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Bipolar fuzzy soft Lie algebras

Muhammad Akram

Abstract. We introduce the notion of bipolar fuzzy soft Lie subalgebras and investigate some of
their properties. We also introduce the concept of an (∈,∈ ∨q)-bipolar fuzzy (soft) Lie subalgebra
and present some of its properties.

1. Introduction

In 1994, Zhang [13] initiated the concept of bipolar fuzzy sets as a generalization
of fuzzy sets. Bipolar fuzzy sets are an extension of fuzzy sets [12] whose mem-
bership degree range is [−1, 1]. In a bipolar fuzzy set, the membership degree 0
of an element means that the element is irrelevant to the corresponding property,
the membership degree (0, 1] of an element indicates that the element somewhat
satis�es the property, and the membership degree [−1, 0) of an element indicates
that the element somewhat satis�es the implicit counter-property. Although bipo-
lar fuzzy sets and intuitionistic fuzzy sets look similar to each other, they are
essentially di�erent sets. In many domains, it is important to be able to deal
with bipolar information. It is noted that positive information represents what is
granted to be possible, while negative information represents what is considered to
be impossible. This domain has recently motivated new research in several direc-
tions. In particular, fuzzy and possibilistic formalisms for bipolar information have
been proposed, because when we deal with spatial information in image processing
or in spatial reasoning applications, this bipolarity also occurs. For instance, when
we assess the position of an object in a space, we may have positive information
expressed as a set of possible places and negative information expressed as a set
of impossible places. As another example, let us consider the spatial relations.
Human beings consider �left" and �right" as opposite directions. But this does not
mean that one of them is the negation of the other. The semantics of �opposite"
captures a notion of symmetry rather than a strict complementation. In partic-
ular, there may be positions which are considered neither to the right nor to the
left of some reference object, thus leaving some room for indetermination. This
corresponds to the idea that the union of positive and negative information does
not cover the whole space.

In 1999, Molodtsov [8] initiated the novel concept of soft set theory to deal
with uncertainties which can not be handled by traditional mathematical tools. He
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successfully applied the soft set theory into several disciplines, such as game theory,
Riemann integration, Perron integration, measure theory etc. Applications of soft
set theory in real life problems are now catching momentum due to the general
nature parametrization expressed by a soft set. Yang and Li [10] introduced the
notion of bipolar fuzzy soft sets. Recently, Akram and Feng introduced the notion
of soft Lie subalgebras of Lie algebras in [11] and studied some of their results.

In this paper, we introduce the notion of bipolar fuzzy soft Lie subalgebras and
investigate some of their properties. We introduce the concept of an (∈,∈ ∨q)-bi-
polar fuzzy Lie subalgebra and present some of its properties. We also introduce
the notion of an (∈,∈ ∨q)-bipolar fuzzy soft Lie subalgebra and discuss some of
its related properties.

2. Preliminaries

A Lie algebra is a vector space L over a �eld F (equal to R or C) on which
L× L→ L denoted by (x, y) → [x, y] is de�ned satisfying the following axioms:

(L1) [x, y] is bilinear,

(L2) [x, x] = 0 for all x ∈ L,

(L3) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all x, y, z ∈ L (Jacobi identity).

Throughout this paper, L is a Lie algebra and F is a �eld. We note that the
operation [., .] is not associative, but it is anticommutative, i.e., [x, y] = −[y, x]. A
subspace H of L closed under [·, ·] will be called a Lie subalgebra.

Let X be a nonempty set. A fuzzy subset µ of X is de�ned as a mapping from
X into [0, 1], where [0, 1] is the usual interval of real numbers. We denote by F(X)
the set of all fuzzy subsets of X.

A fuzzy set µ in a set X of the form

µ(y) =

{
t ∈ (0, 1], if y = x,

0, if y 6= x,

is said to be a fuzzy point with support x and value t and is denoted by xt. For
a fuzzy point xt and a fuzzy set µ in a set X, Pu and Liu [9] gave meaning to
the symbol xtαµ, where α ∈ {∈, q,∈ ∨q,∈ ∧q}. A fuzzy point xt is called belong

to a fuzzy set µ, written as xt ∈ µ, if µ(x) > t. A fuzzy point xt is said to be
quasicoincident with a fuzzy set µ, written as xtqµ, if µ(x) + t > 1. To say that
xt ∈ ∨qµ (resp. xt ∈ ∧qµ) means that xt ∈ µ or xtqµ (resp. xt ∈ µ and xtqµ).
xtαµ means that xtαµ does not hold, where α ∈ {∈, q,∈ ∨q,∈ ∧q}.

Molodtsov [8] de�ned the notion of soft set in the following way: Let U be an
initial universe and E be a set of parameters. Let P (U) denotes the power set of
U and let A be a nonempty subset of E. Then a pair (F,A) is called a soft set

over U , where F is a mapping given by F : A→ P (U).



Bipolar fuzzy soft Lie algebras 3

In other words, a soft set over U is a parameterized family of subsets of the
universe U. For ε ∈ A, F (ε) may be considered as the set of ε-approximate elements
of the soft set (F,A). Clearly, a soft set is not just a subset of U.

De�nition 2.1. [13] Let X be a nonempty set. A bipolar fuzzy set B in X is an
object having the form

B = {(x, µP (x), µN (x)) |x ∈ X},

where µP : X → [0, 1] and µN : X → [−1, 0] are mappings.

We use the positive membership degree µP (x) to denote the satisfaction degree
of an element x to the property corresponding to a bipolar fuzzy set B, and the
negative membership degree µN (x) to denote the satisfaction degree of an element
x to some implicit counter-property corresponding to a bipolar fuzzy set B. If
µP (x) 6= 0 and µN (x) = 0, it is the situation that x is regarded as having only
positive satisfaction for B. If µP (x) = 0 and µN (x) 6= 0, it is the situation that x
does not satisfy the property of B but somewhat satis�es the counter property of
B . It is possible for an element x to be such that µP (x) 6= 0 and µN (x) 6= 0 when
the membership function of the property overlaps that of its counter property over
some portion of X.

For the sake of simplicity, we shall use the symbol B = (µP , µN ) for the bipolar
fuzzy set B = {(x, µP (x), µN (x)) |x ∈ X}.

De�nition 2.2. Let A = (µPA, µ
N
A ) be a bipolar fuzzy set on X and let α ∈ [0, 1].

α-cut Aα of A can be de�ned as

Aα = APα ∪ANα , APα = {x | µPα (x) ≥ α}, ANα = {x | µNα (x) ≤ −α}.

We call APα as positive α-cut and ANα as negative α-cut.

De�nition 2.3. [13] For every two bipolar fuzzy sets A = (µPA, µ
N
A ) and B =

(µPB , µ
N
B ) in X, we de�ne

• (A
⋂
B)(x) = (min(µPA(x), µPB(x)),max(µNA (x), µNB (x))),

• (A
⋃
B)(x) = (max(µPA(x), µPB(x)),min(µNA (x), µNB (x))).

The concept of bipolar fuzzy soft set was originally proposed in [10]. Let
BF (U) denote the family of all bipolar fuzzy sets in U .

De�nition 2.4. [10] Let U be an initial universe and A ⊆ E be a set of parameters.
A pair (f,A) is called an bipolar fuzzy soft set over U , where f is a mapping given
by f : A → BF (U). A bipolar fuzzy soft set is a parameterized family of bipolar
fuzzy subsets of U. For any ε ∈ A, fε is referred to as the set of a-approximate
elements of the bipolar fuzzy soft set (f,A), which is actually a bipolar fuzzy set
on U and can be written as

fε = {(µPfε(x), µ
N
fε(x)) | x ∈ U},
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where µPfε(x) denotes the degree of x keeping the parameter ε, µNfε(x) denotes the
degree of x keeping the non-parameter ε.

De�nition 2.5. [10] Let (f,A) and (g,B) be two bipolar fuzzy soft sets over U.
We say that (f,A) is a bipolar fuzzy soft subset of (g,B) and write (f,A) b (g,B)
if A ⊆ B and f(ε) ⊆ g(ε) for ε ∈ A. (f,A) and (g,B) are said to be bipolar fuzzy

soft equal sets and write (f,A) = (g,B) if (f,A) b (g,B) and (g,B) b (f,A).

According to [10] for any two bipolar fuzzy soft sets (f,A) and (g,B) over U
we de�ne

• the extended intersection (h,C) = (f,A)∩̃(g,B), where C = A ∪B and

h(ε) =

 fε if ε ∈ A−B,
gε if ε ∈ B −A,

fε ∩ gε if ε ∈ A ∩B,

• the extended union (h,C) = (f,A)∪̃(g,B), where C = A ∪B and

h(ε) =

 fε if ε ∈ A−B,
gε if ε ∈ B −A,

fε ∪ gε if ε ∈ A ∩B,

• the operation (f ,A) ∧ (g,B) = (h,A×B), where h(a, b) = h(a) ∩ g(b) for all
(a,b) ∈ A×B.

3. Bipolar fuzzy soft Lie algebras

De�nition 3.1. Let (f,A) be a bipolar fuzzy soft set over L. Then (f,A) is
said to be a bipolar fuzzy soft Lie subalgebra over L if f(x) is a bipolar fuzzy Lie
subalgebra of L for all x ∈ A, that is, a bipolar fuzzy soft set (f,A) over L is called
a bipolar fuzzy soft Lie subalgebra of L if the following conditions are satis�ed:

(1) µPfε(x+ y) > min{µPfε(x), µ
P
fε

(y)},

(2) µNfε(x+ y) 6 max{µNfε(x), µ
N
fε

(y)},

(3) µPfε(mx) > µPfε(x), µNfε(mx) 6 µNfε(x),

(4) µPfε([x, y]) > min{µPfε(x), µ
P
fε

(y)},

(5) µNfε([x, y]) 6 max{µNfε(x), µ
N
fε

(y)}

for all x, y ∈ L and m ∈ K.
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Example 3.2. The real vector space <2 with [x, y] = x× y is a real Lie algebra.
Let N and Z denote the set of all natural numbers and the set of all integers,
respectively. By routine computations, we can easily check that (f,Z), where
f : Z → ([0, 1] × [−1, 0])<

2
with f(n) = (µPfn , µ

N
fn

) : <2 → [0, 1] × [−1, 0] for all
n ∈ Z,

µPfn(x) =


0.6 if x = (0, 0) = 0,
0.2 if x = (0, a), a 6= 0,
0 otherwise,

µNfn(x) =


−0.3 if x = (0, 0) = 0,
−0.2 if x = (0, a), a 6= 0,
−1 otherwise,

is a bipolar fuzzy soft Lie subalgebra of <2.

We state the following propositions without their proofs.

Proposition 3.3. Let (f,A) be a bipolar fuzzy soft Lie subalgebra on L, then

(i) µPfε(0) > µPfε(x), µNfε(0) 6 µNfε(x),

(ii) µPfε([x, y]) = µPfε(−[y, x]) = µPfε([y, x]),

(iii) µNfε([x, y]) = µNfε(−[y, x]) = µNfε([y, x])

for all x, y ∈ L.

Proposition 3.4. Let (f,A) and (g,B) be bipolar fuzzy soft Lie subalgebras over

L, then (f,A)∩̃(g,B) and (f,A)∧ (g,B) are bipolar fuzzy soft Lie subalgebras over

L. If A∩B = ∅, then also (f,A)∪̃(g,B) is a bipolar fuzzy soft Lie subalgebra .

Proposition 3.5. Let (f,A) be a bipolar fuzzy soft Lie subalgebra over L and let

{(hi, Bi) | i ∈ I} be a nonempty family of bipolar fuzzy soft Lie subalgebras of

(f,A). Then

(a) ∩̃i∈I(hi, Bi) is a bipolar fuzzy soft Lie subalgebra of (f,A),

(b)
∧
i∈I(hi, Bi) is a bipolar fuzzy soft Lie subalgebra of

∧
i∈I(f,A),

(c) If Bi ∩Bj = ∅ for all i, j ∈ I, i 6= j, then
∨̃
i∈I(Hi, Bi) is a bipolar fuzzy soft

Lie subalgebra of
∨̃
i∈I(f,A).

De�nition 3.6. Let (f,A) be a bipolar fuzzy soft set over U. For each s ∈ [0, 1],
t ∈ [−1, 0], the set (f,A)(s,t) = (f (s,t), A), where

(f,A)(s,t)ε = {x ∈ U | µPfε(x) > s, µNfε(x) 6 t} for all ε ∈ A,

is called an (s, t)-level soft set of (f,A). Clearly, (f,A)(s,t) is a soft set over U .

Theorem 3.7. Let (f,A) be a bipolar fuzzy soft set over L. (f,A) is a bipolar

fuzzy soft Lie subalgebra if and only if (f,A)(s,t) is a soft Lie subalgebra over L
for each s ∈ [0, 1], t ∈ [−1, 0].
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Proof. Suppose that (f,A) is a bipolar fuzzy soft Lie subalgebra. Then for each

s ∈ [0, 1], t ∈ [−1, 0], ε ∈ A and x1, x2 ∈ (f,A)(s,t)ε we have µPfε(x1) > s, µPfε(x2) >

s and µNfε(x1) 6 t, µNfε(x2) 6 t. From De�nition 3.1, it follows that (f,A)(s,t)ε is a

bipolar fuzzy Lie subalgebra over L. Thus µPfε(x1 + x2) > min(µPfε(x1), µPfε(x2)),
µPfε(x1 + x2) > s, µNfε(x1 + x2) 6 max(µNfε(x1), µNfε(x2)), µNfε(x1 + x2) 6 t. This
implies that x1 + x2 ∈ fsε . The veri�cation for other conditions is similar. Thus
(f,A)(s,t) is a soft Lie subalgebra over L for each s ∈ [0, 1], t ∈ [−1, 0].

Conversely, assume that (f,A)(s,t) is a soft Lie subalgebra over L for each
s ∈ [0, 1], t ∈ [−1, 0]. For each ε ∈ A and x1, x2 ∈ G, let s = min{µPfε(x1), µPfε(x2)}
and let t = max{µNfε(x1), µNfε(x2)}, then x1, x2 ∈ (f,A)(s,t)ε . Since (f,A)(s,t)ε is a

Lie subalgebra over L, then x1 + x2 ∈ (f,A)(s,t)ε . This means that µPfε(x1 + x2) >
min(µPfε(x1), µPfε(x2)) and µNfε(x1 + x2) 6 max(µNfε(x1), µNfε(x2)). The veri�cation
for other conditions is similar. Thus according to De�nition 3.1, (f,A) is a bipolar
fuzzy soft Lie subalgebra over L. This completes the proof.

De�nition 3.8. Let φ : L1 → L2 and ψ : A→ B be two functions, A and B are
parametric sets from the crisp sets L1 and L2, respectively. Then the pair (φ, ψ)
is called a bipolar fuzzy soft function from L1 to L2.

De�nition 3.9. Let (f,A) and (g,B) be two bipolar fuzzy soft sets over L1 and
L2, respectively and let (φ, ψ) be a bipolar fuzzy soft function from L1 to L2.

The image of (f,A) under the bipolar fuzzy soft function (φ, ψ), denoted
by (φ, ψ)(f,A), is the bipolar fuzzy soft set on K2 de�ned by (φ, ψ)(f,A) =
(φ(f), ψ(A)), where for all k ∈ ψ(A), y ∈ L2

µPφ(f)k
(y) =

{ ∨
φ(x)=y

∨
ψ(a)=k fa(x) if x ∈ ψ−1(y),

1 otherwise,

µNφ(f)k
(y) =

{ ∧
φ(x)=y

∧
ψ(a)=k fa(x) if x ∈ ψ−1(y),

−1 otherwise.

The preimage of (g,B) under the bipolar fuzzy soft function (φ, ψ), denoted
by (φ, ψ)−1(g,B), is the bipolar fuzzy soft set over K1 de�ned by (φ, ψ)−1(g,B) =
(φ−1(g), ψ−1(B)), where for all a ∈ ψ−1(A) for all x ∈ L1,

µPφ−1(g)a
(x) = µPgψ(a)

(φ(x)), µNφ−1(g)a
(x) = µNgψ(a)

(φ(x)).

De�nition 3.10. Let (φ, ψ) be a bipolar fuzzy soft function from L1 to L2. If
φ is a homomorphism from L1 to L2 then (φ, ψ) is said to be a bipolar fuzzy soft

homomorphism. If φ is a isomorphism from L1 to L2 and ψ is one-to-one mapping
from A onto B then (φ, ψ) is said to be a bipolar fuzzy soft isomorphism.

Theorem 3.11. Let (g,B) be a bipolar fuzzy soft Lie subalgebra over L2 and let

(φ, ψ) be a bipolar fuzzy soft homomorphism from L1 to L2. Then (φ, ψ)−1(g,B)
is a bipolar fuzzy soft Lie subalgebra over L1.
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Proof. Let x1, x2 ∈ L1, then

φ−1(µPgε)(x1 + x2) = µPgψ(ε)
(φ(x1 + x2)) = µPgψ(ε)

(φ(x1) + φ(x2))
> min{µPgψ(ε)

(φ(x1)), µPgψ(ε)
(φ(x2))}

= min{φ−1(µPgε)(x1), φ−1(µPgε)(x2)},

φ−1(µNgε)(x1 + x2) = µNgψ(ε)
(φ(x1 + x2)) = µNgψ(ε)

(φ(x1) + φ(x2))
6 max{µNgψ(ε)

(φ(x1)), µNgψ(ε)
(φ(x2))}

= max{φ−1(µNgε)(x1), φ−1(µNgε)(x2)}.
The veri�cation for other conditions is similar and hence we omit the detail. Hence
(φ, ψ)−1(g,B) is a bipolar fuzzy soft Lie subalgebra over L1.

Note that (φ, ψ)(f,A) may not be a bipolar fuzzy soft Lie subalgebra over L2.

4. (∈,∈ ∨q)- bipolar fuzzy soft Lie algebras

Let c ∈ G be �xed. If γ ∈ (0, 1] and δ ∈ [−1, 0) are two real numbers, then
c(γ, δ) = 〈x, cγ , cδ〉 is called a bipolar fuzzy point in G, where γ(resp, δ) is the
positive degree of membership (resp, negative degree of membership) of c(γ, δ)
and c ∈ G is the support of c(γ, δ). Let c(γ, δ) be a bipolar fuzzy in G and let
A = 〈x, µPA, µNA 〉 be a bipolar fuzzy inG. Then c(γ, δ) is said to belong to A, written
c(γ, δ) ∈ A if µPA(c) > γ and µNA (c) 6 δ. We say that c(γ, δ) is quasicoincident
with A, written c(γ, δ)qA, if µPA(c) + γ > 1 and µNA (c) + δ < −1. To say that
c(γ, δ) ∈ ∨qA (resp, c(γ, δ) ∈ ∧qA) means that c(γ, δ) ∈ A or c(γ, δ)qA (resp,
c(γ, δ) ∈ A and c(γ, δ)qA) and c(γ, δ)∈ ∨qA means that c(γ, δ) ∈ ∨qA does not
hold.

De�nition 4.1. A bipolar fuzzy set A = (µPA, µ
N
A ) in L is called an (∈,∈ ∨q)-

bipolar fuzzy Lie subalgebra of L if it satis�es the following conditions:

(a) x(s1, t1), y(s2, t2) ∈ A⇒ (x+ y)(min(s1, s2),max(t1, t2)) ∈ ∨qA,

(b) x(s, t) ∈ A⇒ (mx)(s, t) ∈ ∨qA,

(c) x(s1, t1), y(s2, t2) ∈ A⇒ ([x, y])(min(s1, s2),max(t1, t2)) ∈ ∨qA

for all x, y ∈ L, m ∈ K, s, s1, s2 ∈ (0, 1], t, t1, t2 ∈ [−1, 0).

Example 4.2. Let <2 be as in Example 3.2. We de�ne a bipolar fuzzy set
A : G→ [0, 1]× [−1, 0] by

µPA(x) =
{

1 if x = e,

0.4 otherwise,
µNA (x) =

{
0 if x = e,

−0.2 otherwise.

By routine computations, it is easy to see that A is not an (∈,∈ ∨q)-bipolar fuzzy
Lie subalgebra of L.
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Theorem 4.3. A bipolar fuzzy set A in a Lie algebra L is an (∈,∈ ∨q)-bipolar
fuzzy Lie subalgebra of L if and only if

• µPA(x+y) > min(µPA(x), µPA(y), 0.5), µNA (x+y) 6 max(µNA (x), µNA (y),−0.5),

• µPA(mx) > min(µPA(x), 0.5), µNA (mx) 6 max(µNA (x),−0.5),

• µPA([x, y]) > min(µPA(x), µPA(y), 0.5), µNA ([x, y]) 6 max(µNA (x), µNA (y),−0.5)

hold for all x, y ∈ L, m ∈ K.

Theorem 4.4. A bipolar fuzzy set A of a Lie algebra of L is an (∈,∈ ∨q)-bipolar
fuzzy Lie subalgebra of L if and only if for all s ∈ (0.5, 1], t ∈ [−1,−0.5) each

nonempty A(s,t) is a Lie subalgebra of L.

Proof. Assume that A is an (∈,∈ ∨q)-bipolar fuzzy Lie subalgebra of L and let s ∈
(0.5, 1], t ∈ [−1,−0.5). If x, y ∈ A(s,t), then µ

P
A(x) ≥ s and µPA(y) ≥ s, µNA (x) ≤ t

and µNA (y) ≤ t. Thus, µPA(x + y) > min(µPA(x), µPA(y), 0.5) > min(s, 0.5) = s and
µNA (x + y) 6 max(µNA (x), µNA (y),−0.5) 6 max(t,−0.5) = t, so x + y ∈ A(s,t).
The veri�cation for other conditions is similar. The proof of converse part is
obvious.

Theorem 4.5. If A is a bipolar fuzzy set in a Lie algebra L, then A(s,t) is a Lie

subalgebra of L if and only if

• max(µPA(x+ y), 0.5) > min(µPA(x), µPA(y)),

min(µNA (x+ y),−0.5) 6 max(µNA (x), µNA (y)),

• max(µPA(mx), 0.5) > min(µPA(x)),

min(µNA (mx),−0.5) 6 max(µNA (x)),

• max(µPA([x, y]), 0.5) > min(µPA(x), µPA(y)),

min(µNA ([x, y]),−0.5) 6 max(µNA (x), µNA (y))

for all x, y ∈ L, m ∈ K.

De�nition 4.6. Let (f,A) be a bipolar fuzzy soft set over a Lie algebra L. Then
(f,A) is called an (∈,∈∨q)-bipolar fuzzy soft Lie subalgebra if f(α) is an (∈,∈∨q)-
bipolar fuzzy Lie subalgebra of L for all α ∈ A.

Theorem 4.7. Let (f,A) and (g,B) be two (∈,∈∨q)-bipolar fuzzy soft Lie subal-

gebras over a Lie algebra L. Then (f,A)∧ (g,B) is an (∈,∈∨q)-bipolar fuzzy soft

Lie subalgebra over L.

Proof. By the de�nition, we can write (f,A) ∧ (g,B) = (h,C), where C = A×B
and h(α, β) = f(α) ∩ g(β) for all (α, β) ∈ C. Now for any (α, β) ∈ C, since (f,A)
and (g,B) are (∈,∈∨q)-bipolar fuzzy soft Lie subalgebras over L, we have both
f(α) and g(β) are (∈,∈ ∨q)-bipolar fuzzy Lie subalgebras of L. Thus h(α, β) =
f(α)∩g(β) is an (∈,∈∨q)-bipolar fuzzy Lie subalgebra of L. Hence, (f,A)∧(g,B)
is an (∈,∈∨q)-bipolar fuzzy soft Lie subalgebra over L.



Bipolar fuzzy soft Lie algebras 9

Theorem 4.8. Let (f,A) and (g,B) be two (∈,∈∨q)-bipolar fuzzy soft Lie subal-

gebras over a Lie algebra L. Then (f,A)∩̃(g,B) is an (∈,∈∨q)-bipolar fuzzy soft

Lie subalgebra over L.

Proof. We have (f,A)∩̃(g,B) = (h,C), where C = A ∪B and

h(ε) =

 f(ε) if ε ∈ A−B,
g(ε) if ε ∈ B − C,

f(ε) ∩ g(ε) if ε ∈ A ∩B

for all α ∈ C.
Now for any α ∈ C, we consider the following cases.
1. α ∈ A−B. Then h(α) = f(α) is an (∈,∈∨q)-bipolar fuzzy Lie subalgebra

of L since (f,A) is an (∈,∈∨q)-bipolar fuzzy soft Lie subalgebra over L.
2. α ∈ B − A. Then h(α) = g(α) is an (∈,∈∨q)-bipolar fuzzy Lie subalgebra

of L since (g,B) is an (∈,∈∨q)-bipolar fuzzy soft Lie subalgebra over L.
3. α ∈ A ∩ B. Then h(α) = f(α) ∩ g(α) is an (∈,∈ ∨q)-bipolar fuzzy Lie

subalgebra of L by the assumption. Thus, in any case, h(α) is an (∈,∈∨q)-bipolar
fuzzy Lie subalgebra of L. Therefore, (f,A)∩̃(g,B) is an (∈,∈∨q)-bipolar fuzzy
soft Lie subalgebra over L.

Theorem 4.9. Let (f,A) and (g,B) be two (∈,∈∨q)-bipolar fuzzy soft Lie subal-

gebras over a Lie algebra L. If A∩B 6= ∅, then (f,A)∩̃(g,B) is an (∈,∈∨q)-bipolar
fuzzy soft Lie subalgebra over L.

Proof. (f,A)∩̃(g,B) = (h,C), where C = A ∩ B and h(α) = f(α) ∩ g(α) for all
α ∈ C. Now for any α ∈ C, since (f,A) and (g,B) are (∈,∈∨q)-bipolar fuzzy soft
Lie subalgebras over L, we have both f(α) and g(α) are (∈,∈ ∨q)-bipolar fuzzy
Lie subalgebras of L. Thus h(α) = f(α) ∩ g(α) is an (∈,∈∨q)-bipolar fuzzy Lie
subalgebra of L. Therefore, (f,A)∩̃(g,B) is an (∈,∈ ∨q)-bipolar fuzzy soft Lie
subalgebra over L.

Theorem 4.10. Let (f,A) be an (∈,∈∨q)- bipolar fuzzy soft Lie subalgebra over

L and let {(hi, Bi) | i ∈ I} be a nonempty family of (∈,∈ ∨q)-bipolar fuzzy soft

Lie subalgebras of (f,A). Then

(a) ∩̃i∈I(hi, Bi) is an (∈,∈∨q)- bipolar fuzzy soft Lie subalgebra of (f,A),

(b)
∧
i∈I(hi, Bi) is an (∈,∈∨q)- bipolar fuzzy soft Lie subalgebra of

∧
i∈I(f,A),

(c) If Bi ∩ Bj = ∅ for all i, j ∈ I, then
∨̃
i∈I(Hi, Bi) is an (∈,∈ ∨q)- bipolar

fuzzy soft Lie subalgebra of
∨̃
i∈If,A).

Theorem 4.11. Let (f,A) and (g,B) be two (∈,∈∨q)-bipolar fuzzy soft Lie sub-

algebras over a Lie algebra L. If A and B are disjoint, then (f,A)∪̃(g,B) is an

(∈,∈∨q)-bipolar fuzzy soft Lie subalgebra over L.
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Soft intersection Lie algebras

Muhammad Akram and Feng Feng

Abstract. In 1999, Molodtsov introduced the concept of soft set theory as a general mathema-
tical tool for dealing with uncertainty and vagueness, and many researchers have created some
models to solve problems in decision making and medical diagnosis. In this paper, we introduce
the concept of soft Lie subalgebras (resp. soft Lie ideals) and state some of their fundamen-
tal properties. We also introduce the concept of soft intersection Lie subalgebras (resp. soft
intersection Lie ideals) and investigate some of their properties.

1. Introduction

The theory of Lie algebras is an area of mathematics in which we can see a harmo-
nious between the methods of classical analysis and modern algebra. This theory,
a direct outgrowth of a central problem in the calculus, has today become a syn-
thesis of many separate disciplines, each of which has left its own mark. Theory of
Lie groups were developed by the Norwegian mathematician Sophus Lie in the late
nineteenth century in connection with his work on systems of di�erential equations.
Lie algebras were also discovered by Sophus Lie when he �rst attempted to classify
certain smooth subgroups of general linear groups. The groups he considered are
called Lie groups. The importance of Lie algebras for applied mathematics and for
applied physics has also become increasingly evident in recent years. In applied
mathematics, Lie theory remains a powerful tool for studying di�erential equa-
tions, special functions and perturbation theory. Lie theory �nds applications not
only in elementary particle physics and nuclear physics, but also in such diverse
�elds as continuum mechanics, solid-state physics, cosmology and control theory.
Lie algebra is also used by electrical engineers, mainly in the mobile robot control.
For the basic information of Lie algebras, the readers are refereed to [7, 10, 12].

Most of the problems in engineering, medical science, economics, environments,
and so forth, have various uncertainties. The problems in system identi�cation in-
volve characteristics which are essentially non probabilistic in nature. In response
to this situation Zadeh [19] introduced fuzzy set theory as an alternative to prob-
ability theory. Uncertainty is an attribute of information. In order to suggest a
more general framework, the approach to uncertainty is outlined by Zadeh [20].
Molodtsov [16] initiated the concept of soft set theory as a new mathematical

2010 Mathematics Subject Classi�cation: 17B99, 03E72, 20N25
Keywords: soft Lie subalgebra, soft Lie ideal, soft intersection Lie ideals.
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tool for dealing with uncertainties and vagueness. In soft set theory, the prob-
lem of setting the membership function does not arise, which makes the theory
easily applied to many di�erent �elds including game theory, operations research,
Riemann-integration, Perron integration. At present, work on soft set theory is
progressing rapidly. After Molodtsov's work, some operations and application of
soft sets were studied by many researchers including Ali et al. [6], Aktas et al. [5],
Chen et al. [9] and Maji et al. [15]. Maji et al. [15] gave �rst practical application
of soft sets in decision making problems. The algebraic structure of soft set theo-
ries has been studied increasingly in recent years. Aktas and Cagman [5] de�ned
the notion of soft groups. Feng et al. [13] initiated the study of soft semirings
and soft rings were de�ned by Acar et al. [1], Ca�gman et al. [8] introduced the
concept of soft int-groups, Yamark et al. [17] introduced soft hyperstructure. In
this paper, we introduce the concept of soft Lie subalgebras (resp. soft Lie ideals)
and state some of their fundamental properties. We also introduce the concept of
soft intersection Lie subalgebras (resp. soft intersection Lie ideals) and investigate
some of their properties.

2. Review of literature

In this paper by L will be a Lie algebra. We note that the multiplication in a Lie
algebra is not associative, but it is anti commutative, i.e., [x, y] = −[y, x] for all
x, y ∈ L. A subspace H of L closed under [·, ·] will be called a Lie subalgebra.

In 1999, Molodtsov [16] initiated soft set theory as a new approach for mod-
elling uncertainties. Later on, Maji et al.[14] expanded this theory to fuzzy soft
set theory. Based on the idea of parameterization, a soft set gives a series of ap-
proximate descriptions of a complicate object from various di�erent aspects. Each
approximate description has two parts, namely predicate and approximate value
set. A soft set can be determined by a set-valued mapping assigning to each pa-
rameter exactly one crisp subset of the universe. More speci�cally, we can de�ne
the notion of soft set in the following way. Let U be an initial universe and E be a
set of parameters. Let P (U) denote the power set of U and let A be a non-empty
subset of E.

De�nition 2.1. A pair FA = (F,A) is called a soft set over U , where A ⊆ E and
F : A → P (U) is a set-valued mapping, called the approximate function of the soft
set FA. It is easy to represent a soft set FA by a set of ordered pairs as follows:

FA = (F,A) = {(x, F (x)) | x ∈ A}.

It is clear that a soft set is a parameterized family of subsets of the set U .

De�nition 2.2. Let FA and GB be two soft sets over a common universe U . FA

is a said to be soft subset of GB , denoted by FA⊂̃GB , if F (x) ⊆ G(x) for all x ∈ E.

We refer the readers to the papers [2-4, 6, 9, 12, 13, 15, 16, 18] for further
information regarding soft set theory and the theory of fuzzy Lie algebras.
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3. Soft Intersection Lie algebras

De�nition 3.1. Let FA = (F,A) be a soft set over L. Then FA is called a soft
Lie subalgebra (resp. soft Lie ideal) over L if F (x) is a Lie subalgebra (resp. Lie
ideal) of a Lie algebra L for all x ∈ A.

Example 3.2. The real vector space R3 with the bracket [., .] de�ned as the cross
product, i.e., [x, y] = x×y = (x2y3−x3y2, x3y1−x1y3, x1y2−x2y1) forms a real Lie
algebra over the �eld R. Now we de�ne a soft set 〈F, R3〉 as F : R3 −→ P (R3) by
F ((0, 0, 0)) = {(0, 0, 0)}, F (x, 0, 0) = {(0, 0, 0) , (x, 0, 0) : x 6= 0} and F (x, y, z) =
R3. By routine computations, it is easy to see that (F, R3) is soft Lie subalgebra
but not soft Lie ideal of R3.

Example 3.3. Let {e1, e2, . . . , e5} be a basis of a vector space over V over a �eld
F with Lie brackets as follows:

[e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e5, [e1, e5] = 0,

[e2, e3] = e5, [e2, e4] = 0, [e2, e5] = 0, [e3, e4] = 0,

[e3, e5] = 0, [e4, e5] = 0, [ei, ej ] = −[ej , ei]

and [ei, ej ] = 0 for all i = j. Then V is a Lie algebra over F . Let (F, V ) be soft
over V and de�ne by

F (x) =


〈e7〉 if x = e1

〈e8〉 if x = e2, e3

〈e7,e8〉 if x = e4, e5

V otherwise

Routine computations show that (F, V ) is a soft Lie ideal over V .

De�nition 3.4. [9] Let FA and GB be two soft sets over a common universe U .
Then the intersection FA∩̃GB , is de�ned as FA∩̃GB(x) = F (x) ∩ G(x) for all
x ∈ E. The ∧̃-product FA∧̃GB , is de�ned by FA∧̃GB(x, y) = F (x) ∩ G(y) for all
(x, y) ∈ E × E.

Proposition 3.5. If FA and FB are soft Lie subalgebras (resp. soft Lie ideals)
over L. Then FA∧̃FB and FA∩̃FB are soft Lie subalgebras (resp. soft Lie ideals)
over L.

De�nition 3.6. A soft Lie subalgebra (resp. soft Lie ideal) FA over L is called
trivial over L if F (x) = {0} for all x ∈ A, and whole over L if F (x) = L for all
x ∈ A.

De�nition 3.7. Let L1, L2 be two Lie algebras and ϕ : L1 → L2 a mapping of
Lie algebras. If FA and GB are soft sets over L1 and L2 respectively, then ϕ(FA)
is a soft set over L2 where ϕ(F ) : E → P (L2) is de�ned by ϕ(F )(x) = ϕ(F (x)) for
all x ∈ E and ϕ−1(GB) is a soft set over L1 where ϕ−1(G) : E → P (L1) is de�ned
by ϕ−1(G)(y) = ϕ−1(G(y)) for all y ∈ E.
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Proposition 3.8. Let ϕ : L1 → L2 be an onto homomorphism of Lie algebras.

(i) If FA is a soft Lie algebra over L1, then ϕ(FA) is a soft Lie algebra over L2.

(ii) If FB is a soft Lie algebra over L2, then ϕ−1(FB) is a soft Lie algebra over
L1 if it is non-null.

Theorem 3.9. Let f : L1 → L2 be a homomorphism of Lie algebras. Let FA and
GB be two soft Lie algebras over L1 and L2, respectively.

(a) If F (x) = ker(ϕ) for all x ∈ A, then ϕ(FA) is the trivial soft Lie algebra
over L2.

(b) If ϕ is onto and FA is whole, then ϕ(FA) is the whole soft Lie algebra over
L2.

(c) If G(y) = ϕ(L1) for all y ∈ B, then ϕ−1(GB) is the whole soft Lie algebra
over L1.

(d) If ϕ is injective and GB is trivial, then ϕ−1(GB) is the trivial soft Lie algebra
over L1.

We now introduce the concept of soft intersection Lie subalgebras (resp. soft
intersection Lie ideals).

De�nition 3.10. Let L = E be a Lie algebra and let A be a subset of L. Let FA

be a soft set over U . Then, FA is called a soft intersection Lie subalgebra over U
if it satis�es the following conditions:

(a) F (x + y) ⊇ F (x) ∩ F (y),

(b) F (mx) ⊇ F (x),

(c) F ([x, y]) ⊇ F (x) ∩ F (y)

for all x, y ∈ A, m ∈ K. A soft set FA is called a soft intersection Lie ideal over
U if it satis�es (a), (b) and

(d) F ([x, y]) ⊇ F (x)

for all x, y ∈ A.

Example 3.11. Assume that U = Z is the universal set. The vector space E = R2

with the bracket [., .] de�ned as the usual cross product, i.e., [x, y] = x×y = xy−yx
forms a real Lie algebra. Let A = {(0, 0), (0, x), x 6= 0} be a subset of E. Let FA

be a soft set over U. Then F (0, 0) = Z and F (0, x) = {−2,−1, 0, 1, 2}. It is easy
to see that FA is a soft intersection Lie algebra (resp. soft intersection Lie ideal)
over U .

From now on, we will always assume L = E unless otherwise speci�ed.
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Proposition 3.12. Let L be a Lie algebra and let A be Lie subalgebra (resp. Lie
ideal) of L. If FA is a soft intersection Lie subalgebra (resp. soft intersection Lie
ideal) over U . Then F (0) ⊇ F (x) and F (−x) = F (x) for all x ∈ A.

Proposition 3.13. Let L be a Lie algebra and let A and B be Lie subalgebras (resp.
Lie ideals) of L. If FA and GB are soft intersection Lie subalgebras (resp. soft
intersection Lie ideals) over U . Then FA∧̃GB is a soft intersection Lie subalgebras
(resp. soft intersection Lie ideal) over U .

Proof. Let (x1, y1), (x2, y2) ∈ A×B and m ∈ K. Then

(FA∧̃GB)((x1, y1) + (x2, y2)) = (FA∧̃GB)((x1 + x2, y1 + y2))
= F (x1 + x2) ∩G(y1 + y2)
⊇ (F (x1) ∩ F (x2)) ∩ (G(y1) ∩G(y2))
= (F (x1) ∩G(y1)) ∩ (F (x2) ∩G(y2))
= (FA∧̃GB)(x1, y1) ∩ (FA∧̃GB)(x2, y2),

(FA∧̃GB)(m(x1, y1)) = (FA∧̃GB)(mx1,my1)
= F (mx1) ∩G(my1)
⊇ F (x1) ∩G(y1) = (FA∧̃GB)(x1, y1),

(FA∧̃GB)([(x1, y1), (x2, y2)]) = (FA∧̃GB)([x1, x2], [y1, y2])
= F ([x1, x2]) ∩G([y1, y2])
⊇ ([F (x1), F (x2)] ∩ [G(y1), G(y2)])
= [F (x1), G(y1)] ∩ [F (x2), G(y2)]
= (FA∧̃GB)[x1, y1] ∩ (FA∧̃GB)[x2, y2],

(FA∧̃GB)([(x1, y1), (x2, y2)]) = (FA∧̃GB)([x1, x2], [y1, y2])
= F ([x1, x2]) ∩G([y1, y2])
⊇ F (x1) ∩G(y1) = (FA∧̃GB)[x1, y1].

Hence FA∧̃GB is a soft intersection Lie subalgebra (resp. soft intersection Lie
ideal) over U .

Theorem 3.14. Let {(Fi)Ai | i ∈ Λ} be a family of soft intersection Lie subalge-

bras (resp. soft intersection Lie ideals) over U . Then
∧̃

i∈Λ(Fi)Ai
a soft intersec-

tion Lie subalgebra (resp. soft intersection Lie ideal) over U .

Proposition 3.15. Let L be a Lie algebra and let A be a Lie subalgebra (resp.
Lie ideal) of L. If FA and GA are soft intersection Lie subalgebras (resp. soft
intersection Lie ideals) over U . Then FA∩̃GA is a soft intersection Lie algebra
(resp. soft intersection Lie ideal) over U .

Proof. Similarly as Proposition 3.13.
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Theorem 3.16. Let {(Fi)Ai | i ∈ Λ} be a family of soft intersection Lie subalge-

bras (resp. soft intersection Lie ideals) over U . Then
⋂̃

i∈Λ(Fi)Ai
a soft intersec-

tion Lie subalgebra (resp. soft intersection Lie ideal) over U .

In the same manner we can prove

Proposition 3.17. Let A and B be Lie subalgebras (resp. Lie ideals) of a Lie
algebra L. If FA and GB are soft intersection Lie subalgebras (resp. soft inter-
section Lie ideals) over U . Then FA×̃GB de�ned by FA×̃GB(x, y) = F (x)×G(y)
for all (x, y) ∈ A×B, is a soft intersection Lie algebra (resp. soft intersection Lie
ideal) over U .

Theorem 3.18. Let {(Fi)Ai
| i ∈ Λ} be a family of soft intersection Lie subalge-

bras (resp. soft intersection Lie ideals) over U . Then
∏̃

i∈Λ(Fi)Ai a soft intersec-
tion Lie subalgebra (resp. soft intersection Lie ideal) over U .

Proposition 3.19. Let L be a Lie algebra and let A, B and C be Lie subalgebras
(resp. Lie ideals) of L. If FA, GB and FC are soft intersection Lie subalgebras
(resp. soft intersection Lie ideals) over U such that FA≤̃GB and FC≤̃GB, then
FA∩̃FC≤̃GB over U .

Proof. Straightforward.

De�nition 3.20. Let FA and GB be two soft sets over the common universe U
and let ϕ be a function from A to B. The soft image ϕ(FA) of FA under ϕ is a
soft set over U de�ned by

ϕ(F )(y) =
{ ⋃

{F (x) |x ∈ A and ϕ(x) = y} if ϕ−1(y) 6= ∅,
∅ otherwise

for all y ∈ B. The soft pre-image (or soft inverse image) ϕ−1(GB) of GB under ϕ
is a soft set over U such that ϕ−1(G)(x) = G(ϕ(x)) for all x ∈ A.

Proposition 3.21. Let L be a Lie algebra and let A be Lie ideal of L. If FA is
a soft intersection Lie subalgebra (resp. soft intersection Lie ideal) over U , then
AF = {x ∈ A |F (x) = F (0)} is a soft intersection Lie subalgebra (resp. soft
intersection Lie ideal) over U .

Theorem 3.22. Let A and B be Lie ideals of a Lie algebra L and ϕ be a Lie
homomorphism from A to B. If GB is a soft intersection Lie subalgebra (resp. soft
intersection Lie ideal) over U, then ϕ−1(GB) is a soft intersection Lie subalgebra
(resp. soft intersection Lie ideal) over U .

Proof. Straightforward.

Theorem 3.23. Let A and B be Lie ideals of a Lie algebra L. If ϕ : A → B is
a surjective Lie homomorphism and FA is a soft intersection Lie subalgebra (resp.
soft intersection Lie ideal) over U , then ϕ(FA) is a soft intersection Lie subalgebra
(resp. soft intersection Lie ideal) over U .
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Proof. Since ϕ is surjective, for all a, b ∈ B there exist x, y ∈ A such that a = ϕ(x)
and b = ϕ(y). Then

ϕ(FA)(x + y) = ∪{F (z) | z ∈ A,ϕ(z) = a + b}
= ∪{F (x + y) |x, y ∈ A,ϕ(x) = a, ϕ(y) = b}
⊇ ∪{F (x) ∩ F (y) |x, y ∈ A,ϕ(x) = a, ϕ(y) = b}
= (∪{F (x) |x ∈ A,ϕ(x) = a}) ∩ (∪{F (y) | y ∈ A,ϕ(y) = b})
= ϕ(FA)(a) ∩ ϕ(FA)(b),

ϕ(FA)(mx) = ∪{F (z) | z ∈ A,ϕ(z) = ma}
= ∪{F (mx) |x ∈ A,ϕ(x) = a}
⊇ ∪{F (x) |x ∈ A,ϕ(x) = a}
= ϕ(FA)(a),

ϕ(F )([x, y]) = ∪{F (z) | z ∈ A,ϕ(z) = [a, b]}
= ∪{FA([x, y]) |x, y ∈ A,ϕ(x) = a, ϕ(y) = b}
⊇ ∪{F (x) ∩ F (y) |x, y ∈ A,ϕ(x) = a, ϕ(y) = b}
= (∪{F (x) |x ∈ A,ϕ(x) = a}) ∩ (∪{F (y) | y ∈ A,ϕ(y) = b})
= ϕ(FA)(a) ∩ ϕ(FA)(b),

ϕ(FA)([x, y]) = ∪{F (z) | z ∈ A,ϕ(z) = [a, b]}
= ∪{F ([x, y]) |x, y ∈ A,ϕ(x) = a, ϕ(y) = b}
⊇ ∪{F (x) |x ∈ A,ϕ(x) = a}
= ∪{F (x) |x ∈ A,ϕ(x) = a}
= ϕ(FA)(a).

Hence ϕ(FA) is a soft intersection Lie subalgebra (resp. soft intersection Lie ideal)
over U .
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A study of n-subracks

Guy R. Biyogmam

Abstract. In this paper, we introduce the notion of n-subracks (n > 2) and provide a char-
acterization that enables us to obtain several results on n-racks. We also de�ne a cohomology
theory on n-racks.

1. Introduction

The category of n-racks [2] has been introduced as a generalization of the category
of left distributive left quasigroups [9], or simply racks [6], and was shown to be
associated to the category of Leibniz n-algebras [5]. In the pursue of studying the
structure of this new category, we study in this paper the notion of n-subracks and
explore several classical examples such as the normalizer, the center of a n-rack,
and the components of a decomposable n-rack. In section 4, we provide several
properties of decomposable n-racks.

In [8], Fenn, Rourke and Sanderson introduced a cohomology theory for racks
which was modi�ed in [4] by Carter, Jelsovsky, Kamada, Landford and Saito to
obtain quandle cohomology, and several results have been recently established.
In section 5, we use these cohomology theories to de�ne cohomology theories on
n-racks and n-quandles.

Let us recall a few de�nitions.

A pointed rack (R, ◦, 1) is a set R with a binary operation ◦ and a speci�c
element 1 ∈ R such that the following conditions are satis�ed:

(R1) x ◦ (y ◦ z) = (x ◦ y) ◦ (x ◦ z).

(R2) For each x, y ∈ R, there exits a unique a ∈ R such that x ◦ a = y.

(R3) 1 ◦ x = x and x ◦ 1 = 1 for all x ∈ R.

A rack R is decomposable [1] if there are disjoints subracks X and Y of R such
that R = X ∪ Y. R is indecomposable if otherwise.

2010 Mathematics Subject Classi�cation: 17AXX, 18E10, 18G60
Keywords: n-racks, racks, n-quandles, n-rack cohomology.
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2. n-racks

For the remaining of this paper, we assume n > 2, integer.

De�nition 2.1. [2] A n-rack (R, [. . .]) is a set R endowed with an n-ary operation
[. . .] : Rn −→ R such that

(NR1)
[
x1, . . . , xn−1, [y1, . . . , yn−1]

]
=

[
[x1, . . . , xn−1, y1], . . . , [x1, . . . , xn−1, yn]

]
(This is the left distributive property of n-racks.)

(NR2) For a1, . . . , an−1, b ∈ R, there exists a unique x ∈ R such that
[a1, . . . , an−1, x] = b.

If in addition there is a distinguish element 1 ∈ R, such that

(NR3) [1, . . . , 1, y] = y and [x1, . . . , xn−1, 1] = 1 for all x1, . . . , xn−1 ∈ R,

then (R, [. . .], 1) is said to be a pointed n-rack.

An n-rack in which [x1, . . . , xn−1, y] = y if xi = y for some i ∈ {1, . . . , n− 1},
is an n-quandle.

De�nition 2.2. A n-rack R is involutive if[
x1, . . . , xn−1, [x1, . . . , xn−1, y]

]
= y for all x1, . . . , xn−1, y ∈ R.

Note that an involutive n-quandle is an n-kei [2].
A n-rack R is trivial if it satis�es [x1, x2, . . . , xn−1, y] = y for all xi, y ∈ R.

For n = 2, one recovers involutive racks [1] and trivial racks [3].

De�nition 2.3. Let K be a ring and M a K-module. Then M endowed with the
n-ary operation [. . .] de�ned by

[x1, . . . , xn] = q1x1 + q2x2 + . . . + qnxn with

n∑
i=1

qi = 1

is a n-rack called an a�ne n-rack associated to the K-module M.

Example 2.4. A Z4-module M endowed with the operation [. . .]M de�ned by

[x1, . . . , xn]M = 2x1 + 2x2 + . . . + 2xn−1 + xn

is an a�ne n-rack if n is odd.

Proposition 2.5. [2] Any pointed rack (R, ◦, 1) has a pointed n-rack structure

under the n-ary operation de�ned by

[x1, x2, . . . , xn] = x1 ◦ (x2 ◦ (. . . (xn−1 ◦ xn) . . .)).
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This process determines a functor G : prack −→ nprack, which has as left
adjoint, the functor G′ : nprack −→ prack de�ned as follows:

Given a pointed n-rack (R, [. . .], 1), then Rn−1 endowed with the binary ope-
ration
(x1, . . . , xn−1) ◦ (y1, . . . , yn−1) =

(
[x1, . . . , xn−1, y1], . . . , [x1, . . . , xn−1, yn−1]

)
(2.1)

is a rack pointed at (1, 1, . . . , 1).

Proposition 2.6. Let m,n be nonnegative integers with m = 2n − 1. Then any

pointed n-rack (R, [. . .], 1) has a pointed m-rack structure under the operation 〈. . .〉
de�ned by

〈x1, . . . , xm〉 =
[
x1, . . . , xn−1, [xn, . . . , xm]

]
.

Proof. To show (NR1), let {xi}i=1,...,m−1, {yi}i=1,...,m ⊆ R. We have by de�nition

〈x1, . . . , xm−1, 〈y1, . . . , ym〉〉 = 〈x1, . . . , xm−1, [y1, . . . , yn−1, [yn, . . . , ym]]〉

=
[
x1, . . . , xn−1, [xn, . . . , xm−1, [y1, . . . , yn−1, [yn, . . . , ym]]]

]
,

then use consecutively (NR1) on (R, [. . .], 1) from inside out to obtain

= 〈[x1, . . . , xn−1, [xn, . . . , xm−1, y1]], . . . , [x1, . . . , xn−1, [xn, . . . , xm−1, ym]]〉

= 〈〈x1, . . . , xm−1, y1〉 . . . , 〈x1, . . . , xm−1, ym〉〉.

To show (NR2), let {xi}i=1,...,m−1 ⊆ R and y ∈ R. Then by (NR2) on
(R, [. . .], 1), there are unique t, z ∈ R such that y = [x1, . . . , xn−1, t] and t =
[xn, . . . , xm−1, z], i.e.,

y =
[
x1, . . . , xn−1, [xn, . . . , xm−1, z]

]
= 〈x1, . . . , xm−1, z〉.

To show (NR3), we have by (NR3) on (R, [. . .], 1),

〈1, . . . , 1, y〉 =
[
1, . . . , 1, [1, . . . , 1, y]

]
= [1, . . . , 1, y] = y for all y ∈ R,

and for all {xi}i=1,...,xm−1 ⊆ R,

〈x1, . . . , xm−1, 1〉 =
[
x1, . . . , xn−1, [xn, . . . , xm−1, 1]

]
= [x1, . . . , xn−1, 1] = 1,

which completes the proof.

3. n-subracks

Let (R, [. . .]) be a n-rack (resp. pointed n-rack). A nonempty subset S ⊆ R is
called a n-semisubrack of R if S is closed under the n-rack operation. (S, [. . .]) is
called a n-subrack of R if it has a n-rack structure (resp. pointed n-rack structure).

In particular, {1} and R are n-subracks of R.
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Example 3.1. Let S be a Z4-submodule of M (the n-rack of Example 2.4) annihi-
lated by 2. Then S has a trivial n-rack structure when endowed with the operation
[. . .] of M. Therefore S is a n-subrack of M when n is odd.

The following theorem provides a characterization of n-subracks in a pointed
n-rack.

Theorem 3.2. A n-semisubrack S of a pointed n-rack (R, [. . .], 1) is a n-subrack
if and only if for all b ∈ R, [a1, a2, . . . , an−1, b] ∈ S and {ai}i=1,...,n−1 ⊆ S implies

b ∈ S.

Proof. Assume that S is a n-subrack and let {ai}i=1,...,n−1 ⊆ S and b ∈ R with
[a1, . . . , an−1, b] ∈ S. Then by (NR2), there is a unique u ∈ S with [a1, . . . , an−1, b]
= [a1, a2, . . . , an−1, u]. Thus b = u ∈ S by uniqueness. For the converse, it is
enough to establish (NR2) for the n-semisubrack S. Let a1, a2, . . . , an−1, x ∈ S ⊆
R. Then there is a unique b ∈ R with x = [a1, a2, . . . , an−1, b], and thus b ∈ S by
hypothesis.

Proposition 3.3. Let R, R′ be pointed n-racks and φ : R −→ R′ be a homomor-

phism. Let K = {x ∈ R : φ(x) = 1R′} be the kernel of φ. Then K and I = φ(R)
are n-subracks of R and R′ respectively.

Proof. φ(1R) = 1R′ . So 1R ∈ K and 1R′ ∈ I. Let {ai}i=1,...,n ⊆ K. Then
[a1, . . . , an]R ∈ K since φ([a1, . . . , an]R) = [φ(a1), . . . , φ(an)]R′ = [1R′ , . . . , 1R′ ]R′

= 1R′ . Now let b ∈ R and {ai}i=1,...,n−1 ⊆ K with [a1, . . . , an−1, b]R ∈ K. Then

φ(b) = [1R′ , . . . , 1R′ , φ(b)]R′ = [φ(a1), . . . , φ(an−1), φ(b)]R′

= φ([a1, . . . , an−1, b]R) = 1R′ .

Thus b ∈ K. Hence K is a n-subrack of R by Theorem 3.2. To show that I is an n-
subrack, notice that [φ(x1), . . . , φ(xn))]R′ = φ([x1, . . . , xn]R) for all {xi}i=1,...,n ⊆
R. Now let y ∈ R′ such that [φ(x1), . . . , φ(xn−1), y]R′ = φ(d) for some d ∈ R.
We have by (NR2) on R that [x1, . . . , xn−1, c]R = d for some unique c ∈ R. So
[φ(x1), . . . , φ(xn−1), φ(c)]R′ = φ(d), and thus y = φ(c) by uniqueness. Hence I is
a n-subrack of R′ by Theorem 3.2.

Proposition 3.4. Every pointed n-rack has a trivial n-subrack.

Proof. Let R be a pointed n-rack and consider the subset

Z(R) =
{
a ∈ R | [x1, . . . , xn−1, a] = a, ∀{xi}i=1,...,n−1 ⊆ R

}
.

Clearly, 1 ∈ Z(R) by (NR3). Let {xi}i=1,...,n−1 ⊆ R and {ai}i=1,...,n ⊆ Z(R).
Then by (NR1),

[x1, . . . , xn−1, [a1, . . . , an]]=[[x1, . . . , xn−1, a1], . . . , [x1, . . . , xn−1, an]]=[a1, . . . , an].
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Now, for y ∈ R such that [a1, . . . , an−1, y] ∈ Z(R), we have

[a1, . . . , an−1, y] =
[
x1, . . . , xn−1, [a1, . . . , an−1, y]

]
=

[
[x1, . . . , xn−1, a1], . . . , [x1, . . . , xn−1, an−1], [x1, . . . , xn−1, y]

]
=

[
a1, . . . , an−1, [x1, . . . , xn−1, y]

]
.

By uniqueness, [x1, . . . , xn−1, y] = y and thus y ∈ Z(R). The result follows by
Theorem 3.2.

De�nition 3.5. The n-subrack Z(R) is called the center of R.

Proposition 3.6. For every pointed n-rack, there is an involutive subrack of Rn−1.

Proof. Recall by Proposition 2.5 that Rn−1 has a pointed rack structure and denote
the operation ◦ by [−,−]. Now consider the subset

IR =
{
(a1, a2, . . . , an−1) ∈ Rn−1 | [a1, . . . , an−1, [a1, . . . , an−1, y]] = y, ∀y ∈ R

}
.

Clearly, (1, . . . , 1) ∈ IR by (NR3).
Now let a = (a1, . . . , an−1), b = (b1, . . . , bn−1) ∈ IR and x = (x1, . . . , xn−1) ∈

Rn−1. Then [
[a, b], [[a, b], x]

]
=

[
[a, b], [[a, b], [a, [a, x]]]

]
=

[
[a, b], [a, [b, [a, x]]]

]
=

[
a, [b, [b, [a, x]]]

]
=

[
a, [a, x]

]
= x.

So IR is closed under the rack operation. Moreover, this implies that for a =
(a1, . . . , an−1) ∈ IR and y = (y1, . . . , yn−1) ∈ Rn−1, we have[

a, [a, y]
]

=
[
(a1, . . . , an−1), [(a1, . . . , an−1), (y1, . . . , yn−1)]

]
=

[
(a1, . . . , an−1),

(
[a1, . . . , an−1, y1], . . . , [a1, . . . , an−1, yn−1]

)]
=

([
a1, . . . , an−1, [a1, . . . , an−1, y1]

]
, . . . ,

[
a1, . . . , an−1, [a1, . . . , an−1, yn−1]

])
= (y1, y2, . . . , yn−1) = y.

The result follows by Theorem 3.2.

Proposition 3.7. Let S be a n-semisubrack of a pointed n-rack R. Let

N(S) =
{
a ∈ R | [u1, . . . , un−1, a] ∈ S, ∀ {ui}i=1,...,n−1 ⊆ S

}
.

Then

(1) 1 ∈ S i� 1 ∈ N(S).

(2) N(S) ⊆ J for any n-subrack J of R containing S as a n-semisubrack.
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(3) S ⊆ N(S). The equality holds (thus N(R) is a n-subrack of R) if S is a

n-subrack of R.

Proof. (1). By (NR3), 1 = [u1, . . . , un−1, 1] for all {ui}i=1,...,n−1 ⊆ S. Thus 1 ∈ S
i� 1 ∈ N(S).

(2). Let J be a n-subrack of R containing S as a n-semisubrack, and let a ∈
N(S). Then [u1, . . . , un−1, a] ∈ S ⊆ J, for all {ui}i=1,...,n−1 ⊆ S ⊆ J. This implies
that a ∈ J as J is a n-subrack. Hence N(S) ⊆ J.

(3). It is clear that S ⊆ N(S) as S is closed under the n-rack operation. Now
let {ai}i=1,...,n ⊆ N(S). Then by (NR1) on S,[

u1, . . . , un−1, [a1, . . . , an]
]

=
[
[u1, . . . , un−1, a1], . . . , [u1, . . . , un−1, an]

]
∈ S

for all {ui}i=1,...,n−1 ⊆ S. So [a1, . . . , an] ∈ N(S) and thus N(S) is closed under
the n-rack operation. In addition, for y ∈ R such that [a1, . . . , an−1, y] ∈ N(S),
we have [u1, . . . , un−1, [a1, . . . , an−1, y]] ∈ S, i.e.,[

[u1, . . . , un−1, a1], . . . , [u1, . . . , un−1, an−1], [u1, . . . , un−1, y]
]
∈ S.

So [u1, . . . , un−1, y] ∈ S if S is a n-subrack, and thus y ∈ N(S). Hence N(S) is a
n-subrack of R.

N(S) is called normalizer of S. The right normalizer of the n-semisubrack S
is dually de�ned by

Nr(S) = {a ∈ R | [a, u1, . . . , un−1] ⊆ S, for all {ui}i=1...,n−1 ⊆ S}

and does not appear to be of interest for left n-racks. However Nr(S) satis�es the
same properties above for right n-racks.

4. Decomposition of n-racks

In this section we assume that the n-rack R is not pointed.

Let nAut(R) be the set of all automorphisms of the n-rack R, i.e., bijective
maps ξ : R −→ R such that ξ([x1, . . . , xn]) = [ξ(x1), . . . , ξ(xn)].

It is not di�cult to see that for all x1, . . . , xn−1 ∈ R the map

φ(x1, ..., xn−1)(y) = [x1, ..., xn−1, y]

is an automorphism of R. So, we can consider the map

φ : Rn−1 −→ nAut(R) such that φ : (x1, . . . , xn−1) 7→ φ(x1, . . . , xn−1).

If φ is injective, then R is called faithful.

De�nition 4.1. A n-rack R is decomposable if there are two disjoint n-subracks
of R such that R = X1 ∪X2.
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Proposition 4.2. If R is a decomposable n-rack, then the following statements

are true:

(1) [X1, . . . , X1, X2] ⊆ X2, (4.1)

(2) (X1)n−1 and (X2)n−1 are subracks of the rack Rn−1 satisfying

[(X1)n−1, (X2)n−1]Rn−1 ⊆ (X2)n−1 and [(X2)n−1, (X1)n−1]Rn−1 ⊆ (X1)n−1,

(3) φ((X1)n−1) ∈ nAut(X2) and φ((X2)n−1) ∈ nAut(X1).

Proof. (1). Let {xi}i=1,...,n−1 ⊆ X1 and y ∈ X2 with [x1 . . . , xn−1, y] /∈ X2, i.e.,
[x1, . . . , xn−1, y] ∈ X1. Then by Theorem 3.3, y ∈ X1 as X1 is a n-subrack, and
thus y ∈ X1 ∩X2. A contradiction.

(2). Recall that the rack operation on Rn−1 is given by the equality (2.1). So
(X1)n−1 is closed under this operation and satis�es (R2) as X1 is a n-subrack of
R. Moreover, it is clear by (4.1) that each coordinate of the right hand side of
the equality above is in X2 for {xi}i=1,...,n−1 ⊆ X1 and {yi}i=1,...,n−1 ⊆ X2. Thus
[(X1)n−1, (X2)n−1]Rn−1 ⊆ (X2)n−1. The other inclusion is obtained similarly.

(3). Let {xi}i=1,...,n−1 ⊆ X1. The restriction of the map φ(x1, . . . , xn−1) to X2

together with (4.1) completes the proof. The proof that φ((X2)n−1) ∈ nAut(X1)
is similar.

Proposition 4.3. If R is a decomposable rack, then R is decomposable as a n-rack
for all integer n > 2.

Proof. Let n > 2 (integer), and R = X1∪X2 be a decomposition of the rack (R, ◦).
It is enough to show that X1 and X2 are n-subracks. Indeed, for {xi}i=1,...,n from
X1, we have, by Proposition 2.5, [x1, x2, . . . , xn] = x1(x2(. . . (xn−1◦xn) . . .)) ∈ X1

as X1 is closed under ◦. Also for y ∈ X1, there is by (R2) a unique t1 ∈ X1 with
y = x1 ◦ t1. Repeating the process, there exists uniquely t2, t3, . . . , tn−1, z ∈ X1

with ti = xi+1 ◦ ti+1 and tn−2 = xn−1 ◦ z such that

y = x1 ◦ t1 = x1 ◦ (x2 ◦ t2) = . . . = x1 ◦ (x2(. . . (xn−1 ◦z) . . .)) = [x1, x2, . . . xn−1, z].

Hence X1 is a n-subrack. The proof that X2 is a n-subrack is similar.

Proposition 4.4. If R is a decomposable n-rack, then R is decomposable as a

(2n− 1)-rack.

Proof. The proof is similar to the proof of Proposition 4.3 and follows by Propo-
sition 2.6.

5. A homology theory on n-racks

Recall that for a rack (X, ◦), one de�nes (see [4] for the right rack version) the rack
homology HR

∗ (X) of X as the homology of the chain complex {CR
k (X), ∂k} where
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CR
k (X) is the free abelian group generated by k-uples (x1, x2, . . . , xk) of elements

of X and the boundary maps ∂k : CR
k (X) −→ CR

k−1(X) are de�ned by

∂k(x1, x2, . . . , xk) =∑k
i=2(−1)i[(x1, . . . , xi−1, x̂i, xi+1, . . . , xk)− (xi ◦x1, . . . , xi ◦xi−1, x̂i, xi+1, . . . , xk)]

for k > 2 and ∂k = 0 for k 6 1, where x̂i means that xi is deleted. If X is a
quandle, the subgroups CD

k (X) of CR
k (X) generated by k-tuples (x1, x2, . . . , xk)

with xi = xi+1 for some i, 1 6 i < k form a subcomplex CD
∗ (X) of CR

∗ (X) whose
homology HD

∗ (X) is called the degeneration homology of X. The homology HQ
∗ (X)

of the quotient complex {CQ
k (X) = CR

k (X)/CD
k (X), ∂k} is called the quandle

homology of X.

Lemma 5.1. Let X be a n-rack. Then Xn−1 has a rack structure. Xn−1 is a

quandle if X is a n-quandle.

Proof. Endow Xn−1 with the binary operation

(x1, . . . , xn−1)◦(y1, . . . yn−1) = ([x1, . . . , xn−1, y1], . . . , [x1, . . . , xn−1, yn−1]).

We de�ne the chain complexes nCR
∗ (X ) := CR

∗ (Xn−1) if X is an n-rack,

nCD
∗ (X ) := CD

∗ (Xn−1) and nCQ
∗ (X ) := CQ

∗ (Xn−1) if X is a n-quandle.

De�nition 5.2. Let X be an n-rack. The kth n-rack homology group of X with
trivial coe�cients is de�ned by

nHR
k (X ) = Hk(nCR

∗ (X )).

De�nition 5.3. Let X be a n-quandle.

1. The kth n-degeneration homology group of X with trivial coe�cients is de�ned
by

nHD
k (X ) = Hk(nCD

∗ (X )).

2. The kth n-quandle homology group of X with trivial coe�cients is de�ned by

nHQ
k (X ) = Hk(nCQ

∗ (X )).

De�nition 5.4. Let A be a abelian group, we de�ne the chain complexes

nCW
∗ (X ;A) = nCW

∗ (X )⊗A, ∂ = ∂ ⊗ id with W = D,R,Q.

1. The kth n-rack homology group of X with coe�cients in A is de�ned by

nHR
k (X ;A) = Hk(nCR

∗ (X ;A)).

2. The kth n-degenerate homology group of X with coe�cients in A is de�ned by

nHD
k (X ;A) = Hk(nCD

∗ (X ;A)).

3. The kth n-quandle homology group of X with coe�cients in A is de�ned by

nHQ
k (X ;A) = Hk(nCQ

∗ (X ;A)).
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One de�nes the cohomology theory of n-racks and n-quandles by duality. Note
that for n = 2, one recovers the homology and cohomology theories de�ned by
Carter, Jelsovsky, Kamada, Landford and Saito [4].

Proposition 5.5. Let X be a n-quandle and S ⊂ X a n-subquandle. The follow-

ing diagram of long exact sequences commutes:

nHD
k (S) −−−−→ nHR

k (S) −−−−→ nHQ
k (S) −−−−→ nHD

k+1(S)y y y y
nHD

k (X ) −−−−→ nHR
k (X ) −−−−→ nHQ

k (X ) −−−−→ nHD
k+1(X )y y y y

nHD
k (XS) −−−−→ nHR

k (XS) −−−−→ nHQ
k (XS) −−−−→ nHD

k+1(XS)

where nHW
k (XS) stands for the homology of the complex

{nCW
k (XS) =n CW

k (X )/nCW
k (S), ∂k}, W = R,D, Q.

Proof. The diagram above is induced by the following commutative diagram of
short exact sequences:

0 0 0y y y
0 −−−−→ nCD

∗ (S) −−−−→ nCR
∗ (S) −−−−→ nCQ

∗ (S) −−−−→ 0y y y
0 −−−−→ nCD

∗ (X ) −−−−→ nCR
∗ (X ) −−−−→ nCQ

∗ (X ) −−−−→ 0y y y
0 −−−−→ nCD

∗ (XS) −−−−→ nCR
∗ (XS) −−−−→ nCQ

∗ (XS) −−−−→ 0y y y
0 0 0

Remark. Since Xn−1 carries most of the properties of X , several results estab-
lished on racks are valid on n-racks. For instance; if X is �nite, then Xn−1 is also
�nite. Cohomology of �nite racks were studied by Etingof and Graña in [7].

Proposition 5.6. Let X be a trivial n-rack. Then we have the following isomor-

phisms:

nHR
∗ (X ) ∼=

(
ZXn−1

)∗
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Proof. It is easy to check with Lemma 2.1 that Xn−1 is a trivial rack. That all
chains are cycles follows by de�nition.
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Weak hyper residuated lattices

Rajab Ali Borzooei and Soghol Niazian

Abstract. We introduced the notion of weak hyper residuated lattices which is a generalization
of residuated lattices and prove some related results. Moreover, we introduce deductive systems,
(positive) implicative and fantastic deductive systems and show the relations among them.

1. Introduction

The concept of hyperstructures was introduced by Marty [10] at 8th Congress of
Scandinavian Mathematicians in 1934. Till now, the hyperstructures are studied
from the theoretical point of view and for their applications to many subjects of
pure and applied mathematics [1], [5]. Residuated lattices, introduced by Ward
and Dilworth [11], are a common structure among algebras associated with logical
systems. The main examples of residuated lattices are MV -algebras introduced
by Chang [2] and BL-algebras introduced by Hájek [7]. Imai and Iséki introduced
in [9] the notion of BCK-algebras. Borzooei et al. [2] introduced the concept of
hyper K-algebras, which are a generalization of BCK-algebras. Also, they studied
hyper K-ideals in hyper K-algebras. Recently, S. Ghorbani et al. [6], applied the
hyperstructures to MV -algebras.

In this paper we want to construct a weak hyper residuated lattice as a gene-
ralization of the concept of residuated lattices that contain of the classes of MV -
algebras, BL-algebras, and Heyting algebras.

A hyperoperation on a nonempty set A is a mapping ◦ : A×A → P ?(A), where
P ?(A) is the set of all the nonempty subsets of A and A with a hyperoperation is
called a hypergroupoid.

De�nition 1.1. A hypergroupoid (A, ∗, 1) is called a commutative semihypergroup

with 1 as the identity, if for all x, y, z ∈ A we have:
(i) x ∗ (y ∗ z) = (x ∗ y) ∗ z,
(ii) x ∗ y = y ∗ x,
(iii) x ∈ 1 ∗ x.

An element a ∈ A is called a scalar element if for all x ∈ A the set a � x has
only one element.

2010 Mathematics Subject Classi�cation: 03G10, 06B99, 06B75
Keywords: Weak hyper residuated lattice, (weak) deductive system, (positive) implicative
deductive system, fantastic deductive system.
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De�nition 1.2. By a residuated lattice we mean a structure (L,∨,∧,�,→, 0, 1)
of type (2, 2, 2, 2, 0, 0) such that

(RL1) (L,∨,∧, 0, 1) is a bounded lattice,
(RL2) (L,�, 1) is a commutative monoid,
(RL3) the pair (�,→) is an adjoint pair, i.e., for any x, y, z ∈ L,

x ∗ y 6 z if and only if x 6 y → z.

2. Weak hyper residuated lattices

De�nition 2.1. By a weak hyper residuated lattice we mean a nonempty set L
endowed with two binary operations ∨, ∧ and two binary hyperoperations �, →
and two constants 0 and 1 satisfying the following conditions:

(WHRL1) (L,6,∨,∧, 0, 1) is a bounded lattice,
(WHRL2) (L,�, 1) is a commutative semihypergroup with 1 as the identity,
(WHRL3) a� c � b if and only if c � a → b,

where A � B means that a 6 b, for some a ∈ A and b ∈ B; A 6 B means that
for any a ∈ A, there exists b ∈ B such that a 6 b, where 6 is the lattice ordering
of L.

Example 2.2. Any residuated lattice is a weak hyper residuated lattice, too.

Example 2.3. L = [0, 1] with the natural ordering is a bounded lattice. De�ne
the hyperoperations �, → and  on L as follows:

a� b = a× b, a → b =
{
{1}, a 6 b,
{b}, a > b,

a b =
{
{1}, a 6 b,
[b, 1] , a > b.

Then (L,∨,∧,�,→, 0, 1) and (L,∨,∧,�, , 0, 1) are weak hyper residuated lat-
tices.

Example 2.4. Consider the chain 0 < a < b < 1. Then (L,6, 0, 1), where
L = {0, a, b, 1}, is a bounded lattice. Putting x � y = x ∧ y and de�ning the
hyperoperations → and  by the following two tables:

→ 0 a b 1
0 {1} {1} {1} {1}
a {a, b, 1} {1, a} {1} {1}
b {a, 1} {a} {b, 1} {1}
1 {0, 1} {a} {1, b} {1}

 0 a b 1
0 {1} {1, b} {1, b} {1, b}
a {a, b, 1} {1} {1} {1}
b {a, b, 1} {a} {1, b} {1, b}
1 {0, a, 1} {1, a} {1} {1}

we obtain two hyper residuated lattices (L,6,�,→, 0, 1) and (L,6,�, , 0, 1).

Proposition 2.5. Let L = (L,∨,∧,�,→, 0, 1) be a weak hyper residuated lattice.

Then for nonempty subsets A, B, C of L and all x, y, z ∈ L we have:

(i) 1 � A ⇔ 1 ∈ A and A � 0 ⇔ 0 ∈ A,
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(ii) x 6 y ⇒ 1 ∈ x → y and A � B ⇒ 1 ∈ A → B,

(iii) if 1 is a scalar, then 1 ∈ x → y ⇒ x 6 y and 1 ∈ A → B ⇒ A � B,

(iv) 1 ∈ (x → x) ∩ (x → 1) ∩ (0 → x),

(v) if 1 is a scalar element of L, then x ∈ 1 → x,

(vi) A � B → C ⇔ A�B � C ⇔ B � A → C,

(vii) x� y � x, y and A�B � A,B,

(viii) x � y → x, A � B → A and 1 ∈ x → (y → x),

(ix) x → (y → z) 6 (x� y) → z 6 x → (y → z) 6 y → (x → z),

(x) x� (x → y) � x, y,

(xi) x � y → (x� y) and x � (y → x) → x,

(xii) x 6 y ⇒ x� z � y � z, z → x 6 z → y and y → z 6 x → z,

(xiii) x → y 6 (y → z) → (x → z),

(xiv) (x → y)� (y → z) � x → z and y → z � (x → y) → (x → z),

(xv) 0 ∈ x� y ⇔ x � ¬y, where ¬x = x → 0,

(xvi) 0 ∈ 0� x, 0 ∈ x� ¬x, 1 ∈ ¬0 and if 1 is a scalar, then 0 ∈ ¬1,

(xvii) if x 6 y, then ¬y 6 ¬x,

(xviii) x → y � ¬y → ¬x,

(xix) x � ¬¬x, ¬¬¬x � ¬x � ¬¬¬x and ¬x � x → y,

(xx) ¬a, ¬b � ¬(a ∧ b) and ¬(a ∨ b) � ¬a , ¬b,

(xxi) x → ¬y � ¬(x� y) � x → ¬y and y → ¬x � ¬(x� y) � y → ¬x,

(xxii) if
∨

Y exists, then
∨

y∈Y (x� y) � x� (
∨

Y ).

Proof. (i) Let 1 � A. Then there exists a ∈ A such that 1 6 a. Since, for any
x ∈ L, x 6 1, then 1 = a ∈ A. The converse is obvious. Now, let A � 0. Then
there exists b ∈ A such that b 6 0. Since, for any x ∈ L, 0 6 x, then 0 = b ∈ A.
The converse is clear.

(ii) Let x 6 y. Since x ∈ x � 1, then x � 1 � y. By (WHRL3), 1 � x → y
and so by (i), 1 ∈ x → y. Now, let A � B. Then there exist a ∈ A and b ∈ B
such that a 6 b. So, by the above, 1 ∈ a → b ⊆ A → B.

(iii) Let 1 ∈ x → y. Then 1 6 x → y and so 1 � x � y. Now, since 1 is a
scalar of L and x ∈ 1 � x, then 1 � x = x and so x 6 y. Similarly, 1 ∈ A → B
implies A � B.
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(iv) Since, by the lattice ordering, x 6 x, x 6 1 and 0 6 x, then 1 ∈ x → x,
1 ∈ x → 1 and 1 ∈ 0 → x. So we have (iv).

(v) Let 1 be a scalar of L. Then x � 1 = x 6 x and by (WHRL3), we get
x � 1 → x, i.e., there exists a ∈ 1 → x such that x 6 a. Since a ∈ 1 → x, then
a = 1�a 6 x 6 a and so x = a ∈ 1 → x. Hence, for all a ∈ A, a ∈ 1 → a ⊆ 1 → A.

(vi) Let A,B,C ⊆ L. Then

A � B → C ⇔ ∃a ∈ A, b ∈ B, c ∈ C such that a � b → c,

A�B � C ⇔ ∃a ∈ A, b ∈ B, c ∈ C such that a� b � c,

B � A → C ⇔ ∃a ∈ A, b ∈ B, c ∈ C such that b � a → c

and so, by (WHRL3), we have (vi).
(vii) Since, for all x, y ∈ L, y 6 1 ∈ x → x and x 6 1 ∈ y → y, then

by (WHRL3) x � y = y � x � x, y. By the similar way, we can prove that
A�B � A,B.

(viii) By (vii), x� y � x and so, by (WHRL3), x � y → x. Hence, by (ii),
1 ∈ x → (y → x).

(ix) Let u ∈ x → (y → z). Then

u � x → (y → z) ⇔ (u� x) � y → z, by (vi)
⇔ (u� x)� y � z, by (vi)
⇔ u� (x� y) � z

⇔ u � (x� y) → z, by (vi)

and so, x → (y → z) 6 (x � y) → z. By a similar way, we can prove that
(x� y) → z 6 x → (y → z).

(x) It follows from (vi).
(xi) It follows from (vi) and x� y � x� y. Also, by (vi), x� A � x, where

A = y → x.
(xii) By the �rst part of (xi), y � z → (y � z). Now, since x 6 y, then

x � z → (y � z). Hence, by (vi), we get x� z � y � z.
Now, let u ∈ z → x. Since u � z → x, then by (WHRL3), u�z � x and so by

x 6 y, we get u�z � y. Hence, by (WHRL3), u � z → y and so z → x 6 z → y.
Now, let t ∈ y → z. Since, t � y → z, then by (vi), y � t → z and so

by x 6 y, we get that x � t → z. Hence, by (vi), we get t � x → z and so
y → z 6 x → z.

(xiii) Let u ∈ y → z. Then by (vi), u � y → z implies y � u → z. So there
exists t ∈ u → z such that y 6 t. Now, by (xii) and (ix), we have

x → y 6 x → t ⊆ x → (u → z) 6 u → (x → z) ⊆ (y → z) → (x → z).

Hence, x → y 6 (y → z) → (x → z).
(xiv) Those follow from (vi) and (xiii).
(xv) x � ¬y = y → 0, if and only if x� y � 0 if and only if 0 ∈ x� y.



Weak hyper residuated lattices 33

(xvi) We know that x 6 1 ∈ 0 → 0. Thus x � 0 � 0 and so by (i), we
get 0 ∈ x � 0. Also, it is clear that x → 0 � x → 0. Now, by (vi), we get
x� (x → 0) � 0 and so, by (i), 0 ∈ x� ¬x.

(xvii) It follows from (xii).
(xviii) Since, by (xiv), (x → y) � (y → 0) � x → 0, then by (vi), we get

x → y � ¬y → ¬x.
(xix) By (xv), x�(x → 0) � 0 and so by (vi), we get x � (x → 0) → 0 = ¬¬x.

Also, by (xii), we get ¬¬¬x � ¬x. On the other hand, if we put A = x → 0 then
by (xv), A � (A → 0) � 0 . Now, we conclude A � (A → 0) → 0 by (vi), i.e.,
¬x � ¬¬¬x. (Note that, we do not have anti-symmetry for �.)

(xx) Those follow from (xii).
(xxi) It is conclude by (ix) and (xiii).
(xxii) If

∨
Y exists, then y 6

∨
Y for all y ∈ Y . So, by (xii), x�y � x�(

∨
Y ).

Thus there exists by ∈ x� (
∨

Y ) such that x� y � by for any y ∈ Y . Hence, we
get

∨
y∈Y (x� y) �

∨
y∈Y by 6

∨
x� (

∨
Y ).

Theorem 2.6. Any weak hyper residuated lattice of order n can be extend to a

weak hyper residuated lattice of order n + 1.

Proof. Let L be a weak hyper residuated lattice of order n, and L = L ∪ {e} for
some e /∈ L. Putting

z 6′ y ⇔ z 6 y, for all z, y ∈ L and x 6′ e, for all x ∈ L′,

a�′ b =


a� b if a, b ∈ L,
{a} if a ∈ L and b = e,
{b} if b ∈ L and a = e,
{e} if a = b = e,

a →′ b =


(a → b) ∪ {e} if a, b ∈ L, 1 ∈ a → b
a → b if a, b ∈ L, 1 /∈ a → b,
{e} if b = e,
{b} if a = e,

we see that (L,6′) is a bounded lattice with 0 as the minimum and e as the
maximum elements of L. The proof of (WHRL1) and (WHRL2) are clear. Now,
we prove the (WHRL3). Let x, y, z ∈ L. We consider the following cases:

Case 1. For x = y = z = e, the proof is obvious.
Case 2. Let x = z = e and y ∈ L. Then x �′ y = {y} and y →′ z = {e}.

Therefore, x�′ y �′ z if and only if x �′ y →′ z. By the similar way, we have for
y = z = e and x = y = e.

Case 3. Let x, y ∈ L and z = e. Since y →′ z = {e} and u �′ e, for all u ∈ L′,
then x �′ y �′ z implies x �′ y →′ z. Now, let x �′ y →′ z. Since z = e, then
x�′ y �′ z.
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Case 4. Let x, z ∈ L and y = e. Then x �′ y = {x} and y →′ z = {z}.
Therefore, x�′ y �′ z if and only if x �′ y →′ z.

Case 5. Let y, z ∈ L and x = e. Then x�′ y = {y}. If x�′ y = {y} �′ z, then
y �′ z. Since y, z ∈ L we get y � z and so 1 ∈ y → z. Hence e ∈ y →′ z and so
x �′ y →′ z. Now, let x �′ y →′ z. Then by de�nition of 6′, we have e ∈ y →′ z
and so 1 ∈ y → z or z = e. Since y ∈ L, then y 6= e and so 1 ∈ y → z. Therefore,
x�′ y �′ z.

Case 6. Let x, y, z ∈ L and 1 ∈ y → z. If x �′ y �′ z, then by de�nition of
→′, e ∈ y →′ z and so x �′ y →′ z. Now, let x �′ y →′ z. Since 1 ∈ y → z, then
x � y → z and so x� y � z. Hence x�′ y = x� y �′ z.

Case 7. Let x, y, z ∈ L and 1 /∈ y → z. Then by de�nitions of �′ and 6′, we
get

x�′ y �′ z ⇔ x� y � z ⇔ x � y → z ⇔ x �′ y →′ z.

Hence, (L,6′,�′,→′, 0, e) is a weak hyper residuated lattice of order n + 1.

De�nition 2.7. A subset D of L containing 1 is called a deductive system (shortly:
DS) if x ∈ D and (x → y) ⊆ D imply y ∈ D, for all x, y ∈ L.

Example 2.8. (i) Clearly, L is a DS of L. If 1 is an scalar element, then {1} is
a DS of L, too.

(ii) Let ([0, 1],∨,∧,�, , 0, 1) be a weak hyper residuated lattice as in Exam-
ple 2.3. It is easy to shows that D = [ 12 , 1] is its DS.

(iii) In Example 2.4, {1} is a DS and {1, b} is not a DS of L.

De�nition 2.9. A nonempty subset D of L is called
• an upset if x ∈ D and x 6 y, then y ∈ D, for all x, y ∈ L,
• an S→reflexive if (A → B)∩D 6= ∅ implies (A → B) ⊆ D, for all A,B ⊆ L.

Proposition 2.10. Every S→reflexive DS of L is an upset.

Proof. Let D be an S→-re�exive DS, x ∈ D and x 6 y, for some y ∈ L. By
Proposition 2.5(ii), 1 ∈ x → y and so (x → y) ∩D 6= ∅. Since D is S→-re�exive,
then x → y ⊆ D and so by DS, we have y ∈ D.

Proposition 2.11. Let D be an S→reflexive DS of L. Then

(i) D � A → B ⇔ (A → B) ∩D 6= ∅ ⇔ A → B ⊆ D,

(ii) A → B ⊆ D and A → B � A′ → B′ imply D � A′ → B′,

(iii) D � A → B � A′ → B′ implies D � A′ → B′.

Proof. (i) If D � A → B, then there exist a ∈ A and b ∈ B such that D � a → b.
So there exists d ∈ D and t ∈ a → b such that d 6 t. Since D is an S→reflexive
DS, then by Proposition 2.10, D is an upset and so t ∈ D ∩ (a → b). Hence
(A → B) ∩D 6= ∅. Conversely, let (A → B) ∩D 6= ∅. Then there exist a ∈ A and
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b ∈ B such that (a → b) ∩D 6= ∅. So there exists t ∈ (a → b) ∩D and since t 6 t,
then D � a → b. Hence D � A → B.

(ii) Let A → B ⊆ D. Since A → B � A′ → B′, then there exist a ∈ A,
b ∈ B, a′ ∈ A′ and b′ ∈ B′ such that a → b � a′ → b′. So there exist t ∈ a → b
and t′ ∈ a′ → b′ such that t 6 t′. Now, we have t ∈ a → b ⊆ A → B ⊆ D and so
t ∈ D. Since D is an upset, then t′ ∈ D. Therefore, t′ ∈ D ∩ A′ → B′ and so by
(i), we get D � A′ → B′.

(iii) If D � A → B, then by (i), A → B ⊆ D and so by (ii), we conclude
D � A′ → B′.

Example 2.12. Let (L,6, 0, 1) be as in Example 2.4. Consider the following
hyperoperations:

� 0 a b 1
0 {0} {0} {0} {0}
a {0} {a, 0} {a} {a}
b {0} {a} {b} {b}
1 {0} {a} {b} {1}

→ 0 a b 1
0 {1} {1} {1} {1}
a {0, a} {1} {1} {1}
b {0} {0, a} {1} {1}
1 {0} {a} {b} {1}

Then (L,∨,∧,�,→, 0, 1) is a weak hyper residuated lattice and D1 = {1}, D2 =
{1, b} are its S→-re�exive deductive systems.

3. Implicative deductive systems

De�nition 3.1. A subset D of L containing 1 is called an implicative deductive
system (shortly: IDS), if (x → y) ⊆ D and x → (y → z) ⊆ D imply (x → z) ⊆ D.

Example 3.2. Let L = {a, b, c, 0, 1} be the lattice with the following diagram.

ss
s s

s

@@ �
�
�

��

A
A

A

c

0

1

a

b

Consider the following hyperoperations:

→ 0 a b c 1
0 {1} {1} {1} {1} {1}
a {c} {1} {1} {c} {1}
b {c} {a, b, c} {1} {c} {1}
c {a, b} {a, b} {b, a} {1} {1}
1 {0} {a} {b, a} {c} {1}

� 0 a b c 1
0 {0} {0} {0} {0} {0}
a {0} {a} {a} {0} {a}
b {0} {a} {b, a} {0} {a, b}
c {0} {0} {0} {c} {c}
1 {0} {a} {b, a} {c} {1}
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It is easy to show that (L,∨,∧,�,→, 0, 1) is a weak hyper residuated lattice.
Moreover, easy calculations show that {1, a} is an IDS of L and {1, b, c} is not
an IDS. Since (b → 0) = {c} ⊆ {1, b, c} and (b → (0 → a)) = {1} ⊆ {1, b, c} but
(b → a) = {a, b, c} * {1, b, c}.

Theorem 3.3. Let D be a nonempty subset of L containing 1. Then

(i) if D is an IDS, then D is a DS,

(ii) D is an IDS if and only if each Da = {x ∈ L|a → x ⊆ D} is a DS of L,

(iii) D is an IDS if and only if (x → (y → z)) ∩ D 6= ∅ and (x → y) ∩ D 6= ∅
imply (x → z) ∩D 6= ∅, for all x, y, z ∈ L.

Proof. (i) Let x ∈ D and x → y ⊆ D. Since by Proposition 2.5(v), x ∈ (1 → x)∩D
and (x → y) ⊆ (1 → (x → y)) ∩ D and D is an IDS, then y ∈ (1 → y) ⊆ D.
Hence D is a DS.

(ii) Let a ∈ D. Since, by Proposition 2.5(iv), 1 ∈ (a → 1), then 1 ∈ Da.
Suppose that x ∈ Da and (x → y) ⊆ Da. Then (a → x) ⊆ D and (a → (x →
y)) ⊆ D. Hence (a → y) ⊆ D i.e., y ∈ Da. Therefore, Da is a DS of L.

(iii) The proof is clear.

Theorem 3.4. For a nonempty subset D of L the following are equivalent:

(i) D is an IDS,

(ii) D is a DS and (y → (y → x)) ⊆ D implies (y → x) ⊆ D, for any x, y ∈ L,

(iii) D is a DS and (z → (y → x)) ⊆ D implies ((z → y) → (z → x)) ⊆ D, for

any x, y, z ∈ L,

(iv) 1 ∈ D and (z → (y → (y → x))) ⊆ D and z ∈ D imply (y → x) ⊆ D, for

any x, y, z ∈ L,

(v) (x → (x� x)) ⊆ D, for any x ∈ L.

Proof. (i) ⇒ (ii) By Theorem 3.3, D is a DS of L. Now, let (y → (y → x)) ⊆ D,
for any x, y ∈ L. Since 1 ∈ (y → y)∩D and D is an IDS of L, then (y → x) ⊆ D.

(ii) ⇒ (iii) Let (z → (y → x)) ⊆ D, for any x, y ∈ L. Then by Proposition
2.5(xiv),

y → x � (z → y) → (z → x), (1)

and by Proposition 2.5(ix),

(z → y) → (z → x) 6 z → ((z → y) → x) (2)

So, by Proposition 2.5(xii) and (1), we get z → (y → x) � z → ((z → y) → (z →
x)), and by Proposition 2.5(xii) and (2), we get z → ((z → y) → (z → x)) 6 z →
(z → ((z → y) → x)). Hence, z → (y → x) � z → (z → (z → y) → x)). By
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Proposition 2.11(i) and assumption, we have D � z → ((z → y) → x) 6 (z →
y) → (z → x) and so, we get (z → y) → (z → x) ⊆ D.

(iii) ⇒ (iv) Let z → (y → (y → x)) ⊆ D and z ∈ D, for any x, y, z ∈ L. Since
D is a DS, then y → (y → x) ⊆ D. Now, by (iii), (y → y) → (y → x) ⊆ D.
Also,by Proposition 2.5(iv, v), we get y → x ⊆ 1 → (y → x) ⊆ (y → y) → (y →
x) ⊆ D and so y → x ⊆ D.

(iv) ⇒ (i) Let z → (y → x) ⊆ D and z → y ⊆ D, for any x, y, z ∈ L. Then, by
Proposition 2.5, we get z → (y → x) 6 y → (z → x) � (z → y) → (z → (z → x)),
and so, by Proposition 2.11, we conclude that (z → y) → (z → (z → x)) ⊆ D.
Now, by (iv), z → x ⊆ D.

(ii) ⇒ (v) Let x ∈ A and u ∈ x� x. Then u ∈ x� x and so x� x � u. Now,
by (WHRL3), x � x → u and so by Proposition 2.5(ii), 1 ∈ D ∩ x → (x → u).
Hence, by Proposition 2.11, x → (x → u) ⊆ D. Therefore, by (ii), x → u ⊆ D.

(v) ⇒ (ii) Put A = y → (y → x) ⊆ D. By using two times of Proposition
2.5(ix), we get

1 ∈ A → A = A → (y → (y → x)) 6 y → (A → (y → x)) 6 y → (y → (A → x)).

Hence, 1 ∈ y → (y → (A → x)) i.e., ∃t ∈ A → x such that 1 ∈ y → (y → t).
Then 1 � y → (y → t) and so by (WHRL3), y = 1 � y � y → t. Since, by
(WHRL3), y � y � t, then ∃a ∈ y � y such that a 6 t and so by Proposition
2.5(xii), y → a 6 y → t. On the other hand, y → a ⊆ y → (y � y) ⊆ D. So,
by Proposition 2.5(ix), D � y → t ⊆ y → (A → x) 6 A → (y → x). Now, by
Proposition 2.11, A → (y → x) ⊆ D and since D is a DS, then y → x ⊆ D.

Corollary 3.5. If {1} is an IDS, then x 6 x� x, for any x ∈ L.

Proof. Since, for any u ∈ x � x and x ∈ L, x → u ⊆ {1}, then 1 ∈ x → u. Now,
by Proposition 2.5(iii), we get x 6 u, for any u ∈ x� x, i.e. x 6 x� x.

Theorem 3.6. Let D be an IDS and E be a DS of L such that D ⊆ E. Then E
is an IDS, too.

Proof. Put A = z → (y → x) ⊆ E. Now, by using two times of Proposition
2.5(ix), we have

1 ∈ A → A = A → (z → (y → x)) 6 z → (A → (y → x)) 6 z → (y → (A → x)).

So 1 ∈ D ∩ z → (y → (A → x)). By Proposition 2.11(iii), we get z → (y → (A →
x)) ⊆ D and so by Theorem 3.4(iii), (z → y) → (z → (A → x)) ⊆ D ⊆ E. Also,
by Proposition 2.5(ix),

(z → y) → (z → (A → x)) 6 (z → y) → (A → (z → x)) 6 A → ((z → y) → (z → x).

Therefore, A → ((z → y) → (z → x)) ⊆ E. Since E is a DS and A ⊆ E, then
(z → y) → (z → x) ⊆ E. Hence, by Theorem 3.3, E is an IDS .

Corollary 3.7. The deductive system {1} is an IDS if and only if every DS of

L is an IDS.
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4. Positive implicative deductive systems

De�nition 4.1. A subset D of L containing 1 is a positive implicative deductive

system (shortly: PIDS), if x → ((y → z) → y) ⊆ D and x ∈ D imply y ∈ D.

Example 4.2. Let L be as in the Example 3.2. Then easy calculations show that
{1, a, b} is a PIDS of L and {1, a} is an IDS but not a PIDS of L. Since we
have a → ((b → b) → b) = a → ({1} → {b}) = a → {a, b} = {1} ⊆ {1, a} and
a ∈ {1, a} but b /∈ {1, a}.

Theorem 4.3. Every PIDS is an IDS.

Proof. Let D be a PIDS and y → (y → x) ⊆ D. Then by Proposition 2.5(v, xiii),

y → (y → x) 6 ((y → x) → x) → (y → x) ⊆ 1 → (((y → x) → x) → (y → x)),

So, by Proposition 2.11, we get 1 → (((y → x) → x) → (y → x)) ⊆ D. Now,
since D is a PIDS and 1 ∈ D, then y → x ⊆ D and so, by Theorem 3.3, D is an
IDS.

Corollary 4.4. Every PIDS is a DS.

Theorem 4.5. Let D be a DS of L. Then the following are equivalent:

(i) D is a PIDS,

(ii) if (x → y) → x ⊆ D, then x ∈ D, for any x, y ∈ L,

(iii) (¬x → x) → x ⊆ D, for any x ∈ L.

Proof. (i) ⇒ (ii) Let D be a PIDS and take A = (x → y) → x ⊆ D. Since
A ⊆ (1 → A) ∩D, then by Proposition 2.11, 1 → A = 1 → ((x → y) → x) ⊆ D.
So, by assumption, x ∈ D.

(ii) ⇒ (i) Let x → ((y → z) → y) ⊆ D and x ∈ D. Since D is a DS, then
(y → z) → y ⊆ D and so, by assumption, we get y ∈ D i.e., D is a PIDS.

(i) ⇒ (iii) Let D be a PIDS. By Proposition 2.5 (xi), x � (y → x) → x, for
any y ∈ L. Now, take y ∈ ¬x. Hence x � (¬x → x) → x and we get

1 ∈ x → ((¬x → x) → x), by Proposition 2.5(ii)
≤ (((¬x → x) → x) → 0) → (x → 0), by Proposition 2.5(xiii)
≤ (¬x → x) → ((((¬x → x) → x) → 0) → x), by Proposition 2.5(xiii)
≤ (((¬x → x) → x)︸ ︷︷ ︸

A

→ 0) → ((¬x → x) → x)︸ ︷︷ ︸
A

, by Proposition 2.5(ix)

= (A → 0) → A.

Then 1 ∈ D ∩ ((A → 0) → A). Hence, by Proposition 2.11, (A → 0) → A ⊆ D.
Therefore, by (ii), we have A ⊆ D i.e., (¬x → x) → x ⊆ D.
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(iii) ⇒ (i) Let D � (x → y) → x. It is enough to show that x ∈ D. Since
0 6 y, for any y ∈ L, then by using two times of Proposition 2.5(xiii), we get (x →
y) → x � (x → 0) → x. By Proposition 2.11, we get ¬x → x = (x → 0) → x ⊆ D
and by assumption (¬x → x) → x ⊆ D. Now, since D is a DS, then x ∈ D.

In the following proposition we give a condition that an IDS is a PIDS.

Proposition 4.6. Let D be an IDS. Then D is a PIDS if and only if

(x → y) → y ⊆ D implies (y → x) → x ⊆ D, for any x, y ∈ L.

Proof. Let D be a PIDS and (x → y) → y ⊆ D. By Proposition 2.5(xi), we have
x � (y → x) → x and so by Proposition 2.5(xiii), ((y → x) → x) → y � x → y.
Since,

(x → y) → y ≤ (y → x) → ((x → y) → x), by Proposition 2.5(xiii)
≤ (x → y) → ((y → x) → x), by Proposition 2.5(ix)
� (((y → x) → x) → y) → ((y → x) → x)︸ ︷︷ ︸

A

,

by Proposition 2.5(xiii) and Proposition 4.5, we have, D � (x → y) → y � A ⊆
1 → A. So, by Proposition 2.11, we get (1 → A) ⊆ D. Hence (1 → A) = 1 →
((((y → x) → x) → y) → ((y → x) → x)) ⊆ D. Moreover, since 1 ∈ D and D is a
DS, then

(((y → x) → x)︸ ︷︷ ︸
X

→ y) → ((y → x) → x)︸ ︷︷ ︸
X

⊆ D.

Since D is a PIDS, then by Proposition 4.5 we obtain (y → x) → x = X ⊆ D.
Conversely, by Proposition 4.5, it is enough to show that (x → y) → x ⊆ D

implies x ∈ D. For this let (x → y) → x ⊆ D. Since, by Proposition 2.5(xii),
(x → y) → x 6 (x → y) → ((x → y) → y), then by Proposition 2.11, we have
(x → y) → ((x → y) → y) ⊆ D. Since D is an IDS, then by Theorem 3.4(ii), we
get (x → y) → y ⊆ D. Now, by assumption, we have (y → x) → x ⊆ D.

On the other hand, since y � x � y, then y � x → y and, by Proposition
2.5(xii), we get (x → y) → x � y → x. Now, by assumption, (x → y) → x ⊆ D.
So, by Proposition 2.11, we get y → x ⊆ D. Since (y → x) → x ⊆ D, y → x ⊆ D
and D is a DS, then x ∈ D.

Theorem 4.7. Let D be a PIDS and E be a DS of L such that D ⊆ E. Then

E is a PIDS, too.

Proof. Let D be a PIDS and E be a DS such that D ⊆ E. Since, by Theorem
4.3, D is an IDS, then by Theorem 3.6. E is an IDS, too. Now, take A = (x →
y) → y ⊆ E. By Proposition 4.6, it is enough to show that (y → x) → x ⊆ E.
Since 1 ∈ A → A = A → ((x → y) → y), then A → ((x → y) → y) ⊆ D.
Also, by Theorem 3.4(iii), (A → (x → y)) → (A → y) ⊆ D. Therefore, by
Proposition 2.5(ix), (x → (A → y)) → (A → y) ⊆ D and so, by Proposition 4.6,



40 R. A. Borzooei and S. Niazian

((A → y) → x) → x ⊆ D ⊆ E. Now, we get (A → y) → x) → x ⊆ E. On the
other hand, we have

(x → y) → y � (((x → y) → y)︸ ︷︷ ︸
A

→ y) → y, by Proposition 2.5(xi)

� (y → x) → ((A → y) → x), by Proposition 2.5(xii)
� (((A → y) → x) → x) → ((y → x) → x) ⊆ E,

by Proposition 2.5(xii) and Proposition 2.11. This implies (y → x) → x ⊆ E since
E is a DS.

5. Fantastic deductive systems

De�nition 5.1. A subset D of L containing 1 is called a fantastic deductive system
(shortly: FDS) if z → (y → x) ⊆ D and z ∈ D imply ((x → y) → y) → x ⊆ D.

Example 5.2. Let L be as in Example 3.2. Then {1, a, b} is a FDS of L.

Proposition 5.3. Any FDS is a DS.

Proof. Let D be a FDS, x → y ⊆ D and x ∈ D. Since by Proposition 2.5(v),
y ∈ 1 → y, then x → y ⊆ x → (1 → y) ∩D and so, by x ∈ D and de�nition of a
FDS, ((y → 1) → 1) → y ⊆ D. Now, by Proposition 2.5(xi) and (i), we conclude
that 1 ∈ (y → 1) → 1. So

1 → y ⊆
⋃

a∈(y→1)→1

(a → y) = ((y → 1) → 1) → y ⊆ D.

Hence, 1 → y ⊆ D. Since, by Proposition 2.5(v), y ∈ 1 → y, then y ∈ D. Thus D
is a DS.

Proposition 5.4. Let D be a DS of L. Then D is a FDS if and only if

y → x ⊆ D implies ((x → y) → y) → x ⊆ D.

Proof. Let D be a FDS and y → x ⊆ D. By Proposition 2.5(v), y → x ⊆ 1 →
(y → x), and so by Proposition 2.11, 1 → (y → x) ⊆ D. Since 1 ∈ D and D is
a FDS, then ((x → y) → y) → x ⊆ D. Conversely, let z → (y → x) ⊆ D and
z ∈ D. Since D is a DS, then we conclude y → x ⊆ D. Now, by assumption,
((x → y) → y) → x ⊆ D.

Theorem 5.5. Let D be a FDS and E be a DS of L such that D ⊆ E. Then E
is a FDS, too.

Proof. Let y → x ⊆ E. Since, by Proposition 2.5(iv) and (ix), 1 ∈ (y → x) →
(y → x) 6 y → ((y → x) → x), then 1 ∈ D ∩ y → ((y → x) → x) and so, by
Proposition 2.11, y → ((y → x) → x) ⊆ D. Now, take X = (y → x) → x. Since D
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is a FDS, then by Proposition 5.4, y → X ⊆ D implies ((X → y) → y) → X ⊆ D.
Also, by Proposition 2.5(ix), we have

((X → y) → y) → X � (y → x) → (((X → y) → y) → x)︸ ︷︷ ︸
A

,

which shows that D ∩ A 6= ∅. Therefore, by Proposition 2.11, A ⊆ D and since
D ⊆ E, then A ⊆ E. On the other hand, y → x ⊆ E and E is a DS imply that
((X → y) → y) → x︸ ︷︷ ︸

B

⊆ E. Moreover, using Proposition (ii), (iv), (ix) and (xiii),

from

1 ∈ (y → x) → 1 ⊆ (y → x) → (x → x),
≤ x → ((y → x) → x),
≤ (((y → x) → x) → y) → (x → y),
≤ ((x → y) → y) → ((((y → x) → x) → y) → y),
≤ (((((y → x) → x) → y) → y) → x)︸ ︷︷ ︸

B

→ (((x → y) → y) → x)︸ ︷︷ ︸
C

,

we get 1 ∈ E ∩ (B → C). Now, since E is a DS, then by Proposition 2.11,
C = ((x → y) → y) → x ⊆ E. Hence, by Proposition 5.4, E is a FDS.

Corollary 5.6. {1} is a FDS of L if and only if any DS of L is a FDS.

Theorem 5.7. If D is a PIDS of L, then it is a FDS.

Proof. Let D be a PIDS and y → x ⊆ D. Then by Proposition 2.5(xiii) and
(ix), we have

y → x 6 ((x → y) → y) → ((x → y) → x) � (x → y) → (((x → y) → y) → x)︸ ︷︷ ︸
A

.

Since y → x ⊆ D, then by Proposition 2.11, (x → y) → A ⊆ D. Also, by
Proposition (2.5)(vii), x� ((x → y) → y) � x. Therefore, by Proposition 2.5(vi),
x � ((x → y) → y) → x. Now, by Proposition 2.5(xiii), we conclude (((x →
y) → y) → x) → y � x → y. So, by another using of Proposition 2.5(xiii), we get

(x→y)→((x→y)→y)→x︸ ︷︷ ︸
A

� ((((x→y)→y)→x)→y)︸ ︷︷ ︸
B

→ (((x → y) → y) → x)︸ ︷︷ ︸
C

.

Therefore, by Proposition 2.11, B → C ⊆ D. Indeed, we have

B → C = ((((x → y) → y) → x)︸ ︷︷ ︸
X

→ y) → (((x → y) → y) → x)︸ ︷︷ ︸
X

⊆ D.

Since D is a PIDS, then by Theorem 4.5, X = ((x → y) → y) → x ⊆ D. Thus D
is a FDS.
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On classes of regularity in an ordered semigroup

Thawhat Changphas

Abstract. Let m, n be nonnegative integers. An element a in an ordered semigroup (S, ·, 6) is
said to be (m, n)-regular if there exists x ∈ S such that a 6 amxan. This paper gives necessary
and su�cient conditions for the set of all (m, n)-regular elements of S to be a subsemigroup of
S. The results obtained extend the results on semigroups without order.

1. Introduction

Let S be a semigroup without order and m,n nonnegative integers. An element
a ∈ S is said to be (m,n)-regular [3] if there exists x ∈ S such that a = amxan.
Here, we let a0x = x and xa0 = x. In [4], the author investigated some su�cient
conditions for classes of (m,n)-regularity to be subsemigroups of S. The purpose
of this paper is to extend the results on semigroups without order to ordered
semigroups.

The rest of this section we recall some de�nitions and results used throughout
the paper.

A semigroup (S, ·) together with a partial order 6 (on S) that is compatible

with the semigroup operation, meaning that for x, y, z ∈ S,

x 6 y ⇒ zx 6 zy, xz 6 yz,

is called an ordered semigroup ([1], [5]). If A,B are nonempty subsets of S, we let

AB = {xy ∈ S | x ∈ A, y ∈ B},
(A] = {x ∈ S | x 6 a for some a ∈ A}.

If a ∈ S, then we write Sa and aS instead of S{a} and {a}S, respectively. It is
well-known that the following conditions hold:

(1) (S] = S,

(2) A ⊆ B implies (A] ⊆ (B], and

(3) ((A]] = (A].

2010 Mathematics Subject Classi�cation: 06F05
Keywords: semigroup, ordered semigroup, subsemigroup, left (right, two-sided) ideal, princi-
pal left (right) ideal, complete ideal, semiprime ideal, (m, n)-regular.
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Let (S, ·,6) be an ordered semigroup and m,n nonnegative integers. An ele-
ment a ∈ S is said to be (m,n)-regular [10] if there exists x ∈ S such that

a 6 amxan.

Here, we let a0x = x and xa0 = x. The set of all (m,n)-regular elements of S will
be denoted by RS(m,n). The following conditions hold for nonnegative integers
m,m1,m2, n, n1, n2:

(1) RS(0, 0) = S.

(2) If m1 > m2 and n1 > n2, then RS(m1, n1) ⊆ RS(m2, n2).

(3) If m1 > m2 > 2, then RS(m1, n) = RS(m2, n).

(4) If n1 > n2 > 2, then RS(m,n1) = RS(m,n2).

(5) RS(1, 2) = RS(1, 1) ∩RS(0, 2).

(6) RS(2, 1) = RS(1, 1) ∩RS(2, 0).

A nonempty subset A of an ordered semigroup (S, ·,6) is called a left (respec-
tively, right) ideal [7] of S if

(i) SA ⊆ A (respectively, AS ⊆ A);

(ii) for x ∈ A and y ∈ S, y 6 x implies y ∈ A.

If A is both a left and a right ideal of S, then A is called a (two-sided) ideal of
S. The principal left (respectively, right) ideal of S containing a ∈ S, denoted by
L(a), is of the form (a ∪ Sa] := ({a} ∪ Sa]. Similarly, the principal right ideal of
S containing a ∈ S is of the form R(a) := (a ∪ aS].

It is easy to see for an ordered semigroup (S, ·,6) that the following hold:

(1) If RS(1, 0) 6= ∅, then RS(1, 0) is a left ideal of S.

(2) If RS(0, 1) 6= ∅, then RS(0, 1) is a right ideal of S.

A nonempty subset A of an ordered semigroup (S, ·,6) is called a subsemigroup

of S if AA ⊆ A. It is clear that every left (respectively, right, two-sided) ideals of
S is a subsemigroup of S.

2. Main Results

In [2], a left (respectively, right, two-sided) ideal A of an ordered semigroup (S, ·,6)
is said to be complete if (SA] = A (respectively, (AS] = A, (SAS] = A). Since if
A is a left ideal of S then (SA] ⊆ A, it follows that A is complete if A ⊆ (SA].
For complete right ideals and complete two-sided ideals of S can be considered
similarly.
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Theorem 2.1. Let (S, ·,6) be an ordered semigroup. Then RS(1, 0) (respectively,
RS(0, 1)) is nonempty if and only if at least one of the principal right (left) ideal

of S is complete.

Proof. Assume that RS(1, 0) is nonempty. Then there exists a ∈ RS(1, 0), that is
a ∈ (aS]. We have

(a ∪ aS] ⊆ (aS] ⊆ ((a ∪ aS]S],

hence (a ∪ aS] is complete.
Conversely, assume that there exists a ∈ S such that (a∪aS] is complete. Then

a ∈ (a ∪ aS] = ((a ∪ aS]S] ⊆ ((aS]] = (aS].

This proves that a ∈ RS(1, 0), and so RS(1, 0) is nonempty.
The second statement can be proved similarly.

A left (respectively, right, two-sided) ideal A of an ordered semigroup (S, ·,6)
is said to be semiprime [6] if for a ∈ A and any positive integer k, ak ∈ A implies
a ∈ A.

Theorem 2.2. Let (S, ·,6) be an ordered semigroup. If at least one principal

right (left) ideal of S generated by a2 for some a ∈ S is semiprime, then RS(2, 0)
( respectively, RS(0, 2)) is nonempty.

Proof. Let a ∈ S be such that (a2 ∪ a2S] is semiprime. Since a2 ∈ (a2 ∪ a2S], we
obtain a ∈ (a2 ∪ a2S], and so a 6 a2 or a ∈ (a2S]. Each of the cases implies that
a ∈ RS(2, 0).

The second statement can be proved analogously.

Theorem 2.3. Let (S, ·,6) be an ordered semigroup. The class of regularity

RS(1, 1) (also RS(2, 1), RS(1, 2), RS(2, 2)) is nonempty if and only if S contains

an element a such that a 6 a2.

Proof. Assume that RS(1, 1) is nonempty. Then there exists a ∈ (aSa]. If x ∈ S
such that a 6 axa, then ax 6 axax = (ax)2.

The opposite direction is clear.

An ordered semigroup (S, ·,6) is said to be left (respectively, right) simple [8]
if S has no left (respectively, right) proper ideal. It is easy to see that S is left
(respectively, right) simple if and only if S = (Sa] for all a ∈ S (respectively,
S = (aS] for all a ∈ S). Note that if S is left simple then S = RS(0, 1).

Theorem 2.4. Let (S, ·,6) be an ordered semigroup such that RS(1, 1) is nonempty.

If (1), (2) or (3) holds, then RS(1, 1) is a subsemigroup of S.

(1) If a, b ∈ RS(1, 1), then ab 6 (ab)2.

(2) RS(1, 1) = RS(1, 0) ∩RS(0, 1).
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(3) For a, b ∈ S, a 6 a2 and b 6 b2 imply ab = ba.

Proof. Clearly, if (1) holds then RS(1, 1) is a subsemigroup of S. Since RS(1, 0) is
a left ideal of S and RS(0, 1) is a right ideal of S, it follows that RS(1, 0)∩RS(0, 1)
is an ideal of S, and so this is a subsemigroup of S. Hence (2) holds.

Assume that (3) holds. Let a, b ∈ RS(1, 1). Then there exist x, y ∈ S such
that a 6 axa and b 6 byb. Since xa 6 (xa)2 and by 6 (by)2, we have (xa)(by) =
(by)(xa), and so

ab 6 a(xa)(by)b = a(by)(xa)b = (ab)(yx)(ab).

Thus ab ∈ RS(1, 1).

If (S, ·,6) is an ordered semigroup, then the center of S is de�ned by

Z = {a ∈ S | ax = xa for all x ∈ S}.

Theorem 2.5. Let (S, ·,6) be an ordered semigroup such that RS(2, 0) is nonempty.

If (1), (2) or (3) holds, then RS(2, 0) is a subsemigroup of S.

(1) If a, b ∈ RS(2, 0), then ab 6 (ab)2.

(2) For a, b ∈ RS(2, 0), if a 6 a2x and b 6 b2y for some x, y ∈ S, then

ab 6 (ab)(ax)(by).

(3) For a ∈ RS(2, 0), if a 6 a2x for some x ∈ S, then ax ∈ Z.

Proof. Let (1) hold. If a, b ∈ RS(2, 0), then ab 6 (ab)2, and so ab 6 (ab)3. Thus
ab ∈ RS(2, 0).

Assume that (2) holds. Let a, b ∈ RS(2, 0). Then a 6 a2x and b 6 b2y for
some x, y ∈ S. We have ab 6 ab(ax)(by) and ba 6 ba(by)(ax). Since

ab 6 ab(ax)(by) = a(ba)(xby) 6 a(ba(by)(ax))(xby) = (ab)2(yax)(xby),

we get ab ∈ RS(2, 0).
Finally, we assume that (3) holds. Let a, b ∈ RS(2, 0) be such that a 6 a2x

and b 6 b2y for some x, y ∈ S. Then ax ∈ Z, and so

ab 6 (a2x)(b2y) = a(ax)b(by) = ab(ax)(by).

This shows that the condition (2) holds, hence RS(2, 0) is a subsemigroup of S.

Analogous to Theorem 2.5, we have:

Theorem 2.6. Let (S, ·,6) be an ordered semigroup such that RS(0, 2) is nonempty.

If (1), (2) or (3) holds, then RS(0, 2) is a subsemigroup of S.

(1) If a, b ∈ RS(0, 2), then ab 6 (ab)2.

(2) For a, b ∈ RS(0, 2), if a 6 xa2 and b 6 yb2 for some x, y ∈ S, then

ab 6 (xa)(yb)(ab).
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(3) For a ∈ RS(0, 2), if a 6 xa2 for some x ∈ S, , then xa ∈ Z.

Lemma 2.7. The following holds for an ordered semigroup (S, ·,6) :

RS(2, 2) = RS(2, 1) ∩RS(1, 2).

Proof. It is clear that RS(2, 2) ⊆ RS(2, 1) ∩ RS(1, 2). For the reverse inclusion,
let a ∈ RS(2, 1) ∩ RS(1, 2). Then there exist x, y ∈ S such that a 6 a2xa and
a 6 aya2. Since a 6 a2xaya2, a ∈ RS(2, 2).

Theorem 2.8. Let (S, ·,6) be an ordered semigroup such that for a ∈ S, if a 6 a2

then a ∈ Z. If RS(1, 1) (respectively, RS(2, 1), RS(1, 2), RS(2, 2)) is nonempty,

then RS(1, 1) (respectively, RS(2, 1), RS(1, 2), RS(2, 2)) is a subsemigroup of S.

Proof. If RS(1, 1) is nonempty, then by Theorem 2.4 we have RS(1, 1) is a sub-
semigroup of S.

Assume that RS(2, 1) is nonempty. Let a, b ∈ RS(2, 1). Then there exist
x, y ∈ S such that a 6 a2xa and b 6 b2yb. Since a2x, b2y ∈ Z, we have

ab 6 a2xab2yb = (a2x)a(b2y)b = (a2x)(b2y)(ab) = a(ax)b(by)(ab)
6 (a2xa)(ax)(b2yb)(by)(ab) = a(a2x)(axb)(b2y)(by)(ab)
= a(a2x)(ax)(b2y)(b2y)(ab) = a(b2y)(a2x)(ax)(b2y)(ab)
= (ab)(by)(a2x)(ax)(b2y)(ab) = (ab)(a2x)(by)(ax)(b2y)(ab)
= (ab)(a2x)(b2y)(by)(ax)(ab) = (ab)a(ax)(b2y)(by)(ax)(ab)
= (ab)a(b2y)(ax)(by)(ax)(ab) = (ab)2(by)(ax)(by)(ax)(ab).

Therefore, ab ∈ RS(2, 1). Similarly, if RS(1, 2) is nonempty, then RS(1, 2) is a
subsemigroup of S.

By Lemma 2.7, if RS(2, 2) is nonempty then RS(2, 2) is a subsemigroup of
S.
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OD-Characterization of almost simple groups

related to U3(17)

Mohammad R. Darafsheh, Gholamreza Rezaeezadeh,

Masoumeh Sajjadi and Masoumeh Bibak

Abstract. We characterize groups with the same order and degree pattern as an almost simple
groups related to U3(17).

1. Introduction

Let G be a �nite group. For any group G, we denote by πe(G) the set of orders of its
elements and by π(G) the set of prime divisors of |G|. Let π(G) = {p1, p2, . . . , pk}.
The prime graph Γ(G) of a group G is the graph whose vertex set is π(G) and
two distinct primes p and q are joined by an edge (we write p ∼ q) if and only if
G contains an element of order pq (pq ∈ πe(G)). For p ∈ π(G), we put deg(p) :=
|{q ∈ π(G)|p ∼ q}|, which is called the degree of p. If |G| = pα1

1 pα2
2 · · · pαk

k we de�ne
D(G) := (deg(p1), deg(p2), . . . , deg(pk)), where p1 < p2 < . . . < pk, to be called
the degree pattern of G. A group G is called k-fold OD-characterizable if there
exist exactly k non-isomorphic �nite groups having the same order and degree
pattern as G. In particular, a 1-fold OD-characterizable group is simply called
OD-characterizable. A group G is said to be an almost simple group related to S
if and only if S E G . Aut(S) for some non-abelian simple group S. In a series
of articles, it has been proved, up to now, that many �nite almost simple groups
are OD-characterizable or k-fold OD-characterizable for k > 2, for instance see
[2, 3, 5, 7, 8, 9]. In this paper U := U3(17) and Aut(U) ∼= U : S3 and we show
that U and U : 2 are OD-characterizable, also U : 3 and U : S3 are 3-fold and 5-
fold OD-characterizable respectively (H.K means an extension of a group H by a
group K and H : K denotes split extension). We denote the socle of G by Soc(G),
which is the subgroup generated by the set of all minimal normal subgroups of G.
For p ∈ π(G), we denote by Gp and Sylp(G) a Sylow p-subgroup of G and the set
of all Sylow p-subgroups of G respectively, all further unexplained notation are
standard and can be found in [4].

Throughout this article, all groups under consideration are �nite.

2010 Mathematics Subject Classi�cation: 20D05, 20D60, 20D08
Keywords: OD-characterization, �nite group; degree pattern, prime graph, unitary group.
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2. Lemmas

It is well-known that Aut(U3(17)) ∼= U3(17) : S3, hence the following lemma follows
from de�nition.

Lemma 2.1. If G is an almost simple group related to U := U3(17), then G is
isomorphic to one of the following groups: U, U : 2, U : 3 or U : S3.

G is said to be completely reducible group if and only if either G = 1 or G is
the direct product of a �nite number of simple groups. A completely reducible
group will be called a CR-group. A CR-group has trivial center if and only if
it is a direct product of non-abelian simple groups and in this case, it has been
named a centerless CR-group. The following lemma determines the structure of
the automorphism group of a centerless CR-group.

Lemma 2.2. ([4], Theorem 3.3.20) Let R be a �nite centerless CR-group and
write R = R1 × R2 × . . . × Rk, where Ri is a direct product of ni isomorphic
copies of a simple group Hi, and Hi and Hj are not isomorphic if i 6= j. Then
Aut(R) = Aut(R1)×Aut(R2)× . . .×Aut(Rk) and Aut(Ri) ∼= Aut(Hi) oSni , where
in this wreath product Aut(Hi) appears in its right regular representation and the
symmetric group Sni

in its natural permutation representation. Moreover, these
isomorphisms induce isomorphisms Out(R) ∼= Out(R1)×Out(R2)× . . .× Out(Rk)
and Out(Ri) ∼= Out(Hi) o Sni .

Let p > 5 be a prime. We denote by Sp the set of all simple groups with prime
divisors at most p. Clearly, if q 6 p then Sq ⊆ Sp. We list all the simple groups
in class S17 in Table 1 below, taken from [6].

Table 1: Simple groups in Sp, p 6 17.

S |S| |Out(S)| S |S| |Out(S)|

A5 22 · 3 · 5 2 A10 27 · 34 · 52 · 7 2

A6 23 · 32 · 5 4 U4(3) 27 · 36 · 5 · 7 8

S4(3) 26 · 34 · 5 2 S4(7) 28 · 32 · 52 · 74 2

L2(7) 23 · 3 · 7 2 S6(2) 29 · 34 · 5 · 7 1

L2(8) 23 · 32 · 7 3 O+
8 (2) 212 · 35 · 52 · 7 6

U3(3) 25 · 33 · 7 2 L2(11) 22 · 3 · 5 · 11 2

A7 23 · 32 · 5 · 7 2 M11 24 · 32 · 5 · 11 1

L2(49) 24 · 3 · 52 · 72 4 M12 26 · 33 · 5 · 11 2

U3(5) 24 · 32 · 53 · 7 6 U5(2) 210 · 35 · 5 · 11 2

L3(4) 26 · 32 · 5 · 7 12 M22 27 · 32 · 5 · 7 · 11 2

A8 26 · 32 · 5 · 7 2 A11 27 · 34 · 52 · 7 · 11 2

A9 26 · 34 · 5 · 7 2 McL 27 · 36 · 53 · 7 · 11 2

J2 27 · 33 · 52 · 7 2 HS 29 · 32 · 53 · 7 · 11 2

A12 29 · 35 · 52 · 7 · 11 2 A15 210 · 36 · 53 · 72 · 11 · 13 2

U6(2) 215 · 36 · 5 · 7 · 11 6 L6(3) 211 · 315 · 5 · 7 · 112 · 132 4
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(continued)

S |S| |Out(S)| S |S| |Out(S)|

L3(3) 24 · 33 · 13 2 Suz 213 · 37 · 52 · 7 · 11 · 13 2

L2(25) 23 · 3 · 52 · 13 4 A16 214 · 36 · 53 · 72 · 11 · 13 2

U3(4) 26 · 3 · 52 · 13 4 Fi22 217 · 39 · 52 · 7 · 11 · 13 2

S4(5) 26 · 32 · 54 · 13 2 L2(17) 24 · 32 · 17 2

L4(3) 27 · 36 · 5 · 13 4 L2(16) 24 · 3 · 5 · 17 4

2F4(2)
′

211 · 33 · 52 · 13 2 S4(4) 28 · 32 · 52 · 17 4

L2(13) 22 · 3 · 7 · 13 2 He 210 · 33 · 52 · 73 · 17 2

L2(27) 22 · 33 · 7 · 13 6 O−
8 (2) 212 · 34 · 5 · 7 · 17 2

G2(3) 26 · 36 · 7 · 13 2 L4(4) 212 · 34 · 52 · 7 · 17 4

3D4(2) 212 · 34 · 72 · 13 3 S8(2) 216 · 35 · 52 · 7 · 17 1

Sz(8) 26 · 5 · 7 · 13 3 O−
10(2) 220 · 36 · 52 · 7 · 11 · 17 2

L2(64) 26 · 32 · 5 · 7 · 13 6 F4(2) 224 · 36 · 52 · 72 · 13 · 17 2

U4(5) 27 · 34 · 56 · 7 · 13 4 U4(4) 212 · 32 · 53 · 13 · 17 4

L3(9) 27 · 36 · 5 · 7 · 13 4 S6(4) 218 · 34 · 53 · 7 · 13 · 17 2

S6(3) 29 · 39 · 5 · 7 · 13 2 O+
8 (4) 224 · 35 · 54 · 7 · 13 · 172 12

O7(3) 29 · 39 · 5 · 7 · 13 2 L3(16) 212 · 32 · 52 · 7 · 13 · 17 24

G2(4) 212 · 33 · 52 · 7 · 13 2 S4(13) 26 · 32 · 5 · 72 · 134 · 17 2

S4(8) 212 · 34 · 5 · 72 · 13 6 L2(13
2) 23 · 3 · 5 · 7 · 132 · 17 4

O+
8 (3) 212 · 312 · 52 · 7 · 13 24 U3(17) 26 · 34 · 7 · 13 · 173 6

L5(3) 29 · 310 · 5 · 112 · 13 2 A17 214 · 36 · 53 · 72 · 11 · 13 · 17 2

A13 29 · 35 · 52 · 7 · 11 · 13 2 A18 215 · 38 · 53 · 72 · 11 · 13 · 17 2

A14 210 · 35 · 52 · 72 · 11 · 13 2

Lemma 2.3. ([1], Theorem 10.3.1) Let G be a Frobenius group with kernel K and
complement H. Then

(a) K is a nilpotent group,
(b) |K| ≡ 1(mod|H|).

3. Almost simple groups related to U3(17)

Theorem 3.1. Let M be an almost simple group related to U := U3(17). If G is a
�nite group such that D(G) = D(M) and |G| = |M |, then the following assertions
hold:

(a) If M = U, then G ∼= U.
(b) If M = U : 2, then G ∼= U : 2.
(c) If M = U : 3, then G ∼= U : 3, Z3 × U or Z3.U .
(d) If M = U : S3, then G ∼= U : S3, Z3 × (U : 2), Z3.(U : 2), (Z3 × U).Z2

or (Z3.U).Z2.
In particular, U and U : 2 are OD-characterizable, U : 3 is 3-fold OD-charac-

terizable and U : S3 is 5-fold OD-characterizable.
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Proof. We break the proof into a number of separate cases. Note that the set of
order elements in each of the following cases is calculated using GAP.
Case 1. If M = U , then G ∼= U.

By Table 1, |G| = |U | = 26.34.7.13.173 and we have πe(U) = {1, 2, 3, 4, 6, 7, 8, 9,
12, 13, 16, 17, 18, 24, 32, 34, 48, 51, 91, 96, 102}, so by assumption, D(G) = D(U) =
(2, 2, 1, 1, 2). Therefore, there exist two possibilities for Γ(G) are as follows:

• •• • ••• ••

•

7 ba r 13132 73

17

Figure 1-1 Figure 1-2

where a, b, r are distinct prime numbers that belong to {2, 3, 17}. We have to
show that G is isomorphic to U := U3(17) and we break the proof into a sequence
of steps.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a
{2, 3}-group. In particular, G is non-solvable.
We consider these two parts separately:

Part A. Consider Figure 1-1, and Figure 1-2 where r 6= 17.
First, we show that K is a 17

′
-group. Assume the contrary and let 17 ∈ π(K).

Then 13 does not divide the order of K (otherwise, we may suppose that T is a
Hall {17, 13}-subgroup of K. It is seen that T is a nilpotent subgroup of order
13.17i for i = 1, 2 or 3. Thus, 13.17 ∈ πe(K) ⊆ πe(G), a contradiction). Thus,
{17} ⊆ π(K) ⊆ {2, 3, 7, 17}. Let K17 ∈ Syl17(K) and N := NG(K17). By the
Frattini argument, G = KN . Therefore, N contains an element of order 13, say
σ. Since G has no element of order 13.17, 〈σ〉 should act �xed point freely on
K17, implying 〈σ〉K17 is a Frobenius group. By Lemma 2.3(b), |〈σ〉||(|K17| − 1).
It follows that 13|17i − 1, for i = 1, 2 or 3, which is a contradiction.
Next, we show that K is a p

′
-group for p ∈ {13, 7}. Let x be an element of K of

order p and set
C := CG(x), N := NG(< x >).

Let p = 13. According to Figure 1-1, C is a {7, 13}-group. Now, using (N/C)-
Theorem, the factor group N/C is embedded in Aut(< x >) ∼= Z12. Hence N is
a {2, 3, 7, 13}-group and by the Frattini argument, G = KN then 17 must divide
the order of K, which is a contradiction. According to Figure 1-2, C is a {r, 13}-
group, where r = 2 or 3. Therefore, by the same argument, we conclude that N
is a {2, 3, 13}-group and by the Frattini argument, 17 must divide the order of K,
which is a contradiction, so K is a {2, 3, 7}-group.

Let p = 7. According to Figure 1-1, C is a {7, 13}-group. Now, using (N/C)-
Theorem, the factor group N/C is embedded in Aut(< x >) ∼= Z6. Hence N is
a {2, 3, 7, 13}-group and by the Frattini argument, G = KN then 17 must divide
the order of K, which is a contradiction. According to Figure 1-2, C is a {7, a}-
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group, where a = 2, 3 or 17. Then by the same argument, we conclude that N is a
{2, 3, 7}-group for a = 2, 3, and {2, 3, 7, 17}-group for a = 17. Now by the Frattini
argument, G = KN then 13 must divide the order of K, which is a contradiction.
Therefore, K is a {2, 3}-group.

Part B. Consider Figure 1-2 where r = 17.
First, we show that K is a 17

′
-group. Assume the contrary and let 17 ∈ π(K).

Then 7 does not divide the order of K (otherwise, we may suppose that T is a
Hall {7, 17}-subgroup of K. It is seen that T is a nilpotent subgroup of order
7.17i for i = 1, 2 or 3. Thus, 7.17 ∈ πe(K) ⊆ πe(G), a contradiction). Thus,
{17} ⊆ π(K) ⊆ {2, 3, 13, 17}. Let K17 ∈ Syl17(K) and N := NG(K17). By the
Frattini argument, G = KN . Therefore, N contains an element of order 7, say
σ. Since G has no element of order 7.17, 〈σ〉 should act �xed point freely on K17,
implying 〈σ〉K17 is a Frobenius group. By Lemma 2.3(b), |〈σ〉||(|K17| − 1). It
follows that 7|17i − 1, for i = 1, 2 or 3, which is a contradiction.
Next, we show that K is a p

′
-group for p ∈ {13, 7}. Let x be an element of K of

order p and set
C := CG(x), N := NG(< x >).

Let p = 7. By the prime graph of G, C is a {7, a}-group, where a = 2 or 3. Now,
using (N/C)-Theorem, the factor group N/C is embedded in Aut(< x >) ∼= Z6.
Hence N is a {2, 3, 7}-group and by the Frattini argument, G = KN , so 17 must
divide the order of K, which is a contradiction. Therefore, K is a {2, 3, 13}-group.

Let p = 13. By the prime graph of G, C is a {13, 17}-group. Now, using
(N/C)-Theorem, the factor group N/C is embedded in Aut(< x >) ∼= Z12. Hence
N is a {2, 3, 13, 17}-group and by the Frattini argument, 7 must divide the order
of K, which is a contradiction, so K is a {2, 3}-group. In addition since G 6= K,
G is non-solvable, and this completes the proof of Step 1.

Step 2. The quotient G/K is an almost simple group. In fact, S ≤ G/K .
Aut(S), where S is a �nite non-abelian simple group.

Let G = G/K. Then S := Soc(G) = P1 × P2 × . . . × Pm, where Pi's are
�nite non-abelian simple groups and S ≤ G/K . Aut(S), see [3, Proposition
3.1, Step 2]. In what follows, we will show that m = 1. Suppose that m > 2.
We claim 13 does not divide |S|. Assume the contrary and let 13 | |S|, on the
other hand, {2, 3} ⊂ π(Pi) (by Table 1), hence 2 ∼ 13 and 3 ∼ 13, which is a
contradiction. Now, by Step 1, we observe that 13 ∈ π(G) ⊆ π(Aut(S)). But
Aut(S) = Aut(S1) × Aut(S2) × . . . × Aut(Sk), where the groups Sj are direct
products of isomorphic Pi's such that S = S1 × S2 × . . . × Sk. Therefore, for
some j, 13 divides the order of an automorphism group of a direct product Sj of
t isomorphic simple groups Pi. Since Pi ∈ S17, it follows that |Out(Pi)| is not
divisible by 13 (see Table 1), so 13 does not divide the order of Aut(Pi). Now,
by Lemma 2.2, we obtain |Aut(Sj)| = |Aut(Pi)|t.t! . Therefore, t > 13 and so
226 must divide the order of G, which is a contradiction. Therefore, m = 1 and
S = P1, so the proof is completed.
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Step 3. G is isomorphic to U3(17).
By Table 1 and Step 1, it is evident that |S| = 2α.3β .7.13.173, where 2 6 α 6 6

and 1 6 β 6 4. Now, using the collected results contained in Table 1, we deduce
that S ∼= U3(17) and by Step 2, we conclude that U E G/K . Aut(U). As
|G| = |U |, we deduce K = 1, so G ∼= U , and the proof is completed.

Case 2. If M = U : 2, then G ∼= U : 2.
|G| = 2|U | = 27.34.7.13.173 and πe(U : 2) = {1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 16, 17, 18,

24, 32, 34, 36, 48, 51, 68, 91, 96, 102}, so D(G) = D(U : 2) = (2, 2, 1, 1, 2), and there-
fore we conclude that the possibilities for Γ(G) are as in Figure 1-1 and Figure
1-2, where a, b, r are distinct prime numbers that belong to {2, 3, 17}.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a
{2, 3}-group. In particular, G is non-solvable.

By an argument similar to that used in Case 1, we can obtain this assertion.

Step 2. The quotient G/K is an almost simple group. In fact, S ≤ G/K .
Aut(S), where S is a �nite non-abelian simple group.

The proof is similar to Step 2, in Case 1.
By Table 1 and Step 1, it is evident that |S| = 2α.3β .7.13.173, where 2 6 α 6 7
and 1 6 β 6 4. Now, using the collected results contained in Table 1, we deduce
that S ∼= U3(17). Therefore by Step 2, U E G/K . Aut(U), which implies that
|K| = 1 or 2.

If |K| = 1, then G ∼= U : 2.
If |K| = 2, then K ≤ Z(G) and so deg(2) = 4, which is a contradiction.

Case 3. If M = U : 3, then G ∼= U : 3, Z3 × U or Z3.U .
|G| = 3|U | = 26.35.7.13.173 and πe(U : 3) = {1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 16, 17,

18, 21, 24, 32, 34, 36, 39, 48, 51, 72, 91, 96, 102, 144, 153, 273, 288, 306}. Thus, we get
D(G) = D(U : 3) = (2, 4, 2, 2, 2). Therefore we have two possibilities for Γ(G):

•• •• ••

• • • •

1317 33 a13

2 7 b 2

Figure 2-1 Figure 2-2

where a, b are distinct prime numbers which belong to {7, 17}.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a
{2, 3}-group. In particular, G is non-solvable.
We consider these two parts separately:

Part A. Consider Figure 2-1, and Figure 2-2 where a = 17 and b = 7.
First, we claim K is a 17

′
-group. Assume the contrary and let 17 ∈ π(K).

Then 13 does not divide the order of K (otherwise, we may suppose that T is a
Hall {17, 13}-subgroup of K. It is seen that T is a nilpotent subgroup of order
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13.17i for i = 1, 2 or 3. Thus, 13.17 ∈ πe(K) ⊆ πe(G), a contradiction). Thus,
{17} ⊆ π(K) ⊆ {2, 3, 7, 17}. Let K17 ∈ Syl17(K) and N := NG(K17). By the
Frattini argument, G = KN . Therefore, N contains an element of order 13, say
σ. Since G has no element of order 13.17, 〈σ〉 should act �xed point freely on
K17, implying 〈σ〉K17 is a Frobenius group. By Lemma 2.3(b), |〈σ〉||(|K17| − 1).
It follows that 13|17i − 1, for i = 1, 2 or 3, which is a contradiction.

Next, we show that K is a p
′
-group for p ∈ {13, 7}. Let x be an element of K

of order p and set
C := CG(x), N := NG(< x >).

Let p = 13. So C is a {2, 3, 13} and {3, 7, 13}-group, in Figure 2-1 and Figure
2-2 respectively. Now, using (N/C)-Theorem, the factor group N/C is embedded
in Aut(< x >) ∼= Z12. Hence N is a {2, 3, 13}-group in Figure 2-1, and {2, 3, 7, 13}-
group in Figure 2-2. On the other hand, by the Frattini argument, G = KN . Then
17 must divide the order of K, which is a contradiction.

Let p = 7. According to Figure 2-1, C is a {3, 7, 17}-group. Now, using (N/C)-
Theorem, the factor group N/C is embedded in Aut(< x >) ∼= Z6. Hence N is
a {2, 3, 7, 17}-group and by the Frattini argument, G = KN then 13 must divide
the order of K, which is a contradiction. According to Figure 2-2, C is a {3, 7, 13}-
group. Then by a same argument, we conclude that N is a {2, 3, 7, 13}-group. Now
by the Frattini argument, G = KN then 17 must divide the order of K, which is
a contradiction. Therefore, K is a {2, 3}-group.

Part B. Consider Figure 2-2, where a = 7 and b = 17.
First, we claim K is a 17

′
-group. Assume the contrary and let 17 ∈ π(K).

Then 7 does not divide the order of K (otherwise, we may suppose that T is a
Hall {7, 17}-subgroup of K. It is seen that T is a nilpotent subgroup of order
7.17i for i = 1, 2 or 3. Thus, 7.17 ∈ πe(K) ⊆ πe(G), a contradiction). Thus,
{17} ⊆ π(K) ⊆ {2, 3, 13, 17}. Let K17 ∈ Syl17(K) and N := NG(K17). By the
Frattini argument, G = KN . Therefore, N contains an element of order 7, say
σ. Since G has no element of order 7.17, 〈σ〉 should act �xed point freely on K17,
implying 〈σ〉K17 is a Frobenius group. By Lemma 2.3(b), |〈σ〉||(|K17| − 1). It
follows that 7|17i − 1, for i = 1, 2 or 3, which is a contradiction. Therefore, K is
a 17

′
-group.

Next, we show that K is a p
′
-group for p ∈ {7, 13}. Let x be an element of K

of order p and set
C := CG(x), N := NG(< x >).

Let p = 7. So C is a {2, 3, 7}-group. Now, using (N/C)-Theorem, the factor
group N/C is embedded in Aut(< x >) ∼= Z6. Hence N is a {2, 3, 7}-group and
by the Frattini argument, G = KN then 17 must divide the order of K, which is
a contradiction.

Let p = 13. Therefore, C is a {3, 13, 17}-group. Now, using (N/C)-Theorem,
the factor group N/C is embedded in Aut(< x >) ∼= Z12. Hence N is a {2, 3, 13, 17}-
group and by the Frattini argument, G = KN then 7 must divide the order of K,
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which is a contradiction. So K is a {2, 3}-group. In addition since G 6= K, G is
non-solvable, and this completes the proof of Step 1.

Step 2. The quotient G/K is an almost simple group. In fact, S ≤ G/K .
Aut(S), where S is a �nite non-abelian simple group.

Similar to Step 1, we consider two parts:
Part A. Consider Figure 2-1, and Figure 2-2 when a = 17 and b = 7.

Let G = G/K. Then S := Soc(G) = P1 × P2 × . . . × Pm, where Pi's are �nite
non-abelian simple groups and S ≤ G/K . Aut(S). In what follows, we will show
that m = 1. Suppose that m > 2. We claim 7 does not divide |S|. Assume the
contrary and let 7 | |S|, on the other hand, {2, 3} ⊂ π(Pi) (by Table 1), hence
2 ∼ 7 and 3 ∼ 7, which is a contradiction. Now, by Step 1, we observe that
7 ∈ π(G) ⊆ π(Aut(S)). But Aut(S) = Aut(S1)×Aut(S2)× . . .×Aut(Sk), where
the groups Sj are direct products of isomorphic Pi's such that S = S1×S2×. . .×Sk.
Therefore, for some j, 7 divides the order of an automorphism group of a direct
product Sj of t isomorphic simple groups Pi. Since Pi ∈ S17, it follows that
|Out(Pi)| is not divisible by 7 (see Table 1), so 7 does not divide the order of
Aut(Pi). Now, by Lemma 2.2, we obtain |Aut(Sj)| = |Aut(Pi)|t.t!. Therefore,
t > 7 and so 214 must divide the order of G, which is a contradiction. Therefore,
m = 1 and S = P1, so the proof of this part is completed.

Part B. Consider Figure 2-2, when a = 7 and b = 17.
Let G = G/K. Then S := Soc(G) = P1 × P2 × . . . × Pm, where Pi's are �nite
non-abelian simple groups and S ≤ G/K . Aut(S). In what follows, we will show
that m = 1. Suppose that m > 2. We claim 13 does not divide |S|. Assume the
contrary and let 13 | |S|, on the other hand, {2, 3} ⊂ π(Pi) (by Table 1), hence
2 ∼ 13 and 3 ∼ 13, which is a contradiction. Now, by Step 1, we observe that
13 ∈ π(G) ⊆ π(Aut(S)). But Aut(S) = Aut(S1)×Aut(S2)× . . .×Aut(Sk), where
the groups Sj are direct products of isomorphic Pi's such that S = S1×S2×. . .×Sk.
Therefore, for some j, 13 divides the order of an automorphism group of a direct
product Sj of t isomorphic simple groups Pi. Since Pi ∈ S17, it follows that
|Out(Pi)| is not divisible by 13 (see Table 1), so 13 does not divide the order of
Aut(Pi). Now, by Lemma 2.2, we obtain |Aut(Sj)| = |Aut(Pi)|t.t! . Therefore,
t > 13 and so 226 must divide the order of G, which is a contradiction. Therefore,
m = 1 and S = P1, so the proof is completed.

Now by Table 1 and Step 1, it is evident that |S| = 2α.3β .7.13.173, where
2 6 α 6 6 and 1 6 β 6 5. By using the collected results contained in Table 1,
we deduce that S ∼= U3(17) and by Step 2, we conclude that U E G/K . Aut(U).
Hence, |K| = 1 or 3.

If |K| = 1, then G ∼= U : 3.
If |K| = 3, then G/K ∼= U . In this case we have G/CG(K) . Aut(K) ∼= Z2.

Thus, |G/CG(K)| = 1 or 2. If |G/CG(K)| = 1, then K ≤ Z(G), that is, G
is a central extension of Z3 by U . If G splits over K, we obtain G ∼= Z3 × U ,
otherwise, we have G ∼= Z3.U . If |G/CG(K)| = 2, then K ⊂ CG(K) and 1 6=
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CG(K)/K E G/K ∼= U . Thus, we obtain G = CG(K) because U is simple, which
is a contradiction.

Case 4. If M = U : S3, then G ∼= U : S3, Z3 × (U : 2), Z3.(U : 2), (Z3 ×U).Z2

or (Z3.U).Z2.
|G| = 6|U | = 27.35.7.13.173 and πe(U : S3) = {1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 16, 17,

18, 21, 24, 32, 34, 36, 39, 48, 51, 68, 72, 91, 96, 102, 144, 153, 273, 288, 306}, so D(G) =
D(U : S3) = (2, 4, 2, 2, 2), and therefore we conclude that there exist two possibil-
ities for the prime graph of G presented by Figure 2-1 and Figure 2-2, where a, b
are distinct prime numbers which belong to {7, 17}.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a
{2, 3}-group. In particular, G is non-solvable.

We can prove this by the similar way to that in Case 3.

Step 2. The quotient G/K is an almost simple group. In fact, S ≤ G/K .
Aut(S), where S is a �nite non-abelian simple group.

The proof is similar to Step 2, in Case 3.

Now by Table 1 and Step 1, it is evident that |S| = 2α.3β .7.13.173, where
2 6 α 6 7 and 1 6 β 6 5. By using the collected results contained in Table 1,
we deduce that S ∼= U3(17) and by Step 2, we conclude that U E G/K . Aut(U).
Hence, |K| = 1, 2, 3 or 6.

If |K| = 1, then G ∼= U : S3.
If |K| = 2, then K ≤ Z(G). It follows that deg(2) = 4, which is a contradiction.
If |K| = 3, then G/K ∼= U : 2. In this case, we have G/CG(K) . Aut(K) ∼= Z2.

Thus, |G/CG(K)| = 1 or 2. If |G/CG(K)| = 1, then K ≤ Z(G), that is, G is a
central extension of Z3 by U : 2. If G splits over K, we obtain G ∼= Z3 × (U : 2),
otherwise, we have G ∼= Z3.(U : 2). If |G/CG(K)| = 2, then K ⊂ CG(K) and
1 6= CG(K)/K E G/K ∼= U : 2 and we obtain CG(K)/K ∼= U . Because K ≤
Z(CG(K)), CG(K) is a central extension of K by U . Thus, CG(K) ∼= Z3 × U or
Z3.U . Therefore, G ∼= (Z3 × U).Z2 or (Z3.U).Z2.
If |K| = 6, then G/K ∼= U and K ∼= Z6 or S3.

If K ∼= Z6, then G/CG(K) . Z2 and so |G/CG(K)| = 1 or 2. If |G/CG(K)| =
1, then K ≤ Z(G). It follows that deg(2) = 4, a contradiction. If |G/CG(K)| = 2,
then K ⊂ CG(K) and 1 6= CG(K)/KEG/K ∼= U , which is a contradiction because
U is simple.

If K ∼= S3, then K ∩ CG(K) = 1 and G/CG(K) . S3. Thus, CG(K) 6= 1.
Hence, 1 6= CG(K) ∼= CG(K)K/KEG/K ∼= U . It follows that U ∼= G/K ∼= CG(K)
because U is simple. Therefore, G ∼= S3 × U , which implies that deg(2) = 4, a
contradiction. The proof of Theorem 3.1 is completed.

Acknowledgement. The authors would like to thank professor Alexander
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Zariski-topology for co-ideals

of commutative semirings

Shahabaddin Ebrahimi Atani, Saboura Dolati Pishhesari

and Mehdi Khoramdel

Abstract. Let R be a semiring and co-spec(R) be the collection of all prime strong co-ideals of
R. In this paper, we introduce and study a generalization of the Zariski topology of ideals in rings
to co-ideals of semirings. We investigate the interplay between the algebraic-theoretic properties
and the topological properties of co-spec(R). Semirings whose Zariski topology is respectively
T1, Hausdor� or co�nite are studied, and several characterizations of such semirings are given.

1. Introduction

As a generalization of rings, semirings have been found useful for solving problems
in di�erent areas of applied mathematics and information sciences, since the struc-
ture of a semiring provides an algebraic framework for modelling and studying the
key factors in these applied areas. Let R be a commutative ring with identity.
The prime spectrum spec(R) and the topological space obtained by introducing
Zariski topology on the set of prime ideals of R play an important role in the ide-
als of commutative algebra, algebraic geometry and lattice theory. Also, recently
the notion of prime submodules and Zariski topology on spec(M), the set of all
prime submodules of a module M over R, are studied by many authors. In this
paper, we concentrate on Zariski topology for co-ideals of semirings and generalize
the some well known results of Zariski topology on the sets of prime ideals of a
commutative ring to the sets of prime strong co-ideals of a commutative semiring
and investigate the basic properties of this topology. For example, we prove that
if R is a ∗-semiring, then co-spec(R) is a T0-space; it is a compact space; the quasi-
compact open subsets of its are closed under �nite intersection and it is a sober
space. Consequently, it is a spectral space. Equivalently, it is homeomorphic to
spec(S), with the Zariski topology, for some commutative ring S.

2010 MSC: 16Y60
Keywords: Prime strong co-ideal, Zariski-topology for co-ideals, spectral space.
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2. Preliminaries

In order to make this paper easier to follow, we recall in this section various notions
from topology theory and co-ideals theory of commutative semirings which will be
used in the sequel. A commutative semiring R is de�ned as an algebraic system
(R,+, .) such that (R,+) and (R, cdot) are commutative semigroups, connected
by a(b+c) = ab+ac for all a, b, c ∈ R, and there exists 0, 1 ∈ R such that r+0 = r
and r0 = 0r = 0 and r1 = 1r = r for each r ∈ R. In this paper all semirings
considered will be assumed to be commutative with non-zero identity.

Let R be a semiring. A non-empty subset I of R is called co-ideal, if it is closed
under multiplication and satis�es the condition r + a ∈ I for all a ∈ I and r ∈ R.
A co-ideal I in R is called strong provided that 1 ∈ I. (Clearly, 0 ∈ I if and only
if I = R) [4, 7, 8, 10]. A strong co-ideal I of R is called subtractive if x, xy ∈ I,
then y ∈ I [7]. A proper strong co-ideal P of R is prime if x + y ∈ P , then x ∈ P
or y ∈ P . The notation co-spec(R) denotes the set of all prime strong co-ideals of
R. A proper strong co-ideal I of R is said to be maximal if J is a strong co-ideal
in R with I ⊆ J and I 6= J , then J = R. If D is an arbitrary nonempty subset
of R, then the set F (D) consisting of all elements of R of the form d1d2 · · · dn + r
(with di ∈ D for all 1 6 i 6 n and r ∈ R) is a co-ideal of R containing D [8, 10].

We need the following propositions, proved in [7].

Proposition 2.1. Let R be a semiring. Then any proper co-ideal of R is contained

in a maximal co-ideal of R. Moreover, any maximal co-ideal of R is a prime and

subtractive strong co-ideal of R.

A topological space X is called irreducible if X 6= ∅ and every �nite intersection
of non-empty open sets of X is non-empty. A (non-empty) subset Y of a topology
space X is an irreducible set if the subspace Y of X is irreducible. For this to be
so, it is necessary and su�cient that, for every pair of sets Y1, Y2 which are closed
in X and satisfy Y ⊆ Y1 ∪ Y2, then Y ⊆ Y1 or Y ⊆ Y2.

Let Y be a closed subset of a topological space. An element y ∈ Y is called a
generic point of Y if Y = {y}. Note that a generic point of the irreducible closed
subset Y of a topological space is unique if the topological space is a T0-space.

The co�nite topology (sometimes called the �nite complement topology) is a
topology which can be de�ned on every set X. It has precisely the empty set and
all co�nite subsets of X as open sets. As a consequence, in the co�nite topology,
the only closed subsets are �nite sets, or the whole of X. Then X is automatically
compact in this topology, since every open set only omits �nitely many points of
X. Also, the co�nite topology is the smallest topology satisfying the T1 axiom;
i.e., it is the smallest topology for which every singleton set is closed. If X is not
�nite, then this topology is not Hausdor�.

Following Hochster [9], we say that a topological space X is a spectral space in
case X is homeomorphic to spec(S), with the Zariski topology, for some commu-
tative ring S. Spectral spaces have been characterized by Hochster [9] as the topo-
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logical spaces X which is a quasi-compact T0-space such that the quasi-compact
open subsets of X are closed under �nite intersection and each its irreducible closed
subset has a generic point, i.e., X is a sober space.

3. Strong co-ideals and Zariski topology

Let R be a semiring with non-zero identity. For any subset E of R by V (E) we
mean the set of all prime strong co-ideals of R containing E.

Lemma 3.1. Let R be a semiring. Then V (R) = ∅ and V (F ({1})) = co − spec(R).

Proof. This follows directly from de�nitions.

Lemma 3.2. Let P be a prime strong co-ideal of a semiring R. If I and J are

co-ideals of R such that I + J ⊆ P , then I ⊆ P or J ⊆ P .

Proof. It su�ces to show that if I + J ⊆ P and I 6⊆ P , then J ⊆ P . Let b ∈ J .
By assumption, there exists a ∈ I such that a /∈ P . As a + b ∈ P , P prime gives
b ∈ P , as needed.

Proposition 3.3. Let R be a semiring.

(1) If E is a subset of R, then V (E) = V (F (E)).
(2) If I and J are co-ideals of R with I ⊆ J , then V (J) ⊆ V (I).
(3) If I and J are co-ideals of R, then V (I + J) = V (J) ∪ V (I).
(4) If {Ii}i∈Γ is a family of co-ideals of R, then V (F (

⋃
i∈Γ Ii)) =

⋂
i∈Γ V (Ii).

Proof. (1). Assume that P ∈ V (E) (so E ⊆ P ) and let r + s1 · · · sn ∈ F (E)
where s1, . . . , sn ∈ E and r ∈ R. Since s1, . . . , sn ∈ E ⊆ P , we must have
s1 · · · sn ∈ P ; hence r + s1 · · · sn ∈ P since P is a co-ideal. Therefore F (E) ⊆ P ,
and so P ∈ V (F (E)). Thus V (E) ⊆ V (F (E)). For the reverse inclusion, assume
that P ∈ V (F (E)). Since E ⊆ F (E) ⊆ P , we get P ∈ V (E), and so we have
equality.

(2). is clear.
(3). Let P ∈ V (I + J). By Lemma 3.2, either I ⊆ P or J ⊆ P . This implies

that P ∈ V (I)∪V (J); hence V (I +J) ⊆ V (J)∪V (I). Since I and J are co-ideals,
we have I +J ⊆ I and I +J ⊆ J ; thus V (J)∪V (I) ⊆ V (I +J) by (2). Therefore,
V (I + J) = V (J) ∪ V (I).

(4). By (1), it su�ces to show that V (
⋃

i∈Γ Ii) =
⋂

i∈Γ V (Ii). Consider an
arbitrary P ∈

⋂
i∈Γ V (Ii). Then for each i ∈ Γ, Ii ⊆ P . Thus

⋃
i∈Γ Ii ⊆ P .

Therefore P ∈ V (
⋃

i∈Γ Ii). For the reverse inclusion, let P ∈ V (
⋃

i∈Γ Ii). From
Ii ⊆

⋃
i∈Γ Ii and P ∈ V (

⋃
i∈Γ Ii), we have P ∈ V (Ii) for each i ∈ Γ. Therefore

V (
⋃

i∈Γ Ii) ⊆
⋂

i∈Γ V (Ii). Hence V (
⋃

i∈Γ Ii) =
⋂

i∈Γ V (Ii).
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Let R be a semiring. If ξ(R) denotes the collection of all subsets V (I) of co-
spec(R), then ξ(R) contains the empty set and co-spec(R) = X and is closed under
arbitrary intersection and �nite union by Proposition 3.3. Thus ξ(R) satis�es the
axioms of closed subsets of a topological spaces, which is called the Zariski-topology
for co-ideals of commutative semirings.

Let I be a co-ideal of R. Put

co-rad(I) = {x ∈ R | nx ∈ I for some n ∈ N}
and

co-rad(R) = {x ∈ R | nx ∈ F ({1}) for some n ∈ N}.

We will denote the closure of Y in co-spec(R) by Y , and intersections of ele-
ments of Y by T (Y ).

Proposition 3.4. Let R be a semiring.

(1) If I is a co-ideal of R, then V (I) = V (co-rad(I)).
(2) If I is a co-ideal of R, then V (I) = V (T (V (I))).
(3) If I and J are co-ideals of R with V (I) ⊆ V (J), then J ⊆ T (V (I)).
(4) V (I) = V (J) if and only if T (V (I)) = T (V (J)) for each co-ideals I and

J of R.

Proof. (1). Since I ⊆co-rad(I), V (co-rad(I)) ⊆ V (I) by Proposition 3.3. For the
reverse inclusion, assume that P ∈ V (I). If x ∈co-rad(I), then nx ∈ I for some
n ∈ N. Since I ⊆ P , nx ∈ P , consequently x ∈ P . Thus co-rad(I) ⊆ P and so
V (I) ⊆ V (co-rad(I)). Hence V (co-rad(I)) = V (I).

(2). As I ⊆ T (V (I)), we have V (T (V (I))) ⊆ V (I). Conversely, let P ∈ V (I),
hence T (V (I)) =

⋂
Q∈V (I) Q ⊆ P . Therefore we have V (I) ⊆ V (T (V (I))), and so

V (T (V (I))) = V (I).
(3). Let I and J be co-ideals of R and V (I) ⊆ V (J). Therefore we obtain

T (V (J)) ⊆ T (V (I)). Since J ⊆ T (V (J)), J ⊆ T (V (I)).
(4). Let V (I) = V (J). By (2), we have V (I) = V (T (V (J))); hence we get

T (V (J)) ⊆ T (V (I)). Similarly, the reverse inclusion is hold. The converse impli-
cation is clear.

Let X =co-spec(R). For each subset E of R, by D(E) we mean X − V (E) =
{P ∈ X | E 6⊆ P}. If E = {f}, then by Xf we denote the set {P ∈ X | f /∈ P}.

Theorem 3.5. Let R be a semiring. Then A = {Xf | f ∈ R} forms a base for

Zariski topology for co-ideals of R.

Proof. Let U be an open set. Then U = X − V (I) for some co-ideal I of R. Let
P ∈ U . Then I 6⊆ P , so there exists f ∈ I such that f 6∈ P ; hence P ∈ Xf . We
claim that Xf ⊆ U . Let Q ∈ Xf . Then f 6∈ Q, so I 6⊆ Q; thus Q ∈ U . Hence
Xf ⊆ U . Therefore A is a base for Zariski topology on X.

Proposition 3.6. Let R be a semiring and X =
⋃

i∈Γ Xai
. If I = F ({ai}i∈Γ),

then I = R.
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Proof. Suppose that I 6= R. Then there exists a maximal co-ideal P of R such
that I ⊆ P by Proposition 2.1. Since P ∈ X, there exists i ∈ Γ such that ai 6∈ P ,
a contradiction with I ⊆ P . Hence I = R.

Theorem 3.7. Let R be a semiring. Then the following statements are hold.

(1) Xf ∩Xg = Xf+g for each f, g ∈ R.

(2) Xf = X if and only if fn has additive inverse for some n ∈ N.

(3) Xf = ∅ if and only if f ∈ P for each P ∈co-spec(R) (or equivalently,

f ∈ T (V ({1}))).

Proof. (1). If P ∈ Xf ∩ Xg, then f /∈ P and g /∈ P ; hence f + g /∈ P . Thus
Xf ∩ Xg ⊆ Xf+g. For the reverse inclusion, let P ∈ Xf+g. Then f + g /∈ P , so
f /∈ P and g /∈ P . Therefore P ∈ Xf ∩Xg, and we have equality.

(2). Let Xf = X. By Proposition 3.6, R = F ({f}). Therefore fn + r = 0 for
some n ∈ N and r ∈ R. Conversely, assume that fn has inverse for some n ∈ N.
We show that Xf = X. If P ∈ X and P 6∈ Xf , then f ∈ P . It follows that 0 ∈ P ;
hence P = R, which is a contradiction. Thus X = Xf .

(3). It is clear that Xf = ∅ if and only if f ∈ P for each P ∈co-spec(R).

Proposition 3.8. Let I be a strong co-ideal of semiring R. Then D(I) =⋃
a∈I Xa. In particular, if I = F ({a1, . . . , an}), then D(I) =

⋃n
i=1 Xai

.

Proof. Let P ∈ D(I). So I 6⊆ P . Thus there exists a ∈ I such that a 6∈ P ; hence
P ∈ Xa. Therefore, P ∈

⋃
a∈I Xa, and so D(I) ⊆

⋃
a∈I Xa. Conversely, assume

that P ∈
⋃

a∈I Xa. Then P ∈ Xa for some a ∈ I. Since a 6∈ P , I 6⊆ P . Hence
P ∈ D(I) and so the equality is hold. The "in particular" statement is clear.

Theorem 3.9. Let R be a semiring. Then X =co-spec(R) is a compact space.

Proof. Let X =
⋃

i∈Γ Xai
. By Proposition 3.6, F ({ai}i∈Γ) = R; hence 0 = r +

a1 · · · an for some a1, . . . , an ∈ {ai}i∈Γ. We claim that X ⊆
⋃n

i=1 Xai . Let P ∈ X.
If for each 1 6 i 6 n, ai ∈ P , then a1 · · · an ∈ P , and so 0 = r + a1 · · · an ∈ P
which is a contradiction. Therefore there exists 1 6 i 6 n such that ai 6∈ P . Hence
P ∈ Xai

, as desired.

De�nition 3.10. A semiring R is called ∗-semiring if co-rad(I) = T (V (I)) for
each proper strong co-ideal I of R.

Example 3.11. (1) Let R = (Z+,+,×). Then the only strong co-ideals of R is
I1 = {n ∈ Z+ | 1 6 n} and Z+. Also the only prime strong co-ideals of R is I1.
Therefore, R is a ∗-semiring.

(2) Let Y={a,b,c} and S = (P (Y ),∪,∩) a semiring, where P (Y ) is the family
of all subsets of Y . An inspection will show that S is a ∗-semiring.

(3) Let T = (Z+ ∪ {∞},max,min). An inspection will show that the list of
strong co-ideals of T are T , In = {k | k > n}. It is clear that each proper strong
co-ideal of T is prime and T is a ∗-semiring.
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The following example shows that a semiring need not be a ∗-semiring.

Example 3.12. Let R = {0, 1, 2, 3, 4, 5}. De�ne

a + b =


5 if a 6= 0, b 6= 0, a 6= b,
a if a = b,
b if a = 0,
a if b = 0,

and

a ∗ b =


0 if a = 0 or b = 0,
2 if a = b = 3,
b if a = 1,
a if b = 1,
5 otherwise.

Then (R,+, ∗) is easily checked to be a commutative semiring. Suppose that
I = {1, 4, 5}. It is clear that I is a strong co-ideal of R and V (I) = {P1, P2},
where

P1 = {1, 2, 4, 5}, P2 = {1, 2, 3, 4, 5}.

Hence T (V (I)) = P1. It can be seen T (V (I)) 6=co-rad(I) because 2 ∈ T (V (I))
and 2 /∈ co-rad(I). Therefore R is not ∗-semiring.

Theorem 3.13. Let R be a ∗-semiring. For every a ∈ R, the set Xa is compact.

Speci�cally, the whole space X0 = X is compact.

Proof. Assume that Xa ⊆
⋃

i∈Γ Xbi
and let I = F ({bi}i∈Γ). We claim that V (I) ⊆

V ({a}). Assume that P ∈ V (I), so I ⊆ P ; hence P /∈
⋃

i∈Γ Xbi
. Since Xa ⊆⋃

i∈Γ Xbi
, P /∈ Xa. This implies that a ∈ P . Therefore V (I) ⊆ V ({a}). It follows

that a ∈ T (V (I)). As R is ∗-semiring, a ∈co-rad(I). Therefore na ∈ I for some
n ∈ N. Hence na = bi1 · · · bin + r for some bij ∈ {bi}i∈Γ, r ∈ R. We show that
Xa ⊆

⋃n
j=1 Xbij

. Let P ∈ Xa (so a /∈ P ). If for each 1 6 j 6 n, bij
∈ P , then

na = bi1 · · · bin
+r ∈ P , consequently a ∈ P , a contradiction. Therefore there exists

1 6 j 6 n such that bij
/∈ P . Hence P ∈

⋃n
j=1 Xbij

. Thus Xa ⊆
⋃n

j=1 Xbij
.

Corollary 3.14. Let R be a ∗-semiring. Then an open subset of X = co-spec(R)
is compact if and only if it is a �nite union of basic open sets.

Proof. Apply Theorem 3.5 and Theorem 3.13.

Theorem 3.15. Let R be a semiring. Then the toplologic space X = co-spec(R)
is a T0-space.

Proof. Let P,Q ∈ X and P 6= Q. We note that the set Xa is a neighborhood of P
if and only if a /∈ P . Suppose that Q ∈ Xb for all b /∈ P . Then we conclude that
b ∈ Q implies that b ∈ P ; hence Q ⊂ P . Now let c ∈ P −Q. Then c /∈ Q gives Xc

is a neighborhood of Q, but c ∈ P , so P /∈ Xc. This completes the proof.
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De�nition 3.16. A semiring R is called p-subtractive if every prime strong co-
ideal of R is subtractive.

Example 3.17. (1) Let Y={a,b,c} and R = (P (Y ),∪,∩) a semiring, where
P (Y )= the set of all subsets of Y . An inspection will shows that co-spec(R) =
{P1, P2, P3}, where

P1 = {{a}, {a, b}, {a, c}, X},

P2 = {{b}, {a, b}, {b, c}, X},

P3 = {{c}, {a, c}, {b, c}, X}.

Since P1, P2 and P3 are maximal co-ideal, they are subtractive by Proposition
2.1. Hence R is a p-subtractive semiring.

(2) Let S = (Z+,+,×). Then P = S − {0} is the only prime co-ideal of S
which is subtractive. Hence S is a p-subtractive semiring.

Theorem 3.18. Let R be a p-subtractive semiring. If the only elements of R such

that a + b ∈ P and ab 6∈ P for each P ∈ co-spec(R) are 0, 1, then X = co-spec(R)
is connected.

Proof. Suppose that X is not connected. Let X = Xa ∪Xb and Xa ∩Xb = ∅ for
some a, b ∈ R. Since Xa ∩ Xb = ∅, Xa+b = ∅ by Theorem 3.7. Thus a + b ∈ P
for all P ∈ co-spec(R) by Theorem 3.7. We claim that Xab = X. Let P ∈ X and
ab ∈ P . Since Xa+b = ∅, a + b ∈ P , therefore a ∈ P or b ∈ P . As P is subtractive
and ab ∈ P , P 6∈ Xa ∪ Xb. This contradicts our hypothesis that X = Xa ∪ Xb.
Therefore ab 6∈ P and Xab = X. Hence ab 6∈ P for all P ∈ X by Theorem 3.7.
Hence {a, b} = {0, 1}. Thus X is connected.

Example 3.19. (1) Let Y={a,b,c} and R = (P (Y ),∪,∩) be a semiring, where
P (Y ) is the collection of all subsets of Y . Then co-spec(R) = X{a}

⋃
X{b,c} and

X{a}
⋂

X{b,c} = ∅. Therefore co-spec(R) is not connected.

(2) Let T = (Z+ ∪ {∞},max,min) and Ii = {n ∈ T |n > i}. It is clear
that Ii is a prime strong co-ideal of T for each i ∈ N. Then for each n ∈ T ,
Xn = {Ii | i > n + 1}. Therefore X0 ⊇ X1 ⊇ · · · ⊇ X∞. This implies that
co-spec(T ) is connected.

Theorem 3.20. Let R be a semiring. Then co-spec(R) is irreducible if and only

if T (V ({1})) is a prime strong co-ideal.

Proof. Let co-spec(R) be irreducible, and a + b ∈ T (V ({1})) for some a, b ∈ R.
Then Xa+b = Xa∩Xb = ∅ by Theorem 3.7. Since co-spec(R) is irreducible, Xa = ∅
or Xb = ∅. Thus a ∈ T (V ({1})) or b ∈ T (V ({1})). Therefore T (V ({1})) is prime.

Conversely, let T (V ({1})) be prime; we show that co-spec(R) is irreducible. If
Xa ∩ Xb = ∅, then by Theorem 3.7, Xa+b = ∅. Hence a + b ∈ T (V ({1})). As
T (V ({1})) is prime, a ∈ T (V ({1})) or b ∈ T (V ({1})). Thus Xa = ∅ or Xb = ∅.
Therefore, co-spec(R) is irreducible.
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Proposition 3.21. Let R be a semiring and P,Q ∈ X = co-spec(R). Then:

(1) {P} = V (P ) for each P ∈ co-spec(R),
(2) Q ∈ {P} if and only if P ⊆ Q,

(3) {P} is closed in X if and only if P is a maximal co-ideal of R.

Proof. (1). As {P} =
⋂

P∈V (I) V (I), and P ∈ V (P ), we have {P} ⊆ V (P ). On

the other hand, if Q ∈ V (P ), then P ⊆ Q. Thus Q ∈ V (I) for each I ⊆ P . Hence
Q ∈ {P}. Therefore {P} = V (P ).

(2) is a consequence of (1), (3) is a consequence of (2).

Theorem 3.22. Let R be a semiring. Then X is a T1-space if and only if each

prime strong co-ideal is maximal.

Proof. Let X be a T1-space, then for each P ∈ X, {P} is closed in X. Hence
P is maximal strong co-ideal by Proposition 3.21. Conversely, assume that each
prime strong co-ideal of R is maximal, then using Proposition 3.21 we see that
each singleton {P} is closed in X, for each P ∈ X. Hence X is a T1-space.

Let R be a semiring with |co-spec(R)| 6 1. Then co-spec(R) is the trivial space
and so it is a Hausdor� space. The following theorem gives a relation between
Hausdor� axiom and T1 axiom for Zariski-topology for co-ideals of semirings.

Theorem 3.23. Let R be a semiring. If X = co-spec(R) is a Hausdor� space,

then it is a T1-space.

Proof. Let P1, P2 ∈ X. Since X is a Hausdor� space, there exist a, b ∈ R such that
P1 ∈ Xa and P2 ∈ Xb and Xa ∩Xb = ∅. Hence Xa+b = ∅. Therefore, a + b ∈ P1

and a + b ∈ P2. This implies that a ∈ P2 and b ∈ P2. Consequently, P1 6⊆ P2

and P2 6⊆ P1. Hence each prime strong co-ideal is maximal. Therefore, X is a
T1-space.

It is well-known that if X is a �nite space, then X is a T1-space if and only if
X is the discrete space. Thus we have the following Proposition.

Proposition 3.24. For a semiring R with a �nite X = co-spec(R) the following

conditions are equivalent:

(1) X is a Hausdor� space,

(2) X is a T1-space,

(3) X has a co�nite topology,

(4) X is discrete,

(5) every prime co-ideal is maximal.

Lemma 3.25. Let R be a semiring. Then for each P ∈ co-spec(R), V (P ) is

irreducible.
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Proof. Let V (P ) ⊆ Y1 ∪ Y2, where Y1 and Y2 are closed sets; so P ∈ V (P ) gives,
P ∈ Y1 or P ∈ Y2. Let P ∈ Y1. As V (P ) = {P} by Proposition 3.21, we have
V (P ) = ∩{Y | P ∈ Y, Y is closed set} ⊆ Y1. Similarly, if P ∈ Y2, then V (P ) ⊆ Y2.
Hence V (P ) is irreducible.

Theorem 3.26. Let R be a semiring. Then Y ⊆ co-spec(R) is irreducible if and

only if T (Y ) is a prime strong co-ideal.

Proof. Let Y be irreducible and a+b ∈ T (Y ). We claim that Y ⊆ V ({a})∪V ({b}).
Let P ∈ Y . Since Y ⊆ V (T (Y )) and a + b ∈ T (Y ), a + b ∈ P . Hence a ∈ P
or b ∈ P . Therefore Y ⊆ V ({a}) ∪ V ({b}). As Y is irreducible, Y ⊆ V ({a}) or
Y ⊆ V ({b}). If Y ⊆ V ({a}), then a ∈ T (Y ). Similarly, If Y ⊆ V ({b}), then
b ∈ T (Y ). Hence T (Y ) is prime. Conversely, assume that T (Y ) is a prime strong
co-ideal. We show that Y is irreducible. Let Y ⊆ Y1∪Y2 for some closed subset Y1

and Y2 of co-spec(R). Thus Y1 = V (I1) and Y2 = V (I2) for some strong co-ideals
I1 and I2. As Y ⊆ V (I1) ∪ V (I2), for each P ∈ Y , I1 ⊆ P or I2 ⊆ P . Hence
I1 +I2 ⊆ P for each P ∈ Y . Thus I1 +I2 ⊆ T (Y ). Since T (Y ) is prime I1 ⊆ T (Y )
or I2 ⊆ T (Y ) by Lemma 3.2. Therefore Y ⊆ Y1 or Y ⊆ Y2, as needed.

Theorem 3.27. For every ∗-semiring R, co-spec(R) is spectral.

Proof. Let R be a ∗-semiring. We show that X = co-spec(R) is spectral in four
steps.

1. X is a T0-space by Theorem 3.15.
2. X is quasi-compact by Theorem 3.9.
3. The quasi-compact open subsets of X are closed under �nite intersection by

Corollary 3.14.
4. Let Y be an irreducible closed subset of X. Then Y = V (I) for some strong

co-ideal I of R. By Theorem 3.26, P = T (Y ) is a prime strong co-ideal of R. An
inspection will show that V (P ) = Y . Since {P} = V (P ) = Y , {P} is a generic
point of Y . Thus X is spectral.

Corollary 3.28. Let R be a ∗-semiring, then X = co-spec(R) is a T1-space if and

only if it is a Hausdor� space.

Proof. By Theorem 3.27, co-spec(R) is homeomorphic to spec(S), with the Zariski
topology, for some commutative ring S. By [1], spec(S) is a Hausdor� space if and
only if it is T1. Therefore X is Hausdor� if and only if it is T1.

References

[1] M. F. Atiyah and I. G. Macdonald, Introduction to commutative lgebra, Addison
Wesley Publishing Company, 1969.

[2] M. Behboodi and M. R. Haddadi, Classical Zariski topology of modules and

spectral spaces I, Int. Electron. J. Algebra 4 (2008), 104− 130.



68 S. Ebrahimi Atani, S. Dolati Pishhesari and M. Khoramdel

[3] N. Bourbaki, Commutative algebra, Chap, 1.2, Hermann, Paris, 1961.
[4] J. N. Chaudhari and K. J. Ingale, Prime avoidance theorem for co-ideals in

semirings, Research J. Pure Algebra 1 (2011), 213− 216.

[5] S. Ebrahimi Atani, The ideal theory in quotients of commutative semirings, Glas.
Math. 42 (2007), 301− 308.

[6] S. Ebrahimi Atani and R. Ebrahimi Atani, A Zariski topology for k-semirings,
Quasigroups and Related Systems 20 (2012), 29− 36.

[7] S. Ebrahimi Atani, S. Dolati Pish Hesari and M. Khoramdel, Strong co-ideal
theory in quotients of semirings, J. Adv. Research Pure Math. 5 (2013), 19− 32.

[8] J. S. Golan, Semirings and their applications, Kluwer Academic Publisher Dor-
drecht, 1999.

[9] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math.
Soc. 137 (1969), 43− 60.

[10] H. Wang, On rational series and rational language, Theor. Comput. Sci. 205
(1998), 329− 336.

Received April 10, 2013
Faculty of Mathematics, University of Guilan, P.O.Box 1914, Rasht, Iran

E-mails: ebrahimi@guilan.ac.ir, saboura−dolati@yahoo.com, mehdikhoramdel@gmail.com



Quasigroups and Related Systems 21 (2013), 69− 82

Shortest single axioms with neutral element

for groups of exponent 2 and 3

Nick C. Fiala and Keith M. Agre

Abstract. In this note, we study identities in product and a constant e only that are valid in all
groups of exponent 2 (3) with neutral element e and that imply that a groupoid satisfying one of
them is a group of exponent 2 (3) with neutral element e. Such an identity will be called a single
axiom with neutral element for groups of exponent 2 (3). We utilize the automated reasoning
software Prover9 and Mace4 to attempt to �nd all shortest single axioms with neutral element for
groups of exponent 2 (3). Beginning with a list of 1323 (1716) candidate identities that contains
all shortest possible single axioms with neutral element for groups of exponent 2 (3), we �nd 173

(148) single axioms with neutral element for groups of exponent (2) 3 and eliminate all but 5

(119) of the remaining identities as not being single axioms with neutral element for groups of
exponent 3. We also prove that a �nite model of any of these 5 (119) identities must be a group
of exponent 2 (3) with neutral element e.

1. Introduction

We assume the reader is familiar with the de�nitions of groupoids, semigroups,
and groups. The variables v, w, x, y, and z will always be universally quanti�ed.
The letter e will always denote a constant and will denote the neutral element if
in the context of a group. The letter n will always denote a natural number. We
write xn+1 for xxn, where x1 = x. The capital letters S and T will always denote
terms in product or in product and e unless otherwise stated and T\e will denote
the corresponding term with all occurrences of e deleted. We denote by V (T ) the
number of variable occurrences in T . Identities are always in product only or in
product and e only.

De�nition 1.1. A group of exponent n is a group such that xn = e.

Strictly speaking, a group of exponent n is a group such that n is the smallest

integer for which xn = e. Therefore, our �groups of exponent n� are actually
groups of exponent dividing n. Nevertheless, we will refer to any group satisfying
the condition in De�nition 1.1 as a group of exponent n.

Therefore, groups of exponent n can be axiomatized in terms of product only
by

2010 Mathematics Subject Classi�cation: 20A05
Keywords: group, neutral element, exponent, single axiom, automated reasoning
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(1) xy · z = x · yz,

(2) xn = yn, and

(3) xyn = x

or in terms of product and e only by

(1′) xy · z = x · yz,

(2′) xn = e, and

(3′) xe = x.

De�nition 1.2. By an identity (identity with neutral element), we shall mean an
identity in product only (identity in product and e only) unless otherwise stated.
We say that an identity (identity with neutral element) S = T is a single axiom

for groups of exponent n (single axiom with neutral element for groups of exponent

n) if and only if S = T is true in all groups of exponent n (groups of exponent
n with neutral element e) and every model of S = T satis�es (1), (2), and (3)
((1′), (2′), and (3′)). In either case, it is clear that we must have S or T being
just a single variable occurrence, otherwise the identity would be valid in any zero
semigroup. We sometimes refer to identities and identities with neutral element
simply as identities (Note that we do not assume that e is neutral, only that it is
a constant. An identity must imply that e is neutral for it to be a single axiom.).

Neumann [12] proved that the variety of groups that satisfy S = e, where S is
any term in product and inverse only, can be axiomatized by the single identity
T = x, where T is the term in product and inverse only

w(((x−1 · w−1y)−1z · (xz)−1)(SS′−1)−1)−1.

In the above, w, x, y, and z are variables not occurring in S and S′ is a renaming
of S using di�erent variables. Taking S = vn and replacing all occurrences of −1
by n − 1 in the above identity, we obtain a single axiom for groups of exponent
n of the form T = x, where V (T ) = n4 − 2n2 + n + 1. This leaves open the
problem of �nding shorter and simpler single axioms (with neutral element) for
groups of exponent n. No variety of groups can be axiomatized by a single identity
in product, inverse, and neutral element [12], [15].

For example, in [11], Meredith and Prior proved that

(yx · z) · yz = x

is a single axiom for groups of exponent 2 (Boolean groups), in [10], Mendelsohn
and Padmanabhan proved that

x · (xy · z)y = z
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and
(xy · xz)y = z

are also single axioms for Boolean groups, and, in [9], McCune and Wos proved
that

x((y · ez) · xz) = y

is a single axiom with neutral element for Boolean groups.
As another example, in [9], it is proved that

y · (y · y(x · zz))z = x,

y(y(yx · z) · zz) = x,

and
y((yy · xz)z · z) = x

are single axioms for groups of exponent 3 and that

x(x(xy · z) · (e · zz)) = y

is a single axiom with neutral element for groups of exponent 3.
As a �nal example, in [5], Kunen proved that

y(y(yy · xz) · (z · zz)) = x,

(yy · y) · ((y · xz) · zz)z = x,

and
y(((yy · y) · xz)z) · zz = x

are single axioms for groups of exponent 4 and, in [9], it is proved that

x(x(x(e(xy · z) · z) · z) · z) = y

along with nine others are single axioms with neutral element for groups of expo-
nent 4.

In the present note, we endeavor to �nd all shortest (with respect to the num-
ber of variable and constant occurrences) single axioms with neutral element for
groups of exponent 2 (3) using the automated theorem-prover Prover9 and the
model-�nder Mace4. Beginning with a list of 1323 (1716) candidate identities
that contains all shortest possible single axioms with neutral element for groups of
exponent 3, we �nd 173 (148) single axioms with neutral element for groups of ex-
ponent 2 (3) and eliminate all but 5 (119) of the remaining identities as not being
single axioms with neutral element for groups of exponent 2 (3). We also prove
that a �nite model of any of these 5 (119) identities must be a group of exponent
2 (3) with neutral element e, hence obtaining the same type of classi�cation as
was achieved in [10] ([4]) for shortest single axioms (without neutral element) for
groups of exponent 2 (3).
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2. Preliminary Results

In this section, we present some preliminary results that will be needed in the
subsequent sections. We begin with an obvious observation.

De�nition 2.1. De�ne the mirror of T , denoted M(T ), as follows: M(T ′T ′′) =
M(T ′′)M(T ′) for subterms T ′ and T ′′ of T , M(x) = x for variables x occurring in
T , and M(e) = e for constants e occurring in T .

Theorem 2.2. The identity (with neutral element) T = x is a single axiom (with
neutral element) for groups of exponent n if and only if M(T ) = x is a single

axiom (with neutral element) for groups of exponent n.

The next result demonstrates that the structure of the single axioms (with
neutral element) for groups of exponent n presented in Section is no accident.

Theorem 2.3. [4], [5] Suppose T = x is a single axiom (with neutral element)
for groups of exponent n, n ≥ 2. Then V (T ) ≥ 2n + 1. If n = 2 and V (T ) = 5,
then a renaming of T\e is an association of an arrangement of y2xz2 If n ≥ 3 and

V (T ) = 2n + 1, then a renaming of T\e is an association of ynxzn. (in the latter

case, it is clear that we must not have x being the left-most (right-most) symbol in

T , otherwise the identity would be valid in any left-zero (right-zero) semigroup).

In light of Theorem 2.3, the single axioms (with neutral element) for groups of
exponent n presented in Section are as short as possible. In the case of exponent 3,
in [4], it is proved that the three examples from Section are the only shortest single
axioms (up to renaming, mirroring, and symmetry), with the possible exceptions
of

y · y((y · xz) · zz) = x

and
yy · (y(xz · z) · z) = x.

The status of these two identities is unknown. It is known that a non-group model
of either identity must be in�nite [4]. In the case of exponent 4, it is proved in [5]
that the three examples from Section are the only shortest single axioms (up to
mirroring, renaming, and symmetry). It is known that there are shortest possible
single axioms (with neutral element) for groups of exponent n, n odd [4]. It is
unknown if there are shortest possible single axioms (with neutral element) for
groups of exponent n, n ≥ 6 even. An exhaustive search for shortest possible
single axioms for groups of exponent 6 was attempted in [3]. The search failed to
�nd any single axioms but did reduce the number of candidates to 204.

We need two more results.

Theorem 2.4. [4], [5] Suppose a renaming of T\e is an association of an arrange-

ment of y2xz2 with T containing at most one occurrence of e. Then any associative

and commutative model of T = x is a group of exponent 2 (in particular, if all



Single axioms with neutral element for groups 73

models of T = x are associative and commutative, then T = x is a single axiom

(with neutral element) for groups of exponent 2). Suppose a renaming of T\e is

an association of ynxzn, n ≥ 3, with T containing at most one occurrence of e.
Then any associative model of T = x is a group of exponent n (in particular, if

all models of T = x are associative, then T = x is a single axiom (with neutral

element) for groups of exponent n).

Theorem 2.5. [4] If G is a non-trivial group, then there exists a non-associative

groupoid H such that H satis�es every identity that contains at most two distinct

variables and that is valid in G.

3. Prover9 and Mace4

In this section, we brie�y describe the software Prover9 and Mace4.

Prover9 [8] is a resolution-style [1], [13] automated theorem-prover for �rst-
order logic with equality that was developed by McCune at Argonne National
Laboratory. Prover9 is the successor to the well-known OTTER [7] theorem-prover
and, like OTTER, utilizes the set of support strategy [1], [16].

The language of Prover9 is the language of clauses, a clause being a disjunction
of (possible one or zero) literals in which all variables whose names begin with u, v,
w, x, y, or z are implicitly universally quanti�ed and all other symbols represent
constants, functions, or predicates (relations). An axiom may also be given to
Prover9 as an explicitly quanti�ed �rst-order formula which is immediately trans-
formed by Prover9 into a set of clauses by a Skolemization [1], [2] procedure. The
conjunction of these clauses is not necessarily logically equivalent to the formula,
but they will be equisatis�able [1], [2]. Therefore, the set of clauses can be used
by Prover9 in place of the formula in proofs by contradiction.

Prover9 can be asked to prove a potential theorem by giving it clauses or
formulas expressing the hypotheses and a clause or formula expressing the nega-
tion of the conclusion. Prover9 �nds a proof when it derives the empty clause, a
contradiction.

Prover9 has an autonomous mode [8] in which all inference rules, settings, and
parameters are automatically set based upon a syntactic analysis of the input
clauses (the mechanisms of inference for purely equational problems being demod-

ulation and paramodulation [1], [14]).

One very important parameter used by Prover9 is the maximum weight [8]
of a clause. By default, the weight of a literal is the number of occurrences of
constants, variables, functions, and predicates in the literal and the weight of a
clause is the sum of the weights of its literals. Prover9 discards derived clauses
whose weight exceeds the maximum weight speci�ed. By specifying a maximum
weight, we sacri�ce refutation-completeness [1], [13], although in practice it is
frequently necessary. We will use the autonomous mode throughout this paper,
sometimes overriding Prover9's assignment to the maximum weight parameter.
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A useful companion to Prover9 is Mace4 [6], also developed by McCune. Mace4
is a �nite �rst-order model-�nder. With possibly some minor modi�cations, the
same input can be given to Mace4 as to Prover9, Prover9 searching for a proof
by contradiction and Mace4 searching for counter-examples of speci�ed sizes (a
groupoid found by Mace4 would be returned as an n × n Cayley table with the
elements of the structure assumed to be 0, 1, . . . , n− 1 and the element in the ith
row and jth column being ij).

Remark 3.1. The reader should note that Mace4 interprets non-negative integers
as distinct constants and other constants as not necessarily distinct unless other-
wise stated. This is in contrast to Prover9 which interprets all constants as not
necessarily distinct unless otherwise stated. The use of non-negative integers for
constants in Mace4 can have the advantage of speeding up the search for a model.

The scripting language Perl was also used to further automate the process.

4. The Search

In this section, we describe our search for shortest single axioms with neutral
element for groups of exponent 3.

First, all identities T = x such that T contains exactly one occurrence of e and
T\e is an association of an arrangement of y3xz3 were generated up to renaming
and mirroring. This resulted in 1716 identities.

We then sent the negation of each identity (stored in the Perl variable
$negated_identity) to Prover9 and ran

assign(max_seconds, 1). % one second time limit per identity

formulas(sos). % set of support clauses

e * x = x.

x * e = x.

x * y = y * x.

(x * x) * x = e.

x * (x * x) = e.

(x * x) * (x * y) = y.

x * (x * (x * y)) = y.

((x * y) * y) * y = x.

(x * y) * (y * y) = x. % one and two distinct variable identities

% valid in Z_3

$negated_identity. % negation of candidate identity

end_of_list. % end of set of support clauses

to search for a proof that the identity is derivable from the set of one and two
distinct variable identities that are valid in Z3. If this is the case, then by Theorem
2.5, there is a non-associative model for the identity and it can be eliminated. This
reduced the number of candidate identities to 546.
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Remark 4.1. We determine whether or not Prover9 has found a proof by ob-
serving its exit status. Prover9 outputs an exit code of 0 if and only if it �nds a
proof.

Next, we sent each identity (stored in the variable $identity) to Mace4 (e
will always be renamed 0 in Mace4 input) and ran

assign(max_seconds, 60). % one minute time limit

% per identity

formulas(theory). % theory clauses

x * y != x * z | y = z. % left cancellative

y * x != z * x | y = z. % right cancellative

(x * y) * (z * u) = (x * z) * (y * u). % medial

0 * 0 = 0. % e idempotent

$identity. % candidate identity

(a * b) * c != a * (b * c). % non-associative

end_of_list. % end of theory clauses

to search for a non-associative, cancellative (left cancellative (xy = xz implies
y = z) and right cancellative (yx = zx implies y = z)), medial (xy · zu = xz · yu)
groupoid with e idempotent (ee = e) that satis�es the identity. Any identity
for which an example was found was eliminated. This reduced the number of
candidate identities to 267.

Remark 4.2. We determine whether or not Mace4 has found a model by observing
its exit status. Mace4 outputs an exit code of 0 if and only if it �nds a model.

We then sent each remaining identity to Prover9 and ran

assign(max_seconds, 300). % five minute time limit

% per weight per identity

assign(max_weight, $max_weight). % maximum clause weight

formulas(sos). % set of support clauses

$identity. % candidate identity

a * b = a * c.

b != c. % not left cancellative

end_of_list. % end of set of support clauses

to search for a proof that the identity implies left cancellativity. We made a run
for every value of $max_weight from 20 to 150 in steps of 5. A proof was found
for 186 identities. The mirror of each identity for which a proof was not found was
then sent back to Prover9 to search for a proof that it implies left cancellativity.
An additional 57 proofs were found.

Next, we sent each of these 243 identities back to Prover9 and ran

assign(max_seconds, 300). % five minute time limit

% per weight per identity

assign(max_weight, $max_weight). % maximum clause weight

formulas(sos). % set of support clauses
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$identity. % candidate identity

x * y != x * z | y = z. % left cancellative

b * a = c * a.

b != c. % not right cancellative

end_of_list. % end of set of support clauses

to search for a proof that the identity implies right cancellativity. We made a run
for every value of $max_weight from 20 to 150 in steps of 5. A proof was found
for 148 identities.

We then sent each of these 148 identities back to Prover9 and ran

assign(max_seconds, 600). % 10 minute time limit

% per weight per identity

assign(max_weight, $max_weight). % maximum clause weight

formulas(sos). % set of support clauses

$identity. % candidate identity

x * y != x * z | y = z. % left cancellative

y * x != z * x | y = z. % right cancellative

e * e != e. % e not idempotent

end_of_list. % end of set of support clauses

to search for a proof that the identity implies that e is idempotent. We made a
run for every value of $max_weight from 18 to 150 in steps of 2. A proof was
found for all 148 identities.

Finally, we sent each of these 148 identities back to Prover9 and ran

assign(max_seconds, 600). % 10 minute time limit

% per weight per identity

assign(max_weight, $max_weight). % maximum clause weight

formulas(sos). % set of support clauses

$identity. % candidate identity

x * y != x * z | y = z. % left cancellative

y * x != z * x | y = z. % right cancellative

e * e = e. % e idempotent

(a * b) * c != a * (b * c). % non-associative

end_of_list. % end of set of support clauses

to search for a proof that the identity implies associativity. We made a run for
every value of $max_weight from 18 to 150 in steps of 2. A proof was found for
all 148 identities. By Theorem 2.4, these 148 identities are all single axioms with
neutral element for groups of exponent 3.

5. Finite Models

In this section, we show that a �nite model of any of the 119 remaining candidate
identities must be a group of exponent 3 with neutral element e.
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Consider the following identity (one of the 119 remaining candidate identities).

(y · ey)(y(x · zz) · z) = x

Let G be a �nite groupoid satisfying this identity. De�ne Lx, Rx : G −→ G by
Lx(y) = xy and Rx(y) = yx. Therefore,

Ly·ey ◦Rz ◦ Ly ◦Rzz = Id

where Id is the identity mapping on G. Thus, Rzz is injective and Ly·ey is surjec-
tive. Since G is �nite, Rzz is surjective and Ly·ey is injective.

Running the third block of code in Section for every value of $max_weight
from 20 to 150 in steps of 5 with this candidate identity and with the additional
lines

R(z,u) = u * (z * z). % R_zz definition

L(y,u) = (y * (e * y)) * u. % L_y(ey) definition

R(z,f(z,u)) = u. % R_zz surjective

L(y,u) != L(y,v) | u = v. % L_y(ey) injective

in the set of support, Prover9 �nds a proof that this identity implies that G is
left cancellative. Running the fourth block of code in Section for every value of
$max_weight from 20 to 150 in steps of 5 with this candidate identity and with
these additional lines, Prover9 �nds a proof that this identity implies that G is
right cancellative. Running the �fth block of code in Section for every value of
$max_weight from 18 to 150 in steps of 2 with this candidate identity and with
these additional lines, Prover9 �nds a proof that this identity implies that e is
idempotent in G. Running the sixth block of code in Section for every value
of $max_weight from 18 to 150 in steps of 2 with this candidate identity and
with these additional lines, Prover9 �nds a proof that this identity implies that
G is associative. By Theorem 2.4, G must be a group of exponent 3 with neutral
element e.

The above procedure was automated and carried out for each of the 119 re-
maining candidate identities and each one was shown to imply that a �nite model
of it must be a group of exponent 3 with neutral element e. Therefore, if any one
of these 119 identities fails to be a single axiom with neutral element for groups
of exponent 3 (the authors feel that it is likely that most if not all of them fail to
be), then it can only be eliminated from contention through the construction of
an in�nite non-associative model.

6. Conclusion

In this section, we summarize our results.

Theorem 6.1. The following 148 identities with neutral element (and their mir-

rors) are single axioms with neutral element for groups of exponent 3.
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ey · ((yy · xz)z · z) = x y(e(y(yx · z) · z) · z) = x y(y(e(yx · z) · z) · z) = x
(yy · ((ye · x)z · z))z = x e(y(y · (y · xz)z) · z) = x e(y(y(y · xz) · z) · z) = x
(ey · ((yy · x)z · z))z = x y(e(y(y · xz) · z) · z) = x (ye · (yy · xz)z)z = x

(yy · (ey · xz)z)z = x ((yy · e) · (y · xz)z)z = x y(y(y · (e · xz)z) · z) = x
yy · ((ye · xz)z · z) = x y(((yy · e) · xz)z · z) = x y(y · (e · (y · xz)z)z) = x

y(y · (y · (e · xz)z)z) = x (e · (y · y(yx · z))z)z = x (y · y(e(yx · z) · z))z = x
(ey · (yy · x)z) · zz = x (ey · ((yy · x) · zz))z = x (ye · (yy · x)z) · zz = x

(ye · ((yy · x) · zz))z = x (yy · (ye · x)z) · zz = x (y · y(y(ex · z) · z))z = x
(y · (y · y(ex · z))z)z = x (yy · ((ye · x) · zz))z = x (y · ((yy · e)x · z)z)z = x
((yy · e)(yx · z) · z)z = x e(y(y · (yx · z)z) · z) = x (e · y((y · yx)z · z))z = x
y(e(y · (yx · z)z) · z) = x (y · e((y · yx)z · z))z = x y(y(e · (yx · z)z) · z) = x
(y · y((e · yx)z · z))z = x e(y · (y(y · xz) · z)z) = x (e · y(y(y · xz) · z))z = x
((e · yy) · (y · xz)z)z = x ((ey · y) · (y · xz)z)z = x y(e · (y(y · xz) · z)z) = x
(y · e(y(y · xz) · z))z = x ((y · ey) · (y · xz)z)z = x (y · y(e(y · xz) · z))z = x
y(y · (y(e · xz) · z)z) = x (y · y(y(e · xz) · z))z = x (y · y((y · ex)z · z))z = x
(y · ((y · ye) · xz)z)z = x (y · ye)((y · xz)z · z) = x y(y(y · (ex · z)z) · z) = x
y(((e · yy) · xz)z · z) = x y(((ey · y) · xz)z · z) = x y(((y · ey) · xz)z · z) = x
e((y · y(yx · z))z · z) = x y((y · e(yx · z))z · z) = x ((y · ye) · (yx · z)z)z = x
(y · ((e · yy)x · z)z)z = x (y · ((ey · y)x · z)z)z = x (y · ((y · ey)x · z)z)z = x
y((y · y(ex · z))z · z) = x y(y · (e(y · xz) · z)z) = x y((e · y(yx · z))z · z) = x
(y · ((ye · y) · xz)z)z = x (y · ((yy · e) · xz)z)z = x (ye · y)((y · xz)z · z) = x
(yy · e)((y · xz)z · z) = x ((ye · y) · (yx · z)z)z = x ((yy · e) · (yx · z)z)z = x
y((y · y(e · xz)) · zz) = x ey · (y(yx · z) · zz) = x y · e(y(yx · zz) · z) = x

y(y · e(yx · z)) · zz = x y(y(ey · (x · zz)) · z) = x e(y((y · yx) · zz) · z) = x
y(ey · (yx · zz)) · z = x y((ye · (yx · z)) · zz) = x ye · (y · y(x · zz))z = x

(y · y((ye · x) · zz))z = x (ye · (y · yx)z) · zz = x ey · (y(y · xz) · zz) = x
y(e(yy · xz) · zz) = x (ey · y)((y · xz) · zz) = x y(((yy · e) · xz) · zz) = x

e(yy · (yx · z)) · zz = x yy · (y(ex · zz) · z) = x y(y(ye · (x · zz)) · z) = x
y · (ey · (yx · zz))z = x ye · (y(yx · z) · zz) = x y(ye · (yx · zz)) · z = x

(yy · e)(y(x · zz) · z) = x y(y · (ey · x)z) · zz = x y((ey · y)(x · zz) · z) = x
(ey · y)(yx · zz) · z = x (yy · e)(yx · z) · zz = x (e · yy)(yx · zz) · z = x
y((ey · y)x · z) · zz = x y((yy · e)x · zz) · z = x y(((ey · y) · xz) · zz) = x

(yy · e)((y · xz) · zz) = x (ye · y)((y · xz) · zz) = x y · (ye · y(x · zz))z = x
y · (yy · e(x · zz))z = x y((y · (ye · x)z) · zz) = x y((yy · (ex · z)) · zz) = x
yy · (e · y(x · zz))z = x (ey · y)(y(x · zz) · z) = x y((yy · e)(x · zz) · z) = x

y((ye · y)(x · zz) · z) = x (ye · y(yx · zz))z = x (yy · e(yx · zz))z = x
(y · y((ey · x) · zz))z = x e((y · (yy · x)z) · zz) = x e · (yy · (yx · zz))z = x

y(e · (yy · x)z) · zz = x e((y · y(yx · z)) · zz) = x e · (y · y(yx · zz))z = x
y((y · e(yx · z)) · zz) = x y · e(y(yx · z) · zz) = x y(y(y · e(x · zz)) · z) = x
e((y · (y · yx)z) · zz) = x y(y · e(yx · zz)) · z = x y((ey · (yx · z)) · zz) = x

ey · (y · y(x · zz))z = x y · (y · e(yx · zz))z = x y((y · ye)x · zz) · z = x
(y · ye)(yx · z) · zz = x y((e · y(y · xz))z · z) = x (e · y(y · (y · xz)z))z = x

y(y((e · yx)z · z) · z) = x (y · e(y · (y · xz)z))z = x e(y · (y · (yx · z)z)z) = x
y(y · (y · (ex · z)z)z) = x y((y · e(y · xz))z · z) = x (y · y(e · (y · xz)z))z = x
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y(y((y · ex)z · z) · z) = x e(y · (y(yx · z) · z)z) = x y((y · y(e · xz))z · z) = x
(y · (e · y(y · xz))z)z = x (e · y(y · (yx · z)z))z = x y(e · (y · (yx · z)z)z) = x
y(y · (y(ex · z) · z)z) = x e(y((y · yx)z · z) · z) = x y((y · (e · yx)z)z · z) = x
(y · (y · e(y · xz))z)z = x (y · e(y · (yx · z)z))z = x y((y · (y · ex)z)z · z) = x
y(e · (y(yx · z) · z)z) = x (y · y(e · (yx · z)z))z = x e((y · (y · yx)z)z · z) = x
(y · (y · y(e · xz))z)z = x

A �nite model of any of the following 119 identities with neutral element (or their
mirrors) is a group of exponent 3 with neutral element e.

y · y(y(x · zz) · ez) = x yy · (y(x · ze) · zz) = x y((yy · (x · ze)) · zz) = x
y · y(y(x · ze) · zz) = x yy · (y · (x · ez)z)z = x y · (yy · (xe · z)z)z = x

y(y · (y(xe · z) · z)z) = x y(y · (y · (xe · z)z)z) = x y(y · (y · x(ez · z))z) = x
y(y(y(xz · z) · z) · e) = x y(y · (y(xz · z) · z)e) = x y(y(y(xz · z) · e) · z) = x
y(y · (y(xz · z) · e)z) = x y(y · (y(xz · e) · z)z) = x ey · ((yy · xz) · zz) = x

y · e(y(y · xz) · zz) = x ye · ((yy · xz) · zz) = x ye · (yy · (xz · z))z = x
y(ye · ((y · xz) · zz)) = x y((ye · y)(xz · z) · z) = x yy · ((ey · xz) · zz) = x
(yy · e)(y(xz · z) · z) = x y · y(y(e · xz) · zz) = x y((y · ye)(xz · z) · z) = x

yy · ((ye · xz) · zz) = x ey · (yy · (x · zz))z = x ye · (yy · (x · zz))z = x
yy · (ey · (x · zz))z = x y(y · (y · e(x · zz))z) = x yy · (ye · (x · zz))z = x
yy · (ey · (xz · z))z = x y · (yy · (x · zz)e)z = x e(yy · (y(x · zz) · z)) = x
yy · (y · (x · ze)z)z = x y(y · (y · x(z · ez))z) = x y(y · (y · x(e · zz))z) = x

y(y · (y · xz)(zz · e)) = x y(y · (y · xz)(z · ze)) = x y(y · (y · xz)(ze · z)) = x
e(y · y(y(xz · z) · z)) = x (e · yy)(y(xz · z) · z) = x (ey · y)(y(xz · z) · z) = x
y(e · y(y(xz · z) · z)) = x y(e · (y · y(xz · z))z) = x ye · y((y · xz) · zz) = x
(y · ey)(y(xz · z) · z) = x y(y · e((y · xz) · zz)) = x y(y · (e · y(xz · z))z) = x

y · y((ye · xz) · zz) = x y(y · (y · e(xz · z))z) = x y((yy · e)(xz · z) · z) = x
e(y · (y · y(xz · z))z) = x y · (yy · x(zz · e))z = x y(ey · ((y · xz) · zz)) = x

yy · e((y · xz) · zz) = x yy · (y · x(z · ez))z = x y · (yy · x(z · ez))z = x
y((e · yy)(x · zz) · z) = x yy · (y · xz)(zz · e) = x yy · (y · xz)(z · ze) = x

y · (yy · xz)(z · ez) = x y(((e · yy) · xz) · zz) = x y · y((ey · xz) · zz) = x
yy · (y(e · xz) · zz) = x e · y((yy · xz) · zz) = x y(y · e(y(x · zz) · z)) = x

y(y · (ey · (x · zz))z) = x (ye · y)(y(x · zz) · z) = x yy · (y(xe · zz) · z) = x
y((yy · (xz · z)) · ze) = x yy · (y(xz · ez) · z) = x yy · (y(xz · e) · zz) = x
(e · yy)((y · xz) · zz) = x yy · (y · x(zz · e))z = x y · (yy · x(z · ze))z = x

yy · (y · x(e · zz))z = x (e · yy)(y(x · zz) · z) = x yy · (y(xz · z) · ze) = x
yy · (y · xz)(z · ez) = x y · (yy · xz)(e · zz) = x y(((ye · y) · xz) · zz) = x

y((yy · (x · zz))z · e) = x y(e · (yy · (x · zz))z) = x y((yy · (xe · z)) · zz) = x
yy · (y(xe · z) · z)z = x y((yy · (xe · z))z · z) = x yy · (y(xz · z) · e)z = x

y(e · (y · y(x · zz))z) = x yy · (y · (xe · z)z)z = x y(y · ((y · xz)z · z)e) = x
y(y(y · (xz · z)e) · z) = x y(y · ((y · xz)z · e)z) = x y(y · (y · (xz · z)e)z) = x
y(y(y · (xz · e)z) · z) = x y(y · ((y · xz)e · z)z) = x y(y · (y · (xz · e)z)z) = x
e(y · y((y · xz)z · z)) = x y(e · y((y · xz)z · z)) = x y(e(y · y(xz · z)) · z) = x
y(y · e(y(xz · z) · z)) = x y(y · e((y · xz)z · z)) = x y(y(e · y(xz · z)) · z) = x
y(y(y · e(xz · z)) · z) = x y((yy · (xz · z))e · z) = x y(((y · ye) · xz) · zz) = x
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(y · ye)(y(x · zz) · z) = x yy · (y · x(ez · z))z = x y((y · ye)(x · zz) · z) = x
(y · ye)((y · xz) · zz) = x y · (yy · xz)(ez · z) = x (y · ey)((y · xz) · zz) = x

y · (yy · x(ze · z))z = x y((y · ey)(x · zz) · z) = x y(((y · ey) · xz) · zz) = x
yy · (y · x(ze · z))z = x y · (yy · xz)(ze · z) = x (y · ey)(y(x · zz) · z) = x
yy · (y · xz)(ze · z) = x y(y(y · (xe · z)z) · z) = x

Any additional single axioms with neutral element for groups of exponent 3 are

among these 119 identities with neutral element (up to renaming, mirroring, and

symmetry).

A similar search for shortest single axioms with neutral element for Boolean
groups was also carried out with the following results.

Theorem 6.2. The following 173 identities with neutral element (and their mir-

rors) are single axioms with neutral element for Boolean groups.

e(x(xy · z) · y) = x ex · (xy · zy) = x e(x · y(x · zy)) = x
e(xy · (x · zy)) = x ex · y(x · zy) = x (e · xy)(y · zx) = x
e((x · yz) · xy) = x ex · y(z · xy) = x e(x · y(z · yx)) = x
e((x · yz)y · x) = x ex · y(z · yx) = x e(x · yz) · yx = x
(e · (x · yz)z)x = x x(ey · (x · zy)) = x xe · y(x · zy) = x

xe · (yx · z)y = x (xe · y)(x · zy) = x (x · (ey · x)z)y = x
(x · (ey · x)z)z = x (xe · (yx · z))z = x xe · y(yz · x) = x
x(ey · (z · xy)) = x x((e · yz) · xy) = x x(ey · z) · xy = x
x((e · yz)x · z) = x xe · (y · zx)z = x xe · (yz · x)z = x
((xe · y) · zx)z = x ((x · ey)z · x)z = x ((xe · y)z · x)z = x
x(e · y(zy · x)) = x x((ey · z) · yx) = x (xe · y)(zy · x) = x

x(ey · z) · yx = x (x(e · yz) · y)x = x ((xe · y)z · y)x = x
(x(e · yz) · z)x = x (xe · yz)z · x = x x(x(ey · z) · y) = x

x · (xe · yz)y = x x(x(y · ez) · y) = x x(y · e(x · zy)) = x
x(ye · (x · zy)) = x xy · (ex · z)y = x x(y · (e · yz)x) = x
x(ye · (yz · x)) = x xy · (ey · z)x = x (x · ye)(y · zx) = x
(xy · (e · yz))x = x ((x · ye) · yz)x = x x(y · e(z · xy)) = x
(x · ye)(zx · y) = x x(y · ez) · xy = x ((x · ye)z · x)y = x

(xy · ez) · xz = x (x · ye)z · xz = x (xy · ez)x · z = x
x(y · ez) · yx = x ((x · ye) · zy)x = x x((y · ez) · zx) = x
(xy · ez) · zx = x (x(y · ez) · z)x = x e(x · (x · yz)y) = x

(ex · (xy · z))y = x e(x · (yx · z)y) = x e(xy · (xz · y)) = x
ex · (yx · zy) = x (e · xy)(x · zy) = x (e · x(y · xz))y = x
e(xy · xz) · y = x (ex · (yx · z))y = x ((e · xy) · xz)y = x

(ex · (y · xz))z = x (ex · (yx · z))z = x e(xy · (yz · x)) = x
ex · y(yz · x) = x (ex · y)(yz · x) = x ((e · xy) · yz)z = x

e(x · (yz · x)y) = x ex · (yz · xy) = x (e · x(y · zx))y = x
e((xy · z)x · z) = x ex · (yz · xz) = x ex · (yz · x)z = x
(e(xy · z) · x)z = x e(x · y(zy · x)) = x e((x · yz) · yx) = x
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ex · (yz · yx) = x (ex · yz) · yx = x e((x · yz)y · z) = x
e(xy · z) · yz = x e(xy · zy) · z = x ((e · xy) · zy)z = x

(e(x · yz) · y)z = x (ex · yz)z · x = x e((x · yz)z · y) = x
e(xy · z) · zy = x x · e(yx · zy) = x x((ey · x) · zy) = x

x((e · yx)z · y) = x (x · ey)(xz · y) = x (x · e(yx · z))y = x
x(ey · xz) · y = x (xe · (y · xz))y = x ((xe · y) · xz)y = x
xe · (y · xz)z = x (x · e(yx · z))z = x ((xe · y) · xz)z = x

x(e · y(yz · x)) = x x · e(yz · xy) = x x(e · (yz · x)y) = x
x((ey · z) · xy) = x x((e · yz)x · y) = x (x · e(y · zx))y = x
((xe · y) · zx)y = x x(e · (yz · x)z) = x (xe · yz) · xz = x

x · e(yz · yx) = x x(ey · (z · yx)) = x (xe · yz) · zx = x
x((x · ey) · zy) = x x((xe · y)z · y) = x (x · (x · ey)z)y = x
x(xy · (e · zy)) = x x(x(ye · z) · y) = x x · (xy · ez)y = x
x((xy · e)z · y) = x x(xy · ez) · y = x xy · e(x · zy) = x

xy · e(xz · y) = x (xy · e)(x · zy) = x (x · y(e · xz))y = x
x(ye · xz) · y = x (xy · (e · xz))y = x ((xy · e) · xz)y = x

x(y · (ey · z)x) = x xy · e(y · zx) = x xy · e(yz · x) = x
(xy · e)(y · zx) = x ((xy · e) · yz)x = x x((y · ez)x · y) = x
(x · y(e · zx))y = x x((y · ez) · xz) = x x · (ye · zx)z = x
x((y · ez)x · z) = x (x · y(e · zx))z = x (x · y(ez · x))z = x

x(ye · zx) · z = x ((xy · e) · zx)z = x x(y · e(zy · x)) = x
x(y · (ez · y)x) = x (x(y · ez) · y)x = x x(ye · z) · zx = x
e(x · (xy · z)y) = x e(x(yx · z) · y) = x (ex · (y · xz))y = x
e(x(yx · z) · z) = x ((e · xy) · yz)x = x (ex · yz) · xy = x
(e(x · yz) · y)x = x x(ye · z) · xz = x e((xy · z) · yz) = x
x(e(x · yz) · y) = x x(e(xy · z) · y) = x xe · (x · yz)y = x

x · e(xy · zy) = x x · (ex · yz)y = x x((e · xy)z · y) = x
xe · (xy · z)y = x (x · e(xy · z))y = x

A �nite model of any of the following 5 identities with neutral element (or their

mirrors) is a Boolean group with neutral element e.

(ex · y)z · xz = x ((ex · y)z · x)z = x (ex · y)z · yz = x
(ex · yz)y · z = x (ex · yz)z · y = x

Any additional single axioms with neutral element for Boolean groups are among

these 5 identities with neutral element (up to renaming, mirroring, and symmetry).
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On 0-minimal (0, 2)-bi-ideals

in ordered semigroups

Wichayaporn Jantanan and Thawhat Changphas

Abstract In this paper, we study (0, 2)-ideals, (1, 2)-ideals and 0-minimal (0, 2)-ideals in ordered
semigroups. The notions of (0, 2)-bi-ideals in ordered semigroups and 0-(0, 2)-bisimple ordered
semigroups are introduced and described. The results obtained extend the results on semigroups
without order.

1. Introduction

In [5], the notion of (m,n)-ideals in semigroups was introduced by S. Lajos as a
generalization of ideals in semigroups. In [4], D. N. Krgović described (0, 2)-ideals,
(1, 2)-ideals and 0-minimal (0, 2)-ideals. The author also introduced the notions
of (0, 2)-bi-ideals and 0-(0, 2)-bisimple semigroups; and showed that a semigroup
S with a zero element 0 is 0-(0, 2)-bisimple if and only if S is left 0-simple.

In the present paper, using the concept of (m,n)-ideals in ordered semigroups
de�ned by J. Sanborisoot and T. Changphas in [7], we extend the results in [4],
mentioned above, to ordered semigroups. We begin with investigation (0, 2)-ideals,
(1, 2)-ideals and 0-minimal (0, 2)-ideals in ordered semigroups. The notions of
(0, 2)-bi-ideals in ordered semigroups and 0-(0, 2)-bisimple ordered semigroups will
be introduced.

The rest of this section let us recall some de�nitions and results used throughout
the paper.

De�nition 1.1. [1] A semigroup (S, ·) together with a partial order 6 (on S) that
is compatible with the semigroup operation, meaning that for x, y, z ∈ S,

x 6 y ⇒ zx 6 zy & xz 6 yz,

is called an ordered semigroup.

Let (S, ·,6) be an ordered semigroup. If A,B are nonempty subsets of S, we
let

AB = {xy ∈ S | x ∈ A, y ∈ B},
(A] = {x ∈ S | x 6 a for some a ∈ A}.

2010 Mathematics Subject Classi�cation: 06F05
Keywords: semigroup, ordered semigroup, bi-ideal, (m, n)-ideal, (0, 2)-ideal, (0, 2)-bi-ideal,
0-minimal (0, 2)-ideal, 0-(0, 2)-bisimple.
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Let (S, ·,6) be an ordered semigroup and let A,B be nonempty subsets of S.
The following was proved in [2]:

(1) (A](B] ⊆ (AB];

(2) A ⊆ B ⇒ (A] ⊆ (B];

(3) ((A]] = (A].

De�nition 1.2. [2] Let (S, ·,6) be an ordered semigroup. A nonempty subset A
of S is called a left (respectively, right) ideal of S if

(i) SA ⊆ A (respectively, AS ⊆ A);

(ii) for x ∈ A and y ∈ S, y 6 x implies y ∈ A.

If A is both a left and a right ideal of S, then A is called a (two-sided) ideal of S.

It is clear that every left, right and (two-sided) ideals of an ordered semigroup
S is a subsemigroup of S.

De�nition 1.3. [7] Let (S, ·,6 q) be an ordered semigroup and let m,n be non-
negative integers. A subsemigroup A of S is called an (m,n)-ideal of S if the
following hold:

(i) AmSAn ⊆ A;

(ii) for x ∈ A and y ∈ S, y 6 qx implies y ∈ A.

Here, let A0S = S and SA0 = S.

From De�nition 1.3, if m = 1, n = 1 then A is called a bi-ideal of S.
Note that if A is a nonempty subset of an ordered semigroup S, then the set

(A2∪ASA2] is a bi-ideal of S. Indeed: we have ((A2∪ASA2]] = (A2∪ASA2] and

(A2 ∪ASA2]S(A2 ∪ASA2]
= (A2 ∪ASA2](S](A2 ∪ASA2]
⊆ (A2SA2 ∪A2SASA2 ∪ASA2SA2 ∪ASA2SASA2]
⊆ (ASA2]
⊆ (A2 ∪ASA2].

Therefore, (A2 ∪ASA2] is a bi-ideal of S.
We de�ne (0, 2)-bi-ideals in an ordered semigroup analogue to [4] as follows:

De�nition 1.4. A subsemigroup A of an ordered semigroup (S, ·,6) is called a
(0, 2)-bi-ideal of S if A is both a bi-ideal and a (0, 2)-ideal of S.
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2. Main Results

We give a characterization of (0, 2)-ideals of an ordered semigroup in term of left
ideals as follows:

Lemma 2.1. Let (S, ·,6) be an ordered semigroup and let A ⊆ S. Then A is a
(0, 2)-ideal of S if and only if A is a left ideal of some left ideal of S.

Proof. If A is a (0, 2)-ideal of S, then

(A ∪ SA]A ⊆ (A2 ∪ SA2] ⊆ (A] = A

and ((A]] = (A]. Hence A is a left ideal of the left ideal (A ∪ SA] of S.
Conversely, assume that A is a left ideal of a left ideal L of S. Then

SA2 ⊆ SLA ⊆ LA ⊆ A.

Let x ∈ A and y ∈ S be such that y 6 x. Since x ∈ L, we have y ∈ L. The
assumption applies y ∈ A.

The following result give some characterizations of (1, 2)-ideals of an ordered
semigroup.

Theorem 2.2. Let (S, ·,6) be an ordered semigroup and let A ⊆ S. The following
statements are equivalent:

(i) A is a (1, 2)-ideal of S;

(ii) A is a left ideal of some bi-ideal of S;

(iii) A is a bi-ideal of some left ideal of S;

(iv) A is a (0, 2)-ideal of some right ideal of S;

(v) A is a right ideal of some (0, 2)-ideal of S.

Proof. (i) ⇒ (ii). If A is a (1, 2)-ideal of S, then

(A2 ∪ASA2]A = (A2 ∪ASA2](A] ⊆ (A3 ∪ASA3] ⊆ (A2 ∪ASA2] ⊆ (A] = A.

Clearly, if x ∈ A, y ∈ (A2 ∪ ASA2] such that y 6 x then y ∈ A. Hence A is a left
ideal of the bi-ideal (A2 ∪ASA2] of S.

(ii) ⇒ (iii). Let A be a left ideal of a bi-ideal B of S. Note that (A ∪ SA] is a
left ideal of S. By assumption, we have

A(A ∪ SA]A ⊆ (A](A ∪ SA](A] ⊆ (A3 ∪ASA2] ⊆ (A ∪BSBA] ⊆ (A ∪BA] ⊆
(A] = A.

Let x ∈ A, y ∈ (A ∪ SA] such that y 6 qx. Since x ∈ A, x ∈ B. Thus y ∈ B, so
y ∈ A. Therefore, A is a bi-ideal of the left ideal (A ∪ SA] of S.

(iii) ⇒ (iv). Assume that A is a bi-ideal of a left ideal L of S. Note that
(A ∪AS] is a right ideal of S. We have
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(A∪AS]A2 ⊆ (A∪AS](A2] ⊆ (A3∪ASA2] ⊆ (A∪ASLA] ⊆ (A∪ALA] ⊆ (A] = A.

Let x ∈ A, y ∈ (A ∪ AS] such that y 6 x, then x ∈ L. Thus y ∈ L, so y ∈ A.
Hence A is a (0, 2)-ideal of the right ideal (A ∪AS] of S.

(iv) ⇒ (v). If A is a (0, 2)-ideal of a right ideal R of S, then (A ∪ SA2] is a
(0, 2)-ideal of S and

A(A∪SA2] ⊆ (A](A∪SA2] ⊆ (A2∪ASA2] ⊆ (A∪RSA2] ⊆ (A∪RA2] ⊆ (A] = A.

Assume that x ∈ A, y ∈ (A ∪ SA2] such that y 6 x. Then x ∈ R, so y ∈ R, thus
y ∈ A. Hence (v) holds.

(v) ⇒ (i). If A is a right ideal of a (0, 2)-ideal R of S, then

ASA2 ⊆ ASR2 ⊆ AR ⊆ A.

Assume that x ∈ A, y ∈ S such that y 6 x. Since x ∈ R, so y ∈ R, thus y ∈ A.
Hence A is a (1, 2)-ideal of S.

The following characterize (1, 2)-ideals in term of left ideals and right ideals of
an ordered semigroup.

Lemma 2.3. Let (S, ·,6) be an ordered semigroup and let A be a subsemigroup
of S such that A = (A]. Then A is a (1, 2)-ideal of S if and only if there exist a
(0, 2)-ideal L of S and a right ideal R of S such that RL2 ⊆ A ⊆ R ∩ L.

Proof. Assume that A is a (1, 2)-ideal of S. We have (A ∪ SA2] and (A ∪ AS]
are (0, 2)-ideal and right ideal of S, respectively. Setting L = (A ∪ SA2] and
R = (A ∪AS], we obtain

RL2 ⊆ (A3 ∪A2SA2 ∪ASA2 ∪ASASA2] ⊆ (A3 ∪ASA2] ⊆ (A] = A.

It is clear that A ⊆ R ∩ L.
Conversely, let R be a right ideal of S and L be a (0, 2)-ideal of S such that

RL2 ⊆ A ⊆ R ∩ L. Then

ASA2 ⊆ (R ∩ L)S(R ∩ L)(R ∩ L) ⊆ RSL2 ⊆ RL2 ⊆ A.

Hence A is a (1, 2)-ideal of S.

De�nition 2.4. A (0, 2)-bi-ideal A of an ordered semigroup (S, ·,6) with a zero
element 0 will be said to be 0-minimal if A 6= {0} and {0} is the only (0, 2)-bi-ideal
of S properly contained in A.

Assume that (S, ·,6) is an ordered semigroup with a zero element 0. It is easy
to see that every left ideal of S is a (0, 2)-ideal of S. Hence if L is a 0-minimal
(0, 2)-ideal of S and A is a left ideal of S contained in L then A = {0} or A = L.
What can we say about (0, 2)-ideals contained in some 0-minimal left ideal of S ?
The answer to the same question for a semigroup without order was given in [4].
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Lemma 2.5. Let (S, ·,6) be an ordered semigroup with a zero element 0. Suppose
that L is a 0-minimal left ideal of S and A is a subsemigroup of L such that
A = (A]. Then A is a (0, 2)-ideal of S contained in L if and only if (A2] = {0} or
A = L.

Proof. Assume that A is a (0, 2)-ideal of S contained in L. Then (SA2] ⊆ L. Since
(SA2] is a left ideal of S, we have (SA2] = {0} or (SA2] = L. If (SA2] = L, then
L = (SA2] ⊆ (A]. Hence A = L. Let (SA2] = {0}. Since S(A2] ⊆ (SA2] = {0} ⊆
(A2], it follows that (A2] is a left ideal of S contained in L. By the minimality
of L, (A2] = {0} or (A2] = L. If A2 = L, then A = L. The opposite direction is
clear.

Lemma 2.6. Let (S, ·,6) be an ordered semigroup with a zero element 0 and let
L be a 0-minimal (0, 2)-ideal of S. Then (L2] = {0} or L is a 0-minimal left ideal
of S.

Proof. We have

S(L2]2 = S(L2](L2] ⊆ (SL2](L2] ⊆ (L](L2] ⊆ (L2].

Then (L2] is a (0, 2)-ideal of S contained in L, hence (L2] = {0} or (L2] = L.
Suppose that (L2] = L. Since SL = S(L2] ⊆ (SL2] ⊆ (L] = L, we obtain L
is a left ideal of S. Let B be a left ideal of S contained in L. It follows that
SB2 ⊆ B2 ⊆ B ⊆ L. This shows that B is a (0, 2)- ideal of S contained in L, so
B = {0} or B = L.

The following corollary follows from Lemma 2.5 and Lemma 2.6:

Corollary 2.7. Let (S, ·,6) be an ordered semigroup without zero. Then L is a
minimal (0, 2)-ideal of S if and only if L is a minimal left ideal of S.

Lemma 2.8. Let (S, ·,6 q) be an ordered semigroup without zero and let A be a
nonempty subset of S. Then A is a minimal (2, 1)-ideal of S if and only if A is a
minimal bi-ideal of S.

Proof. Assume that A is a minimal (2, 1)-ideal of S. Then (A2SA] is a (2, 1)-ideal
of S contained in A, and hence (A2SA] = A. Since

ASA = (A2SA]SA ⊆ (A2SASA] ⊆ (A2SA] = A,

it follows that A is a bi-ideal of S. Suppose that there exits a bi-ideal B of S
contained in A. Then B2SB ⊆ B2 ⊆ B ⊆ A, so B is a (2, 1)-ideal of S contained
in A. Using the minimality of A we get B = A.

Conversely, assume that A is a minimal bi-ideal of S. Then A is a (2, 1)-ideal
of S. Let D be a (2, 1)-ideal of S contained in A. Since (D2SD]S(D2SD] ⊆
(D2(SDSD2S)D] ⊆ (D2SD], we have (D2SD] is a bi-ideal of S. This implies
that (D2SD] = A. Since A = (D2SD] ⊆ (D] = D, A = D. Therefore A is a
minimal (2, 1)-ideal of S.
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Lemma 2.9. Let (S, ·,6) be an ordered semigroup and let A ⊆ S. Then A is a
(0, 2)-bi-ideal of S if and only if A is an ideal of some left ideal of S.

Proof. Assume that A is a (0, 2)-bi-ideal of S. Then

S(A2 ∪ SA2] ⊆ (SA2 ∪ S2A2] ⊆ (SA2] ⊆ (A2 ∪ SA2],

hence (A2 ∪ SA2] is a left ideal of S. Since

A(A2 ∪ SA2] ⊆ (A3 ∪ASA2] ⊆ (A] = A, (A2 ∪ SA2]A ⊆ (A3 ∪ SA3] ⊆ (A] = A

we obtain A is an ideal of (A2 ∪ SA2].
Conversely, if A is an ideal of a left ideal L of S then ASA ⊆ ASL ⊆ AL ⊆ A.

Hence, by Lemma 2.1, A is a (0, 2)-bi-ideal of S.

Theorem 2.10. Let (S, ·,6) be an ordered semigroup with a zero element 0. If A
is a 0-minimal (0, 2)-bi-ideal of S, then exactly one of the following cases occurs:

(i) A = {0},
(
aS1a

]
= {0};

(ii) A = ({0, a}], a2 = 0, (aSa] = A;

(iii) ∀a ∈ A\{0},
(
Sa2

]
= A.

Proof. Assume that A is a 0-minimal (0, 2)-bi-ideal of S. Let a ∈ A\{0}. Then
(Sa2] ⊆ A. Moreover, (Sa2] is a (0, 2)-bi-ideal of S. Hence (Sa2] = {0} or
(Sa2] = A.

Suppose that (Sa2] = {0}. Since a2 ∈ A, we have either

a2 = a or a2 = 0 or a2 ∈ A\{0, a}.

If a2 = a, then a = 0. This is a contradiction. Suppose that a2 ∈ A\{0, a}. We
have

S1({0} ∪ a2]2 ⊆ ({0} ∪ Sa2] = ({0}] ∪ (Sa2] = {0} ⊆ ({0} ∪ a2],

({0} ∪ a2]S({0} ∪ a2] ⊆ (a2Sa2] ⊆ (Sa2] = {0} ⊆ {0, a2}.

Then ({0}∪a2] is a (0, 2)-bi-ideal of S contained in A. We observe that ({0}∪a2] 6=
{0} and ({0} ∪ a2] 6= A. This is a contradiction because A is 0-minimal (0, 2)-bi-
ideal of S. Therefore, a2 = 0, hence, by Lemma 2.9, A = ({0, a}]. Now, using
(aSa] is a (0, 2)-bi-ideal of S contained in A we obtain (aSa] = {0} or (aSa] = A.
Therefore, (Sa2] = {0} implies either A = {0, a} and (aS1a] = {0} or A = {0, a},
a2 = {0} and (aSa] = A. If (Sa2] 6= {0}, then (Sa2] = A.

Corollary 2.11. Let A be a 0-minimal (0, 2)-bi-ideal of an ordered semigroup
(S, ·,6) with a zero element 0. If (A2] 6= {0}, then A = (Sa2] for every a ∈ A\{0}.

De�nition 2.12. An ordered semigroup (S, ·,6) with a zero element 0 is said to
be 0-(0, 2)-bisimple if (S2] 6= {0} and {0} is the only proper (0, 2)-bi-ideal of S.
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Corollary 2.13. Let (S, ·,6) be an ordered semigroup with zero 0. Then S is
0-(0, 2)-bisimple if and only if (Sa2] = S for every a ∈ S\{0}.

Proof. Assume that (Sa2] = S for all a ∈ S\{0}. Let A be a (0, 2)-bi-ideal of S
such that A 6= {0}. Let a ∈ A\{0}. Since S = (Sa2] ⊆ (SA2] ⊆ (A] = A, so
S = A. Since S = (Sa2] ⊆ (SS] = (S2] we have (S2] = S 6= {0}. Therefore S is
0-(0, 2)-bi-simple.

The converse statement follows from Corollary 2.11.

Theorem 2.14. Let (S, ·,6) be an ordered semigroup with zero 0. Then S is
0-(0, 2)-bisimple if and only if S is left 0-simple.

Proof. Assume that S is 0-(0, 2)-bisimple. If A is a left ideal of S, then A is a
(0, 2)-bi-ideal of S, and so A = {0} or A = S.

Conversely, assume that S is left 0-simple. Let a ∈ S\{0}. Then (Sa] = S,
hence

S = (Sa] = ((Sa]a] ⊆ ((Sa2]] = (Sa2].

By Corollary 2.13, S is 0-(0, 2)-bisimple.

Theorem 2.15. Let (S, ·,6) be an ordered semigroup with a zero element 0. If A
is a 0-minimal (0, 2)-bi-ideal of S, then either (A2] = {0} or A is left 0-simple.

Proof. Assume that (A2] 6= {0}. Using Corollary 2.11, (Sa2] = A for every a ∈
A\{0}. Since a2 ∈ A\{0} for every a ∈ A\{0}, we have a4 = (a2)2 ∈ A\{0} for
every a ∈ A\{0}. Let a ∈ A\{0}. Since

(Aa2]S1(Aa2] ⊆ (AAa2] ⊆ (Aa2],

S(Aa2]2 ⊆ (SAa2Aa2] ⊆ (SA2a2] ⊆ (Aa2],

we obtain (Aa2] is a (0, 2)-bi-ideal of S contained in A. Hence (Aa2] = {0} or
(Aa2] = A. Since a4 ∈ Aa2 ⊆ (Aa2] and a4 ∈ A\{0}, we get (Aa2] = A. We
conclude by Corollary 2.13 that A is 0-(0, 2)-bisimple. Theorem 2.14 applies A is
left 0-simple.
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Intra-regular, left quasi-regular and semisimple

fuzzy ordered semigroups

Niovi Kehayopulu

Abstract. We characterize the ordered semigroup which are both intra-regular and left quasi-
regular also the ordered semigroups which are both intra-regular and semisimple in terms of
fuzzy sets.

In this paper we prove that an ordered semigroup S is intra-regular and left
quasi-regular if and only if for every fuzzy subset f of S we have f � 1 ◦ f2 ◦ 1 ◦ f .
It is intra-regular and semisimple if and only if for every fuzzy subset f of S we
have f � 1◦f2 ◦1◦f ◦1. Moreover, the property f � f ◦1◦f2 ◦1 characterizes the
ordered semigroups which are intra-regular and right quasi-regular. An ordered
semigroup (S, ·,6) is called left (resp. right) quasi-regular if a ∈ (SaSa] (resp.
a ∈ (aSaS]) for every a ∈ S. In other words, S is left (resp. right) quasi-regular
if for every a ∈ S there exist x, y ∈ S such that a 6 xaya (resp. a 6 axay). An
ordered semigroup S is called semisimple if a ∈ (SaSaS] for every a ∈ S. That
is, if for every a ∈ S there exist x, y, z ∈ S such that a 6 xayaz [2]. Intra-regular
ordered semigroups are well known. These are the ordered semigroups in which
a ∈ (Sa2S] for each a ∈ S. We remind that for a subset H of S, (H] is the set
{t ∈ S | t 6 h for some h ∈ H}. As always, denote by 1 the fuzzy subset of S
de�ned by 1(x) = 1 for every x ∈ S. Recall that if S is an intra-regular ordered
semigroup, then 1 ◦ 1 = 1. If f, g are fuzzy subsets of S such that f � g, then for
any fuzzy subset h of S we have f ◦h � g ◦h and h◦f � h◦g. Denote f2 := f ◦f ,
and by fa the characteristic function on the set S de�ned by fa(x) = 1 if x = a
and fa(x) = 0 if x 6= a (a ∈ S). Denote by Aa the subset of S × S de�ned by
Aa := {(x, y) ∈ S × S | a 6 xy} [3]. The paper in a continuation of our papers
in [1,5], for information not given in the present paper we refer to those papers.
Exactly as in [1,5], our aim is to present a proof which is drastically simpli�ed
than the usual one.

Lemma 1. Let (S, ·,6) be an ordered groupoid, f , g fuzzy subsets of S and a ∈ S.
The following are equivalent:

(1) (f ◦ g)(a) 6= 0.
(2) There exists (x, y) ∈ Aa such that f(x) 6= 0 and g(y) 6= 0.

2010 Mathematics Subject Classi�cation: 06F05 (08A72).
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Lemma 2. Let (S, ·,6) be an ordered groupoid, f a fuzzy subset of S and a ∈ S.
The following are equivalent:

(1) (f ◦ 1)(a) 6= 0.
(2) There exists (x, y) ∈ Aa such that f(x) 6= 0.

Lemma 3. Let (S, ·,6) be an ordered groupoid, g a fuzzy subset of S and a ∈ S.
The following are equivalent:

(1) (1 ◦ g)(a) 6= 0.
(2) There exists (x, y) ∈ Aa such that g(y) 6= 0.

Theorem 4. An ordered semigroup S is intra-regular and left quasi-regular if and

only if for every fuzzy subset f of S we have

f � 1 ◦ f2 ◦ 1 ◦ f.

Proof. (⇒). Let a ∈ S. By hypothesis, there exist x, y, z, t ∈ S such that a 6 xa2y
and a 6 zata. Then we have a 6 z(xa2y)ta. Since (zxa2yt, a) ∈ Aa, we have
Aa 6= ∅ and

(1 ◦ f2 ◦ 1 ◦ f)(a) =
∨

(u,v)∈Aa

min{(1 ◦ f2 ◦ 1)(u), f(v)}

> min{(1 ◦ f2 ◦ 1)(zxa2yt), f(a)}.

Since (zxa2, yt) ∈ Azxa2yt, we have Azxa2yt 6= ∅ and

(1 ◦ f2 ◦ 1)(zxa2yt) =
∨

(u,v)∈Azxa2yt

min{(1 ◦ f2)(u), 1(v)}

> min{(1 ◦ f2)(zxa2), 1(yt)}
= (1 ◦ f2)(zxa2).

Since (zxa, a) ∈ Azxa2 , we have Azxa2 6= ∅ and

(1 ◦ f2)(zxa2) =
∨

(u,v)∈Azxa2

min{(1 ◦ f)(u), f(v)}

> min{(1 ◦ f)(zxa), f(a)}.

Since (zx, a) ∈ Azxa, we have Azxa 6= ∅ and

(1 ◦ f)(zxa) =
∨

(u,v)∈Azxa

min{1(u), f(v)}

> min{1(zx), f(a)}
= f(a).
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Thus we have

(1 ◦ f2 ◦ 1 ◦ f)(a) > min{(1 ◦ f2 ◦ 1)(zxa2yt), f(a)}
> min{(1 ◦ f2)(zxa2), f(a)}
> min{min{(1 ◦ f)(zxa), f(a)}, f(a)}
> min{f(a), f(a)}
= f(a).

(⇐). Let a ∈ S. Since fa is a fuzzy set in S, by hypothesis, we have 1 = fa(a) 6
(1◦f2

a ◦1◦fa)(a). Since 1◦f2
a ◦1◦fa is a fuzzy set in S, we have (1◦f2

a ◦1◦fa)(a) 6 1.
Thus we have (1 ◦ f2

a ◦ 1 ◦ fa)(a) = 1. By Lemma 1, there exists (x, y) ∈ Aa such
that (1 ◦ f2

a )(x) 6= 0 and (1 ◦ fa)(y) 6= 0. Since (1 ◦ f2
a )(x) 6= 0, by Lemma 3,

there exists (z, t) ∈ Ax such that f2
a (t) 6= 0. Since (1 ◦ fa)(y) 6= 0, by Lemma 3,

there exists (u, v) ∈ Ay such that fa(v) 6= 0. Since f2
a (t) 6= 0, by Lemma 1, there

exists (w, h) ∈ At such that fa(w) 6= 0 and fa(h) 6= 0. Since fa(v) 6= 0, we have
fa(v) = 1. Similarly fa(w) = 1, fa(h) = 1. Hence we obtain

a 6 xy 6 (zt)(uv) 6 z(wh)uv and v = w = h = a.

Then a 6 za2ua ∈ Sa2S ∩ SaSa. Then a ∈ (Sa2S] and a ∈ (SaSa], that is, S is
intra-regular and left quasi-regular. �

In an analogous way we prove the next theorem.

Theorem 5. An ordered semigroup S is intra-regular and right quasi-regular if

and only if for every fuzzy subset f of S we have

f � f ◦ 1 ◦ f2 ◦ 1.

Theorem 6. An ordered semigroup S is intra-regular and semisimple if and only

if for every fuzzy subset f of S we have

f � 1 ◦ f2 ◦ 1 ◦ f ◦ 1.

Proof. (⇒). Let a ∈ S. By hypothesis, there exist x, y, z, t, h ∈ S such that
a 6 xa2y and a 6 zatah, then a 6 z(xa2y)tah. Since (zxa2yta, h) ∈ Aa, we have
Aa 6= ∅ and

(1 ◦ f2 ◦ 1 ◦ f ◦ 1)(a) =
∨

(u,v)∈Aa

min{(1 ◦ f2 ◦ 1 ◦ f)(u), 1(v)}

> min{(1 ◦ f2 ◦ 1 ◦ f)(zxa2yta), 1(h)}
= (1 ◦ f2 ◦ 1 ◦ f)(zxa2yta).

Since (zxa2yt, a) ∈ Azxa2yta, we have Azxa2yta 6= ∅ and

(1 ◦ f2 ◦ 1 ◦ f)(zxa2yta) =
∨

(u,v)∈Azxa2yta

min{(1 ◦ f2 ◦ 1)(u), f(v)}

> min{(1 ◦ f2 ◦ 1)(zxa2yt), f(a)}.
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Since (zxa, ayt) ∈ Azxa2yt, we have Azxa2yt 6= ∅ and

(1 ◦ f2 ◦ 1)(zxa2yta) =
∨

(u,v)∈Azxa2yt

min{(1 ◦ f2)(u), 1(v)}

> min{(1 ◦ f2)(zxa), 1(ayt)}
= (1 ◦ f2)(zxa).

Since (zxa, a) ∈ Azxa2 , we have Azxa2 6= ∅ and

(1 ◦ f2)(zxa) =
∨

(u,v)∈Azxa2

min{(1 ◦ f)(u), f(v)}

> min{(1 ◦ f)(zxa), f(a)}.

Since (zx, a) ∈ Azxa, we have Azxa 6= ∅ and

(1 ◦ f)(zxa) =
∨

(u,v)∈Azxa

min{1(u), f(v)}

> min{1(zx), f(a)}
= f(a).

Thus we have

(1 ◦ f2 ◦ 1 ◦ f ◦ 1)(a) > (1 ◦ f2 ◦ 1 ◦ f)(zxa2yta)
> min{(1 ◦ f2 ◦ 1)(zxa2yt), f(a)}
> min{(1 ◦ f2)(zxa), f(a)}
> min{min{(1 ◦ f)(zxa), f(a)}, f(a)}
= min{f(a), f(a)}
= f(a).

(⇐). Let a ∈ S. Since fa and 1◦f2
a ◦1◦fa ◦1 are fuzzy sets in S, by hypothesis, we

have 1 = fa(a) 6 (1◦f2
a ◦1◦fa◦1)(a) 6 1, then (1◦f2

a ◦1◦fa◦1)(a) = 1. By Lemma
1, there exists (x, y) ∈ Aa such that (1 ◦ f2

a )(x) 6= 0 and (1 ◦ fa ◦ 1)(y) 6= 0. Since
(1 ◦ f2

a )(x) 6= 0, by Lemma 3, there exists (z, t) ∈ Ax such that f2
a (t) 6= 0. Since

(1 ◦ fa ◦ 1)(y) 6= 0, by Lemma 3, there exists (u, v) ∈ Ay such that (fa ◦ 1)(v) 6= 0.
Since f2

a (t) 6= 0, by Lemma 1, there exists (h, k) ∈ At such that fa(h) 6= 0,
fa(k) 6= 0. Since (fa ◦ 1)(v) 6= 0, by Lemma 2, there exists (g, w) ∈ Av such that
fa(g) 6= 0. We have

a 6 xy 6 (zt)(uv) 6 z(hk)uv 6 z(hk)u(gw) and h = k = g = a.

Then a 6 zhkugw = za2uaw ∈ Sa2S ∩ SaSaS, so a ∈ (Sa2S] and a ∈ (SaSaS]
which means that S is intra-regular and semisimple. �

For a second proof of Theorems 4 and 6 we need the following lemmas.
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Lemma 7. [4] An ordered semigroup S is intra-regular if and only if for any fuzzy

subset f of S we have f � 1 ◦ f2 ◦ 1.

Lemma 8. [2] An ordered semigroup S is left (resp. right) quasi-regular if and

only if for any fuzzy subset f of S we have f � 1 ◦ f ◦ 1 ◦ f (resp. f � f ◦ 1 ◦ f ◦ 1).

Lemma 9. [2] An ordered semigroup S is semisimple if and only if for any fuzzy

subset f of S we have f � 1 ◦ f ◦ 1 ◦ f ◦ 1.

Proof of Theorem 4. (⇒). Let f be a fuzzy subset of S. Since S is intra-regular,
by Lemma 7, we have f � 1 ◦ f2 ◦ 1. Since S is left quasi-regular, by Lemma 8,
we have f � 1 ◦ f ◦ 1 ◦ f . Thus we have

f � 1 ◦ f ◦ 1 ◦ f � 1 ◦ (1 ◦ f2 ◦ 1) ◦ 1 ◦ f = 1 ◦ f2 ◦ 1 ◦ f.

(⇐). By hypothesis, for any fuzzy subset f of S, we have

f � 1 ◦ f2 ◦ 1 ◦ f � 1 ◦ f2 ◦ 1, 1 ◦ f ◦ 1 ◦ f.

By Lemmas 7 and 8, S is intra-regular and left quasi-regular. �

Proof of Theorem 6. (⇒). By Lemmas 7 and 9, for any fuzzy subset f of S, we
have f � 1 ◦ f2 ◦ 1 and f � 1 ◦ f ◦ 1 ◦ f ◦ 1, then

f � 1 ◦ (1 ◦ f2 ◦ 1) ◦ 1 ◦ f ◦ 1 = 1 ◦ f2 ◦ 1 ◦ f ◦ 1.

(⇐). For any fuzzy subset f of S, by hypothesis, we have

f � 1 ◦ f2 ◦ 1 ◦ f ◦ 1 � 1 ◦ f2 ◦ 1, 1 ◦ f ◦ 1 ◦ f ◦ 1.

By Lemmas 7 and 9, S is intra-regular and semisimple. �
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Nuclei and commutants of C-loops

Muhammad Shah, Asif Ali and Volker Sorge

Abstract. C-loops are loops that satisfy the identity x(y(yz)) = ((xy)y)z. In this note we use
the order of nuclei of C-loops to show that (1) nonassociative C-loops of order 2p, where p is
prime, are Steiner loops, (2) nonassociative C-loops of order 3n are non-simple and non-Steiner,
(3) no nonassociative C-loop of order 2·3t, t > 1 exists, and (4) if every element of the commutant
of a C-loop is of odd order the commutant forms a subloop.

1. Introduction

C-loops are loops satisfying the identity x(y(yz)) = ((xy)y)z. The nature of the
identity, where unlike in other Bol-Moufang identities the repeated variable is not
separated by either of the other variables, makes them a di�cult target of study.
Nevertheless they have been investigated in [1, 2, 3, 4, 6, 9, 10, 12, 13, 14, 15].

In this note we extend some results of [14], in particular [14, Proposition 3.1]
that states that only even order nonassociative C-loops exist. Investigating this
result further using the order of nuclei of C-loops, we prove that (1) all nonassocia-
tive C-loops of order 2p, where p is prime, are Steiner loops, (2) all nonassociative
C-loops of order 3n are non-simple and non-Steiner, (3) there exists no nonasso-
ciative C-loop of order 2 · 3t, t > 1, and (4) if C(L) is the commutant of a C-loop
L and every element of C(L) is of odd order, then C(L) is a subloop of L.

All examples presented in this paper have been computed by FINDER [16] and
veri�ed by GAP [11].

2. Preliminaries

In this paper we are concerned exclusively with �nite loops. Let L be a loop we
then de�ne left nucleus Nλ, middle nucleus Nµ, and right nucleus Nρ of L as the
sets

Nλ = {x ∈ L;x(yz) = (xy)z for every y, z ∈ L},
Nµ = {x ∈ L; y(xz) = (yx)z for every y, z ∈ L},
Nρ = {x ∈ L; y(zx) = (yz)x for every y, z ∈ L}.

2010 Mathematics Subject Classi�cation: 20N99
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The nucleus N of L is the de�ned as N = Nλ ∩Nµ ∩Nρ. N is subgroup of L and,
in particular, for C-loops we have N = Nλ = Nµ = Nρ.

We also de�ne the commutant C(L) of a loop L to be the set

C(L) = {c ∈ L : cx = xc for every x ∈ L}.

The following hold for a C-loop L with commutant C(L) and nucleus N.
(i) There is no C-loop with nucleus of index 2 [14, Lemma 2.9].
(ii) C(L) is a normal subgroup of L [14, Proposition 2.7].

(iii) If L is nonassociative, of order n and N of order m. Then
(a) n/m ≡ 2(mod 6) or n/m ≡ 4(mod 6),
(b) n is even, and
(c) if n = pk for some prime p and positive integer k, then p = 2 and

k > 3 [14, Proposition 3.1].
Moreover, there is a nonassociative non-Steiner C-loop of order 2k for every k > 3.

3. Nucleus of C-loops

We start our considerations with a corollary to [14, Proposition 3.1].

Corollary 3.1. Let L be a nonassociative C-loop of order n with nucleus N of

order m. Then

(i) n/m ≡ 1(mod3) or n/m ≡ 2(mod3),
(ii) (n/2)/m is an integer of the form 3k − 1 or 3k + 1,

(iii) (n/m)2 ≡ 4(mod6) or n/m ≡ 4(mod6),
(iv) n/m is of the form 2(3k − 1) or (n/m)2 is of the form 2(3k − 1).

Proof. (i) and (iii) are straightforward.
(ii) We have

n/m ≡ 2(mod6) or n/m ≡ 4(mod6)
n/m = 6k + 2 or n/m = 6k + 4 for some positive integer k

n/m = 2(3k + 1) or n/m = 2(3k + 2)
n/2m = 3k + 1 or n/2m = 3k + 2

(n/2)/m = 3k + 1 or (n/2)/m = 3k + 2. But every integer of the form

3k + 2 is also of the form 3k − 1.

Thus (n/2)/m = 3k + 1 or (n/2)/m = 3k − 1.
(iv) By part (iii), we have

(n/m)2 ≡ 4(mod6) or n/m ≡ 4(mod6)
(n/m)2 = 6k + 4 or n/m = 6k + 4 for some positive integer k

(n/m)2 = 2(3k + 2) or n/m = 2(3k + 2)
(n/m)2 = 2(3k − 1) or n/m = 2(3k − 1).
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Proposition 3.2. A nonassociative C-loop L of order 3n is non-simple and non-

Steiner.

Proof. L/N(L) is Steiner, hence 3n/m is congruent to 2 or 4 mod 6. So 3n/m is
not divisible by 3, thus m is divisible by 3. Therefore, N(L) is a group containing
an element of order 3 and hence L is not Steiner. Since N(L) is nontrivial and
since N(L) is normal in L by [14], it follows that L is not simple.

The following example illustrates the above proposition.

Example 3.3. A nonassociative, noncommutative, non-Steiner non-simple C-loop
of order 12 (size of nucleus = 3) is given in Table 1.

· 0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 2 3 4 5 6 7 8 9 10 11
1 1 2 0 4 5 3 7 8 6 10 11 9
2 2 0 1 5 3 4 8 6 7 11 9 10
3 3 4 5 0 1 2 9 10 11 6 7 8
4 4 5 3 1 2 0 10 11 9 7 8 6
5 5 3 4 2 0 1 11 9 10 8 6 7
6 6 7 8 10 11 9 0 1 2 5 3 4
7 7 8 6 11 9 10 1 2 0 3 4 5
8 8 6 7 9 10 11 2 0 1 4 5 3
9 9 10 11 8 6 7 3 4 5 2 0 1
10 10 11 9 6 7 8 4 5 3 0 1 2
11 11 9 10 7 8 6 5 3 4 1 2 0

Table 1:

· 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 0 3 2 5 4 9 8 7 6
2 2 3 0 1 6 8 4 9 5 7
3 3 2 1 0 7 9 8 4 6 5
4 4 5 6 7 0 1 2 3 9 8
5 5 4 8 9 1 0 7 6 2 3
6 6 9 4 8 2 7 0 5 3 1
7 7 8 9 4 3 6 5 0 1 2
8 8 7 5 6 9 2 3 1 0 4
9 9 6 7 5 8 3 1 2 4 0

Table 2:

Corollary 3.4. Let L be a nonassociative C-loop of order n with nucleus N of

order m, then if for some positive integer t, 3t divides n, then 3t also divides m.

The next proposition con�rms that there are indeed some even orders for which
no nonassociative C-loop exists.

Proposition 3.5. There is no nonassociative C-loop of order 2 · 3t for t > 1.

Proof. n/m is not divisible by 3, hence L/N(L) is of index at most 2, which is
impossible by [14].

The following proposition states that there exist orders for which all nonasso-
ciative C-loops will be Steiner.

Proposition 3.6. A nonassociative C-loop L of order 2p with p prime, is Steiner.

Proof. Since L is nonassociative, p > 2. Let m be the order of N(L). Since N(L)
is normal in L by [14], m divides 2p. If m = 2p, L = N(L) is a group. If m = p
then N(L) is of index 2 in L, which is impossible by [14]. Similarly, by [14] L/N(L)
is Steiner. If m = 2 then L/N(L) is Steiner of order p, which again is impossible.
Thus m = 1 and L is Steiner.
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Example 3.7. The smallest nonassociative C-loop (size of nucleus = 1) is given
in table 2. Since its order is n = 10 = 2 · 5, it is also Steiner.

It is well known that there are two nonassociative C-loops of order 14. Being
of order of the form 2p both are Steiner with nucleus of order 1.

Remark 3.8. Exploiting the results of Propositions 3.2, 3.5, and 3.6 can speed
up automatic enumeration of C-loops. For example, we know by 3.2 that there
is no nonassociative C-loop of order 18 , by 3.6 that C-loops of order 24 are all
non-Steiner and by 3.5 that C-loops of order 22 are all Steiner.

Next we give the general forms of the nuclei of the nonassociative C-loops.
Here p is an odd prime other than 3.

Order of C-loop Admissible order of nucleus
2 · 3kp, k > 1 3k

2p 1

2l, l > 4 1, 2, 22, . . . , 2l−2

2l · 3k, l > 1, k > 1 2h · 3k, 0 6 h 6 l − 2

22p 1, 2, p

2p2 1, p

2kp, k > 2 2h, 2lp, 0 6 h 6 k − 1, 0 6 l 6 k − 2

2pk, k > 2 pl, 0 6 l 6 k − 1

22p2 1, 2, p, p2, 2p

22 · 3 · p 3, 6, 3p

As application of the above table we can give the orders of C-loops and the
admissible orders of their corresponding nuclei in the following table.

C-loop Nucleus
10 1

12 3

14 1

16 1, 2, 4

20 1, 2, 5

22 1

24 3, 6

26 1

28 1, 2, 7

30 3

32 1, 2, 4, 8

34 1

36 9

38 1

40 1, 2, 4, 5, 10

C-loop Nucleus
42 3

44 1, 2, 11

46 1

48 3, 6, 12

50 1, 5

52 1, 2, 13

56 1, 2, 4, 7, 14

58 1

60 3, 6, 15

62 1

64 1, 2, 4, 8, 16

66 3

68 1, 2, 7

70 1, 5, 7

72 9, 18

C-loop Nucleus
74 1

76 1, 2, 19

78 3

80 1, 2, 4, 5, 8, 10, 20

82 1

84 3, 6, 21

86 1

88 1, 2, 4, 11

90 9, 18, 45

92 1, 2, 23

94 1

96 3, 6, 12

98 1, 7

100 1, 2, 5
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4. Commutant of C-loops

The commutant of a loop is also known as the centrum, Moufang center or semi-
center [8]. As discussed in [8], in a group, or even a Moufang loop, the commutant
is a subloop, but this does not need to be the case in general. In [8], it has been
proved that the commutant of a Bol loop of odd order is a subloop. In the fol-
lowing we discuss such a special case for the commutant of C-loops, which is not
necessarily a subloop as the following example demonstrates:

Example 4.1. Consider the following nonassociative �exible C-loop of order 20,
which has a commutant as {0, 1, 2, 3, 4, 5} that is not a subloop.

· 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18
2 2 3 1 0 6 7 5 4 10 11 9 8 18 19 16 17 15 14 13 12
3 3 2 0 1 7 6 4 5 11 10 8 9 19 18 17 16 14 15 12 13
4 4 5 6 7 1 0 3 2 12 13 16 17 9 8 18 19 11 10 15 14
5 5 4 7 6 0 1 2 3 13 12 17 16 8 9 19 18 10 11 14 15
6 6 7 5 4 3 2 0 1 14 15 18 19 16 17 8 9 12 13 10 11
7 7 6 4 5 2 3 1 0 15 14 19 18 17 16 9 8 13 12 11 10
8 8 9 10 11 12 13 15 14 0 1 2 3 4 5 7 6 18 19 16 17
9 9 8 11 10 13 12 14 15 1 0 3 2 5 4 6 7 19 18 17 16
10 10 11 9 8 16 17 19 18 2 3 1 0 15 14 12 13 5 4 6 7
11 11 10 8 9 17 16 18 19 3 2 0 1 14 15 13 12 4 5 7 6
12 12 13 18 19 9 8 17 16 4 5 14 15 1 0 11 10 6 7 3 2
13 13 12 19 18 8 9 16 17 5 4 15 14 0 1 10 11 7 6 2 3
14 14 15 16 17 18 19 9 8 6 7 13 12 10 11 1 0 3 2 5 4
15 15 14 17 16 19 18 8 9 7 6 12 13 11 10 0 1 2 3 4 5
16 16 17 15 14 11 10 13 12 18 19 5 4 7 6 3 2 0 1 8 9
17 17 16 14 15 10 11 12 13 19 18 4 5 6 7 2 3 1 0 9 8
18 18 19 13 12 15 14 11 10 16 17 7 6 3 2 5 4 8 9 0 1
19 19 18 12 13 14 15 10 11 17 16 6 7 2 3 4 5 9 8 1 0

We now investigate a condition under which the commutant of C-loop will be
a subloop.

Proposition 4.2. Let C(L) be the commutator of a C-loop L. If every element

in C(L) has odd order then C(L) is a subloop of L.

Proof. Since C(L) is has odd order by [14], then in fact, C(L) = Z(L). By [14] L
is power-alternative, thus C(L) is closed under powers. Now, let a, b ∈ C(L) with
|a| = 2k + 1. Then a = a2k+2 is a square, hence in N(L) again by [14]. The rest
of the proof is clear from this observation.
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Simple ternary semigroups

G. Sheeja and S. Sri Bala

Abstract. Simple ternary semigroups are studied using idempotent pairs. The concept of
primitive idempotent pairs is introduced and the connection between them and minimal left
(right) ideals are studied. An example of ternary semigroups containing primitive idempotent
pairs is given. Some simple ternary semigroups containing a primitive idempotent pair are
characterized.

1. Introduction

Investigation of ideals is an essential part of the study of any algebraic system.
Investigation of ideals and radicals in ternary semigroups was initiated by Sioson
[16]. The study has been continued by many authors for ternary semigroups and
more generally for n-ary semigroups [8, 9, 10]. Cyclic ternary groups are described
by Dörnte [3]. The n-ary power was introduced by Post [12]. The notion of minimal
(maximal) left and right ideals in a ternary semigroups has been studied in [9] and
a characterization has been obtained. In this paper we study some aspects of
ternary semigroups such as Green's relations and simplicity. The de�nition of D-
and H-equivalences given here are more general than those de�ned in [2]. In this
paper a 0-t-simple ternary semigroup is de�ned and a characterization is obtained.
Primitive idempotent pairs in a ternary semigroup are de�ned. Some results for 0-
t-simple ternary semigroup which contains primitive idempotent pairs are proved.
A connection between primitive idempotents and minimal (left and right) ideals
are established. Completely 0-t-simple ternary semigroups are introduced and
characterized.

2. (0)-simple ternary semigroups

A ternary semigroup is called (right, left) simple if it does not contains any proper
(right, left) ideals. A ternary semigroup T is called t-simple if it does not contain
any proper two-sided ideal. A t-simple ternary semigroup is simple. A simple
ternary semigroup is surjective, i.e., T = T<1> = [TTT ].

2010 Mathematics Subject Classi�cation: 20N10
Keywords: 0-simple, t-simple, 0-t-simple, primitive idempotent pairs, Green's equivalence,
completely 0-t-simple.
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For other de�nitions we refer [8, 9, 16].

We start with the following simple lemma proved in [8].

Lemma 2.1. A ternary semigroup T is a right (left) simple if and only if [aTT ] =
T (respectively, [TTa] = T ) for all a ∈ T.

From this lemma we deduce

Corollary 2.2. A ternary semigroup T is a right (left) simple if and only if for

given a, b ∈ T there exist u, v ∈ T such that [auv] = b.

The following facts are almost obvious

Lemma 2.3. A ternary semigroup T is a right (left) simple if and only if [abT ] =
T (resp. [Tab] = T ) for all a, b ∈ T.

Corollary 2.4. A ternary semigroup T is a right (left) simple if and only if for

given a, b, c ∈ T there exist x ∈ T such that [abx] = c (resp. [xab] = c).

Lemma 2.5. A ternary semigroup T is simple if and only if T = [TaT ]∪[TTaTT ]
for any a ∈ T.

Lemma 2.6. A ternary semigroup T is t-simple if and only if [TTaTT ] = T for

any a ∈ T.

An element z ∈ T is called a zero element if [abz] = [zab] = [azb] = z for all
a, b ∈ T. A zero element is uniquely determined and is denoted by 0. If T has no
zero element, then a zero element can be adjoined by putting [abc] = 0 if any of
a, b, c is a zero. We denote this fact by T 0 = T ∪{0}. If a ternary semigroup has a
zero, then clearly {0} is an ideal of T . It is denoted by (0). A ternary semigroup
T with 0 is called a null ternary semigroup if [abc] = 0 for all a, b, c ∈ T . It is
clear that a ternary semigroup with 0 has at least two ideals: 0 and T . If it has
no other ideals (two-sided ideals) and T<1> 6= (0), then it is called 0-simple (resp.
0-t-simple.

Lemma 2.7. If a ternary semigroup T with 0 has only one two-sided ideal A 6= T ,

then either T is 0-t-simple or T is the null ternary semigroup of order 2.

Proof. Clearly A = (0). Since T<1> is an ideal of T , we have T<1> = T or
T<1> = (0). In the �rst case T = (0), which means that T is 0-t-simple. In the
second case for any non-zero element t ∈ T the set {0, t} is a non-zero two-sided
ideal of T and so {0, t} = T. Thus T is a null ternary semigroup of order 2.

Lemma 2.8. A ternary semigroup T is 0-simple if and only if for every non-zero

a ∈ T we have T = [TaT ] ∪ [TTaTT ].



Simple ternary semigroups 105

Proof. Suppose that T is 0-simple. Then T<1> is a non-zero ideal of T and so
T<1> = T. Hence T = T<1> = T<2>. For any non-zero element a ∈ T the subset
[TaT ]∪ [TTaTT ] is an ideal of T . Hence we have either [TaT ]∪ [TTaTT ] = (0) or
[TaT ]∪[TTaTT ] = T. Suppose [TaT ] = (0). Then the set M = {m ∈ T : [TmT ] =
(0)} contains the nonzero element a. M is a non-zero ideal and so M = T. This
means that T<1> = (0), a contradiction. Therefore [TaT ] ∪ [TTaTT ] = T for
every non-zero element a ∈ T. The converse is obvious.

Lemma 2.9. A ternary semigroup T is 0-t-simple if and only if T = [TTaTT ]
for all a 6= 0 ∈ T.

Proof. Suppose that T is 0-t-simple. Then T<1> 6= 0 and T<1> is an ideal of T.
Hence T = T<1> = T<2>. For any non-zero element a ∈ T, the subset [TTaTT ]
of T is a two-sided ideal. Thus we have either [TTaTT ] = T or [TTaTT ] = (0).
If [TTaTT ] = (0), then as in Lemma 2.8 we obtain a contradiction. Thus T =
[TTaTT ].

In a similar way we can prove

Lemma 2.10. If a ternary semigroup T is 0-t-simple, then T = [TaT ] for all

a 6= 0 ∈ T.

3. Green's equivalence on ternary semigroups

The Green's equivalence relation L and R on a ternary semigroup T are de�ned
as follows (see [2]):

aLb ⇐⇒ a ∪ [TTa] = b ∪ [TTb],

aRb ⇐⇒ a ∪ [aTT ] = b ∪ [bTT ],

H = L ∩R.

In other words aLb if and only if a and b generate the same left ideal, i.e.,
a = b or a = [xyb], b = [uva] for some x, y, u, v ∈ T . Similarly, aRb if and only if
a and b generate the same right ideal, i.e., a = b or a = [bpq], b = [ars] for some
p, q, r, s ∈ T .

Note that our de�nition of H is di�erent from that found in [2].

Lemma 3.1. L is a right congruence and R is a left congruence.

Proposition 3.2. In ternary semigroups R ◦ L = L ◦ R.

Proof. Let (a, b) ∈ L ◦ R. Then there exists c ∈ T such that aLc and cRb so,
there exist x, y, u, v, p, q, r, s ∈ T such that a = [xyc], c = [uva] and c = [bpq], b =
[crs]. Put d = [[xyc]rs]. Then [ars] = [[xyc]rs] = d, and, [dpq] = [[xyc]rs]pq] =
[[xy[crs]]pq] = [[xyb]pq] = [xy[bpq]] = [xyc] = a. Therefore aRd. Also [xyb] =
[xy[crs]] = d and [uvd] = [[uva]rs] = [crs] = b, and so dLb. Hence (a, b) ∈ R ◦ L.
Thus L◦R ⊆ R◦L. Similarly we can prove R◦L ⊆ L◦R. Therefore R◦L = L◦R
is an equivalence relation on T .
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Proposition 3.3. D = R◦L = L◦R is the smallest equivalence on T containing

R and L.

The equivalence D de�ned by us is contained in the equivalence D de�ned by
Dixit and Dewan [2].

Recall [13, 14] that an element t ∈ T is called regular if [tut] = t for some t ∈ T .
If [tut] = t and [utu] = u, then u and t are inverses of one another.

Proposition 3.4. If a D-class D of T contains a regular element, then every

element of D is regular.

Proof. Let D be a D-class in T and a ∈ T be a regular element in D. Let b
be an arbitrary element of D. Since b ∈ D, for some c ∈ T we have aLcRb.
From aLc we obtain either a = c or a = [efc], c = [uva] for some e, f, u, v ∈ T.
Similarly, cRb gives either c = b or c = [bpq], b = [crs] for some p, q, r, s ∈ T.
Let x be an inverse of a. Then [axa] = a, [xax] = x. Take y = [[pqx]ef ] we
get [byb] = [b[[pqx]ef ]b] = [[bpq]x[efb]] = [cx[efb]] = [cx[ef [crs]]] = [cx[efc]rs] =
[[uva]xa]rs] = [uv[axa]rs] = [uv[ars]] = [[uva]rs] = [crs] = b. Similarly if a = c,
or c = b, then by taking y = [pqx] (y = [xef ]) we can show that b is regular
element.

Let La (Ra, Da, Ha) be the L (R, D, H)-class containing a ∈ T.
The following Lemmas are found in [2].

Lemma 3.5. Let a, b be R-equivalent elements in a ternary semigroup T and let

p, q, r, s ∈ T be such that a = [brs], b = [apq]. Then the right translations ρpq|La,

ρrs|Lb are mutually inverse R-class preserving bijections from La onto Lb and

from Lb onto La respectively.

Lemma 3.6. Let a, b be L−equivalent elements in a ternary semigroup T and let

x, y, u, v ∈ T be such that a = [xyb], b = [uva]. Then the left translations λxy|Ra,

λrs|Rb are mutually inverse L- class preserving bijections from Ra onto Rb and

from Rb onto Ra respectively.

Using the above maps the following lemma can be proved.

Lemma 3.7. Let a, b be D-equivalent elements in a ternary semigroup T. Then
|Ha| = |Hb|.

Proof. If c is such that aRc, cLb, then there exists p, q, r, s, x, y, u, v ∈ T such that
a = [crs], c = [apq] and b = [xyc], c = [uvb]. Then by Lemmas 3.5 and 3.6 we see
that ρpq|Ha is a bijection onto Hc and λxy|Hc is a bijection onto Hb. Thus ρpqλxy

is a bijection from Ha onto Hb. Therefore, |Ha| = |Hb|.

Corollary 3.8. If x, y, z ∈ T are such that [xyz] ∈ Hx, then ρyz is a bijection of

Hx onto itself. If [xyz] ∈ Hz, then λxy is a bijection of Hz onto itself.
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Theorem 3.9. If H is an H-class of a ternary semigroup T, then we have either

H<1> ∩H = ∅ or H<1> = H and H is a ternary subgroup of T.

Proof. Suppose that H<1> ∩ H 6= ∅. Then there exists a, b, c ∈ H such that
[abc] ∈ H. By Corollary 3.8, the right translation ρbc and the left translation
λab are bijections of H onto itself. Hence [hbc] ∈ H and [abh] ∈ H for every
h ∈ H. Also ρbh and λhb are bijections of H onto itself. Therefore [hbH] = H
and [Hbh] = H. By Lemma 2.1, H is a right and left simple ternary semigroup.
Therefore by Theorem 1.1 in [13], H is a ternary group.

4. Minimal ideals

If A, B are two-sided ideals of a ternary semigroup T, then A and B both contain
the product [ATB]. Therefore there can be almost one minimal two-sided ideal
of T. Similarly we see that if A and B are ideals of a ternary semigroup, then
[ATB] ∪ [TATBT ] is an ideal of T contained in A and B. Therefore a minimal
ideal (if it exists) is unique. If T = [a] = {a<n>, n > 0} is a cyclic ternary
semigroup, then [a] = (a) ⊃ (a)3 ⊃ . . . is an in�nite descending chain of ideals of
T and T does not have a minimal two-sided ideal. If T is a �nite cyclic ternary
semigroup, then T = {a<n> : a<m> = a<m+r> : m = index, r = period} and
T = (a) ⊃ (a)3 ⊃ · · · ⊃ Ka, where Ka = {a<m>, . . . , a<m+r−1>} is the unique
minimal ideal of T.

If a non-zero ideal M of a ternary semigroup T with 0 ,is said to be 0-minimal

if M 6= (0) and (0) is the only ideal of T contained in M. Similarly 0-minimal left
(right, two-sided) ideals are de�ned.

Lemma 4.1. Let L be a minimal left ideal of a ternary semigroup T and let

x, y ∈ T. Then [Lxy] is a minimal left ideal of T.

Proof. [Lxy] is a left ideal of T. Let M be a left ideal of T contained in [Lxy].
Consider the set N = {n ∈ L : [nxy] ∈ M}. Then [Nxy] = M. For t1, t2 ∈ T, and
n ∈ N [[t1t2n]xy] = [t1t2[nxy]] ∈ [TTM ] ⊆ M. Therefore [t1t2n] ∈ N and so N
is a left ideal of T contained in L. From the minimality of L we obtain N = L.
Therefore M = [Lxy] and so [Lxy] is minimal.

Theorem 4.2. Let M be a minimal two-sided ideal of a ternary semigroup T.
Then M is a t-simple ternary subsemigroup of T.

Proof. M<1> is a two-sided ideal of T contained in M. Therefore M<1> = M. For
any a ∈ M, (a)t = a∪[TTa]∪[aTT ]∪[TTaTT ] is a two-sided ideal of T contained in
M. Therefore (a)t = M. Consequently, M = M<1> = M<2> = [MM(a)tMM ] =
[MM(a ∪ [TTa] ∪ [aTT ] ∪ [TTaTT ])MM ] = [MMaMM ] ⊆ M<2> = M. Thus,
M = [MMaMM ] for all a ∈ M and so M is a t-simple ternary semigroup by
Lemma 2.9.



108 G. Sheeja and S. Sri Bala

Let K denote the intersection of all two-sided ideals and K∗ the intersection
of all ideals of a ternary semigroup T. Clearly K ⊂ K∗. Suppose K 6= ∅.

Lemma 4.3. K is a t-simple ternary semigroup.

Proof. For a ∈ K, (a)t = a ∪ [TTa] ∪ [aTT ] ∪ [TTaTT ] is a two-sided ideal of T
contained in K and so K = (a)t for all a ∈ K. Thus K is the unique minimal
two-sided ideal of T and so K is t-simple by Theorem 4.2.

Lemma 4.4. K∗ is a simple ternary semigroup.

Proof. For a ∈ K∗, (a) = a ∪ [TTa] ∪ [aTT ] ∪ [TaT ] ∪ [TTaTT ] ⊂ K. Therefore
K∗ = (a) for all a ∈ K∗. Hence K∗ is a simple ternary semigroup.

Lemma 4.5. K∗ = [TKT ].

Proof. Since K ⊆ K∗, we have [TKT ] ⊆ [TK∗T ] ⊆ K∗. Thus [TT (K∪ [TKT ])] =
[TTK] ∪ [TTTKT ] = [TTK] ∪ [TKT ] ⊆ K ∪ [TKT ]. Therefore K ∪ [TKT ] is a
left ideal of T . Similarly, K ∪ [TKT ] is an ideal and so K∗ ⊆ K ∪ [TKT ]. Since
K ⊆ K∗ we have K∗ ⊆ [TKT ]. Therefore K∗ = [TKT ].

Theorem 4.6. K = K∗.

Proof. Put M = [KK∗K]. Then M ⊂ K; M ⊆ K∗. M is an ideal and so K∗ ⊂ M.
Therefore K∗ = M. Similarly K = M. Hence K = K∗(= M).

De�nition 4.7. If K = K∗ is nonempty, then it is called the kernel of T.

Lemma 4.8. If L is a 0-minimal left ideal of a ternary semigroup T with 0 such

that L<1> 6= (0), then L = [TTa] for every element a 6= 0 of L.

Proof. For any a 6= (0) in L, [TTa] is clearly a left ideal of T contained in L. If
[TTa] = (0) then a<1> = (0) and {0, a} is a non-zero left ideal of T contained in
L and so {0, a} = L and L<1> = (0), a contradiction. Hence [TTa] 6= (0) and so
[TTa] = L.

Lemma 4.9. Let L be a 0-minimal left ideal of a ternary semigroup T with 0 and

let x, y ∈ T. Then [Lxy] is either (0) or a 0-minimal left ideal of T.

Proof. Assume that [Lxy] 6= (0). Then [Lxy] is a left ideal of T. Let M be a left
ideal of T contained in [Lxy]. Let N = {n ∈ L : [nxy] ∈ M}. Then [Nxy] = M.
Recalling the proof of Lemma 4.1, it can be shown that N is a left ideal of T so
that N = (0) or N = L. Therefore either M = (0) or M = [Lxy] proving that
[Lxy] is a 0-minimal left ideal.

Theorem 4.10. Let M be a 0-minimal two-sided ideal of a ternary semigroup

with zero 0. Then either M<1> = (0) or M is a 0-t-simple ternary subsemigroup

of T.
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Proof. M<1> is an two-sided ideal of T contained in M. Therefore M<1> = (0) or
M<1> = M. Suppose M<1> 6= (0). Then M = M<1> = M<2>. As in the proof of
Theorem 4.2, we can show that for every a ∈ M, a 6= 0 M = [MMaMM ]. Thus
M is a 0-t-simple ternary semigroup.

Theorem 4.11. Let T be a ternary semigroup with 0. If a 0-minimal two-sided

ideal M of T contains at least one 0-minimal left ideal of T, then M is the union

of all the 0-minimal left ideals of T contained in M.

Proof. Let N be the union of all the 0-minimal left ideal of T contained in M.
Clearly N is a left ideal of T. We prove that N is a right ideal. Let n ∈ N and
x, y ∈ T. By the de�nition, n ∈ L for some 0- minimal left ideal L of T contained
in M. By Lemma 4.9, [Lxy] = (0) or [Lxy] is a 0-minimal left ideal of T. Moreover,
[Lxy] ⊆ [Mxy] ⊆ M and hence [Lxy] ⊆ N. Therefore [nxy] ∈ N, for all n ∈ N.
Hence, N 6= (0) since it contains at least one 0-minimal left ideal of T. Thus N
is a non-zero two-sided ideal of T contained in M. Therefore N = M, by the
0-minimality of M.

Lemma 4.12. Let M be a 0-minimal two-sided ideal of a ternary semigroup T
with 0 such that M<1> 6= (0). Then also L<1> 6= (0) L for any non-zero left ideal

of T contained in M .

Proof. Since [LTT ] is two-sided ideal of T contained in M we have either [LTT ] =
M or [LTT ] = (0). If [LTT ] = (0), then L is an ideal of T whence L = M, and
so M<1> = [LMM ] ⊂ [LTT ] = (0), contrary to our hypothesis on M. Hence
[LTT ] = M and so M = M<1> = [[LTT ][LTT ][LTT ]] = [L[TTL][TTL]TT ] ⊆
[[LLL]TT ]. Therefore L<1> 6= (0).

Theorem 4.13. Let M be a 0-minimal two-sided ideal of a ternary semigroup T
with 0 such that M<1> 6= (0), and assume that M contains at least one 0-minimal

left ideal of T. Then every left ideal of M is also a left ideal of T.

Proof. Let L be a non-zero left ideal of M and 0 6= a ∈ L. By Theorem 4.10, M
is 0-t-simple and so M = [MMaMM ]. Hence [MMa] 6= (0). By Theorem 4.10,
there is 0-t-minimal left ideal L1 of T such that a ∈ L1 ⊆ M. Since [MMa] is
a non-zero left ideal of T contained in L1, [MMa] = L1. Therefore a ∈ [MMa].
Hence L =

⋃
{[MMa] : a ∈ L} is a left ideal of T .

Similar results can be proved for right ideals and also for 0-minimal ideals.

5. Completely 0-t-simple ternary semigroups

We recall [13, 14] that a pair of elements (a, b) of a ternary semigroup T is said
to be an idempotent pair if [ababt] = [abt] and [tabab] = [tab]. Two idempotent
pairs (a, b) and (c, d) are said to be equivalent if [abt] = [cdt] and [tab] = [tcd].
〈a, b〉 denotes the equivalence class containing the idempotent pair (a, b). If (a, b),
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(c, d) are idempotent pairs of T, then (a, b) 6 (c, d) if [abcdt] = [cdabt] = [abt] and
[tabcd] = [tcdab] = [tab]. Then 6 is a partial order on the set E of equivalence
classes of idempotent pair of T . If S contains 0, then the class 〈0, 0〉 is the least
element of E. An idempotent pair (a, b) is said to be non-zero if (a, b) does not
belong to 〈0, 0〉. If T contains zero, a non-zero idempotent pair (u, v) is called
primitive if (a, b) 6 (u, v) for any idempotent pair (a, b) implies either (a, b) = 〈0, 0〉
or 〈a, b〉 = 〈u, v〉. If T does not contain zero, a primitive idempotent pair is
similarly de�ned. A completely 0-t-simple ternary semigroup is a 0-t-simple ternary
semigroup T containing a primitive idempotent pair.

Lemma 5.1. If L is a 0-minimal left ideal of a ternary semigroup T, then L\{0}
is an L-class.

Proof. For every x ∈ L, [TTx] is a left ideal of T contained in L so that [TTx] = (0)
or [TTx] = L. Suppose [TTx] = L for every x ∈ L\{0}. Then x ∪ [TTx] = L =
y ∪ [TTy] for every x, y ∈ L\{0} and so L\{0} is contained in the L-class Lx. If
y ∈ Lx, then y ∈ x∪ [TTx] = L so that Lx ⊆ L\{0}. Therefore L\{0} is an L-class
of T . Suppose [TTx] = (0) for some x ∈ L. Then {0, x} is a non-zero left ideal of
T contained in L so that {0, x} = L. Then x ∪ [TTx] = L and xLy implies x = y.
Hence in this case also L\{0} is a L-class of T .

A similar result can be proved for 0-minimal right ideals.

Lemma 5.2. Let T be a 0-t-simple ternary semigroup containing a 0-minimal left

ideal and a 0-minimal right ideal. Then to each 0-minimal left ideal L of T there

exists a 0-minimal right ideal R of T such that [LRT ] 6= (0) and [LRT ] = T. Also
[LTR] 6= (0) and [LTR] = T.

Proof. [LTT ] is a two-sided ideal of T so that [LTT ] = (0) or [LTT ] = L. If
[LTT ] = (0), then L<1> = (0) and L is a two-sided ideal of T so that T = L and
T<1> = L<1> = (0) contrary to the hypothesis. Therefore [LTT ] = L. Then for
some x ∈ T [LxT ] 6= (0). Since T is the union of all the 0-minimal right ideals of
T (by the dual of Theorem 4.11), x ∈ R for some 0-minimal right ideal R of T .
Hence [LRT ] 6= (0), [LRT ] is a non-zero two sided ideal of T and so [LRT ] = T.
Similarly it can be shown that [LTR] = T.

Lemma 5.3. Let L and R be 0-minimal left and right ideals respectively of a 0-
t-simple ternary semigroup T . Then [LRT ] 6= (0) if and only if [TLR] 6= (0). In

this case [LRT ] = T = [TLR].

Proof. By Lemma 5.2, if [LRT ] 6= (0), then [LRT ] = T. Then T = T<1> =
[LRTTLRT ], whence [TLR] 6= (0). Then [TLR] = T. Conversely, if [TLR] 6= (0),
then we can show that [TLR] = T. Further, T = T<1> = [TLRTT ]. Therefore,
[LRT ] 6= (0) and [LRT ] = T.

Lemma 5.4. Let L (resp. R) be a 0-minimal left (right) ideal of a 0-t-simple ter-

nary semigroup and a ∈ L\{0} (resp. R\{0}). Then [TTa] = L (resp. [aTT ] = R).
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Proof. Since T is a 0-t-simple, by Lemma 2.9, T = [TTaTT ], so [TTa] 6= (0). Since
[TTa] is a non-zero left ideal contained in L, [TTa] = L. Similarly we can show
that [aTT ] = R for a ∈ R\{0}.

Let T be a 0-t-simple ternary semigroup and L and R are 0-minimal left and
right ideals of T such that [LRT ] 6= (0). Then we have the following result.

Lemma 5.5. [RTL] is a ternary group with 0.

Proof. Since [LRT ] 6= (0) by Lemma 5.3 [LRT ] = T = [TLR]. Then T = T<1> =
[LRTLRTT ] and so [RTL] 6= (0). Choose a ∈ [RTL], a 6= 0. Then a ∈ R∩L. Then
by Lemma 2.9, T = [TTaTT ] and so [aTT ] 6= (0). Therefore [aTT ] = R. Similarly
[TTa] = L and T = [TLR] = [TLaTT ]. Therefore [TLa] 6= (0), so [TLa] = L.
[RTL] = [RTTLa] = [RT [LRT ]La] = [[RTL][RTL]a] proving that [RTL] is left
simple. Similarly [aRT ] = R and [a[RTL][RTL]] = [aR[LRT ]TL] = [aRTTL] =
[RTL]. Therefore [RTL] is right simple. Hence by Theorem 1.1 in [13], [RTL] is
a ternary group with 0.

Lemma 5.6. [RTL] = R ∩ L.

Proof. Clearly [RTL] ⊂ R ∩ L. By Lemma 5.1, L\{0} is a L-class of T . Similarly
R\{0} is a R-class of T . Therefore H = R\{0} ∩ L\{0} is a H-class of T . Since
[RTL] is a ternary group with 0, for every a ∈ [RTL], a 6= 0 there exists the
ternary group inverse a−1 of a in [RTL]. Thus (a, a−1) is an idempotent pair
in [RTL] and for every z ∈ [RTL], z 6= 0 z = [za−1a]. Since a, a−1, z ∈ [RTL],
a, a−1, z ∈ H and z = [za−1a] ∈ H<1>∩H. Hence, by Theorem 3.9, H is a ternary
group. Therefore R ∩ L is a ternary group with 0. If z ∈ R ∩ L, z 6= 0, then,
by Lemma 5.1, z and a are in some L-class and so for some u, v ∈ T, we have
z = [uva] = [uvaa−1a] = [za−1a] ∈ [RTL]. Therefore [RTL] = R ∩ L.

Lemma 5.7. For every non-zero idempotent pair (a, b) in [RTL], R = [abT ],
L = [Tab] and [RTL] = [abTab].

Proof. Let (a, b) be a non-zero idempotent pair in [RTL]. If [aba] = 0, then
[abx] = [ababx] = 0 for every x ∈ [RTL]. Similarly [xab] = 0. Therefore (a, b) is
equivalent to the zero idempotent pair, contrary to the hypothesis that (a, b) is a
non-zero idempotent pair. Therefore [aba] 6= 0 and [bab] 6= 0. Then [Tab] 6= (0)
and [abT ] 6= (0). If L = [Tab] and R = [abT ], then [RTL] = [abTTTab] = [abTab].
In particular for every a ∈ [RTL], a 6= 0, [RTL] = [aa−1Taa−1].

Lemma 5.8. Every idempotent pair in [RTL] is primitive in T .

Proof. Let (a, b) be an idempotent pair in [RTL]. Then [aba] is regular with
[bab] as the inverse in [RTL] and (a, b) and ([aba], [bab]) are equivalent to [RTL].
Therefore [abz] = [abababz] = z for all z ∈ [RTL]. Similarly [zab] = z. Since [aba]
is regular, ([aba], [bab]) is an idempotent pair in T. Therefore for any t ∈ T, [abt] =
[[abababa]bt] = [ababt]. Similarly [tab] = [tabab]. Thus (a, b) is an idempotent pair
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in T and (a, b) ∼ ([aba], [bab]). Hence without loss of generality we can take an
idempotent pair (a, a−1) in [RTL].

Lemma 5.9. Let T be a completely 0-t-simple ternary semigroup and (a, b) a

primitive idempotent pair in T . Then [Tab] and [abT ] are 0-minimal left and right

ideals of T, respectively.

Proof. Since (a, b) is a primitive idempotent pair, as in Lemma 5.7 we see that
L = [Tab] is a non-zero left ideal of T and R = [abT ] is a non-zero right ideal.
Let A be a non-zero right ideal of T contained in R. Let x 6= 0, x ∈ A. Then
x ∈ R and [abx] = x. Since T is 0-t-simple, T = [TTxTT ] (Lemma 2.9). Hence
for some ui, vi, wi, zi ∈ T, i = 1, 2, a = [u1v1xw1z1], b = [u2v2xw2z2]. Put
c1 = [abau2v2ab], d1 = [w2z2aba], c2 = [babu1v1ab], d2 = [w1z1bab]. We can easily
show that [c1xd1] = [aba] and [c2xd2] = [bab]. Clearly ci, di 6= 0, i = 1, 2. So,
([c1xd1], [c2xd2]) is an idempotent pair equivalent to (a, b). Also, [abc1] = c1 =
[c1ab], [bac2] = c2 = [c2ab]. Put f1 = [xd1c2], f2 = [xd2c1], [c1f1xd2a] = [aba]
and [c2f2xd1b] = [bab]. Therefore f1 6= 0, f2 6= 0. Further [f1f2f1] = f1 and
[f2f1f2] = f2. Therefore (f1, f2) is a non-zero idempotent pair in T . Moreover,
also (f1, f2) 6 (a, b). Since (a, b) is a primitive idempotent pair, (f1, f2) ∼ (a, b).
Therefore R = [abT ] = [f1f2T ] = [xd1c2xd2c1T ] = [xTT ] ⊆ A. Thus R = A and R
is 0-minimal. Let B be a non-zero left ideal of T contained in L. Let x ∈ B, x 6= 0.
Since T is 0-t-simple, T = [TTxTT ]. Hence we can �nd elements ui, vi, wi, zi ∈ T,
i = 1, 2 such that a = [u1v1xw1z1] and b = [u2v2xw2z2]. Put c1 = [abau2v2],
d1 = [abw2z2aba], c2 = [babu1v1], d2 = [abw1z1bab]. Then [c1xd1] = [aba] and
[c2xd2] = [bab]. Put f1 = [d1c2x], f2 = [d2c1x]. As before we can show that (f1, f2)
is a non-zero idempotent pair such that (f1, f2) 6 (a, b). Therefore (f1, f2) ∼ (a, b).
Hence L = [Tab] = [Tf1f2] = [Td1c2xd2c1x] ⊆ [TTx] ⊆ B. Therefore L = B and
L is 0-minimal.

Theorem 5.10. Let T be 0-t-simple. T is completely 0-t-simple if and only if T
contains at least one 0-minimal left ideal and at least one 0-minimal right ideal.

Proof. If T is completely 0-t-simple, then T contains a primitive idempotent pair
(a, b). By Lemma 5.9, [Tab] and [abT ] are 0-minimal left ideal and 0-minimal right
ideal, respectively. Conversely, assume that T contains at least one 0-minimal left
ideal and one 0-minimal right ideal. Let L be a 0-minimal left ideal of T . Then
by Lemma 5.2, there exists a 0-minimal right ideal R of T such that [LTR] 6= (0).
Then by Lemma 5.4, T contains a primitive idempotent pair and so T is completely
0-t-simple.

Corollary 5.11. A completely 0-t-simple ternary semigroup is union of its 0-
minimal left (right) ideals.

Proof. Follows from the above Theorem and Lemma 5.4.
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Corollary 5.12. Let M be a 0-minimal two-sided ideal of a ternary semigroup T
such that M<1> 6= (0). If M contains at least one 0-minimal left ideal and at least

one 0-minimal right ideal, then M is a completely 0-t-simple ternary subsemigroup

of T .

Theorem 5.13. Let T be a completely 0-t-simple ternary semigroup. Then non-

zero elements of T form a D-class and T is regular.

Proof. Let T be a completely 0-t-simple ternary semigroup. Let a, b be non-zero
elements of T . Then a lies in some 0-minimal left ideal L and b lies in some 0-
minimal right ideal R of T . Thus L = [TTa] and R = [bTT ]. By Lemma 5.1 L\{0}
is the L-class containing a, R\{0} is the R-class containing b and [bTa] ⊆ R ∩ L.
Since T is 0-t-simple, T = [TTaTT ] and T = [TTbTT ]. Hence T = [TTT ] =
[TTbTTTTTaTT ] = [TTbTaTT ]. Therefore [bTa] 6= (0) and, by Lemma 5.1, its
dual [bTa] ⊂ Rb ∩ La. If c ∈ Rb ∩ La, then aLc, cRb so, aDb. Since a completely
0-t-simple ternary semigroup T containing a primitive idempotent pair (u, v) then
(u, v) and [uvu] both belongs to D, and [uvu] is a regular element in D. Therefore
by Proposition 3.4 the D-class T\{0} is regular. Hence T is regular.

6. M-ternary semigroups

Below we introduce the concept of M-ternary semigroups generalizing the notion
of Rees matrix ternary semigroups.

Let G be a ternary group. We consider G ∪ {0}, where we extend the ternary
multiplication in G to G∪ {0} by putting [abc] = 0 whenever any of a, b, c is zero.
Let P = (pλi) be a Λ × I matrix with entries in G ∪ {0}. P is said to be regular

if for every i ∈ I there exists λ ∈ Λ such that pλi 6= 0 and for every λ ∈ Λ there
exists i ∈ I such that pλi 6= 0. Consider the set

M0(G; I,Λ; P ) = {(a)iλ : a ∈ G ∪ {0}, i ∈ I, λ ∈ Λ},

where (a)iλ denotes the Λ × I matrix with entries a in (i, λ) position and 0 in
other places. The (0)iλ is written as 0 and is independent of i and λ. We see
that (a)iλ = (b)jµ if and only if a = b, i = j, λ = µ. A ternary multiplication is
introduced on this set as follows:

[(a)iλ(b)jµ(c)kν ] = ([apλjbpµkc])iν .

Lemma 6.1. M0(G; I,Λ; P ) is a ternary semigroup.

De�nition 6.2. The ternary semigroup M0(G; I,Λ; P ) is called a M-ternary

semigroup (Matrix ternary semigroup).

Lemma 6.3. If P is regular, then M0(G; I,Λ; P ) is a regular ternary semigroup.
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Proof. For given (a)iλ consider the elements ([p−1
λj a−1p−1

µi ])jµ for every (j, µ). The
set {([p−1

λj a−1p−1
µi ])jµ} of non-zero element is the set I((a)iλ) of all inverses of

(a)iλ.

Corollary 6.4. If P is regular, then the pair ((a)iλ, ([p−1
λj a−1p−1

µi ])jµ) is an idem-

potent pair.

Lemma 6.5. If P is regular, then the idempotent pairs ((a)iλ, ([p−1
λj a−1p−1

µi ])jµ)
and ((b)kν , ([p−1

νl b−1p−1
ωk ])lω) are equivalent if and only if k = i and µ = ω.

Proof. Suppose that ((a)iλ, ([p−1
λj a−1p−1

µi ])jµ) and ((b)kν , ([p−1
νl b−1p−1

ωk ])lω) are idem-

potent pairs. Then for all z = (z)mδ we have [xx1z] = [(a)iλ([p−1
λj a−1p−1

µi ])jµ)(z)mδ]
= ([p−1

µi pµmz])iδ and [yy1z] = [(b)kν([p−1
νl b−1p−1

ωk ])lω)(z)mδ] = ([p−1
ωkpωmz])kδ. They

are equivalent if and only if i = k and ω = µ. In the same manner we ob-
tain [zxx1] = [(z)mδ(a)iλ([p−1

λj a−1p−1
µi ])jµ)] = ([zpδip

−1
µi ])mµ, and analogously,

[zyy1] = [(z)mδ(b)kν([p−1
νl b−1p−1

ωk ])lω)] = ([zpδkp−1
ωk ])mω. Therefore, [zxx1] = [zyy1]

if and only if k = i and ω = µ.

Theorem 6.6. If P is regular, then M0(G; I,Λ; P ) is a 0-t-simple ternary semi-

group.

Proof. For (a)iλ, (b)jµ we have [(a−1)jγ([p−1
γi ap−1

γi ])iγ(a)iλ([p−1
λk a−1p−1

λk ])kλ(b)kµ]
= ([a−1pγip

−1
γi ap−1

γi pγiapλkp−1
λk a−1p−1

λk bpλk])jµ = [(b)jµ]. Hence M0(G; I,Λ; P ) is
a 0-t-simple ternary semigroup by Lemma 2.9.

Theorem 6.7. If P is regular, then in M0(G; I,Λ; P ) every idempotent pair is

primitive.

Proof. Suppose that ((a)iλ, ([p−1
λj a−1p−1

µi ])jµ) and ((b)kν , ([p−1
νl b−1p−1

ωk ])lω) are idem-

potent pairs. If (x, x1) 6 (y, y1) for some x = (a)iλ, x1 = ([p−1
λj a−1p−1

µi ])jµ), y =
(b)kν and y1 = ([p−1

νl b−1p−1
ωk ])lω, then for any z = (t)mα ∈M0(G; I,Λ; P ) we have

[xx1yy1z] = [(a)iλ([p−1
λj a−1p−1

µi ])jµ)(b)kν([p−1
νl b−1p−1

ωk ])lω)(t)mα] and [yy1xx1z] =
[(b)kν([p−1

νl b−1p−1
ωk ])lω)(a)iλ([p−1

λj a−1p−1
µi ])jµ)(t)mα], which obviously implies that

[apλjp
−1
λja

−1p−1
µj pµkbpνlp

−1
νl b−1p−1

ωkpωαt]iα=[bpνlp
−1
νl b−1p−1

ωkpωiapλjp
−1
λj a−1p−1

µj pµαt]kα

= ([p−1
µi pµα])iα Therefore i = k. Using the same method we can see that [zxx1yy1]

= [(t)mα(a)iλ([p−1
λj a−1p−1

µi ])jµ)(b)kν([p−1
νl b−1p−1

ωk ])lω)]. Analogously, [zyy1xx1] =
[(t)mα(b)kν([p−1

νl b−1p−1
ωk ])lω)(a)iλ([p−1

λj a−1p−1
µi ])jµ)]. From the above we obtain that

[tpαiapλjp
−1
λja

−1p−1
µj pµkbpνlp

−1
νl b

−1p−1
ωk ]mω=[tpαkbpνlp

−1
νl b−1p−1

ωkpωiapλjp
−1
λja

−1p−1
µj ]mµ

Therefore, (x, x1) is primitive if and only if k = i, ω = µ. This, by Lemma 6.5,
means that (x, x1) and (y, y1) are equivalent. Thus every idempotent pair is pri-
mitive.

As a consequence of Theorem 6.6 and Theorem 6.7 we obtain the following
corollary.
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Corollary 6.8. If P is regular, then M0(G; I,Λ; P ) is a completely 0-t-simple

semigroup.

Lemma 6.9. If P is regular, then in M0(G; I,Λ; P )

(a)iλL(b)jµ ⇐⇒ λ = µ,

(a)iλR(b)jµ ⇐⇒ i = j.

Corollary 6.10. If P is regular, then non-zero elements of M0(G; I,Λ; P ) form

a single D-class in G.

Proof. Indeed, (a)iλL(c)jλR(b)jµ for any c ∈ G.

It is clear that the set of non-zero L-classes in M0(G; I,Λ; P ) is {Lλ;λ ∈ Λ},
where Lλ = {(a)iλ : a ∈ G, i ∈ I}. Similarly, the set of non-zero R-classes is
{Ri : i ∈ I}, where Ri = {(a)iλ : a ∈ G, λ ∈ Λ}.

Corollary 6.11. If P is regular, then Hiλ = Lλ ∩Ri = {(a)iλ : a ∈ G}.
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