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differential equations of fifth order with n-deviating

arguments
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Abstract. In this paper, we study the instability properties of solutions of a class of
nonlinear functional differential equations of the fifth order with n-constant deviating
arguments. By using the Lyapunov-Krasovskii functional approach, we obtain some
interesting sufficient conditions ensuring that the zero solution of the equations is
unstable.
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1 Introduction

In 1990, Li and Duan [6] proved some instability theorems for the nonlinear
differential equation of the fifth order without delay,

x(5) + f5(x
′′′)x(4) + f4(x

′′)x′′′ + f3(x
′′) + f2(x

′) + f1(x) = 0. (1)

Later, in a recent paper, Tunç [15] improved the results obtained for Eq. (1) to
the nonlinear differential equation of the fifth order with a constant delay r,

x(5) + f5(x
′′′)x(4) + f4(x

′′)x′′′ + f3(x, x(t − r), ..., x(4), x(4)(t − r))x′′

+f2(x
′(t − r)) + f1(x(t − r)) = 0.

In this paper, instead of these equations, we consider the nonlinear differential
equations of the fifth order n-constant deviating arguments τi,

x(5) + f5(x
′′′)x(4) + f4(x

′′)x′′′ + f3(x, x(t− τ1), ..., x(t− τn), ..., x(4), ..., x(4)(t− τn))x′′

+

n
∑

i=1

gi(x
′(t − τi)) +

n
∑

i=1

hi(x(t − τi)) = 0. (2)

We write Eq. (2) in the system form as follows

x′ = y, y′ = z, z′ = w,w′ = u,
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u′ = −f5(w)u − f4(z)w − f3(x, ..., x(t − τn), ..., u, ..., u(t − τn))z

−

n
∑

i=1

gi(y) −

n
∑

i=1

hi(x) +

n
∑

i=1

t
∫

t−τi

g′i(y(s))z(s)ds

+
n

∑

i=1

t
∫

t−τi

h′
i(x(s))y(s)ds, (3)

where τi are positive constants, n – fixed deviating arguments, the primes in Eq. (2)
denote differentiation with respect to t, t ∈ ℜ+, ℜ+ = [0,∞); f5, f4, f3, gi and hi

are continuous functions on ℜ,ℜ,ℜ2n+2,ℜand ℜ, respectively, with hi(0) = gi(0) =
0, and satisfy a Lipschitz condition in their respective arguments. Hence, the exis-
tence and uniqueness of the solutions of Eq. (2) are guaranteed (see Èl’sgol’ts [1],
pp. 14, 15). We assume in what follows that the functions fi and gi are also dif-
ferentiable, and x(t), y(t), z(t), w(t) and u(t)are abbreviated as x, y, z, w and u,

respectively.

To the best of our knowledge from the literature, so far, the instability of solu-
tions for nonlinear differential equations of the fifth order with multiple deviating
arguments has not been investigated. However, since 1978 up to now, the instability
of solutions of various nonlinear scalar and vector differential equations of the fifth
order without or with a delay has been investigated and is still being studied by
researchers. In particular, for some results proceeded on this topic related to these
type equations, the reader can refer to the papers of Ezeilo [2]-[4], Li and Duan [6],
Li and Yu [7], Sadek [8], Sun and Hou [9], Tiryaki [10], Tunç [11]-[17], Tunç and
Erdogan [18], Tunç and Karta [19], Tunç and Sevli [20]. In all these papers, the au-
thors used some suitable Lyapunov functions or functionals as basic tool to achieve
their proposed goal in the works. They also based on the Krasovskii’s properties
(see Krasovskii [5]) to study the instability of solutions of the equations considered
therein. In this paper, we employ the Lyapunov-Krasovskii functional approach to
investigate the subject for Eq. (2) by defining two new appropriate Lyapunov func-
tionals. In fact, when we take into consideration the differential equations of the
fifth order discussed in the above mentioned papers and the literature, it can be
seen that all the equations studied there do not include or include only a deviating
argument. However, this paper includes n-deviating arguments and is a continuation
of the instability results related to the scalar nonlinear differential equations of the
fifth order mentioned above (see Ezeilo [2]-[4], Li and Duan [6], Li and Yu [7], Sun
and Hou [9], Tiryaki [10], Tunç [14]-[17]). The researches related to the instability
of solutions are also very important in the theory and applications of differential
equations, and the investigation of this topic for nonlinear differential equations of
the fifth order with multiple deviating arguments takes an important place for the
researchers work in this area. This work makes a contribution to the existing studies
made in the literature.
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Let r > 0 be given, and let C = C([−r, 0], ℜn) with

‖φ‖ = max
−r6s60

|φ(s)| , φ ∈ C.

For H > 0 define CH ⊂ C by

CH = {φ ∈ C : ‖φ‖ < H}.

If x : [−r, A) → ℜn is continuous, 0 < A 6 ∞,then, for each t in [0, A), xt in
C is defined by

xt(s) = x(t + s),−r 6 s 6 0, t > 0.

Let Gbe an open subset of Cand consider the general autonomous delay differ-
ential system with finite delay

ẋ = F (xt), xt = x(t + θ), −r 6 θ 6 0, t > 0,

where F (0) = 0, F : G → ℜn is continuous and maps closed and bounded sets into
bounded sets. It follows from the conditions on Fthat each initial value problem

ẋ = F (xt), x0 = φ ∈ G,

has a unique solution defined on some interval [0, A), 0 < A 6 ∞. This solution will
be denoted by x(φ)(.)so that x0(φ) = φ.

Definition 1. The zero solution, x = 0, of ẋ = F (xt)is stable if for each ε > 0 there
exists δ = δ(ε) > 0 such that ‖φ‖ < δ implies that |x(φ)(t)| < ε for all t > 0. The
zero solution is said to be unstable if it is not stable.

2 Main results

The first result of this paper is the following theorem.
Let τ = max τi, (i = 1, 2, ..., n).

Theorem 1. In addition to all the assumptions imposed on the functions f5, f4, f3, gi

and hi appearing in Eq. (2), we assume that there exist positive constants
a3, b̄i, bi and ci such that the following conditions hold:

hi(0) = gi(0) = 0, hi(x) 6= 0, (x 6= 0), gi(y) 6= 0, (y 6= 0),

−b̄i 6 h′
i(x) 6 −bi, 0 6

∣

∣g′i(y)
∣

∣ 6 ci, f5(w) 6 0

for all x, y, w and

f3(x, ..., x(t − τn), ..., u, ..., u(t − τn)) > a3

for all x, ..., u, ...,u(t − τn).
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If

τ < 2min

{

bi

b̄i

,
a3

n
∑

i=1
(b̄i + 2ci)

}

,

then the zero solution of Eq. (2) is unstable.

Proof. Define the Lyapunov functional V = V (xt, yt, zt, wt, ut) :

V =
1

2
w2 − zu − z

w
∫

0

f5(s)ds −

z
∫

0

f4(s)sds −

y
∫

0

n
∑

i=1

gi(s)ds

−y

n
∑

i=1

hi(x) −

n
∑

i=1

λi

0
∫

−τi

t
∫

t+s

y2(θ)dθds −

n
∑

i=1

µi

0
∫

−τi

t
∫

t+s

z2(θ)dθds, (4)

where s is a real variable such that the integrals
n
∑

i=1
λi

0
∫

−τi

t
∫

t+s

y2(θ)dθds and

n
∑

i=1
µi

0
∫

−τi

t
∫

t+s

z2(θ)dθdsare non-negative, and λiand µiare some positive constants

which will be determined later in the proof.

It is clear that

V (0, 0, 0, ε, 0) =
1

2
ε2 > 0

for all sufficiently small ε. Hence, in every neighborhood of the origin,(0, 0, 0, 0, 0),
there exists a point (0, 0, 0, ε, 0) such that V (0, 0, 0, ε, 0) > 0,which shows that V has
the property (K1), (see [5]).

By a direct computation from (3) and (4), we obtain

d

dt
V = −

n
∑

i=1

h′
i(x)y2 + f3(x, ..., x(t − τn), u, ..., u(t − τn))z2

−w

w
∫

0

f5(s)ds − z

n
∑

i=1

t
∫

t−τi

g′i(y(s))z(s)ds

−z

n
∑

i=1

t
∫

t−τi

h′
i(x(s))y(s)ds −

n
∑

i=1

(λiτi)y
2 −

n
∑

i=1

(µiτi)z
2

+
n

∑

i=1

λi

t
∫

t−τi

y2(s)ds +
n

∑

i=1

µi

t
∫

t−τi

z2(s)ds.
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The assumptions of Theorem 1 and the estimate 2 |mn| 6 m2 + n2 imply

−

n
∑

i=1

h′
i(x)y2

>

n
∑

i=1

biy
2,

f3(x, ..., x(t − τn), ..., u, ..., u(t − τn))z2
> a3z

2,

−z

n
∑

i=1

t
∫

t−τi

h′
i(x(s))y(s)ds > − |z|

n
∑

i=1

t
∫

t−τi

∣

∣h′
i(x(s))

∣

∣ |y(s)| ds

> − |z|

n
∑

i=1

t
∫

t−τi

b̄i |y(s)| ds

> −
1

2

n
∑

i=1

(b̄iτi)z
2 −

1

2

n
∑

i=1

b̄i

t
∫

t−τi

y2(s)ds

and

−z

n
∑

i=1

t
∫

t−τi

g′i(y(s))z(s)ds > − |z|
n

∑

i=1

t
∫

t−τi

∣

∣g′i(y(s))
∣

∣ |z(s)| ds

> − |z|
n

∑

i=1

t
∫

t−τi

ci |z(s)| ds

> −
1

2

n
∑

i=1

(ciτi)z
2 −

1

2

n
∑

i=1

ci

t
∫

t−τi

z2(s)ds

so that
d

dt
V >

n
∑

i=1

(bi − λiτi)y
2 + {a3 − 2−1

n
∑

i=1

(ci + b̄i + 2µi)τi}z
2

+
n

∑

i=1

(λi − 2−1b̄i)

t
∫

t−τi

y2(s)ds +
n

∑

i=1

(µi − 2−1ci)

t
∫

t−τi

z2(s)ds.

Let λi = 1
2 b̄i, µi = 1

2ci and τ = max τi, (i = 1, 2, ..., n). Hence, we have

d

dt
V >

n
∑

i=1

(bi − 2−1b̄iτ)y2 + {a3 − 2−1
n

∑

i=1

(b̄i + 2ci)τ}z
2.

If

τ < 2min

{

bi

b̄i

,
a3

n
∑

i=1
(b̄i + 2ci)

}

,
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then
d

dt
V >

n
∑

i=1

(bi − 2−1b̄iτ)y2 + {a3 − 2−1
n

∑

i=1

(b̄i + 2ci)τ}z
2 > 0,

which verifies that V has the property (K2), (see [5]).

On the other hand,
d

dt
V = 0 if and only if y = z = 0, which implies that

y = z = w = u = 0.

Besides, by hi(0) = gi(0) = 0, hi(x) 6= 0 for all x 6= 0, gi(y) 6= 0for all y 6= 0and
the system (3), we can conclude that d

dt
V = 0 if and only if x = y = z = w = u = 0.

Thus, the property (K3), (see [5]), holds. By the above discussion, we conclude that
the zero solution of Eq. (2) is unstable. The proof of Theorem 1 is completed.

Example 1. We consider the nonlinear differential equation of the fifth order with
two deviating arguments,

x(5) −
1

1 + (x′′′)4
x(4) + 9x′′′ + {2 + exp(−x2 − x2(t − τ1) − x2(t − τ2))}x

′′

+ sin x′(t − τ1) + sin x′(t − τ2) − x(t − τ1) − x(t − τ2)

−4arctgx(t − τ1) − arctgx(t − τ2) = 0. (5)

We write Eq. (5) in system form as follows

x′ = y, y′ = z, z′ = w,w′ = u,

u′ =
u

1 + w4
− 9w − {2 + exp(−x2 − x2(t − τ1) − x2(t − τ2)}z

−2 sin y + 2x + 5arctgx −

t
∫

t−τ1

y(s)ds −

t
∫

t−τ2

y(s)ds

+

t
∫

t−τ1

cos y(s)z(s)ds +

t
∫

t−τ2

cos y(s)z(s)ds

−4

t
∫

t−τ1

1

1 + x2(s)
y(s)ds −

t
∫

t−τ2

1

1 + x2(s)
y(s)ds.

It follows that Eq. (5) is a special case of Eq. (2) and

f5(w) = −
1

1 + w4
6 0,
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f4(z) = 9,

f3(.) = 2 + exp{−x2 − x2(t − τ1) − x2(t − τ2)} > 2 = a3,

f2(y) = sin y,−
π

2
6 y 6

π

2
,

f2(0) = 0, g′1(y) = cos y, |cos y| 6 1 = c1,

g2(y) = sin y,−
π

2
6 y 6

π

2
,

g2(0) = 0, g′2(y) = cos y, |cos y| 6 1 = c2,

h1(x) = x + 4arctgx,−
π

2
< x <

π

2
,

h1(0) = 0, h′
1(x) = 1 +

4

1 + x2
,

b̄1 = 5 > 1 +
4

1 + x2
> 1 = b1,

h2(x) = x + arctgx,−
π

2
< x <

π

2
,

h2(0) = 0, h′
2(x) = 1 +

1

1 + x2
,

b̄2 = 2 > 1 +
1

1 + x2
> 1 = b2,

τ < 2min{
bi

b̄i

,
a3

n
∑

i=1
(b̄i + 2ci)

} =
4

11
.

In view of the above estimates, we conclude that all the assumptions of Theorem 1
hold. Hence, if τ < 4

11 , then the zero solution of Eq. (5) is unstable.

Second, we consider the special case of Eq. (2) with gi(x
′(t − τi)) = f2(x

′),
namely, the differential equation of the fifth order n-constant deviating arguments τi,

x(5) + f5(x
′′′)x(4) + f4(x

′′)x′′′ + f3(x, x(t− τ1), ..., x(t− τn), ..., x(4), ..., x(4)(t− τn))x′′

+f2(x
′) +

n
∑

i=1

hi(x(t − τi)) = 0. (6)

We write Eq. (6) in the system form as follows

x′ = y, y′ = z, z′ = w,w′ = u,

u′ = −f5(w)u − f4(z)w − f3(x, ..., x(t − τn), ..., u, ..., u(t − τn))z
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−f2(y) −
n

∑

i=1

hi(x) +
n

∑

i=1

t
∫

t−τi

h′
i(x(s))y(s)ds. (7)

The second result of this paper is the following theorem.
Let τ = max τi, (i = 1, 2, ..., n).

Theorem 2. In addition to all the assumptions imposed to the functions f5, f4, f3, f2

and hi that appearing in Eq. (6), we assume that there exist positive constants
a3, bi and b̄i such that the following conditions hold:

hi(0) = f2(0) = 0, hi(x) 6= 0, (x 6= 0), f2(y) 6= 0, (y 6= 0),

b̄i > h′
i(x) > bi, f5(w) > 0

for arbitrary x, y, w and

f3(x, ..., x(t − τn), ..., u, ..., u(t − τn)) 6 −a3

for all x, ..., u, ...,u(t − τn).
If

τ < 2min{
bi

b̄i

,
a3
n
∑

i=1
b̄i

},

then the zero solution of Eq. (6) is unstable.

Proof. Define the Lyapunov functional V 1 = V1(xt, yt, zt, wt, ut) :

V1 = −
1

2
w2 + y

n
∑

i=1

hi(x) + zu + z

w
∫

0

f5(s)ds

+

z
∫

0

f4(s)sds +

y
∫

0

f2(s)ds −

n
∑

i=1

γi

0
∫

−τi

t
∫

t+s

y2(θ)dθds, (8)

where s is a real variable such that the integrals
n
∑

i=1
γi

0
∫

−τi

t
∫

t+s

y2(θ)dθds are non-

negative, and γi are positive constants which will be determined later in the proof.
Let M = max |f4(z)|

|z|61

, there exists a positive constant esuch that Me < 1 and

0 < e < 1.
Then, it follows that

V1(0, 0, e
2, 0, e) = e3 +

e2
∫

0

f4(s)sds > e3 −
1

2
Me4 > 0
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for all sufficiently small e. Hence, in every neighborhood of the origin,(0, 0, 0, 0, 0),
there exists a point (0, 0, e2, 0, e) such that V1(0, 0, e

2, 0, e) > 0.

By an elementary differentiation, time derivative of the functional V1 in (8) along
the solutions of (7) yields

d

dt
V1 =

n
∑

i=1

h′
i(x)y2 − f3(x, ..., x(t − τn), ..., u, ..., u(t − τn))z2

+w

w
∫

0

f5(s)ds + z

n
∑

i=1

t
∫

t−τi

h′
i(x(s))y(s)ds

−
n

∑

i=1

(γiτi)y
2 +

n
∑

i=1

γi

t
∫

t−τi

y2(s)ds.

The assumptions b̄i > h′
i(x) > bi, f3(.) 6 −a3and the estimate 2 |mn| 6 m2 + n2

imply that
n

∑

i=1

h′
i(x)y2

>

n
∑

i=1

biy
2,

−f3(x, ..., u(t − τn))z2
> a3z

2,

z

n
∑

i=1

t
∫

t−τi

h′
i(x(s))y(s)ds > − |z|

n
∑

i=1

t
∫

t−τi

∣

∣h′
i(x(s))

∣

∣ |y(s)| ds

> − |z|
n

∑

i=1

t
∫

t−τi

b̄i |y(s)| ds

> −
1

2

n
∑

i=1

(b̄iτi)z
2 −

1

2

n
∑

i=1

b̄i

t
∫

t−τi

y2(s)ds

so that
d

dt
V >

n
∑

i=1

(bi − γiτi)y
2 + (a3 − 2−1

n
∑

i=1

b̄iτi)z
2

+

n
∑

i=1

(γi − 2−1b̄i)

t
∫

t−τi

y2(s)ds.

Let γi = 1
2 b̄i and τ = max τi, (i = 1, 2, ..., n).Hence

d

dt
V >

n
∑

i=1

(bi − 2−1b̄iτ)y2 + (a3 − 2−1
n

∑

i=1

b̄iτ)z2.
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If

τ < 2min

{

bi

b̄i

,
a3
n
∑

i=1
b̄i

}

,

then
d

dt
V >

n
∑

i=1

(bi − 2−1b̄iτ)y2 + (a3 − 2−1
n

∑

i=1

b̄iτ)z2 > 0.

The remainder of the proof follows as before, Theorem 1.

Example 2. We consider nonlinear differential equation of the fifth order with two
deviating arguments,

x(5) +
1

1 + (x′′′)4
x(4) + x′′′ − {3 + exp(−x2 − x2(t − τ1) − x2(t − τ2)}x

′′

+x′(t) − x(t − τ1) − 4arctgx(t − τ1)

−x(t − τ2) − arctgx(t − τ2) = 0. (9)

We write Eq. (9) in system form as follows

x′ = y, y′ = z, z′ = w,w′ = u,

u′ = −
u

1 + w4
− w + {3 + exp(−x2 − x2(t − τ1) − u2(t − τ2)}z

−2y + x + 5arctgx

−

t
∫

t−τ1

y(s)ds − 4

t
∫

t−τ1

1

1 + x2(s)
y(s)ds

−

t
∫

t−τ2

y(s)ds −

t
∫

t−τ2

1

1 + x2(s)
y(s)ds.

It follows that Eq. (9) is a special case of Eq. (2) and

f5(w) =
1

1 + w4
> 0,

f4(z) = 1,

f3(.) = −3 − exp{−x2 − x2(t − τ1) − x2(t − τ2)} 6 −3 = −a3,

f2(y) = y, f2(0) = 0,

h1(x) = x + 4arctgx,−
π

2
< x <

π

2
,
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h′
1(x) = 1 +

4

1 + x2
,

b̄1 = 5 > 1 +
4

1 + x2
> 1 = b1,

h2(x) = x + arctgx,−
π

2
< x <

π

2
,

h′
2(x) = 1 +

1

1 + x2
,

b̄2 = 2 > 1 +
1

1 + x2
> 1 = b2.

In view of the above estimates, we conclude that all the assumptions of Theorem
2 hold. Hence, we conclude that if τ < 2

5 ,then the zero solution of Eq. (9) is
unstable.
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1 Problem formulation

Let us consider optimal control problem [2,3] in stochastic formulation

max
(C,LY ,LR)

L = E

[
∫ ∞

0
e(βk−ρ)t C

1−ϑ

1 − ϑ
dt

]

,

subject to

K̇ = Y − C = KαAL1−α
Y N1−α − C, K(0) = 0, (1)

dN = b1LRNdt + gdz, N(0) = 0, (2)

LY + LR − L = 0, (3)

here E is an expectation operator x = (K,N) and F = e(β1−ρ)t C
1−ϑ

1 − ϑ
, the uti-

lity function with constant elasticity of substitution ϑ, ρ is the subjective rate of
discount, βk is the subsidy for capital accumulation stimulation. K is the capital
stock observed in economic activity, N is the stock of innovation elaborated by R&D

sector, A is the productivity parameter in the final goods production sector, LY is
the labor force enrolled in the final goods production sector, LR is the number of
employers in R&D sector, C is the final consumption.

dN = b1LRNdt + gdz (4)

here dz is the stochastic Wiener process, f = (Y − C, b1LRN), g = σ is a con-
stant while gdz is normally distributed with mean zero E[gdz]=o, Var(gdz)= σ2

zdt,
dz =

√
dt.

c© Elvira Naval, 2012
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2 Problem solution

The respective optimality conditions now are:

0 = max
C,LY ,LR

[

F +
E(dL)

dt

]

(5)

and the corresponding HJB (Hamilton – Jacoby – Bellman) equation becomes:

0 = max
C,LY ,LR

[

F +
∂L

∂t
+

∂L

∂x
f +

1

2

g2∂2L

(∂x)2

]

=

= max
C,LY ,LR

[

F + Lt + Lxf +
1

2
g2Lxx

]

. (6)

The Hamiltonian function H for the stochastic case is presented below:

H = F + Lxf + 1
2g2Lxx =e(β1−ρ)t C

1−ϑ

1 − ϑ
+

+Lx1

(

KαAL1−α
Y N1−α − C

)

+ Lx2b1LRN + ν (LY + LR − L) + 1
2σ2Lxx.

Let’s mention that the second order term in (6) is explained by the fact that state
variable N being an Ito process (Lemma Ito’s). Taking derivative of the equation
(6) with respect to x gives:

Lxt + F x + Lxxf + fxLx +
1

2
g2Lxxx +

1

2
(g2)xLxx = 0 (7)

and, therefore,

Lxt + Lxxf +
1

2
g2Lxxx = −F x − fxLx−

1

2
(g2)xLxx. (8)

Applying chain rule and considering second order contribution of the derivatives
with respect to x (Lemma Ito’s), result in:

dLx =
∂Lx

∂t
dt +

∂Lx

∂x

dx

dt
dt +

1

2

∂2Lx

(∂x)2
dx2 .

Since, from Ito’s Lemma E[d(x2)] = g2 dt, the previous equation is reduced to:

dLx

dt
=

∂Lx

∂t
+

∂Lx

∂x

dx

dt
+

1

2

∂2Lx

(∂x)2
g2

dLx

dt
= Lxt + Lxxf +

1

2
Lxxxg

2 . (9)

Substituting (8) in (9) we obtain:
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dLx

dt
= −F x− fxLx−

1

2
(g2)xLxx .

Equating adjoint variable µ to the first derivatives of the objective function L with
respect to x µ1 = Lx1 , µ2 = Lx2 and ω to the second derivatives of the objec-
tive function with respect to state variables ω1 = Lx1x1 , the system of ordinary
differential equation with respect to state variable is as follows:

dLx1

dt
= −F x1− fx1

Lx1−
1

2
(σ2)x1

Lx1x1 ⇒ (10)

⇒
dµ1

dt
= −µ1α

Y

K
,

dLx2

dt
= −F x2− fx2

Lx2−
1

2
(σ2)x2

Lx2x2 ⇒ (11)

⇒
dµ2

dt
= −µ1(1 − α)

Y

N
− µ2b1LR ,

dLx2x2

dt
= −F x2x2− 2fx2

Lx2x2−
1

2
(σ2)x2x2

Lx2x2 ⇒ (12)

⇒
dω

dt
= −2ωb1LR − ω

σ2
x2x2

2
.

From the functional maximization with respect to C,LY , LR we obtain:

µ1 = C−ϑe−(β1+ρ)t , (13)

υ = −µ1(1 − α)
Y

N
, (14)

ν = −µ2b1N . (15)

and the resulting system of conjugate equations becomes:

dµ1

dt
= −µ1α

Y

K
, (16)

dµ2

dt
= −µ1(1 − α)

Y

N
− µ2b1L , (17)

µ1 = C−ϑe−(β1+ρ)t , (18)

ν = −µ1(1 − α)
Y

N
, (19)

ν = −µ2b1N , (20)

dω

dt
= −2ωb1LR − ω

σx2x2
2

2
. (21)

From the conjugate equations for variables µ we obtain:

µ1(1 − α)
Y

N
= µ2b1N ⇒

µ1

µ2
=

b1N

(1 − α) Y
N

,
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while from (17) it results

µ̇2

µ2
= −

µ1

µ2
(1 − α)Y/N − b1LR.

If in the previous equation to introduce the ratio between variables µ1 and µ2

then

−
µ̇2

µ2
= b1LY + b1LR = b1L.

From (16) it becomes
µ̇1

µ1
= −α

Y

K
, while in equilibrium the growth rates of the

conjugate variables are the same, then
µ̇1

µ1

=
µ̇2

µ2
, and considering [2] that

gopt = gC =
Ċ

C
=

1

ϑ

(

αK

Y
+ βk − ρ

)

,

and taking advantage of the last equality, we obtain

gopt =
1

ϑ
(b1L + βk − ρ) .

In conclusion, there are the same balanced growth rates of the conjugate variables µ

for stochastic problem formulation as for the deterministic problem formulation [2].

3 Mayer form presentation

If the problem is represented in the Mayer linear form, F = 0, then:

dLx

dt
= −fxLx−

1

2
(g2)xLxx . (22)

Equation (22) describes dynamics of the conjugate variables in the stochastic case.
The presence of the second order term in the equation follows from the fact that the
state variable is the stochastic variable which is an Ito process.

From the equation (22) one concludes that the calculation of Lxx is necessary.
In order to obtain some expression for the Lxx dynamics, the same derivation as
earlier will be utilized. Resulting equation will be called a conjugate equation. Let’s
differentiate again equation (7) with respect to x:

Lxxt + F xx + Lxxfx + Lxxxf + Lxxfx + Lxfxx+
1

2
g2Lxxxx +

+
1

2
(g2)xLxxx +

1

2
(g2)xLxxx+

1

2
(g2)xxLxx = 0 (23)

and, therefore,
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Lxxt + Lxxxf +
1

2
g2Lxxxx =

= −F xx− 2Lxxfx − Lxfxx−(g2)xLxxx−
1

2
(g2)xxLxx . (24)

Using chain rule and considering the second order contribution with respect to
x we obtain:

dLxx =
∂Lxx

∂t
dt +

∂Lxx

∂x

dx

dt
dt +

1

2

∂2Lxx

(∂x)2
dx2 . (25)

Using Ito’s Lemma E[d(x2)] = g2 dt we obtain:

dLxx

dt
=

∂Lxx

∂t
+

∂Lxx

∂x

dx

dt
+

1

2

∂2Lxx

(∂x)2
g2,

dLxx

dt
= Lxxt + Lxxxf +

1

2
Lxxxxg

2 . (26)

Inserting equation (24) in equation (26) we obtain:

dLxx

dt
= −F xx − 2Lxxfx − Lxfxx−

(

g2
)

x
Lxxx −

1

2
(g2)xxLxx

and, finally, if F = 0 and the third order contribution is not considered (hypotheses
accepted by ItoLemma), it follows:

dLxx

dt
= − 2Lxxfx − Lxfxx −

1

2
(g2)xxLxx . (27)

Equating conjugate variable, µ, to the prime derivative from the objective function
L with respect to the state variable x a̧nd equating conjugate variable ω to the
second derivative, we rewrite equations (9) and (27) in the following way:

dµ/dt = −fxµ− 1/2(g2)x, (28)

dω/dt = −2ωfx− µfxx − 1/2(g2)xxω . (29)

Summarizing the results for the stochastic case (F = 0), Hamiltonian function
and conjugate equations shall be solved in the stochastic principle maximum formu-
lation:

H =µf + 1/2g2ω ,

dµ

dt
= −fxµ−

1

2
(g2)xω µ(T ) = c ,

dω

dt
= −2ωfx−µfxx−

1

2
(g2)xxω ω(T ) = 0 .

It must be mentioned that the resulting problem is two-dimensional.
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4 Conclusions

In the present article the solution of the economic optimal control problem in the
stochastic formulation is obtained. In order to obtain the solution of this problem
the derivation of the respective Hamilton – Jacobi – Bellman equation was applied.
This method contributed to obtaining solution in the stochastic maximum principle
form containing the first order system of the conjugate differential equations. Note
that the growth rate reached in stable condition for the examined problem is the
same as for deterministic, with one difference – there is an additional ordinary
equation characterizing additional conjugate variable (shadow price of the stochastic
restriction). More complete stochastic optimal control problem with the shock above
all economy and with the shocks under productivity in intermediate good sectors
will be studied in the future.
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1 Introduction

A quasigroup is an ordered pair (Q,A) where Q is a nonempty set and A is
a binary operation defined on Q such that each of the equations A(a, y) = b and
A(x, a) = b is uniquely solvable for any pair of elements a, b in Q was established. It
is known that the multiplication table of a finite quasigroup defines a Latin square
and six (not necessarily distinct) conjugates (or parastrophes) are associated with
each quasigroup (Latin square) [1, 6].

In [9] a connection between five identities of two variables and the equality of a
quasigroup to some of the rest five its conjugates was established. It was also proved
that the number of distinct conjugates of a finite quasigroup can be 1, 2, 3 or 6 and
for any m = 1, 2, 3, 6 and any n ≥ 4 there exists a quasigroup of order n with m

distinct conjugates (see Theorem 6 of [9]).
In [12] a connection between different pairs of conjugates of a quasigroup was

established, four identities that correspond to the equality of a quasigroup to its
conjugates were given. It was also proved that any two of these four identities
imply the rest two identities. All six possible sets of conjugates taking into account
all possible cases of the equality (”assembling”) of conjugates were described. The
connection between four identities and possible conjugate sets was shown.

In this article we continue the investigation of conjugates of quasigroups started
in [12], in particular, we study loops, IP -quasigroups and T -quasigroups with dis-
tinct conjugate sets described in [12].

We study in more detail quasigroups and loops all conjugates of which are pair-
wise distinct (these quasigrops we call distinct conjugate quasigroups or, shortly,

c© G.B. Belyavskaya, T. V.Popovich , 2012
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DC-quasigroups). Such quasigroups form an important class and arise by the re-
search of various questions of the quasigroup theory and the Latin square theory,
in particular, in the research of totally conjugate-orthogonal [5] and near totally
conjugate-orthogonal quasigroups [11]. They can be also used by coding and encryp-
tion of information. The criterion of a DC-quasigroup ( of a DC-IP -quasigroup, a
DC-T -quasigroup) is established, some examples of DC-quasigroups are given and
the existence of DC-T -quasigroups of any order n ≥ 5, n 6= 6, is proved.

2 Preliminaries

Remind some necessary notions and results. To any quasigroup (Q,A) the system
Σ(A) of six (not necessarily distinct) conjugates (parastrophes) corresponds:

Σ(A) = (A,A−1,−1A,−1
(

A−1
)

, (−1A)−1, A∗),

where A(x, y) = z ⇔ A−1(x, z) = y ⇔−1A(z, y) = x⇔ A∗(y, x) = z.

Using the Belousov’s designation of conjugates of a quasigroup (Q,A) from [2]
we have the following conjugate system Σ(A):

Σ(A) = (A, rA, lA, lrA, rlA, sA),

where 1A = A, rA = A−1, lA =−1A, lrA =−1(A−1), rlA = (−1A)−1, sA = A∗.

Note that
(

−1(A−1)
)−1

=rlrA =−1
(

(−1A)−1
)

=lrlA =sA and rrA =llA = A,
στA =σ(τA).

Let Σ(A) be the set of conjugates (the conjugate set) of a quasigroup (Q,A). It
is known [9] that | Σ(A) |= 1, 2, 3 or 6.

A quasigroup is a totally-symmetric quasigroup (a TS-quasigroup) if it satisfies
the identities x · xy = y and xy = yx. For TS-quasigroups | Σ(A) |= 1.

The following Theorem 1 of [12] describes all possible conjugate sets for quasi-
groups and points out the only possible variants of equality (”assembling”) of con-
jugates in every case.

Theorem 1 [12]. The following conjugate sets of a quasigroup (Q,A) are only
possible: Σ1(A) = {A}; Σ2(A) = {A,sA} = {A = lrA = rlA, lA = rA =s A};
Σ6(A) = {A, rA, lA, lrA, rlA, sA}; Σ3(A) = {A,lrA,rlA} and three cases are only
possible:

Σ
1
3(A) = {A = rA, lA = lrA, rlA = sA};

Σ
2
3(A) = {A = lA, rA = rlA, lrA = sA};

Σ
3
3(A) = {A = sA, rA = lrA, lA = rlA}.

For convenience we denote the classes of quasigroups (Q,A) with Σ(A) =

Σ1(A),Σ2(A),Σ
1
3(A),Σ

2
3(A),Σ

3
3(A),Σ6(A) by V1, V2, V

1
3 , V

2
3 , V

3
3 , V6, respectively.

We say that a quasigroup (Q,A) satisfies exactly one identity of the set of identi-
ties T = {A(x,A(x, y)) = y,A(A(y, x), x) = y,A(x, y) = A(y, x), A(A(x, y), x) = y}
if it satisfies one identity and does not satisfy the rest identities of this set.
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Remark 1. According to Corollary 4 [12], establishing a connection between con-
jugate sets described in Theorem 1 and the identities of the set T we have that V1

is the class of quasigroups satisfying all identities of T ; V2 (V 1
3 , V

2
3 , V

3
3 ) is the class

of quasigroups satisfying exactly the identity A(A(x, y), x) = y (A(x,A(x, y)) =
y,A(A(y, x), x) = y,A(x, y) = A(y, x) respectively) of T and V6 is the class of quasi-
groups which satisfies none of four identities of T . For a quasigroup (Q,A) of the
class V1 (of the variety of TS-quasigroups) | Σ(A) |= 1; for a quasigroup of the class
V2 (every of the classes V 1

3 , V
2
3 , V

3
3 ) we have | Σ(A) |= 2 (| Σ(A) |= 3 respectively)

and | Σ(A) |= 6 for the class V6.

Below we study loops, IP -quasigroups and T -quasigroups from the point of view
of their conjugate sets.

3 Conjugate sets of loops

Let (Q,A) be a loop with the identity e, A(Ilx, x) = A(x, Irx) = e, that is
Ilx = −1x, Irx = x−1. It is easy to see that if the loop (Q,A) satisfies at least one
of the three identities A(x,A(x, y)) = y, A(A(y, x), x) = y, A(A(x, y), x) = y of the
set T , then it is a loop of exponent two: A(x, x) = e for any x ∈ Q. In this case
Il = Ir = ε.

Proposition 1. In any of the classes V1, V2, V
1
3 , V

2
3 , V

3
3 , V6 of quasigroups there

exists a loop of exponent two.

Proof. Note that if a loop (Q,A) has exponent two , then all its congugates also are
loops of exponent two since Lr

xy = L−1
x y and Rl

yx = R−1
y x, where Lr

xy = rA(x, y),

Rl
yx = lA(x, y), Lxy = A(x, y), Ryx = A(x, y). Any TS-loop is in V1. The loops of

exponent two given by Tables 1–5 are, respectively, in V2, V
1
3 , V

2
3 , V

3
3 and V6:

1 2 3 4 5
2 1 4 5 3
3 5 1 2 4
4 3 5 1 2
5 4 2 3 1

1 2 3 4 5 6
2 1 5 6 3 4
3 6 1 5 4 2
4 3 2 1 6 5
5 4 6 2 1 3
6 5 4 3 2 1

Tab. 1 Tab. 2

1 2 3 4 5 6
2 1 5 6 4 3
3 4 1 5 6 2
4 3 6 1 2 5
5 6 2 3 1 4
6 5 4 2 3 1

1 2 3 4 5 6
2 1 6 5 3 4
3 6 1 2 4 5
4 5 2 1 6 3
5 3 4 6 1 2
6 4 5 3 2 1

1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 4 2
4 6 5 1 2 3
5 3 6 2 1 4
6 4 2 5 3 1

Tab. 3 Tab. 4 Tab. 5

Now consider the loops which are not loops of exponent two.
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Proposition 2. Let a loop (Q,A) be not of exponent two, then (Q,A) ∈ V 3
3 if

(Q,A) is a commutative loop and (Q,A) ∈ V6 if (Q,A) is a noncommutative loop.

Proof. Indeed, in this case (Q,A) /∈ V1, V2, V
1
3 , V

2
3 since this loop satisfies none of

identities of the set T corresponding to these classes. If the loop is commutative,
then by Theorem 1 and Remark 1 it is in the class V 3

3 . Otherwise it is in V6. �

4 Conjugate sets of IP -quasigroups

At first we recall that a quasigroup (Q,A) is called a quasigroup with the property
of invertibility (an IP -quasigroup) if there exist two mappings Il and Ir of the set
Q into Q such that A(Ilx,A(x, y)) = y and A(A(y, x), Irx)) = y for all x, y ∈ Q.

It is known that the mappings Il and Ir are permutations, I2
l = I2

r = ε (the
identity permutation) and IlA(x, y) = A(Iry, Irx), IrA(x, y) = A(Ily, Ilx) [1].

The conjugates of an IP -quasigroup have the following form:
lA(x, y) = A(x, Iry),

rA(x, y) = A(Ilx, y),
lrA(x, y) = IlA(x, Iry),

rlA(x, y) = IrA(Ilx, y),
sA(x, y) = IrA(Ilx, Ily) = IlA(Irx, Iry).

By Theorem 1 of [3] all conjugates of an IP -quasigroup are isotopic. Note that in
a commutative IP -quasigroup and in an IP -loop Ir = Il = I.

Proposition 3. Let a quasigroup (Q,A) be a noncommutative IP -quasigroup. Then
rA(x, y) = lA(x, y) if and only if Il = Ir = I and IA(x, y) = A(y, x).

Proof. Let rA =l A, then Il 6= ε (Ir 6= ε): by Il = ε we have A(Ilx, y) =
A(x, y) = A(x, Iry), then Ir = ε and (Q,A) is commutative. But in this case
from rA(x, y) =l A(x, y) it follows A(Ilx, y) = A(x, Iry), A(x, y) = A(Ilx, Iry),
IlA(x, y) = IlA(Ilx, Iry) = A(y, IrIlx), IlA(Ilx, y) = A(y, Irx), IlIrA(Ily, x) =
A(y, Irx), IlIrA(Ily, Irx) = A(y, x) = A(Ily, Irx), since A(x, y) = A(Ilx, Iry),
whence it follows that IlIr = ε or Il = Ir = I. Taking into account that
A(y, x) = A(Ily, Irx) we obtain IA(x, y) = A(y, x).

Conversely, let Il = Ir = I in a noncommutative IP -quasigroup (Q,A) and
IA(x, y) = A(y, x), then A(x, y) = A(Ix, Iy), A(Ix, y) = A(x, Iy), that is rA(x, y) =
lA(x, y). �

Now we consider IP -quasigroups from the point of view of their affiliation to the
classes of quasigroups V1, V2, V

1
3 , V

2
3 , V

3
3 and V6.

Theorem 2. Let a quasigroup (Q,A) be an IP -quasigroup with Il = Ir = I. Then
(Q,A) ∈ V1 if and only if I = ε; (Q,A) ∈ V 3

3 if and only if (Q,A) is commutative and
I 6= ε; (Q,A) ∈ V2 if and only if (Q,A) is noncommutative and IA(x, y) = A(y, x);
(Q,A) ∈ V6 if and only if (Q,A) is noncommutative and IA(x, y) 6= A(y, x).

Proof. If Il = Ir = I = ε, then all conjugates coincide and (Q,A) ∈ V1. The converse
is also true. If I 6= ε and (Q,A) is commutative, then A =sA, A 6=lA, A 6=rA, so by
Theorem 1 (Q,A) ∈ V 3

3 . The converse follows from Theorem 1.

Let (Q,A) be a noncommutative IP -quasigroup. If IA(x, y) = A(y, x) (in this
case I 6= ε), then A 6=sA, A 6=lA, A 6=rA and by Proposition 3 rA =lA, so by
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Theorem 1 (Q,A) ∈ V2. If (Q,A) ∈ V2, then by Theorem 1 the quasigroup (Q,A)
is noncommutative and rA =lA, so by Proposition 3 IA(x, y) = A(y, x).

If IA(x, y) 6= A(y, x) and (Q,A) is a noncommutative quasigroup, then A 6=sA,
A 6=lA, A 6=rA and by Proposition 3, rA 6=lA. It means that by Theorem 1 the
quasigroup (Q,A) is contained in V6.

If a quasigroup (Q,A) is contained in V6, then it is noncommutative and rA 6=lA,
so by Proposition 3 IA(x, y) 6= A(y, x) (since in this case Il = Ir = I). �

Note that by Theorem 2 of [3] all conjugates of an IP -quasigroup (Q,A) are also
IP -quasigroups if and only if there exists a permutation α such that αA(x, y) =
A(y, x), so in the cases (Q,A) ∈ V1, (Q,A) ∈ V2 and (Q,A) ∈ V 3

3 conjugates of
(Q,A) are IP -quasigroups.

Recall that a Moufang loop is defined by the identity x(y ·xz) = (xy ·x)z and is a
special case of IP -loops. From Theorem 2 and Proposition 2 the following corollaries
easy follow.

Corollary 1. Let (Q,A) be an IP -loop (a Moufang loop), then
(Q,A) ∈ V1 if I = ε;
(Q,A) ∈ V 3

3 if (Q,A) is commutative and I 6= ε;
(Q,A) ∈ V6, if (Q,A) is noncommutative.

Note that the case (Q,A) ∈ V2 of Theorem 2 for an IP -loop is impossible.

Corollary 2. All abelian groups of exponent 2 are contained in the class V1, the
rest abelian group are contained in the class V 3

3 . Non-abelian groups are in V6.

Theorem 3. Let a quasigroup (Q,A) be an IP -quasigroup with Il 6= Ir. Then
(Q,A) ∈ V 1

3 if and only if Il = ε.
(Q,A) ∈ V 2

3 if and only if Ir = ε.
(Q,A) ∈ V6 if and only if Il, Ir 6= ε.

Proof. In this case a quasigroup (Q,A) is noncommutative. If Il = ε (Ir = ε) and
Il 6= Ir, then A 6= sA, A 6= lrA , A 6= lA, and A = rA (A 6= sA, A 6= rlA, A 6= rA and
A = lA ), so (Q,A) ∈ V 1

3 ((Q,A) ∈ V 2
3 , respectively). The converse follows from

Theorem 1 since then A = rA (A = lA), that is Il = ε (Ir = ε). If Il, Ir 6= ε and
Il 6= Ir we have A 6=sA, A 6=lA, A 6=rA and by Proposition 3 rA 6=lA, so (Q,A) ∈ V6

according to Theorem 1. If (Q,A) ∈ V6, then A 6=lA and A 6=rA, so Il, Ir 6= ε. �

Example 1. In [1], p. 74, the following example of IP -quasigroup with Il 6= Ir is
given. Let (Q, ·) be a group with the identity e, θ be its automorphism of order two,
(Q,A) be the quasigroup where A(x, y) = θx · y. Then (M, ◦) = (Q, ·)× (Q,A) is an
IP -quasigroup with Il(a, b) = (a−1, b−1), Ir(a, b) = (a−1, θb−1), where a ·a−1 = e. In
this quasigroup Il 6= Ir and Il, Ir 6= ε if (Q, ·) has not exponent two, so by Theorem 3
(M, ◦) is in V6. If (Q, ·) is a group of exponent two, then Il = ε and by Theorem 3
M(◦) ∈ V 1

3 .

Let in this example A(x, y) = x·θy, (M, ◦) = (Q,A)×(Q, ·), Ir(a, b) = (a−1, b−1),
Il(a, b) = (θa−1, b−1), then
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((a, b) ◦ (c, d)) ◦ Ir(c, d) = (a · θc, bd) ◦ (c−1, d−1) = (a · θc · θc−1, bd · d−1) = (a, b),
Il(a, b)◦((a, b)◦(c, d)) = (θa−1, b−1)◦(a·θc, bd) = (θa−1 ·θa·θ2c, b−1 ·bd)) = (c, d).
Thus, (M, ◦) is also an IP -quasigroup with Il 6= Ir.
If the group (Q, ·) has not exponent two, then the IP -quasigroup (M, ◦) is in

V6, since Il, Ir 6= ε. If the group (Q, ·) is a group of exponent two, then Ir = ε, so
by Theorem 3 (M, ◦) ∈ V 2

3 .

5 Conjugate sets of T -quasigroups

A quasigroup (Q,A) is a T -quasigroup if there exist an abelian group (Q,+), its
automorphisms ϕ,ψ and an element c ∈ Q such that A(x, y) = ϕx+ ψy + c for any
x, y ∈ Q [8].

The conjugates of a T -quasigroup A(x, y) = ϕx + ψy + c (which are also
T -quasigroups) have the following form:

sA(x, y) = ψx+ ϕy + c, rA(x, y) = ψ−1(y − ϕx− c),
lA(x, y) = ϕ−1(x− ψy − c), rlA(x, y) = ψ−1(x− ϕy − c),
lrA(x, y) = ϕ−1(y − ψx− c) (see, for example, [10]).
Let Ix = −x , then I2 = ε where ε is the identity transformation, and Iϕ = ϕI

for any automorphism ϕ of a group (Q,+).
By Proposition 1 of [12] all pairs of conjugates of the conjugate system Σ(A) of

a quasigroup (Q,A) can be divided into four disjoint classes:
I. (A,rA), (lA,lrA), (rlA,sA);
II. (A,lA), (rA,rlA), (sA,lrA);
III. (A,sA), (rA,lrA), (lA,rlA);
IV. (lA,rA), (A,lrA), (rA,sA), (lrA,rlA), (A,rlA), (lA,sA)

such that the equality (inequality) of components of one pair in a class implies the
equality (inequality) of components of any pair in this class.

For T -quasigroups the following (Theorem 2 of [12]) was proved:

Theorem 4 [12]. The components of any pair of a class I, II, III or IV for a
T -quasigroup (Q,A): A(x, y) = ϕx+ ψy coincide if and only if ψ = I for the pairs
of class I; ϕ = I for the pairs of class II; ϕ = ψ for the pairs of class III; ϕ2 = Iψ

and ψ2 = Iϕ (or ϕ = ψ−1 and ϕ3 = I ) for the pairs of class IV.

Note that in [12] the equivalence of the pair of equalities ϕ2 = Iψ and ψ2 = Iϕ

to the pair of equalities ϕ = ψ−1 and ϕ3 = I was proved.
Now we shall describe T -quasigroups with distinct conjugate sets.

Theorem 5. Let (Q,A) be a T -quasigroup: A(x, y) = ϕx+ ψy. Then
(Q,A) ∈ V1 if and only if ϕ = ψ = I;
(Q,A) ∈ V2 if and only if ϕ3 = I, ϕ = ψ−1, ϕ 6= I, ψ;
(Q,A) ∈ V 1

3 if and only if ψ = I, ϕ 6= I;
(Q,A) ∈ V 2

3 if and only if ϕ = I, ψ 6= I;
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(Q,A) ∈ V 3
3 if and only if ϕ = ψ,ϕ 6= I, and at least one of two inequalities

ϕ 6= ψ−1, ϕ3 6= I is fulfilled;
(Q,A) ∈ V6 if and only if ϕ,ψ 6= I, ϕ 6= ψ and at least one of two inequalities

ϕ 6= ψ−1, ϕ3 6= I and at least one of two inequalities ϕ2 6= Iψ or ψ2 6= Iϕ is fulfilled.

Proof. The first statement is easy checked if to take into account the definition of a
TS-quasigroup.

Let ϕ3 = I, ϕ = ψ−1 and ϕ 6= I, ψ. In this case we have ψ 6= I and ϕ 6= ψ, so by
Proposition 1 of [12] and Theorem 4 A = lrA = rlA, lA = rA =sA (these equalities
correspond to the pairs of class IV), A 6= rA, A 6= lA and A 6= sA. Thus, in the
set Σ(A) there are exactly two conjugates and (Q,A) ∈ V2. The converse follows
from the form of Σ2(A) for V2 in Theorem 1 and from Theorem 4 since in this case
A = lrA = rlA, lA = rA =sA, moreover, A 6= rA, A 6= lA, A 6= sA, since Σ2(A)
contains two elements.

Let ψ = I, ϕ 6= I, then ϕ 6= ψ,ψ−1, so by Theorem 4 and Theorem 1 we have

the set Σ
1
3(A), as A = rA, A 6= lA, A 6= sA and lA 6= rA. The converse follows from

the form of Σ
1
3(A) in Theorem 1 as in this case A = rA, A 6= lA, A 6= sA and so by

Theorem 4 ψ = I, ϕ 6= I and ϕ 6= ψ whence ϕ 6= ψ−1.

The case of Σ
2
3(A) is proved analogously. Let ϕ = ψ,ϕ 6= I and at least one of

two inequalities ϕ 6= ψ−1, ϕ3 6= I be fulfilled, then ψ 6= I, so by Theorem 4 and

Theorem 1 we have the set Σ
3
3(A), as A = sA, A 6= lA, A 6= rA and lA 6= rA. The

converse follows from the form of Σ
3
3(A) in Theorem 1 and from Theorem 4.

Let ϕ,ψ 6= I, ϕ 6= ψ and at least one of two equalities ϕ = ψ−1, ϕ3 = I be
not fulfilled. Then the quasigroup (Q,A) satisfies none of conditions of Theorem 4,
so all conjugates of this quasigroup are distinct and Σ(A) = Σ6(A). Conversely,
if all conjugates of a quasigroup (Q,A) are different, then by Theorem 4 in (Q,A)
ϕ,ψ 6= I, ϕ 6= ψ and at least one of two equalities of ϕ = ψ−1, ϕ3 = I is not
fulfilled. �

6 DC-quasigroups

Consider in more detail the class of quasigroups all six conjugates of which are
distinct.

Definition 1. A quasigroup is called a distinct conjugate quasigroup or, shortly, a
DC-quasigroup if all its conjugates are distinct, that is | Σ |= 6.

All DC-quasigroups form the class V6.

Theorem 6. A quasigroup (Q,A) is a DC-quasigroup if and only if A 6=
rA, lA, sA, lrA. A quasigroup (Q,A) is a DC-quasigroup if and only if it satisfies
none of four identities of the set T .
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Proof. Indeed, by Proposition 1 of [12]
if A 6=rA, then lA 6=lrA and rlA 6=sA;
if A 6=lA, then rA 6=rlA and sA 6=lrA;
if A 6=sA, then rA 6=lrA and lA 6=rlA;
if A 6=lrA, then lA 6=rA, rA 6=sA, lrA 6=rlA, A 6=rlA and lA 6=sA

since the corresponding pairs of conjugates coincide simultaneously. �

Let (Q,A) be a DC-quasigroup, A = εA where ε is the identity transformation,
C = {ε, r, l, rl, lr, s} be the set of six conjugations, as transformations of a quasigroup
(Q,A). On the set C we shall define the operation (·), corresponding to the passage
from one conjugate of a quasigroup to another one, taking into account that the
multiplication is realized from the right to the left.

We obtain the group C(·) which is isomorphic to the symmetric group S3 (see [1]).
The multiplication table of the group C(·) is the following:

· ε r l rl lr s

ε ε r l rl lr s
r r ε rl l s lr
l l lr ε s r rl
rl rl s r lr ε l
lr lr l s ε rl r
s s rl lr r l ε

Tab. 6

In this table rs means that at first s then r are applied, so rs = rrlr = lr, and
sr = rlrr = rl.

The following statement gives some properties of DC-quasigroups.

Proposition 4. For a DC-quasigroup the group C(·) is isomorphic to the symmetric
group S3.

Any DC-quasigroup is noncommutative and nontrivial.
Any conjugate of a DC-quasigroup is a DC-quasigroup.
Any quasigroup containing a DC-subquasigroup is a DC-quasigroup.
The direct product of DC-quasigroups is a DC-quasigroup.
The direct product of a TS-quasigroup and a DC-quasigroup is a DC-quasigroup.
The direct product of two quasigroups from distinct classes of V2, V

1
3 , V

2
3 ,

V 3
3 , V6 is a DC-quasigroup.

A nontrivial quasigroup which is a homomorphic image of a DC-quasigroup is
not necessarily a DC-quasigroup.

Proof. The results follow from the definitions, Theorem 6, the characterization of
the classes V1, V2, V

1
3 , V

2
3 , V

3
3 , V6 using the identities of the set T (see Remark 1)

and taking into account that if a quasigroup satisfies an identity, then this identity
holds in any its subquasigroup. The last statement is true since, for example, the
non-abelian group S3 which by Corollary 2 is a DC-group has a homomorphic group
of order two, which is contained in the class V1. �
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By Theorem 6 of [9] for any m = 1, 2, 3, 6 and any n ≥ 4 there exists a quasigroup
of order n with m distinct conjugates. The proof of this theorem for a quasigroup
(Q,A) with | Σ(A) |= 6 is based on the existence of a quasigroup of order 3 satisfying
none of the identities in the set T . But it is easy to check that such quasigroups do
not exist, since six of 12 quasigroups of order 3 are commutative and every of the
remaining six quasigroups coincide with the left or the right inverse quasigroup. So
below we shall bring in small correction in the proof for the case of quasigroups with
| Σ(A) |= 6 using the idea of embedding used in the proof of Theorem 6 [9].

Theorem 7. For every n ≥ 4 there exists a DC-quasigroup of order n.

Proof. It is easy to check that, for example, the quasigroup (Q,A) of order 4 with
the following multiplication table:

A 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 4 3 2 1
4 3 1 4 2

Tab. 7

is a DC-quasigroup. In [7] Trevor Evans has shown that a quasigroup of order n
can be embedded in a quasigroup of order t for every t ≥ 2n. Using the quasigroup
of order 4, given above, for embedding we obtain a DC-quasigroup of any order
n ≥ 8 by Proposition 4. The existence of DC-quasigroups of order n = 5, 7 follows,
for example, from Theorem 8 below (for n = 5 see also Example 2 in the end). By
Corollary 2 the noncommutative group S3 of order n = 6 is a DC-group. �

Summarizing the above results we have the following DC-loops and
DC-quasigroups.

Proposition 5. A noncommutative loop (Q,A) which is not of exponent two is a
DC-loop.

A noncommutative IP -quasigroup (Q,A) with Il = Ir = I and IA(x, y) 6=
A(y, x) is a DC-quasigroup.

A noncommutative IP -loop (a noncommutative Moufang loop, a non-abelian
group) is a DC-loop.

A noncommutative IP -quasigroup with Il 6= Ir and Il, Ir 6= ε is a DC-quasigroup.
A T -quasigroup (Q,A): A(x, y) = ϕx + ψy such that ϕ 6= I, ψ; ψ 6= I and

ϕ2 6= Iψ or ψ2 6= Iϕ ( and ϕ 6= ψ−1 or ϕ3 6= I) is a DC-quasigroup.

Denote by sn the number of DC-groups of order n, then using Fig. 4.3.4 of [6]
with the number of all non-abelian groups of order n < 32 we get that s6 = s10 =
s14 = s21 = s22 = s26 = s27 = 1; s8 = s20 = s24 = s28 = 2; s12 = s18 = s30 = 3;
s16 = 9.

The criterion of Theorem 5 for a DC-T -quasigroup can be reformulated in the
following way.
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Corollary 3. A T -quasigroup (Q,A): A(x, y) = ϕx+ψy is a DC-quasigroup if and
only if ϕ+ ε 6= 0, ψ + ε 6= 0, ϕ− ψ 6= 0 and ϕ2 + ψ 6= 0 or ψ2 + ϕ 6= 0, where 0 is
the endomorphism zero of the abelian group (Q,+).

Indeed, for example, the inequality ϕ 6= I means that ϕx0 6= Ix0 for some x0 ∈ Q,
x0 6= 0, that is (ϕx0 + x0) 6= 0, (ϕ+ ε)x0 6= 0 and ϕ+ ε 6= 0.

An operation A of the form A(x, y) = ax + by (mod n), n ≥ 3, a, b 6= 0, is a
T -quasigroup if and only if the numbers a, b modulo n are relatively prime to n. In
this case ϕ = La, ψ = Lb, where Lax = ax (mod n), x ∈ Q = {0, 1, 2, ..., n − 1}, are
permutations (automorphisms of the additive group modulo n). Note that since the
elements a, b modulo n are relatively prime to n, then they are invertible and belong
to the multiplicative group of the residue-class ring (mod n). This multiplicative
group consists of all numbers from 1 to n − 1 relatively prime to n. In this case
L−1

a x = La−1x (mod n). Taking into account that I = Ln−1 for such quasigroups
we have

Corollary 4. A T -quasigroup (Q,A): A(x, y) = ax + by (mod n) is a DC-qua-
sigroup if and only if a, b 6= n − 1, a 6= b and a 6= b−1 or a3 6= n − 1 (mod n).

The following theorem gives some information about the spectrum of
DC-T -quasigroups.

Theorem 8. For any n ≥ 5, n 6= 6, there exists a DC-T -quasigroup of order n.

Proof. Consider a T -quasigroup (Q,A) with A(x, y) = x + ky (mod n) of order n,
n ≥ 5, n 6= 6, such that the greatest common divisor (n, k) is equal to 1 (that is
(n, k) = 1), k 6= 1, n−1, where 1 ·x = x (mod n). It is easy to see that for any finite
n ≥ 5, n 6= 6 the required number k exists. For this quasigroup a = 1, b = k(mod
n). Check the conditions of Corollary 4: 1, k 6= n− 1 (mod n), k 6= 1 and 1 6= k−1

(mod n). Thus, by Corollary 4 all conjugates of the quasigroup (Q,A) are different
and it is a DC-T -quasigroup. �

Note that among T -quasigroups (Q,A): A(x, y) = ax+ by (mod 4) or A(x, y) =
ax+by (mod 6) there are not DC-quasigroups. That follows if we take into account
Corollary 4 and that the numbers a, b modulo n are relatively prime to n.

Example 2. Find the conjugates of the DC-T -quasigroup (Q,A) with A(x, y) =
x + 2y (mod 5) of order 5, taking into account the form of conjugates of a
T -quasigroup:

sA(x, y) = ψx+ ϕy = 2x+ y (mod 5),
rA(x, y) = ψ−1(y − ϕx) = L2−1(y − x)= 3y − 3x (mod 5)=2x+3y (mod 5),
lA(x, y) = ϕ−1(x− ψy) = x− 2y(mod 5)=x+3y (mod 5),
rlA(x, y) = ψ−1(x− ϕy) = L2−1x−L2−1y = 3x− 3y (mod 5)= 3x+ 2y (mod 5),
lrA(x, y) = ϕ−1(y − ψx) = −2x+ y (mod 5) = 3x+y (mod 5).

Recall that a quasigroup (Q,A) is called totally conjugate orthogonal (near to-
tally conjugate orthogonal), shortly, a totCO-quasigroup [5] (near totCO-quasigroup,
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respectively [11]) if all six its conjugates (five of its conjugates) are pairwise orthogo-
nal. It is evident that these quasigroups are DC-quasigroups if to take into account
that in an orthogonal system all quasigroups are different. In [5] it was proved
that for any number n which is relatively prime to 2, 3, 5 and 7 there exists a
totCO-quasigroup (moreover, a T -quasigroup) of order n.

Note that loops (moreover, quasigroups with right or left identity) and
IP -quasigroups can not be totCO-quasigroups. That follows, for example, from
Proposition 3 of [4] where impossibility of orthogonality of some conjugates for
these quasigroups is proved.
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Moldova, Matematica, 2011, No. 3(67), 69–76.

G.B.Belyavskaya, T. V.Popovich

Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei str. 5, MD-2028 Chişinău
Moldova

E-mail: gbel1@rambler.ru, tanea-popovici@mail.ru

Received June 24, 2011



BULETINUL ACADEMIEI DE ŞTIINŢE
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of two invariant straight lines and one invariant conic

Dumitru Cozma

Abstract. For cubic differential systems with a bundle of two invariant straight lines
and one invariant conic it is proved that a weak focus is a center if and only if the
first four Liapunov quantities Lj , j = 1, 4, vanish.
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1 Introduction

In this paper we consider the cubic system of differential equations

ẋ = y + ax2 + cxy + fy2 + kx3 + mx2y + pxy2 + ry3 ≡ P (x, y),

ẏ = −(x + gx2 + dxy + by2 + sx3 + qx2y + nxy2 + ly3) ≡ Q(x, y),
(1)

in which all variables and coefficients are assumed to be real. The origin O(0, 0) is
a singular point of a center or a focus type for (1), i.e. a weak focus. The purpose
of this paper is to find verifiable conditions for O(0, 0) to be a center.

It is known that the origin is a center for system (1) if and only if it has in some
neighborhood of O(0, 0) a holomorphic integrating factor of the form

µ = 1 +
∑

µj(x, y).

There exists a formal power series F (x, y) =
∑

Fj(x, y) such that the rate of
change of F (x, y) along trajectories of (1) is a linear combination of polynomials
{(x2 + y2)j}∞j=2 :

dF
dt

=
∞
∑

j=2
Lj−1(x

2 + y2)j .

The quantities Lj , j = 1,∞, are polynomials in the coefficients of system (1) and
are called the Liapunov quantities. The order of the weak focus O(0, 0) is r if
L1 = L2 = . . . = Lr−1 = 0 but Lr 6= 0.

The origin is a center for (1) if and only if Lj = 0, j = 1,∞. By the Hilbert’s
basis theorem there exists a natural number N such that the infinite system Lj =
0, j = 1,∞, is equivalent with a finite system Lj = 0, j = 1, N. The number N

is known only for quadratic systems N = 3 [13] and for cubic systems with only
homogeneous cubic nonlinearities N = 5 [18, 22]. If the cubic system (1) contains

c© Dumitru Cozma, 2012
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both quadratic and cubic nonlinearities, the problem of the center was solved only
in some particular cases (see for instance [1, 2, 4, 6–12,15,16,19,20]).

In this paper we solve the problem of the center for cubic differential system (1)
assuming that (1) has two invariant straight lines and one invariant conic passing
through one singular point, i.e. forming a bundle. The paper is organized as follows.
The results concerning relation between integrability, invariant algebraic curves and
Liapunov quantities are presented in Section 2. In Section 3 we find seventeen
sufficient sets of conditions for the existence of a bundle of two invariant straight
lines and one invariant conic. In Section 4 we obtain sufficient conditions for the
existence of a center and finally we give the proof of the main result: a weak focus
O(0, 0) is a center for cubic system (1) with a bundle of two invariant straight lines
and one invariant conic if and only if the first four Liapunov quantities vanish.

2 Invariant algebraic curves, Liapunov quantities, center

An algebraic curve Φ(x, y) = 0 (real or complex) is said to be an invariant curve
of system (1) if there exists a polynomial K(x, y) such that

P
∂Φ

∂x
+ Q

∂Φ

∂y
= ΦK.

The polynomial K is called the cofactor of the invariant algebraic curve Φ = 0. We
shall consider only algebraic curves Φ = 0 with Φ irreducible.

If the cubic system (1) has sufficiently many invariant algebraic curves Φj(x, y) =
0, j = 1, . . . , q, then in most cases an integrating factor can be constructed in the
Darboux form

µ = Φα1
1 Φα2

2 · · ·Φ
αq

q . (2)

A function (2), with αj ∈ C not all zero, is an integrating factor for (1) if and only
if

q
∑

j=1

αjKj ≡ −
∂P

∂x
−

∂Q

∂y
.

System (1) is called Darboux integrable if the system has a first integral or an
integrating factor of the form (2).

The method of Darboux turns out to be very useful and elegant one to prove
integrability for some classes of systems depending on parameters. These last years,
interesting results which relate algebraic solutions, Liapunov quantities and Darboux
integrability have been published (see, for example, [3, 5, 6, 9–12, 17, 21]). The cubic
systems (1) which are Darboux integrable have a center at O(0, 0).

Definition 1. We shall say that (Φj , j = 1,M ; L = N) is ILC (I – invariant
algebraic curves, L – Liapunov quantities, C – center) for (1) if the existence of M

algebraic curves Φj(x, y) = 0 and the vanishing of the focal values Lν , ν = 1, N ,
implies the origin O(0, 0) to be a center for (1).



34 DUMITRU COZMA

The works [6–9, 19, 20] are dedicated to the investigation of the problem of the
center for cubic differential systems with invariant straight lines. In these papers,
the problem of the center was completely solved for cubic systems with at least
three invariant straight lines. The principal results of these works are gathered in
the following two theorems:

Theorem 1. (Φj(x, y), Φj(0, 0) 6= 0, j = 1, 4; L = 1) is ILC for system (1).

Theorem 2. (ajx+ bjy + cj , j = 1, 4; L = 2) and (ajx+ bjy + cj , j = 1, 3; L = 7)
are ILC for cubic system (1).

The problem of the center was solved for cubic systems (1) with two parallel
invariant straight lines and one invariant conic [10]; for cubic systems (1) with two
homogeneous invariant straight lines and one invariant conic [11] and for a class of
cubic systems (1) with a bundle of two invariant straight lines and one invariant
conic [12]. The following theorem was proved:

Theorem 3. (x± iy, Φ; L = 2) and (lj = 1+ajx+bjy, j = 1, 2, l1||l2, Φ; L = 3),
where Φ = 0 is an irreducible invariant conic, are ILC for system (1).

In this paper we shall prove that (lj = 1 + ajx − y, j = 1, 2, l1 ∩ l2 ∩ Φ =
(0, 1); L = 4), where Φ = 0 is an irreducible invariant conic, is ILC for system (1).

3 Conditions for the existence of a bundle of two invariant straight

lines and one invariant conic

Let the cubic system (1) have two invariant straight lines l1, l2 intersecting at
a point (x0, y0). The intersection point (x0, y0) is a singular point for (1) and has
real coordinates. By rotating the system of coordinates (x → x cos ϕ − y sin ϕ, y →
x sin ϕ+y cos ϕ) and rescaling the axes of coordinates (x → αx, y → αy), we obtain
l1 ∩ l2 = (0, 1). In this case the invariant straight lines can be written as

lj = 1 + ajx − y, aj ∈ C, j = 1, 2; ∆12 = a2 − a1 6= 0. (3)

The straight lines (3) are invariant for (1) if and only if the following coefficient
conditions are satisfied:

k = (a − 1)(a1 + a2) + g, l = −b, s = (1 − a)a1a2,

m = −a2
1 − a1a2 − a2

2 + c(a1 + a2) − a + d + 2, r = −f − 1,
n = a1a2(−f − 2) − (d + 1), p = (f + 2)(a1 + a2) + b − c,

q = (a1 + a2 − c)a1a2 − g, (a − 1)2 + (f + 2)2 6= 0.

(4)

Let the conditions (4) be satisfied and assume that f = −2 (the case f + 2 6= 0
was considered in [12]), then a 6= 1 and the cubic system (1) looks:

ẋ = y + ax2 + cxy − y2 + [d + 2 − a − a2
1 − (a1 + a2)(a2 − c)]x2y+

[(a − 1)(a1 + a2) + g]x3 + (b − c)xy2 + y3 ≡ P (x, y),

ẏ = −x − gx2 − dxy − by2 + [g + a1a2(c − a1 − a2)]x
2y+

(a − 1)a1a2x
3 + (d + 1)xy2 + by3 ≡ Q(x, y).

(5)
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Next for cubic system (5) we find conditions for the existence of one invariant
conic passing through the same singular point (0, 1), i.e. forming a bundle. Let the
conic curve be given by the equation

Φ(x, y) ≡ a20x
2 + a11xy + a02y

2 + a10x + a01y + 1 = 0 (6)

with (a20, a11, a02) 6= 0 and a20, a11, a02, a10, a01 ∈ R.
For every conic curve (6) the following quantities [14]:

I1 = a02 + a20, I2 = (4a02a20 − a2
11)/4,

I3 = (4a02a20 − a2
01a20 + a01a10a11 − a02a

2
10 − a2

11)/4
are invariants with respect to the translation and rotation of axes. These invariants
will be taken into account classifying conics. A conic (6) is reducible into two straight
lines if and only if I3 = 0. If I2 > 0, then (6) is an ellipse, if I2 < 0 – a hyperbola
and if I2 = 0 – a parabola.

In order the conic (6) pass through a singular point (0, 1) and form a bundle
with the invariant straight lines (3), we shall assume a01 = −a02 − 1. In this case

Φ(x, y) ≡ a20x
2 + a11xy + a10x + (a02y − 1)(y − 1) = 0. (7)

The conic (7) is an invariant conic for (5) if and only if there exist numbers
c20, c11, c02, c10, c01 ∈ R, where c10 = −a01, c01 = a10 such that

P (x, y)
∂Φ

∂x
+ Q(x, y)

∂Φ

∂y
≡ Φ(x, y)(c20x

2 + c11xy + c02y
2 + (a02 + 1)x + a10y). (8)

Identifying the coefficients of xiyj in (8), we reduce this identity to three systems
of equations {Fij = 0} for the unknowns a20, a11, a02, a10, c20, c11, c02 :

F40 ≡ (a − 1)(a1a2a11 + 2a1a20 + 2a2a20) + a20(2g − c20) = 0,

F31 ≡ (a − 1)(2a1a2a02 + a1a11 + a2a11) − (a2a11 + 2a20)a
2
1−

− (a1a11 + 2a20)a
2
2 + (ca11 − 2a20)a1a2 + (2ca1 + 2ca2 − 2a−

− c11 + 2d + 4)a20 + (2g − c20)a11 = 0,

F22 ≡ 2(c − a1 − a2)a1a2a02 + (2g − c20)a02 + [c(a1 + a2) − a2
1−

− a2
2 − a1a2 − a − c11 + 2d + 3]a11 + (2b − 2c − c02)a20 = 0,

F13 ≡ (2 + 2d − c11)a02 + (2b − c − c02)a11 + 2a20 = 0,

F04 ≡ (2b − c02)a02 + a11 = 0,

(9)

F30 ≡ (a − 1)[(a1 + a2)a10 − a1a2(a02 + 1)] − ga11+
+ (2a − 1 − a02)a20 + (g − c20)a10 = 0,

F21 ≡ [g − c20 + ca1a2 − (a1 + a2)a1a2](−a02 − 1)+
+ [c(a1 + a2) − a2

1 − a1a2 − a2
2 − a + d + 2 − c11]a10+

+ (2c − a10)a20 + (a − d + 1 + a02)a11 − 2ga02 = 0,

F12 ≡ −(d + 1 − c11)(a02 + 1) − (a02 + 2d + 1)a02+
+ (b − c − c02)a10 + (c − b − a10)a11 − 2a20 = 0,

F03 ≡ (b − c02)(a02 + 1) + (a10 + 2b)a02 − a10 + 2a11 = 0,

(10)
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F20 ≡ (a − a02 − 1)a10 + g(a02 + 1) − a11 − c20 = 0,

F11 ≡ (a02 + d + 1)a01 + (a10 − c)a10 + 2a02 − 2a20 + c11 = 0,

F02 ≡ c02 − (a10 + b)(a02 + 1) + 2a10 − a11 = 0.

(11)

Let us denote
j1 = (a1 + a2 − c)a02 − a11, j2 = a02a

2
1 + a11a1 + a20,

j3 = a02a
2
2 + a11a2 + a20, j4 = 4a02a20 − a2

11.

We shall study the compatibility of {(9), (10), (11)} when I3 6= 0, ∆12 6= 0, a 6=
1 and divide the investigation into five subcases: {j1 = 0}, {j1 6= 0, j2 = 0}, {j1j2 6=
0, j3 = 0}, {j1j2j3 6= 0, j4 = 0}, {j1j2j3j4 6= 0}.

3.1 Case j1 = 0

In this case a11 = a02(a1 + a2 − c). We express c02, c11 and c20 from (9), then
we obtain

F40 ≡ h1[a1a2(a1 + a2 − c)a02 + (3a1 + 3a2 − c)a20] = 0,

F31 ≡ h1[((a2 − c + 3a1)(2a2 − c) + 2a2
1)a02 − 2a20] = 0,

(12)

where h1 = (a − 1)a02 + a20.

3.1.1. h1 = 0. In this case a20 = (1 − a)a02 and
F02 ≡ F03 = (a02 − 1)(a10 + a1 + a2 + b − c) = 0.

Let a02 = 1, then express a10 from F11 = 0, a1 from F12 = 0, a2
2 from F20+F21 = 0

and g from F30 = 0. We obtain the following conditions
1) g = [b2(4a − d − 6) + 2bc(1 − a) − 2a(8a + c2 − 4d − 24)+

+ (c2 − 8)(d + 4)]/(4b), 2a(2b + c) − (b + c)(d + 4) = 0,
2a2

2 + a2(b − c) − 6a + 2d + 10 = 0, a1 = (c − b − 2a2)/2

for the existence of a conic 2(a − 1)x2 + (b + c)xy + (b − c)x − 2(y − 1)2 = 0.
Assume a02 6= 1, then F02 = 0 yields c = a1 + a2 + a10 + b. Express d and g from

(11). If b = 0, then we obtain the following conditions
2)

a = [a02(a02 − a1a2 + 1) − a1a2 + a10(a1 + a2 − a10)]/(2a02), b = 0,
c = a1 + a10 + a2, d = [a10(a1 + a2 − a10) − a1a2 − a02(a1a2 + 2)]/a02,

g = [a3
10 − 3(a1 + a2)a

2
10 + a10((2a1 + a2)(a1 + 2a2) − a2

02 + (3a1a2 + 1)a02)
+ 2(a2

02 − a1a2 − (a1a2 + 1)a02)(a1 + a2)]/[2a02(a02 − 1)]

for the existence of a conic [a02(a02 − a1a2 − 1) − a1a2 + a10(a1 + a2 − a10)]x
2 +

2(a02y − 1)a10x − 2(y − 1)(a02y − 1) = 0.
If b 6= 0, then express a from F21 = 0 and we get the following conditions

3)

a = [a10(c − 3b − 2a10) + b(c − b)]/(a02 − 1), a1 = c − a10 − a2 − b,

d = [2a10(c − 4b − 2a10) − a02(a02 + 2) + 3bc − 3b2 + 3]/(a02 − 1),
g = [(a10 + b)a1a2 + 2(a − 1)(a1 + a2) + (1 − a)a10 − ba02]/(a02 − 1),
F30 ≡ a02(a02 − a1a2 − 1) + a1a2 + a10(a10 − a1 − a2) = 0



CENTER PROBLEM FOR CUBIC SYSTEMS . . . 37

for the existence of a conic
[(1 − a)x2 − (a10 + b)xy + y2]a02 + a10x − (a02 + 1)y + 1 = 0.

3.1.2. h1 6= 0. In this case we express a20 from F31 = 0 of (12) and obtain
F40 ≡ g1g2g3 = 0,

where g1 = a1 + 3a2 − c, g2 = a2 + 3a1 − c and g3 = 2a1 + 2a2 − c.

3.1.2.1. g1 = 0. If a02 = 1, then we obtain the following conditions
4)

a = 2, d = (−3b2 − 4bc − c2 − 16)/8, g = −b, a1 = (c − 3b)/4, a2 = (b + c)/4.

The invariant conic is (b + c)2x2 − 8(b + c)xy − 8(b − c)x + 16(y − 1)2 = 0.
If a02 6= 1, then from F02 = F03 = 0 we have a10 = 2a2 − b. We express g from

F20 = 0, c from F30 = 0 and reduce the equations {F21 = 0, F12 = 0} by d from
F11 = 0, then F12 ≡ 0 and F21 ≡ b(a − 2)I3 = 0.

If b = 0, then F11 = 0 yields a02 = −(1 + d + 2a2
2) and we get the following

conditions
5)

b = g = 0, c = [a2(2a
2
2 + 5a + d − 4)]/(a − 1), a1 = c − 3a2

for the existence of a conic
a2(1 + d + 2a2

2)(a2x − 2y)x − 2a2x + (1 + dy + y + 2a2
2y)(y − 1) = 0.

If b 6= 0 and a = 2, then F11 = 0 yields a02 = −(1+ d+ ba2 +2a2
2) and we obtain

the following conditions
6)

a = 2, c = 2a3
2 + ba2

2 + (d + 6)a2 − b, g = −b, a1 = c − 3a2

for the existence of a conic
(2a2

2 + ba2 + d + 1)(a2x − y)2 + (b − 2a2)x − (2a2
2 + ba2 + d)y − 1 = 0.

3.1.2.2. The case g2 = 0 can be reduced to g1 = 0 if we replace a2 by a1.

3.1.2.3. g1g2 6= 0, g3 = 0. If a02 = 1, then F11 = I3 6= 0. Let a02 6= 1. In this
case we express a10 from F02 = F03 = 0, g from F20 = 0, a02 from F30 = 0, d from
F12 = 0 and b from F21 = 0. We obtain
7) b = g = 0, c = 2(a1 + a2), d = −(a + 2a1a2).

The invariant conic is
a1a2(a − 1)x2 − (ay − y − 1)(a1x + a2x − y + 1) = 0.

3.2 Case j1 6= 0, j2 = 0

In this case a20 = −a1(a02a1 + a11). If a02 = 0, then F04 = j1 6= 0. Assume
a02 6= 0 and express c02, c11 and c20 from (9), then we obtain

F40 ≡ F31 = u1u2u3 = 0,
where u1 = 2a02a1 + a11, u2 = a02(a1 + a2) + a11, u3 = (a1a2 − ca1 + a − 1)a2

02 +
(a2 − a1 − c)a02a11 − a2

11.

3.2.1. u1 = 0, i.e. a11 = −2a02a1. If a02 = 1, then F02 ≡ F03 ≡ 0. We express a and
a10 from (11); a1, a2 and d from (10). In this case we get the following conditions
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8) a = 2, d = [2cg − (b + c)2 − 2(4g2 + 3bg + 8)]/8,
a1 = (b + c)/4, a2 = (c + 4g + b)/4

for the existence of a hyperbola
(b + c)2x2 − 8(b + c)xy + 8(c − b)x + 16(y − 1)2 = 0.

If a02 6= 1, then F02 ≡ F03 = 0 yields a10 = 2a1 − b. Reduce the equations of
(10) by g from F20 = 0 and express d from F11 ≡ F12 = 0, a2 from F30 = 0 and c

from F21 = 0. Then we obtain the following conditions
9)

c = [a1(b − bh + 5hv − v) + v(v − b − hv)]/(hv), h = a − 1,
d = [a1v(v − b) − 2a2

1hv − bh2 + bh + bv2 − 2hv − v3]/(hv),
a2 = [(ab + 2ag − b − 3g)a1 + gv]/(hv), v = b + g

for the existence of a hyperbola
((2a1 − b)x + 1)v − (ab + 2g)y − (b − g − ab)(a1x − y)2 = 0.

3.2.2. u1 6= 0, u2 = 0. In this case a11 = −a02(a1 + a2). If a02 = 1, then express a

and a1 from (11); g and a10 from {F30 = 0, F12 = 0}. We get the following conditions

a = 2, g = 0, a1 = (b + c − 2a2)/2, 2a2
2 − (b + c)a2 − d − 2 = 0 (13)

for the existence of a hyperbola a2(b+c−2a2)x
2−(b+c)xy+(c−b)x+2(y−1)2 = 0.

If a02 6= 1, then F02 ≡ F03 = 0 yields a1 = a10 − a2 + b. Reduce the equations
of (10) by d from F11 = 0 and express g, a02, a10 from {F20 = 0, F30 = 0, F21 = 0},
respectively. Then we obtain the following conditions
10)

f = −2, g = 0, a1 = (b + c − 2a2)/2, 2a2
2 − (b + c)a2 − a − d = 0

for the existence of a hyperbola
(a − 1)[(a + d)x2 + (b + c)xy] + (b − c)x − 2(ay − y − 1)(y − 1) = 0.

It is easy to check that (13) are contained in 11).
3.2.3. u1u2 6= 0, u3 = 0. If a02 = 1, then express a from u3 = 0 and c, a10, d, g from
{F12 = 0, F11 = 0, F21 = 0, F30 = 0}, respectively. Then we obtain the following
conditions
11)

a = 1 − a2
11 − (a1 + a2 + b)a11 − a1a2 − ba1, c = −2a11 − b,

d = (a1 − 2a2 − b)a11 − a2
11 + 2a2

1 − a1a2 − a2
2 − b(a1 + a2) − 2,

g = a1[2a
2
11 + (2a1 + 3a2 + 2b)a11 + 2a1a2 + 2ba1 + a2

2 + ba2 + 1],

F20 ≡ a3
11 + (b + a2)(2a11 + b + a2)a11 + (2a1 + 3a11 + 2a2 + b)×

(b + a11 + a2)a1 + b = 0

for the existence a hyperbola a1(a1 + a11)x
2 + bx − a11x(y − 1) − (y − 1)2 = 0.

Assume a02 6= 1, then express c from u3 = 0 and b, d, g from (11). If a11 +
a10 + (a02 − 1)a2 = 0, then F21 = 0 yields a11 = −a02a10 and we get the following
conditions
12) b = 0, c = (2a2

2 − 2a1a2 − a + 1)/(a2 − a1), g = a1,

d = (2a3
1 − 4a2

1a2 + 2a1a
2
2 + a2 − 2aa1 + aa2)/(a1 − a2)
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for the existence of a conic for system (5):
[(2a−1)a1−aa2](a1x−a2x+y)(a1x−y)+(2aa1−aa2−a2)y−(a1−a2)(a2x+1) = 0.

If a11 + a10 + (a02 − 1)a2 6= 0, then express a from F21 = 0 and denote v =
a10 − a2, s1 = a2

02 + 2a02a1v − v2, s2 = a2
02a2 + 2a02a

2
1v + a02a1a2v + a02v − a1v

2,
then F30 ≡ s1a11 + s2a02 = 0.

If s1 = 0, then we obtain the following conditions
13)

a = [v3a2(1 − a4
2) + v2(1 − a4

2 − 2a3
2z − 2a2z) + 4vz(a2

2 − 1) + 4z2]/(4va2
2z),

b = (z − v2a2 − v)/(va2), d = [v3a2(a
2
2 + 1) + v2(2a3

2z + a2
2 − 2a2z + 1)

− vz(a4
2 + a2

2 + 4) + 2z2(2 − a2
2)]/(2va2

2z), a1 = (a2
2 − 1)/(2a2),

c = [v3a2(a
2
2 + 1) + v2(a2

2 + 1) + 4vz(a2
2 − 1) + 2z2]/(2va2z),

g = [v3a2(1 − a4
2) + v2(1 − a4

2 + 2a3
2z − 2a2z) + 2vz(a4

2 + a2
2 − 2)

+ 4z2(1 − a2
2)]/(4va3

2z), z = a11 + v − a2
2v, v = a10 − a2

for the existence a hyperbola x2(2a2
2v− a4

2v− 2a2
2z − v + 2z) + 4xya2(a

2
2v− v + z) +

4xa2(a2 + v) − 4(a2vy + 1)(y − 1)a2 = 0.
If s1 6= 0, then express a11 from F30 = 0 and obtain

14)

a = [(a1 − a2)a
4
02 + (2a2

1v − 3a1a2v + a1 − v)a3
02 + v(4a2

1 − 2a2
1a2v − 2a1a2−

− 3a1v + a2
2 + a2v)a2

02 + v2(a1a
2
2 + a1a2v − 4a1 + 2a2 + v)a02 + v3]/(s1s3),

b = [v2(v − a1 + a2) − va2
02 + va02(2a

2
1 − a1a2 − 2va1 + 1)]/s1,

c = [a4
02 + (4a1a2 + 4va1 − 2a2

2 − 1)a3
02 + (4a2

1(a1 + a2 + v) − 3a1a
2
2 − 4a2−

− 2v)va2
02 + v2(a2

2 − 4a2
1 − 6a1a2 − 4va1)a02 + v3(a1 + 2a2 + v)]/(s1s3),

d = [a4
02(a2 − 2a1) + a3

02(4a
3
1 − 6a2

1a2 − 4va2
1 + 2a1a

2
2 + 2va1a2 − 2a1 + a2)+

+ v(2a2
1a

2
2 − 4a3

1a2 − 8a2
1 + 5a1a2 + 2va1 − 2va2 + 2)a2

02 + v2(4a2
1a2−

− a1a
2
2 − 2va1a2 + 5a1 + a2)a02 + v3(a2

2 − a1a2 + va2 − 1)]/(s1s3),

g = [(a2
02(2a1 − a2 + v) + 2va02(a1v − 1) − a2v

2 − v3)(a02 + a2v)a1]/(s1s3),

v = a10 − a2, s1 = a2
02 + 2a02a1v − v2, s3 = 2a02a1 − a02a2 − v.

The invariant hyperbola is of the form (7) with a10 = a2 + v, a01 = −a02 − 1,
a20 = [a2

02a1(a02(a2 − a1) + va1a2 + v)]/s1, a11 = (−s2a02)/s1.

3.3 Case j1 · j2 6= 0, j3 = 0

In this case we also obtain the sets of conditions 8)–14).

3.4 Case j1 · j2 · j3 6= 0, j4 = 0

In this case a20 = a2
11/(4a02), I2 = 0 and the conic is a parabola. We express

c02 from F04 = 0, c11 from F13 = 0, c20 from F22 = 0 and a1 from F31 ≡ F40 = 0.
3.4.1. a02 = 1. In this subcase from the equations F11 = 0 and F12 = 0, we get
respectively that a10 = a11 + c, c = −(2a11 + b). We find g from F30 = 0, d from
F21 = 0 and a2

2 from F20 = 0, then obtain the following conditions
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15)
c = −2a11 − b, g = (−a2

11 − 2ba11 − 4h2)/(2a11),
d = (−2ha4

11 + b(1 − h)a3
11 − 4h(h + 2)a2

11 − 8bh2a11 − 16h3)/(4ha2
11),

a1 = (−3a2
11 − 2a11(a2 + b) − 4h)/(2a11), h = a − 1,

2ha3
11 + a2

11(6a2h + bh + b) + 4a11h(a2
2 + ba2 + h) + 8a2h

2 = 0

for the existence of a parabola a2
11x

2 + 4a11xy − 4a11x − 4bx + 4(y − 1)2 = 0.

3.4.2. a02 6= 1. In this case the equations F02 ≡ F03 = 0 yields a11 = −(a10 + b)a02.
We reduce the equations of (10) by d from F11 = 0 and a2

2 from F20 = 0. Next we
find c from F30 = 0 and denote u = a10 + b, h = a − 1, v = 2(b + g) − u, then the
equation F21 = 0 becomes F21 ≡ r1a02 + r2 = 0, where

r1 = (u2 + 4h)v, r2 = 2buv − 8bh2 − 4hv − u2v.

Let r1 = 0. If u2 +h = 0, then j1 = 0. Suppose u2 +h 6= 0 and v = 0, then b = 0
and F20 ≡ f1f2 = 0, where f1 = a2 − u, f2 = a02u + 4ha2 − 2hu − u.

If f1 = 0 or f2 = 0, then we get
16) a = h + 1, b = 0, c = (dg2 + 2g4 + 8g2h + 2g2 − 2h2)/(2gh),

a1 = [g(d + 2g2 + 2h + 2)]/(2h), a2 = 2g.

The invariant parabola is (1 + d + 2g2)(gx − y)2 − 2gx − (d + 2g2)y − 1 = 0.
Assume r1 6= 0 and express a02 from F21 = 0, then we obtain the following

conditions
17)

c = [u4v(16h2 − bv) + 4u3hv(b + v − bh) + 8u2h(6h2v − 2bh2 − bv2)
+ 16uh2v2 − 64h4v]/[8h2uv(4h + u2)],

d = [u5v(bv − 8h2) − 4u4hv(b + v) + 4u3hv(3bv − 8h2 − 8h)
+ 16u2h2v(b − 2v) + 32uh2(bv2 − 4bh2 − 4hv) − 64h3v2]/[16h2uv(4h + u2)],

a1 = [u3v(12h2 − bv) + 4u2hv(v − 2a2h − bh + b) + 8uh(6h2v − 2bh2 − bv2)
+ 16h2v(v − 2a2h)]/[8h2v(4h + u2)],

u4v(bv − 8h2) + 2u3v(12a2h
2 − a2bv − 2bh − 2hv)

+4u2h(bv2 − 4a2
2hv − 2a2bhv + 2a2bv + 2a2v

2 + 8bh2 − 8h2v)
+16uh(bhv − 2a2bh

2 − a2bv
2 + 6a2h

2v − hv2) + 32a2h
2v(v − 2a2h) = 0

for the existence of a parabola 2[((ux−2y +2)(ux−2y)u+8hx)v−4((ux−4y)ux+
4(y − 1)y)h2]b − (4h + u2)(ux − 2y + 2)2v = 0

3.5 Case j1 · j2 · j3 · j4 6= 0

In this case we express c02 from F04 = 0, c11 from F13 = 0, c20 from F22 = 0 and
substitute into the equations {F40 = 0, F31 = 0} of (7). Calculating the resultant of
the equations {F40 = 0, F31 = 0} by a we obtain

Res(F40, F31, a) = j1j2j3j4 6= 0.
In this case the system of equations {(9), (10), (11)} is not compatible.

Remark 1. For cubic differential system (1) seventeen sets of conditions for the
existence of at least two invariant straight lines and one invariant conic passing
through the same singular point (0, 1) were obtained.
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4 Sufficient conditions for the existence of a center

Lemma 1. The following eighteen sets of conditions are sufficient conditions for
the origin to be a center for system (5):

i)

a = [a02(a02 − a1a2 + 1) − a1a2 + a10(a1 + a2 − a10)]/(2a02), b = 0,
c = a1 + a10 + a2, d = [a10(a1 + a2 − a10) − a1a2 − a02(a1a2 + 2)]/a02,

g = [a3
10 − 3(a1 + a2)a

2
10 + a10((2a1 + a2)(a1 + 2a2) − a2

02 + (3a1a2 + 1)a02)
+ 2(a2

02 − a1a2 − (a1a2 + 1)a02)(a1 + a2)]/[2a02(a02 − 1)];

ii) a = 2, b = [(c(9 − 2c2)]/[3(c2 + 9)], d = [(2(−4c2 − 9)]/(c2 + 9),
g = [c(2c2 − 9)]/[3(c2 + 9)], a1 = c/3, a2 = 0;

iii) b = c = g = 0, d = 2a2
1 − a, a2 = −a1;

iv) b = g = 0, d = a − 2, a2 = (1 − a)/a1, 2a2
1 − ca1 − 2a + 2 = 0;

v)

a = 2, d = −[b3g + 7b2g2 + 2b2 + 14bg3 − 8bg + 8g4 + 8g2]/(b − 2g)2,
c = [(b + 2g)a2]/g, a1 = [2(b + g)g]/(2g − b), a2 = [(b + 4g)g]/(2g − b)
(b + 4g)(b + 2g)(b + g)2bg + (b2 + bg + 6g2)(b − 2g)2 = 0;

vi)

c = [((b + 4g)(b + g) − a(b + 2g)2)(g − b)]/[bg(b + g)2],
d = [b2(1 − a) + bg(2a − 5) + 2g2(a − 1)]/[b(b + g)], a1 = [(b + g)g]/(g − b),
bg(b + g)2 + (a − 1)(b − g)2 = 0, a2 = g[a(b + 2g) − 2(b + g)]/[(a − 1)(g − b)];

vii)

a = 4g2 + 2, b = −3g, c = −5g, d = −2(7g2 + 1), a1 = −2g, a2 = −g;

viii)

a = [2(b2 + bg − 6g2)a2
1 − (b3 − 19bg2 − 18g3)a1 − 6g2(b + g)2]/z,

c = [a1(b − bh + 5hv − v) + v(v − b − hv)]/(hv),
d = [a1v(v − b) − 2a2

1hv − bh2 + bh + bv2 − 2hv − v3]/(hv),
a2 = [a1(b − bh + 2hv − v) + v(v − b)]/(hv), h = a − 1, v = b + g,

z = 2a2
1(8bv − 4v2 − 3b2) + v(5b2 − 16bv + 10v2)a1 − (b2 − 3bv + 2v2)v2,

(2a1 − v)(2a1 − v − g)z + b(2a1 − b + g)((2b − 4g)a1 + 4g2 + 3bg − b2) = 0;

ix)

c = [2(680a − 877)]/[b(245a − 316)], d = (1178 − 913a)/(55a − 71),
g = 5b(1 − a), a1 = [b(35a − 44)]/(5a − 8), a2 = [b(100a − 129)]/(10a − 13),
5a2 − 8a + 2 = 0, b2(245a − 316) − 65a + 84 = 0;

x) a = 4/3, c = 5b, g = 0, 36b2d + 12b2 + 9d2 + 12d + 4 = 0,
a1 = 3b − a2, 6a2

2 − 18ba2 − 3d − 4 = 0;
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xi) c = b, d = 2(1 − a), g = 0, a1 = b − a2, 2a2
2 − 2ba2 + a − 2 = 0;

xii)

d = (6b + 2c − 7ab − ac)/(5b − c), a1 = (c + b − 2a2)/2,
g = 0, 36a2 − 10ab2 − 8abc + 2ac2 − 96a + 5b2 + 14bc − 3c2 + 64 = 0,
(5b − c)(2a2

2 − (b + c)a2) + 2(ab + ac − 3b − c) = 0;

xiii)

a = (3a2
2 + 2ba2 − 1)/(2a2

2), d = (4ba2 − a4
2 − 2ba3

2 − 3a2
2 − 2)/(2a2

2),

c = 2a2 + b − 2a−1
2 , g = (a4

2 − 2ba3
2 + 2ba2 − 1)/(2a3

2), a1 = (a2
2 − 1)/(2a2);

xiv) a = 1 − 2a2
1 + 3a1a2 − a2

2, b = 0, c = 3a2 − 2a1,

d = 6a2
1 − 6a1a2 + a2

2 − 2, g = a1;

xv)

a = [v3a2(1 − a4
2) + v2(1 − a4

2 − 2a3
2z − 2a2z) + 4vz(a2

2 − 1) + 4z2]/(4va2
2z),

b = (z − v2a2 − v)/(va2), d = [v3a2(a
2
2 + 1) + v2(2a3

2z + a2
2 − 2a2z + 1)

− vz(a4
2 + a2

2 + 4) + 2z2(2 − a2
2)]/(2va2

2z), a1 = (a2
2 − 1)/(2a2),

c = [v3a2(a
2
2 + 1) + v2(a2

2 + 1) + 4vz(a2
2 − 1) + 2z2]/(2va2z),

g = [v3a2(1 − a4
2) + v2(1 − a4

2 + 2a3
2z − 2a2z) + 2vz(a4

2 + a2
2 − 2)

+ 4z2(1 − a2
2)]/(4va3

2z), z = a11 + v − a2
2v, v = a10 − a2;

xvi)

a = 2, b = [2(a2
11 + 4)]/[a11(a

2
11 − 4)], g = [a11(a

2
11 + 4)]/[2(4 − a2

11)],
c = [2(a4

11 − 3a2
11 + 4)]/[a11(4 − a2

11)], d = [(a2
11 + 4)(a2

11 − 2)]/[2(4 − a2
11)],

a1 = a3
11/(4 − a2

11), a2 = (−a11)/2;

xvii) a = h + 1, b = 0, c = (8g2 − 3h)/(2g), a2 = 2g,

d = (−2g4 − 2g2 − h2)/g2, a1 = (2g2 − h)/(2g);

xviii)

a = (uv + 4)/4, b = [(u + v)v]/[2(v − u)], g = [(u + v)u]/[2(u − v)],
c = ((2u − v)2 + 4)/[2(u − v)], d = [(2u2 − 2uv − v2 + 12)u]/[4(v − u)],
a1 = u/2, a2 = (2u2 − uv + 4)/[2(u − v)].

Proof. In each of the cases i) – xviii) the system (5) has two invariant straight
lines of the form (3) and one invariant conic Φ = 0. The system (5) has a Darboux
integrating factor of the form

µ = lα1
1 lα2

2 Φα3 .

In the case i): Φ = [a02(a02 − a1a2 − 1)− a1a2 + a10(a1 + a2 − a10)]x
2 + 2(a02y−

1)a10x − 2(y − 1)(a02y − 1) = 0 and α1 = α2 = α3 = −1.
In the case ii): Φ = (4c2 + 9)[(cx − 3y)2 + 3cx] − 9y(5c2 + 18) + 9(c2 + 9) and

α1 = 3, α2 = −(10c2 + 9)/(4c2 + 9), α3 = −2(5c2 + 18)/(4c2 + 9).
In the case iii): Φ = (a − 1)(y − a1x)(y + a1x) − (ay − 1) and α1 = α2 =

(2a2
1)/(2 − a), α3 = (2a2

1 − 3a + 6)/(a − 2).
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In the case iv): Φ = (a − 1)(2ax2 + cxy − 2x2 − 2y2) − cx + 2ay − 2 and
α1 = α2 = α3 = −1.

In the case v): Φ = [b(2gx + y) + 2g(gx − y)]2 + (8g3 − b3)x + (b − 2g)2(1 − 2y)
and α1 = 3, α2 = [−2(b2 + bg + 3g2)]/[b(b + g)], α3 = [−3(b + 2g)(b − g)]/[(b + g)b].

In the case vi): Φ = (a − 1)[((b + g)gx + 2(b − g)y)(ab − b + g)g − (b2 + bg +
2g2)(b− g)]x − bg(b + g)(aby − by − b + gy − g)(y − 1) and α1 = 2, α2 = (b2 − ab2 −
2ag2 − bg + 2g2)/[b(ab− b+ g)], α3 = (3b2 − 3ab2 + 2ag2 − 3bg− 2g2)/[b(ab− b+ g)].

In the case vii): Φ = (a − 2)(2(3a − 4)(gx + y) − 1)x + 2g(3ay − 4y − 2)(y − 1)
and α1 = 3, α2 = [2(3 − 2a)]/(3a − 4), α3 = (14 − 11a)/(3a − 4).

In the case viii): Φ = ((2a1 − b)x+1)v +(2b−ab−2v)y − (2b− v−ab)(a1x−y)2

and α1 = 3, α2 = [2(3a1g
2 − 3bg2 − 3g3 −u)]/u, α3 = [3(2g3 − 2a1g

2 + 2bg2 −u)]/u,
where u = (4b − 8g)a2

1 − (4b2 − 12bg − 10g2)a1 + b3 − 4b2g − 7bg2 − 2g3.
In the case ix): Φ = (11874abx − 4620ay + 6725a − 15316bx + 5960y − 8675)x +

5b(338ay − 545a − 436y + 703)(y − 1) and α1 = 3, α2 = (667a − 860)/[2(17a −
22)], α3 = [27(40 − 31a)]/[2(17a − 22)].

In the case x): Φ = [(3d + 4)x + 18b(y − 2)]x − 6(y − 1)(y − 3) and α1 =
(6bd − b − 3da2)/(2a2 − 3b), α2 = (b + 3bd − 3da2)/(2a2 − 3b), α3 = 3d − 2.

In the case xi): Φ = (a − 1)[(a − 2)x − 2by]x + 2(ay − y − 1)(y − 1) and α1 =
1, α2 = 1, α3 = −4.

In the case xii): Φ = (a−1)[2(ab+ac−3b−c)x− (5b−c)(b+ c)y]x− (5b2 −6bc+
c2)x+ 2(5b− c)(ay − y− 1)(y− 1) and α1 = [2(7ab+ ac− 6b− 2c)a2 − 3ab2 − 4abc−
ac2+4b2+2bc+2c2]/[(b+c−4a2)(1−a)(5b−c)], α2 = [2(7ab+ac−6b−2c)a2+2b(b+
3c−2ab−2ac)]/[(b+c−4a2)(1−a)(5b−c)], α3 = (ac−17ab+16b)/[(a−1)(5b−c)].

In the case xiii): Φ = [(a2
2 + 2ba2 − 1)(a2

2 − 1)x − 4(a2
2 + ba2 − 1)a2y + 4a2(a

2
2 −

1)]x + 4a2
2(y − 1)2 and α1 = 1, α2 = (a2

2 + 2ba2 − 1)/2, α3 = (−a2
2 − 2ba2 − 5)/2.

In the case xiv): Φ = (2a1 −a2 +1)(2a1 −a2−1)(a1x−a2x+y)(a1x−y)+a2x+
(4a2

1 − 4a1a2 + a2
2 − 2)y + 1 and α1 = 2, α2 = (2a2

1)/(4a1a2 − 4a2
1 − a2

2 + 1), α3 =
(12a1a2 − 10a2

1 − 3a2
2 + 3)/(4a2

1 − 4a1a2 + a2
2 − 1).

In the case xv): Φ = x2(2a2
2v−a4

2v−2a2
2z−v+2z)+4xya2(a

2
2v−v+z)+4xa2(a2+

v)−4(a2vy+1)(y−1)a2 and α1 = 1, α2 = (a3
2v

3 +a2
2v

2−a2
2vz+a2v

3−2a2v
2z+v2−

vz−2z2)/(2a2v
2z), α3 = (2z2−a3

2v
3−a2

2v
2+a2

2vz−a2v
3−4a2v

2z−v2+vz)/(2a2v
2z).

In the case xvi): Φ = a11(a
2
11−4)(a2

11x
2 +4a11xy+4(y−1)2)−4x(a4

11−2a2
11 +8)

and α1 = (a4
11 − 2a2

11 + 8)/[2(a2
11 − 4)], α2 = 2, α3 = (a4

11 + 6a2
11 − 24)/[2(4 − a2

11)].
In the case xvii): Φ = (g2 + h2)(xg − y)2 + 2g3x − (2g2 + h2)y + g2 and α1 =

−3, α2 = (2g2 + h)2/[2(g2 + h2)], α3 = −(4g4 + 4g2h + g2 + 2h2)/[2(g2 + h2)].
In the case xviii): Φ = u(v2−4)(ux−2y)2+8(uv−2u2−v2)x+4(8u−uv2−4v)y+

16(v−u) and α1 = (4−2u2−v2)/(v2−4), α2 = 2, α3 = (2u2−3v2+12)/(v2−4).

Lemma 2. The following three sets of conditions are sufficient conditions for the
origin to be a center for system (5):

i)
b = g = 0, d = (9 − 18a − 2c2)/9, a2 = c/3, a1 = 0;

ii)
a = 1 − 6b2, c = 11b, d = −(54b2 + 5)/3, g = 0,
a1 = 6b − a2, 3a2

2 − 18ba2 + 36b2 + 1 = 0;



44 DUMITRU COZMA

iii)
a = (9 − 2b2)/9, c = (5b)/3, d = (3 − 2b2)/3, g = (−4b)/3,
a1 = (2b − 3a2)/3, 9a2

2 − 6ba2 + 4b2 + 27 = 0.

Proof. In each of the cases i)–iii) the first Liapunov quantities vanish L1 = 0. The
system (5) along with invariant straight lines (3) has also one more invariant straight
line and one invariant conic.

In the case i): l3 = 2(9a+c2−9)y−9, Φ = 2(a−1)(cx−3y)2+6cx+9y(1−2a)+9.
In the case ii): l3 = 6bx− 2y + 3, Φ = 2b2(36b2 + 1)x2 − 36b3xy − 5bx + (6b2y +

1)(y − 1).
In the case iii): l3 = 2bx−6y−3, Φ = 2(b2+9)(2bx−3y)2−27bx−9(2b2+9)y−81.
By Theorem 1 in each of these cases the origin is a center.

Lemma 3. The following four sets of conditions are sufficient conditions for the
origin to be a center for system (5):
i)

a = [(b2 + 5bg + 2g2)(2b + g)]/u, c = [g(4g2 − 3b2 + 5bg)]/[u(2b + g)],
d = −(3b3 + 11b2g + 16bg2 + 6g3)/u, (2b + g)u − g2 = 0,
u = (b2 + 4bg + 2g2)(2b + g), a1 = (g2 + bg − b2)/g, a2 = 3b + 2g;

ii) a = 4/7, c = −6b, d = (−48)/7, g = −3b, 7b2 − 9 = 0,
a1 = (−3a2 − 14b)/3, 7ba2

2 + 42a2 + 45b = 0;

iii) a = −1, c = 16b, d = (−37)/7, g = (−b)/4, 49b2 − 8 = 0,
a1 = (29b − 4a2)/4, 196a2

2 − 1421ba2 + 380 = 0;

iv)

a = h + 1, b = [2(h + u2)2(2 − u2)]/[u(h + 2)(8h + 7u2 + 2)],
c = [2(h + u2)(19u2 − 4h2 − hu2 + 10h − 6)]/[u(h + 2)(8h + 7u2 + 2)],
d = (u6 − 52hu2 − 88h − 50u4 − 84u2 − 24)/[4(h + 2)(8h + 7u2 + 2)],
a1 = [2(h + u2)(13u2 − 6h2 − 4hu2 + 8h − 2)]/[u(h + 2)(8h + 7u2 + 2)] − a2,

g = [−2b(h + u2)]/(u2 − 2), u4 − 2u2 + 8h2 + 8hu2 = 0,
[2(8h + 7u2 + 2)(h + 2)2a2

2 + (5u2 − 2h2 − hu2 + 2h − 2)(4h + u2+
6)(h + u2)]u − 4(13u2 − 6h2 − 4hu2 + 8h − 2)(h + u2)(h + 2)a2 = 0.

Proof. In each of the cases i)–iv) the system (5) along with invariant straight lines
(3) has also two more invariant straight lines and one invariant conic:

In the case i): l3 = ((2b + g)x − y)(b + g) + 2b + g, l4 = 2(b(2b + g)x + gy)(b +
g) − g(2b + g), Φ = ((2a1 − b)x + 1)(b + g) − (ab + 2g)y − (b − g − ab)(a1x − y)2.

In the case ii): l3 = 2bx + 2y − 1, l4 = 4bx + 12y − 3, Φ = 144bx2 + 288xy +
112by2 − 189x − 161by + 49b.

In the case iii): l3 = 21bx − 12y + 28, l4 = 42bx − 6y + 7, Φ = 27x2 − 189bxy +
35bx + 54y2 − 68y + 14.

In the case iv): l3 = 2(20h2 +17hu2−10h−15u2−2)(2hx+uy)+u(8h2 +7hu2 +
18h+14u2+4), l4 = 2(34h3+29h2u2−30h2−36hu2+8u2)x+yu(20h2+17hu2−10h−
15u2−2)+u(8h2+7hu2+18h+14u2+4), Φ = a02(ux−2y)2+4(u−b)x−4(a02+1)y+4,
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where a02 = (8bh2 −2buv +4hv +u2v)/(v(4h+u2)), v = [4(h+u2)2(u2 −2)]/[(8h+
7u2 + 2)(h + 2)u].

By Theorem 1 in each of these cases the origin is a center.

Theorem 4. (lj = 1 + ajx − y, j = 1, 2, l1 ∩ l2 ∩ Φ = (0, 1); L = 4), where Φ = 0
is an invariant conic of the form (7) is ILC for system (1), i.e. the order of a weak
focus is at most four.

Proof. To prove the theorem, we compute the first four Liapunov quantities Lj , j =
1, 4, in each of the following sets of conditions 1)–17) using the algorithm described
in [21]. In the expressions for Lj we will neglect denominators and non-zero factors.

In the case 1) we calculate L1. If c = −b, then L1 ≡ b2 + (d + 4)2 6= 0 and if
c 6= −b, then L1 ≡ (a − 1)[4a2 + (b + c)2]I3 6= 0. Therefore the origin is a focus.

In the case 2) the first Liapunov quantity vanishes. We are in the conditions of
Lemma 1, i).

In the case 3) we have L1 = f1f2, where f1 = (a02 − 1)2 + (b − c + 2a10)
2 6= 0

and f2 = a02 + 2a2
10 + 3ba10 − ca10 + b2 − bc − 1. If f2 = 0, then a = 1. Therefore

the origin is a focus.

In the case 4) the vanishing of the first Liapunov quantity gives c = 3b. Then
L2 6= 0 and the origin is a focus.

In the case 5) the vanishing of the first Liapunov quantity gives d = 1−2a2
2−2a

and we are in the conditions of Lemma 2, i).

In the case 6) the vanishing of the first Liapunov quantity gives a2 = 0. Then
L2 = f1f2, where f1 = a02 − 2, f2 = (a2

1 + 1)a02 − 4a2
1 − 1. If f1 = 0, then Lemma

2, i) (a = 2), and if f2 = 0, then Lemma 1, ii).

In the case 7) the first Liapunov quantity is L1 = g1g2, where g1 = a1 +a2, g2 =
a1a2 − 1 + a. If g1 = 0, then Lemma 1, iii) and if g2 = 0, then Lemma 1, iv).

In the case 8) the first Liapunov quantity is L1 = (5β3 + 9β2γ + 34β2δ + 3βγ2 +
4βγδ+64βδ2 −γ3 +2γ2δ+32δ3)t2 +16(β−γ−2δ), where β = b/t, γ = c/t, δ = g/t

and t is a real parameter. From L1 = 0 we find t2 and substituting into the expression
for L2, we obtain L2 = f1f2f3, where f1 = β2 + βγ + 6βδ − 2γδ + 8δ2, f2 =
β2 + βγ + 3βδ − γδ + 4δ2, f3 = 11β − γ + 4δ. If f1 = 0, then Lemma 1, v) and if
f2 = 0, then Lemma 1, xii).

Assume f1f2 6= 0 and let f3 = 0. Then γ = 11β + 4δ and L3 = h1h2, where
h1 = β + 2δ, h2 = 5β + δ. If h1 = 0, then β = −2δ and L1 ≡ 18δ2 + 1 6= 0, therefore
the origin is a focus. If h2 = 0, then L3 = 0, L4 6= 0 and the origin is a focus.

In the case 9) we denote b = βt, g = γt, a1 = αt and calculate the first Liapunov
quantity. From L1 = 0 we find t2 and substituting into the expression for L2, we
obtain L2 = f1f2f3, where f1 = αβ−αγ +βγ +γ2, f2 = 2[(β +3γ− (β +2γ)a)(2γ−
β)]α2+[(β2−βγ−18γ2−(β2−4βγ−10γ2)a)(β+γ)]α−[(β+2γ)a−6γ](β+γ)2γ, f3 =
(aβ + 2aγ − β − 3γ)α − (3aβ2 + 5aβγ + 2aγ2 − 3β2 − 6βγ − 3γ2).
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If f1 = 0, then Lemma 1, vi), if f2 = 0 and α = −2γ, then Lemma 1, vii); if
f2 = 0 and α 6= −2γ, then Lemma 1, viii).

Assume f1f2 6= 0 and f3 = 0. Then express α from f3 = 0 and substituting in
L3 we obtain L3 = h1h2, where h1 = 5β(a− 1) + γ, h2 = aβ2 + 4aβγ + 2aγ2 − β2 −
5βγ − 2γ2. Let h1 = 0, then γ = 5β(1 − a) and L4 = 5a2 − 8a + 2. If L4 = 0, then
Lemma 1, ix). Let now h1 6= 0 and h2 = 0, then Lemma 3, i).

In the case 10) the first Liapunov quantity is L1 = 7ab+ ac+ 5bd− 6b− cd− 2c.
If L1 = 0 and c = 5b, then a = 4/3 and L2 = 36b2d + 12b2 + 9d2 + 12d + 4. Let
L2 = 0, then Lemma 1, x).

Assume L1 = 0 and c 6= 5b, then express d and calculate L2 = f1f2f3, where
f1 = c−b, f2 = 36a2−10ab2−8abc+2ac2−96a+5b2 +14bc−3c2 +64, f3 = 11b−c.

If f1 = 0, then Lemma 1, xi) and if f2 = 0, then Lemma 1, xii). Let f1f2 6= 0
and f3 = 0, then c = 11b and L3 = 1 − a − 6b2. If L3 = 0, then Lemma 2, ii).

In the case 11) we denote a1 = γ1t, a2 = γ2t, b = βt and a11 = γ3t. From F20 = 0
we find t2 and substituting into the expression for L1, we obtain L1 = g1g2g3, where
g1 = γ1 + γ3, g2 = 2γ1 + γ3 + β, g3 = 2γ2

1 + 2γ1γ3 + γ1γ2 − γ3γ2 − γ2
2 − γ2β.

If g1 = 0, then a = 1; if g2 = 0, then Lemma 1, xiii) and if g3 = 0, then express β

and substituting in L2, we get L2 = 3γ1−2γ2. If L2 = 0, then L3 = 2γ2
1+19γ1γ3+8γ2

3

and F20 = (49γ2
1 +56γ1γ3 +16γ2

3 )t2 +3. The system of equations {L3 = 0, F20 = 0}
has no real solutions. In this case the origin is a focus.

In the case 12) the vanishing of the first Liapunov quantity gives a = 1− 2a2
1 +

3a1a2 − a2
2, then Lemma 1, xiv).

In the case 13) the first Liapunov quantity vanishes, Lemma 1, xv).

In the case 14) the first Liapunov quantity is L1 = g1g2, where g1 = (a1a2+1)v−
a02(a1−a2), g2 = a3

02+(4a2
1−4a1a2+2va1+a2

2+va2−1)a2
02+v(2a1a2v−4a1−v)a02−

v2(a2
2 +a2v−1). If g1 = 0, then a = 1. Let g1 6= 0, g2 = 0 and denote a02 = αt, v =

βt, then express t from g2 = 0 and calculate L2 = 3(2αa1 −αa2 − β)2 + (βa2 + α)2.
The equation L2 = 0 has no real solutions.

In the case 15) the vanishing of the first Liapunov quantity gives b = [2h2(2ha2
11−

a2
11 + 4h2)(a2

11 + 4h)]/[a11(a
4
11 − 2h3a2

11 − 4h2a2
11 + 6ha2

11 − 16h4)]. The second one
looks L2 = f1f2f3, where f1 = h − 1, f2 = 2ha2

11 − a2
11 + 4h2, f3 = (8h2 − 9h +

3)a4
11 + 2h(5h3 + 31h2 − 29h + 9)a2

11 + 16h4(5h + 1).

If f1 = 0, then Lemma 1, xvi) and if f1 6= 0, f2 = 0, then I3 = 0.

Assume f1f2 6= 0 and f3 = 0. Then we calculate L3 and the resultant of
polynomials f3 and L3 by h. We obtain that Res(f3, L3, h) = g1g2g3, where
g1 = a4

11 + 48a2
11 + 144, g2 = a4

11 + 184a2
11 + 16, g3 = 12a4

11 + 41a2
11 + 36, g4 =

100a8
11 +1225a6

11 +4380a4
11 +3440a2

11 +576. It is easy to verify that gk = 0, k = 1, 4,
have not real solutions and therefore the origin is a focus.

In the case 16) the vanishing of the first Liapunov quantity gives d = (−2g4 −
2g2 − h2)/g2, then Lemma 1, xvii).

In the case 17) the first Liapunov quantity is L1 = bf1−f2, where f1 = u(32h3u−
32h3v + 48h2v − 8hv3 − u2v3), f2 = 4hv(4h2 − 2huv − v2)(4h + u2).
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Let L1 = 0 and assume f1 = 0. Then L1 ≡ f2 = 0 yields u = (4h2−v2)/(2hv) and
f1 ≡ 64h4 − 32h3v2 + 12h2v2 − v4 = 0. The equation f1 = 0 admits the following
parametrization h = [(4α2 + β2)(16α2 − β2)]/(32α2β2), v = [(4α2 + β2)(16α2 −
β2)]/(32α3β).

The vanishing of the second Liapunov quantity gives b = [(768α6 − 432α4β2 −
8α2β4 +5β6)(96α4 − 4α2β2 +β4)(β2 − 16α2)]/[256α3β(1152α6 − 136α4β2 +2α2β4 −
β6)(4α2 − β2)]. Then L3 = g1g2, where g1 = 28α2 − β2, g2 = 3840α6 − 304α4β2 −
40α2β4+5β6. If g1 = 0, then we are in the conditions of Lemma 3, ii). The equation
g2 = 0 has not real solutions.

Let now L1 = 0 and assume f1 6= 0, then b = f2/f1. The second Liapunov
quantity is L2 = g1g2, where g1 = 4h − uv, g2 = 384h4 + 96h3(2u2 − 3uv − 2) +
16h2(21uv−3u3v−6u2−2v2)+4huv(6u2 −13uv−10v2 −24)+u2v2(8−4u2−5uv).

If g1 = 0, then Lemma 1, xviii). Assume g1 6= 0 and calculate L3. The resultant
of the polynomials g2 and L3 by v is

Res(g2, L3, v) = h1h2h3h4h5h6h7,

where h1 = 2h+u2, h2 = 8h+u2, h3 = 16h+u2−4, h4 = 8h2+8hu2+u4−2u2, h5 =
64h2−24hu2−96h−4u4−7u2+36, h6 = 1536h6+768h5(2u2−1)+8h4u2(63u2−148)+
6h3u2(9u4 − 84u2 − 64)+4h2u2(72− 15u4 − 2u2)+18hu4(u2 +4)+u6(u2 +4), h7 =
800h6(3u2 +4)+40h5(15u4−212u2−96)+8h4(144−245u4 +1200u2)−2h3u2(15u4−
1160u2 + 2352) + 8h2u2(10u4 − 135u2 + 108) + 2hu4(84 − 25u2) + u6(4 − u2).

Let h1 = 0, then h = (−u2)/2 and the system of equations {g2 = 0, L3 = 0} has
no real solutions.

Assume h1 6= 0, h2 = 0, then h = (−u2)/8 and g2 = e1e2, where e1 = 3u +
2v, e2 = 3u3 − 32v. If e1 = 0, then Lemma 2, iii) and if e2 = 0, then L3 6= 0.

Let h1h2 6= 0, h3 = 0, then h = (4 − u2)/16 and g2 = e1e2, where e1 ≡
3(u2 − 4)2 + (8v)2 6= 0, e2 = 7u2 + 20uv + 4. If e2 = 0, then v = (−7u2 − 4)/(20u)
and L3 6= 0.

Assume h1h2h3 6= 0 and h4 = 0. If h = −2, then h4 = 0 yields u2 = 2. In this
subcase the system of equations {g2 = 0, L3 = 0} has solutions if v = −8/(7u), then
Lemma 3, iii). If h 6= −2, the equation h4 = 0 admits the following parametrization
h = (−2αβ)/(α2−8αβ+8β2), u2 = (16β2)/(α2−8αβ+8β2). In this case g2 = e1e2,
where e1 = (α2−8αβ+8β2)(α−β)uv+8αβ2, e2 = 5(α2−8αβ+8β2)2v2 +12α(α2−
4αβ + 8β2)(α − 4β). If e1 = 0, then Lemma 3, iv); if e1 6= 0, e2 = 0, then reduce
L3 = 0 by v2 from e2 = 0. We express v from L3 = 0, then the equation e2 = 0 has
no real solutions.

Let h1h2h3h4 6= 0. The case h5 = 0 or h6 = 0 implies f1 = 0, in contradiction
with assumption that f1 6= 0. Therefore the origin is a focus.

Assume h1h2h3h4h5h6 6= 0 and h7 = 0. In this case from the system of equations
{g2 = 0, L3 = 0} we express v and calculate L4. The resultant of the polynomials
h7 and L4 by h is

Res(h7, L4, h) = e1e2e3e4e5e6e7e8e9,

where e1 = u−2, e2 = u+2, e3 = 3u2−4, e4 = 5u4−20u3−80u2−240u−144, e5 =
5u4 + 20u3 − 80u2 + 240u − 144, e6 = 5u2 − 4u + 4, e7 = 5u2 + 4u + 4, e8 =
15u4 + 40u2 + 128, e9 = 300u6 + 1105u4 − 1080u2 + 1296.
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If e1 = 0, then g2 = L3 = 0 yields 15v3 + 34v2 + 36v − 72 = 0 and L4 6= 0; if
e2 = 0, then g2 = L3 = 0 yields 15v3 − 34v2 + 36v + 72 = 0 and L4 6= 0.

If e3 = 0, then b = 0 and a02 = 1, in contradiction with assumption 3.4.2.

If e4 = 0 or e5 = 0, then f1 = 0. The equations e6 = 0, e7 = 0, e8 = 0, e9 = 0
have no real solutions.

Acknowledgments. The author of this work is supported by the Slovenian
Human Resources Development and Scholarship Fund and thanks the Center for Ap-
plied Mathematics and Theoretical Physics, University of Maribor for its hospitality
and support during the stay at the Center.

References

[1] Bondar Y. L., Sadovskii A. P. Variety of the center and limit cycles of a cubic system,

which is reduced to Lienard form. Bull. Acad. Sci. of Moldova, Mathematics, 2004, 46, No. 3,
71–90.
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On cyclically-interval edge colorings of trees

R.R.Kamalian

Abstract. For an undirected, simple, finite, connected graph G, we denote by V (G)
and E(G) the sets of its vertices and edges, respectively. A function ϕ : E(G) →

{1, 2, . . . , t} is called a proper edge t-coloring of a graph G if adjacent edges are
colored differently and each of t colors is used. An arbitrary nonempty subset of
consecutive integers is called an interval. If ϕ is a proper edge t-coloring of a graph
G and x ∈ V (G), then SG(x, ϕ) denotes the set of colors of edges of G which are
incident with x. A proper edge t-coloring ϕ of a graph G is called a cyclically-interval
t-coloring if for any x ∈ V (G) at least one of the following two conditions holds: a)
SG(x,ϕ) is an interval, b) {1, 2, . . . , t} \ SG(x, ϕ) is an interval. For any t ∈ N, let
Mt be the set of graphs for which there exists a cyclically-interval t-coloring, and let
M ≡

⋃

t≥1 Mt. For an arbitrary tree G, it is proved that G ∈ M and all possible
values of t are found for which G ∈ Mt.

Mathematics subject classification: 05C05, 05C15.
Keywords and phrases: Tree, interval edge coloring, cyclically-interval edge
coloring.

1 Introduction

We consider undirected, simple, finite, and connected graphs. For a graph G

we denote by V (G) and E(G) the sets of its vertices and edges, respectively. The
set of edges of G incident with a vertex x ∈ V (G) is denoted by JG(x). The set of
vertices of G adjacent to a vertex x ∈ V (G) is denoted by IG(x). For any x ∈ V (G),
dG(x) denotes the degree of the vertex x in G. For a graph G, we denote by ∆(G)
and χ′(G) the maximum degree of a vertex of G and the chromatic index of G [32],
respectively. The distance in a graph G between its vertices x ∈ V (G) and y ∈ V (G)
is denoted by ρG(x, y). For any vertex x0 ∈ V (G) and an arbitrary subset V0 of the
set V (G), we define the distance ρG(x0, V0) in a graph G between x0 and V0 as
follows:

ρG(x0, V0) ≡ min
z∈V0

ρG(x0, z)

For any integer n ≥ 3, we denote by Cn a simple cycle with n vertices. The
terms and concepts that we do not define can be found in [35].

For an arbitrary finite set A, we denote by |A| the number of elements of A.
The set of positive integers is denoted by N. An arbitrary nonempty subset of
consecutive integers is called an interval. An interval with the minimum element p

and the maximum element q is denoted by [p, q]. An interval D is called an h-interval
if |D| = h.

c© R.R.Kamalian, 2012
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For any t ∈ N and arbitrary integers i1, i2 satisfying the conditions i1 ∈ [1, t], i2 ∈
[1, t], we define [22] the sets intcyc1((i1, i2), t), intcyc1[(i1, i2), t], intcyc2((i1, i2), t),
intcyc2[(i1, i2), t] and the number dif((i1, i2), t) as follows:

intcyc1[(i1, i2), t] ≡ [min{i1, i2},max{i1, i2}],

intcyc1((i1, i2), t) ≡ intcyc1[(i1, i2), t]\({i1} ∪ {i2}),

intcyc2((i1, i2), t) ≡ [1, t]\intcyc1[(i1, i2), t],

intcyc2[(i1, i2), t] ≡ [1, t]\intcyc1((i1, i2), t),

dif((i1, i2), t) ≡ min{|intcyc1[(i1, i2), t]| , |intcyc2[(i1, i2), t]|} − 1.

If t ∈ N and Q is a non-empty subset of the set N, then Q is called a t-cyclic
interval if there exist integers i1, i2, j0 satisfying the conditions i1 ∈ [1, t], i2 ∈ [1, t],
j0 ∈ {1, 2}, Q = intcycj0[(i1, i2), t].

A function ϕ : E(G) → [1, t] is called a proper edge t-coloring of a graph G if
adjacent edges are colored differently and each of t colors is used.

If ϕ is a proper edge t-coloring of a graph G and E0 ⊆ E(G), then ϕ[E0] ≡
{ϕ(e)/e ∈ E0}.

A proper edge t-coloring ϕ of a graph G is called an interval t-coloring of G

[8,9,20] if for any x ∈ V (G), the set ϕ[JG(x)] is a dG(x)-interval. For any t ∈ N, we
denote by Nt the set of graphs for which there exists an interval t-coloring. Let us
also define the set N of all interval colorable graphs:

N ≡
⋃

t≥1

Nt.

For any G ∈ N, we denote by wint(G) and Wint(G) the minimum and the maximum
possible value of t, respectively, for which G ∈ Nt. For a graph G, let us set
θ(G) ≡ {t ∈ N/G ∈ Nt}.

The problem of deciding whether a regular graph G belongs to the set N is NP -
complete [8,9,20]. Nevertheless, for graphs G of some classes the relation G ∈ N was
proved and investigations of the set θ(G) were fulfilled [8,9,19,20,26,27]. The concept
of interval colorability of a graph represents an especially high interest for a bipartite
graph, because in this case it can be used for mathematical modelling of timetable
problems with compactness requirements (i.e. the lectures of each teacher and each
group must be scheduled at consecutive periods) [1, 7, 20, 29]. Unfortunately, for
an arbitrary bipartite graph G the problem keeps the complexity of a general case
[3,13,31]. Some positive results were obtained for “small”bipartite graphs [14,15,25],
for bipartite graphs with the “small”maximum degree of a vertex [13, 16, 28], and
for biregular bipartite graphs [2–6,11,16–18,24,30,36]. Very interesting approaches
for biregular bipartite graphs were developed in [6,11,30]. The examples of interval
non-colorable bipartite graphs were given in [7, 15,18,31].

Remark 1. It is not difficult to see that for any integer k ≥ 2, C2k ∈ N and
θ(C2k) = [2, k + 1].
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A proper edge t-coloring ϕ of a graph G is called a cyclically-interval t-coloring
of G if for any x ∈ V (G), the set ϕ[JG(x)] is a t-cyclic interval. For any t ∈ N, we
denote by Mt the set of graphs for which there exists a cyclically-interval t-coloring.
Let us also define the set M of all cyclically-interval colorable graphs:

M ≡
⋃

t≥1

Mt.

For any G ∈ M, we denote by wcyc(G) and Wcyc(G) the minimum and the maximum
possible value of t, respectively, for which G ∈ Mt. For a graph G, let us set Θ(G) ≡
{t ∈ N/G ∈ Mt}.

Remark 2. The concept of cyclically-interval colorability of a graph generalizes that
of interval colorability. Clearly, for an arbitrary graph G ∈ N, and for any t ∈ θ(G),
an arbitrary interval t-coloring of the graph G is also a cyclically-interval t-coloring
of G, therefore, for any t ∈ N, Nt ⊆ Mt. N2 = M2. For any integer t ≥ 3, Nt ⊂ Mt

(it is enough to consider the simple cycle Ct). N ⊂ M (it is enough to consider the
simple cycle C3). For an arbitrary graph G, θ(G) ⊆ Θ(G).

Remark 3. For any G ∈ N, the following inequality is true:

∆(G) ≤ χ′(G) ≤ wcyc(G) ≤ wint(G) ≤ Wint(G) ≤ Wcyc(G) ≤ |E(G)| .

Remark 4. It is not difficult to note that there exist examples G1 and G2 of graphs
from N for which wcyc(G1) < wint(G1), Wint(G2) < Wcyc(G2). Let us set G1 =
K3,2 and G2 = K2,2. In this case, evidently, wcyc(G1) = 3, wint(G1) = 4 [19],
Wint(G2) = 3 [19], Wcyc(G2) = 4.

The problem of cyclically-interval colorability of a graph has been completely
investigated as yet only for simple cycles [21, 23] and trees [22]. Some interesting
results on this and related topics were obtained in [10,12,33,34].

For a tree H with V (H) = {b1, ..., bp}, p ≥ 1, we denote by P (bi, bj) the simple
path connecting the vertices bi and bj, 1 ≤ i ≤ p, 1 ≤ j ≤ p. The sets of vertices and
edges of the path P (bi, bj) are denoted by V P (bi, bj) and EP (bi, bj), respectively,
1 ≤ i ≤ p, 1 ≤ j ≤ p.

Let us also define:

intV P (bi, bj) ≡ V P (bi, bj)\({bi} ∪ {bj});

Ṽ P (bi, bj) ≡ V P (bi, bj) ∪

(

⋃

x∈intV P (bi,bj)

IH(x)

)

;

TP (bi, bj) ≡







⋃

x∈intV P (bi,bj)

JH(x), if intV P (bi, bj) 6= ∅

EP (bi, bj), if intV P (bi, bj) = ∅;

1 ≤ i ≤ p, 1 ≤ j ≤ p.
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Assume:

M(H) ≡ max
{

∣

∣TP (bi, bj)
∣

∣/1 ≤ i ≤ p, 1 ≤ j ≤ p
}

.

In [19] the following result was obtained.

Theorem 1 (see [19]). Let H be an arbitrary tree.Then

1. H ∈ N,

2. wint(H) = ∆(H),

3. Wint(H) = M(H),

4. θ(H) = [∆(H),M(H)].

Corollary 1. For any tree H, H ∈ M, wcyc(H) = ∆(H), Wcyc(H) ≥ M(H),
[∆(H),M(H)] ⊆ Θ(H).

In this paper, for any tree H, we show that Wcyc(H) = M(H) and Θ(H) =
[∆(H),M(H)].

2 Results

Lemma 1. If Q1, ..., Qn (n ≥ 2) are t-cyclic intervals, and for any j ∈ [1, n − 1],

Qj ∩ Qj+1 6= ∅, then
n
⋃

i=1
Qi is a t-cyclic interval.

Proof can be easily accomplished by induction on n.

Lemma 2. Let α be a cyclically-interval t-coloring of a graph G, and P0 =
(x0, e1, x1, ..., xk−1, ek, xk) be a simple path connecting a vertex x0 ∈ V (G) with a

vertex xk ∈ V (G), k ≥ 2. Then α

[

k−1
⋃

i=1
JG(xi)

]

is a t-cyclic interval.

Proof. If k = 2, then the statement follows from the definition of the cyclically-
interval t-coloring. Now assume that k ≥ 3. It is clear that the sets α[JG(x1)], ...,
α[JG(xk−1)] are t-cyclic intervals with

α[JG(xj)] ∩ α[JG(xj+1)] 6= ∅ for any j ∈ [1, k − 2].

Lemma 1 implies that α

[

k−1
⋃

i=1
JG(xi)

]

is a t-cyclic interval.

Lemma 3. Let α be a cyclically-interval t-coloring of a graph G, and P0 =
(x0, e1, x1, ..., xk−1, ek, xk) be a simple path connecting a vertex x0 ∈ V (G) with a
vertex xk ∈ V (G), k ≥ 2. Then at least one of the following statements is true:
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1. intcyc1((α(e1), α(ek)), t) ⊆ α

[

k−1
⋃

i=1
JG(xi)

]

,

2. intcyc2((α(e1), α(ek)), t) ⊆ α

[

k−1
⋃

i=1
JG(xi)

]

.

Proof. Without loss of generality we may assume that dif((α(e1), α(ek)), t) ≥ 2.
Let us assume that none of the statements 1) and 2) is true. Then there are τ1,

τ2 such that

τ1 ∈ intcyc1((α(e1), α(ek)), t), τ1 6∈ α

[

k−1
⋃

i=1

JG(xi)

]

,

τ2 ∈ intcyc2((α(e1), α(ek)), t), τ2 6∈ α

[

k−1
⋃

i=1

JG(xi)

]

,

therefore {τ1, τ2} ∩ α

[

k−1
⋃

i=1
JG(xi)

]

= ∅.

Lemma 2 implies that α

[

k−1
⋃

i=1
JG(xi)

]

is a t-cyclic interval with

{α(e1), α(ek)} ⊆ α

[

k−1
⋃

i=1

JG(xi)

]

.

It is not hard to see that the relations

{α(e1), α(ek)} ⊆ α

[

k−1
⋃

i=1

JG(xi)

]

and {τ1, τ2} ∩ α

[

k−1
⋃

i=1

JG(xi)

]

= ∅

are incompatible.

Lemma 4. If α is a cyclically-interval t-coloring of a tree H, t ∈ Θ(H),
V (H) = {b1, ..., bp}, p ≥ 1, then there are vertices b′ ∈ V (H), b′′ ∈ V (H) such
that [1, t] = α[TP (b′, b′′)].

Proof. Assume the contrary. Suppose that for an arbitrary bi ∈ V (H), bj ∈ V (H),

α[TP (bi, bj)] ⊂ [1, t]. Set: max
{

∣

∣α[TP (bi, bj)]
∣

∣/1 ≤ i ≤ p, 1 ≤ j ≤ p
}

≡ m0. It is

clear that m0 < t. Without loss of generality we may assume that m0 ≥ 2. Consider
the simple path P0 = (x0, e1, x1, ..., xk−1, ek, xk) of the tree H with

∣

∣α[TP0]
∣

∣ = m0.
Clearly, without loss of generality, we may assume that k ≥ 2.

Lemma 2 implies that there are i′ ∈ [1, t], i′′ ∈ [1, t], and j′ ∈ {1, 2}, for

which α

[

k−1
⋃

i=1
JH(xi)

]

= intcycj′ [(i
′, i′′), t]. As m0 < t, there is τ0 ∈ [1, t] such that

τ0 6∈ intcycj′ [(i
′, i′′), t].
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Consider an edge e1 ∈ E(H) for which α(e1) = τ0, and assume that e1 = (u0, u1).
Clearly, e1 6∈ TP0(x0, xk).

Without loss of generality we may assume that ρH(u1, Ṽ P0(x0, xk)) <

ρH(u0, Ṽ P0(x0, xk)). Let z0 ∈ Ṽ P0(x0, xk) be the vertex with ρH(u1, z0) =
ρH(u1, Ṽ P0(x0, xk)). It is not hard to see that z0 ∈ Ṽ P0(x0, xk)\intV P0(x0, xk)
and for any z′ ∈ Ṽ P0(x0, xk)\intV P0(x0, xk), z′ 6= z0, ρH(u1, z0) < ρH(u1, z

′).

Case 1 . z0 = x0. Clearly,
∣

∣α[TP (u0, xk)]
∣

∣ ≥ m0 + 1, which contradicts the
choice of P0.

Case 2 . z0 = xk. This case is considered similarly as the case 1.

Case 3 . z0 6= x0, z0 6= xk.

Clearly, there is x̃ ∈ intV P0(x0, xk) such that z0 ∈ IH(x̃). Suppose that
α((z0, x̃)) = τ ′. Clearly, i′ 6= i′′.

Case 3a. τ ′ = i′.

Lemma 3, the equalities α(e1) = τ0, α((z0, x̃)) = i′, and the definition
of the path P (u0, x̃) imply that ∃j1 ∈ {1, 2} such that intcycj1 [(τ0, i

′), t] ⊆

α

[

⋃

x∈intV P (u0,x̃)

JH(x)

]

. Consider the edge ẽ ∈ TP0(x0, xk) with α(ẽ) = i′′. Assume:

ẽ = (x′, x′′). Without loss of generality we may assume that ρH(z0, x
′) < ρH(z0, x

′′).
It is not hard to check that TP (z0, x

′′) ⊆ TP0(x0, xk), therefore, by the choice of
τ0, we have τ0 6∈ α[TP (z0, x

′′)]. Lemma 2 implies that α[TP (z0, x
′′)] is a t-cyclic

interval.

Clearly, ∃j2 ∈ {1, 2} such that τ0 ∈ intcycj2((i
′, i′′), t), and, therefore,

intcycj2((i
′, i′′), t) * α[TP (z0, x

′′)].

This conclusion, the equalities α((z0, x̃)) = i′, α(ẽ) = i′′, and Lemma 3 imply
that intcyc3−j2 [(i

′, i′′), t] ⊆ α[TP (z0, x
′′)], hence

∣

∣α[TP (u0, x
′′)]
∣

∣ ≥ m0 + 1, which
contradicts the choice of P0.

Case 3b. τ ′ = i′′. This case is considered similarly as the case 3a with inter-
changing of the roles of i′ and i′′.

Case 3c. τ ′ 6∈ {i′, i′′}.

Lemma 3, the equalities α(e1) = τ0, α((z0, x̃)) = τ ′, and the definition
of the path P (u0, x̃) imply that ∃j1 ∈ {1, 2} such that intcycj1[(τ0, τ

′), t] ⊆

α

[

⋃

x∈intV P (u0,x̃)

JH(x)

]

. This implies that at least one of the following statements

is true:

1. i′ ∈ intcycj1[(τ0, τ
′), t],

2. i′′ ∈ intcycj1[(τ0, τ
′), t].

Without loss of generality let us assume that the statement 1) is true. Consider
the edge ẽ ∈ TP0(x0, xk) with α(ẽ) = i′′. Assume: ẽ = (x′, x′′). Without loss of
generality we may assume that ρH(z0, x

′) < ρH(z0, x
′′). It is not hard to check that
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TP (z0, x
′′) ⊆ TP0(x0, xk), therefore, by the choice of τ0, we have τ0 6∈ α[TP (z0, x

′′)].
Lemma 2 implies that α[TP (z0, x

′′)] is a t-cyclic interval.
Clearly, ∃j2 ∈ {1, 2} such that τ0 ∈ intcycj2((τ

′, i′′), t), and, therefore,
intcycj2((τ

′, i′′), t) * α[TP (z0, x
′′)]. This conclusion, the equalities α((z0, x̃)) = τ ′,

α(ẽ) = i′′, and Lemma 3 imply that intcyc3−j2 [(τ
′, i′′), t] ⊆ α[TP (z0, x

′′)], hence
∣

∣α[TP (u0, x
′′)]
∣

∣ ≥ m0 + 1, which contradicts the choice of P0.

Corollary 2. If α is a cyclically-interval t-coloring of a tree H, where t ∈ Θ(H),
then there are vertices x′ ∈ V (H), x′′ ∈ V (H) such that t ≤ |TP (x′, x′′)|.

Proof. Since the inequality
∣

∣α[TP (x, y)]
∣

∣ ≤ |TP (x, y)| holds for arbitrary vertices
x ∈ V (H), y ∈ V (H), it is not difficult to notice that our statement follows from
Lemma 4.

Corollary 3. If α is a cyclically-interval Wcyc(H)-coloring of a tree H, then there
are vertices x′ ∈ V (H), x′′ ∈ V (H) such that Wcyc(H) ≤ |TP (x′, x′′)|.

Corollary 4. For any tree H, Wcyc(H) ≤ M(H).

Theorem 2. For any tree H, Wcyc(H) = M(H).

Proof follows from Corollaries 1 and 4.

Corollary 5. [22] Let H be an arbitrary tree. Then

1. H ∈ M,

2. wcyc(H) = ∆(H),

3. Wcyc(H) = M(H),

4. Θ(H) = [∆(H),M(H)].

Corollary 6. For an arbitrary tree H and any positive integer t, H ∈ Mt if and
only if H ∈ Nt.
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In the papers [1, 2] we derived the bounds of the stability radius of a Pareto-
optimal solution of Markowitz’s investment problem with Savage’s minimax criteria.
In this paper we obtain lower and upper attainable bounds of the stability radius
of lexicographical optimum for the Markowitz’s multicriteria problem with Wald’s
maximin criteria.

1 Problem formulation and definitions

Let us consider the multicriterion variant of the investment managing problem
based on Markowitz’s classical portfolio theory [3]. As a portfolio efficiency criterion
we use Wald’s maximin criterion. We introduce the following notations: let Nn =
{1, 2, . . . , n} be the set of investment projects (assets); Nm be the set of possible
financial market states (situation); x = (x1, x2, . . . , xn)T ∈ X ⊆ En \ {0} be the
investment portfolio, where E = {0, 1}, xj = 1 if project j ∈ Nn is implemented,
xj = 0 otherwise. As usual 0 is the zero vector of the corresponding dimension.

There exist several approaches to the assessment of efficiency (utility) of invest-
ment projects (NPV, NFV, IRR et al.) which take into account the uncertainty
and risk in different ways (see for example [4,5]). Let Ns be the set of indicators of
investment projects efficiency. An investment portfolio x is evaluated by

∑

j∈Nn

aijkxj ,

where aijk is the efficiency indicator k ∈ Ns of investment project j ∈ Nn in the
case when the market be in state i ∈ Nm. Therefore we may assume that the input

data of the problem are determined by the three-dimensional matrix of investment
project efficiency A of size m × n × s with elements aijk from R. Let us introduce
the vector objective function

f(x,A) = (f1(x,A1), f2(x,A2), . . . , fs(x,As)),

c© Vladimir Emelichev, Vladimir Korotkov, 2012
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whose partial objectives are well-known Wald’s maximin criteria [6]

fk(x,Ak) = min
i∈Nm

Aikx = min
i∈Nm

∑

j∈Nn

aijkxj → max
x∈X

, k ∈ Ns,

where Ak ∈ Rm×n is k-th cut of the matrix A = [aijk] ∈ Rm×n×s, Aik =
(ai1k, ai2k, ..., aink) is i-th row of that cut. Thus, following Wald’s criterion, the
investor shows extreme caution when he/she optimizes the efficiency of the port-
folio in assuming that the financial market is in the most unprofitable state, i. e.
considering the uncertainty of the market state, the investor chooses the maximin
strategy.

The problem of finding the set of lexicographically optimal portfolio Ls(A) will
be viewed as the multicriterion (s-criteriion) investment problem Zs(A) with Wald’s
ordered criteriion, s ∈ N, where the set Ls(A) is defined in the following traditional
way [7–10]

Ls(A) = {x ∈ X : ∄x′ ∈ X (x ≺
A

x′)},

where

x ≺
A

x′ ⇔ ∃p ∈ Ns (gp(x, x′, Ap) < 0 & p = max{k ∈ Ns : gk(x, x′, Ak) 6= 0}),

gk(x, x′, Ak) = fk(x,Ak) − fk(x
′, Ak) = max

i′∈Nm

min
i∈Nm

(Aikx − Ai′kx
′), k ∈ Ns. (1)

Evidently, the set Ls(A) is a non-empty subset of the Pareto set for any matrix
A ∈ Rm×n×s. It is also well-known (see e.g. [11]), that the lexicographic set Ls(A)
can be determined as a result of sequential solving of s scalar problems:

Ls
k(A) := Argmin{fk(x,Ak) : x ∈ Ls

k−1(A)}, k ∈ Ns,

where Ls
0(A) = X, Argmin{·} is the set of all individual solutions of the correspond-

ing scalar minimization problem. Thus, we have the chain of inclusions

X ⊇ Ls
1(A) ⊇ Ls

2(A) ⊇ . . . ⊇ Ls
s(A) = Ls(A).

Therefore, the problem Zs(A) of fining the lexicographic set Ls(A) can be seen
as a problem of sequential minimization of partial objective functions fk(x,Ak),
k ∈ Ns.

The following properties are obvious.

Property 1. If for a portfolio x0 ∈ X it holds that

∀x ∈ X \ {x0} (g1(x, x0, A1) > 0),

then x0 ∈ Ls(A).
Property 2. If for a portfolio x0 ∈ X it holds that

∃x∗ ∈ X \ {x0} (g1(x
∗, x0, A1) < 0),
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then x0 6∈ Ls(A).

In portfolio space Rn, market state space Rm and efficiency (criteria) space Rs,
we define the linear metric l1, i.e.

‖Aik‖ =
∑

j∈Nn

|aijk|, i ∈ Nm, k ∈ Ns,

‖Ak‖ =
∑

i∈Nm

‖Aik‖ =
∑

i∈Nm

∑

j∈Nn

|aijk|, k ∈ Ns,

‖A‖ =
∑

k∈Ns

‖Ak‖ =
∑

i∈Nm

∑

j∈Nn

∑

k∈Ns

|aijk|.

The following inequalities are evident

‖A‖ ≥ ‖Ak‖ ≥ ‖Aik‖, i ∈ Nm, k ∈ Ns. (2)

Apart from that, it is easy to see that for any x and x′ the following inequalities
hold

Aikx − Ai′kx
′ ≥ −‖Ak‖, i, i′ ∈ Nm, k ∈ Ns. (3)

As usual [9, 13], the stability radius of portfolio x0 ∈ Ls(A) is defined as the
number

ρs(x0, A) =

{

sup Ξ if Ξ 6= ∅,
0 if Ξ = ∅,

where Ξ = {ε > 0 : ∀A′ ∈ Ω(ε) (x0 ∈ Ls(A + A′))}, Ω(ε) = {A′ ∈ Rm×n×s :
‖A′‖ < ε} is the set of perturbing matrices, Ls(A+A′) is the set of lexicographically
optimal portfolios in the perturbed problem Zs(A + A′).

Thus, the stability radius defines an extreme level of problem initial data pertur-
bations (elements of matrix A) preserving lexicographic optimality of the portfolio.

2 Stability radius bounds

For x0 ∈ Ls(A) and Zs(A), denote

ϕ = min
x∈X\{x0}

max
i∈Nm

min
i′∈Nm

(Ai′1x
0 − Ai1x).

Evidently, ϕ ≥ 0.

Theorem 1. Given Zs(A), the stability radius ρs(x0, A), s ≥ 1, of a lexicograph-
ically optimal portfolio x0 has the following lower and upper bounds

ϕ ≤ ρs(x0, A) ≤ 2ϕ.
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Proof. Let x0 ∈ Ls(A). First we will prove that ρs(x0, A) ≥ ϕ, which is evident if
ϕ = 0. Let ϕ > 0. According to the definition of ϕ for every portfolio x 6= x0 the
following inequality holds

max
i∈Nm

min
i′∈Nm

(Ai′1x
0 − Ai1x) ≥ ϕ. (4)

Let A′ be an arbitrary perturbing matrix belonging to Ω(ϕ). Then, taking into
account (1)–(4), we obtain

g1(x
0, x,A1 + A′

1) = max
i∈Nm

min
i′∈Nm

(Ai′1x
0 − Ai1x + A′

i′1x
0 − A′

i1x) ≥

≥ max
i∈Nm

min
i′∈Nm

(Ai′1x
0 − Ai1x) − ‖A′

1‖ ≥ ϕ − ‖A′
1‖ ≥ ϕ − ‖A′‖ > 0.

Therefore, due to Property 1, the portfolio x0 preserves lexicographic optimality
in any perturbed problem Zs(A + A′), A′ ∈ Ω(ϕ). Hence, ρs(x0, A) ≥ ϕ.

Further we show that ρs(x0, A) ≤ 2ϕ. Let x∗ 6= x0 be a portfolio such that the
following equalities hold

g1(x
0, x∗, A1) = max

i∈Nm

min
i′∈Nm

(Ai′1x
0 − Ai1x

∗) = ϕ. (5)

The existence of such portfolio comes from the definition of ϕ.

Let us prove that

∀ε > 2ϕ ∃A0 ∈ Ω(ε) (x0 6∈ Ls(A + A0)). (6)

For this in accordance with Property 2 it is sufficient to construct a perturbing
matrix A0 with cut A0

1 such that the following conditions hold

2ϕ < ‖A0‖ < ε, (7)

g1(x
0, x∗, A1 + A0

1) < 0. (8)

Let

i(x0) = arg min{Ai1x
0 : i ∈ Nm}

and consider two possible cases.

Case 1. There exists an index l ∈ Nn such that x0
l = 1 and x∗

l = 0. We define
the elements of the cut A0

1 = [a0
ij1] ∈ Rm×n of the perturbing matrix A0 = [a0

ijk] ∈

Rm×n×s as follows:

a0
ij1 =

{

−δ = if i = i(x0), j = l,

0 otherwise,

where 2ϕ < δ < ε. The elements of the remaining cuts A0
k, k 6= 1, of the perturbing

matrix A0 set equal to zero. Hence we have
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A0
i(x0)1x

0 = −δ, A0
i(x0)1x

∗ = 0, (9)

A0
i1x

0 = A0
i1x

∗ = 0, i ∈ Nm \ {i(x0)}, (10)

‖A0‖ = ‖A0
1‖ = δ.

Therefore, the inequality (7) is true.
As a result we have

f1(x
0, A1 + A0

1) = min
{

(Ai(x0)1 + A0
i(x0)1)x

0, min
i6=i(x0)

(Ai1 + A0
i1)x

0
}

= f1(x
0, A1) − δ,

f1(x
∗, A1 + A0

1) = min
{

(Ai(x0)1 + A0
i(x0)1)x

∗, min
i6=i(x0)

(Ai1 + A0
i1)x

∗
}

= f1(x
∗, A1).

Thus, from (5) and δ > ϕ we verify the validity of the inequality (8).

Case 2. x0 ≤ x∗. Then in view of the inequalities x0 6= x∗ 6= 0 there exists a
pair of indexes (p × q) ∈ Nn × Nn such that x0

p = 0, x∗
p = 1, x0

q = x∗
q = 1. The

elements of the cut A0
1 = [a0

ij1] ∈ Rm×n we define as follows:

a0
ij1 =







−δ if i = i(x0), j = q,

δ if i = i(x0), j = p,

0 otherwise,

where 2ϕ < 2δ < ε. The elements of the remaining cuts A0
k, k 6= 1 of the perturbing

matrix A0 set equal to zero. Then the equations (9), (10) and ‖A0
1‖ = ‖A0‖ = 2δ

hold, i.e. (7) holds. Further, repeating the reasoning of the case 1 and taking into
account δ > ϕ, we see that the inequality (8) is true.

As a result we construct in the first and second case the perturbing matrix A0

such that the formula (6) is true. Hence, ρs(x0, A) ≤ 2ϕ.

3 Lower bound attainability

We show that the lower bound of the stability radius ρs(x0, A), indicated in
Theorem 1, is attainable.

Theorem 2. There exists a class of investment problems Zs(A), s ≥ 1, such that
the stability radius of any lexicographically optimal portfolio x0 is expressed by the
formula ρs(x0, A) = ϕ.

Proof. To prove the equality ρs(x0, A) = ϕ, where ϕ > 0, it is sufficient to identify
a class of problems with ρs(x0, A) ≤ ϕ.

Assume x∗ be such that the equality (5) holds. Since x0 6= x∗, there exists an
index l ∈ Nn such that x0

l 6= x∗
l . We will assume that x0

l = 1 and x∗
l = 0 (this is the

actual specific of the class of problems we would like to identify).
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Assuming ε > ϕ, we define the elements of the cut A0
1 = [a0

ij1] ∈ Rm×n of the

perturbing matrix A0 = [a0
ijk] ∈ Rm×n×s as follows

a0
ij1 =

{

−δ if i = i(x0), j = l,

0 otherwise,

ϕ < δ < ε, (11)

i(x0) = arg min{Ai1x
0 : i ∈ Nm}. (12)

All elements in the remaining cuts A0
k, k ∈ Ns \ {1}, of the perturbing matrix A0

set equal to zero. As a result we get

A0
i(x0)1x

0 = −δ, A0
i1x

∗ = 0, i ∈ Nm,

A0
i1x

0 = 0, i ∈ Nm \ {i(x0)},

‖A0‖ = ‖A0
1‖ = δ, A0 ∈ Ω(ε).

Now due to (12) it is easy to see that

f1(x
∗, A1 + A0

1) = min
i∈Nn

(Ai1 + A0
i1)x

∗ = min
i∈Nn

Ai1x
∗ = f1(x

∗, A1),

f1(x
0, A1 + A0

1) = min
{

(Ai(x0)1 + A0
i(x0)1)x

0, min
i6=i(x0)

(Ai1 + A0
i1)x

0
}

=

= min
{

f1(x
0, A1) − δ, min

i6=i(x0)
Ai1x

0
}

= f1(x
0, A1) − δ.

Therefore, based on (5) and (11), we obtain

g1(x
0, x∗, A1 + A0

1) = g1(x
0, x∗, A1) − δ = ϕ − δ < 0.

The last together with Property 2 imply that for any ε > ϕ there exists A0 ∈ Ω(ε)
such that x0 6∈ Ls(A + A0). Hence, ρs(x0, A) ≤ ϕ.

Consider a short numerical example illustrating Theorem 2.

Example. Let m = 2, n = 3, s = 1, X = {x0, x∗}, x0 = (0, 1, 1)T , x∗ = (1, 1, 0)T ,

A =

(

−6 5 −1
2 −2 3

)

.

Then f(x0, A) = 1, f(x∗, A) = −1, i.e. x0 is an optimal portfolio of Z1(A). Since
ϕ = 2 then according to Theorem 1 ρ1(x0, A) ≥ 2. If we define the perturbing
matrix as follows

A0 =

(

0 0 0
0 0 −δ

)

, δ > 2,

then we have ‖A0‖ = δ and f(x0, A+A0) = 1− δ < −1 = f(x∗, A+A0). Therefore,
x0 6∈ L1(A + A0), and hence ρ1(x0, A) ≤ 2. Finally, ρ1(x0, A) = 2 = ϕ.
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4 Upper bound attainability

Before proving upper bound attainability 2ϕ we consider one of the properties
of the matrixes by size m × 2, m ≥ 2.

When ϕ > 0 the matrix W = [u, v] ∈ Rm×2, m ≥ 2 with u = (u1, u2, . . . , um)T

and v = (v1, v2, . . . , vm)T is called ϕ-special if the inequality holds

min
i∈Nm

(ui + vi) − min
i∈Nm

ui < ϕ.

Lemma. The matrix W = [u, v] ∈ Rm×2, m ≥ 2, with the norm ‖W‖ < 2ϕ, where
ϕ > 0, is ϕ-special.

Proof. The proof is by induction on m ≥ 2.
First we proof the lemma for m = 2. Let

W =

(

u1 v1

u2 v2

)

.

Let us show that the inequality

min{u1 + v1, u2 + v2} − min{u1, u2} < ϕ (13)

follows from the inequality ‖W‖ < 2ϕ, i.e from the inequality

|u1| + |u2| + |v1| + |v2| < 2ϕ. (14)

Without loss of generality we assume that

u1 + v1 ≤ u2 + v2. (15)

We consider two possible cases.

Case 1. u1 ≤ u2. Then the inequality (13) in view of (15) takes the form ϕ > v1.
We give the proof by contradiction. Let

ϕ ≤ v1. (16)

From (15) and (16) we have

ϕ ≤ −u1 + u2 + v2,

and from (14) and (16) we derive

ϕ > |u1| + |u2| + |v2|.

These inequalities lead to the contradiction

0 ≤ |u2| − u2 + |v2| − v2 < −(u1 + |u1|) ≤ 0.
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Case 2. u1 > u2. Then the inequality (13) in view of (15) transform into
inequality ϕ > u1 + v1 − u2. Suppose the contrary

ϕ ≤ u1 + v1 − u2. (17)

Therefore, taking into account (15) we have ϕ ≤ v2. Hence in view of (14) we find

ϕ > |u1| + |u2| + |v1|.

This inequality with (17) leads to the contradiction

0 ≤ |u1| − u1 + |v1| − v1 < −(u2 + |u2|) ≤ 0.

Further we assume that the lemma is true for m ≥ 2 and we show that
the matrix W = [u, v] ∈ R(m+1)×2 with column u = (u1, u2, . . . , um+1)

T , v =
(v1, v2, . . . , vm+1)

T and norm ‖W‖ < 2ϕ is ϕ-special.

Let

i1 = argmin{ui + vi : i ∈ Nm+1},

i2 = arg min{ui : i ∈ Nm+1}

and let the index l ∈ Nm+1 is such that

l 6= i1 & l 6= i2. (18)

Doped from the matrix W the l-th row, we have a matrix W ′ ∈ Rm×2 with the
norm ‖W ′‖ ≤ ‖W‖ < 2ϕ. Then by induction the matrix W ′ is ϕ-special, i.e. the
following inequality is true:

min
i∈Nm+1\{l}

(ui + vi) − min
i∈Nm+1\{l}

ui < ϕ.

In addition, according to (18) we have the equalities:

min
i∈Nm+1

(ui + vi) = ui1 + vi1 = min
i∈Nm+1\{l}

(ui + vi),

min
i∈Nm+1

ui = ui2 = min
i∈Nm+1\{l}

ui.

Hence, the matrix W is ϕ-special.

Theorem 3. For ϕ > 0 there exists a class of investment problems Zs(A), s ≥ 1,
such that the stability radius of a lexicographically optimal portfolio x0 is expressed
by the formula

ρs(x0, A) = 2ϕ.
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Proof. Due to Theorem 1 it is sufficient to identify a class of problems with
ρs(x0, A) ≥ 2ϕ. Let us show that there exists a class when m ≥ 2 and X = {x0, x∗},
x0 ∈ Ls(A), x∗ 6= x0.

According to the definition of ϕ the following equality holds

max
i∈Nm

min
i′∈Nm

(Ai′1x
∗ − Ai1x

0) = ϕ. (19)

Further we assume that the cut A1 of the matrix A and portfolios x0 and x∗

satisfy the following conditions:

(a) ∀i, i′ ∈ Nm ∀x ∈ X (Ai1x = Ai′1x),

(b) x0 ≤ x∗.
The condition (a) shows that Ai1x for any portfolio x ∈ X does not depend from

index i. Denoting it by σ(x) we have the following form of the equality (19)

σ(x0) − σ(x∗) = ϕ.

From that equality for any matrix A′
1 ∈ Rm×n we derive

g1(x
0, x∗, A1 + A′

1) = min
i∈Nm

(Ai1 + A′
i1)x

0 − min
i∈Nm

(Ai1 + A′
i1)x

∗ =

= σ(x0) − σ(x∗) + min
i∈Nm

A′
i1x

0 − min
i∈Nm

A′
i1x

∗ = ϕ − γ, (20)

where
γ = min

i∈Nm

(A′
i1x

0 + A′
i1(x

∗ − x0)) − min
i∈Nm

A′
i1x

0.

Now let the perturbing matrix A′ = [a′ijk] ∈ Ω(2ϕ). Let us consider the matrix

W = [u, v] ∈ Rm×2 with column u = A′
1x

0 and v = A′
1(x

∗ − x0), where A′
1 = [a′ij1].

Then for portfolio x = (x1, x2, . . . , xn)T we introduce the following notations: let

N(x) = {j ∈ Nn : xj = 1},

and also, taking into account (b) and x∗ 6= x0, we have

‖W‖ = ‖A′
1x

0‖ + ‖A′
1(x

∗ − x0)‖ =
∑

i∈Nm

|
∑

j∈N(x0)

a′ij1 | +
∑

i∈Nm

|
∑

j∈N(x∗−x0)

a′ij1 | ≤

≤
∑

i∈Nm

∑

j∈N(x∗)

|a′ij1| ≤ ‖A′
1‖ ≤ ‖A′‖ < 2ϕ.

Therefore due to the lemma the matrix W is ϕ-special, i.e. the inequality γ < ϕ

holds, which with (20) gives us

g1(x
0, x∗, A1 + A′

1) > 0.

Hence due to Property 1 we conclude that for any perturbing matrix A′ ∈ Ω(2ϕ)
the inclusion x0 ∈ Ls(A + A′) holds, i.e. ρs(x0, A) ≥ 2ϕ.
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5 Stability conditions

The portfolio x0 ∈ Ls(A) is called stable if ρs(x0, A) > 0. Additionally, we
introduce the set of strict lexicographically optimal portfolios of Zs(A):

Ss(A) = {x ∈ X : ∀x′ ∈ X \ {x} (f1(x,A1) > f1(x
′, A1))}.

Obviously, Ss(A) ⊆ Ls(A) for any A ∈ Rm×n×s. Apart from that it is clear that
Ss(A) can be empty.

Theorem 4. For a lexicographically optimal portfolio x0 of Zs(A) the following
statements are equivalent:

(i) x0 ∈ Ss(A),

(ii) portfolio x0 is stable,

(iii) ϕ > 0.

Proof. (i) ⇒ (ii). Let x0 ∈ Ls(A) be a strict lexicographically optimal portfolio,
i. e. x0 ∈ Ss(A). Then for every x ∈ X \ {x0} we have

ξ(x) = max
i∈Nm

min
i′∈Nm

(Ai′1x
0 − Ai1x) = g1(x

0, x,A1) > 0.

Thus, due to Theorem 1 we conclude ρs(x0, A) ≥ ϕ = min
{

ξ(x) : x ∈ X \

{x0}
}

> 0, i. e. x0 ∈ Ls(A) is stable.

(ii) ⇒ (iii). Assume x0 ∈ Ls(A) be stable. Then according to Theorem 1
2ϕ ≥ ρs(x0, A) > 0, i. e. ϕ > 0.

(iii) ⇒ (i). According to the definition of ϕ for any portfolio x 6= x0 the
inequality ϕ ≤ f1(x,A1) − f1(x

0, A1) is true. Hence from the inequality ϕ > 0 we
have x0 ∈ Ss(A).

This work was supported by the Republican Foundation of Fundamental
Research of Belarus.
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Matrix algorithm for Polling models

with PH distribution

Gheorghe Mishkoy, Udo R. Krieger, Diana Bejenari

Abstract. Polling systems provide performance evaluation criteria for a variety of
demand-based, multiple-access schemes in computer and communication systems [1].
For studying this systems it is necessary to find their important characteristics. One
of the important characteristics of these systems is the k-busy period [2]. In [3] it is
showed that analytical results for k-busy period can be viewed as the generalization
of classical Kendall functional equation [4]. A matrix algorithm for solving the gene-
ralization of classical Kendall functional equation is proposed. Some examples and
numerical results are presented.

Mathematics subject classification: 34C05, 58F14.

Keywords and phrases: Polling Model, Kendall Equation, Generalization of
Classical Kendall Functional Equation, k-Busy Period, Matrix Algorithm.

1 Introduction

In this paper we study one of the important characteristics for queueing system
of Polling type, the k-busy period. A Polling model is a system of multiple queues
accessed by a single server in cyclic order. We consider a queueing system of Polling
type with semi-Markov switching. Handling mechanism for this system is given by
Polling table f : {1, 2, . . . , n} → {1, 2, . . . , r}, where the function f shows that at
the stage j, j = 1, n, the user number k, k = 1, r, is served. The items (messages) of
the user k, arrive according to Poisson distribution with parameter λ̃k. The service
time for the items of class k is a random variable Bk with the distribution function
Bk(x) = P{Bk < x}. Duration of the orientation from one user to another one is
a random variable Ck with the distribution function Ck(x) = P{Ck < x}. In this
paper, the matrix algorithm of determining the k-busy period for Polling systems is
obtained, and some numerical examples are presented.

2 The k-busy period

Definition 2.1 The k-busy period is a measure of the time that expires from when a
server begins to process, after an empty queue, to when the k-queue becomes empty
again for the first time [3].
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Denote by Πδ
k the length of the k-busy period, and by

Πδ
k(x) = P{Πδ

k < x},

its distribution function. Consider that

πδ
k(s) =

∞
∫

0

e−sxdΠδ
k(x)

is the Laplace-Stieltjes transform of distribution function of k-busy period.
The following result is known [3]:
Theorem 2.1 The function πδ

k(s) is determined from the equation

πδ
k(s) = ck(s + λ̃k − λ̃kπk(s))πk(s), (2.1)

where

πk(s) = βk(s + λ̃k − λ̃kπk(s)), (2.2)

and ck(s) and βk(s) denote the Laplace-Stieltjes transforms of distribution functions
Ck(x) and Bk(x),

ck(s) =

∞
∫

0

e−sxdCk(x),

βk(s) =

∞
∫

0

e−sxdBk(x).

A matrix algorithm for solving the generalization of classical Kendall functional
equation (2.1) is proposed. For this, the matrix algorithm for solving Kendall functi-
onal equation in Polling models [5] was used. It has no analytical solution, but it
can be solved numerically with the accuracy required. Both distributions Bk(x) and
Ck(x) were considered distributions of Phase Type (PH). All results were obtained
in terms of the Laplace-Stieltjes transform.

3 Laplace-Stieltjes Transform of Phase Type distribution

Phase type distributions are getting to be very commonly used these days after
Neuts [6] made them very popular and easily accessible. They are very often referred
to as the PH distribution. The PH distribution has became very popular in stocha-
stic modeling because it allows numerical tractability of some difficult problems and
in addition, several distributions encountered in queueing seem to resemble the PH
distribution.
Phase type distributions are distributions of the time until absorption in an absorb-
ing CTMC (Continuous Time Markov Chain). Consider an (n+1) absorbing CTMC
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with the state space {0, 1, . . . , n} and let the state 0 be the absorbing state. The
transition matrix Q of this absorbing Markov chain is given as

Q =

(

T T 0

0 0

)

, (3.1)

where the n × n matrix T satisfies Tii < 0, for 1 ≤ i ≤ n, and Tij ≥ 0, for i 6= j.
Te + T 0 = 0, αte = 1, and (αt, 0) is the initial probability vector of Q. We suppose
that all states 1, . . . , n are transient.

The probability distribution F (x) of the time until absorbtion in the state 0,
corresponding to the initial probability vector (αt, 0), is given by:

F (x) = 1 − αteTxe, for x ≥ 0. (3.2)

The phase type distribution with parameter αt and T is usually written as PH
distribution with representation (αt, T ). Let find the Laplace-Stieltjes transform of
phase type distribution with representation (αt, T ):

dF (x)

dx
= −

d

dx
αteTxe = −αt[

d

dx
eTx]e,

where eTx =
∑∞

k=1
(Tx)i

i! .

deTx

dx
= eTx ·

d(Tx)

dx
= eTx · T,

dF (x)

dx
= −αteTxTe = αteTx(−Te) = αteTxT 0.

f(s) =

∫ ∞

0
e−sxdF (x) =

∫ ∞

0
e−sxαteTxT 0dx = αt

∫ ∞

0
e−sxIeTxdxT 0

= αt

∫ ∞

0
e−(sI−T )xdxT 0 = αt(sI − T )−1T 0.

The Laplace-Stieltjes transform f(s) of the PH distribution with representation
(αt, T ), is:

f(s) = αt(sI − T )−1T 0. (3.3)

4 Matrix form for Kendall equation

We know that

πk(s) = βk(s + λ̃k(1 − πk(s))). (4.1)
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Suppose that Bk(x) is a PH distribution with representation (αt
k, T ), where

Tk =















−λk λk . . . 0 0
0 −λk . . . 0 0
...

...
. . .

...
...

0 0 . . . −λk λk

0 0 . . . 0 −λk















,

and
Tk

0 =
(

0 0 . . . λk

)t
.

The Laplace-Stieltjes transform βk(s) of probability distribution Bk(x) of the
time until absorbtion in the state 0 is

βk(s) =

∫ ∞

0
e−sxdBk(x) = αt(sI − Tk)

−1Tk
0.

Then, from equation (4.1) we obtain:

πk(s) = αt
k([s + λ̃k(1 − πk(s))]I + Ak)

−1Ake,

where Ak = −Tk.

Denote gk(s) = s + λ̃k(1 − πk(s)), then

ak(s) = 1 − πk(s) = 1 − αt
k(gk(s)I + Ak)

−1Ake = αt
ke − αt

k(g(s)kI + A)−1Ake =

= αt
k[I − (gk(s)I + A)−1Ak]e = αk

t(gk(s)I + Ak)
−1[gk(s)I + Ak − Ak]e =

= αt
kgk(s)(gk(s)I + Ak)

−1e.

Denote (gk(s)I + Ak)
−1e = yk(s), then the matrix form for Kendall equation is

ak(s) = αk
tgk(s)yk(s), (4.2)

where yk(s) can be found by solving these simultaneous linear equations

(gk(s)I + Ak)yk(s) = e. (4.3)

5 Matrix Algorithm for Solving Kendall Equation

We have to calculate
ak(s) = αt

kgk(s)yk(s), (5.1)

where gk(s) = s + λkak(s) and yk(s) = (gk(s)I + Ak)
−1e.

For calculating yk(s) it is necessary to solve these simultaneous linear equations

(gk(s)I + Ak)yk(s) = e, (5.2)
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where e = (11 . . . 1)t, Ak = −Tk and

Tk =















−λk λk . . . 0 0
0 −λk . . . 0 0
...

...
. . .

...
...

0 0 . . . −λk λk

0 0 . . . 0 −λk















,

and

T 0
k =

(

0 0 . . . λk

)t
.

The simultaneous linear equations (5.2) have the analytical solution. Let write these
simultaneous linear equations in explicit form:















gk(s) + λk −λk . . . 0 0
0 gk(s) + λk . . . 0 0
...

...
. . .

...
...

0 0 . . . gk(s) + λk −λk

0 0 . . . 0 gk(s) + λk





























y0

y1
...

yn−2

yn−1















=















1
1
...
1
1















.

Then

yn−1 = 1/(gk(s) + λk) = ωk,

yi = (1 + λkyi+1)ωk = ωk + ωkλkyi+1, i = 1, n − 2,

y0 = ωk + ωkλky1 =
1 − (λkωk)

n

gk(s)
. (5.3)

First prove relation (5.3).

y0 = ωk + ωkλky1 = ωk + ωkλk(ωk + ωkλky2) =

= ωk + ω2
kλk + (ωkλk)

2y2 = ωk + ω2
kλk + (ωkλk)

2(ωk + ωkλky3) =

= ωk + ω2
kλk + ω3

kλ
2
k + (ωkλk)

3y3 = ωk(1 + ωkλk + (ωkλk)
2 + (ωkλk)

3 y3

ωk

) =

= · · · = ωk(1 + ωkλk + (ωkλk)
2 + · · · + (ωkλk)

n−1 yn−1

ωk

) = ωk

n−1
∑

j=0

(λkωk)
j =

=
ωk(1 − (λkωk)

n)

1 − λkωk

=
ωk(1 − (λkωk)

n)

ωk(
1

ωk

− λk)
=

1 − (λkωk)
n

gk(s) + λk − λk

=
1 − (λkωk)

n

gk(s)
,

because

|ωkλk| = |
λk

gk(s) + λk

| < 1.
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So, the solution of the simultaneous linear equations (5.2) is:

y0 =
1 − (λkωk)

n

gk(s)
,

yi+1 =
yi − ωk

λkωk

, i = 1, n − 2,

yn−1 = ωk.

Then ak(s) = αt
kgk(s)yk(s) will be

ak(s) =
(

1 0 . . . 0 0
)

gk(s)

















1−(λkωk)n

gk(s)

y1
...

yn−2

yn−1

















= 1 − (λkωk)
n.

So, ak(s) = 1 − (λkωk)
n, where αt

ke = 1, and we start with ak(s) = 1 and
αt

k = (10 . . . 0), the remaining values we give by ourselves (λk, λ̃k and s).

6 Matrix Form for Generalization of Classical Kendall Functional

Equation

It is known that analytical results for k-busy period can be viewed as a genera-
lization of the classical Kendall functional equation

πδ
k(s) = ck(s + λ̃k(1 − πk(s)))πk(s). (6.1)

Suppose that Ck(x) is a PH distribution with representation (αt
k, Pk), where

Pk =















−δk δk . . . 0 0
0 −δk . . . 0 0
...

...
. . .

...
...

0 0 . . . −δk δk

0 0 . . . 0 −δk















,

and

P 0
k =

(

0 0 . . . δk

)t
.

The Laplace-Stieltjes transform is:

ck(s) =

∫ ∞

0
e−sxdBk(x) = αt(sI − Pk)

−1Pk
0. (6.2)
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From equation (6.1) we obtain:

πδ
k(s) = αt

k([(s + λ̃k(1 − πk(s)))πk(s)]I + Dk)
−1Dke,

where Dk = −Pk. It is known from Section 4 that πk(s) = 1 − ak(s) and gk(s) =
s + λ̃k(1 − πk(s)), then

bk(s) = 1 − πδ
k(s) = 1 − αt

k(gk(s)(1 − ak(s))I + Dk)
−1Dke =

= αt
ke−αt

k(g(s)k(1−ak(s))I +Dk)
−1Dke = αt

k[I−(gk(s)(1−ak(s))I +Dk)
−1Dk]e =

= αt
k(gk(s)(1 − ak(s))I + Dk)

−1[gk(s)(1 − ak(s))I + Dk − Dk]e =

= αt
kgk(s)(1 − ak(s))(gk(s)(1 − ak(s))I + Dk)

−1e.

If we denote (gk(s)(1 − ak(s))I + Dk)
−1e = ỹk(s), then

bk(s) = αk
tgk(s)(1 − ak(s))ỹk(s), (6.3)

where ỹ(s) can be found by solving these simultaneous linear equations

(gk(s)(1 − ak(s))(s)I + Dk)ỹk = e. (6.4)

7 Matrix Algorithm for Solving Generalization of Classical Kendall

Functional Equation

We have to calculate

bk(s) = αt
kgk(s)(1 − ak(s))ỹk(s), (7.1)

where gk(s) = s + λ̃kak(s) and ỹk(s) = (gk(s)(1 − ak(s))I + Dk)
−1e.

To calculate yk(s) it is necessary to solve these simultaneous linear equations

(gk(s)(1 − ak(s))I + Dk)ỹk(s) = e, (7.2)

where e = (11 . . . 1)t, Dk = −Pk and

Pk =















−δk δk . . . 0 0
0 −δk . . . 0 0
...

...
. . .

...
...

0 0 . . . −δk δk

0 0 . . . 0 −δk















,

and
P 0

k =
(

0 0 . . . δk

)t
.



MATRIX ALGORITHM FOR POLLING MODELS WITH PH DISTRIBUTION 77

The simultaneous linear equations (7.2) have the analytical solution. Denote

A =











gk(s)(1 − ak(s)) + δk −δk . . . 0 0
0 gk(s)(1 − ak(s)) + δk . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 gk(s)(1 − ak(s)) + δk











,

b =
(

y0 y1 . . . yn−1

)t
,

e =
(

1 1 . . . 1
)t

.

These simultaneous linear equations have the matrix form:

A · b = e

Then

ỹn−1 = 1/(gk(s)(1 − ak(s)) + δk) = γk,

ỹi = (1 + δkỹi+1)γk = γk + γkδkỹi+1, i = 1, n − 2,

ỹ0 = γk + γkδk ỹ1 = 1 −
δk

gk(s)(1 − ak(s)) + γk

. (7.3)

First prove relation (7.3).

ỹ0 = γk + γkδkỹ1 = γk + γkδk(γk + γkδkỹ2) =

= γk + γ2
kδk + (γkδk)

2ỹ2 = γk + γ2
kδk + (γkδk)

2(γk + γkδkỹ3) =

= γk + γ2
kδk + γ3

kδ2
k + (γkδk)

3ỹ3 = γk(1 + γkδk + (γkδk)
2 + (γkδk)

3 y3

γk

) =

= · · · = γk(1 + γkδk + (γkδk)
2 + · · · + (γkδk)

n−1 ỹn−1

γk

) = γk

n−1
∑

j=0

(δkγk)
j =

=
γk(1 − (δkγk)

n)

1 − δkγk

=
γk(1 − (δkγk)

n)

γk(
1
γk

− δk)
=

=
1 − (δkγk)

n

gk(s)(1 − ak(s)) + δk − δk

=
1 − (δkγk)

n

gk(s)(1 − ak(s))
,

because

|γkδk| = |
δk

gk(s)(1 − ak(s)) + δk

| < 1.
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In this case the solution of the simultaneous linear equations (4.1) is:

ỹ0 =
1 − (δkγk)

n

gk(s)(1 − ak(s))
,

ỹi+1 =
yi − γk

δkγk

, i = 1, n − 2,

ỹn−1 = γk.

Then bk(s) = αt
kgk(s)(1 − ak(s))ỹk(s) will be

bk(s) =
(

1 0 . . . 0 0
)

gk(s)(1 − ak(s))



















1 − (δkγk)
n

gk(s)(1 − ak(s))
ỹ1
...

ỹn−2

ỹn−1



















= 1 − (δkγk)
n.

So, bk(s) = 1 − (δkγk)
n, where αt

ke = 1, and we start with ak(s) = 1 and
αt

k = (10 . . . 0), the remaining values we give by ourselves (δk, λ̃k and s).

8 Conclusion

The main purpose of research of the Polling system is to determine the cha-
racteristics of system development. But analytical formulas can not always be used
directly, so great attention is paid to numerical algorithms. For finding numerical
solutions for the k-busy period, in terms of Laplace-Stieltjes transform, PH distribu-
tion was used. A matrix algorithm for solving the generalization of classical Kendall
functional equation was obtained. Some numerical examples are presented.

9 Examples

Example 1. The type of distribution function taken for Bk(x) and Ck(x) are PH
distributions with representation (αt, Tk), (αt, Pk), so

Bk(x) = 1 − αte
Tkxe, x > 0,

Ck(x) = 1 − αte
Pkxe, x > 0,

with the following parameters:
λk = {0.5; 0.6; 0.3; 0.4; 0.5; 0.2; 0.6; 0.6; 0.2; 0.1},
λ̃k = {0.2; 0.3; 0.4; 0.2; 0.6; 0.7; 0.8; 0.4; 0.2; 0.3},
δk = {0.3; 0.4; 0.1; 0.2; 0.6; 0.8; 0.5; 0.4; 0.4; 0.8},
s = 0.5.
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The results of the program are presented in Table 1.

k πk(s) πδ
k(s) k πk(s) πδ

k(s)

1 0.012692 0.864672 6 0.000060 0.999554

2 0.014688 0.865907 7 0.003161 0.959972

3 0.000978 0.957140 8 0.010383 0.891422

4 0.006395 0.895401 9 0.000542 0.995270

5 0.002997 0.973018 10 0.000017 0.999915

Table 1

Example 2. The type of distribution function taken for Bk(x) and Ck(x) are PH
distributions with representation (αt, Tk), (αt, Pk), so

Bk(x) = 1 − αte
Tkxe, x > 0,

Ck(x) = 1 − αte
Pkxe, x > 0,

with the following parameters:
λk = {0.2; 0.3; 0.1; 0.5; 0.6; 0.7; 0.4; 0.8; 0.4; 0.5; 0.3; 0.7; 0.8; 0.4; 0.6; 0.9; 0.3; 0.4; 0.5; 0.4},
λ̃k = {0.2; 0.3; 0.5; 0.2; 0.3; 0.7; 0.8; 0.4; 0.3; 0.5; 0.1; 0.5; 0.8; 0.4; 0.3; 0.6; 0.4; 0.9; 0.4; 0.2},
δk = {0.5; 0.4; 0.8; 0.4; 0.4; 0.7; 0.4; 0.3; 0.8; 0.2; 0.1; 0.5; 0.4; 0.7; 0.5; 0.4; 0.7; 0.9; 0.4; 0.3},
s = 0.5.
The results of the program are presented in Table 2.

k πk(s) πδ
k(s) k πk(s) πδ

k(s)

1 0.002444 0.986440 11 0.012414 0.750670

2 0.005566 0.956771 12 0.029777 0.796091

3 0.000068 0.999659 13 0.021775 0.763410

4 0.030767 0.812228 14 0.009064 0.954890

5 0.034760 0.766861 15 0.034760 0.807550

6 0.018947 0.881203 16 0.043203 0.644660

7 0.003083 0.960978 17 0.003927 0.980092

8 0.051492 0.569886 18 0.002451 0.984919

9 0.012501 0.951740 19 0.016581 0.864629

10 0.012555 0.785024 20 0.017712 0.851134

Table 2
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On asymptotic representation of singular solutions

of the model elliptic equation near boundary

and formulation of singular boundary conditions

Nicolae Jitaraşu

Abstract. In the work the asymptotic representation of singular solution of the
elliptic model Sobolev problem near components of arbitrary dimensions of boundary
is specified. Using this asymptotical representation of solutions, the singular bound-
ary conditions are formulated. The solvability of boundary problem with singular
boundary conditions is proved.

Mathematics subject classification: 35I40; 35B45; 35C20.

Keywords and phrases: Sobolev boundary problem, asymptotic representation of
singular solutions, singular boundary conditions.

1 Introduction

This work is the continuation of [1], devoted to integral and asymptotic represen-
tation of singular solutions of elliptic equations near components of small dimensions
of boundary. The problem of representation of solutions near boundary is interest-
ing not only in itself, but also in connection with reduction of the boundary value
problem to integral, integro-differential or differential equations on the boundary.
In [2, 3] S. L. Sobolev for the first time formulated and studied the boundary value
problem for polyharmonic equation in a domain with boundary, consisting of a sub-
manifold of diverse dimensions (and afterwards this problem was named the Sobolev
boundary problem).

Later the work [4] was published, where the Sobolev boundary value problem is
studied for a general elliptic equation of order 2m. In this work it is proved that
the number of boundary conditions on the submanifold of boundary depends on the
order of regularity of solutions u(x) from Sobolev space Hs (Ω) near submanifold.

Moreover, it was proved that the solution of the elliptic equation admits asymp-
totic representation with respect to the power p−ν and ln r (where r = dist(x, Rq)),
any explicit formulae to compute the coefficients have been done.

Using the integral representation of solution of the boundary value problem with
Green function, in [1] the asymptotic representation of the components of the sin-
gular solutions generated by distributions with support on the submanifold R

q was
obtained.

c© Nicolae Jitaraşu, 2012
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2 On elliptic model problem. Asymptotic representation

of component of singular solution near boundary

Let R
n be a Euclidean n-dimensional space, R

q ⊂ R
n a subspace of R

n, x =
= (x′, x′′) = (x1, ..., xq , xq+1, ..., xn) a point of R

n, Dx = (Dx′ ,Dx′′) , Ω = R
n\Rq.

By Cα(Ω), Cα
0 (Ω), Cα(Rq), Cα

0 (Rq) we denote the usual Hölder spaces, spaces of
functions with finite support in Ω and R

q, respectively, Hs (Ω) , Hs (Rq), s ∈ R
1,

are Hilbertian Sobolev spaces in Ω and R
q, respectively [5,6].

Let L (Dx) be a homogeneous elliptic operator of order 2m with constant coeffi-
cients. In domain Ω we consider the elliptic equation

L (Dx) u(x) = f(x), (1)

where

u(x) ∈ Hs (Ω) , f(x) ∈ Hs−2m (Ω) , s ∈ R
1. (2)

First of all we consider the problem of asymptotic behavior of singular solutions
u(x) ∈ Hs (Ω) near submanifold R

q, and obtain the formulae of asymptotic repre-
sentation of solutions, generated by distributions with support on the R

q. For this
we observe that it is known [5,6] that the non-zero element f(x) ∈ Hs−2m (Rn) is
concentrated in R

q if and only if s < 2m − θ/2 (θ = codim R
q = n − q) and there

exist elements fσ (x′) ∈ Hs−2m+|σ|+θ/2 (Rq) , |σ| ≤ τ = [2m − s − θ/2] such that

f(x) =
∑

|σ|≤τ

Dσ
ν

(

fσ

(

x′
)

× δ
(

x′′
))

, ν = x′′, (3)

where [α] is the integer part of number α, Dσ
ν = Dσ

x′′ =
∂σq+1

∂x
σq+1

q+1

. . .
∂σn

∂xσn

n
, and

fσ (x′) × δ (x′′) is the direct product of distributions, |σ| =
∑n

i=q+1 σi.

In [1], using the Green function of boundary value problem, the integral repre-
sentation of solution of equation (1) near R

q is obtained, from which the asymptotic
representation of singular part of solution u(x) in Ω is obtained.

Really, let G (x, y) = E (x − y) + g(x, y) be the Green function of homogeneous
Dirichlet problem in the ball BR of radius R (sufficiently large), where E (x) is a
fundamental solution of equation (1) in R

n, and g(x, y) is the solution of equation
(1) in Ω, satisfying the condition g(x, y)|BR

= E (x − y)|∂BR
.

Write the formulae of integral representation of solution of Dirichlet problem

u(x) =

∫

Rn

G(x, y)f(y)dy

for f(x) ∈ C∞
0 . After that approximate f(x) with functions fε(x) ∈ C∞

0 (Rn),
fε(x) →

ε→0
f(x) in Hs−2m (Rn), then integrating by parts with respect to variable x′′,
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and passing to the limit as ε → 0, we obtain the integral representation of solution
u(x):

u(x) =
∑

|σ|≤τ

∫

Rq

D̄σ
x′′E

(

x′ − y′, x′′
)

fσ

(

y′
)

dy′ + ũ (x) =

=
∑

|σ|≤τ

∫

Rq

D̄σ
x′′E

(

z′, x′′
)

fσ

(

x′ − z′
)

dz′ + ũ (x) ≡
∑

|σ|≤τ

vσ (x) + ũ (x) ,

(4)

where ũ(x) is a regular, bounded function, D̄x′′ = −Dx′′ .

It is known [7, 8] that
∣

∣Dσ
x′′E

(

x′ − y′, x′′
)
∣

∣ ≤ c |x − y|2m−n−|σ| |ln |x − y|| ,

where ln |x − y| is dropped for 2m−n−|σ| < 0. Moreover, if 2m−n−|σ| < 0, then
E(σ) (z′, x′′) are homogeneous functions of degrees 2m−n−|σ| and if n−2m+|σ| ≥ q,

i.e. n − q − 2m + |σ| = θ − 2m + |σ|
def
≡ ασ ≥ 0, then the integrals vσ(x) are

singular or hypersingular integrals with homogeneous kernels [7,8]. Now consider
the singular and hypersingular integrals vσ(x). In [1], using the known procedure of
regularization of divergent integrals (separation of the finite part in the Hadamard
sense), by separating the singular and regular parts, the asymptotic representations
of the divergent integrals vσ (x) near R

q are obtained. For convenience, here we
shortly expose this known procedure [1].

Let n ≥ 3, r = |x′′| , ρ = |x′|. Denote by

Pα

(

x′, z′
)

f
(

x′
)

=

α
∑

λ=0

∑

|k′|=λ

f (k′) (x′)

k′!

(

−z′
)k′

≡

α
∑

λ=0

Pλ

(

x′, z′
)

f
(

x′
)

the segment of the Taylor expansion of the function f (x′ − z′) near the point z′ = 0,
where k′ = (k1, . . . , kq),

vσ0 (x) =

∫

Rq

Ē(σ)
(

z′, x′′
)(

fσ

(

x′ − z′
)

−Pασ−1

(

x′, z′
)

fσ − θ
(

z′
)

Pασ

(

x′, z′
)

fσ

)

dz′ (5)

is the regularization (finite part) of the divergent integral vσ(x) at the point z′ =
0, θ (z′) = 1 for |z′| ≤ 1 and θ (z′) = 0 for |z′| > 1. In [1] it is proved that the
integrals vσ(x) could be presented in the form

vσ (x) = vσ0 (x) −
∫

Rq

Ē(σ) (z′, x′′) Pασ−1 (z′,D′
x) fσ (x′) dz′−

−
∫

|z′|<1

Pασ
(z′,D′

x) fσdz′ ≡ vσ0 (x) +
ασ−1
∑

λ=0

∫

Rq

Ē(σ) (z′, x′′)Pλ(z′,D′
x) fσ (z′) dz′+

+
∫

|z′|<1

Ē(σ) (z′, x′′)Pασ
(z′,D′

x) fσdz′ ≡ vσ0 (x) +
ασ−1
∑

λ=0

Iλ [fσ] + Iασ
[fσ] ,

(6)
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where

Iλ [fσ]=(−1)λ
∑

|k′|=λ

Aσk′

(

ω′′
) f

(k′)
σ (x′)

k′!
r−ασ+λ ≡ Qσλ

(

ω′′,D′
x

)

fσ

(

x′
)

r−ασ+λ, (7)

Aσk′

(

ω′′
)

=

∫

Rq

E(σ)
(

ξ′, ω′′
)

ξ′k
′

dξ′, ω′′ = x′′
/

∣

∣x′′
∣

∣, (8)

and

Iασ
[fσ] = −Aσ

(

D′
x

)

fσ

(

x′
)

ln r + Bσ

(

D′
x

)

fσ

(

x′
)

+ o (r) ,

with o (r) → 0 as r → 0,

Aσ

(

D′
x

)

fσ

(

x′
)

=(−1)ασ

∑

|k′|=ασ

aσk′

f
(k′)
σ (x′)

k′!
, aσk′ =

∫

|ω′|=1

E(σ)
(

ω′, 0
) (

ω′
)k′

dω′, (9)

Bσ

(

D′
x

)

fσ

(

x′
)

= (−1)ασ

∑

|k′|=ασ

bσk′

(

ω′′
) f

(k′)
σ (x′)

k′!
, (10)

and bσk′ (ω′′) is the integral

bσk′(ω′′)=
∫

|ω′|=1

ω′k′

dω′

(

1
∫

0

E(σ)(ρω′, ω′′)ρ|k
′|+q−1dρ+

∞
∫

1

(

E(σ)(ρω′, ω′′)−E(σ)(ω′, 0)
)

1
ρ
dρ

)

.

Hence, for divergent integrals vσ (x′) (singular and hypersingular) we obtain the
representations

vσ (x) = vσ0 (x) +

ασ−1
∑

λ=0

Qσλ

(

D′
x

)

fσ(x′)r−ασ+λ−

−Aσ

(

D′
x

)

fσ(x′) ln r + Bσ

(

D′
x

)

fσ(x′) + o (r) ,

(11)

where the functions vσ0 (x) and operators Qσλ (D′
x) , Aσ (D′

x) , Bσ (D′
x) are defined

by (5), (7), (9) and (10), o(r) tends to zero as r tends to zero.

3 Asymptotic representation of singular part of integer solution

near Rq

Here, using the asymptotical representation of components vσ (x) of singular
solution u(x) near R

q, generated by distribution f(x), concentrated on the manifold
R

q, the asymptotic representation of integer solution v(x) near R
q is obtained.
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Really, summing the equality (11) ovwr σ for all σ such that ασ ≥ 0, the asymp-
totic representation for the singular part v(x) of the solution u(x) near R

q is ob-
tained:

v(x)=
∑

σ: ασ≥0

vσ0 (x) +
∑

σ: ασ>0

ασ−1
∑

λ=0

Qσλ

(

D′
x

)

fσ

(

x′
)

r−ασ+λ +
∑

σ: ασ≥0

Aσ

(

D′
x

)

ln r+

+
∑

σ: ασ≥0

Bσ

(

D′
x

)

fσ

(

x′
)

+o (r)≡v0(x)+w(x)+w0 (x) + B
(

D′
x

)

f
(

x′
)

+o (r) .

(12)

Here by v0 (x) , w (x) and w0 (x) we denoted the first three sums of right hand
side of equality (12), o (r) → 0 when r → 0. The equality (12) is the asymptotic
representation of singular part of solution u(x) near submanifold R

q with respect to
the power r−ν and ln r. But in order to obtain an asymptotic ordered representation
with respect to the ascending order of power r−ν and ln r it is necessary to transform
the equality (12). For this, at first, we consider the function w(x) and transform
it into an ordered sum with respect to the ascending order of power r−ν . Since
−αµ +λ = − (µ − λ + θ − 2m), the expression µ−λ+θ−2m is constant on the any
straight line µ−λ+θ−2m = ν. Therefore, it is natural to denote µ−λ+θ−2m = ν,

and to obtain an ordered sum with respect to the ascending order of power r−ν it
remains to change the order of summing over λ, µ and ν. From the inequality
ν = µ− λ + θ − 2m ≥ 1 it follows that µ ≥ 2m + λ − θ + 1 ≥ 2m − θ + 1 and, since
µ = |σ| ≥ 0, we have µ ≥ µ1 = max (0, 2m − θ + 1). Therefore, µ1 ≤ |σ| = µ ≤ τ

and ν1 ≤ ν ≤ ν2, where ν1 = µ1 + θ − 2m, ν2 = τ + θ − 2m.
For w(x) we obtain the representation

w(x) =

τ
∑

µ=µ1

αµ−1
∑

λ=0





∑

|σ|=µ

∑

|k′|=λ

Aσk′

(

ω′′
) f

(k′)
σ (x′)

k′!



 r−αµ+λ ≡

≡

τ
∑

µ=µ1

αµ−1
∑

λ=0

Pµλ

(

ω′′,D′
x

)

f
(

x′
)

rλ−αµ =

=
τ+θ−2m

∑

ν=ν1

∑

µ,λ:
µ−λ=ν+2m−θ

Pµλ

(

ω′′,D′
x

)

f
(

x′
)

r−ν =
τ+θ−2m

∑

ν=ν1

Mν

(

ω′′,D′
x

)

f
(

x′
)

r−ν ,

(13)

where by Pµλ (ω′′,D′
x) f (x′) we denoted the double sum over σ and k′ from right

hand side of equality (13),

Pµλ

(

ω′′,D′
x

)

f
(

x′
)

=
∑

|σ|=µ

∑

|k′|=λ

Aσk′

(

ω′′
) f

(k′)
σ (x′)

k′!
, (14)

where Aσk′ (ω′′) =
∫

Rq Ē(σ) (ξ′, ω′′) ξ′k
′
dξ′. It remains to transform the expression
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w0(x). Detailing the structure of sum, which defines the function w0(x), after or-
dered summation over σ, we obtain

w0(x) = M0

(

D′
x

)

f
(

x′
)

ln r =
∑

µ,λ: µ−λ=ν+2m−θ

Pµλ

(

D′
x

)

f
(

x′
)

ln r, (15)

where Pµλ (D′
x) f (x′) =

∑

|σ|=µ

∑

|k′|=λ

aσk′
f
(k

′)
σ (x′)

k′! , aσk′ =
∫

|ω′|=1

E(σ) (ω′, 0) ω′k′
dω′.

Thus, substituting in (13) these functions w(x) and w0(x) with their transformed
expressions, we obtain the following

Theorem 1. Let functions fσ (x′) ∈ Cασ+1
0 (Rq). Then the singular part v(x) of

solution u(x) near R
q is represented by

v(x) = v0(x) +

τ+θ−2m
∑

ν=1

Mν

(

ω′′,D′
x, f

)

r−ν+

+M0

(

D′
x

)

f
(

x′
)

ln r +
∑

σ: ασ≥0

Bσ

(

ω′′,D′
x

)

f
(

x′
)

+ o (r) ,

(16)

where Mν (ω′′,D′
x, f) , M0 (D′

x) f (x′) is defined by formulae (13), (15), respectively,
o (r) → 0 when r → 0.

4 Formulation of the boundary value problem with singular

boundary conditions

In the general theory of elliptic boundary value problems in domain Ω with
smooth boundary ∂Ω, the boundary problem is reduced to a system of pseudodif-
ferential equations on the boundary ∂Ω. This system is a system of regular integral
(Fredholm) equations in the case of smooth solutions up to ∂Ω or a system of dif-
ferential equations in the case of singular solutions.

Here, using the obtained formulae (16) of asymptotic representation of singular
parts of solutions u(x) near boundary R

q, we formulate, firstly, the formal model
boundary value problem with singular boundary conditions on the R

q:

In the domain Ω = R
n\Rq find the solutions of elliptic equation L (Dx)u(x) = 0

that have near R
q the given singular asymptotic representation:

z(x) =
τ+θ−2m

∑

ν=1

Φν

(

ω′′, x′
)

r−ν + Φ0

(

ω′′, x′
)

ln r + z̃ (x) , (17)

where z̃ (x) is a regular bounded function.
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Formally, equating the coefficients by the same power r−ν and ln r from equalities
(16) and (17), we obtain

Mν

(

ω′′,D′
x

)

f
(

x′
)

=
∑

µ,λ:µ−λ+θ−2m=ν

Pµλ

(

ω′′,D′
x

)

f
(

x′
)

= Φν

(

ω′′, x′
)

,

ν = τ + θ − 2m, . . . , 1,

(18)

M0

(

ω′′,D′
x

)

f
(

x′
)

= Φ0

(

ω′′, x′
)

. (19)

The system of equations (18), (19) is a system of linear partial differential equa-
tions with unknown density fσ (x′) , σ : µ0 ≤ |σ| ≤ τ and the solvability of bound-
ary problem with singular boundary conditions is reduced to the solvability of system
of differential equations (18), (19). This system is rather complicated, since the num-
ber of unknown densities fσ (x′), as well as the number of equations, depends on s

and on the difference θ − 2m, too.

Now we pass to the study of the structure of equations of system (18)-(19)
depending on s, τ and θ. Denote by Πm the linear space of all homogeneous
polynomials of degree m. It is known [9] that the dimension of space Πm

(dim Πm) is equal to Cθ−1
m+θ−1, where Ck

n are the binomial coefficients. Hence,
the number of unknown functions fσ (x′) in the system (18)-(19) is equal to
Π =

∑τ
m=µ0

dimΠm =
∑τ

m=µ0
Cθ−1

m+θ−1 which is greater (for θ > 1) than the number
of equations from system (18)-(19). Return to the system of equations (18)-(19).

Since fσ (x′) ∈ Hs−2m+|σ|+θ/2 (Rq) and f
(k′)
σ (x′) ∈ Hs−2m+|σ|+θ/2−|k′| (Rq), then for

any multiindex σ and k′ with |σ| − |k′| = µ − λ = ν − θ + 2m the left hand sides
of equations (18), (19) belong to spaces Hs+ν−θ/2 (Rq) , ν = τ + θ − 2m, . . . , 1, 0.
Therefore, the equalities (18), (19) define a bounded operator U from the space
E1 =

∏

|σ|

Hs−2m+|σ|+θ/2 (Rq) , |σ| ≤ τ , to the space E2 =
∏

ν

Hs+ν−θ/2 (Rq) , ν =

0, 1, . . . , τ + θ − 2m.

Now we begin to investigate the system of equations (18), (19). At first, we will
see that the number of equations of system (18)-(19), as well as the condition of
solvability of this system, depends on the numbers θ − 2m and τ . Therefore, we
consider two cases: a) θ − 2m ≤ 0 and b) θ − 2m > 0.

a) Assume that θ − 2m ≤ 0. In this case the number of equations in the system
(18)-(19) is τ + θ− 2m, which is no more than τ . The system of equations (18)-(19)
takes the form

Pτ0

(

ω′′,D′
x

)

f
(

x′
)

=
∑

|σ|=τ

Aσ0

(

ω′′
)

fσ

(

x′
)

= Φτ+θ−2m

(

ω′′, x′
)

,

Pτ−10

(

ω′′,D′
x

)

f
(

x′
)

+ Pτ1

(

ω′′,D′
x

)

f
(

x′
)

= Φτ+θ−2m+1

(

ω′′, x′
)

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P2m+1−θ0

(

ω′′,D′
x

)

f
(

x′
)

+ . . . +Pττ−2m−1+θ

(

ω′′,D′
x

)

f
(

x′
)

=Φ2m−θ

(

ω′′, x′
)

,

M0

(

ω′′,D′
x

)

f
(

x′
)

= Φ0

(

ω′′, x′
)

.

(20)
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Now we see that in each of these equations the expressions Pµ0 (ω′′, f) are linear
combinations of unknown functions fσ (x′) with the coefficients Aσ0 (the moments
of fundamental solution E (x)). The system of equations (18)–(19) is of triangular
form. Since

∑

|σ|=τ |Aσ0 (ω′′)| 6= 0 (otherwise the first condition in (18) is absent),

the first equation from (18) is solvable. Assume that functions fσ (x′) with |σ| = τ

are solutions to the first equation of (18). Substituting this functions fσ (x′) with
|σ| = τ in the other equations, for functions fσ (x′) with |σ| ≤ τ − 1 we obtain also
a triangular system. Continuing this procedure, we express all the functions fσ (x′)
with µ0 ≤ |σ| ≤ τ only through the functions Φτ , Φτ−1, . . . ,Φτ+θ−2m. It means
that the system of equations (18)–(19) is solvable.

b) Assume that θ > 2m. In this case the system of equations (18)–(19) con-
tains τ + θ − 2m equations, their number is greater than τ . Repeating the above
mentioned procedure, we express all the functions fσ (x′) with 0 ≤ |σ| ≤ τ by
Φτ (x′) , Φτ−1 (x′) , . . . ,Φτ+θ−2m (x′). Substituting all functions fσ (x′) in other
equations, we obtain that the first θ − 2m equations of (18)-(19) become identi-
ties, and the functions Φ0 (x′) , . . . ,Φτ+θ−2m (x′) are connected by (18), (19).

From what was mentioned above it follows that the formal model boundary value
problem with singular boundary conditions is not solvable for any admissible right
hand sides Φν (ω′, x′). To obtain a solvable singular boundary value problem it is
necessary to reformulate this problem in the following way:

In the domain Ω = R
n\Rq find the solutions u (x) of the model elliptic equation

L (Dx) u(x) = 0 (21)

that have near R
q the asymptotic representation (16) with coefficients Mν (ω′′, x′),

satisfying the conditions

Mν

(

ω′′,D′
x

)

f
(

x′
)

= Φν

(

ω′′, x′
)

, ν = ν1, . . . , ν2 = τ + θ − 2m. (22)

Repeating the similar reasons we obtain

Theorem 2. For any admissible functions Φν (ω′′, x′) the model boundary value
problem with singular boundary conditions (18), (19) is solvable.
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Moment analysis of the telegraph random process

Alexander D.Kolesnik

Abstract. We consider the Goldstein-Kac telegraph process X(t), t > 0, on the
real line R

1 performed by the random motion at finite speed c and controlled by a
homogeneous Poisson process of rate λ > 0. Using a formula for the moment function
µ2k(t) of X(t) we study its asymptotic behaviour, as c, λ and t vary in different
ways. Explicit asymptotic formulas for µ2k(t), as k → ∞, are derived and numerical
comparison of their effectiveness is given. We also prove that the moments µ2k(t) for
arbitrary fixed t > 0 satisfy the Carleman condition and, therefore, the distribution
of the telegraph process is completely determined by its moments. Thus, the moment
problem is completely solved for the telegraph process X(t). We obtain an explicit
formula for the Laplace transform of µ2k(t) and give a derivation of the the moment
generating function based on direct calculations. A formula for the semi-invariants of
X(t) is also presented.

Mathematics subject classification: 60K35, 60J60, 60J65, 82C41, 82C70.
Keywords and phrases: Random evolution, random flight, persistent random
walk, telegraph process, moments, Carleman condition, moment problem, asymptotic
behaviour, semi-invariants.

1 Preliminaries

Consider the one-dimensional stochastic process performed by a particle that
starts at the time instant t = 0 from the origin x = 0 of the real line R

1 and moves
with some finite constant speed c. The initial direction of the motion (positive
or negative) is taken on with equal probabilities 1/2. The motion is driven by a
homogeneous Poisson process of rate λ > 0 as follows. As a Poisson event occurs,
the particle instantaneously takes on the opposite direction and keeps moving with
the same speed c until the next Poisson event occurrence, then it takes on the
opposite direction again independently of its previous motion, and so on. This
random motion has first been studied by Goldstein [12] and Kac [16] and was called
the telegraph process afterwards (the latter article [16] is a reprinting of an earlier
1956 work).

Let X(t) denote the particle’s position on R
1 at an arbitrary time instant t >

0. Since the speed c is finite, then, at the time instant t > 0, the distribution
Pr{X(t) ∈ dx} is concentrated in the finite interval [−ct, ct] which is the support
of the distribution of X(t). The density f(x, t), x ∈ R

1, t ≥ 0, of the distribution
Pr{X(t) ∈ dx} has the structure

f(x, t) = fs(x, t) + fac(x, t),

c© Alexander D.Kolesnik, 2012
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where fs(x, t) and fac(x, t) are the densities of the singular (with respect to the
Lebesgue measure on the line) and of the absolutely continuous components of the
distribution of X(t), respectively.

The singular component of the distribution is, obviously, concentrated at two
terminal points ±ct of the interval [−ct, ct] and corresponds to the case when no one
Poisson event occurs until the moment t and, therefore, the particle does not change
its initial direction (the probability of this event is e−λt).

The density fac(x, t) of the absolutely continuous components of the distribution
corresponds to the case when at least one Poisson event occurs by moment t and,
therefore, the particle changes its initial direction (the probability of this event is
1− e−λt). The support of this part of the distribution is the open interval (−ct, ct).

The principal result by Goldstein [12] and Kac [16] states that the density f =
f(x, t), x ∈ [−ct, ct], t ≥ 0, satisfies the following hyperbolic partial differential
equation

∂2f

∂t2
+ 2λ

∂f

∂t
− c2

∂2f

∂x2
= 0, (1)

which is referred to as the telegraph or damped wave equation and can be found by
solving (1) with the initial conditions

f(x, t)|t=0 = δ(x),
∂f(x, t)

∂t

∣

∣

∣

∣

t=0

= 0,

where δ(x) is the Dirac delta-function. This means that the transition density f(x, t)
of the process X(t) is the fundamental solution (i.e. the Green’s function) of the
telegraph equation (1).

The explicit form of the density f(x, t) is given by the formula (see, for instance,
[29, Section 0.4] or [27, Theorem 1]):

f(x, t) =
e−λt

2
[δ(ct− x) + δ(ct+ x)] +

+
e−λt

2c

[

λI0

(

λ

c

√

c2t2 − x2

)

+
∂

∂t
I0

(

λ

c

√

c2t2 − x2

)]

Θ(ct− |x|),

(2)

where Θ(x) is the Heaviside step function

Θ(x) =

{

1, if x > 0,

0, if x ≤ 0,

and I0(z) is the modified Bessel function of order zero (that is, the Bessel function
with imaginary argument) given by

I0(z) =
∞
∑

k=0

1

(k!)2

(z

2

)2k

.

The first term of (2)

fs(x, t) =
e−λt

2
[δ(ct− x) + δ(ct+ x)] (3)
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represents the density of the singular part of the distribution of X(t) concentrated
at two terminal points ±ct of the interval [−ct, ct], while the second term of (2)

fac(x, t) =
e−λt

2c

[

λI0

(

λ

c

√

c2t2 − x2

)

+
∂

∂t
I0

(

λ

c

√

c2t2 − x2

)]

Θ(ct− |x|), (4)

is the density of the absolutely continuous part of the distribution of X(t) concen-
trated in the open interval (−ct, ct).

During last decades the Goldstein-Kac telegraph process X(t) and its numer-
ous generalizations have become the subject of intense researches provided both by
great theoretical importance and fruitful applications in statistical physics, finan-
cial modeling, transport phenomena in physical and biological systems, hydrology
and some other fields. Some properties of the solution space of the Goldstein-Kac
telegraph equation (1) were studied by Bartlett [2]. The process of one-dimensional
random motion at finite speed governed by a Poisson process with a time-depending
parameter was considered by Kaplan [17]. The relationships between the Goldstein-
Kac model and physical processes, including some emerging effects of the relativity
theory, were thoroughly examined by Bartlett [1], Cane [5,6]. Formulas for the distri-
butions of the first-exit time from a given interval and of the maximum displacement
of the telegraph process were obtained by Pinsky [29, Section 0.5], Foong [10], Ma-
soliver and Weiss [25, 26]. The behaviour of the telegraph process with absorbing
and reflecting barriers was studied by Foong and Kanno [11], Orsingher [28]. A one-
dimensional stochastic motion with an arbitrary number of velocities and governing
Poisson processes was examined by Kolesnik [21]. The telegraph-type processes
with random velocities were studied by Stadje and Zacks [32]. Probabilistic meth-
ods of solving the Cauchy problems for the telegraph equation (1) were developed by
Kac [16], Kisynski [18], Kabanov [15], Turbin and Samoilenko [33]. A generalization
of the Goldstein-Kac model for the case of a damped telegraph process with logistic
stationary distributions was given by Di Crescenzo and Martinucci [8]. A random
motion with velocities alternating at Erlang-distributed random times was studied
by Di Crescenzo [7]. Formulas for the occupation time distributions of the telegraph
process were recently obtained by Bogachev and Ratanov [4]. A generalization of
the Goldstein-Kac telegraph process to the R

d, d ≥ 1, space with an arbitrary finite
number of cyclically changing directions was thoroughly examined by Lachal [24].
A similar motion in the plane R

2 with an arbitrary finite number of directions and
uniform mechanism of their change was studied by Kolesnik and Turbin [23].

Moments of any stochastic process are one of the most interesting and useful
objects both from theoretical and practical points of view. This especially concerns
the telegraph process X(t) which is the basis for many important models in finan-
cial mathematics, biology, physics and other fields. For example, the knowledge of
moments enables to construct various moment-type estimators in statistics (see, for
instance,[14]). However, despite the great variety of existing works on the subject
and of the results obtained, the moment problem for the Goldstein-Kac telegraph
process was not properly solved so far. In particular, it was not clear whether the
distribution of X(t) was completely determined by its moments.
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The most enigmatic fact is that the transition density (2) of the one-dimensional
telegraph process X(t) has much more complicated form than the transition den-
sities of its two- and four-dimensional counterparts with a continuum number of
directions (for the transition density of the 2D and 4D-motions see [22, Theorem 2]
and [20, Theorem 2], respectively). While the transition density (2) contains special
functions, the densities of the 2D- and 4D-motions have very simple exponential
form that enables to explicitly compute the moments (see [19, Theorems 1 and
3, respectively]). Note also that the moments of a special multidimensional ran-
dom motion with a cyclic mechanism of choosing new directions were computed by
Samoilenko [31].

In this article we give a detailed moment analysis of the Goldstein-Kac telegraph
process X(t). In Section 2 we study the asymptotic behaviour of the moment func-
tion as c, λ and t vary in different ways. In Section 3 we obtain an explicit formula
for the Laplace transform of the moment function of X(t). In Section 4 we give
the complete solution of the moment problem for the telegraph process X(t). We
show that, for arbitrary t > 0, the moments of X(t) satisfy the Carleman condition
and, therefore, the distribution of X(t) is completely determined by its moments.
In Section 5 we derive the moment generating function by direct computations and
give a formula for the semi-invariants of the telegraph process X(t).

2 Asymptotic Behaviour of Moments

Consider the moment function of the Goldstein-Kac telegraph process X(t) de-
fined by the formula

µn(t) = E[X(t)]n, n ≥ 1,

where E means the expectation.
It is known (see, for instance,[14, Theorem 2.1]) that, for arbitrary t > 0, the

moments of X(t) are given by the formula

µ2k(t) = e−λt c2k 2k−1/2 λ−k+1/2 tk+1/2 Γ

(

k +
1

2

)

[

Ik+1/2(λt) + Ik−1/2(λt)
]

,

µ2k+1(t) = 0, k = 0, 1, 2, . . . .

(5)

where Iν(z) is the modified Bessel function of order ν

Iν(z) =

∞
∑

k=0

1

k! Γ(k + ν + 1)

(z

2

)2k+ν

,

and Γ(x) is the Euler gamma-function. Note that formula (5) slightly differs from
that of [14, Theorem 2.1]), however one can easily check that both these represen-
tations of the moment function µ2k(t) are equivalent. For our purposes it is more
convenient to use just the representation (5).

From (5) we can easily obtain the first and the second moments of the telegraph
process X(t):

µ1(t) = 0, µ2(t) =
c2t

λ
−

c2

2λ2
(1 − e−2λt), (6)
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and this coincides with [27, Formula (28)].

In this section we thoroughly study the asymptotic behaviour of the moment
function given by (5). Clearly, we need to examine the behaviour of the even-order
moments µ2k(t), k = 1, 2, . . . , only.

2.1. Asymptotic behaviour with respect to c → ∞, λ → ∞, (t and k are fixed).
In this subsection we consider the case when, under fixed t and k, the speed of the
motion c and the intensity of switching Poisson process λ both go to infinity in such
a way that the following Kac condition holds:

c→ ∞, λ→ ∞,
c2

λ
→ ρ, ρ > 0. (7)

Taking into account the well-known asymptotic formula for the modified Bessel
function (see, for instance,[13, Formula 8.451(5)]):

Iν(z) ∼
ez

√
2πz

, z → +∞, (8)

as well as the formula (see [13, Formula 8.339(2)])

Γ

(

k +
1

2

)

=

√
π

2k
(2k − 1)!!, k ≥ 0, (−1)!! = 1, (9)

we obtain

lim
c, λ→∞

(c2/λ)→ρ

µ2k(t) = 2k−1/2tk+1/2Γ

(

k +
1

2

)

×

× lim
c, λ→∞

(c2/λ)→ρ

[

e−λtc2kλ−k+1/2
(

Ik+1/2(λt) + Ik−1/2(λt)
)

]

∼

∼ 2k−1/2tk+1/2Γ

(

k +
1

2

)

lim
c, λ→∞

(c2/λ)→ρ

[

e−λtc2kλ−k+1/2 2eλt

√
2πλt

]

=

= 2k tk
1
√
π

Γ

(

k +
1

2

)

lim
c, λ→∞

(c2/λ)→ρ

(

c2k

λk

)

=

= 2k tk
1
√
π

√
π

2k
(2k − 1)!! ρk =

= ρk tk (2k − 1)!!

and this coincides with the moment function of the one-dimensional homogeneous
Brownian motion with zero drift and diffusion coefficient σ2 = ρ.

2.2. Asymptotic behaviour with respect to t → ∞, λ → ∞, (c and k are fixed).
Similarly to the asymptotic analysis of Subsection 2.1 and by using (8) and (9) we
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can easy show that for t → ∞ or λ → ∞ (or both t and λ tend to infinity), under
fixed c and k, the following asymptotic formula holds:

µ2k(t) ∼

(

c2t

λ

)k

(2k − 1)!! (10)

From (10) we see that the moments µ2k(t) increase like tk as t → ∞ (for fixed c, λ
and k). Conversely, the moments µ2k(t) decrease like λ−k as λ → ∞ (for fixed c, t
and k).

2.3. Asymptotic behaviour with respect to k → ∞, (c, t and λ are fixed). Asymp-
totic analysis with respect to k → ∞ is much more complicated due to the absence
of general asymptotic formulas with respect to the index ν of the modified Bessel
function Iν(z) (except the very particular case when the argument z has a special
form depending on index ν). Nevertheless, we are able to obtain asymptotic formu-
las for the moment function µ2k(t), as k → ∞, due to the special form of the indices
of the modified Bessel functions in (5). This result is presented by the following
theorem.

Theorem 1. For any fixed c, λ and t the following asymptotic formula holds:

µ2k(t) ∼ e−λt (ct)2k

(

1 +
λt

2k + 1

)

, k → ∞. (11)

The refined asymptotic formula has the form:

µ2k(t) ∼ e−λt (ct)2k

(

1 +
λt

2k + 1
+

(λt)2

4k + 2
+

(λt)3

(4k + 2)(2k + 3)

)

, k → ∞.

(12)

Proof. First we need to establish the following asymptotic formulas for the modified
Bessel functions:

Ik+1/2(z) ∼

√

2

π

zk+1/2

(2k + 1)!!
, k → ∞, (13)

Ik−1/2(z) ∼

√

2

π

zk−1/2

(2k − 1)!!
, k → ∞. (14)

Let us prove (13). Using the series representation of the modified Bessel function
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(see, for instance,[13, Formula 8.445]) we have

Ik+1/2(z) = zk+1/2
∞
∑

l=0

1

l! Γ ((l + k + 1/2) + 1)

(z

2

)2l

=

= zk+1/2
∞
∑

l=0

1

l! (l + k + 1/2) Γ (l + k + 1/2)

(z

2

)2l

=

(see formula(9))

=
zk+1/2

√
π

∞
∑

l=0

z2l 2l+k

l! (l + k + 1/2) (2l + 2k − 1)!! 22l+k+1/2
=

=

√

2

π
zk+1/2

∞
∑

l=0

z2l

l! (2l + 2k + 1) (2l + 2k − 1)!! 2l
=

=

√

2

π
zk+1/2

∞
∑

l=0

z2l

(2l)!! (2l + 2k + 1)!!
∼

∼

√

2

π

zk+1/2

(2k + 1)!!
, k → ∞,

proving (13). Similarly, we have

Ik−1/2(z) = zk−1/2
∞
∑

l=0

1

l! Γ(l + k + 1/2)

(z

2

)2l

=

=
zk−1/2

√
π

∞
∑

l=0

z2l

l! (2l + 2k − 1)!! 2l−1/2
=

=

√

2

π
zk−1/2

∞
∑

l=0

z2l

(2l)!! (2l + 2k − 1)!!
∼

∼

√

2

π

zk−1/2

(2k − 1)!!
, k → ∞,

and (14) is also proved.

Therefore, by applying formulas (13) and (14) just now proved, we obtain:

µ2k(t) = e−λt c2k 2k−1/2 λ−k+1/2 tk+1/2 Γ

(

k +
1

2

)

[

Ik+1/2(λt) + Ik−1/2(λt)
]

∼

∼ e−λtc2k2k−1/2λ−k+1/2tk+1/2

√
π

2k
(2k − 1)!!

√

2

π

[

(λt)k+1/2

(2k + 1)!!
+

(λt)k−1/2

(2k − 1)!!

]

=

= e−λt c2k λ−k+1/2 tk+1/2 (2k − 1)!!
(λt)k−1/2

(2k − 1)!!

[

1 +
λt

2k + 1

]

=

= e−λt (ct)2k

(

1 +
λt

2k + 1

)

, k → ∞,
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yielding (11).
Formula (12) can be proved in the same manner by applying, instead of (13)

and (14), the refined asymptotic formulas for the modified Bessel function (see also
Remark 1 below):

Ik+1/2(z) ∼
zk+5/2 + (4k + 6)zk+1/2

√
2π (2k + 3)!!

, k → ∞, (15)

Ik−1/2(z) ∼
zk+3/2 + (4k + 2)zk−1/2

√
2π (2k + 1)!!

, k → ∞. (16)

The theorem is thus completely proved. �

Remark 1. One can write down more accurate asymptotic formulas by taking arbi-
trary finite number of terms in the series expansions of the functions Ik+1/2(z) and
Ik−1/2(z):

Ik+1/2(z) =

√

2

π
zk+1/2

∞
∑

l=0

z2l

(2l)!! (2l + 2k + 1)!!
,

Ik−1/2(z) =

√

2

π
zk−1/2

∞
∑

l=0

z2l

(2l)!! (2l + 2k − 1)!!
.

(17)

Since the index k is presented in the denominators of (17) and, therefore, each term
of these series tends to zero as k → ∞, then for arbitrary integer n ≥ 0 the following
formulas hold:

Ik+1/2(z) =

√

2

π
zk+1/2

n
∑

l=0

z2l

(2l)!! (2l + 2k + 1)!!
+R+

k,n(z),

Ik−1/2(z) =

√

2

π
zk−1/2

n
∑

l=0

z2l

(2l)!! (2l + 2k − 1)!!
+R−

k,n(z),

(18)

where the remainders R±
k,n(z) → 0, as k → ∞, for any fixed z and n ≥ 0. Note

that formulas (13) and (14) follow, as k → ∞, from (18) for n = 0, while (15) and
(16) follow, as k → ∞, from (18) for n = 1, respectively. One can also obtain the
upper bounds for the remainders R±

k,n(z) and, therefore, to evaluate the rate of their
convergence to zero, as k → ∞, however this is not our concern here.

Remark 2. Asymptotic formulas (11) and (12) show that the behaviour of the
moment function µ2k(t) with respect to k → ∞ depends on the factor ct as follows:

If ct < 1, then µ2k(t) → 0, as k → ∞;
If ct = 1, then µ2k(t) → e−λt, as k → ∞;
If ct > 1, then µ2k(t) → ∞, as k → ∞.

This enables us to make some interesting and somewhat unexpected conclusions
concerning the asymptotic behaviour of the moment function µ2k(t), as k → ∞.
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Since ct is the total length of an arbitrary sample path of the Goldstein-Kac tele-
graph process X(t) at the time instant t > 0 whose distribution is concentrated in
the interval [−ct, ct], then [−1, 1] is the critical interval in the following sense. If
[−ct, ct] ⊂ [−1, 1], then the moments µ2k(t) are finite and tend to zero, as k → ∞.
If [−ct, ct] = [−1, 1], then the moments µ2k(t) are finite and tend to e−λt, as k → ∞.
Finally, if [−ct, ct] ⊃ [−1, 1], then the moments µ2k(t) tend to ∞, as k → ∞. In
terms of the time t this means that for t < 1

c
, the moments are finite and tend to

zero, as k → ∞; at the time instant t = 1
c
, the moments are finite and tend to e−λ/c,

as k → ∞; for t > 1
c
, the moments tend to ∞, as k → ∞.

Numerical computations of moments according to formula (5) and their approx-
imations (for increasing k) by means of the asymptotic functions

g0(t) = e−λt (ct)2k

(

1 +
λt

2k + 1

)

,

g1(t) = e−λt (ct)2k

(

1 +
λt

2k + 1
+

(λt)2

4k + 2
+

(λt)3

(4k + 2)(2k + 3)

)

,

obtained in Theorem 1 are given in the following table below (for the particular
values of the parameters c = 0.6, t = 1.5, λ = 2.5):

k µ2k(1.5) g0(1.5) g1(1.5)

100 0.175030 · 10−10 0.169015 · 10−10 0.174926 · 10−10

500 0.415508 · 10−47 0.412600 · 10−47 0.415498 · 10−47

1000 0.722360 · 10−93 0.719826 · 10−93 0.722356 · 10−93

5000 0.626552 · 10−459 0.626113 · 10−459 0.626553 · 10−459

10000 0.166654 · 10−916 0.166597 · 10−916 0.166655 · 10−916

We see that the second asymptotic function g1(t) yields a better approximation
(for increasing k) of the moment function µ2k(t) than the first asymptotic function
g0(t). In particular, we see that the function g1(t) provides stabilization in the
second digit already for k = 100, while the function g0(t) does so only for k = 500.
Note also that in this example ct = 0.6 · 1.5 = 0.9 < 1 and the moments µ2k(1.5)
tend to zero, as k → ∞, very rapidly.

3 Laplace Transform of Moment Function

In this section we derive an explicit formula for the Laplace transform of the
moment function µ2k(t), k ≥ 1, given by (5). We show that, despite the fairly
complicated form of the moment function (5), its Laplace transform has a very
simple form. This result is presented by the following theorem.

Theorem 2. The Laplace transform of moment function (5) is given by the formula:

Lt [µ2k(t)] (s) =
c2k (2k)!

sk+1 (s+ 2λ)k
, Re s > 0. (19)



MOMENT ANALYSIS OF THE TELEGRAPH RANDOM PROCESS 99

Proof. Applying the Laplace transformation to (5) we have:

Lt [µ2k(t)] (s) = c2k 2k−1/2 λ−k+1/2 Γ

(

k +
1

2

)

×

× Lt

[

e−λt tk+1/2
(

Ik+1/2(λt) + Ik−1/2(λt)
)

]

(s) =

= c2k 2k−1/2 λ−k+1/2 Γ

(

k +
1

2

)

×

× Lt

[

tk+1/2
(

Ik+1/2(λt) + Ik−1/2(λt)
)

]

(s+ λ).

(20)

According to [3, Table 4.16, Formulas 6 and 7]

Lt

[

tk+1/2 Ik+1/2(λt)
]

(s) =
1
√
π

2k+1/2 λk+1/2 k!
1

(s2 − λ2)k+1
,

Lt

[

tk+1/2 Ik−1/2(λt)
]

(s) =
1
√
π

2k+1/2 λk−1/2 k!
s

(s2 − λ2)k+1
.

Substituting these expressions into (20) we obtain

Lt [µ2k(t)] (s) = c2k 22k Γ

(

k +
1

2

)

k!
√
π

s+ 2λ

((s+ λ)2 − λ2)k+1
=

(see Formula (9))

= c2k 22k

√
π

2k
(2k − 1)!!

k!
√
π

s+ 2λ

((s + λ)2 − λ2)k+1
=

= c2k k! 2k (2k − 1)!!
s+ 2λ

(s(s+ 2λ))k+1
=

= c2k (2k)!! (2k − 1)!!
s+ 2λ

(s(s+ 2λ))k+1
=

=
c2k (2k)!

sk+1 (s+ 2λ)k
.

The theorem is proved. �

In particular, for k = 1, we obtain from (19) the formula for the Laplace trans-
form of the second moment

Lt [µ2(t)] (s) =
2c2

s2 (s+ 2λ)
. (21)

On the other hand, applying Laplace transformation to (6) we have:
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Lt [µ2(t)] (s) = Lt

[

c2t

λ
−

c2

2λ2
(1 − e−2λt)

]

(s) =

=
c2

λ
Lt[t](s) −

c2

2λ2

(

Lt[1](s) − Lt[e
−2λt](s)

)

=

=
c2

λ

1

s2
−

c2

2λ2

(

1

s
−

1

s+ 2λ

)

=

=
c2

λ

1

s2
−

c2

2λ2

2λ

s(s+ 2λ)
=

=
c2

λ

(

1

s2
−

1

s(s+ 2λ)

)

=

=
2c2

s2 (s + 2λ)

and this coincides with (21).

Remark 3. One can check that, under the Kac condition (7), function (19) turns
into the Laplace transform of the moment function of Brownian motion. Really, for
function (19) we have

lim
c, λ→∞

(c2/λ)→ρ

{Lt [µ2k(t)] (s)} =
(2k)!

sk+1
lim

c, λ→∞
(c2/λ)→ρ

{

c2k

(s+ 2λ)k

}

=

=
(2k)!! (2k − 1)!!

sk+1
lim

c, λ→∞
(c2/λ)→ρ

{

c2k

(2λ)k
1

(

s
2λ

+ 1
)k

}

=

=
2k k! (2k − 1)!!

sk+1

1

2k
lim

c, λ→∞
(c2/λ)→ρ

{

c2k

λk

}

=

=
ρk k! (2k − 1)!!

sk+1
.

On the other hand, for the Laplace transform of the moment function of the one-
dimensional homogeneous Brownian motion with zero drift and diffusion coefficient
σ2 = ρ derived in Subsection 2.1 above, we obtain the formula

Lt

[

ρk tk (2k − 1)!!
]

(s) = ρk (2k − 1)!! Lt[t
k](s) =

= ρk (2k − 1)!!
Γ(k + 1)

sk+1
=

=
ρk k! (2k − 1)!!

sk+1

exactly coinciding with the previous one.
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4 Moment Problem

In this section we give the complete solution of the moment problem for the
Goldstein-Kac telegraph process X(t). We show that, for any fixed t > 0, the
moments of X(t) satisfy the Carleman condition and, therefore, the distribution of
X(t) is completely determined by its moments. This result is given by the following
theorem.

Theorem 3. For any fixed t > 0 the moments µ2k(t) of the telegraph process X(t),
given by (5), satisfy the Carleman condition:

∞
∑

k=1

[µ2k(t)]
−1/(2k) = ∞. (22)

Proof. To prove the theorem it suffices to show that the general term of the series
on the left-hand side of (22) does not tend to zero, as k → ∞. First, we prove that,
for arbitrary k ≥ 1, the following inequality holds:

µ2k(t) < (ct)2k (1 + λt) eλ
2t2/2, k ≥ 1. (23)

By using formulas (9) and (17) we have:

µ2k(t) = e−λt c2k 2k−1/2 λ−k+1/2 tk+1/2 Γ

(

k +
1

2

)

[

Ik+1/2(λt) + Ik−1/2(λt)
]

=

= e−λt c2k 2k−1/2 λ−k+1/2 tk+1/2

√
π

2k
(2k − 1)!!

[

Ik+1/2(λt) + Ik−1/2(λt)
]

=

= e−λt c2k λ−k+1/2 tk+1/2

√

π

2
(2k − 1)!!

[

Ik+1/2(λt) + Ik−1/2(λt)
]

<

< c2k λ−k+1/2 tk+1/2 (2k − 1)!!

[

(λt)k+1/2
∞
∑

l=0

(λt)2l

(2l)!! (2l + 2k + 1)!!
+

+(λt)k−1/2
∞
∑

l=0

(λt)2l

(2l)!! (2l + 2k − 1)!!

]

=

= c2k λ−k+1/2 tk+1/2

[

(λt)k+1/2
∞
∑

l=0

(2k − 1)!!

(2l + 2k + 1)!!

(λt)2l

(2l)!!
+

+(λt)k−1/2
∞
∑

l=0

(2k − 1)!!

(2l + 2k − 1)!!

(λt)2l

(2l)!!

]

<

< c2k λ−k+1/2 tk+1/2

[

(λt)k+1/2
∞
∑

l=0

(λt)2l

(2l)!!
+ (λt)k−1/2

∞
∑

l=0

(λt)2l

(2l)!!

]

,

where in the last step we have used the fact that, for any k ≥ 1, the following
inequalities hold

(2k − 1)!!

(2l + 2k + 1)!!
< 1,

(2k − 1)!!

(2l + 2k − 1)!!
≤ 1, for any l ≥ 0.
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Now taking into account that

∞
∑

l=0

(λt)2l

(2l)!!
=

∞
∑

l=0

(λt)2l

2l l!
=

∞
∑

l=0

1

l!

(

λ2t2

2

)l

= eλ
2t2/2

we obtain

µ2k(t) < c2k λ−k+1/2 tk+1/2 (λt)k−1/2 (1 + λt) eλ
2t2/2 =

= (ct)2k (1 + λt) eλ
2t2/2,

proving (23). From (23) we have the inequality:

[µ2k(t)]
−1/(2k) > (ct)−1 (1 + λt)−1/(2k) e−λ2t2/(4k), k ≥ 1.

Then, by passing to the limit, as k → ∞, in this last inequality, we obtain:

lim
k→∞

[µ2k(t)]
−1/(2k) ≥ (ct)−1 > 0

for any c and t > 0. Hence, the sequence [µ2k(t)]
−1/(2k) does not tend to zero as

k → ∞ and, therefore, the series (4.1) is divergent. The theorem is thus completely
proved. �

5 Moment generating function

In this section we obtain a formula for the generating function of the moments
µ2k(t), k ≥ 1, in an explicit form. Taking into account the well-know connection
between the moments and the characteristic function of a stochastic process, this
can be done by applying the known formula for the characteristic function of the
Goldstein-Kac telegraph process (see, for instance,[9, Proposition 2.1] or [28, The-
orem 2.3]). Instead, we give an alternative way of deriving the moment generating
function based on direct computations and use of some properties of the modified
Bessel functions.

For arbitrary complex number z such that

|z| <
λ2

c2
,

introduce the function

ψ(z, t) =
∞
∑

k=0

zk µ2k(t)

(2k)!
. (24)

The explicit form of function (24) is given by the following theorem.

Theorem 4. For any t > 0 the moment generating function (24) has the form:

ψ(z, t) = e−λt

{

cosh
(

t
√

λ2 + c2z
)

+
λ

√
λ2 + c2z

sinh
(

t
√

λ2 + c2z
)

}

. (25)
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Proof. First, we note that, in view of formula (9),

µ2k(t)

(2k)!
= e−λt c2k 2k−1/2 λ−k+1/2 tk+1/2 Γ

(

k + 1
2

)

(2k)!

[

Ik+1/2(λt) + Ik−1/2(λt)
]

=

= e−λtc2k2k−1/2λ−k+1/2tk+1/2

√
π

2k

(2k − 1)!!

(2k)!!(2k − 1)!!

[

Ik+1/2(λt) + Ik−1/2(λt)
]

=

=

√

πλt

2
e−λt

(

c2t

λ

)k
1

2k k!

[

Ik+1/2(λt) + Ik−1/2(λt)
]

=

=

√

πλt

2
e−λt

(

c2t

2λ

)k
1

k!

[

Ik+1/2(λt) + Ik−1/2(λt)
]

.

(26)
Substituting this into (24) we have:

ψ(z, t) = e−λt

√

πλt

2

∞
∑

k=0

1

k!

(

c2tz

2λ

)k
[

Ik+1/2(λt) + Ik−1/2(λt)
]

=

= e−λt

√

πλt

2

{

∞
∑

k=0

1

k!

(

c2tz

2λ

)k

Ik+1/2(λt) +

∞
∑

k=0

1

k!

(

c2tz

2λ

)k

Ik−1/2(λt)

}

.

(27)
Consider separately the series on the right-hand side of (27). Applying the formula
(see [30, page 694, Formula 6])

∞
∑

k=0

ξk

k!
Ik−1/2(x) =

√

2

πx
cosh

(

√

x2 + 2ξx
)

, |2ξ| < |x|,

we obtain for the second series in curl brackets of (27):

∞
∑

k=0

1

k!

(

c2tz

2λ

)k

Ik−1/2(λt) =

√

2

πλt
cosh

(
√

λ2t2 + 2
c2tz

2λ
λt

)

=

=

√

2

πλt
cosh

(

t
√

λ2 + c2z
)

.

(28)

Similarly, by applying the formula (see [30, page 694, Formula 4 for ν = 1/2])

∞
∑

k=0

ξk

k!
Ik+1/2(x) =

(

2ξ

x
+ 1

)−1/4

I1/2

(

√

x2 + 2ξx
)

, |2ξ| < |x|,

and taking into account that (see [30, page 730])

I1/2(x) =

√

2

πx
sinhx,

we obtain for the first series in curl brackets of (27):
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∞
∑

k=0

1

k!

(

c2tz

2λ

)k

Ik+1/2(λt) =

(

1 +
c2

λ2
z

)−1/4

I1/2

(

√

λ2t2 + c2t2z
)

=

=

√
λ

(λ2 + c2z)1/4

√

2

πt
√
λ2 + c2z

sinh
(

t
√

λ2 + c2z
)

=

=

√

2λ

πt

sinh
(

t
√
λ2 + c2z

)

√
λ2 + c2z

.

(29)
Substituting (28) and (29) into (27) we finally obtain:

ψ(z, t) = e−λt

√

πλt

2







√

2

πλt
cosh

(

t
√

λ2 + c2z
)

+

√

2λ

πt

sinh
(

t
√
λ2 + c2z

)

√
λ2 + c2z







=

= e−λt

{

cosh
(

t
√

λ2 + c2z
)

+
λ

√
λ2 + c2z

sinh
(

t
√

λ2 + c2z
)

}

,

proving (25). The theorem is proved. �

Remark 4. From (24) it follows that the (2k)-th moment µ2k(t), k ≥ 1, can be
obtained by the k-time differentiation of the moment generating function ψ(z, t)
with respect to z and by setting then z = 0 in the expression obtained, that is,

µ2k(t) = (2k)!
∂kψ(z, t)

∂zk

∣

∣

∣

∣

z=0

, k ≥ 1.

Therefore, according to (25), we have for k ≥ 1:

µ2k(t) = e−λt (2k)!
∂k

∂zk







cosh
(

t
√

λ2 + c2z
)

+ λ
sinh

(

t
√
λ2 + c2z

)

√
λ2 + c2z







∣

∣

∣

∣

∣

∣

z=0

. (30)

In particular, for k = 1, formula (30) yields:

µ2(t) = 2e−λt ∂

∂z







cosh
(

t
√

λ2 + c2z
)

+ λ
sinh

(

t
√
λ2 + c2z

)

√
λ2 + c2z







∣

∣

∣

∣

∣

∣

z=0

=

= 2e−λt







c2t

2

sinh
(

t
√
λ2 + c2z

)

√
λ2 + c2z

+
λ

λ2 + c2z
×

×





c2t

2
cosh

(

t
√

λ2 + c2z
)

−
c2

2

sinh
(

t
√
λ2 + c2z

)

√
λ2 + c2z











∣

∣

∣

∣

∣

∣

z=0

=
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= 2e−λt

{

c2t

2λ
sinh (λt) +

1

λ

[

c2t

2
cosh (λt) −

c2

2λ
sinh (λt)

]}

=

= 2e−λt

{

c2t

2λ
[sinh (λt) + cosh (λt)] −

c2

2λ2
sinh (λt)

}

=

= 2e−λt

{

c2t

2λ
eλt −

c2

2λ2
sinh (λt)

}

=

=
c2t

λ
−
c2

λ2
e−λt e

λt − e−λt

2
=

=
c2t

λ
−

c2

2λ2

(

1 − e−2λt
)

and this exactly coincides with (6).

Note that the moment generating function is structurally similar to the characte-
ristic function of the telegraph process X(t) (see, for comparison, [9, Proposition 2.1]
or [28, Theorem 2.3]).

Remark 5. We can use some formulas obtained above for deriving an expression
for the semi-invariants of the Goldstein-Kac telegraph process X(t). According to
the general formula of probability theory, for any fixed t > 0, the semi-invariants
ηn(t), n ≥ 1, of X(t) are expressed in terms of the moments µn(t), n ≥ 1, as follows:

ηn(t) = n!
n
∑

r=0

∑

j, l

(−1)j−1 (j − 1)!

j1! . . . jr!

(

µl1(t)

l1!

)j1

. . .

(

µlr(t)

lr!

)jr

, n ≥ 1, (31)

where the interior summation is doing with respect to all the non-negative integer
numbers j and l such that

l1j1 + · · · + lrjr = n, j1 + · · · + jr = j.

Since, according to (5), all the odd moments are equal to zero, then all the odd semi-
invariants are equal to zero too, that is, η2k+1(t) = 0, k = 0, 1, 2, . . . . Therefore,
formula (31) takes the form:

η2k(t) = (2k)!

2k
∑

r=0

∑

j, l

(−1)j−1 (j − 1)!

j1! . . . jr!

(

µ2l1(t)

(2l1)!

)j1

. . .

(

µ2lr(t)

(2lr)!

)jr

, k ≥ 1,

(32)
where

l1j1 + · · · + lrjr = k, j1 + · · · + jr = j. (33)

Each factor of the form µ2s(t)/(2s)! in (32), according to (26), has the form:

µ2s(t)

(2s)!
=

√

πλt

2
e−λt

(

c2t

2λ

)s
1

s!

[

Is+1/2(λt) + Is−1/2(λt)
]

.
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Therefore, the product of such factors in (32), in view of (33), are given by

(

µ2l1(t)

(2l1)!

)j1

. . .

(

µ2lr(t)

(2lr)!

)jr

=

=
r
∏

i=1

(

√

πλt

2
e−λt

(

c2t

2λ

)li 1

li!

[

Ili+1/2(λt) + Ili−1/2(λt)
]

)ji

=

=

(

πλt

2

)j/2

e−λtj

(

c2t

2λ

)k r
∏

i=1

(

1

li!

[

Ili+1/2(λt) + Ili−1/2(λt)
]

)ji

.

By substituting this into (32) we obtain the following formula for the semi-invariants:

η2k(t) = (2k)!

(

c2t

2λ

)k 2k
∑

r=0

∑

j, l

(−1)j−1 (j − 1)!

j1! . . . jr!

(

πλt

2

)j/2

e−λtj×

×

r
∏

i=1

(

1

li!

[

Ili+1/2(λt) + Ili−1/2(λt)
]

)ji

.

(34)

Formula (34) has a fairly complicated form and, apparently, cannot be simplified.
Nevertheless, it can be used for computing the semi-invariants for small k.
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