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Integrals and phase portraits of planar quadratic

differential systems with invariant lines

of total multiplicity four
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Abstract. In this article we consider the class QSL
4

of all real quadratic differential

systems
dx

dt
= p (x, y),

dy

dt
= q(x, y) with gcd(p, q) = 1, having invariant lines of total

multiplicity four and a finite set of singularities at infinity. We first prove that all
the systems in this class are integrable having integrating factors which are Darboux
functions and we determine their first integrals. We also construct all the phase
portraits for the systems belonging to this class. The group of affine transformations
and homotheties on the time axis acts on this class. Our Main Theorem gives necessary
and sufficient conditions, stated in terms of the twelve coefficients of the systems, for
the realization of each one of the total of 69 topologically distinct phase portraits
found in this class. We prove that these conditions are invariant under the group
action.

Mathematics subject classification: 34A26, 34C40, 34C14.
Keywords and phrases: Quadratic differential system, Poincaré compactification,
algebraic invariant curve, affine invariant polynomial, configuration of invariant lines,
phase portrait.

1 Introduction

We consider here real planar differential systems of the form

(S)
dx

dt
= p(x, y),

dy

dt
= q(x, y), (1)

where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R, their associated vector
fields

D̃ = p(x, y)
∂

∂x
+ q(x, y)

∂

∂y
(2)

and differential equations

q(x, y)dx− p(x, y)dy = 0. (3)

We call degree of a system (1) (or of a vector field (2) or of a differential equation (3))
the integer deg(S) = max(deg p, deg q). In particular we call quadratic a differential
system (1) with deg(S) = 2.
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A system (1.1) is said to be integrable on an open set U of R2 if there exists a C1

function F (x, y) defined on U which is a first integral of the system, i.e. such that
D̃F (x, y) = 0 on U and which is nonconstant on any open subset of U . The cases
of integrable systems are rare but as Arnold said in [2, p. 405] ”...these integrable
cases allow us to collect a large amount of information about the motion in more
important systems...”. In particular we indicate below how integrable systems play a
role in the second part of Hilbert’s 16th problem for polynomial differential systems.

There are several hard open problems on the class of all quadratic differential
systems (1). Among them the most famous one is the second part of Hilbert’s 16th
problem which asks for the determination of the so called Hilbert number H(2) for
this class where

H(n) = max{LC(S)
∣∣ deg(S) = n}

and LC(S) is the number of limit cycles of the system (S). It is known that for any
polynomial system (S), LC(S) is finite. This is the so called individual finiteness
theorem which was proved independently by Ilyashenko and Ecalle (see [12,15]).

The class of quadratic differential systems possessing a singularity which is a
center is formed by integrable systems on open sets of R2 which are complements of
real invariant algebraic curves. These systems do not possess limit cycles but they
turn out to be very important in the determination of H(2) as perturbations of such
systems could produce limit cycles. Furthermore we have evidence indicating that
H(2) could be linked to the number of limit cycles occurring in perturbations of the
most degenerate ones of all quadratic systems with a center (which happen to have
a rational first integral) as we explain below.

In [3] the authors studied the class of all quadratic systems possessing a second
order weak focus. It is known that the maximum number of limit cycles occurring
in systems in this class is two (see [32,33]). In the bifurcation diagram drawn in [3]
for this three parameter family of systems, modulo the action of the affine group
and time rescaling, the maximum number of two limit cycles which one has for this
class, occurs in perturbations of an quadratic system (S0) with a center, which has
a rational first integral foliating the plane into conic curves. In addition this system
(S0) has three invariant affine lines and its line at infinity is filled up with singu-
larities. Although other systems in this class having this maximum number of two
limit cycles could be far away in the parameter space from the particular degen-
erate system (S0), their phase portraits are topologically equivalent with a small
perturbations of (S0). This indicates the importance of integrable systems having
invariant algebraic curves (see Definition 3), even with a rational first integral, in the
second part of Hilbert’s 16th problem and adds to the motivation for studying such
systems. However, such a study is interesting for its own sake being at crossroads
of differential equations and algebraic geometry.

The simplest class of integrable quadratic systems due to the presence of invariant
algebraic curves is the class of integrable quadratic systems due to the presence of
invariant lines. The study of this class was initiated in articles [25, 27–29]. In
particular it was shown in [29] that the above mentioned system (S0) possesses
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invariant affine lines of total multiplicity three.

In this article we study the class QSL4 of all quadratic differential systems
possessing invariant lines of total multiplicity four (including the line at infinity and
including multiplicities of the lines). The study of QSL4 was initiated in [27] where
we proved a theorem of classification for this class. This classification, which is taken
modulo the action of the group of real affine transformations and time rescaling, is
given in terms of algebraic invariants and comitants and also geometrically, using
cycles on the complex projective plane and on the line at infinity. An important
ingredient in this classification is the notion of configuration of invariant lines of a
polynomial differential system.

Definition 1. We call configuration of invariant lines of a system (1) the set of all
its (complex) invariant lines (which may have real coefficients), each endowed with
its own multiplicity [25] and together with all the real singular points of this system
located on these lines, each one endowed with its own multiplicity.

The goal of this article is to complete the study we began in [27]. More precisely
in this work we

• prove that all systems in this class QSL4 are integrable. We show this by
using the geometric method of integration of Darboux. We construct explicit
Darboux integrating factors and we give the list of first integrals for each
system in this class;

• construct all topologically distinct phase portraits of the systems in this class;

• give invariant (under the action of the group Aff (2,R) × R∗)) necessary and
sufficient conditions, in terms of the twelve coefficients of the systems, for the
realization of each specific phase portrait.

This article is organized as follows:

In Section 2 we give the preliminary definitions and results needed in this article.
These are mainly of a differential-algebraic nature.

In Section 3 we associate to each real quadratic system (1) possessing invariant
lines with corresponding multiplicities, a divisor on the complex projective plane
which encodes this information. We also define several integer-valued affine invari-
ants of such systems using divisors on the line at infinity or zero-cycles on P2(C)
defined in [25] and [27], which encode the multiplicities of the singularities of the sys-
tems. We also state Theorem 5 which was proved in [27] illustrating how these cycles
are useful for classification purposes. This theorem lists all possible configurations
of invariant lines of total multiplicity four of the systems under study.

In Section 4 we prove the integrability of the systems in this class by using their
invariant lines with their multiplicities. The main result in this Section states that
all these systems have either a polynomial inverse integrating factor which splits into
linear factors over C or a Darboux integrating factor which is a product of powers of
the polynomials defining their invariant lines and an exponential factor eG(x,y) with
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G a rational function over C. The result is summed up in Table 1 where all these
integrating factors are listed along with the first integrals, some of which but not all
are Darboux functions.

In Section 5 we construct the phase portraits of the systems in this class and
state our Main Theorem which gives necessary and sufficient conditions, invariant
under the group action, for the realization of each one of the total of 69 topologically
distinct phase portraits obtained for this class, in terms of the twelve coefficients of
the systems.

2 Preliminaries

In this Section we give the basic notions and results needed in this paper. We
are concerned here with the integrability in the sense of Darboux [10] of systems
(1) possessing invariant straight lines of total multiplicity four. We work with the
notion of multiplicity of an invariant line introduced by us in [25].

In [10] Darboux gave a geometric method of integration of planar complex differ-
ential equations (3) using invariant algebraic curves of the equations (see Definition
3). Each real differential system (1) generates a complex differential system when
the variables range over C. For this reason the method of Darboux can be applied
also for real systems.

Poincaré was enthusiastic about the work of Darboux [10], which he called ”ad-
mirable” in [19]. This method of integration was applied to give unified proofs of
integrability for several families of systems (1). For example in [24] it was applied
to show in a unified way (unlike previous proofs which used ad hoc methods) the
integrability of planar quadratic systems possessing a center.

A brief and easily accessible exposition of the method of Darboux can be found
in the survey article [23].

The topic of Darboux’ paper [10] is best treated using the language of differential
algebra, subject which started to be developed in the work of Ritt [1893–1951], long
after Darboux wrote his paper [10]. The term ”Differential Algebra” was introduced
by Ellis Kolchin, who as Buium and Cassidy said in [6], ”deepened and modernized
differential algebra and developed differential algebraic geometry and differential
algebraic groups”. According to Ritt, differential algebra began to be developed in
the 1930’s (e.g.[21]) under the influence of Emmy Noether’s work of the 1920’s in
algebra. (In his book [22] Ritt said: ”the form in which the results of differential
algebra are presented has been deeply influenced by her teachings”.)

Whenever a definition below is given for a system (1) or equivalently for a vector
field (2), this definition could also be given for an equation (3) and viceversa. For
brevity we sometimes state only one of the possibilities.

An integrating factor of an equation (3) on an open subset U of R2 is usually
defined as a C1 function R(x, y) 6≡ 0 such that the 1-form

ω = Rq(x, y)dx −Rp(x, y)dy
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is exact, i.e. there exist a C1 function F : U −→ K on U such that

ω = dF. (4)

If R is an integrating factor on U of (3) then the function F such that
ω = Rqdx − Rpdy = dF is a first integral of the equation w = 0 (or a system
(1)). In this case we necessarily have on U :

∂(Rq)

∂y
= −∂(Rp)

∂x
(5)

and developing the above equality we obtain
∂R

∂x
p +

∂R

∂y
q = −R

(∂p
∂x

+
∂q

∂y

)
or

equivalently

D̃R = −R div D̃. (6)

In view of Poincaré’s lemma (see for example [31]), if R(x, y) is a C1 function
on a star-shaped open set U of R2, then R(x, y) is an integrating factor of (3) if
and only if (5) (or equivalently (6)) holds on U . So for star shaped open sets U (6)
can be taken as a definition of an integrating factor on U . This is sufficient for our
purpose. We note that this last definition is much simpler than the one usually used
in textbooks as it no longer involves an existential quantifier.

In this work we shall apply to our real quadratic system (1) the method of
integration of Darboux which was developed for complex differential equations (3).
This method uses multiple-valued complex functions of the form:

F = eG(x,y)f1(x, y)
λ1 · · · fs(x, y)

λs , G ∈ C(x, y), fi ∈ C[x, y], λi ∈ C, (7)

G = G1/G2, Gi ∈ C[x, y], fi irreducible over C. It is clear that in general an
expression (7) makes sense only for G2 6= 0 and for points (x, y) ∈ C2 \ ({G2(x, y) =
0} ∪ {f1(x, y) = 0} ∪ · · · ∪ {fs(x, y) = 0}).

The above expression (7) yields a multiple-valued function on

U = C2 \ ({G2(x, y) = 0} ∪ {f1(x, y) = 0} ∪ · · · ∪ {fs(x, y) = 0}).

The function F in (7) belongs to a differential field extension of
(
C(x, y),

∂

∂x
,
∂

∂y

)

obtained by adjoining to C(x, y) a finite number of algebraic and of transcendental
elements over C(x, y). For example f(x, y)1/2 is an expression of the form (7), when
f ∈ C[x, y] \ {0}. This function belongs to the algebraic differential field extension(
C(x, y)[u],

∂

∂x
,
∂

∂y

)
of

(
C(x, y),

∂

∂x
,
∂

∂y

)
obtained by adjoining to C(x, y) a root of

the equation u2−f(x, y) = 0. In general, the expression (7) belongs to a differential
field extension which is not necessarily algebraic. Indeed, for example this occurs if
G(x, y) is not a constant.
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Definition 2. A function F in a differential field extension K of
(
C(x, y),

∂

∂x
,
∂

∂y

)

which is finite over C(x, y), is a first integral (integrating factor, respectively inverse
integrating factor) of a complex differential system (1) or a vector field (2) or a
differential equation (3) if D̃F = 0 (D̃F = −F div D̃, respectively D̃F = F div D̃).

In 1878 Darboux introduced the notion of invariant algebraic curve for differential
equations on the complex projective plane. This notion can be adapted for equations
(3) on C2 or equivalently for systems (1) or vector fields (2).

Definition 3 (Darboux [10]). An affine algebraic curve f(x, y) = 0, f ∈ C[x, y],
deg f ≥ 1 is invariant for an equation (3) or for a system (1) if and only if f | D̃f in

C[x, y], i.e. k =
D̃f

f
∈ C[x, y]. In this case k is called the cofactor of f .

Definition 4 (Darboux [10]). An algebraic solution of an equation (3) (respectively
(1), (2)) is an invariant algebraic curve f(x, y) = 0, f ∈ C[x, y] (deg f ≥ 1) with f
an irreducible polynomial over C.

Darboux showed that if an equation (3) or (1) or (2) possesses a sufficient number
of such invariant algebraic solutions fi(x, y) = 0, fi ∈ C[x, y], i = 1, 2, . . . , s then
the equation has a first integral of the form (7).

Definition 5. An expression of the form F = eG(x,y), G(x, y) ∈ C(x, y), i.e. G is a
rational function over C, is an exponential factor1 for a system (1) or an equation

(3) if and only if k =
D̃F

F
∈ C[x, y]. In this case k is called the cofactor of the

exponential factor F .

Proposition 1 (Christopher [8]). If an equation (3) admits an exponential factor

eG(x,y) where G(x, y) =
G1(x, y)

G2(x, y)
, G1, G2 ∈ C[x, y] then G2(x, y) = 0 is an invariant

algebraic curve of (3).

Definition 6. We say that a system (1) or an equation (3) has a Darboux first
integral (respectively Darboux integrating factor) if it admits a first integral (respec-

tively integrating factor) of the form eG(x,y)
s∏

i=1

fi(x, y)
λi , where G(x, y) ∈ C(x, y)

and fi ∈ C[x, y], deg fi ≥ 1, i = 1, 2, . . . , s, fi irreducible over C and λi ∈ C. A sys-
tem (1) or an equation (3) has a Liouvillian first integral (respectively a Liouvillian
integrating factor) if it admits a first integral (respectively integrating factor) which
is a Liouvillian function, i.e. a function which is built up from rational functions
over C using exponentiation, integration and algebraic functions.

1Under the name degenerate invariant algebraic curve this notion was introduced by Christopher
in [8].
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Proposition 2 (Darboux [10]). If an equation (3) (or (1), or (2)) has an integrating
factor (or first integral) of the form F =

∏s
i=1 f

λi

i then ∀i ∈ {1, . . . , s}, fi = 0 is an
algebraic invariant curve of (3) ( (1), (2)).

In [10] Darboux proved the following theorem of integrability using invariant
algebraic solutions of differential equation (3):

Theorem 3 (Darboux [10]). Consider a differential equation (3) with p, q ∈ C[x, y].
Let us assume that m = max(deg p, deg q) and that the equation admits s algebraic
solutions fi(x, y) = 0, i = 1, 2, . . . , s (deg fi ≥ 1). Then we have:

I. If s = m(m + 1)/2 then there exists λ = (λ1, . . . , λs) ∈ Cs \ {0} such that
R =

∏s
i=1 fi(x, y)

λi is an integrating factor of (3).

II. If s ≥ m(m+ 1)/2 + 1 then there exists λ = (λ1, . . . , λs) ∈ Cs \ {0} such that
F =

∏s
i=1 fi(x, y)

λi is a first integral of (3).

Remark 1. We stated the theorem for the equation (3) but clearly we could have
stated it for the vector field D̃ (2) or for the polynomial differential system (1).
We recall that Darboux’s work was done for differential equations in the complex
projective plane. The above formulation is an adaptation of his theorem for the
complex affine plane.

In [16] Jouanolou proved the following theorem which improves part II of Dar-
boux’s Theorem.

Theorem 4 (Jouanolou [16]). Consider a polynomial differential equation (3) over
C and assume that it has s algebraic solutions fi(x, y) = 0, i = 1, 2, . . . , s (deg fi ≥
1). Suppose that s ≥ m(m+1)/2+2. Then there exists (n1, . . . , ns) ∈ Zs \{0} such
that F =

∏s
i=1 fi(x, y)

ni is a first integral of (3). In this case F ∈ C(x, y), i.e. F is
rational function over C.

The above mentioned theorem of Darboux gives us sufficient conditions for inte-
grability via the method of Darboux using algebraic solutions of systems (1). How-
ever these conditions are not necessary as it can be seen from the following example.
The system

dx/dt = −y − x2 − y2, dy/dt = x+ xy

has two invariant algebraic curves: the invariant line 1+y = 0 and a conic invariant
curve f = 6x2 + 3y2 + 2y − 1 = 0. This system is integrable having as first integral
F = (1 + y)2f but here s = 2 < 3 = m(m+ 1)/2.

Other sufficient conditions for Darboux integrability were obtained by Christo-
pher and Kooij in [17] and Zoladek in [34]. Their theorems say that if a system has s
invariant algebraic solutions in ”generic position” (with ”generic” as defined in their
papers) such that

∑s
i=1 deg fi = m + 1 then the system has an inverse integrating

factor of the form
∏s

i=1 fi. But their theorem does not cover the above case as the
two curves are not in ”generic position”. Indeed, the line 1+ y = 0 is tangent to the
curve f = 0 at (0,−1). For similar reasons the above example is not covered by the
more general result: Theorem 7.1 in [9]. Other sufficient conditions for integrability
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covering the example above were given in [7]. However we do not have necessary
and sufficient conditions for Darboux integrability and the search is on for finding
such conditions.

Problem resulting from the work [10] of Darboux: Give necessary and
sufficient conditions for a polynomial system (1.1) to have: (i) a polynomial in-
verse integrating factor; (ii) an integrating factor of the form

∏s
i=1 fi(x, y)

λi ; (iii) a
Darboux integrating factor (or a Darboux first integral); (iv) a rational first integral.

The last problem (iv) above, was stated in 1891 in the articles [19] and [20] of
Poincaré where it was called the problem of algebraic integrability of the equations.
In recent years there has been much activity in this area of research.

One of the goals of this work is to provide us with specific data to be used
along with similar material for higher degree curves, for the purpose of dealing
with questions regarding Darboux and algebraic integrability. We collect here in a
systematic way information on quadratic systems having invariant lines of exactly
four total multiplicity.

This material may also be used in studying quadratic systems which are small
perturbations of integrable ones. In fact, as we have already indicated in the intro-
duction, the maximum number of limit cycles of some subclasses of the quadratic
class can be obtained by perturbing integrable systems having a rational first integral
and invariant lines.

This article forms the basis for the study of some moduli spaces of quadratic
systems, under the group action. One such moduli space which we intend to study
in a following article is the moduli space of the closure within the quadratic class of
the class QSL4.

3 Divisors associated to configurations of invariant lines

Consider real differential systems of the form:

(S)





dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ p(x, y),

dx

dt
= q0 + q1(x, y) + q2(x, y) ≡ q(x, y)

(8)

with

p0 = a00, p1(x, y) = a10x+ a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q1(x, y) = b10x+ b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

Let a = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) be the 12-tuple of the co-
efficients of system (8) and denote R[a, x, y] = R[a00, a10, a01, a20, a11, a02, b00, b10,
b01, b20, b11, b02, x, y].

Notation 1. Whenever we refer to some specific point in R12 rather than a 12-
tuple parameter we shall denote such a point in R12 by a = (a00,a10 . . . , b02). Each
particular system (8) yields an ordered 12-tuple a of its coefficients.
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Notation 2. Let

P (X,Y,Z) =p0(a)Z2 + p1(a,X, Y )Z + p2(a,X, Y ) = 0,

Q(X,Y,Z) =q0(a)Z2 + q1(a,X, Y )Z + q2(a,X, Y ) = 0.

We denote σ(P,Q) = {w ∈ P2(C) | P (w) = Q(w) = 0}.

Definition 7. We consider formal expressions D =
∑
n(w)w where n(w) is an

integer and only a finite number of n(w) in D are nonzero. Such an expression is
called: i) a zero-cycle of P2(C) if all w appearing in D are points of P2(C); ii) a
divisor of P2(C) if all w appearing in D are irreducible algebraic curves of P2(C);
iii) a divisor of an irreducible algebraic curve C in P2(C) if all w in D are points of
the curve C. We call degree of the expression D the integer deg(D) =

∑
n(w). We

call support of D the set Supp (D) of all w appearing in D such that n(w) 6= 0.

Definition 8. We say that an invariant affine straight line L(x, y) = ux+vy+w = 0
(respectively the line at infinity Z = 0) for a quadratic vector field D̃ has multiplicity
m if there exists a sequence of real quadratic vector fields D̃k converging to D̃, such
that each D̃k has m (respectively m − 1) distinct invariant affine straight lines
Lj

i = uj
ix+ vj

i y +wj
i = 0, (uj

i , v
j
i ) 6= (0, 0), (uj

i , v
j
i , w

j
i ) ∈ C3, converging to L = 0 as

k → ∞ (with the topology of their coefficients), and this does not occur for m+ 1
(respectively m).

Notation 3. Let us denote by

QS =

{
(S)

∣∣∣∣
(S) is a real system (1) such that gcd(p(x, y), q(x, y)) = 1
and max

(
deg(p(x, y)),deg(q(x, y))

)
= 2

}
;

QSL =

{
(S) ∈ QS

∣∣∣∣
(S) possesses at least one invariant affine line or
the line at infinity has multiplicity at least two

}
.

In this section we shall assume that systems (8) belong to QS.

We define below the geometrical objects (divisors or zero-cycles) which play an
important role in constructing the invariants of the systems.

Definition 9.

D
S
(P,Q) =

∑

w∈σ(P,Q)

Iw(P,Q)w;

D
S
(P,Q;Z) =

∑

w∈{Z=0}

Iw(P,Q)w;

D̂
S
(P,Q,Z) =

∑

w∈{Z=0}

(
Iw(C,Z), Iw(P,Q)

)
w if Z ∤ C(X,Y,Z);

D
S
(C,Z) =

∑

w∈{Z=0}

Iw(C,Z)w if Z ∤ C(X,Y,Z),
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where C(X,Y,Z) = Y P (X,Y,Z)−XQ(X,Y,Z), Iw(F,G) is the intersection number
(see [11]) of the curves defined by homogeneous polynomials F, G ∈ C[X,Y,Z],
deg(F ),deg(G) ≥ 1 and {Z = 0} = {[X : Y : 0] | (X,Y ) ∈ C2 \ (0, 0)}.

We denote by #A the number of points of a finite set A.

Notation 4.

n
∞

R
=#{w ∈ SuppD

S
(C,Z)

∣∣w ∈ P2(R)}.

A complex projective line uX + vY + wZ = 0 is invariant for the system (S) if
either it coincides with Z = 0 or it is the projective completion of an invariant affine
line ux+ vy + w = 0.

Notation 5. Let (S) ∈ QSL. Let us denote

IL(S) =

{
l

∣∣∣∣
l is a line in P2(C) such
that l is invariant for (S)

}
;

M(l) = the multiplicity of the invariant line l of (S).

Remark 2. We note that the line l∞ : Z = 0 is included in IL(S) for any (S) ∈ QS.
Let li : fi(x, y) = 0, i = 1, . . . , k, be all the distinct invariant affine lines (real

or complex) of a system (S) ∈ QSL, in case they exist. Let l′i : Fi(X,Y,Z) = 0 be
the complex projective completion of li.

Notation 6. We denote

G :
∏

i

Fi(X,Y,Z)Z = 0; Sing G = {w ∈ G| w is a singular point of G} ;

ν(w) = the multiplicity of the point w, as a point of G.

Definition 10.

D
IL

(S) =
∑

l∈IL(S)

M(l)l, (S) ∈ QSL;

SuppD
IL

(S) = { l | l ∈ IL(S)}.

Notation 7.
M

IL
(S) = deg D

IL
(S);

N
C
(S) =#SuppD

IL
;

N
R
(S) =#{l ∈ SuppD

IL

∣∣ l ∈ P2(R)};
n

R

G, σ
(S) =#{ω ∈ SuppD

S
(P,Q) |ω ∈ G∣∣

R2
};

d
R

G, σ
(S) =

∑

ω∈G|R2

Iω(P,Q);

m
G
(S) = max{ν(ω) |ω ∈ Sing G|C2};

m
R

G
(S) = max{ν(ω) |ω ∈ Sing G|R2}.

(9)
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For brevity we sometimes just write M
IL

, N
C
, ..., m

R

G
.

In the following sections we shall prove the integrability of the quadratic differ-
ential systems having invariant lines of total multiplicity four, including the line at
infinity and including possible multiplicities of the lines. Their possible configura-
tions as well as invariant conditions with respect to the group action distinguishing
these configurations were given in [27]. All possible such configurations for this class
are found in Diagram 1 of Theorem 4.1 in [27]. This Theorem will be needed in
the following sections so we reproduce it below. It also helps in illustrating how the
concepts introduced in this section are used.

Notation 8. We denote by QSL4 the class of all real quadratic differential systems
(8) with p, q relatively prime ((p, q) = 1), Z ∤ C, and possessing a configuration of
invariant straight lines of total multiplicity M

IL
= 4 including the line at infinity

and including possible multiplicities of the lines.

Theorem 5. (Schlomiuk and Vulpe [27]) The class QSL4 splits into 46 distinct
subclasses indicated in Diagram 1 with the corresponding Configurations 4.1–4.46,
where the complex invariant straight lines are indicated by dashed lines. If an in-
variant straight line has multiplicity k > 1, then the number k appears near the
corresponding straight line and this line is in bold face. We indicate next to the real
singular points of the systems, situated on the invariant lines, their multiplicities as
follows: (Iω(p, q)) if ω is a finite singularity, (Iω(C,Z), Iω(P,Q)) if ω is an infi-
nite singularity with Iw(P,Q) 6= 0 and (Iω(C,Z)) if ω is an infinite singularity with
Iω(P,Q) = 0.

4 Integrability and phase portraits of the systems in the class

of quadratic systems with total multiplicity four

4.1 Darboux integrating factors and first integrals

Theorem 6. Consider a quadratic system (8) in QSL4. Then this system has either
a polynomial inverse integrating factor which splits into linear factors over C or an
integrating factor which is Darboux generating in the usual way a Liouvillian first
integral. Out of 46 cases, 26 lead to Darboux integrals which produce, depending on
the values of the parameters, 30 Darboux integrals. In the remaining cases the first
integral involves special functions such as for example Hypergeometric functions, or
Appell or Beta functions, etc. Furthermore the quotient set of QSL4 under the
action of the affine group and time rescaling is formed by: (i) a set of 20 orbits;
(ii) a set of twenty-three one-parameter families of orbits and (iii) a set of ten two-
parameter families of orbits. A system of representatives of the quotient space is
given in Table 1. This table also lists the corresponding cofactors of the lines as well
as the inverse integrating factors and first integrals of the systems.

Proof of Theorem 6. In [27] we obtained a total of 46 canonical forms for all
the systems in the class QSL4. They correspond to the 46 possible configurations



38 DANA SCHLOMIUK, NICOLAE VULPE

Diagram 1
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Diagram 1 (continued)
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Diagram 1 (continued)

A
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Diagram 1 (continued)
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of invariant lines listed in Diagram 1. We take each one of these canonical forms,
check their invariant lines with their respective multiplicities and determine their
cofactors. As Darboux’ work showed, these are instrumental in determining the
integrating factors by showing linear dependence over C of the cofactors (of the
invariant lines or of the exponential factors) together with the divergence of the
vector field. Once the integrating factor is found one proceeds in the usual way
to integrate the resulting differential equation (see Section 2). This integration
can be done using MAPLE or MATHEMATICA. The calculations for the 46 cases
considered yield the results given in Table 1.

F1 = xhyg(1 + x− y)1−g−h;

F2 = x−2h
[
(x− h− 1) + i(y + g)

]h+1−ig[
(x− h− 1) − i(y + g)

]h+1+ig
;

F̃2 = x−2h
[
(x− h− 1)2 + (y + g)2)

]h+1
exp

[
2gArcTan

y + g

x− h− 1

]
;

F3 = −xhyg(x− y)−(g+h)
(y
x

)−g(
1 − y

x

)g+h
[
(1 + gx)Beta

[y
x
, g, 1 − g − h

]
+

+ (h− 1)xBeta
[y
x
, g + 1, 1 − g − h

]
+

∫ x

ω0

Ψ3(ω)dω,

where Ψ3(x) = xh−1yg(x− y)−(g+h)

[
y − x+ x

(y
x

)−g(
1 − y

x

)g+h

[
gBeta

[y
x
, g, 1 − g − h

]
+ (h− 1)Beta

[y
x
, g + 1, 1 − g − h

]]]
;

∂

∂y
Ψ3 = 0;

F4 =
( y

x− y

)g
[
g(x − y) +

(x− y

x

)g
Hypergeometric2F1

[
g, g, g + 1,

y

x

]]
(g 6= −1);

F̃4 = xy−1 exp
[(y − x)(y − x+ 1)

y

]
for g = −1;

F5 = xhyg(y − x)1−g−h;

F6 = −x−h

∫
E(x, y)H(x, y)(h−1)/2

[
gx+ (h+ 1)y

]
dy +

∫ x

ω0

Ψ6(ω)dω, where

Ψ6(x) = E(x, y)H(x, y)(h−1)/2x−1−h
[
(gx + hy − 1)(y + 1) − x2

]
+

+ x−h

∫
E(x, y)H(x, y)(h−3)/2

[
ghx2+ (h2−1)xy−g(y + 1)(gx+hy−1)

]
dy−

− hx−1−h

∫
E(x, y)H(x, y)(h−1)/2

[
gx+ (h+ 1)y

]
dy,

∂

∂y
Ψ6 = 0;

E(x, y) = e−gArcTan[x/(1+y)], H(x, y) = x2 + (y + 1)2;

F7 = F6

∣∣∣
h=0

;

F8 = x−2h(x+ iy)h+1−ig(x− iy)h+1+ig;
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Table 1

Orbit
representative

Invariant lines and
their multiplicities

Inverse integrating
factor Ri

Respective cofactors First integral Fi

1)

{
ẋ = gx+ gx2 + (h− 1)xy,
ẏ = −hy + (g − 1)xy + hy2,

(g, h) ∈ R2, gh(g + h− 1) 6= 0,
(g − 1)(h− 1)(g + h) 6= 0

x (1), y (1),
x− y + 1 (1)

R1 = xy(x− y + 1)

g(x+1)+y(h−1),
x(g−1)+h(y−1),

gx+ hy
F1

2)

{
ẋ = gx2 + (h+ 1)xy,
ẏ = h[g2+(h+ 1)2]+2ghy−x2

+(g2 + 1 − h2)x+gxy + hy2,
(g, h) ∈ R2, h(h + 1) 6= 0,
g2 + (h− 1)2 6=0

x (1), ±i(y + g)+
x− h− 1 (1)

R2 = x
[
(y + g)2+

(x− h− 1)2
]

gx+ (h+ 1)y,
∓i(x+ h+ h2)+
g(x+ h) + hy

F2, F̃2

3)

{
ẋ = x+ gx2 + (h− 1)xy,
ẏ = y + (g − 1)xy + hy2,

(g, h) ∈ R2, gh(g+h−1) 6=0,
(g−1)(h−1)(g+h) 6=0

x (1), y (1),
x− y (1)

R3 = x1−hy1−g×
(x− y)g+h

gx+1+y(h−1),
x(g−1)+hy+1,
gx+ hy + 1

F3

4)

{
ẋ = x+ gx2 − xy,
ẏ = y + (g − 1)xy,
g ∈ R, g(g − 1) 6= 0

x (1), x− y (1), y (1) R4 = xy1−g(x−y)g

gx+1−y, gx+ 1
x(g−1) + 1

F4, F̃4

5)

{
ẋ = gx2 + (h− 1)xy,
ẏ = (g − 1)xy + hy2,

(g, h) ∈ R2, gh(g+h−1) 6=0,
(g−1)(h−1)(g+h) 6=0

x (1), x− y (1), y (1) R5 = xy(x− y)

gx+y(h−1), gx+hy,
x(g−1)+hy

F5

6)

{
ẋ = gx2 + (h+ 1)xy,
ẏ = −1 + gx+ (h− 1)y
−x2+gxy+hy2, (g, h) ∈ R2,
h(h + 1)

[
g2 + (h− 1)2

]
6=0

x (1), I± = x±
i(y + 1) (1)

R6 = I (1−h−ig)/2
+ ×

I (1−h+ig)/2
− xh+1

gx+ (h+ 1)y,
±ix+ 1 + gx+ hy

F6

7)

{
ẋ = gx2 + xy, g ∈ R,
ẏ = −1 + gx− y − x2 + gxy

x (1), I ′

± = x±
i(y + 1) (1)

R7 = I ′

+
(1−ig)/2×

I ′

−
(1+ig)/2

x
gx+ y,

±ix+ 1 + gx
F7

8)

{
ẋ = gx2+(h+1)xy, (g, h)∈R2,
ẏ = −x2 + gxy + hy2,
h(h+ 1)

[
g2 + (h− 1)2

]
6=0

x (1), x± iy (1) R8 = x(x2 + y2)

gx+ (h+ 1)y,
±ix+ gx+ hy

F8, F̃8
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Table 1 (continued)

Orbit
representative

Invariant lines and
their multiplicities

Inverse integrating
factor Ri

Respective cofactors First integral Fi

9)

{
ẋ = x2 − 1, (g, h) ∈ R2,
ẏ = (y + h)[y + (1−g)x−h],
g(g − 1)[(g ± 1)2 − 4h2] 6= 0

y + h (1),

I ′′

± =x±1 (1)

R9 = (y + h)2×
I ′′

+
(g+1−2h)/2×

I ′′

−
(g+1+2h)/2

x(1 − g)+y−h,
x∓ 1

F9, F̃9, F̂9, F∗
9

10)

{
ẋ = x2 − 1, g ∈ R,

ẏ = (y + g)(y + 2gx− g),
g(2g − 1) 6= 0

y + g (1), x± 1 (1)
R10 = (x+1)1−2g×

(y + h)2(x− 1)

2gx+y−g, x∓ 1 F10, F̃10

11)

{
ẋ = (x+ g)2 − 1, g ∈ R,
ẏ = y(x+ y), g 6= ±1

y (1), I ′′′

± = x+
+g ± 1 (1)

R11 = I ′′′

+
(1−g)/2 ×

I ′′′

−
(1+g)/2

y2

x+ y, x+ g ∓ 1 F11, F̃11

12)

{
ẋ = (x+h)2−1, (g, h) ∈ R2,
ẏ = (1 − g)xy, g(g − 1) 6= 0,

(h2−1)
[
h2(g−1)2−(g+1)2

]
6=0

y (1), x+ h± 1 (1)
R12 = (x+ h+ 1)×

(x+ h− 1)y

x+ y, x+ h∓ 1 F12

13)

{
ẋ = x2 + 1, (g, h) ∈ R2,
ẏ = (y+h)[y + (1−g)x−h],
g(g − 1)

[
(g + 1)2 + h2

]
6= 0

y + h (1), x± i (1)

R13 = (y + h)2 ×
(x+i)(1+g+2ih)/2×
(x−i)(1+g−2ih)/2

x(1−g)+y−h,
x∓ i

F13, F̃13

14)

{
ẋ = (x+ g)2 + 1,
ẏ = y(x+ y), g ∈ R

y (1), x+ g ± i (1)

R14 = y2 ×
(x+g+i)(1+ig)/2×
(x+g−i)(1−ig)/2

x+ y, x+ g ∓ i F14, F̃14

15)

{
ẋ = (x+ h)2 + 1,
ẏ = (1 − g)xy, (g, h) ∈ R2,

g(g − 1)
[
(g + 1)2 + h2

]
6= 0

y (1), x+ h± i, (1)
R15 = y×[

(x+ h)2 + 1
]

x, x+ h∓ i F15, F̃15

16)

{
ẋ = g + x, g ∈ R,
ẏ = y(y − x), g(g − 1) 6= 0

x+ g (1), y (1)
R16 = exy2×
(x+ g)1−g

1, y − x F16

17)

{
ẋ = x,
ẏ = y(y − x)

x (1), y (1) R17 = x exy2

1, y − x F17

18)

{
ẋ = g(g+1)+gx+y, g ∈ R,
ẏ = y(y − x), g(g + 1) 6= 0

y (1), x−y +g+1 (1)
R18 = y×

(x− y + g + 1)

y − x, y + g F18
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Table 1 (continued)

Orbit
representative

Invariant lines and
their multiplicities

Inverse integrating
factor Ri

Respective cofactors First integral Fi

19)

{
ẋ = g + x, g ∈ R,
ẏ = −xy, g(g − 1) 6= 0

x+ g (1), y (1) R19 = y(x+ g)

1, −x F19

20)

{
ẋ = x(gx+ y), g ∈ R,
ẏ = (g−1)xy+y2, g(g−1) 6= 0

x (2), y (1) R20 = x2y

gx+y, x(g−1)+y F20

21)

{
ẋ = x(gx+ y), g(g − 1) 6= 0,

ẏ = (y + 1)(gx−x+y), g ∈ R

x (2), y + 1 (1)

R21 = xg+1 ×
e−(gx+y+1)/x×

(y + 1)1−g

gx+y, x(g−1)+y F21, F̃21

22)

{
ẋ = gx2, g ∈ R, g(g−1) 6=0,
ẏ = (y + 1)[y + (g − 1)x− 1]

x (2), y + 1 (1)
R22 = x(g+1)/g×
(y + 1)2e−2/(gx)

x, x(g−1)+y−1 F22

23)

{
ẋ = x2 + xy,
ẏ = (y + 1)2

x (1), y + 1 (2)
R23 = x2(y + 1)×

e−1/(y+1)

x+ y, y + 1 F23

24)

{
ẋ = (x+ 1)2, g ∈ R,
ẏ = (1 − g)xy, g(g − 1) 6= 0

x+ 1 (2), y (1) R24 = (x+ 1)2 y

x+ 1, x F24

25)

{
ẋ = gx2 + xy, g(g−1) 6=0,
ẏ = y + (g−1)xy+y2, g∈R

x (2), y (1) R25 = x2 y

gx+y, x(g−1)+y+1 F25

26)

{
ẋ = xy,
ẏ = (y + 1)(y − x)

x (2), y (1)
R26 = x(y + 1)×

e−(y+1)/x

y, y − x F26

27)

{
ẋ = 2gx+ 2y, g ∈ R,
ẏ = g2 + 1 − x2 − y2

y + g ± i(x− 1) (1)
R27 = (x− 1)2+

(y + g)2

g − y ± i(x+ 1) F27, F̃27

28)

{
ẋ = x2 − 1, g ∈ R,
ẏ = x+ gy, g(g2 − 4) 6= 0

x+ 1 (1), x− 1 (1)
R28 =(x−1)1+g/2×

(x+ 1)1−g/2

x− 1, x+ 1 F28

29)

{
ẋ = x2 − 1, g ∈ R,
ẏ = g + x, g 6= ±1

x+ 1 (1), x− 1 (1) R29 = x2 − 1

x− 1, x+ 1 F29

30)

{
ẋ = (x+ 1)(gx + 1), g ∈ R,
ẏ = 1+(g−1)xy, g(g2−1) 6=0

x+ 1 (2), gx+ 1 (1)
R30 = (x+ 1)2 ×
(gx+ 1)(g−1)/g

gx+ 1, x+ 1 F30, F̃30, F̂30
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Table 1 (continued)

Orbit
representative

Invariant lines and
their multiplicities

Inverse integrating
factor Ri

Respective cofactors First integral Fi

31)

{
ẋ = x(x+ 1), g ∈ R,
ẏ = g − x2 + xy, g(g + 1) 6= 0

x+ 1 (2), x (1) R31 = x(x+ 1)2

x, x+ 1 F31

32)

{
ẋ = x2 + 1, g ∈ R,
ẏ = x+ gy, g 6= 0

x± i (1)
R32 = (x+ i)1+ig/2 ×

(x− i)1−ig/2

x∓ i F32

33)

{
ẋ = x2 + 1, g ∈ R,
ẏ = g + x

x± i (1) R33 = x2 + 1

x∓ i F33, F̃33

34)

{
ẋ = g, g ∈ {−1, 1},
ẏ = y(y − x)

y (1) R34 = y2 ex
2/(2g)

y − x F34

35)
ẋ = g + y,
ẏ = xy, g ∈ {−1, 1}

y (1) R35 = y

x F35

36)
ẋ = g,
ẏ = xy, g ∈ {−1, 1}

y (1) R36 = y

x F36

37)

{
ẋ = x, g(g2 − 1) 6= 0
ẏ = gy − x2, g ∈ R

x (1) R37 = xg+1

1 F37, F̃37

38)
ẋ = x,
ẏ = g − x2, 0 6= g ∈ R

x (1) R38 = x

1 F38

39) ẋ = x2, ẏ = x+ y
x (2) R39 = x2e−1/x

x F39

40) ẋ = 1 + x, ẏ = 1 − xy
x+ 1 (2) R40 = (x+ 1)2e−x

1 F40

41)

{
ẋ = gxy, g ∈ {−1, 1}
ẏ = y − x2 + gy2

x (3) R41 =x2e−g(y+g)2/(2x2)

y F41

42)

{
ẋ = gxy, g ∈ {−1, 1}
ẏ = −x2 + gy2

x (3) R42 = x3

y F42

43)

{
ẋ = gx2, g(g2 − 1) 6= 0

ẏ = 1 + (g − 1)xy, g ∈ R

x (3)

g 6= 1
2 : R43 = x2g×[

1 + (2g − 1)xy
]1−g

;

g= 1
2 : R̃43 = x3e−xy

x F43, F̃43
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Table 1 (continued)

Orbit
representative

Invariant lines and
their multiplicities

Inverse integrating
factor Ri

Respective cofactors First integral Fi

44)

{
ẋ = x2, g ∈ {−1, 1}
ẏ = g − x2 + xy

x (3) R44 = x3

x F44

45)

{
ẋ = gxy, g ∈ {−1, 1}
ẏ = x− x2 + gy2

x (3) R45 = x3

y F45

46) ẋ = 1, ẏ = y − x2
− R46 = ex

− F46

F̃8 = x−2h(x2 + y2)h+1 exp
[
2gArcTan

y

x

]
;

F9 = (y + h)−1(x2 − 1)(1−g)/2e2h ArcTanh[x] +

∫ x

ω0

e2h ArcTanh[ω](ω2 − 1)−(g+1)/2dω,

if h(g + 1) 6= 0;

F̃9 =
(x+ 1)h(x2 − 1)

(x− 1)h(y + h)
+ 2

(1 − x)h

(x− 1)h
Beta

[x+ 1

2
, h+ 1, 1 − h

]
, for

{
g = −1,
h 6= −1

;

F̂9 = (x+ 1)−2 exp
[
x+

(x− 1)2

y − 1

]
, for g = h = −1;

F∗
9 =

(x2 − 1)(1−g)/2

y
+
x(1 − x2)(1+g)/2

(x2 − 1)(1+g)/2
Hypergeometric2F1

[1

2
,
g + 1

2
,

3

2
, x2

]
,

for h = 0;

F10 = (y + g)−1(x2 − 1)ge2g ArcTanh[x] +

∫ x

ω0

e2g ArcTanh[ω](ω2 − 1)g−1dω, (g 6= 1);

F̃10 = (x− 1)2 exp
[
x+

(x+ 1)2

y + 1

]
, for g = 1;

F11 = y−1(x+ g + 1)1/2(x+ g − 1)−1/2eg ArcTanh[x+g]

[
(g + 1)(x + g − 1)

+ 2yHypergeometric2F1
[
1,

g + 1

2
,
g + 3

2
,
x+ g + 1

x+ g − 1

]]
, (g 6= −3);

F̃11 = (x− 2) exp
[(x− 4)2 + 2y

y(x− 2)

]
, for g = −3;

F12 = y2/(g−1)(x+ h+ 1)1+h(x+ h− 1)1−h;
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F13 = (x2 + 1)(1−g)/2(y + h)−1 exp
[
−2hArcTan x

]
+

∫ x

ω0

(ω2+1)−(1+g)/2 exp
[
−2hArcTanω

]
dω, (h 6=0);

F̃13 = y−1 (x2 + 1)(1−g)/2 + x Hypergeometric2F1
[1

2
,
g + 1

2
,

3

2
,−x2

]
, for h = 0;

F14 = y−1
[
1 + (x+ g)2

]1/2
exp

[
− gArcTan [g + x]

]

+

∫ x

ω0

[
1 + (ω + g)2

]−1/2
exp

[
− gArcTan [g + ω]

]
dω, (g 6= 0);

F̃14 = y−1 (x2 + 1)1/2 + ArcSinh[x], for g = 0;

F15 = y2/(g−1)(x+ h+ i)1−ih(x+ h− i)1+ih;

F̃15 = y
[
(h+ x)2 + 1

](g−1)/2
exp

[
h(1 − g)ArcTan[x+ h]

]
;

F16 = −(g + x)gy−1e−x + egGamma[g, g + x];

F17 = y−1e−x + ExpIntegralEi[−x];
F18 = exyg(x− y + g + 1)−g−1;

F19 = exy(x+ g)−g;

F20 = x1−g yg ey/x;

F21 = xe(gx+y+1)/x
(y + 1

−x
)g

+

∫ −x/(gx+y+1)

ω0

e−1/ωω−(1+g)(gω + 1)g−1 dω (g 6= −1);

F̃21 =
x(x+ 1)

y + 1
e(y−x+1)/x + e−1ExpIntegralEi

[
1, −y + 1

x

]
for g = −1;

F22 = g(y + 1)−1x(g−1)/ge2/(gx) + x−1/g
(
− 2

gx

)−1/g
Gamma

[1

g
,− 2

gx

]
;

F23 = (y + 1)x−1e1/(y+1) − ExpIntegralEi
[ 1

y + 1

]
;

F24 = (x+ 1)g−1 y e(g−1)/(x+1);

F25 = x1−g yg e(y+1)/x;

F26 = e(y+1)/x x+ ExpIntegralE
[
1,−y + 1

x

]
;

F27 = ex
[
y + g − i(x− 1)

]1−ig[
y + g + i(x− 1)

]1+ig
;

F̃27 =
[
(x− 1)2 + (y + g)2

]
exp

[
x+ 2g arctg

(y + g

x− 1

) ]
;

F28 = y

(
x− 1

x+ 1

)−g/2

+
x2

4
(1 − x)g/2(x− 1)−g/2×

{
AppellF1

[
2, 1 +

g

2
, −g

2
, 3, x, −x

]
+ AppellF1

[
2,

g

2
, 1 − g

2
, 3, x, −x

]}
;
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F29 = e2y (x− 1)−1−g (x+ 1)−1+g;

F30 = y(x+ 1)−1(gx+ 1)1/g +
1

2g − 1
(x+ 1)−2(gx+ g)1/g×

Hypergeometric2F1
[2g − 1

g
,
g − 1

g
,
3g − 1

g
,
g − 1

g(x+ 1)

]
, (g 6= 1/2, 1/3);

F̃30 = (x+ 1)−2 exp
[(x+ 2)2y + 2

x+ 1

]
, for g = 1/2;

F̂30 = (x+ 1)−4 exp
[
− x+

(x+ 3)3y + 12

3(x+ 1)

]
, for g = 1/3;

F31 = x−g(x+ 1)1+g exp
[y − g + 1

x+ 1

]
;

F32 = y e−g ArcTan[x] −
∫ x

ω0

e−g ArcTan[ω] ω

ω2 + 1
dω;

F33 = e−2y(x− i)1−ig(x+ i)1+ig;

F̃33 = (x2 + 1)−1 exp
[
2(y + g ArcTan

1

x
)
]
;

F34 = y−1 exp
[
− x2

2g

]
+

√
π√
2g

Erf
[ x√

2g

]
;

F35 = y−2g exp
[
x2 − 2y

]
;

F36 = y exp
[
−x2/2g

]
;

F37 = x−g
[
x2 + (2 − g)y

]
(g 6= 2);

F̃37 = y exp
[
y/x2

]
for g = 2;

F38 = x−2g exp
[
x2 + 2y

]
;

F39 = e1/x y + ExpIntegralEi
[ 1

x

]
;

F40 = ex+1(x+ 1)−1 (y + 1) − ExpIntegralEi
[
1 + x

]
;

F41 = x
√−g exp

[(gy + 1)2

2gx2

]
+

√
π/2 Erf

[ gy + 1√−2g x

]
;

F42 = x2/g ey
2/x2

;

F43 = x1−2g
[
1 + (2g − 1)xy

]g
, (g 6= 1/2);

F̃43 = x−2 exy, for g = 1/2;

F44 = x2 e(g+2xy)/x2
;

F45 = x2 e(2x+gy2)/x2
;

F46 = e−x
[
(x+ 1)2 − y + 1

]
.
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5 Phase portraits

In order to construct the phase portraits corresponding to quadratic systems
given by Table 1 we use the configurations of invariant straight lines already estab-
lished in [27] as well as the CT -comitants constructed in [25] and [27] as follows.

Consider the polynomial Φα,β = αP + βQ ∈ R[a,X, Y, Z, α, β] where
P = Z2p(X/Z, Y/Z), Q = Z2q(X/Z, Y/Z), p, q ∈ R[a, x, y] and
max(deg(x,y) p,deg(x,y) q) = 2. Then

Φα,β = c11(α, β)X2 + 2c12(α, β)XY + c22(α, β)Y 2 + 2c13(α, β)XZ

+ 2c23(α, β)Y Z + c33(α, β)Z2,

∆3(a, α, β) = det ||cij(α, β)||i,j∈{1,2,3} , ∆2(a, α, β) = det ||cij(α, β)||i,j∈{1,2} .

Using the differential operator (f, g)(k) =
k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h
which

is called transvectant of index k of (f, g), f, g ∈ R[a, x, y] (cf.[13],[18]) we shall
construct the following needed invariant polynomials:

Ci(a, x, y) = ypi(a, x, y) − xqi(a, x, y), i = 0, 1, 2;

Di(a, x, y) =
∂

∂x
pi(a, x, y) +

∂

∂y
qi(a, x, y), i = 1, 2;

D(a, x, y) = 4∆3(a,−y, x);
B3(a, x, y) = (C2,D)(1) = Jacob (C2,D) ,

B2(a, x, y) = (B3, B3)
(2) − 6B3(C2,D)(3),

B1(a) = Res x (C2,D) /y9 = −2−93−8 (B2, B3)
(4) ,

M(a, x, y) = (C2, C2)
(2) = 2Hess

(
C2(a, x, y)

)
;

η(a) = Discriminant
(
C2(a, x, y)

)
;

K(a, x, y) =
(
p2, q2

)(1)
= Jacob

(
p2, q2

)
;

µ(a) = Res x(p2, q2)/y
4 = Discriminant

(
K(a, x, y)

)
/16;

H(a, x, y) = 4∆2(a,−y, x);
N(a, x, y) = K(a, x, y) +H(a, x, y);

θ(a) = Discriminant
(
N(a, x, y)

)
;

H1(a) = −
(
(C2, C2)

(2), C2)
(1),D

)(3)
;

H2(a, x, y) = (C1, 2H −N)(1) − 2D1N ;

H3(a, x, y) = (C2,D)(2);

H4(a) =
(
(C2,D)(2), (C2,D2)

(1)
)(2)

;

H5(a) =
(
(C2, C2)

(2), (D,D)(2)
)(2)

+ 8
(
(C2,D)(2), (D,D2)

(1)
)(2)

;

H6(a, x, y) = 16N2(C2,D)(2) +H2
2 (C2, C2)

(2);
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H7(a) = (N,C1)
(2);

H8(a) = 9
(
(C2,D)(2), (D,D2)

(1)
)(2)

+ 2
[
(C2,D)(3)

]2
;

H9(a) = −
((

(D,D)(2),D,
)(1)

D
)(3)

;

H10(a) =
(
(N,D)(2), D2

)(1)
;

H11(a, x, y) = 8H
[
(C2,D)(2) + 8(D,D2)

(1)
]
+ 3H2

2 ;

N1(a, x, y) = C1(C2, C2)
(2) − 2C2(C1, C2)

(2),

N2(a, x, y) = D1(C1, C2)
(2) −

(
(C2, C2)

(2), C0

)(1)
,

N3(a, x, y) = (C2, C1)
(1) ,

N4(a, x, y) = 4 (C2, C0)
(1) − 3C1D1,

N5(a, x, y) =
[
(D2, C1)

(1) +D1D2

]2 − 4
(
C2, C2

)(2)(
C0,D2

)(1)
,

N6(a, x, y) = 8D + C2

[
8(C0,D2)

(1) − 3(C1, C1)
(2) + 2D2

1

]
.

Remark 3. We note that by Discriminant (C2) of the cubic form C2(a, x, y) we
mean the expression given in Maple via the function ”discrim(C2, x)/y

6”.
The CT -comitants indicated below (for detailed definitions of the notions in-

volved see [26]) were constructed in [26] for the purpose of classifying the phase
portraits in the vicinity of infinity of quadratic differential systems.

We consider the differential operator L = x · L2 − y · L1 acting on R[a, x, y]
constructed in [4], where

L1 = 2a00
∂

∂a10
+ a10

∂

∂a20
+

1

2
a01

∂

∂a11
+ 2b00

∂

∂b10
+ b10

∂

∂b20
+

1

2
b01

∂

∂b11
,

L2 = 2a00
∂

∂a01
+ a01

∂

∂a02
+

1

2
a10

∂

∂a11
+ 2b00

∂

∂b01
+ b01

∂

∂b02
+

1

2
b10

∂

∂b11
.

Then setting µ0(a) = µ(a) = Res x(p2, q2)/y
4 we construct the following polynomi-

als:

µi(a, x, y) =
1

i!
L(i)(µ0), i = 1, .., 4;

κ(a) = (M,K)(2)/4;

κ1(a) = (M,C1)
(2);

L(a, x, y) = 4K(a, x, y) + 8H(a, x, y) −M(a, x, y);

R(a, x, y) = L(a, x, y) + 8K(a, x, y);

K1(a, x, y) = p1(x, y)q2(x, y) − p2(x, y)q1(x, y);

K2(a, x, y) = 4Jacob(J2, ξ) + 3Jacob(C1, ξ)D1 − ξ(16J1 + 3J3 + 3D2
1);

K3(a, x, y) = 2C2
2 (2J1 − 3J3) + C2(3C0K − 2C1J4) + 2K1(3K1 − C1D2),

where L(i)(µ0) = L(L(i−1)(µ0)) and J1 = Jacob(C0,D2), J2 = Jacob(C0, C2),
J3 = Discrim(C1), J4 = Jacob(C1,D2), ξ = M − 2K.
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The local behavior of the trajectories in the neighborhood of a hyperbolic sin-
gular point (i.e. whose eigenvalues have non-zero real parts) is determined by the
linearization of the system at this point (see for instance [14]). The simplest kind of
singularities are: saddles, nodes, foci, centers and saddle–nodes. Their description
can be found in most textbooks (see for example [1, Chapter IV]). We will call
anti–saddle a singular point at which the linearization of the system has a matrix
with positive determinant. In this case the singular point is either a node, or a focus
or a center.

We shall use the following notations for a singular point Mi(xi, yi):

∆i =

∣∣∣∣
p′x(x, y) p′y(x, y)

q′x(x, y) q′y(x, y)

∣∣∣∣
(xi,yi)

; ρi =
(
p′x(x, y) + q′y(x, y)

)∣∣∣
(xi,yi)

; δi = ρ2
i − 4∆i.

The following lemma is very useful for checking, in invariant form, conditions for
existence of a center in terms of the coefficients of the systems (8) with a00 = b00 = 0,
presented in the tensorial form:

dxj

dt
= aj

αx
α + aj

αβx
αxβ, (j, α, β = 1, 2). (10)

Here the notations x1 = x, x2 = y, a1
1 = a10, . . . , a

2
22 = b02 are used.

Lemma 7. [30] The singular point (0, 0) of a quadratic system (10) is a center if
and only if I2 < 0, I1 = I6 = 0 and one of the following sets of conditions holds:

1) I3 = 0; 2) I13 = 0; 3) 5I3 − 2I4 = 13I3 − 10I5 = 0,

where

I1 = aα
α, I2 = aα

βa
β
α, I3 = aα

pa
β
αqa

γ
βγε

pq, I4 = aα
p a

β
βqa

γ
αγεpq,

I5 = aα
p a

β
γqa

γ
αβε

pq, I6 = aα
pa

β
γa

γ
αqaδ

βδε
pq, I13 = aα

p a
β
qra

γ
γsaδ

αβa
µ
δµε

pqεrs.

and the tensor ε has the coordinates: ε12 = −ε21 = 1, ε11 = ε22 = 0.

To construct the phase portraits of quadratic systems possessing invariant lines
of total multiplicity four we examine all the families, following step by step the
canonical forms from Table 1. For the canonical systems corresponding to Config.
4.i we shall use the notation (S4.i). To obtain the phase portraits we use the behavior
of the vector fields on their invariant lines which can easily be established, as well
as the behavior in the vicinity of infinity given by [26]. In general this information
turns out to be sufficient. Whenever necessary we add extra arguments.

Theorem 8 (Main Theorem). i) The total number of topologically distinct phase
portraits in the class of quadratic differential systems with invariant lines of total
multiplicity four is 69.

ii) In Table 2 we give necessary and sufficient conditions, invariant with respect
to the action of the affine group and time rescaling, for the realization of each one
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of the phase portraits corresponding to the given configuration of invariant lines.
More precisely the first column of Table 2 contains the list of all 46 configurations
of invariant lines of total multiplicity four. In the second column we list the neces-
sary and sufficient invariant conditions (obtained in [27]) for the realization of each
configuration. The last column contains the names of the phase portraits. When-
ever for a configuration Config. 4.i we have several phase portraits, we split the
corresponding place in the last column into smaller boxes containing the names of
these portraits. In the third column are listed the additional conditions needed for
the realization of the corresponding phase portrait in the last column.

Remark 4. Eleven of the 46 configurations from Diagram 1 produce each a unique
phase portrait. Each one of the remaining 35 configurations produces several topo-
logically distinct phase portraits. The total number of phase portraits thus obtained
is 93 (see Tables 3(a)-3(d)). However only 69 of these phase portraits are topolog-
ically distinct. For example in the subclass with two real singularities at infinity
(two pairs of opposite singularities on the Poincaré disk), the 38 cases of possible
configurations of invariant lines lead to only 26 topologically distinct phase portraits.

Remark 5. a) In the subclass with one real and two complex singularities at infinity
(two opposite singularities on the Poincaré disk), the 11 cases of possible configura-
tions of invariant lines lead to 9 topologically distinct phase portraits.
b) In the subclass with only one singularity at infinity (real) (two opposite singular-
ities on the Poincaré disk), the 16 cases of possible configurations of invariant lines
lead to 15 topologically distinct phase portraits.
c) Some phase portraits in a) are topologically equivalent to portraits found in the
case b) leading to a total of 18 topologically distinct phase portraits for the union
of the two cases a) and b) (See Confrontation Table).

Proof of the Main Theorem. The first step in the proof is to construct the phase
portrait Picture 4.i (or phase portraits Picture 4.i(j), j ∈ {a, b, c, d, e}), i ≤ 46,
associated to a configuration Config. 4.i. This leads to 93 distinct such possibilities,
with not all phase portraits topologically distinct. At the same time we also give
necessary and sufficient conditions, invariant with respect to the action of the group
for having each one of the 93 situations obtained. Here by situation we mean an
ordered couple formed by a configuration and by one of the possible phase portraits
associated to it. In the second part of the proof (see page 77) we look for topologically
equivalent phase portraits appearing in the 93 cases and form the list of phase
portraits which appear to be topologically distinct. Finally we show that the phase
portraits in this list are indeed distinct.

We now proceed to the first step mentioned above.

Config. 4.1 :

{
ẋ = gx+ gx2 + (h− 1)xy, (g − 1)(h− 1)(g + h) 6= 0,
ẏ = −hy + (g − 1)xy + hy2, gh(g + h− 1) 6= 0.

(S4.1)

Finite singularities: M1(0, 0)
[
∆1 = −gh, δ1 = (g + h)2

]
; M2(0, 1)

[
∆2 = h(g + h −

1), δ2 = (g − 1)2]; M3(−1, 0)
[
∆3 = g(g + h − 1), δ3 = (h − 1)2]; M4(−h, g)

[
∆4 =

−gh(g + h− 1), δ4 = 4gh(g + h− 1).
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Table 2

Configuration
Necessary and sufficient

conditions
Additional conditions
for phase portraits

Phase
portrait

Config. 4.1 η > 0, B3 = 0, θ 6= 0, H7 6= 0

µ0 > 0 Portrait 4.1(a)

µ0 < 0, K < 0 Portrait 4.1(b)

µ0 < 0, K > 0 Portrait 4.1(c)

Config. 4.2 η < 0, B3 = 0, θ 6= 0, H7 6= 0

µ0 > 0, G1 6= 0 Portrait 4.2(a)

µ0 > 0, G1 = 0 Portrait 4.2(b)

µ0 < 0, G1 6= 0 Portrait 4.2(c)

µ0 < 0, G1 = 0 Portrait 4.2(d)

Config. 4.3
η > 0, B3 = 0, θ 6= 0,
H7 = 0, H1 6= 0, µ0 6= 0

µ0 > 0 Portrait 4.3(a)

µ0 < 0, K < 0 Portrait 4.3(b)

µ0 < 0, K > 0 Portrait 4.3(c)

Config. 4.4
η > 0, B3 = 0, θ 6= 0,
H7 = 0, H1 6= 0, µ0 = 0

K < 0 Portrait 4.4(a)

K > 0 Portrait 4.4(b)

Config. 4.5
η > 0, B3 = 0, θ 6= 0,
H7 = 0, H1 = 0

µ0 > 0 Portrait 4.5(a)

µ0 < 0, K < 0 Portrait 4.5(b)

µ0 < 0, K > 0 Portrait 4.5(c)

Config. 4.6
η < 0, B3 = 0, θ 6= 0,
H7 = 0, µ0 6= 0, H9 6= 0

µ0 > 0 Portrait 4.6(a)

µ0 < 0 Portrait 4.6(b)

Config. 4.7
η < 0, B3 = 0, θ 6= 0,

H7 = µ0 = 0
– Portrait 4.7

Config. 4.8
η < 0, B3 = 0, θ 6= 0,
H7 = 0, µ0 6= 0, H9 = 0

µ0 > 0 Portrait 4.8(a)

µ0 < 0 Portrait 4.8(b)

Config. 4.9

η > 0, B2 = θ = H7 = 0,

µ0B3H4H9 6= 0 and either

H10N > 0 or N = 0, H8 > 0

G2>0, H4>0,G3<0 Portrait 4.9(a)

G2 < 0
Portrait 4.9(b)

G2 > 0, H4 < 0

G2>0, H4>0,G3>0 Portrait 4.9(c)

Config. 4.10

η > 0, B3 6= 0, B2 = θ = 0,
µ0 6= 0, H7 = H9 = 0, H10N > 0

H4 > 0,G3 > 0 Portrait 4.10(a)

H4 < 0 Portrait 4.10(b)

H4 > 0,G3 < 0
Portrait 4.10(c)η > 0, B3H4 6= 0,

B2 = N = H9 = 0, H8 > 0
–

Config. 4.11
η = 0, MB3 6= 0, B2 = θ = 0,
H7 = 0, µ0 6= 0, H10 > 0

H4 > 0 Portrait 4.11(a)

H4 < 0 Portrait 4.11(b)

Config. 4.12
η = 0, M 6= 0, B3 = θ = 0,

KH6 6= 0, H7 = µ0 = 0, H11 > 0

µ2 > 0, L > 0 Portrait 4.12(a)

µ2 > 0, L < 0 Portrait 4.12(b)

µ2 < 0, K < 0 Portrait 4.12(c)

µ2<0,K>0, L>0 Portrait 4.12(d)

µ2<0,K> 0, L<0 Portrait 4.12(e)
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Table 2(continued)

Configuration
Necessary and sufficient

conditions

Additional
conditions for
phase portraits

Phase
portrait

Config. 4.13

η > 0, B3 6= 0, B2 = θ = 0,
µ0 6= 0, H7 = 0,
H9 6= 0, NH10 < 0

G2 < 0 Portrait 4.13(a)

G2 > 0
Portrait 4.13(b)η > 0, B3H4 6= 0,

B2 = N = 0, H8 < 0
–

Config. 4.14
η = 0, MB3 6= 0, B2 = θ = 0,
H7 = 0, µ0 6= 0, H10 < 0

– Portrait 4.14

Config. 4.15
η = 0,M 6= 0, B3 = θ = 0,

KH6 6= 0, µ0 = H7 = 0, H11 < 0

L > 0 Portrait 4.15(a)

L < 0 Portrait 4.15(b)

Config. 4.16
η > 0, B3 6= 0, B2 = θ = 0,

µ0 = H7 = 0, H9 6= 0

G2 > 0 Portrait 4.16(a)

G2 < 0 Portrait 4.16(b)

Config. 4.17
η > 0, B3 6= 0, B2 = θ = 0,
µ0 = H7 = H9 = 0, H10 6= 0

– Portrait 4.17

Config. 4.18
η > 0, B3 = θ = 0,
µ0 = 0, H7 6= 0

µ2L > 0 Portrait 4.18(a)

µ2L < 0 Portrait 4.18(b)

Config. 4.19
η = 0,M 6= 0, B3 = θ = K = 0,
NH6 6= 0, µ0 = H7 = 0, H11 6= 0

µ3K1 < 0 Portrait 4.19(a)

µ3K1 > 0 Portrait 4.19(b)

Config. 4.20
η = 0, M 6= 0, B3 = 0, θ 6= 0,

H7 = 0, D = 0

µ0 > 0 Portrait 4.20(a)

µ0 < 0 Portrait 4.20(b)

Config. 4.21
η = 0, M 6= 0, B3 = 0, θ 6= 0,

H7 = 0, D 6= 0, µ0 6= 0

µ0 > 0 Portrait 4.21(a)

µ0 < 0 Portrait 4.21(b)

Config. 4.22

η > 0, B3 6= 0, B2 = θ = 0,
µ0 6= 0, N 6= 0, H7 = H10 = 0

H1 > 0 Portrait 4.22(a)

H1 < 0
Portrait 4.22(b)

η > 0, B3H4 6=0, B2=θ=N=H8 =0 –

Config. 4.23
η = 0, MB3 6= 0, B2 = θ = 0,

µ0 6= 0, H7 = H10 = 0
– Portrait 4.23

Config. 4.24
η = 0,M 6= 0, B3 = θ = 0,

KH6 6= 0, µ0 = H7 = H11 = 0

L > 0 Portrait 4.24(a)

L < 0 Portrait 4.24(b)

Config. 4.25
η = 0, M 6= 0, B3 = 0, θ 6= 0,

H7 6= 0

µ0 > 0 Portrait 4.25(a)

µ0 < 0 Portrait 4.25(b)

Config. 4.26
η = 0, M 6= 0, B3 = 0, θ 6= 0,

H7 = 0, D 6= 0, µ0 = 0
– Portrait 4.26

Config. 4.27
η < 0, B3 = θ = 0,
N 6= 0, H7 6= 0

G1 6= 0 Portrait 4.27(a)

G1 = 0 Portrait 4.27(b)

Config. 4.28
η = 0, M 6= 0, B3 = θ = 0,
µ0 = N = K = 0, N1N2 6= 0,

N5 > 0, D 6= 0
– Portrait 4.28
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Table 2(continued)

Configuration
Necessary and sufficient

conditions

Additional
conditions for
phase portraits

Phase
portrait

Config. 4.29
η = 0, M 6= 0, B3 = θ = µ0 = 0,

N=K =0, N1N2 6=0, N5>0, D = 0

µ4 > 0 Portrait 4.29(a)

µ4 < 0 Portrait 4.29(b)

Config. 4.30
η = 0, MB3 6= 0, B2 = θ = µ0 = 0,
N 6= 0, H7 = H6 = 0, K 6= 0, H11 6=0

µ2 > 0 Portrait 4.30(a)

µ2 < 0 Portrait 4.30(b)

Config. 4.31
η = M = 0, B3 = θ = 0,
N 6= 0, N6 6= 0, H11 6= 0

K3 > 0 Portrait 4.31(a)

K3 < 0 Portrait 4.31(b)

Config. 4.32
η = 0, M 6= 0, B3 = θ = µ0 = 0,

N=K =0, N1N2 6=0, N5<0, D 6= 0
– Portrait 4.32

Config. 4.33
η = 0, M 6= 0, B3 = θ = µ0 = 0,

N=K =0, N1N2 6=0, N5<0, D = 0
– Portrait 4.33

Config. 4.34
η > 0, B3 6= 0, B2 = θ = 0,
µ0 = H7 = H9 = H10 = 0

H4 < 0 Portrait 4.34(a)

H4 > 0 Portrait 4.34(b)

Config. 4.35
η = 0, M 6= 0, B3 = θ = 0,
N 6= 0, µ0 = 0, H7 6= 0

µ3K1 > 0 Portrait 4.35(a)

µ3K1 < 0 Portrait 4.35(b)

Config. 4.36
η = 0,M 6= 0, B3 = θ = K = 0,
NH6 6= 0, µ0 = H7 = 0, H11 = 0

κ2 < 0 Portrait 4.36(a)

κ2 > 0 Portrait 4.36(b)

Config. 4.37
η = M = 0, B3 = θ = N = 0,
N3D1 6= 0, N6 6= 0, D 6= 0

µ3K1>0,K3≥0 Portrait 4.37(a)

µ3K1>0,K3<0 Portrait 4.37(b)

µ3K1 < 0 Portrait 4.37(c)

Config. 4.38
η = M = 0, B3 = θ = N = 0,
N3D1 6= 0, N6 6= 0, D = 0

µ4 > 0 Portrait 4.38(a)

µ4 < 0 Portrait 4.38(b)

Config. 4.39
η = 0, M 6= 0, B3 = θ = µ0 = 0,
N=K =0, N1N2 6=0, N5 = 0

– Portrait 4.39

Config. 4.40
η = 0, MB3 6= 0, B2 = θ = µ0 = 0,

N 6= 0, H7 = H6 = 0, K = 0
– Portrait 4.40

Config. 4.41
η = M = 0, B3 = 0, θ 6= 0,

H7 = 0, D 6= 0

µ0 > 0 Portrait 4.41(a)

µ0 < 0 Portrait 4.41(b)

Config. 4.42
η = M = 0, B3 = 0, θ 6= 0,

H7 = 0, D = 0

µ0 > 0 Portrait 4.42(a)

µ0 < 0 Portrait 4.42(b)

Config. 4.43
η = 0, MB3 6= 0, B2 = θ = µ0 = 0,
N 6= 0, H7 = H6 = 0, K 6= 0, H11 =0

L < 0 Portrait 4.43(a)

L > 0, R ≥ 0 Portrait 4.43(b)

L > 0, R < 0 Portrait 4.43(c)

Config. 4.44
η = M = 0, B3 = θ = 0,
N 6= 0, N6 6= 0, H11 = 0

K3 > 0 Portrait 4.44(a)

K3 < 0 Portrait 4.44(b)

Config. 4.45
η = M = 0, B3 = 0, θ 6= 0,

H7 6= 0

µ0 > 0 Portrait 4.45(a)

µ0 < 0 Portrait 4.45(b)

Config. 4.46
η = M = 0, B3 = θ = N = 0,

N3D1 6= 0, N6 = 0
– Portrait 4.46
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Table 3(a)

For systems (S4.1) calculations yield: K = 2
[
g(g − 1)x2 + 2ghxy + h(h − 1)y2

]
,

µ0 = gh(g + h− 1), sign (∆1∆2∆3∆4) = sign (µ0).

According to [5] a quadratic system cannot possess four anti–saddles, and neither
could it possess four saddles. For this reason we obtain two saddles and two anti–
saddles for µ0 > 0 and either (α) one saddle and three anti–saddles or (β) three
saddles and one anti–saddle for µ0 < 0.

Assume µ0 > 0. As the singular points M1, M2 and M3 are located on invariant
lines and for M4 we have sign (δ4) = sign (µ0), we conclude that in this case a
system (S4.1) possesses two saddles and two nodes. Considering the existence of the
invariant lines x = 0, y = 0 and y = x + 1 and the fact that the sum of Poincaré
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Table 3(b)

indices for finite singularities is zero, and at infinity we have 6 simple singularities (on
the Poincaré disk), these must be: one couple of opposite saddles and two couples
of opposite nodes and we get the phase portrait given by Picture 4.1(a).

For µ0 < 0 we have gh(g+h−1) < 0 and then δ4 < 0, i.e. the singular point M4

is either a focus or a center. We claim that it is a center. Indeed, via the translation
of the origin of coordinates to this point we get the family of systems

ẋ = −ghx+ h(1 − h)y + gx2 + (h− 1)xy, ẏ = g(g − 1)x+ ghy + (g − 1)xy + hy2.

Applying Lemma 7 to these systems we calculate: I1 = I6 = I3 = 0, I2 =
2gh(g + h− 1). Thus, sign (I2) = sign (µ0) and since µ0 < 0 (i.e. I2 < 0) according
to Lemma 7 we obtain that the singular point M4 is a center, so our claim is proved.

On the other hand, for µ0 < 0 the T -comitant K becomes a binary form with
well determined sign as Discrim(K) = µ0/16.

Assume K < 0. Then 0 < g < 1, 0 < h < 1 and from µ0 < 0 we obtain
g + h − 1 < 0. In this case we have ∆i < 0 for all i ∈ {1, 2, 3} and hence, besides
a center systems (S4.1) possess three saddles. Moreover, for these values of the
parameters g and h the singular point M4(−h, g) is placed inside of the triangle
△ M1M2M3. So, considering the existence of the invariant lines x = 0, y = 0 and
y = x+ 1 and the fact that the sum of Poincaré indices for finite singularities is −2,
we must have 6 nodes at infinity (3 in the projective plane) and we get the Picture
4.1(b).

Suppose now that K > 0. Then g(g − 1) > 0, h(h − 1) > 0 and we claim that
in this case besides the center M4 systems (S4.1) possess two nodes and one saddle.
Indeed, supposing the contrary we obtain that all three Mi must be saddles, as
∆1∆2∆3 = −(g2h2(g + h− 1)2 < 0. Hence, ∆i < 0 for i = 1, 2, 3. From ∆1 < 0 we
get gh > 0 and then the condition µ0 < 0 implies g+h− 1 < 0. Then the condition
∆2 < 0 yields h > 0 (and hence g > 0). Due to K < 0 we get the contradiction:
g > 1, h > 1 and g + h− 1 < 0. This proves our claim.

So, systems (S4.1) possess one saddle, two nodes and one center, and the last
point is outside the triangle △ M1M2M3. Clearly in this case at infinity we have
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Table 3(c)

two saddles and one node (as the sum of Poincaré indeces for infinite singularities
has to be −1). Considering the existence of the above indicated invariant lines we
arrive at the phase portrait given by Picture 4.1(c).
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Table 3(d)

So, systems (S4.1) possess one saddle, two nodes and one center, and the last
point is outside the triangle △ M1M2M3. Clearly in this case at infinity we have
two saddles and one node (as the sum of Poincaré indeces for infinite singularities
has to be −1). Considering the existence of the above indicated invariant lines we
arrive at the phase portrait given by Picture 4.1(c).

Config. 4.2 :

{
ẋ = gx2 + (h+ 1)xy, h(h + 1)

[
g2 + (h− 1)2

]
6= 0,

ẏ = h
[
g2+(h+1)2

]
+(g2+1−h2)x+2ghy− x2+gxy+hy2.

(S4.2)

Finite singularities: M1(0, 0)
[
∆1 = [g2+(h+ 1)2](h+1)2 > 0, δ1 = −4(h+1)4< 0,

ρ1 = 2g(h + 1)
]
; M2(−h(h + 1), gh)

[
∆2 = h

[
g2 + (h+ 1)2

]
(h+ 1)2, δ2 = −4h

[
g2 +

(h+ 1)2
]
(h+ 1)2, ρ2 = 0

]
. Thus the singular point M1 is either a focus or a center.

To determine the conditions for M1 to be a center, we make a translation and move
this point to the origin of coordinates. We get the systems

ẋ = (1 + h+ x)(gx + y + hy), ẏ = −(h+ 1)2x+ g(h+ 1)y − x2 + gxy + hy2,

for which calculations yield: I1 = 2g(h+1), I6 = g(h+1)3(5+6h− 3g2 − 3h2)/2,

I2 = 2g2(h+ 1)2 − 2(h + 1)4, I13 = g(h + 1)
[
g2(9h + 8) + h(3h+ 1)2

]
/4.

Using Lemma 7 we see that M1 is a center if and only if g = 0. If g 6= 0 this
point is a strong focus. To distinguish between a focus and a center we define a new

affine invariant as follows: G1 = ((C2, Ẽ)(2),D2)
(1), where Ẽ(a, x, y) =

[
D1(2ω1 −

ω2)−3(C1, ω1)
(1) −D2(3ω3 +D1D2)

]
/72 and ω1(a, x, y) = (C2,D2)

(1) , ω2(a, x, y) =

(C2, C2)
(2) , ω3(a, x, y) = (C1,D2)

(1) .
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Since for the systems (S4.2) calculation yields G1 = 2g(h+ 1)
[
g2 + (3h+ 1)2

]
, it

is clear that the condition g = 0 is equivalent to G1 = 0.
Let us examine the point M2. For systems (S4.2) calculations yield: µ0 =

−h
[
g2 + (h + 1)2

]
. Hence sign (δ2) = sign (µ0) = −sign (∆2). Therefore the point

M2 is a saddle if µ0 > 0 and it is either a focus or a center if µ0 < 0. Translating
this point at the origin of coordinates we get the systems

ẋ = (x−h2−h)[gx+(h+1)y], ẏ = (h+1)(g2+h+1)x+gh(h+1)y−x2+gxy+hy2,

for which I1 = I6 = I3 = 0, I2 = −2h(h + 1)2
[
g2 + (h + 1)2

]
. Consequently, by

Lemma 7 the point M2 is a center if µ0 < 0.
We note, that the product of the abscissas of finite singularities equals −h(h+1)2.

This means that both points are on the same side (respectively on different sides)
of the invariant line x = 0 if µ0 > 0 (respectively µ0 < 0).

It remains to observe that at infinity there are only two real simple singular
points. When M2 is a saddle, since M1 is an anti-saddle (index +1), then the two
infinite points must be nodes. When M2 is a center, since M1 is an anti-saddle,
the two infinite points are saddles. In the last case the invariant line x = 0 is a
separatrix of the saddle at infinity.

Thus, we obtain: Picture 4.2(a) if µ0 > 0 and G1 6= 0; Picture 4.2(b) if µ0 > 0
and G1 = 0; Picture 4.2(c) if µ0 < 0 and G1 6= 0; Picture 4.2(d) if µ0 < 0 and G1 = 0.

Config. 4.3 :

{
ẋ = ẋ = x+ gx2 + (h− 1)xy, gh(g + h− 1) 6= 0,
ẏ = y + (g − 1)xy + hy2, (g − 1)(h − 1)(g + h) 6= 0.

(S4.3)

Finite singularities: M1(0, 0)
[
∆1 = 1, δ1 = 0

]
; M2

(
0, − 1

h

)[
∆2 = − 1

h , δ2 =

(h+1)2

h2

]
; M3

(
− 1

g , 0
)[

∆3 = −1
g , δ3 = (g+1)2

g2

]
; M4

(
− 1

g+h−1 ,− 1
g+h−1

)[
∆4 =

1
g+h−1 , δ4 = (g+h−2)2

(g+h−1)2

]
. For systems (S4.3) calculations yield: µ0 = gh(g + h− 1),

K = 2
[
g(g − 1)x2 + 2ghxy + h(h− 1)y2

]
; sign (∆1∆2∆3∆4) = sign (µ0).

Since δi ≥ 0 for all points Mi we conclude that systems (S4.3) possess two saddles
and two nodes if µ0 > 0 and they possess either (α) one saddle and three nodes or
(β) three saddles and one node if µ0 < 0.

Assume µ0 > 0. Then we have two nodes (one of them being the point M1) and
two saddles. Considering the existence of the invariant lines x = 0, y = 0 and y = x
and the fact that the sum of Poincaré indices for finite singularities is zero, then at
infinity we have six simple singularities: two saddle and four nodes and we get the
phase portrait given by Picture 4.3(a).

If µ0 < 0 the T -comitant K becomes a sign defined binary form as Discrim(K) =
µ0/16.

Assume K < 0. Then 0 < g < 1, 0 < h < 1 and from µ0 < 0 we obtain
g + h − 1 < 0. In this case ∆i < 0 for all i ∈ {2, 3, 4} and hence, besides the
star node M1 systems (S4.1) possess three saddles. Moreover, for these values of
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the parameters g and h the singular point M1(0, 0) is placed inside of the triangle
△ M2M3M4. So, considering the existence of the invariant lines x = 0, y = 0 and
y = x and the fact that the sum of Poincaré indices for finite singularities is −2, we
have six nodes at infinity and we get the Picture 4.3(b).

Suppose nowK > 0. We claim that in this case besides the star nodeM1 systems
(S4.3) possess two nodes and one saddle. Indeed, supposing the contrary, we obtain
that all three Mi must be saddles, as sign (∆2∆3∆4) = sign (µ0) = −1. Therefore,
from ∆2 < 0 and ∆3 < 0 we get h > 0 and g > 0 respectively, and then the condition
µ0 < 0 implies g + h− 1 < 0. On the other the condition K > 0 yields g(g − 1) > 0
and h(h − 1) > 0 and we get g > 1 and h > 1. This contradicts g + h − 1 < 0 and
hence proves our claim.

So, systems (S4.3) possess one saddle and three nodes. Clearly in this case
at infinity we have four saddles and two nodes (as the sum of Poincaré indices for
infinite singularities has to be −2). Considering the presence of the above mentioned
invariant lines we obtain the phase portrait given by Picture 4.3(c).

Config. 4.4 :

{
ẋ = x+ gx2 − xy, g ∈ R,
ẏ = y + (g − 1)xy, g(g − 1) 6= 0.

(S4.4)

Finite singularities: M1(0, 0)
[
∆1 = 1, δ1 = 0

]
; M2

(
− 1

g , 0
)[

∆2 = −1
g , δ2 =

(g+1)2

g2

]
; M3

(
1

1−g ,
1

1−g

)[
∆3 = 1

g−1 , δ3 = (g−2)2

(g−1)2

]
. For systems (S4.3) calculations

yield: µ0 = 0, K = 2g(g − 1)x2, sign (∆2∆3) = −sign (K). We observe, that the
family of systems (S4.4) is a subset of the family (S4.3) defined by the condition
h = 0. So, since the singular point M2

(
0, −1/h

)
tends to infinity when h → 0

we conclude that the infinite point N(0, 1, 0) of systems (S4.4) is a double point (a
saddle-node).

On the other hand it is easy to determine that besides the star node M1, systems
(S4.4) possess two saddles if g(g − 1) < 0 (i.e. K < 0) and they possess one saddle
and one node if g(g − 1) > 0 (i.e. K > 0). Therefore, taking into consideration the
invariant lines x = 0, y = 0 and y = x and the sum of Poincaré indices we get the
Picture 4.4(a) if K < 0 and the Picture 4.4(b) when K > 0.

Config. 4.5 :

{
ẋ = gx2 + (h− 1)xy, (g − 1)(h − 1)(g + h) 6= 0,
ẏ = (g − 1)xy + hy2, gh(g + h− 1) 6= 0.

(S4.5)

We observe that (S4.5) is a family of homogenous systems, each having only the
origin as finite singular point. These systems possess three invariant lines: x = 0,
y = 0 and y = x. Hence η > 0. We also have µ0 6= 0. Hence according to Table 4
in [26] we have the following possibilities for singular points at infinity: i) If µ0 > 0
we have two saddles and four nodes; ii) If µ0 < 0 and κ < 0 we have four saddles
and two nodes; If µ0 < 0 and κ > 0 we have six nodes.

For systems (S4.5) calculations yield:

µ0 = gh(g + h− 1), κ = −16
[
g(g − 1) + h(h− 1) + gh

]
,

K = 2
[
g(g − 1)x2 + 2ghxy + h(h− 1)y2

]
.
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Mapping the sign of µ0 in the plane h, g
we determine that µ0 < 0 in the shaded
areas of Figure 1. Hence in the shaded
areas, K has well determined sign as indi-
cated. On the same figure it is also easy
to observe that for µ0 < 0 the following
relation holds: sign (κ) = −sign (K).

Thus, we obtain: Picture 4.5(a) if µ0 >
0; Picture 4.5(b) if µ0 < 0 and K < 0;
Picture 4.5(c) if µ0 < 0 and K > 0.

Figure 1

Config. 4.6 :

{
ẋ = gx2 + (h+ 1)xy, h(h+ 1)

[
g2 + (h− 1)2

]
6= 0,

ẏ = −1 + gx+ (h− 1)y − x2 + gxy + hy2.
(S4.6)

Finite singularities: M1(0,−1)
[
∆1 = (h+1)2, δ1 = 0

]
– a node; M2(0, 1/h)

[
∆2 =

(h+ 1)2/h, δ2 = (h2 − 1)2/h2
]

– a node if h > 0 and a saddle if h < 0. For systems
(S4.6) we calculate µ0 = −h

[
g2 + (h+ 1)2

]
, i.e. sign (µ0) = −sign (h).

It remains to observe that at infinity there exist only one real singular point
which is simple. Since M1 is an anti-saddle (index +1), the infinite point is a node
(index +1) when M2 is a saddle and it is a saddle (index −1) when M2 is a node. In
the last case the invariant line x = 0 is a separatrix of the saddle at infinite. Hence
we obtain Picture 4.6(a) if µ0 > 0 and Picture 4.6(b) if µ0 < 0.

Config. 4.7 : ẋ = gx2 + xy, ẏ = −1 + gx− y − x2 + gxy, g ∈ R. (S4.7)

Finite singularities: M1(0,−1)
[
∆1 = 1, δ1 = 0

]
– a node. We observe that the

family of systems (S4.7) is a subset of the family (S4.6) defined by the condition
h = 0. So, since the singular point M2

(
0, −1/h

)
tends to infinite when h → 0

we conclude that the infinite point N(0, 1, 0) of systems (S4.7) is a double point (a
saddle-node). This leads to the Picture 4.7

Config. 4.8 :

{
ẋ = gx2 + (h+ 1)xy,

ẏ = −x2 + gxy + hy2, h(h + 1)
[
g2 + (h− 1)2

]
6= 0.

(S4.8)

For systems (S4.8) we calculate µ0 = −h
[
g2 + (h + 1)2

]
, η = −4 < 0. According

to [26] at infinity there exist two opposite nodes if µ0 > 0 and two opposite saddles
if µ0 < 0.

Thus, taking into consideration the real invariant line x = 0 of systems (S4.8) we
obtain Picture 4.8(a) if µ0 > 0 and Picture 4.8(b) if µ0 < 0.

Config. 4.9 :

{
ẋ = x2 − 1, g(g − 1)[(g ± 1)2 − 4h2] 6= 0,
ẏ = (y + h)[y + (1 − g)x− h].

(S4.9)

Finite singularities: M1(−1,−h)
[
∆1 = 2(2h − g + 1), δ1 = (2h − g − 1)2

]
;

M2(1,−h)
[
∆2 = −2(2h+ g − 1), δ2 = (2h + g + 1)2

]
;
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M3(−1, h− g+1)
[
∆3 = −2(2h− g+1), δ3 = (2h− g+3)2

]
; M4(1, h+ g− 1)

[
∆4 =

2(2h+ g− 1), δ4 = (2h+ g− 3)2
]
. For systems (S4.9) calculations yield: µ0 = 1 > 0,

η = g2 > 0, sign (∆1∆2∆3∆4) = 1.
Since δi ≥ 0 for all points Mi we conclude that systems (S4.9) possess two

saddles and two nodes in the finite part of its phase plane. From the behavior of
trajectories at infinity, according to [26] we have four nodes and two opposite saddles.
More concretely, we have the node N1(0, 1, 0) and the singular points N2(1, 0, 0) and
N3(1, g, 0) as well as their opposites. It is not hard to find out that the point
N2(1, 0, 0) (respectively, N3(1, g, 0)) ia a saddle (respectively, a node) if g < 0 and
it is a node (respectively, a saddle) if g > 0.

We note that the first equation depends only on x. ẋ > 0 for x outside [−1, 1]
and ẋ < 0 for x ∈ (−1, 1). This yields the orientation of the vector field on the
invariant line x = −h. The phase portrait on the invariant lines x = ±1 is easily
obtained by replacing these values in the second equation which becomes ẏ = (y +
h)(y − (h + g − 1)) for x = 1 and ẏ = (y + h)(y − (h − g + 1)) for x = −1. Hence
ẏ > 0 for y outside the interval determined by the roots of the polynomials on the
right hand sides and ẏ < 0 for y inside this interval. The sign of ẏ thus depends
on whether or not −h is smaller or greater than h + g − 1 (respectively h − g + 1)
which amounts to checking the sign of 2h + g − 1 (respectively 2h− g + 1). As the
phase portrait around infinity depends on the sign of g the full discussion, which is
elementary, depends on the sign of g(2h − g + 1)(2h + g − 1).

Case 1) We first assume that g(2h− g + 1)(2h+ g − 1) > 0. This could occur if
either i) all three factors are positive or ii) two of the factors are negative and the
third one is positive.

In the case i) we have that −h < h− g+ 1 and −h < h+ g− 1 so the points M3

and M4 lie above the line y = −h, M3 being a saddle and M4 being a node while
M1 is a node and M2 is a saddle. This yields phase portrait Picture 4.9(b).

In the case ii) we observe that the case when the first two factors are negative
and the third one is positive cannot occur. Indeed, in this case we would necessarily
have −(g−1) < 2h < g−1 which yields a contradiction as g > 0. So we only need to
consider the cases when only the first and last factors are negative or when only the
second and last one are negative. In the first situation we have that h+g−1 < −h <
h−g+1, so M3 and M4 are respectively above and below the invariant line y = −h.
M1 and M2 are nodes and M3 and M4 are saddles. Considering the behavior at
infinity we have that N2 is a saddle and N3 is a node located on the negative side of
the u-axis and the phase portrait is Picture 4.9(b). If only 2h− g+ 1 and 2h+ g− 1
are negative and g > 0, the points M3 and M4 are both below the line y = −h, M3

is a node and M4 is a saddle while M1 is a saddle and M2 is a node. N2 is a node
and N3 is on the positive side of the u-axis and it is a saddle. This yields again the
phase portrait Picture 4.9(b).

Thus we conclude that in the case g(2h−g+1)(2h+g−1) > 0 the phase portrait
of systems (S4.9) corresponds to Picture 4.9(b).

Case 2) Suppose now that g(2h− g+ 1)(2h+ g− 1) < 0. This could occur if all
three factors are negative or if only one is negative and the other two are positive.
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In the first case M3 and M4 are both below the line y = −h and M1 and M3 are
nodes while M2 and M4 are saddles. N2 is a saddle and N3 lies on the negative side
of the u-axis and it is a node. This yields picture Picture 4.9(a).

It remains to consider the cases when only one of the three factors is negative.
If g < 0 then M3 and M4 are both above the line y = −h and M3 and M4 are both
below the line y = −h and M1 and M4 are nodes while M3 and M2 are saddles. N2

is a saddle and N3 is on the negative side of the u-axis and it is a node. So in this
case we get Picture 4.9(a). If only the second factor is negative, i.e. 2h− g + 1 < 0
we have h− g+1 < −h < h+ g−1 and hence M3 and M4 are nodes situated on the
opposite sides of the line y = −h and M1 and M2 are saddles. In this case N2 is a
node and N3 is a saddle situated in the positive side of u. Hence the phase portrait
is Picture 4.9(c). If only the third factor is negative, i.e. 2h + g − 1 < 0 then M1

and M2 are nodes and M3 and M4 are saddles located on the opposite sides of the
line y = −h. In this case N2 is a node and N3 is located on the positive side of u
and it is a saddle. The phase portrait is therefore Picture 4.9(b).

For each phase portrait assembling together the above conditions we get:

• Picture 4.9(b) ⇔ either g
[
4h2−(g−1)2

]
>0 or g

[
4h2−(g−1)2

]
<0 and 0<g<1;

• Picture 4.9(a) ⇔ g
[
4h2 − (g − 1)2

]
< 0 and g < 0;

• Picture 4.9(c) ⇔ g
[
4h2 − (g − 1)2

]
< 0 and g > 1.

In order to determine the corresponding invariant conditions we construct the
following affine invariants:

G2 = 8H8 − 9H5, G3 = (µ0 − η)H1 − 6η(H4 + 12H10).

Since for the systems (S4.9) we have G2 = −2933g
[
4h2 − (g − 1)2

]
, H4 =

48(1 − g)
[
4h2 − (g + 1)2

]
, G3 = 6gH4, we conclude that these three invariant poly-

nomials distinguish the phase portraits of systems (S4.9) for this configuration as it
is indicated in the Table 2.

Config. 4.10 : ẋ = x2 − 1, ẏ = (y + g)(y + 2gx− g), g(2g − 1) 6= 0. (S4.10)

Finite singularities: M1(−1,−g)
[
∆1 = 8g, δ1 = 4(2g−1)2

]
– a node if g > 0 and

a saddle if g < 0; M2(1,−g)
[
∆2 = 0, ρ2 = 2

]
– a saddle-node [1]; M3(−1, 3g)

[
∆3 =

−8g, δ3 = 4(2g + 1)2
]

– a node if g < 0 and a saddle if g > 0. For systems
(S4.10) calculations yield: µ0 = 1 > 0, η = (2g − 1)2 > 0. Hence according
to [26] at infinity we have six singularities: the node N1(0, 1, 0) with its opposite
and the singular points N2(1, 0, 0) and N3(1, 1 − 2g, 0) with there opposites. It is
not hard to find out that the point N2(1, 0, 0) (respectively, N3(1, 1 − 2g, 0)) is a
saddle (respectively, a node) if 1− 2g < 0 and it is a node (respectively, a saddle) if
1 − 2g > 0.

a) Assume first g < 0, i.e. M1(−1,−g) is a saddle and M3(−1, 3g) is a node.
Since in this case 1− 2g > 0 we obtain that N2(1, 0, 0) is a node and N3(1, 1− 2g, 0)
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is a saddle. Taking into consideration the location of these singularities we get the
Picture 4.10(a).

b) Assume now g > 0. Then M1(−1,−g) is a node and M3(−1, 3g) is a saddle.
Since the type of infinite singularities depends on sign (1− 2g) we shall consider two
subcases: 1 − 2g > 0 and 1 − 2g < 0.

b1) If 1 − 2g > 0 then as in the previous case N2(1, 0, 0) is a node and N3(1, 1 −
2g, 0) is a saddle. Taking into consideration the relative location of the singularities
of systems (S4.10) for 0 < g < 1/2, we obtain in this case the Picture 4.10(b).

b2) Supposing 1 − 2g < 0 we have at infinity the saddle N2(1, 0, 0) and the
node N3(1, 1 − 2g, 0). It is easy to observe that in this case we have a separatrix
connection, between finite saddle-node M2 and infinite saddle N2(1, 0, 0). So, in the
same manner above we get the Picture 4.10(c).

It remains to construct the respective affine invariant conditions. For systems
(S4.10) we have H4 = 384g(2g − 1). Therefore, if H4 < 0 (i.e. 0 < g < 1/2) we
obtain Picture 4.10(b), whereas for H4 > 0 we have either Picture 4.10(a) or Picture
4.10(c). We observe that for systems (S4.10) calculations yield: G3 = −2304g(2g−1)2

and hence, for H4 > 0 we get Picture 4.10(a) if G3 > 0 and Picture 4.10(c) if G3 < 0.

Config. 4.11 : ẋ = (x+ g)2 − 1, ẏ = y(x+ y), g2 − 1 6= 0. (S4.11)

Finite singularities: M1(−1 − g, 0)
[
∆1 = 2(g + 1), δ1 = (g − 1)2

]
; M2(1 −

g, 0)
[
∆2 = −2(g − 1), δ2 = (g + 1)2

]
; M3(−1 − g, g + 1)

[
∆3 = −2(g + 1), δ3 =

(g + 3)2
]
; M4(1 − g, g − 1)

[
∆4 = 2(g − 1), δ4 = (g − 3)2

]
.

Evidently, that we have two nodes and two saddles, and which singularities are
nodes and which ones are saddles depends on sign (g2 − 1).

For systems (S4.11) calculations yield: µ0 = 1 > 0, η = 0, M = −8y2 6= 0,
C2 = −xy2. So, according to [26] at infinity besides the node N1(0, 1, 0) systems
(S4.11) possess a double point N1(1, 0, 0), which is a saddle-node.

We shall examine three cases: g < −1, −1 < g < 1 and g > 1.
a) Case g < −1. Then the singular points M1 and M4 are saddles, whereas M2

and M3 are nodes. Moreover, M3 and M4 are on the same part of the invariant line
y = 0. Thus we get the phase portrait given by Picture 4.11(a).

b) Case −1 < g < 1. In this case the singular points M1,2 are nodes and M3,4 are
saddles. And clearly M3 and M4 are on different sides of the invariant line y = 0.
So we obtain Picture 4.11(b).

c) Case g > 1. Then the singular points M1 and M4 are nodes, whereas M2

and M3 are saddles. In this case M3 and M4 are on the same part of the invariant
line y = 0. Therefore, we get the phase portrait with is topologically equivalent to
Picture 4.11(a).

It remains to note that for the systems (S4.11) we have H4 = 48(g2 − 1) and
evidently this invariant polynomial distinguishes Picture 4.11(a) (H4 > 0) from
Picture 4.11(b) (H4 < 0).

Config. 4.12 :

{
ẋ = (x+ h)2 − 1, g(g − 1)(h2 − 1) 6= 0,
ẏ = (1 − g)xy, h2(g − 1)2 − (g + 1)2 6= 0.

(S4.12)



INTEGRALS AND PHASE PORTRAITS OF SYSTEMS WITH INVAIRANT LINES 67

Finite singularities: M1(−1 − h, 0)
[
∆1 = −2(h + 1)(g − 1), δ1 = [h(g − 1) +

(g + 1)]2
]
; M2(1 − h, 0)

[
∆2 = 2(h − 1)(g − 1), δ2 = [h(g − 1) − (g + 1)]2

]
. Since

∆1∆2 = −4(g − 1)2(h2 − 1) and ∆1 + ∆2 = −4(g − 1) we conclude that systems
(S4.12) possess a saddle and a node if h2 − 1 > 0. For h2 − 1 < 0 these systems
possess two saddles if g > 1 and they possess two nodes if g < 1.

To determine the behavior of the trajectories at the infinity according to [26] for
systems (S4.12) we calculate:

η = 0, M = −8g2x2 6= 0, C2 = gx2y, µ0 = µ1 = κ = κ1 = 0, L = 8gx2,

µ2 = (g − 1)2(h2 − 1)x2, K = 2(1 − g)x2, K2 = 192(2g2 − g + 1)x2.

We observe that by [26] the point N1(0, 1, 0) is of the multiplicity 4 (consisting of
two finite and two infinite points which have coalesced). We also note that K2 > 0
for any value of parameter g.

a) Case µ2 > 0. Then h2−1 > 0 and systems (S4.12) possess one saddle and one
node. As sign (L) = sign (g), following [26] we shall consider two subcases: L > 0
and L < 0.

a1) Assume L > 0. Since K2 > 0 according to
[26, Table 4] the behavior of the trajectories in the
vicinity of infinity is given by Figure 19. Taking into
consideration the invariant lines we get Picture 4.12(a).

a2) Suppose L < 0. Then from [26, Table 4] we get
Figure 17. So, in the same manner as above we obtain
the phase portrait given by Picture 4.12(b).

b) Case µ2 < 0. In this case we have h2 − 1 < 0 and as it is determined above
systems (S4.12) possess two saddles if g > 1 and they possess two nodes if g < 1.
As for these systems K = 2(1 − g)x2 we have sign (K) = −sign (g − 1) and we shall
consider two subcases: K < 0 and K > 0.

b1) Assume first K < 0, i.e. g > 1 and the finite singular points
are both saddles. On the other hand for the infinite points the
relation L = 8gx2 > 0 holds and according to [26, Table 4] this
leads to the Figure 10. So, taking into consideration the invariant
lines of systems (S4.12) we obtain the phase portrait given by Picture
4.12(c).

b2) Assume now K > 0. Then g < 1 and the finite singular points are both
nodes. According to [26, Table 4] the behavior of the trajectories in the vicinity of
infinity in this case depends on the sign of the invariant polynomials L = 8gx2.

If L > 0 (i.e. g > 0) we obtain Figure 27, whereas
for L < 0 (then K < 0) we get Figure 29. Therefore,
considering the existence of the invariant lines of sys-
tems (S4.12) we obtain the Picture 4.12(d) if L > 0 and
the Picture 4.12(e) if L < 0.

Config. 4.13 :

{
ẋ = x2 + 1, g(g − 1)

[
(g + 1)2 + h2

]
6= 0,

ẏ = (y + h)[y + (1 − g)x − h].
(S4.13)
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No finite singularities. These systems have invariant lines y = −h and x = ±i.
Calculations yield η = g2 > 0, µ0 = 1 > 0 and according to [26] on the line
at infinity there exist two nodes and one saddle. Due to the existence of the real
invariant line y = −h we have to distinguish when the point N1(1, 0, 0) is a saddle
(having a saddle connection) and when it is a node. Constructing the respective to
(S4.13) family of systems at infinity we get

u̇ = gu+ h(g − 1)z − u2 + h2z2 + uz2, ż = z + z3.

Since the singularity (0, 0) of these systems corresponds to N1(1, 0, 0) we conclude
that the singular point N1 is a saddle if g < 0 and it is a node if g > 0. To distinguish
these two possibilities we shall use the affine invariant G2. For systems (S4.13) we
calculate G2 = 13824g

[
4h2 +(g− 1)2

]
. Thus, G2 6= 0 and sign (G2) = sign (g). Hence

we get Picture 4.13(a) if G2 > 0 and Picture 4.13(b) if G2 < 0.

Config. 4.14 : ẋ = (x+ g)2 + 1, ẏ = y(x+ y), g ∈ R. (S4.14)

No finite singularities. Calculations yield η = 0, M = −8y2 6= 0, C2 = −xy2,
µ0 = 1 > 0. Thus the singular point N1(1, 0, 0) is a double point and according
to [26] on the line at infinity at infinity there exist one node and one saddle-node
(double). Hence, taking into account the real invariant line y = 0 we get Picture
4.14 for any value of the parameter g.

Config. 4.15 :

{
ẋ = (x+ h)2 + 1, g(g − 1) 6= 0,
ẏ = (1 − g)xy, (g + 1)2 + h2 6= 0.

(S4.15)

No finite singularities. Calculations yield

η = 0, M = −8g2x2 6= 0, C2 = gx2y, µ0 = µ1 = κ = κ1 = 0, L = 8gx2,

µ2 = (g − 1)2(h2 + 1)x2, K = 2(1 − g)x2, K2 = −192(2g2 − g + 1)x2.

We observe [26] that the point N1(0, 1, 0) is of the multiplicity 4 (two finite and two
infinite points have coalesced at this point). We also note that µ2 > 0 and K2 < 0
for any value of parameters (g, h) ∈ R2.

Thus according to [26, Table 4] this leads to the Figure 8 if L > 0
and to the Figure 17 (see above) if L < 0. Taking into consideration
the existence of the real invariant line y = 0 we obtain Picture
4.15(a) if L > 0 and Picture 4.15(b) if L < 0.

Config. 4.16 : ẋ = g + x, ẏ = y(y − x), g(g − 1) 6= 0. (S4.16)

Finite singularities: M1(−g, 0)
[
∆1 = g, δ1 = (g − 1)2

]
; M2(−g, −g)

[
∆2 =

−g, δ2 = (g + 1)2
]
. We observe that systems (S4.16) possess a node and a saddle.

To determine the behavior of the trajectories at the infinity according to [26] for
these systems we calculate:

η = 1 > 0, C2 = xy(x− y), µ0 = µ1 = κ = 0, L = 8y(y − x), µ2 = y(y − x).
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Hence µ2L = 8y2(y − x)2 > 0 and according to [26, Table 4]
on the line at infinity there exist three real singular points, two
of which are double and one simple. More precisely, the dou-
ble points N1(1, 0, 0) and N2(1, 1, 0) are saddle-nodes, whereas
the point N2(0, 1, 0) is a node and the geometric configuration
corresponds to Figure 4.

We observe that if the point M1(−g, 0), located on the invariant line y = 0 (as
well as on the line x = −g) is a saddle (i.e. g < 0), then we get a saddle connection
with the saddle-node N1(1, 0, 0).

On the other hand for systems (S4.16) we have G2 = −3456g. So, taking into
consideration the invariant lines x = −g and y = 0 of systems (S4.16) we obtain
Picture 4.16(a) if G2 > 0 and Picture 4.16(b) if G2 < 0.

Config. 4.17 : ẋ = x, ẏ = y(y − x). (S4.17)

We observe that this system can be obtained from the family (S4.16) allowing the
parameter g to vanish. In this case the points M1(−g, 0) and M2(−g, −g) coa-
lesced (at the origin of coordinates), yielding a saddle-node. So, as it can easily be
determined, we get Picture 4.17.

Config. 4.18 : ẋ = g(g + 1) + gx+ y, ẏ = y(y − x), g(g + 1) 6= 0. (S4.18)

Finite singularities: M1(−1 − g, 0)
[
∆1 = g(g + 1), δ1 = 1

]
; M2(−g, −g)

[
∆2 =

−g(g + 1), δ2 = 4g(g + 1), ρ2 = 0
]
. We observe that systems (S4.18) possess a

saddle and a node if g(g + 1) > 0 and they possess a saddle and either a focus
or a center if g(g + 1) < 0. We claim that in the second case the point M2 is a
center. Indeed, moving this point to the origin of coordinates we get the systems
ẋ = gx + y, ẏ = (g − y)(x − y), for which considering Lemma 7 we calculate:
I1 = I6 = I3 = 0, I2 = 2g(g + 1). Since g(g + 1) < 0 by Lemma 7 the point M2 is a
center and our claim is proved.

For systems (S4.18) calculations yield:

η = 1, C2 = xy(x− y), µ0 = µ1 = κ = 0, L = 8y(y − x), µ2 = g(g + 1)y(y − x).

Hence µ2L = 8g(g + 1)y2(y − x)2 6= 0 and then sign (µ2L) =
sign

(
g(g + 1)

)
. According to [26, Table 4] on the line at infin-

ity there exist three real singular points, two of which are dou-
ble and one simple. More precisely, the double points N1(1, 0, 0)
and N2(1, 1, 0) are saddle-nodes, whereas the point N2(0, 1, 0) is
a node.

However, depending on the location of the saddle sectors of the saddle-nodes, at
infinity there are two distinct configurations. As it was proved in [26] we have the
Figure 4 (see above) if µ2L > 0 and the Figure 3 if µ2L < 0.

a) Case µ2L > 0. Then g(g + 1) > 0 and systems (S4.18) possess one saddle and
one node. Taking into consideration the existence of the invariant lines y = 0 and
x− y + g + 1 = 0 as well as Figure 4 we get the Picture 4.18(a).
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a) Case µ2L < 0. Then g(g + 1) < 0 and systems (S4.18) possess one saddle
and one center. Moreover, the behavior of the trajectories at infinity corresponds to
Figure 3. In this case we obtain the Picture 4.18(b).

Config. 4.19 : ẋ = g + x, ẏ = −xy, g(g − 1) 6= 0. (S4.19)

We observe that these systems possess one finite singular point M1(−g, 0) which is a
saddle for g < 0 and it is a node if g > 0. We shall examine the infinite singularities.
Considering [26] for systems (S4.19) we calculate: M = −8x2 6= 0, C2 = x2y, η =
µ0 = µ1 = µ2 = κ = κ1 = L = 0, µ3 = −gx2y, K1 = −x2y.

According to [26] the point N1(0, 1, 0) is of the mul-
tiplicity 4 (consisting from two finite and two infinite
points which have coalesced), while the singular point
N2(1, 0, 0) is a double point which is a saddle-node (a
finite and an infinite singular point being coalesced)
Moreover, by [26, Table 4] the behavior of the trajec-
tories at infinity corresponds to Figure 12 if µ3K1 < 0
and to Figure 21 if µ3K1 > 0.

Since µ3K1 = gx4y2 it follows sign (µ3K1) = sign (g). Therefore, taking into
account the existence of the invariant lines y = 0 and x = −g and Figures 12 and
21 we obtain Picture 4.19(a) if µ3K1 < 0 and Picture 4.19(b) if µ3K1 > 0.

Config. 4.20 : ẋ = x(gx+ y), ẏ = (g − 1)xy + y2, g(g − 1) 6= 0. (S4.20)

For systems (S4.20) calculations yield: η = 0, M = −8x2, C2 = x2y, µ0 = g 6=
0. We observe that (S4.20) is a family of homogenous systems, which possess two
invariant lines: x = 0 (double) and y = 0. According to [26] on the line at infinity,
besides the saddle-nodeN1(0, 1, 0) (corresponding to the double line), systems (S4.20)
have a node if µ0 > 0 (Picture 4.20(a)) and they have a saddle if µ0 < 0 (Picture
4.20(b)).

Config. 4.21 :

{
ẋ = x(gx+ y), g(g − 1) 6= 0,
ẏ = (y + 1)(gx − x+ y).

(S4.21)

Finite singularities: M1(0, 0)
[
∆1 = 0, ρ1 = 1

]
– a saddle-node [1]; M2(0,−1)[

∆2 = 1, δ2 = 0
]

– a node; M3(1/g,−1)
[
∆3 = −1/g, δ3 = (g + 1)2/g2

]
– a node

if g < 0 and a saddle if g > 0. For systems (S4.21) calculations yield: η = 0, M =
−8x2, C2 = x2y, µ0 = g. Hence according to [26] on the line at infinity we have two
singularities: the saddle-node N1(0, 1, 0) and the singular point N2(1, 0, 0), which is
a node if µ0 > 0 and it is a saddle if µ0 < 0.

Thus, taking into account the invariant lines x = 0 (double) and y = −1 we get
Picture 4.21(a) if µ0 > 0 and Picture 4.21(b) if µ0 < 0.

Config. 4.22 : ẋ = gx2, ẏ = (y + 1)
[
y + (g − 1)x− 1

]
, g(g − 1) 6= 0. (S4.22)

Finite singularities: M1(0, 0)
[
∆1 = 0, ρ1 = 2

]
, M2(0,−1)

[
∆2 = 0, ρ2 = −2

]
–

saddle-nodes [1].
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To determine the behavior of the trajectories at the infinity for systems (S4.22)
we calculate: η = 1 > 0, C2 = xy(x− y), µ0 = g2 > 0. Thus according to [26, Table
4] on the line at infinity there exists three real singular points: N1(1, 0, 0), and
N2(1, 1, 0) and N3(0, 1, 0). More precisely, there are two nodes and one saddle.
Using the transformation x = 1/z, y = u/z) we get the systems

u̇ = u+ (1 − g)z − u2 + z2, ż = gz. (11)

For the singular point (0, 0) (respectively (1, 0)) of systems (11) corresponding to
the point N1(1, 0, 0) (respectively N2(1, 1, 0)) of systems (S4.22) we have ∆̃1 = g
(respectively ∆̃2 = −g). Hence we conclude that besides the nodeN3(0, 1, 0) systems
(S4.22) possess at infinity the node N1(1, 0, 0) and the saddle N2(1, 1, 0) if g > 0 and
they possess the saddle N1(1, 0, 0) and the node N2(1, 1, 0) if g < 0.

On the other hand for systems (S4.22) we have H1 = 1152g. Hence, taking into
consideration the invariant lines x = 0 (double) and y = −1 of systems (S4.22) we
get Picture 4.22(a) if H1 > 0 and Picture 4.22(b) if H1 < 0.

Config. 4.23 : ẋ = x(x+ y), ẏ = (y + 1)2. (S4.23)

Finite singularities: M1(0,−1)
[
∆1 = 0, ρ1 = −1

]
, M2(1,−1)

[
∆2 = 0, ρ2 = 1

]
–

saddle-nodes [1]. For these systems calculations yield: η = 0, M = −8x2, C2 =
x2y, µ0 = 1 > 0. We observe [26] that the point N1(0, 1, 0) is a double point and it
is a saddle-node, whereas the second simple point N1(1, 0, 0) is a node. Thus, taking
into account the invariant lines x = 0 and y = −1 (double) we get Picture 4.23.

Config. 4.24 : ẋ = (x+ 1)2, ẏ = (1 − g)xy, g(g − 1) 6= 0. (S4.24)

Finite singularities: M1(−1, 0)
[
∆1 = 0, ρ1 = g − 1

]
– saddle-node [1]. We

calculate: M = −8g2x2 6= 0, C2 = gx2y, η = µ0 = µ1 = κ = κ1 = K2 = 0,
µ2 = (g − 1)2x2, L = 8gx2. Since µ2 > 0 and K2 = 0 by [26, Table 4] the behavior
of the trajectories at infinity corresponds to Figure 19 if L > 0 and to Figure 17 if
L < 0 (see p. 67). Taking into consideration the existence of the real invariant lines
y = 0 and x = −1 (double) we obtain Picture 4.24(a) if L > 0 and Picture 4.24(b)
if L < 0.

Config. 4.25 : ẋ = gx2 + xy, ẏ = y + (g − 1)xy + y2, g(g − 1) 6= 0. (S4.25)

Finite singularities: M1(0, 0)
[
∆1 = 0, ρ1 = 1

]
– a saddle-node [1]; M2(0,−1)[

∆2 = 1, δ2 = 0
]

– a node; M3(1,−g)
[
∆3 = −g, δ3 = 4g

]
– a saddle if g > 0 and

either a focus or a center if g < 0.
We claim that the point M3 is a center if g < 0. Indeed, translating this point to

the origin of coordinates we get the systems ẋ = (1+x)(gx+y), ẏ = (g−y)(x−gx−y),
for which considering Lemma 7 we calculate: I1 = I6 = I3 = 0, I2 = 2g. Since g < 0
by Lemma 7 the point M3 is a center and our claim is proved.

On the other hand for systems (S4.25) calculations yield: η = 0, M = −8x2,
C2 = x2y, µ0 = g. Hence according to [26] at infinity we have two singularities: the
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saddle-node N1(0, 1, 0) and the singular point N2(1, 0, 0), which is a node if µ0 > 0
and it is a saddle if µ0 < 0. Hence, taking into account the invariant lines x = 0
(double) and y = −1 we get Picture 4.25(a) if µ0 > 0 and Picture 4.25(b) if µ0 < 0.

Config. 4.26 : ẋ = xy, ẏ = (y + 1)(y − x). (S4.26)

Finite singularities:M1(0, 0)
[
∆1 = 0, ρ1 = 1

]
– a saddle-node [1]; M2(0,−1)

[
∆2 =

1, δ2 = 0
]

– a node. For systems (S4.26) we calculate: M = −8x2 6= 0, C2 =
x2y, η = µ0 = 0, µ1 = y, K = 2y2.

According to [26, Table 4] in this case the behavior of the trajecto-
ries at infinity corresponds to Figure 20. So, taking into considera-
tion the invariant lines x = 0 (double) and y = 0 of systems (S4.26)
we obtain Picture 4.26

Config. 4.27 : ẋ = 2gx + 2y, ẏ = g2 + 1 − x2 − y2, g ∈ R. (S4.27)

Finite singularities: M1(−1, g)
[
∆1 = −4(g2 + 1)

]
– a saddle; M2(1, −g)

[
∆2 =

4(g2 + 1), δ2 = −16
]
. We observe that the singular point M2 is a strong focus

if g 6= 0 and it is a center if g = 0. Indeed, translating this point to the origin of
coordinates we get the systems ẋ = 2(gx+y), ẏ = −2x+2gy−x2−y2, for which we
calculate: I1 = 4g, I6 = −8g, I13 = −2g, I2 = 8(g2 − 1) So, by Lemma 7 the point
M2 is a center if and only if g = 0. To determine the behavior of the trajectories at
the infinity for systems (S4.27) calculations yield: η = −4, C2 = x(x2 + y2), µ0 =
µ1 = κ = 0, µ2 = 4(g2 + 1)(x2 + y2). So, according to [26] the unique real infinite
singular point N1(0, 1, 0) of (S4.27) is a node. Therefore, since for these systems we
have G1 = 16g, we obtain Picture 4.27(a) if G1 6= 0 and Picture 4.27(b) if G1 = 0.

Config. 4.28 : ẋ = x2 − 1, ẏ = x+ gy, g(g2 − 4) 6= 0. (S4.28)

Finite singularities: M1(1, −1/g)
[
∆1 = 2g, δ1 = (g − 2)2

]
; M2(−1, 1/g)

[
∆2 =

−2g, δ2 = (g+2)2
]
. We observe that systems (S4.28) possess a node and a saddle. For

these systems we calculate: η = 0, M = −8x2, C2 = x2y, µ0 = µ1 = κ = κ1 = 0,
L = 8x2, µ2 = g2x2, K2 = 384x2, and according to [26, Table 4] the behavior of
the trajectories in the vicinity of infinity corresponds to Figure 19 (see page 67).
Taking into consideration the existence of the real invariant lines x = ±1 we obtain
in both cases (i.e. either g > 0 or g < 0) the phase portraits topologically equivalent
to Picture 4.28.

Config. 4.29 : ẋ = x2 − 1, ẏ = g + x, g2 − 1 6= 0. (S4.29)

No finite singularities. For these systems calculations yield: M = −8x2, C2 = x2y,

η = µ0 = µ1 = µ2 = µ3 = κ = κ1 = 0, L = 8x2, µ4 = (g2 − 1)x4, K2 = 384x2.
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We observe that L > 0, K = 0 and K2 > 0 for any
value of parameters ±1 6= g ∈ R. According to [26,
Table 4] the behavior of the trajectories in the vicinity
of infinity corresponds to Figure 18 if µ4 > 0 and to
Figure 24 if µ4 < 0. Thus, taking into account the
existence of the invariant lines x = ±1 we get Picture
4.29(a) if µ4 > 0 and Picture 4.29(b) if µ4 < 0.

Config. 4.30 : ẋ = (x+ 1)(gx + 1), ẏ = 1 + (g − 1)xy, g(g2 − 1) 6= 0. (S4.30)

Finite singularities: M1(−1, 1/(g − 1))
[
∆1 = (g − 1)2, δ1 = 0

]
– a node;

M2(−1/g, g/(g − 1))
[
∆2 = −(g − 1)2/g, δ2 = (g2 − 1)2/g2

]
– a node if g < 0 and

a saddle if g > 0. For systems (S4.30) calculations yield: η = 0, M = −8x2, C2 =
x2y, µ0 = µ1 = κ = κ1 = 0 and

L = 8gx2, µ2 = g(g − 1)2x2, K2 = 48(g − 1)2(g2 − g + 2)x2.

Since sign (µ2) = sign (L) = sign (g) and K2 > 0, according to [26, Table 4] the
behavior of the trajectories around the infinity corresponds to Figure 19 (see p. 67)
if g > 0 and to Figure 29 (see p. 67) if g < 0. Taking into consideration the real
invariant lines and x+1 = 0 (double) and (gx+1) = 0 we obtain the phase portrait
Picture 4.30(a) if µ2 > 0 and Picture 4.30(b) if µ2 < 0.

Config. 4.31 : ẋ = x(x+ 1), ẏ = g − x2 + xy, g(g + 1) 6= 0. (S4.31)

Finite singularities: M1(−1, g − 1)
[
∆1 = 1, δ1 = 0

]
– a node. We calculate:

η = M = 0, C2 = x3, µ0 = µ1 = µ2 = 0, µ3 = −gx3, K = 2x2, K3 = −6gx6.

Since µ3K 6= 0 by [26, Table 4] the behavior of the tra-
jectories in the neighborhood of infinity corresponds to
Figure 37 if K3 > 0 (i.e. g < 0) and to Figure 39 if
K3 < 0 (i.e. g > 0). Thus, taking into account the
invariant lines x = 0 and x = −1 (double) of systems
(S4.31) we get Picture 4.31(a) if K3 > 0 and Picture
4.31(b) if K3 < 0.

Config. 4.32 : ẋ = x2 + 1, ẏ = x+ gy, g 6= 0. (S4.32)

No finite singularities. For these systems calculations yield: M = −x2, C2 = x2y,

η = µ0 = µ1 = κ = κ1 = K = 0 L = 8x2, µ2 = g2x2, K2 = −384x2.

We note that µ2 > 0, L > 0 and K2 < 0 for any value of parameter 0 6= g ∈ R.
According to [26, Table 4] the behavior of the trajectories at infinity corresponds to
Figure 8 (see p. 68). This leads to Picture 4.32.
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Config. 4.33 : ẋ = x2 + 1, ẏ = g + x, g ∈ R. (S4.33)

This family of systems does not possess real finite singularities and calculations yield:

M = −8x2, C2 = x2y, η = µ0 = µ1 = µ2 = µ3 = κ = κ1 = K = 0, L = 8x2

and µ4 = (g2 + 1)x4, K2 = −384x2. We observe that µ4 > 0, L > 0 and K2 < 0 for
any value of the parameter g ∈ R. According to [26, Table 4] the behavior of the
trajectories around of infinity corresponds to Figure 8 (see p. 68). Thus we obtain
Picture 4.33.

Config. 4.34 : ẋ = g, ẏ = y(y − x), g ∈ {−1, 1}. (S4.34)

No finite singularities. For these systems we calculate:

η = 1, C2 = xy(x− y), µ0 = µ1 = µ2 = µ3 = κ = K1 = 0, µ4 = g2y2(x− y)2.

We note that µ4 6= 0 and K1 = 0 for any value of parameter g ∈ {−1, 1}. According
to [26, Table 4] one of the triple points is a node and the other one is a saddle.
However we need to distinguish when the point N1(1, 0, 0) is a saddle, as in this
case the invariant line y = 0 will be a separatrix and this leads to a different phase
portrait. So, we consider the corresponding systems (obtained via the transformation
x = 1/z, y = u/z):

(S) : u̇ = −u+ u2 − guz2, ż = −gz3.

We observe that systems (S) has two invariant lines: z = 0 and u = 0. We consider
the restrictions on (S) on these lines: (S)|z=0 : u̇ = u(u − 1) and (S)|u=0 :
ż = −gz3. On z = 0 and for 0 < u < 1 we have u̇ < 0 while for u < 0, we have
u̇ > 0. Hence on z = 0 the point u = 0 is an attractive singular point.

Now consider the restriction (S)|u=0. We observe, that for z > 0, sign (ż) =
−sign (z). Hence on u = 0 the point z = 0 is an attractive singular point if g > 0
and it is a repulsing singular point if g < 0.

Thus we conclude that the triple singular point N1(1, 0, 0) of systems (S4.34) is
a node if g > 0 and it is a saddle if g < 0. On the other hand for systems (S4.34))
we have H4 = −48g. So, considering invariant line y = 0 we get Picture 4.34(a) if
H4 < 0 and Picture 4.34(b) if H4 > 0.

Config. 4.35 : ẋ = g + y, ẏ = xy, g ∈ {−1, 1}. (S4.35)

Finite singularities: M1(0,−g)
[
∆1 = g, δ1 = −4g

]
. So, the point M1 is a

saddle if g < 0 and we claim that it is a center if g > 0. Indeed, translating this
point to the origin of coordinates we get the systems ẋ = y, ẏ = x(y − g), for
which calculations yield: I1 = I6 = I3 = 0, I2 = −2g. So, by Lemma 7 the point
M1 is a center if and only if g > 0 and this proves our claim.
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To determine the behavior of the trajectories around the infinity for systems
(S4.35) we calculate: η = 0, M = −8x2, C2 = x2y, µ0 = µ1 = µ2 = κ = L = 0,
κ1 = −32, µ3 = gxy2, K1 = xy2.

Since κ = L = 0, κ1 6= 0 and µ3K1 = gx2y4 (i.e.
sign(g) = sign (µ3K1)), according to [26, Table 4] the be-
havior of the trajectories in the vicinity of infinity corre-
sponds to Figure 16 if g < 0 and to Figure 9 if g > 0. So,
considering invariant line y = 0 and the type of the sin-
gular point M1(0,−g) we get Picture 4.35(a) if µ3K1 > 0
and Picture 4.35(b) if µ3K1 < 0.

Config. 4.36 : ẋ = g, ẏ = xy, g ∈ {−1, 1}. (S4.36)

No finite singularities. For these systems we calculate: M = −8x2, C2 = −x2y,

η = µ0 = µ1 = µ2 = µ3 = κ = κ1 = L = K1 = 0, κ2 = g, µ4 = g2x2y2.

We note that µ4 6= 0, L = K1 = 0 and sign (g) = sign (κ2). According to [26, Table
4] the behavior of the trajectories around infinity corresponds to Figure 8 (see p.
68) if g < 0 and it corresponds to Figure 17 (see p. 67) if g > 0. Therefore, taking
into account the invariant line y = 0 we obtain Picture 4.36(a) if κ2 < 0 and Picture
4.36(b) if κ2 > 0.

Config. 4.37 : ẋ = x, ẏ = gy − x2, g(g2 − 1) 6= 0. (S4.37)

Finite singularities: M1(0, 0)
[
∆1 = g, δ1 = (g − 1)2

]
– a saddle if g < 0 and

a node if g > 0. For systems (S4.37) calculations yield: η = M = 0, C2 = x3,
µ0 = µ1 = µ2 = 0, µ3 = −gx3, K = 0, K1 = −x3, K3 = 6g(2 − g)x6.

SinceK = 0 and µ3K1 6= 0 by [26, Table 4] if µ3K1 > 0
and K3 ≥ 0 then the singular point N1(0, 1, 0) is a saddle-
node (with saddle sectors located on the same part of the
line Z = 0). Otherwise the behavior of the trajectories
around infinity corresponds to Figure 38 if µ3K1 > 0 and
K3 < 0 and it corresponds to Figure 33 if µ3K1 < 0.

Thus considering the invariant line x = 0 and the type of the singularity M1(0, 0)
of (S4.37) we obtain: Picture 4.37(a) when µ3K1 > 0 and K3 ≥ 0; Picture 4.37(b)
when µ3K1 > 0 and K3 < 0; Picture 4.37(c) when µ3K1 < 0.

Config. 4.38 : ẋ = x, ẏ = g − x2, 0 6= g ∈ R. (S4.38)

No finite singularities. For these systems we calculate:

η = M = 0, C2 = x3, µ0 = µ1 = µ2 = µ3 = 0, µ4 = −gx4, K = K3 = 0.

Since K = K3 = 0 by [26, Table 4] if µ4 > 0 then the point
N1(0, 1, 0) is a node. In the case µ4 < 0 the behavior of the trajec-
tories at infinity corresponds to Figure 35.

Thus taking into account the invariant line x = 0 we obtain
Picture 4.38(a) if µ4 > 0 and Picture 4.38(b) if µ4 < 0 .
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Config. 4.39 : ẋ = x2, ẏ = x+ y. (S4.39)

Finite singularities: M1(0, 0)
[
∆1 = 0, ρ1 = 1

]
– a saddle-node [1]. Calculations

yield: η = 0, M = −8x2, C2 = x2y, µ0 = µ1 = κ = κ1 = 0, µ2 = x2, L = 8x2,
K2 = 0. As µ2 > 0, L > 0 and K2 = 0, according to [26, Table 4] the behavior of the
trajectories in the neighborhood of infinity corresponds to Figure 19 (see p. 67).

Thus, taking into account the invariant line x = 0 we obtain Picture 4.39.

Config. 4.40 : ẋ = x+ 1, ẏ = 1 − xy. (S4.40)

Finite singularities: M1(−1,−1)
[
∆1 = 1, δ1 = 0

]
– a node. For systems (S4.40)

we calculate: η = 0, M = −8x2, C2 = x2y, µ0 = µ1 = µ2 = κ = κ1 = L = 0,
µ3 = −x2y, K1 = −x2y. We observe that L = 0 and µ3K1 = x4y2 > 0. So,
according to [26, Table 4] the behavior of the trajectories at infinity corresponds to
Figure 21 (see p. 70). Considering the invariant line x = 0 we obtain Picture 4.40.

Config. 4.41 : ẋ = gxy, ẏ = y − x2 + gy2, g ∈ {−1, 1}. (S4.41)

Finite singularities: M1(0, 0)
[
∆1 = 0, ρ1 = 1

]
; M2(0, −1/g)

[
∆2 = 1, δ2 = 0

]
– a

node. We observe that M1 is triple, as according to [1, §22] in its vicinity we obtain
ϕ(x) = ∆̃3 x

3 + . . . = gx3 + . . . , g ∈ {−1, 1}. Moreover, since sign (∆̃3) = sign (g)
by [1, §22] we conclude that the triple singular point M1(0, 0) is a (topological) node
if g > 0, and it is a (topological) saddle if g < 0.

We shall examine the infinite singularities. For systems (S4.41) calculations yield:
η = 0 = M, C2 = x3, µ0 = −g3 6= 0. Hence according to [26, Table 4] the triple
singular point N1(0, 1, 0) is a node if µ0 > 0 (i.e. g = −1) and it is a saddle if µ0 < 0
(i.e. g = 1). So, in the first case we get Picture 4.41(a), while in the second one we
get Picture 4.41(b).

Config. 4.42 : ẋ = gxy, ẏ = −x2 + gy2, g ∈ {−1, 1}. (S4.42)

We observe that (S4.42) are homogenous systems, which possess the triple invariant
line x = 0. As for these systems η = 0 = M, C2 = x3, µ0 = −g3 6= 0, then according
to [26] the infinite point N1(0, 1, 0) is a node if µ0 > 0 (Picture 4.42(a)) and it is a
saddle if µ0 < 0 (Picture 4.42(b)).

Config. 4.43 : ẋ = gx2, ẏ = 1 + (g − 1)xy, g(g2 − 1) 6= 0. (S4.43)

No finite singularities. For these systems we calculate: η = µ0 = µ1 = µ2 =
µ3 = κ = κ1 = 0, M = −8x2, C2 = x2y, µ4 = g2x4, L = 8gx2,K = 2g(g − 1)x2, R =
8g(2g − 1)x2.

As µ4 > 0 according to [26, Table 4] the behavior of the trajectories
around infinity corresponds to Figure 17 (see p. 67) if L < 0. And
since K 6= 0, in the case L > 0 we have Figure 18 (see p. 73) if
R ≥ 0 and Figure 28 if R < 0. Thus, taking into account the triple
invariant line x = 0 we obtain: Picture 4.43(a) if L < 0; Picture
4.43(b) if L > 0 and R ≥ 0; Picture 4.43(c) if L > 0 and R < 0.
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Config. 4.44 : ẋ = x2, ẏ = g − x2 + xy, g ∈ {−1, 1}. (S4.44)

No finite singularities. For these systems we calculate: η = M = 0, C2 = x3,

µ0 = µ1 = µ2 = µ3 = 0, µ4 = g2x4, K = 2x2, K3 = −6gx6.

Hence, by [26] the point N1(0, 1, 0) is of multiplicity seven (all finite
and infinite singularities have coalesced at this point). As µ4 > 0
and K 6= 0, according to [26, Table 4] this point is a node if K3 > 0
(i.e. g = −1, we get Picture 4.44(a)) and the behavior of the
trajectories around infinity is as in Figure 36 if K3 < 0 (i.e. g = 1,
we get Picture 4.44(b)).

Config. 4.45 : ẋ = gxy, ẏ = x− x2 + gy2, g ∈ {−1, 1}. (S4.45)

Finite singularities: M1(0, 0)
[
∆1 = 0, ρ1 = 0

]
; M2(1, 0)

[
∆2 = g, δ2 = −4g,

ρ2 = 0
]
. The point M2 is a saddle if g < 0 and we claim that it is a center

if g > 0. Indeed, translating this point to the origin of coordinates we get the
systems ẋ = g(x+ 1)y, ẏ = −x− x2 + gy2, for which calculations yield: I2 = −2g,
I1 = I6 = I3 = 0. By Lemma 7 the point M2 is a center if and only if g > 0 and this
has proved our claim.

Let us examine the multiple point M1(0, 0). We observe that M1 is a nilpotent
singular point. According to [1, §22] in its vicinity we calculate ψ(x) = ã3x

3 + . . . =
−g2x3 + . . . , σ(x) = b̃1 x+ . . . = 3gx. Hence we obtain a3 = −g2 < 0 and for the
quantity γ (see [1, §22]) in this case we obtain: γ = b̃21 + 8ã3 = g2 > 0. Therefore,
the triple point is an “elliptic saddle” (i.e. a non–elementary singular point having
one elliptic and one hyperbolic sectors [1]).

To determine the behavior of the trajectories at the infinity for systems (S4.45)
we calculate: η = 0 = M, C2 = x3, µ0 = −g3 6= 0. Hence according to [26, Table 4]
the triple singular point N1(0, 1, 0) is a node if µ0 > 0 (Picture 4.45(a)) and it is a
saddle if µ0 < 0 (Picture 4.45(b)).

Config. 4.46 : ẋ = 1, ẏ = y = y − x2. (S4.46)

No finite singularities. For these systems calculations yield:

η = M = 0, C2 = x3, µ0 = µ1 = µ2 = µ3 = 0, µ4 = x4, K = 0, K3 = −6x6.

Hence, by [26] the point N1(0, 1, 0) is of multiplicity seven seven
(all finite and infinite singularities have coalesced at this point).
As µ4 > 0, K = 0 and K3 < 0, according to [26, Table 4] the be-
havior of the trajectories around infinity is as indicated in Figure
32. Thus, we obtain Picture 4.46.

It remains to retain out of the 93 phase portraits Picture 4.i(j) in Tables 3(u),
u ∈ {a, b, c, d, e} only portraits which are topologically distinct. This is what we
now do.
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Three real singular points at infinity (η > 0)

Type of
infinite

singularities

Number and type of finite singularities;
number of canonical regions and of separatrices

Total
#
of

phase
port-
raits0 1 2 3 4

(N,N,N) 4.5(b)

(S,S,S,C):
4.1(b);

(S,S,S,N):
4.3(b)

3

(N,N,S)

0SC:
4.13(a)⋍
4.34(b);

1SC∞
∞

:
4.13(b)⋍
4.34(a)

4.5(a)

0SC∞f :

4.22(a);

1SC∞f :

4.22(b)

0SC∞f ,1SCf
f :

4.10(a);
0SC:

4.10(b)

1SC∞f ,0SCf
f :

4.10(c);

0SC: 4.1(a)
⋍ 4.3(a)
⋍ 4.9(b);

1SC∞f , 0SCf
f :

4.9(a);

0SC∞f , 1SCf
f :

4.9(c);

11

(N,S,S) 4.5(c)

(N,N,N,S):
4.3(c);

(N,N,C,S):
4.1(c)

3

(N,S,S-N) 4.4(b) 1

(N,S-N,S-N) 4.17

(N,S):
0SC: 4.18(a)
⋍ 4.16(b);

1SC∞f : 4.16(a);

(S,C): 4.18(b)

4

(N,N,S-N) 4.4(a) 1

Total number of topologically distinct phase portraits 23

In order to distinguish topologically the phase portraits of the systems we ob-
tained, we use the following invariants:

• The topological types of the infinite singularities. Whenever we have several
sectors on the Poincaré disk we indicate the types of sectors, e.g. PEH means
that we have three sectors (on the Poincaré disk): parabolic, elliptic, hyper-
bolic. In the case η = 0 6= M we place two opposite singularities at infinity
at the north and south poles. Then for example in Picture 4.29(b) HHH-PEP
means that the north pole has three hyperbolic sectors and the south pole has
a parabolic sector followed by an elliptic sector and a parabolic one.

• Number and type of distinct finite real singular points.

• The total number SC (respectively the numbers SCf
f , SC∞

f , SC∞
∞) of sepa-

ratrix connections, i.e. of phase curves connecting two singularities which are
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local separatrices of the two singular points (respectively of separatrix connec-
tions connecting two infinite singularities, a finite with an infinite singularity,
two finite singularities).

One real and two complex singular points at infinity (η < 0)

Type of the infinite
singularity

Number and type of finite singularities
Total number

of phase
portraits

1 2

(N) 4.8(a)
4.2(a)⋍ 4.27(a)(S;F);

4.6(a)(S;N)
3

(S) 4.8(b)
4.2(c)(C,F);
4.2(d)(C,C);
4.6(b)(N;N)

4

(S-N) 4.7 1

(PHP-PHP) 4.2(b)⋍ 4.27(b) 1

Total number of topologically distinct phase portraits 9

Only one singular point (real) at infinity (η = 0 = M , C2 6= 0)

Type of infinite
singularity

Number and type of finite singularities Total number
of phase
portraits0 1 2

(N) 4.38(b)⋍ 4.44(a)
4.31(a)(N)

4.42(a)(HH)

4.41(a)(S,N);
4.45(a)

(S,HPEP)
5

(S) 4.42(b)
4.41(b)(N,N);
4.45(b)(EH,C)

3

(S-N) 4.37(a) 1

Existence of
an elliptic

sector

4.38(a)(HH-EE);
4.44(b)(EH-HE);

4.46(PEH-P)

4.31(b)(N);
4.37(c)(S)

5

(HPH-P) 4.37(b) 1

Total number of topologically distinct phase portraits 15
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Two real singular points at infinity (η = 0, M 6= 0)

Type of
infinite

singularities

Number and type of finite singularities;
number of canonical regions and of separatrices

Total
#
of

phase
port-
raits0 1 2 3 4

(N,N) 4.43(c) 4.11(b) 2

(N,S-N)
1SC∞

∞ : 4.14
⋍ 4.43(b);

0SC: 4.29(a)
4.20(a)

4.23
((N,S-N)

4.21(a)⋍
4.25(a)

4.11(a) 6

(N,PEP-PEP) 4.12(c) 1

(N,H-H)

4.15(a)⋍
4.32⋍
4.33⋍
4.36(a)

1

(N, PH-PH)
4.24(a)⋍

4.39

4.12(a)⋍
4.30(a)⋍

4.28
2

(N,HHH-HHH) 4.12(d) 1

(N,PEP-H) 4.35(b) 1

(N,HHH-PEP) 4.29(b) 1

(S,S-N) 4.20(b)

4.21(b)
(N,N,S-N);

4.25(b)
(N,C,S-N)

3

(S,EP-EP) 4.24(b) 4.12(b) 2

(S,PE-EP) 4.43(a) 1

(S,PHP-PHP)
4.30(b)⋍
4.12(e)

1

(S,E-H) 4.35(a) 1

(S,E-E)
4.15(b)⋍
4.36(b)

1

(S-N,S-N) 4.26 1

(S-N,PH-PH)
4.19(b)⋍

4.40
1

(S-N,EP-EP) 4.19(a) 1

Total number of topologically distinct phase portraits 27
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Confrontation of phase portraits with η < 0

with those with η = 0 = M , C2 6= 0

Type of
the infinite
singularity

in the
two cases

Number and type of finite singularities

Total
#
of

phase
port-
raits1 2

(N)
4.8(a)(HH)

4.31(a)(N);
4.42(a)((HH)

4.27(a)(S,F);
4.6(a)(S,N)

4.41(a)(S,N);
4.45(a)(S,HPEP) 5

4.8(a)⋍ 4.42(a) 4.6(a)⋍ 4.41(a)

(S)
4.8(b)(EE) 4.42(b)(EE)

4.2(c)(C,F);
4.2(d)(C,C);
4.6(b)(N,N)

4.41(b)(N,N);
4.45(b)(EH,C) 5

4.8(b)⋍ 4.42(b) 4.6(b)⋍ 4.41(b)

(S-N)
4.7(N) 4.37(a)(N)

1
4.7 ⋍ 4.37(a)

Total number of topologically distinct phase portraits for
η < 0 or (η = 0 = M and C2 6= 0)

24 - 5
=19
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