
Nature | Vol 586 | 1 October 2020 | 37

Article

Fractional antiferromagnetic skyrmion 
lattice induced by anisotropic couplings
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Guratinder Kaur1,2, Tom Fennell1, Paul Steffens9, Martin Boehm9, Petr Čermák10,11,  
Astrid Schneidewind10, Eric Ressouche12, Daniel C. Cabra4,5,13, Christian Rüegg2,14,15,16  
& Oksana Zaharko1 ✉

Magnetic skyrmions are topological solitons with a nanoscale winding spin texture 
that hold promise for spintronics applications1–4. Skyrmions have so far been observed  
in a variety of magnets that exhibit nearly parallel alignment for neighbouring spins, 
but theoretically skyrmions with anti-parallel neighbouring spins are also possible. 
Such antiferromagnetic skyrmions may allow more flexible control than conventional 
ferromagnetic skyrmions5–10. Here, by combining neutron scattering measurements 
and Monte Carlo simulations, we show that a fractional antiferromagnetic skyrmion 
lattice is stabilized in MnSc2S4 through anisotropic couplings. The observed lattice is 
composed of three antiferromagnetically coupled sublattices, and each sublattice is a 
triangular skyrmion lattice that is fractionalized into two parts with an incipient 
meron (half-skyrmion) character11,12. Our work demonstrates that the theoretically 
proposed antiferromagnetic skyrmions can be stabilized in real materials and 
represents an important step towards their implementation in spintronic devices.

The concept of topology has revolutionized condensed matter physics: 
it reveals that the classification of different phases can extend beyond 
the Landau–Ginzburg–Wilson paradigm of classification by symme-
try, generating a variety of new phases with topological characters13. 
Among topological entities, magnetic skyrmions with a winding spin 
texture in real space have triggered enormous interest owing to their 
potential for spintronics applications1–4. Information encoded in the 
nanoscale spin winding of the skyrmions is topologically protected 
against perturbations, and can be conveniently manipulated with 
electronic currents14–16.

Similar to the vortices that emerge in the Berezinskii–Kosterlitz–
Thouless transition, magnetic skymions are conventionally treated 
as topological solitons in nonlinear field theory17, which implies a 
continuous ferromagnetic spin alignment at short length scales. This 
short-range ferromagnetism is indeed a common feature for most of 
the known skyrmion hosts, including chiral magnets with antisymmet-
ric Dzyaloshinskii–Moriya interactions3 and the recently discovered 
centrosymmetric compounds with multiple spin couplings18–20.

However, explorations on skyrmions should not be confined to fer-
romagnets21. Theoretical calculations have suggested that skyrmions 
might be also stabilized in antiferromagnets with two6,7 or three8–10 
sublattices, leading to antiferromagnetic skyrmions with anti-parallel 
nearest-neighbour spin alignment, which might complement skyrmion 

control in spintronic devices5. On the other hand, antiferromagnets are 
often accompanied by strong frustration, which is known to enhance 
fluctuations22. Thus, the marriage between skyrmion and antiferro-
magnetism23,24 might be key to realizing exotic states such as magnetic 
hopfions25,26 or even quantum skyrmions27.

Despite their exciting prospects, it is still unclear whether antifer-
romagnetic skyrmions can be experimentally realized or not. Direct 
observation of antiferromagnetic skyrmions, for example, with Lor-
entz transmission electron microscopy2, is challenging because the 
alternating spins cancel the local magnetic field. Although magnetic 
structures described by a single propagation vector q can be accu-
rately determined by neutron diffraction, skyrmion lattices are multi-q 
structures and the phase factors between the different propagation 
vectors q are lost. One prominent example is the spinel MnSc2S4  
(refs. 28,29), where the magnetic Mn2+ ions form a bipartite diamond 
lattice (see Fig. 1a). A previous neutron diffraction work revealed the 
existence of a field-induced triple-q phase in this antiferromagnet29, 
but the exact arrangement of magnetic moments remains unclear.

Here, we show that a fractional three-sublattice antiferromagnetic 
skyrmion lattice is realized in the MnSc2S4 triple-q phase. By combining  
state-of-the-art neutron spectroscopy, extensive Monte Carlo simula-
tions and neutron diffraction, we clarify the microscopic couplings 
between the Mn2+ spins in MnSc2S4 up to the third-neighbours and, most 
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importantly, establish the existence of a fractional three-sublattice 
antiferromagnetic skyrmion lattice8–10 that originates from anisotropic 
couplings between nearest neighbours. The fractionalization of the 
antiferromagnetic skyrmions can be attributed to their close pack-
ing11, which leads to incomplete spin wrapping that is reminiscent of 
magnetic merons/antimerons12.

Inelastic neutron scattering (INS) probes the magnon excitations in 
long-range ordered magnets. Compared to neutron diffuse scattering, 
which was used to characterize the quasi-elastic spiral spin-liquid 
correlations in the same compound29, the rich information that is 
available in INS spectra allows the direct study of further neighbour 
couplings in the spin Hamiltonian, which are crucial for understanding 
the phase transitions in MnSc2S4

30–32.
Figure 1b shows our inelastic neutron spectra, collected on a powder 

sample of MnSc2S4 at temperature T = 1.3 K in the helical ordered 
state, which is the parent phase of the field-induced triple-q state29. 
Strong INS intensities are observed, emanating from the magnetic 
Bragg reflections that correspond to the propagation vector q = (0.75, 
0.75, 0) and reaching a maximal energy of E ≈ 0.9 meV at wavevector 
Q ≈ 0.9 Å−1. Compared to other similar spinel compounds33–35, the 

magnon dispersion bandwidth in MnSc2S4 is narrower, consistent with 
its relatively low ordering temperature of TN = 2.3 K (refs. 28,29).

Figure 2 presents our INS results, collected on a single-crystal sample 
of MnSc2S4 along the high-symmetry lines (h, h, 0), (h, 1.5 − h, 0) and  
(h, 0.75, 0) in reciprocal space. No excitation gap can be resolved, 
which is compatible with the absence of single-ion anisotropy up to the  
second order in spin operators owing to the 3d5 electron configuration 
of the Mn2+ ions36. A representative energy scan at (0, 0.75, 0) shown in 
Fig. 2a reveals broad excitations, suggesting the appearance of multiple 
magnon bands.

Using linear spin-wave theory, we are able to model the spin dynamics 
with the Hamiltonian H S SJ= ∑ ⋅ij ij i j0 , where Jij is the exchange coupling 
between the Heisenberg spins Si and Sj. As explained in Methods and 
shown in Extended Data Fig. 1, it is necessary to include couplings up 
to the third neighbours30–32 to reproduce the measured INS spectra. 
The fitted coupling strengths are J1 = −0.31(1) K, J2 = 0.46(1) K, and 
J3 = 0.087(4) K at the nearest, second and third neighbours, respectively. 
The uncertainties are standard errors from least-squares fits. 
Representative fits to the powder data at selected Q positions are shown 
in Fig. 1d. The overall calculated spectra are presented in Fig. 1c and 
Fig. 2e, f for comparison with the powder and single-crystal experi-
mental data, respectively. As shown in Fig. 2a for the energy scan at (0, 
0.75, 0), contributions from different magnetic domains are necessary 
to describe the broad excitations in the single-crystal data.

Although the J1–J2–J3 model successfully captures the spin 
dynamics in the helical phase of MnSc2S4, it fails to account for the 
field-induced triple-q phase29, which implies the necessity of even 
weaker perturbations that are beyond the INS resolution. Such a 
perturbation-dominated scenario is allowed in MnSc2S4 owing to its 
enormous ground-state degeneracy29,30. Theoretical calculations on 
centrosymmetric systems have revealed that perturbations from 
the high-order analogues of the Ruderman–Kittel–Kasuya–Yosida 
(RKKY) interactions can often stabilize a triple-q phase37,38. However, 
this mechanism fails in MnSc2S4 because the insulating character of 
this compound rules out any RKKY-like interactions that rely on con-
duction electrons.

Through extensive Monte Carlo simulations, we explored the effect 
of different perturbations that are compatible with the symmetries 
of the lattice31, and revealed that the triple-q phase in MnSc2S4 can be 
stabilized by anisotropic couplings at the nearest neighbours, together 
with a fourth-order single-ion anisotropy term that might be micro-
scopically derived from spin–orbit coupling and dipolar interactions31. 
The perturbed J1–J2–J3 Hamiltonian now reads
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where H  is the perturbation term corresponding to nearest-neighbour 
anisotropic couplings, J|| is the anisotropic coupling strength and r̂ij is 
the unitary direction vector along the nearest-neighbour bonds; HA 
describes a weak fourth-order single-ion anisotropy that is needed to 
stabilize a zero-field helical ground state36; HZeeman is the conventional 
Zeeman term for spins in a magnetic field B111 along the [111] direction; 
and g and μB are the Landé g-factor and the Bohr magneton, respectively. 
In our minimal Hamiltonian, the anisotropic J|| is found to be the only 
term that can induce a triple-q phase. Through comparison with the 
experimental phase diagram presented in Fig. 3, the perturbation 
parameters can be determined to be J|| = −0.01 K and A4 = 0.0016 K. As 
exemplified in Fig. 3a, only one triple-q domain with propagation vec-
tors lying within the (111) plane is stabilized in field29, and the conse-
quent non-monotonous evolution of the domain distribution is 
successfully reproduced in our simulations. As presented in Methods 
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Fig. 1 | Spin dynamics in a powder sample of MnSc2S4. a, Mn2+ ions (blue and 
brown spheres) in MnSc2S4 form a bipartite diamond lattice that can be viewed 
as triangular planes (blue) stacked along the [111] direction. Couplings up to the 
third neighbours are indicated. Information on the magnetic lattice in the cubic 
unit cell can be found in ref. 29. b, INS spectra S(Q, ω) as a function of wavevector 
Q and energy transfer ħω (ħ, reduced Planck constant) collected on FOCUS at 
T = 1.3 K using a powder sample of MnSc2S4 (see Methods). c, INS spectra 
calculated using the linear spin-wave theory for the J1–J2–J3 model with 
J1 = −0.31(1) K, J2 = 0.46(1) K and J3 = 0.087(4) K. The calculated spectra are 
convoluted by a Gaussian function with a fitted full-width at half-maximum 
(FWHM) of 0.27 meV to account for the instrumental resolution and thermal 
broadening. d, Integrated INS spectra I(ω) at Q = 0.4 Å−1 (red triangles), 0.9 Å−1 
(blue circles) and 1.3 Å−1 (yellow triangles) with an integration width of 0.1 Å−1. 
Solid lines are the fitted spectra using the J1–J2–J3 model at the corresponding  
Q positions. Error bars represent standard deviations. a.u., arbitrary units.
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and shown in Extended Data Fig. 3, the magnitude of the total scalar 
spin chirality increases sharply upon entering the triple-q phase, evi-
dencing a magnetic structure that is topologically different from the 
single-q helical phase8,23.

Using Monte Carlo simulations, we can directly inspect the triple-q 
structure by layers, in which the Mn2+ ions form a triangular lattice (see 
Figs. 1a, 4a). As expected for antiferromagnets, the spin configuration in 
one layer shown in Fig. 4b involves nearly anti-parallel spins at the near-
est neighbours. However, if the whole triangular lattice is separated into 
three sublattices8,10, as shown in the insets of Fig. 4b, a smooth whirling 
texture will emerge in each sublattice, and the only difference among 
the sublattices is an overall shift of whorls. As described in Fig. 4c, d, 
spins at the centres of the whorls are anti-aligned with the field, leading 
to a texture that is similar to that of skyrmion lattices1. Owing to the 
short distance between the centres of the whorls, skyrmions in the 
triangular sublattices are not wrapping the full sphere, but are frac-
tionalized into two blocks with opposite winding directions11, forming 
a pair of an incipient meron and an antimeron12, as indicated in Fig. 4d. 
When the three sublattices are added together as shown schematically 

in Fig. 4b, fractional skyrmions with opposite magnetizations overlap in 
the whole triangular lattice, leading to oscillating S111 components near 
the centre of the whorls and almost-120° alignments for the S⊥ com-
ponents close to the periphery, where S111 (S⊥) are magnetic moments 
along (perpendicular to) the [111] direction. Therefore, each (111) layer 
in the triple-q phase realizes a fractional antiferromagnetic skyrmion 
lattice that is composed of three sublattices8.

Stacking of antiferromagnetic skyrmion lattices along the [111] direction 
is determined by the propagation vectors and the Mn2+ positions within 
the (111) layers. In Methods, we present an analytical ansatz for spins at 
general positions constructed as a superposition of three helical modula-
tions, and the correctness of the fractional antiferromagnetic skyrmion 
lattice is verified through comparison against the neutron diffraction 
dataset shown in Extended Data Fig. 7. The bipartite character of the dia-
mond lattice leads to bilayers with exactly the same spin configurations, 
as explained in Fig. 4a, thus realizing three consecutive antiferromagnetic 
skyrmion bilayers with shifted whorl centres. Such a stacking order leads 
to antiferromagnetic skyrmion tubes along the [111] direction, shown in 
Fig. 4c, which is a typical feature for many skyrmion lattices39,40.
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Fig. 2 | Spin dynamics in a single-crystal sample of MnSc2S4. a, Representative  
INS spectra I(ω) (red circles) collected on PANDA at T = 0.5 K and Q = (0, 0.75, 0) 
(see Methods). The red solid line denotes the spectra calculated using the J1–J2–J3  
model. Dashed lines with shaded areas indicate the contributions of magnon 
scattering from the (0.75, ±0.75, 0) and (0, 0.75, ±0.75) magnetic domains 
(yellow), magnon scattering from the (0.75, 0, ±0.75) magnetic domains (blue) 
and the tail of the elastic line (grey). The calculated spectra are convoluted by a 

Gaussian function with a fitted FWHM of 0.21 meV to account for the 
instrumental resolution and thermal broadening. Error bars represent 
standard deviations. b, Brillouin zone in the (hk0) plane with conventional 
notations. INS spectra are measured along the yellow dashed lines. c, INS 
spectra measured on ThALES at T = 1.2 K along the (h, h, 0) and (h, 1.5 −h, 0) 
directions (see Methods). d, INS spectra measured on PANDA at T = 0.5 K along 
the (h, 0.75, 0) direction. e, f, INS spectra calculated using the J1–J2–J3 model.
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field. Solid lines are intensities obtained from Monte Carlo simulations, with 
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between 3.5 T and 7 T, the six arms perpendicular to the [111] direction have 
equal intensities, consistent with the triple-q character of MnSc2S4 in this 
region. Insets show the intensity distribution of the ⟨0.75 0.75 0⟩ star in the 
single-q helical phase observed in zero-field cooling (left), the triple-q phase in 

an intermediate field (middle) and the single-q helical phase with field-induced 
domain redistribution (right). Each dot represents a propagation vector, with 
red (grey) colour indicating non-zero (zero) intensity. b, Phase diagram for 
MnSc2S4 obtained from a neutron diffraction experiment performed in a 
magnetic field along the [111] direction. The colour map shows the intensity of 
the (0.75, −0.75, 0) reflection collected in a decreasing field, and the phase 
boundary of the antiferromagnetic skyrmion lattice state is marked by 
triangles connected by dashed lines as guides to the eye. CL (ICM) stands for 
the single-q collinear (incommensurate) phase. The Fan phase identified by 
Monte Carlo simulations is a single-q collinear phase added with a uniform 
magnetization along the [111] direction. Error bars representing the standard 
deviations are smaller than the marker size.
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The fractional antiferromagnetic skyrmion lattice established here 
demonstrates that even antiferromagnets can exhibit topologically 
non-trivial spin textures. In MnSc2S4, the antiferromagnetic skyrmion 
lattice inherits the three-sublattice character of the triangular lattice 
in the (111) layers. However, the mechanism that we discovered, which 
utilizes anisotropic couplings to stabilize a triple-q phase, can be gen-
eralized to antiferromagnetic systems with different geometries41,42. 
Especially on the bipartite honeycomb lattice43, anisotropic couplings 
might stabilize a two-sublattice antiferromagnetic skyrmion lattice 
with opposite winding spin textures, thus lending an ideal platform 
to explore antiferromagnetic skyrmion transport6,7.

The spin dynamics of the antiferromagnetic skyrmions also 
deserves further investigations. In chiral systems, the lifetime of 
isolated antiferromagnetic skyrmions is known to be enhanced by 
the Dzyaloshinskii–Moriya interaction44. It is therefore interesting 
to compare the effect of the antisymmetric couplings on the lifetime 
of antiferromagnetic skyrmions in centrosymmetric systems. For the 
antiferromagnetic skyrmion lattice, magnons propagating through 
a topological spin texture might carry a Berry phase and thus experi-
ence a fictitious magnetic field45,46, leading to the thermal Hall effect, 
which can be used for magnonics applications. Furthermore, recent 
calculations on a three-sublattice antiferromagnetic skyrmion lattice 
that is similar to the triple-q phase in MnSc2S4 revealed the lowest 
magnon band to be topologically non-trivial9. The consequent chiral 
magnon edge states allow magnon transport without backscatter-
ing47 and could further reduce the energy dissipation in magnonics 
devices.

In summary, our combined neutron scattering and Monte Carlo 
simulation studies clarify the microscopic spin couplings in MnSc2S4 
and establish the existence of a fractional antiferromagnetic skyrmion 
lattice that is induced by anisotropic couplings. Our work shows that 
topological structures can be stabilized in antiferromagnets, which 
is an important step in realizing minimal-size spintronic devices with 
efficient operation.
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Methods

Inelastic neutron scattering experiments
INS experiments on a powder sample of MnSc2S4 were performed on 
the FOCUS time-of-flight spectrometer at the Swiss Spallation Neutron 
Source (SINQ) of Paul Scherrer Institut (PSI). For the measurements, 
about 4 g of MnSc2S4 powder sample synthesized through solid-state 
reactions48 was placed into an annular-shaped aluminium can 
with outer and inner diameters of 12 mm and 10 mm, respectively.  
An Orange cryostat with an additional roots pump was used, enabling  
a base temperature of 1.3  K. The incoming neutron wavelength  
was 5.0 Å.

INS experiments on a single-crystal sample of MnSc2S4 grown 
with the chemical transport reaction technique29 were performed 
on the cold-neutron three-axis spectrometer ThALES49,50 at Institut 
Laue-Langevin (ILL) and the cold-neutron three-axis spectrometer 
PANDA51,52 at Heinz Maier-Leibnitz Zentrum (MLZ). Five crystals with 
a total mass of ~100 mg were co-aligned with (hk0) as the horizontal 
scattering plane. For the experiment on ThALES, a cryomagnet and an 
additional roots pump were used, which enabled a base temperature 
of 1.2 K and a maximal vertical field of 10 T. For better resolution, the 
Si(111) monochromator and PG(002) analyser with double focusing 
were used. A Be filter was mounted between the sample and analyser 
and a radial collimator was installed between the analyser and the 
detector. The final neutron momentum kf was fixed at 1.3 Å−1. For the 
experiment on PANDA, a 3He cryostat was used, which enabled a base 
temperature of ~0.5 K. The PG(002) monochromator and analyser with 
double focusing were employed. The final neutron momentum kf was 
fixed at 1.3 Å−1. A cooled Be filter was mounted before the sample to 
remove the higher-order neutrons.

Linear spin-wave calculations and fits for the INS spectra were 
performed using the SpinW package53. The input data for the fits 
were the three integrated intensities I(ω) shown in Fig. 1b. The spin 
Hamiltonian of the J1–J2–J3 model has the helical ground state with 
propagation vector q = (0.75, 0.75, 0).

Neutron diffraction experiments
The neutron diffraction experiment was performed on the 
diffractometer D23 at ILL to map out the phase diagram shown in Fig. 3. 
An incoming neutron wavelength of 1.27 Å was selected by the Cu(200) 
monochromator. A dilution refrigerator with a base temperature of 
50 mK and a magnet that supplied fields up to 12 T were employed. The 
MnSc2S4 crystal was aligned with the (111) direction along the vertical 
field direction. To map out the phase diagram, we first cooled the crystal 
in zero field and then performed a rocking scan for the (0.75, −0.75, 0) 
reflection with increasing and decreasing fields.

The neutron diffraction dataset in the triple-q phase was collected 
on the TriCS (now ZEBRA) single-crystal diffractometer at SINQ, 
PSI. An incoming neutron wavelength of 2.32 Å was selected by the 
PG(002) monochromator. A PG filter was mounted before the sample. 
A cryomagnet and a roots pump were employed for the measurements. 
67 reflections were collected at T = 1.60 K in a magnetic field of 3.5 T 
along the [111] direction.

Monte Carlo simulations
Monte Carlo simulations were performed using the Metropolis 
algorithm by lowering the temperature in an annealing scheme and 
computing 500 independent runs initialized by different random 
numbers for each temperature and external magnetic field. Simulations 
were performed in 2 × L3 magnetic site clusters, with L = 8–24 and 
periodic boundary conditions. To compare the classical Monte 
Carlo simulations with the experimental results, the S2 factor in the 
computed thermal averages of the relevant quantities was replaced by  
the quantum mechanical expectation value ⟨S⟩2 = S(S + 1) following 
ref. 54.

Comparison for different spin models
Using linear spin-wave theory, we compared different spin models 
against the INS spectra collected on a powder sample of MnSc2S4. 
Extended Data Fig. 1a, b shows the experimental data and the spin-wave 
calculation results for the J1–J2–J3 model with J1 = −0.31 K, J2 = 0.46 K and 
J3 = 0.087 K, respectively. For the J1–J2 model with J3 = 0, if the spectra at 
Q ≈ 0.4 Å are fitted to the experimental data, the calculated INS intensity 
reaches ~1.2 meV at Q ≈ 0.9 Å, as shown in Extended Data Fig. 1c, which 
is higher than the experimental bandwidth of ~0.9 meV. Therefore, 
the third-neighbour coupling J3 is necessary to achieve a good fit for 
the INS spectra. The ratio J2/J1 is now increased to ~1.5, compared to 
0.85 from neutron diffuse scattering29, indicating that the lattice is 
more frustrated than anticipated. As shown in Extended Data Fig. 2, at 
temperatures above TN, the J1–J2–J3 model leads to stronger intensities at 
around q = (0.75, 0.75, 0), which reproduces the intensity contrast within 
the spiral surface that was observed in our previous experiment29.

Recent density functional theory (DFT) calculations32 suggest a 
different J1–J2–J3 model with J1 = −0.378 K, J2 = 0.621 K and J3 = 0.217 K. 
From the calculated INS spectra shown in Extended Data Fig. 1d, we see 
that this DFT model produces a magnon bandwidth that is higher than 
the experimental observation. Compared to the coupling strengths 
fitted from the spin-wave dispersions, the DFT model overestimates 
the coupling strength for J2 and J3.

Theoretical phase diagram from the Monte Carlo simulations
Extended Data Fig. 3 shows the calculated phase diagram obtained 
from Monte Carlo simulations using the perturbed spin Hamiltonian 
(equation (1)). The J1, J2 and J3 couplings are fixed to the spin-wave fits 
of the INS spectra, whereas the anisotropy terms are determined to be 
J|| = −0.01 K and A4 = 0.0016 K after exploring the stability of the triple-q 
phase as discussed below. The colour scale denotes the absolute value 
of the total scalar spin chirality χ χ= ∑n ntot

1
8π

 with χn = Si ∙ (Sj × Sk), 
where n indexes the N elementary triangles of sites i, j and k in the (111) 
layers.

In zero magnetic field the single-q helical state is identified by 
χ = 0. The transient collinear and incommensurate phases found 
experimentally in the vicinity of TN (ref. 29) are not reproduced in our 
simulations, possibly owing to thermal fluctuations and finite-size 
effects, and a detailed exploration in the transitional regime is deferred 
for future analysis. In the applied magnetic fields the triple-q phase is 
identified by a sharp increase of the total scalar spin chirality, which 
evidences a magnetic structure that is topologically different from 
the single-q helical phase. In contrast to the skyrmion lattice, which is 
stabilized by antisymmetric Dzyaloshinskii–Moriya interactions1, here 
the winding direction can be either clockwise or counter-clockwise 
because the model preserves the inversion symmetry in the (111) plane23. 
This implies a spontaneous symmetry breaking in the antiferromagnetic 
skyrmion lattice phase.

Two complementary methods were used to clarify the antiferro-
magnetic skyrmion lattice state using Monte Carlo simulations. One 
is to directly check the magnetic textures in real space, as exemplified 
in Fig. 4, and the other is to calculate the magnetic structure factors 
in reciprocal space, which can be directly compared to the neutron 
diffraction results. In the latter method, the skyrmion phase can be 
identified by the six Bragg spots located in the plane perpendicular to 
the magnetic field. Extended Data Fig. 4 shows the calculated magnetic 
structure factors in the (hk0) and (111) planes at T = 1.25 K and B111 = 5.6 T 
using a 16 × 16 × 16 super-lattice over 500 averaged copies.

To illustrate the stability of the triple-q phase and explain how we 
determined the strength of the perturbation terms, we compare phase 
diagrams calculated with different strengths of J|| in Extended Data 
Fig. 5. When the strength of J|| is reduced from −0.01 K to −0.005 K, the 
stability region of the triple-q phase will also be reduced and thus devi-
ate from our experimental observation. On the other hand, when the 



strength of J|| is increased to −0.02 K, although the stability region of 
the triple-q phase remains almost the same, a new chiral phase emerges 
at lower magnetic fields, which is possibly a multiple-q state that is 
different from the skyrmion, fractional skyrmion and meron lattices. 
Finally, when the sign of J|| becomes positive with J|| = 0.01 K, the triple-q 
phase will disappear completely. Therefore, the perturbation term J|| 
is determined to be −0.01 K.

Analytical expression for the antiferromagnetic skyrmion lattice
As confirmed in many types of skymion lattice, the magnetic structure 
of each q component of the triple-q structure is often related to the 
single-q structure observed in zero field. A well known example 
is the Bloch-type skyrmion lattice in MnSi (ref. 1), where the helical 
components are derived from the zero-field helical phase. Similar 
arguments hold for the cycloidal components of the Néel-type skyrmion 
lattice observed in GaV4S8 (ref. 55). Therefore, considering the helical 
and collinear structures that are observed in MnSc2S4 at zero field, we 
can express its field-induced triple-q structure through the ansatz:

( ) ( )∑ ∑n
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where nS is the normalization factor that fixes the spin magnitude to 
5/2, A⊥ (A111) is the amplitude for spin modulation perpendicular (par-
allel) to the [111] direction ˆ111e  with phase factor ϕ⊥,i = ϕ⊥ (ϕ111,i = ϕ111), qi 
are the three propagation vectors (0.75, −0.75, 0), (0.75, 0, −0.75) and 
(0, 0.75, −0.75), êi are the unitary vectors that form Cartesian coordinate 
systems with the corresponding qi and ˆ111e , and M111 is a homogeneous 
contribution to the magnetization along ê111.

Assuming equal magnitude for A⊥ and A111, and ϕ⊥ = 0, without loss 
of generality, the case of ϕ111 = −π and −3π/2 corresponds to helical and 
collinear components, respectively (see Extended Data Fig. 6a). We note 
that for the zero-field collinear structure, the spin directions are canted 
out of the (111) plane by 45° according to our previous refinement29, 
and such a canting has been taken into account in our expression. 
Therefore, by varying ϕ111, we can construct different triple-q structures 
with q components covering the observed collinear structure, helical 
structure and, most importantly, a general distorted structure that lies 
between the collinear and helical phases.

Extended Data Fig. 6b shows the representative magnetic structure 
of the proposed ansatz for one sublattice in the (111) plane together 
with that obtained from the Monte Carlo simulations. Assuming |M111| = 1 
and the parameter set of A111 = −A⊥ = 2.2, ϕ⊥ = 0 and ϕ111 = −9π/8, the 
proposed ansatz reproduces well the magnetic structure obtained in 
the Monte Carlo simulations. Two very important details can be 
observed in this result. First, unlike the typical skyrmion lattice, the 
internal phase for the spin configuration is different for the perpen-
dicular and parallel components of the spin, ϕ⊥,i ≠ ϕ111,i. Second, the 
condition ϕ∑ cos = 1i i  is not satisfied as usual in triple-q phases23.

Refinement of the neutron diffraction dataset in the triple-q phase
With the ansatz presented in the previous section, we can directly 
verify the antiferromagnetic skyrmion lattice by comparing its 
magnetic structure factors with the neutron diffraction intensities 
of magnetic Bragg peaks. As shown in Extended Data Fig. 7a, the 
fractional antiferromagnetic skyrmion lattice obtained in the Monte 
Carlo simulation fits the neutron diffraction dataset very well, with 
R-factors RF2 = 14.3% and RF = 10.8%.

By varying the ϕ111 phase factors, we compared the refinement 
results from different triple-q structures that are composed of general 
distorted helical components. Extended Data Fig. 7b summarizes the 

dependence of RF2 on ϕ111. The best refinement was achieved in the 
region −9π/8 ≤ ϕ111 ≤ −7π/8 with comparable R-factors, justifying the 
value of ϕ111 = −9π/8 obtained from the Monte Carlo simulations. More 
importantly, as shown in Extended Data Fig. 7c, in the entire regime of 
−9π/8 ≤ ϕ111 ≤ −7π/8, the triple-q structure can always be described as a 
fractional antiferromagnetic skyrmion lattice, that is, each (111) plane 
exhibits a three-sublattice antiferromagnetic alignment and a fractional 
skyrmion lattice emerges in each sublattice. The only difference in 
these structures is a slight variation in the fractionalization. Therefore, 
our neutron diffraction results strongly support the emergence of 
a fractional three-sublattice antiferromagnetic skyrmion lattice in 
MnSc2S4.
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Extended Data Fig. 1 | Comparison of different spin models. a, INS spectra 
S(Q, ω) collected on FOCUS at T = 1.3 K using a powder sample of MnSc2S4.  
b–d, INS spectra calculated using the linear spin-wave theory for the J1–J2–J3 
model with J1 = −0.31 K, J2 = 0.46 K and J3 = 0.087 K, as discussed in the main text 

(b), for the J1–J2 model with J1 = −0.71 K, J2 = −0.85 × J1 = 0.60 K (c), and for the  
J1–J2–J3 model with parameters calculated from the DFT calculations32, 
J1 = −0.378 K, J2 = 0.621 K and J3 = 0.217 K. Note the different energy ranges in 
different panels.



Extended Data Fig. 2 | Spiral surface above the long-range order transition. 
Spin correlations in the (hk0) plane calculated by Monte Carlo simulations 
using the J1–J2–J3 model and the anisotropic perturbation terms with coupling 
strength listed in the main text. Calculations were performed at T = 2.9 K. 
Calculations with zero anisotropic perturbations do not affect the results.
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Extended Data Fig. 3 | Calculated phase diagram with perturbations 
J|| = −0.01 K and A4 = 0.0016 K. Phase diagram for MnSc2S4 obtained from 
Monte Carlo simulations with a field applied along the [111] direction as in the 
experiment. The colour map shows the calculated absolute value of the total 
scalar spin chirality, χtot. Squares indicate the phase boundary obtained from 
the peak position of the calculated magnetic susceptibility in field along the 
[111] direction. Up-pointing triangles on the boundary of the antiferromagnetic 
skyrmion lattice (AF-SkL) phase are the middle points of the steep rise/drop in 
χtot as a function of magnetic field at constant T, and their errors are estimated 
using the half-width of the transitional region. Left-pointing triangles mark the 
sudden rise in χtot(T) in constant field. Error bars representing the standard 
deviations are not shown if their length is smaller than the marker size.



Extended Data Fig. 4 | Identifying the triple-q phase. Magnetic structure factor obtained by simulations in the triple-q phase at T = 1.25 K and B111 = 5.6 T in the 
(hk0) (a) and (111) (b) planes.
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Extended Data Fig. 5 | Dependence of the triple-q phase stability on the 
perturbation terms J||. a–d, Calculated phase diagrams with perturbations 
J|| = 0.01 K (a), −0.005 K (b), −0.01 K (c) and −0.02 K (d). The single-ion 
anisotropy A4 is fixed at 0.0016 K. The colour map shows the absolute value of 
the total scalar spin chirality as in Extended Data Fig. 3. e–h, Field dependence 

of the domain population at T = 0.1 K. Red circles and blue triangles indicate 
domains with q in and out of the (111) plane, respectively. Yellow squares are the 
calculated absolute values of the scalar spin chirality. Error bars representing 
the standard deviations of the mean are smaller than the marker size.



Extended Data Fig. 6 | Analytical ansatz for the antiferromagnetic 
skyrmion lattice. a, Schematic for the moment directions in each q 
component of the triple-q structure at ϕ111 = −π (helical), −3π/2 (collinear) and 
−9π/8 (distorted helical). b, Comparison between the representative magnetic 

texture for one sublattice in the (111) plane obtained by the analytical ansatz 
(left) and Monte Carlo simulations (right) performed at T = 0.5 K and B111 = 5 T. 
The colour scheme indicates the spin component along the [111] direction, and 
the arrows show the spin component in the (111) plane.
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Extended Data Fig. 7 | Refinement of the neutron diffraction dataset 
collected in the triple-q phase. a, Comparison of observed and calculated 
intensities for the fractional antiferromagnetic skyrmion lattice. The dataset 
was collected in the triple-q phase under a magnetic field of 3.5 T along the [111] 
direction. b, Dependence of the RF2 factor on the phase factor ϕ111. The arrows 
indicate results for ϕ111 = −π, −3π/2 and −9π/8, which correspond to the triple-q 
structures with helical, collinear and distorted helical components, 
respectively. The error bars correspond to the standard deviations of the 

measured neutron intensities (a) and the refined phase factor (b). c, Magnetic 
textures for one sublattice in the (111) plane with ϕ111 = −9π/8, −π and −7π/8, 
showing that in the region −9π/8 ≤ ϕ111 ≤ −7π/8 the triple-q structure always 
realizes a fractional antiferromagnetic skyrmion lattice, and only the 
proportion of fractionalization is varied. The colour scheme indicates the spin 
component along the [111] direction, and the arrows show the spin component 
in the (111) plane.
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