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Abstract

The cooperative models of the bimodal field in the multiple quantum scattering nutations are
discussed and proposed for possible detections in open cavities. We proposed two types of cooperation
between the converted photon processes in these multiple steps of scattering nutation in the cavity.
One of them takes into consideration the cooperative process between the photons of each step of the
multiple steps of Raman conversion. The second cooperative process takes place between the photons
belonging to different steps of multiple scattering conversions. The proposed novel bimodal entangled
sources take into consideration both the coherence and collective phenomena between the photons
belonging to the system of the bimodal field obtained in multiple scattering emissions. The application
of higher-order multiple Raman bimodal coherent field in quantum information is proposed.

1. Introduction

Cooperative processes of the simultaneous multi-wavelength emissions open new perspectives in the
development of modern communication systems like holography and phase correlations, in the description of
the interaction of light with biomolecules and living systems, taking into consideration not only classical aspect
of these problems [1-10], but their quantum interpretation too [11-13]. The classical aspects of multi-photon
stimulation coherent emission already are in the potential applications in registration medias, medical
instrumentation, laser spectroscopy, LIDAR, and nonlinear optical mixers [1, 14—19]. Recently, specific
attention is given to the new type of coherent emissions, which occur not only among the same quanta but
between the photon groups generated in the nonlinear interaction of the electromagnetic field (EMF) with
emitters (atoms, molecules, biomolecules, etc.). The quantum aspects of this type of emission were intensively
studied in [11-13, 20-22], but multiple conversions of the photons and their quantum correlations remain
today in the development studies. This type of light generation supports the idea of coherent correlation that
appears in the bi-modal field, in which the entangled photons are generated. A physical characteristic of the
radiation formed from the blocks of well-correlated bi-modes must be determined by the intensity of the electric
field of each mode and propriety in such superposition. An attractive aspect of the problem consists in the
selective two-quantum excitation of some atoms, or molecules of the system, where it is necessary to minimize
the dipole active radiation in comparison with Raman emission. The last idea can be applied in microbiology
[13,23], where a selective dis-activation of some molecular structures (for example of viruses) in the tissue may
become possible in induced Raman excitation. In such situations appears a necessity for a good description of
both the amplitude and phase of this new type of radiation formed from bimodal correlated photons.

The intensity correlatives between the adjacent modes of Raman scattering and two-photon lasing were
studied, [24]. Here we discussed the mutual interaction between two lasing processes. First process is described
by single step induced scattering and second one takes into consideration two-photon induce processes, in
which we have taken into consideration the quantum correlations between them. As multi-steps aspects of the
scattering were not studied in the literature, we propose below to discuss the possible quantum correlations
between the scattered modes in multistep process of quantum nutation. It is prposed two types of cooperative
effects between the converted photons in these multiple steps induce process. The first type involves the
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cooperative process between the photons of one of the Raman conversion steps. The second cooperative effect
appears between the photons belonging to different steps of multiple conversions. This new type of generated
coherent state is proposed by novel bimodal entangled sources, which take into consideration both the
coherence and collective phenomena between the photons belonging to the system of the bimodal field obtained
in multiple Raman emissions. The application of higher-order multiple Raman bimodal coherent field in
quantum information is described in accordance with the definition of quantum amplitude and phase of such
entangled states of light.

The correlation between the proposed model and experiment may be find in the modern experiments. For
example the induced correlations stimulated by scattering conversion with the single and multiple Raman shifts
were observed in KTP crystal pumped by a Nd: YVO, 1064-nm laser in [1]. The first-Stokes emission at
wavelength 1095 nm was observed at Raman shift of 266 cm ™' and emission power about 0.81 W stimulated by
pump power of 16.5 W. The second output coupled with high reflectivity in the range of 1000 — 1130 nm is
employed to simultaneously generate the first-Stokes 1095 nm and the second Stokes 1128 nm emissions of the
same Raman shift about 266 cm ™. Similar phase-matched signals are observed in a TiO, crystal, in which the
high-order coherent anti-Stokes Raman scattering signals of the fundamental light (w,, k) at frequencies and
wave vectors, w, + lwr and k, + Iq respectively, where multiple Raman scattering number, /, reaches 10 under
the optimum condition of phase-matching [25, 26].Here wg ~ |g| = 610cm ™" is the wave number of a Raman-
active, Alg, mode of TiO,. This procedure of generation of the high-order harmonic conversion of infrared and
visible light into extreme ultraviolet or soft x-ray, and high-order stimulated Raman scattering was in the center
of attention of many experimental and theoretical investigations [2—10]. For example, in the [4—6, 27] a Raman
spectrum with a large bandwidth was observed, ranging from the IR to the UV. Under some conditions, strong
pump depletion was observed and up to five anti-Stokes sidebands were observed to have energies exceeding
10% of the transmitted pump pulse energies.

The quantum description of the multiple scattering process in which the atomic ensemble enters the
quantum nutation process relative to multiple photon conversions is given in section 2. The possibilities to solve
this problem for a relatively small number of radiators and a big number of scattered photons are proposed. The
inverse solution, which is considered a small photon number and a big number of atoms, is given introducing
the symmetries between the multiple steps of conversion. A new cooperative number that takes into
consideration the number of photons and number of conversion steps is introduced. Considering that in the
dielectric cavities the radiators are placed in the evanescent zone of the sphere/fiber in sections 3 and 3 we open
the system of atoms in multiple scattering, introducing the interaction of these radiators with external EMF. The
rate equations for the numbers of converted photons and excitation ones were obtained. In order to understand
the possibilities of experimental observation of quantum correlations among different mode components of the
cavity in the multiple scattering processes, the description of the higher order rates of the photons from such a
system and their fluctuations are introduced. In section 4 we propose the algorithm of system of wave vectors in
which multiple scattering processes took place and in appendix this system of vectors was constructed. It gives us
the possibility of the description of the correlation of photons from non-adjacent steps of multiple scattering
process. On the bases of this vector system, a master equation for the quantum generator with multiple
scattering processes take place is proposed in section 3. Cooperative correlations between the photons which
belong to the bimodal field of the multiple scattered processes were analytically estimated and numerically
represented. New cooperative aspects between cavity photons belonging to the bimodal field were established
and annualized in discussions 4 and conclusions 5.

2. Symmetry of multiple scattering transitions and their cooperative description

We represent higher-order multiple Raman conversion of photons by excited two-level radiators (atoms,
excitation, molecules, molecular vibrations, etc). Taking into consideration the position of virtual states |v;), |v,)
and |v,,), we propose to study the opportunity of quantum nutation process between two-level atomic system
and cavity excitation during the conversion of pump photons into multiple bimodal cavity modes of photons
from the pump field into 7 scattered modes (see figure 1). In figure 1 we represent a possible three steps of
multiple scattering of photons into new anti-Stokes modes. We will demonstrate the possibility to achieve the
total conversion of all photons in the higher energy mode, represented in figure 1(B), and the possible return of
the system back to its initial state during the quantum nutation which includes three types of the cooperative
phenomena. The first type corresponds to Dicke cooperative process of N, radiators, the second contains the
cooperative process between the photons converted between the two modes in the same scattering step [22, 24],
and the third cooperative process includes the effects of re-absorption of scattered photons and their conversion
in the next steps of multiple scattering described in section 1.
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Figure 1. Multiple induce scattering field in the cavity. A correspond to the situation when the atomic stream is prepared in excited
state and the multiple lasing process takes place with the reabsorption and generation of new anti-Stokes modes with frequencies :
wy + wp,wy + 2w, wy + 3w, ..., figure B. corresponds to the situation when the atomic system are prepared in the ground state, and
multiple scattering process converts the pump photons into Stokes scattering modes : w; — w,, wp — 2wy, w; — 3w, ... The possible
nutation between these two states is described in section 2.

According to perturbation theory, the transition matrix element in each step is proportional to the product
of dipole active transition elements from ground and excited states to the nearest virtual one and inverse
proportional to the detuning from resonances, with virtual state, A, g~ dev,dy,g Gy 14, / (/*A,). Here d,;and
djzare the dipole transition matrix elements from excited/ground to intermediary state, |v,); 4,1 and g, are the
per photon strength of the two adjacent cavity modes, p — 1 and p of the cavity. In order to simplify the multiple
scattering problem, we will reduce the symmetry of multiple scattering process to two well known in quantum
optics su(2) and su(1, 1) algebras. The Hamiltonian of the such two-level system connects bimodal cavity field in
the higher order Raman scattering process and can be represented through the free, ¢, and interaction, Hj,
parts by the expressions,

Hc = Heo + Hi, ey
n
HCO =7 Z WPE;2p + %rDz: (2)
p=0
N Ay Ad oA
Hr = 7Zx,{A,D" + A, D }. 3)
Here A, = Z;é [ Hépﬂfg / X, and ]\: = Z;}) &i16p 6; +1 / X, are the annihilation and creation operators

in the higher order of Raman scattering. Such multistep scattering processes take place from excited states of two
level system in which the pump field is described by annihilation, ¢, and creation, ¢; operators. The scattering
process in the p — order anti—Stokes modes generated in the n — multiple Raman scattering is described by the
same annihilation and creation operators, Cps and, E; ,p=1,2,..n. Asaresult the pump and scattered field
operators satisfy the same Bose commutation rules: [6prE;] = i and (¢, C] = 0, p',p=0,1,2,...,n).The
lowering, D™ = 3 JN; ) DA;, and excitation, D" = 3° j\i . DAJ»+, atomic operators are connected with the inversion

through the commutation relation, [ﬁ+, ﬁ_] = Zﬁz, and [Iﬁz, Iﬁi] = ilﬁi, where ﬁz = Zj.\’; . ﬁz-, isthe
inversionoperators of this radiator subsystem. Here the atomic operators are superposition of each atomic
operators, 15]-7 , DAJ»+, and Iﬁzj from the ensemble of the N, undistinguished atoms. The atomic collective
polarization operator depends on the number of the number radiators, N,, and can be expressed through the
creation, d T, and annihilation, d, operators of the excited state of the ensemble of atoms according to Holstein-
Primakoff representation: Dt = cf\/ N, — fﬁ ,and D™ = N, — cfﬁ ﬁ, and D, = —N,/2 + afﬁ(see for
example the representations from [28-31]). We observe that for the big number of atoms in the ground state,
N, > (d ' ), the atomic operators can be regarded as a boson creation and annihilation one

B~ d' N, D ~ JNd.

We introduce the losses from the closed system ‘atoms + cavity field’ considering that the atomic subsystem
is concentrated in the evanescent zone of a spherical cavity or fiber so that the radiators are in scattering
interaction with the intrinsic cavity field (3) described by discreet modes, wy, wy, w,. . .,wn, and scattering
photons into external free EMF as this is represented in figure 2. The cavity photons prepared in the pump mode
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Figure 2. The system of atoms is placed in the evanescent field of the spherical cavity (see equator representation). Each radiator
interacts with the bimodal cavity field and the external one. As the constant of interaction with the cavity field is larger than the
interaction constant with external EMF, the perturbation theory is applicable. During the quantum notation, the system generates the
free photons which can be detected with detectors D; and D, represented in the figure.

are in the multiple Raman conversion process stimulated by the radiator subsystem prepared in an excited state.
Taking into consideration the position of virtual states, |v,), |v,), and |v,), below we describe the possibility of
conversion photon generated in the scattered cavity modes into external free one in the process of simultaneous
interaction of the atom with the cavity and external quantified field. So we divide the Hamiltonian into two parts
in which the first part corresponds to the closed subsystem described by Hamiltonian (1), and the second one is
the Hamiltonian of external EMF which stimulates the losses from the cavity during the photon convention,

Hr = Hc + Hp + Hyc. 4)

Here H is the Hamiltonian of the radiator and cavity field subsystems defined by Exps. (2), and (3). The free
part of Hamiltonian of external EMF,

k
Ay = 7 wiby by,
k

can be combined with the interaction part when the atomic subsystem is prepared in the excited state,
. L At a . .
H;C = 24y X p (b D + H.c.}. The excitation from ground states may be described by the term of the

Hamiltonian term, H, §C = 2 pXp i 16 l;,jD”r + H.c.}, whichis applicable for the atomic subsystem prepared
in the ground state. Considering the two processes of scattering possible, when the atomic subsystem can pass
into quantum nutation we define the interaction with the external field as a sum of the both Hamiltonian

parts, I:IBC = I:I§C + I:Il;gc.

The free field is described by the operators of emitted photons, I;,:r and by, which leave the evanescent zone in
the free space. These emitted photons don’t take part in the next steps of the spontaneous scattering process. The
number of such photons, N, = 37, bA,j by, and its statistics give us information about quantum nuation between
the cavity field and atomic subsystem trapped in the evanescent zone. For molecular vibration, described by the
above boson operators, when the pump is very strong its field operator can be described by C- number operator
the Schroinger equation can be solved exactly [7, 8]. In this section, we use the quantum approach for the loss of
photons from the system. Indeed, passing into rotation system of coordinate, [1)(£)) =T exp[itHro/ /1|0 (t)), we
obtain the equation,

iﬁ%W(t)) = Hp() ) (1), ©

where, Hyp(t) = exp [itHro/ % 1 Hig exp[—itHro/ 71, and [ (t))= exp[—itI—AIT/ﬁ] [1)(0)). Here
Hj; = H; + Hpc is the interaction of radiators with cavity modes (3) and external field, Hyo = Hc + Hpisthe
free Hamiltonian of subsystems in interaction picture,

Hi(t) = Hi(®) + 3 7 (D 6 (DBe(0) + X, (DB (01D (1) + H.c.), (6)
k.p

which describes the scattering process of cavity photons by atomic subsystems placed into the evanescent zone.
The interaction constant, Xy, is proportional to the same parameters of the system as g,,,
Xip ~ Aev,dv,g x4, / (%2*A\,) qrand g, are the per photon strength of the cavity and free field modes. As these

amplitudes are inversely proportional to the squirt from quantified volume, g, ~ 1//%,and g, ~ 1 / JV,
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where v, and Vare the volumes of the cavity and free space respectively, it follows that | x;.,| < &p- Considering
that the Schréinger equation (5) for closed cavity field xy , solvable, we introduce the operator, O(t), belonging
to the cavity subsystem. For the mean value of this operator, <(5 @) = Tr{p(0) O(1)}, we obtain the following
Heisenberg equation,

%é(t) — %[I%T, O]
+iY L& O I, DT () + X, D O}, OO1be(D)
p

+ H.e{O @) — O} 1. (7)

To eliminate the operators of the free field from this equation we use the traditional procedure of the
representation of the solution of the annihilation, by (¢), and creation Heisenberg operators,

72, {A;ﬁ+ + /A\:DA_}l;kT (1), described in literature (see for example ([21, 22]). According to this procedure, the
solution is represented through vacuum and sources parts,

l;k(t) = I;k(O)exp[—iwkt] — iz Xk,pj(;t dr exp[—iwr T]{Cp (t — D (- 7)
P
— 1) Xpik fot dr exp[—iw T {&(t — T)D (£ — 7), (8)
p

so that vacuum part, l;kv (1) = b (0) exp[—iwyt], gives zero contribution in normal product of the right hand

part of equation, (7), l;kv (#)|0)x = 0. The second term of solution (8) represent the source part in the Born-
Markov approximation, the solution has the form,

bi(t) = by (t) — 2miy X Ep (DD (D E (Wi — wp — w))
p
= 2wy Xyl (DD (D EWrk — wp + wp), )
P
where {(w) = §(w)/2 — iPv/(27w) is the Fourier transform of the Heaviside step function. The solution for

creation operator, l;; () is Hermit conjugate to the expressions (9). For the mean value of this operator,
(O ®)) = Tr{p(0) O(1)}, in the rotation wave approximation we obtain the following Heisenberg equation,

'Q..|m_‘

t

(O@) — émffé(t), o)1)
(25D (1), OMUTPe,(1)D (1) + TV, 842D (1))
P

+ 38D @), OWOUTPEHD (1) + TV, 8- 2()D (D))
p

+ HefO"(t) — O@)). (10)
Here the renormalized Hamiltonian,
AL = 78D, + Jix, (A, D" + A, D7)

—SHEPDD + EPD D Yeje,
P

— > Eipiilef 16 DD + Hel
P

is represented through the cooperative interaction shifts of energies between atomic and cavity modes stimulated
2
by vacuum field, 5;1) = flzk|xp,k|2Pv/(wk — Wy — W) 5;) = ﬁzk|xp,k|2Pv/(wk — wp + w,) and energy
correlation between the scattering steps £ g),l)p 42 = A Xy 10 Xk + 1P / (W — Wps1 + wy). The cooperative
losses of photons with frequencies for anti-Stokes, wy = w), + w, and Stokes photons, wy = w,, — w,, are described
by the expressions, Fg) = WZk|Xp,k|2 6(wr — wp — wy)and F;,z) = 772k|Xp,k|25 (wk — wp + wy). The coopera-
tive cross correlations between non- adjacent modes is described by losses,
1 2
F;),;?‘FZ = T2k XpkXip+20 (Wk — Wp2 + wy),and Fﬁ,,;,z = Tk XpkXiep—20 Wk — Wp—2 — wy).
We observe from generalized equation (5) that the total number of photons in the system,
Ne(t) = Z;: 0 6; ()¢, (1), is not conserved and the emitted photon rate from the system “atoms--cavity field”

has the opposite sign relative the photon loses from the system, dN, (t) / dt = — de () / dt. From this follows
that the number of emitted photons depends on the initial one in the pump field. N(0) = [,

N, = >k bAkT 1) l;k (t) = Np(0) — I\Aff (t), According to the generalized expression (10) the losses from system ‘C’
can be easy obtained by substitution of O (t) with 1\7f (t). For the closed system, C, follows that it is also conserved

5
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Figure 3. During the multiple scattering conversion, three excitations passed from the excited atomic ensemble, Nf — 3, to the cavity
field. Three squares represent the quantity of energy that passed from excited radiators to cavity field, 3fw,.

the total energy of excited atoms and field excitation in the cavity represented in figure 3 by squared figures. The
total number of such excitation is, Wp () = > pE; ®)C, () + D, + N, / 2. We emphasize here that the

expression, Wf n =3, pé; (t)¢, (1), represents the number of cavity field excitations, which is obtained during
the induced conversation of photons from one field mode to another. In this situation, we obtain the following
expression for the loss of cavity excitations,

n—1
%(Wdt)) ==2>"TP(p + D(E®EOD (D (1)
p=0

—23 3 TP~ D(EOHOD OD W)
p=2

=23 php 1t {(E 1 (DG (D OD (1) + Hec). (11)
p=1

The equation for the losses of the number of photons from the cavity, d (I\Alf @®)) / (dt) is obtained from Exp. (11)
by substitution, W, (t) — I\Aff (t),and (p + 1) — land (p — 1) — 1inthe first and second term of expression
(11). As follows from these definitions of the pump field with frequency, wy, and p = 0, we have the scattered
field with frequencies: wy = wy + w,, for I’ 61); and wy = wy — w, for I‘g). Thelast frequencies, wy = wy — wp,
correspond to scattered pump field in the low frequency spectrum. If the system of atoms are prepared in excited
state, and field in the lower frequency state, |I),, the multiple scattering in frequencies, w;, w», ..., w,, according
to the interaction Hamiltonian (3) must give the maximal values of probabilities, | x,x|* ~ |g,|*due to the small
dieting from resonances, A,,. Other frequencies, wy < wy, and wy > w,,, are neglected from the model.
In this situation the main contribution in Exp. (11) gives the first term proportional to
F;,l) r+1 (6; ®)¢, (t)lﬁ+(t)DA7(t)>. In opposite case when the atoms are prepared in the ground state (see
figure 1), we can consider the pump field prepared in the state |I),, with maximal frequency, w,,, in which the
pump field is accompanied by the downward scattering at the frequencies, w, | = w, — Wp...,wp. Theloses,
'V, at frequencies, wy = w, + w,, must be eliminated from due to the fact that the upward scattering probability
is considered smaller than downward one in the frequency interval wy < wy < w,,. The quantum nutation
possibilities between these two descriptions of scattering process is discussed below.

The observation of these quantities with the external detector may be realized introducing the number of emitted

excitations in the external field, W, (t)= (P wo)/wr] I;,j(t) l;k(t). Here /5" (wy — wo)é,j(t)ﬁk(t) = Hy — /awyN,
is the excess of energy generated by open system, C, due to the multiple conversion process of the pump photons in
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other modes (see figure 3). In this situation, we obtain the following expressions for the rate of emitted excitation
dW,/dt and photon number
d i d(We®)  dN@ _ d{Np®)
—(We(1)) =~ — ; =— .
dt dt dt dt
Here for the conservation of the quantlty, Wc(t) + W, (), we neglect the dispersion of emitted photons in the
expressions for the commutator (W + We , HBC] ~ (. We observe that this commutator is proportional to,
kX p (Wi — wo) / w, —p — 11{¢ bk D" — H.c.}, from which follows that in the rotation wave approx-
imation, wy ™~ w, + w, = wp + 1), thls commutator can be neglected.
Taking into consideration the conservation law of the moments of the total number of photons,
[zké,f () Ek ®]*= [Ny (0) — Nph (#)]%, and total excitation number, (W)®, a = 1,2, ..., in the closed system, C,
below we estimate the quantum moments of the loses rates, (AW, /dr)®, and (dN,/dt)*, of cavity quasi—quanta
and photons from this system, when we introduce the interaction with external field. According to this
representation we propose to estimate the quantum fluctuation of photon rate introducing the expression for
square rate of quanta from the system ‘C’. Defining the following normal product,

(oW1 ) ~ (Boby (1) Dby (1) by (1) i (1))
+ <Bk7’(t)aol;kT(t)805k’(t)Bk(t» + H.c., (13)

(12)

we can eliminate the operator of external field. Considering that the number of atoms in the excited state is larger
than the number of atoms in ground one we obtain follow second moment (13),

2
<‘ (%WEU)) :>2ZZ Lppr(p" + DAL, (P + 1)

pp' PP
x (&h(02] My e D OD D (D (1)
T+ D{E OEf 02, (e DT 0D D 0D 1)),
+H.c., (1

inwhich T}, ,, = 273", Xp,kXp/,kf (wk — wpr — wy) and F;p/ = [L,p/(wo + p'w)T*. According to the Exp. (14)
the square fluctuation of the emission photon rate and excitation from the system can be estimated,

d . Y d . \?
A ={: =N, ) —{ —N, ,
N < (dtN(t)) > <dtN(t)>
> d . Y d . \?
AW:<3(EW§U)) 3>—<Ewé(t)> . (15)

The expression for the square intensity fluctuations, A, can be easily obtained from the equation for losses
(14), by replacing : (AW (¢)/dt)*: with normal product :(dW,/dt)?:.

Following the perturbation theory we can introduce the exact solutions of the Schréinger equation for cavity
Hamiltonian (1) in the right-hand side of the expressions (10), (11) and (14), considering that the interaction
with the external field is quite low in computation with quantum Rabi nutation frequencies which described the
closed cavity, Fg) (p + 1) < x,,. Inthis situation, we may return to the generalized equation for arbitrary
Heisenberg operator A, (A(t)) = [T, (04 (©1,,(0)](25(0) |A(t) [4;(0)) |0;,,,(0)) |0x), representing it right hand
side through the initial density matrix of the system, p(0) = [¢;(0)) (¢;(0)| ® |¢; ,(0)) (¢; ,(0)] @ TI; 0x) (Okl,

(Am)=>>"> H H (nil(npl (j, m|p(0) U (D)explit (Hc + Hy)/ /1]

jrmi{nyH{m} p=0
x A(0)exp[—it(Hc + Hp)/ 10 (1)1, m)|np) |k (16)

Here, under the trace, we have the Hamiltonian parts, A and Hg, described by the expressions (4) and (6). The
initial state of atomic ensemble is prepared in exited state, [1(0)) = |}, j), and photon subsystem is prepared in
the I photon Fock state of low frequency mode, |;,,(0))=|1)5|0)...|0),.. The similar initial situation may be
declared when the system of atoms are prepared in the ground state, 172] (0)=j, — j), whale the bimodal cavity field

in the higher frequency Fock state, |2, ,,(0)) = [0)]0);...|!),.. The evolution operator, U (1), can be represented
through the T product of the interaction Hamilton (6), O@)=T exp[—ifot dt’I:IIB(t’)/ﬁ].
Passing from Heisenberg to Schréinger picture in the expressions (10) and (16) we mast solve exactly the

Schroinger equation of the closed system, C, and after that return to the right-hand side expressions for losses
(11) and its moments.The bimodal field is considered so that the frequency deference, w = wj, 1 — wj,is constant
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for each bimodal pair and the detuning from resonance, 6 = w, — w < w,, is relative smaller than radiator
frequency, w,. In the same short time approximation, taking into consideration the intrinsic symmetry between
the bi-boson operator, we propose to solve the Schréinger equation in interaction picture Indeed, passing into
rotation system of coordinate with frequency w, the Hamiltonian part, Hy,, = > boWplplp + wD,, commute
with Hamiltonian of the ‘atoms+- cavity field’ and becomes the motion integral. For the resonance case, this
motion integral corresponds to the conservation of the total excitation number with energies in the resonance
case, 6 = 0. The wave function in the rotation system of coordinate, [¢,;(t)) = explit {3} _ow,&)é + wD N 19;1(1),
is reduced to the Schroinger equation,

iﬁ%l%,z(t» = Higlt (), 7

where the effective interaction Hamiltonian takes into consideration the detuning from resonance relative
. . N A A A . . .
bimodal scattering process, Hyr = 76D, + /Zix,{A, D"+ A, D 1}, ifthe system of coordinates is rotated with

frequency, w. The total number of photons, Z\AIP;, =" =0 ;cp, commutes with operators, A" and A", In other
words, during the multiple scattering, the particles are converted from one spectral diapason to others,
conserving their number. This conservation low is not the same as in traditional single photon interaction of the
atomic ensemble with cavity field. In one scattering act the photon is converted from w, to w, ; and the field
from the cavity received the energy, fiw = fi(w,, — w,). In the in single photon interaction in the transition
event of the atom excited to ground state, the cavity field receives one photon with energy, Aiw. The analogies
between the coherent processes single photon interaction and multiple scattering field can be easily observed if
we accept the number of above energy difference as a quasi-particle in a closed cavity. This suggests that the role
of the number of photons in the multiple scattering process plays the operator, A, =37 poolwp — wo) &) »Cp / w,

which together with a number of excited atoms, N,. = N./2 4+ D,, conserve the total number of excitations in
the closed ‘cavity-+atoms’ system, A, + N,,=const, as this took place in the smgle photon interaction in the
cavity [32]. From these analogies, we may introduce the operators, A and A" ,as an annihilation and creation of
cavity quasi-particle with fixing energy, w, = wi ; — wy. Initially, we can consider that all photons are in the
pump mode with frequency, w, ~ wj,and during the multiple scattering is generated to such portions of
energies in the resonator as this is represented in figure 3.

We can represent the solution of this equation in the two approach. First way correspond to the situation,
when the excited subsystem of atoms is regarding as a pump flux which enter into the micro resonator in which
the excited energy is converted into anti-Stokes modes in multiple scattering process of the special prepared
pump mode into the resonator. The restoration of initial state of quantum system was studied from the statistical
point of view in [33-35].

1. Let us start with quantum nuataion of the small ensemble of two - level system under multiple scattering with
bimodal cavity field. In multiple photon conversions, the restoration probability of the initial state with
increasing the number of atoms in the system and number of catering steps in the short time interaction with
bimodal cavity field substantially decreases, due to multiple reabsorption and emission of pump photons. In
the situation when the number of cavity photons is small we can define the N + 1 vector operators of the
atomic ensemble in the multiple Raman conversion of prepared pump mode described by the Hamiltonian
(3) in the representation of the solution (17)

j X
W)= > amXm(®)le,(0)), (18)

m=—j

where {X,,(t) = exp[—iI:IIef t1lj, m),m=—j,— I+ 1,...,] — 1,7} are vector—operators, which depends on
the bimodal operators of cavity field, |;,(0)), is the initial state of the field in multiple scattered modes of the
pump field. If we start from excited state, the initial coefficients are, a,,, = 4,,, ;. In this situation is better to
consider that the initial state of the pump field is in the I — photon Fock state, |I)o, and other anti-Stokes
modes are in the vacuum states, |y ,(0)). In general situation the initial bimodal field may be represented by
the superposition of the populated states, |lp)o| 1) 1---|1,.) - Taking into consideration that the action of the
operators, D', and D™, on the collective state, DA+|j, m>,=\/(j +m+ DG —m)lm+1),

Dj, m),=\/(j + m)(j — m + 1)|j, m — 1),, we obtain the system of the N, + 1 equations for these
operator—yvectors,

%Xm(t) = —i6mR,u(t) — ix,JG+ m + DG — m) X1 (DA,

. - - N At
—ix,J(G+ mG—m+ DXu (DA,
m=—j, —j+ Lo.j+1,i. (19)




I0OP Publishing Phys. Scr. 99 (2024) 045102 N A Enaki

We observe that the system of equations (19) may be represented in the matrix form dX/dt = XD, where
X = (}A(j, }A(j, e XO,. .. ,)A(,j), As follows from the description of the system (19), the principal determinant is

described by matrix, D, with non-commutative elements, Dy, = — i i — X G+ m+ DG — m)Aybm + 1+

an\/ G+my(G—m+1) f\:&k,m, 1> so that is not so simple to find the eigenvectors of such a system of operator
equations. In 5 we propose to modify the system of equation (19) introducing the modified operator-vectors in the
system of equations described by a new principal matrix with commutative operator terms, so that the solution of
this system of equation becomes possible for relative large number of atoms.

2. With an increasing number of atoms, we may solve the system of the equation (19), introducing the new
operator-vectors, which depends on the atomic operators. This is possible if we know some commutative

symmetries between the operators, A, ,and f&:, the action of which on the bimodal states, | ©; ,(0)), may be
regarded as annihilation or creation operators of the energy portion in the cavity field equal to, hw ~ hw,.
Below we introduce for the special representation of these operators the su(2) and su(1, 1) symmetries in the
multiple scattering processes. From proposed operator descriptions, we establish the commutation relations

A At
between the A, and A, operators.

Let us first introduce another representation of the solution for the Schréinger equation (17),

W)= > Bt Eiin.1, (0,0, (20)

lo,hylp . 1y

which can be used in the situation when the system of radiators a fixed in the cavity or evanescent zone of fiber, as
this is represented in figure 2. As the pump photon flux passes through the cavity or fiber and enters into the
multiple scattering processes with the localized ensemble of excited atoms we observe that in representation (20)
the expressions, 1:"10, b1, = exp[— iHt] [ToYo|l)1.-.|)n> are operator-vector of the cavity represented by the
multiple scattered states of the bimodal field. As an interaction Hamiltonian acts only on these stats, these vector
operators depend on the atomic operators, D" and D ™. The coefficients B1,m,m, ..n, Tepresent the initial field
superposition, in which was prepared photon pulse, |, ©0)) = >0 10.1, Bttt /o)oll1) 1+ |1) n- The ensemble
of atoms contains the same superposition of the Dicke states, |, (0)) = an — Q| §, m),. This problem may
also be simplified for relatively small number of photons and a finite number of atoms in the cavity. Below we
reduce the system of equation evolution of system C to the well-known su(2) transition symmetry in the free and
interaction parts of the Hamiltonian (1) which describes the multiple induced conversion of photons in the case
of the big numbers of excited radiators. It is attractive from the physical point of view to describe this type of
cooperative phenomenon in multiple Raman scattering for small number of scattering steps. The single-step
cooperative Raman lasing was described in [21, 22, 36], the result of which can be obtained from the multistep

. __— . . . T N Afa afa
scattering Hamiltonian (3) in the single step conversion, n = 1: A, = b¢f, A, = &8s Af =@ —¢f co)/ 2.
Here it is convenient to introduce the cooperative number, L = I/2, and angular momentum operators:

A= Nas N . . . . .
Li,=A,L=A and L), = Af. For two steps of multiple scattering, we must take into consideration
that, n = 2, adding the conversion Hamiltonian in the second mode, &; (&), maybe reduced to two bimodal

. Aoas s A A= A () A (- .
subsystems described by strength product, Hi~ D {k EO( )El( ) 4 szl( )Ez( )}. Here, the generated anti-Stokes
photons can be described in the language of negative and positive negative frequency strengths.

For example, in the first product I:Ql(i)(t, z) = q, &7 exp(iwt — ik z) corresponds to generation of photons
in the mode w; = wy + w,, under the pump field, EIH) = q,Co exp(—iwyt + ikoz). The positive frequency part

A (+ . ) ) .
of anew strength, El( )(t, z) = q,6 exp(—iwt + ik z), becomes the pump field for a next anti-Stokes photons
from the negative frequency strength, Ez( K (t, z2) = q, &) exp(iw,t + ik z), in the interaction part of
g A A () A (- . . o
Hamiltonian, El( )Ez( ) According to figures 1 and 3 in the three level system the realization of su(2)
commutation relations becomes possible when the scattering amplitudes, k; ~ 1/A; and k, ~ — 1/A,, have
same detunings from resonance, A; ~ — A, in the denominator. In this situation, we are able to introduce the
At A A P A A A A A

new operators, A, = (g &+ %G c;)/xz, and A, = (g6 & - +8,6 C;)/Xz- In the two-steps Raman

. . . At A
emission, the scattering amplitudes may be equal between them, |g,| = |1/, so that the operators, A, and A,,
belong to su(2) algebra. In this situation, introducing the renormalization coefficients, x, = g/~/2, we may

replaced the old operators by su(2) one, L, = /AX;, and, I:1+ = /A\; We can introduce the operators,

A At A At P A i naa A+ CiNA A NP
L) =86 —¢lé, L =2 [exp(—lqﬁl)clcg + exp(—ngz)czc;], L, =42 [exp(l(bl)coclT + exp(z¢2)clc§],
which are described by the principal cooperative numbers, L = [, and the projection, m = — I, ...I. Here the

phases ¢, and ¢, take aleatory values and can be introduced in the new boson operators, & = exp(— ip)G
and § = exp(—ig,) 6.
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Similar results may be obtained for the three-step Raman emission, n = 3, in which we can introduce the
operators, A: = (gCo &+ %6 &+ %6 E;)/X3; /A\; = (gG &+ 6 &+ 6 Eg)/xs. The special
normalization of these operators choosing coefficients, g /x; = &/X; = v/3 and g,/ = 2, may simplify the
three steps of multiple Raman conversion, reducing this process to su(2) cooperative symmetry described by:
Ly, = V3! + 288 + V388); Ly = 3ad] + 268 + V388, and 15, = /286 - (/28 +
1/2) 6; 6+ (3/2) 53T 5. In figures 1 and 3 the special detuning from resonance relative to the doublet of the
excited virtual states opens the opportunity to realize the relations between these coefficients and experiment. In
this case, the cooperative number becomes, L = 31/2. The relation between the constant x; and g; is described by
the expression, y;=g,/+/3 . Asin the two steps of Raman conversion, the three steps of scattering are described
by su(2) algebra, I:S+ = /A\:, I, = IA\;r and L, = A, in which we can represent the principal cooperative
number, L, as a product of two numbers, L = s. The first number, s = 3/2, is connected to the number of
scattering steps, #n = 3, and the second one with the number of quanta in the initial pump field, I. According to
the mathematical induction, we can generalize this procedure for n — scattering steps described by angular
momentum vectors, |L, m) s which are eigenvectors of L, operator, L;'|L, m) ¢ = m|L, m)s. Here the principal
quantum number, L=Is, where s = n/2. The representation of these operators through the number of states
becomes possible, introducing the steps parameter s = n/2,

L= 3 J6+ 06 —k+ Déwr il

k=—s
s
L= > Js+ b6 —k+ D&, &uw
k=—
AZ s 5
L= > ke, ek (21)
k=—s

Itis not difficult to control this relationship for single-, two-, and three- scattering steps described above. After
the cooperative description (21), we return to unsymmetrical multiple conversions. We propose to construct the
special states in which a great attention is given to the cooperative exchange process, with a portion of energy
equal to, fuw >~ fw,. This quasi-quanta can be generated or absorbed in the cavity bi-modes during the multiple
scattering processes. In order to establish some simple relations between the conversion acts and the number of
portions of energies that the cavity may obtain during the emission or absorption of converted photons. Below
we reduce the interaction Hamiltonian (3), for this special value of the coefficients, g, g1 , ... , g, to su(2)
symmetry. For this, we pass into the system of rotated coordinates with transition atomic frequency, w,, and
considering that the frequencies of generation photons, inside the cavity, are connected with a constant
difference, w = wj 1 — wj, by the multiple scattering expression, wj = wy + jw, we represent the wave function
|¥(1)) through the wave function in the rotation system of ordinate, 7 (¢)), described by expression,

[ (1)) = explitlwA: + w,DI[D(@)),

By ==—/#8L7 + iy (L, D' + DL}, (22)

in which the field operators and atomic one belong to the same symmetry, in which two independent Bloch
vectors, L(L + 1) = (L) + {LA:I;,T + Ltff}/z, and, j(j + 1) = D;Z +{OD +D D" }/2, are conserved.
The first corresponds to the three cavity modes represented by the vector, in which the integer number L=s/
depends on the number of photons of the pump field, /, and the number of the steps, n + 1 = 25, in the induced
emission of multiple Raman scattering. The conversion operator of the photon between the Stokes and anti-
Stokes modes takes place through the pump mode, L =1/2,1,3/2, 2, ....,. For example, in the single step Raman
scattering, L = /2, and into two steps of multiple scattering processes L = (I/2) x 2. To find the connection
between the land the number of pump photons 1, below we represent the solution of Schréinger equation (17)
in another form than it was described in Exp.(18). Considering that the system of N,excited atoms is prepared in
the superposition of the states |j, 7) and the photon pulse in the superposition of su(2) states of the multiply
scattered photons we represent the wave function (20) as a superposition sum of vector operators,

2L
(1) = > BpE (1), (0)). (23)
p=0

Here ﬁp = exp[— iHI t/ﬁ] L, —L + p>ph , p =0, 1, 2...are the operator-vectors of multiple generated
photons in the modes of cavity EMF, |,(0)) is the initial state of the atomic ensemble. According to this
approach, these new vectors of the cavity field obey the system of differential equations,

10
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Lh0 =ib(p — DE® — i, PEL—p + DEHD’,
—ix,/(p + DCL = P B (DD

p=0, 1,..,21 — 1, 2L. (24)

This system of equations for field vectors, {ﬁp (t)},p =0, ...2L, have many analogies with the system of equations
for the similar vectors of the atomic subsystem (19). Here we have introduced the specific interaction constants
g1 =1,2,...,n, which follows from the requirements of commutation relations for su(2) algebra (21). This
procedure helps us to solve both systems (19) and (24) for a larger number of atoms or photons, respectively. The
principal determinant of this system of equations also contains non-commutative elements and becomes
difficult to apply the procedure of solutions of the system of equations with constant coefficients. In appendix we
introduce a new vector, the system of differential equations, which is described by a principal determinant with
commutative terms The exact solutions of the system (24) are represented for principal quantum number
L=3/2,2.

To consecutively construct these states, let’s consecutively act with operator ZAX; on the initial two photon
state in the pump mode, /A\;r|2>0 [0)4]0) , = 2|1)|1)1]0) 5, which does not involve the absorption of the emitted

photon. According to the next action of the excitation operator, /A\;L, we obtain the superposition between the
two cooperative processes connected with two quanta scattered in first anti-Stokes mode and cooperative re-
conversion of the scattered photon, [A\;|1>0 [1)1]0) 3= /2 {~/210)012)1]0) 5 + [1)0]0)1|1) ,}.Here, the first term
describes the cooperative conversion of two pump photons into two scattered ones with frequency,

w; = Wy + w,, while, the second term describes the reconverted of a new photon in the second scattered field
with frequency w, = wy + 2w,. The fourth-state represents the conversion of both photons: one in the first state
and the other in the second scattered state in the double step of Raman conversion:

/A\;{ V210%012)110) 5 + [1)0]0) 1]1) 2} = 33/2]0)9|1) 1|1) 5. The last term corresponds to the total conversion of all

photons into the higher energy state, /A\;|O>0 [1)1]1) 5 = +/2]0)]0)1]2) ,. Begging with L > 2, sucha
superposition plays an important role in multiple scattering processes.

If we consider that the coefficients g, increase proportional to the step number of multiple Raman
transitions, p, another type of symmetry follows from the representation of commutation relations (A1) and
(A2). Indeed, for a big number of multiple scattering processes, n — oo , coefficients, g, = gop , and, x,, = g the
operators

n—1 n—1

A" = lim 3 (k+ Dénd’s A = Tim 3k + D&E, (25)
n—00; =0 =g
and
R 1 n—1 .
A, =—1lim Z(k + 1)2{5k+151j+1 — &g}
k=0

belong to s(1, 1) symmetry with eigenvectors, | s, = + n), of operator A, , A |k, K + p) = (5 + p)|k» K + p)
in which the defined operators excited and lowering (25) JAXJF, and /A\f, with actions /A\+|/§, K+ p)=

Je+p)Qp+ Dl +p + WA |k k+p)=J2+p— Dples i +p—1p=0,1,2,..,1, ...

.Itis not complicated to demonstrate that this operators belong to this symmetry,

n—1
Ap oAl ) o R N
[ASA]= ”hrr;Z(k + l)z{c]-ﬂc,:’+l — G kT} =2A;0
k=0

n—1

A", A,]= lim %Z{fz(k FIP 4R+ (k4 2200 — k — 2+ 0.5)
k=0

X (k+ &g, = A" (26)

Here in the process of system excitation of cavity field in multiple Raman process is conserved in the vector,

Kk — 1) = /A\j — (AR + A+A_}/2. From the definition of operators, A,, A~ and A", and initially
prepared. We observed that multiple scattering effects are manifested for a large number of photons. To observe
the superposition of multiple scattering photons in a large number of modes, it is necessary to have a large
ensemble of exciting atoms that may multiply scattered under the action of the pump field. Following up from

11
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the estimation of Exp. (36), for four atoms the possibility to observe the high mode correlations, E32, becomes
impossible due to the small number of scattering radiators in the system. There exist two possibilities. The first
action is to return to the Schroinger equation for a large ensemble of atoms. The second possibility is to pump
the excited atoms into the resonator and obtain the lasing effect in multiple scattering process. The first
possibility is limited by the possibilities to solve exactly the system of operator vectors for the large number of
atoms or large numbers of photons in the pump field. Such aproblem involves a large degree of freedom in the
proposed approach, which limits the possibility to represent in analytic form the solutions of the Schroinger
equation (see appendix). The second approach is connected to finding the system of wave functions like,
(An Y[1)]0) 1...|1) ., of multiple scattered fields on the Hilbert space. In this space, we may construct the
evolution of such quantum correlations of cavity excitations during the multiple scattered lasing. From the
initial state of the cavity field, | ¢,,(0)) = [I)0|0);...|0),..., follows that the coefficient, x = I/2.

Let us find the solution of the Schréinger equation (17) in the form represented by expressions,
[U5,s () = 30— o5y <i>,s.,+p(t) [4;(0)), where the expressions, {,., = exp[—ifl;t//i 1|k, K + plon}np = 0, 1, 2,05
are an infinite set of vector-operators obtained in the multiple generated photons in the modes of the cavity
EMF. According to the su(1, 1) algebra roles, the new system of equations follows from the Schroinger
equation (17)

d -+ . A . A N
—0ep O =8(p + ®)P(®) = ix@r +p = Dpdey()D

—ixJ@k +p — Dp Dy p()D;
p=0,1, 2,,k..., (27)

whereand x = g;. The system of equation (A15) w1th commutative terms of principal determinants may be
obtained from (27) by the substitution, T, H() = D (1) (D)P,and applying the commutation relations (26).

We emphasize that there exist two p0351b111t1es to solve exactly the Schroinger equation (17). The first
method consists of the exact solution of 2j 4 1 operator vectors declared in the system of equations (19) or (A4).
This method is applicable for a relatively small number of radiators in comparison with the number of photons
in the closed system. The second approach is connected to the possibilities of the application of symmetries su(2)
and su(1, 1) in the multiply scattering process described by the system of equations (A.7) and (27) for relative
small number of photos in the field. In the case of the same small number of photons and atoms, these two
methods must coincide. We observe that, at first glance, for a few atoms, the number of equations in the system
(27) is infinite. But maybe not so, because the chain of equations for the field vectors i},(t) = <i>,{+ »(®) (DHP,is
truncated when the number of atoms N, < p (in this situation (D) = 0).

3. Losses of excitations in the cooperative multiple scattering

Let us estimate the generation of converted photons in the free space. In this approach, we can use in the right-
hand side of the above equations the solutions from the appendix. The possible multiple scattering effect in the
subsystem of two excited atoms in interaction with the cavity field can be obtained if we consider that initially the
field is prepared in the pump mode |1)¢, |0)1,...,|0),.. Neglecting the detuning, § = 0, and vacuum re-
normalization, the simple solution for atomic vector operators (A3) we obtain the following solution,

sin? QUt/Z]
5

\/—Sln[Qllt] |l _ 1> |1> | >n X |l; 0>r

ll

- 4g1ﬂs‘“[9%{gn/z(l “D1 - 2o, 12110)2..10),

11
+g2|l - 1>O) |O>1|1>2|O>n} ® |1) _1>r) (28)

[] (1)) = {1 — 4g 2l }|1, 1)y @ Do 10)5...,]0),

where €, = \/ 2(3g121 - 2g12 + gzz) . As follows from the definition of Rabi frequency, {25, and from the last

term of wave function (28) the migration of the photon in the next step of multiple scattering process, g, &eaD,
is possible to. Introduce the solution ((28)) into the loss rate of cvasi-particles from cavity described by Exp. (11),
we observe this migration in non-adjacent modes described by the cooperative rate Iy ,
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dt 0

A 2
d<WC(t)> — _4Fgl)l{2glzlcos[gllt] —1 + 1}

- 23gle{F(l)(l 1) + 21}

12
cos[{t] — l{zglzlcos[ﬂl(l)t] —1 + 1}

— 2% gl
g] g2 0,2 lel lel

— 23g2g1 ZF(22) [COS[Qlltg - 1]2 ) (29)
2
According to Exp. (29) for alarge number of pump photons, we may neglect the rate, lfg) in comparison with /*
Fg) because the induced scattering from the ground state is small due to the large values of number of photons, I.
But at this stage, the contribution of the correlations of the non-adjacent modes in the losses of the quasi—
particles from the ‘cavity+field’ system described by the coefficients, I' ,.

With increasing the number of excited atoms in the system 2j, the possibilities of multiple Raman scattering
increases too. According to the system of equations (A7) we obtain a similar wave function like (29) in which the
quantum number, L = I/2 for photon excitations is substituted by number j. We may study this effect using the
exact solutions for small values of the quantum number L = sl = 1 described by the vectors (A10). In this
situation we have two possibilities. First scattering process corresponds to the single step and two photon in the
pump and scattered modes described by the states: |2)|0); ; |1)o|1)1,and |0)0|2);. Second one correspond to one
photon (I = 1) in two—step scattering (s = 1), described by the states:|1)4|0),]0)5; [0)0|1)1]0)2, and |0)4|0) ;| 1),.
The first case have similarities with solution (28) in which the quantum number, L = I/2 for photon excitation is
substituted by number j. The single photon in the two-step scattering conversion by arbitrary number of atoms,
have some peculiarities in the lossesbehavior. In this case the solution of Schroinger equation obtained from
initial state, |j, 7), ® |1)0|0)1]0),, is described by the expression,

sin (Qljt/Z)

W) (1) = {1 — 4j¢g

sin({;t)

- ing_jTl Yol 1)110)217, j — 1)
1j

— 4¢%\j(2j —

}IJ, i)r @ 11)010)110)2

y Sin (Q“t/ 2 10y lo) 132l — 20,

where €} = g,/(3j — 1)/2 . According to this solution, the loss rate of of cvasi particles from cavity (11) takes

another form,

AWe®) _ 4]F(1){1 ey ZM}

dt 0F
in?(Cy;t
2@ — IS b
0y
., lcos(§hjt) — 17| - [cos(€hjt) — 1]
20 42— fo - D ———L T
{ 18 lej Jj@2i—1 QZ 02
L [cos(Oyit) — 177
ig4i(2j — 1)2—1é2 - ry (30)
1j

Here, we observe an involvement of the correlation between the photons from non-adjacent modes of first and
second scattered steps. But it is not so large superposition, ~I'y ,, in comparison with first term proportional,
JIY . Due to the small number of photon and large cooperative effects between the atoms the probability of
scattered photon in the external field by atoms from ground states increases too, ~jT'$.

For the large numbers / and s this process involve the superposition between the converted photon states
belonging to non-adjacent modes through the excited states of atomic subsystem. This effect is studied in in
muti-step Raman lasing of [37]. From section 2 follows that such superposition appears for two quanta, I = 2 in
the two steps Raman conversion, s = 1, in which is realized the cooperative state, |2, 0) In this situation, it is
better to study this simple superposition using the solution (A11) for the set of five field vectors, which describes
the entanglement between photons belonging to scattering components using the second moments (14 }) and
normal fluctuations (15). The wave function for two quanta in the two steps scattering process can be obtained
from the action of the vector (A11), on the exited system of atoms |, j),
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[/ (1)) = [Ag + A, cos(t) + A, cos(Ct) + Bysin(yt)
+ Bysin(u)11j, 1), (1)

where the coefficients Ay, A; and B;, i=1,2, are defined by the expressions (A12), (A13) and (A14). Taking into
consideration the inequality, ‘Xp,k|2 < | gp\z, on the right side of the expressions (11) and (14), we can
approximate the density matrix of the closed system by the expression, p(¢) = |1 (¢)) (¢ (¢)|. As processes
connected with scattering instead of coefficients Fg) for simplicity of the expressions for higher moment we
introduce I',. In this approximation, we can calculate the correlates,

(& emD (OD () = (Y @®)|e)e, DD (1)),
and
EGme) OeyEnmD (D (D (1D (1)
=W D)ej(E; (e ENOD (D (D (D (1) |/ (1)). (32)

According to the Schroinger equation (17), the operators must be in the interaction picture,

E; (t) = f; (0)exp[iwt], D*(t) = DY (0) exp[iwt]. As follows from the correlations (32) contains the photons
scattered from different steps of multiple Raman emissions. For example if in the solution for principal quantum
number, L = 2, we have the superposition [¢(£)) ~~/2 [0)9]2) 1/0) ; + [1)0|0) 1|1) ;. In this situation we may create
the vacuum state acting with ¢ (¢)¢ () on the first term, ¢ [0)9]2) 1]0) , = /2]0)]0),]0), and another way is
obtained by acting with operators ¢, (¢) & (¢) on the second function from superposition,

&G0l1)010)1]1) 2 = 10)9]0) 1]0) ,. The non-oscillatory part of the photon correlates will be proportional to the sum
of three types of correlates (& (1)¢, ()& ()&, (1))~ (&*(0)&(0)&(0)) + (&§ (0)&] (0)(0)) + (& (0) & (0)) +
<EJ 0) EZT (0)¢é0(0)5(0)). First and second correlations contain the entanglement between the two photons from
pump and first scattered mode and the photons from pump and second step scattered one, the third correlation
contains only the photons from the same mode.

The algorithm of this procedure of factorization of the correlates like, ((IA\;)”‘E; (t)¢ ;1 )¢y (t) EP/I ) ([\:)m>,
is not so well established for the large number of photons and large number of steps in Raman scattering. For
this, we return to System of equation (A4) and construct the solution for four atoms involved in the multiple
Raman conversion. Considering four radiators prepared in the excited state, we can obtain the wave function
using the solution of the system of equations (A4) for atomic vector operators, (R, (1), m=—2,...,2}. Acting
with the vector operator

Ri() = To + Ticos(Qt) + Trcos(Qat) + Zsin(Qar) + Z5sin(Q01),
on the initial state of cavity field, |L, — L)in the analogy with the solution (31) we obtain the wave function,
[ (@) = [To + Tcos(Qnt) + Trcos(ut) + Zrsin(Qt)
+ Z,5in(Qa0)]|L, —L)f,
in which the small number of photons and large number of atoms used analytic representation of the solution

(31)is replaced by relative small number of radiators, N, = 4, and big numbers of photons with possibilities to be
converted into large number of scattering steps. Here the coefficients are

To=12,2), — 8X*{2, 2), AM"QAY + 3AY)
+ 612, 0), (R, 245 — 312, —2), A" 0 0% (33)
T = 22 (212, 2, AP GAY + 2R7) — O]
+ V612, 0), (R[4 2 AL — 02
1 .
N2 A2 A2

Q; (2

i\SE T 8

—3 % 422, 2, R )Y Lj=1,2i% (34)

2 . At A2 A SU A SU
=i = 2ix, {12, 1) A, [ — 2x;, A5 + 24,)]

At
+3 x 2x)2, = 1), (N ————

Qi(Q] - Qz)

3L j=1,251=]. (35)

These cooperative phenomena between the conversion of the photon in the multiple reabsorbing of the
quanta on the next conversion steps can be observed using the higher moments of the energy, losses
<:(de/dt)“': ), a =1, 2,...,. As follows from the coefficients (33), (34), (35) and (21), the maximum of
conversion rate in the next steps may be described by the correlation function,

<(A;)4E;1 (1) E; ()¢ (1) &y (1) (A:)‘*), obtained from expressions for T;. But this terms doesn’t give the
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contribution in the higher order moments, (:(d W,/di)e: ), due to the fact that we used the exact solution of
Schroinger equation for smallnumber of atoms involved in the scattering processes, N, = 4. In such situation the
mean value of atomic correlations becomes equal to zero in correlation function,

(2, =2, (DHDH"2, m), = 0, for |m — a| > 2. We can estimate higher order moments of the cavity
excitations,

<: (%We(t)) >_ZZ Ly pn P+ Do By prapla + 1)

pp' b
x {Cai(t) (L, —Lly &, (t)...E;M(t)Ep/l(t)...Epln(t)IL, —L)f K3

+ S (Ly —LIAE] (0. 8] (DEn(0) &AL |L, —L)e KT
+ Ca(t) (L, —LI(A,)%¢E] (B)..n (t)Epll(t)...épl,,(t)(A:)2|L, ~L)iKy

+ Sna(O(L, —LIA,)%E) (b)) (t)Ep/I(t)...Eplu(t)(A:)ﬂL, ~L) K
+ [(p;» ) — (P, p)s i = 1,..al}. (36)

Here [(p., p/) — (p/, p)> i = 1,...,a] represents the sum of terms with the possible permutations of indexes p;with p.’.
The atomic correlations K& = (2, m|,(D7)*(D7)*|2, m),, can be easily estimated, (2, m| (D")*(D7)*|2, m), =

Q2+ m!Q2—m+ a)l/[2 + m — a)l(2 — m)!]. For theloses of cavity excitations, (d‘/%(t)/dt),wehavethe
correlations: K3 = 4; K!' = 6; K¢ = 6; K, = 6.Forsquareloses, (:(dW,(t)/dt)*: ), wehave the

coefficients: K3 = 24; K = 36; K4 = 24; K*, = 0. The time dependent coefficients of expression (36) are
represented through the Rabi oscillation expressions,

2Lx!

— [ Q) — 1
T o s = D

Ca(t)= {1 +

, 8L ?
— Q5(cos($4t) — DI(17L — 21) + ﬁ[cos(Qﬂ) —cos(L)l ¢
1 2

Cotty = | PGB = 2D 1oty — 1) — R(cos(@it) — 1]
U e - T 2O

2X2 }2
I [cos(§ht) — cos(§1L0)] ¢

I I
Q- )
1
Sin(t) = ————{Qsin(Qut) — ysin(At)
QF — 03)?
4x*(17L - 21
— M[Ql Sin(ta) - Qz sin(Q1t)]}2§
N,
2 % 24x2 . : 2
Sm(t) = {Susin(1) — sin(h)}? .

QBN - 0

Here the Rabi frequencies were calculated on the cavity field state ||L, — L)sin the normal representation of

the moments (36), Qiz = x,(50L — 48) + 2\/§Xn J99I2 — 16L + 114, where sign, ‘+” was chosen for

Q,, and sign ‘—, is for §2,. Taking into consideration that the initial state of the field is expressed through

the multiple scattering modes, |L, — L) ;= [I)/|0);...|0) ,, we can easily estimate first correlation, E; =

(L, —Llég,(t)égl,(t)... E;,(t)ép(t)épl(t)... Ep(OIL, —L)y =1 = 1)l = 14 16 085,10+ 8,08,/r - Itis not

simple to calculate second correlates from the expression (36) after the action of operators (/AX;)" and (f\:)k, on
the bra- and ket-vectors of expression Ex~(L, —L + k|¢ E;l, ®)... E;/(t) Ep (1) Gy ()IL, =L+ k)p. Atfirst
glance, we observe some de-correlations in the analogy with Wick theorem proposed in quantum statistical
mechanics (see for example [38]), but the particular examples like, (2, 0] G216 (82, 0), described by Exp.
(32), demonstrate that the index paring between the creation and annihilation operators, 5;, (1), é;} ,(t),and,

¢, (t) ¢, (t), don’t contain all non-zero terms In order to calculate the above correlations, we propose to permute
the annihilation (generation) operators from left-hand (right-hand) to right-hand (left-hand) one on the
correlation function like, Ez=(L, —L|; (A,,)k¢ (D (D (D). 85 (1) AL, —L);. For this we must
commute the annihilation operators, ¢ 2,(0)s ¢y, and ¢ (1), with representation of excited operators, JAX: = I:: ,
through c; and ¢, (t) defined in Exps. (21). Doing this, we can act with the set of operators, ¢, (t), ¢, ... €, (),

on theinitial state, ¢, (t), ¢p, ... ¢, (t)|L, —L)= 6},1,061,2,0...52)0\/1(1 —D..(l—r+1
[I = 2)£|0)1...|0), exp[—i(w) + wp + ... +w,)t]. The simple transfer to the right-hand side into correlation
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. . . At
function of operator, ¢,, through the su(2)- operator, L, becomes, ¢ cp JP@s —p+ 1)E1 + L, Gy As
we are interested in the square losses, we take as an example the correlatlon, E2 , but the method can be extended

to other correlations which contains higher order of operators, (/AX:)", k=1,2,3,...,. We give below only the
transfer of one ¢, operator through the (L D2

cpz(L )2 (&, )Zcp2 + 2L p,2s —p, + Dy
+ Jp,(p, — D@2s — p, + DQ2s — p, + 2)¢p, .

Doing the similar transfer with operator, ¢, , we obtain the amplitude,

Epep, (LI, —L)y = 1T — D{(EL,)28p,00p,.0
+ zﬁifjr[épz,oép]*l’o + 61’1’0617271’0]

+ [Y2!125(2s — 1) [6p, ~2,00p,,0 + Op,~2,00p,,0]

+ 2505, -1,00p, 1,0} L2y —La)s- (37)

Here we observe the possible interference of the amplitudes of pump field with frequency w = wy (see p = 0) and
amplitudes with frequencies w; = w), + lw, forp=1,w, = w, + 2w, for p = 2. The new angular
momentum operator, |L,, — L,); = |l — 2)/0);...|0),, represents the pump state which lost two photons from the
nutation process. To find the expressions for correction, E7, we mast permute operators c ,(t) from right hand
to left-hand side in order to act with them on the bra-vector, (L, —L|; c ,c 1= 0,100, Oxll(l — D (I — 2|¢{0}-.-{0] -
The simple observation demonstrates that this part of operator transfer in the left-hand part of correlation
function, (L, —L|f (L, )21?;,2 (1) E; ,(t), is Hermit conjugate to the right-hand permutations, (37). Multiplying the

1
Hermit conjugate expression of this amplitude, (L, —L|s (L, )ZE; () é; ,(t), with Exp. (37), we can obtain the

1

following expression of correlation,

Ef =1(— D {85,,00p,,08,/2,48p,,02°L2(2Ls — 1)
+ 852L2((5p2,06p1_1,0 + 61,1)061,2_1,0) (6})/2)05171/_1,0 + 5171/)0517/271’0)

+ [Y2!125(2s — 1) (8p,-2,00p,,0 T Op,~2,00p,,0) + 250p, 1,00 ~1,0]
X [\/2!25(25 — 1) (61,1/_2,0(517/2,0 =+ 6p/272,06171’»0) + 256}7/271,06171’—1)0]}‘

Similarly, we may estimate all correlation functions in the first and second moment of intensity rate.
Knowing the correlations E,, E;, E; and E; we may estimate the loses of excitations from the cavity, or intensity
of scattering field. The quantum correlation between the converted photons may be estimated knowing the
square loses (or square intensity correlations). For this we must introduce in Exp. (36) the correlations Eg, E?,
and E# in the second order moment, o = 2. The correlation E{ is multiplied by K 2; = 0 doesn’t give the
contribution in the square losses of excitations from the resonator.

According to the representation (36) we obtain the following expressions for numerical simulation of the
first and second moment of the cavity excitations,

d

<E‘/{/e(t)> = Gclcsl(t) + Gslsnl(t) + GCZCSZ(t) + G525n2(t);
2
<(%m(t)) :> = Kclcsl(t) + Kslsnl(t) + KCZCSZ(t)- (38)

Here the coefficients calculated for fist moment are:
Ger = 81Io;
G =23 x 3ls {2 + (I — DIy};
Gy =24 x 3l{ILLi(2L; — 1) + 2’TiL;s + Ix(2s — 1)s}
Gy = 24 x 32{L,2L, — 1)(2L, — 2)1Ty + 2sL;(2L; — DT}
4+ 2Lis(2s — DI + 2s(2s — 1)(s — 113}, (39)
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and for second moment we obtain,

Ko =2° x 305,11 — 1);
Kq=2* x 3% x I(I = 1){s[2’T1Too + 3°ToiLio] + 2L,To0T00}
Ko =2 x 3I(1 — D{Ly(2L, — DTGy + 8sLa[Toolis + Loluil
+4s(2s — 1)[3(Tool2 + 4150102)]
+ 1555 (2s — DTyl + 452030 (40)

The above coefficients introduced in Exps. 38) where calculated according to the correlation functions described
by equations for moments (36). Their indexes are connected with cosine oscillation functions, C;(#); C, (%), or
sineone, S,,1(1), S,,2(1). The coefficients, G, and K., don’t contain the information about the scattering steps,
n = 2sin multiple scattering process. This information about cooperative multiple conversion of photons
appears in the next time moments of the kinetic process, described by correlations calculated using multiple
excited state, (A:)I |L, —L>f, s=1,2, 3. Such type of conversion process is contained in the definition of the
coefficients, G;1; G, and, Ky, K. As follows from the expressions (39) and (40) , these coefficients are
proportional to this transfer cooperative number, n = 2s, and its moments. Here the new cooperative numbers,
L, =s(I—1)and L, = s(I — 2), represent the new states of the cavity excitations from which one or two photons
leave the cavity die to the scattering process in the external field. Taking into consideration that the coefficients
I';;depends on the interaction constants with external field, xx, ~ g5+ - According to the representation (21) we
approximate the rate matrix I';; from coefficients (39) and (40) by the expressions, I';; = G,
\/ G+ D@s—7) \/ (i + 1)(2s — 1) ,I';;=T';. Asfollows from the numerical estimations, the cooperative
correlations of scattering amplitude from different steps increases in the second order moment, (:(dW,/dt)?: ),
with increasing of number of photons in the pomp mode of the cavity. In figure a. and b. we observe that second
order moment is smaller than first one, d(W,) /dt, when the number of photons in the pomp mode is less than
15. The increasing the number of photons, [ = 22, and I = 30, stimulate the coherent and cooperative process in
the system C, so that relative quantum fluctuation decreases, Ay /(d (W) /dt)?.

In conclusion to this section, we observe the following. The multiple scattering effect is manifested for large
number of photons. To detect the superposition of multiple scattering photons in the big number of modes, it is
necessary to have the large ensemble of excited atoms which may multiple scattered the pump field. As follows
from the estimation of Exp. (36), for four atoms the possibility to observe the high mode correlations, E32,
becomes impossible due small number scattering centers (radiators) in the system. Here exist two possibilities.
The firstaction is to, return to last section and solve exactly the Schroinger equation for large ensemble of atoms.
The second possibility is to pump the excited atoms into the resonator and obtain the multiple scattering laser.
The first possibility is limited by the impossibility to solve exactly the system of operator vectors for big number
of atoms or large numbers of photons in the pump field. Such a problem involves the large degree of freedoms in
the proposed approach of section 2, which limits the possibilities to represent in analytic form of the solutions of
Schroinger equation. The second approach is connected to finding the system of known wave functions like,

At . . . .
(A,)¥11)0|0) 1...]1) ., of multiple scattered field on Hilbert space, on which we may construct the evolution of such
aquantum correlations between and possible excitations in the in the cavity bi-modes during the multiple
scattered photons.

4. Discussions

We introduced the new field characteristics of bi-modes in the coherent state in which the multiple steps Raman
lasing described by the superposition, E*)(z, t) = Eg}r) (2, t) + B (z, t) + EQ(z, t)+ ... +ED(z, 1), with
frequencies of the pump, first, second, ..., and n anti-Stokes components with frequencies Wpp Wp, T Wrs ey

wp, + nw,. Here fiw, is the excitation energy of each radiator (atom, molecule, exciton). The new characteristic
of bimodal excitation of the cavity field was introduced in the co-linear cavity/fiber approximation,

f[+(t) = P (z, t)E)(z, t), which permit us to represent the total intensity correlation as a sum of each

component:.
A a oy NN
(O (D) = (MO 1L,0) + (L,(011,0)
+ . +< an(t) Hukn(t)> (41)
where o < nisover scattering steps parameter, o < n. The first adjacent mode correlation,
Hln(t) ~ynE a(;)(t) E o 1(t) the second adjacent one (over two steps), Hzn(t) ~ynE (:;)(t) E,.,._ 2(t), and

the over o — step correlation, an(t) ~ > E ;:m) (t) s — a(t), represent the characteristics of the bimodal cavity

field in multiple scattering process at frequencies differences, : w;; 2wy ..., aw, . Multiplying these characteristics
to Hermitconjugate components, 11,,.(t), 11, (t), and 11 ,,,,(¢), we observe that in Exp. (41) is described by the
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moments (36) and can be observed by losses equation (11). The coherent superpositions of these components
may be used as a guide field characteristic with the good phase and amplitude in the semi-classical
approximation, (ﬁ;(t» = Py exp[—i¢, ], in thelasing process. Here, the Stokes component of the generation
of bimodal field, E]-Jr(t), can be regarded as a pump field for the next order of Raman lasing (See, for example,

[37]), so that the products, I:Q,: (t)bg,; _o(t), has the same phase, ¢y, = iaw,t 4 iaKz, in which

how, = hwj, o — hw;, and K = kj , — k;jare the a portions of excitation energy that the cavity field obtains when
the atomic system passes from the excited to ground states in & multiple Raman steps, « = 1,2,3, ... . Here Kis
the wavevector of bimodal components of induced lasing in the cavity. The detection possibilities of such
cooperative phenomena after the propagation of correlated photons through different fibers may be realized
using figure 5 in which instead of losses in the outside free field, the contact between the fibers and spherical
cavity is proposed [39—41]. According to this approach, only the diagonal elements belonging to the same modes
remain non-zero so that the field intensity is proportional to this number of steps, ‘#’. The possibility of
correlations between the anti-Stokes/ Stokes components in the multiple Raman scattering have been overcome
by recent advances in coherent scattering microscopy, which is based on coherent anti-Stokes/Stokes
components stimulated by the pump photons [2-10].

We focused our attention to quantum correlations between the components of multiple Raman scattering in
which the multi-steps induce emission opens the opportunity. To understand this type of coherence, we
purpose to study the inverse quantum conversion in which the atomic scattering centers (molecules, atoms, etc.)
are prepared in the ground state (see figure 1B). In this situation, the modes in which are converted the pump
photons in multiple scattering process belong to Stokes components, w; = w, — w,, W, = W), — 4w,
w3 = W), — 6wy, etc. Such a red shift was observed in intra- cavity continuous-wave of multiple Raman scattering
emissions. The application of such cooperative effects may be used in photon recycling and scattering in high-
performance solar cells [42, 43]. The possible quantum nutation between two multiple scattering process
represented in the figure 1 has a specific interest in quantum physics, due to the fact that portions of quanta with
frequency proportional to the transition energy between the excited and ground states of radiator levels,

Wy = Wp41 — Wy, periodically pass from atomic subsystem to cavity field describing quantum reversibility at
short time intervals.

The moments (14) and (36) described in the sections 2 and 3 have some analogies with quantum Fisher
information described in the [44—47]. In this situation, we must introduce the distribution function for the
number of photons, p(t) ~ We (1) / Np, and the product of two derivative functions in the second moment (14).
Here the number of photons inside the resonator, Ny= N — N,, can be approximated with the total number, N,
when the number of the losses photons is neglected, Ny > > N.,. This procedure can be used for the construction
of the quantum Fisher information form, E,,, = Tr{9,,0(7,) 0, p(7,)}, where 0, p and 9;,p(7;,) represent the

I v
symmetric logarithmic derivative through the anti-commutation, 8%,p = {L,p + pL.}/2,a = v, u. Here ]:l,
and I:,,, operators described in [46—48]. Indeed, for large value of excitations incise the resonator, Ny~ N we can
find the correlation between the diagonal Fisher information, F,, ,,, and our second moment (14). Considering
that 7, ~ tx,, the quantum Cram?-Rao bound is the quantum analog of the classical Cram?-Rao bound
(A7)* > 1/(ME, ). It may be estimated according to figure 4, Here M is the number of independent
repetitions [49—51]. According to this expression and the numerical behavior of the second moment represented
in figure 4, we observe that the quantum phase fluctuation achieved the minimal value when Fisher Information
(or the second moment) achieved the maximal one. This conclusion demonstrates the possibilities to realize the
coherent lasing processes of multimode scatting cooperative effect in which the quantum correlations are
established not only between the adjacent mode but between non-adjacent too.

5. Conclusions

In this approach, we put the problem about quantum cooperative process between the photons in the multiple
steps of scattering by the system of radiators. Here the conception is divided into two parts. First part
corresponds to the multiple generation of photons in the n- scattered cavity modes during the quantum notation
of radiators. Here we used the possibilities of transmission of energy multiple to portion fw, to the radiators or
to the cavity field when the atomic inversion surfer the nutation. A great attention was made to the correlations
not only between the adjacent mode of multiple scattering process, but to the possible quantum correlations
between the photons belonging to the non-congruent steps of the multiple scattering process. We mean the
correlations like, <Ei(r$) (z, t)Ei(_) (2, t)) in which the number of steps, i, and i + s, are established in the system so
that correlation takes between nonadjacent modes s > 1 of the multiple scattering. This quantum process opens
the possibilities to transmit the information not only between the neighboring modes, E;.,and E;, butbetween
the next steps of multiple scattering represented in figures 2 and 5. The extension of the correlations between the
non-adjacent steps in the case of the exact solutions of the quantum nutation in the Raman scattering suffers

18



10P Publishing

Phys. Scr. 99 (2024) 045102

N A Enaki

A, 1=6, s=3 B, I=15, s=3
A ‘ ‘ ‘ ‘ 5 ‘ ‘ ‘
—  (BoW) ig - @W) 4
a2 : A 2
—((@W)) 1.0 — (@ow)) 3
. 82 . 0 .5 — 82 1) 2
— (6 0.0 1
B B N Aaiiswigwinr
.0 0.2 0.4 0.6 0.8 1-0 0.0 0.2 0.4 0.6 0.8 1.0
tx, tx,
C, 1=22, s=3 D, 1=30, s=3
A 8 o 15
—  (@oW) — (BoW)
£ 2 ~ 2
— @iy’ ® — (@) 10
a2 22
— (6 4 — (61
2 5
oA
I U JU 0
00 02 04 06 08 10 00 02 04 06 08 10
txn txn
Figure 4. Time behavior of emission rate (8o W)=d (W, (t))/dt, square losses, (W )?)=(:(dW,(¢)/dt)* ) and relative quantum
fluctuations, (:5% )=AZ, /(d (W,)/dt)?, as a function of the fixed number of convention steps, 2s = 6, and of the initial number of
photons:x! = 6 (A), = 15(B), = 22 (C), and ! = 30 (D). The numerical simulation was made in units x ¢ for the following loss
parameter of the system Gy = 10, The cooperative correlations of scattering amplitude from different steps increase in the second-
order moment with increasing of the number of photons in the pomp mode of the cavity. The relative quantum fluctuations decrease
with the increase of the number of photons in the pump mode.

/= Pump Field

Pump Field <7\

Detection fibers ‘7—\ /75> Detection fibers

\

Figure 5. The interaction with external field represented in figure 2 is substituted by fibers in contacts with atoms placed in both
evanescent fields of the spherical cavity and fibers. Considering the interaction constant of radiators with the cavity field is larger than
the interaction constant of the chased fibers modes, the similar perturbation theory may be applicable in this configuration. During
the quantum notation, the system generates some photons which in the fiber modes, which can be detected or mixed for interference
effects by the detectors, D;, and D,, placed in the common ends of the two fibers.

from an impossibility to solve the Schréinger equation for a big number of radiators or for many photons in the
pumping field. This process may be solved studying the multiple scattering lasing [37]. In figure 5 we propose the
possibility to detect and study the quantum correlations between the photons of non-adjacent modes.
Introducing the thin fibers into evanescent zone of the cavity, we may choose the coupling of atomic subsystem
with cavity larger than coupling with the modes of thin fibers. These possible schemes of riding the information
from micro-cavities using thin fibers are in the center of interests in many modern experiments [39, 41-52].
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Exact solutions for: (a) small number of atoms and arbitrary bimodal excitations; (a)
small number of bimodal excitations and arbitrary number of atoms

In this appendix, we are focused on the possibilities to construct the closed system of the linear operator
equations like (19) the determinate of which contains commutative terms so that we can use the method of the
solution described in the literature.

Let’s start with a small number of atoms taking the part into multiple scattering process. According to the

. . . A At . . .
definition of multiple scattering operators, A, and A, , we observe that they satisfy the commutation relations:

A oA n—1 R R L R
(A, Al = Z g;+1{cp+lcg+l - CpC;}/an = 2AA,; (A1)
p=0

n—1
(AR, A, 1= ST (g%, +0G — 1+ 05)g2/2
p=0

—g},0(n =2 —j+05)/2)g. 58, /x) (A2)

where the diagonal elements, A/A\n = Z;é g; " {Cor 16; =6 6; } / (fol), commutes with free parts of
Hamiltonian (2), the normalized coefficient, x,,, is choosing according to the possibilities of the reducing of the
generation process in the multiple scattering to known symmetry; 6(x) is the Heaviside step function with
definition: 6(x) = 1, forx > 0, 6(x) = 1 /2, for x = 0, and #(x) = 0, for x < 0. 1. Let us return to the solutions of
the system of equations (19). For two atoms, j = 1, we have three equations of atomic operator vectors, X_;(t),
Xo(t)and X, (¢),in the system (19). The equation for Xo(r) can be reduced to the cubic differential equation,

a d 4 I

—X0® =Ko (2 [A, Ay + A,Ay ]+ 67)

e 20 Ata— a—ad
+ 216X,21X0(t) [An An - An An 1.

The solution of this equation can be found under the form, X, () = C expl[i Ot], from which follows the
characteristic equation, O+ Qﬁ + 4 = 0, where the coefficientsare p = — {2xfl [JAX:/A\; + A;/AX:] + 6%)
and § = 26x> [A:f\; — A;A:] The discriminant of this cubic equationis A = —4p — 274. Ifthe mean value
of discriminant is positive, A > 0, the cubic equation has three distinct real roots, and according to the definition
of quantum Rabi frequency, €2, the quantum process becomes oscillatory. For the negative values of the
discriminant, A < 0, the cubic equation has one real root and two complex conjugate roots, which correspond
to attenuation or increasing of the amplitude of oscillatory process as function of value and the sign of the
detuning from resonance 6. According to the canonical form, the roots of characteristic equation are

O =A+ é,f)m = (A + ]§)/2 +iJ3(A — é)/2,whereA = \3l—(j/2 + v—A ,and

B=3 —q / 2 — A= A . As follows from this equation and (19) for zero value of detuning, § = 0, the solution of
the system of equation (19) is:

Ri(t) = —ix, V2 {Cisin[Qt] — Calcos[Qt] — 113, "AL + 11, 1),
Xo(t) = € cos[Q,t] + Casin[Q,1],
R1(1) = —ix, V2 {Gisin[] — Caleos[Qt] — DI, A, + 11, —1) (A3)

where G = |1, 0),, C, = —ix, N2 {|1, 1A, + |1, =1),A,}4), and 0, = Xn\/z(f\,ff\; +A,.AD.

Itis not so difficult to observe, that the substitution of the vectors in the solution (18) is reduced to Jaynes—
Cummings model with nonlinear interaction of an atom with the field. We are interested in the use of symmetry
in the bi-boson interaction of atoms with scattering field described by interaction Hamiltonian (3) in order to
simplify the solutions of the system of equations (19) . We observe that this system of equations has a non-
commutative element in the main determinant, so that we meet not so simple procedure to find the eigenvectors
of such a system of operator equations.
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If the multiple scattering transitions in the atomic subsystem are defined without intrinsic symmetry
between the field operators, /AX: and JAX;, described by the commutation relations (A1) and (A2), we don’t have
the possibility to obtain the solutions for close system of equations for vector operators, (R, () = X, (/A\:)f —my
for the large number of atoms. Due to the fact that in the second term of each equation of the system, (19),

X’m+ 1 (t)/AX;(/A\:)f ~™ must be commuted according to algebraic rule. In this situation, the permutation of the
operator ([A\;), over (/A\:)j ~™, leaves the group symmetry in the general representation described by
commutation relations (A1) and (A2). Introducing the restriction to the scattering amplitudes, g;, of multi-step
processes we can reduce this permutation to su(2) symmetry, (21) or to su(1, 1) commutation requirement (26).
In this situation, the system of operator equations (19) becomes solvable for a large number of atoms using the
determinant representation described above,

4
dt

Roy(6) = —i8mR(8) — ix,J G+ m DG — 1) Ry (DA

— ix, GG+ m (G — m+ DRy 1 (0),

The right-hand side of this system of equations can be represented through a vector form transformed by

. AR
operator-matrix, }D( A

%{ﬁj(t), Ri 1(t),..,R (1)} = —i{R;(1), Ri1(0),...R;()} DV, (A5)

the definition of which depends on the applied algebra to the field operators. Here, the operator-matrix pety

has the rang 2j + 1 and can be represented by the expression
ﬁ@j +1)

=& X JHAY 0 0
Xa2i =i+ D X, 2@ - DAY . 0
0 X,2Q -1 5(—j+2) 0
X mE DG mAY
—6(L —p)
X G+ m)(j — m + 1)

. LA At At
Here as function of symmetry the permutation, A, (A,,)/ =" = (A,)/ =" 1A%

and su(1, 1) symmetries,

> Was estimated for su(2),

AMA, —p(p—1D —20p— DA,  for su(2);

ASM:
? AR + p(p — 1) — 2pA, for, n — oo su(l, 1).

(A6)

According to this representation (A6), the system of equation (A4) can be represented in vector-form (A5) for
both symmetries.

2. The similar approach is used relative to the system of equation (24). In order to obtain the determinant
with commutative elements, we propose the following substitutions in the system of equations (21),
?P ) = ﬁp (£)(D")P. In the real system of coordinate, this means that we pass to new variables, { ?p (t)},in

which the excitation with conversion energy, fuww = Wiy — wj), is lowered by atomic operator, D, Observing
the identity between the atomic operators, ﬁp,l(t)Dur(DA_)P = Ap,l(t)Ap, where AP =D'D +

2(p — DD, — p(p — 1), wemay easily pass from the system vectors, ﬁp (1), to the new one, { ffp ®},
representing the system of equation (24) through the new operator system,

21



I0OP Publishing Phys. Scr. 99 (2024) 045102 N A Enaki

L0 GO GO - B0
= —i(Bt) %(t) .. Vp(t) .. V(DY (A7)
in which the elements of the 2L + 1 - rang matrix, DLt 1), become commutative,
HELHD_
—6L  x,N2LA 0 0

X, V2L  —86{L—1) x,J2QL— DA, .. 0
0 X, 2QL—-1)  —6L-2) .. 0

0 e X PCL—p+ DA, .|

—o(L — p)

0 . X+ D@L = p)

In this situation, we may easily use the classical algorithm for the possible solutions of the linear system of
equations (A7). The procedure of simplification of multiple scattering process help us to observe some quantum
peculiarities in the behaviors of emitted photons taking into consideration relative not small number of photons
or atoms, described by the system of equation like (A7). The solution of the system of equation (A7) can be
represented by vectors in the form { ?P ) = ?P (0)exp [iQt] },p=0,1,2,...,n. The requirement of the matrix
diagonalization, det M@ — 0, where M QLD _ peL+D +1 Q, drastically simplifies the solution of the
system of equation, (A7) (here 1 is thfe identity matrix of size 2L + 1). From this procedure of diagonalization, we

may formally find the ‘eigenvalues’, €2,,.

Below we take some example how to use this formalism in the solution of the system of equations (A7) for
detuning, 6 = 0. We observe that two-step Raman conversion appear for the cooperative number, L = 1, from
which follows two possibilities: first corresponds to traditional single step Raman conversion, s =n/2 =1/2,
and two photons in the pump mode, I = 2; and second situation two-step multiple Raman conversion s = 1 ofa
single photon in pump mode, / = 1. The second one contains the possibility to convert initial photon state
[1)6/0)1]0), into anti-Stokes, |0)|1),|0),, and after that use the anti-Stokes photon for next step of conversion
into state, [0)9|0);|1),. In this situation the procedure of diagonalization of the matrix, DY, gives us the
following equation for eigenvalues, 0’ -2 X, (Az + Al) Q) = 0, the solutions of which are reduced to:

Qo =0, Ql,z = +gy 2(A2 + A1) .

Let us take, the cooperative number equalto L = In/2 = 3 /2. Wealso observe two possibilities in the
realization of this total cooperative number: (a) the number of photons in pump field is equal to three, = 3, in
the single step Raman scattering, n = 1 (s = 1/2); (b) we may have one photon in pump field and, / = 1, and three
scattering steps may be realized, n = 3, which corresponds to s = 3/2. According to this from the equation for
the matrix diagonalization, det|D® + )| = 0, we obtain the following algebraic equation for eigenvalues,

&' — B°(A; + 4A, + 3A) + 9AA; =0,

from which follows four solutions for Rabi frequencies. Below we represent them in pairs,

3A; + 4A, + 3A,
2
Here ©; = {; / X,» 1 = 1, 2, 3, 4,is the Rabi frequency in the relative units in which two of them is expressed

%, = + %J(3A3 1 4A, +3A)2 — 36A/A,. (A8)

e . A A2 .. . L
through positive sign in the expression (A8), © 3 = £4/(0");, and second pair is connected with negative sign

in the same relation (A8), (:)2,4 =+ ((:)2)2 .

We observe that for fixed common cooperative number, L, when we take into consideration a big number of
steps in multiple Raman scattering, according to the definition, L=sl, the number of photons in the pump field
must be small. For example for, L = 2, we have a possibility to chose two photons in the pump field, = 2 and
two steps , s = n/2 = 1, but of course this case for a single photon in the pump field we may have the four steps,

s = n/2 = 2, with the multiple conversions of the photon between the fife states of cavity field. Here we consider
the four non-zero interaction constants, g1, £, ¢&; and g;.For five operator—vectors we have fife solution of
characteristic equation, Det { M (5)} = 0, described by the algebraic equation,

B16* — 206°A, + 3A, + 3A; + 2A) + 8BAA, + 3AA; + 2AA )] =0.
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The relative quantum Rabi frequencies are:©, = 0, and four non zero solutions follows from the expression,
(62)1.2 =27, + 37, + 3A; + 2A,
+ QA + 34, + 345 + 287 — 8QALA, + 3A,A, + 3A,A). (A9)

Here the next Rabi frequencies, Q,- = éi, i =1, 2, 3, 4,are obtained from the expression (A9) in the same way
as in the case for cooperative number L = 3/2.

Now we construct eigenvectors for each case described above. According to the characteristic equations, for
L = 1 we obtain the following solution of the system of equation (A7),

fo(t) = —ix, V211, 0) D0y sin(€ur)
+ 2211, —1);D'D
1D
Al

D™+ 11, DD ) “Teos(Cur) — 1 + |1, —1)y;
%) = —iv2x, {11, ~)D'D + |1, YD sin(ut)

+ 11, 0) D™ cos({ut);
% (t) = —ix, V21, 0 DOy sin(yt) (DD + 2D, — 2)

A

+ 221, —1) DD + |1, 1) (D)2 *[eos(Eyt) — 1]
+ 11, 1) (D) (A 10)

Here, ¢} = X, JD'D™ + D, — 1 isthe quantum Rabi frequency for cooperative number, L=1. For one
photon we have three migration stats: |1, 1)= [1)0[0)1(0)2; [1,0)y=[0)o[1)1]0)2,and [1, — 1),= [0)|0)4[1)>.
We may easily pass from the system of vectors Yo(1), Yi(t), Yo(t) toold system operators Fo(t), By (1), F>(t) of
the system (24). For this we must make the permutation of operator D~ in the end part of each term of the

A_A2 A2 A A T —
solutions (A10) using the identity, D ;=D , where operator, {2y = X,V DD + D D", playstherole
form of Rabi frequency as in the solutions (A3) of the system of equations (19) for two atom subsystems in
interaction with multiple scatting field. It is evidently that in the two-step Raman conversion have the solutions

similar to Exps. (A3), but with substitutions, A: — D and ./A\; — D" This demonstrates that the proposed
method of ‘eigenvalues’ and ‘eigenvectors’ in the operator form, is applicable in quantum physics. If this method
gives the plausible solutions, we continue to use the method of construction of eigenvectors for cooperative
numbers, L =3/2,and L = 2.

For L = 3/2 we present only one operator vector, Y, (t), considering that using the initial conditions follows
from the system of equations (A9) we may easily construct the other vectors,

Yo(t) = A cos(Ot) + A, cos(Ct) + By sin(Qyt) + B, sin($,1),
where the coefficients of cosine functions are expressed through the atomic operators,
A=113/2, =3/2)0 (@5 — 3:3A) — 243 23/2, 1/2), (D)2} /(€ — s
A=113/2, =3/2); @ — 333 AN — 324
- 23313/, 1/2), (D)) /(@ -
and coefficients of sine functions are represented through similar operators,
Bi=ixs(\313/2, —1/2) DI, — 23 + 4Ay)]
+6x313/2, 3/2), (D7) /1@ - D)s
By =ixs(V313/2, —1/2) DI} — 23 + 4Ay)]
+6x313/2, 3/2) (D)) 1@ — D).

We observe only two possibilities of distribution between two cooperative numbers, [, and s: for/ = 3,s =1/2
we have the states, |3/2,3/2)r=[3)0, [0)15 [3/2,1/2);=[2)0,|1)1; [3/2, — 1/2);=[1)0,|2)1and |3/2,
—3/2);=10)0,|3), orfor = 1,s = 3/2, we observe the migration of photon between the four states, [3/2,
3/2)p= [1)0,(0)1]0)2]0)33 [3/2,1/2) = [0)0, [1)1]0)2[0) 33 [3/2, = 1/2) = [0)0, [0}1]1)2[0) 33 [3/2, = 3/2) = [0)0s
0)1]0)2[1)s.

For L = 2 we obtain five steps and fife operator - ‘eigenvalues’ which give us the possibility to represent the
vector in the form,

Yo(t) = Ag + A cos(Cut) + A; cos(€t) + Bysin(Cut) + By sin(h1), (A 11)
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where the free coefficient is
Ao=12, —2) — 22x4{12, —2); AlBA; + 2Ay)
+ 612, 0 (D)2A4 - 312, 2), (D0 "0, (A12)

and cosine coefficients may be expressed through Ay,

A

A A A2 A A A2/ A2 a2
A=112, =2, (42DD — ) + 2V6 302, 0)p (D) + A} /() — D)
A At Al A2 A A A2/ A2 A2
Ao =12, =2 @x3DD” — ) + 246 X202, 0 (D) + Ao}/ — ). (A13)
The sine coefficients are
By =2ix, {12, —1);D [% — 2x2 QA + 3A,)]
= 6x312, 1)y (D )}/ = Q9%
By =2ix, {12, —1)s D [(2 — 232 A, + 3A))]
= 6X312, 1) (D)) /190:(2,% — 7). (A 14)

The possibilities of the distribution between two cooperative numbers for same L increases. For L = 2 we have
three possibilities: / = 4, s = 1/2 with cooperative numbers, |2, 2) /= [4)0, |0)1,; [3)0 | 1)1 {0)0 [4)1 I = 2,5 = 1, with
two-step vectors conversion, |2, 2) = [2),0)1]0)2; |2, 1) ;= |1)0, |1)1]0)2: |2, 0) s~ |1)0, [0)1]1)2 01 |0)0, [2)1]0) 25
12, = 1)5=10)0, [1)1]1)25 |2, — 2)§= |0)0, [0)1]2)2; and = 1, s = 2, with four steps conversion of one photon,
12,2)=[1)0,10)1]0)2|0)3, [0}43 2, 1)r=[0)0, 1)1]0)2[0)3 [0) 4> --» |2, = 2)r=10)0»[0)1]0)2|0) 3, |1)4. We observe that
collective state, |2, 0), into two-step conversion must be the mixture of Dicke and multiple conversion stets.

We may reduce the system of equation (27) for bimodal field of multiple scattering belonging to su(1, 1)
symmetry (26) to a new system with commutative coefficients. In order to obtain the commutative elements of
principal matrix of this system of equation, let us introduced the new vectors, {1, (t) = ®,(t) (D7)P}, which
help us to obtain a new system of equations,

d(To(), B@),.... 50,0 dt = —i(To(), Ti),.... T (1), ) D (A 15)

Here the principal matrix contains commutative elements,

D(OO)
—O0k XJ%A] 0 0
N2 =8k + 1) xJ2@k + 1) A, 0
0 X, 20k +1) —8k+2 . 0
; \Jp@r +p—-DA, .|
—0{Kk + p)
XV + D2k +p)

We observe that knowing the transition symmetry, we may simplify the solution of Schréinger equation
representing it by one of three systems of equations (19), (24) and (27) described above.
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