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Abstract. We employ a rescaled version of the geometric measure of quantum
discord, based on the Hilbert-Schmidt norm, to calculate it in the steady-state for a con-
crete system formed of a closely packed and laser-pumped pair of identical two-level
qubits being initially uncorrelated and located in their ground states, respectively. Fur-
thermore, the qubits are longitudinally coupled with a single-mode boson field, while
both subsystems are damped via their corresponding environmental reservoirs. Al-
though the employed metric is still noncontractive under quantum operations, it was
shown previously in a series of physical examples that this measure of quantum corre-
lations is in agreement with other discord measures.

Key words: geometric quantum discord.

1. INTRODUCTION

Quantum entanglement represents one of the main resources in performing
quantum optics and quantum information processing tasks and protocols [1]. At
the same time, in physical phenomena involving mixed states, new types of quan-
tum correlations (QC) have been introduced, in the presence and even in the absence
of entanglement, like quantum discord [2–6], and they can exist in any state of a
composite system which cannot be described by classical probability theory.

Presently there exists a large number of measures for discord-type QC [7–9],
which belong to two main groups: entropic measures, like the quantum discord [2, 3],
and geometric measures, such as the geometric discord [10]. The entropic measures
provide usually a thermodynamical interpretation of QC [11–21], while the geomet-
ric measures of QC are introduced by choosing a metric in the Hilbert space of the
considered system, and then one employs it to estimate the distance between the state
under scrutinity and the set of classical (non-discordant) states [22]. Usually, the geo-
metric discord is associated to the Hilbert-Schmidt metric [10, 23] and it was applied
on several protocols [24, 25]. In [10] it was proposed a geometrical way of quanti-
fying quantum discord, and for two qubits this results in a closed form of expression
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for discord.
As remarked in Ref. [26], the geometric discord presents two pathologies

which diminish its role as a reliable QC measure. The first one is related to the
fact that geometric discord can increase when the unmeasured party is allowed to
undergo a non-unitary evolution (described by a completely positive local operation)
[27], in contradiction to what happens when one uses the entropic measure [18].
This behaviour is related to the non-contractivity property of the Hilbert-Schmidt
norm [28]. Consequently, the geometric discord may only be interpreted as a lower
bound to a well-behaved measure of QC [26]. The second pathology arises in the
case of high-dimensional systems [25, 26]. It was shown that highly mixed states
containing non-zero entropic discord can have negligible geometric quantum discord
[25, 29–31]. This behaviour is related too to the Hilbert-Schmidt distance, which is
highly sensitive to the purity of states. Both these problems may be fixed by choos-
ing other metrics, like trace distance or Bures distance, which are mathematically
well behaved, however, in the majority of cases it is not possible to reach an explicit
computability [7].

In Ref. [32] the authors proposed an improved geometric measure of QC, based
on the use of the same Hilbert-Schmidt norm. Namely, they derived a computable
QC geometric quantifier based on Hilbert-Schmidt distance, and described its be-
haviour in some examples where the original geometric discord was proven to be
meaningless. In all these cases it was observed that the improved geometric measure
behaves similarly to the entropic discord, therefore it could provide a meaningful
quantifier of discord-like QC. However, the newly introduced indicator still mani-
fests a non-contractive behaviour in quantum channels. Nevertheless, in studying the
behaviour of discord-like correlations, the improved measure seems to be preferable
to the original geometric discord.

In the present paper, we discuss the geometric quantum discord and its proper-
ties for a pair of dipole-dipole interacting two-level qubits which are initially uncorre-
lated and being in their ground states, respectively. Furthermore, the qubit subsystem
is continuously laser-pumped at resonance and longitudinally coupled with a leaking
boson mode, respectively. The cooperative spontaneous emission of excited quan-
tum emitters is considered as well. We have found non-zero long-time values for the
geometric discord, adjusted geometric discord as well as rescaled geometric discord,
respectively, when the frequency of the boson mode is close to the dipole-dipole
frequency shift. This demonstrates the existence of quantum correlations in the ex-
amined system. Notice that the comparison of Hilbert-Schmidt and trace distance
discord in a system of independent two-level atoms with time evolution given by the
dissipative process of spontaneous emission was investigated in [33]. The quantum-
discord-triggered superradiance and subradiance in a system of two separated atoms
was demonstrated as well, in [34]. Furthermore, the interconnection among quantum
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correlations between each qubit in a two-atom system and the environment in terms
of interatomic distance via the quantum discord and entanglement was established in
[35]. Depending on the specific initial preparation of the qubits, the properties of the
geometric discord were examined in [36].

The paper is organised as follows. In Section 2 we review the main properties
of the geometric discord, and introduce a computable geometric measure for the
geometric discord and its improved forms, namely, the adjusted geometric discord
and rescaled geometric discord. In Section 3 we describe the system of interest for
which the quantum discord is calculated and analyse the obtained results in Section
4. We finalise the article with the Summary presented in Section 5.

2. GEOMETRIC QUANTUM DISCORD

We denote by ⇢ the density operator of a bipartite quantum state in a Hilbert
space HAB =HA ⌦HB. For a bipartite state ⇢, the geometric discord with measure-
ments on A [10] was originally defined as the distance between the state and the set
of classical-quantum states of the form

� =
X

pi|iiAhi|⌦⇢i
B, (1)

where
P

i pi = 1 and {|ii} is an orthonormal vector set. It can also be defined as the
minimum (squared) distance between the state and the set of post-measurement states
obtained after a local projective measurement:

DG(⇢) = ↵A min
⇧
k⇢�⇧[⇢]k2, (2)

where⇧[⇢]=
P

i⇧i⇢⇧i is the post-measurement state, {⇧i} is a complete set of rank-1
projectors on A, and the normalization constant ↵A is taken as

↵A =
dA

dA�1
, (3)

where dA = dim{HA}. When the norm (and hence the distance) used is induced by
the Hilbert-Schmidt scalar product, i.e., kAk =

p
Tr{A†A}, the two definitions are

equivalent [23], while in general the two geometric approaches may lead to di↵er-
ent results. Like the entropic discord, the geometric measure vanishes for classical-
quantum states and can increase when a completely positive trace preserving (CPTP)
map is applied to the measured subsystem. In addition, due to the choice of the
Hilbert-Schmidt metric, its evaluation is less di�cult compared to the entropic dis-
cord; for example, closed analytical expressions have been obtained for general states
of 2⇥ d systems and two-mode Gaussian states [10, 23, 29, 37–40]. However, the
choice of the Hilbert-Schmidt metric is responsible for the pathologies mentioned in
[26]. Namely, quantum states with di↵erent purities have a di↵erent Hilbert-Schmidt
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norm k⇢k =
p

Tr{⇢2}, which implies that this metric does not provide reliable infor-
mation about the distinguishability of mixed states. In the context of QC, it follows
that it is possible to construct highly discordant (even entangled) states that possess
vanishing geometric discord [25]. In addition, as already mentioned, the geometric
discord is not monotonically decreasing under CPTP maps on the subsystem B.

In [10] it was proposed the following geometric measure:

DG(⇢) =min�2⌦0 ||⇢��||
2, (4)

where⌦0 denotes the set of zero-discord states and ||X�Y ||2 =Tr(X�Y)2 is the square
norm in the Hilbert-Schmidt space. In the following it is shown how to evaluate this
quantity for an arbitrary two-qubit state.

Consider the caseHA =HB = C2. We write a state ⇢ in Bloch representation:

⇢ =
1
4

(I⌦ I+
3X

i=1

xi�i⌦ I+
3X

i=1

yiI⌦�i+

3X

i, j=1

Ti j�i⌦� j), (5)

where xi = Tr⇢(�i ⌦ I), yi = Tr⇢(I⌦�i) are components of the local Bloch vectors,
Ti j = Tr⇢(�i ⌦� j) are components of the correlation tensor, and �i, i 2 {1,2,3}, are
the three Pauli matrices. To each state ⇢ we associate the triple {~x,~y,T }. Hence, we
have:

DG(⇢) =
1
4

(||~x||2+ ||T ||2� kmax), (6)

where ||~x||2 =
P3

i=1 x2
i , ||T ||

2 = TrT TT and kmax is the largest eigenvalue of matrix
K = ~x~xT +TT T. DG(⇢) is not normalized to one and its maximum value is 1/2 for
two-qubit states, so it is natural to consider 2DG(⇢) as a proper measure [10].

In Ref. [32] it was proposed an alternative metric in the state space for the
evaluation of the distance between two density matrices, that was applied to the com-
putation of geometric discord, such that to preserve the low computational demands
of the Hilbert-Schmidt metric, and at the same time to avoid its sensitivity to the
mixedness of the input states. To treat states of di↵erent purities on the same footing,
it was proposed to normalize each state by its Hilbert-Schmidt norm. Hence, given
two density matrices ⇢1,⇢2, their distance is defined as

dT (⇢1,⇢2) ⌘
�����
⇢1

k⇢1k
�
⇢2

k⇢2k

�����, (7)

where k · k indicates the Hilbert-Schmidt norm. The expression (7) is positive, sym-
metric, satisfies the triangular inequality and dT (⇢1,⇢2) = 0, ⇢1 = ⇢2. One may use
it to define the rescaled geometric discordDT (⇢), by modifying Eq. (2) as follows:

DT (⇢) = �A min
⇧

dT (⇢,⇧[⇢])2, (8)

with �A a normalization constant dependent on the dimension of HA. It was shown
in Ref. [32] that the projective measurements minimizing the geometric and the
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rescaled discord are the same, independently on the dimensionality of the system.
This also implies that minimizing Eq. (8) is equivalent to minimizing the distance
between the state ⇢ and the set of classical-quantum states of the form (1), as in the
case for the original geometric discord [23]. One can then employ the expression (8),
conveniently normalizing it such that the geometric and rescaled discord are equal
for pure, maximally entangled states. In this case one obtains

�A =
D

max
G

2�2
p

1�Dmax
G /↵A

, (9)

where Dmax
G is the value of the geometric discord for a maximally entangled state,

equal to 1 if Eq. (3) is chosen. Finally, it follows that [32]

DT (⇢) = �A

2
66666642�2

s

1�
DG(⇢)
↵ATr{⇢2}

3
7777775 . (10)

This expression shows that the rescaled discord is obtained e↵ectively by renormal-
izing the original geometric discord by the purity of the input state. For pure states
Tr{⇢2

} = 1 and therefore the rescaled discord becomes a function of the geometric
discord, and reduces in particular to an entanglement monotone.

We observe that it was enough to adjust the geometric discord by just dividing
it by the purity of the state, in order to avoid the main pathology mentioned in [26],
namely the fact thatDG can be changed by reversible operations on the unmeasured
party. This adjusted geometric discord, defined as

eDG(⇢) =
DG(⇢)
Tr{⇢2}

, (11)

is a monotonic function of the rescaled discordDT Eq. (10).
However, the rescaled geometric measure inherits fromDG the non-contractivity

problem under CPTP evolutions on the unmeasured system. This means that this
quantity should be again regarded just as an indicator rather than as an exact measure
of QC. Nevertheless, the examples provided in [32] suggest that this lower bound
DT may be a meaningful estimator of the QC in bipartite states, irrespective of their
purity and the dimensionality of the considered systems.

3. A LASER PUMPED PAIR OF TWO-LEVEL QUBITS LONGITUDINALLY COUPLED
WITH A LEAKING BOSON MODE

The above mentioned quantities will be calculated for a concrete system, namely,
an environmental vacuum mediated dipole-dipole coupled pair of identical two-level
{|2i j, |1i j} quantum emitters { j 2 q1,q2}, resonantly pumped by a coherent laser source.
The laser wavelength is su�ciently bigger than the interqubit spatial interval |~rq1q2 |,
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while the interparticle separation is larger than the linear size of the quantum emit-
ter itself. Because the laser wave-vector is perpendicular to the line connecting the
qubits, the later are in an equivalent position with respect to the driving field. Also,
we have assumed that the transition frequencies of both qubits are equal and identical
to the external pumping source frequency, respectively. Furthermore, the two-level
qubits interact with a single boson mode of frequency ! via a longitudinal coupling.
Correspondingly, the whole system dampens via its interaction with the electromag-
netic vacuum modes of the surrounding reservoir as well as through the boson mode
environmental thermostat, respectively.

The master equation describing this global system in the Born-Markov approx-
imations [41, 42] is given as follows [43]:

d
dt
⇢(t)+

i
~

[H̄,⇢] = �
X

{ j,l}2{q1,q2}

� jl[S +j ,S
�

l ⇢]�


2
[b†,b⇢]�



2
n̄[b†, [b,⇢]]+H.c..

(12)

The Hamiltonian characterizing the corresponding coherent quantum dynamics is
H̄ = H+Hi, where

H = ~!b†b+~
X

j2{q1,q2}

g jS
( j)
z (b+b†), (13)

and

Hi = ~⌦dd

X

j,l2{q1,q2}

S +j S �l +~
X

j2{q1,q2}

⌦ j
�
S +j +S �j

�
. (14)

Here, the qubit operators S +j = |2i j jh1|, S �j = [S +j ]† and S ( j)
z = (|2i j jh2|� |1i j jh1|)/2

obey the commutation relations: [S +j ,S
�

l ]= 2S ( j)
z � jl whereas [S ( j)

z ,S ±l ]=±S ±j � jl. The
respective boson mode creation, b†, and annihilation, b, operators satisfy the follow-
ing commutation relations: [b,b†] = 1 and [b,b] = [b†,b†] = 0. Further, g j is the
qubit-boson-mode coupling strength whereas ⌦ j, j 2 {q1,q2}, denotes the standard
Rabi frequency, respectively. We shall assume that these quantities are identical for
each qubit, i.e., gq1 = gq2 ⌘ g and⌦q1 =⌦q2 ⌘⌦. Correspondingly, �q1q1 = �q2q2 = �/2
is the single-qubit spontaneous decay rate, while �q1q2 = �q2q1 = ��r/2 describes the
radiative coupling among the two-level qubits. ⌦dd corresponds to the dipole-dipole
interaction potential, respectively. The radiative coupling �r goes to zero (unity) for
larger (smaller) interparticle separations |~rq1q2 | in comparison to the photon emission
wavelength. Respectively, ⌦dd tends to zero or to the static dipole-dipole interac-
tion potential. Finally,  is the damping rate of the boson mode, while n̄ gives its
mean thermal phonon number corresponding to the frequency ! and environmental
temperature T .

In the following, we diagonalize the Hamiltonian (14) describing the dipole-
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dipole coupled qubit pair interacting as well with an externally applied coherent laser
field, using the two-qubit bare states: |2q12q2i, |2q11q2i, |1q12q2i and |1q11q2i. Hence,
we arrive at the corresponding cooperative two-qubit eigenfunctions:

| 4i = �ā{|2q12q2i+ |1q11q2i}+ b̄{|2q11q2i+ |1q12q2i},

| 3i = �c̄{|2q12q2i+ |1q11q2i}+ d̄{|2q11q2i+ |1q12q2i},

| 2i =
1
p

2
{|2q11q2i� |1q12q2i},

| 1i =
1
p

2
{|2q12q2i� |1q11q2i}. (15)

Here

ā =
(⌦dd ��4)/

p
2

p
(⌦dd ��4)2+4⌦2

, b̄ =

s
2⌦2

(⌦dd ��4)2+4⌦2 ,

c̄ =
(⌦dd ��3)/

p
2

p
(⌦dd ��3)2+4⌦2

, d̄ =

s
2⌦2

(⌦dd ��3)2+4⌦2 ,

with

�4 =
�
⌦dd �

q
⌦2

dd +16⌦2�/2, �3 =
�
⌦dd +

q
⌦2

dd +16⌦2�/2,

whereas other eigenvalues are �2 = �⌦dd and �1 = 0, respectively. Substituting the
two-qubit dressed-state transformation (15) in the master equation (12), while keep-
ing the slowly varying terms only by assuming that ! > g with ! ⇡ �3 as well as
⌦dd � � and |�4|⌧ |�2|, one arrives at the following main equation governing the
quantum dynamics of the examined system [43]:

d
dt
⇢(t) +

i
~

[H̄0,⇢] = �
�

2
(1+�r)

✓
2[c̄d̄R44+ āb̄R33+

c̄
2
p

2
(R41�R14),

�
4(c̄d̄R44+ āb̄R33)+

p
2c̄(R14�R41)

 
⇢]+2(ād̄+ b̄c̄)2�[R34,R43⇢]

+ [R43,R34⇢]
 
+ ā2�[R13,R31⇢]+ [R31,R13⇢]

 
�
p

2ā(ād̄+ b̄c̄)

⇥
�
[R43,R31⇢]+ [R13,R34⇢]� [R34,R13⇢]� [R31,R43⇢]

 ◆

�
�

2
(1��r)

✓
b̄2�[R32,R23⇢]+ [R23,R32⇢]

 
+ d̄2�[R24,R42⇢]

+ [R42,R24⇢]
 
+

1
2
�
[R12,R21⇢]+ [R21,R12⇢]

 

�
d̄
p

2
�
[R42,R21⇢]+ [R12,R24⇢]� [R24,R12⇢]� [R21,R42⇢]

 ◆

�


2
[b†,b⇢]�



2
n̄[b†, [b,⇢]]+H.c. (16)
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Here

H̄0 = ~�4R44�~�b†b�~ḡ(R31b+b†R13), (17)

where � = �3�!, whereas ḡ =
p

2gc̄. The resulting two-qubit dressed-state operators
which enter in Eq. (16) are defined as follows: R↵� = | ↵ih �|, {↵,� 2 1, · · · ,4}, and
satisfy the standard commutation relations [R↵�,R�0↵0] = R↵↵0���0 - R�0��↵0↵. Note
that |�4|⌧ |�2| means also that we deal with rather weaker applied laser fields, i.e.,
⌦/⌦dd ⌧ 1 or the Rabi frequency ⌦ is of the order of few �’s or even less.

3.1. THE EQUATIONS OF MOTION

With the help of the Master equation (16), one can obtain the following equa-
tions of motion describing the whole laser-pumped qubit-pair plus boson mode sam-
ple, where the corresponding pumping and damping e↵ects are properly taken into
account:

Ṗ(0)
n = iḡ(P(4)

n �P(6)
n )� n̄

�
(n+1)P(0)

n �nP(0)
n�1

�

� (1+ n̄)
�
nP(0)

n � (n+1)P(0)
n+1

�
,

Ṗ(1)
n = iḡP(4)

n � n̄
�
(n+1)P(1)

n �nP(1)
n�1

�

� (1+ n̄)
�
nP(1)

n � (n+1)P(1)
n+1

�
+�(1)

0 P(0)
n

� �(1)
1 P(1)

n ��
(1)
2 P(2)

n ��
(1)
3 P(3)

n +�
(1)
11 P(11)

n ,

Ṗ(2)
n = �(1+ n̄)

�
nP(2)

n � (n+1)P(2)
n+1

�

� n̄
�
(n+1)P(2)

n �nP(2)
n�1

�
+�(2)

0 P(0)
n

+ �(2)
1 P(1)

n ��
(2)
2 P(2)

n +�
(2)
3 P(3)

n ��
(2)
11 P(11)

n ,

Ṗ(3)
n = �iḡP(6)

n +�
(3)
0 P(0)

n +�
(3)
1 P(1)

n ��
(3)
2 P(2)

n

� �(3)
3 P(3)

n ��
(3)
11 P(11)

n � n̄
�
(n+1)P(3)

n

� nP(3)
n�1

�
� (1+ n̄)

�
nP(3)

n � (n+1)P(3)
n+1

�
,

Ṗ(4)
n = �i�P(5)

n +2iḡn(P(1)
n �P(3)

n�1)� (1+ n̄)
�
2P(6)

n

+ (2n�1)P(4)
n �2(n+1)P(4)

n+1
�
/2+ n̄

�
2nP(4)

n�1

� (2n+1)P(4)
n

�
/2��(4)

4 P(4)
n +�

(4)
8 P(8)

n ,

Ṗ(5)
n = �i�P(4)

n � (1+ n̄)
�
2P(7)

n + (2n�1)P(5)
n

� 2(n+1)P(5)
n+1

�
/2� n̄

�
(2n+1)P(5)

n

� 2nP(5)
n�1

�
/2��(5)

5 P(5)
n +�

(5)
9 P(9)

n ,
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Ṗ(6)
n = �i�P(7)

n +2iḡ(n+1)(P(1)
n+1�P(3)

n )� (1+ n̄)

⇥
�
(2n+1)P(6)

n �2(n+1)P(6)
n+1

�
/2+ n̄

�
2nP(6)

n�1

� (2n+3)P(6)
n +2P(4)

n
�
/2��(6)

6 P(6)
n +�

(6)
12 P(12)

n ,

Ṗ(7)
n = �i�P(6)

n � (1+ n̄)
�
(2n+1)P(7)

n �2(n+1)
⇥ P(7)

n+1
�
/2� n̄

�
(2n+3)P(7)

n �2nP(7)
n�1

� 2P(5)
n

�
/2��(7)

7 P(7)
n +�

(7)
13 P(13)

n ,

Ṗ(8)
n = i(�4��)P(9)

n + iḡnP(11)
n � n̄

�
(2n+1)P(8)

n

� 2nP(8)
n�1

�
/2� (1+ n̄)

�
(2n�1)P(8)

n +2P(12)
n

� 2(n+1)P(8)
n+1

�
/2+�(8)

4 P(4)
n ��

(8)
8 P(8)

n ,

Ṗ(9)
n = i(�4��)P(8)

n + iḡnP(10)
n � n̄

�
(2n+1)P(9)

n

� 2nP(9)
n�1

�
/2� (1+ n̄)

�
(2n�1)P(9)

n +2P(13)
n

� 2(n+1)P(9)
n+1

�
/2+�(9)

5 P(5)
n ��

(9)
9 P(9)

n ,

Ṗ(10)
n = i�4P(11)

n + iḡP(9)
n � n̄

�
(n+1)P(10)

n �nP(10)
n�1

�

� (1+ n̄)
�
nP(10)

n � (n+1)P(10)
n+1

�
��(10)

10 P(10)
n ,

Ṗ(11)
n = i�4P(10)

n + iḡP(8)
n � n̄

�
(n+1)P(11)

n �nP(11)
n�1

�

� (1+ n̄)
�
nP(11)

n � (n+1)P(11)
n+1

�
+�(11)

0 P(0)
n

� �(11)
1 P(1)

n ��
(11)
2 P(2)

n ��
(11)
3 P(3)

n ��
(11)
11 P(11)

n ,

Ṗ(12)
n = i(�4��)P(13)

n + iḡ(n+1)P(11)
n+1 +�

(12)
6 P(6)

n

� (1+ n̄)
�
(2n+1)P(12)

n �2(n+1)P(12)
n+1

�
/2

� n̄
�
(2n+3)P(12)

n �2nP(12)
n�1 �2P(8)

n
�
/2

� �(12)
12 P(12)

n ,

Ṗ(13)
n = i(�4��)P(12)

n + iḡ(n+1)P(10)
n+1 +�

(13)
7 P(7)

n

� (1+ n̄)
�
(2n+1)P(13)

n �2(n+1)P(13)
n+1

�
/2

� n̄
�
(2n+3)P(13)

n �2nP(13)
n�1 �2P(9)

n
�
/2

� �(13)
13 P(13)

n . (18)

The system of equations (18) can be easily obtained if one first get the equations of
motion for the variables ⇢↵� = h↵|⇢|�i, {↵,� 2 1, · · · ,4} using the master equation (16),
namely, ⇢(0) = ⇢11+⇢22+⇢33+⇢44, ⇢(1) = ⇢11, ⇢(2) = ⇢22, ⇢(3) = ⇢33, ⇢(4) = b†⇢31�⇢13b,
⇢(5) = b†⇢31+⇢13b, ⇢(6) = ⇢31b†�b⇢13, ⇢(7) = ⇢31b†+b⇢13, ⇢(8) = b†⇢34�⇢43b, ⇢(9) =

b†⇢34+⇢43b, ⇢(10) = ⇢14�⇢41, ⇢(11) = ⇢14+⇢41, ⇢(12) = ⇢34b†�b⇢43, and ⇢(13) = ⇢34b†+
b⇢43 [43]. The projection on the Fock states |ni, i.e., P(i)

n = hn|⇢(i)
|ni, {i 2 0, · · · ,13},
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with n 2 {0,1}, will lead us to Eqs. (18). The corresponding decay rates are given in
the Appendix A.

In order to calculate the discord one requires the elements of the density matrix
⇢̃q1q2 which can be represented in the basis |2q12q2i, |2q11q2i, |1q12q2i and |1q11q2i.
These elements are symmetric under the exchange of the qubits sub-systems. Hence,
its elements are given as follows:

⇢̃q1q2 =

0
BBBBBBBBBBBBB@

⇢̃11 ⇢̃12 ⇢̃13 ⇢̃14
⇢̃21 ⇢̃22 ⇢̃23 ⇢̃24
⇢̃31 ⇢̃32 ⇢̃33 ⇢̃34
⇢̃41 ⇢̃42 ⇢̃43 ⇢̃44

1
CCCCCCCCCCCCCA
, (19)

where

⇢̃11 =
1
4

(1+⇢11�⇢22)�
⌦dd

4
q
⌦2

dd + (4⌦)2
(⇢33�⇢44)

�
ā
p

2
(⇢41+⇢14),

⇢̃12 =
⌦

q
⌦2

dd + (4⌦)2
(⇢33�⇢44)�

c̄
p

2
⇢41,

⇢̃13 = ⇢̃12,

⇢̃14 =
1
4

(1+
⌦ddq

⌦2
dd + (4⌦)2

)⇢44�
ā
p

2
(⇢41�⇢14)

+
1
4

(1�
⌦ddq

⌦2
dd + (4⌦)2

)⇢33�
1
2
⇢11,

⇢̃21 = (⇢̃12)†,

⇢̃22 =
1
4

(1+⇢22�⇢11)+
⌦dd

4
q
⌦2

dd + (4⌦)2
(⇢33�⇢44),

⇢̃23 =
1
4

(1�
⌦ddq

⌦2
dd + (4⌦)2

)⇢44�
1
2
⇢22

+
1
4

(1+
⌦ddq

⌦2
dd + (4⌦)2

)⇢33,

⇢̃24 =
⌦

q
⌦2

dd + (4⌦)2
(⇢33�⇢44)+

c̄
p

2
⇢14,

⇢̃31 = (⇢̃13)†, ⇢̃32 = ⇢̃23, ⇢̃33 = ⇢̃22, ⇢̃34 = ⇢̃24,
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⇢̃41 = (⇢̃14)†, ⇢̃42 = (⇢̃24)†, ⇢̃43 = (⇢̃34)†,

⇢̃44 =
1
4

(1+⇢11�⇢22)�
⌦dd

4
q
⌦2

dd + (4⌦)2
(⇢33�⇢44)

+
ā
p

2
(⇢41+⇢14). (20)

4. ESTIMATION OF THE GEOMETRIC QUANTUM DISCORD FOR THE CONSIDERED
MODEL

The quantities introduced in the representation of the density matrix (5) can be
expressed through the elements of the density matrix (19,20) as follows:

x1 = ⇢̃13+ ⇢̃31+ ⇢̃24+ ⇢̃42,

x2 = i(⇢̃13� ⇢̃31� ⇢̃42+ ⇢̃24),
x3 = 2(⇢̃11+ ⇢̃22)�1,

y1 = ⇢̃12+ ⇢̃21+ ⇢̃34+ ⇢̃43,

y2 = i(⇢̃12� ⇢̃21� ⇢̃43+ ⇢̃34),
y3 = 2(⇢̃11+ ⇢̃33)�1,

t11 = ⇢̃23+ ⇢̃32+ ⇢̃14+ ⇢̃41,

t22 = ⇢̃23+ ⇢̃32� ⇢̃14� ⇢̃41, (21)
t33 = 1�2⇢̃22�2⇢̃33,

t12 = i(⇢̃32� ⇢̃23+ ⇢̃14� ⇢̃41),
t21 = i(⇢̃14� ⇢̃41� ⇢̃32+ ⇢̃23),

t13 = ⇢̃13+ ⇢̃31� ⇢̃24� ⇢̃42,

t31 = ⇢̃12+ ⇢̃21� ⇢̃34� ⇢̃43,

t23 = i(⇢̃13� ⇢̃31+ ⇢̃42� ⇢̃24),
t32 = i(⇢̃12� ⇢̃21+ ⇢̃43� ⇢̃34).

Using these expressions one can proceed to the calculation of the geometric
quantum discord (6), rescaled geometric discord (10) and adjusted geometric discord
(11). The normalising parameters (3) and (9) are taken ↵A = 2 and �= 1+ 1

p
2

(dA = 2).
Figure 1 illustrates the steady-state behaviours of these quantities as a function

of scaled Rabi frequency. One can notice that all the considered measures repre-
senting the geometric quantum discord start from a zero value, corresponding to a
zero value of the scaled Rabi frequency, and they have a qualitatively similar non-
monotonical behaviour, with a pronounced maximum for some definite value of the
scaled Rabi frequency, slightly di↵erent for each of the three considered expressions
(c) 2021 RRP 73(0) 101 - v.2.0*2021.3.10 —ATG
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0 0.05 0.1 0.15 0.2

0

0.1

0.2

0.3

0.4

!!!dd

D

Fig. 1 – (Color online) The steady-state behaviours of all geometric discords discussed in the article,
as a function of scaled Rabi frequency ⌦/⌦dd . The red curve depicts the adjusted geometric discord
based on Eq. (11), while the blue line shows the geometric discord obtained from Eq. (6). The green
curve is for the rescaled geometric discord based on Eq. (10), respectively. The involved parameters

are: g/� = 2, ⌦dd/� = 28, !/� = 30, �r = 0.98, n̄ = 20 and /� = 10�3.

of the geometric quantum discord. One can observe the dependence of the geometric
discord on the purity of the global state of the considered system: it has a depressed
evolution compared to the adjusted and rescaled discord. In the limit of larger scaled
Rabi frequency, all these measures decay asymptotically to a zero value, but geomet-
ric discord decays faster than the other two measures – adjusted and rescaled discord.

5. SUMMARY

The study of QC beyond entanglement received in the last years an increasing
attention [7]. It is important to distinguish which approaches and methods provide
interesting results, and which ones lead to a less correct understanding of the nature
and the role of these nonclassical features of quantum states. One one side, employ-
ing a QC measure based on the Hilbert-Schmidt distance, like geometric discord,
essentially simplifies calculations [10]. On the other side, it manifests a limited relia-
bility and applicative power. When the purity of the global state is not constant, e.g.,
when the evolution of the system is not unitary, then geometric discord cannot be
used as a QC measure [26]. However, using the approach proposed in Ref. [32], it is
(c) 2021 RRP 73(0) 101 - v.2.0*2021.3.10 —ATG
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possible to correct this behaviour, by identifying the dependence on state purity as the
main pathology of the geometric discord, and by proposing a suitable deformation of
the Hilbert-Schmidt distance. Other geometric quantifiers, based on contractive dis-
tances such as the relative entropy, the trace norm, or the Bures distance, which could
generate reliable measures of QC, and could appropriately describe their dynamical
evolution [7], however, encounter computational di�culties. The results of Ref. [32]
suggest that employing the geometric discord DG without a rescaling by the state
purity is likely to not lead, in general, to reliable results even in the simplest case
of two-qubit states. The rescaled and adjusted discord DT were used in the present
paper, returning results hopefully in good qualitative and quantitative agreement with
those based on other known QC measures, like concurrence. Particularly, we inves-
tigated the quantum discord and its properties for a pair of dipole-dipole interacting
two-level qubits. The qubit subsystem is initially in its ground state and uncorre-
lated. Moreover, the qubit subsystem is continuously laser pumped at resonance and
longitudinally coupled with a leaking boson mode, respectively. The correspond-
ing damping e↵ects are considered as well. We have found non-zero values in the
steady-state for the geometric discord, adjusted geometric discord as well as rescaled
geometric discord, respectively, when the frequency of the boson mode is close to the
dipole-dipole frequency shift, demonstrating quantum correlations among the two
qubits.

Acknowledgements. E.C. and M.A.M. are grateful for the nice hospitality of the Theory De-
partment of the Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Ro-
mania. Furthermore, they acknowledge the financial support from the Moldavian National Agency for
Research and Development, grant No. 20.80009.5007.07.

A. THE DECAY RATES ENTERING IN THE EQUATIONS OF MOTION (18)

Below one can find the corresponding decay rates which enter in the Eqs. (18),
that is,

�(1)
0 = �c̄2(1+�r), �(1)

1 = �{(ā
2+2c̄2)(1+�r)+ (1��r)/2},

�(1)
2 = �{c̄2(1+�r)� (1��r)/2}, �(1)

3 = �(1+�r)(c̄2
� ā2),

�(1)
11 = �{(1+�r)(ā(ād̄+ b̄c̄)/

p
2+
p

2d̄c̄2)+
d̄

2
p

2
(1��r)},

�(2)
0 = �d̄2(1��r), �(2)

1 = �(1��r)(1/2� d̄2),

�(2)
2 = �(1��r)(1/2+ b̄2+2d̄2), �(2)

3 = �(1��r)(b̄2
� d̄2),

�(2)
11 = �d̄(1��r)/

p
2,
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�(3)
0 = 2�(ād̄+ b̄c̄)2(1+�r), �(3)

1 = �{ā
2
�2(ād̄+ b̄c̄)2

}(1+�r),

�(3)
2 = �{2(ād̄+ b̄c̄)2(1+�r)� b̄2(1��r)},

�(3)
3 = 2�{(2(ād̄+ b̄c̄)2+ ā2/2)(1+�r)+ b̄2(1��r)/2},

�(3)
11 =

p
2ā�(ād̄+ b̄c̄)(1+�r),

�(4)
4 = �{(4(āb̄)2+ (ād̄+ b̄c̄)2+ ā2+ c̄2/2)(1+�r)+ (1/2+ b̄2)(1��r)/2},

�(4)
8 = �{(

p
2c̄(2āb̄+ c̄d̄)+ ā(ād̄+ b̄c̄)/

p
2)(1+�r)+

d̄
2
p

2
(1��r)},

�(5)
5 = �

(4)
4 , �

(5)
9 = �

(4)
8 ,

�(6)
6 = �

(5)
5 , �

(6)
12 = �

(5)
9 ,

�(7)
7 = �

(6)
6 , �

(7)
13 = �

(6)
12 ,

�(8)
4 = �{(

p
2c̄(c̄d̄�2āb̄)+ ā(ād̄+ b̄c̄)/

p
2)(1+�r)+

d̄
2
p

2
(1��r)},

�(8)
8 = �{(4(āb̄� c̄d̄)2+2(ād̄+ b̄c̄)2+ ā2/2+ c̄2/2)(1+�r)

+ (d̄2+ b̄2)(1��r)/2},

�(9)
5 = �

(8)
4 , �

(9)
9 = �

(8)
8 ,

�(10)
10 = �{(4(c̄d̄)2+ (ād̄+ b̄c̄)2+ ā2/2)(1+�r)+ (1/2+ d̄2)(1��r)/2},

�(11)
0 = 2�{(3

p
2d̄c̄2+ ā(ād̄+ b̄c̄)/

p
2)(1+�r)+

d̄
2
p

2
(1��r)},

�(11)
1 = 2

p
2�d̄c̄2(1+�r), �(11)

2 = 2�{(3
p

2d̄c̄2+ ā(ād̄+ b̄c̄)/
p

2)(1+�r)

�
d̄

2
p

2
(1��r)},

�(11)
3 = 2�{(3

p
2d̄c̄2

� ā(ād̄+ b̄c̄)/
p

2)(1+�r)+
d̄

2
p

2
(1��r)},

�(11)
11 = �{(4(c̄d̄)2+ (ād̄+ b̄c̄)2+ ā2/2+2c̄2)(1+�r)+ (1/2+ d̄2)(1��r)/2},

�(12)
6 = �(8)

4 , �
(12)
12 = �

(8)
8 ,

�(13)
7 = �(8)

4 , �
(13)
13 = �

(8)
8 .
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