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Abstract
A vibronic model for the magnetic properties of a low-spin d5 metal complex is reported.

The splitting of the ground 2T2-term by the strong spin–orbital interaction and the trigonal

component of the crystal field as well as the covalency effects are taken into account. The

pseudo-Jahn–Teller mixing of the low-lying states is also considered in the frame-

work of the semiclassic adiabatic approximation. The influence of the named inter-

actions on the g-tensor and on the tensor of the temperature-independent paramagnetism

is elucidated.

Contents

1. Introduction 414

2. The model 414

3. Matrix representation of the main interactions 415

4. Energy pattern for a d5 complex in a static model 418

5. g-Factors and TIP in the 2T2^ ðeþ SOþ VtrigÞ pseudo-JT vibronic problem 420

6. Concluding remarks 426

Acknowledgements 428

References 428

ADVANCES IN QUANTUM CHEMISTRY, VOLUME 44 q 2003 Elsevier Inc.

ISSN: 0065-3276 DOI 10.1016/S0065-3276(03)44027-6 All rights reserved



1. INTRODUCTION

Complexes of heavy metal ions attract considerable interest due to the strong spin–

orbital interaction giving rise to a significant magnetic anisotropy. This study was

initiated by the unusual magnetic data obtained at Texas A&M University for two

compounds of Re(II): [Et4N][Re(triphos)(CN3)] and [Re(triphos)(MeCN3)] [BF4]2
in which Re(II) ions occupy the sites with a strong cubic crystal field and a

significant trigonal component. These complexes exhibit anomalously large

temperature-independent paramagnetism (TIP) that can be related to the low-

lying levels that arise from the interplay between the low-symmetry crystal field,

spin–orbital and vibronic interactions. Since the cubic crystal field for the heavy

metal ions is usually strong the d5 electronic configuration is expected to be the low-

spin ground term 2T2ðt52Þ that is split by spin–orbital interaction and trigonal crystal

field. The studies of the orbital triplets in the crystal field were focused mainly on the

calculation of the EPR parameters [1–4]. In the present study we will use the T–P

isomorphism [2] and pay attention to the magnetic properties of the d5 complexes.

The vibronic Jahn–Teller (JT) interaction is of crucial importance for the

interpretation of the magnetic and spectroscopic properties of transition metal

complexes [5–7]. A special role of the JT interaction in the magnetic problem has

been demonstrated in [8], where the giant second-order Zeeman effect has been

discovered. This effect was shown to arise from the set of closely spaced hybrid

electron-vibrational levels. The JT interaction for the extended 5d electronic shells

is expected to be strong and should be taken into account along with the spin–orbital

interaction. For the case under study (d5-ion) this leads to a pseudo-JT (PJT)

vibronic problem. Using semiclassical adiabatic approach [9] we elucidate the main

manifestations of the PJT interaction and the combined action of PJT and trigonal

crystal field in the magnetic properties of complex d5 ions.

2. THE MODEL

We consider d5-ions in the cubic and axially distorted complexes. Axial distortions

are assumed to arise from the heteronuclear ligand surrounding or from deviation of

the local surrounding of the metal ion from the octahedral one. This gives rise to a

trigonal or a tetragonal component of the crystal field. The model takes into account

the following relevant interactions defining the magnetic properties of the

complexes: (1) Strong cubic crystal field. In a strong cubic crystal field the d5-ion

proves to be the low-spin one and has a triplet ground state 2T2ðt52Þ; (2) spin–orbital
coupling that splits the 2T2-term into the doublet G7 and the quadruplet G8; (3)

trigonal component of the crystal field which is compatible with the structure of the

titled Re(II) complexes; (4) vibronic coupling in the orbital triplet with the

tetragonal (e) modes that leads to a PJT vibronic problem T2^ ðeþ SOÞ in d5

complexes. Here we will consider the combined effect of the low-symmetry fields

and PJT interaction with the tetragonal vibrations that usually is the most important.
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We shall employ the adiabatic approximation that was shown to provide a rather

good accuracy in the calculation of the magnetic susceptibility for the vibronic

mixed valence systems exhibiting PJT in a wide range of parameters [9]. At the

same time this approximation allows us to gain a descriptive comprehension of

the physical role of the JT interaction. The full Hamiltonian of the system in the

adiabatic approximation can be written as follows:

H ¼ HSO þ Vtrig þHZ þ
1

2
vEðq2u þ q

2
vÞIþ vEðquOu þ qvOvÞ ð1Þ

The Hamiltonian of the electronic subsystem includes the spin–orbital coupling

ðHSOÞ; trigonal crystal field ðVtrigÞ and Zeeman interaction ðHZÞ: The vibronic part
of the Hamiltonian contains the energy of free vibrations associated with the

tetragonal (e) JT modes and the vibronic coupling with these modes, vE is the

vibronic constant. The dimensionless normal coordinates of the tetragonal

vibrations are denoted as qu; qv (basis u/ 3z2 2 r2; v/ x2 2 y2) and vE is the

frequency of these vibrations. In equation (1), I is the unit matrix and the matrices

OEg ; Og ðg ¼ u; vÞ are defined in the cubic T2-basis ðj;h; z Þ as follows:

OEu ¼
21=2 0 0

0 21=2 0

0 0 1

0

B

B

@

1

C

C

A

; OEv ¼

ffiffi

3
p

=2 0 0

0 2

ffiffi

3
p

=2 0

0 0 0

0

B

B

B

@

1

C

C

C

A

ð2Þ

In the framework of the adopted semiclassical adiabatic approximation the nuclear

kinetic energy is omitted.

3. MATRIX REPRESENTATION OF THE MAIN INTERACTIONS

We shall use the T–P-isomorphism that allows us to consider the orbital triplet T2 as

a state possessing the fictitious orbital angular momentum L ¼ 1; keeping in mind

that the matrix elements of the angular momentum operator L within T2 and P bases

are of the opposite signs, LðT2Þ ¼ 2LðPÞ [2]. As it was shown in our recent paper

[10] this approach provides both an efficient computational tool and a clear insight

on the magnetic anisotropy of the system that appears due to the orbital

contributions. Within T–P formalism the spin–orbital and Zeeman terms can be

represented as:

HSO ¼ 2klLS; HZ ¼ bðgeS2 kLÞH ð3Þ

The operators in equation (3) act within the ground manifold possessing S ¼ 1
2
and

L ¼ 1 (k is the orbital reduction factor, ge is the electronic g-factor). The axial

(trigonal) component of the crystal field directed along the C3-axis is defined as a

linear combination of the irreducible tensors of Oh that becomes scalar in the
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trigonal point groups let say, (D3d):

Vtrig ¼ 2
1

2
DðOj þOh þOzÞ ð4Þ

where the matrices OT2g
; Og ðg ¼ j;h; z Þ are given by:

OT2j
¼

0 0 0

0 0 1

0 1 0

0

B

B

@

1

C

C

A

; OT2h
¼

0 0 1

0 0 0

1 0 0

0

B

B

@

1

C

C

A

; OT2z
¼

0 1 0

1 0 0

0 0 0

0

B

B

@

1

C

C

A

ð5Þ

In equation (4) D is the parameter of the trigonal crystal field. This crystal field splits

the T2-state into an orbital singlet and a doublet, the parameter D is defined in such a

way that for positive D the ground state is the orbital singlet.

To take advantage from the pseudo-angular momentum representation we shall

employ the technique of the irreducible tensor operators as suggested in Ref. [10].

One can easily establish the following interrelations between the matrices OGg and

the orbital angular momentum operators:

OEu ¼ 12
3

2
L
2
Z ; OEv ¼ 2

ffiffi

3
p

2
ðL2

X 2 L
2
Y Þ

OT2j
¼ 2

1
ffiffi

2
p ðLYLZ þ LZLY Þ; OT2h

¼ 2
1
ffiffi

2
p ðLXLZ þ LZLXÞ ð6Þ

OT2z
¼ 2

1
ffiffi

2
p ðLXLY þ LYLXÞ

Let us express the operators LX, LY and LZ in terms of the components of the first

rank spherical irreducible tensor L1qðq ¼ 0;^1Þ :

LX ¼ 1
ffiffi

2
p ðL1–1 2 L11Þ; LY ¼ i

ffiffi

2
p ðL1–1 þ L11Þ; LZ ¼ L10 ð7Þ

The same relations can be applied to the spin operators. Then, using the Clebsch–

Gordan decomposition [11] one can express the bilinear forms of the orbital

angular momentum operators in equation (6) in terms of the irreducible tensorial

products:

L1q1
L1q2

¼
X

kq

{L1^L1}kqC
kq
1q11q2

ð8Þ

Here {L1^L1}kq is the complex irreducible tensor of the rank k composed from the

angular momentum operators, q ¼ 2k;2k þ 1;…; k and C
kq
1q11q2

are the Clebsch–

Gordan (Wigner) coefficients. Now one can express all matrices OGg in terms of

the complex irreducible tensors TkqðLÞ ¼ {L1^L1}kq acting in the orbital

subspace:
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OEu ¼ 2

ffiffiffi

3

2

r

T2 0ðLÞ; OEv ¼ 2

ffiffiffi

3

2

r

½T2 2ðLÞ þ T2 –2ðLÞ�

OT2j
¼2

i
ffiffi

2
p ½T21ðLÞþT2 –1ðLÞ�; OT2h

¼ 1
ffiffi

2
p ½T21ðLÞ2T2 –1ðLÞ� ð9Þ

OT2z
¼ i

ffiffi

2
p ½T22ðLÞ2T2 –2ðLÞ�

These relations allow us to evaluate the matrix elements of all involved interactions

using the irreducible tensor operator technique and to exploit the results derived

from the theory of magnetically coupled systems. The matrix of the Hamiltonian can

be built either in uncoupled or in coupled bases. It is convenient to choose such a

basis in which spin–orbital coupling proves to be diagonal. This means that in this

basis the orbital angular momentum and spin are coupled lLS J MJl;




1 1
2
J MJ

�

in

order to get the total angular momentum J¼ 1
2
(Kramers doublet G7) and J¼ 3

2

(quadruplet G8). The quantization axis for the total angular momentum in the

trigonally distorted system is C3. In the coupled basis the spin–orbital operator is

represented by the diagonal matrix:

k1 S J 0M0
J lHSOl1 S J MJl¼2

1

2
kl½JðJþ1Þ2SðSþ1Þ22�dJJ 0dMJM

0
J

ð10Þ

Then, using the matrix elements for the complex irreducible tensor operators (see

Ref. [11]) we arrive at the following expression for the matrix elements of the

vibronic interaction:

k1S J 0M0
J lHvibl1S J MJl

¼ ð21ÞSþJ
ffiffiffiffiffiffiffiffiffiffiffiffi

5ð2Jþ1Þ
p

1 2 1

J
0
S J

8

<

:

9

=

;

vE

ffiffi

3
p

2
½qu

ffiffi

2
p

C
J 0 M0

J

JMJ20

þqvðC J 0 M0
J

J MJ22
þC

J0 M0
J

JMJ2 –2
Þ� ð11Þ

where
�

· · ·
· · ·
�

are the 6j-symbols [11]. For the matrix elements of Zeeman interaction

one gets:

k1 S J 0M0
J lHZl1S J MJl

¼
ffiffiffiffiffiffiffiffiffiffi

ð2Jþ1Þ
p

ð21ÞJþS
1 1 1

J
0
S J

( )

b ½ge
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SðSþ1Þð2Sþ1Þ
p

þk
ffiffi

6
p

�ðC J0 M0
J

J MJ10
H10

2C
J0 M0

J

J MJ11
H1 –12C

J 0 M0
J

J MJ1 –1
H11Þ ð12Þ

where H10 ¼HZ ; H1^1 ¼7ð1=
ffiffi

2
p

ÞðHX^ iHY Þ are the cyclic components of the

magnetic field. Particular direction of the magnetic field can be selected by means of

an appropriate choice of the corresponding terms in equation (12).
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Finally, for the matrix elements of the trigonal crystal field operators we find:

k1 S J
0
M

0
J lVtrigl1 S J MJl

¼ ð21Þ1þSþJ
ffiffiffiffiffiffiffiffiffiffiffiffi

5ð2J þ 1Þ
p

1 2 1

J
0

S J

8

<

:

9

=

;

1

2
ffiffi

2
p D ½ði2 1ÞC J 0 M0

J

J MJ2 1

þ ðiþ 1ÞC J0 M0
J

J MJ2 –1 2 iðC J 0 M0
J

J MJ2 2
2 C

J0 M0
J

J MJ2 –2Þ� ð13Þ

In the following sections we will consider the interplay of the vibronic interaction,

spin–orbital coupling and static trigonal field with regard to the problem of the

magnetic properties of the low-symmetry d5-complexes.

4. ENERGY PATTERN FOR A d5 COMPLEX IN A STATIC MODEL

Before studying the magnetic properties in the vibronic model we will inspect the

arrangement of the energy levels taking into account only electronic interactions:

spin–orbital coupling and trigonal crystal field. The spin–orbital coupling

parameter is negative for the low-spin d5-ions, so that in the cubic crystal field

the Kramers doublet G7 is the ground state and the quadruplet G8 is the excited one.

The corresponding energies are the following:

E
1

2

� �

¼ 2klll; E
3

2

� �

¼ klll

2
ð14Þ

The energy separation between the doublet and quadruplet is 3klll=2: When the

system is distorted along the C3 axis the Oh symmetry is lowered to D3d: Then the

irreducible representation G7 passes to G4 while G8 splits into G4 þ G5 þ G6 [12].

The representations G5 and G6 form the complex conjugated double-valued

representation with the basis MJ ¼ ^3=2; while the basis for G4 is MJ ¼ ^1=2:
Two G4 states (from J ¼ 1=2 and 3/2) with the same quantum numberMJ are mixed

by the trigonal crystal field. In the absence of external magnetic field the energy

levels are solely determined by lMJ l due to the axial symmetry of the system. The

expressions for the energy levels EðlMJ lÞ are found to be the following:

E^
1

2

� �

¼ 1

4

�

2D2 lllk^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðD23lllkÞ2þ8D2

q
�

; E
3

2

� �

¼ D

2
þ lllk

2
ð15Þ

Hereunder we use the notations E^
�

1
2

�

for the energies of the G4-states and E
�

3
2

�

for

the energy of the G5 þ G6-state. The corresponding wave-functions depend on the

sign of the trigonal crystal field. So, provided D#0; the wave-functions of the

ground G4-state are the following:

C2 ^
1

2

� �

¼
ffiffiffiffiffiffiffiffi

1þR

2

r

F
1

2
;^

1

2

� �

^

ffiffiffiffiffiffiffiffi

12R

2

r

F
3

2
;^

1

2

� �

ð16Þ
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where:

R¼ 1þ8 123
lllk

D

� �22
" #

21=2

ð17Þ

Figure 1 shows the energy levels of the d5 system as a function of D providing

l¼22100cm21 and k¼0:7: Independently of the sign and magnitude of the

trigonal crystal field the doublet G4 with the energy E2

�

1
2

�

is the ground state. In the

limit of strong positive trigonal field the spin–orbit coupling is completely

suppressed within the ground state, so this state becomes 2A1: The symmetry of the

first excited state depends on the sign of the trigonal field. Providing D,0 the first

excited level is E
�

3
2

�

: In the limit of strong negative field two low-lying levels

E2

�

1
2

�

; E
�

3
2

�

vs. trigonal field are parallel, these levels can be attributed to the first

order spin–orbital splitting of the trigonal 2E term in D3d symmetry. Only the LZ

component is operative within the orbital trigonal E-basis, so that spin–orbital

coupling becomes axial ð2klLZSZÞ and one easily finds that the spin–orbital

splitting in 2E is kl: This value is reduced by the trigonal crystal field with respect to
its initial value ð3kl=2Þ in a cubic 2T2 term. Using equations (16) and (17) one can

find the following formulas for the g-factors that are valid in the case of a negative

trigonal field:

gk¼1þRþ2

ffiffiffiffiffiffiffiffiffiffiffiffi

2ð12R2Þ
q

; g’¼1þR2

ffiffiffiffiffiffiffiffiffiffiffiffi

2ð12R2Þ
q

ð18Þ

In the limit of strong negative trigonal field the parameter R takes on the value 1
3
; we

approach the following principal values of g-factor: gk¼4 and g’¼0: This case can
be referred to as the fully anisotropic limit.

Fig. 1. Splitting of the 2T2ðt52Þ term by the spin–orbital interaction and trigonal crystal field.
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When D . 0 the first excited level is Eþ
�

1
2

�

: Now the above discussed first-order

spin–orbital splitting of 2E-term occurs for the excited levels E
�

3
2

�

; Eþ
�

1
2

�

that are

parallel in the strong crystal field limit.

5. g-FACTORS AND TIP IN THE 2T2^ ðe1 SO1 VtrigÞ PSEUDO-JT

VIBRONIC PROBLEM

The tetragonal vibrational modes couple the states E2

�

1
2

�

and Eþ
�

1
2

�

(Fig. 1) that

results in the PJT problem. In order to make clear the behavior of the g-factors and

TIP contributions to the magnetic susceptibility we start with the inspection of the

adiabatic surfaces. Figure 2(a) illustrates the ground adiabatic potential sheet of a

perfect octahedral system ðD ¼ 0Þ in the case of weak vibronic coupling when this

interaction is not strong enough to produce the tetragonal minima. Then the only

minimum corresponds to a non-distorted octahedron ðqu ¼ qv ¼ 0Þ: With the

increase of the vibronic coupling the adiabatic well in the vicinity of the minimum is

getting more flat and for some critical value of the vibronic constant this single-

minimum is split into three equivalent minima located at the positions ðqu; qvÞ ¼
ð2q0; 0Þ; ðq0=2;2q0

ffiffi

3
p

=2Þ; ðq0=2; q0
ffiffi

3
p

=2Þ lying on the ring with the radius q0; q0
being a function of all relevant parameters of the system. In each minimum the

system is distorted along one of three tetragonal axes. With further increase of the

vibronic coupling these minima become deeper (Fig. 2(b)).

The trigonal field and vibronic coupling with the tetragonal modes are in

competition and the field modulates the energy separation between the E2

�

1
2

�

and

Eþ
�

1
2

�

states governing thus the strength of the PJT effect. With the increase of

the trigonal field, the minima of the lower adiabatic surface become shallower, the

barrier separating the minima decreases (Fig. 2(c)) and at some critical value of the

field (Fig. 2(d)) they are transformed into one minimum. This tendency remains

irrespectively of the sign of the static distortion. Note, however, that for D . 0 the

shape of the adiabatic surface changes non-monotonically. In fact, with the increase

of D, firstly, the two low-lying doublets become closer and then diverge (Fig. 1).

Positions of the minima in ðquqvÞ space are related to the tetragonal distortions of
the system. At the same time this space does not contain points corresponding to the

additional trigonal distortions related to the trigonal field. The real distortions of the

system in each minimum of the adiabatic potential can be presented as a

superposition of the tetragonal distortion produced by the JT interaction and the

trigonal distortion arising from the static crystal field; the last can described in

the extended vibrational space involving also trigonal (t2) vibrations as a shift of the

trigonal coordinate Q ¼ ðqj þ qh þ qhÞ=
ffiffi

3
p

: In order to find the real symmetry of

the system (that should be implied in the description of g-tensors and tensors of the

TIP) one can construct the effective crystal field potential arising from the combined

tetragonal (JT type) and trigonal (static) distortions, i.e., shift of Q. Crystal field

potentials corresponding to the tetragonal distortions along C4 axes X, Y and Z can be
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Fig. 2. The lower sheet of the adiabatic potential: l ¼ 22100 cm21; k ¼ 0:7; ~v ¼ 400 cm21 and (a) v ¼ 1:5 ~v; D ¼ 0; (b) v ¼ 3 ~v; D ¼ 0;
(c) v ¼ 3 ~v; D ¼ 2000 cm21; (d) v ¼ 3 ~v; D ¼ 4000 cm21:
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associated with three non-orthogonal combinations of the Eg-type:

VZ ¼ VEu; VY ¼ 2
1

2
VEu 2

ffiffi

3
p

2
VEv; VX ¼ 2

1

2
VEu þ

ffiffi

3
p

2
VEv ð19Þ

The trigonal distortion with C3 axis [111] is related to the operator of T2-type:

ðVT2j
þ VT2h

þ VT2z
=
ffiffi

3
p

Þ ð20Þ

By substituting the coordinate representation for the operators involved in equations

(19) and (20) one can find three crystal field operators corresponding to three

tetragonal minima in the trigonally distorted system:

WZ ¼ Að3z2 2 r
2Þ þ Bðyzþ xzþ xyÞ

WY ¼ Að3y2 2 r
2Þ þ Bðyzþ xzþ xyÞ ð21Þ

WX ¼ Að3x2 2 r
2Þ þ Bðyzþ xzþ xyÞ

Inspecting these potentials one can easily see that in each tetragonal minimum the

system really belongs to the Cs point group (that is, in fact, the intersection of D4h

and D3d) with the symmetry planes sXY ; sZY and sXZ , respectively. The parameters

A and B are defined by competition of the PJT interaction and trigonal field, in

particular, when the trigonal field suppresses tetragonal distortions and the potential

becomes single-minimum, the parameter A vanishes. In this case the system proves

to be trigonal.

The g and TIP tensors under the actual symmetry prove to be tri-axial. The main

axes of g and TIP in each minimum are located in the corresponding planes s and

the directions of these axes cannot be determined by symmetry arguments solely,

they move from C4 (limit of strong PJT) to C3 (strong trigonal field). When the

tunneling processes are fast enough the observable g-factors are to be averaged over

tetragonal minima that correspond to an average potential in equation (21).

Summation over C4 directions (over three minima) leaves only trigonal component,

so that we arrive to the axial g-factors with the main axis C3. For the static

susceptibility experiment the time scale is practically infinite, so the TIP tensor can

be always regarded to C3 axis.

To illustrate the behavior of g-factors in a simple way we assume that the

tunneling is fast so that we are dealing with the averaged, i.e., trigonal symmetry. In

this case for a three-well surface one can obtain the approximate expressions for the

main components of g-factors and TIP:

gk ¼
1

3

X

3

i¼1

g
2
�Z �Zðqiu; qivÞ

 !1=2

; g’ ¼ 1

3

X

3

i¼1

g
2
�X �Xðqiu; qivÞ

 !1=2

TIPk ¼
1

3

X

3

i¼1

TIP �Z �Zðqiu; qivÞ; TIP’ ¼ 1

3

X

3

i¼1

TIP �X �Xðqiu; qivÞ
ð22Þ

where �X; �Y and �Z are the trigonal axes, �Z coincides with the C3 axis, q
i
u and q

i
v are the
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coordinates of the ith minimum ði ¼ 1; 2; 3Þ: In the case of one minimum the

g-factors and TIP are simply defined in the point qu ¼ qv ¼ 0; in this case the

electronic wave-function can be associated with the function of a trigonal singlet,

ðjþ hþ z Þ=
ffiffi

3
p

:
In order to simplify the understanding of the magnetic behavior of the PJT system

first we give some results for the limiting cases of strong crystal field ðlDlq vÞwhen
the PJT effect is completely quenched. Depending on the sign ofDwe face two cases.

For D . 0 the ground orbital singlet is well separated from excited ones so the spin–

orbital coupling is suppressed. The system becomes isotropic and the g-factor takes

on the spin-only value. Provided that D , 0 the spin–orbital interaction is partially

reduced. In this case we arrive at the fully anisotropic limit with gk ¼ 4 and g’ ¼ 0:
Finally, when D ¼ 0 we obtain the isotropic g-factor that is different from the spin-

only value due to the effect of covalence. In our case ðk ¼ 0:7Þ g is equal to 1.6.

Figure 3 shows the averaged gk and g’ values as functions of the vibronic

coupling parameter for D , 0: When the vibronic coupling is weak, the g vs. v/~v

curves exhibit plateaus. These plateaus appear due to the fact that for small vibronic

coupling the lower sheet of the adiabatic surface has the only minimum. In this case

gk and g’ values are just the same as those calculated within the static model. The

increase of the absolute value of D tends to increase the anisotropy (gk goes up and

g’ goes down). In the limiting case of very strong field the anisotropy reaches its

Fig. 3. Calculated principal values of the g-factors as functions of the vibronic coupling
parameter for (1) D ¼ 0; (2) D ¼ 21000 cm21; (3) D ¼ 22000 cm21; (4) D ¼ 23000 cm21;
(5) D ¼ 24000 cm21:
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maximum (gk ¼ 4 and g’ ¼ 0). Each plateau ends at some critical value v ¼ vC
corresponding to the condition of instability for which a single-minimum surface is

transformed into the surface possessing three quasi-tetragonal minima (Fig. 2). In

this case both components of g-factor start to change in such a way that the

anisotropy decreases. In the limit of strong vibronic coupling the anisotropy of

g-factor disappears and g-factor reaches its pure spin value.

The case D . 0 is presented in Fig. 4. The behavior of the g-factors is similar to

that in the previous case but two differences should be noted. With the increase of

trigonal field the difference between gk and g’ (i.e., the anisotropy of the g-factor)

increases, passes through the maximum and then decreases. In the strong crystal

field limit the g-factor becomes isotropic with gk ¼ g’ ¼ ge: For relatively small

positive D the non-monotonic dependence of the g-factors vs. v/~v is connected

with the behavior of the energy levels in this range (see discussion in Section 4).

Irrespective of the sign of the crystal field the strong vibronic coupling stabilizes the

ground singlet state and consequently suppresses the spin–orbital interaction.

The TIP contributions as functions of v/~v are shown in Figs 5 and 6. The main

common feature of TIPk and TIP’ is the presence of the plateau for relatively small

values of vibronic parameter. However, for D , 0 contrary to the g-factors the TIPk
values decrease with the growth of lDl. In the limit of strong fields TIPk vanishes. At
the same time in the range of small v-values TIP’ remains practically constant. Thus

TIP demonstrates a strong anisotropy just like the g-factors. This anisotropy comes

Fig. 4. Calculated principal values of the g-factors as functions of the vibronic coupling
parameter for (1) D ¼ 0; (2) D ¼ 1000 cm21; (3) D ¼ 2000 cm21; (4) D ¼ 3000 cm21;
(5) D ¼ 4000 cm21:
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Fig. 5. Calculated principal values of TIP as functions of the vibronic coupling parameter
for (1) D ¼ 0; (2) D ¼ 21000 cm21; (3) D ¼ 22000 cm21; (4) D ¼ 23000 cm21;
(5) D ¼ 24000 cm21:

Fig. 6. Calculated principal values of TIP as functions of the vibronic coupling para-
meter for (1) D ¼ 0; (2) D ¼ 1000 cm21; (3) D ¼ 2000 cm21; (4) D ¼ 3000 cm21;
(5) D ¼ 4000 cm21:
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from the unquenched axial part of the spin–orbital interaction. For higher values of

the vibronic constants when the ground adiabatic surface has three minima both

components of TIP turn to zero. For positive values of the crystal field TIPk and

TIP’ behave in a similar manner, namely, they demonstrate a strong decrease with

the increase of D.

The behavior of the TIPk and TIP’ contributions in all cases is closely interrelated

with that of the g-factors. The same physical reasons, i.e., the strength of the PJT

effect (efficiency of the mixing of the ground and excited states) form the basis of

such a behavior.

6. CONCLUDING REMARKS

In this chapter we have discussed the magnetic properties of the low-spin d5-ion in

octahedral and quasi-octahedral ligand coordination. The developed model involves

all relevant electronic interactions (the strong cubic crystal field, the spin–orbital

splitting of the ground 2T2-state and the trigonal crystal field) as well as the vibronic

coupling with the tetragonal vibrations that leads to the PJT effect. These

interactions were shown to determine the magnetic characteristics, namely, the

parallel and perpendicular components of the g-factor and TIP. The efficiency of

mixing of two Kramers doublets (ground and excited) by the tetragonal modes

active in PJT plays a crucial role in the magnetic anisotropy of the system. At the

same time the trigonal crystal field facilitates or suppresses this mixing resulting

thus either in the appreciable anisotropy or in the fully isotropic behavior.

This chapter is the first step in the study of the magnetic behavior of the

complexes of 5d-ions. The model is based on the Born–Oppenheimer version of the

adiabatic approximation, i.e., only the minima of the lower adiabatic surfaces are

taken into account while calculating g-factors and TIP.

The validity conditions for the semiclassic adiabatic approach in the description

of the systems with orbitally non-degenerate levels are elucidated in the basic works

of Born and Oppenheimer (comprehensive discussion can be found in Refs. [6,7]).

In these systems, the slow nuclear motion can be separated from the fast electronic

one. The situation is quite different in the JT systems where, in general, this

separation is impossible due to hybridization of the electronic and vibrational states.

Nevertheless, in many important cases the adiabatic approach can serve as a

relatively simple and at the same time powerful tool for the theoretical study of the

JT systems giving accurate quantitative results and clear insight on the physical

nature of the physical phenomena.

The question of the applicability of the semiclassic adiabatic approach to the

vibronic problems in the JT systems is rather complicated in general and the

thorough answer can be done with regard to a particular problem. In our brief

discussion of this question we will refer to two areas – thermodynamic properties

and resonance (optical) problems. In Ref. [9] the magnetic properties of

mixed-valence dimeric and trimeric clusters are considered in the framework of
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the PJT model with due account of Heisenberg exchange and double exchange. The

results of the semiclassic calculations of the magnetic moments vs. temperature

were carefully tested by comparison with quantum-mechanical results. The results

exhibit surprisingly high accuracy of the semiclassic theory in a wide range of

the temperature and coupling parameters (the worst error is less than 0.03%). The

qualitative difference in the estimation of magnetic behavior between the

semiclassic and dynamic approaches was intentionally found for a specific choice

of the parameters when the ground vibronic levels belonging to different spin values

are close. One can believe that this conclusion is common for the thermodynamic

(non-resonance) characteristics of the JT systems that are defined exceptionally by

the partition function.

On the contrary, the semiclassical approach in the problem of the optical

absorption is restricted to a great extent and the adequate description of the phonon-

assisted optical bands with a complicated structure caused by the dynamic JTE

cannot be done in the framework of this approach [13]. An expressive example is

represented by the two-humped absorption band of A! E^ e transition. The dip of

absorption curve for A! E^ e transition to zero has no physical meaning because

of the invalidity of the semiclassical approximation for this spectral range due to

essentially quantum nature of the density of the vibronic states in the conical

intersection of the adiabatic surface. This result is peculiar for the resonance

(optical) phenomena in JT systems; full discussion of the condition of the

applicability of the adiabatic approximation is given in Ref. [13].

Keeping in mind these results, in the present study we shall take advantage of the

semiclassic adiabatic approach that seems to be rather good in the case of strong

vibronic coupling. When the vibronic coupling is moderate the model provides less

accuracy. However, even in this case it leads to a qualitatively adequate description

of the magnetic properties and reasonable accuracy of the quantitative results. More

exact treatment demands the solution of the dynamic PJT vibronic problem. The

plateau discovered in the curves of TIP and g vs. vibronic coupling parameter is

expected to exist also in the dynamic model but the stepwise behavior will change

into stepless due to more smoothed distribution of nuclear configurations in the

quantum-mechanical approach.

Using the developed model we are going to study two low-spin Re(II)

compounds of the formulas ½ReðtriphosÞðCH3CNÞ3�½BF4�2 (compound 1) and

½Et4N�½ReðtriphosÞðCNÞ3� (compound 2) containing the tripodal phosphine ligand

CH3CðCH2PPh2Þ3 1,1,1-tris(diphenylphosphinomethyl)ethane; abbreviated tri-

phos). In both compounds the nearest quasi-octahedral ligand environment of the

Re(II)-ion can be regarded approximately as the trigonal system belonging to the

C3v-symmetry group. The C3 axis passes through the triangular face composed from

the phosphorous ions and another face containing three nitrogen ions in compound 1

and three carbon atoms in compound 2. Experimentally found effective magnetic

moments 1.53 and 1.28 BM are lower than the pure spin21
2
value 1.73 BM. At the

same time TIP contributions to x are 1:796 £ 1023 and 1:363 £ 1023 for compounds
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1 and 2, respectively. These values are one order of magnitude larger than the typical

TIP values in the 3d-ions.

Interpretation of this unusual magnetic behavior requires consideration also of the

terms arising from the excited electronic configurations (t42e; t
3
2e

2, etc.). Along with

the interactions so far considered the magnetic contribution coming from these

states is expected to be of primary importance when the TIP is significant. This work

is in progress.
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