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On central loops and the central square property

John Olúso. lá Adéníran and Tèmító. pé. Gbó. láhàn Jaiyéo. là

Abstract
The representation sets of a central square C-loop are investigated. Isotopes
of central square C-loops of exponent 4 are shown to be both C-loops and
A-loops.

1. Introduction
C-loops are one of the least studied loops. Few publications that have
considered C-loops include Fenyves [10], [11], Beg [3], [4], Phillips et. al.
[17], [19], [15], [14], Chein [7] and Solarin et. al. [2], [23], [21], [20]. The
di�culty in studying them is as a result of the nature of their identities
when compared with other Bol-Moufang identities (the element occurring
twice on both sides has no other element separating it from itself). Latest
publications on the study of C-loops which has attracted fresh interest on
the structure include [17], [19], and [15].

LC-loops, RC-loops and C-loops are loops that satis�es the identities

(xx)(yz) = (x(xy))z, (zy)(xx) = z((yx)x), x(y(yz)) = ((xy)y)z,

respectively. Fenyves' work in [11] was completed in [17]. Fenyves proved
that LC-loops and RC-loops are de�ned by three equivalent identities. In
[17] and [18], it was shown that LC-loops and RC-loops are de�ned by four
equivalent identities. Solarin [21] named the fourth identities the left middle
(LM) and right middle (RM) identities and loops that obey them are called
LM -loops and RM -loops, respectively. These terminologies were also used
in [22]. Their basic properties are found in [19], [11] and [9].

De�nition 1.1. A set Π of permutations on a set L is the representation
of a loop (L, ·) if and only if
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(i) I ∈ Π (identity mapping),
(ii) Π is transitive on L (i.e., for all x, y ∈ L, there exists a unique π ∈ Π

such that xπ = y),
(iii) if α, β ∈ Π and αβ−1 �xes one element of L, then α = β.

The left (right) representation of a loop L is denoted by Πλ(L) (resp. Πρ(L))
or Πλ (resp. Πρ) and is de�ned as the set of all left (right) translation maps
on the loop i.e., if L is a loop, then Πλ = {Lx : L → L | x ∈ L} and
Πρ = {Rx : L → L | x ∈ L}, where Rx : L → L and Lx : L → L are de�ned
as yRx = yx and yLx = xy are bijections.

De�nition 1.2. Let (L, ·) be a loop. The left nucleus of L is the set

Nλ(L, ·) = {a ∈ L : ax · y = a · xy ∀ x, y ∈ L}.
The right nucleus of L is the set

Nρ(L, ·) = {a ∈ L : y · xa = yx · a ∀ x, y ∈ L}.
The middle nucleus of L is the set

Nµ(L, ·) = {a ∈ L : ya · x = y · ax ∀ x, y ∈ L}.
The nucleus of L is the set

N(L, ·) = Nλ(L, ·) ∩Nρ(L, ·) ∩Nµ(L, ·).
The centrum of L is the set

C(L, ·) = {a ∈ L : ax = xa ∀ x ∈ L}.
The center of L is the set

Z(L, ·) = N(L, ·) ∩ C(L, ·).
L is said to be a centrum square loop if x2 ∈ C(L, ·) for all x ∈ L.

L is said to be a central square loop if x2 ∈ Z(L, ·) for all x ∈ L. L is
said to be left alternative if for all x, y ∈ L, x · xy = x2y and is said to
right alternative if for all x, y ∈ L, yx · x = yx2. Thus, L is said to be
alternative if it is both left and right alternative. The triple (U, V, W ) such
that U, V, W ∈ SY M(L, ·) is called an autotopism of L if and only if

xU · yV = (x · y)W ∀ x, y ∈ L.
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SY M(L, ·) is called the permutation group of the loop (L, ·). The group
of autotopisms of L is denoted by AUT (L). Let (L, ·) and (G, ◦) be two
distinct loops.

The triple (U, V, W ) : (L, ·) → (G, ◦) such that U, V, W : L → G are
bijections is called a loop isotopism if and only if

xU ◦ yV = (x · y)W ∀ x, y ∈ L.

In [13], the three identities stated in [11] were used to study �nite cen-
tral loops and the isotopes of central loops. It was shown that in a �nite
RC(LC)-loop L, αβ2 ∈ Πρ(L)

(
Πλ(L)

)
for all α, β ∈ Πρ(L)

(
Πλ(L)

)
while in

a C-loop L, α2β ∈ Πρ(L)
(
Πλ(L)

)
for all α, β ∈ Πρ(L)

(
Πλ(L)

)
. A C-loop is

both an LC-loop and an RC-loop [11], hence it satis�es the formal. Here,
it will be shown that LC-loops and RC-loops satisfy the later formula.

Also in [13], under triples of the form (A,B, B), (A,B, A), alternative
centrum square loop isotopes of centrum square C-loops were shown to be
C-loops.

It is shown that a �nite loop is a central square central loop if and only
if its left and right representations are closed relative to some left and right
translations. Central square C-loops of exponent 4 are groups, hence their
isotopes are both C-loops and A-loops.

For other de�nitions see [5], [22] and [16].

2. Preliminaries
De�nition 2.1. (cf. [16]) Let (L, ·) be a loop and U, V, W ∈ SY M(L, ·).
If (U, V,W ) ∈ AUT (L) for some U, V, W , then U is called an autotopism.
If there exists V ∈ SY M(L, ·) such that xU · y = x · yV for all x, y ∈ L,
then U is called µ-regular, while U ′ = V is called its adjoint.

The set of autotopic bijections in a loop (L, ·) is denoted by Σ(L, ·), the
set of all µ-regular bijections by Φ(L), the set of all adjoints by Φ∗(L).

Theorem 2.1. ([16]) Groups of autotopisms of isotopic quasigroups are
isomorphic.

Theorem 2.2. ([16]) The set of all µ-regular bijections of a quasigroup
(Q, ·) is a subgroup of the group Σ(Q, ·) of all autotopic bijections of (Q, ·).
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Corollary 2.1. ([16]) If two quasigroups Q and Q′ are isotopic, then the
corresponding groups Φ and Φ′ [Φ∗ and Φ′∗] are isomorphic.

De�nition 2.2. A loop (L, ·) is called a left inverse property loop or right
inverse property loop (L.I.P.L. or R.I.P.L.) if and only if it satis�es the left
inverse property (resp. right inverse property): xλ(xy) = y (resp. (yx)xρ =
y. Hence, it is called an inverse property loop (I.P.L.) if and only if it has
the inverse property (I.P.) i.e., it has a left inverse property (L.I.P.) and
right inverse property (R.I.P.).

Most of our results and proofs, are written in dual form relative to RC-
loops and LC-loops. That is, a statement like 'LC(RC)-loop... A(B)' where
'A' and 'B' are some equations or expressions means that 'A' is for LC-loops
and 'B' is for RC-loops.

3. Finite central loops
Lemma 3.1. Let L be a loop. L is an LC(RC)-loop if and only if β ∈ Πρ

(Πλ) implies αβ ∈ Πρ (Πλ) for some α ∈ Πρ (Πλ).

Proof. L is an LC-loop if and only if x · (y ·yz) = (x ·yy)z for all x, y, z ∈ L.
L is an RC-loop if and only if (zy ·y)x = z(yy ·x) for all x, y, z ∈ L. Thus, L
is an LC-loop if and only if xRy·yz = xRy2Rz if and only if Ry2Rz = Ry·yz

for all y, z ∈ L and L is an RC-loop if and only if xLzy·y = xLy2Lz if and
only if Lzy·y = Ly2Lz. With α = Ry2 (Ly2) and β = Rz(Lz), αβ ∈ Πρ

(Πλ).

Lemma 3.2. A loop L is an LC(RC)-loop if and only if α2β = βα2 for all
α ∈ Πλ (Πρ) and β ∈ Πρ (Πλ).

Proof. L is an LC-loop if and only if x(x · yz) = (x · xy)z while L is an
RC-loop if and only if (zy · x)x = z(yx · x). Thus, when L is an LC-loop,
yRzL

2
x = yL2

xRz if and only if RzL
2
x = L2

xRz, while when L is an RC-loop,
yLzR

2
x = yR2

xLz if and only if LzR
2
x = R2

xLz. Thus, replacing Lx (Rx)
and Rz (Lz) respectively by α and β, We obtain our result. The converse
statement can be proved analogously.

Theorem 3.1. A loop L is an LC(RC)-loop if and only if α, β ∈ Πλ (Πρ)
implies α2β ∈ Πλ (Πρ).
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Proof. L is an LC-loop if and only if x · (y · yz) = (x · yy)z for all x, y, z ∈ L
while L is an RC-loop if and only if (zy · y)x = z(yy · x) for all x, y, z ∈ L.
Thus when L is an LC-loop, zLx·yy = zL2

yLx if and only if L2
yLx = Lx·yy

while when L is an RC-loop, zR2
yRx = zRyy·x if and only if R2

yRx = Ryy·x.
Replacing Ly(Ry) and Lx(Rx) with α and β respectively, we have α2β ∈
Πλ(Πρ) when L is an LC(RC)-loop. The converse follows by reversing the
procedure.

Theorem 3.2. Let L be an LC(RC)-loop. L is centrum square if and only
if α ∈ Πρ (Πλ) implies αβ ∈ Πρ (Πλ) for some β ∈ Πρ(Πλ).
Proof. By Lemma 3.1, Ry2Rz = Ry·yz (Ly2Lz = Lzy·y). Using Lemma 3.2,
if L is centrum square, Ry2 = Ly2 (L2

y = Ry2). So, when L is an LC-loop,
Ry2Rz = L2

yRz = RzL
2
y = RzRy2 = Ry·yz, while when L is an RC-loop,

Ly2Lz = R2
yLz = LzRy2 = LzLy2 = Lzy·y. Let α = Rz (Lz) and β = Ry2

(Ly2), then αβ ∈ Πρ (Πλ) for some β ∈ Πρ (Πλ).
Conversely, if αβ ∈ Πρ (Πλ) for some β ∈ Πρ (Πλ) such that α = Rz (Lz)

and β = Ry2 (Ly2) then RzRy2 = Ry·yz (LzLy2 = Lzy·y). By Lemma 3.1,
Ry2Rz = Ry·yz (Lzy·y = Ly2Lz), thus RzRy2 = Ry2Rz (LzLy2 = Ly2Lz) if
and only if xz · y2 = xy2 · z (y2 · zx = z · y2x). Let x = e, then zy2 = y2z
(y2z = zy2) implies L is centrum square.

Corollary 3.1. Let L be a loop. L is a centrum square LC(RC)-loop if
and only if

1. αβ ∈ Πρ (Πλ) for all α ∈ Πρ (Πλ) and for some β ∈ Πρ (Πλ),
2. αβ ∈ Πρ (Πλ) for all β ∈ Πρ (Πλ) and for some α ∈ Πρ (Πλ).

Proof. This follows from Lemma 3.1 and Theorem 3.2.

4. Isotopes of central loops
In [23] is concluded that central loops are not CC-loops. This means that the
study of the isotopic invariance of C-loops will be trivial. This is, because
if C-loops are CC-loops, then commutative C-loops would be groups since
commutative CC-loops are groups. But from the constructions in [19], it
follows that there are commutative C-loops which are not groups. The
conclusion in [23] is based on the fact that the authors considered a loop of
units in a central algebra.
Theorem 4.1. A loop L is an LC(RC)-loop if and only if (Ry2 , L−2

y , I) ∈
AUT (L) (resp. (R2

y, L
−1
y2 , I) ∈ AUT (L)) for all y ∈ L.
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Proof. According to [19], L is an LC-loop if and only if x ·(y ·yz) = (x ·yy)z
for all x, y, z ∈ L, while L is an RC-loop if and only if (zy · y)x = z(yy · x)
for all x, y, z ∈ L. x · (y · yz) = (x · yy)z if and only if x · zL2

y = xRy2 · z if
and only if (Ry2 , L−2

y , I) ∈ AUT (L) for all y ∈ L, while (zy · y)x = z(yy ·x)
if and only if zR2 · x = z · xLy2 if and only if (R2

y, L
−1
y2 , I) ∈ AUT (L) for all

y ∈ L.

Corollary 4.1. Let (L, ·) be an LC(RC)-loop, then (Ry2L2
x, L−2

y , L2
x) (resp.

(R2
y, L

−1
y2 R2

x, R2
x)) belongs to AUT (L) for all x, y ∈ L.

Proof. In an LC-loop L, (L2
x, I, L2

x) ∈ AUT (L) while in an RC-loop L
we have (I, R2

x, R2
x) ∈ AUT (L). Thus, by Theorem 4.1, for any LC-loop,

(Ry2 , L−2
y , I)(L2

x, I, L2
x) = (Ry2L2

x, L−2
y , L2

x) ∈ AUT (L) and for any RC-
loop, (R2

y, L
−1
y2 , I)(I, R2

x, R2
x) = (R2

y, L
−1
y2 R2

x, R2
x) ∈ AUT (L).

Theorem 4.2. A loop L is a C-loop if and only if L is a right (left) alter-
native LC(RC)-loop.

Proof. If (L, ·) is an LC(RC)-loop, then by Theorem 4.1, (Ry2 , L−2
y , I) (resp.

(R2
y, L

−1
y2 , I)) ∈ AUT (L) for all y ∈ L. If L has the right (left) alternative

property, then (R2
y, L

−2
y , I) ∈ AUT (L) for all y ∈ L if and only if L is a

C-loop.

Lemma 4.1. A loop L is an LC(RC, C)-loop if and only if Ry2 ∈ Φ(L)
(resp. R2

y, R2
y ∈ Φ(L)) and (Ry2)∗ = L2

y ∈ Φ∗(L) (resp. (R2
y)
∗ = Ly2 ∈

Φ∗(L), (R2
y)
∗ = L2

y ∈ Φ∗(L)) for all y ∈ L.

Proof. This can be deduced from Theorem 4.1.

Theorem 4.3. Let (G, ·) and (H, ◦) be two distinct loops. If G is a central
square LC(RC)-loop, H an alternative central square loop and the triple
α = (A,B,B) (resp. α = (A,B, A)) is an isotopism of G onto H, then H
is a C-loop.

Proof. G is a LC(RC)-loop if and only if Ry2 (R2
y)∈ Φ(G) and (Ry2)∗ = L2

y

(resp. (R2
y)
∗ = Ly2) ∈ Φ∗(G) for all x ∈ G. Using the idea of [6],

L′xA = B−1LxB and R′
xB = A−1RxA for all x ∈ G. Using Corol-

lary 2.1, for the case when G is an LC-loop: let h : Φ(G) → Φ(H) and
h∗ : Φ∗(G) → Φ∗(H) be de�ned as h(U) = B−1UB for all U ∈ Φ(G)
and h∗(V ) = B−1V B for all V ∈ Φ∗(G). This mappings are isomor-
phisms. Using the hypothesis, h(Ry2) = h(Ly2) = h(L2

y) = B−1L2
yB =
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B−1LyBB−1LyB = L′yAL′yA = L′2yA = L′(yA)2 = R′
(yA)2 = R′2

(yA) ∈ Φ(H).
h∗[(Ry2)∗] = h∗(L2

y) = B−1L2
yB = B−1LyLyB = B−1LyBB−1LyB =

L′yAL′yA = L′2yA ∈ Φ∗(H). So, R′2
y ∈ Φ(H) and (R′2

y )∗ = L′2y ∈ Φ∗(H) for all
y ∈ H if and only if H is a C-loop.

For the case of RC-loops, using h and h∗ as above, but now de-
�ned as: h(U) = A−1UA for all U ∈ Φ(G) and h∗(V ) = A−1V A for
all V ∈ Φ∗(G). This mappings are still isomorphisms. Using the hy-
potheses, h(R2

y) = A−1R2
yA = A−1RyAA−1RyA = R′

yBR′
yB = R′2

yB ∈
Φ(H). h∗[(R2

y)
∗] = h∗(Ly2) = h∗(Ry2) = A−1R2

yA = A−1RyRyB =
B−1RyBB−1RyB = R′

yAR′
yA = R′2

yA = R′
(yA)2 = L′(yA)2 = L′2yA ∈ Φ∗(H).

So, R′2
y ∈ Φ(H) and (R′2

y )∗ = L′2y ∈ Φ∗(H) if and only if H is a C-loop.

Corollary 4.2. Let (G, ·) and (H, ◦) be two distinct loops. If G is a central
square left (right) RC(LC)-loop, H an alternative central square loop and
the triple α = (A,B, B) (resp. α = (A,B, A)) is an isotopism of G onto H,
then H is a C-loop.

Proof. By Theorem 4.2, G is a C-loop in each case. The rest of the proof
follows by Theorem 4.3.

Remark 4.1. Corollary 4.2 was proved in [13].

5. Central square C-loops of exponent 4
For a loop (L, ·), the bijection J : L → L is de�ned by xJ = x−1.

Theorem 5.1. If for a C-loop (L, ·) (I, L2
z, JL2

zJ) or (R2
z, I, JR2

zJ) lies in
AUT (L), then L is a loop of exponent 4.

Proof. If (I, L2
z, JL2

zJ) ∈ AUT (L) for all z ∈ L, then: x · yL2
z = (xy)JL2

zJ
for all x, y, z ∈ L implies x · z2y = xy · z−2, whence z2y · z2 = y. Then
y4 = e. Hence L is a C-loop of exponent 4.

If (R2
z, I, JR2

zJ) ∈ AUT (L) for all z ∈ L, then: xR2
z · y = (xy)JR2

zJ
for all x, y, z ∈ L −→ (xz2) · y = [(xy)−1z2]−1 −→ (xz2) · y = z−2(xy) −→
(xz2) · y = z−2x · y −→ xz2 = z−2x −→ z4 = e. Hence L is a C-loop of
exponent 4.

Theorem 5.2. If in a C-loop L for all z ∈ L (I, L2
z, JL2

zJ) or (R2
z, I, JR2

zJ)
is in AUT (L), then L is a central square C-loop of exponent 4.
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Proof. If (I, L2
z, JL2

zJ) ∈ AUT (L) for all z ∈ L, then x · yL2
z = (xy)JL2

zJ
for all x, y, z ∈ L, whence x · z2y = xy · z−2.

If (R2
z, I, JR2

zJ) ∈ AUT (L) for all z ∈ L, then xR2
z · y = (xy)JR2

zJ for
all x, y, z ∈ L, whence xz2 · y = z−2 · xy.

So, in both these cases we have x·z2y = xz2·y ←→ xy·z−2 = z−2·xy. For
t = xy, we get tz−2 = z−2t ←→ z2t−1 = t−1z2, which implies z2 ∈ C(L, ·)
for all z ∈ L.

Since C-loops arenuclear square (cf. [19]), we have z2 ∈ Z(L, ·). Hence
L is a central square C-loop. By Theorem 5.1, x4 = e.

Remark 5.1. In [19], C-loops of exponent 2 were found. In [19] and [11] i
is proved that C-loops are naturally nuclear square. Our Theorem 5.2 gives
some conditions under which a C-loop can be naturally central square.

Theorem 5.3. If A = (U, V,W ) ∈ AUT (L) for a C-loop (L, ·), then Aρ =
(V,U, JWJ) 6∈ AUT (L), but Aµ = (W,JV J, U), Aλ = (JUJ,W, V ) are in
AUT (L).

Proof. The fact that Aµ, Aλ ∈ AUT (L) has been shown in [5] and [16] for
an I.P.L. L. Let L be a C-loop. Since C-loops are inverse property loops,
Aµ = (W,JV J, U), Aλ = (JUJ,W, V ) ∈ AUT (L). A C-loop is both an
RC-loop and an LC-loop. So, (I,R2

x, R2
x), (L2

x, I, L2
x) ∈ AUT (L, ·) for all

x ∈ L. Thus, if Aρ ∈ AUT (L) when A = (I, R2
x, R2

x) and A = (L2
x, I, L2

x),
Aρ = (I, L2

x, JL2
xJ) ∈ AUT (L) and Aρ = (R2

x, I, JR2
xJ) ∈ AUT (L) hence

by Theorem 5.1 and Theorem 5.2, all C-loops are central square and of
exponent 4 (in fact it will soon be seen in Theorem 5.4 that central square
C-loops of exponent 4 are groups), which is false. So, Aρ = (V, U, JWJ) 6∈
AUT (L).

Corollary 5.1. If (I, L2
z, JL2

zJ) ∈ AUT (L), and (R2
z, I, JR2

zJ) ∈ AUT (L)
for all z ∈ L, where (L, ·) is a C-loop, then

1. L is �exible,
2. (xy)2 = (yx)2 for all x, y ∈ L,
3. x 7→ x3 is an anti-automorphism.

Proof. This is a consequence of Theorem 5.2, Lemma 5.1 and Corollary 5.2
of [15].

Theorem 5.4. A central square C-loop of exponent 4 is a group.
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Proof. To prove this, it shall be shown that R(x, y) = I for all x, y ∈ L.
Using Corollary 5.1 we see that for any w ∈ L will be wR(x, y) =

wRxRyR
−1
xy = (wx)y·(xy)−1 = (wx)(x2yx2)·(xy)−1 = (wx3)(yx2)·(xy)−1 =

(w2(w3x3))(yx2)·(xy)−1 = (w2(xw)3)(yx2)·(xy)−1 = w2(xw)3·(yx2)(xy)−1

= w2(xw)3·[y·x2(xy)−1] = w2(xw)3·[y·x2(y−1x−1)] = w2(xw)3·[y(y−1x−1·x2)] =
w2(xw)3 · [y(y−1x)] = w2(xw)3 · x = w2(w3x3) · x = w2 · (w3x3)x =
w2 · (w3x−1)x = w2w3 = w5 = w ←→ R(x, y) = I ←→ RxRyR

−1
xy =

I ←→ RxRy = Rxy ←→ zRxRy = zRxy ←→ zx · y = z · xy ←→ L is a
group.

Corollary 5.2. If (I, L2
z, JL2

zJ) ∈ AUT (L) and (R2
z, I, JR2

zJ) ∈ AUT (L)
for all z ∈ L, where L is a C-loop, then L is a group.

Proof. This follows from Theorem 5.2 and Theorem 5.4.

Remark 5.2. Central square C-loops of exponent 4 are A-loops.
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Intuitionistic (S,T)-fuzzy Lie ideals of Lie algebras

Muhammad Akram

Abstract
In this paper we introduce the notion of an intuitionistic (S, T )-fuzzy Lie
ideal of a Lie algebra and investigate some related properties. Nilpotency
of intuitionistic (S, T )-fuzzy Lie ideals is introduced. Intuitionistic (S, T )-
fuzzy of adjoint representation of Lie algebras is introduced and the relation
between this representation and nilpotent intuitionistic (S, T )-fuzzy Lie ide-
als is discussed. Killing form in the intuitionistic (S, T )-fuzzy case is de�ned
and some of its properties are studied.

1. Introduction
Lie algebras were �rst discovered by Sophus Lie (1842-1899) when he at-
tempted to classify certain "smooth" subgroups of general linear groups.
The groups he considered are now called Lie groups. By taking the tangent
space at the identity element of such a group, he obtained the Lie algebra
and hence the problems on groups can be reduced to problems on Lie alge-
bras so that it becomes more tractable. Lie algebra is applied in di�erent
domains of physics and mathematics, such as spectroscopy of molecules,
atoms, nuclei, hadrons, hyperbolic and stochastic di�erential equations.

After the introduction of fuzzy sets by L. Zadeh [14], various notions
of higher-order fuzzy sets have been proposed. Among them, intuitionistic
fuzzy sets, introduced by K. Atanassov [2, 3], have drawn the attention of
many researchers in the last decades. This is mainly due to the fact that
intuitionistic fuzzy sets are consistent with human behavior, by re�ecting
and modeling the hesitancy present in real-life situations. In fact, the fuzzy

2000 Mathematics Subject Classi�cation: 04A72, 17B99
Keywords: Lie ideal, nilpotent Lie ideal, adjoint representation, Killing form.
This research work is supported by PUCIT.
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sets give the degree of membership of an element in a given set, while in-
tuitionistic fuzzy sets give both a degree of membership and a degree of
non-membership. As for fuzzy sets, the degree of membership is a real
number between 0 and 1. This is also the case for the degree of nonmem-
bership, and furthermore the sum of these two degrees is not greater than
1. Fuzzy and anti fuzzy Lie ideals in Lie algebras have been studied in
[1, 4, 7, 8, 9, 12].

In this paper, we introduce the notion of an intuitionistic (S, T )-fuzzy
Lie ideal of a Lie algebra and investigate some of related properties. Nilpo-
tency of intuitionistic (S, T )-fuzzy Lie ideals is introduced. Intuitionistic
(S, T )-fuzzy of adjoint representation of Lie algebras is introduced and the
relation between this representation and nilpotent intuitionistic (S, T )-fuzzy
Lie ideals is proved. Killing form in the intuitionistic (S, T )-fuzzy case is
de�ned and some of its properties are studied.

2. Preliminaries
A Lie algebra is a vector space L over a �eld F (equal to R or C) on which
L × L → L denoted by (x, y) → [x, y] is de�ned satisfying the following
axioms:

(L1) [x, y] is bilinear,

(L2) [x, x] = 0 for all x ∈ L,

(L3) [[x, y], z]+ [[y, z], x]+ [[z, x], y] = 0 for all x, y, z ∈ L (Jacobi identity).

In this paper by L will be denoted a Lie algebra. We note that the
multiplication in a Lie algebra is not associative, i.e., it is not true in general
that [[x, y], z] = [x, [y, z]]. But it is anti commutative, i.e., [x, y] = −[y, x].

A subspace H of L closed under [ , ] will be called a Lie subalgebra.
A subspace I of L with the property [I, L] ⊆ I will be called a Lie ideal
of L. Obviously, any Lie ideal is a subalgebra. Let γ be a fuzzy set on L,
i.e., a map γ : L → [0, 1]. A fuzzy set γ : L → [0, 1] is called a fuzzy Lie
subalgebra of L if

(a) γ(x + y) > min{γ(x), γ(y)},
(b) γ(αx) > γ(x),

(c) γ([x, y]) > min{γ(x), γ(y)}



Intuitionistic (S, T )-fuzzy Lie ideals of Lie algebras 203

hold for all x, y ∈ L and α ∈ F . A fuzzy subset γ : L → [0, 1] satisfying
(a), (b) and

(d) γ([x, y]) > γ(x)

is called a fuzzy Lie ideal of L. The addition and the commutator [ , ] of L
are extended by Zadeh's extension principle [15], to two operations on IL

in the following way:

(µ⊕ λ)(x) = sup{min{µ(y), λ(z)} | y, z ∈ L, y + z = x},

¿ µ, λ À (x) = sup{min{µ(y), λ(z)} | y, z ∈ L, [y, z] = x},
where µ, λ are fuzzy sets on IL and x ∈ L. The scalar multiplication αx for
α ∈ F and x ∈ L is extended to an action of the �eld F on IL denoted by
¯ as follows for all µ ∈ IL, α ∈ F and x ∈ L:

(α¯ µ)(x) =





µ(α−1x) if α 6= 0,

1 if α = 0, x = 0,

0 if α = 0, x 6= 0.

The two operations of the �eld F can be extended to two operations on IF

in the same way. The operations are denoted by ⊕ and ◦ as well [15]. The
zeros of L and F are denoted by the same symbol 0. Obviously 0¯ µ = 10

for every µ ∈ IL and every µ ∈ IF , where 1x is the fuzzy subset taking 1 at
x and 0 elsewhere.

Let L be a Lie algebra. A fuzzy subset γ of L is called an anti fuzzy Lie
ideal of L if the following axioms are satis�ed:

(AF1) γ(x + y) 6 max(γ(x), γ(y)),
(AF2) γ(αx) 6 γ(x),
(AF3) γ([x, y]) 6 γ(x)

for all x, y ∈ L and α ∈ F .
A t-norm is a mapping T : [0, 1]× [0, 1] → [0, 1] such that
(T1) T (x, 1) = x,
(T2) T (x, y) = T (y, x),
(T3) T (x, T (y, z)) = T (T (x, y), z),
(T4) T (x, y) 6 T (x, z) whenever y 6 z,
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where x, y, z ∈ [0, 1]. Replacing 1 by 0 in condition (T1), we obtain the
concept of s-norm S.

A mapping A = (µA, λA) : L → [0, 1] × [0, 1] is called an intuitionistic
fuzzy set (IFS, in short) in L if µA(x) + λA(x) 6 1, for all x ∈ L, where
the mappings µA : L → [0, 1] and λA : L → [0, 1] denote the degree of
membership (namely µA(x)) and the degree of non-membership (namely
λA(x)) of each element x ∈ L to A respectively. In particular, 0s and 1s
denote the intuitionistic fuzzy empty set and the intuitionistic fuzzy whole
set in a set L de�ned by 0s(x) = (0, 1) and 1v(x) = (1, 0) for each x ∈ L
respectively.

3. Intuitionistic (S, T )-fuzzy Lie ideals
De�nition 3.1. An intuitionistic fuzzy set A = (µA, λA) on L is called
an intuitionistic fuzzy Lie ideal of L with respect to the t-norm T and the
s-norm S (shortly, intuitionistic (S, T )-fuzzy Lie ideals of L) if

(1) µA(x + y) > T (µA(x), µA(y)) and λA(x + y) 6 S(λA(x), λA(y)),
(2) µA(αx) > µA(x) and λA(αx) 6 λA(x),
(3) µA([x, y]) > µA(x) and λA([x, y]) 6 λA(x)

is satis�ed for all x, y ∈ L and α ∈ F .

From (2) it follows that
(4) µA(0) > µA(x) and λA(0) 6 λA(x),
(5) µA(−x) = µA(x) and λA(−x) = λA(x)

for all x ∈ L.

Example 3.2. Let <2 = {(x, y) |, x, y ∈ R} be the set of all 2-dimensional
real vectors. Then <2 with the bracket [ , ] de�ned as usual cross product,
i.e., [x, y] = x × y, is a real Lie algebra. We de�ne an intuitionistic fuzzy
set A = (µA, λA) : L → [0, 1]× [0, 1] as follows:

µA(x, y) =

{
m1 if x = y = 0,

m2 otherwise,
λA(x, y) =

{
m2 if x = y = 0,

m1 otherwise,

where m1 > m2 and m1, m2 ∈ [0, 1]. Let T be a t-norm which is de�ned by
T (x, y) = max{x+ y− 1, 0} and S an s-norm which is de�ned by S(x, y) =
min{x+y, 1} for all x, y ∈ [0, 1]. Then by routine computation, we see that
A = (µA, λA) is an intuitionistic (S, T )-fuzzy Lie ideal of L.
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The following proposition is obvious.

Proposition 3.3. If A is an intuitionistic (S, T )-fuzzy Lie ideal of L, then

(i) µA([x, y]) > S(µA(x), µA(y)),

(ii) λA([x, y]) 6 T (λA(x), λA(y))

for all x, y ∈ L.

Theorem 3.4. Let G0 ⊂ G1 ⊂ G2 ⊂ . . . Gn = L be a chain of Lie ideals of
a Lie algebra L. Then there exists an intuitionistic (S, T )-fuzzy Lie ideal A
of L for which level subsets U(µA, α) and L(λA, β) coincide with this chain.

Proof. Let {αk | k = 0, 1, . . . , n} and {βk | k = 0, 1, . . . , n} be �nite decreas-
ing and increasing sequences in [0, 1] such that αi+βi 6 1, for i = 0, 1, . . . , n.
Let A = (µA, λA) be an intuitionistic fuzzy set in L de�ned by µA(G0) = α0,
λA(G0) = β0, µA(Gk \Gk−1) = αk and λA(Gk \Gk−1) = βk for 0 < k 6 n.
Let x, y ∈ L. If x, y ∈ Gk \Gk−1, then x + y, αx, [x, y] ∈ Gk and

µA(x + y) > αk = T (µA(x), µA(y)),

λA(x + y) 6 βk = S(λA(x)), λA(y)),

µA(αx) > αk = µA(x), λA(αx) 6 βk = λA(x),

µA([x, y]) > αk = µA(x), λA([x, y]) 6 βk = λA(x).

For i > j, if x ∈ Gi \ Gi−1 and y ∈ Gj \ Gj−1, then µA(x) = αi = µA(y),
λA(x) = βj = λA(y) and x + y, αx, [x, y] ∈ Gi. Thus

µA(x + y) > αi = T (µA(x), µA(y)),

λA(x + y) 6 βj = S(λA(x)), λA(y)),

µA(αx) > αi = µA(x), λA(αx) 6 βj = λA(x),

µA([x, y]) > αi = µA(x), λA([x, y]) 6 βj = λA(x).

So, A = (µA, λA) is an intuitionistic (S, T )-fuzzy Lie ideal of a Lie alge-
bra L and all its nonempty level subsets are Lie ideals. Since Im(µA) =
{α0, α1, . . . , αn}, Im(λA) = {β0, β1, . . . , βn}, level subsets of A form chains:

U(µA, α0) ⊂ U(µA, α1) ⊂ . . . ⊂ U(µA, αn) = L

and
L(λA, β0) ⊂ L(λA, β1) ⊂ . . . ⊂ L(λA, βn) = L,
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respectively. Indeed,

U(µA, α0) = {x ∈ L |µA(x) > α0} = G0,

L(λA, β0) = {x ∈ L |λA(x) 6 β0} = G0.

We now prove that

U(µA, αk) = Gk = L(λA, βk) for 0 < k 6 n.

Clearly, Gk ⊆ U(µk, αk) and Gk ⊆ L(λA, βk). If x ∈ U(µA, αk), then
µA(x) > αk and so x /∈ Gi for i > k. Hence

µA(x) ∈ {α0, α1, . . . , αk},
which implies x ∈ Gi for some i 6 k. Since Gi ⊆ Gk, it follows that x ∈ Gk.
Consequently, U(µA, αk) = Gk for some 0 < k 6 n. Now if y ∈ L(λA, βk),
then λA(x) 6 βk and so y /∈ Gi for j 6 k. Thus

λA(x) ∈ {β0, β1, . . . , βk},
which implies x ∈ Gj for some j 6 k. Since Gj ⊆ Gk, it follows that
y ∈ Gk. Consequently, L(λA, βk) = Gk for some 0 < k 6 n. This completes
the proof.

De�nition 3.5. Let f : L1 → L2 be a homomorphism of Lie algebras. Let
A = (µA, λA) be an IFS of L2. Then we can de�ne an IFS f−1(A) of L1 by

f−1(A)(x) = A(f(x)) = (µA(f(x)), λA(f(x))) ∀ x ∈ L1.

Proposition 3.6. Let f : L1 → L2 be an epimorphism of Lie algebras.
Then A is an intuitionistic (S, T )-fuzzy Lie ideal of L2 if and only if f−1(A)
is an intuitionistic (S, T )-fuzzy Lie ideal of L1.

Proof. Straightforward.

De�nition 3.7. Let f : L1 → L2 be a homomorphism of Lie alge-
bras. Let A = (µA, λA) be an intuitionistic fuzzy set of L1. Then IFS
f(A) = (f(µA), f(λA)) in L2 is de�ned by

f(µA)(y) =
{

sup{µA(t) | t ∈ L1, f(t) = y}, if f−1(y) 6= ∅ ,
0, otherwise,

f(λA)(y) =
{

inf{λA(t) | t ∈ L1, f(t) = y}, if f−1(y) 6= ∅ ,
1, otherwise.
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De�nition 3.8. Let L1 and L2 be any sets and f : L1 → L2 any function.
Then, we call an intuitionistic fuzzy set A = (µA, λA) of L1 f-invariant if
f(x) = f(y) implies A(x) = A(y), i.e., µA(x) = µA(y), λA(x) = λA(y) for
x, y ∈ L1.

Theorem 3.9. Let f : L1 → L2 be an epimorphism of Lie algebras. Then
A = (µA, λA) is an f -invariant intuitionistic (S, T )-fuzzy Lie ideal of L1 if
and only if f(A) is an intuitionistic (S, T )-fuzzy ideal of L2.

Proof. Let x, y ∈ L2. Then there exist a, b ∈ L1 such that f(a) = x,
f(b) = y and x + y = f(a + b), αx = αf(a). Since A is f -invariant, by
straightforward veri�cation, we have

f(µA)(x + y) = µA(a + b) > T (µA(a), µA(b)) = T (f(µA)(x), f(µA)(y)),

f(λA)(x + y) = λA(a + b) 6 S(λA(a), λA(b)) = S(f(λA)(x), f(λA)(y)),

f(µA)(αx) = µA(αa) > µA(a) = f(µA)(x),

f(λA)(αx) = λA(αa) 6 λA(a) = f(λA)(x),

f(µA)([x, y]) = µA([a, b]) = [µA(a), µA(b)] > µA(a) = f(µA)(x),

f(λA)([x, y]) = λA([a, b]) = [λA(a), λA(b)] 6 λA(a) = f(λA)(x).

Hence f(A) is an intuitionistic (S, T )-fuzzy Lie ideal of L2.
Conversely, if f(A) is an intuitionistic (S, T )-fuzzy Lie ideal of L2, then

for any x ∈ L1

f−1(f(µA))(x) = f(µA)(f(x)) = sup{µA(t) | t ∈ L1, f(t) = f(x)}
= sup{µA(t) | t ∈ L1, µ(t) = µA(x)} = µA(x),

f−1(f(λA))(x) = f(λA)(f(x)) = inf{λA(t) | t ∈ L1, f(t) = f(x)}
= inf{λA(t) | t ∈ L1, λ(t) = λA(x)} = λA(x).

Hence f−1(f(A)) = A is an intuitionistic (S, T )-fuzzy Lie ideal.

Lemma 3.10. Let A = (µA, λA) be an intuitionistic (S, T )-fuzzy Lie ideal
of a Lie algebra L and let x ∈ L. Then µA(x) = t, λA(x) = s if and only if
x ∈ U(µA, t), x /∈ U(µA, s) and x ∈ L(λA, s), x /∈ L(λA, t), for all s > t.

Proof. Straightforward.
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De�nition 3.11. A Lie ideal A of Lie algebra L is said to be characteristic if
f(A) = A, for all f ∈ Aut(L), where Aut(L) is the set of all automorphisms
of a Lie algebra L. An intuitionistic (S, T )-fuzzy Lie ideal A = (µA, λA) of
a Lie algebra L is called characteristic if µA(f(x)) = µA(x) and λA(f(x)) =
λA(x) for all x ∈ L and f ∈ Aut(L).
Theorem 3.12. An intuitionistic (S, T )-fuzzy Lie ideal is characteristic if
and only if each its level set is a characteristic Lie ideal.
Proof. Let an intuitionistic (S, T )-fuzzy Lie ideal A = (µA, λA) be charac-
teristic, t ∈ Im(µA), f ∈ Aut(L), x ∈ U(µA, t). Then µA(f(x)) = µA(x) >
t, which means that f(x) ∈ U(µA, t). Thus f(U(µA, t)) ⊆ U(µA, t). Since
for each x ∈ U(µA, t) there exists y ∈ L such that f(y) = x we have
µA(y) = µA(f(y)) = µA(x) > t, whence we conclude y ∈ U(µA, t). Conse-
quently x = f(y) ∈ f(U(µA, t)). Hence f(U(µA, t)) = U(µA, t). Similarly,
f(L(λA, s)) = L(λA, s). This proves that U(µA, t)-and L(λA, s) are charac-
teristic.

Conversely, if all levels of A = (µA, λA) are characteristic Lie ideals of
L, then for x ∈ L, f ∈ Aut(L) and µA(x) = t < s = λA(x), by Lemma
3.10, we have x ∈ U(µA, t), x /∈ U(µA, s) and x ∈ L(λA, s), x /∈ L(λA, t).
Thus f(x) ∈ f(U(µA, t)) = U(µA, t) and f(x) ∈ f(L(λA, s)) = L(λA, s),
i.e., µA(f(x)) > t and λA(f(x)) 6 s. For µA(f(x)) = t1 > t, λA(f(x)) =
s1 < s we have f(x) ∈ U(µA, t1) = f(U(µA, t1)), f(x) ∈ L(λA, s1) =
f(L(λA, s1)), whence x ∈ U(µA, t1), x ∈ L(µA, s1). This is a contradiction.
Thus µA(f(x)) = µA(x) and λA(f(x)) = λA(x). So, A = (µA, λA) is
characteristic.

Using the same method as in the proof of Theorems 4.6 in [5] we can
prove the following theorem.
Theorem 3.13. Let {Cα | α ∈ Λ ⊆ [0, 1

2 ]} be a collection of Lie ideals of a
Lie algebra L such that L =

⋃
α∈Λ Cα, and for every α, β ∈ Λ, α < β if and

only if Cβ ⊂ Cα. Then an intuitionistic fuzzy set A = (µA, λA) de�ned by
µA(x) = sup{α ∈ Λ | x ∈ Cα} and λA(x) = inf{α ∈ Λ | x ∈ Cα}

is an intuitionistic (S, T )-fuzzy Lie ideal of L.
Theorem 3.14. Let A = (µA, λA) be an intuitionistic (S, T )-fuzzy Lie ideal
of Lie algebra L. De�ne a binary relation ∼ on L by

x ∼ y ←→ µA(x− y) = µA(0) and λA(x− y) = λA(0).

Then ∼ is a congruence on L.
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Proof. The re�exivity and symmetry is obvious. To prove transitivity let
x ∼ y and y ∼ z. Then µA(x − y) = µA(0), µA(y − z) = µA(0) and
λA(x− y) = λA(0), λA(y − z) = λA(0), by (5). Thus

µA(x− z) = µA(x− y + y − z) > T (µA(x− y), µA(y − z)) = µA(0),

λA(x− z) = λA(x− y + y − z) 6 S(λA(x− y), λA(y − z)) = λ(0),

whence, by (4), we conclude x ∼ z.
If x1 ∼ y1 and x2 ∼ y2, then
µA((x1 + x2)− (y1 + y2)) = µA((x1 − y1) + (x2 − y2))

> T (µA(x1 − y1), µA(x2 − y2)) = µA(0),

λA((x1 + x2)− (y1 + y2)) = λA((x1 − y1) + (x2 − y2))

6 S(λA(x1 − y1), λA(x2 − y2)) = λA(0),
µA((αx1 − αy1) = µA(α(x1 − y1)) > µA(x1 − y1) = µ(0),

λA((αx1 − αy1) = λA(α(x1 − y1)) 6 λA(x1 − y1) = λA(0),

µA([x1, x2]− [y1, y2]) = µA([x1 − y1], [x2 − y2]) > µA(x1 − y1) = µA(0),

λA([x1, x2]− [y1, y2]) = λA([x1 − y1], [x2 − y2]) 6 λA(x1 − y1) = λA(0).

Now, applying (4), it is easily to see that x1 + x2 ∼ y1 + y2, αx1 ∼ αy1 and
[x1, x2] ∼ [y1, y2]. So, ∼ is a congruence.

4. Nilpotency of intuitionistic (S, T )-fuzzy Lie ideals
De�nition 4.1. Let A = (µA, λA) ∈ IL, an intuitionistic fuzzy subspace
of L generated by A will be denoted by [A]. It is the intersection of all
intuitionistic fuzzy subspaces of L containing A. For all x ∈ L, we de�ne:

[µA](x) = sup{minµA(xi) : |x =
∑

αixi, αi ∈ F, xi ∈ L},

[λA](x) = inf{maxλA(xi) |x =
∑

αixi, αi ∈ F, xi ∈ L}.
De�nition 4.2. Let f : L1 → L2 be a homomorphism of Lie algebras which
has an extension f : IL1 → IL2 de�ned by:

f(µA)(y) = sup{µA(x), x ∈ f−1(y)},
f(λA)(y) = inf{λA(x), x ∈ f−1(y)},

for all A = (µA, λA) ∈ IL1 , y ∈ L2. Then f(A) is called the homomorphic
image of A.
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The following two propositions are obvious.

Proposition 4.3. Let f : L1 → L2 be a homomorphism of Lie algebras
and let A = (µA, λA) be an intuitionistic (S, T )-fuzzy Lie ideal of L1. Then
(i) f(A) is an intuitionistic (S, T )-fuzzy Lie ideal of L2,
(ii) f([A]) ⊇ [f(A)].

Proposition 4.4. If A and B are intuitionistic (S, T )-fuzzy Lie ideals in
L, then [A,B] is an intuitionistic (S, T )-fuzzy Lie ideal of L.

Theorem 4.5. Let A1, A2, B1, B2 be intuitionistic (S, T )-fuzzy Lie ideals
in L such that A1 ⊆ A2 and B1 ⊆ B2, then [A1, B1] ⊆ [A2, B2].

Proof. Indeed,

¿ µA1 , µB1 À (x) = sup{T (µA1(a), µB1(b)) | a, b ∈ L1, [a, b] = x}
> sup{T (µA2(a), µB2(b)) | a, b ∈ L1, [a, b] = x}
=¿ µA2 , µB2 À (x),

¿ λA1 , λB1 À (x) = inf{S(λA1(a), λB1(b)) | a, b ∈ L1, [a, b] = x}
6 inf{S(λA2(a), λB2(b)) | a, b ∈ L1, [a, b] = x}
=¿ λA2 , λB2 À (x).

Hence [A1, B1] ⊆ [A2, B2].

Let A = (µA, λA) be an intuitionistic (S, T )-fuzzy Lie ideal in L. Putting

A0 = A, A1 = [A,A0], A2 = [A,A1], . . . , An = [A,An−1]

we obtain a descending series of an intuitionistic (S, T )-fuzzy Lie ideals

A0 ⊇ A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . .

and a series of intuitionistic fuzzy sets Bn = (µn
B, λn

B) such that

µn
B = sup{µn

A(x) | 0 6= x ∈ L}, λn
B = inf{λn

A(x) | 0 6= x ∈ L}.

De�nition 4.6. An intuitionistic (S, T )-fuzzy Lie ideal A = (µA, λA) is
called nilpotent if there exists a positive integer n such that Bn = 0s.

Theorem 4.7. A homomorphic image of a nilpotent intuitionistic (S, T )-
fuzzy Lie ideal is a nilpotent intuitionistic (S, T )-fuzzy Lie ideal.
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Proof. Let f : L1 → L2 be a homomorphism of Lie algebras and let A =
(µA, λA) be a nilpotent intuitionistic (S, T )-fuzzy Lie ideal in L1. Assume
that f(A) = B. We prove by induction that f(An) ⊇ Bn for every natural
n. First we claim that f([A,A]) ⊇ [f(A), f(A)] = [B,B]. Let y ∈ L2, then

f(¿ µA, µA À)(y) = sup{¿ µA, µA À)(x) | f(x) = y}
= sup{sup{T (µA(a), µA(b)) | a, b ∈ L1, [a, b] = x, f(x) = y}}
= sup{T (µA(a), µA(b)) | a, b ∈ L1, [a, b] = x, f(x) = y}
= sup{T (µA(a), µA(b)) | a, b ∈ L1, [f(a), f(b)] = x}
= sup{T (µA(a), µA(b)) | a, b ∈ L1, f(a) = u, f(b)] = v, [u, v] = y}
> sup{T ( sup

a∈f−1(u)

µA(a), sup
b∈f−1(v)

µA(b)) | [u, v] = y}

= sup{T (f(µA)(u), f(µA)(v)) | [u, v] = y} =¿ f(µA), f(µA) À (y),

f(¿ λA, λA À)(y) = inf{¿ λA, λA À)(x) | f(x) = y}
= inf{inf{S(λA(a), λA(b)) | a, b ∈ L1, [a, b] = x, f(x) = y}}
= inf{S(λA(a), λA(b)) | a, b ∈ L1, [a, b] = x, f(x) = y}
= inf{S(λA(a), λA(b)) | a, b ∈ L1, [f(a), f(b)] = x}
= inf{S(λA(a), λA(b)) | a, b ∈ L1, f(a) = u, f(b)] = v, [u, v] = y}
6 inf{S( inf

a∈f−1(u)
λA(a), inf

b∈f−1(v)
λA(b)) | [u, v] = y}

= inf{S(f(λA)(u), f(λA)(v)) | [u, v] = y} =¿ f(λA), f(λA) À (y).

Thus

f([A,A]) ⊇ f(¿ A,A À) ⊇¿ f(A), f(A) À= [f(A), f(A)].

For n > 1, we get

f(An) = f([A,An−1]) ⊇ [f(A), f(An−1)] ⊇ [B,Bn−1] = Bn.

Let m be a positive integer such that Am = 0s. Then for 0 6= y ∈ L2 we
have

µm
B (y) 6 f(µm

A )(y) = f(0)(y) = sup{0(a) | f(x) = y} = 0,

λm
B (y) > f(λm

A )(y) = f(1)(y) = inf{1(a) | f(x) = y} = 1.

Thus Bm = 0s. This completes the proof.
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Let A = (µA, λA) be an intuitionistic (S, T )-fuzzy Lie ideal in L. Putting

A(0) = A, A(1) = [A(0), A(0)], A(2) = [A(1), A(1)], . . . , A(n) = [A(n−1), A(n−1)]

we obtain series

A(0) ⊆ A(1) ⊆ A(2) ⊆ . . . ⊆ A(n) ⊆ . . .

of intuitionistic (S, T )-fuzzy Lie ideals and a series of intuitionistic fuzzy
sets B(n) = (µ(n)

B , λ
(n)
B ) such that

µ
(n)
B = sup{µ(n)

A (x) | 0 6= x ∈ L}, λ
(n)
B = inf{λ(n)

A (x) | 0 6= x ∈ L}.

De�nition 4.8. An intuitionistic (S, T )-fuzzy Lie ideal A = (µA, λA) is
called solvable if there exists a positive integer n such that B(n) = 0s.

Theorem 4.9. A nilpotent intuitionistic (S, T )-fuzzy Lie ideal is solvable.

Proof. It is enough to prove that A(n) ⊆ An for all positive integers n. We
prove it by induction on n and by the use of Theorem 4.5:

A(1) = [A,A] = A1, A(2) = [A(1), A(1)] ⊆ [A,A(1)] = A2.

A(n) = [A(n−1), A(n−1)] ⊆ [A,A(n−1)] ⊆ [A,A(n−1)] = An.

This completes the proof.

De�nition 4.10. Let A = (µA, λA) and B = (µB, λB) be two intuitionistic
(S, T )-fuzzy Lie ideals of a Lie algebra L. The sum A⊕B is called a direct
sum if A ∩B = 0s.

Theorem 4.11. The direct sum of two nilpotent intuitionistic (S, T )-fuzzy
Lie ideals is also a nilpotent intuitionistic (S, T )-fuzzy Lie ideal.

Proof. Suppose that A = (µA, λA) and B = (µB, λB) are two intuitionistic
(S, T )-fuzzy Lie ideals such that A ∩ B = 0s. We claim that [A,B] = 0s.
Let x(6= 0) ∈ L, then

¿ µA, µB À (x) = sup{T (µA(a), µB(b)) | [a, b] = x} 6 T (µA(x), µB(x)) = 0

and

¿ λA, λB À (x) = inf{S(λA(a), λB(b)) | [a, b] = x} > S(λA(x), λB(x)) = 1.
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This proves our claim. Thus we obtain [Am, Bn] = 0s for all positive
integers m, n. Now we again claim that (A ⊕ B)n ⊆ An ⊕ Bn for positive
integer n. We prove this claim by induction on n. For n = 1,

(A⊕B)1 = [A⊕B, A⊕B] ⊆ [A,A]⊕ [A, B]⊕ [B,A]⊕ [B, B] = A1 ⊕B1.

Now for n > 1,

(A⊕B)n = [A⊕B, (A⊕B)n−1] ⊆ [A⊕B,An−1 ⊕Bn−1]

⊆ [A,An−1]⊕ [A,Bn−1]⊕ [B, An−1]⊕ [B, Bn−1] = An ⊕Bn.

Since there are two positive integers p and q such that Ap = Bq = 0s, we
have (A⊕B)p+q ⊆ Ap+q ⊕Bp+q = 0s.

In a similar way we can prove the following theorem.

Theorem 4.12. The direct sum of two solvable intuitionistic (S, T )-fuzzy
Lie ideals is a solvable intuitionistic (S, T )-fuzzy Lie ideal.

De�nition 4.13. For any x ∈ L we de�ne the function adx : L → L putting
adx(y) = [x, y]. It is clear that this function is a linear homomorphism with
respect to y. The set H(L) of all linear homomorphisms from L into itself is
made into a Lie algebra by de�ning a commutator on it by [f, g] = f◦g−g◦f.
The function ad : L → H(L) de�ned by ad(x) = adx is a Lie homomorphism
(see [6]) which is called the adjoint representation of L.

The adjoint representation adx : L → L is extended to adx : IL → IL

by putting
adx(γ)(y) = sup{γ(a) : [x, a] = y}

for all γ ∈ IL and y ∈ L.

Theorem 4.14. Let A = (µA, λA) be an intuitionistic (S, T )-fuzzy Lie ideal
in a Lie algebra L. Then An ⊆ [An] for any n > 0, where an intuitionistic
fuzzy subset [An] = ([µAn ], [λAn ]) is de�ned by

[µAn ](x) = sup{µA(a) | [x1, [x2, [. . . , [xn, a] . . . ]]] = x, x1, . . . , xn ∈ L},
[λAn ](x) = inf{λA(a) | [x1, [x2, [. . . , [xn, a] . . .]]] = x, x1, . . . , xn ∈ L}.

Proof. It is enough to prove that ¿ A,An−1 À⊆ [An]. We prove it by
induction on n. For n=1 and x ∈ L, we have

¿ µA, µA À (x) = sup{T (µA(a), µA(b)) | [a, b] = x}
> sup{µA(b) | [a, b] = x, a ∈ L} = [µA1 ](x),
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¿ λA, λA À (x) = inf{S(µA(a), µA(b)) | [a, b] = x}
6 inf{λA(b) : [a, b] = x, a ∈ L} = [λA1 ](x).

For n > 1,
¿ µA, µn−1

A À (x) = sup{T (µA(a), µn−1
A (b)) | [a, b] = x}

= sup{T (µA(a), [µA(b), µn−2
A (b)]) | [a, b] = x}

> sup{T (µA(a), sup{¿ µA, µn−2
A À (bi) | b =

∑
αibi}) | [a, b] = x}

> sup{T (µA(a), sup{[µAn−1 ](bi) | b =
∑

αibi}) | [a, b] = x}
> sup{T (µA(a), [µAn−1 ](bi)) |

∑
αi[a, bi] = x}

> sup{T (µA(a), sup{µAn−1(ci) | bi =
∑

βici}) |
∑

αi[a, bi] = x}
> sup{T (µA(a), µAn−1(ci)) |

∑
γi[a, ci] = x}

> sup{T (µA(a), sup{µA(di)) | [x1, [x2, [. . . , [xn−1, di] . . . ]]] = ci} |
∑

γi[a, ci] = x}
> sup{T (µA(a), µA(di)) |

∑
γi[a, [x1, [x2, [. . . , [xn−1, di] . . . ]]]] = x}

> sup{µAn(di) |
∑

γi[a, [x1, [x2, [. . . , [xn−1, di] . . . ]]]] = x} > [µAn ](x),

¿ λA, λn−1
A À (x) = inf{S(λA(a), λn−1

A (b)) | [a, b] = x}
= inf{S(λA(a), [λA(b), λn−2

A (b)]) | [a, b] = x}
6 inf{S(λA(a), inf{¿ λA, λn−2

A À (bi) | b =
∑

αibi}) | [a, b] = x}
6 inf{S(λA(a), inf{[λAn−1 ](bi) | b =

∑
αibi}) | [a, b] = x}

6 inf{S(λA(a), [λAn−1 ](bi)) |
∑

αi[a, bi] = x}
6 inf{S(λA(a), inf{λAn−1(ci) | bi =

∑
βici}) |

∑
αi[a, bi] = x}

6 inf{S(λA(a), λAn−1(ci)) |
∑

γi[a, ci] = x}
6 inf{S(λA(a), inf{λA(di)) | [x1, [x2, [. . . , [xn−1, di] . . . ]]] = ci} |

∑
γi[a, ci] = x}

6 inf{S(λA(a), λA(di)) |
∑

γi[a, [x1, [x2, [. . . , [xn−1, di] . . . ]]]] = x}
6 inf{λAn(di) |

∑
γi[a, [x1, [x2, [. . . , [xn−1, di] . . . ]]]] = x} 6 [λAn ](x).

This complete the proof.

Theorem 4.15. If for an intuitionistic (S, T )-fuzzy Lie ideal A = (µA, λA)
there exists a positive integer n such that

(adx1 ◦ adx2 ◦ · · · ◦ adxn)(µA) = 0,

(adx1 ◦ adx2 ◦ · · · ◦ adxn)(λA) = 1,

for all x1, . . . , xn ∈ L, then A is nilpotent.
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Proof. For x1, . . . , xn ∈ L and x(6= 0) ∈ L, we have

(adx1 ◦ · · · ◦adxn)(µA)(x) = sup{µA(a) | [x1, [x2, [. . . , [xn, a] . . . ]]] = x} = 0,

(adx1 ◦ · · · ◦ adxn)(λA)(x) = inf{λA(a) | [x1, [x2, [. . . , [xn, a] . . . ]]] = x} = 1.

Thus [An] = 0s. From Theorem 4.14, it follows that An = 0s. Hence
A = (µA, λA) is a nilpotent intuitionistic (S, T )-fuzzy Lie ideal.

5. The intuitionistic (S, T )-fuzzy Killing form
The mapping K : L×L → F de�ned by K(x, y) = Tr(adx◦ady), where Tr
is the trace of a linear homomorphism, is a symmetric bilinear form which is
called the Killing form. It is not di�cult to see that this form satis�es the
identity K([x, y], z) = K(x, [y, z]). The form K can be naturally extended
to K : IL×L → IF de�ned by putting

K(µA)(β) = sup{µA(x, y) |Tr((adx ◦ ady)) = β},
K(λA)(β) = inf{λA(x, y) |Tr((adx ◦ ady)) = β}

The Cartesian product of two intuitionistic (S, T )-fuzzy sets A = (µA, λA)
and B = (µB, λB) is de�ned as

(µA × µB)(x, y) = T (µA(x), µB(y)),

(λA × λB)(x, y) = S(λA(x), λB(y)).

Similarly we de�ne

K(µA × µB)(β) = sup{T (µA(x), µB(y)) |Tr((adx ◦ ady)) = β},
K(λA × λB)(β) = inf{S(λA(x), λB(y)) |Tr((adx ◦ ady)) = β}.

Proposition 5.1. Let A = (µA, λA) be an intuitionistic (S, T )-fuzzy Lie
ideal of Lie algebra L. Then

(i) 1s(x+y) = 1sx ⊕ 1sy,

(ii) 1s(αx) = α¯ 1sx

for all x, y ∈ L, α ∈ F.

Proof. Straightforward.
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Theorem 5.2. Let A = (µA, λA) be an intuitionistic (S, T )-fuzzy Lie ideal
of Lie algebra L. Then K(µA×1(αx)) = α¯K(µA×1x) and K(λA×0(αx)) =
α¯K(λA × 0x) for all x ∈ L, α ∈ F.

Proof. If α = 0, then for β = 0 we have
K(µA × 10)(0) = sup{T (µA(x), 10(y)) |Tr(adx ◦ ady) = 0}

> T (µA(0), 10(0)) = 0,

K(λA × 00)(0) = inf{S(λA(x), 00(y)) : Tr(adx ◦ ady) = 0}
6 S(λA(0), 00(0)) = 1.

For β 6= 0 Tr((adx ◦ ady) = β means that x 6= 0 and y 6= 0. So,
K(µA × 10)(β) = sup{T (µA(x), 10(y)) |Tr((adx ◦ ady) = β} = 0,

K(λA × 00)(β) = inf{S(λA(x), 00(y)) |Tr((adx ◦ ady) = β} = 1.

If α 6= 0, then for arbitrary β we obtain
K(µA × 1αx)(β) = sup{T (µA(y), 1αx(z)) |Tr((ady ◦ adz) = β}

= sup{T (µA(y), α¯ 1x(z)) |Tr((ady ◦ adz) = β}
= sup{T (µA(y), 1x(α−1z)) |αTr((ady ◦ ad(α−1z)) = β}
= sup{T (µA(y), 1x(α−1z)) |Tr((ady ◦ ad(α−1z)) = α−1β}
= K(µA × 1x)(α−1β) = α¯K(µA × 1x)(β),

K(λA × 0αx)(β) = inf{S(λA(y), 0αx(z)) |Tr((ady ◦ adz) = β}
= inf{S(λA(y), α¯ 0x(z)) |Tr((ady ◦ adz) = β}
= inf{S(λA(y), 0x(α−1z)) |αTr((ady ◦ ad(α−1z)) = β}
= inf{S(λA(y), 0x(α−1z)) |Tr((ady ◦ ad(α−1z)) = α−1β}
= K(λA × 1x)(α−1β) = α¯K(λA × 0x)(β).

This completes the proof.

Theorem 5.3. Let A = (µA, λA) be an intuitionistic (S, T )-fuzzy Lie ideal
of a Lie algebra L. Then K(µA × 1(x+y)) = K(µA × 1x)⊕K(µA × 1y) and
K(µA × 0(x+y)) = K(µA × 0x)⊕K(µA × 0y) for all x, y ∈ L.
Proof. Indeed,

K(µA × 1(x+y))(β) = sup{T (µA(z), 1x+y(u)) |Tr((adz ◦ adu) = β}
= sup{µA(z) |Tr(adz ◦ ad(x + y)) = β}
= sup{µA(z) |Tr(adz ◦ adx) + Tr(adz ◦ ady) = β}
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= sup{T (µA(z), T (1x(v), 1y(w))) |Tr(adz ◦ adv) + Tr(adz ◦ adw) = β}
= sup{T (sup{T (µA(z), 1x(v)) |Tr(adz ◦ adv) = β1},

sup{T (µA(z), 1y(w)) |Tr(adz ◦ adw) = β2} |β1 + β2 = β)}
= sup{T (K(µA × 1x)(β1), K(µA × 1y)(β2)) |β1 + β2 = β}
= K(µA × 1x)⊕K(µA × 1y)(β),

K(λA × 0(x+y))(β) = inf{S(λA(z), 0x+y(u)) |Tr((adz ◦ adu) = β}
= inf{λA(z) |Tr(adz ◦ ad(x + y)) = β}
= inf{λA(z) |Tr(adz ◦ adx) + Tr(adz ◦ ady) + β}
= inf{S(λA(z), S(0x(v), 0y(w))) |Tr(adz ◦ adv) + Tr(adz ◦ adw) = β}
= inf{S(inf{S(λA(z), 0x(v)) |Tr(adz ◦ adv) = β1},

inf{S(λA(z), 0y(w) |Tr(adz ◦ adw) = β2} |β1 + β2 = β)}
= inf{S(K(λA × 0x)(β1), K(λA × 0y)(β2)) |β1 + β2 = β}
= K(λA × 0x)⊕K(λA × 0y)(β).

This completes the proof.

As a consequence of the above two theorems we obtain

Corollary 5.4. For each intuitionistic (S, T )-fuzzy Lie ideal A = (µA, λA)
and all x, y ∈ L, α, β ∈ F we have

K(µA × 1(αx+βy)) = α¯K(µA × 1x)⊕ β ¯K(µA × 1y),

K(λA × 0(αx+βy)) = α¯K(λA × 0x)⊕ β ¯K(λA × 0y).
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Fuzzy (strong) congruence relations
on hypergroupoids and hyper BCK-algebras

Reza Ameri, Mahmoud Bakhshi, Seyyed A. Nematollah Zadeh

and Rajabali Borzooei

Abstract
We de�ne the concept of fuzzy (strong) congruence relations on hyper-
groupoids and hyper BCK-algebras and construct a quotient hyperstruc-
ture on a hypergroupoid. In particular, we prove that if H is a (semi)
hypergroup and R is a fuzzy (strong) congruence relation on H, then H/R

is a (semi) group. Finally, by considering the notion of a hyper BCK-
algebra, we construct a quotient hyper BCK-algebra.

1. Introduction
The notion of a hyperstructure was introduced by F. Marty [13] in 1934 at
the 8th congress of Scandinavian Mathematicians and the notion of a fuzzy
set was introduced by Zadeh [16] in 1965. The study of BCK-algebras
was initiated by Y. Imai and K. Iséki [7] in 1966 as a generalization of
the concept of the set-theoretic di�erence and propositional calculi. In this
paper, we use the notion of a fuzzy set and de�ne the concept of a fuzzy
(strong) congruence relation on hypergroupoids and hyper BCK-algebras
and we obtain some results as mentioned in the abstract.

2. Fuzzy (strong) congruence relations
De�nition 1. By a hypergroupoid we mean a nonempty set H endowed
with a binary hyperoperation "◦" (i.e., a function ◦ : H × H −→ P (H),

2000 Mathematics Subject Classi�cation: 06F35, 03G25.
Keywords: Fuzzy (strong) congruence, hypergroup, hyper BCK-algebra.
This research partially is supported by the "Fuzzy Systems and it's Applications"
Center of Excelence, Shahid Bahonar University of Kerman, Iran".
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where P (H) is the set of all nonempty subsets of H.)
Let Θ be a binary relation on a hypergroupoid H and A,B ⊆ H. Then:

(a) AΘB means that there exist a ∈ A and b ∈ B such that aΘb,
(b) AΘB means that for a ∈ A there exists b ∈ B and for b ∈ B there

exists a ∈ A such that aΘb,
(c) AΘB means that aΘb for each a ∈ A and for b ∈ B,
(d) Θ is left (resp. right) compatible if xΘy implies a ◦ xΘa ◦ y (resp.

x ◦ aΘy ◦ a) for all x, y, a ∈ H,
(e) Θ is strong left (resp. right) compatible if xΘy implies a ◦ xΘa ◦ y

(resp. x ◦ a ¯̄Θy ◦ a),
(f) Θ is (resp. strong) compatible if it is both (resp. strong) left and right

compatible,
(g) Θ is a (resp. strong) congruence relation on H if it is a (resp. strong)

compatible equivalence relation on H.

De�nition 2. Let H be a nonempty set and R be a fuzzy relation on H.
We say that R satis�es the sup property if for every subset T of H there
exists (u, v) ∈ T 2 such that sup

(x,y)∈T 2

R(x, y) = R(u, v). R is said to be a

fuzzy equivalence relation if
R(x, x) =

∨

(y,z)∈H2

R(y, z), (fuzzy re�exive)

R(y, x) = R(x, y), (fuzzy symmetric)

R(x, y) >
∨

z∈H

(R(x, z) ∧R(z, y)), (fuzzy transitive).

De�nition 3. Let H be a nonempty set and R be a fuzzy relation on H.
Then, for all α ∈ [0, 1], the α-level subset and strong α-level subset of R
respectively, is de�ned as follows:

Rα = {(x, y) ∈ H2 : R(x, y) > α}
Rα>

= {(x, y) ∈ H2 : R(x, y) > α}
Lemma 1. Let R be a fuzzy relation on a nonempty set H. Then:

Rα =
⋂

β∈[0,α)

Rβ>
and Rα>

=
⋃

β∈(α,1]

Rβ

for all α ∈ [0, 1].
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Proof. Let α ∈ [0, 1] and β < α. Then Rα ⊆ Rβ and so Rα ⊆
⋂

β∈[0,α)

Rβ.

Conversely, let ε > 0 be given and (x, y) ∈
⋂

β∈[0,α)

Rβ . Then R(x, y) > α−ε,

which implies that R(x, y) > α and hence (x, y) ∈ Rα. Similarly, the other
part can be proved.

Theorem 1. (cf. [3]) Let R be a fuzzy relation on nonempty set H. Then
the following properties are equivalent:

(i) R is a fuzzy equivalence relation on H,
(ii) Rα 6= ∅ is an equivalence relation on H for all α ∈ [0, 1],

(iii) Rα> 6= ∅ is an equivalence relation on H for all α ∈ [0, 1].

De�nition 4. Fuzzy relation R on hypergroupoid H is said to be

(i) fuzzy left compatible i�
( ∧

u∈c◦a

∨

v∈c◦b
R(u, v)

)
∧

( ∧

v∈c◦b

∨
u∈c◦a

R(u, v)
)

> R(a, b) ∀a, b, c ∈ H,

and fuzzy right compatible i�
( ∧

u∈a◦c

∨

v∈b◦c
R(u, v)

)
∧

( ∧

v∈b◦c

∨
u∈a◦c

R(u, v)
)

> R(a, b) ∀a, b, c ∈ H,

(ii) fuzzy strong left compatible i�
∧

u∈c◦a,v∈c◦b
R(u, v) > R(a, b) ∀a, b, c ∈ H.

and fuzzy strong right compatible i�
∧

u∈a◦c,v∈b◦c
R(u, v) > R(a, b), ∀a, b, c ∈ H

Clearly, every fuzzy strong left (resp. right) compatible relation is a
fuzzy left (resp. right) compatible relation, but the converse is not true.

Theorem 2. Let R be a fuzzy relation on a hypergroupoid H that satis�es
the sup property. Then the following statements are equivalent:

(i) R is fuzzy left (resp. right) compatible,



222 R. Ameri, M. Bakhshi, S. A. Nematollah Zadeh and R. Borzooei

(ii) Rα 6= ∅ is left (resp. right) compatible, for all α ∈ [0, 1],

(iii) Rα> 6= ∅ is left (resp. right) compatible, for all α ∈ [0, 1].

Proof. We prove only for "left" compatible, the other cases can be proved
in a similar way.

(i) =⇒ (ii) Let Rα 6= ∅. For α ∈ [0, 1] and x, y, a ∈ H let xRαy and
u ∈ x ◦ a. Since by (i), R is fuzzy left compatible, then

( ∧
u∈a◦x

∨
v∈a◦y

R(u, v)
)
∧

( ∧
v∈a◦y

∨
u∈a◦x

R(u, v)
)

> R(x, y) > α

and so ∧
u∈a◦x

∨
v∈a◦y

R(u, v) > α and
∧

v∈a◦y

∨
u∈a◦x

R(u, v) > α.

Hence, for all u ∈ a◦x,
∨

v∈a◦y
R(u, v) > α and for all v ∈ a◦y,

∨
u∈a◦x

R(u, v) >

α. Since, R satis�es the sup property, then there exist v0 ∈ a ◦ y and
u0 ∈ a ◦ x such that R(u, v0) =

∨
v∈a◦y

R(u, v) > α for all u ∈ a ◦ x and

R(u0, v) =
∨

u∈a◦x
R(u, v) > α for all v ∈ a ◦ y. Hence, (u, v0) ∈ Rα and

(u0, v) ∈ Rα, for all u ∈ a ◦ x and v ∈ a ◦ y. This implies that Rα is left
compatible.

(ii) =⇒ (iii) Let Rα> 6= ∅, for α ∈ [0, 1] and x, y, a ∈ H be such that
xRα>

y and u ∈ a ◦ x. Thus by Lemma 1, there exists β ∈ (α, 1] such that
xRβy. Since Rβ is left compatible, then a ◦ xR̄βa ◦ y, and so there exists
v ∈ a ◦ y such that uRβv. Thus, R(u, v) > β > α. This shows that uRα>

v.
Similarly, if v ∈ a ◦ y, then there exists u ∈ a ◦ x such that R(u, v) > α and
so uRα>

v. Therefore, Rα> is left compatible.
(iii) =⇒ (i) Suppose that x, y, a ∈ H are such that R(x, y) = α. Then

by Lemma 1, for all β ∈ [0, α) we have xRβ>
y. So, by (iii) we have

a◦x ¯Rβ>a◦ y, and so for all u ∈ a◦x there exists v ∈ a◦ y such that uRβ>
v

i.e., R(u, v) > β. This implies that
∧

u∈a◦x

∨
v∈a◦y

R(u, v) > β, for all β ∈ [0, α).

Similarly, for all v ∈ a ◦ y there exists u ∈ a ◦ x such that uRβ>
v and so∧

v∈a◦y

∨
u∈a◦x

R(u, v) > β, for all β ∈ [0, α). Hence,
∧

u∈a◦x

∨
v∈a◦y

R(u, v) > α =
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R(x, y) and
∧

v∈a◦y

∨
u∈a◦x

R(u, v) > α = R(x, y), which implies

( ∧
u∈a◦x

∨
v∈a◦y

R(u, v)
)
∧

( ∧
v∈a◦y

∨
u∈a◦x

R(u, v)
)

> R(x, y).

Thus, R is fuzzy left compatible.

Theorem 3. For a fuzzy relation R on a hypergroupoid H satisfying the
sup property the following properties are equivalent:

(i) R is fuzzy strong left (resp. right) compatible,
(ii) Rα 6= ∅ is strong left (resp. right) compatible, for all α ∈ [0, 1],

(iii) Rα> 6= ∅ is strong left (resp. right) compatible, for all α ∈ [0, 1].

Proof. (i) =⇒ (ii) Let R be a fuzzy strong left compatible relation on H,
a ∈ H and x, y ∈ H be such that xRαy, for some α ∈ [0, 1]. Then for all
u ∈ a ◦ x and v ∈ a ◦ y,

R(u, v) >
∧

w∈a◦x, w′∈a◦y
R(w, w′) > R(x, y) > α

that is uRαv. This shows that Rα is a strong left compatible relation on H.
(ii) =⇒ (iii) Let Rα 6= ∅ be a strong left compatible relation on H,

for α ∈ L, x, y ∈ H be such that xRα>
y and a ∈ H. Then, there exists

β ∈ (α, 1] such that xRβy and so by (ii), a◦x
¯̄

Rβa◦ y. This implies that for
all u ∈ a ◦ x and for all v ∈ a ◦ y, R(u, v) > β > α and so uRα>

v. Hence,
a ◦ x

¯̄
Rα>

a ◦ y, which implies that Rα> is a strong left compatible relation
on H.

(iii) =⇒ (i) Let a ∈ H and x, y ∈ H be such that R(x, y) = α, for
α ∈ [0, 1]. Then, by Lemma 1, for all β ∈ [0, α) we have xRβ>

y and so by
(iii), a ◦ x

¯̄
Rβ>

a ◦ y; i.e., for all u ∈ a ◦ x and for all v ∈ a ◦ y, uRβ>
v i.e.,

R(u, v) > β, for all β ∈ [0, α). Thus R(u, v) > α, and hence
∧

u∈a◦x,v∈a◦y
R(u, v) > α = R(x, y).

Therefore, R is a fuzzy strong left compatible relation on H.
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De�nition 5. Let R be a fuzzy relation on a hypergroupoid H. Then, R
is said to be
(i) fuzzy compatible if
( ∧

u∈a◦c

∨

v∈b◦d
R(u, v)

)
∧

( ∧

v∈b◦d

∨
u∈a◦c

R(u, v)
)

> R(a, b)∧R(c, d), ∀a, b, c, d ∈ H,

(ii) fuzzy strong compatible if
∧

u∈a◦c,v∈b◦d
R(u, v) > R(a, b) ∧R(c, d), ∀a, b, c, d ∈ H.

De�nition 6. By a fuzzy (resp. strong) congruence relation we mean a
fuzzy (resp. strong) compatible equivalence relation.

Theorem 4. A fuzzy relation R is a (resp. strong) fuzzy congruence relation
if and only if it is both a (resp. strong) left and right fuzzy compatible
equivalence relation.

Proof. Let R be a fuzzy congruence relation on H and a, x, y ∈ H. Then
( ∧

u∈a◦x

∨
v∈a◦y

R(u, v)
)
∧

( ∧
v∈a◦y

∨
u∈a◦x

R(u, v)
)

> R(x, y) ∧R(a, a) = R(x, y)

which shows that R is a fuzzy left compatible relation on H. Similarly, it
can be shown that R is a fuzzy right compatible relation on H.

Conversely, suppose that R is both a fuzzy left and right compatible
equivalence relation on H and a, b, c, d ∈ H. Now, for every u ∈ a ◦ c and
every v ∈ b ◦ d, by transitivity of R, we have

R(u, v) >
∨

y∈H

(R(u, y) ∧R(y, v)) > R(u,w) ∧R(w, v), ∀w ∈ b ◦ c

and so
R(u, v) >

( ∨

w∈b◦c
R(u,w)

)
∧

( ∨

w∈b◦c
R(w, v)

)
.

Thus
∨

v∈b◦d
R(u, v) >

∧

v∈b◦d
R(u, v) >

( ∨

w∈b◦c
R(u,w)

)
∧

( ∧

v∈b◦d

∨

w∈b◦c
R(w, v)

)
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and hence
∧

u∈a◦c

∨

v∈b◦d
R(u, v) >

( ∧
u∈a◦c

∨

w∈b◦c
R(u,w)

)
∧

( ∧

v∈b◦d

∨

w∈b◦c
R(w, v)

)

> R(a, b) ∧R(c, d).

Therefore, R is a fuzzy congruence relation on H.
Now, let R be a fuzzy strong congruence relation on H and x, y, a ∈ H.

Then, ∧
u∈a◦x, v∈a◦y

R(u, v) > R(a, a) ∧R(x, y) = R(x, y).

Hence, R is fuzzy strong left compatible. The proof for "fuzzy strong right"
is similar.

Conversely, let R be a fuzzy strong left and right compatible, a, b, c, d ∈
H. Then,

R(a, b) 6
∧

u∈a◦c, v∈b◦c
R(u, v) and R(c, d) 6

∧

u∈b◦c, v∈b◦d
R(u, v)

and so

R(a, b) ∧R(c, d) 6
( ∧

u∈a◦c, v∈b◦c
R(u, v)

)
∧

( ∧

u∈b◦c, v∈b◦d
R(u, v)

)
.

For every u ∈ a ◦ c and v ∈ b ◦ d, by transitivity of R, we have

R(u, v) >
∨

y∈H

(R(u, y) ∧R(y, v)) > R(u,w) ∧R(w, v), ∀w ∈ b ◦ c

> (
∧

u∈a◦c, v∈b◦c
R(u, v)) ∧ (

∧
w∈b◦c, z∈b◦d

R(u, v)) > R(a, b) ∧R(c, d).

Thus R is a fuzzy strong congruence relation on H.

By Theorems 1, 2, 3 and 4 we have the following corollary.

Corollary 1. Let R be a fuzzy relation on a hypergroupoid H that satis�es
the sup property. Then,

(i) R is a fuzzy congruence relation on H if and only if every nonempty α-
level set Rα of R is both left and right compatible equivalence relation,

(ii) R is a fuzzy strong congruence relation on H if and only if every
nonempty α-level set Rα of R is both strong left and right compatible
equivalence relation on H.
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Let R be a fuzzy relation on H. For all x ∈ H, de�ne a fuzzy subset µ
on H by µx(y) = R(y, x), for all y ∈ H.

Lemma 2. Let R be a fuzzy equivalence relation on a hypergroupoid H.
Then, µx = µy if and only if R(x, y) =

∨

u,v∈H

R(u, v).

Proof. (i) Let µx = µy, for x, y ∈ H. Since, R is fuzzy re�exive, then

R(x, y) = µy(x) = µx(x) = R(x, x) =
∨

u,v∈H

R(u, v).

Conversely, suppose that R(x, y) =
∨

u,v∈H

R(u, v), for x, y ∈ H and w ∈ H.

Since R is fuzzy symmetric and fuzzy transitive, we obtain

µx(w) = R(w, x) = R(x,w) > R(x, y) ∧R(y, w)
=

(∨
u,v∈H R(u, v)

)
∧R(y, w) = R(y, w) = µy(w).

Similarly, we can show that µy(w) > µx(w). Thus, µx(w) = µy(w) and so
µx = µy.

Theorem 5. Let R be a fuzzy congruence relation on H with the sup prop-
erty and H/R = {µx : x ∈ H}. Then (H/R, ¦) is a hypergroupoid, where
binary hyperoperation "¦" is de�ned by

µx ¦ µy = {µz : z ∈ x ◦ y} = µx◦y.

Proof. First, we show that "¦" is well-de�ned. Let µx = µx′ and µy = µy′ ,
for µx, µx′ , µy, µy′ ∈ H/R. Then, by Lemma 2, R(x, x′) =

∨

u,v∈H

R(u, v) =

R(y, y′). Let α =
∨

u,v∈H

R(u, v). Then xRαx′ and yRαy′ and by Corollary

1, Rα is a congruence relation on H, then x ◦ yR̄αx′ ◦ y′. Now, let µz ∈
µx ¦ µy = µx◦y. Then there exists z′ ∈ x ◦ y such that µz = µz′ . On the
other hand, since x◦yR̄αx′ ◦y′, then there exists u ∈ x′ ◦y′ such that z′Rαu

and so R(z′, u) > α =
∨

u,v∈H

R(u, v) > R(z′, u). Hence, R(z′, u) = α. Now,

for w ∈ H we have
µz(w) = µz′(w) = R(w, z′) = R(z′, w) > R(z′, u) ∧R(u,w) = α ∧R(u,w)

= R(u,w) = R(w, u) = µu(w)
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and so µz > µu. Similarly µu > µz. Hence, µz = µu and so µz = µu ∈
µx′◦y′ = µx′ ¦ µy′ , since u ∈ x′ ◦ y′. Thus µx ¦ µy ⊆ µx′ ¦ µy′ . Analogously,
µx′ ¦ µy′ ⊆ µx ¦ µy. Thus µx ¦ µy = µx′ ¦ µy′ . This completes the proof.

In the following, we brie�y give some preliminaries about hypergroups.

De�nition 7. (cf. [5]) Let (H, ◦) be a hypergroupoid. Then H is called a
semihypergroup if "◦" is associative i.e., (x◦y)◦z = x◦(y◦z), for all x, y, z ∈
H. Moreover, if H is a semihypegroup that satis�es the reproduction axioms
that is, x◦H = H◦x = H, for all x ∈ H, then we say that H is a hypergroup.
Now, let H be a hypergroup. An, element e ∈ H is called an identity if
for all x ∈ H, x ∈ (x ◦ e) ∩ (e ◦ x), an element a ∈ H is said to be a scalar
identity if for all x ∈ H, |a ◦ x| = |x ◦ a| = 1. Let H has an identity e, an
element a′ ∈ H is said to be an inverse of a ∈ H if e ∈ (a ◦ a′)∩ (a′ ◦ a). H
is called regular if it has at least one identity and each element has at least
one inverse. H is said to be reversible if for all x, y, z ∈ H, y ∈ a◦x implies
that there exists an inverse a′ of a such that x ∈ a′ ◦ y and y ∈ x ◦ a implies
that there exists an inverse a” of a such that x ∈ y ◦ a”, a hypergroup
(H, ◦) is called canonical if it is commutative, with a scalar identity, such
that every element has an unique inverse and it is reversible.

Theorem 6. If (H, ◦) is a semihypergroup and R is a fuzzy congruence
relation on H, then H/R is a semihypergroup. In particular, if (H, ◦) is a
hypergroup then H/R is a hypergroup.

Proof. Let µx, µy, µz ∈ H/R and µu ∈ (µx¦µy)¦µz. Then there exists µw ∈
µx¦µy such that µu ∈ µw ¦µz = µw◦z and so there exists v ∈ w◦z such that
µu = µv. But, v ∈ w◦z ⊆ (x◦y)◦z = x◦(y◦z) and so there exists u′ ∈ y◦z
such that v ∈ x ◦ u′. Hence, µu = µv ∈ µx◦u′ = µx ¦ µu′ ⊆ µx ¦ (µy ¦ µz),
which shows that (µx ¦ µy) ¦ µz ⊆ µx ¦ (µy ¦ µz). By a similar way, we can
show that µx¦(µy ¦µz) ⊆ (µx¦µy)¦µz. Hence, (µx¦µy)¦µz = µx¦(µy ¦µz),
which shows that "¦" is associative. Therefore, H/R is a semihypergroup.

Now, suppose that (H, ◦) is a hypergroup and µx ∈ H/R. Obviously
µx ¦H/R ⊆ H/R. Now, let µu ∈ H/R. Since, u ∈ H = x ◦H, then there
exists y ∈ H such that u ∈ x ◦ y and so µu ∈ µx◦y = µx ¦ µy ⊆ µx ¦H/R.
Hence, H/R ⊆ µx ¦H/R and so µx ¦H/R = H/R. Similarly, H/R ¦ µx =
H/R and hence H/R satis�es the reproduction axioms. Therefore, H/R is
a hypergroup.

Theorem 7. Let (H, ◦) be a semihypergroup and R be a fuzzy strong con-
gruence relation on H. Then:
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(i) H/R is a semigroup,
(ii) if H is a hypergroup, then H/R is a group.

Proof. (i) By Theorem 6, H/R is a semihypergroup. It is enough to show
that |µx ¦ µy| = 1, for all µx, µy ∈ H/R. Let µx, µy ∈ H/R. Since, R is a
fuzzy strong congruence relation, then

∧

a∈x◦y, b∈x◦y
R(a, b) > R(x, x) ∧R(y, y) =

∨

u,v∈H

R(u, v).

Thus for all a, b ∈ x◦y, R(a, b) >
∨

u,v∈H

R(u, v) and so R(a, b) =
∨

u,v∈H

R(u, v).

Hence, by Lemma 1, µa = µb, for all a, b ∈ x ◦ y, which implies that
|µx ¦ µy| = 1.

(ii) Similar to the proof of (i), it is enough to show that for all µx, µy ∈
H/R, |µx ¦ µy| = 1. But, this immediately follows from (i).

Theorem 8. If (H, ◦) is a canonical hypergroup, then H/R is a canonical
hypergroup.

Proof. Let H be a canonical hypergroup and µx, µy ∈ H/R. Then,

µx ¦ µy = {µz : z ∈ x ◦ y} = {µz : z ∈ y ◦ x} = µy ¦ µx

which shows that H/R is commutative. Since, H has a scalar identity, then
there exists e ∈ H, such that e ◦ x = x ◦ e = {x}. Hence, for all µx ∈ H/R,

µx ¦ µe = µx◦e = µx = µe◦x = µe ¦ µx.

This shows that µe is a scalar identity. Let µx ∈ H/R and x′ be the unique
inverse of x. Since, e ∈ (x◦x′)∩(x′◦x), then µe ∈ (µx¦µx′)∩(µx′¦µx), which
shows that µx′ is an inverse of µx. Now, let µy be another inverse of µx.
Then µe ∈ (µx¦µy)∩(µy¦µx) and so there exists b ∈ y◦x such that µe = µb.
Hence, by Lemma 1, R(e, b) =

∨

u,v∈H

R(u, v). Let α =
∨

u,v∈H

R(u, v). Then,

eRαb i.e., {e}Rαy ◦ x. Since, Rα is compatible, then e ◦ x′R̄α(y ◦ x) ◦ x′

and so x′R̄αy ◦ (x ◦ x′). Since, y ∈ y ◦ e ⊆ y ◦ (x ◦ x′), then x′Rαy and
so R(x′, y) > α =

∨

u,v∈H

R(u, v). Hence, R(x′, y) =
∨

u,v∈H

R(u, v) and so by

Lemma 1, µy = µx′ , says that the inverse of µx is unique. Now, we show that
H/R is reversible. For this, let µx, µy, µa ∈ H/R and µy ∈ µa ¦ µx = µa◦x.
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Then, there exists u ∈ a ◦ x such that µy = µu. Since, u ∈ a ◦ x, then there
exists an inverse a′ of a such that x ∈ a′ ◦ y and so µx ∈ µa′ ¦ µy, and µa′ is
an inverse of µa. Similarly, if µy ∈ µx ¦ µa, then there exists an inverse a”
of a such that µx ∈ µy ¦ µa”. Hence, H/R is reversible. Therefore, H/R is
a canonical hypergroup.

3. Fuzzy congruence relations on hyper BCK-algebras
De�nition 8. (cf. [10, 11]) By a hyper BCK-algebra we mean a hyper-
groupoid (H, ◦) equipped a constant element "0" that satis�es the following
axioms:

(HK1) (x ◦ z) ◦ (y ◦ z) ¿ x ◦ y,
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3) x ◦H ¿ {x},
(HK4) x ¿ y and y ¿ x imply x = y,

for all x, y, z ∈ H, where by x ¿ y we mean 0 ∈ x ◦ y and for every
A,B ⊆ H, A ¿ B is de�ned by ∀a ∈ A, ∃b ∈ B such that a ¿ b.
De�nition 9. Let R be a fuzzy relation on a hyper BCK-algebra H. Then,
R is said to be fuzzy regular if

R(x, y) >
( ∨

a∈x◦y
R(a, 0)

)
∧

( ∨

b∈y◦x
R(b, 0)

)
.

Lemma 3. Let R be a fuzzy relation on a hyper BCK-algebra H with the
sup property. Then, R is fuzzy regular if and only if for all α ∈ [0, 1], each
nonempty α-level subset Rα is regular.
Proof. Let R be a fuzzy regular relation on H. Then x ◦ yRα{0} and
y ◦ xRα{0}, for x, y ∈ H and α ∈ [0, 1]. Then, there exist a ∈ x ◦ y and
b ∈ y ◦ x such that aRα0 and bRα0. This implies that R(a, 0), R(b, 0) > α

and so
∨

a∈x◦y
R(a, 0) > α and

∨

b∈y◦x
R(b, 0) > α. Thus,

R(x, y) >
( ∨

a∈x◦y
R(a, 0)

)
∧

( ∨

b∈y◦x
R(b, 0)

)
> α

and so xRαy, which shows that Rα is regular.
Conversely, suppose that

( ∨
a∈x◦y

R(a, 0)
)
∧

( ∨

b∈y◦x
R(b, 0)

)
= α
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for x, y ∈ H. Then
∨

a∈x◦y
R(a, 0) > α and

∨

b∈y◦x
R(b, 0) > α and since R

has the sup property, then there exist a0 ∈ x ◦ y and b0 ∈ y ◦ x such that
R(a0, 0) =

∨
a∈x◦y

R(a, 0) > α and similarly R(b0, 0) =
∨

b∈y◦x
R(b, 0) > α.

Hence, a0R
α0 and b0R

α0 and so x ◦ yRα{0} and y ◦ xRα{0}. Since Rα is
regular, then xRαy and so

R(x, y) > α =
( ∨

a∈x◦y
R(a, 0)

)
∧

( ∨

b∈y◦x
R(b, 0)

)

Therefore, R is a fuzzy regular relation.

Theorem 9. Let (H, ◦) be a hyper BCK-algebra and R be a fuzzy regular
congruence relation on H. Then, H/R is a hyper BCK-algeba.

Proof. It is enough to establish the axioms of a hyper BCK-algebra.
(HK1) Let µx, µy, µz, µv ∈ H/R be such that µv ∈ (µx ¦ µz) ¦ (µy ¦ µz).

Then there exist µu ∈ µx ¦ µz and µw ∈ µy ¦ µz such that µv ∈ µu ¦ µw

and so there exists a ∈ u ◦ w such that µv = µa. Since a ∈ u ◦ w ⊆
(x ◦ z) ◦ (y ◦ z) ¿ x ◦ y, then there exists b ∈ x ◦ y such that a ¿ b and so
0 ∈ a ◦ b. This implies that µ0 ∈ µa ¦ µb = µv ¦ µb ⊆ (µu ¦ µw) ¦ (µx ¦ µy) ⊆
((µx ◦ µz) ¦ (µy ¦ µz)) ¦ (µx ¦ µy). Thus (µx ¦ µz) ¦ (µy ¦ µz) ¿ µx ¦ µy.

(HK2) Let µu ∈ (µx ¦µy)¦µz. Then there exists v ∈ (x◦y)◦z such that
µu = µv. Since by (HK2) of H, (x ◦ y) ◦ z = (x ◦ z) ◦ y, then v ∈ (x ◦ z) ◦ y
and so µu = µv ∈ (µx ¦ µz) ¦ µy. This implies that (µx ¦ µy) ¦ µz ⊆
(µx ¦ µz) ¦ µy. Similarly, we can show that (µx ¦ µz) ¦ µy ⊆ (µx ¦ µy) ¦ µz.
Thus (µx ◦ µy) ¦ µz = (µx ¦ µz) ¦ µy.

(HK3) Let µz ∈ µx ¦H/R, for µx ∈ H/R. Then there exists µy ∈ H/R
such that µz ∈ µx ¦ µy and so there exists w ∈ x ◦ y such that µz = µw.
Since by (HK3) of H, x ◦ y ¿ x, then w ¿ x and so 0 ∈ w ◦ x. Thus
µ0 ∈ µw ¦ µx = µz ¦ µx. This implies that µz ¿ µx and so µx ¦H/R ¿ µx.

(HK4) Let µx ¿ µy and µy ¿ µx, for µx, µy ∈ H/R. Then µ0 ∈ µx ¦µy

and µ ∈ µx ¦ µy. Hence there exist z ∈ x ◦ y and w ∈ y ◦ x such that
µz = µ0 = µw. Since, µz = µ, then by Lemma 1, R(z, w) =

∨

u,v∈H

R(u, v).

Since µz = µ (and also µw = µ), then R(z, 0) =
∨

u,v∈H

R(u, v) = R(w, 0).

Let α =
∨

u,v∈H

R(u, v). Then zRα0 and wRα0, means that x ◦ yRα{0} and
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y ◦ xRα{0} and since Rα is regular, then xRαy. Hence, R(x, y) > α =∨

u,v∈H

R(u, v) and so R(x, y) =
∨

u,v∈H

R(u, v), which implies that µx = µy,

by Lemma 1. Therefore, H/R is a hyper BCK-algebra.
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Subdirectly irreducible sloops and SQS-skeins

Magdi. H. Armanious and Enas. M. A. Elzayat

Abstract
It was shown in [2] that there is 8 classes of nonsimple subdirectly irre-
ducible SQS-skeins of cardinality 32 (SK(32)s). Now, we present the same
classi�cation for sloops of cardinality 32 (SL(32)s) and unify this classi-
�cation for both SL(32)s and SK(32)s in one table. Next, some recur-
sive construction theorems for subdirectly irreducible SL(2n)s and SK(2n)s
which are not necessary to be nilpotent are given. Further, we construct
an SK(2n) with a derived SL(2n) such that SK(2n) and SL(2n) are subdi-
rectly irreducible and have the same congruence lattice. We also construct
an SK(2n) with a derived SL(2n) such that the congruence lattice of SK(2n)

is a proper sublattice of the congruence lattice of SL(2n).

1. Introduction
A Steiner quadruple (triple) system is a pair (S; B) where S is a �nite set
and B is a collection of 4-subsets (3-subsets) called blocks of S such that
every 3-subset (2-subset) of S is contained in exactly one block of B (cf.
[13] and [17]). Let SQS(m) denotes a Steiner quadruple system (brie�y
quadruple system) of cardinality m and STS(n) be a Steiner triple system
(brie�y: triple system) of the cardinality n. It is well known that SQS(m)
exists i� m ≡ 2 or 4 (mod 6), and STS(n) exists i� n ≡ 1 or 3 (mod 6) (cf.
[13] and [17]). Let (S;B) be an SQS. If Sa = S−{a} for some point a ∈ S,
then deleting a from all blocks which contain it we obtain the triple system
(Sa; B(a)), where

B(a) = {b′ = b− {a} : b ∈ B and a ∈ b}.
The system (Sa; B(a)) is called a derived triple system (or brie�y DTS) of
(S; B) (cf. [13] and [17]).

2000 Mathematics Subject Classi�cation: 05B30, 08A99, 05B07, 20N05
Keywords: Steiner triple system, Steiner loops, Steiner quadruple system, SQS-skein.
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There is one-to-one correspondence between STSs and sloops. A sloop
(brie�y SL) L = (L; ·, 1) is a groupoid with a neutral element 1 satisfying
the identities:

x · y = y · x, 1 · x = x, x · (x · y) = y.

A sloop L is called Boolean if it satis�es the associative law.
Also, there is one-to-one correspondence between SQSs and SQS-skeins

(cf. [13] and [17]). An SQS-skein (brie�y: SK) (Q; q) is an algebra with a
ternary operation q such that

q(x, y, z) = q(x, z, y) = q(z, x, y), q(x, x, y) = y, q(x, y, q(x, y, z)) = z

is valid for all x, y, z ∈ Q. An SQS-skein (Q; q) satisfying the identity:

q(a, x, q(a, y, z)) = q(x, y, z)

is called Boolean. Any sloop associated with a given derived triple system is
also called derived. A sloop (Qa; ·, a) with the binary operation "·" de�ned
by x · y = q(a, y, z), where a ∈ Q, is called derived sloop of an SQS-skein
(Q; q) with respect to a ∈ Q.

A subsloop N of L is called normal if and only if N = [1]θ for a congru-
ence θ on L. Similarly, a sub-SQS-skein of Q is called normal if and only
if N = [a]θ for a congruence θ of Q (cf. [13] and [18]). The congruence θ
associated with the normal subsloop (sub-SQS-skein) N is given by:

θ = {(x, y) : x · y ∈ N}.

All congruences of sloops (SQS-skeins) are permutable, regular and uniform
(cf. [1] and [18]). Congruence lattices of sloops and SQS-skeins are modular.
Theorem 1. Every subsloop (sub-SQS-skein) M of a �nite sloop (L; ·, 1)
(SQS-skein (Q; q)) such that |L| = 2 |M | (resp. |Q | = 2 |M |) is normal.

If (G; +) is a Boolean sloop or, equivalently, a Boolean group, then
(G; q) with q(x, y, z) = x + y + z is a Boolean SQS-skein [1]. The class A0

of all Boolean sloops (SQS-skeins) is the smallest non-trivial subvariety of
the variety of all sloops (SQS-skeins).

A congruence θ on a sloop L or on an SQS-skein Q is called central, if
the diagonal relation ∆L (resp. ∆Q) is a normal subsloop (sub-SQS-skein)
of L (resp. Q). The largest central congruence is called the center of L
(resp. Q) and is denoted by ζ(L) (resp. ζ(Q)) (cf. [1] and [11]). A series of
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congruences 1 = θ0 ⊇ θ1 ⊇ θ2 ⊇ . . .⊇ θn = 0 (or ∆) is called central series
if θi/θi+1 ⊆ ζ(L/θi+1) (resp. θi/θi+1 ⊆ ζ(Q/θi+1)). If L (resp. Q ) contains
a central series, then L (resp. Q) is called nilpotent. If in nilpotent L (resp.
Q ) the smallest length of a central series is n, then it is called nilpotent of
class n (cf. [4] and [5]).

Lemma 2. (cf. [4] and [15]) If θ is a congruence on a sloop L or on an
SQS-skein Q and |[x]θ |= 2, then θ is a central congruence. Moreover, if
L (resp. Q) is subdirecly irreducible, then θ = ζ(L) (resp. θ = ζ(Q)).

2. Subdirectly irreducible SL(32)s and SK(32)s

For any congruence θ on a sloop L or on an SQS-skein Q we may de�ne
the dimension d(θ) as the length of the maximal chain between the smallest
congruence 0 (the diagonal relation) and θ in C(L) or C(Q). All maximal
chains in a �nite modular lattice have the same length [16].

All SL(16)s (also SK(16)s) can be divided into 5 classes according to the
shape of its congruence lattice or, equivalently, to the number of sub-SL(8)s
(sub-SK(8)s) (cf. [8] and [9]). Let L∗ (resp. Q∗) be an SL(16) (resp. SK(16))
and let θ∗ be an atom in C(L∗) (resp. C(Q∗)), then C(L∗/θ∗ ∼= S(Zr

2)) (resp.
C(Q1/θ∗)) ∼= S(Zr

2) (the lattice of all subgroups of the Boolean group Zr

2).
Consequently, for the length of the maximal chain in C(L) or C(Q)) we
have d(1) = r + 1 with r = 0, 1, 2, 3, 4. So, there are 5 classes for each of
SL(16)s and SK(16)s which are presented in Table 1. Examples for each
class of SL(16)s and SK(16)s and for an SK(16)s with a derived SL(16) for
all possible congruence lattices of SK(16) and its derived SL(16), can be
found in [8] and [9].

Armanious gave in [2] all 8 classes of nonsimple subdirectly irreducible
SK(32)s. The same classi�cation holds for nonsimple subdirectly irreducible
SL(32)s.

If in modular lattice two elements θ and ϕ cover θ∧ϕ, then θ∨ϕ covers
θ and ϕ [16]. Moreover, θ ∨ ϕ = θ ◦ ϕ in permutable varieties. This implies
that if θ and ϕ are atoms in the congruence lattice C(L) (resp. C(Q)) of a
�nite sloop (SQS-skein), then the congruence θ ∨ ϕ = θ ◦ ϕ covers θ and ϕ.
Also, the dimensions d(1) of the largest congruence 1 of both L/θ and L/ϕ
(resp. Q/θ and Q/ϕ) are the same.
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d(1) C(L∗) and C(Q∗)
are isomorphic to

Algebraic properties
of SL(16) = L∗ and
SQ(16) = Q∗

Properties of
the STS(15)
and SQS(16)

1
θ∗ = 1

| [x] | θ∗ = 16

L∗ and Q∗ are simple.
STS(15) has no
sub-STS(7)s
and SQS(16)
has no sub-
SQS(8)s.

2

|[x]| θ∗ = 8

C(L∗) and C(Q∗) have
one proper congruence.
L∗ and Q∗ are sub-
directly irreducible,
but not nilpotent.

STS(15) has
one sub-STS(7)
and SQS(16)
has two disjoint
sub-SQS(8)s.

3

| [x]θ∗ |= 4

C(L∗) and C(Q∗) have
3 co-atoms. L∗ and Q∗
are subdirectly
irreducible, but not
nilpotent.

STS(15) has 3
sub-STS(7)s
and SQS(16)
has 6 sub-
SQS(8)s.

4

|[x]θ∗ |= 2

C(L∗) and C(Q∗) have
7 co-atoms. The atom
θ∗ is the center of L∗
(resp. Q∗). L∗ and Q∗
are subdirectly
of nilpotence calss 2.

STS(15) has
exactly 7 sub-
STS(7)s and
SQS(16) has
exactly 14 sub-
SQS(8)s.

5
It has more
than one atom.

Both L∗ and Q∗
are Boolean. So
L∗ ∼= SL(2)4 and
Q∗ ∼= SK(2)4. It has
24 � 1 atoms and
24 � 1 co-atoms.

STS(15) has
exactly 15 sub-
STS(7)s and
SQS(16) has
exactly 30
sub-SQS(8)s.

Table 1. All classes of subdirectly irreducible sloops and SQS-skeins of cardinality 16.

So, d(1) = 1 i� L (resp. Q) is simple and d(1) = n if L (resp. Q) is
Boolean of the cardinality 2n. In general, 1 6 d(1) 6 n for each of SL(2n)
and SK(2n).
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Consider a sloop L = SL(32) and an SQS-skein Q = SK(32), in which
both L and Q are subdirectly irreducible with a monolith θ0. It is well-
known that there are simple SK(n)s and simple SL(n)s for each n ≡ 2 or 4
(mod 6) (see [1], [7], [10] and [18]). Except the case d(1) = 1, when SK(n)s
and SL(n)s are simple, we have four other cases d(1) = 2, 3, 4, 5. For each
d(1) = r, we have two di�erent classes of L/θ0 (resp. Q/θ0). In the �rst
class L/θ0 (resp. Q/θ0) is Boolean and has 2r−1 elements. In the second
L/θ0 (resp. Qθ0) is an SL(16) (resp. SK(16)) and belongs to the class r− 1
of Table 1. This means that the congruence lattice C(L) (resp. C(Q)) is
isomorphic to one of the following two lattices:

In the following table, we review the algebraic and combinatoric proper-
ties of each class of nonsimple subdirectly irreducible SL(32)s and SK(32)s.

d(1)
The lattices
C(L∗) and
C(Q∗)

Properties of SL(32) = L
and SQ(32) = Q

Properties of the
associated STS(31)
and SQS(32)

2 (a)

| [x]θ0 |= 2

Normal subalgebras of L
and Q have 2 elements.
Has no subalgebras of
cardinality > 8. Only
homomorphic images
of L/θ0 and Q/θ0 are
simple of cardinality 16.

STS(31) has
(15 · 14)/6
sub-STS(7)s.
SQS(32) has
(16 · 15 · 14)/24
sub-SQS(8)s.

2 (b)

| [x]θ0 |= 16

L has one sub-SL(16)
and Q has two disjoint
sub-SK(16)s. Only
proper homomorphic
images of L/θ0 and Q/θ0

are of cardinality 2.

STS(31) has only
one sub-STS(15).
SQS(32) has two
disjoint sub-
SQS(16)s. These
3 subsystems be-
longs to the classes
from Table 1.
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3 (a)

| [x]θ1 |= 16
| [x]θ0 |= 2

| L/θ0 |=| Q/θ0 |= 16,
| L/θ1 |=| Q/θ1 |= 2.
L/θ0 and Q/θ0 belong
to the class 2 from
Table 1. L(Q) has only
one normal sub-SL(16)
(two disjoint normal
sub-SK(16)s). These
subsystems belong to
the class 4(a) or
4(b) of Table 1.

STS(31) has
only one sub-
STS(15) and at
least (15 · 14)/6
sub-STS(7)s. The
SQS(32) has two
disjoint sub-
SQS(16)s and
at least
(16 · 15 · 14)/24
sub-SQS(8)s.

3 (b)

| [x]θ0 |= 8

| L/θ0 |=| Q/θ0 |= 4.
L(Q) has 3 normal
sub-SL(16)s (6 normal
sub-SK(16)s) and only
one normal
sub-SL(8) (4 disjoint
normal sub-SK(8)s).
Sub-SL(16)s and sub-
SK(16)s are not
simple and belong
to some nonsimple class
from Table 1.

The STS(31)
has exactly three
sub-STS(15)s and
the SQS(32) has
six sub-SQS(16)s.

4 (a)

| [x]θ1 |= 8
| [x]θ0 |= 2

| L/θ1 |=| Q/θ1 |= 4,
| L/θ0 |=| Q/θ0 |= 16.
L/θ0 and Q/θ0 belong
to the class 3 of Table 1.
L(Q) has three normal
sub-SL(16)s (6 normal
sub-SK(16)s) and
only one normal sub-
SL(8) (4 disjoint normal
sub-SK(8)s). Sub-
SL(16)s and sub-SK(16)s
belong to the class 4(a)
or 4(b) of Table 1.

STS(31) has only
3 sub-STS(15)s.
The associated
SQS(32) has 6
sub-SQS(16)s.
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4 (b)

| [x]θ0 |= 4

| L/θ0 |=| Q/θ0 |= 8.
L(Q) has 7 normal
sub-SL(16)s (14 normal
sub-SK(16)s) and only
one normal sub-SL(4)
(8 disjoint normal
sub-SK(4)s). Sub-
SL(16)s and sub-
SK(16)s belong to the
class 3 or 4 of Table 1.

The STS(31) has
exactly 7 sub-
STS(15)s.
The associated
SQS(32) has 14
sub-SQS(16)s.

5 (a)

| [x]θ1 |= 4
| [x]θ0 |= 2

| L/θ1 |=| Q/θ1 |= 8,
| L/θ0 |=| Q/θ0 |= 16.
L/θ0 and Q/θ0 belong
to the class 4(a) of
Table 1. θ0 is the center
of L(Q) and θ1/θ0 is the
center of L/θ0(Q/θ0).
L(Q) is of nilpotence
class 3 and has 7 normal
sub-SL(16)s (14 normal
sub-SK(16)s) and exactly
one normal sub-SL(4)
(8 disjoint normal sub-
SK(4)s) and one normal
sub-SL(2) (16 disjoint
normal sub-SK(2)s).

The STS(31) has
exactly 7 sub-
STS(15)s and the
associated SQS(32)
has exactly 14 sub-
SQS(16)s. All sub-
STS(16)s and sub-
SQS(16)s belong
to the class 4(a)
or 4(b) of Table 1.

5 (b)

| [x]θ0 |= 2

| L/θ0 |=| Q/θ0 |= 16.
L(Q) is nilpotent of
the class 2 and θ0 is its
center. L(Q) has 15
normal sub-SL(16)s (30
normal sub-SK(16)s) and
exactly one normal sub-
SL(2) (16 disjoint normal
sub-SK(2)s). Sub-
SL(16)s and sub-SK(16)s
belong to the class 4(a)
or 4(b) of Table 1.

STS(31) has
exactly 15 sub-
STS(15)s and
the associated
SQS(32) has
exactly 30 sub-
SQS(16)s.
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3. Subdirectly irreducible SL(2n)s and SK(2n)s
In this section, we �nd recursive constructions for subdirectly irreducible
sloops and SQS-skeins, i.e., for subdirectly irreducible SK(n) = Q∗ and
SL(n) = L∗ with a monolith θ∗, we construct subdirectly irreducible Q =
SK(2n) (resp. L = SL(2n)) having a homomorphic image which congruent
to Q∗ (resp. to L∗).

For a given subdirectly irreducible SK(n) and SL(n) of nilpotence class
k > 1 Guelzow (cf. [14], [15]) and Armanious (cf. [3], [4], [5]) constructed
a subdirectly irreducible SK(2n) (resp. SL(2n)) of nilpotence class k + 1.
Below, basing on results of [15] and [4], we present three recursive construc-
tions for subdirectly irreducible SQS-skeins and sloops. Namely, for a given
subdirectly irreducible SK(n) and SL(n) (not necessary nilpotent or sim-
ple) with a monolith, we construct a subdirectly irreducible SK(2n) (resp.
SL(2n)).

Construction. Let Q∗ = (Q∗; q∗) be an SK(n) and L∗ = (L∗; ∗, 1) be an
SL(n). Let L∗ = Q∗ = {x0, x1, . . . , xn−1} and R be a set of sub-SK(4)s
of Q∗ (sub-SL(4)s of L∗), where x0 denotes the unit 1 of sloops. Consider
the binary operation • on L = L∗ ×GF (2) and the ternary operation q on
Q = Q∗ ×GF (2) de�ned as follows:

q((x, ix), (y, iy), (z, iz)) = (q∗(x, y, z), ix + iy + iz + χR〈x, y, z〉Q∗),
(x, ix) • (y, iy) = (x ∗ y, ix + iy + χR〈x, y〉L∗),

where χR is the characteristic function such that χR〈x, y, z〉Q∗ = 1 if
〈x, y, z〉Q∗ generates a sub-SK(4) ∈ R, and 0 otherwise; χR〈x, y〉L∗ = 1
if 〈x, y〉L∗ generates a sub-SL(4) ∈ R, and 0 otherwise.

It easy to prove that Q = (Q; q) is an SK(2n) and L = (L; •) is an
SL(2n) (for details see [15] and [4]). In the sequel, the SQS-skein Q and
the sloop L will be denoted by 2×R Q∗ and 2×R L∗, respectively.

If R is empty, then χR〈x, y, z〉Q∗ = 0 for x, y, z ∈ Q∗ and χR〈x, y〉L∗ = 0
for x, y ∈ L∗. Thus (Q; q) = Q∗ × SK(2) and (L; •, (1, 0)) = L∗ × SL(2).
If R is the set of all sub-SK(4)s of Q∗ (resp. sub-SL(4)s of L∗), then Q(L)
is Boolean or of nilpotence class k + 1 if and only if Q∗L∗) is Boolean or
of nilpotence class k > 1, respectively. Moreover, Q is semi-boolean if and
only if Q∗ is semi-boolean (see [15]).

Lemma 3. Let Q∗ (resp. L∗) be a subdirectly irreducible SQS-skein (sloop)
with monolith θ∗ and let R be the set of sub-SK(4)s (sub-SL(4)s). The con-
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structed SKS-skein 2×RQ∗ (resp. sloop 2×RL∗) has a congruence θ1 which
covers all its minimal congruences.
Proof. The projection π from Q(L) into the �rst component is onto ho-
momorphism and the congruence kerπ = θ0 on Q(L) is determined by the
relation {((x, i), (x, j)) : ∀x ∈ Q∗(L∗), ∀i, j ∈ {0, 1}}. Now Q/θ0

∼= Q∗ and
L/θ0

∼= L∗. Since θ∗ is the monolith of Q∗ and L∗, Q/θ0 (resp. L/θ0) has
a monolith θ1/θ0 for a congruence θ1 on Q (resp. on L). Thus θ1 is the
unique congruence in C(Q) (resp. C(L)) which covers θ0. If δ is another
atom of C(Q) (resp. C(L)), then δ ◦ θ0 = θ1 covers δ and θ0. Therefore, θ1

covers all atoms of C(Q) (resp. C(L)).

Moreover, since | [(x0, 0)]θ0 |= 2, it follows that if | [(x0)]θ∗ |= m, then
| [(x0, 0)]θ1 |= 2m.

Guelzow [15] and Armanious [4] for a given subdirectly irreducible SK(n)
= Q∗ (SL(n) = L∗) of nilpotence class k with a minimal congruence θ∗
such that | [x]θ∗ |= 2 constructed subdirectly irreducible SK(2n) = Q and
SL(2n) = L of nilpotence class k +1.

Below we prove that for a subdirectly irreducible SK (n) = Q∗ (resp.
SL(n) = L∗) with a monolith θ∗ for each possible cardinality of |[x]θ∗ | the
constructed Q = 2 ×R Q∗ (resp. L = 2 ×R L∗) is subdirectly irreducible.
Note that Q∗ and L∗ are not nilpotent, in general.

In the following three theorems, let x0 be the unit 1 of sloops, ∗ the
binary operation on L∗ and • the operation on L, i.e., x ∗ y = q∗(x0, x, y)
on the set Q∗ and (x, i) • (y, j) = q((x0, 0), (x, i), (y, j)) on the set Q .

The proof of the theorem presented below is analogous to the proof of
the corresponding theorems for nilpotent SQS-skeins and sloops from [3]
and [4].
Theorem 4. Let n > 8. If SK(n) = Q∗ (resp. SL(n) = L∗) is subdirectly
irreducible with a monolith θ∗ = ∪{{xi, xi+1}2 : i = 0, 2, . . . , n − 2} and
R = {x0, x1, x2, x3}, then the constructed SQS-skein Q = 2 ×R Q∗ (resp.
sloop L = 2×R L∗) is also subdirectly irreducible.

Proof. As in Lemma 3, θ0 = {((x, i), (x, j)) : x ∈ Q∗, i, j ∈ {0, 1}} (resp.
x ∈ L∗) is an atom of C(Q)(resp.C(L)) and θ1 ∈ C(Q) (resp. C(L)) is the
unique congruence covering all atoms of C(Q) (resp. C(L)). The theorem
will be proved if we show that the congruence θ0 is the unique atom in the
congruence lattice C(Q) (resp. C(L)). If there is another atom δ 6= θ0 in
the congruence lattice C(Q) (resp. C(L)), then δ ◦ θ0 = θ1 covers both
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δ and θ0. Since [x0]θ∗ = {x0, x1} and | [(x0, 0)]θ0 |= 2 , it follows that
| [(x0, 0)]θ1 |= 4. Then [(x0, 0)]θ1 = {(x0, 0), (x0, 1), (x1, 0), (x1, 1)}. This
means that if there is another atom δ in C (Q) (resp. C (L)), then

[(x0, 0)]δ = {(x0, 0), (x1, 0)} or [(x0, 0)]δ = {(x0, 0), (x1, 1)},

which is impossible.Indeed, each 2-element subset {x, y} of an SK is a sub-
SK(2) and for each element x of an SL the set {1, x} is a sub-SL(2). Also, if
θ is a congruence on an SK (resp. SL), then [x]θ∪[y]θ([1]θ∪[x]θ) is a sub-SK
(sub-SL). In addition, xθy if and only if q(a, y, z)θa (resp. x · yθ1). More-
over, for 3 distinct elements x, y, z, we have q(x, y, z) /∈ {x, y, z} because,
for example, q(x, y, z) = z implies y = q(x, z, q(x, z, y)) = q(x, z, z) = x.

In the case of SQS-skeins, according to the de�nition of θ∗, we see that
{x0,x1}∪{x2,x3} and {x0, x1}∪{x4, x5} are sub-SK(4). Thus q∗(x0, x1, x2) =
x3 and q∗(x0, x1, x4) = x5. So, q∗(x0, x2, x4) = xk and [xk]θ∗ = {xk, xk+1}.
Therefore, q∗(x0, xk, xk+1) = x1.

For [(x0, 0)]δ = {(x0, 0), (x1, 0)}, we have q((x0, 0), (x2, 0), (x3, 1)) =
(x1, 0) and q((x0, 0), (x4, 0), (x5, 0)) = (x1, 0). Thus (x2, 0)δ(x3, 1) and
(x4, 0)δ(x5, 0). But (x0, 0)δ(x0, 0), so, (q∗(x0, x2, x4), 0)δ(q∗(x0, x3, x5), 1),
i.e., (xk, 0)δ(q∗(x0, x3, x5), 1). This means that (q∗(x0, x3, x5), 1) ∈ [(xk, 0)]δ,
which is a contradiction because [(xk, 0)]δ = q((x0, 0), (xk, 0), [(x0, 0)]δ) =
{(xk, 0), (xk+1, 0)}, where q∗(x0, xk, xk+1) = x1.

For [(x0, 0)]δ = {(x0, 0), (x1, 1)}, we have q((x0, 0), (x2, 0), (x3, 0)) =
(x1, 1) and q((x0, 0), (x4, 0), (x5, 1)) = (x1, 1). Whence (x2, 0)δ(x3, 0) and
(x4, 0)δ(x5, 1). This implies that (q∗(x0, x2, x4), 0)δ(q∗(x0, x3, x5), 1). Thus
(xk, 0)δ(q∗(x0, x3, x5), 1). From this, as a simple consequence, we obtain
q((x0, 0), (x5, 1), (xk, 0))δq((x0, 0), (x5, 1), (q∗(x0, x3, x5), 1)). This means
that (q∗(x0, x5, xk), 1)δ(x3, 0), i.e., (q∗(x0, x5, xk), 1) = (x2, 0) or (x3, 0),
which is impossible.

Therefore, the congruence θ0 is the unique atom of C(Q).

Note that for each positive integers n and k there exists a subdirectly
irreducible SK(2n) (resp. SL(2n)) of nilpotence class k with a monolith θ∗
such that | [x]θ∗ |= 2 (cf. [15] and [4]).

The above results we can summarize in the following table:



Subdirectly irreducible sloops and SQS-skeins 243

If Q∗ (resp. L∗) is a subdirectly irreducible SK(n)
(resp. SL(n)) for n ≥ 16 with a monolith θ∗ such
that |[x]θ∗ |= 2, then the constructed SQS-skein
Q (sloop L) is a subdirectly irreducible with a
congruence lattice C(Q) (resp. C(L)) isomorphic
to the lattice Γ and C(Q∗) (resp. C(L∗)) is equal
to [θ0 : 1]. Note that in general Q∗ and L∗ are
not nilpotent.
In particular, Q∗ (resp. L∗) may be of nilpotence
class t > 1 of cardinality n = 2r+t, r > 3, with
C(Q∗) (resp. C(L∗)) isomorphic to Γ1. Then
Q(L) is of nilpotence class t + 1 having a
congruence lattice C(Q) (resp. C(L)) isomorphic
to Γ2 with | [x]θi |= 2i+1 (i = 0, 1, . . . , t− 1)
and Q/θ0

∼= Q∗ (resp. L/θ0
∼= L∗). Also, θi+1/θi

is the center and in the same time is the monolith
of Q/θi (resp. L/θi). For example, let r = 3 and
t = 1, then Q∗ =SK(16) (resp. L∗ =SL(16))
belongs to the class 4(a) of Table 1 and
Q =SK(32) (resp. L =SL(32)) belongs to the
class 5(a) of Table 2.

Theorem 5. Let (Q∗; q∗) (resp. L∗; ∗, 1)) be a subdirectly irreducible SQS-
skein (resp. sloop) of cardinality n > 8 with a minimum congruence θ∗ such
that | [x]θ∗ |= 4. If R = [x0]θ∗ is a sub-SK(4) (resp. sub-SL(4)), then the
constructed SQS-skein Q = 2×R Q∗ (sloop L = 2×R L∗) is also subdirectly
irreducible.

Proof. As in Lemma 3, θ0 is an atom and θ1 is the unique congruence
covering θ0 in C(Q) (resp. in C(L)). Similar to the above theorem, it is
su�ces to show that θ0 is the unique atom in the congruence lattice C(Q)
(resp. C(L)).

If there is another atom δ in C(Q)(C(L)), then θ1 covers δ and θ0, and
also δ ◦ θ0 = θ1. If [x0]θ∗ = {x0, x1, x2, x3}, then

[(x0, 0)]θ1 = {(x0, 0), (x1, 0), (x2, 0), (x3, 0), (x0, 1), (x1, 1), (x2, 1), (x3, 1)}.

This means that the class [(x0, 0)]θ1 is divided in to two subclasses [(x0, 0)]δ
and [(x0, 1)]δ such that both (x, 0) and (x, 1) can not be in the same sub-
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class. Indeedd, if (x, 0)δ(x, 1), then

q((x0, 0), (x, 0), (x, 1)) = (q∗(x0, x, x), 1) = (x0, 1) ∈ [(x0, 0)]δ,

which implies [(x0, 0)]δ ⊇ [(x0, 0)]θ0. But this is impossible.
If (x1, 0) and (x2, 0) ∈ [(x0, 0)]δ, then

q((x1, 0), (x2, 0), (x0, 0)) = (q∗(x1, x2, x0), 1) = (x3, 1).

Thus, (x3, 1) ∈ [(x0, 0)]δ. If (x1, 1), (x2, 1) ∈ [(x0, 0)]δ, then

q((x1, 1), (x2, 1), (x0, 0)) = (q∗(x1, x2, x0), 1) = (x3, 1),

which gives (x3, 1) ∈ [(x0, 0)]δ. This means that [(x0, 0)]δ contains exactly
3-element subset of the set {x0, x1, x2, x3} × {0, 1} with the same second
component.

We have |[(x0, 0)]δ| = 4 and |[(x0, 0)]θ1| = 8. Without loss of generality,
we can assume that
(i) [(x0, 0)]δ = {(x0, 0), (x1, 0), (x2, 0), (x3, 1)} or
(ii) [(x0, 0)]δ = {(x0, 0), (x1, 1), (x2, 1), (x3, 1)}.
Case (i) for SQS-skeins: Assume that (x, 0) ∈ Q such that x /∈ {x0, x1, x2, x3},
then:

[(x, 0)]δ = q((x, 0), (x0, 0), [(x0, 0)]δ)
= {q((x, 0), (x0, 0), (x0, 0)), q((x, 0), (x0, 0), (x1, 0)),

q((x, 0), (x0, 0), (x2, 0)), q((x, 0), (x0, 0), (x3, 1))}
= {(x, 0), (q∗(x, x0, x1), 0), (q∗(x,x0, x2), 0), (q∗(x, x0, x3), 1)}

and
[(q∗(x, x0, x3), 1)]δ = q((q∗(x, x0, x3), 1), (x0, 0), [(x0, 0)]δ)

= {q((q∗(x, x0, x3), 1), (x0, 0), (x0, 0)),
q((q∗(x, x0, x3), 1), (x0, 0), (x1, 0)),
q((q∗(x, x0, x3), 1), (x0, 0), (x2, 0)),
q((q∗(x, x0, x3), 1), (x0, 0), (x3, 1))}

= {(q∗(x, x0, x3), 1), (q∗(q∗(x, x0, x3), x0, x1), 1),
(q∗(q∗(x,x0, x3), x0, x2), 1), (x, 0)}.

This means that [(x, 0)]δ ∩ [(q∗(x, x0, x3), 1)]δ 6= ∅ and [(x, 0)]δ is
not identical with [(q∗(x, x0, x3), 1)]δ, which contradicts the fact that δ is a
congruence. So, this case is impossible.

In a similar way we can prove that also the second case is impossible.
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Theorem 6. Let (Q∗; q∗) (resp. (L∗; ∗, 1)) be a subdirectly irreducible SQS-
skein (resp. sloop) of cardinality n > 8 with a minimum congruence θ∗
such that |[x]θ∗| > 4. If R = {x0, x1, x2, x3} is a sub-SK(4) of Q∗ (resp.
sub-SL(4) of L∗) contained in [x0]θ∗, then the constructed SQS-skein Q =
2×R Q∗ (sloop L = 2×R L∗) is also subdirectly irreducible with a monolith
θ0 and Q/θ0

∼= Q∗ (resp. L/θ0
∼= L∗).

Proof. As in Lemma 3, θ1 is the unique congruence covering the atom θ0

and all other atoms in C(Q) (resp. C(L)). We need only prove that θ0 is
the unique atom in the congruence lattice C(Q) (resp. C(L)). Assume that
there is another atom δ of C(Q) (resp. C(L)). Then θ1 = δ ◦ θ0 covers
both δ and θ0. Since | [(x, ix)]θ0 |= 2 and θ1 covers δ, it follows that if
| [(x, ix)]θ1 |= 2m, then | [(x, ix)]δ |= m.

Let [x0]θ∗ = {x0, x1, x2, x3, . . . , xm−1}, then
[(x0, 0)]θ1 = {(x0, 0), (x1, 0), (x2, 0), . . . , (x0, 1), (x1, 1), (x2, 1), . . . }.
This means that the class [(x0, 0)]θ1 is divided in to two disjoint sub-

classes [(x0, 0)]δ and [(x0, 1)]δ. In the same manner as in the previous
proof, we can prove that [(x0, 0)]δ contains exactly 3-element subset of the
set {x0, x1, x2, x3} × {0, 1} with the same second component.

Now, |[(x0, 0)]δ| > 4, i.e., |[(x0, 0)]θ1| > 8 and R = {x0, x1, x2, x3}. So,
[(x0, 0)]δ = {(x0, 0), (x1, 0), (x2, 0), (x3, 1), (a1, 0),

. . . , (ai, 0), (b1, 1), . . . , (bj , 1)}
or

[(x0, 0)]δ = {(x0, 0), (x1, 1), (x2, 1), (x3, 1), (a1, 0),
. . . , (ai, 0), (b1, 1), . . . , (bj , 1)},

where x0, x1, x2, x3, a1, a2, . . . , ai, b1, b2, . . . , bj are m distinct elements.
In the �rst case for SQS-skeins for all (ah, 0) ∈ [(x0, 0)]δ with ah /∈

{x0, x1, x2, x3}, we have q((x3, 1), (ah, 0), (x0, 0)) = (bk, 1) ∈ [(x0, 0)]δ and
(bk, 1) 6= (x3, 1). Moreover, if (ah1 , 0) 6= (ah2, 0), then (bk1 , 1) 6= (bk2 , 1).
Also, for all (bh, 1) ∈ [(x0, 0)]δ with bh /∈ {x0, x1, x2, x3}, we can see that
q((x3, 1), (bh, 1), (x0, 0)) = (al, 0) ∈ [(x0, 0)]δ for (al, 0) 6= (x0, 0), (x1, 0) or
(x2, 0). Also, if (bh1 , 1) 6= (bh2 , 1), then (ak1 , 0) 6= (ak2 , 0). This implies that
the sets {a1, a2, . . . , ai} and {b1, b2, . . . , bj} have the same cardinality. Then
i = j > 1. Let i = j = r, then
[(x0, 0)]δ={(x0, 0), (x1, 0), (x2, 0), (x3, 1), (a1, 0), ..., (ar, 0), (b1, 1), ..., (br, 1)}.
Hence the class [(x0, 0)]δ is a sub-SQS-skein having r + 3 elements with
the second component 0 and r+1 elements with the second component 1.
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But q((b1, 1), (x0, 0), {(x0, 0), (x1, 0), (x2, 0), (a1, 0), . . . , (ar, 0)} gives r + 3
distinct elements with second component 1, which is impossible.

In the second case we obtain a similar contradiction. This proves that
θ0 is the unique minimal congruence on Q (resp. L).

In view of Theorems 5 and 6 we get the following constructions:

If Q∗ (resp. L∗) is a subdirectly irreducible SK(n)
(resp. SL(n)) for n ≥ 16 with a monolith θ∗
satisfying | [x]θ∗ |> 2, then Q∗ (resp. L∗) is not
nilpotent. The constructed SQS-skein Q
(sloop L) is a subdirectly irreducible having
a congruence lattice C(Q) (resp. C(L))
isomorphic to Γ2 and C(Q∗) = [θ0 : 1]
(resp. C(L∗) = [θ0 : 1]) isomorphic to Γ1. The
sublattice [θ∗ : 1] of Γ1 is not necessary to be
isomorphic to S(Zr

2).
In particular, if Q∗ (resp. L∗) is a subdirectly
irreducible SK(2n) (resp. SL(2n)) for n > 4
with a monolith θ∗ such that |[x]θ∗| = 2r, then
then the constructed SQS-skein Q (resp. sloop L)
is a subdirectly irreducible and has a congruence
lattice C(Q) (resp. C(L) isomorphic to Γ2 and
C(Q∗) = [θ0 : 1] (resp. C(L∗) = [θ0 : 1])
isomorphic to Γ1. Indeed, |[x]θ1| = 2r+1 and
|[x]θ0| = 2, for each n > 4 and r = n, n− 1, . . . , 1.
Note that Q∗ (resp. L∗) is not nilpotent for
r > 1 and Q∗ (resp. L∗) is simple for r = n.

Examples. 1. For n = 4 and r = 3, 2 or 1, we may choose an SK(24) =
Q∗ (resp. SL(24) = L∗) belonging to the classes 2, 3 or 4(a) of Table
1, respectively. Applying Theorems 6, 5 and 4 to Q∗ (resp. L∗), we get
three examples of a subdirectly irreducible SK(25) = Q (resp. SL(25) = L)
belonging to classes 3(a), 4(a) and 5(a) of Table 2.
2. For n > 3 and r = n, we observe that Q∗ (resp. L∗) is simple of
cardinality 2n and the congruence lattice of C(Q) (resp. C(L)) is a chain of
length 2, i.e., θ1 is the largest congruence in C(Q) (resp. C(L)) and θ0 is the
monolith. For instance, take r = n = 4 and choose a simple SK(24) = Q∗
(resp. SL(24) = L∗) as in the class 1 of Table 1. In view of Theoerem 6, we
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get a subdirectly irreducible SK(25) = Q (resp. SL(25) = L) belonging to
the class 2(a) of Table 2.
3. In [6] and [7] Armanious has shown that if we have a simple SK(n) = Q∗
(resp. SL (n) = L∗), then there is a subdirectly irreducible SK(2n) (resp.
SL(2n)) having only one proper congruence. In particular, for n = 16,
choose a simple SK(16) = Q∗ (resp. SL(16) = L∗) the construction SK(32)=
2 ⊗α Q∗ [7] (resp. SL(32) = 2 ⊗α L∗ [6]) is an example of a subdirectly
irreducible SK(32) (resp. SL(32)) belonging to the class 2(b) of Table 2.
4. For n > 3 and r = 0, Q∗ (resp. L∗) is Boolean of cardinality 2n.
According to the constructions given in [15] and [5], we may say that there
is a subdirectly irreducible SK(2n+1) = Q (resp. SL(2n+1) = L) with
a monolith θ0 such that Q/θ0 (resp. (L/θ0) is a Boolean SK(2n) (resp.
SL(2n)). For instance, let n = 4 and r = 0, then the constructed SK(25) =
Q (resp. SL(25) = L) is an example of 5(b) of Table 2. ¤

In fact, these theorems permit us to construct examples for 6 classes of
Table 2, but it is not enough to construct examples for classes 3(b) and 4(b).

3.1. The SQS-skein 2×R Q∗ having 2×R L∗ as a derived sloop
In [4] Armaniuous has constructed a nilpotent SQS-skein of whose all de-
rived sloops are nilpotent of the same class and both have the same congru-
ence lattice. Also, he has constructed [7] a subdirectly irreducible SK(2n)
having a derived subdirectly irreducible SL(2n) for n > 8, in which the
congruence lattice of each of SL(2n) and SK(2n) are isomorphic to a chain
of length 2.

Let L∗ be a derived sloop of the SQS-skein Q∗ with respect to the element
x0, in which L∗ and Q∗ are subdirectly irreducible with the same monolith
θ∗ (Theorems 4, 5 and 6). Let R be the same 4-element subalgebra {x0, x1,
x2, x3} in both Q∗ and L∗ such that R = [x0]θ∗ ∪ [x2]θ∗ (as in Theorem 4),
R = [x0]θ∗ as in Theorem 5 and R ⊆ [x0]θ∗ as in Theorem 6. Therefore,
x ∗ y = q∗(x0, x, y), and consequently χR〈x, y〉L∗ = χR〈x0, x, y〉Q∗ for all
x, y ∈ L∗ = Q∗. Hence (x, ix) • (y, iy) = q((x0, 0), (x, ix), (y, iy)) for all
(x, ix), (y, iy) ∈ L = Q, this means directly that the constructed sloop
L =2 ×R L∗ is derived sloop of the constructed SQS-skein Q = 2 ×R Q∗.
Therefore, we have the following result.
Corollary 7. Let L∗ be a derived sloop of the SQS-skein Q∗ with respect
to the element x0 and let both Q∗ and L∗ be subdirectly irreducible having a
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monolith θ∗. If θ∗ and R = {x0, x1, x2, x3} are de�ned as stated in Theorem
4, 5 and 6, then the sloop L = 2 ×R L∗ is always a derived sloop of the
SQS-skein Q = 2×R Q∗ with respect to (x0, 0) for each case of θ∗. |Box

We may choose an SQS-skein Q∗ with a derived sloop L∗ and both
Q∗ and L∗ are subdirectly irreducible of cardinality n (or in particular of
cardinality 2n). In view of Theorems 4, 5, 6 and Corollary 7, we may say
that:

There is an SQS-skein Q = 2×R Q∗ with a derived sloop L = 2×R L∗ of
cardinality n (or 2n), in which both Q and L are subdirectly irreducible of
cardinality 2n (or 2n+1) having the same congruence lattice for each possible
number n. In particular, there is always an SK(32) with a derived SL(32),
both are subdirectly irreducible and have the same congruence lattices.

Note that the construction of a semi-Boolean SQS-skein Q (each derived
sloop L of Q is Boolean) given in [14] guarantees that C(Q) is a proper
sublattice of the congruence lattice C(L) of its derived sloop L. Also each
nonsimple SL(16) = L can be extended to a nonsimple SK(16) = Q with
all possible congruence lattice C(Q) as a sublattice of C(L) (for details see
[8]).

We know that if L∗ is a derived sloop from Q∗, then each congruence
on Q∗ is a congruence on L∗. If both Q∗ and L∗ are subdirectly irreducible,
then the monolith ϕ∗ of Q∗ is a congruence on L∗ containing the monolith
θ∗ of L∗ (examples for L∗ = SL(16) and Q∗ = SK(16) one can �nd in
[8]). This means that we can choose the sub-SL(4) = R = [x0]θ∗ ∪ [x0]θ∗,
R = [x0]θ∗ or R ⊆ [x0]θ∗, if |[x0]θ∗| = 2, 4 or > 4, respectively. Note that
x0 represents the unit of L∗. Since ϕ∗ ⊇ θ∗, R is a sub-SK(4) such that

R = [x0]ϕ∗ ∪ [x0]ϕ∗ if | [x0]ϕ∗ |=| [x0]θ∗ |= 2,
R = [x0]ϕ∗ if | [x0]ϕ∗ |= 4 and | [x0]θ∗ |= 2 or 4,
R ⊆ [x0]ϕ∗ if | [x0]ϕ∗ |> 4 and | [x0]θ∗ |= 2, 4 or > 4.

In view of Theorems 4, 5 and 6, Q = 2 ×R Q∗ and L = 2 ×R L∗
are subdirectly irreducible with a monolith θ0 such that L/θ0

∼= L∗ and
Q/θ0

∼= Q∗. And as a result of Corollary 7, L is a derived sloop of Q , which
means that C(Q) is a proper sublattice of C(L), if ϕ∗ properly contains θ∗.
In particular, we may construct the following examples:
Examples. Let L∗ = SL(16) be a derived sloop of Q∗ = SK(16). The
result obtained in [8] enables us to choose L∗ belonging to class 4(a) and
Q∗ belonging to class 4(a), 3 or 2 of Table 1. Now, we may construct an
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SQS-skein SK(32) = 2 ×R Q∗ with a derived sloop SL(32) = 2 ×R L∗, in
which the SL(32) belongs to the class 5(a) of Table 2. The SK(32) will
belong to the class 5(a) of Table 2, if Q∗ belongs to the class 4(a) of Table
1. Also, the SK (32) will belong to 4(a) or 3(a) of Table 2, if Q∗ belongs to
the class 3 or 2 of Table 1, respectivly. For the last two cases the congruence
lattice C(SK(32)) is a proper sublattice of C(SL(32)). ¤

A natural open problem for future investigations is a construction of an
SQS-skein Q with a derived sloop L for which a congruence lattice C(Q) is
a sublattice of C(L).
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S-systems of n-ary quasigroups

Galina Belyavskaya

Abstract

In the theory of binary quasigroups the notions of a right (left) S-system
and an S-system [1] are known. An S-system is simultaneously a left and
right S-system. We introduce (k)-S-systems and S-systems (otherwise than
in [10]) of n-ary quasigroups for n > 2 and 1 6 k 6 n, give examples of
such systems and prove that any (k)-S-system, given on a �nite set, is a
pairwise orthogonal set ([3]) of n-ary operations.

1. Introduction
In the theory of binary quasigroups the notion of a right (left) Stein system
(shortly, a right S-system or a left S-system) is known. Such system is
de�ned in the following way [1].

A system Q(Σ), Σ = {E, As
1} (Σ = {F, As

1}, where As
1 denotes the

sequence A1, A2, ..., As), which consists of binary quasigroups and the right
(left) identity operation E (F ): E(x, y) = y (F (x, y) = x) given on a set Q
is called a right (left) S-system if Σ is a group with respect to the Stein's
right (left) multiplication · (◦) of binary operations:

(A ·B)(x, y) = A(x,B(x, y)) ((A ◦B)(x, y) = A(B(x, y), y)).

A system Q(Σ), Σ = {E, F, As
1}, is called an S-system if Σ′ = {E,As

1}
(Σ′′ = {F,As

1}) is a right (left) S-system.
Finite binary S-systems are completely described in the works [1], [5],

[6] by V.Belousov, G. Belyavskaya and A. Cheban.

2000 Mathematics Subject Classi�cation: 20N05, 20N15
Keywords: binary quasigroup, k-invertible n-ary operation, n-ary quasigroup, latin
square, n-dimensional hypercube, pairwise orthogonal set of n-ary operations.
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Any two operations A and B on a set Q from a right (left) S-system
Q(Σ) of binary quasigroups are orthogonal, that is the pair of equations
A(x, y) = a, B(x, y) = b has a unique solution for any a, b ∈ Q and any
A,B ∈ Σ, A 6= B.

In this article we introduce (k)-S-systems of n-ary quasigroups for n > 2,
1 6 k 6 n, give some examples of such systems and prove that any �nite (k)-
S-system is a pairwise orthogonal set. We also consider S-systems of n-ary
quasigroups in the more natural sense, than the S-systems of T. Yakubov
[10], and prove that such a �nite S-system contains only one n-quasigroup,
whereas S-systems of [10] do not at all exist.

2. Necessary notions and results
We recall some notations, concepts and results which are used in the article.
At �rst remember the following notations from [2]. By xj

i we will denote
the sequence xi, xi+1, . . . , xj , i 6 j. If j < i, then xj

i is the empty sequence,
1, n = {1, 2, . . . , n}. Let Q be a �nite or an in�nite set, n > 2 be a positive
integer and let Qn denote the Cartesian power of the set Q.

An n-ary operation A (brie�y, an n-operation) on a set Q is a mapping
A : Qn → Q de�ned by A(xn

1 ) → xn+1, and in this case we write A(xn
1 ) =

xn+1.
A �nite n-groupoid (Q, A) of order m is a set Q with one n-ary operation

A de�ned on Q, where |Q| = m > 2.
An n-ary quasigroup (n-quasigroup) is an n-groupoid such that in the

equality
A(xn

1 ) = xn+1

every n elements from xn+1
1 uniquely de�ne the (n+1)-th element. Usually

a quasigroup n-operation A is itself considered as an n-quasigroup.
The n-operation Ek, 1 6 k 6 n, on a set Q with Ek(xn

1 ) = xk is called
the k-th identity operation (or the k-th selector) of arity n.

An n-operation A on Q is called k-invertible for some k ∈ 1, n if the
equation

A(ak−1
1 , xk, a

n
k+1) = an+1

has a unique solution for each �xed n-tuple (ak−1
1 , an

k+1, an+1) ∈ Qn.
For a k-invertible n-operation there exists the k-inverse n-operation (k)A

de�ned in the following way:
(k)A(xk−1

1 , xn+1, x
n
k+1) = xk ⇔ A(xn

1 ) = xn+1
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for all xn+1
1 ∈ Qn+1.

It is evident that

A(xk−1
1 , (k)A(xn

1 ), xn
k+1) = (k)A(xk−1

1 , A(xn
1 ), xn

k+1) = xk

and (k)[(k)A] = A for k ∈ 1, n.
Let Ωn be the set of all n-ary operations on a �nite or an in�nite set Q.

On Ωn de�ne a binary operation ⊕
k
(the k-multiplication) in the following

way:
(A⊕

k
B)(xn

1 ) = A(xk−1
1 , B(xn

1 ), xn
k+1),

A,B ∈ Ωn, xn
1 ∈ Qn. Shortly this equality can be written as

A⊕
k

B = A(Ek−1
1 , B,En

k+1)

where Ek is the k-th selector.
In [11] it was proved that (Ωn,⊕

k
) is a semigroup with the identity Ek. If

Λk is the set of all k-invertible n-operations from Ωn for some k ∈ 1, n, then
(Λk,⊕

k
) is a group. In this group Ek is the identity, the inverse element of A

is the operation (k)A ∈ Λk, since A⊕
k
Ek = Ek⊕

k
A, A⊕

k

(k)A = (k)A⊕
k
A = Ek.

An n-ary quasigroup (Q, A) (or simply A), is an n-groupoid with an
k-invertible n-operation for each k ∈ 1, n [2].

Let (xn
1 )k denote the (n− 1)-tuple (xk−1

1 , xn
k+1) ∈ Qn−1 and let A be an

n-operation, then the (n− 1)-operation Aa:

Aa(xn
1 )k = A(xk−1

1 , a, xn
k+1)

is called the (n − 1)-retract of A, de�ned by position k, k ∈ 1, n, with the
element a in this position (with xk = a).

If in an n-operation A we �x all positions except two positions k and l
we obtain a binary operation A(xk, xl) = A(ak−1

1 , xk, a
l−1
k+1, xl, a

n
l+1) which

is called a binary retract of A [2].
An n-ary operation A on Q is called complete if there exists a permuta-

tion ϕ of Qn such that A = E1ϕ (that is A(xn
1 ) = E1ϕ(xn

1 )). If a complete
n-operation A is �nite and has order m, then the equation A(xn

1 ) = a has
exactly mn−1 solutions for any a ∈ Q [11].

Any k-invertible n-operation A, k ∈ 1, n, is complete, but there exist
complete n-operations, which are not k-invertible for each k ∈ 1, n [11].
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De�nition 1. (cf. [3]) Two n-ary operations (n > 2) A and B given on
a set Q of order m are called orthogonal (shortly, A ⊥ B) if the system
{A(xn

1 ) = a,B(xn
1 ) = b} has exactly mn−2 solutions for any a, b ∈ Q.

A set Σ = {As
1}, s > 2, of n-operations is called pairwise orthogonal if

each pair of distinct n-operations from Σ is orthogonal.

It is an algebraic analog of orthogonality of n-dimensional hypercubes
which (just as n-operations and n-quasigroups) are used in various areas
including a�ne and projective geometries, designs of experiments, error-
correcting and error-detecting coding theory and cryptology.

In the article [7] a connection between n-dimensional hypercubes and
n-ary operations and di�erent types of their orthogonality were considered.
The pairwise orthogonality is the weakest from these types.

In [3] the algebraic approach was �rst used for study of orthogonality of
two n-dimensional hypercubes and the following criterion of orthogonality
of two �nite k-invertible n-operations was established.

Theorem 1. (cf. [3]) Let k be a �xed number from 1, n. Two �nite k-
invertible n-operations A and B on a set Q are orthogonal if and only if the
(n − 1)-retract Ca of the n-operation C = B ⊕

k

(k)A, de�ned by xk = a, is
complete for every a ∈ Q.

3. (k)-S-systems of n-quasigroups
For the n-ary case, n > 2, we introduce (k)-S-systems of n-quasigroups in
the following way.

De�nition 2. A system Q(Σk), Σk = {Ek, A
s
1}, s > 1, where all Ai are

n-quasigroups, given on a set Q, is called a (k)-S-system of n-quasigroups
if (Σk,⊕

k
) is a group.

If n = 2 and Σ2 = {E,As
1} (Σ1 = {F, As

1}) we obtain a right (left)
S-system of binary quasigroups, since ⊕

2
= · (⊕

1
= ◦) (the right and the left

multiplications of binary operations respectively).
Examples of (k)-S-systems. Let (Q,+) be an elementary abelian group
(that is a group which is a direct power of a group of a prime order p [9])
of order m = pt, p > 3, and an n-quasigroup (Q,A) has the form:

A(xn
1 ) = α1x1 + . . . + αk−1xk−1 + xk + αk+1xk+1 + . . . + αnxn (1)
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where all αi are permutations of Q. Consider the (k)-powers A,A2, . . . , Ap−1,
that is the powers of A with respect to the k-multiplication of n-operations:
Al = A ⊕

k
A ⊕

k
. . . ⊕

k
A (l times) [4]. By Corollary 6 of [4] all these powers

are n-quasigroups, Ap = Ek and (Σ′k,⊕
k
) where Σ′k = {Ek, A, A2, . . . , Ap−1}

is a (cyclic) group. Hence, Q(Σ′k) is a (k)-S-systems of n-quasigroups.
Moreover, if m = p > 3 and in (1) αi is the identity permutation for

each i ∈ 1, n, that is

A(xn
1 ) = x1 + x2 + . . . + xn, (2)

then Q(Σ′k) is a (k)-S-system for any k ∈ 1, n.
Note, that n-quasigroups of Σ′k can be di�erent from n-quasigroups of

Σ′l, if k 6= l. So, it is easy to check that if an n-quasigroup A of order
p has the form (2), then the sets Σ′k and Σ′l are intersected only by the
n-quasigroup A.

Indeed, let 1 6 k 6 l 6 n and the (k)-power Ar coincide with the
(l)-power At for 1 6 r < t 6 p− 1. Then

r(x1+...+xk−1)+xk+r(xk+1+...+xn) = t(x1+...+xl−1)+xl+t(xl+1+...+xn),

whence it follows that

(t− r)(x1 + . . . + xk−1) + t(xk + . . . + xl−1) + xl − xk − r(xk+1 + . . . + xl)+

+(t− r)(xl+1 + . . . + xn) = 0.

Setting x1 = . . . = xk−1 = xk+1 = . . . = xl−1 = xl+1 = . . . = xn = 0, we
obtain txk − xk = rxl − xl for all xk, xl of Q and so t = r = 1.

Proposition 1. Let Q(Σk), Σk = {Ek, A
s
1}, be a (k)-S-system of n-quasi-

groups, n > 3, 1 6 l < k 6 n and u = al−1
1 , v = ak−1

l+1 , w = an
k+1 be

�xed (ordered) tuples of elements from Q. Then the system Q(Σu,v,w) of
binary retracts where Σu,v,w = {E,A

s
1} with Ai(xl, xk) = Ai(u, xl, v, xk, w),

is a right S-system of binary quasigroups for any u ∈ Ql−1, v ∈ Qk−l−1,
w ∈ Qn−k.

Proof. We must prove that Σu,v,w is a group with respect to the right mul-
tiplication of binary operations. At �rst we note that Ek(u, xl, v, xk, w) =
Ek(xl, xk) = xk, that is Ek = E.
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Let Ai ∈ Σk, then (k)Ai ∈ Σk, Ai ∈ Σu,v,w and (k)Ai ∈ Σu,v,w. Prove
that (2)Ai ∈ Σu,v,w. Indeed, from (Ai ⊕

k

(k) Ai)(xn
1 ) = xk it follows

(Ai ⊕
k

(k) Ai)(u, xl, v, xk, w) = Ai(u, xl, v,(k) Ai(u, xl, v, xk, w), w)

= Ai(xl,
(k) Ai(xl, xk)) = xk.

But Ai(xl,
(2) Ai(xl, xk)) = xk. Hence, (k)Ai =(2) Ai and (2)Ai ∈ Σu,v,w.

Further, if Ai ⊕
k

Aj = Ar ∈ Σk, then

(Ai ⊕
k

Aj)(u, xl, v, xk, w) = Ai(u, xl, v, Aj(u, xl, v, xk, w), w)

= Ai(xl, Aj(xl, xk)) = (Ai ·Aj)(xl, xk)

= Ar(u, xl, v, xk, w) = Ar(xl, xk),

that is Ai ·Aj = Ar ∈ Σu,v,w.
It still remains to prove that Ai 6= Aj if i 6= j. Let Ai = Aj , then

Ai(u, xl, v, xk, w) = Aj(u, xl, v, xk, w), (k)Ai(u, xl, v, Aj(u, xl, v, xk, w), w) =
xk. But B =(k) Ai ⊕

k
Aj ∈ Σk, so B(u, xl, v, xk, w) = xk for any xl ∈ Q

implies that B is not an n-quasigroup, so B = Ek and i = j.
Therefore, we proved that the set Σu,v,w is a group with respect to the

right multiplication of binary operations.

Remark. If in Proposition 1 k < l, u = ak−1
1 , v = al−1

k+1, w =
an

l+1, Ai(xk, xl) = Ai(u, xk, v, xl, w), then analogously one can prove that
Σu,v,w = = {F, A

s
1} is a left S-system of binary quasigroups.

Theorem 2. Let n > 3, k (1 6 k 6 n) be a �xed number, Q be a set of
order m, Q(Σk), Σk = {Ek, A

s
1}, be a (k)-S-system of n-quasigroups. Then

Σk is a pairwise orthogonal set of n-operations and s 6 m− 1.

Proof. Let Ai, Aj ∈ Σk, i 6= j, then (k)Aj ∈ Σk and Ai ⊕
k

((k)Aj) is an
n-quasigroup of Σk, so any (n−1)-retract of this n-quasigroup is an (n−1)-
quasigroup which is always complete. By Theorem 1 Ai ⊥ Aj . Now it is
evident that Ai ⊥ Ek, since Ai ⊕

k
Ek = Ai and (k)Ek = Ek. Thus, Σk is a

pairwise orthogonal set of n-operations.
But by Proposition 1 Q(Σu,v,w), where Σu,v,w = {E, A

s
1}, is a right

S-system of binary quasigroups which is an orthogonal set and can not
contain more than m− 1 binary quasigroups (latin squares) of order m [8],
so s 6 m− 1.
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De�nition 3. A (k)-S-system Q(Σk) with | Q |= m is called complete if it
contains m− 1 n-quasigroups, that is if | Σk |= m.

Proposition 2. For any n > 3 and any k ∈ 1, n there exist complete (k)-
S-systems of n-quasigroups of each prime order p > 3.

Proof. Examples of such (k)-S-systems are the (cyclic) systems obtained
with the help of n-quasigroups of the form (2) where (Q,+) is a group of a
prime order p > 3.

Note that (cyclic) (k)-S-systems which are obtained from an n-
quasigroup A of the form (1) are not complete if m = pt, t > 1.

4. S-systems of n-quasigroups
In [10] n-ary S-systems were considered in the following sense.

De�nition 4. (cf. [11]) A system Q(Σ), Σ = {En
1 , As

1}, s > 1, where
Ai is an n-quasigroup for each i ∈ 1, s, n > 2, is called an S-system of
n-quasigroups if Σ is closed with respect to the (Menger's) superposition:
C(Bn

1 ) = C(B1, B2, . . . , Bn) ∈ Σ (C(Bn
1 )(xn

1 ) = C(B1(xn
1 ), . . . , Bn(xn

1 )) for
any C, B1, . . . , Bn ∈ Σ.

T. Yakubov in [10] proved that if Q(Σ) is a �nite (that is the set Q is
�nite) n-ary S-system in this sense, then Σk = {Ek, A

s
1} is a group with

respect to the k-multiplication of n-operations for each k ∈ 1, n. Using this
fact and the de�nition of (k)-S-systems it is natural to de�ne an S-system
of n-ary quasigroups in the following way.

De�nition 5. A system Q(Σ), Σ = {En
1 , As

1}, s > 1, n > 2, where all Ai

are n-quasigroups is called an S-system of n-quasigroups if Σk = {Ek, A
s
1}

is a (k)-S-system for any k ∈ 1, n.

Proposition 3. Let Q(Σ), Σ = {En
1 , As

1}, be an S-system of n-quasigroups,
n > 3, 1 6 p < q 6 n and u = ap−1

1 , v = aq−1
p+1, w = an

q+1 be �xed (ordered)
tuples of elements from Q. Then the system Q(Σu,v,w) of binary retracts
where Σu,v,w = {E, F, A

s
1} with Ai(xp, xq) = Ai(u, xp, v, xq, w), is an S-

system of binary quasigroups for any u ∈ Qp−1, v ∈ Qq−p−1, w ∈ Qn−q.

Proof. In this case Ep(u, xp, v, xq, w) = xp = F (xp, xq), Eq(u, xp, v, xq, w) =
xq = E(xp, xq). From De�nition 5 it follows that Σk = {Ek, A

s
1} is a (k)-S-

system for any k ∈ 1, n. If k = q, then by Proposition 1 Σu,v,w = {E,A
s
1}
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of binary retracts is a right S-system of binary quasigroups. On the other
hand, if k = p, then Σ′u,v,w = {F, A

s
1} for the same u, v, w is a left S-system

of binary quasigroups (see Remark). Thus, Q(Σu,v,w) is an S-system of
binary quasigroups.

For the binary case De�nition 4 and De�nition 5 are equivalent (see
Theorem 4.1 of [1]). We shall prove that when n > 2 it is not true. At
�rst remind that an n-quasigroup (Q,A) is called an n-TS- quasigroup if
its k-inverse n-quasigroups coincide with A for each k ∈ 1, n (see [2]).

Theorem 3. A �nite system Q(Σ), Σ = {En
1 , As

1}, n > 3, is an S-system
of n-quasigroups if and only if s = 1 and the n-quasigroup A1 is an n-TS-
quasigroup.

Proof. By Proposition 3 the system Q(Σu,v,w) of binary retracts, where
Σu,v,w = {F,E,A

s
1}, Ai(xp, xq) = Ai(u, xp, v, xq, w), is an S-system of bi-

nary quasigroups. By Theorem 4.2 of [1] all operations of a �nite S-system
of binary quasigroups are idempotent if s > 2 (note that in [1] s > 4
since s designates the number of all operations in an S-system), that is
Ai(u, x, v, x, w) = Ai(x, x) = x for every x ∈ Q. Now we use the idea of the
proof from [10].

If n = 3, then Ai(a, a) = a and Ai(a, a, w) = a (if, for example, p = 1,
q = 2) for any w of Q. But it is impossible as Ai is a 3-quasigroup.

Let n > 4, a 6= b, the element a be in Ai in positions p, q
(p < q) and the element b is in positions r, t (q < r < t), i.e.,
Ai(. . . , a, . . . , a, . . . , b, . . . , b, . . .). Fix tuples u ∈ Qp−1, v ∈ Qq−p−1,
w ∈ Qn−q where in the tuple w the element b is in the positions r, t. Then
for a binary quasigroup Ai of the system Σu,v,w we have

Ai(xp, xq) = Ai(u, xp, v, xq, w) = Ai(u, xp, v, xq, w1, b, w2, b, w3),

if w = (w1, b, w2, b, w3), and

Ai(a, a) = Ai(u, a, v, a, w) = Ai(u, a, v, a, w1, b, w2, b, w3) = a. (3)

Now consider the system Σu1,w2,w3 with u1 = (u, a, v, a, w1), then

Ai(xr, xt) = Ai(u1, xr, w2, xt, w3),

Ai(b, b) = Ai(u, a, v, a, w1, b, w2, b, w3) = b.

Taking into account the equality (3), we conclude that a = b. Thus, the
case s > 2 for n > 2 is impossible.
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It remains only the case s = 1. In this case the n-quasigroup A1 coin-
cides with all its inverse n-quasigroups, that is it is an n-TS-quasigroup. On
the other hand, if an n-quasigroup A is an n-TS-quasigroup, then A =(k) A
for any k ∈ 1, n, A⊕

k
A = Ek and Σ = {En

1 , A} is an S-system.

Unfortunately, such S-systems of n-quasigroups are trivial.
As an example of an n-TS-quasigroup can be the n-quasigroup of the

form (2) where (Q,+) is an (abelian) group of exponent two (2x = 0 for all
x ∈ Q). Such group has order 2t for some natural t > 1.

In [10] it was proved that �nite S-systems of n-quasigroups in the sense
of De�nition 4 do not exist even for s = 1. Taking into account Theorem 3
we conclude that De�nition 4 and De�nition 5 are not equivalent for n > 2.
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Double Ward quasigroups

Nick C. Fiala

Abstract
In this short note, we prove a one-to-one correspondence between groups
and a variety of quasigroups that we call double Ward quasigroups analo-
gous to the correspondence between groups and Ward quasigroups.

1. Introduction
A quasigroup consists of a non-empty set Q equipped with a binary oper-
ation ∗ such that for all a, b ∈ Q, there exist unique x, y ∈ Q such that
a ∗x = b and y ∗ a = b. Alternatively, a quasigroup is an algebra (Q; ∗, \, /)
of type (2, 2, 2) such that x\(x ∗ y) = y, (x ∗ y)/y = x, x ∗ (x\y) = y, and
(x/y) ∗ y = x.

Given a group (G; ◦,−1 , e), we can construct a quasigroup by de�ning
x ∗ y = x ◦ y−1. The operation ∗ on G is sometimes referred to as right
division in G. Clearly, this quasigroup satis�es the identity (x∗z)∗(y∗z) =
x ∗ y. Quasigroups satisfying the above identity are referred to as Ward
quasigroups. Conversely, given a Ward quasigroup Q, it can be shown that
Q is unipotent (x ∗ x = y ∗ y), so we may write x ∗ x = e, and de�ning
x−1 = e ∗ x and x ◦ y = x ∗ y−1 makes (Q; ◦,−1 , e) a group. Writing W (G)
for the Ward quasigroup constructed from the group G and Gr(Q) for the
group constructed from the Ward quasigroup Q, it can also be shown that
Gr(W (G)) = G and W (Gr(Q)) = Q. Therefore, there is a one-to-one
correspondence between groups and Ward quasigroups. This seems to have
�rst been noticed in [1] and [3].

Similarly, given a group (G; ◦,−1 , e), we can construct a quasigroup by
de�ning x∗y = x−1 ◦y−1. The operation ∗ on G is sometimes referred to as
double division in G. Clearly, this quasigroup satis�es the Ward-like identity

2000 Mathematics Subject Classi�cation: 20N05
Keywords: group, right division, double division, Ward quasigroup, double Ward
quasigroup, automated reasoning
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((e∗ e)∗ (x∗ z))∗ ((e∗y)∗ z) = x∗y. For lack of a better term, we will refer
to quasigroups with an element e that satisfy the above identity as double
Ward quasigroups (not to be confused with the Ward double quasigroups of
[4]). In this short note, we prove an analogous one-to-one correspondence
between groups and double Ward quasigroups.
Remark 1.1. The author gratefully acknowledges the assistance of the
automated theorem-prover Prover9 [2]. Theorem 2.2 was found and proved
with the aid of Prover9. As such, the proof has been suppressed. However,
the proof is available from the author or can quickly be regenerated with
Prover9.

2. Results
Theorem 2.2. Let Q be a double Ward quasigroup. De�ne x−1 = e∗x and
x ◦ y = x−1 ∗ y−1. Then (Q; ◦,−1 , e) is a group.
Theorem 2.3. Let G be a group and let Q be a double Ward quasigroup.
Denote by DW (G) the double Ward quasigroup constructed from G and
denote by Gr(Q) the group constructed from Q. Then Gr(DW (G)) = G
and DW (Gr(Q)) = Q.
Problem 2.4. Characterize double Ward quasigroups by a shorter more
appealing identity such as is the case for Ward quasigroups.
Problem 2.5. Prove similar results for other well-known varieties of loops
with two-sided inverses, such as (left, right) inverse property loops, anti-
automorphic inverse property loops, extra loops, Moufang loops, left (right)
Bol loops, C-loops, LC-loops, RC-loops, and �exible loops.
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Short identities implying a quasigroup is a loop
or group

Nick C. Fiala

Abstract

In this note, we �nd all identities in product only with at most six variable occurrences
that imply that a quasigroup satisfying the identity is a not necessarily trivial loop
(group). These investigations were aided by the automated theorem-prover Prover9 and
the model-�nder Mace4.

1. Introduction
A quasigroup consists of a non-empty set Q equipped with a binary oper-
ation, which we simply denote by juxtaposition, such that for all a, b ∈ Q,
there exist unique x, y ∈ Q such that ax = b and ya = b. Quasigroups are of
interest not only in algebra but in combinatorics as well. Alternatively, we
may de�ne quasigroups equationally as algebras (Q; ·, \, /) of type (2, 2, 2)
such that x\(x · y) = y, (x · y)/y = x, x · (x\y) = y, and (x/y) · y = x.

A quasigroup is trivial if it consists of a single element. A quasigroup Q
is a left (right) loop if there exists a left (right) neutral element e ∈ Q such
that ex = x (xe = x) for all x ∈ Q. A loop is a quasigroup that is both a
left loop and a right loop.

Henceforth, e will always denote the (left, right) neutral element of a
(left, right) loop and the variables x, y, and z will always be universally
quanti�ed over the elements of a quasigroup.

De�nition 1.1. We say that an identity implies that a quasigroup is a (left,
right) loop (group) if and only if all quasigroups satisfying the identity are
(left, right) loops (groups). Furthermore, if there exists a non-trivial (left,
right) loop (group) satisfying the identity, then we say that the identity
implies that a quasigroup is a not necessarily trivial (left, right) loop (group).

2000 Mathematics Subject Classi�cation: 20N05
Keywords: quasigroup, loop, group, automated reasoning
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In [1], Belousov raised the problem of determining which identities imply
that a quasigroup is a loop. It is well-known that an associative quasigroup
is a loop, and therefore a group. In [5], it is shown that each of the four
Moufang identities

(x(yz))x = (xy)(zx) (xz)(yx) = x((zy)x)

((xy)z)y = x(y(zy)) ((yz)y)x = y(z(yx))

imply that a quasigroup is a loop, but not necessarily a group. More gen-
erally, in [6], Kunen considers weak associative laws (identities, other than
associativity, for which the left-hand side and right-hand side are di�er-
ent associations of the same word) that imply that a quasigroup is a loop.
In particular, he completely settles the problem for the identities of Bol-
Moufang type (weak associative laws with three distinct variables and eight
variable occurrences). Similarly, one may ask which identities imply that
a quasigroup is a group. This question was settled for the identities of
Bol-Moufang type in [11].

In this note, we endeavor to �nd all identities in product only with
at most six variable occurrences that imply that a quasigroup is a not
necessarily trivial loop (group). Perhaps some interesting identities will
arise. The author hopes that this note will be of some use as a sort of
beginner's tutorial on the use of automated reasoning in equational logic in
general and on the powerful software Prover9 and Mace4 in particular. As
such, a great deal of detail is shown and many examples and references are
given.

2. Prover9 and Mace4
In this section, we brie�y describe the software Prover9 and Mace4.

Prover9 [10] is a resolution-style [2], [13] automated theorem-prover for
�rst-order logic with equality that was developed by McCune. Prover9 is the
successor to the well-known OTTER [8] theorem-prover and, like OTTER,
utilizes the set of support strategy [2], [14].

The language of Prover9 is the language of clauses, a clause being a
disjunction of (possible one or zero) literals in which all variables whose
names begin with u, v, w, x, y, or z are implicitly universally quanti�ed and
all other symbols represent constants, functions, or predicates (relations).
An axiom may also be given to Prover9 as an explicitly quanti�ed �rst-
order formula which is immediately transformed by Prover9 into a set of
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clauses by a Skolemization [2], [3] procedure. The conjunction of these
clauses is not necessarily logically equivalent to the formula, but they will
be equisatis�able (one is satis�able if and only if the other is as well) [2], [3].
Therefore, the set of clauses can be used by Prover9 in place of the formula
in proofs by contradiction.

Prover9 can be asked to prove a potential theorem by giving it clauses or
formulas expressing the hypotheses and a clause or formula expressing the
negation of the conclusion. Prover9 �nds a proof when it derives the empty
clause, a contradiction. Prover9 can also be used for question answering
through the use of answer literals [2], [4], [7].

Prover9 has an autonomous mode [10] in which all inference rules, set-
tings, and parameters are automatically set based upon a syntactic anal-
ysis of the input clauses. The mechanisms of inference for purely equa-
tional problems are paramodulation and demodulation, a restricted from of
paramodulation [2], [12]. Paramodulation from an equation i into an equa-
tion j is accomplished as follows: unify the left-hand side l of i with a
subterm s of j by �nding a substitution into the variables of l and s that
make them identical (a most general uni�er), instantiate j with the corre-
sponding substitution, and infer the equation obtained by replacing s in j
with the corresponding instance of the right-hand side of i.

One very important parameter used by Prover9 is the maximum weight
[10] of a clause. By default, the weight of a literal is the number of occur-
rences of constants, variables, functions, and predicates in the literal and
the weight of a clause is the sum of the weights of its literals. Prover9
discards derived clauses whose weight exceeds the maximum weight speci-
�ed. By specifying a maximum weight, we sacri�ce refutation-completeness
(the guarantee of the existence of a derivation of the empty clause from a
non-satis�able set of clauses) [2], [13], although in practice it is frequently
necessary in order to control the size of the clause space while searching for a
proof. We will use the autonomous mode throughout this paper, sometimes
overriding Prover9's assignment to the maximum weight parameter.

A useful companion to Prover9 is Mace4 [9], also developed by McCune.
Mace4 is a �nite �rst-order model-�nder. With possibly some minor mod-
i�cations, the same input can be given to Mace4 as to Prover9, Prover9
searching for a proof by contradiction and Mace4 searching for counter-
examples of speci�ed sizes (a structure of size n with a single binary oper-
ation found by Mace4 would be returned as an n×n Cayley table with the
elements of the structure assumed to be 0, 1, . . . , n − 1 and the element in
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the ith row and jth column being ij).

Remark 2.1. The reader should note that Mace4 interprets non-negative
integers as distinct constants and other constants as not necessarily distinct
unless otherwise stated. This is in contrast to Prover9 which interprets
all constants as not necessarily distinct unless otherwise stated. The use
of non-negative integers for constants in Mace4 can have the advantage of
speeding up the search for a model.

The scripting language Perl was also used to further automate the pro-
cess.

3. The Search
In this section, we describe our search for identities in product only with
at most six variable occurrences that imply that a quasigroup is a not
necessarily trivial loop. Clearly, we need not consider identities with more
than three distinct variables.

First, all identities in product only with at most three distinct vari-
ables and at most six variable occurrences with di�erent left-hand side and
right-hand side were generated up to renaming, canceling, mirroring, and
symmetry. This resulted in 1353 identities.

Next, we sent each identity (stored in the Perl variable $identity) to
Prover9 and ran
set(auto). % autonomous mode
assign(max_seconds, 1). % one second time limit

% per identity
op(500, infix, [/, *, \]). % quasigroup operations
clauses(sos). % set of support clauses
x \ (x * y) = y.
(x * y) / y = x.
x * (x \ y) = y.
(x / y) * y = x. % quasigroup
e * x = x.
x * e = x. % loop
$identity. % candidate identity
a != e. % non-trivial
end_of_list. % end of set of support clauses

to search for a proof that a loop satisfying the identity must be trivial. Any
identity for which a proof was found was eliminated. This resulted in 332
identities.
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Remark 3.1. We determine whether or not Prover9 has found a proof by
observing its exit status. Prover9 outputs an exit code of 0 if and only if it
�nds a proof.

We then sent each remaining identity to Mace4 and ran
assign(max_seconds, 60). % one minute time limit

% per identity
op(500, infix, [/, *, \]). % quasigroup operations
clauses(theory). % theory clauses
x \ (x * y) = y.
(x * y) / y = x.
x * (x \ y) = y.
(x / y) * y = x. % quasigroup
$identity. % candidate identity
end_of_list. % end of theory clauses
formulas(theory). % theory formulas
-(exists e all x (e * x = x & x * e = x)). % not a loop
end_of_list. % end of

% theory formulas

to search for a non-loop quasigroup of size at most 200 (this is simply
Mace4's upper limit and is speci�ed on the command line with -n2 -N200
or just -N200) that satis�es the identity. Any identity for which an example
was found was eliminated. This resulted in 35 identities. For example, the
identity

x(((yx)z)y) = z

was eliminated since it is valid in the non-loop quasigroup below.
* :

| 0 1 2 3 4 5 6 7
--+----------------
0 | 1 6 4 3 5 0 7 2
1 | 3 2 5 1 4 7 0 6
2 | 0 4 6 7 2 1 3 5
3 | 5 7 3 4 1 2 6 0
4 | 2 3 7 6 0 5 4 1
5 | 7 5 2 0 6 3 1 4
6 | 6 1 0 2 7 4 5 3
7 | 4 0 1 5 3 6 2 7

Remark 3.2. We determine whether or not Mace4 has found a model by
observing its exit status. Mace4 outputs an exit code of 0 if and only if it
�nds a model.

Next, we sent each remaining identity to Prover9 and ran
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set(auto). % autonomous mode
assign(max_seconds, 60). % one minute time limit

% per weight per identity
assign(max_weight, $max_weight). % maximum clause weight
op(500, infix, [/, *, \]). % quasigroup operations
clauses(sos). % set of support clauses
x \ (x * y) = y.
(x * y) / y = x.
x * (x \ y) = y.
(x / y) * y = x. % quasigroup
$identity. % candidate identity
x * f(x) != f(x) # answer(x). % not a left loop
end_of_list. % end of

% set of support clauses

to search for a proof that the identity implies that a quasigroup is a left
loop. We have Skolemized [2], [3] the negation of (∃e)(∀x)(ex = x) to obtain
the clause x * f(x) != f(x), where f is a Skolem function [2], [3]. We use
the answer literal answer(x) to obtain an expression for the left neutral
element for the identities for which we �nd a proof (this information could
also be extracted from the proof itself, although this is not always so easy
to do and does not lend itself to automating). We always make a run for
every value of the Perl variable $max_weight from 20 to 100 in steps of 10.
A proof was found for all 35 identities. For example, Prover9 found the
following proof that the identity

(xy)(x(zy)) = z

implies that a quasigroup is a left loop.
-------- PROOF --------
Length of proof is 31.
Level of proof is 13.
Maximum clause weight is 11.
7 x \ (x * y) = y. [input]
8 (x * y) / y = x. [input]
9 x * (x \ y) = y. [input]
10 (x / y) * y = x. [input]
11 (x * y) * (x * (z * y)) = z. [input]
12 x * f(x) != f(x) # answer(x). [input]
13 x / (y \ x) = y. [para (9 (a 1) 8 (a 1 1))]
14 (x / y) \ x = y. [para (10 (a 1) 7 (a 1 2))]
15 (x * y) \ z = x * (z * y). [para (11 (a 1) 7 (a 1 2))]
16 x / (y * (x * z)) = y * z. [para (11 (a 1) 8 (a 1 1))]
17 x * (y * (z * (y \ x))) = z. [para (9 (a 1) 11 (a 1 1))]
19 x * ((x / y) * (z * y)) = z. [para (10 (a 1) 11 (a 1 1))]
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26 x \ y = z * (y * (z \ x)). [para (9 (a 1) 15 (a 1 1))]
29 x / (y * z) = y * (x \ z). [para (9 (a 1) 16 (a 1 2 2))]
34 x / (x * y) = y. [back_demod 9 demod (29 (R))]
35 x / (y \ z) = z * (y * x). [para (10 (a 1) 17 (a 1 2 2)) flip a]
41 x * (y * x) = y. [back_demod 13 demod (35)]
43 (x * y) / z = x * (z * y). [para (11 (a 1) 34 (a 1 2))]
44 x \ y = y * x. [para (34 (a 1) 14 (a 1 1))]
45 x / y = z * (y * (x * z)). [para (17 (a 1) 34 (a 1 2)) demod (44)]
47 x * (y * y) = x. [back_demod 8 demod (43)]
52 x / (y * z) = y * (z * x). [back_demod 35 demod (44)]
55 x * (y * (z * x)) = y * z. [back_demod 26 demod (44 44) flip a]
62 x / y = y * x. [back_demod 45 demod (55)]
68 (x * y) * z = x * (y * z). [back_demod 52 demod (62)]
71 x * (x * y) = y. [back_demod 19 demod (62 68 55)]
75 x * x = y * y. [para (47 (a 1) 71 (a 1 2))]
76 x * x = c0. [new_symbol 75]
77 x * c0 = x. [back_demod 47 demod (76)]
80 c0 * x = x. [para (77 (a 1) 41 (a 1 2))]
81 $F # answer(c0). [resolve (80 a 12 a)]
-------- end of proof -------

Furthermore, lines 76 and 81 show that xx = e. The interested reader
should consult [10] for information on how to read such computer-generated
proofs.

We then sent each of these 35 identities, along with the correspond-
ing expression for the left neutral element (stored in the Perl variable
$left_neutral), to Prover9 and ran
set(auto). % autonomous mode
assign(max_seconds, 60). % one minute time limit

% per weight per identity
assign(max_weight, $max_weight). % maximum clause weight
op(500, infix, [/, *, \]). % quasigroup operations
clauses(sos). % set of support clauses
x \ (x * y) = y.
(x * y) / y = x.
x * (x \ y) = y.
(x / y) * y = x. % quasigroup
e * x = x. % left loop
$left_neutral = e. % might help Prover9
$identity. % candidate identity
a * e != a. % not a right loop
end_of_list. % end of set of support clauses

to search for a proof that the identity implies that a quasigroup is a right
loop (if $left_neutral contains the Skolem function f, then we omit the
line $left_neutral = e.). A proof was found for all 35 identities.

Finally, we sent each of these 35 identities to Mace4 and ran
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assign(max_seconds, 60). % one minute time limit per identity
op(500, infix, [/, *, \]). % quasigroup operations
clauses(theory). % theory clauses
x \ (x * y) = y.
(x * y) / y = x.
x * (x \ y) = y.
(x / y) * y = x. % quasigroup
0 * x = x.
x * 0 = x. % loop
$identity. % candidate identity
end_of_list. % end of theory clauses

to search for a non-trivial loop that satis�es the identity. An example was
found for all 35 identities.

4. Conclusion
In this �nal section, we state our main results.
Theorem 4.1. There are exactly 35 identities in product only with at most
six variable occurrences that imply that a quasigroup is a not necessarily
trivial loop (up to renaming, canceling, mirroring, and symmetry). These
35 identities are shown below.

(xx)y = x(yx) x(x((yy)z)) = z (xx)(y(yz)) = z (x(x(yy)))z = z
((x(xy))y)z = z (xx)y = z(yz) x(((xy)z)y) = z (xx)(y(zy)) = z
((xx)(yz))y = z x(xy) = (zz)y ((xx)y)z = zy x(y(xy)) = zz
x((yx)y) = zz x(y((xy)z)) = z x((yx)(yz)) = z (xy)(x(yz)) = z

(x(y(xy)))z = z ((x(yx))y)z = z x((yx)z) = yz (xy)(x(zy)) = z
((xy)(xz))y = z x(y(xz)) = zy x((yy)(xz)) = z (x(y(yx)))z = z
((x(yy))x)z = z (xy)(yz) = xz x(((yy)z)x) = z x((yy)z) = zx
x(yz) = (xy)z x(y(zx)) = yz (xy)(zx) = yz x(yz) = (xz)y
(xy)(zx) = zy x(yz) = y(zx) (xy)z = y(zx)
Similarly, one can prove the following.

Theorem 4.2. There are exactly 16 identities in product only with at most
six variable occurrences that imply that a quasigroup is a not necessarily
trivial group (up to renaming, canceling, mirroring, and symmetry). These
16 identities are shown below.

x(((xy)z)y) = z x(y((xy)z)) = z x((yx)(yz)) = z (xy)(x(yz)) = z
x((yx)z) = yz (xy)(x(zy)) = z ((xy)(xz))y = z x(y(xz)) = zy
(xy)(yz) = xz x(yz) = (xy)z x(y(zx)) = yz (xy)(zx) = yz
x(yz) = (xz)y (xy)(zx) = zy x(yz) = y(zx) (xy)z = y(zx)
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Biembeddings of Latin squares of side 8

Mike J. Grannell, Terry S. Griggs and Martin Knor

Abstract
Face 2-colourable triangular embeddings of complete tripartite graphs Kn,n,n

correspond to biembeddings of Latin squares of side n. We consider biem-
beddings that contain any of the �ve Latin squares derived from the Cayley
tables of �nite groups of order 8. Up to isomorphism, we determine all such
biembeddings.

1. Background
In our paper [1] we discuss, in some detail, face 2-colourable topological
embeddings of complete regular tripartite graphs Kn,n,n in which all faces
are triangular. Such embeddings are equivalent to biembeddings of Latin
squares of side n and, as proved in [1], the supporting surfaces are nec-
essarily orientable. Up to isomorphism, this earlier paper gives all such
biembeddings for n = 3, 4, 5 and 6, and it summarizes the results for n = 7.
For n = 4, 5 and 6, there are Latin squares which do not appear in any
biembedding. Another interesting feature is the partitioning of the 147
main classes of Latin squares of side 7 into sub-classes of sizes 1, 1, 1, 2, 3,
3, 3, 6, 6, 8, 8, 9, 18, 19, 26 and 33, such that within each sub-class most
of the squares biembed with one another, but there are no biembeddings of
two squares taken from di�erent sub-classes. We refer the reader to [1] for
details of this and for items of terminology.

In the current paper we turn our attention to Latin squares of side 8,
where there are 283 657 main classes [3]. It is computationally infeasible to
determine all possible biembeddings of these squares and here we restrict
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ourselves to seeking biembeddings that contain at least one of those squares
that arise from the Cayley tables of groups of order 8. Another reason for
considering these particular squares is that, whilst squares which arise from
the Cayley tables of cyclic groups always appear in biembeddings, those
from the groups C2 × C2 and D3 do not. It is therefore appropriate to
consider the Cayley tables of the groups of order 8. There are �ve such
groups, usually denoted by C3

2 = C2 × C2 × C2, C4 × C2, C8, D4 and Q.
Here Cn denotes the cyclic group of order n, Dn is the dihedral group of
order 2n, and Q is the quaternion group. We take the corresponding Latin
squares as shown in Table 1.

0 1 2 3 4 5 6 7
1 0 4 5 2 3 7 6
2 4 0 6 1 7 3 5
3 5 6 0 7 1 2 4
4 2 1 7 0 6 5 3
5 3 7 1 6 0 4 2
6 7 3 2 5 4 0 1
7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7
1 2 3 0 5 6 7 4
2 3 0 1 6 7 4 5
3 0 1 2 7 4 5 6
4 5 6 7 0 1 2 3
5 6 7 4 1 2 3 0
6 7 4 5 2 3 0 1
7 4 5 6 3 0 1 2

0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 0
2 3 4 5 6 7 0 1
3 4 5 6 7 0 1 2
4 5 6 7 0 1 2 3
5 6 7 0 1 2 3 4
6 7 0 1 2 3 4 5
7 0 1 2 3 4 5 6

C3
2 C4 × C2 C8

0 1 2 3 4 5 6 7
1 2 3 0 5 6 7 4
2 3 0 1 6 7 4 5
3 0 1 2 7 4 5 6
4 7 6 5 0 3 2 1
5 4 7 6 1 0 3 2
6 5 4 7 2 1 0 3
7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 1 0 6 7 5 4
3 2 0 1 7 6 4 5
4 5 7 6 1 0 2 3
5 4 6 7 0 1 3 2
6 7 4 5 3 2 1 0
7 6 5 4 2 3 0 1

D4 Q

Table 1. Group-based squares of side 8.

2. Results
There are 3 167 nonisomorphic biembeddings that contain at least one of
the �ve group-based squares of side 8. Table 2 gives a breakdown of these
by the individual squares and the size of the automorphism group Γ of the
biembedding. The column sums given in the last line of the table exclude
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duplications arising from biembeddings that contain a pair of group-based
squares.

|Γ| 1 2 3 4 6 8 12 16 > 16
∑

C3
2 23 6 4 6 − 2 2 5 1 49

C4 × C2 1 750 126 19 55 − 7 5 2 − 1 964
C8 568 54 60 − 6 − 1 1 11 701
D4 159 37 18 5 − 3 − 5 − 227
Q 183 16 20 12 − 2 2 1 − 236∑

2 683 235 120 75 6 14 10 12 12 3 167

Table 2. Biembeddings containing a group-based square.

As regards the biembeddings whose groups of automorphisms have or-
ders greater than 16, there is one of C3

2 with 48 automorphisms, while C8

has one with 24 automorphisms (forming S4), four with 32 automorphisms,
one with 64 automorphisms, two with 128 automorphisms, one with 192
automorphisms, one with 256 automorphisms and one with 768 automor-
phisms. This last biembedding, which is of C8 with a copy of itself, is the
unique regular triangular embedding of K8,8,8 in an orientable surface (see
[1] and [2] for details). The biembedding of C3

2 with an automorphism group
of order 48 is with a non group-based Latin square, but all 11 biembeddings
of C8 are with copies of itself.

The method for obtaining these biembeddings was to select one of the
�ve group-based squares and to regard its triples of row, column and entry
symbols as triangles with the common clockwise orientation (row, column,
entry). In any biembedding containing this Latin square, the rotation about
each point contains 8 known ordered pairs; what remains unknown is the
ordering of these pairs. By considering all possible orderings and reject-
ing those which give rise to pseudosurfaces, all biembeddings containing
the given square may be determined. Working through the �ve squares,
each new biembedding was checked for isomorphism with those found pre-
viously. The large number of biembeddings to be checked required the use
of an e�ective invariant in order to establish the isomorphism classes. The
invariant used was as follows.

Consider a �xed biembedding of Latin squares of side 8. Denote by ρz

the rotation around a vertex z. Since ρz is a cyclic permutation of order 16,
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for each two neighbours x and y of z there are integers m1 and m2 such that
y = ρm1

z (x) and y = ρ−m2
z (x), where 1 6 m1,m2 6 15 and m1 + m2 = 16.

Put
d(z;x, y) = min{m1,m2}.

Now if d(z; x, v) = d(z; v, y) = 1, and x 6= y, then d(v; x, y) = 2. However
if d(z; x, v) = d(z; v, y) = 3, and x 6= y, then d(v; x, y) can be any even
number from 2 to 8. (Note we cannot use d(z; x, v) = d(z; v, y) = 2 because
then v is not adjacent to either x or y, being in the same vertex partition
set.) Let Iv be the sum of the 16 numbers given by the formula

Iv =
∑

vz∈E(G)

(d(v; x, y) : where d(z; x, v) = d(z; v, y) = 3 and x 6= y).

Now the multiset of 24 elements Iv, together with the number of au-
tomorphisms, forms a satisfactory invariant for our biembeddings. There
is just one pair of biembeddings for C4 × C2 and two pairs for C8, which
represent nonisomorphic biembeddings, although their invariants coincide.

Up to isomorphism, there are 23 biembeddings where both the Latin
squares are group-based. In Table 3, in each of these cases, we spec-
ify a representative biembedding from the isomorphism class by means of
a vector (A, B, p1, p2, p3) where A, B identify the two squares as in Ta-
ble 1, and p1, p2, p3 specify permutations applied respectively to the rows,
columns and entries of the second square. From these, the biembedding
may be constructed by taking the two squares exactly as in Table 1 and
then applying the permutations to the second square, �nally sewing the
resulting triangular faces together along their common edges. A permu-
tation entry such as p1 = 31267405 is to be read as the permutation(

0 1 2 3 4 5 6 7
3 1 2 6 7 4 0 5

)
, indicating that row 0 of the square from

Table 1 is placed in row 3, row 3 is placed in row 6, and so on. We
use I to denote the identity permutation. In no case do we need to per-
mute rows, columns and entries with each other. We also give information
about the automorphism group Γ of each biembedding with a second vector
(M ;m1,m2,m3,m4) denoting that |Γ| = M and that there are m1 map-
pings which preserve orientation and colour classes, m2 mappings which
preserve orientation and reverse the colour classes, m3 mappings which re-
verse orientation and preserve the colour classes, and m4 mappings which
reverse orientation and reverse the colour classes.
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1. (C3
2 , D4, 31267405, 45203617, 35061427), (3; 3, 0, 0, 0),

2. (C4 × C2, D4, 64752103, 32104567, 21034567), (16; 8, 0, 8, 0),
3. (C4 × C2, D4, 53261407, 61204357, 41263057), (4; 2, 0, 2, 0),
4. (C4 × C2, D4, 51302647, 61250347, 40351267), (2; 2, 0, 0, 0),
5. (C4 × C2, D4, 24673105, 12306547, 23561047), (2; 2, 0, 0, 0),
6. (C4 × C2, Q, 54670213, 13024657, 20134657), (16; 8, 0, 8, 0),
7. (C4 × C2, Q, 53601472, 64310257, 03152647), (4; 2, 0, 2, 0),
8. (C4 × C2, Q, 24601573, 64210357, 13254607), (4; 2, 0, 2, 0),
9. (C4 × C2, Q, 21706354, 53420617, 20134657), (2; 2, 0, 0, 0),
10. (C4 × C2, Q, 54601273, 64310257, 14253607), (2; 2, 0, 0, 0),
11. (C8, C8, 12345670, I, I), (768; 192, 192, 192, 192), regular,
12. (C8, C8, 52741630, I, I), (256; 64, 64, 64, 64),
13. (C8, C8, 56341270, 05634127, 45230167), (192; 48, 48, 48, 48),
14. (C8, C8, 16745230, I, I), (128; 32, 32, 32, 32),
15. (C8, C8, 52741630, I, 45230167), (128; 32, 32, 32, 32),
16. (C8, C8, 52741630, 05634127, 45230167), (64; 16, 16, 16, 16),
17. (C8, C8, 12367450, I, I), (32; 8, 8, 8, 8),
18. (C8, C8, 14763250, I, I), (32; 8, 8, 8, 8),
19. (C8, C8, 12547630, I, I), (32; 8, 8, 8, 8),
20. (C8, C8, 16347250, I, I), (32; 8, 8, 8, 8),
21. (C8, C8, 16345270, 01634527, 05234167), (24; 12, 0, 12, 0),
22. (C8, C8, 34561270, 05634127, 45230167), (16; 4, 4, 4, 4),
23. (C8, C8, 34561270, 03456127, 23450167), (12; 3, 3, 3, 3).

Table 3. Biembeddings containing two group-based squares.

Table 4 summarizes these biembeddings where both squares are group-
based. The entries give the number of biembeddings of square A with
square B.

C3
2 C4 × C2 C8 D4 Q

C3
2 − − − 1 −

C4 × C2 − − − 4 5
C8 − − 13 − −
D4 1 4 − − −
Q − 5 − − −

Table 4. Numbers of mutual biembeddings of group-based squares.
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It can be seen that there are, for example, no biembeddings of two
squares both derived from C3

2 . A very recent result gives a partial explana-
tion for the partitioning of the squares of side 7 described in our earlier paper
and establishes the non-biembeddability of two copies of Cn

2 for n > 2, as
well as other non-biembeddability results. A paper describing these results
is in preparation.

Finally we give the exceptional biembedding of C3
2 with a non group-

based square and having an automorphism group of order 48. The square
C3

2 is taken as in Table 1, and the other square is as follows.

7 0 1 4 2 3 5 6
6 4 5 2 3 7 1 0
1 2 7 5 0 6 4 3
4 6 0 7 1 2 3 5
5 3 6 1 4 0 2 7
2 5 3 6 7 1 0 4
0 1 4 3 6 5 7 2
3 7 2 0 5 4 6 1

The two squares generate triangular faces that are sewn together along
common edges to form the embedding. The automorphism type is given by
the vector (48; 24, 0, 24, 0).
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Fuzzy ideals in ordered semigroups

Niovi Kehayopulu and Michael Tsingelis

Abstract
The right (left) ideals, quasi- and bi-ideals play an essential role in studying
the structure of some ordered semigroups. In an attempt to show how
similar is the theory of ordered semigroups based on ideals or ideal elements
with the theory of ordered semigroups based on fuzzy ideals, keeping the
usual de�nitions of fuzzy right ideal, fuzzy left ideal, fuzzy quasi-ideal and
fuzzy bi-ideal, we show here that in ordered groupoids, the fuzzy right
(resp. left) ideals are fuzzy quasi-ideals and in ordered semigroups, the
fuzzy quasi-ideals are fuzzy bi-ideals. Moreover, we prove that in regular
ordered semigroups, the fuzzy quasi-ideals and the fuzzy bi-ideals coincide.
We �nally show that in an ordered semigroup the fuzzy quasi-ideals are just
intersections of fuzzy right and fuzzy left ideals.

1. Introduction and prerequisites
The notion of ideals created by Dedekind for the theory of algebraic num-
bers, was generalized by Emmy Noether for associative rings. The one-
and two-sided ideals introduced by her, are still central concepts in ring
theory. A further generalization of ideals, the concept of quasi-ideals, was
introduced by Ottó Steinfeld. Steinfeld remarked �rst that the concept of
quasi-ideals could be de�ned not only for rings, but for semigroups as well,
and that a quasi-ideal of a semigroup was just the intersection of a right
and a left ideal �generalizing a correspondence result given by L. Kovács for
rings. Since then many papers on ideals for rings and semigroups appeared
showing the importance of the concept [A.H. Cli�ord, L.M. Gluskin, M.�P.
Schützenberger, S. Lajos, K. Iséki and many others]. Further generalization
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of ideals by lattice-theoretical methods was given by G. Birkho�, O. Stein-
feld, and N. Kehayopulu. The concepts of fuzzy one- and two-sided ideals
in groupoids have been introduced by A. Rosenfeld in [11], the concepts of
fuzzy bi-ideals and fuzzy quasi-ideals in semigroups have been introduced
by N. Kuroki in [8] and [9], respectively. Fuzzy ideals in semigroups have
been �rst studied by N. Kuroki, later by other authors as well (for a detailed
exposition see the introduction in [7]). Fuzzy ideals in ordered groupoids-
semigroups have been introduced by Kehayopulu and Tsingelis in [5]. For
a recent work on fuzzy ideals see also [3, 4].

In semigroups the right (resp. left) ideals are quasi-ideals, and the quasi-
ideals are bi-ideals. In regular (in the sense of J.v. Neumann) semigroups
the bi-ideals and the quasi-ideals coincide [10]. Analogous results are true
for ordered semigroups as well. In ordered semigroups the right (resp. left)
ideals are quasi-ideals and the quasi-ideals are bi-ideals, and in regular or-
dered semigroups the bi-ideals and the quasi-ideals coincide. Moreover, in
lattice ordered semigroups having a greatest element, the right (resp. left)
ideal elements are quasi-ideal elements, the quasi-ideal elements are bi-ideal
elements, and in regular lattice ordered semigroups which have a greatest
element the bi-ideal elements and the quasi-ideal elements are the same.
It might be noted that the concept of right and left ideal elements in an
ordered groupoid has been introduced by G. Birkho� (see, for example [1]
p. 328). Ideals play an important role in studying the structure of some
ordered semigroups. In an attempt to show how similar is the theory of
fuzzy ordered semigroups based on ideals (right, quasi- etc.) with the the-
ory of ordered semigroups based on ideals or the theory of lattice ordered
semigroups based on ideal elements, keeping the usual de�nitions of fuzzy
right ideal, fuzzy left ideal, fuzzy quasi-ideal and fuzzy bi-ideal, we show
here that in ordered groupoids the fuzzy right (resp. fuzzy left) ideals are
fuzzy quasi-ideals, in ordered semigroups the fuzzy quasi-ideals are fuzzy
bi-ideals, and in regular ordered semigroups the fuzzy quasi-ideals and the
fuzzy bi-ideals coincide. Moreover, we show that if S is an ordered semi-
group, then a fuzzy subset f is a fuzzy quasi-ideal of S if and only if there
exist a fuzzy right ideal g and a fuzzy left ideal h of S such that f = g ∩ h.

Following the terminology given by L.A. Zadeh, if (S, ·, 6) is an ordered
groupoid, we say that f is a fuzzy subset of S (or a fuzzy set in S) if S is
a mapping of S into the real closed interval [0,1] (cf. [5]). For a ∈ S, we
de�ne Aa = {(y, z) ∈ S × S | a 6 yz}. For two fuzzy subsets f and g of S,
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we de�ne the multiplication of f and g as the fuzzy subset of S de�ned by:

(f ◦ g)(a) =

{
sup

(y,z)∈Aa

{min{f(y), g(z)}} if Aa 6= ∅,
0 if Aa = ∅

and in the set of all fuzzy subsets of S we de�ne the order relation as
follows: f ⊆ g if and only if f(x) 6 g(x) for all x ∈ S. Finally for two
fuzzy subsets f and g of S we de�ne the operations f ∩ g and f ∪ g as the
fuzzy subsets of S de�ned by:

(f ∩ g)(x) = min{f(x), g(x)} and (f ∪ g)(x) = max{f(x), g(x)}.

For an ordered groupoid S, the fuzzy subset 1 of S is de�ned by 1(x) = 1
for all x ∈ S. If F (S) is the set of fuzzy subsets of S, it is clear that the
fuzzy subset 1 of S is the greatest element of the ordered set (F (S),⊆).
Moreover, as we have already seen in [6], if S is an ordered groupoid (resp.
ordered semigroup), then the set F (S) of all fuzzy subsets of S with the
multiplication ◦ and the order ⊆ on S de�ned above is an ordered groupoid
(resp. ordered semigroup) as well.

2. Main results
De�nition 1. (cf. [5]) Let (S, ·, 6) be an ordered groupoid. A fuzzy subset
f of S is called a fuzzy right ideal (resp. fuzzy left ideal) of S if

(1) f(xy) > f(x) (resp. f(xy) > f(y)) for every x, y ∈ S and
(2) x 6 y implies f(x) > f(y).

De�nition 2. (cf. [5]) Let (S, ·, 6) be an ordered groupoid. A fuzzy subset
f of S is called a fuzzy quasi-ideal of S if

(1) (f ◦ 1) ∩ (1 ◦ f) ⊆ f and
(2) x 6 y implies f(x) > f(y).

De�nition 3. Let (S, ·, 6) be an ordered semigroup. A fuzzy subset f of
S is called a fuzzy bi-ideal of S if the following assertions are satis�ed:

(1) f(xyz) > min{f(x), f(z)} for all x, y, z ∈ S and
(2) x 6 y implies f(x) > f(y).

Proposition 1. If (S, ·, 6) is an ordered groupoid, then the fuzzy right
(resp. left ) ideals of S are fuzzy quasi-ideals of S.
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Proof. Let f be a fuzzy right ideal of S and x ∈ S. First of all,

((f ◦ 1) ∩ (1 ◦ f))(x) = min{(f ◦ 1)(x), (1 ◦ f)(x)}.

If Ax = ∅ then we have (f ◦ 1)(x) = 0 = (1 ◦ f)(x) and, since f is a
fuzzy right ideal of S, we have min{(f ◦ 1)(x), (1 ◦ f)(x)} = 0 6 f(x).

Let Ax 6= ∅. Then

(f ◦ 1)(x) = sup
(u,v)∈Ax

{min{f(u), 1(v)}}.

On the other hand,

f(x) > min{f(u), 1(v)} ∀ (u, v) ∈ Ax.

Indeed, if (u, v) ∈ Ax, then x 6 uv, f(x) > f(uv) > f(u) =
min{f(u), 1(v)}. Hence we have

f(x) > sup
(u,v)∈Ax

{min{f(u), 1(v)}} = (f ◦ 1)(x)

> min{(f ◦ 1)(x), (1 ◦ f)(x)}
= ((f ◦ 1) ∩ (1 ◦ f))(x).

Therefore f is a fuzzy quasi-ideal of S. ¤

Proposition 2. If (S, ·,6) is an ordered semigroup, then the fuzzy quasi-
ideals are fuzzy bi-ideals of S.
Proof. Let f be a fuzzy quasi-ideal of S and x, y, z ∈ S. Then we have

f(xyz) > ((f ◦ 1) ∩ (1 ◦ f))(xyz) = min{(f ◦ 1)(xyz), (1 ◦ f)(xyz)}.

Since (x, yz) ∈ Axyz, we have

(f ◦ 1)(xyz) = sup
(u,v)∈Axyz

{min{f(u), 1(v)}} > min{f(x), 1(yz)} = f(x).

Since (xy, z) ∈ Axyz, we have

(1 ◦ f)(xyz) = sup
(u,v)∈Axyz

{min{1(u), f(v)}} > min{1(xy), f(z)} = f(z).

Thus we have

f(xyz) > min{(f ◦ 1)(xyz), (1 ◦ f)(xyz)} > min{f(x), f(z)}.
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So f is a fuzzy bi-ideal of S.

Proposition 3. In a regular ordered semigroup S, the fuzzy quasi-ideals
and the fuzzy bi-ideals coincide.
Proof. Let f be a fuzzy bi-ideal of S and x ∈ S. We will prove that

((f ◦ 1) ∩ (1 ◦ f))(x) 6 f(x). (1)

First of all, we have

((f ◦ 1) ∩ (1 ◦ f))(x) = min{(f ◦ 1)(x), (1 ◦ f)(x)}.

If Ax = ∅ then, as we have already seen in Proposition 1, condition (1) is
satis�ed.

Let Ax 6= ∅. Then

(f ◦ 1)(x) = sup
(z,w)∈Ax

{min{f(z), 1(w)}} (2)

(1 ◦ f)(x) = sup
(u,v)∈Ax

{min{1(u), f(v)}} (3)

Let (f ◦ 1)(x) 6 f(x). Then we have

f(x) > (f ◦ 1)(x) > min{(f ◦ 1)(x), (1 ◦ f)(x)}
= ((f ◦ 1) ∩ (1 ◦ f))(x),

and condition (1) is satis�ed.
Let (f ◦ 1)(x) > f(x). Then, by (2), there exists (z, w) ∈ Ax such that

min{f(z), 1(w)} > f(x) (4)

(otherwise f(x) 6 (f ◦ 1)(x), which is impossible).
Since (z, w) ∈ Ax, we have z, w ∈ S and x 6 zw. Similarly, from

min{f(z), 1(w)} = f(z), by (4), we obtain

f(z) > f(x). (5)

We will prove that (1 ◦ f)(x) 6 f(x), Then

min{(f ◦ 1)(x), (1 ◦ f)(x)} 6 (1 ◦ f)(x) 6 f(x),

so ((f ◦ 1) ∩ (1 ◦ f))(x) 6 f(x), and condition (1) is satis�ed.
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By (3), it is enough to prove that

min{1(u), f(v)} 6 f(x) ∀ (u, v) ∈ Ax.

Let (u, v) ∈ Ax. Then x 6 uv for some u, v ∈ S. Since S is regular, there
exists s ∈ S such that x 6 xsx. Then x 6 zwsuv. Then, since f is a fuzzy
bi-ideal of S, we have

f(x) > f(zwsuv) > min{f(z), f(v)}.

If min{f(z), f(v)} = f(z), then f(z) 6 f(x) which is impossible by (5).
Thus we have min{f(z), f(v)} = f(v), then f(x) > f(v) = min{1(u), f(v)}.

In the following, using the usual de�nitions of ideals mentioned above,
we show that the fuzzy quasi-ideals of an ordered semigroup are just inter-
sections of fuzzy right and fuzzy left ideals.

Lemma 1. Let (S, ·, 6) be an ordered semigroup and f a fuzzy subset of S.
Then we have the following:

(i) (1 ◦ f)(xy) > f(y) for all x, y ∈ S,
(ii) (1 ◦ f)(xy) > (1 ◦ f)(y) for all x, y ∈ S.

Proof. (i) Let x, y ∈ S. Since (x, y) ∈ Axy, we have

(1 ◦ f)(xy) = sup
(w,z)∈Axy

{min{1(w), f(z)}} > min{1(x), f(y)} = f(y).

(ii) Let x, y ∈ S. If Ay = ∅, then (1 ◦ f)(y) = 0. Since 1 ◦ f is a fuzzy
subset of S, we have (1 ◦ f)(xy) > 0 = (1 ◦ f)(y).

Let now Ay 6= 0. Then

(1 ◦ f)(y) = sup
(w,z)∈Ay

{min{1(w), f(z)}}.

On the other hand,

(1 ◦ f)(xy) > min{1(w), f(z)} ∀ (w, z) ∈ Ay. (6)

Indeed, let (w, z) ∈ Ay. Since (x, y) ∈ Axy, we have

(1 ◦ f)(xy) = sup
(s,t)∈Axy

{min{1(s), f(t)}}.
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Since (w, z) ∈ Ay, we have y 6 wz, then xy 6 xwz, and (xw, z) ∈ Axy.
Hence we have

(1 ◦ f)(xy) > min{1(xw), f(z)} = f(z) = min{1(w), f(z)}.

By (6), we have

(1 ◦ f)(xy) > sup
(w,z)∈Ay

{min{1(w), f(z)}} = (1 ◦ f)(y). ¤

In a similar way we prove the following:

Lemma 2. Let (S, ·, 6) be an ordered semigroup and f a fuzzy subset of S.
Then we have the following:

(i) (f ◦ 1)(xy) > f(x) for all x, y ∈ S,
(ii) (f ◦ 1)(xy) > (f ◦ 1)(x) for all x, y ∈ S.

Lemma 3. Let (S, ·,6) be an ordered semigroup, f a fuzzy subset of S and
x 6 y. Then we have

(1 ◦ f)(x) > (1 ◦ f)(y).

Proof. If Ay = ∅, then (1 ◦ f)(y) = 0. Since 1 ◦ f is a fuzzy subset of S, we
have (1 ◦ f)(x) > 0, then (1 ◦ f)(x) > (1 ◦ f)(y).

Let Ay 6= ∅. Then

(1 ◦ f)(y) = sup
(w,z)∈Ay

{min{1(w), f(z)}} = sup
(w,z)∈Ay

{f(z)}.

On the other hand,

(1 ◦ f)(x) > f(z) ∀ (w, z) ∈ Ay. (7)

Indeed, let (w, z) ∈ Ay. Since x 6 y 6 wz, we have (w, z) ∈ Ax. Then

(1 ◦ f)(xy) = sup
(s,t)∈Axy

{min{1(s), f(t)}} > min{1(w), f(z)} = f(z).

Thus, by (7), we have

(1 ◦ f)(x) > sup
(w,z)∈Ay

{f(z)} = (1 ◦ f)(y). ¤

In a similar way we prove the following:
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Lemma 4. Let (S, ·,6) be an ordered semigroup, f a fuzzy subset of S and
x 6 y. Then

(f ◦ 1)(x) > (f ◦ 1)(y).

Lemma 5. Let (S, ·, 6) be an ordered semigroup and f a fuzzy subset of S.
Then

(f ∪ (1 ◦ f))(xy) > (f ∪ (1 ◦ f))(y) ∀ x, y ∈ S.

Proof. Let x, y ∈ S. Since 1 ◦ f ⊆ f ∪ (1 ◦ f), we have

(f ∪ (1 ◦ f))(xy) > (1 ◦ f)(xy).

By Lemma 1, (1 ◦ f)(xy) > f(y) and (1 ◦ f)(xy) > (1 ◦ f)(y), so we have

(1 ◦ f)(xy) > max{f(y), (1 ◦ f)(y)} = (f ∪ (1 ◦ f))(y).

Therefore (f ∪ (1 ◦ f))(xy) > (f ∪ (1 ◦ f))(y). ¤

In a similar way we prove the following:

Lemma 6. Let (S, ·, 6) be an ordered semigroup and f a fuzzy subset of S.
Then

(f ∪ (f ◦ 1))(xy) > (f ∪ (f ◦ 1))(x) ∀ x, y ∈ S.

Lemma 7. Let (S, ·, 6) be an ordered semigroup and f a fuzzy subset of S
such that for all x, y ∈ S such that x 6 y, we have f(x) > f(y). Then the
fuzzy subset f ∪ (1 ◦ f) is a fuzzy left ideal of S.
Proof. Let x, y ∈ S. By Lemma 5, we have (f∪(1◦f))(xy) > (f∪(1◦f))(y).
Let now x 6 y. Then (f ∪ (1 ◦ f))(x) > (f ∪ (1 ◦ f))(y). Indeed: Since f is
a fuzzy subset of S and x 6 y, by Lemma 3, we get (1 ◦ f)(x) > (1 ◦ f)(y)
and, by hypothesis, f(x) > f(y). Then

(f ∪ (1 ◦ f))(x) = max{f(x), (1 ◦ f)(x)} > max{f(y), (1 ◦ f)(y)}
= (f ∪ (1 ◦ f))(y). ¤

In a similar way we prove the following:

Lemma 8. Let (S, ·, 6) be an ordered semigroup and f a fuzzy subset of S
such that for all x, y ∈ S such that x 6 y, we have f(x) > f(y). Then the
fuzzy subset f ∪ (f ◦ 1) is a fuzzy right ideal of S.
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Lemma 9. If a, b, c are real numbers, then
(i) min{a,max{b, c}} = max{min{a, b}, min{a, c}} and

(ii) max{a,min{b, c}} = min{max{a, b}, max{a, c}}.

Proof. (i) Let a 6 max{b, c}. Then min{a, max{b, c}} = a. If b 6 c, then
max{b, c} = c, a 6 c, min{a, b} 6 a = min{a, c}, and

max{min{a, b}, min{a, c}} = a,

so condition (i) is satis�ed. If c < b then, in a similar way we prove that
condition (i) is satis�ed.

Let now a > max{b, c}. Then min{a, max{b, c}} = max{b, c} > b,
a > b, and min{a, b} = b. Similarly min{a, c} = c. Then

max{min{a, b},min{a, c}} = max{b, c},

and condition (i) is satis�ed.
The proof of (ii) is similar. ¤

Lemma 10. Let S be an ordered semigroup and f, g, h fuzzy subsets of S.
Then

f ∩ (g ∪ h) = (f ∩ g) ∪ (f ∩ h).

Proof. Indeed,

(f ∩ (g ∪ h))(x) = min{f(x), (g ∪ h)(x)}
= min{f(x), max{g(x), h(x)}}
= max{min{f(x), g(x)}, min{f(x), h(x)}} (by Lemma 9)
= max{f ∩ g)(x), (f ∩ h)(x)}
= ((f ∩ g) ∪ (f ∩ h))(x). ¤

By Lemma 10, we have the following:

Corollary 1. If S is an ordered semigroup, then the set of all fuzzy subsets
of S is a distributive lattice.

Proposition 4. Let (S, ·,6) be and ordered semigroup. A fuzzy subset f
of S is a fuzzy quasi-ideal of S if and only if there exist a fuzzy right ideal
g and a fuzzy left ideal h of S such that f = g ∩ h.
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Proof. =⇒. By Lemmas 7 and 8, f∪(1◦f) is a fuzzy left ideal and f∪(f ◦1)
is a fuzzy right ideal of S. Moreover, we have

f = (f ∪ (1 ◦ f)) ∩ (f ∪ (f ◦ 1)).

In fact, by Corollary 1, we have
(f ∪ (1 ◦ f))∩ (f ∪ (f ◦ 1)) = ((f ∪ (1 ◦ f))∩ f)∪ ((f ∪ (1 ◦ f))∩ (f ◦ 1))

= (f ∩ f) ∪ ((1 ◦ f) ∩ f) ∪ (f ∩ (f ◦ 1)) ∪ ((1 ◦ f) ∩ (f ◦ 1))

= f ∪ ((1 ◦ f) ∩ f) ∪ (f ∩ (f ◦ 1)) ∪ ((1 ◦ f) ∩ (f ◦ 1)).

Since f is a fuzzy quasi-ideal of S, we have (f ◦1)∩ (1◦f) ⊆ f . Besides,
(1 ◦ f) ∩ f ⊆ f and f ∩ (f ◦ 1) ⊆ f . Hence

(f ∪ (1 ◦ f)) ∩ (f ∪ (f ◦ 1)) = f.

⇐=. Let x ∈ S. Then

((f ◦ 1) ∩ (1 ◦ f))(x) 6 f(x) (8)

In fact, ((f ◦ 1) ∩ (1 ◦ f))(x) = min{(f ◦ 1)(x), (1 ◦ f)(x)}. If Ax = ∅, then
(f ◦ 1)(x) = 0 = (1 ◦ f)(x). So, in this case condition (8) is satis�ed.

If Ax 6= ∅, then

(f ◦ 1)(x) = sup
(y,z)∈Ax

{min{f(y), 1(z)}} = sup
(y,z)∈Ax

{f(y)}. (9)

We have
f(y) 6 h(x) ∀ (y, z) ∈ Ax. (10)

Indeed, for (y, z) ∈ Ax we have x 6 yz and h(x) > h(yz) > h(y) because h
is a fuzzy left ideal of S.

Thus, applying (10) to (9), we obtain

(f ◦ 1)(x) = sup
(y,z)∈Ax

{f(y)} 6 h(x).

In a similar way, we get (1 ◦ f)(x) 6 g(x). Hence

((f ◦ 1) ∩ (1 ◦ f))(x) = min{(f ◦ 1)(x), (1 ◦ f)(x)}
≤ min{h(x), g(x)}
= (h ∩ g)(x)

= f(x),
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which completes the proof of (8). ¤

We thank the managing editor of the journal Professor Wieslaw A.
Dudek for editing, communicating the paper and the useful discussions con-
cerning this paper we had, and we also thank the referee for his time to read
the paper carefully and his (her) prompt reply.
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A note on Belousov quasigroups

Aleksandar Krapeº

Abstract

A Belousov identity is a balanced identity which is a consequence of commu-
tativity. It is proved that a quasigroup is Belousov i� it has a permutation
π satisfying π(xy) = yx and a weak (anti)automorphism�like property de-
pending on Belousov identities the quasigroup satis�es.

A balanced (also called linear) identity is one in which each variable
appears precisely twice, once on each side of the equality symbol. Instead
of identity the word equation is sometimes used. We note that, although
quasigroups might be de�ned equationally, using multiplication (·) and both
division operations (\ and /), the identities which we consider contain the
multiplication symbol only. The dual operation ∗ of · is de�ned by x ∗ y =
y·x. The symbol ∗ is considered not to belong to the language of quasigroups.
When unambiguous, the term x · y is usually shortened to xy.

The product symbol (
∏
) is used but only for products of 2n factors. For-

mally:
∏m

i=m xi = xm and
∏m+2n−1

i=m xi = (
∏m+2n−1−1

i=m xi)(
∏m+2n−1

i=m+2n−1 xi).
V. D. Belousov de�ned in [1] an important class of balanced identities

which were named Belousov equations by A. Krapeº and M. A. Taylor in [3].
A balanced identity s = t is Belousov if for every subterm p of s (t) there
is a subterm q of t (s) such that p and q have exactly the same variables.

2000 Mathematics Subject Classi�cation: 20N05
Keywords: Balanced identities, Belousov identities, Belousov quasigroup, almost com-
mutative quasigroup, swap.
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Examples of Belousov identities are:

x = x (B0)
xy = xy

xy = yx (B1)
x · yz = zy · x

xy · uv = vu · yx (B11)
xy · (zu · vw) = (uz · wv) · yx

The identity (B0) and all identities t = t are trivial. Belousov identities not
equivalent to (B0) are nontrivial. A quasigroup satisfying a set of Belousov
identities, not all of them trivial, is a Belousov quasigroup.

The characteristic property of Belousov identities is:

Theorem 1. (partially in Krapeº [2]) A balanced quasigroup identity s = t
is Belousov:

• i� s = t is a consequence of the theory of commutative quasigroups,

• i� there is an identity Eq(·, ∗) which is true in all quasigroups and
s = t is Eq(·, ·),

• i� the trees of terms s, t are isomorphic.

Their importance stems from:

Theorem 2. (Krapeº [2], Belousov [1]) A quasigroup satisfying a balanced
but not Belousov identity is isotopic to a group.

Belousov identities are described in [4] using polynomials from Z2[x].

Theorem 3. (Krapeº, Taylor [4]) Every set of Belousov identities is equiv-
alent to a single normal Belousov identity.

For the reduction algorithm and the proof consult [4]. Below we just
give the de�nition of a normal Belousov identity.

De�nition 1. A quasigroup for which there is a permutation π such that
π(xy) = yx is called almost commutative. The permutation π is called a
swap.
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The next theorem was proved by Belousov, except that he forgot to
exclude the trivial identities (i.e., t = t).

Theorem 4. (Belousov [1]) Every Belousov quasigroup is almost commu-
tative.

A sequence α1 . . . αn of zeros and ones is a pattern. It is a normal pattern
if α1 = αn = 1.

Let π be a swap, p = α1 . . . αn a pattern and st a term. We de�ne :

πα1...αn(st) = πα1(πα2...αn(s) · πα2...αn(t)).

The relations π0 = Id (Id(x) = x) and π1 = π are assumed.

De�nition 2. Let π be a swap and p a pattern of length n > 0. The
Belousov identity (Bp) is:

2n∏

i=1

xi = πp(
2n∏

i=1

xi). (Bp)

This is a normal Belousov identity if p is a normal pattern.
We assume that (B0) is also a normal Belousov identity.

Note that the identity (Bp) does not contain a single occurrence of π.
It is used up while transforming various subterms st of

∏2n

i=1 xi into ts.

Theorem 5. Let p be a nontrivial normal pattern α1 . . . αn. A quasigroup
satis�es the normal Belousov identity (Bp) i� it has a swap π satisfying:

π(
2n−1∏

i=1

yi) = π0α2...αn−1(
2n−1∏

i=1

π(yi)). (1)

Proof. Apply π to both sides of (Bp); then use π2(x) = x; next push π inside
the product on the right hand side of the equation; then pull out π back,
preserving expressions π(x2i−1x2i); and �nally substitute yi for x2i−1x2i.
We get (1).

All transformations are equivalent, so the theorem follows.

Example 1. For p = 1 we get that a quasigroup is commutative if Id is a
swap.
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Example 2. For p = 11 we get the result of M. Polonijo [5] that a quasi-
group satis�es (B11) (or palindromic identity in the terminology of [5]) i�
it has a swap π satisfying π(xy) = π01(x · y) = π(x) · π(y).
Example 3. For p = 101 we get that a quasigroup satis�es

∏8
i=1 xi =

π101(
∏8

i=1 xi) = (x6x5 · x8x7)(x2x1 · x4x3) i� it has a swap π satisfying
π(xy · uv) = π001(xy · uv) = π(x)π(y) · π(u)π(v).

The last two examples suggest:
Corollary 1. A quasigroup satis�es (B10...01) (with n > 0 zeros) i� it has
a swap π satisfying π(

∏2n+1

i=1 yi) =
∏2n+1

i=1 π(yi).

Example 4. For p = 111 we get that a quasigroup satis�es
∏8

i=1 xi =
π111(

∏8
i=1 xi) = (x8x7 · x6x5)(x4x3 · x2x1) i� it has a swap π satisfying

π(xy ·uv) = π011(xy ·uv) = π(π(x)π(y))·π(π(u)π(v)) = π(y)π(x)·π(v)π(u).
Another way of looking at Theorem 5 is:

Theorem 6. The equational theory of Bp�quasigroups (p = α1 . . . αn, n >
0) is equivalent to the equational theory of algebras (S; ·, \, /, π) with the
quasigroup axioms: x\xy = y, x(x\y) = y, xy/y = x, (x/y)y = x, the swap
axiom π(xy) = yx and (1).

The last axiom has a half as many variables as the identity (Bp).
In case of an equational theory with arbitrary nontrivial Belousov iden-

tities we can combine the Theorem 6 with the Theorem 3 to get the appro-
priate axiom (1).
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A note on an Abel-Grassmann's 3-band

Qaiser Mushtaq and Madad Khan

Abstract
An Abel-Grassmann's groupoid is discussed in several papers. In this paper
we have investigated AG-3-band and ideal theory on it. An AG-3-band S

has associative powers and is fully idempotent. A subset of an AG-3-band
is a left ideal if and only it is right and every ideal of S is prime if and only
if the set of all ideals of S is totally ordered under inclusion. An ideal of S

is prime if and only if it is strongly irreducible. The set of ideals of S is a
semilattice.

1. Introduction
An left almost semigroup [3], abbreviated as an LA-semigroup, is a groupoid
S whose elements satisfy for all a, b, c ∈ S the invertive law :

(ab)c = (cb)a. (1)

In [[1], the same structure is called a left invertive groupoid and in [7] it
is called an AG-groupoid. It is a useful non-associative algebraic structure,
midway between a groupoid and a commutative semigroup, with wide ap-
plications in the theory of �ocks and has a character similar to commutative
semigroup.

An AG-groupoid S is medial [3], that is,

(ab)(cd) = (ac)(bd) (2)

holds for all a, b, c, d,∈ S.
If an AG-groupoid S satis�es for all a, b, c, d,∈ S one of the following

properties
(ab)c = b(ca), (3)

2000 Mathematics Subject Classi�cation: 20M10, 20N99
Keywords: LA-semigroup, AG-3-band, invertive law, medial law, paramedial and
prime ideals.
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(ab)c = b(ac), (4)
then it is called an AG∗-groupoid [9]. It is easy to see that the conditions
(3) and (4) are equivalent.

In AG∗-groupoid S holds all permutation identities of a next type [9],

(x1x2)(x3x4) = (xp(1)xp(2))(xp(3)xp(4)) (5)

where {p(1), p(2), p(3), p(4)} means any permutation of the set {1, 2, 3, 4}.
An AG-groupoid satisfying the identity

a(bc) = b(ac) (6)

is called an AG∗∗-groupoid [6]. An AG-groupoid in which (aa)a = a(aa) = a
holds for all a is called an AG-3-band [9]. In an AG-3-band S we have
S2 = S, (Sa)S = S(aS) and (SS)S = S(SS).

It has been shown in [9], that (aa)a = a(aa) = a and (bb)b = b(bb) = b
imply

ab = (ab)((ab)(ab)) = ((ab)(ab))(ab).

2. AG-3-bands
By an AG∗∗-3-band we mean an AG-3-band satisfying identity (6). An
AG∗∗-3-band S is a commutative semigroup because using (2), (6) and (1),
we get

xy = (xy)((xy)(xy)) = (xy)((xx)(yy)) = (xx)((xy)(yy))

= (xx)((yy)y)x) = ((yy)y)((xx)x) = yx

for all x, y ∈ S. The commutativity and (1) leads us to the associativity.
By an AG∗-3-band we mean an AG-3-band satisfying (3). If S is an

AG-3-band, then S = S2 and by virtue of identity (5), a non-associative
AG∗-3-band does not exist.

An AG-groupoid S is paramedial [2], that is,

(ab)(cd) = (db)(ca)

holds for all a, b, c, d,∈ S.
A paramedial AG-3-band becomes a commutative semigroup because

ab = (ab)((ab)(ab)) = (ab)((ba)(ba)) = ((ba)(ba))(ba) = ba.
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Lemma 1. Every left identity in an AG-3-band is a right identity.
Proof. Let e be a left identity and a be any element in an AG-3-band S.
Then using (1), we get

ae = (a(aa))e = (e(aa))a = (aa)a = a.

Hence e is right identity.

As a consequence of Lemma 1, one can see that an AG-3-band with a
left identity becomes a commutative monoid, because it has been shown in
[5] that every right identity is the unique identity in an AG-groupoid and
the identity implies commutativity which further implies associativity.
Lemma 2. An AG-3-band S is a commutative semigroup if and only if
(xy)2 = (yx)2 holds for all x, y ∈ S.
Proof. Indeed, using (1), (2), we get

sa = ((ss)s)a = (as)(ss) = ((a(aa))s)(ss) = (as)((aa)s)s)

= (as)((ss)(aa)) = (as)((aa)(ss)) = (a(aa))(s(ss)) = as.

The converse is easy.

Lemma 3. If S is an AG-3-band, then aS ⊆ Sa for all a in S.
Proof. Using (1) and (2), we get

as = (a(aa))(xy) = (ax)((aa)y) = (ax)(ya)a)

= (a(ya))(xa) = ((xa)(ya))a,

which completes the proof.

It is easy fact that (aS)S = Sa, S(aS) = (Sa)S, (Sa)S ⊆ S(Sa) and
Sa ⊆ (Sa)S.
Lemma 4. If S is an AG-3-band, then an = a and an+1 = a2, where n is
a positive odd integer.
Proof. Obviously a3 = (aa)a = a(aa). Let the result be true for an odd
integer k, that is ak = a. Then using (1), we obtain ak+2 = ak+1+1 =
ak+1a1 = (aka)a = a2ak = a2a = a3 = a. Hence an = a for all odd
integers n. This proves the �rst identity. To prove the second, observe that
a4 = a3a = aa = a2 and assume that as = a2 is true for an even integer s.
Then using (1), we get as+2 = a2as = a2a2 = a4 = a2, which proves that
an+1 = a2 is true for a positive odd integer n.



298 Q. Mushtaq and M. Khan

Lemma 5. An AG-3-band has associative powers.

Proof. The proof is easy.

As a consequence of Lemmas 4 and 5, one can easily see that the se-
quence of the powers of a has an element a at odd position and a2 at even
position that is, a, a2, a, a2....

The following proposition can be proved easily.

Proposition 1. In an AG-3-band S for all a, b ∈ S and all positive integers
m, n we have

aman = am+n, (ab)n = anbn, (am)n = amn.

Let {Sα : α ∈ I} be a family of AG-3-bands containing a zero element.
We may denote all the zeros elements by common symbol 0. The disjoint
union of {0} and all Sα\{0} becomes an AG-3-band if we de�ne the product
of x and y as their product in Sα, if they are in the same Sα, and zero
otherwise.

An AG-groupoid S is called locally associative if a(aa) = (aa)a holds
for all a ∈ S [4].

Lemma 6. Every AG-3-band is locally associative AG-groupoid, but the
converse is not true.

Example 1. Let the binary operation on S = {a, b, c, d} be de�ned as
follows [4]:

· a b c d

a d d b d
b d d a d
c a b c d
d d d d d

Then (S, ·) is locally associative but it is not AG-3-band because a(aa) =
(aa)a = d 6= a.

A subset I of an AG-groupoid S is said to be right (left) ideal if IS ⊆ I
(SI ⊆ I). As usual I is said to be an ideal if it is both right and left ideal.
An ideal I of an AG-groupoid is called 3-potent if I(II) = (II)I = I.

An AG-groupoid S without zero is called simple (left simple, right
simple) if it does not properly contain any two sided (left, right) ideal.
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An AG-groupoid S with zero is called zero-simple if it has no proper
ideals and S2 6= {0}.

The existence of non-associative simple and zero-simple AG-3-bands is
guaranteed by the following example.

Example 2. The set S = {1, 2, 3, 4, 5, 6, 7, 8} with the binary operation
de�ned as follows [9]:

· 1 2 3 4 5 6 7 8
1 1 2 7 8 3 4 5 6
2 2 1 8 7 4 3 6 5
3 5 6 3 4 7 8 1 2
4 6 5 4 3 8 7 2 1
5 7 8 1 2 5 6 3 4
6 8 7 2 1 6 5 4 3
7 3 4 5 6 1 2 7 8
8 4 3 6 5 2 1 8 7

is an AG-3-band which has no proper ideals, so it is simple. If we add the
element 0 to the set S and extend the binary operation putting 0 ·0 = 0 ·s =
s · 0 = 0 for all s in S, then (S ∪ {0}, ·) will be a zero-simple AG-3-band.

Proposition 2. A subset of an AG-3-band is a right ideal if and only if it
is left.

Proof. Let A be a right ideal of S. Then using (1) we get sa = ((ss)s)a =
(as)(ss), which implies that A is a left ideal of S.

The converse follows from Lemma 3.

A subset M of an AG-groupoid S is called an m-system if for a, b ∈ M
there exists x ∈ S such that (ax)b ∈ M .

A subset B of an AG-groupoid S is called a p-system if for every b ∈ B
there exists x ∈ S such that (bx)b ∈ B.

Proposition 3. In an AG-groupoid each m-system is a p-system.

Lemma 7. In an AG-3-band every (left, right) ideal is p-system, but the
converse is not true.

Proof. If a, b belongs to an ideal I of an AG-3-band S, then (as)a ∈ (IS)I.
The converse statement follows from Example 2. In this example B =

{1, 2} is a p-system but not an ideal.
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Two subsets A, B of an AG-groupoid S are called right (left) connected
if AS ⊆ B and BS ⊆ A (resp. SA ⊆ B and SB ⊆ A) [8]. A and B are
connected if they are both left and right connected.

Lemma 8. If A and B are ideal of an AG-3-band S, then AB band BA
are right and left connect.

Proof. Using (1), we get (AB)S = (SB)A ⊆ BA. Similarly (BA)S ⊆
AB. So, AB and BA are right connected. Also S(BA) = (SS)(BA) =
((BA)S)S = ((SA)B)S ⊆ AB, and S(AB) ⊆ BA.

Proposition 4. If A and B are ideals of an AG-3-band, then AB is an
ideal.

Proof. Using (2), one can easily show that AB is an ideal.

It is interesting to note that if S is an AG-3-band and I1, I2, I3 are
proper ideals of S, then (I1I2)I3 is an ideal of S. It can be generalized,
that is, if I1, I2, . . . , In are ideals, then (...((I1I2)I3)...)In is also an ideal
and (...((I1I2)I3)...)In ⊆ I1 ∩ I2 ∩ . . . ∩ In.

An AG-groupoid S is said to be fully idempotent if every ideal of S is
idempotent, i.e., for ecery ideal I of S we have I2 = I.

An AG-groupoid S is said to be fully semiprime if every ideal of S is
semiprime, i.e., for every ideal P of S from A2 ⊆ P , where A is an ideal of
S, it follows A ⊆ P .

Every AG-3-band is fully idempotent and fully semiprime. Conse-
quently, An = A for an ideal A and any positive integer n.

Lemma 9. IJ = JI = I ∩ J for all ideals of an AG-3-band.

Proof. If x ∈ I ∩ J , then x = x(xx) ∈ IJ, whence IJ = I ∩ J . So,
IJ = JI.

An ideal I of an AG-groupoid S is said to be strongly irreducible if and
only if for ideals H and K of S, H ∩K ⊆ I implies either H ⊆ I or K ⊆ I.

An AG-groupoid S is called totally ordered if for all ideals A, B of S
either A ⊆ B or B ⊆ A.

An ideal P of an AG-groupoid S is called prime if and only if AB ⊆ P
implies that either A ⊆ P or B ⊆ P for all ideals A and B in S.

Using Lemma 9, one can prove the following Theorems.
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Theorem 1. In an AG-3-band an ideal is strongly irreducible if and only
if it is prime.

Theorem 2. An ideal of an AG-3-band S is prime if and only if the set of
all ideals of S is totally ordered under inclusion.

Theorem 3. The set of ideals of an AG-3-band S form a semilattice,
(LS ,∧), where A ∧B = AB, A and B are ideals of S.
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Decomposition of AG∗-groupoids

Qaiser Mushtaq and Madad Khan

Abstract
We have shown that an AG∗-groupoid S has associative powers, and S/ρ,
where aρb if and only if abn = bn+1, ban = an+1 ∀ a, b ∈ S, is a maximal
separative commutative image of S.

An Abel-Grassmann's groupoid [9], abbreviated as an AG-groupoid, is a
groupoid S whose elements satisfy the invertive law:

(ab)c = (cb)a. (1)

It is also called a left almost semigroup [3, 4, 5, 7]. In [1], the same structure
is called a left invertive groupoid. In this note we call it an AG-groupoid. It
is a useful non-associative algebraic structure, midway between a groupoid
and a commutative semigroup, with wide applications in the theory of �ocks.

An AG-groupoid S is medial [2], i.e., it satis�es the identity

(ab)(cd) = (ac)(bd). (2)

It is known [3] that if an AG-groupoid contains a left identity then it
is unique. It has been shown in [3] that an AG-groupoid contains a left
identity then it is unique. It has been proved also that an AG-groupoid
with right identity is a commutative monoid, that is, a semigroup with
identity element.

If an AG-groupoid satisfy one of the following equivalent identities:

(ab)c = b(ca) (3)

(ab)c = b(ac) (4)

2000 Mathematics Subject Classi�cation: 20M10, 20N99
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then it is called an AG∗-groupoid [10].
Let S be an AG∗-groupoid and a relation ρ be de�ned in S as follows.

For a positive integer n, aρb if and only if abn = bn+1 and ban = an+1, for
all a and b in S.

In this paper, we have shown that ρ is a separative congruence in S, that
is, a2ρab and abρb2 implies that aρb when a, b ∈ S.

The following four propositions have been proved in [10].

Proposition 1. Every AG∗-groupoid has associative powers, i.e., aan =
ana for all a.

Proposition 2. In an AG∗-groupoid S, aman = am+n for all a ∈ S and
positive integers m,n.

Proposition 3. In an AG∗-groupoid S, (am)n = amn for all a ∈ S and
positive integers m,n.

Proposition 4. If S is an AG∗-groupoid, then for all a, b ∈ S, (ab)n = anbn

and positive integer n > 1 and (ab)n = bnan for n > 1.

Theorem 1. Let S be an AG∗-groupoid. If abm = bm+1 and ban = an+1

for a, b ∈ S and positive integers m,n then aρb.

Proof. For the sake of de�niteness assume that m < n and m > 1. Then by
multiplying, abm = bm+1 by bn−m and successively applying Proposition 1,
identities (1) and (2), we obtain

bm+1bn−m = (abm)bn−m = a(bm−1b)bn−m = (bm−1a)bbn−m

= (bn−mb)(bm−1a) = (bbn−m)(bm−1a) = bn−m(b(bm−1a))
= bn−m((ab)bm−1) = ((ab)bn−m)bm−1 = (bn−m+1a)bm−1

= a(bn−m+1bm−1) = abn.

Thus abn = bn+1, ban = an+1 and so aρb.

Theorem 2. The relation ρ on an AG∗-groupoid is a congruence relation.

Proof. Evidently ρ is re�exive and symmetric. For transitivity we may
proceed as follows.

Let aρb and bρc so that there exist positive integers n, m such that,

abn = bn+1, ban = an+1 and bcm = cm+1, cbm = bm+1.
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Let k = (n + 1)(m + 1)− 1, that is, k = n(m + 1) + m. Using identities
(1), (2) and Propositions 2 and 3, we get

ack = acn(m+1)+m = a(cn(m+1)cm) = a((cm+1)ncm) = a((bcm)ncm)

= a((bncmn)cm) = a(cm(n+1)bn) = (bna)cm(n+1) = (bna)(cm(n+1)−1c)

= (bncm(n+1)−1)(ac) = ((ac)cm(n+1)−1)bn = (c(acm(n+1)−1))bn

= (bn(acm(n+1)−1))c = ((abn)cm(n+1)−1)c = (bn+1cm(n+1)−1)c

= ((bbn)cm(n+1)−1)c = (bn(bcm(n+1)−1))c = (c(bcm(n+1)−1))bn

= ((bc)cm(n+1)−1)bn = (bncm(n+1)−1)(bc) = (bnb)(cm(n+1)−1c)

= bn+1cm(n+1) = (bcm)n+1 = c(m+1)(n+1) = ck+1.

Similarly, cak = ak+1. Thus ρ is an equivalence relation. To show that ρ is
compatible, assume that aρb such that for some positive integer n,

abn = bn+1 and ban = an+1.

Let c ∈ S. Then by identity (2) and Propositions 4 and 1, we get

(ac)(bc)n = (ac)(bncn) = (abn)(ccn) = bn+1cn+1.

Similarly, (bc)(ac)n = (ac)n+1. Hence ρ is a congruence relation on S.

Theorem 3. The relation ρ is separative.

Proof. Let a, b ∈ S, abρa2 and abρb2. Then by de�nition of ρ there exist
positive integers m and n such that,

(ab)(a2)m = (a2)m+1, a2(ab)m = (ab)m+1,

(ab)(b2)n = (b2)n+1, b2(ab)n = (ab)n+1.

Now using identities (3), (2), (1) and Proposition 1, we get

ba2m+1 = b(a2ma) = (ab)a2m = (ab)(amam) = (aam)(bam)
= am+1(bam) = (bam+1)am = (b(ama))am = ((amb)a)am

= (ama)(amb) = (aam)(amb) = am(a(amb))
= am((ba)am) = ((ba)am)am = ((ama)b)am

= (am+1b)am = b(am+1am) = ba2m+1 = b(a2ma)
= (ab)a2m = (ab)(a2)m = (a2)m+1 = a2m+2.
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Using identities (3), (2) and (1) and Theorem 2, 3, we get

ab2n+1 = a(b2nb) = (ba)b2n = (ba)(bnbn) = (bbn)(abn)
= (bn(bbn))a = ((bnbn)b)a = (ab)(bnbn)
= (ab)(b2n) = (ab)(b2)n = (b2)n+1 = b2n+2.

Now by Theorem 1, aρb. Hence ρ is separative.

The following Lemma has been proved in [10]. We re-state it without
proof for use in our later results.

Lemma 1. Let σ be a separative congruence on an AG∗-groupoid S, then
for all a, b ∈ S it follows that abσba.

Theorem 4. Let S be an AG∗-groupoid. Then S�ρ is a maximal separative
commutative image of S.

Proof. By Theorem 3, ρ is separative, and hence S�ρ is separative. We
now show that ρ is contained in every separative congruence relation σ on
S. Let aρb so that there exists a positive integer n such that,

abn = bn+1 and ban = an+1.

We need to show that aσb, where σ is a separative congruence on S. Let k
be any positive integer such that,

abkσbk+1 and bakσak+1.

Suppose k > 2. Putting ab0 = a in the next term (if k = 2)

(abk−1)2 = (abk−1)(abk−1) = a2b2k−2 = (aa)(bk−2bk)
= (abk−2)(abk) = (abk−2)bk+1,

i.e., abk−2)(abk)σ(abk−2)bk+1.
Using identity (1) and Proposition 2 we get

(abk−2)bk+1 = (bk+1bk−2)a = b2k−1a = (bkbk−1)a = (abk−1)bk,

(abk−1)bk = (bkbk−1)a = b2k−1a = (bk−1bk)a = (abk)bk−1.

Thus (abk−1)2σ(abk)bk−1.
Since abkσbk+1 and (abk)bk−1σbk+1bk−1, hence (abk−1)2σ(bk)2. It fur-

ther implies that, (abk−1)2σ(abk−1)bkσ(bk)2. Thus abk−1σbk. Similarly,
bak−1σak.
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Thus if (1) holds for k, it holds for k + 1. By induction down from k, it
follows that (1) holds for k = 1, abσb2 and baσa2. Hence by Lemma 1 and
separativity of σ it follows that aσb.

Lemma 2. If xa = x for some x and for some a in an AG∗-groupoid, then
xna = xn for some positive integer n.

Proof. Let n = 2, then identity (3) implies that

x2a = (xx)a = x(xa) = xx = x2.

Let the result be true for k, that is xka = xk. Then by identity (3) and
Proposition 1, we get

xk+1a = (xxk)a = xk(xa) = xkx = xk+1.

Hence xna = xn for all positive integers n.

Theorem 5. Let a be a �xed element of an AG∗-groupoid S, then
Q = {x ∈ S |xa = x and a = a2}

is a commutative subsemigroup.

Proof. As aa = a, we have a ∈ Q. Now if x, y ∈ Q then by identity (2),

xy = (xa)(ya) = (xy)(aa) = (xy)a.

To prove that Q is commutative and associative, assume that x and y belong
to Q. Then by using identity (1), we get xy = (xa)y = (ya)x = yx, and
commutativity gives associativity. Hence Q is a commutative subsemigroup
of S.

Theorem 6. Let η and ξ be separative congruences on an AG∗-groupoid S
and x2a = x2, for all x ∈ S. If η ∩ (Q×Q) ⊆ ξ ∩ (Q×Q), then η ⊆ ξ.

Proof. If xηy then,

(x2(xy))2η(x2(xy)(x2y2)η(x2y2)2.

It follows that (x2(xy))2, (x2y2)2 ∈ Q. Now by identities (2), (1), (3),
respectively and Lemma 2, it means that,

(x2(xy))(x2y2) = (x2x2)((xy)y2) = (x2x2)(y3x)
= x4(y3x) = (xx4)y3 = x5y3,

(x5y3)a = (x5y3)(aa) = (x5a)(y3a) = x5y3.
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So, x2(xy)(x2y2) ∈ Q. Hence (x2(xy))2ξ(x2(xy)(x2y2)ξ(x2y2)2 implies that
x2(xy)ξx2y2.

Since x2y2ηx4 and x2a = x2 for all x ∈ S, so (x2y2), x4 ∈ Q.
Thus x2y2ξx4 and it follows from Proposition 4 that x2y2 = (xy)2. So
(x2)2ξx2(xy)ξ(xy)2 which means that x2ξxy. Finally, x2ηy2 and x2, y2 ∈ Q,
means that x2ξy2, x2ξxyξy2. As ξ is separative so xξy. Hence η ⊆ ξ and
by Lemma 1, S�η is the maximal separative commutative image of S.
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On �nite quasigroups whose subquasigroup lattices
are distributive

Konrad Pióro

Abstract

We prove that if the subquasigroup lattice of a �nite quasigroup Q is dis-
tributive, then Q is cyclic (i.e., Q is generated by one element) and also,
each of its subquasigroups is also cyclic. Finally, we give examples which
show that the inverse implication does not hold.

It is a classical result of Group Theory, showed by Ore in [5] (see also
[7]), that the subgroup lattice of a group G is distributive if and only if G
is locally cyclic (i.e., each �nitely generated subgroup of G is cyclic). In
particular, a �nite group G has a distributive subgroup lattice if and only
if G is cyclic.

In the present paper we prove the following result for quasigroups (for
de�nitions and simple facts of quasigroups and lattices see e.g. [1], [2], [3])

Theorem 1. Let Q = (Q, ◦, \, /) be a �nite quasigroup such that its sub-
quasigroup lattice S(Q) is distributive. Then Q and each subquasigroup of
Q are cyclic.

Before the proof observe that, in the contrary to groups, a subquasigroup
of a cyclic quasigroup need not be cyclic. Let Q be a six-element quasigroup
given by the following table (recall, see e.g. [1], that a �nite groupoid (Q, ◦)
is a quasigroup if and only if the multiplication table of ◦ is a Latin square,
i.e., each element of Q occurs exactly once in each row and each column)

2000 Mathematics Subject Classi�cation: 05B15, 06D05, 06B15, 20N05, 08A30.
Keywords: quasigroup, cyclic quasigroup, subquasigroup, subquasigroup lattice,
distributive lattice.
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◦ a b c d e f
a a c b f e d
b c b a d f e
c b a c e d f
d f d e c a b
e e f d a b c
f d e f b c a

Then Q = 〈f〉 = 〈e〉 = 〈d〉, so Q is cyclic. On the other hand, {a, b, c} is
a subquasigroup of Q which is non-cyclic, because a ◦ a = a, b ◦ b = b and
c ◦ c = c. Note that the constructed quasigroup Q is even commutative.

Observe also that such example cannot be found among quasigroups
having less than 6 elements. More precisely, it is easy to see that any two-
element quasigroup is cyclic. So if a quasigroup Q contains a non-cyclic
subquasigroup G, then G must have at least three elements, say a, b, c. Next,
there is q ∈ Q which generate Q, in particular q ∈ Q \ G. The elements
q ◦a, q ◦ b and q ◦ c are pairwise di�erent. They are also di�erent from a, b, c
(more precisely, {q ◦ a, q ◦ b, q ◦ c} ∩ G = ∅, because a, b, c ∈ G and G is a
quasigroup). At most one of them may be equal q. Thus we have obtained
at least six di�erent elements of Q.

Theorem 1 is straightforward implied by the following more general
lemma (where ∧ and ∨ are lattice operations of in�mum and supremum
respectively)

Lemma 1. Let Q = (Q, ◦, \, /) be a �nite quasigroup such that for any two
di�erent elements p, q ∈ Q

(∗) 〈p ◦ q〉 = (〈p ◦ q〉 ∧ 〈p〉) ∨ (〈p ◦ q〉 ∧ 〈q〉).
Then all subquasigroups of Q are cyclic.

Obviously if the subquasigroup lattice S(Q) is distributive, then (∗)
holds. Because 〈p ◦ q〉 = 〈p ◦ q〉 ∧ 〈p, q〉 = 〈p ◦ q〉 ∧ (〈p〉 ∨ 〈q〉) = (〈p ◦ q〉 ∧
〈p〉) ∨ (〈p ◦ q〉 ∧ 〈q〉).
Proof. Assume that Q contains subquasigroups which are non-cyclic. Take
a family A of all such subquasigroups. Since Q is a �nite quasigroup, A is a
�nite set which is partially ordered by set-inclusion. Thus (A,⊆) contains
at least one minimal element, say G. Then G is a subquasigroup of Q such
that
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(i) G is non-cyclic,

(ii) each proper (i.e., non-empty and non-equal G) subquasigroup of G is
cyclic.

Further,

(iii) G is generated by two elements.

More precisely, G is �nite, so G is generated by some elements g1, g2, . . . , gk,
i.e.,

G = 〈g1, g2, . . . , gk〉.
Take the new subquasigroup 〈g1, g2〉 ≤ G. If G 6= 〈g1, g2〉, then 〈g1, g2〉 is a
cyclic subquasigroup. Let 〈g1, g2〉 = 〈g′〉 for some g′ ∈ G. Then

G = 〈g′, g3, . . . , gk〉.

Thus by simple induction on k we obtain that G is generated by two ele-
ments.

Let B be a set of all pairs (g1, g2) of elements of G which generate G
(i.e., 〈g1, g2〉 = G). Note that B is �nite and non-empty.

Now from the set

{g1 ∈ G : (g1, g2) ∈ B for some g2 ∈ G}

we choose an element g such that

|〈g〉| = min{|〈g1〉| : (g1, g2) ∈ B for some g2 ∈ G} (1)

Next, from the set
{g2 ∈ G : (g, g2) ∈ B}

we choose an element h such that

|〈h〉| = min{|〈g2〉| : (g, g2) ∈ B} (2)

Observe that
g ◦ h 6∈ 〈g〉 and g ◦ h 6∈ 〈h〉 (3)

Assume for example that g ◦ h ∈ 〈g〉. Then h = g\(g ◦ h) ∈ 〈g〉, so
〈h〉 ⊆ 〈g〉, and consequently G = 〈g, h〉 = 〈g〉. But it is a contradiction with
the assumption that G is not cyclic.
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Thus 〈g〉, 〈h〉 and 〈g ◦ h〉 are three di�erent subquasigroups of G. Of
course 〈g〉 and 〈h〉 are not comparable (otherwise G would be cyclic).

By the condition (∗) we have

〈g ◦ h〉 = (〈g ◦ h〉 ∧ 〈g〉) ∨ (〈g ◦ h〉 ∧ 〈h〉).

Let
G1 = 〈g ◦ h〉 ∧ 〈g〉 = 〈g ◦ h〉 ∩ 〈g〉

and
G2 = 〈g ◦ h〉 ∧ 〈h〉 = 〈g ◦ h〉 ∩ 〈h〉

Then G1 ⊆ 〈g〉 and G2 ⊆ 〈h〉. Moreover,

G1 6= 〈g〉 or G2 6= 〈h〉 (4)

Assume that both equalities hold. Then g and h both belong to 〈g ◦ h〉,
because G1 and G2 are contained in 〈g ◦ h〉. Hence 〈g, h〉 is contained in
〈g ◦ h〉, and consequently G = 〈g, h〉 = 〈g ◦ h〉, which is impossible.

Since G1 ⊆ 〈g〉 $ G, we have by the minimality of G, that G1 is cyclic,
i.e.,

G1 = 〈g1〉 for some g1.
Analogously, G2 is also cyclic, i.e.,

G2 = 〈h1〉 for some h1.
Assume �rst that

〈g1〉 $ 〈g〉 (a.1)

Then |〈g1〉| � |〈g〉|. So by the choice of g we obtain that for each element h
of G, g1 and h don't generate G. In particular,

〈g1, h〉 $ G.

Hence 〈g1, h〉 has less elements than G, so (by the minimality of G) 〈g1, h〉
is cyclic. Let g1 be an element of G such that

〈g1, h〉 = 〈g1〉.

On the other hand,

G1 ⊆ 〈g1, h〉, G2 ⊆ 〈h〉 ⊆ 〈g1, h〉
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and
〈g ◦ h〉 = G1 ∨ G2.

Thus
g ◦ h ∈ 〈g ◦ h〉 ⊆ 〈g1, h〉 = 〈g1〉.

Since 〈g1〉 contains g ◦h and h, we obtain that 〈g1〉 contains also g, because
g = (g ◦ h)/h. Hence, the cyclic quasigroup 〈g1〉 contains g and h, which
implies

G = 〈g, h〉 = 〈g1〉.
But it is impossible, because we have assumed that G is not cyclic.

Now assume that
G2 = 〈h1〉 $ 〈h〉 (a.2)

Then
|〈h1〉| � |〈h〉|,

so by the choice of h we obtain that g and h1 don't generate G, i.e.,

〈g, h1〉 $ G.

Hence, 〈g, h1〉 has less elements than G, so 〈g, h1〉 is cyclic (by the minimality
of G). Let h1 be an element of G such that

〈g, h1〉 = 〈h1〉.

Similarly as in the �rst case we have

g ◦ h ∈ 〈g ◦ h〉 = G1 ∨ G2 = 〈g1, h1〉 ⊆ 〈g, h1〉.

Since 〈h1〉 = 〈g, h1〉 contains g ◦h and g, we have that 〈h1〉 contains also h,
because h = g\(g ◦ h). This fact implies that

G = 〈g, h〉 = 〈h1〉.

Thus we again obtain a contradiction.
Summarizing we have shown that G1 = 〈g〉 and G2 = 〈h〉. But it con-

tradicts (4), which completes the proof.

Obviously any groupoid (in particular, each quasigroup) with at most
three elements in which each subgroupoid is cyclic, has at most four sub-
groupoids (together with the empty subgroupoid). In particular, its sub-
groupoid lattice is distributive.
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Unfortunately, there is a four-element quasigroup with a non-distributive
subquasigroup lattice, although each of its subquasigroups is cyclic. For
example, let Q = {a, b, c, d} be a quasigroup de�ned by the following mul-
tiplication table

◦ a b c d
a c a d b
b d b a c
c b d c a
d a c b d

Then 〈a〉 = 〈b, c〉 = 〈b, d〉 = 〈c, d〉 = Q, and 〈b〉 = {b}, 〈c〉 = {c}, 〈d〉 = {d}.
Thus Q has exactly �ve subquasigroups ∅, 〈b〉, 〈c〉, 〈d〉 and Q. These sub-
quasigroups form the non-distributive lattice M5 , so S(Q) is not dis-
tributive. Observe also that, for example, elements b and d (together with
b ◦ d = c) do not satisfy (∗) of Lemma 1.

Now we show that even commutativity is not enough as an additional
assumption. Let Q be a commutative �ve-element quasigroup such that

◦ a b c d e
a a c d b e
b c b e d a
c d e c a b
d b d a e c
e e a b c d

Then 〈a〉 = {a}, 〈b〉 = {b}, 〈c〉 = {c} and 〈e〉 = 〈d〉 = 〈a, b〉 = 〈a, c〉 =
〈b, c〉 = Q. Thus ∅, 〈a〉, 〈b〉, 〈c〉 and Q are all pairwise di�erent subquasi-
groups of Q. Moreover, the lattice S(Q) is isomorphic withM5, so it is not
distributive. Note also that elements a and b do not satisfy (∗) of Lemma 1.

Remark 1. For any commutative quasigroupQ with at most four elements,
if each subquasigroup of Q is cyclic, then the subquasigroup lattice S(Q) is
distributive.

It is true for an arbitrary groupoid with at most three elements, so we
take a four-element commutative quasigroup Q. Note that if each sub-
quasigroup of Q is cyclic, then Q has at most |Q| + 1 = 5 subquasigroups
(because the empty set is also a subquasigroup). But if a quasigroup has at
most four subquasigroups, then of course it has distributive subquasigroup
lattice. Thus we can take Q with exactly �ve subquasigroups (three proper
subquasigroups).
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Assume that S(Q) is not distributive. Then S(Q) is isomorphic with
the non-modular lattice N5 or with the non-distributive lattice M5.

First we consider the case when S(Q) is isomorphic with N5. Let G1 and
G2 be proper subquasigroups ofQ such that G1 $ G2. Let ∅ 6= G3 $ Q be the
subquasigroup which is not comparable with G1 and G2 (i.e., G3 ∩ G2 = ∅
and G3 ∨ G1 = Q). Let q generates Q; and g1, g2, g3 generate G1,G2,G3

respectively. Of course q, g1, g2, g3 are pairwise di�erent elements, i.e., Q =
{q, g1, g2, g3}. Moreover, it is easy to see that G1 = {g1}, G2 = {g1, g2} and
G3 = {g3}. In other words we have

g1 ◦ g1 = g1, g3 ◦ g3 = g3, g2 ◦ g2 = g1.

By the �rst equality and the de�nition of quasigroup we have also

g2 ◦ g1 = g2 and g1 ◦ g2 = g2,

because each of equations x ◦ g1 = g1 and g1 ◦ x = g1 has exactly one
solution.

These all equalities imply that g3 ◦ g1 and g3 ◦ g2 cannot be equal g3, g1

and g2. Thus g3 ◦ g1 = q and g3 ◦ g2 = q. But it is impossible, because the
equation g3 ◦ x = q has two di�erent solutions. This contradiction shows
that S(Q) cannot be isomorphic with N5.

Now assume that S(Q) is isomorphic withM5. Then there are pairwise
di�erent proper and non-comparable subquasigroups G1,G2,G3 of Q. Let
g1, g2, g3 generate these three subquasigroups, respectively. Let q be a gener-
ator of Q. Of course q, g1, g2, g3 are pairwise di�erent, so Q = {q, g1, g2, g3}.
Hence we obtain G1 = {g1}, G2 = {g2}, G3 = {g3}. So

g1 ◦ g1 = g1, g2 ◦ g2 = g2, g3 ◦ g3 = g3.

Moreover, since q generate Q we have that q ◦ q 6= q. Of course we can
assume that q ◦ q = g1. Then q ◦ g1 = g1 ◦ q is di�erent from g1 (because
the equation q ◦ x = g1 has exactly one solution) and q ◦ g1 is not equal q
(because q generates Q). Of course we can assume that g1 ◦ q = q ◦ g1 = g2

(replacing g3 by g2 if necessary).
Now observe that equalities q ◦ q = g1, g1 ◦ q = g2 and g3 ◦ g3 = g3

imply that g3 ◦ q cannot equals g1, g2 and g3. So g3 ◦ q = q. Analogously
q ◦ g1 = g2, g1 ◦ g1 = g1 and g3 ◦ g3 = g3 imply g3 ◦ g1 = q. But these
equalities cannot hold in a quasigroup, because g1 6= q. This contradiction
completes the proof.
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At the end of the paper observe that if G is a �nite group satisfying the
condition (∗) from Lemma 1, then G is cyclic, and consequently its subgroup
lattice S(G) is distributive. But the following example shows that for �nite
(and even commutative) quasigroups the condition (∗) is indeed weaker.

Let Q = (Q, ◦) be a commutative six-element quasigroup such that
◦ a b c d e f
a a c f e b d
b c b a f d e
c f a d b e c
d e f b d c a
e b d e c a f
f d e c a f b

Then 〈a〉 = {a}, 〈b〉 = {b}, 〈d〉 = {d} and 〈c〉 = 〈e〉 = 〈f〉 = 〈a, b〉 =
〈a, d〉 = 〈b, d〉 = Q. So Q has exactly �ve subquasigroups (together with
the empty subquasigroup) which form the non-distributive lattice M5.

On the other hand, we obtain by a straightforward veri�cation that Q
satis�es (∗). More precisely, if g ∈ {c, e, f}, then 〈g◦h〉∧〈g〉 = 〈g◦h〉∧Q =
〈g ◦ h〉; so (∗) holds. The analogous situation we have for h ∈ {c, e, f}. If
g, h ∈ {a, b, d}, then g ◦ h ∈ {c, e, f}; so 〈g ◦ h〉 = Q which implies (∗)
(because then 〈g ◦h〉∧ 〈g〉 = 〈g〉 and 〈g ◦h〉∧ 〈h〉 = 〈h〉, thus the right hand
side of (∗) equals 〈g〉 ∨ 〈h〉 = Q).
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