
Twelfth Brainstorming Week
on Membrane Computing

Sevilla, February 3 – 7, 2014

Luis F. Maćıas-Ramos
Miguel Ángel Mart́ınez-del-Amor

Gheorghe Păun
Agust́ın Riscos-Núñez
Luis Valencia-Cabrera

Editors

Twelfth Brainstorming Week
on Membrane Computing

Sevilla, February 3 – 7, 2014

Luis F. Maćıas-Ramos
Miguel Ángel Mart́ınez-del-Amor

Gheorghe Păun
Agust́ın Riscos-Núñez
Luis Valencia-Cabrera

Editors

RGNC REPORT 1/2014

Research Group on Natural Computing

Sevilla University

Fénix Editora, Sevilla, 2014

c©Authors
ISBN: 978-84-940056-4-0
Edita: Fénix Editora

c/Patricio Sáenz, 13 - 41004 Sevilla
info@fenixeditora.com
www.fenixeditora.com
Telf. (+34) 954 90 74 36

Impreso en España - Printed in Spain

Preface

The Twelfth Brainstorming Week on Membrane Computing (BWMC) was held in
Sevilla, from February 3 to February 7, 2014, in the organization of the Research
Group on Natural Computing (RGNC) from the Department of Computer Science
and Artificial Intelligence of Sevilla University. The first edition of BWMC was
organized at the beginning of February 2003 in Rovira i Virgili University, Tarrag-
ona, and all the next editions took place in Sevilla at the beginning of February,
each year.

The 2014 edition of the Brainstorming had a festive character, being dedicated
to the 65th birthday anniversary of Mario de Jésus Pérez-Jiménez, the enthusiastic
leader of the RGNC, a member of Academia Europaea.

In the style of previous meetings in this series, the twelfth BWMC was con-
ceived as a period of active interaction among the participants, with the emphasis
on exchanging ideas and cooperation. Several “provocative” talks were delivered,
mainly devoted to open problems, research topics, conjectures waiting for proofs,
followed by an intense cooperation among the 40 participants – see the list in the
end of this preface. The efficiency of this type of meetings was again proved to be
very high and the present volume illustrates this assertion.

The papers included in this volume, arranged in the alphabetic order of the au-
thors, were collected in the form available at a short time after the brainstorming;
several of them are still under elaboration. The idea is that the proceedings are a
working instrument, part of the interaction started during the stay of authors in
Sevilla, meant to make possible a further cooperation, this time having a written
support.

A selection of papers from this volume will be considered for publication in
special issues of Fundamenta Informaticae, which will also contain a few invited
papers dedicated to Mario, on the occasion of his 65th birthday anniversary.

After each BWMC, one or two special issues of various international journals
were published. Here is their list:

• BWMC 2003: Natural Computing – volume 2, number 3, 2003, and New Gen-

eration Computing – volume 22, number 4, 2004;

vi Preface

• BWMC 2004: Journal of Universal Computer Science – volume 10, number 5,
2004, and Soft Computing – volume 9, number 5, 2005;

• BWMC 2005: International Journal of Foundations of Computer Science –
volume 17, number 1, 2006);

• BWMC 2006: Theoretical Computer Science – volume 372, numbers 2-3, 2007;
• BWMC 2007: International Journal of Unconventional Computing – volume 5,

number 5, 2009;
• BWMC 2008: Fundamenta Informaticae – volume 87, number 1, 2008;
• BWMC 2009: International Journal of Computers, Control and Communica-

tion – volume 4, number 3, 2009;
• BWMC 2010: Romanian Journal of Information Science and Technology –

volume 13, number 2, 2010;
• BWMC 2011: International Journal of Natural Computing Research – volume

2, numbers 2-3, 2011.
• BWMC 2012: International Journal of Computer Mathematics – volume 99,

number 4, 2013.
• BWMC 2013: International Journal of Unconventional Computing – volume 9,

number 5-6, 2013.

Other papers elaborated during the twelfth BWMC will be submitted to other
journals or to suitable conferences. The reader interested in the final version of
these papers is advised to check the current bibliography of membrane computing
available in the domain website http://ppage.psystems.eu.

The list of participants as well as their email addresses are given below, with

the aim of facilitating the further communication and interaction:

1. Bogdan Aman, Romanian Academy, Institute of Computer Science, Iaşi,
Romania, aman@gmail.com

2. Fernando Arroyo, Polytechnic University of Madrid, Spain,
farroyo@eui.upm.es

3. Juan Castellanos, Polytechnic University of Madrid, Spain,
jcastellanos@fi.upm.es

4. Rodica Ceterchi, Faculty of Mathematics and Computer Science, University
of Bucharest, Romania, rceterchi@gmail.com

5. Luděk Cienciala, Faculty of Philosophy and Science, Silesian University in
Opava, Czech Republic

6. Lucie Ciencialová, Research Institute of the IT4 Innovations Centre of Excel-
lence, Faculty of Philosophy and Science, Silesian University in Opava, Czech
Republic, lucie.ciencialova@fpf.slu.cz

7. Erzsébet Csuhaj-Varjú, Faculty of Informatics, Eötvös Loránd University,
Hungary, csuhaj@inf.elte.hu

8. Rudolf Freund, Technological University of Vienna, Austria,
rudifreund@gmx.at

Preface vii

9. Zsolt Gazdag, Faculty of Informatics, Eötvös Loránd University, Hungary,
gazdagzs@inf.elte.hu

10. Miguel A. Gutiérrez-Naranjo, University of Seville, Spain, magutier@us.es
11. Carmen Graciani, University of Seville, Spain, cgdiaz@us.es
12. Sergiu Ivanov, LACL, Université Paris Est Créteil, France,

sivanov@colimite.fr

13. Alberto Leporati, University of Milan – Bicocca, Italy,
leporati@disco.unimib.it

14. Jozef Kelemen, Silesian University, Opava, Czech Republic,
kelemen@fpf.slu.cz

15. Alica Kelemenová, Silesian University, Opava, Czech Republic
16. Luis F. Maćıas-Ramos, University of Seville, Spain, lfmaciasr@us.es
17. Dusan Marcek, Silesian University, Opava, Czech Republic
18. Miguel A. Mart́ınez-del-Amor, University of Seville, Spain, mdelamor@us.es
19. Libor Olajec, Institute of Computer Science, Silesian University, Opava, Czech

Republic libor.olajec@fpf.slu.cz
20. David Orellana-Mart́ın, University of Seville, Spain, dorelmar@gmail.com
21. Hong Peng, School of Mathematics and Computer Engineering, Xihua Univer-

sity City, Chengdu, China, ph.xhu@hotmail.com
22. Gheorghe Păun, Romanian Academy, Bucharest, Romania, gpaun@us.es
23. Ignacio Pérez-Hurtado, University of Seville, Spain, perezh@us.es
24. Mario de J. Pérez-Jiménez, University of Seville, Spain, marper@us.es
25. Antonio Enrico Porreca, University of Milan – Bicocca, Italy,

porreca@disco.unimib.it

26. Carmen Cruz Ramos-Molinero, University of Seville, Spain,
cramosmolinero@gmail.com

27. Agust́ın Riscos-Núñez, University of Seville, Spain, ariscosn@us.es
28. Francisco J. Romero-Campero, University of Seville, Spain, fran@us.es
29. Álvaro Romero-Jiménez, University of Seville, Spain, romero.alvaro@us.es
30. Ana Ruiz, University of Seville, Spain, anarumez@us.es
31. Jose Maŕıa Sempere Luna, Polytechnical University of Valencia, Spain,

jsempere@dsic.upv.es

32. Vladimı́r Smolka, Silesia university, Opava, Czech Republic,
v.smolka@centrum.cz

33. Bosheng Song, Huazhong University of Science and Technology, Wuhan, China,
boshengsong@163.com

34. Luis Valencia-Cabrera, University of Seville, Spain, lvalencia@us.es
35. Pedro Varo-Herrero, University of Seville, Spain, pevahe@gmail.com
36. György Vaszil, Faculty of Informatics, University of Debrecen, Hungary,

vaszil.gyorgy@inf.unideb.hu

37. Šárka Vavrec̆ková, Institute of Computer Science, Silesian University in Opava,
Czech Republic sarka.vavreckova@fpf.slu.cz

38. Jun Wang, Electrical and Information Engineering, Xihua University,
Chengdu, China, wangjun@mail.xhu.edu.cn

viii Preface

39. Tao Wang, School of Electrical Engineering, Southwest Jiaotong University,
Chengdu, China, wangtaocdu@gmail.com

40. Claudio Zandron, University of Milan – Bicocca, Italy,
zandron@disco.unimib.it

As mentioned above, the meeting was organized by the Research Group on
Natural Computing from Sevilla University (http://www.gcn.us.es)– and all
the members of this group were enthusiastically involved in this (not always easy)
work.

The meeting was supported from various sources: (i) Ministerio de Economı́a
y Competitividad (grants TIN2011-15874-E and TIN2012-37434), (ii) Instituto
de Matemáticas de la Universidad de Sevilla (IMUS), (iii) Fundación para la In-
vestigación y el Desarrollo de las Tecnoloǵıas de la Información en Andalućıa
(FIDETIA), (iv) V Plan Propio, Vicerrectorado de Investigación de la Universi-
dad de Sevilla, as well as by the Department of Computer Science and Artificial
Intelligence from Sevilla University.

Gheorghe Păun
Agust́ın Riscos-Núñez

(April 2014)

Contents

Matter and Anti-Matter in Membrane Systems
A. Alhazov, B. Aman, R. Freund, Gh. Păun . 1

Priorities, Promoters and Inhibitors in Deterministic
Non-Cooperative P Systems
A. Alhazov, R. Freund . 27

Length P Systems with a Lone Traveler
A. Alhazov, R. Freund, S. Ivanov . 37

Life-Death Ratio Approach by a Multiset-Based Type System
B. Aman, G. Ciobanu . 49

Solving SAT with Active Membranes and Pre-Computed
Initial Configurations
B. Aman, G. Ciobanu . 63

Red-Green P Automata
B. Aman, E. Csuhaj-Varjú, R. Freund . 73

Describing Membrane Computations with a Chemical Calculus
P. Battyányi, G. Vaszil . 79

The Reduction Problem in CUDA and Its Simulation with P Systems
R. Ceterchi, M.Á. Mart́ınez-del-Amor, M.J. Pérez–Jiménez 91

Towards P Colonies Processing Strings
L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú . 103

Scalable Grid-Based Implementation for Membrane Computing
G. Ciobanu . 119

Self-constructing Recognizer P Systems
D. Dı́az-Pernil, F. Peña-Cantillana, M.A. Gutiérrez-Naranjo 137

Antimatter as a Frontier of Tractability in Membrane Computing
D. Dı́az-Pernil, F. Peña-Cantillana, M.A. Gutiérrez-Naranjo 155

x Contents

P Systems with Anti-Matter
R. Freund, Gh. Păun . 169

Probabilistic Guarded P Systems, A formal Definition
M. Garćıa-Quismondo, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez . . 183

Solving the ST-Connectivity Problem with Pure Membrane
Computing Techniques
Z. Gazdag, M.A. Gutiérrez–Naranjo . 207

Conventional Verification for Unconventional Computing:
a Genetic XOR Gate Example
S. Konur, M. Gheorghe, C. Dragomir, F. Ipate, N. Krasnogor 221

P Colony Robot Controller
M. Langer, L. Cienciala, L. Ciencialová, M. Perdek, V. Smolka 235

Constant-Space P Systems with Active Membranes
A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron 243

Extending SNP Systems Asynchronous Simulation Modes in P-Lingua
L.F. Maćıas-Ramos, T. Song, L. Pan, M.J. Pérez-Jiménez 261

Revisiting Sevilla Carpets: A New Tool for the P-Lingua Era
D. Orellana-Mart́ın, C. Graciani, M.A. Mart́ınez-del-Amor,

A. Riscos-Núñez, L. Valencia-Cabrera . 281

On Parallel Array P Systems
L. Pan, Gh. Păun . 293

Four (Somewhat Nonstandard) Research Topics
Gh. Păun . 305

Membrane Clustering: A Novel Clustering Algorithm
under Membrane Computing
H. Peng, J. Zhang, J. Wang, T. Wang, M.J. Pérez-Jiménez,

A. Riscos-Núñez . 311

Application of Weighted Fuzzy Reasoning Spiking Neural P Systems
to Fault Diagnosis in Traction Power Supply Systems
of High-speed Railways
T. Wang, G. Zhang, M.J. Pérez-Jiménez . 329

Author Index . 351

Matter and Anti-Matter in Membrane Systems

Artiom Alhazov1, Bogdan Aman2, Rudolf Freund3, Gheorghe Păun4

1 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Academiei 5, MD-2028, Chişinău, Moldova
artiom@math.md

2 Institute of Computer Science, Romanian Academy, Iaşi, Romania
bogdan.aman@iit.academiaromana-is.ro

3 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
rudi@emcc.at

4 Institute of Mathematics, Romanian Academy, Bucharest, Romania
gpaun@us.es

Summary. The concept of a matter object being annihilated when meeting its corre-
sponding anti-matter object is investigated in the context of membrane systems, i.e., of
(distributed) multiset rewriting systems applying rules in the maximally parallel way.
Computational completeness can be obtained with using only non-cooperative rules be-
sides these matter/anti-matter annihilation rules if these annihilation rules have priority
over the other rules. Without this priority condition, in addition catalytic rules with one
single catalyst are needed to get computational completeness. Even deterministic sys-
tems are obtained in the accepting case. Universal P systems with a rather small number
of rules – 57 for computing systems, 59 for generating and 52 for accepting systems –
can be constructed when using non-cooperative rules together with matter/anti-matter
annihilation rules having weak priority. Allowing anti-matter objects as input and/or
output, we even get a computationally complete computing model for computations on
integer numbers. Interpreting sequences of symbols taken in from and/or sent out to
the environment as strings, we get a model for computations on strings, which can even
be interpreted as representations of elements of a group based on a computable finite
presentation.

1 Introduction

Membrane systems (usually called P systems) can be considered as distributed
multiset rewriting systems, where all objects – if possible – evolve in parallel in
the membrane regions and may be communicated through the membranes. Mem-
brane systems were introduced in [15] and since then have become an emerging
field of research. Overviews can be found in the monograph [16] and the handbook
of membrane systems [17]; for actual news and results we refer to the P systems

2 A. Alhazov et al.

webpage [19]. Computational completeness (computing any partial recursive re-
lation on non-negative integers) can be obtained with using cooperative rules or
with catalytic rules (eventually) together with non-cooperative rules. In this pa-
per, we use another concept to avoid cooperative rules in general: for any object a
(matter), we consider its anti-object (anti-matter) a− as well as the corresponding
annihilation rule aa− → λ, which is assumed to exist in all membranes; this an-
nihilation rule could be assumed to remove a pair a, a− in zero time, but here we
use these annihilation rules as special non-cooperative rules having priority over
all other rules in the sense of weak priority (e.g., see [1], i.e., other rules then also
may be applied if objects cannot be bound by some annihilation rule any more).
The idea of anti-matter has already been considered in another special variant
of P systems with motivation coming from modeling neural activities, which are
known as spiking neural P systems; for example, spiking neural P systems with
anti-matter (anti-spikes) were already investigated in [14]. Moreover, in [5] the
power of anti-matter for solving NP-complete problems is exhibited.

As expected (for example, compare with the Geffert normal forms, see [18]),
the annihilation rules are rather powerful. Yet it is still surprising that using
matter/anti-matter annihilation rules as the only non-cooperative rules, with the
annihilation rules having priority, we already get computational completeness with-
out using any catalyst; without giving the annihilation rules priority, we need one
single catalyst. Even more surprising is the result that with priorities we obtain
deterministic systems in the case of accepting P systems. Moreover, we show how
rather small universal P systems with anti-matter can be obtained based on the
universal register machine U32 constructed by Korec, see [12]. Allowing anti-matter
objects as input and/or output, we even get a computationally complete comput-
ing model for computations on integer numbers. Finally, by interpreting sequences
of symbols taken in from and/or sent out to the environment as strings, we also
consider P systems with anti-matter as computing/accepting/generating devices
for string languages or even for languages over a group based on a computable
finite presentation.

2 Prerequisites

The set of integers is denoted by Z, while the set of non-negative integers by
N. Given an alphabet V , a finite non-empty set of abstract symbols, the free
monoid generated by V under the operation of concatenation is denoted by V ∗.
The elements of V ∗ are called strings, the empty string is denoted by λ, and
V ∗\{λ} is denoted by V +. For an arbitrary alphabet {a1, . . . , an}, the number
of occurrences of a symbol ai in a string x is denoted by |x|ai , while the length
of a string x is denoted by |x| = Σai |x|ai . The Parikh vector associated with x
with respect to a1, . . . , an is (|x|a1 , . . . , |x|an). The Parikh image of an arbitrary
language L over {a1, . . . , an} is the set of all Parikh vectors of strings in L, and
is denoted by Ps(L). For a family of languages FL, the family of Parikh images
of languages in FL is denoted by PsFL, while for families of languages over a

Matter and Anti-Matter in Membrane Systems 3

one-letter (d-letter) alphabet, the corresponding sets of non-negative integers are
denoted by NFL (NdFL).

A (finite) multiset over a (finite) alphabet V = {a1, . . . , an}, is a mapping f :

V → N and can be represented by ⟨af(a1)
1 , . . . , a

f(an)
n ⟩ or by any string x for which

(|x|a1 , . . . , |x|an) = (f(a1), . . . , f(an)). In the following we will not distinguish
between a vector (m1, . . . ,mn), a multiset ⟨am1

1 , . . . , amn
n ⟩ or a string x having

(|x|a1 , . . . , |x|an) = (m1, . . . ,mn). Fixing the sequence of symbols a1, . . . , an in an
alphabet V in advance, the representation of the multiset ⟨am1

1 , . . . , amn
n ⟩ by the

string am1
1 . . . amn

n is unique. The set of all finite multisets over an alphabet V is
denoted by V ◦.

The family of regular and recursively enumerable string languages is denoted
by REG and RE, respectively. For more details of formal language theory the
reader is referred to the monographs and handbooks in this area as [4] and [18].

Register machines.

A register machine is a tuple M = (m,B, l0, lh, P), where m is the number of
registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

• l1 : (ADD(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increases the value of register j by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.

• l1 : (SUB(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then jump to instruction l3; otherwise, the
value of register j is decreased by one, followed by a jump to instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

• lh : HALT . Stops the execution of the register machine.

A configuration of a register machine is described by the contents of each register
and by the value of the current label, which indicates the next instruction to be
executed. Computations start by executing the instruction l0 of P , and terminate
with reaching the HALT-instruction lh.

3 P Systems

The basic ingredients of a (cell-like) P system are the membrane structure, the
multisets of objects placed in the membrane regions, and the evolution rules. The
membrane structure is a hierarchical arrangement of membranes, in which the
space between a membrane and the immediately inner membranes defines a re-
gion/compartment. The outermost membrane is called the skin membrane, the
region outside is the environment. Each membrane can be labeled, and the label

4 A. Alhazov et al.

(from a set Lab) will identify both the membrane and its region; the skin mem-
brane is identified by (the label) 1. The membrane structure can be represented
by an expression of correctly nested labeled parentheses, and also by a rooted tree
(with the label of a membrane in each node and the skin in the root). The multisets
of objects are placed in the compartments of the membrane structure and usually
represented by strings of the form am1

1 . . . amn
n .

The evolution rules are multiset rewriting rules of the form u → v, where
u ∈ O◦ and v = (b1, tar1) . . . (bk, tark) with bi ∈ O◦ and tari ∈ {here, out, in}
or tari ∈ {here, out} ∪ {inj | j ∈ Lab}, 1 ≤ i ≤ k. Using such a rule means
“consuming” the objects of u and “producing” the objects from b1, . . . , bk of v,
where the target here means that the objects remain in the same region where
the rule is applied, out means that they are sent out of the respective membrane
(in this way, objects can also be sent to the environment, when the rule is applied
in the skin region), in means that they are sent to one of the immediately inner
membranes, chosen in a non-deterministic way, and inj means that they are sent
into the specified inner membrane. In general, the target indication here is omitted.

Formally, a (cell-like) P system is a construct

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, lin, lout)

where O is the alphabet of objects, µ is the membrane structure (with m mem-
branes), w1, . . . , wm are multisets of objects present in the m regions of µ at the
beginning of a computation, R1, . . . , Rm are finite sets of evolution rules, asso-
ciated with the regions of µ, lin is the label of the membrane region where the
inputs are put at the beginning of a computation, and lout indicates the region
from which the outputs are taken; lout/lin being 0 indicates that the output/input
is taken from the environment.

If a rule u → v has |u| > 1, then it is called cooperative (abbreviated coo);
otherwise, it is called non-cooperative (abbreviated ncoo). In catalytic P systems
non-cooperative as well as catalytic rules of the form ca → cv are used, where
c is a catalyst – a special object that never evolves and never passes through a
membrane, but it just assists object a to evolve to the multiset v. In a purely
catalytic P system only catalytic rules are allowed. In both catalytic and purely
catalytic P systems, in their description O is replaced by O,C in order to specify
those objects from O that are the catalysts in the set C.

The evolution rules are used in the non-deterministic maximally parallel way,
i.e., in any computation step of Π a multiset of rules is chosen from the sets
R1, . . . , Rm in such a way that no further rule can be added to it so that the ob-
tained multiset would still be applicable to the existing objects in the membrane
regions 1, . . . ,m. A configuration of a system is given by the membranes and the
objects present in the compartments of the system. Starting from a given initial
configuration and applying evolution rules as described above, we get transitions
among configurations; a sequence of transitions forms a computation. A compu-
tation is halting if it reaches a configuration where no rule can be applied any
more.

Matter and Anti-Matter in Membrane Systems 5

In the generative case, a halting computation has associated a result, in the
form of the number of objects present in membrane lout in the halting configuration
(lin can be omitted). The set of non-negative integers and the set of (Parikh)
vectors of non-negative integers obtained as results of halting computations in Π
are denoted by Ngen(Π) and Psgen(Π), respectively.

In the accepting case, for lin ̸= 0, we accept all (vectors of) non-negative inte-
gers whose input, given as the corresponding numbers of objects in membrane lin,
leads to a halting computation (lout can be omitted); the set of non-negative inte-
gers and the set of (Parikh) vectors of non-negative integers accepted in that way
by halting computations inΠ are denoted byNacc (Π) and Psacc (Π), respectively.

For the input being taken from the environment, i.e., for lin = 0, we need an
additional target indication come; (a, come) means that the object a is taken into
the skin from the environment (all objects there are assumed to be available in
an unbounded number). The multiset of all objects taken from the environment
during a halting computation then is the multiset accepted by this accepting P
system, which in this case we shall call a P automaton [3]; the set of non-negative
integers and the set of (Parikh) vectors of non-negative integers accepted by halting
computations in Π are denoted by Naut (Π) and Psaut (Π), respectively.

A P system Π can also be considered as a system computing a partial recursive
function (in the deterministic case) or even a partial recursive relation (in the non-
deterministic case), with the input being given in a membrane region lin ̸= 0 as
in the accepting case or being taken from the environment as in the automaton
case. The corresponding functions/relations computed by halting computations in
Π are denoted by ZYα (Π), Z ∈ {Fun,Rel}, Y ∈ {N,Ps}, α ∈ {acc, aut}.

Computational completeness for (generating) catalytic P systems can be achieved
when using two catalysts or with three catalysts in purely catalytic P systems, and
the same number of catalysts is needed for P automata; in accepting P systems,
the number of catalysts increases with the number of components in the vectors
of natural numbers to be analyzed [7]. It is a long-time open problem how to char-
acterize the families of sets of (vectors of) natural numbers generated by (purely)
catalytic P systems with only one (two) catalysts. Using additional control mecha-
nisms as, for example, priorities or promoters/inhibitors, P systems with only one
(two) catalyst(s) can be shown to be computationally complete, e.g., see Chapter
4 in [17]. Last year several other variants of control mechanism have been shown to
lead to computational completeness in (purely) catalytic P systems using only one
(two) catalyst(s), see [6], [9], and [10]. In this paper we are going to investigate the
power of using matter/antimatter annihilation rules – with the astonishing result,
that no catalysts are needed any more in case the annihilation rules have weak
priority over the other rules.

The family of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, computed by
P systems with at most m membranes and cooperative rules and with non-
cooperative rules is denoted by YδOPm (coo) and YδOPm (ncoo), respectively. The
family of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, computed by (purely)

6 A. Alhazov et al.

catalytic P systems with at most m membranes and at most k catalysts is denoted
by YδOPm (catk) (YδOPm (pcatk)). The following characterizations are known:

Theorem 1. For any m ≥ 1 and any Y ∈ {N,Ps},

Y REG = YgenOPm (ncoo) ⊂ YgenOPm (coo) = Y RE.

Theorem 2. For any m ≥ 1, d ≥ 1, δ ∈ {gen, aut},

PsaccOPm (catd+2) = PsaccOPm (pcatd+3) = NdRE.

PsδOPm (cat2) = PsδOPm (pcat3) = PsRE.

4 Using Matter and Anti-Matter

This concept to be used in (catalytic) P systems is a direct generalization of the
idea of anti-spikes from spiking neural P systems (see [14]): for each object a we
introduce the anti-matter object a−. We can look at these anti-matter objects a−

as objects of their own or else we may extend the notion of a (finite) multiset
over the (finite) alphabet V , V = {a1, · · · , an}, as a mapping f : V −→ N to
a mapping f : V −→ Z now also allowing negative values. In a usual way, such

an extended multiset on Z is represented by
⟨
a
f(a1)
1 , · · · , af(an)

n

⟩
. A unique string

representation for such an extended multiset is obtained by assigning a string
over the (ordered) alphabet ⟨a1, a1−, · · · , an, an−⟩ as a1f(a1) · · · anf(an) such that
(ai)

−m
, m > 0, is represented by (ai

−)
m
, 1 ≤ i ≤ n. Any other string having the

same Parikh vector with respect to the (ordered) alphabet ⟨a1, a1−, · · · , an, an−⟩
can be used for representing the multiset given by f as well.

As in spiking neural P systems with anti-spikes, also in cell-like P systems
we might consider the annihilation of matter and anti-matter objects to happen
in zero-time or in an intermediate step between normal derivation steps in the
maximally parallel mode. Whenever related matter a and anti-matter a− meet,
they annihilate each other, as, for example, in an extended multiset on Z matter a
and anti-matter a− cannot exist at the same moment, hence, also not in a string
representing an extended multiset on Z. Yet in this paper we consider both objects
and anti-objects to be handled by usual evolution rules; the annihilation of matter
and anti-matter objects then corresponds to an application of the (non-context-
free!) rule aa− → λ. (Purely) catalytic P systems thus can be extended to

• allow for annihilation rules of the form aa− → λ (and for catalytic anni-
hilation rules caa− → c, where c is a catalyst) over an (ordered) alphabet
⟨a1, a1−, · · · , an, an−⟩, or

• to work on extended multisets over the (ordered) alphabet ⟨a1, · · · , an⟩.

In contrast to the case described above, now in an instantaneous description
of a configuration of a P system both matter and anti-matter objects may ap-
pear. When working with context-free or catalytic rules over an (ordered) alpha-
bet ⟨a1, a1−, · · · , an, an−⟩, we may give the matter/anti-matter annihilation rules

Matter and Anti-Matter in Membrane Systems 7

weak priority over all other rules – in order to not have matter a and anti-matter
a− in some configuration at the same moment and let them “survive” for longer.

We now consider catalytic P systems extended by also allowing for annihilation
rules aa− → λ, with these rules having weak priority over all other rules, i.e., other
rules can only be applied if no annihilation rule could still bind the corresponding
objects. The family of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, and the
family of functions/relations ZYα (Π), Z ∈ {Fun,Rel}, α ∈ {acc, aut}, computed
by such extended P systems with at most m membranes and k catalysts is denoted
by YδOPm (cat(k), antim/pri) and ZYαOPm (cat(k), antim/pri); we omit /pri for
the families without priorities.

The matter/anti-matter annihilation rules are so powerful that we only need
the minimum number of catalysts, i.e., zero!

Theorem 3. For any n ≥ 1, k ≥ 0, Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, α ∈
{acc, aut}, and Z ∈ {Fun,Rel},

YδOPn (cat(k), antim/pri) = Y RE and
ZYαOPn (cat(k), antim/pri) = ZY RE.

Proof. Let M = (m,B, l0, lh, P) be a register machine. We now construct a one-
membrane P system, initially containing only the object l0, which simulates M .
The contents of register r is represented by the number of copies of the object ar,
1 ≤ r ≤ m, and for each object ar we also consider the corresponding anti-object
ar

−. The instructions of M are simulated as follows:

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Simulated by the rules

l1 → arl2 and l1 → arl3.

• l1 : (SUB (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.
As rules common for all simulations of SUB-instructions, we have

ar
− → #−, 1 ≤ r ≤ m,

and the annihilation rules

arar
− → λ, 1 ≤ r ≤ m, and ##− → λ

as well as the trap rules

#− → ## and # → ##;

these last two rules lead the system into an infinite computation whenever a
trap symbol is left without being annihilated.
The zero test for instruction l1 is simulated by the rules

l1 → l1
′ar

− and l1
′ → #l3.

8 A. Alhazov et al.

The symbol # generated by the second rule l1
′ → #l3 can only be eliminated

if the anti-matter ar
− generated by the first rule l1 → l1

′ar
− is not annihilated

by ar, i.e., only if register r is empty.
The decrement case for instruction l1 is simulated by the rule

l1 → l2ar
−.

The anti-matter ar
− either correctly annihilates one matter ar thus decrement-

ing the register r or else traps an incorrect guess by forcing the symbol ar
− to

evolve to #− and then to ## in the next two steps in case register r is empty.
• lh : HALT . Simulated by lh → λ.

When the computation in M halts, the object lh is removed, and no further
rules can be applied provided the simulation has been carried out correctly,
i.e., if no trap symbols # are present in this situation. The remaining objects
in the system represent the result computed by M . ⊓⊔

Without this priority of the annihilation rules, the construction is not work-
ing, hence, a characterization of the families YδOPn (ncoo, antim) as well as
ZYαOPn (ncoo, antim) remains as an open problem. Yet in addition using catalytic
rules with one catalyst again allows us to obtain computational completeness:

Theorem 4. For any n ≥ 1, k ≥ 1, Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, α ∈
{acc, aut}, and Z ∈ {Fun,Rel},

YδOPn (cat(k), antim) = Y RE and
ZYαOPn (cat(k), antim) = ZY RE.

Proof. We again consider a register machine M = (m,B, l0, lh, P) as in the previ-
ous proof, and construct the catalytic P system

Π = (O, {c} , []
1
, cl0, R1, lin, 1) with

O = {ar, ar− | 1 ≤ r ≤ m} ∪ {l, l′, l′′ | l ∈ B} ∪ {#,#−, d} ,

with the single catalyst c in the skin membrane. The results now are sent to the
environment, in order not to have to count the catalyst in the skin membrane; for
that purpose, we simply use the rule ai → (ai, out) for the output symbols ai (we
assume that output registers of M are only incremented).

For each ADD-instruction l1 : (ADD (j) , l2, l3) in P , we again take the rules

l1 → arl2 and l1 → arl3.

For each SUB-instruction l1 : (SUB (r) , l2, l3), we now consider the four rules

l1 → l2ar
−,

l1 → l′′1dar
−,

l′′1 → l′1, and
l′1 → #l3.

Matter and Anti-Matter in Membrane Systems 9

As rules common for all SUB-instructions, we again add the matter/antimatter
annihilation rules

arar
− → λ and ##− → λ

as well as the trap rules

→ ## and #− → ##,

but in addition, also
d→ ##

as well as the catalytic rules

cd→ c and car
− → c#−, 1 ≤ r ≤ m.

The decrement case is simulated as in the previous proof, by using the rule l1 →
l2ar

− and then applying the annihilation rule arar
− → λ. The zero-test now is

initiated with the rule li → l′′i dar
− thus introducing the (dummy) symbol d which

keeps the catalyst busy for one step, where the catalytic rule cd → c has to be
applied in order to avoid the application of the trap rule d → ##. If register
r is empty, then ar

− cannot be annihilated and therefore evolves to #− in the
third step by the application of the catalytic rule car

− → c#−, which symbol #−

afterwards annihilates the symbol # generated by the rule l′i → #lk in the same
step; if register r is not empty, ar

− is annihilated by some copy of ar already in
the first step, hence, the trap symbol # generated by the rule l′i → #lk does not
find its anti-matter #− and therefore evolves to ##, thus leading to an infinite
computation. Altough the annihilation rule arar

− → λ now does not have priority
over the catalytic rule car

− → c#−, maximal parallelism enforces arar
− → λ to

be applied, if possible, already in the first step instead of car
− → c#−, as in a

successful derivation the catalyst c first has to eliminate the dummy symbol d.
The rule lh → λ is applied at the end of a successful simulation of the in-

structions of the register machineM , and the computation halts if no trap symbol
is present; the symbols sent out to the environment during the computation
represent the result of this halting computation. ⊓⊔

In the accepting case, with priorities, we can even simulate the actions of a
deterministic register machine in a deterministic way, i.e., for each configuration
of the system, there can be at most one multiset of rules applicable to it.

Theorem 5. For any n ≥ 1, k ≥ 0, and Y ∈ {N,Ps},

YdetaccOPn (cat(k), antim/pri) = Y RE and
FunYdetaccOPn (cat(k), antim/pri) = FunY RE.

Proof. We only show how the SUB-instructions of a register machine M =
(m,B′, l0, lh, P) can be simulated in a deterministic way without introducing a
trap symbol and therefore causing infinite loops by them:

10 A. Alhazov et al.

Let B = {l | l : (SUB (r) , l′, l′′) ∈ P} and, for every register r,

M̃r =
{
l̃ | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̃r
− =

{
l̃− | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̂r =
{
l̂ | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̂r
− =

{
l̂− | l : (SUB (r) , l′, l′′) ∈ P

}
.

We now take the rules
ar

− → M̃r
−M̂r

and the annihilation rules arar
− → λ for every register r as well as l̂l̂− → λ and

l̃l̃− → λ for all l ∈ B. Then a SUB-instruction l1 : (SUB (r) , l2, l3), with l1 ∈ B,
l2, l3 ∈ B′, 1 ≤ r ≤ m, is simulated by the rules

l1 → l̄1ar
−
,

l̄1 → l̂1
−(M̃r \ {l̃1}),

l̂1
− → l2(M̃r

− \ {l̃1−}), and
l̃1

− → l3(M̂r
− \ {l̂1−}).

The symbol l̂1
− generated by the second rule is eliminated again and replaced

by l̃1
− if ar

− is not annihilated (which indicates that the register is empty). ⊓⊔

5 Small Universal P Systems with Anti-Matter

In [12], several variants of universal register machines were exploited. The main
interesting variant for the results presented in this paper is shown in Figure 1.

In the diagram of the universal register machine U32 in Figure 1, the operations
used on the registers are: the zero-test on register i is indicated by a rhomboid
inclosing the encryption Ri, and in the case that the contents of register i is zero,
the next operation is the one to be reached with the arc labeled by z; the increment
operation is depicted by a rectangle with the encryption RiP , and the decrement
operation by a rectangle with the encryption RiM (as the decrement operation
RiM is always preceded by the corresponding zero-test, it can always be carried
out). The states are depicted directly at the corresponding operations; q1 is the
initial state, and the state where the U32 stops is indicated by STOP in Figure 1.

Remark 1. The universal register machine U32 uses a very sophisticated number-
theoretic encoding of the enumeration of a specific variant of register machines.
The code of the register machine to be simulated is put into register 1, the input
number into register 2 (where also the output will be computed). The instructions
are decoded in the Instruction reader part and the Decoder part (which essentially
performs a division by three), and these instructions work on the registers 0, 2,
and 3 (as we know, e.g., see [13], three registers are sufficient to simulate any
other register machine). Thus, U32 can compute any partial recursive function
f : N → N (with input and output number in register 2) in the same way as the
register machine encoded by the number in register 1 computes f. For the following

Matter and Anti-Matter in Membrane Systems 11

Start -

Simulation block

R3P

q31

R3M

q28

R0M

q26

R2M

q24

R2P

q30

R0P

q29

��@@
@@��R3

z

q27

��@@
@@��R0

z

q25

��@@
@@��R2

z

q23

6

�

� �

?

� �

�

� �

?

��@@
@@��R4 z

q32

Stop-

6

Decoder
��@@
@@��R5z

q20

R5M

q19

��@@
@@��R5z

q18

R5M

q17

��@@
@@��R5z

q16

R4P

q22

R5M

q21

� -
?

6

?

�
?

?

� �

Instruction reader

R4M

q15

R7P

q3

R1M

q2

��@@
@@��R1 z

q1

R6P

q6

R5M

q5

��@@
@@��R5

zq4

��@@
@@��R4

z

q14

��@@
@@��R6z

q13

R5P

q9

R6M

q8

��@@
@@��R6z

q7

��@@
@@��R7

z

q10

R7M

q11

R1P

q12

� �

?

�

?

� -

6

-

�

6

? ? ?

6

? ?

?
�

?

�

Fig. 1. The universal register machine U32.

12 A. Alhazov et al.

constructions it is important to note that U32 only stops when having finished the
simulation of the register machine encoded in register 1 with the input in register 2,
but enters an infinite computation otherwise.

A thorough analysis of the universal register machine U32 shows that when
it halts not only register 2 as the output register, but also register 6 and regis-
ter 1 (still containing the code of the register machine to be simulated) may be
non-empty. On the other hand, due to the features of the 3-register machine as
constructed in [13] and simulated by U32 in registers 0, 2, and 3, at the end of a
computation registers 0 and 3 are empty (observe that the emptiness of these reg-
isters cannot be inferred from the program of U32); in the accepting case, register 2
is empty, too.

In order to produce better descriptional complexity results with respect to
the number of rules than those we would immediately get when applying the
constructions given in the proof of Theorem 3, we introduce a generalization of
register machines or counter automata.

Generalized counter automata.

For a register machine M = (m,B, l0, lh, P) consider the more general type of
instructions i : (q,M−, N,M+, q

′), where q, q′ ∈ Q are states, N ⊆ R is a set of
registers, and M−,M+ are multisets of registers. Such a register machine applies
instruction i as follows: first, multiset M− is subtracted from the register values
(i.e., for each register j ∈ R, M−(j) is subtracted from the contents of register j;
if at least one resulting value would be negative, the machine is blocked without
producing any result); second, the subset N of registers is checked to be zero
(if at least one of them is found to be non-zero, the machine is blocked without
producing any result); third, the multiset M+ is added to the register values (i.e.,
for each register j ∈ R, M+(j) is added to the contents of register j), and finally
the state changes to q′.

The work of such a register machine, now also called a generalized counter
automaton and written M = (m,B, l0, qh, P), consists of derivation steps applying
instructions, chosen in a non-deterministic way, associated with the current state.
The computation starts in the initial state q0, and we say that it halts if the
final state qh has been reached (which replaces the condition of reaching the final
HALT-instruction labeled by lh).

Theorem 6. There exist small universal P systems with non-cooperative rules and
matter/anti-matter annihilation rules – with 9 annihilation rules and, in total, 52
rules in the accepting case, 59 rules in the generating case, and 57 rules in the
computing case.

Proof. We start with a translation of the P system from Theorem 4 in [8] (ob-
tained from the universal register machine U32 machine in [12]). This sequential

Matter and Anti-Matter in Membrane Systems 13

antiport P system with forbidden contexts can be written with the instructions of
a generalized counter automaton as follows:

1 : (q1, ⟨1⟩ , {}, ⟨7⟩ , q1), 10 : (q18),
⟨
53
⟩
, {}, ⟨4⟩ , q18),

2 : (q1, ⟨⟩ , {1}, ⟨6⟩ , q4), 11 : (q18, ⟨⟩ , {5, 3}, ⟨0⟩ , q1),
3 : (q4, ⟨5⟩ , {}, ⟨6⟩ , q4), 12 : (q18,

⟨
52, 0

⟩
, {5, 2}, ⟨⟩ , q1),

4 : (q4, ⟨6⟩ , {5}, ⟨5⟩ , q10), 13 : (q18,
⟨
52, 2

⟩
, {5}, ⟨⟩ , q1),

5 : (q10, ⟨7, 6⟩ , {}, ⟨1, 5⟩ , q10), 14 : (q18,
⟨
52
⟩
, {5, 2, 0}, ⟨⟩ , q1)

6 : (q10, ⟨7⟩ , {6}, ⟨1⟩ , q4), 15 : (q18, ⟨3, 4⟩ , {5}, ⟨⟩ , q1),
7 : (q10, ⟨⟩ , {6, 7}, ⟨⟩ , q1), 16 : (q18, ⟨5, 4⟩ , {5}, ⟨2, 3⟩ , q1).
8 : (q10, ⟨6, 4⟩ , {7}, ⟨⟩ , q1),
9 : (q10, ⟨6, 5⟩ , {7, 4}, ⟨⟩ , q18),

The system constructed in [8] halts when none of the rules 10 to 16 can be
applied any more. For halting with the generalized counter automaton we have
to define a halting state qh and instructions how to reach this halting state. The
details of this halting in the generalized counter automaton and how to halt in
the P system to be constructed in the following, depending on the mode the
automaton is used for – generating, accepting, computing – will be discussed later
in the proof. We first show how these 16 instructions of the generalized counter
automaton listed above can be simulated by a P system with anti-matter.

For a generalized counter automaton M = (m,B, l0, qh, P), let

k = 1 + max
i:(q,M−,N,M+,q′)∈P

(|M−|, |N |).

We consider the following rules (common for different instructions of M):

#− → #k, # → #k, ##− → λ, ar → #−, ara
−
r → λ, r ∈ R.

Now we present the simulation of instruction i : (q,M−, N,M+, q
′) ∈ P . First we

consider the case when M− and N have no common elements, and moreover, we
also assume that M− does not overlap with M+ (otherwise such an instruction
can be split into two instructions; notice that this condition is already satisfied in
the rules given above).

q → li
∏

r∈N
ar

−, li → q′(
∏

r∈N
#)(

∏
r∈M−

ar
−)

∏
r∈M+

ar.

Indeed, the zero-test is successful if none of the objects a−r generated in the first
step annihilates with the corresponding register symbols ar; they have to change
into objects #− to annihilate with the same number of objects # produced in the
next step. The decrement is successful if all objects ar

− generated in the second
step annihilate with the corresponding register symbols ar. If either decrement or
zero-test fail, then at least either one # or one #− will be produced without its
annihilation partner, leading to producing objects # in a geometric progression,
ensuring that such computations do not produce any result (notice that no objects
or #− are produced in the first step of the simulation of any instruction).

14 A. Alhazov et al.

If the zero-test set N is empty, then the first step is a simple renaming, and
thus can be combined with the second step, yielding just one rule

q → q′(
∏

r∈M−
ar

−)
∏

r∈M+

ar.

Clearly, ifM− and N overlap, such an instruction can be broken down into two
subsequent instructions of the generalized counter automaton. However, a more
efficient solution with only three rules exists:

q → li
∏

r∈M−
ar

−, li → l′i
∏

r∈N
ar

−, l′i → q(
∏

r∈N
#−)

∏
r∈M+

ar.

The direct translation of the instructions of the generalized counter automaton
given in the table at the beginning of the proof yields the following rules:

1 : q1 → q1a1
−a7,

2 : q1 → l2a1
−, l2 → q4#a6,

3 : q4 → q4a5
−a6,

4 : q4 → l4a5
−, l4 → q10#a6

−a5,
5 : q10 → q10a7

−a6
−a1a5,

6 : q10 → l6a6
−, l6 → q4#a7

−a1,
7 : q10 → l7a6

−a7
−, l7 → q1##,

8 : q10 → l8a7
−, l8 → q1#a6

−a4
−,

9 : q10 → l9a7
−a4

−, l9 → q18##a6
−a5

−,
10 : q18 → q18a5

−a5
−a5

−a4,
11 : q18 → l11a5

−a3
−, l11 → q1##a0,

12 : q18 → l12a5
−a5

−a−0 , l12 → l′12a5
−a2

−, l′12 → q1##,
13 : q18 → l13a5

−a5
−a2

−, l13 → l′13a5
−, l′13 → q1#,

14 : q18 → l14a5
−a5

−, l14 → l′14a5
−a2

−a0
−, l′14 → q1###,

15 : q18 → l15a5
−, l15 → q1#a3

−a4
−,

16 : q18 → l16a5
−a4

−, l16 → l′16a5
−, l′16 → q1#a2a3,

In the accepting case, the input/output register 2 as well as the registers 0 and
3 are empty (see Remark 1); in order to reach the STOP in Figure 1, starting
from q10, register 6 must be non-empty, but registers 4, 5, 2, and 0 must be empty.
Hence, we add the additional rule

17 : (q10, ⟨6⟩ , {4, 5, 2, 0}, ⟨⟩ , qh),

which is simulated by the rules

17 : q10 → l17a4
−a5

−a2
−a0

−, l17 → qh####a6
−.

As the rules with l7 and l′12 on the left side have the same right side, we can
replace l′12 by l7, thus decreasing the number of non-cooperative rules by one.

On the other hand, we have to add the rules

ar → #−, 0 ≤ r ≤ 7,

Matter and Anti-Matter in Membrane Systems 15

and the trap rules
#− → #5 and # → #5

as well as the annihilation rules

(##− → λ) and (arar
− → λ), 0 ≤ r ≤ 7.

In sum, we obtain the universal P system with anti-matter

Π = (O, []1, q1, R1, 1) where
O = {l2, l4, l6, l7, l8, l9, l11, l12, l13, l′13, l14, l′14, l15, l16, l′16, l17}

∪ {q1, q4, q10, q18, qh} ∪ {a, a− | a ∈ {aj | 0 ≤ j ≤ 7} ∪ {#}}

with the rules in R1 as described above; in total, the number of rules is 52, where
9 of them are the model-defined annihilation rules.

For the computing case, we have to re-introduce the state q32 of U32, i.e., we
replace instructions 15, 16, and 17 in the table of instructions for the generalized
counter automaton by the instructions 15′, 16′, 17′, and 18′; moreover we have to
“clean” registers 1 and 6 (see Remark 1) and therefore to add the state q′h and
another three instructions:

15′ : (q18, ⟨3⟩ , {5}, ⟨⟩ , q32),
16′ : (q18, ⟨5⟩ , {5}, ⟨2, 3⟩ , q32),
17′ : (q32, ⟨4⟩ , {}, ⟨⟩ , q1),
18′ : (q32, ⟨⟩ , {4}, ⟨⟩ , q′h),
19′ : (q′h, ⟨1⟩ , {}, ⟨⟩ , q′h),
20′ : (q′h, ⟨6⟩ , {}, ⟨⟩ , q′h),
21′ : (q′h, ⟨⟩ , {1, 6}, ⟨⟩ , qh).

These instructions can be simulated by the following rules:

15′ : q18 → l15a5
−, l15 → q32#a3

−,
16′ : q18 → l16a5

−, l16 → l′16a5
−, l′16 → q32#a2a3,

17′ : q32 → q1a4
−,

18′ : q32 → l18a4
−, l18 → q′h#,

19′ : q′h → q′ha1
−,

20′ : q′h → q′ha6
−,

21′ : q′h → qha1
−a6

−, qh → ##.

In that way, we obtain a universal P system Π ′ with anti-matter having 57 rules,
i.e., 49 non-cooperative rules and 9 model-defined annihilation rules:

Π ′ = (O′, []1, q1, R
′
1, 1, 1) where

O′ = {l2, l4, l6, l7, l8, l9, l11, l12, l13, l′13, l14, l′14, l15, l16, l′16, l18}
∪ {q1, q4, q10, q18, q32, q′h, qh} ∪ {a, a− | a ∈ {aj | 0 ≤ j ≤ 7} ∪ {#}}

and R′
1 contains the rules 1 to 14, 15′ to 21′ as well as the rules ar → #−,

0 ≤ r ≤ 7, the trap rules #− → #4 and # → #4 as well as the annihilation rules

16 A. Alhazov et al.

(##− → λ) and (arar
− → λ), 0 ≤ r ≤ 7. The P system now halts with the skin

membrane only containing copies of the symbol a2 representing the output value.
In fact, this construction could also be used for the accepting case, where we

could already stop with q′h, as we need not “clean” registers 1 and 6; in total this
would yield only one rule more, i.e., 53 instead of 52 rules.

Finally, in the generating case, we start with the new initial state q0 and add
the two rules q0 → a2q0 and q0 → q1, which allows us to produce, in a non-
deterministic way, an input for U32 simulating the identity function on the domain
of the set to be generated by the P system, i.e., we get a P system with 59 rules.
⊓⊔

6 When Matter/Anti-Matter Annihilation Generates
Energy

The matter/anti-matter annihilation may also be assumed to result in the genera-
tion of a specific amount of “energy”, which is also well motivated by physics. In the
definitions of these systems, the matter/anti-matter annihilation rules arar

− → λ
are replaced by arar

− → e where e is a symbol denoting this special amount of
energy.

The family of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, and the set
of functions/relations ZYα (Π), Z ∈ {Fun,Rel}, α ∈ {acc, aut}, computed
by such P systems with at most m membranes and k catalysts is denoted by
YδOPm (cat(k), antimen/pri) and ZYαOPm (cat(k), antimen/pri); we omit /pri
for the families without priorities.

The following results are immediate consequences of the corresponding Theo-
rems 3 and 5 – in both cases, each matter/anti-matter annihilation rule xx− → λ
is replaced by xx− → e where e is this symbol denoting a special amount of energy,
and, in addition, we add the rule e→ λ:

Corollary 1. For any n ≥ 1, k ≥ 0, Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, α ∈
{acc, aut}, and Z ∈ {Fun,Rel},

YδOPn (cat(k), antimen/pri) = Y RE and
ZYαOPn (cat(k), antimen/pri) = ZY RE.

Corollary 2. For any n ≥ 1, k ≥ 0, and Y ∈ {N,Ps},

YdetaccOPn (cat(k), antimen/pri) = Y RE and

FunYdetaccOPn (cat(k), antimen/pri) = FunY RE.

But we can even show more, i.e., omitting the rule e → λ and leaving the
amount of energy represented by the number of copies of e in the system, the
energy inside the system at the end of a successful computation is a direct measure
for the number of SUB-instructions simulated by the P system or even a measure
for the number of all instructions which were simulated.

Matter and Anti-Matter in Membrane Systems 17

Corollary 3. The construction in the proof of Theorem 3 can be adapted in such
a way that the simulation of each instruction of the register machine takes exactly
three steps (including the annihilation rules), and moreover, the number of en-
ergy objects e at the end of a successful computation exactly equals the number of
instructions simulated.

Proof. Let M = (m,B, l0, lh, P) be a register machine. Following the construction
given in the proof of Theorem 3, the instructions of M now can be simulated as
follows:

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Simulated by the rules

l1 → l1
′,

l1
′ → l1

′′,
l1

′′ → earl2,
l1

′′ → earl3.

• l1 : (SUB (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.
As rules common for all simulations of SUB-instructions, we have

ar
− → #−, 1 ≤ r ≤ m,

arar
− → e, 1 ≤ r ≤ m,

##− → e,
#− → ##,
→ ##.

The zero test for instruction l1 is simulated by the rules

l1 → l1
′ar

−,
l1

′ → #l1
′′, and

l1
′′ → l3;

– the symbol # generated by the second rule l1
′ → #l1

′′ can only be elim-
inated if the anti-matter ar

− generated by the first rule l1 → l1
′ar

− is
not annihilated by ar, i.e., only if register r is empty; e is generated by
##− → e.

The decrement case for instruction l1 is simulated by the rules

l1 → l̃1ar
−
,

l̃1 → l̃′1,

l̃′1 → l2;

– here, e is generated by arar
− → e.

• lh : HALT . Simulated by the rules

lh → lh
′,

lh
′ → lh

′′,
lh

′′ → e.

18 A. Alhazov et al.

In each case, exactly one symbol e is generated during each cycle of three steps
simulating an instruction of M . ⊓⊔
Remark 2. Let M be a register machine and

RS(M) = {(n,m) | n ∈ L(M), n is computed by M in m steps}.

Then, according to [2], RS is recursive. Hence, although L(M) may not be recur-
sive, RS(M) is recursive in any case.

Now let L ∈ NRE and L = L (M) for a register machine M . Following the
construction given in the proof of Corollary 3, we can construct a P system with
energy Π such that Ps (Π) = RS(M).

7 Computing with Integers

As already discussed in Section 4, given an alphabet V = {a1, · · · , ad} we may
extend the notion of a (finite) multiset over V as a mapping f : V −→ N to a
mapping f : V −→ Z now also allowing negative values, with a unique string
representation for such an extended multiset being obtained by assigning a string
over the (ordered) alphabet ⟨a1, a1−, · · · , ad, ad−⟩ as a1

f(a1) · · · adf(ad) such that
(ai)

−m
, m > 0, is represented by (ai

−)
m
, 1 ≤ i ≤ d. Besides this canonical

representation of f by the string a1
f(a1) · · · adf(ad), any other string having the

same Parikh vector with respect to the (ordered) alphabet ⟨a1, a1−, · · · , ad, ad−⟩
can be used for representing the multiset given by f as well. According to these
definitions, matter and related anti-matter cannot be present in the same string or
multiset over the alphabet {a1, a1−, · · · , ad, ad−}. Obviously, their is a one-to-one
correspondence between vectors from Zd and the corresponding Parikh vectors
over ⟨a1, a1−, · · · , ad, ad−⟩, which can also be viewed as vectors over Z2d: for any
of these vectors v = (v1, v2, · · · , v2d−1, v2d), we have either v2i−1 = 0 or v2i = 0
(or both), for all 1 ≤ i ≤ d.

In order to specify that now we are dealing with d-dimensional vectors of in-

teger numbers, we use the notation PsZ
d

: the family of sets of integer numbers

PsZ
d

δ (Π), δ ∈ {gen, acc, aut}, and the family of functions/relations ZPsZ
d

α (Π),
Z ∈ {Fun,Rel}, α ∈ {acc, aut}, computed by such P systems with at most

m membranes and k catalysts is denoted by PsZ
d

δ OPm (cat(k), antim/pri) and

ZPsZ
d

α OPm (cat(k), antim/pri); we omit /pri for the families without priorities.
Moreover, the family of recursively enumerable sets of d-dimensional vectors of

integer numbers is denoted by PsZ
d

RE, the corresponding functions/relations by

ZPsZ
d

RE.

Theorem 7. For any d ≥ 1 we have that:

• for any n ≥ 1, k ≥ 0, δ ∈ {gen, acc, aut}, α ∈ {acc, aut}, and Z ∈ {Fun,Rel},

PsZ
d

δ OPn (cat(k), antim/pri) = PsZ
d

RE and

ZPsZ
d

α OPn (cat(k), antim/pri) = ZPsZ
d

RE;

Matter and Anti-Matter in Membrane Systems 19

• for any n ≥ 1, k ≥ 1, δ ∈ {gen, acc, aut}, α ∈ {acc, aut}, and Z ∈ {Fun,Rel},

PsZ
d

δ OPn (cat(k), antim) = PsZ
d

RE and

ZPsZ
d

α OPn (cat(k), antim) = ZPsZ
d

RE;

• for any n ≥ 1, and k ≥ 0,

PsZ
d

detaccOPn (cat(k), antim/pri) = PsZ
d

RE and

FunPsZ
d

detaccOPn (cat(k), antim/pri) = FunZPsZ
d

RE.

Proof. As we have shown in Section 4, all variants of P systems with anti-matter
mentioned in the theorem are computationally complete when dealing with mul-
tisets over any arbitrary alphabet, being able to simulate the actions of a register
machine. Hence, as any d-dimensional vector of integer numbers can be represented
by a 2d-dimensional vector of non-negative integers, which can be processed in the
usual way by register machines and thus simulated by all the variants of P systems
with anti-matter mentioned in the theorem, we only have to solve the technical
detail how to get this 2d-dimensional vector of non-negative integers from a given
d-dimensional vector of integer numbers represented by symbols over the (ordered)
alphabet ⟨a1, a1−, · · · , ad, ad−⟩: given the input in an input membrane ̸= 0, we
there just make a first step using in parallel the non-cooperative rules ai → [ai,+]
and ai

− → [ai,−], 1 ≤ i ≤ d. Then the multisets over these symbols can be handled
in the usual way, now both of them having the corresponding anti-matter objects
[ai,+]

−
and [ai,−]

−
. In a similar way, we can take the input from the environ-

ment by using rules of the form q → p (ai, come) [ai,+] or q → p (ai
−, come) [ai,−]

where q, p represent states of the register machine. The symbols ai and ai
− then

are not needed any more and can be eliminated by the rules ai → λ and ai
− → λ.

The remaining computations in the respective P system then can be carried out
by simulating the actions of a register machine. ⊓⊔

8 Computing with Languages

P systems with anti-matter, as most of the computationally complete variants of
P systems, can also be considered as language generating devices – the objects
sent out can be concatenated to strings over a given alphabet, and the objects
taken in during a halting computation can be assumed to form a string. For sake
of simplicity, we may assume that in each computation step, at most one symbol is
sent out or taken in; otherwise, as usual, e.g., see [3], we may take any permutation
of the symbols sent out or taken in to be part of a string to be considered as output
or input, respectively. Obviously, according to this method of getting an input
string, for the accepting case only the automaton variant is to be considered now,
as otherwise we would have to take an encoding of the input string by a multiset.

20 A. Alhazov et al.

8.1 Languages over Strings

Let V be a finite alphabet. The set of strings (over V) generated or accepted (in
the sense of automata) by a P system with anti-matter Π is denoted by LV

δ (Π),
δ ∈ {gen, aut}, the function/relation computed by Π is denoted by ZLV

aut (Π),
Z ∈ {Fun,Rel}. The family of sets LV

δ (Π), δ ∈ {gen, aut}, and the family of
functions/relations ZLV

aut (Π), Z ∈ {Fun,Rel}, computed by such P systems with
at most m membranes and k catalysts is denoted by LV

δ OPm (cat(k), antim/pri)
and ZLV

autOPm (cat(k), antim/pri), respectively; we omit /pri for the families
without priorities; cat (0) is used as a synonym for ncoo. If the alphabet is arbitrary,
we omit the superscript V in these notations. Moreover, the languages over V
in RE are denoted by REV , the corresponding family of functions/relations by
ZREV .

The use of anti-matter and of matter/anti-matter annihilation rules (having
priority over other rules) allows us to give a simple example how to generate an
even non-context-free string language:

Example 1. Consider the P system with anti-matter

Π = (O, []1, q1, R1, 1) where
O = {a, b, c} ∪ {b−, c−} ∪ {q1, q2, q3},
R1 = {q1 → q2, q2 → q3, q3 → λ, q1 → q1 (a, come) b

−c−}
∪ {q2 → q2 (b, come) , q3 → q3 (c, come)}
∪ {a→ λ} ∪ {x→ x, x− → x−, xx− → λ | x ∈ {b, c}} .

The reader may easily verify that

L
{a,b,c}
aut (Π) = {anbncn | n ≥ 0} .

For each symbol a taken in with state q1 (which is eliminated in the next step
by a → λ) using the rule q1 → q1 (a, come) b

−c−, an anti-matter object for both
b and c is generated. The anti-matter objects b− are eliminated in state q2, and
afterwards the anti-matter objects c− are eliminated in state q3. The computation
only halts (with empty skin membrane) after having used the rule q3 → λ if and
only if an equal number of objects a, b, and c has been taken in, as otherwise,
the rules x → x or x− → x−, x ∈ {b, c}, keep the system in an infinite loop if
too many x or not enough x have been taken in, respectively. Observe that this
system also works if we do not require priority of the annihilation rules, but then,
for each successful computation accepting the string anbncn, n ≥ 1, there exist
inifinite computations where we use one of the rules x− → x− again and again
instead of letting x− being annihilated by xx− → λ. Hence, we may say that

{anbncn | n ≥ 0} ∈ L
{a,b,c}
aut OP1 (ncoo) .

Theorem 8. For any arbitrary alphabet V we have that:

Matter and Anti-Matter in Membrane Systems 21

• for any n ≥ 1, k ≥ 0, δ ∈ {gen, aut}, and Z ∈ {Fun,Rel},

LV
δ OPn (cat(k), antim/pri) = REV and

ZLV
autOPn (cat(k), antim/pri) = ZREV ;

• for any n ≥ 1, k ≥ 1, δ ∈ {gen, aut}, and Z ∈ {Fun,Rel},

LV
δ OPn (cat(k), antim) = REV and

ZLV
autOPn (cat(k), antim) = ZREV .

Proof. As we have shown in Section 4, all variants of P systems with anti-matter
mentioned in the theorem are computationally complete when dealing with mul-
tisets, being able to simulate the actions of a register machine. Hence, by well-
known techniques, input symbols composing an input string can be encoded as
numbers in an input register and thus as a multiset in the simulating P system
with anti-matter. In the same way, the results of a computation in the P system
can be decoded from the multiset representing the output register of the under-
lying register machine. An input symbol a ∈ V is taken in by rules of the form
q → p (a, come) where q, p represent states of the register machine, and sent out
by rules of the form q → p (a, out). ⊓⊔

8.2 Languages over Computable Finite Presentations of Groups

Strings may be used in a wider sense as repesentations of group elements. In order
to establish these more general results, we first need some definitions and examples
from group theory, e.g., see [11].

Groups and Group Presentations

Let G = (G′, ◦) be a group with group operation ◦. As is well-known, the group
axioms are

• closure: for any a, b ∈ G′, a ◦ b ∈ G′,
• associativity : for any a, b, c ∈ G′, (a ◦ b) ◦ c = a ◦ (b ◦ c),
• identity : there exists a (unique) element e ∈ G′, called the identity, such that

e ◦ a = a ◦ e for all a ∈ G′, and
• invertibility: for any a ∈ G′, there exists a (unique) element a−1, called the

inverse of a, such that a ◦ a−1 = a−1 ◦ a = e.

Moreover, the group is called commutative, if for any a, b ∈ G′, a ◦ b = b ◦ a. In
the following, we will not distinguish between G′ and G if the group operation is
obvious from the context.

For any element b ∈ G′, the order of b is the smallest number n ∈ N such that
bn = e provided such an n exists, and then we write ord (b) = n; if no such n
exists, {bn | n ≥ 1} is an infinite subset of G′ and we write ord (b) = ∞.

22 A. Alhazov et al.

For any set B, B−1 is defined as the set of symbols representing the inverses
of the elements of B, i.e., B−1 =

{
b−1 | b ∈ B

}
. We now consider the strings in(

B ∪B−1
)∗

and two strings as different unless their equality follows from the group

axioms, i.e., for any a, b, c ∈
(
B ∪B−1

)∗
, a◦b◦b−1◦c = a◦c; using these reductions,

we obtain a set of irreducible strings from those in
(
B ∪B−1

)∗
, the set of which

we denote by I (B). Then the free group generated by B is F (B) = (I (B) , ◦) with
the elements being the irreducible strings over B∪B−1 and the group operation to
be interpreted as the usual string concatenation, yet, obviously, if we concatenate
two elements from I (B), the resulting string eventually has to be reduced again.
The identity in F (B) is the empty string.

In general, B (not containing the identity) is called a generator of the group G
if every element a from G can be written as a finite product/sum of elements from
B, i.e., a = b1 ◦ · · · ◦ bm for b1, . . . , bm ∈ B. In this paper, we restrict ourselves to
finitely presented groups, i.e., having a finite presentation ⟨B | R⟩ with B being
a finite generator set and moreover, R being a finite set of relations among these
generators. In a similar way as in the definition of the free group generated by B,
we here consider the strings in B∗ reduced according to the group axioms and the
relations given in R. Informally, the group G = ⟨B | R⟩ is the largest one generated
by B subject only to the group axioms and the relations in R. Formally, we will
restrict ourselves to relations of the form b1 ◦ · · · ◦ bm = c−1 with b1, . . . , bm, c ∈ B,
which equivalently may be written as b1 ◦ · · · ◦ bm ◦ c = e; hence, instead of such
relations we may specify R by strings over B yielding the group identity, i.e.,
instead of b1 ◦ · · · ◦ bm = c−1 we take b1 ◦ · · · ◦ bm ◦ c (these strings then are called
relators).

Example 2. The free group F (B) = (I (B) , ◦) can be written as ⟨B | ∅⟩ (or even
simpler as ⟨B⟩) because it has no restricting relations.

Example 3. The cyclic group of order n has the presentation ⟨{a} | {an}⟩ (or, omit-
ting the set brackets, written as ⟨a | an⟩); it is also known as Zn or as the quotient
group Z/Zn.

Example 4. Z is a special case of an Abelian group generated by (1) and its inverse
(−1), i.e., Z is the free group generated by (1). Zd is an Abelian group generated by
the unit vectors (0, ..., 1, ..., 0) and their inverses (0, ...,−1, ..., 0). It is well known
that every finitely generated Abelian group is a direct sum of a torsion group and
a free Abelian group where the torsion group may be written as a direct sum of
finitely many groups of the form Z/pkZ for p being a prime, and the free Abelian
group is a direct sum of finitely many copies of Z.

Example 5. A very well-known example for a non-Abelian group is the hexagonal
group with the finite presentation

⟨
a, b, c | a2, b2, c2

⟩
. All three generators a, b, c

are self-inverse.

Remark 3. Unfortunately, given a finite presentation of a group ⟨B | R⟩, in gen-
eral it is not even decidable whether the group presented in that way is finite or

Matter and Anti-Matter in Membrane Systems 23

infinite. Hence, in this paper we restrict ourselves to infinite groups where the
word equivalence problem u = v is decidable, or equivalently, there is a decision
procedure telling us whether, given two strings u and v, u ◦ v−1 = e. In that case,
we call ⟨B | R⟩ a recursive or computable finite group presentation.

As a first example we now consider the set (“language”) of all one-dimensional
vectors:

Example 6. Consider the P system

Π = ({q0, q+, q−, qh}, []1, q0, R1, 1) where
R1 = {q0 → qh, q+ → qh, q− → qh}

∪ {q0 → (+1)q+, q+ → (+1)q+, q0 → (−1)q−, q− → (−1)q−}.

In order to generate the empty string, corresponding with the zero-vector (0), we
simply apply q0 → qh. We may also choose to generate a positive or a negative
vector, i.e., we start with q0 → (+1)q+ or q0 → (−1)q−, respectively. After n− 1
applications of the rules q+ → (+1)q+ and q− → (−1)q− as well as of the final
rule q+ → qh or q− → qh, respectively, we have sent out a string representing the
unique irreducible representation of the vector (+n) or (−n), respectively.

Remark 4. The reader may easily verify that, given any finitely generated Abelian
group, such a regular P system exists which generates all strings representing the
(unique, with respect to a complete order on the positive generators) irreducible
representations of the group elements. For non-commutative groups with relators,
such trivial representations are not possible.

If we do not require irreducibility of the string sent out to the environment,
then of course, for any finitely generated group, we can generate representations
of all its elements very easily:

Example 7. Given a finite presentation of a group ⟨B | R⟩, with B− = B, consider
the P system

Π = ({q0}, []1, q0, R1, 1) where
R1 = {q0 → λ} ∪ {q0 → gq0 | g ∈ B}.

Most of the strings sent out now will not be reduced.

Remark 5. In general, as long as we have given the group by a computable finite
presentation, for a mechanism having the full power of Turing computability, we
can require that the “strings” sent out to the environment are irreducible ones.
Hence, for a given recursively enumerable set L of elements over the computable
finite presentation ⟨B | R⟩ of a group, such a mechanism can generate the irre-
ducible string representations of the elements in L. Thus, the results collected in
the following theorem are obvious consequences of the results stated in Theorem 8.

24 A. Alhazov et al.

Let ⟨B | R⟩ be the computable finite presentation of a group. The set of
string representations (of elements of this group with respect to this finite pre-
sentation ⟨B | R⟩) generated or accepted (in the sense of automata) by a P

system with anti-matter Π is denoted by L
⟨B|R⟩
δ (Π), δ ∈ {gen, aut}, the func-

tion/relation computed by Π is denoted by ZL
⟨B|R⟩
aut (Π), Z ∈ {Fun,Rel}. The

family of sets L
⟨B|R⟩
δ (Π), δ ∈ {gen, aut}, and the family of functions/relations

ZL
⟨B|R⟩
aut (Π), Z ∈ {Fun,Rel}, computed by such P systems with at most m

membranes and k catalysts is denoted by L
⟨B|R⟩
δ OPm (cat(k), antim/pri) and

ZL
⟨B|R⟩
aut OPm (cat(k), antim/pri), respectively; we omit /pri for the families with-

out priorities. If the computable finite group presentation may be an arbitrary
one, we omit the superscript ⟨B | R⟩ in these notations. The family of recursively
enumerable sets of elements over the computable finite presentation ⟨B | R⟩ of a
group is denoted by RE⟨B|R⟩, the corresponding family of recursively enumerable
functions/relations by ZRE⟨B|R⟩, Z ∈ {Fun,Rel}.
Theorem 9. Let ⟨B | R⟩ be the computable finite presentation of a group. Then
we have that:

• for any n ≥ 1, k ≥ 0, δ ∈ {gen, aut}, and Z ∈ {Fun,Rel},

L
⟨B|R⟩
δ OPn (cat(k), antim/pri) = RE⟨B|R⟩ and

ZL
⟨B|R⟩
aut OPn (cat(k), antim/pri) = ZRE⟨B|R⟩;

• for any n ≥ 1, k ≥ 1, δ ∈ {gen, aut}, and Z ∈ {Fun,Rel},

L
⟨B|R⟩
δ OPn (cat(k), antim) = RE⟨B|R⟩ and

ZL
⟨B|R⟩
aut OPn (cat(k), antim) = ZRE⟨B|R⟩.

Proof. As for string languages, all computations can be carried out by simulating
register machines, hence, again the results from Section 4 apply. Moreover, as
already mentioned in Remark 5, the additional computations can also be carried
out in this way, as ⟨B | R⟩ is computable. ⊓⊔
Remark 6. Let us mention that the results obtained in Theorem 9 for arbitrary
computable finite presentations ⟨B | R⟩ of a group can also be applied to the
infinite Abelian groups Zd with their canonical group presentations by the unit
vectors (0, ..., 1, ..., 0) and their inverses (0, ...,−1, ..., 0). Keeping in mind that there
is a one-to-one correspondence between the representation of a vector in Zn by a
multiset of symbols and the corresponding string representing this multiset, most
of the results shown in Theorem 7 are special cases of the respective results stated
in Theorem 9.

9 Summary

We have shown that only non-cooperative rules together with matter/anti-matter
annihilation rules are needed to obtain computational completeness in P systems

Matter and Anti-Matter in Membrane Systems 25

working in the maximally parallel derivation mode if annihilation rules have weak
priority; without priorities, one catalyst is needed. In the case of accepting P
systems we were able to even get deterministic systems. Allowing anti-matter
objects as input and/or output, we have even obtained a computationally complete
computing model for computations on integer numbers. Interpreting sequences of
symbols taken in from and/or sent out to the environment, we have also got
a model for computations on strings, where strings can even be interpreted as
representations of elements of a group based on a computable finite presentation.

There may be a lot of other interesting models of P systems allowing for in-
troducing anti-matter objects and matter/anti-matter annihilation rules. Several
problems remain open even for the models presented here, for example, can we
avoid both catalysts and priorities. Moreover, the number of rules needed for uni-
versal P systems with anti-matter might still be reduced. Finally, the variants of P
systems with anti-matter computing on sets of integer numbers and on languages
of strings, even considered as representations of elements of a group based on a
computable finite presentation, deserve more detailed investigations.

References

1. A. Alhazov, D. Sburlan: Static Sorting P Systems. In: G. Ciobanu, Gh. Păun, M.J.
Pérez-Jiménez (Eds.): Applications of Membrane Computing. Natural Computing
Series, Springer, 2005, pp. 215–252.

2. M. Cavaliere, R. Freund, A. Leitsch, Gh. Păun: Event-Related Outputs of Compu-
tations in P Systems. Journal of Automata, Languages and Combinatorics 11 (3),
263–278 (2006).

3. E. Csuhaj-Varjú, Gy. Vaszil: P Automata or Purely Communicating Accepting P
Systems. In: Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (Eds.): Membrane
Computing. International Workshop, WMC-CdeA 2002 Curtea de Argeş, Romania,
August 19–23, 2002. Revised Papers. Lecture Notes in Computer Science 2597,
Springer, 2003, pp. 219–233.

4. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer,
1989.

5. D. Dı́az-Pernil, F. Peña-Cantillana, M. A. Gutiérrez-Naranjo: Antimatter as a Fron-
tier of Tractability in Membrane Computing. Brainstorming Week in Membrane
Computing, Sevilla, February 2014.

6. R. Freund: Purely Catalytic P Systems: Two Catalysts Can Be Sufficient for Com-
putational Completeness. In: A. Alhazov, S. Cojocaru, M. Gheorghe, Yu. Rogozhin
(Eds.): CMC14 Proceedings – The 14th International Conference on Membrane Com-
puting, Chişinău, August 20–23, 2013. Institute of Mathematics and Computer Sci-
ence, Academy of Sciences of Moldova, 2013, pp. 153–166.

7. R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally Universal P Systems
without Priorities: Two Catalysts Are Sufficient. Theoretical Computer Science 330,
251–266 (2005).

8. R. Freund, M. Oswald: A Small Universal Antiport P System with Forbidden Con-
text. In: H. Leung, G. Pighizzini (Eds.): 8th International Workshop on Descriptional
Complexity of Formal Systems - DCFS 2006, Las Cruces, New Mexico, USA, June

26 A. Alhazov et al.

21 - 23, 2006. Proceedings DCFS, New Mexico State University, Las Cruces, New
Mexico, USA, 2006, pp. 259–266.

9. R. Freund, M. Oswald: Catalytic and Purely Catalytic P Automata: Control Mecha-
nisms for Obtaining Computational Completeness. In: S. Bensch, F. Drewes, R. Fre-
und, F. Otto (Eds.): Fifth Workshop on Non-Classical Models of Automata and Ap-
plications (NCMA 2013), OCG, Wien, 2013, pp. 133–150.

10. R. Freund, Gh. Păun: How to Obtain Computational Completeness in P Systems with
One Catalyst. In: T. Neary and M. Cook: Proceedings Machines, Computations and
Universality 2013, MCU 2013, Zürich, Switzerland, September 9–11, 2013, EPTCS
128, 47–61 (2013).

11. D. F. Holt, B. Eick, E. A. O’Brien: Handbook of Computational Group Theory. CRC
Press, 2005.

12. I. Korec: Small Universal Register Machines. Theoretical Computer Science 168,
267–301 (1996).

13. M. L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, New Jersey, USA, 1967.

14. L. Pan, Gh. Păun: Spiking Neural P Systems with Anti-Matter. International Journal
of Computers, Communications & Control 4 (3), 273–282 (2009).

15. Gh. Păun: Computing with Membranes. Journal of Computer and System Sciences
61 (1) (2000), 108–143 (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi).

16. Gh. Păun: Membrane Computing. An Introduction. Springer, 2002.
17. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.
18. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages, 3 volumes.

Springer, 1997.
19. The P Systems Website: www.ppage.psystems.eu.

Priorities, Promoters and Inhibitors in
Deterministic Non-Cooperative P Systems

Artiom Alhazov1, Rudolf Freund2

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
artiom@math.md

2 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
rudi@emcc.at

Summary. Membrane systems (with symbol objects) are distributed controlled multiset
processing systems. Non-cooperative P systems with either promoters or inhibitors (of
weight not restricted to one) are known to be computationally complete. Since recently,
it is known that the power of the deterministic subclass of such systems is subregular. We
present new results on the weight of promoters and inhibitors, as well as for characterizing
the systems with priorities only.

1 Introduction

The most famous membrane computing model where determinism is a criterion of
universality versus decidability is the model of catalytic P systems, see [3] and [6].

It is also known that non-cooperative rewriting P systems with either promoters
or inhibitors are computationally complete, [2]. Moreover, the proof satisfies some
additional properties:

• Either promoters of weight 2 or inhibitors of weight 2 are enough.
• The system is non-deterministic, but it restores the previous configuration if

the guess is wrong, which leads to correct simulations with probability 1.

Recently, in [1] it was shown that the computational completeness cannot
be achieved by deterministic non-cooperative systems with promoters, inhibitors
and priorities (in maximally parallel or asynchronous mode, unlike the sequential
mode), and characterizations of the corresponding classes were obtained:

28 A. Alhazov, R. Freund

NFIN ∪ coNFIN = NdetaOP
asyn
1 (ncoo, pro1,∗, inh1,∗)

= NdetaOP
maxpar
1 (ncoo, pro1,∗)

= NdetaOP
maxpar
1 (ncoo, inh1,∗)

= NdetaOP
asyn
1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)
= NdetaOP

maxpar
1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)
, but

NRE = NdetaOP
sequ
1 (ncoo, pro1,1, inh1,1) .

A few interesting questions have been left open. For instance, what is the power
of P systems, e.g., in the maximally parallel mode, when we only use priorities, or
when we restrict the weight of the promoting/inhibiting multisets. These are the
questions we address in this paper.

2 Definitions

An alphabet is a finite non-empty set V of abstract symbols. The free monoid
generated by V under the operation of concatenation is denoted by V ∗; the empty
string is denoted by λ, and V ∗ \ {λ} is denoted by V +. The set of non-negative
integers is denoted by N; a set S of non-negative integers is called co-finite if N\S
is finite. The family of all finite (co-finite) sets of non-negative integers is denoted
by NFIN (coNFIN , respectively). The family of all recursively enumerable sets
of non-negative integers is denoted by NRE. In the following, we will use ⊆ both
for the subset as well as the submultiset relation.

Since flattening the membrane structure of a membrane system preserves both
determinism and the model, in the following we restrict ourselves to consider mem-
brane systems as one-region multiset rewriting systems.

A (one-region) membrane system (P system) is a tuple

Π = (O,Σ,w,R′) ,

where O is a finite alphabet, Σ ⊆ O is the input sub-alphabet, w ∈ O∗ is a string
representing the initial multiset, and R′ is a set of rules of the form r : u → v,
u ∈ O+, v ∈ O∗.

A configuration of the system Π is represented by a multiset of objects from O
contained in the region, the set of all configurations over O is denoted by C (O).
A rule r : u → v is applicable if the current configuration contains the multiset
specified by u. Furthermore, applicability may be controlled by context conditions,
specified by pairs of sets of multisets.

Definition 1. Let Pi, Qi be (finite) sets of multisets over O, 1 ≤ i ≤ m. A rule
with context conditions (r, (P1, Q1) , · · · , (Pm, Qm)) is applicable to a configuration
C if r is applicable, and there exists some j ∈ {1, · · · ,m} for which

• there exists some p ∈ Pj such that p ⊆ C and
• q ̸⊆ C for all q ∈ Qj.

Controls in Deterministic Non-Cooperative P Systems 29

In words, context conditions are satisfied if there exists a pair of sets of multisets
(called promoter set and inhibitor set, respectively) such that at least one multiset
in the promoter set is a submultiset of the current configuration, and no multiset
in the inhibitor set is a submultiset of the current configuration.

Definition 2. A P system with context conditions and priorities on the rules is a
construct

Π = (O,Σ,w,R′, R,>) ,

where (O,Σ,w,R′) is a (one-region) P system as defined above, R is a set of rules
with context conditions and > is a priority relation on the rules in R; if rule r′ has
priority over rule r, denoted by r′ > r, then r cannot be applied if r′ is applicable.

Throughout the paper, we will use the word control to mean that at least one of
these features is allowed (context conditions or promoters or inhibitors only and
eventually priorities).

In the sequential mode (sequ), a computation step consists in the non-
deterministic application of one applicable rule r, replacing its left-hand side
(lhs (r)) with its right-hand side (rhs (r)). In the maximally parallel mode
(maxpar), a multiset of applicable rules may be chosen non-deterministically to
be applied in parallel to the underlying configuration to disjoint submultisets, pos-
sibly leaving some objects idle, under the condition that no further applicable rule
can be added to that multiset (i.e., no supermultiset of the chosen multiset is
applicable to the same configuration). Maximal parallelism is the most common
computation mode in membrane computing, see also Definition 4.8 in [5]. In the
asynchronuous mode (asyn), any positive number of applicable rules may be cho-
sen non-deterministically to be applied in parallel to the underlying configuration,
to disjoint submultisets. The computation step between two configurations C and
C ′ is denoted by C → C ′, thus yielding the binary relation ⇒: C (O) × C (O). A
computation halts when there are no rules applicable to the current configuration
(halting configuration) in the corresponding mode.

The computation of a generating P system starts with w, and its result is |x|
if it halts, an accepting system starts with wx, x ∈ Σ∗, and we say that |x| is
its results – is accepted – if it halts. The set of numbers generated/accepted by a
P system working in the mode α is the set of results of its computations for all
x ∈ Σ∗ and denoted by Nα

g (Π) and Nα
a (Π), respectively. The family of sets of

numbers generated/accepted by a family of (one-region) P systems with context
conditions and priorities on the rules with rules of type β working in the mode
α is denoted by NδOP

α
1

(
β, (prok,l, inhk′,l′)d , pri

)
with δ = g for the generating

and δ = a for the accepting case; d denotes the maximal number m in the rules
with context conditions (r, (P1, Q1) , · · · , (Pm, Qm)); k and k′ denote the maximum
number of promoters/inhibitors in the Pi and Qi, respectively; l and l′ indicate
the maximum of weights of promotors and inhibitors, respectively. If any of these
numbers k, k′, l, l′ is not bounded, we replace it by ∗. As types of rules we are
going to distinguish between cooperative (β = coo) and non-cooperative (i.e., the
left-hand side of each rule is a single object; β = ncoo) ones.

30 A. Alhazov, R. Freund

In the case of accepting systems, we also consider the idea of determinism,
which means that in each step of any computation at most one (multiset of)
rule(s) is applicable; in this case, we write deta for δ.

In the literature, we find a lot of restricted variants of P systems with con-
text conditions and priorities on the rules, e.g., we may omit the priorities or
the context conditions completely. If in a rule (r, (P1, Q1) , · · · , (Pm, Qm)) we have
m = 1, we say that (r, (P1, Q1)) is a rule with a simple context condition, and
we omit the inner parentheses in the notation. Moreover, context conditions only
using promoters are denoted by r|p1,··· ,pn , meaning (r, {p1, · · · , pn} , ∅), or, equiva-
lently, (r, (p1, ∅) , · · · , (pn, ∅)); context conditions only using inhibitors are denoted
by r|¬q1,··· ,¬qn , meaning (r, λ, {q1, · · · , qn}), or r|¬{q1,··· ,qn}. Likewise, a rule with
both promoters and inhibitors can be specified as a rule with a simple context con-
dition, i.e., r|p1,··· ,pn,¬q1,··· ,¬qn stands for (r, {p1, · · · , pn} , {q1, · · · , qn}). Finally,
promoters and inhibitors of weight one are called atomic.

Remark 1. If we do not consider determinism, then (the effect of) the rule
(r, (P1, Q1) , · · · , (Pm, Qm)) is equivalent to (the effect of) the collection of rules
{(r, Pj , Qj) | 1 ≤ j ≤ m}, no matter in which mode the P system is working (ob-
viously, the priority relation has to be adapted accordingly, too).

Remark 2. Let (r, {p1, · · · , pn} , Q) be a rule with a simple context condition; then
we claim that (the effect of) this rule is equivalent to (the effect of) the collection
of rules

{(r, {pj} , Q ∪ {pk | 1 ≤ k < j}) | 1 ≤ j ≤ m}

even in the the case of a deterministic P system: If the first promoter is chosen
to make the rule r applicable, we do not care about the other promoters; if the
second promoter is chosen to make the rule r applicable, we do not allow p1 to
appear in the configuration, but do not care about the other promoters p3 to pm;
in general, when promoter pj is chosen to make the rule r applicable, we do not
allow p1 to pj−1 to appear in the configuration, but do not care about the other
promoters pj+1 to pm; finally, we have the rule {(r, {pm} , Q ∪ {pk | 1 ≤ k < m})}.
If adding {pk | 1 ≤ k < j} to Q has the effect of prohibiting the promotor pj from
enabling the rule r to be applied, this makes no harm as in this case one of the
promoters pk, 1 ≤ k < j, must have the possibility for enabling r to be applied.
By construction, the domains of the new context conditions now are disjoint, so
this transformation does not create (new) non-determinism. In a similar way, this
transformation may be performed on context conditions which are not simple.
Therefore, without restricting generality, the set of promoters may be assumed to
be a singleton. In this case, we may omit the braces of the multiset notation for
the promoter multiset and write (r, p,Q).

Remark 3. As in a P system (O,Σ,w,R′, R,>) the set of rules R′ can easily be
deduced from the set of rules with context conditions R, we omit R′ in the de-
scription of the P system. Moreover, for systems having only rules with a simple

Controls in Deterministic Non-Cooperative P Systems 31

context condition, we omit d in the description of the families of sets of numbers
and simply write

NδOP
α
1 (β, prok,l, inhk′,l′ , pri) .

Moreover, each control mechanism not used can be omitted, e.g., if no priorities
and only promoters are used, we only write NδOP

α
1 (β, prok,l).

3 Results

3.1 Recent results

We first recall from [1] the bounding operation over multisets, with a parameter
k ∈ N as follows:

for u ∈ O∗, bk(u) = v with |v|a = min(|u|a , k) for all a ∈ O.

The mapping bk “crops” the multisets by removing copies of every object a
present in more than k copies until exactly k remain. For two multisets u, u′,
bk (u) = bk (u

′) if for every a ∈ O, either |u|a = |u′|a < k, or |u|a ≥ k and

|u′|a ≥ k. Mapping bk induces an equivalence relation, mapping O∗ into (k + 1)
|O|

equivalence classes. Each equivalence class corresponds to specifying, for each a ∈
O∗, whether no copy, one copy, or · · · k − 1 copies, or “k copies or more” are
present. We denote the range of bk by {0, · · · , k}O.

Lemma 1. [1] Context conditions are equivalent to predicates defined on bound-
ings.

Theorem 1. [1] Priorities are subsumed by conditional contexts.

Remark 4. It is worth to note, see also [4], that if no other control is used, the
priorities can be mapped to sets of atomic inhibitors. Indeed, a rule is inhibited
precisely by the left side of each higher priority rule. This is straightforward in
case when the priority relation is assumed to be a partial order.

If it is not, then both the semantics of computation in P systems and the
reduction of priorities to inhibitors is a bit more complicated, but the claim still
holds.

Fix an arbitrary deterministic controlled non-cooperative P system. Take k as
the maximum of size of all multisets in all context conditions. Then, the bounding
does not influence applicability of rules, and bk (u) is halting if and only if u is
halting. We recall that bounding induces equivalence classes preserved by any
computation.

Lemma 2. [1] Assume u → x and v → y. Then bk (u) = bk (v) implies bk (x) =
bk (y).

Corollary 1. [1] If bk (u) = bk (v), then u is accepted if and only if v is accepted.

32 A. Alhazov, R. Freund

Finally, the “at most NFIN ∪ coNFIN” part of characterizing

NdetaOP
maxpar
1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)
(the main theorem of [1]) is shown with the following argument:

Each equivalence class induced by bounding is completely accepted or
completely rejected. If no infinite equivalence class is accepted, then the
accepted set is finite (containing numbers not exceeding (k − 1) · |O|). If
at least one infinite equivalence class is accepted, then the rejected set is
finite (containing numbers not exceeding (k − 1) · |O|).

3.2 Priorities only

We start with an example how to deterministically rewrite an object t depending
on the presence or absence of object a.

Example 1.

Π = ({a,A,A′, t, t′, t+, t−}, {a}, tA,R,R,>), where
R = {1 : t→ t′, 2 : a→ λ, 3 : A→ A′, 4 : t′ → t+, 5 : t′ → t−, 6 : A′ → λ},
> = {a→ λ > A→ A′, A→ A′ > t′ → t−, A

′ → λ > t′ → t+}.

Indeed, object t waits for one step by becoming t′, while A has to change to
A′ or wait, depending on the presence of a. Then, object t′ becomes either t+
or t−, depending on whether A or A′ is present. Notice, e.g., how adding either
rule t+ → t+ or rule t− → t− leads to a system accepting {0} or N \ {0}. Of
course, accepting only zero could instead be done by a trivial one-rule system, but
this example is important because such a deciding subsystem can be used, with
suitable delays, as a building block for checking combinations of presence/absence
of multiple symbols.

We now proceed with characterizing systems with priorities only.

Theorem 2. NdetaOP
maxpar
1 (ncoo, pri) = {Nk,Nk ∪ {0} | k ≥ 0} ∪ {{0}, ∅}.

Proof. We already know that the priorities correspond to sets of atomic inhibitors.
This means that each system accepts a union of some equivalence classes induced
by bounding b1 (i.e., checking presence/absence). Note that various combinations
of “= 0” and “≥ 1” yield numeric sets {0} and Nk (where k > 0 is the number of
different symbols present). The family of all unions of these sets is

Fpri = {Nk,Nk ∪ {0} | k ≥ 0} ∪ {{0}, ∅}.

It follows that NdetaOP
maxpar
1 (ncoo, pri) ⊆ Fpri.

We proceed with the converse inclusion. Let Π0 = ({a, t}, {a}, t, R,R,>), then
R = {t → t} and empty relation > yields ∅. To accept {0}, we instead take
R = {a→ a} and empty relation >.

Controls in Deterministic Non-Cooperative P Systems 33

Now suppose we want to accept Nk. It would suffice to count that we have at
least one of each objects a1, · · · , ak (we recall that we need to accept at least one
input of size j for each j ≥ k, or reject the input if j > k). To accept Nk ∪ {0}
instead, we may first perform a simultaneous check for the absence of all input
symbols.

Using the idea from Example 1, we construct the system

Π1 = (O,Σ = {ai,0 | 1 ≤ i ≤ k}, tA0,0 · · ·Ak,0, R,R,>), where

O = {ai,j | 1 ≤ i ≤ k, 0 ≤ j ≤ i+ 1} ∪ {Ai,j | 0 ≤ i ≤ k, 0 ≤ j ≤ i+ 2}
∪ {t, z, p} ∪ {ti | 0 ≤ i ≤ i+ 1},

R = {1 : ai,j → ai,j+1 | 1 ≤ i ≤ k, 0 ≤ j ≤ i}
∪ {2 : Ai,j → Ai,j+1 | 1 ≤ i ≤ k, 0 ≤ j ≤ i+ 1}
∪ {3 : t→ t0, 4 : t0 → z, 5 : t0 → t1, 6 : p→ p}
∪ {7 : ti → ti+1, 8 : ti → p | 1 ≤ i ≤ k},

> = {ai,0 → ai,1 > A0,0 → A0,1 | 1 ≤ i ≤ k}
∪ {A0,0 → A0,1 > t0 → z, A0,1 → A0,2 > t0 → t1}
∪ {ai,i → ai,i+1 > Ai,i → Ai,i+1 | 1 ≤ i ≤ k}
∪ {Ai,i → Ai,i+1 > ti → p, Ai,i+1 → Ai,i+2 > ti → ti+1}.

Such system accept exactly Nk ∪ {0}. Indeed, after first step, A0,0 is present if all
input symbols were absent, otherwise A0,1 is present instead. For any i, 1 ≤ i ≤ k,
after step 1+ i, object Ai,i is present if input symbol ai,0 was present in the input,
and otherwise Ai,i+1 is present instead. These “decision symbols” are used by ti,
0 ≤ i ≤ k, to build the “presence picture”. We recall that it suffices to accept when
all input symbols are present, or when none of them is present. In the first case,
t0 becomes z, and the computation only continues by rules from groups 1 and 2,
leading to halting. Let us assume that the first s of the input symbols are present,
s < k. Then, t0 becomes t1, and then · · · , ts, and then the absence of ts+1 will
change ts into p, leading to an infinite computation. Finally, if all input symbols
are present, then the computation will halt with tk+1.

It remains to notice that accepting Nk, k ≥ 1, can be done by simply adding a
rule z → z. �

3.3 Promoters or inhibitors of weight 2

We start from examples, illustrating deterministic choice of rewriting p, depending
on whether object a is absent, occurs exactly once, or occurs multiple times.

Example 2. Symbols A, B are primed if input is present (multiple input symbols
are present). Then primed and unprimed symbols form mutually exclusive condi-
tions.

34 A. Alhazov, R. Freund

Π = (O = {p, p′, p′′, p>, p1, p0, A,B, a}, Σ = {a}, pAB,R′, R), where

R′ = {1 : p→ p′, 2 : A→ A′, 3 : B → B′,

4 : p′ → p>, 5 : p′ → p′′, 6 : p′′ → p1, 7 : p′′ → p0},
R′ = {1 : p→ p′, 2 : A→ A′|a, 3 : B → B′|aa,

4 : p′ → p>|B , 5 : p′ → p′′|B′ , 6 : p′′ → p1|A, 7 : p′′ → p0|A′}.

Example 3. Notice that if we replace all promoters by inhibitors with the same
context, the effect of blocking rules will be reversed, but the result will be the same.
Indeed, the role of A′ and B′ will switch from found a and found aa, respectively,
to not found a and not found aa, respectively.

R′ = {1 : p→ p′, 2 : A→ A′|¬a, 3 : B → B′|¬aa,

4 : p′ → p>|¬B , 5 : p′ → p′′|¬B′ , 6 : p′′ → p1|¬A, 7 : p′′ → p0|¬A′}.

We now proceed with characterizing systems with context of weight two. Notice
that we already know that their power does not exceed NFIN ∪ coNFIN .

Theorem 3. NdetaOP
maxpar
1 (ncoo, pro2) =

NdetaOP
maxpar
1 (ncoo, inh2) = NFIN ∪ coNFIN.

Proof. We use the technique from Example 2 for all input symbols and combine the
extracted information. Consider an arbitrary finite set M , and let max(M) = n.
We will use the following strategy: to accept a number j ∈ M , we will accept an
input multiset with exactly j symbols appearing once, and nothing else. To accept
the complement of M , we split it into sets M ′′ = {j | j > n} and M ′ = {j | j ≤
n, j /∈ M}. While M ′ is treated similarly to M , it only remains to accept M ′′,
which is covered by equivalence classes when all symbols are present, and at least
one is present more than once.

Π = (O,Σ = {ai | 1 ≤ i ≤ n}, tA1 · · ·AnB1 · · ·Bn, R
′, R), where

O = {ti,j , Ti,j , t′i,j , T ′
i,j | 1 ≤ i ≤ n+ 1, 0 ≤ j ≤ n}

∪ {Ai, A
′
i, Bi, B

′
i | 1 ≤ i ≤ n} ∪ {t,#},

R′ = {ti,j → Ti+1,j+1, Ti,j → Ti+1,j+1, ti,j → t′i,j , Ti,j → T ′
i,j ,

t′i,j → ti+1,j+1, T
′
i,j → Ti+1,j+1, t

′
i,j → ti+1,j , T

′
i,j → Ti+1,j ,

Ai → A′
i, Bi → B′

i | 1 ≤ i ≤ n} ∪ {t→ t1,0 # → #}
∪ {Ti,n+1 → # | 1 ≤ i ≤ n} ∪ {ti,n+1 → # | i /∈M},

R = {ti,j → Ti+1,j+1|Bi , Ti,j → Ti+1,j+1|Bi , ti,j → t′i,j |B′
i
, Ti,j → T ′

i,j |B′
i
,

t′i,j → ti+1,j+1|Ai , T
′
i,j → Ti+1,j+1|Ai , t

′
i,j → ti+1,j |A′

i
, T ′

i,j → Ti+1,j |A′
i
,

Ai → A′
i|ai , Bi → B′

i|aiai | 1 ≤ i ≤ n} ∪ {t→ t1,0, # → #}
∪ {Ti,n+1 → # | 1 ≤ i ≤ n} ∪ {ti,n+1 → # | i /∈M}.

Controls in Deterministic Non-Cooperative P Systems 35

The meaning of Ti,n+1 is that exactly i input symbols are present, and at least one
of them is present multiple times. The meaning of ti,n+1 is that the input consisted
of exactly i different symbols. This is how an arbitrary finite set is accepted. To
accept instead of M its complement, replace i /∈ M by i ∈ M and remove rule
Tn,n+1 → #. Therefore, deterministic P systems with promoters of weight two
accept exactly NFIN ∪ coNFIN .

For the inhibitor counterpart, notice that the computation of the number of
different symbols present, as well as checking if any symbol is present multiple
times, stays correct by simply changing promoters to the inhibitors with the same
condition, just like in Example 3. Rules processing objects ti,n+1 and Ti,n+1 will
have an opposite effect, accepting the complement of the set accepted by the
system with promoters, again yielding NFIN ∪ coNFIN . �

It is still open whether only inhibitors in the rules or only promoters in the
rules are sufficient to yield NFIN ∪ coNFIN with the asynchronuous mode, too.

4 Conclusion

We have shown the characterizations of deterministic non-cooperative P systems
with inhibitors of weight 2, with promoters of weight 2, and with priorities. The
first two cases did not reduce the accepting power with respect to unrestricted
weight.

References

1. A. Alhazov, R. Freund: Asynchronuous and Maximally Parallel Deterministic Con-
trolled Non-Cooperative P Systems Characterize NFIN and coNFIN . The Tenth
Brainstorming Week in Membrane Computing, vol. 1, Sevilla, 2012, 25–34, and Mem-
brane Computing - 13th International Conference, CMC13, Budapest (E. Csuhaj-
Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, Gy. Vaszil, Eds.), Lecture Notes in
Computer Science 7762, 2013, 101-111.

2. A. Alhazov, D. Sburlan: Ultimately Confluent Rewriting Systems. Parallel Multiset-
Rewriting with Permitting or Forbidding Contexts. In: G. Mauri, Gh. Păun, M.J.
Pérez-Jiménez, G. Rozenberg, A. Salomaa: Membrane Computing, 5th International
Workshop, WMC 2004, Milano, Revised Selected and Invited Papers, Lecture Notes
in Computer Science 3365, Springer, 2005, 178–189.

3. R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally Universal P Systems
without Priorities: Two Catalysts are Sufficient, Theoretical Computer Science 330,
2, 2005, 251–266.

4. R. Freund, M. Kogler, M. Oswald, A General Framework for Regulated Rewriting
Based on the Applicability of Rules. In: J. Kelemen, A. Kelemenová, Computation,
Cooperation, and Life, Springer, Lecture Notes in Computer Science 6610, 2011,
35–53.

36 A. Alhazov, R. Freund

5. R. Freund, S. Verlan: A Formal Framework for Static (Tissue) P Systems. Membrane
Computing, 8th International Workshop, WMC 2007 Thessaloniki, 2007, Revised
Selected and Invited Papers (G. Eleftherakis, P. Kefalas, Gh. Pŭn, G. Rozenberg, A.
Salomaa, Eds.), Lecture Notes in Computer Science 4860, 2007, 271–284.

6. O.H. Ibarra, H.-C. Yen: Deterministic Catalytic Systems are Not Universal, Theo-
retical Computer Science 363, 2006, 149–161.

7. M.L. Minsky: Finite and Infinite Machines, Prentice Hall, Englewood Cliffs, New
Jersey, 1967.

8. Gh. Păun: Membrane Computing. An Introduction, Springer, 2002.
9. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: The Oxford Handbook of Membrane

Computing, Oxford University Press, 2010.
10. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 vol., Springer,

1997.
11. P systems webpage. http://ppage.psystems.eu

Length P Systems with a Lone Traveler

Artiom Alhazov1, Rudolf Freund2, Sergiu Ivanov3

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei 5, MD-2028, Chişinău, Moldova
artiom@math.md

2 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
rudi@emcc.at

3 LACL, Université Paris Est, Creteil, Paris, France
sivanov@colimite.fr

Summary. In this paper we consider P systems with linear membrane structures (only
one membrane is elementary) with at most one object. We raise and attack the question
about the computational power of such systems, depending on the number of membrane
labels, kinds of rules used, and some other possible restrictions.

1 Introduction

P systems with symbol objects are formal computational models of parallel dis-
tributed multiset processing. In the scope of the present research, we only deal
with one object, so the model is reduced to sequential distributed tree rewriting
controlled by one traveller object with a finite memory. Moreover, we assume the
membrane structure to be linear (the tree is a path), with one or two possible
membrane labels. Hence, we are interested in controlled rewriting of strings over
one or two symbols.

Unbounded linear membrane structures have received the attention of re-
searchers in the past, see, e.g., [4] and [3]. In the latter paper, the authors spoke
about the generation languages by representing strings a1 · · · an as labels mem-
branes arranged in a linear structure as

[
a1

[
a2

· · · [
an

]
an

· · ·]
a2

]
a1
.

A different example of research where unbounded membrane structures played a
crucial role for obtaining an important result (the computational completeness of
P systems with active membranes without polarizations) is given in [1], improved
in terms of presentation and object/symbol/membrane label complexity in [2].

This research direction, focusing on the membrane structure (rather than the
multiset of objects in a designated region) as the result of the computation of a

38 A. Alhazov, R. Freund, S. Ivanov

P system, has been recalled during the 12th Brainstorming Week on Membrane
Computing in Sevilla. The technique proposed there how to generate (the de-
scription of) recursively enumerable sets of vectors of non-negative integers, using
membrane structures with only two labels (0 and 1), where the number of mem-
branes labeled by 1 remains bounded by a constant throughout the computation,
is explained in Section 3. It was also conjectured that:

With one label and at most one “traveler” we can only characterize linear
sets, even with membrane generation and deletion.

We confirm this conjecture in Section 4. Finally, in Section 5 we discuss variants
of the model leading to weak computational completeness.

2 P Systems with Membrane Creation and Dissolution

A P system with membrane creation and dissolution is a construct defined as
follows:

Π = (O,H, µ, h1, · · · , hn, w1, · · · , wn, R) where

• O is the (finite) alphabet of objects;
• H is the (finite) alphabet of membrane labels;
• µ is the initial membrane structure consisting of n membranes labeled with

elements of H;
• hi ∈ H, 1 ≤ i ≤ n, is the initial label of the membrane i;
• wi ∈ O∗, 1 ≤ i ≤ n, is the string which represents the initial contents of

membrane i;
• R is the set of rules.

The rules in R are of one of the following types:

(b) [h2
a[h1

]h1
]h2

→ [h′
2
[h′

1
b]h′

1
]h′

2
,

a, b ∈ O, h1, h2, h
′
1, h

′
2 ∈ H – send-in rule,

(c) [h2
[h1

a]h1
]h2

→ [h′
2
b[h′

1
]h′

1
]h′

2
,

a, b ∈ O, h1, h2, h
′
1, h

′
2 ∈ H – send-out rule,

(d) [h2
[h1

a]h1
]h2

→ [h′
2
b]h′

2
,

a, b ∈ O, h1, h2, h
′
2 ∈ H – membrane dissolution rule,

(e) [
h1
a]

h1
→ [

h′
1
[
h2
b]

h2
]
h′
1
,

a, b ∈ O, h1, h2, h
′
1 ∈ H – membrane creation rule.

A rule of type (b) consumes the symbol a in a membrane with label h1 and puts
a symbol b into an inner membrane, rewriting the labels of the involved membranes.
Symmetrically, a rule of type (c) consumes an instance of a in a membrane with
label h1, which is located within a membrane with label h2, and puts an instance
of b into the latter membrane, rewriting the labels.

Length P Systems with a Lone Traveler 39

A rule of type (e) consumes an instance of a in membrane with label h1 and
adds to it a new membrane with label h1, with an instance of b inside. The label
of the original membrane is rewritten to h′1. Symmetrically, a rule of type (d)
consumes an instance of a in a membrane with label h1, which is located within
a membrane with label h2, copies all the symbols from the membrane with label
h1 to its parent membrane, discards the former membrane, adds a b to the latter
membrane and rewrites its label to h′2.

The rules are applied in the maximally parallel way, with the restriction that
in one derivation step at most one rule of types (b), (c), (d), and (e) can be applied
per each membrane labeled by h1 in the definition of the rules given above.

A configuration Ck of the system Π consists of the description of the membrane
structure µk, the labeling of the membranes, and the multisets over O representing
the contents of the regions. A configuration is called halting if no more rules are ap-
plicable any more. A computation of Π is a sequence of configurations (Ck)1≤k≤m,
where C1 is the initial configuration, Cm is a halting configuration, and Ck+1 is
obtained from Ck by applying the rules from R.

Note: In the following, we will restrict ourselves to P systems with a linear
membrane structure. In such systems, membrane creation should never be applied
in a non-elementary membrane, otherwise a non-linear membrane structure would
be obtained, which is unwanted in the model of the current paper. In Section 3,
the P system is constructed in such a way that the object triggering membrane
creation would only appear in the elementary membrane. However, in Sections 4
and 5, the setup is more restricted (e.g., one label only), which would yield too
restrictive P systems. To overcome this, we impose the following restriction: the
membrane creation rule is disabled in the non-elementary membranes. We refer to
this rule kind as (ee). In a similar way, we are interested in membrane dissolution
rules which are disabled in the non-elementary membranes, and we denote them
by (de). Clearly, for each of these membrane dissolution and creation operations,
the constructions in Section 3 work for either variant (emphasizing (de), otherwise
the decrement could be simplified). The regularity conjecture originally assumed
only elementary dissolution to be used as well as results only to be obtained at
halting with the object in the elementary membrane.

In Section 5 we also consider the following type of rule (introduced already in
[3]; we have removed the object in the inner membrane on the right side to let the
systems considered in the paper have at most one object during the computation):

(f) [
h1
a]

h1
→ [

h′
1
b[

h2
]
h2

]
h′
1
,

a, b ∈ O, h1, h2, h
′
1 ∈ H – membrane duplication rule:

the membrane h1, in the presence of an object a, is duplicated, that is, the label
h1 is changed into h′1, the object a is replaced by b and a new inner membrane
labeled by h2 is created; all the contents of membrane h1 (membranes or objects
except this copy of object b) is now inside membrane h2.

Note: In [3] the authors have assumed the outer membrane to be the newly
created one; it makes no difference as long as we can change both labels by this

40 A. Alhazov, R. Freund, S. Ivanov

rule. However, we prefer to view the inner membrane as the new membrane. This
lets us keep h′1 = h1.

Moreover, also the following simplifications/restrictions are made to the rule
types in Section 5: membranes h2, h

′
2 are not mentioned in the notation of rules

(b), (c) and (d), which means that the rules mentioned above act independently
of the external membranes and do not modify them:

(br) a[h1
]
h1

→ [
h′
1
b]

h′
1
, a, b ∈ O, h1, h

′
1 ∈ H,

(cr) [h1
a]h1

→ b[h′
1
]h′

1
, a, b ∈ O, h1, h

′
1 ∈ H,

(dr) [h1
a]h1

→ b, a, b ∈ O, h1 ∈ H.

3 Length P Systems

In what follows we will consider a special class of P systems with membrane
creation and dissolution. A length P system Π is a P system with membrane
creation and dissolution which has the following properties:

• the membrane structure is linear in every configuration, i.e., every membrane
has at most one inner membrane;

• the membranes in any halting configuration of Π are labeled with two labels
only.

Consider a halting configuration C of a length P system Π and construct the
sequence of membrane labels (hi)1≤i≤n, in which h1 corresponds to the label of the
skin membrane, h2 to the label of the membrane inner to the skin membrane, etc.,
and n is the number of membranes in C. Since hi is a member of a two-element
set, we can interpret this sequence as a vector of numbers coded in unary by runs
of one label and separated by instances of the other label. This vector of numbers
will be considered as the output of the length P system Π.

Following the same convention, we can define the input of Π as a two-label
membrane structure coding a certain vector of numbers.

We will now show that length P systems with the input supplied via the mem-
brane structure are computationally complete. To achieve this goal we will pick an
arbitrary register machine M and simulate it with the length P system Π1 which
only uses two labels H = {0, 1}, only the skin membrane is not empty in the initial
configuration and contains qs, and the sequence of initial membrane labels written
as a string h1h2 · · ·hn has the form 110R110R21 · · · 10Rm1, where Ri, 1 ≤ i ≤ m,
is the value of the i-th register of M.

The evolution of the system starts with the rule

[h qs[1]1]h → [h [1 q1,1]1]h, 0 ≤ h ≤ 1,

where the symbol q1,1 represents the first instruction in the program of M and
also keeps the information about the fact that it is located in the region of the
membrane structure corresponding to the first register of M.

Length P Systems with a Lone Traveler 41

To simulate an increment of the i-th register of M, we need to add a mem-
brane to the membrane structure and assure that the sequence of labels changes
from 110R11 · · · 10Ri1 · · · 10Rm1 to 110R11 · · · 10Ri+11 · · · 10Rm1. We start with the
symbol ql,1 in the inner membrane of the skin, where l is the label of the increment
operation, and we move it to the innermost membrane, counting the registers we
traverse on that way:

[h ql,j [0]0]h → [h [0 ql,j]0]h,
[
h
ql,j [1]

1
]
h
→ [

h
[
1
ql,j+1]1]h, 1 ≤ j ≤ m, 0 ≤ h ≤ 1.

When we reach the end marker of the last register, we go into the innermost
membrane and add a new membrane:

[1 ql,m+1]1 → [1 [0 sl,m+1]0]1.

We have now changed the sequence of labels from 110R11 · · · 10Ri1 · · · 10Rm1
to 110R11 · · · 10Ri1 · · · 10Rm10.

The series of s-symbols will now swap this new membrane label 0 with the
labels of inner membranes, in order to obtain the new 0 label in the zone of the
membrane structure corresponding to register Ri:

[0 [0 sl,j]0]0 → [0 sl,j [0]0]0,
[
1
[
0
sl,j]0]1 → [

0
sl,j−1[1]

1
]
0
, i < j ≤ m+ 1.

When we produce the symbol sl,i, we have already pushed all labels correspond-
ing to the registers with numbers greater than i towards the innermost membrane
and we have added a 0-labeled membrane to the zone corresponding to the i-th
register. The following rules move the s-symbol back into the skin membrane:

[
h
[
0
sl,j]0]h → [

h
sl,j [0]

0
]
h
,

[
h
[
1
sl,j]1]h → [

h
sl,j−1[1]

1
]
h
, 1 ≤ j ≤ i, 0 ≤ h ≤ 1.

Finally, sl,0 produces the symbol corresponding to the next instruction l′ of
the register machine:

[
h
sl,0[1]

1
]
h
→ [

h
[
1
ql′,1]1]h, 0 ≤ h ≤ 1.

The simulation of a decrement and zero-check of the i-th register of M is
symmetric to the simulation of an increment: we start with finding the zone of the
membrane structure corresponding to the i-th register:

[
h
ql,j [0]

0
]
h
→ [

h
[
0
ql,j]0]h,

[
h
ql,j [1]

1
]
h
→ [

h
[
1
ql,j+1]1]h, 1 ≤ j < i, 0 ≤ h ≤ 1.

If the value of the register is zero, the symbol ql,i immediately encounters
another membrane with the label 1, so it produces the corresponding signal symbol:

[
1
ql,i[1]

1
]
1
→ [

1
[
1
zl,i+1]1]1.

42 A. Alhazov, R. Freund, S. Ivanov

The signal symbol then bubbles up into the skin membrane:

[
h
[
0
zl,j]0]h → [

h
zl,j [0]

0
]
h
,

[h [1 zl,j]1]h → [h zl,j−1[1]1]h, 1 ≤ j ≤ i, 0 ≤ h ≤ 1.

Finally, in the outer membranes, zl,0 produces the symbol coding the next
instruction l′, corresponding to unsuccessful decrement:

[
h
zl,0[1]

1
]
h
→ [

h
[
1
ql′,1]1]h, 0 ≤ h ≤ 1.

If, however, ql,i detects that the i-th register is not empty, it produces a different
signal symbol:

[1 ql,i[0]0]1 → [1 [0 dl,i]0]1.

This symbol moves all membrane labels one step outwards:

[
0
dl,j [0]

0
]
0
→ [

0
[
0
dl,i]0]0, i ≤ j ≤ m,

[
0
dl,j [1]

1
]
0
→ [

1
[
0
dl,i+1]0]1, i ≤ j ≤ m.

When it reaches the end of the zone of the membrane structure corresponding
to the m-th register, dl,m+1 dissolves the innermost membrane:

[
1
[
0
dl,m+1]0]1 → [

1
sl,m+1]1.

Now the s-symbols go outwards into the skin membrane:

[
h
[
0
sl,j]0]h → [

h
sl,j [0]

0
]
h
,

[h [1 sl,j]1]h → [h sl,j−1[1]1]h, 1 ≤ j ≤ m+ 1, 0 ≤ h ≤ 1.

And finally, sl,0 generates the symbol coding the next operation l′′, correspond-
ing to a successful decrement:

[
h
sl,0[1]

1
]
h
→ [

h
[
1
ql′′,1]1]h, 0 ≤ h ≤ 1.

Note: The construction can be rewritten such that only one membrane par-
ticipates on the left side of any rule, but then the total number of membranes
labeled 1 will no longer remain a constant, but will still stay bounded. In the
construction presented above, however, the number of membranes labeled by 1 is
constant during the computation, namely, it is m+ 2. In the construction above,
membrane creation and membrane dissolution rules do not modify the label of the
outer membrane, while the communication rules either keep unchanged the labels
of the two membranes they work with, or they swap them. The number of mem-
branes labeled by 1 may be reduced by one, by starting with the skin labeled by 0;
this does not affect the proof. Moreover, with a technique mentioned in the end of
Section 5 the innermost membrane labeled 1 may be avoided. For the special case
m = 2, in Section 5 we present a construction when, using membrane duplication,
we avoid even the membrane labeled by 1 which separates the representation of
the two registers, by keeping track of this position with the object itself.

Before that, in the following section, we proceed with the conjecture that length
P systems with one label only generate regular sets of numbers, in case of elemen-
tary membrane creation, elementary membrane dissolution and communication
rules.

Length P Systems with a Lone Traveler 43

4 On the Regularity Conjecture

Clearly, any regular set of numbers can be generated with rules (e) only, simulat-
ing each rule pa→ q, p→ qh of a finite automaton (for which, without restricting
generality we require that every state except qh is non-final and has at least one
outgoing transition) by rules [

0
p]

0
→ [

0
[
0
q]

0
]
0
and [

0
p]

0
→ [

0
[
0
qh]0]0, respec-

tively. Here, the skin and the elementary membrane are to be seen as additional
endmarkers (as otherwise only numbers ≥ 2 could be generated). The latter can
be avoided by additionally using a rule of type (d) [0 [0 qh]0]0 → [0 q

′
h]0.

There are two possible reasons why the power of length P systems with one
label and one object is restricted. The first reason (R1) is that the object can
never detect that it is in the skin (unless we additionally allow the skin to have a
distinguished label). Indeed, if C ⇒ C ′ is one computation step, then it is easy to
see (just by looking at all kinds of rules) that

[
0
C]

0
⇒ [

0
C ′]

0
(1)

is also a valid computation step. This immediately generalizes to multiple mem-
brane levels and multiple derivation steps:

C ⇒∗ C ′ −→ [0 · · · [0︸ ︷︷ ︸
n

C]0 · · ·]0 ⇒∗ [0 · · · [0︸ ︷︷ ︸
n

C ′]0 · · ·]0. (2)

The second reason (R2) is that the total membrane depth can only be in-
creased from the elementary membrane (unless we additionally allow membrane
duplication rules). Let us denote by C ⇒dive C

′ a “membrane dive”, i.e., such a
computation fragment that the object is in the elementary membrane in both C
and in C ′, but never in the intermediate configurations. Let us also denote by ⟨n, a⟩
the configuration consisting of a linear structure of n membranes, the elementary
one containing object a:

⟨n, a⟩ = [
0
· · · [

0︸ ︷︷ ︸
n

a]
0
· · ·]

0
.

Clearly, for any a, b ∈ O, one of the following cases is true:

• There exists some minimal value n ∈ N for which ⟨n, a⟩ ⇒dive ⟨n, b⟩ is true.
Let us denote this value by n(a, b). We recall from (2) that ⟨n, a⟩ ⇒dive ⟨n, b⟩
holds for any n ≥ n(a, b).

• ⟨n, a⟩ ⇒dive ⟨n, b⟩ is not true for any n ∈ N.

We denote by n̄ the maximum of values n(a, b) over the first case. We denote
by N the set of all numbers generated by the length P system not exceeding n̄.
We denote by A the set of all objects a ∈ O such that ⟨n̄, a⟩ is reachable in the
length P system.

It is easier to confirm the conjecture for the case when the membrane dissolu-
tion is only allowed for the elementary membranes. Then, the power of the length

44 A. Alhazov, R. Freund, S. Ivanov

P system is described by the union of the finite set N with the power (plus num-
ber N) of a partially blind 1-register machine starting in states from A, where
the chain rules a → b correspond to the relation ⟨n̄, a⟩ → ⟨n̄, b⟩, and the incre-
ment/decrement instructions are associated to the rules creating and dissolving
elementary membranes. It is known, see, e.g., [5], that the number sets generated
by partially blind 1-register machines is NMAT = NREG. Finally, in this case
it is immediate that the membrane structure cannot change between the last time
the object is in the elementary membrane and the halting.

Note: The regularity conjecture remains valid even if non-elementary mem-
branes can be dissolved. Indeed, a similar (non-constructive) argument can be
made; we only describe it informally . For any two symbols a, b ∈ O, either there
exists some minimal number m ∈ N such that ⟨m, a⟩ ⇒ ⟨m+ 1, b⟩, and we denote
it by m(a, b), or this derivation is not possible for any m ∈ N. Then the behaviour
of the length P system can be decomposed into a finite part (the membrane struc-
ture depth not exceeding the maximum of all defined valuesm(a, b)), and a regular
part defined by the binary relation over O which is the domain where m(a, b) is
defined. As for the computation between the last time the object is in the ele-
mentary membrane and the halting (in case the halting is not in the elementary
membrane), this should also preserve regularity, because without being able to
test for skin and without returning to the elementary membrane, we just have a
finite control walking across the unilabeled membrane structure, and membrane
dissolution in this case can only perform some regular erasing transformation.

5 Weak Computational Completeness

In this section we show that we can construct length P systems with one label
which are weakly computationally complete, assuming the following ingredients:

• Membrane duplication rules are allowed (nullifying reason R2).
• The skin can be distinguished (nullifying reason R1) either by being the only

membrane with another label (s = 1), or by having its own set of rules Rs. We
use the first case for the presentation of the result.

• As typical in membrane computing, the dissolution is not limited to elementary
membranes.

• Membrane creation rules are disabled in the non-elementary membranes. (Al-
ternatively, if one allows to also have special rules for the elementary membrane,
we may forbid membrane creation in the rest of the system).

The result relies on simulating 2-register machines, storing the register values
in the multiplicity of membranes, using the object to separate the two numbers.

[
1
[
0
· · · [

0︸ ︷︷ ︸
n1

a [
0
· · · [

0︸ ︷︷ ︸
n2

]
0
· · ·]

0
]
0
· · ·]

0
]
1

(3)

Length P Systems with a Lone Traveler 45

We first present a simpler construction, assuming an additional elementary
membrane labeled 1. In this case, membrane creation rules are not even needed.

Indeed, the first register is tested for zero by using the skin rules (duplicate,
enter, dissolve). The second register is tested for zero by entering one membrane,
checking its label and exiting it.

The increment is done by a duplication rule (f), in case of the first register
followed by entering the newly created membrane.

The decrement is performed by a dissolution rule (d), in case of the second
register preceded by moving the object into the next membrane.

We proceed to the formal description of the simulation (membrane label h
stands for any of 0 or 1).

(l1 : A(1), l2, l3) is performed as:

[
h
l1]h → [

h
l′1[0]

0
]
h
, l′1[0]

0
→ [

0
l2]0, l′1[0]

0
→ [

0
l3]0.

(l1 : A(2), l2, l3) is performed as:

[
h
l1]h → [

h
l2[0]

0
]
h
, [

h
l1]h → [

h
l3[0]

0
]
h
.

(l1 : S(1), l2, l3) is performed as:

[0 l1]0 → l2,

[
1
l1]1 → [

1
l′1[0]

0
]
1
, l′1[0]

0
→ [

0
l′′1]0, [

0
l′′1]0 → l3.

(l1 : S(2), l2, l3) is performed as:

l1[0]
0
→ [

0
l′1]0, [

0
l′1]0 → l2,

l1[1]1 → [1 l
′
1]1, [1 l

′
1]1 → l3[1]1.

Notice that the first three operations above (A(1), A(2) and S(1)) operate identi-
cally also in the absence of the elementary membrane labeled 1, and so does the
first line of S(2), corresponding to the decrement case. Using membrane creation
(e) (immediately followed by dissolution) to test for the membrane elementarity,
it is possible to avoid the extra elementary membrane with 1, and stay with the
representation (3): we replace the last two rules of the construction above with the
following ones:

[
h
l1]h → [

h
[
0
l′′1]0]h, [0 l

′′
1]0 → l3.

In this way, using only one label for non-skin membranes, weak computational
completeness of length P systems is shown with one object, by taking advantage
of rules creating non-elementary membranes under the assumption that elementary
membrane creation is disabled in the non-elementary membranes.

6 Discussion

We have introduced P systems with a linear membrane structure (i.e., only one
membrane is elementary) with at most one object. The result of such systems,

46 A. Alhazov, R. Freund, S. Ivanov

called length P systems, is either the total number of membranes at halting, or the
vector of numbers of consecutive membranes labeled 0. In Section 3 we presented
the simulation of register machines with any fixed number of registers.

The power of length P systems with one object and one membrane label de-
pends on two factors: whether the object can detect being in the skin membrane,
and whether non-elementary membrane creation is allowed. The first factor is re-
lated to the zero-test of the “first” register, and the second factor is related to
the possibility of effectively operating with two numbers instead of one. Since the
regularity conjecture assumed that these two ingredients are not allowed, we have
confirmed the conjecture.

In Section 5 we have shown that removing both of these conditions leads to P
systems being weakly computationally complete. Questions arise about the inter-
mediate extensions.

We now formulate the following the following two conjectures:

Conjecture 1. Length P systems produce only regular languages even when mem-
brane duplication is allowed (i.e., without reason R2). The intuition behind the
conjecture is that such P systems relate to 2-register machines, where one register
is blind (i.e., it can be incremented and decremented, but cannot be tested for
zero, and the machine’s computation is discarded without the result if decrement
of zero is attempted).

Conjecture 2. Length P systems produce only regular languages even if the skin
membrane has a distinguished label (i.e., without reason R1). The intuition behind
the conjecture is that such P systems should relate to 1-register machines, but for
the proof many more cases would have to be investigated.

In an extended version of this paper we plan to consider length P systems where
the number of membranes labeled by 1 is not bounded, considering binary strings
as the results instead of vectors.

Acknowledgements. Artiom Alhazov acknowledges project STCU-5384 Models
of high performance computations based on biological and quantum approaches
awarded by the Science and Technology Center in the Ukraine.

References

1. A. Alhazov: P Systems without Multiplicities of Symbol-Objects. Information Pro-
cessing Letters 100 (3), 2006, 124–129.

2. A. Alhazov, R. Freund, A. Riscos-Nunez: Membrane Division, Restricted Membrane
Creation and Object Complexity in P Systems. International Journal of Computer
Mathematics 83 (7), 2006, 529-548.

3. F. Bernardini, M. Gheorghe: Languages Generated by P Systems with Active Mem-
branes. New Generation Computing 22 (4), 2004, 311–329.

4. R. Freund: Special Variants of P Systems Inducing an Infinite Hierarchy with Respect
to the Number of Membranes. Bulletin of the EATCS 75, 2001, 209–219.

Length P Systems with a Lone Traveler 47

5. R. Freund, O.H. Ibarra, Gh. Păun, H.C. Yen: Matrix Languages, Register Machines,
Vector Addition Systems. Proceedings of the Third Brainstorming Week on Mem-
brane Computing, Sevilla, 2005, 155–167.

Life-Death Ratio Approach
by a Multiset-Based Type System

Bogdan Aman, Gabriel Ciobanu

Romanian Academy, Institute of Computer Science
Blvd. Carol I no.11, 700506 Iaşi, Romania
baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Summary. We introduce and study a multiset-based type system with ratio thresholds
motivated by an important regulatory mechanism inside a cell which try to maintain a
“life-death” ratio between some given lower and upper thresholds. We use such a type
system to control ratio thresholds in a bio-inspired and multisets-based formalism. For
this type system we prove a subject reduction theorem, together with soundness and
completeness theorems. A type inference for deducing the type of a system is presented.

1 Introduction

Membrane systems have been introduced as a computational model inspired by
cellular biology [9], and have been later applied to the description of biological
systems [6]. Possible links between process calculi and membrane systems are pre-
sented in [7].

Membrane systems usually consider cells as mechanisms working in a maximal
parallel and non-deterministic manner.

However, the living cells do not work in such ways; a chemical reaction takes
place only if certain constraints are fulfilled (e.g, certain ratios are between given
thresholds in sodium/potassium pump [3] and ratio-dependent predatorprey sys-
tems [8]). In order to cope with such constraints, in [2] we enriched the membrane
systems with integral proteins by adding a quantitative type discipline. We asso-
ciated to each system a set of constraints that must be satisfied in order to assure
that the application of the rules to a well-formed membrane system leads to a
well-formed membrane system as well. We think that this two-stage approach to
the description of biological behaviours is of interest, where the first describes re-
actions in an “untyped” setting, and then rules out certain evolutions by imposing
thresholds. This allows one to treat separately different aspects of the modelling:
what transitions are possible at all, and under which circumstances they can take
place. In this paper we provide a type inference algorithm for deducing the type
of a system.

50 B. Aman, G. Ciobanu

The type system for membrane systems with integral proteins follows the re-
search line started in [1] where a type system for membrane system with sym-
port/antiport rules is presented. The work is also related to [4] where a type
systems for the calculus of looping sequences is defined based on the number of
elements and not on the ratios between elements. The presentation of the typed
sodium/potassium pump in [2] is used as a motivation and a running example for
typing the membrane systems. This paper is related to our previous article [2].

2 Membrane Systems with Integral Proteins

Membrane systems are parallel and nondeterministic computing models inspired
by the compartments of cells and their biochemical reactions. The structure of
the cell is represented by a set of hierarchically embedded regions, each one de-
limited by a surrounding boundary called membrane, and all of them contained
inside an external special region called the skin membrane. Multisets of objects
are distributed inside these regions, and they can be modified or moved between
adjacent compartments. Objects represent the formal counterpart of the molecular
species (ions, proteins, etc.) floating inside cellular compartments, and they are
described by means of strings over a given alphabet. Evolution rules represent the
formal counterpart of chemical reactions, and are given in the form of rewriting
rules that operate on the objects, as well as on the compartmentalised structure
(e.g., by dissolving, dividing, creating, or moving membranes).

Starting from an initial configuration, the multisets of objects initially placed
inside the compartmentalised structure, the system evolves by applying the evolu-
tion rules in a nondeterministic and maximally parallel manner. A rule is applica-
ble when all the objects appearing on its left hand side are available in the region
where the rule is placed. The maximal parallelism of rule application means that
each applicable rule that is inside a region has to be applied in that region. Since
there is a competition for the available objects, only certain (nondeterministically
selected) rules are applied. A halting configuration is reached when no rule is ap-
plicable, and the result is given by the number of objects (in a specified region).
More details can be found in [9, 10].

In what follows we present some technical notions used in this paper. Given a
finite set O of symbols, the set of all strings over O is denoted by O∗, and the set
of all non-empty strings over O, is denoted by O+ = O∗\λ, where λ is the empty
string. A multiset over O is a map u : O → N, where u(a) denotes the multiplicity
of the symbol a ∈ O in the multiset u and |u| =

∑
a∈O u(a) denotes the number

of objects appearing in the multiset u. We say that a multiset u is included into
a multiset v (denoted by u ⊆ v) if u(a) ≤ v(a) for all a ∈ O. The empty multiset
is denoted by ε, and satisfies ε(a) = 0, for all a ∈ O. For two multisets u and v we
define the sum u+ v by (u+ v)(a) = u(a) + v(a) for all a ∈ O, and the difference
u−v by (u−v)(a) = max{0, u(a)−v(a)} for all a ∈ O. More details can be found
in [11].

Life-Death Ratio Approach by a Multiset-Based Type System 51

Inspired by [5], we present a membrane system that is able to model biological
pumps, in which exist attachment/de-attachment of objects to/from the integral
proteins of the membranes, and transformation of objects inside a region if certain
integral proteins are present in the surrounding membranes. To each membrane is
associated a label i ∈ Lab, and two multisets si and vi over O∗, and the membrane
is denoted by [si]ivi . If si and/or vi are the empty multisets, they are omitted.

Definition 1. A membrane system with integral proteins of degree n is:∏
= (O,Lab, µ, v1/s1, . . . , vn/sn, R), where:

1. O is an alphabet (finite, non-empty) of objects;
2. L is a finite set of labels;
3. µ is a membrane hierarchical structure with n ≥ 2 membranes;
4. vi, 1 ≤ i ≤ n is a multiset of integral proteins present on the membrane i;
5. si, 1 ≤ i ≤ n is a multiset of objects placed inside the membrane i;
6. R is a finite set of rules of the following forms:

a) [α]iv → []iv′ , α ∈ O+, v, v′ ∈ O∗, i ∈ Lab; (attachin)
This rule is applicable if the following conditions are fulfilled:
• the multiset α exists inside region i (α ⊆ si);
• the multiset v of integral proteins exists on membrane i (v ⊆ vi).

When this rule is applied to membrane i:
• α is removed from si;
• v is modified to v′;
• the objects not involved in this rule are left unchanged.

b) [[]iv α]j → [[]iv′]
j, α ∈ O+, v, v′ ∈ O∗, i, j ∈ Lab; (attachout)

This rule is applicable if the following conditions are fulfilled:
• the multiset α exists inside region j (α ⊆ sj);
• the multiset v of integral proteins exists on membrane i (v ⊆ vi).

When this rule is applied to membrane i we have:
• α is removed from sj;
• v is modified to v′;
• the objects not involved in this rule are left unchanged.

c) []iv → [α]iv′ , α ∈ O+, v ∈ O+, v′ ∈ O∗, i ∈ Lab; (de− attachin)
This rule is applicable if the following conditions are fulfilled:
• the multiset v of integral proteins exists on membrane i (v ⊆ vi).

When this rule is applied to membrane i:
• v is modified to v′;
• α is added to si;
• the objects not involved in this rule are left unchanged.

d) [[]iv]
j → [[]iv′ α]j, α ∈ O+, v ∈ O+, v′ ∈ O∗, i, j ∈ Lab; (de− attachout)

This rule is applicable if the following conditions are fulfilled:
• the multiset v of integral proteins exists on membrane i (v ⊆ vi).

When this rule is applied to membrane i we have:
• v is modified to v′;

52 B. Aman, G. Ciobanu

• α is added to sj;
• the objects not involved in this rule are left unchanged.

e) [α]iv → [β]iv, v, β ∈ O∗, α ∈ O+, and i ∈ Lab. (local evol)
This rule is applicable if the following conditions are fulfilled:
• the multiset α exists inside region i (α ⊆ si);
• the multiset v of integral proteins exists on membrane i (v ⊆ vi).

When this rule is applied to membrane i:
• α is removed from si;
• β is added to si;
• the objects not involved in this rule are left unchanged.

The way in which the evolution rules are applied is detailed in what follows. In
order to formally represent the configurations of membrane systems with integral
proteins, we define terms ranged over by st, st1, . . ., that are built by means of a
membrane constructor [−]−−, using a set O of objects and a set Lab of labels. The
syntax of the terms st ∈ ST is given by

st ::= u | [st]iv | st st ,
where u denotes a (possibly empty) multiset of objects placed inside a membrane, v
a multiset of objects within or on the surface of a membrane, i a membrane label,
and st st is the parallel composition of two terms. Since we work with multisets of
terms, we introduce a structural congruence relation following a standard approach
from process algebra. The defined structural congruence is the least congruence
relation on terms satisfying also the rule:

if v1 ≡ v2 and st1 ≡ st2 then [st1]iv1 ≡ [st2]iv2 .
A pattern is a term that may include variables. We denote by P the infinite set
of patterns P of the form: P ::= st | [P X]iv y | P P . We distinguish between
“simple variables” (ranged over by x, y, z) that may occur only on the surface
of membranes (i.e., they can be replaced only by multisets of objects) and “term
variables” (ranged over by X, Y , Z) that may only occur inside regions (they can
be replaced by arbitrary terms). Therefore, we assume two disjoint sets: VO∗ (set of
simple variables) and VST∗ (set of term variables). We denote by V = VO∗ ∪ VST∗
the set of all variables, and with ρ any variable in V .

An instantiation is a partial function σ : V → ST ∗ that preserves the type of all
variables: simple variables (x ∈ VO∗) and term variables (X ∈ VST∗) are mapped
into objects (σ(x) ∈ O∗) and terms (σ(X) ∈ ST ∗), respectively. Given a pattern
P , the term obtained by replacing all occurrences of each variable ρ ∈ V with the
term σ(ρ) is denoted by Pσ. The set of all possible instantiations is denoted by
Σ, and the set of all variables appearing in P is denoted by V ar(P).

Formally, a rewriting rule r is a pair of patterns (P1, P2), denoted by P1 →
P2, where P1 6= ε (i.e., P1 is a non-empty pattern) and V ar(P2) ⊆ V ar(P1).
A rewriting rule P1 → P2 states that a term P1σ can be transformed into the
term P2σ, for some instantiation function σ.

Example 1. Consider the membrane system depicted in what follows. In the right
part of the picture we give some examples of the notions defined above.

Life-Death Ratio Approach by a Multiset-Based Type System 53

iab

ab2c

r1 : a→ ac

r2 : a→ ab2

Terms: [ab2c]iab or ab2c
Patterns: [aX]iy or aX
Instantiation: σ(X) = b2c, σ(y) = ab
Rewriting rule r1: aX → acX
Rewriting rule r2: aX → ab2X

It can be noticed that using the given instantiations the pattern [aX]iy becomes

the term [ab2c]iab, while the pattern aX becomes the the term ab2c. The rewriting
rules are a generalization of the rules used in P systems, by adding variables that
stand for the objects not involved in the evolution of a system.

The notion of context is used to complete the definition of a rewriting seman-
tics for our systems. This is done by enriching the syntax with a new object �
representing a hole. By definition, a context is represented as a single hole �. The
infinite set C of contexts (ranged over by C) is given by:

C ::= � | C st | [C]iv.
Given C1, C2 ∈ C, C1[st] denotes the term obtained by replacing � with st in

C1, while C1[C2] denotes the context obtained by replacing � with C2 in C1.
Given a set R of rewriting rules, a reduction semantics of the system is given

by the least transition relation→ closed with respect to ≡ satisfying also the rule:
P1 → P2 ∈ R P1σ 6≡ ε σ ∈ Σ C ∈ C

C[P1σ]→ C[P2σ]
.

→∗ denotes the reflexive and transitive closure of →.

Example 2. Consider the membrane system depicted in what follows. In the right
part of the picture we give some examples of the notions defined previously.

iab

ab2c

r1 : a→ ac

r2 : a→ ab2

Rewriting rule r1: aX → acX
Instantiation: σ(X) = b2c
Context: [�]iab
Transition: [ab2c]ab → [ab2c2]ab

It can be noticed that using the given instantiation and context the rewriting rule
r1: aX → acX can be used to perform the transition [ab2c]ab → [ab2c2]ab, thus
modelling the application of rule r1 is the above membrane system.

3 Threshold-Based Type System Over Multisets

We use the type system defined in [2]. Let T be a finite set of basic types ranged
over by t. We classify each object in O with a unique element of T ; we use Γ to
denote this classification. In general, different objects a and b can have the same
basic type t. When there is no ambiguity, we denote the type associated with an
object a by ta. For each ordered pair of basic types (t1, t2), we assume the existence
of two functions, min : T × T → (0,∞) ∪ {�} and max : T × T → (0,∞) ∪ {�}.
These functions indicate the minimum and maximum ratio between the number
of objects of basic types t1 and t2 that can be present inside a membrane.

54 B. Aman, G. Ciobanu

Definition 2 (Consistent Basic Types). A system using a set of basic types T
and the functions min and max is consistent if:

1. ∀t1, t2 ∈ T , min(t1, t2) 6= � iff max(t1, t2) 6= �;
2. ∀t1, t2 ∈ T , min(t1, t2) 6= � iff min(t2, t1) 6= �;
3. ∀t1, t2 ∈ T if min(t1, t2) 6= �, then min(t1, t2) ≤ max(t1, t2);
4. ∀t1, t2 ∈ T if min(t1, t2) 6= � and max(t2, t1) 6= �,

then min(t1, t2) ·max(t2, t1) = 1.

Example 3. Consider T = {ta, tb, tc} and min, max defined as:

min(t1, t2) max(t1, t2)
t1\t2 ta tb tc
ta � 0.4 �
tb 0.2 � 1/6
tc � 3 �

t1\t2 ta tb tc
ta � 5 �
tb 2.5 � 1/3
tc � 6 �

The system is consistent since each pair of types respects Definition 2.

Definition 3. Quantitative types are triples (L,Pr, U) over the set T of ba-
sic types, where L (lower) is the set of minimum ratios between basic types, Pr
(present) is the multiset of basic types of present objects (the objects present at the
top level of a pattern, i.e. in the outermost membrane), and U (upper) is the set
of maximum ratios between basic types.

The number of objects of type t appearing in a multiset Pr is denoted by Pr(t).
In order to define well-formed types, given a multiset M of types, the sets RPM
(ratios of present types in M), LM (lower bounds of present types in M) and UM
(upper bounds of present types in M) are required:

• RPM =

∅ if |M | ≤ 1⋃
t,t′∈M

{
t/t′ :

Pr(t)

Pr(t′)
| t 6= t′, P r(t′) 6= 0

}
otherwise

• LM =

{
∅ if |M | ≤ 1⋃
t,t′∈M {t/t′ : min(t, t′) | t 6= t′,min(t, t′) 6= �} otherwise

• UM =

{
∅ if |M | ≤ 1⋃
t,t′∈M {t/t′ : max(t, t′) | t 6= t′,max(t, t′) 6= �} otherwise

These sets contain labelled values in order to be able to refer to them when needed:

e.g., t/t′ :
Pr(t)
Pr(t′)

denotes the fact that the ratio between the objects of types t

and t′ that are present in Pr has the label t/t′, and the value is
Pr(t)
Pr(t′)

.

Definition 4 (Well-Formed Types). A type (L,Pr, U) is well-formed if
L = LPr, U = UPr and L ≤ RPPr ≤ U .

Life-Death Ratio Approach by a Multiset-Based Type System 55

Remark 1. If the set T contains a large number of basic types, defining a type to
be well-formed only if L = LPr and U = UPr reduces the amount of information
encapsulated by a type. E.g., for |T | = 100, the number of entries in the min table
is equal to 10000.

Example 4. Let us assume a set of basic types T = {ta, tb}, a classification Γ =
{a : ta, b : tb} and the functions min, max defined as:

min(t1, t2) max(t1, t2)
t1\t2 t1 t2
t1 � 0.5
t2 0.3 �

t1\t2 t1 t2
t1 � 10/3
t2 2 �

The term a5b2 is well-formed, while the term a9b is not, because the ratio between
ta and tb equals 9, and so it exceeds the maximum 10/3 indicated in max table.

From now on we work only with well-formed types. For instance, the two well-
formed types (L,Pr, U) and (L′, P r′, U ′) of the following two definitions are con-
structed by using specific ratio tables for min and max.

Definition 5 (Type Compatibility). Two well-formed types (LPr, P r, UPr)
and (LPr′ , P r

′, UPr′) are compatible, written (L,Pr, U) ./ (LPr′ , P r
′, UPr′), if

LPr+Pr′ ≤ RPPr+Pr′ ≤ UPr+Pr′ .

Example 5 (cont.). Consider the assumptions from Example 4. The types
(Lt5a t2b , t

5
at

2
b , Ut5a t2b), (∅, ta, ∅) and (∅, t4a, ∅) are well-formed. It holds that

(Lt5at2b , t
5
at

2
b , Ut5a t2b) ./ (∅, ta, ∅) and (Lt5at2b , t

5
a t

2
b , Ut5a t2b) 6./ (∅, t4a, ∅),

since the ratio in the second case between ta and tb equals 4.5, and so it exceeds
the maximum 10/3 indicated in max table.

A basis ∆ assigning types to simple and term variables is defined by
∆ ::= ∅ | ∆,x : (Lt, t, Ut) | ∆,X : (L,Pr, U).

A basis is well-formed if all types in the basis are well-formed.
A classification Γ maps each object in O to a unique element of the set T of

basic types. The judgements are of the form ∆ ` P : (L,Pr, U) indicating that a
pattern P is well-typed having the type (L,Pr, U) relative to a typing environment
∆.

Types are assigned to patterns and terms according to the typing rules of
Table 1. It is not difficult to verify that a derivation starting from well-formed
bases produces only well-formed bases and well-formed types.

We define a typed semantics, since we are interested in applying reduction
rules only to correct terms having well-formed types, and whose requirements are
satisfied. More formally, a term st is correct if ∅ ` st : (L,Pr, U) for some well-
formed type (L,Pr, U). An instantiation σ agrees with a basis ∆ (denoted by
σ ∈ Σ∆) if ρ : (L,Pr, U) ∈ ∆ implies ∅ ` σ(ρ) : (L,Pr, U).

In order to apply the rules in a safe way, we introduce a restriction on rules
based on the context of application rather than on the type of patterns involved in

56 B. Aman, G. Ciobanu
Table 1. Typing Rules

∆ ` ε : (∅, ∅, ∅) (TEps)
a : t ∈ Γ

∆ ` a : (Lt, t, Ut)
(TObj)

∆, ρ : (L,Pr, U) ` ρ : (L,Pr, U) (TV ar)

∆ ` v : (L,Pr, U) ∆ ` P ′ : (L′, P r′, U ′)
(L,Pr, U) ./ (L′, P r′, U ′) i ∈ Lab

∆ ` [P ′]iv : (L,Pr, U)
(TMem)

∆ ` P : (LPr, P r, UPr) ∆ ` P ′ : (LPr′ , P r
′, UPr′)

(LPr, P r, UPr) ./ (LPr′ , P r
′, UPr′)

∆ ` P P ′ : (LPr+Pr′ , P r + Pr′, UPr+Pr′)
(TPar)

the rule. In this direction, we characterise contexts by the types of terms that can
fill their hole, and the rules by the types of terms produced by their application.

Definition 6 (Typed Holes). Given a context C and a type (L,Pr, U) that is
well-formed, the type (L,Pr, U) fits the context C if for some well-formed type
(L′, P r′, U ′) it can be shown that X : (L,Pr, U) ` C[X] : (L′, P r′, U ′).

Example 6 (cont.). Consider the notions from Example 4, and also

• a term [a5 b4]a12 b3,
• a rule r1 : [a3 X]x → [X]a3 x (having the form P1 → P2),
• a context C = � a12 b3,
• instantiations σ(X) = a2 b4, σ(x) = ε.

By applying rule r1 the term [a2 b4]a3a
12 b3 is obtained. This is not well-typed

since the type (Lt3a , t
3
a, Ut3a) of P2 does not fit the context C. It does not fit since

the term C[P2] has the type (Lt15a t3b
, t15a t

3
b , Ut15a t3b

) that is not well-formed due to

the fact that the ratio between ta and tb at the top level is
12 + 3

3
= 5 that is

greater than 10/3.

The above notion guarantees that we obtain a correct term filling a context
with a term whose type fits the context: note that there may be more than one
type (L,Pr, U) such that (L,Pr, U) fits the context C.

We can classify reduction rules according to the types that can be derived for
the right hand sides of the rules, since they influence the type of the obtained
term.

Definition 7 (∆-(L,Pr, U) safe rules). A rewriting rule P1 → P2 is ∆ safe if
for some well-formed type (L,Pr, U) it can be shown that ∆ ` P2 : (L,Pr, U).

To ensure correctness, each application of a rewriting rule must verify that the
type of the right hand side of the rule fits the context. Using Definitions 6 and 7,
if it is applied a rule whose right hand side has type (L,Pr, U) and this type fits
the context, then a correct term is obtained.

Life-Death Ratio Approach by a Multiset-Based Type System 57

Typed Semantics.

Given a finite set R of rewriting rules (e.g., the one presented in Table 2), the
typed semantics of a system is given by the least relation ⇒ closed with respect
to ≡ and satisfying the following rule:

P1 → P2 ∈ R is a ∆-(L,Pr, U) safe rule, P1σ 6≡ ε
σ ∈ Σ∆ C ∈ C and (L,Pr, U) fits C

C[P1σ]⇒ C[P2σ]
(TSem)

Using weakening and substitution properties proved in [2], we can provide the
result that well-formed bases guarantees type preservation.

Proposition 1. For all σ ∈ Σ∆, ∅ ` Pσ : (L,Pr, U) iff ∆ ` P : (L,Pr, U).

Starting from a correct term, all the terms obtained via ∆-(L,Pr, U) safe rules
are correct, and thus avoiding conditions over P1 as they do not influence the type
of the obtained term. As desired, typed reduction preserves correctness.

Theorem 1 (Subject Reduction). If ∅ ` st : (L,Pr, U) and st⇒ st′, then
∅ ` st′ : (L′, P r′, U ′) for a well-formed type (L′, P r′, U ′).

4 Type Inference

To formalize type reconstruction, we will need a concise way of talking about the
possible ways that type variables can be substituted by types, in a term and its
associated context, to obtain a valid typing statement.

In this section we define inference rules in order to derive which rules are ∆-
(L,Pr, U) safe, where the choices of ∆, L, Pr, U are guided by the initial pattern.
Formally, given a typable pattern P , there exists a typing ∆ ` P : (L,Pr, U). The
typed semantics of rule (Tsem) does not show how to choose ∆ and Pr (L and U
depend on Pr).

We assume that for each object variable x there is an o-type variable ρx ranging
over basic types, and for each term variable X there is an m-type variable λX
ranging over multisets of basic types. Moreover, we assume that Λ ranges over
unions of multisets of basic types, o-type and m-type variables.

A basic scheme Θ is a mapping from atomic variables to their o-type variables,
and from term variables to triples of their l-type variables, pr-type variables and
u-type variables:

Θ ::= ∅ | Θ, x : ρx | Θ,X : λX .

The rules for inferring the typings use judgements of the form:
` P : Θ; (LΛ, Λ, UΛ);Ξ

where Θ is the basis scheme in which P is well-formed, (LΛ, Λ, UΛ) is the type of
P , and Ξ is the set of constraints that should be satisfied. Table 2 presents the
inference rules, derived from the typing rules of Table 1.

58 B. Aman, G. Ciobanu

Example 7. Let us assume a set of basic types T = {ta, tb}, a classification Γ =
{a : ta, b : tb} and the functions min, max defined as:

min(t1, t2) max(t1, t2)
t1\t2 t1 t2
t1 � 0.6
t2 0.25 �

t1\t2 t1 t2
t1 � 4
t2 5/3 �

Consider the well-formed term a5 b2. In order to infer its type there are several
ways of considering the patterns P1 and P2 in order to apply the last (IPar) rule.
Consider the following two cases:

• P1 = a3b2 (well-formed) and P2 = a2 (well-formed); in this case the rule (IPar)
leads to a well-formed type with all constraints satisfied;

• P1 = ab2 (not well-formed) and P2 = a4 (well-formed); in this case the type-
compatibility condition is not fulfilled even if the obtained term is well-formed.

In order to obtain the type of the term a5 b2, there are considered different decom-
positions until there is obtained an well-formed type and all conditions hold, or
all possible decompositions do not provide a well-formed type with the conditions
fulfilled.

Table 2. Inference Rules

` ε : ∅; (∅, ∅, ∅); ∅ (IEps)
a : t ∈ Γ

` a : ∅; (Lt, t, Ut); ∅
(IObj)

` x : {x : ρx}; (Lρx , ρx, Uρx); ∅ (IV ar1)

` X : {X : λX}; (LλX , λX , UλX); ∅ (IV ar2)

` v : Θ; (LΛ, Λ, UΛ);Ξ ` P ′ : Θ′; (LΛ′ , Λ
′, UΛ′);Ξ

′ i ∈ Lab
` [P ′]iv : Θ ∪Θ′; (LΛ, Λ, UΛ);Ξ ∪ Ξ ′ ∪ {(LΛ, Λ, UΛ) ./ (LΛ′ , Λ

′, UΛ′)}
(IMem)

` P : Θ; (LΛ, Λ, UΛ);Ξ ` P ′ : Θ′; (LΛ′ , Λ
′, UΛ′);Ξ

′

` PP ′ : Θ ∪Θ′; (LΛ+Λ′ , Λ+ Λ′, UΛ+Λ′);
Ξ ∪ Ξ ′ ∪ {(LΛ, Λ, UΛ) ./ (LΛ′ , Λ

′, UΛ′)}

(IPar)

The rules of Table 2 are easily derived from the rules of Table 1. The basis
is the union of the basis of the composing patterns, without renaming, because
each variable x or X is associated with an unique o-type variable, or to an unique
m-type variable, respectively. The key difference between inference rules of Table 2
and typing rules of Table 1 is that the conditions of type compatibility and type
satisfaction are not premises, but conclusions. In this way, at the end of inference,
all these conditions create a set of constraints that must be checked to decide the
applicability of the rules.

Soundness and completeness of our inference rules can be stated as usual.
A type mapping associates o-type variables to basic types, m-type variables to
multisets of basic types. A type mapping m satisfies a set of constraints Ξ if all
the constraints in m(Ξ) hold.

Life-Death Ratio Approach by a Multiset-Based Type System 59

Theorem 2 (Soundness of Type Inference).
If ` P : Θ; (LΛ, Λ, UΛ);Ξ and m is a type mapping satisfying Ξ, then

m(Θ) ` P : (m(LΛ),m(Λ),m(UΛ)).

Theorem 3 (Completeness of Type Inference). If ∆ ` P : (LPr, P r, UPr),
then ` P : Θ; (LΛ, Λ, UΛ);Ξ for some Θ, Λ, Ξ such that there is a type mapping
m that satisfies Ξ, ∆ ⊇ m(Θ), and Pr = m(Λ).

We use inference rules to decide applicability of typed reduction rules for ∆-
(LPr, P r, UPr) safe rules. The first step is to see when a type mapping ensures
that a rule is a ∆-(LPr, P r, UPr) safe rule, i.e. when it satisfies the constraints
of Definition 7. The concept of ∆-(LPr, P r, UPr) safety is used to classify rules
according to the types we can derive for the right hand side patterns of them.

Lemma 1 (Characterisation of ∆-(L,Pr, U) safe rules).
A rule P1 → P2 is ∆-(LPr, P r, UPr) safe if and only if the type mapping m

defined by the basis ∆, i.e. such that

• m(ρx) = t if ∆(x) = t, and
• m(λX) = Pr if ∆(X) = (LPr, P r, UPr).

satisfies the set of constraints Ξ2 ∪ {Λ2 = Pr}, whenever it holds that ` P2 :
Θ2; (LΛ2

, Λ2, Ω2);UΛ2
.

Since ∆-(LPr, P r, UPr) safe rules can be applied only in contexts in which type
(LPr, P r, UPr) fits, we must characterise also the fitting relation.

Lemma 2 (Characterisation of Fitting Relation).
Let the context C be such that ` C[T] : (LPrC , P rC , UPrC) for some T and

well-formed type (LPrC , P rC , UPrC). A well-formed type (LPr, P r, UPr) fits C if
and only if the type mapping m defined by

m(λX)=Pr
satisfies the set of constraints

ΞC ∪ {(LΛC
, ΛC , UΛC

) is well-formed},
where ` C[X] : {X : λX}; (LΛC

, ΛC , UΛC
);ΞC .

Using the characterisation of ∆-(L,Pr, U) safe rules and the fitting relation,
we can infer the applicability of a rewriting rule by checking if the type mapping
respects the required constraints.

Theorem 4 (Applicability of Rewriting Rules).
If the following conditions are fulfilled
` P1 : Θ1; (LΛ1

, Λ1, UΛ1
);Ξ1,

` P2 : Θ2; (LΛ2
, Λ2, UΛ2

);Ξ2,
` C[X] : {X : λX}; (LΛC

, ΛC , UΛC
);ΞC

and P1σ 6= ε, then the rule P1 → P2 can be applied to the term C[P1σ] such that
` C[P1σ] : (LPrC , P rC , UPrC) for a well-formed type (LPrC , P rC , UPrC) if and
only if the type mapping m defined by

60 B. Aman, G. Ciobanu

• m(ρx) = t, if σ(x) : t ∈ Γ ,
• m(λX) = Pr, if ` σ(X) : (LPr, P r, UPr)

satisfies the set of constraints

Ξ2 ∪ {(λX = Λ2)}∪ ΞC ∪ {(LΛC
, ΛC , UΛC

) is well-formed}.

5 Conclusion

This paper is related to a previous approach presented in [2], where a quantitative
types based on ratio thresholds is introduced. The inspiration was the first discov-
ered ion transporter (awarded with a Nobel Prize in 1997), namely the sodium-
potassium pump, which extrudes sodium ions in exchange for potassium ions.
These exchanges take place only if the ratios of these elements are between certain
lower and upper thresholds. To cope properly with such constraints, we introduced
in a multiset-based type system with ratio thresholds, where the sodium/potassium
pump is used as a running example. We associated to each system a set of con-
straints, and relate them to the ratios between elements. If the constraints are
satisfied, we prove that if a system is well-typed and an evolution rule is applied,
then the obtained system is also well-typed.

In this paper we defined a type inference algorithm for membrane systems with
integral proteins for which soundness and completeness are proved. The work in-
tends to allow automatic analyse of inference according to the defined type system,
and to provide support for the development of software tools.

The proposed typed semantics completely excludes the fact that sometimes
biological constraints can be broken leading to a disease or even to the death of
the biological system. However, the typed semantics can be modified in order to
allow transitions that lead to terms that are not typable. In this case the type
system should signal that some undesired event has been reached. In this way, it
can be checked if a term breaks some biological property, or if the system has some
unwanted behaviour.

Acknowledgements. The work was supported by a grant of the Romanian
National Authority for Scientific Research, project number PN-II-ID-PCE-2011-
3-0919.

References

1. Aman, B. and Ciobanu, G. Typed Membrane Systems. Lecture Notes in Computer
Science 5957, 169–181 (2010).

2. Aman, B. and Ciobanu, G. Behavioural Types Inspired by Cellular Thresholds.
Lecture Notes in Computer Science 8368, 1–15 (2014).

3. Besozzi, D. and Ciobanu, G. A P System Description of the Sodium-Potassium
Pump. Lecture Notes in Computer Science 3365, 210–223 (2005).

4. Bioglio, L. Enumerated Type Semantics for the Calculus of Looping Sequences.
RAIRO - Theoretical Informatics and Applications 45 (1), 35–58 (2011).

Life-Death Ratio Approach by a Multiset-Based Type System 61

5. Cavaliere, M. and Sedwards, S. Modelling Cellular Processes Using Membrane Sys-
tems With Peripheral and Integral Proteins. Lecture Notes in Bio-Informatics 4210,
108–126 (2006).

6. Ciobanu, G., Păun, Gh. and Pérez-Jiménez, M.J.(Eds.) Applications of Membrane
Computing. Springer (2006).

7. Ciobanu, G. Membrane Computing and Biologically Inspired Process Calculi.
“A.I.Cuza” University Press, Iaşi (2010).

8. Hsu, S.-B., Hwang, T.-W. and Kuang, Y. A Ratio-Dependent Food Chain Model and
Its Applications to Biological Control. Mathematical Biosciences 181, 55–83 (2003).

9. Păun, Gh. Membrane Computing. An Introduction. Springer (2002).
10. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Handbook of Membrane Computing.

Oxford University Press (2010).
11. Salomaa, A. Formal Languages. Academic Press (1973).
12. Wells, J. The Essence of Principal Typings. Lecture Notes in Computer Science

2380, 913–925 (2002).

Solving SAT with Active Membranes
and Pre-Computed Initial Configurations

Bogdan Aman, Gabriel Ciobanu

Romanian Academy, Institute of Computer Science
Blvd. Carol I no.11, 700506 Iaşi, Romania
baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Summary. In this paper we provide algorithms for solving the SAT problem using P
systems with active membranes with neither polarization nor division rules. The semi-
uniform solutions are given under the assumption that initial configurations (either al-
phabet or structure) of exponential size are pre-computed by well-defined P systems (P
systems with replicated rewriting and P systems with active membranes and membrane
creation, respectively) working in polynomial time. An important observation is that we
specify how the pre-computed initial configurations are constructed.

1 Introduction

Membrane computing is inspired by the architecture and the behaviour of liv-
ing cells. Various classes of membrane systems (also called P systems) have been
defined in [9], while several applications of these systems are described in [3].
Membrane systems are characterised by three features: (i) a membrane structure
consisting of a hierarchy of membranes (which are either disjoint or nested), with
an unique top membrane called the skin; (ii) multisets of objects associated with
membranes; (iii) rules for processing the objects and membranes. When mem-
brane systems are seen as computing devices, two main research directions are
usually considered: computational power in terms of the classical notion of Tur-
ing computability (e.g., [1]), and efficiency in algorithmically solving NP-complete
problems in polynomial time (e.g., [2]). Thus, membrane systems define classes of
computing devices which are both powerful and efficient.

Under the assumption that P ̸= NP, efficient solutions to NP-complete prob-
lems cannot be obtained without introducing features which enhance the efficiency
of the system ways to exponentially grow the workspace during the computation,
nondeterminism, and so on). For instance, some pre-computed resources are used
in [4, 6].

In this paper we consider P systems with active membranes [7], and show
that they can provide simple semi-uniform solutions to the SAT problem without
using neither polarization nor division, but using exponential size pre-computed

64 B. Aman, G. Ciobanu

initial configurations (either alphabet or structure). An important observation is
that we specify how our pre-computed initial configurations are constructed in
a polynomial number of steps by additional well-defined P systems (P systems
with replicated rewriting and P systems with active membranes and membrane
creation, respectively).

2 Preliminaries

We consider polarizationless P systems with active membranes [7]. The original
definition also includes division rules, rules that are not needed here.

Definition 1. A polarizationless P system with active membranes is a tuple
Π = (Γ,Λ, µ, w1, . . . , wd, R), where:

• d ≥ 1 is the initial degree;
• Γ is a finite non-empty alphabet of objects;
• Λ is a finite set of labels for membranes;
• µ is a membrane structure (i.e., a rooted unordered tree, usually represented

by nested brackets) in which each membrane is labelled by an element of Λ in
a one-to-one way;

• w1, . . . , wd are strings over Γ , describing the initial multisets of objects placed
in a number of d membranes of µ;

• R is a finite set of rules over Γ :

1. [a→ w]h object evolution rules
An object a is rewritten into the multiset w, if a is placed inside a membrane
labelled by h.

2. a[]h → [b]h send-in communication rules
An object a is sent into a membrane labelled by h, becoming b.

3. [a]h → b[]h send-out communication rules
An object a, placed into a membrane labelled by h, is sent out of membrane
h and becomes b.

4. [a]h → b dissolution rules
A membrane h containing an object a is disslved, while object a is rewritten
to b.

Each configuration Ci of a P system with active membranes and input objects
is described by the membrane structure, together with the multisets of objects
located in the corresponding membranes. The initial configuration of such a system
is denoted by C0. An evolution step Ci ⇒ Ci+1 from a configuration Ci to a new
configuration Ci+1 is done according to the following principles:

• Each object is involved in at most one rule per step, while each membrane
could be involved in several rules.

• The application of rules is maximally parallel: all rules that can be applied are
applied.

Solving SAT with Active Membranes and Pre-Computed Resources 65

• When several conflicting rules could be applied at the same time, a nondeter-
ministic choice is performed; this implies that multiple configurations can be
reached as the result of an evolution step.

• In each evolution step, all evolution rules are applied inside the most inner
membranes, followed by all communication rules involving the membranes
themselves. This process is then repeated to the membranes containing them,
and so on towards the skin membrane.

• Objects sent out from the skin membrane represent the computation result.

A halting evolution of such a system Π is a finite sequence of configurations
−→
C =

(C0, . . . , Ck), such that C0 ⇒ C1 ⇒ . . . ⇒ Ck, and no rules can be applied any

more in Ck. A non-halting evolution
−→
C = (Ci | i ∈ N) consists of infinite evolution

C0 ⇒ C1 ⇒ . . ., where the applicable rules are never exhausted.

3 Solving the SAT Problem with Active Membranes

At the beginning of 2005, Gh. Păun wrote:
“My favourite question (related to complexity aspects in P systems with active

membranes and with electrical charges) is that about the number of polarizations.
Can the polarizations be completely avoided? The feeling is that this is not possible
- and such a result would be rather sound: passing from no polarization to two
polarizations amounts to passing from non-efficiency to efficiency.”

This conjecture (problem F in [8]) can be formally described in terms of mem-
brane computing complexity classes as follows:

P = PMCAM0(+d,−n,+e,+c)

where

• PMCR indicates that the result holds for P systems with input membrane;
• +d indicates that dissolution rules are permitted;
• −n indicates that only division rules for elementary membranes are allowed;
• +e indicates that evolution rules are permitted;
• +c indicates that communication rules are permitted.

The SAT problem checks the satisfiability of a propositional logic formula in
conjunctive normal form (CNF). Let {x1, x2, . . . , xn} be a set of propositional
variables. A formula in CNF is of the form φ = C1 ∧C2 ∧ · · · ∧Cm where each Ci,
1 ≤ i ≤ m is a disjunction of the form Ci = y1 ∨ y2 ∨ · · · ∨ yr (r ≤ n), where each
yj is either a variable xk or its negation ¬xk.

We present some attempts to solve this conjecture by providing algorithms
solving the SAT problem using P systems with active membranes with neither po-
larizations nor division, but using exponential pre-computed initial configurations
constructed by additional P systems in polynomial time.

66 B. Aman, G. Ciobanu

3.1 Solving SAT Problem by Using a Pre-Computed Alphabet

In this section, we propose a polynomial time solution to the SAT problem using
the polarizationless P systems with active membranes, without division, but with a
pre-computed alphabet. For any instance of SAT we construct effectively a system
of membranes that solves it. Formally, we prove the following result:

Theorem 1. The SAT problem can be solved by a polarizationless P system
with active membranes and without division, but with an exponential alphabet
pre-computed in linear time with respect to the number of variables and the number
of clauses, i.e.,

P = PMCAM0(+d,+e,+c,pre(α)) .
where pre(α) indicates that a pre-computed alphabet is permitted.

Proof. Let us consider a propositional formula
φ = C1 ∧ C2 ∧ · · · ∧ Cm

where each Ci, 1 ≤ i ≤ m is a disjunction of the form
Ci = y1 ∨ y2 ∨ · · · ∨ yr (r ≤ n),

where each yj is either a variable xk or its negation ¬xk.
We construct a P system with active membranes able to check the satisfiability

of φ. The P system is given by Π = (Γ,Λ, µ, w1, . . . , wd, R), where:

• V = {zi | 0 ≤ i ≤ max{m,n}} ∪
∪ {si | i = t1 . . . tn, tj ∈ {0, 1} and 1 ≤ j ≤ n} ∪ {yes, no}.

The alphabet {si | i = t1 . . . tn, tj ∈ {0, 1} and 1 ≤ j ≤ n} to be placed inside
the input membrane 0 can be generated, starting from an object s, using the
rules:

– s→ s0s1;
– si → si0si1, for i = t1 . . . tk where tj ∈ {0, 1} and 1 ≤ j ≤ k < n.

Thus all the possible assignments for the n variable {x1, x2, . . . , xn} are created.
The rules are applied until the length k of i in the second rule equals n. For
example, s100 over {x1, x2, x3} represents the assignment x1 = 1, x2 = 0 and
x3 = 0 (1 stands for true, while 0 stands for false). The input alphabet can
be computed in linear (polynomial) time by using an additional device, for
instance P systems with replicated rewriting [5].

• Λ = {0, c1, . . . , cm, h}, with ci = z1 . . . zn, 1 ≤ i ≤ m where
– zj = 1 if xj appears in Ci;
– zj = 0 if ¬xj appears in Ci;
– zj = ⋆ if neither xj nor ¬xj appear in Ci.
For example c1 = 1 ⋆ 0 over the set of variables {x1, x2, x3} represents the
disjunction c1 = x1 ∨ ¬x3.

• µ = [[[. . . [[[]0]c1]c2 . . .]cm−1
]cm]h.

• w0 = z0.
• wi = λ, for all i ∈ Λ\{0}.
• The set R contains the following rules:

Solving SAT with Active Membranes and Pre-Computed Resources 67

1. [z0]0 → z0
After the input is placed inside membrane 0, membrane 0 is dissolved, and
its content is released in the upper membrane labelled with c1.

2. [si]cj → si[]cj
if i and j have at least one position with the same value (either 0 or 1);
[si]cm → yes
if i and m have at least one position with the same value (either 0 or 1).

An assignment si is sent out of a membrane cm if there is at least one
position in i and j that is equal, namely an assignment to a variable xk
such that it makes Cj true. Once an object yes is generated, another object
yes cannot be created because membrane cm was dissolved and the rule
[si]cm → yes cannot be applied. For example, if c1 = 1 ⋆ 0 and s101 (as
described above), then this means that s101 satisfies the clause coded by
c1 = 1 ⋆ 0 since both have 1 on their first position, and this is enough to
make true a disjunction.

3. [z0 → z1]c1
[zi]ci → []cizi+1, for 1 ≤ i ≤ m− 1
[zm]cm → no
The object z0 waits a step after membrane 0 is dissolved in order to allow
the other objects si to go through the cj membranes. The object zi then is
communicated through the cj membranes. Once zm reached the membrane
cm, if membrane cm still exists (i.e., the rule [si]cm → yes was not applied),
then the answer no is generated. Once an object yes or no is generated, other
objects yes or no cannot be created because membrane cm was dissolved,
and neither rule [si]cm → yes nor [zm]cm → no can be applied.

4. [yes]h → yes[]h
[no]h → no[]h
The answer yes or no regarding the satisfiability is sent out of the skin.

3.2 Solving SAT Problem Using a Pre-Computed Initial Structure

In this section, we propose a polynomial time solution to the SAT problem using
the polarizationless P systems with active membranes and without division, but
with a pre-computed structure. For any instance of SAT we construct effectively
a system of membranes that solves it. We also enforce another principle needed
to perform an evolution step: each membrane can be subject to at most one com-
munication rule per step. This principle is needed when generating all possible
assignments to be verified. Formally, we prove the following result:

Theorem 2. The SAT problem can be solved by a polarizationless P system with
active membranes and without division, but with an initial exponential structure
pre-computed in linear time with respect to the number of variables and the number
of clauses, i.e.,

P = PMCAM0(+d,+e,+c,pre(µ)) .
where pre(µ) indicates that a pre-computed structure is permitted.

68 B. Aman, G. Ciobanu

Proof. Let us consider a propositional formula
φ = C1 ∧ C2 ∧ · · · ∧ Cm

where each Ci, 1 ≤ i ≤ m is a disjunction of the form
Ci = y1 ∨ y2 ∨ · · · ∨ yr (r ≤ n),

where each yj is either a variable xk or its negation ¬xk.
We construct a P system with active membranes able to check the satisfiability

of φ. The P system is given by Π = (Γ,Λ, µ, w1, . . . , wd, R), where:

• V = {ai, ti, t′i, fi, f ′i | 1 ≤ i ≤ n} ∪ {zi | 0 ≤ i ≤ 4× n+ 2×m} ∪ {yes, no}.
• Λ = {0, . . . , n, c1, . . . , cm, h}, 1 ≤ i ≤ m.
• µ = [[[[. . .]2[. . .]2]1[[. . .]2[. . .]2]1]0]h, where

– each membrane i contains two membranes i+ 1 for 0 ≤ i ≤ n− 1;
– each membrane n contains a membrane structure [[. . . []cm . . .]c1]c0 ;
– membrane 0 is the input membrane.

Graphically, the membrane structure µ can be represented as a tree:

This membrane structure can be generate in linear (polynomial) time with
respect to the number of variables and the number of clauses. This is done by
using an additional device that starts from a membrane structure [[]0]h, with
object 0 placed inside membrane 0 and rules of the form:

– [i→ (i+ 1)′ (i+ 1)′]i, for 0 ≤ i ≤ n− 1
– i′ → [i]i, for 1 ≤ i ≤ n
– n→ [c2]c1
– ck → [ck+1]ck , for 2 ≤ k ≤ m− 1
– cm → []cm .

• w0 = a1z0.
• wi = λ, for all i ∈ Λ\{0}.
• The set R contains the following rules:

1. [zi → zi+1]0, for all 0 ≤ i < 4× n+ 2×m
These rules count the time needed for producing the truth assignments for
the n variables inside the membranes labelled by n (3 × n steps), then to

Solving SAT with Active Membranes and Pre-Computed Resources 69

dissolve the membranes labelled by cj , 1 ≤ j ≤ m (2 ×m steps), and for
an y object to reach the membrane labelled by 0 (n steps).

2. [ai → tifi]i−1, for 1 ≤ i ≤ n
ti[]i → [ti]i, for 1 ≤ i ≤ n
fi[]i → [fi]i, for 1 ≤ i ≤ n
[ti → t′it

′
iai+1]i, for 1 ≤ i ≤ n− 1

t′i[]k → [ti]k, for i+ 1 ≤ k ≤ n
[ti → t′it

′
i]k, for i+ 1 ≤ k ≤ n− 1

[fi → f ′if
′
iai+1]i, for 1 ≤ i ≤ n− 1

f ′i []k → [fi]k, for i+ 1 ≤ k ≤ n
[fi → f ′if

′
i]k, for i+ 1 ≤ k ≤ n− 1

In membranes n we create all possible assignments for the n variable
{x1, x2, . . . , xn}. It starts from an object a1 placed initially in membrane
labelled by 0. Each ai is used to create ti and fi that are then send in one
of the two membranes labelled by i placed in membrane i− 1. In fact each
membrane i receives either ti or fi, and this is possible because a membrane
can be involved in only one communication rule of an evolution step. After
an object ti or fi reaches a membrane i, it generates two new copies of it
to be sent inside membranes i+1 together with an object ai+1 that is used
then to construct the assignments over variable xi+1.

3. ti[]cj → [ti]cj , if xi appears in Cj

[ti]cj → ti, for 1 ≤ i ≤ n, 1 ≤ j < m
[ti]cm → y, for 1 ≤ i ≤ n
fi[]cj → [ti]cj , if ¬xi appears in Cj

[fi]cj → fi, for 1 ≤ i ≤ n, 1 ≤ j ≤ m
[fi]cm → y, for 1 ≤ i ≤ n.

An assignment ti (fi) is sent into a membrane cj if there is an assignment
to a variable xk (¬xk) such that it makes Cj true. Once all membranes
labelled by ci are dissolved inside a membrane labelled by n, an object y is
generated.

4. [y]k → []ky, for k ∈ Λ\{0, h}
[y]0 → yes
[z4×n+2×m]0 → no.
The object z0 waits for 4 × n + 2 × m steps in order to allow dissolving
the membrane labelled by 0 if this still exists (i.e., the rule [y]0 → yes was
not applied), then the answer no is generated. Once an object yes or no is
generated, other objects yes or no cannot be created because membrane cm
was dissolved, and neither rule [y]0 → yes nor [z4×n+2×m]0 → no can be
applied.

5. [yes]h → yes[]h
[no]h → no[]h.
The answer yes or no regarding the satisfiability is sent out of the skin.

70 B. Aman, G. Ciobanu

Example 1. We illustrate this algorithm and the evolution of a system Π con-
structed for the propositional formula ψ = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2).

Thus, m=n=2. The initial configuration of the systems, constructed by an
additional device that starts from a membrane structure [[]0]h, with object 0
placed inside membrane 0 and rules of the form:

• [0 → 1′ 1′]0 and [1 → 2′ 2′]1
• 1′ → [1]1 and 2′ → [2]2
• 2 → [c2]c1 and c2 → []c2 .

The obtained structure is
[[[[[[]c2]c1]2[[[]c2]c1]2]1[[[[]c2]c1]2[[[]c2]c1]2]1a1z0]0]h

Graphically, the membrane structure µ can be represented as a tree:

Using the set R of rules 1÷ 5, the computation proceeds as follows:
[[[[[[]c2]c1]2[[[]c2]c1]2]1[[[[]c2]c1]2[[[]c2]c1]2]1a1z0]0]h

⇒ [[[[[[]c2]c1]2[[[]c2]c1]2]1[[[[]c2]c1]2[[[]c2]c1]2]1t1f1z1]0]h
⇒ [[[[[[]c2]c1]2[[[]c2]c1]2t1]1[[[[]c2]c1]2[[[]c2]c1]2f1]1z2]0]h
⇒ [[[[[[]c2]c1]2[[[]c2]c1]2t

′
1t

′
1a2]1[[[[]c2]c1]2[[[]c2]c1]2f

′
1f

′
1a2]1z3]0]h

⇒ [[[[[[]c2]c1t1]2[[[]c2]c1t1]2t2f2]1[[[[]c2]c1f1]2[[[]c2]c1f1]2t2f2]1z4]0]h
⇒ [[[[[[]c2]c1t1t2]2[[[]c2]c1t1f2]2]1[[[[]c2]c1f1t2]2[[[]c2]c1f1f2]2]1z5]0]h
⇒ [[[[[[]c2t1]c1t2]2[[[]c2t1]c1f2]2]1[[[[]c2t2]c1f1]2[[[]c2]c1f1f2]2]1z6]0]h
⇒ [[[[[]c2t1t2]2[[]c2t1f2]2]1[[[]c2t2f1]2[[[]c2]c1f1f2]2]1z7]0]h
⇒ [[[[[]c2t1t2]2[[f2]c2t1]2]1[[[f1]c2t2]2[[[]c2]c1f1f2]2]1z8]0]h
⇒ [[[[[]c2t1t2]2[yt1]2]1[[yt2]2[[[]c2]c1f1f2]2]1z9]0]h
⇒ [[[[[]c2t1t2]2[t1]2y]1[[t2]2[[[]c2]c1f1f2]2y]1z10]0]h
⇒ [[[[[]c2t1t2]2[t1]2]1[[t2]2[[[]c2]c1f1f2]2]1yyz11]0]h
⇒ [[[[]c2t1t2]2[t1]2]1[[t2]2[[[]c2]c1f1f2]2]1yz12yes]h
⇒ [[[[]c2t1t2]2[t1]2]1[[t2]2[[[]c2]c1f1f2]2]1yz12]hyes

It can be noticed that even the object z has now the subscript 4×n+2×m =
4× 2 + 2× 2 = 12, it cannot generate a no object because membrane labelled by
0 was already dissolved by an y object in the previous step. Also, even another y
object reached the membrane labelled by 0, it cannot generate an yes object
because membrane labelled by 0 was already dissolved by another y object in a
previous step.

Solving SAT with Active Membranes and Pre-Computed Resources 71

4 Conclusion

In this paper we deal with a question presented by Păun in 2005: Can the polariza-
tions be completely avoided? (related to complexity aspects of P systems with active
membranes and with electrical charges). We answer positively to this question: we
do not use polarizations in solving the SAT problem, but use a pre-computed initial
configuration involving either exponential alphabet or exponential structure.

We proved P = PMCAM0(+d,+e,+c,pre(α)) and P = PMCAM0(+d,+e,+c,pre(µ))

by providing two algorithms for solving the SAT problem using polarizationless
P system with active membranes and without division. For the former equality,
the provided algorithm is using an exponential alphabet pre-computed in linear
time by a P system with replicated rewriting, while the later one is using an initial
exponential structure pre-computed in linear time with respect to the number of
variables and the number of clauses by P systems with membrane creation.

References

1. B. Aman, G.Ciobanu. Turing Completeness Using Three Mobile Membranes. Lecture
Notes in Computer Science 5715, 42–55 (2009).

2. B. Aman, G. Ciobanu. Mobility in Process Calculi and Natural Computing. Natural
Computing Series, Springer (2011).

3. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez (Eds.). Applications of Membrane Com-
puting. Springer (2006).

4. T.-O. Ishdorj, A. Leporati, L. Pan, X. Zeng, X. Zhang. Deterministic Solutions to
QSAT and Q3SAT by Spiking Neural P Systems with Pre-Computed Resources.
Theoretical Computer Science 411(25), 2345–2358 (2010).

5. S.N. Krishna, R. Rama. P Systems with Replicated Rewriting. Journal of Automata,
Languages and Combinatorics 6(3), 345–350 (2001).

6. A. Leporati, M.A. Gutiérrez-Naranjo. Solving Subset Sum by Spiking Neural P
Systems With Pre-Computed Resources. Fundamenta Informaticae 87(1), 61–77
(2008).

7. Gh. Păun. P Systems With Active Membranes: Attacking NP-complete Problems.
Journal of Automata, Languages and Combinatorics 6, 75–90 (2001).

8. Gh. Păun. Further Twenty Six Open Problems in Membrane Computing. Third
Brainstorming Week on Membrane Computing (M.A. Gutiérrez et al. eds.), Fénix
Editora, Sevilla, 249–262 (2005).

9. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.). The Oxford Handbook of Membrane
Computing, Oxford University Press (2010).

Red-Green P Automata

Bogdan Aman1, Erzsébet Csuhaj-Varjú2, Rudolf Freund3

1 Institute of Computer Science, Romanian Academy
Iaşi, Romania, Email: bogdan.aman@gmail.com

2 Faculty of Informatics, Etvs Loránd University
Budapest, Hungary, Email: csuhaj@inf.elte.hu

3 Faculty of Informatics, Vienna University of Technology
Vienna, Austria, Email: rudi@emcc.at

Summary. In this short note we extend the notion of red-green Turing machines to
specific variants of P automata. Acceptance and recognizability of finite strings by red-
green automata are defined via infinite runs of the automaton on the input string and
the way how to distinguish between red and green states.

1 Introduction

In this short note we introduce the notion of red-green automata in the area of
P systems. Acceptance and recognizability of finite strings by a red-green Turing
machine are defined via infinite runs of the automaton on the input string and the
way how to distinguish between red and green states; via infinite runs which are
allowed to change between red and green states more than once, more than the
recursively enumerable sets of strings can be obtained, i.e.,in that way we can “go
beyond Turing”. Various possibilities how to “go beyond Turing” to be already
found in the literature are discussed in [9]; most of the definitions and results for
red-green Turing machines are taken from this paper. In the area of P systems,
first attempts to do that can be found in [5] and [8]. Computations with infinite
words by P automata have been investigated in [4].

Here we focus on the idea of being able to switch between red and green states
in P automata, where states are specific properties of a configuration, for example,
the occurrence or the non-occurrence of a specific symbol. As for Turing machines,
with one change from red to green states, we can accept all recursively enumerable
languages. A similar result can easily be obtained for many variants of P automata,
especially for the basic model using antiport rules assigned to the skin membrane.

In this note we only focus on the concept of red-green automata for P automata,
without giving formal definitions or proofs, as we assume the reader to know the
underlying notions and concepts from formal language theory (e.g., see) as well
as from the area of P systems (e.g., see). A lot of research topics wait for being

74 B. Aman, E. Csuhaj-Varjú, R. Freund

investigated for P automata “going beyond Turing”, but as well for the idea of
having red and green configurations together with models of P automata which
are not computationally complete, as for example dP automata.

2 Red–Green Turing Machines

A Turing machine M is called a red–green Turing machine if its set of internal
states Q is partitioned into two subsets, Qr and Qg, and M operates without
halting. Qr is called the set of red states, Qg the set of green states.

Red–green Turing machines can be seen as a type of ω-Turing machines on
finite inputs with a recognition criterion based on some property of the set(s) of
states visited (in)finitely often, in the tradition of ω-automata (see [4]), i.e., we
call an infinite run of the Turing machine on input w recognizing if and only if

• no red state is visited infinitely often and
• some green states (one or more) are visited infinitely often.

Comment. In the following, “mind change” means changing the color, i.e.,
changing from red to green or vice versa.

To get the reader familiar with the basic idea of red-green automata, we give
a short sketch of the proofs for some well-known results (see [9]):

Theorem 1. A set of strings L is recognized by a red–green TM with one mind
change if and only if L ∈ Σ1, i.e., if L is recursively enumerable.

Proof. Let L be the set of strings recognized by a red–green TM M with one mind
change. Then design a TM that enumerates all possible inputs, simulates and
dovetails the computations of M on these inputs, and outputs string w whenever
M makes its first mind change (if any) during the computation on w.

Conversely, if L ∈ Σ1 and M is the TM that enumerates L, then design a red–
green TM that on input w simulates the computation of M in red but switches to
green when w appears in the enumeration. This machine precisely recognizes L.
⊓⊔

2.1 Red-Green Turing Machines – Going Beyond RE

If more mind changes are allowed, the full power of red–green Turing machines is
revealed. For example, the complement of a recursively enumerable set L need not
be recursively enumerable, too, but it is always red–green recognizable:

Let M ′ be the TM recognizing L. Then construct a red–green TM M that
operates on inputs w as follows: starting in red, the machine immediately switches
to green and starts simulating M ′ on w. If M ′ halts (thus recognizing w), the
machine switches to red and stays in red from then onward. It follows that M
precisely recognizes, in fact accepts, the set L. (Acceptance means that for every

Red-Green P Automata 75

word not recognized by the TM it will never make an infinite number of mind
changes, i.e., it finally will end up in red.)

The following result characterizes the computational power of red–green Turing
machines (see [9]):

Theorem 2. (i) Red–green Turing machines recognize exactly the Σ2 sets of the
Arithmetical Hierarchy.

(ii) Red–green Turing machines accept exactly the ∆2 sets of the Arithmetical
Hierarchy.

3 The basic Model of P Automata

The basic model of P automata as introduced in [2] and in a similar way in [3]
is based on antiport rules, i.e., on rules of the form u/v, i.e., the multiset u goes
out through the membrane and v comes in instead. As it is already folklore, only
one membrane is needed for obtaining computational completeness with only one
membrane; the input string is defined as the sequence of terminal symbols taken
in during a halting computation. Restricting ourselves to P automata with only
one membrane as the basic model, we define a P automaton as follows:

A P automaton is a construct

Π = (O, T,w,R)

where

• O is the alphabet of objects,
• T is the terminal alphabet,
• w is the multiset of objects present in the skin membrane at the beginning of

a computation, and
• R is a finite set of antiport rules.

The strings accepted by Π consist of the sequences of terminal symbols taken
in during a halting computation.

Let us cite from [8]:

“... a super-Turing potential is naturally and inherently present in evo-
lution of living organisms.”

In that sense, we now seek for this potential in P automata.

76 B. Aman, E. Csuhaj-Varjú, R. Freund

4 Red-Green P Automata

The main challenge is how to define “red” and “green” states in P automata. In
fact, states sometimes are considered to simply be the configurations a P automa-
ton may reach during a computation, or some specific elements occurring in a
configuration define its state.

Another variant is to consider the multiset applicable to a configuration as its
state, which especially makes sense in the case of deterministic systems. Yet then
these multisets have to be divided into “red” and “green” ones.

The easiest way to do this is to specify a subset of the rules as green rules, and
all multisets consisting of such green rules only constitute the set of all “green”
multisets, whereas all the other ones are “red” multisets.

A stronger condition is to divide the set of rules into “red” and “green” and to
define the set of “red” and “green” multisets as those which only consist of “red”
and “green” rules, respectively. But then the problem arises how to deal with the
multisets of rules consisting of rules of both colors.

5 First Results

As is well known, even with the basic model of P automata as defined above we
obtain computational completeness by easy simulations of register machines (which
themselves are known, even with only two registers, to be able to simulate the
actions of a Turing machine). Hence, the following results are direct consequences
of the results known for Turing machines:

Theorem 3. A set of strings L is recognized by a red–green P automaton with one
mind change if and only if L ∈ Σ1, i.e., if L is recursively enumerable.

Theorem 4. (i) Red–green P automata recognize exactly the Σ2 sets of the Arith-
metical Hierarchy.

(ii) Red–green P automata accept exactly the ∆2 sets of the Arithmetical Hier-
archy.

Proof. (Sketch) Let TM be a Turing machine and RM be a register machine
simulating TM having its set of internal states Q partitioned into two subsets,
Qr and Qg; TM operates without halting; Qr is the set of red states, Qg the set
of green states. The register machine can alos colour its states in red and green,
but when simulating the actions of TM eventually needs a green and red variant
of its states and actions in order to totally stay within the same color as TM
when simulating the actions of one computation step of TM . The P automaton
Π = (O, T,w,R) can simulate the actions of RM very easily, e.g., see Chapter V
in [6], without introducing trap symbols, and even in a deterministic way provided

Red-Green P Automata 77

RM is deterministic. The rules in R are of the form qu/pv where q, p are states of
RM and u, v are multisets not containing a state symbol. Hence, a configuration
can be defined to exactly have the color of the state symbol from RM currently
occurring in the skin region. ⊓⊔

One of the main reasons that the proof of the preceding theorems is that easy
is based on the fact that the simulation does not need the trick to trap non-wanted
evolutions of the system, which is a trick used very often in the area of P systems.
Yet this exactly would contradict the basic feature of the red–green automata way
of acceptance by looking at infinite computations. Fortunately, the basic model of
P automata comes along with this nice feature of not needing trap rules for being
able to simulate register machines. Only few models of P automata have this nice
feature; another variant are P automata with anti-matter, just recentlyintroduced
and investigated, see [1].

6 Future Research

Besides investigating the variants of defining “red”/“green”, there are various other
models of P automata which deserve to be taken into consideration, e.g., dP au-
tomata and anti-matter automata.

There are already a lot of strategies and models to be found in the litera-
ture how to “go beyond Turing”; some of them should also be of interest to be
considered in the P systems area. Thus, a wide range of possible variants to be
investigated remains for future research.

References

1. A. Alhazov, B. Aman, R. Freund, Gh. Păun: Matter and anti-matter in membrane
systems. Brainstorming Week in Membrane Computing, Sevilla, February 2014.

2. E. Csuhaj-Varjú, Gy. Vaszil: P automata or purely communicating accepting P sys-
tems, in: Membrane Computing, International Workshop, WMC-CdeA 2002, Curtea
de Argeş, Romania, August 19-23, 2002, Revised Papers (Gh. Păun, G. Rozenberg,
A. Salomaa, C. Zandron, Eds.), Lecture Notes in Computer Science 2597, Springer,
2003, 219–233.

3. R. Freund, M. Oswald: A short note on analysing P systems. Bulletin of the EATCS
78, 2002, 231–236.

4. R. Freund, M. Oswald, L. Staiger: ω-P Automata with Communication Rules. Work-
shop on Membrane Computing, 2003, 203–217, http://dx.doi.org/10.1007/978-3-540-
24619-0 15.

5. C.S. Calude, Gh. Păun: Bio-steps beyond Turing. Biosystems 77 (2004), 175–194.
6. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.
7. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages, 3 volumes.

Springer, 1997.

78 B. Aman, E. Csuhaj-Varjú, R. Freund

8. P. Sośık, O. Vaĺık: On Evolutionary Lineages of Membrane Systems, in: R. Freund et
al. (Eds.): WMC 2005, Lecture Notes in Computer Science 3850 (2006), 67–78.

9. J. van Leeuwen, J. Wiedermann: Computation as an unbounded process. Theoretical
Computer Science 429 (2012), 202–212.

Describing Membrane Computations with a
Chemical Calculus ⋆

Péter Battyányi, György Vaszil

Department of Computer Science, Faculty of Informatics
University of Debrecen
Kassai út 26, 4028 Debrecen, Hungary
{battyanyi.peter, vaszil.gyorgy}@inf.unideb.hu

Summary. Membrane systems are nature motivated computational models inspired by
certain basic features of biological cells and their membranes. They are examples of the
chemical computational paradigm which describes computation in terms of chemical so-
lutions where molecules interact according to rules defining their reaction capabilities.
Chemical models can be presented by rewriting systems based on multiset manipulations,
and they are usually given as a kind of chemical calculus which might also allow non-
deterministic and non-sequential computations. Here we study membrane systems from
the point of view of the chemical computing paradigm and show how computations of
membrane systems can be described by such a chemical calculus.

1 Introduction

The history of the chemical computing paradigm goes back to the introduction
of the Gamma programming language by Bânatre and Le Métayer in [3, 4]. They
describe computations in terms of a symbolic chemical solution of molecules with
possible reactions between them. The molecules represent the data, the reactions
represent their transformations, and the Brownian motion of molecules in the
solution represents the execution model of the program.

The general idea behind the chemical paradigm (and the purpose of the intro-
duction of the Gamma formalism) is to be able to express algorithms without the
sequentiality which is not inherently necessary, which is not inherently “built into”
the problem that the algorithm needs to solve, or in other words, the sequentiality
which is the consequence of the given computational model and not related to the
logic of the solution of the problem.

The idea was developed further in several different directions, on of them was
realized by the chemical abstract machine of Berry and Boudol in [5] where they

⋆ Research supported in part by the Hungarian Scientific Research Fund, “OTKA”,
grant no. K75952, and by the European Union through the TÁMOP-4.2.2.C-
11/1/KONV-2012-0001 project which is co-financed by the European Social Fund.

80 P. Battyányi, G. Vaszil

also introduce the notion of membranes which encapsulate subsolutions forcing the
reactions to occur in locally isolated ways. The role of membranes was underlined
by Păun in [7] where membrane systems (P systems) were introduced emphasizing
the importance of the hierarchical structure of different compartments or regions
enclosing different molecules which react, evolve according to different rules and
they only cross the membranes or region boundaries in a restricted and controlled
manner.

Since its introduction, the theory of P systems became an extensive and well
established research field, one of the most important and most popular areas of
natural computing which also evolved in several different directions and into dif-
ferent subfields. The evolution of the area made its relationship to other chemical
computing models and formalisms less apparent, so it might be of interest to ex-
amine them from the point of view of the chemical computing paradigm, and to
point out the links between P systems and other chemical computational models,
as we attempt in the present paper.

This approach could be beneficial in different ways. By being able to translate
chemical programs, or chemical computing formalisms (like Gamma) to membrane
systems, we could provide something like a high-level programming language for P
systems which could serve as an elegant and efficient way of presenting P system
algorithms. A preliminary study of turning certain simple Gamma programs to
P systems was initiated in [11]. On the other hand, by being able to describe
membrane systems using one of the chemical computing formalisms (as we attempt
in this paper), we would be able to use the tools and techniques developed for the
many different types of chemical calculi to reason about membrane systems and
their computations.

In what follows we first give a short introduction to the Gamma formalism and
to the notions of membrane systems and their computations. Then we present the
γ-calculus from [1], and show how computations of certain membrane systems can
be described in this formalism.

2 Preliminaries and Definitions

We assume that the reader is familiar with the basics of formal language theory
and membrane computing; for more information, we refer to the monograph [10],
and the handbooks [9] and [8].

In the following, we briefly review the notions and the notation we will use.
An alphabet is a finite non-empty set of symbols. Given an alphabet V , we denote
the set of strings over V by V ∗ . If the empty string, ε, is not included, then we
use the notation V +.

A finite multiset over an alphabet V is a mappingM : V → N where N denotes
the set of non-negative integers, and M(a) for a ∈ V is said to be the multiplicity
of a in M . The support of M is the set supp(M) = {a ∈ V | M(a) ≥ 1}. If
supp(M) is a finite set, then M is called a finite multiset. The set of all finite

Describing Membrane Computations with a Chemical Calculus 81

multisets over the set V is denoted by M(V). We say that a ∈M if a ∈ supp(M),
M1 ⊆ M2 if supp(M1) ⊆ supp(M2) and for all a ∈ V , M1(a) ≤ M2(a). The
union of two multisets over V is defined as (M1 ∪ M2) where for all a ∈ V ,
(M1∪M2)(a) =M1(a)+M2(a), the difference is defined forM2 ⊆M1 as (M1\M2)
where (M1 \M2)(a) =M1(a)−M2(a) for all a ∈ V .

In what follows, we usually enumerate the not necessarily distinct elements
a1, . . . , an of a multiset as M = (a1, . . . , an), but the multiset M can also be

represented by any permutation of a string w = a
M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗,

where if M(x) ̸= 0, then there exists j, 1 ≤ j ≤ n, such that x = aj . The empty
multiset is denoted by ∅ as in the case of the empty set.

Both P systems and chemical calculi are implemented as rewriting systems. A
rewriting system is a pair A = {Σ, (→i)i∈I}, where Σ is a set and (→i)i∈I is a
set of binary relations defined on Σ. The relations (→i)i∈I are called reduction
relations. In the rewriting systems considered in this paper the set § is a set of
multisets of elements over an alphabet O or, in the case of the chemical formalism,
multisets of terms of some calculus, and → is a single binary relation rendering
multisets to multisets. It is supposed that the reduction relation → is compatible
with the term formation rules in the γ-calculus, and, in the case of membrane
systems, it extends itself to a relation on configurations.

2.1 The Gamma-formalism

Several attempts have been made to establish a programming language suitable for
programming massively parallel architectures. The aim of the Gamma-formalism
is to provide the programmer with a high-level programming language deprived
of all artificial constraint for sequentiality, in which the parallel aspect is left
implicit. The Gamma-formalism, as a programming language, is a tool for multiset
manipulation. The only data structure, in the untyped version, is that of multisets,
and the programs are collections of pairs consisting of reaction conditions and
actions. The following presentation is based mainly on [2].

The meaning of the Γ -function can be defined as follows:

Γ (R,A)(M) =

Γ (R,A)((M\(x1, . . . , xn)) ∪A(x1, . . . , xn)),
if x1, . . . , xn ∈M and R(x1, . . . , xn),

M otherwise.

For example, the Γ -program below computes the maximal element of a set of
integers M :

maxset(M) = Γ ((R,A))(M) where
R(x, y) = x ≤ y
A(x, y) = (y)

The Boolean function R describes a relation to be satisfied by the selected
elements x and y. If R(x, y) is true, then x and y are replaced by the result of
the reaction defined by the function A. In this case, the element of the multiset

82 P. Battyányi, G. Vaszil

(x, y) is chosen which is not less than the other. The function R is called the
reaction condition and the action A is the result of the reaction. The computation
terminates when no more reactions are possible. In the present situation this leaves
the computation with a one element multiset as the result, which is the maximal
element of M .

The next introductory example finds the prime numbers up to a given number
n:

sieve(n) = Γ ((R,A))(2, . . . , n) where
R(x, y) = x divides y
A(x, y) = (x)

The reaction condition is fulfilled for x and y, if y is a multiple of x. In this
case the multiset (x, y) is removed from the original multiset and is replaced by
the multiset (x). In effect, this means that a stable condition is reached if there
are no more pairs (x, y) such that x divides y, which is satisfied if and only if the
resulting multiset consists of the prime numbers not greater than n.

The definition of Γ reflects the way the program reaches its halting point:
if there is at least one multiset (x1, . . . , xn) such that R(x1, . . . , xn) holds, then
Γ (R,A)(M) is applicable and the result is the same as the value determined by
application Γ (R,A)((M\(x1, . . . , xn)) ∪A(x1, . . . , xn)), if it exists.

Remark 1. Of course, there can be Γ -programs which do not terminate. In simple
cases like the above ones, termination can be proven by an application of the
Dershowitz–Manna lemma, see [6]. This lemma asserts that if (S,<) is a well-
founded ordered set with the strict (that is, irreflexive and transitive) partial-order
<, then M(S), the set of all finite multisets over S with the strict partial ordering
≪ is also well-founded, where ≪ is defined as follows. Let M,N,∈ M(S). We say
that M ≪ N if there are X, Y ∈ M(S) such that

• X ̸= ∅,
• N = (M\X) ∪ Y ,
• (∀y ∈ Y)(∃x ∈ X)(y < x).

As the well foundedness of a set means that there exists no infinite decreas-
ing sequence of its elements, the lemma applies to the examples above, because
both by the maxset and the sieve programs, the number of elements of the mul-
tisets obtained as the intermediate results of the transformation forms a strictly
decreasing sequence.

2.2 Membrane Systems

A P system is a structure of hierarchically embedded membranes, each hav-
ing a label and enclosing a region containing a multiset of objects and possibly
other membranes. The out-most membrane which is unique and usually labeled
with 1, is called the skin membrane. The membrane structure is denoted by a
sequence of matching parentheses where the matching pairs have the same la-
bel as the membranes they represent. If x ∈ {[i,]i | 1 ≤ i ≤ n}∗ is such a

Describing Membrane Computations with a Chemical Calculus 83

string of matching parentheses of length 2n, denoting a structure where mem-
brane i contains membrane j, then x = x1 [i x2 [j x3]j x4]i x5 for some
xk ∈ {[l,]l | 1 ≤ l ≤ n, l ̸= i, j}∗, 1 ≤ k ≤ 5. If membrane i contains mem-
brane j, and there is no other membrane, k, such that k contains j and i contains
k (x2 and x4 above are strings of matching parentheses themselves), then we say
that membrane i is the parent membrane of j. A membrane m is called elementary
if it contains no membrane, in this case x = x1 [m]m x2.

The evolution of the contents of the regions of a P system is described by rules
associated to the regions. Applying the rules synchronously in each region, the
system performs a computation by passing from one configuration to another one.
The rules are multiset rewriting rules given in the form of u → v where u, v are
multisets, and they are applied in the maximal parallel manner, that is, as many
rules are applied in each region as possible. The end of the computation is defined
by halting: A P system halts when no more rules can be applied in any of the
regions, the result is a number, the number of objects in an elementary membrane
labeled as output.

Definition 1 A P system of degree n ≥ 1 is a construct

Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, out)

where

• O is an alphabet of objects,
• µ is a membrane structure of n membranes,
• wi ∈ M(O), 1 ≤ i ≤ n, are the initial contents of the n regions,
• Ri, 1 ≤ i ≤ n, are the sets of evolution rules associated to the regions, they

are of the form u→ v where u ∈ M(O) and v ∈ M(O × TAR) where TAR =
{here, out} ∪ {inj | 1 ≤ j ≤ n}, and

• out ∈ {1, . . . , n} is the label of an elementary membrane, the output membrane.

The evolution rules of the system are applied in the nondeterministic, maxi-
mally parallel manner to the n-tuple of multisets of objects constituting the con-
figuration of the system. The n-tuple (w1, . . . , wn) is the initial configuration of Π.
For two configurations C1 = (u1, . . . , un) and C2 = (v1, . . . , vn), we can obtain C2

from C1 by applying the rules of R1, . . . , Rn in the following way. The application
of u → v ∈ Ri in the region i means to remove the objects of u from ui and add
the new objects specified by v to the system. The objects of v should be added to
the regions as specified by the target indicators associated to them: If v contains
a pair (a, here) ∈ O×TAR, then a is placed in region i, the region where the rule
is applied. If v contains (a, out) ∈ O × TAR, then a is added to the contents of
the parent region of region i; if v contains (a, inj) ∈ O × TAR for some region j
which is contained inside the region i (so region i is the parent region of region j),
then a is added the contents of region j.

The objects evolve simultaneously, and the rules by which they evolve are
chosen nondeterministically, but in a maximally parallel manner. This means that

84 P. Battyányi, G. Vaszil

the rules are chosen in such a way, that in each region objects are assigned to rules,
as many objects to as many rules as possible, and the assignment is maximal in
the sense that no other rule can be applied to the remaining (unassigned) objects
which appear unchanged in the next configuration.

A sequence of transitions between configurations is called a computation. A
computation is successful if it halts, that is, if it reaches a configuration where no
application of any of the rules are possible. In this case, the result is the number
of objects which are present in the output region in the halting configuration.

3 Writing Gamma Programs for Membrane Systems

The Γ -formalism has been the source of inspiration for the higher-order chemical
model of Banâtre et al., the so-called γ-calculus. The following presentation is
based on [1].

Two syntactical elements, molecules and patterns, are defined simultaneously
in the following definition.

Definition 1. The syntactical elements of molecules, denoted by M , and patterns,
denoted by P , are defined as

M = x | γ(P)[M1].M2 | (M1,M2) | ⟨M⟩
P = x | (P1, P2) | ⟨P ⟩,

where x is a variable standing for any molecule, γ(P)[M1].M2 is a γ-abstraction
with reaction condition M1 and result M2. The operator “,” is commutative and
associative, and ⟨M⟩ is called a solution.

A solution ⟨M⟩ encapsulates the molecule M : molecules inside the solution are
insulated from molecules outside the solution. However, the contents of solutions
can be changed by reactions which occur inside the solution.

The fundamental rule of the γ-calculus is that of a reaction. Prior to defining
reactions, we need some auxiliary notions.

Definition 2. A substitution is a mapping ϕ : V ar → M, if M is the set of all
molecules and V ar represents the set of variables. We can define the application
of a substitution to a molecule as follows:

ϕx = ϕ(x)

ϕ(M1,M2) = ϕM1, ϕM2

ϕ⟨M⟩ = ⟨ϕM⟩
ϕ(γ(P)[C].M) = γ(P)[C].ϕ′M,

where ϕ′ is obtained from ϕ by removing from the domain all the variables which
occur in P .

Describing Membrane Computations with a Chemical Calculus 85

A molecule is termed inert if no reaction can take place within it. The first
argument of match is a pattern, the other one is a molecule. Its value is a substi-
tution.

Definition 3. Let x denote a variable, P a pattern, and M a molecule. Then we
define

match(x,M) = {x 7→M}
match(⟨P ⟩, ⟨M⟩) = match(P,M) provided inert(M)

match((P1, P2), (M1,M2)) = match(P1,M1) ◦match(P2,M2)

match(P,M) = fail in every other case.

The operation ◦ is the function composition with the additional stipulation that
fail ◦ x = x ◦ fail = fail.

We are in a position now to define the main rule of the calculus, the reaction
rule.

Definition 4. Let

γ(P)[C].M,N → ϕM, (γ)

where match(P,N) = ϕ and ϕ(C) →∗ true.

Besides the γ-rule some additional rules are applied.

Definition 5. Let M , M1, and M2 be any molecule. Then we have the following
rules:

M1 →M2

M,M1 →M,M2
(locality),

M1 →M2

⟨M1⟩ → ⟨M2⟩
(solution).

Moreover, we identify molecules with respect to commutativity and associativity,
that is, any reduction is understood modulo ≡, where

M1, (M2,M3) ≡ (M1,M2),M3 and M1,M2 ≡M2,M1.

The γ-rule is a so-called one-shot rule: after taking part in a reduction, the
γ-abstraction disappears. To obtain a syntactic tool resembling the Γ -operator of
the previous section, we introduce a new operator which does not vanish in the
course of the reduction.

Let rep lace P by M if C, or rep lace(P,C,M) in short, be an operator obeying
the following reduction rule:

rep lace P by M if C,N → replace P by M if C, ϕ(M), (rep lace)

where C →∗ true and match(P,N) = ϕ.
With the notation introduced, we can construct the term finding the maximal

element of a given set of numbers:

86 P. Battyányi, G. Vaszil

Example 1. Let M = {3, 5, 8, 10, 12}. Then

(rep lace ⟨⟨x⟩, ⟨y⟩⟩ by ⟨y⟩ if x ≤ y, ⟨3⟩, ⟨5⟩, ⟨8⟩, ⟨10⟩, ⟨12⟩)

finds the maximum element of the set M .

Observe that in the example above the integers are represented as solutions.
Otherwise the term “rep lace x, y by y if x ≤ y” would match any molecules x
and y. In this case, it does not seem to be a problem since x ≤ y makes sense if x
and y are integers. As another example we compute the largest prime number up
to an integer n.

Example 2.

largestprime(n) =

let sieve = rep lace ⟨⟨x⟩, ⟨y⟩⟩ by ⟨x⟩ if x div y in

let max = rep lace ⟨⟨x⟩, ⟨y⟩⟩ by ⟨x⟩ if x ≤ y in

(⟨⟨2⟩, ⟨3⟩, . . . , ⟨n⟩, sieve⟩, γ⟨x⟩(x,max))

Observe that in this example above the pattern standing in the last γ-term is
a solution ⟨x⟩. By the definition of match, only inert solutions are able to match
with this pattern. This amounts to a means of governing the sequence of reductions
in a molecule: first the prime numbers are selected with the term sieve, then the
term max chooses the maximum among them.

Now we can turn to the problem of establishing a relation between the com-
putations in the γ-calculus and computations in membrane systems. We consider
the systems defined in Section 2.2, that is P systems of the form

(O,µ,w1, . . . , wn, R1, . . . , Rn, io)

where n is the number of membranes in the structure. We may assume io = n,
which means the output membrane is the n-th membrane.

The membrane structure can be uniquely described by setting the parent mem-
ber to each element. To this end, let par : {1, . . . , n} → {1, . . . , n} ∪ {nil} be the
function with the interpretation: if par(j) = k, then the k-th membrane is the
parent of the membrane numbered j. The parent of the outer membrane is nil,
that is, par(1) = nil.

We assume, as in Definition 1, that the rules Ri belonging to membrane i are
of the form u→ v, where u ∈ M(O) and v ∈ M(O × {here}) ∪ M(O × {out}) ∪
M(O × {inj}), where par(j) = i.

First, we label the elements of each membrane, displaying explicitly the number
of the membrane the element belongs to. Thus, let lab : O → {(k : a) | 1 ≤ k ≤
n, a ∈ O} be such that

lab(a) = (k : a),

if a is contained by the regions enclosed by membrane k. Let us determine how
these labels are inherited through a rule u→ v.

Describing Membrane Computations with a Chemical Calculus 87

Definition 6. Let a ∈ O × {here} ∪ O × {out} ∪ O × {inj}, assume tar ∈
{here, out, inj}, where 1 ≤ k ≤ n and par(j) = k. Then

lab(k, a, tar) =

k if tar = here
j if tar = inj
par(k) if tar = out and k > 1
undefined if tar = out and k = 1.

Let k be a membrane label for some 1 ≤ k ≤ n. We define a transformation
hk(u → v) of a rule u → v in region k into some γ-term. First, settle hk for the
elements in u and v. Let O be the alphabet of the membrane system. We define
the image of an element of O in the corresponding γ-calculus. If a ∈ O, then

hk(a) = (k : a),

otherwise

hk(a, tar) =

{
(i : a) where i = lab(k, a, tar) and tar ̸= out or k > 1,

λ if tar = out and k = 1.

The function hk propagates itself to multisets, thus

hk(w1 . . . wl) = hk(w1) . . . hk(wl),

if w = w1 . . . wl and w ∈ M(O) or w ∈ M((O × {here}) ∪ M(O × {out}) ∪
M(O×{inj}). For technical reasons we add a new constant, say, 1 to each multiset
obtained from u and v, thus

hk(u→ v) = rep lace (hk(u), 1) with (hk(v), 1).

Accomplishing this for every membrane labeled by k, we assign the multiset ((k :
u1), . . . , (k : uik), (k : 1), hk(r1), . . . , hk(rjk)) to region k, where u1, . . . , uik were
the elements and r1, . . . , rjk were the rules corresponding to the region.

Let us denote by gamma(Π) the gamma formalism assigned to the membrane
system Π. The transformation above is injective, thus, given a γ-structure Γ ob-
tained in this way, we can uniquely identify the membrane structure Π such that
gamma(Π) = Γ . In the sequel, if no confusion occurs, we write ak instead of
(k : a) and c instead of (k : c), if c is a fixed element of the base set.

Example 3. Let Π be the membrane system Π = ({a, b, c}, µ, aa, ∅, R1, ∅, 2) where
µ = [[]2]1, and R1 = {a→ (a, here)(b, in2)(c, in2)

2, a2 → (a, out)2}.
Now

h1(a) = a1,

h1(a→ (a, here)(b, in2)(c, in2)
2) = rep lace (a1, 1) with (a1, b2, c2

2, 1),

h1(aa→ (a, out)2) = rep lace (a1, a1, 1) with 1.

88 P. Battyányi, G. Vaszil

In what follows we simulate maximal parallel reduction sequences of the mem-
brane system with reduction sequences in the chemical calculus γ. Besides the
translations of the multiset reduction steps the process must be prepared to sim-
ulate the next maximal parallel sequence of reductions, as well. To this end, the
underlined symbols must be transformed back into usual ones. Some care is needed
though in the process, the replace operators assigned to rules of the membrane
system should not interfere with this stage. The introduction of the additional
constants 1 and 0 serves exactly this synchronization purpose. When 1 is present
in the corresponding molecule, then the operators corresponding to the rules of
the P system are active, and, in the case when 1 is exchanged for 0, the operators
restoring the original elements of the alphabet O come into effect.

Let us define the terms giving us back the elements of the original alphabet O
after simulating a maximal parallel computation sequence.

Definition 7. Let Olab be the set of elements obtained from O by completing the
labeling process for every 1 ≤ k ≤ n. Then

d(Olab) =
∪

{rep lace a, 0 with a, 0 | a ∈ Olab}.

Now we determine the term controlling the whole process.

Theorem 2. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, in) be a membrane system,
assume gamma(Π) is the multiset defined as above, and d(Olab) is the set of
operators presented in the previous definition. Then, for the term

M = (⟨gamma(Π)⟩, rep lace ⟨x, 1⟩ with ⟨x, 0, d(Olab)⟩,
rep lace ⟨x, 0, d(Olab)⟩ with ⟨x, 1⟩),

Π comes to a halt with result (ai11 , a
i2
2 , . . . , a

ij
j) if and only if M normalizes with

(n : a1)
i1 , (n : a2)

i2 , . . . , (n : aj)
ij as its elements with label n.

Proof. First of all, observe that the mapping gamma is a bijection between
membrane systems having the structure (O,µ,w1, . . . , wn, R1, . . . , Rn, in) and
chemical structures over the alphabet

∪n
i=1{hi(O) ∪ hi(O × {tar})}, where tar ∈

{here, out, inj} if par(j) = i. A little more is true. Namely, let M → M1 → . . .
be a reduction sequence starting from M . We call a reduction step Mi → Mj a
1-step, if the maximal solution in Mi contains 1, otherwise it is a 0-step. Let ⟨S0⟩,
⟨S1⟩, . . . be the sequence of the maximal solutions of M → M1 → M2 → . . .
and assume, for Π0, Π1, . . . , Πk, . . . , gamma(Π0) = S0, gamma(Π1) = S1, . . . ,
gamma(Πk) = Sk, The notion of 1-step and 0-step transforms to S0, S1, . . .
analogously. We denote by S′ →1 S

′′ (S′ →0 S
′′) if a 1-step reduction from S′

yields S′′. Then we have the following statement.

Si →1 Sj if and only if Πi → Πj . (1)

The proof can be done by induction on the lengths of the reduction sequences on
the two sides. Assume now Π0 → Π1 → Π2 → . . . → Πn is a reduction sequence

Describing Membrane Computations with a Chemical Calculus 89

yielding a maximal parallel reduction step from Π0. Then, by (1), there can be
no 1-reductions starting from gamma(Πn) = Sn. But this means Sn has arrived
to a normal form. Below, for a multiset S, let S denote the multiset S − (0, 1).
Moreover, if S is a multiset possibly with underlined elements, then let p lain(S)
denote the multiset consisting of the same elements with the underlining removed.
Thus

M = (⟨S0⟩, rep lace ⟨x, 1⟩ with ⟨x, 0, d(Olab)⟩,
rep lace ⟨x, 0, d(Olab)⟩ with ⟨x, 1⟩) →
. . .

→ (⟨Sn⟩, rep lace ⟨x, 1⟩ with ⟨x, 0, d(Olab)⟩,
rep lace ⟨x, 0, d(Olab)⟩ with ⟨x, 1⟩) →

→ (⟨Sn, 0, d(Olab)⟩, rep lace ⟨x, 1⟩ with ⟨x, 0, d(Olab)⟩,
rep lace ⟨x, 0, d(Olab)⟩ with ⟨x, 1⟩) →
. . .

→ (⟨p lain(Sn), 0, d(Olab)⟩, rep lace ⟨x, 1⟩ with ⟨x, 0, d(Olab)⟩,
rep lace ⟨x, 0, d(Olab)⟩ with ⟨x, 1⟩) →

→ (⟨p lain(Sn), 1)⟩, rep lace ⟨x, 1⟩ with ⟨x, 0, d(Olab)⟩,
rep lace ⟨x, 0, d(Olab)⟩ with ⟨x, 1⟩)

Here, ⟨Sn, 0, d(Olab)⟩ has no choice but to reduce to ⟨p lain(Sn), 0, d(Olab)⟩, which
cannot be reduced any further. Then the action of ⟨p lain(Sn), 0, d(Olab)⟩ and
rep lace ⟨x, 0, d(Olab)⟩ with ⟨x, 1⟩ yields ⟨p lain(Sn), 1)⟩, which means a new max-
imal parallel reduction step of the membrane system obtained so far can be simu-
lated again. This gives an account of the correspondence set up between membrane
system reductions and reductions in chemical structures. �

4 Conclusion

The chemical computational paradigm describes computations as reactions be-
tween molecules which freely interact in a symbolic chemical solution. We have
given a short overview of a chemical calculus from [1], and shown how computa-
tions of membrane systems can be described in this setting. Thus, we have taken
some initial steps in the direction of being able to describe membrane systems
using the chemical computing formalisms and being able to use the tools and
techniques developed for chemical calculi to reason about membrane systems and
their computations.

References

1. J.P. Banâtre, P. Fradet, Y. Radenac, Principles of chemical computing. Electronic
Notes in Theoretical Computer Science 124 (2005) 133–147.

90 P. Battyányi, G. Vaszil

2. J.P. Banâtre, P. Fradet, Y. Radenac, Generalized multisets for chemical programming.
Mathematical Structures in Computer Science 16(4) (2006), 557 – 580

3. J.P. Banâtre, D. Le Métayer, A new computational model and its discipline of pro-
gramming. Technical Report RR0566, INRIA (1986).

4. J.P. Banâtre, D. Le Métayer, Programming by multiset transformation. Communica-
tions of the ACM 36 (1993), 98–111.

5. G. Berry, G. Boudol, The chemical abstract machine. Theoretical Computer Science
96 (1992), 217–248.

6. N. Dershowitz, Z. Manna, Proving termination with multiset orderings. Communica-
tions of the ACM 22(8) (1979), 465–476.

7. Gh. Păun, Computing with membranes. Journal of Computer and System Sciences
61 (2000), 108–143.

8. Păun, G., Rozenberg, G., Salomaa, A. (eds): The Oxford Handbook of Membrane
Computing, Oxford University Press (2010)

9. Rozenberg, G. Salomaa, A. (eds): Handbook of Formal Languages, Springer Berlin
(1997)

10. Salomaa, A.: Formal Languages, Academic Press, New York (1973)
11. M. Fésüs, Gy. Vaszil, Chemical programming and membrane systems. In: Proc.

14th International Conference on Membrane Computing, Institute of Mathematics
and Computer Science, Academy of Moldova, 2013, 313–316.

The Reduction Problem in CUDA and Its
Simulation with P Systems

Rodica Ceterchi1, Miguel Ángel Mart́ınez-del-Amor2, Mario J. Pérez–Jiménez2

1 Faculty of Mathematics and Computer Science
University of Bucharest
14 Academiei st. 010014 Bucharest, Romania
E-mail: rc@fmi.unibuc.ro, rceterchi@gmail.com

2 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: mdelamor@us.es, marper@us.es

Summary. We introduce P systems with dynamic communication graphs which simu-
late the functioning of the CUDA architecture when solving the parallel reduction prob-
lem.

1 Introduction

Introduced in [13], P systems are powerful computational devices, with a high de-
gree of parallelism, whose functioning is inspired by biological processes at the level
of the cells, and of their membranes ([13],[14]). Among these processes, rewriting
and communication play an important role.

It is of interest to compare P systems with other, classical, parallel paradigms.
We have begun such a study in the form of simulating parallel classical architec-
tures with P systems, in particular, the perfect shuffle architecture [4], [5] and
the mesh architecture [6]. The reduction problem, being one of the most simple,
primary ones to be solved in different contexts, was used as an illustration.

In [7] some general guidelines were developed along which a wide class of par-
allel architectures can be simulated with P systems. P systems with dynamic
communication graphs were introduced. In their functioning, rewriting steps and
communication steps are separated and made more visible. They differ from the
systems introduced in [3] in that the communication graphs are inspired by the
particular parallel network architecture being simulated.

CUDA stands for Compute Unified Device Architecture [15, 10], and is a tech-
nology proprietary of NVIDIA Corp. Since its introduction in 2007, CUDA has

92 R. Ceterchi, M. Ángel Mart́ınez-del-Amor, M.J. Pérez–Jiménez

allowed programmers to take advantage of the inherent parallel architecture of
GPUs, which ranges from 240 cores (Tesla C1060, released on 2008) to 2880 cores
(Tesla K40, released on 2013). This is performed by using a threaded, shared-
memory, abstracted model of the GPU, which is implemented by C/C++ exten-
sions. CUDA has helped to establish GPU computing [9] as a sub-framework of
High Performance Computing. In fact, it has been successfully applied to a broad
spectrum of research areas, including Systems Biology and Population Dynamics
[12], and Membrane Computing [1, 2, 11], among others.

In the present paper we propose to simulate with P systems the reduction
problem as solved in CUDA. Section 2 is devoted to the presentation of several
improved versions of solving the reduction problem in CUDA. Section 3 is devoted
to the presentation of its simulation with P systems with dynamic communication
graphs.

2 Solving the Reduction Problem in CUDA

The GPU (Graphics Processor Unit) is the core of graphics cards. A GPU to-
day contains thousands of computing processors devoted for graphics. However,
novel techniques enable programmers to take advantage of this highly parallel ar-
chitecture for scientific computing. These are called GPGPU (General Purpose
computing on the GPU) [9].

A new era of GPGPU started with the introduction of CUDA (Compute Unified
Device Architecture) [15, 10] by NVIDIA. It offers a programming model that
abstracts the GPU architecture to programmers, so it is enough to learn some
extensions to C/C++ language (CUDA extensions), whereas the CUDA driver
will execute the code on the GPU. In the following sections we will introduce some
concepts and terminology of CUDA which are necessary to understand the work
presented in this paper.

2.1 CUDA programming model

The CUDA programming model assumes that the CPU (or host) takes control
of the execution flow, and permit the GPU (or device) to run many instances
of the same code in parallel. This code is called kernel, and it is executed by a
grid of threads. Typically, a grid is composed of thousands of threads, since the
creation of a sufficient number of threads to use all hardware resources requires a
large amount of data parallelism. The threads are arranged within the grid in a
two-level hierarchy, as seen in Figure 1. At the higher level, each grid consists of
one or more thread blocks. At the lower level, each block is organized as a three
dimensional array of threads. All blocks in a grid have the same number and
organization of threads. Each block is identified by a two dimensional identifier,
and each thread within its block by a three dimensional identifier (ID). Therefore,
any thread can be unequivocally identified by the union of both thread and thread

The Reduction Problem in CUDA and Its Simulation with P Systems 93

block identifiers. The execution of threads inside a block can be synchronized
by barrier operations (syncthreads()), and threads of different blocks can be
synchronized only by finishing the execution of the kernel.

Fig. 1. Threading model in CUDA. Threads are executed in a grid, and they are orga-
nized in blocks.

The memory hierarchy is explicitly and manually managed in CUDA. This
memory model is composed in several levels, each one offering different speeds
and storage properties. We highlight the two most important ones: global memory
and shared memory. Global memory is the largest but the slowest memory in the
system. It is accessed by the host (where the input and output data are allocated)
and by any thread in execution. Shared memory is the smallest but fastest memory.
It is accessed by threads belonging to the same block. Normally, performance of
CUDA applications depends on how much shared memory is exploited. Thus, an
efficient way to structure an algorithm is as follows:

94 R. Ceterchi, M. Ángel Mart́ınez-del-Amor, M.J. Pérez–Jiménez

1. The threads of each block read its corresponding data portion from global
memory to shared memory (which is inevitable because the host only can put
the data in global memory).

2. Threads work with the data directly on the shared memory.
3. Threads copy these data back to global memory (so the host can retrieve the

result).

2.2 Modern GPU architecture

The GPU architecture has evolved in the last years, offering even more com-
pute capabilities. In general terms, it consists of a scalable processor array, orga-
nized in Streaming Multiprocessors (SMs) of Streaming Processors (SPs, or cores).
The number of them depends on the GPU. SMs are based on the SIMT (Single-
Instruction Multiple-Thread) model. Basically, in the SIMT model all the threads
execute the same instruction on different piece of data. SMs create, manage, sched-
ule and execute threads in groups of 32 threads (which is the branching granularity
of NVIDIA GPUs). This set of 32 threads is called warp, and each SM can han-
dle many of them. Individual threads of the same warp must start together at
the same program address. However, they are free to branch and execute indepen-
dently, but at cost of serialization and performance (in fact, SIMT is really applied
to the warp). If a warp is broken (because of branching or memory stall), the real
parallelism in CUDA is not achieved.

2.3 Performance considerations

Although CUDA programming model is flexible enough to run any kind of algo-
rithm, the achieved performance depends on how the programmer had designed
the code, and on the target GPU running the program. A CUDA programmer has
to perfectly know the CUDA programming model, but also the idea of the GPU
architecture, since it provides the restrictions to be considered in order to achieve
peak performance. There are several strategies to accomplish it. Next, we stand
out two of them:

• Emphasize parallelism: the warp is the branching granularity on CUDA; that
is, the parallelism unit. Thus, warps must be maximized with active threads,
but minimizing branch divergence between thread: they must be executing the
same instruction simultaneously to reach peak performance.

• Exploit memory bandwidth: the peak bandwidth of using both global and shared
memories is achieved mainly by an access pattern: coalesced access to contigu-
ous (aligned) memory positions. Data is transferred from memory to the GPU
hardware in blocks, which is formed by contiguous bytes in memory. Thus, we
must maximize these blocks with the access to contiguous memory addresses
by contiguous threads within a warp.

The Reduction Problem in CUDA and Its Simulation with P Systems 95

2.4 Parallel Reduction in CUDA

The reduction problem consists in applying an operator to a set of elements. Let us
assume a set of n elements {a1, . . . , an}, and the binary and associative, reduction
operator ⊕. The result of applying reduction to the set of elements is another
element a = a1 ⊕ a2 ⊕ . . . an. Reduction is a well-known primitive in Parallel
Computing, since it resides inside many important algorithms. For example, it can
be used to compute the sum or the maximum of an array of numbers. Nowadays,
reduce is part of the most used algorithm in Big Data and No-SQL data bases,
which is Map-Reduce.

A common way to solve this problem in parallel is by using a tree, in which
partial solutions are computed to reach the final one. The time complexity of this
solution is O(logn). The process is summarized in figure 2.

Fig. 2. Scheme of a parallel reduction solution

The most popular CUDA implementations for the reduction primitive can be
found on the speech given by Harris [8] in 2007. This document introduces seven
kernels from a didactic perspective, in a performance-increasing order. Next, we
discuss the first four ones.

Interleaved addressing

Let us assume that the input array of elements is of size n, and that the maximum
amount of threads per block is nt. That means that we will need to use nb = n

nt
thread blocks to process the whole array. However, if each block compute reduce
for nt elements, what would we do with the nb partial results? The answer is to
have a second kernel, with a single block having nb threads, which will compute

96 R. Ceterchi, M. Ángel Mart́ınez-del-Amor, M.J. Pérez–Jiménez

again reduce. It is straightforward to add more kernels in this way until having
nb < nt.

In what follows, we will assume that the size of the input array of elements is
less than nt (maximum number of threads per block). This will mean that just one
thread block is enough to compute reduce. We will disregard the second kernel for
partial results.

A naive implementation of the tree solution in CUDA is to launch n threads
and correspond each one with an element. First, each thread with even ID (called
active threads) will compute the partial result with the next element, and the
process will continue by halving the number of active threads. This process, called
reduce0 (interleaved addressing), is shown in Figure 3 (white-arrowed threads are
inactive).

Fig. 3. Reduce0: interleaved addressing.

The main drawbacks of this solution are:

• Warps are not fulfilled. Since the addressing is interleaved, warps can be filled
by active threads up to the half. Therefore, we are not maximizing memory.

• Access to memory is also interleaved, so the peak bandwidth cannot be reached.

Sequential addressing

A solution to the drawbacks found in interleaved addressing is to compact the
memory accesses to contiguous threads. In order to implement this approach, it

The Reduction Problem in CUDA and Its Simulation with P Systems 97

will be necessary to change the tree of the reduce primitive solution. Now, the
first half of threads will access to the first half of the array to compute the partial
solutions with the second half. It can be seen that the access is coalesced in this
way, as well as warps are also fulfilled. Figure 4 shows the scheme of this approach,
called reduce 3, sequential addressing. Again, white-arrowed threads are inactive
in the beginning of the process.

Fig. 4. Reduce3: sequential addressing.

As it can be noticed, the main drawback of this solution is that half of the
threads are idle on first loop iteration, what is a waste of resources.

First add during load

The third approach, called reduce4 first add during load, is based on taking ad-
vantage of the threads which are inactive at the beginning of reduce3. The idea is
to halve the number of blocks, and to use all the threads at the beginning to apply
the reduction operation to the corresponding element with the element that would
have corresponded to the avoided extra block. That is, reduce4 will compute first
the array {a0,8, a1,9, a2,10, a3,11, a4,12, a5,13, a6,14, a7,15}, and proceed as in reduce3.

98 R. Ceterchi, M. Ángel Mart́ınez-del-Amor, M.J. Pérez–Jiménez

3 The Simulation with P Systems

In this section we use the formal tools developed in [7] to produce a straightforward
simulation with P systems of the reduction problem solved in CUDA as presented
in section 2. In [7] only SIMD machines were considered, and algorithms for
which communication took place only via a network of communication and not
via a shared memory. The present case is different, we have communication via
shared memory.

As a first step we construct for the CUDA model a P system Π(C) in the
spirit of Theorem 5 of [7]. The system must reflect in its membrane structure
the particular CUDA architecture. As a second step, we follow Theorem 7 of [7],
and construct Π(C, Y) for Y a reduction algorithm. We must specify for each
algorithm the specific sequence of pairs (graph, rules) which compose Rµ(Y).

Let Graphs denote the set of all possible graphs having n vertices labeled
P1, · · · , Pn. Having fixed the vertices, each element of Graphs will be uniquely
identified by the specific set of edges.

A distinguished element of Graphs is the identity graph, denoted in the sequel
Id: (the set of vertices is fixed as mentioned above) the set of edges is defined as

Id = {(i, i) | 1 ≤ i ≤ n}.

Another distinguished element of Graphs is the total graph, denoted Gtotal:
the set of edges is defined as

Gtotal = {(i, j) | 1 ≤ i, j ≤ n}.

One can also consider the strict total graph, denoted G+
total: with set of edges

defined as
G+
total = {(i, j) | 1 ≤ i, j ≤ n, i 6= j} = Gtotal \ Id.

We recall from [7] the following two definitions.

Definition 3.1 A P system with dynamic communication graphs is a construct

Π =< V,P1, · · · , Pn, Rµ >,

where P1, · · · , Pn are elementary membranes, and V is an alphabet of symbols used
to codify the contents of the membranes.

Rµ is a set of pairs [graph, rules], with graph ∈ Graphs and such that:

(i) if graph ⊆ Id then its associated rules are rewriting rules;
(ii) if graph ⊆ G+

total then its associated rules are communication rules.

Definition 3.2 A P system with dynamic communication graphs will be called
with finite sequential support iff the set Rµ is both finite and totally ordered, i.e.,
if it is a finite sequence.

The Reduction Problem in CUDA and Its Simulation with P Systems 99

Let V be an alphabet of symbols with which we will codify the contents of the
membranes. An integer n will be codified as an (n apparitions of the symbol a, with
a ∈ V). We assume we solve the reduction problem for a binary commutative and
associative operation ∗, and we assume we can compute n ∗m inside a membrane
by rewriting: i.e. we have symbols a, b ∈ V and a rewriting rule r∗(a, b) such that
r∗(a, b)(a

nbm) = an∗m.
We associate a hierarchical membrane structure to the CUDA components

in the following manner: (1) each thread is an elementary membrane; (2) each
block is a membrane containing the elementary ones associated to its threads; (3)
the global memory is a separate elementary membrane. The presentation of this
membrane structure is

µ = (B0(P00, P01, · · ·P0n), · · · , Bk(Pk0, Pk1, · · ·Pkn),Mg),

where n = 2t is the number of threads per block, Mg is the global memory mem-
brane, Pij is the membrane corresponding to thread j of block i, and when we
reason inside a block the subscript corresponding to the block may be omitted.

If we have a set Rµ of pairs (graph, rules) to obey the conditions of the defi-
nition, then the construct

Π(C) = (V, (B0(P00, P01, · · ·P0n), · · · , Bk(Pk0, Pk1, · · ·Pkn),Mg), Rµ)

= (V, µ,Rµ)

is a P system with dynamic communication graphs.
Here a discussion may start, comparing the P systems devised in [7] for SIMD-

X machines, and a potential similar candidate for the CUDA paradigm. Such a
candidate depends on a good definition for Rµ, or, at least, the formulation of
criteria for ’admissible’ candidates.

We open the way for this discussion, which is also a reflection on the power
and the limitations of the formalism introduced in [7], by simulating the solving
of the reduction problem in CUDA. More precisely, in the following we construct
sets Rµ(Y) with the property that Π(C, Y) = (V, µ,Rµ(Y)) is a P system with
dynamic communications graph, with finite sequential support, which simulates
Y , a reduction algorithm among the ones presented in Section 2.

The admissible communication graphs will have to reflect the communication
properties of CUDA. We will have communication edges between Mg and each
thread membrane Pji to simulate the reading from and the writing to global mem-
ory. Between the individual elementary membranes which simulate the threads
we can have communication only inside the same block, so the communication
graph will have separate connected components for each block. Rewriting rules
inside membranes will be associated to subgraphs of Id and communication rules
to subgraphs of G+

total.
We use the shorthand notation (A,B, x) for symbol x traveling on an oriented

edge (A,B) from A to B, (G, x) for symbol x travelling on all oriented edges of G,

100 R. Ceterchi, M. Ángel Mart́ınez-del-Amor, M.J. Pérez–Jiménez

and ({Gj}j , x) for symbol x traveling on all oriented edges of the family of graphs
{Gj}j .

The membrane Mg contains integers nij each codified with a symbol aij

Mg = {anij

ij | i = 0, · · · , k, j = 0, · · · , n}

The graph for loading from global memory will be {(Mg, Pij) | i, j}, and writing
from thread Pij to global memory will use the edge (Pij ,Mg).

Loading the integers from global memory into the membranes corresponding
to threads will be simulated by the sequence

({(Mg, Pij , aij)}ij , {(Pij , aij → a)}ij),

where the first step is a communication step, and the second a rewriting step.
Writing to global memory from block k will be simulated by the sequence

((Pk0, a→ ak0), (Pk0,Mg, ak0))

where the first step is a rewriting step, and the second a communication step.
We now construct the graph for interleaved addressing and the sequence of

rules which simulate the procedure reduce0 of section 2. We assume we are inside
a block and we omit the block index. For a fixed stride s the graph of interleaved
addressing will be

Gs = {(Pi+s, Pi) | i mod (2s) = 0}.

On one edge of this graph the sequence of rules to be applied is

((Pi+s, a→ ab), (Pi+s, Pi, b), (Pi, r∗(a, b))).

We first rewrite a to ab in Pi+s, then the b symbol travels to Pi, and finally in Pi
the application of the rewriting rule r∗ produces the desired result.

For the entire block, the sequence of rules for stride s will be

Rs = (({Pi+s}i, a→ ab), (Gs, b), ({Pi}i, r∗(a, b))).

To finish the simulation of reduce0 we have to iterate Rs corresponding to the
sequence of strides for this case, i.e. we consider the sequence

(Rs | s = 1, s <= n, s = 2 ∗ s).

For sequential addressing the communication graph inside a block is

G′s = {(Pi+s, Pi) | i = 0, 1, · · · , s− 1}.

For the entire block, the sequence of rules for stride s will be

R′s = (({Pi+s}i, a→ ab), (G′s, b), ({Pi}i, r∗(a, b))).

The Reduction Problem in CUDA and Its Simulation with P Systems 101

To finish the simulation we iterate R′s corresponding to the sequence of strides
for this case, i.e. we consider the sequence

(R′s | s = n = 2t, s > 0, s = s div 2).

We can analogously simulate the remaining versions of the procedure reduce
of section 2. We illustrate with the improvement first add during load.

In this case we halve the number of blocks, and thus of threads. Equivalently,
we can consider that Mg contains a double number of integers, codified with a
number of symbols doubled compared to the number of threads. We denote aij
and bij the symbols which will correspond to the thread Pij . The previous loading
sequence will be replaced by the load-and-add sequence

({(Mg, Pij , aij , bij)}ij , {(Pij , r∗(aij , bij), aij → a)}ij).

References

1. J.M. Cecilia, J.M. Garćıa, G.D. Guerrero, M.A. Mart́ınez-del-Amor, I. Pérez-
Hurtado, M.J. Pérez-Jiménez. Simulation of P systems with Active Membranes on
CUDA, Briefings in Bioinformatics, 11, 3 (2010), 313–322.

2. J.M. Cecilia, J.M. Garćıa, G.D. Guerrero, M.A. Mart́ınez-del-Amor, I. Pérez-
Hurtado, M.J. Pérez-Jiménez, Simulating a P system based efficient solution to SAT
by using GPUs, Journal of Logic and Algebraic Programming, 79, 6 (2010), 317–325.

3. R. Ceterchi, C. Mart́ın–Vide: Dynamic P Systems. In ”Membrane Computing”, In-
ternational Workshop, WMC-CdeA 2002, Curtea de Argeş, Romania, August 2002,
Revised Papers, (G. Păun, G. Rozenberg, A. Salomaa, C. Zandron eds.), LNCS 2597,
Springer 2003, p. 146-186

4. R. Ceterchi, M.J. Pérez Jiménez: Simulating Shuffle–Exchange Networks with P Sys-
tems. In Proceedings of the Second Brainstorming Week on Membrane Computing
(Gh. Păun, A. Riscos, F. Sancho and A. Romero, eds.), Report RGNC 01/04, Uni-
versity of Seville 2004, 117-129.

5. R. Ceterchi, M.J. Pérez Jiménez: A Perfect Shuffle Algorithm for Reduction Processes
and its Simulation with P Systems. In Proceedings of the International Conference
on Computers and Communications ICCC 2004 (I. Dzitac, T. Maghiar, C. Popescu,
eds.), Editura Univ. Oradea, 2004, 92-97

6. R. Ceterchi, M.J. Pérez Jiménez: On Two-Dimensional Mesh Networks and Their
Simulation with P Systems. In Membrane Computing, 5th International Workshop,
WMC 2004, Revised Selected and Invited Papers (G. Mauri, Gh. Păun, M. J. Pérez–
Jiménez, G. Rozenberg, A. Salomaa, eds.), LNCS 3365 (2005), 259-277.

7. R. Ceterchi, M.J. Pérez Jiménez: On Simulating a Class of Parallel Architectures,
International Journal of Foundations of Computer Science, Vol. 17, No. 1 (2006)
91–110

8. M. Harris: Optimizing Parallel Reduction in CUDA, NVIDIA Developer Technology
(2007).

9. M. Harris. Mapping computational concepts to GPUs, ACM SIGGRAPH 2005
Courses, NY (USA), 2005.

102 R. Ceterchi, M. Ángel Mart́ınez-del-Amor, M.J. Pérez–Jiménez

10. D. Kirk, W. Hwu. Programming Massively Parallel Processors: A Hands On Ap-
proach, MA (USA), 2010.

11. M.A. Mart́ınez-del-Amor, J. Pérez-Carrasco, M.J. Pérez-Jiménez. Characterizing the
parallel simulation of P systems on the GPU. International Journal of Unconven-
tional Computing, 9, 5-6 (2013), 405-424.

12. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, A. Gastalver-Rubio, A.C. Elster, M.J.
Pérez-Jiménez. Population Dynamics P systems on CUDA. In 10th Conference on
Computational Methods in Systems Biology, CMSB2012, (D. Gilbert, M. Heiner,
eds.), LNBI 7605 (2012), 247-266.

13. Gh. Păun: Computing with Membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for CS-TUCS Report No. 208, 1998

14. Gh. Păun: Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
15. NVIDIA CUDA website, 2014. https://developer.nvidia.com/cuda-zone

Towards P Colonies Processing Strings

Luděk Cienciala1, Lucie Ciencialová1, Erzsébet Csuhaj-Varjú2

1 Institute of Computer Science
and
Research Institute of the IT4Innovations Centre of Excellence,
Silesian University in Opava, Czech Republic
{ludek.cienciala, lucie.ciencialova,}@fpf.slu.cz

2 Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
csuhaj@inf.elte.hu

Summary. In this paper we introduce and study P colonies where the environment is
given as a string. These variants of P colonies, called Automaton-like P systems or APCol
systems, behave like automata: during functioning, the agents change their own states
and process the symbols of the string. After introducing the concept of APCol systems,
we examine their computational power. It is shown that the family of languages accepted
by jumping finite automata is properly included in the family of languages accepted by
APCol systems with one agent, and it is proved that any recursively enumerable language
can be obtained as a projection of a language accepted by an Automaton-like P colony
with two agents.

1 Introduction

P colonies were introduced in [13] as formal models of a computing device combin-
ing properties of membrane systems and distributed systems of formal grammars
called colonies. The concept was inspired by the structure and functioning of a com-
munity of living organisms in a shared environment (for more information consult
[14]).

In the basic model, the cells or agents are represented by a finite collection of
objects and rules for processing these objects. The agents are restricted in their
capabilities, i.e., only a limited number of objects, say, k objects, are allowed to be
inside any cell during the functioning of the system. These objects represent the
current state of the agents, in other terms the current contents of the cells. The
rules of the cells are either of the form a→ b, specifying that an internal object a
is transformed into an internal object b, or of the form c ↔ d, specifying that an
internal object c is exchanged by an object d in the environment. After applying
these rules in parallel, the state of the agent will consist of objects b, d. Each agent
is associated with a set of programs composed of such rules.

104 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

The agents of a P colony perform a computation by synchronously applying
their programs to the objects representing the state of the agents and objects
in the environment. At the beginning of the computation, executed by a given
P colony of capacity k, i.e., where any agent has at most k symbols inside, the
environment contains arbitrarily many copies of a distinguished symbol e, called
the environmental symbol (and no more symbols); furthermore, each cell contains
k copies of e. When a halting configuration is reached, that is, when no more rules
can be applied, the result of the computation is read as the number of certain
types of objects in the environment.

P colonies have been extensively examined during the years. For example, it
was shown that these systems are computationally complete computing devices
even with very restricted size parameters and with other (syntactic or functioning)
restrictions [1, 2, 4, 5, 6, 7, 9, 10].

According to the the basic model, the impact of the environment on the be-
havior of the P colony is indirect. To describe the situation when the behavior of
the components of the P colony is influenced by direct impulses coming from the
environment step-by-step, the model was augmented with a string put on an input
tape to be processed by the P colony [3]. These strings corresponds to the impulse
sequence coming from the environment. In addition to their rewriting rules and
the rules for communicating with the environment, the agents have so-called tape
rules which are used for reading the next symbol on the input tape. This is done
by changing one of the objects of the current state of the agents to the object
corresponding to the current input symbol on the tape. The symbol is said to be
read if at least one agent applied its corresponding tape rule. The model, called a
P colony automaton or a PCol automaton, combines properties of standard finite
automata and standard P colonies. The P colony automaton starts working with
a string on its input tape (the input string) and with initial multisets of objects in
its cells. The input string is accepted if it is read by the system and the P colony is
in an accepting configuration (in an accepting state). It was shown that P colony
automata are able to describe the class of recursively enumerable languages, taking
various working mode into account.

In this paper we make one step further in combining properties of P colonies
and automata. While in the case of PCol automata the behaviour of the system
is influenced both by the string to be processed and the environment consisting
of multisets of symbols, in the case of Automaton-like P colonies or APCol sys-
tems, for short, introduced in this article, the whole environment is a string. The
interaction between the agents in the P colony and the environment is realized
by exchanging symbols between the objects of the agents and the environment
(communication rules), and the states of the agents may change both via com-
munication and evolution; the latter one is an application of a rewriting rule to
an object. The distinguished symbol, e (in the previous models the environmental
symbol) have a special role: whenever it is introduced in the string by communi-
cation, the corresponding input symbol is erased.

Towards P Colonies Processing Strings 105

The computation in APCol systems starts with an input string, representing
the environment, and with each agents having only symbols e in its state. Every
computational step means a maximally parallel action of the active agents: an
agent is active if it is able to perform at least one of its programs, and the joint
action of the agents is maximally parallel if no more active agent can be added
to the synchronously acting agents. The computation ends if the input string is
reduced to the empty word, there are no more applicable programs in the system,
and meantime at least one of the agents is in so-called final state.

After defining the model, we examined the computational power of APCol sys-
tems. We proved that the family of languages accepted by jumping finite automata
is properly included in the family of languages accepted by APCol systems with
one agent and it was shown that any recursively enumerable language can be ob-
tained as a projection of a language accepted by an Automaton-like P colony with
two agents. We also provided several examples to demonstrate the behaviour of
an APCol system.

2 Definitions

Throughout the paper we assume the reader to be familiar with the basics of the
formal language theory and membrane computing. For further details we refer to
[11] and [17].

For an alphabet Σ, the set of all words over Σ (including the empty word, ε),
is denoted by Σ∗. We denote the length of a word w ∈ Σ∗ by |w| and the number
of occurrences of the symbol a ∈ Σ in w by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets with the set of objects V
is denoted by V ◦. The set V ′ is called the support of M and denoted by supp(M).
The cardinality of M , denoted by |M |, is defined by |M | =

∑
a∈V f(a). Any

multiset of objects M with the set of objects V ′ = {a1, . . . an} can be represented
as a string w over alphabet V ′ with |w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words
obtained from w by permuting the letters can also represent the same multiset M ,
and ε represents the empty multiset.

In the following we introduce the concept of an Automaton-like P colony (an
APCol system, for short) where the environment of the agents is given in the form
of a string.

As in the case of standard P colonies, agents of the APCol systems contain
objects, each being an element of a finite alphabet. With every agent, a set of
programs is associated. There are two types of rules in the programs. The first
one, called an evolution rule, is of the form a → b. It means that object a inside
of the agent is rewritten (evolved) to the object b. The second type of rules, called a
communication rule, is in the form c↔ d. When this rule is performed, the object
c inside the agent and a symbol d in the string are exchanged, so, we can say that

106 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

the agent rewrites symbol d to symbol c in the input string. If c = e, then the
agent erases d from the input string and if d = e, symbol c is inserted into the
string.

An Automaton-like P colony works successfully, if it is able to reduce the given
string to ε, i.e., to enter a configuration where at least one agent is in accepting
state and the processed string is the empty word.

Definition 1. An Automaton-like P colony (an APCol system, for short) is a
construct

Π = (O, e,A1, . . . , An), where

• O is an alphabet; its elements are called the objects,
• e ∈ O, called the basic object,
• Ai, 1 ≤ i ≤ n, are agents. Each agent is a triplet Ai = (ωi, Pi, Fi), where

– ωi is a multiset over O, describing the initial state (content) of the agent,
|ωi| = 2,

– Pi = {pi,1, . . . , pi,ki} is a finite set of programs associated with the agent,
where each program is a pair of rules. Each rule is in one of the following
forms:
· a→ b, where a, b ∈ O, called an evolution rule,
· c↔ d, where c, d ∈ O, called a communication rule,

– Fi ⊆ O∗ is a finite set of final states (contents) of agent Ai.

In the following we explain the work of an Automaton-like P colony; to help
the easier reading we provide only the necessary formal details.

During the work of the APCol system, the agents perform programs. Since
both rules in a program can be communication rules, an agent can work with
two objects in the string in one step of the computation. In the case of program
〈a↔ b; c↔ d〉, a substring bd of the input string is replaced by string ac. If the
program is of the form 〈c↔ d; a↔ b〉, then a substring db of the input string is
replaced by string ca. This means that the agent can act only in one place in the
one step of the computation and what happens to the string depends both on the
order of the rules in the program and on the interacting objects. In particular, we
have the following types of programs with two communication rules:

• 〈a↔ b; c↔ e〉 - b in the string is replaced by ac,
• 〈c↔ e; a↔ b〉 - b in the string is replaced by ca,
• 〈a↔ e; c↔ e〉 - ac is inserted in a non-deterministically chosen place in the

string,
• 〈e↔ b; e↔ d〉 - bd is erased from the string,
• 〈e↔ d; e↔ b〉 - db is erased from the string,
• 〈e↔ e; e↔ d〉; 〈e↔ e; c↔ d〉, . . . - these programs can be replaced by pro-

grams of type 〈e→ e; c↔ d〉.

At the beginning of the work of the APCol system (at the beginning of the
computation), there is an input string placed in the environment, more precisely,
the environment is given by a string ω of objects which are different from e.

Towards P Colonies Processing Strings 107

This string represents the initial state of the environment. Consequently, an initial
configuration of the Automaton-like P colony is an (n+1)-tuple c = (ω;ω1, . . . , ωn)
where w is the initial state of the environment and the other n components are
multisets of strings of objects, given in the form of strings, the initial states the of
agents.

A configuration of an Automaton-like P colony Π is given by (w;w1, . . . , wn),
where |wi| = 2, 1 ≤ i ≤ n, wi represents all the objects placed inside the i-th
agent and w ∈ (O − {e})∗ is the string to be processed.

At each step of the (parallel) computation every agent attempts to find one
of its programs to use. If the number of applicable programs is higher than one,
the agent non-deterministically chooses one of them. At one step of computation,
the maximal possible number of agents have to be active, i.e., have to perform a
program.

By applying programs, the Automaton-like P colony passes from one config-
uration to another configuration. A sequence of configurations started from the
initial configuration is called a computation. A configuration is halting if the AP-
Col system has no applicable program. A computation is called accepting if and
only if at least one agent is in final state and the string to be processed is ε.
Hence, the string w is accepted by the Automaton-like P colony Π if there exists
a computation by Π such that it starts in the initial configuration (ω;ω1, . . . , ωn)
and the computation ends by halting in the configuration (ε;w1, . . . , wn), where
at least one of wi ∈ Fi for 1 ≤ i ≤ n.

3 Computational power of Automaton-like P colonies

The behaviour of Automaton-like P colonies is similar to the functioning of
jumping finite automata. The jumping finite automaton is a quintuple M =
(Q,Σ, δ, q0, F) where the meaning of Q,Σ, δ, q0 and F is the same as in the case of
traditional finite automaton with ε-steps (the set of states, the input alphabet, the
transition function, the initial state, and the set of final states). The dissimilarity
of the two computing devices is in the way of performing a computational step.
The computation starts in a random cell of the input tape. After reading the input
symbol in the cell and changing the state of the automaton, the reading head is
allowed to jump to some random location on the tape. If the symbol is read, then it
is erased from the tape. The notion of a jumping finite automaton was introduced
in [15], we refer to this seminal article for the precise details.

Although non-trivial languages can be recognized by jumping finite automata,
the following languages cannot be accepted by them: L1 = {ab}, L2 = {anbn |
n ≥ 0}, L3 = {anbncn | n ≥ 0}. But, jumping finite automata accept L4 =
{ab, ba}, L5 = {w ∈ {a, b}∗ | |w|a = |w|b}, L6 = {w ∈ {a, b, c}∗ | |w|a = |w|b =
|w|c}. It is shown that the family of languages accepted by jumping finite automata
is included in the family of context-sensitive languages.

108 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

Theorem 1. For every jumping finite automaton M = (q,Σ, δ, q0, F) we can con-
struct an Automaton-like P colony Π = (O, e,A) such that L(M) = L(Π) holds.

Proof. Let M = (q,Σ, δ, q0, F) be a jumping finite automaton. We construct an
Automaton-like P colony Π with one agent A which simulates every computation
of M and only that. The simulation is as follows:

• The current state of M is stored as object inside the agent of Π, i.e., it corre-
sponds to a state of the agent.

• One step of computation of M (except of ε-step) is simulated by two compu-
tation steps of Π. In the first step, the agent changes the object corresponding
to the state of M and replaces the symbol on the tape by object e - erases
the symbol has been read from the input string. In the second step, the agent
prepares itself for the simulation of the next step of computation of M - it
rewrites the consumed symbol from the tape to e.

Formally, we construct the Automaton-like P colony Π = (A, e,B) as follows:

1. O = Q ∪Σ ∪ {e};
2. A = (q0e, P1, {qfe | qf ∈ F});
3. P1 = {
〈q → q′, e↔ a〉 for every q, q′ ∈ Q, a ∈ Σ such that q′ ∈ δ (q, a)
〈q′ → q′, a→ e〉 for every q′ ∈ Q, a ∈ Σ
〈q → q′, e→ e〉 for every q, q′ ∈ Q such that q′ ∈ δ (q, ε)
}

The Automaton-like P colony starts processing an input string w in initial
configuration (q0e;w) that corresponds to the initial configuration of jumping finite
automaton M (q0, w).

If M is in the configuration (q, uav), q ∈ Q, u, v ∈ Σ∗, a ∈ Σ and it per-
forms computational step reaching state q′ such that q′ ∈ δ (q, a), then it enters
configuration (q′, uv). If the APCol system Π is in the corresponding configura-
tion (qe;uav), then the agent has an applicable program 〈q → q′, e↔ a〉. After
executing this program, Π enters configuration (q′a;uv) and in the next step the
program 〈q′ → q′, a→ e〉 must be performed. The configuration of Π is (q′e, uv)
that corresponds to configuration of M . Then the APCol system Π is prepared to
simulate the next step of computation of jumping finite automaton M .

If the automaton M is in the configuration (q, u), q ∈ Q, u ∈ Σ∗ and it per-
forms computational step reaching state q′ such that q′ ∈ δ (q, ε), then it enters
configuration (q′, u). If the APCol system Π is in the corresponding configuration
(qe;u), then the agent has applicable program 〈q → q′, e→ e〉. After execution of
this program the system is in the configuration (q′;u). This configuration corre-
sponds to configuration of the jumping finite automaton M .

The automaton M accepts input string w iff it passes from the initial configu-
ration (q0, w) to one of final configuration (qf , ε). This computation corresponds
to computation in Π that starts in the initial configuration (q0e;w) and ends in
one of final configurations (qfe; ε). The computation of Π is halting if and only

Towards P Colonies Processing Strings 109

if the computation in M is halting, too. Hence the Automaton-like P colony Π
accepts string w if only if jumping finite automaton M accepts w. ut

Now we show that Automaton-like P colonies are able to accept languages that
jumping finite automata cannot.

Example 1. Let Π1 = ({a, b, p} , e, A) be an Automaton-like P colony with one
agent A = (ee, P, {pp}). Let the programs of the agent be the following:

1. 〈e↔ a; e↔ b〉
2. 〈a→ p; b→ p〉

Let (ee, w) , w ∈ {a, b}∗ be the initial configuration of Π1. There is only one appli-
cable program in this configuration, namely, program 1. This program is applicable
only if ab is substring of w. Let w = u·ab·v, u, v ∈ {a, b}∗. After the first step of the
computation the configuration of Π1 is (ab, uv). In this configuration the second
program 〈a→ p; b→ p〉 is applicable and the APCol system enters configuration
(pp, uv). Because of presence of two copies of object p in the state of the agent,
there is no applicable program in the APCol system and the computation halts.

The language accepted by Π1 is L(Π1) = {ab}.

Example 2. Let Π2 = ({a, b, q} , e, B) be an Automaton-like P colony with one
agent B = (ee, P, {qe}). The programs of the agent are following:

1. 〈e↔ a; e↔ b〉
2. 〈a→ q; b→ e〉
3. 〈q → q; e↔ a〉
4. 〈q → q; e↔ b〉
5. 〈q → q; a→ e〉
6. 〈q → q; b→ e〉

Let (ee, w) , w ∈ {a, b}∗ be the initial configuration of Π2. There is only one
applicable program in this configuration, program 1. This program is applicable
only if ab is substring of w. Let w = u·ab·v, u, v ∈ {a, b}∗. After the first step of the
computation the configuration of Π2 is (ab, uv). In this configuration the second
program 〈a→ q; b→ e〉 is applicable and the APCol system enters configuration
(qe, uv). Because of presence of one copy of object q inside the agent, it uses
program 3 (or 4) and, consequently, program 5 (or 6). By use of these programs,
the agent erases every object a and b from the string.

The language accepted by Π2 is L(Π2) = {u·ab·v | u, v ∈ {a, b}∗}.

By the following example, we present a very simple Automaton-like P colony
with only one agent with two programs that accepts the context-free language
L = {anbn | n ≥ 0}.

Example 3. Let Π3 = ({a, b} , e, B) be an Automaton-like P colony with one agent
A = (ee, P, {ee}). The programs of the agent are the following:

1. 〈e↔ a; e↔ b〉

110 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

2. 〈a→ e; b→ e〉

Let (ee, w) , w ∈ {a, b}∗ be the initial configuration of Π. There is only one
applicable program in this configuration, program 1. This program is applicable
only if ab is substring of w. Let w = u · ab · v, u, v ∈ {a, b}∗. After the first
step of the computation the configuration of the APCol system is (ab, uv). In
this configuration the second program 〈a→ e; b→ e〉 is applicable and Π3 enters
configuration (ee, uv). This means that in two step of computation agent erases
substring ab from a string. The computation ends when no substring ab occurs in
the input string, thus any accepted word must be of the form anbn, n ≥ 0.

An interesting question is if we can construct an Automaton-like P colony
which accepts the language L = {anbncn | n ≥ 0}.

Example 4. Let Π4 = ({a, b, B} , e, A1, A2, {((ee), (bB))}) be an Automaton-like
P colony with two agents A1 = (eB, P1, {ee}) and A2 = (bB, P2, {bB}). The
programs of the agents are the following:

Set of programs P1:
1. 〈e↔ a;B ↔ b〉
2. 〈a→ e; b→ B〉
3. 〈a→ e; b→ e〉
4. 〈e↔ B; e↔ c〉
5. 〈B → e; c→ e〉
6. 〈e↔ a; e→ F 〉
7. 〈e↔ b; e→ F 〉

Set of programs P2:
A. 〈b↔ B;B ↔ b〉

It can be shown that L(Π4) = {anbncn | n ≥ 0}. Instead of the formal proof,
we provide the sketch of the main idea. Π4 functions as follows:

1. the first agent is an ”eraser” - it erases substrings from the input string - it
replaces string ab by B and erases substring Bc.

2. The second agent moves object B over that part of the input string which
contains objects b.

3. The computation is accepting if every object from the input string is erased
and the state of the first agent consists of only objects e.

We show an example of an accepting computation of Π4 over the string w =
aaabbbccc.

Towards P Colonies Processing Strings 111

step string agent A1 agent A1

of computation content applicable programs content applicable programs

0. aaabbbccc eB 1. Bb
1. aaBbbccc ab 2., 3. Bb A.
2. aabBbccc eB 1. Bb A.
3. aBbBccc ab 2., 3. Bb A.
4. abBBccc eB 1. Bb
5. BBBccc ab 2.,3. Bb
6. BBBccc ee 4. Bb
7. BBcc Bc 5. Bb
8. BBcc ee 4. Bb
9 Bc Bc 5. Bb

10. Bc ee 4. Bb
11. ε Bc 5. Bb
12. ε ee Bb

The next example is a non-accepting computation over the string w =
aaabbbccc on the next table.

step string agent A1 agent A1

of computation content applicable programs content applicable programs

0. aaabbbccc eB 1. Bb
1. aaBbbccc ab 2., 3. Bb A.
2. aabBbccc eB 1. Bb A.
3. aBbBccc ab 2.,3. Bb A.
4. abBBccc ee 6., 7. Bb
5. bBBccc Fe Bb

The Automaton-like P colony processes the string u = aabcbc in the following
computations.

step string agent A1 agent A1

of computation content applicable programs content applicable programs

0. aabcbc eB 1. Bb
1. aBcbc ab 2., 3. Bb A.
2. aBcbc eB Bb

112 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

step string agent A1 agent A1

of computation content applicable programs content applicable programs

0. aabcbc eB 1. Bb
1. aBcbc ab 2.,3. Bb
2. aBcbc ee 4. Bb
3. abc Bc 5. Bb
4. abc ee 6., 7. Bb
5. bc Fa Bb

By the previous examples we obtain the following corollary.

Corollary 1. The family of languages accepted by Automaton-like P colonies with
one agent properly includes the family of languages accepted by jumping finite
automata.

Automaton-like P colonies with one agent are able to simulate jumping finite
automata. If we add one more agent, we can construct Automaton-like P colonies
simulating the work of two-counter machines. For details on two-counter machines
consult [11, 16].

A two-counter machine is a 3-tape Turing machine M = (Σ ∪ {Z,B}, Q,R)
where:

• Σ is an finite set of symbols - alphabet of input symbols,
• Z is the symbol marking the beginning of second and third tape (first and

second counter),
• B is the blank symbol,
• Q is a finite set of states with two distinguished elements q0, qf ∈ Q, q0 is the

initial state and qf is the final state of M ,
• R is a set of transition rules.

The first tape of the machine is the input tape and second and third tapes
are called storage tapes. All tapes are read-only and the storage tapes are semi-
infinite. At the beginning of the storage tape symbol Z is found and the rest of
the tape is empty (it contains only symbols B). The input tape contains the input
word and occurrences of B.

The transition rules have the form x = 〈b, q, c1, c2, q′, e1, e2, g〉 where:

• b ∈ Σ ∪ {B} is the symbol scanned by the input head on the input tape,
• q, q′ ∈ Q is the state of the two-counter machine,
• c1, c2 ∈ {Z,B} are the symbols scanned on the storage tapes,
• e1, e2 ∈ {−1, 0,+1} describe the move of the heads on the storage tapes,
• g ∈ {0,+1} describe the move of the input head.

This rule can be performed by M if symbol scanned on input tape is b, M is in
the state q and symbols read from storage tapes are c1, c2. By applying this rule
M enters state q′ and the heads move in according to g, e1, e2. If the value is −1,
then the head moves to the left, if the value is +1, then the head moves to the
right, and, if its value is 0, then the head stays at the same position. The head on

Towards P Colonies Processing Strings 113

input tape can never move to the left and if symbol on read from storage tape is
Z, then the head must not to move to the left, too.

The integer stored in a counter is number of all blank symbols laying between
the storage head (and under it) and symbol Z on the storage tape. If the head
scans symbol Z, then the counter has value 0.

The state of M , the contents of the tapes, and the position of heads on the
tapes together define configuration of M . The two-counter machine is in an initial
configuration if it is in initial state, on the first tape it has the input word, on
the second and third tape it has a word from ZB∗, and the heads are scanning
the first symbol of the tapes. The two-counter machine M is in the accepting
configuration if the input head reads the last non-blank symbol on the input tape
and the machine is in the final state; in this case the input word is accepted.

Two-counter machine are computationally complete computing devices [11, 8].

Theorem 2. Let Σ be an alphabet, L ⊆ Σ∗ be a recursively enumerable language.
Let L′ = S ·L ·E, where S,E /∈ Σ. Then there exists an Automaton-like P colony
Π with two agents such that L′ = L(Π) holds.

Proof. Let M = (Σ ∪ {Z,B}, Q,R) be a two-counter machine accepting language
L. We construct an Automaton-like P colony Π = (O, e,A1, A2) which accepts
S · L · E, where:

• O = Σ ∪ {e, Z1, Z2, B1, B2, D,G,E, S, S
′, S, S,Q,Q,Q,M,M,M, } ∪

∪ {AB | A ∈ Σ ∪ {Z1, Z2, B1, B2},
B ∈ {T, T1, T2, H+1, H0, I+1, I−1, I0, J+1, J−1, J0} ∪

∪ {q, q, q, q | q ∈ Q}}
• A1 = (S′G,P1, {M A

H , where A ∈ Σ ∪ {e}, H ∈ {H+1, H0}})
• A2 = (Z1

T1

Z2

T2
, P2, {Qe})

The sets of programs are the following:
For the first part of computation, programs are needed to initialize the simula-

tion. They generate the initial contents of the counters and mark the first symbols
on each tape, i.e., the symbols under the reading heads (for example, replace a by
a
T).

The programs for initialization of the simulation:
A1 : A2 :

1. 〈S′ ↔ S;G↔ a〉 1.
〈

Z1

T1
↔ e; Z2

T2
↔ S′

〉
2.
〈
S → S; a→ a

T

〉
2. 〈S′ → D; e→ e〉

3.
〈
S → S; a

T ↔ G
〉

4.
〈
S → q0;G→ a

H

〉
∀a ∈ Σ, H ∈ {H+1, H0}

Let the input word of the two-counter machine be w = av, a ∈ Σ, w, v ∈ Σ∗.
At the beginning of the computation the input tape contains the word SavE.

114 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

Agent A1 uses the program 1. and replaces first two symbols Sa by string S′G.
In the second step, both agents work. Agent A1 rewrites objects Sa to objects
S a

T (inside it), and the second agent A2 replaces symbol S′ by string Z1

T1

Z2

T2
. In

the third step agent A1 replaces symbol G by symbol a
T and rewrites object S by

object S. Agent A2 changes its state from (S′e) to De. Agent A2 is prepared to
continue the simulation, otherwise agent A1 has to do one more step. At the last

step of the initialization, agent A1 uses program 4. and it rewrites SG to q0
a
H .

(SavE;S′G, Z1

T1

Z2

T2
)⇒ (S′GvE;Sa, Z1

T1

Z2

T2
)⇒ (Z1

T1

Z2

T2
GvE;S a

T , S
′e)⇒

⇒ (Z1

T1

Z2

T2

a
T vE;SG,De)⇒ (Z1

T1

Z2

T2

a
T vE; q0

a
H , De)

The second group of programs is to simulate the execution of the transition
rules of the two-counter machine. Let 〈b, q, c1, c2, q′, e1, e2, g〉 be a transition rule,
where b ∈ Σ ∪ {B}, q, q′ ∈ Q, c1, c2 ∈ {Z,B}, e1, e2 ∈ {−1, 0,+1}, g ∈ {0,+1}.
Agent A1 has programs to check whether the reading heads are over the corre-
sponding symbols, i.e., symbols b, c1 and c2, and to note the string moves of the
reading heads by replacing b

T , c1
T1

and c2
T2

by b
g , c1

e1
and c2

e2
.

A1 :

5.
〈
q → q; b

g ↔
b
T

〉
10.
〈
qj → qj+1; c22

Je2
→ c22

Je2

〉
; j ∈ {1, 2}

6.
〈
q → q1; b

T →
c11

Ie1

〉
11.
〈
q3 → q; c22

Je2
↔ c22

T2

〉
7.
〈
qi → qi+1; c11

Ie1
→ c11

Ie1

〉
; 1 ≥ i ≥ 5 12.

〈
q → q1; c2

T2
→ a

H

〉
8.
〈
q6 → q; c11

Ie1
↔ c11

T1

〉
13.
〈
qk → qk+1; a

H →
a
H

〉
; k ∈ {1, 2}

9.
〈
q → q1; c11

T1
→ c22

Je2

〉
14.
〈
q3 → q′; a

H →
a
H

〉
∀a ∈ Σ ∪ {B}, H ∈ {H+1, H0}
Agent A1 performs some “waiting” steps to let the second agent execute the

movement of reading heads. At the last steps of this part of the computation agent
A1 in some way “precomputes” the symbol to be read in the next step. This symbol
is non-deterministically chosen from the set Σ ∪ {B}. If the precomputed symbol
does not match the symbol on the tape in the next step, the computation halts
in a non-accepting configuration. The second agent has programs to perform the
movement of the reading heads.

Towards P Colonies Processing Strings 115

A2 :
the movement of reading head on the input tape

15.
〈
D ↔ b

H0
; e→ b

T

〉
17.
〈
D ↔ b

H+1
; e↔ a

〉
19.
〈
D ↔ b

H+1
; e↔ E

〉
16.
〈

b
H0
→ e; b

T ↔ D
〉

18.
〈

b
H+1
→ b; a→ a

T

〉
20.
〈

b
H+1
→ b;E → B′

〉
21. 〈b↔ D;B′ ↔ e〉

22.
〈
D ↔ B′; e→ B

T

〉
23.
〈
B′ → E; B

T →
B
T

〉
24.
〈

B
T ↔ D;E ↔ e

〉
∀a ∈ Σ, H ∈ {H+1, H0}

In the first column there are programs for the case when the reading head does
not move - g = 0. In the second and third column there are programs for executing
the move of the head to the right - g = +1. In the third column there are programs
to do movement to the right when the reading head is on the last symbol of the
string, so the head have to move to the blank symbol after the string.

A2 :
the movement of reading head on the first counter, X ∈ {Z1, B1}
25.
〈
D ↔ X

I0
; e→ X

T1

〉
27.
〈
D ↔ X

I+1
; e→ B1

T1

〉
30.
〈
D ↔ Y ; e↔ X

I−1

〉
26.
〈

X
I0
→ e; X

T1
↔ D

〉
28.
〈

X
I+1
→ X; B1

T1
→ B1

T1

〉
31.
〈
Y → Y

T1
; X
I−1
→ e

〉
29.
〈
X ↔ D; B1

T1
↔ e

〉
28.
〈

Y
T1
↔ D; e↔ e

〉
A2 :

the movement of reading head on the second counter, X ∈ {Z2, B2}
32.
〈
D ↔ X

J0
; e→ X

T2

〉
34.
〈
D ↔ X

J+1
; e→ B2

T2

〉
37.
〈
D ↔ Y ; e↔ X

J−1

〉
33.
〈

X
J0
→ e; X

T2
↔ D

〉
35.
〈

X
J+1
→ X; B2

T2
→ B2

T2

〉
38.
〈
Y → Y

T2
; X
J−1
→ e

〉
36.
〈
X ↔ D; B2

T2
↔ e

〉
39.
〈

Y
T2
↔ D; e↔ e

〉
The programs devoted to reading heads on the counters are similar to the ones

for the reading head on the input tape. The programs in the first columns are for
staying at the same place, the second columns for movement to the right, and the
last columns for the movement of the reading head to the left.

Now we finish the simulation of execution of the transition rules. The last group
of programs is to finish the computation after the two-counter machine M comes
to final state. M accepts the string on the input tape only if it is in the final state
and the reading head on the input tape is in the position on the last non-blank
symbol. The Automaton-like P colony Π ends computation by halting. The string
is accepted by Π only if the input tape is empty after halting in the final state
of at least one agent. So, after reaching the final state of M the Automaton-like
P colony Π has to erase the symbols on and before the reading head (symbol of

116 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

the type a
T and all symbols placed on the left from this symbol - the contents

of both counters) on the input tape, symbols B and finally the symbol E, which
determines the end of the string w. If there is some non-erased symbol left on
the input tape, then the two-counter machine does not accept the word w, too,
because the reading head in not on the last non-blank symbol of the input tape.

A1 :
erasing the last symbol over the reading head on the input tape
a ∈ Σ,H ∈ H0, H+1

32.
〈
qf ↔M ; a

H ↔
a
T

〉
34.
〈
M →M ;Q↔ a

H

〉
33.
〈
M →M ; a

T → Q
〉

35.
〈
M →M ; a

H → e
〉

A2 :
erasing symbols on the counters and at the end of the tape

Z ∈ {Z1, Z2, B1, B2,
Z1

T1
, Z2

T2
, B1

T1
, B2

T2
, B,E}

36.
〈
D → Q; e→ Q

〉
38.
〈
Q↔ q; e↔ Z

〉
37.
〈
Q→ Q;Q↔ e

〉
39.
〈
Q→ Q;Z → e

〉
The computation of Π starts in the initial configuration which corresponds to

the initial configuration of two-counter machine M . After the initialization, the
simulation of execution of particular transition rules runs in the same way as they
are applied by M . The computation of Π halts in accepting configuration only
if M processes the whole input string and ends computation in the one of final
states. ut

By the previous theorem we obtain the following corollary:

Corollary 2. Any recursively enumerable language can be obtained as a projection
of a language accepted by an Automaton-like P colony with two agents.

4 Conclusions

We introduced the concept on an Automata-like P colony (an APCol system)
- a variant of P colonies that works on a string. The agents communicate with
the environment alike standard P colonies: they process symbols in the string. As
P colony automata, the concept is a notion combining properties of P colonies
and classical automata. The main difference in the two notions is in the way of
interaction between the agents (the cells) and the environment. We compared
the computational power of Automata-like P colonies and that of jumping finite
automata, and proved that APCol systems are strictly powerful than jumping
finite automata. We also provided a representation of the recursively enumerable
language class in terms of APCol systems. The question of exact description of
the computational power of Automata-like P colonies is still open.

Towards P Colonies Processing Strings 117

Remark 1. This work was partially supported by the European Regional Develop-
ment Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/-
02.0070), by SGS/24/2011 and by project OPVK no. CZ.1.07/2.2.00/28.0014. and
in part by the Hungarian Scientific Research Fund, “OTKA”, project K75952.

References

1. L. Ciencialová, L. Cienciala, Variation on the theme: P colonies. In: Proc. 1st Intern.
Workshop on Formal Models. (D. Kolăr, A. Meduna, eds.), Ostrava, 2006, 27–34.

2. L. Ciencialová, E. Csuhaj-Varjú, A. Kelemenová, Gy. Vaszil, Variants of P colonies
with very simple cell structure. International Journal of Computers, Communication
and Control 4(3) (2009), 224–233.

3. L. Ciencala, L. Ciencialová, E. Csuhaj-Varjú, Gy. Vaszil, PCol Automata: Recog-
nizing strings with P colonies. In: Proc. BWMC 2010, Sevilla, 2010, Ed. by M. A.
Martnez-del-Amor et al. Fnix Editora, Sevilla, 2010, 65-76.

4. L. Cienciala, L. Ciencialová, A. Kelemenová, Homogeneous P colonies. Computing
and Informatics 27 (2008), 481–496.

5. L. Cienciala, L. Ciencialová, A. Kelemenová, On the number of agents in P colonies.
In: Membrane Computing. 8th International Workshop, WMC 2007. Thessaloniki,
Greece, June 25-28, 2007. Revised Selected and Invited Papers. (G. Eleftherakis et.
al, eds.), LNCS 4860, Springer-Verlag, Berlin-Heidelberg, 2007, 193–208.

6. E. Csuhaj-Varjú, J. Kelemen, A. Kelemenová, Gh. Păun, Gy. Vaszil, Computing with
cells in environment: P colonies. Journal of Multi-Valued Logic and Soft Computing
12 (2006), 201–215.

7. E. Csuhaj-Varjú, M. Margenstern, Gy. Vaszil, P colonies with a bounded number of
cells and programs. In: Membrane Computing. 7th International Worskhop, WMC
2006, Leiden, The Netherlands, July 17-21, 2006. Revised, Selected and Invited Pa-
pers. (H-J. Hoogeboom et. al, eds), LNCS 4361, Springer-Verlag, Berlin-Heidelberg,
(2007), 352–366.

8. P. C. Fischer, Turing machines with restricted memory access. Information and Con-
trol, 9, 364–379, 1966.

9. R. Freund, M. Oswald, P colonies working in the maximally parallel and in the
sequential mode. Pre-Proc. In: 1st Intern. Workshop on Theory and Application of
P Systems. (G. Ciobanu, Gh. Păun, eds.), Timisoara, Romania, 2005, 49–56.

10. R. Freund, M. Oswald, P colonies and prescribed teams. International Journal of
Computer Mathematics 83 (2006), 569–592.

11. Hopcroft, J.E., Ullman, J.D., Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, Mass., 1979.

12. J. Kelemen, A. Kelemenová, A grammar-theoretic treatment of multi-agent systems.
Cybernetics and Systems 23 (1992), 621–633.

13. J. Kelemen, A. Kelemenová, Gh. Păun, Preview of P colonies: A biochemically in-
spired computing model. In: Workshop and Tutorial Proceedings. Ninth International
Conference on the Simulation and Synthesis of Living Systems (Alife IX). (M. Bedau
et al., eds.), Boston Mass., 2004, 82–86.

14. A. Kelemenová, P Colonies. Chapter 23.1, In: The Oxford Handbook of Membrane
Computing. (Gh. Păun, G. Rozenberg, A. Salomaa, eds.), Oxford University Press,
2010, 584–593.

118 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

15. A. Meduna, P. Zemek, Jumping Finite Automata. Int. J. Found. Comput. Sci. 23,
2012, pp. 1555–1578.

16. M. Minsky, Computation – Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ, 1967.

17. Gh. Păun, G. Rozenberg, A. Salomaa, eds.,The Oxford Handbook of Membrane
Computing. Oxford University Press, 2010.

Scalable Grid-Based Implementation

for Membrane Computing

Gabriel Ciobanu

Romanian Academy, Institute of Computer Science, Iaşi, Romania
gabriel@info.uaic.ro

Summary. We first present the formal semantics of a parallel rule-based formalism
inspired by biological cells, and then provide a faithful parallel implementation of this
computational model by using GridGain and taking care of various synchronization issues.
Synchronization is achieved by using barriers and preconditions; both refer to the fact
that a membrane can apply its rules only after it has received signals from the other
related membranes. We develop a scalable parallel implementation using the MapReduce
paradigm in GridGain which allows the splitting of a task into multiple subtasks, the
parallel execution of these subtasks in parallel and the aggregation of the partial results
into a single, final result. This implementation is very close to the formal description of
this parallel model of membrane systems, a model which is computationally equivalent
to Turing machines and able to provide polynomial solutions to NP-complete problems.

1 Introduction

Membrane systems are essentially parallel and nondeterministic computing models
inspired by the compartments of (eukaryotic) cells and their biochemical reactions.
The structure of a cell is represented by a set of hierarchically embedded mem-
branes, all of which are contained inside a skin membrane. The molecular species
(ions, proteins, etc.) floating inside cellular compartments are represented by mul-
tisets of objects described by means of symbols over a given alphabet. Objects
can be modified or communicated between adjacent compartments. Chemical re-
actions are represented by evolution rules which operate on the objects, as well as
on the compartmentalized structure (by dissolving, dividing, creating, or moving
membranes).

Membrane systems (also called P systems) perform parallel computations in the
following way: starting from an initial configuration (the initial membrane struc-
ture and the initial multisets of objects placed inside the membranes), a system
evolves by applying the evolution rules of each membrane in a nondeterministic
manner. A rule is applicable when all the objects which appear in its left hand
side are available in the membrane where the rule is placed.

120 G. Ciobanu

Since membrane systems aim to abstract computing ideas and models from
the structure and the functioning of living cells, several extensions come from
both biology (aiming to model more and more biological phenomena) and com-
puter science (aiming to add new computing features). Their computing power
and efficiency have been investigated using the approaches of formal languages,
grammars, register machines and complexity theory. Membrane systems are pre-
sented together with many variants and examples in [7]. Several applications of
these systems are presented in [5]. An updated bibliography can be found at the
P systems web page http://ppage.psystems.eu. The state of the art is presented in
the handbook published recently by Oxford University Press [8].

In this paper we present a paralel implementation of membrane systems by us-
ing GridGain [9], using a new appealing technology. The implementation is derived
after studying some synchronization issues in membrane systems by defining their
operational semantics and describing the parallel (sub)steps of their evolutions.

2 Operational Semantics of the Membrane Systems

The basic model of membrane computing is usually referred to as a transition
membrane systems In this model, objects are represented using symbols from a
given alphabet, and each symbol from this alphabet can appear inside a region in
many different copies. A membrane system is composed of membranes which do
not intersect, and which are all contained within a skin membrane. Each membrane
can contain multisets of objects, evolution rules and other membranes. The objects
inside a membrane evolve in a maximal parallel manner according to the evolution
rules inside the same membrane. According to [7], maximal parallel “means that
we assign objects to rules, non-deterministically choosing the objects and the rules,
until no further assignment is possible.”

First we present an abstract syntax for membrane systems, and then we a
structural operational semantics of these systems by means of three sets of infer-
ence rules corresponding to maximal parallel rewriting, parallel communication,
and parallel dissolving.

In general, operational semantics provide a way of rigorously describing the
evolution of a computing system. Configurations are states of a transition system,
and a computation consists of a sequence of transitions from one configuration to
another, until a final configuration is reached (if the computation terminates, that
is). Structural operational semantics provides a framework for defining a formal
description of a computing system. In basic membrane systems, a computation
is regarded as a sequence of parallel applications of rules in various membranes,
followed by a communication step and a dissolving step. A structural operational
semantics of membrane systems emphasizes the deductive nature of membrane
computing by describing the transition steps through a set of inference rules. Con-

sidering a set R of inference rules of the form
premises

conclusion
, the evolution of a

membrane system can be presented as a deduction tree.

Scalable Grid-Based Implementation for Membrane Computing 121

A sequence of transition steps represents a computation. A computation is
successful if this sequence is finite, namely there is no rule applicable to the objects
present in the last committed configuration. In a halting committed configuration,
the result of a successful computation is the total number of objects present either
in the membrane considered as the output membrane, or in the outer region.

2.1 Configurations and Transitions

First we present an inductive definition of the membrane structure, the sets of
configurations for a membrane system, and an intuitive definition for the transi-
tion systems, which is given by considering each transition step: maximal parallel
rewriting, parallel communication, and parallel dissolving.

Let O be a finite alphabet of objects over which we consider the free commu-
tative monoid O∗

c , whose elements are multisets. The empty multiset is denoted
by empty. Objects can be enclosed in messages together with a target indica-
tion. We have here messages of typical form (w, here), out messages (w, out),
and in messages (w, inL). For the sake of simplicity, hereinafter we consider
that the messages with the same target indication merge into one message:
∏

i∈I(vi, here) = (w, here),
∏

i∈I(vi, inL) = (w, inL),
∏

i∈I(vi, out) = (w, out),
with w =

∏

i∈I vi, I a non-empty set, and (vi)i∈I a family of multisets over O.
We use the mappings rules and priority to associate to a membrane label the set

of evolution rules and the priority relation over rules (when this exists) : rules(Li) =
Ri, priority(Li) = ρi, and the projections L and w which return from a membrane
its label and its current multiset, respectively.

The set M(Π) of membranes for a P system Π, and the membrane structures
are defined inductively, as follows:

• if L is a label, and w is a multiset over O ∪ (O × {here}) ∪ (O × {out}) ∪ {δ},
then 〈 L | w 〉 ∈ M(Π); 〈 L | w 〉 is called a simple (or elementary) membrane,
and it has the structure 〈〉;

• if L is a label, w is a multiset over O ∪ (O × {here}) ∪ (O × {inL(Mj)| j ∈
[n]}) ∪ (O × {out}) ∪ {δ}, M1, . . . ,Mn ∈ M(Π), n ≥ 1, where each membrane
Mi has the structure µi, then 〈L|w;M1, . . . ,Mn〉 ∈ M(Π); 〈L|w;M1, . . . ,Mn〉
is called a composite membrane having the structure 〈µ1, . . . , µn〉.

We conventionally suppose the existence of a set of sibling membranes denoted
by NULL such that M,NULL = M = NULL,M and 〈L |w ; NULL 〉 = 〈L |w 〉.
The use ofNULL significantly simplifies several definitions and proofs. LetM∗(Π)
be the free commutative monoid generated by M(Π) with the operation (,) and
the identity element NULL. We defineM+(Π) as the set of elements fromM∗(Π)
without the identity element. Let M+, N+ range over non-empty sets of sibling
membranes, Mi over membranes, M∗, N∗ range over possibly empty multisets of
sibling membranes, and L over labels. The membranes preserve the initial labeling,
evolution rules and priority relation among them in all subsequent configurations.

122 G. Ciobanu

Therefore in order to describe a membrane we consider its label and the current
multiset of objects together with its structure.

A configuration for a P system Π is a skin membrane which has no messages
and no dissolving symbol δ, i.e., the multisets of all regions are elements in O∗

c .
We denote by C(Π) the set of configurations for Π.

An intermediate configuration is an arbitrary skin membrane in which we may
find messages or the dissolving symbol δ. We denote by C#(Π) the set of interme-
diate configurations. We have C(Π) ⊆ C#(Π).

Each membrane system has an initial configuration which is characterized by
the initial multiset of objects for each membrane and the initial membrane struc-
ture of the system. For two configurations C1 and C2 of Π, we say that there is a
transition from C1 to C2, and write C1 ⇒ C2, if the following steps are executed
in the given order:

1. maximal parallel rewriting step: each membrane evolves in a maximal parallel
manner;

2. parallel communication of objects through membranes by sending and receiving
messages;

3. parallel membrane dissolving, consisting in dissolving the membranes contain-
ing δ.

The last two steps take place only if there are messages or δ symbols resulting
from the first step, respectively. If the first step is not possible, then neither are
the other two steps; we say that the system has reached a halting configuration.

2.2 Maximal Parallel Rewriting Step

We briefly present an operational semantics for membrane systems, considering
each of the three steps. First we formally define the maximal parallel rewriting
mpr
=⇒L for a multiset of objects in one membrane, and we extend it to maximal

parallel rewriting
mpr
=⇒ over several membranes. Some preliminary notions are re-

quired.

Definition 1. The irreducibility property w.r.t. the maximal parallel rewriting re-
lation for multisets of objects, membranes, and for sets of sibling membranes is
defined as follows:

• a multiset of messages and the dissolving symbol δ are L-irreducible;
• a multiset of objects w is L-irreducible iff there are no rules in rules(L) ap-

plicable to w with respect to the priority relation priority(L);
• a simple membrane 〈 L | w 〉 is mpr-irreducible iff w is L-irreducible;
• a non-empty set of sibling membranes M1, . . . ,Mn is mpr-irreducible iff Mi

is mpr-irreducible for every i ∈ [n]; NULL is mpr-irreducible;
• a composite membrane 〈 L | w ; M1, . . . ,Mn 〉 is mpr-irreducible iff w is

L-irreducible, and the set of sibling membranes M1, . . . ,Mn is mpr-irreducible.

Scalable Grid-Based Implementation for Membrane Computing 123

The priority relation is a form of control on the application of rules. In the
presence of a priority relation, no rule of a lower priority can be used during the
same evolution step when a rule with a higher priority is used, even if the two
rules do not compete for the same objects. We formalize the conditions imposed
by the priority relation on rule applications in the definition below.

Definition 2. Let M be a membrane labeled by L, and w a multiset of objects.
A non-empty multiset R = (u1 → v1, . . . , un → vn) of evolution rules is (L,w)-
consistent if:

- R ⊆ rules(L),
- w = u1 . . . unz, so each rule r ∈ R is applicable on w,
- (∀r ∈ R, ∀r′ ∈ rules(L)) r′ applicable on w implies (r′, r) /∈ priority(L) (we have

(r1, r2) ∈ priority(L) iff r1 > r2),
- (∀r′, r′′ ∈ R) (r′, r′′) /∈ priority(L),
- the dissolving symbol δ has at most one occurrence in the multiset v1 . . . vn.

Maximal parallel rewriting relations
mpr
=⇒L and

mpr
=⇒ are defined by the follow-

ing inference rules:

For each w = u1 . . . unz ∈ O+
c such that z is L-irreducible, and (L,w)-consistent

rules (u1 → v1, . . . , un → vn),

(R1)
u1 . . . unz

mpr
=⇒L v1 . . . vnz

For each w ∈ O+
c , w

′ ∈ (O∪Msg(O)∪{δ})+c , and mpr-irreducible M∗ ∈ M∗(Π),

(R2)
w

mpr
=⇒L w′

〈 L | w ; M∗ 〉
mpr
=⇒ 〈 L | w′ ; M∗ 〉

For each L-irreducible w ∈ O∗
c , and M+,M

′
+ ∈ M+(Π),

(R3)
M+

mpr
=⇒ M ′

+

〈 L | w ; M+ 〉
mpr
=⇒ 〈 L | w ; M ′

+ 〉

For each w ∈ O+
c , w

′ ∈ (O ∪Msg(O) ∪ {δ})+c , M+,M
′
+ ∈ M+(Π),

(R4)
w

mpr
=⇒L w′,M+

mpr
=⇒ M ′

+

〈 L | w ; M+ 〉
mpr
=⇒ 〈 L | w′ ; M ′

+ 〉

For each M,M ′ ∈ M(Π), and M+,M
′
+ ∈ M+(Π),

(R5)
M

mpr
=⇒ M ′,M+

mpr
=⇒ M ′

+

M,M+
mpr
=⇒ M ′,M ′

+

124 G. Ciobanu

For each M,M ′ ∈ M(Π), and mpr-irreducible M+ ∈ M+(Π),

(R6)
M

mpr
=⇒ M ′

M,M+
mpr
=⇒ M ′,M+

We note that
mpr
=⇒ for simple membranes can be described by rule (R2) with

M∗ = NULL.

Remark 1. M is mpr-irreducible iff there does not exist M ′ such that M
mpr
=⇒ M ′.

Proposition 1. Let Π be a membrane system. If C ∈ C(Π) and C ′ ∈ C#(Π) such

that C
mpr
=⇒ C ′, then C ′ is mpr-irreducible.

The formal definition of
mpr
=⇒ given above corresponds to the intuitive description of

maximal parallelism. The nondeterminism is given by the associativity and com-
mutativity of the concatenation operation over objects used in R1. The parallelism

of the evolution rules in a membrane is also given by R1: u1 . . . unz
mpr
=⇒L v1 . . . vnz

says that the rules of the multiset (u1 → v1, . . . , un → vn) are applied simultane-
ously. The fact that the membranes evolve in parallel is described by rulesR3−R6.

2.3 Parallel Communication of Objects

We say that a multiset w is here-free/out-free/inL-free if it does not contain any
here/out/inL messages, respectively. For w a multiset of objects and messages, we
introduce the operations obj, here, out, and inL as follows:

obj(w) is obtained from w by removing all messages,

here(w) =

{

empty if w is here-free,
w′′ if w = w′(w′′, here) ∧ w′ is here-free;

out(w) =

{

empty if w is out-free,
w′′ if w = w′(w′′, out) ∧ w′ is out-free;

inL(w) =

{

empty if w is inL-free,
w′′ if w = w′(w′′, inL) ∧ w′ is inL-free.

We consider the extension of the operator w (previously defined over mem-
branes) to non-empty sets of sibling membranes by setting w(NULL) = empty
and w(M1, . . . ,Mn) = w(M1) . . .w(Mn).

We recall that the messages with the same target merge in one larger message.

Definition 3. The tar-irreducibility property for membranes and for sets of
sibling membranes is defined as follows:

• a simple membrane 〈 L | w 〉 is tar-irreducible iff w is here-free and L 6=
Skin ∨ (L=Skin ∧ w out-free);

• a non-empty set of sibling membranes M1, . . . ,Mn is tar-irreducible iff Mi

is tar-irreducible for every i ∈ [n]; NULL is tar-irreducible;

Scalable Grid-Based Implementation for Membrane Computing 125

• a composite membrane 〈 L | w ; M1, . . . ,Mn 〉, n ≥ 1, is tar-irreducible iff:
w is here-free and inL(Mi)-free for every i ∈ [n], L 6= Skin ∨ (L = Skin ∧
w is out-free), w(Mi) is out-free for all i ∈ [n], and the set of sibling membranes
M1, . . . ,Mn is tar-irreducible;

Notation. We treat messages of the form (w′, here) as a particular communi-
cation inside a membrane, and we substitute (w′, here) by w′. We denote by w the
multiset obtained by replacing (here(w), here) with here(w) in w. For instance, if
w = a (bc, here) (d, out) then w = abc (d, out), where here(w) = bc. We note that
inL(w) = inL(w), and out(w) = out(w).

The parallel communication relation
tar
=⇒ is defined by the following inference

rules:

For each tar-irreducible M∗ ∈ M∗(Π) and multiset w such that
here(w) 6= empty, or L = Skin ∧ out(w) 6= empty, or there exists Mi ∈ M∗

with
inL(Mi)(w)out(w(Mi)) 6= empty,

(C1)
〈 L | w ; M∗ 〉

tar
=⇒ 〈 L | w′ ; M ′

∗ 〉

where

w′ =

{

obj(w) out(w(M∗)) if L = Skin,
obj(w) (out(w), out) out(w(M∗)) otherwise;

and
w(M ′

i) = obj(w(M ′
i)) inL(Mi)(w), for all Mi ∈ M∗

For each M1, . . . ,Mn,M
′
1, . . . ,M

′
n ∈ M+(Π), and multiset w,

(C2)
M1, . . . ,Mn

tar
=⇒ M ′

1, . . . ,M
′
n

〈 L | w ; M1, . . . ,Mn 〉
tar
=⇒ 〈 L | w′′ ; M ′′

1 , . . . ,M
′′
n 〉

where

w′′ =

obj(w) out(w(M ′
1, . . . ,M

′
n)) if L = Skin,

obj(w) (out(w), out) out(w(M ′
1, . . . ,M

′
n))

otherwise;
and each M ′′

i is obtained from M ′
i by replacing

its resources with

w(M ′′
i) = obj(w(M ′

i)) inL(M ′
i)
(w), for all i ∈ [n]

For each M,M ′ ∈ M(Π), and tar-irreducible M+ ∈ M+(Π),

(C3)
M

tar
=⇒ M ′

M,M+
tar
=⇒ M ′,M+

126 G. Ciobanu

For each M ∈ M(Π), M+ ∈ M+(Π),

(C4)
M

tar
=⇒ M ′,M+

tar
=⇒ M ′

+

M,M+
tar
=⇒ M ′,M ′

+

Remark 2. M is tar-irreducible iff there does not exist M ′ such that M
tar
=⇒ M ′.

Proposition 2. Let Π be a membrane system. If C ∈ C#(Π) with messages and

C
tar
=⇒ C ′, then C ′ is tar-irreducible.

2.4 Parallel Membrane Dissolving

If the special symbol δ occurs in the multiset of objects of a membrane labeled by L,
that membrane is dissolved, its evolution rules and the associated priority relation
are lost, and its contents (objects and membranes) is added to the contents of the
surrounding membrane. We say that a multiset w is δ-free if it does not contain
the special symbol δ.

Definition 4. The δ-irreducibility property for membranes and for sets of sib-
ling membranes is defined as follows:

• a simple membrane is δ-irreducible iff it has no messages;
• a non-empty set of sibling membranes M1, . . . ,Mn is δ-irreducible iff every

membrane Mi is δ-irreducible, for 1 ≤ i ≤ n; NULL is δ-irreducible;
• a composite membrane 〈 L | w ; M+ 〉 is δ-irreducible iff w has no messages,

M+ is δ-irreducible, and w(M+) is δ-free;

Parallel dissolving relation
δ

=⇒ is defined by the following inference rules:

For each M∗ ∈ M∗(Π), δ-irreducible 〈 L2 | w2δ ; M∗ 〉, and label L1,

(D1)

〈 L1 | w1 ; 〈 L2 | w2δ ; M∗ 〉 〉
δ

=⇒ 〈 L1 | w1w2 ; M∗ 〉

For each M+ ∈ M+(Π), M ′
∗ ∈ M∗(Π), δ-free multiset w2, multisets w1, w

′
2, and

labels L1, L2

(D2)
〈 L2 | w2 ; M+ 〉

δ
=⇒ 〈 L2 | w′

2 ; M′
∗ 〉

〈 L1 | w1 ; 〈 L2 | w2 ; M+ 〉 〉
δ

=⇒ 〈 L1 | w1 ; 〈 L2 | w′
2 ; M′

∗ 〉 〉

For each M+ ∈ M+(Π), M ′
∗ ∈ M∗(Π), multisets w1, w2, w

′
2, and labels L1, L2

(D3)
〈 L2 | w2δ ; M+ 〉

δ
=⇒ 〈 L2 | w′

2δ ; M′
∗ 〉

〈 L1 | w1 ; 〈 L2 | w2δ ; M+ 〉 〉
δ

=⇒ 〈 L1 | w1w′
2 ; M′

∗ 〉

For each M+ ∈ M+(Π), M ′
∗, N

′
∗ ∈ M∗(Π), δ-irreducible 〈 L | w ; N+ 〉, and

multisets w′, w′′,

(D4)
〈 L | w ; M+ 〉

δ
=⇒ 〈 L | w′ ; M′

∗ 〉

〈 L | w ; M+, N+ 〉
δ

=⇒ 〈 L | w′ ; M′
∗, N+ 〉

Scalable Grid-Based Implementation for Membrane Computing 127

(D5)
〈 L | w ; M+ 〉

δ
=⇒ 〈 L | ww′ ; M′

∗ 〉〈 L | w ; N+ 〉
δ

=⇒ 〈 L | ww′′ ; N′
∗ 〉

〈 L | w ; M+, N+ 〉
δ

=⇒ 〈 L | ww′w′′ ; M′
∗, N′

∗ 〉

Remark 3. M is δ-irreducible iff there does not exist M ′ such that M
δ

=⇒ M ′.

Proposition 3. Let Π be a membrane system. If C ∈ C#(Π) is tar-irreducible

and C
δ

=⇒ C ′, then C ′ is δ-irreducible.

It is worth noting that C ∈ C(Π) iff C is tar-irreducible and δ-irreducible.
According to the standard description in membrane computing, a transition step
between two configurations C,C ′ ∈ C(Π) is given by: C ⇒ C ′ iff C and C ′ are
related by one of the following relations:

either C
mpr
=⇒;

tar
=⇒ C ′,

or C
mpr
=⇒;

δ
=⇒ C ′,

or C
mpr
=⇒;

tar
=⇒;

δ
=⇒ C ′.

The three alternatives in defining C ⇒ C ′ are given by the existence of mes-
sages and dissolving symbols along the system evolution. Starting from a config-
uration without messages and dissolving symbols, we apply the “mpr” rules and
get an intermediate configuration which is mpr-irreducible; if we have messages,
then we apply the “tar” rules and get an intermediate configuration which is tar-
irreducible; if we have dissolving symbols, then we apply the dissolving rules and
get a configuration which is δ-irreducible. If the last configuration has no messages
or dissolving symbols, then we say that the transition relation ⇒ is well-defined
as an evolution step between the first and last configurations.

Proposition 4. The relation ⇒ is well-defined over the entire set C(Π) of config-
urations.

Examples of inference trees, as well as the proofs of the results are presented in
[1] and [2].

3 Synchronization Issues in Implementing P Systems

It is evident from the operational semantics that there are several synchronization
aspects related to the evolution of a membrane system.

The relationship between the synchronous and the asynchronous in computing
systems, particularly in massively-parallel and multiprocessor computing systems,
will remain a challenging topic for many years to come. There are reasons to think
that the asynchronous approach has some advantages; however the synchronous
methodology prevails in the modern computing systems architecture. As if this
is not enough, different fields treat the concepts of synchrony and asynchrony

128 G. Ciobanu

somewhat differently. The main terms (parallelism, concurrency, time) should be
clarified in order to discuss the synchronous and asynchronous issues. In our ap-
proach we work with a “causal” time (defined as the partial order on some events
resulting from their cause-effect relationships) rather a physical time (defined as
an independent physical variable related to a clock). The concept of causal time
was formulated initially by Aristotle (If nothing happens, no time); it can be use-
ful in systems dealing with events defining cause-effect relationships. The abstract
model of a finite state machine corresponds to the model of an asynchronous sys-
tem evolving in logical time; a possible conversion to a synchronous approach is
given by a barrier synchronization (as an engineering solution) in order to man-
age unpredictable variations of the delays introduced by real physical components.
An algorithm (its program) consists of a sequence of steps which perform some
actions. Asynchrony is usually treated as the dependence of the number of steps
required to obtain the result on the input data. In the case of a fully sequential algo-
rithm (program), such treatment of asynchrony is important only for performance
evaluation. Parallel algorithms and programs present new and challenging tasks.
Certain steps of an algorithm can be performed concurrently. Representing an al-
gorithm (program) in the form suitable for concurrent implementation is reduced
to the cause-effect relationships between the operations (processes, commands) in
the algorithm. Thus a parallel specification is a procedure for introducing logical
time into the algorithm. An implementation of a global synchronous system can
be given by delivering a termination signal from the processors (processes) of the
system. Difficulties appear when several processes have a shared resource, and
non-synchronized events may occur. A possible solution of a synchronous imple-
mentation that eliminates the problems of physical asynchrony is as follows:

• every process can be in two phases: active and passive;
• a process can run only when active;
• to transit from passive to active a process has to receive a signal;
• after an active process executes, it signals other passive processes;

Initially we activate some processes, which after their executions signal pas-
sive processes. This repeats until all processes have terminated. Following this
scenario, deadlock can occur if the process dependency graph contains cycles. In
this scenario, process can be synchronized using a barrier. A process barrier is
an concurrent abstraction through which multiple processes can be synchronized.
Thus a passive process can be considered a process that is waiting at the barrier,
and by passing the barrier it becomes an active one.

We can apply this type of synchronization to membrane systems, by allowing
a membrane to evolve only after it has passed the barrier. To model this, we use
a set of antecedents and a set of descendants for each membrane when describing
the system. To apply its rules, a membrane needs to receive signals from all of its
antecedents. After it applies its rules, the membrane signals all of its descendants.
The set of antecedents specifies how many times a signal needs to be received from
each membrane. The set of descendants specifies the membranes that need to be
signaled after the application of rules.

Scalable Grid-Based Implementation for Membrane Computing 129

Using this mechanism, we can control the relative evolution speed of the an-
tecedents of a membrane. This approach allows to specify that a certain membrane
can repeat its step several times before sending its signal to the descendents. In
this way we can have a parameterized synchronization between membranes, and
this aspect could be very useful in modeling biological phenomena. The evolution
of a membrane can be described by the following steps which are repeated until
no rule can be applied.

1. collect signals from all the antecedents;
2. apply the rules after receiving all the signals;
3. signal all descendants.

4 A Grid-Based Implementation of P Systems

We present here a grid implementation of membrane systems in which we empha-
size the notion of computation and synchronization. We employ a synchroniza-
tion mechanism based on certain preconditions expressing the consistency of the
global state of the system. This synchronization mechanism has been introduced to
control the dependency relation between membranes. We propose a synchronous
model of execution used to coordinate membrane evolution.

To achieve scalability we make use of the grid paradigm MapReduce. The
paradigm is defined by two main steps: map, and reduce. The map step allows
splitting a task into multiple jobs that execute in parallel on the grid nodes. The
reduce step aggregates the result of each job, and returns the task result.

Thus the simulation of a membrane system can be viewed as a grid task. The
jobs associated with this task define the execution of each membrane. Hence the
number of jobs is equal to the number of membranes. To model the proposed
synchronization mechanism between membranes, a communication between jobs
is required.

We have selected GridGain [9] as our grid platform because it provides all
the required features, and it is easily deployed on multiple platforms. GridGain
is a Java-based open source grid computing infrastructure, released under LGPL
license. It provides a zero deployment model, meaning that a node can be deployed
by running a script, or by creating a node instance. A valuable feature of the system
is its support for advanced load balancing and scheduling by providing early and
late load balancing that are defined by load balancing and collision (scheduling)
resolution. Another important feature is pluggable fault-tolerance with several
popular implementations available out-of-the-box. It allows the failover of logic
and not only the data. The most notable features of GridGain that we use are:
tasks and jobs modeled according to the MapReduce paradigm, communication
between grid jobs, and on-demand class loading.

The main steps of the simulation are: (1) Build a membrane system from an
specification file; (2) Using the generated membrane system, construct and execute
a grid job: (i) Map: create a job for each membrane; (ii) Reduce: gather all the

130 G. Ciobanu

public class Membrane {
private List<MembraneLabel> childrenLabels ;
private List<Rule> rules ;
private HashMultiset contents ;
private HashMultiset incomingObjects ;
private MembraneLabel label ;
private MembraneLabel parentLabel ;
private HashMap<MembraneLabel , Integer> antecedents ;
private List<MembraneLabel> descendants ;
private int appliedRules ; //number o f app l i e d r u l e s in t h i s

s t ep

public Membrane ()
// t e s t i f the membrane conta ins a mu l t i s e t
public boolean contains (HashMultiset multiset)
// s t o r e a mu l t i s e t t h a t r e s u l t e d in t h i s e v o l u t i on s t ep
public void enqueMultiset (HashMultiset multiset)
//add the o b j e c t s t h a t r e s u l t e d in t h i s e v o l u t i on s t ep
public void endEvolution ()
// re turn the l i s t o f a p p l i c a b l e r u l e s
public List<Rule> getApplicableRules ()

}

Fig. 1. Membrane Class

responses from the jobs and create the resulting membrane system.
The simulation repeats step 2 as long as a rule is applied. Each generated job con-
tains an object that describes a membrane from the system. The job is responsible
for the correct simulation of the evolution of the membrane. Thus it needs to syn-
chronize with other membranes, and also to apply different rules. The result of the
job consists of the final state of the simulated membrane. We have used a modular
design for the entities of the system in which we separated the objects defining
the grid behavior from those defining the membrane systems. Thus we implement
several abstractions that model various notions such as: membranes, rules, mem-
brane objects, etc. For the grid behavior we define the following concepts: task, job,
barrier.

In Figure 1 we describe the members and main methods of class Membrane. The
object is responsible only for operations that modify the contents of a membrane.
The evolution logic is implemented using the Rule and EvolutionVisitor objects.
To model the rules of a membrane system we used a extensible approach. Each
rule can be seen as a list of constraints; a constraint is responsible for checking if
its precondition is valid (via method check), and for applying its postcondition on
a membrane (via method apply).

Scalable Grid-Based Implementation for Membrane Computing 131

public class Rule extends RuleConstraint {
List<RuleConstraint> constraints ;

public Rule ()
public void apply (Membrane membrane) {

for (RuleConstraint constraint : constraints) {
constraint . apply (membrane) ;

}
}
public boolean check (Membrane membrane) {

boolean isApplicable = true ;
Iterator<RuleConstraint> iter = constraints . iterator () ;
while (isApplicable && iter . hasNext ()) {

isApplicable = isApplicable && iter . next () . check (membrane)
;

}
return isApplicable ;

}
}

Fig. 2. Rule Class

From a software engineering perspective, the rule follows the composite pattern.
In Appendix1, we present the RuleConstraint class and in how a constraint multiset
can be implemented. The main methods of the Rule class are presented in Figure 2.
Using these abstractions we can easily implement rules with various ingredients,
only by describing constraints and aggregating them into a new type of Rule. The
evolution of a membrane is performed by the EvolutionVisitor object described.
The method localMembraneEvolution defines the logic of a single step of evolution.
A step is simulated by the repeated application of rules.

A grid task is defined by the class PsTask, which follows the MapReduce
paradigm. The method split takes as input a membrane system, and for each
membrane creates a job that will be executed on the grid. The method reduce
receives a list of job results that contain membranes, and assembles them in a
membrane system.

A grid job is described by the PsJob object (in Appendix). This object contains
a membrane which holds the data, and a barrier used for synchronization. The main
method of this class is execute, in which the evolution of a membrane is executed.
The evolution consists of a three-step loop: (i) wait at the barrier for incoming
signals, (ii) after receiving the signals, apply the rules, and (iii) after applying the
rules, signal the descendants. The result of the job is a maximally parallel step of
the membrane.

1 Available online at www.gcn.us.es/12bwmc proceedings

132 G. Ciobanu

public class PsTask{
public MembraneSystem reduce (List results) {

MembraneSystem result = new MembraneSystem () ;
int appliedRules = 0 ;
for (GridJobResult gridJobResult : results) {

Membrane data = gridJobResult . getData () ;
result . getMembranes () . put (data . getLabel () , data) ;
appliedRules += data . getAppliedRules () ;

}
result . setAppliedRules (appliedRules) ;
return result ;

}
protected List<GridJob> split (MembraneSystem arg) {

List<PsJob> jobs = new ArrayList<PsJob>() ;
for (Membrane mbr : arg . getMembranes () . values ()) {

jobs . add (new PsJob (mbr)) ;
}
return jobs ;

}
}

Fig. 3. PsTask Class

Membrane synchronization is achieved by using a special form of barrier. The
barrier waits to be signaled from each antecedent membrane a specified number
of times. After this, it releases the job that called the method waitAt. The barrier
also listens for termination signals. When it receives such a signal it informs the
waiting job that it should finish its execution.

5 Example

We provide a simple example to illustrate the developed simulator. The system is
composed of two membranes m1, m2. Membrane m1 contains a2000 and has rules
a → b, and b2 → d, while membrane m2 contains a40000b1000c5000 and has rules
a2 → b, and c2 → d. The signaling part is denoted by the contents of wait, and
signal. Those include a sequence of membranes and the number of times they have
to signal. Notice that m2 has to wait to be signaled by m1 two times before it can
apply a rule. The parent of m2 is m1, which is the skin membrane.

/∗ PsGrid input f i l e ∗/
membrane m1 /∗name of the membrane∗/ :

skin /∗name of the parent∗/{
children {

m1 /∗name of ch i l dren ∗/
}

Scalable Grid-Based Implementation for Membrane Computing 133

contents {
a ˆ{2000}/∗ contents of the membrane∗/

}
rules {

/∗ ru l e s of the membrane∗/
[aˆ{1} ==> b ˆ{1}]
[bˆ{2} ==> d ˆ{1}]

}
wait{

/∗ the antecedents ∗/
}
signal {

m2 /∗ the descendants ∗/
}

}
membrane m2 : m1{

children {
}
contents {

a ˆ{40000} b ˆ{1000} c ˆ{5000}
}
rules {

[aˆ{2} ==> b ˆ{1}]
[cˆ{2} ==> d ˆ{1}]

}
wait{

m1 ˆ{2}
}
signal {
}

}

We also present the log from each node of the grid. The log shows the order
in which membrane jobs arrive at each node, and the actions they execute. The
number of rule applications executed in a certain step is written at the end of the
lines (after #). Notice that the job ends if it receives a terminate signal, or if the
membrane did not apply any rules in this step.

[2 0 : 2 6 : 5 6 , 8 4 3] [INFO] [gridgain−#6%null%][PsJob] Received membrane with

contents : m1 : [a ˆ{2000}] [[Rule : in m1 [a −> b] , Rule : in m1 [bˆ{2}
−> d]]] #0

[2 0 : 2 6 : 5 6 , 8 4 3] [INFO] [gridgain−#10%null%][PsJob] Received membrane with

contents : m2 : [b ˆ{1000} c ˆ{5000} a ˆ{40000}] [[Rule : in m2 [aˆ{2} −> b

] , Rule : in m2 [cˆ{2} −> d]]] #0
[2 0 : 2 6 : 5 6 , 8 4 3] [INFO] [gridgain−#10%null%][PsJob] Waiting at barrier : m2
[2 0 : 2 6 : 5 6 , 8 4 3] [INFO] [gridgain−#6%null%][PsJob] Waiting at barrier : m1
[2 0 : 2 6 : 5 6 , 8 4 3] [INFO] [gridgain−#6%null%][PsJob] Passing the barrier : m1
[2 0 : 2 6 : 5 6 , 8 7 5] [INFO] [gridgain−#6%null%][PsJob] Sending signal to

descendants

[2 0 : 2 6 : 5 6 , 8 9 0] [INFO] [gridgain−#6%null%][PsJob] After evolution : m1 : [b
ˆ{2000}] [[Rule : in m1 [a −> b] , Rule : in m1 [bˆ{2} −> d]]] #2000

[2 0 : 2 6 : 5 6 , 8 9 0] [INFO] [gridgain−#6%null%][PsJob] Waiting at barrier : m1
[2 0 : 2 6 : 5 6 , 8 9 0] [INFO] [gridgain−#6%null%][PsJob] Passing the barrier : m1
[2 0 : 2 6 : 5 6 , 8 9 0] [INFO] [gridgain−#10%null%][PsJob] Passing the barrier : m2
[2 0 : 2 6 : 5 6 , 9 0 6] [INFO] [gridgain−#6%null%][PsJob] Sending signal to

descendants

[2 0 : 2 6 : 5 6 , 9 2 1] [INFO] [gridgain−#6%null%][PsJob] After evolution : m1 : [d
ˆ{1000}] [[Rule : in m1 [a −> b] , Rule : in m1 [bˆ{2} −> d]]] #1000

[2 0 : 2 6 : 5 6 , 9 2 1] [INFO] [gridgain−#6%null%][PsJob] Waiting at barrier : m1
[2 0 : 2 6 : 5 6 , 9 2 1] [INFO] [gridgain−#6%null%][PsJob] Passing the barrier : m1
[2 0 : 2 6 : 5 6 , 9 2 1] [INFO] [gridgain−#6%null%][PsJob] Sending signal to

descendants

134 G. Ciobanu

[2 0 : 2 6 : 5 6 , 9 2 1] [INFO] [gridgain−#6%null%][PsJob] After evolution : m1 : [d
ˆ{1000}] [[Rule : in m1 [a −> b] , Rule : in m1 [bˆ{2} −> d]]] #0

[2 0 : 2 6 : 5 7 , 0 6 2] [INFO] [gridgain−#10%null%][PsJob] Sending signal to

descendants

[2 0 : 2 6 : 5 7 , 0 6 2] [INFO] [gridgain−#10%null%][PsJob] After evolution : m2 : [d
ˆ{2500} b ˆ{21000}] [[Rule : in m2 [aˆ{2} −> b] , Rule : in m2 [cˆ{2}
−> d]]] #22500

[2 0 : 2 6 : 5 7 , 0 6 2] [INFO] [gridgain−#10%null%][PsJob] Waiting at barrier : m2
[2 0 : 2 6 : 5 7 , 0 6 2] [INFO] [gridgain−#10%null%][PsJob] Passing the barrier : m2
[2 0 : 2 6 : 5 7 , 0 6 2] [INFO] [gridgain−#10%null%][PsJob] Sending signal to

descendants

[2 0 : 2 6 : 5 7 , 0 6 2] [INFO] [gridgain−#10%null%][PsJob] After evolution : m2 : [d
ˆ{2500} b ˆ{21000}] [[Rule : in m2 [aˆ{2} −> b] , Rule : in m2 [cˆ{2}
−> d]]] #0

Fig. 4. PsGrid Screen After Executing the Example

The simulator has a simple but flexible graphical interface. A screen-shot after
executing a simulation is presented in Figure 4. The first row presents the initial
configuration of the membrane system. The second row presents the contents of
the membranes after the simulation.

Even though this example is simple, the implementation can benefit from sev-
eral features of GridGain, and provide a complex parallel implementation of mem-
brane systems. The main points are that the implementation is faithful to the

Scalable Grid-Based Implementation for Membrane Computing 135

formal description of the membrane systems, and it is also scalable to a high
number of membranes (which is the case in cell biology simulations).

6 Conclusion

Hierarchies are often used in modeling and simulation for computational biology.
A hierarchical perspective of the cell considers components structured into classes
of similar kinds, e.g. golgi, ER, and nucleus form organelles, i.e. membrane-bound
compartments of the cell. New models of membrane systems need to be simulated
on complex hardware systems in order to provide a valuable feedback to biologists.
Membrane computing is a branch of natural computing using an explicit hierarchi-
cal description coming exactly from the structure and functioning of the living cell.
The main areas where membrane computing has been used as a modeling frame-
work (biology and bio-medicine, linguistics, economics, computer science, etc.) are
presented in [5]. In that volume, several implementations (mainly using sequential
computational environments) for simulating various types of cell-like membrane
systems are presented in [6]. We consider that the simulation of P systems with
sequential computers is a complex task because membrane systems are intrinsically
parallel and nondeterministic computational devices, and their computation trees
are difficult to store and handle with one processor. Therefore it is necessary to
look for parallel and scalable implementations able to simulate as close as possible
the formal description of the membrane systems.

In this paper we present a faithful parallel implementation of membrane sys-
tems using GridGain, emphasizing on the synchronization problems appearing
in membrane computing. Thus we hope to offer a more suitable simulator for
membrane systems, opening a new possibility of using membrane computing as a
parallel and nondeterministic modeling framework for addressing structural and
dynamical aspects of complex systems modeling phenomena in cell biology where
huge number of elements are used (some phenomena are presented in [5]).

In the papers devoted to membrane systems it is not mentioned how the mem-
branes (or groups of membranes) interact or synchronize. The usual thinking is
that membrane systems are synchronized locally (a step of a membrane is given by
the parallel application of rules), and behave asynchronously at the global level.
We emphasize here the global aspects, by adding a form of parameterized barrier
synchronization between membranes.

There are several software simulators for P systems; however almost all of them
are on sequential hardware, and so they do not match the parallel nature of P sys-
tems. A parallel implementation of P systems (one of the very few, if not the
unique working in a parallel hardware setting) is presented in [4]. It uses a cluster
of 64 dual processors, and an MPI library in order to describe the communication
and synchronization of parallel processes. In that parallel simulator, the rules are
implemented as threads. At the system initialization phase, one thread is created
for each rule. Within one membrane, several rules can be applied concurrently.

136 G. Ciobanu

This parallelism between rule applications within one membrane is modeled with
multithreading. Rule applications are performed in terms of rounds. To synchro-
nize each thread (rule) within the system, two barriers implemented as mutexes
are associated with a thread. At the beginning of each round, the barrier that the
rule thread is waiting on is released by the primary controlling thread. After the
rule application is done, the thread waits for the second barrier, and the primary
thread locks the first barrier. During the following round it would repeat the above
procedure, releasing and locking alternating barriers. Since many rules are execut-
ing concurrently and they are sharing resources, a mutual exclusion algorithm is
necessary.

The communication and synchronization between membranes is implemented
using the Message Passing Interface library of functions for parallel computation.
The execution is performed in terms of rounds. At the end of each round, every
membrane exchanges messages with all its children and parent before proceeding
to the next round. Another concern is the termination detection problem. When
the system is no longer active, there is no rule in any membrane that is applicable,
all the membranes must be able to be informed, and to terminate. Once the skin
membrane detects the termination, it broadcasts this information to all the other
membranes. Thereafter, the system terminates and the output is written to a
specified file. Fundamental distributed algorithms in the framework of membrane
systems are presented in [3].

References

1. Andrei, O., Ciobanu, G. and Lucanu, D. Operational Semantics and Rewriting Logic
in Membrane Computing, Electronic Notes of Theoretical Computer Science vol.156,
57–78, 2006.

2. Andrei, O., Ciobanu, G. and Lucanu, D. A Rewriting Logic Framework for Op-
erational Semantics of Membrane Systems. Theoretical Computer Science vol.373,
163–181, 2007.

3. G. Ciobanu. Distributed Algorithms over Communicating Membrane Systems.
Biosystems vol.70, Elsevier, 123–133, 2003.

4. G. Ciobanu, W. Guo. P Systems Running on a Cluster of Computers. Membrane
Computing, Lecture Notes in Computer Science vol.2933, Springer, 123–139, 2004.

5. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez (Eds.). Applications of Membrane Com-
puting. Natural Computing Series, Springer, 2006.

6. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez. Available Membrane
Computing Software. In Applications of Membrane Computing [5], Springer, 411–436,
2006.

7. Păun, Gh. Membrane Computing. An Introduction. Springer, 2002.
8. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), The Oxford Handbook of Membrane

Computing, Oxford University Press, 2010.
9. Website GridGain: http://gridgain.com.

Self-constructing Recognizer P Systems

Daniel Dı́az-Pernil1, Francisco Peña-Cantillana2,
Miguel A. Gutiérrez-Naranjo2

1Research Group on Computational Topology and Applied Mathematics
Department of Applied Mathematics - University of Sevilla, 41012, Spain
sbdani@us.es

2Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, 41012, Spain
frapencan@gmail.com, magutier@us.es

Summary. Usually, the changes produced in the membrane structure of a P system are
considered side effects. The output of the computation is encoded as a multiset placed in a
specific region and the membrane structure in the halting configuration is not considered
important. In this paper we explore P systems where the target of the computation is the
construction of a new membrane structure according its set of rules. The new membrane
structure can be considered as the initial one of a new self-constructed P system. We
focus on the self-construction of recognizer P systems and illustrates the definition with
a study of the self-construction P systems working as decision trees for solving Machine
Learning decision problems.

1 Introduction

In many Membrane Computing models, changing the membrane structure of a P
system along the computation is a common process. The changes are produced via
division of membranes (based on cellular mitosis), via creation of new membranes
from objects (based on cellular autopoiesis, see [7]) or dissolution of membranes.
The rules producing such changes have been deeply studied and the capability of
the P systems for solving hard problems are linked to the use of such rules (see,
e.g., [4, 5, 16]).

Nonetheless, the changes of the membrane structure produced along a compu-
tation are not considered a target itself. The changes are usually produced in order
to compute an output, which is usually encoded as a multiset (or as a single dis-
tinguished object) in the corresponding output region. The membrane structure
obtained in the halting configuration is not important. It is merely a collateral
effect.

In this paper, we focus on P systems where the target of the computation
is exactly the opposite to the usual one. We study P systems whose aim is to

138 Dı́az-Pernil et al.

develop a membrane structure. Such P systems will take a multiset as input and
they will change their membrane structure according to such input, the set of
rules and the non-deterministic choices, if any. The membrane structure obtained
in the halting configuration will be considered as the output of the computation.
This new membrane structure, together the remaining ingredients of the P system
(alphabet, set of labels, set of rules, . . .) can be considered as a new P system,
able to receive a new input and perform a new computation. In this way, we will
consider that this second P system (which is similar to the original one, but with
a new initial membrane structure) has been self-constructed, since a (potentially)
complex membrane structure has been obtained from a simple one (maybe from
an initial membrane structure with the skin as unique membrane) according to
the application of their own rules. Of course, different final membrane structures
may be obtained from different inputs, but also with the same input due to the
non-determinism.

The self-construction of a complex membrane structure can be a target by itself,
as shown in [3, 6], but in this paper, the self-constructed P system is thought for
a second use. From this general target, we focus here on the self-construction of
recognizer P systems, i.e., the P system with this new membrane structure can
be now used as recognizer P systems for solving decision problems in the usual
way: An instance of the decision problem is provided to the P system as an input
encoded as an appropriate multiset and an object yes or no (but no both) is sent
to the environment in the last step of the computation.

In this way, two different uses for the P system are considered:

• Firstly, given a P system, a multiset is placed in the corresponding input mem-
brane and the computation starts. According to the input and the non deter-
ministic choice of applicable rules, the initial membrane structure is modified
along the computation. As usual, a halting configuration is reached if no more
rules can be applied. The self-construction of the recognizer P system is fin-
ished.

• Secondly, we consider a new computation of the P system, but in this stage,
the membrane structure obtained in the halting configuration of the previous
stage is considered as the initial one. This new computation also needs a new
input, which is placed in the corresponding input membrane. In this stage, the
output will be a specific object (yes or no, but no both) which is placed in the
output region in the halting configuration.

The paper is organized as follows: Next, we recall the definition of recognizer
P system used in this paper. In Section 3, our case study is presented, the self-
construction of a P system from a training set which works as a decision tree and
the classification (decision problem) of new instances as in Machine Learning the-
ory. We provide the formal framework, the general construction of the P systems,
an example and some theoretical considerations. Finally, Section 4 finishes the
paper with some conclusions.

Self-constructing Recognizer P Systems 139

2 Recognizer P Systems

Recognizer P systems were introduced in [11] and they are the natural framework
to study and solve decision problems, i.e., problems were a Boolean total function
θX must be defined on a set of instances IX . Recognizer P systems are associated
in a natural way with P systems with input and with external output, i.e., each
instance of the problem is codified by a multiset placed in an input membrane. The
output of the computation (yes or no) is sent to the environment. Due to the non-
determinism, the definition of recognizer P system claims that the output of all the
computations must be the same. Since one can find slightly different approaches
in the literature (see [9, 15]), we recall the definition used in this paper:

Definition 1. A P system with input is a tuple (Π,Σ, iΠ), where: (a) Π is a
P system, with working alphabet Γ , with p membranes labelled by 1, . . . , p, and
initial multisets w1, . . . , wp associated with them; (b) Σ is an (input) alphabet
strictly contained in Γ ; the initial multisets are over Γ −Σ; and (c) iΠ is the label
of a distinguished (input) membrane.

Let m be a multiset over Σ. The initial configuration of (Π,Σ, iΠ) with input m
is (µ,w1, . . . , wiΠ ∪m, . . . wp).

Definition 2. A recognizer P system is a P system with input, (Π,Σ, iΠ), and
with external output such that:

1. The working alphabet contains two distinguished elements yes, no.
2. All its computations halt.
3. If C is a computation of Π, then either some object yes or some object no (but

not both) must have been released into the environment, and only in the last
step of the computation. We say that C is an accepting computation (respec-
tively, rejecting computation) if the object yes (respectively, no) appears in the
external environment associated to the corresponding halting configuration of
C.

3 A Case Study: Decision Trees

Decision trees is one of the most widely used structures in Computer Science. They
are used to classify an input by sorting it down the tree from the root to some
leaf node, which provides the classification of the instance. Instances are usually
written as sets of pairs ⟨Attribute, V alue⟩ and each node in the tree determines a
test of some attribute. Each branch descending from that node corresponds to one
of the possible value for this attribute. An instance is classified by starting at the
root node of the tree, testing the attribute specified in this node and moving down
the branch corresponding to the value of the instance in this attribute. The leaves
are labelled with values of the classification and they are the output associated
to the instances that reach them. In this way, if the possible classifications are

140 Dı́az-Pernil et al.

Table 1. A classic example of training set adapted from [14].

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Y ES and NO, a decision tree can be thought as a Boolean mapping on the set of
instances which decides the classification of the instance according to the values
of the attributes.

Let us illustrate the process with a classic example adapted from [14]. It consists
on a database with fourteen days. Each day is represented by the values of the
attributes Outlook, Temperature, Humidity andWind. Each day has also associated
its classification with respect to the attribute PlayTennis (see Table 1). From a
learning point of view, the database can be seen as a training set. The target is
to generate a decision tree from this database which can be used to classify new
instances.

Figure 1 shows a decision tree consistent with the training set shown in Table 1,
i.e., a tree which classifies correctly all the examples in the training set. According
to this tree, a day with Outlook = Sunny, Temperature = Cool, Humidity =
Normal and Wind = Strong (which does not belong to the training set) will be
classified as Y ES.

3.1 The P System Model

The definition of self-construction in P system is independent of the P system
model, i.e., it can be considered in the framework of cell-like, tissue-like or what-
ever other graph structure and it can be adapted to different semantics. The unique
restriction that the P system must satisfy is the ability of modifying the initial
membrane structure according to the input. In this way, the concept can be con-
sidered in many scenarios.

In this paper, we will illustrate the definition with a P system model were the
data are encoded as strings [1, 13] and the changes in the membrane structure are
performed via membrane creation [5, 10].

Self-constructing Recognizer P Systems 141

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny

Fig. 1. An example of tree obtained from the training set shown in 1. The image is avail-
able from http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html.

Formally, a self-constructing P system with strings and membrane creation is
a construct of the form Π = (O,H,L,R) where:

1. O is the alphabet of objects;
2. H is a finite set of labels;
3. L is a finite languages over O;
4. R is a finite set of rules, of the following forms:

a) [wp + wq →
∑

k wk]h where h ∈ H, wp, wq and wk are strings over O.
These are 2-cooperative evolution rules: The simultaneous occurrence of
the strings wp and wq in the membrane h produces a finite set of strings
in the same membrane. As usual, wp and wq are consumed.

b) wp[]h → [wq]h where h ∈ H; wp and wq are strings over O. These are send-
in communication rules. A string is introduced in the membrane possibly
modified.

c) [wp]h → []h wq where h ∈ H; wp and wq are strings over O. These are send-
out communication rules. A string is sent out of the membrane possibly
modified.

d) [a→ [M]h2]h1 where h1, h2 ∈ H, a ∈ O and M is a finite language over O.
These are creation rules. An object a placed in a membrane with label h1
creates a new membrane with label h2. This new membrane has associated
an initial finite language M .

We will consider that the self-constructing P system with strings and mem-
brane creation always has a unique membrane (the skin) in the initial membrane
structure, such membrane is the input membrane and the output region is the en-
vironment. The multiset L is placed in the skin at the initial configuration. Rules
are applied according to the following principles:

• Rules are used as usual in the framework of Membrane Computing, that is, in a
maximal parallel way. In one step, each string in a membrane can only be used

142 Dı́az-Pernil et al.

for one rule (non deterministically chosen when there are several possibilities),
but any string which can evolve by a rule of any form must do it (with the
restrictions below indicated).

• All the strings which are not involved in any of the operations to be applied
remain unchanged.

• The rules associated with the label h are used for all membranes with this
label, irrespective of whether or not the membrane is an initial one or it was
obtained by creation.

• Several rules can be applied to different objects in the same membrane simul-
taneously.

3.2 Self-constructing P Systems for Decision Trees Learning

Next, we will provide a family of self-constructing P system with strings and mem-
brane creation for Decision Trees Learning. Such self-constructed P system will
receive instances of the problem and will output yes or no, i.e., they are tools for
solving decision problems.

In a first stage, the P system takes a finite language, codifying a training set,
as input. Each example in the training set will be encoded as a string. The set
of these strings will be the initial language L and it will be placed in the unique
initial membrane of the P system, as defined above. After a finite number of steps,
the computation halts and the membrane structure has been (probably) modified.
The P system with this halting membrane structure is the recognizer P system
which has been self-constructed according with the training set provided as input.
The self-constructed recognizer P system with the membrane structure obtained
in the halting configuration is now prepared to receive an instance of the decision
problem and will provide an answer yes or not.

Let us start by considering a training set D = {(v1, c1), . . . , (vn, cn)} where, for
each i ∈ {1, . . . , n}, vi is a tuple of pairs ⟨Attribute, V alue⟩ and ci = {Y ES, NO}
is the classification for a concept1. We will consider a set of attributes ATR =
{A1, . . . , Ak} and, for each i ∈ {1, . . . , k}, V ALi = {v1i , . . . , v

ji
i } is the set of values

of the attribute Ai. We will consider that the sets V ALi are disjoint pairwise.
We will also consider V AL = V AL1 ∪ . . . ∪ V ALk and Γ = ATR ∪ V AL ∪
{Y ES, NO}. The set Γ will be called a training set alphabet. Notice that many
different training sets can have the same alphabet Γ .

By using this notation, we will represent each example (vi, ci) as a string
over the set Γ and a training set can be considered as a finite language over
this set. The example (vi, ci) will be represented by the string of 2k + 1 symbols
A1v

i
1A2v

i
2 . . . Akv

i
kci, where v

i
j is the value of the attribute Aj in the i− th exam-

ple of the training set and ci ∈ {Y ES, NO} is the value of the classification. For
example, the string

1 A formal description of the principles of Machine Learning is out of the scope of this
paper. A detailed introduction can be found in, e.g., [8].

Self-constructing Recognizer P Systems 143

Outlook Sunny TemperatureHotHumidity HighWindWeakNO

is the representation of the first example of Table 1.
In the first stage, the finite language codifying the training set is placed in

the skin and the self-construction starts. When it finishes, the halting membrane
structure is prepared for accepting new inputs and deciding on it. The new input
will be similar to the encoding of an example, but the last object of the string will
be ? instead of Y ES or NO. For example, in order to know the classification of a
day not with Outlook = Sunny, Temperature = Cool, Humidity = Normal and
Wind = Strong, the string

Outlook Sunny TemperatureCool Humidity NormalWindStrong ?

will be placed in the input membrane (the skin) and a new computation will start.
Next we provide the formal definition of a self-constructing P system with

strings and membrane creation associated to a training set Γ . The P system is a
4-uple Π = (O,H,L,R) where:

1. O = Γ ∪ {Y ESaux, Y ESact, ?, NOaux, NOact, new} is the alphabet of ob-
jects;

2. H = {skin} ∪ V AL. The possible labels are the values of the attributes plus
the initial label skin;

3. L = {Y ESaux, NOaux} Two strings, each of them with only one object, are
placed in the skin in the initial configuration;

4. We split the set R of rules into two groups, the rules used in the self-
construction stage and the rules used in the decision stage:

Rules for the self-construction stage.

R1. [xY ES + Y ESaux → xY ES + Y ESact]h
[xNO +NOaux → xNO +NOact]h

}
for h ∈ H.

where x is a string over Γ composed by pairs (Attribute, V alue). If the string
xY ES and Y ESaux occur simultaneously in the same membrane, then xY ES
remains unchanged, but Y ESaux is consumed and Y ESact is produced.
Analogously for the NO case.

R2. [Y ESact +NOact → new]h for h ∈ H.
If the strings Y ESact and NOact are placed simultaneously in the same
membrane, both are consumed and the string new is produced.

R3. [new + xAiy → xAiy + v1 + . . .+ vs]h for h ∈ H.
If the strings new and xAiy occur in the same membrane (where xAiy is a
string including the object Ai, which denotes an attribute), then the string
new is consumed, the string xAiy remains unchanged and all the strings vij
from V ALi are produced. Let us notice that this set of rules produces a high

144 Dı́az-Pernil et al.

degree of non-determinism. On the one hand, many different strings xAiy can
simultaneously occur in the same membrane and, on the other hand, several
Ai may be chosen from the same string. Nonetheless, since there can exists at
most only one string new in each membrane at each time unit, only one of
these rules will be applied.

R4. [v → [Y ESauxNOaux]v]h for h ∈ H
Each string v ∈ V AL creates a new membrane. Such membrane will have v
as a label and it will contain the strings Y ESaux and NOaux.

R5. xAivy []v → [xy]v for Ai ∈ ATR and v ∈ V ALi

Each string xAivy (where Ai is an object which denotes an attribute and v
is the next symbol in the string, denoting one of the values of Ai) out of a
membrane with label v will be sent into the membrane. The application of
the rule will transform the string into xy, which is xAivy after deleting the
substring Aiv. These rules are applied in parallel and several strings can cross
out the same membrane simultaneously.

Rules for the decision stage.

R6. xAvy? []v → [xy?]v for v ∈ V AL.
If a string ended with ? and containing an object v ∈ V AL is out of a
membrane with label v, then the string is sent into the membrane. The
application of the rule also produces a change in the string since the object v
and the previous object in the string (the object A denoting the corresponding
attribute) are deleted.

R7. [x? + Y ESact → Y ESout + Y ESact]h
[x? +NOact → NOout +NOact]h

}
for h ∈ H.

where x is a string over Γ composed by pairs (Attribute, V alue). If the string
x? and Y ESact occur simultaneously in the same membrane, then Y ESact

remains unchanged, but x? is consumed and Y ESout is produced. Analogously
for the NO case.

R8. [Y ESout]h → []h Y ESout

[NOout]h → []hNOout

}
for h ∈ H.

when an object Y ESout (resp. NOout) is produced, the decision is made. This
set of rules sends such object from the membrane where is produced to the
environment. Such objects are the answers to the decision problem

Self-constructing Recognizer P Systems 145

Outlook sunny Temperature hotHumidity highWindweakNO
Outlook sunny Temperature hotHumidity highWind strong NO
Outlook overcast Temperature hotHumidity highWindweak Y ES
Outlook rain TemperaturemildHumidity highWindweak Y ES
Outlook rain Temperature coolHumidity normalWindweak Y ES
Outlook rain Temperature coolHumidity normalWind strong NO
Outlook overcast Temperature cool Humidity normalWind strong Y ES
Outlook sunny TemperaturemildHumidity highWindweakNO
Outlook sunny Temperature cool Humidity normalWindweak Y ES
Outlook rain TemperaturemildHumidity normalWindweak Y ES
Outlook sunny TemperaturemildHumidity normalWind strong Y ES
Outlook overcast TemperaturemildHumidity highWind strong Y ES
Outlook overcast Temperature hotHumidity normalWindweak Y ES
Outlook rain TemperaturemildHumidity highWind strong NO

Fig. 2. Finite language encoding the training set from Table 1.

3.3 An example

As an example of self-construction P systems for Decision Tree Learning, let us
consider the training set from Table 1. According to the encoding previously de-
scribed, such training set can be written as shown in Fig. 2.

Let us consider an initial configuration C0 which has only one membrane with
label skin. Such membrane contains the language codifying the training set from
Fig. 2, together with Y ESaux and NOaux. From this initial configuration only two
rules from R1 are applied. The application of such rules consumes Y ESaux and
NOaux and produces Y ESact and NOact. In the second step of the computation,
only the rule fromR2 is applied. The objects Y ESact andNOact are consumed and
new appears in the skin. In this way, the configuration C2 has only one membrane,
the skin, where the codification of the training set and the object new are placed.

From this configuration C2, one and only one of the rules from R3 is non-
deterministically chosen and applied. In the choice, one of the strings encoding
an example from the training set is taken and in this string, one of the objects
encoding an attribute is also selected. Let us suppose that the string

Outlook sunny Temperature hotHumidity highWindweakNO

is chosen and the object Outlook is selected. The application of the rule consumes
the object new, keeps unchanged the string encoding the example and three new
objects rain, sunny and overcast appear. Therefore, the configuration C3 has only
one membrane, the skin, where the codification of the training set and the objects
rain, sunny and overcast are placed.

In the next step, the changes in the membrane structure start. The objects
rain, sunny and overcast create new membranes. Each membrane has the objects
Y ESaux and NOaux inside and the corresponding value rain, sunny or overcast
as label, i.e.,

146 Dı́az-Pernil et al.

C4 =

[
TS [Y ESauxNOaux]rain

[Y ESauxNOaux]sunny [Y ESauxNOaux]overcast

]
skin

where TS represents the language encoding the training set. In the next step,
rules from R5 are applied. All the strings in the skin are sent into the new mem-
branes with slight changes. These new strings in the elementary membranes are
the following. The set TRsunny of strings in the membrane with label sunny is

Temperature hotHumidity highWindweakNO
Temperature hotHumidity highWind strong NO
TemperaturemildHumidity highWindweakNO
Temperature cool Humidity normalWindweak Y ES
TemperaturemildHumidity normalWind strong Y ES

the set TRrain of strings in the membrane with label rain is

TemperaturemildHumidity highWindweak Y ES
Temperature cool Humidity normalWindweak Y ES
Temperature cool Humidity normalWind strong NO
TemperaturemildHumidity normalWindweak Y ES
TemperaturemildHumidity highWind strong NO

and, finally the set TRovercast of strings in the membrane with label overcast is

Temperature hotHumidity highWindweak Y ES
Temperature cool Humidity normalWind strong Y ES
TemperaturemildHumidity highWind strong Y ES
Temperature hotHumidity normalWindweak Y ES

In the configuration C5, the membrane with label sunny has five strings en-
coding examples and two objects Y ESaux and NOaux. The situation is similar to
the initial configuration, where the membrane skin had fourteen strings encoding
examples. Let us consider that from the configuration C8, the chosen rule from
R3 takes the string

Temperature hotHumidity highWindweakNO

and the object Humidity. In C9, two new membranes appear inside the membrane
with label sunny, one of them with membrane high and the other one with label
normal. In the configuration C10, this new membrane with label high contains
the objects Y ESaux and NOaux and the set of strings TRsunny+high

Temperature hotWindweakNO
Temperature hotWind strong NO
TemperaturemildWindweakNO

Self-constructing Recognizer P Systems 147

analogously, the new membrane with label normal contains the objects Y ESaux

and NOaux and the set of strings TRsunny+normal

Temperature coolWindweak Y ES
TemperaturemildWind strong Y ES

In a similar process, if the chosen rule fromR3 in the membrane with label rain
selects an object Wind from the taken string, then, such membrane will have two
new membranes inside in the configuration C10. One on them, with label strong
will contain the objects Y ESaux and NOaux and the set of strings TRrain+strong

Temperature cool Humidity normalNO
TemperaturemildHumidity highNO

The second new membrane, with label weak will contain the objects Y ESaux

and NOaux and the set of strings TRrain+weak

TemperaturemildHumidity high Y ES
Temperature cool Humidity normal Y ES
TemperaturemildHumidity normal Y ES

Let us consider now the membrane with label overcast in the configuration C5.
It contains the objects Y ESaux and NOaux and the set of strings TRovercast. In
the next step, the object Y ESaux is transformed into Y ESact by application of one
rule from R1, but NOaux keeps unchanged, since there is no string with NO as the
last object. This means that no more rules can be applied and the computation in
this membrane finishes. The same reasoning is valid for the remaining membranes
where all the strings end in Y ES or NO. In this way, the configuration C11 is a
halting one and the decision P systems is already constructed (see Fig. 3).

This self-constructed recognizer P system can be used now for deciding on new
instances. Let us consider a new computation. The target is to obtain a Boolean
answer as a classification for the day with Outlook = Sunny, Temperature =
Cool, Humidity = Normal and Wind = Strong. In such way, the string

Outlook Sunny TemperatureCool Humidity NormalWindStrong ?

will be placed in the input membrane (the skin) and this is the unique string in
the skin in the new configuration C0. The corresponding rule from R6 is applied
and the string is sent to the membrane with label sunny slightly modified:

TemperatureCool Humidity NormalWindStrong ?

In the next step, a new rule from R6 is applied and the string
TemperatureCoolWindStrong ? is placed in the membrane with label normal
in the configuration C2. Since Y ESact occurs in this membrane, the string is con-
sumed and Y ESout appears in the configuration C3. By three applications of rules
from R7, the object Y ESout is sent to the environment and the configuration C6

is a halting configuration. The answer Y ESout is sent to the environment in the
last step of the computation and it is the answer corresponding to the input in
this recognizer P system.

148 Dı́az-Pernil et al.

sunny overcast rain

high

skin

strong

weak
normal

TR

TR

TR
TR

TR

sunny+high

sunny+normal

overcast

rain+strong

rain+weak

YES

YES

YES

YES YES

NO NO

NO

NO

NO

act

act

act
act

act

aux

aux

aux

aux

aux

Fig. 3. Halting configuration for the self-constructed P system.

3.4 Theoretical Foundations

Next, we provide several considerations about the algorithm provided in the pre-
vious section. The first one is related to the training set provided as input. It
must be carefully checked in order to avoid noise, i.e., it is not acceptable that
the same instance appears with two different classifications in the same training
set. Following the example from Table 1, we do not accept that two days with the
same values for the attributes Outlook, Temperature, Humidity and Wind have
different classifications for PlayTennis.

If the training set is free of noise, then the self-construction of the recognizer P
system (first use) and the classification of new instances (second use) halt after a
finite number of steps. A deeper question is the predictive power of the recognizer
P system on new instances. A detailed study of such question is out of the scope of
this paper. Nonetheless, let us briefly notice that usually, more than one decision
tree is derivable from a training set and they may be not equivalent. From a
Membrane Computing point of view, it is clear that the non-determinism produced
by the set of rules R3 produces a big amount of possible halting configurations.

As an illustrative example, let us consider a training set on wooden toy blocks
with two attributes Color and Shape and the classification for BelongsToEddy
shown in Table 2. Figure 4 shows two different trees consistent with the training
set from Table 2. Both are consistent, since they classify correctly all the instances
of the training set, but they are not equivalent. For example, the classification of
a green and squared block, an instance which does not belongs to the training set,
depends on the chosen tree. In Machine Learning, the followed criterion is entia
non sunt multiplicanda praeter necessitatem, known as Ockham’s razor2 which
states that among competing hypotheses, the one with the fewest assumptions

2 Due to William of Ockham (1287 − 1347), see [8] for details.

Self-constructing Recognizer P Systems 149

Table 2. An example of training set for toy blocks.

Block Color Shape BelongsToEddy

B1 Red Square Yes
B2 Red Triangle Yes
B3 Green Triangle No
B4 Green Circle No

should be selected. In this paper, we consider that all the trees consistent with
the training set can be a solution of the problem and do not apply any bias for
selecting a specific one.

The theoretical correctness, from a Machine Learning point of view, can be
summed up in the following theorem.

Theorem 1. Let us consider a non-empty training set D without noise. Let us
consider that the instances in D has k attributes. Let Π be the self-constructing P
system associated to D as shown above.

(C1) In the self-constructing stage, in any possible computation, there exists p ∈
{0, . . . , k} such that C1+5p is a halting configuration. Therefore, each compu-
tation gives at most 1 + 5k steps.

(C2) Any computation in the decision stage gives 2p + 2 steps with p ∈ {0, . . . , k}
and sends to the environment Y ESact or NOact (but no both) in the last step
of computation.

(C3) The recognizer P system obtained at the end of any computation of the self-
constructing stage is consistent with the training set.

The proof of this Theorem is provided in the Appendix A.

Color Shape

Color

TriangleSquare Circle
Red Green

Yes No

Red Green

Yes No

Yes No

Fig. 4. Two trees consistent with the training set from Table 2. Notice that the classifi-
cation for a green and squared block is different in both trees.

150 Dı́az-Pernil et al.

4 Conclusions

In this paper, we consider the process of modifying the membrane structure of
the membranes as a target itself. This idea can be found in the literature (see,
e.g., [3, 6]) but in this paper proposes a new point of view. The new membrane
structure (potentially complex), which has been built according P system rules,
is the initial membrane structure for a new computation. In this sense, we talk
about self-construction. This self-construction of P systems can be adapted to
many different scenarios and it is independent of the P system model. In such
way, this proposal open a new research line, since the adaptation of this idea to
different Membrane Computing models need a deeper study.

As an illustrative example, we have considered the well-known problem of con-
structing decision trees and their use as classifiers in the framework of Membrane
Computing. This is also a contribution of this paper, since it provides a new bridge
between Membrane Computing and Machine Learning. The purpose has been to
illustrate the self-construction of P systems with a simple encoding that allows to
translate easily the ideas from Machine Learning into Membrane Computing. In
this way, the chosen codification allows a simple description of the process but it
is far from being the most efficient. Different codifications will allow more efficient
computations and further research must be done in this way.

Acknowledgements

MAGN acknowledges the support of the project TIN2012-37434 of the Ministerio
de Economı́a y Competitividad of Spain.

References

1. Ferretti, C., Mauri, G., Zandron, C.: P systems with string objects. In: Păun, Gh.,
Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane Computing,
pp. 168 – 197. Oxford University Press, Oxford, England (2010)

2. Freund, R., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): Membrane Computing,
6th International Workshop, WMC 2005, Vienna, Austria, July 18-21, 2005, Revised
Selected and Invited Papers, Lecture Notes in Computer Science, vol. 3850. Springer,
Berlin Heidelberg (2006)

3. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Fractals and P systems. In: Graciani,
C., Păun, Gh., Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Fourth Brainstorm-
ing Week on Membrane Computing. vol. II, pp. 65–86. Fénix Editora, Sevilla, Spain
(2006)

4. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero,
F.J.: On the power of dissolution in P systems with active membranes. In: Freund
et al. [2], pp. 224–240

5. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Romero-Campero, F.J.: A linear so-
lution for qsat with membrane creation. In: Freund et al. [2], pp. 241–252

Self-constructing Recognizer P Systems 151

6. Gutirrez-Naranjo, M.A., Perez-Jimnez, M.J., Riscos-Nez, A., Romero-Campero, F.J.:
How to express tumours using membrane systems. Progress in Natural Science 17(4),
449–457 (2007)

7. Luisi, P.: The chemical implementation of autopoiesis. In: Fleischaker, G., Colonna,
S., Luisi, P. (eds.) Self-Production of Supramolecular Structures, NATO ASI Series,
vol. 446, pp. 179–197. Springer Netherlands (1994)

8. Mitchell, T.M.: Machine Learning. McGraw-Hill Education, 1st edn. (1997)
9. Murphy, N., Woods, D.: A characterisation of NL using membrane systems without

charges and dissolution. In: Calude, C.S., Costa, J.F., Freund, R., Oswald, M., Rozen-
berg, G. (eds.) Unconventional Computing, Lecture Notes in Computer Science, vol.
5204, pp. 164–176. Springer Berlin Heidelberg (2008)

10. Mutyam, M., Krithivasan, K.: P systems with membrane creation: Universality and
efficiency. In: Margenstern, M., Rogozhin, Y. (eds.) MCU. Lecture Notes in Computer
Science, vol. 2055, pp. 276–287. Springer (2001)

11. Pérez-Jiménez, M.J., Riscos-Núñez, A.: A linear-time solution to the knapsack prob-
lem using P systems with active membranes. In: Mart́ın-Vide, C., Mauri, G., Păun,
Gh., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane Computing. Lec-
ture Notes in Computer Science, vol. 2933, pp. 250–268. Springer, Berlin Heidelberg
(2003)

12. Păun, G.: Computing with membranes. Tech. Rep. 208, Turku Centre for Computer
Science, Turku, Finland (November 1998)

13. Păun, G.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000), see also [12]

14. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)
15. Song, T., Wang, X., Zheng, H.: Time-free solution to Hamilton path problems using

P systems with d-division. Journal of Applied Mathematics 2013, Article ID 975798,
7 pages (2013)

16. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems
with active membranes. In: Antoniou, I., Calude, C., Dinneen, M.J. (eds.) UMC. pp.
289–301. Springer (2000)

A Appendix

Next, we provide the proof of the Theorem 1. In order to fix the notation, we
will call examples to the strings xC, where c is a string (maybe empty) of pairs
Attribute Value and C ∈ {Y ES,NO}. First of all, we will prove the first statement:

In the self-constructing stage, in any possible computation, there
exists p ∈ {0, . . . , k} such that C1+5p is a halting configuration.
Therefore, each computation gives at most 1 + 5k steps.

(C1)

In this self-construction stage the strings x? are not supplied to the system
and, hence Y ESout or NOout are not produced. In this way, we do not care about
the set of rules R6, R7 and R8 because they cannot be applied. The proof is
based on the following lemmas.

152 Dı́az-Pernil et al.

Lemma 1. Let us consider an elementary membrane at the step n such that there
are no strings in its father membrane (it can also be the skin in the initial configu-
ration) and its content is Y ESaux, NOaux, and a non-empty set of examples such
that all of them end with Y ES or all of them end with NO. Then, the computation
in this membrane finishes at step n+ 1.

Proof. Let us consider that all the examples end with Y ES (the case NO is
analogous). In the described conditions, only one rule can be applied (from R1)
and in the step n + 1, the membrane contains the same set of examples and
Y ESact and NOaux. It is easy to check that no more rules can be applied and the
computation finishes at this step.

From this lemma, we obtain that if all the examples in the initial set provided to
the skin in the initial configuration end with Y ES or NO, then the computation
of the self-constructing stage end after one computation step.

Lemma 2. All the examples inside a membrane have the same length.

Proof. It is trivial to check that it is true in the initial configuration, since if the
training set has k attributes, then, all the initial examples have length 2k+1. For
the next steps, we only need to consider that the rules which sends examples from
one membrane into other belongs tho the set R5, the application of these rules
always decreases the length of the example in two units and all the examples arrive
to the membrane simultaneously.

Lemma 3. Let us consider an initial training set without noise. If in a membrane
there is at least one example of length 1, then all of them are Y ES or all of them
are NO.

Proof. By, Lemma 2, we can consider that all the examples in the membrane have
length 1. If the training set has k attributes, then all the examples in the initial
configuration have length 2k + 1 and, by construction, these examples of length 1
came from these original one after deleting two objects k times. In this process, if
two examples are sent to the same membrane, then both share the same value for
one attribute. If both examples are in the same membrane after k deletions, then
they share the values of the k attributes and, since their no noise, the classification
must be the same.

Lemma 4. Let us consider an elementary membrane h at the step n such that
there are no strings in its father membrane (it can also be the skin in the initial
configuration) and its content is Y ESaux, NOaux, and a non-empty set of examples
of length l such that at least one of them ends with Y ES and at least one of them
ends with NO. Then, at step n + 5, the membrane h does not contains strings.
It only contains elementary membranes such that contain Y ESaux, NOaux and
examples of length l − 2.

Self-constructing Recognizer P Systems 153

Proof. In the described conditions, at the step n + 1 the membrane contains the
set of examples plus Y ESact and NOact (by R1); at the step n + 2, it contains
the set of examples and new (by R2); at n + 3, it contains the set of examples
plus v1,. . . ,vs, where v1,. . . ,vs are the values of one of the attributes (by R3).
By application of rules from R4, at the step n + 4, the membrane contains the
set of examples plus s elementary membranes, one for each value. Each of these
membranes contains the strings Y ESaux and NOaux. Finally, rules from R5 are
applied and all the examples from the membrane h are sent into the elementary
membranes by deleting two objects.

Finally, the Statement 1, can be proved from these lemmas.

Proof. Proof of the Statement 1. If the training set has k attributes, then the
examples placed in the skin in the initial configuration have length 2k + 1. Two
cases are possible:

• If all of them have the same classification, i.e., all of them end with Y ES or
all of them end with NO, then, by Lemma 1, the computation finishes in the
configuration C1.

• If all of them do not have the same classification, then the conditions of Lemma
2 hold and the configuration C5 has elementary membranes with Y ESaux,
NOaux and examples of length 2(k− 1)− 1. Each of these membranes is in the
same conditions that the skin in the initial configuration, but the length of the
examples has decreased in two units. This process goes on and each elementary
membrane stops after 1 + 5p steps with p ∈ {0, . . . , k}. Lemma 3 is considered
to ensure that all the examples in the elementary membrane end in Y ES or
NO and then, the computation halts as shown in Lemma 1.

Next, we will prove the second statement of the theorem. Now the P system
has been self-constructed. Only elementary membranes have strings. As shown in
Lemma 1, in the halting configuration, these membrane have a set of examples and
the pair Y ESaux and NOact or Y ESact and NOaux, depending of the classification
of the examples. Any computation in the decision stage starts by placing a string
x? as input in the skin, where v is a string of pairs Attribute Value. Since all the
examples in each membrane have the same classification and no more examples
are supplied, then the rules from sets R1 to R5 cannot be applied. Only rules
from R6, R7 and R8 must be considered. The statement is the following

Any computation in the decision stage gives 2p + 2 steps with
p ∈ {0, . . . , k} and sends to the environment Y ESact or NOact

(but no both) in the last step of computation.
(C2)

Proof. First of all, let us notice that rules from R6, R7 and R8 cannot be applied
simultaneously, because the conditions of applicability are disjoint and only one
string x? is provided as input in the skin in each computation. From this obser-
vation, rules from R7 are firstly applied p times with p ∈ {0, . . . , k}. After these
p steps, the elementary membrane where Y ESact or NOact is placed and in the

154 Dı́az-Pernil et al.

step p+ 1, the object Y ESact or NOact (but no both) is produced. After p steps
more, in the step 2p + 1, Y ESact or NOact arrives to the skin by application of
rules from R8. In the following step, 2p + 2, the object Y ESact or NOact is sent
out to the environment and the computation halts.

In the third statement, we consider the self-constructed P system and take an
example from the training set xC, with C ∈ {Y ES,NO} and replace C by ?. The
statement claims that if we provide x? to the P system in the decision stage, we
obtain the same classification that the original one. The statement is

The recognizer P system obtained at the end of any computation
of the self-constructing stage is consistent with the training set.

(C3)

Proof. In order to fix ideas, let us consider that the original example was xY ES.
The other case is analogous. By rules from R6, x? will be sent to an elementary
membrane where all the examples have the same classification. One of these exam-
ples was originally the xY ES and Y ESact occurs in this elementary membrane.
Then, by application of one rule from R7 and later with rules from R8, the object
Y ESout is sent to the environment.

Antimatter as a Frontier of Tractability
in Membrane Computing

Daniel Dı́az-Pernil1, Francisco Peña-Cantillana2,
Miguel A. Gutiérrez-Naranjo2

1Research Group on Computational Topology and Applied Mathematics
Department of Applied Mathematics - University of Sevilla, 41012, Spain
sbdani@us.es

2Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, 41012, Spain
frapencan@gmail.com, magutier@us.es

Summary. It is well known that the polynomial complexity class of recognizer polar-
izationless P systems with active membranes, without dissolution and with division for
elementary and non-elementary membranes is exactly the complexity class P (see [6],
Th. 2). In this paper, we prove that if such P system model is endowed with antimatter
and annihilation rules, then NP problems can be solved. In this way, antimatter is a
frontier of tractability in Membrane Computing.

1 Introduction

Antimatter is material composed of antiparticles, which have the same mass as par-
ticles of ordinary matter but have opposite charge. Encounters between particles
and antiparticles lead to the annihilation of the objects, giving energy propor-
tional to the total matter and antimatter mass, in accord with the mass-energy
equivalence equation, E = mc2.

The term antimatter was first used by Arthur Schuster in 1898, (see [15]). He
hypothesized antiatoms, as well as whole antimatter solar systems, and discussed
the possibility of matter and antimatter annihilating each other. The modern the-
ory of antimatter began in 1928, with the papers [4, 5] by Paul Dirac. Dirac
realised that the relativistic version of the Schrödinger wave equation for elec-
trons predicted the possibility of antielectrons. These were discovered by Carl D.
Anderson in 1932 [1] and named positrons (a contraction of ”positive electrons”).

In Membrane Computing, the notion of antimatter has been previously as-
sociated to anti-spikes in the framework of Spiking Neural P Systems (see, e.g.,
[10, 11, 16, 18]). In this context, when a spike and anti-spike appear in the same
neuron, the annihilation occurs and both, spike and anti-spike, disappear.

156 Dı́az-Pernil et al.

In this paper, we prove that antimatter is a frontier of tractability in Membrane
Computing. As detailed below, it is well known that the polynomial complexity
class of recognizer P systems with active membranes without polarizations, without
dissolution and with division of elementary and non-elementary division is exactly
the complexity class P (see [6], Th. 2). In such paper, it is proved that if the
described P system model is endowed with dissolution rules, then NP-complete
problems can be solved. In this way, dissolution is a frontier of tractability.

In this paper, we consider the polynomial complexity class of recognizer P
systems with active membranes without polarizations, without dissolution and
with division of elementary and non-elementary division (i.e., the class which is
equal toP) and we add antimatter and the corresponding annihilation rules. In this
new model, we show a semi-uniform family of P systems which solves the Subset
Sum problem. Since the Subset Sum Problem is NP-complete, this P system
family shows that antimatter is a new frontier of the tractability in Membrane
Computing

The paper is organized as follows: In the next section, we recall some basics on
recognizer P systems, complexity classes and a previous result about dissolution
as a frontier of tractability. Section 3 is devoted to the concept of antimatter in
Membrane Computing. In Section 4, a solution to the Subset Sum problem by
using antimatter and annihilation rules is shown. The paper finishes with some
conclusions.

2 Recognizer P Systems

First of all, we recall the main notions related to recognizer P systems and com-
plexity in Membrane Computing. For a detailed description, see, e.g., [12, 14].

The main syntactic ingredients of a cell–like P system are the membrane struc-
ture, the multisets, and the evolution rules. A membrane structure consists of sev-
eral membranes arranged hierarchically inside a main membrane (the skin). Each
membrane identifies a region inside the system. When a membrane has no mem-
brane inside, it is called elementary. The objects can be described by symbols or by
strings of symbols, in such a way that multisets of objects are placed in the regions
of the membrane structure. The objects can evolve according to given evolution
rules, associated with the regions.

The semantics of the cell–like membrane systems is defined through a non–
deterministic and synchronous model. A configuration of a cell–like membrane
system consists of a membrane structure and a family of multisets of objects asso-
ciated with each region of the structure. At the beginning, there is a configuration
called the initial configuration of the system. In each time unit we can transform
a given configuration in another configuration by applying the evolution rules to
the objects placed inside the regions of the configurations, in a non–deterministic,
maximally parallel manner (the rules are chosen in a non–deterministic way, and
in each region all objects that can evolve must do it). In this way, we get transi-
tions from one configuration of the system to the next one. A computation of the

Antimatter as a Frontier of Tractability 157

system is a (finite or infinite) sequence of configurations such that each configu-
ration –except the initial one– is obtained from the previous one by a transition.
A computation which reaches a configuration where no more rules can be applied
to the existing objects and membranes, is called a halting computation. The result
of a halting computation is usually defined through the multiset associated with
a specific output membrane (or the environment) in the final configuration.

Let us recall that a decision problemX is a pair (IX , θX) where IX is a language
over a finite alphabet (the elements are called instances) and θX is a predicate
(a total Boolean function) over IX . Let X = (IX , θX) be a decision problem. A
polynomial encoding ofX is a pair (cod, s) of polynomial time computable functions
over IX such that for each instance w ∈ IX , s(w) is a natural number representing
the size of the instance and cod(w) is an multiset representing an encoding of the
instance. Polynomial encodings are stable under polynomial time reductions

2.1 The P systems Model

A P system with active membranes without polarizations, without dissolution and
with division of elementary and non-elementary division is a P system with Γ as
working alphabet, with H as the finite set of labels for membranes, and where the
rules are of the following forms:

(a) [a→ u]h for h ∈ H, a ∈ Γ , u ∈ Γ ∗. This is an object evolution rule, associated
with a membrane labelled with h: an object a ∈ Γ belonging to that membrane
evolves to a string u ∈ Γ ∗.

(b) a []h → [b]h for h ∈ H, a, b ∈ Γ . An object from the region immediately
outside a membrane labelled with h is introduced in this membrane, possibly
transformed into another object.

(c) [a]h → b []h for h ∈ H, a, b ∈ Γ . An object is sent out from membrane
labelled with h to the region immediately outside, possibly transformed into
another object.

(d) [a]h → [b]h [c]h for h ∈ H, a, b, c ∈ Γ . An elementary membrane can be
divided into two membranes with the same label, possibly transforming some
objects.

(e) [[]h1 []h2]h0 → [[]h1]h0 [[]h2]h0 , where h0, h1, h2 are labels. They are division
rules for non–elementary membranes. If the membrane with label h0 contains
other membranes than those with labels h1, h2, then such membranes and their
contents are duplicated and placed in both new copies of the membrane h0; all
membranes and objects placed inside membranes h1, h2, as well as the objects
from membrane h0 placed outside membranes h1 and h2, are reproduced in
the new copies of membrane h0.

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non–
deterministic way), but any object which can evolve by one rule of any form,
must evolve.

158 Dı́az-Pernil et al.

• If at the same time a membrane labelled with h is divided by a rule of type (d)
or (e) and there are objects in this membrane which evolve by means of rules
of type (a), then we suppose that first the evolution rules of type (a) are used,
and then the division is produced. Of course, this process takes only one step.

• The rules associated with membranes labelled with h are used for all copies of
this membrane. At one step, a membrane can be the subject of only one rule
of types (b)-(e).

We denote by AM0
−d,+ne the class of all recognizer P systems with active mem-

branes without polarizations, without dissolution and with division of elementary
and non-elementary division. We keep the subscript −d in order to stress that no
dissolution rules are used in this model.

2.2 Polynomial complexity classes in recognizer P systems

Let Π = (Π(w))w∈IX be a family of recognizer membrane systems and let R be a
class of recognizer P systems without input membrane. A decision problem X =
(IX , θX) is solvable in a semi-uniform way and in polynomial time by the family
Π = (Π(w))w∈IX of P systems of type R, and we denote this by X ∈ PMC∗

R, if Π
is polynomially uniform by Turing machines, that is, there exists a deterministic
Turing machine working in polynomial time which constructs the system Π(w)
from the instance w ∈ IX ; and Π is polynomially bounded, that is, there exists
a polynomial function p(n) such that for each w ∈ IX , all computations of Π(w)
halt in at most p(|w|) steps. It is said that Π is sound with regard to X if for each
instance of the problem w ∈ IX , if there exists an accepting computation of Π(w),
then θX(w) = 1 and Π is complete with regard to X if for each instance of the
problem w ∈ IX , if θX(w) = 1, then every computation of Π(w) is an accepting
computation.

Let R be a class of recognizer P systems with input membrane. A decision
problem X = (IX , θX) is solvable in a uniform way and polynomial time by a
family Π = (Π(n))n∈N, of P systems from R, and we denote this by X ∈ PMCR,
if the family Π is polynomially uniform by Turing machines, i.e., there exists a
polynomial encoding1 (cod, s) from IX toΠ such that the familyΠ is polynomially
bounded with regard to (X, cod, s); that is, there exists a polynomial function p,
such that for each u ∈ IX every computation of Π(s(u)) with input cod(u) is
halting and, moreover, it performs at most p(|u|) steps; and the family Π is sound
and complete with regard to (X, cod, s). It is easy to see that the classes PMC∗

R
and PMCR are closed under polynomial–time reduction and complement.

According to these formal definitions, in [6] it is proved that the polyno-
mial complexity class of recognizer P systems with active membranes with-
out polarizations, without dissolution and with division of elementary and non-
elementary division is exactly the complexity class P. With the standard notation,
P = PMCAM0

−d,+ne
= PMC∗

AM0
−d,+ne

.

1 See [12, 14] for the details.

Antimatter as a Frontier of Tractability 159

3 Antimatter

In this paper, we will use the physical inspiration of antimatter in the framework of
cell-like P systems. In such way, given two object a and b from the alphabet Γ , an
annihilation rule of a and b is written as [ab→ λ]h. The meaning of the rule follows
the idea of annihilation: If a and b occur simultaneously in the same membrane with
label h, then both are consumed (disappear) and nothing is produced (denoted
by the empty string λ). Let us remark that both objects a and b are objects
from Γ and they can trigger any other rule of type (a) - (d) described above, not
only annihilation rules. Nonetheless, in order to make the readability easier, if b
annihilates the object a then b will be called the antiparticle of a and we will write
a instead of b.

With respect to the semantics, let us notice that this rule must be applied as
many times as possible in each membrane, according to the maximal parallelism,
i.e., if m copies of a and n copies of a occur simultaneously in a membrane of label
h, with m ≥ n and the rule [aa→ λ]h is defined in the P system, then the rule is
applied n times, n copies of a and a are consumed and m− n copies of a are not
affected by this rule.

Finally, a last consideration about the application of the annihilation rule. Ac-
cording to the non-determinism, if an object a can trigger more than one rule of
types (a) - (d), then one rule of the applicable ones is non-deterministically cho-
sen. Nonetheless, annihilation rules introduce a novelty. According to the physical
intuition, if a and a occur simultaneously in the same membrane h and the anni-
hilation rule [aa → λ]h is defined, then it is applied, regardless other options. In
this sense, any annihilation rule has priority on the other types of rules.

For example, let us consider the rules R1 ≡ [a → cd]h, R2 ≡ [a]h → b []h
and R3 ≡ [aa → λ]h defined on a membrane with label e. If the multiset inside
the membrane is ab, then R1 and R2 are applicable and one of then must be
non-deterministically chosen. Nevertheless, if the multiset is aba, then R3 must be
applied since it is an annihilation rule. If the multiset is a3ba2, then the annihilation
rule is applied twice, by consuming two copies of a and a and the third a is
consumed by one rule of R1 or R2 non-deterministically chosen.

Formally, a P systems with active membranes, without polarizations, without
dissolution, with division of elementary and non-elementary membranes and with
annihilation rules is a construct of the form Π = (O,H, µ,w1, . . . , wm, R) where:

1. m ≥ 1 is the initial degree of the system;
2. O is the alphabet of objects;
3. H is a finite set of labels for membranes;
4. µ is a membrane structure consisting of m membranes labelled with elements

of H;
5. w1, . . . , wm are strings over O, describing the multisets of objects placed in the
m regions of µ;

6. R is a finite set of rules of the types (a) - (e) describe in the Section 2.1 and
the following type of rules:

160 Dı́az-Pernil et al.

(f) [aa → λ]h for h ∈ H, a a ∈ Γ . This is an annihilation rule, associated
with a membrane labelled with h: the pair of objects a a ∈ Γ belonging
simultaneously to that membrane disappear.

By following with the standard notation, we denote by AM0
−d,+ne,+ant the

class of these P systems, where −d denotes that dissolution rules are not used,
+ne denotes the use of elementary and non elementary division and we add +ant
to denote the use of antimatter and annihilation rules.

4 Solving the Subset Sum Problem

In this paper we show that the class of decision problems solvable in polynomial
time in a semi–uniform way by families of recognizer P systems in AM0

−d,+ne,+ant

contains the standard complexity class NP. Formally, we will prove the following
theorem

Theorem 1. NP ⊆ PMC∗
AM0

−d,+ne,+ant

We will prove it by the construction of a semi-uniform family of such P systems
that solves the Subset Sum Problem in a linear time. It is well known that the
Subset Sum problem is the following one: Given a finite set A, a weight function,
w : A → N, and a constant k ∈ N, determine whether or not there exists a subset
B ⊆ A such that w(B) = k. This problem has been widely studied in Membrane
Computing (see, e.g., [2, 3, 7, 8, 9, 13, 17]).

Let us start by considering a tuple u = (n, (w1, . . . , wn), k) to represent an
instance of the problem, where n stands for the size of A = {a1, . . . , an}, wi =
w(ai), and k is the constant given as input for the problem.

As usual, the idea of the design is better understood if we divide the solution
to the problem into several stages:

• Generation stage: for every subset of A, a membrane is generated via membrane
division.

• Weight calculation stage: in each membrane the weight of the associated subset
is calculated.

• Checking stage: for each membrane it is checked whether or not the weight of
its associated subset is exactly k. This stage cannot start before the previous
ones are over.

• Output stage: when the previous stage has been completed in all membranes,
the system sends out the answer to the environment.

For each instance u = (n, (w1, . . . , wn), k) of the Subset Sum problem we consider
the P system Π(u) defined as follows:

• Working alphabet:

Antimatter as a Frontier of Tractability 161

Γ (u) = {a, a, b, c1, c2, c2, d0, . . . , d2n+3, e1, . . . , en}
∪ {p1, . . . , pn, k2n+4, k2n+5, r2n+2, . . . , r2n+6}
∪ {yes2n+8, . . . , yes2n+k+12, yes2n+8, yes2n+k+12}
∪ {z2n+4, . . . , z2n+7, no1, . . . , no2n+k+10, no2n+k+10, no2n+k+11}
∪ {yes, no}

• Initial membrane structure: µ = [[[[]0]1]2]3.
• Initial Multisets: w0 = d0, w1 = ∅, w2 = ∅ and w3 = no0.
• The set of evolution rules, R(u), consists of the following rules.

Generation stage

(a) [d2i → pi+1d2i+1]0 for i ∈ {0, . . . , n− 1}
[d2i+1 → d2i+2]0 for i ∈ {0, . . . , n− 1}
[d2n → d2n+1]0
[d2n+1 → d2n+2r2n+2]0

The goal of the counter di is to control the apparition of the object pi only in
the odd steps. These pi will produce the division of elementary membranes.

(b) [pi]0 → [ei]0 [b]0 for i ∈ {1, . . . , n}

The object pi triggers the rule for division of elementary membranes: in one
membrane is placed the object ei and in the other the object b.

(c) [[]i []i]i+1 → [[]i]i+1 [[]i]i+1 for i ∈ {0, 1, 2}.

This is the set of rules for the division of non-elementary membranes.

These three first set of rules produce the membrane structure needed for com-
puting the solution. Notice that the objects pi produce the division of the elemen-
tary membranes for i ∈ {1, . . . , n} and therefore, in the configuration C2i there are
2i elementary membranes. Let us also remark that the division of the elementary
membranes is propagated by the rules of division on non elementary membranes,
so in the configuration C2n+2, the skin, labelled by 3, contains 2n membranes la-
belled by 2. Each of them contains one membrane labelled by 1, and each of these
membranes labelled by 1 contains one elementary membrane labelled by 0.

Weight calculation stage

(d) [ei → awi]0 for i ∈ {1, . . . , n}

After the application of the membrane division rule by the object pi, in one
membrane is placed the object ei and in the other the object b. Since the
division is produced by pi with i ∈ {1, . . . , n} this means that each of the
2n elementary membranes receive a possible subset of {e1, . . . , en}. Object b
remain inactive whereas the objects ei evolve in the next step to as many
objects s as the weight wi. In such way, each elementary membrane contains
as many objects s as the weight of the associated subset.

162 Dı́az-Pernil et al.

(e) [d2n+2 → d2n+3]0
[d2n+3 → ak+1]0

When the generation stage has finished, the object d2n+3 produces k+1 copies
of the object a. These objects will interact with the object a by producing
annihilation according to the following rule.

(f) [aa→ λ]0
[a]0 → b []0

These are the key rules this stage. The rules [ei → swi]0 from the set b have
generated as many copies of objects a as the weight of the subset encoded in
the membrane. On the other hand, the rule [d2n+3 → ak+1]0 has generated
k + 1 copies of the object a.

• If the weight of the subset encoded in the membrane (number of objects a)
is greater than or equal to k+1 (number of objects a), then all the objects
a are consumed by the annihilation rules.

• If the weight of the subset encoded in the membrane (number of objects
a) is equal to k, then the annihilation rule is applied k times and k copies
of a and a are consumed. The remaining copy of a triggers the rule [a]0 →
b []0 and one object b appears in the corresponding membrane 1 in the
configuration C2n+5.

• Finally, if the weight of the subset encoded in the membrane (number
of objects a) is lower than k, then all the copies of a are consumed by
the annihilation rule, but p objects a are not affected by this rule, where
p ∈ {2, . . . , k+1}. These objects will trigger the rule [a]0 → b []0, by due to
the semantics of the P systems with active membranes, only one object can
cross the membrane in each step and therefore, one object b will appear
in the membrane 1 at the configuration C2n+5 whereas p − 1 copies of a
remain in the membrane 0.

(g) [r2n+2]0 → r2n+3 []0
[r2n+3 → r2n+4k2n+4z2n+4]1

[r2n+4]1 → r2n+5 []1
[k2n+4 → k2n+5]1
[z2n+4 → z2n+5]1

The object r2n+2 produced by the last rule of the set (a) is the starting point
for this set of rules. Its purpose is to place the counters ri, zi and ki in the
right membranes before starting the checking stage. Notice that the starting
indices have been chosen for improving the readability. In this configuration
C2n+5, an object z2n+5 and an object k2n+5 are placed in each membrane with
label 1 and one object r2n+5 is placed on each membrane with label 2.

Checking stage
This stage is quite technical. The aim is that each elementary membrane pro-

duces an object yes2n+k+9 in a membrane labelled by 2 in the configuration

Antimatter as a Frontier of Tractability 163

C2n+k+9 if and only if in the configuration C2n+5 one and only one object a
is placed in the elementary membrane.

(h) [b→ c1c2]1 [k2n+5 → c2]1
[c1 → c2]1 [z2n+5 → z2n+6]1
[c2c2 → λ]1 [z2n+6 → z2n+7]1
[c2]1 → yes2n+8 []1 [z2n+7 → c2]1

Each object a in the elementary membrane is sent out, step by step, trans-
formed into a b object. Since there exists one elementary membrane where the
empty subset is encoded with zero objects a, then such elementary membrane
contains k+1 objects a and the process of sending out these objects will take
k+1 steps. Notice also that a new annihilation process (of the objects c2 and
c2) is also considered.

(i) [r2n+5 → r2n+6]2 [yes2n+8 → b]2
[r2n+6 → yes2n+8]2 [yes2n+8 yes2n+8 → λ]2

The counter ri produces the object yes2n+8 in the membrane 2 exactly in
the configuration C2n+7. If in this time there is an object yes2n+8 in the
membrane, both are annihilated. If not, yes2n+8 evolves to b. The purpose is
this set of rules is to control the evolution of the object yes2n+8. If it appears
in a membrane labelled by 2 in the configuration C2n+7, it will be annihilated.
If it appears later, it will survive.

(j) [yes2n+8+i → yes2n+8+(i+1)]2 for i ∈ {0, . . . , k − 1}

The objects yesi evolves in the membrane 2 waiting for the end of this stage.
As pointed above, the k+1 objects a from the membrane encoding the empty
subset take k + 1 steps to cross out the membrane.

The result of the checking stage can be summarized in the following lemma.

Lemma 1. In each of the 2n membrane structures [[[]0]1]2 at configuration
C2n+k+8:

• Membranes 0 and 1 are inactive. No rules can be applied inside them.
• Membrane 2 contains one object yes2n+k+8 if and only if the number of objects

a in the membrane 0 at the configuration C2n+4 is exactly k. In other words,
if it corresponds to a subset of weight k.

This lemma will be proved in the Appendix.

Output stage

(k) [noi → noi+1]3 for i ∈ {0, . . . , 2n+ k + 9}
[no2n+k+10]3 → no []3

From the initial configuration, the counter noi is evolving2. If the evolution
is not interrupted, an object no is sent out as answer of the computation. In

2 Of course, this counter also evolves in the previous stages, but it has not been men-
tioned for the sake of simplicity.

164 Dı́az-Pernil et al.

this design, if an object yes2n+k+8 occurs in a membrane labelled by 2, then
the counter noi is stopped and yes will be sent out as the answer. Nonethe-
less, more than one of such objects yes2n+k+8 can be produced in different
membranes. Dealing with this possibility needs to add some technical rules.

(l) [yes2n+k+8]2 → yes2n+k+9 []2
[yes2n+k+9 → no2n+k+10 yes2n+k+10]3
[yes2n+k+10 → yes2n+k+11]3
[yes2n+k+11 → yes2n+k+12]3
[yes2n+k+12 yes2n+k+12 → λ]3
[yes2n+k+12]3 → yes []3

This set of rules, together with the next one, controls the output of the system.
The key ideas are that the object yes2n+k+9 produces an object no2n+k+10,
which stops the counter noi and yes2n+k+12]3 sends out the answer yes in the
last step of computation.

(m) [no2n+k+9 → no2n+k+10]3
[no2n+k+10]3 → no []3
[no2n+k+10no2n+k+10 → λ]3
[no2n+k+10 → no2n+k+11]3
[no2n+k+11 → yes2n+k+12]3

This is the last set of rules in our design. Let us remark that the object
no2n+k+11 sends to the environment the object no as an answer if no object
no2n+k+11 is produced. If this object is produced, then the annihilation occurs
and the object no is never sent out. The result of this checking stage is summed
up in the following lemma.

Lemma 2. If any of the 2n membranes with label 2 contains an object
yes2n+k+8 in the configuration C2n+k+8, then the P system halts at the config-
uration C2n+k+13 and sends yes to the environment in the last step of compu-
tation. Otherwise, the P system halts at the configuration C2n+k+11 and sends
no to the environment in the last step of computation.

This lemma will be proved in the Appendix and it finishes the proof of Th. 1.

5 Conclusions

In this paper, we present a new frontier of tractability in Membrane Computing by
adding annihilation rules and the concept of antimatter to a P system model with
active membranes with division and without dissolution. Let us remark that the
presented design makes use of a singularity in the semantics of the annihilation rule.
According to the physical intuition, in presence of the antiparticle a, the particle
a has no option and both are annihilated. The translation of this intuition is a
priority relation with respect to the remaining applicable rules. An open problem
is to know if removing this priority feature from the model, it is still possible to
solve NP problems.

Antimatter as a Frontier of Tractability 165

Acknowledgements

MAGN acknowledges the support of the project TIN2012-37434 of the Ministerio
de Economı́a y Competitividad of Spain.

References

1. Anderson, C.D.: The positive electron. Physical Review 43, 491–494 (1933)
2. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.:

A logarithmic bound for solving subset sum with P systems. In: Eleftherakis, G.,
Kefalas, P., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane
Computing. Lecture Notes in Computer Science, vol. 4860, pp. 257–270. Springer,
Berlin Heidelberg (2007)

3. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.:
Solving subset sum in linear time by using tissue P systems with cell division. In:
Mira, J., Álvarez, J.R. (eds.) IWINAC (1). Lecture Notes in Computer Science, vol.
4527, pp. 170–179. Springer, Berlin Heidelberg (2007)

4. Dirac, P.A.M.: The quantum theory of the electron. I. Proceedings of the Royal
Society A 117(778), 610–624 (1928)

5. Dirac, P.A.M.: The quantum theory of the electron. II. Proceedings of the Royal
Society A 118(779), 351–361 (1928)

6. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero,
F.J.: On the power of dissolution in P systems with active membranes. In: Freund,
R., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane Com-
puting. Lecture Notes in Computer Science, vol. 3850, pp. 224–240. Springer, Berlin
Heidelberg (2005)

7. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Romero-Campero, F.J.: A linear so-
lution of subset sum problem by using membrane creation. In: Mira, J., Álvarez,
J.R. (eds.) IWINAC (1). Lecture Notes in Computer Science, vol. 3561, pp. 258–267.
Springer, Berlin Heidelberg (2005)

8. Leporati, A., Gutiérrez-Naranjo, M.A.: Solving subset sum by spiking neural P sys-
tems with pre-computed resources. Fundamenta Informaticae 87(1), 61–77 (2008)

9. Leporati, A., Mauri, G., Zandron, C., Păun, Gh., Pérez-Jiménez, M.J.: Uniform
solutions to SAT and subset sum by spiking neural P systems. Natural Computing
8(4), 681–702 (2009)

10. Metta, V.P., Krithivasan, K., Garg, D.: Computability of spiking nueral P systems
with anti-spikes. New Mathematics and Natural Computation (NMNC) 08(03), 283–
295 (2012)

11. Pan, L., Păun, Gh.: Spiking neural P systems with anti-spikes. International Journal
of Computers, Communications & Control IV(3), 273–282 (September 2009)

12. Pérez-Jiménez, M.J.: An approach to computational complexity in membrane com-
puting. In: Mauri, G., Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A.
(eds.) Workshop on Membrane Computing. Lecture Notes in Computer Science, vol.
3365, pp. 85–109. Springer (2004)

13. Pérez-Jiménez, M.J., Riscos-Núñez, A.: Solving the subset-sum problem by P systems
with active membranes. New Generation Computing 23(4), 339–356 (2005)

166 Dı́az-Pernil et al.

14. Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Jiménez, A., Woods, D.: Complexity
- membrane division, membrane creation. In: Păun, Gh., Rozenberg, G., Salomaa,
A. (eds.) The Oxford Handbook of Membrane Computing, pp. 302 – 336. Oxford
University Press, Oxford, England (2010)

15. Schuster, A.: Potential Matter. A Holiday Dream. Nature 58, 367 (Aug 1898)
16. Song, T., Jiang, Y., Shi, X., Zeng, X.: Small universal spiking neural P systems with

anti-spikes. Journal of Computational and Theoretical Nanoscience 10(4), 999–1006
(2013)

17. Song, T., Luo, L., He, J., Chen, Z., Zhang, K.: Solving subset sum problems by time-
free spiking neural P systems. Applied Mathematics & Information Sciences 8(1),
327–332 (2014)

18. Tan, G., Song, T., Chen, Z., Zeng, X.: Spiking neural P systems with anti-spikes
and without annihilating priority working in a ’flip-flop’ way. International Journal
of Computing Science and Mathematics 4(2), 152–162 (Jul 2013)

Appendix

Firstly, we will prove Lemma 1.

Proof. The proof is by inspection of the cases. In order to simplify the notation,
we will omit the occurrences of objects a and b in the membrane 0, since they
do not trigger any rule. The process is deterministic, so we will not remark the
applied rules. They can be easily found in the corresponding set.

Case 1. Let us suppose that the weight of the encoded set is greater than
k. In this case, the rule [a]0 → b []0 is no applied and there are no objects a in
membrane 0 and no object b in the membrane 1 at the configuration C2n+5. With
the considerations claimed above, the evolution of the membrane structure is

C2n+5 ≡ [[[]0 k2n+5 z2n+5]1 r2n+5]2
C2n+6 ≡ [[[]0 c2 z2n+6]1 r2n+6]2
C2n+7 ≡ [[[]0 z2n+7]1 yes2n+8 yes2n+8]2
C2n+8 ≡ [[[]0 c2]1]2
.
C2n+k+8 ≡ [[[]0 c2]1]2

In this case, the computation stops at the configuration C2n+8. Since no more
rules are applied, the result holds for C2n+k+8.

Case 2. Let us suppose that the weight of the encoded set is exactly equal to k.
In this case, in the configuration C2n+5 there are one object b in the corresponding
membrane 1 and no objects in the membrane 0.

C2n+5 ≡ [[[a]0 b k2n+5 z2n+5]1 r2n+5]2
C2n+6 ≡ [[[]0 c1c2 c2 z2n+6]1 r2n+6]2
C2n+7 ≡ [[[]0 c2 z2n+7]1 yes2n+8]2
C2n+8 ≡ [[[]0 c2]1 b yes2n+8]2
.
C2n+k+8 ≡ [[[]0 c2]1 b yes2n+k+8]2

Antimatter as a Frontier of Tractability 167

Case 3. Let us suppose that the weight of the encoded set is lower than k. In
this case, in the configuration C2n+5 there are p−1 objects a in the corresponding
membrane 0 and one b in the membrane 1 with p ∈ {2, . . . , k + 1}. . We split this
case into three subcases.

Case 3a: p = 2

C2n+5 ≡ [[[a]0 b k2n+5 z2n+5]1 r2n+5]2
C2n+6 ≡ [[[]0 b c1c2 c2 z2n+6]1 r2n+6]2
C2n+7 ≡ [[[]0 c1 c2 c2 z2n+7]1 yes2n+8]2
C2n+8 ≡ [[[]0 c2 c2]1 b]2
C2n+9 ≡ [[[]0]1 b]2
.
C2n+k+8 ≡ [[[]0]1 b]2

Case 3b: p = 3

C2n+5 ≡ [[[a2]0 b k2n+5 z2n+5]1 r2n+5]2
C2n+6 ≡ [[[a]0 b c1c2 c2 z2n+6]1 r2n+6]2
C2n+7 ≡ [[[]0 b c1 c2 c2 z2n+7]1 yes2n+8]2
C2n+8 ≡ [[[]0 c1 c2 c

2
2]1 b]2

C2n+9 ≡ [[[]0 c2 c2]1 b]2
C2n+10 ≡ [[[]0]1 b]2
.
C2n+k+8 ≡ [[[]0]1 b]2

Case 3c: p ≥ 4

C2n+4+1 ≡ [[[ap−1]0 k2n+5 z2n+5]1 r2n+5]2
C2n+4+2 ≡ [[[ap−2]0 b c1c2 c2 z2n+6]1 r2n+6]2
C2n+4+3 ≡ [[[ap−3]0 b c1 c2 c2 z2n+7]1 yes2n+8]2
C2n+4+4 ≡ [[[ap−4]0 b c1 c2 c

2
2]1 b]2

.
C2n+4+i ≡ [[[ap−i]0 b c1 c2 c

2
2]1 b]2

.
C2n+4+(p−1) ≡ [[[a]0 b c1 c2 c

2
2]1 b]2

C2n+4+p ≡ [[[]0 b c1 c2 c
2
2]1 b]2

C2n+4+p+1 ≡ [[[]0 c1 c2 c
2
2]1 b]2

C2n+4+p+2 ≡ [[[]0 c2 c2]1 b]2
C2n+4+p+3 ≡ [[[]0]1 b]2

Notice that in one of the elementary membranes, the empty set is encoded.
It means that in each computation, in one of the 2n membranes, p = k + 1 (the
greater value). In this case, C2n+4+(k+1)+3 = C2n+k+8.

Next, we provide the proof of the Lemma 2.

Proof. The proof is also by inspection of the cases. As in the previous proof, the
computations are deterministic, and we do not remark the applied rules.

168 Dı́az-Pernil et al.

Case 1: Let us consider that there exists exactly one membrane with label 2
contains an object yes2n+k+8 in the configuration C2n+k+8. By application of the
rule [yes2n+k+8]2 → yes2n+k+9 []2, an object yes2n+k+9 arrives to the membrane
2 in the configuration C2n+k+9. Next, we show the evolution of this membrane.

C2n+k+9 ≡ [yes2n+k+9 no2n+k+9]3
C2n+k+10 ≡ [yes2n+k+10 no2n+k+10 no2n+k+10]3
C2n+k+11 ≡ [yes2n+k+11]3
C2n+k+12 ≡ [yes2n+k+12]3
C2n+k+13 ≡ yes []3

Case 2: Let us consider that there exist t membranes (t ≥ 2) with label 2
containing an object yes2n+8 in the configuration C2n+k+8. By application of the
rule [yes2n+k+8]2 → yes2n+k+9 []2, t objects yes2n+k+9 arrive to the membrane 2
in the configuration C2n+k+9. Next, we show the evolution of this membrane.

C2n+k+9 ≡ [yest2n+k+9 no2n+k+9]3
C2n+k+10 ≡ [yest2n+k+10 no

p
2n+k+10 no2n+k+10]3

C2n+k+11 ≡ [yest2n+k+11 no
t−1
2n+k+11]3

C2n+k+12 ≡ [yest2n+k+12 yes
t−1
2n+k+13]3

C2n+k+13 ≡ yes []3

Case 3: Finally, let us consider that there do not exist membranes with label
2 containing an object yes2n+8 in the configuration C2n+k+8.

C2n+k+9 ≡ [no2n+k+9]3
C2n+k+10 ≡ [no2n+k+10]3
C2n+k+11 ≡ no []3

P Systems with Anti-Matter

Rudolf Freund1, Gheorghe Păun2

1 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
rudi@emcc.at

2 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700, Bucharest, Romania
gpaun@us.es, curteadelaarges@gmail.com

Summary. After a short introduction to the area of membrane computing (a branch
of natural computing), we introduce the concept of anti-matter in membrane comput-
ing. First we consider spiking neural P systems with anti-spikes, and then we show the
power of anti-matter in cell-like P systems. As expected, the use of anti-matter objects
and especially of matter/anti-matter annihilation rules, turns out to be rather powerful:
computational completeness of P systems with anti-matter is obtained immediately, even
without using catalysts. Finally, some open problems are formulated, too.

1 Introduction

First we give a brief introduction to membrane computing, a branch of natural
computing having widely developed during the more than fifteen years since its
initiation, see [19]. In some details we present a specific class of membrane systems
(usually called P systems) with motivation coming from the way neurons inter-
act, the spiking neural (in short, SN) P systems. In particular, we discuss SN P
systems with anti-spikes, and then we generalize this idea, considering P systems
of any type with anti-objects: for an object a, we say that ā is an anti-object if
an annihilation rule aā → λ is assumed to exist in all membranes, which may
either be an explicit rule or else act in an implicit way by removing a pair a, ā in
zero time. These annihilation rules turn out to be rather powerful, as somehow
expected if, for example, we look at the λ-rules as the only non-context-free rules
in the Geffert normal forms, e.g., see [22].

2 Elements of Membrane Computing

Membrane computing is a branch of natural computing, aiming to abstract com-
puting models from the structure and the functioning of living cells. The models

170 R. Freund, Gh. Păun

obtained in that way are called P systems. Single cells (leading to cell-like P sys-
tems) as well as communities of cells, like tissues or organs (leading to tissue-like
P systems), or neural cells (the associated models are called spiking neural P sys-
tems; these are one of the main topics in the present survey paper) have been
considered in the literature. Basically, a P system consists of an arrangement of
membranes (arranged in a hierarchical manner in the cell-like case and placed in
the nodes of an arbitrary graph in the tissue-like case), which determine compart-
ments where multisets of objects are placed, together with evolution rules inspired
from biochemistry. Using these rules, the objects evolve, and these evolutions of
objects are considered as computations. A result is associated with certain com-
putations, hence, a computing device is obtained (working in the generative, the
accepting, or the computing mode).

This very general framework lead to a large number of specific classes of P
systems. Details can be found, for example, in [20] and [21]; recent information is
available at the membrane computing website [27].

As objects in a P system we may use multisets of symbols from a given (finite)
alphabet, strings, or more complex structures, such as graphs or d-dimensional ar-
rays. In the case of spiking neural P systems, only multisets over a single object –
the spike, an electrical impulse used by neurons to communicate with each other –
are used. The rules used in a P system are of various types: multiset rewriting rules
(similar to chemical reactions), string processing rules, specific rules for handling
spikes, or rules directly inspired from biology, such as symport/antiport rules (for
moving coupled symbol objects through membranes, corresponding to the func-
tioning of selective protein channels in biology), or rules for handling membranes
(dividing or creating membranes, exocytosis, endocytosis, etc.). The rules can be
used sequentially or in parallel; the basic strategy in membrane computing is to
use the rules in the maximally parallel way (in each step, a maximal multiset of
rules is used in each compartment, in the multiset inclusion sense: no rule can
be added to a chosen multiset of rules such that the resulting multiset of rules
would still be applicable). Most of the investigations carried out in the literature
concern synchronized P systems, but also non-synchronized systems were consid-
ered. In what concerns the ways to associate a result to a computation, there also
are several possibilities: usually, only halting computations are considered to be
successful (those computations which reach a configuration of the system where
no rule can be applied any more). When dealing with multisets (which is also the
case when dealing with SN P systems), the natural result of a computation is a
number, but also strings can be associated in various ways.

The computing power of these devices is rather large: Turing computability
can be obtained by many classes of P systems. In the cases when an exponential
working space can be created during the computation in polynomial time, then, by
a time-space trade-off, polynomial, often even linear, solutions to computationally
hard problems (typically, NP-complete problems, but sometimes even PSPACE-
problems) can be obtained.

P Systems with Anti-Matter 171

Power and efficiency are computer science issues. Membrane computing proved
to be rather attractive as a modeling framework, too. The reader can consult [3]
and [4] in this respect. The most numerous and advanced applications are those
in biology and biomedicine, but there are also well-investigated applications in
approximate optimization, computer graphics, robot control, etc.

In this paper, we formally introduce only the basic model of membrane com-
puting, the cell-like P systems with symbol objects (which will also be considered
in Section 5 below). Hierarchical membrane structures (which can be described by
a tree) are represented by strings of labeled matching parentheses, and the mul-
tisets over an alphabet V are represented by strings over V ; a string and all its
permutations represent the same multiset. For an alphabet V , by V ∗ we denote
the set of all strings over V , including the empty string. The length of x ∈ V ∗

is denoted by |x|; the empty string, of length zero, is denoted by λ. Basic knowl-
edge in formal language theory as well as some familiarity with basic elements of
membrane computing is assumed in what follows.

A cell-like P system, of degree m, with catalysts, is a construct

Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, iin, iout)

where O is the alphabet of objects, C ⊂ O is the set of catalysts, µ is the mem-
brane structure (with m membranes), w1, . . . , wm are strings over O representing
multisets of objects present in the m regions of µ at the beginning of a compu-
tation, R1, . . . , Rm are finite sets of evolution rules associated with the regions of
µ, and iin and iout are the labels of the input and output regions, respectively; if
the input or output is taken from the environment, this is indicated by taking the
label 0 for iin or iout, respectively.

The evolution rules are multiset rewriting rules of the form u → v, where u
is a non-empty multiset over O and v = (b1, tar1) . . . (bk, tark) with bi ∈ O and
tari ∈ {here, out, in}, i.e., the objects bi in v have associated a target indication
tari. Using such a rule means “consuming” the objects of u and “producing”
the objects from b1, . . . , bk of v, where the target indication here means that the
objects remain in the same region where the rule is applied, out means that they
are sent out of the respective membrane (in this way, objects can also be sent to the
environment, when the rule is applied in the skin region), and in means that they
are sent to one of the immediately inner membranes, chosen in a non-deterministic
way; in general, the target indication here is omitted.

A rule u → v with |u| = 1 is said to be non-cooperative. A rule of the form
ca→ cv, where c ∈ C, a ∈ V \C, and the objects in v are from V \C, too, is called
catalytic; C is the set of catalysts, objects which are not changed by evolution
rules. Arbitrary rules are called cooperative.

If the system is used in the generative mode, then iin is omitted, and if the
system is used in the accepting mode, then iout is omitted. The number m of
membranes in µ is called the degree of Π.

In the generative case, the set of numbers computed by Π (in the maximally
parallel non-deterministic mode) is denoted by N(Π). The family of all sets N(Π)

172 R. Freund, Gh. Păun

computed by systems Π of degree at most m ≥ 1 and using rules of form α is
denoted by NOPm(α); if there is no bound on the degree of the systems, then
the subscript m is replaced by ∗. According to the previous classification, α ∈
{ncoo, cat, coo}, with the obvious meaning.

It is known that NOP1(coo) = NOP1(cat2) = NRE, where cat2 indicates
the fact that only two catalysts are used with catalytic rules together with non-
cooperative rules, and NRE is the family of recursively enumerable (Turing com-
putable) sets of natural numbers. In turn, NOP∗(ncoo) = NREG, where NREG
is the family of length sets of regular languages (i.e., the family of semilinear sets
of natural numbers).

3 Spiking Neural P Systems

Spiking neural P systems, see [8], have a completely different architecture and
functioning, as they are not based on the standard eukaryotic cell, but on brain
biology. Here we only consider the neurons cooperating by means of spikes, elec-
trical impulses of identical forms, moving along axons. Spiking neurons are also
investigated in the current neural computing area (e.g., see [11]). We do not define
SN P systems in a formal way, instead we only describe such a system and then
also introduce anti-spikes, and we will give a simple example.

In short, an SN P system consists of a set of neurons (represented by mem-
branes) placed in the nodes of a directed graph (the arcs are called synapses) and
containing spikes, denoted by copies of the symbol a. Thus, the architecture is
that of a tissue-like P system, with only one kind of objects present in the cells.
The objects evolve by means of spiking rules, which are of the form (E/ac → a; d),
where E is a regular expression over a and c, d are natural numbers, c ≥ 1, d ≥ 0.
The meaning is that a neuron containing k spikes such that ak ∈ L(E), k ≥ c, can
consume c spikes and produce one spike, after a delay of d steps. This spike is sent
to all neurons to which a synapse exists outgoing from the neuron where the rule
was applied. There also are forgetting rules, of the form as → λ, with the meaning
that s ≥ 1 spikes are removed, provided that the neuron contains exactly s spikes.
The system works in a synchronized manner, i.e., in each time unit, every neuron
which can use a rule should do that, but the work of the system is sequential in
each neuron: only (at most) one rule is used in each neuron. One of the neurons is
considered to be the output one, and its spikes are also sent to the environment.
The moments of time when a spike is emitted by the output neuron are marked
with 1, the other moments are marked with 0. This binary sequence is called the
spike train of the system; it might be infinite if the computation does not stop.

The result of a computation is encoded in the distance between the first two
spikes sent to the environment by the (output neuron of the) system. Other ways
to associate a result with a computation were considered, for instance, the total
number of spikes emitted by the output neuron during a halting computation, or
else the number of spikes contained in the output neuron at the end of a halting

P Systems with Anti-Matter 173

computation; the spike train itself can be taken as the result of the computation,
and in this way the system generates a binary sequence (a finite string, if the
computation halts).

There are several classes of SN P systems, using various combinations of ingre-
dients – rules of restricted forms, for example, without a delay, without forgetting
rules, or extended rules, e.g., producing more than one spike, as well as asyn-
chronous SN P systems (no clock is considered, any neuron may use a rule or not),
with exhaustive use of rules (when enabled, a rule is used as many times as made
possible by the spikes present in a neuron), with certain further conditions imposed
on the halting configuration, with the same sets of rules in each neuron (the sys-
tem then is called homogeneous), containing further biological ingredients, such as
astrocytes, with inhibitory synapses, etc. For most SN P systems with unbounded
neurons (arbitrarily many spikes can be found in each of them), characterizations
of Turing computable sets of natural numbers are obtained. When the neurons
are bounded, usually characterizations of the family NREG are obtained. SN P
systems can also be used in the accepting and in the computing modes.

4 SN P Systems with Anti-Spikes

A natural feature added to an SN P system is that of anti-spikes, proposed in
[17] and then investigated in a series of papers. For the reader’s convenience, the
bibliography below contains many titles of papers dealing with this subject, yet
not all of them are explicitly referred to in the present suvey paper.

The main point of the new notion is to interpret the “anti-spikes” as “anti-
matter”, hence to assume that when a piece of matter meets the corresponding
piece of anti-matter, they will annihilate each other. This corresponds to the exis-
tence of rules of the form aā → λ, which are used immediately when a and ā are
present in the same neuron.

Thus, in an SN P system with anti-spikes, the spiking rules and the forgetting
rules are of the forms E/bc → b′c and bc → λ where E is a regular expression over
a or over ā, while b, b′ ∈ {a, ā} and c ≥ 1. If L(E) = bc, then we write the first
rule as bc → b′. As usual, a delay can be added to the spiking rules, too.

Note that we have four categories of rules, identified by (b, b′) ∈
{(a, a), (a, ā), (ā, a), (ā, ā)}. Of course, it is of interest to restrict the type of rules,
and this is the case in most papers found in the literature.

The rules are used as usual in SN P systems, with the additional fact that a
and ā “cannot stay together”, they instantaneously annihilate each other: if in a
neuron there are either objects a or objects ā, and further objects of either type
(maybe both) arrive from other neurons, such that we end with ar and ās inside,
then immediately the rule of the form aā→ λ is applied in the maximal manner,
so that either the multiset of spikes ar−s – if r ≥ s – or of anti-spikes ās−r – if
s ≥ r – remains.

In the definition from [17], the mutual annihilation of spikes and anti-spikes
takes no time, so that the neurons always contain either only spikes or only anti-

174 R. Freund, Gh. Păun

spikes. That is why, for instance, the regular expressions of the spiking rules are
defined either over a or over ā, but not over both symbols. Moreover, annihilation
has priority over spiking and forgetting rules. Later, also the case when the annihi-
lation takes one time unit was considered, with explicitely using the rule aā→ λ,
eventually even without priority over other rules.

The computations and the results of computations are defined in the same way
as for usual SN P systems. In most investigations, the restriction was considered
that the output neuron produces only spikes, not also anti-spikes. The anti-spikes
are sometimes used to encode, in a natural way, negative numbers.

By N2(Π) we denote the family of numbers generated by an SN P system (with
anti-spikes) as the distance between the first two spikes sent to the environment
by the output neuron, and by N2SaNPm the families of all sets N2(Π), computed
by SN P systems with anti-spikes and at most m ≥ 1 neurons. When the number
of neurons is not bounded, we replace the subscript m by ∗.

We illustrate the previous definition by an example recalled from [17]; it is,
in fact, part of the proof showing computational completeness of SN P systems
with anti-spikes (i.e., N2SaNP∗ = NRE), namely, the module which simulates
a SUB-instruction of a register machine. We present the module in the graphical
form, a usual way of presentation in membrane computing: neurons are given as
ovals containing spiking and forgetting rules, and in addition indicating the initial
spikes and anti-spikes; the synapses are represented by arrows linking the neurons.

�
�
�
�
�
�
�
�

'
&
$
%
'
&
$
%

�
�
�
�

�
�
�
�

#
"

!

�
�
�
�
�
�
�
�

�
�
�
�

�
��	

@
@@R

HHj�
�	

@
@R

J
J
J
JĴ

HHHHHHHHHj

�
�
�
���

S
S
S
SSw

���������

�

? ?

li a → a

l
(1)
i

a → a
l
(2)
i

a → ā

r

ā → a

l
(3)
i

a → a

l
(4)
i

a → a

l
(5)
i

a → λ

a2 → a

a3 → λ

l
(6)
i

a → λ

a2 → λ

a3 → a

lj lk

Fig. 1. Module SUB, simulating li : (SUB(r), lj , lk)

P Systems with Anti-Matter 175

Figure 1 shows the module associated with an instruction li : (SUB(r), lj , lk).
The module is activated when neuron σli receives a spike. Initially, no neuron
contains any spike, except for the neuron σl0 associated with l0, the initial label
of the register machine; each label has such an associated neuron, and also each
register r has associated a neuron σr. Neuron σli sends a spike to neurons σ

l
(1)
i

and σ
l
(2)
i

. In the next step, neuron σ
l
(2)
i

sends an anti-spike to neuron σr, which

corresponds to register r; at the same time, σ
l
(1)
i

sends a spike to the neurons σ
l
(3)
i

and σ
l
(4)
i

. If register r is non-empty, that is, neuron σr contains at least one a, then

ā removes one occurrence of a, which corresponds to subtracting one from register
r, and no rule is applied in σr. This means that σ

l
(5)
i

and σ
l
(6)
i

receive only two

spikes, from σ
l
(3)
i

and σ
l
(4)
i
, hence, σlj is activated, whereas σlk is not activated.

If register r is empty, then the rule ā → a is used in σr, hence, σl(5)i

and σ
l
(6)
i

receive three spikes, and this leads to the activation of σlk , which is the correct
continuation in this case.

The reader is referred to [17] for further details concerning the functioning of
this module, and in general, for the proof of the universality of SN P systems with
anti-spikes.

We cannot present all the developments concerning SN P systems with anti-
spikes; most of the titles of the related articles listed at the end of the paper are
self-explanatory. We only mention an important research direction in membrane
computing in general and in the SN P systems area in particular, reminding the
“old times” of investigations in formal language theory (see a survey in [7]) con-
cerning the descriptional complexity of grammars and languages: considering size
parameters for P systems. Because most of the classes of P systems are universal,
for those classes the basic question is to find the smallest number of membranes
in order to get the equivalence with Turing machines. For subuniversal classes, an
important question of interest is whether or not the number of membranes induces
an infinite hierarchy.

These questions are of interest for SN P systems, too, with or without anti-
spikes. Further questions appear, resembling those mentioned in [7]: How many
rules per neuron are needed? How many different types of neurons are needed?
Can rules of a specific type be avoided?

Another question of interest is to find universal systems for a given class of
devices with a small descriptional complexity; like in the case of universal Turing
machines, we search for fixed P systems which can simulate any P system from a
given class, as soon as the code of a particular system is introduced as an input to
the universal one. For SN P systems, the “race” was started in [18], with several
subsequent papers succeeding to decrease the complexity of the universal systems
constructed there.

According to our knowledge, for SN P systems with anti-spikes the best results
currently available are those from [24]: a universal system is constructed, for the
case of computing functions, having 75 neurons and 125 rules, with 6 types of
neurons and 8 types of rules. A related result is reported in [12], where a similar

176 R. Freund, Gh. Păun

system is described, containing 91 neurons, each of them containing only one rule,
of one of the simple forms a→ a and a→ ā. This once again proves the power of
annihilation rules.

5 P Systems with Anti-Matter

The idea of considering “anti-matter” objects and their corresponding matter/anti-
matter annihilation rules can be extended to all types of P systems. We briefly
discuss it here for cell-like P systems.

Formally, a cell-like P system (of degree m, with catalysts) with anti-matter is
a construct

Π = (O,AO, C, µ, w1, . . . , wm, R1, . . . , Rm, iin, iout)

where all the components are as in a usual P system and AO is a set of symbols
ā, for a ∈ O \ C (obviously, we do not allow the catalysts to have anti-objects).
In each compartment of µ we assume the matter/anti-matter annihilation rules
aā → λ to be present, for all ā ∈ AO. As in SN P systems we might assume that
these rules are used “automatically”, in zero time, as soon as they can be applied.
Yet in the following we assume the annihilation rules to be used as other rules,
yet eventually with weak priority (e.g., see [2]) over all other rules, i.e., other rules
then also may be applied if objects cannot be bound by some annihilation rule
any more. In both cases, the rules in the sets Ri, 1 ≤ i ≤ m, of the form u → v
have to obey to the condition that neither u nor v may contain both the symbol
a and its anti-matter object ā for any ā ∈ AO.

The functioning of such a system is as usual in membrane computing, keeping in
mind that the annihilation rules have to be added to all sets of rules Ri, 1 ≤ i ≤ m.
By NOaPm(ncoo, pri) we denote the family of sets of numbers generated by P
systems with at mostmmembranes, using anti-objects, with non-cooperative rules.
The parameter pri indicates the use of annihilation rules with priority over the
other rules; it is omitted if we do not use this implicit priority. If in addition to
non-cooperative rules we also allow catalytic rules and at most k catalysts, ncoo
is replaced by catk in these notations.

Although the annihilation rules are expected to add a lot of computational
power, it is still surprising that together with giving the annihilation rules pri-
ority over all other rules, non-cooperative rules are already sufficient to obtain
computational completeness, whereas without this priority condition, in addition
we need catalytic rules with one catalyst; in both cases rather simple proofs can
be obtained, whereas without these matter/anti-matter annihilation rules, non-
cooperative rules together with catalytic rules with two catalysts are needed, see
the rather complex proof given in [5].

Theorem 1. NOaP1(ncoo, pri) = NRE.

P Systems with Anti-Matter 177

Proof. Let M = (3, H, l0, lh, I) (number of registers, labels of instructions, initial
label, halt label, set if instructions) be a register machine with three registers;
register 1 is the output register containing the result at the end of a successful
computation, it is never decremented; registers 2 and 3 are empty at the begin
and at the end of a successful computation. We now construct the (generating,
hence, we omit iin) P system with anti-matter

Π = (O,AO, []1, l0, R1, 1)

with only one membrane and the following components:

O = {l, l′ | l ∈ H} ∪ {ar | r ∈ {1, 2, 3}} ∪ {#},
AO = {ā2, ā3, #̄};

the non-cooperative rules in R1 are described below.
The contents of register r is represented by the number of copies of the object

ar, r ∈ {1, 2, 3}, in the system. The P system starts with the object l0 representing
the initial label of M .

For each instruction li : (ADD(r), lj , lk) in I, r ∈ {1, 2, 3}, we take the rules

li → ljar and
li → lkar,

which obviously simulate the given ADD-instruction.
For each instruction li : (SUB(r), lj , lk) in I, r ∈ {2, 3}, we consider the three

rules
li → lj ār,
li → l′iār,
l′i → #lk.

As rules common for all SUB-instructions, we also add the rules ār → #̄, r ∈ {2, 3},
the matter/antimatter annihilation rules arār → λ and ##̄ → λ as well as the
trap rules # → ## and #̄ → ##.

When simulating a SUB-instruction li : (SUB(r), lj , lk), we have to make a non-
deterministic choice between the decrement case and the zero-test. The decrement
case of the SUB-instruction li : (SUB(r), lj , lk) is simulated by the rule li → lj ār
and the subsequent application of the annihilation rule arār → λ. If this rule is
not applicable, i.e., if register r is empty, the rule ār → #̄ will be applied instead,
which in absence of its counterpart # immediately evolves to ## and thus leads
to an infinite computation.

The zero-test is initiated with the rule li → l′iār. If register r is empty, then
ār cannot be annihilated and therefore evolves to #̄, which then annihilates the
symbol # generated by the rule l′i → #lk; if register r is not empty, ār is annihilated
by some copy of ar, hence, the trap symbol # generated by the rule l′i → #lk does
not find its anti-matter #̄ and therefore evolves to ##, thus leading to an infinite
computation. Here we find the crucial situation where we need the constraint that

178 R. Freund, Gh. Păun

annihilation rules have priority over all other rules, i.e., ār → #̄ cannot be applied
if the annihilation rule arār → λ can be applied.

The rule lh → λ is applied at the end of a successful simulation of the instruc-
tions of the register machine M , and the computation halts if no trap symbol #
is present; the number of symbols a1 in the skin membrane then represents the
result of this halting computation. In sum, we obtain N(M) = N(Π). ⊓⊔

Returning to descriptional complexity issues, it is worth noting that the P
system constructed in the preceding proof has only one membrane and only three
matter/anti-matter annihilation rules.

If we look for small universal systems, we may start with the universal register
machine U32 from [9], with 8 registers which are decremented during the computa-
tions, and apply the construction given in the preceding proof, thus needing 8+ 1
matter/anti-matter annihilation rules. An optimized P system with matter/anti-
matter annihilation rules having priority over all other rules can be found in [1].

Without this priority of the annihilation rules, the construction is not working,
hence, a characterization of the class NOaP1(ncoo) remains as an open problem.
Yet in addition using catalytic rules with one catalyst again allows us to obtain
computational completeness:

Theorem 2. NOaP1(cat1) = NRE.

Proof. We again consider a register machineM = (3,H, l0, lh, I) as in the previous
proof, and construct the (generating) catalytic P system

Π = (O,AO, []
1
, {c}, cl0, R1, 0)

with only one membrane (containing the single catalyst c) and the following com-
ponents:

O = {l, l′, l′′ | l ∈ H} ∪ {ar | r ∈ {1, 2, 3}} ∪ {#, d},
AO = {ā2, ā3, #̄};

the non-cooperative rules in R1 are described below. The output symbols a1 now
are sent to the environment, in order not to have to count the catalyst in the skin
membrane; for that purpose, we simply use the rule a1 → (a1, out).

For each instruction li : (ADD(r), lj , lk) in I, r ∈ {1, 2, 3}, we again take the
rules

li → ljar and
li → lkar.

For each instruction li : (SUB(r), lj , lk) in I, r ∈ {2, 3}, we now consider the
following four rules:

li → lj ār,
li → l′′i dār,
l′′i → l′i,
l′i → #lk.

P Systems with Anti-Matter 179

As rules common for all SUB-instructions, we again add the matter/antimatter
annihilation rules arār → λ and ##̄ → λ as well as the trap rules # → ## and
#̄ → ##, but in addition, also d→ ## as well as the catalytic rules cd→ c and
cār → c#̄, r ∈ {2, 3}.

The decrement case of the SUB-instruction li : (SUB(r), lj , lk) is simulated as in
the previous proof, by using the rule li → lj ār and then applying the annihilation
rule arār → λ. If this rule is not applicable, i.e., if register r is empty, the rule
ār → #̄ will be applied instead, which in absence of its counterpart # immediately
evolves to ## and thus leads to an infinite computation.

The zero-test now is initiated with the rule li → l′′i dār thus introducing the
(dummy) symbol d which keeps the catalyst busy for one step, where the catalytic
rule cd → c has to be applied in order to avoid the application of the trap rule
d→ ##. If register r is empty, then ār cannot be annihilated and therefore evolves
to #̄ in the third step by the application of the catalytic rule cār → c#̄, which
symbol #̄ then annihilates the symbol # generated by the rule l′i → #lk in the
same step; if register r is not empty, ār is annihilated by some copy of ar already
in the first step, hence, the trap symbol # generated by the rule l′i → #lk does
not find its anti-matter #̄ and therefore evolves to ##, thus leading to an infinite
computation. Altough the annihilation rule arār → λ now does not have priority
over the catalytic rule cār → c#̄, maximal parallelism enforces arār → λ to be
applied, if possible, already in the first step instead of cār → c#̄, as in a successful
derivation the catalyst c first has to eliminate the dummy symbol d.

The rule lh → λ is applied at the end of a successful simulation of the in-
structions of the register machineM , and the computation halts if no trap symbol
is present; the number of symbols a1 sent out to the environment during the
computation represents the result of this halting computation. In sum, we obtain
N(M) = N(Π). ⊓⊔

6 Concluding Remarks

In this survey paper we have briefly recalled some basic ideas of membrane comput-
ing, and especially have given some information about spiking neural P systems,
including spiking neural P systems with anti-spikes. We have also extended this
idea of anti-objects (“anti-matter”) to cell-like P systems with symbol objects,
which can be proved to be computationally complete when the annihilation rules
are applied with having priority over the remaining non-cooperative rules; without
this priority, in addition catalytic rules with a single catalyst are needed to obtain
computational completeness.

Several problems are still open in this area of P systems with anti-matter. Some
of them have been formulated in this paper; the interested reader can find many
more in the literature, for instance, in [6].

180 R. Freund, Gh. Păun

References

1. A. Alhazov, B. Aman, R. Freund, Gh. Păun: Matter and anti-matter in membrane
systems. Brainstorming Week in Membrane Computing, Sevilla, February 2014.

2. A. Alhazov, D. Sburlan: Static Sorting P Systems. In: G. Ciobanu, Gh. Păun, M.J.
Pérez-Jiménez (Eds.): Applications of Membrane Computing. Natural Computing
Series, Springer, 2005, 215–252.

3. G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez, eds.: Applications of Membrane Com-
puting. Springer, Berlin, 2006.

4. P. Frisco, M. Gheorghe, M.J. Pérez-Jiménez, eds.: Applications of Membrane Com-
puting in Systems and Synthetic Biology. Springer, Berlin, 2014.

5. R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally universal P systems with-
out priorities: two catalysts are sufficient. Theoretical Computer Science, 330 (2005),
251–266.

6. M. Gheorghe, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Frontiers of membrane
computing: Open problems and research topics, Intern. J. Found. Computer Sci., 24,
5 (2013), 547–623.

7. J. Gruska: Descriptional complexity of context-free languages. Proc. Symp. Math.
Found. Computer Sci., High Tatras, 1973, 71–83.

8. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

9. I. Korec: Small universal Turing machines. Theoretical Comp. Sci., 168 (1996), 267–
301.

10. K. Krithivasan, V.P. Metta, D. Garg: On string languages generated by spiking neural
P systems with anti-spikes. Intern. J. Found. Computer Sci., 22, 1 (2011).

11. W. Maass, C. Bishop, eds.: Pulsed Neural Networks. MIT Press, Cambridge, 1999.
12. V.P. Metta, A. Kelemenova: More on universality of spiking neural P systems with

anti-spikes. Manuscript, 2013.
13. V.P. Metta, K. Krithivasan, D. Garg: Some characteristics of spiking neural P systems

with anti-spikes. Proc. 11th Intern. Conf. on Membrane Computing, Jena, Germany,
August 2010, 291–303.

14. V.P. Metta, K. Krithivasan, D. Garg: Modelling and analysis of spiking neural P
systems with anti-spikes using Pnet lab. Nano Comm. Networks, 1, 2 (2011), 141–
149.

15. V.P. Metta, K. Krithivasan, D. Garg: Computability of spiking neural P systems
with anti-spikes. New Math. and Natural Comput., 8, 3 (2012), 283–295.

16. V.P. Metta, K. Krithivasan, D. Garg: Spiking neural P systems with anti-spikes as
transducers. Romanian J. Info. Sci. and Tehnology, 14, 1 (2011), 20–30.

17. L. Pan, Gh. Păun: Spiking neural P systems with anti-spikes. Int. J. Comoputers,
Comm. and Control, 4, 3 (2009), 273–282.

18. A. Păun, Gh. Păun: Small universal spiking neural P systems. BioSystems, 90 (2007),
48–60.

19. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143 (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi).

20. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
21. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing. Ox-

ford University Press, 2010.

P Systems with Anti-Matter 181

22. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 vols., Springer,
Berlin, 1997.

23. T. Song, L. Pan, J. Wang, I. Venkat, K.G. Subramanian, R. Abdullah: Normal forms
for spiking neural P systems with anti-spikes. IEEE Trans. Nanobioscience, 22, 4
(2012), 352–359.

24. T. Song, Y. Jiang, X. Shi, X. Zeng: Small universal spiking neural P systems with
anti-spikes. J. Comput. and Th. Nanoscience, 10, 4 (2013), 999–1006.

25. T. Song, X. Wang, Z. Zhang, Z. Chen: Homogeneous spiking neural P systems with
anti-spikes. Neural Comput. and Applic., DOI 10.1007/s00521-0123-1397-8 (June
2013).

26. G. Tan, T. Song, Z. Chen, X. Zeng: Spiking neural P systems with anti-spikes and
without annihilating priority working in a ”flip-flop” way. Intern. J. Computing Sci.
and Math, 4, 2 (2013), 152–162.

27. The P Systems Website: www.ppage.psystems.eu.

Probabilistic Guarded P Systems, A Formal
Definition

Manuel Garćıa-Quismondo, Miguel A. Mart́ınez-del-Amor,
Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Seville
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
mgarciaquismondo@us.es, mdelamor@us.es, marper@us.es

Summary. In this paper, we extend the general framework of Multienvironment P
systems, which is a formal framework for modelling the dynamics of population biology.
The extension is made by a new variant within the probabilistic approach, called
Probabilistic Guarded P systems (in short, PGP systems). We provide a formal definition,
a simulation algorithm to capture the dynamics, and a survey of the associated software.

1 Introduction

Since P systems were introduced in 1998 [18], they have been utilised as a high
level computational modelling framework [9, 19]. Their main advantage is the
integration of the structural and dynamical aspects of complex systems in a
comprehensive and relevant way, while providing the required formalisation to
perform mathematical and computational analysis [2].

In this respect, multienvironment P systems are a general formal framework for
population dynamics modelling in Biology [6]. This framework has two approaches:
stochastic and probabilistic. Stochastic approach is usually applied to model micro-
level systems (such as bacteria colonies), whereas the probabilistic approach is
normally used for macro-level modelling (real ecosystems, for example). Population
Dynamics P systems [2, 15, 16, 3] (PDP systems, in short) are a variant of
multienvironment P systems, in the probabilistic approach. PDP systems have
been successfully applied to ecological modelling, specially with real ecosystems of
some endanger [5, 3] and exotic species [3]. PDP systems have shown to comply
with four desirable properties of a computational model [2]: relevance (capture the
essential features of the modelled system), computability (inherent by P systems),
understandability (objects and rules capture the dynamics in a simple way), and
extensibility (rule design is module-oriented).

184 M. Garćıa-Quismondo, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez

In this paper, we introduce a brand new variant inside the probabilistic
approach of multienvironment P systems: Probabilistic Guarded P systems (PGP
systems, for short). They are specifically oriented for ecological processes. PGP
systems are a computational probabilistic framework which takes inspiration
from different Membrane Computing paradigms, mainly from Tissue–Like P
systems [22], PDP systems [2] and Kernel P systems [11]. This framework aims
for simplicity, considering these aspects:

Model designers: In PGP systems, model designers do not need to worry about
context consistency. That is to say, they do not need to take into account that
all rules simultaneously applied in a cell must define the same polarization in
the right–hand side [15]. This is because the framework centralizes all context
changes in a single rule per cycle, rather than distributing them across all
rules. Therefore, there exist two types of rules: context–changing rules and
non context–changing rules. Due to the nature of the model, only one of such
rules can be applied at the same time on each cell, so context inconsistency is
not possible. Moreover, the fact that the context is explicitly expressed in each
cell and that cells do not contain internal cell structures simplifies transitions
between contexts without loss of computational or modelling power.

Simulator developers: The fact that the framework implicitly takes care of context
consistency simplifies the development of simulators for these models, as it
is a non–functional requirement which does not need to be supported by
simulators. In addition, the lack of internal structure in cells simplifies the
simulation of object transmission; the model can be regarded as a set of
memory regions with no hierarchical arrangement, thus enabling direct region
fetching.

Probabilistic Guarded P Systems can be regarded as an evolution of Population
Dynamic P systems. In this context, PGP systems propose a modelling framework
for ecology in which inconsistency (that is to say, undefined context of membranes)
is handled by the framework itself, rather than delegating to simulation algorithms.
In addition, by replacing alien concepts to biology (such as electrical polarizations
and internal compartment hierarchies) by state variables known as flags and
defined by designers models are more natural to experts, thus simplifying
communication between expert and designer.

This paper is structured as follows. Section 2 introduces some preliminaries.
Section 3 shows the formal framework of multienvironment P systems, and the two
main approaches. Section 4 describes the framework of PGP systems, providing
a formal definition, some remarks about the semantics of the model, and a
comparison with other similar frameworks of Membrane Computing. Section 5
provides a simulation algorithm, and a software environment based on P–Lingua
and a C++ simulator. Section 6 summarizes an ecosystem under study with PGP
systems. Finally, Section 7 ends the paper with conclusions and future work.

Four Research Topics 185

2 Preliminaries

An alphabet Γ is a non–empty set whose elements are called symbols. An ordered
finite sequence of symbols of Γ is a string or word over Γ . As usual, the empty
string (with length 0) will be denoted by λ. The set of all strings over an alphabet
Γ is denoted by Γ ∗. A language over Γ is a subset of Γ ∗.

A multiset m over an alphabet Γ is a pair m = (Γ, f) where f : Γ → N
is a mapping. For each x ∈ Γ we say that f(x) is the multiplicity of the
symbol x in m. If m = (Γ, f) is a multiset then its support is defined as
supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite if its support is a finite set. A
set is a multiset such that the multiplicity of each element of its support, is equal
to 1.

If m = (Γ, f) is a finite multiset over Γ , and supp(m) = {a1, . . . , ak} then it

will be denoted as m = a
f(a1)
1 . . . a

f(ak)
k (here the order is irrelevant), and we say

that f(a1) + · · ·+ f(ak) is the cardinal of m, denoted by |m|. The empty multiset
is denoted by ∅. We also denote by Mf (Γ) the set of all finite multisets over Γ .

Let m1 = (Γ, f1) and m2 = (Γ, f2) multisets over Γ . We define the following
concepts:

• The union of m1 and m2, denoted by m1 + m2 is the multiset (Γ, g), where
g = f1 + f2, that is, g(x) = f1(x) + f2(x) for each x ∈ Γ .

• The relative complement of m2 in m1, denoted by m1 \ m2 is the multiset
(Γ, g), where g = f1(x)− f2(x) if f1(x) ≥ f2(x) and g(x) = 0 otherwise.

We also say that m1 is a submultiset of m2, denoted by m1 ⊆ m2, if f1(x) ≤ f2(x)
for each x ∈ Γ .

Let m = (Γ, f) a multiset over Γ and A a set. We define the intersection
m ∩A as the multiset (Γ, g), where g(x) = f(x) for each x ∈ Γ ∩A, and g(x) = 0
otherwise.

3 Multienvironment P systems

Definition 1. A multienvironment P system of degree (q,m, n) with q ≥ 1, m ≥ 1,
taking T time units, T ≥ 1, is a tuple

Π = (G,Γ,Σ,Φ, T, n, {Πk,j | 1 ≤ k ≤ n, 1 ≤ j ≤ m}, {(fj , Ej) | 1 ≤ j ≤ m},RE)

where:

• G = (V, S) is a directed graph. Let V = {e1, . . . , em} whose elements are called
environments;

• Γ,Σ and Φ are finite alphabets such that Σ $ Γ and Γ ∩ Φ = ∅.
• T, n are natural numbers
• For each k, j (1 ≤ k ≤ n, 1 ≤ j ≤ m), Πk,j is a tuple (Γ, µ,Mk

1,j , . . . ,Mk
q,j ,Rj , iin),

where:

186 M. Garćıa-Quismondo, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez

– µ is a rooted tree with q ≥ 1 nodes labelled by elements from {1, . . . , q} ×
{0,+,−}.

– For each i, 1 ≤ i ≤ q, Mk
i,j ∈Mf (Γ).

– Rj is a finite set of rules of the type: u[v]αi
p−→ u′[v′]α

′

i , being u, v, u′, v′ ∈
Mf (Γ), 1 ≤ i ≤ q, α, α′ ∈ {0,+,−} and p is a computable function whose
domain is {0, . . . , T}.

– iin is a node from µ.
• For each j, 1 ≤ j ≤ m, fj ∈ Φ and Ej ∈Mf (Σ).
• RE is a finite set of rules among environments of the types:

(x)ej
p1−→ (y1)ej1 · · · (yh)ejh (Πk,j)ej

p2−→ (Πk,j)ej1
{f} (u)ej

p3−→ (v)ej1 {f} (u, f)ej
p4−→ (v, g)ej

being x, y1, . . . yh ∈ Σ, (ej , eji) ∈ S, 1 ≤ j ≤ m, 1 ≤ i ≤ h, 1 ≤ k ≤ n, f, g ∈
Φ, u, v ∈ Mf (Γ) and p1, p2, p3, p4 are computable functions whose domain is
{0, . . . , T}.

In other words, a system as described in the previous definition can be
viewed as a set of m environments e1, . . . , em linked between them by the
arcs from the directed graph G. Each environment ej has a flag from Φ at
any instant and also it can contains objects from Σ and P systems of the
type Πk,j = (Γ, µ,Mk

1,j , . . . ,Mk
q,j ,Rkj , iin). Multisets Mk

1j , . . . ,Mk
q,j describe the

initial multisets of Πk,j corresponding to this environment. Every rule r ∈ Rkj has
a computable function fr,j (specific for environment j) associated with it.

In total, there are n systems Πk,j , all of them with the same skeleton (identical
working alphabets, objects and flags, the same membrane structure and the same
rules u[v]αi −→ u′[v′]α

′

i , specified in each environment (independently of k) through
the computable function fr,j associated with them).

A configuration of the system at any instant t is a tuple whose components
are the following: (a) the flags associated with each environment at instant t
(initially f1, . . . , fm); (b) the multisets of objects present in the m environments
at instant t (initially E1, . . . , Em); and (c) the multisets of objects associated with
each of the regions of each P system Πk,j (initially Mk

1,j , . . . ,Mk
q,j), together

with the polarizations of their membranes (initially all membranes have a neutral
polarization).

We assume that a global clock exists, marking the time for the whole system,
that is, all membranes and the application of all rules (both from RE and R) are
synchronized in all environments.

The P system can pass from one configuration to another by using the rules
from R = RE ∪

⋃m
j=1Rkj as follows: at each transition step, the rules to be applied

are selected according to the probabilities assigned to them, and all applicable
rules are simultaneously applied.

A rule of the type u[v]αi
p−→ u′[v′]α

′

i is applicable to a configuration at
any instant t if the following is satisfied: in that configuration membrane i

Four Research Topics 187

has polarization α, contains multiset v and its parent (the environment if the
membrane is the skin membrane) contains multiset u. When that rule is applied,
multisets u, v produce u′, v′, respectively, and the new polarization is α′ (the value
of function p in that moment provide the affinity of the application of that rule).
For each j (1 ≤ j ≤ m) there is just one further restriction, concerning the
consistency of charges: in order to apply several rules of Rkj simultaneously to
the same membrane, all the rules must have the same electrical charge on their
right-hand side.

A rule of the environment of the type (x)ej
p1−→ (y1)ej1 · · · (yh)ejh is applicable

to a configuration at any instant t if the following is satisfied: in that configuration
environment ej contains object x. When that rule is applied, object x passes from
ej to ej1 , . . . , ejh possibly transformed into objects y1, . . . , yh, respectively (the
value of function p1 in that moment provide the affinity of the application of that
rule).

A rule of the environment of the type (Πk,j)ej
p2−→ (Πk,j)ej′ : is applicable to

a configuration at any instant t if the following is satisfied: in that configuration
environment ej contains the P system Πk,j . When that rule is applied, the system
Πk,j passes from environment ej to environment ej′ (the value of function p2 in
that moment provide the affinity of the application of that rule).

A rule of the environment of the type {f} (u)ej
p3−→ (v)ej1 is applicable to a

configuration at any instant t if the following is satisfied: in that configuration
environment ej has flag f and contains the multiset u. When that rule is applied
multiset u produces multiset v and environment ej keep the same flag. This kind
of rule can be applied many times in a computation step. The value of function p3
in that moment provide the affinity of the application of that rule.

A rule of the environment of the type {f} (u, f)ej
p4−→ (v, g)ej is applicable to

a configuration at any instant t if the following is satisfied: in that configuration
environment ej has flag f and contains the multiset u. When that rule is applied
multiset u produces multiset v and flag f of environment ej is replaced by flag g.
Bearing in mind that each environment only has a flag in any instant, this kind of
rules can only be applied once in any moment. Hence, the value of the function p4
in any instant is equal to 1.

Next, we depict the two approaches (stochastic and probabilistic) for
multienvironment P systems.

3.1 Stochastic approach

We say that a multienvironment P system has a stochastic approach if the following
holds:

(a) The alphabet of flags, Φ, is an empty set.
(b) The computable functions associated with the rules of the P systems are

propensities (obtained from the kinetic constants): These rules is function
of the time but they do not depend on the environment.

188 M. Garćıa-Quismondo, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez

(c) The P systems Πk,j do not depend on index j, this index is irrelevant in this
approach.

(d) Initially, the P systems Πk,j are randomly distributed among the m en
environments of the system.

e1 e2

e3 e4

Multicompartmental P systems

Multicompartmental P systems are multienvironment P systems with a stochastic
approach which can be formally expressed as follows:

Π = (G,Γ,Σ, T, n, {Πk,j | 1 ≤ k ≤ n, 1 ≤ j ≤ m}, {Ej | 1 ≤ j ≤ m},RE)

These systems can be viewed as a set of m environment connected by the arcs of
a directed graph G. Each environment ej only can contains P systems of the type
Πk,j . The total number of P systems is n, all of them with the same skeleton.
The functions associated with the rules of the system are propensities which are
computed as follows: stochastic constants are computed from kinetic constants by
applying the mass action law, and the propensities are obtained from the stochastic
constants by using the concentration of the objects in the LHS at any instant. In
these systems there are rules of the following types:

1. u[v]αi
p−→ u′[v′]α

′

i

2. (x)ej
p1−→ (y1)ej1 · · · (yh)ejh

3. (Πk,j)ej
p2−→ (Πk,j)ej′

The dynamics of these systems is captured by the multicompartmental
Gillespie’s algorithm [21] or the deterministic waiting time [4]. A software
environment supporting this model is Infobiotics Workbench [1], which provides (in
version 0.0.1): a modelling language, a multi-compartmental stochastic simulator
based on Gillespies Stochastic Simulation Algorithm, a formal model analysis, and
a structural and parameter model optimisation.

Four Research Topics 189

3.2 Probabilistic approach

We say that a multienvironment P system has a stochastic approach if the following
holds:

(a) The total number of P systems Πk,j is, at most, the number m of environment,
that is, n ≤ m.

(b) Functions pr associated with rule r ≡ u[v]αi
pr−→ u′[v′]α

′

i from Πk,j are
probability functions such that for each u, v ∈ Mf (Γ), i ∈ {1, . . . , q},
α ∈ {0,+,−}, if r1, . . . , rz are the rules in Rkj whose LHS is u [v]αi , then
z∑
j=1

prj (t) = 1, for each t (1 ≤ t ≤ T).

(c) Functions p1 associated with the rules of the environment (x)ej
p1−→

(y1)ej1 · · · (yh)ejh are probability functions such that for each x ∈ Σ and
each environment ej , the sum of all functions associated with the rules whose
LHS is (x)ej , is equal to 1.

(d) Functions p2 associated with the rules of the environment (Πk,j)ej
p2−→

(Πk,j)ej′ are constant functions equal to 0; that is, these rules will never be
applied.

(e) Functions p3 associated with the rules of the environment {f} (u)ej
p3−→ (v)ej1

are probability functions.

(f) Functions p4 associated with the rules of the environment {f} (u, f)ej
p4−→

(v, g)ej are constant functions equal to 1.

(g) There is no rules u[v]αi
p−→ u′[v′]α

′

i in the skin membranes of Πk,j and rules of

the environment (x)ej
p1−→ (y1)ej1 · · · (yh)ejh such that x ∈ u.

(h) Initially, each environment ej contains at most one P system Πk,j .

e1 e2

e3 e4

190 M. Garćıa-Quismondo, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez

Population Dynamics P systems (PDP)

Population Dynamics P systems are multienvironment P systems with a
probabilistic approach such that the alphabet Φ of the flags is an empty set and
n = m, that is, the environment have not any flag and the total number n of P
systems are equal to the number m of environments. Then in a PDP system each
environment ej contains exactly one P system Πk,j which will be denoted by Πj

Π = (G,Γ,Σ, T, n, {Πj | 1 ≤ j ≤ m}, {Ej | 1 ≤ j ≤ m},RE)

In these systems there are rules of the following types:

1. u[v]αi
p−→ u′[v′]α

′

i

2. (x)ej
p1−→ (y1)ej1 · · · (yh)ejh

Let us recall that in theses kind of systems each rule has associated a probability
function that depends on the time and on the environment where the rule is
applied.

The dynamics of these systems is captured by the Direct Non-deterministic
Distribution algorithm with Probabilities (DNDP) algorithm [16], or the Direct
distribution based on Consistent Blocks Algorithm (DCBA) [15]. DNDP aims
to perform a random distribution of rule applications without using the concept
of rule block, but this selection process is biased towards those rules with the
highest probabilities. DCBA was first conceived to overcome the accuracy problem
of DNDP, by performing an object distribution along the rule blocks, before
applying the random distribution process. Although the accuracy achieved by
the DCBA is better than the DNDP algorithm, the latter is much faster. In
order to improve the performance of simulators implementing DCBA, parallel
architectures has been used [14]. For example, a GPU-based simulator, using
CUDA, reaches the acceleration of up to 7x, running on a NVIDIA Tesla C1060
GPU (240 processing cores). However, these accelerated simulators are still to be
connected to those general environments to run virtual experiments. Therefore,
P–Lingua and pLinguaCore are being utilised to simulate PDP systems [2, 10].
The provided virtual experimentation environment is called MeCoSim [20], and it
is based on P–Lingua.

4 Probabilistic Guarded P systems (PGP)

Probabilistic Guarded P systems are multienvironment P systems with a
probabilistic approach such that n = 0, that is, there is no P systems Πk,j

(so the alphabet Γ can be considered as an emptyset), and the alphabet of the
environment, Σ, and the alphabet of the flags, Φ are disjoint.

Definition 2. A Probabilistic Guarded P system (PGP system, for short) of degree
m ≥ 1 is a tuple Π = (G,Σ,Φ, T, {(fj , Ej) | 1 ≤ j ≤ m},RE), where:

Four Research Topics 191

• G = (V, S) is a directed graph whose set of nodes is V = {e1, . . . , em}.
• Σ and Φ are finite alphabets such that Σ ∩ Φ = ∅. Elements in Σ are called

objects and elements in Φ are called flags.
• RE is a finite set of rules of the following types:

– {f} (u)ej → (v)ej1 with u, v ∈Mf (Σ) , f ∈ Φ and 1 ≤ j, j1 ≤ m.
– {f} (u, f)ej → (v, g)ej with u, v ∈Mf (Σ), f, g ∈ Φ and 1 ≤ j ≤ m.

There is no rules of types {f} (u, f)ej → (v, g)ej and {f} (u)ej
p3−→ (v)ej1 , for

f ∈ Φ, 1 ≤ j, j1 ≤ m and u ∈Mf (Σ).
For each f ∈ Φ and j, 1 ≤ j ≤ m, there exists only one rule of type
{f} (u, f)ej → (v, g)ej .

• The arcs of graph G = (V, S) is defined from RE as follows: (ej , ej1) ∈ S if
and only if there exists a rule of the type {f} (u)ej → (v)ej1 , or j = j1 and
there exists a rule of the type {f} (u, f)ej → (v, g)ej .

• Each rule from RE has associated a probability, that is, there exists a function
pRE

from RE into [0, 1], such that:
– For each f ∈ Φ, u ∈ M(Σ), 1 ≤ j ≤ m, if r1, . . . , rt are rules of the type
{f} (u)ej → (v)ej1 , then

∑t
s=1 pRE

(rs) = 1.
– If r ≡ {f} (u, f)ej → (u, g)ej , then pRE

(r) = 1.
• For each j, 1 ≤ j ≤ m, we have fj ∈ Φ and Ej ∈Mf (Σ).

A Probabilistic Guarded P system can be viewed as a set of m environments,
called cells, labelled by 1, . . . ,m such that: (a) E1, . . . , Em are finite multisets over
Σ representing the objects initially placed in the cells of the system; (b) f1, . . . , fm
are flags that initially mark the cells; (c) G is a directed graph whose arcs specify
connections among cells; (d) RE is the set of rules that allow the evolution of the
system and each rule r is associated with a real number pRE

(r) in [0, 1] describing
the probability of that rule to be applied in the case that it is applicable.

In PGP systems, two types of symbols are used: objects (elements in Σ) and
flags (elements in Φ). It can be considered that objects are in cells and flags are
on (the borderline of) cells.

A configuration of a PGP system at any instant t is a tuple whose components
are the following: (a) the flags associated with each cell at instant t (initially
f1, . . . , fm), and (b) the multisets of objects present in the m cells at instant t
(initially E1, . . . , Em).

Finally, in order to ease the understandability of the whole framework, Figure 1
shows a graphical summary of multienvironment P systems and the two approaches
(stochastic and probabilistic).

4.1 Semantics of PGP systems

Definition 3. A configuration at any instant t ≥ 0 of a PGP system Π is a tuple
Ct = (x1, u1, . . . , xm, um) where, for each i, 1 ≤ i ≤ m, xi ∈ Φ and ui ∈ M(Σ).
That is to say, a configuration of Π at any instant t ≥ 0 is described by all multisets
of objects over Σ associated with all the cells present in the system and the flags

192 M. Garćıa-Quismondo, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez

Fig. 1: The formal framework of Multienvironment P systems

marking these cells. (f1, E1, . . . , fm, Em) is said to be the initial configuration of
Π. At any instant, each cell has one and only one flag, in a similar manner to
polarizations in cell–like P systems.

Definition 4. A rule r of the type {f} (u)i → (v)j is applicable to a configuration
Ct = (x1, u1, . . . xm, um) if and only if xi = f and u ⊆ ui, for all 1 ≤ i ≤ m.

When applying r to Ct, objects in u are removed from cell i and objects in v
are produced in cell j. Flag f is not changed; it plays the role of a catalyst assisting
the evolution of objects in u.

Definition 5. A rule r of the type {f} (u, f)i → (v, g)i is applicable to a config-
uration Ct = (x1, u1, . . . xm, um) if and only if xi = f and u ⊆ ui, for all 1 ≤ i ≤ m.

When applying r to Ct, in cell i objects in u are replaced by those in v and f
is replaced by g. In this case, Flag f is consumed, so r can be applied only once in
instant t in cell i.

Remark 1. After applying a rule r of the type {f} (u, f)i → (v, g)i, other rules
r′ of the type {f} (u)i → (v)j can still be applied (the flag remains in vigour).
However, f has been consumed, so no more rules of the type {f} (u, f)i → (v, g)i
can be applied.

Four Research Topics 193

Definition 6. A configuration is a halting configuration if no rule is applicable to
it.

Definition 7. We say that configuration C1 yields configuration C2 in a transition
step if we can pass from C1 to C2 by applying rules from RE in a non–deterministic,
maximally parallel manner, according to their associated probabilities denoted by
map pRE . That is to say, a maximal multiset of rules from RE is applied, no
further rule can be added.

Definition 8. A computation of a PGP system Π is a sequence of configurations
such that: (a) the first term of the sequence is the initial configuration of Π, (b)
each remaining term in the sequence is obtained from the previous one by applying
the rules of the system following Definition 7, (c) if the sequence is finite (called
halting computation) then the last term of the system is a halting configuration.

4.2 Comparison between PGP systems and other frameworks in
Membrane Computing

Probabilistic Guarded P systems (PGP systems) display similarities with other
frameworks in Membrane Computing. As a sample, in P systems with proteins
on membranes are a type of cell-like systems in which membranes might have
attached a set of proteins which regulate the application of rules, whilst in PGP
systems each cell has only one flag. Therefore, some rules are applicable if and
only if the corresponding protein is present. More information about this kind of
P systems can be found in [17].

When comparing PGP systems and Population Dynamics P systems [2], it is
important to remark the semantic similarity between flags and polarizations, as
they both define at some point the context of each compartment. Nevertheless,
as described at the beginning of this chapter, upon the application of a rule
r ≡ {f} (u, f)i → (v, g)i flag f is consumed, thus ensuring that r can be applied
at most once to any configuration. This property keeps PGP transitions from
yielding inconsistent flags; at any instant, only one rule at most can change the flag
in each membrane, so scenarios in which inconsistent flags produced by multiple
rules are impossible. Moreover, in PDP systems the number of polarizations is
limited to three (+, - and 0), whereas in their PGP counterpart depends on the
system itself. Finally, each compartment in PDP systems contains a hierarchical
structure of membranes, which is absent in PGP systems. Figure 2 summarizes
this comparison.

5 Simulation of PGP systems

When simulating PGP systems, there exist two cases, according to if there exists
object competition or not. In this work, only algorithms for the second case are

194 M. Garćıa-Quismondo, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez

PGP systems
P systems with
proteins

PDP systems

Structure

Tissue–like
(given by a
directed graph)

Cell–like (given
by a rooted tree)

Tissue–like
(given by a di-
rected graph of
environments
containing a
rooted tree each)

Rule

Each left–hand
side contains
one flag and
a multiset of
objects

Each left–hand
side contains one
protein and one
object

Each left–hand
side contains one
polarization and
a multiset of
objects

Affected compartments

The application
of a rule might
affect, at most,
two cells in the
system

The application
of a rule affects
one and only one
cell in the system

The application
of a rule might
affect, at most,
two cells in the
system

Number of applications

Each rule of type
r ≡ {f} (u, f)i →
(v, g)i can be ap-
plied, at most,
only once to any
configuration

Every rule is
possible to be
applied multiple
times to any
configuration

Every rule is
possible to be
applied multiple
times to any
configuration

Number of flags

For each configu-
ration, there ex-
ists only one flag
per cell

For each config-
uration, there
might exist mul-
tiple proteins per
cell

For each configu-
ration, there ex-
ists only one po-
larization per cell

Fig. 2: Comparison of PGP systems, PDP systems and P systems with proteins

introduced, but some ideas are given to handle object competition among rules in
the model, and kept for future developments.

5.1 Some definitions on the model

As it is the case in Population Dynamic P systems, in PGP systems some
definitions are introduced prior to describing simulation algorithms. It must be
noted that these concepts are analogous to those described in [15], but obviously
adapted to the syntax of PGP systems.

Four Research Topics 195

Remark 2. For the sake of simplicity, henceforth the following notation will be
used. For every cell i , 1 ≤ i ≤ m, and time t , 0 ≤ t ≤ T, the flag and multiset
of cell i in step t are denoted as xi,t ∈ Φ and ui,t ∈M(Σ), respectively. Similarly,
u(y), where u ∈M(Σ), y ∈ Σ denote the number of objects y in multiset u.

Definition 9 shows the notation regarding the left-hand and right-hand sides
of rules.

Definition 9. For each rule r ∈ RE :

Type 1: If r is of the form r ≡ {f} (u)i → (v)j, we denote the left–hand side as
LHS(r) = (i, f, u) and the right–hand side as RHS(r) = (j, f, v).

Type 2: If r is of the form r ≡ {f} (u, f)i → (v, g)i, we denote the left–hand side
as LHS(r) = (i, f, u, f) and the right–hand side as RHS(r) = (i, g, v).

Let us recall that for each i , 1 ≤ i ≤ m and f ∈ Φ, there exists an unique rule
of type 2: r ≡ {f} (u, f)i → (v, g)i.

Next, Definition 10 introduces the concept of rule blocks in PGP systems,
which is inspired by the one used in PDP systems [15].

Definition 10. For each 1 ≤ i ≤ q, f ∈ Φ, and u ∈M(Σ), we will denote:

• The block of communication rules B1
i,f,u = {r ∈ R : LHS(r) = (i, f, u)}; that

is, the set of rules of type 1 having the same left–hand side.
• The block of context–changing rules B2

i,f,u = {r ∈ R : LHS(r) = (i, f, u, f)};
that is, the set of rules of type 2 having the same left–hand side.

Obviously, B1
i,f,u ∩ B2

i,f,u = ∅. It is important to recall that, as it is the case
in PDP systems, the sum of probabilities of all the rules belonging to the same
block is always equal to 1 – in particular, rules with probability equal to 1 form
individual blocks. Consequently, blocks of context–changing rules (type 2) are
composed solely of a rule. In addition, rules with overlapping (but different) left–
hand sides are classified into different blocks.

Definition 11. For each i, 1 ≤ i ≤ m, we will consider the set of all rule blocks
associated with cell i as Bi = {B1

i,f,u, B
2
i,f,u : f ∈ Φ ∧ u ∈M(Σ)}.

We will also consider a total order in Bi, for 1 ≤ i ≤ m, Bi =
{Bi,1, Bi,2, . . . , Bi,αi

}. Therefore, there are αi blocks associated to cell i.
Furthermore, let Bi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ αi be a block associated to cell i.

We define the following notations:

• Type(Bi,j) is equal to:
– 1, if ∃f ∈ Φ, u ∈M(Σ) such that Bi,j = B1

i,f,u

– 2, if ∃f ∈ Φ, u ∈M(Σ) such that Bi,j = B2
i,f,u

• Flag(Bi,j) = f , if ∃k(1 ≤ k ≤ 2) ∧ ∃u ∈M(Σ) such that Bi,j = Bki,f,u
• Mult(Bi,j) = u, if ∃k(1 ≤ k ≤ 2) ∧ ∃f ∈ Φ such that Bi,j = Bki,f,u

196 M. Garćıa-Quismondo, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez

In addition, for each block Bi,j , 1 ≤ i ≤ m and 1 ≤ j ≤ αi, associated to cell i,
we consider a total order in the set of integrated rules: Bi,j =

{
ri,j,1, . . . , ri,j,hi,j

}
,

where hi,j(1 ≤ i ≤ m, 1 ≤ j ≤ αi) denotes the number of rules in block Bi,j .
Obviously, all the rules of a block are of the same type.

Definition 12. A PGP system is said to feature object competition, if there exists
at least two different blocks Bi,j and Bi,j′ (possibly of different type), such that
Flag(Bi,j) = Flag(Bi,j′), and Mult(Bi,j) ∩Mult(Bi,j′) 6= ∅. That is, their rules
have overlapping (but not equal) left-hand sides.

Remark 3. It is worth noting that all rules in the model can be consistently applied.
This is because there can only exists one flag f ∈ Φ at every membrane at the
same time, and, consequently, at most one context–changing rule r ≡ {f} (u, f)i →
(v, g)i can consume f and replace it (where possibly f = g).

Definition 13. Given a block B1
i,f,u or B2

i,f,u, where u ∈M(Σ), f ∈ Φ,
1 ≤ i ≤ m and a configuration Ct = {x1, u1, . . . , xm, um} , 0 ≤ t ≤ T ,
the maximum number of applications of such a block in Ct is the maximum
applications of any of its rule in Ct.

5.2 Simulation Algorithm

Next, we define some auxiliary data structures to be used in the simulation
algorithms.

NBA (Number of Block Applications): a matrix of integer numbers of dimension
m ×NBM , where NBM = max(αi), 1 ≤ i ≤ m (maximum number of blocks
for all cells). Each element NBAi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ NBM stores the
number of applications of block Bi,j .

NRA (Number of Rule Applications): a matrix of integer numbers of dimension
m × NBM × NRM , where NRM = max(hi,j), 1 ≤ i ≤ m, 1 ≤ j ≤ αi
(maximum number of rules for all blocks in all membranes). Each element
NRAi,j,k, 1 ≤ i ≤ m, 1 ≤ j ≤ αi, 1 ≤ k ≤ hi,j , stores the number of
applications of rule ri,j,k, identified by its cell, block and local identifier inside
its block, according to the established total order.

The algorithm for simulation of PGP systems receives three parameters:

• The PGP system Π of degree m.
• The integer number T > 0 (number of time steps).
• An integer number K > 0 (random accuracy). It indicates for how many cycles

block applications are assigned among their rules in random fashion. That is,
the algorithm distributes the applications of each block among its rules for K
cycles, and after that, block applications are maximally assigned among rules in
a single cycle. It is used as an accuracy parameter for the probabilistic method.
Algorithm 5.4 performs this function.

Four Research Topics 197

When simulating PGP systems without object competition, it is not necessary
to randomly assign objects among blocks; as they do not compete for objects, then
the number of times that each block is applied is always equal to its maximum
number of applications. As it is the case of DCBA for PDP systems [15], the
simulation algorithm heavily relies on the concept of block, being rule applications
secondary. However, DCBA handles object competition among blocks, penalizing
more those blocks which require a larger number of copies of the same object
which is inspired by the amount of energy required to join individuals from the
same species. On the other hand, object competition is not supported on the
proposed algorithm. Algorithm 5.1 describes a simulation algorithm for PGP
systems without object competition.

Algorithm 5.1 Algorithm for simulation of PGP systems

Input:

• T : an integer number T ≥ 1 representing the iterations of the simulation.
• K: an integer number K ≥ 1 representing non–maximal rule iterations (i.e., iterations

in which the applications selected for each rule do not necessarily need to be maximal).
• Π = (G,Σ,Φ, T, {(fj , Ej) | 1 ≤ j ≤ m},RE): a PGP system of degree m ≥ 1.

1: Initialization (Π)
2: for t← 1 to T do . See Algorithm 5.2
3: C′t ← Ct−1

4: SELECTION of rules:
5: PHASE 1: Objects distribution (C′t) . See Algorithm 5.3
6: PHASE 2: Rule application distribution (C′t) . See Algorithm 5.4
7: EXECUTION of rules:
8: PHASE 3: Object production (C′t) . See Algorithm 5.5
9: Ct ← C′t

10: end for

On each simulation step t, 1 ≤ t ≤ T and cell i, 1 ≤ i ≤ m, the following
stages are applied: Object distribution (selection), Rule application distribution
(selection) and Object generation (execution).

However, before starting the simulation process, we must initialize some
data structures. In Initialization (Algorithm 5.2), the initial configuration C0 is
constructed with the input PGP systemΠ. Moreover, the information about blocks
are created; that is, the blocks of rules are computed, and ordered for each cell.
Moreover, the rules inside each block are also ordered. Finally, the data structures
NBA and NRA are initialized with zeros.

In the Object distribution stage (Algorithm 5.3), objects are distributed among
blocks. As the system to simulate does not feature object competition, the
number of applications of each block is its maximum. Then, objects are consumed
accordingly. It is in this stage that the flag checking for each block is performed.

198 M. Garćıa-Quismondo, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez

Algorithm 5.2 Initialization

Input: Π = (G,Σ,Φ, T, {(fj , Ej) | 1 ≤ j ≤ m},RE)

1: C0 ← {f1, E1, . . . , fm, Em} . Initial configuration
2: for i← 1 to m do . For each cell
3: Bi ← ordered set of blocks formed by rules of R associated with cell i
4: αi ← |Bi| . Number of rule blocks
5: for j ← 1 to αi do . For each block associated with the cell
6: Bi,j ← ordered set of rules from jth block in Bi.
7: hi,j ← |Bi,j | . Number of rules within the block
8: NBAi,j ← 0 . Initially, all blocks applications are 0
9: for k ← 1 to hi,j do . Initially, all rule applications are 0

10: NRAi,j,k ← 0
11: end for
12: end for
13: end for

Moreover, blocks of type 2 (context–changing rules) consume and generate the
new flag.

Algorithm 5.3 Phase 1: Object distribution among blocks

Input: C′t = {x1,t, u1,t, . . . , xm,t, um,t}
1: for i← 1 to m do . For each cell
2: for j ← 1 to αi do . For each block associated with the cell
3: if Flag(Bi,j) = xi,t then
4: if Type(Bi,j) = 1 ∧Mult(Bi,j) ⊆ ui,t then

5: NBAi,j ← min(b ui,t(z)

Mult(Bi,j)(z)
c : z ∈ Σ) . Maximal application

6: ui,t ← ui,t −NBAi,j ·Mult(Bi,j) . Update the configuration
7: end if
8: if Type(Bi,j) = 2 ∧Mult(Bi,j) ⊆ ui,t then
9: NBAi,j ← 1 . Just one application

10: xi,t ← g, being RHS(ri,j,1) = (i, g, v) with Bi,j = {ri,j,1} . Update
cell flag

11: ui,t ← ui,t −NBAi,j ·Mult(Bi,j) . Update the configuration
12: end if
13: end if
14: end for
15: end for

Next, objects are distributed among rules according to a binomial distribution
with rule probabilities and maximum number of block applications as parameters.
This algorithm is composed of two stages non–maximal and maximal repartition.
In the non–maximal repartition stage, a rule in the block is randomly selected
according to a uniform distribution, so each rule has the same probability to be
chosen. Then, its number of applications is calculated according to an ad–hoc

Four Research Topics 199

procedure based on a binomially distributed variable Binomial(n, p), where n is
the remaining number of block applications to be assigned among its rules and
p is the corresponding rule probability. This process is repeated a number K of
iterations for each block Bi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ αi. Algorithm 5.4 describes
this procedure. If, after this process, there are still applications to assign among
rules, a rule per applicable block is chosen at random and as many applications
as possible are assigned to it in the maximal repartition stage. An alternative
approach would be to implement a multinomial distribution of applications for
the rules inside each block, such as the way that it is implemented on the DCBA
algorithm [15]. A method to implement a multinomial distribution would be the
conditional distribution method, which emulates a multinomial distribution based
on a sequence of binomial distributions [8]. This would require to normalize rule
probabilities for each rule application distribution iteration. This approach has also
been tested on the simulation algorithm, but was discarded because it tends to
distribute too few applications in the non–maximal repartition stage, thus leaving
too many applications for the rule selected in the maximal repartition one.

Algorithm 5.4 Phase 2: Rule application distribution

Input: C′t = {x1,t, u1,t, . . . , xm,t, um,t}
for k ← 1 to K do . Non-maximal repartition stage

for i← 1 to m do
for j ← 1 to αi do

l← Uniform{1, . . . , hi,j} . Select a random rule ri,j,l in Block Bi,j

lnrap← Binomial(NBAi,j , pR(ri,j,l))
NRAi,j,l ← NRAi,j,l + lnrap . Update rule applications
NBAi,j ← NBAi,j − lnrap

end for
end for

end for
for i← 1 to m do . Maximal repartition stage

for j ← 1 to αi do
l← Uniform{1, . . . , hi,j}
NRAi,j,l ← NRAi,j,l +NBAi,j

NBAi,j ← 0
end for

end for

Lastly, rules produce objects as indicated by their right–hand side. Each rule
produces objects according to its previously assigned number of applications.
Algorithm 5.5 describes this procedure.

The algorithm proposed in this paper works only for models without object
competition. This is because the models studied so far did not have object
competition, so this feature was not required. However, it might be interesting to
develop new algorithms supporting it. They would be identical to their counterpart

200 M. Garćıa-Quismondo, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez

Algorithm 5.5 Phase 3: Object production

for i← 1 to m do . For each cell
for j ← 1 to αi do . For each block associated with the cell

for k ← 1 to hi,j do . For each rule belonging to the block
ui,t ← ui,t +NRAi,j,k · v, where RHS(ri,j,k) = (i′, f ′, v)
NRAi,j,k ← 0

end for
end for

end for

without object competition, solely differing in the protocol by which objects are
distributed among blocks. As an example, it would be possible to adapt the way
in which objects are distributed in the DCBA algorithm [15].

5.3 Software environment

Next, the developed simulators, a P–Lingua extension, and a GUI for PGP systems
are going to be summarized.

Simulators

A simulator for PGP systems without object competition has been incorporated on
P–Lingua [10]. In addition, a C++ simulator for PGP systems (namely PGPC++)
has also been implemented. The libraries used for random number generation are
COLT [23] in the P–Lingua simulator, and standard std::rand [24] for PGPC++.
In the latter, the facilities provided by std::rand are directly used. These libraries
provide a wide range of functionality to generate and handle random numbers,
and are publicly available under open source licenses.

P–Lingua extension

In order to define PGP systems, P–Lingua has been extended to support PGP
rules. Specifically, given f, g ∈ Φ, u, v ∈M(Σ), 1 ≤ i, j ≤ m, p = pR(r), rules are
represented as follows:

{f} (u)i
p→ (v)j , ≡ @guard f ?[u]’i --> [v]’j :: p ;

{f} (u, f)i → (v, g)i ≡ @guard f ?[u,f]’i --> [v,g]’i :: 1.0;

In both cases, if p = 1.0, then :: p can be omitted. If i = j, then {f} (u)i
p→ (v)j

can be written as @guard f ?[u --> v]’i :: p ;. Likewise, {f} (u, f)i →
(v, g)i can always be written as @guard f ?[u,f --> v,g]’i ;. Moreover, some
additional constructs have been included to ease parametrization of P systems.
The idea is to enable completely parametric designs, so as experiments can be
tuned by simply adjusting parameters, leaving modifications of P–Lingua files for
cases in which changes in semantics are in order.

Four Research Topics 201

&{multiset }:{iterators } In this sentence, multiset is an ordinary multiset,
whose indexes depend on the iterators defined in iterators. iterators is a
standard list of iterators in P–Lingua separated by commas. It is worth noting
that this sentence has some limitations. For instance, variables defined in these
iterators cannot be used again in the same P–Lingua specification. In addition,
those variables used in multiset which are defined in iterators can only be used
as such, that is, they cannot be used as subindexes or arithmetical expressions.
The reasons for these constraints correspond to technical implementation
details which will not be discussed here.

@mu(label)*=cell structure ; In this sentence, label is a cell label defined at
some point in the P–Lingua specification. cell structure is a standard P–
Lingua, tissue–like membrane structure, such as the ones which can be defined
after the @mu sentence. This sentence adds the skin of membrane structure as
a child cell of label. As cells in tissue–like structures have no parent, label = 0
for all tissue–like models. In cell–like models, the behaviour is the same, with
the exception that cell structure is a cell–like structure, label can be any label
in the system and the symbol *= is replaced by +=.

@property(label)=set ; This sentence allows designers to define specific prop-
erties for objects. set is a set of symbols, which can be extended by external,
standard iterators or internal ones as defined at the first point of this list. In
the case of PGP systems, @property(flag)=set defines flags f ∈ Φ.

In addition, two new formats have been integrated into P-Lingua. These
formats (XML–based and binary) encode P systems representing labels and objects
as numbers instead of strings, so they are easily parsed and simulated by third–part
simulators such as PGPC++.

A graphical environment for PGP systems

MeCoGUI is a new GUI developed for the simulation of PGP systems.
MeCoSim [20] could have been used instead. However, in the environment in which
the simulators were developed there exist some pros and cons on this approach
versus and ad–hoc simulator.

MeCoSim is an integrated development environment (IDE). That is to say, it
provides all functionality required for the simulation and computational analysis
of P systems. To define the desired input and output displays, it is necessary to
configure a spreadsheet by using an ad–hoc programming language. However, it
would entail teaching this language to prospective users, which are proficient in R
programming language instead. In this sense, a more natural approach for them is
to develop a GUI in which users can define input parameters and results analysis
on R.

To do so, the developed GUI takes as input a P system file on P–Lingua
format and a CSV file encoding its parameters, and outputs a CSV file which
contains simulation results. This way, users can define inputs and analyse outputs
on their programming language of choice. CSV is a widespread, simple and free

202 M. Garćıa-Quismondo, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez

format with plenty of libraries for different languages. This flexibility comes at the
cost concerning that the developed GUI is not an IDE, as input parameters and
simulation analysis cannot be directly input and viewed on the GUI. Rather, it is
necessary to develop applications to generate and process these CSV files which
depend on the domain of use. In some simulators (such as PGPC++), the output
CSV files represent labels and objects as integers, but this application includes
a button to translate output files from PGPC++ into string–representative file
formats. Figure 3 displays the main screen of this application.

Fig. 3: Main screen of MeCoGUI

MeCoGUI can also translate P systems into machine–readable formats, such as
those read by PGPC++. Finally, it is important to remark that these applications
play the role of domain–specific spreadsheets on MeCoSim, so MeCoGUI can
simulate any type of P system supported by P–Lingua. This is because only
external applications for input data and simulation processing depend on the
domain, not MeCoGUI itself, which is general for any type of P system. Figure 4
graphically describes the workflow for P–Lingua and for PGPC++.

6 Applications of PGP systems

A model of the ecosystem of the white cabbage butterfly (Pieris oleracea) [7],
based on PGP systems, is a currently ongoing project. Such a species is suffering
the invasion of the garlic mustard (Alliaria petiolata), which is replacing native
host broadleaf toothwort (Cardamine diphylla) and ravaging the butterfly’s natural
habitat. Specifically, A. petiolata contains a deterrent agent for larvae of P.
oleracea. Moreover, such a plant is toxic for these larvae, although it contains

Four Research Topics 203

Fig. 4: Workflow for P-Lingua simulator (upper branch) and PGPC++ (lower
branch) for MeCoGUI

a chemical compound which lures mature butterflies and frames them into laying
eggs. Nevertheless, a minority of individuals tolerates such a deterrent, metabolize
the toxin and reach the pupa stage [12, 13].

The distribution of phylogenetic profiles across the species consists of a majority
of homozygous individuals unable to thrive on A. petiolata patches, a minority
of homozygous individuals which do well on A. petolata rosettes and, in the
midterm, an slightly larger population of heterozygous individuals with both
alleles. The allele which enables butterflies to overcome the dietary restrictions
imposed by A. petiolata is dominant, but individuals carrying this allele undergo
a detoxification mechanism which entails an energetic cost and hampers their
arrival at adulthood [12].

The model under development aims to identify if there has been any
evolutionary adaptation of the butterfly species significant enough so as to ensure
its survival in the new scenario. Specifically, the idea is to assess if the detoxification
cost associated with individuals tolerating A. petiolata pays off in the new scenario
or, on the other hand, the phylogenetic distribution will stay the same and other
mechanism will come into effect, such as hybridization with other butterfly species
such as Pieris rapae [7].

The approach taken in this project aims to validate the model qualitatively. A
qualitative validation is defined as follows: a model is qualitatively validated if it
can reproduce some properties verified by the ecosystem under different scenarios
(according to the experts).

7 Conclusions and Future Work

Multienvironment P systems are a general, formal framework for modelling
population dynamics in Biology. The framework has two main approaches:
stochastic (micro–level oriented) and probabilistic (macro–level oriented). The
framework has been extended in the probabilistic approach, with the inclusion of
a new modelling framework called Probabilistic Guarded P (PGP) systems. PGP
systems are inspired by Population Dynamics P systems, and aim to simplify the

204 M. Garćıa-Quismondo, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez

design and simulation of models of ecological phenomena. The model has been
formalized in this paper, and a simulation algorithm is introduced. This algorithm
is restricted for models which do not feature object competition. Moreover, an
extension of the P–Lingua language is provided to enable PGP systems in P–
Lingua, as well as a Graphical User Interface (GUI) to simulate PGP systems
(MeCoGUI).

The framework of PGP systems is being utilised for modelling the ecosystem
of Pieris napi oleracea, a butterfly native to Northeaster U.S.A. The aim is to
validate the model qualitatively; that is, checking that if the ecosystem verifies
some properties under different scenarios (experts), our model reproduces those
properties as well.

Although PGP systems provide a simplified alternative to PDP systems,
some constraints to the supported models are imposed: only models without
object competition are allowed. Therefore, future research lines will be focused
on overcoming this constraint, providing new simulation algorithms permitting
object competition. Moreover, new case studies will be considered, what can help
to extend the framework. Finally, PGP simulation will be accelerated by using
parallel architectures, such as GPU computing with CUDA.

Acknowledgements

The authors acknowledge the support of the project TIN2012-37434 of the
“Ministerio de Economı́a y Competitividad” of Spain, co-financed by FEDER
funds. Manuel Garćıa–Quismondo also acknowledges the support from the
National FPU Grant Programme from the Spanish Ministry of Education. Miguel
A. Mart́ınez-del-Amor also acknowledges the support of the 3rd Postdoctoral phase
of the PIF program associated with “Proyecto de Excelencia con Investigador de
Reconocida Vaĺıa” of the “Junta de Andalućıa” under grant P08-TIC04200.

References

1. J. Blakes, J. Twycross, F.J. Romero-Campero, N. Krasnogor. The Infobiotics
Workbench: an integrated in silico modelling platform for Systems and Synthetic
Biology, Bioinformatics, 27, 23 (2011), 3323-3324.

2. M.A. Colomer-Cugat, M. Garćıa-Quismondo, L.F. Maćıas-Ramos, M.A. Mart́ınez-
del-Amor, I. Pérez-Hurtado, M.J. PérezJiménez, A. Riscos-Núñez, L. Valencia-
Cabrera. Membrane system-based models for specifying Dynamical Population
systems. In P. Frisco, M. Gheorghe, M.J. Prez-Jimnez (eds.), Applications of
Membrane Computing in Systems and Synthetic Biology. Emergence, Complexity
and Computation series, Volume 7. Chapter 4, pp. 97–132, 2014, Springer Int.
Publishing.

3. M. Cardona, M.A. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, D. Sanuy. A computational modeling for real ecosystems based on P
systems, Natural Computing, 10, 1 (2011), 39–53.

Four Research Topics 205

4. S. Cheruku, A. Păun, F.J. Romero-Campero, M.J. Pérez-Jiménez, O.H. Ibarra.
Simulating FAS-induced apoptosis by using P systems, Progress in Natural Science,
17, 4 (2007), 424–431.

5. M.A. Colomer, A. Margalida, D. Sanuy, M.J. Pérez-Jiménez. A bio-inspired
computing model as a new tool for modeling ecosystems: The avian scavengers
as a case study, Ecological modelling, 222, 1 (2011), 33–47.

6. M.A. Colomer, M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A.
Riscos-Núñez. A uniform framework for modeling based on P Systems. Proceedings
IEEE Fifth International Conference on Bio-inpired Computing: Theories and
Applications (BIC-TA 2010), Volume 1, pp. 616–621.

7. F.S. Chew. Coexistence and local extinction in two pierid butterflies, The American
Naturalist, 118, 5 (1981), 655–672.

8. C.S. Davis. The computer generation of multinomial random variates. Computa-
tional Statistics and Data Analysis, 16, 2 (1993), 205–217.

9. P. Frisco, M. Gheorghe, M. J. Pérez-Jiménez (eds.) Applications of Membrane
Computing in Systems and Synthetic Biology, Springer, 2014.

10. M. Garćıa-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, Agust́ın Riscos-Núñez. An overview of P-Lingua 2.0, LNCS, 5957 (2010),
264–288.

11. M. Gheorghe, F. Ipate, C. Dragomir, L. Mierla, L. Valencia-Cabrera, M. Garćıa-
Quismondo, M.J. Pérez-Jiménez. Kernel P systems - Version I, Proceedings of the
Eleventh Brainstorming Week on Membrane Computing (BWMC2013), 2013, pp.
97–124.

12. M.S. Keeler, F.S. Chew. Escaping an evolutionary trap: preference and perfor-
mance of a native insect on an exotic invasive host, Oecologia, 156, 3 (2008),
559–568.

13. M.S. Keeler, F.S. Chew, B.C. Goodale, J.M. Reed. Modelling the impacts of
two exotic invasive species on a native butterfly: top-down vs. bottom-up effects,
Journal of Animal Ecology, 75, 3 (2006), 777–788.

14. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, A. Gastalver-Rubio, A.C. Elster, M.J.
Pérez-Jiménez. Population Dynamics P systems on CUDA. LNBI, 7605 (2012),
247–266.

15. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. Garćıa-Quismondo, L.F. Maćıas-
Ramos, L. Valencia-Cabrera, A. Romero-Jiménez, C. Graciani, A. Riscos-Núñez,
M.A. Colomer, M.J. Pérez-Jiménez. DCBA: Simulating Population Dynamics P
Systems with Proportional Object Distribution, LNCS, 7762 (2012), 27–56.

16. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez,
F. Sancho-Caparrini. A simulation algorithm for multienvironment probabilistic P
systems: A formal verification, International Journal of Foundations of Computer
Science, 22, 1 (2011), 107–118.

17. A. Păun, B. Popa. P systems with proteins on membranes, Fundamenta
Informaticae, 72, 4 (2006), 467–483.

18. G. Păun. Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and TUCS Report No 208.

19. G. Păun, G. Rozenberg, A. Salomaa (eds.). The Oxford Handbook of Membrane
Computing, Oxford University Press, 2010.

20. I. Pérez-Hurtado, L. Valencia-Cabrera, M.J. Pérez-Jiménez, M.A. Colomer, A.
Riscos-Núñez. MeCoSim: A general purpose software tool for simulating biological
phenomena by means of P Systems, Proceedings IEEE Fifth International

206 M. Garćıa-Quismondo, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez

Conference on Bio-inpired Computing: Theories and Applications (BIC-TA 2010),
volume I (2010), pp. 637–643.

21. M.J. Pérez-Jiménez, F.J. Romero. P systems. A new computational modelling tool
for Systems Biology. Transactions on Computational Systems Biology VI. Lecture
Notes in Bioinformatics, 4220 (2006), 176–197.

22. L. Pan, M.J. Pérez-Jiménez. Computational complexity of tissue-like P systems,
Journal of Complexity, 26, 3 (2010), 296–315.

23. COLT library. http://acs.lbl.gov/software/colt/index.html
24. RAND function in C++/C Standard General Utilities Library (cstdlib). http:

//www.cplusplus.com/reference/cstdlib/rand

Solving the ST-Connectivity Problem with
Pure Membrane Computing Techniques

Zsolt Gazdag1, Miguel A. Gutiérrez–Naranjo2

1Department of Algorithmics and their Applications
Faculty of Informatics
Eötvös Loránd University, Hungary
gazdagzs@inf.elte.hu

2Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, 41012, Spain
magutier@us.es

Summary. In Membrane Computing, the solution of a decision problem X belonging
to the complexity class P via a polynomially uniform family of recognizer P systems
is trivial, since the polynomial encoding of the input can involve the solution of the
problem. The design of such solution has one membrane, two objects, two rules and one
computation step. Stricto sensu, it is a solution in the framework of Membrane Com-
puting, but it does not use Membrane Computing strategies. In this paper, we present
three designs of uniform families of P systems that solve the decision problem STCON
by using Membrane Computing strategies (pure Membrane Computing techniques): P
systems with membrane creation, P systems with active membranes with dissolution and
without polarizations and P systems with active membranes without dissolution and with
polarizations. Since STCON is NL-complete, such designs are constructive proofs of the
belonging of NL to PMCMC, PMCAM0

+d
and PMCAM+

−d
.

1 Introduction

Membrane Computing [13] is a well-established model of computation inspired
by the structure and functioning of cells as living organisms able to process and
generate information. It starts from the assumption that the processes taking place
in the compartmental structures as living cells can be interpreted as computations.
The devices of this model are called P systems.

Among the different research lines in Membrane Computing, one of the most
vivid is the search of frontiers between complexity classes of decision problems, i.e.,
to identify collections of problems that can be solved (or languages that can be
decided) by families of P systems with similar computational resources. In order
to settle the correspondence between complexity classes and P system families,

208 Z. Gazdag and M.A. Gutiérrez–Naranjo

recognizer P systems were introduced in [9, 10]. Since then, recognizer P systems
are the natural framework to study and solve decision problems within Membrane
Computing.

In the last years, many papers have been published about the problem of
deciding if a uniform family of recognizer P systems of type F built in polynomial
time is able to solve the decision problemX . This is usually written as the problem
of deciding if X belongs to PMCF or not. It has been studied for many P system
models F and for many decision problems X (see, e.g., [2, 3, 4, 5] and references
therein).

The solution of a decision problem X belonging to the complexity class P
via a polynomially uniform family of recognizer P systems is trivial1, since the
polynomial encoding of the input can involve the solution of the problem. On
the one hand, by definition, X ∈ P if there exists a deterministic algorithm A
working in polynomial time that solves X. On the other hand, the belonging of X
to PMCF requires a polynomial time mapping cod that encodes the instances u
of the problem X as multisets wich will be provided as inputs. Formally, given a
decision problem X and an algorithm A as described above, two different functions
s (size) and cod (encoding) can be defined for each instance u of the decision
problem:

• s(u) = 1, for all u

• cod(u) =

{
yes if A(u) = yes
no if A(u) = no.

The family of P systems which solves X is Π = {Π(n)}n∈N with

Π(n) = ⟨Γ,Σ,H, µ,w,R, i⟩

• Alphabet: Γ = {yes, no}
• Input alphabet: Σ = Γ
• Set of labels: H = {skin}
• Membrane structure: []skin
• Initial multisets: w = ∅
• Input label: i = skin
• Set of rules: [yes]skin → yes []skin and [no]skin → no []skin. Both are send-out

rules.

Trivially, for all instance u of the problem, Π(s(u))+ cod(u) provides the right
solution in one computation step. Stricto sensu, it is a solution in the framework
of Membrane Computing, but it does not use Membrane Computing strategies.
All the work is done in the algorithm A and one can wonder if the computation
itself can be performed by using pure Membrane Computing techniques.

We focus now on the well-known ST-Connectivity problem (known as
STCON). It can be settled as follows: Given a directed graph ⟨V,E⟩ and two

1 See [8, 11].

Solving the ST-Connectivity Problem . . . 209

vertex s and t in V , the STCON problem consists on deciding if t is reachable
from s, i.e., if there exists a sequence of adjacent vertices (i.e., a path) which starts
with s and ends with t. It is known that it is an NL-complete problem, i.e., it can
be solved by a nondeterministic Turing machine using a logarithmic amount of
memory space and every problem in the class NL is reducible to STCON under
a log-space reduction.

In this paper, we study the STCON in the framework of P systems. As shown
above, since STCON ∈ NL ⊆ P, there exist a trivial family of P systems in
PMCF which solves it, regardless the model F . It suffices that F deals with
send-out rules. In this paper, we present three designs of uniform families of P
systems that solve the decision problem STCON by pure Membrane Comput-
ing techniques, i.e., techniques where the features of the model F are exploited
in the computation: P systems with membrane creation, P systems with active
membranes with dissolution and without polarizations and P systems with active
membranes without dissolution and with polarizations. We provide such designs
and show the differences with previous studies found in the literature.

Since STCON is NL-complete, such designs are constructive proofs of the
belonging of NL to PMCMC , PMCAM0

+d
and PMCAM+

−d
.

The paper is structured as follows: First of all, we recall some basic definitions
used along the paper. In Section 3, previous works on NL are revisited. Next, our
designs of solutions are provided and the paper finishes with some conclusions and
presenting research lines for a future work.

2 Preliminaries

Next, some basic concepts used along the paper are recalled. We assume that the
reader is familiar with Membrane Computing techniques (for a detailed descrip-
tion, see [13]).

A decision problem,X, is a pair (IX , θX) such that IX is a language over a finite
alphabet (whose elements are called instances) and θX is a total Boolean function
over IX . A P system with input is a tuple (Π,Σ, iΠ), where Π is a P system, with
working alphabet Γ , with p membranes labelled by 1, . . . , p, and initial multisets
M1, . . . ,Mp associated with them; Σ is an (input) alphabet strictly contained
in Γ ; the initial multisets are over Γ − Σ; and iΠ is the label of a distinguished
(input) membrane. Let (Π,Σ, iΠ) be a P system with input, Γ be the working
alphabet of Π, µ its membrane structure, and M1, . . . ,Mp the initial multisets
of Π. Let m be a multiset over Σ. The initial configuration of (Π,Σ, iΠ) with
input m is (µ,M1, . . . ,MiΠ ∪m, . . . ,Mp). We denote by IΠ the set of all inputs
of the P system Π (i.e. IΠ is a collection of multisets over Σ). In the case of P
systems with input and with external output, the above concepts are introduced
in a similar way.

Definition 1. A recognizer P system is a P system with input, (Π,Σ, iΠ), and
with external output such that:

210 Z. Gazdag and M.A. Gutiérrez–Naranjo

1. The working alphabet contains two distinguished elements yes, no.
2. All its computations halt.
3. If C is a computation of Π, then either some object yes or some object no (but

not both) must have been released into the environment, and only in the last
step of the computation. We say that C is an accepting computation (respec-
tively, rejecting computation) if the object yes (respectively, no) appears in the
external environment associated to the corresponding halting configuration of
C.

3 Previous Works

The relation between the complexity class NL and Membrane Computing models
has already been explored in the literature. In [6], Murphy and Woods claim that
NL ⊆ PMCAM0

−d,−u
, i.e., every problem in the complexity classNL can be solved

by a non-uniform family of recognizer P systems with active membranes without
polarization and without dissolution.

The proof shows the design of a family of P systems with active membranes
without polarization and without dissolution which solves STCON and considers
the NL-completeness of STCON. Nonetheless, the authors use a non standard
definition of recognizer P systems. According to the usual definition of recognizer P
system (see, e.g., [4]), either one object yes or one object no (but no both) must have
been released into the environment, and only in the last step of the computation.
In the proposed family by Murphy and Woods, it is easy to find a P system which
sends yes to the environment in an intermediate step of the computation and
sends no to the environment in the last step of the computation, so their proof
of NL ⊆ PMCAM0

−d,−u
cannot be considered valid with respect to the standard

definition of recognizer P systems.

Counterexample: Let us consider the instance (s, t, G) of STCON where G
has only two vertices s and t and only one edge (s, t). According to [6], the P system
of the cited model that solves this instance has Γ = {s, t, yes, no, c0, . . . , c4} as al-
phabet, h as unique label and []h as membrane structure. The initial configuration
is [s c4]h and the set of rules consists of the following seven rules:

[s→ t]h [t]h → []h yes
[c0]h → []h no [ci → ci−1]h for i ∈ {1, . . . , 4}.

It easy to check that this P system sends yes to the environment in the second
step of computation and sends no in the fifth (and last) step, so, according to the
standard definition, it is not a recognizer P system. In [7] Murphy and Woods
revisited the solution of STCON by non-uniform families of recognizer P systems
and considered three different ways of the acceptance in recognizer P systems, one
of them was the standard one (Def. 1).

Solving the ST-Connectivity Problem . . . 211

4 Three Designs for the STCON Problem

In this section, we provide three uniform families of P systems that solve the
STCON problem in three different P system models. All these models use the
same encoding for an instance of the problem. We do not loss generality if we
consider the n vertices of the graph as {1, . . . , n}. In this case, a concrete instance
I = (s, t, ⟨V,E⟩) of the STCON on a graph ⟨V,E⟩ with vertices {1, . . . , n}, can
be encoded as

cod(I) = {xs, yt} ∪ {aij : (i, j) ∈ E},

i.e., xs stands for the starting vertex, yt for the ending vertex and aij for each edge
(i, j) in the graph. By using this coding, all the instances of the STCON problem
with n variables, can be encoded with the alphabet

Σ = {xi : i ∈ {1, . . . , n}}∪
{yj : j ∈ {1, . . . , n}}∪
{aij : i, j ∈ {1, . . . , n}}

whose cardinality is 2n+ n2.
Next we present three solutions of the STCON problem by P systems. The

first two solutions are based on P systems with active membranes, the last one
uses P systems with membrane creation. The first solution does not use membrane
dissolution but uses the polarizations of the membranes. The second solution does
not use polarizations but uses membrane dissolution instead. Moreover, none of
these solutions use membrane division rules.

All the three solutions, roughly speaking, work in the following way. For a
given directed graph G = (V,E) and vertices s and t, the system creates/activates
certain membranes in the initial configuration corresponding to the edges in E.
Then, these membranes will be used to create those objects that represent the
vertices reachable from s. Meanwhile, it is tested whether or not the vertex t is
created or not. If yes, the system initiates a process which will send yes out to the
environment. If the vertex t is not produced by the system, i.e., t is not reachable
from s in G, then a counter will create the symbol no which is then sent out to
the environment.

4.1 P Systems with Active Membranes, with Polarization and without
Dissolution

As a first approach, we will provide the design of a uniform family Π = {Πn}n∈N
of P systems in PMCAM−d

which solves STCON. Each P system Πn of the
family decides on all the possible instances of the STCON problem on a graph
with n nodes. Such P systems use two polarizations, but they do not use division or
dissolution rules, so not all the types of rules of P systems with active membranes
are necessary to solve STCON. Each Πn will receive as input an instance of the
STCON as described above and will release yes or no into the environment in the

212 Z. Gazdag and M.A. Gutiérrez–Naranjo

last step of the computation as the answer of the decision problem. The family
presented here is

Πn = ⟨Γn, Σn,Hn, ECn, µn, w
a
n, w

1
n, . . . , w

n
n, w

11
n , . . . , w

nn
n , wskin

n ,Rn, in⟩.

For the sake of simplicity, thereafter we will omit the subindex n.

• Alphabet:
Γ = {xi, yi, ti : i ∈ {1, . . . , n}}∪

{aij , zij : i, j ∈ {1, . . . , n}}∪
{ci : i ∈ {0, . . . , 3n+ 1}}∪
{k, yes, no}.

• Input alphabet:Σ, as described at the beginning of the section. Let us remark
that Σ ⊂ Γ .

• Set of labels: H = {⟨i, j⟩ : i, j ∈ {1, . . . , n}} ∪ {1, . . . , n} ∪ {a, skin}.
• Electrical charges: EC = {0,+}.
• Membrane structure: [[]01 . . . []

0
n []

0
⟨1,1⟩ . . . []

0
⟨n,n⟩ []

0
a]

0
skin.

• Initial multisets: wa = c0, w
skin = wij = wk = λ for i, j, k ∈ {1, . . . , n}.

• Input label: i = skin.

The set of rules R:

R1. aij []
0
⟨i,j⟩ → [aij]

+
⟨i,j⟩ for i, j ∈ {1, . . . , n}.

Each input object aij activates the corresponding membrane by changing its po-
larization. Notice that such a symbol aij represents an edge in the input graph.
R2. yj []

0
j → [yj]

+
j for j ∈ {1, . . . , n}.

The object yj activates the membrane j by changing its polarization. As the in-
put multiset always has exactly one object of the form yj , Πn will have a unique
membrane with label in {1, . . . , n} and polarization +.
R3. [xi → zi1 . . . zinti]

0
skin for i ∈ {1, . . . , n}.

The goal of these rules is to create n+1 copies of an object xi. A copy zij will be
able to produce an object xj if the edge (i, j) belongs to E. The object ti will be
used to witness that vertex i is reachable.
R4. zij []

+
⟨i,j⟩ → [xj]

0
⟨i,j⟩

tj []
+
j → [k]0j

}
for i, j ∈ {1, . . . , n}.

If the membrane with label ⟨i, j⟩ has polarization +, then the symbol zij produces
a symbol xj inside this membrane. Meanwhile, the polarization of this membrane
changes from + to 0, i.e., the membrane is deactivated. Moreover, if the symbol
tj appears in the skin and the membrane with label j has positive polarization,
then an object k is produced inside this membrane. Such object k will start the
process to send yes out to the environment.
R5. [k]0j → k []0j k []0a → [k]+a .
The object k is a witness of the success of the STCON problem. If it is produced,
it goes into the membrane with label a and changes its polarization to +.
R6. [xj]

0
⟨i,j⟩ → xj []

0
⟨i,j⟩ for i, j ∈ {1, . . . , n}.

Solving the ST-Connectivity Problem . . . 213

The produced object xj is sent to the membrane skin in order to go on the com-
putation by rules form R3.
R7. [ci → ci+1]

0
a [c3n+1]

0
a → no []0a

[ci → ci+1]
+
a [c3n+1]

+
a → yes []0a

}
for i ∈ {0, . . . , 3n}.

Object ci evolves to ci+1 regardless of the polarization of the membrane a. If during
the evolution the object k has gone inside such membrane, then the polarization
changes to + and the object c3n+1 will produce yes in the membrane skin. Oth-
erwise, if the object k is not produced, the polarization is not changed and the
object c3n+1 will produce no.
R8. [no]skin → no []skin [yes]skin → yes []skin .
Finally, yes or no is sent out the P system in the last step of computation.

To see in more details how the computation of the presented P system goes, let
us consider an instance I = (s, t, G) of STCON where G is a graph ⟨{1, . . . , n}, E⟩.
The computation ofΠn on cod(I) can be described as follows. During the first step,
using rules in R1, every aij enters to the membrane with label ⟨i, j⟩ and changes
its polarization to +. Thus, after the first step the edges in E are encoded by the
positive polarizations of the membranes with labels of the form ⟨i, j⟩. During the
same step, using the corresponding rule in R2, yt enters to the membrane with
label t and changes its polarization to +. This membrane will be used to recognize
if an object representing that t is reachable from s is introduced by the system.

Now let l ∈ {1, 4, . . . , 3(n − 1) + 1} and consider an object xi in the skin
membrane. During the lth step, using rules in R3, xi creates n+1 copies of itself.
The system will try to use a copy zij (j ∈ {1, . . . , n}) in the next step to create a
new object xj . The copy ti will be used to decide if i = t.

During the (l + 1)th step, using rules in R4, the systems sends zij into the
membrane with label ⟨i, j⟩ if that membrane has a positive polarization. Mean-
while, zij evolves to xj and the polarization of the membrane changes to neutral.
During the same step, if i = t and the membrane with label t has positive polar-
ization, then the system sends ti to this membrane. Meanwhile, ti evolves to k and
the polarization of membrane t changes to neutral.

During the (l + 2)th step, using rules in R6, the object xj is sent out from
the membrane with label ⟨i, j⟩. Moreover, if the membrane with label t contains
k, then this k is sent out from membrane t.

One can see that during the above three steps the system introduces an object
xj if and only if (i, j) is an edge in E. Using this observation we can derive that
during the computation of the system, an object xj appears in the skin if and
only if there is a path in G from s to j. Thus, t is reachable from s in G if and
only if there is a configuration of Πn where the skin contains xt. However, in this
case an object k is introduced in the membrane with label t. It can also be seen
that Πn sends out to the environment yes if and only if k appears in membrane
t. Moreover, if k does not appear in membrane t, then the systems sends out to
the environment no. Thus, Πn sends out to the environment yes or no according
to that t is reachable from s or not. As Πn stops in at most 3n + 2 steps, we

214 Z. Gazdag and M.A. Gutiérrez–Naranjo

can conclude that the family Π decides STCON in linear time in the number of
vertices of the input graph.

4.2 P Systems with Active Membranes, with Dissolution and without
Polarization

Based on the solution presented in the previous sub-section, we give here a uniform
family Π = {Πn}n∈N in PMCAM0 which solves STCON. As here we cannot
use the polarizations of the membranes, we use membrane dissolution to select
those membranes of the initial configuration that correspond to the edges of the
input graph. Next we will describe the mentioned family Π. Since we do not use
polarizations, we do not indicate it at the upper-right corner of the membranes.
The family presented here is

Πn = ⟨Γ,Σ,H,EC, µ,W,R, i⟩.

• Alphabet:

Γ = {xi, v1i, v2i, v3i, vi, yi, ti : i ∈ {1, . . . , n}}∪
{aij , zij : i, j ∈ {1, . . . , n}}∪
{ci : i ∈ {0, . . . , 3n+ 4}}∪
{k, yes, no}.

• Input alphabet: Σ, as described at the beginning of the section.
• Set of labels: H = {⟨i, j, in⟩, ⟨i, j, out⟩ : i, j ∈ {1, . . . , n}} ∪ {⟨i, in⟩, ⟨i, out⟩ :

i ∈ {1, . . . , n} ∪ {a, skin}.
• Electrical charges: EC = ∅.
• Membrane structure:

[[[]⟨1,in⟩]⟨1,out⟩ . . . [[]⟨n,in⟩]⟨n,out⟩ [[]⟨1,1,in⟩]⟨1,1,out⟩ . . . [[]⟨n,n,in⟩]⟨n,n,out⟩ []a]skin.

• Initial multisets: W = {wa, w⟨1,in⟩, . . . , w⟨n,in⟩, w⟨1,out⟩, . . . , w⟨n,out⟩,
w⟨1,1,in⟩, . . . , w⟨n,n,in⟩, w⟨1,1,out⟩, . . . , w⟨n,n,out⟩, wskin}, where
wa = c0, w

skin = w⟨i,j,out⟩ = w⟨k,out⟩ = λ, w⟨i,j,in⟩ = w⟨k,in⟩ = f0, for
i, j, k ∈ {1, . . . , n}.

• Input label: i = skin.

The set of rules R:

R0. [xi → v1i]skin, [vji → vj+1,i]skin, [v3i → vi]skin for i ∈ {1, . . . , n} and j ∈
{1, 2}.
In this solution we cannot use the objects xi in the same role as we did in the
previous sub-section because of the following reason. The system needs four steps
to select those membranes in the initial membrane configuration that correspond
to the edges in E. Thus, the system introduces in four steps the objects vi which
will act in this solution as the objects xi did in the previous one.
R1. [fm → fm+1]⟨i,j,in⟩

[f3]⟨i,j,in⟩ → f4
[f4]⟨i,j,out⟩ → f4

 for i, j ∈ {1, . . . , n}, m ∈ {0, 1, 2}.

Solving the ST-Connectivity Problem . . . 215

These rules dissolve the membranes with label ⟨i, j, in⟩ and ⟨i, j, out⟩ if the input
symbol aij is not present in the system. On the other hand, if aij is in the system,
then it prevents the dissolution of the membrane with label ⟨i, j, out⟩ using the
following rules.
R2. aij []⟨i,j,m⟩ → [aij]⟨i,j,m⟩

[aij]⟨i,j,in⟩ → aij

}
for i, j ∈ {1, . . . , n}, m ∈ {in, out}.

By these rules the input symbol aij goes into the membrane with label ⟨i, j, in⟩
and dissolves that. This way the second rule in R1 cannot be applied, thus the
membrane with label ⟨i, j, out⟩ cannot be dissolved by the third rule.
R3. [fm → fm+1]⟨j,in⟩

[f3]⟨j,in⟩ → f4
[f4]⟨j,out⟩ → f4

 for j ∈ {1, . . . , n}, m ∈ {0, 1, 2}.

These rules dissolve the membranes with label ⟨j, in⟩ and ⟨j, out⟩ if the input
symbol yj is not present in the system. However, if yj is in the system, then it
prevents the dissolution of the membrane with label ⟨j, out⟩ using the following
rules.
R4. yj []⟨j,m⟩ → [yj]⟨j,m⟩

[yj]⟨j,in⟩ → yj

}
for j ∈ {1, . . . , n} and m ∈ {in, out}.

By these rules the input symbol yj goes into the membrane with label ⟨j, in⟩ and
dissolves that. With this it is achieved that the membrane with label ⟨j, out⟩ is
not dissolved by the rules in R3.
R5. [vi → zi1 . . . zinti]skin for i ∈ {1, . . . , n}.
The role of these rules is the same as that of the rules in R3 in Section 4.1.
R6. zij []⟨i,j,out⟩ → [vj]⟨i,j,out⟩

tj []⟨j,out⟩ → [k]⟨j,out⟩

}
for i, j ∈ {1, . . . , n}.

The role of these rules is similar to that of the rules in R4 in Section 4.1: If the
membrane with label ⟨i, j, out⟩ has not been dissolved, then the object zij produces
a symbol vj inside this membrane. Analogously, if the symbol tj appears in the
skin and the membrane with label ⟨j, out⟩ is not dissolved, then an object k is
produced inside this membrane. Such object k will start the process to send yes
out to the environment.
R7. [k]⟨j,out⟩ → k []⟨j,out⟩ k []a → [k]a [k]a → k.
The object k is a witness of the success of the STCON problem. If it is produced,
it goes into the membrane with label a and dissolves it.
R8. [vj]⟨i,j⟩ → vj for i, j ∈ {1, . . . , n}.
The produced object vj dissolves the membrane with label ⟨i, j⟩ as the computation
does not need any more this membranes. This way the object vj gets to the skin
and the computation can go on using the rules in R5.
R9. [ci → ci+1]a [c3n+4]a → no []a

[ci+1]skin → [yes]skin

}
for i ∈ {0, . . . , 3n+ 3}.

Object ci evolves to ci+1 in membrane with label a. If during the evolution the
object k has gone inside this membrane, then it dissolves it and the object ci+1

gets to the membrane s where it produces yes. Otherwise, if the object k is not
produced, c3n+4 remains in membrane with label a and produces no.

216 Z. Gazdag and M.A. Gutiérrez–Naranjo

R10. [no]skin → no []skin [yes]skin → yes []skin .
Finally, yes or no is sent out the P system in the last step of computation.

One can observe that during the first four steps of Πn a membrane with label
⟨i, j, out⟩ is not dissolved if and only if aij is in the input. Thus, Πn has a mem-
brane with label ⟨i, j, out⟩ after the first four steps if and only if Πn defined in
Section 4.1 has a membrane ⟨i, j⟩ with positive polarization after the first step.
Similar observations apply in the case of membranes with label ⟨j, out⟩. Thus, the
correctness of Πn defined in this section follows from the correctness of Πn defined
in Section 4.1. One can also observe that Πn stops after at most 3n+5 steps, which
means that the family Π defined in this section decides STCON in linear time.

4.3 P Systems with Membrane Creation

Here we provide the design of a uniform family of P systems in the framework
of P systems with Membrane Creation which solves the problem STCON. Since
STCON is NL-complete, we have a direct proof of NL ⊆ PMCMC . This result
is well-know, since NL ⊂ NP and NP ⊆ PMCMC (see [4]). Nonetheless, to the
best of our knowledge, this is the first design of a P system family which solves
STCON in PMCMC .

Next we will describe the family Π = {Πn}n∈N of P systems in PMCMC . Each
Πn will receive as input an instance of the STCON as described at the beginning
of the section and will release yes or no into the environment in the last step of
the computation as the answer of the decision problem.

The family presented here is

Πn = ⟨Γ,Σ,H, µ,wa, wb, wc,R, i⟩.

• Alphabet:
Γ = {xi, yi, ti : i ∈ {1, . . . , n}}∪

{aij , zij : i, j ∈ {1, . . . , n}}∪
{noi : i ∈ {0, . . . , 3n+ 3}}∪
{yesi : i ∈ {1, . . . , 4}}∪
{yes, no}.

• Input alphabet: Σ, as it is described at beginning of the section.
• Set of labels: H = {⟨i, j⟩ : i, j ∈ {1, . . . , n}} ∪ {1, . . . , n} ∪ {a, b, c}.
• Membrane structure: [[]a []b]c.
• Initial multisets: wa = no0, w

b = wc = λ.
• Input label: i = b.

The set of rules R:

R1. [[aij → [λ]⟨i,j⟩]b for i, j ∈ {1, . . . , n}.
Each input symbol aij creates a new membrane with label ⟨i, j⟩. Recall that such
a symbol aij represents an edge in the directed graph.

Solving the ST-Connectivity Problem . . . 217

R2. [yj → [λ]j]b for j ∈ {1, . . . , n}.
By these rules an input symbol yj creates a new membrane with label j.
R3. [xi → zi1 . . . zinti]b for i ∈ {1, . . . , n}.
The role of these rules is the same as those of the rules in R3 in Section 4.1.
R4. zij []⟨i,j⟩ → [xj]⟨i,j⟩

tj []j → [yes0]j

}
for i, j ∈ {1, . . . , n}.

The role of these rules is similar to that of the rules in R4 in Section 4.1 except
that here an object tj introduces an object yes0 in the membrane with label j.
This new object yes0 will evolve with the rules in R6 and R7 until the final object
yes is produced in the environment.
R5. [xj]⟨i,j⟩ → xj for i, j ∈ {1, . . . , n}.
The object xj dissolves the membrane with label ⟨i, j⟩. The useful information is
that xj is reachable. We keep this information, but the membrane can be dissolved.
This way xj gets to the membrane b and the computation can go on using the
rules in R3.
R6. [yes0]j → yes1 for j ∈ {1, . . . , n}.
For each possible value of j, if yes0 is produced, the corresponding membrane is
dissolved and yes1 appears in the membrane with label b.
R7. [yes1]b → yes2, yes2 []a → [yes3]a,

[yes3]a → yes4, [yes4]c → yes []c .
The evolution of the objects yesi firstly produces the dissolution of the membrane
b. If this membrane is dissolved, the rules from R3 will be no longer applied. In a
similar way, object yes3 also dissolves membrane a and this stops the evolution of
the objects inside such membrane.
R8. [noi → noi+1]a for i ∈ {1, . . . , 3n+ 2}.
The object noi evolves inside the membrane a. If this evolution is not halted by
the dissolution of the membrane a, these objects will produce the object no in the
environment.
R9. [no3n+3]a → no [no]c → no []c .
If the evolution of noi is not stopped, the object no3n+3 dissolves the membrane
a and creates a new object no. This object will be sent to the environment in the
next step of the computation.

It is not difficult to see using the comments given after the rules that this
solution works essentially in the same way as our first solution. The main difference
is that while in Section 4.1 an input symbol aij is used to change the polarization
of a membrane ⟨i, j⟩, here this symbol is used to create such a membrane. Thus,
the correctness of the solution presented here can be seen using the correctness of
the solution given in Section 4.1. It is also clear that the P systems presented here
work in linear time in the number of vertices in the input graph.

As we have mentioned, in solutions of problems in P via uniform families of
P systems it is important to use such input encoding and P system constructing
devices that are not capable to compute the correct answer. It is easy to see that
the decision processes in the solutions of STCON presented in this paper are

218 Z. Gazdag and M.A. Gutiérrez–Naranjo

entirely done by the P systems themselves. Thus our solutions could be easily
modified so that the construction of the used families and the computation of the
input encoding can be carried out by reasonable weak computational devices, for
example, by logarithmic-space deterministic Turing machines.

5 Conclusions

The design of a uniform family of recognizer P systems working in polynomial time
which solves a decision problem with pure Membrane Computing techniques is a
hard task, regardless the complexity class of the problem. The difficulty comes from
the hard restrictions imposed to such family. Firstly, the use of input P systems
implies that each instance of the problem must be encoded as a multiset and such
multiset must be introduced at the starting configuration in one input membrane.
The multiset encoding the instance cannot be distributed in several membranes
in the starting configuration. Secondly, in uniform families, each P system must
solve all the instances of the problem of the same size (regardless of whether the
answer is positive or not). This means that the set of rules which leads to send yes
to the environment and the set of rules which leads to send no must be present
in the design of the P system; and thirdly, the standard definition of recognizer P
systems claims that an object yes or no (but no both) is sent to the environment
in the last step of computation.

A deep study of these constraints shows that it is not sufficient to implement
a design of P system with the control scheme “if the restrictions of the decision
problem are satisfied, then an object yesmust be sent to the environment”. Instead
of such scheme, the design must consider the following structure: “if the restrictions
are satisfied, then an object yes must be sent to the environment, else an object
no must be sent”. This scheme if-then-else must be controlled with the ingredients
of the P system model. In the three presented designs, this if-then-else scheme is
implemented via dissolution, polarization, or membrane creation.

These ideas lead us to consider the necessity of revisiting the complexity classes
under P and adapt the definition of recognizer P systems for these classes. Some
papers in this new research line can be found in the literature (see, e.g., [12]), but
further research is needed.

Acknowledgements

This work was partially done during Zsolt Gazdag’s visit at the Research Institute
of Mathematics of the University of Sevilla (IMUS) partially supported by IMUS.
Miguel A. Gutiérrez–Naranjo acknowledges the support of the project TIN2012-
37434 of the Ministerio de Economı́a y Competitividad of Spain.

Solving the ST-Connectivity Problem . . . 219

References

1. Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.): Mem-
brane Computing - 13th International Conference, CMC 2012, Budapest, Hungary,
August 28-31, 2012, Revised Selected Papers, Lecture Notes in Computer Science,
vol. 7762. Springer (2013)

2. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.:
A Linear Time Solution to the Partition Problem in a Cellular Tissue-Like Model.
Journal of Computational and Theoretical Nanoscience 7(5), 884–889 (MAY 2010)

3. Gazdag, Z., Kolonits, G.: A new approach for solving SAT by P systems with active
membranes. In: Csuhaj-Varjú et al. [1], pp. 195–207

4. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Romero-Campero, F.J.: A uniform
solution to SAT using membrane creation. Theoretical Computer Science 371(1-2),
54–61 (2007)

5. Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: Solving numerical NP-complete
problems with spiking neural P systems. In: Eleftherakis, G., Kefalas, P., Păun,
Gh., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane Computing. Lec-
ture Notes in Computer Science, vol. 4860, pp. 336–352. Springer, Berlin Heidelberg
(2007)

6. Murphy, N., Woods, D.: A characterisation of NL using membrane systems without
charges and dissolution. In: Calude, C.S., Costa, J.F., Freund, R., Oswald, M., Rozen-
berg, G. (eds.) Unconventional Computing, Lecture Notes in Computer Science, vol.
5204, pp. 164–176. Springer Berlin Heidelberg (2008)

7. Murphy, N., Woods, D.: On acceptance conditions for membrane systems: character-
isations of L and NL. In: Proceedings International Workshop on The Complexity
of Simple Programs. Cork, Ireland, 6-7th December 2008. pp. 172–184. Electronic
Proceedings in Theoretical Computer Science. Vol 1 (2009)

8. Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Jiménez, A., Woods, D.: Complexity
- membrane division, membrane creation. In: Păun et al. [13], pp. 302 – 336

9. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial com-
plexity class in P systems using membrane division. In: Csuhaj-Varjú, E., Kintala,
C., Wotschke, D., Vaszyl, G. (eds.) Proceeding of the 5th Workshop on Descriptional
Complexity of Formal Systems. DCFS 2003. pp. 284–294 (2003)

10. Pérez-Jiménez, M.J., Romero-Jiménez, Á., Sancho-Caparrini, F.: A polynomial com-
plexity class in P systems using membrane division. Journal of Automata, Languages
and Combinatorics 11(4), 423–434 (2006)

11. Porreca, A.E.: Computational Complexity Classes for Membrane System. Master’s
thesis, Univertita´ di Milano-Bicocca, Italy (2008)

12. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Sublinear-space P systems with
active membranes. In: Csuhaj-Varjú et al. [1], pp. 342–357

13. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford, England (2010)

Conventional Verification for Unconventional
Computing: a Genetic XOR Gate Example

Savas Konur1, Marian Gheorghe1, Ciprian Dragomir1, Florentin Ipate2,
Natalio Krasnogor3

1 Department of Computer Science, University of Sheffield, UK
{s.konur,m.gheorghe,c.dragomir}@sheffield.ac.uk

2 Department of Computer Science, University of Bucharest
florentin.ipate@ifsoft.ro

3 School of Computing Science, Newcastle University, UK
natalio.krasnogor@newcastle.ac.uk

Summary. As unconventional computation matures and non-standard programming
frameworks are demonstrated, the need for formal verification will become more preva-
lent. This is so because “programming” in unconventional substrates is difficult. In this
paper we show how conventional verification tools can be used to verify unconventional
programs implementing a logical XOR gate.

1 Introduction

Unconventional computing, with many aspects including implementations in vivo,
vitro and silico, models and methods, programming paradigms and tools, is a
rapidly growing research area with results, promises and huge hope in building
new computational devices and tools for solving better or/and faster increasingly
complex problems than current machines, models and tools, which either produce
inefficienct results or are just unable to solve them.

One specific class of models and experiments related to unconventional comput-
ing, often called natural computing, is inspired by natural processes occurring in
biology or produces in vitro (DNA strands) or in vivo (bacteria) experiments sim-
ulating different computational devices. A thorough account of the developments
in the area can be found in [1], but we also mention some specific demonstrations
of unconventional computing using liposomes [2], programmable polymers [3] and
photochromic molecules [4].

XOR gate is a classic computer science concept with various unconventional
computing incarnations. More recently some implementations have been provided
[5, 6] and solutions using synthetic biology computational tools have been proposed
[7].

222 S. Konur et al.

In this paper we aim to reconsider this problem and to provide a set of uncon-
ventional computing models based on the P systems computational paradigm [8].
Here, we consider stochastic P systems [9] and kernel P systems [10] as representa-
tive classes of such models. These models are associated with verification methods
using model checking approaches.

The key contributions of the paper are: the introduction of a set of unconven-
tional models based on P systems, which naturally describe the genetic XOR gate
problem, and the use of some model checkers for verifying properties of the models.
This approach is complementary to the previous investigations and highlights new
perspectives for investigating these systems.

2 Stochastic and Non-deterministic P Systems: Basic
Concepts and Tools

Membrane computing [8] is a branch of natural computing inspired by the
hierarchical structure of the living cell. The central model, called P system, consists
of a membrane structure, the regions of which contain rewriting rules operating
on multisets of objects [8]. The P system evolves by repeatedly applying rules,
mimicking chemical reactions and transportation across membranes or cellular
division or death processes, and halts when no more rules can be applied. The
most recent developments in this field are reported in [11].

The closeness of this model to the biology makes it highly suited as a specifica-
tion vehicle for representing biological systems, especially (multi-)cellular systems
and molecular interactions taking place in different locations of living cells [12].
Different simple molecular interactions or more complex gene expressions, com-
partment translocation, as well as cell division and death are specified using mul-
tiset rewriting or communication rules, and compartment division or dissolution
rules. In the case of stochastic P systems, constants are associated with rules in
order to compute their probabilities and time needed to be applied, respectively,
according to the Gillespie algorithm [13]. This approach is based on a Monte Carlo
algorithm for stochastic simulation of molecular interactions taking place inside a
single volume or across multiple compartments.

Definition 1. A stochastic P system (SP system) is a model consisting of a
tissue P system with a stochastic semantics [13]:

SP = (O,L, µ,M1, . . . ,Mn, R1, . . . , Rn) (1)

where O is a finite set of objects, called alphabet, denoting the entities involved
in the system; L is a finite set of labels naming compartments; µ is a membrane
structure composed of n ≥ 1 membranes defining the regions or compartments
of the system and their connections, forming an arbitrary graph; Mi = (li, wi),
1 ≤ i ≤ n, is the initial configuration of the compartment or region defined by
the membrane i, where li ∈ L is the label of the compartment and wi ∈ O∗

Conventional Verification for Unconventional Computing: XOR Gate 223

is a finite initial multiset of objects; Ri = {ri1, . . . , rimi
}, 1 ≤ i ≤ n, is a set of

multiset rewriting rules, of the form: rik : [x
ck→ y]li , where x and y are

multisets of objects (y might be empty) over O, representing the molecular species
consumed and produced in the corresponding molecular interaction occurring in
the compartment labelled li. An application of a rule of this form changes the
content of the membrane with label li by replacing the multiset x with y. The
stochastic constant ck is used by the Gillespie algorithm [14] in order to compute
the probabilities associated with the rules [13].

The model has been used as a basis for a specification language [13, 15] and
applied, among others, in unconventional computing using liposomes [2] and spec-
ifying a synthetic biology pulse generator [16].

The model also includes communication rules, but these are not discussed in
this paper as the system we deal with consists of one single compartment with-
out communication rules. In this case the label of the compartment will be also
dropped.

Certain systems can be modelled with P systems which do not require prob-
abilistic features. In [12] some types of P systems without probabilities are pre-
sented. These variants are utilised for specifying biological systems. Kernel P
systems (kP systems) have been introduced as a unifying framework allowing
to express within the same formalism many classes of non-deterministic P systems
[10, 17]. In this paper we use this class of systems only for very limited purposes,
obtaining them directly from the stochastic ones and making use of some tools
associated with them. The kP systems derived from SP systems use the same al-
phabet and rules without kinetic constants. In general, each kP system model has
explicitly defined execution strategies for its components. In this paper the execu-
tion strategy consists of executing one single rule per step, non-deterministically
chosen from the set of rules that can be applied.

The Infobiotics Workbench (Ibw) tool [16, 15] has been built for modelling
and prototyping biological systems exhibiting molecular interactions. It allows to
define such systems using the above mentioned formalism, SP systems, providing
support for the simulation, verification, analysis and optimisation of these mod-
els. The experiments to be discussed later have been performed using Ibw. The
XOR gate will be modelled using SP systems and then simulated and formally
verified. The formal verification is performed with third party tools, Prism [18]
and MC2 [19] (integrated in this framework). The corresponding kP model will be
verified using Spin [20].

Prism [18] is a very popular and widely used probabilistic model checker. It
allows probabilistic properties, supporting PCTL [21] (a probabilistic extension
of temporal logic) and Continuous Stochastic Logic (CSL [22]). Both languages
make use of special operators to express quantitative information which is useful
for a precise, fine grain analysis. The property languages also allow describing
reward -based properties to express quantitative expressions. Prism suffers from
the same problem exhibited by all model checkers, namely state space explosion

224 S. Konur et al.

and consequently cannot cope with very large state spaces. This is overcome by
an alternative model checking approach, statistical model checking.

MC2 [19] is a statistical model checker, where properties are analysed against
a finite set of simulation traces using statistical methods, e.g. Monte Carlo. Unlike
symbolic and numerical methods, e.g. those employed in Prism, statistical model
checkers do not analyse the system exhaustively, which increases the performance
significantly. In MC2, properties are expressed using PLTLc [19], a probabilistic
extension of LTL with constraints. PLTLc allows properties with some functions
returning maximum/minimum values of a species and “derivative of the concen-
tration of species at each time point” [19].

The kP Workbench (kPW) tool [17] has been built to support kP systems
formalism, allowing simulation and formal verification. It uses a specific language,
based on kP systems, kP-lingua, allowing to specify non-deterministic rule-based
systems. The formal verification is performed using a model checking approach
based on Spin, which is incorporated into the framework. The models written in
kP-lingua are automatically translated into Spin. The non-deterministic version of
the XOR gate model will be specified using kP systems and the formal verification
will be provided in Spin.

Spin [20] is a widely used model checking tool with many applications in
concurrent and distributed systems verification. A high level modelling language,
Promela, suitable for describing concurrent processes and interprocess communi-
cation, is at the core of this tool. Spin provides complete support for Linear-time
Temporal Logic (LTL) and on the fly verification procedures which avoid the
necessity to generate the global state space prior to performing a search.

3 XOR Gate and Unconventional Models

In this section we consider a genetic XOR logic gate. This has been designed in
various papers, including [5, 6]. The construction used in this paper is taken from
[7] where it is defined in GEC, a language for synthetic biology. The gate expresses
the green fluorescent protein (GFP) if either of aTc or IPTG molecules are present,
but not both. Figure 1 illustrates the genetic construction and the corresponding
network.

The XOR device comprises two mechanisms. Each mechanism leads to the
production of GFP, when it is activated; but two mechanisms cannot be activated
at the same time. Namely, while one is active, the other one is inhibited by some
protein.

In this system, the transcription factors LacI and TetR are expressed by a gene
controlled by the same promoter. The LacI and TetR proteins work in the opposite
way. LacI represses the first mechanism, but promotes the other one. On the other
hand, TetR promotes the first mechanism, while inhibiting the second. In other
words, both proteins serve as inhibitor and promoter in a complementary fashion.
In each mechanism, while one protein is an inhibitor, the other one is promoter.
When either of the proteins works as an inhibitor, it binds to the corresponding

Conventional Verification for Unconventional Computing: XOR Gate 225

Promoter RBS lacI tetR

LacI

TetR

aTc

aTcTetR

IPTGLacI

IPTG

Prom1 RBS gfp RBS

GFP

Prom2 RBS gfp RBS

GFP

RBS RBS

Fig. 1: The genetic parts and design of the XOR gate (redrawn from [7]).

promoter which upregulates the expression of GFP. The XOR device receives two
input signals: aTc and IPTG. The aTc and IPTG signals bind to TetR and LacI,
respectively, to prevent them interacting with the promoters producing GFP.

Two mechanisms together ensure that the production of GFP will be low when
both input signals are set to very low or very high concentrations at the same time.
In the former case, LacI and TetR will be produced in abundance, which will then
repress the GFP expression. In the latter case, the LacI and TetR concentration
will be very low, which is not sufficient to express GFP. On the other hand, if one
signal is set to high and the other one is set to low, the device will produce high
amount of GFP, hence will act as a Boolean XOR gate.

3.1 Stochastic model

The stochastic model comprises a single compartment with initial concentrations
of aTc and IPTG molecules and a set of SP system rules, which govern the kinetic
and stochastic behaviour of the system. The initial values are those illustrated
in Figures 3. The rewriting rules and the kinetic constants, provided in Table
1, describe the model provided in [7]. A gene controlled by the same promoter
expresses LacI and TetR (rules r1 to r3). Rules r7a and r15a describe the inhibition
of the two mechanisms leading to the GFP production by binding to the promoters
that upregulates the production process; r7b and r15b define the debinding process.
The activation of the first mechanism by the transcription factor TetR binding to
the promoter and the activation of the second mechanism by LacI, are modelled by
rules r9a, r10, r11 and r13a, r14, r17, respectively. Rules r9b and r13b are debinding
reactions. Rules r4 and r5 define the binding process involving LacI and IPTG and
TetR and aTc, respectively. The degradation process of various molecular species
is defined by rules r18 to r23.

226 S. Konur et al.

Table 1: XOR reaction rules.

Rule
Stochastic
constant

r1 : gene LacI TetR
k1→ gene LacI TetR + protein LacI TetR k1 = 0.12

r2 : protein LacI TetR
k2→ protein LacI TetR + LacI k2 = 0.1

r3 : protein LacI TetR
k3→ protein LacI TetR + TetR k3 = 0.1

r4 : LacI + IPTG
k4→ LacI-IPTG k4 = 1.0

r5 : TetR + aTc
k5→ TetR-aTc k5 = 1.0

r6 : gene GFP1
k6→ gene GFP1 + protein GFP1 k6 = 0

r7a : gene GFP1 + LacI
k7a→ gene GFP1-LacI k7a = 1.0

r7b : gene GFP1-LacI
k7b→ gene GFP1 + LacI k7b = 0.01

r8 : gene GFP1-LacI
k8→ gene GFP1-LacI + protein GFP1 k8 = 0

r9a : gene GFP1 + TetR
k9a→ gene GFP1-TetR k9a = 1.0

r9b : gene GFP1-TetR
k9b→ gene GFP1 + TetR k9a = 0.5

r10 : gene GFP1-TetR
k10→ gene GFP1-TetR + protein GFP1 k10 = 0.1

r11 : protein GFP1
k11→ protein GFP1 + GFP k11 = 0.1

r12: gene GFP2
k12→ gene GFP2 + protein GFP2 k12 = 0

r13a : gene GFP2 + LacI
k13a→ gene GFP2-LacI k13a = 1.0

r13b : gene GFP2-LacI
k13b→ gene GFP2 + LacI k13b = 0.5

r14 : gene GFP2-LacI
k14→ gene GFP2-LacI + protein GFP2 k14 = 0.1

r15a : gene GFP2 + TetR
k15a→ gene GFP2-TetR k15a = 1.0

r15b : gene GFP2-TetR
k15b→ gene GFP2 + TetR k15b = 0.01

r16 : gene GFP2-TetR
k16→ gene GFP2-TetR + protein GFP2 k16 = 0.0

r17 : protein GFP2
k17→ protein GFP2 + GFP k18 = 0.1

r18 : GFP
k18→ k18 = 0.01

r19 : LacI
k19→ k19 = 0.01

r20 : TetR
k20→ k20 = 0.01

r21 : protein GFP1
k21→ k21 = 0.001

r22 : protein GFP2
k22→ k22 = 0.001

r23 : protein LacI TetR
k23→ k23 = 0.001

Given certain initial values for aTc and IPTG, different output values are
obtained for the GFP products, as shown above.

3.2 Non-deterministic model

The rules of the non-deterministic model are obtained directly from the set of
SP system rules given in Table 1, by removing the kinetic constants. Some of
the rules that do not contribute to the model, with kinetic constants equal to 0
(r6, r8, r12, r16), are completely removed. The initial values are kept the same as
in the stochastic case. The rules are executed in a non-deterministic manner, as

Conventional Verification for Unconventional Computing: XOR Gate 227

described earlier in this paper. This non-deterministic model allows to describe
all chains of reactions, observe various interactions between species and determine
various dependencies between molecules. It will be used in this respect as the basic
model for qualitative analysis. As in this case we are interested in an efficient
behaviour of the system, some simplifications will be made to the model, whereby
the number of molecules will be bounded.

4 Experiments

In this section, we will provide a computational analysis to infer the system dy-
namics of the genetic XOR gate. This approach complements previous in vitro or
in silico implementations of this unconventional computational problem [5, 6, 7]
with a set of qualitative and quantitative properties and results. The stochastic
model introduced in Section 3.1 and non-deterministic model from Section 3.2
will be used as specifications for the experiments that follow. We note that the
complete model and experimental results of the XOR gate can be accessed at4.

4.1 Non-deterministic Model

The non-deterministic model, discussed in Section 3.2 and obtained from the SP
system described in Table 1, will form the basis for translation into Spin.

Model checking results.

The experiments made and reported in this section refer to relationships between
species occurring on various reaction pathways. First we verify generic relationships
between species. The property

“The GFP is preceded by the production of at least one of LacI or TetR”

is formally expressed as

F (GFP > 0) → ¬((LasR = 0 ∧ TetR = 0) U GFP > 0),

and the result of this property is true.
We cannot make any direct connections between the signal molecules aTc and

IPTG, and the GFP produced, as the system is non-deterministic and any combi-
nation of the signal molecules may lead to GFP. However, we can be more specific
with respect to the above relationships and refer to the production of a transcrip-
tion factor and its role as a repressor. More specifically, we verify the property

“When there is no TetR in the system and the LacI represses gene GFP1
then GFP is produced only by the activation of gene GFP2”

4 http://www.dcs.shef.ac.uk/∼konur/models/xor

228 S. Konur et al.

Fig. 2: Simulation of the stochastic model.

which is formally expressed as

F (GFP > 0 ∧ gene GFP1-LacI > 0) → ¬((TetR = 0 ∧ gene GFP2-LacI = 0)
U (GFP > 0 ∧ gene GFP1-LacI > 0)).

The result of this property is true. We can formulate a similar property for TetR.

4.2 Stochastic Model

For the stochastic analysis, we have constructed a system model based on SP
systems, the modelling language of the Ibw system, using the set of rules discussed
in Section 3.1. Below, we summarise some of the experiments that we have carried
out using the computational tools integrated into Ibw.

Simulation results.

Figure 2 illustrates the simulation results of the XOR system, performed using the
Ibw’s Mcss tool, a simulator for multi-compartment SP system models [9]. Ibw
provides a GUI to view the simulation results in various formats, e.g. time series,
bars, histograms and 3D heat-map animations.

Figure 2 comprises the screen shots of the 3D animation at different time
instants. At the top and bottom corners of the lattice both input signals (i.e. aTc

Conventional Verification for Unconventional Computing: XOR Gate 229

(a) Expected GFP (b) Expected aTc

(c) Expected LacI (d) Expected TetR

Fig. 3: Expected amount of some species based on different initial amounts of aTc
and IPTG.

and IPTG) are simultaneously set to very low (i.e. 0) and very high concentrations
(i.e. 10000), respectively. Meanwhile, at the left and right corners, one signal is set
to very high while the other one is set to very low. As illustrated in the figure, only
left and right corners yield a sharp increase in the GFP concentration, ensuring
that the designed circuit shows an XOR gate behaviour.

Model checking results.

As discussed above, Ibw also permits formal verification of a system using model
checking techniques. Since the SP systems allow modelling stochastic models, Ibw
uses probabilistic model checking tools, currently Prism and MC2.

Prism results:

We first analyse the amounts of different species over time with four combinations
of inputs. The informal property

230 S. Konur et al.

0

10000

0

10000

0

0.2

0.4

0.6

0.8

1

Pr
ob
ab
ilit
y

Time=100

aTc
IPTG 0

10000

0

10000

0

0.1

0.2

0.3

aTc

Time=200

IPTG

Pr
ob
ab
ilit
y

0

10000

0

10000

0

0.2

0.4

0.6

0.8

1

aTc

Time=500

IPTG

Pr
ob
ab
ilit
y

0

10000

0

10000

0

0.2

0.4

0.6

0.8

1

aTc

Time=1000

IPTG

Pr
ob
ab
ilit
y

Fig. 4: Probability that GFP exceeds the threshold.

“What is the expected concentration of X at the time instant t?”

is formally expressed as a reward-based formula,

R{“X”}=? [I = t] .

Figure 3 illustrates the expected amounts of GFP, aTc, LacI and TetR. As shown
in Figure 3a, the input combinations aTc=0 – IPTG=10000 and aTc=10000 –
IPTG=0 result in a sharp increase in the GFP concentration, whereas the com-
binations aTc=0 – IPTG=0 and aTc=10000 – IPTG=10000 cause the GFP con-
centration to stay in low levels, confirming the behaviour of the XOR gate.

Figure 3b shows that if the aTc concentration level is initially set to high,
the concentration reduces until it becomes 0. As can be seen in Figure 3d, aTc
suppresses the TetR protein by binding to it. After aTc molecules are totally
consumed, the TetR concentration starts increasing. We can observe a similar be-
haviour to Figure 3b, when the IPTG concentration is set to high. IPTG molecules
suppress the LacI protein as shown in Figure 3c. These results are inline with the
system behaviour, described in Section 3.1.

We now measure the likelihood that the GFP concentration exceeds a certain
threshold in any input combination. The property

“What is the probability that GFP exceeds Thr within t seconds?”

is formally expressed as
P=?

[
F≤t GFP > Thr

]
.

Figure 4 illustrates the probability values calculated for a threshold value of 100
over different time instants. Clearly, it is almost certainly that GFP exceeds the
threshold value for the input combinations aTc=0 – IPTG=10000 and aTc=10000
– IPTG=0. This confirms the desired behaviour.

We now consider a more complex property. Assume that GFPij (where i, j ∈
{0, 1} represents the state of aTc and IPTG, respectively) denotes the GFP concen-
tration for different input combinations. Namely, if i=0 (resp. j=0), then aTc=0
(resp. IPTG=0), and if i=1 (resp. j=1), then aTc=10000 (resp. IPTG=10000).
Then, the property

Conventional Verification for Unconventional Computing: XOR Gate 231

10
15

20

0

5

10

0.7

0.8

0.9

1

k1

Probability vs k1 and k2

k2

Pr
ob

ab
ilit

y

0.65

0.7

0.75

0.8

0.85

0.9

Fig. 5: Parametrised probability formula.

What is the probability that GFP01 and GFP10 are at least k1 times more
than GFP00 and GFP11, and GFP01 is within the range of GFP10 ±k2

10

is formally specified as

P=?[F
≤t GFP01 ≥ k1 ∗GFP00 ∧ GFP01 ≥ k1 ∗GFP11 ∧

GFP10 ≥ k1 ∗GFP00 ∧ GFP10 ≥ k1 ∗GFP11 ∧
GFP01 ≥ (1− k2

10) ∗GFP10 ∧ GFP01 ≤ (1 + k2

10) ∗GFP10].

Figure 5 shows the plot based on different k1 and k2 values. As expected, the
probability becomes higher when k1 is lower and k2 is higher, because the formula
becomes less strict.

MC2 results:

We now consider a property describing the behaviour in Figure 3a. We want to
query

“What is the probability that GFP10 reaches a concentration level of at least
l1 times more than the maximum concentrations of GFP00 and GFP11;
the concentration then starts decreasing and reduces until it becomes one
l2 ration of its maximum level.”

This formula is expressed in PLTLc as follows:

232 S. Konur et al.

P=?[F ([GFP10] ≥ l1 ∗max[GFP00] ∧ [GFP10] ≥ l1 ∗max[GFP11] ∧
(F (d[GFP10] ≤ 0 ∧ (F [GFP10] ≤ max[GFP10]/l2))))].

We have analysed the property for l1 = l2 = 5, and the probability value returned
is 1.0, confirming the behaviour in Figure 3a. We can verify the same property for
GFP01, which returns the same result.

5 Conclusions

In this paper we have presented a stochastic P systems model and a non-
deterministic one for specifying and studying the behaviour of a genetic XOR
gate. These two models are formally analysed using model checking methods re-
vealing qualitative aspects, like expected chain of reactions and dependencies of
various species, as well as the quantitative aspects regarding the concentration of
certain products with respect to the amount of signal molecules, time to reach cer-
tain concentration of molecules or comparisons between maximum concentration
achieved for certain species. Our approach is orthogonal to many other unconven-
tional computational investigations or implementations of genetic Boolean gates.

In this line of research, we aim to expand to some other unconventional models,
starting with the two genetic XOR gate approaches already mentioned in [5, 6]. We
aim also to clarify better the role of various model checkers and types of properties
with respect to various systems.

In [23] an interesting prediction and programmability problem for non-DNA
molecular self-assembly using porphyrin tiles is investigated. In one of the investi-
gated cases, the self-assembly process is defined as a simple two state probabilistic
automaton. The diagonals of a lattice are written with red symbols in one state
and blue symbols in the other state, with a small error. This model can be directly
represented in Prism and properties regarding the distribution of the two colours
on each diagonal or across the lattice are verified. In a forthcoming paper we will
be investigating in more details this problem.

Acknowledgements. SK and MG acknowledge EPSRC (EP/I031812/1)
support; NK’s work is supported by EPSRC (EP/I031642/1, EP/J004111/1,
EP/L001489/1). MG and FI are partially supported by CNCS UEFISCDI (PN-
II-ID-PCE-2011-3-0688). CD acknowledges an EPSRC studentship.

References

1. Rozenberg, G., Bäck, T., Kok, J.N., eds.: Handbook of Natural Computing. Springer
(2012)

2. Smaldon, J., Romero-Campero, F.J., Fernandez Trillo, F., Gheorghe, M., Alexan-
der, C., Krasnogor, N.: A computational study of liposome logic: Towards cellular
computing from the bottom up. Systems and Synthetic Biology 4(3) (2010) 157 –
179

Conventional Verification for Unconventional Computing: XOR Gate 233

3. Pasparakis, G., Vamvakaki, M., Krasnogor, N., Alexander, C.: Diol-boronic acid
complexes integrated by responsive polymers - a route to chemical sensing and logic
operations. Soft Matter 4(20) (2009) 3839 – 3841

4. Chaplin, J.C., Russell, N.A., Krasnogor, N.: Implementing conventional logic uncon-
ventionally: Photochromic molecular populations as registers and logic gates. Biosys-
tems 109(1) (2012) 35 – 51

5. Tamsir, A., Tabor, J.J., Voigt, C.A.: Robust multicellular computing using geneti-
cally encoded NOR gates and chemical ’wires’. Nature 469(7329) (2011) 212–215

6. Regot, S., Macia, J., Conde, N., Furukawa, K., Kjellen, J., Peeters, T., Hohmann,
S., de Nadal, E., Posas, F., Sole, R.: Distributed biological computation with multi-
cellular engineered networks. Nature 469(7329) (2011) 207–211

7. Beal, J., Phillips, A., Densmore, D., Cai, Y.: High-level programming languages for
biomolecular systems. In: Design and Analysis of Biomolecular Circuits. Springer
New York (2011) 225–252

8. Păun, G.: Computing with membranes. Journal of Computer and System Sciences
61(1) (2000) 108–143

9. Romero-Campero, F.J., Twycross, J., Camara, M., Bennett, M., Gheorghe, M.,
Krasnogor, N.: Modular assembly of cell systems biology models using P systems.
International Journal of Foundations of Computer Science 20(3) (2009) 427–442

10. Gheorghe, M., Ipate, F., Dragomir, C., Mierlă, L., Valencia-Cabrera, L., Garćıa-
Quismondo, M., Pérez-Jiménez, M.J.: Kernel P Systems - Version 1 (2013)

11. Păun, G., Rozenberg, G., Salomaa, A., eds.: The Oxford Handbook of Membrane
Computing. Oxford University Press (2009)

12. Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J., eds.: Applications of Membrane Com-
puting in Systems and Synthetic Biology. Springer (2014)

13. Romero-Campero, F.J., Twycross, J., Cao, H., Blakes, J., Krasnogor, N.: A multiscale
modeling framework based on P systems. In: Membrane Computing. Volume 5391
of LNCS. Springer (2009) 63–77

14. Gillespie, D.: A general method for numerically simulating the stochastic time evo-
lution of coupled chemical reactions. Journal of Computational Physics 22(4) (1976)
403–434

15. Blakes, J., Twycross, J., Romero-Campero, F.J., Krasnogor, N.: The Infobiotics
Workbench: An integrated in silico modelling platform for systems and synthetic
biology. Bioinformatics 27(123) (2011) 3323 – 3324

16. Blakes, J., Twycross, J., Konur, S., Romero-Campero, F.J., Krasnogor, N., Gheorghe,
M.: Infobiotics Workbench: A P systems based tool for systems and synthetic biology.
In: [12]. Springer (2014) 1–41

17. Dragomir, C., Ipate, F., Konur, S., Lefticaru, R., Mierlă, L.: Model Checking Kernel
P Systems systems. In: 14th International Conference on Membrane Computing.
Volume 8340 of LNCS., Springer (2013) 151–172

18. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Proc. TACAS. Volume 3920 of LNCS.
Springer (2006) 441–444

19. Donaldson, R., Gilbert, D.: A Monte Carlo model checker for probabilistic LTL with
numerical constraints. Technical report, Bioinformatics Research Centre, University
of Glasgow, Glasgow (2008)

20. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5) (1997) 275–295

234 S. Konur et al.

21. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6 (1994) 102–111

22. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.: Model-checking algorithms for
continuous-time Markov chains. IEEE Transactions on Software Engineering 29(6)
(2003) 524–541

23. Terrazas, G., Lui, L.T., Krasnogor, N.: Spatial computation and algorithmic infor-
mation content in non-DNA based molecular self-assembly. In: 6th International
Workshop on Spatial Computing. (2013) 85–90

P Colony Robot Controller

Miroslav Langer, Luděk Cienciala1, Lucie Ciencialová1, Michal Perdek1,
Vladimı́r Smolka1

Institute of Computer Science and Research Institute of the IT4Innovations Centre of
Excellence, Silesian University in Opava, Czech Republic
{{miroslav.langer, ludek.cienciala, lucie.ciencialova, michal.perdek,

vladimir.smolka}@fpf.slu.cz

Summary. P colonies were introduced in 2004 (see [7]) as an abstract computing device
composed of independent single membrane agents, reactively acting and evolving in a
shared environment. Each agent is equip with set of rules which are structured into
simple programs.

We use this very simple symbol processing computational device to build complex
robot controllers. Moreover, we group agents into the modules (see [1]). Each module
fulfils particular function. This allows us to easily extend our controller or change its
function without rebuilding whole P colony. In this paper we introduce simple controller
for passing the maze using right-hand rule.

1 Introduction

One of the main tasks of the robotics is to design or program the robot con-
troller. Robot is controlled by controller, which aims to transform outputs from
the sensors into the inputs for actuators. The controller can receive input signals
from various kinds of sensors, cameras or through communication channels and
it has to decide, how this information affect the activity of internal states of the
robot and actuators. Robot controller can use different ways to achieve this activ-
ity. The controller can be based on the rule-based systems, (fuzzy) expert systems,
artificial neural networks and many other techniques.

Recently, we often meet with hybrid controllers, which combine multiple tech-
nics to achieve more suitable reaction of robotic systems, or improvement of arti-
ficial intelligence. Each of applicable techniques for control has its advantage, but
also disadvantage, whether it concerns the complexity, adaptability or scalability
etc. We often meet with alternative control methods, which are the result of inter-
disciplinary convergence of different science disciplines such as biology, genetics,
cognitive science, neuroscience, psychology and more.

The concepts of using knowledge of biology can be found in e.g. [4]. Concepts
taken from biology such as membrane systems or P-systems will allow us to take

236 M. Langer et al.

these advantages such as parallelization and distributivity of each parts of the
controller.

Controller based on P colonies described in this paper is drawn up as a group
of cooperating agents who live in shared environment, through which agents can
communicate. Such controller can be used for wide range of tasks associated with
control issues.
Throughout the paper we assume that the reader is familiar with the basics of the
formal language theory.

2 Preliminaries on the P colonies

P colonies were introduced in 2004 (see [7]) as an abstract computing device
composed of independent single membrane agents, reactively acting and evolv-
ing in a shared environment. This model is inspired by structure and function
of a community of living organisms in a shared environment.

The independent organisms living in a P colony are called agents or cells.
Each agent is represented by a collection of objects embedded in a membrane.
The number of objects inside each agent is constant during the computation. With
each agent is associated a set of simple programs. Each program is composed from
the rules which can be of two types. The first type of rules, called the evolution
rules, are of the form a → b. It means that the object a inside the agent is rewritten
(evolved) to the object b. The second type of rules, called the communication rules,
are of the form c↔ d. If the communication rule is performed, the object c inside
the agent and the object d outside the agent swap their places. Thus after executing
the rule, the object d appears inside the agent and the object c is placed outside
the agent.

In [6], the set of programs was extended by the checking rules. These rules give
the agents an opportunity to opt between two possibilities. The rules are in the
form r1/r2. If the checking rule is performed, then the rule r1 has higher priority
to be executed over the rule r2. It means that the agent checks whether the rule
r1 is applicable. If the rule can be executed, then the agent is compulsory to use
it. If the rule r1 cannot be applied, then the agent uses the rule r2. The program
determines the activity of the agent. The agent can change the content of itself or
of the environment by programs and it can affect the behaviour of other agents
through the environment.

The environment contains several copies of the basic environmental object de-
noted by e. The environmental object e appears in arbitrary large number of copies
in the environment.

This interaction between agents is a key factor in functioning of the P colony.
In each moment each object inside the agent is affected by executing the program.

For more information about P systems see [11] or [12].

Definition 1. The P colony of the capacity k is a construct
Π = (A, e, f, VE , B1, . . . , Bn), where

P Colony Robot Controller 237

• A is an alphabet of the colony, its elements are called objects,
• e ∈ A is the basic object of the colony,
• f ∈ A is the final object of the colony,
• VE is a multiset over A − {e}, it determines the initial state (content) of the

environment,
• Bi, 1 ≤ i ≤ n, are agents, each agent is a construct Bi = (Oi, Pi), where

– Oi is a multiset over A, it determines the initial state (content) of the agent,
|Oi| = k,

– Pi = {pi,1, . . . , pi,ki} is a finite multiset of programs, where each program
contains exactly k rules, which are in one of the following forms each:
· a→ b, called the evolution rule,
· c↔ d, called the communication rule,
· r1/r2, called the checking rule; r1, r2 are the evolution rules or the com-

munication rules.

An initial configuration of the P colony is an (n+1)-tuple of strings of objects
present in the P colony at the beginning of the computation. It is given by the
multiset Oi for 1 ≤ i ≤ n and by the set VE . Formally, the configuration of the P
colony Π is given by (w1, . . . , wn, wE), where |wi| = k, 1 ≤ i ≤ n, wi represents
all the objects placed inside the i-th agent, and wE ∈ (A−{e})◦ represents all the
objects in the environment different from the object e.

We will use the parallel model of P colonies for the robot controller. That
means that each agent tries to find one usable program at each step of the parallel
computation. If the number of applicable programs is higher than one, then the
agent nondeterministically chooses one of the programs. The maximal possible
number of agents is active at each step of the computation.

The configuration is called halting if the set of program labels P satisfying the
mentioned conditions above is empty. A set of all possible halting configurations
is denoted by H.

Each P colony is characterised by three characteristics; the capacity k, the
degree n and the height h; denoted by NPCOLparK(k, n, h). The capacity k is
the number of the objects inside each agent, the degree n is the number of agents
in the P colony, the height h is the maximal number of programs associated with
the agent of the P colony.

2.1 Modularity in the therms of P colonies

In our research of the P colonies we observed that some agents are performing
the same function during the computation. In the [1] we grouped agents of the
P colony simulating computation of the register machine into the modules. The
agents providing subtraction were grouped into the subtraction module, agents
providing addition were grouped into the addition module, agents controlling the
computation were grouped into the control module, etc. The program of simulated
register machine is stored in the control module, so changing the program of the

238 M. Langer et al.

register machine does not mean reprograming all the agents of the P colony but
the change of the control module.

We use this approach to design robot controller. Each individual robot’s module
like infrared sensors, actuators etc. is represented by the one P colony module.
All the P colony modules are driven by the controlling module, which contains
controlling logic and drives robot’s behaviour.

3 P colony robot controller

P colonies are very simple, but computationally complete string processing com-
putational device working in parallel manner. Data are processed by very primitive
computational units using very simple rules formed into the programs. Collater-
ally working autonomous units sharing common environment provides fast com-
putation device. Dividing agents into the modules allows us to compound agents
controlling single robot sensors and actuators. All the modules are controlled by
the main controlling unit. Controlling unit collect information from the sensors
and send the instructions to the actuators. All the communication is done via the
environment.

We construct a P colony with four modules: Controlling unit, Left actuator con-
troller, Right actuator controller and Infra-red receptor. Entire colony is amended
by the input and output filter. The input filter codes signals from the robots re-
ceptors and spread the coded signal into the environment. In the environment
there is the coded signal used by the agents. The output filter decodes the signal
from the environment which the actuator controllers sent into it. Decoded signal
is forwarded to the robots actuators.

The infra-red receptors consume all the symbols released into the environment
by the input filter. It releases actual information from the sensors on demand of the
control unit. The infra-red receptors remove unused data from the environment.

The actuator controllers wait for the activating signal from the control unit.
After obtaining the activating signal the controllers try to provide demanded action
by sending special objects - coded signal for the output filter into the environment.
When the action is performed successfully the actuators send the announcement
of the successful end of the action to the control unit, the announcement of the
unsuccessful end of the action otherwise.

The controlling unit ensures the computation. It controls the behaviour of the
robot, it asks the data from the sensors and it sends instructions to the actuators
by sending particular symbols to the environment. The controlling unit contains
set of programs which provides fulfilling set goal, in this case pass through the
maze using the right-hand rule. If the exit from the maze is found; symbol G
is appears in the environment, the controlling unit releases into the environment
special symbol H, which stops the infra-red receptors and the P colony stops and
so the robot.

Let us introduce the formal definition of the mentioned P colony:
Π = (A, e, VE , (O1, P1) , . . . (O5, P5) , ∅), where

P Colony Robot Controller 239

A = {1L, 1R,−1L,−1R, AL, AR, F, FF , FO, F
F
F , F

F
O , G, IF , IR,H,H1,H2, H3,

H4, L,MF , R,RF , RO, R
F
F , R

F
O,Wi}

VE = {e},
Let us describe the meaning of the particular objects:

1L,−1L Signal for the output filter - move the left wheel for-
ward/bacward.

1R,−1R Signal for the output filter - move the right wheel for-
ward/bacward.

F,L,R Signal from the control unit to the actuator controllers
- move forward, turn left/right.

FF
F , R

F
F Signal from the input filter - no obstacle in front/on the

right.
FF
O , R

F
O Signal from the input filter - obstacle in front/on the

right.
FF , RF Signal from the IR module to the control unit - no ob-

stacle in front/on the right.
FO, RO Signal from the IR module to the control unit - obstacle

in front/on the right.
IF , IR Signal from the control unit to the IR module - is there

an obstacle in front/on the right?
G Maze exit.
H Halting symbol.
Remaining objects are used for inner representation of the actions and as comple-
mentary objects.

Particular modules and agents which they contain are defined as follows:
Control Unit:

O1 = { IF , IR,Wi},7
P1 = { < ee↔ALAR; e↔ G/e→ e >; < ALARe→ IF IRWi >;

< IF IR↔ee;Wi →Wi >; < Wi→Wi; ee↔ RFFF >;
< Wi→Wi; ee↔ ROFF >; < Wi→Wi; ee↔ ROFO >;
< Wi→Wi; ee↔ RFFO >; < RFFOe→RRMF >;
< ROFF e→FFe >; < RFFF e→RRMF >;
< ROFOe→LLe >; < FF↔ee; e→e >;
< LL↔ee; e→e >; < RR↔ee;MF→MF >;
< MF ee→FFe >; < ALARG→HHH >;
< HH↔ee;H → H1 >; < H1ee→HHH1 >;
< HH↔ee;H1 → H2 >; < H2ee→HHH2 >;
< HH↔ee;H2 → H3 >; < H3ee→HHH3 >;
< HH↔ee;H3 → H4 >; < H4ee→HHH4 >;
< HH↔ee;H4 → e >;

Control Unit contains program which controls robots behaviour. According
to the data obtained from the IR module it sends instructions to the Actuator
controllers. It passes the maze using the right-hand rule until it finds symbol G
which represents exit from the maze. While it founds the exit the Control unit
releases symbol H into the environment which stops the computation.

240 M. Langer et al.

Left Actuator controller:
O2 = { e, e, e},
P2 = { < e↔F ; e→ 1L; e→ AL >;

< F→e; 1L ↔ e;AL ↔ e >;
< e↔R; e→ 1L; e→ AL >;
< R→e; 1L ↔ e;AL ↔ e >;
< e↔L; e→ −1L; e→ AL >;
< L→e;−1L ↔ e;AL ↔ e >;

Right Actuator controller:
O3 = { e, e, e},
P3 = { < e↔F ; e→ 1R; e→ AR >;

< F→e; 1R ↔ e;AR ↔ e >;
< e↔R; e→ −1R; e→ AR >;
< R→e;−1R ↔ e;AR ↔ e >;
< e↔L; e→ 1R; e→ AR >;
< L→e; 1R ↔ e;AR ↔ e >;

Right and left Actuator controllers wait for the activating signal from the
Control unit. According to signal they move the robot in required direction by
sending appropriate signal to the output filter.

Front Infra-red module:
O4 = { e, e, e},
P4 = { < e↔ H/e↔ FF

F ; ee→ eFF >;
< e↔ H/e↔ FF

O ; ee→ eFO >;
< FF ↔ IF /FF ↔ e;FF

F e→ ee >;
< FO ↔ IF /FO ↔ e;FF

O e→ ee >;
< IF ee→ eee;>}

Right Infra-red module:
O5 = { e, e, e},
P5 = { < e↔ H/e↔ RF

F ; ee→ eRF >;
< e↔ H/e↔ RF

O; ee→ eRO >;
< RF ↔ IR/RF ↔ e;RF

F e→ ee >;
< RO ↔ IR/RO ↔ e;RF

Oe→ ee >;
< IRee→ eee;>}

IR modules consume all the symbols send by the input filter into the environ-
ment. They send actual data to the Control unit on demand.

Robot driven by this P colony is able to pass through simple mazes that are
possible to pass using the right-hand rule.

P Colony Robot Controller 241

4 Conclusion

We have shown the basic possibilities of controlling the robot using the P colonies
and modular approach. We constructed P colony with five simple modules for
passing the maze using right-hand rule. With respect to the fact that P colonies
are computationally complete devices will the further research be dedicated to
the more precise control and fulfilling more difficult and complicated tasks like
processing the information from distance sensors.

Remark 1. Article has been made in connection with project IT4Innovations Cen-
tre of Excellence, reg. no. CZ.1.05/1.1.00/02.0070.

Research was also supported by the SGS/24/2013 Project of the SU Opava.

References

1. L. Cienciala, L., Ciencialová,, Langer, M.: Modularity in P colonies with Checking
Rules. In: Revised Selected Papers 12 th International Conference CMC 2011 (Gheo-
rge, M., Păun, Gh., Rozenber, G., Salomaa, A., Verlan, S. eds.), Springer, LNCS 7184,
2012, pp. 104 120.

2. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, Gh., Vaszil, G.: Cells in en-
vironment: P colonies, Multiple-valued Logic and Soft Computing, 12, 3-4, 2006, pp.
201–215.

3. Csuhaj-Varjú, E., Margenstern, M., Vaszil, G.: P colonies with a bounded number
of cells and programs. Pre-Proceedings of the 7th Workshop on Membrane Computing
(H. J. Hoogeboom, Gh. Păun, G. Rozenberg, eds.), Leiden, The Netherlands, 2006,
pp. 311–322.

4. Floreano, D. and Mattiussi, C. (2008). Bio-inspirated Artificial Inteligence: Theories,
Methods, and Technologies. MIT Press.

5. Freund, R., Oswald, M.: P colonies working in the maximally parallel and in the se-
quential mode. Pre-Proceedings of the 1st International Workshop on Theory and
Application of P Systems (G. Ciobanu, Gh. Păun, eds.), Timisoara, Romania, 2005,
pp. 49–56.

6. Kelemen, J., Kelemenová, A.: On P colonies, a biochemically inspired model of compu-
tation. Proc. of the 6th International Symposium of Hungarian Researchers on Com-
putational Intelligence, Budapest TECH, Hungary, 2005, pp. 40–56.

7. Kelemen, J., Kelemenová, A., Păun, Gh.: Preview of P colonies: A biochemically in-
spired computing model.Workshop and Tutorial Proceedings, Ninth International Con-
ference on the Simulation and Synthesis of Living Systems, ALIFE IX (M. Bedau at
al., eds.) Boston, Mass., 2004, pp. 82–86.

8. Minsky, M. L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-wood
Cliffs, NJ, 1967.

9. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61, 2000, pp. 108–143.

10. Păun, Gh.: Membrane computing: An introduction. Springer-Verlag, Berlin, 2002.
11. Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting, Oxford University Press, 2009.
12. P systems web page: http://psystems.disco.unimib.it

Constant-Space P Systems with Active
Membranes

Alberto Leporati, Luca Manzoni, Giancarlo Mauri, Antonio E. Porreca, Claudio
Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
{leporati,luca.manzoni,mauri,porreca,zandron}@disco.unimib.it

Summary. We continue the investigation of the computational power of space-
constrained P systems. We show that only a constant amount of space is needed in
order to simulate a polynomial-space bounded Turing machine. Due to this result, we
propose an alternative definition of space complexity for P systems, where the amount of
information contained in individual objects and membrane labels is also taken into ac-
count. Finally, we prove that, when less than a logarithmic number of membrane labels
is available, moving the input objects around the membrane structure without rewriting
them is not enough to even distinguish inputs of the same length.

1 Introduction

This paper continues the recent investigations of the computational power of P sys-
tems with active membranes by looking at the problems that they are able to solve
while working in constant space. It is already known that a super-polynomial
amount of space is needed to solve problems outside PSPACE [6]. Recently [2],
it has been shown that logarithmic space suffices to simulate a polynomial space-
bounded Turing machine (TM). Here we show that the constant space is sufficient
and, trivially, necessary to solve all problems in PSPACE.

This result challenges our intuition about space. How can we even be able
to remember, for example, the position of the TM head when we have less than
a logarithmic number of bits of information? We discuss the implication of this
result and how the current definition of space in P systems can be changed in order
to better represent out intuition about “space”. With the new definition all the
known results involving polynomial (or larger) amount of space, according to the
old definition, still hold. Only in the case of P systems with severely tight bounds
on space the new definition makes a difference.

Finally, we show a result highlighting the importance of membranes for P sys-
tems. In fact, when only movement rules, i.e., send-in, send-out, and dissolution

244 A. Leporati et al.

without rewriting, are allowed on the input symbols and less than a logarithmic
number of membrane labels are present, there is no possibility of correctly de-
termining even if two inputs are distinct, unless the ordering of the symbols is
discarded.

The paper is organised as follows. The basic notions necessary for the rest of
the paper are presented in Section 2. The main result, that is, the simulation of
a polynomial space-bounded TM, is described in Section 3. The current definition
of space in P systems is discussed and an alternative definition is proposed in
Section 4. In Section 5 we examine the limitations arising when only movement
but no rewriting is possible for the input symbols. Finally, in Section 6 we present
a brief summary of the results and some possible future research directions.

2 Basic Notions

We recall the basic definitions related to P systems with active membranes with
input alphabet [7].

Definition 1. A P system with (elementary) active membranes of initial degree
d ≥ 1 is a tuple Π = (Γ,∆,Λ, µ, wh1

, . . . , whd
, R), where:

• Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;
• ∆ is another alphabet, disjoint from Γ , called the input alphabet;
• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree, usually represented

by nested brackets) consisting of d membranes labelled by elements of Λ in a
one-to-one way;

• wh1 , . . . , whd
, with h1, . . . , hd ∈ Λ, are strings over Γ , describing the initial

multisets of objects placed in the d regions of µ;
• R is a finite set of rules over Γ ∪∆.

Each membrane possesses, besides its label and position in µ, another attribute
called electrical charge, which can be either neutral (0), positive (+) or negative (−)
and is always neutral before the beginning of the computation.

A description of the available kinds of rule follows. This description differs from
the original definition [4] only in that new input objects may not be created during
the computation.

• Object evolution rules, of the form [a→ w]αh
They can be applied inside a membrane labelled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by the
objects in w). At most one input object b ∈ ∆ may appear in w, and only if it
also appears on the left-hand side of the rule (i.e., if b = a).

Constant-Space P Systems with Active Membranes 245

• Send-in communication rules, of the form a []αh → [b]βh
They can be applied to a membrane labelled by h, having charge α and such
that the external region contains an occurrence of the object a; the object a is
sent into h becoming b and, simultaneously, the charge of h is changed to β. If
b ∈ ∆ then a = b must hold.

• Send-out communication rules, of the form [a]αh → []βh b
They can be applied to a membrane labelled by h, having charge α and con-
taining an occurrence of the object a; the object a is sent out from h to the
outside region becoming b and, simultaneously, the charge of h is changed to β.
If b ∈ ∆ then a = b must hold.

• Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labelled by h, having charge α and contain-
ing an occurrence of the object a; the membrane h is dissolved and its contents
are left in the surrounding region unaltered, except that an occurrence of a
becomes b. If b ∈ ∆ then a = b must hold.

• Elementary division rules, of the form [a]αh → [b]βh [c]
γ
h

They can be applied to a membrane labelled by h, having charge α, contain-
ing an occurrence of the object a but having no other membrane inside (an
elementary membrane); the membrane is divided into two membranes having
label h and charges β and γ; the object a is replaced, respectively, by b and c
while the other objects in the initial multiset are copied to both membranes. If
b ∈ ∆ (resp., c ∈ ∆) then a = b and c /∈ ∆ (resp., a = c and b /∈ ∆) must hold.

Each instantaneous configuration of a P system with active membranes is described
by the current membrane structure, including the electrical charges, together with
the multisets located in the corresponding regions. A computation step changes
the current configuration according to the following set of principles:

• Each object and membrane can be subject to at most one rule per step, except
for object evolution rules (inside each membrane several evolution rules can be
applied simultaneously).

• The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, dissolution or elementary division
rules must be subject to exactly one of them (unless the current charge of the
membrane prohibits it). The same principle applies to each membrane that
can be involved to communication, dissolution, or elementary division rules.
In other words, the only objects and membranes that do not evolve are those
associated with no rule, or only to rules that are not applicable due to the
electrical charges.

• When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

• In each computation step, all the chosen rules are applied simultaneously (in an
atomic way). However, in order to clarify the operational semantics, each com-
putation step is conventionally described as a sequence of micro-steps as follows.

246 A. Leporati et al.

First, all evolution rules are applied inside the elementary membranes, followed
by all communication, dissolution and division rules involving the membranes
themselves; this process is then repeated to the membranes containing them,
and so on towards the root (outermost membrane). In other words, the mem-
branes evolve only after their internal configuration has been updated. For
instance, before a membrane division occurs, all chosen object evolution rules
must be applied inside it; this way, the objects that are duplicated during the
division are already the final ones.

• The outermost membrane cannot be divided or dissolved, and any object sent
out from it cannot re-enter the system again.

A halting computation of the P system Π is a finite sequence of configura-
tions C = (C0, . . . , Ck), where C0 is the initial configuration, every Ci+1 is reachable
from Ci via a single computation step, and no rules of Π are applicable in Ck. A
non-halting computation C = (Ci : i ∈ N) consists of infinitely many configura-
tions, again starting from the initial one and generated by successive computation
steps, where the applicable rules are never exhausted.

P systems can be used as language recognisers by employing two distinguished
objects yes and no; exactly one of these must be sent out from the outermost
membrane in the last step of each computation, in order to signal acceptance or
rejection, respectively; we also assume that all computations are halting. If all
computations starting from the same initial configuration are accepting, or all are
rejecting, the P system is said to be confluent. If this is not necessarily the case,
then we have a non-confluent P system, and the overall result is established as for
nondeterministic Turing machines: it is acceptance iff an accepting computation
exists. Unless otherwise specified, the P systems in this paper are to be considered
confluent.

In order to solve decision problems (i.e., decide languages), we use families
of recogniser P systems Π = {Πx : x ∈ Σ⋆}. Each input x is associated with
a P system Πx that decides the membership of x in the language L ⊆ Σ⋆ by
accepting or rejecting. The mapping x 7→ Πx must be efficiently computable for
each input length [3].

Definition 2. Let E, F be classes of functions over strings. A family of P sys-
tems Π = {Πx : x ∈ Σ⋆} is said to be (E ,F)-uniform if the mapping x 7→ Πx can
be described by two functions F ∈ F (for “family”) and E ∈ E (for “encoding”)
as follows:

• F (1n) = Πn, where n is the length of the input x and Πn is a common P system
for all inputs of length n with a distinguished input membrane.

• E(x) = wx, where wx is a multiset encoding the specific input x.
• Finally, Πx is simply Πn with wx added to the multiset placed inside its input

membrane.

In particular, a family Π is said to be (L,L)-uniform if the functions E and F
can be computed by a deterministic Turing machine in logarithmic space.

Constant-Space P Systems with Active Membranes 247

Any explicit encoding of Πx is allowed as output of the construction, as long
as the number of membranes and objects represented by it does not exceed the
length of the whole description, and the rules are listed one by one. This restric-
tion is enforced in order to mimic a (hypothetical) realistic process of construction
of the P systems, where membranes and objects are presumably placed in a con-
stant amount during each construction step, and require actual physical space
proportional to their number; see also [3] for further details on the encoding of
P systems.

Finally, we describe how space complexity for families of recogniser P systems
is measured, and the related complexity classes [5, 7].

Definition 3. Let C be a configuration of a P system Π. The size |C| of C is
defined as the sum of the number of membranes in the current membrane structure
and the total number of objects from Γ (i.e, the non-input objects) they contain.
If C = (C0, . . . , Ck) is a computation of Π, then the space required by C is defined
as

|C| = max{|C0|, . . . , |Ck|}

The space required by Π itself is then

|Π| = sup{|C| : C is a computation of Π}.

Finally, let Π = {Πx : x ∈ Σ⋆} be a family of recogniser P systems, and let s : N →
N. We say that Π operates within space bound s iff |Πx| ≤ s(|x|) for each x ∈ Σ⋆.

Definition 4. We denote by (L,L)-MCSPACEAM(f(n)) the class of languages
decidable by (L,L)-uniform families of confluent P systems with active membranes
within space bound f . In particular, (L,L)-MCSPACEAM(O(1)) denotes the class
of languages decidable in constant space.

3 Simulating Polynomial-Space Turing Machines

The idea behind the simulation of a polynomial-space bounded TM using only
constant space in the P system is to use the input objects as a way to store the
status of the TM tape. Since by rewriting more than a constant number of input
symbols the amount of space would be non-constant, the only way to use them to
store the state of the TM tape is to track the position of the symbols inside the
membranes. We will use a tape alphabet consisting of two symbols, a and b; the
construction presented here immediately generalises to alphabets of any size.

The simulation relies on two main ideas in order to store and retrieve the
content of the simulated TM tape. The first idea is that, apart from a short
initialisation procedure, the only relevant part of an input object σj is its subscript,
that is, the position j in the TM tape. We will then have two membranes, named
a and b, in which the input objects will be distributed. The interpretation of the
fact that an object σj is in membrane a is that the j-th cell of the TM contains

248 A. Leporati et al.

the symbol a. Notice that σ = a is not required, since this information is not used
after the initial phase of the simulation. The second idea is that it is possible to
“read” a subscript of an input object σj without rewriting it and by using only
a constant number of additional objects and membranes. An input object σj can
use an evolution rule to generate a timer that, after j time steps, changes the
charge of a membrane. Any other object that was observing that same membrane,
i.e., it was counting together with the timer, is able to obtain the value j of the
subscript of σj . The two ideas intuitively presented here, to be formalised in the
construction below, allow us to store and retrieve the content of the tape of a TM
using only a constant number of additional objects and membranes by “moving
around” the input objects.

The simulation is divided into three phases. The first one is the initialisation,
in which the input objects are distributed across the membranes of the systems.
The second phase is simulation of a step of the TM, which requires the third phase,
where the P system is reset in order to simulate the next step.

3.1 Membrane structure

The membrane structure consists of six membranes:

0

T

0

I

0

R

0

a

0

b

0

e

Each of these membranes has a specific semantics:

• T is a “temporary storage”. It will contain objects that are not needed in that
particular stage of the computation, and, then it will be emptied and the object
contained will be moved to one of the other membranes. It also serves as the
input membrane.

• I is used only during the initialisation, acting as a container for the “dispatching
machinery” that moves an input object to the correct membrane.

• R is a membrane used to check the subscript of a specific input symbol. The
input object σj generates a timer that changes the charge of the membrane
after j time steps.

• Membrane a (resp. b) contains all input objects σj such that, in the currently
simulated step of the TM, the j-th cell of the tape contains the symbol a (resp.
b).

• e is the external membrane, containing all the others.

If the tape alphabet contains more than two symbols, it is possible to add more
membranes inside e, one for each symbol.

Constant-Space P Systems with Active Membranes 249

3.2 Initialisation

The initial configuration of the P system contains all the input objects in mem-
brane T and one auxiliary object move in membrane e. The initialisation procedure
moves each input object aj (resp., bj) to membrane a (resp., b) and generates an
object q0,a, where q is the initial state of the TM, 0 indicates the position of the
TM on the tape, and a indicates the fact that the P system simulating the TM
will check if the symbol on the TM tape at position 0 is a. An example of the
movement of one object to the correct membrane is shown in Fig. 1.

In the description of the simulation we assume that n is the size of the input
and p(n) is the length of the tape of the TM, which is polynomial in n.

The following set of rules uses the object move to transport an input object
outside of membrane T or, if the membrane is empty, to start the simulation of
the first step of the TM.

move []0T → [move]−T

[move → move′]−T

[move′]0T → []0T open

[ai]
−
T → []0T ai 0 ≤ i < p(n)

[bi]
−
T → []0T bi 0 ≤ i < p(n)

[move′]−T → []0T q0,a

The next set of rules is used to move an input object from membrane e to I:

open []0I → [open]+I

[open]0I → []−I wait

ai []
+
I → [ai]

0
I 0 ≤ i < p(n)

bi []
+
I → [bi]

0
I 0 ≤ i < p(n)

The following rules move an input object ai (resp., bi) to membrane a (resp., b):

[ai → ai gotoa]
0
I 0 ≤ i < p(n) (1)

[bi → ai gotob]
0
I 0 ≤ i < p(n) (2)

[gotoa]
0
I → []−I gotoa

[gotob]
0
I → []−I gotob

[ai]
−
I → []0I ai 0 ≤ i < p(n)

[bi]
−
I → []0I bi 0 ≤ i < p(n)

gotoa []0a → [gotoa]
+
a

gotob []
0
b → [gotob]

+
b

[gotoa → ϵ]+a

250 A. Leporati et al.

a0 b1 b2

a3

0

T

0

I

0

R

move

0

a

0

b

0

e

a0 b1 b2

a3 move

−

T

0

I

0

R

0

a

0

b

0

e

a0 b2

a3 move
′

0

T

0

I

0

R

b1

0

a

0

b

0

e

a0 b2

a3

0

T

0

I

0

R

b1 open

0

a

0

b

0

e

a0 b2

a3

0

T

open

+

I

0

R

b1

0

a

0

b

0

e

a0 b2

a3

0

T

open

b1

0

I

0

R

0

a

0

b

0

e

a0 b2

a3

0

T

goto
b

b1

−

I

0

R

wait

0

a

0

b

0

e

a0 b2

a3

0

T

goto
b

0

I

0

R

wait′ b1

0

a

0

b

0

e

a0 b2

a3

0

T

0

I

0

R

wait′′ b1 goto
b

0

a

+

b

0

e

a0 b2

a3

0

T

0

I

0

R

wait′′′ b1

0

a

goto
b

+

b

0

e

a0 b2

a3

0

T

0

I

0

R

move

0

a

b1

0

b

0

e

Fig. 1. The movement of an input symbol to the correct membrane during the initiali-
sation phase.

Constant-Space P Systems with Active Membranes 251

[gotob → ϵ]+b

ai []
+
a → [ai]

0
a 0 ≤ i < p(n)

bi []
+
b → [bi]

0
b 0 ≤ i < p(n) (3)

Finally, the auxiliary object in membrane e has to wait for three steps before
moving another input object outside of membrane T:

[wait → wait′]0e

[wait′ → wait′′]0e

[wait′′ → wait′′′]0e

[wait′′′ → move]0e

After the initialisation phase, all the input objects of the form ai (resp., bi) are
located in membrane a (resp., b), and the actual simulation of the TM can start.

3.3 Simulation of a Step of the Turing Machine

To simulate a step of the TM we first define how its configuration is encoded as
a configuration of the P system. Let c0, c1, . . . , cp(n)−1, with ci ∈ {a, b}, be the
tape of the TM at the current time step, and σ0, . . . , σn−1 the initial content of
the tape. Then the P system contains, in membrane a, all σj such that cj = a
and, in membrane b, all the input objects σj such that cj = b. Notice that this
allows a complete reconstruction of the tape of the TM. The state q of the TM
and the position i of the head are encoded in an object qi,τ in membrane e, where
τ ∈ {a, b} indicates that the P system will check if the symbol in position i of the
tape is τ .

The simulation proceeds as follows:

• The object qi,τ moves an object σj from membrane τ , i.e., either a or b, to
membrane R.

• In membrane R the object σj produces a timer that counts from j to 0, while
qi,τ counts from i to 0. When the first timer stops, it changes the charge of
R, that is immediately changed again by the object σj exiting from R. This
makes it possible to determine if i = j. In that case, the symbol on the tape of
the TM in position i is actually τ , and it is possible to perform a step of the
simulated machine. In the other case, i.e., i ̸= j, the object σj is moved into
membrane T and we return to the previous step.

• When membrane τ is empty, or the correct input object was found in the pre-
vious step, it is necessary to move back the objects from T to membrane τ . The
search for the input object having subscript i will then proceed in membrane
b (when τ = a) or a (when τ = b).

We will now detail the rules necessary to formally define the previous algorithm.
In order to shorten the notation, in the following description we are going to write
only half of the rules, those involving a. The missing half is obtained by swapping
a and b.

252 A. Leporati et al.

0

T

0

I

0

R

q2,a

a0 b2

0

a

b1 a3

0

b

0

e

0

T

0

I

q2,a

0

R

a0 b2

0

a

b1 a3

0

b

0

e

0

T

0

I

+

R

q′2,a

a0 b2

0

a

b1 a3

0

b

0

e

Fig. 2. The symbol q2,a changes the charge of the membrane R before starting the next
phase of the simulation (continues in Fig 3).

Reading the Symbol under the Tape Head

This first set of rules uses the object qi,a to change the charge of membrane R to
+, as shown in Fig. 2. The set Q′ denotes the non-finals states of Q.

qi,a []0R → [qi,a]
0
R for q ∈ Q′, 0 ≤ i < p(n)

[qi,a]
0
R → []+R q′i,a for q ∈ Q′, 0 ≤ i < p(n)

The following rules move an input object from membrane a to membrane R.

q′i,a []0a → [q′i,a]
−
a for q ∈ Q′, 0 ≤ i < p(n)

[q′i,a → q′′i,a]
−
a for q ∈ Q′, 0 ≤ i < p(n)

[σj]
−
a → []0a σj for σ ∈ {a, b}, 0 ≤ j < p(n)

[q′′i,a]
0
a → []0a qi,a,read for q ∈ Q′, 0 ≤ i < p(n)

[q′′i,a]
−
a → []0a qi,a,reset for q ∈ Q′, 0 ≤ i < p(n) (4)

σj []
+
R → [σj]

0
R for σ ∈ {a, b}, 0 ≤ j < p(n)

The next rules allow us to compare the position of the head of the TM (stored as
a subscript of the object qi,a,read) with the subscript j of the object σj that has
left membrane a. To accomplish this, the object σj in membrane R produces the
object timerj . At the same time step in which timerj is produced, the object qi,a,read
enters R, changing its charge to +. Both timerj and qi,a,read rewrite themselves in
order to count from j (resp., i) to 0. In this way, it is possible to determine if
i = j. If it is so, then qi,a,found exits from R. If not, it is qi,a,not-found that appears.
An example of application of those rules is presented in Fig. 3.

[σj → σj timerj]
0
R for σ ∈ {a, b}, 0 ≤ j < p(n) (5)

Constant-Space P Systems with Active Membranes 253

0

T

0

I

+

R

a0 b2 q′2,a

−

a

b1 a3

0

b

0

e

0

T

0

I

+

R

b2

a0 q′′2,a

0

a

b1 a3

0

b

0

e

0

T

0

I

b2

0

R

q2,a,read

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

b2 timer2

q2,a,read

+

R

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

b2 timer1

q2,a,2

+

R

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

b2 timer0

q2,a,1

+

R

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

b2 q2,a,0

−

R

timer0

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

q2,a,found

0

R

b2

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

0

R

b2 q2,a,found

a0

0

a

b1 a3

0

b

0

e

0

T

0

I

0

R

b2

a0

0

a

b1 a3 q2,a,found

+

b

0

e

0

T

0

I

0

R

a0

0

a

b1 a3 b2

q2,a,found

0

b

0

e

0

T

0

I

0

R

r3,a,reset

a0

0

a

b1 a3 b2

0

b

0

e

Fig. 3. The symbol q2,a is used to discover that position 2 of the tape contains a. After
that, a transition to state r and a movement of the tape head to position 3 is performed.

254 A. Leporati et al.

qi,a,read []
0
R → [qi,a,read]

+
R for q ∈ Q′, 0 ≤ i < p(n)

[timerj → timerj−1]
+
R for 1 ≤ j ≤ p(n)

[qi,a,read → qi,a,i]
+
R for q ∈ Q′, 0 ≤ i < p(n)

[qi,a,k → qi,a,k−1]
+
R for q ∈ Q′, 0 ≤ i < p(n), 1 ≤ k ≤ p(n)

[timer0]
+
R → []−R timer0

[timer0 → ϵ]0e

[σj]
−
R → []0R σj for σ ∈ {a, b}, 0 ≤ j < p(n)

[qi,a,0 → qi,a,found]
−
R for q ∈ Q′, 0 ≤ i < p(n)

[qi,a,0 → qi,a,not-found]
+
R for q ∈ Q′, 0 ≤ i < p(n)

[qi,a,0 → qi,a,not-found]
0
R for q ∈ Q′, 0 ≤ i < p(n)

[qi,a,found]
0
R → []0R qi,a,found for q ∈ Q′, 0 ≤ i < p(n)

[qi,a,not-found]
0
R → []0R qi,a,not-found for q ∈ Q′, 0 ≤ i < p(n) (6)

If i ̸= j we need to move the selected input object σj to membrane T:

qi,a,not-found []
0
T → [qi,a,not-found]

+
T for q ∈ Q′, 0 ≤ i < p(n)

σj []
+
T → [σj]

0
T for σ ∈ {a, b}, 0 ≤ j < p(n)

[qi,a,not-found]
0
T → []0T qi,a for q ∈ Q′, 0 ≤ i < p(n)

On the other hand, if i = j we have correctly identified the symbol under the head
of the TM. Assume δ(q, a) = (r, τ, d) with r non final; then we define the following
rules:

qi,a,found []
0
τ → [qi,a,found]

+
τ for 0 ≤ i < p(n)

σi []
+
τ → [σi]

0
τ for σ ∈ {a, b}, 0 ≤ i < p(n)

[qi,a,found]
0
τ → []0τ ri+d,a,reset for 0 ≤ i < p(n) (7)

Notice that, in the case of a nondeterministic TM, the simple repetition of rule (7)
for each (r, τ, d) ∈ δ(q, a) assures a non-deterministic simulation on a non-confluent
P system.

Notice that the last rule has a change in both the state and in the position of
the head. The presence of reset in the subscript indicates that this object will move
all the objects from membrane T to membrane a. This happens also in another case
(see rule (4)) but without any change of state and position of the TM head. This
is an intended behaviour, since in both cases, before continuing the simulation, we
need to restore the configuration of the P system by emptying membrane T. After
that, the simulation with proceed with the object ri+d,b in this case, and qi,b in
the other, as intended.

Constant-Space P Systems with Active Membranes 255

Clean-up

The following set of rules use the object qi,a,reset to move all the objects from
membrane T to membrane a. After that, the object is rewritten into qi,b.

qi,a,reset []
0
T → [qi,a,reset]

−
T for q ∈ Q′, 0 ≤ i < p(n)

[σj]
−
T → []0T σj for σ ∈ {a, b}, 0 ≤ j < p(n)

[qi,a,reset → q′i,a,reset]
−
T for q ∈ Q′, 0 ≤ i < p(n)

[q′i,a,reset]
0
T → []0T q

′
i,a,reset for q ∈ Q′, 0 ≤ i < p(n)

q′i,a,reset []
0
a → [q′i,a,reset]

+
a for q ∈ Q′, 0 ≤ i < p(n)

σj []
+
a → [σj]

0
a for σ ∈ {a, b}, 0 ≤ j < p(n)

[q′i,a,reset]
0
a → []0a qi,a,reset for q ∈ Q′, 0 ≤ i < p(n)

[q′i,a,reset]
−
T → []0T qi,b for q ∈ Q′, 0 ≤ i < p(n)

Now all the input objects have been moved to either membrane a or membrane b,
and the P system proceeds by checking whether the tape head is reading the
symbol b in state q.

3.4 Halting

If δ(q, a) = (r, τ, d) and r is an accepting (resp., rejecting) state of the TM, then,
when simulating the last transition, instead of rule (7) one of the following rules
is applied:

[qi,a,found]
0
τ → []0τ yes for 0 ≤ i < p(n), if r is accepting

[qi,a,found]
0
τ → []0τ no for 0 ≤ i < p(n), if r is rejecting

Finally, the object yes or no is sent out from the outermost membrane, as the last
computation step by, via the rules

[yes]0e → []0e yes

[no]0e → []0e no

No further rule can then be applied, since the only remaining objects are the input
objects located in membranes T, a, and b, where they are not subject to any rule,
as the membrane charges are neutral.

3.5 Main Result

The simulation of one step of the TM requires at most a polynomial number of
steps of the P system, since each of the different “phases” (initialisation, checking
if the input symbol σj has a subscript corresponding to the current position of

256 A. Leporati et al.

the head of the TM, and moving the objects from membrane T to either a or b)
requires at most polynomial time – actually O(p(n)) – and it is repeated at most
once for each cell of the tape, that is, at most p(n) times.

Even if we have presented a simulation of a TM having only two tape symbols, it
is possible to extend the simulation to arbitrary alphabets by using one membrane
for each symbol, similarly to membranes a and b, and by adding the corresponding
rules. Therefore, in the following theorem we assume that a blank tape symbol ⊔
is available.

Theorem 1. (L,L)-MCSPACEAM(O(1)) = PSPACE.

Proof. Let L ∈ PSPACE, and let M be a TM deciding L in space p(n)). We
can construct a family of P systems Π = {Πx : x ∈ Σ⋆} such that L(Π) = L
by letting F (1n) = Πn, where Πn is the P system simulating M on inputs of
length n, and E(x0 · · ·xn−1) = x1,1 · · ·xn−1,n−1 ⊔n · · · ⊔p(n)−1, i.e., by padding
the input string x with p(n) − n blank symbols before indexing the result with
the positions of the symbols. Both F and E can be computed in logarithmic
space by Turing machines, since they only require adding subscripts having a
logarithmic number of bits to rules or strings having a fixed structure, and the
membrane structure is fixed for all Πn. Since the simulation of M only requires a
constant number of membranes and non-input objects, the inclusion PSPACE ⊆
(L,L)-MCSPACEAM(O(1)) follows. The reverse inclusion was proved in [6]. ⊓⊔

4 Rethinking the Definition of Space

The result of Theorem 1 shows that constant-space P systems with active mem-
branes have the same computational power of Turing machines working in poly-
nomial space. This raises some doubts about the definition of space complexity for
P systems adopted until now [5]: does counting each non-input object and each
membrane as unitary space really capture an intuitive notion of “space”?

From an information-theoretic perspective, we may observe that the constant
number of non-input objects employed by the simulation of Section 3.5 actually
encode Θ(log n) bits of information, since they are taken from an alphabet Γ
of polynomial size. It may be argued that this amount of information needs a
proportional amount of physical storage space (e.g., as DNA molecules of com-
parable size). Similarly, the membranes themselves, being identified by a label,
contain Θ(log |Λ|) bits of information, which must have a physical counterpart.1

A more accurate estimate of the space required by a configuration of a P system
might be given by the following alternative definition:

1 We refer to the objects and membrane labels actually appearing during the course of
the computation here; if part of the alphabet Γ or some labels from Λ never appear
in a configuration, then the information content might be smaller.

Constant-Space P Systems with Active Membranes 257

Definition 5. Let C be a configuration of a P system Π. The size |C| of C is
defined as the number of membranes in the current membrane structure multiplied
by log |Λ|, plus the total number of objects from Γ (i.e, the non-input objects) they
contain multiplied by log |Γ |.

Adopting this stricter definition does not significantly change space com-
plexity results for polynomial or larger upper bounds, i.e., the complexity
classes PMCSPACEAM, EXPMCSPACEAM, and larger ones [1] remain un-
changed.

On the other hand, the simulation described in this paper would require log-
arithmic space according to Definition 5. Furthermore, the space bounds of the
previous simulation of polynomial-space Turing machines by means of logarithmic-
space P systems with active membranes [2] also increase to Θ(log n log log n), since
in that case each configuration of the P systems contained Θ(log n) membranes
with distinct labels and O(1) non-input objects.

It remains to be established if space (as in Definition 5) can be freely exchanged
between objects and labels, or if one of the two is strictly more powerful.

5 Computing without Evolving Input Objects

In this section we are going to show that, if input object are only moved around
the membrane structure (without being themselves rewritten into other objects),
evolution rules involving the input objects, such as (1), (2), and (5), are essential
in order to perform a simulation of a TM. In fact, if only non-rewriting send-in,
send-out, and dissolution rules are applied to input symbols, and the number of
membrane labels is o(log n), it is impossible even to correctly distinguish two input
strings of the same length. This happens independently of the space used by the
P systems, as long as the multiset encoding of the input x ∈ Σ⋆ is “simple”:

Definition 6. Let A be an alphabet containing Σ, and let

s : A⋆ → {σi : σ ∈ A, i ∈ N}⋆

be the function defined by s(x0 · · ·xn−1) = x0,0 · · ·xn−1,n−1, i.e., the function sub-
scripting each symbol with its position in the string.

We say that an encoding E of Σ⋆ is “simple” if there exists a function g : N →
A⋆ such that E(x) = s(x · g(|x|)), i.e., E(x) is the original input string x, con-
catenated with a string depending only on the length of x, and indexed with the
positions of its symbols.

Notice that the encoding employed in Theorem 1 is indeed simple.
When the encoding is simple and the input alphabet is at least binary, P sys-

tems with the limitations described above accepting (resp., rejecting) a long enough
string x also accept (resp., reject) another string obtained by swapping two sym-
bols of x.

258 A. Leporati et al.

Theorem 2. Let Π be a family of (E ,F)-uniform, possibly non-confluent P sys-
tems with active membranes, where F is unrestricted, and E is the class of simple
encodings. Suppose that the only rules involving input symbols are send-in com-
munication, send-out communication and membrane dissolution, that these rules
never rewrite the input symbol, and that the family uses o(log n) membrane labels.

Then, there exists n0 ∈ N such that, for each string x = x0 · · ·xn−1 ∈ Σ⋆

with |x| ≥ n0, there exist i < j < n such that x can be written as u · xi · v · xj · w
and x ∈ L(Π) if and only if u · xj · v · xi · w ∈ L(Π).

Proof. Let Π be a family of P systems as defined in the statement of the theorem,
let F ∈ F be its “family” function, and let

F (1n) = Πn = (Γ,∆,Λ, µ, wh1 , . . . , whd
, R).

Assume that the objects in ∆ have, in R, only rules of type send-in, send-out,
and dissolution not rewriting them. We impose no restriction on rules involving
objects in Γ . Let us consider the possible rules applicable to a fixed object a ∈ ∆
and respecting the imposed restrictions:

• There are at most 32|Λ| send-in rules of the form a []αh → [a]βh, since it is
possible to choose the label of the membrane and the two charges.

• Similarly, there are at most 32|Λ| send-out rules of the form [a]αh → []βh a.
• The number of dissolution rules of the form [a]αh → a is at most 3|Λ|, since,

contrarily to the last two cases, there is no charge on the right-hand side of the
rule.

Thus, there are 21|Λ| possible rules per input object and 221|Λ| possible sets of
rules involving each input object. Since the encoding of the input string is simple,
each input object has the form σi for some σ ∈ A; hence, for each position i in the

input multiset there are
(
221|Λ|)|A|

= 221|Λ||A| possible sets of rules.
A necessary condition to distinguish two input objects a, b ∈ ∆ is that the set

of rules involving b cannot be simply obtained by replacing a with b in the set of
rules involving a (i.e., their sets of rules are not isomorphic); otherwise, replacing a
with b in the input multiset would not change the result of the computation of Π.
In particular, this holds for the first n input objects x0,0, . . . , xn−1,n−1, obtained
by indexing x = x0 · · ·xn−1 ∈ Σn. In order to be able to distinguish these n input
objects it is necessary that

221|Λ||Σ| ≥ n

that is, that the sets of rules associated with the first n objects are pairwise non
isomorphic. This means that

|Λ| ≥ log n

21|Σ|
But |Λ| is o(log n); hence, the inequality does not hold for large enough n. Instead,
there exists n0 such that, for each n ≥ n0, there are two indistinguishable posi-
tions i and j with 0 ≤ i < j < n: for each x = u · xi · v · xj · w ∈ Σn, either x
and u · xj · v · xi · w are both accepted, or they are both rejected. ⊓⊔

Constant-Space P Systems with Active Membranes 259

6 Final Remarks

In this paper we have solved the problem of determining the computational power
of P systems working in constant space, by showing that they can simulate
polynomial-space bounded Turing machines. The simulation is also efficient, in
the sense that it is only polynomially slower than the original machine.

The solution of this problem raised some interesting questions about the ability
of the current definition of space to capture our intuitions about the size of P sys-
tems. We have challenged the existing definition by considering also the number
of bits necessary to encode the auxiliary objects and the labels of the membranes.
While the new definition does not change any result involving an amount of space
polynomial or larger, it changes the current result and, according to the new defi-
nition, our simulation requires logarithmic space.

Finally, we have shown that rewriting input objects, while not exploited in
other simulations [2], is essential when less than a logarithmic number of membrane
labels is present. In fact, distinguishing two inputs is not possible when the input
objects are only moved around in the membrane structure, even when no restriction
on the space are present.

In the future we plan to investigate the relationship between the size of the set of
objects Γ and the set of membrane labels Λ. It would be interesting to understand
if we can easily exchange the way the information is distributed between the two
sets according to the new definition of space (Definition 5).

References

1. Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: Space complexity
equivalence of P systems with active membranes and Turing machines. Theoretical
Computer Science 529, 69–81 (2014)

2. Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: A gap in the space hierarchy of
P systems with active membranes (2014), submitted

3. Murphy, N., Woods, D.: The computational power of membrane systems under tight
uniformity conditions. Natural Computing 10(1), 613–632 (2011)

4. Păun, Gh.: P systems with active membranes: Attacking NP-complete problems. Jour-
nal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

5. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Introducing a space complex-
ity measure for P systems. International Journal of Computers, Communications &
Control 4(3), 301–310 (2009)

6. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active membranes
working in polynomial space. International Journal of Foundations of Computer Sci-
ence 22(1), 65–73 (2011)

7. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Sublinear-space P systems with
active membranes. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A.,
Vaszil, G. (eds.) Membrane Computing, 13th International Conference, CMC 2012,
Lecture Notes in Computer Science, vol. 7762, pp. 342–357. Springer (2013)

Extending SNP Systems Asynchronous
Simulation Modes in P-Lingua

Luis F. Maćıas-Ramos1, Tao Song2, Linqiang Pan2,⋆, Mario J. Pérez-Jiménez1

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, Spain
Avda. Reina Mercedes s/n. 41012 Sevilla, Spain
lfmaciasr@us.es, marper@us.es

2 Key Laboratory of Image Information Processing and Intelligent Control
School of Automation
Huazhong University of Science and Technology
Wuhan 430074, Hubei, China
taosong@hust.edu.cn, lqpan@mail.hust.edu.cn

Summary. Spiking neural P systems (SN P systems for short) is a developing field
within the P systems world. Inspired by the neurophysiological structure of the brain,
these systems have been subjected to many extensions in recent years, many of
them intended to “somewhat” incorporate more and more features inspired by the
functioning of the living neural cells. Although when first introduced in [8] SN P systems
were considered to work in synchronous mode, it became clear that considering non-
synchronized systems would be rather natural both from both from a mathematical and
neuro-biological point of view. Asynchronous variants of these systems were introduced
in [4], setting up a scenario where even if a neuron had enabled rules ready to fire,
such rules non-deterministically could be not applied. Once new theoretical variants are
defined, providing simulation software tools enables experimental study and validation of
the proposed models. One more than promising developing branch comprises the use of
parallel architectures, concretely GPUs, that provide efficient implementations [1, 2, 7, 3].
One drawback of this approach, due to the inherent constraints of the GPUs programming
model, is a relatively long development cycle to extend existing variants. At the expense of
sacrificing efficiency for expressivity, other alternatives involving sequential approaches
can be considered. Within this trend, P–Lingua [5, 6, 15] offers the high flexibility of
the Java programming language as well as a general acceptance within the Membrane
computing community. P–Lingua affords a standard language for the definition of P
systems. Part of the same software project, pLinguaCore library provides particular
implementations of parsers and simulators for the models specified in P–Lingua. Support
for simulating SN P systems in P–Lingua was introduced in [9]. In that version all
(synchronous and asynchronous) “working modes” considered in [14] were implemented.
Since then, new asynchronous variants have appeared. In this paper we present a brand

⋆ Corresponding author.

262 L.F. Maćıas-Ramos et al.

new extension of P–Lingua related to asynchronous SN P systems, in order to incorporate
simulation capabilities for limited asynchronous SN P systems, introduced in [12], and
asynchronous SN P systems with local introduced respectively in [16].

1 Introduction

SN P systems were introduced in [8] in the framework of Membrane computing [13]
as a new class of computing devices which are inspired by the neurophysiological
behaviour of neurons sending electrical impulses (spikes) along axons to other
neurons.

An SN P system consists of a set of neurons placed as nodes of a directed
graph (called the synapse graph). Each neuron contains a number of copies of a
single object type, the spike. Rules are assigned to neurons to control the way
information flows between them, i.e. rules assigned to a neuron allow it to send
spikes to its neighbouring neurons. SN P systems usually work in a synchronous
mode, where a global clock is assumed. In each time unit, for each neuron, only one
of the applicable rules is non-deterministically selected to be executed. Execution
of rules takes place in parallel amongst all neurons of the system. Nevertheless both
from a mathematical and neurological point of view, it is rather natural to consider
non-synchronized systems, where the use of rules is not obligatory. If a neuron has
an enabled rule in a given time unit, the neuron chooses non-deterministically
whether to fire (or not) the rule. Of course, new spikes can come into the neuron
when the rule is not fired, rendering it non-applicable. If the rule is still applicable
through successive time instants, it can fire at any time, independently of how
much time has passed since it first became applicable. Asynchronous SN P systems
(ASNPS for short) were introduced in [4] and, as described in [14], the validity of
a computation in these systems can be restricted by specifying pre-defined values
over the number of spikes for the neurons in the system at halting time. If the
computation is considered invalid the output of the system is discarded.

In the systems mentioned above any neuron works asynchronously, in a
independent way with respect to the others, such that there is no restriction with
respect to the number of successive time instants that the neuron can hold firing
of an enabled rule. These two characteristics of the “asynchronous mode” can
be overridden. In [12], limited asynchronous SN P systems (LASNPS for short)
are introduced. In this variant, a global bound b ≥ 2 (equal for all neurons) is
defined and determines the maximum number of computation steps that a neuron
can choose not to fire an enabled rule. On the other hand, in [16] asynchronous
SN P systems with local synchronization (ASNPSLS for short) are introduced.
In this variant, independence amongst neurons is dropped. Local synchronization
enables pre-defining a collection of local synchronizing sets contained in the power
set of neurons of the system. When a neuron fires (after deciding not to fire an
unbounded number of steps) all the neurons placed in the same local synchronizing
set fire immediately.

Extending SNP Systems Simulation Modes in P-Lingua 263

There exists biological motivation for considering these variants, thus also
making them a suitable target to be implemented within a simulation framework
like P–Lingua. With respect to LASNPS, in a biological system, if a long enough
time interval is given, an enabled chemical reaction will conclude within the
given time interval. So it is natural to impose a bound on the time interval in
which a spiking rule remains unused. With respect to ASNPSLS, in a biological
neural system, motifs with 4-5 neurons and communities with 12-15 neurons,
associated with some specific functioning are rather common. Neurons from the
same motif or community will work synchronously to cooperate with each other.
That is, in a biological system, neurons work globally in an asynchronous way, but
synchronously at a local level. Said level is represented by the local synchronizing
sets.

In this paper a new extension of SN P systems simulator included in the
P–Lingua framework is presented which enables simulation for LASNPS and
ASNPSLS. The paper is structured as follows. Section 2 is devoted to introducing
background concepts: specifications of SN P systems working in synchronous and
asynchronous (normal, limited and local) modes are introduced in an informal way.
Section 3 covers the P–Lingua syntax for the new introduced modes. Section 4
presents some P–Lingua files which exemplifies how to define the different models
in P–Lingua specification language. Finally, Section 5 shows the corresponding
simulation algorithms for the aforementioned models. Section 6 covers conclusions
and future work.

2 Preliminaries

In this section we introduce, in an informal way, SN P systems model in
their original synchronous form and, subsequently, asynchronous extensions
corresponding to limited asynchronous SN P systems, introduced in [12], and
asynchronous SN P systems with local synchronization, introduced in [16].

2.1 Spiking neural P systems

SN P systems can be considered a variant of P systems, corresponding to a
shift from cell-like to neural-like architectures. In these systems, cells (also called
neurons) are placed in the nodes of a directed graph, called the synapse graph.
Contents of each neuron consist of a number of copies of a single object type, called
the spike. Every neuron may also contain a number of firing rules and forgetting
rules. Firing rules allow a neuron to send information to other neurons in the
form of electrical impulses, spikes, which are accumulated at the target neuron,
consuming some of their own spikes (in a quantity at least equal to the number of
spikes fired). Forgetting rules imply only consuming spikes, while no one is sent to
the neighbouring neurons.

The applicability of each rule is determined by checking the contents of the
neuron against a regular set associated with the rule. In each time unit, if a neuron

264 L.F. Maćıas-Ramos et al.

can use one of its rules, then one of such rules must be used. If two or more rules
can be applied, then only one of them is non-deterministically chosen. Thus, the
rules are used in a sequential way in each neuron, but neurons function in parallel
with respect to each other. Let us notice that, as it usually happens in Membrane
Computing, a global clock is assumed, marking the time for the whole system, and
hence the functioning of the system is synchronized. Also asynchronous scenarios
can be considered as shown in [14] and discussed below.

When a cell sends out spikes it becomes “closed” (inactive) for a specified
period of time. During this period, the neuron does not accept new inputs and
cannot “fire” (that is, cannot emit spikes). The lapse of time required for the rule
to be fired is called the “delay” of the rule, which can be any natural number d ≥ 0.
Only firing rules can have a non-negative delay, while forgetting rules have always
a delay zero. Let us notice that when d = 0, the neuron immediately becomes
“open” (active) after firing, being able to send and receive spikes again, thus never
being “really closed”.

The configuration of the system is described by its topological structure (which
is constant along computations when not considering division or budding rules)
and the number of spikes associated with each neuron. Using the rules as described
above, it is possible to define transitions among configurations. Any (maximal)
sequence of transitions starting in the initial configuration is called a computation.
A computation halts if it reaches a configuration where all neurons are open and
no rule can be used.

Further reading about this model, along with a formal specification, can be
found in [8].

2.2 Asynchronous SN P systems

In asynchronous SN P systems even if a neuron has a rule enabled in a given
time unit, this rule is not obligatorily used. The neuron may choose to remain
unfired, maybe receiving spikes from the neighbouring neurons. The unused rule
may be used later, as long as it stays enabled, without any restriction on the
interval during which it has remained unused. If the new spikes made the rule
non-applicable, then the computation continues in the new circumstances (maybe
other rules are enabled now).

Further reading about these systems, along with a discussion on their power
can be found in [4].

2.3 Limited asynchronous SN P systems

In asynchronous SN P systems an enabled rule not used at a certain instant may
be used later, as long as it stays enabled, without any restriction on the interval
during which it has remained unused. Nevertheless, from the biological point of
view it is convenient to consider a boundary on the number of time units that such
rule remains unfired, since in nature given a long enough time interval, an enabled

Extending SNP Systems Simulation Modes in P-Lingua 265

chemical reaction will conclude within such interval. Following this, in limited
asynchronous SN P systems, a single global upper bound b ≥ 2 (equal for all
neurons) is defined on time intervals. If a rule in neuron σi is enabled at step t and
neuron σi receives no spike from step t to step t+b−2, then this rule can and must
be applied at a step in the next time interval b (that is, at a non-deterministically
chosen step from t to t+ b−1). If the enabled rule in neuron σi is not applied, and
neuron σi receives new spikes, making the rule non-applicable, then computation
continues in the new circumstance (maybe other rules are enabled now).

Further reading about these systems, along with a discussion on their
universality can be found in [12].

2.4 Asynchronous SN P systems with local synchronization

In asynchronous SN P systems an unused rule may be used later, without
any restriction with respect to the functioning (also asynchronous) of the other
neurons. Nevertheless, from the biological point of view it is convenient to
consider interrelation between neurons in terms of synchronicity. In a biological
neural system, small groups of neurons, associated with some specific functioning,
are rather common. Neurons within these communities work synchronously to
cooperate with each other, while globally working in an asynchronous way
with respect to “unrelated” neurons in the system. To model this behaviour
in neural-like systems, asynchronous SN P systems with local synchronization
are introduced. In these systems, a family of sets (called ls-sets) of locally
synchronous neurons Loc = {loc1, loc2, . . . , locl} ⊆ P({σ1, σ2, . . . , σm}) is defined
(P({σ1, σ2, . . . , σm}) being the power set of {σ1, σ2, . . . , σm}).

Given neurons in the same ls-set locj , if one of these neurons fires, then all
neurons in locj that have enabled rules should fire. Of course, it is possible that
all neurons from locj remain unfired even if they have enabled rules. That is, all
neurons from locj may remain still, or all neurons from locj with enabled rules
fire at a same step (of course, neurons without enabled rules cannot fire). Hence,
neurons work asynchronously at the global level, while working synchronously
within each ls-set.

Further reading about these systems, along with a discussion on their
universality can be found in [16].

3 P–Lingua Syntax for LASNPS and ASNPSLS

In [6], a Java library called pLinguaCore was presented under GPL license. The
library provides parsers to handle input files, built–in simulators to generate P
System computations and it is able to export several output file formats that
represent P systems. pLinguaCore is not a closed product because developers
with knowledge of Java can add new components to the library, thus extending
it. Milestone releases can be downloaded from http://www.p-lingua.org while

266 L.F. Maćıas-Ramos et al.

releases containing latest developments can be found within the distribution of
MeCoSim (http://www.p-lingua.org/mecosim/). At the time of this writing,
the extensions related to the present paper have not been included in a milestone
release, so interested readers may refer to the MeCoSim distribution.

This section introduces several recently developed P–Lingua simulators for
SN P systems. Support for SN P systems in P–Lingua was introduced in [9],
covering the basic model along with neuron division and budding rules as well
as asynchronous mode, as originally introduced. Following this, in [10], partial
simulation of SN P systems with functional astrocytes (also defined in [10]) was
introduced. Finally, simulators for SN P systems with “hybrid” (excitatory and
inhibitory) astrocytes and SN P systems with anti-spikes were presented in [11].

In what follows, P–Lingua syntax for defining both LASNPS and ASNPLS is
shown. P–Lingua syntax for the other SN P system variants is not covered here,
but can be found in the cited papers.

3.1 P–Lingua syntax for limited asynchronous SN P systems

In LASNPS, a global upper bound b ≥ 2 is defined for all rules. Consequently,
a new instruction has been included into P–Lingua to define such upper bound,
extending the existing model specification framework for Spiking Neural P systems.
Thus, that instruction can be used only when the source P–Lingua files defining
the corresponding models begin with the following sentence:

@model<spiking_psystems>

while also requiring the right asynchronous mode to be set to with the following
sentence:

@masynch = 3;

The instruction to define the global upper bound is:

@mboundall = b;

where:

• b is the global upper bound, with b ≥ 2.

3.2 P–Lingua syntax for asynchronous SN P systems with local
synchronization

In ASNPLS, a local synchronizing set is defined, consisting of a collection of
sets (called ls-sets) that determines which neurons should fire synchronously.
Consequently, a new instruction has been included into P–Lingua to define such
set, extending the existing model specification framework for Spiking Neural P
systems. Thus, that instruction can be used only when the source P–Lingua files
defining the corresponding models begin with the following sentence:

Extending SNP Systems Simulation Modes in P-Lingua 267

@model<spiking_psystems>

while also requiring the right asynchronous mode to be set to with the following
sentence:

@masynch = 4;

The instruction to define the local synchronizing set is:

@mlocset = {ls-1, ls-2, ..., ls-h, ..., ls-m};

where:

• ls-h = {σh,1, . . . , σh,uh
} is each one of the ls-sets containing a non-empty

collection of membrane labels.

4 Examples

This section is devoted to consider examples dealing with both LASNPS and
ASNPSLS. Two sets of examples are presented, one per variant. For each set, a
formal specification is presented, followed by a link to the corresponding P–Lingua
code. To conclude, an analysis of the functioning of the systems is shown, along
with statistical data referred to the output of the systems after several simulations
within MeCoSim are performed.

4.1 Asynchronous SN P systems with local synchronization

Consider an asynchronous SN P system with local synchronization Π shown in
Figure 1.

a
a → a

1
a

a → a

2

a → λ
a2 → a

3

a → a
a2 → a
a3 → a

4

a∗/a → a

out

Fig. 1. An example of an asynchronous SN P system with local synchronization Π

268 L.F. Maćıas-Ramos et al.

The system Π consists of five neurons with labels 1, 2, 3, 4 and out. Initially,
neurons σ1 and σ2 have one spike inside, and other neurons contain no spike. The
formal definition of system Π is as follows:

Π = ({a}, σ1, σ2, σ3, σ4, σout, Loc, syn), where

• σ1 = (1, R1) with R1 = {a→ a};
• σ2 = (1, R2) with R2 = {a→ a};
• σ3 = (0, R3) with R3 = {a→ λ, a2 → a};
• σ4 = (0, R3) with R4 = {a→ a, a2 → a, a3 → a};
• σout = (0, Rout) with Rout = {a∗/a→ a};
• Loc is the family of sets of locally synchronous neurons;
• syn = {(1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, out), (4, out)};
• out indicates the output neuron.

To complete the definition of the system, specifying Loc is required. Four cases
are considered:

a) Loc = ∅
b) Loc = {{σ1, σ2}}
c) Loc = {{σ1, σ3}}
d) Loc = {{σ1, σ2}, {σ3, σ4}}

The P–Lingua code corresponding to this system can be found at:
http://www.p-lingua.org/examples/SNPSLocalSynch.pli.

This code is parameterised, allowing execution of each one of the four Π system
variants depending on parameter c.

Next, we are going to analyse functioning of system Π for each one of the
aforementioned cases.

Case a) Loc = ∅.
In this case, neurons can fire at any time when having enable rules. Output of

the system is {1, 2, 3, 4}.
A table showing the results of the execution of the system after 100 simulations

with MeCoSim can be found below.

spikes ratio

1 39%

2 20%

3 36%

4 5%

Table 1. Ratio of output spikes for case a)

Case b) Loc = {{σ1, σ2}}.
In this case, neurons σ1, σ2 fire at the same moment due to local

synchronization. After any of the former neurons fires, neuron σ1 contains 1 spike,

Extending SNP Systems Simulation Modes in P-Lingua 269

while neurons σ3, σ4 contain 2 spikes each. From this point, we have the following
cases:

1. Neuron σ1 fires before neurons σ3, σ4. After this, neuron σ3 contains 3 spikes,
so cannot fire, while neuron σ4 also containing 3 spikes will eventually send
out 1 spike. Thus, the output of the system in this case is {1}.

2. Neuron σ3 fires before neurons σ1, σ4. Spike from neuron σ3 reaches σout. From
here, any spike passing through σ3 will be lost, with either 1 or 2 spikes getting
to σout from neuron σ4. Consequently, the output of the system will be {2, 3}.

3. Neuron σ4 fires before neurons σ1, σ3. Thus, 1 spike reaches neuron σout from
σ4. If σ1 fires before σ3, this neuron becomes blocked and cannot fire any more,
with 1 spike more coming to neuron σout from σ4. In any other case, σ3 sends
another spike to σout and loses the next spike that receives, while σ4 getting
1 spike that will be sent to σout eventually. Consequently, the output of the
system will be {2, 3}.

4. Neurons σ1, σ3 fire together before σ4. In this case, σ3 sends 1 spike to σout,
while the next spike coming from σ1 will be lost. Finally, σ4 consumes 3 spikes
and sends 1 spike to σout. Consequently, the output of the system will be {2}.

5. Neurons σ1, σ4 fire together before σ3. In this case, 1 spike reaches σout from
σ4, while σ3, containing 3 spikes, gets blocked. Finally, σ4 sends 1 spike to
σout. Consequently, the output of the system will be {2}.

6. Neurons σ3, σ4 fire together before σ1. In this case, 2 spikes reach σout from
σ3, σ4 each. Following this σ1 fires 1 spike that reaches σ3, σ4. Spike in σ3 will
be lost while the one in σ4 will reach σout. Consequently, the output of the
system will be {3}.

7. Neurons σ1, σ3, σ4 fire together. This case is similar to the previous one.
Consequently, the output of the system will be {3}.

As a result of all of this, output of the system in this case is {1, 2, 3}.
A table showing the results of the execution of the system after 100 simulations

with MeCoSim can be found below.

spikes ratio

1 17%

2 38%

3 25%

4 0%

Table 2. Ratio of output spikes for case b)

Case c) Loc = {{σ1, σ3}}.
In this scenario, we can consider the following cases:

a) Neuron σ2 fires before σ1. In this case, after neuron σ2 fires, σ1 contains 2
spikes, being unable to continue working, neuron σ3 contains 1 spike, that will

270 L.F. Maćıas-Ramos et al.

be lost, and σ4 contains 1 spike, that will eventually reach σout. Thus, in this
case the output of the system is {1}.

b) Neurons σ1, σ2 fire at the same time. In this case, after the firing, σ1 contains
1 spike, while σ3, σ4 contain 2 spikes each. From here, we have the following
cases:

1. Neurons σ1, σ3 fire before σ4. In this case, neuron σout gets 1 spike from
σ3, while neuron σ1 sends 1 spike to σ3, that will be lost, and σ4. Having
3 spikes, σ4 sends 1 spike to σout. Consequently, the output of the system
will be {2}.

2. Neurons σ1, σ3 fire at the same time as σ4. This case is similar to the
previous one, with σout getting 2 spikes from σ4. Consequently, the output
of the system will be {3}.

3. Neurons σ1, σ3 fire after σ4. This case is similar to the previous one.
Consequently, the output of the system will be {3}.

c) Neuron σ1 fires before σ2. In this case, after neuron σ1 fires, σ2, σ3, σ4 contain
only 1 spike each. We have the following cases from here:

1. Neuron σ2 fires before any other neuron. In this case, neuron σ1 gets 1
spike, while neurons σ3, σ4 contain 2 spikes each. As we showed before, the
output of the system will be {2, 3}.

2. Neuron σ3 fires before any other neuron. This spike is lost. From this point,
all the spikes passing through σ3 will be lost, with σ4 being able to fire up
to 3 times. Consequently, the output of the system will be {1, 3}.

3. Neuron σ4 fires before any other neuron. This spike reaches σout. At this
point, σ2, σ3 contain 1 spike each. From here:
– Neuron σ2 fires first. At this point, σ1, σ4 contain 1 spike each, while σ3

contains 2 spikes. The following cases are possible:
* Neurons σ1, σ3 fire before σ4. In this case, σ3 only sends 1 spike to

σout (others are lost), while σ4 consuming 2 spikes and sending 1
spike to σout. Consequently, the output of the system will be {3}.

* Neurons σ1, σ3 fire at the same time as σ4. This case is similar
to the previous one with σ4 sending an additional spike to σout.
Consequently, the output of the system will be {4}.

* Neurons σ1, σ3 fire after σ4. This case is similar to the previous one.
Consequently, the output of the system will be {4}.

– Neuron σ3 fires first, resulting in 1 spike being lost. After neuron σ2
fires, σ1, σ3, σ4 contain 1 spike each. The following cases are possible:
* Neurons σ1, σ3 fire before σ4. In this case, all spikes involving σ3 are

lost, while σ4 ends consuming 2 spikes and sending 1 spike to σout.
Consequently, the output of the system will be {2}.

* Neurons σ1, σ3 fire at the same time as σ4. This case is similar
to the previous one with σ4 sending an additional spike to σout.
Consequently, the output of the system will be {3}.

* Neurons σ1, σ3 fire after σ4. This case is similar to the previous one.
Consequently, the output of the system will be {3}.

Extending SNP Systems Simulation Modes in P-Lingua 271

– Neuron σ2, σ3 fire at the same time. This case similar to the previous
one. Consequently, the output of the system will be {2, 3}.

4. Neurons σ2, σ3 fire together and before σ4. Spike in σ3 is lost, while σ2
sends 1 spike to σ1, σ3, σ4, resulting in σ1, σ3 containing 1 spike each while
σ4 contains 2 spikes. The spike in σ3 will be lost in any case. If σ1, σ3 fire
before σ4, 2 spikes are stored in σ4, thus, only 1 spike is sent to σout. In
other case, 2 spikes reach σout. Consequently, the output of the system will
be {1, 2}.

5. Neurons σ2, σ4 fire together and before σ3. In this case, 1 spike reaches σout
from σ4, while the spike sent by σ2 results in σ1, σ4 containing 1 spike each
while σ3 contains 2 spikes. This case is analogous to the previous one taking
into account that the first rule applied in σ3 is the firing rule. Consequently,
the output of the system will be {3, 4}.

6. Neurons σ3, σ4 fire together and before σ2. Spike in σ3 is lost, while spike
in σ4 reaches σout. After σ2 fires, σ1, σ3, σ4 contain 1 spike each. Spikes
passing through σ3 will be lost and either another 1 or 2 spikes can get to
σout from σ4. Consequently, the output of the system will be {2, 3}.

7. Neurons σ2, σ3, σ4 fire together. This case is analogous to the previous one.
Consequently, the output of the system will be {2, 3}.

As a result of all of this, output of the system in this case is {1, 2, 3, 4}.
A table showing the results of the execution of the system after 100 simulations

with MeCoSim can be found below.

spikes ratio

1 35%

2 29%

3 33%

4 3%

Table 3. Ratio of output spikes for case c)

Case d) Loc = {{σ1, σ2}, {σ3, σ4}}.
Neurons σ1, σ2 will fire at the same moment (due to the local-synchronization)

sending 2 spikes to neurons σ3, σ4 respectively. At that moment, neuron σ1 receives
1 spike from neuron σ2. With 2 spikes inside, neurons σ3, σ4 will fire at the same
moment. If they fire before neuron σ1, then σout receives 2 spikes first, and then 1
spike more from σ4 (the spike in σ3 is lost), thus receiving in total 3 spikes. The
case in which all neurons fire at the same time is similar to the previous one. To
conclude, if neuron σ1 fires before neurons σ3, σ4, then neuron σ3 cannot fire, and
σ4 will consume 3 spikes and send 1 spike to σout.

Consequently, output of the system is {1, 3}.
A table showing the results of the execution of the system after 100 simulations

with MeCoSim can be found below.

272 L.F. Maćıas-Ramos et al.

spikes ratio

1 15%

2 0%

3 85%

4 0%

Table 4. Ratio of output spikes for case d)

Conclusion
The computation result of Π is {1, 2, 3, 4}.

4.2 Limited asynchronous SN P systems

Consider a limited asynchronous SN P system Π ′ shown in Figure 2.

a

a → a; 5

1

a
a → a

2

a → a

a
2 → a

out

Fig. 2. An example of a limited asynchronous SN P system Π ′

The system Π consists of three neurons with labels 1, 2 and out. Initially,
neurons σ1 and σ2 have one spike inside with σout containing no spike. The formal
definition of system Π ′ is as follows:

Π = ({a}, σ1, σ2, σout, b, syn), where

• σ1 = (1, R1) with R1 = {a→ a; 5};
• σ2 = (1, R2) with R2 = {a→ a};
• σout = (0, Rout) with Rout = {a→ a, a2 → a};
• b is a single upper bound on time intervals, valid for all rules;
• syn = {(1, out), (2, out)};
• out indicates the output neuron.

To complete the definition of the system, specifying upper bound b ≥ 2 is
required. Two cases are considered:

a) b = 2
a) b = 4

Extending SNP Systems Simulation Modes in P-Lingua 273

The P–Lingua code corresponding to this system can be found at:
http://www.p-lingua.org/examples/SNPSLimited.pli.

This code is parameterised, allowing execution of each one of the twoΠ ′ system
variants depending on parameter b.

Next, we are going to analyse functioning of system Π ′ for each one of the
aforementioned cases.

Case a) b = 2.
Initially, neurons σ1, σ2 have 1 spike inside. Neuron σ2 will fire no later than

step b = 2, sending 1 spike to neuron σout. With 1 spike inside, σout will fire before
step 2b = 4, sending 1 spike to the environment. Neuron σ1 can fire at step 1 or 2
(due to the fact that the interval bound b is 2), and sends 1 spike to neuron σout
at step 6 or 7. In this way, neuron σout will emit 2 spikes into the environment.

Consequently, output of the system is {2}.
A table showing the results of the execution of the system after 100 simulations

with MeCoSim can be found below.

spikes ratio

1 0%

2 100%

3 0%

4 0%

Table 5. Ratio of output spikes for case a)

Case b) b = 4.
Initially, neurons σ1, σ2 have 1 spike and will fire at any step no later than step

b = 4. Following this, if neuron σ1 fires at step 1, it sends 1 spike to neuron σout
at step 6 and so on. On the other hand, if neuron σ2 fires at step 4, it sends 1 to
neuron σout at such step. In this case, after neuron σout receives the first spike at
step 4, it will fire at any step no later than step 8 (due to the fact that the upper
bound b is 4). As a result of all of this, we have to cases:

a) If σout stays inactive later than step 6, it will accumulate 2 spikes inside, and
send 1 spike into the environment.

b) If σout fires before step 6, it will send 2 spikes to the environment.

In this condition, The system can generate numbers 1 and 2. In a similar way
other computations of the system can be checked.

Consequently, output of the system is {1, 2}.
A table showing the results of the execution of the system after 100 simulations

with MeCoSim can be found below.
Therefore, the computation result of Π ′ is {1, 2}.

274 L.F. Maćıas-Ramos et al.

spikes ratio

1 2%

2 98%

3 0%

4 0%

Table 6. Ratio of output spikes for case b)

5 Simulation Algorithm

In what follows a P–Lingua based simulation algorithm for LASNPS and
ASNPSLS is shown in pseudo-code form. This algorithm is a revision from the
one included in the foundational paper on simulating SN P systems in P–Lingua
[9]. Consequently, it generates one possible computation for a SN P system with
an initial configuration C0 containing n neurons m1, . . . ,mn. Let us recall that
when working with recognizer P systems all computations yield the same answer
(confluence).

The simulation algorithm is structured in six stages:
I. Initialization
In this stage the data structures needed to perform the simulation are initialized.
II. Selection of rules
In this stage the set of rules to be executed in the current step is calculated.
III. Build execution sets
In this stage the rules to be executed are split into different sets, according to their
kind.
IV. Execute division and budding rules
In this stage division and budding rules are executed. The execution is performed
in two phases: In the first one, new neurons are calculated out of existing neurons
by applying budding and division rules. In the second one additional synapses are
introduced according to the synapse dictionary.
V. Execute spiking rules
In this stage execution of spiking rules is performed.
VI. Ending
In this stage the current configuration is updated with the newly calculated one
and the halting condition is checked (no more rules are applicable).

The simulation algorithm follows.

I. Initialization

1. Let Ct be the current configuration
2. Let Msel ≡ ∅ be a set of membranes who are susceptible of executing a rule in

the current computation step
3. Let m0 be a virtual membrane (with label 0) representing the environment

II. Selection of rules

Extending SNP Systems Simulation Modes in P-Lingua 275

1. Each membrane mi stores the following elements:
- last rule ri selected to be executed in a previous step for that membrane (initially
the void rule)
- an integer decreasing-only counter di, that stores the number of steps left for
the membrane to open and fire in case ri is a firing rule (initially zero).
- an integer decreasing-only counter bi, that stores the number of steps left for
the membrane to decide if its current selected rule can be freely chosen to fire or
not (initially zero; if zero then it should fire in this step).
For each membrane mi, do
a) If mi is closed as a result of being involved in the execution of a budding or

division rule, then open mi (let di = 0) and clear its rule ri
b) If the simulator is working on limited asynchronous mode and each one of the

following statements is true
i. bi > 0
ii. ri is not void
iii. ri is active
iv. ri can be applied over mi

Then
i. Decrease the counter bi
ii. Add mi to Msel

iii. Go to process the next membrane
c) If mi is closed as a result of being involved in the execution of a firing rule

(thus ri is a firing rule) then
i. Decrease the counter di
ii. Add mi to Msel

iii. Go to process the next membrane
d) Let Si ≡ ∅ be the set of possible rules to be executed over mi

e) For each rule rj with label j do
i. If rj is active and can be executed over mi then add rj to Si

f) If Si is empty then
i. Set bi to zero
ii. Go to process the next membrane

g) Select non deterministically a rule rk from Si

h) Set rk as the new selected rule for mi

i) If rk is a firing rule, update the counter di accordingly
j) Restart the counter bi to the global upper bound b
k) Add mi to Msel

l) Clear Si

2. If Msel is not empty and the simulator operates in Sequential Mode then
a) Select a membrane ms from Msel according to the Sequential Mode
b) Clear Msel

c) Add ms to Msel

III. Build execution sets

276 L.F. Maćıas-Ramos et al.

1. Let Division ≡ ∅ be the set that stores the membranes having a division rule
selected to be executed in the current step

2. Let Budding ≡ ∅ be the set that stores the membranes having a budding rule
selected to be executed in the current step

3. Let Spiking ≡ ∅ be the set that stores the membranes having a spiking rule
selected to be executed in the current step (or susceptible to be executed in the
case of firing rules with delays)

4. Let Available ≡ ∅ be the set that stores the membranes having a rule selected to
be executed in the current step

5. Let toF ire ≡ ∅ be the set that stores the membranes having a rule that will be
fired in the current step

6. Let toF ireAux ≡ ∅ be an auxiliary set
7. Let locProc ≡ ∅ be the set that stores the membranes that have been processed

in terms of local synchronizing (that is, each one of their neighbours have been
marked to fire immediately and have been processed also)

8. For each membrane mi from Msel do
a) Let ri be the selected rule for mi

b) If ri is a division rule then add mi to Division
c) If ri is a budding rule then add mi to Budding
d) If ri is a spiking rule then add mi to Spiking
e) Addmi to toF ireAux if and only if the call to procedureDecideToF ire(mi, ri)

yields true.
f) If the simulator is operating in asynchronous mode with local synchronization

then add mi to Available
9. Add all membranes from toF ireAux into toF ire
10. If the simulator is operating in asynchronous mode with local synchronization then

for each membrane mi from toF ireAux do
a) Call the recursive procedure Process(mi, Available, locProc, toF ire)

Procedure DecideToF ire(mi, ri)

1. Let mi, ri be input/output arguments declared consistently as specified above
2. If ri is a budding rule or a division rule, then return the result of the call to

procedure DecideAsynch(mi, ri)
3. If ri is a firing rule or a forgetting rule, then

a) Let d be the delay associated to rule ri
b) Let s be the number of steps left for membrane mi to become open
c) If d = 0 then return the result of the call to procedure DecideAsynch(mi, ri)
d) Else

i. If d = s return the result of the call to procedure DecideAsynch(mi, ri)
ii. Else return true

Procedure DecideAsynch(mi)

1. Let mi be input/output argument declared consistently as specified above
2. Return true if and only if one of the following statements is true

Extending SNP Systems Simulation Modes in P-Lingua 277

a) the simulator is operating in synchronous mode
b) the simulator is operating in “Standard” asynchronous mode and the truth

value “true” is obtained with a probability equal to 0.5
c) the simulator is operating in limited asynchronous mode and either

c.1)the counter bi associated to mi is equal to zero
c.2)otherwise the truth value “true” is obtained with a probability equal to 0.5

and, subsequently, the counter bi associated to mi is set to zero
d) the simulator is operating in asynchronous mode with local synchronization

and the truth value “true” is obtained with a probability equal to 0.5

Recursive procedure Process(mi, Available, locProc, toF ire)

1. Let mi, Available, locProc, toF ire be input/output arguments declared consis-
tently as specified above

2. If mi ∈ locProc then exit
3. Else

a) Add mi into locProc
b) If mi ∈ Available then

i. Add mi into toF ire
ii. Let Affected be the set containing all the membranes that should

immediately fire in case mi fires
iii. For each membrane mj ∈ Affected, do

A. Call the recursive procedure Process(mj , Available, locProc, toF ire)

IV. Execute division and budding rules

1. Let Div ≡ ∅ be the set that stores the membranes that are generated as a result
of applying a division rule in the current step

2. Let Bud ≡ ∅ be the set that stores the membranes that are generated as a result
of applying a budding rule in the current step

3. For each membrane mi from Division do
a) If mi /∈ toF ire then go to process the next membrane
b) Let ri be the selected rule for mi: [E]i → []j ||[]k
c) Relabel mi with the j label, thus from now on we refer to mj

d) Create a new membrane mk and close it
e) For each incoming edge from some membrane mp to mj create a new edge

from mp to mk

f) For each outgoing edge from mj to some membrane mp create a new edge
from mk to mp

g) Add mj and mk to Div
4. For each membrane mi from Budding do

a) If mi /∈ toF ire then go to process the next membrane
b) Let ri the selected rule for mi: [E]i → []i/[]j
c) Create a new membrane mj and close it
d) For each outgoing edge from mi to some membrane mp do

i. Create a new edge from mj to mp

278 L.F. Maćıas-Ramos et al.

ii. Remove the edge from mi to mp

e) Create a new edge from mi to mj

f) Add mj to Bud
5. For each membrane mi from Div create new edges involving mi according to the

synapse dictionary if necessary
6. For each membrane mi from Bud create new edges involving mi according to the

synapse dictionary if necessary

V. Execute spiking rules

1. For each membrane mi from Spiking do
a) If mi /∈ toF ire then go to process the next membrane
b) If mi is closed then go to process the next membrane
c) Let ri be the selected rule for mi

d) If ri is a firing rule of the form [E/ac → ap; d]i then
i. Remove c spikes from the multiset of mi

ii. For each membrane mj connected to mi by an edge going from mi to
mj , add p spikes to the multiset of mj if and only if mj is open

e) If ri is a forgetting rule of the form [E/ac → λ]i then remove c spikes from
the multiset of mi

VI. Ending

1. Let Ct+1 = Ct

2. If Msel is not empty then goto I

6 Conclusions and Future Work

In this paper we have shown very recent developments in the field of simulators
for SN P systems, concretely P–Lingua based ones. New variants are presented,
integrating limited and locally synchronized asynchronous modes. In this sense,
a new release of P–Lingua, that extends the previous SN P systems simulator
has been developed, incorporating the ability to work with the new implemented
models. This new simulator has been included into the library pLinguaCore and
tested by simulating selected examples provided by experts and referred in Section
4.

At the moment, an extension to incorporate fuzzy reasoning SN P systems is
in development. Once this work is done, a desirable feature would be to provide
a mechanism for defining arbitrary computable functions, thus fully simulating
SNPSFA. Additional elements such as weights might also be incorporated. Also
connecting pLinguaCore with existing CUDA-based simulators in being considered
at present.

Extending SNP Systems Simulation Modes in P-Lingua 279

Acknowledgements

The authors acknowledge the support of the project TIN2012–37434 of the
Ministerio de Ciencia e Innovación of Spain, cofinanced by FEDER funds. T.
Song an L. Pan were supported by National Natural Science Foundation of China
(61033003, 91130034, and 61320106005).

References

1. Cabarle, F.G., Adorna, H.N., Mart́ınez-Del-Amor, M.A.: Simulating spiking neural
P Systems without delays using GPUs. IJNCR 2(2), 19–31 (2011)

2. Cabarle, F.G., Adorna, H.N., Mart́ınez-Del-Amor, M.A., Pérez-Jiménez, M.J.:
Spiking neural P System simulations on a high performance GPU plat-
form. Lecture Notes in Computer Science 7017, 99–108 (10/2011 2011),
http://www.springerlink.com/content/f490qnv027884g27/, algorithms and Ar-
chitectures for Parallel Processing ICA3PP Workshops, (ADCN 2011)

3. Cabarle, F.G., Adorna, H.N., Mart́ınez-Del-Amor, M.A., Pérez-Jiménez,
M.J.: Improving GPU simulations of spiking neural P Systems. Romanian
Journal of Information Science and Technology 15, 5–20 (06/2012 2012),
http://www.imt.ro/romjist/Volum15/Number15 1/cuprins15 1.htm

4. Cavaliere, M., Egecioglu, m., Ibarra, O.H., Ionescu, M., Paun, G.,
Woodworth, S.: Asynchronous spiking neural p systems: Decidability
and undecidability. In: Garzon, M.H., Yan, H. (eds.) DNA. Lecture
Notes in Computer Science, vol. 4848, pp. 246–255. Springer (2007),
http://dblp.uni-trier.de/db/conf/dna/dna2007.html#CavaliereEIIPW07

5. Dı́az-Pernil, D., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A P-
Lingua programming environment for membrane computing. In: Corne, D.W., Frisco,
P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane Computing.
Lecture Notes in Computer Science, vol. 5391, pp. 187–203. Springer (2008)

6. Garćıa-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I., Pérez-Jiménez,
M.J., Riscos-Núñez, A.: An overview of P-Lingua 2.0. In: Păun, G., Pérez-Jiménez,
M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane
Computing. Lecture Notes in Computer Science, vol. 5957, pp. 264–288. Springer
(2009)

7. Gheorghe, M., Paun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.): Membrane
Computing - 12th International Conference, CMC 2011, Fontainebleau, France,
August 23-26, 2011, Revised Selected Papers, Lecture Notes in Computer Science,
vol. 7184. Springer (2012)

8. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P Systems. Fundam. Inform.
71(2-3), 279–308 (2006)

9. Maćıas-Ramos, L.F., Pérez-Hurtado, I., Garćıa-Quismondo, M., Valencia-Cabrera,
L., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A P-Lingua based simulator for spiking
neural P Systems. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan,
S. (eds.) Int. Conf. on Membrane Computing. Lecture Notes in Computer Science,
vol. 7184, pp. 257–281. Springer (2011)

10. Maćıas-Ramos, L.F., Pérez-Jiménez, M.J.: Spiking Neural P Systems with Functional
Astrocytes, 12th international conference on Membrane Computing, accepted paper

280 L.F. Maćıas-Ramos et al.

11. Maćıas-Ramos, L.F., Pérez-Jiménez, M.J.: On recent developments in p-lingua based
simulators for spiking neural p systems. Asian Conference on Membrane Computing
pp. 14–29 (10/2012 2012)

12. Pan, L., Wang, J., Hoogeboom, H.J.: Limited asynchronous spik-
ing neural p systems. Fundam. Inf. 110(1-4), 271–293 (Jan 2011),
http://dl.acm.org/citation.cfm?id=2362097.2362116

13. Păun, G.: Computing with membranes (P Systems): An introduction. In: Current
Trends in Theoretical Computer Science, pp. 845–866 (2001)

14. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane
Computing. Oxford University Press, Inc., New York, NY, USA (2010)

15. Research Group on Natural Computing, University of Seville: The P–Lingua website.
http://www.p-lingua.org

16. Song, T., Pan, L., Păun, G.: Asynchronous spiking neural p sys-
tems with local synchronization. Inf. Sci. 219, 197–207 (Jan 2013),
http://dx.doi.org/10.1016/j.ins.2012.07.023

Revisiting Sevilla Carpets: A New Tool for the
P-Lingua Era

David Orellana-Mart́ın, Carmen Graciani, Miguel Ángel Mart́ınez-del-Amor,
Agust́ın Riscos-Núñez, Luis Valencia-Cabrera

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
dorelmar@gmail.com, {cgdiaz, mdelamor, ariscosn, lvalencia}@us.es

Summary. Sevilla Carpets have already been used to compare different solutions of
the Subset Sum problem: either designed in the framework of P systems with active
membranes (both in the case of membrane division and membrane creation), and also
another one in the framework of tissue-like P systems with cell division.

Recently, the degree of parallelism and other descriptive complexity details have been
found to be relevant when designing parallel simulators running on GPUs.

We present here a new way to use the information provided by Sevilla carpets, and
a script that allows to generate them automatically from P-Lingua files.

1 Introduction

P systems are massively parallel computing devices, in the sense that their evolu-
tion eventually involves a great number of symbol-objects, membranes and rules.
Furthermore, if we work with models where the number of membranes can increase
along the computation, via creation or division of membranes, then it becomes
specially difficult to describe the complexity of the computational process. Such
models have actually been investigated largely in the literature, as their ability to
generate an exponential number of membranes in polynomial time (making use
of their intrinsic parallelism) makes them powerful tools for solving NP-complete
problems. Indeed, several efficient solutions to these type of problems have been
presented (see, e.g. [6, 16, 17, 18] or [19]).

The complexity in time (number of cellular steps) of the solutions obtained in
this way is polynomial, but it is clear that time is not the unique variable that
we need to consider in order to evaluate the complexity of such processes. This
fact has been observed previously in the literature of P systems. The first paper
related to this issue was [2], where G. Ciobanu, Gh. Păun and Gh. Ştefănescu
presented a new way to describe the complexity of a computation in a P system,

282 D. Orellana-Mart́ın et al.

the so-called Sevilla Carpet, which is an extension of the notion of Szilard language
from grammars to the case when several rules are used at the same time.

In [8], the problem was revisited, introducing new parameters for the study of
the descriptive complexity of P systems. Besides, several examples of a graphical
representation were provided, and the utility of these parameters for comparing
different solutions to a given problem was discussed. In that paper two different
solutions of the Subset Sum problem, running on the same instance, were compared
by using these parameters.

Sevilla Carpets have been adapted to tissue-like models, in order to describe
the complexity of their computations (see [4]). There exists also an extension of
the definition of Sevilla carpets to a four-dimensional manifold (see [10]) which
can be used for a more verbose description of the complexity of a computation
of a P system. The graphical representation of this four-dimensional manifold is
carried out via projections on three-dimensional spaces.

Comparing two cellular designs that solve the same problem is not an easy
task, as there are many ingredients to be taken into account. Note that given
two Sevilla Carpets corresponding to P systems from different models designed
to solve a decision problem, we can obtain detailed information about two single
computations, but this is not enough to compare the efficiency of the two models
in general.

Nonetheless, the numerical parameters obtained from these two Sevilla Carpets
can give us some hints to compare the corresponding designs of solutions to the
problem.

The paper is organized as follows. First, we recall the definition of the Sevilla
carpets, together with a list of parameters associated with them. Then, we de-
scribe the tool that allows to generate Sevilla carpets automatically from P-Lingua
files. Several examples are displayed, and we conclude the paper by providing an
overview on the future directions of this ongoing work.

2 Sevilla Carpets

As pointed out in the introduction, the evolution of a P system is usually a too
complex process to be evaluated only by the classical parameters from computa-
tional complexity measure, time and space. For instance, we are often interested
in other types of descriptive complexity information: size of the alphabet, number
of membranes (initially in the system or obtained during the computation), num-
ber of rules, etc. Another interesting parameter, especially when running software
simulations, is the number of elementary operations (applications of rules) that
are performed during the computation.

A possible way to describe the complexity of the evolution of a P system is by
means of Sevilla carpets. They were presented in [2] as an extension of the Szilard
language, which consists of all strings of rule labels describing correct derivations
in a given grammar (see e.g., [11, 14] or [20]). The original framework for Szilard

Revisiting Sevilla Carpets: A New Tool for the P-Lingua Era 283

language is the Chomsky hierarchy of grammars, where only one rule is used in
each derivation step and, therefore, a derivation can be represented in a natural
way as the string of labels corresponding to the used rules (the rule labelling is
supposed to be one-to-one, we refer again to [2] for details).

Sevilla carpets are a Szilard-way to describe a computation in a P system,
capturing via a bi-dimensional writing the fact that in each evolution step a P
system can use not just a single rule, but a multiset of them. More precisely, the
(Sevilla) carpet associated with a computation of a P system is a table with the
time on the horizontal axis and the rules explicitly mentioned along the vertical
axis; then, for each rule, in each step, a piece of information is given.

Ciobanu, Păun and Ştefănescu propose five variants for the Sevilla Carpets:

1. Specifying in each time unit for each membrane whether at least one rule was
used in its region or not;

2. Specifying in each time unit for each rule whether it was used or not;
3. Mentioning in each time unit the number of applications of each rule; this is

0 when the rule is not used and can be arbitrarily large when the rules are
dealing with arbitrarily large multisets;

4. We can also distinguish three cases: that a rule cannot be used, that a rule can
be used but it is not because of the nondeterministic choice and that a rule is
actually used;

5. A further possibility is to assign a cost to each rule, and to multiply the number
of times a rule is used with its cost.

In what follows, we shall focus on the third variant (studied in [8]), that is, in
each cell of the table we specify the number of applications of the corresponding
rule in the considered step. Note that there is a huge amount of data contained
in a Sevilla carpet, describing a computation of a P system, but these data are
presented in a rough way, just a listing of which rules were applied at each step
and how many times.

In order to facilitate reading the whole table just in one glance, we can obtain
a three-dimensional representation of it in a natural way, expressing the numbers
in each cell over a third axis (see Figure 1).

However, such a three-dimensional picture may not provide significant infor-
mation by itself, specially in the case of comparing several carpets. In order to be
able to “evaluate” the massive amount of information contained in the table of
the Sevilla carpet, we need to extract some figures or statistics. The first natural
parameters related with Sevilla carpets were defined in [2]: the sum of all the cells
in the table (weight) and the total amount of cells in the table (surface). It is
clear that the values of the weight and the surface of a Sevilla carpet give a gen-
eral intuition on the complexity of the underlying computation. On one hand, the
weight measures up the total number of applications of rules along the computa-
tion, which corresponds to the intuitive notion of “cost”. On the other hand, the
surface tells us about the space× time complexity of the system that is carrying
out the computation, as the number of rows is the number of rules of the system

284 D. Orellana-Mart́ın et al.

Fig. 1. Sevilla Carpets associated with a solution to SAT using membrane division
(running on four different instances)

and the number of columns is the number of cellular steps that the computation
performs.

2.1 Parameters for the Descriptive Complexity

The following parameters have been proposed in the literature:

• Weight: It is defined in [2] as the sum of all the elements in the carpet, i.e.,
as the total number of applications of rules along the computation. The weight
measures up the total number of applications of rules along the computation,
which corresponds to the intuitive notion of “cost” of the computation.

• Surface: It is the multiplication of the number of steps by the total number
of the rules used by the P system, was also introduced in [2]. It can be con-
sidered as the potential size (space× time bounds) of the computation. From
a computational point of view we are not only interested on P systems which
halt in a small number of steps, but in P systems which use a small amount
of resources. The surface measures the resources used in the design of the P
system. Graphically, it represents the surface where the Sevilla Carpet lies on.

Revisiting Sevilla Carpets: A New Tool for the P-Lingua Era 285

• Height: Introduced in [8], the height of a Sevilla carpet captures the intuition
of a peak in the computation, and it is defined as the maximum number of
simultaneous (in one step) applications of any rule all over the computation.
Graphically, it represents the highest point reached by the Sevilla carpet.

• Average Weight: It is calculated by dividing the weight to the surface of
the Sevilla Carpet. This concept provides a relation between both parameters
which gives an index on how the P system exploits its massive parallelism. This
parameter was also introduced in [8].

• Variance: It is calculated as the sum of the squared differences between the
elements of the carpet and the average weight, divided by the surface.
This parameter was introduced in [10], and it indicates if the points are near
or far from the average. That is, a high variance value indicates that there is
a very large number of applications of rules performed in a few steps in the
computation, while in the rest of the steps the activity can be considered low
(see the peaks and valleys in Figure 1). On the other hand, a low variance value
leads to think that the work load is more balanced.

One of the motivations of this paper is to facilitate the use of the information
provided by the Sevilla carpets in the context of GPU-based simulators for P sys-
tems (see e.g. [1, 12, 13]). It has been observed that the speed-up obtained by
such parallel simulations (with respect to standard sequential simulators) highly
depends on how distributed the rule applications are during the simulated compu-
tation. Informally speaking, the underlying intuition agrees with the observation
from [9]:

a bad design of a P system consists of a P system which does not exploit
its parallelism, that is, working as a sequential machine: in each step only
one object evolve in one membrane whereas the remaining objects do not
evolve. On the other hand, a good design consists of a P system in which
a huge amount of objects are evolving simultaneously in all membranes. If
both P systems perform the same task, it is obvious that the second one is
a better design that the first one.

More precisely, the notion of GP-systems (GPU-oriented P systems) is intro-
duced in [12], and also some specific parameters related to the performance of
GPU simulations:

• Density of objects per membrane: general purpose parallel simulators
usually save threads for the whole alphabet, so the more different objects are
in the membrane, the higher thread usage.

• Rule intensity: some designs include rules associated with auxiliary objects
which are only applied once in the whole computation (e.g. counters or syn-
chronization routines). This cannot be parallelized.

• Communication among membranes: the skin is executed on the CPU,
and every time we need to communicate objects through PCI express bus, this
process slows down the process.

286 D. Orellana-Mart́ın et al.

2.2 Projections of Sevilla Carpets

The graphical representation in 3D of the Sevilla carpet of a computation provides
an intuitive representation of the computational effort associated with each rule
in each step. Nevertheless, sometimes it is better to have a more concise represen-
tation of this effort. In these cases we can consider the projections of the Sevilla
carpet. These projections are obtained in two different ways:

• By considering the whole number of applications of rules for each step. If the
application of a rule has an associated cost, this projection will give information
about the whole cost of each step.

• By considering for a given rule the whole number of steps in which it has
been applied. This provides information about the utility of a rule: if we have
designed a solution of a problem where several rules are used a low number of
times along the computation, we can consider to replace these rules by another
rule with the same function.

3 Tool description

In this paper we present a tool that automatically generates Sevilla carpets. The
script receives the description of a P system in P-Lingua syntax (a plain text file
with .pli extension, we refer to [5, 21] for details), and produces a jpg image of
a 3D representation of the Sevilla Carpet associated to (one computation of) the
given P system.

In this first version, we have used python as programming language, and gnuplot
for producing the graphical output.

The tool works as follows: first, pLinguaCore library computes a single com-
putation, then the python script parses the results and generates a matrix with
the numerical data corresponding to the points of the Carpet. Finally, gnuplot is
called and it renders the matrix to a 3D graph that represents the Sevilla carpet
associated with this computation.

Note that this represents a notable improvement from previous works, where
the process was done manually, after processing the output of simulators for P sys-
tems with active membranes written in Prolog ([3, 7]). Now it became a much
faster and simpler process, we avoid noise in data due to mistakes when manually
building the matrix, and we can cover all the models of P systems included in the
P-Lingua framework.

3.1 The algorithm

The parser is designed to work on a text file generated by pLinguaCore library
containing verbose information about a computation.

More precisely, the file describes the sequence of configurations, and a list of
which rules were applied at each step, and how many times. The format used in
such file is as follows:

Revisiting Sevilla Carpets: A New Tool for the P-Lingua Era 287

STEP k:
Rules selected for MEMBRANE ID: x, Label: y, Charge: z
n * #r q
...

where:

• k represents the current step.
• r is the label (usually a number) of the applied rule.
• q is the rule itself.
• n represents the number of times that rule r is applied in step k.

We have thus all the necessary information to generate a matrix M with the
data to be plotted.

The parser reads the whole file, paying attention to the lines that have a “Step”
statement, or an applied rule, and ignoring the rest.

Whenever a Step is found, we move to the next row of the matrix, and whenever
a rule line is read, we apply the next:

Mcurrent step−1 ,r−1 = Mcurrent step−1 ,r−1 + n

If the rule r, isn’t applied in the step k, then we can do:

Mk−1 ,r−1 = 0

From this matrix, we can successfully obtain the x axis (steps, the rows of the
matrix), the y axis (rules, columns of the matrix) and the z axis (number of times,
values of the matrix).

We can then, with gnuplot generate a graph with the data obtained, and create
the Sevilla Carpet.

STEP: 3

Rules selected for MEMBRANE ID: 1, Label: 2, Charge: 0

1 * #109 d{1}[]’2 --> [d{2}]

1 * #112 [s{1,1} --> s{1,2}]’2

Rules selected for MEMBRANE ID: 2, Label: 2, Charge: 0

1 * #109 d{1}[]’2 --> [d{2}]

1 * #113 [s{2,1} --> s{2,2}]’2

Fig. 2. A few lines extracted from a computation file

In the example shown in Figure 2, for step 3 we get the following values in the
table: (3, 109, 2), (3, 112, 1), (3, 113, 1), and (3, r, 0) for any other rule label r.

288 D. Orellana-Mart́ın et al.

4 Examples

We have done some examples, using .pli files corresponding to solutions to SAT,
KNAPSACK, PARTITION and SUBSETSUM designed by means of families of
P systems with active membranes.

Here are the results of some of the computations:

Fig. 3. SAT simulation

Fig. 4. KNAPSACK simulation

Revisiting Sevilla Carpets: A New Tool for the P-Lingua Era 289

Fig. 5. PARTITION simulation

Fig. 6. SUBSETSUM simulation

290 D. Orellana-Mart́ın et al.

5 Final Remarks and Future Work

We would like to remark that the information extracted from a Sevilla carpet
(and from its associated parameters) should always be interpreted being aware
that it only refers to one computation. Nevertheless, we still believe that it is
a useful instrument that can be used for example as a guide to find possible
refinements on the definition of the simulated P system (e.g. in order to “translate”
it into an equivalent GP system), or as an assistant for designing ad-hoc simulators
for particular families of P systems (e.g. solutions to hard problems using active
membranes)1.

The next improvement to be added in the near future is to get the values of all
parameters together with the graphical 3D representation. Some other customiza-
tion possibilities can also be considered for the script, like adding options for which
kind of Carpet is wanted.

Another interesting possibility is to plug a Sevilla carpet module (adapting the
script presented here) into the pLinguaCore library, in such a way that the matrix
can be generated on-the-fly as the computation is being simulated, thus avoiding
parsing the output file. We are also considering to bring the idea of the script
into MeCoSim as an extension. MeCoSim [15, 22] is a general purpose software
tool to model, design, simulate, analyze and verify different types of models based
on P systems (specially intended for PDP systems). It is a highly customizable
tool, allowing to easily configure ad-hoc GUIs for each case study to be modeled.
Therefore, it seems reasonable to offer a Sevilla carpet as one possible output that
the user can be interested on, together with some other descriptive complexity
details (for example, number of membranes generated during the computation).

In the case of probabilistic P systems, it might be interesting to extract sev-
eral samples of computations and then use the average values in order to generate
the Sevilla carpet and the associated parameters. Actually, MeCoSim already in-
cludes the possibility to run several computations when working with models for
ecosystems designed using PDP systems, and then uses the statistical information
gathered to plot the output graphics.

Acknowledgements

The authors acknowledge the support of the Project TIN2012-37434 of the Min-
isterio de Economı́a y Competitividad of Spain, cofinanced by FEDER funds.

1 This work direction seems to be worth studying, in the context of the PMCGPU
project [23].

Revisiting Sevilla Carpets: A New Tool for the P-Lingua Era 291

References

1. Cecilia, J.M.; Garca, J.M.; Guerrero, G.D.; Martnez-del-Amor, M.A.; Prez-Jimnez,
M.J.; Ujaldn, M. The GPU on the simulation of cellular computing models Soft
Computing, 16 (2), 2012, 231–246.

2. Ciobanu, G.; Păun, Gh.; Ştefănescu, Gh. Sevilla Carpets Associated with P Systems,
in M. Cavaliere, C. Mart́ın–Vide and Gh. Păun (eds.), Proceedings of the Brainstorm-
ing Week on Membrane Computing, Tarragona, Spain, 2003, Report RGML 26/03,
135-140.

3. Cordón-Franco, C.; Gutiérrez-Naranjo, M.A.; Pérez-Jiménez, M.J.; Sancho-
Caparrini, F. A Prolog simulator for deterministic P systems with active membranes,
New Generation Computing, 22 (4), 2004, 349–363.

4. Daz Pernil, D., Gallego-Ortiz, P., Gutirrez Naranjo M.A., Prez Jimnez M.J., Riscos
Nez A. Descriptional Complexity of Tissue-like P Systems with Cell Division. In
C.S. Calude et al. (eds.) Unconventional Computation. Lecture Notes in Computer
Science, Springer-Verlag, Berlin-Heidelberg, 5715 (2009), 168-178.

5. Daz Pernil, D.; Prez–Hurtado, I.; Prez-Jimnez, M.J.; Riscos-Nez, A. A P-lingua pro-
gramming environment for Membrane Computing. Lecture Notes in Computer Sci-
ence, 5391 (2009), 187–203.

6. Gutiérrez-Naranjo, M.A.; Pérez-Jiménez, M.J.; Riscos-Núñez, A. A Fast P System
for Finding a Balanced 2-Partition, Soft Computing. Springer. To appear.

7. M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, A. Riscos-Núñez, A Simula-
tor for Confluent P Systems. In M. A. Gutiérrez-Naranjo, A. Riscos-Núñez,
F. J. Romero-Campero, D. Sburlan (eds.), Third Brainstorming Week on Mem-
brane Computing Fénix Editora, Sevilla, 2005, 169–184.

8. M. A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, On Descriptive
Complexity of P Systems. In: G. Mauri, Gh. Păun, M. J. Pérez-Jiménez,
G. Rozenberg, A. Salomaa (eds.), Membrane Computing. LNCS 3365, Springer-
Verlag, 2005, 320–330.

9. M. A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez. On the Degree of
Parallelism in Membrane Systems. Theoretical Computer Science, 372 (2-3), (2007)
183–195.

10. M. A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez. Multi-dimensional
descriptional complexity of P systems. Journal of Automata, Languages and Com-
binatorics 12 (2007) 1/2, 167179. A preliminar version in Proceedings of the 7th In-
ternational Workshop on Descriptional Complexity of Formal Systems, Como, Italy,
June 30 - July 2, 2005, pp. 134-145.

11. Mäkinen, E. A Bibliography on Szilard Languages, Dept. of Computer and In-
formation Sciences, University of Tampere, http://www.cs.uta.fi/reports/

pdf/Szilard.pdf

12. Martnez-del-Amor, M. A. Accelerating Membrane Systems Simulators using High
Performance Computing with GPU (PhD Thesis), 2013.

13. Martnez-del-Amor, M. A.; Prez-Hurtado, I.; Prez-Jimnez, M.J.; Cecilia J.M.; Guer-
rero, G.D.; Garca, J.M. Simulating active membrane systems using GPUs. In Gh.
Păun et al (eds.) 10th Workshop on Membrane Computing, 369–384.

14. Mateescu, A. and Salomaa, A. Aspects of Classical Language Theory, in G. Rozenberg
and A. Salomaa (eds.), Handbook of Formal Languages (vol. 1), Springer-Verlag,
Berlin Heidelberg, 1997.

292 D. Orellana-Mart́ın et al.

15. Prez-Hurtado, I.; Valencia, L.; Prez-Jimnez, M.J.; Colomer, M.A.; Riscos-Nez, A.
MeCoSim: A general purpose software tool for simulating biological phenomena by
means of P Systems. In K. Li, Z. Tang, R. Li, A.K. Nagar, R. Thamburaj (eds.)
Proceedings 2010 IEEE Fifth International Conference on Bio-inpired Computing:
Theories and Applications (BIC-TA 2010), IEEE Press, Volume 1, September 23-26,
2010, Changsha, China, ISBN 978-1-4244-6439-5, pp. 637–643.

16. Pérez-Jiménez, M.J.; Riscos-Núñez, A. Solving the Subset Sum Problem by Active
Membranes, New Generation Computing, Vol. 23, num. 4 (2005), 367-384.

17. Pérez-Jiménez, M.J.; Riscos-Núñez, A. A Linear Solution for the Knapsack Problem
Using Active Membranes, in C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg
and A. Salomaa (eds.),Membrane Computing. Lecture Notes in Computer Science,
2933, 2004, 250–268.

18. Pérez-Jiménez, M.J.; Romero-Jiménez, A.; Sancho-Caparrini, F. A Polynomial Com-
plexity Class in P systems Using Membrane Division, in E. Csuhaj–Varjú, C. Kintala,
D. Wotschke, and Gy. Vaszyl (eds.), Proceedings of the 5th Workshop on Descrip-
tional Complexity of Formal Systems, Budapest, Hungary, 2003, 284–294.

19. Pérez-Jiménez, M.J.; Romero-Jiménez, A.; Sancho-Caparrini, F. Solving VALIDITY
Problem by Active Membranes with Input, in M. Cavaliere, C. Mart́ın-Vide, Gh.
Păun (eds), Proceedings of the Brainstorming Week on Membrane Computing, Tar-
ragona, Spain, 2003, Report RGML 26/03, 279–290.

20. Salomaa, A. Formal Languages, Academic Press, New York, 1973.
21. http://www.p-lingua.org

22. http://www.p-lingua.org/mecosim/

23. http://sourceforge.net/p/pmcgpu/

On Parallel Array P Systems

Linqiang Pan1, Gheorghe Păun2

1 Key Laboratory of Image Processing and Intelligent Control
School of Automation
Huazhong University of Science and Technology
Wuhan 430074, Hubei, China
lqpan@mail.hust.edu.cn

2 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania
gpaun@us.es, curteadelaarges@gmail.com

Summary. We further investigate the parallel array P systems recently introduced by
K.G. Subramanian, P. Isawasan, I. Venkat, and L. Pan. We first make explicit several
classes of parallel array P systems (with one or more axioms, with total or maximal
parallelism, with rules of various types). In this context, some results from the above
mentioned paper by Subramanian et al. are improved. A series of open problems are
formulated.

1 Introduction

The generality/versatility of membrane computing is already a well known fact,
the computing framework abstracted from the cell structure and functioning can
cover a large variety of processes, dealing – in particular – with a large variety
of objects processed in the compartments of membrane structures. The arrays
(in general, 2D and 3D figures of various types) are one of the types of objects
considered already since 2001, see [3]. A direct extension from string objects to
two-dimensional arrays was introduced in [1] and then investigated in a series of
papers.

A recent contribution to this research area is [6], where a natural counterpart
of the array P systems from [1] is considered: parallel rewriting of arrays, instead of
the sequential rewriting from [1]. Actually, the kind of parallelism investigated in
[6] is that suggested by Lindenmayer systems: all nonterminals of an array should
be rewritten in each step. A possible alternative, closer to the style of membrane
computing, is to consider the maximal parallelism: a multiset of rules is used which
is maximal among the multisets of applicable rules in a given moment.

In the present paper, we explicitly consider these two kinds of parallelism, and
we prove that most of the results from [6] hold true for both kinds of parallelism,

294 L. Pan, Gh. Paun

also improving those results (less membranes are used in some of them, while the
powerful priority relation is avoided in other results).

Several questions remain open; several topics for further research are formu-
lated.

2 Definitions and Notations

It is useful for the reader to be familiar with basic elements of membrane com-
puting, e.g., from [4] (with up-dated information available at [7]), and of array
grammars, but the used notions will be recalled below. Actually, in what con-
cerns the arrays, we will usually use the pictorial representation, hence we need a
minimal formalism (otherwise, cumbersome if rigorously formulated).

The arrays we consider consist of finitely many symbols from a specified alpha-
bet V placed in the points (we call them pixels) of Z2 (the plane); the points of the
plane which are not marked with elements of V are supposed to be marked with
the blank symbol # /∈ V . Given an array W over V , supp(W) denotes the set of
points in Z2 marked with symbols in V . In order to specify an array, it is usual to
specify the pixels of the support, by giving their coordinates, together with their
associated symbols from V , but, as we said above, we will pictorially represent the
arrays, indicating their non-blank pixels. These pictures should be interpreted as
arrays placed in any position of the plane (congruent, possible to be superposed
by means of a translation).

We denote by V ∗2 the set of all two-dimensional arrays of finite support over
V , including the empty array, denoted by λ. Any subset of V ∗2 is called an array
language.

We handle the arrays by means of rewriting rules. An array rewriting rule (over
an alphabet V) is written as a usual string rewriting rule, in the form W1 →W2,
where W1,W2 are isotonic arrays over V : W1 and W2 cover the same pixels, no
matter whether they are marked with symbols in V or with #. When graphically
representing an array, usually we ignore the blank pixels, but, when representing
rewriting rules, the pixels marked with # are also explicitly shown. A rule as above
is used to rewrite an array W in the natural way: a position in W is identified
where W1 can be superposed, with all pixels matching, whether or not they are
marked with symbols in V or with #, and then those pixels are replaced with W2

(the fact that W1 and W2 are isotonic ensures the fact that this replacement is
possible). If the result is the array W ′, we write W =⇒ W ′. The reflexive and
transitive closure of the relation =⇒ is denoted by =⇒∗.

Similar to string rewriting rules, the array productions can be classified ac-
cording to their form. We consider here only two types of rules, context-free and
regular. Remember that all rules we work with are isotonic (the shapes of the left
hand side and the right hand side are identical, only the marking, by blank or
non-blank symbols, differs). Thus, a context-free rule is an isotonic one with only
one non-blank pixel in its left hand side.

On Parallel Array P Systems 295

Note that we have not distinguished between terminal and nonterminal sym-
bols, like in Chomsky grammars; for regular rules we need such a distinction. Thus,
a regular rule over the alphabets T and N , N being the nonterminal one, is a rule

of one of the following forms: A # → a B, # A→ B a,
#
A

→ B
a
,
A
#

→ a
B
, A→

B, A→ a, where A,B ∈ N and a ∈ T .
Because in what follows we work, like in [6], in a Chomsky framework, with

terminal and nonterminal symbols, we also impose that in a context-free rule the
single non-blank pixel in the left hand side is marked with a nonterminal symbol.

Before introducing the array P systems, we recall a notion useful below: two-
dimensional right-linear grammars.

Such a grammar [2] is a constructG = (Vh, Vv, Vi, T, S,Rh, Rv), where Vh, Vv, Vi
are the horizontal, vertical, and intermediate alphabets of nonterminals, Vi ⊆ Vv,
T is the terminal alphabet, S ∈ Vh is the axiom, Rh is the finite set of horizontal
rules, of the forms X → AY,X → A, for X,Y ∈ Vh, A ∈ Vi, and Rv is the finite
set of vertical rules, of the forms A→ aB,A→ a, for A,B ∈ Vv, a ∈ T .

A derivation in G has two phases, an horizontal one, which uses rules from
Rh, and a vertical one, which uses rules from Rv. The horizontal derivation is as
usual in a string grammar. In the vertical phase, the rules are used in parallel,
downwards, with the restriction that the terminal rules are used simultaneously
for all vertical nonterminals. Thus, in the end, a rectangle is obtained, filled with
symbols in T . The set of all rectangles generated in this way by G is denoted by
L(G) and the family of all languages of this form is denoted by 2RLG.

Two array languages which will be used below are LR, of all hollow rectangles
with the edges marked with a (one element of this language is shown in Fig. 1),
and LS , of all hollow squares with the edges marked with a.

a a a a a a a a a
a a
a a
a a
a a a a a a a a a

Fig. 1. A hollow rectangle in LR.

3 Parallel Array P Systems

We pass now to define the parallel array P systems. Such a device (of degreem ≥ 1)
is a construct

Π = (V, T,#, µ, F1, . . . , Fm, R1, . . . , Rm, io),

where: V is the total alphabet, T ⊆ V is the terminal alphabet, # is the blank
symbol, µ is a membrane structure with m membranes labeled in a one-to-one way

296 L. Pan, Gh. Paun

with 1, 2, . . . ,m, F1, . . . , Fm are finite sets of arrays over V associated with the m
regions of µ, R1, . . . , Rm are finite sets of array rewriting rules over V associated
with the m regions of µ; the rules have attached targets here, out, in (in general,
here is omitted), hence they are of the form W1 →W2(tar); finally, io is the label
of a membrane of µ specifying the output region.

In what follows, we only consider array P systems with regular (REG) and
context-free (CF) rules – with the symbols in V − T considered as nonterminals.

A computation in an array P system is defined in the same way as in a symbol
object P system, with the following details. Each array from a compartment of
the system must be rewritten by the rules in that compartment. The rewriting is
parallel, with two types of parallelism: (1) the total one, indicated by allP, which
means that all nonterminal symbols from the array are rewritten, and (2) the
maximal one, indicated by maxP, which means that a multiset of rules is applied
which is maximal, no further rule can be added to it. For any two rules used
simultaneously, no pixel of their left hand sides may overlap (i.e., cover the same
pixel of the rewritten array).

An important point appears here in what concerns the target indications of the
rules: in each compartment, in a step we apply a multiset of rules with the same
target indication. This is a very strong restriction, because it refers to all arrays
from the compartment. In this paper, we work under this restriction. A weaker
and somewhat more natural condition, which remains to be investigated (e.g., are
the results proved below valid also in this case?), is to impose the restriction to
use rules with the same target separately for each rewritten array (thus, separate
arrays may be rewritten by rules with different targets). Of course, the two variants
coincide for systems with only one axiom in the initial configuration.

The arrays obtained by an allP or a maxP rewriting are placed in the region
indicated by the target associated with the used rules, in the usual way in mem-
brane computing. It is important to stress the fact that all arrays from a given
compartment travel together during a computation.

A computation is successful only if it halts; that is, it reaches a configuration
where no rule can be applied to the existing arrays. The result of a halting compu-
tation consists of the arrays composed only of symbols from T placed in the region
with label io in the halting configuration. The set of all such arrays computed (we
also say generated) by a system Π is denoted by A(Π).

Note that a computation which produces a terminal array (hence no rule can be
applied to it), but still can rewrite another array, is not halting; if the rewriting of
one array continues forever, no matter how many terminal arrays were produced,
then no result is obtained.

We denote by PAPm(axk, α, β) the family of all array languages A(Π) gener-
ated by systems Π as above, with at most m membranes, at most k initial arrays
in its compartments (Σm

i=1card(Fi) ≤ k), with rules of type α ∈ {REG,CF},
working in the β ∈ {allP,maxP} mode. When m or k is not bounded, then it is
replaced with ∗.

On Parallel Array P Systems 297

The following results were proved in [6] (pri indicates the use of a priority
relation on the rules):

Lemma 1 (Lemma 3 in [6]). 2RLG ⊆ PAP3(ax1, CF, allP).

Lemma 2 (Lemma 4 in [6]). PAP3(ax1, CF, allP)− 2RLG ̸= ∅.

Lemma 3 (Theorem 3 in [6]). LR ∈ PAP2(ax1, REG, allP, pri).

Lemma 4 (Theorem 4 in [6]). LS ∈ PAP3(ax1, REG, allP, pri).

In what follows, we will improve all these results in terms of the number of
membranes in the first two lemmas and avoiding the priority relation in the last
two lemmas (these two results are obtained at the price of using more than one
axioms or using the maxP way of applying the rules).

4 Results

The first two lemmas above can be easily improved.

Proposition 1. 2RLG ⊆ PAP2(ax1, CF, β), β ∈ {allP,maxP}.

Proof. Let G = (Vh, Vv, Vi, T, S, Th, Rv) be a two-dimensional right-linear gram-
mar. We construct the array P system Π indicated in Figure 2. The horizontal
derivation is done in membrane 2. When the horizontal phase is completed, the
array is moved to the skin membrane, where the vertical phase is performed. Af-
ter the use of terminal rules, the array is moved back into the inner membrane.
If it is not terminal, then the computation continues forever, by means of the
rules A → A,A ∈ Vi. These rules are also introduced in order to make the maxP
computations to be allP computations. The equality L(G) = A(Π) is clear. ⊓⊔

Proposition 2. PAP2(ax1, CF, β)− 2RLG ̸= ∅, β ∈ {allP,maxP}.

Proof. Let us consider the array P system from Figure 3. From the axiom AB,
we generate a string XnY n (A goes to the left, simultaneously with B going to
the right), then, like in a two-dimensional right-linear grammar, in the skin region
we go vertically, marking the pixels with a in the columns of X and with b in the
columns of Y . We obtain (moved in the central membrane) a rectangle with the
same number of columns marked with a and with b, which is not in the family
2RLG (the same example was used also in [6]). The system works identically in
the allP and maxP modes. ⊓⊔

Removing the priority from the other two results from [6] can be done, but
making use of the possibility of having two axioms in the initial configuration
of the systems. One of them will generate the desired arrays, the other one will
generate “twin” arrays, which control the computation of the former arrays.

298 L. Pan, Gh. Paun'

&

$

%

'

&

$

%

1

2
S

X# → AY , for X → AY ∈ Rh

A → A, for A ∈ Vi

X → A(out), for X → A ∈ Rh

A → A(out), for A ∈ Vi

A
#

→ a
B
, for A → aB ∈ Rv

A → a(in), for A → a ∈ Rv

Fig. 2. The array P system from the proof of Proposition 1

'

&

$

%

'

&

$

%

1

2

AB

#A → AX

B# → Y B

X → X

Y → Y

A → X(out)

B → Y (out)

X
#

→ a
X

Y
#

→ b
Y

X → a(in)

Y → b(in)

Fig. 3. The array P system from the proof of Proposition 2

Proposition 3. LR ∈ PAP2(ax2, REG, β), β ∈ {allP,maxP}.

Proof. We consider the array P system from Figure 4. The axioms and the rules
are written on two columns, in the left one those which lead to the desired arrays,
in the right one those handling the “twin” (control) arrays. The rules are similar,
with the right column ones dealing with primed nonterminal symbols.

On Parallel Array P Systems 299

The axiom in the left column is placed in the skin region, the one in the right
column is placed in the inner membrane. In the first step, we move the inner
axiom to the skin membrane, while removing the subscript 0 from all symbols
A,B,A′, B′. Now we start the generation of the hollow rectangles.

The bottom horizontal line of the arrays is generated in the skin membrane,
by moving B and B′ to the right. At a given step, we switch to moving vertically,
with the arrays moved to membrane 2. We go upwards, synchronously, then the
arrays are again moved to the skin membrane, with D and D′ being the current
nonterminals. Both D and D′ go to left and, at some moment, D is replaced with
a (hence the “left” array is terminal (but we do not know whether the rectangle
is completed). Moved again in membrane 2, the left array remains idle, while
the right one can be rewritten – and, because of the parallelism, this must be
done – if (and only if) D′ has a non-marked pixel in its left. This happens if
and only if the terminal array is not a complete hollow rectangle. The symbol D′′

will go up indefinitely, hence the computation never halts. Thus, only the halting
computations produce elements in the language LR. ⊓⊔

A similar result can be obtained for the language of hollow squares.

Proposition 4. LS ∈ PAP2(ax2, REG, β), β ∈ {allP,maxP}.

Proof. We consider the array P system from Figure 5, again with the axioms and
the rules written on two columns, with the same significance as above. In the first
step, we move the axiom from the skin region to the inner membrane, while also
removing the subscript 0.

In the inner membrane we start constructing the squarea, from the left bottom
corner, growing here the left and the bottom edges. At some moment, the two
arrays are moved to the skin membrane, where the upper and the right edges
are constructed. The work on the “left” array is terminated at the moment when
the arrays are moved to the inner membrane. We check here whether or not the
square is completed. It is not completed if and only if the nonterminal B′′ has
a non-marked pixel above it. If this is the case, the computation will continue
forever, with B′′′ going to the right, hence the computation never halts. Checking
all details remains as an exercise for the reader. ⊓⊔

The maxP mode of using the rules is, intuitively speaking, able of “appearance
checking”, which is known to be a powerful feature of regulated grammars. This is
confirmed also in our framework: we can generate the languages LR, LS by means
of array P systems with only one axiom, at the price of using context-free rules –
actually, in the construction below we have only three non-regular rules, of rather
simple forms – used in the maxP mode.

Proposition 5. LR ∈ PAP2(ax1, CF,maxP).

Proof. We consider the array P system from Figure 6. We start in the skin mem-
brane, growing the bottom edge. At some moment, we pass to growing the vertical
edges, and the array is moved to the inner membrane.

300 L. Pan, Gh. Paun

'

&

$

%

'

&

$

%

1

2

A0aB0

A0 → A

B0 → B

A′
0aB

′
0

A → A

B# → aB

#
A

→ A
a
(in)

#
B

→ B
a
(in)

#D → Da

D → a(in)

A′ → A′

B′# → aB′

#
A′ → A′

a
(in)

#
B′ → B′

a
(in)

#D′ → D′a

D′ → D′(in)

#
A

→ A
a

#
B

→ B
a

A → a(out)

B → D(out)

#
A′ → A′

a

#
B′ → B′

a

A′ → a(out)

B′ → D′(out)

#D′ → D′′a

#
D′′ → D′′

a

A′
0 → A′(out)

B′
0 → B′(out)

Fig. 4. The array P system from the proof of Proposition 3

After the array is moved to the inner membrane, the symbol B introduces two
nonterminals, X and B′. The latter one will grow the right hand edge, the symbol
X waits unchanged until the array is moved back to the skin membrane. Here we
both grow the upper edge, by means of the nonterminal C, and we change X to
Y , which is moved to the left, simultaneously with the symbol C.

At any moment, C is replaced with D and Y with Y ′ and the array is sent
to membrane 2. Here we check whether the rectangle is completed. D is replaced
with a. The symbol Y ′ can be rewritten if and only if it has a non-marked pixel

On Parallel Array P Systems 301'

&

$

%

'

&

$

%

1

2
A0

a B0

A0 → A

B0 → B

#
A

→ A
a

B# → aB

A → a(out)

B → B(out)

#
A′ → A′

a

B′# → aB′

A′ → A′(out)

B′ → B′(out)

#
B′′ → B′′′

a

B′′′# → aB′′′

A# → aA

#
B

→ B
a

A# → aĀ

B → B̄

Ā → a(in)

B̄ → a(in)

A′
0

a B′
0

A′
0 → A′(in)

B′
0 → B′(in)

A′# → aA′

#
B′ → B′

a

A′# → aA′′

B′ → B′′

A′′ → a(in)

B′′ → B′′(in)

Fig. 5. The array P system from the proof of Proposition 4

in its left hand place. If this is the case, hence the rectangle is not complete, the
symbol Z is introduced; if not, the rule #Y ′ → Z#(out) cannot be applied (the
maxP mode of using the rules allows rewriting only some nonterminals). Anyway,
the array is moved back to the skin region (at least the rule D → a(out) is used).
If Y ′ is still present, then it is simply erased by the rule Y ′ → #. Symbol Z cannot
be removed, hence the computation leads to a terminal array if and only if the
rectangle is completed. ⊓⊔

It remains as an exercise for the reader to use the same idea in order to prove
that LS ∈ PAP2(ax1, CF,maxP}. On the other hand, we see no way to replace
maxP with allP in these two results: LR ∈ PAP2(ax1, CF,maxP) and LS ∈
PAP2(ax1, CF,maxP).

302 L. Pan, Gh. Paun'

&

$

%

'

&

$

%

1

2

AaB

B# → aB

#
A

→ A
a
(in)

#
B

→ B
a
(in)

#C → Ca

#X → Y a

#Y → Y a

C → D(in)

Y → Y ′(in)

Y ′ → #

#
A

→ A
a

#
B

→ B′

X

#
B′ → B′

a

A → a(out)

B′ → C(out)

D → a(out)

#Y ′ → Z#(out)

Fig. 6. The array P system from the proof of Proposition 5

5 Concluding Remarks

The goal of this note was, on the one hand, to make explicit the features involved
in an array P system (especially, the number of axioms and the two types of
parallelism), and to make use of them in order to improve some of the results in [6],
in particular, to get rid of the powerful ingredient of the priority relation. Further
research efforts are necessary, to clarify the computing power of parallel array P
systems. For instance, we have the families PAPm(axk, α, β), for m ≥ 1, k = 1,
α ∈ {CF,REG}, β ∈ {allP,maxP}. What are the relations among them? Do the
parameters m and k induce infinite hierarchies? Besides CF and REG one can
also consider non-erasing CF rules (no restriction in this respect was considered
here).

A natural question is whether or not parallel array P systems are universal.
(The sequential ones considered in [1] are universal.)

Rather natural is the possibility, already mentioned, to impose the use of rules
with the same target for each array, separately, thus making possible that two
arrays from a given region can go in different places after rewriting. A related
issue is to consider other ways to control the communication, such as the t mode
from grammar systems area, already investigated, for the sequential case, for array
P systems in [5].

On Parallel Array P Systems 303

Finally, we mention the problem of considering Lindenmayer-like array P sys-
tems, that is, pure (without nonterminals) or extended (with all symbols to be
rewritten, but accepting only terminal arrays).

Aknowledgements. The work of the first author was supported by National
Natural Science Foundation of China (61033003, 91130034 and 61320106005).

References

1. R. Ceterchi, M. Mutyam, Gh. Păun, K.G. Subramanian: Array-rewriting P systems.
Natural Computing, 2 (2003), 229–249.

2. D. Giammarresi, A. Restivo: Two-dimensional languages. In Handbook of Formal
Languages (G. Rozenberg, A. Salomaa, eds.), Vol. 3, Springer-Verlag, Berlin, 1997,
215–267.

3. S.N. Krishna, K. Krithivasan, R. Rama: P systems with picture objects. Acta Cy-
bernetica, 15, 1 (2001), 53–74.

4. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: The Oxford Handbook of Membrane
Computing. Oxford University Press, 2010.

5. K.G. Subramanian, R.M. Ali, A.K. Nagar, M. Margenstern: Array P systems and t
communication. Fundamenta Informaticae, 91, 1 (2009), 145–159.

6. K.G. Subramanian, P. Isawasan, I. Venkat, L. Pan: Parallel array-rewriting P sys-
tems. Romanian Journal of Information Science and Technology, to appear.

7. The P Systems Website: http://ppage.psystems.eu.

Four (Somewhat Nonstandard) Research Topics

Gheorghe Păun

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania
gpaun@us.es, curteadelaarges@gmail.com

Summary. Four research directions are suggested, dealing with the following four main
ideas: computing along the axon (up to now, this topic was only preliminarily investi-
gated), using pre-computed resources in order to solve computationally hard problems,
considering in P systems both objects “of matter” and “of anti-matter” (which annihilate
each other when meet), and considering the distance (naturally defined in a membrane
structure of a given type) as a support of information.

1 Introduction

Membrane computing is more than fifteen years old, [6], and it is already a well
established branch of natural computing (it is no longer appropriate to call it “a
young branch of NC...”), but, in spite of its large bibliography, there are a lot
of open problems and research topics in circulation. It is enough to mention the
“mega-paper” [2].

Still, further problems and research ideas can be imagined – four classes are
suggested here.

Of course, the reader is assumed to be familiar with membrane computing,
so that the presentation is minimal, both in what it concerns the details and the
references.

2 Computing Along the Axon

The motivation is related to the fact that the axons are not simple “wires” among
neurons, but they carry computations, moving spikes back and forth, amplifying
them (in the so-called Ranvier nodes) etc. Starting from this, axon P systems were
introduced in [1] (and then investigated in [8]). The idea is suggested in Figure 1.

We have [Ranvier] nodes arranged along an axon. Initially, each of them can
contain a number of spikes. A rule E/ac → (al, ar) is applied as in an SN P system;

306 Gh. Păun�
�
�
�
�
�
�
�

�
�
�
�-� -� -� -

1 2 m

. . .
E/ac → (al, ar)E/ac → (λ, ar) E/ac → (al, ar)

Fig. 1. An axon P system

c spikes are consumed, l spikes are sent to the left node, and r spikes are sent to
the right node. The rightmost node is the output one.

The functioning is like that of an SN P system (with a fixed synapses graph
and specific spiking rules).

In [1] the axon P systems were used as string/sequence generators: if the output
node sends out k spikes, then the symbol bk is associated with that step of the
computation; no spikes means the symbol b0. In the halting case, only recursive
languages can be generated.

Several problems to investigate in this framework are natural (part of them
also formulated in the cited papers):

1. generate numbers, by considering the number of steps elapsed between the
first two spiking steps (like in SN P systems, halting or not);

2. in the case of strings, look for variants which are computationally universal
(what about ignoring the steps when no spike exits, hence taking b0 = λ?);

3. consider axon P systems as infinite sequence generators;
4. look for hierarchies (on the number of axons) in the non-universal case;
5. what about also using anti-spikes, like in SN P systems, [5]? (besides the object
a, also ā is considered, called anti-spike; spiking rules can consume and/or
create either spikes or anti-spikes, but a node/neuron cannot contain at the
same time both spikes and anti-spikes, they immediately annihilate themselves,
by means of an implicit rule aā → λ, which is used in no time, in a maximal
way).

The axon P systems can be of interest also as a support for the last prob-
lem suggested here, i.e., using the distance (between two nodes) as a support of
information.

3 Pre-Computed Resources

The idea has been explored in a couple of papers (see, e.g., [3], [4]), but still there
is no formal definition of the complexity classes which appear in this context (the
problem is, in fact, to define “acceptable” pre-computed resources; intuitively, the
idea is to have a pre-computed arbitrarily large support for computation of the
form uvω, with information only in u; how to pass from this string intuition to SN
P systems – or to other types of P systems – remains open; in [7], page 360, it is
suggested that the concept of uniformity from Circuit Complexity can be useful
in this respect).

Four Research Topics 307

Besides recalling the attention of the previous problem, I would like to point out
here another question which looks of (practical) interest: is it possible to find a pre-
computed support of computation which can be used for solving two/several/all
problems from a given class? This would be interesting and important: “construct-
ing the computer”, whatever large it is, is done only once, then several problems
can be solved using the same pre-computed “hardware”, where specific information
is plug-in.

4 Using Matter and Anti-matter

This is a direct generalization of the idea of anti-spikes from SN P systems, [5]:
for each object a, in any type of P systems, to consider an “anti-object” ā. Both
objects and anti-objects are handled by usual evolution rules, but matter and
anti-matter cannot stay together in a compartment, a rule of the form aā → λ is
supposed to exist in any place. This rule is applied immediately, in no time, so
that in each compartment, in the end of each evolution step either only objects or
only anti-objects are present.

Which is the effect, in various classes of P systems, of using anti-objects? In SN
P systems, anti-spikes help, so it is expected that this happens also in other cases
(and this is one further illustration of the power of annihilation rules aā → λ,
known to be useful in formal language theory, and possibly also in the case of
multiset rewriting).

In particular: are one catalytic (purely two catalytic) P systems with anti-
objects universal?

The following trivial proof of the universality of P systems with two catalysts
and with anti-objects supports the conjecture that the answer to the previous
question might be positive.

Formally, we can writeNOP1(2cat, antim) = NRE, with the obvious meaning.
Indeed, let us consider a 3 register machine, with register 1 (the one where the

result is obtained) never decremented, and with registers 2, 3 empty in the end of
a computation. Denote it by M = (3,H, l0, lh, I) and construct a one-membrane
catalytic P system with two catalysts, c2, c3. Initially, the system contains the
objects l0, c2, c3 in its membrane. The contents of register r is represented by the
number of copies of an object ar, r = 1, 2, 3, in the system. For r = 2, 3 we also
consider the anti-objects ār.

For each instruction li : (ADD(r), lj , lk) in I, r = 1, 2, 3, we consider the rules

li → ljard2d3,

li → lkard2d3.

For each instruction li : (SUB(r), lj , lk) in I, r = 2, 3, we consider the rules

li → lj ārd2d3,

ār → #,

308 Gh. Păun

li → lkd5−r,

crdr → cr,

crar → cr#.

We also add the rules

→ #,

lh → λ.

The rule li → lj ārd2d3 is used when register r is non-empty; the decrement by
1 is done by means of the implicit rule arār → λ. If this rule cannot be applied,
then the trap object is introduced, by means of ār → #. If the register is empty,
then the rule li → lkd5−r should be used.

Note the role of objects d2, d3, which “keep busy” the catalysts, not to act in
rules of the form crar → cr#. For instance, if the rule li → lkd5−r is used, but
register r is not empty, then, because object dr is not introduced, but only d5−r,
in the next step, the rule crar → cr# should be used, and the computation never
stops.

When the computation in M halts, the object lh is removed. The number of
objects a1 in the system equals the number computed byM . (The catalysts should
be ignored, or the results can be read outside the system, sending a1 out, etc.)

5 Using the Distance to Encode Numbers

The idea is again suggested by the spiking neurons. If we watch the movie from
http://www.igi.tugraz.at/tnatschl/spike trains eng.html, we see that the
distance between various spikes moving along an axon is relevant for the pro-
cess/computation. How to make this explicit in a P system? Of course, in order
to can handle arbitrarily large numbers, we need a membrane structure of an
arbitrarily large size, hence we need ways for generating space (membranes in a
cell-like or tissue-like P system, neurons in an SN P system, nodes in an axon P
system), or we have to deal, again, with pre-computed resources.

Define distance-based P systems, and investigate their power and efficiency.
Can universality be reached when using only a bounded number of objects? (I
expect a positive answer.) Which are the shapes of the membrane structure nec-
essary/sufficient for computing various classes of numbers, or for the conjectured
universality.

6 Final Remarks

Some of the previous questions are more precise, others are less precise. Maybe
some of them are trivial. Anyway, a brainstorming is the right place to discuss
such issues – my big regret not to be there. I would be very much indebted to the
reader present in Sevilla for any reaction.

Four Research Topics 309

References

1. H. Chen, T.-O. Ishdorj, and Gh. Păun: Computing along the axon. Proc. 4th BWMC,
2006, vol. I, 225-240, and Progress in Natural Science, 17(4) (2007), 417-423.

2. M. Gheorghe, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Frontiers of membrane
computing: Open problems and research topics, Intern. J. Found. Computer Sci.,
2013 (first version in Proc. Tenth Brainstorming Week on Membrane Computing,
Sevilla, January 30 – February 3, 2012, vol. I, 171–249).

3. T.-O. Ishdorj, A. Leporati: Uniform solutions to SAT and 3-SAT by spiking neural P
systems with pre-computed resources. Natural Computing, 7 (2008), 519–534.

4. A. Leporati, M.A. Gutiérrez-Naranjo: Solving SUBSET SUM by spiking neural P sys-
tems with pre-computed resources. Fundamenta Informaticae, 87 (2008), 61–77.

5. L. Pan, Gh. Păun: Spiking neural P systems with anti-spikes. Intern. J. Computers,
Comm. Control, 4, 3 (2009), 273–282.

6. Gh. Păun: Computing with membranes. J. Comput. Syst. Sci., 61 (2000), 108–143
(see also TUCS Report 208, November 1998, www.tucs.fi).

7. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: The Oxford Handbook of Membrane
Computing. Oxford University Press, 2010.

8. X. Zhang, J. Wang, and L. Pan: A note on the generative power of axon p systems.
International Journal of Computers, Communications, and Control, 4 (2009), 92-98.

9. The P Systems Website: http://ppage.psystems.eu.

Membrane Clustering: A Novel Clustering
Algorithm under Membrane Computing

Hong Peng1, Jiarong Zhang1, Jun Wang2, Tao Wang3,
Mario J. Pérez-Jiménez4, Agust́ın Riscos-Núñez4

1 Center for Radio Administration and Technology Development,
Xihua University, Chengdu 610039, China
ph.xhu@hotmail.com

2 School of Electrical and Information Engineering,
Xihua University, Chengdu 610039, China

3 School of Electrical Engineering,
Southwest Jiaotong University, Chengdu 610031, China

4 Research Group of Natural Computing,
Department of Computer Science and Artificial Intelligence,
University of Seville, Sevilla 41012, Spain

Summary. Membrane computing (known as P systems) is a class of distributed parallel
computing models, this paper presents a novel algorithm under membrane computing
for solving the data clustering problem, called as membrane clustering algorithm. The
clustering algorithm is based on a tissue-like P system with a loop structure of cells.
The objects of the cells express the candidate cluster centers and are evolved by the
evolution rules. Based on the loop membrane structure, the communication rules realize
a local neighborhood topology, which helps the co-evolution of the objects and improves
the diversity of objects in the system. The tissue-like P system can effectively search
for the optimal clustering partition with the help of its parallel computing advantage.
The proposed clustering algorithm is evaluated on four artificial data sets and six real-life
data sets. Experimental results show that the proposed clustering algorithm is superior or
competitive to classical k-means algorithm and several evolutionary clustering algorithms
recently reported in the literature.

1 Introduction

Data clustering is a fundamental conceptual problem in data mining, which de-
scribes the process of grouping data into classes or clusters such that the data in
each cluster share a high degree of similarity while being very dissimilar to data
from other clusters [1]. Over the past years, a large number of clustering algorithms
have been proposed [2, 3, 4], which can be divided roughly as two categories: hi-
erarchical and partitional. Hierarchical clustering proceeds successively by either
merging smaller clusters into larger ones or by splitting larger clusters. Partitional

312 H. Peng et al.

clustering attempts to directly decompose a data set into several disjointed clusters
based on similarity measure, for example, mean square error (MSE). Clustering
algorithms have been used in a wide variety of areas, such as pattern recognition,
machine learning, image processing, web mining [5, 6]. In the present study, the
classical k-means algorithm [7, 8] has received wide attention because of the fol-
lowing two reasons: (i) k-means has been recently elected and listed among the
top most influential data mining algorithms [9]; (ii) it is at the same time very
simple and quite scalable, as it has linear asymptotic running time with respect
to any variable of the problem. However, k-means is sensitive to the initial cluster
centers and easy to get stuck at the local optimal solutions. Moreover, k-means
takes large time cost to find the global optimal solution when the number of data
points is large.

In recent years, some evolutionary algorithms have been introduced to over-
come the shortcomings of k-means algorithm because of their global optimization
capability. Several genetic algorithms (GA)-based clustering algorithms were pro-
posed, which used the two different methods to express the clustering solutions
respectively. The first method uses the chromosome directly to encode the cluster
number that each data point belongs to [27, 28]. However, this method does not
reduce the size of the search space and searching cost of the optimal solution when
the data points proliferate. Another method uses a relatively indirect representa-
tion, in which the chromosome encodes the cluster centers and each data is sub-
sequently assigned to the closest cluster center [10, 11, 12, 13, 14]. However, most
of GA-based clustering algorithms can suffer from the degeneracy when numerous
chromosomes represent the same solution. The degeneracy can lead to inefficient
coverage of the search space as the same configurations of clusters are repeatedly
explored. It is for this reason that some researchers developed the particle swarm
optimization (PSO)-based or ant colony optimization (ACO)-based clustering al-
gorithms. Kao et al. have proposed a hybrid technique based on combining the
k-means and PSO for cluster analysis [15]. Shelokar et al. have introduced an evo-
lutionary algorithm based on ACO for clustering problem [16]. Niknam et al. have
presented a hybrid evolutionary optimization algorithm based on the combination
of PSO and ACO for solving the clustering problem [17].

Membrane computing initiated by Pǎun [18] in 1998, is inspired by the struc-
ture and functioning of living cells as well as the interaction of living cells in tissues,
organs or neural nets. Membrane computing is a novel class of distributed parallel
computing models, and also known as P systems. The computing models usu-
ally have three key elements: membrane structure, multisets of objects and rules
[19]. Generally, the multisets of objects are placed in compartments surrounded
by membranes and evolved by some given rules. In recent years, a large number
of variants have been proposed [20, 21, 22, 23]. These efforts have addressed the
parallel computing advantage of P systems as well as the high effectiveness of
solving a variety of difficult problems, especially, P systems can solve a number of
NP-hard problems in linear or polynomial time complexity [24]. Moreover, mem-
brane algorithms, as a variant of P systems, have demonstrated a powerful global

A Novel Clustering Algorithm under Membrane Computing 313

optimization performance [25, 26]. This paper focuses on application of membrane
computing to data clustering. Our motivation is applying the specially designed
elements and inherent mechanisms of P systems to achieve a novel clustering al-
gorithm, called membrane clustering algorithm in this paper.

The rest of this paper is organized as follows. Section 2 gives a brief outline of
tissue-like P systems. The proposed membrane clustering algorithm is presented in
Section 3, and experimental results and analysis are provided in Section 4. Finally,
Section 5 draws the conclusions.

2 Tissue-like P systems

The P systems first proposed are cell-like P systems in which the membranes
are arranged as a rooted tree [18, 19], where the root expresses the skin of the
cells (the outermost membrane) and the leafs represent elementary membranes
(which do not contain any other membrane). Its biological inspiration is from the
morphology of the cells, where small vesicles are surrounded by the large vesicles.
For tissue-like P systems, tree-like structure is changed as a general graph. It is
from the two biological inspirations: intercellular communication and collaboration
between neurons. The intercellular communication is based on symport/antiport
rules, which are introduced as the communication rules of tissue-like P systems.
In symport rules, objects cooperate to traverse a membrane together in the same
direction, whereas in the case of antiport rules, objects residing at both sides of
the membrane cross it simultaneously but in opposite directions.

Formally, a tissue-like P system (of degree q > 0) with symport/antiport rules
is a construct

Π = (O,w1, . . . , wq, R1, . . . , Rq, R
′, i0) (1)

where

(1) O is a finite alphabet, whose symbols are called objects;
(2) wi(1 ≤ i ≤ q) is finite set of strings over O, which represents multiset of objects

initially present in cell i;
(3) Ri(1 ≤ i ≤ q) is finite set of evolution rules in cell i;
(4) R′ is finite set of communication rules of the form (i, u/v, j), which represents

communication rule between cell i and cell j, i ̸= j, i, j = 1, 2, . . . , q, u, v ∈ O∗;
(5) i0 indicates the output region of the system.

From membrane structure, a tissue-like P system can be viewed as a net im-
plicitly, which consists of the q cells labeled by 1, 2, . . . , q respectively. Here, each
cell is an elementary membrane. Usually, the environment is labeled by 0. The
communication rule of the form (i, u/v, j) indirectly indicates synaptic connection
between cell i and cell j. The communication rules determine a virtual graph,
where the nodes are the cells and the edges indicate if it is possible for pairs of
cells to communicate directly. The net structure provides the flexibility of express-
ing the needed structures from simple to complex when we deal with real-world
problems.

314 H. Peng et al.

In tissue-like P systems, multisets of objects of the q cells are described by
w1, w1, . . . , wq. Suppose any multiset of objects over O is available in the environ-
ment.

Generally speaking, a tissue-like P system includes the rules of two types:
evolution rules and communication rules. Each cell usually contains one or more
evolution rules, while a communication rule is built between two different cells. In
above definition, Ri(1 ≤ i ≤ q) is finite set of evolution rules in cell i, whose rule
is of the form u → v, u, v ∈ O∗. The application of the rule means that u will be
evolved to v. In most of the existing tissue-like P systems and variants, evolution
rule of the form is based on string of objects. However, when we apply it to solve
real-world problem, we should design the corresponding evolution rules according
to domain knowledge of the real-world problem. The communication rule of the
form (i, u/v, j) is called as antiport rule. The communication rule (i, u/v, j) can
be applied over two cells labeled by i and j when u is contained in cell i and v
is contained in cell j. The application of this rule means that the objects of the
multisets represented by u and v are interchanged between the two cells. Note
that if either i = 0 or j = 0 then the objects are interchanged between a cell
and the environment. If one of u or v in above rule is empty, the rule is called as
symport rule, for example, (i, u/λ, j). The application of the rule means that u
will be communicated form cell i to cell j.

In tissue-like P systems, as usual in the framework of membrane computing,
every cell as a computing unit works in a maximally parallel way (a universal clock
is considered here). In a computing step, each object in a cell can only be used
for one rule (non-deterministically chosen when there are several possibilities), but
any object which can participate in a rule of any form must do it, i.e, in each step
we can apply a maximal set of rules.

A computation in a tissue-like P system of degree d is a sequence of steps which
start with the cells 1, . . . , q containing the multisets w1, . . . , wq and where, in each
step, one or more rules are applied to the current multisets of symbol objects. A
computation is successful if and only if it halts. When it halts, it produces a final
result in output cell.

3 The proposed membrane clustering algorithm

In this section, we will present in detail the developed membrane clustering algo-
rithm, a novel clustering algorithm under the framework of membrane computing,
which is based on a tissue-like P system with a loop structure of cells. As usual,
the designed tissue-like P system consists of several cells, each of which contains
a object or multiple objects. The cells have some evolution rules to evolve the ob-
jects of the system, while communication rules between cell membranes are used
to exchange and share the objects. Moreover, the loop structure of cells is indi-
cated indirectly by the communication rules. The tissue-like P system can realize
the co-evolution of objects among the cells under the control of evolution rules

A Novel Clustering Algorithm under Membrane Computing 315

and communication rules. The role of the tissue-like P system is to search for the
optimal cluster centers for a data set to be clustered.

In the following, we first describe several basic components, and then provide
the proposed tissue-like P system and membrane clustering algorithm.

3.1 Clustering measure

Suppose that data set D has n sample points, x1, x2, . . . , xn, xi ∈ Rd(i =
1, 2, . . . , n), and is partitioned into k clusters, C1, C2, . . . , Ck. Denote by z1, z2, . . . , zk
the corresponding cluster centers. If the distances of sample point xi to cluster cen-
ters zp(p = 1, 2, . . . , k) satisfy

||xi − zj || ≤ ||xi − zp||, p = 1, 2, . . . , k and j ̸= p, (2)

then sample point xi is assigned to cluster Cj , i = 1, 2, . . . , n.
Usually, partitional clustering algorithm searches for the optimal cluster centers

in the solution space according to some clustering measure in order to solve data
clustering problem. A commonly used clustering measure is

M(C1, C2, . . . , Ck) =

k∑
i=1

∑
xj∈Ci

||xj − zi||. (3)

Generally, the smaller the M value, the higher the clustering quality. In this work,
the clustering measure is also used to evaluate the objects of the system during
object evolution. If theM value of an object is the smaller, the object is the better,
otherwise, it is worse.

3.2 Membrane structure

The membrane clustering algorithm proposed in this paper is based on a tissue-
like P system of degree q, which consists of q cells, shown in Fig. 1. The cells are
labeled by 1, 2, . . . , q, respectively. The region labeled by 0 is the environment. In
this work, the environment is also output region of the system. The directed lines
in Fig. 1 indicate the communication of objects between the q cells. Moreover,
the q cells will be arranged as a loop topology based on the communication rules
described below. As usual in P system, the q cells, as parallel computing units,
will run independently. In addition, the environment always stores the best object
found so far in the system. When the system halts, the object in the environment
will be regarded as the output of whole system.

3.3 Objects

In the tissue-like P system, each cell contains several objects. The role of the
designed tissue-like P system is to find the optimal cluster centers for a data set,

316 H. Peng et al.

1 2 3 q-1 q

0

Fig. 1. Membrane structure of the designed tissue-like P system.

thus each object in cells will express a group of (candidate) cluster centers. Since
data set D has k cluster centers and each cluster center is a d-dimensional vector,
each object in the system is considered as a (k× d)-dimensional real vector of the
form

z = (z11, z12, . . . , z1d, . . . , zi1, zi2, . . . , zid, . . . , zk1, zk2, . . . , zkd)

where zi1, zi2, . . . , zid are d components of ith cluster center zi, i = 1, 2, . . . , k. For
simplicity, suppose that each cell has the same number of objects, which is denoted
by m.

Initially, the system will randomly generates m initial objects for each cell.
When an initial object z is generated, (k × d) random real numbers are produced
repeatedly to form it with the constraint of

A1 ≤ zi1 ≤ B1, . . . , Aj ≤ zij ≤ Bj , . . . , Ad ≤ zid ≤ Bd (4)

where Aj and Bj are lower bound and upper bound of jth dimensional component
of data points, respectively, j = 1, 2, . . . , d.

3.4 Rules

The tissue-like P system includes the rules of two types: the evolution rules, which
aim to evolve the objects in cells and the communication rules, which aim to
exchange and share the objects. Evolution rules are used to evolve the objects as-
sociated with cluster centers, so the tissue-like P system is able to find the optimal
cluster centers for a data set via the evolution of objects. Moreover, communica-
tion rules will realize the exchange and sharing of better objects between adjacent
cells. Note that in each computing step, the communication rules are executed
after the evolution rules. For each cell, the better objects communicated from its
two adjacent cells form a subset of objects, called external pool, whose objects will
participate its evolution of objects in next computing step (see Fig. 2). As usual in
P systems, each cell as an independent computing unit runs in maximum parallel
way under the control of a global clock.

A Novel Clustering Algorithm under Membrane Computing 317

object pool

combination

external pool

selection

rule

crossover

rule

mutation

rule

new object pool

next computing step

matching pool

Fig. 2. The evolution procedure of objects in a cell.

Evolution rules

The role of evolution rules is to evolve the objects in cells to generate new objects
used in next computing step. During the evolution, each cell maintains the same
size (the number of objects). In this work, three known genetic operations (selec-
tion, crossover and mutation) [29, 30] are introduced as the evolution rules in cells.
In a computing step, all objects (located in object pool) in each cell and the better
objects (located in external pool) from its two adjacent cells constitute a matching
pool. The objects in external pool are actually the better objects communicated
from its two adjacent cells in previous computing step. The objects in matching
pool will be evolved by executing selection, crossover and mutation operations in
turn. In order to maintain the size of objects in each cell, truncation operation
is used to constitute new object pool according to the M values of objects. The
objects in new object pool will be regarded as the objects to be evolved in next
computing step. Fig. 2 shows the evolution procedure of objects in a cell.

In this work, selection operation uses usual rotating wheel method, while
crossover operation uses single-point crossover in which the position of crossover
point is determined according to crossover probability pc [31]. The single-point
mutation is used to realize the mutations of objects. If v is a mutation point de-
termined according to mutation probability pm, its value becomes, after mutating,

v′ =

{
v ± 2× δ × v, v ̸= 0
v ± 2× δ, v = 0

(5)

where the signs “+” or “-” occur with equal probability, and δ is a real number in
the range [0,1], generated with uniform distribution.

Communication rules

The communication rules are used to exchange the objects between each cell and
its two adjacent cells and update the best object found so far in the environment.
The tissue-like P system designed in this paper involves the communication rules
of two types:

318 H. Peng et al.

(1) Antiport communication rule: (i, z/z′, j), i, j = 1, 2, . . . , q. The rule indicates
that object z is communicated from cell i to cell j and object z′ is communicated
from cell j to cell i.

(2) Symport communication rule: (i, z/λ, 0), i = 1, 2, . . . , q. The rule expresses that
object z is communicated from cell i to the environment.

i-1 i i+1

(b)

1

4

2

3

q

q-1

(a)

Fig. 3. A loop topology structure of cells and the communication relation between
adjacent cells.

The communication rules impliedly indicate the connection relationship be-
tween cells. Fig. 3 shows the communication relation of objects between cells in
the designed tissue-like P system. From a logical point of view, the communication
relation shows that the cells form a loop topology, shown in Fig. 3(a). Meanwhile,
this also reflects a neighborhood structure of the communication of objects, namely,
each cell only exchanges and shares the objects with its two adjacent cells, shown
in Fig. 3(b). After the objects are evolved, each cell (such as cell i) transmits its
several best objects into adjacent cells (such as cells i− 1 and i+ 1) and retrieves
several best objects from adjacent cells (such as cells i− 1 and i+1) by using the
communication rule, constituting the matching pool of objects in next computing
step. The special logical structure can bring the following benefits:

(1) The co-evolution of objects in the q cells can accelerate the convergence of the
proposed clustering algorithm.

(2) The object sharing mechanism of the local neighborhood structure can enhance
the diversity of objects in the entire system.

The communication of objects not only occurs between cells, but also appears
between cell and the environment. The global best object found so far in whole
system is stored always in the environment. After objects are evolved, each cell
communicates its best object found in current computing step into the environment
to update the global best object. The update strategy used in the tissue-like P

A Novel Clustering Algorithm under Membrane Computing 319

system is that if the communicated object is better than the global best object,
the global best object is substituted, otherwise it is discarded.

3.5 Halt condition

In this paper, maximum execution step number is used as the halt condition of
the tissue-like P system, that is, the tissue-like P system will continue to run until
it reaches the maximum execution step number. When the system halts, the best
object in the environment is regarded as the system output, which is the found
optimal cluster centers.

3.6 The proposed clustering algorithm

According to the components discussed above, the designed tissue-like P system
can be formally described as follows. It is a tissue-like P system of degree q,

Π = (Z1, . . . , Zq, R1, . . . , Rq, R
′, io)

where

(1) Zi is the set of m objects in cell i, where each object z is a (k×d)-dimensional
vector, 1 ≤ i ≤ q;

(2)Ri is the finite set of evolution rules, 1 ≤ i ≤ q. Each Ri contains three evolution
rules: selection, crossover and mutation rules;

(3)R′ is the finite set of communication rules with the following forms:
(a) Antiport communication rule, (i, z/z′, j), i, j = 1, 2, . . . , q, i ̸= j. The rule

is used to communicate the objects between an cell and its two adjacent
cells;

(b) Symport communication rule, (i, z/λ, 0), i = 1, 2, . . . , q. The rule is used to
communicate the objects between cell and the environment.

(4) io = 0 indicates that the environment is the output region of whole system.

Based on the tissue-like P system, the proposed membrane clustering algorithm
is summarized in Table 1.

4 Experiment results and analysis

In this section, the proposed membrane clustering algorithm is evaluated on ten
data sets and compared with classical k-means algorithm and several clustering
algorithms based on evolutionary algorithms, including GA [10], PSO [15] and
ACO [16]. In order to test the robustness of these clustering algorithms, we repeat
the experiments 50 times for each data set.

320 H. Peng et al.

Table 1. Membrane clustering algorithm: a clustering algorithm based on tissue-like P
systems

Input parameters: Data set, D, the number of clusters, k, the number of cell, q,
the number of objects in each cell, m, maximum execution step number, Smax,
crossover rate, pc, and mutation rate, pm.

Output results: the optimal cluster centres, G.
Step 1. Initialization

for i=1 to q
for j=1 to m

Generate jth initial object for cell i, Zij ;
Partition all data points into clusters C1, C2, . . . , Ck;
Compute the M value of the object, Mij ;

end for
end for
Fill the global best object G using the best of all initial objects;
Set computing step s = 0;

Step 2. Object evolution in cells
for each cell i (i = 1, 2, . . . , q) in parallel do

Evolve all object Zij (j = 1, 2, . . .) in its mating pool using evolution rules;
Use truncation operation to maintain its m best objects;
for j = 1 to m

Partition all data points into clusters C1, C2, . . . , Ck;
Compute the M value of the object, Mij ;

end for
end for

Step 3. Object communication between cells
for each cell i (i = 1, 2, . . . , q) in parallel do

Transmit better objects in cell i to its two adjacent cells;
Receive better objects from its two adjacent cells into its mating pool;
Update G using the best object in cell i;

end for
Step 4. Halt condition judgment

if s ≤ Smax is satisfied
s = s+ 1;
goto Step 2;

end if
The system exports the global best object G in the environment and halts;

A Novel Clustering Algorithm under Membrane Computing 321

4.1 Data sets

In the experiments, two kinds of data are used to evaluate these clustering al-
gorithms. The first is the four manually-generated data sets used in the existing
literatures, AD 5 2, Data 9 2, Square 4 and Sym 3 22, shown in Fig. 4. The second
is the six real-life data sets provided in UCI [32], including the Iris, BreastCancer,
Newthyroid, LungCancer, Wine and LiveDisorder.

(b)(a)

(d)(c)

Fig. 4. Four artificial data sets: (a) AD 5 2; (b) Data 9 2; (c) Square 4; (d) Sym 3 22.

• AD 5 2. This data set consists of 250 two-dimensional data points distributed
over five spherically shaped clusters. The clusters present in this data set are
highly overlapping, each consisting of 50 data points. This data set is shown in
Fig. 4(a).

• Data 9 2. This data set consists of 900 two-dimensional data points distributed
over nine spherically shaped clusters. The clusters present in this data set are
highly overlapping. This data set is shown in Fig. 4(b).

• Square 4. This data set consists of 1000 data points distributed over four
squared clusters. This data set is shown in Fig. 4(c).

322 H. Peng et al.

• Sym 3 22. This data set consists of 600 two-dimensional data points distributed
over three clusters, where first and second clusters are spherically shaped while
third cluster is elliptically shaped, each consisting of 200 data points. This data
set is shown in Fig. 4(d).

• Iris. This data set consists of 150 data points distributed over three clusters.
Each cluster consists of 50 points. This data set represents different categories
of irises characterized by four feature values in centimeters: the sepal length,
sepal width, petal length and the petal width [33]. This data set has three
classes, namely, Setosa, Versicolor and Virginica, among which the last two
classes have a large amount of overlap while the first class is linearly separable.

• BreastCancer. This data set consists of 683 sample points. Each pattern has
nine features corresponding to clump thickness, cell size uniformity, cell shape
uniformity, marginal adhesion, single epithelial cell size, bare nuclei, bland chro-
matin, normal nucleoli and mitoses. There are two categories in the data: ma-
lignant and benign. The two classes are known to be linearly separable.

• Newthyroid. The original database from where it has been collected is titled
as thyroid gland data (“normal”, “hypo” and “hyper” functioning). Five lab-
oratory tests are used to predict whether a patient’s thyroid belongs to the
class euthyroidism, hypothyroidism or hyperthyroidism. There are a total of
215 instances and the number of attributes is five.

• LungCancer. The data consists of 32 instances having 56 features each. The
data describes three types of pathological lung cancers.

• Wine: This is a wine recognition data consisting of 178 instances with 13
features resulting from a chemical analysis of wines grown in the same region
in Italy but derived from three different cultivars. The analysis determined the
quantities of 13 constituents found in each of the three types of wines.

• LiveDisorder. This data set contains 345 instances with six features each. The
data has two categories. The first five variables are all blood tests, which are
thought to be sensitive to liver disorders that might arise from excessive alcohol
consumption.

4.2 Setup

In the experiments, the proposed membrane clustering algorithm will be compared
with k-means and three evolutionary clustering algorithms recently reported in the
literatures, including GA, PSO and ACO. These algorithms are implemented in
Matlab 7.1 according to the following parameters:

• Tissue-like P systems. Each cell contains 100 objects and communicates its
first five best objects into two adjacent cells. The maximum computing step
number is chosen to be 200. In the implementation, evolution rules uses the
adaptive crossover probability pc and mutation probability pm. In order to
study performances of tissue-like P systems of different degrees, four cases are
considered in the experiments: q = 4, 8, 16, 20.

A Novel Clustering Algorithm under Membrane Computing 323

• GA [10]. The rotating wheel method, single-point crossover and single-point
mutation are used, where the crossover and mutation probabilities, pc and
pm, are chosen to be 0.8 and 0.001 respectively. Let the population size be
Nswarm = 100 and maximum iteration number be tmax = 200.

• PSO [15]. The ω uses a linear decreasing inertia weight, where ωmin = 0.4 and
ωmax = 0.9. c1 = c2 = 2.0, the population size NP = 100, and maximum
iteration number is 200.

• ACO [16]. The best parameter values are γ1 = γ2 = 1.0 and ρ = 0.99.

4.3 Experimental results

Table 2. The performance comparisons of tissue-like P systems of different degrees.

Data sets 4 cells 8 cells 16 cells 20 cells

AD 5 2 327.01 326.94 326.44 326.94
±0.0944 ±0.0277 ±0.0105 ±0.0312

Data 9 2 591.11 591.12 591.06 591.03
±0.1331 ±0.0510 ±0.0280 ±0.0537

Square 4 2380.25 2380.26 2379.74 2380.00
±0.1334 ±0.0956 ±0.0189 ±0.0729

Sym 3 22 1248.31 1248.11 1247.72 1248.05
±0.3156 ±0.0554 ±0.0105 ±0.0333

Iris 96.84 96.81 96.75 96.77
±0.0751 ±0.0435 ±0.0428 ±0.0361

BreastCancer 2974.24 2971.14 2970.24 2969.06
±1.5431 ±1.5287 ±1.1225 ±1.0970

Newthyroid 1885.69 1870.37 1869.29 1871.18
±14.3773 ±1.7355 ±0.9215 ±2.2496

LungCancer 124.69 124.69 124.69 124.69
±0.0045 ±0.0012 ±0.0011 ±0.0035

Wine 16309.01 16303.42 16292.25 16301.97
±2.5053 ±1.9595 ±0.1529 ±2.8563

LiveDisorder 9860.54 9859.02 9851.78 9857.08
±5.7239 ±0.5116 ±0.0347 ±0.1043

In the experiments, we realize four tissue-like P systems with degrees 4, 8, 16
and 20 respectively. The aim is to evaluate the effects of the number of cells (i.e.,
different degrees) on clustering quality. The four tissue-like P systems are applied
to find out the optimal cluster centers for the ten data sets respectively. In this
work, the M value is also used to measure the clustering quality of each clustering
algorithm. Considering that the evolution rules in the designed tissue-like P system
include stochastic mechanism, we independently execute the tissue-like P systems
of the four degrees 50 times on each data set, and then compute their mean values
and standard deviations of the 50 runs. The mean values are used to illustrate the

324 H. Peng et al.

average performance of the algorithms while standard deviations indicate their
robustness. Table 2 provides experimental results of the tissue-like P systems of
four degrees on ten data sets respectively. The results of degrees 16 and 20 are
better than those of other two degrees, namely, lower mean values and smaller
standard deviations. It can be further observed that the tissue-like P system with
degree 16 obtains the smallest mean values and standard deviations on most of
data sets. The results illustrate that the tissue-like P system with degree 16 has
good clustering quality and high robustness.

Table 3. The results obtained by the algorithms for 50 runs on the ten data sets.

Data sets P systems GA PSO ACO k-means

AD 5 2 326.44 332.31 326.44 326.45 332.47
±0.0105 ±0.4792 ±0.0128 ±0.0344 ±3.1286

Data 9 2 591.06 593.7251 591.14 591.42 623.57
±0.0280 ±0.2635 ±0.0303 ±0.0372 ±3.1326

Square 4 2379.74 2380.33 2379.74 2379.79 2386.00
±0.0189 ±0.6319 ±0.0226 ±0.0428 ±4.5217

Sym 3 22 1247.72 1249.36 1247.72 1247.75 1255.45
±0.0105 ±1.2163 ±0.0149 ±0.0315 ±3.8725

Iris 96.75 99.83 97.23 97.25 104.11
±0.0428 ±5.5239 ±0.3513 ±0.4152 ±12.4563

BreastCancer 2970.24 3249.26 3050.04 3046.06 3251.21
±1.1225 ±229.734 ±110.801 ±90.500 ±251.143

Newthyroid 1869.29 1875.11 1872.51 1872.56 1886.25
±0.9215 ±13.5834 ±11.0923 ±11.1045 ±16.2189

LungCancer 124.69 129.52 127.23 127.31 139.40
±0.0011 ±4.4961 ±1.1528 ±1.2936 ±7.3136

Wine 16292.25 16298.42 16292.25 16292.25 16312.43
±0.1529 ±2.1523 ±0.1531 ±0.1672 ±9.4269

LiveDisorder 9851.73 9856.14 9851.73 9851.74 9868.32
±0.0347 ±1.9523 ±0.0356 ±0.0692 ±7.9274

In order to further evaluate clustering performance, the proposed membrane
clustering algorithm is compared with GA-based, PSO-based and ACO-based clus-
tering algorithms as well as classical k-means algorithm. Tables 3 gives the com-
parison results of the tissue-like P system of degree 16 with other four clustering
algorithms on the ten data sets, respectively. The comparison results show that the
tissue-like P system provides the optimum average value and smallest standard de-
viation in compare to those of other algorithms. For instance, the results obtained
on the AD 5 2 show that the tissue-like P system converges to the optimum of
326.4478 at almost times and PSO reaches to 326.44 in most of runs, while ACO,
GA and k-means attain 326.45, 322.31 and 332.47 respectively. The standard devi-
ations of M values for the tissue-like P system, PSO and ACO are 0.0105, 0.0128
and 0.0344 respectively, which significantly are smaller than other two algorithms.

A Novel Clustering Algorithm under Membrane Computing 325

For the results on the Iris, the optimum value is 96.75, which is obtained in most
of runs of the tissue-like P system, however, other four algorithms fail to attain
the value even once within 50 runs. The results on the Newthyroid also show that
the tissue-like P system provides the optimum value of 1869.29 while the PSO,
ACO, GA and k-means obtain 1872.51, 1872.56, 1875.11 and 1886.25 respectively.
In addition, the tissue-like P system obtains smallest standard deviation on each
data set in compare to other four algorithms, which illustrates that it has high
robustness.

The Wilcoxon’s rank sum test is a nonparametric statistical significance test
for independent samples. The statistical significance test has been conducted at
the 5% significance level in the experiments. We create five groups for the ten
data set, which are corresponding to the five clustering algorithms (tissue-like P
system, GA, PSO, ACO and k-means) respectively. Each group consists of the
M values produced by 50 consecutive runs of the corresponding algorithms. In
order to illustrate the goodness is statistically significant, we have completed a
statistical significance test for these clustering algorithms. Table 4 gives the p-
values provided by Wilcoxon’s rank sum test for comparison of two groups (one
group corresponding to the tissue-like P system and another group correspond-
ing to some other method) at a time. The null hypothesis assumes that there is
no significant difference between the mean values of two groups, whereas there is
significant difference in the mean values of two groups for the alternative hypoth-
esis. It is evident from Table 4 that all p-values are less than 0.05 (5% significance
level). This is a strong evidence against the null hypothesis, establishing significant
superiority of the proposed membrane clustering algorithm.

Table 4. The results of p-values produced by Wilcoxon’s rank sum test.

Data sets GA PSO ACO k-means

AD 5 2 4.1321×10−3 2.3256×10−2 2.6351×10−2 3.4273×10−3

Data 9 2 4.0536×10−3 2.2734×10−2 2.7932×10−2 3.2963×10−3

Square 4 3.9275×10−3 2.1482×10−2 2.8175×10−2 3.5387×10−3

Sym 3 22 3.7894×10−3 2.4357×10−2 2.8529×10−2 3.4416×10−3

Iris 4.0968×10−3 3.5823×10−2 3.2634×10−2 3.6528×10−3

BreastCancer 3.9235×10−3 2.9527×10−2 2.8192×10−2 3.4632×10−3

Newthyroid 3.8864×10−3 2.5162×10−2 2.9355×10−2 3.5381×10−3

LungCancer 3.8575×10−3 2.7346×10−2 2.7358×10−2 3.5138×10−3

Wine 3.7639×10−3 3.2189×10−2 2.7963×10−2 3.6348×10−3

LiveDisorder 3.8398×10−3 2.4671×10−2 2.8846×10−2 3.5822×10−3

5 Conclusion

In this paper, we discuss a membrane clustering algorithm, a novel clustering
algorithm under the framework of membrane computing. Distinguished from the

326 H. Peng et al.

existing evolutionary clustering techniques, two inherent mechanisms of membrane
computing are exploited to realize the membrane clustering algorithm, including
evolution and communication mechanisms. For this purpose, a tissue-like P sys-
tem consisting of q cells is designed, in which each cell as parallel computing unit
runs in maximally parallel way and each object of the system expresses a group
of candidate cluster centers. Moreover, the communication rules impliedly realize
a local neighborhood structure, namely, each cell exchanges and shares the best
objects with its two adjacent cells. Under the control of evolution and communi-
cation mechanisms of objects, the tissue-like P system is able to search for the
optimal cluster centers for a data set to be clustered. In addition, the local neigh-
borhood structure can guide the exploitation of the optimal object and enhance
the diversity of evolution objects. Therefore, the membrane clustering presented
in this paper can be viewed as a successful instance for building a bridge between
membrane computing and data clustering.

Acknowledgements

This work was partially supported by the National Natural Science Foundation
of China (Grant No. 61170030), the Chunhui Project Foundation of the Educa-
tion Department of China (Nos. Z2012025 and Z2012031), and the Sichuan Key
Technology Research and Development Program (No. 2013GZX0155), China.

References

1. J.A. Hartigan, Clustering Algorithm, New York: Wiley, 1975.
2. A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice-Hall, Engiewood

Cliffs, NJ, 1988.
3. R. Xu, D. Wunsch, Survey of clustering algorithm, IEEE Trans. Neural Networks

16(3) (2005) 645-678.
4. A.K. Jain, Data clustering: 50 years beyond k-means, Pattern Recognition Letters

31 (2010) 651-666.
5. B. Everitt, S. Landau, M. Leese, Cluster Analysis, Arnold, London, 2001.
6. S. Saha, S. Bandyopadhyay, A symmetry based multiobjective clustering technique

for automatic evolution of clusters, Pattern Recognition 43 (2010) 738-751.
7. T. Kanungo, D. Mount, N.S. Netanyahu, C. Piatko, R. Silverman, A. Wu, An efficient

k-means clustering algorithm: analysis and implementation, IEEE Trans. Pattern
Anal. Mach.Intell. 24(7) (2002) 881-892.

8. D. Steinley, K-meams clustering: A half-century synchesis, British Journal of Math-
ematical and Statistics Psychology 59(34) (2006) 1-34.

9. X. Wu, Top ten algorithms in data mining, Taylor & Francis, 2009.
10. S. Bandyopdhyay, U. Maulik, An evolutionary technique based on k-means algorithm

for optimal clustering in RN, Inf. Sci. 146 (2002) 221-237.
11. S. Bandyopdhyay, S. Saha, GAPS: a clustering method using a new point symmetry-

based distance measure, Pattern Recognition 40 (2007) 3430-3451.

A Novel Clustering Algorithm under Membrane Computing 327

12. M. Laszlo, S. Mukherjee, A genetic algorithm that exchanges neighboring centers for
k-means clustering, Pattern Recognition Lett. 28 (2007) 2359-2366.

13. D. Chang, X. Zhang, C. Zheng, A genetic algorithm with gene rearrangment for
k-means clustering, Pattern Recognition 42 (2009) 1210-1222.

14. C.D. Nguyen, K.J. Cios, GAKREM: A novel hybrid clustering algorithm, Information
Sciences 178 (2008) 4205-4227.

15. Y.T. Kao, E. Zahara, I.W. Kao, A hybridized approach to data clustering, Expert
Systems with Applications 34(3) (2008) 1754-1762.

16. P.S. Shelokar, V.K. Jayaraman, B.D. Kulkarni, An ant colony approach for clustering,
Analytica Chimica Acta 509(2) (2004) 187-195.

17. T. Niknam, B. Amiri, An efficient hybrid approach based on PSO, ACO and k-means
for cluster analysis, Applied Soft Computing 10 (2010) 183-197.

18. Gh. Pǎun, Computing with membranes, Journal of Computer System Sciences 61(1)
(2000) 108-143.

19. Gh. Pǎun, G. Rozenberg, A. Salomaa, The Oxford Handbook of Membrane Comput-
ing, Oxford University Press, New York, 2010.

20. M. Ionescu, Gh. Pǎun, T. Yokomori, Spiking neural P systems, Fundameta Infor-
maticae 71(2-3) (2006) 279-308.

21. R. Freund, Gh. Pǎun, M.J. Pérez-Jiménez, Tissue-like P systems with channel-states,
Theoretical Computer Science 330(1) (2005) 101-116.

22. H. Peng, J. Wang, M.J. Pérez-Jiménez, H. Wang, J. Shao, T. Wang, Fuzzy reasoning
spiking neural P system for fault diagnosis, Information Sciences 235 (2013) 106-116.

23. J. Wang, P. Shi, H. Peng, Mario J. Pérez-Jiménez, T. Wang, Weighted fuzzy spiking
neural P systems, IEEE Transactions on Fuzzy Systems 21(2) (2013) 209-220.

24. Gh. Pǎun, M.J. Pérez-Jiménez, Membrane computing: Brief introduction, recent
results and applications, BioSystems 85 (2006) 11-22.

25. L. Huang, I. Suh, A. Abraham, Dynamic mul-objective optimization based on mem-
brane computing for control of time-varying unstable plants, Information Sciences,
181(11) (2011) 2370-2391.

26. G. Zhang, J. Cheng, M. Gheorghe, Q. Meng, A hybrid approach based on differ-
ent evolution and tissue membrane systems for solving constrained manufacturing
parameter optimization problems, Applied Soft Computing, 13(3) (2013) 1528-1542.

27. C.A. Murthy, N. Chowdhury, In search of optimal clusters using genetic algorithms,
Parttern Recognition Letters 17 (1996) 825-832.

28. U. Maulik, S. Bandyopadhyay, Genetic algorithm based clustering technique, Pattern
Recognition 33 (2000) 1455-1465.

29. E. Falkenauer, Genetic Algorithms and Grouping Problems, John Wiley & Sons,
1998.

30. L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold, 1991.
31. Z. Michalewicz, Genetic Algorithm + Data Structure = Evolution Program, Springer,

New York, 1996.
32. http://www.ics.uci.edu/∼mlearn/MLRepository.html.
33. R.A. Fisher, The use of multiple measurements in taxonomic problems, Ann. Eugen-

ics 3 (1936) 179-188.
34. S.K. Pal, D.D. Majumder, Fuzzy sets and decision making approaches in vowel and

speaker recognition, IEEE Trans. Systems, Man Cybernet. SMC-7 (1977) 625-629.
35. M. Clerc, J. Kennedy, The particle swarm explosion stability and convergence in a

multi-dimensional complex space, IEEE Trans. Evolutionary Comput. 6(1) (2002)
58-73.

Application of Weighted Fuzzy Reasoning Spiking

Neural P Systems to Fault Diagnosis in Traction

Power Supply Systems of High-speed Railways

Tao Wang1, Gexiang Zhang1, Mario J. Pérez-Jiménez2

1School of Electrical Engineering, Southwest Jiaotong University,
Chengdu, 610031, P.R. China
email: wangtaocdu@gmail.com, zhgxdylan@126.com
2Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, Sevilla, 41012, Spain
email: marper@us.es

Summary. This paper discusses the application of weighted fuzzy reasoning spiking neu-
ral P systems (WFRSN P systems) to fault diagnosis in traction power supply systems
(TPSSs) of China high-speed railways. Four types of neurons are considered in WFRSN P
systems to make them suitable for expressing status information of protective relays and
circuit breakers, and a weighted matrix-based reasoning algorithm (WMBRA) is intro-
duced to fulfill the reasoning based on the status information to obtain fault confidence
levels of faulty sections. Fault diagnosis production rules in TPSSs and their WFRSN P
system models are proposed to show how to use WFRSN P systems to describe different
kinds of fault information. Building processes of fault diagnosis models for sections and
fault region identification of feeding sections, and parameter setting of the models are
described in detail. Case studies including normal power supply and over zone feeding
show the effectiveness of the presented method.

1 Introduction

Membrane computing, formally introduced by Gh. Păun in [1], is an attractive
research field of computer science aiming at abstracting computing models, called
membrane systems or P systems, from the structures and functioning of living
cells, as well as from the way the cells are organized in tissues or higher order
structures. Spiking neural P systems (SN P systems), introduced in [2] in the
framework of membrane computing, is a new class of computing devices which are
inspired by the neurophysiological behavior of neurons sending electrical impulses
(spikes) along axons to other neurons. Since then, SN P systems have become a hot
topic in membrane computing [3]-[19], among which there are several investigations
focus on the use of SN P systems and their variants to solve engineering problems.

330 T. Wang, G. Zhang, M.J. Pérez-Jiménez

In [14], a fuzzy reasoning spiking neural P system with real numbers was pre-
sented to fulfill diagnosis knowledge representation and reasoning. In [15], the
FRSN P system was used for fault diagnosis in power systems and three differ-
ent applications verified its effectiveness. Adaptive fuzzy spiking neural P systems
(AFSN P systems) for fuzzy inference and learning were presented in [16] and
the work in [17] focused on the application of AFSN P systems in fault diagno-
sis of power systems. The aforementioned investigations verify the feasibility and
effectiveness of extended SN P systems in fault diagnosis of power systems.

Traction power supply systems (TPSSs) of high-speed railways are a kind of
special power systems. In recent decades, the most studied intelligent fault diagno-
sis method for TPSSs of China high-speed railways is expert system (ES) [20]-[22].
ES expresses operation logic of protective relays and circuit breakers easily, and
makes full use of experts knowledge, but it has a slow inference speed due to its
sequential search nature, and the difficulties of designing and maintaining a rule-
based knowledge system. In [23], fuzzy Petri nets (FPNs) are applied in the fault
diagnosis of TPSSs to avoid the weakness of ESs and a second reasoning method
was designed to improve the reliability of diagnosis results when status informa-
tion of protections contains uncertainty and incompleteness. However, the second
reasoning adds the complexity of computation in reasoning process and makes the
fault diagnosis need more time. So, how to improve the aforementioned methods
and explore new ones to solve fault diagnosis problems in TPSSs is worth further
discussing.

This paper discusses the application of a novel and bioinspired model, weighted
fuzzy reasoning spiking neural P systems (WFRSN P systems), to fault diagnosis
in TPSSs. WFRSN P systems were first proposed in [18] and new ingredients,
such as fuzzy truth value, weighted fuzzy logic, output weight, threshold and two
types of neurons, were added to the original definition of SN P systems. Besides,
a weighted fuzzy backward reasoning algorithm was developed for the WFRSN
P systems to fulfil dynamic fuzzy reasoning. However, two types of neurons in
WFRSN P systems can not express status information of protections completely.
Moreover, the weighted fuzzy backward reasoning algorithm is too complex to use
it to diagnose faults in TPSSs directly. To adapt WFRSN P systems to solve fault
diagnosis problems in TPSSs, four types of neurons are considered in this study and
a weighted matrix-based reasoning algorithm (WMBRA) is introduced to fulfill
the reasoning of fault information. WFRSN P system models for fault diagnosis
production rules in TPSSs are proposed to show how to describe different kinds of
fault information by using them. How to build fault diagnosis models for sections
and set parameters in the models are described in detail. Besides, owing to the
special power supply manner of TPSSs, a WFRSN P system model for fault region
identification of feeding sections is also built. Case studies show the effectiveness
of the presented method.

The remainder of this paper is organized as follows. Section 2 states the problem
to solve. The WFRSN P systems and WMBRA are defined in Section 3. Section
4 presents the key issues of fault diagnosis based on WFRSN P systems, and

Application of Weighted Fuzzy Reasoning Spiking Neural P Systems 331

the application of WFRSN P systems to fault diagnosis in TPSSs is discussed in
Section 5. Conclusions are finally drawn in Section 6.

2 Problem Description

When faults occur in a power system, protective relays detect the faults and trip
their corresponding circuit breakers (CBs) to isolate faulty sections from the op-
eration of this power system and guarantee the other parts can operate normally.
The aim of fault diagnosis in this paper is to identify the faulty sections by using
status information of protective relays and CBs which are read from supervisor
control and data acquisition (SCADA) systems. The framework of fault diagno-
sis in power systems using reasoning model-based method is shown as in Fig. 1
[15, 24]. There are three important parts in this framework: real-time data, static
data and a flowchart of identification fault sections. The real-time data, protec-
tive relay operation information and circuit breaker tripping information, are used
to estimate the outage areas to obtain candidate faulty sections using a network
topology analysis method, so as to reduce the subsequent computational burden
[24]. The static data, network topology and protection configuration of a power
system, are used to build a fault diagnosis model for each candidate section in each
outage area. The inputs of each diagnosis model are initialized by both real-time
data and static data. Then, each diagnosis model performs reasoning algorithm to
obtain fault confidence levels of candidate faulty sections to determine faulty sec-
tions. The diagnosis results include the faulty sections and their fault confidence
levels.

TPSSs of high-speed railways are a kind of special power systems. Thus, the
fault diagnosis of TPSSs of China high-speed railways can keep the framework of
fault diagnosis in Fig. 1. Meanwhile, it is important to describe the characteristics
and protection configuration of TPSSs because of their particularity.

The electrical principle schematic illustration for TPSSs of China high-speed
railways is shown in Fig. 2. Power systems supply TPSSs with three-phase al-
ternating currents (three-phase ACs) (220 kv or 330 kv) which are converted to
single-phase alternating currents (single-phase ACs) (25 kv) by traction substa-
tions (TSSs) [25, 26]. Then, the single-phase ACs are supplied to electric locomo-
tives by feeding sections. Subsection posts (SSPs) usually are built near pivotal
station yards who need to output multipath feeder lines. The SSPs only has power
distribution equipments because they are used only for the redistribution of power
supply and do not convert the voltage. Thus, the function of SSPs is the same as
power distribution stations. In order to increase the flexibility of power supply as
well as to improve the reliability of electric power operation, section posts (SPs)
usually are built between two TSSs. Over zone feeding is fulfilled by using over
zone switches in SPs, and up and down line parallel power supply is fulfilled by us-
ing an up and down line interconnection switch, which can improve the reliability
of TPSSs. Feeder lines connect TSSs and contact wires to transmit the electricity

332 T. Wang, G. Zhang, M.J. Pérez-Jiménez

!"#$%&'()*+$"&"+%#)'+,-%().#*%&/$.

0,&-")+)'+,-%)"&+1$/.&.)2/"#- '/3 #+*4

+$"&"+%#).#%&/$)&$)#+*4)/,%+1#)+3#+

5+*4)2/"#-)6#3'/32)&%.)3#+./$&$1)+-1/3&%42)

7#%#32&$#)'+,-%().#*%&/$.

89&%4)'+,-%)*/$'&"#$*#)-#:#-.;

<%+3%

5$"

5.%&2+%# /,%+1#)+3#+.)

!$&%&+-&=#)&$6,%.)'/3)#+*4)

"&+1$/.&.)2/"#-

<>?7?)<(.%#2.

@#+-A%&2#)"+%+

<%+%&*)"+%+

B3/%#*%&:#)3#-+()

/6#3+%&/$)&$'/32+%&/$

>&3*,&%)C3#+D#3

%3&66&$1)&$'/32+%&/$

B/9#3).(.%#2)

$#%9/3D)%/6/-/1(

B3/%#*%&/$)*/$'&1,3+%&/$

!"#$%&'()*+$"&"+%#)'+,-%().#*%&/$.

Fig. 1. Framework of fault diagnosis in power systems using reasoning model-based
method.

!"#$%&'(')$*'&+,,-&"%&..-&/01 !"#$%&'(')$*'&+,,-&"%&..-&/01

,2&/0&

+34567$&89:'$1 ;"5):<)%$

3=>&'$<)4"5 8"')&

+33!1

3$<)4"5 8"')&

+3!1

?$$@$%&745$

A%:<)4"5&

'=>'):)4"5

+A331

A%:<)4"5&

'=>'):)4"5

+A331

B$)=%5&

745$

B:47

A%:45 A%:45
B$)=%5&

745$

Fig. 2. Electrical principle schematic illustration of TPSSs.

from TSSs to contact wires. Return lines connect TSSs and rails to return loop
currents in rails into TSSs. Traction networks are composed of feeder lines, contact
wires, return lines, rails and earth ground.

If a TPSS uses autotransformer (AT) feeding manner, then one autotrans-
former is installed along rails every other 10 to 15 kilometers [25]. Fig. 3 shows
a composition diagram of TPSSs in AT feeding manner considered in this study.
Typical feeding sections in AT feeding manner consist of TSSs, ATPs and SPs. In
this kind of TSS-ATP-SP feeding sections, lines in SPs are connected in an up and

Application of Weighted Fuzzy Reasoning Spiking Neural P Systems 333

 !"#"$%&'(#$)*$

+#'",- ./0

1*2"3#& +#'",

-1/0

.$%2"3#&,

'!4'"%"3#&

-.110

.$%2"3#&,

'!4'"%"3#&

-.110

 !"#"$%&'(#$)*$

+#'",- ./0

 .,

(**53&6

Fig. 3. Composition diagram of TPSSs in AT feeding manner.

Table 1. Protection configuration of feeder lines in AT TPSSs with normal power supply

Posts Protection configurations Automatic devices

TSSs
Main

One impedance protection
One shot

automatic reclosing
Overcurrent protection of low voltage starting

Backup △ I current increment protection

SPs Main No-voltage protection
Voltage checking for

automatic reclosing

ATPs Main No-voltage protection
Voltage checking for

automatic reclosing

down line paralleling manner while lines in ATPs are not. It is worth pointing out
that if a feeding arm is very long, then SSPs are built between TSSs and SPs to
reduce the power failure scope when faults occur in traction networks.

In this study, a feeding section fed by a same traction substation is considered
as one fault diagnosis unit because the feeding section works in a relatively in-
dependent way in its operation, protection, etc. The faults on feeder lines, buses,
traction transformers and autotransformers, in TSSs, ATPs and SPs, are diag-
nosed by using the status information read from SCADA systems, as shown in
Fig. 1. Tables 1 and 2 show the protection configuration of feeder lines in AT
TPSSs with normal power supply and over zone feeding, respectively [25]-[28].
Table 3 shows the protection configuration of transformers (traction transformers
and autotransformers) in AT TPSSs [25]-[28].

When an AT traction power supply system is in the over zone feeding manner,
the feeding section fed by the faulty TSS is temporarily fed by its adjacent TSS
through over zone switches. When remote backup protections of feeder lines in
TSSs operate, in order to distinguish which autotransformer (the one in the original
TSS or in the temporary TSS) has a fault, main protections and primary backup
protections of this autotransformer and their corresponding CBs are considered
as reasoning conditions of the results obtained according to the remote backup
protections.

334 T. Wang, G. Zhang, M.J. Pérez-Jiménez

Table 2. Protection configuration of feeder lines in AT TPSSs with over zone feeding

Posts Protection configurations Automatic devices

TSSs
Main

Two impedance protection
One shot

automatic reclosing
Overcurrent protection of low voltage starting

Backup △ I current increment protection

SPs

Main
One impedance protection

Overcurrent protection of low voltage starting Voltage checking for

Backup
△ I current increment protection automatic reclosing

No-voltage protection

ATPs Main No-voltage protection
Voltage checking for

automatic reclosing

Table 3. Protection configuration of transformers in AT TPSSs

Transformers Protection configurations

Traction

transformers

Main

Differential current quick-break protection

Ratio-restrained differential protection of second harmonic lock

Non-electrical protection

Backup Overcurrent protection of low voltage starting

Autotransformers

Main
Differential current quick-break protection

Non-electrical protection

Backup
Overcurrent protection of low voltage starting

Shell collision protection

3 WFRSN P systems

3.1 Definitions

Definition 1 : A WFRSN P system of m ≥ 1 is a construct Π =
(O, σ1, . . . , σm, syn, in, out), where:

(1) O = {a} is a singleton alphabet (a is called spike);
(2) σ1, . . . , σm are neurons, of the form σi = (θi, ci,

−→ωi, λi, ri), 1 ≤ i ≤ m, where:
a) θi is a real number in [0,1] representing the potential value of spikes (i.e.

value of electrical impulses) contained in neuron σi;
b) ci is a real number in [0,1] representing the truth value associated with

neuron σi;

Application of Weighted Fuzzy Reasoning Spiking Neural P Systems 335

c) −→ωi = (ωi1, . . . , ωiNi
) is a real number vector in (0,1] representing the output

weight vector of neuron σi, where ωij (1 ≤ j ≤ Ni) represents the weight on
jth output arc (synapse) of neuron σi and Ni is a real number representing
the number of synapses starting from neuron σi.

d) λi is a real number in [0,1) representing the firing threshold of neuron σi;
e) ri represents a firing (spiking) rule contained in neuron σi with the form

E/aθ → aβ , where θ and β are real numbers in [0,1], E = {an, θ ≥ λi} is
the firing condition. The firing condition means that if and only if neuron
σi receives at least n spikes and the potential value of spikes is with θ ≥ λi,
then the firing rule contained in the neuron can be applied, otherwise, the
firing rule cannot be applied;

(3) syn ⊆ {1, . . . ,m}×{1, . . . ,m} with i 6= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m; that
is, syn provides a (weighted) directed graph whose set of nodes is {1, . . . ,m};

(4) in, out ⊆ {1, . . . ,m} indicate the input neuron set and the output neuron set
of Π, respectively.

How WFRSN P systems are extended from SN P systems are described as
follows. First, the definition of neurons are extended. WFRSN P systems consist
of two kinds of neurons, i.e., proposition neurons and rule neurons, where rule
neurons contain three subcategories: general, and and or. Second, the pulse value
θi contained in each neuron σi is a real numbers in [0,1] representing potential
value of spikes contained in this neuron instead of the number of spikes in SN P
systems. Third, each neuron is associated with either a proposition or a production
rule, and ci ∈ [0, 1] represents the truth value of this proposition or the certainty
factor (CF) of this production rule. Fourth, each weighted directed synapse has
an output weight. In other words, each synapse in syn ⊆ {1, . . . ,m} × {1, . . . ,m}
has a weight. The output weights of neurons represent the importance degree of
their values in contributing to the computing results in output neurons. Fifth, each
neuron contains only one firing (spiking) rule of the form E/aθ → aβ . When the
firing condition of one neuron is satisfied, the firing rule is applied, which means
that the potential value θ is consumed and then this neuron produces a new spike
with potential value of β. These different types of neurons aforementioned handle
the potential values θ and β in different ways (see definition Definition 2-5). If
the firing condition of one neuron is not satisfied, then the potential value of the
spikes received by this neuron is updated via logical and or or operators. Finally,
time delay is ignored in WFRSN P systems, thus all neurons are always open.

The definitions of different types neurons in WFRSN P systems are described
as follows.

Definition 2 : A proposition neuron is associated with a proposition in a fuzzy
production rule. Such a neuron is represented by a circle and symbol P , as shown
is Fig. 4.

If a proposition neuron is an input neuron of a WFRSN P system Π, then
its potential value θ is received from the environment; otherwise, θ equals to the
result of logical or operation on all weighted potential values received from its
presynaptic rule neurons, i.e., θ = max{θ1 ∗ ω1, . . . , θk ∗ ωk}. The firing rule of

336 T. Wang, G. Zhang, M.J. Pérez-Jiménez

a

!
a

a a
! !
"

P
P

��� ���

 !

#
#

#

k
!

 $

k
$

!

#
#

#

Fig. 4. A proposition neuron (a) and its simplified form (b).

! " #c generalR

 % aa !

 a

c% "# $ $

%

!$#

a

!%#

! " #c generalR
"

%

&
&

&

&
&

&

Fig. 5. A general rule neuron (a) and its simplified form (b).

! " #c and
R

$

!
!

!

k

&
aa "

a &

!%#

!
!

!

a

!&#

$ $

$

'! # (

! #)

k k

k
c

& # #

#

$ % ' ' %

' ' %

�

�

! " #c and
R$#

k
#

Fig. 6. An and rule neuron (a) and its simplified form (b).

a proposition neuron is of the form E/aθ → aθ, in other words, the parameter
β of the firing rule contained in such a neuron is identical to θ. When the firing
condition E of a proposition neuron is satisfied, the potential value θ of spikes
contained in this neuron is consumed and then a new spike with potential value θ
is produced and emitted.

Definition 3 : A general rule neuron is associated with a fuzzy production rule
which has only one proposition in the antecedent part of the rule. Such a neuron
is represented by a rectangle and symbol R(c, general), as shown is Fig. 5.

A general rule neuron has only one presynaptic proposition neuron and one or
more postsynaptic proposition neurons. If a general rule neuron receives a spike
from its presynaptic proposition neuron and its firing condition is satisfied, then
the neuron fires and produces a new spike with the potential value β = θ ∗ ω ∗ c.

Definition 4 : An and rule neuron is associated with a fuzzy production rule
which has more than one propositions with an and relationship in the antecedent
part of the rule. Such a neuron is represented by a rectangle and symbol R(c, and),
as shown is Fig. 6.

Application of Weighted Fuzzy Reasoning Spiking Neural P Systems 337

! " #c or
R

$

!
!

!

k

&
aa "

a &

!%#

!
!

!

a

!&#

$ $'%() " " *
k k

c& # #$ % % %�

! " #c or
R

$#

k
#

Fig. 7. An or rule neuron (a) and its simplified form (b).

An and rule neuron has more than one presynaptic proposition neurons and
only one postsynaptic proposition neuron. If an and rule neuron receives k spikes
from its k presynaptic proposition neurons and its firing condition is satisfied,
then the neuron fires and produces a new spike with the potential value β =
[(θ1 ∗ ω1 + . . .+ θk ∗ ωk)/(ω1 + . . .+ ωk)] ∗ c.

Definition 5 : An or rule neuron is associated with a fuzzy production rule
which has more than one propositions with an or relationship in the antecedent
part of the rule. Such a neuron is represented by a rectangle and symbol R(c, or),
as shown is Fig. 7.

An or rule neuron has more than one presynaptic proposition neurons and
only one postsynaptic proposition neuron. If an or rule neuron receives k spikes
from its k presynaptic proposition neurons and its firing condition is satisfied,
then the neuron fires and produces a new spike with the potential value β =
max{θ1 ∗ ω1, . . . , θk ∗ ωk} ∗ c.

3.2 WMBRA

In order to clearly present a weighted matrix-based reasoning algorithm (WM-
BRA), we first introduce some parameter vectors and matrices as follows.

(1) θ = (θ1, . . . , θs)
T is a real truth value vector of the s proposition neurons,

where θi (1 ≤ i ≤ s) is a real number in [0, 1] representing the potential value
contained in the ith proposition neuron. If there is not any spike contained in a
proposition neuron, its potential value is 0.

(2) δ = (δ1, . . . , δt)
T is a real truth value vector of the t rule neurons, where δj

(1 ≤ j ≤ t) is a real number [0, 1] representing the potential value contained in the
jth rule neuron. If there is not any spike contained in a rule neuron, its potential
value is 0.

(3) C = diag(c1, c2, . . . , ct) is a diagonal matrix, where cj (1 ≤ j ≤ t) is a real
number in [0,1] representing the certainty factor of the jth fuzzy production rule,

(4) W r1 = (ωij)s×t is a synaptic weight matrix representing the directed
connection with weights among proposition neurons and general rule neurons. If
there is a directed arc (synapse) from proposition neuron σi to general rule neuron

σj , then ωij is identical to the output weight of synapse (i, j), otherwise, ωij = 0.

338 T. Wang, G. Zhang, M.J. Pérez-Jiménez

(5) W r2 = (ωij)s×t is a synaptic weight matrix representing the directed
connection with weights among proposition neurons and and rule neurons. If there
is a directed arc (synapse) from proposition neuron σi to and rule neuron σj , then
ωij is identical to the output weight of synapse (i, j), otherwise, ωij = 0.

(6) W r3 = (ωij)s×t is a synaptic weight matrix representing the directed
connection with weights among proposition neurons and or rule neurons. If there
is a directed arc (synapse) from proposition neuron σi to or rule neuron σj , then
ωij is identical to the output weight of synapse (i, j), otherwise, ωij = 0.

(7) W p = (ωji)t×s is a synaptic weight matrix representing the directed con-
nection with weights among rule neurons and proposition neurons. If there is a
directed arc (synapse) from rule neuron σj to proposition neuron σi, then ωji is
identical to the output weight of synapse (j, i), otherwise, ωji = 0.

(8) λp = (λp1, . . . , λps)
T is a threshold vector of the s proposition neurons,

where λpi (1 ≤ i ≤ s) is a real number in [0, 1) representing the firing threshold
of the ith proposition neuron.

(9) λr = (λr1, . . . , λrt)
T is a threshold vector of the t rule neurons, where λrj

(1 ≤ j ≤ t) is a real number in [0, 1) representing the firing threshold of the jth
rule neuron.

Subsequently, we introduce some multiplication operations as follows.
(1) ⊗: W T

rl ⊗ θ = (ω̄1, ω̄2, . . . , ω̄t)
T , where ω̄j = ω1j ∗ θ1 + . . . +ωsj∗θs,

j = 1, . . . , t, 1 ≤ l ≤ 3.
(2) ⊕: W T

rl ⊕ θ = (ω̄1, ω̄2, . . . , ω̄t)
T , where ω̄j = (ω1j ∗ θ1 + . . . + ωsj ∗

θs)/(ω1j + . . .+ ωsj), j = 1, . . . , t, 1 ≤ l ≤ 3.

(3) ⊙: W T
rl ⊙ θ = (ω̄1, ω̄2, . . . , ω̄t)

T , where ω̄j = max{ω1j ∗ θ1, . . . , ωsj ∗ θs)},

j = 1, . . . , t, 1 ≤ l ≤ 3. Likewise, W T
p ⊙ δ = (ω̄1, ω̄2, . . . , ω̄s)

T , where ω̄i = max
{ω1i ∗ δ1, . . . , ωti ∗ δt}, i = 1, . . . , s.

Next, we list the pseudocode of WMBRA.

4 Fault Diagnosis Based on WFRSN P systems

The diagnosis strategy based on WFRSN P systems is to build a WFRSN P
system fault diagnosis model for each candidate faulty section in outage areas.
Each model performs WMBRA from a set of SCADA data to the diagnosis results
in the form of faulty sections and their fault confidence levels. If the confidence
level of a candidate faulty section is larger than 0.5, then this section is a faulty
section. This section presents the key issues of fault diagnosis based on WFRSN P
systems. We first present WFRSN P system models for fault diagnosis production
rules in TPSSs. Subsequently, how to build WFRSN P system fault diagnosis
models for sections in TPSSs and set parameters in the models are described in
detail. Finally, a WFRSN P system model for fault region identification of feeding
sections is built.

Application of Weighted Fuzzy Reasoning Spiking Neural P Systems 339

Algorithm WMBFRA

Input: W r1, W r2,W r3, W p, λp, λr, C, θ0, δ0
1: Set the termination condition 0 = (0, . . . , 0)Tt
2: Let g = 0, where g represents the reasoning step
3: while δg 6= 0 do
4: for each input neuron (g = 0) or each proposition neuron (g > 0) do
5: if the firing condition E = {an, θi ≥ λpi, 1 ≤ i ≤ s} is satisfied then
6: the neuron fires and compute the real truth value vector δg+1 via δg+1 =

(WT
r1 ⊗ θg) + (WT

r2 ⊕ θg) + (WT
r3 ⊙ θg)

7: if there is a postsynaptic rule neuron then
8: the neuron transmits a spike to the next rule neuron
9: else
10: just accumulate the value in the neuron
11: end if
12: end if
13: end for
14: for each rule neuron do
15: if the firing condition E = {an, δj ≥ λrj , 1 ≤ j ≤ t } is satisfied then
16: the rule neuron fires and computes the real truth value vector θg+1 via θg+1 =

WT
p ⊙ (C⊗ δg+1) and transmits a spike to the next proposition neuron

17: end if
18: g = g + 1
19: end for
20: end while
Output: θg, which represents the final states of pulse values contained in proposition

neurons.

4.1 WFRSN P system models for fault diagnosis production rules in

TPSSs

In what follows, we describe fault diagnosis production rules in TPSSs and their
WFRSN P system models, as shown is Fig. 8.

Type 1 (Simple Rules) Ri: IF pj(θj) THEN pk(θk) (CF = ci), where pj and
pk are propositions, ci is a real number in [0,1] representing the certainty factor of
rule Ri, θj and θk are real numbers in [0,1] representing the truth values of pj and
pk, respectively. The weight of proposition pj is ωj , where ωj = 1 because there
is only one proposition in the antecedent of this kind of rules. The truth values of
pk is θk = θj ∗ ωj ∗ ci = θj ∗ ci.

Type 2 (Compound And Rules)Ri: IF p1(θ1) and . . . and pk−1(θk−1) THEN pk
(θk) (CF = ci), where p1, . . . , pk are propositions, ci is a real number in [0,1]
representing the certainty factor of rule Ri, θ1, . . . , θk are real numbers in [0,1]
representing the truth values of p1, . . . , pk, respectively. The weights of propositions
p1, . . . , pk−1 are ω1, . . . , ωk−1, respectively. The truth values of pk is θk = [(θ1 ∗
ω1 + . . .+ θk−1 ∗ ωk−1)/(ω1 + . . .+ ωk−1)] ∗ ci.

Type 3 (Compound Or Rules) Ri: IF p1(θ1) or . . . or pk−1(θk−1) THEN pk(θk)
(CF = ci), where p1, . . . , pk are propositions, ci is a real number in [0,1] rep-

340 T. Wang, G. Zhang, M.J. Pérez-Jiménez

! " #j j jp � �

j r k

! " #ii c generalR #! kkp �
$ $ $! " #p � �

$

$!k

$ $ $! " #k k kp � �
! ! !

! #k kp �

k r

! " #ii c andR

"
"

"

!%# !&#

$

$!k

k r

! " #ii c orR

"
"

"

!'#

k j j ic� � �# $ $
$ $ $

$ $ $

(!

) ! #*

k k

k k ic

� � � �

� � �

!

! !

$ % % $

% % $

�

�

! #k kp �

$ $ $! " #p � �

$ $ $! " #k k kp � �
! ! !

$ $ $ $+%,- " " .k k k ic� � � � �
! !

$ $ $�

/ /! #p �

/

$

$!k

$ $ $! " #k k kp � �
! ! !

! #k kp �

k r

! " #ii c andR

"
"

"

$ $ $! " #p � �

!0#

$ $ $

$ $ $

(!

) ! #*

k k

k k ic

� � � �

� � �

!

! !

$ % % $

% % $

�

�

Fig. 8. WFRSN P system models for fault diagnosis production rules in TPSSs. (a) Type
1 ; (b) Type 2 ; (c) Type 3 ; (d) Type4.

resenting the certainty factor of rule Ri, θ1, . . . , θk are real numbers in [0,1]
representing the truth values of p1, . . . , pk, respectively. The weights of propo-
sitions p1, . . . , pk−1 are ω1, . . . , ωk−1, respectively. The truth values of pk is
θk = max{θ1 ∗ ω1, . . . , θk−1 ∗ ωk−1} ∗ ci.

Type 4 (Conditional And Rules) Ri: WHEN p0(θ0) is true, IF p1(θ1) and
. . . and pk−1(θk−1) THEN pk(θk) (CF = ci), where p0, . . . , pk are propositions,
ci is a real number in [0,1] representing the certainty factor of rule Ri, θ0, . . . , θk
are real numbers in [0,1] representing the truth values of p0, . . . , pk, respectively.
The proposition p0 is used to judge whether the reasoning condition of rule Ri is
satisfied and its truth value θ0 is not used in reasoning process. Thus, the weight
of θ0 is not considered in the model. The weights of propositions p1, . . . , pk−1 are
ω1, . . . , ωk−1, respectively. The truth values of pk is θk = [(θ1 ∗ ω1 + . . . + θk−1 ∗
ωk−1)/(ω1 + . . .+ ωk−1)] ∗ ci.

4.2 WFRSN P system fault diagnosis models for sections

A good WFRSN P system fault diagnosis model should be able to intuitively
describe the causality between a fault and the the statues of its protective de-
vices. Moreover, all kinds of protective devices including main protective relays,
backup protective relays and their corresponding CBs of a faulty section should
be considered in its diagnosis model. In order to show how to build models and
set parameters, we take bus A in a TSS and its WFRSN P system fault diagnosis

Application of Weighted Fuzzy Reasoning Spiking Neural P Systems 341

 !"#$%&$'

((CB

 !
CB

T

T

Fig. 9. Single line diagram of bus A in a TSS.

 ! "mA

 !

" "# $CB

 !" #rT

 !!" #CB

!

"

#$

##

#%

#&

#'

A faults

!"

!!

$!

%!

&!

'!

"!

(!

 !

#!

!)!

!!!

!%!

!$!

!&!

!'!

!"!

!(!

!!* + ,c andR

 ! " #c and
R

 ! " #c andR

 ! " #c generalR

 ! " #c andR

 ! " #c or
R

Fig. 10. A WFRSN P system fault diagnosis model for bus A.

model as examples which are shown in Fig. 9 and Fig. 10, respectively, where T
represents a transformer, dotted line part represents a spare section set,m, p, r rep-
resent main protection, primary backup protection and remote backup protection,
respectively.

Models building

When a fault occurs on a section in a TPSS, protective devices of this section
will reach certain statues accordingly to protect the system. The observed status
information, protective relay operation information and circuit breaker tripping
information, obtained from SCADA systems are used as inputs of the WFRSN
P system fault diagnosis model of the section. For example, in Fig. 10, main
protective relay Am, remote backup protective relay T1r and their corresponding
CBs, CB11 and CB12, are used as the inputs of the diagnosis model of bus A. The
other parts of the model are built according to relationships between the protective
devices and the fault occurrence on bus A. For example, the relationships about

342 T. Wang, G. Zhang, M.J. Pérez-Jiménez

Table 4. Operation and non-operation confidence levels of the protective devices

Sections

Protective devices (operated) Protective devices (non-operated)

Main Primary backup Remote backup Main Primary backup Remote backup

Relays CBs Relays CBs Relays CBs Relays CBs Relays CBs Relays CBs

FL 0.9913 0.9833 0.8 0.85 0.7 0.75 0.2 0.2 0.2 0.2 0.2 0.2

B 0.8564 0.9833 - - 0.7 0.75 0.4 0.2 - - 0.4 0.2

T 0.7756 0.9833 0.75 0.8 0.7 0.75 0.4 0.2 0.4 0.2 0.4 0.2

bus A can be described as follows: IF Am operates and CB12 trips THEN bus A
fails; IF T1r operates and (CB11, CB12 trip) THEN bus A fails. Then proposition
neurons and different types of rule neurons are chosen, and their links are created
according to the relationships to obtain the WFRSN P system fault diagnosis
model in Fig. 10. Output neuron σ10 will export the fault confidence level of bus
A once WMBRA stops.

A WFRSN P system for the model in Fig. 10 can be formally described as
Π1 = (O, σ1, . . . , σ16, syn, in, out), where:

(1) O = {a} is the singleton alphabet (a is called spike).
(2) σ1, . . . , σ10 are proposition neurons corresponding to the propositions with

truth values θ1, . . . , θ10; that is, s = 10.
(3) σ11, . . . , σ16 are rule neurons, where σ11, σ12, σ13 and σ15 are and rule

neurons, σ14 is a general rule neuron and σ16 is an or rule neuron; that is, t = 6.
(4) syn = {(1, 11) , (2, 11), (2, 12), (3, 12), (3, 13), (4, 13), (5, 14), (6, 15), (7, 15),

(8, 16), (9, 16), (11, 5), (12, 6), (13, 7), (14, 8),(15, 9),(16, 10)}.
(5) in = {σ1, . . . , σ4}, out = {σ10}.

Parameters setting

Since the protections of sections in TPSSs are designed in single-ended manner,
the status information of protective devices obtained form SCADA systems may
contain uncertainty and incompleteness caused by abnormal situations such as
operation failure, malversation and misinformation. Thus, it is necessary to use a
probability value to describe the operation confidence level of each section. In con-
sideration of the generality of the reliability of protective relays and CBs in TPSSs
and ordinary power systems, the operation confidence levels of these protective
devices are set the same as those in [17, 23, 29]. Table 4 shows the confidence lev-
els of operated protective devices and non-operate protective devices, where FL,
B and T represent the feeder line, bus and transformer, respectively.

Initially, each input neuron of a WFRSN P system fault diagnosis model con-
tains only one spike assigned a real number, which is identical with the confidence
level of the protective device associated with this input neuron. The other neurons
in the model do not contain spikes at the very beginning and their pulse values
are 0. For example, in Fig. 10, if bus Am and CB12 operate, and T1r, CB11 do
not operate, then the spikes contained in σ1, . . . , σ4 are given the values of 0.8564,

Application of Weighted Fuzzy Reasoning Spiking Neural P Systems 343

0.9833, 0.4, 0.2, respectively. The pulse values of σ5, . . . , σ16 are given the same
value 0.

Each rule neuron of a WFRSN P system fault diagnosis model has a truth
value which represents the certainty factor of the fault diagnosis production rule
associated with this rule neuron. Usually, a main protection has a higher reliability
than that of a primary backup protection while a primary backup protection has
a higher reliability than that of a remote backup protection. The truth values
of neurons associated with main, primary backup and remote backup protections
are set as 0.975, 0.95, 0.9, respectively. It is worth pointing out that for or rule

neurons, their truth values are set according to their highest protection. In Fig.
10, the truth values of σ11, . . . , σ16 are set as 0.975, 0.9, 0.9, 0.975, 0.9, 0.975.

Since the protective relay operation information and circuit breaker tripping
information are both important to a fault diagnosis production rule, the output
weights of proposition neurons associated with protective relays and CBs are set as
the same value 0.5. If a neuron has only one presynaptic neuron, then the output
weight of its presynaptic neuron is set as 1. Besides, the weight of a protection
type is also set as 1. The weighs ω1, . . . , ω17 in Fig. 10 are set as 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 1, 1, 1, 1, 0.5, 0.5, 1, 1, 1, 1, 1.

The firing threshold value of each neuron in WFRSN P system fault diagnosis
models should be smaller than the minimum pulse value appeared in the neurons
in the whole reasoning process. According to Table 4 and the operation of pulse
values in different types of neurons, the firing threshold value of each neuron is set
as 0.1.

4.3 Fault region identification for feeding sections

Lines in section posts (SPs) are connected in an up and down line paralleling
manner in a TSS-ATP-SP feeding section (FS). So, when faults confirmed occur
in a feeding section, one important task of fault diagnosis for taction power supply
systems is to identify fault regions (which parts fail) in FSs. Fig. 11 shows a single
line diagram of a TSS-ATP-SP feeding section and its WFRSN P system fault
diagnosis model for fault region identification is shown in Fig. 12, where neurons
σ1 and σ2 are associated with the propositions that current directions of I34 and
I35 are positive, respectively; neurons σ3 is associated with the proposition that
current is detected in SP2; neurons σ4 and σ5 are associated with the propositions
that current directions of I42 and I43 are negative, respectively; a small circle
on an arrow tip represents an inverse proposition associated with its presynaptic
neuron; a hollow tip represents an assistant synapse, i.e., the proposition associated
with its presynaptic neuron is used as a judgement condition; output neuron σ6

is associated with the proposition that first part of up direction feeding section
in FS2, i.e., FS21 up has a fault. The meanings of output neurons σ7, σ9, σ9 are
similar. Here, clockwise direction is the positive current direction while counter-
clockwise direction is the negative one.

Fig. 11 and Fig. 12 show a typical feeding section and its WFRSN P system
fault diagnosis model for fault region identification, the models for other feeding

344 T. Wang, G. Zhang, M.J. Pérez-Jiménez

 !!"#$

%!&$ '(%!&& '(

%!&$)*+, %!&&)*+,

- !& !.&

/01

/02

/1&

/10

Fig. 11. Single line diagram of a TSS-ATP-SP feeding section.

! "#$ %I�
& "'$ %I�

#&$ %I�
' #"$ %I�"$ & %ISP�

(!$ & %downFS�) !$ & %upFS�
* !$ & %downFS�

+ &$ & %upFS�

!"�!,� !!� !&�

Fig. 12. A WFRSN P system fault diagnosis model for fault region identification of a
feeding section.

sections can be built in a similar way. Causality between currents detected and
fault regions is described by a WFRSN P system fault diagnosis model to get the
fault regions of feeding sections and no numerical calculation is involved in this
identification process. Thus, parameter setting of WFRSN P system fault diagnosis
models for fault region identification of feeding sections is not considered.

Application of Weighted Fuzzy Reasoning Spiking Neural P Systems 345

 !"# $% !"" $%

 !"# &'() !"" &'()

*+,

*+-

*,"

*,+

.

/0##

1#

/0#"

1"

2! 23

/0! /03/0!

23

/03

2!

245)6574#

 !"
 !#

.18#

!8#

 !+/0"+ /0",

/0+# 9 /0++

/0+,

/0+-

/0,"

/0,+

/0,#
/0,,

!8"

/0,-

/0,:

/0,;

.18+

1!!9<"

1!!9<#

.1#49 .1+

.1,

.1-

.1;

.18"

1!!9<"

.1:49 .1=

/0-# 9 /0-+

/0;,

/0;+

Fig. 13. A local single line sketch map of a TPSS.

5 Applications

In this section, three cases from the local system of a TPSS chosen in [23], as
shown in Fig. 13, are considered as examples to test the effectiveness of WFRSN P
systems in fault diagnosis, where S and R represent the sending end and receiving
end of transmission lines, L represents transmission lines. The first two cases are
in normal power supply and the third case is in over zone feeding. It is worth
pointing out that, the complete line connection of FS1, ATP1, SP1, FS3, ATP3
and TPS-02 is the same as that of TSS-01, FS2, SP2 and ATP2 in Fig. 13.

Case 1: normal power supply. FS21 up and AT1 have faults.

Status information from the SCADA system (in time order): AT1m operated,
CB31 tripped, AT3 auto switched over; FS2m operated, CB23 and CB24 tripped;
feeder lines auto reclosed, FS2up m operated quickly, CB23 tripped again. When
faults occur, current directions of I34 and I35 are positive, and current is not
detected in SP2.

A WFRSN P system for FS2up is Π2 and its corresponding WFRSN P system
fault diagnosis model is shown in Fig. 14.Π2 = (O, σ1, . . . , σ16, syn, in, out), where:

(1) O = {a} is the singleton alphabet (a is called spike).
(2) σ1, . . . , σ9 are proposition neurons corresponding to the propositions with

truth values θ1, . . . , θ9; that is, s = 9.

346 T. Wang, G. Zhang, M.J. Pérez-Jiménez

 ! " #up mFS

 !" #CB

 !" #rT

 !"# $CB

!

"

#

$%

$$

$&

&upFS faults

 !

 " # $c andR

 ! " #c andR

 ! " #c andR

 ! " #c orR

 ! " #up pFS

 !

!
!

"
!

#
!

$
!

%
!

&
!

'
!

(
!

)
!

!

 !
!

 "
!

Fig. 14. A WFRSN P system fault diagnosis model for FS2up.

(3) σ10, . . . , σ13 are rule neurons, where σ10, σ11 and σ12 are and rule neurons,
σ14 is an or rule neuron; that is, t = 4.

(4) syn = {(1, 10) , (2, 10), (2, 11), (3, 11),(4, 12), (5, 12), (6, 13), (7, 13), (8, 13),
(10, 6), (11, 7), (12, 8), (13, 9)}.

(5) in = {σ1, . . . , σ5}, out = {σ9}.
The synaptic weight matrices of Π2 are shown in Fig. 15 and other parameter

matrices associated with the model in Fig. 14 are described as follows: θ0 =
(0.9913 0.9833 0.8 0.4 0.2 0 0 0 0)T , δ0 = (0 0 0 0)T ,C = diag(0.975 0.95 0.9 0.975).
In order to succinctly describe the matrices, let us denoteOl = (x1, . . . , xl)

T , where
xi = 0, 1 ≤ i ≤ l. When g = 0, we get the results: δ1 = (0.9873 0.8917 0.3 0)T ,
θ1 = (0 0 0 0 0 0.9626 0.8471 0.27 0)T . When g = 1, we get the results: δ2 =
(0 0 0 0.9626)T , θ2 = (0 0 0 0 0 0 0 0 0.9385)T . When g = 2, we get the results:
δ3 = (0 0 0 0)T . Thus, the termination condition is satisfied and the reasoning
process ends. We obtain the reasoning results, i.e., the truth value 0.9385 of the
output neuron σ9. The feeding section FS2up has a fault with a fault confidence
level 0.9385. The fault region of FS2up can be further identified according to the
fault current detected and the WFRSN P system fault diagnosis model for fault
region identification in Fig. 12, and then we get the result that FS21 up has a fault
with a fault confidence level 0.9385.

For AT1, a WFRSN P system can be constructed in a similar way and its
corresponding WFRSN P system fault diagnosis model is shown in Fig. 16. The
diagnosis process of AT1 is similar. According to the SCADA data and Table 4,
the parameter matrices of WFRSN P system fault diagnosis model for AT1 is
established to perform WMBRA. After the reasoning, the fault confidence level of
AT1 is obtained, i.e., 0.8361. So the autotransformer AT1 has a fault with a fault
confidence level 0.8361.

Case 2: normal power supply. FS21 up has faults.

Application of Weighted Fuzzy Reasoning Spiking Neural P Systems 347

Wr1 =
[

O
]

9×4
,Wr2 =

0.5 0 0 0

0.5 0.5 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0.5 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

,Wr3 =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 0

,Wp =

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

.

Fig. 15. Synaptic weight matrices of WFRSN P system fault diagnosis model for FS2up.

 ! "mAT

 !"# $CB

 ! " #rFS

 !"# $CB

!

"#

"$

"%

"!

&upFS faults

!!" # $c andR

 ! " #c andR

 ! " #c andR

 ! " #c orR

 ! " #pAT

 !"# $CB

 !

""# $ %c andR

 !

""# $ %c generalR

 !

""# $ %c generalR

 !

""# $ %c andR

!"

!!

!#

!$

!
!

"
!

#
!

%
!

&
!

'
!

(
!

)
!

!

!$
!

!!
!

!"
!

!#
!

!%
!

!&
!

!'
!

!(
!

!)
!

!
!

"$
!

"!
!

""
!

"#
!

Fig. 16. A WFRSN P system fault diagnosis model for AT1.

Status information from the SCADA system (in time order): FS2m operated,
CB24 tripped; T1r operated, CB11 and CB12 tripped. When faults occur, current
directions of I34 and I35 are positive, and current is not detected in SP2. In this
case, CB23 refused operation.

According to the SCADA data and Table 4, the WFRSN P system fault di-
agnosis model for FS21 and its parameter matrices are established to perform
WMBRA. After the reasoning, the fault confidence level of FS2up is obtained,
i.e., 0.7439. The fault region of FS2up can be further identified according to the
fault current detected and the WFRSN P system fault diagnosis model for fault
region identification in Fig. 12, and then we get the result that FS21 up has a fault.
So the feeding section FS21 up has a fault with a fault confidence level 0.7439.

Case 3: FS2 is over zone fed by TPS-02. AT7 and FS22 up have faults.

Status information from the SCADA system (in time order): primary backup
protections of feeder lines in SP2 operated, CB42 tripped; meanwhile, CB51

tripped, AT9 auto switched over; remote backup protection FS3s of feeder lines in
TSS-02 operated, CB63 and CB64 tripped. When faults occur, current directions
of I34 and I35 are positive, and current is detected only in SP2 and ATP2. In this
case, main protection of feeder lines in SP2, CB43 and main protection of AT7

348 T. Wang, G. Zhang, M.J. Pérez-Jiménez

refused operation, and status information of primary backup protection of AT7
lost.

According to the SCADA data and Table 4, the WFRSN P system fault di-
agnosis modelS for AT7 and FS22 and their parameter matrices are established
to perform WMBRA, respectively. After the reasoning, the fault confidence levels
AT7 and FS2up are obtained, i.e., 0.6946 and 0.6123. The fault region of FS2up
can be further identified according to the fault current detected and the WFRSN
P system fault diagnosis model for fault region identification in Fig. 12, and then
we get the result that FS22 up has a fault. So the autotransformer AT2 has a fault
with a fault confidence level 0.6946 and the feeding section FS22 up has a fault
with a fault confidence level 0.6123.

The results of Cases 1-3 give evidence of that the proposed fault diagnosis
approach can obtain satisfying results both in the situation in normal power supply
and over zone feeding with complete/incomplete alarm information. In addition,
the proposed method can obtain the satisfying result as that in [23] by using only
once simple reasoning while the method in [23] needs a second reasoning.

6 Conclusions

In this study, WFRSN P systems are applied in fault diagnosis of TPSSs and WM-
BRA is proposed to perform weighted matrix-based reasoning to obtain a fault
confidence level for each candidate faulty section. The definitions of neurons in the
WFRSN P system proposed in [18] are extended and more types of neurons are
considered to express different types of status information of protection obtained
form SCADA systems. Building processes and parameter setting of fault diagnosis
models for sections and fault region identification of feeding sections are described
in detail. Case studies show effectiveness of the presented method in diagnosing
faulty sections in TPSSs. Considering the high requirement of TPSSs for diagnos-
ing speed, how to improve WFRSN P systems to adapt themselves to online fault
diagnosis is our future work.

Acknowledgment

This work is supported by the National Natural Science Foundation of China
(61170016, 61373047, 61170030), the Program for New Century Excellent Talents
in University (NCET-11-0715) and SWJTU supported project (SWJTU12CX008).
The last author acknowledge the support of the project TIN 2012-3734 of the
Ministerio de Economı́a y Competitividad of Spain.

References

1. Gh. Păun, “Computing with membranes,” J. Comput. Syst. Sci., 61(1), 108-143
(2000)

Application of Weighted Fuzzy Reasoning Spiking Neural P Systems 349

2. M. Ionescu, G. Păun, and T. Yokomori, “Spiking neural P systems,” Fund. Inform.,
71(2-3), 279-08 (2006)

3. Gh. Păun, M. J. Pérez-Jiménez, and G. Rozenberg, “Spike train in spiking neural P
systems,” Int. J. Found. Comput. Sci., 17(4), 975-1002 (2006)

4. H. Chen, T.-O. Ishdorj, Gh. Pǎun, and M. J. Pérez-Jiménez, “Handling languages
with spiking neural P systems with extended rules,” Romanian J. Inform. Sci. Tech-
nol., 9(3), 151-162 (2006)

5. R. Freund, M. Ionescu, and M. Oswald, “Extended spiking neural P systems with
decaying spikes and/or total spiking,” Int. J. Found. Comput. Sci., 19(5), 1223-1234
(2008)

6. M. Cavaliere, O.H. Ibarra, Gh. Pǎun, O. Egecioglu, M. Ionescu, and S. Woodworth,
“Asynchronous spiking neural P systems,” Theor. Comput. Sci., 410(24-25), 2352-
2364 (2009)

7. L. Q. Pan and Gh. Păun, “Spiking neural P systems: an improved normal form,”
Theor. Comput. Sci., 411(6), 906-918 (2010)

8. L. Q. Pan and X. X. Zeng, “Small universal spiking neural P systems working in
exhaustive mode,” IEEE Trans. on Nanobiosci., 10(2), 99-105 (2011)

9. L. Q. Pan, Gh. Păun, and M. J. Pérez-Jiménez, “Spiking neural P systems with
neuron division and budding,” Sci. China. Infrom. Sci., 58(8), 1596-1607 (2011)

10. X. Y. Zhang, B. Luo, X. Y. Fang and L. Q. Pan, “ Sequential spiking neural P
systems with exhaustive use of rules,” BioSystems, 108: 52-62 (2012)

11. F. George, C. Cabarle, H. N. Adorna, M. A. Mart́ınez, and M. J. Pérez-Jiménez,
“Improving GPU simulations of spiking neural P systems,” Rom. J. Inf. Sci. Tech.,
15(1), 5-20 (2012)

12. G. C. Francis and N. A. Henry, “On structures and behaviors of spiking neural P
systems and petri nets,” Int. Conf. on Membrane Computing, pp. 145-160 (2012)

13. T. Song, L. Q. Pan and Gh. Pǎun, “Asynchronous spiking neural P systems with
local synchronization,” Inform. Sciences, 219, 197-207 (2013)

14. H. Peng, J. Wang, M. J. Pérez-Jiménez, H. Wang, J. Shao, and T. Wang, “Fuzzy
reasoning spiking neural P system for fault diagnosis,” Inform. Sciences, 235, 106-116
(2013)

15. G. J. Xiong, D. Y. Shi, L. Zhu, and X. Z. Duan, “A new approach to fault diagnosis
of power systems using fuzzy reasoning spiking neural P systems,” Math. Probl. Eng.,
http://dx.doi.org/10.1155/2013/815352, 2013.

16. J. Wang and H. Peng, “Adaptive fuzzy spiking neural P systems for fuzzy inference
and learning,” Int. J. Comput. Math., 90(4), 857-868 (2013)

17. M. Tu, J. Wang, H. Peng, and P. Shi, “Application of adaptive fuzzy spiking neural
P systems in fault diagnosis of power systems,” Chinese J. Electron, 23(1), 87-92
(2014)

18. J. Wang, P. Shi, H. Peng, Mario J. Pérez-Jiménez, and Tao Wang, “Weighted fuzzy
spiking neural P system,” IEEE Trans. Fuzzy Syst., 21(2), 209-220 (2013)

19. G. X. Zhang, H. N. Rong, F. Neri and Mario J. Pérez-Jiménez, “An optimization
spiking neural P system for approximately solving combinatorial optimization prob-
lems,” Int. J. Neural Syst., 24(5), 1-15 (2014)

20. S. F. Xie and Q. Z. li, “Application of expert system based on mixing reasoning in
traction substation fault diagnosis,” in Proc. of IWADS, China, pp. 229-232 (2002)

21. Y. Du, P. C. Zhan and W. Y. Yu, “A susstation fault diagnosis sysytem based on
case-based reasoning and rule-based reasoing,” Power System Technology, 28(1), 34-
37 (2004)

350 T. Wang, G. Zhang, M.J. Pérez-Jiménez

22. R. Wang, X. C. Chen, S. B. Gao, and H. Q. Jin, “Study on the key problems of the
power supply automation system for railway passenger dedicated lines,” J. China
Railw. Soc., 28(3), 116-119 (2009)

23. S. Wu, Z. Y. He, C. H. Qian, and T. L. Zang, “Application of fuzzy petri net in
fault diagnosis of tranction power supply system for high-speed way,” Power System
Technology, 35(9) 79-85, (2011)

24. W. X. Guo, F. S. Wen, G. Ledwich, Z. W. Liao, X. Z. He and J. H. Liang, “An analytic
model for fault diagnosis in power systems condidering malfunctions of protective
relays and circuit breakers,” IEEE Trans. on Power Deliver., 25(3), 1393-1401 (2010)

25. TB10621-2009, High speed railway design criterion of China.
26. Z. Q. Han, S. P. Liu, S. B. Gao, and Z. Q. Bo, “Preotection scheme for china high-

speed railway,” 10th IET on DPSP, Manchester, pp. 1-5, (2010)
27. C. Peng, “Protection configuration and setting of high-speed railway AT trac-

tion power supply systems (M.S Degree Thesis),” SouthWest JiaoTong University,
Chengdu, China, 2009.

28. S. B. Gao, “Study on novle protective schemes of traction power supply systems
for high speed railways (Ph.D. Thesis),” SouthWest JiaoTong University, Chengdu,
China, 2004.

29. J. W. Yang, Z. Y. He, and T. L. Zang, “Power system fault-diagnosis method based
on directional weighted fuzzy Petri nets,” Proc. of the CSEE, 30(34), 42-49 (2010)

Author Index

Alhazov, Artiom, 1, 27, 37
Aman, Bogdan, 1, 49, 63, 73

Battyányi, Péter, 79

Ceterchi, Rodica, 91
Cienciala, Luděk, 103, 235
Ciencialová, Lucie, 103, 235
Ciobanu, Gabriel, 49, 63, 119
Csuhaj-Varjú, Erzsébet, 73, 103

Dı́az-Pernil, Daniel, 137, 155
Dragomir, Ciprian, 221

Freund, Rudolf, 1, 27, 37, 73, 169

Garćıa-Quismondo, Manuel, 183
Gazdag, Zsolt, 207
Gheorghe, Marian, 221
Graciani, Carmen, 281
Gutiérrez-Naranjo, Miguel Á., 137, 155, 207

Ipate, Florentin, 221
Ivanov, Sergiu, 37

Konur, Savas, 221
Krasnogor, Natalio, 221

Langer, Miroslav, 235
Leporati, Alberto, 243

Maćıas-Ramos, Luis F., 261
Manzoni, Luca, 243
Mart́ınez-del-Amor, Miguel A., 91, 183, 281
Mauri, Giancarlo, 243

352 Author Index

Orellana-Mart́ın, David, 281

Pan, Linqiang, 261, 293
Păun, Gheorghe, 1, 169, 293, 305
Peña-Cantillana, Francisco, 137, 155
Peng, Hong, 311
Perdek, Michal, 235
Pérez-Jiménez, Mario J., 91, 183, 261, 311, 329
Porreca, Antonio E., 243

Riscos-Núñez, Agust́ın, 281, 311

Smolka, Vladimı́r, 235
Song, Tao, 261

Valencia-Cabrera, Luis, 281
Vaszil, Görgy, 79

Wang, Jun, 311
Wang, Tao, 311, 329

Zandron, Claudio, 243
Zhang, Gexiang, 329
Zhang, Jiarong, 311

