
Computer Science Journal of Moldova, vol.21, no.1(61), 2013

Developments in Networks of Evolutionary

Processors ∗

Artiom Alhazov

Abstract

Networks of evolutionary processors (NEPs) are distributed
word rewriting systems typically viewed as language generators.
Each node contains a set of words, a set of operations (typically
insertion, deletion or rewriting of one symbol with another one),
an input filter and an output filter. The purpose of this paper is
to overview existing models of NEPs, their variants and develop-
ments.

In particular, besides the basic model, hybrid networks of
evolutionary processors (HNEPs) have been extensively studied.
In HNEPs, operations application might be restricted to specific
end of the string, but the filters are random-context conditions
(they were regular in the basic model). We will also cover the
literature on the so-called obligatory HNEPs, i.e., ones where the
operations are obligatory: the string that cannot be rewritten is
not preserved.

Some specific aspects that we pay attention to are: computa-
tional universality and completeness, the topology of the under-
lying graph, the number of nodes, the power of filters.

1 Introduction

Insertion, deletion, and substitution are fundamental operations in for-
mal language theory, their power and limits have obtained much at-

c©2013 by A. Alhazov
∗The author gratefully acknowledges project STCU-5384 “Models of high per-

formance computations based on biological and quantum approaches”, and project
ref. nr. 12.819.18.09A “Development of IT support for interoperability of electronic
linguistic resources” from Supreme Council for Science and Technological Develop-
ment of the Republic of Moldova.

3

A. Alhazov

tention during the years. Due to their simplicity, language generating
mechanisms based on these operations are of particular interest. Net-
works of evolutionary processors (NEPs, for short), introduced in [17],
are proper examples for distributed variants of these constructs. In this
case, an evolutionary processor (a rewriting system which is capable to
perform an insertion, a deletion, and a substitution of a symbol) is lo-
cated at every node of a virtual graph which may operate over sets or
multisets of words. The system functions by rewriting the collections
of words present at the nodes and then re-distributing the resulting
strings according to a communication protocol defined by a filtering
mechanism. The language determined by the network is defined as the
set of words which appear at some distinguished node in the course of
the computation. These architectures also belong to models inspired
by cell biology, since each processor represents a cell performing point
mutations of DNA and controlling its passage inside and outside the
cell through a filtering mechanism. The evolutionary processor corre-
sponds to the cell, the generated word – to a DNA strand, and the
operations insertion, deletion, and substitution of a symbol – to the
point mutations. It is known that, by using an appropriate filtering
mechanism, NEPs with a very small number of nodes are computa-
tionally complete computational devices, i.e. they are as powerful as
the Turing machines (see, for example [12, 13]).

1.1 Basic model

Motivated by some models of massively parallel computer architectures,
networks of language processors have been introduced in [19]. Such a
network can be considered as a graph, where the nodes are sets of
productions and at any moment of time a language is associated with
a node. In a derivation step, any node derives from its language all
possible words as its new language. In a communication step, any
node sends those words to other nodes that satisfy an output condition
given as a regular language, and any node takes those words sent by
the other nodes that satisfy an input condition also given by a regular
language. The language generated by a network of language processors

4

Developments in Networks of Evolutionary Processors

consists of all (terminal) words which occur in the languages associated
with a given node.

Inspired by biological processes, a special type of networks of lan-
guage processors was introduced in [17], called networks with evolu-
tionary processors, because the allowed productions model the point
mutation known from biology. The sets of productions have to be sub-
stitutions of one letter by another letter or insertions of letters or dele-
tion of letters; the nodes are then called substitution node or insertion
node or deletion node, respectively. Results on networks of evolution-
ary processors can be found e. g. in [17], [16], [15], [12]. In [16] it was
shown that networks of evolutionary processors are universal in that
sense that they can generate any recursively enumerable language, and
that networks with six nodes are sufficient to get all recursively enumer-
able languages. In [12] the latter result has been improved by showing
that networks with three nodes are sufficient.

In [12] one presents the proof of the computational complete-
ness with two nodes, additionally employing a morphism. In [9] one
shows that NEPs with two nodes (one insertion node and one deletion
node) generate all recursively enumerable languages (in intersection
with a monoid), avoiding the need for a morphism. The same paper
shows that insertion and substitution characterize context-sensitive lan-
guages, while deletion and substitution characterize finite languages.

1.2 Hybrid model

Particularly interesting variants of these devices are the so-called hy-
brid networks of evolutionary processors (HNEPs), where each lan-
guage processor performs only one of the above operations on a certain
position of the words in that node. Furthermore, the filters are de-
fined by some variants of random-context conditions, i.e., they check
the presence/absence of certain symbols in the words. These constructs
can be considered both language generating and accepting devices, i.e.,
generating HNEPs (GHNEPs) and accepting HNEPS (AHNEPs). The
notion of an HNEP, as a language generating device, was introduced
in [27] and the concept of an AHNEP was defined in [26].

5

A. Alhazov

In [18] it was shown that, for an alphabet V , GHNEPs with
27 + 3 · card(V) nodes are computationally complete. A significant
improvement of the result can be found in [6], where it was proved
that GHNEPs with 10 nodes (irrespectively of the size of the alpha-
bet) obtain the universal power. For accepting HNEPs, in [24] it was
shown that for any recursively enumerable language there exists a rec-
ognizing AHNEP with 31 nodes; the result was improved in [25] where
the number of necessary nodes was reduced to 24. Furthermore, in [25]
the authors demonstrated a method to construct for any NP-language
L an AHNEP with 24 nodes which decides L in polynomial time.

At last in [7] it was proved that any recursively enumerable lan-
guage can be generated by a GHNEP having 7 nodes (thus, the result
from [6] is improved) and in [8] the same authors showed that any
recursively enumerable language can be accepted by an AHNEP with
7 nodes (thus, the result from [25] is improved significantly). An im-
provement of the accepting result to 6 nodes has been obtained in [23],
by simulating Tag systems. In [8] also it was showed that the fami-
lies of GHNEPs and AHNEPs with 2 nodes are not computationally
complete.

In [18] it was demonstrated that a GHNEP with one node can
generate only regular language, while in [14] a precise form of the gen-
erated language was presented, also considering one case omitted in the
previous proof. Tasks of characterization of languages generated by a
GHNEP with two nodes and languages accepting by an AHNEP with
two nodes are still open.

1.3 Obligatory operations

A variant of HNEPs, called Obligatory HNEPs (OHNEP for short) was
introduced in [3]. The differences between HNEP and OHNEP are the
following:

1. in deletion and substitution: a node discards a string if no op-
erations in the node are applicable to the string (in HNEP case,
this string remains in the node),

6

Developments in Networks of Evolutionary Processors

2. the underlying graph is a directed graph (in HNEP case, this
graph is undirected); this second difference disappears when we
consider complete networks.

These differences make OHNEPs universal [3] with 1 operation per
node, no filters and only left insertion and right deletion.

In [5] complete OHNEPs were considered, i.e., OHNEPs with com-
plete underlying graph. One may now regard complete OHNEP as
a set of very simple evolutionary processors “swimming in the envi-
ronment” (i.e., once a string leaves a node, it is not essential for the
rest of the computation which node it left). In [5] it is proved that
the complete OHNEPs with very simple evolutionary processors, i.e.,
evolutionary processors with only one operation (obligatory deletion,
obligatory substitution and insertion) and filters containing not more
than 3 symbols are computationally complete. We recall that the filters
are either single symbols or empty sets, while the sum of weights has
been counted.

In [4] one considers OHNEPs without substitution. It is not difficult
to notice that in complete OHNEPs without substitution there is no
control on the number of insertion or deletion of terminal symbols (i.e.,
those symbols which appear in output words). Therefore, the definition
of OHNEPs needed to be modified in order to increase their computa-
tional power. In [4] one shows that it is possible to avoid substitution
using modified operations of insertion and deletion in evolutionary pro-
cessors similar to “matrix” rules in formal language theory. By using
such techniques a small universal complete OHNEP with 182 nodes
without substitution is constructed.

Several open questions were posed in [4], in particular the question
about the minimal total complexity of filters of evolutionary processor
in computationally complete OHNEPs and the question about univer-
sal complete OHNEP without substitution with the minimal number
of nodes. In [1] one considers a model of OHNEP allowing the use
of all three molecular operations: insertion, deletion and substitution,
and provides a very unexpected result. OHNEPs are computationally
complete even if the total power of the filters of each node does not ex-
ceed 1! This means that in any node, all four filters are empty, except

7

A. Alhazov

possibly one, being a single symbol.
In the following we describe selected results in details.

2 Prerequisites

We first recall some basic notions from formal language theory that we
shall use in the paper. An alphabet is a finite and non-empty set of
symbols. The cardinality of a finite set A is denoted by card(A). A
sequence of symbols from an alphabet V is called a word (or a string)
over V . The set of all words over V is denoted by V ∗; the empty word
is denoted by ε; and we define V + = V ∗\{ε}. The length of a word x is
denoted by |x|, and we designate the number of occurrences of a letter
a in a word x by |x|a. For each non-empty word x, alph(x) denotes the
smallest alphabet Σ such that x ∈ Σ∗.

For a word u ∈ V ∗, we define the sets of proper prefixes, proper
suffixes and non-empty suffixes of u by

PPref(u) = {x | u = xy, |y| ≥ 1},
PSuf(u) = {y | u = xy, |x| ≥ 1},
NSuf(u) = {y | u = xy, |y| ≥ 1}, respectively.

The shuffle operation is defined on two words x, y ∈ V ∗ by
∐∐

(x, y) = {x1y1x2y2 . . . xnyn | n ≥ 1, xi, yj ∈ V ∗,
x = x1x2 . . . xn, y = y1y2 . . . yn}.

Let L1, L2 ∈ V ∗ are two languages. Then

∐∐
(L1, L2) =

⋃
x∈L1,y∈L2

∐∐
(x, y).

A type-0 generative grammar is a quadruple G = (N,T, S, P),
where N and T are disjoint alphabets, called the nonterminal and ter-
minal alphabet, respectively, S ∈ N is the start symbol or the axiom,
and P is a finite set of productions or rewriting rules of the form u → v,
where u ∈ (N ∪ T)∗N(N ∪ T)∗ and v ∈ (N ∪ T)∗. For two strings x
and y in (N ∪ T)∗, we say that x directly derives y in G, denoted by

8

Developments in Networks of Evolutionary Processors

x =⇒G v, if there is a production u → v in P such that x = x1ux2

and y = x1vx2, x1, x2 ∈ (N ∪ T)∗ holds. The transitive and reflexive
closure of =⇒G is denoted by =⇒∗

G. The language L(G) generated by
G is defined by L(G) = {w ∈ T ∗ | S =⇒∗

G w}.

We recall now a concept dual to a type-0 generative grammar,
called a type-0 analytic grammar [28]. A type-0 analytic grammar
G = (N, T, S, P) is a quadruple, where N,T, S are defined in the same
way as for a generative grammar, and P is a finite set of productions
of the form u → v, where u ∈ (N ∪ T)∗ and v ∈ (N ∪ T)∗N(N ∪ T)∗.
The derivation relation is defined for a type-0 analytic grammar analo-
gously to the derivation relation for a type-0 generative grammar. The
language L(G) recognized or accepted by a type-0 analytic grammar
G = (N, T, S, P) is defined as L(G) = {w ∈ T ∗ | w =⇒∗

G S}.

It is well-known that for the type-0 analytic grammar G′ obtained
from a type-0 generative grammar G with interchanging the left and the
right hand sides of the productions in G, it holds that L(G′) = L(G).

A type-0 generative grammar G = (N, T, S, P) is in Kuroda normal
form if every rule in P is one of the following forms: A −→ a, A −→ ε,
A −→ BC, AB −→ CD, where A,B,C, D ∈ N and a ∈ T .

Analogously, we can say that a type-0 analytic grammar G =
(N,T, S, P) is in Kuroda-like normal form if every production in P is
one of the following forms: a −→ A, ε −→ A, AB −→ C, AB −→ CD,
where A, B,C, D ∈ N and a ∈ T .

It is well-known that the type-0 generative grammars in Kuroda
normal form determine the class of recursively enumerable languages
and it can immediately be seen that the same statement holds for the
type-0 analytic grammars in Kuroda-like normal form.

In the sequel, following the terminology in [18], we recall the neces-
sary notions concerning evolutionary processors and their hybrid net-
works. These language processors use so-called evolutionary opera-
tions, simple rewriting operations which abstract local gene mutations.

9

A. Alhazov

2.1 Circular Post machines

Circular Post Machines (CPMs) were introduced in [21], where it was
shown that all introduced variants of CPMs are computationally com-
plete, and moreover, the same statement holds for CPMs with two sym-
bols. In [22], [10] several universal CPMs of variant 0 (CPM0) having
small size were constructed1, among them in [10] a universal CPM0
with 6 states and 6 symbols. In this article we use the deterministic
variant of CPM0s.

A Circular Post Machine is a quintuple (Σ, Q,q0,qf , R) with a
finite alphabet Σ, where 0 is the blank, a finite set of states Q, the initial
state q0 ∈ Q, the final state qf ∈ Q, and a finite set of instructions
R with all instructions having one of the forms px → q (erasing the
symbol read by deleting a cell), px → yq (overwriting and moving to
the right), p0 → yq0 (overwriting and creating a blank cell), where
x, y ∈ Σ and p,q ∈ Q, p 6= qf . We also refer to all instructions with
qf in the left hand side as halt instructions.

The storage of this machine is a circular tape, the read and write
head moves only in one direction (to the right), and with the possibility
to delete a cell or to create and insert a new cell with a blank.

2.2 Evolutionary processors

For an alphabet V, we say that a rule a → b, with a, b ∈ V ∪ {ε} is
a substitution rule if both a and b are different from ε; it is a deletion
rule if a 6= ε and b = ε; and, it is an insertion rule if a = ε and b 6= ε.
The set of all substitution rules, deletion rules, and insertion rules
over an alphabet V is denoted by SubV , DelV , and InsV , respectively.
Given such rules π, ρ, σ, and a word w ∈ V ∗, we define the following
actions of σ on w: If π ≡ a → b ∈ SubV , ρ ≡ a → ε ∈ DelV , and
σ ≡ ε → a ∈ InsV , then

π∗(w) =
{ {ubv : ∃u, v ∈ V ∗(w = uav)},
{w}, otherwise

(1)

1Other variants of CPMs use slightly different instruction sets, which may make
a difference for the size of small universal machines.

10

Developments in Networks of Evolutionary Processors

ρ∗(w) =
{ {uv : ∃u, v ∈ V ∗(w = uav)},
{w}, otherwise

(2)

ρr(w) =
{ {u : w = ua},
{w}, otherwise

(3)

ρl(w) =
{ {v : w = av},
{w}, otherwise

(4)

σ∗(w) = {uav : ∃u, v,∈ V ∗(w = uv)}, (5)
σr(w) = {wa}, σl(w) = {aw}. (6)

Symbol α ∈ {∗, l, r} denotes the way of applying an insertion or a
deletion rule to a word, namely, at any position (a = ∗), in the left-hand
end (a = l), or in the right-hand end (a = r) of the word, respectively.
Note that a substitution rule can be applied at any position. For every
rule σ, action α ∈ {∗, l, r}, and L ⊆ V ∗, we define the α − action of
σ on L by σα(L) =

⋃
w∈L σα(w). For a given finite set of rules M ,

we define the α − action of M on a word w and on a language L by
Mα(w) =

⋃
σ∈M σα(w) and Mα(L) =

⋃
w∈L Mα(w), respectively.

An evolutionary processor consists of a set of evolutionary opera-
tions and a filtering mechanism.

For two disjoint subsets P and F of an alphabet V and a word over
V , predicates ϕ(1) and ϕ(2) are defined as follows:

ϕ(1)(w; P, F) ≡ P ⊆ alph(w) ∧ F ∩ alph(w) = ∅
and

ϕ(2)(w; P, F) ≡ alph(w) ∩ P 6= ∅ ∧ F ∩ alph(w) = ∅.
The construction of these predicates is based on random-context condi-
tions defined by the two sets P (permitting contexts) and F (forbidding
contexts).

For every language L ⊆ V ∗ we define ϕi(L,P, F) = {w ∈ L |
ϕi(w; P, F)}, i = 1, 2.

An evolutionary processor over V is a 5-tuple (M,PI, FI, PO, FO),
where:

- Either M ⊆ SubV or M ⊆ DelV or M ⊆ InsV . The set M repre-
sents the set of evolutionary rules of the processor. Notice that every
processor is dedicated to only one type of the evolutionary operations.

11

A. Alhazov

- PI, FI ⊆ V are the input permitting/forbidding contexts of the
processor, while PO, FO ⊆ V are the output permitting/forbidding
contexts of the processor.
The set of evolutionary processors over V is denoted by EPV .

2.3 Hybrid networks

Definition 1 A hybrid network of evolutionary processors (an HNEP,
shortly) is a 7-tuple Γ = (V,H,N , C0, α, β, i0), where the following
conditions hold:

- V is the alphabet of the network.
- H = (XH , EH) is an undirected graph with set of vertices or

nodes XH and set of edges EH . H is called the underlying graph of the
network.

- N : XH −→ EPV is a mapping which associates the evolutionary
processor N (x) = (Mx, P Ix, F Ix, POx, FOx) with each node x ∈ XH .

- C0 : XH −→ 2V ∗ is a mapping which identifies the initial configu-
ration of the network. It associates a finite set of words with each node
of the graph H.

- α : XH −→ {∗, l, r}; α(x) defines the action mode of the rules
performed in node x on the words occurring in that node.

- β : XH −→ {(1), (2)} defines the type of the input/output filters of
a node. More precisely, for every node, x ∈ XH , we define the following
filters: the input filter is given as µx(·) = ϕβ(x)(·; PIx, F Ix), and the
output filter is defined as τx(·) = ϕβ(x)(·, POx, FOx). That is, µx(w)
(resp.τx) indicates whether or not the word w can pass the input (resp.
output) filter of x. More generally, µx(L) (resp. τx(L)) is the set of
words of L that can pass the input (resp. output) filter of x.

- i0 ∈ XH is the output node of Γ.

We say that card(XH) is the size of Γ. An HNEP is said to be a
complete HNEP, if its underlying graph is a complete graph.

A configuration of an HNEP Γ, as above, is a mapping C : XH −→
2V ∗ which associates a set of words with each node of the graph. A
component C(x) of a configuration C is the set of words that can be
found in the node x in this configuration, hence a configuration can be

12

Developments in Networks of Evolutionary Processors

considered as the sets of words which are present in the nodes of the
network at a given moment.

A configuration can change either by an evolutionary step or by a
communication step. When it changes by an evolutionary step, then
each component C(x) of the configuration C is altered in accordance
with the set of evolutionary rules Mx associated with the node x and
the way of applying these rules, α(x). Formally, the configuration C ′

is obtained in one evolutionary step from the configuration C, written
as C =⇒ C ′, iff C ′(x) = M

α(x)
x (C(x)) for all x ∈ XH .

When the configuration changes by a communication step, then
each language processor N (x), where x ∈ XH , sends a copy of its
each word to every node processor, where the node is connected with
x, provided that this word is able to pass the output filter of x, and
receives all the words which are sent by processors of nodes connected
with x, provided that these words are able to pass the input filter of
x. Those words which are not able to pass the respective output filter,
remain at the node. Formally, we say that configuration C ′ is obtained
in one communication step from configuration C, written as C ` C ′,
iff C ′(x) = (C(x)−τx(C(x)))

⋃
{x,y}∈EH

(τy(C(y))∩µx(C(y))) holds for
all x ∈ XH .

2.4 Computation and result

For an HNEP Γ, the computation in Γ is a sequence of configurations
C0, C1,C2, . . . , where C0 is the initial configuration of Γ, C2i =⇒ C2i+1

and C2i+1 ` C2i+2, for all i ≥ 0.
HNEPs can be considered both language generating devices (gen-

erating hybrid networks of evolutionary processors or GHNEPs) and
language accepting devices (accepting hybrid networks of evolutionary
processors or AHNEPs).

In the case of GHNEPs we define the generated language as the
set of all words which appear in the output node at some step of the
computation. Formally, the language generated by a generating hybrid
network of evolutionary processors Γ is L(Γ) =

⋃
s≥0 Cs(i0).

In the case of AHNEPs, in addition to the components above,

13

A. Alhazov

we distinguish an input alphabet and a network alphabet, V and
U, where V ⊆ U, and instead of an initial configuration, we indi-
cate an input node iI . Thus, for an AHNEP, we use the notation
Γ = (V,U,H,N , iI , α, β, i0).

The computation by an AHNEP Γ for an input word w ∈ V ∗ is
a sequence of configurations C

(w)
0 , C

(w)
1 ,C

(w)
2 , . . . , where C

(w)
0 is the

initial configuration of Γ, with C
(w)
0 (iI) = {w} and C

(w)
0 (x) = ∅, for

x ∈ G, x 6= iI , and C
(w)
2i =⇒ C

(w)
2i+1, C

(w)
2i+1 ` C

(w)
2i+2, for all i > 0.

A computation as above is said to be accepting if there exists a
configuration in which the set of words that can be found in the output
node io is non-empty. The language accepted by Γ is defined by

L(Γ) = {w ∈ V ∗ | the computation by Γ on w is an accepting one}.

2.5 Obligatory networks

The model of OHNEPs is obtained from the model of HNEPs by ex-
cluding the second case, i.e., ”{w},otherwise”, from (1)-(4). Hence, for
a string to remain in a node, it is obligatory for it to evolve via some
rule from SubV , DelV or InsV .

Notice that the definition of OHNEPs is thus simpler and more
uniform than that of HNEPs. In the same time, using the power of
the underlying graph, it makes it possible to even reach the computa-
tional completeness with nodes only having one operation, and without
filters, [3].

2.6 Basic model of NEPs

The concept of NEPs is simpler than that of HNEPs. We find it suit-
able here to define the former in terms of the latter, by modifying the
following:

• Only the ∗ mode exists for evolutionary processors.

• A permitting filter and a forbidden filter are combined into one
filter, which may be any regular language. A string passes the

14

Developments in Networks of Evolutionary Processors

filter iff it belongs to the corresponding regular language. The
filtering mode β loses its meaning.

3 Selected results

We would like to point out that there is no interaction, direct or indi-
rect, between the words of the network. Hence, the generated language
is a union of languages, generated by the same system, but starting
with only one word.

As for the replication, i.e., the possibility of applying multiple rules
or the same rule in multiple ways, producing many words from one
word, this could be viewed as a non-deterministic evolution of one word.
In this case, distributivity simply means assigning a state to the word.
Summing up, the language generated by a parallel deterministic word
rewriting system may be viewed as a (union of) language(s) generated
by a non-deterministic one-word rewriting system with states (without
any other parallelism or distributivity).

Furthermore, the nature of the model (except the obligatory vari-
ant) leads to many cases of the “shadow” computations, in the following
sense. If one carefully considers the definitions, and constructs a faith-
ful simulation of the model, one would notice that a lot of computation
in the system consists of repeatedly recomputing the same steps. This
is due to the fact that if some operation π ∈ SubV or ρ ∈ DelV of a
node is not applicable to some word w in that node, the result is w.
Taking the union over all operations of a node yields a set contain-
ing w, even if some other operation was applicable to w. Clearly, in
the next step, the words obtainable from w in the same node will be
recomputed. However, the system is deterministic, so nothing new is
obtained in this way.

A careful examination reveals that, in some circumstances, the
shadow computations can be avoided, modifying the definition while
yielding the same generated language! Indeed, preserving w is useless
(everything that is possible to derive from w in that node is derived
immediately) unless w exits the node. However, at least in the case of
complete networks, if w enters a node and exits it unchanged, this does

15

A. Alhazov

not do anything new either (if w is an initial word, it can be copied to
all nodes that it can reach unchanged in communication step).

The above reason lets us claim that, e.g., any result for complete
OHNEPs holds also for the usual complete HNEPs, and the associated
computational burden of the simulation may be greatly reduced. If
the network is not complete, then a heuristic still may be used by a
simulator, by preserving unchanged words only in case if they actually
move from a node into some different node.

3.1 NEPs with two nodes

Theorem 1 For any recursively enumerable language L, there are a
set T and a network N of evolutionary processors with exactly one
insertion node and exactly one deletion node such that L = L(N) ∩
T ∗.[9]

Proof. (sketch) We consider a type-0 grammar G = (N, T, P, S)
with L(G) = L. Then all rules of P have the form u → v with
u ∈ N+ and v ∈ (N ∪ T)∗. Let X = N ∪ T, X ′ = {a, a′ | a ∈
N ∪ T}, T ′ = {a, a′ | a ∈ T} and P ′ = {pi | p ∈ P, 1 ≤ i ≤ 4}.
We define a morphism µ : X∗ → (X ′)∗ by µ(a) = aa′ for a ∈ X
and set W = {µ(w) | w ∈ X∗}. We construct the following network
N = (V, (M1, A1, I1, O1), (M2, A2, I2, O2), E, 2) of evolutionary proces-
sors with

V = P ′ ∪X ′,
M1 = {λ → pi | pi ∈ P ′, 1 ≤ i ≤ 4} ∪ {λ → a | a ∈ X ′},
A1 = {µ(S)},
I1 = W \ (T ′)∗,
O1 = V ∗ \(WR1,1W),
M2 = {pi → λ | pi ∈ P ′, 1 ≤ i ≤ 4} ∪ {a → λ | a ∈ X ′ \ T},
A2 = ∅,
I2 = WR1,2W,

O2 = V ∗ \ (WR2,2W ∪ (T ′)∗),

16

Developments in Networks of Evolutionary Processors

E = {(1, 2), (2, 1)}, where

R1,1 =
⋃

p:u→v∈P

({p1µ(u), p1µ(u)p3, p1p2µ(u)p3, p1p2µ(u)p3p4}

∪ {p1p2µ(u)}PPref(µ(v)){p3p4})
\{p1p2µ(u)p3p4 | p : u → v ∈ P},

R1,2 = {p1p2µ(uv)p3p4 | p : u → v ∈ P},
R2,2 =

⋃

p:u→v∈P

({p1p2}PSuf(µ(u)){µ(v)p3p4}

∪ {p2µ(v)p3p4, p2µ(v)p4, µ(v)p4}).

The output and input filters are defined in order to remove the garbage
and communicate the strings that should change the type of operation,
keeping only the strings that should continue to evolve by operations
of the same type. Since the morphism µ(a) = aa′ is introduced, the
strings obtained by applying rules to the left or to the right of the
place of application of the current rule are no longer kept in the node
by the filter, and are not accepted by either node (recall that W =
aa′|a ∈ {N ∪ T ∗), so they leave the system. Claim: L(N) \ T ∗ = L.
The correct simulation of an application of a production p : a1 · · · as →
b1 · · · bt to a sentential form αa1 · · · asβ and with x = µ(α) and y = µ(α)
has the following form. In N1 we have

xa1a
′
1 · · · asa

′
sy ⇒λ→p1 xp1a1a

′
1 · · · asa

′
sy

⇒λ→p3 xp1a1a
′
1 · · · asa

′
sp3y

⇒λ→p2 xp1p2a1a
′
1 · · · asa

′
sp3y

⇒λ→p4 xp1p2a1a
′
1 · · · asa

′
sp3p4y

⇒λ→b1 xp1p2a1a
′
1 · · · asa

′
sb1p3p4y

⇒λ→b′1 xp1p2a1a
′
1 · · · asa

′
sb1b

′
1p3p4y

⇒∗ xp1p2a1a
′
1 · · · asa

′
sb1b

′
1 · · · btp3p4y

⇒λ→b′t xp1p2a1a
′
1 · · · asa

′
sb1b

′
1 · · · btb

′
tp3p4y

17

A. Alhazov

and in N2 we have

xp1p2a1a
′
1 · · · asa

′
sb1b

′
1 · · · btb

′
tp3p4y

⇒a1→λ xp1p2a
′
1 · · · asa

′
sb1b

′
1 · · · btb

′
tp3p4y

⇒a′1→λ xp1p2a2 · · · asa
′
sb1b

′
1 · · · btb

′
tp3p4y

⇒∗ xp1p2asa
′
sb1b

′
1 · · · btb

′
tp3p4y

⇒as→λ xp1p2a
′
sb1b

′
1 · · · btb

′
tp3p4y

⇒a′s→λ xp1p2b1b
′
1 · · · btb

′
tp3p4y

⇒p1→λ xp2b1b
′
1 · · · btb

′
tp3p4y

⇒p3→λ xp2b1b
′
1 · · · btb

′
tp4y

⇒p2→λ xb1b
′
1 · · · btb

′
tp4y

⇒p4→λ xb1b
′
1 · · · btb

′
ty.

Notice that if a production can be applied to the same sentential form
in different ways (multiple productions and/or multiple places to ap-
ply them), then the corresponding number of strings is produced in
the first step (inserting marker p1 associated to the production, to the
left of the application place). The rest of the simulation is determin-
istic in the following sense: starting from xp1a1a

′
1 · · · asa

′
sy, the result

xb1b
′
1 · · · btb

′
ty is obtained according to the derivations above, while all

other strings are discarded. The strings that leave one node and enter
another one belong to the sets O1 \ I2 = I2 and O2 \ I1 = I1. All other
strings that leave a node do not enter anywhere. With p ∈ P , a ∈ X ′

and A ∈ X ′ \T , the following tables illustrate the behaviour of a string
(the numbers give the situation which is obtained by using the rule in
question and n/a refers to nonapplicability of the rule).

n Shape in N1 λ → p1 λ → p3 λ → p2 λ → p4 λ → a

1 W 2 out out out out
2 Wp1µ(u)Wout 3 out out out
3 Wp1µ(u)p3W out out 4 out out
4 Wp1p2µ(u)p3W out out out 5 out
5 Wp1p2µ(u)·

PPref(µ(v))p3p4W out out out out 5,6

18

Developments in Networks of Evolutionary Processors

n Shape in N1 p1 → λ p3 → λ p2 → λ p4 → λ A → λ

6 Wp1p2·
NSuf(µ(u))µ(v)p3p4W out out out out 6,7

7 Wp1p2µ(v)p3p4W 8 out out out out
8 Wp2µ(v)p3p4W n/a 9 out out out
9 Wp2µ(v)p4W n/a n/a 10 out out
10 Wµ(v)p4W n/a n/a n/a 1,11 out
11 (T ′)∗ n/a n/a n/a n/a 11

These tables illustrate the fact that if a symbol is inserted or deleted
in a way that does not follow the “correct” simulation, than the string
leaves the system. Finally, consider L(N) ∩ (T ′)∗. It is the set of all
strings obtained in N2 without nonterminal symbols, without markers
and without pre-terminals (i. e., primed versions of terminals). Hence,
all of them are obtained from shape 5 of N2 by deleting the marker p4,
reaching shape 6 if the string only has terminals and pre-terminals. It
is easy to see that in several computation steps all pre-terminal symbols
will be deleted. This exactly corresponds to the set of terminal strings
w produced by the underlying grammar G, all letters being represented
by a double repetition, i. e., encoded by µ. Such strings remain in N2

and all pre-terminals are deleted, obtaining w from µ(w). 2

3.2 HNEPs with one node

The following theorem states the regularity result for GHNEPs with
one node. Although this has already been stated in [18], their proof is
certainly incomplete. They stated that while GHNEPs without inser-
tion only generate finite languages, GHNEPs with one insertion node
only generate languages I∗C0, C0I

∗, C0
∐∐

I∗, for the mode l, r, ∗, re-
spectively. In the theorem below we present a precise characterization
of languages generated by GHNEP with one node and consider the case
omitted in [18], when the underlying graph G has a loop.

Theorem 2 One-node GHNEPs only generate regular languages.[14]

Proof. As finite languages are regular, the statement holds for GH-
NEPs without insertion nodes. We now proceed with the case of one

19

A. Alhazov

insertion node. Consider such a GHNEP Γ = (V, G, N1, C0, α, β, 1),
where

N1 = (M,PI, FI, PO, FO).

Let us introduce a few notations. Inserting a symbol from I in a
language C yields a language insI(C). Depending on whether α = l,
α = r or α = ∗, insI(C) is one of IC, CI, C

∐∐
I, respectively. For

inserting an arbitrary number of symbols from a set I in a language C,
ins∗I(C) is one of I∗C, CI∗, C

∐∐
I∗. Clearly, ins∗I preserves regularity.

We denote the set of symbols inserted in N1 by I = {a | λ → a ∈
M}. The configuration of N1 after one step is C1 = insI(C0). Assume
that β = 2 (a case, when β = 1, can be considered analogously),
then the conditions of passing permitting and forbidding output filter
can be specified by regular languages π = V ∗POV ∗ and ϕ = (V −
FO)∗, respectively. For instance, the set of words of C1 that pass the
forbidding output filter but do not pass the forbidding input filter is
C ′

1 = C1 ∩ ϕ \ π. Notice that inserting symbols that belong to neither
PO nor FO does not change the behavior of the filters; we denote the
corresponding language by B = ins∗I\(PO∪FO)(C1).

Consider the case when the graph G consists of one node and no
edges. Then, Γ generates the following language

L1 = L1(Γ) = C0 ∪ C1 ∪ ins∗I(C1 \ ϕ) ∪B

∪insI∩PO\FO(B) ∪ ins∗I(insI∩FO(B)), (7)
B = ins∗I\(PO∪FO)(C1),

C1 = insI(C0).

Indeed, this is a union of six languages:

1. initial configuration,

2. configuration after one insertion,

3. all words that can be obtained from a word from C1 if it is trapped
in N1 by the forbidding filter,

4. B represents the words that pass the forbidding filter but not the
permitting filter,

20

Developments in Networks of Evolutionary Processors

5. words obtained by inserting one permitting and not forbidden
symbol into B, and

6. words obtained by inserting one forbidden symbol into B, and
then by arbitrary insertions.

Consider the case when the graph G has a loop. The set of words
leaving the node (for the first time) is D = (C1∩ϕ∩π)∩insI∩PO\FO(B).
The conditions of the permitting and forbidding input filters can be
specified by regular languages π′ = V ∗PIV ∗ and ϕ′ = (V − FI)∗,
respectively. Some of words from D return to N1, namely D ∩ π′ ∩ ϕ′.
Notice that further insertion of symbols that belong neither to FO nor
to FI causes the words to continuously exit and reeenter N1. The
associated language is B′ = ins∗I\(FO∪FI)(D ∩ π′ ∩ ϕ′). Finally, we give
the complete presentation of the language generated by Γ in this case:

L′1 = L1(Γ) = L1 ∪B′ ∪ ins∗I(insI∩FO(B′)) ∪ insI∩FI\FO(B′), (8)
B′ = ins∗I\(FO∪FI)(D ∩ π′ ∩ ϕ′),
D = (C1 ∩ ϕ ∩ π) ∩ insI∩PO\FO(B),
C1 = insI(C0).

Indeed, this is a union of four languages:

1. words that never reenter N1, as in the case when G has no edges,

2. B′ represents the words that once leave and reenter N1, and keep
doing so after subsequent insertions,

3. words obtained by inserting a symbol from FO into B′, and then
by arbitrary insertions,

4. words obtained by inserting a symbol from FI \ FO into B′.

2

21

A. Alhazov

3.3 HNEPs with 7 nodes

Theorem 3 Any recursively enumerable language can be generated by
a complete HNEP of size 7. [7, 8]

Proof. Let L ⊆ T ∗ be a language generated by a type-0 grammar
G = (N, T, S, P) in Kuroda normal form.

We construct a complete HNEP Γ = (V, H,N , C0, α, β, 7) of size 7
which simulates the derivations in G and only that, by using the so-
called rotate-and-simulate method. The rotate-and-simulate method
means that the words in the nodes are involved in either the rotation
of their leftmost symbol (the leftmost symbol of the word is moved to
the end of the word) or the simulation of a rule of P . In order to indicate
the end of the word when rotating its symbols and thus to guarantee
the correct simulation, a marker symbol, #, different from any element
of (N ∪ T) is introduced. Let N ∪ T ∪ {#} = A = {A1, A2, . . . An},
I = {1, 2, . . . , n}, I ′ = {1, 2, . . . , n − 1}, I ′′ = {2, 3 . . . , n}, I0 =
{0, 1, 2, . . . , n}, I ′0 = {0, 1, 2, . . . , n − 1}, B0 = {Bj,0 | j ∈ I},
B′

0 = {B′
j,0 | j ∈ I}, # = An, T ′ = T ∪ #. Let us define the al-

phabet V of Γ as follows:

V = A ∪B ∪B′ ∪ C ∪ C ′ ∪D ∪D′ ∪ E ∪ E′ ∪ F ∪G ∪ {ε′},
B = {Bi,j | i ∈ I, j ∈ I0}, B′ = {B′

i,j | i ∈ I, j ∈ I0},
C = {Ci | i ∈ I}, C ′ = {C ′

i | i ∈ I}, D = {Di | i ∈ I0},
D′ = {D′

i | i ∈ I},
E = {Ei,j | i, j ∈ I}, E′ = {E′

i,j | i, j ∈ I},
F = {Fj | j ∈ I}, G = {Gi,j | i, j ∈ I}.

Let H be a complete graph with 7 nodes, let N , C0, α, β be presented
in Table 1, and let node 7 be the output node of HNEP Γ.

A sentential form (a configuration) of grammar G is a word w ∈
(N ∪ T)∗. When simulating the derivations in G, each sentential form
w of G corresponds to a string of Γ in node 1 and having one of the
forms wBn,0 or w′′Anw′Bi,0, where An = #, w,w′, w′′ ∈ (N ∪ T)∗ and
w = w′Aiw

′′. The start symbol S = A1 of G corresponds to an initial

22

Developments in Networks of Evolutionary Processors

word A1#, represented as A1Bn,0 in node 1 of HNEP Γ, the other nodes
do not contain any word. The simulation of the application of a rule of
G to a substring of a sentential form of G is done in several evolution
and communication steps in Γ, through rewriting the leftmost symbol
and the two rightmost or the rightmost symbol of strings. This is the
reason why we need the symbols to be rotated.

In the following we describe how the rotation of a symbol and the
application of an arbitrary rule of grammar G are simulated in HNEP
Γ.

Rotation.
Let Ai1Ai2 . . . Aik−1

Bik,0 = Ai1wBik,0 be a word found at node
1, and let w,w′, w′′ ∈ A∗. Then, by applying rule 1.1 we obtain
Ai1Ai2 . . . Aik−1

Bik,0 = Ai1wBik,0
1.1−→ {C ′

i1
wBik,0, Ai1w

′C ′
it
w′′Bik,0}.

We note that during the simulation symbols C ′
i should be trans-

formed to ε′, and this symbol can only be deleted from the left-hand
end of the string (node 6). So, the replacement of Cit by its primed
version in a string of the form Ai1w

′Citw
′′Bik,0 results in a word that

will stay in node 6 forever; thus, in the sequel, we will not consider
strings with C ′

i not in the leftmost position. In the communication
step following the above evolution step, string C ′

i1
wBik,0 cannot leave

node 1 and stays there for the next evolution step:

C ′
i1wBik,0

1.5−→ C ′
i1wB′

ik,0.

Observe that rules 1.1 and 1.5 may be applied in any order. After
then, string C ′

i1
wB′

ik,0 can leave node 1 and can enter only node 2. In
the following steps of the computation, in nodes 1 and 2, the string is
involved in evolution steps followed by communication:

Ci1−twBik,t
1.4−→ C ′

i1−(t+1)wBik,t
1.6−→ C ′

i1−(t+1)wB′
ik,t+1 (in node 1),

C ′
i1−twB′

ik,t
2.1−→ Ci1−(t+1)wB′

ik,t
2.2−→ Ci1−(t+1)wBik,t+1 (in node 2).

23

A. Alhazov

N, α, β, C0, M, PI, FI, PO, FO

1, ∗, (2), {1.1 : Ai → C′i | i ∈ I} ∪ {1.2 : Ai → ε′ | i ∈ I ′, Ai → ε} ∪
{A1Bn,0} {1.3 : Bj,0 → Bs,0 | Aj → As, j, s ∈ I ′}

{1.4 : Ci → C′i−1, 1.5 : Bj,0 → B′
j,0,

1.6 : Bj,k → B′
j,k+1 | i ∈ I ′′, j ∈ I, k ∈ I ′} ∪

{1.7 : C1 → ε′} ∪ {1.8 : E′
j,k → Ej,k−1, 1.9 : D′

i → Di+1,
1.10 : E′

j,1 → Fj | i ∈ I ′, j ∈ I, k ∈ I ′′}
PI = {An, Bn,0} ∪ C ∪ E′

FI = C′ ∪ E ∪D ∪ F ∪G ∪ {ε′}
PO = C′ ∪B′ ∪D ∪ F ∪ {ε′}
FO = B ∪ C ∪D′ ∪ E′

2, ∗, (2), ∅ {2.1 : C′i → Ci−1, 2.2 : B′
j,k → Bj,k+1 | i ∈ I ′′, j ∈ I, k ∈ I ′0} ∪

{2.3 : C′1 → ε′} ∪ {2.4 : Ej,k → E′
j,k−1, 2.5 : Di → D′

i+1,
2.6 : Ej,1 → Fj | i ∈ I ′0, j ∈ I, k ∈ I ′′} ∪ {2.7 : An → ε′} ∪
{2.8 : Bj,0 → Aj | Aj ∈ T}
PI = {Bj,0 | Aj ∈ T} ∪ C′ ∪ E
FI = {B \Bj,0 | Aj ∈ T} ∪ C ∪ D′ ∪ E′ ∪ F ∪G ∪ {ε′}
PO = C ∪D′ ∪ F ∪ {ε′}
FO = {Bj,0 | Aj ∈ T} ∪B′ ∪ C′ ∪ E ∪D

3, r, (2), ∅ {3.1 : ε → D0}
PI = B \B0 ∪B′ \B′

0 ∪G
FI = C ∪ C′ ∪B0 ∪ {D0}, PO = {D0}, FO = ∅

4, ∗, (2), ∅ {4.1 : Bj,k → Ej,k, 4.2 : B′
j,k → Ej,k | j, k ∈ I} ∪

{4.3 : Bj,k → Es,t,
4.4 : B′

j,k → Es,t | j, k, s, t ∈ I ′, AjAk → AsAt} ∪
{4.5 : Gj,k → Ej,k | j, k ∈ I ′}
PI = {D0}, F I = E, PO = E
FO = B ∪B′ ∪G

5, ∗, (2), ∅ {5.1 : Dj → Bj,0, 5.2 : D′
j → Bj,0 | j ∈ I} ∪

{5.3 : Fj → Aj | j ∈ I} ∪ {5.4 : Dj → Gs,t,
5.5 : D′

j → Gs,t | Aj → AsAt, j, s, t ∈ I ′}
PI = D \ {D0} ∪D′

FI = E ∪ E′ ∪ {D0} ∪ C ∪ C′ ∪ {ε′}
PO = ∅, FO = D ∪D′ ∪ F

6, l, (2), ∅ {6.1 : ε′ → ε}
PI = {ε′}
FI = B \B0 ∪B′ ∪ C ∪ C′ ∪ F ∪ (D \ {D0})
PO = ∅, FO = {ε′}

7, ∗, (2), ∅ ∅
PI = T, FI = V \ T, PO = ∅, FO = T

Table 1.

24

Developments in Networks of Evolutionary Processors

We note that during this phase of the computation rules 1.2: Ai →
ε′ or 2.7: An → ε′ may be applied in nodes 1 and 2. In this case, the
string leaves node 1 or 2, but cannot enter any node. So, this case will
not be considered in the sequel.

The process continues in nodes 1 and 2 until subscript i of Ci or
that of C ′

i is decreased to 1. In this case, either rule 1.7 : C1 → ε′

in node 1 or rule 2.3 : C ′
1 → ε′ in node 2 will be applied and the ob-

tained string ε′wB′
ik,i1

or ε′wBik,i1 is communicated to node 3. (Notice
that the string is able to leave the node either if both C and B are
primed or both of them are unprimed.) Then, in node 3, depending on
the form of the string, either evolution step ε′wB′

ik,i1

3.1−→ ε′wB′
ik,i1

D0

or evolution step ε′wBik,i1
3.1−→ ε′wBik,i1D0 is performed. Strings

ε′wB′
ik,i1

D0 or ε′wBik,i1D0 can enter only node 4, where (depend-

ing on the form of the string) either evolution step ε′wBik,i1D0
4.1−→

ε′wEik,i1D0 or evolution step ε′wB′
ik,i1

D0
4.2−→ ε′wEik,i1D0 follows. The

obtained word, ε′wEik,i1D0, can enter only node 6, where evolution
step ε′wEik,i1D0

6.1−→ wEik,i1D0 is performed. Then the string leaves
the node and enters node 2.

Then, in nodes 2 and 1, a sequence of computation steps is per-
formed, when the string is involved in evolution steps followed by com-
munication as follows:

wEik,i1−tDt
2.4−→ wE′

ik,i1−(t+1)Dt
2.5−→ wE′

ik,i1−(t+1)D
′
t+1 (in node 2).

wE′
ik,i1−tD

′
t

1.8−→ wEik,i1−(t+1)D
′
t

1.9−→ wEik,i1−(t+1)Dt+1 (in node 1),

The process continues in nodes 1 and 2 until the second subscript
of E′

i,j or that of Ei,j is decreased to 1. In this case, either rule 1.10 :
E′

ik,1 → Fik in node 1 or rule 2.6 : Eik,1 → Fik in node 2 is applied and
the new string, wFikDi1 or wFikD′

i1
, will be present in node 5. Notice

that applying rules 1.1, 1.2 and 2.7 we obtain strings that cannot
enter nodes 3 – 7 and stay in nodes 1 or 2.

The next evolution steps that take place in node 5 are as follows:

wFikDi1(wFikD′
i1

)
5.1(5.2)−→ wFikBi1,0

5.3−→ wAikBi1,0.

25

A. Alhazov

In the following communication step, string wAikBi1,0 can enter
either node 1 or node 2 (if Ai1 ∈ T). In the first case, the rotation of
symbol Ai1 has been successful. Let us consider the second case. Then
string wAikBi1,0 appears in node 2.

• Suppose that the word wAikBi1,0 does not contain any nonter-
minal symbol except An. Let wAikBi1,0 = Anw′AikBi1,0, where
w = Anw′. So, w′AikAi1 is a result and it appears in node 7. No-
tice that if w = w′Anw′′ and w′ 6= ε, then word w′Anw′′AikBi1,0

leads to a string which will stay in node 6 forever (if rule 2.7
was applied). So, we consider the following evolution of the word
wAikBi1,0 = Anw′AikBi1,0: Anw′AikBi1,0

2.7−→ ε′w′AikBi1,0
2.8−→

ε′w′AikAi1 . Then, string ε′w′AikAi1 will appear in node 6, where
symbol ε′ will be deleted by rule 6.1. Finally, the resulted word
w′AikAi1 will enter node 7. This is a result.

• Suppose now that the word wAikBi1,0 contains at least one non-
terminal symbol different from An and Ai1 ∈ T .

Consider the evolution of the word wAikBi1,0 = w′Anw′′AikBi1,0

in node 2:

w′Anw′′AikBi1,0
2.8−→ w′Anw′′AikAi1

2.7−→ w′ε′w′′AikAi1 .

Now, string w′ε′w′′AikAi1 will enter node 6 and either it will not
be able to leave it (if w′ 6= ε) or it will not be able to enter any
of the other nodes (if w′ = ε).

In the following we will explain how the application of the rules of
G are simulated in Γ.
Rule Ai −→ ε. Suppose that string AiwBj,0 is in node 1 and let
w, w′, w′′ ∈ A∗. Then, by evolution, we obtain AiwBj,0

1.2−→ ε′wBj,0 or
Atw

′Aiw
′′Bj,0

1.2−→ Atw
′ε′w′′Bj,0 which can enter only node 6. String

Atw
′ε′w′′Bj,0 will stay in node 6 forever. By evolution ε′wBj,0

6.1−→
wBj,0 and the resulting string, wBj,0, enters in node 1 (and node 2,
if Aj ∈ T). Thus, the application of rule Ai −→ ε in G was correctly
simulated.

26

Developments in Networks of Evolutionary Processors

Rule Ai −→ Aj. The evolution step performed at node 1 is wBi,0
1.3−→

wBj,0. Since string wBj,0 is in node 1, the simulation of the rule Ai −→
Aj of grammar G was done in a correct manner.
Rule Aj −→ AsAt. At the end of the simulation of the rotation of
a symbol, in node 5 instead of applying rule Dj → Bj,0 (D′

j → Bj,0)
a rule Dj → Gs,t (D′

j → Gs,t) is applied. That is, in node 5, either

evolution step wDj
5.4−→ wGs,t or evolution step wD′

j
5.5−→ wGs,t is

performed. The new string wGs,t can enter only node 3, where, by
evolution, wGs,t

3.1−→ wGs,tD0. String wGs,tD0 can enter only node
4, where evolution step wGs,tD0

4.5−→ wEs,tD0 follows. The process
continues as above, in the case of simulating rotation, and in several
computation steps the string wFsDt or wFsD

′
t will enter node 5. After

evolution in this node, the resulting string wAsBt,0 will enter node 1
(and node 2, if At ∈ T). Thus, the application of rule Aj −→ AsAt of
G is correctly simulated.
Rule AiAj −→ AsAt. The evolutionary processor in node 4 has rules
4.3 : Bi,j → Es,t or 4.4 : B′

i,j → Es,t. As in the case of simulating
rotation, above, we will obtain string wAsBt,0 in node 1 (and in node
2, if At ∈ T).

We have demonstrated how the rotation of a symbol and the ap-
plication of rules of G are simulated by Γ. By the constructions, the
reader can verify that G and Γ generate the same language. 2

3.4 Obligatory HNEPs

As described in the second section, obligatory operations were consid-
ered in HNEPs. The result of the evolution step now consists of all
strings produced from the current ones by the operations of insertion,
deletion and substitution (the current strings are no longer preserved,
even if some operation is not applicable to them). Not only this yields
a simpler and a more uniform definition, but also the following result
is obtained.

Theorem 4 Any CPM0 P can be simulated by an OHNEP P ′, where

27

A. Alhazov

obligatory evolutionary processors are with empty input and output fil-
ters and only insertion and obligatory deletion operations in right and
left modes are used (without obligatory substitution operations). [3, 2]

Proof. Let us consider a CPM0 P with symbols aj ∈ Σ, j ∈ J =
{0, 1 . . . , n}, a0 = 0 is the blank symbol, and states, qi ∈ Q, i ∈ I =
{1, 2, . . . , f}, where q1 is the initial state and the only terminal state
is qf ∈ Q. We suppose that P stops in the terminal state qf on every
symbol, i.e., there are instructions qfaj → Halt, aj ∈ J . (Notice that
it is easy to transform any CPM0 P into a CPM0 P ′ that stops on
every symbol in the final state.)

So, we consider CPM0 P with the set R of instructions of the
forms qiaj −→ ql, qiaj −→ akql, qi0 −→ akqm0, qfaj −→ Halt, where
qi ∈ Q \ {qf}, ql, qm ∈ Q, aj , ak ∈ Σ. We do not consider case qm = qf

in instruction qi0 −→ akqm0. Notice that it is easy to modify the
program of P such that it only halts by instructions of other types.

A configuration w = qiajW of CPM0 P describes that P in state
qi ∈ Q considers symbol aj ∈ Σ to the left of W ∈ Σ∗.

Now we construct an OHNEP P ′ simulating P. To simplify the
description of P ′, we use 〈qfaj〉 and 〈qfaj〉1, j ∈ J as aliases of 〈out〉.
Let v take values from Q and let u take values from ∈ Q ∪Q · {0}.

P ′ = (V,G, N,C0, α, β, i0),
V = {q1} ∪ Σ,

G = (XG, EG),
XG = {〈init〉, 〈out〉}

∪ {〈qiaj〉 | (qiaj → v) ∈ R}
∪ {〈qiaj〉1 | (qiaj → aku) ∈ R},

EG = {(〈init〉, 〈q1aj〉) | j ∈ J}
∪ {(〈qiaj〉, 〈qlak〉) | (qiaj → ql) ∈ R, k ∈ J}
∪ {(〈qiaj〉, 〈qiaj〉1) | (qiaj → aku) ∈ R}
∪ {(〈qiaj〉1, 〈qlas〉) | (qiaj → akql) ∈ R, s ∈ J}
∪ {(〈qi0〉1, 〈ql0〉1) | (qi0 → akql0), (ql0 → asu) ∈ R, s ∈ J},

28

Developments in Networks of Evolutionary Processors

∪ {(〈qi0〉1, 〈qpas〉) | (qi0 → akql0), (ql0 → qp) ∈ R, s ∈ J},

C0(x) = {q1W}, if x = 〈init〉,
where W is the input of P,

C0(x) = ∅, x ∈ XG \ {〈init〉},
β(x) = 2, x ∈ XG,

N(x) = (Mx, ∅, ∅, ∅, ∅), x ∈ XG,

Mx = {q1 → ε}, x = 〈init〉,
Mx = {aj → ε}, x = 〈qiaj〉,
Mx = {ε → ak}, x = 〈qiaj〉1,

where (qiaj → aku) ∈ R,

α(x) = l, if Mx = {a → ε},
α(x) = r, if Mx = {ε → a}, or Mx = ∅.

OHNEP P ′ will simulate every computation step performed by
CPM0 P by a sequence of computation steps in P ′.

Let q1ajW0 be the initial configuration of CPM0 P . We rep-
resent this configuration in node 〈init〉 of OHNEP P ′ as a word
q1ajW0. Obligatory evolutionary processor associated with this node
is N(〈init〉) = ({(q1 → ε)l}, ∅, ∅, ∅, ∅). Since all other nodes also have
empty filters, in the following we will skip the complete description of
obligatory evolutionary processors, and will present only their obliga-
tory evolutionary operations. The word ajW0 will be passed from node
〈init〉 to nodes 〈q1aj〉, j ∈ J .

If the computation in P is finite, then the final configuration qfW
of P will appear at node 〈out〉 of P ′ as a string W , moreover, any string
W that can appear at node 〈out〉 corresponds to a final configuration
qfW of P. In the case of an infinite computation in P , no string will
appear in node 〈out〉 of P ′ and the computation in P ′ will never stop.

Now we describe nodes of OHNEP P ′, connections between them
and obligatory evolutionary operations, associated with these nodes.
Let I ′ = I \ {f}.

29

A. Alhazov

1. Node 〈qiaj〉 with operation (aj → ε)l, i ∈ I ′, j ∈ J .
Let word atW, t ∈ J, W ∈ Σ∗ appear in this node. If j 6= t, then
this word atW will be discarded, and in the next communication
step node 〈qiaj〉 will send nothing. If j = t, then the node sends
W to nodes {〈qlak〉 | k ∈ J} or 〈qiaj〉1.
• Instruction of P is qiaj −→ ql, i ∈ I ′, j ∈ J, l ∈ I. Node
〈qiaj〉 is connected with nodes {〈qlak〉 | k ∈ J}.

• Instructions of P are qiaj −→ akql or qi0 −→ akql0, i ∈
I ′, j, k ∈ J, l ∈ I. Node 〈qiaj〉 is connected with node
〈qiaj〉1.

2. Node 〈qiaj〉1, i ∈ I ′, j ∈ J with operation (ε → ak)r receives
word W and sends word Wak to nodes {〈qlas〉 | s ∈ J} or 〈ql0〉1.
• Instructions of P are qiaj −→ akql, i ∈ I ′, j, k ∈ J, l ∈ I.

Node 〈qiaj〉1 is connected with nodes {〈qlas〉 | s ∈ J}.
• Instruction of P is qi0 −→ akql0, i ∈ I ′, k ∈ J, l ∈ I. Node
〈qi0〉1 is connected with nodes {〈qpas〉 | s ∈ J} if there exists
an instruction of P ql0 −→ qp, p ∈ I; and with node 〈ql0〉1
in other cases.

We repeat that in all cases, we mean 〈out〉 whenever we write 〈qfaj〉
or 〈qfaj〉1, j ∈ J .

Now we describe simulation of instructions of CPM0 P by OHNEP
P ′.
Instruction qiaj −→ ql: qiajW

P−→ qlW .

Let word atW , where t ∈ J, W ∈ Σ∗, i ∈ I ′ appear in node 〈qiaj〉.
If t 6= j, string atW will be discarded; if t = j, string W will be passed
to nodes {〈qlas〉 | s ∈ J}. If l = f , the final configuration qfW of P
will appear in the output node 〈out〉 as W . This is the result. So, we
simulated instruction qiaj −→ ql in a correct manner.

Instruction qiaj −→ akql: qiajW
P−→ qlWak.

Let word atW , where t ∈ J, W ∈ Σ∗, i ∈ I ′ appear in node 〈qiaj〉.
If t 6= j, string atW will be discarded; if t = j string W will be passed

30

Developments in Networks of Evolutionary Processors

to node 〈qiaj〉1. Node 〈qiaj〉1 receives this word and sends word Wak

to nodes 〈qlas〉, s ∈ J . If l = f , the final configuration qfWak of P
will appear in the output node 〈out〉 as Wak. This is the result. So,
we simulated instruction qiaj −→ akql in a correct manner.

Instruction qi0 −→ akql0: qi0W
P−→ ql0Wak.

Let word atW , where t ∈ J, W ∈ Σ∗, i ∈ I ′ appear in node 〈qi0〉.
If at 6= 0, string atW will be discarded; if at = 0, string W will be
passed to node 〈qi0〉1. It receives this word and sends word Wak to
nodes 〈qpas〉, s ∈ J if there is instruction of P ql0 −→ qp, p ∈ I ′. If
there are instructions ql0 −→ asqp or ql0 −→ asqp0, then node 〈qi0〉1
is connected with node 〈ql0〉1. Thus, word Wak will be passed to node
〈ql0〉1, which corresponds to the configuration of P which has “just
read” symbol 0 in state ql. So, we simulated instruction qi0 −→ akql0
in a correct manner.

So, CPM0 P is correctly modeled. We have demonstrated that the
rules of P are simulated in P ′. The proof that P ′ simulates only P
comes from the construction of the rules in P ′, we leave the details to
the reader. 2

4 Conclusion

We have described the networks of evolutionary processors, their mod-
els and variants, together with the associated results. A few selected
results were presented in more details. For instance, NEPs with two
nodes are already computationally complete modulo the terminal al-
phabet. HNEPs with one node are given the precise regular charac-
terization, HNEPs with two nodes are not computationally complete,
while seven nodes are enough to reach the computational completeness
of HNEPs, even with a complete graph. We should mention that a net-
work over a complete graph (with loops, although it is not important
for the last proof) may be viewed as number of agents in a common
environment, acting “independently” without explicitly enforcing any

31

A. Alhazov

transition protocol, where a computationally complete behavior still
emerges.

A particularly interesting variant is obligatory HNEPs (OHNEPs).
Using a power of the underlying graph, computational completeness is
obtained even without the filters. In case of a complete graph, OHNEPs
are still computationally complete. Moreover, it suffices that the sum
of numbers of symbols in filters of each node does not exceed one. The
last proof has been obtained in [1], using a variant of circular Post
machines, CPM5, introduced in [11].

References

[1] A. Alhazov, G. Bel-Enguix, I. Epifanova, Yu. Rogozhin. About
Two Models of Complete Obligatory Hybrid Networks of Evolu-
tionary Processors. In preparation.

[2] A. Alhazov, G. Bel-Enguix, Yu. Rogozhin. About a New Variant
of HNEPs: Obligatory Hybrid Networks of Evolutionary Proces-
sors. In: G. Bel-Enguix, M. D. Jiménez-López (Eds), Bio-Inspired
Models for Natural and Formal Languages, Cambridge Scholars
Publishing, 2011, pp.191–204.

[3] A. Alhazov, G. Bel-Enguix, Yu. Rogozhin. Obligatory Hybrid Net-
works of Evolutionary Processors. International Conference on
Agents and Artificial Intelligence, Porto, 2009, INSTICC Press,
pp.613–618.

[4] A. Alhazov, G. Bel-Enguix, A. Krassovitskiy, Yu. Rogozhin.
About Complete Obligatory Hybrid Networks of Evolutionary Pro-
cessors without Substitution. Advances in Computational Intelli-
gence, 11th International Work-Conference on Artificial Neural
Networks, IWANN 2011, Málaga, Lecture Notes in Computer Sci-
ence, 6691, 2011, pp.441–448.

[5] A. Alhazov, G. Bel-Enguix, A. Krassovitskiy, Yu. Rogozhin.
Complete Obligatory Hybrid Networks of Evolutionary Processors.

32

Developments in Networks of Evolutionary Processors

Highlights in Practical Applications of Agents and Multiagent Sys-
tems, Salamanca, Advances in Intelligent and Soft Computing, 89,
2011, pp.275–282.

[6] A. Alhazov, E. Csuhaj-Varjú, C. Mart́ın-Vide, Yu. Rogozhin.
About Universal Hybrid Networks of Evolutionary Processors of
Small Size. Pre-Proceedings of the 2nd International Conference
on Language and Automata Theory and Applications, LATA 2008,
GRLMC report, 36/08, University Rovira i Virgili, Tarragona,
2008, pp.43–54. Also in: Lecture Notes in Computer Science,
5196, Springer, 2008, pp.28–39.

[7] A. Alhazov, E. Csuhaj-Varjú, C. Mart́ın-Vide, Yu. Rogozhin.
Computational Completeness of Hybrid Networks of Evolution-
ary Processors with Seven Nodes. In: C. Campeanu, G. Pighizzini
(Eds.), Descriptional Complexity of Formal Systems, DCFS 2008
Proceedings, University of Prince Edward Island, Charlottetown,
2008, pp.38–47.

[8] A. Alhazov, E. Csuhaj-Varjú, C. Mart́ın-Vide, Yu. Rogozhin. On
the Size of Computationally Complete Hybrid Networks of Evolu-
tionary Processors. Theoretical Computer Science, 410, 35, 2009,
pp.3188–3197.

[9] A. Alhazov, J. Dassow, C. Mart́ın-Vide, Yu. Rogozhin, B. Truthe.
On Networks of Evolutionary Processors with Nodes of Two Types.
Fundamenta Informaticae, 91, 1, 2009, pp.1–15.

[10] A. Alhazov, M. Kudlek, Yu. Rogozhin. Nine Universal Circular
Post Machines. Computer Science Journal of Moldova, 10(3),
2002, pp.247–262.

[11] A. Alhazov, A.Krassovitsiy, Yu.Rogozhin. Circular Post Machines
and P Systems with Exo-insertion and Deletion. Lecture Notes in
Computer Science, 7184, Springer, 2012, pp.73–86.

[12] A. Alhazov, C. Mart́ın-Vide, Yu. Rogozhin. On the Number of
Nodes in Universal Networks of Evolutionary Processors. Acta
Informatica, 43(5), 2006, pp.331–339.

33

A. Alhazov

[13] A. Alhazov, C. Mart́ın-Vide, Yu. Rogozhin. Networks of Evo-
lutionary Processors with Two Nodes Are Unpredictable. Pre-
Proceedings of the 1st International Conference on Language and
Automata Theory and Applications, LATA 2007, GRLMC report,
35/07, Rovira i Virgili University, Tarragona, 2007, pp.521–528.
Also in: Technical Report, 818, Turku Centre for Computer Sci-
ence, Turku, 2007.

[14] A. Alhazov, Yu. Rogozhin. About Precise Characterization of Lan-
guages Generated by Hybrid Networks of Evolutionary Processors
with One Node. The Computer Science Journal of Moldova, 16(3),
2008, pp.364–376.

[15] J. Castellanos, P. Leupold, V. Mitrana. On the Size Complexity
of Hybrid Networks of Evolutionary Processors. Theoretical Com-
puter Science, 330(2), 2005, pp.205–220.

[16] J. Castellanos, C. Mart́ın-Vide, V. Mitrana, J. Sempere. Networks
of Evolutionary processors. Acta Informatica, 38, 2003, pp.517-
529.

[17] J. Castellanos, C. Mart́ın-Vide, V. Mitrana, J. Sempere. Solving
NP-complete Problems with Networks of Evolutionary Processors.
In: J. Mira, A. Prieto (Eds.), IWANN 2001, Lecture Notes in
Computer Science, 2084, Springer, 2001, pp.621–628.

[18] E. Csuhaj-Varjú, C. Mart́ın-Vide, V. Mitrana. Hybrid Networks
of Evolutionary Processors are Computationally Complete. Acta
Informatica, 41(4-5), 2005, 257–272.

[19] E. Csuhaj-Varjú, A. Salomaa. Networks of Parallel Language Pro-
cessors. In: Gh. Păun, A. Salomaa, (Eds.), New Trends in for-
mal Language Theory Lecture Notes in Computer Science, 1218,
Springer, 1997, pp.299-318.

[20] J. Dassow, B. Truthe. On the Power of Networks of Evolutionary
Processors. In: J. O. Durand-Lose, M. Margenstern (Eds.), MCU
2007, Lecture Notes in Computer Science, 4667, Springer, 2007,
pp.158–169.

34

Developments in Networks of Evolutionary Processors

[21] M. Kudlek, Yu. Rogozhin. Small Universal Circular Post Ma-
chines. Computer Science Journal of Moldova, 9(1), 2001, pp.34–
52.

[22] M. Kudlek, Yu. Rogozhin. New Small Universal Circular Post Ma-
chines. In: R. Freivalds (Ed.), Proc. FCT 2001, Lecture Notes in
Computer Science, 2138, Springer, 2001, pp.217–227.

[23] R. Loos, F. Manea, V. Mitrana. Small Universal Accepting Hy-
brid Networks of Evolutionary Processors. Acta Informatica, 47,
2, 2010, pp.133–146.

[24] F. Manea, C. Mart́ın-Vide, V. Mitrana. On the Size Complexity
of Universal Accepting Hybrid Networks of Evolutionary Proces-
sors. Mathematical Structures in Computer Science, 17(4) 2007,
pp.753–771.

[25] F. Manea, C. Mart́ın-Vide, V. Mitrana. All NP-problems can be
Solved in Polynomial Time by Accepting Hybrid Networks of Evo-
lutionary Processors of Constant Size. Information Processing Let-
ters, 103, 2007, pp.112–118.

[26] M. Margenstern, V. Mitrana, M.-J. Pérez-Jiménez. Accepting Hy-
brid Networks of Evolutionary Processors. in: C. Ferretti, G.
Mauri, C. Zandron (Eds.), DNA 10, Lecture Notes in Computer
Science, 3384, Springer, 2005, pp.235–246.

[27] C. Mart́ın-Vide, V. Mitrana, M. Pérez-Jiménez, F. Sancho-
Caparrini. Hybrid Networks of Evolutionary Processors. In: E.
Cantú-Paz et al. (Eds.), Proc. of GECCO 2003, Lecture Notes
in Computer Science, 2723, Springer, 2003, pp.401-412.

[28] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

Artiom Alhazov Received April 9, 2013

Dr. Artiom Alhazov
Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
5 Academiei str., Chişinău, MD-2028, Moldova
E–mail: artiom@math.md

35

Computer Science Journal of Moldova, vol.21, no.1(61), 2013

Towards an Automated Semiotic Analysis of

the Romanian Political Discourse∗

Daniela Gı̂fu, Dan Cristea

Abstract

As it is known, on the political scene the success of a speech
can be measured by the degree in which the speaker is able
to change attitudes, opinions, feelings and political beliefs in
his auditorium. We suggest a range of analysis tools, all be-
longing to semiotics, from lexical-semantic, to syntactical and
rhetorical, that integrated in the exploratory panoply of discur-
sive weapons of a political speaker could influence the impact of
her/his speeches over a sensible auditory. Our approach is based
on the assumption that semiotics, in its quality of methodology
and meta-language, can capitalize a situational analysis over the
political discourse. Such an analysis assumes establishing the
communication situation, in our case, the Parliament’s vote in
favour of suspending the Romanian President, through which we
can describe an action of communication.

We depict a platform, the Discourse Analysis Tool (DAT),
which integrates a range of natural language processing tools
with the intent to identify significant characteristics of the po-
litical discourse. The tool is able to produce comparative dia-
grams between the speeches of two or more subjects or analysing
the same subject in different contexts. Only the lexical-semantic
methods are operational in the platform today, but our investiga-
tion suggests new dimensions touching the syntactic, rhetorical
and coherence perspective.

Keywords: political discourse, natural language processing,
president’s suspension, lexical-semantic, syntax, rhetorical anal-
ysis, coherence of discourse.

c©2013 by D. Gı̂fu, D. Cristea
∗ This work was supported by the POSDRU/89/1.5/S/63663 grant, and the

ICT-PSP projects METANET4U #270893 and ATLAS #250467.

36

Towards an Automated Semiotic Analysis . . .

1 Introduction

One of the major recent developments in the evaluation of the political
language and its related facets (rhetoric, political science, journalism,
sociology, etc.) is the increasing attention being paid to the objectivity
and relevance of the semiotic dimensions.

Theoretical approaches in the semiotics of discourses, involving
pragmatic aspects (the dynamics of relations between individuals and
signs), semantic (conceptual conglomerate met in the meanings of
terms), and syntactic (relations between signs) showed a significant
strengthening after the ’80s. The current approaches in analysing the
political language (the applicative dimension) are based on Natural
Language Processing (NLP) techniques designed to investigate lexical-
semantic aspects of the discourse. The domain of NLP includes a the-
oretically motivated range of computational techniques for analyzing
and representing naturally occurring texts at one or more levels of lin-
guistic analysis for the purpose of achieving human-like proficiency in
the interpretation of language for a range of tasks or applications [12].

In this paper we start by describing a platform, the Discourse Ana-
lysis Tool (DAT), which integrates a range of language processing tools
with the intent to build complex characterisations of the political dis-
course and show how its functionality can be prolonged with more
complex features. A linguistic profile of an author is drawn by putting
together features extracted from the following linguistic layers: lexicon
and morphology (richness of the vocabulary, rare co-occurrences, repe-
titions, use of synonyms, coverage of verbs’ grammatical tenses, etc.),
semantics (semantic classes used) and syntax (complexity of syntactic
constructions, the frequency of relative clauses, length of the sentences,
number of clauses in sentences, subordinate/coordinate structures, fre-
quent use of certain type of syntactic relations, etc.).

Among the resources used for the study of natural language syn-
tax, of a tremendous importance are the treebanks, large collections
of sentences annotated by human experts at syntactic structures. The
collection described in this paper refers to the Romanian language and
has been acquired with the help of an interactive graphical tool which

37

D. Gı̂fu, D. Cristea

allowed easy annotation, visualisation and modification of syntactic
trees, initially obtained as a result of an automatic parsing process.

Our purpose was to develop a computational platform able to offer
to researchers in mass-media and political sciences, to political ana-
lysts, to the public at large (interested to consolidate their options
before any political context analysed), and, why not, even to politi-
cians themselves, the possibility to measure different parameters of a
written political discourse.

The paper is structured as follows. Section 2 shortly describes
the previous work. Section 3 discusses a number of lexical-semantic,
syntactic, rhetorical and pragmatic features on which an automatic
analysis is capable to manipulate values in view of drawing statistics.
Section 4 presents a platform for multi-dimensional political discourse
analysis. Section 5 discusses an example of comparative analysis of
discourses collected during the presidential crisis of July 2012, when
the Parliament voted in favour of suspending the Romanian President.
Finally, section 6 highlights interpretations anchored in our analysis
and presents conclusions.

2 Previous work

The aim of an interdisciplinary approach such as analysing the lan-
guage of political speeches is to define and explain different discursive
contexts, in this case, reflected by the online media. The studies in this
direction have mainly concentrated on three tasks: the first had to do
with a cognitive side and, often, with an emotional side, of how humans
acquire, produce, and understand language. The second aimed at un-
derstanding the relationship between the linguistic utterance and the
world, and the third – at understanding the linguistic structure of the
language as a communication device. Linguistics has usually treated
language as an abstract object which can be accounted for without
reference to social or political concerns of any kind [19].

As we will see, one aspect of the platform that we present touches a
lexical-semantic functionality, which has some similarities with the ap-
proach used in Linguistic Inquiry and Word Count (LIWC) [16]. There

38

Towards an Automated Semiotic Analysis . . .

are, however, important differences between the two platforms. LIWC-
2007 is basically counting words and incrementing counters associated
with their declared semantic classes. In the lexicon, words can be given
by their long form, as a complete string of characters, or by their roots.
For each text in the input, LIWC produces a set of tables, each display-
ing the occurrences of the word-like instances of the semantic classes
defined in the lexicon, as sub-unitary values. For each semantic class,
such a value is computed as the number of occurrences of the words
corresponding to that class divided by the total number of words in
the text. It remains in the hands of the user to interpret these figures.
Also, LIWC has no support for considering lexical expressions.

A previous version of DAT [8] performs part-of-speech (POS) tag-
ging and lemmatization of words. The lexicon contains a collection of
lemmas (9.000) having the POS categories: verb, noun, adjective and
adverb. In the context of the lexical semantic analysis, the pronouns,
numerals, prepositions and conjunctions, considered to be semantically
empty, have been left out. In contrast with LIWC-2007, which includes
64 semantic classes (classified into 4 categories: linguistic – 22 classes,
psychological – 32 classes, socio-professional preoccupations – 7 classes
and paralinguistic – 3 classes), DAT.v3 works with 33 semantic classes,
out of which 5 are newly introduced, chosen to fit optimally with the
necessities of interpreting the political discourse.

The second range of differences between the two platforms re-
gards the user interface. In DAT, the user is served by a friendly
interface, offering a lot more services: opening one or more files,
displaying the file(s), modifying/editing and saving the text, func-
tions of undo/redo, functions to edit the lexicon, visualization of the
mentioning of instances of certain semantic classes in the text, etc.
Then, the menus offer a whole range of output visualization func-
tions, from tabular form to graphical representations and to print-
ing services. Finally, another important development for seman-
tic approach was the inclusion of a collection of formulas which
can be used to make comparative studies between different sub-
jects. The lexicon entries are coded in XML, following one of the
patterns: <word stem="wordStem" classes="semList">, or <word

39

D. Gı̂fu, D. Cristea

lemma="wordLemma" classes="semList">, in which wordStem is the
stem of a word (therefore symbols optionally followed by the ‘*’ sign),
wordLemma is the lemma of a word, and semList is a list of semantic
classes (each indicated by a unique identifier). The following line shows
such an example of lexical entry:
<word lemma="deportare" classes="30,11"/>
<word stem="conspiraţioni*" classes="30,1,5,10"/>

3 Semiotic features of political discourse

As meta-language, the semiotics explain the evolution of different types
of object-languages, from physical to linguistic (among those – the
political discourse). It helps to understand the way the humans apply
these systems with the intend to “designate states of possible worlds
or to criticize and even change the structure of systems” [6].

The three analytical horizons are: structural analysis of the levels
/ hierarchical relations of (macro)sign, the triadic analysis (syntactic,
semantic, pragmatic), and the analysis of the communication situation
taken for investigation. In the following we will focus on one of the three
horizons of analysis assumed by the semiotic methodology, namely, on
the triadic analysis. Conforming to this view, any text/discourse can
be analysed from three perspectives [15]: syntactic (the relation be-
tween signs), semantic (the relation between signs and reference), and
pragmatic (the relation between participants in the communication).
Highlighting methodological operations presumed by such a perspec-
tive offers as many (re)signifying strategies of political contexts.

We will adopt analytical techniques developed by the NLP field to
a semiotic study over political texts, in the classical sense [17], that
go back to the methodology proposed by Ferdinand de Saussure [20],
in order to show that the results can be significantly comparable and,
therefore, there are good reasons to trust the computational techniques.

40

Towards an Automated Semiotic Analysis . . .

3.1 The lexical-semantic perspective

A lexical-semantic perspective is supposed to focus on the following
targets:

1. establishing meanings that a political speech includes, as a whole
or at the level of its content units (negative/positive, affirma-
tive/adversative, etc.); determining the correlation degree (mo-
tivation) between the orientation of the political speech and the
language (code) used (adequate, partially adequate, inadequate);

2. a qualitative-semantic analysis of content units, that could be
operated on two dimensions: denotative (what is said explicitly
about the topic discussed), focusing on the intelligibility of the
political text, by assessing its lexical-semantic connectedness [18],
or by counting the originality, oddity or banality of the used lex-
icon, as well as the phrase length, the number of subordinate
sentences, parentheses, etc.; connotative (what are the side sug-
gestions, the sayings in-between the lines, the symbolistics of the
language used), aiming to highlight the possible hidden semantic
meanings of a speech and determining the most likely ones by
taking into account all circumstantial factors (situational), and
specifying the gap between the explicit and implicit intentions
expressed;

3. a quantitative-semantic analysis focusing on determining of the
frequency of key concepts encountered in the political text, high-
lighting the frequency of certain themes in the speech, identify-
ing the frequency of emotionally charged terms, etc.; building a
dictionary of symbols (for key-concepts) specific to the political
discourse that helps to frame it in terms of semantic categories.

4. a discourse and para-language analysis considering the identifica-
tion of the rhetorical aspects of the verbal language (spectacular,
suggestive, allusive, emotional, metaphoric factors, etc.), and the
characteristics of the nonverbal language which have a significant
weight in the political discourse.

41

D. Gı̂fu, D. Cristea

The political speaker is determined to collect empathy and to con-
vince the public. Yet, placing himself within the general limits of the
political goals, very often a skilful politician studies the public for fix-
ing the type of vocabulary and the message to be delivered. He might
exploit connections between more daring ideological categories (as is
for instance the class nationalism) and those generally accepted (for
instance, belonging to the classes social, work, home). The present
day political language puts in value the virtues of the metaphor, its
qualities to pass abruptly from complex to simple, from abstract to
concrete, imposing a powerful subjective and emotional dimension to
the discourse (the class emotional). The political metaphor may loose
the virtues of poetical metaphor, becoming injurious (the class swear).

3.2 The syntactic perspective

Regarded as one of the most developed branches of semiotics, syntactic
analysis aims at studying the relations between signs and the logical
and grammatical structure at the sentence level [13]. The sentence
is composed out of an ordered sequence of language signs, which are
governed by a set of combinatorial rules.

From this perspective, the syntactic analysis of a text aims at: seg-
menting the text onto information units (sentences, clauses, phrases,
words and punctuation markers), identifying the constituency struc-
ture of the sentence (recurrent levels of constituency), emphasising the
dependency structure of a sentence (putting in evidence the unique
syntactic head of each word and the relation linking it to its head in
a tree-like dependency structure [21], etc. The syntax may reveal the
level of culture, intentional persuasive attitudes towards the public,
iritation or rude passion during the production of speech, etc.

Then, a combination of syntactic and semantic means of investiga-
tion could bring forward the semantic verbal roles in sentences (see,
FrameNet [2]), as well as the balance between given and new or rheme
and theme [10].

The final goal of a combined syntactic-semantic analysis is the in-
ference of a logical-form of the sentence, which would give a formal

42

Towards an Automated Semiotic Analysis . . .

expression of the content.

3.3 The discourse-level perspective

Beyond the sentence, at the discourse level, a rhetorical analysis iden-
tifies relations or interdependencies holding between adjacent spans of
text. Then, the arguments of a relation (discourse units, or spans of
text) could be compared one to the other in terms of their importance
(nuclearity). The rhetorical relations and their nuclearity are grouped
in rhetorical schemes, as general patterns in which spans of text can
be recurrently analyzed.

The main regard of discourse theories are towards explaining the
structure of a text (how is a text organised in segments and these ones
– in sub-segments, and how this compositional structure influences the
comprehension of the meaning), its degree of difficulty (for instance,
why are certain texts easier to interpret than others [9]), its cohesion
(or what makes that different components of a text look like being
glued together [11]) and coherence (“Intuitively, coherence is a seman-
tic property of discourse, based on the interpretation of each individual
sentence relative to the interpretation of other sentences.” [22]), and,
finally, what is the relationship between coherence, cohesion and dis-
course structure [4]. Summarisation issues are nonetheless immerged
onto a discourse-level analysis.

3.4 The pragmatic perspective

The pragmatic analysis should be based on the knowledge of the po-
litical intentions (of both the speaker, and the receiver) in connection
with the ideological meanings of a speech. Only in good knowledge of
the political aspirations of the hearers and knowing that the speaker
knows himself this spectrum of political aspirations, a human analyst
would succeed in interpreting the whole range of subtleties of a po-
litical speech. It is clear that pragmatics makes a good deal of the
political speeches interpretation process. It is nevertheless true that
an experienced human analyst would succeed to acquire these facets
of the pragmatic context of a political speech even having little direct

43

D. Gı̂fu, D. Cristea

knowledge on them. It is like in an act of reverse engineering in which
the analyst is able to infer the political ideology of the speaker and of
the auditorium from the speech itself.

A closer look on a pragmatic analysis of a political discourse re-
veals the following aspects: interpretation of the text in terms of psy-
chological distance between the partners, opponents, etc.; defining the
transmitter’s political attitude before and after the communication; de-
termining the receptor’s political attitude (i.e. being pro, against or
undecided); pursuing echoes of the political communication in the au-
dience (immediately), or in the society (after a delay), etc.; discovering
the political speaker’s intentions by evidencing the semantic roles of
different sentence constituents (reiterations, expressions, etc.).

4 A platform for multi-dimensional political
discourse analysis

In this section we briefly describe the Discourse Analysis Tool (DAT),
a platform which integrates a range of language processing tools, with
the intent to build complex characterisations of the public discourse.
Out of the discussed perspectives of semiotic analysis, DAT (currently
at version 3) implements only lexical-semantic features. The concept
behind the lexical-semantic analysis in DAT is that the vocabulary
used by a speaker opens a window towards the author’s sensibility, to-
wards his/her level of culture, her/his cognitive world. Some of these
means of expression are persuasive, aimed to convince the public on
the own opinions, while others are manipulative, aimed to induce a
false perspective on an issue. Figure 1 displays a snapshot of the in-
terface showing a semantic analysis, during a working session. The
platform incorporates two alternative views for presenting the results
of the lexical-semantic analysis: graphical (pie, function, columns and
areas) and tabular (Microsoft Excel compatible).

The vocabulary of the 33 semantic classes (detailed in Figure 2) of
DAT.v3 are considered to fulfil optimally the necessity of interpreting
the political discourse of our corpus.

44

Towards an Automated Semiotic Analysis . . .

Figure 1. The DAT interface: in the left window the selected files
appear, in the middle window – the text in the selected file, and in
the right window – information about the text (language, word count,
dominant class, etc.). Below, a plot (form chosen from a range of
graphical tools) is displayed. By selecting a specific class in the middle
window, all words assigned to that class are highlighted in the text.

45

D. Gı̂fu, D. Cristea

Figure 2. Semantic classes in DAT.v3

46

Towards an Automated Semiotic Analysis . . .

Our interest went mainly in determining those political attitudes
able to influence the voting decision of the auditorium. But the system
can be parameterised to fit also other conjunctures. As such, the user
can define at will her/his semantic classes, which, as can be noticed in
Figure 2, are partially placed in a hierarchy.

The development of the lexicon associated with these classes was
done in several phases. We started with a small vocabulary (mainly
looking for translation equivalents in Romanian of a subset of the
LIWC-2007 classes). Then, the words of this initial lexicon have been
used as seeds in a trial to enrich the lexicon automatically by using the
morphological database of DEX-online, an online electronic dictionary
for Romanian language.

To prepare the integration of syntax in DAT, a dependency parser
for Romanian is in the process of being trained on a dependency tree-
bank. This corpus of syntactic trees (incorporating now over 4,000 tree
structures) has been partially developed manually, by using a graphical
editing tool (TreeAnnotator) and, later on, by the dependency parser
itself, in a bootstrapping manner. After the corpus reached the size of
100 structures, the development of the resource continued in a boot-
strapping manner: the new sentences belonging to the interim president
were first parsed by the parser and then manually corrected by the first
author of this paper. This way, the development of the corpus gained
very much in speed. The format of the stored trees is XML, with the
following elements:

• sentence – marking the sentences; its attributes are: a unique
identifier and the name of the annotator who lastly worked over
the sentence;

• word – marking individual words of the sentence; its attributes
are: a unique identifier, the morphological tag, the lemma form
of the inflected word, the ID of its parent word (the head in the
dependency structure) and the name of the relation linking the
word to its parent.

The following version of DAT is planned to integrate also a syntactic
parser, offering to the user the possibility to identify and count relations

47

D. Gı̂fu, D. Cristea

between different parts of speech, to put in evidence patterns of use at
the semantic and syntactic level, discursive behaviours, etc.

5 A comparative study

5.1 The corpus

The corpus used for our investigation was configured to allow a compa-
rative study over the discursive characteristics of three political leaders,
Traian Băsescu, Crin Antonescu, and Victor Ponta. Traian Băsescu
was the Romanian’s president since 2004 (with an interruption in the
summer of 2012, when he was suspended, period monitorized in this
study), one of the most complex personalities of the Romanian political
arena of the last decade. The second political actor, Crin Antonescu,
is an ex-leader of the Liberal Party, for a short while – President of the
Senate and then – the Romania’s interim President (during Băsescu’s
suspension). The last political actor, Victor Ponta, is an ex-leader of
the Social Democrat Party, the actual Romanian prime minister, and
represents the new political generation. His party and Antonescu’s
party form the USL coalition (The Social-Liberal Union). This coali-
tion, with a social-liberal ideology is a premiere in Romania.

We are, this way, putting on the balance three styles of political
discourse that, at least in principle, are perceived as being different as
ideologies (democrat-liberal, liberal, and social-democrat). But more
than comparing political discourses belonging to different ideologists,
the year 2012, so politically dense, offers the opportunity to study how
the stress of the political battle from the edge of a crises is reflected
in these major opponents’ speeches, as evidenced by a semiotic anal-
ysis. Indeed, 2012 was the year of governmental changes in Romania.
After the January street protests and following President Băsescu’s re-
quest, the Boc Government resigns (20 January) and is replaced by
the Ungureanu Government (6 February). Permanently contested and
sanctioned by the public opinion, less than 3 months later, the Ungu-
reanu Government falls, following a vote of confidence from the Parlia-
ment, put forward by the opposition block PSD-PNL-PC (27 April).

48

Towards an Automated Semiotic Analysis . . .

The President will designate a new premier, Victor Ponta, the head
of the principal opposition party, PSD, sustained by Crin Antonescu,
the liberals’ head. The two politicians make the bases of a new coali-
tion, USL, whose principal objective is the removal of the President,
following thus one of the demands of the protestants. On 10 June, the
local elections will completely change the political map of Romania:
the governmental coalition becomes legitimate in the principal cities
and districts of the country. The next step will be the relegation of
Băsescu, preceded by a motion of censure (6 July), when the President
is suspended. This will trigger the political crisis, around which our
analisys gravitates.

For the elaboration of preliminary conclusions on the crisis pro-
cess, we collected, stored and processed, partially manually, partially
automatically, political texts published by three national on-line pu-
blications having similar profiles. A small part of this corpus which
includes a collection of 100 political sentences, thoroughly chosen, each
containing one or more clauses, has been syntactically annotated.

5.2 The lexical-semantic analyses

Apart from simply counting frequencies of mentions of semantic classes
of one author, the system can also perform comparative studies between
two or more authors or for the same author in different periods of time.

To exemplify, we present below different charts with two streams of
data, representing the political speeches in the context of the political
crisis (before Băsescu’s suspension), belonging to the three important
political leaders mentioned above. In fact, our analysis makes a two by
two comparison of the three political actors mentioned. In each of the
diagrams that follow, for each semantic class, the values corresponding
to one subject are subtracted from the other. Our experience shows
that an absolute difference value below the threshold of 0.5% should be
considered as irrelevant and is, therefore, ignored in the interpretation.
For this reason, these classes are not represented in the chart.

The graphical representation in Figure 3, in which Traian Băsescu,
President of Romania before the temporary suspenssion (figured above

49

D. Gı̂fu, D. Cristea

the Ox axis) is compared against Crin Antonescu, the President of
the Senate at that time (figured below the Ox axis), should be inter-
preted as follows: Traian Băsescu was interested more on the labour
market in Romania (the class work), uttered in an intuitive tone (the
class intuition), than Crin Antonescu, whose discourse had patriotic
accents (the class nationalism), and who developed a comparative
analysis between failures (the class failures) and achievements (the
class achievements) during Băsescu’s presidency.

Figure 3. The average differences in the frequencies of all classes (that
cumulate more than 0.5 % occurrences) in the political discourses of
Traian Băsescu and Crin Antonescu, before the initiation of the crisis.

It is interesting to see how quickly the discursive spectrum changes
after Băsescu’s suspension: in the same day, Băsescu becomes negative,
and Antonescu positive. In fact, a normal attitude... as the first subject
was suspended after the vote of the Parliament, and the second subject
will become the interim President, triggered by his quality of President
of the Senate.

50

Towards an Automated Semiotic Analysis . . .

This new situation is narrated by the chart in Figure 4, which
shows again two streams of data belonging to the same subjects, but
this time after the moment the crisis erupted (after Băsescu’s suspen-
sion). Our reading of the diagram is as follows: Traian Băsescu had a
negative tone (the class anger), but he kept a more rational attitude
(the class intuition) than Crin Antonescu, who becomes full of hope
(the class positive) and who has a stronger patriotic attitude (the
class nationalism).

Figure 4. The average differences in the frequencies of all classes (that
cumulate more than 0.5% occurrences) in the political discourses of
Traian Băsescu and Crin Antonescu, after the initiation of the crisis.

The inedited element was the absence of Romanian Prime Minister,
Victor Ponta, at the meeting of Parliament. He preferred to have a
short statement after Băsescu’s suspension.

It is also interesting to make a comparative radiography of the other
two political opponents – Traian Băsescu and Victor Ponta in a critical
moment, i.e. immediately after the political crisis has been fired. The

51

D. Gı̂fu, D. Cristea

chart in Figure 5 compares the political texts of Traian Băsescu (above
the Ox axis) and Victor Ponta (below the Ox axis). Our reading is the
following: Traian Băsescu had a negative tone (the classes negative,
and anger), but he kept a rational attitude (the classes rational, and
intuition), while Victor Ponta was satisfied with the results (the class
positive).

Figure 5. The average differences in the frequencies of all classes (that
cumulate more than 0.5% occurrences) in the political discourses of
Traian Băsescu and Victor Ponta, after the initiation of the crisis.

One of the interesting studies which we have in attention is to per-
form comparative studies for the same political actor in different peri-
ods of time, in our case, before and after the initiation of the crisis that
resulted in the Romanian President’s suspension. For exemplification,
we have chosen Băsescu’s speeches.

The graphical representation in Figure 6, in which the President
Traian Băsescu’s speech (above the Ox axis) is compared against
the suspended President Traian Băsescu’s speech (below the Ox axis)

52

Towards an Automated Semiotic Analysis . . .

should be interpreted as follows: before his suspension, the subject
accentuated more on social aspects, his discourse was positive and in-
sisted on the achievements. On the contrary, after being suspended
his discourse became emotional, negative, with eruptions of anger and
sadness, while still preserving a rational tone. For instance, before
his suspension, Băsescu used expressions such as: “se pare că eu nu
reuşesc” (it seems that I don’t succeed), “decât atingerea scopurilor
politice” (other than attaining political purposes), “Eu cred că este o
greşeală” (I consider being a mistake), etc. After president’s suspen-
sion, Băsescu changed the discursive tone preferring expressions, such
as: “̂ın concluzie, mergem la Referendum” (in conclusion, we’re go-
ing to Referendum), “dar, să vedem” (but let’s see), “Dar ı̂nainte de a
merge la referendum” (but before going to Referendum), etc.

Figure 6. Băsescu’s versus himself, before and after the suspension.

53

D. Gı̂fu, D. Cristea

5.3 The syntactic analyses

In order to proceed with a syntactic level investigation, the text bo-
dies have been pre-processed automatically by an NLP processing flow
that included: sentence splitting, tokenisation, part-of-speech tagging
and lemmatisation. Then, two thirds of the corpus were automatically
parsed at the FDG structure, and the remaining part was manually
annotated using the TreeAnnotator interface. Both resulted in heavily
annotated XML files. Table 1 shows the size of the corpus used in these
syntactic analysis.

Table 1. The corpus of texts annotated for syntax in Crin Antonescu’s
speeches

Number of Number Number of Number of
sentences of words annotated words in the

sentences annotated sentences
123 3,960 100 3,286

We concentrated our analysis on three types of syntactic relations
that we believe have a rhetoric role in the crisis context: adjectival, ap-
positional and anacoluthic [7] (Table 2 displays absolute and relative
values for all types of relations). Note that none of these relations are
compulsory in the syntax of the phrase (the same as with the overtly
expressed pronouns on the position of subject, in Romanian, for in-
stance). Even more than that, the anacoluthic constructions are con-
sidered errors in a cultivated speech, although, properly mastered, they
could have rhetorical value. Therefore, the use of all these relations is
strictly a matter of personal choice.

The adjectival structure (marked as a.adj, a.subst, a.vb and
a.adv in Table 2; 19.5% of all relations in the corpus) means adjecti-
val, nominal, verbal and adverbial attributes: the adjectives add colour
to the discourse. The orator not only that brings a contextual, albeit
new, information, but enhances the enouncement by detailing it and
developing it. The adjectival group is usually part of the rheme (the

54

Towards an Automated Semiotic Analysis . . .

Table 2. Occurrence of dependency relations for Crin Antonescu’s
political speeches corresponding to the crisis context

Relation Number Percentage
coord. 286 11.1%
prep. 320 12.4%
a.adj. 156 6.0%
c.d. 198 7.7%

punct. 100 3.9%
sbj. 96 3.7%
part. 120 4.6%
c.i. 76 2.9%

a.subst. 198 7.7%
a.vb. 112 4.3%
det. 90 3.5%

c.c.m. 98 3.8%
n.pred. 60 2.3%
aux. 84 3.3%

a.adv. 40 1.5%
refl. 120 4.6%

anacol. 98 3.8%
c.c.t. 40 1.5%
neg. 80 3.1%
ap. 102 3.9%
c.c.l. 46 1.8%
comp. 40 1.5%

c.c.scop. 24 0.9%
Total 2584 100

55

D. Gı̂fu, D. Cristea

new information), not the theme (the old), being placed (in Romanian)
usually after the theme element. When it is placed in the thematic po-
sition it’s role is emphatic, usually associated with a particular tone,
but, generally, it does not change the content of the message. The re-
lation reveals a certain taste for belletrist culture from the part of the
author.

In Figure 7 the arrows highlight the presence of two adjectival
structures: “Românie adevărată” (Real Romania), “Românie normală”
(normal Romania).

Figure 7. An adjectival structure on a dependency tree visualised with
TreeAnnotator

The apposition structure (ap. in Table 2; 3.9%): this is the depen-

56

Towards an Automated Semiotic Analysis . . .

dency relation that holds between two lexical sequences, called base
and apposition (the apposition being open to an unlimited number of
terms), the second one giving a complementary information on the first
one.

The apposition structure should be delimited from the syntactic
relations of subordination and coordination, because between the base
and the apposition there is no syntactic hierarchy. However, by conven-
tion, in our dependency structures, the appositive term is represented
attached to the base.

Figure 8. An apposition structure visualised with TreeAnnotator

In Figure 8, the arrow highlights an apposition structure. The sen-
tence “Românii se aruncară cu entuziasm...” (The Romanians jumped
with enthusiasm...) is interrupted by the apposition “setoşi de a rêınvia
la o viaţă nouă” (approx. thirsty to be reborn in a new life), which add
contextual information to the main subject “Românii” (Romanians).

57

D. Gı̂fu, D. Cristea

The anacoluthic structure (anacol. in Table 2; 3.8%) marks an in-
terruption of a syntactic construction (clause, phrase) and continuation
with another construction. In general, the anacoluthon is considered an
error in the grammar books. So, strictly grammatical it is forbidden.
To evidence it automatically in texts is extremely difficult because it is
rare and a parser needs many occurrences in order to develop the ability
to put it in evidence. In long sentences it is difficult even for an ex-
perienced annotator to note these intentional (or unintentional) errors,
because the interspersed components have such diverse structures.

In the example in Figure 9, the principal sentence “După dânsul,
veni mai târziu Regulamentul” (After him, the Regulation came later)
is followed by the anacoluthon “căci el” (because it), which represents
a suspended nominative (nominativus pendens) relation. The author
feels the need for a change in the discourse theme, after upgrading the
nominative “el” (it), seeming to have the function of subject near a
predicate which is never uttered afterwards. The experienced political
actors use anacoluthic structures strategically in communication with
the intend to focus the discourse or to highlight a particular element.
In this example, the politician focuses on “Regulamentul” (the Re-
gulation), and the subordinate concessive sentence “deşi fu impus de
străini” (although having been imposed by foreigners).

Figure 9. An anacoluthic structure, visualised with TreeAnnotator

58

Towards an Automated Semiotic Analysis . . .

5.4 The rhetorical and pragmatic analysis

As mentioned, a discourse-level type of analyses should reveal elements
of coherence and cohesion of the text, together with the identification
of the rhetorical structure of the discourse. Some of these aspects are
technologically feasible with different degree of accuracy. Discourse
level techniques are applied at the very end of a long processing chain,
which should include: segmentation into sentences, tokenisation, pos-
tagging and lemmatisation, and segmentation at the clause level. Op-
tionally, in a more developed type of analysis, it should also include:
shallow parsing (for the identification of noun-phrases), name-entity
recognition, and anaphora resolution.

Counting different types of rhetorical relations in a political speech
could reveal a lot over the rhetorical strategy of the author and the
dynamics of the discourse. A rhetorical parser is usually trained to
recognise complex rhetorical trees out of a corpus manually annotated
with these structures [14]. The discourse parser developed in the NLP-
Group@UAIC-FII builds rhetorical structures based on the identifica-
tion of cue words and other discursive features [3, 1]. The outputted
trees of the current implementation, however, miss the names of the
relations, but they can retain the cue-words and the nuclearity.

Perfectly feasible with the present day technology are also the iden-
tification of some cohesion and coherence elements of a political speech,
as mentioned in Section 3.3. Centering parsers (see [5, 1], for instance)
could measure the coherence of a text on a scale from 0 to 4 [4]. Scaling
up an exploratory tool for the purpose of our investigation would be
an interesting research objective, which should take into consideration
that a high quality human discourse is not always one that reaches a
maximum on the coherence scale, because that one would also be very
boring [5], the same as it should not be a randomly generated one, be-
cause this would be completely incoherent. It’s a pharmacy chemistry
that the great orators know to master, combining in proper quanti-
ties, as the discourse unfolds, the fulfilment of expectations with the
unexpected and surprise.

Present day techniques make feasible the development of a number

59

D. Gı̂fu, D. Cristea

of automatic techniques in the area of rhetorical and coherence anal-
ysis. It will be our further objective to concentrate on this type of
investigation.

6 Conclusions

The analysis we proposed in this paper aims at verifying if a semiotic
perspective anchored in natural language processing techniques could
be of value in valuating political speeches. If this performance proves
to be feasible, than semiotics would become a very applicative science,
with interesting virtues in the optimization of the political discourse.
Rhetorical weapons in the hands of a political actor should be: the
diversity of the lexicon and a proper mastering of the semantic classes,
the syntactic form, the emancipation of the expression, the coherence
and the proper mastering of the comprehensibility. It is our conviction
that the present day linguistic technology can successfully cover many
of these facets.

However, we are aware that this study only sketches a way to go,
and a lot more should be studied until a reliable discourse interpret-
ing technology will become a tool in our hands. We should also be
aware of the dangers of false interpretation. For instance, if we take as
example the three orators we used in our experiments, differences at
the level of lexicon and syntax, which we have evidenced as differenti-
ating them, should be attributed only partially to their idiosyncratic
rhetorical styles, because these differences could also have ideological
roots. Moreover, speeches of many public actors, especially today, are
the product of teams of specialists in communication and, as such,
conclusions regarding their cultural universe, for instance, should be
uttered with care. It remains yet to be decided the impact that the
use of certain syntactic structures, such as adjectival, appositional and
anacoluthic, could have over an auditory in the political discourse.

Different politicians could raise the use of these measures to the level
of a rhetorical strategy, therefore exploiting them perhaps too much in
the benefit of the aimed goals. In other words, this study shows that
technological instruments are able to detect tendencies of manipulation

60

Towards an Automated Semiotic Analysis . . .

of the receiver with the evident role of detouring the attention of the
audience from the actual communicated content in favour of the orator.
The software allows online editing of a yet-to-be-delivered speech, in
order to make it fit to the audience profile (public of large, journalists,
different levels of culture).

Many interpretation facets are pertinent to the specific context a
discourse is being uttered. For instance, in a crisis context a political
discourse should be evaluated in function of the balance between the
agenda of an orator that happens to be on the site of the political
power, versus the opposite agenda. Different intensities of emotional
levels could also be evidenced, and we prepare a more fined grade scale
of emotional expressions. It is a known fact that the audience can be
manipulated easily (e.g., the class sadness) by political actors when
their themes are treated with excessive emotional tonalities.

We are aware that many technological aspects remain yet to be re-
fined and enhanced. One of the most important is the determination of
the senses of words and expressions in context. In the future we intend
to include a word sense disambiguation module in order to determine
the correct senses, in context, of those words which are ambiguous be-
tween different semantic classes, or between classes in the lexicon and
outside the lexicon (in which case they would not have to be counted).
Also, negations could completely reverse the semantic class a certain
expression belongs to in certain contexts and need therefore special
treatment.

The collection of manually annotated texts is only at beginning, a
starting point for an efficient automatic annotation. In the near future
we will manually correct all the automatically annotated texts, im-
proving thus the behaviour of the parser. Another line to be continued
regards the evaluation metrics, which have not received enough atten-
tion till now. We are currently studying other statistical metrics able
to give a more comprehensive image on different facets of the political
discourse.

We believe that the platform has a range of features that make it
attractive as a tool to assist any kind of political campaigns. It can be
rapidly adapted to new domains and to new languages, and its inter-

61

D. Gı̂fu, D. Cristea

face is user-friendly and offers a good range of functionalities. It helps
to outline distinctive features which bring a new and, sometimes, un-
expected vision upon the discursive characteristics of political authors.

Acknowledgments: In performing this research, the first author
was supported by the POSDRU/89/1.5/S/63663 grant, and the second
author – by the ICT-PSP projects METANET4U # 270893 and AT-
LAS # 250467. Alex Moruz helped the first author to clean the DAT
Romanian lexicon in an early phase. Afterwards it has been largelly
extended by Radu Simionescu after importing the Romanian morpho-
logy from the DEX-online database. We are grateful to Cătălin Frâncu
and Radu Borza for offering this database. The DAT platform has
been developed by Mădălina Spătaru, as a post-master activity in the
Faculty of Computer Science of the “Alexandru Ioan Cuza” University
of Iaşi. All the Romanian NLP components mentioned in this paper
were developed in the NLP-Group@UAIC-FII.

References

[1] D. Anechitei, D. Cristea, I. Dimosthenis, E. Ignat, D. Karagiozov,
S.Koeva, M. Kopeć, C. Vertan. (2013, to appear). Summarizing
Short Texts Through a Discourse-Centered Approach in a Multi-
lingual Context. In Neustein, A., Markowitz, J.A. (eds.), Where
Humans Meet Machines: Innovative Solutions to Knotty Natural
Language Problems. Springer Verlag, Heidelberg/New York.

[2] C.F. Baker, C.F. Fillmore, J.B. Lowe. (1998). The Berkeley
Framenet project. In Proceedings of the COLING-ACL 1998, Mon-
treal, Canada.

[3] A. Belogay, D. Karagyozov, S. Koeva, C. Vertan, A.
Przepiórkowski, D. Cristea, P. Raxis. (2012). Harnessing NLP
Techniques, in Walter Daelemans, Mirella Lapata Lluis Marquez
(Eds.) Processes of Multilingual Content Management, Proceed-
ings of EACL 2012 – the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics, Avignon,
France, April 23-27, pp. 6–10, ISBN: 978-1-937284-19-0.

62

Towards an Automated Semiotic Analysis . . .

[4] D. Cristea, N. Ide, L. Romary. (1998). Veins Theory. An Approach
to Global Cohesion and Coherence. In Proceedings of Coling/ACL
’98, Montreal.

[5] D. Cristea, A. Iftene. (2011). Grounding Coherence Properties of
Discourse. In ALEAR Final Report, vol. II. Embodied Cognitive
Semantics, Berlin, April.

[6] U. Eco. (1996). Limitele interpretării (Limits of interpretation),
Ed. Pontica, Constanţa.

[7] Gramatica limbii române (The Grammar of the Romanian Lan-
guage). (2005). Vol. II, Enunţul (The statement), Ed. Academiei
Române, Bucureşti, 105–113, 619–31, 743–747.

[8] D. Gı̂fu, D. Cristea. (2012). Multi-dimensional analysis of polit-
ical language, in “Future Information Technology, Application,
and Service”, in James J. (Jong Hyuk) Park, Victor C.M. Le-
ung, Cho-Li Wang, Taeshik Shon (eds.), volume 1/164, Springer
Science+Business, Media Dortdrecht.

[9] B.J. Grosz, A.K. Joshi, S. Weinstein. (1995). Centering: A frame-
work for modeling the local coherence of discourse. In Computa-
tional Linguistics, 12(2), 203–225.

[10] Eva Hajicǒvá, B.H. Partee, P. Sgall. (1998). Topic–Focus Articu-
lation, Tripartite Structures, and Semantic Content. In Studies in
Linguistics and Philosophy, 71, Dordrecht, Kluwer.

[11] M.A.K. Halliday, R. Hasan. (1976). Cohesion in English. Long-
man, London.

[12] E.D. Liddy. (2001). Natural Language Processing, in Encyclopae-
dia of Library and Information Science, 2nd Ed. NY. Marcel
Decker, Inc.

[13] W.C. Mann, S.A. Thompson. (1988). Rhetorical Structure Theory:
Toward a functional theory of text organization, in Text 8(3), 243–
281.

[14] D. Marcu. (2000). The theory and practice of discourse parsing
and summarization, The MIT Press, Cambridge, Massachusetts.

63

D. Gı̂fu, D. Cristea

[15] Ch. Morris. (1938). Foundations of the Theory of Signs, The Uni-
versity of Chicago Press. Pennebaker, J. W., Francis, Martha
E., Booth, R. J. (2001). Linguistic Inquiry and Word Count
”LIWC2001, Mahwah, NJ, Erlbaum Publishers.

[16] J.W. Pennebaker, M.E. Francis, R.J. Booth. (2001). Linguistic In-
quiry and Word Count LIWC2001, Erlbaum Publishers, Mahwah,
NJ, 2001.

[17] H.F. Plett. (1983). Ştiinţa textului şi analiza de text (The science
of text and the text analysis), Ed. Univers, Bucharest.

[18] N. Rescher. (1973). The coherence theory of truth, Oxford UP,
London.

[19] S. Romaine. (1994). Language in society. An Introduction to So-
ciolinguistics, Oxford University Press Inc., New York.

[20] Ferdinand de Saussure. (1916). Cours de linguistique générale,
Payot, Paris.

[21] L. Tesniére. (1959). Elements of structural syntax, Editions Klinck-
sieck.

[22] T. Van Dijk. (1977). Text and Context. Explorations in the seman-
tics and pragmatics of discourse, Longman, New York.

Daniela Gı̂fu, Dan Cristea, Received July 24, 2012

Daniela Gı̂fu
”Alexandru Ioan Cuza” University of Iaşi
Faculty of Computer Science
16, Berthelot St., 700483 Iaşi, Romania
Phone: +40.232.201724
E–mail: daniela.gifu@info.uaic.ro

Dan Cristea
”Alexandru Ioan Cuza” University of Iaşi
Faculty of Computer Science
16, Berthelot St., 700483 Iaşi, Romania
Phone: +40.232.201542
E–mail: dcristea@info.uaic.ro

Institute of Computer Science
Romanian Academy, the Iaşi branch
2, T. Codrescu St., 700481-Iaşi, Romania

64

Computer Science Journal of Moldova, vol.21, no.1(61), 2013

Linear discrete-time Pareto-Nash-Stackelberg

control problem and principles for its solving

Valeriu Ungureanu

Abstract

A direct-straightforward method for solving linear discrete-
time optimal control problem is applied to solve control prob-
lem of a linear discrete-time system as a mixture of multi-
criteria Stackelberg and Nash games. For simplicity, the expo-
sure starts with the simplest case of linear discrete-time optimal
control problem and, by sequential considering of more general
cases, investigation finalizes with the highlighted Pareto-Nash-
Stackelberg and set valued control problems. Different principles
of solving are compared and their equivalence is proved.

Mathematics Subject Classification 2010: 49K21,
49N05, 93C05, 93C55, 90C05, 90C29, 91A10, 91A20, 91A44,
91A50.

Keywords: Linear discrete-time control problem, non-
cooperative game, multi-criteria strategic game, Pareto-Nash-
Stackelberg control.

1 Introduction

Optimal control theory which appeared due to Lev Pontryagin [2] and
Richard Bellman [3], as natural extension of calculus of variations, often
doesn’t satisfy all requirements and needs for modelling and solving
problems of real dynamic systems and processes. A situation of this
type occurs for problem of linear discrete-time system control by a
decision process that evolves as Pareto-Nash-Stackelberg game with
constraints – a mixture of hierarchical and simultaneous games [5, 6, 7,
8, 9]. For such system, the notion of optimal control evolves naturally to

c©2013 by V. Ungureanu

65

V. Ungureanu

the notion of Pareto-Nash-Stackelberg type control and to the natural
principle for solving the highlighted problem by applying a concept of
Pareto-Nash-Stackelberg equilibrium [9] with a direct-straightforward
principle for solving.

The direct method and principle for solving linear discrete-time
optimal control problem is extended to control problem of a linear
system in discrete time as a mixture of multi-criteria Stackelberg and
Nash games [9]. The exposure starts with the simplest case of linear
discrete-time optimal control problem [1] and, by sequential considering
of more general cases, finalizes with the Pareto-Nash-Stackelberg and
set valued control problems. The maximum principle of Pontryagin is
formulated and proved for all the considered problems. Its equivalence
with the direct-straightforward principle for solving is established.

2 Linear discrete-time optimal control prob-
lem

Consider the following problem [1]1:

f(x, u) =
T∑

t=1

(ctxt + btut) → max,

xt = At−1xt−1 + Btut, t = 1, ..., T,
Dtut ≤ dt, t = 1, ..., T,

(1)

where x0, xt, ct ∈ Rn, ut, bt ∈ Rm, At−1 ∈ Rn×n, Bt ∈ Rn×m,
dt ∈ Rk, Dt ∈ Rk×n, ctxt =

〈
ct, xt

〉
, btut =

〈
bt, ut

〉
, t = 1, ..., T,

u = (u1, . . . , uT).

1Symbol T means discrete time horizon in this paper. Symbol of matrix transla-
tion is omitted. Left and right matrix multiplications are largely used. The reader
is asked to understand by himself when column or row vector are used.

66

Linear discrete-time Pareto-Nash-Stackelberg control problem...

The problem (1) may be represented in the form:

Ex1 −B1u1 = A0x0,
−A1x1 + Ex2 −B2u2 = 0,

.
−AT−1xT−1 + ExT −BT uT = 0,

D1u1 ≤ d1,
D2u2 ≤ d2,
.

DT uT ≤ dT ,
c1x1 + c2x2 + · · ·+ b1u1 + b2u2 + · · ·+ bT ut→ max .

Its dual problem is

p1 −p2A1 = c1,
p2 − p3A2 = c2,

.
pT = cT ,

−p1B1 +q1D1 = b1,
−p2B2 +q2D2 = b2,

.
−pT BT +qT DT = bT ,

q1 ≥ 0,q2 ≥ 0, qT ≥ 0,
p1A0x0 +q1d1 +q2d2 + · · ·+ qT dT → min .

From the constraints of dual problem it follows that the values of vari-
ables p1, p2, . . . , pT are calculated on the bases of recurrent relation:

pT = cT ,
pt = pt+1At + ct, t = T − 1, ..., 1.

(2)

So, the dual problem is equivalent to:

q1D1 = p1B1 + b1,
q2D2 = p2B2 + b2,

. . .
qT DT = pT BT + bT ,

qt ≥ 0, t = 1, . . . , T,
p1A0x0 + q1d1 + q2d2 + · · ·+ qT dT → min .

67

V. Ungureanu

The dual of the last problem is:

D1u1 ≤ d1,
D2u2 ≤ d2,

. . .
DT uT ≤ dT ,

T∑

t=1

〈
ut, ptBT + bt

〉 → max .

(3)

The solution of (3) may be found by solving T linear programming
problems

Dtut ≤ dt,〈
ut, ptBT + bt

〉 → max,

for t = 1, . . . , T. So, the solution of initial control problem (1) is iden-
tical with a sequence of solutions of T linear programming problems.

Similar results may be obtained by performing direct transforma-
tions of (1):

x1 = A0x0 + B1u1,
x2 = A1x1 + B2u2 = A1(A0x0 + B1u1) + B2u2 =

= A1A0x0 + A1B1u1 + B2u2,
x3 = A2x2 + B3u3 = A2(A1A0x0 + A1B1u1 + B2u2) + B3u3 =

= A2A1A0x0 + A2A1B1u1 + A2B2u2 + B3u3,
. . .

xT = AT−1xT−1 + BT uT =

=
T−1∏

t=0

Atx0 +
T−1∏

t=1

AtB1u1 +
T−1∏

t=2

AtB2u2+

+ · · ·+
T−1∏

t=T−1

AtBT−1uT−1 + BT uT ,

68

Linear discrete-time Pareto-Nash-Stackelberg control problem...

and by subsequent substitution in the objective function:

f(x, u)=c1
(
A0x0 + B1u1

)
+ c2

(
A1A0x0 + A1B1u1 + B2u2

)
+

+c3
(
A2A1A0x0 + A2A1B1u1 + A2B2u2 + B3u3

)
+ · · ·+

+cT

(
T−1∏

t=0

Atx0 +
T−1∏

t=1

AtB1u1 +
T−1∏

t=2

AtB2u2+

+ · · ·+
T−1∏

t=T−1

AtBT−1uT−1 + BT uT

)
+

+b1u1 + b2u2 + · · ·+ bT uT =
=

(
c1 + c2A1 + c3A2A1 + · · ·+ cT AT−1AT−2 . . . A1

)
A0x0+

+
(
c1B1 + c2A1B1 + c3A2A1B1 + · · ·+

+ cT AT−1AT−2 . . . A1B1 + b1
)
u1+

+
(
c2B2 + c3A2B2 + c4A3A2B2 + · · ·+

+ cT AT−1AT−2 . . . A2B2 + b2
)
u2+

+ · · ·+ (
cT BT + bT

)
uT .

Finally, the problem obtains the form

f(u) =
=

(
c1 + c2A1 + c3A2A1 + · · ·+ cT AT−1AT−2 . . . A1

)
A0x0+

+
(
c1B1 + c2A1B1 + c3A2A1B1 + · · ·+

+ cT AT−1AT−2 . . . A1B1 + b1
)
u1+

+
(
c2B2 + c3A2B2 + c4A3A2B2 + · · ·+

+ cT AT−1AT−2 . . . A2B2 + b2
)
u2+

+ · · ·+ (
cT BT + bT

)
uT → max,

Dtut ≤ dt, t = 1, . . . , T.

(4)

Obviously, (3) and (4) are identical. So, the solution of the last
problem (4) is obtained as a sequence of solutions of T linear pro-
gramming problems. Apparently, the complexity of such method is
polynomial, but really it has pseudo-polynomial complexity because of
possible exponential value of T on n.

Theorem 1. Let (1) be solvable. The sequence ū1, ū2, . . . , ūT forms an
optimal control if and only if ūt is the solution of linear programming

69

V. Ungureanu

problem

(
ctBt + ct+1AtBt + · · ·+ cT AT−1AT−2 . . . AtBt + bt

)
ut → max,

Dtut ≤ dt,

for t = 1, . . . , T.

Different particular cases may be established for (1).

Theorem 2. If A0 = A1 = · · · = AT−1 = A, B1 = B2 = · · · =
BT = B, and (1) is solvable, then the sequence ū1, ū2, . . . , ūT forms an
optimal control if and only if ūt is the solution of linear programming
problem

(
ctB + ct+1AB + ct+2(A)2B + · · ·+ cT (A)T−tB + bt

)
ut → max,

Dtut ≤ dt,

for t = 1, . . . , T.

Theorem 1 establishes a principle for solving (1). By considering
Hamiltonian functions

Ht(ut) =
〈
ptBt + bt, ut

〉
, t = T, . . . , 1,

where pt, t = T, . . . , 1 are defined by (2), as it is conjectured in [1] and
proved above by two ways, the maximum principle of Pontryagin [2]
holds.

Theorem 3. Let (1) be solvable. The sequence ū1, ū2, . . . , ūT forms an
optimal control if and only if

Ht(ūt) = max
ut:Dtut≤dt

Ht(ut), t = T, . . . , 1.

Evidently, Theorems 1 and 3 are equivalent.

70

Linear discrete-time Pareto-Nash-Stackelberg control problem...

3 Linear discrete-time Stackelberg control
problem

Let us modify the problem (1) by considering the control of Stackelberg
type [7], that is Stackelberg game with T players [7, 8, 5, 6]. In such
game, at each stage t (t = 1, . . . , T) the player t selects his strategy and
communicates his and all precedent selected strategies to the following
t+1 player. After all stage strategy selections, all the players compute
their gains on the resulting profile. Let us name such type of system
control as Stackelberg control, and the corresponding problem – lin-
ear discrete-time Stackelberg control problem. The described decision
process may be formalized as it follows:

f1(x, u) =
T∑

t=1

(
c1txt + b1tut

) −→
u1

max,

f2(x, u) =
T∑

t=1

(
c2txt + b2tut

) −→
u2

max,

. . .

fT (x, u) =
T∑

t=1

(
cTtxt + bTtut

) −→
uT

max,

xt = At−1xt−1 + Btut, t = 1, ..., T,
Dtut ≤ dt, t = 1, ..., T,

(5)

where x0, xt, cπt ∈ Rn, ut, bπt ∈ Rm, At−1 ∈ Rn×n, Bt ∈ Rn×m, dt ∈
Rk, Dt ∈ Rk×n, cπtxt =

〈
cπt, xt

〉
, bπtut =

〈
bπt, ut

〉
, t, π = 1, ..., T.

Formally, the set of strategies of player π (π = 1, 2, . . . , T) is deter-
mined only by admissible solutions of the problem:

fπ

(
x, uπ||u−π

)
=

T∑

t=1

(
cπtxt + bπtut

) −→
uπ

max,

xπ = Aπ−1xπ−1 + Bπuπ,
Dπuπ ≤ dπ.

71

V. Ungureanu

In fact, as we can find out, the strategy sets of the players are
interconnected and the game is not a simple normal form game. A
situation similar with that in optimization theory may be established
– there are problems without constraints and with constraints. So, the
strategy (normal form) game may be named strategy game without
constraints. Game which contains commune constraints on strategies
may be named strategy game with constraints.

Player π (π = 1, 2, . . . , T) decision problem is defined by the lin-
ear programming problem (5). Since the controlled system is one for
all players, by performing the direct transformations as above, (5) is
transformed into

fπ (uπ||u−π) =
=

(
cπ1 + cπ2A1 + cπ3A2A1 + · · ·+

+ cπT AT−1AT−2 . . . A1
)
A0x0+

+
(
cπ1B1 + cπ2A1B1 + cπ3A2A1B1 + · · ·+

+ cπT AT−1AT−2 . . . A1B1 + bπ1
)
u1+

+
(
cπ2B2 + cπ3A2B2 + cπ4A3A2B2 + · · ·+

+ cπT AT−1AT−2 . . . A2B2 + bπ2
)
u2+

+ · · ·+ (
cπT BT + bπT

)
uT →

uπ
max, π = 1, . . . , T,

Dtut ≤ dt, t = 1, . . . , T.

(6)

From equivalence of (5) and (6) the proof of Theorem 4 follows.

Theorem 4. Let (5) be solvable. The sequence ū1, ū2, . . . , ūT forms
a Stackelberg equilibrium control in (5) if and only if ūπ is optimal
solution of linear programming problem

fπ(uπ) =
(
cππBπ + cππ+1AπBπ + cππ+2Aπ+1AπBπ + · · ·+

+cπT AT−1AT−2 . . . AπBπ + bππ
)
uπ →

uπ
max,

Dπuπ ≤ dπ,

for π = 1, . . . , T.

There are various particular cases of (5) and Theorem 4. Theorem
5 presents one of such cases.

72

Linear discrete-time Pareto-Nash-Stackelberg control problem...

Theorem 5. If A0 = A1 = · · · = AT−1 = A, B1 = B2 = · · · =
BT = B, and (5) is solvable, then the sequence ū1, ū2, . . . , ūT forms a
Stackelberg equilibrium control if and only if ūπ is the solution of linear
programming problem

(
cππB + cππ+1AB + · · ·+ cπT (A)T−πB + bππ

)
uπ →

uπ
max,

Dπuπ ≤ dπ,

for π = 1, . . . , T.

Theorem 4 establishes a principle for solving (5). The maximum
principle of Pontryagin may be applied for solving (5) too. Let us
consider the following recurrent relations

pπT = cπT ,
pπt = pπt+1At + cπt, t = T − 1, ..., 1,

(7)

where π = 1, . . . , T. Hamiltonian functions are defined as

Hπt

(
ut

)
=

〈
pπtBt + bπt, ut

〉
, t = T, . . . , 1, π = 1, . . . , T,

where pπt, t = T, . . . , 1, π = 1, . . . , T, are defined by (7).

Theorem 6. Let (5) be solvable. The sequence of controls ū1, . . . , ūT

forms a Stackelberg equilibrium control if and only if

Hππ (ūπ) = max
uπ:Dπuπ≤dπ

Hππ (uπ) ,

for π = 1, . . . , T.

The proof of Theorem 6 may be provided by direct substitution
of relations (7) in Hamiltonian functions and by comparing the final
results with linear programming problems from Theorem 4. Obviously,
Theorems 4 and 6 are equivalent.

From computational point of view, method for solving problem (5)
established by Theorem 4 looks more preferable than the method es-
tablished by Theorem 6.

73

V. Ungureanu

4 Linear discrete-time Pareto-Stackelberg con-
trol problem

Let us modify the problem (5) by considering control of Pareto-
Stackelberg type. At each stage a single player makes decision. Ev-
ery player selects on his stage his strategy according to his criteria
and communicates his choice and the precedent player choices to the
following player. At the last stage, after all stage strategy selec-
tions, the players compute their gains. Such type of control is named
Pareto-Stackelberg control, and the corresponding problem – the linear
discrete-time Pareto-Stackelberg control problem.

The described decision process may be formalized in a following
manner:

f1(x, u) =
T∑

t=1

(
c1txt + b1tut

) −→
u1

ef max,

f2(x, u) =
T∑

t=1

(
c2txt + b2tut

) −→
u2

ef max,

. . .

fT (x, u) =
T∑

t=1

(
cTtxt + bTtut

) −→
uT

ef max,

xt = At−1xt−1 + Btut, t = 1, ..., T,
Dtut ≤ dt, t = 1, ..., T,

(8)

where x0, xt ∈ Rn, cπt ∈ Rkπ×n, ut ∈ Rm, bπt ∈ Rkπ×m, At−1 ∈ Rn×n,
Bt ∈ Rn×m, dt ∈ Rk, Dt ∈ Rk×n, t, π = 1, ..., T. Notation ef max means
multi-criteria maximization.

The set of strategies of player π (π = 1, . . . , T) is determined for-

74

Linear discrete-time Pareto-Nash-Stackelberg control problem...

mally by the problem

fπ

(
x, uπ||u−π

)
=

T∑

t=1

(
cπtxt + bπtut

) −→
uπ

ef max,

xπ = Aπ−1xπ−1 + Bπuπ,
Dπuπ ≤ dπ.

By performing direct transformations as above, (8) is transformed into

fπ (uπ||u−π) =
=

(
cπ1 + cπ2A1 + cπ3A2A1 + · · ·+

+ cπT AT−1AT−2 . . . A1
)
A0x0+

+
(
cπ1B1 + cπ2A1B1 + cπ3A2A1B1 + · · ·+

+ cπT AT−1AT−2 . . . A1B1 + bπ1
)
u1+

+
(
cπ2B2 + cπ3A2B2 + cπ4A3A2B2 + · · ·+

+ cπT AT−1AT−2 . . . A2B2 + bπ2
)
u2+

+ · · ·+ (
cπT BT + bπT

)
uπT →

uπ
ef max, π = 1, . . . , T,

Dtut ≤ dt, t = 1, . . . , T.

(9)

Equivalence of (8) and (9) proves the following Theorem 7.

Theorem 7. Let (8) be solvable. The sequence ū1, ū2, . . . , ūT forms a
Pareto-Stackelberg equilibrium control in (8) if and only if ūπ is efficient
solution of multi-criteria linear programming problem

fπ(uπ) =
(
cππBπ + cππ+1AπBπ + cππ+2Aπ+1AπBπ + · · ·+

+cπT AT−1AT−2 . . . AπBπ + bππ
)
uπ →

uπ
ef max,

Dπuπ ≤ dπ,

for π = 1, . . . , T.

As above, a particular case of (8) is examined in Theorem 7.

Theorem 8. If A0 = A1 = · · · = AT−1 = A, B1 = B2 = · · · = BT =
B, and (8) is solvable, then the sequence ū1, ū2, . . . , ūT forms a Pareto-
Stackelberg equilibrium control if and only if ūπ is the efficient solution

75

V. Ungureanu

of multi-criteria linear programming problem
(
cππB + cππ+1AB + · · ·+ cπT (A)T−πB + bππ

)
uπ →

uπ
ef max,

Dπuπ ≤ dπ,

for π = 1, . . . , T.

Pontryagin maximum principle may be extended for (8). Let us
consider the following recurrent relations

pπT = cπT ,
pπt = pπt+1At + cπt, t = T − 1, ..., 1,

(10)

where π = 1, . . . , T. Hamiltonian vector-functions are defined as

Hπt

(
ut

)
=

〈
pπtBt + bπt, ut

〉
, t = T, . . . , 1, π = 1, . . . , T,

where pπt, t = T, . . . , 1, π = 1, . . . , T are defined by (10).

Theorem 9. Let (8) be solvable. The sequence of controls ū1, . . . , ūT

forms a Pareto-Stackelberg equilibrium control if and only if

ūπ ∈ Arg ef max
uπ :Dπuπ≤dπ

Hππ (uπ) ,

for π = 1, . . . , T.

By direct substitution of (10) in Hamiltonian functions and by com-
paring the final results with multi-criteria linear programming problems
from Theorem 7 the truth of Theorem 9 arises. Theorems 7 and 9 are
equivalent.

It can be remarked especially that method of Pareto-Stackelberg
control established by Theorems 7–9 needs solutions of multi-criteria
linear programming problems.

76

Linear discrete-time Pareto-Nash-Stackelberg control problem...

5 Linear discrete-time Nash-Stackelberg con-
trol problem

Let us modify the problem (5) by considering the control of Nash-
Stackelberg type with T stages and ν1 + ν2 + · · · + νT players, where
ν1, ν2, . . . , νT are the numbers of players on stages 1, 2, . . . , T . Every
player is identified by two numbers (indices) (τ, π), where τ is the num-
ber of stage on which player selects his strategy and π ∈ {1, 2, . . . , ντ}
is his number at stage τ . In such game, at each stage τ the players
1, 2, . . . , ντ play a Nash game by selecting simultaneously their strate-
gies and by communicating his and all precedent selected strategies to
the following τ + 1 stage players. After all stage strategy selections,
on the resulting profile all the players compute their gains. Such type
of control is named Nash-Stackelberg control, and the corresponding
problem – linear discrete-time Nash-Stackelberg control problem.

The described decision process may be modelled as it follows:

fτπ(x, uτπ||u−τπ) =
T∑

t=1

cτπtxt +

νt∑

µ=1

bτπtµutµ

 −→

uτπ
max,

τ = 1, . . . , T, π = 1, . . . , ντ ,

xt = At−1xt−1 +
νt∑

π=1

Btπutπ, t = 1, ..., T,

Dtπutπ ≤ dtπ, t = 1, ..., T, π = 1, . . . , νt,

(11)

where
x0, xt, cτπt ∈ Rn,

ut, bτπtµ ∈ Rm,

At−1 ∈ Rn×n,

Bτπ ∈ Rn×m,

dτπ ∈ Rk,

Dτπ ∈ Rk×n,

t, τ = 1, . . . , T,

π = 1, . . . , ντ ,

µ = 1, . . . , νt.

77

V. Ungureanu

By performing direct transformations

x1 = A0x0 +
ν1∑

π=1

B1πu1π,

x2 = A1x1 +
ν2∑

π=1

B2πu2π =

= A1

(
A0x0 +

ν1∑

π=1

B1πu1π

)
+

ν2∑

π=1

B2πu2π =

= A1A0x0 + A1
ν1∑

π=1

B1πu1π +
ν2∑

π=1

B2πu2π,

x3 = A2x2 +
ν3∑

π=1

B3πu3π =

= A2

(
A1A0x0 + A1

ν1∑

π=1

B1πu1π +
ν2∑

π=1

B2πu2π

)
+

+
ν3∑

π=1

B3πu3π =

= A2A1A0x0 + A2A1
ν1∑

π=1

B1πu1π + A2
ν2∑

π=1

B2πu2π+

+
ν3∑

π=1

B3πu3π,

. . .

xT = AT−1xT−1 +
νT∑

π=1

BTπuTπ =

=
T−1∏

t=0

Atx0 +
T−1∏

t=1

At
ν1∑

π=1

B1πu1π +
T−1∏

t=2

At
ν2∑

π=1

B2πu2π+

+ · · ·+
T−1∏

t=T−1

At

νT−1∑

π=1

BT−1πuT−1π +
νT∑

π=1

BTπuTπ,

and by subsequent substitution in the objective/cost functions of (11),

78

Linear discrete-time Pareto-Nash-Stackelberg control problem...

the problem (11) is reduced to

f(uτπ||u−τπ) =
=

(
cτπ1 + cτπ2A1 + cτπ3A2A1 + · · ·+

+cτπT AT−1AT−2 . . . A1
)
A0x0+

+
(
cτπ1B11 + cτπ2A1B11 + cτπ3A2A1B11 + · · ·+

+ cτπT AT−1AT−2 . . . A1B11 + bτπ11
)
u11+

+
(
cτπ1B12 + cτπ2A1B12 + cτπ3A2A1B12 + · · ·+

+ cτπT AT−1AT−2 . . . A1B12 + bτπ12
)
u12+

+ · · ·+
+

(
cτπ1B1ν1 + cτπ2A1B1ν1 + cτπ3A2A1B1ν1 + · · ·+

+ cτπT AT−1AT−2 . . . A1B1ν1 + bτπ1ν1
)
u1ν1+

+
(
cτπ2B21 + cτπ3A2B21 + cτπ4A3A2B21 + · · ·+

+ cτπT AT−1AT−2 . . . A2B21 + bτπ21
)
u21+

+
(
cτπ2B22 + cτπ3A2B22 + cτπ4A3A2B22 + · · ·+

+ cτπT AT−1AT−2 . . . A2B22 + bτπ22
)
u22+

+ · · ·+
+

(
cτπ2B2ν2 + cτπ3A2B2ν2 + cτπ4A3A2B2ν2 + · · ·+

+ cτπT AT−1AT−2 . . . A2B2ν2 + bτπ2ν2
)
u2ν2+

+ · · ·+ (
cτπT BTνT + bτπTνT

)
uTνT →

uτπ
max,

τ = 1, . . . , T, π = 1, . . . , ντ ,
Dτπuτπ ≤ dτπ, τ = 1, . . . , T, π = 1, . . . , ντ .

(12)

Evidently, (12) defines a strategic game for which Nash-Stackelberg
equilibrium is also Nash equilibrium and it is simply computed as a
sequence of solutions of ν1 + · · ·+ νT linear programming problems

f(uτπ||u−τπ) =
=

(
cτπτBτπ + cτπτ+1AτBτπ + cτπτ+2Aτ+1AτBτπ + · · ·+

+ cτπT AT−1AT−2 . . . AτBτπ + bτπτπ
)
uτπ →

uτπ
max,

Dτπuτπ ≤ dτπ,

(13)

τ = 1, . . . , T, π = 1, . . . , ντ .
Equivalence of (11) and (13) proves the following Theorem 10.

79

V. Ungureanu

Theorem 10. Let (11) be solvable. The sequence ū11, ū12, . . . , ūTνT

forms a Nash-Stackelberg equilibrium control in (11) if and only if ūτπ

is optimal in linear programming problem (13), for τ = 1, . . . , T, π =
1, . . . , ντ .

Various particular cases of (11) may be examined in Theorem 10,
e.g. Theorem 11.

Theorem 11. If A0 = A1 = · · · = AT−1 = A, B11 = B12 = · · · =
BTνT = B, and (11) is solvable, then the sequence ū11, ū12, . . . , ūTνT

forms a Nash-Stackelberg equilibrium control if and only if ūτπ is opti-
mal in linear programming problem

f(uτπ||u−τπ) =
=

(
cτπτB + cτπτ+1AB + cτπτ+2(A)2B + · · ·+

+ cτπT (A)T−τB + bτπτπ
)
uτπ →

uτπ
max,

Dτπuτπ ≤ dτπ,

for τ = 1, . . . , T, π = 1, . . . , ντ .

Pontryagin maximum principle may be extended for (11). Let us
consider the following recurrent relations

pτπT = cτπT ,
pτπt = pτπt+1At + cτπt, t = T − 1, ..., 1,

(14)

where τ = 1, . . . , T, π = 1, . . . , ντ . Hamiltonian functions are defined as

Hτπt (uτπ) =
〈
pτπtBτπ + bτπτπ, uτπ

〉
, t = T, . . . , 1,

where τ = 1, . . . , T, π = 1, . . . , ντ and pτπt, t = T, . . . , 1, τ =
1, . . . , T, π = 1, . . . , ντ are defined by (14).

Theorem 12. Let (11) be solvable. The sequence ū11, ū12, . . . , ūTνT

forms a Nash-Stackelberg equilibrium control if and only if

Hτπt (ūτπ) = max
uτπ :Dτπuτπ≤dτπ

Hτπt (uτπ) ,

for t = T, . . . , 1, τ = 1, . . . , T, π = 1, . . . , ντ .

Theorems 10 and 12 are equivalent.

80

Linear discrete-time Pareto-Nash-Stackelberg control problem...

6 Linear discrete-time Pareto-Nash-
Stackelberg control problem

Let us integrate the problems (8) and (11) by considering the control of
Pareto-Nash-Stackelberg type with T stages and ν1 + · · ·+ νT players,
where ν1, . . . , νT are the correspondent numbers of players on stages
1, . . . , T. Every player is identified by two numbers as above in Nash-
Stackelberg control: τ – stage on which player selects his strategy and
π – player number at stage τ . In such game, at each stage τ the players
1, 2, . . . , ντ play a Pareto-Nash game by selecting simultaneously their
strategies according to their criteria (kτ1, kτ2, . . . , kτντ are the num-
bers of criteria of respective players) and by communicating his and
all precedent selected strategies to the following τ + 1 stage players.
After all stage strategy selections, all the players compute their gains
on the resulting profile. Such type of control is named Pareto-Nash-
Stackelberg control, and the corresponding problem – linear discrete-
time Pareto-Nash-Stackelberg control problem.

The decision control process may be modelled as:

fτπ(x, uτπ||u−τπ) =
T∑

t=1

cτπtxt +

νt∑

µ=1

bτπtµutµ

 −→

uτπ
ef max,

τ = 1, . . . , T, π = 1, . . . , ντ ,

xt = At−1xt−1 +
νt∑

π=1

Btπutπ, t = 1, ..., T,

Dtπutπ ≤ dtπ, t = 1, ..., T, π = 1, . . . , νt,

(15)

where x0, xt ∈ Rn, cτπtµ ∈ Rktp×n, uτπ ∈ Rm, bτπtµ ∈ Rktp×n, At−1 ∈
Rn×n, Bτπ ∈ Rn×m, dτπ ∈ Rk, Dτπ ∈ Rk×n, t, τ = 1, . . . , T, π =
1, . . . , ντ , µ = 1, . . . , νt.

By performing similar direct transformation as above, (15) is re-
duced to a sequence of multi-criteria linear programming problems

81

V. Ungureanu

f(uτπ||u−τπ) =
=

(
cτπτBτπ + cτπτ+1AτBτπ + cτπτ+2Aτ+1AτBτπ + · · ·+

+ cτπT AT−1AT−2 . . . AτBτπ + bτπτπ
)
uτπ →

uτπ
ef max,

Dτπuτπ ≤ dτπ,

(16)

τ = 1, . . . , T, π = 1, . . . , ντ .
Equivalence of (15) and (16) proves the following Theorem 13.

Theorem 13. Let (15) be solvable. The sequence ū11, ū12, . . . , ūTνT

forms a Pareto-Nash-Stackelberg equilibrium control in (15) if and only
if ūτπ is an efficient solution of multi-criteria linear programming prob-
lem (16), for τ = 1, . . . , T, π = 1, . . . , ντ .

As a corollary, Theorem 14 follows.

Theorem 14. If A0 = A1 = · · · = AT−1 = A, B11 = B12 = · · · =
BTνT = B, and (15) is solvable, then the sequence ū11, ū12, . . . , ūTνT

forms a Pareto-Nash-Stackelberg equilibrium control if and only if ūτπ

is an efficient solution of multi-criteria linear programming problem

f(uτπ||u−τπ) =
=

(
cτπτB + cτπτ+1AB + cτπτ+2(A)2B + · · ·+

+ cτπT (A)T−τB + bτπτπ
)
uτπ →

uτπ
ef max,

Dτπuτπ ≤ dτπ,

for τ = 1, . . . , T, π = 1, . . . , ντ .

Pontryagin maximum principle may be generalized for (15). By
considering recurrent relations

pτπT = cτπT ,
pτπt = pτπt+1At + cτπt, t = T − 1, ..., 1,

(17)

where τ = 1, . . . , T, π = 1, . . . , ντ , Hamiltonian vector-functions are
defined as

Hτπt (uτπ) =
〈
pτπtBτπ + bτπτπ, uτπ

〉
, t = T, . . . , 1,

where τ = 1, . . . , T, π = 1, . . . , ντ and pτπt, t = T, . . . , 1, τ =
1, . . . , T, π = 1, . . . , ντ . Remark the vector nature of (17) via (14).

82

Linear discrete-time Pareto-Nash-Stackelberg control problem...

Theorem 15. Let (15) be solvable. The sequence ū11, ū12, . . . , ūTνT

forms a Pareto-Nash-Stackelberg equilibrium control if and only if

ūτπ ∈ Arg ef max
uτπ :Dτπuτπ≤dτπ

Hτπt (uτπ) ,

for t = T, . . . , 1, τ = 1, . . . , T, π = 1, . . . , ντ .

Theorems 13 and 12 are equivalent.

7 Linear discrete-time set-valued optimal con-
trol problem

The state of controlled system is described above by a point. Indeed,
real systems may be treated as n-dimension body, the state of which is
described by a set of points in every time moment. Evidently, the initial
state of the system is described by initial set X0 ⊂ Rn. Naturally, the
following problem arises

F (X,U) =
T∑

t=1

(ctXt + btU t) → max,

Xt = At−1Xt−1 + BtU t, t = 1, ..., T,
DtU t ≤ dt, t = 1, ..., T,

(18)

where X0, Xt ⊂ Rn, ct ∈ Rn, U t ⊂ Rm, bt ∈ Rm, At−1 ∈ Rn×n,
Bt ∈ Rn×m, dt ∈ Rk, Dt ∈ Rk×n, ctXt =

〈
ct, Xt

〉
, btU t =

〈
bt, U t

〉
,

t = 1, ..., T. Linear set operations in (18) are defined obviously (see,
e.g., [4]): AX = {Ax : x ∈ X} , ∀X ⊂ Rn, ∀A ∈ Rn×n.

The objective set-valued map F : X × Y (R, F (X, Y) ⊂ R
represents a summation of intervals. That is, the optimization of the
objective map in problem (11) needs interval arithmetic treatment.

83

V. Ungureanu

By direct transformations, (18) is transformed into

F (U) =
=

(
c1 + c2A1 + c3A2A1 + · · ·+

+cT AT−1AT−2 . . . A1
)
A0X0+

+
(
c1B1 + c2A1B1 + c3A2A1B1 + · · ·+

+ cT AT−1AT−2 . . . A1B1 + b1
)
U1+

+
(
c2B2 + c3A2B2 + c4A3A2B2 + · · ·+

+ cT AT−1AT−2 . . . A2B2 + b2
)
U2+

+ · · ·+ (
cT BT + bT

)
UT → max,

DtU t ≤ dt, t = 1, . . . , T.

(19)

The equivalence of the problems (18) and (19) and the form of
objective map proves that optimal solution doesn’t depend on initial
point. The cardinality of every control set U1, . . . , UT is equal to 1.
Thus, the Theorem 1 is true for problem (18).

Theorem 16. Let (18) be solvable. The sequence ū1, ū2, . . . , ūT forms
an optimal control if and only if ūt is the solution of linear programming
problem

(
ctBt + ct+1AtBt + · · ·+ cT AT−1AT−2 . . . AtBt + bt

)
ut → max,

Dtut ≤ dt,

for t = 1, . . . , T.

Analogous conclusions are true for all problems and theorems con-
sidered above.

8 Concluding remarks

There are different types of processes control: optimal control, Stack-
elberg control, Pareto-Stackelberg control, Nash-Stackelberg control,
Pareto-Nash-Stackelberg control, etc.

The direct-straightforward, dual and classical principles (Pontrya-
gin and Bellman) may be applied for determining the desired con-
trol of dynamic processes. These principles are the bases for pseudo-
polynomial methods, which are exposed as a consequence of theorems
for linear discrete-time Pareto-Nash-Stackelberg control problems.

84

Linear discrete-time Pareto-Nash-Stackelberg control problem...

The direct-straightforward principle is applied for solving the prob-
lem of determining the optimal control of set-valued linear discrete-time
processes. Pseudo-polynomial method of solving is constructed.

The results obtained for different types of set-valued control will be
exposed in a future paper.

References

[1] S.A. Ashmanov, A.V. Timohov. The optimization theory in prob-
lems and exercises, Moscow, Nauka, 1991, pp. 142–143.

[2] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F.
Mishchenko. Mathematical theory of optimal processes, Moscow,
Nauka, 1961 (in Russian).

[3] R. Bellman. Dynamic Programming, Princeton, New Jersey,
Princeton University Press, 1957.

[4] T. Rockafellar. Convex Analysis, Princeton University Press, 1970.

[5] J. von Neuman, O. Morgenstern. Theory of Games and Economic
Behavior, Annals Princeton University Press, Princeton, NJ, 1944,
2nd ed. 1947.

[6] J.F. Nash. Noncooperative game, Annals of Mathematics, Vol. 54,
1951, pp. 280–295.

[7] H. Von Stackelberg. Marktform und Gleichgewicht (Market Struc-
ture and Equilibrium), Springer Verlag, Vienna, 1934.

[8] G. Leitmann. On Generalized Stackelberg Strategies, Journal of
Optimization Theory and Applications, Vol. 26, 1978, pp.637–648.

[9] V. Ungureanu. Solution principles for simultaneous and sequential
games mixture, ROMAI Journal, Vol. 4, No.1, 2008, pp. 225–242.

V. Ungureanu Received December 8, 2012

State University of Moldova,
60, A. Mateevici str.,
Chişinău, MD−2009, Moldova.
E–mail: v.ungureanu@ymail.com

85

Computer Science Journal of Moldova, vol.21, no.1(61), 2013

Robust Geometric Programming Approach to

Profit Maximization with Interval Uncertainty

Hossein Aliabadi and Maziar Salahi

Abstract

Profit maximization is an important issue to the firms that
pursue the largest economic profit possible. In this paper, we
consider the profit-maximization problem with the known Cobb-
Douglas production function. Its equivalent geometric program-
ming form is given. Then due to the presence of uncertainties in
real world modeling, we have assumed interval uncertainties on
the model parameters. The robust counterpart is not known to
be considered as a geometric program and efficiently solvable us-
ing interior point algorithms. Thus using piecewise convex linear
approximations, an approximate equivalent of the robust coun-
terpart is given, which is in the form of a geometric programming
problem. Finally an example is presented showing the impact of
uncertainties.

Keywords: Economic Profit; Geometric Program; Robust
Optimization.

1 Introduction

Economic profit is the difference between revenue from selling output
and the cost of acquiring the factors necessary to produce it. A profit
maximizing firm chooses both its inputs and outputs to achieve max-
imum economic profits. In other words, the firm seeks to maximize
the difference between its total revenue and its total economic costs. If
firms are strict profit maximizers, they will adjust those variables that
can be controlled until it is impossible to increase profits further [9-14].

c©2013 by Hossein Aliabadi and Maziar Salahi

86

Robust Geometric Program and Profit Maximization. . .

Most production functions in the profit maximization problem are
represented as power functions. When the production function is rep-
resented as a power function, the profit-maximization problem can be
treated as a geometric program, a class of nonlinear program which
is efficiently solvable using interior point methods [8], while tradition-
ally, the profit-maximization problem is solved by classical method of
calculus [1, 5].

In real world applications, model parameters usually involve cer-
tain level of uncertainties and thus the original model does not apply
anymore. Robust optimization is a new framework which takes into
account the parameters uncertainties of the model and solves the un-
derlying problem in the worst case. Several uncertainty sets have been
considered in the literature. In this paper, we consider interval un-
certainties on parameters of the model [2]. The robust counterpart is
not known to be in the form of a tractable geometric programming
problem [7]. Thus we give upper and lower piecewise convex linear
approximations of it that are efficiently solvable using interior point
methods [3, 8]. Finally an illustrative example is presented to show the
importance of the model parameters uncertainties.

2 Mathematical Model and Robust Counter-
part

Let us consider the following short-run profit maximization problem

max p(Axα
1 xβ

2)− v1x1 − v2x2

s.t. x1 ≤ k,

where Axα
1 xβ

2 is the known Cobb-Douglas production function, p is the
market price per unit, A is the scale of production, α and β are the
output elasticities, xi and vi are ith input quantity and output price,
respectively and k is a given constant that restricts the quantity of x1

[4,9-14]. To solve this problem using efficient algorithms like interior
point methods, we may write it as follows

87

Hossein Aliabadi and Maziar Salahi

max π

s.t. pAxα
1 xβ

2 − v1x1 − v2x2 ≥ π, (1)
x1 ≤ k,

or in the geometric programming form

min π−1

s.t. πp−1A−1x−α
1 x−β

2 + v1p
−1A−1x1−α

1 x−β
2 + v2p

−1A−1x−α
1 x1−β

2 ≤ 1,

k−1x1 ≤ 1, (2)

where π, x1, x2 and p, A, v1, v2, k, α, β are variables and parameters
respectively. Moreover, by the change of variables

z1 = log(π), z2 = log(x1), z3 = log(x2)

and taking logarithm of the objective function and constraints and
finally using the following notation

lse(z1, . . . , zk) = v log(ez1 + · · ·+ ezk)

we have the following equivalent convex form of (1) which is efficiently
solvable by Mehrotra’s predictor-corrector interior point method [8]:

min [−1 0 0]z
s.t. lse([1 − α − β]z + b1, [0 1− α − β]z + b2,

[0 − α 1− β]z + b3) ≤ 0,

[0 1 0]z + b4 ≤ 0, (3)

where z = (z1 z2 z3)T are variables and

b1 = log(p−1A−1), b2 = log(v1p
−1A−1),

b3 = log(v2p
−1A−1), b4 = log(k−1).

88

Robust Geometric Program and Profit Maximization. . .

Now suppose that parameters α, β, p, v1, v2, k are subject to interval
uncertainties, namely

α− ε1 ≤ α ≤ α + ε1 or α + u1ε1 |u1| ≤ 1,

β − ε2 ≤ β ≤ β + ε2 or β + u2ε2 |u2| ≤ 1,

p− ε3 ≤ p ≤ p + ε3 or p + u3ε3 |u3| ≤ 1,

v1 − ε4 ≤ v1 ≤ v1 + ε4 or v1 + u4ε4 |u4| ≤ 1,

v2 − ε5 ≤ v2 ≤ v2 + ε5 or v2 + u5ε5 |u5| ≤ 1,

k − ε6 ≤ k ≤ k + ε6 or k + u6ε6 |u6| ≤ 1.

In the sequel we show how these uncertainties affect b1, . . . , b4. We
have

b1 = − log p− log A, b2 = b1 + log v1, b3 = b1 + log v2, b4 = − log k.

Let us consider the following case:

p− ε3 ≤ p ≤ p + ε3 implies log(p− ε3) ≤ log p ≤ log(p + ε3)

or

log p− log p + log(p− ε3) ≤ log p ≤ log p− log p + log(p + ε3)

or

log p + log p−1 + log(p− ε3) ≤ log p ≤ log p + log p−1 + log(p + ε3).

Thus we have

log p + log(1− p−1ε3) ≤ log p ≤ log p + log(1 + p−1ε3).

Since p, ε3 ≥ 0, then we have

1 + p−1ε3 ≤ 1
1− p−1ε3

= (1− p−1ε3)−1,

thus
log(1 + p−1ε3) ≤ − log(1− p−1ε3).

89

Hossein Aliabadi and Maziar Salahi

Using this at the previous inequality we have

log p + log(1− p−1ε3) ≤ log p ≤ log p + log(1 + p−1ε3)
≤ log p− log(1− p−1ε3)

or

log p− (− log(1− p−1ε3)) ≤ log p ≤ log p + (− log(1− p−1ε3)).

Thus the uncertainty for log p approximately is as follow

log p− δ1 ≤ log p ≤ log p + δ1, δ1 = − log(1− p−1ε3).

Analogously, for the other parameters we have

b1 − δ1 ≤ b1 ≤ b1 + δ1, δ1 = − log(1− p−1ε3) ⇒ b1 + u7δ1, |u7| ≤ 1

b2 − δ2 ≤ b2 ≤ b2 + δ2, δ2 = δ1 − log(1− v−1
1 ε4) ⇒ b2 + u8δ2, |u8| ≤ 1

b3 − δ3 ≤ b3 ≤ b3 + δ3, δ3 = δ1 − log(1− v−1
2 ε5) ⇒ b3 + u9δ3, |u9| ≤ 1

b4 − δ4 ≤ b4 ≤ b4 + δ4, δ4 = − log(1− k−1ε6) ⇒ b4 + u10δ4, |u10| ≤ 1.

Now the approximate robust counterpart of (3) is as follows:

min c̄T t

sup
u∈U

lse

[
1 −α + u1ε1 −β + u2ε2 b1 + u7δ1

]
t,[

0 (1− α) + u1ε1 −β + u2ε2 b2 + u8δ2

]
t,[

0 −α + u1ε1 (1− β) + u2ε2 b3 + u9δ3

]
t

 ≤ 0,

sup
u∈U

([
0 1 0 b4 + u10δ4

]
t
) ≤ 0, (4)

where c̄T =
[−1 0 0 0

]
, |ui| ≤ 1, t =

(
z
w

)
∈ R4, w = 1.

In general it is not known whether (4) can be put in a geometric pro-
gramming form, thus in the sequel we give an approximate model of
(4). To do so, the first three-term constraint is approximated by two

90

Robust Geometric Program and Profit Maximization. . .

two-term constraints as follows [3]:

min cT y

sup
|ui|≤1

lse([1 − α + u1ε1 − β + u2ε2 b1 + u7δ1 0]y,

[0 0 0 0 1]y) ≤ 0, (5)
sup
|ui|≤1

lse([0 (1− α) + u1ε1 − β + u2ε2 b2 + u8δ2 − 1]y,

[0 − α + u1ε1 (1− β) + u2ε2 b3 + u9δ3 − 1]y) ≤ 0,

sup
|ui|≤1

lse([0 1 0 b4 + u10δ4 0]y) ≤ 0,

where

cT = [−1 0 0 0 0], ā1 = [1 − α − β b1 0],
ā2 = [0 1− α − β b2 − 1], ā3 = [0 − α 1− β b3 − 1],

ā4 = [0 1 0 b4 0], B1 = [0 ε1 ε2 δ1 0]T ,

B2 = [0 ε1 ε2 δ2 0]T , B3 = [0 ε1 ε2 δ3 0]T ,

B4 = [0 0 0 δ4 0]T , |ui| ≤ 1, y =
(

t
s

)
∈ R5.

Since (5) still is not in the form of a problem which could be easily
solved, thus we assume both the lower and upper convex piecewise
linear approximations of the constraints to satisfy the same inequality
[3]. For example the lower three-term approximation of a two-term
constraint is as follows:

sup
u∈U

lse(x, y) = max{x, y, 0.5x + 0.5y + 0.693}

Thus we consider to have

sup
u∈U

([0 (1− α) + u1ε1 − β + u2ε2 b2 + u8δ2 − 1]y) =

sup
u∈U

(ā2y + u1ε1y2 + u2ε2y3 + u8δ2y4) ≤

ā2y + |ε1y2|+ |ε2y3|+ |δ2y4| = ā2y +
5∑

i=1

|(B2)iyi| ≤ 0,

91

Hossein Aliabadi and Maziar Salahi

sup
u∈U

(0.5 ∗ [0 (1− α) + u1ε1 − β + u2ε2 b2 + u8δ2 − 1]y+

0.5 ∗ [0 − α + u1ε1 (1− β) + u2ε2 b3 + u9δ3 − 1]y) + 0.693 ≤

0.5ā2y + 0.5ā3y + 0.5

(
5∑

i=1

|(B2)iyi|+
5∑

i=1

|(B3)iyi|
)

+ 0.693 ≤ 0,

and

sup
u∈U

([0 − α + u1ε1 (1− β) + u2ε2 b3 + u9δ3 − 1]y) =

sup
u∈U

(ā3y + u1ε1y2 + u2ε2y3 + u9δ3y4) ≤

ā3y + |ε1y2|+ |ε2y3|+ |δ3y4| = ā3y +
5∑

i=1

|(B3)iyi| ≤ 0.

Moreover, to have more accurate results, we have used 25 term piece-
wise convex linear approximations that are derived using the algorithm
in [3]. In Table 1, we have given several best lower piecewise convex
linear approximations of lse(x, y) function. It is worth to note that in
[3] up to five term approximations are reported.

Furthermore, in the following table the errors of piecewise convex
linear approximations up to 25 terms are given for two levels of uncer-
tainties.

3 Example

Let us consider the following values for the parameters in (1)

p = 20, A = 40, α = 0.1, β = 0.4, v1 = 10, v2 = 35, k = 30.

Using Mehrotra’s predictor-corrector interior point algorithm, the opti-
mal objective value of (1) is 3399.55. However, if we take the following
uncertainty set parameters

|ui| ≤ 0.5, ε1 = 0.003, ε2 = 0.007, ε3 = ε4 = ε5 = ε6 = 0.5,

92

Robust Geometric Program and Profit Maximization. . .

T
ab

le
1.

B
es

t
lo

w
er

pi
ec

ew
is

e
lin

ea
r

ap
pr

ox
im

at
io

ns
of

ls
e(

x
,y

)
r

E
rr

or
of

T
he

be
st

lo
w

er
r

te
rm

pi
ec

ew
is

e
lin

ea
r

ap
pr

ox
im

at
io

n
N

um
be

r
of

ap
pr

ox
im

at
io

n
of

ls
e(

x
,y

)
te

rm
s

3
0.

22
3

m
ax
{x

,y
,0

.5
x

+
0.

5y
+

0.
69

3}
4

0.
10

9
m

ax
{ x

,0
.2

71
x

+
0.

72
9y

+
0.

58
4,

0.
72

9x
+

0.
27

1y
+

0.
58

4,
y

}

5
0.

06
5

m
ax

x
,
0.

16
7x

+
0.

83
3y

+
0.

45
0,

0.
5x

+
0.

5y
+

0.
69

3,
0.

83
3x

+
0.

16
7y

+
0.

45
0,

y

25
0.

00
20

76
m

ax

x
,
0.

00
56

x
+

0.
99

44
y

+
0.

03
48

,
0.

00
56

y
+

0.
99

44
x

+
0.

03
48

,
0.

01
95

x
+

0.
98

05
y

+
0.

09
62

,
0.

01
95

y
+

0.
98

05
x

+
0.

09
62

,
0.

04
14

x
+

0.
95

86
y

+
0.

17
24

,0
.0

41
4y

+
0.

95
86

x
+

0.
17

24
,

0.
07

09
x

+
0.

92
91

y
+

0.
25

60
,
0.

07
09

y
+

0.
92

91
x

+
0.

25
60

,
0.

10
75

x
+

0.
89

25
y

+
0.

34
13

,
0.

10
75

y
+

0.
89

25
x

+
0.

34
13

,
0.

15
06

x
+

0.
84

94
y

+
0.

42
38

,0
.1

50
6y

+
0.

84
94

x
+

0.
42

38
,

0.
19

95
x

+
0.

80
05

y
+

0.
49

97
,
0.

19
95

y
+

0.
80

05
x

+
0.

49
97

,
0.

25
34

x
+

0.
74

66
y

+
0.

56
60

,
0.

25
34

y
+

0.
74

66
x

+
0.

56
60

,
0.

31
14

x
+

0.
68

86
y

+
0.

62
02

,0
.3

11
4y

+
0.

68
86

x
+

0.
62

02
,

0.
37

25
x

+
0.

62
75

y
+

0.
66

03
,
0.

37
25

y
+

0.
62

75
x

+
0.

66
03

,
0.

43
57

x
+

0.
56

43
y

+
0.

68
49

,
0.

43
57

y
+

0.
56

43
x

+
0.

68
49

,
0.

5x
+

0.
5y

+
0.

69
3,

y

93

Hossein Aliabadi and Maziar Salahi

Table 2. Error of piecewise convex linear approximation

Errors |ui| ≤ 0.5 |ui| ≤ 1
Error of 3 terms approximation 0.9184 0.9184
Error of 4 terms approximation 0.2876 0.3104
Error of 5 terms approximation 0.1986 0.1986

.........
Error of 16 terms approximation 0.0138 0.0138

.........
Error of 25 terms approximation 0.0055 0.0058

and solve its upper and lower approximations, then the optimal solu-
tions of the upper and lower 25 term piecewise convex linear approx-
imation of (5) are 2980.7 and 2964.3, respectively. Thus the lower
bound for the optimal solution of (4) is 2964.3. As one can see, the
range to which the optimal solution of the robust problem belongs,
[2964.3, 2980.7], is significantly different than the original optimal ob-
jective value. Thus a slight uncertainty in the input parameter might
lead to significant change of the optimal objective value. Moreover, if
we solve the approximate robust model of (5) for the case, where

|ui| ≤ 1, ε1 = 0.003, ε2 = 0.007, ε3 = ε4 = ε5 = ε6 = 1,

then the values of the upper and lower 25 term piecewise convex linear
approximations are 2797.6 and 2781.6, respectively. Thus the lower
bound for the optimal solution of (4) is 2781.6. A similar observation
as in the previous case holds here as well. We should note that all
computations are done in MATLAB 7.8 and we have used cvx software
package [6] to solve problem (5).

4 Conclusions

Extensive research specially in the last decade shows that robust op-
timization can alleviate sensitivity of a given problem to its data un-

94

Robust Geometric Program and Profit Maximization. . .

certainty by incorporating explicitly data uncertainty into the prob-
lem. In this paper, we consider the robust counterpart of the profit-
maximization problem which is in the form of a geometric programming
problem. Since it is not known in general that a robust geometric pro-
gramming problem can be reformulated as a tractable optimization
problem that interior point or other algorithms can efficiently solve,
then using piecewise convex linear approximations, an approximate
equivalent of the robust counterpart is given, which is in the form of
a geometric programming problem. Moreover, an illustrative example
is given which shows the importance and impact of the uncertainties
in the model parameters for different level of uncertainties. Due to
the presence of uncertainty in economical model parameters, the idea
might be useful to be applied to other models.

5 Acknowledgment

The authors would like to thank the reviewer for his/her valuable com-
ments on the early version of this paper.

References
[1] C.S. Beightler, D.T. Philips, Applied Geometric Programming,

John Wiley & Sons, New York, 1976.

[2] A. Ben-Tal and A. Nemirovski, Robust convex optimization, Math-
ematics of Operations Research, 23(4) 1998, 769–805.

[3] S. Boyd, S. J. Kim, L. Vandenberghe, and A. Hassibi, A tutorial
on geometric programming, Optimization and Engineering, 8(1)
2007, 67–127.

[4] P.H. Douglas, The Cobb-Douglas production function once again:
its history, its testing, and some new empirical values, Journal of
Political Economy, 84(5) 1976, 903–916.

[5] R.J. Duffin, E.L. Peterson, and C. Zener, Geometric Program-
ming: Theory and Applications, John Wiley & Sons, New York,
1967.

95

Hossein Aliabadi and Maziar Salahi

[6] M. Grant and S. Boyd,Cvx users, guide for cvx version 1.21,
www.Stanford.edu/ boyd/cvx, 2010.

[7] K.L. Hsiung, S.K. Kim, S. Boyd, Tractable approximate robust
geometric programming, Optimimization and Engineering, 9 2008,
95–118.

[8] K. Kortanek, X. Xu, Y. Ye, An infeasible interior-point algorithm
for solving primal and dual geometric programs, Mathematical
Programming, 76(1) 1997, 155–181.

[9] S.T. Liu, Using geometric programming to profit maximization
with interval coefficients and quantity discount, Applied Mathe-
matics and Computation, 209(2) 2009, 259–265.

[10] S.T. Liu, Posynomial geometric programming with interval expo-
nents and coefficients, European Journal of Operational Research,
186(1) 2008, 17–27.

[11] S.T. Liu, A computational method for the maximization of long-
run and short-run profit, Applied Mathematics and Computation,
186(2) 2007, 1104–1112.

[12] S.T. Liu, Profit maximization with quantity discount: An appli-
cation of geometric programming, Applied Mathematics and Com-
putation, 190(2) 2007, 1723–1729.

[13] S.T. Liu, A geometric programming approach to profit maximiza-
tion, Applied Mathematics and Computation, 182(2) 2006, 1093–
1097.

[14] S.T. Liu, Posynomial geometric programming with parametric
uncertainty, European Journal of Operational Research, 168(2)
2006, 345–353.

Hossein Aliabadi1, Maziar Salahi2 Received February 10, 2012

1 Department of Applied Mathematics, Faculty of Mathematical Sciences,
University of Guilan, Rasht, Iran,
E–mail: hosein.aliabadi@gmail.com

2 Department of Applied Mathematics,
Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran,
E–mails: salahim@guilan.ac.ir, salahi.maziar@gmail.com.

96

Computer Science Journal of Moldova, vol.21, no.1(61), 2013

ECO-generation for some restricted classes of

compositions

Jean-Luc Baril, Phan-Thuan Do

Abstract

We study several restricted classes of compositions by giving
one-to-one maps between them and different classes of restricted
binary strings or pattern avoiding permutations. Inspired by the
ECO method [8], new succession rules for these classes are pre-
sented. Finally, we obtain generating algorithms in Constant
Amortized Time (CAT) for theses classes.

Keywords : Composition of an integer, ECO method, succession rule,

generating tree, pattern avoiding permutation.

1 Introduction

A composition of an integer n is an ordered collection of one or more
positive integers whose sum is n. So, a composition c of n can be
written c = (c1, c2, . . . , ck) with c1 + c2 + · · · + ck = n and ci ≥ 1
for all i ≤ k. The integer k corresponds to the number of parts of
the composition. Let C(n) be the set of compositions of n. It is well
known that the cardinality of C(n) is 2n−1 and there is a one-to-one
correspondence between C(n) and binary strings of length n − 1 (see
Definition 1). There are many studies about enumeration of compo-
sitions and their restrictions: (1, p)-compositions, i.e., compositions
whose parts are 1 or p have been introduced in [12, 15, 16]; composi-
tions with no occurrence of part p have been studied in [17]; see also
[1, 14, 24, 25, 27, 28, 30, 32]. However, a very few articles deal with
their exhaustive generations. Some Gray codes are given for composi-
tions of a positive integer n in [31, 37]; for compositions with parts of

c©2013 by Jean-Luc Baril, Phan-Thuan Do

97

Jean-Luc Baril, Phan-Thuan Do

size smaller than p in [36]; or for (1, p)-compositions in [12, 15]. These
papers mostly study the classes of compositions in terms of binary
strings. On the other hand, in [30], some results are provided using re-
stricted permutations for a few classes of compositions, but they cannot
be considered as avoidance patterns. More recently, a generalization
of the Simion-Schmidt injection [35] gave a bijection between binary
strings and pattern avoiding permutations [29] which creates a natural
link between compositions and pattern avoiding permutations. For ex-
ample, the class of compositions is in one-to-one correspondence with
the class of permutations avoiding 321 and 312 [4, 26]; the set of com-
positions of n with all parts of sizes smaller than (p + 1) is enumerated
by the p-generalized Fibonacci numbers, see [4, 11, 27, 28] and there
is a bijection between this set and permutations avoiding the patterns
321, 312 and 234 · · · (p + 1)1.

In this paper, we use the ECO method [8] (Enumeration Combi-
natorial Object method) in order to generate some restricted classes
of compositions represented as binary strings or pattern avoiding per-
mutations. The ECO method is a recursive description of a combi-
natorial object class which explains how an object of size n can be
reached from one and only one object of smaller size (see for example
[2, 3, 5, 6, 7, 13, 18, 19, 21, 22, 23]). It consists to define a system
of succession rules for a combinatorial object class which induces a
generating tree such that each node is labeled by the number of its
successors. In fact, the set of successions rules describes for each node
the label of its successors. More formally, the root of the generating
tree is labeled (b), b ∈ N

+, and we define the rules Ω:

{(k) (e1(k))(e2(k)) · · · (ek(k)), k ∈ N},

where ei : N
+ −→ N

+. This means that each node labeled (k) has k
successors labeled (e1(k)), (e2(k)),. . . , (ek(k)). For ` ≥ 1, the symbol
`
 means that the succession rule transforms an element of size n into
another one of size n + `. For ` = 1 we frequently omit the superscript
` over .

By coding each node of the generating tree with either a binary
string or a permutation, we deduce new bijections between classes of

98

ECO-generation for some restricted classes of . . .

restricted compositions, pattern avoiding permutations and restricted
binary strings.

This paper is organized as follows. Section 2 recalls the defini-
tion of pattern avoiding permutations, and gives existing links between
compositions, binary strings and pattern avoiding permutations. Sec-
tions from 3 to 7 present succession rules for compositions with a given
number of parts, compositions with at most p parts, (1, p)-compositions
and compositions without parts of a given size. Moreover, each induced
generating tree will be encoded by binary strings and pattern avoid-
ing permutations. Finally, we deduce efficient algorithms (Constant
Amortized Time algorithms) for generating all these classes (Constant
Amortized Time means that the total amount of computation divided
by the number of objects is bounded by a constant independent of the
size of objects).

2 Definitions and notations

Let Sn be the set of permutations on [n] = {1, 2, . . . , n}. We represent
a permutation π ∈ Sn in one line notation: i.e., π = π1π2 · · · πn, where
πi = π(i) for all i ≤ n. A permutation π ∈ Sn contains the pattern
τ ∈ Sk if and only if a sequence of indices 1 ≤ i1 < i2 < · · · < ik ≤ n
exists such that π(i1)π(i2) · · · π(ik) is order-isomorphic to τ . We denote
by Sn(τ) the set of n-length permutations avoiding the pattern τ , i.e.,
permutations that do not contain τ . For instance, the permutation
523164 contains the pattern 321 while 314265 ∈ S6(321). Moreover,
we consider a barred pattern τ̄ , i.e., a permutation in Sk having a bar
over one or several consecutive entries (see [34]). Let r, 1 ≤ r ≤ k − 1,
be the number of barred elements in τ̄ ; τ be the permutation on [k]
identical to τ̄ but unbarred; and τ̂ be the permutation on [k − r] made
up of the k − r unbarred elements of τ̄ rewritten to be a permutation
on [k − r]. Let b = b1 · · · bk ∈ {0, 1}k such that bi = 1 if and only
if the i-th entry of τ̄ is barred. Then π ∈ Sn avoids the pattern τ̄
if and only if each pattern τ̂ in π can be expanded into a pattern τ
in π such that the positions of the extended entries correspond to the
positions of 1s in b. For example, if τ̄ = 2134, then b = 0011 and

99

Jean-Luc Baril, Phan-Thuan Do

2134 ∈ S4(τ̄) and 21435 /∈ S5(τ̄) since 43 can not be expanded into a
pattern 43ab, where 4 < a < b. Now we define a special pattern denoted
τ̇ = 23 · · · (p − 1)p1̇ (see [10]). A permutation π avoids τ̇ if and only if
each pattern 23 · · · (p−1)1 can be extended to a pattern 23 · · · (p−1)p1
such that the positions of the extended values do not matter, i.e., each
pattern 23 · · · (p − 1)1 is contained in a pattern 23 · · · (p − 1)p1 of π.
For instance, if τ̇ = 231̇, then 2341 ∈ S4(τ̇) and 21 /∈ S2(τ̇) while
2341 /∈ S4(234̄1).

It is well-known that the set C(n + 1) of compositions of n + 1 is in
one-to-one correspondence with the set B(n) of binary strings of length
n. The following bijection ϕ shows this correspondence.

Definition 1 Let c = (c1, c2, . . . , ck) be a composition of n + 1.
The bijection ϕ between C(n + 1) and B(n) is defined by: ϕ(c) =
1c1−101c2−10 · · · 1ck−1−101ck−1.

For instance, if c = (1, 3, 2, 3), then ϕ(c) = 01101011.
On the other hand, Juarna and Vajnovszki in [29] gave a bijec-

tion φ between the binary strings in B(n) and the permutations in
Sn+1(321, 312). This bijection is considered as a generalization of the
Simion-Schmidt injection [35].

Definition 2 Let b = b1b2 · · · bn ∈ B(n). The bijection φ between B(n)
and Sn+1(321, 312) is defined by: π = φ(b) ∈ Sn+1 which has its i-th
value πi given by the following rule: if Xi = [n+1] \{π1, π2, . . . , πi−1},
then

πi =

{
the minimum value in Xi, if bi = 0, or i = n + 1
the second minimum value in Xi, if bi = 1.

For instance, if b = 01101011, then φ(b) = 134265897.

3 Compositions of n with parts of size at

most p

The set C≤p(n) of compositions of n with parts of size at most p is
enumerated by the (n+1)-th p-generalized Fibonacci number (see [11]).

100

ECO-generation for some restricted classes of . . .

The map ϕ (Section 2) induces a bijection between C≤p(n) and the
set B<p(n − 1) of binary strings of size n − 1 without p consecutive
ones. It is proved [4, 11] that there are also one-to-one correspondences
with the two classes of permutations Sn(321, 231, (p + 1)12 · · · p) and
Sn(321, 312, 23 · · · (p + 1)1). These permutation classes admit known
succession rules (see [4, 26] and Table 1) and they can be generated in
constant amortized time (see also [11, 9, 33, 36] for Gray code listing).

4 Compositions of n with exactly p parts

The set Cp(n) of compositions of n with exactly p parts is enumer-
ated by the binomial coefficient

(
n−1
p−1

)
. Also, Cp(n) is in one-to-one

correspondence with the set Bp−1(n − 1) of binary strings of length
n − 1 and having exactly p − 1 zeros. The function ϕ (see Sec-
tion 2) shows such a bijection. The following theorem gives a sys-
tem of succession rules in order to generate the sets Bp−1(n − 1) and
Sn(132, 312, (p + 1) · · · 21, 12 · · · (n − p + 1)(n − p + 2)). In this part,
we say that the level of a node in the generating tree is the length of
the unique path between the root and this node, plus p (thus the root
is on the level p).

Theorem 1 For p ≥ 1, a system (Ωp) of succession rules for the set
Cp(n) is:

(Ωp)

{
(p)
(k) (1)(2) · · · (k − 1)(k).

Each level n ≥ p of the generating tree induced by (Ωp) can be
coded by the binary strings of Bp−1(n − 1) or by the permutations in
Sn(132, 312, (p + 1) · · · 21, 12 · · · (n − p + 1)(n − p + 2)). A node other
than the root and labeled (k) is coded by a binary string of the form
b = b′10k−1 (resp. a permutation π = π′n(k − 1)(k − 2) · · · 21) and
its successors are obtained from b (resp. π) either by inserting 1 (resp.
n+1) between two entries of the suffix 10k−1 (resp. n(k−1)(k−2) · · · 21)
or by appending 1 (resp. n + 1) on the right (see Figure 1).

Proof. We attach the binary string 0p−1 to the root of the generating
tree obtained by (Ωp) and we proceed by induction on the level n of

101

Jean-Luc Baril, Phan-Thuan Do

(3)
00/321

(1)
001/3214

(1)
0011/32145

(1)

(2)
010/3241

(1)
0101/32415

(1)

(2)
0110/32451

(1) (2)

(3)
100/3421

(1)
1001/34215

(1)

(2)
1010/34251

(1) (2)

(3)
1100/34521

(1) (2) (3)

Figure 1. The first levels of the generating tree (Ω3) (the level of the root is
3). Each node on the level n is coded by one binary string in B2(n− 1) or by
one permutation in Sn(132, 312, 4321, 12 · · ·(n − 2)(n − 1)).

the tree (the root being on the level p by convenience). So we assume
that the level (n− 1) generates once each binary string of Bp−1(n− 2).
Let b ∈ Bp−1(n − 2) such that b = b′0k, k ≤ p − 1, where b′ is either
empty or has 1 on its right. Therefore, by inserting 1 on the right
of b, or between two entries of the suffix 0k, or on the left of 0k, we
produce k + 1 binary strings of Bp−1(n − 1) and each binary string
c = b′10k−`+110`−1 obtained by this process has ` successors labeled
(1), (2), . . . , (`). Conversely, each binary string of Bp−1(n − 1) can be
uniquely obtained from an element of Bp−1(n−2) by this construction.

Now, we define a map φ′ from Bp−1(n − 1) to Sn(132, 312).
Let b = b1b2 · · · bn−1 ∈ Bp−1(n − 1). If π = φ′(b1b2 · · · bn−1), then

π1 = p and for i ≥ 2,

πi =

{
p − ` if bi−1 is the `-th 0 from the left
p + ` if bi−1 is the `-th 1 from the left.

For instance, if p = 5 and n = 9, then φ′(10011010) = 564378291.
In fact, the image by φ′ of an element in Bp−1(n− 1) is a permutation
of Sn(132, 312) verifying π1 = p, or equivalently a permutation of
Sn(132, 312) that avoids the two patterns (p + 1) · · · 21 and 12 · · · (n−

102

ECO-generation for some restricted classes of . . .

p+1)(n−p+2). Now let us prove that φ′ is a bijection from Bp−1(n−1)
to Sn(132, 312, (p + 1) · · · 21, 12 · · · (n − p + 1)(n − p + 2)). Indeed, a
permutation π in Sn(132, 312, (p+1) · · · 21, 12 · · · (n−p+1)(n−p+2))
verifies that πi is either max{πj , j ≤ i} or min{πj , j ≤ i} which are
respectively represented by 1 and 0 in order to obtain a binary string
b of length n − 1 (we do not consider the bit corresponding to π1).
Obviously, if π avoids (p+1)p · · · 21 (resp. 12 · · · (n− p+1)(n− p+2))
then b does not contain p zeros (resp. n−p+1 ones) which means that
b contains exactly p − 1 zeros. Moreover, if c = b′10`10k−` is obtained
from b = b′10k ∈ Bp−1(n−2) by inserting 1, then φ′(c) is obtained from
φ′(b) by inserting n on the same position from the right. 2

Notice that the set Sn(132, 312, (p + 1) · · · 21, 12 · · · (n− p + 1)(n−
p + 2)) depends on a pattern of length n − p + 2. However, it remains
the open question: is it possible to find a finite basis B (independent
of n) such that Sn(B) is enumerated by

(
n−1
p−1

)
?

5 Compositions of n with at most p parts

The set C#p(n) of compositions of n with at most p parts is enumerated
by

∑p
k=1

(
n−1
k−1

)
. Moreover, C#p(n) is in one-to-one correspondence with

the set B#(p−1)(n − 1) of binary strings of length n − 1 and having
at most p − 1 zeros. The function ϕ (see Section 2) shows such a
bijection. The following theorem gives succession rules in order to
generate B#(p−1)(n− 1). Since B#(p−1)(n− 1) =

⋃p−1
i=0 Bi(n− 1), these

rules are obtained by a simple adaptation of the rules described in the
previous section. Here we say that the level of a node in the generating
tree is the length of the unique path between the root and this node
(the root is on the level 0).

Theorem 2 For p ≥ 1, a system (Ω#p) of succession rules for the set

103

Jean-Luc Baril, Phan-Thuan Do

B2(n − 1)

B1(n − 1)

B0(n − 1)

..

..

..

..

..
..
..
..
..
..
..
..
..
..
..

..

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

.

.

..

..

..

.

..

..

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

.

..

..

..

..

..

.

..

..

..

.

..

.

..

.

.

..

.

.

..

.

.

..

.

..

.

..

..

.

..

..

.

..

.

..

..

..

..

..

..

..

..

.

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..
..
..
..
..
..
..
..
..
..

..
..
..
..
..
..
..
..
..
..
..
.

..
...
...
..
...
...
...
...
...
...
...
...
...
...
...
...
..

..
...
..
...
..
...
...
..
...
..
...
..
...
..
...
..
...
..
.

...
...
..
...
...
...
...
..
...
...
...
...
...
...
...
.

...
...
....
...
...
...
...
...
...
....
...
...
...

...
....
....
....
....
...
....
....
....
....
.

.....
.....
.....
.....
.....
.....
.....
..

.......
.......
........

.......
......

..................
...............

...............................

...............................

..............................

..............................

..............................

..............................

....
................

...

...
.....
.....
......
...

..

...

...

...

...
...
...
.

.

...

...

...

..

...

...

..

.

..

..

..

..

..

..

..

..

.

..

.

.

.

..

.

..

.

.

..

.

..

.

..

.

.

.

..

..

.

..

..

.

..

.

..

..

.

.

.

..

..

..

..

..

..

..

..

..

..

.

..

..

...

..

..

..

...

..

..

.

...

....
...
....
....
...
...

.....
.....
....
.....
.....
.

.......
......
.......
......

.............................

................................

...................................

......................................

..

............................

...........................

..........................

.........................

.........................

........
........
........
..

.....
....
.....
....
.....
....

....
...
...
...
...
....
...
...
...

...
..
...
..
...
..
...
..
...
..
...
..

..
..
..
..
..
...
..
..
...
..
..
..
...
..

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

..

..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

..

..

.

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

.

..

..

.

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

.

.

..

.

.

..

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

.

..

.

.

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

.

.

.

..

..

.

..

..

.

..

..

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

..

.

..

.

..

..

.

..

.

..

.

.

.

..

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

..

.

..

..

.

..

.

..

..

..

..

..

..

..

..

.

.

..

.

..

..

.

..

.

..

..

..

..

..

..

..

.

..

.

..
..
..
..
..
..
..

...
...
...
...
..
.

....
.....
.....
...

......
........

.......
........

.......
.......

........
........

........
.........

.......

........
.........

..........
.........

.

..........
...........

...........
..

...............
..............

..

.....................
.......

.........................
....................

..................

...............

.............

..........

.......
.

..

...

...

..

...

...

...

..

...

...

...

..

...

...

..

..

...

..

...

..

...

..

...

..

...

..

...

..

...

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

.

.

.

..

.

..

..

.

..

..

.

..

.

..

..

.

..

..

.

..

..

.

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

..

.

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

.

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

.

.

..

..

.

..

..

..

.

..

..

..

..

.

..

..

..

.

..

.

.

...

..

..

..

..

..

...

..

..

..

..

...

..

..

.

..

..

..

...

..

..

...

..

..

...

..

..

...

..

.

..

...

...

...

....
...
...
...
...
...
...
.

....
....
....
.....
....
....
....
.....
.

.....
.....
.....
.....
....
.....
.....
.

.

.........
.........
........
.........

..............................

.............................

............................

...........................

..........................

.........................

.......................
.......................

......
.......
........
...

.....
....
....
....
....
....

...
...
...
...
...
..
...
...
...

...
...
..
..
...
..
...
...
...
..
.

..

..
..
..
..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..

..

..

..

..
..
..
..
..
..
..
..
..
..
..
.

..

..

..

.

..

..

..

.

..

..

..

..

..

..

..

.

..

.

...

..

.

..

..

..

.

..

.

.

..

.

.

.

..

..

...

.......

........

..........

......
........

.

.....
.....
....
....

....
....
....
....
....
....
....
....
...
....
....
....

...
....
...
....
....
....
...
....
....
....
...
....

...
....
...
....
....
...
....
....
...
....
...
..

...
....
...
...
....
...
...
....
...
...
....

....
...
...
...
...
...
...
....
...
...
..

...
...
...
..
...
...
...
...
...
...
.

..
...
...
..
...
...
..
...
...
...

..
...
...
..
...
...
..
...
...

...
..
..
..
...
..
..
..
..

..

..
..
..
..
..
..
..
.

..

..

..

..
..
..
.

..

..

..

..

..

..

..

..

..

..

..

.

..

..

.

..

.

..

..

..

..

..

..

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

.

..

..

.

.

.

..

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

..

.

.

..

..

.

..

.

.

..

.

.

..

.

..

.

.

..

.

.

..

.

..

.

.

..

.

.

..

.

..

.

.

..

.

.

..

.

.

.

..

.

..

.

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

.

.

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

.

..

.

.

.

..

.

..

..

.

..

..

.

..

.

..

..

..

..

..

..

..

.

.

..

..

.

..

..

..

..

..

..

..

..

..

..

...
...
...
...
.

....
.....
....
.

..........
............

.......

..

...

...

..

..

....

...

...

..

.

..

..

...

..

..

..

...

..

..

..

..

.

..

..

..

..

..

.

.

..

..

.

..

...

.

...

.

.

..

.

..

.

.

.

..

.

.

..

.

.

..

..

.

..

..

.

..

.

..

..

..

.

..

.

..

.

..

.

.

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

.

.

.

..

..

.

..

.

..

..

.

..

..

.

..

.

.

..

.

..

..

.

..

..

.

..

..

.

.

.

.

..

..

..

.

..

..

.

..

.

..

..

.

..

..

..

..

.

...

..

..

..

..

.

..

...

..

.....

..

.....

.......
.

......
.....

....
.....
.....

...
.....
....
.....

..

........
........
...

.....
.......
.......
.....

......
......
.......
......
..

.

......
......
.....
......
......

.

......
.....
......
.....
.....
.....

.

......
.....
......
.....
......
....

..

......
......
......
......
....

.....
......
......
......
....

.

.......
.......
.......
..

......
........
.......

...
....
.....
....
.

..

.....
.....
..

..

......
...

....
....

.....

..

(20)
λ/1

(30)
0/21

(3)
00/321

(1)
001/3214

(1)

(2)
010/3241

(1) (2)

(3)
100/3421

(1) (2) (3)

(2)
10/231

(1)
101/2314

(1)

(2)
110/2341

(1) (2)

(1)
01/213

(1)
011/2143

(1)

(1)
1/12

(1)
11/123

(1)
111/1234

(1)

Figure 2. The first levels of the generating tree (Ω#3). Each node on the
level n is coded by one permutation in Sn+1(132, 312, 4321) or by one binary
string in B#2(n). Encircled subtrees correspond to the subsets Bi(n − 1) for
0 ≤ i ≤ 2.

C#p(n) is:

(Ω#p)

(20)
(k0) ((k + 1)0)(k − 1) · · · (2)(1), if 2 ≤ k < p
(p0) (p)(p − 1) · · · (2)(1)
(k) (1)(2) · · · (k), if 1 ≤ k ≤ p.

Each level n ≥ 0 of the generating tree induced by (Ω#p) can be
coded by the binary strings of B#(p−1)(n) or by the permutations in
Sn+1(132, 312, (p + 1) · · · 21).

• A node labeled (k0), 2 ≤ k ≤ p, is coded by the binary string
0k−2 (resp. the permutation (k−1)(k−2) · · · 21) and its successors are
obtained either by appending 0 (resp. k) on the left or by inserting 1
(resp. k) between two zeros, on the right or on the left (resp. on the
same position from the right as for binary strings).

• All other nodes obey to the rules described in Theorem 1.

104

ECO-generation for some restricted classes of . . .

Proof. The proof is directly deduced from Theorem 1. Indeed, a node
labeled (k0), 2 ≤ k ≤ p, produces k−1 nodes labeled (1), (2), . . . , (k−1)
which have the same succession rules as those of Theorem 1, and either
one node labeled ((k + 1)0) if k 6= p or one node labeled (k) otherwise.
This means that the subtree T rooted by a node labeled (k0), k 6= p,
has one subtree T1 rooted by a node labeled ((k + 1)0) that generates
the sets Bk(n−1) for n−1 ≥ k (see Theorem 1). Now let T2 = T\T1 be
the subtree of T obtained by deleting all nodes of T1. So, T2 generates
the set Bk−1(n− 1) for n− 1 ≥ k− 1. Finally, the complete generating
tree of (Ω#p) is exactly the union of subtrees Ti for 0 ≤ i ≤ p − 1,
where Ti generates the set Bi(n−1), where n−1 ≥ i. This proves that
(Ω#p) generates B#(p−1)(n). By duality and with the same argument,
it also generates all permutations in Sn+1(132, 312, (p + 1) · · · 21) (see
Figure 2). 2

6 Compositions of n with parts 1 and p

Let C1,p(n) be the set of compositions of n with parts 1 and p. The
following bijection ϕ′ (see for example [12]) gives a bijection between
C1,p(n) and the set B≥p−1(n−p+1) of binary strings of length n−p+1
with at least p − 1 zeros between two ones.

Definition 3 Let c = (c1, c2, . . . , c`) be a composition of n such that
ci ∈ {1, p} for all i ≤ `. We define the bijection ϕ′ between C1,p(n) and
B≥p−1(n − p + 1) by the following algorithmical process. We initialize
b = λ (the empty string). For each i from 1 to `, if ci = 1, then we
modify b by appending 0 on its right; otherwise (i.e., ci = p), we modify
b by appending 10p−1 on its right. Finally, we delete p− 1 zeros on the
right of b which defines a binary string b of length n − p + 1 with at
least p − 1 zeros between two ones.

For instance, if n = 12, p = 3 and c = (1, 3, 1, 3, 3, 1), then ϕ′(c) =
0100010010.

Theorem 3 For p ≥ 2, a system (Ω1,p) of succession rules for the
(1, p)-compositions is given by:

105

Jean-Luc Baril, Phan-Thuan Do

(Ω1,p)

(2)
(2) (2)(10)
(1i) (1i+1), for 0 ≤ i < p − 2
(1p−2) (2).

Each level n of the generating tree induced by (Ω1,p) can be coded by the
binary strings in B≥p−1(n) (the root is on the level 0). A binary string
of length n can be obtained from a string of length n− 1 by inserting 0
or 1 on the last position (see Figure 3).

Proof. We will prove by induction that the nodes on the level k can be
coded by the binary strings of the set B≥p−1(k) for all k ≥ 0. Remark
that this is true for the root which is coded by the empty string λ (by
convenience the level of the root will be 0). So let us assume that each
level j ≤ k is coded by the elements of B≥p−1(j).

Let α be a binary string of length k + 1 on the level k + 1 and let
β ∈ B≥p−1(k) be its predecessor on the level k.

If α is obtained from β by inserting 0 on its right, then α also
belongs to B≥p−1(k + 1). If α is obtained by inserting 1 on the right
of β, then β has two sons, so its label is (2), and its predecessor γ is
labeled by (2) or (1p−2), then β = γ0.

(i) If γ is labeled (1p−2), its predecessor γ1 is labeled (1p−3). We
repeat this process until γp−2, i.e., until we reach the label (10).
Then γp−2 is obtained from a binary string β′ labeled (2) by
inserting 1 on the right of β′.

Thus α is of the form α = β1 = β′10p−11. Moreover, β′ ∈
B≥p−1(k − p) by the recurrence hypothesis. We conclude that
α ∈ B≥p−1(k + 1).

(ii) If γ is labeled (2), its predecessor γ1 is labeled (1p−2) or (2). If
γ1 is labeled (1p−2), we return to the case (i) just above, so α has
at least p− 1 consecutive zeros between two ones. If γ1 is labeled
(2), we repeat the process by replacing γ1 with γ and it will finish
when: either we reach the label (1p−2) which corresponds to the

106

ECO-generation for some restricted classes of . . .

case (i), or we reach the root labeled (2). In any case, α contains
p−1 consecutive zeros between two ones. Then α ∈ B≥p−1(k+1).

Conversely, we consider α ∈ B≥p−1(k + 1) and we construct a path
on the generating tree (Ω1,p) which generates this string. We distin-
guish two cases:

• α = α′10j , where j ≤ p−1. So α′1 ∈ B≥p−1(k+1−j). Therefore,
α′ is labeled (2) and α is obtained from α′ with either the path
(2)/α′

 (10)/α
′1 (11)/α

′10 · · · (1j)/α
′0j or (2)/α′

(10)/α
′1 (11)/α

′10 · · · (1p−2)/α
′10p−2

 (2)/α′10p−1;

• α = α′′10j , where j ≥ p. Then α′ = α′′10p−1 ∈ B≥p−1(k + p− j).
So, α is obtained from α′ with a path of nodes all labeled (2) in
the generating tree.

We repeat the same process by replacing α with α′ and we will find
the path from the root of the generating tree (Ω1,p) to reach α. For
instance, α = 010010001, the path to reach α from the root in the
generating tree (Ω1,3) is:

(2)/λ (2)/0 (10)/01 (11)/010 (2)/0100 (10)/01001
(11)/010010 (2)/0100100 (2)/01001000 (10)/010010001.

We finally conclude that the generating tree induced by (Ω1,p) is
coded by the set B≥p−1(n) of binary strings of length n with at least
p − 1 zeros between two ones. 2

Theorem 4 Each level n ≥ 0 of the generating tree of (Ω1,p) can be

coded by the permutations in Sn+1(231, 312, 321, 2134 · · · (p + 1)(p +
3)(p + 2)). A permutation of length n is obtained from a permutation
π of length (n− 1) by inserting n either on the right of π or just before
its last entry (see Figure 3).

Proof. In [12], Baril and Moreira showed there is a bijection f between
B≥p−1(n) and Sn+1(231, 312, 321, 2134 · · · (p + 1)(p+3)(p+2)). More-
over, the insertion of 0 (resp. 1) on the right of b ∈ B≥p−1(n) is equiva-
lent to the insertion of (n+1) on the right of π = f(b) (resp. just before
the last entry). This means that Sn+1(231, 312, 321, 2134 · · · (p + 1)(p+
3)(p + 2)) also codes the generating tree (Ω1,p). 2

107

Jean-Luc Baril, Phan-Thuan Do

(2)
λ/1

(10)
1/21

(11)
10/213

(2)
100/2134

(10)
1001/21354

(2)
1000/21345

(2)
0/12

(10)
01/132

(11)
010/1324

(2)
0100/13245

(2)
00/123

(10)
001/1243

(11)
0010/12435

(2)
000/1234

(10)
0001/12354

(2)
0000/12345

Figure 3. The first five levels of the generating tree (Ω1,3). Each node on the
level n is coded by one permutation in Sn(231, 312, 321, 213465) or by one
binary string in B≥2(n − 1).

7 Compositions of n without part of size p

Let Cp̂(n) be the set of compositions of n without part of size p. The
bijection ϕ (see Section 2) transforms Cp̂(n) into the set B

p̂−1
(n − 1)

of the binary strings of length (n − 1) without run of ones of length
p− 1 knowing that a run of ones is a maximal substring of consecutive
ones. For instance, the binary string b = 0110011101 contains three
runs of ones illustrated in boldface. In this section, we consider the
concept of jumping succession rules introduced in [23]. This allows the
construction of an element of size greater than n + 1 from an element
of size n (see Section 1).

Theorem 5 For p ≥ 2, a system of jumping succession rules (Ωp̂) for

108

ECO-generation for some restricted classes of . . .

the compositions without part of size p is given by:

(Ωp̂)

(20)
(2i) (20)(2i+1), for 0 ≤ i ≤ p − 3

(2p−2)
1
 (20)
2
 (2p−1)

(2p−1) (20)(2p−1).

Each level n of the generating tree of (Ωp̂) is coded by the set B
p̂−1

(n)

(the root is on the level 0). Let b be a binary string in B
p̂−1

(n) corre-
sponding to a node of level n. Then b has two successors:
- if the two successors of b are on the level n + 1, they are obtained by
inserting 0 or 1 on the right of b.
- if one successor of b is on the level n + 1 and the other on the level
n + 2, we insert 0 on the right of b in order to obtain the successor on
the level n+1 and we insert 11 on the right of b in order to obtain that
on the level n + 2 (see Figure 4).

Proof. We proceed by induction. The root of the tree is coded by the
empty string λ (by convenience the level of the root is 0). We assume
that each level k ≤ n is coded by the elements of B

p̂−1
(k). Let α be

the binary string of length (n+1) corresponding to a node on the level
n+1 and let β be its predecessor on the level n or n−1, then β belongs
to B

p̂−1
(n) or B

p̂−1
(n − 1).

(i) If β is on the level n − 1, then β is labeled (2p−2), α is labeled
(2p−1) and α is obtained from β by inserting 11 on its right. Thus
β is obtained from its predecessor β1 labeled (2p−3) (if p− 3 > 0)
by inserting 1 on its right. We repeat this process until we create
βp−2, i.e., until we reach a node labeled (20). Necessarily βp−2 is
obtained from its predecessor β′ by inserting 0 on its right. Thus
α = β11 = β′01p, and α does not contain any run of ones of
length p − 1, which implies that α ∈ B

p̂−1
(n + 1).

(ii) If β is on the level n, then α is obtained from β by inserting 0 or
1 on its right.

109

Jean-Luc Baril, Phan-Thuan Do

- if α is obtained from β by inserting 0 on its right, then α obvi-
ously belongs to B

p̂−1
(n + 1).

- if α is obtained from β by inserting 1 on its right, then β is
labeled (2) or (2i), with i < p − 2:

(a) if β is labeled (2), it is obtained from its predecessor (also
labeled (2)) by inserting 1 on its right. We repeat this pro-
cess until we reach the label (2p−2). So we retrieve the case
(i) above. Then, α = α′1` = β′01p1`, with ` > 0, and
β′ ∈ B

p̂−1
(n − p − l). Therefore α ∈ B

p̂−1
(n + 1).

(b) if β is labeled (2i), with the same process of the case (i), we
have α = β′1i+1, with β′ ∈ B

p̂−1
(n − i) with i + 1 < p − 1.

Thus α ∈ B
p̂−1

(n + 1).

Conversely, each string α in B
p̂−1

(n + 1) can be constructed on

the level n + 1 of the generating tree (Ωp). Indeed, if β = α0, then
β ∈ B

p̂−1
(n + 2). So β can be decomposed as 1c1−101c2−10 · · · 1c`−10

such that c = (c1, c2, . . . , c`) ∈ C
p̂−1

(n + 3) (see the bijection ϕ : Cp̂(n +

1) B
p̂−1

(n)). Let β = β′1c`−10, then β′ ∈ B
p̂−1

(n + 2 − c`). We
distinguish two cases:

• if c` < p, then β is obtained from β′ on the generating tree (Ωp)
by the path
(21) (22) · · · (2c`−1) (20),

• if c` > p, then β is obtained from β′ on the generating tree (Ωp)
by the path

(21) (22) · · · (2p−2)
2
 (2p−1) (2p−1)

c`−p−1
 (20).

We repeat this process by replacing β with β′ and we obtain a path
from the root to β on the generating tree (Ωp̂). For instance, on the
generating tree (Ω3̂), if α = 1110100, then the path for reaching α from
the root is:
(20)/λ (21)/1

2
 (22)/111 (20)/1110 (21)/11101

(20)/111010 (20)/1110100. 2

110

ECO-generation for some restricted classes of . . .

(20)
λ/1

(21)
1/21

(22)
111/2341

(20) (22)

(20)
10/213

(21)
101/2143

(22)

(20)

(20)
100/2134

(21) (20)

(20)
0/12

(21)
01/132

(22)

(20)
010/1324

(21) (20)

(20)
00/123

(21)
001/1243

(22)

(20)

(20)
000/1234

(21) (20)

Figure 4. The first levels of the generating tree (Ω3̂). Each node on the level
n ≥ 0 is coded by a permutation in Sn+1(312, 321, 2341̇) or by a binary string
in B2̂(n).

In order to code the generating tree by permutations avoiding pat-
terns, we use the new pattern 23 · · · n1̇ presented in Section 2.

Theorem 6 Each level n of the generating tree induced by (Ωp̂) can be
coded by the permutations π ∈ Sn(312, 321, 23 · · · (p + 1)1̇) as follows:
• If the two successors of π belong to the level (n+1), they are obtained
by inserting n + 1 on the right or just before the last entry of π.
• If a successor of π is on the level (n + 1) and the other on the level
(n+2), we insert n+1 on the right of π in order to obtain the successor
on the level n+1, and we insert (n+1)(n+2) just before the last entry
of π in order to obtain that of the level (n + 2) (see Figure 4).

In order to prove this theorem, we present the following proposition.

Proposition 1 The map φ defined in Section 2 is a bijection from
Bp̂(n) to Sn+1(312, 321, 23 · · · (p + 2)1̇).

111

Jean-Luc Baril, Phan-Thuan Do

Proof. Recall that φ is a bijection from the set of binary strings of
length n to the set of (n + 1)-length permutations avoiding 321 and
312. So we will prove that φ(Bp̂(n)) = Sn+1(321, 312, 23 · · · (p + 2)1̇).

Let b be a binary string in Bp̂(n) and π be its image by φ in
Sn+1(321, 312). As φ(b) ∈ Sn+1(321, 312), there exist (see [36]) some
indices 0 = k0 < k1 < · · · < kr < · · · < km = n such that π is divided
into m blocks

π = π1π2 · · · πk1
· · · πkr−1+1πkr−1+2 · · · πkr

· · ·

· · · πkm−1+1πkm−1+2 · · · πkm

satisfying the two following conditions:

(i) the rightmost elements of each block are in increasing order (i.e.,
1 = πk1

< πk2
< · · · < πkm

);

(ii) each block πkr−1+1πkr−1+2 · · · πkr
having at least two elements is

of the form (a + 1)(a + 2) · · · (a + kr − kr−1 − 1)a with a = πkr
.

For instance, if b = 110111, then π = 2315674. It is remarkable from
the definition of φ that if we add on the last position of b one occur-
rence of 0 and then divide the obtained binary string into separated
blocks where each block contains exactly one occurrence of 0 at its
end, then we obtain m blocks corresponding to the m blocks of φ(b).
Furthermore, the number of consecutive 1s in each block of b is also
the number, minus one, of elements of the respective block in φ(b) (see
Definition 2). This leads us to the following claim: for q ≥ 2, if one sub-
sequence of φ(b) is a pattern 23 . . . q1 (of length q), then this sequence
must belong to only one block of φ(b) (since the smallest element of
each block of φ(b) is greater than the largest element of the previous
blocks of φ(b)). Moreover, since b does not contain exactly p consecu-
tive 1s, φ(b) does not contain any block of length p + 1 exactly. Hence,
if the subsequence 23 . . . p(p + 1)1 appears in φ(b), then we can extend
it (without considering positions of extended entries) into a sequence
23 . . . (p+1)(p+2)1, which means that φ(b) avoids 23 . . . (p+1)(p+2)1̇.

Conversely, we take a permutation π of Sn+1(321, 312, 23 . . . (p +
1)(p+2)1̇). We also have the decomposition of π into blocks as above. It
needs to show that φ−1(π) belongs to Bp̂(n). This is induced by the fact

112

ECO-generation for some restricted classes of . . .

that all blocks of π considered as subsequences of π are either of length
less than p + 1 (if they do not contain the reduced pattern 23 . . . p(p +
1)1) or more than p+1 (if they contain the extended pattern 23 . . . (p+
2)1). Therefore, φ−1(π) is a binary string without p consecutive 1s. 2

Now, the proof of Theorem 6 is obtained using the following remark.
The insertion of 0 (resp. 1) on the right of b ∈ Bp̂(n) is equivalent to
the insertion of n + 1 on the right of π = φ(b) (resp. just before the
last entry). And also the insertion of 11 on the right of b ∈ Bp̂(n) is
equivalent to the insertion of (n + 1)(n + 2) just before the last entry
of π = φ(b). This means that Sn(312, 321, 23 · · · (p + 1)1̇) also codes
the generating tree (Ωp̂).

8 Algorithmic considerations and conclusion

In this section, we explain how all studied classes can be generated
efficiently.

Let π ∈ Sn; the sites of π are the positions between two consecutive
entries, before the first and after the last entry. We suppose that the
sites are numbered from 1 to n+1 and from right to left. For example,
the third site of the permutation π = 463512 is between the entries 5
and 1. Moreover, let τ be an n-length permutation (or equivalently a
binary string) on a generating tree defined by a succession rule (Ω).
Then, the i-th site of τ is said active if the element obtained from τ
by the insertion of a value into this site also belongs to the generating
tree. The active sites of τ are right-justified (see [20]) if all sites to the
right of the leftmost active site are also active. If each element on the
generating tree is right-justified, we will say that the generated class is
regular. It is crucial to notice that all classes defined in this paper are
regular.

An algorithm runs in Constant Amortized Time (CAT) if the
amount of computations, after a small amount of preprocessing, is pro-
portional to the number of generated objects. Many CAT algorithms
exist in the literature, but we will take that presented in [20, 33]. This
recursive algorithm acts on regular classes and enables us to ensure

113

Jean-Luc Baril, Phan-Thuan Do

that we can generate all successors of a given node in constant amor-
tized time. Thus the total amount of computations is proportional to
the number of recursive calls. Moreover, the number obj of generated
objects is at least c−c1

2 , where c is the total number of recursive calls,
and c1 is the number of recursive calls of degree one. So, for each
generating tree of this study, we will calculate c1.

- We immediately have c1 = 0 for the generating tree defined in
Section 7 and c

obj
evolves as O(1).

- In Section 6, a simple observation gets c1 ≤ p(c − c1) and c
obj

evolves as O(p).

- The generating tree of Section 5 is constituted of several generating
trees of Section 4. So it suffices to compute c1 for Section 4 (see below).

- In Section 4, each node produces exactly once a node of degree
one. Thus the number of nodes of degree one and on levels at most
n − 1 in the generating tree (Ωp) is equal to

c1 =

n−1∑

i=p−1

(
i

p − 1

)
.

A simple calculation proves that if p ≥ bn
2 c and n ≥ 4, then c1 ≤

2
(

n
p−1

)
, which means that the number of nodes of degree one divided

by 2 is smaller than the number of generated objects obj =
(

n
p−1

)
for

p ≥ bn
2 c. In this case, the complexity is O(1). The case p ≤ bn

2 c
is obtained mutatis mutandis by interchanging 0 with 1 in the binary
strings of the generating tree.

Finally, this means that the total amount of computation divided
by the number of objects is bounded by a constant independently to
the size of the objects. Therefore all studied classes in this paper can
be generated in Constant Amortized Time (CAT) using an algorithm
similar to that of [20, 33]. We summarize our results in Table 1 that
contains the succession rules of each studied class and their correspond-
ing pattern avoiding permutation classes.

114

ECO-generation for some restricted classes of . . .

Table 1. Classes of compositions, corresponding succession rules and corre-
sponding classes of pattern avoiding permutations.

Classes Succession rules Avoided patterns

C(n)
(2)
(2) (2)(2)

{321, 312} [4, 26]

(2)
(k) (k + 1)(1)k−1 {321, 231} [4, 26]

Cp(n)
(p)
(k) (1)(2) · · · (k)

{132, 312, (p + 1)p · · · 21,
12 · · · (n − p)(n − p + 1)}

C#p(n)

(20)
(k0) ((k + 1)0)(k − 1) · · · (2)(1) for 2 ≤ k < p
(p0) (p)(p − 1) · · · (2)(1)
(k) (1)(2) · · · (k − 1)(k) for 1 ≤ k ≤ p

{132, 312, (p + 1)p · · · 21}

C≤p(n)

(20)
(20) (20)(21)
(2i) (20)(2i+1), for 1 ≤ i < p − 2
(2p−2) (20)(1)
(1) (20)

{321, 312, 234 · · · (p + 1)1} [4, 11]

(2)
(k) (k + 1)(1)k−1

(p) (p)(1)k−1
{312, 231, (p + 1)p · · · 321} [4, 11]

C1,p(n)

(2)
(2) (10)(2)
(1i) (1i+1), for 0 ≤ i < p − 2
(1p−2) (2)

{231, 312, 321,

2134 · · · (p + 1)(p + 3)(p + 2)}

Cp̂(n)

(20)
(2i) (20)(2i+1), for 0 ≤ i ≤ p − 3

(2p−2)
1
 (20)
2
 (2p−1)

(2p−1) (20)(2p−1)

{312, 321, 23 · · · (p + 1)1̇}

115

Jean-Luc Baril, Phan-Thuan Do

References

[1] K. Alladi and V.E. Hoggatt. Compositions with ones and twos.
Fibonacci Quarterly, 13(3):233–239, 1975.

[2] S. Bacchelli, E. Barcucci, E. Grazzini, and E. Pergola. Exhaustive
generation of combinatorial objects by ECO. Acta Informatica,
40:585–602, 2004.

[3] C. Banderier, P. Flajolet, D. Gardy, M. Bousquet-Melou,
A. Denise, and D. Gouyou-Beauchamps. Generating functions for
generating trees. Discrete Mathematics, 246:29–55, 2002.

[4] E. Barcucci, A. Bernini, and M. Poneti. From Fibonacci to Catalan
permutations. PU.M.A., 2007(1-2):1–18, 2006.

[5] E. Barcucci, A. Del Lungo, and E. Pergola. Random generation
of trees and other combinatorial objects. Theoretical Computer
Science, 218(2):218–232, 1999.

[6] E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. A method-
ology for plane tree enumeration. Discrete Mathematics, 180:45–
64, 1998.

[7] E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. Directed
animals, forests of trees and permutations. Discrete Mathematics,
204:41–71, 1999.

[8] E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. ECO: a
methodology for the enumeration of combinatorial objects. Jour-
nal of Difference Equations and Applications, 5:435–490, 1999.

[9] J.-L. Baril. More restrictive Gray codes for some classes of pattern
avoiding permutations. Information Processing Letters, 109:799–
804, 2009.

[10] J.-L. Baril. Classical sequences revisited with permutations
avoiding dotted pattern. Electronic Journal of Combinatorics,
18:p#178, 2011.

116

ECO-generation for some restricted classes of . . .

[11] J.L. Baril and P.T. Do. ECO-generation for p-generalized Fi-
bonacci and Lucas permutations. Pu.M.A., 17(1-2):19–37, 2006.

[12] J.L. Baril and C. Moreira Dos Santos. Gray code for compositions
of n with parts 1 and p. Advances and Applications in Discrete
Mathematics, 3(1):67–84, 2009.

[13] S. Brlek, E. Duchi, E. Pergola, and S. Rinaldi. On the equivalence
problem for succession rules. Discrete Math., 298:142–154, 2005.

[14] L. Carlitz. Restricted compositions. The Fibonacci Quart., 14:254–
264, 1976.

[15] T. Chinburg, C.D. Savage, and H.S. Wilf. Combinatorial families
that exponentially far from being listable in Gray code sequence.
Transactions of the AMS, 351:379–402, 1999.

[16] P. Chinn and S. Heubach. (1, k)-Compositions. Congressus Nu-
merantium, 164:183–194, 2003.

[17] P. Chinn and S. Heubach. Compositions of n with no occurrence
of k. Congressus Numerantium, 164:33–51, 2003.

[18] A. Del Lungo, A. Frosini, and S. Rinaldi. ECO method and the
exhaustive generation of convex polyominoes. DMTCS, pages 103–
116, 2003.

[19] E. Deutsch, L. Ferrari, and S. Rinaldi. Production matrices. Ad-
vances in Applied Mathematics, 34:101–122, 2005.

[20] P.T. Do and V. Vajnovszki. Exhaustive generation of some classes
of pattern avoiding permutations using succession functions. Con-
ference in honor of Donald E. Knuth, 2007.

[21] E. Duchi, A. Frosini, R. Pinzani, and S. Rinaldi. A note on rational
succession rules. Journal of Integer Sequences, Article 03.1.7, 6,
2003.

117

Jean-Luc Baril, Phan-Thuan Do

[22] L. Ferrari, E. Pergola, R. Pinzani, and S. Rinaldi. An algebraic
characterization of the set of succession rules. Theoretical Com-
puter Science, 281:351–367, 2002.

[23] L. Ferrari, E. Pergola, R. Pinzani, and S. Rinaldi. Jumping succes-
sion rules and their generating functions. Discrete Math, 271:29–
50, 2003.

[24] R.P. Grimaldi. Compositions with odd summands. Congressus
Numerantium, 142:113–127, 2000.

[25] R.P. Grimaldi and S. Heubach. Binary strings without odd runs
of zeros. Ars Combinatoria, 75:241–255, 2005.

[26] O. Guibert. Combinatoire des permutations motifs exclus en
liaison avec mots, cartes planaires et tableaux de Young. Ph.D
Thesis, Université Bordeaux 1, 1995.

[27] S. Heubach and T. Mansour. Combinatorics of compositions and
words. Discrete Mathematics and its Applications (Boca Raton).
CRC Press, Boca Raton, FL.

[28] S. Heubach and T. Mansour. Compositions of n with parts in a
set. Congressus Numerantium, 168:127–143, 2004.

[29] A. Juarna and V. Vajnovszki. Combinatorial isomorphism between
Fibonacci classes. Journal of Discrete Mathematical Science and
Cryptography, 11(2):147–158, 2008.

[30] S. Kitaev, T. McAllister, and K. Petersen. Enumerating segmented
patterns in compositions and encoding with restricted permuta-
tions. Integers: Electronic Journal of Combinatorial Number The-
ory, 6:16pp, 2006.

[31] P. Klingsberg. A Gray code for compositions. J. Algorithms, 3:41–
44, 1982.

[32] A. Knopfmacher and H. Prodinger. On Carlitz compositions. Eu-
ropean Journal of Combinatorics, 19(5):579–589, 1998.

118

ECO-generation for some restricted classes of . . .

[33] T. Mansour, W.M. Dukes, M.F. Flanagan, and V. Vajnovszki.
Combinatorial Gray codes for classes of pattern avoiding permu-
tations. Theoretical Computer Science, 396:35–49, 2008.

[34] L. Pudwell. Enumeration schemes for permutations avoiding
barred patterns. The electronic Journal of Combinatorics, 17,R29,
2010.

[35] R. Simion and F.W. Schmidt. Restricted permutations. European
J. Combin., 6:383–406, 1985.

[36] V. Vajnovszki. A loopless generation of bitstrings without p con-
secutive ones. Discrete Mathematics and Theoretical Computer
Science, 1:227–240, Springer 2001.

[37] T.R. Walsh. Loop-free sequencing of bounded integer composi-
tions. J. Combin. Math. Combin. Comput., 33:323–345, 2000.

Jean-Luc Baril, Phan-Thuan Do Received July 16, 2012

Jean-Luc Baril,

LE2I UMR-CNRS 5158, Université de Bourgogne

B.P. 47 870, 21078 DIJON-Cedex France

E–mail: barjl@u-bourgogne.fr

Phan-Thuan Do,

Hanoi University of Science and Technology, Vietnam

Department of Computer Science

E–mail: thuandp@soict.hut.edu.vn

119

Computer Science Journal of Moldova, vol.21, no.1(61), 2013

Median calculation for heterogeneous complex

of abstract cubes∗

Sergiu Cataranciuc

Abstract

Median problem for an arbitrary complex of abstract cubes
is studied. First, a number of auxiliary results related to some
special metric properties of abstract n-dimensional cube are pre-
sented. Basing on these results and results obtained in the study
of homogeneous complexes [13], it is proved that median of an
arbitrary complex of abstract cubes can be calculated without us-
ing metrics. Method which represents a generalization of method
applied to homogeneous complex of abstract cubes is proposed.

Keywords: Abstract cube, cubic complex, median, transver-
sal, group of homologies, convex set, class of parallel edges.

1 Introduction

In this paper we study median problem that was partially examined in
[3], [5] for some particular case. For example, in a complex of abstract
figures, which do not belong to any space, it is considered a finite
metrizable set of points X, which is a part of a set of continuum power.
Then we search the points from X with the following property: for any
such point the sum of distances from this point to all other points from
X to be minimal. These are the so-called medians. This problem is
known as a practical one and even the corresponding applications [2],
[3] are known.

We are interested to consider figures complex for which the search-
able points do not depend on the metric, but only on the weights
of the elements from X.

c©2013 by S. Cataranciuc
∗ This work was supported by the Institutional Project Ref. Nr. 11.817.08.47A

120

Median calculation for heterogeneous complex . . .

It is to mention that these simple formulations, as well as appli-
cations, require a strong theoretical foundation: topology of multi-ary
relations [23] and their homology theory. Homology and co-homology
groups for a complex of abstract cubes, as a particular case of complex
of multi-ary relations, have been described and studied in [13], [15-17].

2 Complex of abstract cubes

In [14] abstract n-dimensional cube is defined. Definition is based on a
complex of multi-ary relations defined on a set of elements X. Let X be
an arbitrary set of elements and L – a finite subset from X. We form
a finite sequence of Cartesian products L = L1, L2 = L×L, ..., Ln+1 =
= Ln × L and consider the subset Rm ⊂ Lm, 1 6 m 6 n + 1,
called m-ary relation [23]. A case when these relations represent
families of ordered sequences without repetitions of elements from
L is studied in [17]. Any subsequence (xj1 , xj2 , ..., xjl

) for sequence
(xi1 , xi2 , ..., xim ∈ Rm), 1 6 l 6 m, which preserves an order of ele-
ments of (xi1 , xi2 , ..., xim), is called a hereditary subsequence.

Definition 1. [17] Family of relations {R1, R2, ..., Rn+1} which satis-
fies the following conditions:

I. R1 = L1 = L;

II. Rn+1 6= ∅;

III. any hereditary subsequence with l elements of sequences from
Rm, 2 6 m 6 n + 1, belongs to the l-ary relation Rl;

IV. intersection of two sequences from Rm, 1 6 m 6 n, is a here-
ditary subsequence for each of them or is an empty set;

is called finite complex of multi-ary relations and denoted by
Rn+1 = (R1, R2, ..., Rn+1).

In general case, the sequences from sets Rm, 2 6 m 6 n + 1, may
also contain repetitions of elements. This situation leads to a complex,

121

S. Cataranciuc

called generalized complex of multi-ary relations. This case is examined
in papers [15], [16].

A sequence (xi0 , xi1 , ..., xim) ∈ Rm+1, 0 6 m 6 n, can be examined
as abstract simplex with dimension m. This simplex is denoted
by Sm

i = (xi0 , xi1 , ..., xim). Let Sm be a set of all m-dimensional
simplexes, determined by the elements of multi-ary relation. Then
the complex of multi-ary relations can be seen as a family of abstract
simplexes of dimension 0 6 m 6 n, which we will denote by Kn =
= (S0,S1,S2, ...,Sn). Any element from S l, 0 6 m 6 n, which is a
hereditary subset of Sm

i ∈ Sm, 0 6 l 6 m 6 n, is called a face of
dimension l of the abstract simplex Sm

i . As it results from condition
IV of the Definition 1, the intersection of any two simplexes represents
an abstract simplex (face) or an empty set.

Definition 2. A set of all simplexes from complex Kn, for which ab-
stract simplex Sm

i is a common face, is called star of simplex Sm
i and

is denoted by stSm
i .

Using abstract simplexes and their vacuums, the abstract n-dimen-
sional cube as well as its vacuum is defined and studied in [14], [19].

Definition 3. (Inductive definition of abstract n-dimensional cube)
I. Abstract 0-dimensional cube and abstract 1-dimensional cube

coincide with abstract simplex of the same dimension. Vacuum of cube
with size 0 (respectively 1) coincides with vacuum of simplex of the
same dimension.

II. We consider two pairs of 0-dimensional cubes S0
1 , S0

2 and S0
3 , S0

4 .
The 2-ary relations of the pairs of cubes S0

1 , S0
2 and S0

3 , S0
4 deter-

mine existence of 1-dimensional cubes S1
1 = (S0

1 , S0
2), S1

2 = (S0
3 , S0

4),
S1

3 = (S0
1 , S0

3) S1
4 = (S0

2 , S0
4). Further we consider 2- and 3-ary

relations between these pairs of cubes, which determine a simplicial
complex [15], that leads to the existence of simplexes S1

5 = (S0
1 , S0

4),
S2

1 = (S0
1 , S0

3 , S0
4), S2

2 = (S0
1 , S0

2 , S0
4). To define notion of abstract

2-dimensional cube, we introduce firstly notion of vacuum of the cor-

responding cube, which will be denoted by
0

I2. This represents union of

122

Median calculation for heterogeneous complex . . .

vacuums of simplexes
0

I2 =
0

S2
1 ∪

0

S2
2 ∪

0

S1
5 . The abstract 2-dimensional

cube is defined by its vacuum as follows: I2 =
4⋃

i=1
S1

i ∪
0

I2. So, we obtain

the simplicial complex that is called 2-dimensional pro-cube. We
will use notation I2(4). Geometric reprezentation of 2-dimensional
pro-cube is given in Figure 1.

Figure 1. 2-dimensional pro-cube

III. Assume that notion of abstract i-dimensional cube and
pro-cube, Ii and Ii(∆), 1 ≤ i ≤ n − 1, as well as notion of cube’s

vacuum with the same dimension
0

Ii are known.
IV. Let’s define notion of abstract n-dimensional cube by using

(n− 1)-dimensional cube. Let’s consider 2n cubes In−1
1 , In−1

2 , ..., In−1
2n

with dimension (n− 1), corresponding pro-cubes In−1
1 (∆), In−1

2 (∆), ...,
In−1
2n (∆) and i-ary relations, 2 6 i 6 n, among vertexes of these cubes.

These i-ary relations determine some simplexes, which form an abstract
simplicial complex [15]. Thus, vacuum of n-dimensional cube, de-

noted by
0
In, consists of a union of all vacuums of n-dimensional sim-

plexes which don’t intersect pro-cubes In−1
j (4), 1 ≤ j ≤ 2n. Abstract

n-dimensional cube is defined as In =
2n⋃
i=1

In−1
i ∪

0
In. A simplicial

complex In(4) will be called pro-cube of In.

In what follows, we will consider that vacuums of abstract cubes are
filled with elements of a set of cardinal of continuum (a set equivalent
to the set of numbers from segment [0,1]).

123

S. Cataranciuc

Definition 4. Non-empty and finite family of abstract cubes Tn =
= {Im, 0 ≤ m ≤ n}, which possesses the following properties:

I. for any two abstract cubes Is, It ∈ Tn, 0 6 s, t 6 n, the following
relation takes place: Is∩ It ∈ Tn, or Is∩ It = ∅ ;

II. if Ik is the face of the m-dimensional cube Im ∈ Tn,
0 6 k < m 6 n then Ik is an element of Tn;

III. family Tncontains at least one n-dimensional cube,

is called abstract cubic complex with dimension n.

Homology groups ¤m(Tn, Z), 0 6 m 6 n, over a field of integer
numbers Z for the complex of abstract cubes are defined in a similar
way as the complex of multi-ary relations [13]. In terms of homology
groups, we can affirm the following. If the complex of abstract cubes
Tn respects the following conditions:

¤0(Tn, Z) ∼= Z; (1)

¤1(Tn, Z) ∼= ¤2(Tn, Z) ∼= ... ∼= ¤n(Tn, Z) ∼= 0, (2)

then the corresponding complex is connected and acyclic.
In what follows we will study complexes of abstract cubes that

satisfy the Definition 4, in which the homology group of rank zero is
isomorphic to the group of integers Z (relation (1)), but the homology
groups of rank 1, 2, 3, ..., n are isomorphic to zero (relation (2)). These
complexes generalize the homogeneous complexes studied in [13] and
are called heterogeneous complexes. Such a complex is represented in
the Figure 2.

Definition 5. Two edges, determined by 1-dimensional cubes I1
j and

I1
k of the cubic complex Tn are called parallel if there is a sequence

of 1-dimensional cubes I1
j = I1

α1
, I1

α2
, ..., I1

αt
= I1

k , so that every two
neighboring cubes I1

αs
, I1

αs+1
of this sequence represent the disjoint edges

(opposite) of a 2-dimensional cube of Tn.

124

Median calculation for heterogeneous complex . . .

Figure 2. Heterogeneous complex of abstract cubes

Definition 6. A maximal set of parallel edges of a complex of abstract
cubes Tn is called class of parallel edges.

According to the Definition 5 and Definition 6, in the connected
and acyclic complex Tn every 1-dimensional cube, which is not the
face of a cube with dimension q > 2 from Tn, forms one class each.

It is to mention that in the case of homogeneous complexes of ab-
stract cubes [13] every class of parallel edges contains at least 2n−1 of
1-dimensional cubes. For the complex represented in Figure 2 we have
11 classes of parallel edges and two of them contain only one element
each.

3 Transversals of heterogeneous complex

Let C1, C2, ..., Cm be classes of parallel edges of the complex Tn. The
set of abstract cubes of Tn, which contains the edges of class Ci as
faces, is called transversal of complex Tn and is denoted by T (Ci),
1 6 i 6 m.

Theorem 1. A transversal determined by a class of parallel edges of
a connected and acyclic complex of abstract cubes Tn also represents
complex of abstract cubes denoted by Tq, 1 6 q 6 n.

Proof: Let T (Ci) be a transversal determined by a class of parallel
edges Ci of the complex Tn, and q – maximum dimension of abstract

125

S. Cataranciuc

cubes of Tn which forms transversal T (Ci). Thus, we have a complex
of cubes Tq, which satisfies the conditions I - III of the Definition 4.
Taking into consideration the definition of class of parallel edges (Defi-
nition 6), it results that Tq is a connected complex. As the homology
groups of the complex Tq are subgroups of homology groups of complex
Tn, Tq is an acyclic complex of abstract cubes. ¥

The border of complex Tq
i , determined by transversal T (Ci), con-

tains two maximal disjoint complexes of dimensions (q−1) that do not
contain any edge of Ci. We should denote these subcomplexes through
Tq−1

i(1) and Tq−1
i(2) . These complexes could be disconnected.

Let V (T (Ci)) be the vacuum of transversal T (Ci), which is a union
of vacuums of cubes of complex Tq

i , which do not belong to subcom-
plexes Tq−1

i(1) and Tq−1
i(2) .

Theorem 2. Transversal T (Ci), 1 6 i 6 m, of connected and acyclic
abstract cubic n-dimensional complex, divides this complex through the
vacuum of the transversal T (Ci) in connected and acyclic two cubic
abstract complexes of dimension q, 1 6 q 6 n.

Proof of the theorem results immediately from the fact that Tn

is a connected and acyclic complex, as well as from the definition of
corresponding transversals.

Let Tn be the n-dimensional complex of abstract cubes which sat-
isfies the Definition 4 and contains a cube Ir ∈ Tn, 0 6 r 6 n, which is
not a face of n-dimensional cubes of Tn. We will call such complexes
heterogeneous complexes.

Let’s denote by Qt, 1 6 t 6 n, the family of maximal and connected
homogeneous t-dimensional subcomplexes of Tn. Obviously, in case of
heterogeneous complex Tn, we have:

1) Qn 6= ∅;
2) there is a value of t, 1 6 t 6 n, such that Qt 6= ∅ (t > 1, as

it was mentioned above, we are studying only connected and acyclic
complexes).

Thereby, in a heterogeneous complex any two maximal homoge-
neous n-dimensional subcomplexes are united by a sequence of homo-

126

Median calculation for heterogeneous complex . . .

geneous complexes Tn1
1 ,Tn2

2 , ...,Tnq
q , where 1 6 n1, n2, ..., nq < n, with

the following properties:
a) Tnj

j ∈ Qj , 1 6 j 6 q;
b) ni 6= ni+1, for any i ∈ {1, 2, .., q − 1}.
In Figure 3 a geometric representation of a heterogeneous complex

of dimension three is given. We have three families of homogeneous
subcomplexes:

Q1 = {T3
1,T

3
2,T

3
3},

Q2 = {T2
1,T

2
2,T

2
3,T

2
4},

Q3 = {T1
1,T

1
2,T

1
3}.

Let’s note that the homogeneous 3-dimensional complexes T3
1 and

T3
2 are united by sequence of homogeneous complexes with smaller

dimensions: T2
2,T

1
1,T

2
3.

Figure 3. Heterogeneous complex with 3 families of homogeneous sub-
complexes

The notion of an interior and a border of homogeneous complex of
abstract cubes Tn was defined [13] and denoted respectively by intTn

and bdTn.

127

S. Cataranciuc

Let Kn be a heterogeneous complex of abstract cubes with families
of homogeneous maximal connected complexes Q1,Q2, ...,Qn. In this
case, for the complex Kn we use the notation: Kn = (Q1,Q2, ...,Qn).

Definition 7. A union
⋃

Tn∈Qn

intTn is called an interior of complex

Kn and is denoted by intKn. Difference Kn\intKn is called a border
of this complex and is denoted by bdKn.

4 Representation of abstract cubes

Let In be an abstract n-dimensional cube with a set of vertexes V =
= {x1, x2, ..., x2n} ⊂ X, cardX = r > 2n. We fix vertex x1 and form
the following sets:

Γ0 = {x1},
Γ1 = {xi ∈ V : d(x1, xi) = 1},

.........................

Γk = {xi ∈ V : d(x1, xi) = k},
........................

Γn = {xi ∈ V : d(x1, xi) = n} = {x2n},

where d represents the Hamming metrics defined on this cube (see [21]
and theorem 3 from [13]).

Without losing generality, we consider that x2n is the vertex of cube
In for which d(x1, x2n) = n.

Thus, the abstract n-dimensional cube In can be represented by the
sequence of sets Γ0, Γ1, ...,Γn, which possesses the following properties:

a) cardΓi = Ci
n;

b) any two distinct elements of the set Γi, 0 < i < n, do not
represent a 1-dimensional face of cube In,

c) d(xk, xl) is an even number, for any two distinct elements xk, xl

of the set Γi, 0 < i < n.
Obviously, not every sequence of this type represents the n-dimen-

sional cube.

128

Median calculation for heterogeneous complex . . .

Figure 4. Geometric representation of 3-dimensional cube (a) and 4-
dimensional cube (b)

In addition to classic geometric representations of n-dimensional
cubes (Figure 4) we will also use the representation of those by respec-
tive sequence of sets Γ0, Γ1, ..., Γn (Figure 5).

If for n-dimensional cube In there are known the sets Γ0,Γ1, ...,Γn,
then we will write In = (Γ0, Γ1, ...,Γn).

Lemma 1. The number of edges that connect any vertex of Γi with
vertexes of Γi−1, 1 6 i 6 n − 1, is equal to N i

i−1 = i and the number
of edges that connect any vertex of Γi with vertexes of Γi+1 is equal to
N i

i+1 = n− i. (Obviously, N0
1 = Nn

n−1 = n.)

Proof. Let xj be the element of Γi, and gi−1(xj) be the number
of elements of Γi−1 adjacent to xj . On the n-dimensional cube Tn we
introduce Hamming metrics, considering that the sequence (0, 0, ..., 0)
is attributed to vertex x1. Then, any element of Γi will have a sequence
α with i units. This element will be adjacent to those elements of Γi−1

whose sequences differ from α by exactly one element. The number
of such sequences is equal exactly to i (each sequence differs from α

129

S. Cataranciuc

Figure 5. Representation of 3-dimensional cube by the set Γ0, Γ1, Γ2, Γ3

(a) and 4-dimensional cube by the set Γ0, Γ1, Γ2, Γ3, Γ4 (b)

by the fact that only one from i units of α will be replaced by zero).
Therefore, qi−1(xj) = i and, as the xj was chosen arbitrarily from Γi,
we obtain N i

i−1 = i.
In the n-dimensional cube all vertexes have degree equal to n.

Therefore, N i
i+1 = n− i.

If i = 0 and i = n one must calculate only N0
1 = Nn

n−1 = n. ¥

Now we will estimate the sum of distances between an arbitrary
element x ∈ Γk and the set Γk+l in case of abstract n−dimensional
cube In = (Γ0, Γ1, ...,Γn), 0 6 k 6 n− 1, 1 6 l 6 n− k.

Lemma 2. The sum of distances between the element x ∈ Γk and all
elements of set Γk+l is equal to

min{k,n−k−l}∑

i=0

(l + 2i) · Ci
k · C l+i

n−k.

Proof. We choose an arbitrary vertex x ∈ Γk and define Hamming
metrics on the cube In = (Γ0,Γ1, ...,Γn) so that the vertex x1 ∈ Γ0

130

Median calculation for heterogeneous complex . . .

is marked by the sequence (0, 0, ..., 0). Binary sequence which corre-
sponds to vertex x ∈ Γk will have k units and (n − k) zeros.
Without losing generality we will consider that it is the sequence
α̃ = (11...1︸ ︷︷ ︸

k

00...0︸ ︷︷ ︸
n−k

). Any element from Γk+l is marked by a sequence β̃

which contains l units more than α̃. These l units can be obtained in
two ways:

a) some l zeros from α̃ are replaced with units. The distance be-
tween the vertexes, to which α̃ and β̃ correspond, will be equal to l. So
the sequence β̃ can be chosen in C l

n−k modes;
b) some i units from α̃ are replaced by zeros, but some (l + i) zeros

are replaced by units (on condition l+ i 6 n−k). As a result, we get a
sequence β̃ with (k + l) units and the distances, between α̃ and β̃ will
be l+2i (we apply Hamming distance, which is calculated according to

the formula
n∑

i=1
|αi − βi|). Such a sequence β̃ can be chosen in Ci

k ·C l+i
n−k

modes.
As a result, we obtain that the sum of distances between the element

x ∈ Γk and all elements of set Γk+1 is:

min{k,n−k+l}∑

i=0

(l + 2i) · Ci
k · C l+i

n−k. ¥

The sum from Lemma 2 is a constant, that characterizes the relation
between the sets Γk and Γk+l. We will denote this constant by σk+l

k .
Similarly it can be proved that the sum of distances between a fixed
element x ∈ Γk+1 and all elements of the set Γk does not depend on
the choice of x, so it is a constant value, which we denote by σk

k+l. It is
easy to prove that σk+l

k 6= σk
k+l, for any values of k and l which verify

the relations: 0 6 k 6 n− l, 1 6 l 6 n and k + l 6= n− k. In case when
k + l = n − k we have the sets Γk and Γn−k for which σn−k

k = σk
n−k,

i.e. σk+l
k = σk

k+l.

Corollary of Lemma 2 For any set Γi, 1 6 i 6 n, of the n-di-
mensional cube In = (Γ0,Γ1, ...,Γn), the sequence σi

0, σ
i
1, ..., σ

i
i−1 is de-

creasing.

131

S. Cataranciuc

Let Kn(In) be the n-dimensional complex of abstract cubes, deter-
mined by cube In, i.e. Kn(In) is formed by In and all its faces. From
Definition 5 and Definition 6 it results that the n-dimensional transver-
sal divides the complex Kn(In) into two connected subcomplexes. Let
I1 be a 1-dimensional face (an edge) of the cube In = (Γ0, Γ1, ...,Γn),
Γ0 = {x1}, Γn = {x2n}, incident to vertex x2n . We will denote by Tn

I1

the transversal determined by the class of parallel edges, which contain
the face I1, and by K(x2n) – the subcomplex of Kn(In), determined
by Tn

I1 , which contains the vertex x2n . Respectively, by K(x2n) we will
denote the second subcomplex.

Lemma 3. For any transversal Tn
I1 and any set Γk,

[
n
2

]
< k 6 n− 1,

the following relation holds:

|K(xn) ∩ Γk| > |K(xn) ∩ Γk| .

Proof. Let I1 be the 1-dimensional face (edge) of the n-dimensional
cube In, incident to vertex x2n . We denote the extremities of edge I1

by a and b, considering b = x2n . The transversal TI1 divides the cube
In into two n− 1-dimensional cubes In−1

1 and In−1
2 , so that the vertex

a belongs to In−1
1 and the vertex b = x2n – to cube In−1

2 . Elements
of set Γk are at the distance (n − k) from the vertex b. The set Γk is
formed by 2 subsets:

a) S
′
k – the set of all vertexes of (n−1)-dimensional cube In−1

1 , that
is at the distance (n− k) from the vertex b in the cube In.

b) S
′′
k – the set of all vertexes of In−1

2 , that is at the distance (n−k)
from b in In;

Let’s remind now that equality d(b, z) = d(b, a)+d(a, z) holds in In

for any vertex z of In−11 that belongs to S
′
k . Taking into consideration

that b (b = x2n) is vertex of In−1
2 we obtain the inequality

∣∣∣S′k
∣∣∣ >

∣∣∣S′′k
∣∣∣.

This inequality confirms the lemma’s affirmation. ¥

Theorem 3. For any set Γk of n-dimensional cube In = (Γ0,Γ1, ...,Γn),[
n
2

]
< k 6 n− 1, the relation σk

k−l > σk
n is true.

132

Median calculation for heterogeneous complex . . .

Proof. On the basis of corollary from Lemma 2 it is sufficient to
prove that for any set Γ

′
k, [n/2] < k 6 n− 1, the relation σk

k−l > σk
n is

true.
Evidently

σk
n = (n− k) · |Sk| = (n− k) · Ck

n.

According to Lemma 2 we obtain:

σk
k−1 =

min{k−1,n−k}∑

i=0

(1 + 2i) · Ci
k−1 · C1+i

n−k+1.

Since the theorem is formulated for the sets Γk with indexes k >
[

n
2

]
,

we will have:

min{k − 1, n− k} = n− k.

So for σk
k−1 we get the sum:

σk
k−1 =

n−k∑

i=0

(1 + 2i) · Ci
k−1 · C1+i

n−k+1.

Examining expressions σk
n and σk

k−1 and taking into consideration
the condition

[
n
2

]
< k 6 n− 1, we obtain σk

k−l > σk
n. ¥

Let Kn(In) be an abstract cubic complex determined by n-dimen-
sional cube In = (Γ0,Γ1, ...,Γn), i.e. Kn(In) is a complex formed by
In and all its faces have dimensions k, 0 6 k 6 n − 1. We choose a
subcomplex Kq ⊂ Kn(In), formed of faces of cube In, which are gen-
erated by the sets of vertexes Γ0, Γ1, ...,Γq, where q >

[
n
2

]
. We build

the n-dimensional transversals through each edge I1 incident to vertex
x1 (x1 is the unique element of Γ0) and denote by Kn−1

I1 (In) subcom-
plex from Kn(In) determined by the transversal TI1 and containing at
least half of elements of Γq. We denote by Q1(x1) the family of all
1-dimensional cubes from In incident to vertex x1. Further, the cube
In will be called the cubic closing of the complex Kq.

133

S. Cataranciuc

Theorem 4. If In = (Γ0, Γ1, ...,Γn) is a cubic closing of complex of
abstract cubes Kq, [n/2] < q 6 n− 1, then

a)

(
⋂

I1∈Q1(x1)

Kn−1
I1 (In)

)
∩Kq = ∅;

b) x2n ∈ ⋂
I1∈Q1(x1)

Kn−1
I1 (In).

Proof. At first, we will prove the relation b) from the Theorem. We
should mention that in the cubic closing In any transversal determined
by the class of parallel edges, which contains an edge incident to vertex
x1, will also contain obligatory an edge incident to vertex x2n . On the
basis of Lemma 3 and condition of the Theorem, it results that:

x2n ∈
⋂

I1∈Q1(x1)

Kq−1
I1 .

Let us now prove the relation a). We should mention that in the
n-dimensional cube any n-dimensional transversal divides it into two
(n − 1)-dimensional cubes, which are faces of In. For n-dimensional
cube we can build exactly n transversals, hence, we obtain n pairs of
(n − 1)-dimensional cubes. We denote by x1, x2, ..., x2n the vertexes
of cube In = (Γ0 = {x1},Γ1, ..., Γn−1, Γn = {x2n}). Evidently, each
transversal contains exactly one edge incident to vertex x2n . From each
pair of (n− 1)-dimensional cubes determined by transversals from In,
we choose the cube which contains vertex x2n and forms a family of
(n − 1)-dimensional cubes Fn−1

In (x2n). The intersection of all cubes
from Fn−1

In (x2n) contains only one vertex – vertex x2n .
The subcomplex Kn−1

I1 (In) contains at least a half of the elements
of set Γq. Since q > [n/2], this subcomplex does not contain the vertex
x1 from Kq, but contains the vertex x2n from the cubic closing In of
Kq. Hence, the affirmation a) is proved. ¥

Theorem 5. If In = (Γ0 = {x1}, Γ1, ...,Γn−1, Γn = {x2n}) is the
n-dimensional cube, and Kq is a subcomplex of Kn(In) formed from
faces of the cube In, that is generated by the sets Γ0, Γ1, ...,Γq, where

134

Median calculation for heterogeneous complex . . .

q >
[

n
2

]
, then there exists a system of weights p(xi) of vertexes of

complex Kq so that for any vertex x of Kn with function f(x) =

=
2n∑
i=1

p(xi) · d(x, xi) we obtain:

f(x) > f(x2n).

Proof. For vertexes of complex Kq we fix the weights:
p(xi) = 1 for any element xi ∈Γ0 ∪ Γ1 ∪ ... ∪ Γq−1;
p(xi) = M for any element xi ∈ Γq, where M is a sufficiently big

number.
Number M can be chosen so that it will be bigger than the sum of

distances from x2n till all vertexes of set Γ0 ∪ Γ1 ∪ ... ∪ Γq−1.
Basing on structure of the set Γq and the Theorem 4, we obtain the

affirmation of the Theorem 5. ¥

We will study further the complexes of abstract cubes Tn which
possess the following properties:

1) any cube Ik ∈ intTn belongs to at least 2n−k n-dimensional
cubes;

2) if x is a vertex from border bdTn, to which exactly t edges,
3 6 t 6 n, are incident and the union Γ0 ∪Γ1 ∪ ...∪Γq−1 exists on this
border, then the cubic closing of this subcomplex belongs to Tn;

3) homology group of rank zero of complex Tn is isomorphic with
the group of integer numbers, i.e.

¤0(Tn, Z) ∼= Z;

4) homology groups of rank k = 1, 2, .., n of complex Tn are isomorphic
with zero, i.e.

¤1(Tn, Z) ∼= ¤2(Tn, Z) ∼= ... ∼= ¤n(Tn, Z) ∼= 0;

135

S. Cataranciuc

5 Interpretation of complex Tn in a normed
space

Similarly with the case of homogeneous tree of abstract cubes, we define
metric d on the set of 0-dimensional cubes (vertexes) from Kn [13].

1-dimensional skeleton of complex Tn is a directed graph G =
= (X; E) with the vertexes that correspond to 0-dimensional cubes,
and the arcs that correspond to 1-dimensional cubes from Tn.

Let C1, C2, ..., Cm be the classes of parallel edges with lengths
d1, d2, ..., dm. We consider the space Rm

1 over the field of real numbers

with the norm ‖x‖ =
m∑

i=1
|xi|. We construct the segments with lengths

d1, d2, ..., dm on axes of coordinates OY1, OY2, ..., OYm from origin
O ∈ Rm

1 . So the parallelepiped Pm is constructed univocally on these
segments. The set of all k-dimensional faces of Pm forms a complex of
parallelepipeds, which we will denote by Pk = {P k ⊂ Pm|0 6 k 6 m}.
In case of k = 1 we obtain the complex P1, that represents a con-
nected, metric and undirected graph. We will denote this graph by
H = (Y ;V).

From modality of construction of complex Pm and definition of
metric on complex, the following theorem results:

Theorem 6. For the complex Tn exists an unequivocal application
α : Tn −→ Pm, that interprets Tn on the subcomplex of Pm, so that
α : GP1 is an isometry.

In Rm
1 we denote by Y = {y1, y2, ..., ym} ⊂ α(Tn) the set of vertexes

α(X) and consider the following function

f(y) =
m∑

i=1

p(yi) · ‖y − yi‖ , (4)

where yi is the image α(xi) and p(yi) = p(α(xi)), 1 6 i 6 n.

We will study this function and prove that the point y∗ ∈ Rm
1 such

as

136

Median calculation for heterogeneous complex . . .

f(y∗ = min
y∈Rm

1

f(y)) = min
y∈Rm

1

m∑

i=1

p(yi) · ‖y − yi‖

is a median of graph H = (Y ; V).

6 Median calculation

For an arbitrary point y = (y1, y2, ..., ym) ∈ Rm
1 and every point yj =

= (y1
j , y

2
j , ..., y

m
j) ∈ Y , 1 6 j 6 m we form the sets

J+ = {j : yi − yi
j > 0}

J0 = {j : yi − yi
j = 0}

J− = {j : yi − yi
j < 0}.

similarly to [22].
We denote

A =
∑

j∈J−∪J0

P (yj),

B =
∑

j∈J+

P (yj),

C =
∑

j∈J−
P (yj),

D =
∑

j∈J−∪J0

P (yj).

(1)

As in case of homogeneous complex of multi-ary relations [13], the
following theorem holds:

Theorem 7. The point yj ∈ Y ⊂ Rm
1 minimizes the function (4) if

and only if the following relations are satisfied:

A > C and B 6 D. (5)

137

S. Cataranciuc

We denote that the calculation of median does not depend on the
edges length from classes C1, C2, ..., Cm. This suggests us the idea that
the parallelepiped Pm could be replaced by a unitary cube in space
Rm

1 .
Thus, we can define the application β : Pm −→ Qm, where Qm

is a unitary cube situated at the origin of coordinate system. As a
result of application β, the graph H passes in a metric graph β(H),
which we will denote by G = (Z;W). This graph is a subgraph of
1-dimensional skeleton of the cube Qm. As a result, we obtain that
on the cube and respectively on the graph G the Hamming metric is
defined. Hence, the application βα(Ci), 1 6 i 6 n, represents a set of
edges C1

i in the constructed graph G = (Z; W) . For the set of vertexes
of the graph G we will keep the system of weights of the complex Kn,
i.e. p(zi) = p(xi), where zi = βα(xi), 1 6 i 6 n, but n represents the
number of 0-dimensional cubes of Kn.

So we obtained the application:

βα : G −→ G.

Let’s examine an arbitrary vertex zi of the cube Qm. We represent
its coordinates by a sequence formed from 0 and 1. From coordinates
of vertices zi of the graph G we form a matrix A, similarly to the case
of homogeneous complex of abstract cubes [13].

For the matrix A we calculate a resulting sequence r = (r1, r2, ..., rm)
considering the following:

a) rj = 1, if
n∑

i=1
zj
i · p(zi) > 1/2 ·

n∑
i=1

p(zi);

b) rj = 0, if
n∑

i=1
zj
i · p(zi) < 1/2 ·

n∑
i=1

p(zi);

c) rj = 0 or 1(indifferently), if
n∑

i=1
zj
i · p(zi) = 1/2 ·

n∑
i=1

p(zi).

Theorem 8. A vector r = (r1, r2, ..., rm) calculated according to the
rules a)-c) represents a line of matrix A.

138

Median calculation for heterogeneous complex . . .

Proof. Assume the opposite. Let there exists a vertex r =
= (r1, r2, ..., rm) in the cube Qm, which does not belong to the graph
G = βα(G), but this vertex minimizes the function (4). Obviously, m
faces of dimension m− 1 correspond to r. Each of these faces contains
the (n − 1)-dimensional transversal of complex βα(Tn). We should
mention that r respects the relations (4.9) from [13]. In this complex
any m transversal βα(Tn−1

I1
1

), ..., βα(Tn−1
Im
1

) has an empty intersection,
because r does not belong to them. It is in contradiction to the Theo-
rem 6. ¥

References

[1] D. S. Hochbaum. Heuristics for the fixed cost median problem,
Math. Programming, 22, 1982, pp. 148–162.

[2] N. Christofides. Graph theory: an algorithmic approach, Academic
Press, 1975, 400p.

[3] P. Soltan, D. Zambiţchi, Ch. Prisăcaru. Extremal problems on
graphs and algorithms for their solution, Chişinău, Ştiinţa, 1973,
90p. (in Russian).

[4] V. Soltan. Introduction to axiomatic theory of convexity, Chişinău,
Ştiinţa, 1984, 221p. (in Russian).

[5] P. Soltan. Extremal problems on convex sets, Chişinău, Ştiinţa,
1976, 115p (in Russian).

[6] V. Boltyansky, P. Soltan. Combinatorial geometry of various
classes of convex sets, Chişinău, Ştiinţa, 1978, 280p. (in Russian).

[7] K. Menger. Untersuchungen uber allgemeine Metrik. I, II, III,
Math. Ann., nr.100, 1928, p.75–163 (in German).

[8] J. De. Groot. Some special metrics in general topology, Collog.
Math., 6 (1958), pp. 283–286.

139

S. Cataranciuc

[9] A. D. Aleksandrov, V. A. Zalgaller. Two – dimensional mani-
folds of bounded curvature, (Foundations of the intriusic geome-
try of surfaces), Trudy Math. Inst. Steklov., 63, Acad. Sci. USSR,
Moscow – Leningrad, 1962, 262p. (in Russian).

[10] F. A. Toranzos. Inmersion de espacios metricos convexos en ,
Math. Notac, 21, Nos. 1-2 (1966/67), pp.29-53. (in Spanish).

[11] E. Soetens. Convexity in Busemann spaces, Bull. Soc. Math. Belg.,
19, nr.2, 1967, pp. 194–213.

[12] T.T. Arkhipova, I. V. Sergienko. On the formalization and solu-
tion of some problems of organizing the computing process in data
processing systems, Kibernetika (kiev), nr.5, 1973, pp. 11–18 (in
Russian); English transl. in Cybernetics 9, 1973.

[13] S. Cataranciuc, P. Soltan. Complex of abstact cubes and median
problem, Computer Science Journal of Moldova. Vol.19, nr.1(55)
2011, pp. 38–63.

[14] M. Bujac, S. Cataranciuc, P. Soltan. On the division in cubes
of abstract manifolds, Buletinul Academiei de Ştiinţe a Rep.
Moldova. Seria Matematica, nr. 2(51), Chişinău, 2006, pp. 29–34.

[15] S. Cataranciuc, P. Soltan. Abstract complexes, their homologies
and applications, Buletinul Academiei de Ştiinţe a Rep. Moldova.
Seria Matematica, nr.2(63), Chişinău, 2010, pp. 31–58.

[16] S. Cataranciuc. G-complex of multi-ary relations, Analele
Ştiinţifice ale USM, Seria ”Ştiinţe fizico-matematice”, Chişinău,
2006, pp. 119–122 (in Romanian).

[17] S. Cataranciuc, P. Soltan. Hypergraphs and their homologies,
Trends in the Development of the Information and Communi-
cation Technology in Education and Management. International
Conf., March 20-21, 2003, Chişinău, pp. 294–300 (in Romanian).

140

Median calculation for heterogeneous complex . . .

[18] P. J. Hilton, S. Wylie. Homology Theory: An Introduction to Al-
gebraic Topology, Cambridge University Press, New York 1960
xv+484p.

[19] M. Bujac. Classification of abstract multidimensional orientable
manifolds without borders, Analele Ştiinţifice ale USM, Seria
”Ştiinţe fizico-matematice”, Chişinău, 2003, pp. 247–250 (in Ro-
manian).

[20] V. Boltyanski, H. Martini, P. Soltan. Excursions into Combinato-
rial Geometry, Springer, Berlin-Heidelberg, 1997, 444p.

[21] W. Hamming Richard. Error detecting and error correcting codes.
Bell. System Technical Journal Nr. 29(2), 1950, pp. 147-160.

[22] P.S. Soltan, K.F. Prisacaru. The Steiner Problem on Graph. Dokl.
Acad. Nauk SSSR, 198(1971), Nr.1, p.46–49.

[23] A.G. Kurosh. Lectures on general algebra, Fizmatgiz, Moscow,
1962, 396p. (in Russian).

Sergiu Cataranciuc Received February 2, 2013

State University of Moldova
60 A. Mateevici street, MD-2009, Chişinău, MD-2009,
E-mail: s.cataranciuc@gmail.com

141

Computer Science Journal of Moldova, vol.21, no.1(61), 2013

Smoke detection algorithm for intelligent video

surveillance system

N. Brovko, R. Bogush, S. Ablameyko

Abstract

An efficient smoke detection algorithm on color video se-
quences obtained from a stationary camera is proposed. Our
algorithm considers dynamic and static features of smoke and is
composed of basic steps: preprocessing; slowly moving areas and
pixels segmentation in a current input frame based on adaptive
background subtraction; merge slowly moving areas with pixels
into blobs; classification of the blobs obtained before. We use
adaptive background subtraction at a stage of moving detection.
Moving blobs classification is based on optical flow calculation,
Weber contrast analysis and takes into account primary direc-
tion of smoke propagation. Real video surveillance sequences
were used for smoke detection with utilization our algorithm. A
set of experimental results is presented in the paper.

Keywords: smoke detection, video sequences, background
subtraction, Weber contrast analysis

1 Introduction

Reliable and early fire detection on open spaces, in buildings, in terri-
tories of the industrial enterprises is important making any system of
fire safety. Traditional fire detectors which have been widely applied in
the buildings are based on infrared sensors, optical sensors, or ion sen-
sors that depend on certain characteristics of fire, such as smoke, heat,
or radiation. Such detection approaches require a position of sensor in
very close proximity to fire or smoke and often give out false alarms.
So they may be not reliable and cannot be applied into open spaces

c©2013 by N. Brovko, R. Bogush, S. Ablameyko

142

Smoke detection algorithm . . .

and larger areas. Due to the rapid developments in digital camera
technology and video processing techniques currently intelligent video
surveillance systems are installed in various public places for monitor-
ing, therefore there is a noticeable trend to use such systems for early
fire detection with special software applied. Smoke detection is rather
for fire alarm systems when large and open areas are monitored, be-
cause the source of the fire and flames cannot always fall into the field
of view. However, smoke of an uncontrolled fire can be easily observed
by a camera even if the flames are not visible. This results in early
detection of fire before it spreads around.

Motion and color are two usually used important features for de-
tecting smoke on the video sequences. Motion information provides
a key as the precondition to locate the possible smoke regions. The
algorithm of background subtraction is traditionally applied to move-
ment definition in video sequence [1-4]. Common technique uses adap-
tive Gaussian Mixture Model to approximate the background modeling
process [1, 2].

In [5], optical flow calculation is applied to smoke movement detec-
tion. Lacks of the given approach are high sensitivity to noise and high
computational cost. Algorithms based on color and dynamic charac-
teristics of a smoke are applied for classification of the given moving
blobs. In [6] the algorithm comparative evaluation of the histogram-
based pixel level classification is considered. In this algorithm the
training set of video sequences on which there is a smoke is applied
to the analysis. Methods based on preliminary training are dependent
on classification quality on a training set. It demands many qualita-
tive characteristics of processed video images. The area of decreased
high frequency energy component is identified as smoke using wavelet
transforms [1, 2]. However change of scene illumination can be con-
tours degradation reason. Therefore such approach requires additional
estimations.

Color information is also used for identifying smoke in video. Smoke
color at different stages of ignition and depending on a burning material
is distributed in a range from almost transparent white to saturated
gray and black. In [1] decrease in value of chromatic components U

143

N. Brovko, R. Bogush, S. Ablameyko

and V of color space YUV is estimated.
In this paper we propose an algorithm for smoke detection on color

video sequences obtained from a stationary camera. Our algorithm
consists of the following steps: preprocessing; slowly moving areas and
pixels segmentation in a current input frame based on adaptive back-
ground subtraction; merge slowly moving areas with pixels into blobs;
classification of the blobs obtained before. We use adaptive background
subtraction at a stage of moving detection. Moving blobs classification
is based on optical flow calculation, Weber contrast analysis and takes
into account primary direction of smoke propagation.

2 Algorithm description

The proposed algorithm uses motion and contrast as the two key fea-
tures for smoke detection. Motion is a primary sign and is used at the
beginning for extraction from a current frame of candidate areas. In
addition to consider a direction of smoke distribution the movement
estimation based on the optical flow is applied. The relation of smoke
intensity to background intensity above than at objects with similar be-
havior, such as a fog, shadows from slowly moving objects and patches
of light. Therefore contrast calculated with Weber formula is a good
distinctive sign for a smoke. The algorithm is a group of the following
modules as it is shown in Figure 1. A consecutive frames It−2,It−1, It

and obtained from the stationary video surveillance camera are entered
to an input of the preprocessing block. This block carries out some
transformations which improve contrast qualities of the input frames
and reduce calculations. Then adaptive background subtraction is ap-
plied to extract from the frame It+1 of slowly moving areas and pixels
of the so-called foreground. The background subtraction adaptive al-
gorithm considers that a smoke gradually is mixed to a background.
Then the connected components analysis is used in order to clear the
foreground noise and to merge the slowly moving areas with pixels into
blobs. The received connected blobs are transferred into the classifica-
tion block for Weber contrast analysis. At the same time the connected
blobs are entered to an input of the block for optical flow calculation.

144

Smoke detection algorithm . . .

Finally the classification block processes the information to obtain the
final result of smoke detection.

2.1 Frame preprocessing

The preprocessing block applies some methods of image processing
which increase the performance of the proposed detection algorithm
and reduce false alarms. Frame preprocessing block comprises three
steps: grayscale transformation, histogram equalization and the dis-
crete wavelet of the current input frame. Cameras and image sensors
must usually deal not only with the contrast on a scene but also with
the image sensors exposure to the resulting light on that scene. His-
togram equalization is a most commonly used method for improvement
of contrast image characteristics. To resize the image and to remove
high frequencies on horizontal, vertical and diagonal details the discrete
wavelet transform to Haar basis is applied. Wavelet transform to Haar
basis is the simplest and the fastest [7] algorithm that is important for
systems of video processing.

2.2 Slowly moving areas and pixels segmentation

In the course of the distribution a smoke is being gradually blended
to the background. Our adaptive algorithm of background subtraction
considers this characteristic of a smoke and is based on the ideas stated
in works [2,8]. A background image Bt at time instant t is recursively
estimated from the image frame It−1 and the background image Bt−1

of the video as follows [9]:

Bt(x, y) =
{

αBt−1(x, y) + (1− α)It−1(x, y), if (x, y) is moving,
Bt−1(x, y), if (x, y) is stationary,

where (x, y) represent a pixel video frame and α is an adaptation pa-
rameter between 0 and 1. As the area of a smoke frame by frame grows
slowly, so that the pixels belonging to a smoke quickly are not fixed in
a background, value α should be close to 1.

145

N. Brovko, R. Bogush, S. Ablameyko

Figure 1. Flow chart of our proposed algorithm

146

Smoke detection algorithm . . .

At the initial moment of time B0(x, y) = I0(x, y). Pixel (x, y)
belongs to moving object if the following condition is satisfied [8]:

(|It(x, y)− It−1(x, y)| > Tt(x, y))&(|It(x, y)− It−2(x, y)| > Tt(x, y)),

where It−2(x, y), It−1(x, y), It(x, y) values of intensity of pixel (x, y) at
time instant t−2, t−1 and t respectively; Tt(x, y) is adaptive threshold
for pixel (x, y) at time instant t calculated as follows:

Tt(x, y) =
{ αTt−1(x, y) + (1− α)(5× |It−1(x, y)−Bt−1(x, y)|),

if (x, y) is moving,
Tt−1(x, y), if (x, y) is stationary.

At the initial moment of time T0(x, y) = const > 0.
Accurate separating of a foreground object from the background

is the main task of digital matting. Porter and Duff [9] introduced
the blending parameter (so-called alpha channel) as a solution of this
problem and a mean to control the linear combination of foreground
and background components. Mathematically the current frame It+1

is modeled as a combination of foreground Ft+1 and background Bt

components using the blending parameter β:

It+1(x, y) = βFt+1(x, y) + (1− β)Bt(x, y).

For opaque objects the value of β is equal to 1, for transparent
objects the value of β is equal to 0 and for the semitransparent objects,
such as smoke, the value of β lays in a range from 0 to 1. As it is shown
further in this section, we have experimentally established the optimum
value for β to be equal to 0.38.

So, as soon as we have obtained Bt component on background up-
date step, the current frame It+1 and β set to 0.38, we can estimate the
foreground component Ft+1. Then we apply the threshold processing
to receive the binary foreground Fbin:

Fbin =
{

1, if Ft+1 > 245,
0, otherwise.

147

N. Brovko, R. Bogush, S. Ablameyko

Figure 2. ROC curve for variable α (a) and β (b)

At the current step of algorithm we have 2 parameters α and β
which are necessary to be estimated. Optimum values of α and β can
be estimated using receiver operating characteristic (ROC) analysis.
For estimation implementation the training set from 5 video sequences
of the 200 frames length which contain and do not contain smoke were
used. Using the ground truth regions which have been online marked
as a smoke in the training frames, rates of true and false detection were
calculated for the whole frame set. We received a background for each
value of α within a range of (0, 1). After that we applied a background
subtraction and thresholding to each frame from a training set. And
then True Positive Rate (TPR) and False Positive Rate (FPR) were
calculated as follows:

TPR =
TP

P
;FPR =

FP

N
,

where TP – number of correctly classified pixels, P – number of all
positive classified pixels; FP – number of incorrectly classified pixels,
N – number of all negative classified pixels. For each value of α, the
average TPR and FPR is evaluated on a training frame set and used
in the ROC curve (Figure 2a).

Using the ROC curve, an optimum value for α can be easily selected
for the smoke detection algorithm based on a pre-defined correct de-
tection versus false detection rates. It is necessary to choose such value
of α that slowly moving objects will not join a background too quickly,

148

Smoke detection algorithm . . .

i.e. that a smoke will not be fixed in a background too fast. At the
given stage of algorithm high TPR is important and high enough FPR
is acceptable as it is necessary to receive as much as possible pixels for
the analysis, and incorrectly classified pixels should be excluded at the
following stages. Therefore we have established that an α value equals
to 0.95. Similarly using the training frame set, receiving a foreground
component Ft+1 and after that the foreground Fbin and counting FPR
and TPR for all values β from a range (0,1) with the step 0.001 we
build a ROC curve for β (Figure 2b). Value of β has been chosen to
be equal to 0.38, because such value of β provides high TPR and low
FPR.

2.3 Connected component analysis

At the next step of algorithm to clear of noise and to connect moving
blobs the connected components analysis is used. This form of analysis
takes in a noisy input foreground. Morphological operations are applied
to reduce the noise:

S ◦M = (S(−)M)⊕M,

where S is image, M – structuring element 3×3; morphological closing
to rebuild the area of surviving components that was lost in opening is
the following:

S •M = (S ⊕M)(−)M,

where M – structuring element 3×3.
Then search of all contours is carried out. Then it tosses the con-

tours that are too small and approximate the rest with polygons.

2.4 Moving blobs classification

Blocks matching approach for optical flow calculation assumes that the
frame is divided into small regions called blocks. It considers a primary
direction of smoke propagation. In [10] it is shown, that global direc-
tion of smoke is 0-45◦. This statement allows to simplify procedure of
blocks matching detection and, hence, considerably to reduce number

149

N. Brovko, R. Bogush, S. Ablameyko

of calculations. Blocks are typically squares and contain some num-
ber of pixels. These blocks do not overlap. In our implementation
frames of the size 320×240 pixels are divided into blocks of 2×2 pixels.
Block matching algorithm attempts to divide both the previous and
current frames into such blocks and then computes the motion of these
blocks. Each block of size 2×2 can move in eight possible directions.
Our implementation searches in three directions of the original block
qprev
x,y (in the previous frame) and compares the candidate new blocks

qcurr
x−1,y−1, qcurr

x,y−1 and qcurr
x+1,y−1 (in the current frame) with the original.

This comparison is calculated as follows:

F (qprev
x,y , qcurr

x+k,y−1)
k∈{−1;0;1}
x,y∈[2;N] =

(
min(Iprev

i,j , Icurr
i,j)

max(Iprev
i,j , Icurr

i,j)

)
,

where Iprev
i,j is the intensity value of pixel on the previous frame, be-

longing to the block qprev
x,y ; Icurr

i,j is the intensity value of pixel on the
current frame, belonging to the block qcurr

x,y ; N is the number of blocks
into which the previous and current frame are divided.

The block qprev
x,y in the previous frame will correspond to the block

in the current frame if function F has the maximum value. Optical
flow calculation (function F) is done only for the blocks belonging to
the foreground (Figure 3b). The result of this step is the set of vectors
cs having a direction corresponding to primary propagation of smoke
(Figure 3c).

From each blob from the previous steps we calculate percentage ρ
of blocks which have moved in primary direction of smoke:

ρ =
cs

c
100%,

where c – the total number of blocks on a current frame, and Weber
contrast Cw:

Cw =
1
n

n∑

i=1

It+1(x, y)−Bt(x, y)
Bt(x, y)

,

where Ft+1(x, y) – value of pixel intensity (x, y) at time instant t, be-
longing to a blob, Bt(x, y) – value of background pixel intensity (x, y)

150

Smoke detection algorithm . . .

(а)

(b)

(c)

Figure 3. The current frame (a), the clean up foreground (b) by the
connected components analysis and the results of optical flow calcula-
tion (c)

151

N. Brovko, R. Bogush, S. Ablameyko

at time instant t under blob, n – number of the pixels belonging to a
blob.

If the blob has been successfully checked out, then we classify it as a
smoke. Experimentally established values Cw > 0, 5 and ρ > 20% allow
efficient distinguishing of a smoke from objects with similar behavior:
a fog, shadows from slowly moving objects and patches of light.

3 Results and discussion

The developed algorithm was tested on the real cases. Tests were
run on a PC (Pentium(R) DualCore CPU T4300, 2,1 GHz, RAM
1,96GB). Our program was implemented using Visual C++ and an
open source computer vision library OpenCV. The proposed algorithm
has been evaluated using data set publicly available at the web ad-
dress http://signal.ee.bilkent.edu.tr/VisiFire/Demo/SampleClips.html
and http://www.openvisor.org. Test video sequences contain a smoke,
moving people, moving transport, a complex dynamic background, and
also a number of video sequences without any smoke. Figure 4 shows
some examples of smoke detection.

Detection results for some of the test sequences are presented in
Table 1. Processing time of a current frame depends on the blob sizes
and frequency of changes occurring in a background. If the background
is stable and few blobs are detected, then processing time decreases.
Table 1 (the second column) contains average processing time on all
frames for each test video sequence. The smoke has been found suc-
cessfully out on all test video sequences with a smoke.

If at first a strongly rarefied smoke moves slowly, then it is gradually
included into the background. Therefore in this case, we cannot directly
find out a smoke, and the detection time increases. The performed
experiments have shown that the algorithm quickly finds out a smoke
on a complex dynamic scene. Smoke detection is achieved practically
in real time. The processing time per frame is about 15 ms. for frames
with sizes of 320 by 240 pixels. The algorithm considers both dynamic
and static features of a smoke. The algorithm has a low false alarm
level. False alarms on objects with properties similar to a smoke are

152

Smoke detection algorithm . . .

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Smoke detection in real video sequences

153

N. Brovko, R. Bogush, S. Ablameyko

sometimes possible. Tracing of smoky properties during some frames
can solve this problem.

The smoke and flame are primary signs of a fire. Often there is
a visible smoke development prior to flame. It can be important for
early fire prevention. Therefore our algorithm can be effectively used
in video surveillance systems for early detection of fire on open spaces.

Table 1. Detection results of our algorithm for some of the test se-
quences

Video The proces- The smoke was The number of
sequences sing time per presented with / frames on which
(Figure4) frame (ms) is found with there was false alarm /

(number total of frames
of frame)

a 12,665 10 / 12 0 / 900
b 14,786 20 / 112 0 / 244
c 14,969 80 / 87 0 / 483
d 15,003 30 / 117 0 / 630
e 15,491 360 / 388 0 / 2200
f 14,039 463 / 469 0 / 1835
g 16,346 - 0 / 1073
h 14,567 - 0 / 1179

4 Conclusion

We have presented in this paper an algorithm for smoke detection in
video sequences. Our algorithm consists of the following steps: pre-
processing; slowly moving areas and pixels segmentation in a current
input frame based on adaptive background subtraction; merge slowly
moving areas with pixels into blobs; classification of the blobs obtained
before. We use adaptive background subtraction at a stage of moving

154

Smoke detection algorithm . . .

detection. Moving blobs classification is based on optical flow calcula-
tion, Weber contrast analysis and takes into account primary direction
of smoke propagation. The efficiency of our approach is illustrated and
confirmed by our experimental videos.

References

[1] P. Piccinini, S. Calderara, R. Cucchiara. Reliable smoke detection
system in the domains of image energy and color. 15th Interna-
tional Conference on Image Processing, (2008), pp.1376–1379.

[2] B.Ugur Toreyin et al. Wavelet based real-time smoke detection in
video.Signal Processing: Image Communication, EURASIP, Else-
vier (20) (2005), pp. 255–256.

[3] DongKeun Kim, Yuan-Fang Wang. Smoke Detection in Video.
World Congress on Computer Science and Information Engineer-
ing (2009), pp. 759–763.

[4] B. Ugur Toreyin, Yigithan Dedeoglu, A. Enis Cetin. Contour based
smoke detection in video using wavelets. In European Signal Pro-
cessing Conference (2006), pp. 123–128.

[5] F. Comez-Rodriuez et al. Smoke Monitoring and measurement Us-
ing Image Processing. Application to Forest Fires. Automatic Tar-
get Recognation XIII, Proceedings of SPIE (2003), pp. 404–411.

[6] D. Krstinić, D. Stipaničev, T. Jakovčević. Histogram-Based Smoke
Segmentation in Forest Fire Detection System. Information Tech-
nology and Control 38(3) (2009), pp.237–244.

[7] E. Stolnitz, T. DeRose, D. Salesin. Wavelets for Computer Graph-
ics: Theory and Applications. Morgan Kaufmann (1996), pp. 1–
272.

[8] R.T. Collins. A System for Video Surveillance and Monitoring.
Proc. of American Nuclear Society 8th Int. Topical Meeting on
Robotics and Remote Systems (1999), pp. 68–73.

155

N. Brovko, R. Bogush, S. Ablameyko

[9] T. Porter, T. Duff. Compositing digital images. Computer Graph-
ics, vol.18, no 3 (1984), pp. 253–259.

[10] R. Yasmin. Detection of Smoke Propagation Direction Using Color
Video Sequences. International Journal of Soft Computing 4 (1)
(2009), pp. 45–48.

N. Brovko, R. Bogush, S. Ablameyko Received December 13, 2012

N. Brovko
Polotsk State University
29, Blokhin str., Novopolotsk, Belarus, 211440
E–mail: nadzeya.brouka@gmail.com

R. Bogush
Polotsk State University
29, Blokhin str., Novopolotsk, Belarus, 211440
E–mail: bogushr@mail.ru

S. Ablameyko
Belarussian State University
4, Nezavisimosti av., Minsk, Belarus, 220050

156

	Developments in Networks of Evolutionary Processors 3_35.pdf
	Towards an Automated Semiotic Analysis of the Romanian Political Discourse 36_64
	Linear discrete_time Pareto_Nash_Stackelberg control problem and principles for its solving 65_85
	Robust Geometric Programming Approach to Profit Maximization with Interval Uncertainty 86_96
	ECO-generation for some restricted classes of compositions 97_119
	Median calculation for heterogeneous complex of abstract cubes 120_141
	Smoke detection algorithm for intelligent video surveillance system 142_156

