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Abstract
The cooperativemodels of the bimodalfield in themultiple quantum scattering nutations are
discussed and proposed for possible detections in open cavities.We proposed two types of cooperation
between the converted photon processes in thesemultiple steps of scattering nutation in the cavity.
One of them takes into consideration the cooperative process between the photons of each step of the
multiple steps of Raman conversion. The second cooperative process takes place between the photons
belonging to different steps ofmultiple scattering conversions. The proposed novel bimodal entangled
sources take into consideration both the coherence and collective phenomena between the photons
belonging to the systemof the bimodalfield obtained inmultiple scattering emissions. The application
of higher-ordermultiple Raman bimodal coherent field in quantum information is proposed.

1. Introduction

Cooperative processes of the simultaneousmulti-wavelength emissions open newperspectives in the
development ofmodern communication systems like holography and phase correlations, in the description of
the interaction of light with biomolecules and living systems, taking into consideration not only classical aspect
of these problems [1–10], but their quantum interpretation too [11–13]. The classical aspects ofmulti-photon
stimulation coherent emission already are in the potential applications in registrationmedias,medical
instrumentation, laser spectroscopy, LIDAR, and nonlinear opticalmixers [1, 14–19]. Recently, specific
attention is given to the new type of coherent emissions, which occur not only among the same quanta but
between the photon groups generated in the nonlinear interaction of the electromagnetic field (EMF)with
emitters (atoms,molecules, biomolecules, etc.). The quantumaspects of this type of emissionwere intensively
studied in [11–13, 20–22], butmultiple conversions of the photons and their quantum correlations remain
today in the development studies. This type of light generation supports the idea of coherent correlation that
appears in the bi-modal field, inwhich the entangled photons are generated. A physical characteristic of the
radiation formed from the blocks of well-correlated bi-modesmust be determined by the intensity of the electric
field of eachmode and propriety in such superposition. An attractive aspect of the problem consists in the
selective two-quantum excitation of some atoms, ormolecules of the system, where it is necessary tominimize
the dipole active radiation in comparisonwith Raman emission. The last idea can be applied inmicrobiology
[13, 23], where a selective dis-activation of somemolecular structures (for example of viruses) in the tissuemay
become possible in induced Raman excitation. In such situations appears a necessity for a good description of
both the amplitude and phase of this new type of radiation formed frombimodal correlated photons.

The intensity correlatives between the adjacentmodes of Raman scattering and two-photon lasingwere
studied, [24]. Herewe discussed themutual interaction between two lasing processes. First process is described
by single step induced scattering and second one takes into consideration two-photon induce processes, in
whichwe have taken into consideration the quantum correlations between them.Asmulti-steps aspects of the
scatteringwere not studied in the literature, we propose below to discuss the possible quantum correlations
between the scatteredmodes inmultistep process of quantumnutation. It is prposed two types of cooperative
effects between the converted photons in thesemultiple steps induce process. Thefirst type involves the
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cooperative process between the photons of one of the Raman conversion steps. The second cooperative effect
appears between the photons belonging to different steps ofmultiple conversions. This new type of generated
coherent state is proposed by novel bimodal entangled sources, which take into consideration both the
coherence and collective phenomena between the photons belonging to the systemof the bimodalfield obtained
inmultiple Raman emissions. The application of higher-ordermultiple Raman bimodal coherent field in
quantum information is described in accordance with the definition of quantumamplitude and phase of such
entangled states of light.

The correlation between the proposedmodel and experimentmay befind in themodern experiments. For
example the induced correlations stimulated by scattering conversionwith the single andmultiple Raman shifts
were observed inKTP crystal pumped by aNd: YVO4 1064-nm laser in [1]. Thefirst-Stokes emission at
wavelength 1095 nmwas observed at Raman shift of 266 cm−1 and emission power about 0.81W stimulated by
pumppower of 16.5W. The second output coupledwith high reflectivity in the range of 1000− 1130 nm is
employed to simultaneously generate the first-Stokes 1095 nm and the second Stokes 1128 nm emissions of the
sameRaman shift about 266 cm−1. Similar phase-matched signals are observed in aTiO2 crystal, inwhich the
high-order coherent anti-Stokes Raman scattering signals of the fundamental light (ωp, kp) at frequencies and
wave vectors,ωp+ lωR and kp+ lq respectively, wheremultiple Raman scattering number, l, reaches 10 under
the optimumcondition of phase-matching [25, 26].HereωR∼ |q|= 610cm−1 is thewave number of a Raman-
active,A1g, mode ofTiO2. This procedure of generation of the high-order harmonic conversion of infrared and
visible light into extreme ultraviolet or soft x-ray, and high-order stimulated Raman scatteringwas in the center
of attention ofmany experimental and theoretical investigations [2–10]. For example, in the [4–6, 27] a Raman
spectrumwith a large bandwidthwas observed, ranging from the IR to theUV.Under some conditions, strong
pumpdepletionwas observed and up tofive anti-Stokes sidebandswere observed to have energies exceeding
10%of the transmitted pump pulse energies.

The quantumdescription of themultiple scattering process inwhich the atomic ensemble enters the
quantumnutation process relative tomultiple photon conversions is given in section 2. The possibilities to solve
this problem for a relatively small number of radiators and a big number of scattered photons are proposed. The
inverse solution, which is considered a small photon number and a big number of atoms, is given introducing
the symmetries between themultiple steps of conversion. A new cooperative number that takes into
consideration the number of photons and number of conversion steps is introduced. Considering that in the
dielectric cavities the radiators are placed in the evanescent zone of the sphere/fiber in sections 3 and 3we open
the systemof atoms inmultiple scattering, introducing the interaction of these radiators with external EMF. The
rate equations for the numbers of converted photons and excitation oneswere obtained. In order to understand
the possibilities of experimental observation of quantum correlations among differentmode components of the
cavity in themultiple scattering processes, the description of the higher order rates of the photons from such a
system and their fluctuations are introduced. In section 4we propose the algorithmof systemofwave vectors in
whichmultiple scattering processes took place and in appendix this systemof vectors was constructed. It gives us
the possibility of the description of the correlation of photons fromnon-adjacent steps ofmultiple scattering
process. On the bases of this vector system, amaster equation for the quantumgenerator withmultiple
scattering processes take place is proposed in section 3. Cooperative correlations between the photonswhich
belong to the bimodalfield of themultiple scattered processes were analytically estimated and numerically
represented. New cooperative aspects between cavity photons belonging to the bimodal fieldwere established
and annualized in discussions 4 and conclusions 5.

2. Symmetry ofmultiple scattering transitions and their cooperative description

We represent higher-ordermultiple Raman conversion of photons by excited two-level radiators (atoms,
excitation,molecules,molecular vibrations, etc). Taking into consideration the position of virtual states |v1〉, |v2〉
and |vn〉, we propose to study the opportunity of quantumnutation process between two-level atomic system
and cavity excitation during the conversion of pumpphotons intomultiple bimodal cavitymodes of photons
from the pumpfield into n scatteredmodes (see figure 1). Infigure 1we represent a possible three steps of
multiple scattering of photons into new anti-Stokesmodes.Wewill demonstrate the possibility to achieve the
total conversion of all photons in the higher energymode, represented infigure 1(B), and the possible return of
the systemback to its initial state during the quantumnutationwhich includes three types of the cooperative
phenomena. Thefirst type corresponds toDicke cooperative process ofNr radiators, the second contains the
cooperative process between the photons converted between the twomodes in the same scattering step [22, 24],
and the third cooperative process includes the effects of re-absorption of scattered photons and their conversion
in the next steps ofmultiple scattering described in section 1.
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According to perturbation theory, the transitionmatrix element in each step is proportional to the product
of dipole active transition elements from ground and excited states to the nearest virtual one and inverse
proportional to the detuning from resonances, with virtual state,Δp, ( )~ D- g d d q qp ev v g p p p1

2
p p

. Here dei and

dig are the dipole transitionmatrix elements from excited/ground to intermediary state, |vp〉; qp−1 and qp are the
per photon strength of the two adjacent cavitymodes, p− 1 and p of the cavity. In order to simplify themultiple
scattering problem,wewill reduce the symmetry ofmultiple scattering process to twowell known in quantum
optics su(2) and su(1, 1) algebras. TheHamiltonian of the such two-level system connects bimodal cavity field in
the higher order Raman scattering process and can be represented through the free, ĤC0, and interaction, ĤI ,
parts by the expressions,

ˆ ˆ ˆ ( )= +H H H , 1C C I0

ˆ ˆ ˆ ˆ ( )†å w w= +
=

 H c c D , 2C
p

n

p p p r z0
0

ˆ { ˆ ˆ ˆ ˆ } ( )c= L + L
- + + -H D D . 3I n n n

Here ˆ ˆ ˆ† cL = å
-

=
-

+ +g c cn p
n

p p p n0
1

1 1 , and ˆ ˆ ˆ† cL = å
+

=
-

+ +g c cn p
n

p p p n0
1

1 1 are the annihilation and creation operators
in the higher order of Raman scattering. Suchmultistep scattering processes take place from excited states of two
level system inwhich the pumpfield is described by annihilation, ĉ0, and creation, ˆ†c0 operators. The scattering
process in the p− order anti—Stokesmodes generated in the n−multiple Raman scattering is described by the
same annihilation and creation operators, ĉp, and, ˆ†cp , p= 1, 2,..n. As a result the pump and scatteredfield

operators satisfy the sameBose commutation rules: [ˆ ˆ ]† d=¢c cp p j i, , and [ˆ ˆ ] =¢c c, 0p p , ¢ º ¼p p n, 0, 1, 2, , ). The

lowering, ˆ ˆ= å
-

=
-

D Dj
N

j1
r , and excitation, ˆ ˆ= å

+
=

+
D Dj

N
j1

r , atomic operators are connectedwith the inversion

through the commutation relation, [ ˆ ˆ ] ˆ=+ -
D D D, 2 z , and [ ˆ ˆ ] ˆ=  

D D D, ,z where ˆ ˆ= å =D Dz j
N

zj1
r , is the

inversionoperators of this radiator subsystem.Here the atomic operators are superposition of each atomic
operators, ˆ-Dj , ˆ+Dj , and D̂zj from the ensemble of theNrundistinguished atoms. The atomic collective
polarization operator depends on the number of the number radiators,Nr, and can be expressed through the

creation, ˆ†
d , and annihilation, d̂ , operators of the excited state of the ensemble of atoms according toHolstein-

Primakoff representation: ˆ ˆ ˆ ˆ† †
= -+

D d N d dr , and ˆ ˆ ˆ ˆ†
= --

D N d d dr , and ˆ ˆ†
= - +D N d d2z r (see for

example the representations from [28–31]).We observe that for the big number of atoms in the ground state,

 ˆ ˆ†
á ñN d dr , the atomic operators can be regarded as a boson creation and annihilation one

ˆ ˆ†+
D d Nr , ˆ ˆ-

D N dr .
We introduce the losses from the closed system ‘atoms+ cavity field’ considering that the atomic subsystem

is concentrated in the evanescent zone of a spherical cavity orfiber so that the radiators are in scattering
interactionwith the intrinsic cavityfield (3) described by discreetmodes,ω0,ω1,ω2,K,ωN, and scattering
photons into external free EMF as this is represented infigure 2. The cavity photons prepared in the pumpmode

Figure 1.Multiple induce scatteringfield in the cavity. A correspond to the situationwhen the atomic stream is prepared in excited
state and themultiple lasing process takes placewith the reabsorption and generation of new anti-Stokesmodes with frequencies :
ω1 + ωr,ω1 + 2ωr,ω1 + 3ωr, ..., figure B. corresponds to the situationwhen the atomic system are prepared in the ground state, and
multiple scattering process converts the pumpphotons into Stokes scatteringmodes :ω1 − ωr,ω2 − 2ωr,ω1 − 3ωr, ... The possible
nutation between these two states is described in section 2.
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are in themultiple Raman conversion process stimulated by the radiator subsystemprepared in an excited state.
Taking into consideration the position of virtual states, |v1〉, |v2〉, and |vr〉, belowwe describe the possibility of
conversion photon generated in the scattered cavitymodes into external free one in the process of simultaneous
interaction of the atomwith the cavity and external quantifiedfield. Sowe divide theHamiltonian into two parts
inwhich thefirst part corresponds to the closed subsystemdescribed byHamiltonian (1), and the second one is
theHamiltonian of external EMFwhich stimulates the losses from the cavity during the photon convention,

ˆ ˆ ˆ ˆ ( )= + +H H H H . 4T C B BC

Here ĤC is theHamiltonian of the radiator and cavity field subsystems defined by Exps. (2), and (3). The free
part ofHamiltonian of external EMF,

ˆ ˆ ˆ†
å w= H b b ,B

k

k

k k k

can be combinedwith the interaction part when the atomic subsystem is prepared in the excited state,
ˆ {ˆ ˆ ˆ }

†
c= å +-H c b D H c. .BC

e
k p k p p k, , . The excitation from ground statesmay be described by the termof the

Hamiltonian term, ˆ {ˆ ˆ ˆ }
†

c= å ++H c b D H c. .BC
g

k p p k p k, , , which is applicable for the atomic subsystemprepared
in the ground state. Considering the two processes of scattering possible, when the atomic subsystem can pass
into quantumnutationwe define the interactionwith the externalfield as a sumof the bothHamiltonian
parts, ˆ ˆ ˆ= +H H HBC BC

e
BC
g
.

The free field is described by the operators of emitted photons, ˆ †
bk and b̂k, which leave the evanescent zone in

the free space. These emitted photons don’t take part in the next steps of the spontaneous scattering process. The

number of such photons, ˆ ˆ ˆ†
= åN b be k k k, and its statistics give us information about quantumnuation between

the cavityfield and atomic subsystem trapped in the evanescent zone. Formolecular vibration, described by the
above boson operators, when the pump is very strong itsfield operator can be described byC- number operator
the Schröinger equation can be solved exactly [7, 8]. In this section, we use the quantumapproach for the loss of
photons from the system. Indeed, passing into rotation systemof coordinate, |ψ(t)〉= [ ˆ ]∣ ¯ ( )y ñT itH texp T0 , we
obtain the equation,

∣ ( ) ˆ ( )∣ ( ) ( )y y
¶
¶

ñ = ñi
t

t H t t , 5IB

where,  ( ) [ ˆ ] ˆ [ ˆ ]= - H t itH H itHexp expIB T IB T0 0 , and ∣ ¯ ( )y ñ=t [ ˆ ]∣ ( )y- ñitHexp 0T . Here
ˆ = +H H HIB I BC is the interaction of radiators with cavitymodes (3) and external field, ˆ ˆ ˆ= +H H HT C B0 is the
freeHamiltonian of subsystems in interaction picture,

      ( ) ( ) {[ ( ) ( ) ( ) ( )] ( ) } ( )† †
å c c= + + ++H t H t c t b t c t b t D t H c. . , 6IB I
k p

k p p k p k p k
,

, ,

which describes the scattering process of cavity photons by atomic subsystems placed into the evanescent zone.
The interaction constant,χk,p is proportional to the same parameters of the system as gp,

( )c ~ Dd d q qk p ev v g k p p,
2

p p
qk and qp are the per photon strength of the cavity and free fieldmodes. As these

amplitudes are inversely proportional to the squirt fromquantified volume, ~q v1n 0 , and ~q V1k ,

Figure 2.The systemof atoms is placed in the evanescent field of the spherical cavity (see equator representation). Each radiator
interacts with the bimodal cavity field and the external one. As the constant of interactionwith the cavityfield is larger than the
interaction constant with external EMF, the perturbation theory is applicable. During the quantumnotation, the system generates the
free photons which can be detectedwith detectorsD1 andD2 represented in thefigure.
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where v0 andV are the volumes of the cavity and free space respectively, it follows that |χk,p|= gp. Considering
that the Schröinger equation (5) for closed cavity fieldχk,p solvable, we introduce the operator, ˆ ( )O t , belonging
to the cavity subsystem. For themean value of this operator, ˆ ( ) { ˆ ( ) ˆ ( )}rá ñ =O t Tr O t0 , we obtain the following
Heisenberg equation,

ˆ ( ) [ ˆ ˆ ( )]

{[ˆ ( ){ ˆ ( ) ˆ ( )} ˆ ( )] ˆ ( )

{ ˆ ( ) ˆ ( )}} ( )

†å c c

=

+ +

+ 

+ -

+



d

dt
O t

i
H O t

i c t D t D t O t b t

H c O t O t

,

,

. . . 7

T

p
p k p p k k

0

, ,

To eliminate the operators of the free field from this equationwe use the traditional procedure of the
representation of the solution of the annihilation, ˆ ( )b tk , and creationHeisenberg operators,

{ ˆ ˆ ˆ ˆ } ˆ ( )
†

c L + L
- + + - D D b t.n n n k , described in literature (see for example ([21, 22]). According to this procedure, the

solution is represented through vacuum and sources parts,

ˆ ( ) ˆ ( ) [ ] [ ]{ˆ ( ) ˆ ( )

[ ]{ˆ ( ) ˆ ( ) ( )

å

å

ò

ò

w c t w t t t

c t w t t t

= - - - - -

- - - -

-

+

b t b i t i d i c t D t

i d i c t D t

0 exp exp

exp , 8

k k k
p

k p
t

k p

p
p k

t
k p

, 0

, 0

so that vacuumpart, ˆ ( ) ˆ ( ) [ ]w= -b t b i t0 expk
v

k k , gives zero contribution in normal product of the right hand

part of equation, (7), ˆ ( )∣ ñ =b t 0 0k
v

k . The second termof solution (8) represent the source part in the Born-
Markov approximation, the solution has the form,

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )

ˆ ( ) ˆ ( ) ( ) ( )

å

å

p c x w w w

p c x w w w

= - - -

- - +

-

+

b t b t i c t D t

i c t D t

2

2 , 9

k k
v

p
k p p k p r

p
p k p k p r

,

,

where ξ(ω)= δ(ω)/2− iPv/(2πω) is the Fourier transformof theHeaviside step function. The solution for

creation operator, ˆ ( )
†

b tk isHermit conjugate to the expressions (9). For themean value of this operator,
ˆ ( ) { ˆ ( ) ˆ ( )}rá ñ =O t Tr O t0 , in the rotationwave approximationwe obtain the followingHeisenberg equation,





ˆ ( ) [ ˆ ( ) ˆ ( )]

[ˆ ( ) ˆ ( ) ( )]{ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )}

[ˆ ( ) ˆ ( ) ( )]{ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )}

{ ˆ ( ) ˆ ( )} ( )

† ( ) ( )

† ( ) ( )

å

å

á ñ - á ñ

= á G + G ñ

+ á G + G ñ

+ 

+ -
+ +

+

- +
- -

-

+



d

dt
O t

i
H t O t

c t D t O t c t D t c t D t

c t D t O t c t D t c t D t

H c O t O t

,

,

,

. . . 10

C
r

p
p p p p p p

p
p p p p p p

1
, 2

1
2

2
, 2

2
2

Here the renormalizedHamiltonian,

ˆ ˆ { ˆ ˆ ˆ ˆ }
{ ˆ ˆ ˆ ˆ } ˆ ˆ

{ˆ ˆ ˆ ˆ }

( ) ( ) †

†

å

å

d c= + L + L

- +

- +

- + + -

+ - - +

- + + -
- -

 

 



H D D D

D D D D c c

c c D D H c. . .

C
r

z n n n

p
p p p p

p
p p p p

1 2

1, 1 1 1

is represented through the cooperative interaction shifts of energies between atomic and cavitymodes stimulated
by vacuum field, ∣ ∣ ( )( ) c w w w= å - - Pvp k p k k p r

1
,

2 , ∣ ∣ ( )( ) c w w w= å - + Pvp k p k k p r
2

,
2 and energy

correlation between the scattering steps ( )( ) c c w w w= å - +- + - + + Pp p k p k k p k p r1, 2
1

1, , 1 1 . The cooperative
losses of photonswith frequencies for anti-Stokes,ωk= ωp+ ωr and Stokes photons,ωk= ωp− ωr, are described
by the expressions, ∣ ∣ ( )( ) p c d w w wG = å - -p k p k k p r

1
,

2 and ∣ ∣ ( )( ) p c d w w wG = å - +p k p k k p r
2

,
2 . The coopera-

tive cross correlations between non- adjacentmodes is described by losses,
( )( ) p c c d w w wG = å - ++ + +p p k p k k p k p r, 2

1
, , 2 2 , and ( )( ) p c c d w w wG = å - -- - -p p k p k k p k p r, 2

2
, , 2 2 .

We observe from generalized equation (5) that the total number of photons in the system,
ˆ ( ) ˆ ( ) ˆ ( )†= å =N t c t c tf p

n
p p0 , is not conserved and the emitted photon rate from the system “atoms+cavityfield”

has the opposite sign relative the photon loses from the system, ˆ ( ) ˆ ( )= -dN t dt dN t dte f . From this follows
that the number of emitted photons depends on the initial one in the pump field.Nf(0)= l,
ˆ ˆ ( ) ˆ ( ) ( ) ˆ ( )

†
= å = -N b t b t N N t0e k k k f f , According to the generalized expression (10) the losses from system ‘C’

can be easy obtained by substitution of ˆ ( )O t with ˆ ( )N tf . For the closed system,C, follows that it is also conserved
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the total energy of excited atoms and field excitation in the cavity represented infigure 3 by squaredfigures. The
total number of such excitation is, ˆ ( ) ˆ ( ) ˆ ( ) ˆ†= å + +W t pc t c t D N 2C p p p z r .We emphasize here that the

expression, ˆ ( ) ˆ ( ) ˆ ( )†= åW t pc t c tf p p p , represents the number of cavity field excitations, which is obtained during
the induced conversation of photons fromone fieldmode to another. In this situation, we obtain the following
expression for the loss of cavity excitations,

ˆ ( ) ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

{ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) } ( )

( ) †

( ) †

†

å

å

å

á ñ= - G + á ñ

- G - á ñ

- G á ñ +

=

-
+ -

=

- +

=
- + - +

+ +

d

dt
W t p c t c t D t D t

p c t c t D t D t

p c t c t D t D t H c

2 1

2 1

2 . . . 11

C
p

n

p p p

p
p p p

p
p p p p

0

1
1

2

2

1
1, 1 1 1

The equation for the losses of the number of photons from the cavity, ˆ ( ) ( )á ñd N t dtf is obtained fromExp. (11)
by substitution, ˆ ( ) ˆ ( )W t N tC f , and (p+ 1)→ 1 and (p− 1)→ 1 in thefirst and second termof expression
(11). As follows from these definitions of the pumpfieldwith frequency,ω0, and p= 0, we have the scattered
fieldwith frequencies:ωk= ω0+ ωr, for

( )G ;0
1 andωk= ω0− ωr for

( )Gp
2 . The last frequencies,ωk= ω0− ωr,

correspond to scattered pumpfield in the low frequency spectrum. If the systemof atoms are prepared in excited
state, andfield in the lower frequency state , |l〉0, themultiple scattering in frequencies,ω1,ω2, ...,ωn, according
to the interactionHamiltonian (3)must give themaximal values of probabilities, |χp,k|

2∼ |gp|
2,due to the small

dieting from resonances,Δp. Other frequencies,ωk< ω0, andωk> ωn, are neglected from themodel.
In this situation themain contribution in Exp. (11) gives the first termproportional to

( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )( ) †G + á ñ+ -
p c t c t D t D t1 .p p p

1 In opposite case when the atoms are prepared in the ground state (see
figure 1), we can consider the pumpfield prepared in the state |l〉nwithmaximal frequency,ωn, in which the
pumpfield is accompanied by the downward scattering at the frequencies,ωn−1= ωn− ωr,K,ω0. The loses,

( )Gn
1 , at frequencies,ωk= ωn+ ωr, must be eliminated fromdue to the fact that the upward scattering probability

is considered smaller than downward one in the frequency intervalω0< ωk< ωn. The quantumnutation
possibilities between these two descriptions of scattering process is discussed below.

Theobservationof thesequantitieswith the external detectormaybe realized introducing thenumberof emitted

excitations in the externalfield, ˆ ( )=W te [( ) ] ˆ ( ) ˆ ( )
†

w w wå - b t b tk k r k k0 .Here ( ) ˆ ( ) ˆ ( ) ˆ ˆ†
w w wå - = - b t b t H Nk k k k B e0 0

is the excess of energy generatedbyopen system,C, due to themultiple conversionprocess of thepumpphotons in

Figure 3.During themultiple scattering conversion, three excitations passed from the excited atomic ensemble, -N 3r
e , to the cavity

field. Three squares represent the quantity of energy that passed from excited radiators to cavityfield, 3ÿωr.
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othermodes (seefigure3). In this situation,weobtain the following expressions for the rate of emitted excitation
ˆdW dte andphotonnumber

ˆ ( )
ˆ ( ) ˆ ( ) ˆ ( )

( )á ñ -
á ñ

=-
á ñd

dt
W t

d W t

dt

dN t

dt

d N t

dt
; . 12e

C e f

Here for the conservation of the quantity, ˆ ( ) ˆ ( )+W t W tC e , we neglect the dispersion of emitted photons in the
expressions for the commutator [ ˆ ˆ ˆ ]+W W H, 0C e BC .We observe that this commutator is proportional to,

[( ) ]{ˆ ˆ ˆ }†c w w wå - - - -+ p c b D H c1 . .k p k p k r p k, , 0 , fromwhich follows that in the rotationwave approx-
imation,ωk; ωp+ ωr= ωr(p+ 1), this commutator can be neglected.

Taking into consideration the conservation law of themoments of the total number of photons,

[ ˆ ( ) ˆ ( )]
†

å =ab t b tk k k [ ( ) ˆ ( )]- aN N t0ph ph , and total excitation number, ( ˆ )aWC ,α= 1, 2, ..., in the closed system,C,

belowwe estimate the quantummoments of the loses rates, ( ˆ )adW dtC , and ( )adN dte , of cavity quasi—quanta
and photons from this system,whenwe introduce the interactionwith external field. According to this
representationwe propose to estimate the quantumfluctuation of photon rate introducing the expression for
square rate of quanta from the system ‘C’. Defining the following normal product,

( ˆ ( )) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )
ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )

† †

† †

á ¶ ñ~ á¶ ¶ ñ

+ á ¶ ¶ ñ +

¢ ¢

¢ ¢

W t b t b t b t b t

b t b t b t b t H c

: :

. ., 13

e k k k k

k k k k

0
2

0 0

0 0

we can eliminate the operator of externalfield. Considering that the number of atoms in the excited state is larger
than the number of atoms in ground onewe obtain follow secondmoment (13),

ˆ ( ) ( ){ ( )

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) }

( )

† †

† †

åå= G ¢ + G ¢ ¢ +

´ á ¢ ñ

+ G ¢ ¢ + á ñ

+

¢ ¢
¢

¢
+ + - -

¢ ¢
+ + - -*

d

dt
W t p p

c t c t c t c t D t D t D t D t

p c t c t c t c t D t D t D t D t

H c

: : 2 1 1

1 ,

. ., 14

e
p p p p

p p p p

p p p p

p p p p p p

2

,
, , 1

,
1

1 1
1

1

1
1

1
1 1 1

⎛
⎝

⎞
⎠

inwhich ( )p c c x w w wG = å - -¢ ¢ ¢2p p k p k p k k p r, , , and [ ( )]w wG = G + ¢¢ ¢* *pp p p p r, , 0 . According to the Exp. (14)
the squarefluctuation of the emission photon rate and excitation from the system can be estimated,

ˆ ( ) ˆ ( )

ˆ ( ) ˆ ( ) ( )

D = -

D = -

d

dt
N t

d

dt
N t

d

dt
W t

d

dt
W t

: : ,

: : . 15

N e e

W e e

2
2 2

2
2 2

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

The expression for the square intensityfluctuations,DW
2 , can be easily obtained from the equation for losses

(14), by replacing ( ˆ ( ) )dW t dt: :C
2 with normal product ( ˆ )dW dt: :e

2 .
Following the perturbation theorywe can introduce the exact solutions of the Schröinger equation for cavity

Hamiltonian (1) in the right-hand side of the expressions (10), (11) and (14), considering that the interaction
with the externalfield is quite low in computationwith quantumRabi nutation frequencies which described the
closed cavity, ( )( ) cG +p 1p

i
n. In this situation, wemay return to the generalized equation for arbitrary

Heisenberg operator Â, ˆ ( ) ∣ ( )∣ ( )∣ ˆ ( )∣ ( ) ∣ ( ) ∣j y y já ñ =  á á á ñ ñ ñA t A t0 0 0 0 0 0k k l n j j l n k, , , representing it right hand
side through the initial densitymatrix of the system, ˆ ( ) ∣ ( ) ( )∣ ∣ ( ) ( )∣ ∣ ∣r y y j j= ñá Ä ñá Ä  ñá0 0 0 0 0 0 0j j l n l n k k k, , ,

ˆ ( ) ∣ ∣ ∣ ˆ ( ) ˆ ( ) [ ( ˆ ˆ ) ]

ˆ ( ) [ ( ˆ ˆ ) ] ˆ ( )∣ ∣ ∣ ( )
{ }{ }

ååå   rá ñ = á á á +

´ - + ñ ñ ñ

=

+ 



A t n n j m U t it H H

A it H H U t j m n n

, 0 exp

0 exp , , 16

j m n n p

n

k
k p C B

C B p k k

, 0p k

Here, under the trace, we have theHamiltonian parts, ĤC and ĤB, described by the expressions (4) and (6). The
initial state of atomic ensemble is prepared in exited state, |ψj(0)〉= |j, j〉, and photon subsystem is prepared in
the l photon Fock state of low frequencymode, |jl,n(0)〉=|l〉0|0〉1...|0〉n. The similar initial situationmay be
declaredwhen the systemof atoms are prepared in the ground state, ˜ ( )y 0j =j,− j〉, whale the bimodal cavity field

in the higher frequency Fock state, ∣ ˜ ( ) ∣ ∣ ∣j ñ = ñ ñ ñl0 0 0 ...l n n, 0 1 . The evolution operator, ˆ ( )U t , can be represented

through theT product of the interactionHamilton (6), ˆ ( ) [ ( ) ]ò= - ¢ ¢ U t T i dt H texp
t

IB0
.

Passing fromHeisenberg to Schröinger picture in the expressions (10) and (16)wemast solve exactly the
Schröinger equation of the closed system,C, and after that return to the right-hand side expressions for losses
(11) and itsmoments.The bimodal field is considered so that the frequency deference,ω= ωp+1− ωp,is constant
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for each bimodal pair and the detuning from resonance, δ= ωr− ω= ωr, is relative smaller than radiator
frequency,ωr. In the same short time approximation, taking into consideration the intrinsic symmetry between
the bi-boson operator, we propose to solve the Schröinger equation in interaction picture. Indeed, passing into
rotation systemof coordinate with frequencyω, theHamiltonian part, ˆ ˆ ˆ†w w= å +w =H c c Dp

n
p p p z0 0 , commute

withHamiltonian of the ‘atoms+ cavity field’ and becomes themotion integral. For the resonance case, this
motion integral corresponds to the conservation of the total excitation numberwith energies in the resonance
case, δ= 0. Thewave function in the rotation systemof coordinate, ∣ ( ) [ { ˆ ˆ ˆ }]∣ ¯ ( )†y w w yñ = å + ñ=t it c c D texpj l p

n
p p p z j l, 0 , ,

is reduced to the Schröinger equation,

∣ ¯ ( ) ˆ ∣ ¯ ( ) ( )y y
¶
¶

ñ= ñi
t

t H t , 17j l Ief j l, ,

where the effective interactionHamiltonian takes into consideration the detuning from resonance relative

bimodal scattering process, ˆ ˆ { ˆ ˆ ˆ ˆ }d c= + L + L
- + + - H D D DIef z n n n , if the systemof coordinates is rotatedwith

frequency,ω. The total number of photons, ˆ ˆ ˆ†= å =N c cph p
n

p p0 , commutes with operators, L̂
-
and L̂

+
. In other

words, during themultiple scattering, the particles are converted fromone spectral diapason to others,
conserving their number. This conservation low is not the same as in traditional single photon interaction of the
atomic ensemble with cavity field. In one scattering act the photon is converted fromωp toωp+1 and thefield
from the cavity received the energy, ÿω= ÿ(ωp+1− ωp). In the in single photon interaction in the transition
event of the atom excited to ground state, the cavity field receives one photonwith energy, ÿω. The analogies
between the coherent processes single photon interaction andmultiple scattering field can be easily observed if
we accept the number of above energy difference as a quasi-particle in a closed cavity. This suggests that the role
of the number of photons in themultiple scattering process plays the operator, ˆ ( ) ˆ ˆ†w w wL = å -= c cz p

n
p p p0 0 ,

which togetherwith a number of excited atoms, ˆ ˆ= +N N D2ex r z , conserve the total number of excitations in
the closed ‘cavity+atoms’ system, ˆ ˆL + Nz ex=const, as this took place in the single photon interaction in the
cavity [32]. From these analogies, wemay introduce the operators, L̂

-
and L̂

+
, as an annihilation and creation of

cavity quasi-particle withfixing energy,ωr= ωk+1− ωk. Initially, we can consider that all photons are in the
pumpmodewith frequency, w w~p 00

, and during themultiple scattering is generated to such portions of
energies in the resonator as this is represented infigure 3.

We can represent the solution of this equation in the two approach. First way correspond to the situation,
when the excited subsystemof atoms is regarding as a pump fluxwhich enter into themicro resonator inwhich
the excited energy is converted into anti-Stokesmodes inmultiple scattering process of the special prepared
pumpmode into the resonator. The restoration of initial state of quantum systemwas studied from the statistical
point of view in [33–35].

1. Let us start with quantumnuataion of the small ensemble of two - level system undermultiple scattering with
bimodal cavity field. Inmultiple photon conversions, the restoration probability of the initial state with
increasing the number of atoms in the system and number of catering steps in the short time interactionwith
bimodal cavity field substantially decreases, due tomultiple reabsorption and emission of pumpphotons. In
the situationwhen the number of cavity photons is small we can define theN+ 1 vector operators of the
atomic ensemble in themultiple Raman conversion of prepared pumpmode described by theHamiltonian
(3) in the representation of the solution (17)

∣ ( ) ˆ ( )∣ ( ) ( )åy a jñ = ñ
=-

t X t 0 , 18l n
m j

j

m m l n, ,

where { ˆ ( ) [ ˆ ]= -X t iH texpm Ief |j,m〉r,m=− j,− l+ 1,K,l− 1, j} are vector—operators, which depends on
the bimodal operators of cavity field, |jl,n(0)〉, is the initial state of the field inmultiple scatteredmodes of the
pumpfield. If we start from excited state, the initial coefficients are,αm= δm,j. In this situation is better to
consider that the initial state of the pump field is in the l− photon Fock state, |l〉0, and other anti-Stokes
modes are in the vacuum states, |jl,n(0)〉. In general situation the initial bimodal fieldmay be represented by
the superposition of the populated states, |l0〉0|l1〉1...|ln〉n. Taking into consideration that the action of the
operators, ˆ†

D , and ˆ-D , on the collective state, ˆ ∣ ñ+
D j m, r= ( )( )+ + -j m j m1 |j,m+ 1〉r,

ˆ ∣ ñ-
D j m, r= ( )( ) ∣+ - + - ñj m j m j m1 , 1 r , we obtain the systemof theNr+ 1 equations for these
operator—vectors,

ˆ ( ) ˆ ( ) ( )( ) ˆ ( ) ˆ

( )( ) ˆ ( ) ˆ

( )

d c

c

=- - + + - L

- + - + L
=- - + ¼ +

+
-

-
+

d

dt
X t i mX t i j m j m X t

i j m j m X t

m j j j j

1

1 ,

, 1, , 1, . 19

m m n m n

n m n

1

1
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Weobserve that the systemof equations (19)maybe represented in thematrix form ˆ ˆ ˆ=dX dt XD,where
ˆ ( ˆ ˆ ˆ ˆ )= ¼ ¼- -X X X X X, , , , ,j j j1 0 ,As follows fromthedescriptionof the system (19), theprincipal determinant is

describedbymatrix, D̂,withnon-commutative elements, ˆ ( )( ) ˆd c d= - - + + - L
-

+D i m i j m j m1km k m n n k m, , 1 -

( )( ) ˆc d+ - + L
+

-i j m j m 1n n k m, 1, so that is not so simple tofind the eigenvectors of sucha systemofoperator
equations. In5wepropose tomodify the systemof equation (19) introducing themodifiedoperator-vectors in the
systemof equationsdescribedby anewprincipalmatrixwith commutativeoperator terms, so that the solutionof
this systemof equationbecomespossible for relative largenumberof atoms.

2. With an increasing number of atoms, we may solve the system of the equation (19), introducing the new
operator-vectors, which depends on the atomic operators. This is possible if we know some commutative

symmetries between the operators, L̂
-
n , and L̂

+
n , the action of which on the bimodal states, |jl,n(0)〉, may be

regarded as annihilation or creation operators of the energy portion in the cavityfield equal to, ÿω; ÿωr.
Belowwe introduce for the special representation of these operators the su(2) and su(1, 1) symmetries in the
multiple scattering processes. Fromproposed operator descriptions, we establish the commutation relations

between the L̂
-
n and L̂

+
n operators.

Let usfirst introduce another representation of the solution for the Schröinger equation (17),

∣ ( ) ˆ ( )∣ ( ) ( )åy b jñ = ñt F t 0 , 20
l l l l

l l l l l l l l r
, , ..

, , .. , , ..

n

n n

0 1 2

0 1 2 0 1 2

which can be used in the situationwhen the systemof radiators afixed in the cavity or evanescent zone offiber, as
this is represented infigure 2. As the pumpphoton flux passes through the cavity orfiber and enters into the
multiple scattering processes with the localized ensemble of excited atomswe observe that in representation (20)
the expressions, ˆ [ ˆ ]∣ ∣ ∣= - ñ ñ ñF iH t l l lexp ...l l l l I n n, , .. 0 0 1 1n0 1 2

, are operator-vector of the cavity represented by the
multiple scattered states of the bimodalfield. As an interactionHamiltonian acts only on these stats, these vector
operators depend on the atomic operators, ˆ+D and ˆ-D . The coefficients b al n n n, , ..1 2

represent the initial field
superposition, inwhichwas prepared photon pulse, ∣ ( )j ñ = å0ph l l l l, , .. n0 1 2

bl l l l, , .. n0 1 2
|l0〉0|l1〉1...|ln〉n. The ensemble

of atoms contains the same superposition of theDicke states, ∣ ( ) ∣j añ = å ñ=- j m0 ,r m j
j

m r . This problemmay

also be simplified for relatively small number of photons and afinite number of atoms in the cavity. Belowwe
reduce the systemof equation evolution of systemC to thewell-known su(2) transition symmetry in the free and
interaction parts of theHamiltonian (1)which describes themultiple induced conversion of photons in the case
of the big numbers of excited radiators. It is attractive from the physical point of view to describe this type of
cooperative phenomenon inmultiple Raman scattering for small number of scattering steps. The single-step
cooperative Raman lasingwas described in [21, 22, 36], the result of which can be obtained from themultistep

scatteringHamiltonian (3) in the single step conversion, n= 1 : ˆ ˆ ˆ†L =
-

b c1 1 0 , ˆ ˆ ˆ†L =
+

c c ;1 0 1
ˆ (ˆ ˆ ˆ ˆ )† †L = -c c c c 2

z
1 1 1 0 0 .

Here it is convenient to introduce the cooperative number, L= l/2, and angularmomentumoperators:
ˆº L- -

L1 2 1 , ˆº L+ +
L1 2 1 and ˆº LL z z

1 2 1 . For two steps ofmultiple scattering, wemust take into consideration

that, n= 2, adding the conversionHamiltonian in the secondmode, ˆ (ˆ )†c c2 2 , maybe reduced to two bimodal

subsystems described by strength product, ˆ ~HI
ˆ { ˆ ˆ ˆ ˆ }( ) ( ) ( ) ( )

+- + - + -
D k E E k E E1 0 1 2 1 2 . Here, the generated anti-Stokes

photons can be described in the language of negative and positive negative frequency strengths.

For example, in the first product ˆ ( ) ˆ ( )( ) † w= -
-

E t z q c i t ik z, exp1 1 1 1 1 corresponds to generation of photons

in themodeω1= ω0+ ωr, under the pumpfield, ˆ ˆ ( )( )
w= - +

+
E q c i t ik zexp1 0 0 0 0 . The positive frequency part

of a new strength, ˆ ( ) ˆ ( )( )
w= - +

+
E t z q c i t ik z, exp1 1 1 1 1 , becomes the pumpfield for a next anti-Stokes photons

from the negative frequency strength, ˆ ( ) ˆ ( )( ) † w= +
-

E t z q c i t ik z, exp2 2 2 2 2 , in the interaction part of

Hamiltonian, ˆ ˆ ˆ( ) ( )- + -
D E E1 2 . According tofigures 1 and 3 in the three level system the realization of su(2)

commutation relations becomes possible when the scattering amplitudes, k1∼ 1/Δ1 and k2∼− 1/Δ2, have
same detunings from resonance,Δ1;−Δ2 in the denominator. In this situation, we are able to introduce the

newoperators, ˆ ( ˆ ˆ ˆ ˆ )† † cL = +
+

g c c g c c2 1 0 1 2 1 2 2, and
ˆ ( ˆ ˆ ˆ ˆ )† † cL = - +
-

g c c g c c2 1 1 0 2 2 1 2. In the two-steps Raman

emission, the scattering amplitudesmay be equal between them, |g0|= |g1|, so that the operators, L̂
+
2 and L̂2,

belong to su(2) algebra. In this situation, introducing the renormalization coefficients, c = g 22 , wemay

replaced the old operators by su(2) one, ˆ ˆº L
- +

L1 2 , and, ˆ ˆº L
+ -

L1 2 .We can introduce the operators,
ˆ ˆ ˆ ˆ ˆ ˆ [ ( ) ˆ ˆ ( ) ˆ ˆ ] ˆ [ ( ) ˆ ˆ ( ) ˆ ˆ ]† † † † † †f f f f= - = -  - = 

- +
L c c c c L i c c i c c L i c c i c c, 2 exp exp , 2 exp exp

z
1 2 2 0 0 1 1 1 0 2 2 1 1 1 0 1 2 1 2 ,

which are described by the principal cooperative numbers, L= l, and the projection,m≡− l,Kl. Here the
phasesf1 andf2 take aleatory values and can be introduced in the newboson operators, ˆ̃ ( ) ˆf= -c i cexp1 1 1

and ˆ̃ ( ) ˆf= -c i cexp2 2 2.
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Similar resultsmay be obtained for the three-step Raman emission, n= 3, inwhichwe can introduce the

operators, ˆ ( ˆ ˆ ˆ ˆ ˆ ˆ )† † † cL = + +
+

g c c g c c g c c ;3 1 0 1 2 1 2 3 2 3 3
ˆ ( ˆ ˆ ˆ ˆ ˆ ˆ )† † † cL = + +
-

g c c g c c g c c3 1 1 0 2 2 1 3 3 2 3. The special

normalization of these operators choosing coefficients, c c= =g g 31 3 3 3 and g2/χ3= 2,may simplify the
three steps ofmultiple Raman conversion, reducing this process to su(2) cooperative symmetry described by:
ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †= + +
+

L c c c c c c3 2 3 ;3 2 0 1 1 2 2 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †= + +
-

L c c c c c c3 2 33 2 1 0 2 1 3 2 , and ( ) ˆ ˆ ( ) ˆ ˆ† †= - - +L c c c c3 2 1 2z
3 2 0 0 1 1

( ) ˆ ˆ ( ) ˆ ˆ† †+c c c c1 2 3 22 2 3 3. Infigures 1 and 3 the special detuning from resonance relative to the doublet of the
excited virtual states opens the opportunity to realize the relations between these coefficients and experiment. In
this case, the cooperative number becomes, L= 3l/2. The relation between the constantχ3 and g1 is described by
the expression,χ3= g 31 . As in the two steps of Raman conversion, the three steps of scattering are described

by su(2) algebra, ˆ ˆº L
+ +

Ls n , ˆ ˆº L
- +

Ls n and ˆ ˆº LLs
z

n
z
, inwhichwe can represent the principal cooperative

number, L, as a product of two numbers, L= sl. Thefirst number, s= 3/2, is connected to the number of
scattering steps, n= 3, and the second onewith the number of quanta in the initial pump field, l. According to
themathematical induction, we can generalize this procedure for n− scattering steps described by angular
momentumvectors, |L,m〉f, which are eigenvectors of L̂s

z
operator, ˆ ∣ ∣ñ = ñL L m m L m, ,s

z
f f . Here the principal

quantumnumber, L=ls, where s= n/2. The representation of these operators through the number of states
becomes possible, introducing the steps parameter s= n/2,

ˆ ( )( ) ˆ ˆ

ˆ ( )( ) ˆ ˆ

ˆ ˆ ˆ ( )

†

†

†

å

å

å

= + - +

= + - +

=

+

=-
+ - +

-

=-
+ - +

=-
+ +

L s k s k c c

L s k s k c c

L kc c

1 ;

1 ;

. 21

s
k s

s

s k s k

s
k s

s

s k s k

s
z

k s

s

s k s k

1

1

It is not difficult to control this relationship for single-, two-, and three- scattering steps described above. After
the cooperative description (21), we return to unsymmetricalmultiple conversions.We propose to construct the
special states inwhich a great attention is given to the cooperative exchange process, with a portion of energy
equal to, ÿω; ÿωr. This quasi-quanta can be generated or absorbed in the cavity bi-modes during themultiple
scattering processes. In order to establish some simple relations between the conversion acts and the number of
portions of energies that the cavitymay obtain during the emission or absorption of converted photons. Below
we reduce the interactionHamiltonian (3), for this special value of the coefficients, g1, g1 , ... , gn to su(2)
symmetry. For this, we pass into the systemof rotated coordinates with transition atomic frequency,ωr, and
considering that the frequencies of generation photons, inside the cavity, are connectedwith a constant
difference,ω= ωj+1− ωj, by themultiple scattering expression,ωj= ω0+ jω, we represent thewave function
|ψ(t)〉 through thewave function in the rotation systemof ordinate, ¯ ( )y ñt , described by expression,

∣ ( ) [ [ ˆ ˆ ]∣ ¯ ( )y w w yñ = L + ñt it D texp r s
z

r z ,

ˆ { ˆ ˆ ˆ ˆ } ( )†d c= =- + +
- - +

 H L L D D L , 22I n
z

s s s

inwhich thefield operators and atomic one belong to the same symmetry, inwhich two independent Bloch

vectors, ( ) ( ˆ ) { ˆ ˆ ˆ ˆ }†
+ = + +

- - +
L L L L L L L1 2,s s n s s

2 and, ( ) ˆ { ˆ ˆ ˆ ˆ }†+ = + +- - +
j j D D D D D1 2z

2
, are conserved.

Thefirst corresponds to the three cavitymodes represented by the vector, inwhich the integer number L=sl
depends on the number of photons of the pumpfield, l, and the number of the steps, n+ 1= 2s, in the induced
emission ofmultiple Raman scattering. The conversion operator of the photon between the Stokes and anti-
Stokesmodes takes place through the pumpmode, L= 1/2, 1, 3/2, 2,K.,. For example, in the single step Raman
scattering, L= l/2, and into two steps ofmultiple scattering processes L= (l/2)× 2. Tofind the connection
between the l and the number of pump photons n0, belowwe represent the solution of Schröinger equation (17)
in another form than it was described in Exp.(18). Considering that the systemofNrexcited atoms is prepared in
the superposition of the states |j,m〉 and the photon pulse in the superposition of su(2) states of themultiply
scattered photonswe represent thewave function (20) as a superposition sumof vector operators,

∣ ( ) ˆ ( )∣ ( ) ( )åy b jñ = ñ
=

t F t 0 . 23
p

L

p p a
0

2

Here ˆ [ ˆ ]∣= - - + ñ =F iH t L L p pexp , , 0, 1, 2 ...p I ph are the operator-vectors ofmultiple generated
photons in themodes of cavity EMF, |ja(0)〉 is the initial state of the atomic ensemble. According to this
approach, these new vectors of the cavity field obey the systemof differential equations,
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ˆ ( ) ( ) ˆ ( ) ( ) ˆ ( ) ˆ

( )( ) ˆ ( ) ˆ

( )

d c

c

= - - - +

- + -

= ¼ -

-
+

+
-

d

dt
F t i p L F t i p L p F t D

i p L p F t D

p l L

2 1 ,

1 2 ;

0, 1, ,2 1, 2 . 24

p p n p

n p

1

1

This systemof equations forfield vectors, { ˆ ( )}F t ,p p= 0,K2L, havemany analogies with the systemof equations
for the similar vectors of the atomic subsystem (19). Herewe have introduced the specific interaction constants
gn, n= 1, 2,K,n, which follows from the requirements of commutation relations for su(2) algebra (21). This
procedure helps us to solve both systems (19) and (24) for a larger number of atoms or photons, respectively. The
principal determinant of this systemof equations also contains non-commutative elements and becomes
difficult to apply the procedure of solutions of the systemof equationswith constant coefficients. In appendixwe
introduce a new vector, the systemof differential equations, which is described by a principal determinant with
commutative terms The exact solutions of the system (24) are represented for principal quantumnumber
L= 3/2, 2.

To consecutively construct these states, let’s consecutively act with operator L̂
+
2 on the initial two photon

state in the pumpmode, ˆ ∣ ∣ ∣ ∣ ∣ ∣L ñ ñ ñ = ñ ñ ñ
+

2 0 0 2 1 1 02 0 1 2 0 1 2, which does not involve the absorption of the emitted

photon. According to the next action of the excitation operator, L̂
+
2 , we obtain the superposition between the

two cooperative processes connectedwith two quanta scattered infirst anti-Stokesmode and cooperative re-

conversion of the scattered photon, ˆ ∣ ∣ ∣L ñ ñ ñ =
+

1 1 02 0 1 2 { ∣ ∣ ∣ ∣ ∣ ∣ }ñ ñ ñ + ñ ñ ñ2 2 0 2 0 1 0 10 1 2 0 1 2 .Here, thefirst term
describes the cooperative conversion of two pumpphotons into two scattered oneswith frequency,
ω1= ω0+ ωr, while, the second termdescribes the reconverted of a new photon in the second scattered field
with frequencyω2= ω0+ 2ωr. The fourth-state represents the conversion of both photons: one in thefirst state
and the other in the second scattered state in the double step of Raman conversion:
ˆ { ∣ ∣ ∣ ∣ ∣ ∣ } ∣ ∣ ∣L ñ ñ ñ + ñ ñ ñ = ñ ñ ñ
+

2 0 2 0 1 0 1 3 2 0 1 12 0 1 2 0 1 2 0 1 2. The last term corresponds to the total conversion of all

photons into the higher energy state, ˆ ∣ ∣ ∣ ∣ ∣ ∣L ñ ñ ñ = ñ ñ ñ
+

0 1 1 2 0 0 22 0 1 2 0 1 2. Beggingwith L� 2, such a
superposition plays an important role inmultiple scattering processes.

If we consider that the coefficients gp increase proportional to the step number ofmultiple Raman
transitions, p, another type of symmetry follows from the representation of commutation relations (A1) and
(A2). Indeed, for a big number ofmultiple scattering processes, n→∞ , coefficients, gp= g0p , and,χn= g0, the
operators

ˆ ( ) ˆ ˆ ˆ ( ) ˆ ˆ ( )† †å åL = + L = +
-

¥ =

-

+
+

¥ =

-

+k c c k c clim 1 ; lim 1 , 25
n k

n

k k
n k

n

k k
0

1

1
0

1

1

and

ˆ ( ) {ˆ ˆ ˆ ˆ }† †åL = + -
¥ =

-

+ +k c c c c
1

2
lim 1 ,z

n k

n

k k k k
0

1
2

1 1

belong to su(1, 1) symmetry with eigenvectors, |κ,κ+ n〉, of operator L̂z , ˆ ∣ ( )∣k k k k kL + ñ = + + ñp p p, ,z

inwhich the defined operators excited and lowering (25) L̂
+
, and L̂

-
, with actions ˆ ∣k kL + ñ =

+
p,

( )( ) ∣k k k+ + + + ñp p p2 1 , 1 , ˆ ∣ ( ) ∣k k k k kL + ñ = + - + - ñ
-

p p p p, 2 1 , 1 , p= 0, 1, 2,K,r,K
. It is not complicated to demonstrate that this operators belong to this symmetry,

[ ˆ ˆ ] ( ) {ˆ ˆ ˆ ˆ } ˆ

[ ˆ ˆ ] { ( ) ( ) ( )}

( ) ˆ ˆ ˆ ( )

† †

†

å

å q

L L = + - = L

L L = - + + + + - - +

´ + = L

+ -

¥ =

-

+ +

+

¥ =

-

+
+
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k k k n k
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, lim 1 2 ; 0
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1

2
2 1 2 2 0.5

1 . 26

n k

n

j k k k z

z
n k

n

k k

0

1
2

1 1

0

1
2 2 2

1

Here in the process of system excitation of cavity field inmultiple Raman process is conserved in the vector,

( ) ˆ { ˆ ˆ ˆ ˆ }k k - = L - L L + L L
- + + -

1 2z
2

. From the definition of operators, L̂z , L̂
-
and L̂

+
, and initially

prepared.We observed thatmultiple scattering effects aremanifested for a large number of photons. To observe
the superposition ofmultiple scattering photons in a large number ofmodes, it is necessary to have a large
ensemble of exciting atoms thatmaymultiply scattered under the action of the pump field. Following up from
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the estimation of Exp. (36), for four atoms the possibility to observe the highmode correlations, E3
2, becomes

impossible due to the small number of scattering radiators in the system. There exist two possibilities. Thefirst
action is to return to the Schröinger equation for a large ensemble of atoms. The second possibility is to pump
the excited atoms into the resonator and obtain the lasing effect inmultiple scattering process. The first
possibility is limited by the possibilities to solve exactly the systemof operator vectors for the large number of
atoms or large numbers of photons in the pumpfield. Such aproblem involves a large degree of freedom in the
proposed approach, which limits the possibility to represent in analytic form the solutions of the Schröinger
equation (see appendix). The second approach is connected tofinding the systemofwave functions like,

( ˆ ) ∣ ∣ ∣L ñ ñ ñ
+

1 0 ... 1n
k

n0 1 , ofmultiple scattered fields on theHilbert space. In this space, wemay construct the
evolution of such quantum correlations of cavity excitations during themultiple scattered lasing. From the
initial state of the cavity field, |jph(0)〉= |l〉0|0〉1...|0〉r..., follows that the coefficient,κ= l/2.

Let usfind the solution of the Schröinger equation (17) in the form represented by expressions,

∣ ( ) ˆ ( )∣ ( )y b yñ = å F ñk k=
¥

+t t 0j p p p j, 0 , where the expressions, { ˆ [ ˆ ]∣ }k kF = - + ñ = ¼k+ iH t p pexp , ,, 0, 1, 2,p I ph ,

are an infinite set of vector-operators obtained in themultiple generated photons in themodes of the cavity
EMF. According to the su(1, 1) algebra roles, the new systemof equations follows from the Schröinger
equation (17)

ˆ ( ) ( ) ˆ ( ) ( ) ˆ ( ) ˆ

( ) ˆ ( ) ˆ

( )

d k c k

c k

F = + F - + - F

- + - F

= ¼

k k

k

+ + -
+

+ +
-

d

dt
t i p t i p p t D

i p p t D

p k

2 1

2 1 ;

0, 1, 2 ,, , , 27

p p p

p

1

1

where andχ= g1. The systemof equation (A15)with commutative terms of principal determinantsmay be
obtained from (27) by the substitution, ˆ ( ) ˆ ( )( ˆ )¡ = Fk+

-
t t Dp p

p, and applying the commutation relations (26).
We emphasize that there exist two possibilities to solve exactly the Schröinger equation (17). Thefirst

method consists of the exact solution of 2j+ 1 operator vectors declared in the systemof equations (19) or (A4).
Thismethod is applicable for a relatively small number of radiators in comparisonwith the number of photons
in the closed system. The second approach is connected to the possibilities of the application of symmetries su(2)
and su(1, 1) in themultiply scattering process described by the systemof equations (A.7) and (27) for relative
small number of photos in thefield. In the case of the same small number of photons and atoms, these two
methodsmust coincide.We observe that, atfirst glance, for a few atoms, the number of equations in the system

(27) is infinite. Butmaybe not so, because the chain of equations for thefield vectors ˆ ( ) ˆ ( )( ˆ )¡ = Fk+
-

t t Dp p
p, is

truncatedwhen the number of atomsNa< p (in this situation ( ˆ ) =-
D 0p ).

3. Losses of excitations in the cooperativemultiple scattering

Let us estimate the generation of converted photons in the free space. In this approach, we can use in the right-
hand side of the above equations the solutions from the appendix. The possiblemultiple scattering effect in the
subsystemof two excited atoms in interactionwith the cavity field can be obtained if we consider that initially the
field is prepared in the pumpmode |l〉0, |0〉1,K,|0〉n. Neglecting the detuning, δ= 0, and vacuum re-
normalization, the simple solution for atomic vector operators (A3)we obtain the following solution,

∣ ( ) [ ] ∣ ∣ ∣ ∣

[ ] ∣ ∣ ∣ ∣

[ ] { ( ) ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ } ∣ ( )

y ñ = -
W
W

ñ Ä ñ ñ ¼ ñ

-
W
W

- ñ ñ ñ Ä ñ

-
W
W

- - ñ ñ ñ ñ

+ - ñ ñ ñ ñ Ä - ñ

t g l
t

l

ig l
t

l

g l
t

g l l

g l

1 4
sin 2

1, 1 , 0 , , 0

2
sin

1 1 ... 0 1, 0

4
sin 2

2 1 2 , 2 0 ... 0

1 , 0 1 ... 0 1, 1 , 28

l
r l

r n

l

l
n r

l

l
n

n r

1
2

2
1

12
2 0 1

1
1

1
0 1

1

2
1

1
2 1 0 1 2

2 0 1 2

⎧
⎨⎩

⎫
⎬⎭

where ( )W = - +g l g g2 3 2l1 1
2

1
2

2
2 . As follows from the definition of Rabi frequency,Ω12, and from the last

termofwave function (28) themigration of the photon in the next step ofmultiple scattering process, ˆ ˆ ˆ† -
g c c D2 2 1 ,

is possible to. Introduce the solution ((28)) into the loss rate of cvasi-particles from cavity described by Exp. (11),
we observe thismigration in non-adjacentmodes described by the cooperative rateΓ0,2,
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ˆ ( ) [ ]

[ ] { ( ) }

[ ] [ ( ) ]

[ [ ] ] ( )
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á ñ
= - G

W -
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-
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G - + G
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W -
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W -
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d W t
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l g l
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g l
l t
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cos 1

1

2
sin

1 2

2
cos 1

2
cos 1

1

2
cos 1

. 29

C l

l

l

l

l l

l

l

0
1

1
2 1

1
2

2

3
1
2

2
1

12
2 0

1
0
1

4
1 2 0,2

1

1
2 1

2 1

1
2

3
2 1 2

2 1
2

1
4

⎧
⎨⎩

⎫
⎬⎭

⎧
⎨⎩

⎫
⎬⎭

According to Exp. (29) for a large number of pumpphotons, wemay neglect the rate, ( )Gl p
2 in comparisonwith l2

( )Gp
1 because the induced scattering from the ground state is small due to the large values of number of photons, l.

But at this stage, the contribution of the correlations of the non-adjacentmodes in the losses of the quasi—
particles from the ‘cavity+field’ systemdescribed by the coefficients,Γ0,2.

With increasing the number of excited atoms in the system 2j, the possibilities ofmultiple Raman scattering
increases too. According to the systemof equations (A7)we obtain a similar wave function like (29) inwhich the
quantumnumber, L= l/2 for photon excitations is substituted by number j .Wemay study this effect using the
exact solutions for small values of the quantumnumber L= sl= 1 described by the vectors (A10). In this
situationwe have two possibilities. First scattering process corresponds to the single step and twophoton in the
pump and scatteredmodes described by the states: |2〉0|0〉1 ; |1〉0|1〉1, and |0〉0|2〉1. Second one correspond to one
photon (l= 1) in two—step scattering (s= 1), described by the states:|1〉0|0〉1|0〉2 ; |0〉0|1〉1|0〉2, and |0〉0|0〉1|1〉2.
Thefirst case have similarities with solution (28) inwhich the quantumnumber, L= l/2 for photon excitation is
substituted by number j. The single photon in the two-step scattering conversion by arbitrary number of atoms,
have some peculiarities in the lossesbehavior. In this case the solution of Schröinger equation obtained from
initial state, |j, j〉a⊗ |1〉0|0〉1|0〉2, is described by the expression,

∣ ( )
( )

∣ ∣ ∣ ∣
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∣ ∣ ∣ ∣
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⎧
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⎫
⎬⎭

where ( )W = -g j3 1 2j1 . According to this solution, the loss rate of of cvasi particles from cavity (11) takes
another form,
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sin
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cos 1
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j

j

j

j

j

j

j

0
1 2 1

1
2

2

4 2
2

1

1
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4 2 1
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4 4 2 1
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1
4 2
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⎧
⎨⎩

⎫
⎬⎭

⎧
⎨⎩

⎫
⎬⎭

Here, we observe an involvement of the correlation between the photons fromnon-adjacentmodes offirst and
second scattered steps. But it is not so large superposition,∼Γ0,2, in comparisonwithfirst termproportional,

( )Gj 0
1 . Due to the small number of photon and large cooperative effects between the atoms the probability of

scattered photon in the externalfield by atoms from ground states increases too, ( )~ Gj 2
2 .

For the large numbers l and s this process involve the superposition between the converted photon states
belonging to non-adjacentmodes through the excited states of atomic subsystem. This effect is studied in in
muti-step Raman lasing of [37]. From section 2 follows that such superposition appears for two quanta, l= 2 in
the two steps Raman conversion, s= 1, inwhich is realized the cooperative state, |2, 0〉f. In this situation, it is
better to study this simple superposition using the solution (A11) for the set offive field vectors, which describes
the entanglement between photons belonging to scattering components using the secondmoments (14}) and
normalfluctuations (15). Thewave function for two quanta in the two steps scattering process can be obtained
from the action of the vector (A11), on the exited systemof atoms |j, j〉,
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∣ ( ) [ ˆ ˆ ( ˆ ) ˆ ( ˆ ) ˆ ( ˆ )
ˆ ( ˆ )]∣ ( )

y ñ = + W + W + W

+ W ñ

t A A t A t B t

B t j j

cos cos sin

sin , , 31

f
0 1 1 2 2 1 1

2 2

where the coefficients Â0, Âi and B̂i, i=1,2, are defined by the expressions (A12), (A13) and (A14). Taking into
consideration the inequality, |χp,k|

2= |gp|
2, on the right side of the expressions (11) and (14), we can

approximate the densitymatrix of the closed systemby the expression, ˆ ( ) ∣ ( ) ( )∣r y y» ñát t t . As processes
connectedwith scattering instead of coefficients ( )Gp

1 for simplicity of the expressions for highermoment we
introduceΓp. In this approximation, we can calculate the correlates,

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )∣ˆ ˆ ˆ ˆ ∣ ( )† †y yá ñ » á ñ+ - + -c t c t D t D t t c c D D t ,p p p p
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ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )
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t c t c t c t c t D t D t D t D t t . 32
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p p p p

f
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1
1

According to the Schröinger equation (17), the operatorsmust be in the interaction picture,
ˆ ( ) ˆ ( ) [ ]† † w=c t c i t0 expp p ,  ( ) ( ) [ ]w=+ +D t D i t0 exp . As follows from the correlations (32) contains the photons
scattered fromdifferent steps ofmultiple Raman emissions. For example if in the solution for principal quantum
number, L= 2, we have the superposition |ψ(t)〉 ∣ ∣ ∣ ∣ ∣ ∣~ ñ ñ ñ + ñ ñ ñ2 0 2 0 1 0 10 1 2 0 1 2. In this situationwemay create
the vacuum state actingwith  ( ) ( )c t c t1 1 on thefirst term, c1

2 ∣ ∣ ∣ñ ñ ñ =0 2 0 20 1 2 |0〉0|0〉1|0〉2 and another way is
obtained by actingwith operators  ( ) ( )c t c t0 2 on the second function from superposition,
  ∣ ∣ ∣ ∣ ∣ ∣ñ ñ ñ = ñ ñ ñc c 1 0 1 0 0 02 0 0 1 2 0 1 2. The non-oscillatory part of the photon correlates will be proportional to the sum
of three types of correlates    ( ) ( ) ( ) ( )† †á ¢ ñ~¢c t c t c t c tp p p p1

1   ( ) ( ) ( )†á ñc c c0 0 01
2

0 2 +   ( ) ( ) ( )† †á ñc c c0 0 00 2 1
2 +  ( ) ( )†á ñc c0 01

2
1
2 +

   ( ) ( ) ( ) ( )† †á ñc c c c0 0 0 0 .0 2 0 2 First and second correlations contain the entanglement between the two photons from
pump andfirst scatteredmode and the photons frompump and second step scattered one, the third correlation
contains only the photons from the samemode.

The algorithmof this procedure of factorization of the correlates like,    ( ˆ ) ( ) ( ) ( ) ( )( ˆ )† †á L ¢ L ñ
-

¢
+

c t c t c t c tn
m

p p p p n
m

1
1 ,

is not sowell established for the large number of photons and large number of steps in Raman scattering. For
this, we return to Systemof equation (A4) and construct the solution for four atoms involved in themultiple
Raman conversion. Considering four radiators prepared in the excited state, we can obtain thewave function
using the solution of the systemof equations (A4) for atomic vector operators, { ˆ ( ) }= - ¼R t m, 2, ,2m . Acting
with the vector operator

ˆ ( ) ˆ ˆ ( ˆ ) ˆ ( ˆ ) ˆ ( ˆ ) ˆ ( ˆ )= ¡ + ¡ W + ¡ W + X W + X WR t t t t tcos cos sin sin ,j r r r0 1 1 2 2 1 1 2 2

on the initial state of cavity field, |L,− L〉f in the analogywith the solution (31)we obtain thewave function,
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inwhich the small number of photons and large number of atoms used analytic representation of the solution
(31) is replaced by relative small number of radiators,Nr= 4, and big numbers of photonswith possibilities to be
converted into large number of scattering steps.Here the coefficients are
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These cooperative phenomena between the conversion of the photon in themultiple reabsorbing of the
quanta on the next conversion steps can be observed using the highermoments of the energy, losses

( ˆ ) aá ñ = ¼adW dt: : , 1, 2, ,e . As follows from the coefficients (33), (34), (35) and (21), themaximumof
conversion rate in the next stepsmay be described by the correlation function,

   ( ˆ ) ( ) ( ) ( ) ( )( ˆ )† †á L ¢ L ñ
-

¢
+

c t c t c t c tn p p p p n
4 4

1
1 , obtained from expressions forϒi. But this terms doesn’t give the
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contribution in the higher ordermoments, ( ˆ )á ñadW dt: :e , due to the fact that we used the exact solution of
Schröinger equation for smallnumber of atoms involved in the scattering processes,Nr= 4. In such situation the
mean value of atomic correlations becomes equal to zero in correlation function,

 ∣ ( ) ( ) ∣á - ñ =a a+ -D D m2, 2 2, 0r r , for |m− α|> 2.We can estimate higher ordermoments of the cavity
excitations,
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Here [( ) ( ) ]a¢  ¢ = ¼p p p p i, , , 1, ,i i i i represents the sumof termswith thepossible permutationsof indexespiwith ¢pi .
The atomic correlations  ∣ ( ) ( ) ∣= á ña a a+ -K m D D m2, 2,m r r, canbe easily estimated,  ∣ ( ) ( ) ∣á ñ =a a+ -m D D m2, 2,r r

( )!( )! [( )!( )!]a a+ - + + - -m m m m2 2 2 2 . For the loses of cavity excitations, ˆ ( )á ñdW t dte ,wehave the
correlations : =K 4;2

1 =K 61
1 ; =K 6;0

1 =-K 61
1 . For square loses, ( ˆ ( ) )á ñdW t dt: :e

2 ,wehave the
coefficients: =K 24;2

2 =K 361
2 ; =K 24;0

2 =-K 01
2 . The timedependent coefficients of expression (36) are

represented through theRabi oscillation expressions,
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Here the Rabi frequencies were calculated on the cavity field state ||L,− L〉f in the normal representation of
themoments (36), ( )c cW = -  - +L L L50 48 2 3 99 16 114n n1,2

2 2 , where sign, ‘+’was chosen for
Ω1, and sign ‘−’, is forΩ2. Taking into consideration that the initial state of the field is expressed through
themultiple scatteringmodes, |L,− L〉f= |l〉f|0〉1...|0〉n, we can easily estimate first correlation, =E r

2

     ∣ ( ) ( ) ( ) ( ) ( ) ( )∣ ( ) ( )† † † d d d dá - - ñ = - - + ¢¢ ¢ ¢ ¢L L c t c t c t c t c t c t L L l l l r, ... ... , 1 ... 1 ...p p p p p p f p p p p,0 ,0 ,0 ,0r r r
r

1 1 1 1
. It is not

simple to calculate second correlates from the expression (36) after the action of operators ( ˆ )L
-
n

k and ( ˆ )L
+
n

k, on
the bra- and ket-vectors of expression Ek

r ∣ †~á - + ¢L L k c, f p1
( ) ( )†

¢t c t... pr
 ( ) ( )∣ - + ñc t c t L L k... ,p p fr1

. Atfirst

glance, we observe some de-correlations in the analogywithWick theoremproposed in quantum statistical
mechanics (see for example [38]), but the particular examples like,   ∣ ( ) ( ) ( ∣†á ñc t c t c t2, 0 2, 01

2
0 2 , described by Exp.

(32), demonstrate that the index paring between the creation and annihilation operators,  ( )†
¢c tp ,  ( )†

¢c tp1
, and,

 ( ) ( )c t c tp p1
, don’t contain all non-zero terms In order to calculate the above correlations, we propose to permute

the annihilation (generation) operators from left-hand (right-hand) to right-hand (left-hand) one on the
correlation function like,Ek

r=    ∣ ( ˆ ) ( ) ( ) ( ) ( )( ˆ ) ∣† †á - L L - ñ
-

¢ ¢
+

L L c t c t c t c t L L, ... ... ,f n
k

p p p p n
k

f
r r1 1

. For this wemust

commute the annihilation operators,  ( )c tp1
, cp2

and  ( )c tps
, with representation of excited operators, ˆ ˆL º

+ +
Ln n ,

through †cp and  ( )c tpr
defined in Exps. (21). Doing this, we can act with the set of operators,  ( ) ( )c t c c t, ...p p ps1 2

,

on the initial state,  ( ) ( )∣ - ñ =c t c c t L L, ... ,p p p fr1 2
( ) ( )d d d - - +l l l r... 1 ... 1p p p,0 ,0 ,0r1 2

∣ ∣ ∣ [ ( ) ]w w w- ñ ñ ñ - + + +l i t2 0 ... 0 exp ...f n p p p1 s1 2
. The simple transfer to the right-hand side into correlation

15

Phys. Scr. 99 (2024) 045102 NAEnaki



function of operator, ĉp, through the su(2)- operator, +Ln , becomes, ˆ ˆ ( ) ˆ ˆ ˆ= - + +
+

-
+

c L p s p c L c2 1p n p n p1 . As
we are interested in the square losses, we take as an example the correlation, E2

2, but themethod can be extended

to other correlations which contains higher order of operators, ( ˆ )L
+
n

k, k= 1, 2, 3,K,.We give below only the
transfer of one ĉ p2

operator through the ( )+Ln
2,
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Doing the similar transfer with operator, ĉ p1
, we obtain the amplitude,
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Herewe observe the possible interference of the amplitudes of pump fieldwith frequencyω= ω0 (see p= 0) and
amplitudes with frequencies w w w= + 1p r2 0

for p= 1, w w w= + 2p r2 0
for p= 2. The new angular

momentumoperator, |L2,− L2〉f.= |l− 2〉f|0〉1...|0〉n represents the pump state which lost two photons from the
nutation process. Tofind the expressions for correction, E2

2, wemast permute operators  ( )†
¢c tp1

from right hand

to left-hand side in order to act with themon the bra-vector,  ∣ ( ) ∣ ∣ ∣† † d dá - = - á - á á¢ ¢ ¢ ¢L L c c l l l, 1 2 0 ... 0f p p p p n,0 ,0 0 1
1 2 2 1

.
The simple observation demonstrates that this part of operator transfer in the left-hand part of correlation
function,  ∣ ( ) ( ) ( )† †á - ¢

-
¢L L L c t c t, f n p p

2
2 1

, is Hermit conjugate to the right-hand permutations, (37).Multiplying the

Hermit conjugate expression of this amplitude,  ∣ ( ) ( ) ( )† †á - ¢
-

¢L L L c t c t, f n p p
2

2 1
, with Exp. (37), we can obtain the

following expression of correlation,
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Similarly, wemay estimate all correlation functions in thefirst and secondmoment of intensity rate.
Knowing the correlations E0

1, E ,1
1 E2

1 and E3
1wemay estimate the loses of excitations from the cavity, or intensity

of scattering field. The quantum correlation between the converted photonsmay be estimated knowing the
square loses (or square intensity correlations). For this wemust introduce in Exp. (36) the correlations E0

2, E1
2,

and E2
2 in the second ordermoment,α= 2. The correlation E3

2 ismultiplied by =-K 01
2 doesn’t give the

contribution in the square losses of excitations from the resonator.
According to the representation (36)we obtain the following expressions for numerical simulation of the

first and secondmoment of the cavity excitations,
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Here the coefficients calculated forfistmoment are:
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and for secondmomentwe obtain,
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The above coefficients introduced in Exps. 38)where calculated according to the correlation functions described
by equations formoments (36). Their indexes are connectedwith cosine oscillation functions,Cs1(t); Cs2(t), or
sine one, Sn1(t), Sn2(t). The coefficients,Gc1 andKc1, don’t contain the information about the scattering steps,
n= 2s inmultiple scattering process. This information about cooperativemultiple conversion of photons
appears in the next timemoments of the kinetic process, described by correlations calculated usingmultiple

excited state, ( ˆ ) ∣L - ñ
+

L L,n
l

f , s= 1, 2, 3. Such type of conversion process is contained in the definition of the
coefficients,Gs1;Gc2, and,Ks1,Kc2. As follows from the expressions (39) and (40) , these coefficients are
proportional to this transfer cooperative number, n= 2s, and itsmoments. Here the new cooperative numbers,
L1= s(l− 1) and L2= s(l− 2), represent the new states of the cavity excitations fromwhich one or two photons
leave the cavity die to the scattering process in the external field. Taking into consideration that the coefficients
Γij depends on the interaction constants with external field,χkp ∼ gp+1 . According to the representation (21)we
approximate the ratematrixΓij from coefficients (39) and (40) by the expressions,Γij≈G0

( )( ) ( )( )+ - + -j s j i s i1 2 1 2 ,Γjj≡ Γj. As follows from the numerical estimations, the cooperative
correlations of scattering amplitude fromdifferent steps increases in the second ordermoment, ( )á ñdW dt: :e

2 ,
with increasing of number of photons in the pompmode of the cavity. Infigure a. and b. we observe that second
ordermoment is smaller than first one, d〈We〉/dt, when the number of photons in the pompmode is less than
15. The increasing the number of photons, l= 22, and l= 30, stimulate the coherent and cooperative process in
the systemC, so that relative quantum fluctuation decreases, ( )D á ñd W dtW e

2.
In conclusion to this section, we observe the following. Themultiple scattering effect ismanifested for large

number of photons. To detect the superposition ofmultiple scattering photons in the big number ofmodes, it is
necessary to have the large ensemble of excited atomswhichmaymultiple scattered the pump field. As follows
from the estimation of Exp. (36), for four atoms the possibility to observe the highmode correlations, E3

2,
becomes impossible due small number scattering centers (radiators) in the system.Here exist two possibilities.
Thefirst action is to, return to last section and solve exactly the Schröinger equation for large ensemble of atoms.
The second possibility is to pump the excited atoms into the resonator and obtain themultiple scattering laser.
Thefirst possibility is limited by the impossibility to solve exactly the systemof operator vectors for big number
of atoms or large numbers of photons in the pumpfield. Such a problem involves the large degree of freedoms in
the proposed approach of section 2, which limits the possibilities to represent in analytic formof the solutions of
Schröinger equation. The second approach is connected tofinding the systemof knownwave functions like,

( ˆ ) ∣ ∣ ∣L ñ ñ ñ
+

l 0 ... 1n
k

n0 1 , ofmultiple scattered field onHilbert space, onwhichwemay construct the evolution of such
a quantum correlations between and possible excitations in the in the cavity bi-modes during themultiple
scattered photons.

4.Discussions

We introduced the new field characteristics of bi-modes in the coherent state inwhich themultiple steps Raman
lasing described by the superposition, ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )= + + + ++ + + + +z t z t z t z t z tE E E E E, , , , ... ,p as as asn1 20

, with

frequencies of the pump,first, second, ..., and n anti-Stokes components with frequencies wp0
, w w+p r0

, ...,
w w+ np r0

. Here ÿωr is the excitation energy of each radiator (atom,molecule, exciton). The new characteristic
of bimodal excitation of the cavityfieldwas introduced in the co-linear cavity/fiber approximation,
ˆ ( ) ˆ ( ) ( )( ) ( )P =+ + -t E z t z tE, , ,which permit us to represent the total intensity correlation as a sumof each
component: .

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )
ˆ ( ) ˆ ( ) ( )

( )áP P ñ = áP P ñ + áP P ñ

+ +áP P ñ +a a

- + - + - +

- +

t t t t t t

t t... ..., 41

n n n n n

n kn

1 1 2 2

whereα� n is over scattering steps parameter,α� n. Thefirst adjacentmode correlation,
ˆ ( ) ˆ ( ) ˆ ( )( ) ( )
P ~ å

+ +
-

-
t E t E tn m

n
asm asm1 1 , the second adjacent one (over two steps), ˆ ( ) ˆ ( ) ˆ ( )( ) ( )

P ~ å
+ +

-
-

t E t E t ;n m
n

as asn2 1 2 and

the overα− step correlation, ˆ ( ) ˆ ( ) ˆ ( )( ) ( )
P ~ åa a

+ +
-

-
t E t E tn m

n
asm asm , represent the characteristics of the bimodal cavity

field inmultiple scattering process at frequencies differences, :ωr; 2ωr; ...,αωr .Multiplying these characteristics
toHermitconjugate components, ˆ ( )P

-
tm1 , ˆ ( )P

-
tm2 , and ˆ ( )Pa

-
tm , we observe that in Exp. (41) is described by the
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moments (36) and can be observed by losses equation (11). The coherent superpositions of these components
may be used as a guide field characteristic with the good phase and amplitude in the semi-classical

approximation, ˆ ( ) [ ]fáP ñ = -a a
+

t P iexpn kn0 , in the lasing process. Here, the Stokes component of the generation

of bimodalfield, ˆ ( )+
E tj , can be regarded as a pumpfield for the next order of Raman lasing (See, for example,

[37]), so that the products, ˆ ( ) ˆ ( )a
+

-
-

E t E tm m , has the same phase,fkα= iαωrt+ iαKz, inwhich
ÿαωr= ÿωj+α− ÿωj, andK= kj+α− kj are theαportions of excitation energy that the cavity field obtains when
the atomic systempasses from the excited to ground states inαmultiple Raman steps,α= 1, 2, 3,K . HereK is
thewavevector of bimodal components of induced lasing in the cavity. The detection possibilities of such
cooperative phenomena after the propagation of correlated photons through different fibersmay be realized
usingfigure 5 inwhich instead of losses in the outside free field, the contact between the fibers and spherical
cavity is proposed [39–41]. According to this approach, only the diagonal elements belonging to the samemodes
remain non-zero so that the field intensity is proportional to this number of steps, ‘n’. The possibility of
correlations between the anti-Stokes/ Stokes components in themultiple Raman scattering have been overcome
by recent advances in coherent scatteringmicroscopy, which is based on coherent anti-Stokes/Stokes
components stimulated by the pumpphotons [2–10].

We focused our attention to quantum correlations between the components ofmultiple Raman scattering in
which themulti-steps induce emission opens the opportunity. To understand this type of coherence, we
purpose to study the inverse quantum conversion inwhich the atomic scattering centers (molecules, atoms, etc.)
are prepared in the ground state (seefigure 1B). In this situation, themodes inwhich are converted the pump
photons inmultiple scattering process belong to Stokes components,ω1= ωp− ωr,ω2= ωp− 4ω0 ,
ω3= ωp− 6ω0, etc. Such a red shift was observed in intra- cavity continuous-wave ofmultiple Raman scattering
emissions. The application of such cooperative effectsmay be used in photon recycling and scattering in high-
performance solar cells [42, 43]. The possible quantumnutation between twomultiple scattering process
represented in the figure 1 has a specific interest in quantumphysics, due to the fact that portions of quanta with
frequency proportional to the transition energy between the excited and ground states of radiator levels,
ωr= ωp+1− ωp, periodically pass from atomic subsystem to cavityfield describing quantum reversibility at
short time intervals.

Themoments (14) and (36) described in the sections 2 and 3 have some analogies with quantumFisher
information described in the [44–47]. In this situation, wemust introduce the distribution function for the
number of photons, ˆ ( ) ˆ ( )r ~t W t NC f , and the product of two derivative functions in the secondmoment (14).
Here the number of photons inside the resonator,Nf=N−Ne, can be approximatedwith the total number,N,
when the number of the losses photons is neglected,Nf>>Ne. This procedure can be used for the construction
of the quantumFisher information form, { ˆ ( ) ˆ ( )}r t r t= ¶ ¶m n m m n nF Tr s s

, , where r̂¶m
s and ˆ ( )r t¶n n

s represent the

symmetric logarithmic derivative through the anti-commutation, ˆ { ˆ ˆ ˆ ˆ }r r r¶ = +a a aL L 2s ,α≡ ν,μ. Here ˆmL

and ˆnL , operators described in [46–48]. Indeed, for large value of excitations incise the resonator,Nf∼Nwe can
find the correlation between the diagonal Fisher information, Fμ,μ, and our secondmoment (14). Considering
that τμ∼ tχn, the quantumCram?-Rao bound is the quantum analog of the classical Cram?-Rao bound
( ) ( )tD m m m MF1 .2

, Itmay be estimated according tofigure 4,HereM is the number of independent
repetitions [49–51]. According to this expression and the numerical behavior of the secondmoment represented
infigure 4, we observe that the quantumphase fluctuation achieved theminimal valuewhen Fisher Information
(or the secondmoment) achieved themaximal one. This conclusion demonstrates the possibilities to realize the
coherent lasing processes ofmultimode scatting cooperative effect inwhich the quantum correlations are
established not only between the adjacentmode but between non-adjacent too.

5. Conclusions

In this approach, we put the problem about quantum cooperative process between the photons in themultiple
steps of scattering by the systemof radiators. Here the conception is divided into two parts. First part
corresponds to themultiple generation of photons in the n- scattered cavitymodes during the quantumnotation
of radiators. Herewe used the possibilities of transmission of energymultiple to portion ÿωr to the radiators or
to the cavity fieldwhen the atomic inversion surfer the nutation. A great attentionwasmade to the correlations
not only between the adjacentmode ofmultiple scattering process, but to the possible quantum correlations
between the photons belonging to the non-congruent steps of themultiple scattering process.Wemean the

correlations like, ˆ ( ) ˆ ( )( ) ( )
á ñ+

+ -
E z t E z t, ,i s i inwhich the number of steps, i, and i+ s, are established in the system so

that correlation takes between nonadjacentmodes s> 1 of themultiple scattering. This quantumprocess opens
the possibilities to transmit the information not only between the neighboringmodes, ˆ Ei 1 and Êi, but between
the next steps ofmultiple scattering represented infigures 2 and 5. The extension of the correlations between the
non-adjacent steps in the case of the exact solutions of the quantumnutation in the Raman scattering suffers
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from an impossibility to solve the Schröinger equation for a big number of radiators or formany photons in the
pumping field. This processmay be solved studying themultiple scattering lasing [37]. Infigure 5we propose the
possibility to detect and study the quantum correlations between the photons of non-adjacentmodes.
Introducing the thinfibers into evanescent zone of the cavity, wemay choose the coupling of atomic subsystem
with cavity larger than couplingwith themodes of thinfibers. These possible schemes of riding the information
frommicro-cavities using thin fibers are in the center of interests inmanymodern experiments [39, 41–52].

Figure 4.Time behavior of emission rate ˆá¶ ñW0 = ˆ ( )á ñd W t dte , square losses, ( ˆ )á ¶ ñW0
2 = ( ˆ ( ) )á ñdW t dt: :e

2 and relative quantum
fluctuations,〈:δ2: 〉= ( ˆ )D á ñd W dtW e

2 2 , as a function of the fixed number of convention steps, 2s = 6, and of the initial number of
photons:x l = 6 (A), l = 15 (B), l = 22 (C), and l = 30 (D). The numerical simulationwasmade in unitsχnt for the following loss
parameter of the systemG0 = 10−3. The cooperative correlations of scattering amplitude fromdifferent steps increase in the second-
ordermomentwith increasing of the number of photons in the pompmode of the cavity. The relative quantum fluctuations decrease
with the increase of the number of photons in the pumpmode.

Figure 5.The interactionwith externalfield represented infigure 2 is substituted by fibers in contacts with atoms placed in both
evanescent fields of the spherical cavity and fibers. Considering the interaction constant of radiators with the cavity field is larger than
the interaction constant of the chased fibersmodes, the similar perturbation theorymay be applicable in this configuration. During
the quantumnotation, the system generates some photonswhich in thefibermodes, which can be detected ormixed for interference
effects by the detectors,D1, andD2, placed in the common ends of the twofibers.
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Exact solutions for: (a) small number of atoms and arbitrary bimodal excitations; (a)
small number of bimodal excitations and arbitrary number of atoms

In this appendix, we are focused on the possibilities to construct the closed systemof the linear operator
equations like (19) the determinate of which contains commutative terms so that we can use themethod of the
solution described in the literature.

Let’s start with a small number of atoms taking the part intomultiple scattering process. According to the

definition ofmultiple scattering operators, L̂
-
n and L̂

+
n , we observe that they satisfy the commutation relations:

[ ˆ ˆ ] {ˆ ˆ ˆ ˆ } ˆ ( )† †å cL L = - = DL
+ -

=

-

+ + +g c c c c, 2 ; A 1n n
p

n

p p p p p n n
0

1

1
2

1 1
2

[ ˆ ˆ ] { ( )

( ) } ˆ ˆ ( )†

å q

q c

DL L = + - +

- - - +

+

=

-

+

+ + +

g j g

g n j g c c

, 1 0.5 2

2 0.5 2 , A 2

n n
p

n

j j

j j j j n

0

1

1
2 2

2
2

1 1
3

where the diagonal elements, ˆ {ˆ ˆ ˆ ˆ } ( )† † cDL = å -=
-

+ + +g c c c c 2n p
n

p p p p p n0
1

1
2

1 1
2 , commutes with free parts of

Hamiltonian (2), the normalized coefficient,χn, is choosing according to the possibilities of the reducing of the
generation process in themultiple scattering to known symmetry; θ(x) is theHeaviside step functionwith
definition: θ(x)= 1, for x> 0, θ(x)= 1/2 , for x= 0, and θ(x)= 0, for x< 0. 1. Let us return to the solutions of
the systemof equations (19). For two atoms, j= 1, we have three equations of atomic operator vectors, ˆ ( )-X t1 ,
ˆ ( )X t0 and ˆ ( )X t1 , in the system (19). The equation for ˆ ( )X t0 can be reduced to the cubic differential equation,

ˆ ( ) ˆ ( ){ [ ˆ ˆ ˆ ˆ ] }

ˆ ( )[ ˆ ˆ ˆ ˆ ]

c d

dc

=- L L + L L +

+ L L - L L

+ - - +

+ - - +

d

dt
X t

d

dt
X t

i X t

2 .

2 .

n n n n n

n n n n n

3

3 0 0
2 2

2
0

The solution of this equation can be found under the form, ˆ ( ) ˆ [ ˆ ]= WX t C i texp ,0 fromwhich follows the

characteristic equation, ˆ ˆ ˆ ˆW + W + =p q 0
3

, where the coefficients are ˆ { [ ˆ ˆ ˆ ˆ ] }c d= - L L + L L +
+ - - +

p 2 .n n n n n
2 2

and ˆ [ ˆ ˆ ˆ ˆ ]dc= L L - L L
+ - - +

q 2 n n n n n
2 . The discriminant of this cubic equation is ˆ ˆ ˆD = - -p q4 27 . If themean value

of discriminant is positive,Δ> 0, the cubic equation has three distinct real roots, and according to the definition
of quantumRabi frequency, Ŵ, the quantumprocess becomes oscillatory. For the negative values of the
discriminant,Δ< 0, the cubic equation has one real root and two complex conjugate roots, which correspond
to attenuation or increasing of the amplitude of oscillatory process as function of value and the sign of the
detuning from resonance δ. According to the canonical form, the roots of characteristic equation are

ˆ ˆ ˆW = +A B1 , ˆ ( ˆ ˆ) ( ˆ ˆ)W = +  -A B i A B2 3 22,3 , where ˆ ˆ ˆ= - + -DA q 23 , and

ˆ ˆ ˆ= - - -DB q 23 . As follows from this equation and (19) for zero value of detuning, δ= 0, the solution of
the systemof equation (19) is:

ˆ ( ) { [ ˆ ] ˆ [ [ ˆ ] ]} ˆ ˆ ∣
ˆ ( ) ˆ [ ˆ ] ˆ [ ˆ ]

ˆ ( ) { [ ˆ ] ˆ ( [ ˆ ] )} ˆ ˆ ∣ ( )

c

c

=- W - W - W L + ñ

= W + W

=- W - W - W L + - ñ

- +

-
- -

X t i C t C t

X t C t C t

X t i C t C t

2 sin cos 1 1, 1 ,

cos sin ,

2 sin cos 1 1, 1 A 3

n n n n n

n n

n n n n n

1 1 2
1

0 1 2

1 1 2
1

where ˆ ∣= ñC 1, 0 r1 , ˆ {∣ ˆ ∣ ˆ } ˆc= - ñ L + - ñ L W
- + -

C i 2 1, 1 1, 1n r n r n n2
1
and ˆ ( ˆ ˆ ˆ ˆ )cW = L L + L L

+ - - +
2 .n n n n n n .

It is not so difficult to observe, that the substitution of the vectors in the solution (18) is reduced to Jaynes–
Cummingsmodel with nonlinear interaction of an atomwith the field.We are interested in the use of symmetry
in the bi-boson interaction of atomswith scattering field described by interactionHamiltonian (3) in order to
simplify the solutions of the systemof equations (19) .We observe that this systemof equations has a non-
commutative element in themain determinant, so thatwemeet not so simple procedure tofind the eigenvectors
of such a systemof operator equations.
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If themultiple scattering transitions in the atomic subsystem are definedwithout intrinsic symmetry

between the field operators, L̂
+
n and L̂

-
n , described by the commutation relations (A1) and (A2), we don’t have

the possibility to obtain the solutions for close systemof equations for vector operators, { ˆ ( ) ˆ ( ˆ ) }= L
+ -R t Xm m n

j m

for the large number of atoms. Due to the fact that in the second termof each equation of the system, (19),
ˆ ( ) ˆ ( ˆ )L L+

- + -X tm n n
j m

1 must be commuted according to algebraic rule. In this situation, the permutation of the

operator ( ˆ )L
-
n , over ( ˆ )L

+ -
n

j m, leaves the group symmetry in the general representation described by
commutation relations (A1) and (A2). Introducing the restriction to the scattering amplitudes, gi, ofmulti-step
processes we can reduce this permutation to su(2) symmetry, (21) or to su(1, 1) commutation requirement (26).
In this situation, the systemof operator equations (19) becomes solvable for a large number of atoms using the
determinant representation described above,

ˆ ( ) ˆ ( ) ( )( ) ˆ ( )

( )( ) ˆ ( )
( )

d c

c

=- - + + - D

- + - +
=- - + ¼ +

+ -

-

d

dt
R t i mR t i j m j m R t

i j m j m R t

m j j j j

1

1 ,

, 1, , 1, , A 4

m m n m j m
su

n m

1

1

The right-hand side of this systemof equations can be represented through a vector form transformed by
operator-matrix,} ˆ ( )+

D
j2 1

{ ˆ ( ) ˆ ( ) ˆ ( )} { ˆ ( ) ˆ ( ) ˆ ( )} ˆ ( )( )¼ =- ¼- - - -
+d

dt
R t R t R t i R t R t R t D, , , , , , ., A 5j j j j j j

j
1 1

2 1

the definition of which depends on the applied algebra to thefield operators.Here, the operator-matrix ˆ ( )+
D

j2 1

has the rang 2j+ 1 and can be represented by the expression

ˆ

{ ) ( )

( ) ( )

( )( )
( )

( )( )

( )

d c

c d c

c d

c
d

c

=

- D

- + - D

- - +

+ + - D

- -

+ - +

+

-

D

j j

j j j

j j

j m j m

L p

j m j m

2 0 ... 0 ...

2 1 2 2 1 ... 0 ...

0 2 2 1 2 ... 0 ...
... ... ... ... ... ...

0 0 0 ... 1 ...

0 0 0 ... ...

0 0 0 ... 1 ...
... ... ... ... ... ...

j

n
su

n n
su

n

n j m
su

n

2 1

1

1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Here as function of symmetry the permutation, ˆ ( ˆ ) ( ˆ )L L = L D
- + - + - -

- ,n n
j m

n
j m

j m
su1 was estimated for su(2),

and su(1, 1) symmetries,

ˆ ˆ ( ) ( ) ˆ ( )
ˆ ˆ ( ) ˆ ( )

( )D =
L L - - - - L

L L + - - L  ¥

- +

+ -

p p p for su

p p p for n su

1 2 1 , 2 ;

1 2 , 1, 1 .
A 6p

su n n nz

z

⎧
⎨
⎩

According to this representation (A6), the systemof equation (A4) can be represented in vector-form (A5) for
both symmetries.

2. The similar approach is used relative to the systemof equation (24). In order to obtain the determinant
with commutative elements, we propose the following substitutions in the systemof equations (21),
ˆ ( ) ˆ ( )( ˆ )= -

Y t F t Dp p
p. In the real systemof coordinate, thismeans thatwe pass to new variables, { ˆ ( )Y tp }, in

which the excitationwith conversion energy, ÿω= ÿ(ωj+1− ωj), is lowered by atomic operator, ˆ-D . Observing

the identity between the atomic operators, ˆ ( ) ˆ ( ˆ ) ˆ ( ) ˆ= D-
+ -

-F t D D Y tp
p

p p1 1 , where ˆ ˆ ˆD = ++ -
D Dp

( ) ˆ ( )- - -p D p p2 1 1z , wemay easily pass from the system vectors, ˆ ( )F tp , to the new one, { ˆ ( )Y tp },
representing the systemof equation (24) through the new operator system,
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( ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ))

( ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )) ˆ ( )( )= - +

d

dt
Y t Y t Y t Y t

i Y t Y t Y t Y t D

... ...

... ... , A 7

p L

p L
L

0 1 2

0 1 2
2 1

inwhich the elements of the 2L+ 1 - rangmatrix, ˆ ( )+
D

L2 1
, become commutative,

ˆ
ˆ

{ ) ( ) ˆ

( ) ( )

( ) ˆ

( )
( )( )

( )

d c

c d c

c d

c
d

c

=

- D

- - - D

- - -

- + D
- -

+ -

+D

L L

L L L

L L

p L p

L p

p L p

2 0 ... 0 ...

2 1 2 2 1 ... 0 ...

0 2 2 1 2 ... 0 ...
... ... ... ... ... ...

0 0 0 ... 2 1 ...

0 0 0 ... ...

0 0 0 ... 1 2 ...
... ... ... ... ... ...

.

L

n

n n

n

n p

n

2 1

1

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

In this situation, wemay easily use the classical algorithm for the possible solutions of the linear systemof
equations (A7). The procedure of simplification ofmultiple scattering process help us to observe some quantum
peculiarities in the behaviors of emitted photons taking into consideration relative not small number of photons
or atoms, described by the systemof equation like (A7). The solution of the systemof equation (A7) can be
represented by vectors in the form { ˆ ( ) ˆ ( ) [ ˆ ]}= WY t Y i t0 expp p , p= 0, 1, 2,K,n. The requirement of thematrix

diagonalization, ˆ ( ) =+
Mdet 0

L2 1
, where ˆ ˆ ˆ ˆ( ) ( )= + W+ +

M D I
L L2 1 2 1

, drastically simplifies the solution of the
systemof equation, (A7) (here Î is the identitymatrix of size 2L+ 1). From this procedure of diagonalization, we
may formally find the ‘eigenvalues’, Ŵp.

Belowwe take some example how to use this formalism in the solution of the systemof equations (A7) for
detuning, δ= 0.We observe that two-step Raman conversion appear for the cooperative number, L= 1, from
which follows two possibilities: first corresponds to traditional single step Raman conversion, s= n/2= 1/2,
and twophotons in the pumpmode, l= 2; and second situation two-stepmultiple Raman conversion s= 1 of a
single photon in pumpmode, l= 1. The second one contains the possibility to convert initial photon state
|1〉0|0〉1|0〉2 into anti-Stokes, |0〉0|1〉1|0〉2, and after that use the anti-Stokes photon for next step of conversion
into state, |0〉0|0〉1|1〉2. In this situation the procedure of diagonalization of thematrix, ˆ ( )

D
3
, gives us the

following equation for eigenvalues, ˆ ( ˆ ˆ ) ˆcW - D + D W =2 0n
3

2 1 , the solutions of which are reduced to:

ˆ̂W = 00 , ˆ ( ˆ ˆ )W =  D + Dg 21,2 2 1 .
Let us take, the cooperative number equal to = =L ln 2 3 2 .We also observe two possibilities in the

realization of this total cooperative number: (a) the number of photons in pumpfield is equal to three, l= 3, in
the single step Raman scattering, n= 1 (s= 1/2); (b)wemay have one photon in pumpfield and, l= 1, and three
scattering stepsmay be realized, n= 3, which corresponds to s= 3/2. According to this from the equation for

thematrix diagonalization, ∣ ˆ ˆ ˆ ∣( ) + W =D Idet 0
4

, we obtain the following algebraic equation for eigenvalues,

ˆ ˆ ( ˆ ˆ ˆ ) ˆ ˆQ - Q D + D + D + D D =3 4 3 9 0,
4 2

3 2 1 1 3

fromwhich follows four solutions for Rabi frequencies. Belowwe represent them in pairs,

( ˆ )
ˆ ˆ ˆ

( ˆ ˆ ˆ ) ˆ ˆ ( )Q =
D + D + D

 D + D + D - D D
3 4 3

2

1

2
3 4 3 36 . A 8

2
1,2

3 2 1
3 2 1

2
1 3

Here ˆ ˆ cQ = W =i, 1, 2, 3, 4i i n , is the Rabi frequency in the relative units inwhich two of them is expressed

through positive sign in the expression (A8), ˆ ( ˆ )Q =  Q1,3
2

1 , and second pair is connectedwith negative sign

in the same relation (A8), ˆ ( ˆ )Q =  Q2,4
2

2 .
We observe that forfixed common cooperative number, L, whenwe take into consideration a big number of

steps inmultiple Raman scattering, according to the definition, L=sl, the number of photons in the pump field
must be small. For example for, L= 2, we have a possibility to chose two photons in the pumpfield, l= 2 and
two steps , s= n/2= 1, but of course this case for a single photon in the pumpfieldwemay have the four steps,
s= n/2= 2, with themultiple conversions of the photon between the fife states of cavity field.Herewe consider
the four non-zero interaction constants, g1, g2, g3 and g4.For five operator—vectors we havefife solution of

characteristic equation, {Det ˆ }( ) =M 0
5

, described by the algebraic equation,

ˆ [ ˆ ˆ ( ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ˆ ˆ )]Q Q - Q D + D + D + D + D D + D D + D D =2 2 3 3 2 8 3 3 2 0.
4 2

1 2 3 4 2 4 1 3 1 4
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The relative quantumRabi frequencies are:Q̂ = 00 , and four non zero solutions follows from the expression,

( ˆ ) ˆ ˆ ˆ ˆ

( ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ˆ ˆ ) ( )

Q = D + D + D + D

 D + D + D + D - D D + D D + D D

2 3 3 2

2 3 3 2 8 2 3 3 . A 9

2
1.2 1 2 3 4

1 2 3 4
2

4 1 4 2 3 1

Here the next Rabi frequencies, ˆ ˆW = Q =i, 1, 2, 3, 4i i , are obtained from the expression (A9) in the sameway
as in the case for cooperative number L= 3/2.

Nowwe construct eigenvectors for each case described above. According to the characteristic equations, for
L= 1we obtain the following solution of the systemof equation (A7),

ˆ ( ) ∣ ˆ ˆ ( ˆ )

{∣ ˆ ˆ ∣ ( ˆ ) } ˆ [ ( ˆ ) ] ∣

ˆ ( ) {∣ ˆ ˆ ∣ ( ˆ ) } ˆ ( ˆ )
∣ ˆ ( ˆ )

ˆ ( ) ∣ ˆ ˆ ( ˆ )( ˆ ˆ ˆ )

{∣ ˆ ˆ ∣ ( ˆ ) } ˆ [ ( ˆ ) ]

∣ ( ˆ ) ( )

c

c

c

c

c

=- ñ W W

+ - ñ + ñ W W - + - ñ

=- - ñ + ñ W W

+ ñ W

=- ñ W W + -

+ - ñ + ñ W W -

+ ñ

- -

+ - - -

+ - - -

-

- - + -

+ - - -

-

Y t i D t

D D D t

Y t i D D D t

D t

Y t i D t D D D

D D D t

D

2 1, 0 sin

2 1, 1 1, 1 cos 1 1, 1 ;

2 1, 1 1, 1 sin

1, 0 cos ;

2 1, 0 sin 2 2

2 1, 1 1, 1 cos 1

1, 1 . A 10

f

f f f

f z

f f

f

0 2 1
1

1

2
2 2

1
2

1

1 2
2

1
1

1

1

2 2 1
1

1

2
2 2

1
2

1

2

Here, ˆ ˆ ˆ ˆcW = + -+ -
D D D 1z1 2 is the quantumRabi frequency for cooperative number, L=1. For one

photonwe have threemigration stats: |1, 1〉f= |1〉0|0〉1|0〉2; |1, 0〉f= |0〉0|1〉1|0〉2, and |1,− 1〉f= |0〉0|0〉1|1〉2.
Wemay easily pass from the systemof vectors ˆ ( ) ˆ ( ) ˆ ( )Y t Y t Y t, ,0 1 2 to old systemoperators ˆ ( ) ˆ ( ) ˆ ( )F t F t F t, ,0 1 2 of
the system (24). For this wemustmake the permutation of operator ˆ-D in the end part of each termof the

solutions (A10) using the identity, ˆ Ŵ-D 1
2
= ˆ ˆW -

D0
2

, where operator, ˆ ˆ ˆ ˆ ˆcW = ++ - - +
D D D D0 2 , plays the role

formof Rabi frequency as in the solutions (A3) of the systemof equations (19) for two atom subsystems in
interactionwithmultiple scattingfield. It is evidently that in the two-step Raman conversion have the solutions

similar to Exps. (A3), but with substitutions, ˆ ˆL 
+ -

Dn and ˆ ˆL 
- +

Dn . This demonstrates that the proposed
method of ‘eigenvalues’ and ‘eigenvectors’ in the operator form, is applicable in quantumphysics. If thismethod
gives the plausible solutions, we continue to use themethod of construction of eigenvectors for cooperative
numbers, L= 3/2, and L= 2.

For L= 3/2we present only one operator vector, ˆ ( )Y t0 , considering that using the initial conditions follows
from the systemof equations (A9)wemay easily construct the other vectors,

ˆ ( ) ˆ ( ˆ ) ˆ ( ˆ ) ˆ ( ˆ ) ˆ ( ˆ )= W + W + W + WY t A t A t B t B tcos cos sin sin ,0 1 1 2 2 1 1 2 2

where the coefficients of cosine functions are expressed through the atomic operators,

ˆ {∣ ( ˆ ˆ ) ∣ ( ˆ ) } ( ˆ ˆ )
ˆ {∣ ( ˆ ˆ )( ˆ ˆ )

∣ ( ˆ ) } ( ˆ ˆ )

c c

c c

c

= - ñ W - D - ñ W - W

= - ñ W - D W - D

- ñ W - W

-

-

A D

A

D

3 2, 3 2 3 2 3 3 2, 1 2 ;

3 2, 3 2 3 3

2 3 3 2, 1 2 ;

f f

f

f

1 2
2

3
3

1 3
2 2

2
2

1
2

2 1
2

3
3

1 1
2

3
3

1

3
2 2

1
2

2
2

and coefficients of sine functions are represented through similar operators,

ˆ { ∣ ˆ [ ˆ ( ˆ )]

∣ ( ˆ ) } [ ˆ ( ˆ ˆ )]

ˆ { ∣ ˆ [ ˆ ( ˆ )]

∣ ( ˆ ) } [ ˆ ( ˆ ˆ )]

c c

c

c c

c

= - ñ W - + D

+ ñ W W - W

= - ñ W - + D

+ ñ W W - W

-

-

-

-

B i D

D

B i D

D

3 3 2, 1 2 3 4

6 3 2, 3 2 ;

3 3 2, 1 2 3 4

6 3 2, 3 2 .

f

f

f

f

1 3 2
2

3
2

2

3
2 3

1 2
2

1
2

2 3 1
2

3
2

2

3
2 3

2 1
2

2
2

Weobserve only two possibilities of distribution between two cooperative numbers, l, and s : for l= 3, s= 1/2
we have the states, |3/2, 3/2〉f= |3〉0, |0〉1; |3/2, 1/2〉f= |2〉0, |1〉1; |3/2,− 1/2〉f= |1〉0, |2〉1and |3/2,
− 3/2〉f= |0〉0, |3〉1 or for l= 1, s= 3/2, we observe themigration of photon between the four states, |3/2,
3/2〉f= |1〉0, |0〉1|0〉2|0〉3; |3/2, 1/2〉f= |0〉0, |1〉1|0〉2|0〉3; |3/2,− 1/2〉f= |0〉0, |0〉1|1〉2|0〉3; |3/2,− 3/2〉f= |0〉0,
|0〉1|0〉2|1〉3.

For L= 2we obtain five steps andfife operator - ‘eigenvalues’which give us the possibility to represent the
vector in the form,

ˆ ( ) ˆ ˆ ( ˆ ) ˆ ( ˆ ) ˆ ( ˆ ) ˆ ( ˆ ) ( )= + W + W + W + WY t A A t A t B t B tcos cos sin sin , A 110 0 1 1 2 2 1 1 2 2
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where the free coefficient is

ˆ ∣ {∣ ˆ ( ˆ ˆ )

∣ ( ˆ ) ˆ ∣ ( ˆ ) } ˆ ˆ ( )

c= - ñ - - ñ D D + D

+ ñ D - ñ W W- - - -

A

D D

2, 2 2 2, 2 3 2

6 2, 0 3 2, 2 , A 12

f f

f f

0
3

4
4

1 3 4

2
4

4
1

2
2

2

and cosine coefficientsmay be expressed through Â0 ,

ˆ {∣ ( ˆ ˆ ˆ ) ∣ ( ˆ ) ˆ ˆ } ( ˆ ˆ )
ˆ {∣ ( ˆ ˆ ˆ ) ∣ ( ˆ ) ˆ ˆ } ( ˆ ˆ ) ( )

c c

c c

= - ñ - W + ñ + W W - W

= - ñ - W + ñ + W W - W

+ - -

+ - -

A D D D A

A D D D A

2, 2 4 2 6 2, 0 ;

2, 2 4 2 6 2, 0 . A 13

f f

f f

1 4
2

2
2

4
2 2

0 2
2

1
2

2
2

2 4
2

1
2

4
2 2

0 1
2

2
2

1
2

The sine coefficients are

( )

ˆ {∣ ˆ [ ˆ ( ˆ ˆ )]

∣ ( ˆ ) } [ ˆ ( ˆ ˆ )]
ˆ {∣ ˆ [ ˆ ( ˆ ˆ )]

∣ ( ˆ ) } [ ˆ ( ˆ ˆ )]

c c

c

c c

c

= - ñ W - D + D

- ñ W W - W

= - ñ W - D + D

- ñ W W - W

-

-

-

- A 14

B i D

D

B i D

D

2 2, 1 2 2 3

6 2, 1 ;

2 2, 1 2 2 3

6 2, 1 .

f n

f

f n

f

1 4 2
2 2

1 2

4
2 3

1 1
2

2
2

2 4 1
2 2

1 2

4
2 3

2 2
2

1
2

Thepossibilities of thedistributionbetween twocooperative numbers for sameL increases. ForL= 2wehave
three possibilities: l= 4, s= 1/2with cooperative numbers, |2, 2〉f= |4〉0, |0〉1, ; |3〉0, |1〉1; ...|0〉0, |4〉1 l= 2, s= 1,with
two-step vectors conversion, |2, 2〉f= |2〉0, |0〉1|0〉2; |2, 1〉f= |1〉0, |1〉1|0〉2: |2, 0〉f∼ |1〉0, |0〉1|1〉2 or |0〉0, |2〉1|0〉2;
|2,− 1〉f= |0〉0, |1〉1|1〉2; |2,− 2〉f= |0〉0, |0〉1|2〉2; and l= 1, s= 2,with four steps conversionof onephoton,
|2, 2〉f= |1〉0, |0〉1|0〉2|0〉3, |0〉4; |2, 1〉f= |0〉0, |1〉1|0〉2|0〉3, |0〉4, ..., |2,− 2〉f= |0〉0, |0〉1|0〉2|0〉3, |1〉4.Weobserve that
collective state, |2, 0〉, into two-step conversionmust be themixture ofDicke andmultiple conversion stets.

Wemay reduce the systemof equation (27) for bimodal field ofmultiple scattering belonging to su(1, 1)
symmetry (26) to a new systemwith commutative coefficients. In order to obtain the commutative elements of
principalmatrix of this systemof equation, let us introduced the new vectors, { ˆ ( ) ˆ ( )( ˆ ) }¡ = F -

t t Dp p
p , which

help us to obtain a new systemof equations,

( ˆ ( ) ˆ ( ) ˆ ( ) ) ( ˆ ( ) ˆ ( ) ˆ ( ) ) ˆ ( )( )¡ ¡ ¼ ¡ ¼ = - ¡ ¡ ¼ ¡ ¼ ¥d t t t dt i t t t D, , , , , , , , . A 15p p0 1 0 1

Here the principalmatrix contains commutative elements,

ˆ
ˆ

{ ) (( ) ˆ

( ) ( )

(( ) ˆ

{ )
( )( )

( )

dk c k

c k d k c k

c k d k

c k
d k

c k

=

- D

- + + D

+ - +

+ - D
- +

+ +

¥
D

p p

p

p p

2 0 ... 0 ...

2 1 2 2 1 ... 0 ...

0 2 2 1 2 ... 0 ...
... ... ... ... ... ...

0 0 0 ... 2 1 ...

0 0 0 ... ...

0 0 0 ... 1 2 ...
... ... ... ... ... ...

.

n

n

p

1

2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Weobserve that knowing the transition symmetry, wemay simplify the solution of Schröinger equation
representing it by one of three systems of equations (19), (24) and (27)described above.
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