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Spectra of semimodules
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Abstract. The purpose of this paper is to investigate possible structures and useful
properties of prime subsemimodules of a semimodule M over a semiring R and show
various applications of the properties. The main part of this work is to introduce a new
class of semimodules over R called strong primeful R-semimodules. It is shown that
every non-zero strong primeful semimodule possesses the non-empty prime spectrum
with the surjective natural map. Also, it is proved that this class contains the family
of finitely generated R-semimodules properly.

Mathematics subject classification: 16Y60.
Keywords and phrases: Prime subsemimodule, primeful semimodule, strong
primeful semimodule, prime spectrum.

1 Introduction

Semimodules over semirings also appear naturally in many areas of mathematics.
For example, semimodules are useful in the area of theoretical computer science as
well as in the solution of problems in the graph theory and cryptography [13, 18].
This paper generalizes some well know results on prime submodules in commutative
rings to commutative semirings. The main difficulty is figuring out what additional
hypotheses the ideal or subsemimodule must satisfy to get similar results. The two
new key notions are that of a "strong ideal" and a "strong subsemimodule". More-
over, quotient semimodules are determined by equivalence relations rather than by
subsemimodules as in the module case. Allen [1] has presented the notion of a parti-
tioning ideal (= Q-ideal) I in the semiring R and constructed the quotient semiring
R/I. Quotient semimodules over a semiring R have already been introduced and
studied by present authors in [10]. Chaudhari and Bonde extended the definition of
QM -subsemimodule of a semimodule and some results given in Section 2 in [10] to a
more general quotient semimodules case in [3]. Of course "quotient semimodule" is a
natural extension of "quotient semiring" and, hence, ought to be in the literature. So
quotient semimodules are particularly important in the study of the representation
theory of semimodules over semiring. The representation theory of semimodules over
semirings has developed greatly in the recent years. One of the aims of the modern
representation theory of semimodules is to generalize the properties of modules over
rings to semimodules over semirings. The aim of present paper is to extend some
basic results of C. P. Lu [15, 16, 17] to semimodules over semirings. We know (at
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least as far as we are aware) of no systematic study of the topological space Spec(M)
in the semimodule over semiring context. Our results is particularly important in
the topological space Spec(M) equipped with a topology called the Zariski topology
in the semimodule context and, we hope to address in a later paper.

2 Preliminaries

In order to make this paper easier to follow, we recall in this section various
notions from semimodule theory which will be used in the sequel. For the definitions
of monoid, semirings, semimodules and subsemimodules we refer to [4, 9, 10, 13, 14].
All semiring in this paper are commutative with non-zero identity.

Definition 1. (a) A semiring R is said to be semidomain whenever a, b ∈ R with
ab = 0 implies that either a = 0 or b = 0.

(b) A semifield is a semiring in which non-zero elements form a group under
multiplication.

(c) An R-semimodule M is said to be semivector space if R is a semifield.
(d) Let M be a semimodule over a semiring R. A subtractive subsemimodule

(= k-subsemimodule) N is a subsemimodule of M such that if x, x + y ∈ N , then
y ∈ N (so {0M} is a k-subsemimodule of M).

(e) A prime subsemimodule (resp. primary subsemimodule) of M is a proper
subsemimodule N of M in which x ∈ N or rM ⊆ N (resp. x ∈ N or rnM ⊆ N for
some positive integer n) whenever rx ∈ N . The collection of all prime (resp. max-
imal) subsemimodules of M is called the spectrum (resp. the maximal spectrum)
of M and denoted by Spec(M) (resp. Max(M)). Similarly, the collection of all
P -prime subsemimodules of M for any prime k-ideal P of R is designated by
SpecP (M). We define k-ideals and prime ideals of a semiring R in a similar fashion.

(f) We say that r ∈ R is a zero-divisor for a semimodule M if rm = 0 for some
non-zero element m of M . The set of zero-divisors of M is written ZR(M).

(g) An R-semimodule M is called multiplication semimodule provided that for
every subsemimodule N of M there exists an ideal I of R such that N = IM .

(h) We say that M is a torsion-free R-semimodule whenever r ∈ R and m ∈ M
with rm = 0 implies that either m = 0 or r = 0 (so every semivector space over a
semifield R is a torsion-free R-semimodule).

(i) A proper ideal I of a semiring R is said to be strong ideal (or strongly zero-sum
ideal) if for each a ∈ I there exists b ∈ I such that a + b = 0 (see [11, Example 2.3]
and [8]).

A subsemimodule N of a semimodule M over a semiring R is called a partitioning
subsemimodule (= QM -subsemimodule) if there exists a subset QM of M such that
M = ∪{q +N : q ∈ QM} and if q1, q2 ∈ QM then (q1 +N)∩ (q2 +N) 6= ∅ if and only
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if q1 = q2. Let N be a QM -subsemimodule of M and let M/N = {q + N : q ∈ QM}.
Then M/N forms an R-semimodule under the operations ⊕ and ¯ defined as follows:
(q1 + N) ⊕ (q2 + N) = q3 + N , where q3 ∈ QM is the unique element such that
q1 + q2 + N ⊆ q3 + N and r ¯ (q1 + N) = q4 + I, where r ∈ R and q4 ∈ QM

is the unique element such that rq1 + N ⊆ q4 + N . This R-semimodule M/N is
called the quotient semimodule of M by N [3]. By [3, Lemma 2.3], there exists a
unique element q0 ∈ QM such that q0 + N = N . Thus q0 + N is the zero element
of M/N . Also, [3, Theorem 2.4] show that the structure (M/N,⊕,¯) is essentially
independent of QM (see [3, Example 2.6]).

3 Spec(M)

In this section we extend some results of C. P. Lu [15] to semimodules over
semirings.

Remark 1. (Change of semirings.) Assume that I is a Q-ideal of a semiring R and
let N be a QM -subsemimodule of an R-semimodule M . We show now how M/N
can be given a natural structure as a semimodule over R/I. Let q1, q2 ∈ Q be such
that q1 + I = q2 + I, and let m1,m2 ∈ QM be such that m1 + N = m2 + N . Then
q1m1 + N = q2m2 + N . By assumption, there exist the unique elements t1, t2 ∈ QM

such that q1m1 + N ⊆ t1 + N and q2m2 + N ⊆ t2 + N ; so t1 = t2. Hence we can
unambiguously define a mapping R/I ×M/N into M/N (sending (q + I, m + N) to
t + N), where qm + N ⊆ t + N for some unique element t ∈ QM , and it is routine to
check that this turns the commutative additive semigroup with a zero element M/N
into an R/I-semimodule.

Definition 2. A proper subsemimodule N of a semimodule M over a semiring R
is said to be strong subsemimodule if for each x ∈ N there exists y ∈ N such that
x + y = 0.

Example 1. Let that E+
0 be the set of all non-negative integers. The monoid

M = (Z6, +6) is a semimodule over (E+
0 ,+, .) (see [13, p. 151]). An inspection will

show that N = {0̄, 2̄, 4̄} is a strong QM -subsemimodule of M , where QM = {0̄, 1̄}.
Lemma 1. Let N be a strong QM -subsemimodule of a module M over a semiring
R. Then the following hold:

(i) If q0 ∈ QM and q0 + N is the zero in M/N , then q0 ∈ N .
(ii) If q ∈ N ∩QM and q0 + N is the zero in M/N , then q = q0.
(iii) If q0 + N is the zero in M/N , then m ∈ N if and only if m + N =

{m + a : a ∈ N} and N + m = N are equal as sets.

Proof. (i) By [3, Lemma 2.3], q0 + N = N ; hence q0 ∈ N since every
QM -subsemimodule is a k-subsemimodule of M by [3, Theorem 3.2].

(ii) Since q + q0 ∈ (q + N)∩ (q0 + N), we must have q = q0. (iii) follows from (i)
and (ii).
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(iii) Let m ∈ N . Since the inclusion m + N ⊆ N is clear, we will prove the
reverse inclusion. Assume that x ∈ N . There exist a, b, b′ ∈ N such that x = q0 + a,
m = q0 + b and b + b′ = 0; so x = m + a + b′ ∈ m + N , and so we have equality. The
other implication is obvious.

Theorem 1. Let N be a proper strong QM -subsemimodule of a semimodule M over
a semiring R with (N : M) = P a Q-ideal of R. Then the following statements are
equivalent:

(i) N is a prime subsemimodule of M ;
(ii) M/N is a torsion-free R/P -semimodule;
(iii) (N :M< r >) = N for every r ∈ R− P ;
(iv) (N :M J) = N for every ideal J * P ;
(v) (N :R< m >) = P for every m ∈ M −N ;
(vi) (N :R L) = P for every subsemimodule L of M properly containing N ;
(vii) ZR(M/N) = P .

Proof. (i) ⇒ (ii) Note that M/N is an R/P -semimodule by Remark 1. Assume
that q0 is the unique element in QM such that q0 + N is the zero in M/N and let
(q + P )(m + N) = q0 + N , where qm + N ⊆ q0 + N for some q ∈ Q and m ∈ QM , so
qm ∈ N since N is a k-subsemimodule of M . Therefore, N prime gives either q ∈ P
or m ∈ N . If q ∈ P , then q + P is the zero in R/P by [6, Lemma 2.3]. If m ∈ N ,
then m+N is the zero in M/N by Lemma 1. Thus M/N is torsion-free semimodule
as an R/P -semimodule.

(ii) ⇒ (iii) Assume that q0 + P is the zero element in R/P . It suffices to show
that (N :M< r >) ⊆ N . Let m ∈ (N :M< r >). Then rm ∈ N , r = q + a and
m = t + x for some q ∈ Q, a ∈ P , t ∈ QM and x ∈ N (so q /∈ P ); hence qt ∈ N
since N is a k-subsemimodule. Since (q + P )(t + N) = q0 + N by Lemma 1 and
q + P 6= q0 + P , we must have t + N = q0 + N ; hence t = q0 ∈ N . Therefore,
m = t + x ∈ N , and so we have equality.

(iii) ⇒ (iv) Clearly, N ⊆ (N :M J). For the reverse inclusion, assume that
m ∈ (N :M J). By assumption, there exists r ∈ J such that r ∈ R−P and rm ∈ N ;
so (N :M< r >) = N by (iii). This completes the proof.

(iv) ⇒ (v) Since PM ⊆ N , we conclude that P ⊆ (N :R< m >) for every m ∈
M −N . For the other containment, assume that m ∈ M −N and r ∈ (N :R< m >);
we show that r ∈ P . Suppose not. Then J =< r >* P , and so m ∈ (N :M J) = N
by (iv), which is a contradiction, as required.

(v) ⇒ (vi) If a ∈ P , then aL ⊆ aM ⊆ N ; so P ⊆ (N :R L). Now suppose that
b ∈ (N :R L). By assumption, there exists m ∈ L such that m ∈ M − N . Then
b ∈ (N :R< m >) = P by (v), as needed.

(vi) ⇒ (vii) Let r ∈ ZR(M/N). Then there exists t ∈ QM − N such that
r(t+N) = q0 +N , where rt+N ⊆ q0 +N , so rt ∈ N since N is a k-subsemimodule;
hence r ∈ (N :R Rt + N) = P by (vi). Thus ZR(M/N) ⊆ P . For the reverse
conclusion, assume that a ∈ P . By assumption, there is an element m ∈ M − N
such that am ∈ N . There exist s ∈ QM − N and y ∈ N such that m = s + y (so
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s /∈ N) such that as ∈ N ; hence a(s+N) = q0+N by Lemma 1. Thus a ∈ ZR(M/N).
This completes the proof.

(vii) ⇒ (i) Let rm ∈ N for some r ∈ R and m ∈ M −N ; we show that r ∈ P .
By assumption, there are elements t ∈ QM −N and z ∈ N such that m = t + z, so
rt ∈ N . Then r(t + N) = q0 + N by Lemma 1; hence r ∈ ZR(M/N) = P by (vii),
as required.

Proposition 1. Let N be a proper strong QM -subsemimodule of a semimodule M
over a semiring R with (N : M) = P a maximal Q-ideal of R. Then N is a prime
subsemimodule. In particular, P ′M is a prime subsemimodule of an R-semimodule
M for every maximal Q-ideal P ′ of R such that P ′M 6= M .

Proof. By [4, Theorem 2.10], R/P is a semifield, so M/N is a semivector space over
the semifield R/P by Remark 1; hence it is a torsion-free R/P -semimodule. Thus N
is prime by Theorem 1. Finally, suppose that (P ′M : M) = J 6= R. Then P ′ ⊆ J ,
so J = P ′ since P ′ is maximal, as required.

Theorem 2. Let N be a proper strong QM -subsemimodule of a semimodule M over
a semiring R with (N : M) = P a Q-ideal of R and let P be a maximal ideal of
R. Then N is P -prime if and only if PM ⊆ N . In particular, if N is a P -prime
subsemimodule of M , then so is every proper subsemimodule of M containing N .

Proof. It suffices to show that if PM ⊆ M , then N is P -prime. Let p ∈ P . Then
p ∈ (N : M), so P = (N : M) by maximality of P . Now apply Proposition 1.

Proposition 2. Let M be a finitely generated semimodule over a semiring R and
let I be a strong k-ideal of R such that I = rad(I). Then (IM : M) = I if and only
if ann(M) ⊆ I.

Proof. The necessity is clear. Assume that ann(M) ⊆ I and let x ∈ (IM : M). First
we show that if M is generated by n elements, then there exists a y ∈ I such that
xn+y ∈ ann(M). To see that, we use induction on n. Consider first the case in which
n = 1. Here we have x < m >⊆ I < m >. So xm = sm for some s ∈ I; hence there is
an element s′ ∈ I such that (x+s′)m = sm+s′m = 0. It follows that (x+s′)M = 0.
We now turn to the inductive step. Assume, inductively, that n = k + 1, where
k ≥ 1, and that the result has been proved in the case where n = k. Then we must
have (x + a)(xk + b)M = (xk+1 + axk + bx + ab)(< m1, ..., mk > + < mk+1 >) = 0
for some a, b ∈ I, so (xk+1 +c)M = 0, where axk +bx+ab = c ∈ J . Thus xn +y ∈ I.
Since I is a k-ideal, we must have xn ∈ I and, therefore, (IM : M) ⊆ rad(I) = I.
Now we can see easily that (IM : M) = I.

Theorem 3. If M is a finitely generated semimodule over a semiring R and P is
a strong maximal Q-ideal of R containing ann(M), then PM 6= M so that PM is
a prime subsemimodule of M . In particular, if M is a finitely generated faithful
R-semimodule, then PM is a prime subsemimodule of M for every strong maximal
Q-ideal P of R.
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Proof. Apply Proposition 1 and Proposition 2 (note that every Q-ideal is a
k-ideal).

4 Spec(MS)

Assume that S is a multiplicatively closed subset of the commutative semiring R
and let M be an R-semimodule. We introduce a useful relationship between Spec(M)
and Spec(MS) (Theorem 6) and exhibit its application through the remaining of the
paper.

Lemma 2. Let R be a semiring. If N is a primary subsemimodule of an
R-semimodule M , then (N : M) (or equivalently ann(M/N)) is a primary ideal.

Proof. Since M * N , the ideal (N ; M) is a proper ideal. Now suppose that a, b ∈ R
such that ab ∈ (N : M), b /∈ (N : M). Since b /∈ (N : M), there exists m ∈ M
such that bm /∈ N . But N is a primary submodule, consequently asM ⊆ N for some
integer s. This completes the proof.

If N is a primary subsemimodule of an R-semomodule M , then Lemma 2 shows
that P ′ = (N : M) is a primary ideal. Consequently, P = rad(P ′) is a prime ideal.
In this case, we shall say that N is P -primary.

Lemma 3. Let R be a semiring. A primary subsemimodule N of any R-semimodule
M is prime if and only if (N : M) is a prime ideal. In particular, if K is a P -primary
subsemimodule of M containing a P -prime subsemimodule, then K is prime.

Proof. The proof is straightforward.

Definition 3. Let S be a multiplicatively closed subset of the commutative semi-
ring R, and let M be an R-semimodule. M is called a S-cancellative semimodule
whenever am = an for some 0 6= a ∈ S and m,n ∈ M , then m = n. A semiring is
called a S-cancellative semiring if it is a S-cancellative semimodule over itself.

Example 2. Assume that E+
0 is the set of all non-negative integers and let

S = E+
0 − {0}. Then (E+

0 ,+, .) is a S-cancellative semiring. Let M = (E+
0 , gcd).

Clearly, M is a commutative monoid in which every element is idempotent. More-
over, M is a S-cancellative semimodule over E+

0 with scalar multiplication defined
by rm = 0 if r = 0 and rm = m if r > 0 for all r ∈ E+

0 and m ∈ M [13, p. 151].

Let R be a S-cancellative semiring. Define a relation ∼ on R× S as follows: for
(a, s), (b, t) ∈ R × S, we write (a, s) ∼ (b, t) if and only if ad = bc. Then ∼ is an
equivalence relation on R× S. For (a, s) ∈ R× S, denote the equivalence class of ∼
which contains (a, s) by a/s, and denote the set of all equivalence classes of ∼ by RS .
Then RS can be given the structure of a commutative semiring under operations for
which a/s + b/t = (ta + sb)/st, (a/s)(b/t) = (ab)/st for all a, b ∈ r and s, t ∈ S.
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This new semiring RS is called the semiring of fractions of R with respect to S; its
zero element is 0/1, its multiplicative identity element is 1/1 and each element of S
has a multiplicative inverse in RS (see [9, 13, 19]). Assume that R is a semidomain
and let S = R − {0R}. Then RS is a semifield. The semifield F constructed from
the semidomain R is referred to as the semifield of fractions of the semidomain R.
Moreover, assume that P is a prime ideal of R. Then S = R−P is a multiplicatively
closed subset of R. In this case we set RS = RP and IS = IRP , where I is an ideal
of R.

Let M be a S-cancellative semimodule over a S-cancellative semiring R. The
relation ∼′ on M × S defined by, for (m, s), (n, t) ∈ M × S, (m, s) ∼′

(n, t) if
and only if tm = sn is an equivalence relation on M × S; for (m, s) ∈ M × S,
the equivalence class of ∼′ which contains (m, s) is denoted by m/s. Similarly, a
simple argument will show that the set MS of all equivalence classes of ∼′ has the
structure of a semimodule over the semiring RS of fractions of R with respect to S
under operations for which m/s + n/t = (tm + sn)/st, (r/s)(n/t) = (rn)/st for all
m,n ∈ M , s, t ∈ S and r ∈ R. The RS-semimodule MS is called the semimodule of
fractions of M with respect to S; its zero element is 0M/1, and this is equal to 0M/s
for all s ∈ S.

Convention. Throughout this section we shall assume unless otherwise stated,
that R denotes a commutative S-cancellative semiring with an identity element
and S a non-empty multiplicatively closed subset of R. M will designate a fixed
S-cancellative semimodule over R. If N is a subsemimodule of M , then NS will be
regarded as an RS-subsemimodule of MS .

Proposition 3. Let N be a P -primary subsemimodule of M . If P ∩ S 6= ∅, then
NS = MS. On the other hand if P ∩S = ∅, then NS is a PS-primary subsemimodule
of MS and N = NS ∩M = {m ∈ M : m/1 ∈ NS}.
Proof. First suppose that there is an element s which is common to P and S. Since
P = rad(N : M), there is an integer n such that snM ⊆ N . Suppose now that
m/s′ ∈ MS . Then m/s′ = (snm)/(sns′) ∈ NS . This shows that MS = NS and the
first assertion follows. From here on we assume that P does not meet S. Since the
inclusion N ⊆ M ∩NS is clear, we will prove the reverse inclusion. Let m ∈ NS ∩M .
Then there are elements n ∈ N and t ∈ S such that m/1 = n/t; hence tm ∈ N .
Using the facts that N is P -primary in M and t /∈ P , we conclude that m ∈ N , and
so we have equality. This shows, in particular, that NS is a proper subsemimodule
of MS . Assume next that (r/s)(m/t) ∈ NS and m/t /∈ NS . Then m /∈ N . Multi-
plying (rm)/(st) by (s2t2)/(st), we obtain (rm)/1 = (s2t2rm)/(s2t2) ∈ NS . Thus
rm ∈ N . It now follows that rvM ⊆ N for some integer v, which in turn implies
that (r/s)vMS ⊆ NS . This establishes that NS is a primary subsemimodule of MS .
By [5, Lemma 2.3] it must be P ′

S-primary, where P ′ is a prime ideal of R with
P ′ ∩ S = ∅. Let a ∈ P . Then anM ⊆ N for some integer n; hence if s ∈ S, then
((sa)/s)nMS ⊆ NS . It follows that (sa)/s ∈ P ′

S and therefore a ∈ P ′
S ∩ R = P ′ by
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[5, Lemma 2.3] again; thus P ⊆ P ′. For the other containment, assume that b ∈ P ′.
If now t ∈ S, then there exists an integer u such that ((tb)/t)uMS ⊆ NS . Select
m ∈ M so that m /∈ N . Then (tu−1bum)/tu+1 = ((tb)/t)u(tm)/t ∈ NS and therefore
tum ∈ NS ∩M = N ; hence t ∈ P , and so we have equality, as required.

Let N be a subsemimodule of a semimodule M . An inspection will show that
NS ∩M = {m ∈ M : sm ∈ N for some s ∈ S}. Let P be a prime ideal of R. The
saturation SP (N) = NP ∩M of N with respect to P is known in the literature as
the S-component of N in M for the multiplicatively closed subset S = R − P , but
designated in various way. A subsemimodule K of M is said to be saturated with
respect to P if SP (K) = K.

Theorem 4. Every P -primary subsemimodule of a semimodule M is a saturated
subsemimodule.

Proof. Apply Proposition 3.

Theorem 5. Let P be a prime ideal of R with P ∩ S = ∅, and let M be an
R-semimodule. Then there is a one-to-one correspondence between the P -primary
subsemimodules N of M and the PS-primary subsemimodules L of MS. This is such
that, when N and L correspond, L = NS and N = L ∩M .

Proof. Let L be a PS-primary subsemimodule of MS . By Proposition 3, it is enough
to show that there is a P -primary subsemimodule N of M such that N = L ∩M .
Suppose that L ∩ M = N ; we show that NS = L. Since the inclusion NS ⊆ L
is clear, we will prove the reverse inclusion. Let x ∈ L. Then x = m/s for some
m ∈ M and s ∈ S, so (s2/s)(m/s) = m/1 ∈ L and therefore m ∈ N . It follows
that m/s ∈ NS . This shows that L = NS and N is a proper subsemimodule of
M . Now assume that rm ∈ N , where r ∈ R, m ∈ M and m /∈ N . If s is an
arbitrary element of S, then (rs)/s)((sm)/s2) = (rs2m)/s2 ∈ NS = L. On the other
hand, (sm)/s /∈ L for the contrary assumption would imply that m ∈ N . So there
exists an integer w such that ((rs)/s)wMS ⊆ L since L is primary. Let m′ ∈ M
then (sw+1rwm′)/sw+1 = ((rs)/s)w(sm′)/s ∈ L, whence rwm′ ∈ N . As this holds
for every m′ ∈ M , we may conclude that rwM ⊆ N . This proves that N is a
primary subsemimodule of M . Let it be P ′-primary. Since NS = L and L 6= MS ,
Proposition 3 shows that P ′ ∩ S 6= ∅. The same proposition shows that NS = L is
P ′

S-primary. Thus P ′
S = PS and therefore P = P ′ by [4, Lemma 2.3]. This completes

the proof.

Lemma 4. Let M be an R-semimodule. Then the following hold:
(i) If N1, N2, ..., Nk are subsemimodules of M , then (N1 + N2 + ... + Nk)S =

(N1)S +(N2)S + ...+(Nk)S and (N1∩N2∩ ...∩Nk)S = (N1)S ∩ (N2)S ∩ ...∩ (Nk)S.
(ii) If m ∈ M and N is a subsemimodule of M , then (N : m)S = (NS : m/1).
(iii) If m1,m2, ..., mn are elements which generate M , then the RS-semimodule

generated by m1/1,m2/2, ..., mn/1 is just MS.



SPECTRA OF SEMIMODULES 23

(iv) If I is an ideal of R, then IS = RS if and only if I ∩ S 6= ∅.
(v) If M is finitely generated and N a subsemimodule of M , then (N : M)S =

(NS : MS). In particular, (ann(M))S = ann(MS).
(vi) If M is finitely generated and N a subsemimodule of M , then NS = MS if

and only if (N : M) ∩ S 6= ∅.
Proof. The proofs of (i), (ii), (iii) and (iv) are straightforward. To see that (v),
let m1,m2, ...,mk be elements which generate M . Then (N : M) = (N : m1) ∩ ...
∩(N : mk) and therefore, by (i) and (ii), (N : M)S = (N : m1)S ∩ ... ∩ (N : mk)S =
(NS : RSm/1 + ... + RSmk/1). This completes the proof by (iii).

(vi) We have NS = MS if and only if (NS : MS) = RS . By (v), (N : M)S =
(NS : MS) and, by (iv), this equals RS if and only if S meets (N : M), as
required.

Theorem 6. Let P be a prime ideal of R with P ∩ S = ∅, and let M be an
R-semimodule. Then there is a one-to-one correspondence between the P -prime sub-
semimodules N of M and the PS-prime subsemimodules L of MS. This is such that,
when N and L correspond, L = NS and N = L ∩M .

Proof. By Theorem 5, we need to show that, under this correspondence of primary
subsemimodules, N is prime if and only if L = NS is prime. By Lemma 4, it
suffices to show that (N :R M) = P if and only if (NS :RS

MS) = PS provided
that P = rad(N : M) and PS = rad(NS : MS) as N and NS are, respectively,
P -primary and PS-primary. If P = (N : M), then PS = (N : M)S ⊆ (NS : MS) ⊆
rad(NS : MS) = PS whence (NS : MS) = PS . Conversely, if (NS : MS) = PS , then
PSMS ⊆ NS so that (p/s)(m/t) ∈ PS for every p ∈ P , m ∈ M , and s, t ∈ S. Since
(pm/st)(s2t2/st) ∈ NS , pm ∈ N for every m ∈ M . Thus p ∈ (N : M) for every
p ∈ P = rad(N : M). Therefore, (N : M) = rad(N : M) = P .

Corollary 1. If N is a prime subsemimodule of an R-semimodule M , then
(N : M)S = (NS : MS).

Proof. In the proof of Theorem 6 we have seen that if (N : M) ∩ S = ∅, then
(N : M)S = (NS : MS). On the other hand if (N : M) ∩ S 6= ∅, then NS = MS by
Proposition 9 so that (N : M)S = (NS : MS) = RS .

Corollary 2. Let M be an R-semimodule and P a prime ideal of R. Then the prime
subsemimodules of the RP -semimodule MP are in a one-to-one correspondence with
those prime subsemimodules N of M with (N : M) ⊆ P .

Proof. Set S = R− P and apply Theorem 6.

Proposition 4. Let R be a semiring and N a subsemimodule of an R-semimodule
M . If NS 6= MS, then (N : M) ∩ S = ∅. Conversely, if (N : M) ∩ S = ∅,
then NS 6= MS provided that either i) M is finitely generated or ii) N is a primary
subsemimodule.
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Proof. Assume that (N : M) ∩ S 6= ∅ and r ∈ (N : M) ∩ S. Let m/s ∈ MS .
Then rm ∈ N so that m/s = (rm)/(rs) ∈ NS , which proves that NS = MS , a
contradiction. Thus (N : M) ∩ S = ∅. Conversely, assume that (N : M) ∩ S = ∅.
Note that (N : M) ∩ S = ∅ if and only if rad(N : M) ∩ S = ∅. Now the assertion
follows from Lemma 4 (vi) and Proposition 3.

Proposition 5. Let R be a semiring and N a subsemimodule of an R-semimodule
M such that (N : M) is a primary ideal (resp. (N : M) = P ) for some prime ideal
P of R. Then N is a P -primary (resp. P -prime) subsemimodule of M if and only
if NP ∩M = N .

Proof. The necessity is due to Proposition 3 (resp. Theorem 6). To see the suffi-
ciency, suppose that rm ∈ N such that m ∈ M −N and r ∈ R; we show that r ∈ P .
Suppose not. Then m/1 = (rm)/r ∈ NP , so m ∈ NP ∩ M = N , which is a con-
tradiction. Thus, r ∈ P so that N is a P -primary (resp. P -prime) subsemimodule
of M .

Theorem 7. Let R be a semidomain which is not a semifield and F the field of
fractions of R. Then the R-semimodule F has Spec(F ) = {0}.
Proof. Let N be a proper subsemimodule of F . Then (N : F ) = 0 since aF = F
for every non-zero element a of R. Let r.a/b = (ra)/b ∈ {0/1} such that r ∈ R
and a/b 6= 0/1. Then a 6= 0R and ra = 0R; so r = 0 since R is a semidomain.
It follows that {0/1} is a 0F -prime subsemimodule of F . To show that {0/1} is
the only prime subsemimodule of F , we assume the contrary and let L be a non-
zero prime subsemimodule of F . Since L is a non-zero subsemimodule, there exists
0/1 6= x = c/d ∈ L, where c, d ∈ R, such that (d/1)x = c/1 ∈ L. On the other
hand, there exists 0 6= y ∈ R such that 1/y /∈ L since L 6= F . Now we have
(c/1)(y/1) = (cy)/1 /∈ (L : F ) and 1/y /∈ L, but (cy/1)(1/y) = c/1 ∈ L, which is a
contradiction. Thus Spec(F ) = {0}.

5 Strong primeful semimodules

In this section we extend some definitions and results of C. P. Lu [16, 17] to
semimodules over semirings. Let M be a semimodule over a semiring R with ann(M)
a Q-ideal of R. The map ψ : Spec(M) → Spec(R/ann(M)) defined by ψ(N) =
(N : M)/ann(M) for every N ∈ Spec(M) will be called the natural map of
Spec(M). The surjectivity of the natural map ψ is particularly important in the
topological space Spec(M) equipped with a topology called the Zariski topology. An
R-semimodule M is called primeful if either M = 0 or the natural map of Spec(M)
is surjective [17].

We continue to use the notation already established, so R denotes a commutative
S-cancellative semiring with an identity element and S a non-empty multiplicatively
closed subset of R. M will designate a fixed S-cancellative semimodule over R.
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Moreover, assume that P is a prime ideal of R. Then S = R−P is a multiplicatively
closed subset of R. In this case we set RS = RP and IS = IRP , where I is an ideal
of R.

Lemma 5. Assume that P is a prime k-ideal of a semiring R and let R be a
S-cancellative semiring, where S = R−P . Then RP is a local semiring with unique
maximal k-ideal of PRP .

Proof. By [8, Lemma 5 and Theorem 2], it suffices to show that PRP is exactly the
set of non-semi-units of RP . Let y ∈ RP−PRP , and take any representation y = a/s
with a ∈ R, s ∈ S. We must have a /∈ P , so that a/s is a unit of RP with inverse s/a
(so a/s is a semi-unit by [11, Remark 2.4]. On the other hand, if y is a semi-unit of
RP , and y = b/t for some b ∈ R, t ∈ S, then there exist c, d ∈ R and u,w ∈ S such
that 1/1 + (bc)/(tu) = (bd)/(tw). It follows that t2uw + bctw = tubc; hence b /∈ P
since P is a k-ideal, and since this reasoning applies to every representation y = b/t
with b ∈ R, t ∈ S, of y as a formal fraction, it follows that y /∈ PRS , and so the
proof is complete (see [9, Theorem 3]).

Example 3. The monoid M = (Z6, +6) is a semimodule over (E+
0 , +, .) (see [13,

p. 151]) with ann(M) = {60k : k ∈ E+
0 }. It is easy to see that ann(M) is a Q-ideal

of E+
0 with respect to Q = {1, 2, ..., 59}.

Proposition 6. Let M be a non-zero semimodule over a semiring R with ann(M)
a Q-ideal of R. Then the following hold:

(i) M is a primeful semimodule if and only if for every prime k-ideal P with
ann(M) ⊆ P , there exists a prime subsemimodule N of M such that (N : M) = P .

(ii) If M is a primeful semimodule, then PMP 6= MP for every prime k-ideal P
with ann(M) ⊆ P .

Proof. (i) Assume that M is primeful and let P be a prime k-ideal of R with
ann(M) ⊆ P . Then P/ann(M) is a prime ideal of R/ann(M) by [4, Theo-
rem 2.5]. By assumption, there exists a prime subsemimodule N of M such that
ψ(N) = (N : M)/ann(M) = P/ann(M); hence (N : M) = P by [4, Lemma 2.13].
The reverse implication is clear.

(ii) For any prime k-ideal P of R with ann(M) ⊆ P , let N be a P -prime subsemi-
module of M . Then PM ⊆ N with N 6= M so that NP is a PRP -prime subsemi-
module of MP by Theorem 6. Since PMP ⊆ NP with NP 6= MP , MP 6= PMP .

We begin this section by proving the following fundamental theorems of this
paper:

Theorem 8. Let M be a non-zero semimodule over a semiring R with ann(M) a
Q-ideal of R. Then the following are equivalent:

(i) M is primeful;
(ii) Let P be a prime partitioning ideal of R such that ann(M) ⊆ P and PRP is

a partitioning ideal of RP . Then there exists a prime subsemimodule N of M such
that (N : M) = P ;
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(iii) Let P be a prime partitioning ideal of R such that ann(M) ⊆ P and PRP

is a partitioning ideal of RP . Then PMP 6= MP ;
(iv) Let P be a prime partitioning ideal of R such that ann(M) ⊆ P and PRP is

a partitioning ideal of RP . Then SP (PM) is a P -prime subsimimodule;
(v) Let P be a prime partitioning ideal of R such that ann(M) ⊆ P and PRP is

a partitioning ideal of RP . Then SpecP (M) 6= ∅.
Proof. By Proposition 6, we prove (iii) ⇒ (iv) ⇒ (v) ⇒ (i). (iii) ⇒ (iv): Since by
assumption and Lemma 5, PRP is a maximal partitioning ideal of RP and PMP 6=
MP , (PRP )MP is a PRP -prime subsemimodule of MP by Proposition 1. Hence
SP (PM) = PMP ∩M is a P -prime subsemimodule of M by Theorem 6. Thus (iv)
follows. (iv) ⇒ (v) and (v) ⇒ (ii) are clear.

Let M be a semimodule over a semiring R with ann(M) a Q-ideal of R. The
collection of all prime (resp. maximal) k-subsemimodules of M with (N : M) a
strong ideal of R (resp. with (N : M) a strong Q-ideal of R) is called the k-spectrum
(resp. the maximal k-spectrum) of M and denoted by Speck(M) (resp. Maxk(M)).
Set

Speck(R/ann(M)) = {P/ann(M) ∈ Spec(R/ann(M)) : P is a strong k-ideal of R}.

Definition 4. Let M be a semimodule over a semiring R with ann(M) a Q-ideal
of R:

(i) M is called strong primeful if either M = 0 or the natural map
ψ : Speck(M) → Speck(R/ann(M)) defined by ψ(N) = (N : M)/ann(M) for every
N ∈ Speck(M) is surjective.

(ii) M is called strong fulmaximal if either M = 0 or the natural map
ψ : Maxk(M) → Maxk(R/ann(M)) defined by ψ(N) = (N : M)/ann(M) for
every N ∈ Maxk(M) is surjective.

Theorem 9. Let M be a non-zero semimodule over a semiring R with ann(M) a
Q-ideal of R 6= {0}. Then the following hold:

(i) If M is finitely generated, then M is a strong primeful semimodule and, si-
milarly, M is a strong fulmaximal semimodule. Consequently, Speck(M) 6= ∅ and
Maxk(M) 6= ∅.

(ii) If M is multiplication, then M is a strong primeful semimodule. Conse-
quently, Speck(M) 6= ∅.

Proof. (i) Let P/ann(M) ∈ Speck(R/ann(M)). Then by assumption and [4, The-
orem 2.5], P is a strong prime k-ideal containing ann(M). Since M is a non-zero
finitely generated R-semimodule, MP is a non-zero finitely generated RP -semimodule
with ann(MP ) = (ann(M))P and ann(MP ) ⊆ PRP by Lemma 4. If a/s ∈ PRP for
some a ∈ P and s /∈ P , then a+ b = 0 for some b ∈ P , and so a/s+ b/s = 0/1; hence
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PRP is a strong prime k-ideal of RP (see [9, Lemma 5]). According to Proposition 2
and Theorem 3, PMP 6= MP so that PMP is a PRP -prime subsemimodule of MP .
Applying Theorem 6, we can conclude that N = PMP ∩M is a prime subsemimodule
of M ; hence ψ(N) = (N : M)/ann(M) = P/ann(M). This proves that ψ is surjec-
tive. Finally, assume that P/ann(M) ∈ Maxk(R/ann(M)). Then by assumption and
[4, Theorem 2.14], P is a strong maximal k-ideal containing ann(M). Let T (P ) be
the set of all P -prime k-subsemimodules N of M with (N : M) a strong Q-ideal. In
the proof above, we have seen that T (P ) 6= ∅. With the aid of Zorn’s lemma, we can
see that there exists a maximal element L in T (P ). Since (L : M) = P is a maximal
Q-ideal, L is a maximal subsemimodule. (ii) follows from [12, Theorem 3.8].
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