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Weak hyper residuated lattices

Rajab Ali Borzooei and Soghol Niazian

Abstract. We introduced the notion of weak hyper residuated lattices which is a generalization
of residuated lattices and prove some related results. Moreover, we introduce deductive systems,
(positive) implicative and fantastic deductive systems and show the relations among them.

1. Introduction

The concept of hyperstructures was introduced by Marty [10] at 8th Congress of
Scandinavian Mathematicians in 1934. Till now, the hyperstructures are studied
from the theoretical point of view and for their applications to many subjects of
pure and applied mathematics [1], [5]. Residuated lattices, introduced by Ward
and Dilworth [11], are a common structure among algebras associated with logical
systems. The main examples of residuated lattices are MV -algebras introduced
by Chang [2] and BL-algebras introduced by Hájek [7]. Imai and Iséki introduced
in [9] the notion of BCK-algebras. Borzooei et al. [2] introduced the concept of
hyper K-algebras, which are a generalization of BCK-algebras. Also, they studied
hyper K-ideals in hyper K-algebras. Recently, S. Ghorbani et al. [6], applied the
hyperstructures to MV -algebras.

In this paper we want to construct a weak hyper residuated lattice as a gene-
ralization of the concept of residuated lattices that contain of the classes of MV -
algebras, BL-algebras, and Heyting algebras.

A hyperoperation on a nonempty set A is a mapping ◦ : A×A → P ?(A), where
P ?(A) is the set of all the nonempty subsets of A and A with a hyperoperation is
called a hypergroupoid.

De�nition 1.1. A hypergroupoid (A, ∗, 1) is called a commutative semihypergroup

with 1 as the identity, if for all x, y, z ∈ A we have:
(i) x ∗ (y ∗ z) = (x ∗ y) ∗ z,
(ii) x ∗ y = y ∗ x,
(iii) x ∈ 1 ∗ x.

An element a ∈ A is called a scalar element if for all x ∈ A the set a � x has
only one element.
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De�nition 1.2. By a residuated lattice we mean a structure (L,∨,∧,�,→, 0, 1)
of type (2, 2, 2, 2, 0, 0) such that

(RL1) (L,∨,∧, 0, 1) is a bounded lattice,
(RL2) (L,�, 1) is a commutative monoid,
(RL3) the pair (�,→) is an adjoint pair, i.e., for any x, y, z ∈ L,

x ∗ y 6 z if and only if x 6 y → z.

2. Weak hyper residuated lattices

De�nition 2.1. By a weak hyper residuated lattice we mean a nonempty set L
endowed with two binary operations ∨, ∧ and two binary hyperoperations �, →
and two constants 0 and 1 satisfying the following conditions:

(WHRL1) (L,6,∨,∧, 0, 1) is a bounded lattice,
(WHRL2) (L,�, 1) is a commutative semihypergroup with 1 as the identity,
(WHRL3) a� c � b if and only if c � a → b,

where A � B means that a 6 b, for some a ∈ A and b ∈ B; A 6 B means that
for any a ∈ A, there exists b ∈ B such that a 6 b, where 6 is the lattice ordering
of L.

Example 2.2. Any residuated lattice is a weak hyper residuated lattice, too.

Example 2.3. L = [0, 1] with the natural ordering is a bounded lattice. De�ne
the hyperoperations �, → and  on L as follows:

a� b = a× b, a → b =
{
{1}, a 6 b,
{b}, a > b,

a b =
{
{1}, a 6 b,
[b, 1] , a > b.

Then (L,∨,∧,�,→, 0, 1) and (L,∨,∧,�, , 0, 1) are weak hyper residuated lat-
tices.

Example 2.4. Consider the chain 0 < a < b < 1. Then (L,6, 0, 1), where
L = {0, a, b, 1}, is a bounded lattice. Putting x � y = x ∧ y and de�ning the
hyperoperations → and  by the following two tables:

→ 0 a b 1
0 {1} {1} {1} {1}
a {a, b, 1} {1, a} {1} {1}
b {a, 1} {a} {b, 1} {1}
1 {0, 1} {a} {1, b} {1}

 0 a b 1
0 {1} {1, b} {1, b} {1, b}
a {a, b, 1} {1} {1} {1}
b {a, b, 1} {a} {1, b} {1, b}
1 {0, a, 1} {1, a} {1} {1}

we obtain two hyper residuated lattices (L,6,�,→, 0, 1) and (L,6,�, , 0, 1).

Proposition 2.5. Let L = (L,∨,∧,�,→, 0, 1) be a weak hyper residuated lattice.

Then for nonempty subsets A, B, C of L and all x, y, z ∈ L we have:

(i) 1 � A ⇔ 1 ∈ A and A � 0 ⇔ 0 ∈ A,
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(ii) x 6 y ⇒ 1 ∈ x → y and A � B ⇒ 1 ∈ A → B,

(iii) if 1 is a scalar, then 1 ∈ x → y ⇒ x 6 y and 1 ∈ A → B ⇒ A � B,

(iv) 1 ∈ (x → x) ∩ (x → 1) ∩ (0 → x),

(v) if 1 is a scalar element of L, then x ∈ 1 → x,

(vi) A � B → C ⇔ A�B � C ⇔ B � A → C,

(vii) x� y � x, y and A�B � A,B,

(viii) x � y → x, A � B → A and 1 ∈ x → (y → x),

(ix) x → (y → z) 6 (x� y) → z 6 x → (y → z) 6 y → (x → z),

(x) x� (x → y) � x, y,

(xi) x � y → (x� y) and x � (y → x) → x,

(xii) x 6 y ⇒ x� z � y � z, z → x 6 z → y and y → z 6 x → z,

(xiii) x → y 6 (y → z) → (x → z),

(xiv) (x → y)� (y → z) � x → z and y → z � (x → y) → (x → z),

(xv) 0 ∈ x� y ⇔ x � ¬y, where ¬x = x → 0,

(xvi) 0 ∈ 0� x, 0 ∈ x� ¬x, 1 ∈ ¬0 and if 1 is a scalar, then 0 ∈ ¬1,

(xvii) if x 6 y, then ¬y 6 ¬x,

(xviii) x → y � ¬y → ¬x,

(xix) x � ¬¬x, ¬¬¬x � ¬x � ¬¬¬x and ¬x � x → y,

(xx) ¬a, ¬b � ¬(a ∧ b) and ¬(a ∨ b) � ¬a , ¬b,

(xxi) x → ¬y � ¬(x� y) � x → ¬y and y → ¬x � ¬(x� y) � y → ¬x,

(xxii) if
∨

Y exists, then
∨

y∈Y (x� y) � x� (
∨

Y ).

Proof. (i) Let 1 � A. Then there exists a ∈ A such that 1 6 a. Since, for any
x ∈ L, x 6 1, then 1 = a ∈ A. The converse is obvious. Now, let A � 0. Then
there exists b ∈ A such that b 6 0. Since, for any x ∈ L, 0 6 x, then 0 = b ∈ A.
The converse is clear.

(ii) Let x 6 y. Since x ∈ x � 1, then x � 1 � y. By (WHRL3), 1 � x → y
and so by (i), 1 ∈ x → y. Now, let A � B. Then there exist a ∈ A and b ∈ B
such that a 6 b. So, by the above, 1 ∈ a → b ⊆ A → B.

(iii) Let 1 ∈ x → y. Then 1 6 x → y and so 1 � x � y. Now, since 1 is a
scalar of L and x ∈ 1 � x, then 1 � x = x and so x 6 y. Similarly, 1 ∈ A → B
implies A � B.
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(iv) Since, by the lattice ordering, x 6 x, x 6 1 and 0 6 x, then 1 ∈ x → x,
1 ∈ x → 1 and 1 ∈ 0 → x. So we have (iv).

(v) Let 1 be a scalar of L. Then x � 1 = x 6 x and by (WHRL3), we get
x � 1 → x, i.e., there exists a ∈ 1 → x such that x 6 a. Since a ∈ 1 → x, then
a = 1�a 6 x 6 a and so x = a ∈ 1 → x. Hence, for all a ∈ A, a ∈ 1 → a ⊆ 1 → A.

(vi) Let A,B,C ⊆ L. Then

A � B → C ⇔ ∃a ∈ A, b ∈ B, c ∈ C such that a � b → c,

A�B � C ⇔ ∃a ∈ A, b ∈ B, c ∈ C such that a� b � c,

B � A → C ⇔ ∃a ∈ A, b ∈ B, c ∈ C such that b � a → c

and so, by (WHRL3), we have (vi).
(vii) Since, for all x, y ∈ L, y 6 1 ∈ x → x and x 6 1 ∈ y → y, then

by (WHRL3) x � y = y � x � x, y. By the similar way, we can prove that
A�B � A,B.

(viii) By (vii), x� y � x and so, by (WHRL3), x � y → x. Hence, by (ii),
1 ∈ x → (y → x).

(ix) Let u ∈ x → (y → z). Then

u � x → (y → z) ⇔ (u� x) � y → z, by (vi)
⇔ (u� x)� y � z, by (vi)
⇔ u� (x� y) � z

⇔ u � (x� y) → z, by (vi)

and so, x → (y → z) 6 (x � y) → z. By a similar way, we can prove that
(x� y) → z 6 x → (y → z).

(x) It follows from (vi).
(xi) It follows from (vi) and x� y � x� y. Also, by (vi), x� A � x, where

A = y → x.
(xii) By the �rst part of (xi), y � z → (y � z). Now, since x 6 y, then

x � z → (y � z). Hence, by (vi), we get x� z � y � z.
Now, let u ∈ z → x. Since u � z → x, then by (WHRL3), u�z � x and so by

x 6 y, we get u�z � y. Hence, by (WHRL3), u � z → y and so z → x 6 z → y.
Now, let t ∈ y → z. Since, t � y → z, then by (vi), y � t → z and so

by x 6 y, we get that x � t → z. Hence, by (vi), we get t � x → z and so
y → z 6 x → z.

(xiii) Let u ∈ y → z. Then by (vi), u � y → z implies y � u → z. So there
exists t ∈ u → z such that y 6 t. Now, by (xii) and (ix), we have

x → y 6 x → t ⊆ x → (u → z) 6 u → (x → z) ⊆ (y → z) → (x → z).

Hence, x → y 6 (y → z) → (x → z).
(xiv) Those follow from (vi) and (xiii).
(xv) x � ¬y = y → 0, if and only if x� y � 0 if and only if 0 ∈ x� y.
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(xvi) We know that x 6 1 ∈ 0 → 0. Thus x � 0 � 0 and so by (i), we
get 0 ∈ x � 0. Also, it is clear that x → 0 � x → 0. Now, by (vi), we get
x� (x → 0) � 0 and so, by (i), 0 ∈ x� ¬x.

(xvii) It follows from (xii).
(xviii) Since, by (xiv), (x → y) � (y → 0) � x → 0, then by (vi), we get

x → y � ¬y → ¬x.
(xix) By (xv), x�(x → 0) � 0 and so by (vi), we get x � (x → 0) → 0 = ¬¬x.

Also, by (xii), we get ¬¬¬x � ¬x. On the other hand, if we put A = x → 0 then
by (xv), A � (A → 0) � 0 . Now, we conclude A � (A → 0) → 0 by (vi), i.e.,
¬x � ¬¬¬x. (Note that, we do not have anti-symmetry for �.)

(xx) Those follow from (xii).
(xxi) It is conclude by (ix) and (xiii).
(xxii) If

∨
Y exists, then y 6

∨
Y for all y ∈ Y . So, by (xii), x�y � x�(

∨
Y ).

Thus there exists by ∈ x� (
∨

Y ) such that x� y � by for any y ∈ Y . Hence, we
get

∨
y∈Y (x� y) �

∨
y∈Y by 6

∨
x� (

∨
Y ).

Theorem 2.6. Any weak hyper residuated lattice of order n can be extend to a

weak hyper residuated lattice of order n + 1.

Proof. Let L be a weak hyper residuated lattice of order n, and L = L ∪ {e} for
some e /∈ L. Putting

z 6′ y ⇔ z 6 y, for all z, y ∈ L and x 6′ e, for all x ∈ L′,

a�′ b =


a� b if a, b ∈ L,
{a} if a ∈ L and b = e,
{b} if b ∈ L and a = e,
{e} if a = b = e,

a →′ b =


(a → b) ∪ {e} if a, b ∈ L, 1 ∈ a → b
a → b if a, b ∈ L, 1 /∈ a → b,
{e} if b = e,
{b} if a = e,

we see that (L,6′) is a bounded lattice with 0 as the minimum and e as the
maximum elements of L. The proof of (WHRL1) and (WHRL2) are clear. Now,
we prove the (WHRL3). Let x, y, z ∈ L. We consider the following cases:

Case 1. For x = y = z = e, the proof is obvious.
Case 2. Let x = z = e and y ∈ L. Then x �′ y = {y} and y →′ z = {e}.

Therefore, x�′ y �′ z if and only if x �′ y →′ z. By the similar way, we have for
y = z = e and x = y = e.

Case 3. Let x, y ∈ L and z = e. Since y →′ z = {e} and u �′ e, for all u ∈ L′,
then x �′ y �′ z implies x �′ y →′ z. Now, let x �′ y →′ z. Since z = e, then
x�′ y �′ z.
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Case 4. Let x, z ∈ L and y = e. Then x �′ y = {x} and y →′ z = {z}.
Therefore, x�′ y �′ z if and only if x �′ y →′ z.

Case 5. Let y, z ∈ L and x = e. Then x�′ y = {y}. If x�′ y = {y} �′ z, then
y �′ z. Since y, z ∈ L we get y � z and so 1 ∈ y → z. Hence e ∈ y →′ z and so
x �′ y →′ z. Now, let x �′ y →′ z. Then by de�nition of 6′, we have e ∈ y →′ z
and so 1 ∈ y → z or z = e. Since y ∈ L, then y 6= e and so 1 ∈ y → z. Therefore,
x�′ y �′ z.

Case 6. Let x, y, z ∈ L and 1 ∈ y → z. If x �′ y �′ z, then by de�nition of
→′, e ∈ y →′ z and so x �′ y →′ z. Now, let x �′ y →′ z. Since 1 ∈ y → z, then
x � y → z and so x� y � z. Hence x�′ y = x� y �′ z.

Case 7. Let x, y, z ∈ L and 1 /∈ y → z. Then by de�nitions of �′ and 6′, we
get

x�′ y �′ z ⇔ x� y � z ⇔ x � y → z ⇔ x �′ y →′ z.

Hence, (L,6′,�′,→′, 0, e) is a weak hyper residuated lattice of order n + 1.

De�nition 2.7. A subset D of L containing 1 is called a deductive system (shortly:
DS) if x ∈ D and (x → y) ⊆ D imply y ∈ D, for all x, y ∈ L.

Example 2.8. (i) Clearly, L is a DS of L. If 1 is an scalar element, then {1} is
a DS of L, too.

(ii) Let ([0, 1],∨,∧,�, , 0, 1) be a weak hyper residuated lattice as in Exam-
ple 2.3. It is easy to shows that D = [ 12 , 1] is its DS.

(iii) In Example 2.4, {1} is a DS and {1, b} is not a DS of L.

De�nition 2.9. A nonempty subset D of L is called
• an upset if x ∈ D and x 6 y, then y ∈ D, for all x, y ∈ L,
• an S→reflexive if (A → B)∩D 6= ∅ implies (A → B) ⊆ D, for all A,B ⊆ L.

Proposition 2.10. Every S→reflexive DS of L is an upset.

Proof. Let D be an S→-re�exive DS, x ∈ D and x 6 y, for some y ∈ L. By
Proposition 2.5(ii), 1 ∈ x → y and so (x → y) ∩D 6= ∅. Since D is S→-re�exive,
then x → y ⊆ D and so by DS, we have y ∈ D.

Proposition 2.11. Let D be an S→reflexive DS of L. Then

(i) D � A → B ⇔ (A → B) ∩D 6= ∅ ⇔ A → B ⊆ D,

(ii) A → B ⊆ D and A → B � A′ → B′ imply D � A′ → B′,

(iii) D � A → B � A′ → B′ implies D � A′ → B′.

Proof. (i) If D � A → B, then there exist a ∈ A and b ∈ B such that D � a → b.
So there exists d ∈ D and t ∈ a → b such that d 6 t. Since D is an S→reflexive
DS, then by Proposition 2.10, D is an upset and so t ∈ D ∩ (a → b). Hence
(A → B) ∩D 6= ∅. Conversely, let (A → B) ∩D 6= ∅. Then there exist a ∈ A and
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b ∈ B such that (a → b) ∩D 6= ∅. So there exists t ∈ (a → b) ∩D and since t 6 t,
then D � a → b. Hence D � A → B.

(ii) Let A → B ⊆ D. Since A → B � A′ → B′, then there exist a ∈ A,
b ∈ B, a′ ∈ A′ and b′ ∈ B′ such that a → b � a′ → b′. So there exist t ∈ a → b
and t′ ∈ a′ → b′ such that t 6 t′. Now, we have t ∈ a → b ⊆ A → B ⊆ D and so
t ∈ D. Since D is an upset, then t′ ∈ D. Therefore, t′ ∈ D ∩ A′ → B′ and so by
(i), we get D � A′ → B′.

(iii) If D � A → B, then by (i), A → B ⊆ D and so by (ii), we conclude
D � A′ → B′.

Example 2.12. Let (L,6, 0, 1) be as in Example 2.4. Consider the following
hyperoperations:

� 0 a b 1
0 {0} {0} {0} {0}
a {0} {a, 0} {a} {a}
b {0} {a} {b} {b}
1 {0} {a} {b} {1}

→ 0 a b 1
0 {1} {1} {1} {1}
a {0, a} {1} {1} {1}
b {0} {0, a} {1} {1}
1 {0} {a} {b} {1}

Then (L,∨,∧,�,→, 0, 1) is a weak hyper residuated lattice and D1 = {1}, D2 =
{1, b} are its S→-re�exive deductive systems.

3. Implicative deductive systems

De�nition 3.1. A subset D of L containing 1 is called an implicative deductive
system (shortly: IDS), if (x → y) ⊆ D and x → (y → z) ⊆ D imply (x → z) ⊆ D.

Example 3.2. Let L = {a, b, c, 0, 1} be the lattice with the following diagram.

ss
s s

s

@@ �
�
�

��

A
A

A

c

0

1

a

b

Consider the following hyperoperations:

→ 0 a b c 1
0 {1} {1} {1} {1} {1}
a {c} {1} {1} {c} {1}
b {c} {a, b, c} {1} {c} {1}
c {a, b} {a, b} {b, a} {1} {1}
1 {0} {a} {b, a} {c} {1}

� 0 a b c 1
0 {0} {0} {0} {0} {0}
a {0} {a} {a} {0} {a}
b {0} {a} {b, a} {0} {a, b}
c {0} {0} {0} {c} {c}
1 {0} {a} {b, a} {c} {1}
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It is easy to show that (L,∨,∧,�,→, 0, 1) is a weak hyper residuated lattice.
Moreover, easy calculations show that {1, a} is an IDS of L and {1, b, c} is not
an IDS. Since (b → 0) = {c} ⊆ {1, b, c} and (b → (0 → a)) = {1} ⊆ {1, b, c} but
(b → a) = {a, b, c} * {1, b, c}.

Theorem 3.3. Let D be a nonempty subset of L containing 1. Then

(i) if D is an IDS, then D is a DS,

(ii) D is an IDS if and only if each Da = {x ∈ L|a → x ⊆ D} is a DS of L,

(iii) D is an IDS if and only if (x → (y → z)) ∩ D 6= ∅ and (x → y) ∩ D 6= ∅
imply (x → z) ∩D 6= ∅, for all x, y, z ∈ L.

Proof. (i) Let x ∈ D and x → y ⊆ D. Since by Proposition 2.5(v), x ∈ (1 → x)∩D
and (x → y) ⊆ (1 → (x → y)) ∩ D and D is an IDS, then y ∈ (1 → y) ⊆ D.
Hence D is a DS.

(ii) Let a ∈ D. Since, by Proposition 2.5(iv), 1 ∈ (a → 1), then 1 ∈ Da.
Suppose that x ∈ Da and (x → y) ⊆ Da. Then (a → x) ⊆ D and (a → (x →
y)) ⊆ D. Hence (a → y) ⊆ D i.e., y ∈ Da. Therefore, Da is a DS of L.

(iii) The proof is clear.

Theorem 3.4. For a nonempty subset D of L the following are equivalent:

(i) D is an IDS,

(ii) D is a DS and (y → (y → x)) ⊆ D implies (y → x) ⊆ D, for any x, y ∈ L,

(iii) D is a DS and (z → (y → x)) ⊆ D implies ((z → y) → (z → x)) ⊆ D, for

any x, y, z ∈ L,

(iv) 1 ∈ D and (z → (y → (y → x))) ⊆ D and z ∈ D imply (y → x) ⊆ D, for

any x, y, z ∈ L,

(v) (x → (x� x)) ⊆ D, for any x ∈ L.

Proof. (i) ⇒ (ii) By Theorem 3.3, D is a DS of L. Now, let (y → (y → x)) ⊆ D,
for any x, y ∈ L. Since 1 ∈ (y → y)∩D and D is an IDS of L, then (y → x) ⊆ D.

(ii) ⇒ (iii) Let (z → (y → x)) ⊆ D, for any x, y ∈ L. Then by Proposition
2.5(xiv),

y → x � (z → y) → (z → x), (1)

and by Proposition 2.5(ix),

(z → y) → (z → x) 6 z → ((z → y) → x) (2)

So, by Proposition 2.5(xii) and (1), we get z → (y → x) � z → ((z → y) → (z →
x)), and by Proposition 2.5(xii) and (2), we get z → ((z → y) → (z → x)) 6 z →
(z → ((z → y) → x)). Hence, z → (y → x) � z → (z → (z → y) → x)). By
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Proposition 2.11(i) and assumption, we have D � z → ((z → y) → x) 6 (z →
y) → (z → x) and so, we get (z → y) → (z → x) ⊆ D.

(iii) ⇒ (iv) Let z → (y → (y → x)) ⊆ D and z ∈ D, for any x, y, z ∈ L. Since
D is a DS, then y → (y → x) ⊆ D. Now, by (iii), (y → y) → (y → x) ⊆ D.
Also,by Proposition 2.5(iv, v), we get y → x ⊆ 1 → (y → x) ⊆ (y → y) → (y →
x) ⊆ D and so y → x ⊆ D.

(iv) ⇒ (i) Let z → (y → x) ⊆ D and z → y ⊆ D, for any x, y, z ∈ L. Then, by
Proposition 2.5, we get z → (y → x) 6 y → (z → x) � (z → y) → (z → (z → x)),
and so, by Proposition 2.11, we conclude that (z → y) → (z → (z → x)) ⊆ D.
Now, by (iv), z → x ⊆ D.

(ii) ⇒ (v) Let x ∈ A and u ∈ x� x. Then u ∈ x� x and so x� x � u. Now,
by (WHRL3), x � x → u and so by Proposition 2.5(ii), 1 ∈ D ∩ x → (x → u).
Hence, by Proposition 2.11, x → (x → u) ⊆ D. Therefore, by (ii), x → u ⊆ D.

(v) ⇒ (ii) Put A = y → (y → x) ⊆ D. By using two times of Proposition
2.5(ix), we get

1 ∈ A → A = A → (y → (y → x)) 6 y → (A → (y → x)) 6 y → (y → (A → x)).

Hence, 1 ∈ y → (y → (A → x)) i.e., ∃t ∈ A → x such that 1 ∈ y → (y → t).
Then 1 � y → (y → t) and so by (WHRL3), y = 1 � y � y → t. Since, by
(WHRL3), y � y � t, then ∃a ∈ y � y such that a 6 t and so by Proposition
2.5(xii), y → a 6 y → t. On the other hand, y → a ⊆ y → (y � y) ⊆ D. So,
by Proposition 2.5(ix), D � y → t ⊆ y → (A → x) 6 A → (y → x). Now, by
Proposition 2.11, A → (y → x) ⊆ D and since D is a DS, then y → x ⊆ D.

Corollary 3.5. If {1} is an IDS, then x 6 x� x, for any x ∈ L.

Proof. Since, for any u ∈ x � x and x ∈ L, x → u ⊆ {1}, then 1 ∈ x → u. Now,
by Proposition 2.5(iii), we get x 6 u, for any u ∈ x� x, i.e. x 6 x� x.

Theorem 3.6. Let D be an IDS and E be a DS of L such that D ⊆ E. Then E
is an IDS, too.

Proof. Put A = z → (y → x) ⊆ E. Now, by using two times of Proposition
2.5(ix), we have

1 ∈ A → A = A → (z → (y → x)) 6 z → (A → (y → x)) 6 z → (y → (A → x)).

So 1 ∈ D ∩ z → (y → (A → x)). By Proposition 2.11(iii), we get z → (y → (A →
x)) ⊆ D and so by Theorem 3.4(iii), (z → y) → (z → (A → x)) ⊆ D ⊆ E. Also,
by Proposition 2.5(ix),

(z → y) → (z → (A → x)) 6 (z → y) → (A → (z → x)) 6 A → ((z → y) → (z → x).

Therefore, A → ((z → y) → (z → x)) ⊆ E. Since E is a DS and A ⊆ E, then
(z → y) → (z → x) ⊆ E. Hence, by Theorem 3.3, E is an IDS .

Corollary 3.7. The deductive system {1} is an IDS if and only if every DS of

L is an IDS.
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4. Positive implicative deductive systems

De�nition 4.1. A subset D of L containing 1 is a positive implicative deductive

system (shortly: PIDS), if x → ((y → z) → y) ⊆ D and x ∈ D imply y ∈ D.

Example 4.2. Let L be as in the Example 3.2. Then easy calculations show that
{1, a, b} is a PIDS of L and {1, a} is an IDS but not a PIDS of L. Since we
have a → ((b → b) → b) = a → ({1} → {b}) = a → {a, b} = {1} ⊆ {1, a} and
a ∈ {1, a} but b /∈ {1, a}.

Theorem 4.3. Every PIDS is an IDS.

Proof. Let D be a PIDS and y → (y → x) ⊆ D. Then by Proposition 2.5(v, xiii),

y → (y → x) 6 ((y → x) → x) → (y → x) ⊆ 1 → (((y → x) → x) → (y → x)),

So, by Proposition 2.11, we get 1 → (((y → x) → x) → (y → x)) ⊆ D. Now,
since D is a PIDS and 1 ∈ D, then y → x ⊆ D and so, by Theorem 3.3, D is an
IDS.

Corollary 4.4. Every PIDS is a DS.

Theorem 4.5. Let D be a DS of L. Then the following are equivalent:

(i) D is a PIDS,

(ii) if (x → y) → x ⊆ D, then x ∈ D, for any x, y ∈ L,

(iii) (¬x → x) → x ⊆ D, for any x ∈ L.

Proof. (i) ⇒ (ii) Let D be a PIDS and take A = (x → y) → x ⊆ D. Since
A ⊆ (1 → A) ∩D, then by Proposition 2.11, 1 → A = 1 → ((x → y) → x) ⊆ D.
So, by assumption, x ∈ D.

(ii) ⇒ (i) Let x → ((y → z) → y) ⊆ D and x ∈ D. Since D is a DS, then
(y → z) → y ⊆ D and so, by assumption, we get y ∈ D i.e., D is a PIDS.

(i) ⇒ (iii) Let D be a PIDS. By Proposition 2.5 (xi), x � (y → x) → x, for
any y ∈ L. Now, take y ∈ ¬x. Hence x � (¬x → x) → x and we get

1 ∈ x → ((¬x → x) → x), by Proposition 2.5(ii)
≤ (((¬x → x) → x) → 0) → (x → 0), by Proposition 2.5(xiii)
≤ (¬x → x) → ((((¬x → x) → x) → 0) → x), by Proposition 2.5(xiii)
≤ (((¬x → x) → x)︸ ︷︷ ︸

A

→ 0) → ((¬x → x) → x)︸ ︷︷ ︸
A

, by Proposition 2.5(ix)

= (A → 0) → A.

Then 1 ∈ D ∩ ((A → 0) → A). Hence, by Proposition 2.11, (A → 0) → A ⊆ D.
Therefore, by (ii), we have A ⊆ D i.e., (¬x → x) → x ⊆ D.
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(iii) ⇒ (i) Let D � (x → y) → x. It is enough to show that x ∈ D. Since
0 6 y, for any y ∈ L, then by using two times of Proposition 2.5(xiii), we get (x →
y) → x � (x → 0) → x. By Proposition 2.11, we get ¬x → x = (x → 0) → x ⊆ D
and by assumption (¬x → x) → x ⊆ D. Now, since D is a DS, then x ∈ D.

In the following proposition we give a condition that an IDS is a PIDS.

Proposition 4.6. Let D be an IDS. Then D is a PIDS if and only if

(x → y) → y ⊆ D implies (y → x) → x ⊆ D, for any x, y ∈ L.

Proof. Let D be a PIDS and (x → y) → y ⊆ D. By Proposition 2.5(xi), we have
x � (y → x) → x and so by Proposition 2.5(xiii), ((y → x) → x) → y � x → y.
Since,

(x → y) → y ≤ (y → x) → ((x → y) → x), by Proposition 2.5(xiii)
≤ (x → y) → ((y → x) → x), by Proposition 2.5(ix)
� (((y → x) → x) → y) → ((y → x) → x)︸ ︷︷ ︸

A

,

by Proposition 2.5(xiii) and Proposition 4.5, we have, D � (x → y) → y � A ⊆
1 → A. So, by Proposition 2.11, we get (1 → A) ⊆ D. Hence (1 → A) = 1 →
((((y → x) → x) → y) → ((y → x) → x)) ⊆ D. Moreover, since 1 ∈ D and D is a
DS, then

(((y → x) → x)︸ ︷︷ ︸
X

→ y) → ((y → x) → x)︸ ︷︷ ︸
X

⊆ D.

Since D is a PIDS, then by Proposition 4.5 we obtain (y → x) → x = X ⊆ D.
Conversely, by Proposition 4.5, it is enough to show that (x → y) → x ⊆ D

implies x ∈ D. For this let (x → y) → x ⊆ D. Since, by Proposition 2.5(xii),
(x → y) → x 6 (x → y) → ((x → y) → y), then by Proposition 2.11, we have
(x → y) → ((x → y) → y) ⊆ D. Since D is an IDS, then by Theorem 3.4(ii), we
get (x → y) → y ⊆ D. Now, by assumption, we have (y → x) → x ⊆ D.

On the other hand, since y � x � y, then y � x → y and, by Proposition
2.5(xii), we get (x → y) → x � y → x. Now, by assumption, (x → y) → x ⊆ D.
So, by Proposition 2.11, we get y → x ⊆ D. Since (y → x) → x ⊆ D, y → x ⊆ D
and D is a DS, then x ∈ D.

Theorem 4.7. Let D be a PIDS and E be a DS of L such that D ⊆ E. Then

E is a PIDS, too.

Proof. Let D be a PIDS and E be a DS such that D ⊆ E. Since, by Theorem
4.3, D is an IDS, then by Theorem 3.6. E is an IDS, too. Now, take A = (x →
y) → y ⊆ E. By Proposition 4.6, it is enough to show that (y → x) → x ⊆ E.
Since 1 ∈ A → A = A → ((x → y) → y), then A → ((x → y) → y) ⊆ D.
Also, by Theorem 3.4(iii), (A → (x → y)) → (A → y) ⊆ D. Therefore, by
Proposition 2.5(ix), (x → (A → y)) → (A → y) ⊆ D and so, by Proposition 4.6,
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((A → y) → x) → x ⊆ D ⊆ E. Now, we get (A → y) → x) → x ⊆ E. On the
other hand, we have

(x → y) → y � (((x → y) → y)︸ ︷︷ ︸
A

→ y) → y, by Proposition 2.5(xi)

� (y → x) → ((A → y) → x), by Proposition 2.5(xii)
� (((A → y) → x) → x) → ((y → x) → x) ⊆ E,

by Proposition 2.5(xii) and Proposition 2.11. This implies (y → x) → x ⊆ E since
E is a DS.

5. Fantastic deductive systems

De�nition 5.1. A subset D of L containing 1 is called a fantastic deductive system
(shortly: FDS) if z → (y → x) ⊆ D and z ∈ D imply ((x → y) → y) → x ⊆ D.

Example 5.2. Let L be as in Example 3.2. Then {1, a, b} is a FDS of L.

Proposition 5.3. Any FDS is a DS.

Proof. Let D be a FDS, x → y ⊆ D and x ∈ D. Since by Proposition 2.5(v),
y ∈ 1 → y, then x → y ⊆ x → (1 → y) ∩D and so, by x ∈ D and de�nition of a
FDS, ((y → 1) → 1) → y ⊆ D. Now, by Proposition 2.5(xi) and (i), we conclude
that 1 ∈ (y → 1) → 1. So

1 → y ⊆
⋃

a∈(y→1)→1

(a → y) = ((y → 1) → 1) → y ⊆ D.

Hence, 1 → y ⊆ D. Since, by Proposition 2.5(v), y ∈ 1 → y, then y ∈ D. Thus D
is a DS.

Proposition 5.4. Let D be a DS of L. Then D is a FDS if and only if

y → x ⊆ D implies ((x → y) → y) → x ⊆ D.

Proof. Let D be a FDS and y → x ⊆ D. By Proposition 2.5(v), y → x ⊆ 1 →
(y → x), and so by Proposition 2.11, 1 → (y → x) ⊆ D. Since 1 ∈ D and D is
a FDS, then ((x → y) → y) → x ⊆ D. Conversely, let z → (y → x) ⊆ D and
z ∈ D. Since D is a DS, then we conclude y → x ⊆ D. Now, by assumption,
((x → y) → y) → x ⊆ D.

Theorem 5.5. Let D be a FDS and E be a DS of L such that D ⊆ E. Then E
is a FDS, too.

Proof. Let y → x ⊆ E. Since, by Proposition 2.5(iv) and (ix), 1 ∈ (y → x) →
(y → x) 6 y → ((y → x) → x), then 1 ∈ D ∩ y → ((y → x) → x) and so, by
Proposition 2.11, y → ((y → x) → x) ⊆ D. Now, take X = (y → x) → x. Since D
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is a FDS, then by Proposition 5.4, y → X ⊆ D implies ((X → y) → y) → X ⊆ D.
Also, by Proposition 2.5(ix), we have

((X → y) → y) → X � (y → x) → (((X → y) → y) → x)︸ ︷︷ ︸
A

,

which shows that D ∩ A 6= ∅. Therefore, by Proposition 2.11, A ⊆ D and since
D ⊆ E, then A ⊆ E. On the other hand, y → x ⊆ E and E is a DS imply that
((X → y) → y) → x︸ ︷︷ ︸

B

⊆ E. Moreover, using Proposition (ii), (iv), (ix) and (xiii),

from

1 ∈ (y → x) → 1 ⊆ (y → x) → (x → x),
≤ x → ((y → x) → x),
≤ (((y → x) → x) → y) → (x → y),
≤ ((x → y) → y) → ((((y → x) → x) → y) → y),
≤ (((((y → x) → x) → y) → y) → x)︸ ︷︷ ︸

B

→ (((x → y) → y) → x)︸ ︷︷ ︸
C

,

we get 1 ∈ E ∩ (B → C). Now, since E is a DS, then by Proposition 2.11,
C = ((x → y) → y) → x ⊆ E. Hence, by Proposition 5.4, E is a FDS.

Corollary 5.6. {1} is a FDS of L if and only if any DS of L is a FDS.

Theorem 5.7. If D is a PIDS of L, then it is a FDS.

Proof. Let D be a PIDS and y → x ⊆ D. Then by Proposition 2.5(xiii) and
(ix), we have

y → x 6 ((x → y) → y) → ((x → y) → x) � (x → y) → (((x → y) → y) → x)︸ ︷︷ ︸
A

.

Since y → x ⊆ D, then by Proposition 2.11, (x → y) → A ⊆ D. Also, by
Proposition (2.5)(vii), x� ((x → y) → y) � x. Therefore, by Proposition 2.5(vi),
x � ((x → y) → y) → x. Now, by Proposition 2.5(xiii), we conclude (((x →
y) → y) → x) → y � x → y. So, by another using of Proposition 2.5(xiii), we get

(x→y)→((x→y)→y)→x︸ ︷︷ ︸
A

� ((((x→y)→y)→x)→y)︸ ︷︷ ︸
B

→ (((x → y) → y) → x)︸ ︷︷ ︸
C

.

Therefore, by Proposition 2.11, B → C ⊆ D. Indeed, we have

B → C = ((((x → y) → y) → x)︸ ︷︷ ︸
X

→ y) → (((x → y) → y) → x)︸ ︷︷ ︸
X

⊆ D.

Since D is a PIDS, then by Theorem 4.5, X = ((x → y) → y) → x ⊆ D. Thus D
is a FDS.



42 R. A. Borzooei and S. Niazian

References

[1] R. A. Borzooei and M. Bakhshi, (Weak) implicative hyper BCK-ideals, Quasi-
groups and Related Systems 12 (2004), 13− 28.

[2] R. A. Boorzooei, A. Hasankhani, M. M. Zahedi, Y. B. Jun, On hyper

K-algebra, J. Math. Japonica 52 (2000), 113− 121.

[3] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc.
88 (1958), 467− 490.

[4] P. Corsini, Prolegomena of hypergroup, Aviani Editore, (1993).
[5] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Kluwer Aca-

demic Publishers, Dordrecht, (2003).
[6] Sh. Ghorbani, A. Hasankhani and E. Eslami, Hyper MV -algebras, Set-Valued

Mathematics and Applications 1 (2008), 205− 222.

[7] P. Hájek,Metamathematics of fuzzy logic, Kluwer Academic Publishers, Dordrecht,
(1998).

[8] M. Haveshki, A. Borumand Saeid and E. Eslami, Some types of �lters in

BL-algebra, Soft Computing 10 (2006), 657− 664.

[9] Y. Imai and K. Iséki, On axiom system of propositional calculi XIV , Proc. Japan
Academy 42 (1966), 19− 22.

[10] F. Marty, Sur une generalization de la notion de groups, 8th Congress Math. Scan-
dinaves, Stockholm, (1934), 45− 49.

[11] M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 45
(1939), 335− 354.

[12] O. Zahiri, R. A. Borzooei and M. Bakhshi, (Quotient) hyper residuated lattices,
Quasigroups and Related Systems 20 (2012), 125− 138.

Received January 8, 2013

Department of Mathematics, Shahid Beheshti University, Tehran, Iran
E-mail: borzooei@sbu.ac.ir, s−niazian@sbu.ac.ir


