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Abstract

The description model of the multiple scattering lasers using the superposition states between the
generated photons in the ensemble of bi-modes of the resonator field, we introduced a concept of
indistinguishable energy portions generated in the resonator following multiple scattering. Each of
these quasi-quanta has energy equal to the difference between the pumping and scattering quantum
energies at each step of multiple scattering. The conversion of the photons in the external
electromagnetic mode of the resonator destroys this cooperative correlation between the bi-modes
and established conservation lows during the cooperative emission. The master equation containing
two parameters connected with the gain of quasi-energy portions, and their annihilation due to the
losses from the resonator, is proposed. The competition between these two processes is numerically
studied. An attractive problem is connected with established quantum correlations between the
photons belonging to non-adjacent modes of the cavity. The time behavior of the evolution of
correlations between such modes is observed. This conception may be used for the teleportation of
information in other modes during the multiple Raman conversion.

1. Introduction

Multiple scattering process of particles was at the center of attention in many investigations (see for example
[1-6]). The classical aspects of multiple scattering lights are in the potential applications in holography, medical
instrumentation, laser spectroscopy [6—8], LIDAR [9, 10], and nonlinear optical mixers [11-15]. Recently, the
specific attention is given to the new type of coherent emissions, which occur not only among the same quanta
but between the photon groups generated in the nonlinear interaction of the electromagnetic field (EMF) with
emitters (atoms, molecules, biomolecules, etc). The quantum aspects of this type of emission were intensively
studied in [16-22], but multiple conversions of the photons and their quantum correlations remain today in
development studies [22]. A pump laser beam and a weaker probe light are co-propagating in scattered medium
consisting of a gas. This type of light generation supports the idea of coherent correlation that appears in the bi-
modal field, in which the entangled photons are generated. A physical characteristic of the radiation formed
from the blocks of well-correlated bi-modes must be determined by the intensity of the electric field of each
mode, and propriety in such superposition.

An attractive aspect of the problem consists in the selective two-quantum excitation of some atoms, or
molecules of the system, where it is necessary to minimize the dipole active radiation in comparison with Raman
emission. The last idea can be applied in microbiology [18, 23—25], where a selective dis-activation of some
molecular structures (for example of viruses) in the tissue may become possible in induced Raman excitation. In
such situations appears a necessity for a good description of both the amplitude and phase of this new type of
radiation formed from bimodal correlated photons. Another application of multiple scattering coherence may
be used in photon recycling inside solar cells. Here the photon absorption is accompanied by the excitation of

© 2024 IOP Publishing Ltd
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Figure 1. Possible realization of su(2) and su(1, 1) symmetries in the multiple scattering transitions. a. Realization of two steps su(2)
scattering with the same detuning relative to the virtual state V; b. The possible connections between the scattering amplitudes in the
three steps process for su(2) symmetry, when the frequency of the second step of such scattering is situated between the two virtual
states. c. The possible realization of su(1, 1) symmetry in multiple scattering, when the process is situated between the two virtual states
of the radiator at a relatively big energetic distance with the same magnitude of transition amplitudes through both scattering
processes.

the change carrier and reemitted another photon with lower energy, which in the next step participates in the
same cycle of reabsorption and generation of a new carrier in semiconductors like perovskites [26—29].

In [30] we take into consideration the quantum correlations between two-photon lasing and induced
scattering emission in a single act cooperative scattering emission in which the pump field is converted into anti-
Stokes one. This article is focused on multistep cooperative scattering, in which the emission anti-Stokes
photons may be reabsorbed for generation of the next anti-Stokes quanta during the multistep scattering effect .
In the ‘n’ steps of the scattering process, we have the pump mode at frequency, wj, , stimulated by the excited
ensemble of radiators relative to the transition energy, fiw, in the new modes, w; = w; + wy; wy = Wy +2w; ...,
Wy = wp, + nw, (seefigure 1).

Taking into consideration that the emission field contains superposition of these multiple components of

EMF discussed in multiple scattering quantum nutation [31], EF(z, t) = Egor)(z, t) + Ef(z t) + Ef;z)
(+)

(2, )+ ... +ESD(z, t), we introduce the new characteristic of the such cavity field: f[;r(t) ~ Equ (HE as] 1(t);

H2 (t) ~ ,,(;)(t) Enil 2(t),.. Ha(t) ~ a(;r)(t) aS] u(t), . In this paper the main attention is focused to the

sum on label, j, of the product components, E; (t) J +a(t) for a > 1, which contains the photon correlations
from non- adjacent multiple scattering fields descrlbed with classical phase, ¢, = iaw,t + iaKz. Here
how, = hw; o — hw;, and aK = k|, — kjcorresponds to the excitation of the cavity with o — portions of
energy, fuw,; Kis the wave vector of bimodal components in each step of higher-order induced lasing. The
detection possibilities of such cooperative phenomena after the propagation of correlated photons through
different fibers are discussed.

In order to understand the possibilities of observation of quantum correlations between different mode
components of the multiple scattering lasing, the new type of master equation is obtained in section 2 and
detailed described in appendix A. The quantum correlation between the field components is done in section 3,
using the system of vectors for cooperative representation of multiple scattering processes, described in
appendix B. This approach gives us the possibility to describe the photon correlation from non-adjacent steps of
multiple scattering processes given in same section 3. Using the projection of the master equation for the
quantum lasing in multiple scattering modes, the cooperative correlations between the photons which belong to
the bimodal field of the multiple scattered processes were analytically estimated and numerically represented.
New cooperative aspects between cavity photons belonging to the bimodal field were established and annualized
in discussions and conclusions 5.

2. Correlation functions and lasing process

As follows from [31], the reducing degree of freedom in the multiple scattering pump processes in the closed
cavity field is described by collective photon operators, A, = 37~ 0 &y 16p+ 16; / X, and
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A, = Z:}) 8 16pCpi1 / X,,» the symmetry of which depends on the commutation relation between them. Some

of these symmetries really follow from positions of virtual stats, through which take place the multiple Raman
emissions. The multiple scattering part of Hamiltonian, H; = ﬁxnf\;ﬁ+ + H.c.,depends on the scattering

constant, g, included in the bimodal operator, /A\:(or A;),in the process of de-excitation, D, (excitation, D)
of the atomic ensemble relative to the exited and ground states. For example, su(2) symmetry in two steps Raman
conversion may be realized when the main virtual state is placed symmetrically relative to pump mode,
Ag=wy —w p, > 0 for the first anti-Stokes generation, and with negative detuning, A, = w,, — w; <0, for
second anti-Stokes one, so that may be realized the situation g, = — & (see figure 1(a). The three steps of Raman
may be possibly relative to two virtual levels, considering that the resonance of the second step is situated
between them, like this is represented in figure 1(b). The four steps of Raman scattering may be approximated in
the same position of the virtual level, as this is described in figures 1(a) and (b). The su(1, 1) symmetry needs
special attention considering that all scattered modes are placed between two virtual levels. Considering both
virtual levels are far from resonance with scattering components as this is represented in the figure 1(c), we
represent the scattering amplitudes, {g,}, as a superposition of the transitions through both virtual labels,

g~ 1 / (Wy2 — wp )+1/(wy,2 — wp). Itis possible to obtain the linear dependence of the amplitude, g, on its
step order after the substitutions w, = w », T pwrand considering that Ay = w,,» — w by = Wp, — Wiy Here
the pump field is at frequency w, = wy. In this situation, the scattering amplitude becomes proportional to the
step order, 8, ~ 2pwr / (A§ — p*w?), for large detuning from both virtual levels represented in figure 1 (c).

In this section, we put the injection of excited atoms in the evanescent zone a possibility to find the lasing
condition of the photons in the bimodal cavity/fibers modes as this is represented in figure 1. For this, we
develop the method of elimination of atomic operators, when the mean number of radiators, N = 2j, pumped
into the evanescent zone losses a small part of inversion D, during the flay time. After the elimination of the
operators of the scattered photons in the external field the generalized equation (10) of [31] for the atomic and
cavity field operators, 6] (1), takes the following form,

4

dté(o =iy wlej (1), O] + iw, D, (1), O(1)]

p=0
+ix, (IR, (D (), O11) — (10), D (HA, 1)
+ > Tl (D (1), On1&,®D (1)

p

+ Hed[ODO] — O@1)})

N, A
_ Z{% S la®) (e(®)];, OWle(®)) () ];

j=1 azeg
+1D; (), O O1D; (1) + Hed[O (O] — OL(D}). ¢))

The first term of Exp (1) describes the commutator of field operator with the free field which contains the pump
modes at frequency, w and scattered cavity field at frequencies wj, = wy + puw;. The second term of this exprssion
contains the commutator of operator, O (¢), with the interaction part of Hamiltonian, H;, which converted the
photons from the pump mode, wy, into other modes during the multiple scattering process. The third term takes
into consideration the‘scattered process into the external field described by Hamiltonian [31],

Hye = D pXip 16 1312-157 + H.c.. According to the method described in [31], the creation, l;,j, and
annihilation, l;k, operators in the outside modes of resonators were eliminated. After this elimination we
introduced the losses of photons from the cavity, I', = m 4| Xx| "6(wi — w, — w,), during this scattering process
described by matrix elements, X, x. The operators, /A\;(t) and An , describe the creation or annihilation of the
portion of energy equal to, /v = 7 (wp+z — wp) = /uw,. We observe that field operator, /A\(t), commutes with
atomic one, 15+(t), D™ (¢)and D,(t).

Let us firstly consider that the operators, O(t) belongs to the cavity filed one, A(t). Representing this
generalized operator as a superposition of bimodal operator, (/A\:(t))k (/A\;(t)m, in which k and m are aleatory
power integer numbers, we intend to describe the proprieties of the cooperative lasing process, in the language of
annihilation, A;(t), and generation, A:, operators for portion of energy equal to fiw,. As follows from the
definition of these operators, their commutator is described by the expression,
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(b) Active zone of multiple scattering

Figure 2. (a) Representation of the possible pump methods of excited atoms in the process of the non coherent excitation from
fundamental state |0); to working levels |e);, |g); through the |av); excited states of the atom. (b) The attenuation of cooperative atomic
polarization in the active lazing zone described by fiber evanescent field during the collision process between thej — , and

(j+ 1) — atoms.
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According to the analyses proposed in [31] we observe that for g, / X, = «/P(2s — p + 1) thiscommutator is

reduced to su(2) algebra, [A:, /AX;] = ZAZ Here, [A\Z =38 (p — $)¢y €y, s = nl/2, where, lis the initial
number of photons in the pump mode, and  is the number of scattered steps. For big number of scattering
steps, n > 1, and, g,/ X, = p the commutator is reduced to su(1, 1) symmetry, [/A\+, /A\f] ~ f/A\Z, where

AZ = lim,_, Zz;é(k + D?*{&y lf,j 1 G E,:r } / 2. Of course as in the superradiance the scattering effect in other

modes outside the cavity destroys the intrinsic symmetry of bimodal field operators, /A\: , /AX; and AA,,.

In order to obtain the master equation for bimodal field operators let’s consider that the generalized
operator, O(t) belongs to atomic subsystem, D) = D,(1), AD+(t) , D™ (1), where the collective excitation,
D) = Z?’r Je(®)) (g (t)|; exp[iKz;], and lowering, D (t) = Z?’;ﬂg (1)) (e(t)|; exp[—iKz;], atomic operators

belonging in to su(2) symmetry, [DF(t), D71 = 2D,(t). The atomic cooperative inversion can be represented
through the inversion of each atom, D, (t) = Z;";lﬂe ) (e®; — lg@®) (g ) |j]/2. In the above
representation z;is the position of j- atom, and K =k, ; — k, is the difference between the anti-Stokes and
Stokes wave vectors of adjacent modes of cavity in quasi-linear scattering representation (see figure 2). In case
when the atoms are situated at distance commensurable with A ~ 27/K, the phase argument, ¢; = Kz;, plays an
important role of common polarization of the atomic stream. In the opposite situation, |z;| < A, this phase
argument can be neglected, exp[—iKz;] ~ 1.

The pump rate of exited atoms, ), is described by the last terms of Exp. (1), and takes into consideration that
thej - atom is incoherently excited in the state |e); through other |a(#)) atomic states represented in figure 2,
Yazeglla ®) (e D(®)]le(t)) {a(t) |j/'yp, so that this term gives non-zero contribution only for atomic

inversion, D (t) = D, (t). According to Exp (1) the equation for atomic inversion becomes,

d N . A A A
2D = (D) — N,/2) — ix, (A, (D' (6) — D" (®A,)

— 20" (D) Tief (). (@)
k

Here we take into consideration the conservation of excitation number in each atom,

Dol O) (a@®)]; + le®) (e®]; + 1g@®)) (g®)]; = I\AI] Neglecting the number of atoms in ‘ground’

state at the initial stage of lasing process, (|g) (g];) = 0, we can approximate the expression, X
VPZ;\ilzaie,gla(t)) {a(t) |j/2, with the first term of equation (2), Y, [N,/Z — D,(].Here N, = 37, N;;

Iﬁzj (1) ~ le(®)) (e(®)]; / 2. Considering that the polarization of j radiator may be transmitted to polarization of

(j + 1) radiator from outside lazing zone during the atomic collision, we can describe this process by interaction
Hamiltonian, Hy, = fmzj DAjf(t)}iJ:I(t) -+ H.c., in which the operators. Dji(t) and Iéjil(t) describe the atomic
polarization inside and outside the active lasing zone, respectively. Here, we assumed that the operator

ﬁﬁ(t) = le(t)) (g(O) |1 exp[iK (z; + 6¢;(x, y))]shifted the plan position (x,y) to a random phase, Ké¢y(x, y) >1,
so that the average interaction with fiber modes can be neglect [H;, ﬁli(t)] = 0. According to this representation
illustrated in figure 2, this phenomenological interaction has many analogies with the transfer of photons from
cavity modes to outside one used in traditional approach described in [32-35]. In the mean field approximation,

4
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after the elimination of outside polarization of non-interaction atoms, lé+(t)l+1 and Iéf(t)H 1, we obtain the
attenuation rate of polarization as this is represented in the last term of the generalized equation (1),

I\Ir A — A A A — A A
Los =Y %{[D; (1), DLOID; (1) + Dy (0[DL(1), D} (1)1},
j=1

where ;= K¢/ [(wyj — wyip1) + €’],e ' ~ £/vis proportional to the flying time of the excited atom moving
along the cavity with length [, with the mean value of velocity, v. In the resonance case, w,; = w,j 1 this expression
coincide with the last term of generalized equation (1). Considering that (j + 1) - atom may leave the active zone
of resonator, when another outside atom enters in it (See figure 2), we introduced in the generalized equation (1)
the operator modification, D.(t) = (D" + 0,.0), ¢ =z, '+, ‘—’}, takes into consideration only
polarization modification. According to this description, the operator of atomic polarization satisfy the
equation,

d

dtD*(o ={i(w, + i) + 2[D.(1) — 11> L&l (DH&® D (1)
k

— 2ix, D,(OA, (). 3)

If the atoms don’t take part in collision process, the x parameter may be proportional to ¢, so that polarization
loses take place dues to finite flaying time of atoms inside the active emission zone, ¥ ' ~ #/v. The equation for
operator D (t), is Hermit conjugate to the equation (3). In the situation, when the flying time is shorter than the
nutation period described in [36, 37].

For elimination of atomic polarization from the generalized equation (1) we represent the solution of the
atomic operators as a sum of free and sources parts,

D' (1) =D () + D (1);

D (t)y=D;(t) + D, (t);

D, (1) = JIE) (EI(1 — exp(—t/y) + Du(1). )
Here the solutions of operators ﬁ+(t), D (t)and D, (t) are represented in the anti-normal form relative the

excited states of the mean number of atoms, N, in the evanescent zone, |e) = |ej, ey,...,en,). The free parts of the
solutions for, D' (¢),and D™ (¢),

I§f+(t) = Texpli(w, + i7)t + th dr[D,(t — 1) — 1]
0

x STt — 1)ey(t — YD ()5 )
P

lﬁf_(t) =D (0)7 exp{—i(w, — i7)t + th ar[D,(t — 1) — 1]
0

X S Tpes(t — 1ep(t — 7)), (6)
p

are represented so that their action on the initial state, | E), give zero contribution in anti-normal arrangement of
operators, DAf+ (t)|E) = 0,and the same result we obtained by acting with operator DAf_ (t) on the state (E|,
<E|I§; (t) = 0. As the operators don’t commute between them in the different time moments in Exps. (5) and (6)

we introduced the chronological time-ordered product, 7', and antichronological time product, 7 , of
operators, respectively [48]. After such representation in the bimodal field equation (1) remain only the source
part of the solutions for D+(t) and D (t):

~ t T A
Bl = fZanTfo dr expli(w, + N7 + 2f0 dR[D.(t — 7) — 1]

x S Tyei(t — m&(t — A, (¢ — HD.(t — s
p

A — ~ t ~— A
D) = ZanTf drh (¢ — D, (t — Tyexp{—i(w, — iN)T
0

+ zfoT dri[D.(t — n) — 1Y Lpef(t — m)ép(t — )}
P

Further action in the generalized equation (1) consists in the introducing of solutions for inversion operator (4)
respecting the anti-normal product of atomic operators from sources part,

5
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D (1) = —ij; exp(—T/’yp)Z Xn[Ar:(t - Dt -1

—D(t— DAt — Dldr -2 fo t exp(—7/y) D7t — 1)

x D (t — )y FP/E;,(t — T)Cp(t — T)drT.
P/

In the above description, we have two small parameters, £ ~ 4/ Yy < 1,and, ¥y = 2I't/7,, during the
interaction of the bimodal field with excited atomic ensemble pumped in the evanescent zone of the cavity. The
first parameter corresponds to multiple scattering processes in which the number of cavity photons is conserved.
Another parameter, I, = l“fvl) described in ([31]) corresponds to the losses of photons in external modes during
the multiple scattering processes.

The master equation for bimodal cavity field in multiple conversion was obtained in appendix A.
Introducing the super-operators, we can represent this master equation for the bimodal cavity field (A13) in the
following compact form,

d

—W(t) — iy w[W (1), 8¢]
dt =

1 )
—N, S 8 )
{1 —w/®IA,, ATV }

— DL HLE), GINW ()
p

+<N3/4>[ R 1)W(t)}]
1+ kA, A,

+Hc., 7

in which we used the compact represents of the serial decomposition (A13). Here, the action of super-operator
has similarities to the decomposition rules described by Exps. (A8) and (A11) of appendix A,

11/ = /DA, ALV D) = 1) = (5/H W) + (5/4*Wa (D) + ..
+ (/D)W1) + ...

It acts on the density matrix operator according to the below definition:

A— At oA A A— Adoa Ae A A A ¥
Wi(t) = [A,, A, V.IW (@) = [A,, A, VWO W, () = [A,, A, VW (D)), ..., Wi(t) = [A,, A, VWi (t)].
The last term describes the dress of the density matrix obtained in the decomposition,

1 N o ~
— 1 |WO = kW + W0
1+ kA, A

o CRW O +

due to the superradiant decay of the atoms. Here Wld ) = /AX:* A, W@) = A:W MA,;
W =AW O”, s W) = AW A,

Below, we discuss the possibility of super-radiant transfer of energy from the radiator system to scattered
photos into cavity modes. Let us take into consideration bimodal excitations in the lowest decomposition of
generalized equation (1), the multiple aspects of scattering parameters and the renormalization ofloss
parameters. For this, considering that the lifetime of the excited radiators is less than the inverse value of Rabi
nutation frequency and that the atomic flux contains a big number of atoms on the excited state, we eliminate
the atomic operators from the generalized equation (1) using the procedure proposed in [30]

%M(t» = (5/H A, (1), A@IA, (1)) + Hoc)
+ Y A1), A1) + Hee). ®)
p

Here k = N, Xfl / 7, and yis the pump rate of atoms in the cavity. The coefficient, A, = N,I', + ¢, contains the
sum of losses from the cavity due to the scattering of the photons in the external field, I, by radiators prepared
in the excited states defined by the master equation (7). The direct photon losses from the optical cavity, ¢, are
introduced here according to the traditional method used in quantum optics [38]. After substitution of the
generalized operator, A(t), with the operator of the number of excitations in the resonator modes,

Wf (t) = Z=0 pfg (t)¢,(t), we obtain the following equation,

6
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L0 0) = 26RO 0) = 257 pAy (6] 016500, ©)
p
Itis not difficult to observe that in the good cavity limit, k > 1_\p, we may neglect the second term of the
equation (9). In this situation, taking into consideration the possibilities to realize the su(2) symmetry between
the coefficients of the multiple scattering processes, we may use the conservation of the Casimir vector which
helps us to represent the bimodal phase correlation through the inversion one, A;(r)f\:(r) =L+ 1)—
LI+ 1. Taking into consideration that, Wf(t) = L7 (t) + L inthe semi-classical approximation of
superradiant process [39, 40] we obtain the following dependence, (Wf @) =sl—1 / 2 —(sl+1 / 2)tanh
{2k (sl + 1/2)(t — to)} of bimodal cavity excitations on the number of initial photons in the pump field /and
number of steps, n = 2s. Here, to = In(2sl) /[4k (L + 1/2)]is the delay time of generation rate, <de (t)/dt) of
the cavity excitation. To observe this effect we must open the cavity taking into consideration the second term in
the expression (9). Considering that the delay time, #;, of the maximum of super-radiance process has the
magnitude of 1/(N,I',) and 1/¢, we may approximate the cavitylosses, I', = I'o(p + 1)(2s — p), by its expression
in the maximum of superradiance I';, ~ I'gs, in whichp ~ n / 2. In this situation we substitute, A, with its mean
value, A, and reduce the second term of equation (9) to 2A (W (¢)). the (9) maybe by the expression,

%(W,(r)) =2k{(L + 1/2 — 6% — [(Wy(t)) — L + & + 1/2]} + 24, (10)

from which follows that the radius of the Bloch sphere, L, is diminished by the value, 6 = A/(2x). The
correction to the correlation radius may be larger than one, 6 > 1 when the losses from the cavity satisfy the
inequality 25 < A. The solution of this equation is similar to the traditional Dicke superradiance one [39, 40], in
which the cooperative number is less than usually used in literature by the value of parameter, 6. In this semi-
classical approach, we observe that the principal cooperative number in the cavity is described by expression,

L = sl, as in the multiple scattering process [31], where /is the number of photons in the pump field, and s is half
of the number of steps s = n/2.

3. Quantum aspects of correlation functions in multiple scattering of pump field

When the system becomes open, the conservation laws and symmetry are violated. In this situation the returning
to the initial field operator becomes a necessity. From the analyses of the behavior of moments of the photon
emission from the cavity, we observed that the set of vectors obtained by multiple acting with the operator,

(/A\:)k ,on the initial state of the cavity field, |1)o|0)...|0),,, must be represented not only through collective states,
|L, m) 5 but through the products of the Fock state of each mode component, |L, m) s~ |1g)o|111)1...|11,,) , (s€e
appendix B). Here the cooperative number, L=sl, depends on the number of photons of the scattered modes,
I=ny+ ny + ... + n,, and the number of steps, n = 2s. Sometimes the last representation is the basic one
because the symmetries disused in the [31] may help us to understand the cooperative process in the special cases
of the level positions of the radiator, expressed through the states of each scattered mode. In appendix B we
construct the set of wave vectors obtained from the initial state of the scattered field consisting of / photons in the
pump field and zero photons in the scattered one after the consecutive action of the cooperative operator, /A\:
These states are expressed through the linear superposition of the product of Fock states for each converted
photon state without the restrictions to transition amplitudes, g, . In this situation, it is better to use this new set
of vectors of the cavity field for the projection of the master equation (7) obtained after the anti-normal
representation of photon operators. Following the appendix B we can obtain the recurrence form wave-vectors
obtained after the (A ")? action on the initial state according to the described above algorithm,

—~ lp/a] o \F —~
INSREDS (%) JCH I — kb — ak > (K, (11)
k=0 '

which connects the wave fictions of « - steps conversion of multiple scattering processes with the linear
combination between the wave function for o« — 1- scattering steps and new supplementary Fock state, |k). The
analytic representation in two, three to fifes steps of multiple scattering processes is carefully described in
appendix B.

Using the set of wave functions, (B5), (B10) and (B9), we can calculate the time-dependent correlation
functions described in the introduction 1. It is better to define moments of the creation, f&:, and annihilation,
/A\;, operators of the quasi quanta with energy, fiw,, in the cavity and their actions on the wave functions. For the
two-step scattering process of the multiple Raman emission, we can define the correlation functions of the
moments of these operators,
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/\Cooperatlve state between pulses A /\
=}

_— 0- (% ﬁ Gv €~ .

Dispersion media
Pump pulse
Figure 3. The pump field enters into the fiber and covers the evanescent zone, in which the excited system of atoms is placed. After

cooperative two-step conversion, the generated light enters the dispersion zone (maybe the same fiber) which can modify the optical
way as a function of the frequency.

Ka(p, p) = <L p'l(R)" Ay, p > - (12)

Taking into consideration the proprieties of the wave vectors (B5), we obtain the following expression for these
correlations,

2(p+m—k) o
(2 rmgac)

Op.p.
2p=0) 2k—p 2k ~k pp
Ck Pgl Cl

[(p + m)!]? S rmya1
12 2m .,
[P )y fp/21(g)

The intensity of bimodal modes may be defined as a product of the strength of adjacent modes. Its normal or
anti-normal representation of the bimodal field can be written in the forms (B5)

Kny(p, p))=

<l P/|ﬁ$1(2’ I,z O, p>a)  for normal

(P1GNilp) = (13)

<L, /I, (2, DT, DI, p>a) for antinormal

Here the bimodal field characteristics in the multiple steps of scattering are represented through the photons of

. . . s LAt
two adjacent modes, which are by the upper indexes, and ‘»’. Each term of the field characteristic, 11,,,(z, ),
oscillates with the transition frequency of the of scattering, w, = w, — wp_1,

M@ n=E5"c 08 @0+ 5@ 0k @0
+ . +Er£l+)1(z) t)Em (Z) t)
= {qoqlcoc1 + q1q2c1c2—|— +qm71qm6m,1f,jl}exp[iwrt — iKyz], (14)

Here, Ej(’) (z, 1) = q; l;; expliw;t — ik;z],is the EMF strength of j- mode. In the multistep scattering, we have
the opportunity to describe the possible correlations of bimodal field components.

Following the scheme represented in figure 3 (B), we give below a description of the two-step process
introducing the phase advance, ¢,, and phase delay, 1, of the first and second terms of the field characteristic
(14) of the two-step scattered photons in accordance with the chirp conception of the pulse propagation through
the normal dispersive medium [41]. For simplicity, we consider this phase advance, ¢, = énw,z/c, and phase
delay, 1, = énw,z/crelative to the central frequency field component, w, takes the same value, ¢ = 1), = @,
when the refraction indexes for pump mod, ny = n; — én, and the second scattered field, ny = n, + én, are
equally displaced relative to central scattered mode at frequency, w,. Here, zand care respectively the
propagation distance and light velocity in a vacuum. In this situation, we can represent the bimodal field
characteristic after the propagation through the medium in the following form,

le(z, t) = 1(,+)( z‘)E1 (z, t)exp(io) + E1(+)(z, t)E;_)(z, t)exp(—ig). In this case, the correlation
functions of the two-step scattering on this phase.

(PG, 9)Ip) = <1, p'[TT (2 O (2, £ — DL p>e
lgga’ (0’ IRS1p) + a’q; (p' IRy2 1p)

+ 320, (PR3 () [p)], (15)
where
(PIRG1p) = <L plad e el p>ey
o L VPP p—k
= OpprAyp > (_) & GG @2k —p+ DI - p)s (16)
k=[p/2]
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~(1,2) At A A A
(P'IKy. " 1p) = <L, p'1& &85l p>e)

P 2p—h)
—ap Y (£)7 gtctepterk - pe - k+ ey, a7
k=[p/2]

and

(PIRSD 6)1p) = <1, plled aée] exp(ikis,) + H.cll, p>e)

o & (g b
= 2cos(¢)Al§7) Z (—)
k=Tp/21\ 2

x gHICKCH P (p — KU — K)6p - (18)

The similar expression as (15) we obtain for normal form of correlation function,

(p1GH2(t, ) |p)=<1, p’|f[1+m(z, )I1,,,(z, 1)|I, p>(). For simplicity, we represent its analytic form of this
expression for equal amplitudes of field components described in Exp. (14), gy = q; = ¢,. After the introduction
of wave functions (11) and field operators (14) we obtain the following analytic expression,

ne(1,2) Lo - (& W= 2%k—p ~k
<p |GN’ (t) ¢)|P> = 6P,P/q0Alp Z (_) g] Ck Cl
k=[p/2]
x{U—k+DQk—p)+(p—-—KQ2k—p+1)

&

+2(p — k(I — k)cos(qb)ﬁ}. (19)

We observe that the third term in the expressions (15) and (19) describes the interference between the first and
second terms of the bimodal field characteristic, f[fm(z, t). This interference depends on the phase advance and
phase delay of the two waves with frequencies, w,, and, w,, + 2w, relative to the central one, w, + w,. The
behavior of the quantum fluctuations of this process also depends on the difference of these ways in the
interferometer schemes or in the dispersive medium. The square fluctuations are described by the mean value of
matrix elements,

(PlIAENIP) = (pl: (GG2(t, 9))%: Ip) — ((pIGF?(t, 9)p))?,

where
(Pl(GI2(t, ) 1p) = (pllTy(z, O, (2, O, (2, T,z )]p)

AP 3 (&)2(p_k){gf"cf“’c/‘
k=[p/2]
X [(L =k + 1 — k+2)2k — p — )2k — p)
+ (= k+ D(p— bk — 2p + 1)?
T =0 —k=DCk—p+2)2k —p+ 1]

2
+ 2(ﬁ)\/c§§1f’“cﬁ+lc§"?cﬁ (4k — 2p + 1)cos[¢]
&

x {0 -k -l —k+ D2k —p+ 12k —p+2)
+(p—JT—0(p — k+ D2k — p)2k — p — D]

2
2
+ 2(ﬁ) cos[2¢] J cX rrigrreciorch

k+2
&

X2k —p+2Qk—p+DJI—k—DU-k(p—k(p—k— 1)}

Let us find the correlations between the bimodal field components oscillations with frequency, 2w,. Here
we considered the field strength component product, E,f:g(z, t)én(f)(z, t) ~ exp[2iw, t + i(ky, — kpy_2)z]...
The correlation function of such a process is described by the functions (p’ |G1§2’m)(t, t—7)|p)=
(P12, t)f[;m(z, t — 7)|p). In the multi-step scattering process, the number of this terms are less with

one than in the correlation function (13). According to the definition of such field characteristics,

9
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o A=) A (+)
HZ](Z’ t) = Ep (Z> t)EaZ (Z> t)

= qoqugfz exp[—2iw,t + i(k, — kp)z],

follows that the correlation function contains only one term,

A (2,1)
(P1Gat t — 7))

B ala; <1, p'leot &eIL p > expli2iw 7], for N.p.;
aca; <L, p1&ef &l p >y expli2iw, ], for Awp.

)4 2(p—k)
g _
= p,p’qozqzzAlg) > (_2) gIZkClkclfk P
k=Ip/2]
><{(l —©*p —k+1), for Np;

(I—k+D*p—k for Ap. (20)

The quantum aspect of this problem can be estimated by projecting the master equation (7) of cavity
excitations on the states (11) of the bimodal system of the cavity field described in appendix B. Due to the fact
that in the open system, the total number of photons in the cavity/fiber is not conserved, we propose to
decompose the density matrix, W (¢), not only on the converted photon number, p, but also on the total
number, [, of the collective photon states,

W =>Qp®IL p >0 < 1L, pla-
Lp

To obtain the equation for probabilities Py,(t) that the cavity system excited by I — photons can generate p—
bimodal excitations in the cavity, we introduce the unity in the orthogonal sets of wave vectors obtained in the
appendix B,

Z”)P >a < l> p|a — 1>

Lp

where <1, p|l', p’ >, = 6,10y, . Using the decomposition of the density matrix on the system of wave vectors
(B5) of the two-step scattering process, we obtain the following system of differential equations for the statistical
weights, Qy, of the density matrix,

L) = 261Qp1 (G — €2, Q1)

+2Go (1AL /AP )?Qi1p (1) — (I + 1 — Dp)Qp(1)}
+ 20,00+ VAR, JAD Y Qi1 — 1Qp)
Q[o(o)zl, l:,l+2, ZO+ 1,10, lo— l,l()— 2,p:0, 1,...1, (21)

where the first term describes the conversion process and the second, takes into consideration the cavity losses.
The coefficients {(A,(er)1 ? Alf) )?}and { C;} are square amplitudes of the losses and conversion processes in the
system described by Exps (B5). The coefficient is expressed through the mean value of excitation numbers of

photons, which leave the pump mode,

p 2(p—k)
D, =[AJP > k(&) gclrek (22)
k=[p/2]

Following the description of the short pulse duration of the pump field, we considered a convenient to use the
Hamiltonian description of the multiple scatterings of photons. In this situation, for a quantum description
point of view, we propose to use the uncertainty principle between the pulse duration and energy, AtAE > h,
where the first term describes the conversion process proportional to the pulse duration, 6t ~ 7,, and the second
term describes the dispersion of the number of photons, I relative its mean value I, §E ~ fiwy|(I — Ip)|. In this
situation, the solution of the master equation (21) can be averaged supplementary, taking into consideration this
uncertainty principle. It is convenient to propose this supplementary average procedure for the initial set of Fock
states, |I),1=1,2,...,lp, + 1,..., of the pump, field considering it as a normal distribution relative to its mean
value w(l) = (1 / V2mo?)exp[—(I — 1)? / 20%], where o is the dispersion connected with pulse duration and
photon statistics in the pump field, [, is the mean value of the photons in the pump field.

10
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Figure 4. Description of the relationships between different components of multiple Raman scattering components using bimodal
correlation functions. In figures (A) and (B) the correlation functions, K& and K3" and K2 for two value of the phase delay,
cos(¢) = 1and cos(¢) = —1, have the opposite signs. This describes the relationships between different components of multiple
Raman scattering components using bimodal correlation functions. In figures (A) and (B) the correlation functions, K3V and K{%?
and K% for two value of the phase delay, cos(¢) = 1and cos(¢) = — 1. have the opposite signs correlates relative to their amplitude
superposition. Figures C and D corresponds to the behavior of the total bimodal field characteristics, G{"» and G{? for two values of
the cos(¢) = +1Herel, = 6.

4. Numerical results and discussions

The time behavior of the moments averaged by the statistical weights of the system of differential equations (21)
is plotted in figures 4-6. According to this conception, the correlations (16), (17) and (18) describe the
development of the coherence effect between bimodal components of the pump and first anti-Stokes

component (E ;L)(z, t)E1 (z, t)E1(+)(z, t)]::;_)(z, t)); correlation between the first anti-Stokes

component second one, <E1 (z, t)Ez(f) (z, t)Ez(f) (z, t)EAl(f) (z, 1)), and their cross-correlation,
(E ;H (z, t)El (z, t)E2 (z, t)E1 (z, 1)) + H.c. The mean value of these correlations can be obtained after
the average of these functions using the statistical weights (21). After this procedure of mediation, we can use

normal distribution of the photons in the pump field so that the correlations takes the forms,
o (1,2)

K;{”—ZZw(l)sz(tMlem lp), i=1,2,3.

1 p=0

As follows from figures 4 (A) and (B) the interference between K;* and K{%? bimodal fields is described by the
correlation function, K{y? (¢) = K{}? cos ¢. This is possible not only during the propagation through the

dispersive medium, but with the changing optical way of the bimodal field characteristics, E;r) (z, t)ﬁl(_) (z, t),

and E;Jr) (z, t — T)EAl(i) (z, t — 7),in the heterodyne interferometry [42, 43]. In figure 4 (A) we take the same
sign of the splitting of the bimodal amplitudes, g, = g,, which corresponds to the phase shift, cos(¢) = 1. For
demonstration of the phase sensitivity of these correlations in figure 4 (B) we take the opposite signs,

cos(¢) = 1. The dependence on the intensity of the output signal of the bimodal field detected in the anti-
normal, G{?, and normal, G{?, products of the bimodal field characteristics,

f(xl(z%r))(t )= % Kl(}\(N) +q qZK(zlé(zlzl) + %ql 1, 3A(N)C°5¢ (23)

are plotted in the figures 6 (C) and (D). The significant modification of output bimodal signal detected at
differences of the frequencies, w, = w;_; — w;as function of phase delay is observed in these figures in case when
cos(¢) = land cos(¢) = —1. The plot was made for the same single photon amplitudes, q02 = qlz = qzz. The
behavior is like in the traditional interference effect, but we must emphases here the square dependence on the

11
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Figure 5. The behavior of quantum fluctuations of each step component (A) and (B) of bimodal field in the cooperative scattering and
their correlations (C). The evolution of quantum fluctuations of the correlations between pump and second step scattered photons is

plotted in figure (D). All numerical simulations was made for the parameters: [y = 6, |g1|=|gl; |90 = 41| = 92]-
(A) ‘ (B)
60 1 80
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40 40 — cos(K16;) =1
o~ 5 20 / ~ é 20 —_ COS(Klér) =-1
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Figure 6. The dependence of the total fluctuation of the intensity of bimodal field for the in-phase delay of one of the components,
¢ = K16, = 2nm (or cos(K;6,) = 1) and for anti-phase delay, ¢ = K16, = 7 + 2n7 (or cos(K;6,) = —1). Figure A and Bare plotted
respectively for normal and anti-normal arrangement of the operators in the correlation functions for I, = 5.

field strength of the characteristic of the bimodal field. These correlations were established during cooperative
phenomena between two steps, Raman emission. During the interference between the amplitudes, qoz ql2 K32,

. . . . A(+ A(—
and, ql2 qz2 K{4?, is possible the retardation path of two bimodal waves, E ;0 )(z, t)El( )(z, t),and

b:l(i) (z — 6, t)EZ( i (z — 6, t), relative to pump one, E ;;r) (z, t), and second step anti-Stokes components,
I:QZ(H(Z — §,, t). In this situation the interference term, E;:)(z, t)bal(i)(z, t)EAl(i)(—ér, t)ﬁ2(+)(z — 6, t)+H.c.

of the expression (15) contains this delay like in Young interference scheme, ngz) (6,) = cos(K;6,)K{(0). This
takes place when the phase achieved the value, ¢ = K;6,, where the bimodal wave vector is defined by the
relations, K; = k; — k, = k, — k;. The possible interference between such bimodal field can be realized in the
fiber regime of the propagation of radiation.

The square fluctuations and entropy of these correlates may be estimated according to the definition of each
correlations plotted in figure 5,

12
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21 L )
A2 = S5 wQp() (plARTKY Y p) — (KDY, i=1,2, 3
I p=0

21
S==33 w)Qp(H)n Qp (). on

I p=0

Here the notation, A, {...}, represents the anti-normal product of the bimodal operators f[;m(z, t)and

~t . . . . o

I1,,,(z, t). We observe that the maximal values of fluctuations and entropy are achieved in the same time interval.
The square fluctuations and entropy of these correlates may be estimated according to the definition of each
correlation,

21
AL =33 w)Qp() (pl:(GY(t, ¢)%: |p)—
I p=0

20 2

— I35 wh Q) (pIGGP @ d)Ip) | (25)

I p=0

which for simplicity we take equal one for vacuum field, |qo| = |91| = |¢2|=1, in the numerical plot of Exp. (25).
As follows from the numerical representation described by figure 6, the total fluctuations contains the
interference between the each bimodal components described in Exps. (24) and depends on the phase shifts

through the cos(2¢). Two values of this interference function, cos(2¢) = 1,and cos(2¢) = —1, are plotted in
this figure. This interference describes the higher entangled between the photons in the multiple scattering
process.

For the description of the quantum correlations between the pump and second anti-Stokes mode, Gf(’i,)) ),
(20) we introduce the characteristics,

21
GEY(®) =25 w Q) (pIGsalp)s (26)
1 p=0
correlation,
21
AR =53 w) Q) (pIAN {Ry1Roi} [p) — {Rip}. 27)

I p=0

If we take into consideration hay steps scattering process, described by the set of wave functions (B9), we can
obtain the large numbers of interference terms in Exps. (23) and (26). Numerical behavior of cross-correlation
between the pump and second anti-Stokes modes is represented in figure 4 (D) for the same parameters of the
system go2 = g22 = 1. Asthis correlates is proportional to the number of the photons, we plot in this figure and

photon number cross-correlation between the modes, ARy ) = Gf\z(’]i,)) (t) — (&8)) (&4 ¢o), where

(¢;¢fy = EIZ;IZO w(D)Qp (1) (pléi ¢flp),i=0, 1,2 mean value of the photon number in each mode.

1

5. Discussions and conclusions

The transfer of phase correlation from one mode to other modes of quantum generators in multiple scattering
processes plays an important role in quantum information. This effect is named teleportation [44, 45] and
possibilities to construct such equipment play an important role from classical and quantum points of view.
The possibilities to detect such correlations are represented in figures 3 and 7. The first proposed method
uses the interference between the pulses with different frequency propagation ways through the dispersive
medium situated after the lasing volume of multiple scattering. The second one is possibly improving the losses
from lasing volume using contact fiber with excited atoms situated in evanescent zones of fibers, as this is
represented in figure 7(a). The two types of detection represented in figure 7 may be used for the detection of the
transfer of photon excitations between non- adjacent modes. The first consists of the detection of a bimodal field
using photon current correlation of two detectors (C), and the second one consists in the detection of
interference of two fiber branches of bimodal on the two-photon excitation, as in the traditional interferometer
using detectors like D1 or D2 represented in figure 7(b). For the detection of correlations for non-adjacent
modes in the multi-step scattering, we propose schematic photodetectors consisting of N - independent atoms
prepared in the ground states. The first detector has the excitation energy, E, ~ fiw,, equal to the energy of each
portion of the quasi-particle in the lasing volume, but the second one has the double excitation energy,
E, ~ 2hw,, which can be used for the detection of correlation between the k and k + 2 steps of scattering process.
Of course, in the particular situation of the two-step Raman process, the excitations of such detectors are
possible using two adjacent or non-adjacent mode components.

13
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evanescent field
v

(b

Figure 7. (a) Detection of a bimodal field using photon current correlation of two detectors (C) or correlation or interference of two
fiber branches on the scattering excitation, as in the traditional interferometer (D1). (b) Schematic representation of two
photodetectors consisting of N-independent atoms prepared in the ground states. One detector has the excitation energy E, ~ hw,
equal to the energy of each portion of the quasi-particle in the lasing volume. The second detector has the double excitation energy,
E, ~ 2hw,. The excitations of such detectors are possible using two adjacent or non-adjacent mode components of the two-step
Raman process.

The inelastic stimulated Raman scatters in the fibers were observed in [46, 47]. Here the pump is converted
by vibrating SiO, molecules in a glass lattice, whereas the feedback is provided by elastic Rayleigh scattering of
the SRS-induced Stokes wave on sub-micron irregularities of the glass structure, with a small part of scattered
light coming back into the fiber. Though the feedback is very weak, it is sufficient for lasing in passive fiber, given
that the integral Raman gain is proportional to the fiber length and pump power. The higher-order Stokes
generation likely comes from photons that have the longest path lengths, thus have the most gain in the random
lasing process [46, 47]. The pump quantum efficiency of converting the pump 1.05 pm into the output
radiation is almost independent of the Stokes order, the pump amounting to 79, 83, and 77 for the Ist (1.11 ym),
2nd (1.17 pm),and 3rd (1.23 pm) order, respectively, at the polarization extinction ratio 22 dB for all orders.
The laser bandwidth grows with increasing order, but it is almost independent of power in the (1 — 10) W range,
amountingto ~1, ~ 2,and ~ 3 nm for orders 1 — 3, respectively.
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Appendix A. Master equation of multiple scatting lasing

We propose the elimination procedure of atomic polarization operators using the anti-normal representation of
the solutions (1) in which two small parameters will be taken into consideration. Considering the ratio, ¢/(1 + <)
of the expression, ¢ = k (/Af(t)/A\T(t)> + >0 0% 6,;" (t) & (¢), as a small parameter of the system we propose the
method of decomposition of master equation for cavity field on this common parameter. This parameter, € =
/(1 4 ), depends on gain, x, and losses, 9y, rates and helps us to avoid the divergences connected with relatively
large values of the parameter, , in the serial decomposition. Indeed, for large values of the parameter, ¢ > 1 the
traditional serial decomposition, ¢ — ¢*, may become negative, although it is positive by definition, € > 0.
Considering that in the initial stage, the arrived radiators are in the excited states we obtain the following
equation for mean value of the multiple scattering operator, A, in anti-normal representation,
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%@(t» =i wp([E] (1), A1)
p=0

+ix, (IR, (0, AND @) + (O LA, Ao
+ 3L {2([E (0, A&, () D.(b)
p

Al R 1A A At
+ (D, (D [ef (), A ()D. (1) D (1))
+ H.e{[A®]" — A} ). (A1)
Here the mean value of operators was made on the inital state of atoms and feld operators,
|E)/IL)r = lers €s...6N,)r @ |, 0,...,n)s. The last term of equation (3) represents the losses from the system in
which the atomic operator, ﬁ+(t) D (1), is represented through the anti-normal expression,
Df®D (1) =2D,(t) + D ()D (1) Considering that the pumping process takes place in a short time interval

. . . . A — A+ .
in comparison with the scattering process, we represent sources operators, D, (t) and D, (), described by
expressions (5) and (6) in the Born-Markov approximation,

D)= +iﬁz(t>&§<t>;
wr — w+ 1y
Bt =—2X R )b, (A2)
Wy — w— iy

Here the losses parameter are normalized, 5 = v — 2(D,(t) — DY I‘kflj (t)& (¢). In the same approximation
the inversion equation (2) can be represented in the following form,

=1+ Y 0kl (06M1D.(0) + 2[R, 0D, (1) — D A, ()]

P Tp
+ i% [A, D ) — Dy (OA, 0]
P
FLG+ D = DAY 9k (e (A3)
k

In the last term of Exp. (A3) we take into consideration the conservation low Bloch vector,

iG+ 1) ~D,D,— 1)+ D (t)D ™ (¢), when the pump rate have the same magnitude as a loses of fling atoms
from the evanescent zone: -y, =~ -y the last loss. After the substitution of Born-Markov representation for sources
part of atomic operators (A2) in the right-hand side of the equation (A3) we obtain relative the inversion D, a
solvable square equation,

D)= ——{1 = {1 = 260 (j — j(j + DY & (V&)
et) k
+ix,[A, 0D (1) — Dy OR, 01/ 7)) 0% (A4)

Here we have the small parameter,

2570k (5 Ex (1)
1+ S0k (&) + 7R, (A, (1)

¢ =

Considering that the interaction with external electromagnetic field is smaller than the interaction with the
cavity field due to the small parameter, & (¢), we represent the root in the serial decomposition,

1—-X ~1- X/ 2, so that expression (A4) take the form known in the literature (see for example [48-52]),
ill = (G + DYkl ()& (@®)]

L+ X,0:8 (0&® + R, (DA, (1)

2R, 0D (1) — Dy (A, 0]

1+ S0 (08 + Th, A, (1)

48—52We can substitute in source operators (A2) the inversion operator with the right hand part of Exp. (A5).
After that we return to generalized equation (1) introducing the solutions (4) in anti-normal forms Taking into

Dz (t) =

+

(A5)

. . . At A . . . .
consideration that the action of operator Dy (¢) and D; (¢)fon initially excited radiator state, |E), give zero

contribution, 15f+ (*)|E), = Oand (E|, 15; (t) = 0, we continue to eliminate the atomic polarization during the
lasing. In the first approximations, the terms proportional to < and ¥, give the following contribution in the
generalized equation,
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n

<A<t)> wp([Ef (D), Am)])

at I3

wy — w + 19)

=0
{ )
A A, A(t) A (t)(iv
+ 3" 92018 (1), Ae ) D, (1))

k

2

SR UMOIAGRING) ek(t)(wr_‘;+Mz
<G+ 1) — Dty — DD ®IA 1))
+ 2ix, = et IR, @), A(t)m:(t);wVDf_(t)[\D
T (wr — w + i)
+HeA (1) — Ay, "

where N — N[1 — (j + DY 0 (D& @1, D, (1) = j(j + 1) — D.(t) — D ()D*(1),and
1
1+ 068l (D8() + BA, (DA, (1)

V()=

Itis created an impression that if we permute the operator, DAf_ (), to the left hand of the correlation function

<[A;(t), 0 (t)]/A\:(t) VDA]: (t)A:) , we obtain the zero contribution in the last term of the Exp. (A6). Such a

permutation is possible if we take into consideration that DAJ: (t)=D (t) — DA;(t). In this situation only the
first term, of this difference can be permuted in the left hand of the correlation function so that after the
permutation we can return and eliminate it

(A, (), OMIA, () VD, (A,
A A AL A Al At
= (D OIA, (1), OMIA, (HV (D, (DIA,,).
This re-normalization of the photon losses, ¥ from the cavity is connected to super-radiant effect of the

confinement of bimodal field and atomic subsystem. So in the first approximation on the development on the
parameter, < , the equation for (A (#)) becomes,

(A(t) <1>—zz wp ( [@T(t)cp(t) A1)
p=0
. ZN
RO, Ry @nds 0 ¥
+ NY (8 ), Amle)
k

()

YR, Amtami’
e MO CORNGILIOIMOS

+ Hel(A@)r — A@)].

The next contribution can be obtained introducing the free part fluctuations terms in the right hand site of the
generalized equation (A6). Let’s now find the analytical representations of gain and losses terms of generalized
equation (A6). Gain contribution is described by the expression, G(t) = ([/A\;(t), A D$+(t)), and its Hermite
conjugate fczrm. After consecutive elimination of the introduction of the free part of operator, DA+(t), and
inversion, D, (t), we obtain the following serial decomposition

G(t) = —N. S R/HHLLA@), R, 1A,V (0), A, @]

x A V(). ARV (). (A7)

Here we can introduce the super-operator, 1/{1 — X}, the serial decomposmon, 14+ X —|— X+ X+ . +of
which is defined by the following recurrent actlons, K=2X A(t) (% / 4) A(t), A (t)]A V(t) ;

= XA = R&= /DR, A, 0OIAV (1), .., Ry = R"A() = R/DR_ 1, A, (IR, V(1) ... In this
situation the serial decomposition (A7) can be represented in the following compact form,
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1

——A® + N. (A8)
1 — (/D) A, 01A V()

G(t)=—N,

After the substitution of this super-operator in the right hand cite of expression (A8), we observe that the first
term of the decomposition is reduced with +N, and the next terms represent the serial decomposition (A7).

Let’s give the similar representation for losses term,

L) =3, I ( [E; ®), AD]1S, (t)ﬁ+(t)l§7(t)>, and its Hermite conjugate. After that the first elimination of
the free parts of operators D (t)and DA+(t) in Exps. (A1) and (A6) we must again introduce operators D (t)and

15+(t) through the free and sources parts in the anti-normal representation of the losses term of Exp. (A6). In
second elimination this correlation becomes equal to the expression,

L(t) = > T {2([&] (1), A (D16, D, (1))
4

(w; — W)Z + ’72
4X121 AT N " N ~ 4 A
T o wp 157 OGO AOEIGOA, OD-0)).

(A, ®1E®, AO®16,MA, ®)

4X2 ? ~— A A2 . A
N o) 0MOD GINGRNGIO)

x &R, (DA, ). (A9)

The procedure is repeated again as in Exps. (A1) and (A6). We mast introduce again in the right hand side of Exp.
(A9) the the expression for inversion represented through the anti-normal form of D (t)and D' (¢) operators,
IjZZ(t) =j(+1 — D,(t) — 157(1‘)15+(t). After that permute, D (¢), in the lefthand and ]5+(t) in the right
one of the correlations (A9). We can infinitely repeat this procedure representing the correlate, L(#), in the serial
decomposition,

L(t) = > T {2([&] (1), A&, () D.(1)
p

+ G+ DR, 0O1E @), AD180OA, (1) — .. —(—R)
x (R, A, 0).. R, 010, AD16,mA, (DA, ... A, ) — ..}
— B8] (1), A& 1D, (1)) — ..
— (—RR, A, 0. R, ®)1E ), Aw)]
x & MA (OA, (). AL (OD.(1)) — ...}. (A10)

Here & = 4xi / [(w, — w)* 4+ 2. For further elimination of the operator of inversion, D, (t), we use the
representation (A5) for this operator and follow the methodology of elimination of its free part as in correlation
function, G(¢). But it is not difficult to observe that for the large number of atoms , N, = 2j > 1, we can neglect
the last terms proportional to D, (t) (here, j> <ﬁz (1))) in the expansion (A10) relative the terms proportional
to j*. In this case the losses corelation of generalized equation becomes,

L(t) = N1 + N/H (& (D), A1)

N/ 1 i A
- — — [, (), O)1&, ). (A11)
4\ 14 kA, ()= A, @)
Here the function 1-————— canbe represented in serial decomposed, ¥ — VP —(— /@)l?l o>
1+ kA, () = A, (1)
relative the superoperator Y = kA, (t)= A:(t), with the definition of action on the commutator,

7 = (&), 0N&: 5 = Y2 = vk, 0IE @), OWIGA, (1), 5, = Y2, = sk, () ZA, (1) andso
one, = = Y7, = V' 2=rA, ()2 A, (1.

Unifying the the gain in multiple scattering process (A7) and losses (A10) we obtain the serial expansion in
the terms of bimodal field operators of generalized equation,
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%m» — i3 w8 (D0, Aw)
p=0

= NS/ HNLIA, (0, AOIA, V (0, A, 1A, V(@),...A, 1)
k=1

+ NS L (E ), Ag, o)
P

+ (N2 /9 (e, 0180, AD16,mA, 1)
— (A, A, (0. R, 01 ), AaNg A, DA, ). A, 1)
— ..} + Hel(A@)t — A@). (A12)

The return to master equation of density matrix, W (¢), of the bimodal cavity field can be obtained after
transformation from Heisenberg to Schrodinger pictures under the operator traces,
(A@t)) = Sp{W (t)A(r)} = Sp{W (+)A}. From equation (A12) we obtain the master equation,

d - & S Ata
—W@®) — i) wp[W(t), /&)
dr port
= N (e/dMA,, A, VR, A VA, A VW @)
k=1

At A - N S
= 2 TpllE, G INW @) — (N/HZ A A, . A, W ()
p =1
x AA, . A, (—r)'}] + H.c. (A13)
We can return to the problem of multiple cooperative scattering of photons using this master equation. We
observe that the gain term of the master equation contain cooperative phenomena between the photons

generated in the bimodal field. In the second term of this equation the losses increases being normalized by super
—radiant cooperative process between the atoms lake in the Dicke super-fluorescence.

Appendix B. Wave vectors of cavity EMF modes created from initial states in multiple
Raman scattering

1. Let’s start with two steps of multiple scattering process and acts with excitation bimodal operator,

A+ o A . A o 1
A, = (608 + g,6¢3)/x2 on theinitial state, |1, 0> ) = |1)60),|0)5, of the three boson modes of the cavity,
in which is realized two steps scattering process represented in figure 4(a)

At
A5 11)0100110)2 = VIIT — 1)o[10]0)2 /X, = Cill, 1 > -

For the new state which represents that one photon was converted we ask the normalization procedure, <, 1|

I, 1> 5 = 1, which gives us the following expression for the coefficient, G, = J1 g / X,- It describes the

. .. . At .
amplitude of the transition probability, |<I, 1|A, |, 0 >¢) |*, from the state with zero converted photons
into new state with one portion of energy, /w, = 7 (w; — wp, ). Let us again act on the new obtained vector, |

. o At . .
I, 1> = |l — 1)4|]1)4|0),, with excitation operator, A, . We obtain the superposition,

A", 1>0) = {g' 2 — D[l = 2)4|2)10),
+g&ll — Dolonl1)2) /g2 lx, = Cill, 2 >0 - (B1)

Thelabel, 2, of this new state, |, 2>(,), indicate us that the cavity received two portion of energies equal

2 X (fw,). The obtained energy is realized in two possibilities: first way corresponds to the generation of
second anti-Stokes photons and second one describes the reabsorption of the anti-Stokes photon with
frequency, w; and generation of another photon with frequency, w,. Asking the normalization to unity, (I,

— 14 2|l, = I+ 2) = 1, we easily find the normalization coefficient, C, = 2, /g14 Gt + g12g22/4 /(X2 glzl).
This new wave vector becomes the superposition of above described states.

g2 CE 1L = 2)012110% + g (8,/2)11 — 1)ol0)i]1)2

Il 2>a) = 1,2 2 21
V& CE + 82(8,/2°C;

, (B2)

n

k

. . . . . . At
portion of energy in the bimodal conversion, Aw,, if we act again with operator, A, , on the new state, |,2 >,

represented through binomial coefﬁcients,( ) = C,f = n!/[k!(n — k)!]. The cavity may obtain the third
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{g’V32CP 11— 3)13)s10)0 + 3g12g2/2\/2C12|l = 2)s[1)p]1)a}

X2 \/g12C12 + g12(g2/2)2
= Cgll, 3 > - (B3)

At
Az |1, 2>0) =

From this representation we obtain the next expression for normalization coefficient,

G = 3\/ gf G+ 2g14 (g22 / 4H)C? / \/ gl2 G+ g12 (8,/2)* . At this step we observe only the conversion of the
photon with energy, /w, = /w, + /w,, from pump mode to anti-Stokes one. The increasing of
superposition terms in this two step conversion may be observed on the fourth excitation of cavity modes

. . . At
with the portion of energy, fw,, after the action of the next operator, A, on thestate |1,3 > :

/A\Z+|l, 3 > =Cy|l, 3>, from which follows the wave vector,

I, 4>0) = [g* G 1T — 4)o4n10) + g7(2,/2)3CP 1 — 3)ol21 1)
+ 2@/ I = 2)ol0n2)2]
/ JCig® + 3g8(,/2°CF + g2(8,/2)'CE (B4)

in which from the normalization wave vector <1, 3|1, 3 > = 1, follows the next expression for coefficient,
Cy= 4\/ Cl'g’ + 38°(%/20°C + &' (8,/2)'C / (x, \/ 8’ G + 2¢*(g] /9 ). We made four consecutive

. At L . . .
actions of operator, A, , on the initial state in order to understand the behavior of the superposition
coefficients. In the final, we propose that the general low of the p-times actions of the generation operator,

At . . oo o .
A, , for the creation p x (fiw,)- portions of energies in the cavity is described by the wave vector,

P p—k
e =4 3 (£) g CETCh - Ralzk ~ phlp ~ . (85)
k=[p/2]

2(p—k
where, Alg) =1 / \/ g, /2](%) =0 cir X Cf, is the normalized coefficient of this state, [p/2] = p/2
for even numbers, [p/2] = (p + 1)/2, for odd numbers. Let us consider that this expression is correct and

L At
acts again with operator, A, , on the state |1, p> )

A+ P p—k — ~
Az |l, p>(2) = Alp Z (%) glkq[Cka pClkAz_ll — k>o|2k — p>1|p — k>2

k=p/2
=Cprlbp+1>q) .

From which follows the identity,

p+1 g p+1-k f
Cosillh p +1>0) = Ay Z {(_2) 8

k=[p+1/21 \\ 2

X JCH PP I+ 1 — @k — 1= p)ll — Khl2k — 1 — plalp + 1 — k),

p+1 p+1—k
+ 3 (&) 2g1’<\/c,§"*1’c,k(2k —p)p—k+1)
k=[p+1/2]
X |Z - k>5|2k -1 _P>b|P —k+ 1>u}-

Taking into consideration the identities, Cszfzfp CFY+1-Kk@k—1-p)
= Pck@k — 1 = p)rand, GF P2k — p)(p — k + 1)=CF P '(p — k + 1)% we obtain that
the new vector, |1, p + 1>, by replacing p by p + 1 with coefficients,

p+1 L5
(p+ 1)\/Zk:r<p+1>/z1(z
H\2P=0 2k—p 2k ~k

Xz\/zf:rpm(?z) G e

which demonstrate the viability of the representation (B5). g,/X, = g/X, = V2, we obtain the following
identity, C, = /p(2l — p + 1), from which follows that the sum takes the form,

2p+1=0) 2k—p—1 2k ~k
) Clr g

Cpi1=

P
ko2k— k__
S 2kcHrck = ek,
k=[p/2]
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2. Below, we want to generalize the induced multiple scattering vectors for the a- steps. Let us study the Raman
lasing in the three steps of conversion of photons. In this situation the excitation and de-excited of the cavity

field with the portion of energy, hw,, are described by the expressions, /A\3+ = (g6d + &66 + §6¢) / X3
and, ZAX; = (ga &+ %6 &+ &6 &) / X3 Where the renormalization coefficient may be regarding as,

X3 = +f gl2 + g22 + g32 .Inthe three step induced scattered photons, the number of modes in which can be
generated the converted photons are equal to three: w; = w) + w;, Wy = Wy + 2w, w3 = w) + 3w,. The
initial state vector is represented by the product, |1, 0> 3, = |1)9|0)1]0),|0) 5. Firsts two actions to this state is
accompanied by the generation of portions with energies in the bimodal states of cavity, iw,, 2hw,, and have

many similarities with two-steps Raman conversion: f\;ll>0|0>1|0>2|0>3 = glx/jll — 1>0|1>1|0)2|0>3/X3,
At
[As 1L 26, =1[g 31 G |1 — 3)0]3)110)210)s
+ 3¢ 28,2121l — 2)ol 10 [1):10)s

+ 868\ 1IC I — 1000 [0)211)3] /X387 22CF + &1
= A3|l, 3 >@3) -

Here according to the procedure proposed for two steps Raman emission the coefficient, A3, must be found
from normalization condition, (I, 3|1, 3) ;) = 1. We observe that the new populated state, |1) 3, looks asa
superposition function composed of the two-step wave function and new photon converted state |#)3,

~ 88,8 ~
|1, 3>a) ~ |1, 3 >@) |0); + %\/c}u —1,0>0 1) = 11,3 >3,

where the first term contains the excitation of the cavity field with three portions of energies in the two steps
conversion of the initial pumped photons. The first term is described by non normalized wave function (B2),
|£\§ >0 = gz\/CTzll — 2)012110), + g(g,/2)|1 — 1)9]0)]1), multiplied to vacuum state in the third
scattered mode, |0) . The second term demonstrates that one photon leaved two-step state, |1 — 1,

0>y = [1)6|0)1]0),, so that in the pump field we have I — 1 photons and one photon in new scattered field
|1)3. In order to avoid the complicated coefficients in the procedure of the construction of wave function for,
p % (hw,), excitation portions of energy, we propose to use weave functions, which are non-normalized to

unity,

—~ P p—k
>0 = > (&) g CHEPCFIl = K)ol2k — phlp — Ko, (B6)
k=Tp/2]N 2

described by the representation (B5). The next action of the excitation operator on the state, |/, 3>(3), don’t

give the conversion of the next photon in the new conversion step mode, ws, and according to the Exp. (B3)
. Nas —~~ . . .
e action of operator, A5 , on the state, |/, 4>(,), only increases its amplitude,
theact foperator, A, on thestate, |/, 4>), only ts amplitud

A4~
X305 11, 3>

T =0 > (0 + glgng =T, 1 >0 1) (B7)

I, 4 >6) =

described by the representation (B5). The next action of the excitation operator on the state, |I, 3>3), don’t
give the conversion of the next photon in the new conversion step mode, w3 — , and according to the Exp.

(B3) the action of operator, /AX:, on the state, |m>(2), only increases its amplitude,
—~~ —~~ 1 ———
|1, 5>@ =11, 5 >@) 10); + mglgzggﬁ” = 1,2 >0 [1)s.

Beginning with this collective scattering state we observe that in the third mode appear the second photon
. . A . .
after multiple scattering. The term, A3 |l — 1, 2 >¢) |1)3, will generate the second photon in the state, |2)3,

/\+ ——
XAslh 56
6
—|l 6 >(2) |0> g1g2g3 \/_ll - 1,3 >(2) |1>

+ 88 / |z —2,0 >0 [2)3, (B8)

Taking this propriety into consideration, we can create and three - steps conversations of the pump field into
new anti-Stokes modes. Now can generalize this conversion to cv — steps generating the wave function for
this process,

|1, 5>@) =
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—~— LD/OLJ e k —~—
|l, P> = Z (%) Vclkll -k p— ak >a-1) |k>a (B9)
k=0 :

According to the indication method we may propose the following generalized expression for wave function,

|l, p>@), for generation of p portions of energy, /w,, into the cavity after the p- times conversion action of the
At

operator, ,A; , on the state, |1)4[0),]0),/0)3,

N lo/3] K .
|Z, pP>p)= Z (%) 4 Clkll — k, P - 3k >2) |k>3, (B10)
k=0

where

— p—3k g p—3k—r T
|l — k, p— 3k>(2) = Z (—2) gl'ﬂC,P” "Cl’,k

r=[(p—3k)/2]\ 2
X |l —k — I’>0|27‘ —p+ 3k>1|p — 3k — r>2.

. . . At
To demonstrate this proposal, we take the next action of the generation operator, A5, on the state (B10), so

that the next wave vector, |l/,p\+/1 >a) = X3/A\3+|lf,—p:/1 >(3) / (p + 1), takes the form,

1 R(288)
1L p + 1>6 = (1“)(p—3k+1)
0= nEN 6

X \/C71k|lf—k,p\—3k+ll >@) k)3

p/3 k
L5 (S50 ) g p — 3k + 0yCF

(p+ i\ 6
p—3k p—3k—r
X Z (&) glr\/crpi?’kirk(p — 3k — r)C[_k
r—(p—3k)/2\ 2

Using the identities G~ 'k(I — k + 1) = kK2CFand C2 " "k(p + 1 = 3k + 1 — nGHL, =
k(I — k + 1)CPH =3kl | we can reduce the state (B11) to the same form of Exp. (B10)

ILp+1>a=IT—kp+1>p[0)

1 ([Hiﬂ(glgzga
(r+1D o 6

X CHT=k p — 3k + 1 >0 [k)s

1 p/3+! k .
TS 3 (glgé&) 3kyCFIT— K, p — 3k T 1 >0 IK)s
k=1

(p+1)/3 k T a1
= (%) JCHT= T p =3k + 1 >0, [K)s.

Itis not difficult to normalize the wave function (B10). For this we can use the representation of the two steps
wave function through the normalized to one wave functions (B5),

|l — ic-,\[) — 3k >q) = Alil,(,p_3k|l — k, p — 3k>(y). In this situation we may easily find the normalized

k
)(p—3k+1)

k=0

coefficient of the three steps wave function, |, p >y = Al();)li:\ﬁ>(3), described by (B10),
_ (3)W3J 8858\ [ @ .
Il p>e = Ay 20| 75,7 | NG A, 07 1=K p = 3k > [K)s, (B12)
k=0 :

. 2k . . . . .
where the expression, Alf;) =1/3F / 30(%) CHA J(E)k,p— ;)% is normalized to unity coefficient. In this
approach we can reduce to similar expression and the wave function of the two-steps Raman conversion
(B6), Using the identity, Clp -k Clzf_" Clk Ckp _k, we easily can reduce Exp. (B6) to the similar one

p+k —

~ p/2 2% Y - —

|l, P> = Z T */Cl |l —1,p— 2r >1) |1’>2. (B13)
r=0

. . . . AT . .
This wave functions were created using the excited operators, {A,}, @ =2, 3, .... Itis not so difficult to
observe that after the action of the lowering operators, /A\;, to the wave function, |/, p>,) , transform it into,

|l’,p\—/1 >(a)» only in the special relations between the coefficients, g9, g1 » €25 > §a-+1, Wherea = 1,2, 3, ...
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These functions are orthogonal and can be used for the decomposition of the bimodal density matrix on
them W (¢) = 221,pPl I, p >@) < I, plo- Observing the symmetry like su(2) or su(1, 1) help us to reduce the
degrees of freedom in the Hilbert space of bimodal field.
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