On regular medial division algebras

Sergey S. Davidov

Abstract

We prove a Toyoda's type theorem for regular medial division n-ary groupoids and regular medial division algebras without unary operations.

1. Introduction

We recall that the algebra (Q, Σ) is said to be medial (entropic), if it satisfies the mediality hyperidentity (for hyperidentities see [13]), i.e., for any $f, g \in \Sigma$:

$$
\begin{equation*}
f\left(g\left(x_{11}, \ldots, x_{1 n}\right), \ldots, g\left(x_{m 1}, \ldots, x_{m n}\right)\right)=g\left(f\left(x_{11}, \ldots, x_{m 1}\right), \ldots, f\left(x_{1 n}, \ldots, x_{m n}\right)\right) \tag{1}
\end{equation*}
$$

In particular, the n-ary groupoid $Q(f)$ is said to be medial, if it satisfies the identity:

$$
f\left(f\left(x_{11}, \ldots, x_{1 n}\right), \ldots, f\left(x_{n 1}, \ldots, x_{n n}\right)\right)=f\left(f\left(x_{11}, \ldots, x_{n 1}\right), \ldots, f\left(x_{1 n}, \ldots, x_{n n}\right)\right) .
$$

It should be noted here that medial identity studies have been made under various names: abelian, alternation, bi-commutative, bisymmetric, entropic, surcommutative.

Medial systems were studied by many authors (Sade, Stein, Toyoda, Bruck, Belousov, Kurosh, Smith, Romanowska, Dudek, Ježek, Kepka, Movsisyan, Shcherbacov and others). Medial systems are connected with the notion of entropy in information theory [18], and have some applications in cybernetics, economics, physics and biology.

In [16], multiplicative semigroups of a field are characterized by the Cayley type theorem, using the transitive mode (i.e., an idempotent and medial algebra [17]).

Some special types of medial n-ary groupoids are described in [4] and [5]. Some aspects of binary medial algebras are considered in [3].

The n-ary groupoid $Q(f)$ is called an n-ary quasigroup or in short, an n-quasigroup, if in the equation $f\left(x_{1}, \ldots, x_{n}\right)=x_{n+1}$ any n elements of $x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}$ uniquely determine the remaining one.

In [2] V.D. Belousov proved the following theorem. (This theorem follows from results of T. Evans ([7], Theorem 6.2), too.)

2010 Mathematics Subject Classification: 20N05
Keywords: n-ary groupoid, division algebra, medial algebra, regular algebra, invertible algebra, homotopy, quasiendomorphism.

Theorem 1.1. Let $Q(f)$ be a medial n-ary quasigroup. Then there exist an abelian group $Q(+)$, its pairwise commuting automorphisms $\alpha_{1}, \ldots, \alpha_{n}$, and an element a of the set Q such that

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n}+a
$$

for all $x_{i} \in Q, i=1, \ldots, n$.
The classical Toyoda theorem (see [1]) follows from Theorem 1.1.
Let $G(\cdot)$ be a groupoid and $a \in G$. Denote by $L_{a}\left(R_{a}\right)$ the map of G to G such that $L_{a}(x)=a x\left(R_{a}(x)=x a\right)$ for all $x \in G$.

A groupoid $G(\cdot)$ is said to be a division groupoid if L_{a} and R_{a} are surjective for every $a \in G$.

A groupoid $G(\cdot)$ is called left regular if $R_{a}=R_{b}$ whenever $a, b \in G$ and $c a=c b$ for some $c \in G$. Right regular groupoids are defined dually. A groupoid is regular if it is both left and right regular.

The following characterization of medial regular division binary groupoids was obtained by Kepka ([10]).

Theorem 1.2. A groupoid $G(\cdot)$ is a regular medial division groupoid if and only if there exist an abelian group $G(+)$, two surjective endomorphisms f, g of $G(+)$, and an element $a \in G$ such that $f g=g f$ and $x \cdot y=f(x)+g(y)+a$, for all $x, y \in G$.

In this paper we generalized the Kepka theorem for medial regular division n-ary groupoids and medial regular division algebras without unary operations.

2. Preliminary notions and results

First we introduce some notations. The sequence $x_{n}, x_{n+1}, \ldots, x_{m}$ is denoted by x_{n}^{m} or $\left\{x_{i}\right\}_{n}^{m}$, where n, m are natural numbers, $n \leq m$. If $n=m$, then x_{n}^{m} is an element x_{n}. The sequence $a, a, \ldots, a\left(m\right.$ times) is denoted by a^{m}. The operations on the set Q are denoted by A, B, C or $\left(a_{1}^{n}\right)=b$ and $\left[a_{1}^{n}\right]=b$. The nonempty set Q with an n-ary operation A is called an n-ary groupoid or in short, an n-groupoid.

Let $Q(A)$ be an m-groupoid and $A\left(x_{1}^{m}\right)=y$. If we replace $x_{k_{1}}, x_{k_{2}}, \ldots, x_{k_{n}}$ $(n<m)$ by fixed elements $a_{1}, a_{2}, \ldots, a_{n}$ in $A\left(x_{1}^{n}\right)$, then we obtain

$$
A\left(x_{1}^{k_{1}-1}, a_{1}, x_{k_{1}+1}^{k_{2}-1}, a_{2}, \ldots, x_{k_{n-1}+1}^{k_{n}-1}, a_{n}, x_{k_{n}+1}^{m}\right) .
$$

Thus we get a new operation $B\left(x_{1}^{k_{1}-1}, x_{k_{1}+1}^{k_{2}-1}, \ldots, x_{k_{n}+1}^{m}\right)$ with the arity, $m-n$. The $(m-n)$-groupoid, $Q(B)$, is called the retract of the m-groupoid $Q(A)$.

Let $Q()$ be an n-groupoid. Denote by \bar{a} the sequence $a_{1}^{n} \in Q$ and by $L_{i}(\bar{a})$ the map from Q to Q such that

$$
L_{i}(\bar{a}) x=\left(a_{1} \ldots a_{i-1} x a_{i+1} \ldots a_{n}\right)=\left(a_{1}^{i-1} x a_{i+1}^{n}\right)
$$

for all $x \in Q$. The map $L_{i}(\bar{a})$ is called the i-translation with respect to a.
An n-groupoid $Q()$ is called a division n-groupoid if every $L_{i}(\bar{a})$ is a surjection for all $\bar{a} \in Q$ and all $i=1, \ldots, n$. Note that every retract of the medial division n-groupoid also is medial.

An n-groupoid $Q()$ is i-regular if $L_{i}(\bar{a})=L_{i}(\bar{b})$, whenever $\bar{a}, \bar{b} \in Q$ and $L_{i}(\bar{a}) c=L_{i}(\bar{b}) c$, for some $c \in Q$. An n-groupoid $Q()$ is regular if it is i-regular, for every $i=1, \ldots, n$. Note that our i-regularity is different from the regularity proposed bt Sioson (see for example [6]).

It is clear that every retract of the regular n-groupoid also is regular.
The triplet $T=(\alpha, \beta, \gamma)$ of maps of $Q(\cdot)$ into itself is called an endotopy of $Q(\cdot)$ if the identity $\gamma(x \cdot y)=\alpha x \cdot \beta y$ is true for all $x, y \in Q$. The third component γ of this endotopy is called a quasiendomorphism. In the case $\alpha=\beta=\gamma$ the triplet $T=(\gamma, \gamma, \gamma)$ is called an endomorphism.

The following two lemmas are proved in [19].
Lemma 2.1. Any quasiendomorphism γ of a group, $Q(+)$ has the form:

$$
\begin{equation*}
\gamma=\widetilde{R}_{s} \gamma_{0} \tag{2}
\end{equation*}
$$

where γ_{0} is an endomorphism of the group $Q(+), \widetilde{R}_{s}(x)=x+s, s \in Q$, and, conversely, the map γ defined by (2) is a quasiendomorphism of the group $Q(+)$.

Lemma 2.2. Let γ be a quasiendomorphism of the group, $Q(+)$. Then γ is endomorphism i and only if $\gamma(0)=0$, where 0 is the identity element of the group $Q(+)$.

The groupoid $Q(\cdot)$ is homotopic to the groupoid $Q(*)$ if there exist three maps α, β, γ of Q to Q such that $\gamma(x * y)=\alpha x \cdot \beta y$ for all $x, y \in Q$. The homotopy of the form $T=(\alpha, \beta, \varepsilon)$, where ε is the identity map, is called principal.

Lemma 2.3. If the group $Q(*)$ is principally homotopic to the group $Q(\cdot)$, then $x * y=x \cdot k \cdot y$ for some $k \in Q$ and all $x, y \in Q$.

Proof. We have $x * y=\alpha x \cdot \beta y$, where α, β are the maps of Q to Q. Putting in this equality: $y=e$ and $x=e$, where e is the identity element of the group $Q(*)$, we obtain:

$$
x=\alpha x \cdot \beta e, \quad y=\alpha e \cdot \beta y
$$

i.e.,

$$
\alpha x=x(\beta e)^{-1}, \quad \beta y=(\alpha e)^{-1} \cdot y
$$

Therefore, we get: $x * y=\left(x \cdot(\beta e)^{-1}\right) \cdot\left((\alpha e)^{-1} \cdot y\right)=x \cdot k \cdot y$.

3. Main results

Theorem 3.1. Let $Q()$ be a regular medial division n-groupoid. Then there exist an abelian group $Q(+)$, its pairwise commuting surjective endomorphisms $\alpha_{1}, \ldots, \alpha_{n}$, and a fixed element $b \in Q$ such that

$$
\left(x_{1} x_{2} \ldots x_{n}\right)=\left(x_{1}^{n}\right)=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n}+b
$$

for all $x_{i} \in Q, i=1, \ldots, n$.
Proof. The proof is by induction on n. For $n=2$, the assumption follows from Theorem 1.2. Suppose the theorem is true for all natural numbers which are less than n. Let us write the medial identity as a matrix:

$$
\begin{gather*}
\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
x_{n 1} & x_{n 2} & \ldots & x_{n n}
\end{array}\right), \tag{3}\\
\left(\left\{x_{i j}\right\}_{j=1}^{n}\right)=y_{i}, \quad\left(\left\{x_{i j}\right\}_{i=1}^{n}\right)=z_{j} .
\end{gather*}
$$

Then, the medial identity can be represented as:

$$
\begin{equation*}
\left(y_{1}^{n}\right)=\left(z_{1}^{n}\right) \tag{4}
\end{equation*}
$$

Consider the following matrix:

$$
\left(\begin{array}{cccccc}
a & a & a & a & \ldots & a \\
x_{1} & a & a & a & \ldots & a \\
a & x_{2} & x_{3} & x_{4} & \ldots & x_{n} \\
a & a & a & a & \ldots & a \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
a & a & a & a & \ldots & a
\end{array}\right)
$$

For y_{i} and z_{j} from (4), we have:

$$
\left\{\begin{array} { l }
{ y _ { i } = (a ^ { n }) = b , \quad i \neq 2 , 3 , } \\
{ y _ { 2 } = (x _ { 1 } a ^ { n - 1 }) = \alpha x _ { 1 } , } \\
{ y _ { 3 } = (a x _ { 2 } ^ { n }) , }
\end{array} \quad \left\{\begin{array}{l}
z_{1}=\left(a x_{1} a^{n-2}\right)=\beta x_{1}, \\
z_{i}=\left(a^{2} x_{i} a^{n-3}\right)=\mu x_{i}, \quad i \neq 1,
\end{array}\right.\right.
$$

where α, β, μ are some surjections from Q to Q. Thus, from (4), we obtain:

$$
\left(b, \alpha x_{1},\left(a x_{2}^{n}\right), b^{n-3}\right)=\left(\beta x_{1},\left\{\mu x_{i}\right\}_{i=2}^{n}\right) .
$$

Let $A(u, v)=\left(b, u, v, b^{n-3}\right)$. Then $Q(A)$ is a regular, medial and division groupoid.

Let

$$
\begin{equation*}
B\left(x_{2}^{n}\right)=\left(a x_{2}^{n}\right) \tag{5}
\end{equation*}
$$

Then B is a regular, medial and division $(n-1)$-ary operation.
By the assumption, there exist abelian groups $Q(\oplus)$ and $Q(\dot{+})$ such that:

$$
\begin{gathered}
A(u, v)=\gamma u \oplus \delta v \oplus d \\
B\left(u_{2}^{n}\right)=\lambda_{2} u_{2} \dot{+} \lambda_{3} u_{3} \dot{+} \ldots \dot{+} \lambda_{n} u_{n} \dot{+} c
\end{gathered}
$$

where $d, c \in Q, \gamma, \delta$ are commuting surjective endomorphisms of the group $Q(\oplus)$ and $\lambda_{i} i=2, \ldots, n$, are pairwise commuting surjective endomorphisms of the group $Q(\dot{+})$.

Thus, (5) has the form $A\left(\alpha x_{1}, B\left(x_{2}^{n}\right)\right)=\left(\beta x_{1},\left\{\mu x_{i}\right\}_{2}^{n}\right)$, i.e.,

$$
\begin{equation*}
\gamma \alpha x_{1} \oplus \delta\left(\lambda_{2} x_{2} \dot{+} \lambda_{3} x_{3} \dot{+} \ldots \dot{+} \lambda_{n} x_{n} \dot{+} c\right) \oplus d=\left(\beta x_{1},\left\{\mu x_{i}\right\}_{2}^{n}\right) \tag{6}
\end{equation*}
$$

Let h_{μ} be the map of Q to Q such that $\mu h_{\mu}=\varepsilon(\varepsilon$ is the identity map of Q to Q); then, from (6), we obtain:

$$
\gamma \alpha x_{1} \oplus \delta\left(\lambda_{2} h_{\mu} x_{2} \dot{+} \lambda_{3} h_{\mu} x_{3} \dot{+} \ldots \dot{+} \lambda_{n} h_{\mu} x_{n} \dot{+} c\right) \oplus d=\left(\beta x_{1}, x_{2}^{n}\right) .
$$

There exists an element $a_{1} \in Q$ such that $\gamma \alpha a_{1} \oplus d=0_{\oplus}$, where 0_{\oplus} is the identity of the group $Q(\oplus)$. Hence, we get:

$$
\delta\left(\lambda_{2} h_{\mu} x_{2} \dot{+} \ldots \dot{+} \lambda_{n} h_{\mu} x_{n} \dot{+} c\right)=\left(\beta a_{1}, x_{2}^{n}\right) .
$$

The retract $\left(\beta a_{1}, x_{2}^{n}\right)$ is an $(n-1)$-ary regular, medial, division groupoid; therefore, there exist: an abelian group $Q(+)$ and its commuting surjective endomorphisms $\varphi_{i}(i=2, \ldots, n)$, such that:

$$
\begin{equation*}
\delta\left(\lambda_{2} h_{\mu} x_{2} \dot{+} \ldots \dot{+} \lambda_{n} h_{\mu} x_{n} \dot{+} c\right)=\varphi_{2} x_{2}+\ldots+\varphi_{n} x_{n}+l=\varphi_{2} x_{2}+\ldots+\varphi_{n}^{\prime} x_{n} \tag{7}
\end{equation*}
$$

where $\varphi_{n}^{\prime} x_{n}=\varphi_{n} x_{n}+l$ and $l \in Q$. Let us rewrite (6) in the form:

$$
\gamma \alpha h_{\beta} x_{1} \oplus \delta\left(\lambda_{2} h_{\mu} x_{2} \dot{+} \ldots \dot{+} \lambda_{n} h_{\mu} x_{n} \dot{+} c\right) \oplus d=\left(x_{1}^{n}\right)
$$

where $\beta h_{\beta}=\varepsilon$. Using (7), we get $\left(x_{1}^{n}\right)=\gamma \alpha h_{\beta} x_{1} \oplus\left(\varphi_{2} x_{2}+\ldots+\varphi_{n}^{\prime} x_{n}\right) \oplus d$, i.e.,

$$
\begin{equation*}
\left(x_{1}^{n}\right)=\pi_{1} x_{1} \oplus\left(\varphi_{2} x_{2}+\ldots+\varphi_{n}^{\prime} x_{n}\right) \tag{8}
\end{equation*}
$$

where $\pi_{1} x_{1}=\gamma \alpha h_{\beta} x_{1}$. It follows from (8), that π_{1} is a surjection.
Now we consider the retract, $\left(x_{1}^{n-1} a\right)$. By the inductive assumption, there exists an abelian group $Q(*)$ such that:

$$
\begin{equation*}
\left(x_{1}^{n-1} a\right)=\mu_{1} x_{1} * \mu_{2} x_{2} * \ldots * \mu_{n-1} x_{n-1} * h \tag{9}
\end{equation*}
$$

where $\mu_{i}(i=1, \ldots, n-1)$ are commuting surjective endomorphisms of the group $Q(*)$ and $h \in Q$.

Substituting a for x_{n} in (8) and taking into account (9), we obtain:

$$
\begin{equation*}
\pi_{1} x_{1} \oplus\left(\varphi_{2} x_{2}+\ldots+\varphi_{n-1}^{\prime} x_{n-1}\right)=\mu_{1} x_{1} * \mu_{2} x_{2} * \ldots * \mu_{n-1}^{\prime} x_{n-1} \tag{10}
\end{equation*}
$$

where $\varphi_{n-1}^{\prime} x_{n-1}=\varphi_{n-1} x_{n-1}+\varphi_{n}^{\prime} a, \mu_{n-1}^{\prime} x_{n-1}=\mu_{n-1} x_{n-1} * h$.
Choose the elements a_{3}^{n-1} such that $\varphi_{3} a_{3}+\ldots+\varphi_{n-1}^{\prime} a_{n-1}=0$, where 0 is the identity of the group $Q(+)$; then from (5) we get:

$$
\pi_{1} x_{1} \oplus \varphi_{2} x_{2}=\mu_{1} x_{1} * \mu_{2}^{\prime} x_{2}
$$

where $\mu_{2}^{\prime} x_{2}=\mu_{2} x_{2} * \mu_{3} a_{3} * \ldots * \mu_{n-1}^{*} a_{n-1}$; therefore μ_{2}^{\prime} is a surjection.
Hence, $x_{1} * x_{2}=\pi_{1} h_{\mu_{1}} x_{1} \oplus \varphi_{2} h_{\mu_{2}^{\prime}} x_{2}$, where $\mu_{1} h_{\mu_{1}}=\varepsilon$ and $\mu_{2}^{\prime} h_{\mu_{2}^{\prime}}=\varepsilon$. Thus, the groups $Q(*)$ and $Q(\oplus)$ are principally homotopic and, by Lemma 2.3, we get:

$$
\begin{equation*}
u \oplus v=a * v * l . \tag{11}
\end{equation*}
$$

Now we choose the elements a_{1}, a_{4}^{n-1} such that $\pi_{1} a_{1}=0_{\oplus}$ and $\varphi_{4} a_{4}+\ldots+$ $\varphi_{n-1}^{\prime} a_{n-1}=0$. Then, from (10), we obtain:

$$
\varphi_{2} a_{2}+\varphi_{3} a_{3}=\mu_{2} x_{2} * \mu_{3}^{\prime} x_{3}
$$

where μ_{3}^{\prime} is a surjection. By Lemma 2.3, we have:

$$
\begin{equation*}
u \oplus v=a+v+l^{\prime} \tag{12}
\end{equation*}
$$

Combining (11) and (12), we obtain:

$$
\begin{equation*}
u \oplus v=a+v+l^{\prime \prime} \tag{13}
\end{equation*}
$$

According to (13), we get from (8):

$$
\begin{equation*}
\left(x_{1}^{n}\right)=\pi_{1} x_{1}+\varphi_{2} x_{2}+\ldots+\varphi_{n}^{\prime} x_{n}+l^{\prime \prime \prime}=\psi_{1} x_{1}+\ldots+\psi_{n} x_{n}+r \tag{14}
\end{equation*}
$$

where $\psi_{1}, \ldots, \psi_{n}$ are surjections.
Note that we can assume in (14) that $\psi_{i} 0=0, i=1, \ldots, n$.
Now, we prove that $\psi_{i}(i=1, \ldots, n)$ are endomorphisms of the group $Q(+)$, and $\psi_{i} \psi_{j}=\psi_{j} \psi_{i}$ for all $i, j \in\{1, \ldots, n\}$. Let us consider the following retract of matrix (3).

$$
i\left(\begin{array}{ccccc}
& j & & k \\
& \vdots & & \vdots & \\
\ldots & u & \ldots & v & \ldots \\
& \vdots & & \vdots &
\end{array}\right)
$$

where $x_{i j}=u, x_{i k}=v$ and other elements are equal to 0 . For y_{i} and z_{i}, we have:

$$
\left\{\begin{array} { l }
{ y _ { i } = \psi _ { j } u + \psi _ { k } v + r , } \\
{ y _ { s } = r , \text { if } s \neq i , }
\end{array} \left\{\begin{array}{l}
z_{j}=\psi_{i} u+r \\
z_{k}=\psi_{i} v+r \\
z_{s}=r, \text { if } s \neq j, k
\end{array}\right.\right.
$$

Thus,

$$
\begin{gathered}
\left(y_{1}^{n}\right)=\left(r^{i-1}, \psi_{j} u+\psi_{k} v+r, r^{n-i}\right) \\
\left(z_{1}^{n}\right)=\left(r^{j-1}, \psi_{i} u+r, r^{k-j-1}, \psi_{i} v+r, r^{n-k}\right)
\end{gathered}
$$

Hence,

$$
\left(r^{i-1}, \psi_{j} u+\psi_{k} v+r, r^{n-i}\right)=\left(r^{j-1}, \psi_{i} u+r, r^{k-j-1}, \psi_{i} v+r, r^{n-k}\right)
$$

From the last equality, by (14), we obtain:

$$
\begin{gathered}
\sum_{s=1}^{i-1} \psi_{s} r+\psi_{i}\left(\psi_{j} u+\psi_{k} v+r\right)+\sum_{s=i+1}^{n} \psi_{s} r+r= \\
\sum_{s=1}^{j-1} \psi_{s} r+\psi_{j}\left(\psi_{i} u+r\right)+\sum_{s=j+1}^{k-1} \psi_{s} r+\psi_{k}\left(\psi_{i} v+r\right)+\sum_{s=k+1}^{n} \psi_{s} r+r .
\end{gathered}
$$

From this equality we get:

$$
\begin{equation*}
\psi_{i}\left(\psi_{j} u+\psi_{k} v+r\right)=\psi_{j}\left(\psi_{i} u+r\right)+\psi_{k}\left(\psi_{i} v+r\right)+t \tag{15}
\end{equation*}
$$

where t is some element of Q. Substituting $h_{\psi_{j}} u$ and $h_{\psi_{k}}(v-r)$ for u and v in (15), respectively, we obtain:

$$
\psi_{i}(u+v)=\psi_{j}\left(\psi_{i} h_{\psi_{j}} u+r\right)+\psi_{k}\left(\psi_{i} h_{\psi_{k}}(v-r)+r\right)+t
$$

i.e.,

$$
\psi_{i}(u+v)=\sigma u+\tau v
$$

where σ and τ are some maps of Q to Q. Thus, ψ_{i} is a quasiendomorphism of the group $Q(+)$. Since, $\psi_{i} 0=0$, it follows from Lemma 2.2 that each ψ_{i} is an endomorphism of the group $Q(+)$.

If we take $v=0$ in (15) and since ψ_{i} is an endomorphism of the group $Q(+)$, we have:

$$
\begin{equation*}
\psi_{i} \psi_{j} u+\psi_{i} r=\psi_{j} \psi_{i} u+\psi_{j} r+\psi_{k} r+t \tag{16}
\end{equation*}
$$

Now, if we take $u=0$ in (16), we obtain: $\psi_{i} r=\psi_{j} r+\psi_{k} r+t$. Substituting $\psi_{j} r+\psi_{k} r+t$ for $\psi_{i} r$ in (16), we get: $\psi_{i} \psi_{j} u=\psi_{j} \psi_{i} u$. To conclude the proof, it remains to note that i, j are arbitrary.

Denote by $L_{i}^{A}(\bar{a})$ the i-translation of the algebra (Q, Σ) with respect to $\bar{a} \in Q^{|A|}$ $(|A|$ is the arity of the operation A) and the operation $A \in \Sigma$, namely:

$$
L_{i}^{A}(\bar{a}) x=A\left(a_{1}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{|A|}\right)
$$

The algebra (Q, Σ) is a division (invertible) algebra, if every $L_{i}^{A}(\bar{a})$ is a surjection (bijection), for all $\bar{a} \in Q^{|A|}, A \in \Sigma$ and $i=1, \ldots,|A|$.
(Q, Σ) is i-regular if $L_{i}^{A}(\bar{a})=L_{i}^{A}(\bar{b})$, whenever $\bar{a}, \bar{b} \in Q^{|A|}, A \in \Sigma$ and $L_{i}^{A}(\bar{a}) c=$ $L_{i}^{A}(\bar{b}) c$, for some $c \in Q$. If (Q, Σ) is is i-regular for all $i=1, \ldots,|A|$, then it is called regular.

Theorem 3.2. Let (Q, Σ) be a regular medial division algebra. Then there exists an abelian group $Q(+)$ such that every operation $A \in \Sigma$ has the representation:

$$
\begin{equation*}
A\left(x_{1}, \ldots, x_{|A|}\right)=\varphi_{1}^{A} x_{1}+\ldots+\varphi_{|A|}^{A} x_{|A|}+t_{A} \tag{17}
\end{equation*}
$$

where $\varphi_{1}^{A}, \ldots, \varphi_{|A|}^{A}$ are pairwise commuting surjective endomorphisms of the group $Q(+)$ and t_{A} is a fixed element of Q.

Proof. According to Theorem 3.1, every operation $A \in \Sigma(|A|=m)$ has the form:

$$
\begin{equation*}
A\left(x_{1}, \ldots, a_{m}\right)=\varphi_{1}^{n} x_{1}+{ }_{A} \ldots+_{A} \varphi_{m}^{A} x_{m}+{ }_{A} t_{A}^{\prime}, \tag{18}
\end{equation*}
$$

where the abelian group $Q\left(+_{A}\right)$ corresponds to the operation: $A \in \Sigma$. Let us rewrite medial hyperidentity (1) (in terms of the operations, $+_{A}$ and $+_{B}$) in the following way:

$$
\begin{gathered}
\varphi_{1}^{A}\left(\varphi_{1}^{B} x_{11}+{ }_{B} \ldots+{ }_{B} \varphi_{n}^{B} x_{1 n}+{ }_{B} t_{B}\right)+{ }_{A} \ldots+_{A} \varphi_{m}^{A}\left(\varphi_{1}^{B} x_{m 1}+{ }_{B} \ldots+{ }_{B} \varphi_{n}^{B} x_{m n}+\right. \\
\left.{ }_{B} t_{B}\right)+{ }_{A} t_{A}=\varphi_{1}^{B}\left(\varphi_{1}^{A} x_{11}+{ }_{A} \ldots+_{A} \varphi_{m}^{A} x_{m 1}+_{A} t_{A}\right)+{ }_{B} \ldots+_{B} \varphi_{n}^{B}\left(\varphi_{1}^{A} x_{1 n}+\right. \\
\left.+_{A} \ldots+_{A} \varphi_{m}^{A} x_{m n}+{ }_{A} t_{A}\right)+{ }_{B} t_{B} .
\end{gathered}
$$

If we take each of $x_{i j}$ equal to 0_{B}, (where 0_{B} is the identity of the group $Q\left(+_{B}\right)$), besides x_{11} and $x_{m n}$ in the last equality, then we obtain:

$$
\begin{aligned}
& \varphi_{1}^{A}\left(\varphi_{1}^{B} x_{11}+{ }_{B} t_{B}\right)+{ }_{A}+\varphi_{m}^{A}\left(\varphi_{n}^{B} x_{m n}+{ }_{B} t_{B}\right)+{ }_{A} c_{A} \\
= & \varphi_{1}^{B}\left(\varphi_{1}^{A} x_{11}+{ }_{A} k_{1}\right)+{ }_{B}+\varphi_{n}^{B}\left(\varphi_{m}^{A} x_{m n}+{ }_{A} k_{2}\right)+{ }_{B} c_{B},
\end{aligned}
$$

where c_{A}, c_{B}, k_{1} and k_{2} are some elements of the set Q.
From the last equality we get:

$$
\alpha x_{11}+_{A}+\beta x_{m n}=\gamma x_{11}+_{B} \delta x_{m n},
$$

where $\alpha, \beta, \gamma, \delta$ are surjective maps of Q to Q.
Thus, the groups $Q\left(+_{A}\right)$ and $Q\left(+_{B}\right)$ are homotopic and, by Lemma 2.3, we obtain:

$$
\begin{equation*}
x+{ }_{A} y=x+{ }_{B} y+{ }_{B} k, \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
x+_{B} y=x+{ }_{A} y+_{A} t, \tag{20}
\end{equation*}
$$

for some $k, t \in Q$.
We fix the operation $+_{B}$ and further we denote it by + . According to (18) and (19), for the operation $A \in \Sigma$ we have:
$A\left(x_{1}, \ldots, x_{m}\right)=\varphi_{1}^{A} x_{1}+{ }_{A} \ldots{ }_{A} \varphi_{m}^{A} x_{m}+{ }_{A} t_{A}=\varphi_{1}^{B} x_{1}+{ }_{B} \ldots+{ }_{B} \varphi_{n}^{B} x_{n}+{ }_{B} u_{A}=$

$$
\varphi_{1}^{A} x_{1}+\ldots+\varphi_{m}^{A} x_{m}+u_{A} .
$$

Since the operation A is arbitrary, we have proved that every operation $A \in \Sigma$ has the form:

$$
\begin{equation*}
A\left(x_{1}, \ldots, x_{m}\right)=\varphi_{1}^{A} x_{1}+\ldots+\varphi_{m}^{A} x_{m}+u_{A} \tag{21}
\end{equation*}
$$

Let us prove that $\varphi_{i}^{A}(i=1, \ldots, m)$ are quasiendomorphisms of the group $Q(+)$. According to (19) and (20), we have:

$$
\varphi_{i}^{A}(x+y)=\varphi_{i}^{A}\left(x+_{A} y+_{A} t\right)=\varphi_{i}^{A} x+{ }_{A}+\varphi_{i}^{A} y+_{A} \varphi_{i}^{t}=\varphi_{i}^{A} x+\alpha y
$$

where α is a map of Q to Q. Thus, φ_{i}^{A} is a quasiendomorphism of the group $Q(+)$ and, by Lemma 2.1, we have:

$$
\varphi_{i}^{A}=\widetilde{R}_{s} \gamma_{i}^{A}
$$

where $\gamma_{i}^{A} \in \operatorname{End} Q(+)$. Hence, from (21), it follows that:

$$
A\left(x_{1}, \ldots, x_{m}\right)=\gamma_{1}^{A} x_{1}+\ldots+\gamma_{m}^{A} x_{m}+d_{A}
$$

where $d_{A} \in Q$.
Similar to the proof of Theorem 3.1, we can show that the endomorphisms γ_{i}^{A} are pairwise commuting for all $i=1, \ldots,|A|$ and $A \in \Sigma$.

Analogously we can prove the following theorem.
Theorem 3.3. Let (Q, Σ) be a medial invertible algebra. Then there exists an abelian group $Q(+)$ such that every operation $A \in \Sigma$ has the representation:

$$
A\left(x_{1}, \ldots, x_{|A|}\right)=\varphi_{1}^{A} x_{1}+\ldots+\varphi_{|A|}^{A} x_{|A|}+t_{A}
$$

where $\varphi_{1}^{A}, \ldots, \varphi_{|A|}^{A}$ are pairwise commuting automorphisms of the group $Q(+)$ and t_{A} is a fixed element of Q.

References

[1] V.D. Belousov, Foundations of the theory of quasigroups and loops, (Russian), Nauka, Moscow (1967).
[2] V.D. Belousov, n-ary quasigroups, (Russian), Stiinica, Kishinev (1972).
[3] S.S. Davidov, A characterization of binary invertible algebras linear over a group, Quasigroups and Related Systems 19 (2011), 207 - 222.
[4] W.A. Dudek, Remarks on n-groups, Demonstratio Math. 13 (1980), 165 - 181.
[5] W.A. Dudek, Medial n-groups and skew elements, Proc. V Universal Algebra Symposium "Universal and Applied Algebra", Turawa 1988, World Scientific, Singapore, (1989), $55-80$.
[6] W.A. Dudek, I. Groźdińska, On ideals in regular n-semigroups, Mat. Bilten (Skopje) 29(30) (1979/80), 35-44.
[7] T. Evans, Abstract mean values, Duke Math. J. 30 (1963), 331 - 347.
[8] J. Ježek, T. Kepka, Free entropic groupoids, Commentationes Math. Univ. Carolinae 22 (1981), 223 - 233.
[9] J. Ježek, T. Kepka, Equational theories of medial groupoids, Algebra Universalis 17 (1983), 174 - 190.
[10] T. Kepka, Medial division groupoids, Acta Univ. Carolinae, Math. Phis. 20 (1979), 41 - 60 .
[11] A.G. Kurosh, General algebra, (Russian), Nauka, Moscow (1974).
[12] A. Marini, V. Shcherbacov, On autotopies and automorphisms of n-ary linear quasigroups, Algebra Discr. Math. 2 (2004), $59-83$.
[13] Yu.M. Movsisyan, Introduction to the theory of algebras with hyperidentities, Yerevan State Univ. Press, Yerevan (1986).
[14] Yu.M. Movsisyan, Hyperidentities in algebras and varieties, (Russian), Uspekhi Mat. Nauk 53 (1998), 61 - 114.
[15] E. Nazari, Yu. Movsisyan, Transitive mods, Demonstratio Math. 44 (2011), 511-522.
[16] E. Nazari, Yu. Movsisyan, A Cayley theorem for the multiplicative semigroups of a field, J. Algebra and Appl. 11 (2012), art. no. 1250042.
[17] A.B. Romanowska, J.D.H. Smith, Modes, World Scientific, Singapore (2002).
[18] J.D.H. Smith, Entropy, character theory and centrality of finite quasigroups, Math. Proc. Cambridge Philos. Soc. 108 (1990), $435-443$.
[19] A.Kh. Tabarov, Homomorphisms and endomorphisms of linear and alinear quasigroups, Discrete Math. Appl. 17 (2007), 253 - 260.

Received June 16, 2013
Department of mathematics and Mechanics
Yerevan State University
1 Alex Manoogian
Yerevan 0025
Armenia
Email: davidov@ysu.am

