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Preface to the Second Edition

This monograph is a revised and greatly expanded version of our previous book
[128], Telegraph Processes and Option Pricing, Springer, 2013.

While the general structure of the book is kept, the changes are fairly substantial
and related mostly to new results obtained in recent years.

Chapter 2 is supplemented by a section concerning the probability distribution
function of the Goldstein-Kac telegraph process, which is expressed in term of
Gauss hypergeometric functions.

The rest of the book has been heavily rewritten. Chapter 3, on asymmetric jump-
telegraph processes, has been greatly expanded. A number of sections have been
added on telegraph processes with alternating deterministic and random jumps.
In addition, this chapter includes rather new results related to piecewise linear
processes with arbitrary sequences of velocities, jump amplitudes and switching
intensities. A very detailed new Chap. 4 on jump-diffusion processes with regime
switching is presented. With financial applications in mind, we study there, among
other things, martingales and Girsanov’s transformations, and introduce the concept
of entropy.

Chapter 5, devoted to the functionals of the telegraph process, is considerably
expanded by adding the sections related to exponential functionals, telegraphic
meanders and running extrema, first passage times for the telegraph processes with
alternating random jumps, as well as the distribution of the Euclidean distance
between two independent telegraph processes.

The new Chap. 6, related to the multidimensional counterparts of the telegraph
processes, is included into the monograph. The method of integral transforms
for studying the finite-velocity stochastic motions in the Euclidean space R

m of
arbitrary dimension m ≥ 2 is presented. Application of this method to the stochastic
motions in the spaces R

2,R3,R4,R6 enables to obtain their basic characteristics.
Moreover, for the stochastic motions in the even-dimensional spaces R2,R4,R6 one
managed to derive closed-form expressions for their distributions, while in the space
R

3 the distribution is obtained only in an asymptotic form on small time intervals.
Chapter 7 is devoted to a more or less complete presentation of financial models

based on various versions of the telegraph processes. Since the publication of paper
Ratanov [182] and book Kolesnik and Ratanov [128], many works have appeared

v
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on the topic, including several monographs, see [36, 169, 220]. However, some of
the results presented in recent works do not seem to us completely justified and raise
doubts. One of our goals is to correct these misinterpretations and to formulate an
accurate understanding of such models.

The market model, built on the telegraph process with constant jump amplitudes,
has already become standard. It is worth noting that this model continues to evolve
in various directions. First, such an approach to modelling the financial market
can rely on short-memory processes, when the future development of the market
depends on the time spent by the process in the current state. Second, the standard
model can be modified by adding a new source of stochasticity. For instance, we
have included in the second edition a model based on a double stochastic telegraph
process with a double jump component, where the switching rates depend on
external (environmental) factors. This model is followed by a model with Poisson-
modulated switching intensities. The striking effect is that in all cases, for certain
combinations of coefficients, the market model is complete.

Detailed diffusion-telegraph market models are also presented, Sect. 7.12. This
model is incomplete, and the Esscher transform is typically used for option pricing.
We introduce the concept of relative entropy and correct the common mistake that
the Esscher transform always provides the minimum relative entropy.

Despite the fact that the book has been significantly expanded, many aspects have
not been included in it. The main loss is the rapidly developing fractional approach
to telegraph processes with wide applications, see, among others, e.g. [32,138,162,
163]. Hopefully, a detailed presentation of these issues awaits us in the near future.

Kishinev, Moldova Alexander D. Kolesnik
Chelyabinsk, Russia Nikita Ratanov
November 2021
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This book gives an introduction to the contemporary mathematical theory of non-
interacting particles moving at finite velocity in one dimension with alternating
directions, so-called the telegraph (or telegrapher’s) stochastic processes. The main
objective is to give the basic properties of the one-dimensional telegraph processes
and to present their applications to option pricing. The book contains both the well
known results and the most recent achievements in this field.

The model of a mass-less particle that moves at infinite speed on the real line
and alternates at random two possible directions of motion infinitely many times
per unit of time is of great interest to physicists and mathematicians beginning with
the classical works of A. Einstein (1905) [66] and M. Smoluchowski (1906) [209].
First, A. Einstein determined the transition density of such a kind of motion as the
fundamental solution to the heat equation. Then, M. Smoluchowski described this as
a limit of random walks. This interpretation is used by physicists as an instrument for
mathematical modelling the physical processes of mass and heat transfer. Later this
stochastic process, called afterward the Brownian motion, was applied to explain
the motion first observed by the botanist Robert Brown in 1828.

It is curious that in 1900, i.e. five years before Einstein, Louis Bachelier
proposed and analysed the model of financial contracts based on what is now
called “Brownian motion” [7] (see also [8]). A. Einstein was completely unaware
of the work of R. Brown, as well as of the work of L. Bachelier. Nevertheless,
Einstein’s paper has had incredible influence on the science of the XXth century,
but the unusual and outstanding work of L. Bachelier has been lost from scientific
interchange and it was only rediscovered in 1964. In the textbook of W. Feller [75]
Brownian motion is named as the process of Wiener-Bachelier.

The crucial point in studying the Brownian motion was a work by N. Wiener
(1923) [219] in which he was able to introduce a Gaussian measure in the
space of continuous functions. Thus, he had given the opportunity of rigorous
axiomatic constructing an extremely important stochastic process that was afterward
called the Wiener process. After the appearance of the Einstein-Smoluchowski’s
model governed by the heat equation, Brownian motion has been extensively
used to describe various real phenomena in statistical physics, optics, biology,
hydrodynamics, financial markets and other fields of science and technology. It was

vii
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discovered that the theoretical calculations based on this model agree well with
experimental data if the speed of the process is sufficiently big. If the speed is small,
this agreement becomes worse. This fact, however, is not too surprising if we take
into account the infinite-velocity nature of the Wiener process.

That is why many attempts were made to suggest alternative models in which
the finiteness of both the speed of motion and the intensity of changes of directions
per unit of time, could be assumed. Such a model was first introduced in 1922 by
G. I. Taylor [213] in describing the turbulent diffusion, (see also the discussion
between Prof. Karl Pearson and Lord Rayleigh in 1905, [165, 166], [202]). In 1926
V. Fock [76] suggested the use of a hyperbolic partial differential equation (called
the telegraph, or damped wave equation) to describe the process of the diffusion of a
light ray passing through a homogeneous medium. Later the time-grid approach was
developed at length by S. Goldstein [85]. This naturally led to the telegraph equation
describing the spatio-temporal dynamics of the potential in a transmitting cable,
(without leakage) [217]. In his 1956 lecture notes, M. Kac, (see [106]), considered
a continuous-time version of the telegraph model. Since then, the telegraph process
and its various generalisations have been studied in great detail with numerous
applications in physics, and, more recently, in financial market modelling. The
telegraph process is the simplest example of the so-called random evolution (see,
e.g., [74, Ch. 12] and [168, Ch. 2]).

An efficient conventional approach to the analytical study of the telegraph
process, similar to that for diffusion processes, is based on pursuing a fundamental
link relating various expected values of the process with initial value and/or
boundary value problems for certain partial differential equations. One should note
that the telegraph equation first has appeared more than 150 years ago in a work
by W. Thomson (Lord Kelvin) in an attempt to describe the propagation of electric
signals on the transatlantic cable [214]. At present, it is one of the classical equations
of mathematical physics.

The main objective of the book is to give a modern systematic treatment of
the telegraph stochastic processes theory with an accent on the financial markets
applications. These applications are rather new in the literature, but we believe
that our approach is quite natural if we take into account the finite-velocity market
motions joint with abrupt jumps (deterministic or of random values) that naturally
produce heavy tails in such models.

In the book we develop an unified approach based on integral and differential
equations. This approach might seem somewhat unusual for the specialists who
mostly use the stochastic calculus methods in their research. We, however, believe
that our approach is quite natural and could be exploited as a fruitful addition to the
classical methodology.

The book consists of five chapters and is organised as follows.
In Chap. 1, for the reader’s convenience and in order to make the book more self-

contained, we recall some mathematical preliminaries needed for further analysis.
Chapter 2 deals with the general definition and basic properties of a two-

state telegraph process on the real line performed by a stochastic motion at finite
speed driven by a homogeneous Poisson process. We derive the finite-velocity
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counterparts of the classical Kolmogorov equations for the joint transition densities
of the process and its direction representing a hyperbolic system of two first-order
partial differential equations with constant coefficients. Basing on this system, we
derive a second-order telegraph equation for the transition density of the process.
The explicit formulae are obtained for the transition density of the process and
its characteristic function as the solutions of respective Cauchy problems. It is
also shown that, under the standard Kac’s condition, the transition density of the
telegraph process tends to the transition density of the one-dimensional Brownian
motion. The formulae for the Laplace transforms of the transition density and of the
characteristic function of the telegraph process are also obtained.

In Chap. 3 we consider some important functionals of telegraph processes. We
describe the distributions of the telegraph process in the presence of absorbing and
reflecting barriers. First passage times and spending times of the telegraph processes
are considered also. This presentation corrects some stable inaccuracies in the field.

The applications of telegraph processes to financial modelling presented in
Chap. 5, require studying the asymmetric telegraph processes. Moreover, it is crucial
to add jumps to the asymmetric telegraph process. In Chap. 4 we introduce the reader
to this new situation.

Chapter 5 is devoted to some contemporary applications of the telegraph
processes to financial modelling. We modify the classical Black-Scholes market
model exploiting a telegraph process instead of Brownian motion. As is easy to see,
the simple substitution of a telegraph process instead of Brownian motion in the
framework of Black-Scholes-Merton model leads to arbitrage opportunities. To get
an arbitrage-free model we add a jump component to the telegraph process.

The huge literature on the mathematical modelling of financial markets began
from two fundamental papers of F. Black and M. Scholes [23] and of R. C. Merton
[154] in 1973. In this classical model the price of risky asset is assumed to follow
a geometric Brownian motion. This assumption permits one to obtain nice closed
formulae for option prices and hedging strategies.

Nevertheless, the famous Black-Scholes formula has well known shortages. It is
commonly accepted that Black-Scholes pricing formula distorts some option prices.
Typically, it substantially underprices deep-in-the-money and out-of-the-money
options and overprices at-the-money options, but downward (or upward) slopes
are possible. To accord the Black-Scholes formula with market prices of standard
European options different volatilities for different strikes and maturities are used.
This trick is referred to as the volatility smile. In the “typical” comportment the
implied volatility of deeply in-the-money and out-of-the-money options is higher
than at-the-money options. Modern fearful markets are afraid of large downward
movements and crashes. A smile pattern of these markets more resembles a “skew”,
where implied volatility increases with shortening the maturity time.

These observations provoke a growing interest in the construction of more
and more complicated extensions of the Black-Scholes model. Stochastic volatil-
ity models are based on the stochastic dynamics of the Black-Scholes implied
volatility. Various patterns of smiles and skews can be constructed depending on
the correlation and the parameters of the volatility process. These models have
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some empirically approved evidences of their realistic and unrealistic features, but
we believe that such an approach proposes the quantity sophistication instead of
fundamental explanation of problem.

Another approach, that adds a pure jump process to Black-Scholes diffusion, can
capture many volatility smiles and skews. This idea of jump-diffusion model have
been proposed for better adequacy by Merton [155], and nowadays is applied to
handle option pricing, especially when options are close to maturity. Similarly to
stochastic volatility models, jump-diffusion models increase Markov dimension of
the market and form incomplete market models.

We suggest here a new model to explain market’s movements. Suppose that the
log-returns are driven by a telegraph process, i.e. they move with pair of constant
velocities alternating one to another at Poisson times. To make the model more
adequate and to avoid arbitrage opportunities the log-return movement should be
supplied with jumps occurring at times of the tendency switchings.

Such a model looks attractive due to finite propagation velocity and the intuitively
clear comportment. The jump-telegraph model captures bullish and bearish trends
using velocity values, and it describes crashes and spikes by means of jump values.
This model describes adequately the processes on oversold and overbought markets,
when changes on the market tendencies accumulate in course of time.

At the same time, the model is analytically tractable. It allows us to get solutions
for hedging and investment problems in closed form. Jumps are used in the model
to avoid arbitrage opportunities, but not solely for adequacy.

The model based on the telegraph processes with jumps of deterministic values is
complete as well as in the classical Cox-Ross-Rubinstein and Black-Scholes cases.
It is attractive mathematically and allows us to freely modify the model to meet the
needs of applications.

Under respective rescaling, the jump-telegraph model converges to Black-
Scholes model. It permits us to define naturally a volatility of the jump-telegraph
model depending on the velocities and jump values as well as on the switching
intensities. The model based on jump-telegraph processes is characterised by
volatility smiles of various shapes including frowns and skews depending on the
parameters’ values.

We hope that this book will be interesting to the specialists in the area of diffusion
processes with finite speed of propagation and in financial modelling. We expect that
the book will also be useful for the students and postgraduates who make their first
steps in these intriguing and attractive fields.

Finally, we would like to thank the staff of Springer, Editorial Statistics Europe,
for the invitation to write this book.

Kishinev, Moldova Alexander D. Kolesnik
Bogota, Colombia Nikita Ratanov
March 2013
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