P25. Synthesis, structure and antimicrobial activity of some 3d-metal coordination compounds with 2-hydroxy-3-methoxybenzaldehyde 4-(dimethylphenyl)thiosemicarbazones

Aurelian Gulea¹, Diana Cebotari¹, Greta Balan², Olga Burduniuc³, Victor Tsapkov^{1,5}, and Valeriu Rudic⁴

¹ Laboratory of Advanced Materials in Biopharmaceutics, Moldova State University, 60 Mateevici Street, Chisinau, Republic of Moldova

²Department of Microbiology, Virology and Immunology, State University of Medicine and Pharmacy "N. Testemitanu", 26/2 N. Testemitanu Street, Chisinau, Republic of Moldova

³National Center of Public Health, 67A Gh. Asachi Street, Chisinau, Republic of Moldova

⁴Institute of Microbiology and Biotechnology, Academy of Sciences of Moldova, 1 Academiei Street, Chisinau, Republic of Moldova

The aim of this work is the synthesis, determination of the composition, structure, physicochemical, antimicrobial and antifungal properties of 2-hydroxy-3-methoxybenzaldehyde 4-(2,4-dimethylphenyl)thiosemicarbazone (H_2L^1) and 4-(3,4-dimethylphenyl)thiosemicarbazone (H_2L^2) as well as iron(III), cobalt(III), nickel(II), and copper(II) coordination compounds with these ligands.

The thiosemicarbazones H_2L^{1-2} react with chlorides, bromides, nitrates and perchlorates of stated above metals forming colored solutions. Upon cooling the precipitates of coordination compounds are formed: $Cu(HL^{1-2})X \cdot nH_2O(X = Cl^-, Br^-, M_2O(X = Cl^-))$

OCH₃
$$R^1$$
 R^2
OH NH
NH
S
 H_2L^{1-2}
 H_2L^1 : $R^1 = R^3 = CH_3$, $R^2 = H$; H_2L^2 : $R^2 = R^3 = CH_3$, $R^1 = H$.

 ClO_4 , NO_3 , n=0, 4), $Co(HL^{1-2})_2X$ (X=Cl, NO_3), $Cu(L^{1-2})H_2O$, $Fe(HL^1)_2X$ • nH_2O (X=Cl, NO_3 ; n=0, 2), $Ni(L^{1-2})H_2O$. The composition and structure of these compounds were determined using elemental analysis, magnetochemical research and IR-spectroscopy. It was determined that all coordination compounds have monomeric structure. The thiosemicarbazones H_2L^{1-2} act as tridentate

ligands with O, N, S set of donor atoms.

Synthesized coordination compounds show selective antimicrobial activity towards a series of standard strains of *Staphylococcus aureus*, *Escherihia coli*, and *Candida albicans* in the range of concentration 0.0039-0.5 mg/mL. It was shown that the nature of the central atom has a main influence on the antimicrobial activity of these complexes. For the homotypic complexes the activity diminishes in the following way: $Cu > Ni > Co \ge Fe$. The nature of thiosemicarbazone and acid residue also has an influence on antimicrobial activity. The antimicrobial activity reduces in the following way: $H_2L^1 > H_2L^2$ and $NO_3^- > ClO_4^- > Cl^- \ge Br^-$. Synthesized compounds manifest the best activity towards the standard strains of *Staphylococcus aureus* and *Candida albicans*.

Aknowledgments

This work was fulfilled with the financial support of the Institutional Project 15.817.02.24F.

⁵ Corresponding author, tel. +373 68 089335, e-mail address vtsapkov@gmail.com (Victor Tsapkov)