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Abstract

The effect of enhancing nonlinear generation of entangled photons in the process
of interaction of the external coherent electromagnetic field with nonlinear dispersive
medium is studied in this paper. Taking into account the second and third order of
the susceptibility tensor of the crystal, it is demonstrated that in good cavity approx-
imation the bistable behavior of the two photon generation coefficient as a function of
intensity of the pump laser field is possible. This effect is stimulated by decreasing the
detuning between the frequency of the cavity mode and pump frequency as a function
of anharmonicity terms in polarization.

1 Introduction
The problem of quantum fluctuations and the generation of the nonclassical electromagnetic

field (EMF) in two-photon and multiphoton processes has recently been the subject of a
number of theoretical and experimental studies. The entanglement phenomenon between
idler and signal photons generated in the parametric down conversion has been intensively
studied in the last decade. For example such effects as quantum interference [1-5] and
nonlocality [6,7] are possible thanks to the extremely short correlation time between the two

photons produced in the large band of parametric down-conversion [8,9] . In one dimension

approximation the broad band squeezed vacuum EMF consists of pairs of entanglement
photons which can coherently excite the dipole forbidden transitions like coherent EMF [10].
The effects of coherent excitation arise in the problem of generating of more powerful broad

band squeezed light in the parametrical down conversion [11].

The aim of this work is to study the process of generation of entanglement photon pairs
in the nonlinear cavity which contains the second and third order nonliniarity driven by
the strong external coherent laser field. Let's consider the situation when the parametric
oscillator consists of a crystal in a double resonant cavity with mirrors which almost com-
pletely reflect the subharmonic light and reflect the pump light badly. If the mirrors only
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reflect the subharmonic light one can adiabatically eliminate the operators of the pump light.
Father a large number of discrete modes for the subharmonic light inside the cavity which
contains a nonlinear disperse medium is considered. If the double cavity frequency of entan-

glement photons W2k0 = Wk +W2k0k is off the resonance with the pump field w, the detuning
Lo = wp — W2k0 extinguishes the process of the generation of the entanglement photons in
the cavity. In this situation, the third order nonlinearity can diminish the detuning factor
in the nonlinear dispersive medium as a function of intensity of the pump field. In this
critical point a more powerful enhancement of the generation rate of entanglement photons
is observed.

A new master equation for the coupled subharmonic EMF with external driven coherent

field is obtained. The coupled system obeys the SU(1, 1) symmetry and a Casimir pseu-

dovector operator for su(1, 1) algebra is conserved. Using the generalized P-representation
for SU(1, 1) symmetry Fokker-Planck equation for the proposed master equation is obtained.
In order to obtain the steady state solution of master equation the two methods are proposed.

The first method is based on the stationary solution of Fokker-Planck equation and the sec-

ond is obtained representing the density matrix through antinormal products of creation and
annihilation operators of su(1, 1) algebra. From the analytical and numerical results it fol-
lows that these two methods are not so equivalent, and the theory of stationary solutions for

quantum master equations need more careful development. A similar problem was analyzed
and solved in the case of a two-level system interacting with a coherent external field [12-14].

It is well known that such a two-level system obeys the su(2) symmetry. However, in the
last years it was realized that the su(1, 1) group plays an important role in many problems

in Quantum Optics [15-19].

2 Master equation for subharmonic field
The Hamiltonian which describes the interaction of EMF with the nonlinear dispersive
medium in the cavity can be obtained, following the Collett and Gardiner treatment [20]

HHe+Hi+Hc. (1)

Here

He!dWWBBw (2)

is the free Hamiltonian for the external field modes. B and B are the annihilation and
creation operators for the external field which satisfy the commutation relation [B, B,] =
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+o
H =

ihi dwk(w)[Bb
— Bb] (3)

is the interaction Hamiltonian between the external coherent field with the frequency w,
and the cavity field which contains the limited number of discrete field modes in the energy

interval (0, hW2k0). b and bt are the annihilation and creation operators for the intracavity
field with the frequency near the pump (Lo 0), k(w) is coupling constantly. We consider
that the cavity is good for the subharmonic field (k(wk0) 0) and for the high frequency
field w (lip the coupling constant is large.

In order to obtain the intracavity Hamiltonian H, let us expand the polarization of the
nonlinear medium to third order in the EMF strength,

Pc x2E + x2EE + x27oEEE. (4)

Here X(ri) j a fri + 1)th rank susceptibility tensor. After introducing this polarization in the
density part of the interaction Hamiltonian — fP(E)dE one can obtain the following
form of intracavity Hamiltonian [11]

H =: f d3{ + [(EO + x' + x(2) + x()EE] } : . (5)

As the external laser field pump is only the cavity mode 2k0 one can express the EMF strength

E inside the cavity through the strength intracavity pump field E and the subharmonic
mode components generated in the process of parametrical down conversion Eh,

EEp+Esh. (6)

can be expressed from the annihilation and creation operators in the following form

/ \1/2
E(,t) = i—-) {bil()exp(—iwt) — btZ*exp(iwpt)}, (7)

2€

where
=

exp[i(p,)].
Here V is the quantization volume, is the polarization vector of EMF. The electric-field

operator for the cavity mode of subharmonic frequencies Wk W2k0 can be written as

2k0 — 1/2
E8h(r, t) = i () {ak(r) exp(—iwkt) — a(r) exp(iwkt)}, (8)

k=O 2c0

where
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k() =

and ak and a are the annihilation and creation photon operators in the cavity mode k.
Taking into account that the losses of pump EMF in the cavity are larger than the losses of
subharmonic EMF one can represent the intracavity Hamiltonian in the following way

2k0

H = hcDbtb + Txobt2b2 + {cDk + X2btb}aak

2k0

+ h{x, ,k2 ak1a2k0_k1 ak2 a2k0_k2 + X1 ,k2 ak1 ak1 42 ak2 }
k1 ,k2=O

2k0

+ i — b4ak0_k}. (9)

Here the coefficients a — (i + where a = (p, k),

0 3x3(w,w)hwp j
x 2 Xk 20 €0 €0

I 3 X3(wki , Wk2)h 'I 3 X3(Wk1 , Wk2)7
Xk1,k2

—
2 /Wk1W2k0_k1Wk2W2k0_k2, Xk1,k2 = 2 Wk1Wk2.0 60 0 EU

I h _______
gk h/WpWkW2ko_k

LEO EU

is the constant of the interaction of the intracavity pump and subharmonic fields with fre-

quencies w and Wk respectively, obtained from the second order polarization expanding (1).
Let us consider the operator 0(t) which belongs to the subharmonic EMF. Taking into ac-
count the Hamiltonian (1) one can write the following Haisenberg equation for this mean
value of this operator

dOt 2k0

dt
2k0

+ i h([x, ,k2 ak1 a2k0_k1ak2 a2k0_k2 + Xi a ak1at2 ak2, 0(t)])
k1 ,k2=0

2k0
—

([btaka2kOk
—

batak0_k, 0(t)]). (10)

In this equation we must eliminate the operators of higher frequency cavity operators b(t)
and bt(t). Using the system Hamiltonian one can obtain the following Heisenberg equation
for these operators

db 2k0 +00

—i{+ 2x0bb+ Xatak}b+aka2k0_k+ J dwk(w)B. (11)
k=0 k
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As the external EMF is in the single mode coherent field in) = [I O) exp(/3B —
w=/=w

p

3*B)O) , the solution of Haisenberg equation for external EMF can be represented in the

following form

B(t) = B(O)et — k(w) / dye_Tb(t y), (12)

where B (0) is the free part of the EMF operator, which satisfies the identity B (0) in) —

in) . After the substitution of this solution in Heisenberg equation (11) one can rep-
resent the solution of operator b2k0 in the following form

b(t) : b(O)e2k0t
t +00 2k

+ / (Te_1
i ((T))dT

[ f k(w)Bw(O)e_n1dw +
ak(Y1)a2kok(Y1)] ) dT1

. (13)
0 —00 k=O

Here T representing the chronological product of operators, F — rk2(w2k0) is the cavity losses

at frequency W2k0 , The coupling between the cavity mode 2k0 and external EMF take places

in the moment t = 0,
2k0

(t) =p+2XObtb+>Xaak, (14)

where ci = cL — f dwk2(w)P(w2k0
In order to eliminate the free field operators of external EMF and the cavity field at

frequency W2k0 one can do the following approximation. Inside T we replace the operator 2

by a steady state value in witch all the number state operators are replaced by their mean

value (btb) , (atak) . Neglecting the subharmonic number term >I2 X24ak in comparison
with the quasicoherent term 2xObtb we obtain for btb the following equation

bb — - F/2
(15)

)2 +F2

Here for we used its second order approximation

where L = —x°Fi32/[r(wp — )2 + F2]. After introducing equation (13) in (10) and using
Born-Markoff approximation we obtain the following expression

d'O 2k0 2k0
/ = ([i wkaak + i ('1,k241ak0_k1ak2a2ko_k2

k=O k1,k2=O

+ Xk1 ,k2 ak1 42 ak2), 0(t)])
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2k0

+ (ket K[4ak0_k, 0(t)]) — 1eiWPt([aka2k0k, 0(t)]))

2k0

+ kl,k2{([a1akOk10(t), ak2a2k0_k2]) + ([a2ak0_k2, O(t)ak1a2k0_k1])},(16)
k1 ,k2=O

where Wk Wk + f, Xk1,k2 — Xk1,k2 h2F2±(2W)2) 1S the constant of interaction between
the entanglement photon pairs stimulated by second and third order susceptibility, =

c the analog of Rabi frequency for excitations of photon pairs in cavity, and

7k1,k2 2(F2±22w)2) are the losses of coherent photon pairs in the cavity stimulated by
losses of pump field in the cavity.

As (0(t)) = Tr{(t)0} = Tr{0(t)} in equation (15) one can pass from Heisenberg
to Schrodinger picture. After the cyclic permutation under the Tr{. . .} operation one can
replace the commutators from operator 0 to density matrix of subharmonic fields p(t) =

eiH0t/(t)e_iH0t/ (here H0 = >-1k 7'k4ak)

A 2k0u) • —I 'I= —
[Xk, ,k2 ak1 a2k0 —k1 ak2 a2k0_k2 + Xk1 ,k2 ak1 ak1 ak2 ak2 ) , p(t)]

k1 ,k2=O

2k0
— —

, p(t)]

2k0

+ 7k1,k2{[ak1 a2k0_k1 , p(t)at2ak0_k2] + [ak2a2k0_k2p(t), a1 a2kokl]}. (17)
k1 ,k2=O

We observe that in the absorption and generation of pump photon in the cavity the pairs

of photons with the summary energy hwk1 + hwk2 = hw2k0 are generated. If we decomposer
the density matrix of the coherent states of boson subharmonic operators one obtains the
complicated Fokker-Planck equation due to the existence of a large number of subharmonic
modes in the resonance with pump fields. In the case when we have only one cavity modes
in this resonance k = k0 the master equation (17) is reduced to the same equation studied in

[21 ,22] . It is not difficult to observe that when the number of modes increases the Drummond

decomposition becomes difficult and for the investigation of the behavior of photon pairs
generation another coherent state decomposition for the density matrix is necessary. We
observe that the coefficients in master equation (17) are smoothly dependent on the frequency

of the subharmonic fields Wk. In this situation it is conveniently to replace the frequency Wk
with Wk0 in all the coefficients.

In this approximation one can introduce the collective cavity field operators [10,23]

2k0 t t 2k0 2k0 1
= aka2k0_k = aka2k0k = (atak + (18)
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which satisfy the following commutators for the operators of su(1, 1) algebra

[It, I-] — _21z, [Iz, 1] — (19)

Thus the equation density matrix W(t) = exp{i(wp _ i2ko)Iz}p(t) exp{ —i(w — i2k0 )IZ} can
be represented in following form

DW(t) _ i[xItI_ + Iz + i{*I it}, W(t)] + 7{[1W(t), It] + [1, W(t)It]}, (20)

where

x — (0,k0 Xk0,k0), = o — f + Xk0,k0

ci = 2T1k0 , y = 47k0,k0•

It is not difficult to observe that the Casimir operator

j2 (Iz)2 1/2(II + I-It), (21)

which satisfies [12,1+] [12, JZ] 0 is conserved. The discrete representation of su(1, 1) Lie

algebra is described by the state vectors rn, j) that satisfy [24]

I2m,j) = j(j 1)m,j)
Im,j) = (m+j)m,j)
Im,j) _ (m+1)(m+2j)m+1,j)
Im,j) = m(m+2j-1)m-1,j), (22)

where I— 0, j) = 0. Here j is the Bargmann index and m is any nonnegative integer. The

set {m, j)m = 0, 1, 2, . . . ; j = const becomes the complete orthonormal basis

(j,mn,j) =
m,j)(j,m = 1. (23)

n2=O

In analogy with the Dicke cooperating number j = N/2 for su(2) algebra one can in-
troduce the cooperative number j for distinguishing the conjugate mode pairs 2k0 — k , k,,
i = 1, 2 N. Using the conservation vector 12 = j(j — 1) one can find that the cooperative
number for the pairs of photons is j = 1/4 = N/4. In the next section the stationary
solution for master equation (20) will be analyzed. This solution gives us the possibility to
obtain the mean value for the number of pairs of entanglement photons (iti), number of
photons (Ii) and their fluctuations 62 = (If) — (I)2.
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3 Fokker-Planck equation and its steady state solution

Following the decomposition of the density matrix on non-diagonal generalized P represen-
tation for Bose algebra [21,22] one can introduce the following decomposition on coherent

states for SU(1, 1) algebra

w = (24)

Here D is the integration domain, d(c, j3) = dcid/3 is the integration measure,

) = (1 - 2)iexp(It)j)

(* = (1 - 2)(j exp(I)
are the coherent states for the SU(1, 1) algebra,

* - (1 - 2)i(i _( ) - (i_)2i
is the normalization coefficient for the projector operator c) (/ . Using the following action

of operators It, I-, IZ of SU(1, 1) algebra on the coherent state

it) = (1 - 2)3exp(It)j)

I_) _ (1 - 2)(20 + 2j) exp (Ij),

IZ) _ (1— )3 exp(I )3)
one can obtain the following Fokker-Planck equation

= (2ia + i — gQ(2 — 1) + 2j) P(, )

+ (-2iX + -i -g( -1) + 2j7)P() (25)

—
32(7 + i)2P(, ) — 32(7

— i)2P(,) + 273aa 22P( )
For many problems in quantum optics it is sufficient to know the steady state solution of
Fokker Planck equation. Representing the steady state solution in the potential form

P(c,/3) = Nexp(—(c,@)), (26)

one can obtain the following differential equations for potential (ci, 3)
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. 22(+x)— —3c

2 2
= —2ij (2 1) — 2j7 + 2(7 + ix) — 22

—7a + (—z)—&
— 2ijfl : — + (2 1) — 2j + 2( — ix) — 22 (27)

We observe that for arbitrary parameters L and x the so called potential condition for

(c,i3) [11]
32( j3) 3)

3i3a;
=

aca3 (28)

is not satisfied.

For solving equation (20). we can examine the case when x = z = 0. It is not difficult to
observe that in this case the potential condition (28) is satisfied and the steady state solution
can be written in the following form

P(,fl) = N(fl)2( ) 2exp(_[+ i]), (29)

where
00 /2\ 2j+n—1 —1

N — 42 [n!F(2j)F(2j + n)]'
fl=o 7

is the constant of normation.
Now we consider the situation when x 0 and detuning Li = 0. In this case the

potential condition (28) remains unsatisfied, but it can be satisfied if one introduce the fol-

lowing two terms /3)] and j3)] in equation

(25). As in deriving Fokker-Planck equation we have considered that 32/(a3&)P(ci, j3) —

32/(&th3)P(ci, /3), these two terms in the right hand side of Fokker-Planck equation (25)
give zero contribution. After this the equation (25) suffers some modification. The steady
state solution of Fokker Planck equation can be obtained from equations

o = — (2 — 1) + 2j7 — + ix)2 + (— ix)22) P(,)
o = (2iX + -1) + 2j7 - - ix)2 + ( + ix)22)P(). (30)

Using the representation of P function through potential j3) from equations (30) one
can obtain the following differential equations which satisfy the potential condition (28)
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a_ 2j +.a — (—1) 2(+ix) '
&I 2j ci 2

(fl- ) (7-x)
After introducing of the potential (ofl) determined from equations (31) in relation (26) we
obtain the following relation from P fun'tion

1 \—2j I 1P()=N*()2(__1 exp -( + . . (32)\ I \(7—x) (7+zX)J
Here the constant of normation

00 2 2j+ri—1 —1

N* [_42( 2) [n!F(2j)F(2j +

After introducing equation (32) in (24) we obtain the form of the density matrix operator
and can calculate the values of different operators

oo 2 \fl f(P'\ 00/ 2 \Ti 1 —1
'I jn 1 _______________ 33\ / — 2 + X2} n!F(2j + n) 72 + X2) n!F(2j + n)
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Here
I n+i, if RI';

f+3(R) _ (n + j)2, if R = [P]2; (34)
I n2+ri(2j—1), if R=1t1.

Ill this section we observe that the steady state solution is difficult to obtain in case when
L 0. In the next section we proposed methods of representation of the density matrix
through antinormal product of operators I and 1 . These methods give the possibility to
solve the stationary master equation for L\ 0.

4 The antinormal representation of steady state solu-
tion of the master equation

In order to obtain the solution of master equation (20) for arbitrary detuning and arbitrary
third order nonlinearity in this section we represent the density matrix of the steady-state

master equation (20)

i[xItI + Iz + ig{*I_ çit}, W] —7{[Iw, It] + [1, WIt]} 0, (35)

through antinormal ordering operators I and 1 . The same representation was used in
the papers [12-14] for su(2) algebra. Here we extend this method for SU(1 ,1) symmetry.
Following the elegant method developed in [12-14] we are looking for the solution of equation

(35) of the form

ws = AF(I)F+(It), (36)

where A — Tr[F(1)Ft(It)], F(1) and Ft(It) are operator functions of 1 and It, respec-
tively. Here the function F(I±) can be represented in a Taylor series

00

F(I) - c(i±). (37)

By using the commutation rules corresponding to SU(1, 1) symmetry, it is easy to demon-
strate the following operator identities

IZF(I_) = _F(I_)Iz — [It,fF(I)dI], (38)

[1t1,F(1)F(It)] = [It,1F(1)]F(It) — he. (39)

where h.c. stands for the hermitic conjugate and

' 00 C / \fl+1
I F(1)d1 = (i

.1

The operator equation (35) can be represented in the form
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[It, G(1)]Ft(It) + he. = 0, (40)

where

G(1) = IF(I)(-i - 1) -i f F(1)d1 - F(I). (41)

LFrom equation (40) it follows that the commutator [It, G(1)] must be proportional to
F(1), but in view of the commutation relations (19) this is not possible. Thus in order to
satisfy equation (40) it is necessary that the commutator [It, G(1)] be zero. This is possible
when G(1) = const, that is

1F(1)(1 + i) j / F(1)d1 + F(I) = const. (42)

The solution of equation (42) can be written in a compact form

F(1) = c(1 — id)', (43)

where d — :/x and — Finally the stationary density matrix can be represented in
the form

ws = c2(I- — id)(')(It + id*)_(l*) =

= floD' jkidk(d*)iF(1±±k)F(1±*± 1) ()k 1

(44)

where D is the normalization factor so that Tr{W8} = 1, and F(z) is the F-function. The
normalization constant D is given by the limit D = lim0 D(no) , where

o
-21 F(1 + + l)F(1 + e* + 1) nO F(l + p + j)F(l + p — j + 1)D(no) = d F(1 + )F(1 + *) . F(p + j)F(p - j + 1)

(45)

In analogy with Fokker-Planck method one can obtain the following values for the mean
number of operators Iz, (Iz)2 and 1+1.

R — 1 D_1( 2 _iF(1++l)F(1+e*+l)nooo 2+2) F(1+e)F(1+e*)

x f(R)F+P3+1) (46)p F(p+j)F(p-j+1)

We observed that these methods give the results, which slightly differ from expression (33).

The difference consists in the representation of the mean value through two sums in expres-
sion (46). In the next section this differences is analyzed.
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5 Results and Discussions
Let us consider the first case, when the detuning L — 0. This situation corresponds to
the strong resonance between the external pump coherent field and cavity mode 2k0. In

order to neglect the field detuning /e as compared to parameter x in the master equation
(20) one supposes that the third order susceptibility at frequency w is less than the same

susceptibility at frequency Wk0 [x3 (wy, Wk0) << x (Wk0 , Wk0)] and the value of the intensity
of the external pump field does not affect the inequality Le << X In this case one can use
the solution obtained by Fokker-Planck method.

LFrom Fokker-Planck and antinormal ordering methods it follows that the expressions
for mean values of the physical quantity slightly differ. We observe that the Fokker-Planck
methods do not give the possibility to find the steady state solution for the arbitrary detun-

ing L and x. The antinormal ordering method gives us this possibility, but it expresses the
mean value for operator R through the ratio of the two double divergent sums and it is diffi-
cult to do numerical simulation of expression (46) . It is interesting to find the approximate
mathematical connections between expressions (46) and (33) . For this we do some mathe-
matical transformation of expression (46) in case z = 0. We change the sum of the variables

in expression (46) n = p — j and m — 1 + ri in order to obtain the following expression for

(R)

00 00 —rn

— fl=(x) ffl(R)(n!F(2j+n))1(2X2) F(m+2j)F(m+1)
K )— Ti, 00 —rn

0(2X2) (n!F(2j +n))1(2X2) F(m+2j)F(m+ 1)

This expression is more similar to expression (33) , but under the sum on n we have the
00 7 2

divergent sum I ( 2 2) F(m + 2j)F(m + 1). If we change the summations in (47) to
rn=n

the integer parameter n in the limit, when ri0 —÷ oc, one can multiply the numerator and

denominator of this expression by ( ) Making the change of variable p = no — m we

obtain the following formula

no7 222) f(R)(n!F(2j + n))1S(n, flu)
(R) = lim °

(48)'° ___ (n!F(2j + n))'S(n, n0)

no—n7 2
where S(n, no) = (2) F(no —p + 2j)F(no — p+ 1). We observe that for large n <<no

p=O\ /
the sum S(n, no) slowly depends on parameter n and in expression (48) one can simplify the

numerator and the denumerator by S(no). Under this supposition the equations (47) and

(33) coincide.
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Let us now discuss the behavior of the cavity subharmonic EMF, when the detuning L is
different from zero. In order to obtain the convergent sums in (46) we divide the numerator
and denominator D(no) in (46) of expression (n0)2. In this case one obtains the convergent
expressions of the numerator and denominator.

The main interesting effect in this case is described by the dependence of L on the input
pumping coherent EMF

where Lo wp
—

W2k0 15 the part of detuning which does not depend on the intensity of

external EMF, Lf = FX°12/[7(F2 + (i —2w)2)]' is the detuning part, which is proportional
to the intensity of the external coherent field. If the sign of detuning Lo is opposite to the

field dependent detuning Lc in the process of increasing the external pump EMF these two
detunings give the zero value for the summary detuning Li. In this point the enhancement

of the generation rate of biphotons takes place [see Fig.].
Going back to the definition of = in the case /c 0 one observe that the

expression
F(1±e±i)F(i : 1) = fl[(Re + k)2 + (Ime)2]. (49)

for 'y << x, witch corresponds to Im << Re, the product (49) will be transformed into

k0(e + k)2. On the other hand the sums on 1 in (45) and (46) become truncated for
1* = L/X. The infinity series become finite. It is clear that increasing the field strength
the number of generated biphotons tends to the constant value due to the fact that the
expression for the mean number is obtained from the ratio of two power polynoms of EMF
strength. In Fig. we represent some numerical simulations of dependence {P} as a function
of Rubi frequency for different value of field detuning. We observe that with the increase of

the field detuning for the large strength of EMF the mean number of generated photons in
microcavity tends to zero.
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Fig. The dependence of the number of biphotons (F) as function of
frequency for n0 = 100, j = 20, Lj = 0.01, 'y = 0.01, x = 0.1 and
a) ze = 0.012, b) L = 0, c) L\jr = 0.1I2.
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