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Preface

These proceedings, consisting in two volumes, contain the papers emerged from the
Tenth Brainstorming Week on Membrane Computing (BWMC), held in Sevilla,
from January 30 to February 3, 2012, in the organization of the Research Group
on Natural Computing from the Department of Computer Science and Artificial
Intelligence of Sevilla University. The first edition of BWMC was organized at the
beginning of February 2003 in Rovira i Virgili University, Tarragona, and all the
next editions took place in Sevilla at the beginning of February, each year.

The 2012 edition of BWMC was organized in conjunction with the First Inter-
national Conference on Developments in Membrane Computing (ICDMC2012).

In the style of previous meetings in this series, the tenth BWMC was con-
ceived as a period of active interaction among the participants, with the emphasis
on exchanging ideas and cooperation. Several “provocative” talks were delivered,
mainly devoted to open problems, research topics, conjectures waiting for proofs,
followed by an intense cooperation among the 40 participants – see the list in the
end of this preface. The efficiency of this type of meetings was again proved to be
very high and the present volumes illustrate this assertion.

Slightly different from the previous meetings was the combination with the
ICDMC2012, in the sense that several talks also had the style of a conference:
more time dedicated to presenting achievements obtained by the research groups
from where the participants came from, but also converging towards the style of
the brainstorming, i.e., presenting frontier results, research topics, ongoing appli-
cations.

The papers included in these volumes, arranged in the alphabetic order of the
authors, were collected in the form available at a short time after the brainstorm-
ing; several of them are still under elaboration. The idea is that the proceedings are
a working instrument, part of the interaction started during the stay of authors in
Sevilla, meant to make possible a further cooperation, this time having a written
support.
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Selections of the papers from these volumes will be considered for publication
in special issues of Theoretical Computer Science and of International Journal of
Computer Mathematics.

After each BWMC, one or two special issues of various international journals
were published. Here is their list:

• BWMC 2003: Natural Computing – volume 2, number 3, 2003, and New Gen-

eration Computing – volume 22, number 4, 2004;
• BWMC 2004: Journal of Universal Computer Science – volume 10, number 5,

2004, and Soft Computing – volume 9, number 5, 2005;
• BWMC 2005: International Journal of Foundations of Computer Science –

volume 17, number 1, 2006);
• BWMC 2006: Theoretical Computer Science – volume 372, numbers 2-3, 2007;
• BWMC 2007: International Journal of Unconventional Computing – volume 5,

number 5, 2009;
• BWMC 2008: Fundamenta Informaticae – volume 87, number 1, 2008;
• BWMC 2009: International Journal of Computers, Control and Communica-

tion – volume 4, number 3, 2009;
• BWMC 2010: Romanian Journal of Information Science and Technology –

volume 13, number 2, 2010;
• BWMC 2011: International Journal of Natural Computing Research – volume

2, numbers 2-3, 2011.

Other papers elaborated during the tenth BWMC will be submitted to other
journals or to suitable conferences. The reader interested in the final version of
these papers is advised to check the current bibliography of membrane computing
available in the domain website http://ppage.psystems.eu.

***
The list of participants as well as their email addresses are given below, with

the aim of facilitating the further communication and interaction:

1. Artiom Alhazov, University of Milano - Bicocca, Italy, aartiom@yahoo.com

2. Ioan Ardelean, Institute of Biology of the Romanian Academy, Bucharest,
Romania, ioan.ardelean57@yahoo.com

3. Mari Angels Colomer Cugat, University of Lleida, Spain,
colomer@matematica.udl.cat

4. Erzsébet Csuhaj-Varjú, Faculty of Informatics, Eötvös Loránd University,
Budapest, Hungary, csuhaj@inf.elte.hu

5. Rudolf Freund, Technological University of Vienna, Austria,
rudifreund@gmx.at

6. Manuel Garćıa-Quismondo Fernández, University of Seville, Spain,
mgarciaquismondo@us.es

7. Marian Gheorghe, University of Sheffield, United Kingdom,
m.gheorghe@sheffield.ac.uk

8. Carmen Graciani Dı́az, University of Seville, Spain, cgdiaz@us.es
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9. Miguel A. Gutiérrez Naranjo, University of Seville, Spain, magutier@us.es

10. Florentin Ipate, University of Piteşti, Romania, florentin.ipate@ifsoft.ro

11. Jozef Kelemen, Silesian University, Opava, Czech Republic,
jozef.kelemen@fpf.slu.cz

12. Abhay Krishna, CABIMER, Seville, Spain, Abhay.Krishan@cabimer.es

13. Raluca Lefticaru, University of Piteşti, Romania, raluca.lefticaru@gmail.com

14. Alberto Leporati, University of Milano - Bicocca, Italy,
leporati@disco.unimib.it

15. Luis Felipe Maćıas Ramos, University of Seville, Spain, lfmaciasr@us.es

16. Vincenzo Manca, University of Verona, Italy, vincenzo.manca@univr.it

17. Luca Marchetti, University of Verona, Italy, luca.marchetti@univr.it

18. Miguel A. Mart́ınez del Amor, University of Seville, Spain, mdelamor@us.es

19. Giancarlo Mauri, University of Milano - Bicocca, Italy, mauri@disco.unimib.it

20. Adam Obtulowicz, Polish Academy of sciences, Warsaw, Poland,
A.Obtulowicz@impan.pl

21. Ana Brânduşa Pavel, Politehnica University of Bucharest, Romania,
anabrandusa@gmail.com

22. Gheorghe Păun, Romanian Academy, Bucharest, Romania, and University
of Seville, Spain, gpaun@us.es

23. Hong Peng, School of Mathematics and Computer Engineering, Xihua
University, China, ph.xhu@hotmail.com

24. Ignacio Pérez Hurtado de Mendoza, University of Seville, Spain, perezh@us.es

25. Mario de J. Pérez Jiménez, University of Seville, Spain, marper@us.es

26. Antonio Enrico Porreca, University of Milano - Bicocca, Italy,
porreca@disco.unimib.it

27. Raúl Reina Molina, University of Seville, Spain, m75@gmail.com

28. Agust́ın Riscos Núñez, University of Seville, Spain, ariscosn@us.es

29. Iurie Rogojin, Institute of Mathematics and Computer Science of the Academy
of Sciences of Moldova, Chişinău, Moldova, yrogozhin@gmail.com

30. Álvaro Romero Jiménez, University of Seville, Spain, romero.alvaro@us.es

31. Francisco José Romero Campero, University of Seville, Spain, fran@us.es

32. Jose Maŕıa Sempere Luna, Polytechnical University of Valencia, Spain,
jsempere@dsic.upv.es

33. Petr Sośık, Silesian University, Opava, Czech Republic, and Universidad
Politécnica de Madrid, Spain, petr.sosik@fpf.slu.cz

34. Cristian Ştefan, University of Piteşti, Romania, liviu.stefan@yahoo.com

35. Luis Valencia Cabrera, University of Seville, Spain, lvalencia@us.es
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vaszil.gyorgy@inf.unideb.hu
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40. Gexiang Zhang, School of Electrical Engineering, Southwest Jiaotong
University, China, gexiangzhang@gmail.com

As mentioned above, the meeting was organized by the Research Group on
Natural Computing from Sevilla University (http://www.gcn.us.es)– and all
the members of this group were enthusiastically involved in this (not always easy)
work.

The meeting was supported from various sources: (i) Proyecto de Excelencia
con investigador de reconocida vaĺıa, de la Junta de Andalućıa, grant P08 – TIC
04200, (ii) Proyecto del Ministerio de Educación y Ciencia, grant TIN2009 – 13192,
(iii) Instituto de Matemáticas de la Universidad de Sevilla (IMUS), (iv) Consejeŕıa
de Innovacion, Ciencia y Empresas de la Junta de Andalućıa, as well as by the De-
partment of Computer Science and Artificial Intelligence from Sevilla University.

Gheorghe Păun
Mario de Jesús Pérez-Jiménez

(Sevilla, May 3, 2012)
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M.J. Pérez-Jiménez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Two Topics Ahead Membrane Computing
A Obtu lowicz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Languages and P Systems: Recent Developments
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Self-Stabilization in Membrane Systems

Artiom Alhazov1,2, Marco Antoniotti1, Rudolf Freund3,
Alberto Leporati1, Giancarlo Mauri1

1 Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
Viale Sarca 336, 20126 Milano, Italy
E-mail: {artiom.alhazov,marco.antoniotti,
alberto.leporati,giancarlo.mauri}@unimib.it

2 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
E-mail: artiom@math.md

3 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
E-mail: rudi@emcc.at

Summary. In this paper we study a notion of self-stabilization, inspired from biology
and engineering. Multiple variants of formalization of this notion are considered, and we
discuss how such properties affect the computational power of multiset rewriting systems.

1 Introduction

Membrane systems, also called P systems, are a framework for (bioinspired) com-
putational models, see [4], [5] and [7]. In this paper we consider a one-region
rewriting model with symbol objects. In this case, membrane computing can be
considered as (maximally parallel or sequential) multiset processing. In general,
a computation is a sequence of transitions between configurations. Configurations
are multisets, and the transitions are induced by rules, defined by reactants, prod-
ucts and control (additional applicability conditions, if any), viewed as formal
computational systems (generating/accepting numeric/vector sets, or computing
functions).

We will call a property dynamic if it depends on the behavior of a system and
cannot be easily derived from its description (as opposed to syntactic properties).
Given any finite computation, we assume that the property is easily verifiable. The
two usual sources of undecidability are a) that we do not always know whether
we are dealing with finite or infinite computations, and b) that some properties
are defined on infinite number of computations (due to non-determinism, to the
initial input or to some other parameter). In the case of this paper, another source
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of potential undecidability is the finite set to be reached as given in the definitions
below.

Since in this paper we will deal with reachability issues, we would also like to
mention the connection with temporal logic [2].

Self-stabilization is a known concept in conventional distributed computing,
[8], as well as in systems biology, but as far as we know, it has not yet been
considered in the framework of membrane computing. It has been recalled by
Jacob Beal during the Twelfth Conference in Membrane Computing, CMC12, and
an attempt to formalize it in the membrane computing framework has been done
in [1]. The underlying idea is the tolerance of natural and engineering systems to
perturbations. The formulation from [8] says:

A system is self-stabilizing if and only if:

1. Starting from any state, it is guaranteed that the system will eventually reach
a correct state (convergence).

2. Given that the system is in a correct state, it is guaranteed to stay in a correct
state, provided that no fault happens (closure).

In case of inherently non-deterministic systems, “with probability 1” should
be added. Based on this concept, we propose to consider a few formal properties,
following the discussion below.

In this paper we consider fully cooperative multiset rewriting, possibly with
promoters/inhibitors/priorities, operating either in the maximally parallel or the
sequential mode. We consider a single working region only, for two reasons. First,
the properties of interest are unaffected by flattening the static membrane struc-
ture. Second, we would currently like to avoid the discussion about reachability
related to “arbitrary configurations” with dynamic membrane structure.

2 Definitions

We assume the reader to be familiar with the basics of formal language theory,
e.g., we refer to [6].

An alphabet is a finite non-empty set V of abstract symbols. The free monoid
generated by V under the operation of concatenation is denoted by V ∗; the empty
string is denoted by λ, and V ∗ \ {λ} is denoted by V +. The family of all finite
(recursive, recursively enumerable) sets of positive integers is denoted by NFIN
(NREC, NRE, respectively).

2.1 Membrane systems

A one-region (rewriting) membrane system is a tuple

Π = (O,w,R) ,
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where O is a finite alphabet, w ∈ O∗ is a string representing the initial multiset,
and R is a set of rules of the form r : u→ v, u ∈ O+, v ∈ O∗.

A configuration of the system is represented by a multiset of objects from O
contained in the region, and a rule r : u→ v is applicable if the current configura-
tion contains the multiset specified by u. Furthermore, applicability may be con-
trolled by promoters (r : u → v|a), inhibitors (r : u → v|¬b), or priorities(r′ > r).
Throughout the paper, we will use the word control to mean that at least one
of these three features is allowed. In such cases, in addition to the availability of
u for a rule r to be applicable, the promoter a must be present in the current
configuration, the inhibitor b has to be absent in the current configuration, and no
rule r′ with higher priority than r is allowed to be applicable, respectively.

A computation step in the sequential mode consists of the non-deterministic
application of one applicable rule, replacing its left side with its right side. In the
maximally parallel mode, multiple applicable rules have to be applied multiple
times, to disjoint submultisets, in a non-deterministic way, possibly leaving some
objects idle, under the condition that no further rule is applicable to them. The
computation step is denoted by the binary relation⇒. A computation halts when
no rule is applicable to the current configuration (halting configuration).

For a generating system, the result of a halting computation is the total number
of objects in the system when it halts. The set of numbers generated by a P
system is the set of results of its computations. An accepting system is described
as (O,Σ,w,R), where Σ is an input alphabet: instead of w, the computation starts
with wx, x ∈ Σ∗, and its result is |x| if it halts. The set of numbers accepted by
a P system is the set of results of its computations for all x ∈ Σ∗.

2.2 Self-stabilization and related properties

We now resume the discussion started at the end of the Introduction.
Clearly, “a correct state” should be rephrased as “a configuration in the set

of correct configurations”. Moreover, we would like to eliminate the set of correct
states, let us denote it by S, as a parameter. We say that our property holds if
there exists some finite set S of configurations satisfying the conditions 1 and 2
above. Since membrane systems are inherently non-deterministic, we additionally
propose two weaker degrees of such a property: possible (there exists a computation
satisfying the conditions), almost sure (the conditions are satisfied with probability
1 with respect to non-determinism). Finally, if condition 2 is not required, we call
the corresponding property (finite) set-convergence instead of self-stabilization.
We now give the formal definitions from [1].

Definition 1. A P system Π is possibly converging to a finite set S of configura-
tions iff for every configuration C of Π there exists a configuration C ′ ∈ S such
that C ⇒∗ C ′.

Definition 2. A P system Π is (almost surely) converging to a finite set S of
configurations iff for every configuration C of Π the computations starting in C
reach some configuration in S (with probability 1, respectively).
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Definition 3. A P system Π is possibly closed with respect to a finite set S iff
for every non-halting configuration C ∈ S there exists a configuration C ′ ∈ S such
that C ⇒ C ′.

Definition 4. A P system Π is closed with respect to a finite set S iff for every
non-halting configuration C ∈ S C ⇒ C ′ implies C ′ ∈ S.

We say that a system is (possibly, almost surely) set-converging if
it is (possibly, almost surely, respectively) converging to some finite set of
configurations.
We say that a system is possibly self-stabilizing if it is possibly con-
verging to some finite set S of configurations and if it is possibly closed
with respect to S.
We say that a system is (almost surely) self-stabilizing if it is (almost
surely, respectively) converging to some finite set S of configurations and
if it is closed with respect to S.

The examination of computational aspects of these properties motivates us to
add “weakly” to the properties proposed in [1] – (possibly, almost surely) converg-
ing, (possibly) closed, (possibly, almost surely) set-converging, (possibly, almost
surely) self-stabilizing – if the corresponding conditions over configurations C only
spans the reachable non-halting ones.

Another comment we can make on “almost sure” it that such a property may
depend on how exactly the transition probability is defined. The easiest way is to
assign equal probabilities to all transitions from a given configuration. Alterna-
tively, to a transition via a multiset of rules rn1

1 · · · rnm
m we may assign the weight

of a multinomial coefficient
(
n1+···+nm

n1,··· ,nm

)
= (n1+···+nm)!

n1!···nm! , which will make the corner
cases less probable than the average ones. There can be other ways to define tran-
sition probabilities, but we would like to discuss the properties of interest without
fixing a specific way. We assume the transition probabilities in an independent
subsystem are the same as if it were the entire system.

An important assumption we impose on the probability distribution is that the
probability of each transition is uniquely determined by the associated multiset of
rules and by the set of all applicable multisets of rules, yet it does not depend on
the objects that cannot react, or by the previous history of the computation.

2.3 Register machines

In what follows we will need to simulate register machines; here we briefly recall
their definition and some of their computational properties. A register machine is
a tuple M = (m,B, l0, lh, P ), where m is the number of registers, P is the set of
instructions bijectively labeled by elements of B, l0 ∈ B is the initial label, and
lh ∈ B is the final label. The instructions of M can be of the following forms:

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
Increase the value of register j by one, and non-deterministically jump to in-
struction l2 or l3. This instruction is usually called increment.
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• l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
If the value of register j is zero then jump to instruction l3, otherwise decrease
the value of register j by one and jump to instruction l2. The two cases of this
instruction are usually called zero-test and decrement, respectively.

• lh : HALT . Stop the execution of the register machine.

A register machine is deterministic if l2 = l3 in all its ADD instructions. A
configuration of a register machine is described by the contents of each register
and by the value of the program counter, which indicates the next instruction to
be executed. Computations start by executing the first instruction of P (labeled
with l0), and terminate with reaching a HALT -instruction.

Register machines provide a simple universal computational model [3]. Register
machines can be used as accepting or as generating as well as as decision devices.
In accepting register machines, a vector of non-negative integers is accepted if
and only if the register machine halts having it as input. Usually, without loss of
generality, we may assume that the instruction lh : HALT always appears exactly
once in P , with label lh. In the generative case, we start with empty registers
and take as results of all possible halting computations. Being used as decision
devices, register machines may halt in an accepting state with label lyes or in a
rejecting state lno, respectively In the following, we shall call a specific model of
P systems computationally complete if and only if for any register machine M we
can effectively construct an equivalent P system Π of that type simulating each
step of M in a bounded number of steps and yielding the same results.

3 Results

3.1 Accepting systems

For the following theorem we consider any computationally complete model of P
systems as defined above, e.g., a model with maximally parallel multiset rewriting
or with controlled sequential multiset rewriting.

Theorem 1. If a model of P systems yields a computationally complete class, then
weakly self-stabilizing subclass accepts exactly NREC.

Proof. For any recursive number set there is a register machine M with one ac-
cepting state qyes and one rejecting state qno, deciding it. We modify the register
machine in order to obtain a register machine M ′ which, once the decision is made,
i.e., qyes or qno has been reached, erases the workspace and then enters q′yes or q′no
respectively, thereby halting in q′yes if and only if the input is accepted or per-
forming an infinite loop with q′no : (SUB (1) , q′no, q

′
no) if and only if the input x

is rejected. This register machine M ′ now can be simulated with a P system Π,
which by construction starts with a configuration representing the input x and will
either end with halting in a configuration representing the state q′yes or else looping
in a configuration representing the state q′no, i.e., Π is weakly self-stabilizing.
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Conversely, consider a self-stabilizing P system Π, i.e., for each input x, Π
performs a computation that ends up in a configuration from a finite set S and
then cannot reach any other configuration outside S. Now consider the derivation
graph for all possible computations of Π on the input x, i.e., the nodes of this
directed graph represent the configurations and the edges indicate the derivation
steps from one configuration to the next one during one of these computations.
As the number of configurations directly derivable from any configuration in Π is
finite, this derivation graph is a connected directed graph with finite degree (from
each node, only a finite number of edges is leaving); moreover, this graph cannot
have a simple path (a path visiting each node at most once) which is infinite,
as every computation in Π has to reach a configuration (node) from S and then
cannot leave the set of configurations S any more. Due to König’s lemma4, the total
number of nodes (configurations) in the derivation graph must be finite. Hence,
even without knowing the set S, the brute force algorithm computing all possible
transitions from the initial configuration, but halting as soon as the system halts
or a configuration already passed previously is reached, yields a decision procedure
for the set accepted by Π. �

Strengthening this result by removing “weakly” is problematic, even if more
powerful P systems are used. Indeed, self-stabilization also from unreachable con-
figurations would need to handle not only the configurations without any state
or with multiple states (which could be handled with the joint power of maximal
parallelism and priorities), but also configurations representing a situation with
only one state which is not the initial state of the underlying register machine. We
have to leave this question open.

Theorem 2. If a model of P systems yields a computationally complete class, then
the weakly almost surely self-stabilizing P systems of this class accept exactly NRE.

Proof. We start with the construction from Theorem 1. We want to show that
relaxing the property “weakly self-stabilizing” to “almost surely” leads from re-
cursiveness to computational completeness. It suffices to handle the case when the
system rejects the input by never halting. We modify the underlying register ma-
chine as follows: add a non-deterministic transition from every state p ∈ Q to a
new state e5, from e erase the contents of all registers and then jump back to e.
This will not affect the accepting power, but it will provide a self-stabilizing path
from any reachable non-halting configuration.

4 König’s lemma: Let G be a connected graph with finite degree. If G contains an infinite
number of nodes, then it contains an infinite simple path.

5 The transition from p to e can be done by p : (ADD(j), e, e), since the registers
then are emptied anyway. Furthermore, the basic model of register machines does
not allow non-determinism other than p : (ADD(j), q, r). The branching at ADD in-
structions might be done by assuming the original computation to be deterministic
and replacing p : (ADD(j), q, q) by p : (ADD(j), q, e). The branching at a SUB in-
struction p : (SUB(j), q, r) may be done by the sequence of rules p : (ADD(j), e, p′),
p′ : (SUB(j), p′′, p′′), p′′ : (SUB(j), q, r).
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The probability that the computation does not self-stabilize for more than k
steps decreases exponentially with respect to k. Indeed, the simulation of a regis-
ter machine by P system has bounded parallelism, each instruction is simulated
in a bounded number of steps, and at least one path leads to self-stabilization.
Moreover, there only exists a finite number of different sets of applicable multi-
sets containing a branching from the simulation into the self-stabilization path, so
the minimum probability for this self-stabilization path is strictly positive. These
observations conclude the proof. �

Theorem 3. If a model of P systems yields a computationally complete class,
then the class of all almost surely self-stabilizing maximally parallel/sequential P
systems with priorities accepts exactly NRE.

Proof. Given a set L from NRE, we first construct a P system Π simulating a
register machine M accepting L and then extend Π to a P system Π ′ even fulfilling
the condition of being almost surely self-stabilizing.

Let M = (m,B, l0, lh, P ) a deterministic register machine accepting L. We now
construct the P system Π = (O, l0, R,>) with priorities accepting L:

O = B ∪ {ai | 1 ≤ i ≤ m} ,
R = {l1 → aj l2 | l1 : (ADD (j) , l2) ∈ P}
∪ {aj l1 → l2, l1 → l3 | l1 : (SUB (j) , l2, l3) ∈ P}

> = {aj l1 → l2 > l1 → l3 | l1 : (SUB (j) , l2, l3) ∈ P} .

The contents of a register i, 1 ≤ i ≤ m, is represented by the number of symbols
ai in Π. The state l of the register machine is represented by the corresponding
symbol l in Π, too. When M halts in lh with all registers being empty, Π also
halts with the configuration {lh}. Obviously, Π accepts L, both in the sequential
as well as in the maximally parallel mode.

To strengthen the result to even non-weak almost sure self-stabilization, we
have to take into account the non-reachable configurations, too. The almost surely
self-stabilizing P system Π ′ = (O′, l0, R

′, >′) with priorities accepting L is con-
structed as follows:

O′ = B ∪ {ai | 1 ≤ i ≤ m} ∪ {e} ,
R′ = {l1 → aj l2 | l1 : (ADD (j) , l2) ∈ P}
∪ {aj l1 → l2, l1 → l3 | l1 : (SUB (j) , l2, l3) ∈ P}
∪ {ai → e | 1 ≤ i ≤ m} ∪ {ex→ e | x ∈ O′} ∪ {e→ e}
∪ {l→ e | l ∈ B \ {lh}} ∪ {ll′ → e | l, l′ ∈ B} ,

>′ = {aj l1 → l2 > l1 → l3 | l1 : (SUB (j) , l2, l3) ∈ P}
∪ {ex→ e > r, ll′ → e > r | l, l′ ∈ B, x ∈ O′, r ∈ R}
∪ {l→ e > ai → e | l ∈ B \ {lh} , 1 ≤ i ≤ m}
∪ {r > e→ e | r ∈ R′ \ {e→ e}} .

In addition to the idea of the construction given in the proof of Theorem 2
using the exit e by applying a rule l → e, l ∈ B \ {lh}, it suffices to self-stabilize
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from the configurations with no state and from the configurations with multiple
states of the register machine. Multiple states can be reduced by the rules ll′ → e,
l, l′ ∈ B. If no state symbol is present, then we may exit with one of the rules
ai → e, 1 ≤ i ≤ m. All remaining cases can be captured by the rules ex → e,
x ∈ O′. By construction, the self-stabilizing set S equals {{lh} , {e}}. The whole
construction again is valid for the sequential as well as the maximally parallel
mode. �

An open question is whether priorities in Theorem 3 can be replaced by pro-
moters or inhibitors.

3.2 Generating systems

Theorem 4. Any finite set M of numbers can be generated by some self-stabilizing
membrane system without control.

Proof. Consider a P system Π = ({s, a}, s, R), where

R = {s→ an | n ∈M} ∪ {amax(M)+1 → λ, ss→ s}.

It is not difficult to see that Π generates M and (taking S = {an | n ≤ max(M)}∪
{s}) it is self-stabilizing. �

Since self-stabilization implies set-convergence and closure, and relaxing either
property (to possibly, almost surely and/or weakly) does not compromise the con-
struction of the P system descibed in the proof of Theorem 4, the lower bound
on the generative power of associated systems restricted to any property we have
defined, is at least NFIN .

Lemma 1. A possibly finite set-converging system only generates finite sets.

Proof. It follows from Definition 1 that for a system possibly converging to a set
S, S contains all halting configurations. Since S is finite, so is the set of all the
halting configurations. Hence, at most NFIN can be generated. �

Theorem 5. Any of the following classes of P systems dpOPm(c) generate ex-
actly NFIN :

• d is possibly/almost surely/ -
• p is self-stabilizing/finite set-converging
• m is maximally parallel/sequential
• c is uncontrolled/with promoters/with inhibitors/with priorities.

Proof. The claims of the theorem directly follow from Theorems 4 and 5.

We now proceed to weak properties of generative systems.

Theorem 6. Weakly almost surely self-stabilizing P systems generate exactly
NFIN .
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Proof. The lower bound is shown by Theorem 4. Now take a weakly self-stabilizing
P system Π, and its associated set S from the definition of the property. Consider
an arbitrary halting computation of Π. Let C be the configuration of Π one step
before the halting. Interpreting finite set-convergence for C implies that the halting
configuration belongs to S. Since the halting computation has been arbitrarily
chosen, the set of all halting configurations is a subset of S, and hence it is finite.
Therefore, the set generated by Π is finite, too. �

Theorem 7. If a model of P system yields a computationally complete class, then
weakly possibly self-stabilizing subclass generates NRE.

Proof. Consider the construction from Theorem 2, but for a generative P system.
The simulation of the underlying register machine is carried out until some point.
Unless the P system has already halted, it always has a choice to self-stabilize and
loop. �

4 Conclusions

We have presented some results concerning the concept of self-stabilization, re-
cently proposed for membrane computing. Its essence is in reachability and closure
of a finite set.

Some of the obtained results can be summarized in the following table:

Property computationally complete (sequ/maxpar)+pri Thm

self stabilizing acc. ?/gen. NFIN -/5

almost surely s.s. acc. ?/gen. NFIN acc. NRE/gen. NFIN 3/5

possibly s.s. acc. ?/gen. NFIN acc. NRE/gen. NFIN 3/5

weakly s.s. acc. NREC/gen. NFIN 1/6

weakly almost surely s.s. acc. NRE/gen. NFIN 2/6

weakly possibly s.s. acc. NRE/gen. NRE 2/7

One of the questions we proposed is whether priorities may be replaced by pro-
moters or inhibitors in Theorem 2. Another open question is the power of accepting
with unrestricted self-stabilization, even if maximal parallelism is combined with
priorities (a comment after Theorem 1 and the first question mark in the table
above). The other open questions are also marked with question marks in the ta-
ble above. Any system in the corresponding classes must (besides doing the actual
computation) converge (definitely, in probability or possibly) to some finite set
from anywhere, without using the joint power of maximal parallelism and control.

We mention two topics that we do not deal with here. One is considering the
finite set as a parameter, possibly leading to a discussion in model checking. The
other one concerns reachability questions in dynamic membrane structures.
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Summary. We investigate the computational power of energy-based P systems, a model
of membrane systems where a fixed amount of energy is associated with each object and
the rules transform single objects by adding or removing energy from them. We answer
recently proposed open questions about the power of such systems without priorities asso-
ciated to the rules, for both sequential and maximally parallel modes. We also conjecture
that deterministic energy-based P systems are not computationally complete.

1 Introduction

Membrane systems (also called P systems) have been introduced in [11] as a class
of distributed and parallel computing devices, inspired by the structure and func-
tioning of living cells. Since then, many variants of P systems have been defined
in the literature. In what follows we assume the reader is familiar with the basic
notions and the terminology underlying P systems. A systematic introduction to
the area can be found in [12]; a recent overview of the developments is presented
in [13], whereas the latest information can be found in [15].

In this paper we consider energy-based P systems [7, 8, 6], a model of computa-
tion in the framework of Membrane Computing in which a given amount of energy
is associated to each object, and the energy manipulated during computations is
taken into account by means of conservative rules.

Let us note in passing that there has been other attempts in the literature
to incorporate certain conservation laws in membrane computing. One is purely
communicative models, of which the most thoroughly studied is P systems with
symport/antiport [10]. In these systems the computation is carried out by moving
objects between the regions in groups. To reach computational completeness, the
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workspace is increased by bringing (some types of) objects from the environment,
where they can be found in an unbounded supply. Another model is conformon P
systems [5], where computations are performed by redistributing energy between
objects, than can also be renamed and moved. A feature of these systems is that a
different amount of energy may be embedded in the same object at different time
steps. Yet another approach is to assign energy to membranes, as in P system with
Unit Rules and Energy assigned to Membranes (UREM P systems, for short) [1].
Here the computations are performed by rules renaming and moving an object
across a membrane, possibly modifying the energy assigned to that membrane.
It has been proved in [1] that UREM P systems working in the sequential mode
characterize PsMAT , the family of Parikh sets generated by matrix grammars
without appearance checking (and with erasing rules), and that their power is
increased to PsRE (the family of recursively enumerable Parikh sets) if priorities
are assigned to the rules or the mode of applying the rules is changed to maximally
parallel.

As stated above, in this paper we consider energy-based P systems, in which
energy is assigned to objects in a way that each object from the alphabet is assigned
a specific value. Instances of a special symbol are used to denote free energy units
occurring inside the regions of the system. The computations are carried out by
rules renaming and possibly moving objects, which may consume or release free
energy in the region, respecting the energy conservation law (that is, the total
amount of energy associated with the objects that appear in the left hand side of
a rule is the same as the energy occurring in the right hand side). The result of
a computation may be interpreted in many ways: for example, as the amount of
free energy units in a designated output region. Also for this model, to give the
possibility to reach computational completeness it is necessary (but not sufficient,
as we will see) that there may be an unbounded amount of free energy in (at least
one) specified region of the system. In [6] it is proved that energy-based P systems
working in the sequential way and using a form of local priorities associated to
the rules are computationally complete. Without priorities, their behavior can be
simulated by vector addition systems, and hence are not universal. However, in [6]
the precise characterization of the computational power of energy-based P systems
without priorities is left as an open problem. A related open question was whether
energy-based P systems can reach computational completeness by working in the
maximally parallel mode, without priorities, as it happens with UREM P systems
[1].

In this paper we answer these questions, by showing that the power of energy-
based P systems containing an infinite amount of free energy and without priorities
is exactly PsMAT when working in the sequential mode, and PsRE when work-
ing in the maximally parallel mode. Nonetheless we will end with another open
question: what is the power of energy-based P systems under the restriction of
determinism? We conjecture non-universality for this case.

The rest of the paper is structured as follows. The next section contains some
mathematical preliminaries, to fix the notions, definitions and notations with which



Characterizing the Computational Power of Energy-Based P Systems 13

we will work. Section 3 contains our results concerning the characterization of
the computational power of energy-based P systems working without priorities,
either in the sequential or in the maximally parallel mode. Section 4 contains the
conclusions and some discussion on the above mentioned open problem, concerning
the computational power of deterministic energy-based P systems.

2 Preliminaries

We assume the reader to be familiar with the basics of formal languages; on this
subject one may refer to, e.g., [14].

We denote by N the set of non-negative integers. An alphabet V is a finite non-
empty set of abstract symbols. Given V , the free monoid generated by V under
the operation of concatenation is denoted by V ∗; the empty string is denoted by
λ, and V ∗ − {λ} is denoted by V +. By | x | we denote the length of the word x
over V. Let {a1, . . . , an} be an arbitrary alphabet; the number of occurrences of
a symbol ai in x is denoted by | x |ai

; the Parikh vector associated with x with
respect to a1, . . . , an is (| x |a1 , . . . , | x |an) . The Parikh image of a language L
over {a1, . . . , an} is the set of all Parikh vectors of strings in L. For a family of
languages FL, the family of Parikh images of languages in FL is denoted by PsFL.
A finite multiset ⟨m1, a1⟩ . . . ⟨mn, an⟩ with mi ∈ N, 1 ≤ i ≤ n, is represented as
any string x the Parikh vector of which with respect to a1, . . . , an is (m1, . . . ,mn) .
The family of recursively enumerable languages is denoted by RE, and the family
of context-free languages by CF. The family of all recursively enumerable sets of
k-dimensional vectors of non-negative integers can thus be denoted by Ps(k)RE.
Since numbers can be seen as one-dimensional vectors, we can replace Ps(1) by N
in the notation, thus obtaining NRE.

2.1 Matrix Grammars

A context-free matrix grammar (without appearance checking) is a construct
G = (N,T, S,M) where N and T are sets of non-terminal and terminal sym-
bols, respectively, with N ∩ T = ∅, S ∈ N is the start symbol, M is a finite set of
matrices, M = {mi | 1 ≤ i ≤ n}, where the matrices mi are sequences of the form
mi = [mi,1, . . . ,mi,ni ], ni ≥ 1, 1 ≤ i ≤ n, and the mi,j , 1 ≤ j ≤ ni, 1 ≤ i ≤ n,
are context-free productions over (N,T ). For mi = [mi,1, . . . ,mi,ni ] and v, w ∈
(N ∪ T )

∗
we define v =⇒mi w if and only if there are w0, w1, . . . , wni ∈ (N ∪ T )

∗

such that w0 = v, wni = w, and for each j, 1 ≤ j ≤ ni, wj is the result of the
application of mi,j to wj−1. The language generated by G is

L (G) = {w ∈ T ∗ | S =⇒mi1
w1 . . . =⇒mik

wk, wk = w,

wj ∈ (N ∪ T )
∗
, mij ∈M for 1 ≤ j ≤ k, k ≥ 1

}
.

According to the definitions given in [2], the last matrix can already finish with
a terminal word without having applied the whole sequence of productions. The



14 A. Alhazov, M. Antoniotti, A. Leporati

family of languages generated by matrix grammars without appearance checking
is denoted by MAT . It is known that PsCF ⊂ PsMAT ⊂ PsRE. Further details
about matrix grammars can be found in [2] and in [14].

2.2 Energy-based P systems

Let us now recall the definition of energy-based P systems as given in [8].
An energy-based P system of degree m ≥ 1 is a tuple

Π = (A, ε, µ, e, w1, . . . , wm, R1, . . . , Rm, iin, iout)

where:

• A is a finite set of objects called the alphabet;
• ε : A→ N is a mapping that associates to each object a ∈ A the value ε(a) (also

denoted by εa), which can be viewed as the “energy value of a”. If ε(a) = ℓ,
we also say that object a embeds ℓ units of energy;

• µ is a description of a tree structure consisting of m membranes, injectively
labeled with elements from the set {1, . . . ,m};

• e /∈ A is a special symbol denoting one free energy unit;
• wi, for 1 ≤ i ≤ m, specifies multisets (over A∪ {e}) of objects initially present

in region i. We will sometimes assume that the number of e’s (but not of objects
from A) in some regions of the system is unbounded;

• Ri, for 1 ≤ i ≤ m, is a finite set of multiset rewriting rules over A ∪ {e}
associated with region i. Rules can be of the following types:

aek → (b, p) and b→ (a, p)ek (1)

where a, b ∈ A, p ∈ {here, in(j), out | 1 ≤ j ≤ m}, and k is a non-negative
integer. Rules satisfy the conservativeness condition ε(a) + k = ε(b);

• iin ∈ {1, 2, . . . ,m} specifies the input region of Π;
• iout ∈ {0, 1, . . . ,m} specifies the output region of Π (iout = 0 corresponds to

the environment).

Remark 1. In the above definition we excluded rules of types e→ (e, p), originally
included in [8]. It is easy to see that this does not influence the computational
power of energy-based P systems.

When a rule of the type aek → (b, p) is applied, the object a, in presence of k
free energy units, is allowed to be transformed into object b (note that εa +k = εb,
for the conservativeness condition). If p = here, then the new object b remains
in the same region; if p = out, then b exits from the current membrane. Finally,
if p = in(name), then b enters into the membrane labelled with name, which
must be directly contained inside the current membrane in µ. The meaning of
rule b → (a, p)ek, where k is a positive integer number, is similar: the object b is
allowed to be transformed into object a by releasing k units of free energy (also
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here, εb = εa +k). As above, the new object a may optionally move one level up or
down into the membrane structure. The k free energy units might then be used by
another rule to produce “more energetic” objects from “less energetic” ones. When
k = 0 the rule aek → (b, p), also written as a→ (b, p), transforms the object a into
the object b (note that in this case εb = εa) and moves it (if p ̸= here) upward or
downward into the membrane hierarchy, without acquiring or releasing any free
energy unit. A similar observation applies to rules b→ (a, p)ek when k = 0.

Rules can be applied either in the sequential or in the maximally parallel mode.
In either cases, we assume that the execution of rules does not consume energy.
When working in the sequential mode, at each computation step (a global clock is
assumed) exactly one enabled rule is nondeterministically chosen and applied in
the whole system. When working in the maximally parallel mode, instead, at each
computation step in each region of the system a maximal multiset of applicable
rules is selected, and then all those rules are applied in parallel. Here maximal
means that no further rule is applicable to objects that are “idle”, that is, not
already used by some other rule. If two or more maximal sets of applicable rules
exist, then one of them is nondeterministically chosen.

A configuration of Π is the tuple (M1, . . . ,Mm) of multisets (over A ∪ {e}) of
objects contained in each region of the system; (w1, . . . , wm) is the initial configu-
ration. A configuration where no rule can be further applied on is said to be final.
A computation is a sequence of transitions between configurations of Π, starting
from the initial one. A computation is successful if and only if it reaches a final
configuration or, in other words, it halts. The multiset wiin of objects occurring
inside the input membrane is the input for the computation, whereas the multi-
set of objects occurring inside the output membrane (or ejected from the skin, if
iout = 0) in the final configuration is the output of the computation. A non-halting
computation produces no output. As an alternative, we can consider the Parikh
vectors associated with the multisets, and see energy-based P systems as comput-
ing devices that transform (input) Parikh vectors to (output) Parikh vectors. We
may also assume that energy-based P systems have α ≥ 1 input membranes and
β ≥ 1 output membranes, instead of one. This modification does not increase the
computational power of energy-based P systems, since for any fixed value of α ≥ 1
(resp., β ≥ 1), the set Nα (resp., Nβ) is isomorphic to N, as it is easily shown by
using the well known Cantor mapping.

In what follows sometimes we will use energy-based P systems as generating
devices: we will disregard the input membrane, and will consider the multisets
(or Parikh vectors) produced in the output membrane at the end of the (halting)
nondeterministic computations of the system. In particular, in the output multi-
sets we will only count the number of free energy units contained in the β out-
put regions in the final configuration. We will denote the family of β-dimensional
vectors generated in this way by energy-based P systems with at most m mem-
branes and unbounded energy by Ps(β)OPm(energy∗). The union of all these
classes for β ranging through the set of all non-negative integers is denoted by
PsOPm(energy∗). When β = 1, the class Ps(β)OPm(energy∗) will be written as
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NOPm(energy∗). In all cases we will replace the subscript m by ∗ if no bound is
placed on the number of membranes. If instead of maximal parallelism we assume
that the P system evolves sequentially, we will add the superscript seq to P in the
notation.

Our results will thus be proved for energy-based P systems working as generat-
ing devices; however, the extension to the cases in which P systems are computing
functions or are accepting multisets of objects (or Parikh vectors) will be straight-
forward.

2.3 Register machines

In what follows we will need to simulate register machines; here we briefly recall
their definition and some of their computational properties. A register machine is
a tuple M = (m,B, l0, lh, P ), where m is the number of registers, P is the set of
instructions bijectively labeled by elements of B, l0 ∈ B is the initial label, and
lh ∈ B is the final label. The instructions of M can be of the following forms:

• l1 : ADD(j, l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
Increase the value of register j by one, and nondeterministically jump to in-
struction l2 or l3. This instruction is usually called increment.

• l1 : SUB(j, l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m
If the value of register j is zero then jump to instruction l3, otherwise decrease
the value of register j by one and jump to instruction l2. The two cases of this
instruction are usually called zero-test and decrement, respectively.

• lh : HALT . Stop the execution of the register machine. Note that, without loss
of generality, we may assume that this instruction always appears exactly once
in P , with label lh.

A register machine is deterministic if l2 = l3 in all its ADD instructions. A con-
figuration of a register machine is described by the contents of each register and
by the value of the program counter, that indicates the next instruction to be ex-
ecuted. Computations start by executing the first instruction of P (labelled with
l0), and terminate if and when they reach instruction lh.

Register machines provide a simple universal computational model [9]. In par-
ticular, the results proved in [4] immediately lead to the following proposition.

Proposition 1. For any partial recursive function f : Nα → Nβ there exists a
deterministic (max{α, β}+2)-register machine M computing f in such a way that,
when starting with (n1, . . . , nα) ∈ Nα in registers 1 to α, and all other registers
empty, M has computed f(n1, . . . , nα) = (r1, . . . , rβ) if it halts in the final label
lh with registers 1 to β containing r1 to rβ, and all other registers being empty. If
the final label cannot be reached, then f(n1, . . . , nα) remains undefined.

Register machines can also be used as accepting or as generating devices. In
accepting register machines, a vector of non-negative integers is accepted if and
only if the register machine halts. The following Proposition is a direct consequence
of Proposition 1.
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Proposition 2. For any recursively enumerable set L ⊆ Ps (α)RE of vectors of
non-negative integers there exists a deterministic register machine M with (α + 2)
registers accepting L in such a way that, when starting with n1 to nα in registers
1 to α, M has accepted (n1, . . . , nα) ∈ L if and only if it halts in the final label lh
with all registers being empty.

To generate vectors of non-negative integers we have to use nondeterminis-
tic register machines. The following Proposition is also a direct consequence of
Proposition 1.

Proposition 3. For any recursively enumerable set L ⊆ Ps (β)RE of vectors
of non-negative integers there exists a nondeterministic register machine M with
(β + 2) registers generating L in such a way that, when starting with all registers
being empty, M has generated (r1, . . . , rβ) ∈ L if it halts in the final label lh with
registers 1 to β containing r1 to rβ , and all other registers being empty.

A direct consequence of the results exposed in [9] is that in Propositions 1 and 3
we may assume without loss of generality that only ADD instructions are applied
to the output registers. This fact will be used to decrease the number of membranes
of energy-based P systems simulating register machines; in particular, for each
output register one membrane will suffice, whereas to simulate the behaviour of
the other registers we will need two membranes.

A register machine is called partially blind if performing a zero-test blocks the
computation, thus leading to no result. We can reflect this situation by omitting l3
from all SUB instructions. However, unless all non-output registers have value zero
at halting, the result of a computation is discarded; note that this is an implicit
final zero-test, imposed by the definition and not affecting the power of register
machines in the general case. It is known [3] that partially blind register machines
characterize PsMAT .

3 Characterizing the Power of Energy-based P Systems

In this section we characterize the computational power of energy-based P systems
without priorities associated to the rules and with an unbounded amount of free
energy units. As stated in the previous section, we use energy-based P systems as
generating devices; the extension to the computing and accepting cases (concerning
computational completeness) is easy to obtain.

We start with systems working in the sequential mode; with the next two
theorems we prove that they characterize PsMAT . We first prove the inclusion
PsMAT ⊆ PsOP seq

∗ (energy∗), obtained by simulating partially blind register
machines.

Theorem 1. PsOP seq
∗ (energy∗) ⊇ PsMAT .
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Proof. Consider a partially blind register machine M = (m,B, l0, lh, P ), generat-
ing β-dimensional vectors, and assume that registers β+1, . . . ,m are empty in the
final configuration of successful computations, corresponding to an implicit final
zero-test.

We construct a corresponding energy-based P system ΠM , containing an infi-
nite amount of free energy units in the skin, as follows:

Π = (A, ε, µ, e, ws, . . . , wf , Rs, . . . , Rf ), where

A = {l, l′, l′′ | l ∈ B} ∪ {tj , Tj | β + 1 ≤ j ≤ m} ∪ {t, T,H,H ′},
ε(l) = 1, ε(l′) = 2, ε(l′′) = 0, l ∈ B,

ε(tj) = 0, ε(Tj) = 2, β + 1 ≤ j ≤ m,

ε(t) = 0, ε(T ) = 1, ε(H) = 2m + 1, ε(H ′) = 2β + 2,

µ = [ [ ]
1
· · · [ ]

m
[ ]

f
]
s
,

ws = l0,

wj = λ, 1 ≤ j ≤ m,

wf = tβ+1 · · · tmT,

Rs = {l1e→ (l′1, in(j)) | l1 : ADD(j, l2, l3) ∈ P}
∪ {l1 → (l′′1 , in(j)) e | l1 : SUB(j, l2) ∈ P}
∪ {T → (T, in(f)), lhe

2m → (H, in(f))}
∪ {Tj → (t, in(j)) e2 | β + 1 ≤ j ≤ m}.

Rj = {l′1 → (l2, out) e, l′1 → (l3, out) e | l′1 : ADD(j, l2, l3) ∈ P}
∪ {l′′1e→ (l2, out) | l1 : SUB(j, l2) ∈ P} ∪R′

j , 1 ≤ j ≤ m,

R′
j = ∅, 1 ≤ j ≤ β,

R′
j = {T → te, te→ T}, β + 1 ≤ j ≤ m,

Rf = {T → te, te→ T, H → H ′e2(m−β)−1}
∪ {tje2 → (Tj , out) | β + 1 ≤ j ≤ m}.

Note that if β = m, then we replace H → H ′e−1 in Rf by He → H ′. The sets
of rules Rj and R′

j , 1 ≤ j ≤ m, are both intended to be associated with region
j, and hence should be joined. As explained below, the rules from R′

j are used to
produce infinite T ↔ te loops in the regions corresponding to non-output registers
of M if such registers are nonempty when the computation halts.

The simulation consists of a few parts. Every object associated with an in-
struction label l1 embeds 1 unit of energy. To simulate an increment instruction
l1 : ADD(j, l2, l3), the corresponding object l1 consumes 1 more unit of energy,
enters the region associated with register j as l′1, releases e there, and returns to
the skin either as the object l2 or as l3 (the choice being made in a nondetermin-
istic way), indicating the next instruction of M to be simulated. To simulate a
decrement instruction l1 : SUB(j, l2), the corresponding object l1 releases e in the
skin and enters as l′′1 the region associated with register j. There it consumes 1
unit of energy, and returns to the skin as the object l2 associated with the next
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instruction of M to be simulated. If the register was empty then this process is
blocked.

Meanwhile, another process takes place in region f ; the order of execution of
the two processes is nondeterministic, but both must finish in order for the system
to terminate the computation and produce a result. The aim of this latter process
is indeed to make ΠM “compute” forever if the above simulation of the SUB
instruction gets blocked when trying to decrement an empty register, so that no
result is produced in this case. The process consists of object T cyclically releasing
e and capturing it, generating a possibly infinite loop. The only way to stop the
loop is to alter the free energy occurring in region m. This is done when the
simulation of M is finished, leading to object H releasing e2(m−β)−1. If β = m this
consumes 1 unit of energy, thus stopping the T ↔ te loop. Otherwise it releases
enough energy for objects tj , β + 1 ≤ j ≤ m to leave the region, and the last one
of them stops the T ↔ te loop. The objects tj are used to ensure that registers
β + 1 ≤ j ≤ m are empty, otherwise causing a T ↔ te loop in the corresponding
region. �

The opposite inclusion, PsOP seq
∗ (energy∗) ⊆ PsMAT , is proved by simulating

energy-based P systems by matrix grammars.

Theorem 2. PsOP seq
∗ (energy∗) ⊆ PsMAT .

Proof. Let Π be an energy-based P system containing an infinite amount of free
energy units and applying the rules in the sequential mode. Each rule of Π can
be simulated by a corresponding rewriting rule on multisets of object-region pairs,
ignoring those pairs involving energy objects in the regions containing infinite free
energy. Such a multiset rewriting rule can be written as a matrix, yielding a matrix
grammar. Clearly no matrix can be applied if and only if no rule can be applied.
Since matrix languages are closed under morphisms, when this happens we can
apply a morphism that erases all object-region pairs except those involving free
energy objects in the output regions. The resulting language belongs to MAT , and
its Parikh mapping yields exactly Ps(Π). �

By joining the two inclusions proved in Theorems 1 and 2 we obtain our charac-
terization of PsMAT by energy-based P systems working in the sequential mode
with an unbounded amount of free energy:

Corollary 1. PsOP seq
∗ (energy∗) = PsMAT .

Running energy-based P systems in the maximally parallel mode allows them
to reach computational completeness without using priorities, as shown in the next
theorem.

Theorem 3. Ps(β)RE = Ps(β)OPβ+6(energy∗) for all integers β ≥ 1.
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Fig. 1. Simulation of the zero-test of l1 : SUB(j, l2, l3). The case when the register is
not zero is shown by dotted lines and symbols in parentheses, and the computation stops
before the dashed line.

Proof. We start by noticing that the construction from Theorem 1 produces the
same result when the P system works in the maximally parallel mode. Thus, it
suffices to only add a simulation of zero-test instructions without disrupting the
existing machinery. The new system nondeterministically chooses between decre-
ment and zero-test, and blocks the simulation process if the zero-test fails.

We thus add membranes [ ]
1′

, [ ]
2′

, . . . , [ ]
m′ and the following sets of

rules to the energy-based P system ΠM mentioned in the proof of Theorem 1:

R0
s = {1 : l1e→ (l′1, in(j′)), 3a : l′′′1 → (l1, in(j)),

5a : l′1 → (l1, in(j′)) e, 5b : zje→ (Zj , in(j)) e,

7b : z′je→ (Z ′
j , in(j′)), 12a : l

(iv)
1 → l3e

2

| l1 : SUB(j, l2, l3) ∈ P},
R0

j = {4a : l1e→ (l′1, out), 6b : Zj → (z′j , out) e ∈ R′′
j

| l1 : SUB(j, l2, l3) ∈ P},
R0

j′ = {2 : l′1 → (l′′′1 , out) e, 3b : zje→ Zj , 4b : Zj → (zj , out),

8b : Z ′
je→ Z ′′

j , 9b : Z ′′
j → zje

2, 10a : l1e→ l′′′1 ,

11a : l′′′1 e→ (l
(iv)
1 , out) | l1 : SUB(j, l2, l3) ∈ P}.

The case of correct simulation of a zero-test is illustrated in Figure 1. Indeed,
if region j does not contain any object e, then the following sequence of multisets
of rules is applied: 1, 2, (3a, 3b), (4a, 4b), (5a, 5b),6b, 7b, 8b, 9b, 10a, 11a, 12a. In this
way, l1 is transformed to l3 while the other objects used (energy and zj) are
reproduced. On the other hand, if region j contains some object e, corresponding
to a non-zero value of the corresponding register, then the sequence of multisets
of rules applied is 1, 2, (3a, 3b), (4a, 4b), (5a, 5b), (6b, 10a), 7b, and the simulation
process is blocked. We recall that blocking the simulation process leads to an
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infinite computation due to the T ↔ te loop in region f . In words, because of free
energy in region j, object l1 left that region three steps earlier. As a result, instead
of object Z ′

j consuming 1 unit of energy and then releasing 2 units needed for
l1, the existing unit of energy has been consumed by l1, leaving the computation
unfinished.

The full P system, defined using components of the construction from Theorem
1, is given below:

Π ′′ = (A′′, ε′′, µ′′, e, w′′
s , . . . , w

′′
f , R

′′
s , . . . , R

′′
f ), where

A′′ = A ∪ {l′′′ | l ∈ B} ∪ {zj , z′j , Zj , Z
′
j , Z

′′
j | 1 ≤ j ≤ m},

ε′′(x) = ε(x), ∀x ∈ A, ε(l′′′) = 1, ε(l(iv)) = 2, ∀ l ∈ B,

ε′′(zj) = ε′′(z′j) = 0, ε′′(Zj) = ε′′(Z ′
j) = 1, ε′′(Z ′′

j ) = 2, 1 ≤ j ≤ m,

µ = [ [ ]1 · · · [ ]m [ ]1′ · · · [ ]m′ [ ]f ]s ,

w′′
s = ws, w′′

j = wj , 1 ≤ j ≤ m, w′′
f = wf ,

w′′
j′ = zj , 1 ≤ j ≤ m,

R′′
s = Rs ∪R0

s, R′′
j = Rj ∪R0

j , 1 ≤ j ≤ m,

R′′
j′ = R0

j′ , 1 ≤ j ≤ m, R′′
f = Rf .

As we can see, system Π ′′ uses the skin membrane, one membrane to control the
halting, and two membranes for each of the m registers, for a total of 2m + 2
membranes.

Since it is known (see Proposition 3) that m = β+2 registers suffice to generate
any recursively enumerable set L ⊆ Ps(β)RE of vectors of non-negative integers
by nondeterministic register machines, we would obtain 2β + 6 membranes. How-
ever, as recalled above, when using register machines as generating devices we can
assume without loss of generality that only ADD instructions are applied to the
output registers. So the number of membranes needed to simulate M reduces to
β + 2(m− β) + 2 = β + 6. ⊓⊔

By putting β = 1 in the above theorem we obtain a characterization of NRE:

Corollary 2. NOP7(energy∗) = NRE.

whereas if we make the union of all classes Ps(β)OPβ+6(energy∗) for β ranging
through the set of non-negative integers we obtain a characterization of PsRE:

Corollary 3. PsOP∗(energy∗) = PsRE.

As stated above, these results can be easily generalized to the cases in which
energy-based P systems are used as accepting devices or as devices computing
partial recursive functions. First of all note that the energy-based P systems built
in the proofs of Theorems 1 and 3 can be easily modified to simulate deterministic
register machines. Considering the computing case, we know from Proposition 1
that m = max{α, β}+2 registers suffice to compute any partial recursive function
f : Nα → Nβ . To simulate such a register machine we would obtain 2 max{α, β}+6
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membranes for the system Π ′′ built in the proof of Theorem 3. However, this
number can be reduced to α + max{α, β}+ 6 by considering that:

• as stated above, we can assume that only ADD instructions are applied to
the output registers. This means that only one membrane (instead of two) is
needed to simulate the behaviour of each output register;

• in general some input registers may also be used as output registers. However,
any “primed” membrane j′ associated with an input register, 1 ≤ j′ ≤ α,
cannot be used also as a membrane associated to an output register, due to
the object zj residing in the membrane. Hence, with α inputs and β outputs we
need α primed membranes plus max{α, β} non-primed membranes. By adding
two membranes for each of the 2 additional registers of M , plus membranes f
and s, we obtain α + max{α, β}+ 6 membranes.

As particular cases, we need 2α + 6 membranes for the accepting case and β + 6
membranes for the generating case.

4 Conclusions and Future Work

In this paper we have considered energy-based P systems, a model of membrane sys-
tems with energy assigned to objects. We have answered two questions about their
computational power, and we have thus proved that it matches Parikh mapping
of matrix languages when the rules of the P systems are applied in the sequential
mode, whereas there is computational completeness in the maximally parallel case.

As a direction for future research, we propose the following problem: What is
the computational power of deterministic energy-based P systems? We conjecture
that they are not universal. The question originates from the fact that in [7, 8]
energy-based P systems are used to simulate Fredkin gates and Fredkin circuits,
respectively; however, the simulation is performed in a nondeterministic way, rely-
ing on the fact that sooner or later the simulation will choose the correct sequence
of rules. Note that if the wrong rules are chosen the simulation is not aborted;
the state of the system is “rolled back” so that a new nondeterministic choice can
be made, hopefully the correct one. Clearly this situation could produce infinite
loops; this is why one would like instead to have a deterministic simulation.

Here we can only give an informal justification for our conjecture. Notice that
objects only interact indirectly, via releasing free energy units in a region or con-
suming them. Consider a dependency graph whose nodes are identified by object-
region pairs. Two nodes are connected if the corresponding objects are present
in the associated regions in some rule. A system is deterministic if no branching
can be effectively used in its computations, so removing unusable rules would lead
to a dependency graph where each node has out-degree at most one. Hence, any
object occurring in the initial configuration of the system has some predetermined
evolution path, and one of the following cases must happen:

• the path is finite, and the object evolves until there are no associated rules,
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• the path leads to a cycle, and the object evolves forever (the computation yields
no result),

• the evolution is “frozen” because there is not enough energy for the associated
rule.

In energy-based P systems, the only way one object can influence the behavior
of another object is by manipulating energy, leading to freezing or unfreezing
the computational path of another object. There is no deterministic way to set
an object to two different paths. If a “frozen” object receives enough energy to
continue its evolution, then its computational path is the same as if it was never
frozen.

So the information that can be passed from an object to another one is quite
limited: giving the latter energy, as opposed to letting it freeze forever. However,
every time this happens, some object must stop evolving forever. Since the initial
number of objects is fixed and cannot increase, the communication complexity is
bounded and this should imply non-universality.

However, even if deterministic energy-based P systems were not universal, they
could nonetheless be able to simulate Fredkin gates. This should be doable if
leaving some “garbage” into the system at the end of the computation is allowed.
Indeed, the active objects could unfreeze the desired ones, producing the needed
result. More difficult would be designing an energy-based P system that can be
reused to simulate a Fredkin gate as many times as desired. We expect the reusable
construction to be impossible, for the same reasons as exposed above.
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Summary. Membrane systems (with symbol objects) are distributed controlled multiset
processing systems. Non-cooperative P systems with either promoters or inhibitors (of
weight not restricted to one) are known to be computationally complete. In this paper
we show that the power of the deterministic subclass of such systems is computationally
complete in the sequential mode, but only subregular in the asynchronous mode and in
the maximally parallel mode.

1 Introduction

The most famous membrane computing model where determinism is a criterion of
universality versus decidability is the model of catalytic P systems, see [2] and [4].

It is also known that non-cooperative rewriting P systems with either promoters
or inhibitors are computationally complete, [1]. Moreover, the proof satisfies some
additional properties:

• Either promoters of weight 2 or inhibitors of weight 2 are enough.
• The system is non-deterministic, but it restores the previous configuration if

the guess is wrong, which leads to correct simulations with probability 1.

The purpose of this paper is to formally prove that computational completeness
cannot be achieved by deterministic systems when working in the asynchronous
or in the maximally parallel mode.
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2 Definitions

An alphabet is a finite non-empty set V of abstract symbols. The free monoid
generated by V under the operation of concatenation is denoted by V ∗; the empty
string is denoted by λ, and V ∗ \ {λ} is denoted by V +. The set of non-negative
integers is denoted by N; a set S of non-negative integers is called co-finite if N\S
is finite. The family of all finite (co-finite) sets of non-negative integers is denoted
by NFIN (coNFIN , respectively). The family of all recursively enumerable sets
of non-negative integers is denoted by NRE. In the following, we will use ⊆ both
for the subset as well as the submultiset relation.

Since flattening the membrane structure of a membrane system preserves both
determinism and the model, in the following we restrict ourselves to consider mem-
brane systems as one-region multiset rewriting systems.

A (one-region) membrane system (P system) is a tuple

Π = (O,Σ,w,R′) ,

where O is a finite alphabet, Σ ⊆ O is the input sub-alphabet, w ∈ O∗ is a string
representing the initial multiset, and R′ is a set of rules of the form r : u → v,
u ∈ O+, v ∈ O∗.

A configuration of the system Π is represented by a multiset of objects from O
contained in the region, the set of all configurations over O is denoted by C (O).
A rule r : u → v is applicable if the current configuration contains the multiset
specified by u. Furthermore, applicability may be controlled by context conditions,
specified by pairs of sets of multisets.

Definition 1. A rule with context conditions (r, (P1, Q1) , · · · , (Pm, Qm)) is appli-
cable to a configuration C if r is applicable, and there exists some j ∈ {1, · · · ,m}
for which

• there exists some p ∈ Pj such that p ⊆ C and
• q ̸⊆ C for all q ∈ Qj.

In words, context conditions are satisfied if there exists a pair of sets of multisets
(called promoter set and inhibitor set, respectively), such that at least one multiset
in the promoter set is a submultiset of the current configuration, and no multiset
in the inhibitor set is a submultiset of the current configuration.

Definition 2. A P system with context conditions and priorities on the rules is a
construct

Π = (O,Σ,w,R′, R,>)

where (O,Σ,w,R′) is a (one-region) P system as defined above, R is a set of rules
with context conditions and > is a priority relation on the rules in R; if rule r′ has
priority over rule r, denoted by r′ > r, then r cannot be applied if r′ is applicable.
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Throughout the paper, we will use the word control to mean that at least one
of these features is allowed (context conditions or promoters or inhibitors only and
eventually priorities).

In the sequential mode (sequ), a computation step consists in the non-
deterministic application of one applicable rule r, replacing its left-hand side
(lhs (r)) with its right-hand side (rhs (r)). In the maximally parallel mode
(maxpar), multiple applicable rules may be chosen non-deterministically to be ap-
plied in parallel to the underlying configuration to disjoint submultisets, possibly
leaving some objects idle, under the condition that no further rule is applicable to
them. In the asynchronous mode (asyn), any positive number of applicable rules
may be chosen non-deterministically to be applied in parallel to the underlying
configuration to disjoint submultisets. The computation step between two con-
figurations C and C ′ is denoted by C ⇒ C ′, thus yielding the binary relation
⇒: C (O)×C (O). A computation halts when there are no rules applicable to the
current configuration (halting configuration) in the corresponding mode.

The computation of a generating P system starts with w, and its result is |x|
if it halts, an accepting system starts with wx, x ∈ Σ∗, and we say that |x| is
its results – is accepted – if it halts. The set of numbers generated/accepted by a
P system working in the mode α is the set of results of its computations for all
x ∈ Σ∗ and denoted by Nα

g (Π) and Nα
a (Π), respectively. The family of sets of

numbers generated/accepted by a family of (one-region) P systems with context
conditions and priorities on the rules with rules of type β working in the mode
α is denoted by NδOPα

1

(
β, (prok,l, inhk′,l′)d , pri

)
with δ = g for the generating

and δ = a for the accepting case; d denotes the maximal number m in the rules
with context conditions (r, (P1, Q1) , · · · , (Pm, Qm)); k and k′ denote the maximum
number of promoters/inhibitors in the Pi and Qi, respectively; l and l′ indicate
the maximum of weights of promoters and inhibitors, respectively. If any of these
numbers k, k′, l, l′ is not bounded, we replace it by ∗. As types of rules we are
going to distinguish between cooperative (β = coo) and non-cooperative (i.e., the
left-hand side of each rule is a single object; β = ncoo) ones.

In the case of accepting systems, we also consider the idea of determinism,
which means that in each step of any computation at most one (multiset of)
rule(s) is applicable; in this case, we write deta for δ.

In the literature, we find a lot of restricted variants of P systems with con-
text conditions and priorities on the rules, e.g., we may omit the priorities or
the context conditions completely. If in a rule (r, (P1, Q1) , · · · , (Pm, Qm)) we have
m = 1, we say that (r, (P1, Q1)) is a rule with a simple context condition, and
we omit the inner parentheses in the notation. Moreover, context conditions only
using promoters are denoted by r|p1,··· ,pn , meaning (r, {p1, · · · , pn} , ∅), or, equiva-
lently, (r, (p1, ∅) , · · · , (pn, ∅)); context conditions only using inhibitors are denoted
by r|¬q1,··· ,¬qn , meaning (r, λ, {q1, · · · , qn}), or r|¬{q1,··· ,qn}. Likewise, a rule with
both promoters and inhibitors can be specified as a rule with a simple context con-
dition, i.e., r|p1,··· ,pn,¬q1,··· ,¬qn stands for (r, {p1, · · · , pn} , {q1, · · · , qn}). Finally,
promoters and inhibitors of weight one are called atomic.
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Remark 1. If we do not consider determinism, then (the effect of) the rule
(r, (P1, Q1) , · · · , (Pm, Qm)) is equivalent to (the effect of) the collection of rules
{(r, Pj , Qj) | 1 ≤ j ≤ m}, no matter in which mode the P system is working (ob-
viously, the priority relation has to be adapted accordingly, too).

Remark 2. Let (r, {p1, · · · , pn} , Q) be a rule with a simple context condition; then
we claim that (the effect of) this rule is equivalent to (the effect of) the collection
of rules

{(r, {pj} , Q ∪ {pk | 1 ≤ k < j}) | 1 ≤ j ≤ m}

even in the the case of a deterministic P system: If the first promoter is chosen
to make the rule r applicable, we do not care about the other promoters; if the
second promoter is chosen to make the rule r applicable, we do not allow p1 to
appear in the configuration, but do not care about the other promoters p3 to pm;
in general, when promoter pj is chosen to make the rule r applicable, we do not
allow p1 to pj−1 to appear in the configuration, but do not care about the other
promoters pj+1 to pm; finally, we have the rule {(r, {pm} , Q ∪ {pk | 1 ≤ k < m})}.
If adding {pk | 1 ≤ k < j} to Q has the effect of prohibiting the promotor pj from
enabling the rule r to be applied, this makes no harm as in this case one of the
promoters pk, 1 ≤ k < j, must have the possibility for enabling r to be applied.
By construction, the domains of the new context conditions now are disjoint, so
this transformation does not create (new) non-determinism. In a similar way, this
transformation may be performed on context conditions which are not simple.
Therefore, without restricting generality, the set of promoters may be assumed to
be a singleton. In this case, we may omit the braces of the multiset notation for
the promoter multiset and write (r, p,Q).

Example 1. Consider an arbitrary finite set H of numbers. Choose K = max (H)+
1; then we construct the following deterministic accepting P system with promoters
and inhibitors:

Π = (O, {a} , s0f0 · · · fK , R′, R) ,
O = {a} ∪ {si, fi | 0 ≤ i ≤ K} ,
R′ = {si → si+1 | 0 ≤ i ≤ K − 1} ∪ {fi → fi | 0 ≤ i ≤ K} ,
R = {si → si+1|ai+1 , | 0 ≤ i ≤ K − 1}
∪

{
fi → fi|si,¬ai+1 , | 0 ≤ i < K, i /∈ H

}
∪ {fK → fK |sK} .

The system step by step, by the application of the rule si → si+1|ai+1 , 0 ≤ i < K,
checks if (at least) i + 1 copies of the symbol a are present. If the computation
stops after i steps, i.e., if the input has consisted of exactly i copies of a, then
this input is accepted if and only if i ∈ H, as exactly in this case the system does
not start an infinite loop with using fi → fi|si,¬ai+1 . If the input has contained
more than max (H) copies of a, then the system arrives in the state sK and will
loop forever with fK → fK |sK . Therefore, exactly H is accepted. To accept the
complement of H instead, we simply change i /∈ H to i ∈ H and as well omit the
rule fK → fK |sK . It is easy to see that for the maximally parallel mode, we can
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replace each rule fi → fi|si,¬ai+1 by the corresponding rule fi → fi|si ; in this case,
this rule may be applied with still some a being present while the system passes
through the state si, but it will not get into an infinite loop in that case.

In sum, we have shown that

NdetaOP asyn
1

(
ncoo, (pro1,∗, inh1,∗)1

)
⊇ FIN ∪ coNFIN

and
NdetaOPmaxpar

1 (ncoo, pro1,∗) ⊇ FIN ∪ coNFIN.

Example 2. For P systems working in the maximally parallel way we can even
construct a system with inhibitors only:

Π = (O, {a} , tsK , R) ,
O = {a, t} ∪ {si | 0 ≤ i ≤ K} ,
R′ = {si → tsi−1, si → si | 1 ≤ i ≤ K} ∪ {t→ λ, s0 → s0} ,
R = {si → tsi−1|¬ai | 1 ≤ i ≤ K}
∪ {t→ λ} ∪ {si → si|¬t | 0 ≤ i ≤ K, i /∈ H} .

This construction does not carry over to the case of the asynchronous mode, as
the rule t → λ is applied in parallel to the rules si → tsi−1|¬ai until the input ai

is reached. In this case, the system canot change the state si anymore, and then it
starts to loop if and only if i /∈ H. To accept the complement of H instead, change
i ∈ H to i /∈ H, i.e., in sum, we have proved that

NdetaOPmaxpar
1 (ncoo, inh1,∗) ⊇ FIN ∪ coNFIN.

As we shall show later, all the inclusions stated in Example 1 and Example 2
are equalities.

Remark 3. As in a P system (O,Σ,w,R′, R,>) the set of rules R′ can easily be
deduced from the set of rules with context conditions R, we omit R′ in the de-
scription of the P system. Moreover, for systems having only rules with a simple
context condition, we omit d in the description of the families of sets of numbers
and simply write

NδOPα
1 (β, prok,l, inhk′,l′ , pri) .

Moreover, each control mechanism not used can be omitted, e.g., if no priorities
and only promoters are used, we only write NδOPα

1 (β, prok,l).

2.1 Register machines

In what follows we will need to simulate register machines; here we briefly recall
their definition and some of their computational properties. A register machine is
a tuple M = (m,B, l0, lh, P ), where m is the number of registers, P is the set of
instructions bijectively labeled by elements of B, l0 ∈ B is the initial label, and
lh ∈ B is the final label. The instructions of M can be of the following forms:
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• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increase the value of register j by one, and non-deterministically jump to in-
struction l2 or l3. This instruction is usually called increment.

• l1 : (SUB (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then jump to instruction l3, otherwise decrease
the value of register j by one and jump to instruction l2. The two cases of this
instruction are usually called zero-test and decrement, respectively.

• lh : HALT . Stop the execution of the register machine.

A register machine is deterministic if l2 = l3 in all its ADD instructions. A
configuration of a register machine is described by the contents of each register
and by the value of the program counter, which indicates the next instruction to
be executed. Computations start by executing the first instruction of P (labeled
with l0), and terminate with reaching a HALT -instruction.

Register machines provide a simple universal computational model [5]. We here
consider register machines used as accepting or as generating devices. In accepting
register machines, a vector of non-negative integers is accepted if and only if the
register machine halts having it as input. Usually, without loss of generality, we
may assume that the instruction lh : HALT always appears exactly once in P ,
with label lh. In the generative case, we start with empty registers and take the
results of all possible halting computations.

3 Results

In this section we mainly investigate deterministic accepting P systems with con-
text conditions and priorities on the rules (deterministic P systems for short) using
only non-cooperative rules and working in the sequential, the asynchronous, and
the maximally parallel mode.

Remark 4. We first notice that maximal parallelism in systems with non-
cooperative rules means the total parallelism for all symbols to which at least
one rule is applicable, and determinism guarantees that “at least one” is “exactly
one” for all reachable configurations and objects. Determinism in the sequential
mode requires that at most one symbol has an associated applicable rule for all
reachable configurations. Surprisingly enough, in the case of the asynchronous
mode we face an even worse situation than in the case of maximal parallelism – if
more than one copy of a specific symbol is present in the configuration, then no
rule can be applicable to such a symbol in order not to violate the condition of
determinism.

We now define the bounding operation over multisets, with a parameter k ∈ N
as follows:

for u ∈ O∗, bk(u) = v with |v|a = min(|u|a , k) for all a ∈ O.
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The mapping bk “crops” the multisets by removing copies of every object a
present in more than k copies until exactly k remain. For two multisets u, u′,
bk (u) = bk (u′) if for every a ∈ O, either |u|a = |u′|a < k, or |u|a ≥ k and

|u′|a ≥ k. Mapping bk induces an equivalence relation, mapping O∗ into (k + 1)
|O|

equivalence classes. Each equivalence class corresponds to specifying, for each a ∈
O∗, whether no copy, one copy, or ... k−1 copies, or “k copies or more” are present.
We denote the range of bk by {0, · · · , k}O.

Lemma 1. Context conditions are equivalent to predicates defined on boundings.

Proof. We start by representing context conditions by predicates on boundings.
Consider a rule with a simple context condition (r, p,Q), and let the current con-
figuration be C. Then, it suffices to take k ≥ max (|p| ,max{|q| | q ∈ Q}), and
let C ′ = bk (C). The applicability condition for (r, p,Q) may be expressed as

p ⊆ C ′ ∧
(∧

q∈Q q ̸⊆ C ′
)

. Indeed, x ⊆ C ←→ x ⊆ C ′ for every multiset x with

|x| ≤ k, because for every a ∈ O, |x|a ≤ |C|a ←→ |x|a ≤ min (|C|a , k) holds if
|x|a ≤ k. Finally, we notice that context conditions which are not simple can be
represented by a disjunction of the corresponding predicates.

Conversely, we show that any predicate E ⊆ {0, · · · , k}O for the bounding
mapping bk for rule r can be represented by some context conditions. For each
multiset c ∈ E, we construct a simple context condition to the effect of “contains
c, but, for each a contained in c for less than k times, not more than |c|a symbols
a”: {(

r, c,
{
a|c|a+1 | |c|a < k

})
| c ∈ E

}
.

Joining multiple simple context conditions over the same rule into one rule with
context conditions concludes the proof. �

The following theorem is valid even when the rules are not restricted to non-
cooperative ones, and when determinism is not required, in either derivation mode
(also see [3]).

Theorem 1. Priorities are subsumed by conditional contexts.

Proof. A rule is prohibited from being applicable due to a priority relation if and
only if at least one of the rules with higher priority might be applied. Let r be a
rule of a P system (O,Σ,w,R′, R,>), and let r1 > r, · · · , rn > r. Hence, the rule r
is not blocked by the rules r1, · · · , rn if and only if the left-hand sides of the rules
r1, · · · , rn, lhs (r1) , · · · , lhs (rn) are not present in the current configuration or the
context conditions given in these rules are not fulfilled. According to Lemma 1,
these context conditions can be formulated as predicates on the bounding bk where
k is the maximum of weights of all left-hand sides, promoters, and inhibitors in the
rules with higher priority r1, · · · , rn. Together with the context conditions from r
itself, we finally get context conditions for a new rule r′ simulating r, but also in-
corporating the conditions of the priority relation. Performing this transformation
for all rules r concludes the proof. �
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Remark 5. From [3] we already know that in the case of rules without context con-
ditions, the context conditions in the new rules are only sets of atomic inhibitors,
which also follows from the construction given above. A careful investigation of
the construction given in the proof of Theorem 1 reveals the fact that the maximal
weights for the promoters and inhibitors to be used in the new system are bounded
by the number k in the bounding bk.

3.1 Sequential Systems

Although throughout the rest of the paper we are not dealing with sequential
systems anymore, the proof of the following theorem gives us some intuition why,
for deterministic non-cooperative systems, there are severe differences between the
sequential mode and the asynchronous or the maximally parallel mode.

Theorem 2. NdetaOP sequ
1 (ncoo, pro1,1, inh1,1) = NRE.

Proof. Consider an arbitrary deterministic register machine M = (m,B, l0, lh, P ).
We simulate M by a deterministic P system Π = (O, {a1} , l0, R) where

O = {aj | 1 ≤ j ≤ m} ∪ {l, l1, l2 | l ∈ B} ,
R = {l→ aj l

′ | (l : ADD(j), l′) ∈ P}
∪ {l→ l1|aj , aj → a′j |l1,¬a′

j
, l1 → l2|a′

j
, a′j → λ|l2 , l1 → l′|¬a′

j
,

l→ l′′|¬aj | (l : SUB(j), l′, l′′) ∈ P}.

We claim that Π is deterministic and non-cooperative, and it accepts the same set
as M . �

As can be seen in the construction of the deterministic P system in the proof
above, the rule aj → a′j |l1,¬a′

j
used in the sequential mode can be applied ex-

actly once, priming exactly one symbol aj to be deleted afterwards. Intuitively, in
the asynchronous or the maximally parallel mode, it is impossible to choose only
one symbol out of an unbounded number of copies to be deleted. The bounding
operation defined above will allow us to put this intuition into a formal proof.

3.2 Asynchronous and Maximally Parallel Systems

Fix an arbitrary deterministic controlled non-cooperative P system. Take k as the
maximum of size of all multisets in all context conditions. Then, the bounding does
not influence applicability of rules, and bk (u) is halting if and only if u is halting.
We proceed by showing that bounding induces equivalence classes preserved by
any computation.

Lemma 2. Assume u ⇒ x and v ⇒ y. Then bk (u) = bk (v) implies bk (x) =
bk (y).
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Proof. Equality bk (u) = bk (v) means that for every symbol a ∈ O, if |u|a ̸= |va|
then |u|a ≥ k and |v|a ≥ k, and we have a few cases to be considered. If no
rule is applicable to a, then the inequality of symbols a will be indistinguishable
after bounding also in the next step (both with at least k copies of a). Otherwise,
exactly one rule r is applicable to a (by determinism, and bounding does not affect
applicability), then the difference of the multiplicities of the symbol a may only
lead to differences of the multiplicities of symbols b for all b ∈ rhs (r). However,
either all copies of a are erased by the rule a → λ or else at least one copy of a
symbol b will be generated from each copy of a by this rule alone, so |x|b ≥ |u|a ≥ k
and |y|b ≥ |v|a ≥ k, so all differences of multiplicities of an object b in u and v will
be indistinguishable after bounding in this case, too. �

Corollary 1. If bk (u) = bk (v), then u is accepted if and only if v is accepted.

Proof. Let w be the fixed part of the initial configuration. Then we consider com-
putations from uw and from vw. Clearly, bk (uw) = bk (vw). Equality of boundings
is preserved by one computation step, and hence, by any number of computation
steps.

Assume the contrary of the claim: one of the computations halts after s steps,
while the other one does not, i.e., let uw ⇒s u′ and vw ⇒s v′. By the previous
paragraph, bk (u′) = bk (v′). Since bounding does not affect applicability of rules,
either both u′ and v′ are halting, or none of them. The contradiction proves the
claim. �

We should like to notice that the arguments in the proofs of Lemma 2 and
Corollary 1 are given for the maximal parallel mode; following the observation
stated at the end of Remark 4, these two results can also be argued for the asyn-
chronous mode.

Theorem 3. For deterministic P systems working in the asynchronous or in the
maximally parallel mode, we have the following characterization:

NFIN ∪ coNFIN = NdetaOP asyn
1 (ncoo, pro1,∗, inh1,∗)

= NdetaOPmaxpar
1 (ncoo, pro1,∗)

= NdetaOPmaxpar
1 (ncoo, inh1,∗)

= NdetaOP asyn
1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)
= NdetaOPmaxpar

1

(
ncoo, (pro∗,∗, inh∗,∗)∗ , pri

)
.

Proof. Each equivalence class induced by bounding is completely accepted or com-
pletely rejected. If no infinite equivalence class is accepted, then the accepted set
is finite (containing numbers not exceeding (k − 1) · |O|). If at least one infinite
equivalence class is accepted, then the rejected set is finite (containing numbers
not exceeding (k − 1) · |O|). This proves the “at most NFIN ∪ coNFIN” part.

In Examples 1 and 2 we have already shown that

NdetaOPα
1 (ncoo, pro1,∗, inh1,∗) ⊇ FIN ∪ coNFIN
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for α ∈ {asyn,maxpar} as well as

NdetaOPmaxpar
1 (ncoo, γ1,∗) ⊇ FIN ∪ coNFIN

for γ ∈ {pro, inh}. This observation concludes the proof. �
There are several questions remaining open: First of all, we do not know

whether inhibitors in the rules are sufficient to yield FIN ∪ coNFIN with the
asynchronous mode, too. Moreover, it would be interesting to see if the parameter
K used in the proof of the preceding theorem induces an infinite hierarchy on the
families NdetaOPα

1 (ncoo, γ1,K), α ∈ {asyn,maxpar}, γ ∈ {pro, inh}.

4 Conclusion

We have shown that, like in case of catalytic P systems, for non-cooperative P
systems with promoters and/or inhibitors (with or without priorities), determinism
is a criterion drawing a borderline between universality and decidability. In fact, for
non-cooperative P systems working in the maximally parallel or the asynchronous
mode, we have computational completeness in the unrestricted case, and only all
finite number sets and their complements in the deterministic case.
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Summary. We show that exponential-space P systems with active membranes charac-
terize the complexity class EXPSPACE. This result is proved by simulating Turing
machines working in exponential space via uniform families of P systems with restricted
elementary active membranes; the simulation is efficient, in the sense that the time and
space required are at most polynomial with respect to the resources employed by the
simulated Turing machine.

1 Introduction

P systems with active membranes have been introduced in [9] as a variant of
P systems where the membranes have an active role during computations: they
have an electrical charge that can inhibit or activate the rules that govern the
evolution of the system, and they can grow in number by using division rules.

In several papers these systems were used to attack computationally hard prob-
lems, by exploiting the possibility to create, in polynomial time, an exponential
number of membranes that evolve in parallel. Hence, for instance, it has been
proved that P systems with active membranes can solve PSPACE-complete prob-
lems [11, 2] in polynomial time. When division rules operate only on elementary
membranes (i.e. membranes not containing other membranes), such systems are
still able to efficiently solve NP-complete problems [12, 5]. More recently, in [7] it
was proved that all problems in PPP (a possibly larger class including the poly-
nomial hierarchy) can also be solved in polynomial time using P systems with
elementary membrane division. On the other hand, if division of membranes is not
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allowed then the efficiency apparently decreases [12]: no NP-complete problem can
be solved in polynomial time without using division rules unless P = NP holds.

A measure of space complexity for P systems has been introduced [6] in order
to analyze the time-space trade-off exploited when P systems are used to effi-
ciently solve computationally hard problems. The space required by a P system
is the maximal size it can reach during any computation, defined as the sum of
the number of membranes and the number of objects. A uniform family Π of
recognizer P systems is said to solve a problem in space f : N→ N if no P system
in Π associated to an input string of length n requires more than f(n) space.
Under this notion of space complexity, in [8] it has been proved that the class
of problems solvable in polynomial space by P systems with active membranes,
denoted by PMCSPACEAM, coincides with PSPACE. This result is proved by
mutual simulation of P systems and Turing machines.

The techniques used up to now to simulate a polynomial-space Turing machine
via a polynomial-space family of P systems [7] do not seem to apply when the space
bound is less strict, i.e., exponential or even super-exponential. Indeed, we would
need P systems with an exponential number of membranes with distinct labels, and
such systems cannot be built in a polynomial number of steps by a deterministic
Turing machine (as required by the notion of polynomial-time uniformity usually
employed in the literature [5]).

Here we show that, by using different techniques, exponential-space Turing
machines can be simulated by exponential-space P systems; hence, the classes of
problems solvable by P systems with active membranes and by Turing machines
in exponential space coincide; in symbols, EXPMCSPACEAM = EXPSPACE.

The rest of the paper is organized as follows. In section 2 we recall some defini-
tions concerning P systems with active membranes and their space complexity. In
section 3 we describe how P systems with restricted elementary membranes can be
used to simulate Turing machines; an analysis on the resources (time and space)
needed to perform this simulation is also given. Section 4 contains the statement
of our characterization of EXPSPACE, while section 5 provides the conclusions
as well as some directions for further research.

2 Definitions

We assume the reader to be familiar with the basic terminology and results con-
cerning P systems with active membranes (see [10], chapters 11–12 for a survey).
Here we just recall some definitions that are relevant for the results presented in
this paper.

Definition 1. A P system with active membranes of initial degree d ≥ 1 is a tuple
Π = (Γ,Λ, µ, w1, . . . , wd, R), where:

• Γ is an alphabet, i.e., a finite non-empty set of symbols, usually called objects;
• Λ is a finite set of labels for the membranes;
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• µ is a membrane structure (i.e., a rooted unordered tree, usually represented
by nested brackets) consisting of d membranes enumerated by 1, . . . , d; fur-
thermore, each membrane is labeled by an element of Λ, not necessarily in a
one-to-one way;

• w1, . . . , wd are strings over Γ , describing the initial multisets of objects placed
in the d regions of µ;

• R is a finite set of rules.

Each membrane possesses, besides its label and position in µ, another attribute
called electrical charge (or polarization), which can be either neutral (0), positive
(+) or negative (−) and is always neutral before the beginning of the computation.

The rules are of the following kinds:

• Object evolution rules, of the form [a→ w]αh
They can be applied inside a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w).

• Send-in communication rules, of the form a [ ]αh → [b]βh
They can be applied to a membrane labeled by h, having charge α and such
that the external region contains an occurrence of the object a; the object a is
sent into h becoming b and, simultaneously, the charge of h is changed to β.

• Send-out communication rules, of the form [a]αh → [ ]βh b
They can be applied to a membrane labeled by h, having charge α and con-
taining an occurrence of the object a; the object a is sent out from h to the
outside region becoming b and, simultaneously, the charge of h is changed to β.

• Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labeled by h, having charge α and contain-
ing an occurrence of the object a; the membrane h is dissolved and its contents
are left in the surrounding region unaltered, except that an occurrence of a
becomes b.

• Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labeled by h, having charge α, contain-
ing an occurrence of the object a but having no other membrane inside (an
elementary membrane); the membrane is divided into two membranes having
label h and charge β and γ; the object a is replaced, respectively, by b and c
while the other objects in the initial multiset are copied to both membranes.

• Non-elementary division rules, of the form[
[ ]+h1
· · · [ ]+hk

[ ]−hk+1
· · · [ ]−hn

]α
h
→

[
[ ]δh1
· · · [ ]δhk

]β
h

[
[ ]εhk+1

· · · [ ]εhn

]γ
h

They can be applied to a membrane labeled by h, having charge α, contain-
ing the positively charged membranes h1, . . . , hk, the negatively charged mem-
branes hk+1, . . . , hn, and possibly some neutral membranes. The membrane h
is divided into two copies having charge β and γ, respectively; the positive



38 A. Alhazov et al.

children are placed inside the former membrane, their charge changed to δ,
while the negative ones are placed inside the latter membrane, their charges
changed to ε. Any neutral membrane inside h is duplicated and placed inside
both copies.

Each instantaneous configuration of a P system with active membranes is de-
scribed by the current membrane structure, including the electrical charges, to-
gether with the multisets located in the corresponding regions. A computation
step changes the current configuration according to the following set of principles:

• Each object and membrane can be subject to at most one rule per step, except
for object evolution rules (inside each membrane any number of evolution rules
can be applied simultaneously).

• The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, dissolution or elementary division
rules must be subject to exactly one of them (unless the current charge of the
membrane prohibits it). The same reasoning applies to each membrane that
can be involved to communication, dissolution, elementary or non-elementary
division rules. In other words, the only objects and membranes that do not
evolve are those associated with no rule, or only to rules that are not applicable
due to the electrical charges.

• When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

• While all the chosen rules are considered to be applied simultaneously during
each computation step, they are logically applied in a bottom-up fashion: first,
all evolution rules are applied to the elementary membranes, then all commu-
nication, dissolution and division rules; then the application proceeds towards
the root of the membrane structure. In other words, each membrane evolves
only after its internal configuration has been updated.

• The outermost membrane cannot be divided or dissolved, and any object sent
out from it cannot re-enter the system again.

The precise variant of P systems we use in this paper does not use dissolution
or non-elementary division rules.

Definition 2. A P system with restricted elementary active membranes is a
P system with active membranes where only object evolution, send-in, send-out,
and elementary division rules are used. This kind of P systems is denoted by
AM(−d,−n).

A halting computation of the P system Π is a finite sequence of configurations
C = (C0, . . . , Ck), where C0 is the initial configuration, every Ci+1 is reachable by Ci
via a single computation step, and no rules can be applied anymore in Ck. A non-
halting computation C = (Ci : i ∈ N) consists of infinitely many configurations,
again starting from the initial one and generated by successive computation steps,
where the applicable rules are never exhausted.
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P systems can be used as recognizers by employing two distinguished objects
yes and no; exactly one of these must be sent out from the outermost membrane
during each computation, in order to signal acceptance or rejection respectively; we
also assume that all computations are halting. If all computations starting from
the same initial configuration are accepting, or all are rejecting, the P system
is said to be confluent. If this is not necessarily the case, then we have a non-
confluent P system, and the overall result is established as for nondeterministic
Turing machines: it is acceptance iff an accepting computation exists. All P systems
in this paper are confluent.

In order to solve decision problems (i.e., decide languages), we use families
of recognizer P systems Π = {Πx : x ∈ Σ?}. Each input x is associated with
a P system Πx that decides the membership of x in the language L ⊆ Σ? by
accepting or rejecting. The mapping x 7→ Πx must be efficiently computable for
each input length [3].

Definition 3. A family of P systems Π = {Πx : x ∈ Σ?} is said to be
(polynomial-time) uniform if the mapping x 7→ Πx can be computed by two deter-
ministic polynomial-time Turing machines F (for “family”) and E (for “encod-
ing”) as follows:

• The machine F , taking as input the length n of x in unary notation, constructs
a P system Πn, which is common for all inputs of length n, with a distinguished
input membrane.

• The machine E, on input x, outputs a multiset wx (an encoding of the specific
input x).

• Finally, Πx is simply Πn with wx added to the multiset placed inside its input
membrane.3

Definition 4. If the mapping x 7→ Πx is computed by a single polynomial-time
Turing machine, the family Π is said to be semi-uniform. In this case, inputs of
the same size may be associated with P systems having possibly different membrane
structures and rules.

Any explicit encoding of Πx is allowed as output of the construction, as long
as the number of membranes and objects represented by it does not exceed the
length of the whole description, and the rules are listed one by one. This restric-
tion is enforced in order to mimic a (hypothetical) realistic process of construction
of the P systems, where membranes and objects are presumably placed in a con-
stant amount during each construction step, and require actual physical space
proportional to their number; see also [3] for further details on the encoding of
P systems.

3 Notice that this definition of uniformity is (possibly) weaker than the other one com-
monly used in membrane computing [5], where the Turing machine F maps each input
x to a P system Πs(x), where s : Σ? → N is a measure of the size of the input; in our
case, s(x) is always |x|.
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Finally, we describe how space complexity for families of recognizer P systems
is measured, and the related complexity classes [6].

Definition 5. Let C be a configuration of a P system Π. The size |C| of C is defined
as the sum of the number of membranes in the current membrane structure and the
total number of objects they contain. If C = (C0, . . . , Ck) is a halting computation
of Π, then the space required by C is defined as

|C| = max{|C0|, . . . , |Ck|}

or, in the case of a non-halting computation C = (Ci : i ∈ N),

|C| = sup{|Ci| : i ∈ N}.

Non-halting computations might require an infinite amount of space (in symbols
|C| = ∞): for example, if the number of objects strictly increases at each compu-
tation step.

The space required by Π itself is then

|Π| = sup{|C| : C is a computation of Π}.

Notice that |Π| = ∞ might occur if either Π has a non-halting computation re-
quiring infinite space (as described above), or Π has an infinite set of halting
computations, such that for each bound b ∈ N there exists a computation requiring
space larger than b.

Finally, let Π = {Πx : x ∈ Σ?} be a family of recognizer P systems, and let
f : N → N. We say that Π operates within space bound f iff |Πx| ≤ f(|x|) for
each x ∈ Σ?.

By MCSPACED(f(n)) we denote the class of languages which can be decided
by uniform families of confluent P systems of type D where each Πx ∈Π operates
within space bound f(|x|). The class of languages decidable in exponential space
by uniform families of P systems of type D is denoted by EXPMCSPACED, while
the corresponding class for semi-uniform families is EXPMCSPACE?D. The classes
defined in terms of non-confluent P systems are denoted by NEXPMCSPACED
and NEXPMCSPACE?D, respectively.

For the precise definitions and properties of Turing machines and, in particular,
the space complexity classes PSPACE and EXPSPACE, we refer the reader to [4].

3 Simulating a Turing machine

In this section we show that exponential-space deterministic Turing machines can
be simulated by P systems with restricted elementary active membranes with a
polynomial slowdown and a polynomial growth in space.
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Theorem 1. Let M be a single-tape deterministic Turing machine working in time
t(n) and space s(n), where s(n) ≤ n + 2p(n) for some polynomial p. Then there
exists a uniform family of confluent P systems with restricted elementary active
membranes Π = {Πx : x ∈ Σ?} operating in time O

(
t(n)s(n) log s(n)

)
and space

O
(
s(n) log s(n)

)
such that L(Π) = L(M).

We describe how the simulation is carried out by examining a specific example,
and generalizing from there. Let M be a Turing machine having tape alphabet
Γ = {a, b,t}, where t denotes a blank tape cell, and using space n+ 2n (i.e., we
choose p(n) = n). Also let Q be the set of non-final states of M , and

δ : Q× Γ → Q× Γ × {/, .}

its transition function. Assume that M processes the input x = ba of length 2:
then M uses a total of 2+22 = 6 tape cells. Suppose that, after a few computation
steps, M reaches the following configuration:

ab
a b

q

010 011
100 101

110 111

that is, the state of M is q, the tape contains the string baab followed by two
blank cells, and the tape head is located on the fifth cell. The picture also shows
(in binary) the non-standard numbering scheme for tape cells that we employ:

• The first n cells, that initially contain the input (highlighted by a thick border),
are denoted by 2p(n)−n, . . . , 2p(n)−1 (e.g., 010 and 011 in our example). These
numbers, when written in binary over p(n) + 1 bits, all have 0 as their most
significant bit.

• The remaining 2p(n) cells are denoted by 2p(n), . . . , 2 × 2p(n) − 1 (e.g., 100 to
111 in our example). These numbers, when written in binary over p(n)+1 bits,
all have 1 as their most significant bit.

3.1 Representing the configuration of the Turing machine

The configuration of M described above is encoded in the following configuration
C1 of the P system Πx simulating it (how this configuration of Πx is reached from
its initial configuration will be described later):
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t0 t1 t t t t

tba2 1 0 e
s

00
b

0 02
a

0 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

q 000+ + 0

0

101102 11

0

Inside the outermost membrane, labeled by s, we have n+ 2p(n) membranes (6 in
our example) representing the tape cells of M ; n of them are labeled t0, . . . , tn−1,
and the remaining ones (which are generated by membrane division, as described
below) by t. We refer to these membranes as tape-membranes. Each tape-membrane
contains two pieces of information: a set of p(n)+1 (3 in our example) subscripted
bits, the bit-objects, encoding the number of the tape cell of M it represents (the
subscript are used to preserve the order of the bits), and an object taken from the
alphabet of M , denoting the symbol written in that tape cell (the symbol-object).
For instance, the membrane [120110b]

0
t corresponds to tape cell 101, which contains

the symbol b.
The state of M is represented by a state-object (q in the example), which will

regulate the simulation of each computation step of M . At the beginning of the
simulation of each computation step of M , the state-object resides in membrane
s.

On the lower-left side of the picture we have p(n) + 1 membranes, called
position-membranes and labeled by p(n), . . . , 0, whose electrical charge encodes
in binary the current position of the tape head of M ; here a positive charge rep-
resents a 1 bit, while a neutral charge denotes 0. For instance, in the picture we
have [ ]+2 [ ]+1 [ ]00 representing position 110.

The auxiliary membrane labeled by e, the error-membrane, will have its charge
set to positive whenever Πx nondeterministically chooses a “wrong” computation
path while simulating a computation step of M (see below).

Finally, on the lower-right side of the picture, we have membranes labeled by
symbols from the alphabet of M (the symbol-membranes). These will be used,
once again by setting their charge, to read the symbol currently under the tape
head of M .

We shall now describe how to simulate a computation step of M starting from
its current configuration, as encoded by Πx. Later on we will describe how the
configuration of Πx representing the initial configuration of M can be obtained.

3.2 Simulating a computation step of M

In order to simulate a computation step of M , we need to identify which symbol
is located under its tape head; note that the state q is already stored in the state-
object. Since most of the tape-membranes of Πx have the same label t (and those
labeled by t0, . . . , tn−1 behave the same way in this phase, i.e., have the same
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associated set of rules) there is no way to identify the correct tape-membrane
from the outside. Hence, we shall guess the tape-membrane corresponding to the
cell under the head, then check if selected the right one.

This “guessing” is performed by the state-object, which nondeterministically
enters one of the tape membranes using one of the following rules:

q [ ]0h → [q1]0h for q ∈ Q and h ∈ {t0, . . . , tn−1, t}.

First, suppose q enters the wrong membrane, e.g., 011 instead of 110, producing
the following configuration:

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 02
a

0 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

000+ + 0

0

101102 11

0

q1

The state-object q1 is immediately sent back out, changing the charge of the mem-
brane to positive using one of the rules

[q1]0h → [ ]+h q2 for q ∈ Q and h ∈ {t0, . . . , tn−1, t}.

Note that there will always be at most one positive tape-membrane, i.e., the mem-
brane being checked at the current time.

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 02
a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

000+ + 0

0

101102 11

0 q2

When a tape-membrane is positive, the symbol-object it contains (a in the ex-
ample) is sent out, while the bit-objects are replicated in a primed and a double-
primed versions. At the same time, the state-object waits by increasing its subscript
(such waiting steps will be implicit from now on). The corresponding rules are

[γ]+h → [ ]+h γ for γ ∈ Γ and h ∈ {t0, . . . , tn−1, t}
[0i → 0′i0

′′
i ]+h for 0 ≤ i ≤ p(n) and h ∈ {t0, . . . , tn−1, t}

[1i → 1′i1
′′
i ]+h for 0 ≤ i ≤ p(n) and h ∈ {t0, . . . , tn−1, t}

[q2 → q3]0s for q ∈ Q.

In our example, we obtain the following configuration:
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t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

000+ + 0

0

1′′01′′102 11

0 q3

0′2 1′01′1

Now, the symbol-object is sent to the corresponding symbol-membrane, setting
its charge to positive (thus allowing the state-object to identify the symbol under
the tape head). At the same time, the primed bit-objects inside the positive tape-
membrane will be sent (in nondeterministic order) to the corresponding position-
membranes and compared with their charge. In our example we have 0′21′11′0 and
[ ]+2 [ ]+1 [ ]00 (where the most significant and the least significant bits differ). If there
is a mismatch on a certain bit, the corresponding bit-object will produce an error-
object e, otherwise it will be deleted. The error-objects will set the charge of the
error-membrane to positive, so that the state-object may identify the error when
all comparisons have been made, and will be in turn deleted. This phase, whose
duration is p(n) + 4 steps, involves the following rules:

γ [ ]0γ → [γ]+γ for γ ∈ Γ
[0′i]

+
h → [ ]+h 0′i for 0 ≤ i ≤ p(n) and h ∈ {t0, . . . , tn−1, t}

[1′i]
+
h → [ ]+h 1′i for 0 ≤ i ≤ p(n) and h ∈ {t0, . . . , tn−1, t}

0′i [ ]αi → [0′i]
α
i for 0 ≤ i ≤ p(n) and α ∈ {0,+}

1′i [ ]αi → [1′i]
α
i for 0 ≤ i ≤ p(n) and α ∈ {0,+}

[0′i → λ]0i for 0 ≤ i ≤ p(n)

[1′i → λ]+i for 0 ≤ i ≤ p(n)

[0′i]
+
i → [ ]+i e for 0 ≤ i ≤ p(n)

[1′i]
0
i → [ ]0i e for 0 ≤ i ≤ p(n)

e [ ]αe → [e]+e for α ∈ {0,+}
[e→ λ]+e

[qj → qj+1]0s for 3 ≤ j ≤ p(n) + 6 and q ∈ Q.

In our example, the computation may proceed as follows (for some concrete non-
deterministic choices in the order the bit-objects are sent out).
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t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00++ + 0

0

1′′01′′102 11

0 q4

0′2 1′0

1′1

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00++ + 0

0

1′′01′′102 11

0 q5

0′2

1′0

1′1

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00++ + 0

0

1′′01′′102 11

0 q60′2

1′0

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00++ + 0

0

1′′01′′102 11

0 q7

e

1′0
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t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00++ + 0

0

1′′01′′102 11

+ q8e

e

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00++ + 0

0

1′′01′′102 11

+ q9e

While any remaining error-object is deleted, the state-object may now enter the
error-membrane in order to check if a bit mismatch has been found (thus, if the
system chose the wrong tape-membrane). It is sent out in a primed version if this
is the case, while simultaneously resetting the charge of e to neutral. We use the
following rules:

qp(n)+7 [ ]αe → [qp(n)+8]αe for q ∈ Q and α ∈ {0,+}
[qp(n)+8]+e → [ ]0e q

′
p(n)+9 for q ∈ Q.

In our example, these two steps produce the following configurations:

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00++ + 0

0

1′′01′′102 11

+
q10

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00++ + 0

0

1′′01′′102 11

0
q′11

Having guessed the wrong tape-membrane, the system must now send the symbol-
object back to its original tape-membrane (the only positively charged one); it does
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so by setting the charge of the symbol-membrane to negative. In the subsequent
three steps, the configuration of Πx is reset to C1, except that the tape-membrane
we chose is set to negative. This requires the following rules:

q′p(n)+9 [ ]+γ → [q′p(n)+10]−γ for q ∈ Q and γ ∈ Γ
[γ]−γ → [ ]−γ γ′ for γ ∈ Γ
[q′p(n)+10 → q′p(n)+11]−γ for q ∈ Q and γ ∈ Γ
γ′ [ ]+h → [γ]−h for γ ∈ Γ and h ∈ {t0, . . . , tn−1, t}
[q′p(n)+11]−γ → [ ]0γ q

′
p(n)+12 for q ∈ Q and γ ∈ Γ

[0′′i → 0i]
−
h for 0 ≤ i ≤ p(n) and h ∈ {t0, . . . , tn−1, t} (1)

[1′′i → 1i]
−
h for 0 ≤ i ≤ p(n) and h ∈ {t0, . . . , tn−1, t} (2)

[q′p(n)+12 → q]0s for q ∈ Q.

In the example, we obtain the following sequence of configurations:

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00−+ + 0

0

1′′01′′102 11

0
q′12

t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2

a′

+ 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

00−+ + 0

0

1′′01′′102 11

0
q′13
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t0 t1 t t t t

tba2 1 0 e
s

00
b

0 0′′2
a

− 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

000+ + 0

0

1′′01′′102 11

0
q′14

t0 t1 t t t t

tba2 1 0 e
s

00
b

0

a

− 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

0

000+ + 0

0

02 11

0 q

02 1011

The system can now guess another tape-membrane, repeating the previous steps
while making wrong guesses and thus increasing the number of negatively charged
tape-membranes (which are ignored during the guessing step). After at most n+
2p(n)−1 wrong guesses (e.g., 5 guesses in our example), the system finally chooses
the correct tape-membrane.

For instance, suppose Πx made the three consecutive wrong guesses 011, 111
and 010, thus reaching the following configuration:

t0 t1 t t t t

tba2 1 0 e
s

00
b

−

a

− 12 01 00
a

0 12 01 10
b

0 12 11 00
t

0 12 11 10
t

−

000+ + 0

0

02 11

0 q

02 1011

Now assume that the state-object finally enters the correct membrane 110. The
bit-checking phase proceeds as described above for p(n) + 7 steps (i.e., 9 steps in
our case), making Πx reach the following configuration:

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0 1′′2 1
′′
1 0
′′
0

t

+ 12 11 10
t

+00+ + 0

0

02 11

0

02 1011

q9

− −
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In this configuration the error-membrane is neutral, as all bit-objects match the
corresponding position-membranes. The state-object enters membrane e

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0 1′′2 1
′′
1 0
′′
0

t

+ 12 11 10
t

+00+ + 0

0

02 11

0

02 1011

q10

− −

but this time, since the error-membrane is neutral, it is sent out in a non-primed
version, using the rule

[qp(n)+8]+e → [ ]0e qp(n)+9 for q ∈ Q

thus producing the configuration

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0 1′′2 1
′′
1 0
′′
0

t

+ 12 11 10
t

+00+ + 0

0

02 11

0

02 1011

q11

− −

As before, the state-object is sent to the only positively charged symbol-membrane,
but this time it sets it to neutral:

qp(n)+9 [ ]+γ → [qp(n)+10]0γ for q ∈ Q and γ ∈ Γ .

The symbol-object inside responds to this change of charge by deleting itself,

[γ → λ]0γ for γ ∈ Γ

while at the same time the state-object produces the primed version of the new
symbol-object corresponding to the symbol written by the Turing machine. As-
sume that the transition function of M specifies that δ(q,t) = (r, b, /); the corre-
sponding rules are

[qp(n)+10 → qp(n)+11 σ
′]0γ if δ(q, γ) = (r, σ, d) for some r ∈ Q, σ ∈ Γ , d ∈ {/, .}.

Hence, our example configuration evolves as follows:
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t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0 1′′2 1
′′
1 0
′′
0

t

+ 12 11 10
t

000+ + 0

0

02 11

0

02 1011

q12

− −

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0 1′′2 1
′′
1 0
′′
0

b′

+ 12 11 10
t

000+ + 0

0

02 11

0

02 1011

q13

− −

The new primed symbol-object is sent back to the only positive tape-membrane
as before (see page 47), while the state-object is sent out as a new state-object
qγ0 , having the tape symbol as a superscript and a new counter, starting from 0,
as a subscript (there will be no conflict with the previous rules due to the new
superscript):

[σ′]0γ → [ ]0γ σ
′ for γ, σ ∈ Γ

[qp(n)+11 → qp(n)+12]0γ for q ∈ Q and γ ∈ Γ
[qp(n)+12]0γ → [ ]0γ q

γ
0 for q ∈ Q and γ ∈ Γ .

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0 1′′2 1
′′
1 0
′′
0

b′

+ 12 11 10
t

000+ + 0

0

02 11

0

02 1011

q14

− −

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0 1′′2 1
′′
1 0
′′
0

b

− 12 11 10
t

000+ + 0

0

02 11

0

02 1011

qt0

− −

While the doubly-primed bit-objects are reset to their initial state as described
earlier, the state-object begins to update the position-membranes, reflecting the
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movement of the tape head. Recall that incrementing a binary counter means
flipping its bits, from the least to the most significant one, until a 0 is flipped
into an 1 (i.e., the remaining bits are left unchanged). Similarly, decrementing it
means flipping its bits in that order until a 1 is flipped into a 0. The subscript of the
state-object, initially 0, records the next bit position to flip. The flipping operation
is carried out by entering and exiting the corresponding position-membrane and
updating its charge. When a 0 has been flipped into an 1 (for an increment), or a
1 into a 0 (for a decrement), the subscript of the state-object becomes p(n) + 1,
thus leaving the subsequent bits unchanged.

If δ(q, γ) = (r, σ, .) for some r ∈ Q, σ ∈ Γ (i.e., the tape head moves to the
right), then the position-updating procedure is performed via the following rules:

qγi [ ]αi → [qγi ]αi for γ ∈ Γ , q ∈ Q, α ∈ {0,+} and 0 ≤ i ≤ p(n)

[qγi ]0i → [ ]+i q
γ
p(n)+1 for γ ∈ Γ , q ∈ Q and 0 ≤ i ≤ p(n)

[qγi ]+i → [ ]0i q
γ
i+1 for γ ∈ Γ , q ∈ Q and 0 ≤ i ≤ p(n)

If δ(q, γ) = (r, σ, /) for some r ∈ Q, σ ∈ Γ (i.e., the tape head moves to the left),
then the rules are:

qγi [ ]αi → [qγi ]αi for γ ∈ Γ , q ∈ Q, α ∈ {0,+} and 0 ≤ i ≤ p(n)

[qγi ]0i → [ ]+i q
γ
i+1 for γ ∈ Γ , q ∈ Q and 0 ≤ i ≤ p(n)

[qγi ]+i → [ ]0i q
γ
p(n)+1 for γ ∈ Γ , q ∈ Q and 0 ≤ i ≤ p(n)

In our example we have to decrement the head position from 110 to 101 by flipping
only the two least significant bits (notice how the subscript 2 is skipped):

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0

b

− 12 11 10
t

000+ + 0

0

02 11

0

02 1011

qt0

12 11 00
− −

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0

b

− 12 11 10
t

000+ + +

0

02 11

0

02 1011

qt1

12 11 00
−−
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t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0

b

− 12 11 10
t

000+ + +

0

02 11

0

02 1011

qt1

12 11 00
− −

t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0

b

− 12 11 10
t

000+ 0 +

0

02 11

0

02 1011

qt3

12 11 00
− −

When the subscript of qγ reaches p(n) + 1 (i.e., when the position updating has
been completed) the system begins preparing the encoding of next configuration
of M . This requires resetting all charges of tape-membranes to neutral: this is
accomplished by creating n objects t0, . . . , tn−1 (resetting the membranes having
the same name) and 2p(n) copies of object c0 (resetting the membranes having
label t). The latter objects are created by an initial object cp(n), which is rewritten
as two copies of cp(n)−1, each of them rewritten as two copies of cp(n)−2, and so
on. The state-object waits for this process to terminate, and then finally becomes
the new state of M , as described by the transition function.

[qγp(n)+1 → qγp(n)+2 t0 · · · tn−1 cp(n)]0s for q ∈ Q and γ ∈ Γ
[qγp(n)+k → qγp(n)+k+1]0s for q ∈ Q, γ ∈ Γ and 2 ≤ k ≤ p(n) + 2

tj [ ]αtj → [tj ]
0
tj for 0 ≤ j ≤ n− 1 and α ∈ {0,−}

[tj → λ]0tj for 0 ≤ j ≤ n− 1

[ci → ci−1ci−1]0s for 1 ≤ i ≤ p(n)

c0 [ ]αt → [c0]0t for α ∈ {0,−}
[c0 → λ]0t

[qγ2p(n)+3 → r]0s for q, r ∈ Q and γ ∈ Γ , if δ(q, γ) = (r, σ, d)

for some σ ∈ Γ and d ∈ {/, .}.

In our example, the computation evolves as follows:
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t0 t1 t t t t

tba2 1 0 e
s

00
b a

− 12 01 00
a

0 12 01 10
b

0

b

− 12 11 10
t

000+ 0 +

0

02 11

0

02 1011

qt4

12 11 00

t0 t1 c2

− −

t0 t1 t t t t

tba2 1 0 e
s

00
b a

0 12 01 00
a

0 12 01 10
b

0

b

− 12 11 10
t

000+ 0 +

0

02 11

0

02 1011

qt5

12 11 00
t0 t1

c1 c1

0 −

t0 t1 t t t t

tba2 1 0 e
s

00
b a

0 12 01 00
a

0 12 01 10
b

0

b

− 12 11 10
t

000+ 0 +

0

02 11

0

02 1011

qt6

12 11 00

c0 c0 c0 c0

0 −

t0 t1 t t t t

tba2 1 0 e
s

00
b a

0 12 01 00
a

0 12 01 10
b

0

b

0 12 11 10
t

000+ 0 +

0

02 11

0

02 1011

qt7

12 11 00
c0 c0 c0 c0

00

t0 t1 t t t t

tba2 1 0 e
s

00
b a

0 12 01 00
a

0 12 01 10
b

0

b

0 12 11 10
t

000+ 0 +

0

02 11

0

02 1011

r

12 11 00
0

We have finally reached the configuration of Πx corresponding to the configuration
of M after it has performed its computation step, and we are ready to start
simulating a new step of M .
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3.3 Creating the initial configuration

In the previous section we described how to simulate a computation step of M
starting from an arbitrary configuration of the Turing machine. We still need to
describe how to encode the initial configuration of M (represented in the following
picture) in the P system Πx simulating it.

ab

qinit

010 011
100 101

110 111

We use the following as the initial configuration of the P system:

t0 t1 t

tba2 1 0 e
s

00

b0

0 02

a1

0 12 d1 d0
0

t

z2
0000 0 0

0

101102 11

0
+

This initial configuration consists of a membrane s containing:

• Membranes t0, . . . , tn−1, each containing p(n) + 1 bit-objects encoding the po-
sition numbers of the input cells (as described above).

• One single copy of membrane t, containing the bit-object 1p(n) (recall that
the most significant bit for the non-input tape cells is always 1) and the “bit
variables” d0, . . . , dp(n)−1.

• The position-membranes, labeled by 0, . . . , p(n) + 1, whose initial charge is 0
by definition. Those which have to be set to positive in order to set up the
initial head position (i.e., 2p(n) − n) contain a + object.

• The error-membrane e.
• The symbol-membranes, labeled by the elements of Γ .
• The object zp(n).

All these items only depend on the size of the input of the Turing machine M .
The input itself is encoded by a set of objects denoting the symbols, subscripted
by an index indicating their position in the string (counting from 0), and placed
into the input membrane s. In our example, the input ba of M is encoded in Πx

as b0a1.
During the initialization phase of Πx, several operations are carried out. First

of all, the input-objects are sent to the corresponding tape-membranes (indicated
in their subscripts). This is accomplished by using the following rules:
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γi [ ]0ti → [γ]0ti for γ ∈ Γ and 0 ≤ i ≤ n− 1.

The position-membranes have their charges set to + by sending out the + objects,
which are then deleted using

[+]0i → [ ]+i + for 0 ≤ i ≤ p(n)

[+→ λ]0s.

The tape-membranes corresponding to the working portion of the tape, of size
2p(n), are created by iterated elementary membrane division, starting from the
single initial tape-membrane t. The objects di are rewritten as 0i on one side, and
as 1i on the other, whenever the membrane is divided. This process creates all the
2p(n) cell numbers in binary. The corresponding rules are

[di]
0
t → [0i]

0
t [1i]

0
t for 0 ≤ i ≤ p(n)− 1.

This latter operation requires p(n) steps. The object zp(n) has its subscript decre-
mented to 1, and then finally becomes the state-object corresponding to the initial
state of M :

[zi → zi−1]0s for 2 ≤ i ≤ p(n)

[z1 → qinit]0s.

In our example, the initialization phase proceeds as follows.

t0 t1 t

tba2 1 0 e
s

00
b

0 02
a

0 12 d1 00
0

t

z1
0000 + 0

0

101102 11

0

+

t

12 d1 10
0

t

t0 t1 t

tba2 1 0 e
s

00
b

0 02
a

0 12 01 00
0

t

qinit
0000 + 0

0

101102 11

0

t

12 01 10
0

t
t

12 11 00
0

t
t

12 11 10
0

t

After having initialized the P system Πx according to the initial configuration
of M on input x, the simulation is carried out step-by-step as described in the
previous section.
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3.4 Halting and output

The only missing part of our simulation concerns the operations to carry out when
the simulated machine halts by accepting or rejecting. Assuming the transition
function δ of M is undefined on its accepting state qyes and its rejecting state qno,
we can simply proceed as follows: if the machine enters qyes, then in Πx the state-
object qyes appears inside the outermost membrane s; we can then send that object
out to the environment as yes to make Πx accept. The behavior is analogous for
the rejecting state qno.

[qyes]
0
s → [ ]0s yes [qno]0s → [ ]0s no.

3.5 Completing the proof

The initialization phase of Πx, simulating M on an input x of length n, requires
O(p(n)) time in order to create 2p(n) copies of membrane t by a sequence of
elementary divisions.

Then, the t(n) steps performed by M are simulated. Each step involves guessing
the tape-membrane corresponding to the cell currently under the tape head; each
simulated step may require up to O(s(n)) guesses in the worst case. For each guess,
we need to check if the correct tape-membrane was selected, and this requires
time proportional to the number of bit positions, i.e., O

(
log s(n)

)
steps. If the

membrane is incorrect, then O(1) steps are required to set its charge to negative
and prepare the system for a further guess. If the membrane was the right one, the
state, head position and tape symbol have to be updated, and this requires further
O
(

log s(n)
)

steps. Hence, each simulated step of M requires O
(
s(n) log s(n)

)
steps

of Πx, for a total of O
(
t(n)s(n) log s(n)

)
steps.

As the output step only requires constant time, the whole simulation can be
carried out in O

(
t(n)s(n) log s(n)

)
time. Since s(n) is O(t(n)) for a Turing machine

(assuming it at least reads its whole input), the simulation time can be expressed
as a function of t(n) as O

(
t(n)2 log t(n)

)
. Hence, this is an “efficient” simulation:

if M works in polynomial time, then the family Π = {Πx : x ∈ Σ?} simulating it
also works in polynomial time; if M runs in exponential (resp., doubly-exponential)
time, then Π also runs in exponential (resp., doubly-exponential time).

Notice that the actual running time of the simulation depends on the sequence
of nondeterministic choices performed when the system has to guess the correct
tape-membrane. In the best case, when the correct guess is always the first one,
the time reduces to O

(
t(n) log s(n)

)
instead of O

(
t(n)s(n) log s(n)

)
as in the worst

case.
The space required by Πx is asymptotically due to the tape-membranes. These

are s(n) in number, and each of them contains O(log s(n)) bit-objects denoting
its position on the tape. Hence, the simulation requires O

(
s(n) log s(n)

)
space:

a polynomial-space Turing machine is simulated in polynomial space, and an
exponential-space one in exponential space.
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In order to complete the proof of Theorem 1, we only need to check that the
family Π is polynomial-time uniform. It is easy to verify that all the rules and the
initial configuration of Πx actually depend only on the length of x (except for the
input objects). There is a constant number of different kinds of rules parametric
with respect to n or p(n); the larger sets of rules are (1) and (2) on page 47,
consisting of O

(
n× p(n)

)
rules each.

4 Characterizing exponential space

In the previous section we described a simulation of deterministic Turing machines
working in exponential space by means of P systems. Combining this result with
the converse simulation illustrated in [8], we can show that the computational
power of Turing machines and of P systems with active membranes coincide when
these devices operate within an exponential space limit:

Corollary 1. The following inclusions hold:

EXPMCSPACEAM(−d,−n) ⊆ EXPMCSPACE
[?]
AM

⊆
⊆

EXPSPACE ⊇ NEXPMCSPACE?AM

where [?] denotes optional semi-uniformity (instead of uniformity). Hence, all
classes shown in the diagram coincide.

Proof. The chain of inclusions

EXPMCSPACEAM(−d,−n) ⊆ EXPMCSPACE
[?]
AM ⊆ NEXPMCSPACE?AM

holds by definition. That NEXPMCSPACE?AM ⊆ EXPSPACE is an imme-
diate corollary of Theorem 5 in [8]. Finally, the inclusion of EXPSPACE in
EXPMCSPACEAM(−d,−n) directly follows from Theorem 1. ut

Let us remark that the power of the complexity class EXPMCSPACEAM is
mostly due to the families of P systems themselves, as opposed to the Turing
machines providing the uniformity condition; indeed, these would only be able to
solve the strictly smaller [4] class P of decision problems.

5 Conclusions

We showed that the class of problems solvable by P systems with active membranes
in exponential space coincides with the class of problems solved by Turing machines
in exponential space, that is, EXPMCSPACEAM = EXPSPACE.
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Again, the techniques used to prove this result cannot be applied immediately
when the space bound is less strict, i.e., super-exponential. In fact, in this case
we would need systems using indexed bits, where the index ranges over a super-
polynomial set of values; as a consequence, such systems cannot be generated in a
uniform way in a polynomial number of steps, as requested by Definition 3. Thus,
it remains open for this case the question whether these kinds of P systems with
active membranes have the same computing power as Turing machines working
under the same space constraints.

Let us note that if membrane creation [1] is used instead of membrane division,
then the simulation may be straightforward and faster (the slowdown would be
by a constant factor only). The simulation would also be deterministic, instead
of requiring “wild” nondeterminism as in our result. Turing machine cells may
be represented by nested membranes, created when needed; this is a construction
that generalizes even to super-exponential space. However, with membrane division
only, the depth of membrane hierarchy cannot increase during the computation,
and it is originally polynomial under our current definition.

As a direction for future research, it might also be interesting to analyze the
behavior of families of P systems with active membranes working in logarithmic
space. However, there are two major issues to be considered in this case: first, we
should slightly change the notion of space complexity, in order to allow for a “read-
only” input multiset that is not counted when the space required by the P system
is measured (similarly to the input tape of a logspace Turing machine). Further-
more, the notion of uniformity used to define the families of P systems should be
weakened, since polynomial-time Turing machines constructing the families might
be able to solve the problems altogether by themselves. More general forms of
uniformity have already been investigated [3], and that work is going to be useful
when attacking this problem.

Acknowledgements

Artiom Alhazov gratefully acknowledges the project RetroNet by the Lombardy
Region of Italy under the ASTIL Program (regional decree 6119, 20100618). The
work of the other authors was partially supported by Università degli Studi di
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Summary. Membrane systems (with symbol objects) are formal models of distributed
parallel multiset processing. Symport rules move multiple objects to a neighboring region.
It is known that P systems with symport rules of weight at most 3 and a single membrane
are computationally complete with 7 superfluous symbols. It is also known that without
any superfluous symbols such systems only generate finite sets.

We improve the lower bounds on the generative power of P systems with few su-
perfluous objects as follows. 0: empty set and all singletons; k: all sets with at most k
elements and all sets of numbers k+regular with up to k states, 1 ≤ k ≤ 5; 6: all regular
sets of non-negative integers. All results except the last one are also valid for different
modes, e.g., sequential one, also for higher values of k.

1 Introduction

Membrane systems (with symbol objects) are formal models of distributed parallel
multiset processing. Symport rules move predefined groups objects to a neighbor-
ing region [4]. In maximally parallel mode (typical for membrane computing), this
alone is sufficient to construct a computationally universal device, as long as the
environment may contain an unbounded supply of some objects. The number of
symbols specified in a symport rule is called its weight. The result of a computa-
tion is the total number of objects when the system halts. In some cases, however,
for technical reasons the desired result may only be obtained alongside a small
number of superfluous objects in the output region.

There were multiple papers improving the results on P systems with sym-
port/antiport of small weight (an antiport rule moves objects between 2 regions
in both directions, and its weight is the maximum of objects per direction), see [2]
for a survey of results. Computational completeness is achieved even for minimal
cooperation: either symport/antiport of weight 1, or symport of weight at most
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2. This holds for 2 membranes, without superfluous objects if the output is con-
sidered in the skin, or with 1 superfluous object under the classical assumption of
the output in the elementary membrane. In the tissue case, the accepting systems
can even be made deterministic.

With cooperation of up to 3 objects, a single membrane suffices. The regions
are called the skin and the environment, the latter contains an unbounded supply
of some objects, while the contents of the former is always finite. With antiport-
2/1 alone (i.e., exchanging 1 object against 2), the computational completeness is
obtained with a single superfluous object. With symport-3 (i.e., symport rules only,
of weight up to 3), one proved in [3] that 13 extra objects suffices for computational
completeness. This result has been improved in [1] to 7 superfluous symbols. In
the same paper it was shown that without any superfluous symbols such systems
only generate finite sets.

The computation consists of multiple, sometimes simultaneous, actions of two
types: move objects from the skin to the environment, and move objects from the
environment into the skin. It is obvious that trying to move all objects out in
the environment will activate the rules of the second type. Since, clearly, rules of
the first type alone cannot generate more than finite sets, it immediately follows
that the “garbage” is unavoidable. This paper tries to improve the currently best
bounds on how much “garbage” is sufficient.

2 Definitions

Throughout the paper, by “number” we will mean a non-negative integer. We
write NjFINk to denote the family of all sets of numbers each not smaller than
j, of cardinality k. By NjREGk we denote the family of all sets M of numbers
each not smaller than j, such that {x − j | x ∈ M} is accepted by some finite
automaton with k states, with at least one transition from every non-final state.
We assume the reader to be familiar with the basics of the formal language theory,
and we recall that for a finite set V , the set of words over V is denoted by V ∗,
the set of non-empty words is denoted by V +, and a multiset may be represented
by a string, representing the multiplicity by the number of occurrences, the order
not being important.

2.1 Finite Automata

Definition 1. A finite automaton is a tuple A = (Σ,Q, q0, δ, F ), where Σ is an
input alphabet, Q is the set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set
of final states, and δ : Q×Σ −→ 2Q is the transition mapping.

The function δ is naturally extended from symbols to strings. The language ac-
cepted by A is the set {w ∈ Σ∗ | δ(q0, w) ∩ F ̸= ∅}.
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2.2 P Systems with Symport

The scope of this paper is limited to P systems with symport only, with a single
membrane.

Definition 2. A P system with symport rules and one membrane is a tuple

Π = (O,E, µ = [ ]
1
, w,R), where

• O is a finite set called alphabet; its elements are called symbols,
• E ⊆ O is the set of objects appearing in the environment in an unbounded

supply,
• µ is the membrane structure, trivial in case of one membrane; the inner region

is called the skin and the outer region is called the environment,
• w ∈ O∗ is the specification of the initial contents of the inner region,
• R is the set of rules of types (u, out) or (v, in), u, v ∈ O+.

An action of a rule (u, out) is to move the multiset of objects specified by u from
the skin into the environment. An action of a rule (v, in) is to move the multiset
of objects specified by v from the environment into the skin (v ∈ E∗ is not allowed
by definition). The objects are assigned to rules non-deterministically. Maximal
parallelism allows application of multiple rules simultaneously and multiple times,
as long as there are enough copies of objects for them, and provided no further
rule is applicable to the unassigned objects.

The computation halts when no rules are applicable at some step. The result
of a halting computation is the total number of objects in the inner region when
it halts. The set of numbers N(Π) generated by a P system Π is the set of results
of all its computations.

The family of sets of numbers generated by a family of P systems with one
membrane and symport rules of weight at most k is denoted by NOP1(symk)
in maximally parallel mode. We add superscript sequ to P to indicate sequential
mode instead.

3 Few-Element Sets

We now present a few simple systems.

Π0 = (O = {a}, E = ∅, µ = [ ]
1
, w = a,R = {(a, in), (a, out)}).

System Π0 perpetually moves a single object in and out, effectively generating the
emptyset. For any x ∈ N, setting R = ∅ and w = ax will lead to a system Π1

which immediately halts, generating a singleton {x}.
We now proceed to arbitrary small-cardinality sets. To generate a multi-element

set, the system must make at least one non-deterministic choice. Since we want
to allow the difference between the elements to be arbitrarily large, such choice



64 A. Alhazov, Y. Rogozhin

must be persistent, i.e., the decision information should not vanish, at least until
multiple objects are moved accordingly. For any numbers y > x, consider the
following P system:

Π2 = (O = {a, b, i, p, q}, E = {q}, µ = [ ]
1
, w = axby−x+1ip,R),

R = {(i, out), (ip, out), (pq, in), (pqb, out)}.

There are two possible computations of Π2: either i exits alone, halting with
axby−x+1p, generating y+ 2, or i exits with p, leading to a sequence of application
of the last two rules until no objects b remain in the skin, halting with axpq,
generating x + 2. Therefore, Π2 generates an arbitrary 2-element set with 2 extra
objects.

This construction can be improved to generate higher-cardinality sets as fol-
lows. Let m ≥ 2; for arbitrary m+ 1 distinct numbers denote the largest one by y
and the others by xj , 1 ≤ j ≤ m. We construct another P system:

Πm+1 = (O,E = {qj | 1 ≤ j ≤ m}, µ = [ ]1 , w,R),

O = {aj | 1 ≤ j ≤ y + 1} ∪ {i} ∪ {pj , qj | 1 ≤ j ≤ m},

w = i

y+1∏
j=1

aj

m∏
j=1

pj ,

R = {(i, out)} ∪ {(ipj , out), (pjqj , in) | 1 ≤ j ≤ m}
∪ (pjqjak, out) | 1 ≤ j ≤ m, xj + 1 ≤ k ≤ y + 1, j ̸= k}.

Such system behaves like Π2, except it also chooses among different objects pj to
send out symbols ak for k > xj . It halts either with a1 · · · ay+1p1 · · · pm generating
y +m+ 1, or with a1 · · · axjqjp1 · · · pm generating xj +m+ 1. For m = 2, 3, 4 this
leads to Π3 generating {x1 + 3, x2 + 3, y + 3}, Π4 generating {x1 + 4, x2 + 4, x3 +
4, y + 4}, and Π5 generating {x1 + 5, x2 + 5, x3 + 5, x4 + 5, y + 5}, i.e., any 3-, 4-
or 5-element set with 3, 4 or 5 extra objects, respectively.

4 Sequential Mode and Straightforward Regularity

Remark 1. All P systems constructed in the previous section de facto work sequen-
tially, hence the results are valid for P system in any other traditional derivation
mode (e.g., sequential, asynchronous, minimally parallel, maximal strategy).

The sequential mode is an interesting candidate for a research topic, due to
its simplicity, even though its power (as that of any sequential multiset rewrit-
ing system without control) cannot exceed NMAT = NREG, and infinite sets
without zero cannot be generated in this case either, for the same argument as in
maximally parallel case.

We now proceed by constructing a P system generating the length set of a
language accepted by a finite automaton A = (Q,Σ, δ, q0, F ), where Q = {qj |
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0 ≤ j ≤ m}; we assume A satisfies the following property: there is at least one
transition from every non-final state.

ΠA = (O = Q ∪Q′ ∪Σ,E = Q′ ∪Σ,µ = [ ]1 , w = q0 · · · qmq′0, R),

R = {(qjq′j , out) | 0 ≤ j ≤ m}
∪ {(qjaq′k, in) | qk ∈ δ(qj , a), a ∈ Σ} ∪ {(q′j , out) | qj ∈ F}.

Notice also that adding an arbitrary number of objects from Σ to the initial
configuration increases the result by the corresponding number. Unfortunately,
besides the needed number, the skin region at halting also contains the superfluous
symbols, as many as there are states in A. Therefore, we have obtained all sets
NjREGk, j ≥ k. Within this section it is enough to consider j = k, because REGj

contains REGk.

Remark 2. If we fix j, k and restrict A to be deterministic, then the number set
M generated by the corresponding P system can be characterized by the following
properties: x ≥ j for all x ∈ M and there exists a number 0 ≤ p ≤ k such that
if x ≥ j + k − p, then x ∈ M if and only if x + p ∈ M . Hence, acceptability
of sufficiently large numbers is determined by the remainder of their division by
some p < k. The general result is also valid for non-deterministic systems, but
exact characterization in terms of states is less straightforward.

The simplest examples of application of ΠA are the set of all positive numbers
and the set of all positive even numbers.

It is not difficult to notice that the result of ΠA does not depend on the
computation mode, e.g., it is valid also for maximally parallel mode. Therefore,
both NOP sequ

1 (sym3) and NOP1(sym3) contain

NFIN0 ∪NFIN1 ∪
∞∪
k=2

NkFINk ∪
∞∪
k=1

NkREGk.

We recall that the upper bound for NOP sequ
1 (sym3) is N1REG ∪NFIN .

5 Larger Sets and Few Extra Objects

We now focus on the maximally parallel mode, and revisit the symport-3 construc-
tion from [1]. The 7 extra objects were denoted lh, b, d, x1, x4, x5, x6.

Recall that any regular set of numbers is generated by some non-deterministic
register machine with only ADD-instructions, or, equivalently, accepted by a finite
automaton. It suffices to take the same construction, and notice that object d is no
longer needed to check for the conflicting counters. Removing it from the system
leads to P systems generating N6REG. Hence, the contribution of the previous
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section for maximally parallel P systems can be limited to infinite sets of the form
small number+infinite regularity accepted by at most 5 states.

We now recall the construction from [1] with the corresponding changes to
generate N6REG, rewritten in the syntax of finite automata. Let L be an arbi-
trary set from N6REG. Then there exists a finite automaton A = (Σ,Q, q0, δ, F )
accepting L− 6 = {n− 6 | n ∈ L}. We construct a P system simulating A:

Π = (O,E, [ ]1 , w,R, 1), where

O = {xi | 1 ≤ i ≤ 6} ∪Q ∪ {(p, q, j) | p, q ∈ Q, 1 ≤ j ≤ 3} ∪ {a,A, b,H},
E = Q ∪ {(p, q, 2) | p, q ∈ Q} ∪ {a,A, x2, x3,H},
w = q0x1x4x5x6bA

∏
p,q∈P

(p, q, 1)(p, q, 3),

R = {1 : (x1x2x3, in), 2 : (x2x4x5, out), 3 : (x3x6, out), 4 : (Hb, in)}
∪ {5 : (qb, out) | q ∈ F}
∪ {6 : (Hbx, out) | x ∈ {(p, q, 1), (p, q, 3) | p, q ∈ Q} ∪ {A}}
∪ {7 : (p(p, q, 1)x1, out), 8 : ((p, q, 1)x4(p, q, 2), in),

9 : ((p, q, 2)(p, q, 3)A, out), 10 : ((p, q, 3)x5q, in),

11 : (Ax6a, in) | q ∈ δ(p, s)}.

Notice that the effect of rules 1,2,3 is that sending object x1 out will bring x2 and
x3 in, which, in turn, will send objects x4, x5 and x6 out. Notice also that rules
8,10,11 need x4, x5 and x6, so if these objects are inside the membrane, then all
objects of the form (p, q, j), j ∈ {1, 3} may be sent out, without enabling these
rules. We will skip mentioning objects xj in the simulation.

The simulation of a transition in A is performed as follows:

• The state p brings object (p, q, 1) out, also sending x1 out to enable the rest of
the simulation.

• Object (p, q, 1) brings object (p, q, 2) in, which, in turn, brings both (p, q, 3)
and A out.

• Object (p, q, 3) brings in the next state q, while object A brings in object a,
contributing to the result.

If the current state is final, rule 5 may be applied, leading to iteration of rules 4
and 6, taking out all objects except H, b, x1, x4, x5, x6 and the desired number of
copies of a.

Remark 3. If we were interested in generating vectors rather than numbers, simula-
tion of partially blind register machines could be also performed with six additional
objects. Since this gives no additional power for numbers (i.e., NMAT=NREG),
we presented the simpler construction, without subtraction.
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6 Discussion

It has been known that P systems with symport rules of weight at most 3 generate
at least N7RE, and cannot generate infinite sets containing 0. We have improved
the lower bound to

NFIN0 ∪NFIN1 ∪N2FIN2 ∪N3FIN3 ∪N4FIN4 ∪N5FIN5

∪N1REG1 ∪N2REG2 ∪N3REG3 ∪N4REG4 ∪N5FIN5

∪N6REG ∪N7RE.

It is open whether this bound is tight, since the current best known upper
bound is N1RE ∪NFIN .

For the sequential case, the bounds are given in the end of Section 4. It is
particularly interesting whether infinitely many additional objects are unavoidable
for generation of regular number sets in the sequential mode.
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Summary. Counting the number of cells obtained in an experiment is crucial in many
areas in Biology. Nonetheless, this is usually performed by hand by the researcher due the
intrinsic difficulty of the task. In this paper, we present a set of techniques for counting
cells inspired in the treatment of Digital Images via tissue-like P systems with promoters.

1 Introduction

Due to the increasing amount of information stored as visual data, the development
of new software for dealing efficiently with digital images becomes a necessity. The
number of application areas is growing and the progress of new technology needs
the design of new software for handling such information. Among the classical
areas, we can cite biometrics [1], surveillance [15] or medical imaging [3], but there
are many others.

Recently, a new research line has been open by applying well-known membrane
computing techniques for solving problems from digital imagery. For example, the
segmentation problem, [13, 14, 16, 17, 39], thresholding [12] or smoothing [33].
Special attention deserves [20], where the symmetric dynamic programming stereo
(SDPS) algorithm [21] for stereo matching was implemented by using simple P
modules with duplex channels.

We focus here on a problem from Microbiology. Automated image analysis is
increasingly used in Microbiology to quantify important parameters for research
and application. The most studied so far are the following: cell numbers, cell
volumes, frequencies of dividing cells, in situ classification of bacteria, enumeration
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of actively respiring bacteria, characterization of bacterial growth on solid medium,
viability and physiological activity in biofilms (e.g. [4, 5, 19, 23, 26, 30, 11, 34,
35, 37, 38, 40, 41, 43]). In this paper we report our study of the application of
Membrane Computing techniques to the problem of counting cells and show some
preliminary results. The whole process is a combination of different techniques of
processing images (binarization, segmentation, noise reduction . . . ) which can be
performed by different families of P systems. The final algorithm is a sequence of
partial processes which can be performed by Membrane Computing techniques,
and the application of such processes can be seen as a global machine which takes
as input a digital image showing a biological entity (usually, a photograph taken
with a microscopy in a wet lab) and the output is the number of cells in the picture.

The different families of P systems used in the stages of the process have in-
spired parallel software programs which have been developed by using a device ar-
chitecture called CUDATM, (Compute Unified Device Architecture). CUDATM is a
general purpose parallel computing architecture that allows the parallel NVIDIA1

Graphics Processors Units (GPUs) to solve many complex computational prob-
lems in a more efficient way than on a CPU. GPUs constitute nowadays a solid
alternative for high performance computing, and the advent of CUDA allows pro-
grammers a friendly model to accelerate a broad range of applications. This novel
architecture has been previously used to implement parallel software that simu-
lates the behavior of P systems [6, 8, 9, 10, 32, 33], and, in a similar way than in
other implementations, the obtained results in the problem of counting cells are
quite promising.

The paper is organized as follows: Next, we recall the computational model
used to design the different families of P systems that performs the stages of
the algorithm. In section 3, we outline the steps of the process that takes as an
input a digital image taken in a wet lab and outputs the number of cells in the
image. Section 4 shows an illustrative example and some details of the CUDA
implementation. The paper finishes with some conclusions and open lines for a
future research.

2 Formal Framework

Next, we recall some basics on the P system model chosen for implementing the
solution described below. The model is tissue-like P systems with promoters. Pro-
moters are usually defined on cell-like models [24] and its extension to tissue-like
is quite natural. Next, we recall the formal definition.

Definition 1. A tissue-like P system with promoters of degree q ≥ 1 is a tuple of
the form

Π = (Γ,Σ, E , w1, . . . , wq,R, iin, iout)

where

1 http://www.nvidia.com.
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1. Γ is a finite alphabet, whose symbols will be called objects;
2. Σ ⊆ Γ is the input alphabet;
3. E ⊆ Γ is a finite alphabet representing the set of the objects in the environment

available in an arbitrary large amount of copies;
4. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells in the initial configuration;
5. R is a finite set of rules of the following form:

(pro | i, u/v, j), for 0 ≤ i ̸= j ≤ q, pro, u, v ∈ Γ ∗

In these rules, the labels 1, . . . , q correspond to the q cells and the label 0 cor-
responds to the environment;

6. iin ∈ {1, 2, . . . , q} denotes the input region;
7. iout ∈ {1, 2, . . . , q} denotes the output region.

The rule (pro | i, u/v, j) can be applied over two cells (or a cell and the envi-
ronment) i and j such that u (contained in cell i) is traded against v (contained in
cell j). The rule is applied if in i the objects of the promoter pro are present. The
promoter is not modified by the application of the rule. If the promoter is empty,
we will write (i, u/v, j) instead of (∅ | i, u/v, j).

Rules are used as usual in the framework of membrane computing, that is,
in a maximally parallel way (a universal clock is considered). In one step, each
object in a membrane can only be used for one rule (non-deterministically chosen
when there are several possibilities), but any object which can participate in a
rule of any form must do it, i.e. in each step we apply a maximal multiset of
rules. A configuration is an instantaneous description of the system Π, and it
is represented as a tuple (w0, w1, . . . , wq), where w1, . . . , wq, where represent the
multiset of objects contained in the q cells and w0 represent the multiset of objects
from Γ −E placed in the environment (initially w0 = ∅). Given a configuration, we
can perform a computation step and obtain a new configuration by applying the
rules in a parallel manner as it is shown above. A sequence of computation steps
is called a computation. A configuration is halting when no rules can be applied
to it.

3 Counting Cells

Counting cells in a picture taken by a microscopy in a wet lab is a hard task.
The study of the cells is usually made in such conditions (light filters, noise data,
aqueous media, . . . ) where it is difficult for the human expert to decide whether a
spot in the image correspond to a cell or not. In such conditions, the development
of a software that provides the exact number of spots in the image that correspond
to cells is impossible, since two different experts hardly agree in this issue.

From this starting point, and bearing in mind that the research in Microbiology
needs computer aid, we propose a Membrane Computing protocol for obtaining
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Fig. 1. (Left) Image with two filaments of heterocystous cyanobacterium labeled with
0.02% crystal violet (the arrows indicates the presence of heterocysts, specialized cells,
not labeled by crystal violet in our experimental labeling conditions: 0.02% crystal violet
concentration and 5 minutes of coloration). (Right) Binarization of the image.

the number of cells in a image, or more exactly, the number of spots in the image
that probably correspond to a cell. Since this is a empirical problem, instead of
a formal definition of the problem, we will base our description in a case study.
We start by considering the image of Fig. 1. Such image correspond to filamen-
tous cyanobacterium and has been taken by using the number of cells within each
filament. It is very important to calculate the ratio of the number of heterocysts
to non-differentiate cells, also called vegetative cell, as well as to calculate the
distribution of filaments lengths (correlated to the total number of cells within
each filament) within a population (composed of hundreds of filaments per each
milliliter) of this cyanobacterium. In microbiological, studies for the determination
of number of dividing cells related to the number of total cells are also very use-
ful to calculate the growth rate in natural population of bacteria/cyanobacteria,
heterocystous or not ([2, 7, 22, 25, 27, 29, 42]).

The target is to take the image as an input and provide a the number of cells
as output and performing the different stages of the process by using Membrane
Computing techniques. The stages are the following:

• Stage 1: Binarization. This fist stage consist on getting a new image from
the original with only two colors (a binary image). In this stage we use a family
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Fig. 2. The first image (top-left) is a detail of Figure 1 (left). The second and third
ones (top-right and bottom-left) show details of the thinning process. Finally, the last
image (bottom-right) shows a set of pixels inside each individual cells. Different cells are
marked with different colors. The number of such different colors provides the number of
cells.

of tissue-like P systems similar to the described one in [12, 32] for this aim. A
result of this process can be seen in Figure 1 (right).

• Stage 2: Segmentation. This is the process that split the image in several
meaningful regions. It is basic for the treatment of digital images and it is widely
used in medical images for identifying the region of interest. We also perform
this stage by using Membrane Computing techniques, namely, the algorithm
described in [13].

• Stage 3: Noise Reduction. The images taken in a wet lab are usually far
from having homogeneous regions. Due to the intrinsic nature of the biological
research, in the image it is common tho find little spots that in a mechanic
process of counting cells, can be easily taken as little cells when they are merely
spots due to the noise. Obviously, removing such noise imply to take difficult
decision and should be done carefully. We propose three different steps to
eliminate noise from an image:
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– Stage 3.1: Labeling black connected components. The first step con-
sists on determining connected components in the image. The set of pixels
to be considered as a cell is a connected set of pixels. The connectivity
problem among pixels and the study of connected components is a problem
linking Digital Imagery and Algebraic Topology and it has been recently
studied in the framework of Membrane Computing. For this step, we pro-
pose a partial application of the Membrane Computing algorithm proposed
in [18].

– Stage 3.2: Calculating Areas. This step starts after the identification of
the connected components of the image. Our proposal is to use Membrane
Computing techniques in order to determinate the size of the connected
component. In our approach, the size of the spot is its number of pixels.
This process is also performed by using the symport/antiport rules used
in tissue like P systems and basically consists on counting the number of
objects in the P system which represent the pixels of a concrete spot.

– Stage 3.3: Eliminating small components. From the previous step, we
have a number associated to each spot, representing its size. In this stage
we will consider a threshold in order to decide if a spot is large enough to
be considered meaningful or if the spot should be considered as noise, and
hence, to be ignored. Obviously, the threshold depends on the experiment
and it must be provided by the experts.

• Stage 4: Counting Cells. The three previous stages can be considered as
preprocessing of the image. The algorithm for counting cells starts now. The
key point in this stage is to consider the geometry that a cell usually shows
in an image taken form a microscopy in a wet lab. Such images usually show
the cells as convex spots and the image of multicellular beings usually shows
a wavy border. An appropriate process of thinning, inspired in other thinning
process2 with Membrane Computing techniques, produces little isolated set of
point for each cell (see Figure 2 (bottom-right)).

• Stage 5: Output. In the last stage, the isolated set of pixels that represent
the cells are codified as an appropriate set of objects of the alphabet in the
output membrane of the corresponding P system. Counting these sets of objects
provides the number of cells in the image

3.1 Implementation

Inspired in the families of tissue-like P systems that perform the stages of the pro-
cess of counting cells, a software tool has been implemented by using CUDATM,
(Compute Unified Device Architecture) [28, 31]. CUDATM is a general purpose
parallel computing architecture that allows the parallel NVIDIA Graphics Pro-
cessors Units (GPUs) to solve many complex computational problems in a more
efficient way than on a CPU.

2 See these proceedings
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The experiments have been performed on a computer with a CPU AMD Athlon
II x4 645, which allows to work with four cores of 64 bits to 3.1 GHz. The computer
has four blocks of 512KB of L2 cache memory and 4 GB DDR3 to 1600 MHz of
main memory. The used graphical card (GPU) is an NVIDIA Geforce GT240
composed by 12 Stream Processors with a total of 96 cores to 1340 MHz. It has
1 GB DDR3 main memory in a 128 bits bus to 700 MHz. So, the transfer rate
obtained is by 54.4 Gbps. The used Constant Memory is 64 KB and the Shared
Memory is 16 KB. Its Compute Capability level is 1.2 (from 1.0 to 2.1). The
implementation deals with N blocks of threads for the complete image in our
GPU of 96 cores.

3.2 Example

Figures 1 and 2 shows several details of an illustrative example of the process. The
original image in Fig. 1 shows a filamentous cyanobacterium able to differentiate
heterocysts (the arrows indicates the presence of heterocysts, not labeled by crystal
violet in our experimental conditions ) when grown on mineral medium (so called
BG0) in the absence of combined nitrogen (biological identification at the level of
genus is under work). In these conditions the biological specimen (the filamentous
cyanobacterium) is able to utilize atmospheric nitrogen as a source of nitrogen
to synthetizise its own biochemical components (amino acids, proteins etc); the
first major steps in this utilization of atmospheric nitrogen occurs in heteocysts,
differentiate cells within the filament [36]. The number of cells found in the image
from Fig. 2 is 13.

4 Conclusions

The development of experimental sciences where a big amount of data is stored
as digital images needs of powerful software which helps the researcher to un-
derstand the studied processes. In particular, Microbiology significantly benefits if
automated image analysis is used by microbiologists in their professional activities;
furthermore the interplay between microbiologists, mathematicians and engineers
in this field could be helpful in developing new opportunities within old software,
or ,even, to generate new software more appropriate for different microbiological
task.

In this respect, Membrane Computing devices have features that make them
suitable for the study of digital images, as the encapsulation of the information
and its treatment in parallel. This paper reports how an appropriate combination
of families of tissue-like P systems can solve the problem of counting cells. The
study of how these or other families can be combined for solving more problems
from Microbiology (or from other experimental sciences) is a challenge for the next
years.
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Hurtado, I., Pérez-Jiménez, M.J.: Implementing P systems parallelism by means of
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Summary. In this paper we investigate the use of general topological spaces as control

mechanisms for membrane systems. For simplicity, we illustrate our approach by showing

how arbitrary topologies can be used to study the behaviour of membrane systems with

rewrite and communication rules.

1 Introduction

Membrane computing has emerged in the last more than ten years as a vigorous
research field as part of natural computing or unconventional computing. It is a
nature-inspired computational paradigm including a large variety of models, called
membrane systems, well-investigated from a computational perspective, especially
with respect to their computational power and complexity aspects [9]. A number
of promising applications, mainly in biology, but also in distributed computing,
linguistics and graphics [1], have been identified and described.

The key features of a membrane system are a set of compartments (called re-

gions) delimited by membranes, multisets of objects contained in these regions,
transformation and communication rules describing interactions between objects,
and a strategy for evolving the system. This basic model is inspired by standard
models of the structure and functions of a typical eukaryotic cell, comprising multi-
ple compartments containing localised biochemical materials and reactions: various
chemical entities with different levels of complexity react under specified circum-
stances to produce new biochemicals supporting the cell’s life and metabolism,
and these may or may not be transported to other compartments depending on
context. Many variants of membrane system have been considered, some using
different types of biochemical agent and interaction, others using various types of
structural organisation for the compartments and their connections [9].
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Membrane systems introduce in a very natural way a specific topology on the
system described, in which membranes delimit compartments containing local ob-
jects and interaction rules, together with specific links between compartments.
These links describe communication channels allowing adjacent compartments to
exchange chemicals. Although this topology is flexible enough to cope with the
challenge of modelling various natural or engineering systems, there are cases
when a finer grain topological structure is required. In a series of papers, J.-L.
Giavitto and his collaborators have investigated the use of topological transforma-
tions applied to various data structures, where algebraic topology helps in defining
the appropriate data sets selected to be transformed [2]. The use of this approach
to model various elements and transformations occurring in membrane comput-
ing has been investigated in [4], while concepts related to a spatial computing
programming paradigm, which permit the definition and handling of a sort of ge-
ometry, have been described in the context of the unconventional programming
language, MGS [7].

In this paper we investigate the use of topological spaces as control mechanisms

for membrane systems. While the algebraic topological approach shows how the
membrane structure and its basic operations with multisets can be represented,
here we use a topological space as a framework to control the evolution of the sys-
tem with respect to a family of open sets that is associated with each compartment.
This approach produces a fine grain description of local operations occurring in
each compartment by restricting the interactions between objects to those from a
given neighbourhood. This initial study shows the influence of an arbitrary topol-
ogy on the way basic membrane systems compute. In future work (cf. Sect. 5)
we aim to investigate the role of more specific topologies, their impact on other
types of membrane system, and their applications in solving/approaching various
problems.

2 Basic notations and definitions

We briefly recall basic notions concerning P systems. For more details on these
systems and on P systems in general, we refer to [8, 9]. A basic evolution-
communication P system (P system for short) of degree n is a construct

Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, i0)

where

1. O is a finite alphabet of symbols called objects;
2. µ is a membrane structure consisting of n membranes that are labelled (in

a one-one manner) with elements from a given alphabet A; these membranes
are organised in a hierarchical way, like a tree, with the top membrane (root)
called the skin membrane, and the bottom ones (leaves) called elementary

membranes ;
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3. for each 1 ≤ i ≤ n, wi ∈ O∗ is a multiset of objects associated with the region
i (this is the region delimited by membrane i, but not including the subregions
delimited by i’s children);

4. for each 1 ≤ i ≤ n, Ri is a finite set of rules associated with the region i,
of the form u → (v1, tar1) . . . (vm, tarm), where u ∈ O+, vj ∈ O and tarj ∈
{in, out, here} (1 ≤ j ≤ m); when tarj is here, we write simply vj in place of
(vj , tarj);

5. i0 is the label of an elementary membrane of µ that identifies the corresponding
output region.

A P system is interpreted dynamically as a computational device comprising a
set of n hierarchically nested membranes that identify n distinct regions (the mem-
brane structure µ), where each region i = 1, . . . , n contains a multiset of objects
(wi) and a finite set of evolution rules (Ri) of the form u → (v1, tar1) . . . (vm, tarm).
This rule removes multiset u from region i, and then adds each multiset vj
(1 ≤ j ≤ m) to the multiset of objects in the corresponding target region tarj .

• If tarj does not appear in the notation (by convention this occurs when the
target is here), then vj remains in membrane i;

• If tarj is out, then vj is sent to the parent membrane of i; if i is the skin
membrane then vj is sent out of the system;

• If tarj is in, then vj is sent to one of the inner membranes of i (if there is more
than one child, the target is chosen non-deterministically);

• The in target can be replaced by a precisely defined destination region. If region
k is a child of i and tarj is k, then vj is sent to k.

A computation of the system is obtained by applying the available rewrite rules
in a non-deterministic maximally parallel manner4, where each region i initially
contains the corresponding finite multiset wi.

A computation is considered successful when it starts from the initial configu-
ration and reaches a configuration where no further rules can be applied. Its result,
a natural number, is obtained by counting the objects present in region i0 on com-
pletion (other ways of interpreting the result of a P system computation are also
considered in the literature [9]). Given the non-deterministic nature of P system
computation, different runs of a given system may generate different results. For
a given P system Π the set of numbers that can be computed is denoted N(Π).

Recall that rewrite rules are of the form u → (v1, tar1) . . . (vm, tarm), where
u is a multiset. If in each of the rules in Π the multiset u contains only a single
object, then Π is called a P system with non-cooperative rules ; otherwise it is a
P system with cooperative rules. When tarj = in the rule is said to have arbitrary

target, and when tarj = ink for a specific region k, it has a selected target.

4
A simultaneous application of rewrite rules is non-deterministic maximally parallel

provided the applied rules are chosen non-deterministically (possibly with repetition),

and there are insufficient resources to trigger the simultaneous application of any

additional rule.
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2.1 Topological conventions

Our notation will generally follow that of [10]. Given any non-empty set X, its
power set will be denoted ℘X. We write ∅ for the empty set. A topology on X is
any subset of ℘X containing both ∅ and X, which is closed under arbitrary unions
and finite intersections; the members of T are open (or T -open where ambiguity
might otherwise arise). The topology {∅, X} is the indiscrete topology on X; the
topology in which every singleton {x} ∈ ℘X is open is the discrete topology. An
open cover of A ⊆ X is a subset of T whose union contains A.

The complement of an open set is closed. The closure A = ClsX(A) of a set
A ⊆ X is the intersection of all closed sets containing A; it is the smallest such
set. The interior A◦ = IntX(A) of A is the union of all open sets contained in A;
it is the largest such set. The difference between the closure and interior of a set
is its boundary, ∂A = A \A◦.

Any topology T can also be regarded as a partially ordered set (poset) ordered
by set inclusion. If (Y,≤) is a poset, an order embedding of Y in T is an injection
ı : Y → T such that y1 ≤ y2 if and only if ı(y1) ≤ ı(y2).

3 Control structures

For the purposes of this paper, a P system can be regarded structurally as a tree
whose nodes are the membranes, together with a function mapping each node p

in Π to a corresponding multiset over A. This multiset tells us how many copies
of each object lie in the region situated between the membrane and its internal
sub-membranes; see Fig. 1.
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(b) nested membranes

Fig. 1. A generic P system structure represented as (a) a tree; (b) a set of nested

membranes.

In each membrane and in any computation step it is assumed that all the
objects present in the corresponding region can freely interact according to the
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set of rules available in that region. Maximal parallelism also implies that all the
objects that might take part in various interactions must interact (each object
takes part in at most one interaction). While this scheme is easy to implement, it
distorts to some extent the biological intuition that interactions are local. It is not
enough that two chemicals are present in a cell, they must also be located close
to one another, but the regions of a P system are not inherently associated with
any notion of separation distance. We will therefore order-embed the membranes
of the P system as open sets within an essentially arbitrary topology, and use
(finite) open covers to provide an indication of the distance between two objects.
We then consider how the choice of topology affects the computations that can be
implemented.

In general the members of an open cover need not be disjoint. Region 4 of Fig.
1 contains the multiset bcccb. Figure 2 illustrates a covering of this region by three
open sets: A4,1, A4,2 and A4,3. The open set A4,2 contains cc, and each of the
others contains bc. Initially we only consider open covers of regions ; subregions of
the enclosing membrane will be equipped with covers in their own right.
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(a) Nested membranes (region 4

highlighted)
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A4,3
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(b) Open covering of region 4

Fig. 2. Covering of region 4 by open sets.

The topologically controlled computation that takes place with respect to these
open sets is defined as follows: rules associated with membrane i are enabled if and

only if there is a member of the open cover which contains all of the participating

objects. If any target of an enabled rule is here, the associated products should
then be placed back into the same open set (if the initial objects lie in more than
one member of the cover, we choose one at random and place the associated results
there; they need not be injected back into the intersection). Otherwise if the target
is tar (where tar is assumed to carry its own open cover), the output will be placed
in an arbitrary member of tar’s cover.
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Despite the intrinsically local nature of controlled computation, the locus of
computation can migrate from one compartment to another one via non-empty
overlap regions, as the following example illustrates. Figure 3 shows the disjoint
parts, B4,1 – B4,7, of region 4’s cover. These are all of the form U\V where U and V

are open; for example B4,3 = (A4,1∩A4,2∩A4,3)\∅, and B4,1 = A4,1\(A4,2∪A4,3).

A4,2

A4,3
A4,1

bc

b

c

c

(a) Open cover

B4,5

B4,6

B4,7

B4,4

B4,3

B4,2
B4,1

(b) Overlap regions

A4,1 A4,2 A4,3

(c) Key to boundaries

Fig. 3. The finite covering of region 4 and its disjoint overlap regions.

Suppose, then, that region 4 has the following rules associated with it:

r1 : bc → b; r2 : bcc → c; r3 : cc → c.

If we consider the system as a P system with no topological control in place, the
following computations can take place:

1. bc c cb
r1,r1
===⇒ bcb

r1==⇒ bb

2. bc cc b
r1,r3
===⇒ bcb

r1==⇒ bb

3. bc ccb
r1,r2
===⇒ bc

r1==⇒ b

But when the open sets are in place computation path 3 is blocked, because none
of the open sets ever contains bcc, whence r2 cannot be triggered. We have the
following two cases instead:

1’ r1 is applied in both A4,1 and A4,3 resulting in a copy of b in each of these
open sets; if b ∈ A4,3 is not in A4,2 ∩A4,3 the computation stops here with bbc

scattered across different open sets. If, on the other hand, b ∈ A4,2 ∩A4,3 then
the computation can continue; after applying r1 in A4,2 a copy of b is obtained
in each of A4,1 and A4,2. In this case the result is the same as that obtained in
(1);
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2’. r3, r1 result in copies of b ∈ A4,1 and c ∈ A4,2; as in (1’) this c can reside either
in the intersection or outside it; in the first case r1 can be applied again and b

is computed (so that the result from (2) is obtained). Otherwise bbc will remain
in the membrane unchanged.

Consider in particular the second case of the first step of (1’). After r1 is applied
in A4,3 the result b can be considered to lie in A4,2, whence (as suggested above)
the locus of computation can migrate from A4,3 to A4,2 via their intersection. A
similar situation occurs in (2’) as well.

More generally, suppose that region i has a rule whose target is region j. We
will allow the rule to be triggered only when the two regions are sufficiently close
to one another (their boundaries must intersect: ∂i ∩ ∂j 6= ∅). In this case, and
provided all of the required components are available within a single member of
i’s cover, the rule can fire with the resulting multiset vj being injected into an
arbitrarily selected member of j’s cover. In future work we plan to investigate
what happens when this restriction is weakened, so that interactions can occur
between non-neighbouring regions.

Definition 1 (Output of a controlled computation). For a P system Π and

associated topology T the set of numbers computed by Π when controlled by T will

be denoted NT (Π). ⊓⊔

Having now defined controlled computation, we will address the following prob-
lems. In Sect. 4 we discuss the role of a control mechanism based on an associated
topology and show how a general topology influences the computation for a basic
class of P systems. In Sect. 5 we summarise our findings and discuss future research
topics related to various topologies associated with classes of P systems.

4 Basic Results

We will first consider P systems with non-cooperative rules.

Lemma 1. For any P system with non-cooperative rules and either arbitrary tar-

gets or selected targets, Π, and any associated topology T , N(Π) = NT (Π).

Proof. In a P system with non-cooperative rules the left hand side of any rule has
only one single object, hence no interactions are involved. In this case it is obvious
the the topology T does not influence the computation for either P systems with
arbitrary targets or selected targets, hence the result stated holds. ⊓⊔

For P systems with cooperative rules the situation is totally different and the
topologies associated with them may lead to different computations and distinct
results.

Lemma 2. There is a P system with cooperative rules and either arbitrary or

selected targets, Π, such that for any associated topology T where for at least one

region not all the objects belong to the same open set, it follows that N(Π) 6=
NT (Π).
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Proof. Let us consider Π = (O,µ,w1, w2, R1, R2, i0), where O = {a, b, c}, µ =
[[]2]1, w1 = ab, w2 = λ, R1 = {ab → c, c → (c, in)}, R2 = ∅, i0 = 2. This system
uses an arbitrary target, which, in this case, is the same as selected target, in2.
This P system computes c in two steps in the output region, 2. Any topology, T ,
associated with Π that provides a cover for region 1 with more than an open set,
must have an open set for a and another one for b and their intersection does not
contain any of these two objects; otherwise, a and b will stay in the same open
set. In this case the rule ab → c can not be applied and consequently c is never
obtained in the output region, hence N(Π) 6= NT (Π). ⊓⊔

Theorem 1. For any P system with either arbitrary or selected targets, the com-

putation and the topologically controlled computation are the same when non-

cooperative rules are used and are not in general the same for cooperative rules.

Proof. The proof is an immediate consequence of Lemmas 1 and 2. ⊓⊔

There are P systems with cooperative rules where the content of the regions can
be matched against the open sets in such a way that the computation is equivalent
to the computation of the original system. Indeed let us consider the problem of
checking that a positive integer m is divided by another positive integer k. We
propose a P system below which is an adaptation of the P system presented in [9].

Example 1. Let us consider Π = (O,µ,w1, w2, R1, R2, i0), where O = {a, b, c, y, n},
µ = [[]2]1, w1 = ambk, w2 = y, R1 = {r1 : ab → c, r2 : ac → b, r3 : bc → (n, in)},
R2 = {yn → n}, i0 = 2.

In the first step at most k objects ab are replaced by the same number of objects
c (using r1 at most k times) and then objects ac are replaced by objects b (using
r2). If k divides m then the process will stop after h steps, where m = kh, and in
membrane 2 will remain y; otherwise in membrane 1 the process of alternatively
applying rules r1 and r2 will stop with some objects b and objects c and the rule
r3 can be used. In this case n is sent into region 2 and finally n is obtained in this
region.

Now, if we aim to obtain the same results in region 2, i.e., y, when k divides
m, or n otherwise, then we have to build the topology, T , associated with Π in a
certain way which is subsequently described. Region 2 is covered by only one single
open set and region 1 will have an arbitrary number of open sets, q > 1, associated
with. Any two such open sets are disjoint. The objects will be distributed as follows:
the k b′s will be randomly distributed in q − 1 of the q open sets, bk1 , . . . , bkq−1 ,
ki ≥ 0 and k1 + · · · + kq−1 = k. If m = kh + r, then in each of the q − 1 open
sets containing ki b

′s, the number of a′s is hki a
′s. If r > 0 then one more a will

be consider in one of the q − 1 open sets with b′s and the rest will be associated
with the qth open set. Clearly, in each of the q− 1 open sets the computation will
go for h steps. In q − 2 of them it will be obtained either only b′s or only c′s; the
open set with an additional a in it will end up after one more step with a mixture
of b′s and c′s and the rule r3 will push an n into membrane 2 and finally will get
n in this membrane. Objects a′s occurring in the qth open set will remain there
forever. It follows that N(Π) = NT (Π). ⊓⊔
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The question of whether the control structure introduced by a topology can be
ignored, perhaps by using a more complex P system, is answered by the following
result. This takes into account the interpretation of the outcome of the computa-
tion as being the number of objects, given by the size of the multiset, present in
the output region.

Theorem 2. For any P system, Π, and any associated topology, T , there is a P

system, Π ′, of the same degree with Π, such that NT (Π) = N(Π ′).

Proof. The idea of the proof is to construct a new P system such that objects be-
longing to a region adequately refer to objects of the open sets in the corresponding
regions of the initial P system.

Let Π be a P system of degree n, Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, i0), and
T a topology associated with it. In order to build a new P system, Π ′, of degree n,
a few preliminary notations are made. First, please observe that for each region i,
1 ≤ i ≤ n, there exists a family of open sets Ai,1, . . . , Ai,ki

covering it. In general
these open sets are not disjoint and we describe the finest disjoint parts of the cover
by considering either some intersections of open sets or the complement of an open
set with respect to the rest of the open sets; it follows that there exists a finite
set, denoted Bi, containing the sets Bi,1, . . . , Bi,mi

, such that Bi,j denotes either
Ai,l1 ∩· · ·∩Ai,lj , 1 ≤ lj ≤ ki or Ai,j \ (Ai,1∪· · ·∪Ai,j−1∪Ai,j+1∪· · ·∪Ai,ki

). The
set of indexes of the above sets Bi,j is denoted by Ci, i.e., Ci = {(i, j) | Bi,j ∈ Bi}.
Each object, a ∈ O, of the multiset from region i belongs to a certain Bi,j . For
each a from Bi,j , the following objects are considered, aα, α ∈ Ci.

The P system Π ′, of degree n, is built as follows:

Π ′ = (O′, µ, w′
1, . . . , w

′
n, R

′
1, . . . , R

′
ni0) ,

where:

1. O′ = {aα|a ∈ O,α ∈ Ci, 1 ≤ i ≤ n};
2. µ is the membrane structure of Π;

3. w′
i = a

(i,r1)
i,1 . . . a

(i,rpi )

i,pi
, where ai,j ∈ Bi,rj , 1 ≤ j ≤ pi, for wi = ai,1 . . . ai,pi

,
initial multiset of Π;

4. for each rule ai,1 . . . ai,qi → bi,1 . . . bi,si ∈ Ri, R
′
i contains a

(i,r1)
i,1 . . . a

(i,rqi )

i,qi
→

b
(i,s1)
i,1 . . . b

(i,spi )

i,pi
, (i, rj) ∈ Ci, 1 ≤ j ≤ qi, (i, sj) ∈ Ci, 1 ≤ j ≤ pi when a target,

t, appears on the right hand side of the rule from Ri, associated with an object
bi,j , then the target will point to any of the open sets At,j of the target region
t;

5. Π and Π ′ have the same output membrane, i0.

The codification provided by Π ′ allocates, in a unique way, in every region,
i, each object, a, to a specific open set, by “stamping” it with the corresponding
index, (i, j) ∈ Ci, of the set Bi,j . Whenever a rule is applied, the resulted multiset
is also composed of objects uniquely associated with certain open sets, either from
the current region or from the target ones.
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More precisely, when in region i of Π the current multiset is

u = a1 . . . aq1aq1+1 . . . aq2 . . . aqe−1
aqe−1+1 . . . aqez

and there are rules ρ1, . . . , ρe ∈ R′
i, where ρj : aqj−1+1 . . . aqj → bpj−1+1 . . . bpj

,
q0 = 0, then ρ1, . . . , ρe are applied in a computation step, according to maximal
parallelism semantics, to u with respect to topology T .

If u ⇒ρ1,...ρe
v, with v = b1 . . . bp1

. . . bpe−1
. . . bpe

z then each ah, qj−1 + 1 ≤
h ≤ qj , belongs to a certain Bi,rh included in the same open set Ai,j where ρj is
applied. Each of the objects bh, pj−1+1 ≤ h ≤ pj , belongs to some Bi,sh included
in the same Ai,j set.

In the P system Π ′, in region i, there is

u′ = a
(i,r1)
1 . . . a

(i,rq1 )
q1 a

(i,rq1+1)
q1+1 . . . a

(i,rq2 )
q2 . . . a

(i,rqe−1
)

qe−1
a
(i,rqe−1+1)

qe−1+1 . . . a
(i,rqe )
qe z′,

where (i, j) ∈ Ci, j ∈ {r1, . . . , rqe}. The multiset z′ consists of objects (aα)c for ac

occurring in z and α ∈ Ci. There are rules ρ′1, . . . , ρ
′
e, where

ρ′j : a
(i,rqj−1+1)

qj−1+1 . . . a
(i,rqj )
qj → b

(i,spj−1+1)

pj−1+1 . . . b
(i,spj )
pj , which are applied in a maximal

parallel manner to u′. If u′ ⇒ρ′

1
,...ρ′

e
v′, then

v′ = b
(i,s1)
1 . . . b

(i,sp1 )
p1

. . . b
(i,spe−1

)
pe−1

. . . b
(i,spe )
pe z′,

where (i, j) ∈ Ci, j ∈ {s1, . . . , spe
}.

The above construction proves that u ⇒ρ1,...ρe
v in Π if and only if u′ ⇒ρ′

1
,...ρ′

e

v′ in Π ′. This shows that the same number of symbols are engaged in any com-
putation step in Π and Π ′, hence these P systems compute the same number of
symbols in i0. ⊓⊔

From the above proof it is clear that the numbers of objects and rules used
by the P system Π ′ are both significant compared to those of Π. The next result
provides lower and upper bound limits for these two parameters. We need a few
more notations to describe the result.

For a finite set X, let us denote by card(X), the number of elements of X.
With respect to the proof of Theorem 2, the following notations are introduced:
K is the number of elements of the set O, n is the degree of the two P systems, Π
and Π ′; given that for each region i, 1 ≤ i ≤ n, the number of sets Bi,j is mi, let
us denote m = min{mi | 1 ≤ i ≤ n}, M = max{mi | 1 ≤ i ≤ n}, p = min{|x|, |y| |
all x → y ∈ Ri, 1 ≤ i ≤ n} and P = max{|x|, |y| | all x → y ∈ Ri, 1 ≤ i ≤ n};
if gi is the maximum number of neighbours that appear in the rules of Ri, then
g = min{gi | 1 ≤ i ≤ n}; finally we have Q = card(R1 ∪ · · · ∪ Rn). With these
notations we can formulate the following result.

Corollary 1. For any P system Π and any associated topology T , define Π ′ and

the associated notation as above. Then

(i) Kmn ≤ card(O′) ≤ KMn;
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(ii)Qmp(min{m, g})p ≤ card(R′
1 ∪ · · · ∪R′

n) ≤ QMP (M + n− 1)P .

Proof. Part (i) follows from the fact that for each object a ∈ O, distinct instances
are created for each of the n membranes and in every region i (1 ≤ i ≤ n), and
each set Bi,j (1 ≤ j ≤ mi). Hence, card(O

′) is bounded between Kmn and KMn.
To prove (ii), we observe that for each rule x → y ∈ Ri, the following rules

are added to R′
i, x

α → yβ , α ∈ Ci, β ∈ Ci ∪ Cj1 ∪ · · · ∪ Cji , where j1, . . . , ji are
neighbours of i where objects of yβ can go to. The left hand side, xα, will have
elements from any of the mi sets, Bi,j , hence the lower and upper bounds are mp

and MP , respectively. Each of the right hand side elements of yβ should belong
to either one of the Bi,j sets or to one of the neighbours of i, maximum n− 1, so
the lower and upper bounds are (min{m, g})p and (M +n− 1)P , respectively. We
can then get the two boundaries of card(R′

1 ∪ · · · ∪R′
n). ⊓⊔

5 Summary and Conclusions

In this paper we have investigated the use of general topological spaces to control
local interactions in basic membrane systems. This approach produces a fine grain
description of local operations occurring in each compartment by restricting the
interactions between objects to those from a certain vicinity. In our future work we
aim to investigate the role of more specific topologies, their impact on other types
of membrane systems and their applications to various problems. In particular:

1. By construction, P systems have a tree-like nested membrane structure. Given
the topological embeddings used in this paper, it is no longer clear whether this
structure is relevant; the same proofs appear to work for different underlying
graph structures with some adjustments.

2. It would be interesting to study the robustness of P systems with respect to
different topologies. How much we can change the topology while still obtaining
the same or almost the same computed set of numbers? To what extent can
locality be refined starting from a given topology and changing it?

3. If we restrict attention to classes of control space (Tychonov spaces, compact
Hausdorff spaces, metric spaces, etc) for which a wide range of topological
results are available, can these results be applied to produce associated char-
acterisations of controlled computability?
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Summary. Skeletonizing an image is representing a shape with a small amount of infor-
mation by converting the initial image into a more compact representation and keeping
the meaning features. In this paper we use spiking neural P systems to solve this problem.
Based on such devices, a parallel software has been implemented on the GPU architec-
ture. Some real-world applications and open lines for future research are also presented.

1 Introduction

Computer vision [32] is probably one of the challenges for computer scientists
in the next years. This flourishing research area needs contributions from many
other scientific areas as artificial intelligence, pattern recognition, signal process-
ing, neurobiology, psychology or image processing among others. It concerns with
the automated processing of images from the real world to extract and interpret
information on a real time basis. From a computational point of view, a digital
image is a function from a two dimensional surface which maps each point in the
surface to a set of features as bright or color. The different treatments of such
mappings (digital images) provide a big amount of current applications in com-
puter vision as optical character recognition (OCR), biometrics, automotive safety,
surveillance or medical imaging.

In this paper we focus on the problem of skeletonizing an image. Skeletoniza-
tion is one of the approaches for representing a shape with a small amount of
information by converting the initial image into a more compact representation
and keeping the meaning features. The conversion should remove redundant in-
formation, but it should also keep the basic structure. Skeletonization is usually
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considered as a pre-process in pattern recognition algorithms, but its study is also
interesting by itself for the analysis of line-based images as texts, line drawings,
human fingerprints or cartography.

Many problems in the processing of digital images have features which make it
suitable for techniques inspired by nature. One of them is that the treatment of the
image can be parallelized and locally solved. Regardless how large is the picture,
the process can be performed in parallel in different local areas of it. Another
interesting feature is that the local information needed for a pixel transformation
can also be easily encoded in the data structures used in Natural Computing. In the
literature, we can find many examples of the use of Natural Computing techniques
for dealing with problems associated to the treatment of digital images. One of the
classic examples is the use of cellular automata [28, 31]. Other efforts are related
to artificial neural networks as in [9, 35]. In this paper, we use spiking neural P
systems.

Spiking neural P systems (SN P systems, for short) were introduced in [16] as
a new class of distributed and parallel computing devices, inspired by the neuro-
physiological behavior of neurons sending electrical impulses (spikes) along axons
to other neurons. SN P systems are the third model of computation in the frame-
work of Membrane Computing1, together with the cell-like model [25] inspired by
the compartmental structure and functioning of a living cell and the tissue-like
model [17], based on intercellular communication and cooperation between cells
in a tissue.

Recently, Membrane Computing techniques have been used for solving prob-
lems from Digital Image. Different P systems models have been used for dealing
with images, as in [3] where cell-like P systems are used for computing the thresh-
olding of 2D images; [4, 5, 23, 24] where tissue-like P systems are used, or even
[10], where the symmetric dynamic programming stereo (SDPS) algorithm [11] for
stereo matching was implemented by using simple P modules with duplex chan-
nels. To the best of our knowledge, this is the first time in which SN P systems
are used for dealing with images.

In a similar way that other applications of P systems, the theoretical advan-
tages of the Membrane Computing techniques for computer vision need a pow-
erful software and hardware for an effective implementation. In this paper, we
also present a parallel software developed by using a device architecture called
CUDATM, (Compute Unified Device Architecture). CUDATM is a general purpose
parallel computing architecture that allows the parallel NVIDIA2 Graphics Pro-
cessors Units (GPUs) to solve many complex computational problems in a more
efficient way than on a CPU. GPUs constitute nowadays a solid alternative for
high performance computing, and the advent of CUDA allows programmers a
friendly model to accelerate a broad range of applications. The way GPUs ex-

1 We refer to [26] for basic information in this area, to [27] for a comprehensive pre-
sentation and the P system web page http://ppage.psystems.eu, for the up-to-date
information.

2 http://www.nvidia.com.
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ploit parallelism differs from multi-core CPUs, which raises new challenges to take
advantage of its tremendous computing power. GPU is especially well-suited to
address problems that can be expressed as data-parallel computations.

The paper is organized as follows: Firstly, we present the restricted model of SN
P systems used in the paper and recall the Guo & Hall algorithm for skeletonizing
images. In Section 4, the design of the SN P system for skeletonizing images is
presented. Next, we show illustrative examples of the use of our implementation.
Finally, Section 6 is dedicated to conclusions and future work.

2 Spiking Neural P Systems

SN P systems can be viewed as an evolution in Membrane Computing corre-
sponding to a shift from cell-like to neural-like architectures. In SN P systems the
processing elements are called neurons and are placed in the nodes of a directed
graph, called the synapse graph. The computation is performed by sending electri-
cal impulses among the neurons through the synapses. Such electrical impulses are
encoded via a single object type, namely the spike, which is placed in the neurons.
The number of copies of such object determines the electrical charge of the neuron.
Each neuron may also contain rules which allow to send spikes (possibly with a
delay) to other neurons, or to remove a given number of spikes from it (firing and
forgetting rules).

Firing rules allow a neuron to send information to other neurons in the form
of electrical impulses which are accumulated at the target cell. Forgetting rules
remove from the neuron a predefined number of spikes. The application of every
rule is determined by checking the contents of the neuron against a regular set
associated with the rule. In each time unit, if a neuron can use one of its rules,
then one of such rules must be used. If two or more rules could be applied, then
only one of them is nondeterministically chosen. Thus, the rules are used in the
sequential manner in each neuron, but neurons work in parallel with each other.
A global clock is assumed, marking the time for the whole system, and hence the
functioning of the system is synchronized.

From the seminal paper [16], other biological features have been explored in
the framework of SN P systems. One of such extensions (with mathematical mo-
tivation) was introduced in [2], where a neuron can emit more than one spike, if
the number of emitted ones is not greater than the consumed ones. Other variants
including astrocytes [20], weights, which modify the number of spikes that arrives
to a neuron according to the quality of the link between neurons [14, 21, 34], anti-
spikes [22], or neuron division [33] have also been considered. In this paper, we will
consider SN P systems with weights in the synapses and rules without delay3.

In this way, the restricted model of SN P systems used in this paper can be
formally described as follows. A spiking neural P system of degree m ≥ 1 is a
construct of the form

3 For a more general description, see [16].
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Π = (O, σ1, σ2, . . . , σm, syn, in),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) Firing rules E/ac → ad, where E is a regular expression4 over a, and
c ≥ d ≥ 1 are integer numbers; if E = ab (with b an integer number,
b ≥ c), then the rule is usually written in the following simplified form:
ab/ac → ad;

(2) Forgetting rules ab/ac → λ, for b and c integer numbers with b ≥ c ≥ 1.
3. syn ⊆ {1, 2, . . . ,m}×{1, 2, . . . ,m}×W is the set of synapses between neurons,

where the set of weights is W = Q ∩ [0, 1], i.e., the set of rational numbers
between 0 and 1. The synapses also verifies that (i, i, k) ̸∈ syn for 1 ≤ i ≤ m,
k ∈W.

4. in is the label of the input neuron of Π.

A firing rule E/ac → ad ∈ Ri can be applied in neuron σi if it contains b
spikes, b ≥ c, and ab belongs to the language associated to E. For applying rules
of type ab/ac → ad, the neuron must contain exactly b spikes. The execution of
these rules removes c spikes from σi (thus leaving the remaining spikes in σi),
and sends d spikes to all the neurons σj such that (i, j, k) ∈ syn. The number of
spikes that arrives to the neuron j through the synapse (i, j, k) depends on the
number d of emitted spikes and the quality of the synapse, encoded by the weight
k. In each neuron, the number of spikes after a computation step is the number of
non consumed spikes plus the contribution of other neurons via the corresponding
synapses. Let us consider that d spikes are emitted through a synapse (i, j, k). The
contribution of σi to σj is an increase of ⌊d × k⌋ spikes, where ⌊v⌋ denotes the
largest integer not greater than v. A forgetting rule ab/ac → λ can be applied in
neuron σi if it contains exactly b spikes. The execution of this rule simply removes
all the c spikes from σi (thus leaving b− c spikes).

A configuration of the system is described by the numbers ⟨n1, n2, . . . , nm⟩ of
spikes present in each neuron. At the beginning of the computation, the number
of spikes in each neuron σi is ni, but in the input neuron (with label in): If the
input of the computation is N , then, in the initial configuration, the number of
spikes in the input neuron is nin + N .

Example 1. Let us consider the SN P system Π = ({a}, σ1, σ2, σ3, syn, 1) (see Fig.
1) with σ1 = (7, R1), σ2 = (3, R2), σ3 = (8, R3) and the set of rules and synapses

4 Along this paper, we use regular expressions of type ana∗, with n ∈ N. In this case, the
language associated to ana∗ is the set {an+k | k ∈ N}. For more details about regular
expressions, see, for example [29].
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R11 ≡ a5a∗/a5 → a3 R21 ≡ a5/a3 → a2

R31 ≡ a8/a3 → λ

R32 ≡ a7/a2 → a1

a9 a3

a8

1
2

3

w12 = 0.7

w21 = 1

w32 = 0.5

w23 = 0.8w13 = 0.4

Fig. 1. Example. The input neuron 1 has 9 = 7+2 spikes at the starting configuration.

R1 = {R11 ≡ a5a∗/a5 → a3}
R2 = {R21 ≡ a5/a3 → a2}
R3 = {R31 ≡ a8/a3 → λ , R32 ≡ a7/a2 → a1}

syn = {(1, 2, 0.7), (2, 1, 1), (2, 3, 0.8), (3, 2, 0.5), (1, 3, 0.4)}
We will consider the input N = 2, so, in order to start the computation, 9

spikes (7 + 2) are placed in the neuron 1. Notice that R11 will be applied if the
neuron 1 contains at least 5 spikes. R31 is the unique forgetting rule in the SN P
system.

Since the input is N = 2, the initial configuration is C0 = ⟨9, 3, 8⟩. From this
initial configuration, rules R11 and R31 can be applied. The rule R11 consumes 5
spikes from the neuron 1 and sends 3 spikes to the neurons 2 and 3. These 3 sent
spikes are multiplied by the corresponding weights before arriving to the target
neurons. The weight of the synapses between the neurons 1 and 2 is w12 = 0.7,
so the application of the rule R11 produces an increase of ⌊3 × 0.7⌋ = 2 spikes
in the neuron 2. Bearing in mind that w13 = 0.4, the application of the rule R11

increases in ⌊3 × 0.4⌋ = 1 the number of spikes in the neuron 3. The forgetting
rule R31 deletes 3 spikes from neuron 3 and hence, the new obtained configuration
is C1 = ⟨4, 5, 6⟩.

Now, the unique applicable rule is R21. This rule consumes 3 spikes from neuron
2 and sends 2 spikes to the neurons 1 and 3. According with the corresponding
weights, the number of the spikes in the neuron 1 is increased in ⌊2× 1⌋ = 2 and
the number of the spikes in the neuron 3 is increased in ⌊2×0.8⌋ = 1. By applying
these modifications, the obtained configuration is C2 = ⟨6, 2, 7⟩.
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Fig. 2. A hand-written word and its skeletonization

From this configuration, rules R11 and R32 are applicable. The effects of R11

have been described above. The rule R32 removes 2 spikes from the neuron 3 and
sends 1 spike to neuron 2. This spike is multiplied by the corresponding weight,
w32 = 0.5, so it does not produce any increase in the number of spikes in neuron 3,
since ⌊0.5×1⌋ = 0. With these changes, the obtained configuration is C3 = ⟨1, 4, 4⟩.
No more rules can be applied and C3 is the halting configuration.

3 Guo & Hall Algorithm

Skeletonization is a common transformation in Image Analysis. The concept of
skeleton was introduced by Blum in [1], under the name of medial axis transform.
There are many different definitions of the skeleton of a black and white image and
many skeletonizing algorithms5, but in general, the image B is a skeleton of the
image A, if it has fewer black pixels than A, preserves its topological properties
and, in some sense, keeps its meaning. In this paper, we focus on an iterative
procedure of thinning: roughly speaking, the border black pixels are removed as
long as they are not considered significant. The remaining set of black pixels is
called the skeleton (See Fig. 2).

Among the parallel algorithms, special attention deserves the so-called 1-
subcycle parallel algorithms or fully parallel algorithms [12]. Our bio-inspired de-
sign is based on a classical skeletonizing algorithm, the Guo & Hall algorithm
[12, 13]. In this algorithm, the pixels are examined for deletion in an iterative
process.

5 A detailed description is out of the scope of this paper. For a survey in this topic, see
e.g., [30].
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P1 P2 P3

P8 P0 P4

P7 P6 P5
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1/211/221/23

1/24
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Fig. 3. (Left) Enumeration of the pixels in a 3 × 3 neighborhood. (Center) 3 × 3
neighborhood with encoding [0, 0, 0, 0, 1, 1, 1, 1, 1], or, shortly, 24+25+26+27+28 = 496.
(Right) Scheme of the weights of the synapses.

First of all, given an n ×m image, it is divided into two sub-sections. One of
the sections is composed by the pixels aij such that i + j is even. Alternatively,
the second sub-section corresponds to the pixels aij such that i + j is odd. The
algorithm consists on two sub-iterations where the removal of redundant pixels
from both sub-sections are alternated, i.e., in each step only the pixels of one of
the subsections are evaluated for its deletion.

The decision is based on a 3× 3 neighborhood. Given a pixel P0, a clockwise
enumeration P1, . . . , P8 of its eight neighbor pixels is considered, (Figure 3 (Left)).
As usual, for each i ∈ {1, . . . , 8}, Pi is considered as a Boolean variable, with the
truth value 1 if Pi is black and 0 if Pi is white.

In order to decide if a pixel P0 is deleted in the corresponding iteration sub-
cycle, two parameters are evaluated:

B(P0) =
∑i=8

i=1 Pi
C(P0) = (¬P2 ∧ (P3 ∨ P4)) + (¬P4 ∧ (P5 ∨ P6))

+(¬P6 ∧ (P7 ∨ P8)) + (¬P8 ∧ (P1 ∨ P2))

B(P0) counts how many pixels in the neighborhood of P0 are black. C(P0)
evaluates the connectivity of the pixel P0. Notice that for isolated black pixels, the
connectivity is 0, and for pixels surrounded by eight black pixels, the connectivity
is 4.

According to the Guo & Hall algorithm, in each iteration, an evaluated black
pixel P0 is deleted (changed to white) if and only if all of the following conditions
are satisfied.

Guo & Hall conditions:

1. B(P0) > 1;
2. C(P0) = 1; This condition is necessary for preserving local connectivity when

P is deleted.
3. (P1∧P3∧P5∧P7)∨(P2∧P4∧P6∧P8) = FALSE; Intuitively, this condition

is satisfied if P0 is not the central pixel of a cross.
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For example, let us consider as P0 the central pixel in the image of Fig. 3
(Center). In this case, B(P0) = 3 > 1, C(P0) = 1, and the third condition is also
satisfied. Hence, P0 will be deleted in the corresponding sub-cycle iteration.

4 SN P Systems for Skeletonizing

In this paper we will show how to use SN P systems for skeletonizing images.
In particular, we use SN P systems for implementing the Guo & Hall algorithm.
Without losing generality, we will consider each image as a mapping I : {1, . . . , p}×
{1, . . . , q} → {black, white}, with I(1, k) = I(p, k) = I(j, 1) = I(j, q) = white for
all k ∈ {1, . . . , q} and j ∈ {1, . . . , p}, i.e., the image has n ×m pixels and all the
pixels on the border are white.

Given a pixel (i, j), we can use the enumeration of the pixels used in the
previous section to represent the neighborhood of the pixel P0 in (i, j). Such a
neighborhood will be represented as a list [H0, . . . , H8], where, for r ∈ {0, . . . , 8},
Hr = 1 if Pr is a white pixel and Hr = 0 if Pr is a black one6. This represen-
tation of the neighborhood can be done in a more compact way, by encoding the
neighborhood as a number7 in {0, . . . , 511}.

cod(i, j) =
8∑

r=0

Hr × 2r

For example, in Fig. 3 (Center), the 3 × 3 neighborhood can be encoded as
[0, 0, 0, 0, 1, 1, 1, 1, 1], or, shortly, 24 + 25 + 26 + 27 + 28 = 496.

Since the decision of removing a black pixel (changing to white) depends on
its 3 × 3 neighborhood and there is a bijective correspondence among the sets of
all the possible neighborhoods and the possible encodings {0, . . . , 511}, it is easy
to check that the pixel in (i, j) must be removed if it belongs to the set

DEL =



6 12 14 18 24 26 28 30 36 38 44 46
48 50 56 58 60 62 66 72 74 96 98 104

106 112 114 120 122 124 126 132 134 140 142 144
146 152 154 156 158 164 166 172 174 176 178 184
186 188 190 192 194 200 202 224 226 232 234 240
242 248 250 252 258 262 264 266 270 286 288 290
294 296 298 302 318 384 386 390 392 394 398 414
416 418 422 424 426 430 448 450 454 456 458 462
480 482 486 488 490 496 498 504


The complementary set of encodings will be denoted by DEL, in other words,

6 Notice that we encode black pixels as 0 and white pixels as 1 for an easier implemen-
tation with SN P systems. In the previous section, we keep the opposite encoding in
order to keep continuity with the literature.

7 Similar ideas are also used in [30].
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DEL = {s ∈ {0, . . . , 511} | s ̸∈ DEL}

For each image of size p × q, a SN P system will be provided. The input of the
SN P system is a non negative integer which represents the number of iterations
in the skeletonizing process. Formally, given an p× q image, we associate to it the
following SN P system is degree (p× q) + 2:

Π = (O, σ11, σ12, . . . , σpq, σodd, σeven, syn, odd),

i.e., a SN P system with a neuron for each pixel in the image plus two extra
neurons, σodd and σeven. The input neuron is σodd.

• O = {a} is the singleton alphabet;
• σodd = (512, a513a∗/a513 → a512) and σeven = (0, a512/a512 → a512).
• σij = (nij , Rij), i ∈ {1, . . . , p}, j ∈ {1, . . . , q}, where

ni,j =

{
0 if i = 1 ∨ i = p ∨ j = 1 ∨ j = q
cod(i, j) otherwise

R1k = Rpk = Rj1 = Rjq = ∅ for all k ∈ {1, . . . , q} and j ∈ {1, . . . , p}. For the
remaining (i, j),

Rij = {ab/a511 → a256 | b = r + 512 ∧ r ∈ DEL}∪
{ab/a512 → λ | b = r + 512 ∧ r ∈ DEL};

• syn =

p−1∪
i=2

q−1∪
j=2

synij


∪ synodd ∪ syneven ∪ {⟨odd, even, 1⟩, ⟨even, odd, 1⟩}, where

synodd =

{
⟨odd, (i, j), 1⟩ | i ∈ {2, . . . , p− 1}, j ∈ {2, . . . , q − 1},

i + j odd

}

syneven =

{
⟨even, (i, j), 1⟩ | i ∈ {2, . . . , p− 1}, j ∈ {2, . . . , q − 1},

i + j even

}
and for all i ∈ {2, . . . , q − 1}, j ∈ {2, . . . , q − 1},

synij =


⟨(i, j), (i + 1, j), 1/20⟩, ⟨(i, j), (i− 1, j), 1/24⟩,
⟨(i, j), (i + 1, j + 1), 1/21⟩, ⟨(i, j), (i− 1, j − 1), 1/25⟩,
⟨(i, j), (i, j + 1), 1/22⟩, ⟨(i, j), (i, j − 1), 1/26⟩,
⟨(i, j), (i− 1, j + 1), 1/23⟩, ⟨(i, j), (i + 1, j − 1), 1/27⟩}


The SN P system has one neuron σij for each pixel of the image plus two extra

neurons σodd and σeven. The neurons corresponding to the border of the image has
zero spikes in the initial configuration, the remaining neurons σij corresponding to
the pixels of the image (called hereafter, the regular neurons) have cod(i, j) spikes
in the initial configuration. The neurons σodd and σeven have 512 and 0 spikes
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respectively. We will add to the 512 spikes in σodd as many spikes as indicated as
input for starting the computation.

The neuron σodd has only one rule a513a∗/a513 → a512 which is applied if the
neuron has at least 513 spikes. The neuron σeven has also one rule a512/a512 → a512.
The regular neurons have two types of rules: Firing and forgetting ones, which will
be applied if the number of spikes is exactly b = r+512 with r ∈ DEL or r ∈ DEL,
respectively.

With respect to the synapses, a regular neuron corresponding to a pixel P is
linked to the eight neurons corresponding to the eight neighbor pixels of P , with
the weights 1/2i where i ∈ {0, . . . , 7} follows an anti-clockwise enumeration of the
pixels starting in the east pixel (see Fig. 3 (Right)). The neurons σodd and σeven

are linked each other. The neuron σodd is also linked to all the regular neurons σij

with i+ j odd and, analogously, σeven is linked to all the regular neurons σij with
i + j even.

4.1 How it works

In order to understand how the SN P system works, firstly we observe that at the
initial configuration, the set of regular neurons σij encodes the image which will be
skeletonized. We will show that, at any time, these neurons encode the successive
images obtained in the iterative process of deleting black pixels according to the
Guo & Hall algorithm. Let us remark that if the number of spikes in σij is even,
then the corresponding pixel is black; otherwise, if the number of spikes is odd,
then the corresponding pixel is white. This is easily derived from the definition of
cod(i, j).

Another observation to be considered is that the parity of the number of spikes
in a neuron never changes, since the number of spikes received or removed is
always an even amount, except by the application of the rule ab/a511 → a256. As
we will see below, the application of this rule is interpreted as the deletion of the
corresponding black pixel in the Guo & Hall algorithm and it is applied once at
most in each neuron.

Before explaining the different steps of the process, let us consider a pixel (i, j)
in the image and a black pixel adjacent to (i, j). We identify this black pixel to
v ∈ {P1, . . . , P8} according to the clockwise enumeration described above. Let us
suppose that the black pixel in v belongs to the selected subsection in the current
step of the Guo & Hall algorithm and it satisfies the conditions to be deleted.

Let us consider now the neurons σij and σv corresponding to the pixels in (i, j)
and v. As we will show below, the three conditions for v (it is black, it belongs
to a selected subsection and it satisfies the Guo & Hall conditions to be deleted)
indicates that the number of spikes in σv is b = r + 512 with r ∈ DEL. In this
case the rule ab/a511 → a256 is applied. As pointed out above, the application of
this rule changes the parity of the number of spikes σr (from even, since the pixel
is black, to odd) and this change is interpreted as a deletion of the pixel in v.

We focus on the influence of the deletion of the black pixel in v (or, equivalently,
the application of the rule ab/a511 → a256 in σv) on the neuron σij . Since the
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number of spikes in σij at the initial configuration is cod(i, j) =
∑8

i=0 Hi×2i and,
in this configuration, the pixel v is black, according to the encoding, this means
that Hv is zero, or, in other words, 2v does nor appear in the encoding of the
environment as an addition of powers of 2.

The deletion of the pixel in v changes the environment of (i, j) and then, since
the number of spikes in σij represents such environment, the number of spikes
must change. In particular, the change corresponds to turn Hv to 1, or, in other
words, to add 2v to the number of spikes in σij .

In order to check that this happens, it is suffices to seen that the rule ab/a511 →
a256 sends 256 = 28 from neuron σv to σij , but these 28 must be multiplied by
the corresponding weight in {1/20, . . . , 1/27}, so only 2, 22, 23,. . . , 27 or 28 spikes
arrive to σij , depending on the value of v. A simple inspection shows that the
number of spikes that arrives to σij is exactly 2v when the black pixel v is deleted.

Bearing in mind these considerations, we show that for an input N ∈
{1, . . . , 513}, the computation steps of the SN P system correspond to the it-
erative process of the Guo & Hall algorithm where the first selected subsection
corresponds to pixels with i + j odd. In such way we will show the following
statements:

• Statement 1: The set of regular neurons is split into two sub-sections. One of
the sections is composed by the neurons σij such that i+j is even. Alternatively,
the second sub-section corresponds to the neurons σij such that i + j is odd.
Both subsections are alternatively selected, starting with the odd subsection.

• Statement 2: In each computation step, only neurons corresponding to the
selected subsection are evaluated. The evaluation consists on determining if the
neighborhood of the pixel associated to the neuron satisfies the conditions of
the Guo & Hall algorithm to be deleted.

• Statement 3: If an evaluated black pixel satisfies the Guo & Hall conditions
to be deleted (see Section 3), then the number of spikes in the corresponding
neuron changes from even to odd.

• Statement 4: In each configuration, the number of spikes in the regular neu-
rons is the codification of an image, according to the encoding described above.

The first key point of the algorithm is that the image is split into two subsec-
tions which will be explored alternatively. One black pixel will be considered for
its deletion only if it belongs to the subsection selected in the current step. We
consider that a regular neuron σij is selected at the step r if its number of spikes
in the configuration Cr is greater than or equal to 512. Otherwise, if its number
of spikes is lower than 512, then the neuron is not selected.

Next we show that the regular neurons with i+j odd and even are alternatively
selected. The selection of subsections is performed by the neurons σodd and σeven

which send, alternatively, 512 spikes to the regular neurons σij with i+ j odd and
even, respectively.

Lemma 1. Let σij be a regular neuron and N ∈ {1, . . . , 513} the input of the SN
P system. For r ∈ {0, . . . , N − 1}
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• If i+ j is odd, then the number of spikes in σij is greater than or equal to 512
in the configuration C2r+1 and it is lower than 512 in the configuration C2r.

• If i + j is even, then the number of spikes in σij is greater than or equal
to belongs to 512 in the configuration C2r+2 and it is lower than 511 in the
configuration C2r+1.

Proof. Let us observe that in the initial configuration, the number of spikes in
a regular neuron σij is cod(i, j) < 512; the number of spikes in σodd is 512 + N
and there is zero spikes in the neuron σeven. From this initial configuration, the
unique applicable rule is a513a∗/a513 → a512 in the neuron σodd (since N ≥ 1).
After applying this rule, in the configuration C1, the number of spikes in σodd is
N − 1; the number of spikes in σeven is 512; and the number of spikes in σij is
cod(i, j) + 512 if i + j is odd and cod(i, j) if i + j is even.

Let us focus now on σodd and σeven. The unique neuron that sends spikes to σodd

is σeven and, analogously, the unique neuron that sends spikes to σeven is σodd. In
the configuration C1, the spikes in σodd and σeven are N − 1 and 512, respectively.
Since N ≤ 513, the rule in σodd cannot be applied in this configuration, but the
rule in σeven can be applied, so the spikes in σodd and σeven in the configuration C2

are 512+N −1 and 0, which is similar to the situation in the initial configuration,
so we have that for r ∈ {1, . . . , N}, the number of spikes in σodd and σeven and in
the configuration C2r are 512 + N − r and 0.

Notice that at the configuration C2N , the number of spikes in σodd and σeven

are 512 and 0, respectively, and no more rules are applied in these neurons.
According to the number of spikes in σodd and σeven in the odd and even

configurations, and taken into account their synapses, then we have that, for r ∈
{0, . . . , N − 1}, at the configuration C2r+1, the regular neurons with i+ j odd has
at least 512 spikes; and at C2r+2, the regular neurons σij with i + j even has at
least 512 spikes.

In order to complete the proof, it is necessary to prove that for r ∈ {0, . . . , N−
1}, at the configuration C2r+1, the regular neurons with i + j even has at most
511 spikes; and at C2r+2, the regular neurons σij with i + j odd has at most 511
spikes.

Let us start by considering a regular neuron σij with i + j odd at the con-
figuration C1. As we show above, its number of spikes is b = 512 + r with
r = cod(i, j) ≤ 511. Depending on r ∈ DEL or r ∈ DEL, one of the rules
ab/a511 → a256 or ab/a512 → λ is applied.

• Let us suppose that r ∈ DEL. In particular, this means that the corresponding
pixel is black and the applied rule is ab/a511 → a256. The number of spikes in
the configuration C2 is equal to the spikes in the configuration C1 (512 + r),
minus the consumed ones 511 plus the contribution of other neurons. Since σodd

does not send any spike in this step, the unique contribution to the number
of spikes comes from other regular neurons. Each contribution is the addition
of 2i spikes to the spikes in σij , but, bearing in mind that the pixel is black,
then 20 does not appears in the decomposition of cod(i, j) as sum of powers
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of 2, and it cannot be added as a contribution of other neuron, so r plus the
contribution of other neurons is at most 510 and then, the number of spikes in
σij in C2 is lower than 512.

• If r ̸∈ DEL, then the rule ab/a512 → λ is applied. Since 512 spikes are con-
sumed and r plus the contributions of the other regular neurons is at most 511,
then the number of spikes in σij is lower than 512, also in this case.

This reasoning can be also applied to show that the number of spikes of the
neurons σij with i+j even is lower than 512 in the configuration C3 and in general
we have that for r ∈ {0, . . . , N−1}, at the configuration C2r+1, the regular neurons
with i+ j even has at most 511 spikes; and at C2r+2, the regular neurons σij with
i + j odd has at most 511 spikes. �

The previous lemma shows that the property to have at least 512 spikes changes
alternatively from neurons σij with i+ j odd and even. From this result, it is easy
to check the second statement, since the rules in the regular neurons can only be
applied if the number of spikes is at least 512. That means that only in such cases
the neuron is considered for evaluation.

Evaluating a neuron consists on deciding if the rule ab/a511 → a256 or
ab/a512 → λ is applied, but such decision depends on the set DEL which are the
set of encodings of the neighborhood such that the central pixel must be deleted.

The next key point of the algorithm is the deletion of pixels. By definition
of cod(i, j), a regular neuron σij has an odd number of spikes if and only if it
represents a white pixel. Analogously, a regular neuron σij has an odd number of
spikes if and only if it represents a white pixel. Bearing in mind this coding of
black pixels, deleting a black pixel in a computation step consists on removing an
odd amount of spikes from a neuron with an even amount of spikes.

Lemma 2. Let us consider a black pixel and a step of the Guo & Hall algorithm,
such that the pixel belongs to the selected subsection and it satisfies the conditions
of the algorithm to be deleted. Then, in the corresponding step of the SN P system
computation, the corresponding regular neuron σij will pass from an odd amount
of spikes to an even amount.

Proof. According to the previous construction, a black pixel which belongs to the
selected subsection in the Guo & Hall algorithm and verifies the conditions to
be deleted has associated a regular neuron with 512 + r spikes, r ∈ DEL. In
this case, the rule ab/a511 → a256 is applied. Bearing in mind that r is even, the
contributions of other neurons is even and an odd number of spikes is consumed,
in the next configuration, the number spikes in the neuron is odd. �

Since all the r ∈ DEL are even and the contribution of other neurons is always
even, then the rule ab/a511 → a256 with b = 512 + r is applied at most once in
each neuron. This means that if a pixel is deleted (changed from black to white)
it never becomes black to white, and the iterative process of thinning the image is
also carried out in the SN P system.

Finally, to sum up these statements. We claim the following result.
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Theorem. The set of regular neurons of the SN P system encodes in each config-
uration the successive images obtained in the iterative process of thinning of the
Guo & Hall algorithm, by taking as black the pixels with an even amount of spikes
and white the neurons with an odd amount of spikes.

5 Experimental Simulation

Simulation of different variants of P systems have been widely studied in the last
years. Since there do not exist implementations of P systems in vivo nor in vitro,
the natural way to explore the behavior of designed P systems is to simulate it
in conventional computers. A short description of some of these simulators can be
found in [7, 15]. Currently, a big effort is being developed in the P-lingua project [8],
by combining an efficient simulation engine with an ad-hoc programming language.

In this paper, a software tools based on the design of the SN P system has
been implemented by using CUDATM, (Compute Unified Device Architecture)
[18, 19]. CUDATM is a general purpose parallel computing architecture that allows
the parallel NVIDIA Graphics Processors Units (GPUs) to solve many complex
computational problems in a more efficient way than on a CPU.

The experiments have been performed on a computer with a CPU AMD Athlon
II x4 645, which allows to work with four cores of 64 bits to 3.1 GHz. The computer
has four blocks of 512KB of L2 cache memory and 4 GB DDR3 to 1600 MHz of
main memory.

The used graphical card (GPU) is an NVIDIA Geforce GT240 composed by 12
Stream Processors with a total of 96 cores to 1340 MHz. It has 1 GB DDR3 main
memory in a 128 bits bus to 700 MHz. So, the transfer rate obtained is by 54.4

Fig. 4. Scheme of the threads
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Fig. 5. Example of image with traffic signals

Gbps. The used Constant Memory is 64 KB and the Shared Memory is 16 KB. Its
Compute Capability level is 1.2 (from 1.0 to 2.1). The implementation deals with
N blocks of threads for the complete image in our GPU of 96 cores, as we can see
in Fig. 4. We need more threads than pixels if the height and width of the image
are not multiples of 16; i.e., we can have useless threads (see Figure 4).

5.1 Examples

A first example is shown in Fig 2. Skeletonizing hand-written texts is one of the
challenges of skeletonizing, since the skeleton keeps the topological structure and
meaning of the original and the text can be easily stored.

Next, we provide several examples of a realistic recognizing problem with ap-
plications in the automotive industry. In Fig. 5, we can see a photograph taken in
a road. It has been binarized by using a threshold method by using a threshold
100 on a gray scale 0, . . . , 255. We can see that the skeletonized images keep the
information of the traffic signals and they can be used in a further pattern recog-
nition problem (see Fig. 6). In Fig. 7, two more examples of skeletionizing real
images are shown.

We finish this section by showing the results of some experiments performed
with our implementation. We have taken 36 totally black images of n× n pixels8,
from n = 125 to n = 4500 with a regular increment of 125 pixels of side. Figure 8
(top) shows the time in milliseconds of our software tool inspired in the designed
SN P system for implementing the Guo & Hall algorithm for 1, 30, 60 and 90
steps in the skeletonizing process. Figure 8 (bottom) shows the same study for a
sequential implementation of the algorithm.

8 Theoretically, this is the worst case, since the time inverted by the algorithm depends
on the size of the biggest black connected component of the original image.
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Fig. 6. (Top left) The binarization of the image from Figure 5 (Top right) Inverse bina-
rization of the image. (Bottom left) Its skeletonizing. (Bottom right) The skeletonizing
of the inverse thresholding.

6 Conclusions

The development of new bioinspired parallel techniques provides a chance for re-
visiting classical sequential algorithms. In this paper, we have consider a classical
algorithm for skeletonizing images, but many other algorithms can be considered.
In particular, the bio-inspired computing techniques have features as the encapsu-
lation of the information, a simple representation of the knowledge and parallelism,
which are appropriate with dealing with digital images.

Nonetheless, the use of new computational paradigms for developing the bio-
inspired ideas needs, on the one hand, the contribution of theoretical research
that allows us to design new bio-inspired efficient algorithms, and, on the other
hand, the use of the most recent parallel computer architectures for a real parallel
implementation of the algorithms.

In this paper we provide a new step in both directions, since we study the
skeletonization of images by using Spiking Neural P systems and show the results
of a new software based on the SN P system by using the GPU architecture. This
research line can be followed by considering more classical problems and studying
the possible improvements from a bio-inspired perspective, or, by studying the
same skeletonization problem in other P system models.
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Fig. 7. Original images and their skeletons
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oretical Computer Science 296(2), 295–326 (2003)

18. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with
CUDA. Queue 6, 40–53 (2008)

19. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU
Computing. Proceedings of the IEEE 96(5), 879–899 (2008)

20. Pan, L., Wang, J., Hoogeboom, H.: Spiking neural P systems with astrocytes. 24(3),
805–825 (2012)

21. Pan, L., Zeng, X., Zhang, X., Jiang, Y.: Spiking neural P systems with weighted
synapses. Neural Processing Letters 35(1), 13–27 (2012)
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Summary. This article introduces a formalism/framework able to describe different
variants of P systems having a dynamic structure. This framework can be useful for
the definition of new variants of P systems with dynamic structure, for the comparison
of existing definitions as well as for their extension. We give a precise definition of the
formalism and show how existing variants of P systems with dynamic structure can be
translated to it.

1 Introduction

This article is an attempt to fulfill the goal of defining a formal framework that
captures the essential properties of P systems with dynamic structure. This frame-
work can be seen as a kind of meta-language that permits to describe a P system
and its evolution. Our main goal is to provide a simple tool for the analysis of dif-
ferent models of P systems with dynamic structure. There are numerous possible
applications of the results of such an analysis, as, for example, the comparison and
the extension of existing models and the creation of new models of P systems with
a dynamic structure.

The article extends the approach used in [3] for P systems with static structure.
We recall that the framework for the static P systems is mainly composed of five
ingredients: the definition of the configuration of the system, the definition of
rules, the definition of the applicability and of the application of a rule/multiset of
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rules, transition mode and halting condition. The configuration is a list of multisets
corresponding to the contents of membranes of a P system and the rules generalize
most kind of rules used in the P systems area. Based on this general form of
rules, the applicability and the application of a (group of) rule(s) are defined
using an algorithm. This permits to compute the set of all applicable multisets of
rules for a concrete configuration C (Applicable(Π,C)). Then this set is restricted
according to the transition mode δ (Applicable(Π,C, δ)). For the transition, one
of the multisets from this last set is non-deterministically chosen and applied,
yielding a new configuration. The result of the computation is collected when the
system halts according to the halting condition, which corresponds to a predicate
that depends on the configuration and the set of rules.

In the case of P systems with dynamic structure the first three ingredients are
to be changed in order to accommodate with the fact that the structure of the
system can change. Informally, a configuration is a list of triples (i, h, w), where i
is the unique identifier of a cell/membrane, h is its label and w is its contents. A
configuration also contains the description of the structure of the system, which is
given by a binary relation ρ on cell identifiers.

We assume that the set of rules is fixed (does not change in time). Rule ac-
tions are expressed in terms of “virtual” cells (membranes). These virtual cells are
identified by labels. The process of the application of rules first makes a correspon-
dence between the current configuration and the virtual cells described in a rule,
i.e. it tries to “match” the constraints of virtual cells (labels, relation, contents,
etc.) against the current configuration. When a subset of cells from the current
configuration (say I) matches the constraints of a rule, we say that a rule can be
instantiated by the instance I. The instantiation of r by I is the couple (r, I),
denoted by r⟨I⟩, and it can then be treated as a rule that could be applied like in
the static case. The rules also contain additional ingredients that permit to modify
the structure (the relation ρ).

Instances of rules can further be used to compute the applicable set of multisets
of rules and we provide an algorithm for this purpose. The transition modes and
halting conditions can easily be applied to this set exactly as in the static case.

The article is organized as follows. Section 2 gives the definition of the frame-
work and presents the related algorithms. Section 3 presents a taxonomy that
permits to define shortcuts for the commonly used cases. Then in section 4 we
give examples of the translation of different types of P systems with dynamical
structure. Finally, we discuss the perspectives of the presented approach.

2 Definitions

We assume that the reader is familiar with standard definitions in formal language
theory (for example, we refer to [8] for all details) and with standard notions of P
systems, as described in the books [5] and [6] or at the web page [7].
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2.1 Graph transformations

There exist several ways to define a graph transformation. We will define a the
graph transducer using the formalism from [2]. This formalism defines the graph
transformation as a graph-controlled graph rewriting grammar with appearance
checking using the following operations:

• I(X): creation of a new node labeled by X;
• D(X): deletion of a node labeled by X;
• C(X,Y ): change the label of the node labeled by X to Y;
• I(l1, λ, l2; l′1, a, l

′
2): insert an edge labeled by a between two nodes labeled by l1

and l2; after the insertion nodes are relabeled to l′1 and l′2 respectively;
• D(l1, a, l2; l′1, λ, l

′
2): delete the edge labeled by a between two nodes labeled by

l1 and l2; after the deletion nodes are relabeled to l′1 and l′2 respectively;
• C(l1, a, l2; l′1, a

′, l′2): rename to a′ the label of the edge labeled by a between
two nodes labeled by l1 and l2, After this operation nodes are relabeled to l′1
and l′2 respectively.

It was proved in [2] that the above formalism is computationally complete.
In what follows we will use some particular graph transducers whose definition

we give below:

• DELETE(x): C(x, x′), D(x′, a, y;x′, λ, y) (looping over a and y), D(x′)
• INSERT (x): I(x)
• INSERT − EDGE(x, y): I(x, λ, y;x, a, y)
• DELETE − EDGE(x, y): D(x, a, y;x, λ, y)

2.2 Definition of the framework

We start by defining a configuration of a P system. Since we deal with P systems
with dynamic structure, it should be taken into account that the number of cells
(membranes) is not fixed (it is unbounded) and it will be represented by a list.

Definition 1 A basic configuration C (of size n) is a list (i1, w1) . . . (in, wn),
where each wj is a multiset (over O) and each ij ∈ N, ij ̸= ik, for k ̸= j,
1 ≤ j, k ≤ n.

If not stated otherwise, we suppose that all multisets of a basic configuration
are finite. If needed the definitions that follow can be adapted to infinite multisets
by adding corresponding constraints to the rule definition like it was done in [3].

The set of basic configurations of any size n > 0 is denoted by C. We remark
that we will consider only basic configurations of finite size and we denote the size
of C by size(C).

Each element (ij , wj), 1 ≤ j ≤ n, of a configuration C is called a cell. We say
that ij is the id of the cell j and that wj is the contents of the cell j. We define
the function id(x) which for a cell x returns its id. We require the function id to
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be bijective, i.e., there should be a one-to-one correspondence between cells and
their id’s.

If not stated otherwise, we will consider that id is the identity function
(id(x) = x), so we will not distinguish between an id and its position in the
list of configurations.

Definition 2 A configuration C is the couple (L, ρ), where L ∈ Lab × C is the
list (i1, l1, w1) . . . (in, ln, wn) with (ij , wj) corresponding to an element of a basic
configuration and lj ∈ Lab being the label of the cell, 1 ≤ j ≤ n (Lab is a set of
labels). The second component ρ ⊆ N× N is the relation graph between cells.

Hence in a configuration any cell has an id (equal to the position) which is
unique and a label which is not necessarily unique. We define the function lab(x) :
N→ L that returns the label of the cell having the id equal to x. We denote by Cm
and Cρ the first and the second components of the configuration C. We also denote
by C̄m ∈ C the projection of Cm erasing the labels (yielding a basic configuration).

The relation ρ is defined on id’s of cells being part of the configuration. In
P systems this corresponds to the parent relation, while in tissue P systems this
corresponds to the communication graph of the system.

The set of all possible configurations is denoted by C.
Now we will give the definition of a rule. A rule r is defined by the following

components. We remark that all of them are given in terms of virtual cell positions.
We will also call them relative positions because they are introduced in the first
component of the rule.

A. Checking
1. Labels(r) ∈ Lab∗ (Labels(r) = (l1, . . . , lk)) is a list of cell labels. This list

identifies k (relative) positions labeled from 1 to k that we further call virtual
cells. Let Nk = {1, . . . , k} and K be a subset of C where for any cell x it holds
1 ≤ id(x) ≤ k.

2. ρ(r) ⊆ Nk×Nk is the constraint imposed by the (parent) relation on the virtual
cells.

3. Perm(r) ⊆ K defines the permitting condition.
4. For(r) ⊆ K defines the forbidding condition.

B. Modification of existing configuration/structure
5. Rewrite(r) ∈ (K×K) is a general rewriting rule permitting to rewrite a finite

basic configuration to another one (e.g., (j, u)(i, v) → (m,w)). By Bound(r)
we denote the first component (the left-hand-side) of this rewriting rule.

6. Label–Rename(r) ∈ (Nk × Lab)∗ renames the labels specified by the list.
7. Delete(r) ∈ N∗

k gives the indexes of virtual cells to be deleted.
8. Delete–and–Move(r) ∈ (Nk × Nk)∗ is a list of couples of indices (e.g., (j, k))

indicates that the virtual cell j should be deleted and its contents should be
moved to the virtual cell k).

C. Creation of new structures
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9. Generate(r) ∈ (N′ × Lab × O◦)∗ is a list of triples consisting of a (primed)
index, a label, and a multiset (e.g. (j′, h, u)). This component introduces new
cells to be created by the application of the rule.

10. Generate–and–Copy(r) ∈ (N′×Lab×N×R̄) -is a list of quadruplets consisting
of a (primed) index, a label, an index, and a rewriting rule (e.g. (j′, h, i, u →
v)). This component specifies new cells to be created by duplicating existing
cells.
We denote the smallest multiset containing any left-hand side of rewriting rules
from Generate–and–Copy by DPerm(r).

D. Structure transformation
11. Change–Relation is a graph transducer that updates the relation ρ. This

transducer should be recursive and it can only add and remove edges (no
node creation/removal is allowed).

Now we define what means the applicability of a rule. Before giving the algo-
rithm, we define some additional notions related to relative positions.

An instance of size n is a vector of integers I = (i1, . . . , in), ij ∈ N, 1 ≤ j ≤ n.
By size(I) we denote the size of an instance I, and by I|k, 1 ≤ k ≤ n, the k-th
value of the vector I, i.e., ik.

For a basic configuration C ∈ C, C = (j1, w1) . . . (jk, wk), and for an instance
I we define the instantiation of C by I, denoted C⟨I⟩, as follows:

C⟨I⟩ = (I|j1 , w1) , . . . , (I|jk , wk) .

In the above formula we assume that the cells of configuration C do not nec-
essarily have their id in the range [1 . . . size(C)]. We also remark that size(C) ≤
size(I).

It is clear that if C is defined in terms of relative positions then C⟨I⟩ permits
to replace these relative positions by the corresponding values from I (a relative
position k is replaced by I|k which is ik).

For a rule r as defined above and for an instance I such that |Labels(r)| ≤
size(I) we obtain the instantiation of r by I, denoted by r⟨I⟩, by replacing all
relative positions k by I|k in Perm(r), For(r), Rewrite(r), Label–Rename(r),
Delete(r), Delete–and–Move(r) and Change–Relation(r).

Now we define what means the applicability of a group of rules. First we define
the set of valid instances for a rule r ∈ R in a configuration C. This set, denoted
by IC(r), is obtained by the following algorithm.

1. Getting instances in conformity with Labels(r):

ĪC(r) = {(i1, . . . , ik) | (l1, . . . , lk) = Labels(r) and lab(ij) = lj ,

1 ≤ ij ≤ size(C), 1 ≤ j ≤ k}.

2. Checking the relation ρ:

IC(r) = {(i1, . . . , ik) ∈ ĪC(r) | (j,m) ∈ ρ(r)⇒ (ij , im) ∈ Cρ}.
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For a multiset of rules R ∈ R◦ and a configuration C ∈ C we define the set
of multisets Applicable(R, C) ⊆ (R × N∗)◦ giving the set of multisets of instanti-
ated rules that can be computed based on R and the configuration C. This set is
computed as follows.

Let R = {r1, . . . , rn} (the rules are not necessarily different) and let IC(ri) =
(vi,1, . . . , viki), 1 ≤ i ≤ n. Consider an arbitrary vector of rule instances v =
(v1,j1 , . . . , vn,jn), 1 ≤ ji ≤ ki, 1 ≤ i ≤ n. The multiset {(r1, v1,j1), . . . , (rn, vn,jn)}
is added to Applicable(R, C) if

• For all p ∈ Perm(ri) ∪DPerm(ri), p⟨v⟩ ⊆ C̄m, 1 ≤ i ≤ n.
• For all q ∈ For(ri), q⟨v⟩ ̸⊆ C̄m, 1 ≤ i ≤ n.
•

∪n
i=1 Bound(ri)⟨v⟩ ⊆ C̄m.

• The consecutive application of graph transducers Change–Relation(ri) and
Change–Relation(rj) yields the same result regardless of the order of the ap-
plication, 1 ≤ i, j ≤ n.

It is clear that there is a bound on the size of the multiset of rules R for which
Applicable(R, C) is not empty. We denote by Applicable(C) ⊆ (R×N∗)◦ the union
of corresponding multisets:

Applicable(C) =
∪

Applicable(R,C) ̸=∅

Applicable(R, C).

For a P system Π having a set of rules R we define Applicable(Π, C) =
Applicable(R, C). Following [3] it is possible to define now the transition modes as
a restriction of this set. However, it should be noted that since the corresponding
multisets contain instantiated rules, additional restrictions based on instances can
be placed.

Now we are ready to define the application of a multiset of rules R.
Let C = (L, ρ) be the current configuration and let RI ∈ Applicable(R, C),

RI = {(r1, v1), . . . , (rn, vn)} be a multiset of instantiated rules. We now define the
operation Apply(RI, C) ∈ C which is the result of the application of RI to C.

Before giving the algorithm we remark that a rule is composed from three parts:
the rewriting of objects and the label change (R), the membrane deletion (D) and
the membrane creation (G). The order of the application of these parts is extremely
important, e.g. doing the rewriting before the membrane creation permits to copy
the result of the rewriting to the new membranes. In this article we consider
that the application order is RGD, i.e. rewriting, creation and then deletion. This
order corresponds to the actual state of art in the area of P systems with active
membranes. Other orders are also possible and this can be an interesting topic for
a further research.

The algorithm for the computation of Apply(RI, C) is the sequence consisting
of the following steps.

1. (rewriting application): L1 = {(i1, l1, w′
1) . . . (in, ln, w

′
n)} where:
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w′
j = wj +

∪
(rk, vk) ∈ RI

(s, u→ v) ∈ Rewrite(rk)
vk|s = j

(−u + v).

2. (label change): L2 = {(i1, l′1, w′
1) . . . (in, l

′
n, w

′
n)} where:

l′j =

 es, there is (rk, vk) ∈ RI such that (s, es) ∈ Label–Rename(rk)
and vk|s = j,

lj , otherwise.

3. (membrane creation): (m1 . . .mt+s are new ids). We define the lists of newly
created cells Lc and L′

c:

Lc(rk) =(m1, h1, u1) . . . (mt, ht, ut), (rk, vk) ∈ RI and

Generate(rk) = {(1′, h1, u1) . . . (t′, ht, ut)}.

Lc =
n∏

k=1

Lc(rk).

L′
c(rk) = (mt+1, ht+1, w

′
n1
− u1 + v1) . . . (mt+s, ht+s, w

′
ns
− us + vs), where

(rk, vk) ∈ RI and

Generate–and–Copy(r) ={((t + 1)′, ht+1, nt+1, ut+1 → vt+1) . . .

((t + s)′, ht+s, nt+s, ut+s → vt+s)},
(ij , l

′
j , w

′
j) ∈ L2, 1 ≤ j ≤ n

L′
c =

n∏
k=1

L′
c(rk).

By definition, we put vk|q′ = mq, 1 ≤ q ≤ t + s.
We also consider a graph transducer CREATE–NODES that creates nodes
m1, . . . ,mt+s.
We put L3 = L2 ·Lc ·L′

c (this is the Cm part of the result of the application of
R).

4. (membrane deletion):
Consider a vector P = (p1, . . . , pn) defined as follows:

pj =



∗, if there exists (rk, vk) ∈ RI such that s ∈ Delete(rk)

and vk|s = j,

vk|m, if there exists (rk, vk) ∈ RI such that

(s,m) ∈ Delete–and–Move(rk) and vk|s = j,

j, otherwise.
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The first two cases correspond to those ids j for which the corresponding cells
should be deleted. We remark that for any pk such that pk ̸= ik, there is a
value z ∈ N ∪ {∗} such that there is a sequence x1, . . . , xm with x1 = pk,
xm = z, and xj = pxj−1 , 2 ≤ j ≤ m. We denote this by z = last(x). The
above affirmation follows from that fact that the Delete–and–Move relation
(considered as a parent relation) induces a forest on the ids of the cells that
should be deleted. The roots of the obtained trees are given by the function
last and they will collect the objects from all the cells in the tree (if they are
different from ∗).
Next we describe how the contents is moved:
L4 = {(i1, l′1, w′′

1 ) . . . (in, l
′
n, w

′′
n)} where (ik, l

′
k, w

′
k) ∈ L3, 1 ≤ k ≤ n, and

w′′
j = w′

j +
∪

last(k)=j

w′
k.

The deletion of cells induces changes to the relation ρ. We collect these modi-
fications as a graph transducer DELETE–NODES that will be run after the
Change–Relation transducer. This transducer deletes all vertices j such that
pj ̸= j as well as all edges that are incoming to these deleted nodes.
We also remove the corresponding cells from L4:
L5 = (i1, l

′
1, w

′′
1 ) . . . (in1 , l

′
n1
, w′′

n1
) where (ij , l

′
j , w

′′
j ) ∈ L4 and pj = ij .

5. (relation change) The new relation C′ρ is computed by running the graph trans-
ducers CREATE–NODES, Change–Relation(r⟨vk⟩) and
DELETE–NODES for all (rk, vk) ∈ R on Cρ.

3 Taxonomy

In order to simplify the notation we consider several variants of rule notation:

Simple rewriting rule (R-rule)

An R-rule is defined only by the following components:
r = (Labels(r), ρ(r), Rewrite(r))

Simple rewriting rule with label rename (LR-rule)

An LR-rule is defined only by the following components:
r = (Labels(r), ρ(r), Rewrite(r), Label–Rename(r))

Simple creation rule (C-rule)

A C-rule is defined by the following components:
r = (Labels(r), ρ(r), Generate(r), Generate–and–Copy(r),

Change–Relation(r))
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Simple creation rule with label rename (CL-rule)

A CL-rule is defined by the following components:
r = (Labels(r), ρ(r), Label–Rename(r), Generate(r),

Generate–and–Copy(r), Change–Relation(r))

Simple dissolution rule (D-rule)

A D-rule is defined by the following components:
r = (Labels(r), ρ(r), Delete(r), Delete–and–Move(r),

Change–Relation(r))

In the case of the parent relation (tree case), we can simplify the rules and omit
ρ(r) by supposing that Labels(r) is of size 2. In this case we implicitly assume that
(1, 2) ∈ ρ(r). The type of corresponding rules with parent relation will additionally
contain the letter P (e.g., PC-rule).

In a more general way we can combine several components: L – label rename,
R – rewriting, C – membrane creation, D – membrane deletion (and get RD rules
for example).

Rules r having a non-empty Delete–and–Move(r) component can be simpli-
fied by reducing their Change–Relation(r) component in the case of the parent
relation.

In the above case we will assume that Change–Relation(r) contains the trans-
ducer MOV E − CONNECTIONS described below. This transducer adds the
following edges to ρ: {(ax, by) | (x, y) ∈ Cρ and ax, by ̸= ∗}, where (ax, by) is de-
fined as follows (im is the id of membrane m):

(ax, by) =

{
(last(x), y), (x, y) ∈ ρ and px ̸= ix,
(y, last(x)), (y, x) ∈ ρ and px ̸= ix.

The above transformations correspond to the deletion of cells and to the move-
ment of their contents according to Delete–and–Move relation.

4 Some examples

4.1 Active membranes

Let us start with the example of traditional active membrane rules (e.g., see Section
11.2 from handbook).

Polarization can be treated in two ways – as a special object inside a mem-
brane or like a special label; we here consider the latter case, i.e., the couple
(label,polarization) will be a new type of label.

Thus, a rule r : [a → v]eh will be treated as r : [a → v]⟨e,h⟩ and it can be
translated as the following PR-rule:
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r : Labels(r) = (⟨e, h⟩),
Rewrite(r) = {(1, a→ v)}.

In the future we indicate e instead of ⟨e, h⟩.
A rule a[]e1 → [b]e2 can be translated as the following group of PLR-rules

(∀p ∈ Lab):

r : Labels(r) = (e1, p),

Rewrite(r) = (2, a)→ (1, b),

Label–Rename(r) = {(1, e2)}.
A rule [a]e1 → []e2b can be translated as the following group of PLR-rules

(∀p ∈ Lab):

r : Labels(r) = (e1, p),

Rewrite(r) = (1, a)→ (2, b),

Label–Rename(r) = {(1, e2)}.
A rule [a]e → b can be translated as the following group of PD-rules (∀p ∈ Lab):

r : Labels(r) = (e, p),

Rewrite(r) = {(1, a)→ (1, b)},
Delete–and–Move(r) = {(1, 2)}.

A rule [a]e1 → [b]e2 [c]e3 can be translated as the following group of PCLR-rules
(∀p ∈ Lab):

r : Labels(r) = (e, p),

Rewrite(r) = (1, a)→ (1, b),

Label–Rename(r) = {(1, e2)},
Generate–and–Copy(r) = {(1′, e3, 1, b→ c)},

Change–Relation(r) = INSERT − EDGE(1′, 2).

4.2 Rules without polarizations

(According to Section 11.4 from the handbook). Since in our case the label is a
couple ⟨e, h⟩, there is no distinction with respect to the previous case.

4.3 Creation rules

Consider creation rules like on p. 326 in handbook.
A rule [a→ [u]h1 ]h2 can be translated as following PCR-rule:

r : Labels(r) = (h2),

Rewrite(r) = (1, a)→ (1, λ),

Generate(r) = {(1′, h1, u)},
Change–Relation(r) = INSERT − EDGE(1′, 1).
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4.4 Strong division

A rule [[]h1
. . . []hk

[]hk+1
. . . []hn

]h → [[]h1
. . . []hk

]h[[]hk+1
. . . []hn

]h can be defined as
the following C-rule:

r : Labels(r) = (h1, . . . , hn, h),

ρ(r) = {(i, n+ 1) | 1 ≤ i ≤ n},
Rewrite(r) = ∅

Generate(r) = {(1′, h, λ)},
Generate–and–Copy(r) = ∅,

Change–Relation(r) = DELETE − EDGE(k, n+ 1), i+ 1 ≤ k ≤ n, and

INSERT − EDGE(k, 1′).

4.5 Division based on polarizations

Consider a rule of type []h → [+]h[−]h2[0]h3 that regroups all membranes with
the same polarization in three new membranes. This can be simulated with the
following C-rule:

r : Labels(r) = (h),

ρ(r) = ∅,
Rewrite(r) = ∅,

Generate(r) = {(1′, h1, λ), (2
′, h2, λ)},

Generate–and–Copy(r) = ∅,

Change–Relation(r) =

DELETE–EDGE(k, 1), and INSERT–EDGE(k, 1′),

for all k such that lab(k) = −
DELETE–EDGE(k, 1), and INSERT–EDGE(k, 2′),

for all k such that lab(k) = 0

5 Conclusions

In this paper we presented a framework for P systems with dynamic structure.
The obtained meta-language has a precise semantics centered around 2 notions:
(1) the evolution of the objects and membrane labels and (2) the evolution of the
membrane structure (creation and deletion of nodes and edges). As a consequence
it permits to easily describe different features of existing P systems with dynam-
ical structure, which permits to provide an interesting tool for the comparison of
different variants of P systems. Moreover, the translation to the framework allows
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for a better understanding of the corresponding P system and provides ways to
extend its definition by new features. We remark that in the case of the systems
with a static structure a similar approach using the framework from [3] permitted
to define new variants of P systems and to better express some existing ones [1, 4].

The introduced model works with an arbitrary (binary) relation between mem-
branes, so it could be interesting to consider relations different from the parent
relation widely used in P systems. As an interesting candidate we suggest the
brother/sister relation on a tree. It could also be interesting to consider a general-
ization of the framework to an arbitrary n-ary relation. In this case the relation ρ
induces a hypergraph, so the components changing the structure of ρ have to be
adapted to work on hypergraphs.

Another direction for the development of the framework is to consider that
for a multiset of rules the order of the application of Change–Relation produces
different results. This implies that the order of rules is important, by consequence
the set Applicable(Π,C, δ) will contain vectors (or lists) of rules. This interesting
idea was not yet considered in the framework of P systems and we think that it
can lead to interesting results.
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Email: rogozhin@math.md
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Summary. In this article we investigate the operations of insertion and deletion per-
formed at the ends of a string. We show that using these operations in a P systems
framework (which corresponds to using specific variants of graph control), computational
completeness can even be achieved with the operations of left and right insertion and
deletion of only one symbol.

1 Introduction

The operations of left and right insertion and deletion that we consider in this
article correspond to the operations of left and right concatenation and quotient
with a finite language. While these operations are known for a long time, their
joint investigation in a distributed framework originates from the area of natu-
ral computing, where they were used in the context of networks of evolutionary
processors (NEP) [7]. Such networks are a special type of networks of language
processors [6] that feature a set of (rewriting) nodes rewriting languages and af-
ter that redistributing some regular subsets between the nodes. In networks of
evolutionary processors, the rewriting operations are replaced by three types of
operations having a biological motivation: insertion, deletion, and mutation (sub-
stitution). The corresponding systems are quite powerful and we refer to [8] for
more details. The redistribution of the node contents based on a regular condition
is a very powerful operation. Accepting hybrid networks of evolutionary processors
(AHNEP) replace this condition by random context conditions, however, the set
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of operations is changed and now includes the insertion and deletion operations at
the extremities of the strings; we refer to [21, 9] for more details on AHNEP.

The operations of insertion and deletion on the extremities of a string can also
be seen as a particular case of a more general variant, where insertion and deletion
can be performed anywhere in the string. The insertion operation defined in such
a way was first considered in [14, 15] and after that related insertion and deletion
operations were investigated in [17, 18]. Another generalization of the insertion
and deletion operations that involves the checking of contexts for the insertion and
deletion was considered with a linguistic motivation in [13, 20] and with a biological
motivation in [4, 5, 18, 26]. Generally, if the length of the contexts and/or of the
inserted and deleted strings are big enough, then the insertion-deletion closure of
a finite language leads to computational completeness. There are numerous results
establishing the descriptional complexity parameters sufficient to achieve this goal,
we refer to [31, 30] for an overview of this area.

Some descriptional complexity parameters lead to variants that are not com-
putationally complete. An investigation of insertion and deletion operations com-
bined with regulating mechanisms was done for these cases, more precisely, with
the graph-controlled, the matrix, and the random-context controls [11, 28, 16]. As
it was shown in these articles, in most of the cases the additional control leads
to computational completeness. The graph-controlled regulation is of particular
interest, as it can be related to the notion of P systems. Such systems formal-
ize the functioning of a living cell that topologically delimits processing units by
membranes, thus leading to a tree (or graph) structure of processing nodes. The
elements processed in some node (membrane) then are distributed among the
neighbors in the structure. We refer to [24, 25] and to the web page [29] for more
details on P systems. In the case of the operations of insertion and deletion acting
on strings this directly corresponds to a graph control where the control nodes
correspond to the membranes.

The research on context-free insertion and deletion (i.e., without contextual
dependency) shows that if the lengths of the inserted and deleted strings are 2 and
3 (or 3 and 2), respectively, then the insertion-deletion closure of finite languages
is computationally complete [22]. When one of these parameters is decreased, this
result is not true anymore [32]; moreover, even the graph-controlled variant cannot
achieve computational completeness [19]. This changes when a graph control with
appearance checking is used [1] or in the case of a random context control [16]. In
both variants, minimal operations (involving only one symbol) were considered,
leading to RE (the family of recursivey enumerable languages) in the case of set-
controlled random context conditions and to PsRE (the family of Parikh sets of
RE) in the case of graph control with appearance checking.

We note that the operations of left and right insertion and deletion are incom-
parable with normal insertion and deletion: because of the positional information,
the regular language a+b+ can be obtained even with left and right insertions of
only one symbol, yet not when insertions are possible at arbitrary positions in the
string. On the other hand, the Dyck language cannot be obtained when insertion
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is only possible at the ends of the strings, while with normal insertion this can be
done easily. In [1, 3], left and right insertion and deletion operations (under the
name of exo-insertion and -deletion) were considered in the P systems framework
(i.e., with a graph control) and it was shown that systems with insertion of strings
of length 2 (respectively 1) and deletion of strings of length 1 (respectively 2)
lead to computational completeness. In the case of minimal insertion and deletion
(i.e., of only one symbol), a priority of deletion over insertion (corresponding to
an appearance check) was used to show computational completeness.

In this article we continue these investigations and we consider P systems with
minimal left and right insertion and deletion and prove that computational com-
pleteness can be achieved even in this case, with the structure of the P system we
need being matrix-like. We also directly show that matrix grammars using minimal
left insertion and minimal right deletion rules are computationally complete (with
matrices of length at most 3). Moreover, we also prove that using an additional
minimal mutation operation (substitution of one symbol by another one) allows
for reducing the height of the tree structure of the P system to the minimum size
1.

2 Preliminaries

After some preliminaries from formal language theory, we define the string rewrit-
ing rules to be used in this paper. As string rewriting systems, we will consider
Post systems, matrix grammars, and sequential P systems. Moreover, we will give
some examples and preliminary results to illustrate our definitions.

The set of non-negative integers is denoted by N. An alphabet V is a finite non-
empty set of abstract symbols. Given V , the free monoid generated by V under
the operation of concatenation is denoted by V ∗; the elements of V ∗ are called
strings, and the empty string is denoted by λ; V ∗ \ {λ} is denoted by V +. Let
{a1, ..., an} be an arbitrary alphabet; the number of occurrences of a symbol ai
in x is denoted by |x|ai

; the number of occurrences of all symbols from V in x is
denoted by |x|. The family of recursively enumerable string languages is denoted
by RE. For more details of formal language theory the reader is referred to the
monographs and handbooks in this area as [10, 27].

We here consider string rewriting rules only working at the ends of a string:

Post rewriting rule P [x/y] with x, y ∈ V ∗: P [x/y] (wx) = yw for w ∈ V ∗.
Left substitution SL [x/y] with x, y ∈ V ∗: SL [x/y] (xw) = yw for w ∈ V ∗.
Right substitution SR [x/y] with x, y ∈ V ∗: SR [x/y] (wx) = wy for w ∈ V ∗.

If in a (left or right) substitution SL [x/y] or SR [x/y] x is empty, then we
call it an insertion and write IL [y] and IR [y], respectively; if in a (left or right)
substitution SL [x/y] or SR [x/y] y is empty, then we call it a deletion and write
DL [x] and DR [x], respectively. If we only insert one symbol a, then we will also
write +a, a+, −a, and a− for IL [a], IR [a], DL [a], and DR [a], respectively.
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In general, a (string rewriting) grammar G of type X is a construct (V, T,A, P )
where V is a set of symbols, T ⊆ V is a set of terminal symbols, A ∈ V + is the
axiom, and P is a finite set of rules of type X. Each rule p ∈ P induces a relation
=⇒p⊆ V ∗×V ∗; p is called applicable to a string x ∈ V ∗ if and only if there exists
at least one string y ∈ V ∗ such that (x, y) ∈ =⇒p; we also write x =⇒p y.
The derivation relation =⇒G is the union of all =⇒p, i.e., =⇒G= ∪p∈P =⇒p. The

reflexive and transitive closure of =⇒G is denoted by
∗

=⇒G.
The language generated by G is the set of all terminal strings derivable from

the axiom, i.e., L (G) =
{
v ∈ T ∗ | A ∗

=⇒G v
}

. The family of languages generated

by grammars of type X is denoted by L (X).

In general, we write Sk,m
R for a type of grammars using only substitution rules

SR [x/y] with |x| ≤ k and |y| ≤ m. In the same way, we define the type Sk,m
L for a

type of grammars using only substitution rules SL [x/y] with |x| ≤ k and |y| ≤ m,
as well as the types ImL , ImR , Dk

L, and Dk
R, respectively. The type DkIm allows

for the deletion of strings with length ≤ k and for the insertion of strings with
length ≤ m. If, in addition, we also allow substitutions SR [x/y] with |x| ≤ k′ and
|y| ≤ m′, we get the type DkImSk′m′

; we observe that the type DkImSk′m′
is

subsumed by the type Sk′m′
if k ≤ k′ and m ≤ m′. If we allow the parameters k

and/or m to be arbitrarily large, we just omit them, e.g., DI is the type allowing
to use deletions and insertions of strings of arbitrary lengths.

Example 1. Let G = (V, T,A, P ) be a regular grammar, i.e., the rules in P are of
the form A → bC and A → λ with A,C ∈ V \ T and b ∈ T . Then the grammar
G′ = (V, T,A, {SR [A/y] | A→ y ∈ P}) with substitution rules generates the same
language as G, i.e., L (G′) = L (G). Hence, with REG denoting the family of

regular languages, we obviously have got REG ⊆ L
(
S1,2
R

)
. �

It is not difficult to check that grammars of type D1I1S1 have a rather lim-
ited computational power. Indeed, we can show the following representation of
languages generated by grammars of type D1I1S1:

Theorem 1. Every language L ⊆ T ∗ in L
(
D1I1S1

)
can be written in the form

T ∗
l ST

∗
r where Tl, Tr ⊆ T and S is a finite subset of T ∗.

Proof. Let G = (V, T,A, P ) be a grammar of type D1I1S1 and let N := V \ T .
We first construct the start set S as follows: Consider all possible derivations in
G from A with only using substitutions and deletions, but without loops, i.e., no
string is allowed to appear more than once in such a derivation, which means that
all these derivations are of bounded length (bounded by the number of strings
in V of length at most |V |).Then S consists of all terminal strings obtained in
this way (finding these strings is a finitely bounded process, as to each of the
possible strings in V of length at most |V |, at most |P | rules can be applied). A
symbol from N remaining inside a string blocks that string from ever becoming
terminal by applying rules from P , and deletion of a symbol can be avoided by
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just not introducing the symbol which by a sequence of minimal substitutions
would lead to the symbol to be deleted. Hence, for constructing the sets Tl (Tr,
respectively) we can restrict ourselves to the terminal symbols b either directly
inserted by minimal insertion rules Il [b] (Ir [b], respectively) or obtained by a
sequence of one minimal insertion together with a bounded (by |V |) number of
minimal substitutions Sl [a/b] (Sr [a/b], respectively).

Therefore, in sum L (G) can be written as the finite union of languages gener-
ated by grammars of type I1, i.e., L (G) = ∪w∈SL (Gw) where

Gw = (T, T, w, {Il [b] | b ∈ Tl} ∪ {Ir [b] | b ∈ Tr}).
In fact, this representation of languages in L

(
D1I1S1

)
means that for the type

D1I1S1 we could forget minimal deletions and substitutions and instead consider
finite subsets of axioms instead of a single axiom. Putting an A in front of the
types for this variant of grammars, we just have proved that

L
(
A-D1I1S1

)
= L

(
A-I1

)
. �

2.1 Post Systems

A Post system is a grammar using only Post rewriting rules (a grammar of type
PS). A Post system (V, T,A, P ) is said to be in normal form (a grammar of type
PSNF ) if and only if the Post rewriting rules P [x/y] in P are only of the forms
P [ab/c], P [a/bc], P [a/b], and P [a/λ], with a, b, c ∈ V . A Post system (V, T,A, P )
is said to be in Z-normal form (a grammar of type PSZNF ) if and only if it is in
normal form and, moreover, there exists a special symbol Z ∈ V \ T such that

• Z appears only once in the string x of a Post rewriting rule P [x/y], and this
rule is P [Z/λ];

• if the rule P [Z/λ] is applied, the derivation in the Post system stops yielding
a terminal string;

• a terminal string can only be obtained by applying the rule P [Z/λ].

Although basic results concerning Post systems are folklore since many years,
e.g., see [23], we need the special Z-normal form for the proof of our main theorem;
the following result is an immediate consequence of the proof given in [12] for
Lemma 1 there:

Theorem 2. For every recursively enumerable language L ⊆ T ∗ there exists a Post
rewriting system G, G = (V, T,A, P ), in Z-normal form such that L (G) = L, i.e.,
L (PS) = L (PSNF ) = L (PSZNF ) = RE.

2.2 Matrix Grammars

A matrix grammar of type X is a construct GM = (G,M) where G = (V, T,A, P )
is a grammar of type X, M is a finite set of sequences of the form (p1, . . . , pn),
n ≥ 1, of rules in P . For w, z ∈ V ∗ we write w =⇒GM

z if there are a matrix
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(p1, . . . , pn) in M and objects wi ∈ V ∗, 1 ≤ i ≤ n + 1, such that w = w1,
z = wn+1, and, for all 1 ≤ i ≤ n, wi =⇒G wi+1. The maximal length n of a matrix
(p1, . . . , pn) ∈M is called the degree of GM .

L(GM ) =
{
v ∈ T ∗ | A =⇒∗

GM
v
}

is the language generated by GM . The family
of languages generated by matrix grammars of type X (of degree at most n) is
denoted by L (X-MAT ) (L (X-MATn)).

Theorem 3. L
(
D2I2-MAT2

)
= L

(
D1I1-MAT3

)
= L (PSNF ) = RE.

Proof. From Theorem 2 we know that L (PSNF ) = RE, hence, we will only show
that for every Post system G = (V, T,A, P ) in normal form we are able to construct
equivalent matrix grammars G1 = (G,M1) and G2 = (G,M2) of type D2I2 and
of type D1I1, respectively:

M1 = {(DR [x] , IL [y]) | P [x/y] ∈ P} ,
M2 = {(DR [b] , DR [a] , IL [c]) | P [ab/c] ∈ P}
∪ {(DR [a] , IL [c] , IL [b]) | P [a/bc] ∈ P}
∪ {(DR [a] , IL [b]) | P [a/b] ∈ P}
∪ {(DR [a]) | P [a/λ] ∈ P} .

As each rule in G is directly simulated by a matrix in M1 and in M2, respec-
tively, we immediately infer L (G) = L (G1) = L (G2). �

Whereas the matrices in M1 are only of length 2, the degree of M2 is 3; it
remains as an open question whether also with rules of type D1I1 we could decrease
the degree to 2 or not; we conjecture that the answer is no. As we have shown
in Theorem 1, with grammars using rules of type D1I1S1 we are not able to
obtain RE, we even remain below the regular language class; hence, we need such
regulating mechanisms as matrices to reach computational compleness.

2.3 P Systems

We now introduce another variant to guide the derivations in a grammar using rules
of those types introduced above, i.e., specific variants of left and right substitution
rules.

A (sequential) P system of type X with tree height n is a construct Π =
(G,µ,R, i0) where G = (V, T,A, P ) is a grammar with rules of type X and

• µ is the membrane (tree) structure of the system with the height of the tree
being n (µ usually is represented by a string containing correctly nested marked
parentheses); we assume the membranes, i.e., the nodes of the tree representing
µ, being uniquely labelled by labels from a set Lab;

• R is a set of rules of the form (h, r, tar) where h ∈ Lab, r ∈ P , and tar, called
the target indicator, is taken from the set {here, in, out} ∪ {inj | 1 ≤ j ≤ n};
the rules assigned to membrane h form the set Rh = {(r, tar) | (h, r, tar) ∈ R},
i.e., R can also be represented by the vector (Rh)h∈Lab;
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• i0 is the initial membrane where the axiom A is put at the beginning of a
computation.

As we only have to follow the trace of a single string during a computation of
the P system, a configuration of Π can be described by a pair (w, h) where w is the
current string and h is the label of the membrane currently containing the string w.
For two configurations (w1, h1) and (w2, h2) of Π we write (w1, h1) =⇒Π (w2, h2)
if we can pass from (w1, h1) to (w2, h2) by applying a rule (h1, r, tar) ∈ R, i.e.,
w1 =⇒r w2 and w2 is sent from membrane h1 to membrane h2 according to the
target indicator tar. More specifically, if tar = here, then h2 = h1; if tar = out,
then the string w2 is sent to the region h2 immediately outside membrane h1; if
tar = inh2

, then the string is moved from region h1 to the region h2 immediately
inside region h1; if tar = in, then the string w2 is sent to one of the regions
immediately inside region h1.

A sequence of transitions between configurations of Π, starting from the initial
configuration (A, i0), is called a computation of Π. A halting computation is a
computation ending with a configuration (w, h) such that no rule from Rh can
be applied to w anymore; (w, h) is called the result of this halting computation if
w ∈ T ∗. L (Π), the language generated by Π, consists of all strings over T which
are results of a halting computation in Π.

By L (X-LP ) (L
(
X-LP ⟨n⟩)) we denote the family of languages generated by

P systems (of tree height at most n) using rules of type X. If only the targets
here, in, out are used, then the P system is called simple, and the corresponding
families of languages are denoted by L (X-LsP ) (L

(
X-LsP ⟨n⟩)).

Example 2. Let Π = (G, [1 [2 ] 2 [3 ] 3 [4 ] 4 ] 1 , R, 1) be a P system of type D1
RI

2
L

with
G = ({a,B} , {a} , {DR [a] , DR [B] , IL [aa] , IL [B]} , aB) ,
R = {(1, DR [a] , in2) , (1, DR [B] , in3) , (1, DR [B] , in4)}
∪ {(2, IL [aa] , out) , (3, IL [B] , out)}

The computations in Π start with aB in membrane (region) 1. In general,
starting with a string a2

n

B, n ≥ 0, in membrane 1, we may either delete B
by the rule (1, DR [B] , in4), getting a2

n

as the terminal result in the elementary
membrane 4 (a membrane is called elementary if and only if it contains no inner
membrane) or delete B by the rule (1, DR [B] , in3). With the string a2

n

arriving
in membrane 3, we get Ba2

n

in membrane 1 by the rule (3, IL [B] , out). Now we
double the number of symbols a by applying the sequence of rules (1, DR [a] , in2)

and (3, IL [aa] , out) 2n times, finally obtaining a2
n+1

B. Hence, in sum we get
L (Π) =

{
a2

n | n ≥ 0
}

for the language generated by this P system µ of type
D1

RI
2
L. �
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3 Computational Completeness of P Systems with Minmal
Substitution Rules

In this section we consider several variants of P systems with substitution rules
of minimal size, the main result showing computational completeness for simple
P systems with rules of type D1I1. Yet first we show that for any recursively
enumerable language we can construct a P system, with the height of the tree
structure being only 1 (which is the minimum possible according to Theorem 1),
of type D1

RI
1
LS

1
R, i.e., using minimal right insertions and minimal right deletions

and mutations (substitutions).

Theorem 4. L
(
D1

RI
1
LS

1
R-LP ⟨1⟩) = RE.

Proof. From Theorem 2 we know that L (PSZNF ) = RE, hence, we will only
show that for every Post system G = (V, T,A, P ) in Z-normal form we are able
to construct equivalent P system Π of type D1

RI
1
LS

1
R. We assume that the rules

in P are labelled in a unique way by labels from a finite set Lab with 1 /∈ Lab
and z ∈ Lab. We now construct a P system Π, Π = (G′, µ,R, 1), with a flat
tree structure µ of height 1, i.e., with the outermost membrane (the so-called skin
membrane) being labelled by 1, and all the other membranes being elementary
membranes inside the skin membrane being labelled by labels from

Lab′ = {1,#} ∪ {l | l : p ∈ Lab}
∪

{
h̄ | h : P [ah/bhch] ∈ P

}
∪
{
h̄ | h : P [ahbh/ch] ∈ P

}
.

G′ = (V ′, T, A, P ′), V ′ =
{
x, x̄l | x ∈ V, l ∈ Lab

}
∪ {#}, and P ′ contains the

minimal left insertion, right deletion, and right substitution rules contained in the
rules of R as listed in the following:

h : P [ahbh/ch]: (1, DR [bh] , inh),
(
h, SR

[
ah/ā

h
h

]
, out

)
, (h, IL [#] , out),(

1, DR

[
āhh

]
, inh̄

)
,
(
h̄, IL [ch] , out

)
;

h : P [ah/bhch]:
(
1, SR

[
ah/ā

h
h

]
, inh

)
, (h, IL [ch] , out),(

1, DR

[
āhh

]
, inh̄

)
,
(
h̄, IL [bh] , out

)
;

h : P [ah/bh]: (1, DR [ah] , inh), (h, IL [bh] , out);
h : P [ah/λ]: (1, SR [ah/ah] , inh), (l,DR [ah] , out), for ah ̸= Z;
z : P [Z/λ]: (DR [Z] , inz);

the additional membrane # is used to trap all computations not leading to a
terminal string in an infinite loop by the rules (1, IL [#] , in#) and (#, IL [#] , out);
for this purpose, the rule (h, IL [#] , out) is used in case of h : P [ahbh/ch], too.
Due to the features of the underlying Post system in Z-normal form, all terminal
strings from L (G) can be obtained as final results of a halting computation in the
elementary membrane z, whereas all other possible computations in Π never halt,
finally being trapped in an infinite loop guaranteed by the rules leading into and
out from membrane #. Hence, in sum we get L (Π) = L (G) . �

Summarizing the results of Theorems 1 and 4, we get:
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Corollary 1. L
(
D1I1S1

)
= L

(
D1I1S1-LP ⟨0⟩) ⊂ REG ⊂

L
(
D1

RI
1
LS

1
R-LP ⟨n⟩) = RE for all n ≥ 1.

If we want to restrict ourselves to the simple targets here, in, out, then we have
to use a more difficult proof technique than in the proof of Theorem 4.

Theorem 5. L
(
D1I1-LsP ⟨8⟩) = RE.

Proof. In order to show the inclusion RE ⊆ L
(
D1I1-LsPLsP ⟨8⟩), as in the proof

of Theorem 4 we start from a Post system G = (V, T,A, P ) in Z-normal form with
assuming the rules in P to be labelled in a unique way by labels from a finite set
Lab with 1 /∈ Lab and z ∈ Lab and construct an equivalent simple P system Π,
Π = (G′, µ,R, 1), of type D1I1, with G′ = (V ′, T, A, P ′) and

V ′ = V ∪ VR ∪ {S}, VR = {D,E, F,H, J,K,M},
P ′ = {+X,−X | X ∈ V ∪ {S}} ∪ {X+, X− | X ∈ V ∪ VR},

as follows: The membrane structure µ consists of the skin membrane 1 as well
as of linear structures needed for the simulation of the rules in G: For every rule
h : P [ahbh/ch] and every rule h : P [ah/bhch] in P we need a linear structure of
8 membranes

[
(h,1)

[
(h,2)

...
[
(h,8)

]
(h,8)

...
]

(h,2)

]
(h,1)

and for every rule h : P [ah/bh]
and every rule h : P [ah/λ] in P we need a linear structure of 6 membranes[
(h,1)

[
(h,2)

...
[
(h,6)

]
(h,6)

...
]

(h,2)

]
(h,1)

; moreover, for getting the terminal results, we

need the linear structure of 3 membranes
[
(z,1)

[
(z,2)

[
(z,3)

]
(z,3)

]
(z,2)

]
(z,1)

.
The simulations of the other rules from P are accomplished by the procedures

as shown in the tables below, where the columns have to be interpreted as follows:
in the first column, the membrane (label) h is listed, in the second one only the
rule p ∈ P is given, which in total describes the rule (h, p, in) ∈ R, whereas the
rule p in the fifth column has to be interpreted as the rule (h, p, out) ∈ R.; the
strings in the third and the fourth column list the strings obtained when going up
in the linear membrane structure with the rules (h, p, in) from column 2 and going
down with the rules (h, p, out) from column 5, respectively. The symbol F cannot
be erased anymore, hence, whenever F has been introduced, at some moment, the
computation will land in an infinite loop with only introducing more and more
symbols F . The main idea of the proof is that we choose the membrane to go into
by the rule (1,K+, in) in a non-deterministic way. The goal is to reach the terminal
membrane (z, 3) starting with a string wZ, w ∈ T ∗, in the skin membrane:

(z, 3) w
(z, 2) Z− wZ F+
(z, 1) K− wZK wF F+
1 K+ wZ wFF

Getting the terminal string w ∈ T ∗

The tables below are to be interpreted in the same way as above; yet now
we only list the results of correct simulations in column 4 and omit the results of
adding the trap symbol F . Moreover, the rule D− in the skin membrane is the only
one in the whole system which uses the target here, i.e., it has to be interpreted
as (1, D−, here).
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(h, 8) ScwDH H−, F+
(h, 7) +S cwDH ScwD E+, F+
(h, 6) +c wDH ScwDE M+, F+
(h, 5) H+ wD ScwDEM −S, F+
(h, 4) D+ w cwDEM M−, F+
(h, 3) a− wa cwDE J+, F+
(h, 2) b− wab cwDEJ J−, F+
(h, 1) K− wabK cwDE E−, F+
1 K+ wab cwD D−

cw
Simulation of h : P [ab/c]

(h, 8) SbcwDH H−, F+
(h, 7) +S bcwDH SbcwD E+, F+
(h, 6) +b cwDH SbcwDE M+, F+
(h, 5) +c wDH SbcwDEM −S, F+
(h, 4) H+ wD bcwDEM M−, F+
(h, 3) D+ w bcwDE J+, F+
(h, 2) a− wa bcwDEJ J−, F+
(h, 1) K− waK bcwDE E−, F+
1 K+ wa bcwD D−

bcw
Simulation of h : P [ab/c]

(r, 6) SwDH H−, F+
(r, 5) +S wDH SwD E+, F+
(r, 4) H+ wD SwDE S−, F+
(r, 3) D+ w wDE J+, F+
(r, 2) a− wa wDEJ J−, F+
(r, 1) K− waK wDE E−, F+
1 K+ wa wD D−

w
Simulation of h : P [a/λ], a ̸= Z

(h, 6) SbwD D−, F+
(h, 5) +S wD Sbw E+, F+
(h, 4) +b wD SbwE −S, F+
(h, 3) D+ w bwE J+, F+
(h, 2) a− wa bwEJ J−, F+
(h, 1) K− waK bwE E−, F+
1 K+ wa bw

Simulation of h : P [a/b]

From the descriptions given in the tables above, it is easy to see how a suc-
cessful simulation of a rule h : P [xh/yh] ∈ P works. If we enter a membrane
(h, 1) with a string v not being of the form uxh, then at some moment the only
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chance will be to use F+, introducing the trap symbol F which cannot be erased
anymore and definitely leads to a non-halting computation. The additional sym-
bols D,E,H, J,M intermediately introduced on the right-hand side of the string
guarantee that loops inside the linear membrane structure for the simulation of a
rule h : P [xh/yh] ∈ P cannot lead to successful computations as well. In sum, we
conclude L (Π) = L (G) . �

Due to the matrix-like membrane structure of the simple P systems constructed
in the preceding proof, we could obtain the computational completeness of matrix
grammars of type D1I1 as an obvious consequence of Theorem 5, yet the direct
transformation of the construction given in the proof of this theorem would yield
a lot of matrices with lengths more than 3, whereas the direct proof given in
Theorem 3 only needed matrices of length at most 3.

4 Conclusion

In this paper we have considered string rewriting systems using the operations of
minimal left and right insertion and deletion. Using even only the operations of
minimal left insertion and minimal right deletion, matrix grammars reach com-
putational completeness with matrices of length at most 3; our conjecture is that
this required length cannot be reduced to 2. As our main result, we have shown
that sequential P systems using the operations of minimal left and right insertion
and deletion are computationally complete, thus solving an open problem from
[2]. The simple P system constructed in the proof of Theorem 5 had rather large
tree height; it remains an open question to reduce this complexity parameter. On
the other hand, in Theorem 4 we have shown that using minimal left insertion,
minimal right deletion, and, in addition, minimal right mutation (substitution of
one symbol by another one on the right-hand side of a string) we can reduce the
height of the tree structure of the P system to the minimum 1 and even avoid the
use of the target here. Moreover, we would also like to avoid the target here in
the case of simple P systems using minimal left and right insertion and deletion,
as with avoiding the target here, the applications of the rules could be interpreted
as being carried out when passing a membrane, in the sense of a molecule passing
a specific mebrane channel from one region to another one. We shall return to this
qestion and related ones in an extended version of this paper.
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Summary. Enzymatic Numerical P Systems (ENPS), an extension of Numerical P
Systems, have been successfully applied to model robot controllers. GPGPU is an
innovative technological paradigm which applies the parallel architecture of graphic cards
to solve parallel, general–purpose problems. In previous work, a GPU simulator for ENPS
was introduced. In this paper, a performance analysis on the simulator is performed in
order to experimentally measure the speed-up factors resulting from the simulations.
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1 Enzymatic Numerical P Systems

Membrane computing is an interdisciplinary field which studies computational models
inspired by the compartmental structure of biological cells. There exist many types of
membrane systems [12], also known as P systems after mathematician Gh. Păun, who
introduced them. Numerical P systems (NPS) are a type of P systems in which numerical
variables evolve inside the compartments by means of programs; a program (or rule) is
composed of a production function and a repartition protocol [11]. The variables have a
given initial value and the production function is a multivariate polynomial. The value
of the production function for the current values of the variables is distributed among
variables in certain compartments according to a repartition protocol. A formal definition
of NPS can be found in [11], where this type of P system is introduced with possible
applications in economics.
Enzymatic numerical P systems (ENPS) represent an extension of NPS, proposed and
used in the context of modeling robot controllers [13], [14]. ENPS is a more powerful
modelling tool than NPS, as it is proven in several articles [13], [3], [17]. ENPS models
allow the existence of more than one rule per membrane than NPS while keeping the
deterministic behavior. By using a special type of variables referred as enzymes, ENPS
models provide a selection mechanism of the active rules during the computational
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process. Therefore, ENPS are a flexible and efficient modelling framework that can
be successfully used for modeling robot behaviors like obstacle avoidance, localization,
follower, etc. [13], [4]. An ENPS model of degree m,m ≥ 1 is formally defined as follows:

Π = (H,µ, (V ar1, E1, P r1, V ar1(0)), . . . , (V arm, Em, P rm, V arm(0))) (1)

where:

• H is an alphabet that contains m symbols (the labels of the membranes);
• µ is a membrane structure;
• V ari is the set of variables from compartment i, and the initial values for these

variables are V ari(0);
• Ei is a set of enzyme variables from compartment i, Ei ⊆ V ari
• Pri is the set of programs (rules) from compartment i. Programs process variables

and have two components; a production function and a repartition protocol. In ENPS
models, programs can have one of the two following forms:

1. Non-enzymatic form, which is exactly like the one from standard NPS:

Prj,i = (Fj,i(x1,i, . . . , xki,i), cj,1|v1 + ...+ cj,ni |vni) (2)

2. Enzymatic form

Prj,i = (Fj,i(x1,i, . . . , xki,i), ej,i, cj,1|v1 + ...+ cj,ni |vni) (3)

where:
– Fj,i(x1,i, ..., xki,i) is the production function;
– ej,i ∈ Ei, is the enzyme–like variable associated to ej,i;
– ki represents the number of variables in membrane i;
– cj,1|v1 + . . .+ cj,ni |vni is the repartition protocol;
– ni represents the number of variables contained in membrane i, plus the number

of variables contained in the parent membrane of i, plus the number of variables
contained in the children membranes of i.

In ENPS models, all active rules are executed in parallel on each computational step. A
rule is always active if it is in the non-enzymatic form. Otherwise, if it is in the enzymatic
form, a rule is active only if the associated enzyme–like variable has a greater value than
the minimum of the absolute values of the variables involved in the production function.
The repartition protocol works like in classical NPS [11]
Both NPS and ENPS models have been successfully used for modelling robot controllers
[4], [13], [14]. The advantages of using ENPS for this kind of applications are pointed
out in [3]. For testing the robot controllers, a Java implementation of a numerical P
systems simulator was implemented and used. This Java simulator, SimP, simulates
ENPS models. Since ENPS are an extension of NPS, SimP can be used to simulate
classical NPS as well. SimP was proposed in [15] and it is available as a free executable
version (for a free executable version of SimP, please contact anabrandusa@gmail.com).
SimP allows the computation of rational production functions and not only polynomials.
This is useful for implementing more complex models required for robotics applications.
An example of model of a rational production function is presented in subsection 4.3.
In this paper, the performance of a parallel and distributed simulator which computes
ENPS structures is analysed. The simulator was first proposed in [7]. In order to test the
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parallel simulator and analyse its performance, a replication mechanism of membranes
was used. For instance, in swarm robotics applications, the robots in a group may have
similar behaviors which need to run in parallel. For example, each robot needs to run an
obstacle avoidance behavior. Therefore, the ENPS structure for obstacle avoidance [13]
must be executed in parallel for all the robots in the swarm (figure 1). Those applications
in which each robot needs to run one or even more membrane controllers in parallel and
all robots must work in parallel as well take real advantage of the parallel and distibuted
ENPS simulator, which will be further discussed.

Fig. 1. Replication of ENPS models can be used for swarm robotics applications

2 An introduction to GPU Computing

Graphic cards, also known as Graphic Processing Units (GPUs) are devices whose main
task is to solve image rendering problems. These problems are usually massive parallel
problems, as they can commonly be reduced to render pixels and vertices in a parallel
fashion. As a result, the industry has turned these devices into powerful highly–parallel
computers with a large number of processors. However, they have been of limited use to
scientist for quite a long time. The reason is that GPUs were only suitable for image–
related problems, with little application in the scientific world out of image processing
itself. Therefore, the amount of effort required to translate general–purpose problems
into their graphical interpretations made scientists use other parallel architectures such
as computer clusters and FPGAs [1] [9] [16].
However, NVIDIA changed this landscape by providing a toolkit for general–purpose
GPU computing named Compute Unified Device Architecture (CUDA) [19]. This API
permitted developers to solve scientific, non–graphical problems on GPUs. From then
on, the adoption of GPU computing by the scientific community has gone widespread.
As a result numerous scientific papers have shown moderate to impressive performance
improvements on a GPU over a CPU [2].
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2.1 The CUDA programming model

Nowadays, the number of processors in a GPU can reach up to 448 processor cores and
1.536 processing units per core, thus resulting in a total number of 448×1.536 = 688.128
processing units [19]. Thus, GPUs are structured as a grid of multiprocessor cores or
streaming multiprocessors. Each one of these multiprocessors (figure 2) is composed of
several simpler processing units known as streaming processors. This hierarchy allows
programmers to structure their code in a distributed way, so they can couple processes
with a high communication bandwidth with each other, thus clustering and allocating
them within the same multiprocessor in the GPU. All processing units execute the
same code at the same time, hence applying a computational paradigm known as Single
Instruction Multiple Program (SIMP) [16]. CUDA provides an abstract model of GPU

Fig. 2. Simplified hardware block diagram of an Nvidia Graphic Card

architecture. This model is known as the CUDA programming model. The idea is to make
use of an abstraction of the specific graphic card on which the code runs, so as not to
force the code depend on particular devices. This model is composed of a grid of elements
known as blocks, which are abstractions of the streaming multiprocessors mentioned
above. Each one of these blocks is composed of computing elements known as threads [5].
Thus, the CUDA programming model is a multidimensional three–levelled architecture
, as the dimension of grids and blocks can be 1, 2 or 3, depending on the configuration
options set by the developer. Figure 3 describes graphically this programming model.

2.2 Programming on CUDA–C

The firsts steps towards obtaining languages for general–purpose GPU computing
involved wrapping currently existing languages for graphics processing with mainstream
general–purpose languages, such as C and Fortran. However, these approaches were
still hindered by the limitations of graphic cards on treating general–purpose data
structures and data flows as pixels and vertices. However, the CUDA programming
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Fig. 3. The CUDA programming model

model, combined with more advanced graphic hardware with support for general–purpose
parallel programming allowed to extend mainstream languages with specific primitives
for GPU computing [16]. In this direction, Nvidia issued the first version of the CUDA–C
language in 2006 [19]. This language was an extension of the C language with primitives
and operations for general–purpose parallel problems [16].
A CUDA–C program is composed of two different parts: the host code and the device
code. The host code is the part of the code executed on the CPU. This code contains
calls to pieces of the device code, which is executed on the GPU. The device code is
composed of CUDA–C functions which are executed on the GPU, known as kernels. The
SIMP paradigm defines that each kernel is executed on all threads at the same time.
When it comes to execution, threads are bundled in packages known as warps. Threads
in the same warp communicate via a fast on–chip memory. However, the communication
with threads in different warps is performed by using a slow off–chip memory. That is
the reason why threads in the same warp should have a high communication bandwith
with each other, as well as a low communication bandwith with threads out of the warp
[5].
In practice, the CUDA programming model claims that each block is assigned a sequence
of warps. Therefore, each block takes a warp from its sequence and executes it, assigning
each warp thread to a different block thread [16]. The order of this sequence, as well as
the block to which each warp is associated, is not controlled by the developer. This entails
that the problem should not depend on the order in which the warps are executed, as this
order cannot be guaranteed [5]. A more thorough description of the CUDA programming
model can be found in [10].
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3 A GPU Simulator for Enzymatic Numerical P Systems

3.1 A brief description of the simulator

In a previous work [7], a GPU simulator for Enzymatic Numerical P Systems was
introduced. This simulator takes as input an XML file defining a description of an ENPS
model and simulates it for a number of cycles defined. This number of cycles can be
defined in the XML file or as an optional argument in the call sentence. The simulator does
not need to check for errors in the input file. The reason is that the XML format accepted
by the simulator is also accepted by SimP, which is a Java simulator for ENPS proposed
in [15]. This way, errors in the specification of the ENPS model can be checked on SimP.
Therefore, if a specification is regarded as error–free by SimP, then it can be given as input
to the GPU simulator. This simulator will be published under GNU GPL version 3 license
[8], and it is currently available by contacting the authors. In [7], some open problems
were proposed. One of this problem had to do with the comprehensive evaluation of
the performance of the simulator on large–scale models composed of a considerably high
number of programs. In these cases, the overheads related to the workload distribution
and the setup operations needed to run the simulations were supposed to be minimal, in
comparison to the speed–up factor obtained from the parallel application of the programs
in the model. This is not the case of models with a small numbers of programs. In
these cases, the performance gain obtained as a result of the parallel application of
programs is suffocated by the considerably time–consuming task of setting up the CUDA
programming model elements [7].

3.2 Functioning of the GPU simulator

The functioning of the GPU simulator described in [7] consists of two stages. The first
stage initializes the model to simulate. The second stage simulates a computational step
of the model. This stage is repeated for each computational step simulated. These stages
are described below:

Initialization stage: First, all operations concerning the setup of the GPU device it-
self are carried out. These operations include allocations in the GPU memory and
transactions between the CPU memory and the GPU memory. Then, this stage nor-
malizes the coefficients found in the repartition protocols in the input model. In
practical terms, this normalization substitutes each coefficient cl,s by

cl,s∑kl,i
j=0 cl,j

. This

normalization can be performed on each simulation step, but performing it only once
at the beginning of the simulation spares computational time.

Computation stage: This stage simulates checks the programs in the model and
applicates the checked programs. It consists of four sub–steps, which are:
1. For each program, set its activation. That is, check whether this program is

active, that is, is going to be applied on the current computational step.
2. Calculate the production function of the active programs.
3. Set to 0 the values consumed by the active programs, that is, the values of

variables such that there is any active program which depends on its value.
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4. Multiply the results of the active production functions by the normalized
coefficients calculated on the initialization stage.

5. Add these results to the variables contributed by the active programs, according
to their repartition protocols.

4 Performance analysis of the simulator

In order to carry out an analysis of the performance and runtimes obtained from the GPU
simulator, we have developed a sequential simulator for Enzymatic Numerical P Systems
in C language. This sequential simulator has been developed to compare simulation
times obtained from a sequential, low–level simulator to those obtained from the GPU
simulator. Nevertheless, it can also be used for the efficient simulation of Enzymatic
Numerical P Systems in those environments in which no Nvidia card is available. Besides,
this simulator takes as input a file which describes an ENPS in the same format that the
GPU simulator and SimP. Therefore, the same files can be used for all three simulators,
hence sparing time on translations between formats.
For a fair comparison between execution times, no memory allocation is performed
after the setup stage. This feature is compulsory on the GPU simulator, because all
computation steps are implemented by means of kernel calls and all memory in the
GPU can only be allocated from the host code [19]. The importance of this feature rises
from the fact that memory allocation in C is a time–consuming instruction. Therefore,
if there were a significant number of memory allocations on each computational step the
performance of the C sequential simulator would be severely hindered. This would result
on an even higher speed–up factor due to a bad design of the sequential simulator, instead
of a good design of its GPU counterpart.

4.1 Performance comparison with SimP

Apart from comparing the CUDA–C simulator with a C–based one, we have also
compared the GPU simulation times with the ones obtained from SimP [15]. SimP is
an ENPS simulator in Java language. Java programs are executed on a virtual machine
which does as a middleware between the actual device and the software. This virtual
machine is known as Java Virtual Machine (JVM) [18]. JVM ensures that Java programs
can be executed on any device in which JVM is installed, thus guaranteeing complete
compatiblity among different hardware architectures. However, this virtual machine
approach comes at a cost. Firstly, the programmer loses control of the way in which
the memory is managed. For instance, memory objects cannot be freed directly. Instead,
an execution thread named garbage collector checks which objects are not referenced
anymore in the program and frees the allocated memory. Secondly, the translatiosn from
JVM instructions to assembly instructions are performed in runtime. Thus, an overhead in
the execution time is produced as a result of these translations. All in all, the programmer
cannot control directly the execution flow of Java programs. Therefore, in cases where
efficiency is required, Java is not, in most cases, a true rival to low–level languages such
as C.



144 M. Garćıa–Quismondo et al.

4.2 Generation of input models

In [7], some problems about an extensive analysis of the simulator are discussed. One
of them has to do with the fact that the existing ENPS models have too few programs
for parallel simulations to pay off. The reason is that the setup operations computed
at the beginning of parallel simulations take a long time, in comparison to the whole
sequential computation runtime. In order to overcome this difficulty, we have taken some
ENPS models as reference and replicated them several times. This way, we can have an
on–demand number of programs per model. Therefore, the more times the seed models
are replicated, the more programs will compose the resulting models. When the number
of replications given as input is high enough, the GPU simulation does pay off in terms
of execution time.
The algorithm used for performing the model replication takes the following inputs:

N: The number of copies to perform.
Π: The seed model to replicate:

Π = (H,µ, (V ar1, P r1, E1, V ar1(0)) . . . (V arm, P rm, Em, V arm(0))).
For these inputs, the algorithm takes the following steps:

1. Replicate Π a number of times N .
2. Associate an index o, 1 ≤ o ≤ N to each of the copies of Π. As a result, a set Φ of

ENPS models of degree m is obtained. Formally speaking, Φ = {Πo =
(Ho, µo, (V ar1,o, E1,o, P r1,o, V ar1,o(0)) . . . (V arm,o, Em,o, P rm,o, V arm,o(0)))},
1 ≤ o ≤ N , where:
• ∀o|1 ≤ o ≤ N,Ho = {{1, o} . . . {m, o}}
• ∀i, o|1 ≤ i ≤ m, 1 ≤ o ≤ N,V ari,o = {x1,i,o . . . xki,i,o}
• ∀i, o|1 ≤ i ≤ m, 1 ≤ o ≤ N,Ei,o ⊆ V ari,o is the set of all enzyme–like variables

associated to programs in Pri,o.
• ∀i, o|1 ≤ i ≤ m, 1 ≤ o ≤ N,Pri,o = Pr1,i,o . . . P rqi,i,o, where:

– Prl,i,o = (Fl,i,o(x1,i,o, . . . , xki,i,o)→ cl,1,o|vo,1 + . . .+ cl,ni,o|vo,ni) if Prl,i is
in non–enzymatic form.

– Prl,i,o = (Fl,i,o(x1,i,o, . . . , xki,i,o)(el,i,o →)
cl,1,o|vo,1 + . . .+ cl,ni,o|vo,ni) if Prl,i is in enzymatic form.

• ∀i, o|1 ≤ i ≤ m, 1 ≤ o ≤ N,V ari,o(0) = {λ1,i,o . . . λki,i,o}
3. ∀i, o, j, l, (1 ≤ i ≤ m), (1 ≤ o ≤ N), (1 ≤ j ≤ ki), (1 ≤ l ≤ qi), assign a different

random value in {1, . . . , 10} to λj,i,o, cl,ni,o and each one of the numerical constants
in Fl,i,o.

4. Return a new ENPS model Πr =
(Hr, µr, (V ar1,1, E1,1, P r1,1, V ar1,1(0)) . . . (V arm,N , Em,NPrm,N , V arm,N (0)),
(V arskin, Eskin, P rskin, V ar(0)skin)), where:
• Hr = ∪N

o=1Ho ∪ {skin}
• µr = [µ1 . . . µN ]skin
• V arskin = ∅
• Eskin = ∅
• Prskin = ∅
• V ar(0)skin = ∅

The replication process has been performed by using Java [18]. For the purposes of
parsing the seed model and writing the resulting models, an extension of P–Lingua [6]
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has been developed. Specifically, a new input and a new output format has been included
into the P–Lingua framework. The input format delegates the parsing process to SimP
[15]. The output format generates an XML description of the model. This description is
encoded on the common format accepted by all ENPS simulators (Java, C and CUDA–
C). This extension proves the versatility of P–Lingua as a useful, assisting tool for a wide
variety of Membrane Computing–related tasks; in our case; for analysing the performance
of a GPU simulator.

4.3 Case study

In our simulator, two seed models have been replicated. After these replications, the re-
sulting expanded models have been simulated. The first seed model is a dummy one with
no particular purpose apart from this performance analysis. This model is an ENPS com-
posed of 2 membranes:Π1 = (H,µ, (V ar1, E1, P r1,1, V ar1(0)), (V ar2, E2, P r1,2, V ar2(0))),
where:

• H = 1, 2
• µ = [[]2]1
• V ar1 = {x1,1, x2,1, x3,1}
• E1 = {x3,1}
• Pr1,1 = {3 · x1,1(x3,1 →)2|x1,1 + 1|x2,1}
• V ar1(0) = {1, 2, 3},
• V ar2 = {x1,2}
• E2 = ∅
• Pr1,2 = {2 · x1,2 → 2|x1,2}
• V ar2(0) = {1}

Fig. 4. Dummy ENPS used as seed for replication

On the other hand, the second seed model performs a function approximation.
Mathematical functions like trigonometric functions, exponential functions, etc. are
often used in control algorithms in robotics. Therefore, in the following example an
ENPS model which computes ex is presented. The proposed GPU simulator also allows
computation of rational production functions as well as polynomial functions, which is an
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important advantage for the modeling process of complex membrane systems. In order
to approximate ex, the following power series is used:

ex ≈
∑
n≥0

xn

n!
(4)

The partial sum of this power series is the next sequence:

sn =

n∑
k≥0

xk

k!
(5)

Sequence sn can be written in a recurrent form, as follows:

sn = sn−1 + an (6)

where an is:

an =
xn

n!
(7)

Sequence an can also be written in a recurrent form, by computing an
an−1

as follows:

an =
x

n
· an−1 (8)

Formula 8 can be implemented as a rational production function, as shown in figure 5
(rule Pr1,2).

Fig. 5. An ENPS which computes ex. This model has also been used as seed model for
replication

As it is shown in figure 5, two membranes were used in order to approximate the
exponential function ex. The skin membrane (membrane 1) contains a non enzyme–like
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variable res which represents the result of the computation and an enzyme–like variable,
EH, which is a stop enzyme. Stop enzymes are used in order to test the stop condition of
the computation. Therefore, the number of computational steps is different for different
arguments of the function. The computation finishes when the value of the term added
to the sum is lower than a given value, err.
The child membrane (membrane 2) is responsible for the approximation. It contains the
following variables:

• a stores the next term of the an sequence and has an initial value equal to 1.
• n is a counter variable and has the initial value equal to 1.
• x represents the argument of the function ex.
• E is an enzyme–like variable which controls the program flow. it allows the execution

of the valid production functions and it is consumed when the computation finishes;
the initial value of the enzyme is given as input max; max must be a value grater
than the maximum possible value of x.

• Er is an enzyme–like variable used in the stop condition.

Er receives an input value, err = 10−10; when the term of the series is lower than err,
the computation stops.
Membrane 2 has five rules responsible for the following tasks:

• Pr1,2 computes the next term in the series; if the value of E is greater than a, x or
n, the rule is active.

• Pr2,2 produces the incrementation of n.
• Pr3,2 accumulates the terms in variable res, which will be the final result.
• Pr4,2 copies the value of x, which was consumed and must be stored.
• Pr5,2 stops the computation when a < Er .

The value of a is decreasing because the sequence an is convergent. When Pr5,2 is
activated, the stop enzyme EH, receives a positive value and E is consumed, so the
other production functions become inactive. A condition outside the membrane system
tests if the stop enzyme, EH, is greater than 0 and if that happens, the simulation stops.

4.4 Simulation results

For each seed, a total of 36 models have been simulated. The number of programs range
from 1 to 9000. Each model has been run for 100 steps. Figure 11 displays the execution
times obtained from the Java simulator included in SimP [15], the C simulator described
in section 4 and the CUDA–C simulator from [7]. Figure 13 displays the speed–up factors
obtained from the runtimes among the simulators. Figures 14 and 12 plot the same data,
with the exception of the Java results. The reason is to display cleaner statistics on the
execution times and speed–up factors obtained from the most efficient studied simulators.
By examining the dummy model charts, one can observe that there is a great difference
between the execution times from the SimP (Java) simulator and the C and CUDA–C
simulators. Thus, a maximum speed–up factor of about 85x is reached on the comparison
between the CUDA–C and Java simulators. However, the maximum speed–up factor
obtained between the CUDA–C and Java simulators is only 6x. The maximum speed–up
factor on the simulation of the ex model is about 49x on the Java vs CUDA–C comparison
and about 10x on the C vs CUDA–C comparison. The used graphic card is a domestic,
commercial one. Thus, it is not designed for intensive parallel, computations. In contrast,
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Tesla models contain more RAM memory and a larger number of processors, as they
are specifically engineered for intensive High Performance Computing [19]. For instance,
Nvidia Tesla C1060 graphic cards contain 240 streaming multiprocessors and 4GB RAM
memory [19]. Thus, the speed–up factors obtained on one of these cards is expected to be
higher than in the ones obtained in this study. An extension of this performance analysis
on these extensive cards is left for future work.

Fig. 6. Execution times for SimP
(Java), C and CUDA-C ENPS simula-
tors

Fig. 7. Execution times for C and
CUDA-C ENPS simulators

Fig. 8. Speed–up factors for SimP
(Java), C and CUDA-C ENPS simula-
tors

Fig. 9. Speed–up factors for C and
CUDA-C ENPS simulators

Fig. 10. Execution times and speed–up factors obtained from the simulation of the
dummy model

The models have been simulated on an Nvidia GeForce GTX 460M card with 1.5GB
of dedicated RAM memory [19]. This model supports the new Fermi technology. Fermi
cards allow programmers to make use of new features impossible (or at least very hard)
for previous models. Some examples of these features are the computation of recursive
functions and atomic operations with float–type numbers [19]. The impact of these fea-
tures on the simulator code is really important. Thus, by employing these features, the
development process is eased and the simulator code is much clearer. For instance, in
order to calculate production functions in programs, recursion comes as a straightfor-
ward approach. That is because these general mathematical expressions can be easily
represented as tree–like structures. Tree–like structures are usually stepped through by
using recursive algorithms. Another important feature brand–new on Fermi technology
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Fig. 11. Execution times for SimP
(Java), C and CUDA-C ENPS simula-
tors

Fig. 12. Execution times for C and
CUDA-C ENPS simulators

Fig. 13. Speed–up factors for SimP
(Java), C and CUDA-C ENPS simula-
tors

Fig. 14. Speed–up factors for C and
CUDA-C ENPS simulators

Fig. 15. Execution times and speed–up factors obtained from the simulation of the ex

model

is the use of atomic operations on floating–point numbers. In order to add up the con-
tributions from repartition protocols, these instructions have been used, as the values of
contributed variables can be modified by different CUDA threads. However, the use of
these features comes as a cost. Specifically, the GPU simulator can only be run on Fermi
Nvidia cards, as previous models do not support these features. An improvement on the
code in order to add compatibility for previous graphic cards is thus left as a future work.

5 Conclusions

This paper displays how much the simulation of ENPS models can be accelerated by
applying the GPU technology. It shows a noticeable speed–up factor obtained from
comparing the CUDA–C and C simulation runtimes and a dramatic acceleration when
these execution runtimes are compared with a previously existent Java simulator. As
the number of processors in the GPU device and the number of programs per model is
augmented, one can expect a greater speed–up factor. The Research Group on Natural
Computing owns a High Performance Computing server equipped with an Nvidia Tesla
C1060 card [19], [5]. These cards contain 240 streaming multiprocessors and 4GB of RAM
memory. Unfortunately, our simulator is unable to run on this server. The reason is that
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Nvidia Tesla C1060 cards do not implement the new Fermi technology. Therefore, they
cannot execute recursive functions and atomic operations on floating–point numbers.
Hence, an adaptation of our code to lay out these constraints is conveniently left as a
future extension.
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Summary. A basic P system, called kernel P system (kP system for short), covering
features of different P systems introduced and studied so far is defined and discussed.
It is a relatively low level specification system aiming to cover features exhibited by
most of the problems modelled so far using P system formalisms. A small set of rules
and specific strategies to run the system step by step are presented. Some preliminary
results regarding the relationships between kP systems and other classes of P systems,
like neural-like P systems and P systems with active membranes, are presented. Examples
illustrating the behaviour of kP systems or showing how a sorting algorithm is modelled
with various classes of P systems are provided. Further developments of this class of P
systems are finally briefly discussed.

1 Introduction

Different variants of P systems have been used for specifying simple algorithms
[4, 2], classes of NP-complete problems [7] and other various applications [5]. More
specific classes of P systems have been recently considered for modelling various
distributed algorithms and problems [9]. In many cases the specification of the
system investigated requires features, constraints or type of behaviour which are
not always provided by the model in its initial definition. It helps in many cases to
have some flexibility with modelling approaches, especially in the early stages of
modelling, as it might simplify the model, shorten associated processes and clarify
more complex or unknown aspects of the system. The downside of this is the lack
of a coherent and well-defined framework that allows us to analyse, verify and test
this behaviour and simulate the system. In this respect we engage now on defining
a kernel P system (kP system, for short) that, at least for this stage, will be a low
level specification language including the most used concepts from P systems. In
a later stage its key features will be formally defined in an operational style and
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finally implemented within a model checker (SPIN [3], Maude [6]) and integrated
into the P-lingua platform.

We will be working with P systems having a graph-like structure (so called,
tissue P systems) using a set of symbols, labels of membranes, rules of various
types and various strategies to run them against the multiset of objects available
in each region. The rules in each compartment will be of two types, (i) object
processing rules which transform and transport objects between compartments or
exchange objects between compartments and environment and (ii) system struc-
ture rules responsible for changing the system’s topology. Each rule has a guard,
defined using activators and inhibitors in a more general way than in traditional P
system classes. An execution strategy can now be specified individually, for each
compartment, allowing for more complex rule selection and iteration procedures
in addition to the classical maximal parallelism and sequential methods. We con-
sider rewriting and communication rules based on promoters and inhibitors as they
seem to be amongst the most flexible and general processing rules, and a special
set of symport/antiport rules; additional features like membrane division, dissolu-
tion, bond creation and destruction are also considered. Two types of P systems,
neural-like P systems and P systems with active membranes, are simulated by the
newly introduced P systems. We analyse a specific case study based on a sorting
algorithm which is described using the currently introduced model, kP systems,
and some other formalisms, using electrical charges, states and labels.

2 kP Systems

A kP system is a formal framework that uses some well-known features of existing
P systems and includes some new elements and, more importantly, it offers a
coherent view on integrating them into the same formalism. The key elements of a
kP system will be formally defined in this section, namely objects, types of rules,
internal structure of the system and strategies for running such systems. Some
preliminary formal concepts describing the syntax of kP systems and an informal
description of the way these systems are executed will be introduced.

We consider that standard concepts like strings, multisets, rewriting rules, and
computation are well-known concepts in P systems and indicate [11] as a compre-
hensive source of information in this respect. First we introduce the key concept
of a compartment.

Definition 1. Given a finite set, A, called alphabet, of elements, called objects,
and a finite set, L, of elements, called labels, a compartment is a tuple C =
(l, w0, R

σ), where l ∈ L is the label of the compartment, w0 is the initial multiset
over A and Rσ denotes the DNA code of C, which comprises the set of rules,
denoted R, applied in this compartment and a regular expression, σ, over Lab(R),
the labels of the rules of R.

The precise format and the types of rules used in this context will be discussed
in Section 2.1.
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Definition 2. A kernel P system of degree n is a tuple

kΠ = (A,L, IO, µ,C1, . . . , Cn, i0),

where A and L are, as in Definition 1, the alphabet and the set of labels, re-
spectively; IO is a multiset of objects from A, called environment; µ defines the
membrane structure, which is a graph, (V,E), where V are vertices, V ⊆ L (the
nodes are labels of these compartments), and E edges; C1, . . . , Cn are the n com-
partments of the system - the inner part of each compartment is called region,
which is delimited by a membrane; the labels of the compartments are from L
and initial multisets are over A; io is the output compartment where the result is
obtained.

As usual in P systems, the environment contains an arbitrary number of copies
of each object. Each compartment is specified according to Definition 1.

2.1 kP System Rules

The discussion below assumes that the rules introduced belong to the same com-
partment, Ci, labelled li.

Each rule r may have a guard g, in which case r is applicable when g is
evaluated to true. Its generic form is r {g}. The guards are constructed according
to certain criteria described below. Before presenting these criteria we introduce
some notations.

We consider multisets over A∪Ā, where A and Ā are interpreted as promoters
and inhibitors, respectively; Ā = {ā|a ∈ A}. For a multiset w over A ∪ Ā and
an element a from the same set we denote by #a(w) the number of a′s occurring
in w. We also consider the set of well-known relational operators Rel = {<,≤,=
, ̸=,≥, >}. For a multiset w = an1

1 . . . ank

k , aj ∈ A ∪ Ā, 1 ≤ j ≤ k, and αj ∈ Rel,
1 ≤ j ≤ k, we introduce the following notation w′ = α1a

n1
1 . . . αka

nk

k ; aj is not
necessarily unique in w or w′ (as it will transpire from the explanations below,
this case may occur when the multiplicity of a symbol belongs to an interval); w′

is called multiset over A ∪ Ā with relational operators over Rel.
If g is a guard defined according to the criteria below and pr, a predicate over

this set of guards, then:

• g = ϵ means pr(ϵ) is always true, i.e., no condition is associated with the rule
r; this guard is almost always ignored from the syntax of the rule;

• g is a multiset over A ∪ Ā with relational operators over Rel, i.e., g =
α1a

n1
1 . . . αka

nk

k , then pr(w) is true iff for z, the current multiset of Ci, we
have, for every 1 ≤ j ≤ k, either (i) if aj ∈ A then #aj (z) αj nj holds, or (ii)
if aj ∈ Ā, i.e., aj = ā, a ∈ A, then #a(z) αj nj does not hold;

• g = w1| . . . |wp, i.e., g is a finite disjunction of multisets over A ∪ Ā with
relational operators over Rel, then pr(w1| . . . |wp) is true iff there exists 1 ≤
j ≤ p, such that pr(wj) is true.
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We denote by FE(A ∪ Ā), from Finite regular Expressions over A ∪ Ā with rela-
tional operators, the set of expressions defined above. When a compound guard, cg,
referring to compartments li and lj is used, its generic format is cg = li.g1 op lj .g2,
where g1, g2 are finite expressions referring to compartments li and lj , respectively;
then, obviously, pr(cg) = pr(g1) op pr(g2), op ∈ {&, |}, where & stands for and and
| for or, meaning that either both guards are true or at least one is true. Simpler
forms, where one of the operands is missing, are also allowed as well as cg = ϵ. A
compound guard defines a Boolean condition defined across the two compartments.

Example 1. If the rule is r : ab → c {≤ a3 ≥ b7 = c̄}, then this can be applied
iff the current multiset consists of at most 3 a′s and at least 7 b′s and does not
contain a single c (either none or more than 2 c′s are allowed).

A rule can have one the following types:

• (a) rewriting and communication rule: x→ y {g},
where x ∈ A+, y ∈ A∗, g ∈ FE(A ∪ Ā); the right hand side, y, has the form
y = (a1, t1) . . . (ah, th), where aj ∈ A and tj ∈ L, 1 ≤ j ≤ h, is an object
and a target, i.e., the label of a compartment, respectively; the target, tj , must
be either the label of the current compartment, li, (more often ignored) or of
an existing neighbour of it ((li, tj) ∈ E) or an unspecified one, ∗; otherwise
the rule is not applicable; if a target, tj , refers to a label that appears more
than once then one of the involved compartments will be non-deterministically
chosen; if tj is ∗ then the object aj is sent to a neighbouring compartment
arbitrarily chosen;

• (b) input-output rule, is a form of symport/antiport rule: (x/y) {g},
where x, y ∈ A∗, g ∈ FE(A ∪ Ā); x from the current region, li, is sent to the
environment and y from the environment is brought into the current region;

• (c) system structure rules; the following types are considered:
– (c1) membrane division rule: []li → []li1 . . . []lih {g},

where g ∈ FE(A ∪ Ā); the compartment li will be replaced by h compart-
ments obtained from li, i.e., the content of them will coincide with that of
li; their labels are li1 , . . . , lih , respectively; all the links of li are inherited
by each of the newly created compartments;

– (c2) membrane dissolution rule: []li → λ {g};
the compartment li will be destroyed together with its links;

– (c3) link creation rule: []li ; []lj → []li − []lj {cg};
the current compartment, li, is linked to lj and if more than one lj ex-
ists then one of them will be non-deterministically picked up; cg, called
compound guard, describes an expression li.g1 op lj .g2 as defined above;

– (c4) link destruction rule: []li − []lj → []li ; []lj {cg};
is the opposite of link creation and means that compartments li, lj are
disconnected; as usual, when more than a link, (li, lj) ∈ E, exists then only
one is considered by this rule; cg is a compound guard.
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2.2 Regular Expressions and their Interpretation for kP Systems

In kP Systems the way in which rules are executed is described using regular ex-
pressions (over the sets of labels of rules). This approach allows the usual behaviour
of P systems - requiring the rewriting and communication, and input-output rules
to be applied in a maximal parallel way and structural rules (e.g. membrane di-
vision and dissolution, creation and destruction of links) to be executed one per
membrane - as well as other alternative or additional features to be expressed in
a consistent and elegant manner.

We first consider the set of labels of the rules, from the set R, in a given
compartment, denoted by Lab(R). We can define regular expressions over this set,
REG(Lab(R)). A regular expression σ ∈ REG(Lab(R)) is interpreted as follows

• σ = ϵ means no rule from the current compartment will be executed;
• σ = r, r ∈ Lab(R), means the rule r is executed;
• σ = αβ means first are executed rules designed by α and then those in β;
• σ = α|β means either the rules designed by α or those by β are executed; often

we use the notation defining sets where | is replaced by ,;
• σ = γ∗ means rules designed by γ are executed in a maximal parallel way.

Regular expressions allows the definition of various execution strategies, in-
cluding well-known maximal parallelism (and also sequential) behaviour, but also
to encode more subtle concepts like order relationships between rules, which in-
troduce a form of sequential execution. Given the above introduced types of rules
we can also specify in a more coherent way the fact that maximal parallelism im-
poses some constraints on the way the rules dealing with the system structure are
handled; it is always the case that such rules are applied one per compartment
and at the end of each step. Indeed, this assumption can be made in this case as
the left hand side of any of the rules c1–c4 , does not contain any object, so they
are applied only when there guards are satisfied. These cases are briefly analysed
below.

• Naturally, ∗ is used to capture the maximal parallelism of a set of rules; for rules
R, with Lab(R) = {r1, . . . , rk}, we mostly write either Lab(R)∗ or {r1, . . . , rk}∗,
instead of (r1| . . . |rk)∗.

• In order to express the fact that maximal parallelism means that object pro-
cessing rules are applied in a maximal parallel way and at the end only one of
the system structure rules is applied, we first split R, the set of rules, into R1,
containing all the object processing rules, and R2, with all the structure defin-
ing rules, associated with the current compartment; then given the convention
introduced for the set of regular expressions over Lab(R), the above behaviour
is expressed by Lab(R1)∗Lab(R2).

• Now suppose that a certain order relationship exists, e.g. r1, r2 > r3, r4, which
means that when weak priority is applied, the first two rules are executed first,
if possible, then the next two. If both are executed with maximal parallelism,
this is described by {r1, r2}∗ {r3, r4}∗.
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These regular expressions define the strategy of executing the rules of the
current compartment and together with them they form the true DNA code of
each compartment. Other ways of executing the rules of a compartment, like equal
to, less than or greater than a given number of steps, can be also considered.

The result of a computation will be the number of objects collected in the
output compartment. For a kP systems kΠ, the set of all these numbers will be
denoted by M(kΠ).

2.3 kP System Examples

In this section we illustrate the newly introduced P system model with some
examples.

Example 2. Let us consider the following kP system with n = 4 compartments,
kΠ1 = (A,L, IO, µ,C1, . . . , C4, 1), where
A = {a, b, c, p},
L = {1, 2, 3},
IO contains an arbitrary number of objects over {b, c},
C1 = (1, w1,0, R

σ
1 ), C2 = (2, w2,0, R

σ
2 ), C3 = (2, w3,0, R

σ
2 ), C4 = (3, w4,0, R

σ
3 ),

µ is given by the following graph with edges (1, 2), (1, 3); (1, 2) appears twice as
n = 4 and there are two compartments, C2, C3, with label 2;
w1,0 = a3p, w2,0 = p, w3,0 = p, w4,0 = λ, and
Rσ

1 is R1 = {r1 : a → a(b, 2)(c, 3) {≥ p}; r2 : p → p; r3 : p → λ}, and σ1 =
Lab(R1)∗,
Rσ

2 is R2 = {r1 : (b/c) {≥ p}; r2 : p→ p; r3 : p→ λ}, and σ2 = Lab(R2)∗,
Rσ

3 is R3 = ∅ and σ3 = Lab(R3)∗.
Please note that we do not use targets for objects meant to stay in the

current compartment (i.e. we have r1 : a → a(b, 2)(c, 3) {≥ p} instead of
r1 : a→ (a, 1)(b, 2)(c, 3) {≥ p}).

In this example there are only rewriting and communication rules (all the rules,
but r1 from R2) and an input-output one (r1 from R2); some rules have a guard,
≥ p (p is a promoter), others do not have any and in each compartment the rules
are applied in maximal parallel way in every step, as indicated by σj , 1 ≤ j ≤ 3.
As two instances of the compartment labelled 2, C2, C3, appear in the system,
when the rule r1 from the first compartment is applied, the object b goes non-
deterministically to one of the two compartments labelled 2 as long as p remains
in compartment 1; object c goes always to compartment labelled 3, C4.

The initial configuration of kΠ1 is M0 = (a3p, p, p, λ). The only applicable
rules are r1, r2 and r3 from C1 and r2, r3 from C2, C3. If r1, r2 are chosen in C1

and r2 in C2, C3, then a3p is rewritten by r1, r2 in C1 and p in C2, C3 by r2; then
three a′s stay in C1, three b’s go non-deterministically to C2, C3, three c’s go to
compartment labelled 3, C4, and each p in C2, C3 stays in its compartment. Let
us assume that two of them go to C2 and one to C3. Hence, the next configuration
is M1 = (a3p, b2p, bp, c3). If in the next step the same rules are applied identically
in the first compartment, C1, and rules r1, r2 are used in C2 and r1, r3 in C3, then
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the next configuration is M2 = (a3p, b2c2p, bc, c6). If now r1, r3 are used in C1,
with r1 used in the same way and r1, r3 in C2 (no rule is available in C3) then
M3 = (a3, b2c4, b2c, c9); this is a final configuration as there is no promoter to
trigger a further step.

Observation. If r1 : a → a(b, 2)(c, 3) {≥ p} from C1 is changed to r1 : a →
a(b, 2)(c, ∗) {≥ p}, then the three resulting c′s (obtained after applying r1 to a3)
go non-deterministically to any of the three neighbours of C1.

Example 3. Let us reconsider the example above enriched with rules dealing with
the system structure. First we will show how the system handles the multiplication
of compartments with label 2, C2 and C3, when a certain condition holds; we will
consider the guard ≥ b2 ≥ p. In this case the new kP system, denoted kΠ2, will
have the same structure and content as kΠ1 except Rσ

2 which is now defined as
follows
Rσ

2 is R2 = R
(1)
2 ∪R

(2)
2 , where R

(1)
2 = {r1 : (b/c) {≥ p}; r2 : p→ p; r3 : p→ λ},

R
(2)
2 = {r4 : []2 → []2[]2 {≥ b2 ≥ p}} and σ2 = Lab(R

(1)
2 )∗Lab(R

(2)
2 ).

We can notice that the regular expression σ2 tells us that first the rewriting rules
are applied in a maximal parallel manner and then one of system structure rules
is chosen to be executed.

If the system follows the same pathway as kΠ1 then M2 shows a different con-

figuration given that in C2 after applying R
(1)
2 in a maximal parallel manner, R

(2)
2

is applied as indicated by σ2, when the guard of r4 is true. The compartment C2

is divided into two compartments, C2,1, C2,2, with the same label 2 and appearing
on positions 2 and 3 in the new configuration, M ′

2 = (a3p, b2c2p, b2c2p, bc, c6); the
new compartments labelled 2 are linked to compartment C1. In the next step both
are divided as they contain the guard triggering the membrane division rule r4.
The process will stop when either p will be rewritten to λ or b2 stops coming.

If we aim to either dissolve or disconnect a compartment labelled by 2 from
compartment C1, once a certain condition is true, for instance b2c2p appears in it,

then two more rules will be added to R
(2)
2 , namely

r5 : []2 → λ {≥ b2 ≥ c2 ≥ p}, r6 : []2− []1 → []2; []1 {≥ b2 ≥ c2 ≥ p}. The same reg-

ular expression, σ2 = Lab(R
(1)
2 )∗Lab(R

(2)
2 ), is used, but in this case R

(2)
2 contains

three elements and at most one is applied at each step, in every compartment with
label 2.

3 Neural-like P Systems and P Systems with Active
Membranes versus kP Systems

In order to prove how powerful and expressive kP systems are, we will show how
two of the most used variants of P systems are simulated by kP system. More
precisely, we will show how neural-like P systems and P systems with active mem-
branes are simulated by some reduced versions of kP systems.
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Definition 3. A neural-like P system (tissue P system with states) of degree n is
a construct Π = (O, σ1, ...σn, syn, i0) ([10], p. 249), where:

• O is a finite, non-empty set of objects, the alphabet;
• σi = (Qi, si,0, wi,0, Ri), 1 ≤ i ≤ n, represents a cell and

– Qi is the finite set of states of cell σi;
– si,0 ∈ Qi is the initial state;
– wi,0 ∈ O∗ is the initial multiset of objects contained in cell σi;
– Ri is a finite set of rewriting and communication rules, of the form sw →

s′xygozout; when such a rule is applied, x will replace w in cell σi, the objects
from y will be sent to neighbouring cells, according to the transmission mode
(see th next Observation) and the objects from z will be sent out into the
environment; cell σi will move from state s to s′;

• syn ⊆ {1, ..., n} × {1, ..., n}, the connections between cells, synapses;
• i0 is the output cell.

Observations.

1. For such systems, three processing modes are considered, called “max”, “min”,
“par”, and three transmission modes, namely “one”, “repl”, “spread”. For for-
mal definitions and other details we refer to [10].

2. We denote by simple neural-like P systems the class of P systems given by Def-
inition 3, with rewriting and communication rules sw → s′x(a1, t1) · · · (ap, tp),
where th, 1 ≤ h ≤ p, denotes the target cell (σh), and processing mode “max”,
transmission mode defined by the target indications mentioned in each rule.

Notation. For a given P system, Π, the set of numbers computed by Π will
be denoted by M(Π).

Theorem 1. If Π is neural-like P system of degree n, then there is a kP system,
Π ′, of degree n and using only rules of type (a), rewriting and communication
rules, simulating Π and such that M(Π ′) ⊆M(Π) ∪ {2}.

Proof. Let Π be a simple neural-like P systems of degree n, as defined above. We
construct Π ′ as follows:
Π ′ = (A,L, IO, µ,C1, ..., Cn) where:

• A = O ∪ (
∪

1≤i≤n Qi)∪ {γ}; γ is a new symbol neither in O nor in
∪

1≤i≤n Qi;
• L = {1, ..., n}; IO = ∅;
• µ = syn;
• Ci = (i, w′

i,0, R
′σ
i ), 1 ≤ i ≤ n; and

– w′
i,0 = γ, 1 ≤ i ≤ n;

– R′
i contains the following rules:

1. γ → si,0twi,0, where si,0, wi,0 are the initial state and initial multiset,

respectively, associated with cell σi, and t ∈ Q
(i)
si,0 . For s ∈ Qi, denote

by Q
(i)
s = {t|t ∈ Qi, sx → ty ∈ Ri}; i.e., Q

(i)
s gives, when the cell σi

is in state s, all the states where σi can move to. In the first step, in



A Kernel P System 161

compartment Ci, a rule γ → si,0twi,0 is applied and the current multiset
becomes w′

i = si,0wi,0.

2. For each pair (s, t), t ∈ Q
(i)
s , there are rules

sxi → tyi ∈ Ri, 1 ≤ i ≤ p (∗).
If there are no rules in Ri from s to t then another pair is considered.
For the above rules, the following rules are considered in R′

i:

xi → yi {= s = t}, 1 ≤ i ≤ p, and st → tq {≥ x1|...| ≥ xp}, q ∈ Q
(i)
t

(∗∗)
In the above guards the notation ≥ xi, if xi = ai,1 . . . ai,li , denotes
≥ ai,1 . . . ≥ ai,li . The rules (∗∗) make use of guards; the first p rules
are applied iff the current multiset contains one s and one t, whereas
the last one is applicable iff at least one or more of the occurrences of
one of the multisets xi, 1 ≤ i ≤ p, is included in the current multiset.
Clearly, in state s only the rules (∗) of Π are applicable for this P system,
depending on the availability of the multisets occurring on the left hand
side of them; the next state Π is moving to is t. Similarly, in Π ′ only the
rules denoted by (∗∗) are applicable; the rule st → tq {≥ x1|...| ≥ xp}
is applied once whereas the first p rules are applied as many times as
their corresponding (∗) rules are applied.

If the set Q
(i)
t used in st→ tq {≥ x1|...| ≥ xp} of (∗∗) is empty, i.e., there are

no rules from state t, then the rule is replaced by st → λ. When Q
(i)
si,0 = ∅ then

the rule γ → wi,0 is introduced in R′
i.

At any moment the component Ci of the kP system Π ′ contains a multiset
which is the multiset of σi augmented by the current state of σi, s, and one of the
next states, t, if it exists.

The process will stop in component Ci of Π ′ when no pair of rules of type (∗∗)
is applicable, which means no sxi → tyi rule is applicable in state s.

The multiset M(Π ′) contains M(Π) and maybe two states s, t occurring in the
last step of the computation. Hence M(Π ′) ⊆M(Π) ∪ {2}. ⊓⊔

Comments.

1. The above simulation can be assessed with respect to number of compartments,
objects and rules as well as the computation steps.

2. When rules sw → txygo are used in the “spread” mode, this means that any
a ∈ O occurring in y may go to any of the neighbours. In this case if y = y1ay2
then for each such a ∈ O, the rules of R′

i corresponding to sw → txygo, denoted
(∗∗) above, will show w → xy {= s = t} replaced by w → xy1(a, j)y2 {= s = t},
where j the label of one of the neighbours of the current compartment. For
“one” mode all a′s in y will point to the same target, j, for all neighbours of
the compartment i.

3. The transmission replicative mode - when a symbol is sent to all the neighbours,
can also be simulated. Indeed if j1, · · · , jh are the neighbours of i, then w →
xy1(a, j)y2 is transformed into w → xy1(a, j1) · · · (a, jh)y2 for each a.
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4. If a rewriting rule contains zout on its right side, i.e., sw → txygoxout then in
the set of rules transcribing it, w → α, we will have α = xy1(a, j)y2z

′, where
if z = a1 · · · ak, then z′ = a′1 · · · a′k; also rules (a′/λ) will be added to R′

i, for
any a ∈ O. In this way in the next step all the prime elements are sent out
into the environment. If there is a need to synchronize the behaviour of the
system with the environment then this should be done a bit differently. For
this transmission mode the kP system is a bit more complex as it must contain
input-output rules and the environment definition needs to be considered.

5. If we want to simulate the “min” processing mode then this can be obtained
by specifying the sequential behaviour of the component i - by changing the
regular expression of the component.

We study now how P systems with active membranes are simulated by kP sys-
tems. In this case we are dealing with a cell-like system, so the underlying struture
is a tree and a set of labels (types) for the compartments of the system. The sys-
tem will start with a number of compartment and its structure will evolve. In the
study below it will be assumed that the number of compartments simultaneously
present in the system is bounded.

Definition 4. A P system with active membranes of initial degree n is a tuple (see
[11], Chapter 11) Π = (O,H, µ,w1,0, . . . , wn,0, R, i0) where:

• O, w1,0, . . . , wn,0 and i0 are as in Definition 3;
• H is the set of labels for compartments;
• µ defines the tree structure associated with the system;
• R consists of rules of the following types

– (a) rewriting rules: [u → v]eh, for h ∈ H, e ∈ {+,−, 0} (set of electrical
charges), u ∈ O+, v ∈ O∗;

– (b) in communication rules: u[]e1h → [v]e2h , for h ∈ H, e1, e2 ∈ {+,−, 0},
u ∈ O+, v ∈ O∗;

– (c) out communication rules: [u]e1h → []e2h v, for h ∈ H, e1, e2 ∈ {+,−, 0},
u ∈ O+, v ∈ O∗;

– (d) dissolution rules: [u]eh → v, for h ∈ H\{s}, s denotes the skin membrane
(the outmost one), e ∈ {+,−, 0}, u ∈ O+, v ∈ O∗;

– (e) division rules for elementary membranes: [u]e1h → [v]e2h [w]e3h , for h ∈ H,
e1, e2, e3 ∈ {+,−, 0}, u ∈ O+, v, w ∈ O∗;

The following result shows how a P system with active membranes starting
with n1 compartments and having no more than n2 simultaneously present ones
can be simulated by a kP systems using only rules of type (a).

Theorem 2. If Π is a P system with active membrane having n1 initial com-
partments and utilising no more than n2 compartments at any time, then there
is a kP system, Π ′, of degree 1 and using only rules of type (a), rewriting and
communication rules, such that Π ′ simulates Π.
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Proof. Let us denote J0 = {(i, h)|1 ≤ i ≤ n2, h ∈ H}; for a multiset w = a1 . . . am,
(w, i, h), (i, h) ∈ J0, denotes (a1, i, h) . . . (am, i, h). Let us consider the P system
with active membranes, Π = (O,H, µ,w1,0, . . . , wn1,0, R, i0). The polarizations of
the n1 compartments are all 0, i.e., e1 = . . . = en1 = 0.

We construct Π ′ as follows:
Π ′ = (A,L, IO, µ′, C1) where:

• A =
∪

(i,h)∈J0
{(a, i, h)|a ∈ O ∪ {+,−, 0} ∪ {δ}}, where δ is a new symbol; let

us denote by = δall the guard = (δ, 1, 1) . . . = (δ, n2, |H|), |H| is the number of
elements in H (= δall stands for none of the (δ, i, h), (i, h) ∈ J0);

• L = {1}; IO = ∅; µ′ = []1;
• C1 = (1, w′

1,0, R
′σ
1 ), and

– w′
1,0 = (w1,0, 1, h1) . . . (wn1,0, n1, hn1)(e1, 1, h1) . . . (en1 , n1, hn1), e1 = . . . =

en1 = 0; let Jc = J0 \ {(i, hi)|1 ≤ i ≤ n1} (Jc denotes indexes available for
new compartments and J0 \ Jc the set of indexes of the current compart-
ments);

– R′
1 contains the following rules
· (a’) for each h ∈ H and each rule [u → v]eh ∈ R, e ∈ {+,−, 0}, we

add the rules (u, i, h) → (v, i, h) {= (e, i, h) = δall}, 1 ≤ i ≤ n2; these
rules are applied to every multiset containing elements with h ∈ H, only
when the polarization (e, i, h) appears and none of the (δ, j, h′) appears;

· (b’) for each h ∈ H and each rule u[]e1h → [v]e2h ∈ R, e1, e2 ∈ {+,−, 0},
we add the rules (u, j, l)(e1, i, h)→ (v, i, h)(e2, i, h) {= δall}, 1 ≤ i ≤ n2,
j is the parent of i of label l; these rules will transform (u, j, l) corre-
sponding to u from the parent compartment j to (v, i, h) corresponding
to v from compartment i of label h, the polarization is changed; for each
polarization, (e1, i, h) only one single rule can be applied at any moment
of the computation;

· (c’) for each h ∈ H and each rule [u]e1h → []e2h v ∈ R, e1, e2 ∈ {+,−, 0},
we add the rules (u, i, h)(e1, i, h)→ (v, j, l)(e2, i, h) {= δall}, 1 ≤ i ≤ n2,
j is the parent of i of label l;

· (d’) for each h ∈ H and each rule [u]eh → v ∈ R, e ∈ {+,−, 0}, we
add the rules (u, i, h)(e, i, h) → (v, j, l)(δ, i, h) {= δall}, 1 ≤ i ≤ n2, j
is the parent of i of label l; all the elements corresponding to those in
compartment i must be moved to j - this will happen in the presence of
(δ, i, h) when no other transformation will take place; this is obtained by
using rules (a, i, h) → (a, j, l) {= (δ, i, h)}, a ∈ O and (δ, i, h) → λ {=
(δ, i, h)}; the set of available indexes will change now to Jc = Jc∪{(i, h)};

· (e’) for each h ∈ H and each rule [u]e1h → [v]e2h [w]e3h ∈ R, e1, e2, e3 ∈
{+,−, 0}; if j1, j2 are the indexes of the new compartments, we add
(u, i, h)(e1, i, h) → (v, j1, k1)(e2, j1, k1)(w, j2, k2)(e3, j2, k2)(δ, i, h) {=
δall}, 1 ≤ i ≤ n2; the content corresponding to compartment i should
be moved to j1 and j2, hence rules (a, i, h) → (a, j1, k1)(a, j2, k2 {=
(δ, i, h)}, a ∈ O and finally (δ, i, h) → λ {= (δ, i, h)}; Jc is updated,
Jc = Jc ∪ {(i, h)} \ {(j1, k1), (j2, k2)}.
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The size of the multiset obtained in i0 by using Π computation is the same as
the size of the multiset in Π, when only (a, i0, h) are considered, minus 1 (the
polarization is also included). ⊓⊔

4 Case Study - Static Sorting

In this section we analyze the newly introduced kP systems by comparing them
with established P system classes by using them to specify a static sorting algo-
rithm. This algorithm was first written with symport/antiport rules [4] and then
reconsidered in some other cases [2]. The specification below mimics this algorithm.

4.1 Static Sorting with kP Systems

Let us consider a kP system having the following n = 6 compartments:
Ci = (i, wi,0, R

σ
i ), 1 ≤ i ≤ n, where

w1,0 = a3;w2,0 = a6p;w3,0 = a9;w4,0 = a5p;w5,0 = a7;w6,0 = a8p.
The rules in compartment Ri, 1 ≤ i ≤ n, are :

r1 : a→ (b, i− 1) {≥ p}, only for i > 1
r2 : p→ p′

r3 : p′ → (p, i− 1), for i even and r′3 : p′ → (p, i + 1), for i odd
r4 : ab→ a(a, i + 1), i < n
r5 : b→ a, i < n.

We assume that any two compartments, Ci, Ci+1, 1 ≤ i < n, are connected.
The aim of this problem is to order the content of these compartments such that
the highest element (a9) will be in the left most compartment, C1, and the smallest
one (a3) in the right most compartment, Cn, (n = 6).

Remarks:

• the set of objects is A = {a, b, p, p′};
• compartment Ci has the label i, 1 ≤ i ≤ n; so any two compartments have

distinct labels;
• the rule r1 is absent from the compartment C1;
• the last two rules, r4, r5, are only present in compartments C1 to Cn−1;
• for n = 2k + 1 we need an auxiliary compartment, Cn+1, which will start

with an initial multiset p and will contain a set of rules with r2 : p → p′ and
r3 : p′ → (p, n); whereas Cn should have an additional rule r′3 : p′ → (p, n+ 1);

• the regular expression corresponding to the execution of the rules in a com-
partment Ci is σi = {r1, r2, r3, r4}∗{r5}∗, if i is even; for odd values of i, r3 is
replaced by r′3; the regular expression tells us that firstly the rules from the first
set are applied in a maximal parallel manner and then r5, also in a maximal
way.
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Observation. The regular expression, σi, describes an order relationship,
r1, r2, r3, r4 > r5. So we can replace this kP system by a P system with pro-
moters and having an order relationships on the set of rules associated with each
membrane.

The table below presents the first steps of the computation. In the first step
the only applicable rules are r1, r2; given the presence of the promoter p, rule r1
moves all a′s from each even compartment to the left compartment as b′s and rule
r2 transforms the promoter into p′. Next, rules r3, r4, r5 are applicable; first r3 and
r4 are applied, this means p′ is moved as p to the left compartments and for each
ab an a is kept in the current compartment and a b is moved as an a to the right
compartment; finally, the remaining b′s, if any, are transformed into a’s. These two
steps implement a sort of comparators between two adjacent compartments mov-
ing to the left bigger elements. In the previous steps the comparators have been
considered between odd and even compartments. In the next step the promoters
appear in even compartments and the comparators are now acting between an
even and an odd compartment. The algorithm does not have a stopping condition.
It must stop when no changes appear in two consecutive steps. Given that the
algorithm must stop in maximum 2(n − 1) steps, then we can introduce such a
counter, c, in each compartment and rules c→ c1, ci → ci+1, 1 ≤ i ≤ 2(n− 1)− 2
and c2(n−1)−1p→ λ. These rules should be executed before the rest, so the regular
expression associated with them should be a prefix of the regular set associated
with each compartment.

Compartments - Step C1 C2 C3 C4 C5 C6

0 a3 a6p a9 a5p a7 a8p
1 a3b6 p′ a9b5 p′ a7b8 p′

2 a6p a3 a9p a5 a8p a7

3 a6p′ a3b9 p′ a5b8 p′ a7

4 a6 a9p a3 a8p a5 a7p
5 a6b9 p′ a3b8 p′ a5b7 p′

Observation. Bounded number of labels! The above solution is using n
labels for n compartments. As the rules are the same in each compartment, with
two exceptions involving the components at both ends of the system (compart-
ments C1 and Cn), it is natural to look for a solutions with a bounded number
of labels. If we use the same label everywhere except for the two margins then we
face the problem of replacing the rules using targets with different rules where the
targets are now the new labels; if these are the same we can no longer distinguish
between left and right neighbours, so we should have at least two distinct ones.
Additionally, we have to distinguish odd and even positions. Consequently, four la-
bels, and two more for the two ends are enough. Are there further simplifications?
The answer to this question and the solution in this case are left as exercises to
the reader.



166 M. Gheorghe, F. Ipate, C. Dragomir

4.2 Static Sorting with States

We consider the same n-compartment tissue-like P system structure as in the
previous subsection. Additionally, in this case, the rules in each compartment use
states; an order relationship between rules in each compartment is also considered.
Initial states are s1 in odd compartments and s0 otherwise; the content of the 6
regions is illustrated by the first line, step 0, of the table below.

The addition of states is potentially very useful from a modelling point of view
since many widely-used modelling languages are state-based and, therefore, such
rules were a strong candidate for inclusion in our kP system model. However, as
shown below, states can be effectively simulated by rewriting rules, as shown below
.

For the algorithm considered, the rules in each compartment and the order
relationships are as follows
Compartment 1:
r1 : s0x→ s0y
r2 : s0y → s1x
r3 : s1ab→ s0a(a, 2)
r4 : s1b→ s0a
The rules satisfy: r1, r2, r3 > r4 .

Compartment i, 2 ≤ i ≤ n− 1:
r1 : s0a→ s1(b, i− 1)
r3 : s1ab→ s0a(a, i + 1)
r4 : s1b→ s0a
The rules satisfy: r1, r3 > r4.

Compartment n:
r1 : s0a→ s1bn−1

r2 : s1x→ s1y
r3 : s1y → s1z
r4 : s1z → s0x

Membranes - Step C1 C2 C3 C4 C5 C6

0 s1 : a3x s0 : a6 s1 : a9 s0 : a5 s1 : a7 s0 : a8x
1 s1 : a3b6x s1 : s1 : a9b5 s1 : s1 : a7b8 s1 : x
2 s0 : a6x s1 : a3 s0 : a9 s1 : a5 s0 : a8 s1 : a7y
3 s0 : a6y s1 : a3b9 s1 : s1 : a5b8 s1 : s1 : a7z
4 s1 : a6x s0 : a9 s1 : a3 s0 : a8 s1 : a5 s0 : a7x
5 s1 : a6b9 s1 : s1 : a3b8 s1 : s1 : a5b7 s1 : x

In the case where we have an odd number of compartments, the n−th region
must contain an y instead of x. Thus the starting configuration for n = 7 is the
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following:
w1,0 = a3x;w2,0 = a6;w3,0 = a9;w4,0 = a5;w5,0 = a7;w6,0 = a8;w7,0 = a13y.

4.3 Static Sorting with P Systems using Polarizations on Membranes

We now use cell-like P systems with active membranes to specify the same algo-
rithm. P systems with active membranes were introduced with the primary aim of
solving NP-complete problems in polynomial (often linear) time [11]. The key fea-
tures of this variant is the possibility of multiplying the number of compartments
during the computation process by using membrane division rules in addition to
multiset rewriting and communication rules. Each membrane can have one of the
three electrical charges {+,−, 0} and a rule can only be executed if the membrane
has the required electrical charge; a rule can also change the polarization of the
membrane when objects cross it (either in or out).

In our static sorting example compartments with two states were used, so,
when the algorithm is implemented using electrical charges, it is expected that
two electrical charges would suffice. Indeed, from the list of rules below one may
observe that 0 and + are the only polarizations utilised.

There is, however, a problem with this approach, arising from the rule appli-
cation strategy. In P systems with membrane division and polarizations, only one
rule which can change the polarization of a membrane can be applied per step [7].
The sorting algorithm however, employs maximal parallel communication rules
to operate the comparator procedure between membranes. In order to correctly
implement this procedure we will accept maximal parallel communication rules
which change the charge of the membrane they traverse to/from if and only if
they target the same final polarization.

In the case of P systems with polarizations on membranes we will use a cell-like
structure with n = 6 regions defined below with the initial multisets included and
initial polarizations; the implementation of the static sorting with P systems with
polarization on membranes is using priorities over the sets of rules.

µ = [[[[[[[a3x1]01a
6x1]+2 a

9x1]03a
5x1]+4 a

7x1]05a
8x1]+6 ]0aux

Rules:
”Comparator” rules:
r1 : a[]0j → [b]0j , 1 ≤ j ≤ n;

r2 : [ab]0j → a[a]+j , 1 ≤ j ≤ n;

r3 : [b→ a]0j , 1 ≤ j ≤ n;

Rules for switching polarities between adjacent membranes:
r4 : [x1 → x2]ij , 1 ≤ j ≤ n;

r5 : [x2]0j → y1[]+j , 1 ≤ j ≤ n;

r6 : [x2]+j → y1[]0j , 1 ≤ j ≤ n;

r7 : [y1 → y2]ij , 1 < j ≤ n + 1;
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r8 : y2[]0j → [x1]+j , 1 ≤ j ≤ n;

r9 : y2[]+j → [x1]0j , 1 ≤ j ≤ n;
where i ∈ {0,+} ; and the order relationship r1, r2, r4, r5, r6, r7, r8, r9 > r3.

M/S []1 []2 []3 []4 []5 []6 []aux

0 [a3x1]0 [a6x1]+ [a9x1]0 [a5x1]+ [a7x1]0 [a8x1]+ [ ]0

1 [a3b6x2]0 [x2]+ [a9b5x2]0 [x2]+ [a7b8x2]0 [x2]+ [ ]0

2 [a6]+ [a3y1]0 [a9y1]+ [a5y1]0 [a8y1]+ [a7y1]0 [y1]0

3 [a6]+ [a3b9y2]0 [y2]+ [a5b8y2]0 [y2]+ [a7y2]0 [y2]0

4 [a6x1]0 [a9x1]+ [a3x1]0 [a8x1]+ [a5x1]0 [a7x1]+ [ ]0

5 [a6b9x2]0 [x2]+ [a3b
8x2]0 [x2]+ [a5b7x2]0 [x2]+ [ ]0

There are no additional requirements in the case where n = 2k + 1, however
we always entail an extra auxiliary membrane to enable out communication of the
n−th membrane, therefore allowing it to switch polarity.

A similar implementation of the static sorting algorithm can be obtained by
using P systems with labels on membranes. As illustrated in [1], we can encode elec-
trical charges in strings of the membrane labels, in order to differentiate between
the two necessary states. For each membrane hi we synthesise its complementary
label h′

i, which is changed to by a communication rule. We leave this as an exercise
to the reader.

A number of (preliminary) conclusions can be drawn from the above case study:

• kP systems are conceptually closer to tissue P systems than cell-like P systems;
in our case studies, this is reflected by the similarity between the specifications
using kP systems and tissue P systems, respectively. On the other hand, the
model realized using the cell-like P system variant is significantly more complex.

• In terms of complexity, the three implementations are roughly equivalent. The
kP system executes in each step one more rule then the P system with states;
this rule is either r2 or r3 (dealing with p). On the other hand, the number
of rules applied in each compartment for every step by cell-like P systems is
similar to the case of kP systems.

5 Conclusions

The kP system introduced in this work represents a low level specification lan-
guage. Its syntax and informal semantics and some examples have been introduced
and discussed. A case study based around a simple sorting algorithm has allowed
us to compare different specifications of this using various types of P systems. In
the next stage formal semantics will be defined and an implementation using model
checkers (SPIN, Maude) is also expected. Several extensions can be considered for
kP systems that may lead to a more flexible and higher level specification language.
A first set of extensions refer to ways of defining objects, rules and compartments
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using indexes over some specified domains. Modules can also be introduced using
a syntactic approach, rather than considering additional semantic features [8]. In
order to prove the expressive power of kP systems, a more systematic study of
simulating important classes of P systems with kP systems will be produced in a
forthcoming paper.
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Summary. This is a list of open problems and research topics collected after the Twelfth
Conference on Membrane Computing, CMC 2012 (Fontainebleau, France (23 - 26 Au-
gust 2011), meant initially to be a working material for Tenth Brainstorming Week on
Membrane Computing, Sevilla, Spain (January 30 - February 3, 2012). The result was
circulated in several versions before the brainstorming and then modified according to
the discussions held in Sevilla and according to the progresses made during the meeting.
In the present form, the list gives an image about key research directions currently active
in membrane computing.

Introduction

The idea of compiling a collection of open problems and research topics in mem-
brane computing (MC) occurred during the Twelfth International Conference on
Membrane Computing, CMC 12, held in Fontainebleau, Paris, France, from 23 to
26 of August, 2011 (see http://cmc12.lacl.fr/). The invitation to contribute
to such a collection was formulated during CMC 12 (and after that reinforced by
email) and several researchers answered this call. The result was circulated under
the name of “mega-paper” (mega because it has much more co-authors than any
other paper in MC...), meant to be a working material for the Tenth Brainstorm-
ing Week on Membrane Computing, Sevilla, Spain, January 30 - February 3, 2012
(BWMC 10). During CMC 12 there were also discussions and suggestions regarding
some other topics which are not developed here; for this reason we briefly mention
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(some of) them: exploring more systematically hypercomputation research ideas
within MC area; focussing on translations between different classes of membrane
systems (P systems) and studying complexity aspects related to these translations
(the goal being to import results from a branch of MC to another one); identifying
the most “natural” applications of P systems in modeling biological processes and
producing a set of coherent and convincing case studies (a research volume on
such applications in biology is now in progress); investigate in more details the dP
automata, their efficiency and connections with communication complexity; look
for biological applications of spiking neural P systems.

Before presenting an overview of the paper we mention [7], [8] as key references
for general MC topics. More specific MC topics, like MC and process calculi [1],
interplay between MC and DNA computing [6] and conformon MC systems [3],
are also well-established. Applications of MC in various areas can be found in [2].

The initial “mega-paper” was changed several times, incorporating discussions
and progresses carried out during BWMC 10. The present version is considered
a “closed” one (although such a project can never be closed); for further results
related to the problems collected here the reader is invited to follow the MC website
from [9]. In particular, one can find there the proceedings volumes, with all papers
emerged in connection with the brainstorming.

The texts received from the contributors were revised by their authors after
BWMC 10, and appear below in the final form they have been submitted, with
minimal editorial changes. In most cases, one gives the necessary (minimal) defi-
nitions, as well as the relevant bibliography. Of course, the reader is supposed to
be familiar with basic elements of MC – for instance, from the sources mentioned
at the end of this introduction. A quick introduction to MC is given at the begin-
ning of this paper, just to help the reader not familiar with this research area to
have a flavor of it. At the beginning of each section there are mentioned the main
notions, from MC and from computability in general, supposed to be known in
order to understand the problems which follow (sometimes, part of these notions
are briefly introduced together with the problems). The authors of each “section”
are mentioned, with affiliations and email addresses, so that the interested reader
can contact them for further details, clarifications and cooperation in solving the
problems.

The order in which the problems are given below goes, approximately, from gen-
eral issues to theory and then to applications. In what concerns the computability
topics, there are sections devoted to both power and efficiency of P systems, con-
sidering them as numbers or strings generators or acceptors, in “old” versions
(symport/antiport, catalytic, spiking neural P systems) or in recently introduced
forms (polymorphic, dP systems), looking for generalizations (e.g., for “kernel P
systems”) or for classic notions of language theory not yet extended to MC (such
as control words); computational complexity is a vivid direction of investigation,
addressing both time and space complexity (defining specific complexity classes,
comparing them with existing classes, looking for possibilities of solving computa-
tionally hard problems (typically, NP-complete problems) in a polynomial time,
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by making use of the massive parallelism of P systems and trading-off space for
time, with the space obtained by means of biologically inspired operations, such as
membrane division and membrane creation). The term “fypercomputing” (follow-
ing the model of “hypercomputing” = “passing beyond the Turing barrier”, with
the initial “f” coming from “fast”) tries to call attention to a systematic study
of “passing polynomially beyond the NP barrier”. All classes of P systems are
considered: cell-like, tissue-like, (spiking) neural, and numerical. Moving to appli-
cations, one mentions issues related to the semantics, formal verification, possible
bridges with reaction systems (a younger “sister” research area of natural comput-
ing, inspired from biochemistry). The applications refer both to the simulation of
biological and bio-medical processes and to (somewhat unexpected) applications
in approximate optimization (basically, distributed evolutionary algorithms, with
the distribution controlled by means of membranes, and borrowing ingredients
from MC), robotics (mobile robots controlled by means of numerical P systems),
and computer graphics, as well as to more speculative ideas, dealing, for instance,
with the functioning of the brain.

The nature of questions range from local/technical open problems, asking to
improve existing results, especially for a better delimitation of the borderline be-
tween universality and non-universality, between efficiency and non-efficiency (in
particular, concerning the influence of some qualitative parameters, such as the
number of membranes, the size of the rules, or qualitative features, such as the dif-
ference between deterministic and non-deterministic systems, using or not various
types of rules), to “strategic” issues, for instance, relating MC with other research
areas, such as computer science, biology, ecology, robotics and so on. Of course,
many other precise problems or research ideas circulate within the MC community
(or can be found in recent papers; see also the previous brainstorming volumes,
where many problems are formulated, sometimes given in explicit lists; the “fate”
of some of these open problems is recalled in the paper Gh. Păun, “Tracing Some
Open Problems in Membrane Computing”, Romanian J. of Information Science
and Technology, 10, 4 (2007), 303–314). Similarly, some of the problems proposed
in the present paper or variants of them were already circulated within the MC
community also before, a fact which should call attention to them (as an indication
of both interest and difficulty).

We are aware, on the one hand, that many other authors, who have not an-
swered our request (in time), would have other problems to propose, and, on the
other hand, that many people keep for them, for their immediate research, the
“juicy” topics... Anyway, we hope that this collection will both raise the inter-
est of the reader in approaching MC and, maybe, in participating in the future
editions of the yearly BWMC.

Because several sections below refer to the CMC 12 pre-proceedings and pro-
ceedings volumes, we also mention them below – [4] and [5], respectively.
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7. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002 (Chinese
translation in 2012).

8. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: The Oxford Handbook of Membrane Com-
puting. Oxford Univ. Press, 2010.

9. The P Systems Website: www.ppage.psystems.eu.

Contents

1. A Glimpse to Membrane Computing (The Editors)
2. Some General Issues (J. Beal)
3. The Power of Small Numbers (A. Alhazov)
4. Polymorphic P Systems (S. Ivanov, A. Alhazov, Y. Rogozhin)
5. P Colonies and dP Automata (E. Csuhaj-Varjú)
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12. Time-Free Solutions to Hard Computational Problems (M. Cavaliere)
13. Fypercomputations (Gh. Păun)
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1 A Glimpse to Membrane Computing

Membrane computing (MC) is a branch of natural computing (introduced in [1],
with the report version of the paper circulated as Turku Center for Computer
Science – TUCS Report 208, in November 1998, see www.tucs.fi) which aims to
abstract computing models from the structure and the functioning of the living
cell and from populations of cells (e.g., tissues, organs), including the brain. One
of the basic notions is that of a membrane, understood as a 3D vesicle, separating
“an inside” and “an outside”, where objects can be placed and where specific bio-
chemistries take place. The membranes can be arranged in a hierarchical structure
(like in a cell, hence described by a tree) or in an arbitrary structure (like in tissues,
hence described by a graph). The space between a membrane and the membranes
placed immediately inside it (parent-children, in a tree) is called region or com-
partment. A membrane without any membrane inside is said to be elementary. In
the case of a cell-like arrangement of membranes, the external membrane is called
the skin. The space outside the skin membrane is called the environment (and
similarly is called the space external to all membranes of a tissue-like membrane
structure). A membrane structure can be formally represented by a rooted labeled
tree (each membrane is identified by a label, which is then associated with the node
of the tree associated with the membrane), or, correspondingly, by an expression
of labeled parentheses, with a unique external pair of parentheses, corresponding
to the skin membrane.

The objects are present in the regions of a membrane structure and in the envi-
ronment in the form of multisets, sets with their elements present in a given number
of copies (sets with multiplicities of elements). The multiplicity can be finite (ex-
pressed by a natural number) or infinite/arbitrary (we say that an object with this
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property is of ω multiplicity). For the beginning, let us have in mind only atomic
objects, represented by symbols of a given (finite) alphabet, and let us imagine
that they correspond to the chemical compounds, from ions to macromolecules,
which swim in water in the cell compartments. In this framework, it is convenient
to represent the multisets by strings of symbols, with the number of occurrences of
a symbol in a string corresponding to the multiplicity of that object in the multiset
(that is, any permutation of a string represents the same multiset). These objects
react, according to given evolution rules. The basic ones (often simply called “evo-
lution rules”) are the multiset rewriting rules corresponding to the biochemical
reactions taking place in a cell. They are of the form u → v, where u and v are
multisets. Many other types of evolution rules are inspired by other biological op-
erations. We mention here only the basic ones: symport/antiport correspond to
the coupled passage of chemicals through (the protein channels embedded in) the
cell membranes, membrane division corresponds to mitosis, membrane creation
and membrane dissolution can also be associated with biological processes (the
same with exo- and endocytosis, but we do not enter into details). There also are
more complex types of rules, or rules inspired from computer science (broadcast-
ing, communication between two membranes placed in a common environment),
rules mimicking the way the neurons communicate by means of spikes (electrical
impulses of identical shapes). Important is that both the rules and the objects are
placed in compartments and that the rules act locally, on the objects in the same
compartment. Objects can also pass through membranes, both in the cell-like case
and in the tissue-like case, hence the compartments cooperate.

There are several ways the rules are applied (several semantics). The most
investigated one, corresponding to the parallelism of reactions in a solution, is
the maximal parallelism: a maximal multiset of rules is used, where maximality is
defined in the sense of multiset inclusion (no rules can be added to the multiset
so that the obtained multiset of rules is still applicable to the multiset of objects
present in the respective compartment). When several (maximal) multisets can
be applied, the one to use is chosen nondeterministically. Many other possibilities
were considered: sequential, limited parallelism, minimal parallelism (the idea is
that each compartment which can use a rule – hence it is “alive” – has to use at
least one rule, with natural extensions to P systems whose rules are not associated
with compartments – as it is the case of symport/antiport systems, where the rules
are associated with the membranes). In all these cases, the system is synchronized,
a universal clock exists which measures the time in the same way for all membranes
and with rules used, synchronously, in each time unit. The natural counterpart is
that of asynchronous systems.

Such a device, consisting of membranes, objects, evolution rules, is called a
membrane system – currently called also a P system.

Starting from an initial configuration (membranes and objects) of a P system
and using the rules according to a chosen strategy, one obtains computations,
sequences of transitions among configurations. If a configuration is obtained such
that no rule can be applied, we say that the system halts. Several results can be
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associated with a halting computation, for instance, in the form of the number of
objects present in the halting configuration in a designated elementary membrane.
A P system can then be seen as a generative device, generating a set of numbers:
because of nondeterminism, we have several computations, hence several numbers.

Formally, a P system of the basic form (cell-like, with symbol objects, evolving
by multiset rewriting rules) can be given as follows (for an alphabet A, we denote
by A∗ the set of all strings over A, including the empty string λ; A∗ − {λ} is
denoted by A+):

Π = (O,µ,w1, . . . , wm, R1, . . . , Rm, i0), where

m is the degree of the system,

O is the alphabet of objects,

µ is the membrane structure, with m membranes,

w1, . . . , wm ∈ O∗ are multisets associated with the m regions of µ,

R1, . . . , Rm are finite rules of the form u→ v where u and v are

multisets over O with the objects in v also having target indications

of the form in, out, here; an object with indication out exits

the membrane, one with the indication here remains in the same region,

and one with the target in enters any of the membranes delimiting

the region from below, nondeterministically choosing the destination,

i0 is the label of the output membrane, the one where the result is obtained.

A transition between two configurations C1, C2 of Π is denoted by C1 =⇒ C2, and
the set of numbers generated by Π is denoted by N(Π).

The rules of the arbitrary form u → v are said to be cooperative, if u ∈ O,
then the rule is called non-cooperative (it corresponds to context-free rules in a
grammar); an intermediate case is that of catalytic rules, which are of the form
ca→ cv, where c ∈ O is a catalyst, assisting the object a ∈ O to get transformed
into v ∈ O∗. When applying a rule u → v, the objects from u are consumed and
those from v are produced.

An antiport rule is of the form (u, out; v, in) with u, v ∈ O∗; using such a rule
(associated with a membrane i) means to move the multiset u outside membrane
i, simultaneously with bringing the multiset v inside the membrane. If one of the
multisets u, v is empty, then the rule becomes a symport one.

We do not give here further technical definitions or notations; the interested
reader can consult any of the titles indicated in the end of the Introduction, espe-
cially the Handbook [8].

However, we mention informally a series of notions and of further classes of P
systems. There are many possibilities to extend the previously introduced com-
puting device and its functioning. Instead of counting objects in a compartment,
we can consider as the result of a computation the sequence of objects sent to the
environment (this is the so-called, external output), hence a P system can then
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generate a language. A language is obtained also if we follow the trace of a special
objects across membranes. Then, we can use a (symport/antiport) P system in
the accepting mode: the objects entering the system from the environment are
arranged in a string and we say that the string is accepted if the computation
halts. In the case of tissue P systems, the objects can evolve inside membranes
by multiset rewriting rules and can pass from a membrane to another one by an-
tiport rules. The communication channels among membranes are hence implicitly
defined by the provided rules for communication; a more complex case is that of
population P systems, where there also are rules for establishing channels between
cells and for destroying them. Besides rules for handling objects, we can also have
rules for changing the membrane structure. We mentioned division, creation, and
dissolution rules, exo- and endocytosis, but there also are separation, budding,
gemmation rules. Observe the biological inspiration, although abstracted in a way
which brings us far from biology – in their initial forms, P systems were not meant
to be used as models with a biological relevance. The objects can be described by
symbols, as above, but they can also have a structure, for instance, described by
strings (processed by string operations, such as rewriting, DNA splicing, replica-
tion, insertion-deletion), or even more complex, such as 2D arrays, trees, etc. A
special case is that of numerical P systems, where numerical variables are placed
in the regions of a cell-like membrane structure, evolving by means of programs,
composed of a production function (e.g., a polynomial), and a repartition proto-
col; in each compartment, the local variables are subject of a local production
function, and the value of this function is distributed among the variables in that
region and in the neighboring regions according to the repartition protocol (e.g.,
proportionally with given numbers, part of the program). The model, somewhat
inspired from economics, can both generate sets of numbers, but also compute
functions of several variables, a situation which is completely different from the
generative-accepting functioning of usual object-based P systems. An interesting
variant is that of P systems with objects bound on membranes (as actually is the
case with many chemicals in a cell), and then with the rules evolving at the same
time objects which are free inside regions and these fixed objects.

Finally, let us mention the so-called spiking neural P systems (SN P systems),
where membranes (representing neurons) are placed in the nodes of a graph, whose
links represent synapses, holding several copies of a single object, corresponding
to a spike; the spikes evolve by rules which first check the contents of the neuron
(by means of a regular expression), consume a number of spikes and produce a
number of spikes, which are sent, immediately or with a delay, to all neurons to
which a synapse goes from the neuron where the rule was used. The spikes sent to
the environment by a designated output neuron form the spike train produced by
the system; numbers or strings can be associated with a spike train, hence again
a generative device is obtained.

Up to now, we mentioned only the generative mode (corresponding to gram-
mars) of using a P system. A dual case (corresponding to automata) is the ac-
cepting mode: a number is introduced in a system, e.g., as the multiplicity of a
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specified object in a specified compartment, and the number is accepted if the
computation halts. Strings can also be recognized, by bringing their symbols, one
by one, in a system (e.g., in a symport/antiport one), with the string accepted if
the computation halts.

In all cases, we can also use a P system as a decidability machine: a decision
problem (with YES/NO answer) is introduced in the system, encoded in a specified
way in the form of a multiset, and the system says whether the problem (actually,
its instance introduced in the initial configuration) has an affirmative answer by
halting or by sending a special object yes into the environment. This is the usual
way of investigating the computational complexity of P systems (the time or the
space needed to solve a class of decidability problems).

Most classes of P systems are computationally complete, equivalent with Turing
machines (one also says that they are universal), even in restricted cases: small
number of membranes, using only catalytic rules (with at least two catalysts: the
power of one catalyst P systems is still open), symport/antiport rules of reduced
sizes, SN P systems of restricted forms, etc. Similarly, many classes of P systems
able to create an exponential working space in a linear time (the typical case is that
of P systems using membrane division, also called with active membranes) can solve
NP-complete problems (sometimes even PSPACE problems) in a polynomial
time. The literature of MC abounds in results of these types.

An important part of the research in MC deals with applications. Using P sys-
tems for modeling processes taking place in a cell or in complexes of cells, such as
populations of bacteria, is expected; the model starts from biology, hence it is natu-
ral to return to biology. Several features make P systems attractive for the biologist
(especially in comparison with the models based on differential equations): the di-
rect connection with the biochemistry, which also means a high understandability,
the multicompartmental structure, the easy scalability, the intrinsic discrete na-
ture of the model, the easy programmability, the possibility to attach probabilities
(reaction rates, stoichiometric coefficients) to the evolution rules, the emergent
behavior of a P system (the overall evolution is not at all a “sum” of the parts
evolution). All these applications are based on simulation programs (there are sev-
eral such programs available – see the webpage of the domain, mentioned in the
bibliography of the Introduction, [9]). Most of them run on the usual sequential
computers, but there also are attempt to implement P systems on dedicated hard-
ware, clusters and grids, on parallel hardware (such as NVIDIA graphical cards).
A specialized programming language, P-lingua, was also elaborated.

Also somewhat expected are the applications in modeling and simulating eco-
systems (we have “membranes” where several agents interact, like the chemicals in
a cell). Not so expected however are the applications in approximate optimization
(distributed evolutionary computing), computer graphics (following the style of L
systems based graphics, but also recent attempts to process images in the parallel
framework of P systems), while the recent applications of numerical P systems in
controlling mobile robots is completely unexpected.
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Problems and research topics about most of these issues will be found in the
sections below. Of course, the previous bird’s eye view about MC is not enough
to technically address these problems, many details were omitted or given in an
approximate way, but at least the reader can have an image of this research area,
of its many branches, of the richness of results and applications, but also of the
fact that many issues still wait for clarifications. The frontiers of MC are still
moving, after more than 13 years since this research area was initiated, it still can
be considered as an “Emergent Research Front in Computer Science”, as it was
called already in 2003 by Thomson-Reuters Institute for Scientific Information,
ISI, with [1] considered a “fast breaking paper”, see http://esi-topics.com.
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Comment. Jacob Beal was one of the invited speakers at CMC 12 (title of
talk: “Bringing Biology and Engineering Together with Spatial Computing”). After
the meeting, he was asked to express his thoughts about MC, taking into account
that he comes from outside the MC community, more importantly, from applied
computer science. What follows is part of an e-mail message he sent to M.Gh.
around the end of August 2011.

Required Notions: general knowledge of MC, membrane structure, multiset pro-
cessing, distribution, parallelism

With regards to my thoughts on directions for the membrane computing com-
munity, I think there is something very interesting and unique about the combi-
nation of chemical, compartmentalized, and tree-structured computation that P
systems give access to. But I think that it is important to try to articulate what
that is and why it is important.

In particular, the questions that I might pose would be:

• What are the most important research questions for membrane computing?
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• What does membrane computing have to offer researchers who are not in the
field of membrane computing?

More specifically:

• What should other computational theorists learn from the family of P systems
computational models?

• What is the practical advantage of P systems models over their competitors in
biological modeling or other fields?

• How might P systems models be applied to improve representations or archi-
tectures for parallel computing?

• What is quantitatively advantageous about SN P systems over other spiking
models?

• How can P systems inform the theory or design of distributed algorithms?

I do not expect that any of these questions will have any one answer – in fact,
I am sure that many researchers in the field will have wildly different answers. But
every researcher should have clear and concise answers that they can make a good
case for.

For my own part, I think that the most important research questions are:

1. How can distributed systems notions like self-stabilization be applied to P
systems?

2. What consequences does the P systems model have for conventional comput-
ing?

3. What sort of complex P systems computations can be generated from high level
programming languages, and what sort of languages fit best with P systems
for various purposes (e.g., biological modeling, networking)?

Those priorities, however, are of course a consequence of my own research
interests and biases, and I expect that others would have different answers: the
important thing is the discussion of reasons.
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3 The Power of Small Numbers

Artiom Alhazov
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Chişinău, Republic of Moldova, and

Università degli Studi di Milano-Bicocca
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artiom@math.md, aartiom@yahoo.com

Comment. Artiom Alhazov was also an invited speaker at CMC 12; his talk,
“Properties of Membrane Systems”, is cited in the references below and can be
helpful in clarifying some of the notions mentioned in the following problems.

Several problems related to the optimality of certain parameters appearing in
characterization of the computing power of various classes of P systems (sym-
port/antiport, insertion-deletion, with active membranes) and of their efficiency;
in particular, questions about the languages described (in the external mode) by
P systems are formulated.

Required Notions: symport/antiport, external output, active membranes, min-
imal parallelism, insertion-deletion

Note: in case the underlying definitions are not clear, all bibliography items in-
clude URLs of the associated publications (freely accessible .PDF files or springer-
link references). This made it possible to formulate the problems more concisely.

3.1 Minimal Parallelism and Number of Membrane Polarizations
(2006)

It is known, [1, 2] that under minimal parallelism, P systems with polarized active
membranes can solve intractable problems in a polynomial number of steps, even
without non-elementary membrane division and without membrane creation. How-
ever, the best known results deal with P systems using 6 (six!) polarizations, or 4
polarizations if non-standard rule types (evolution rules are applied sequentially
and may change the polarization) are used. Are these numbers optimal?

3.2 Membrane Systems Language Class (2010)

A fundamental family of languages is still not characterized: languages gener-
ated (in the sense of external output) by non-cooperative membrane systems.
It is known, [5, 4] that the best known lower bound for LOP (ncoo, tar) is
REG · Perm(REG) (strict inclusion), while the best known upper bound is
CS ∩ SLIN ∩P. An example of a difficult language in this family is
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{ Perm((abc)2k0)Perm((a′b′c′)2k1) · · · Perm((abc)2k2t)Perm((a′b′c′)2k2t+1)

| k0 = 1, 0 ≤ ki ≤ 2ki−1, 1 ≤ i ≤ 2t + 1, t ≥ 0}.

Open questions concerning comparison of the P systems language family with
particular language families and concerning particular closure properties are also
formulated in the above mentioned papers.

3.3 Dynamical Properties (2011)

It is well-known, e.g., that catalytic P systems are computationally complete, while
deterministic catalytic P systems are not.

In [3], an overview of a number of dynamical properties of P systems is given,
the most important one being determinism. In particular, five variants are recalled
where nondeterminism seems an essential source of the computational power (al-
though, as far as we know, no formal proof of power separation has been obtained),
with informal justification for the word “seems”:

1. P systems with active membranes, where except membrane separation, the
rules are non-cooperative and the membrane structure is static (solving SAT).

2. Non-cooperative P systems with promoters or inhibitors of weight not re-
stricted to one (universality).

3. Minimal combinations of alphabet size/number of membranes or cells (univer-
sality).

4. P systems without polarizations (universality).
5. Conditional uniport (universality).

The open question is, for any of the variants above, to formally prove that deter-
minism decreases the computational power of the corresponding systems (as it is
in the case of catalytic systems).

The post-proceedings version of [3] (i.e., the version appearing the LNCS vol-
ume) also proposes to study 6 new formal properties inspired by self-stabilization
concept.

3.4 Exo-Insertion/Deletion (2011)

This is the only open problem in this list that concerns P systems with string
objects. Consider P systems with string objects and operations of right or left
insertion or deletion of given strings. The problem is to find a characterization of
the power of P systems with exo-insertion of weight one and exo-deletion of weight
one without contexts (“exo” means leftmost or rightmost).

There exist the following partial results:

• Not computationally complete if operations (even both with weight two) are
performed anywhere in the string.

• Computationally complete if insertion has weight two.
• Computationally complete if deletion has weight two.
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• Computationally complete for tissue P systems.
• Computationally complete if deletion has priority over insertion (even without

deletion on the right).
• The lower bound is the family of regular languages (even with all operations

on one side).

3.5 Symport-3 in One Membrane (2005)

Reaching for universality by moving objects across a single membrane leads to
interesting combinatorial questions. While antiport roughly corresponds to rewrit-
ing, symport does not provide such an intuitive counterpart, although it remotely
resembles insertion/deletion or vector addition.

It is well known that the minimal size of symport rules for the universality in
one membrane is 3, [6]. The computational completeness is achieved there with 7
additional objects in the skin. It is not difficult to see that at least one object is
necessary, or only finite sets are generated.

Indeed, the only way to increase the number of objects is to send something out,
so that something comes back in, bringing something else. Generating any infinite
set means that such a procedure must be iterated. Hence, sending all objects out
cannot lead to halting.

Therefore, the lower bound for LOP1(sym3) is N7RE, while the upper bound
is N1RE ∪NFIN . It is an open problem to bridge (or at least decrease) the gap
by investigating what sets containing numbers smaller than 7 can be generated.
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4 Polymorphic P Systems
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Polymorphic P systems are briefly introduced (systems where the evolution
rules are produced dynamically, during the computation) and several problems
about their power and efficiency are formulated.

Required Notions: cell P systems, active membrane, complexity

Polymorphic P systems introduce a new feature into membrane computing.
This time the inspiration does not come from biology, but rather from conventional
computing and namely from von Neumann architecture. The point is in not fixing
the rules in the structural description of the P system, but rather storing them as
contents of membranes. This new construction has not yet been studied properly;
very little is known about the computational power of polymorphic P systems.

Formally, we define a polymorphic P system as a tuple

P = (O, T, µ, ws, w1L, w1R, . . . , wmL, wmR, φ, iout).

The set O is a finite alphabet, T ⊆ O is the set of output objects, µ is a tree
structure consisting of 2m + 1 membranes bijectively labeled with the elements
of H = {s} ∪ {iL, iR | 1 ≤ i ≤ m}. The skin membrane is labeled with s. It is
required that the parent membrane of iL is the same as the parent membrane of
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iR for all 1 ≤ i ≤ m. The string wh, h ∈ H, is the initial content of the membrane
with label h. The label iout indicates the region where the output of the system
will be read from. We will describe the mapping φ later on.

Observe that the description of the system does not include any rule. Instead,
the contents of the membranes with labels iL and iR are interpreted as the left-
hand side and right-hand side of the rule i respectively. At every step, the rules are
applied in the usual way. As a result of application of the rule i, the right-hand side
of the rule (the content of iR) is injected into φ(i). The latter mapping is defined as
follows: φ : {1, . . . ,m} → Tar, Tar = {inj | j ∈ H is an inner membrane of p} ∪
{out, here}, where p ∈ H is the label of the membrane containing the rule i (the
membranes iL and iR). For further information we refer the reader to [1].

Polymorphic P systems have not yet been explored sufficiently well. In the
following paragraphs we list some open problems which we find of interest.

• Solve hard problems. It has been shown that polymorphic P systems can solve
certain problems faster than any other P system model (for example, they
generate n2 in O(1) and generate 22

n

in O(n)). So far, only relatively simple
problems were considered, but we believe that the polymorphic model has the
potential to facilitate solving much harder problems. For example, possibilities
to find the Gröbner basis using polymorphic P systems are currently being
considered.

• Characterize problems which may be solved faster. A more general question, on
the other hand, is to define the class of problems which can be solved more
efficiently using polymorphic P systems. It has been observed that, for mul-
tiplication, linear speed-up was introduced; a much more systematic research
in this direction is necessary. In particular, it is unclear whether it is possi-
ble to use the polymorphism to construct exponential workspace for solving
intractable problems in polynomial time.

• Polymorphic P systems with active membranes. Polymorphic P systems are
a fairly simple model at the moment. This means, in particular, that certain
extensions are possible. We would like to particularly stress the perspectives of
considering polymorphic P systems with active membranes, where the mem-
brane structure itself does not stay constant. Such a combination is a very
powerful one, therefore it is important to establish some restrictions which will
define an as simple as possible, yet sufficiently powerful, construct.

• The power of the most restricted variant. Another way to explore polymorphic
P systems is characterizing the power of models with the minimal number of
additional ingredients (non-cooperative rules, no rules with empty left-hand
side, no target indications). In [1] it is shown that even this model can easily
achieve superexponential growth; it is important to know how powerful poly-
morphism on its own is.

• Self-assembly. Finally, we make the observation that rules in polymorphic P
systems may be treated as results of interaction of couples of initially indepen-
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dent membranes, which have gained additional capabilities by connecting to
each other. The whole polymorphic P system may be treated as a stage in the
process of interaction of membranes in a system of membranes. This brings
about, in particular, the question of self-assembly of membrane structures.
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5 P Colonies and dP Automata

Erzsébet Csuhaj-Varjú
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Required Notions: tissue-like P system, P colony, dP automaton

5.1 P Colonies

P colonies are variants of very simple tissue-like P systems, modeling a community
of very simple cells living together in a shared environment (for basic information
see [8]).

In the basic model, the cells (or agents) are represented by a collection of
objects and rules for processing these objects. The agents are restricted in their
capabilities, i.e., only a limited number of objects, say, k objects, are allowed to
be inside any cell during the functioning of the system. Number k is said to be
the capacity of the P colony. The rules of the cells are either of the form a → b,
specifying that an internal object a is transformed into an internal object b, or
of the form c ↔ d, specifying the fact that an internal object c is sent out of
the cell, to the environment, in exchange of the object d, which is present in the
environment. After applying these rules in parallel, a cell containing the objects
a, c will contain the objects b, d. With each cell, a set of programs composed of
such rules is associated. In the case of P colonies of capacity k, each program has
k rules; the rules of the program must be applied in parallel to the objects in the
cell.

The cells of a P colony execute a computation by synchronously applying their
programs to objects inside the cells and outside in the environment. At the be-
ginning of the computation, performed by a given P colony of capacity k, the
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environment contains arbitrarily many copies of a distinguished symbol e, called
the environmental symbol (and no other symbols); furthermore, each cell contains
k copies of e. When a halting configuration is reached, that is, when no more rules
can be applied, the result of the computation is read as the number of certain
types of objects present in the environment.

P colonies have been extensively examined during the years. It was shown that
these simple constructs are computationally complete computing devices even with
very restricted size parameters and with other syntactical or functioning restric-
tions. Several extensions of the model have already been investigated as well: P
colonies with dynamically varying environment (eco-P colonies) [1] or PCol au-
tomata [2], constructs where the behavior of the cells is influenced by direct im-
pulses coming from the environment step-by-step. In the case of a PCol automaton
a tape with an input string is given with the P colony, i.e., the model is augmented
with a string put on an input tape to be processed by the P colony.

Except PCol automata, P colonies have been considered as generating devices,
but the construct can also be considered as a (multiset) accepting device (called
accepting P colony or P colony acceptor), possibly working in an automaton-like
fashion as well. In the following we propose problems and problem areas in this
direction.

To define such a model, suppose that we have a P colony Π of capacity k and
initialize the environment with a given finite multiset of symbols M where each
symbol is different from the environmental symbol e. Let also consider an initial
configuration, i.e., let us dedicate an initial state to any cell and let us distinguish
a set of accepting configurations. Then, we say that M is accepted by Π, if after
performing a finite computation (in some computation mode) the environment
consists of only symbols e.

It is easy to see that we may consider several variants of this model. For ex-
ample,

• we can limit the number of symbols in the environment (not necessarily with
a finite constant, but with some function of the size of the P colony) and
study the computational power of these systems with limited workspace for
the computation,

• we can consider the multisets in the environment during the computation as
permutations of words (or map them to words in some other way) being on
the input tape of an automata and study the relation of these constructs and
classical automata;

• we can map the sequences of multisets of objects entering each cell during the
computation to words being on the input tape of a multitape or multihead
automata and describe the correspondence between these constructs and the
classical multitape or multihead automata variants.

By introducing double alphabets as in the case of dP automata for describing
two-way multihead finite automata ([3]), automata with two-way motion of heads
can also be interpreted in the framework of accepting P colonies.
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The concept of accepting P colonies can be extended in some other manners
as well. For example, we do not fix the number of cells in the P colony in ad-
vance but it is determined by the number of non-environmental symbols in the
environment at the beginning. Spatial P colonies can also be defined. In this case
spatial parameters are added to the cells and a neighborhood relation among the
components is given; a cell can import only such symbols from the environment
which were issued by its neighbors (are placed in its own environment).

Accepting P colonies can be related to cellular automata as well. One natural
idea is to define P colonies corresponding to one-way cellular automata, which
are linear arrays of identical copies of deterministic finite automata, called cells,
working synchronously at discrete time steps. Each cell is connected to its imme-
diate neighbors to the right. The cells are identified by positive integers. The state
transition depends on the current state of a cell itself and the current state of its
neighbor. An input word is accepted by a one-way cellular automaton if at some
step in the course of the computation the leftmost cell enters an accepting state.

A particular variant of one-way cellular automata is the one where only a fixed
number, say k, cells are given. This works similarly to the unrestricted case, but
the input is processed in a different manner, namely, the input is not given at the
beginning, but it is processed by the rightmost cell, symbol by symbol. Since the
neighborhood can be defined in P colonies with emitting special symbols (signals)
in the environment and any cell in the P colony may have only a finite number
of configurations (states), the reader may observe that the two computational
models, the accepting P colony and the k-cell one-way cellular automaton are
strongly related.

Obviously, more general cellular automata models can also be described by P
colony acceptors. For example, the above extension of the concept of P colonies
where the number of cells is determined by the number of initial non-environmental
symbols can correspond to the unrestricted case. We can also model d-dimensional
cellular automata (d ≥ 1) by defining the neighborhood relation between cells of
P colonies in an appropriate manner. Cellular automata theory has been a highly
elaborated field of nature-motivated, parallel computing (see, for example, [5],
[6], [7]), thus by building bridges between P colony theory and cellular automata
theory, many interesting problems can also be studied.

5.2 dP Automata

In addition to comparing accepting P colonies to variants of classical automata, we
may explore the differences and similarities between these constructs and (finite)
dP automata as well. A detailed study in this direction would also help in better
understanding the nature of these two constructs.

P automata are variants of antiport P systems accepting strings in an
automaton-like fashion (for a summary on P automata, see Chapter 6 of [8]). The
notion of a distributed P automaton (dP automaton in short) was introduced in
[9]. Such a system consists of a finite number of component P automata which have
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their separate inputs and which also may communicate with each other by means
of special antiport-like rules. A string accepted by a dP automaton is obtained
in [9] as the concatenation of the strings accepted by the individual components
during a computation performed by the system. A dP automaton is called finite
if it has only a finite number of different configurations.

The computational power of dP automata was studied in [9], [4], [10], and
[11]. In [3] a connection between finite dP automata and non-deterministic multi-
head finite automata was explored. It was shown that the language of a non-
deterministic one-way multi-head finite automaton and the language of a non-
deterministic two-way multi-head finite automaton can be obtained as so-called
weak agreement language or strong agreement language of a one-way, i.e., a usual
finite dP automaton, and a two-way finite dP automaton.

The reader may easily observe that finite dP automata, P colony acceptors and
cellular automata are closely related concepts. Their comparative study would be
a promising and very useful area in P systems theory.

Acknowledgement. Work supported in part by the Hungarian Research Fund
“OTKA”, project K75952.
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6 Spiking Neural P Systems
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Applications of spiking neural P systems are proposed and some problems
related to such applications are formulated.

Required Notions: spiking neuron, SN P system, spiking neural network

Spiking neural P systems (SN P systems, for short) were introduced in [4] as
a class of distributed and parallel computing models inspired by spiking neurons.
In an SN P system, the neurons are placed in the nodes of a directed graph.
The content of each neuron consists of a number of copies of a single object type,
called the spike. Each neuron contains a number of firing and forgetting rules.
Firing rules allow a neuron to send information to other neurons in the form of
electrical impulses (also called spikes) which are accumulated at the target cells.
The applicability of each rule is determined by checking the content of the neuron
against a regular set associated with the rule. A forgetting rule removes a specified
number of spikes from the neuron. In each time unit, if a neuron can use some of
its rules, firing or forgetting, then one of the rules must be used. The rule to be
applied is nondeterministically chosen.

One of the neurons is designated as the output neuron of the system, and
its spikes are also sent to the environment; their sequence is called the spike train
generated by the system. Several results of a computation can be defined associated
with the spike train (strings or numbers).

SN P systems use individual spikes allowing to incorporate spatial and temporal
information in computation, which corresponds to the fact that neurons use spatial
and temporal information of incoming spikes to encode their message to other
neurons, where the number and timing of spikes matters. In the above sense, SN
P systems fall into the third generation of neural network models [6].

Many computational properties of SN P systems have been studied (but many
of them raise further research topics, but we do not refer to them here). SN P sys-
tems were proved to be computationally complete as number computing devices
[4], language generators [1, 2], and function computing devices [8]. SN P systems
were also used to (theoretically) solve computationally hard problems in a feasible
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time [5, 7]. In contrast with the relatively rich theoretical results, the practical
applications of SN P systems are few (although some attempts are already made,
e.g., Hebbian learning in the framework of SN P systems [3]). However, as a repre-
sentative of the third generation of neural network models, spiking neural networks
(SNNs) could have very hands-on applications such as speech recognition, learn-
ing, associative memory, function approximation (see, e.g., Information Processing
Letters, 95, 2005), and have proved to be useful in neuroscience. It is interesting
to move the SN P systems investigations towards applications. In the following,
we list some problems which we find of interest.

• In SN P systems, the use of spike timing information is based on regular ex-
pressions, which can be considered as an integrate-and-fire scheme. The scheme
of regular expressions is quite different from the traditional ones, such as the
sigmoidal scheme. What is the advantage of the scheme of regular expressions
from the application point of view? Can the two schemes (the regular expres-
sion and the sigmoidal one) be related?

• What ingredients can be added to SN P systems for practical applications
(maybe, noise, randomness)?

• What are the specific real world problems where SN P systems have a practical
advantage over other SNNs?

• How can some variants of SN P systems be designed such that they would deal
with features of more biological plausibleness?
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Gräz, 1997

7. L. Pan, Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems with neuron division
and budding. Science China Information Sciences, 54 (2011), 1596–1607.
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7 Control Words Associated with P Systems
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Ways to associate a control word with a computation in a P system are pro-
posed and some of the problems which are natural to be investigated in this respect
are mentioned.

Required Notions: Szilard language, Chomsky hierarchy, cell P system, SN P
system, parallelism

Control words are almost never considered in membrane computing – actually,
we know no paper dealing with this issue, although generating or recognizing
languages are central research topics (with the languages identified by the sequence
of symbols entering or leaving a P system, or by traces of certain symbols in their
passage across membranes). The reason is the fact that in the same step of a
computation several rules are used, possibly with several labels, hence the control
word is not clearly defined. On the other hand, a sort of bidimensional control
word was introduced already during the first BWMC, in [1], under the name of
Sevilla carpet, as a way to describe the rules used in a computation and their
multiplicity in each step, but not as a way to define a control language associated
with the computations in a P system.

A possible solution to the above difficulty is to consider a sequence of multi-
sets of labels, those labels associated with all rules applied in a given step. Then,
a string of symbols can be obtained following the ideas also used for accepting
P systems: take a function from multisets to strings and build the string(s) ob-
tained by concatenating the strings associated with the multisets. For instance, all
permutations of the labels in a multiset can be considered, as in [3], or only one
specific string (maybe a symbol) associated with the multiset, like in [2].

Another idea was recently introduced in [4], starting from the following restric-
tion: all rules used in a computation step should have the same label, or they can
also be labeled with λ.

The definition in [4] is given for SN P systems, but it works for any type of P
systems, not only for SN P systems.
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Indeed, let us consider a P system Π, of any type, with the total set of rules (the
union of all sets of rules associated with compartments, membranes, neurons – as
it is the case) denoted with R. Consider a labeling mapping l : R→ B∪{λ}, where
B is an alphabet. We consider only transitions s =⇒b s′, between configurations
s, s′ of Π, which use only rules with the same label b and rules labeled with λ. We
say that such a transition is label restricted. With a label restricted transition we
associate the symbol b if at least one rule with label b is used; if all used rules have
the label λ, then we associate λ to this transition. Thus, with any computation in
Π starting from the initial configuration and proceeding through label restricted
transitions we associate a (control) word. Consider also a criterion C of the correct
termination of a computation (e.g., halting or reaching a configuration from a
given set F of final configurations, or both of these, etc.) The language of control
words associated with all label restricted computations in Π which are correctly
terminated (with respect to C) is denoted by SzC(Π) (with Sz coming from Szilard,
as usual in language theory).

Now, a series of natural problems can be formulated: investigate the languages
of control words for (i) various classes of P systems, with (ii) various criteria C, in
particular, (iii) allow only transitions which use at least a rule labeled by b ∈ B.
When λ transitions are accepted, characterizations of RE languages are expected,
but when each step produces a symbol, there is no possibility for “hidden work”,
the computation has the same length as the control string, so that the generated
language is recursive. In this latter case the comparison with language families in
Chomsky hierarchy is of interest (with the conjecture that languages of the forms
{xx | x ∈ V ∗}, {xxR | x ∈ V ∗}, where card(V ) ≥ 2 and xr is the mirror image of
x, cannot be obtained as the language of control words of a P system.

In particular, the languages SzC(Π) can be associated with SN P systems,
with or without anti-spikes. We expect interesting (language theory) results in
this research area.
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The issue of efficient parallelization of languages with respect to dP automata
is discussed (especially, the dependence on the multiset-to-strings functions which
are used to define the input language).

Required Notions: Regular language, context-sensitive language, P automata
and dP automata (accepted multiset sequence, input mapping, accepted language)

This section deals with the possibility of speeding up P automata computations
(in a similar sense as a linear speedup for Turing machines is possible), a problem
which is important from the point of view of the efficiency of the parallelization of
P automata computations with distributed P automata.

A P automaton, introduced in [2], is an antiport P system placed in an environ-
ment, from where a sequence of input multisets is read during the computation. A
multiset sequence is accepted, if the computation ends in an accepting configura-
tion, and the accepted multiset sequence is interpreted as a string (a sequence of
symbols) using a so called input mapping f : V ∗ → 2T

∗
where T is a finite alphabet

and V is the object alphabet of the P automaton. (We assume that f is noneras-
ing, that is, f(u) is the empty word for some multiset u ∈ V ∗, if and only if u is
empty.) The language accepted by a P automaton Π with respect to f is defined
as L(Π, f) = {f(v1) . . . f(vs) | v1, . . . , vs is an accepted multiset sequence of Π}.

It is obvious that the choice of the mapping f has a great influence on the
accepting power of the P automaton, so let us take a closer look at the mappings
we can use.

Let f : V ∗ → 2T
∗
, and (1) let us denote f with fperm, if and only if V = T ,

and for all v ∈ V ∗, we have f(v) = {u | u is a permutation of v}. Moreover, (2)
we say that f ∈ TRANS, if and only if for any v ∈ V ∗, we have f(v) = {w}
for some w ∈ T ∗ which is obtained by applying a finite transducer to the string
representation of the multiset v (as w is unique, the transducer must be constructed
in such a way that all string representations of the multiset v as input result in the
same w ∈ T ∗ as output, and moreover, as f should be nonerasing, the transducer
produces a result with w ̸= λ for any nonempty input).

Let us recall from [6] that there are simple linear languages which cannot be
accepted by P automata with fperm, for example L = {(ab)n(ac)n | n ≥ 1} is
such a language. On the other hand, the class of languages accepted with fperm
also contains non-context-free context-sensitive languages ({anbncn | n ≥ 1} for
example), which means that it is incomparable with the class of linear and of
context-free languages. (Although it contains all regular languages, see [3].) In
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contrast to these results, systems with input mappings from the class TRANS
characterize the class of context-sensitive languages (see [1] for details).

The notion of distributed P automaton (dP automaton) was introduced in
[5] to incorporate a “different kind of parallelism” into P systems: the compo-
nents of a dP automaton are P automata which process different parts of the
input in parallel. The language L ⊆ T ∗ accepted by a dP automaton consists of
words of the form w1w2 . . . wk where wi ∈ T ∗ are strings accepted by the com-
ponent Πi, 1 ≤ i ≤ k, during a successful computation. Let f = (f1, . . . , fk)
be a mapping f : (V ∗)k → (2T

∗
)k with fi : V ∗ → 2T

∗
, 1 ≤ i ≤ k, being non-

erasing, and let L(dΠ, f) = {w1 . . . wk ∈ T ∗ | wi ∈ fi(vi,1) . . . fi(vi,si), 1 ≤ i ≤
k, where vi,1, . . . , vi,si is an accepted multiset sequence of the component Πi}.

A language is efficiently parallelizable, as defined in [5], if it can be accepted
by a dP automaton in “less” computational steps than by any non-distributed
P automaton, that is, L is (k, l,m)-efficiently parallelizable with respect to a class
of mappings F , for some k,m > 1, l ≥ 1, if L can be accepted with a dP automaton
dΠ with k components, such that L = L(dΠ, f) for some f ∈ F with Com(dΠ) ≤
l, and moreover, for all P automata Π and f ′ ∈ F such that L = L(Π, f ′),

limx∈L,|x|→∞
timeΠ(x)

timedΠ(x)
≥ m

where timeX(x) denotes the number of computational steps that a device X needs
to accept the string x, and where Com(dΠ) denotes the maximal amount of com-
munication (measured in some reasonable way, see [5]) between the components
of the dP automaton dΠ during an accepting computation.

By looking at the quotient in the definition above, we might see that a language
cannot satisfy the requirement of efficient parallelizability if the dividend (that is,
the time that a non-distributed P automaton needs to accept the language) can be
made arbitrarily small. This leads us to the problem of the possibility of speeding
up P automata computations.

Recall that for Turing machines, a linear speedup is always possible by appro-
priately encoding the contents of the worktapes, but as the input usually has to
remain in its original form on the input tape, the resulting time complexity can-
not be less than the length of the input word (see, for example, [4]). Such a lower
bound does not necessarily exist in the case of P automata, while the input itself
is also “encoded” by the input mapping, so using different mappings, it might be
possible to “read” the same word in several different ways, possibly also in different
numbers of computational steps.

To demonstrate this, let us recall from [8] that for any regular language L and
constant c > 0, there exists a P automaton Π such that L = L(Π, f) for some
f ∈ TRANS, and for any w ∈ L with |w| = n it holds that timeΠ(w) ≤ c ·n. This,
as we outlined above, implies that there are no efficiently parallelizable regular
languages with respect to the class of input mappings TRANS. The situation
is different, however, if instead of an input mapping from the class TRANS, we
consider fperm. There are regular languages (called “frozen” in [7]) where the
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order of no two adjacent symbols can be exchanged, thus, each of them has to
be read in different computational steps, which means that the computation of
the P automaton cannot be shorter than the length of the input. Thus, it is not
surprising that there are efficiently parallelizable regular languages with respect
to fperm, as shown in [5].

So far all cases of efficient parallelizability were demonstrated with respect to
the input mapping fperm, which makes it interesting to ask the following.

Problem. Are there languages (over some finite alphabet T ) accepted by P au-
tomata with object alphabet V which are (k, l,m)-efficiently parallelizable for some
k,m > 1, l ≥ 1, with respect to some input mapping f : V ∗ → 2T , such that
f ̸= fperm?

In this context, it would also be interesting to prove the impossibility of efficient
parallelization of not just the regular, but also of some more general language
classes with respect to a class of input mappings different from fperm (with respect
to TRANS for example). To this aim, it would be sufficient to find a general method
which (similarly to the case of Turing machines) would enable us to show that with
a certain type of input mappings (TRANS for example, as it is the case for regular
languages) a linear speedup of P automata is always possible.
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Springer, 2003, 219–233.
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The title is self-explanatory – it should be mentioned that the Milano team
has important contributions related to the (time and space) complexity issue, and
mainly open problems related to these results are formulated below.

Required Notions: active membranes, computational complexity theory (includ-
ing counting problems and oracle Turing machines), space complexity for P systems

Problem 1 (P systems with elementary active membranes). P systems
with active membranes [8] are known to be able to solve computationally hard
problems in polynomial time by creating exponentially many membranes via di-
vision. The most recent result in this area [6] shows that polynomial-time Turing
machines having access to an oracle for a PP [1] problem (whose computing power
includes the polynomial hierarchy [10]) can be simulated by uniform families [4]
of P systems with active membranes where the only membranes subject to divi-
sion are elementary (i.e., not containing further membranes), and no dissolution
rules are needed. This result is stated, in symbols, as PPP ⊆ PMCAM(−d,−n).
On the other hand, this kind of P systems cannot solve in polynomial time any
problem outside PSPACE [9], in symbols PMCAM(−d,−n) ⊆ PSPACE. Neither
inclusion is known to be proper.

Is PMCAM(−d,−n) = PSPACE or, more generally, is there a precise charac-
terization of PMCAM(−d,−n) in terms of complexity classes for Turing machines?

Problem 2 (Space complexity of P systems with active membranes). A
measure of space complexity for P systems has been recently introduced [5] in
order to supplement the already rich literature about computational complexity
issues in membrane computing [3]. We say that the space required by a P system
is the maximal size it can reach during any computation, measured as the sum
of the number of membranes and the number of objects. A uniform family Π of
recognizer P systems [4] is said to solve a problem in space f : N→ N if no P sys-
tem in Π associated to an input string of length n requires more than f(n) space.
Under this notion of space complexity, the class of problems solvable in polyno-
mial space by P systems with active membranes, denoted by PMCSPACEAM,
coincides with PSPACE [7]. Furthermore, during the 10th Brainstorming Week
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on Membrane Computing it was also proved that the problems solvable in expo-
nential space by that variant of P systems and by Turing machines coincide, in
symbols EXPMCSPACEAM = EXPSPACE.

The techniques used to prove these results do not seem to apply when the space
bound is less strict, i.e., super-exponential. Do these kinds of P systems with active
membranes also exhibit the same computing power as Turing machines working
under the same space constraints?

It might also be interesting to analyze the behavior of families of P systems
with active membranes working in logarithmic space. In this case, there are two
complications. First of all, we must slightly change the notion of space complex-
ity, in order to allow for a “read-only” input multiset that is not counted when
the space required by the P system is measured (similarly to the input tape of a
logspace Turing machine). Furthermore, the notion of uniformity used to define
the families of P systems should be weakened, since polynomial-time Turing ma-
chines constructing the families might be able to solve the problems altogether by
themselves. More general forms of uniformity have already been investigated [2],
and that work is going to be useful when attacking this problem.
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10 The P-Conjecture and Hierarchies
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The P conjecture deals with the power of polarizations associated with the
membranes of a P system with active membranes (looking for the borderline be-
tween efficiency and non-efficiency in this framework).

Required Notions: active membranes (without charges), weak non-elementary
membrane division, elementary membrane division, dissolution rules, recognizer P
systems, uniform families

Conjecture 1 (The P-conjecture (Problem F in [8])). The class of all decision prob-
lems solvable in polynomial time by active membranes without charges, using evo-
lution, communication, dissolution, and division rules for elementary membranes,
is equal to P.

Attempting to resolve the P-conjecture and its restrictions [1, 3, 4, 5, 9, 10] has
resulted in many interesting new techniques, such as dependency graphs [3], for
proving upper-bounds on membrane systems. Hopefully solving the P-conjecture
will need new tools that yield deep revelations and open new questions into the
nature of P-systems.

If the P-conjecture is proved to be true, then membrane systems with elemen-
tary division rules characterize P while those with weak non-elementary division
rules characterize PSPACE [1, 9]. The deterministic class P is also the 0th level
of Polynomial Hierarchy [6]. The complete problems of each successive level of
the hierarchy seem to require increasing interleaving of nondeterminism and co-
nondeterminism. The union of all levels is referred to as PH which is contained in
PSPACE.

Characterizing each level of the Polynomial Hierarchy with a single model
might give us clues to the role of nondeterminism in P systems. For example,
could it be that division of different numbers of nested membranes is the membrane
computing equivalent of alternating universal and existential nondeterminism?

Conjecture 2. Uniform families of active membrane systems using weak non-
elementary division, without charges, and with a membrane structure of depth
d + 1 can solve exactly those problems complete for the dth level of the Polyno-
mial Hierarchy.

Some ideas for showing the lower-bound of this conjecture can be found in [7].
Continuing with the idea of hierarchies, a characterization of each level of

the NC (or AC) hierarchy [6] may shed new light on the role of parallelism in
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membrane systems. The NC hierarchy represents a spectrum of problems ranging
from constant time, to parallel logarithmic time, up to and (it is conjectured) not
including the seemingly inherently sequential P [2]. A good place to start learning
more about the factors that limit and permit parallelism in P systems might be

a membrane characterization of the NC
?
= P problem (the so called “frontier of

parallelism”).

Problem 3. Is it possible to parameterize a resource or rule of a membrane com-
puting model such that when the parameter is i it characterizes the ith level of
the NC or AC hierarchy.
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11 Seeking Sharper Frontiers of Efficiency
in Tissue P Systems
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Miquel Rius-Font2, Álvaro Romero-Jiménez1
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In a P system, there are several ingredients which concur to their efficiency;
varying them, one can get efficient systems (able to solve computationally hard
problems in polynomial time) or non-efficient systems (e.g., solving NP-hard prob-
lems in an exponential time). The borderline between efficiency and non-efficiency
is thus a problem of a central interest. This issue is explored here for tissue P
systems, where the respective research started later than for cell P systems.

Required Notions: tissue P systems, complexity classes, cell division, cell sepa-
ration, symport/antiport rule

A tissue P system with symport/antiport rules Π = (Γ, E ,M1, . . . ,Mq,R, iout),
of degree q ≥ 1 can be viewed as a set of q cells, labeled by 1, . . . , q, with an
environment labeled by 0 which initially have an arbitrary number of copies of some
kind of objects, and a set of rules which can be of several types: communication,
division or separation (see [3, 4] for details).

For each natural number k ≥ 1, TDC(k) (respectively, TDS(k) or TDA(k))
is the class of recognizer tissue P systems with cell division and communication
rules (allowing only symport or antiport rules, respectively) of length at most
k. Similarly, by considering separation rules instead of division rules, we denote
TSC(k), TSS(k) and TSA(k) respectively. We denote by PMCR the set of all
decision problems which can be solved in a uniform way and polynomial time by
means of families of systems from a class R of recognizer tissue P systems.

(A) Tissue P systems with cell division and with cell separation

By using the dependency graph technique, it has been proved that P =
PMCTDC(1) = PMCTSC(1) [2, 3]. Furthermore, efficient and uniform solutions
to the SAT problem by using systems from TDC(3) [1] and from TSC(8) [3] have
been given. Recently, the last result has been improved to SAT ∈ PMCTSC(3) [6].

Problem 1. Assuming P ̸= NP, in the framework of tissue P systems with cell
division/cell separation, a frontier of the tractability is obtained when passing from
communication rules with length 1 to communication rules with length at most 3.
Does passing from 1 to 2, amounts to passing from non–efficiency to efficiency?
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Conjecture: NP ∪ co-bfNP ⊆ PMCTDC(2).

(B) The role of direction in communication rules

Next, we deal with complexity aspects of tissue P systems with cell divison/celll
separation where only symport or antiport rules are allowed. We have: P =
PMCTDA(1) = PMCTSA(1), and NP ∪ co−NP ⊆ PMCTDA(3) ∩PMCTSA(3).
Thus, assuming P ̸= NP, a first frontier between efficiency and non-efficiency is
obtained in the above framework when passing from communication rules with
length 1 to communication rules with length at most 3.

Problem 2. What about the complexity classes PMCTDA(2), PMCTSA(2),
PMCTDS(k) and PMCTSS(k), for all k ≥ 1?

Conjecture: P = PMCTSA(2), and for all k ≥ 1, P = PMCTSS(k).

If this conjecture is true, then passing from symport rules to antiport rules
with length at least three, amounts to passing from non–efficiency to efficiency, in
the framework of tissue P systems with cell separation.

(C) The role of the environment

Classical tissue P systems have a special alphabet associated with the envi-
ronment, whose elements appear at the initial configuration of the system, in an
arbitrary large amount of copies. What may happen if this property is removed,
that is, if the alphabet associated to the environment were empty? We use a “hat”
to indicate the case when the environment is initially empty.

Recently, have been proved that, for each k ≥ 1, PMCT DC(k) =
PMCT̂ DC(k) [5], that is, in the framework of tissue P systems with cell division

the role of the environment is not relevant from the complexity point of view.

Conjecture: For each k ≥ 1, P = PMCT̂ SC(k).

If this conjecture is true, then in the framework of tissue P systems with cell
communication the following holds: (a) passing from separation rules to division
rules (length at least three) amounts to passing from non–efficiency to efficiency;
and (b) the environment provides a new borderline of efficiency.
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12 Time-Free Solutions to Hard Computational Problems

Matteo Cavaliere

National Center for Biotechnology, CNB - CSIC, Madrid, Spain
mcavaliere@cnb.csic.es

P systems are usually synchronized, a unique clock marks the time for all com-
ponents, and in each time unit each component evolves (usually, in the maximal
parallel manner). In time-free (and clock-free) systems, this strong assumption is
removed. Up to now, the efficiency of P systems was not investigated also for this
case.

Required Notions: Time-free P system, synchronization, recognizing P system,
uniform/semi-uniform solution.

12.1 Motivations

Living cells have division rates that are highly heterogeneous (even in identical
environmental conditions), consequence of their stochastic gene expression, [1].
Therefore, the possibility of programming living cells should not assume the pres-
ence of uniform replication rates. Ideally, one should construct “cellular comput-
ers” whose functioning is independent of cellular division rates. We suggest that
such problem can be addressed in the framework of membrane computing by ex-
tending the notion of time-freeness ([4]) to the idea of semi-uniform solutions of
computational problems based on membrane divisions ([3]).

12.2 Timed Recognizer P Systems

From [4] we recall the notion of timed P system.
A timed P system Π(e) can be constructed by adding to a (standard) P system

Π a time-mapping e : R −→ N, where R is the set of rules of Π. The time-mapping
specifies the execution times for the rules.

A timed P system Π(e) works in the following way. We suppose to have an
external clock that marks time-units of equal length (called steps), starting from
step 0, when the system is present in its initial configuration.
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At each step, all the rules that can be started, in each region, and for each
membrane have to be started (maximal parallel and nondeterministic use of rules).
When a rule r is started at step j, then its execution terminates (the rule is com-
pleted) at step j + e(r), that means the rule lasts e(r) steps. The objects and the
membranes produced by the rule are available – can be subject of other rules – only
starting from the step j+e(r)+1. When a rule r is started, then the occurrences of
symbol-objects and the membrane subject by this rule cannot be anymore subject
of other rules.

A computation halts when no rule can be started in any region and there
are no rules in execution (such configuration is called halting). We say that the
computation halts in k steps, if the external clock marks step k when the last rules
of the computations are completed.

From [3] we recall the notion of recognizer P systems. A decision problem X
is a pair (IX , ΘX) where IX is a countable language over a finite alphabet (the
elements are called instances), and ΘX is a predicate (a total boolean function)
over IX .

A recognizer P system is a P system such that: (i) the working alphabet contains
two distinguished elements yes and no; (ii) all computations halt; and (iii) if C is
a computation of the system, then either object yes or object no (but not both)
must have been released into the environment, and only when the last rules of the
computation have been completed.

We extend recognizer P systems by proposing the following timed variant: a
recognizer timed P system is a timed P system with properties (i), (ii), (iii) above.

In recognizer timed P systems, we say that a computation is an accepting com-
putation (respectively, rejecting computation) if the object yes (respectively, no)
appears in the environment associated with the corresponding halting configura-
tion.

12.3 Time-Free Solutions to Decision Problems

Let X = (IX , ΘX) be a decision problem. Let Π = Πu, u ∈ IX , a (countable)
family of recognizer P systems.

We say that the family Π is sound (with respect to X) if for each instance of
the problem u ∈ IX such that there exists an accepting computation of Πu, we
have ΘX(u) = 1.

We say that the family Π is complete (with respect to X) if for each instance of
the problem u ∈ IX such that ΘX(u) = 1, every computation of Πu is an accepting
computation.

We say that the family Π is polynomially bounded if there exists a polynomial
function p(n) such that, for each u ∈ IX , all computations in Πu halts in, at most,
p(|u|) steps.

We can now formalize the original motivations: A solution to a problem is time-
free if its soundness, its completeness and its polynomial bound do not depend on
the time of execution associated to the rules of the constructed systems.
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We say that the family Π is time-free sound (with respect to X) if, for any
time-mapping e, the family Πe = Πu(e), u ∈ IX , is sound with respect to X.

We say that the family Π is time-free complete (with respect to X) if, for any
time-mapping e, the family Πe = Πu(e), u ∈ IX , is complete with respect to X.

We say that the family Π is time-free polynomially bounded if, for any time-
mapping e, the family Πe = Πu(e), u ∈ IX , is polynomially bounded.

We can now adapt the definition of semi-uniform solutions, as given in [3], and
consider time-free semi-uniform solutions.

Let X = (IX , ΘX) a decision problem. We say that X is solvable in a time-
free polynomial time by a family of recognizer P systems Π = Πu, u ∈ IX , if the
following are true:

• the family Π is polynomially uniform by a Turing machine; that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Πu from the instance u ∈ IX .

• the family Π is time-free polynomially bounded.
• the family Π is time-free sound and time-free complete (with respect to X).

We say that the family Π is a time-free semi-uniform solution to the decision
problem X.

In other words, to provide a time-free solution one must construct the family of
systems Π in polynomial time (sequential time by deterministic Turing machines)
and the constructed family must be “fast” (polynomially bounded), sound and
complete with respect to the considered problem X, and these properties must
be independent of the execution time of the rules (i.e., they must be fulfilled
independently of the time-mapping considered).

The definition of time-free semi-uniform solution captures the problem infor-
mally discussed in the Motivations. The basic question consists in finding a class
of membrane systems for which it is possible to construct time-free semi-uniform
solutions to hard computational problems. The simplest possibility is to transform
the solutions already present in literature into time-free solutions (e.g., could the
solution given in [2] be adapted to become a time-free solution?).

Another interesting problem is to find classes of membrane systems that are
powerful enough to solve complex problems, but simple enough to allow an auto-
matic (i.e., algorithmic) checking of their time-freeness.
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Following the model of hypercomputation (computing beyond the “Turing bar-
rier”), we propose here the term fypercomputation to name the research area of
“solving polynomially problems which are (at least) NP-complete”. Some ideas
from/for MC are mentioned.

Required Notions: membrane division, membrane creation, hypercomputing,
SN P system, reaction system, accelerated P system

Looking for ideas which would lead to computing devices able to compute “be-
yond the Turing barrier” is already a well established research area of computing
theory; such devices are said to be able of doing hypercomputations. It is also a
dream and a concern of computability to speed-up computing devices; a name
was proposed in [7] (the idea was further elaborated in [8]) for the case when this
leads to polynomial solutions to problems known to be (at least) NP-complete:
fypercomputing – with the initial F coming from “fast”.

In short: fypercomputing means going polynomially beyond NP.
The model we have in mind is that of hypercomputations, already with a large

literature (we only mention the recent survey from [10]). More than a dozen of
ideas were proposed and proved to reach the goal of computing “beyond Turing”:
oracles (already considered by Turing), introducing real numbers in the device,
accelerating the functioning of machines, using ingredients of an analogical nature
and so on. Many of these ideas can probably lead not only to hypercomputations,
but also to fypercomputations, both in MC and in other frameworks.

Although not clustered under a good name, such as hypercomputation (there
are periodical meetings dedicated to this research direction), there also are many
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papers which can be placed under the flag of fypercomputing. They exploit ideas
from physics, such as [9], propose analogical computations, such as [1]. Also the
area of DNA computing is full of such ideas.

The literature of membrane computing abounds in papers dealing with fyper-
computations. In most cases, polynomial solutions to NP-complete problems –
often, also of PSPACE-complete problems – are obtained, by making use of a
space-time trade-off, with the space obtained during the computation, by means
of operations inspired from biology. The most investigated operations of this kind
are membrane division (with variants: separation, budding, etc.) and membrane
creation.

Further two similar ideas were also explored. The first one is based on string
replication (see [3] for details), the second one is that of considering arbitrarily large
pre-computed resources (see, e.g., [6]), but the last idea is only briefly investigated
so far. Issues related to the conditions to be imposed to the given pre-computed
resources should be further considered.

Three more ideas, essentially different from the previous ones, were proposed
in [8] and need additional research efforts.

(1) The first candidate is the acceleration, an old one in computer science: a
“clever” computing device learns from its own functioning; after performing a step
in a time unit, it performs better for the second step, which is completed in half
of the time necessary for the first step – and so on, at each step halving the time
with respect to the previous step. If the first step takes one time unit, then the
second one takes 1/2 time units, the third one 1/4 and so on, hence in two time
units the computation ends.

Important: we have here two clocks, an internal one, of the machine, and an
external one, of the observer. The internal clock is faster and faster, so that the
computation ends in two time units measured by the external clock, that of the
observer/user.

Accelerated Turing machines can solve the halting problem, hence they com-
pute what usual Turing machines cannot. See references in [2], where the idea is
extended to P systems: starting from the biological observation that “smaller is
faster” and using membrane creation rules to create “faster reactors” (inner mem-
branes), in an unbounded hierarchy, one can obtain P systems which “compute
the uncomputable”.

This trick can be used also in complexity, but we have to be cautious: we ac-
celerate in order to get a speed-up... In two (external) time units we solve any
problem, whatever complex it is. A way to make the things interesting is to ac-
celerate only parts of a P system, thus having several levels of time speed. For
instance, we can accelerate only (i) some elementary membranes, or (ii) only some
rules (a given rule takes one time unit for the first application, half for the second
application, and so on), or (ii) to have “accelerated objects” (the descendants of
an object react faster than the father object, irrespective which are the rules which
act on them and irrespective of the membranes where they are). Precise definitions
should be found and their usefulness explored.
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(2) The previous ideas suggest the following speculation. We mentioned that
we have (at least) two clocks, an external one, of the observer (or of the higher
membranes in the structure) and the local clock(s), of the accelerated element,
membrane, rule, object. Always, the inner clock is (much) faster than the external
one, it performs sometimes an exponential number of steps while the external one
only ticks once. We can then imagine that the inner time is orthogonal to the
external time, hence the time has a 2D structure: the observer only senses one
dimension of time, but certain “processors” can run along the other dimension,
doing computations at-no-time for the observer. This looks very much as using
oracles. Again, good definitions have to be found and explored.

(3) One further idea, proved in [8] to lead to fypercomputations comes from
the recently introduced reaction systems (we call them R systems) – see [4], [5].
One of the crucial postulates of R systems concerns the fact that one works with
ω multisets: an object either is not present, or it is present in arbitrarily many
copies. This assumption can be extended also to P systems. More exactly, we
consider P systems which contain certain distinguished elementary membranes,
whose objects are present in arbitrarily many copies (for instance, if an object
a is introduced from outside in such a membrane, then inside the membrane it
immediately becomes aω). In [8], such a system is called ωP system and it is
proved that SAT can be solved (in a uniform way) in a polynomial time by an ωP
system.

The construction in [8] uses cooperative rules; we do not know whether the
result can be improved by imposing the restriction to use only non-cooperative
rules.
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Extensions of numerical P systems motivated by using such systems in robot
controlling are mentioned and problems occurring in this framework are formu-
lated.

Required Notions: numerical P system, complexity, promoters-inhibitors, cata-
lyst

Numerical P systems are a class of computing models (introduced in [5]; see
also Chapter 23.6 of [6]) inspired both from the cell structure and economics:
numerical variables evolve in the compartments of a cell-like structure by means of
so-called production–repartition programs. The variables have a given initial value
and the production function is usually a polynomial, whose value for the current
values of variables is distributed among variables in the neighboring compartments
according to the “repartition protocol”. In this way, the values of variables evolve;
all positive values taken by a specified variable are said to be computed by the P
system.

These systems were recently used in a series of papers (see references in [1]) for
implementing controllers for mobile robots; in this framework the P systems work
in the computing mode: an input is introduced in the form of the values of some
variables and an output is produced, as the value of other variables. Furthermore,
in the robot control context, the so-called enzymatic numerical P systems were
introduced and used, [2], [3], [4]. Such systems correspond to catalytic P systems
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in the “general” membrane computing: a program is applied only if the value of
the associated enzyme is strictly greater than the smallest value of any variable
involved in the production polynomial. Enzyme variables are not consumed or
produced by the rules which they catalyze, but can be changed by the rules for
which they do not act as catalysts. Therefore, their values can evolve during the
computational process.

Tissue numerical P systems are also considered in [8], with parallel use of
programs. If in each membrane, at each step, we use a maximal set of programs
(programs are selected nondeterministically, and a set of programs is applied only
if it is maximal, no further program can be added to it in such a way that the new
set is still applicable). Two possibilities appear: (i) a variable can appear only in
one production function, and this is the only restriction in choosing (nondetermin-
istically) the programs to apply in a step, and (ii) if two or more programs which
are enabled at a computation step, i.e., they satisfy the condition imposed by the
associated enzymes, share variables in their production functions, then they will
all use the current values of those variables (we denote this with allP).

A large variety of classes of numerical P systems appears in this way: (1)
enzymatic or non-enzymatic, (2) deterministic or nondeterministic, (3) sequential,
all-parallel, one-parallel, (4) used in the generating, computing, accepting mode;
further variants can be added. By combining all these, a plethora of classes of
numerical P systems appear.

We do not recall here the definition of numerical P systems, with or without
enzyme control, but we refer the reader to the papers mentioned above.

We only mention that the family of sets of numbers N+(Π) computed by
numerical P systems Π with at most m membranes, production functions which are
polynomials of degree at most n, with integer coefficients, with at most r variables
in each polynomial, is denoted by N+Pm(polyn(r), seq), m ≥ 1, n ≥ 0, r ≥ 0,
where the fact that we work in the sequential mode (in each step, only one program
is applied) is indicated by seq. If one of the parameters m,n, r is not bounded, then
it is replaced by ∗. (Both in N+(Π) and in N+Pm(polyn(r), seq), the superscript
+ indicates the fact that as the result of a computation we only consider positive
natural numbers, zero excluded. If any value is accepted, then we remove the
superscript +.) When tissue systems are used, we write NtPm(polyn(r), α, β).

Here are a few results from [5] and [8].

Theorem 1. NRE = N+P8(poly5(5), seq) = N+P7(poly5(6), seq) =
NP7(poly5(5), enz, seq) = NtP∗(poly1(11), enz, oneP ) =
NP254(poly2(253), enz, allP, det).

Whether or not the parameters appearing in these results are optimal or not
is an open problem.

Only a few of the many cases mentioned above were so far investigated, the
other ones wait for research efforts.

In particular, we have seen that enzymes improve the universality results in
terms of the complexity of used polynomials, both in the cell-like case and the
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tissue-like case, provided that the evolution programs are used in a parallel manner.
However, two different types of parallelism were used in the two cases; can the one-
parallel mode (used for tissue P systems) be used also in the cell-like case?

Similar extensions of “general” notions in membrane computing to numerical P
systems remain to be examined, and this is a rich research topic. For instance, other
ways of using the programs can be considered: minimally parallel, with bounded
parallelism, asynchronously. Then, we can also consider rules for handling mem-
branes, such as membrane division and membrane creation. These operations are
the basic tools by which polynomial solutions to computationally hard problems,
typically, NP-complete problems, are obtained in the framework of P systems with
symbol objects. Is this possible also for numerical P systems?

A current issue in membrane computing is to find classes of P systems which
are not universal. This extends also to numerical P systems.

Of course, a natural research topic is to further explore the use of numerical P
systems in controlling robots. In this framework, an important question is to de-
velop a complexity theory based on numerical P systems: define specific complexity
classes, compare them with existing classes, look for ways to speed-up computa-
tions (see also the previous suggestion, to bring to numerical P systems further
ideas investigated for symbol object P systems, in particular, tools to create an
exponential working space in polynomial time).

And so on and so forth, a wealth of research ideas, which supports our belief
that numerical P systems deserve further research efforts.
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5. Gh. Păun, R. Păun: Membrane computing and economics: Numerical P systems.
Fundamenta Informaticae, 73 (2006), 213–227.
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ical P systems. Submitted, 2011.



Frontiers of Membrane Computing 213

15 P Systems Formal Verification and Testing
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Issues related to formal verification (through model checking) and model-based
testing of various classes of P systems are mentioned – especially,extensions of
existing results are pointed out, either using new tools or tackling classes of P
systems useful in various frameworks.

Required Notions: cell P system, active membrane, tissue P system, model
checking, model based testing, P-lingua

In the last years, more complex applications of P systems have been built and
used to study the behaviour of various systems in biology, economics and linguis-
tics. Models based on P systems have been introduced to investigate problems
in distributed computing and process synchronisation. All these applications and
models allow to simulate the systems studied and to identify their various prop-
erties. It is important that all these applications are correctly implemented and
produce the right results. In order to check their correctness, formal verification
and testing methods and tools are employed. Formal verification based on model
checking and model-based testing will be presented below.

15.1 Formal verification of P systems through model checking

Model checking is an automated technique for verifying if a state-based model
of a system meets a given specification. Using a temporal logic formula searches
through the entire state space to check whether the property holds or fails are
executed. If a property violation is discovered, then a counterexample is returned
[3]. Formal verification of P systems using model checking has attracted a signifi-
cant amount of research in recent years, using tools such as Maude [1], PRISM [2],
NuSMV [8], Spin [9] or ProB [7]. The decidability of model checking properties for
P systems has also been studied in [4]

Most research has focussed on cell P systems with a static structure, but,
more recently, P systems with active membranes, in particular with division rules,
have also been investigated [10]. This is a significant advance from a practical
point of view since P systems with division rules are commonly used to devise
efficient solutions to computationally hard problems. However, the state explosion
problem normally associated with model checking still hampers such approaches,
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in particular in the case of P systems with cell division, for which the number
of states can grow exponentially. To address this, more efficient implementations,
as well as ways of reducing the number of states through the construction of
approximate state-based models (possibly using inference techniques such as that
presented in [11]) might be investigated.

The following problems regarding the formal verification of P systems are ex-
pected to be investigated:

• new methods and techniques for formally verifying variants of P systems with
a dynamical structure used to model systems solving problems from computer
science or engineering;

• identification of invariants using Daikon, a tool which dynamically detects pro-
gram properties based on execution traces;

• developing an integrated environment for specifying and formally verifying P
systems using P-lingua, Daikon, and one or more model checking tools;

• extending the existing approaches to other classes of P systems (e.g., tissue P
systems).

15.2 Model-based testing of P systems

Testing is the main means of software validation and an essential part of system
development; all software applications, irrespective of their use and purpose, are
tested before being released. In testing, programs are run on a set of sample data
in order to expose faults in the code. This means that an essential (and in many
cases the most time consuming) part of testing is selecting such sample data. This
process is called test generation. As in the last years there have been significant
developments in using the P systems paradigm to model, simulate and formally
verify various systems (in biology, economics, linguistics, graphics, computer sci-
ence, etc.), test generation methods for systems modelled as P systems must also
exist.

In the last years, a number of approaches to testing P systems have been
developed. One approach involves the definition of a number of coverage criteria
(such as simple rule coverage, in which each rule of the P system must be covered
at least once, and more complex variants) and the selection of test data to meet
these criteria [5]. An extension of this strategy involves mutation analysis: here, a
test selection criterion is defined by producing a slightly modified version of the
system (called a mutant) and the selected test data must distinguish between the
original model and the mutant [8]. Another approach to P system testing is based
on finite state machine conformance techniques [6]. This involves the construction
of a state-based approximation of the P system (called a deterministic finite cover
automaton) and the application of conformance testing techniques for such a finite
state model [12].

Essentially, all the aforementioned techniques have been developed in the con-
text of cell P systems with a fixed structure. The challenge for the future is to
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extend these to P systems with active membranes, as well as to other types of
membrane systems. In particular, the development of a testing approach for tissue
P systems, for which the interaction with the environment is conceptually close to
the input/output behaviour of interactive systems, is expected, and may have an
important practical impact. Ultimately, suitable tools will have to be developed
and integrated within the aforementioned modeling, verification and testing.

Acknowledgement. This work was partially supported by project MuVet, Roma-
nian National Authority for Scientific Research (CNCS UEFISCDI) grant number
PN-II-ID-PCE-2011-3-0688.
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16 Causality, Semantics, Behavior
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The connection of MC with process algebra is not very much explored, although
this is a very promising research direction. Some issue related to causality, behavior
equivalence, type systems, relationships with the Chemical Abstract Machine are
mentioned here.

Required Notions: cell P system, maximal parallelism, synchronization, seman-
tics, event, (bi)simulation

16.1 Causality

Consider standard transition P systems with promoters and inhibitors and disso-
lution; they can be described, up to simulating one transition step with several
others, by transition P systems with just one membrane (and with promoters and
inhibitors).

In [3] we have defined causality at both specific and general level for transition
P systems with one membrane and without any other ingredients; specific causality
depends on a certain evolution step, while general causality takes into consider-
ation all possible evolution steps. Two questions arise immediately: whether this
construction is extendible to P systems involving promoters and inhibitors and
whether causality can be defined in a more static manner, without involving the
membrane system. One of the results of [3] (Theorem 15) indicates that the latter
problem is solvable by using the more dynamic notion of general causality.

A different problem related to causality concerns the relation between various
forms of evolution in transition P systems: maximal parallelism, local maximal
parallelism and unrestricted parallelism. How do causal relations change when we
change the form of evolution for a given P system? We have works in progress con-
cerning the relationship between maximal parallelism and unrestricted parallelism
which we hope will also be useful in having a clearer image of what causality
means for membrane systems. Moreover, we ask how are such causal relations
connected with the object-based event structures we introduced in [2], where the
focus was not on rule application but on the objects being produced. As always, we
have to ask in what manner do results change if additional ingredients (especially
promoters and inhibitors) are introduced.

Finally, the idea of “computing backwards” [1], which was also mentioned in [8],
is strongly related to the notion of causality and it would be interesting to see how
it can be used to clarify or even solve the problems proposed above.
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16.2 Chemical Abstract Machine and P systems

The Chemical Abstract Machine (CHAM) [5] is suited to model asynchronous
concurrent computations such as algebraic process calculi. Intuitively, the state of
a system is like a chemical solution in which floating molecules can interact with
each other according to reaction rules; a “magical” mechanism stirs the solution,
allowing for possible contacts between molecules. In chemistry, this is the result of
Brownian motion. The solution transformation process is obviously truly parallel:
any number of reactions can be performed in parallel, provided that they involve
disjoint sets of molecules.

The chemical abstract machine presents molecules in a systematic way as terms
of algebras and refining the classification of rules. Some molecules do not exhibit
interaction capabilities; those which are ready to interact are called ions. A so-
lution can be heated to break complex molecules into smaller ones up to ions.
Conversely, a solution can be chilled to rebuild heavy molecules from components.
Furthermore, to deal with abstraction and hierarchical programming, a molecule
is allowed to contain a sub-solution enclosed in a membrane, which can be some-
what porous to allow communication between the encapsulated solution and its
environment. The chemical abstract machines all obey a simple set of structural
laws. Each particular machine is given by adding a set of simple rules that specify
how to produce new molecules from old ones. Unlike the inference rules classically
used in structural operational semantics, the specific rules have no premises and
are purely local.

Since P systems and CHAM start from the same premises, but use different
notions, notations, and operational semantics and have different goals, it would be
interesting to study the connections between these two fields.

16.3 Type Systems

Type theory is fundamental both in logic and computer science. Theory of types
was introduced by B. Russell [9] in order to solve some contradictions of set theory.
In computer science, type theory refers to the design, analysis and study of type
systems. Generally, a type system is used to prevent the occurrences of errors dur-
ing the evolution of a system. A type inference procedure determines the minimal
requirements to accept a system or a component as well-typed.

P systems consider cells as mechanisms working in a maximal parallel and
nondeterministic manner. However, the living cells do not work in such a way: a
chemical reaction takes place only if certain quantitative constraints are fulfilled.
In order to cope with such constraints, P systems should be enriched by adding a
quantitative type discipline, and making use of type inference and principal typing
[10]. We associate to each reduction rule a minimal set of constraints that must
be satisfied in order to assure that by the application of this rule to a well-formed
P system, we get a well-formed P system as well. A first step in this direction was
done in [4] where a type system for P system with symport/antiport rules is given.
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The type systems can be used in defining more general and simpler rules for P
systems. For example, if N1 and N2 are some basic types, by considering a set of
typed objects V = {X1 : N1, X2 : N1, X3 : N1, A : N2}, the evolution rules of
the form Xi → Xj , Xj → A, 1 ≤ i ≤ 3, 1 ≤ j ≤ 3, can be replaced by rules of a
more general form:

1. N1 → N1 (any object of type N1 can evolve in any object of type N1);
2. N1 → N2 (any object of type N1 can evolve in any object of type N2).

16.4 Behavior Equivalence

Behavior equivalence is an important concept in biology needed for analyzing and
comparing the organs behavior. For example, an artificial organ is the functional
equivalent of the natural organ, meaning that both behave in a similar manner up
to a given time; e.g. the artificial kidney has the same functional characteristics as
an “in vivo” kidney. Recently, it is shown in [7] that the vas deferens’ of the human,
canine, and bull are equivalent in many ways, including histological similarities.
In [6] are presented different methods for comparing protein structures in order to
discover common patterns.

In membrane computing, two P systems are considered to be equivalent when-
ever they have the same input/output behavior. Such an equivalence does not take
care of the evolution of the two systems. What does it mean that two P systems
have equivalent (timed) behavior? Defining several equivalences, we offer flexibility
in selecting the right one when verifying biological systems and comparing them.
When a P system can be replaced in a context with another one such that the
observed behavior is the same?
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The issue of a common generalization of several classes of P systems is proposed,
and some basic ideas towards such a goal are presented.

Required Notions: tissue P system, P system with dynamic structure, regular
expression

Different variants of P systems have been used for specifying simple algorithms
[5, 2], classes of NP-complete problems [7] and various applications [6]. More
specific classes of P systems have been recently considered for modeling some
distributed algorithms and problems [8]. In many cases the evolution of the system
investigated requires some specific behavior or the use of certain rules, maybe
with some constraints, which are not always the same as the ones exhibited by
the model in its initial definition. It helps in many cases to have some flexibility
with the modeling approach, especially in the specification stage, as it shortens the
model and makes it clearer. Although there is a powerful specification language,
called P-lingua, with implementations for various variants of P systems [9], there
is no unified framework that allows us to simulate, verify and test the behavior of
the specified systems. In this respect, it is suggested here a kernel P system (kP
system, for short) that, in the first stage, will be a low level specification language
including the most used concepts from P systems.

The generic structure of a kP system might be a graph-like structure as in
tissue P systems. Such a model uses a set of symbols, labels of membranes, rules
of various types and a certain strategy to run them against the multiset of ob-
jects available in each region. The rules in each compartment will be of two types:
(i) object processing rules which transform and transport objects between com-
partments or exchange objects between compartments and environment, and (ii)
system structure rules responsible for changing the system’s topology. Each rule
has a guard, defined using activators and inhibitors in a general way. The execution
strategy is defined such that maximally parallel or sequential manners are captured
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and each compartment has its own strategy. Rewriting and communication rules
based on promoters and inhibitors are considered together with a special set of
symport/antiport rules. Additional features like membrane division, creation, dis-
solution, bond creation and destruction are used to deal with the system structure.

The key concept of a compartment is first introduced and then the definition
of a kP system.

Definition 1. Given an alphabet A, of elements named objects, and an alphabet
L of labels, a compartment is a tuple C = (l, w0, R

σ), where l ∈ L is the label
of the compartment, w0 is the initial multiset over A, and Rσ denotes “the DNA
code”, i.e., the set of rules, denoted R, applied in this compartment and a regular
expression, σ, over Lab(R), the labels of the rules of R.

Definition 2. A kernel P system is a tuple kΠ = (A,L, IO, µ,C1, . . . , Cn), where
A and L are, as in Definition 1, the alphabet of objects and the set of labels,
respectively; IO is a multiset of objects from A, called environment; µ defines
the membrane structure, which is a graph, (V,E), where V are vertices, V ⊆ L
(the nodes are labels of these compartments), and E edges; C1, . . . , Cn are the n
compartments of the system – the inner part of each compartment is called the
region which is delimited by a membrane; the labels of the compartments are from
L and initial multisets are over A.

We first discuss various types of rules. It is assumed that the rules below
belong to the same compartment, Ci, labeled li. Each rule might have a regular
expression associated with. When a rule involves more than a compartment, then
each compartment might have its own regular expression attached to it. RE(A∪Ā)
denotes the set of regular expressions over A∪ Ā; each such regular expression de-
fines conditions involving promoters, elements from A, and/or inhibitors, elements
from Ā. The interpretation of a regular expression g ∈ RE(A ∪ Ā), associated
with a rule, is that all the promoters appearing in g must be present in the current
multiset and none of the inhibitors must appear there. We call this regular expres-
sion, g, guard. A rule with such a guard is applicable when this is evaluated to true.

A rule can have one of the following types:

• rewriting and communication rule: x → y {g}, where x ∈ A+, y ∈ A∗,
g ∈ RE(A ∪ Ā); the right hand side, y, has the form y = (a1, t1) . . . (ah, th),
where aj ∈ A and tj ∈ L, 1 ≤ j ≤ h, is an object and a target (i.e., the label
of a compartment), respectively; the target tj must be either the label of the
current compartment, li (more often ignored) or of an existing neighbor of it
((li, tj) ∈ E) or an unspecified one, ∗; otherwise, the rule is not applicable;
if a target tj refers to a label that appears more than once, then one of the
involved compartments will be nondeterministically chosen; if tj is ∗, then the
object aj is sent to a compartment arbitrarily chosen;

• input-output rule, is a form of symport/antiport rule: (x/y) {g}, where x, y ∈
A∗, g ∈ RE(A ∪ Ā); x from the current region, li, is sent to the environment
and y from the environment is brought into the current region;
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• system structure rules; the following types are considered:
– membrane division rule: []li → []li1 . . . []lih {g}, where g ∈ RE(A∪Ā); the

compartment li will be replaced by h compartments obtained from li, i.e.,
the content of them will coincide with that of li; their labels are li1 , . . . , lih ,
respectively; all the links of li are inherited by each of the newly created
compartments;

– membrane dissolution rule: []li → λ {g}; the compartment li will be
destroyed together with its links;

– link creation rule: []li ; []lj → []li − []lj {cg}; the current compartment li
is linked to lj and, if more than one lj exists, then one of them will be
nondeterministically picked up; cg, called compound guard, describes an
expression li.g1 op lj .g2, where g1, g2 are regular expressions referring to
compartments li and lj , respectively; op is either and or or, standing for
either both guards are true or at least one is true. If one of the guards
is empty then op is no longer used; a compound guard defines a Boolean
condition across the two compartments;

– link destruction rule: []li − []lj → []li ; []lj {cg}; this is the opposite of link
creation and means that compartments li, lj are disconnected; as usual,
when more than a link, (li, lj) ∈ E, exists, then only one is considered by
this rule; cg is a compound guard.

The usual behavior of P systems requiring that rewriting and communication,
and symport/antiport (input-output) rules are applied in a maximal paral-
lel way (or sequentially in some cases), whereas membrane division, creation,
dissolution rules and creation and destruction of links are executed one per
membrane, will be considered in this context as well, but in a rather more
general way.

The main challenges of this approach are

1. a rigorous definition of the syntax and semantics of kP systems;
2. comparisons between (fragments) of kP systems and well-known variants of P

systems;
3. establishing general algorithms to translate different classes of P systems into

kP systems (similar to [1, 4]);
4. defining operational semantics for kP systems and providing implementations

in model checkers, like Spin, Maude, similar to [3].

Further steps in developing this unified framework might consist of adding other
useful modeling features like the possibility of defining rules and compartments
using indexes, a certain concept of a module, various other semantics. It is intended
to keep the kernel system as generic as possible such that some of the above
mentioned extensions will be introduced in a rather syntactical manner allowing
to map them into the basic variant, without additional semantics.

Acknowledgement. This work was partially supported by project MuVet, Roma-
nian National Authority for Scientific Research (CNCS, UEFISCDI) grant number
PN-II-ID-PCE-2011-3-0688.
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Some possibilities of bridging MC (P systems) and reaction systems are dis-
cussed, the basic idea being of importing ideas from a research area to another
one.

Required Notions: cell P system, multiset, reaction system, halting, fypercom-
puting

Reaction systems (we call them R systems) form a recently introduced research
area aiming to model the evolution of (bio)chemicals by means of (bio)reactions,
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in a framework based on the following two fundamental assumptions (we recall
them in the formulation from [1]):

The way that we define the result of a set of reactions on a set of elements
formalizes the following two assumptions that we made about the chemistry of a
cell:

(i) We assume that we have the “threshold” supply of elements (molecules) –
either an element is present and then we have “enough” of it, or an element is
not present. Therefore we deal with a qualitative rather than quantitative (e.g.,
multisets) calculus.

(ii) We do not have the “permanence” feature in our model: if nothing happens to
an element, then it remains/survives (status quo approach). On the contrary,
in our model, an element remains/survives only if there is a reaction sustaining
it.

With these postulates in mind, let us consider first some possibilities of passing
from R systems to P systems.

Moving from multisets, which are basic in P systems, to sets (actually, to mul-
tisets with an infinite multiplicity of their elements, called ω multisets in Section
13) is a fundamental assumption, which changes completely the approach; for in-
stance, we can no longer define computations with the result expressed in terms
of counting molecules: the total set of molecules is finite, any molecule is either
absent or present in infinitely many copies.

However, as we have mentioned in Section 13, considering P systems with ω
multisets leads in an easy way to fypercomputations.

The second assumption of the reaction systems theory (no permanence of ob-
jects) looks easier to handle in terms of MC. The immediate idea is to simply
remove (by a “deletion rule”) any element which does not evolve by means of a
reaction; somewhat equivalently, if we want to preserve an object a which is not
evolving, we may provide a dummy rule for it, of the type a→ a, changing nothing.

Still, many technical problems appear in this framework. The presence of such
dummy rules makes the computation endless, while halting is the “standard” way
to define successful computations in MC. Moreover, the rules are nondeterminis-
tically chosen, hence the dummy rules can interfere with the “computing rules”.

While the second difficulty is a purely technical one, the first one can be over-
passed by considering other ways of defining the result of a computation in a P
system, and there are many suggestions in the literature. We mention here three
possibilities: (i) the local halting (the computation stops when at least one mem-
brane in the system cannot use any rule), (ii) signal-objects (the result consists
of the number of objects in a specified membrane at the moment when a distin-
guished object appears in the system), (iii) signal-events (the result consists of the
number of objects in a specified membrane at the moment when a distinguished
rule is used in the system). Such possibilities were considered in various papers in
MC.

Part of these possibilities are checked in [7] from where we recall the following
result:
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Theorem 2. Transition P systems of degree 2, using cooperative rules, without
the permanence of objects, are computationally complete when the successful com-
putations are defined by local halting or signal-objects. The same result holds true
for symport/antiport P systems (of degree 2 and of weight 2) for the case of local
halting.

An interesting open problem in this framework is the case of catalytic P systems,
known to be universal in the “permanence” assumption.

The case of defining the result of a computation of symport/antiport P systems
by means of signals – objects or events – also remains as an open problem. (Con-
sidering a priority relation on each set of rules can easily solve this problem.) The
symport/antiport P system used in the proof of Theorem 2 [7] contains antiport
rules of sizes (2, 1) and (1, 2), which is “large” for universality results in the case
when objects are persistent. Can the size of rules be decreased also in the case
discussed here?

The R systems area has a series of notions of the dynamical systems type which
were not too much investigated for P systems (time, events, modules, structure,
causality, and so on), and this is also a promising direction of research.

Let us now briefly explore the other direction, from P to R.
The R systems are not meant to define computations, their behavior is de-

terministic, from a set of symbols we precisely pass to a unique set of symbols.
However, starting from an R system, a “generative device” can be defined, based
on passing from a configuration to another one (without input from the environ-
ment), provided that some nondeterminism is introduced in the R system function-
ing. Three possibilities of this kind were proposed in [7]: (i) working with tabled
R systems, as in Lindenmayer systems (in each step, a table is used, nondetermin-
istically chosen), (ii) considering also a finite multiplicity for some of the objects,
and (iii) by introducing a general threshold k on the number of rules which can use
the same molecule. All these three possibilities remain to be investigated: prop-
erties of the obtained computation graphs, possible links with computing devices
from formal language and automata theory, influence of the introduced parameters
(number of tables, threshold k), possible hierarchies.

Of course, a general research topic is to find other ways of building a (string
or graph) computing device in terms of R systems. A possible question is also the
possibility to introduce membranes in the R systems area or other MC ingredients
– thus getting a sort of PR systems. (An attempt of this kind is reported in [5],
where so-called reaction automata are introduced, but these devices violates both
postulates of R systems and use so many ingredients of P systems – multisets,
parallelism, nondeterminism, halting – that they are just P automata with a new
name.)
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19 P Systems and Evolutionary Computing Interactions

Gexiang Zhang
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Problems related to the so-called membrane algorithms (actually, distributed
evolutionary computing, with the distribution controlled by means of membranes,
as well as with other MC ingredients used) are mentioned, both in the direction of
improving the optimization techniques and in looking for more complex/practical
applications.

Required Notions: evolutionary computing, cell P system, active membranes,
membrane algorithm

As a relatively young branch of natural computing, MC has gone through thir-
teen years of intensive research involving areas of theoretical computer science as
well as applications in various fields, including systems biology, graphics, linguis-
tics, parallel and distributed computing. However, these applications, in terms of
varieties and types, are relatively small compared to a very broad range of appli-
cations of evolutionary computing. A natural question would be, whether some
combinations of these two models might benefit from the large scope of applica-
tions evolutionary computing has already shown so far, and the rigorous and sound
theoretical development membrane systems have proved for all its variants.
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The possible interplay between MC and evolutionary computation may produce
three kinds of research topics:

Membrane-inspired evolutionary algorithms (MIEAs): Since mem-
brane computing was initiated in 1998, a large number of theoretical results, such
as various variants of membrane systems and their computational power and effi-
ciency came forth [1]. On the one hand, the way MC is extended into real-world
applications is not easy to be addressed and represents an ongoing issue. On the
other hand, the hybridization of different computing techniques is an attractive
research topic in the area of evolutionary computing, due to a better performance
than their counterpart approaches. What can the young paradigm of MC bring
to evolutionary computation? Fortunately, MIEAs, formerly called membrane al-
gorithms [2, 3], create a bridge between MC and various real-world applications.
MIEA concentrates on generating new evolutionary algorithms for solving opti-
mization problems by using the hierarchical or network structures of membranes
and rules of P systems, and the concepts and principles of meta-heuristic search
methodologies [3, 4]. The comparative analysis of dynamic behaviors of an instance
of MIEAs shows the appropriate combination of MC and evolutionary computa-
tion can produce a better capability to balance exploration and exploitation [5],
which are two contradictory factors directly related to the performance of an opti-
mization algorithm. Until now, MIEAs have been studied in conjunction with cell
P systems with a fixed membrane structure and by considering an evolutionary
computing approach as a subalgorithm put inside a membrane [1, 6, 7]. Further
research topics are listed below.

1. Consider further combinations of features that make full use of the characteris-
tics of both MC models and evolutionary computing, such as the consideration
of cell P systems with active membranes, tissue P systems and population P
systems.

2. Usually, in an MIEA an evolutionary algorithm is used as a subalgorithm
placed inside a membrane. This idea can be extended. A membrane structure
can be used as a framework of the organization of several different types of
evolutionary operators, as shown in [8], or several distinct kinds of evolutionary
mechanisms, such as a genetic algorithm, evolutionary programming, evolution
strategy, differential evolution and particle swarm optimization. Furthermore,
the flexible communication rules can be used at the level of genes, instead of
at the level of individuals shown in [6, 4].

3. The single-objective problems are usually involved in the investigations re-
ported in the literature. The framework of P systems can offer better popula-
tion diversity in MIEAs, hence further work can turn to solve problems in a
complex environment, such as multi-objective, dynamic, peaked optimization
problems, and with/without constraints, to check whether P systems can bring
a better performance to evolutionary algorithms.

4. More real-world application problems, such as power system optimization,
software/hardware co-design and vehicle route plan, can be solved by using
MIEAs.
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5. A deep performance analysis and evaluation of MIEAs is necessary to reveal
the roles of P systems played in the hybrid optimization algorithms, on the
basis of the previous work [5].

Automated design of membrane computing models (ADMCMs): The
automated synthesis of some types of MC models or of a high level specification
of them is envisaged to be obtained by applying various evolutionary algorithms.
ADMCMs aim to circumvent the programmability issue of membrane based models
for complex systems [9]. This is quite a complex problem as it involves a great
number of parameters (rules, objects, combination of rules) and many semantics
associated with P systems.

Membrane evolutionary algorithms (MEAs): MEAs will focus on im-
plementing evolutionary algorithms within a P system environment in order to
take advantage of the parallelism and distribution of MC, given that recent inves-
tigations are studying the implementation of P systems on parallel or multi-core
hardware platforms. An important challenge for any of the above research devel-
opments will be to apply them to complex real life systems.
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20 Metabolic P Systems

Vincenzo Manca
University of Verona, Department of Computer Science, Verona, Italy
vincenzo.manca@univr.it

A dynamical inverse problem for MP systems is formulated, then a possible
topological extension of P systems is suggested.

Required Notions: Multiset, multiset rewriting systems, P systems, discrete
dynamical systems, metabolism, function approximation.

20.1 A (precise) dynamical problem

A membrane system is a form of compartmentalized rewriting structure based
on two main ingredients: multisets of objects and membranes, where multisets of
objects and rules are internally placed. Rules transform and move objects among
membranes. Metabolic P systems, shortly MP systems, were introduced for mod-
eling real biochemical systems in terms of multiset rewriting. In the last years they
have been widely investigated by Verona MNC (Models of Natural Computing and
Bioinformatics) group. A brief introduction on MP systems and references can be
found in the Scholarpedia page “Metabolic P Systems”.

One of the most recent results about MP systems was the discovery of a
methodology for solving dynamical inverse problems, in the sense we are going
to explain [2, 3, 4].

A time series XT = (X[i] | i ≤ T ∈ N) is a sequence of real values intended as
“equally spaced” in time (N is the set of natural numbers).

An MP grammar G is a “generator” of time series, determined by the structure
(n,m ∈ N)

G = (M,R, I, Φ),

where:
1. M = {X1, X2, . . . , Xn} is a finite set of elements called metabolites. A metabolic

state is given by a list of n values, each of which is associated with a metabolite
(parameters can possibly be added to determine a metabolic state).

2. R = {αj → βj | j = 1, . . . ,m} is a set of rules, or reactions, with αj and βj

multisets over M , for j = 1, . . . ,m;
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3. I are initial values of metabolites, that is, a list X1[0], X2[0], . . . , Xn[0] provid-
ing the metabolic state at step 0;

4. Φ = {φ1, . . . , φm} is a list of functions, called regulators, one for each rule,
which, for each metabolic state, provide the fluxes, the matter quantities con-
sumed/produced by the rules in that state.

An MP graph is a natural graphical representation of G. An MP grammar becomes
an MP system when values for the time interval, the population unit, and the
metabolite masses are added. An MP grammar G generates the (infinite) time
series (X[i] | i ∈ N), from the initial values I, for X ∈ {X1, X2, . . . , Xn}, according
to the following Equational Metabolic Algorithm (EMA), where γ(X) denotes the
multiplicity of X in the multiset γ and s[i] is the metabolic state at step i:

X[i + 1]−X[i] =

m∑
j=1

(βj(X)− αj(X))φj(s[i]).

DIP formulation for MP: Given n time series Y T
1 , Y T

2 , . . . , Y T
n , corresponding

to some “observed” variables, related by transformation/influence relations among
them, find an MP grammar G, expressing the known relations among variables,
and generating, for i ≤ T , exactly, or even approximately enough, the time series
Y T
1 , Y T

2 , . . . , Y T
n .

Many DIP problems of interest for biological/pathological phenomena were
solved in terms of MP systems. The solutions obtained resulted from suitable
combinations of several ingredients: i) a linear algebra formulation of EMA (to
which a stoichiometric expansion can be applied in terms of matrix tensor prod-
uct), ii) the Least Square Evaluation method, iii) the Stepwise Linear Regression
method, and iv) some suitable statistical tests based on Fischer’s distributions.

A possible field of investigation could concern other classes of DIP problems,
in such a way that other kinds of DIP solutions could be found, for these problems,
by suitable discrete dynamical systems based on membranes.

20.2 A (vague) topological problem

Membrane computing is based on the intuition of a membrane as a spatial entity
closing a subspace (inside/frontier/outside). Cells are the most evident biologi-
cal realization of this notion. However, if we want to keep this intuition close to
the biological reality, the only inclusion relation of membrane containment is too
weak. In fact, in the MC literature, some extensions of the original notion of mem-
brane were proposed in terms of tissue-like and neuron-like membrane structures.
Even these enrichments are not expressive enough for dealing with aspects were
membranes are not framed in a fixed membrane structure hosting computations,
but they are subjected to topological transformations exploring and determin-
ing forms. This perspective requires a calculus on membranes rather than calculi
within, or among, membranes. Some ideas along this line of investigation arose
in a research [1] devoted to multimembranes, for translating, in a pure membrane
setting, computations which can be easily expressed by MP grammars.
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A possible field of investigation could concern the formulation of topological (in
wide sense) operations among membranes on which calculi can be defined which
resemble what happens at the level of morphogenesis in biological systems.
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21 Unraveling Oscillating Structures by Means
of P Systems
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Issues arising from the use of P systems in modeling biological processes are
discussed – especially concerning various circular evolutions of biological processes.

Required Notions: circadian rhythm, cellular dynamics, backtracking

21.1 Motivation

Endogenous oscillations have been identified to be essential for the function of
numerous systems found in biology as well as engineering [1]. A common prop-
erty of these systems lies in their necessity to synchronize and coordinate inherent
chemical or physical activities based on periodically iterated trigger signals [4].
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Exploration of chronobiological systems emerges as a growing research field within
bioinformatics focusing on various applications in medicine, agriculture, and ma-
terial sciences [8]. Particularly, circadian rhythms embody an interesting biological
phenomenon that can be seen as a widespread property of life. The coordination
of biological activities into daily cycles provides an important advantage for the
fitness of diverse organisms [6]. Based on self-sustained biochemical oscillations,
circadian clocks are characterized by a natural period close to but not exactly of
24h that persists under constant conditions (like constant darkness or constant
light). Their ability for compensation of temperature variations in the physiolog-
ical range enables them to maintain the period in case of environmental changes.
Furthermore, circadian clocks can be entrained. This property allows a gradual
reset of the underlying oscillatory system for adjustment by exposure to external
stimuli like daily variations of brightness or daytime-nighttime temperature cycles.

There are numerous types of controllable core oscillators found in circadian
clocks. The majority reveals the Goodwin type, a cyclic gene regulatory network
composed of mutual activating and inhibiting gene expressions [8]. The most ef-
fective way to influence its frequency is modification of protein degradation rates.
Furthermore, core oscillators can be of post-translational type [7], exploiting a
cyclic scheme of protein phosphorylation, complex formation, or decomposition.
Here, the involved catalysts affect the frequency. The third and most complex type
of core oscillators includes compartmental dynamics [4] aimed to be advantageously
modeled using P systems combining a representation of dynamical structures with
tracing their spatiotemporal behavior.

21.2 Resulting Challenges

Within the domain of strictly continuous signals quantified by real numbers, mod-
eling and analysis of oscillating behavior has been well-studied [1]. Chemical re-
action networks assumed to reside in a homogeneous environment give a typical
example: Each species is represented by its concentration which is allowed to vary
continuously over time. From the static network topology together with the stoi-
chiometry of the reactions, a corresponding ordinary differential equation system
(ODE) can be derived that specifies the reaction rates for each species. Inclusion of
parameterized kinetic laws accomplishes a mapping between species concentration
and effective reaction rate. The resulting ODE can easily be tested for its capabil-
ity of undamped oscillating species concentrations. To this end, the eigenvalues of
the Jacobian matrix obtained from the ODE right hand side are sufficient. Limit
cycles indicate the oscillatory behavior in detail. In case of sinusoidal or almost
sinusoidal oscillatory waveforms, even properties of the entrainment behavior can
be obtained analytically.

The main advantage of analytical ODE-based methods unequivocally exploits
the fact that essential characteristics and properties of a system under study can
be directly derived from the underlying mathematical model without any need for
a numerical simulation of its dynamical behavior. This makes the evaluation and
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automated testing of candidate systems resulting from experimental data rather
efficient. In contrast, there is currently a lack of corresponding methods within the
field of P systems modeled in a discrete manner. Here, system properties mainly
emerge from exhaustive simulation studies. Conduction of those studies still re-
quires an extensive amount of human resources. Particularly in case of involved
active membranes, compartmental plasticity, and dynamical structures, a tool-
box for automated analysis would be helpful. In an ongoing project, we intend to
generate sustained oscillatory systems by artificial evolution in silico [5]. In this
context, the fitness evaluation should answer the question whether the system can-
didates are able to oscillate endogenously or not and how the periodicity can be
controlled. Ideally, this task should be done by a piece of software [3]. Questions
concerning a toolbox for systems analysis also coincide with the need to identify
appropriate evolutionary operators affecting compartmental structures on the fly.
Those operators can be inspired by biological processes found in living cells like
division, degeneration, dissolution, creation, separation, merge, endocytosis, exo-
cytosis, or gemmation. Some of these operators can be found in recent frameworks
of P systems, but others still lack a detailed specification of their effects to sets
of molecular objects and local reactions and transportation rules (configuration
update schemes).

21.3 First Ideas

There are different oscillatory scenarios in biological systems. On the one hand,
periodicity might also be reflected in temporal changes of the compartmental struc-
ture. On the other hand, signalling molecules are often available in low concen-
trations ranging from single molecules to several thousand copies. Both aforemen-
tioned scenarios have in common to prevent pure ODE-based modeling techniques
due to the discrete manner of involved key entities. Motivated by the need for
an appropriate toolbox covering description, simulation, and analysis of discon-
tinuously considered biological reaction processes, we plan to extend the concept
of spatiotemporal P systems with kinetic laws [2, 5] towards an underlying back-
tracking mechanism able to explore the nature of undamped oscillations beyond
variations of species concentration. Following the idea of backtracking, the trace
of configurations passed by a P system becomes recorded in a suitable way. By
monitoring the overall configurations over time, a derivation tree is obtained that
provides a comprehensive data pool for further analysis by automated backtrack-
ing. Sustained oscillations are expected to appear as recurring, but nonadjacent
overall configurations along a path through the derivation tree. In particular, we
wish to employ this technique for identification and description of biochemically in-
spired computational devices equipped with clocks, counters, or frequency scalers.
Moreover, we aim for gaining insight into the function of dedicated circadian clocks
by reverse engineering using backtracking P systems. This approach could benefit
from the flexibility regarding dynamical structures.
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22 Simulating Cells Using P Systems
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Possibilities and difficulties encountered in (Ruston group) research on mod-
eling biological processes by means of P systems are discussed, with emphasis on
complexity, noise, implementations.

Required Notions: P system models, Gillespie’s algorithm, mass action law

To achieve a greater understanding of the biological processes the technology
will need to improve and evolve from the current state of “big populations” to dis-
crete events. By big populations we mean the following fact: to be able to perform
a specific experiment, the researcher needs a large number of “elements” (say cells)
in the same state that is investigated and only then the experiment can reach a
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conclusion. Once the number of “elements” in the experiment is decreasing, most of
our methods to investigate properties of those “elements” become hard/impossible
to describe/investigate. Obviously this statement is rather broad and there are
some techniques such as FRET analysis that look at discrete events/elements, but
we claim that the majority of the current bio-molecular techniques do require large
multiplicities of the “element” investigated.

The aforementioned fact has to be understood by the researcher looking to
model/simulate cells. It describes the state of the research tools in that area. The
modeler can help that particular area by offering better insight into the sub-cellular
processes through simulation and prediction. One could immediately point out that
since we have a “technological” problem (as stated before) which is precluding us
to gain insight into the “discrete” processes, then how can one hope to simulate the
sub-cellular mechanisms. The answer is two-fold: (1) cells prove to respond mostly
in the same fashion to similar stimuli, meaning that the inherent stochasticity
of these systems does not “break” the response pathways (making the simulation
from this perspective “easy” as we need to simulate the “important” events, not all
the noise associated with the gene regulation mechanisms and their stochasticity);
(2) even if we do not know a mechanism, once a model is built based on our best
knowledge and we see it diverging from reality in a specific point, we know where
to start investigating for other processes/reactions.

There is also a philosophical motivation to using P systems for a cell simu-
lator: P systems were defined to capture the compartmentalized structure of the
eukaryotic cells, and indeed this compartmentalization could prove one of the best
features of a cell simulator. Furthermore: due to the current biomolecular tech-
niques involving large multiplicities for a species the simulation techniques in the
area focussed on ordinary differential equations (ODE) as continuous mathematics
both has powerful tools and are easily implemented. But we claim that a continu-
ous mathematics approach in this area of sub-cellular simulation may not be the
best approach as some processes have been seen to behave discretely, and in sev-
eral pathways we can see the multiplicity of some multiprotein complexes appear
in very small numbers (below 10). In such cases a discrete simulation technique
such as Gillespie’s algorithm would be preferable to the simulators based on ODE
[4].

Incidentally we have also defined a discrete simulation technique in [2] which
was repeatedly improved (see references in [5]) and was lately named NWA with
memory. The motivation behind the NWA algorithm was simple: we wanted a dis-
crete mathematics based simulation technique that would be faster than Gillespie’s
algorithm.

22.1 Brief Description for Current Cellular Models and Simulators

In order to plausibly model the biochemistry of life, individual biochemical interac-
tions need to occur asynchronously over different lengths of time. The model relies
on the law of mass action. The law states that reaction rate is directly propor-
tional to the number of reactants available in the system. In other words, the time
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required to execute a rule in the cell is dependent on the number of its reacting
species. We note that the rule application is not considered to be instantaneous;
the kinetics that are giving the reaction speed model the time required by the
molecules involved in the rule to couple together (if the reaction is of second order
or higher) as well as the time required for the actual reaction to take place.

The law of mass action gives us the power to temporally describe the evolving
configurations of our system. To understand the asynchrony of rule execution, we
need to discuss the kinetic rates pertaining to the law of mass action. The kinetics
of a chemically reactive system are often described as concentration-based values.
This is common for the types of experiments used to derive the rates, typically in-
volving enormous populations (millions) of cells. The cells are often lysed as a large
population, molecules are measured in terms of light intensity and data are given
as concentrations of species across cell population. These values can be averaged
across the cell population, yielding concentrations per cell. We rely on these values
to fit our models, but the values are derived from entire cell populations instead of
individual cells. Hence, the interesting phenotypic, biochemical and physiological
characteristics of individual cells can be sometimes overgeneralized (or lost) in lieu
of the behavior of the majority of the cells in the population.

Some labs employ techniques to measure single-cell dynamics. For example,
interesting results/models on p53 have been reported in [7], where it is shown that
individual cells undergo not dampened oscillations, as reported in [1], but each
individual cell instead exhibits a different numbers of oscillations. The average
behavior for the cell population appeared to be dampened, but individual cells did
not behave this way.

We are collaborating with Mark DeCoster’s biomedical laboratory from
Louisiana Tech University in order to study single cell data via a high-speed imag-
ing system. It is our hope that future collaborations will help unlock some of the
secrets behind Fas-induced apoptosis. Regardless of whether data comes from large
cell populations or single cell dynamics, we, as modelers, must remain vigilant and
build the best models with the data available to us.

Using the law of mass action and discrete kinetic constants we can define the
Waiting Time (WT ) of a reaction in the P system. The WT is a value assigned
to each reaction, signifying the next timepoint for a single execution of the reac-
tion. As molecular multiplicities will change throughout a simulation, from one
configuration to the next, so will the WTs of reactions utilizing those molecules.

We used a min-heap for sorting reactions, where the top of the heap is the
reaction with the smallest WT – i.e., the next reaction to be executed. However, we
need to use nonstandard methods for maintaining the heap, due to the asynchrony
of the rules and the sharing of reactants. These nonstandard methods are similar
to those proposed by Gibson and Bruck [3] in their modification to the Gillespie
algorithm.

To clarify, when a rule is applied, multiple nodes can have changes to their WT,
since the multiplicities of particular species of the system have changed. These
species can be shared over multiple reactions. Hence, multiple WT potentially
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can fail the min-heap property throughout the tree simultaneously at each new
configuration. In order to handle this, we use heap maintenance methods similar
to those proposed by Gibson and Bruck [3] in their modification of the Gillespie
algorithm.

22.2 Improving the Simulators

The following “open problems” are mostly for the simulator developed by our
group but should be relevant for other simulators as well.

1. increase the stochasticity at the level of the heap by applying a modified
Monte Carlo simulation technique for the first 3 levels of the heap (the fastest 7
reactions),

2. faster implementation such as using C rather than C++ or Java,
3. GPU implementation of the simulator for parallel simulations and identifying

“decision points” in the pathway; also running the same model several times could
identify the minority from the majority (this information could be lost in an ODE
framework for simulation),

4. bigger and better models for sub-cellular mechanisms,
5. using Manca’s Log-gain theory to gather stoichiometric data to be used in

simulations [6],
6. implementing the simulation framework as a plug-in in CoPasi for broader

dissemination and usage.
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Deterministic and stochastic P system models are discussed in the context of
specifying fairly complex biological systems; their usage for systems and synthetic
biology is also presented.

Required Notions: metabolic P systems, dynamical inverse problem, stochastic
P systems, Gillespie algorithm, systems biology, synthetic biology

The approaches based on P systems aiming to provide coherent descriptions
of fairly complex biological systems are either deterministic or stochastic [5]. Two
such variants are discussed below, but some more variants of the above mentioned
types of P systems are available in the current literature, see [15] and Sections 21
and 22 of this paper.

Metabolic P systems (MP systems for short) were introduced in 2004 as a par-
ticular kind of P systems devised for modeling metabolic processes [7]. Their main
goal consists in solving dynamical inverse problems (DIPs) by means of discrete
systems. A general algorithm, called Log-Gain Stoichiometric Stepwise Regression
(LGSS), providing MP solutions to DIPs was obtained, in a systematic way, by
integrating finite difference recurrent equations, least square method, stepwise re-
gression, and related Fisher tests, within a suitable linear algebra framework where
solutions can be expressed as ordinary and tensor products among matrices [11].
A MATLAB implementation of LGSS was developed by Luca Marchetti [12].

Many successful applications of MP theory to biological dynamics were devel-
oped, starting from classical examples (Lotka-Volterra, Brusselator, Mitotic Oscil-
lator) [10]. Presently, the two main applications under investigation concern the
insulin-glucose dynamics in diabetes pathologies and genetic expression in a kind of
breast cancer (in cooperation with endocrinologists and clinicians in Italy, Verona
and in USA, Detroit). A synthetic description and references is given by Vincenzo
Manca in [8, 9].
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Stochastic P systems, SP system for short, are rule-based discrete and stochas-
tic multicompartmental systems used as abstract structures to model stochastic
cellular systems [14]. The key difference between the original P systems and SP
systems consists in a stochastic constant that is specifically associated with each
rule. This constant is used to determine in a specific state or configuration of the
system the probability of applying the corresponding rule and the time elapsed
between rule applications according to Gillespie’s stochastic simulation algorithm
[6].

SP systems allow the incremental and parsimonious design of models by pro-
viding modelers with the feature of modularity explicitly [4]. A P system module
consists of a finite set of rewriting rules that may contain some free variables in
their objects, labels and stochastic constants. Modules can be arranged in libraries
so they can be reused to define the rewriting rules of different models. In this re-
spect, modules act like macros that get expanded once the corresponding module
variables are instantiated with specific molecular species names, numerical values
for the stochastic constants and compartment names.

A variant of SP systems, lattice population P systems [18], allow modelers to
represent multi-cellular systems with specific geometries by distributing copies of
given individual stochastic P systems over the points of a finite geometrical lattice.

SP systems have been implemented in the software tool for the specification,
simulation, analysis and optimization of systems and synthetic biology models,
Infobiotics workbench [3].

These systems have been used to model signal transduction pathways [13, 1],
bacterial gene regulation [17], bacterial populations [16], metapopulations [2] and
synthetic biology problems [19].

Membrane computing has made very significant contributions in certain areas
of computer science and has produced some impact with respect to a number of
applications. It remains a challenge to show how it copes with complex applica-
tions, especially in systems and synthetic biology. Some of these challenges are
listed below:

• identify more complex systems to be specified by one of the variants of P
systems described above or presented in [15];

• extend the current variants with additional features in order to cope with more
complex applications;

• create a repository of illustrative biological case studies;
• develop additional complementary approaches that help analyzing biological

systems – data sensitivity analysis, property data extraction and verification,
hierarchies of languages allowing to map P system specifications into bio-
chemical reactions;

• implement adequate tools exploiting the latest technologies and create bench-
mark problems to assess them.
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19. J. Smaldon, F.J. Romero-Campero, F. Fernández Trillo, M. Gheorghe, C. Alexander,
N. Krasnogor: A computational study of liposome logic: towards cellular computing
from the bottom up. Syst. Synth. Biol., 4 (2010), 157–179.

24 Biologically Plausible Applications of SN P Systems for
an Explanation of Brain Cognitive Functions

Adam Obtulowicz

Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland
A.Obtulowicz@impan.pl

Some conjectures about the possibility of using SN P systems and extension
of them for modeling features of the brain (such as learning, modularity) are
formulated.

Required Notions: spiking neuron, SN P system, learning

The (hierarchical) clustering (scene segmentation in particular) and binding
(feature integration) problem solution in cortical neural networks together with
cortical subnetworks realizing Radial Basic Functions (briefly RBFs) represent,
among others, the cognitive functioning of brain. Recently, various network mod-
els of clustering, binding problem solution, and realization of RBFs in cortical
networks have been proposed, where spiking neural networks are the most biolog-
ically plausible models, see [16], [17], [2], [3], [12], [14], [15], and [11] for a review.
The main common feature of these models is Hebbian learning which provides
their biological evidence. On the other hand, a transformation of an idea of Heb-
bian learning from a framework of spiking neural networks to a framework of SN
P systems (cf. [10]) has been proposed in [8]. Thus, one formulates the following
question:

Do SN P systems provide biologically plausible mathematical models of
brain cognitive functions?

We approach the question and an answer to it by the following discussion of
conjectures and setting open problems.

Papers [5], [9] contain promising applications of SN P systems for solving topic
problems related to some cognitive brain functions. But biological evidence of these
applications seems problematic because Hebbian learning procedures approach is
not considered for them.

On the other hand, the Hebbian learning modeled by SN P systems with only
input neurons and one output neuron presented in [8] and solution of XOR problem
by spiking neural networks equipped with a Hebbian learning procedure and with
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only three input neurons and one output neuron described in [4] gives rise to the
following conjecture:

Conjecture 1. There exists a learning problem, understood as in [8], whose output
is an SN P system solving XOR problem.

If we compare precise timing of spikes approach for spiking neural networks to
the number of spikes approach for SN P systems, then the latter seems coarse and
hence less biologically plausible than the spiking neural network approach.

On the other hand, the precise timing of spikes approach for spiking neural
networks is less biologically plausible than probabilistic spiking neural networks
because a relevant amount of noise is contained in the behavior of neurons (cf. [7]).
Therefore it is worth to initiate a research of probabilistic SN P systems.

The view that human mind is “massively modular” (cf. [6], [13]) argued by
massively parallel functioning of brain neural network modules, gives rise to a
question of approaching these massive modularity and massive parallelism of mind
and brain by application of a concept of a network of communicating SN P sys-
tems equipped with Hebbian learning procedures, respectively. The SN P systems
constituting that network could correspond to brain network modules realizing
simultaneously various cognitive functions, respectively.

On the other hand, since SN P systems seem more coarse with respect to an
approach to time than spiking neural networks with precise timing of spikes, like,
e.g., in [2], we propose the following conjecture.

Conjecture 2. A biologically plausible modularity of brain could be represented
(modeled) by the following hybrid constructs:

1. a two-level construct of a spiking super-neural P system which is an SN P sys-
tem whose neurons are superneurons, i.e., multi-layer spiking neural networks
with a precise timing of spikes like, e.g., in [2],

2. a three-level construct of a spiking sub-super-neural P system which is a spik-
ing super-neural P system as above, where the neurons of superneurons are
P systems approaching neurons as cells which produce and transport copies of
molecules between electrically charged membranes.

The construct in 1) gives rise to multi-layer spiking networks which could learn
themselves like in [2] their modular structure of spiking super-neural P systems
and hence which could explain emergence of cognitive capabilities of brain.

It is worth to discuss the above constructs with regard to the possibility of their
molecular implementation which is suggested by recent findings outlined in [1].
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Some possibilities to employ MC techniques in computer vision (especially in
thresholding, smoothing, homology theory) are discussed.

Required Notions: array grammar, array-rewriting P system, cell and tissue P
systems

Computer vision is probably one of the challenges for computer scientists in the
next years. From a biological point of view, vision is an extremely complex process
involving the transformation of the light energy into a signal which leaves the eye
by way of the optic nerve and arrives to the brain, where it is interpreted. From a
computational point of view, a digital image is a function from a two dimensional
surface which maps each point form the surface to a set of features as bright or
color.

In MC, there is a large tradition in handling information structured as two
dimensional objects (see, e.g., [2, 3, 9, 16]). The main motivation for these studies
is to bring together P systems and picture grammars. From a technical point of
view, arrays are two-dimensional objects placed inside the membranes as strings
are one-dimensional objects in the model of P systems with string objects [13].

In [3], the model of array-rewriting P systems was presented on the basis of
the transition P systems: Rules are of type A → B(tar) where A is the array to be
rewritten, B is the new one, and tar ∈ {here, in, out} indicates the place of the
picture after the substitution has been made.

Recently, a new research line has been open by applying well-known MC tech-
niques for solving problems from digital imagery. For example, segmentation is the
process of assigning a label to every pixel in an image such that pixels with the
same label share certain visual characteristics. Segmentation has shown its util-
ity, for example, in bordering tumors and other pathologies or computer-guided
surgery. In [5, 8, 10, 11] we can find several approaches to this problem with MC
techniques. Other problems, as thresholding [4] or smoothing [18] have also been
considered in the framework of MC. Special attention deserves [14], where the sym-
metric dynamic programming stereo (SDPS) algorithm [15] for stereo matching was
implemented by using simple P modules with duplex channels.

A different approach to computer vision can also be obtained from computa-
tional topology. In particular, algebraic topology provides techniques and algo-
rithms for handling digital images from a topological point of view. Recently, the
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links between algebraic topology and MC have started to be explored via homology
theory [6, 7, 12]. Homology theory is a branch of algebraic topology that attempts
to distinguish between spaces by constructing algebraic invariants that reflect the
connectivity properties of the space. Homology groups (related to the different
n-dimensional holes, connected components, tunnels, cavities, etc., of a geometric
object) are invariants from algebraic topology which are frequently used in digital
image analysis and structural pattern recognition.

In a similar way with other applications of P systems, the theoretical advan-
tages of the MC techniques for computer vision need a powerful software and
hardware for an effective implementation. The use of these new technologies for
the parallel implementation of P systems techniques applied to computer vision
have started to be explored with promising experimental results [1, 17, 18].

An appropriate combination of MC techniques together with an efficient par-
allel implementation on the new hardware architectures can provide competitive
algorithms to different problems from computer vision. Among them, we can cite
dealing with textures, colors and/or 3D objects (or even 4D objects, where the
evolution of objects in time is also considered). From algebraic topology, the cal-
culus of complex topological invariants of 2D and 3D objects can be a source of
new open problems for MC.
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Research ideas related to the extension of the P-lingua dedicated languages
and on the implementation of P systems on reconfigurable or parallel hardware
(e.g., NVIDIA architectures) are mentioned.

Required Notions: P system models, GPU computing, P-Lingua, MeCoSim

The development of P system simulators, and of other related software tools,
becomes a critical point in the processes of model validation and virtual experi-
mentation. For this purpose, a software framework for specifying and simulating
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P systems, called P-Lingua, was developed [7]. Moreover, a generic software to
generate graphical applications based on P-Lingua, called MeCoSim, was also de-
veloped. Finally, in order to accelerate the simulation by implementing P systems
parallelism on high performance platforms, some simulators were developed by
using GPU computing [5]. Research in all these directions are under development.

(A) Simulation Framework: P-Lingua and PLinguaCore

P–Lingua has been successfully applied to ecosystem modeling problems [6],
formal model checking and to solve computationally hard problems [7]. It supports
several P system models, such as active membrane models [7], Tissue P system
models and Spiking Neural P Systems (SN P) [9] systems.

Nevertheless, there is still plenty to do in order to extend the capabilities of
P-Lingua. Both expressivity and functionality issues should be improved to renew
the P-Lingua menu and attract new users. First, inclusion of parsing directives
should be implemented in order to, say, modify the behavior of existing models. A
fast learner example would be the ’asynchronous’ behavior, that is, cracking the
universal clock that reigns the computation process in most of standard models
(this is already included for the case of SN P Systems). Then, integration of new
models, such as numerical P systems and some specific types of SN P Systems,
incorporating weights and astrocytes with their different flavors, remains unex-
plored. Finally, re-factoring of the work done to bring some exotic elements of the
reaction systems.

(B) Generic end-user graphical applications: MeCoSim

In the last few years, there have been some interesting, user-friendly, successful
software applications for modeling and simulating P systems, mainly focused on
biological systems: MetaPlab [4] for internal mechanisms of biological systems by
means of MP System; BioSimWare [1] and Infobiotics [2] for P system based multi-
compartmental stochastic simulations of complex biological systems, the last one
including Synthetic Biology; and EcoSim [6], a family of probabilistic simulators
for different ecosystems.

However, a general application for the study, analysis, modeling, visual simu-
lation, model checking, optimization of as many as possible variants of P systems
has not been provided. A first approach has been developed with MeCoSim [10].
Some plugins have been developed to provide some analysis and model checking
capabilities. It has been successfully applied as an assistant tool for the iterative
design of ecosystem models, and to solve computationally hard problems by using
tissue and SN P system models.

Nevertheless, there are many challenges to solve. The core of the visual appli-
cation should include more analysis and modeling tools to ease the work of the P
systems designer. Also, some interfaces to communicate with different simulation
engines should be developed to run simulation against simulators implemented in
different local or remote platforms and architectures. It should integrate with dif-
ferent applications for formal model checking, enabling the user to extract and/or
validate properties of the studied models. Eventually, new P systems models should
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be added to MeCoSim, providing the general functionalities and new possible plu-
gins to many potential P systems designers.

(C) Simulation on High Performance Platforms: GPU computing

So far, there have been many efforts on the development of GPGPU based
simulators for P systems. In fact, the following P systems models have been suc-
cessfully simulated by means of GPUs: P systems with active membranes and
division rules [5], a family of P systems with active membranes solving SAT in
linear time [5], SN P systems (SNP) with and without delays [3], and ENPSs [8].

On the other hand, there exist many other models which, to the best of our
knowledge, are yet to be simulated by means of GPGPU. These models include
tissue P systems, population dynamics P systems, stochastic P systems, hyperdag
P systems, numerical P systems and string P systems, to name just a few.

Another challenge is the integration of GPU simulators on end-user MC soft-
ware frameworks. Although some steps have been taken in this direction with the
P-Lingua automatic generation [7] of P system files to be parsed by GPU simula-
tors [5], there is still a long way to walk for an efficient interaction between these
two kinds of technological tools.

Last but not least, a thorough performance comparison between GPU simula-
tors and other HPC approaches is yet to be developed. These approaches include
reconfigurable hardware (FGPA, DSP), computer clusters with OpenMP and MPI,
etc. The need for some works on this direction has been previously noticed [5, 8].
Finally, it is also interesting to port current developments of GPU simulators to
the last GPU platforms, based on both NVIDIA and AMD ATI architectures, and
on GPU based clusters.
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Closing Remarks

As also said in the Introduction, this collection of open problems and research
topics in MC was initially meant to be a working material, for 10th BWMC, and
it was updated and completed several times. However, no such list can be com-
plete, neither uniform, in what concerns the type of problems, their technicality,
difficulty, range of interest. As expected, some problems are local, others are very
general, while the sections are not at all uniform in style (we have preserved in a
great extent the contributors writing). Moreover, many further research ideas wait
to be addressed in MC, for instance, in the P and dP automata area, the SN P
systems area, complexity, dynamical systems approach – not to speak about ap-
plications (from biology and bio-medicine, to ecology, robot control, approximate
optimization). Still, we believe that such a list is useful, on the one hand, because
it can entail cooperation about the co-authors of the paper and the readers, and,
on the other hand, because it points out active research areas of MC, indicating
its “frontiers”. Actually, this “mega-paper” proved already to be useful during the
10th BWMC, where several of the proposed research topics were addressed – the
paper incorporates some changes due to these recent progresses.
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1 Introduction

Clock-free P systems were introduced in [7] as a natural extension to transitional
membrane systems. The idea sparks from the observation of the fundamental dif-
ference between how transitional P systems evolve and how processes take place
in biological cells: transitional P systems evolve in a series of crisp evolution steps,
under the control of a global clock, while their biological prototypes have nothing
similar to such a device.

In clock-free P systems, the attempt is made to bridge this difference by dis-
carding any global step synchronisation mechanism. Any rule application lasts
differently and there is no way of knowing when exactly the right-hand side of a
rule will be added to the system.

The clock-free model produces two intuitive impressions. Firstly, it seems to be
much closer to the real-world processes in the cell: the duration of clock-free rules
is not regulated by any external mechanism and is expressed as a real number.
Secondly, the absence of any built-in global step synchronisation seems to be very
specific and quite unwieldy to manage. In fact, one of the best-working approaches
to producing meaningful results with clock-free P systems is cutting down on
parallelism as much as possible: this is how the computational completeness of
these devices is shown in [7].

There are other ways to introduce time into P systems, an example could be
timed P systems (see [1]). In this model, however, the global clock is still present.

In this paper we provide a formal description of the semantics of clock-free P
systems, or rather the more general concept of clock-free networks of cells, and
show how these devices can be modelled in transitional P systems.
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This paper is heavily based on [3]. While we tried to introduce all the rel-
evant concepts in this paper as well, getting acquainted with [3] would still be
recommended.

2 Preliminaries

2.1 Multisets

Given a finite set A, by |A| we understand the number of elements in A.
Let V be a finite alphabet; then V ∗ is the set of all finite strings of a V , and

V + = V ∗ − {λ}, where λ is the empty string. By N we denote the set of all
non-negative integers, by Nk – the set of all vectors of non-negative integers.

Let V be a finite set, V = {a1, . . . , ak}, k ∈ N. A finite multiset M over
V is a mapping M : V → N. For each a ∈ V , M(a) indicates the number of
“occurrences” of a in M . The value M(a) is called the multiplicity of a in M . The
size of the multiset M is |M | =

∑
a∈V M(a), i.e., the total count of the entries of

the multiset. A multiset M over V can also be represented by any string x which
contains exactly M(ai) instances of ai, 1 ≤ i ≤ k. The support of M is the set
supp(M) = {a ∈ V | M(a) ≥ 1}, which is the set which contains all elements
of the multiset. For example, the multiset over {a, b, c} defined by the mapping
{a→ 3, b→ 1, c→ 0} can be written as a3b. The support of this multiset is {a, b}.

The class of all finite multisets over V is denoted by 〈V,N〉. One may also
consider mappings M of the form M : V → N∞, where N∞ = N ∪ {∞}, i.e., the
elements may have infinite multiplicity. A multiset M is infinite if

(
∃i ∈ N

)(
1 ≤

i ≤ k
)(
M(ai) = ∞

)
, i.e., at least one element is of infinite multiplicity. The

class of multisets M over V with M : V → N∞ is denoted by 〈V,N∞〉. For
W ⊆ V , W∞ is the multiset in which every element is of infinite multiplicity:(
∀a ∈W

)(
W∞(a) =∞

)
.

Let x, y ∈ 〈V,N∞〉 be two (possibly infinite) multisets over V . Then x is called
a submultiset of y, written as x ≤ y, if and only if

(
∀a ∈ V

)(
x(a) ≤ y(a)

)
. If(

∀a ∈ V
)(
x(a) < y(a)

)
then x is called a strict submultiset of y. The sum of x

and y, denoted by x + y is defined in the following way:
(
∀a ∈ V

)(
(x + y)(a) =

x(a) + y(a)
)
. The difference of x and y, denoted by x − y, is defined similarly:(

∀a ∈ V
)(

(x − y)(a) = x(a) − y(a)
)
. The semantics of the symbol ∞ obey the

usual rules:
(
∀n ∈ N

)(
n ≤ ∞∧∞+ n =∞− n =∞

)
. When talking about x− y,

we assume that y ∈ 〈V,N〉, i.e., the that subtracted multiset is finite.
If X = (x1, . . . , xm) and Y = (y1, . . . , ym) are vectors of multisets over V , then

the relation X ≤ Y is defined as follows
(
X ≤ Y

)
⇔
(
∀i ∈ N

)(
1 ≤ i ≤ m

)(
xi ≤

yi
)
, i.e., X ≤ Y if and only if each component of X is a submultiset of Y . Similarly,

we define X + Y and X − Y in a component-wise way.
For further details on these topics see [2] and [6].
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2.2 Clock-free P Systems

Clock-free P systems were originally introduced in [7]; an intuitive approach to
working with the clock-free semantics was explored in [4].

A clock-free membrane system is defined by a tuple

Π = (O,C, µ,w1, w2, · · · , wm, R1, R2, . . . , Rm, i0), where

O is a finite set of objects,

C is a finite set of catalysts, C ∈ O,
µ is a hierarchical structure of m membranes, bijectively labeled

by 1, . . . ,m; the interior of each membrane defines a region;

the environment is referred to as region 0,

wi is the initial multiset in region i, 1 ≤ i ≤ m,
Ri is the set of rules of region i, 1 ≤ i ≤ m,
i0 is the output region.

The rules of a clock-free membrane system have the form u→ v, where u ∈ O+

and v ∈ (O × Tar)∗. In the case of non-cooperative rules, u ∈ O. The target
indications from Tar = {here, out} ∪ {inj | 1 ≤ j ≤ m} are written in the
following way: (a, t), a ∈ O, t ∈ Tar and the target here is typically omitted.
A rule associated with membrane i must only specify a label of the immediately
inner membrane in a target indication inj .

The rules are applied in a maximally parallel way: no further rule should be
applicable to the idle objects. In the case of non-cooperative systems, all objects
evolve by the associated rules in the corresponding regions (except objects a in
regions i such that Ri does not contain any rule a → u, but these objects do not
contribute to the result). Rules are non-deterministically chosen at each moment
in time when a change occurs in the configuration of the P system. The process of
choosing which rules should be applied does not take any time.

Intuitively, clock-free rule applications work in the following way. At the start
of application, the multiset in the left-hand side of the rule is subtracted from
the content of the corresponding region. When a rule application is complete, the
multiset in the right-hand side of the rule is added to the corresponding region.
The time between the start and the end of a rule application is a real value, may
be different for different applications of the same rule, and there is impossible to
know in advance.

For further definitions and details, see [7].

2.3 Networks of Cells

Networks of cells are a general framework for describing membrane systems with a
static membrane structure. Networks of cells are formally described in depth in [3].
Intuitively, with this approach, membrane systems are considered as collections of
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interacting cells containing multisets of objects [8]. In this section we will only
shortly expose the relevant considerations discussed in [3].

A network of cells of degree n ≥ 1 is a tuple

Π = (n, V, w, Inf,R), where
n is the number of cells,
V is a finite alphabet,
w = (w1, . . . , wn), wi ∈ 〈V,N〉, 1 ≤ i ≤ n, is the initial content of cell i,

Inf = (Inf1, . . . , Infn), Infi = {a ∈ V | wi(a) =∞}, 1 ≤ i ≤ n,
R is a finite set of interaction rules.

According to the definition, the component Infi of the vector Inf contains
the symbols which occur infinitely often in cell i. In most cases, only one cell, the
environment, will contain symbols of infinite multiplicity.

The interaction rules in R have the form

(X → Y, P,Q),

where X = (x1, . . . , xn) and Y = (y1, . . . , yn) are vectors of finite multisets over V ,
i.e., xi, yi ∈ 〈V,N〉, 1 ≤ i ≤ n. Furthermore, P = (p1, . . . , pn) and Q = (q1, . . . , qn),
with pi, qi ∈ 〈V,N〉, 1 ≤ i ≤ n. The vector P is sometimes called the permitting
condition of the rule, while Q is sometimes referred to as the forbidding condition
of the rule.

The following notation for the rule (X → Y, P,Q) is also used:(
(x1, 1) . . . (xn, n)→ (y1, 1) . . . (yn, n), (p1, 1) . . . (pn, n), (q1, 1) . . . (qn, n)

)
.

Whenever any of xi, yi, pi, or qi, 1 ≤ i ≤ n, is empty, it may be omitted.
Initially, every cell contains wi∪Inf∞i . An interaction rule rewrites the objects

xi from cells i, 1 ≤ i ≤ n, into objects yj in cells j, 1 ≤ j ≤ n, if
(
∀i ∈ N

)(
pi ≤

xi ∧ ¬(qi ≤ xi)
)
, i.e., if xi contains pi and does not contain qi, 1 ≤ i ≤ n.

Note that the definition of the network of cells does not specify any structural
relations between the cells. The reason is that in many P system models the struc-
tural organisation of membranes is mainly used to direct communication between
the cells (as can be seen in [5]). In networks of cells, however, rules are allowed to
modify any combinations of cells, thus removing the need for an explicit structure
of cells as a means of organising communication.

A configuration of the network of cells Π is an n-tuple of multisets over V :
C = (u′1, . . . , u

′
n), in which u′i ∈ 〈V,N∞〉, 1 ≤ i ≤ n. Configurations are often

described by their finite parts only: Cf = (u1, . . . , un), where (u′i = ui ∪ Inf∞i ) ∧
(ui ∩ Infi = ∅), 1 ≤ i ≤ n [3].

An interaction rule r = (X → Y, P,Q) is eligible in the configuration C =
(u1, . . . , un) if and only if the following condition is true:(

∀i ∈ N
)(

1 ≤ i ≤ n
)(

(pi ≤ ui) ∧
(
(qi = ∅) ∨ ¬(qi ≤ ui)

)
∧ (xi ≤ ui)

)
,
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i.e., the corresponding cells contain all of the promoting multisets, do not contain
the forbidding multisets and contain the corresponding multisets of the left-hand
side of the rule. The set of rules eligible in configuration C of the network of cells
Π is denoted by Eligible(Π,C).

Let C = (u1, . . . , un) be a configuration of Π and Cf be its finite part. Let
T ∈ 〈R,N〉, supp(T ) ⊆ Eligible(Π,C), be a finite multiset of eligible rules, |T | =
k. Recall that every eligible rule has the following form: r = (X → Y, P,Q) ∈
supp(T ). The algorithm which checks whether the multiset of rules T can be
applied to the configuration C is described in Algorithm 1. The algorithm checks
if the rules in T can all at once be applied to the configuration C. To perform the
check, an attempt is made to remove the left-hand sides of the rules in T from C.
If this is possible, the algorithm returns the multiset union of the left-hand sides
of the rules in T , otherwise it returns ∅. See [3] for further details.

Algorithm 1 The marking algorithm

1: T ′ ← T
2: Mark0(Π,C, T )← (λ, . . . , λ) {empty vector of size n}
3: i← 1
4: while T ′ 6= ∅ do
5: r = (X → Y, P,Q)← get T ′

6: T ′ ← T ′ − {r → 1}
7: if X ≤ Cf −Marki−1(Π,C, T ) then
8: Marki(Π,C, T )←Marki−1(Π,C, T ) +X
9: else

10: return ∅
11: end if
12: i← i+ 1
13: end while
14: return Markk(Π,C, T )

If, for the multiset of eligible rules T ∈ 〈R,N〉, supp(T ) ⊆ Eligible(Π,C),
the marking algorithm succeeds and Mark(Π,C, T ) 6= ∅, the multiset T is called
applicable to C. The set of all multisets applicable to the configuration C of Π is
denoted by Appl(Π,C). The result of applying T to C is defined as follows:

Apply(Π,C, T ) = Cf −
∑

(X→Y,P,Q)∈T

X +
∑

(X→Y,P,Q)∈T

Y,

or, equivalently,

Apply(Π,C, T ) = (Cf −Mark(Π,C, T )) +
∑

(X→Y,P,Q)∈T

Y.

In plain words, Apply(Π,C, T ) is the configuration obtained from C by removing
the left-hand sides of all rules in T and then adding the right-hand sides of all
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rules in T . Note that repeating entries of the same rule are treated independently
both in Mark and in Apply.

A derivation mode is a set of conditions applied to the set Appl(Π,C) [3]. The
maximally parallel derivation mode max is thus defined as follows:

Appl(Π,C,max) =
{
T ∈ Appl(Π,C) |

(
∃T ′ ∈ Appl(Π,C)

)(
T ′ ) T

)}
,

that is, App(Π,C,max) contains those multisets of applicable rules which cannot
be further maximised and remain applicable (which corresponds to the intuitive
perception of the maximally parallel derivation mode).

Now fix a derivation mode ϑ (i.e. ϑ = max). Consider two configurations
C1 and C2 of Π. We say that C1 ⇒(Π,ϑ) C2 if

(
∃T ∈ Appl(Π,C1, ϑ)

)(
C2 =

Apply(Π,C1, T )
)
, i.e., there exists an applicable multiset of rules T , valid under

the derivation mode ϑ, with the property that applying T to C1 yields C2 [3].
In this case, C2 is said to be the result of a transition step from C1. When the
network of cells and the derivation mode are clear from the context, the relation
may be written as ⇒. The reflexive and transitive closure of ⇒(Π,ϑ) is denoted by
⇒∗(Π,ϑ).

A configuration C of Π is said to be a halting configuration if C satisfies
a certain halting condition. One of the most widely used halting conditions is
Appl(Π,C, ϑ) = ∅. Under this condition, C is a final configuration if there are no
rules applicable to C under the derivation mode ϑ.

A computation of a network of cells Π under the derivation mode ϑ is the
sequence of configurations (Ci)

n
i=0, where C0 is the initial configuration, Cn is a

halting configuration and
(
∀i ∈ N

)(
0 ≤ i ≤ n − 1

)(
Ci ⇒(Π,ϑ) Ci+1

)
. In plain

words, a computation is a sequence of configurations which starts from the initial
configuration and, by applications of multisets of rules valid under the derivation
mode ϑ, reaches a halting configuration.

This section only contains a superficial overview of the corresponding material.
Consider referring to [3] for further details on the formal framework for networks
of cells.

3 Clock-free Networks of Cells

3.1 Preliminary Considerations

To understand and explore the concept of clock-freeness, we will start with an
analysis of how a clock-free P system evolves. Consider the following sample clock-
free P system:

Π0 = (V,C, [ ]
1
, w1, R1, 1), where

V = {a, b, c, x, u},
C = {x},
w1 = a3,
R1 = {a→ b, b→ c, a→ u, a→ x, xu→ x}.
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Fig. 1. The time diagram of a computation of Π0

The time-diagram of a possible computation of Π0 is shown in Figure 1. This
diagram shows the possible evolution of individual symbols in the only region 1
of Π0 as time progresses. In the initial state of the system, three different rules
start consuming the three instances of a. At any moment sufficiently close to the
initial state of the system, there are no symbols in region 1, because all of them
have been consumed in the start of the three rule applications.

In this variant of evolution, the application of the rule a → u finishes first,
producing an instance of u. Since there are no rules applicable to u, nothing hap-
pens at this time. The next rule application to finish is a → b. At this moment,
the contents of the only region of the system is bu. There is a rule b → c, so,
in accordance with the maximally parallel mode of evolution, this rule must be
applied. The application of b → c therefore starts immediately after b has been
produced and consumes the instance of b.

The next rule application to finalise is a → x. As it can be seen from the
diagram, at the moment when the first x is produced, the contents of region 1 will
be ux. This renders the catalytic xu → x applicable, and so it is applied. In this
variant of evolution, the applications of the rules b → c and xu → x finalise at
exactly the same time. The system therefore halts with cx in its only region.

We explicitly remark that our choice of the variant of evolution is totally ran-
dom. For example, the c may have not been produced at the same time with x. In
fact, it could have been added to the system before u would be.

3.2 Clock-freeness: A Separate Concept

In this section we will tear apart the concept of a clock-free P system and focus
on clock-freeness per se. The paper [7] introduces clock-free P system as a whole
concept, without formally paying attention to the distinctive feature.

It turns out that clock-freeness cannot directly be described by any combination
of the principal features of networks of cells considered in [3] (derivation mode,
halting condition, goal of computations, interpretation of results). Indeed, the
halting condition, the goal of computation, and the way to interpret results refer
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to the ending parts of the computation, while the derivation mode describes how
to choose applicable multisets of rules. Clock-freeness, on the other hand, focuses
on what happens after rules have been chosen, throughout the whole computation,
not just in the closing phases.

The very special component of clock-freeness is that reaction times for rules are
real numbers. This poses the question whether having real numbers in the model
offers extended possibilities as compared to other models, where time is expressed
as a natural number of steps. It turns out, however, that having arbitrary real
numbers as reaction times is not at all defining. Indeed, the exact duration of a re-
action is of no importance whatsoever. What deserves attention is only the relation
of this value to other durations, i.e., we are only interested in knowing whether a
multiset α was produced before, at the same time, of after multiset β. According
to [7], we will consider the next configuration to be the instant description of the
system when the output of a previously initiated reaction appears. Therefore, we
consider the computation of a clock-free system to be a sequence of configurations,
sampled at the moments when a rule application (or several rule applications) fi-
nalise. Observe that real numbers are relevant nowhere in this reasoning, since we
always have a finite number of configurations in a computation.

Consider, for example, the computation shown in Figure 1. The sequence of
configurations of this computation is the following:

(a3), (u), (bu), (ux), (cx).

The computation starts with a3 in the only region of the system. All three instances
of a are consumed. Then a single u is produced. Later on, b is also added to the
system. In this configuration, the rule b → c starts, so, when x is added to the
system, there are no instances of b already. Finally, after both b→ c and ux→ x
have finalised, the system stops in the halting configuration cx.

Observe again that we are not interested in reaction times themselves, but
rather in the ordering of the moments of time when certain symbols were pro-
duced. Therefore, although the time intervals between configurations are some
real numbers, we are free to discard this fact. Moreover, we can consider that a
clock-free system transitions into the next configuration at every tick of a global
clock, which brings us a huge step closer to the classic P system models. We
lose absolutely nothing in this move because, as we have shown above, the exact
duration of rules plays no role.

3.3 Formal Framework

Having done the preliminary consideration, we are now ready to introduce the
clock-free mode of evolution into networks of cells. To be able to do that, we will
extend the notion of a configuration.

Definition 1. We call a clock-free configuration in a network of cells Π =
(n, V, w, Inf,R) the following construct:
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C∗ = (C,H), where
C = (u′1, . . . , u

′
n), u′i ∈ 〈V,N∞〉, 1 ≤ i ≤ n,

H ∈ 〈R,N〉.

The initial clock-free configuration of a network of cells is C∗0 = (C0,∅), where
C0 describes the initial content of every cell in the network.

A configuration C∗ has two components. C describes the contents of the cells
of the system in exactly the same way as a normal configuration of a network
of cells does. R is a multiset of rules which are “still being applied”. The exact
semantics of this component will be revealed in the next paragraphs.

The way a transition step from a configuration C∗1 = (C1, H1) into C∗2 =
(C2, H2) under the derivation mode ϑ is performed is described in Algorithm 2.
Symbolically, what Algorithm 2 does is build C∗2 starting from C∗1 such that
C∗1 ⇒(Π,ϑ) C

∗
2 .

Algorithm 2 A clock-free transition step

1: A← get Appl(Π,C1, ϑ)
2: C2 ← C1 −

∑
(X→Y,P,Q)∈A

X

3: H ′ ← H1 +A
4: F ← get submultiset H ′{assure F 6= ∅}
5: C2 ← C′ +

∑
(X→Y,P,Q)∈F

Y

6: H2 ← H ′ − F

The transition from C∗1 starts by computing the set of multisets of applicable
rules and picking one of them: A (line 1). The applications of the rules in A
are started (line 2) and the rules themselves are added to the would-be second
component of the new configuration (line 3). As remarked in the definition, the
second component H1 of the clock-free configuration C∗1 = (C1, H1) is a multiset
of rules, whose applications have not yet been finalised. The algorithm continues
with picking an arbitrary nonempty submultiset of rules F to be finalised from H ′

(line 4). The right-hand sides of the rules in F are added to the system (line 5),
while the rules themselves are removed from H ′ (line 6).

Observe that if instead of choosing an arbitrary submultiset F ≤ H ′, Algo-
rithm 2 would take F = H ′, it would degenerate into the classic (non-clock-free)
algorithm of computing the next configuration from the current one.

Further note that the requirement F 6= ∅ does not limit the domain of con-
figurations this algorithm is applicable to, because H ′ could only be empty if the
algorithm started from a halting configuration.

Now that we have described a clock-free configuration and the way transitions
between configurations occur, we are ready to formally define the halting condition
for a clock-free computation.
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Definition 2. A clock-free configuration C∗ = (C,H) of a network of cells Π
evolving under the evolution mode ϑ is halting when all rules have finalised and
there are no more applicable rules:

H = ∅
∧
Appl(Π,C, ϑ) = ∅.

This halting condition corresponds to the clock-free semantics as described
in [7]. Obviously, just as with other variants of networks of cells, the predicate
defining the halting condition can be defined in a different way.

In what follows, we will refer to networks of cells with clock-free configurations,
operating according to Algorith 2, as to clock-free networks of cells.

3.4 Example of Clock-free Evolution (Algorithm 2)

We will now turn back to the example of a computation of the clock-free P system
Π0 shown in Figure 1. The computation starts with the initial configuration:

C∗0 =
((
a3
)
,∅
)
.

In this configuration the multiset of rules to apply is selected to be {(a → b) →
1, (a → u) → 1, (a → x) → 1}; the three instances of a are correspondingly
removed. The rule (a → u) is immediately picked to be finalised, so the next
configuration is

C∗1 =
((
u
)
,
{

(a→ b)→ 1, (a→ x)→ 1
})
.

Since there are no rules which consume only u, nothing is applicable in C∗2 , so
A = ∅ once again. This time F = {(a→ b)→ 1}, so the system transitions into

C∗2 =
((
bu
)
,
{

(a→ x)→ 1}
)
.

In this configuration the rule b→ c becomes applicable, so its application must be
started: the only b is removed and H ′ is correspondingly modified. The rule a→ x
is finalised (F = {(a→ x)→ 1}):

C∗3 =
((
ux
)
,
{

(b→ c)→ 1
})
.

There is the rule xu→ x, so it must be started in this configuration. The algorithm
then picks both rules which are “still being applied” (including the xu→ x, which
has just been started) and finalises them:

C∗4 =
((
cx
)
,∅
)
.

Since no rules are applicable and H4 = ∅, the system has arrived at a halting
configuration.
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3.5 Suitability of the Formalisation

In this section we will discuss whether the formalism introduced and described in
the previous section is compatible with the intuitive description of clock-freeness
provided in [7]. In this paper we define clock-freeness on the foundation of networks
of cells, while [7] starts from transitional P systems. To bridge the obvious gap,
we will consider networks of cells with rules working in clock-free mode. This will
bring a common ground to the (extended) definitions from [7] and the formal
definitions suggested in this paper.

Definition 3. A *-network of cells is a network of cells with rules operating in
clock-free mode, in the sense of [7].

According to the definition, rule applications in a *-network of cells last for
a different real-valued time interval each. In this section we will only consider
ϑ = max for both *-networks of cells and clock-free networks of cells, because clock-
free P systems evolve under maximal derivation mode. The halting condition for
*-networks of cells will be the condition that all rule applications have finalised and
no more rules are applicable, while networks of cells with clock-free configurations
will have the halting condition introduced in the previous sections. Since the goal
of the computation and the way to interpret the result do not directly pertain
to the subject of this section, we will consider these two parameters as having a
certain well-defined value, the same for both kinds of analysed networks of cells.

Obviously, clock-free P systems as defined in [7] are a particular case of *-
networks of cells.

Theorem 1 (Suitability of the formalism). Consider a network of cells Π =
(n, V, w, Inf,R) and a finite sequence of clock-free configurations of Π: C∗ =
(C∗i )mi=0, with C∗0 = (C0,∅) being an initial configuration and C∗m = (Cm,∅)
being a halting configuration. Let ∗Π = (n, V, w, Inf,R) be a *-network of cells.
C∗ is a clock-free computation if and only if the sequence of the first components
C = (Ci)

m
i=0 is a valid computation in ∗Π.

Proof. According to the corresponding definitions, C∗0 and C∗n are valid clock-free
initial and halting configurations in Π correspondingly if and only if C0 and Cn
are valid initial and halting configurations in ∗Π correspondingly. Obviously, the
statement of the theorem holds for C∗0 = C∗m, therefore we will focus on the cases
when m > 0.

Consider C∗0 and C∗1 and suppose that C∗0 ⇒(Π,max) C
∗
1 . Then, in ∗Π, we can

consider the transition from C0 to C1 constructed in the following way: start the
applications of the rules belonging the multiset A chosen in Algorithm 2, then
consider that the rules collected into F as constructed in Algorithm 2 finalise their
application at one and the same time. The moment these rules complete is the
moment when C1 will occur. Therefore, C0 ⇒(∗Π,max) C1.

Now suppose that C0 ⇒(∗Π,max) C1. This means that, in ∗Π, some rule appli-
cations started in C0, and some of these rules finished to result in configuration
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C1. We can therefore consider that in configuration C∗0 , Algorithm 2 chose to start
the same rules as the ones which started in in ∗Π and then immediately finalised
those which led to the occurrence of C1 in ∗Π. For C∗1 constructed in this way,
the following is true: C∗0 ⇒(Π,max) C

∗
1 .

We have therefore proved that(
C∗0 ⇒(Π,max) C

∗
1

)
⇔
(
C0 ⇒(∗Π,max) C1

)
.

Moreover, we have proved that H1 contains those and only those rules which could
have been started in ∗Π in configuration C0 and might have not been finalised in
transition to C1. By repeating the same reasoning for any pair C∗i and C∗i+1, it is
now possible to prove the statement of the theorem by induction.

4 Simulations of Clock-freeness

Now that we have formally defined clock-freeness, it is time to pose one of the
most important questions: how “far away” are clock-free networks of cells from
the traditional networks of cells? It turns out that it is very easy to simulate
clock-freeness with traditional, static networks of cells, as they are formalised in
[3].

Indeed, consider a clock-free network of cells Π = (n, V, w, Inf,R) and a rule
ri = (X → Y, P,Q) ∈ R′. According to clock-free semantics, an application of ri is
started in a configuration C∗i of Π by removing its left-hand side from the system,
and is finalised in a configuration C∗j by adding its right-hand side to the system.
Consider now an ordinary network of cells Π ′ = (n, V ′, w, Inf,R′), with R′ and
V ′ constructed in the following way:

V ′ = V ∪
{
ξi
∣∣ ri = (X → Y, P,Q) ∈ R

}
,

R′ =
{(
X → (ξi, k

∗), P,Q
)
,
(
(ξi, k

∗)→ (ξi, k
∗), λ̄, λ̄

)
,(

(ξi, k
∗)→ Y, λ̄, λ̄

) ∣∣ ri = (X → Y, P,Q) ∈ R},
1 ≤ k∗ ≤ |R|,

where λ̄ is the vector of size n of empty multisets. The alphabet of Π ′ includes all
symbols from the alphabet of Π, but also a ξi per each rule with index i.

For each rule in R, three rules are added to R′. When the rule ri is applicable,
instead of X being directly transformed into Y , X is initially rewritten into ξi,
which is placed into the cell with index k∗. The choice of the index k∗ is totally
arbitrary, it may even be different for different rules. The symbol ξi can either
reproduce itself or add Y to the system; either of these will unconditionally happen;
the choice between the two options is nondeterministic.

We claim that Π ′ accurately simulates the evolution of Π. Indeed, a rule (X →
(ξiq, k

∗), P,Q) ∈ R′ is applicable in Π ′ if and only if the corresponding rule ri =
(X → Y, P,Q) ∈ R is applicable. Rewriting X into ξi thus corresponds to removing
the left-hand side of the rule from the system and adding it to H ′ (the operations
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performed in Algorithm 2). If, in a certain configuration, ξi is rewritten into itself,
then, at this step, the rule ri was not picked by Algorithm 2 to be finalised. The
case when ξi is rewritten into Y corresponds to the scenario when Algorithm 2
picked rule ri to finalise.

Observe now that if, in a certain configuration of Π ′, only the rules which
rewrite ξi, 1 ≤ i ≤ |R|, were chosen to be applied, then the system will arrive at
exactly the same configuration at the next step. It is possible to detect such situ-
ations and cut off such computations. This however, does not make the following
result significantly different on the overall.

Theorem 2 (Simulation of clock-freeness). Consider a clock-free network
of cells Π = (n, V, w, Inf,R) and a sequence of clock-free configurations C∗ =
(C∗i )mi=0, with C∗0 being an initial configuration and C∗m being a halting config-
uration. If C∗ is a computation then it is possible to construct a computation
K = (Ki)

l
i=0 of an ordinary network of cells Π ′ so that there is a mapping

f : K → C∗ with the properties:

1. f(Ki) = C∗j = (Cj , Hj)⇔ Ci ≤ Ki (f(Ki) = C∗i if and only if Ki contains at
least all the symbols in Ki),

2.
(
Ki ⇒∗(Π′,max) Kj

)
⇔
(
f(Ki) ⇒∗(Π,max) f(Kj)

)
(f maps the binary relation

⇒∗(Π′,max) into ⇒∗(Π,max) and vice versa),

3.
(
∀i
)(
∃j
)(
f(Kj) = C∗i

)
(f is surjective),

where 1 ≤ i ≤ m, 1 ≤ j ≤ l.

Proof. According to the constructions in the previous paragraphs, to a clock-free
network of cells Π, one can associate an ordinary network of cells Π ′ which simu-
lates Π. The mapping f can thus be defined as follows: from the region i∗ of Ki

remove all instances of ξi, 1 ≤ i ≤ |R|; this will be the first component of f(Ki).
The second component of f(Ki) is obtained by starting with an empty multiset
and adding an instance of rule ri per each instance of symbol ξi, 1 ≤ i ≤ |R|. The
required properties of f follow from the constructions shown in this section.

5 Conclusion

In this paper we have torn apart the concept of clock-free P systems as defined
in [7] and have separated clock-freeness as a stand-alone ingredient. We have for-
mally defined this ingredient within the framework of networks of cells [3] and
shown that this definition is consistent with the original concept. We have also
shown that clock-freeness can be simulated with usual networks of cells in a quite
straightforward way.

The fact that clock-freeness can be simulated so easily goes against the intuitive
impression produced by clock-free P systems and poses the important question of
how valuable this ingredient is. Indeed, it seems that almost any problem in clock-
free systems can be equivalently formulated for the corresponding clocked systems.
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We believe that clock-freeness is fairly important, though, because it is (intuitively)
much closer to how processes take place in biological cells. The fact that clock-
freeness is easy to simulate is thus beneficial and shows how it is possible to move
closer to real life without sacrificing too much.

We remark, of course, that the chemical reactions taking place in the cell have
been studied well enough to approximately predict their durations or, at least, com-
pare them to other cellular processes in terms of speed. Clock-freeness, however,
allows us to abstract away these details. Metaphorically put, an implementation
of an operation in a clock-free network of cells (or clock-free P system) can survive
changes in the physical implementation, because it does not depend on the dura-
tions of underlying chemical relations. This reasoning is of course hypothetical at
the moment, but it may become practical quite soon.

In this paper we have used the term “clock-freeness” to denote the mode of
evolution of a network of cells in which rule applications may last for an arbitrary
long or short amount of time. The word “free” in the term “clock-free”, therefore,
refers to a different concept than the same word in the term “time-free” [1]. How-
ever, the majority of clock-free P systems considered in [7] and, for example, [4],
are in fact independent of the what the durations of rules are. It thus is possible
to consider that the terms “clock-freeness” and “time-freeness” do have something
in common. Observe that Theorem 2 allows translating the problem of indepen-
dence of the durations of rules in clock-free networks of cells into the problem of
confluence in regular networks of cells.
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Summary. In this report, we present our initial proposal on simulating computations on
a restricted variant of Evolution-Communication P system with energy (ECPe system)
which will then be implemented in Graphics Processing Units (GPUs). This ECPe sys-
tems variant prohibits the use of antiport rules for communication. Several possible levels
of parallelizations for simulating ECPe systems computations on GPUs are emphasized.
Our work is based on a localized matrix representation for the mentioned variant given
in a previous literature. Our proposal employs a methodology for forward computing also
discussed in the said literature.

Key words: Membrane computing, Parallel computing, GPU computing

1 Introduction

Evolution-Communication P systems with energy (ECPe systems) [1] is a vari-
ant of P systems introduced in 2009 to initiate a framework for communication
complexity. It originates from Evolution-Communication P (ECP) systems [10], a
hybrid of two well-investigated variants, Transition P systems [9] and P systems
with Symport and Antiport rules [11]. The difference between ECPe and ECP
systems is the presence of a special object called ‘energy’ in the former, which can
be produced through evolution rules and consumed in communication rules. One



268 R.A.B. Juayong et al.

crucial restriction for ECPe systems includes the use of energy for each communi-
cation rule. Thus, no object can be communicated without using some ‘quanta’ of
energy. Moreover, upon being delivered to a receiving region, the energy used in
a communication does not pass through any membrane. In this manner, it is said
that the energy used in the process of communication is being ’lost’.

Several recent works have introduced the concept of representing certain P
system variants and their computations as matrices and vector-matrix operations,
respectively. In particular, variants known as Spiking Neural P (SNP) systems and
their matrix representations were introduced in [5] whereas matrix representations
for ECPe systems were given in [6]. Aside from creating a ‘convenient’ and rela-
tively compact way of describing the systems and their computations, the matrix
representations add additional ease to their simulation and implementation in par-
allel hardware. Vector and matrix operations are highly parallelizable and can be
efficiently implemented in parallel hardware, including Graphics Processing Units
(GPUs). GPUs are massively parallel hardware not like current generation CPUs.
Using their respective matrix representations, SNP systems have been successfully
implemented in GPUs in [2] and more recently in [3]. The intention of this cur-
rent work is to continue such trend i.e. to provide our methodology on how to
implement ECPe systems computations (using the vector-matrix representations)
on parallel hardware, in particular GPUs.

2 Evolution-Communication P Systems with Energy

2.1 Formal Definition of ECPe systems

Before we proceed, we note that the readers are assumed to be familiar with the
fundamentals of formal language theory and membrane computing [9].

A relatively new variant of Evolution-Communication P systems [10] has been
introduced in [1] to evaluate communication that is dependent on some energy
produced from evolution rules. A special object e is introduced to the system to
represent a quantum of energy. We use the definition for EC P system with energy
(ECPe system) from [1].

Definition 1. An EC P system with energy is a construct of the form

Π = (O, e, µ, w1, . . . , wm, R1, R
′
1, . . . , Rm, R

′
m, iout)

where:

(i) m pertains to the total number of membranes;
(ii) O is the alphabet of objects;

(iii) µ is the membrane structure which can be denoted by a set of paired square
brackets with labels. We say that membrane i is the parent membrane of a
membrane j, denoted parent(j), if the paired square brackets representing
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membrane j is located inside the paired square brackets representing mem-
brane i, i.e. [i . . . [j ]j ]i. Reversely, we say that membrane j is a child mem-
brane of membrane i, denoted j ∈ children(i) where children(i) refers to the
set of membranes contained in membrane i. The relation of parent and child
membrane becomes more apparent when we represent the membrane struc-
ture as a tree. Since order does not matter in our model, there can be multiple
trees (isomorphic with respect to children of a node), each corresponding to
the same membrane structure representation.

(iv) w1, . . . , wm are strings over O∗ where wi denotes the multiset of object present
in the region bounded by membrane i.

(v) R1, . . . , Rm are sets of evolution rules, each associated with a region delimited
by a membrane in µ;
• An evolution rule is of the form a → v where a ∈ O, v ∈ (O ∪ {e})∗. In

the event that this type of rule is applied, the object a transforms into a
multiset of objects v in the next time step. Through evolution rules, object
e can be produced, but e should never be in the initial configuration and
object e is not allowed to evolve.

(vi) R′1, . . . , R
′
m are sets of communication rules, each associated with a membrane

in µ; A communication rule can either be a symport or an antiport rule:
• A symport rule can be of the form (aei, in) or (aei, out), where a ∈ O,

i ≥ 1. By using this rule, i copy of e objects are consumed to transport
object a inside (denoted by in) or outside (denoted by out) the membrane
where the rule is defined. To consume copies of object e means that upon
completion of the transportation of object a, the occurrences of e are lost,
they do not pass from a region to another one.

• An antiport rule is of the form (aei, out; bej , in) where a, b ∈ O and i, j ≥ 1.
By using this rule, we know that there exists an object a in the region im-
mediately outside the membrane where the rule is declared, and an object
b inside the region bounded by the membrane. In the application of this
rule, object a and object b are swapped using i and j copies of object e in
the different regions, respectively. As in symport rules, the copies of object
e are lost after the application.

We say that a communication rule has a sending and receiving region. For
a rule r ∈ R′i associated with an in label, its receiving region is region i
and its sending region is the parent(i). On the other hand, the sending and
receiving regions are reversed for a rule r ∈ R′i associated with an out label.
For an antiport rule r ∈ R′i, region i and parent(i) are both sending and
receiving region. Also, note that no communication can be applied without
the utilization of object e.

(vii) iout ∈ {0, 1, . . . ,m} is the output membrane. If iout = 0, this means that the
environment shall be the placeholder of the output.

Rules are applied in a nondeterministic, maximally parallel manner. Nondeter-
minism, in this case, has the following meaning: when there are more than two
evolution rules that can be applied to an object, the system will randomly choose
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the rule to be applied for each copy of the object. The system assumes a universal
clock for simultaneous processing of membranes; all applicable rules have to be
applied to all possible objects at the same time. The behavior of maximally par-
allel application of rule requires that all object that can evolve (or be transferred)
should evolve (or be transferred).

Note that there is a one-to-one mapping between region and membrane, how-
ever, strictly, region refers to the area delimited by a membrane. A configuration
at any time i, denoted by Ci, is the state of the system; it consists of the mem-
brane structure and the multiset of objects within each membrane. A transition
from Ci to Ci+1 through nondeterministic and maximally parallel manner of rule
application can be denoted as Ci ⇒ Ci+1. A series of transition is said to be a
computation and can be denoted as Ci ⇒∗ Cj where i < j. Computation suc-
ceeds when the system halts; this occurs when the system reaches a configuration
wherein none of the rules can be applied. This configuration is called a halting
configuration. If there is no halting configuration—that is, if the system does not
halt—computation fails, because the system did not produce any output. Output
can either be in the form of objects sent outside the skin, the outermost membrane,
or objects sent into an output membrane.

We let N(Π) be the set of numbers generated by a given ECPe system Π.

2.2 An Example

To show how ECPe system works, we shall give an example of an ECPe system
with two membranes adapted from [1]:

Π = ({a,#}, e, [1[2]2]1, a
2#, λ, {r11 : a→ aa, r12 : a→ ee}, ∅,

{r21 : #→ #}, {r′21 : (ae, in), r′22 : (#e, in)}, 2)

Fig. 1. Graphical representation of an ECPe system Π where N(Π) = {2(n+ 1)|n ≥ 0}
from [1].
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A graphical illustration of Π is shown in Figure 1. Its output is N(Π) = {2(n +
1)|n ≥ 0}. The computation to generate this proceeds as follows:

Initially, we can use either rule r11 or r12 in order to consume the copies of
object a in membrane 1. At any time, we can use both r11 and r12 to evolve
copies of object a. For every copy of a, we produce either two copies of object e or
another two copies of object a, therefore, we are always assured that multiplicity
of object a in region 1 is even, as well as the multiplicity of object e. Note that
upon introduction of object e in the system, it should immediately be used (in the
next step) to transport copies of object a in region 2, otherwise, it will be used
to transport the trap symbol # in region 2 using rule r′22 leading the system to
a never ending computation due to rule r21. For a computation to halt, rule r′21
should be the last rule to be applied. Since copies of object e transporting copies of
object a in region 2 is always even, we are assured that the multiplicity of objects
(copies of object a) in region 2 is also even. The minimum value 2 is produced
when we use both rule r11 and r12 in configuration C1. In the next step, we use
two applications of rule r′21. This will cause the system to halt.

2.3 Representation and Methodology for Forward Computing

In this section, we relate how computations in ECPe systems without antiport rules
can be performed in a localized manner. As will be shown, when we do not allow
antiport rules, membranes can compute more independently. This representation
has been used in [4] to answer the problem of computing backward and forward.
We shall relate the methodology for the latter. By computing forward, the problem
is to find the next configurations that can be yielded in one computational step
given a current configuration.

Let h ∈ {0, 1, 2, . . . ,m} where region 0 refers to the region located outside
the skin, the outermost membrane. The following notations and definitions are
adopted from [4] and used in the remaining parts of this section.

• Let IO(r, h) be the set of objects in region h involved in a rule r.
• Let TO(r, h) be the set of objects in region h that trigger a rule r.
• The set of rules IR(h) = Rh ∪ R′h ∪ (

⋃
h′∈children(h)R

′
h′) represents the set of

rules that directly influences the content of region h at any time of a computa-
tion. An object α in region h at any time i ≥ 0 may either be produced by an
evolution rule, transported from neighboring region to region h (or vice versa),
or simply carried over. In the first scenario, it is by definition that the rule that
produced object α must be in Rh. A neighboring region may either be a region
delimited by parent(h) or regions delimited by membranes in children(h). In
the first case, the rules for communication are in R′h while in the second case,
the rules for communication must be in one of R′h′ where h′ ∈ children(h).

• The set PO(h) = {α|α appeared in wh} ∪ (
⋃
r∈IR(h) IO(r, h)) represents the

set of objects (including special object e) that may possibly occur in region h
at any time of a computation. Originally, the objects that surely exist in the
region are the elements present in wh. In order to create a copy of an object
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α, object α must either be produced or transported in region h through rules
in IR(h).

• The set TR(h) = {r|TO(r, h) 6= ∅} corresponds to the set of rules that con-
tribute to the decrease of objects in region h. In order to activate rules belonging
to such set, there must be a trigger object that may either be consumed or be
used for transportation

In order to represent configuration and rule application in terms of vectors,
and represent effect of a rule in each region using a matrix, the concept of total
order must be utilized. We note that for all the vector (and matrix) representation
constructed in the remaining parts of this section, there is a need to define a total
order 〈p1, p2, ...〉 (so that pi is considered the ith element in a defined set) over
the elements involved in the column for vectors (rows and columns for matrices).
As can be observed, this is used so that elements are uniquely identified by their
positions in the order to where they belong to and to assure that the position of
elements are correct during the vector-matrix operation.

Definition 2. Configuration Vector for each Region h
A configuration vector Ci,h is a vector whose length is |PO(h)|. The vector Ci,h(α)

refers to the multiplicity of object α in region h at configuration Ci.

Definition 3. Application Vector for each Region h
An application vector ai,h is a vector whose length is |R(h)|. The vector ai,h(r)

refers to the number of application of rule r specifically in region h during the
transition Ci−1 ⇒ Ci.

Definition 4. Transition Matrix for each Region h
A transition matrix MΠECPe,h is a matrix whose dimension is |R(h)| × |PO(h)|.

The matrix MΠECPe,h(r, α) returns the number of consumed or produced object α
in region h upon single application of rule r. The consumed objects have negative
values while the produced objects are positive. If object α in region h is not used in
rule r, then its value is zero.

Given application vector ai,h representing a maximal set of rule applications
applied in a configuration Ci−1 to achieve configuration Ci, the paper [4] showed
that a transition Ci−1 → Ci can be represented by performing

Ci,h = Ci−1,h + ai,h.MΠ,h (1)

for each region h provided that if h and h′ are the sender and receiver re-
gions corresponding to a communication rule r′ ∈ IR(h)∩ IR(h′), then ai,h(r′) =
ai,h′(r′).

Illustrating Localized Computation

To illustrate localized computation, we represent a possible transition C0 ⇒ C1

by showing the effect of applying rule r11 and rule r12 once on the initial config-
uration of the example presented in Section 2.2. Since PO(0) = IR(0) = ∅, the
participation of the environment is not needed in any part of the computation.
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For Region 1

At the onset, we can impose a total order 〈a,#, e〉 over PO(1) and total order
〈r11, r12, r′21, r′22〉 over IR(1). The initial configuration will be represented by the
configuration vector C0,1 where

C0,1 =
(

2 1 0
)

and the representation for single application of both rules r11 and r12 will be given
by application vector a1,1 where

a1,1 =
(

1 1 0 0
)

Applying Equation (1) with the transition matrix MΠECPe,1 containing the values
shown below:

MΠECPe,1 =


1 0 0
−1 0 2
−1 0 −1
0 −1 −1


will yield the configuration vector C1,1

C1,1 =
(

2 1 2
)

which means that in the next configuration, there will be two copies of both object
a and the special object e and a single copy of the trap symbol # in region 1.

For Region 2

For region 2, we impose total order 〈a,#〉 over PO(2) and total order 〈r21, r′21, r′22〉
over IR(2). Since initially, no objects are present in region 2 and the rules involved
in the transition C0 ⇒ C1 are not in IR(2), the configuration vector C0,2 and the
application vector a1,2 will all contain zero values. We now show the transition
matrix MΠECPe,2

MΠECPe,2 =

 0 0
1 0
0 1


Since application vector a1,2 is a zero vector, the configuration vector C1,2 remains
also a zero vector.

Notice that all the declared communication rules influence the multiplicity of
objects in both region 1 and region 2. However, region 1 contains negative values
because it acts as a sending region while region 2 have non-negative values since
it acts as a receiving region. Also, matrix MΠECPe,2 shows that the special object
e can never reach region 2.

Forward Computing in ECPe systems without Antiport Rules

Shown below is a methodology for forward computing shown in [4].
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1. Categorize all possible objects in PO(h) for all region h.

First, all α ∈ PO(h) are categorized for a certain region h. These categories are:

• Category 1: Evolution Trigger
Object α is an evolution trigger if there exists r ∈ Rh such that TO(r, h) = {α}.

• Category 2: Communication Trigger Only
Object α belongs in this category if there does not exist r ∈ Rh such that
TO(r, h) = {α} but there exists r′ ∈ IR(h) such that α ∈ TO(r′, h).

• Category 3: Not a Trigger
Object α is neither in Category 1 nor in Category 2.

2. Construct identity rules for objects in Category 2 and 3 for all region h.

For each α ∈ PO(h) that falls under one of Category 2 and Category 3, an identity
rule α → α is added. All these rules shall be contained in a set labelled Radd,h.
Also, a list of α′ ∈ PO(h) − {e} that fall under Category 2 is maintained, the
list shall be labelled Listcat2 and sorted Listcat2 in increasing order of energy
requirement for transport.

3. Construct Trigger Matrix TMΠECPe,h for all region h

The defined rules represented in the rows of TMΠECPe,h are the rules that con-
tribute to the decrease of multiplicity of objects in region h. These rules are rep-
resented in the set TR(h). The additional rules from Radd,h are represented in
the rows as well. The set of objects represented in the columns of TMΠECPe,h

is PO(h). Therefore, TMΠECPe,h has dimensions |TR(h) ∪ Radd,h| × |PO(h)|.
TMΠECPe,h(r, α) returns the multiplicity of α in region h needed to activate a
single application of rule r.

4. Set the dimension of the vector of unknowns (also called extended application
vector) a′

i,h for all region h

The length of a′
i,h is |TR(h) ∪Radd,h|.

5. Solve system of linear equation

Find all solutions to the equation

a′
i,h.TMΠECPe,h = Ci−1,h (2)

Since elements of vector a′
i,h pertain to number of application of rules, these ele-

ments must be natural numbers. The value a′
i,h(r) can be interpreted as either the

number of application of each rule r ∈ TR(h) or how many object α is unevolved
or unmoved (if (r : α → α) ∈ Radd,h). Note that TR(h) and Radd,h are disjoint
sets.
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6. Filter solutions in Step 5

For each region h, if Listcat2 6= ∅, scan the sorted Listcat2 and find out the first
object, labelled αcat2,min, falling under Category 2 whose corresponding identity
rule application is non-zero, i.e. a′

i,h(αcat2,min → αcat2,min) > 0. Since Listcat2 is
sorted increasingly according to transport energy requirement, the object αcat2,min
has the minimum energy required for communication. Let its corresponding energy
be labelled energy(αcat2,min). Solutions are filtered in step 5 by adding, for each
region h with a non-empty Listcat2 , the inequality below:

a′
i,h(e→ e) < energy(αcat2,min) (3)

7. Finding ai,h

Upon finding values for a′
i,h in all region h, all identity rules r′ ∈ Radd,h are

omitted. The values of an application vector ai,h are filled through the equation

ai,h(r) = a′
i,h(r), r ∈ Rh (4)

For every communication rule r ∈ IR(r, h′) ∩ IR(r, h′′),

ai,h′(r) = ai,h′′(r) = a′
i,h′′(r) (5)

where region h′′ is the sending region of communication rule r.

An Illustration

We illustrate how we can compute forward in ECPe systems without antiport by
using the ECPe system given in Section 2.2. We maintain the total orders 〈a,#, e〉
over elements of PO(1), 〈a,#〉 over elements of PO(2), 〈r11, r12, Add11, Add12〉
over elements of ER(1)∪Radd,1 and 〈r21, r′21, r′22, Add21〉 over elements of ER(2)∪
Radd,2. Thus, our vectors are:

Ci−1,1 =
(

2 1 2
)

Ci−1,2 =
(

1 0
)

Step 1

For region 1, object a belong to Category 1, object # and special object e belong
to Category 2 while no objects belong to Category 3. On the other hand, objects
# and a in region 2 belong to Category 1 and Category 3, resp.

Step 2

The additional identity rules per region are given below.

Radd,1 = {Add11 : #→ #, Add12 : e→ e}
Radd,2 = {Add21 : a→ a}

Since only object # is in category 2, Listcat2 for region 1 is composed of only a
single element #.
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Step 3 and 4

The trigger matrix for both region 1 and 2 are shown below

TMΠECPe,1 =


1 0 0
1 0 0
1 0 1
0 1 1
0 1 0
0 0 1

 TMΠECPe,2 =

(
0 1
1 0

)

The extended application vectors a′
i,1 and a′

i,2 representing the vector of un-
knowns has the same index as that of the rows of their corresponding effect matrix.

Step 5

The resulting system of linear equations achieved from Equation (2) for region 1
and 2 is given below:

a′
i−1,1(r11) + a′

i−1,1(r12) + a′
i−1,1(r′21) = 2

a′
i−1,1(r′22) + a′

i−1,1(Add11) = 1
a′
i−1,1(r′21) + a′

i−1,1(r′22) + a′
i−1,1(Add12) = 2

a′
i−1,2(r21) = 0

a′
i−1,2(Add21) = 1

As can be traced, there are 11 possible extended application vectors for region 1
while there exists a unique extended application vector for region 2. Shown below
is extended application vector for region 2:

a′
i−1,2 =

(
0 1
)

Step 6

The additional inequality in region 1 requires that:

a′
i,1(Add12) < 1

for cases where the trap object # remain. Thus, these solutions are possible:

ai,1 =
(

0 0 2 0 1 0
)

ai,1 =
(

1 0 1 1 0 0
)

ai,1 =
(

0 1 1 1 0 0
)

For cases where the trap object does not remain, the following solutions are also
possible:

ai,1 =
(

1 1 0 1 0 1
)

ai,1 =
(

0 2 0 1 0 1
)

ai,1 =
(

2 0 0 1 0 1
)

After step 6, the 11 solutions in step 5 were reduced to six.
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Step 7

Performing Equation (4) and Equation (5), below are the possible application
vector combinations:

Solution 1 : ai,1 =
(

0 0 2 0
)

ai,2 =
(

0 2 0
)

Solution 2 : ai,1 =
(

1 0 1 1
)

ai,2 =
(

0 1 1
)

Solution 3 : ai,1 =
(

0 1 1 1
)

ai,2 =
(

0 1 1
)

Solution 4 : ai,1 =
(

1 1 0 1
)

ai,2 =
(

0 0 1
)

Solution 5 : ai,1 =
(

0 2 0 1
)

ai,2 =
(

0 0 1
)

Solution 6 : ai,1 =
(

2 0 0 1
)

ai,2 =
(

0 0 1
)

The corresponding configuration vectors for each solution is as follows:

Solution 1 : Ci,1 =
(

0 1 0
)

Ci,2 =
(

3 0
)

Solution 2 : Ci,1 =
(

2 0 0
)

Ci,2 =
(

2 1
)

Solution 3 : Ci,1 =
(

0 0 2
)

Ci,2 =
(

2 1
)

Solution 4 : Ci,1 =
(

2 0 3
)

Ci,2 =
(

1 1
)

Solution 5 : Ci,1 =
(

0 0 5
)

Ci,2 =
(

1 1
)

Solution 6 : Ci,1 =
(

4 0 1
)

Ci,2 =
(

1 1
)

2.4 A Sequential Implementation of Computation on ECPe Systems
without Antiport using Initial Matrix Representation

Given the representation and algorithm for forward computing presented in Section
2.3, we were able to do a sequential implementation of computation on ECPe
systems without antiport using the C programming language.

The system starts with reading two input files containing information for find-
ing valid application vectors and determining the next configuration vector given a
currently examined configuration vector. The following are the names of the input
files:

• File trans file.txt which contains the information needed for transitioning from
one configuration to the next.

• File forwComp file.txt which contains the information needed to find valid con-
figuration vector/s given a current configuration vector.

A discussion about the format for the specified files is given in the appendix. The
files will be used to initialize the necessary variables and pointers needed for the
simulation. The system has two output files representing the tree-structure of the
configuration history. The following are the name of the output files:
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• File conf.txt which contains a list of configuration.
• File conf index.txt which contains the index of the configuration in the tree

structure.

Presented in Figure 2 is the flowchart of how the program works. Upon reading
input files and loading variables and pointers needed for computing, the initial
configuration is placed in the conf.txt and the associated index 1 is placed in
conf index.txt. Afterwards, the system will enter a loop for determining the con-
figurations generated by a currently examined configuration. The examination of
configuration will be executed in order of their position in the file. Given two con-
figuration C and C ′ where the position of C precedes C ′, then configuration C
will be examined first before configuration C ′. Examining configuration shall halt
only when the system reaches two stopping criterion:

• Upon achieving a pre-specified upper bound on the number of iterations
• Upon reaching a state where there are no more configurations to examine.

Fig. 2. An overview of our sequential implementation for ECPe systems without antiport
in the C programming language.

For every loop, a configuration in the file is examined by first determining all valid
application vectors which is applicable to the currently examined configuration. In
finding a valid application vector, we use the concept of localized representation
and extended application vectors, and follow the steps in Section 2.3 for forward
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computing. If the only application vector applicable is the zero vector which means
no more rule combination can be applied to the current configuration, it will pro-
ceed to the next configuration to examine. Each non-zero application vector is
used to generate the next set of configurations. Afterwards, output files conf.txt
and conf index.txt will be updated to account all the newly generated next con-
figuration vectors. Note that in this system, we have not yet implemented the
methodology to detect repeating configuration.

On Generating Extended Valid Application Vectors and Filtering

The goal of step 5 in Section 2.3 is the generation of all possible extended ap-
plication vectors a′i,h satisfying equation (2). In our sequential implementation,
we achieve this by examining each equation resulting from the corresponding and
equivalent system of linear equation. We now study the characteristics of the re-
sulting system by using the example presented for forward computing.

Shown below are the equations yield from Equation (2) of region 1 for the
example in Section 2.2, also shown in Section 2.3.

β1 : a′
i−1,1(r11) + a′

i−1,1(r12) + a′
i−1,1(r′21) = 2

β2 : a′
i−1,1(r′22) + a′

i−1,1(Add11) = 1
β3 : a′

i−1,1(r′21) + a′
i−1,1(r′22) + a′

i−1,1(Add12) = 2

It can be observed that each equation in the resulting system represents an object
condition; the object referring to possible objects that may enter an examined
region. Also, for sending regions, an equation for energy condition (β3) must also
be present in a resulting system. In the general case, each variable (representing
rule application of a certain communication rule) in the energy equation is present
in exactly one other object condition. This object is the communication trigger
that will be communicated upon activation of the rule represented by the said
variable. For example, the variable a′

i−1,1(r′21) is present in both β1 and β3. The
same goes for variable a′

i−1,1(r′22) which is present in both β2 and β3.
Other than such type of variables, no more variables can be present in more

than one equation. Moreover, while the coefficients of the terms in the energy
equation can contain any positive integer, the coefficients of the terms for non-
energy condition will always be one (due to the restriction of noncooperative rule
format). Moreover, the set of rules r ∈ TR(h) are all represented by the union of
all rules (variables) represented in the non-energy conditions without the identity
rules.

Given such observation, possible vectors a′i,h are determined by first solving the
condition posed for energy. Since there can be multiple solution for rules involving
energy (the rules include the identity rule for energy since it is of Category 2),
we shall determine the possible extended applications vectors resulting from a
valid energy solution. In the linear equation shown above, we first on determining
solutions for β3. The possible energy solutions are

(1, 1, 0), (1, 0, 1), (0, 1, 1), (2, 0, 0), (0, 2, 0), (0, 0, 2),
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where in each vector, the first element corresponds to value of a′
i−1,1(r′21), the sec-

ond corresponds to the value of a′
i−1,1(r′22) and the third element is for the energy

identity rule a′
i−1,1(Add12). For each solution, we then copy the rule application

to the associated object to communicate. Afterwards, the rule application is trans-
ferred to the right-hand side of the equation, i.e. subtracted from the current count
of the corresponding communicated object. As an example, the resulting modified
object condition β′1 caused by the value of communication rulea′

i−1,1(r′21) in the
first energy solution will be

β′1 : a′
i−1,1(r11) + a′

i−1,1(r12) = 1

If the resulting count is negative, then, the resulting energy solution cannot be
applied. Therefore, no vector a′i,h can be generated given such negative result.
This filtering on energy solution is evident in applying energy solution (0,2,0) on
β2. Upon subtracting the resulting rule application from the right-hand side of the
corresponding communicated object condition, the resulting object conditions can
be analyzed one at a time.

Upon realizing solutions for each object condition, step 6 of the forward com-
puting methodology can already be executed per object condition. Identity rules
for category 2 objects can be further checked to execute the filtering part, done
in Step 6 of the methodology in Section 2.3 to see if the number of category 2
objects remaining in the region can be allowed to remain (that is, the case doesn’t
validate the rule that all objects that can evolve or be communicated must do so).
Otherwise, the object solution will be dropped. Note that while step 6 in Section
2.3 evaluates first all extended application vectors before this step, we perform this
step per object condition since the identity rules for any category 2 objects can
only be present in the corresponding category 2 object equation. Preferably, the
order of analyzing category 2 objects follow the sorted list Listcat2 so that if an
object solution is not valid, it can terminate immediately at the first unsatisfied
category 2 object.

The resulting value of each filtered variable set per solution can be combined,
one solution from each object, and each combined list constitutes one extended
application vector. To illustrate this, we examine the possible extended application
vectors that can be yield from energy solution (1, 1, 0). For β1 condition, the object
solutions are (0, 1) and (1, 0) where the first element of the said vectors correspond
to a′

i−1,1(r11) and the second, to a′
i−1,1(r12). For β2 condition, the object solution

only assigns the value 1 to a′
i−1,1(Add11). Therefore, for energy solution (1,1,0),

the corresponding extended application vectors yielded are

ai,1 =
(

1 0 1 1 0 0
)

ai,1 =
(

0 1 1 1 0 0
)

3 Simulator design and implementation

In this section, we relay how we can employ GPUs to parallelize the task of finding
all possible object solutions. NVIDIA introduced the Compute Unified Device
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Architecture (CUDA) in 2007 [7]. CUDA is a software and hardware architecture
for general purpose computations in NVIDIA’s GPUs [7]. CUDA extends high-
level languages such as C to allow programmers to easily create software that will
be executed in parallel, avoiding low-level graphics and hardware primitives [12].

GPUs introduce increased performance speedups over CPU only implemen-
tations with linear algebra computations (among other types of computations)
because of the GPU architecture. The common CPU architectures are composed
of transistors which are divided into different blocks to perform the basic tasks of
CPUs (general computation): control, caching, DRAM, and ALU (arithmetic and
logic). In contrast, only a fraction of the CPU’s transistors allocated for control
and caching are used by GPUs, since far more transistors are used for ALU [7]
(see Figure 3 for an illustration). This architectural difference is a very distinct
and significant reason why GPUs offer large performance increases over CPU only
implementation of parallel code working on large amounts of input data. However
if the problem to be solved cannot be organized in a data parallel form (a task
performing computations on data need not depend heavily on other task’s results)
then the performance of GPUs over CPUs will not be fully utilized.

Code written for CUDA can be split up into multiple threads within multiple
thread blocks, each contained within a grid of (thread) blocks. These grids belong
to a single device or GPU. Each device has multiple cores, each capable of running
its own threads. Each core in the device is able to run a set of threads.A thread
block is assigned to each multiprocessor, where each processor is made up of sev-
eral cores [7, 12]. A function known as a kernel function is one that is called from
the host or CPU but executed in the device. Using kernel functions, the program-
mer can specify the GPU resources: the layout of the threads (from one to three
dimensions) in a thread block, and the thread blocks (from one to two dimensions)
in a grid. Table 1 shows the resources of current CUDA enabled NVIDIA GPUs.

GPU resources Values

Global memory Up to 4GB

Max number of threads per dimension (x, y, z) (1024, 1024, 64)

Max number of thread blocks per grid (x, y, z) (65535, 65535, 65535)

Table 1. Typical resources for CUDA enabled Fermi architecture GPUs (from [7, 12]) .

On Parallelizing Transitions

Another apparent possibility in order to simulate the parallel computations of
ECPe systems (as well as capitalize on their representations as matrices) on GPUs,
we can have initially at least two levels of parallelism: the first level is the computa-
tion of Equation (1) in parallel by threads in a block; the second level involves the
computation of all the possible next configurations given a current configuration,
so that each block in a grid of thread blocks performs this level.
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Fig. 3. (a) Common transistor allocation of CPUs and GPUs (b) Computing unit hier-
archy of GPUs, from [12].

The first level is highly parallelizable since vector-matrix multiplication and
vector addition are highly data independent. Each thread can multiply a vector
to one column of the matrix, thus performing ai,h ·MΠ,h. Each thread sums the
products then adds these to another vector, performing the addition of Ci−1,h.
For the second level, if there are q number of ai,h’s and hence q number of next
configurations, then q blocks will perform Equation (1) q times.

Because of the physical limitations of current NVIDIA GPUs, no more than
1024 threads per block are allowed for Fermi architecture GPUs so that at most
matrices of at most 1024 columns can be simulated in a block. In Fermi GPUs, the
maximum number of allowable thread blocks in a grid is 65535 (See Table 1) so q
is currently upper bounded by this value. Another simulation consideration, aside
from the computing units (threads, thread blocks) is the relatively more limited
memory of current GPUs compared to CPUs. In this case, storing all q number
of application vectors (each of which are of length |R(h)|) and the q number of
next configurations (each of which are of length |PO(h)|) resulting from those
application vectors must fit into the GPU’s global memory.

On Generating Object Solutions

Given an examined energy solution, we check each object condition where each
variable corresponding to a communication rule have already been determined (via
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the examined energy solution) and the value at the right-hand side of a communi-
cated object has already been updated. As can observed, this problem is reduced to
an integer partition problem where, given an object equation α1+α2+...+αk = n,
we need to find vector containing αi ∈ N’s, i.e. (α1, α2, ...., αk).

To generate solutions for non-energy object equation, we first obtain a lexi-
cographic order of partition for the value n. In [13], given X = (x1, x2, ..., xk′)
and Y = (y1, y2, ..., yk′′), X precedes Y lexicographically if and only if for some
j ≥ 1, xi ≥ yi when i < j, and xj precedes yj . As an example, partitions of 5 in
lexicographic order are: 11111, 2111, 311, 221, 311, 32, 41, 5.

Each resulting partition will be padded with zeroes accordingly so that the
partition can be represented in a k-dimensional vector. Each partition will be
assigned to a thread. Each thread will be responsible for the generation of distinct
permutation of the k-dimensional vector representing the partition. The union of
solutions generated by each partition corresponds to the set of object solutions for
a certain examined object. Since the filtering step of the forward methodology, as
explained in Section 2.4, can be done per object condition, this step can also be
performed within the current threads.

The idea of parallelization in Section 3 may also be used for generating energy
solutions of the form c1α1 + c2α2 + ...+ ckαk = n, where a lexicographic order on
the partitions of n is first accomplished. Again, each resulting partition will then
be padded with zeroes accordingly. Upon assigning each partition to a thread,
and generating distinct permutation of a partition, each vector representating a
permutation can be equated with the vector (c1α1, c2α2, ..., ckαk), afterwhich the
corresponding value for the α′is can be obtained.

4 Conclusions and future work

In this report, we were able to describe a sequential implementation of a forward
computing methodology for ECPe systems without antiport rules. We also were
able to show how we extend this sequential work to employ GPUs for parallelizing
some key areas in the implementation procedures. We were also able to show our
proposed ideas for parallelizing other parts of the code.

As future work, we would like to implement our proposed ideas for paralleliza-
tion and test the efficiency of the resulting implementation. Moreover, we hope to
improve these ideas to better capitalize the parallelizability of vector-matrix rep-
resentations of the computations on GPUs. As part of our future works, we also
would like to extend the methodology for forward computing to apply to a general
ECPe systems where antiport rules are allowed. The difficulty in allowing such
communication rules are influenced by the implication that a region can be both
a sender and receiver region. Thus, antiport rules need to maintain relationship
between adjacent regions at crucial parts of the forward computing methodology.
The more tricky part is the action done when considering objects that are un-
moved due to antiport rule. The antiport rule increases the number of possible
cases dictating why a category 2 object can remain in a certain region.
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Appendix A:
On File Formats for Implementation of ECPe system in C

Fig. 4. Format for file trans file.txt for the sequential implementation of ECPe system
in C.

Shown in Figure 4 above is the format for input file trans file.txt. This file
contains the information required to find a succeeding configuration given a current
one. First, the number of regions must be specified. If there will be a case where the
environment will be needed during the computation, the value of this parameter
must be the number of membranes incremented by one in order to account for the
environment. The membrane structure is represented by paired square brackets as
typical representation of a membrane structure. Note that for either a closed or
open square bracket, the symbol must be followed by a numeral to indicate the label
of the membrane. For the initial configuration, there is a need to follow a total order
as discussed in Section 2.3. Therefore, the initial configuration is simply a initial
configuration vector where each cell contains the number of copies of a certain
object at the start of the computation. The separator for the cells will be the space
symbol. The expected transition matrix has dimensions following the previously
specified number of rules involving a specific region and the number of possible
objects that may enter the region. The rows will be separated by newline, whereas,
the columns are separated by spaces. A rule type can either be an evolution rule in
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which case the symbol to type will be ’e’, whereas a communication rule can have
one of symbol ’s’ and ’r’. The symbol ’s’ represents that the communication rule
uses the specific region as a sender, while the symbol ’r’ uses the specific region as
a receiver.

Fig. 5. Format for file forwComp file.txt for the sequential implementation of ECPe
system in C.

Figure 5, on the other hand, illustrates the format for the input file forw-
Comp file.txt. This file contains the information required to find all valid applica-
tion vectors from a given configuration vector. First, a trigger matrix needs to be
indicated. Again, there is a need to impose a total order over the rules. In this case,
there will be a specific setup for the rules in the trigger matrix wherein, it is re-
quired that evolution rules must be specified first before the communication rules.
After the existing rules associated with the region, the identity rule for energy (e)
should proceed after. The identity rules for the other category 2 objects will follow
after the energy’s identity rule. After indicating the trigger matrix, there is a need
to define the range of the communication rules in the specified region. To indicate
this:
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Fig. 6. Input files for the example given in Section 2.2

<position of starting communication rule>-<position of last communication
rule>

where the positions will be based on the imposed total order. The total order
will also be used in the next set of input which entails specifying the minimal
energy requirement needed to transport each category 2 object. Since they only
be enumerated in a single line, the separator of energy per object will be the space
symbol. Following after this will be the enumeration of the details needed in the
receiving region for each communication rule. To indicate this:

<position of receiving region> <position of partner rule in receiving region>

where this specifications per communication rule will be separated by newlines.
Note that only a single space symbol separates the position of the receiving region
with the position of the corresponding rule in the receiving region. In case no
communication rules exist in the trigger matrix, there is no need to fill up this
part. Moreover, the range of communication rules will be 0-0 and the value of the
succeeding line will be 0. Shown in Figure 6 are the input files for the example given
in Section 2.2 whose total order for involved rules and possible objects follows the
order given in Section 2.3 except that we swap the position of the last and second
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Fig. 7. Sample output files for the example given in Section 2.2
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to the last identity rule in the first region to follow the required format for total
order on rules involved in the corresponding trigger matrix.

For the output, there will be two files, namely conf.txt and conf index.txt, that
shall represent an ECPe systems configuration tree of computations. The former
consists a list of configurations (not yet necesarily unique) where each system
configuration is separated by a newline. The system configuration is composed
of configuration vectors local to each region that are juxtaposed together. The
elements of the vectors are separated by an individual space whereas dollar sign
($) separates each local configurations. The initial configuration will be the first
configuration in the file.

The output file conf index.txt stores the indices of the configurations in file
conf.txt in order to remember the association between configurations. Given an
index in this file, the configuration associated with the index is the configuration in
conf.txt which has the same line position as the line of the index. For example, the
initial configuration is located at the first line in the file conf.txt, its corresponding
first line in conf index.txt is the index 1. Since we can represent computation as
a tree, the initial configuration with index 1 is the root node configuration of the
tree. To determine the configurations that sprung from the initial configuration
i.e. the children of the root node, the indices must have the prefix ’1 ’. The parent
configuration which generates a configuration can be tracked by removing the last
underscore in the index associated with the configuration, along with the number
that appears after the said underscore. A path from the initial configuration to any
configuration C can be traced by retrieving the associated configuration starting
from index 1 (which, as mentioned, represents the initial configuration) to the
configuration C following the precedence imposed by the indices. Shown in Figure
7 are the output files for the example given in Section 2.2 whose total order for
objects follows the order given in Section 2.3 and where the maximum number of
configurations to examine is set to 10.
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Summary. This paper presents an integrated approach for model simulation, property
extraction and formal verification of P systems, illustrated on a tissue P system with
active membranes solving the 3-colouring problem. The paper focuses on this problem
and reports the invariants and the properties extracted and verified using a series of tools
(Daikon, MeCoSim, Maple, Spin, ProB) and languages (P–Lingua, Promela, Event-B).
Appropriate tools and integration plugins, which facilitate and even automate the steps
involved in the aforementioned approach, have also been developed. The case study chosen
is complex (it involves an exponential growth of the number of states through the use of
membrane division rules) and the properties obtained are non-trivial.

1 Introduction

Inspired by the behaviour and structure of the living cell, P systems have emerged
in recent years as powerful computational tools [21]. Many variants of P systems
have been introduced and a number of theoretical aspects have been intensely
studied: the computational power of different variants, their capabilities to solve
hard problems, like NP-complete ones, decidability, complexity aspects and hier-
archies of classes of languages produced by these devices [23]. In the last years
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there have also been significant developments in using the P systems paradigm to
model, simulate and formally verify various systems [5, 23].

Up to now, two main areas concerning P system formal verification have been
investigated: property verification through model checking and property extrac-
tion. However, there is no approach which integrates these two aspects (or other
related aspects such as simulation). Initial research on P system model check-
ing has tackled the problem of identifying decidable (or undecidable) problems
[7, 8]. Verifying properties for P systems implies defining and implementing an
operational semantics of the P system and using a corresponding model-checker.
Among the tools used we mention: Maude [2], the probabilistic model-checker
Prism [24, 4], the symbolic model verifier NuSMV [17], the Spin [19, 18] and ProB
model checkers [16].

Property extraction using Daikon, a dynamic invariant detector, and further
verification of the P systems was tackled in [4, 15]. In [4] a simple example involv-
ing a regulatory network is presented, along with the properties (preconditions,
postconditions, invariants) inferred by Daikon. The relationships discovered re-
gard the boundaries of the number of objects (e.g., 0 ≤ prot ≤ 205) and relations
between objects, such as rna < orig(rep) or (rna = 0) → (prot = 0). They have
been checked using the Prism probabilistic model checker. In [15] simple cell like
P systems have been used and invariants like 2∗ c−d = 0, (b = 0)→ (orig(b) = 0)
have been obtained and further verified using NuSMV.

In this paper, we propose an integrated methodology for modelling, simulation,
analysis, property extraction (invariant detection) and verification through model
checking for P systems. The approach integrates a modelling and simulation envi-
ronment (P–Lingua and MeCoSim) with model checkers, property extraction tools
(Daikon) and tools for mathematical and symbolic calculus (Maple). Appropriate
integration tools (plugins) have also been developed (see Fig. 1).

Starting from a problem, this process involves: the modelling of the problem by
means of P systems, the model transcription into a language like P–Lingua [14],
understandable by a machine; the definition of a visual interface, to enter the
needed inputs and show the desired outputs from the computation; the simula-
tion of the model under different initial parameters; the data extraction from the
simulation; the invariants detection from the extracted data, and the analysis and
verification of the detected properties. A detailed description of the methodology
has been provided in section 4, applying the process until the invariants detection
for the 3–Col problem in subsection 4.4. The approach is illustrated on a case
study involving the tissue P system model for the well-known 3-colouring (3-Col)
problem [10, 12].

The paper is structured as follows. We start by presenting in Section 2 the
notation and main concepts to be used in the paper. Section 3 presents a set of
initial properties for the 3-colouring problem, which have been verified using Spin
and ProB model checker. In the next two sections are presented a methodology
for properties extraction (invariants detection), its integration with the MeCoSim
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platform [20] and the empirical detection and validation of additional properties.
Finally, conclusions are drawn in Section 6.

{ Simulation }

MeCoSim

P-lingua model

Simulation 

traces

{ Verification }

Spin

{ Invariant detector }

Daikon

Promela 

model

Property 

extraction cycle

Properties

Fig. 1. Methodology Overview

2 Background

Before presenting our approach, let us establish the notations used and define the
class of P systems addressed in the paper.

Given a finite alphabet V = {a1, ..., ap}, a multiset is either denoted by a
string u ∈ V ∗ (in which the order is not important, the string notation is only
used as a convention), or by an associated vector of non-negative integers, ΨV (u) =
(|u|a1

, ..., |u|ap
), where |u|ai

denotes the number of ai occurrences in u, for each
1 ≤ i ≤ p.

The following definition refers to a model of tissue P systems with cell division,
introduced in [22]. This model can be seen as a network of cells, whose structure
is not static: it is inspired by the way cells are duplicated in a natural way via
mitosis.

Definition 1. Formally, a tissue P system with cell division of degree q ≥ 1 is a
tuple of the form

Π = (Γ,w1, . . . , wq, ε, R, i0),

where:

1. q ≥ 1 is the initial degree of the system; the system contains q cells, labelled
with 1, 2, . . . ,m; 0 represents the environment.
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2. Γ is a finite alphabet (called working alphabet), whose symbols will be called
objects.

3. w1, . . . , wq are strings over Γ , describing the multisets of objects placed in the
q cells of the system.

4. ε ⊆ Γ is the set of objects present in the environment in arbitrarily many
copies each.

5. R is a finite set of developmental rules of the following form:
a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗.

When applying a rule (i, u/v, j), the objects of the multiset represented by
u are sent from region i to region j and simultaneously the objects of the
multiset v are sent from region j to region i.

b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ . The
cell with label i is divided in two cells with the same label; in the first copy
the object a is replaced by b, in the second copy the object a is replaced by
c; all other objects are replicated and copies of them are placed in the two
new cells.

6. i0 ∈ {0, 1, 2, . . . , q} denotes the output region (which can be the region inside
a membrane or the environment).

Rules are applied as usual in a maximally parallel way, with only one restriction:
when a cell is divided, the division rule is the only one which is applied for that
cell in that step; the objects inside that cell do not evolve in that step.

This class of P systems can be further extended, for solving NP-complete prob-
lems, to recognizer P systems. A recognizer tissue P system with cell division is
a tuple (Γ,Σ,w1, . . . , wq, ε, R, iin, i0), which has, in addition to a tissue P system
with cell division:

• Two distinguished objects yes, no ∈ Γ , present in at least one copy in
w1, w2, . . . , wq, but not present in ε.

• An input alphabet Σ strictly contained in Γ .
• An input cell iin ∈ {1, . . . , q}.
Also, it must satisfy the followings:

• The output region i0 is the environment.
• All computations halt.
• If C is a computation of Π, then either the object yes or the object no (but

not both) must have been released into the environment, and only in the last
step of the computation.

3 Verifying a first set of properties for the 3-colouring
problem

In this section we will introduce a simplified version of a tissue P system solving the
3-colouring problem, we will present some of its properties and their verification
using the Spin and ProB model checkers.
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3.1 A P system for the 3-colouring problem

In order to illustrate our approach regarding property extraction and verification
for P systems, we have considered a simplified version of the 3-colouring problem
from [9, 11].

The k-colouring problem is formulated as follows: given an undirected graph
G = (V,E), decide whether or not G is k-colourable; that is, if there exists a valid
k-colouring of G (for every edge {u, v} ∈ E the colours of u and v are different).

The 3-colouring problem can be solved in linear time by a family of recognizer
tissue P systems with cell division [9]. The solution proposed in [9] is using a brute
force algorithm, in the framework of recognizer tissue P systems with cell division,
which consists of 4 stages:

1. Generation Stage: an initial cell, labelled by 2, is divided into two new cells;
this process is repeated until all possible candidate solutions to the problem
are generated (one solution for each membrane).

2. Prechecking Stage: after obtaining all possible 3-colourings (in cells labelled
by 2), additional objects are generated in the cells, for every edge of the graph.

3. Checking Stage: it is verified if there exists a pair of adjacent vertices in the
graph, with the same colour in the corresponding candidate solution.

4. Output Stage: the system sends to the environment the right answer according
to the results of the previous stage (yes or no).

As we will focus in the rest of the paper only on the properties from the
Generation Stage, we will omit from the recognizer P system model given in [9]
some rules and objects, which would hinder the understanding of the mechanism.
More precisely, we will consider only the division rules and a restricted set of
objects, so we can define the model using the basic class of tissue P systems with
cell division. However, for a complete specification in terms of a family of recognizer
tissue P systems, [9] can be consulted.

Let Π(n) = (Γ (n), w1, w2(n), ε, R(n), i0) be a family of tissue P systems with
cell division of degree 2, where:

1. Γ (n) = {Ai, Ri, Ti, Bi, Gi : 1 ≤ i ≤ n}
2. w1 = ∅, w2(n) = {A1, . . . , An}
3. R(n) is a set of division rules:
• r1,i ≡ [Ai]2 → [Ri]2[Ti]2 for i = 1, . . . , n
• r2,i ≡ [Ti]2 → [Bi]2[Gi]2 for i = 1, . . . , n

In this model Ai encodes the i-th vertex of the graph; Ri, Bi, Gi represent the
three colours red, blue, green. Appendix A presents two examples of computation
for Π(2) and Π(3). It can be observed that, after appropriate divisions, in the
step 2n we get exactly 3n cells encoding all the possible 3-colourings of the graph
having vertices A1, . . . , An. Appendix B presents the number of cells labelled 2 at
each computation step for 2 ≤ n ≤ 11, simulation results which help us formulate
some interesting properties.
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Given the family of P systems Π(n) previously defined, an initial set of prop-
erties have been identified manually (without using property extraction tools):

P1 For each computation C of the P system Π(n), there are 3n cells labelled with
2 at configuration C2n.

P2 For each computation C of the P system Π(n), the configuration Cn+1 has
exactly 2n+1 − 1 cells labelled 2.

P3 For each computation C of the P system Π(n), for each 0 ≤ j ≤ n the config-
uration Cj has exactly 2j cells labelled 2.

P4 For each combination (X1, X2, . . . , Xn), Xi ∈ {Ri, Gi, Bi}, i = 1 . . . n, there
exists, at configuration C2n, one and only one cell labelled by 2 that contains
the multiset {X1, X2, . . . , Xn}.

3.2 3-Col property verification using model checking

This initial set of properties is now verified using two model checkers, Spin and
ProB.

Spin is a model checker widely used in industries that build critical systems
and is considered one of the most powerful model checkers available [3]. It is de-
signed for modelling and verifying concurrent and distributed systems specified
in Promela (Process or Protocol Meta Language), a verification modelling lan-
guage. The properties to be verified can be expressed in LTL or by using assertion
statements.

ProB is an animation and model checking tool integrated within the Rodin plat-
form, which accepts Event-B models [1]. Unlike most model checking tools, ProB
works on higher-level formalisms and so it enables a more convenient modelling.
Besides verification of properties (expressed using the LTL or the CTL formalism),
it also provides animation facilities, allowing to visualize, at any moment, the state
space or to execute a given number of operations.

Property verification using Spin

As explained in [18], the executable specification for the Spin model checker
associated to a P system will contain extra states and variables, corresponding
to intermediate steps, which have no correspondence in the P system configura-
tions. For this reason, the properties to be verified, that refer to the P system,
need to be reformulated as equivalent LTL formulas for the associated Promela
implementation.

The P system properties verified in this section are of the form ‘G (φ → ψ)’,
and the equivalent LTL formula for the Promela model is ‘[](!φ ||ψ|| !pInS)’, as
formally proven in [19] (pInS is used to express if the current configuration in the
Promela model represents also a state in the P system).

In our experiments, we have used one Promela specification file for each par-
ticular P system Π(n), for all n ∈ {2, . . . , 9} because these files were (semi-)



An Integrated Approach for Model Simulation of P Systems 297

automatically generated from each corresponding instance of P–Lingua definition
file using the plinguacore library. We have successfully simulated all these models
with Spin, for n ∈ {2, . . . , 9}; typical state explosion problems appeared when we
attempted to verify the properties mentioned earlier for n ≥ 4.

For n ∈ {2, 3} we have verified all the formulas presented bellow, using also
some techniques that Spin provides to reduce the memory use. Starting with n = 4,
we obtained out of memory for properties that involved checking many steps of
the computations.

The properties verified, expressed as LTL formulas for the Spin model checker,
for n = 3, are:

P1 :[] ((!(noOfSteps == 6) || (noOfCells == 27) || (!pInS))
P2 :[] ((!(noOfSteps == 4) || (noOfCells == 15) || (!pInS))
P3 :[] ((!(noOfSteps >= 0 && noOfSteps <= 3)) || (noOfCells ==

pow2noOfSteps) || (!pInS)), where pow2noOfSteps is a variable which com-
putes 2noOfSteps

P4 :This property is hard to verify with Spin because of the complex operations
involved.

Property verification using ProB

The Event-B model of a P system with active membranes can be specified
using two functions cell and cellp, representing the number of objects of each type
contained in every cell and the number of objects produced between two steps
of maximal parallelism, respectively. The rules are represented by events. Each
division rule adds a cell to the domain of these functions. Additionally, a special
event called update, enabled after each step of maximal parallelism, is used to add
each value of cellp to cell and to reset all the values of cellp to 0. More details can
be found in [6].

First, we developed an Event-B model, using the Rodin platform, for each par-
ticular P system Π(n), with n ∈ {2, 3, 4}. Then, the possibility to use quantifiers
in ProB allowed us to develop a general Event-B model for the family of P systems
Π(n), that has been instantiated for particular values of n. We animated the mod-
els in order to see how the system evolves and we verified their properties using
the model checker ProB. Unlike the Promela specification, where the number of
cells with label 2 was incremented after each division rule, we could specify the
properties P1-P4 neglecting the extra intermediary) states; this is because these
properties refer only to the number of steps of maximal parallelism in the evolu-
tion of Π(n) (counted by a variable called noOfSteps) and to the number of cells
with label two (counted by a variable called noOfCells), whose values are modified
only in the update event. On the other hand, we used an additional state, Halt, to
mark final configurations. However, we were able to verify all the properties only
for n ∈ {2, 3, 4}; for n = 5, due to the state explosion problem, the model checker
crashed with an out of memory error before reaching the final configuration (after
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producing 196 cells labelled 2). Consequently, for n > 5, we could verify only some
simple properties, that do not involve terminal configuration (e.g. P3 for small
values of j).

The properties were specified using LTL as follows:

P1 :G{state = Halt⇒ noOfSteps = 2 ∗ n&noOfCells = 3n}
P2 :G{noOfSteps = n+ 1⇒ noOfCells = 2n+1 − 1}
P3 :G{!j.j >= 0 &j <= n& noOfSteps = j ⇒ noOfCells = 2j}
P4 :We were able to verify P4 splitting it in two properties, the first one for the

existence and the second one for the unicity. For n = 2 these properties were
formulated as follows:

– For all x, y symbols in {Ri, Gi, Bi}, i ∈ {1, 2}, there exist one cell in the
final configuration that contains one x and one y:
G{state = Halt⇒ (!x, y.x : {R1, R2, G1, G2, B1, B2}& y : {R1, R2, G1, G2,
B1, B2}& (x/ = y)⇒ (#c.c : dom(cell) & cell(c)(x) = 1 & cell(c)(y) = 1))}

– In the final configuration any two different cells c1, c2 have different con-
tents:
G{state = Halt ⇒ (!c1, c2.c1 : dom(cell) & c2 : dom(cell) & (c1/ = c2) ⇒
(#s.s : {R1, R2, G1, G2, B1, B2}& cell(c1)(s)/ = cell(c2)(s)))}
For higher values of n the formulas for these properties are very large and
for space considerations, we will omit them.

Here “!”, “#” and “:” correspond to the universal quantifier “∀”, existential
quantifier “∃” and membership operator “∈”, respectively.

4 Integrating Daikon in MeCoSim and finding new relations

The next stage in the proposed methodology is the automatic extraction of new
properties from simulation traces. The main tools used (MeCoSim and Daikon)
and their integration are presented next. The process of identifying new properties,
broken down in a number of individual steps, is also described.

4.1 Modelling and formalization

Once the 3-Col problem has been studied and modelled by means of P systems, this
model must be expressed in a language that may be understood by a simulation
machine. For this purpose, the standard P–Lingua [14] language has been chosen
as our modelling language. The initial multisets and rules are expressed as follows:

@ms(2) += A{i} : 1<=i<=n;

/* r1 */ [A{i}]’2 --> [R{i}]’2 [T{i}]’2 : 1<=i<=n;

/* r2 */ [T{i}]’2 --> [B{i}]’2 [G{i}]’2 : 1<=i<=n;
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The full code of the model in P–Lingua is showed in Appendix C. This file
will serve as an input for MeCoSim, so that the P system can be simulated, ana-
lyzed and debugged, and invariants can be detected, to be then verified by model
checking.

4.2 MeCoSim

In order to provide an integrated methodology for model simulation, properties
extraction and verification, we need an integrated environment to simplify the
user’s process.

In this sense, a general purpose membrane computing simulator, MeCoSim
[20], was provided. It was initially designed to enable the user defined customized
interfaces, with inputs, outputs, charts, etc., adapted to each family of P systems.
This permits entering data for different initial conditions, instantiating different P
systems of the family.

The initial aim of this software environment has been extended such that it can
cover a more general set of applications by providing flexible and powerful methods
to integrate various software applications and packages as MeCoSim plugins. These
kind of plugins can be easily added to MeCoSim by setting appropriate parameters
in a configuration file. Keeping in mind this architecture and the developed plugins,
MeCoSim may provide a platform for the integration of different tools for the
modelling, simulation, analysis, property extraction and verification of P systems.
Some of this tools have already been developed and/or integrated, others are being
developed, and many other could be added in a similar way.

To take advantage of this framework for studying the 3-Col problem, we need
to define our customized inputs, outputs, extractions, etc. The main steps of this
process are illustrated in the next paragraphs.

MeCoSim permits setting the hierarchy of tabs to be shown in the visual user
interface, including input and output tables inside each leaf tab. In our case, we
divide the information in two tabs, Input and Output (plus an additional tab,
Debug console, provided by default in MeCoSim, used for debugging the models).
For our example, we only need one input parameter, n, so one input table is defined
inside the tab Input, as showed in Fig. 2.

Now the simulation could be performed, in such a way that n takes the value
from the input table, this parameter complements the P–Lingua file to instantiate
the initial configuration of the P system and the computation steps run until
a halting condition is reached. In the debug console, we can run step by step,
looking at all the objects of the multisets inside each cell and compartment, for
each computation step.

However, this process could be very slow if we are interested in several objects,
membranes or steps, so we need a way to define customized outputs showing
the desired information only. MeCoSim provides this mechanism, and we define
outputs as shown in Fig. 3 to study different issues: entire configurations, objects
per membrane, objects by type (R, G, B), number of cells, etc.
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Fig. 2. MeCoSim window - Input tab: value of n

Tabs

Tables

Result
s

Extrac
tions

Fig. 3. MeCoSim window - Output tab: number of cells by step

Eventually, as we see in Fig. 3, we set the information to be extracted for
Daikon. This makes up the output files from the simulation, to be used as an
input for the MeCoSim Daikon plugin.

4.3 MeCoSim new plugin for Daikon integration

MeCoSim provides an easy way to add plugins, enriching the default functionality.
Taking advantage of this architecture, a new plugin has been developed to integrate
Daikon with MeCoSim.

Daikon [13] is a tool which dynamically detects programs invariants, based on
their execution traces. It can discover properties from C, C++, Eiffel, Java, or
Perl programs, from spreadsheet files and other data sources. The usual operation
of Daikon is the following: it receives data trace files about the values of some
variables across a sequence of steps from the execution of a program, and tries
to detect properties of types: precondition, postcondition and invariant. We are
mainly interested in the last one, but the previous ones could be also useful for
checking the correctness of the models.
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As part of the proposed methodology, we aim to integrate this tool with
MeCoSim, so invariants could be detected from the desired outputs of the simu-
lation. For this purpose, a plugin has been developed; an overview of the entire
(simulation and property extraction) process involves the following steps:

1. The model of the P system (written in P–Lingua, possibly parametrized) is
loaded in MeCoSim.

2. The initial parameters (n in the case of the 3–Col problem) for instantiating
the specific P system are provided by the user in a visual way through the
input tables.

3. The simulation runs, generating extraction files for the outputs previously set.
4. The plugin can be called from a menu option (Plugins > “Daikon”).

When the plugin is launched from MeCoSim, a window with a listing of avail-
able extraction files is visualized, as showed in figure 4.

Fig. 4. MeCoSim window - Daikon plugin - File selection

Once one of the extraction files is selected, the Daikon plugin runs from this
input file. It automatically reads the simulation extraction file, generates the traces
in the appropriate format and launches Daikon from this traces file, trying to
detect as many invariants as possible. They are eventually visualized, as showed
in figure 5.

Further technical details concerning the Daikon plugin and its integration into
MeCoSim is provided in Appendix D.

4.4 Methodology

In the previous sections, different tools and languages for modelling, simulation,
verification and invariant detection have been explained. In order to integrate the
different tools in a systematic way, a novel methodology has been devised, as
outlined in Fig. 1.

In the first stage, we need to model the problem, writing the model in P–
Lingua, Promela and other languages, in order to serve as the default input for
Spin and other possible model checkers.
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Fig. 5. Daikon plugin - Invariants detection

Once we have modelled the problem, written in P–Lingua, set the customized
MeCoSim-based application including Daikon and entered the P–Lingua file in
MeCoSim, the property extraction cycle can start.

For each iteration, some interesting goals should be addressed, for example
to obtain relations between P system objects or invariants regarding the number
of cells at each computation step. Then the needed outputs have to be set in
MeCoSim, according to the stated objective. Based on the model and the target
data entered in the input tables, simulations can be performed, obtaining the
required results, which can be displayed and exported into the extraction files.
The Daikon plugin can be executed further, in order to detect invariants from the
extraction files, which contain traces from the P system simulations. Eventually,
the new invariants detected by Daikon should be tested with the model checkers,
to be verified.

In the following paragraphs this methodology is illustrated with some iterations
for the 3–Col problem.

Iteration 1: property extraction using the entire model

The goal in this iteration is to analyze the values of all the objects across the
simulation. A first output is set in MeCoSim (see Fig. 6), along with an extrac-
tion file for Daikon. No interesting properties (invariants) were found, so other
alternative studies were considered.
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Fig. 6. Iteration 1. Output: entire simulation

Iteration 2: property extraction using the simplified model

The goal in this iteration is to simplify the model and to filter the information
sent to Daikon, for example by grouping the objects by type, or restricting the
kind of objects analysed to R, G or B (and not considering the others, such as A
and T). Again, the output is set in MeCoSim (see Fig. 7), along with an extraction
for Daikon, and no interesting properties were found.

Fig. 7. Iteration 2. Output: objects by type (R, G, B)

Another goal of this iteration is to obtain information (general formulas) re-
garding total number of cells in the P system for each computation step. To accom-
plish this, the respective output (see Fig. 8) and extraction are set. The simulation
runs for n = 2, generating the extraction file, and Daikon Plugin is executed, but no
relevant properties are obtained. The process is repeated for input n = 3, 4, 5, . . . ,
but again no interesting properties are found.

Fig. 8. Iteration 2. Output: Cells by step

Instead of continuing with simulations for other values of n, it emerges the
idea of collecting the results for different values of n in the same file, only for the
last computation step, in order to get a general property, met for all the cases. The
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result is showed in figure 9. As it can be seen, an interesting invariant is detected:
in the last configuration, having n as the input, numcells = 3n (Daikon indicates
the equivalent recursive relation, numcells− 3 ∗ orig(numcells) == 0).

Fig. 9. Iteration 2. Invariants detection: Cells in last configuration

Iteration 3: dividing the computation path and extracting properties from the
sub-paths, according to the model features

Another idea for extracting relevant information regarding the P system is to
analyse only the configurations from a certain computation sub-path. In the case
of the 3-Col problem, we anticipate that for the first half of the computation, the
number of cells at each step is a power of 2.

The first goal in this iteration is to count the number of cells for each step
until half the computation. The simulation runs, for example, for n = 7, generating
the extraction file, and Daikon Plugin is executed, getting the results showed in
Fig. 10. A new important invariant has been detected: for each step until half the
computation (that is, until step = n), numcells = 2step (Daikon indicates the
equivalent recursive relation, numcells− 2 ∗ orig(numcells) == 0).

The second goal in this iteration is to count the number of cells for each step
in the second half of the computation. The output and extraction are set, the
simulation runs again for n = 7, generating the extraction file. Daikon Plugin is
executed, detecting the invariant: for each step from half the computation to the
end , numcells = 3(mod 4). However, this invariant was verified with the model
checkers, resulting that this is not true for all the values of n, so it was not validated
and cannot be considered a general property.
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Fig. 10. Iteration 3. Invariants detection: Cells each last step, first half of the computa-
tion

As it has been seen, the methodology includes some important parts that have
been integrated, automating the process of modelling, simulating, analyzing, de-
bugging and detecting invariants from the MeCoSim application, making use of the
simulation engine of pLinguaCore and the invariants detector Daikon. However,
some parts of the process are being used independently, and have not been inte-
grated with MeCoSim until the moment. The methodology covers all the process,
and we plan to add the needed plugins to let it be as automated as possible.

4.5 Results - Summary of discovered properties

The idea of using simulation traces to infer properties of the P system model, as
detected by Daikon, is useful in order to check the correct behaviour of the system
and in the same time to find out new relationships between model variables. We
can classify the results proposed by Daikon into:

• Obvious invariants: these confirm that the model is behaving as it should. For
example, some results obtained for n = 10 are:
– B >= 0, B <= 196830: the number of objects will never be negative, even

more the sum of Bi objects over all membranes is at maximum 196830.
The last relation is correct, moreover we estimate that the total number
of occurrences of objects of type Ri, Gi, Bi at the end of computation is
n×3n−1 and 196830 = 10 ·39. This property has been verified with Spin for
n ∈ {2, 3} and with ProB for n ∈ {2, 3, 4}. For higher values of n, as stated
in section 3.2 this property could not be verified because it involves check-
ing many steps of the computations which yields to the “out of memory”
problem.

– (step == 0) ==> (B == 0) is obvious because the initial multiset is
w2 = A1 . . . An.
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– B <= R is a direct consequence of the fact that rules [Ai]2 → [Ri]2[Ti]2
are applied first, so Ri objects are produced, and later are applied rules of
type [Ti]2 → [Bi]2[Gi]2

– B >= orig(B) is obvious because Bi objects are never consumed by any
rules.

• Anomalous invariants: these indicate a fault in the model and its parameter
values. In this case, we did not obtained any of these, but if the P–Lingua
model would have been incorrect (not solving the proposed problem), we could
have encountered anomalous values.

• Interesting invariants: could even suggest novel relationships between the
model variables. However, these properties should be further confirmed by a
model checker verification.

A summary of the extracted properties is presented in Table 1, where by non-
interesting properties we refer to obvious invariants, such the ones presented previ-
ously. Also, the truth value given in the third column refers to the result returned
by the model checkers, after verifying the corresponding properties.

Extraction Result Truth

Entire model (all simulation data) Non-interesting properties

Objects grouped by type Non-interesting properties

Objects grouped by type, filtered by R, G
or B

Non-interesting properties

No. of cells for each n separately Non-interesting properties

No. of cells in the last configuration, for
different values of n together

numcells = 3n true

No. of cells for each step 0 . . . n numcells = 2step true

No. of cells for each step (n+ 1) . . . 2n numcells = 3(mod 4) false

No. of cells for each step (n + 1) . . . (n +
(n/2) + 1)

numcells = 3(mod 12) false

Table 1. Summary of detected invariants

5 Discovering other properties with Maple

5.1 Model simplification for simulation

As we have discussed in Section 3.2, verification through model checking is possible
for n up to 5. Beyond this point, due to the state explosion problem, both model
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checkers (Spin and ProB) will crash with an out of memory error, at least for some
of the verified properties. This led us to build and use a simplified model of the
investigated P system, based on the observation that the evolution of the number
of cells and the actual contents of each cell are two separable issues, because only
the symbols A and T appear in the left hand side of the rules. Thus, the number of
objects R,G,B was ignored; first, a simplified Event-B model was produced, but
with only limited performance gains, i.e. verification of properties for n up to 6;
secondly, a Python implementation was developed, which enabled the verification
of properties for n up to 19. Based on the backtracking technique, the simulation
Algorithm 1 follows the evolution of a cell placed in the top of a stack, across the
configurations of Π(n) for as long as it contains non-terminals. Each cell is stored
as a tuple containing the multiplicity of A’s and T ’s and the step number. If the
current cell still contains terminals, a new cell is added on to the stack, otherwise
it is removed. We also used an array to count the number of cells produced at each
step. The algorithm ends when the stack is empty. The verification Algorithm
2 checks if the values from the array calculated in the first algorithm are the
same with the values returned by a function implemented for each property. Both
algorithms are given in Appendix E.

5.2 Obtaining the polynomial coefficients with Maple

As we have seen in Section 4.4, using Daikon we have managed to find a number of
(simpler) invariants but have failed to find other potentially interesting properties,
such as the number of cells from configurations n + 2 up to configuration 2 ∗ n.
This is due to the quite complex nature of the formulae for these numbers: Using
the number of cells with label 2 given in Appendix B, we deduced that the number
of cells in configuration n + k, k ∈ {2, 3, 4, 5, . . .}, is a sum between 2n+k and a
polynomial Qkof degree k − 1. In order to determine the exact expression of this
polynomial we used Maple.

Maple is a powerful software that can be used to solve various mathematical
problems with numerical and symbolic calculus. It also incorporates a program-
ming language that allows working with formulas containing symbols and formal
operations. Maple provides users over 5000 predefined functions and commands,
with suggestive names, dedicated to various branches of mathematics.

In order to obtained Qk we used the idea that a polynomial of degree k − 1
can be obtained solving a recurrence of order k and some Maple functions and
commands:

• rgf findrecur(k, seq, f, n): function contained in the package genfunc that
finds the linear recurrence with constant coefficients of order k that is satisfied
by the sequence with 2k terms seq ; f is the name of the general term and n is
the index variable of the recurrence;

• rsolve({rec}, f(n)): command returning an expression for the general term of
the function f(n) by solving the recurrence rec;
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• expand(expr): command used to distribute products over sums in the given
expression.

For k = 4, using rgf findrecur(4, [(81 − 28), (227 − 29), (585 − 210), (1403 −
211), (3185− 212), (6947− 213), (14729− 214), (30619− 215)], f, t) we obtained the
recurrence: f(t) = 4 ∗ f(t− 1)− 6 ∗ f(t− 2) + 4 ∗ f(t− 3)− f(t− 4). Solving this
recurrence with the command rsolve({f(t) = 4∗f(t−1)−6∗f(t−2)+4∗f(t−3)−
f(t − 4), f(4) = −175, f(5) = −285, f(6) = −439, f(7) = −645}, f(n)) we obtain

the general term: −19+12(n+1)

(
1

2
n+ 1

)
−14n−8(n+1)

(
1

2
n+ 1

)(
1

3
n+ 1

)
,

and expanding it: −15 − 32

3
n − 2n2 − 4

3
n3. Adding 2n+4 to this general term we

obtain the number of cells with label 2 in the configuration n+ 4. The recurrences
from Table 2 have been obtained similarly.

Configuration Recurrence

n+ 2 f(t) = 2 · f(t− 1)− f(t− 2)

n+ 3 f(t) = 3 · f(t− 1)− 3 · f(t− 2) + f(t− 3)

n+ 4 f(t) = 4 · f(t− 1)− 6 · f(t− 2) + 4 · f(t− 3)− f(t− 4)

n+ 5 f(t) = 5 · f(t− 1)− 10 · f(t− 2) + 10 · f(t− 3)− 5 · f(t− 4) + f(t− 5)

n+ 6 f(t) = 6 · f(t− 1)− 15 · f(t− 2) + 20 · f(t− 3)
−15 · f(t− 4) + 6 · f(t− 5)− f(t− 6)

Table 2. Recurrence for the number of cells with label 2 in configuration n+ k

We notice that all these recurrences have, for each configuration n + k, the

following form: f(t) =
k∑

i=1

(−1)i+1 · Ci
k · f(t − i). Unfortunately, the current limi-

tations of our tools (n < 20) does not allow us to continue the calculus with the
next steps and so we cannot establish unequivocally if the recurrences have the
same form for larger values of k.

Solving these recurrences (using rsolve), expanding the expressions (with ex-
pand) and adding 2n+k, we obtain the number of cells with label 2 in the config-
uration n+ k, for k ∈ {2, 3, 4, 5, 6}, as presented in Table 3.

All these formulas were verified using Algorithm 2 from Appendix E for n < 20.
As we can see from Table 3 the coefficient of the polynomial that follows 2n+k are
rational but we could not establish any further rule for them except the fact that,
in each case, the free term is −2k + 1.
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Configuration Number of cells

n+ 2 2n+2 − 2n− 3

n+ 3 2n+3 − 2n2 − 4n− 7

n+ 4 2n+4 − 4

3
· n3 − 2 · n2 − 32

3
· n− 15

n+ 5 2n+5 − 2

3
· n4 − 28

3
· n2 − 20 · n− 31

n+ 6 2n+6 − 4

15
· n5 +

2

3
· n4 − 20

3
· n3 − 32

3
· n2 − 676

15
· n− 63

Table 3. Number of cells with label 2 in configuration n+ k

6 Conclusion

In this paper, we have outlined an integrated methodology for P system formal ver-
ification, comprising modelling using P–Lingua, simulation with MeCoSim, prop-
erly extraction using Daikon and model checking using tools such as Spin and
ProB. A plugin which allows Daikon to be called and used within MeCoSim has
been developed and a (semi)-automatic Promela implementation has been gener-
ated from the P–Lingua model. A number of steps involved in property extraction
using Daikon have been identified and the whole process has been illustrated with
an example, a tissue P system model of the 3-colouring problem; this is a complex
problem since, by using active membranes (cell division), the number of cells grows
exponentially. As some of the sought properties have proved to be quite complex
and could not be directly extracted using Daikon, a tool for mathematical and
symbolic calculus (Maple) has been used to supplement our methodology.

Further work involves the development of completely integrated environment
for automatic modelling, simulation and verification of P systems as well as ap-
plying the proposed methodology to other, more complex, P systems.
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Appendices

A Computation examples for Π(n), n ∈ {2, 3}

Crt. No. of cells Current configuration
step labelled 2 (only cells labelled with 2)

0 1
(

[A1A2]2
)

1 2
(

[R1A2]2 [T1A2]2
)

2 4
(

[R1R2]2 [R1T2]2 [B1A2]2 [G1A2]2
)

3 7

(
[R1R2]2 [R1B2]2 [R1G2]2 [B1R2]2 [B1T2]2
[G1R2]2 [G1T2]2

)
4 9

(
[R1R2]2 [R1B2]2 [R1G2]2 [B1R2]2 [B1B2]2
[B1G2]2 [G1R2]2 [G1B2]2 [G1G2]2

)
Table 4. Computation example for Π(2)

Crt. No. of cells Current configuration
step labelled 2 (only cells labelled with 2)

0 1
(

[A1A2A3]2
)

1 2
(

[R1A2A3]2 [T1A2A3]2
)

2 4
(

[R1R2A3]2 [R1T2A3]2 [B1A2A3]2 [G1A2A3]2
)

3 8

(
[R1R2R3]2 [R1R2T3]2 [R1B2A3]2 [R1G2A3]2
[B1R2A3]2 [B1T2A3]2 [G1R2A3]2 [G1T2A3]2

)

4 15

 [R1R2R3]2 [R1R2B3]2 [R1R2G3]2 [R1B2R3]2 [R1B2T3]2
[R1G2R3]2 [R1G2T3]2 [B1R2R3]2 [B1R2T3]2 [B1B2A3]2
[B1G2A3]2 [G1R2R3]2 [G1R2T3]2 [G1B2A3]2 [G1G2A3]2



5 23


[R1R2R3]2 [R1R2B3]2 [R1R2G3]2 [R1B2R3]2 [R1B2B3]2
[R1B2G3]2 [R1G2R3]2 [R1G2B3]2 [R1G2G3]2 [B1R2R3]2
[B1R2B3]2 [B1R2G3]2 [B1B2R3]2 [B1B2T3]2 [B1G2R3]2
[B1G2T3]2 [G1R2R3]2 [G1R2B3]2 [G1R2G3]2 [G1B2R3]2
[G1B2T3]2 [G1G2R3]2 [G1G2T3]2



6 27


[R1R2R3]2 [R1R2B3]2 [R1R2G3]2 [R1B2R3]2 [R1B2B3]2
[R1B2G3]2 [R1G2R3]2 [R1G2B3]2 [R1G2G3]2 [B1R2R3]2
[B1R2B3]2 [B1R2G3]2 [B1B2R3]2 [B1B2B3]2 [B1B2G3]2
[B1G2R3]2 [B1G2B3]2 [B1G2G3]2 [G1R2R3]2 [G1R2B3]2
[G1R2G3]2 [G1B2R3]2 [G1B2B3]2 [G1B2G3]2 [G1G2R3]2
[G1G2B3]2 [G1G2G3]2


Table 5. Computation example for Π(3)
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B Number of cells labelled with 2

n Number of cells labelled 2 at each configuration (from 0 to 17)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2 1 2 4 7 9
3 1 2 4 8 15 23 27
4 1 2 4 8 16 31 53 73 81
5 1 2 4 8 16 32 63 115 179 227 243
6 1 2 4 8 16 32 64 127 241 409 585 697 729
7 1 2 4 8 16 32 64 128 255 495 891 1403 1867 2123 2187
8 1 2 4 8 16 32 64 128 256 511 1005 1881 3185 4673 5857 6433 6561
9 1 2 4 8 16 32 64 128 256 512 1023 2027 3891 6947 11043 15203 18147 19427
10 1 2 4 8 16 32 64 128 256 512 1024 2047 4073 7945 14729 24937 37289 48553
11 1 2 4 8 16 32 64 128 256 512 1024 2048 4095 8167 16091 30619 54395 87163
12 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8191 16357 32425 62801 115633
13 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16383 32739 65139 127651
14 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32767 65505 130617
15 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65535 131039
16 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131071
17 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072
18 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072
19 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

Table 6. Number of cells labelled 2 at each configuration. Steps 0 to 17.

n Number of cells labelled 2 at each configuration (from 18 to 25)

18 19 20 21 22 23 24 25

2 - 8
9 19683
10 55721 58537 59049
11 123131 152827 169979 176123 177147
12 195953 297457 399089 475633 516081 529393 531441
13 241235 427219 689363 994003 1273811 1467347 1561555 1590227
14 257929 496537 909689 1543801 2372729 3261817 4014969 4496249
15 261627 519163 1012395 1902763 3363179 5460331 8007275 10538603
16 262109 523705 1042417 2050721 3927553 7168705 12186689 18927937
17 262143 524251 1047923 2089827 4135555 8028995 15023811 26524099
18 262144 524287 1048537 2096425 4185673 8315209 16300105 31081801
19 262144 524288 1048575 2097111 4193499 8378523 16686555 32930523

Table 7. Number of cells labelled 2 at each configuration. Steps 18 to 25.
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n Number of cells labelled 2 at each configuration

26 27 28 29 30 31 32

2 - 12
13 1594323
14 4713337 4774777 4782969
15 12526187 13705835 14201451 14332523 14348907
16 26553153 33603393 38758209 41613121 42735425 43013953 43046721
17 43301315 64409027 86709699 105964995 119129539 125961667 128484803
18 56571721 96349513 151011657 215527753 279384393 331059529 364220745
19 63682011 118735323 209492955 343710683 517551067 710439899 889828315

Table 8. Number of cells labelled 2 at each configuration. Steps 26 to 32.

n Number of cells labelled 2 at each configuration

33 34 35 36 37 38

2 - 16
17 129074627 129140163
18 380408137 386044233 387289417 387420489
19 1026339803 1108849627 1146860507 1159377883 1161999323 1162261467

Table 9. Number of cells labelled 2 at each configuration. Steps 33 to 38.

C P–Lingua model file

The content of the file in P–Lingua format, containing the specification of the
model, is shown below.

@model<tissue_psystems>

def main()

{

/* tissue P system skeleton */

call example_tissue(n);

}

def example_tissue(n)

{

call init_cells();

call init_multisets(n);

call init_rules(n);

}

def init_cells()

{

@mu = [[]’2]’0;

}

def init_rules(n)

{
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/* r1 */ [A{i}]’2 --> [R{i}]’2 [T{i}]’2 : 1<=i<=n;

/* r2 */ [T{i}]’2 --> [B{i}]’2 [G{i}]’2 : 1<=i<=n;

}

def init_multisets(n)

{

@ms(2) += A{i} : 1<=i<=n;

}

D Daikon integration in MeCoSim - plugin and config files

This appendix presents some technical details about the developed plugin, and the
simple process of integration with MeCoSim.

The main code of the program is contained in DaikonInterface.jar program,
that receives an input file with a compatible format for Daikon invariants detector.
However, an additional jar file has been developed, DaikonPlugin.jar, to permit
selecting among the different extraction files generated by the simulator.

To implement the integration of the program, the only work we have to do is
the addition of a few lines in the file plugins-properties of MeCoSim, as follows:

plugin-daikon = daikonPlugin.Main

pluginname-daikon = Daikon

pluginmethod-daikon = pluginHook

pluginparam-daikon-1 = userfiles/daikon-files.txt

pluginjar-daikon-1 = DaikonInterface.jar

pluginjar-daikon-2 = DaikonPlugin.jar
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E Algorithms

Algorithm 1 Calculating the number of membranes

function TriColor(n)
numberCellsStep[0..2n]
for i=0 do 2n-1

numberCellsStep[i]← 0
end for
a← n
t← 0
step← 0
stack.Push(a, t, step)
numberCellsStep[step]← numberCellsStep[step] + 1
while not stack.IsEmpty() do

a, t, step← stack.Pop()
step← step+ 1
if t > 1 then

t← t− 1
stack.Push(a, t, step)
stack.Push(a, t, step)
numberCellsStep[step]← numberCellsStep[step] + 1

else if t = 1 then
if a > 0 then

t← t− 1
stack.Push(a, t, step)
stack.Push(a, t, step)
numberCellsStep[step]← numberCellsStep[step] + 1

else
numberCellsStep[step]← numberCellsStep[step] + 1

end if
else if a > 0 then

stack.Push(a− 1, t, step)
stack.Push(a− 1, t+ 1, step)
numberCellsStep[step]← numberCellsStep[step] + 1

end if
end while

for i=1 do 2n-1
numberCellsStep[i]← numberCellsStep[i− 1] + numberCellsStep[i]

end for
return numberCellsStep

end function
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Algorithm 2 Testing the invariants

function Fn2(n)
return 2 ∗ ∗(n+ 2)− 2 ∗ n− 3

end function
function Fn3(n)

return 2 ∗ ∗(n+ 3)− 2 ∗ n ∗ ∗2− 4 ∗ n− 7
end function
function Fn4(n)

m1← n ∗ ∗3 ∗ 4
r1← m1 mod 3
m1← m1/3
m2← 2 ∗ n ∗ ∗2
m3← 32 ∗ n
r3← m3 mod 3
m3← m3/3
r ← (r1 + r3)/3
return 2 ∗ ∗(n+ 4)−m1−m2−m3− r − 15

end function
function Fn5(n)

m1← n ∗ ∗4 ∗ 2
r1← m1 mod 3
m1← m1/3
m2← n ∗ ∗2 ∗ 28
r2← m2 mod 3
m2← m2/3
m3← 20 ∗ n
r ← (r1 + r2)/3
return 2 ∗ ∗(n+ 5)−m1−m2−m3− r − 31

end function



318 R. Lefticaru et al.

function Fn6(n)
m1← n ∗ ∗5 ∗ 4
r1← m1 mod 15
m1← m1/15
m2← n ∗ ∗4 ∗ 2
m2← m2/3
m3← n ∗ ∗3 ∗ 20
r3← m3 mod 3
m3← m3/3
m4← n ∗ ∗2 ∗ 32
r4← m4 mod 3
m4← m4/3
m5← n ∗ 676
r5← m5 mod 15
m5← m5/15
r ← (r3 + r4)/3
rr ← (r1 + r5)/3
return 2 ∗ ∗(n+ 6)−m1 +m2−m3−m4−m5− r − rr − 63

end function
function Test(n)

a← TriColor(n)
nr ← len(a)− 1
results← []
if n+ 2 ≤ nr then

results.append((′n+ 2′, a[n+ 2] == Fn2(n), Fn2(n))
end if
if n+ 3 ≤ nr then

results.append((′n+ 3′, a[n+ 3] == Fn3(n), Fn3(n))
end if
if n+ 4 ≤ nr then

results.append((′n+ 4′, a[n+ 4] == Fn4(n), Fn4(n))
end if
if n+ 5 ≤ nr then

results.append((′n+ 5′, a[n+ 5] == Fn5(n), Fn5(n))
end if
if n+ 6 ≤ nr then

results.append((′n+ 6′, a[n+ 6] == Fn6(n), Fn6(n))
end if
return results

end function
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Ştefan, Cristian, II.249

Tudose, Cristina, I.291
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