтал старик. Г.
Марков, Строговы. ♦ В сочетании с предикативными наречиями
со знач. долженствования, необходимости, возможности. [Алеша
Бровкин] сверкнул глазами и понесся .. по гнилым полам приказной
избы. Вслед ему косились плешивые повытчики: “Потише бы надо,
бесстрашной, здесь не конюшня”. А. Н. Толст. Петр I. ♦ Только бы
(б), лишь бы, Употр. со знач. желательности действия. [Скалозуб:]
Мне только бы досталось в генералы. Гриб. Горе от ума. в)
Желание-просьба, совет или предложение (обычно при мест. 2л.).
[Марина:] И чего засуетился? Сидел бы: Чех. Дядя Ваня. —
Пошел бы ты к ним счетоводом, полковник. Павлен. Счастье.
— Ты бы, Сережа, все-таки поговорил с Лидией: Пришв. Кащ.
цепь. г) Желаемость целесообразного и полезного действия. ♦ С
неопр. ф, глаг. Вам бы вступиться за Павла-то! — воскликнула
мать, вставая. — Ведь он ради всех пошел. М. Горький, Мать. ♦
С неопр. ф. глаг., имеющей перед собой отрицание. [Лиза:] А вам,
искателям невест, Не нежиться и не зевать бы. Гриб, Горе от
ума.

∼ Во что бы то ни стало. См. Стать. Как бы не так.
См. Как. Кто бы ни был, что бы ни было, как бы то ни
было. См. Быть. Хоть бы хны. См. Хоть. Хоть бы что.
См. Хоть.

— Срезневский: бы; Лекс. 1762: бы.

This example shows that literal enumeration can be further refined
through secondary subsenses introduced by the sense markers ”//” and
”♦”. In the previous examples, we have seen that both primary senses
(demonstrated for those defined by the marker class ArabNumb_Enum,

61

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

at this time) and secondary senses can be refined through literal enu-
meration. We did not (and didn’t expect to) find the situation when
the literal enumeration to be refined through primary sense marker.
Since we have the concrete situation when secondary senses are de-
tailed through literal enumeration, and the reverse holds too (at least
for the example above), the two processes are calling each other for a
finite (times of) recursion calls that are sequencing the two procedures
of lexical-semantics particularization. The problem is to stipulate an
explicit criterion for stopping effectively the mutual calling of the two
refinement processes (through secondary senses and literal enumera-
tion) in a finite number of steps.

Figure 1 provides the scheme of dependencies between the sense
marker classes, in DMLRL, for the primary and secondary senses,
possibly refined through the lexicographic device of literal enumera-
tion. The hypergraph of dependencies at the classes of sense markers
in DMLRL displays in Fig. 1 the finite recursion between the blocks
of secondary sense markers, // and ♦, and the literal enumeration:
usually, each of the two secondary sense markers may call the literal
enumeration, but the DMLRL dependency hypergraph specifies that
the reverse is also true, i.e. the literal enumeration may call, at its
turn, each of the secondary sense markers! The direct calls made from
the marker sub-blocks to the other marker class blocks are put on view
with bolded arrows.

The procedure, called the ”enumeration closing condition” for the
literal or numeral enumeration, is explained in the sequel. The pro-
gramming solution for a deterministic condition of a finite number of
cycles, when mutual calls of (the mentioned) marker classes are per-
formed, is to check the following closing condition: for getting out of
the (literal or numeral) enumeration (or, in other words, to terminate
the enumeration procedure), after the last letter (number) closing the
enumeration list, the sense level description is raised at least one unit
higher than any of the marker levels used as subordinated sense markers
under the (literal or numeral) items in the enumeration list.

More precisely, for instance, if secondary sense markers were used
under a certain letter of a literal enumeration, and after the last letter

62

Parsing the Dictionary of Modern Literary Russian Language with . . .

in the enumeration it is used a primary sense marker (thus higher with
at least one unit in comparison to secondary markers), then the literal
enumeration cycle at hand can be closed (one may not continue the
literal enumeration refinement with the next letter in the alphabetic
order).

We remind that we met a somehow similar (but more complex)
problem for modeling the thesaurus-dictionary DAR, where the literal
enumeration and the sense refinement introduced by the NewPrg (New
Paragraph) typographic marker defining new senses (in various con-
texts) were calling each other [13], [14], [15]. The solution was there to
introduce a special, numeral enumeration (with Roman small numerals,
LatSmaNumb_Enum) for the sense markers NewPrg, then to close the
finite mutual calls relying on the enumeration closing condition applied
to several levels of sense description:

• the literal enumeration closing condition when this enumeration
is developed inside a sense defined by a single NewPrg marker;

• the numeral enumeration closing condition when several NewPrg
markers, encoded with the implicit, small Latin numbers LatS-
maNumb_Enum, are developed within a sense described by a sin-
gle small Latin letter of a literal enumeration LatSmaLett_Enum;

• once again the literal enumeration closing condition, when this
enumeration is developed within a single, primary or secondary,
regent sense.

Thus, we have here a double enumeration, a literal and a numeral
one (the latter, generated by NewPrg markers), interleaving each other,
each one with its enumeration closing condition. The entry CAL in
DAR thesaurus-dictionary illustrates the exposed situation [15], [14],
[28].

63

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

5 Atomic Sense Definitions and Example-To-
Definitions in DMLRL: Their Dependency
Hypergraph

5.1 DMLRL Specific Markers

(i). The tilda ”∼” marker. The role of this DMLRL-specific
sense marker is to introduce a package of at least one definition of
TildaDef type, with the aim of detailing the meaning of the sense def-
initions. The TildaDef package can be initiated at any level on the
sense tree of a DMLRL entry, including the root-sense level of the
word-lemma. TildaDef, RefDef, together with the RegDef most com-
mon device of sense description, provides the set of autonomous defi-
nitions in DMLRL (see the taxonomy in subsection 5.2). Subsection
3.3 describes in detail the role of DMLRL-specific “∼” marker.

(ii). The traverse ”2” marker. In DMLRL, this marker
has several functions at the level of atomic definitions [11], [12], [14]:
(1) The ”traverse” sense marker is used to separate the author’s exam-
ple text (called DictExem in DMLRL) from the quoted text example
that follows (denoted DefExem, as inDLR-DAR), both (possibly) pre-
ceded by specifying definitions (SpecDefs, SpSpecDefs, or other ones).
(2) The traverse marker ”2” is also employed in DMLRL for display-
ing certain grammatical forms of the word-lemma. See also subsection
5.1, (E8: DictExem). Examples are [18 :780]:

БРОСОК, с к а, м. 1. Резкий взмах руки (рук), благодаря
которому перемещается в воздухе что-л., находившееся в ней (в
них). Граната, разорвавшись при броске, оторвала мальчику
правую кисть. Коптяева, Дружба. 2 Б р о с к о м, в знач. нареч.
Правой рукой он [рыбак] брал лежащую на парапете полубесфор-
менную массу осьминога и резким броском кидал ее на камни
парапета.

ВИОЛОНЧЕЛЬ, иж. Смычковый четырехструнный инстру-
мент, средний по регистру и размерам между скрипкой и контра-
басом. Партии альта и виолончели были в руках учителей

64

Parsing the Dictionary of Modern Literary Russian Language with . . .

музыкальной школы. Федин, Братья. 2 Устар. В и о л о н ч е л ь,
я, м. Мы присутствуем при последних усилиях борьбы виолончеля
за свое самостоятельное существование. Чайков. Третья неделя
концертн. сезона.

(iii). The asterisk “*” marker. The task of this DMLRL-
specific marker is to introduce a citation containing the use of the entry
word-lemma with its figurative meaning. E.g. [18 :772-773]:

БРОСАТЬ, а ю, а е ш ь, несов.; бросить, б р о ш у, б р о с и ш ь,
прич. страд, прош. б р о ш е н н ы й, а я, о е, сов.; перех.
и неперех. 1. Перех. Резким движением, взмахом заставлять
перемещаться в воздухе в каком-л. направлении копн, что-л.;
кидать (в 1 знач.). Бросить камень, палку. [Чацкий:] Кричали
женщины: ура! И в воздух чепчики бросали! Гриб. Горе от ума.
Иногда аппетит [Прасковьи Павловны] даже совсем пропадал, и
она с досадой бросала на стол вилку и ножик. Салт. Сатиры
в прозе. [Доктор] бросал мне стул, который я должна была
поймать за ножки и бросить обратно. Кавер. Два капит. Войдя
в избу, Михаил поставил на пол плетеную из бересты корзину,
.. бросил к кровати мешок с валенками. Ф. Абрам. Две зимы и
три лета. *Море глухо шумело, бросая на песчаную отмель гряды
пенившихся волн. Мам.-Сиб, Вокруг ракит, куста. Ветер бросал
горсти листьев на стол, на койку, на прл. Паустов. Желт. цвет.
.

(iv). The one-oblique-bar “/” marker. This marker joins pairs
of paradigmatic alternatives for the basic form of the entry word-lemma.
E.g. [18 :773]:

. // В спортивной борьбе — вынуждать противника
падать, касаясь лопатками ковра, земли. Борьба велась без приза,
по просьбе дирекции, и Арбузов два раза бросал англичанина, почти
шутя, редкими и эффектными трюками, которые он не рискнул
бы употребить в состязании с мало-мальски опасным борцом.
Купр. В цирке. ∼ Бросать/бросить грязь, грязью в кого-
л. См. Грязь. Бросать/бросить кого-, что-л. за борт. См.
1. Борт. Жребий брошен. См. Жребий. Бросать/бросить

65

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

камень, камнем в кого-л. См. Камень. Бросать/бросить
камешки в чей-л. огород. См. Камешек. Бросать/бросить
перчатку. См. Перчатка. Бросать/бросить что-л. на чашу
весов. См. Чаша.

2. Перех. Разводя руки, пальцы, выпускать, переставать
держать что-л.

5.2 Atomic Definitions and Examples-to-Definitions in
DMLRL: Taxonomies, Sequencing, and Dependen-
cies

The definition types received specific functional roles in describing the
meanings under DLR primary and secondary senses [11]. For the
atomic senses / definitions, two taxonomies have been proposed in [12],
[14], [15], to be used not only forDLR-DAR but also for TLF,DWB,
GWB. Adapted and applied here to the DMLRL dictionary, the first
taxonomy contains the following classes:

(obli) obligatory definitions, which are the MorfDef s and, for
each DMLRL entry, one of the following three definitions, RegDef,
TildaDef, (not exclusively when RegDef is present), or RefDef. The
meaning of obligatory definitions is that there are no entries to have no
MorfDef, and (at least) one of the RegDef, TildaDef, or RefDef defini-
tions.

(opti) optional definitions / examples-to-definition(s) inDMLRL:
SpecDef, SpSpecDef, TildaDef (when a RegDef is present), RefDef, Lex-
VarDef, DictExem, and DefExem, whose presence is optional, as modi-
fiers for an obligatory sense / definition.

A complementary taxonomy classifies DMLRL sense definitions
and examples-to-definitions in:

(auto) autonomous definitions: RegDef, TildaDef, RefDef, and
LexVarDef, meaning that these definitions have a stand-alone role in
introducing DMLRL senses;

(cont) contingent definitions / examples-to-definitions: MorfDef,
SpecDef, SpSpecDef, LexVarDef, TildaDef (when a RegDef is present),
DictExem and DefExem, which do not have an independent, self-

66

Parsing the Dictionary of Modern Literary Russian Language with . . .

determining meaning, but (possibly) playing the role of adjuncts, i.e.
modifiers to some other definitions (including themselves).

MorfDef is obligatory at the root level of any DLR entry (except
when the entry is defined by RefDef), being inherited (by default, when
not present) on the lower levels of the entry sense tree. MorfDef is both
an obligatory (at the root level) and also a contingent definition, when
placed in front of an autonomous definition.

MorfDefs, SpecDef s, SpSpecDef s, LexVarDefs, DictExems and De-
fExems are contingent definitions since they cannot define a (sub)sense
in an autonomous manner but they serve as auxiliary adjuncts to mod-
ify, to complete either autonomous definitions or other contingent defi-
nitions.

The lexicographic modeling of DMLRL for the parsing method of
SCD configurations has to reveal at the beginning the entry segments
(the first SCD configuration), the main segment of sense description
being refined by primary and secondary senses, with their markers and
dependencies, and their (possible) recursive relationship to literal enu-
meration (the second SCD configuration), whose image is the hyper-
graph in Fig. 1). The final level of lexical-semantics refinement is rep-
resented by the third SCD configuration, consisting of atomic sense
definitions, examples to DMLRL autonomous definitions, their spe-
cific (sometimes, complex) markers, their sequencing and dependencies,
their (autonomous / contingent and / or obligatory / optional) lexical-
semantic role within a DMLRL entry. The third SCD configuration
of DMLRL is illustrated in Fig. 2 below, a marker class dependency
hypergraph, interconnected with that one in Fig. 1, and established for
the first time at this level of specification for atomic sense definitions,
among the studied large dictionariesDLR,DAR, TLF,DWB,GWB
[15].

Trying to keep as close and unitary as possible to the already ex-
isting lexicographic SCD modeling of the atomic definitions and ex-
amples for DLR-DAR, TLF, DWB-GWB, we outline the follow-
ing DMLRL atomic senses definitions, examples-to-definitions, their
markers and dependencies [10], [11], [13], [15], [1], [16]. Each atomic
sense definition is classified accordingly to the taxonomies proposed

67

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

above in this subsection (based on [12], [14], [15]). We found (until the
current stage of DMLRL lexicographic investigation) that it is neces-
sary to operate with the following DMLRL atomic sense definitions
and examples-to-definitions:

(D1) MorfDef (Morphologic Definition); Obligatory and Contin-
gent definition. When non-present, it should be inherited from a regent
or a higher-level sense. It is written with Times New Roman, Italics
font.

(D2) SpecDef (Specification Definition); Contingent and Optional
definition. This is a modifying type definition applied in a cyclic or
recursive manner to an autonomous definition. It is written with Times
New Roman, Italic font. The expressions representing SpecDefs are
usually abbreviated, reserved words.

(D3) SpSpecDef (Spaced Specification Definition); Similar to
SpecDef but written with spaced-characters. Internal reference (inside
the same entry), external reference (to another DMLRL entry), mor-
phological suffixes or lexical variants are written, in certain contexts,
with spaced-characters. See also RefDefs.

(D4) RegDef (Regular Definition); Autonomous and Obligatory
definition. It is written with Times New Roman, Regular font. This
is the basic tool to describe the semantic lexical-meaning of an entry
sense / subsense in DMLRL (and in the largest majority of other
dictionaries).

(D5) TildaDef (Tilda-marker Definition); Autonomous and Op-
tional definition. Its description is enclosed in subsection 3.3.

(D6) RefDef (Reference Definition); Autonomous and Optional
definition. RefDefs are external references, frequently met as constitu-
tive part of the TildaDef definition package, or internal references to
an entry sense (including the root-sense) inside which such a reference
is used. We notice that all RefDefs are SpSpecDefs but the reverse is
not true. See (D2) and (D3) below for typical examples.

(D7) LexVarDef (Lexical-Variant Definition); Contingent and Op-
tional definition, used to provide lexical variation(s) to the entry-word.
It is written with bolded font, and met within a MorfDef, when the
meaning of the lexical variant is the same as that of the word-lemma.

68

Parsing the Dictionary of Modern Literary Russian Language with . . .

(E8) DictExem (Dictionary authors’ Example); Contingent and
Optional example. This type of examples is given by the DMLRL
dictionary authors to support the refinement of semantic explanations
to autonomous definitions assigned to entry senses. DictExems usually
follow an autonomous definition and are separated from DefExems by
the traverse “2” DMLRL specific marker (see also subsection 5.1-(iii)).

(E9) DefExem (Definition Example); Contingent and Optional ex-
ample. It is very similar to DefExem in DLR-DAR dictionaries [11],
[15]. This type of examples represents quotations, text excerpts from
bibliographic sources, with the role of refining and completing the mean-
ings of autonomous definition(s) assigned to a (sub)sense of an entry.
To each DefExem is associated a sigle, i.e. the reference of DefExem
citation excerpt to its bibliographic source(s) or authorship.

The following further specifications and exemplifications concern-
ing the above DMLRL atomic senses / definitions and their markers
[1], [16] are considered. The relevant text of DMLRL definitions or
examples-to-definitions at hand is highlighted in gray.

(D1: MorfDef) The morphologic definitions MorfDefs can form
even a morpho-lexical package / segment in a DMLRL entry (see sub-
section 3.1) and describe the morphological categories at different levels
of the entry sense tree. In general, the first element of a dictionary en-
try is a MorfDef that specifies certain syntactic categories, each one
with its characteristic morphological-syntactic features. For DMLRL,
the part-of-speech category of the word-lemma is not present explicitly
but deduced from and described by its specific linguistic features; e.g.,
“м.” (masculine), “Перен.” (figurative) for nouns; ”аю, аешь, несов.;
бросить, брошу, бросишь, прич. страд, прош. брошенный, ая, ое,
сов.; перех. и неперех.” contains flexional forms, reference to a sibling
form (бросить, in bold and distinct font), transitive (перех.) and in-
transitive (неперех.) information for verbs etc. If MorfDef is missing
at a (sub)sense level, then it is inherited implicitly from the regent or
higher-level sense endowed with a MorfDef definition. Often, MorfDef
is followed by SpecDefs, even when, by inheritance, it is missing overtly
(as in the examples that follow).

69

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

АВАНС, а, м. 1. Деньги, а также продукты, товары, выдавае-
мые а счет предстоящих платежей. Получать аванс.,. . . 2.
Перен. О том, что заранее дано или обещано и что необходимо
оправдать, подтвердить в будущем.,. . . 3. Только мн. Перен.
Устар. О знаках внимания, поведении, вселяющих надежды на
расположение, симпатию и т.п. . . .

БРОСАТЬ, а ю, а е ш ь, несов.; бросить, б р о ш у, б р о с и ш ь,
прич. страд, прош. б р о ш е н н ы й, а я, о е, сов.; перех. и неперех.
1. Перех. Резким движением, взмахом заставлять перемещаться
в воздухе в каком-л. направлении копн, что-л.; кидать (в 1 знач.).
Бросить камень, палку. [Чацкий:] Кричали женщины: ура! И в
воздух чепчики бросали! Гриб. Горе от ума.

(D2: SpecDef) The specification definitions SpecDefs are vari-
ous types of linguistic information (morphologic, syntactic, semantic,
pragmatic, discursive, stylistic etc.) which refine and concentrate the
meaning of the word, phrase, or text definition at hand. SpecDefs are
written in Times New Roman, Italic font, many of them are abbrevia-
tions and reserved words (“Спец.”, “Перен.”, ”Разг.” etc.), or parenthe-
sized descriptions specifying different contexts of use within DMLRL
senses. Functionally working as modifier expressions to be applied to
the sense-subsense described, SpecDefs are both contingent and op-
tional definitions. SpecDefs are present at any level of the entry sense
tree. They are frequently enclosed in and associated with MorfDefs.
Examples of SpecDefs (and also SpSpecDefs):

.
11. Перех. и неперех. Разг. Достигать.цели, добиваться успеха

посредством чего-л. О нем [Прокофии] стали говорить тогда:—
Новый-то круто берет, а!., новый-то что удумал.

4. Только 3л. Разг. Ловиться на удочку (о рыбе). Ходил
рыбачить на озеро. Плотва хорошо бралась, только успевай червя
насаживать. Горыш. Тридц. лет спустя.

БРОСАТЬ, а ю, а е ш ь, несов.; бросить, б р о ш у, б р о с и ш ь,
прич. страд, прош. б р о ш е н н ы й, а я, о е, сов.; перех. и неперех.

70

Parsing the Dictionary of Modern Literary Russian Language with . . .

1. Перех. Резким движением, взмахом заставлять перемещаться в
воздухе в каком-л. направлении копн, что-л.; кидать (в 1 знач.).
Бросить камень, палку. 2 [Чацкий:] Кричали женщины: ура! И
в воздух чепчики бросали!

БРАТЬ, б е р у, б е р е ш ь, прош. б р а л, л а, л о, несов., перех. и
неперех., (сов. в з я т ь). 1. Захватывать рукой, руками; принимать
в руки. Брать ложку. Брать со стола книгу. Откинув локоны
от милого чела, Сама из рук моих свирель она брала. Пушк. Муза.
[Доктор] брал его руку, отсчитывал пульс. Горбат. Мое поколение.
♦ Б р а т ь чем-л. [Сахар] приходилось брать щипчиками. В.
Катаев, Хуторок в степи. ♦ Б р а т ь руками, в руки что-л. Он
тянулся за дудкой, брал ее дрожащими руками и прикладывал к
губам. Корол. Слеп, музыкант.

БРАТСТВО, а, ср. 1. Содружество, единение, союз, осно-
ванные на общности целей, взглядов, принципов и т. п. [Пьер]
твердо верил в возможность братства людей, соединенных с
целью поддерживать друг друга на пути добродетели. Л. Толст.
Война и мир. // Собир. Люди, объединенные общей целью,
общим делом ит. п. ♦ Б р а т с т в о какое-л., кого-л.
Студенческое братство, 2 Газетное братство распадалось на
целый ряд категорий: передовики, фельетонисты, хроникеры,
заведующие отделами вообще. Мам.-Сиб. Черты из жизни Пепко.

(D3: SpSpecDef) The spaced-specification definitions (Sp-
SpecDefs) are used, in general, either to specify morphological / lexical
forms and variants, or to internally (inside the same entry) and ex-
ternally (to another DMLRL entry or entry sense) refer a DMLRL
entry sense / subsense. SpSpecDefs may occur not only in the sense
description segment but also into the morphological, TildaDef, and et-
ymological description segments. It is important to mention that a
SpSpecDef expression in DMLRL is rather distinct from that defined
in DLR-DAR [11], [14], [15]. SpSpecDefs in DMLRL are employed
to describe the following situations [1]:

(i) Collocations of the word-lemma in various expressions. E.g.:

71

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

АБРИКОСОВЫЙ, а я, о е. 1. Относящийся к абрикосу,
абрикосам (в 1 знач.). ♦ А б р и к о с о в о е дерево. То же, что
абрикос.

(ii) Lexical and syntactic-phrase variants of the entry-word, as in:

АВАНС, а, м. 1. Деньги, а также продукты, товары,
выдаваемые а счҷт предстоящих платежей. Получать аванс... 2

А в а н с о м, в знач. нареч. Вперҷд, заранее. [На дачу] пошли
деньги взятые авансом у издателя. В. Андреева, Дом на Чҷрн.
Речке.

(iii) Internal references (inside the same entry) and external refer-
ences (to another DMLRL entry), thus RefDefs, are also SpSpecDefs
inDMLRL, i.e. Times New Roman, regular, spaced-character written.
The example that follows contains (grayed) external RefDefs (ending
the previous entry that precedes “БРАТЬСЯ”), morphological deriva-
tions, and internal RefDefs (inside the “БРАТЬСЯ” entry).

. . . См. 2. М у ш к а Брать кого-, что-л. на прицел. См.
П р и ц е л. Брать кого-л. на пушку. См. 1. П у ш к а. Брать
кого-, что-л. под обстрел. См. О б с т р е л.

— Срезневский: б р а т и; Поликарпов, 1704: б е р у; Вейсманн, 1731, с 154:
б р а т и денги; Росс Целлариус 1771, с 9: б е р у, б р а т ь.

БРАТЬСЯ, б е р у с ь, б е р е ш ь с я, прош. б р а л с я,
б р а л а с ь, б р а л о с ь и б р а л о с ь несов. (сов. в з я т ь с я). 1.
Захватывать что-л., хвататься за что-л., касаться чего-л. Руками.
♦ Б р а т ь с я за что-л. Браться за поручни. Браться за голову,
за подбородок. 2 Он умолкал, иногда надолго. Справляясь с
волнением, он крепко брался за спинку стула. Кавер. Откр. книга.
♦ Б р а т ь с я руками, пальцами

(iv) Flexion suffixes of DMLRL entry-word, usually met in the
morphological segment. E.g.:

ВИРТУÓЗНЫЙ, а я, о е; з е н, з н а, з н о. Относящ. к
виртуозу, свойственный ему. Виртуозное исполнение.

(v) The use of the spaced-charater entry-word (lemma or deriva-
tions) within specific phrases, as in:

72

Parsing the Dictionary of Modern Literary Russian Language with . . .

БЫЧИЙ, ь е, ь я. 1. 2. ♦ Б ы ч и й глаз.
Разг. Болезненное растяжение и выпячивание глазного яблока. ♦
Б ы ч ь е сердце. Разг. Болезненно увеличенное (в размерах и по
массе) сердце.

(D4: RegDef) RegDef is an autonomous and obligatory defini-
tion, written with Times New Roman, Regular font. RegDef is the
standard device to describe the semantic lexical-meaning of an entry
sense / subsense inDMLRL (and in many other thesaurus-dictionaries,
including DLR-DAR). Sample of (grayed) RegDef :

БЫТОПИСАНИЕ, я, ср. 1. Устар. Историческое
описание, история. Он рыться не имел охоты В хронологической
пыли Бытописания земли. Пушк. . . .

(D5: TildaDef) The TildaDef package / segment of definitions is
described in subsection 3.3.

(D6: RefDef) RefDefs are autonomous, external references, fre-
quently met as constitutive parts of the TildaDef definition (or pack-
age), or internal references to an entry sense (including the root-sense)
inside which such a reference is used. RefDefs are written with Times
New Roman, regular, spaced-characters, thus they all are SpSpecDefs;
the reverse is not true. (D2) and (D3) contain instances of RefDefs. In
the example (D3: SpSpecDef)-(iii) given above, the first four grey fields
are external RefDefs and the last three ones are internal RefDefs. The
autonomous role of external RefDefs is shown in the following examples
[18 :771]:

БРОНХ. См. Б р ó н х и.
.
БРОНХИÓЛА. См. Б р о н х и ó л ы.

(D7: LexVarDef) The LexVarDef (Lexical-Variant Definition) is
a contingent and optional definition, used to provide lexical variation(s)
to the entry word-lemma. It is written with small, regular characters,
bolded font, and met within a MorfDef (when the meaning of the lexical
variant is the same as that of the word-lemma; e.g. the pairs in the fol-

73

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

lowing examples: ВИЛЯТЬ-вильнуть, БРОСАТЬ-бросить [18
:860, 772].

ВИЛЯТЬ, я ю, я е ш ь, несов.; вильнуть,
БРОСАТЬ, а ю, а е ш ь, несов.; бросить, б р о ш у, б р о с и ш ь,

прич. страд, прош. б р о ш е н н ы й, а я, о е, сов.; перех. и неперех.
1. Перех. Резким движением, взмахом заставлять перемещаться в
воздухе

(E8: DictExem) DictExems are examples given by DMLRL
dictionary to support the refinement of semantic explanations to au-
tonomous definitions assigned to the entry senses. DictExems usu-
ally follow an autonomous definition and are separated from the other
DefExems by the traverse “2” DMLRL specific marker (subsection
5.1-(ii) describes the traverse marker role). The difference between a
DictExem and a DefExem is that the former do not bear a sigle, i.e. the
reference to the bibliographic source of the example-to-definitions (this
one is just the dictionary authorship), while DefExem has to provide
its bibliographic source, viz. its sigle(s). When both DictExems and
DefExems are present, the former are located always as the first ones,
followed by the traverse “2” marker, which signals the end of DictEx-
ems sequence and the beginning of the DefExems block. Numerous
samples of DictExems and DefExems are already shown in the paper.

(E9: DefExem) The role and structure of a DefExem (Definition
Example) is to support and refine a lexical-semantics sense definition,
already outlined in (E8: DictExem) above. DefExem in DMLRL is
actually the same DefExem example-to-definition that is working for
DLR-DAR dictionaries [11], [15].

6 Conclusions

The special features of the new parsing method with SCD configu-
rations (SCD-configs) are: • The SCD-configs method for dictionary
entry parsing is based on sense marker classes, their lexical-semantics
dependency (i.e. sense structure subsumption), and procedural hyper-
graphs reflecting the sense marker class sequencing and dependencies

74

Parsing the Dictionary of Modern Literary Russian Language with . . .

Figure 2. RegDef block and TildaDef block sequences and dependencies
for DMLRL atomic sense definitions and examples-to-definitions

75

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

for each SCD configuration [11], [15]. • SCD-configs is a completely for-
mal grammar-free approach which involves simple, efficient (weeks-time
adaptable), thus portable modeling and programs [15]. • The method of
SCD-configs for dictionary entry parsing is derived from the more gen-
eral SCD linguistic theory and parsing strategy for natural language
free text [7], [5], [3], [4]. • The main drawback of the currently existing
parsing methods for dictionary entry parsing is that the sense tree con-
struction of each entry is recursively embedded and mixed within the
definition parsing procedures [6]. • To overcome this essential prob-
lem, the SCD-configs separate and run sequentially, on independent
levels (viz. SCD configurations), the processes of lexicographic segment
recognition, sense tree extraction (for entry senses defined by explicit
marker classes), and atomic definition parsing. • This makes the whole
dictionary entry parsing process with SCD-configs to be optimal [15],
[11].

The main results of this paper consist in identification and be-
havior description of the three SCD configurations that are specific
to DMLRL dictionary: SCD-config1 shows the linear sequence of
DMLRL lexicographic segments, while SCD-config2 deals with sense
marker classes associated to the primary and secondary senses in
DMLRL and to their dependencies, displayed as the hypergraph in
Fig. 1. Already pointed out in subsection 4.3, the solution to the prob-
lem of recursive calls between the secondary senses (// and ♦) and the
refinement procedure of literal enumeration is the enumeration closing
condition. The SCD-config3 is represented in Fig. 2 as the hypergraph
of the atomic sense / definition markers inDMLRL and interconnected
with the hypergraph in Fig. 1. That one gives the dependency relation-
ships among the higher-order sense marker classes, handing down from
the root-sense, through primary and secondary senses, continued with
the dependency hypergraph for the lower and atomic senses / defini-
tions, represented in Fig. 2. When structurally accomplished,DMLRL
lower-level senses are raising up, called by higher-level sense markers,
until the structure of the entry sense tree is completed.

We provide in this paper the atomic definitions and examples-to-
definitions that contribute to sense construction, their obligatory, au-

76

Parsing the Dictionary of Modern Literary Russian Language with . . .

tonomous, contingent and / or optional functional role, described with
their marker class sequences and dependencies. The type of depen-
dency hypergraph in Fig. 2 is displayed for the first time, at this level
of lexical-semantics specification, among the other similar dictionaries
investigated for lexicographic modeling and parsing [15]. TheDMLRL
lexicographic segments, along with the higher-level marker class depen-
dencies and hypergraph behavior in Fig. 1, procedurally interconnected
with the hypergraph in Fig. 2, represent the complete lexicographic
modeling of the three SCD configurations, which can ensure a high-
performance parsing process of DMLRL dictionary, as proved for sim-
ilar or more complex thesaurus-dictionaries [14], [15].

References

[1] Burcă, Eugenia (2011): Parsing the Dictionary of Modern Literary
Russian Language (DMLRL) using the Method of Segmentation-
Cohesion-Dependency Configurations, Institute of Mathematics
and Computer Science, Chişinău, Rep. of Moldova, 12 p. (in Ro-
manian, draft paper).

[2] Cristea, D., Răschip, M., Forăscu, C., Haja, G., Florescu, C.,
Aldea, B., Dănilă, E. (2007): The Digital Form of the Thesaurus
Dictionary of the Romanian Language. In Proceedings of the 4th
International IEEE Conference SpeD 2007.

[3] Curteanu, Neculai (1994): From Morphology to Discourse Through
Marker Structures in the SCD Parsing Strategy. A Marker
Hierarchy-Based Approach. Language and Cybernetics, INTERK-
IBERNETIK’93, Akademia Libroservo, Prague, Czech Republic,
pp. 61–73.

[4] Curteanu, Neculai, G. Holban (1996): The SCD Linguistic Strategy
Applied to the Analysis and Generation of Romanian. In the vol-
ume "Language and Technology", (Ed. Dan Tufiş), The Romanian
Academy Editorial House, Bucharest, pp. 169-176 (In Romanian).

77

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

[5] Curteanu, N., D. Gâlea, C. Butnariu, C. Bolea (2004): Marcu’s
Clause-like Discourse Segmentation Algorithm and SCD Clause
Segmentation-based Parsing, Proceedings ECIT-2004 Conference,
pp. 59–86, Iaşi, România.

[6] Curteanu, N., E. Amihăesei (2004): Grammar-based Java Parsers
for DEX and DTLR Romanian Dictionaries. ECIT-2004 Confer-
ence, Iasi, Romania.

[7] Curteanu, N. (2006): Local and Global Parsing with Functional
FXbar Theory and SCD Linguistic Strategy. (I.+II.), Computer
Science Journal of Moldova, Academy of Science of Moldova, Vol.
14 no. 1 (40):74–102 and no. 2 (41):155–182.

[8] Curteanu, N., D. Trandabăţ, G. Pavel, C. Vereştiuc, C. Bolea
(2007): eDTLR Project – The Romanian Thesaurus-Dictionary
in Electronic Format. Research Report to the PNCDI II Project
No. 91_013/18.09.2007, Stage on 2007 (in Romanian).

[9] Curteanu, N., G. Pavel, C. Vereştiuc, D. Trandabăţ (2008):
eDTLR Parsing with Lexicographic Grammars in the JavaCC
Framework. The Current Stage, Problems, and Development Solu-
tions. In Proceedings of the Workshop on Linguistic Resources and
Instrument for Romanian Language Processing – ConsILR-2007,
(Ed. I. Pistol, D. Cristea, D. Tufiş), The "Al.I. Cuza" University
Editorial House, Iaşi, ISSN: 1843-911X, pp. 87–96 (in Romanian).

[10] Curteanu, N., D. Trandabăţ, A. Moruz, C. Bolea, M. Husarciuc
(2008): Parsing the Romanian Language Thesaurus Dictionary
(new format) at Sense Trees and Definitions, with the Method
of SCD Configurations. Research Report to the Grant Project
PNCDI 2, Nr. 91_013/18.09.2007, Stage on 2008 (in Romanian).

[11] Curteanu, N., Moruz, A., Trandabăţ, D. (2008): Extracting Sense
Trees from the Romanian Thesaurus by Sense Segmentation &
Dependency Parsing, Proceedings of CogAlex-I Workshop, COL-
ING 2008, Manchester, United Kingdom, pp. 55–63, ISBN 978-1-
905593-56-9.

78

Parsing the Dictionary of Modern Literary Russian Language with . . .

[12] Curteanu, N., A. Moruz, D. Trandabăţ, Cecilia Bolea, Mădălina
Spătaru, Maria Husarciuc (2009). Sense Tree Parsing and Defini-
tion Segmentation in the eDTLR Thesaurus-Dictionary eDTLR, In
Proceedings of the Workshop on Linguistic Resources and Instru-
ment for Romanian Language Processing – ConsILR-2008, (Ed. D.
Trandabăţ, D. Cristea, D. Tufiş), Editura Univ. “Al.I. Cuza” Iaşi,
ISSN: 1843-911X, pp. 65–74 (in Romanian).

[13] Curteanu, N., A. Moruz, D. Trandabăţ, C. Bolea (2009): Pars-
ing the Romanian Academy Thesaurus Dictionary (old format)
and Romanian Language Thesaurus Dictionary (new format) at
Sense Trees and Definitions, with the Method of SCD Configu-
rations. Research Report to the Grant Project PNCDI 2, Nr.
91_013/18.09.2007, Stage on 2009 (in Romanian).

[14] Curteanu, N., A. Moruz, D. Trandabăţ (2010): Compara-
tive Parsing of the Romanian, French, and German Thesaurus-
Dictionaries. In Proceedings of the Workshop on Linguistic Re-
sources and Instrument for Romanian Language Processing, (Ed.
A. Iftene, H.N. Teodorescu, D. Cristea, D. Tufiş), Editura Univ.
“Al.I. Cuza” Iaşi, ISSN: 1843-911X, pp. 113–122 (in Romanian).

[15] Curteanu, N., Trandabăţ, D., Moruz, A. (2010): An Optimal
and Portable Parsing Method for Romanian, French, and Ger-
man Large Dictionaries, Proceedings of COGALEX-II Workshop,
COLING-2010, Beijing, China, August 2010, pp. 38–47.

[16] Curteanu, Neculai (2011): The SCD-based Lexicographic Model-
ing of DMLRL – Dictionary of Modern Literary Russian Lan-
guage, Research Report, Institute of Computer Science, Romanian
Academy, Iasi Branch, June 2011 (in Romanian).

[17] Das Woerterbuch-Netz (2010): http://germazope.uni-
trier.de/Projects/WBB/woerterbuecher/

[18] Dictionary of Modern Literary Russian Language (20 volumes –
1994): Editorial House: M.: Russkii Iazyk; Second edition, revised

79

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă

and supplemented, 864 p; 1991 – 1994. ISBN: 5-200-01068-3 (in
Rusian).

[19] DLR revision committee. (1952). Coding rules for DLR (in Roma-
nian). Romanian Academy, Institute of Philology, Bucharest.

[20] Erjavec, T, Evans, R., Ide, N., Kilgariff A., (2000): The CON-
CEDE Model for Lexical Databases. Research Report on TEI-
CONCEDE LDB Project, Univ. of Ljubljana, Slovenia.

[21] Hauser, R., Storrer, A. (1993): Dictionary Entry Parsing Using
the LexParse System. Lexikographica 9 (1993), 174–219.

[22] Kammerer, M. (2000): Wöterbuchparsing Grundsätzliche
Überlegungen und ein Kurzbericht über praktische Erfahrun-
gen, http://www.matthias-kammerer.de/content/WBParsing.pdf

[23] Le Trésor de la Langue Française informatisé (2010).
http://atilf.atilf.fr/tlf.htm

[24] Lemnitzer, L., Kunze, C. (2005): Dictionary Entry Parsing, ESS-
LLI 2005.

[25] Marcu, Daniel. 1997: The Rhetorical Parsing, Summarization,
and Generation of Natural Language Texts, Ph.D. Thesis, Univ.
of Toronto, Canada, pp. 331.

[26] Neff, M., Boguraev, B. (1989) Dictionaries, Dictionary Grammars
and Dictionary Entry Parsing, Proc. of the 27th annual meeting
on Association for Computational Linguistics Vancouver, British
Columbia, Canada Pages: 91 – 101.

[27] ORDA License Copyright Registration (2011). Owner: Curteanu,
Neculai. Title: The SCD (Segmentation-Cohesion-Dependency)
Lexicographic Modeling and Parsing Strategy for Natural Language
Text of Some Romanian, French, German, and Russian Thesaurus
Dictionaries, ORDA – The Romanian Copyright Office, RNO Reg-
istration No. 9134 / 25.07.2011.

80

Parsing the Dictionary of Modern Literary Russian Language with . . .

[28] Puşcariu, Sextil et al. (1906): Dictionary of the Romanian Lan-
guage (Dictionary of the Romanian Academy – DAR), Bucharest,
Edition 1940 (old format).

[29] Tiktin, H. (1989): Rumänisch-deutsches Wörterbuch, 2.,
überarbeitete und ergänzte Auflage von Paul Miron. [Band I–III].
Otto Harrassowitz. Wiesbaden. I: 1986; II: 1988; III: 1989.

[30] Tiktin, H. (2005): Rumänisch-deutsches Wörterbuch, 3.,
überarbeitete und ergänzte Auflage von Paul Miron und Elsa
Lüder. Band I–III. Cluj-Napoca, Clusium. I: 2000; II: 2003; III:
2005.

[31] Tufiş, D., Rotaru, G., Barbu, A.M. (1999): Data Sampling, Lemma
Selection and a Core Explanatory Dictionary of Romanian. Proc.
of the 5th International Workshop on Computational Lexicography
COMPLEX, Pecs, Hungary, pp. 219–228, 1999.

[32] Tufiş, Dan (2001): From Machine Readable Dictionaries to Lexical
Databases, RACAI, Romanian Academy, Bucharest, Romania.

[33] XCES TEI Standard, Variant P5 (2007):
http://www.tei-c.org/Guidelines/P5/

Neculai Curteanu, Svetlana Cojocaru, Eugenia Burcă, Received March 30, 2012

Neculai Curteanu,
Institute of Computer Science, Romanian Academy, Iaşi Branch,
Str. Gh. Asachi, Nr. 3,
700483 Iaşi, România
E–mail: ncurteanu@yahoo.com

Svetlana Cojocaru, Eugenia Burcă,
Institute of Mathematics and Computer Science, Academy of Sciences of Moldova,
Str. Academiei nr. 5, Chişinău,
MD 2028, R. Moldova
E–mails: Svetlana.Cojocaru@math.md, eugenia_burca@yahoo.com

81

Computer Science Journal of Moldova, vol.20, no.1(58), 2012

Using Test Case Mutation to Evaluate the

Model of the User Interface

Izzat Alsmadi

Abstract

Mutation based testing is used to discover new possible errors
in software applications. This is since in this testing approach,
intentional incorrect lines of codes are injected to check the soft-
ware ability to produce results that are different from the correct
or original code. In this paper an automatic technique to gen-
erate valid and mutant test cases is proposed and developed. In
most mutation techniques, one or more values or parameters in
the specification, code, model, etc are intentionally modified and
then test cases are generated to see if injected modifications can
be detected. However, in this paper, test cases are mutated (i.e.
mutants are generated from the test cases) after they are gen-
erated from the GUI model. Mutations are then applied to the
GUI model to test its ability to kill those mutants by rejecting
them. Typical to mutation testing, the goal of this approach is
to discover possible errors or problems in the program that may
not be discovered by other methods. A robust model is expected
to differentiate between a valid and an invalid sequence of events.
An automatic execution and verification technique is also devel-
oped to evaluate the test cases that were rejected by the model
and calculate coverage based on the number of rejected test cases
to the total number of test cases. Results showed that in user
interfaces, and based on the nature of the mutation process im-
plementation, mutation can find new areas or types of errors that
may not be found using other approaches of testing.

Keywords: Mutation testing, Test case generation, test case
execution and verification. Random test case generation, and
GUI modelling.

c©2012 by Izzat Alsmadi

82

Using Test Case Mutation to Evaluate the . . .

1 Introduction

It is widely acknowledged that testing activities consume a significant
amount of software project resources. This is why research projects in
software testing focus on aspects that can reduce those expenses while
maintain or improve coverage. Test automation techniques are used
to achieve this goal. In order to use test automation, Artificial Intel-
ligent (AI) algorithms are used to replace or simulate tester activities.
Those activities include: test case generation, execution and verifica-
tion. Mutation is a surplus testing activity used in general to improve
test case generation and verification effectiveness. This is accomplished
by changing a small part of the code or the specification. Test cases are
then applied to see the test cases that can kill (i.e. discover) those mu-
tants. In this paper, mutation is used to evaluate the reliability of the
GUI model. In traditional code mutation processes, mutation coverage
can show whether test cases would expose the use of wrong operators
and also wrong operands. It works by reporting coverage of conditions
derived by mutating (i.e. substituting) the program’s expressions with
alternate operators, such as ”less than” substituted for ”more than”.
In the traditional mutation, mutation is occurred to the code or the
specification and test cases are expected to discover this mutation. In
this paper, the process is reversed. Mutation occurs in test cases and
the GUI model is expected to discover those mutations. Such approach
may fall under model based testing techniques where the GUI model
is tested for its ability to kill (i.e. reject, in the scope of this paper)
wrong test cases.

Why would someone apply mutation to test case generation?! In
GUI testing, most GUI components have one main event interaction.
For example, a button main even interaction is the ”double click”, the
textbox main interaction is ”entering a text”, the option item main in-
teraction is selecting one or options, etc. A GUI abstraction model that
considers the GUI components, their attributes and association with
each other along with one main event for each component is developed
[9, 10]. As such, the abstraction model considers both GUI structure
and event models. In this model, test cases can be generated directly

83

Izzat Alsmadi

Figure 1. A simple GUI structure sample generated from an application
in an XML format.

from the GUI structure file. Figure 1 shows a simple screen shot sample
generated from an application for a GUI structure. The XML file (gen-
erated automatically from the application at run time using reflection;
a reverse engineering process to discover the program GUI components
from its executable) contains all GUI components along with each com-
ponent parent. Test cases are then automatically generated from this
model through traversing through GUI paths starting from the entry
point to an end or leaf point. For each component, test cases are con-
sidering the component default event (in order to generate the test case
that will be executed automatically).

Is it significantly useful to make an effort to inject errors in test
cases and then make extra effort trying to find them ?! A mutation in
a test case means that we will try to execute a test case with invalid se-
quence or combination of GUI components. Such sequence should not
be executed successfully. This is somewhat similar to the specification
based testing that tests the application using valid and invalid inputs.
The application is expected to accept valid inputs and produce consis-
tent results while rejecting invalid inputs and halt the execution. The
next section introduces the related work. Section 3 lists the goals of
this research and describes the work done toward those goals. Section

84

Using Test Case Mutation to Evaluate the . . .

4 presents the conclusion and future work.

2 Related Work

In this literature survey, several relevant papers are discussed. Those
papers discussed using mutation for evaluating coverage and test case
effectiveness. All papers listed as references in this paper focus on
generating mutation operators based on one aspect of software products
and then evaluate test coverage or effectiveness from this mutation
process. The major difference that distinguish one paper from the
others is the software aspect that mutation operators are generated
from (e.g. requirements, software model, code, state diagram, etc).

One of the prominent researchers in the area of testing in gen-
eral and mutation testing in particular is Jeff Offutt at George Mason
University (cs.gmu.edu/ offutt). He has several books, book chapters
and relevant papers sole or with friends and students. He also devel-
oped the widely used mutation tool muJava (http://cs.gmu.edu/ of-
futt/mujava/). Examples of some of those contributions include:
[1,2,3,4,5,6,7,8]. These papers discussed developing and using muta-
tion tools such as Java and Mothra. They also discussed Mutation
operators and using mutation in source code, Web applications and
object oriented code. Coverage (e.g. code, and path) was a criterion
to evaluate the effectiveness of mutation against it. Mutation can be
divided based on the software stage where it occurs, or based on the
software product component(s) upon which the mutation process oc-
curs. For example, there are several papers that discuss: source code
mutation (e.g. Java, object oriented code), Windows or Web mutation,
test cases’ mutation, database, integration testing, design or require-
ment mutation. The selection of the papers in this literature review of
related work is based on selected variations of these different mutations.

In [1], Choi et al presented one of the earliest mutation based testing
environment. Other examples of mutation tools include: Java, Clipse,
Javalanche, Jumple, Certitude, Jester, Proteum, and SQLMutation.

In our paper, a new mutation tool is developed for the particular
mutation in user interface components. The Mothra testing project was

85

Izzat Alsmadi

initiated in 1986 by members of the Georgia Institute of Technology’s
software engineering research center. Mothra is written in FORTRAN
and consists of a collection of individual tools, each of which implements
a separate, independent function for the testing system. Examples of
some of its mutation operators include relation operators’ replacement.
In original Mothra, the tool converts the tested code to an intermediate
code in order to execute its mutated version by an interpreter.

In a recent paper [2], Mateo et al proposed mutation operators that
are somewhat related to GUI components as some of these operators
were trying to evaluate whether a component is interchanged with an
earlier version of the same component which is something that may
occur frequently especially with an evolving application. This system
level mutation is a continuation for a work done in this area previously
by Delamaro et al [14, 16, 17, and 24] work on MuJava. On the GUI
level, the mutation operators proposed consider a small subset of the
possible GUI mutants such as GUI components’ position or order inter-
change, component deletion and modification. However, as the paper
had a large scope, extensive evaluation and implementation of these
mutations were not mentioned. As our paper came as an extension of
a GUI test automation tool [9, and 10] which includes the automation
of all GUI testing activities: generation, execution and verification,
the tool is utilized and extended to generate GUI mutants along with
implementing the ability to automatically execute these mutants and
evaluate their results.

In [3], Offutt et al described how to use the information of equiva-
lent mutation for the problem of some paths’ feasibility. An equivalent
mutant is the one that will always produce the same output as the orig-
inal program, so no test case can kill it. This affects the mutation score
and causes it always to be less than complete coverage. Earlier, in his
dissertation, Offutt proposed using Constraint-Based Testing (CBT)
for detecting equivalent mutants [5].The paper presented a method to
detect equivalent mutants in code through using constraints. These
constraints are applied on the input domain to narrow its scope. GUI
mutation has some possible equivalent mutation operators that will be

86

Using Test Case Mutation to Evaluate the . . .

discussed in this paper.
Li et al evaluated mutation as a coverage criterion in comparison

with other testing coverage criteria such as path, edge, etc. [6]. Cov-
erage is a test case metric that is used to measure the ability of a par-
ticular test approach to cover one or more aspects of the software code
that may include: statement, branch, path, etc. coverage. The study
focus was on unit testing and showed that mutation can actually be
more effective in terms of coverage from many other test criteria. Un-
like mutation score, mutation coverage calculates the number of faults
that can be detected using the mutation process. In our GUI testing
approach, the GUI is serialized from the actual application dynamically
using a reverse engineering process. (i.e. .NET reflection). As a result,
the GUI model is represented by an XML file which includes the GUI
components, hierarchy and attributes. Mutations are created based
on the XML file and applied on the actual GUI during the execution
process. However, since a GUI test case looks like a GUI path (e.g.
File,Save,Exit), mutation can be also applied on or generated from the
test cases. In typical cases, the program is mutated and the test cases
are used to detect this mutation. However, in GUI, it is possible to
reverse the process through generating a mutated test case (that may
include for example an invalid GUI component) and then execute it
on the application where its failure is an indication that the mutant is
killed. If the mutant test case failed then this is a possibility of two:
either the mutant test case is equivalent and looks like a normal test
case to the GUI, or the test case is killable but the current state of the
GUI failed to kill this mutant.

Offutt et al discussed a selective mutation process to reduce the
expenses of mutation as the number of possible mutation operators for
even a small program can be significant [7]. A selective mutant can be
selected from many mutants if they produce the same results. Lee et
al. presented a Web based scenario level mutation based on interaction
scenarios written in an Interaction Specification Model (ISM) [8]. ISM
is an XML based interaction constraint language. Message mutation
can be applied in a wide range of applications that use messaging such
as distributed systems, networks, etc.

87

Izzat Alsmadi

Hierons paper represents another paper in specification or modeling
mutation [24]. The paper discussed Finite State Machines (FSMs)
mutation based on the basic elements of FSMs which are: states, events
and transitions. In FSM, each state is recognized by preconditions
which represent the constraints that are required to occur or be true in
order for the transition to the target state to occur, and post conditions
that represent the expected results from the state transition. In relation
to this subject, we are planning to extend GUI mutation in future to
cover GUI state based mutation aspects.

Other papers such as [11] and [14] discussed using mutation for eval-
uating states coverage. Examples of mutation operators for finite state
machines include: event, arc, or output missing, extra or exchanged.
For user interface mutation this also can be considered for GUI events
interaction, however, the focus of our mutation operators here is on the
GUI structural mutation.

There are some other papers such as [13 and 18] that used the muta-
tion process as a technique for validating a particular testing algorithm
or approach. Bradbury et al [13] used a subset of the Concurrency Mu-
tation Analysis (ConMan) operators that are discussed in the authors’
earlier paper [23]. However, by larger, model checking is a testing area
where mutation is not thoroughly investigated. In this paper and in
mutation research papers in general, one weakness of such studies is
that same authors are the one who usually create mutations and cre-
ate tests to detect them. If the goal of mutation is to try to imitate
real life bugs and test abilities to detect them, the creation of mutation
and the detection process should both be independent from each other.

Papers from [15, 16, 17, 18, 19, 20, 21 and 22] include examples
of using mutation in other software artifacts such as: Web, object
orientation and aspect oriented programming.

88

Using Test Case Mutation to Evaluate the . . .

3 Goals and Approaches

3.1 Using Test Case Mutation to Evaluate the Model of
the User Interface

Mutation is used in testing for various purposes. It is first used to
inject faults into the system and measure the system or the test cases’
ability to catch those mutants. As a result, mutants can indicate the
effective test cases through their abilities to detect errors which allow
us to eliminate ineffective test cases and improve test effectiveness.
Mutation can be also used to indirectly generate test cases. Mutation
testing can be also used to indirectly verify requirements. In mutation,
three steps are accomplished: First mutants are created according to
mutation operators; second program is executed with normal and mu-
tant inputs. Finally verification and coverage analysis is implemented
based on the percentage of mutants discovered. In this paper we will
present mutation for the test cases. In our GUI model, each test case
contains a sequence of GUI components. This means that the program
executing those test cases will interact with those components consec-
utively with the right or typical type of interaction (e.g. a button click,
a textbox type text, an option list option select, etc). Default types of
interactions are defined for each control type. As such, the mutations
that will be evaluated first are changing one component or widget in
each test case. From previous knowledge, we know that if the mutated
control is changed to a control in the same level, the new test cases can
still be executed (however, it should produce a different behaviors). As
such, we can divide the expected behaviors from test cases’ mutation
into 3 levels:

• It is expected that the majority of mutated test cases should
be rejected as they will produce invalid test cases that will not
fully and successfully be executed. Execution and Verification
tool should be able to distinguish that such mutant test cases
produced different results relative to the original ones.

• Some mutations will pass the validation process and produce a
valid test case. However, they will produce different results or

89

Izzat Alsmadi

behavior relative to the original test cases.

• It is expected that few mutations will not be killed at all as
they will be valid and produce identical results compared to the
original test case or the different behavior can’t be distinguished
or observed.

3.2 The Execution and Verification Process

Implementing and verification process for testing is one of the challeng-
ing processes that have several obstacles. An algorithm is developed to
read test cases one by one and execute them on the actual application.
Each GUI component is then tested to see if it is successfully executed
or not. Once all test case components are successfully executed, the
test case suite passes the execution and verification process. In such
processes many problems can occur. Timing is one of the problems
where one form or web page needs to wait for another execution to
finish while it is expecting it earlier. Synchronization and dealing with
multithreads are also other examples of such problems. In order to fo-
cus on evaluating and comparing original test cases with mutants, any
test case from the original test fails the execution and the verification
process will be eliminated. The importance of evaluating this execution
and verification effectiveness is that it can test our mutation process
by measuring the ratio of killed (i.e. invalid) mutants to valid ones.
Any invalid component should not be executed successfully. Figure 2
shows a sample log of the execution and verification process output.
The test list count shows the input GUI components to the execution
process and the test execution count shows the number of GUI com-
ponents that were successfully executed. The difference between the
two numbers (i.e. test list count – test execution count) represents the
number of GUI components that fails in the execution process.

90

Using Test Case Mutation to Evaluate the . . .

Figure 2. A sample output from the GUI components execution pro-
cess.

91

Izzat Alsmadi

3.3 Using Mutation in Test Case Generation and Exe-
cution

The majority of research papers that discussed mutation focused on
code, requirement or model mutation. In this part, we will consider
test cases’ mutation. If a system is expected to accept valid test cases,
in principle, it should also reject invalid test cases. This is the main
assumption that the paper hypothesis is based on. The GUI model
will be tested based on its ability to reject invalid test cases. Mutation
is used to make some test cases invalid and test the system ability to
reject and catch those mutations.

In specification based mutation, each specification element is re-
placed with its possible alternatives. A test case that is able to detect
the difference between the original specification and the mutated one
will kill (i.e. discover) the mutant. Similarly, in code based mutation,
a code element (e.g. ”>”; the ”larger than” symbol) is replaced by one
of its possible alternatives (e.g. >=, <, <=). If none of the test cases
in the test suite was able to detect the difference in behavior between
the original and mutant code, this means that this mutant is not reach-
able by any one of the test cases. Another possible reason is that it
is possible that the mutant is reachable but shows a similar external
behavior relative to the original code.

A test case mutant remains live either:

• Because it is equivalent to the original test case and the appli-
cation cannot tell the difference between the original behavior
and the new one. They could be functionally identical although
syntactically different. (i.e. equivalent test cases).

• Or, the program is incapable to kill the mutant. This means that
the different behavior is not propagated to the external interface.
Those summarize the three conditions to kill a mutant: reach-
ability, infection and propagation.

Test coverage can, therefore, be measured according to the fraction
of dead specification or code mutants.

92

Using Test Case Mutation to Evaluate the . . .

Coverage = Number of mutant test cases discovered / the total
number of mutant test cases.

This definition of coverage is somewhat new and is a direct indi-
cator for the GUI model quality. The complete coverage in this ap-
proach equals to killing all non-equivalent test cases. Typical coverage
types evaluated in testing scope include: requirement, code, statement,
branch, path, etc. coverage.

In traditional mutation situation, new test cases are added to kill
the mutants. In this approach, this indicates a problem in the GUI
model that should be addressed (i.e. why it could not reject an incor-
rect test case sequence). As this is a model based testing, mutation
modifications considered here are only those that are related to the
GUI structure. Mutations that are related to the specification such as:
invalid user inputs based on boundary values and equivalent partitions
are not considered in this research as they will affect the code and not
the GUI model.

In this research, the mutation evaluation process is reversed. In the
traditional mutation process, the code, or the specification is mutated
and the test cases are fixed. It is expected that those test cases can
show the difference between the original code or specification and the
mutated one. In this research, the code and the specification are fixed
and the mutation is occurred in the test cases. It should be mentioned
however, that we are not testing the test cases. This type of test case
mutation can be classified as a model based testing approach. The
GUI model is expected to discover and kill the mutants. As such test
adequacy can be measured by the number or the percentage of the
failed test cases. Initially, the approach requires calibration to make
sure that all original test cases pass (or else take the number of the
successful test cases as the denominator). In the first stage before
applying test case mutation, all test cases in the suite must be tested
to make sure that the GUI model accepts and validates them.

The typical definition of coverage is calculated through the code or
specification percentage that is tested through the test cases. In this
research, coverage (which is the number of the test cases that fail to
the total number of mutated test cases) reflects other quality attributes

93

Izzat Alsmadi

in the system. Opposite to this research approach, some good quality
attributes of the system such as robustness express the system dynamic
range and its ability to tolerate inputs or user mistakes. However,
tolerating wrong user inputs should not be mistaken with accepting
wrong user inputs. A fault tolerance application may not crash if a
user input an invalid input; however, it should reject such input and
stop further program execution. This is the quality attribute that this
approach is trying to discover in the program; testing its ability to
distinguish a correct input from an incorrect one. As the focus of this
paper is GUI testing, we will survey some of possible incorrect inputs
that an application may experience.

3.4 The automatic execution and verification

Despite the fact that the subject of this paper is test case mutation in
GUI models, however the automatic execution and verification process
is important in order to evaluate the validity and the value of the
proposed mutation operators.

The need for this automatic process was necessary to check whether
the GUI model will accept or reject the applied test cases. The main
problem was that we are not simply trying to measure expected and
actual numeric values which makes the automatic verification process
simple. In this approach, there is a need to verify the GUI state before
and after executing each test case. Building a research tool to do such
tasks may not be easy. There are some known commercial tools such as
IBM Rational Robot which may have the capability to do such complex
processes. Most commercial tools are using the record/replay methods
and few of them use the object data approach that is adapted in this
research.

The algorithm we developed to accomplish the automatic execu-
tion and verification process depends on using reflection and the fact
that managed code includes GUI control details in their executable.
The process will use the reverse engineering reflection method to get
all GUI controls, their associations and attributes to the memory in
order to validate the actual and mutated test cases on them. However,

94

Using Test Case Mutation to Evaluate the . . .

validating each test case as a one unit was impossible as the process
will simply get the GUI controls from the test cases one by one and see
if they exist in the GUI or not. The alternative was to consider that if
any control fails in a test case, the whole test case will be assumed fail.
However, we decided to go with the first option and hence calculate ef-
fectiveness based on the controls rather than the test cases. However,
the alternative can be later considered to see which approach provides
more realistic results.

3.5 The mutation tool

As an extension for GUIAuto [9, 10] which is a test automation tool
developed previously by the author, the tool is developed to execute
all mutation process activities. The tool first uses reflection (a reverse
engineering process to assemble the application components from its
executable) to extract all GUI components and their data to an XML
file. Other test automation activities such as test case generation, ex-
ecution and verification can be triggered based on several algorithms
and techniques. In the developed tool, GUIAuto is extended based on
the GUI mutation operators that will be described later. Those oper-
ators can be generated and executed automatically. The focus of the
developed mutation tool is on GUI components mutation ignoring the
code behind or the actual code in the GUI events triggers.

3.6 The case study

Several small size open source applications are selected for the evalu-
ation in this study. There are two conditions in the selection of those
open source codes. The first one is that since the tool uses reflection to
serialize .NET managed code and extract all GUI components from it,
all selected applications are .NET managed applications. A managed
code is a program (in a .NET programming language: C#, VB. Net,
managed C++, or JScripts) that is executed within a runtime engine
(such as .NET framework and Java Virtual Machine (JVM)) installed
in the same machine. The unmanaged code is an executable program
that runs as a standalone, launched from the operating system. The

95

Izzat Alsmadi

program calls upon and uses the software routines in the operating sys-
tem. However, it does not require other software application in order
to be used.

The second criteria for selection is that the selected application
should contain a reasonable amount of GUI components in many forms
or web pages in order to construct a GUI hierarchy and be able to
generate different sequences of test cases in several levels. Table 1
shows the summary of the 4 selected AUTs for this specific experiment.

Table 1. GUI Summary of the AUTs
AUT No. of Controls No. of Paths No. of Forms

DBSPY 26 19 2
Notepad 158 176 11

BirdWatcher 23 21 3
CourseReg 89 65 2

Based on the GUI model, and based on its structure and compo-
nents, several mutation operators are proposed. In order to evaluate
proposed mutation effects, an automatic execution process is devel-
oped. The GUI model takes all test cases as a sequence and the au-
tomatic execution process apply those test cases on the actual GUI.
An automatic verification method is also developed to check those test
cases that are successfully executed. We define execution coverage met-
ric to be the number of executed controls to the number of input or
generated controls. The execution process tries to execute the sequence
of controls in each test case one by one. The effectiveness for each test
case is calculated. The average for the overall test cases is taken to be
the execution coverage.

1. Mutation Operator Type 1: Switching GUI components. In
this mutation, two components in each test case are switched.

For example, for original test cases of:
1,FRMDATADISPLAY,GROUPBOX3,LSTFIELDS,,SETTINGS

2,FRMDATADISPLAY,MENUSTRIP1,OPENANEWCONNECTIONTOOLSTRIPMENUITEM,,PROGRAM

96

Using Test Case Mutation to Evaluate the . . .

mutation will be:
1,GROUPBOX3,FRMDATADISPLAY,LSTFIELDS,,SETTINGS

2,MENUSTRIP1,ROGRAM,FRMDATADISPLAY,OPENANEWCONNECTIONTOOLSTRIPMENUITEM

Note the two controls that are replaced with each other. Table 2
shows test execution effectiveness comparison between original and mu-
tated test cases. All effectiveness metrics calculated below in all tables
were based on the number of GUI components successfully executed
and verified to the number of the GUI controls that were applied. The
number of GUI controls in each test case varies from 3-7 controls in
the selected applications. It should be mentioned that earlier we define
effectiveness as the number of failed (i.e. detected) mutants to the total
number of inputs. This is usually the complement of the effectiveness
calculated in the tables below. In Table 2, we didn’t focus on the ef-
fect of changing the test case generation algorithm as this may not be
important to the test case verification processes. This will focus on the
impact on the execution processes when test cases are mutated.

Table 2. Execution effectiveness for Type1 mutation
AUT No. of test cases Effectiveness before Effectiveness after

1 30 0.75 0.82
2 50 0.816 0.802
3 30 0.86 0.84
4 50 0.71 0.73

The expectation is that effectiveness for mutants should be less than
those of the original test cases. This indicates the application ability
to reject wrong test cases. In normal situations, switching elements of
the test case should cause a test execution failure. The first type does
not imply a failure from the GUI model itself. It implies the inabil-
ity of the developed execution and verification process to detect this
type of mutation. The reason is that the execution process segments
each test case in its components and then tries to verify the successful
execution of each GUI component individually independent from the

97

Izzat Alsmadi

other components in the same test case. The automatic execution and
verification process executes and searches for every control from each
of the test cases in the application assembly (which contains all ap-
plication GUI components) and verifies its existence and ability to be
executed. This is why switching test case elements didn’t affect majorly
the effectiveness in Table 1 and made the difference in effectiveness neg-
ligence. In reality, the automatic verification process is very complex
and subjected to several environmental factors. For example, timing
and synchronization between the forms or components that are cur-
rently visible is very hard to accomplish. For example, the automatic
execution robot maybe expecting a button to be clicked at a moment
while the opened form is not yet visible or ready. Another problem is
the fact that some modules are modeless and do not accept any fur-
ther commands before closing. The visibility of some GUI components
(especially containers) is also a challenge for the automatic verification
where defining its visibilities and executing them can be difficult.

The trials to automatically verify the execution of a complete GUI
path were unsuccessful. In future, a modified execution algorithm to
verify the test case in the same sequence should be implemented to
cover this weakness in the verification process.

2. Mutation Operator Type 2: Changing the name of one
control in the sequence (by adding or removing one letter, for example).

In Type 2, a letter from one control in every test case is removed.
The goal is to keep the control entity but change its identity. If each
GUI object is defined by its name only, this mutation type should be
detected. Location of the mutated or modified letter and the control
(from the test case) are selected randomly. Table 2 shows the effective-
ness results from this mutation gathered from the actual applications.
Results showed that execution effectiveness is reduced to indicate re-
duction percentage for all controls that were located before mutation
only. This can be calculated theoretically by:

NewEff = OrgEff − (NoMut/NoControlsTotal)

Where NewEff is the effectiveness after mutation, and OrgEff

98

Using Test Case Mutation to Evaluate the . . .

is the effectiveness before mutation, NoMut is the total number of
modified controls (through their name) divided by the total number of
controls in all test cases applied.

For example, in Table 2, AUT1, OrgEff = 0.75, NoMut = 30, and
as NewEff = 0.53, we can find the total number of controls in all test
cases which will be 3000/22 or about 136 controls (average controls in
each test case = 136/30 or about 4.5). However, this theoretical value is
assuming that all mutated controls are undetected and all un-mutated
controls are detected in the same way as it was before. Table 3 shows
variations of the results between the 4 tested applications.

Table 3. Execution effectiveness for Type 2 mutation
AUT No. of test cases Effectiveness before Effectiveness after

1 30 0.75 0.53
2 50 0.816 0.75
3 30 0.86 0.64
4 50 0.71 0.468

3. Type 3. Changing the name of every control in the sequence
(by adding or removing one letter, for example). In an extension to
type two, and in order to distinguish between a node (i.e. control)
failure from a path failure, in this mutation every control name in the
test path will be modified by changing only one letter. Table 4 shows
the results of applying this mutation.

Table 4. Execution effectiveness for Type 3 mutation
AUT No. of test cases Effectiveness before Effectiveness after

1 30 0.75 0.0
2 50 0.816 0.03
3 30 0.86 0.0
4 50 0.71 0.0

In Table 4, changing all names of controls should bring all test

99

Izzat Alsmadi

cases to a complete failure. The few exceptions occur in rare cases
where removing a letter from a control change the name to another
valid one.

4. Type 4: Changing one control from the sequence with another
control from the same level. This mutation will bypass some GUI
structure constraints where a test case should contain GUI components
from the different levels respectively. In some cases, changing this
control may change the test case. However, it will produce another
valid test case.

Example:

MAINMENU,EDIT,UNDO–TO–FILE,EDIT,COPY

Where Undo and Copy are two controls from the same level. Table
5 shows the results in effectiveness of applying mutation type 4.

Table 5. Execution effectiveness for Type 4 mutation
AUT No. of test cases Effectiveness before Effectiveness after

1 30 0.75 0.73
2 50 0.816 0.815
3 30 0.86 0.81
4 50 0.71 0.82

As expected and explained earlier, switching GUI controls did not
affect test case effectiveness as it will modify the test case without
invalidating it. In our mutation testing, we are not testing whether the
value before and after mutation stays the same. The tests on the GUI
model focus on only verifying whether the new mutated test cases will
be accepted or rejected by the model. As a result, despite the fact that
this type of mutation changes the test case and that the path that it
is testing, however, the new test case is a valid one. In some cases as
in the last application, effectiveness is improved.

5. Type 5: Changing one control in every test case with another
one from a different level. In this mutation, one control in each test

100

Using Test Case Mutation to Evaluate the . . .

case is replaced with a control randomly selected from the pool that
contains all AUT controls without observing the location of the newly
selected control. Table 6 shows the results from applying this mutation.

Table 6. Execution effectiveness for Type 5 mutation
AUT No. of test cases Effectiveness before Effectiveness after

1 30 0.75 0.64
2 50 0.816 0.812
3 30 0.86 0.80
4 50 0.71 0.82

Similar to Type 1, it is expected that this type should cause a no-
ticeable decrease in effectiveness using mutated test cases. However,
this was not the case due to the limitation in the automatic execution
and verification process, which verifies the existence of each executed
control in the managed code (without considering whether its test case
is still valid or not). Rather than lowering the test effectiveness, using
mutants improves effectiveness which means that switching the loca-
tions of some controls made them more visible and those controls were
then located successfully by the execution algorithm.

6. Type 6: Deleting a control from a sequence. In this mutation,
from each test case, one randomly selected control is removed from the
test case.

Table 7. Execution effectiveness for Type 6 mutation
AUT No. of test cases Effectiveness before Effectiveness after

1 30 0.75 0.71
2 50 0.816 0.80
3 30 0.86 0.80
4 50 0.71 0.62

The execution effectiveness should be affected by deleting controls
from the test cases solely because of the deletion since the new calcu-

101

Izzat Alsmadi

lated effectiveness will be based on the new test cases taken the dele-
tion into consideration. However, all Applications Under Test (AUTs)
showed reduction which indicates that when some controls are deleted
this may affect the visibility of some other controls.

7. Type 7: Adding a control to the sequence. Rather than switch-
ing an existed control with another one, in this mutation one randomly
selected control is added to each test case. The randomly selected con-
trol can be the same added to all or can randomly be selected every
time.

Table 8. Execution effectiveness for Type 7 mutation
AUT No. of test cases Effectiveness before Effectiveness after

1 30 0.75 0.76
2 50 0.816 0.77
3 30 0.86 0.77
4 50 0.71 0.75

Similar to the case of: removing a control, adding a control, does not
impact effectiveness as this addition is reconsidered when calculating
effectiveness. Results showed that although in all mutation cases, test
effectiveness after should be less than test effectiveness before, however,
as the verification process verifies the controls one by one, the addition
of some GUI controls causes the effectiveness to be increased (which
may not reflect the test case generation actual effectiveness).

4 Conclusion and Future Work

Test cases are used to detect possible errors and bugs in software appli-
cations. In this paper, mutation based testing is used to test applica-
tions user interfaces and test if they can differentiate invalid from valid
test cases. An automatic tool is developed to automatically generate
test cases from applications user interfaces. Later on, and based on
the generated test cases, an aspect of one component in each test case

102

Using Test Case Mutation to Evaluate the . . .

is changed to create test case mutations. Examples of mutations that
are considered in this paper were in: changing GUI controls location,
name, adding, or removing those controls. An automatic execution and
verification process is developed to evaluate the validity of the proposed
mutations. The automatic execution and verification processes verify
each control individually regardless of its test case. Nonetheless, re-
sults showed promising future in the ability of test case mutation to
verify certain properties in the GUI model. In mutation original test
cases and their results are stored. Those are considered as the baseline
for mutation based testing. After generating mutation, to test those
mutations, a mutation is said to be killed if its test case result is dif-
ferent from that of the original. The validation of the results considers
killing mutants by rejecting them. This makes the automatic verifica-
tion process difficult due to the difficulty of defining the GUI correct
and incorrect states.

References

[1] Choi, B.J., DeMillo, R.A., Krauser, E.W., Martin, R.J., Mathur,
A.P., Offutt, A.J., Pan, H., Spafford, E.H. The Mothra Tool Set.
Proceedings of the 22nd annual Hawaii international conference
on system sciences (HICSS’22), Kailua-Kona, HI , USA, (pp: 275-
284), vol. 2 (1989).

[2] Mateo, P.R. Usaola, M.P. Offutt, J. Mutation at System and Func-
tional Levels. Third International Conference on Software Test-
ing, Verification, and Validation Workshops (ICSTW), 6-10, Paris,
France, (pp: 110), (2010)

[3] Offutt, A.J. Jie Pan. Detecting Equivalent Mutants and the Fea-
sible Path Problem. Proceedings of the 11th annual conference on
computer assurance (COMPASS 96). 17-21 June, Gaithersburg,
MD, USA, (pp: 224), (1996).

[4] Praphamontripong, U. Offutt, J. Applying Mutation Testing to
Web Applications. Proceedings of the 3rd International Confer-

103

Izzat Alsmadi

ence on Software Testing, Verification, and Validation Workshops
(ICSTW), 6-10 April, Paris, France, (pp: 132), (2010).

[5] DeMillo, R.A. Offutt, A.J. Constraint-Based Automatic Test
Data Generation. IEEE Transactions On Software Engineering
(TOSEM), VOL. 17, Issue 9, (pp: 900), Sep. (1991).

[6] Nan, Li Praphamontripong, U. Offutt, J. An Experimental Com-
parison of Four Unit Test Criteria: Mutation, Edge-Pair, All-
uses and Prime Path Coverage. IProceedings of the International
Conference on Software Testing Verification and Validation Work-
shops, 1-4 April, Denver, CO, USA, (pp: 220), (2009).

[7] Offutt, A.J. Rothermel, G. Zapf, C. An Experimental Evaluation
of Selective Mutation. Proceedings of the 15th International Con-
ference on Software Engineering, 17-21 May, Baltimore, MD, USA,
(pp: 100), (1993).

[8] Suet Chun Lee Offutt, J. Generating Test Cases for XML-based
Web Component Interactions Using Mutation Analysis. Proceed-
ings of the International Symposium on Software Reliability Engi-
neering (ISSRE), 27-30 Nov., Hong Kong, (pp: 200-209), (2001).

[9] Alsmadi I. Magel K. GUI Path Oriented Test Generation Al-
gorithms. Proceedings of Human-Computer Interaction confer-
ence (IASTED HCI), Chamonix, France. March 14 - 16, (pp:02),
(2007).

[10] Alsmadi I. Magel K. An Object Oriented Framework for User In-
terface Test Automation. Proceedings of The Midwest Instruction
and Computing Symposium MICS07, 20-21 April, Grand Forks,
ND, USA, (2007).

[11] Hierons, R.M. Merayo, M.G. Mutation Testing from Probabilis-
tic Finite State Machines. Proceedings of the Academic and In-
dustrial Conference – Practice And Research Techniques (TAIC-
PART), 10-14 Sep., Windsor, (pp: 141), (2007).

104

Using Test Case Mutation to Evaluate the . . .

[12] Masud, M. Nayak, A. Zaman, M. Bansal, N. Strategy for Mu-
tation Testing Using Genetic Algorithms. Proceedings of the
Canadian Conference on Electrical and Computer Engineering
(CCECE/CCGEI), 1-4 May, Saskatoon, Canada, (pp 1049- 1052),
(2005).

[13] Bradbury, J.S. Cordy, J.R. Dingel, J. Comparative Assessment of
Testing and Model Checking Using Program Mutation. Proceed-
ings of the Academic and Industrial Conference – Practice And Re-
search Techniques (TAICPART), 10-14 Sep., Windosr, (pp: 210),
(2007).

[14] Pinto Ferraz Fabbri, S.C. Delamaro, M.E. Maldonado, J.C.
Masiero, P.C. Mutation analysis testing for finite state machines.
Proceedings of the 5th International Symposium on Software Reli-
ability Engineering, (ISSRE), 6-9 Nov., Monterey, CA, USA, (pp:
220-229), (1994).

[15] Shufang Lee Xiaoying Bai Yinong Chen. Automatic Mutation
Testing and Simulation on OWL-S Specified Web Services. Pro-
ceedings of the 41st Annual Simulation Symposium (ANSS), 13-16
April, Ottawa, CA, (pp: 149), (2008).

[16] Delamaro, M. Maldonado, J.C. Interface Mutation: Assessing
Testing Quality at Interprocedural Level. Proceedings of the 19th
International Conference of the Chilean Computer Science Society
(SCCC), 11-13 Nov., Talca, CHI, (pp:78), (1999).

[17] Delamaro, M.E. Maidonado, J.C. Mathur, A.P. Interface Muta-
tion: An Approach for Integration Testing. IEEE Transactions on
Software Engineering (TOSEM), VOL. 27, Issue 3, March, (pp:
228), (2001).

[18] Serrestou, Y. Beroulle, V. Robach, C. Functional Verification of
RTL Designs driven by Mutation Testing metrics. Proceedings of
the 10th Euromicro Conference on Digital System Design Archi-
tectures, Methods and Tools (DSD), 29-31 Aug., Lubek, (pp: 222),
(2007).

105

Izzat Alsmadi

[19] Hoijin Yoon Byoungju Choi Jin-Ok Jeon Mutation-based Inter-
class Testing. Proceedings of the Asia Pacific Software Engineering
Conference (APSEC), 2-4 Dec., Taipei, (pp: 174), (1998).

[20] Howden, W.E. Weak Mutation Testing and Completeness of Test
Sets. Transactions on Software Engineering (TOSEM), Vol. SE-8,
Issue 4, July, (pp: 371-379), 1982).

[21] Ferrari, F.C. Maldonado, J.C. Rashid. A. Mutation Testing for
Aspect-Oriented Programs. Proceedings of the 1st International
Conference on Software Testing, Verification, and Validation, 9-11
Apr., Lillehammer, (pp: 52), (2008).

[22] Gupta, V. Accelerated GWT: Building Enterprise Google Web
Toolkit Applications. Apress, 1st edition, (2008).

[23] Bradbury, J.S. Cordy, J.R. Dingel, J. Mutation operators for con-
current Java (J2SE 5.0). Proceedings of the 2nd Workshop on
Mutation Analysis (Mutation), 7-10 Nov., Raleigh, NC, USA, (pp:
83-92) (2006).

[24] R. M. Hierons. Testing from a finite state machine: Extending
invertibility to sequences. The Computer Journal, 40(4):220-230,
(1997).

Izzat Alsmadi, Received March 5, 2011
Revised April 15, 2012

Izzat Alsmadi
Yarmouk University
Computer Information Systems Department
IT Faculty
Irbid, Jordan
Phone: 96227211111
E–mail: ialsmadi@yu.edu.jo

106

Computer Science Journal of Moldova, vol.20, no.1(58), 2012

Annotation on PhD Thesis

Title: Automation of the process of computational linguistic resources cre-
ation
Author: Mircea Petic
Place of defence: Institute of Mathematics and Computer Science of the
Academy of Sciences of Moldova, Chisinau
Date of defence: 22 January 2012
Speciality: 01.05.01 – Theoretical foundation of computer science; program-
ming

The thesis was elaborated at the Institute of Mathematics and Computer
Science of the Academy of Sciences of Moldova, Chisinau, in 2011. The thesis
is written in Romanian and contains introduction, three chapters, general
conclusions and recommendations, bibliography of 200 titles, 14 appendices,
133 pages of the main text, 15 figures, and 44 tables. The results are published
in 27 scientific papers.

Keywords: computational linguistic resources, derivational algorithm,
affix, prefix, suffix, words segmentation, vocalic/consonantal alternations, au-
tomatic derivative generation, generative derivational mechanisms.

The study in this thesis concerns an actual research area related to au-
tomation of the process of computational linguistic resources creation, namely,
by automatic generation of the derived words that are absent in computational
linguistic resources.

The purpose is to study the mechanisms and to elaborate algorithms for
automatic generation of the derived words for these resources completion.

The research objectives are: evaluation of the existent methods in the
automation of the derivational process; study of the structure particularities
of computational linguistic resources available for research; establishing the
quantitative and qualitative characteristics of the derived words; elaboration
of the algorithms for automatic recognition of the derived words; establishing
the mechanisms and elaboration of algorithms for automatic generation of the
derived words.

Novelty and scientific originality. This work contributes to complete
research in the field of natural language processing by development of mathe-
matical models and algorithms to solve the problem of automatic derivatives

107

generation. The results of the study represent a realization of a new method-
ology of studying the issues in computational derivational morphology, related
to the algorithmization of certain linguistic mechanisms, such as affixes substi-
tution, derivatives projection, derivational constraints and formal derivational
rules.

Important scientific problem solved in the field of research. The
problem of automatic generation of derivatives for some classes of Romanian
words was solved, which contributes to the facilitation “human – computer”
communication in natural language by creation of the computational lexicons,
which are the basis of various applications of this field.

Theoretical significance and applied value of the thesis. A statis-
tical method for Romanian affixes uncertainty evaluation based on the notion
of entropy was proposed. The mathematical formal descriptions of the deriva-
tives word formation mechanisms were elaborated which served to develop-
ment of algorithms for automatic generation of the derivatives. During the
research the important results were obtained, which permitted to elaborate
algorithm for automatic generation of derivatives which can facilitate compu-
tational linguistic resources completion. The research results present interest
for lexicographic practice, in the process of dictionary elaboration and lexico-
graphic treatment of the derivatives. Also, the results of the investigation can
serve as a methodical support in activity of the specialists in both computer
science and linguistics.

Implementation of scientific results. An extension of RRTLN database
was developed which allowed a correct extraction of about 15.000 derivatives
without having a special program of word segmentation in morphemes (41
of prefixes, about 420 of suffixes, over 8 thousand of roots/stems). The es-
tablished mechanisms, which permitted the elaboration of algorithms and
corresponding programs, led to generation a significant number of derivatives
with different affixes, 8839 with 11 prefixes, and 2352 with 24 suffixes which
will help in Romanian language computational linguistic resources essential
enrichment.

108

	v20-n1-(pp3-15).pdf
	v20-n1-(pp15-33)
	v20-n1-(pp33-42)
	v20-n1-(pp42-82)
	v20-n1-(pp82-107)
	v20-n1-(pp107-108)

