
Computer Science Journal of Moldova, vol.13, no.3(39), 2005

Approaches to Software Based Fault Tolerance

– A Review

Goutam Kumar Saha

Abstract

This paper presents a review work on various approaches to
software based fault tolerance. The aim of this paper is to cover
past and present approaches to software implemented fault tol-
erance that rely on both software design diversity and on single
but enhanced design.

1 Introduction

Fault tolerance is the ability of a system to perform its function cor-
rectly even in the presence of internal faults. The purpose of fault
tolerance is to increase the dependability of a system. The objective of
a fault-tolerant system is to mask faults (or to detect errors to switch
to an alternate module) and continue to provide service despite faults.
Fault tolerant systems must provide their specified services despite the
occurrence of faults in the systems’s components [1]. A failure occurs
when an actual running system deviates from the specified behaviour.
The cause of a failure is called an error. A fault is the root cause of
a failure. In other words, an error is merely the symptom of a fault.
A fault may not necessarily result in an error, but the same fault may
result in multiple errors. Similarly, a single error may lead to multiple
failures [116]. All fault tolerance techniques must use some form of
redundancy to tolerate faults. Depending on the class of faults [76]
redundant devices, networks, data or applications are used. Software
fault tolerance relies either on design diversity or on single design using
robust data structure. The only type of fault possible in software is

c©2005 by G.K. Saha

193



G.K. Saha

a design fault introduced during the software development. Software
faults are what we commonly call “bugs”. According to [74], software
faults are the root cause in a high percentage of operational system fail-
ures. The consequences of these failures depend on the application and
the particular characteristic of the faults. The immediate effects can
range from minor inconveniences (e.g., having to restart a hung per-
sonal computer) to catastrophic events (e.g., software in an aircraft that
prevents the pilot from recovering from an input error) [75]. From a
business perspective, operational failures caused by software faults can
translate into loss of potential customers, lower sales, higher warranty
repair costs, and losses due to legal actions from the people affected
by the failures. There are four ways of dealing with software faults:
prevention, removal, fault tolerance, and input sequence workarounds.
Fault prevention is concerned with the use of design methodologies,
techniques, and technologies aimed at preventing the introduction of
faults into the design. Fault removal considers the use of techniques like
reviews, analyses, and testing to check an implementation and remove
any faults thereby exposed. The proper use of software engineering
during the development processes is a way of realizing fault prevention
and fault removal (i.e., fault avoidance). The use of fault avoidance is
the standard approach for dealing with software faults and the many
developments in the software field target the improvement of the fault
avoidance techniques. [74,76] states that the software development pro-
cess usually removes most of the deterministic design faults. This type
of fault is activated by the inputs independently of the internal state of
the software. A large number of the faults in operational software are
state-dependent faults activated by particular input sequences. Given
the lack of techniques that can guarantee that complex software de-
signs are free of design fault, fault tolerance is sometimes used as an
extra layer of protection. Software fault tolerance is the use of tech-
niques to enable the continued delivery of services at an acceptable
level of performance and safety after a design fault becomes active.
Single version technique aims to improve the fault tolerance of a sin-
gle piece of software by adding extra measures into the design aiming
the error detection, containment, and tolerating errors caused by the

194



Approaches to Software Based Fault Tolerance . . .

design faults. Multi-version fault tolerance technique uses multiple ver-
sions (or variants) of a piece of software in a structured way to ensure
that design faults in one version do not cause system failures. This
is based on masking the design bugs. A characteristic of the software
fault tolerance techniques is that they can be applied at any level in a
software system: procedure, process, full application program, or the
whole system including the operating system [4]. Such technique can
also be applied selectively to those components that are deemed to have
design faults due to their complexity [5]. Whatever measure we may
take to remove software design bugs, software cannot be made free of
design bugs. Though at present software errors have been attributed
to be the main cause of most system failures. Transient errors often
disrupt proper functioning (e.g., program hanging, wrong answer, false
branching, data and code errors etc.) of an application program during
the execution of an application system. But recent studies [2,3] have
suggested that soft errors or transient bit-errors are increasingly re-
sponsible for system malfunctioning. Nowadays, computer systems are
becoming more complex and are optimized for price and performance
and not for availability. This makes soft errors an even more common
case. Move towards denser, smaller, and low voltage transistors has
the potential to increase these transient errors. Most system software
architectures assume faith in underlying hardware, and software make
no provisions to deal with hardware faults. [101] predicts that soft error
rate (SER) per chip of logic circuits will increase nine orders of magni-
tude from 1992 to 2011 and at that point magnitude will be comparable
to the SER per chip of unprotected memory elements. Researches in
[104] have analyzed the effect of soft errors on system software. Soft-
ware fault tolerance techniques have also been proposed in [102,103]. In
this survey paper, we not only investigate various approaches to toler-
ate software design bugs but also we investigate the consequence of soft
error on the system as a whole and current research into proposed re-
covery mechanisms along with transient fault tolerance. Multi version
approach is basically on the assumption that software built differently
might fail differently and thus, if one of the redundant versions fails, at
least one of the others might provide an acceptable output. Recovery

195



G.K. Saha

blocks, N-version programming, N self-checking programming, consen-
sus recovery blocks, and t/(n−1) techniques are also reviewed. Current
research in software engineering focuses on establishing patterns in the
software structure and trying to understand the practice of software
engineering. We expect that software based fault tolerance research
will be benefited by this research on enabling greater predictability of
the dependability of software.

2 Various Approaches to Software Fault Toler-
ance

In this section, we investigate various software based fault tolerant
approaches that rely on design diversity (multiple version) as well as
on single design.

2.1 Design Diversity Based Software Fault Tolerance

Design Diversity Based or Multiple version based software fault tol-
erance is based on the use of at least two versions (or “variants”) of
a piece of software, executed either in sequence or in parallel. The
versions are used as alternatives (with a separate means of error de-
tection), in pairs (to implement detection by replication checks) or in
larger groups (to enable masking through voting). The rationale for
the use of multiple versions is the expectation that components built
differently (i.e, different designers, different algorithms, different design
tools, etc) should fail differently [6,7]. Therefore, if one version fails on
a particular input, at least one of the alternate versions should be able
to provide an appropriate output. This section covers some of these
“design diversity” approaches to software reliability and safety. Basi-
cally multiple-version approach is to mask software design bugs. Two
critical issues in the use of multi-version software fault tolerance tech-
niques are the guaranteeing of independence of failure of the multiple
versions and the development of the output selection algorithms.

Design diversity is “protection against uncertainty” [16]. In the
case of software design, the uncertainty is in the presence of design

196



Approaches to Software Based Fault Tolerance . . .

faults and the failure modes due to those faults. The goal of design
diversity techniques applied to software design is to build program ver-
sions that fail independently and with low probability of coincidental
failures. If this goal is achieved, the probability of not being able to
select a good output at a particular point during program execution is
greatly reduced or eliminated. Due to the complexity of software, the
use of design diversity for software fault tolerance is today more of an
art rather than a science. The methodology of multiple-version soft-
ware design was carried out by Algirdas Avizienis and his colleagues
at UCLA starting in the 1970s [6,17,18,19,20,21,22,23,24]. Although
focused mainly on software, their research considered the use of de-
sign diversity concepts for other aspects of systems like the operating
system, the hardware, and the user interfaces. Assuming that the de-
velopment is rigorous and design diversity is adequately applied to the
product, there is still the common error source of the identical input
profile. [25] points out that experiments (e,g, [26,27,28]) have shown
that the probability of error manifestations are not equally distributed
over the input space and the probability of coincident errors is im-
pacted by the chosen inputs. Certainly data diversity techniques could
be used to reduce the impact of this error source, but the problem of
quantifying the effectiveness of the approach still remains. The cost of
using multi-version software is also an important issue. A direct repli-
cation of the full development effort, including testing, would certainly
be an expensive proposition. In some applications where only a small
part of the functionality is safety critical, development and production
cost can be reduced by applying design diversity only to those critical
parts [16].

• The Recovery Block Scheme
The Recovery Block Scheme (RBS) technique [8,9] combines the basics
of both the checkpoint and restart approach with multiple versions of
a software component such that a different version is tried after an
error is detected. Checkpoints are created before a version executes.
Checkpoints are needed to recover the state after a version fails to
provide a valid operational starting point for the next version if an
error is detected. The acceptance test need not be an output-only

197



G.K. Saha

test and can be implemented by various embedded checks to increase
the effectiveness of the error detection. Also, because the primary
version will be executed successfully most of the time, the alternates
could be designed to provide degraded performance in some sense (e.g.,
by computing values to a lesser accuracy). Actual execution of the
multiple versions can be sequential or in parallel depending on the
available processing capability and performance requirements. If all
the alternates are tried unsuccessfully, the component must raise an
exception to communicate to the rest of the system its failure (or crash)
to complete its function. Note that such a failure occurrence does not
imply a permanent failure of the component, which may be reusable
after changes in its inputs or state. The much possibility of coincident
faults is the source of much controversy concerning all the multi-version
software fault tolerance techniques.

• The N-Version Programming Scheme
The N-Version programming Scheme (NVPS) [7] is a multiple-version
technique in which all the versions are designed to satisfy the same
basic requirements and the decision of output correctness is based on
the comparison of all the outputs. The use of a generic decision algo-
rithm (usually a voter) to select the correct output is the fundamental
difference of this approach from the Recovery Blocks approach, which
requires an application dependent acceptance test. Since all the ver-
sions are built to satisfy the same requirements, the use of N-version
programming requires considerable development effort but the com-
plexity (i.e., development difficulty) is not necessarily much greater
than the inherent complexity of building a single version. Design of the
voter can be complicated by the need to perform inexact voting. [43]
presents a generic two step structure for the output selection process.
The first step is a filtering process where individual version outputs
are analyzed by acceptance tests for likelihood of correctness, timing,
completeness, and other characteristics. [44] presents four generalized
voters for use in redundant systems: Formalized Majority Voter, Gen-
eralized Median Voter, Formalized Plurality Voter, and Weighted Av-
eraging Techniques. The Weighted Averaging Technique combines the
version outputs in a weighted average to produce a new output. The

198



Approaches to Software Based Fault Tolerance . . .

weights can be selected a-priori based on the characteristics of the in-
dividual versions and the application. When all the weights are equal
this technique becomes a mean selection technique. The weights can
also be selected dynamically based on the pair-wise distances of the
version outputs [48] or the success history of the versions measured by
some performance metric [44,47]. Other voting techniques have been
proposed. For example, [45] proposed a selection function that always
produces an acceptable output through the use of artificial intelligence
techniques. [49, 50, 51] discuss the voting or majority output problem
in some detail.

• The N Self-Checking Programming Scheme
The N Self-Checking Programming Scheme (NSCPS) [10,11,12] is the
use of multiple software versions combined with structural variations
of the Recovery Blocks and N-Version Programming. N Self-Checking
programming uses acceptance tests. Here the versions and the accep-
tance tests are developed independently from common requirements.
This use of separate acceptance tests for each version is the main differ-
ence of this N Self-Checking model from the Recovery Blocks approach.
Similar to N-Version Programming, this model has the advantage of us-
ing an application independent decision algorithm to select a correct
output.

• The Consensus Recovery Blocks Scheme
The Consensus Recovery Blocks Scheme (CRBS) [13] approach com-
bines N-Version Programming and Recovery Blocks to improve the re-
liability over that achievable by using just one of the approaches. The
acceptance tests in the Recovery Blocks suffer from lack of guidelines
for their development and a general proneness to design faults due to
the inherent difficulty in creating effective tests. The use of voters as
in N-Version Programming may not be appropriate in all situations,
especially when multiple correct outputs are possible. In that case a
voter, for example, would declare a failure in selecting an appropriate
output. Consensus Recovery Blocks uses a decision algorithm similar
to N-Version Programming as a first layer of decision. If this first layer
declares a failure, a second layer using acceptance tests similar to those
used in the Recovery Blocks approach is invoked. Although obviously

199



G.K. Saha

much more complex than either of the individual techniques, the reli-
ability models indicate that this combined approach has the potential
of producing a more reliable piece of software.

• The t/(n− 1)-Variant Programming Scheme
The t/(n − 1)-Variant Programming Scheme (VPS) was proposed in
[14]. The main difference between this approach and the ones men-
tioned above is in the mechanism used to select the output from among
the multiple variants. The design of the selection logic is based on the
theory of system-level fault diagnosis [15], which is beyond the scope of
this paper. Basically, a t/(n − 1)-VPS architecture consists of n vari-
ants and uses the t/(n− 1) diagnosibility measure to isolate the faulty
units to a subset of size at most (n − 1) assuming there are at most
t faulty units [14]. Thus, at least one non-faulty unit exists such that
its output is correct and can be used as the result of computation for
the module. t/(n− 1)-VPS compares favorably with other approaches
in that the complexity of the selection mechanism grows with order
O(n) and it can potentially tolerate multiple dependent faults among
the versions. It also has a lower probability of failure than N Self-
Checking Programming and N-Version Programming when they use a
simple voter as selection logic.

2.2 Single-Design Software Fault Tolerance Approach

Single-design fault tolerance is based on the use of redundancy applied
to a single version of a piece of software to detect and recover from
faults. Among others, single-version software fault tolerance techniques
include considerations on program structure and actions, error detec-
tion, exception handling, checkpoint and restart, process pairs, and
data diversity [29].

• Software Engineering Aspects
Software architecture gives us the basis for implementation of fault tol-
erance. The use of modularizing techniques to decompose a problem
into manageable components is as important to the efficient applica-
tion of fault tolerance as it is to the design of a system. The modular
decomposition of a design should consider built-in protections to keep

200



Approaches to Software Based Fault Tolerance . . .

aberrant component behavior in one module from propagating to other
modules. Control hierarchy issues like visibility (i.e., the set of com-
ponents that may be invoked directly and indirectly by a particular
component) and connectivity (i.e., the set of components that may be
invoked directly or used by a given component) should be considered
in the context of error propagation for their potential to enable un-
controlled corruption of the system state. Partitioning is a technique
for providing isolation between functionally independent modules [31].
Advantages of using partitioning in a design include simplified testing,
easier maintenance, and lower propagation of side effects [30]. System
closure is a fault tolerance principle stating that no action is permissible
unless explicitly authorized [32]. An atomic action among a group of
components is an activity in which the components interact exclusively
with each other and there is no interaction with the rest of the system
for the duration of the activity [33]. The advantage of using atomic
actions in defining the interaction between system components is that
they provide a framework for error confinement and recovery. There
are only two possible outcomes of an atomic action: either it terminates
normally or it is aborted upon error detection. If an atomic action ter-
minates normally, its results are complete and committed. If a failure
is detected during an atomic action [76], it is known beforehand that
only the participating components can be affected.

• Error Detection Mechanisms
Effective application of fault tolerance techniques in single version
systems requires that the structural modules have two basic proper-
ties: self-protection and self-checking [34]. The self-protection property
means that a component must be able to protect itself from external
contamination by detecting errors in the information passed to it by
other interacting components. Self-checking means that a component
must be able to detect internal errors and take appropriate actions to
prevent the propagation of those errors to other components. The de-
gree (and coverage) to which error detection mechanisms are used in
a design is determined by the cost of the additional redundancy and
the run-time overhead. Note that the fault tolerance redundancy is not
intended to contribute to system functionality but rather to the quality

201



G.K. Saha

of the product. Similarly, detection mechanisms detract from system
performance. Actual usage of fault tolerance in a design is based on
trade-offs of functionality, performance, complexity, and safety. Ander-
son [33] has proposed a classification of error detection checks, some of
which can be chosen for the implementation of the module properties
mentioned above. The location of the checks can be within the modules
or at their outputs, as needed. The checks include replication, timing,
reversal, coding, reasonableness, and structural checks.

• The use of Assertions [105] that is logic statements inserted
at different points in the program that reflects invariant relationships
between the variables of the program can also be used for fault toler-
ance. However it can lead to different problems, since assertions are not
transparent to the programmer and their effectiveness largely depends
on the nature of the application and on the programmers ability.

• Control Flow Checking [106] is to partition the application
program in basic blocks (that is, branch-free parts of code). For each
block a deterministic signature is computed and faults can be detected
by comparing the run-time signature with a precomputed one. In most
control-flow checking techniques one of the main problems is to tune
the test granularity that should be used.

• Replication checks make use of matching components with
error detection based on comparison of their outputs. This is applicable
to multi-version software fault tolerance.

• Timing checks are applicable to systems and modules whose
specifications include timing constraints, including deadlines. Based
on these constraints, checks can be developed to look for deviations
from the acceptable module behavior. Watchdog timers are a type of
timing check with general applicability that can be used to monitor for
satisfactory behavior and detect “lost or locked out” components.

• Reversal checks use the output of a module to compute the
corresponding inputs based on the function of the module. An error
is detected if the computed inputs do not match the actual inputs.
Reversal checks are applicable to modules whose inverse computation
is relatively straightforward.

• Coding checks use redundancy in the representation of infor-

202



Approaches to Software Based Fault Tolerance . . .

mation with fixed relationships between the actual and the redundant
information. Error detection [109, 110] is based on checking those rela-
tionships before and after operations. Checksums are a type of coding
check. Similarly, many techniques developed for hardware (e.g., Ham-
ming, M-out-of-N, cyclic codes) can be used in software, especially in
cases where the information is supposed to be merely referenced or
transported by a module from one point to another without chang-
ing its contents. Many arithmetic operations preserve some particular
properties between the actual and redundant information, and can thus
enable the use of this type of check to detect errors in their execution.

• Reasonableness checks use known semantic properties of data
(e.g., range, rate of change, and sequence) to detect errors. These
properties can be based on the requirements or the particular design
of a module.

• The Data Structural checks use known properties of data
structures. For example, queues, lists, and trees can be inspected
for number of elements in the structure, their links and pointers, and
any other particular information that could be articulated. Structural
checks could be made more effective by augmenting data structures
with redundant structural data like extra pointers, embedded counts
of the number of items on a particular structure, and individual iden-
tifiers for all the items [34, 35, 36, 37, 38]. Another fault detection tool
is run-time checks [15]. These are provided as standard error detec-
tion mechanisms in hardware systems (e.g., divide by zero, overflow,
underflow). Although they are not application specific, they do rep-
resent an effective means of detecting design errors. Error detection
strategies can be developed in an ad-hoc fashion or using structured
methodologies. Fault trees have been proposed as a design aid in the
development of fault detection strategies [39]. Fault trees can be used to
identify general classes of failures and conditions that can trigger those
failures. Fault trees represent a top-down approach which, although
not guaranteeing complete coverage, is very helpful in documenting
assumptions, simplifying design reviews, identifying omissions, and al-
lowing the designer to visualize component interactions and their con-
sequences through structured graphical means. Fault trees enable the

203



G.K. Saha

designer to perform qualitative analysis of the complexity and degree of
independence in the error checks of a proposed fault tolerance strategy.

• The Exception Handling
The task exception handling is the interruption of normal operation
to handle abnormal responses. Exceptions are signaled by the imple-
mented error detection mechanisms as a request for initiation of an
appropriate recovery. The design of exception handlers requires that
consideration be given to the possible events triggering the exceptions,
the effects of those events on the system, and the selection of appropri-
ate mitigating actions [15]. [8] lists three classes of exception triggering
events for a software component: interface exceptions, internal local ex-
ceptions, and failure exceptions. This knowledge of error containment
is essential to the design of effective exception handlers.

• The Checkpoint and Restart
For single-design software there are few recovery mechanisms. The
most often mentioned is the checkpoint and restart mechanism (e.g.,
[15]). As mentioned in previous sections, most of the software faults
remaining after development are unanticipated, state-dependent faults
[76]. This type of fault behaves similarly to transient hardware faults:
they appear, do the damage, and then apparently just go away, leaving
behind no obvious reason for their activation in the first place [40].
Because of these characteristics, simply restarting a module is usually
enough to allow successful completion of its execution [40]. A restart,
or backward error recovery has the advantages of being independent
of the damage caused by a fault, applicable to unanticipated faults,
general enough that it can be used at multiple levels in a system, and
conceptually simple [33]. There exist two kinds of restart recovery:
static and dynamic. A static restart is based on returning the module
to a predetermined state. This can be a direct return to the initial reset
state, or to one of a set of possible states, with the selection being made
based on the operational situation at the moment the error detection
occurred. Dynamic restart uses dynamically created checkpoints that
are snapshots of the state at various points during the execution.

• The Process Pairs
A process pair uses two identical versions of the software that run on

204



Approaches to Software Based Fault Tolerance . . .

separate processors [15]. The recovery mechanism is checkpoint and
restart. Here the processors are labeled as primary and secondary. At
first the primary processor is actively processing the input and creating
the output while generating checkpoint information that is sent to the
backup or secondary processor. Upon error detection, the secondary
processor loads the last checkpoint as its starting state and takes over
the role of primary processor. As this happens, the faulty processor
goes offline and executes diagnostic checks. The main advantage of
this recovery technique is that the delivery of services continues unin-
terrupted after the occurrence of a failure in the system.

• The Data Diversity
The last line of defense against design faults is to use “input sequence
workarounds”. Data diversity can be seen as the automatic implemen-
tation of “input sequence workarounds” combined with checkpoint and
restart [76]. Again, the rationale for this technique is that faults in de-
ployed software are usually input sequence dependent. Data diversity
has the potential of increasing the effectiveness of the checkpoint and
restart by using different input re-expressions on each retry [41]. The
goal of each retry is to generate output results that are either exactly
the same or semantically equivalent in some way. In general, the notion
of equivalence is application dependent. [41, 42] presents three basic
data diversity models: (i) Input Data Re-Expression, where only the
input is changed; (ii) Input Re-Expression with Post-Execution Adjust-
ment, where the output is also processed as necessary to achieve the
required output value or format; (iii) Re-Expression via Decomposition
and Recombination, where the input is broken down into smaller ele-
ments and then recombined after processing to form the desired output.
Data diversity is compatible with the Process Pairs technique using dif-
ferent re-expressions of the input in the primary and secondary.

• Fault Tolerance in Operating Systems
Any application level software relies on the correct behavior of the
operating system. Software fault tolerance can be applied to the de-
sign of operating systems [32,76]. However, in general, designing and
building operating systems tends to be a rather complex, lengthy and
costly endeavor. For safety critical applications it may be necessary

205



G.K. Saha

to develop custom operating systems through highly structured design
processes [31] including highly experienced programmers and advanced
verification techniques in order to gain a high degree of confidence on
the correctness of the software. Another approach to the development
of fault tolerant operating systems for mission critical applications is
the use of wrappers on off-the-shelf operating systems to boost their
robustness to faults. A problem with the use of off-the-shelf software
on dependable systems is that the system developers are not sure if the
off-the-shelf components are reliable enough for the application [52]. It
is known that the development process for commercial off-the-shelf soft-
ware does not consider de facto standards for safety or mission critical
applications and the available documentation for the design and vali-
dation activities tend to be rather weak [53]. A point in favor of using
commercial operating systems is that they often include the latest de-
velopments in operating system technology. Also, widely deployed com-
mercial operating systems could have fewer bugs overall than custom
developed software due to the corrective actions performed in response
to bug complaints from the users [54]. Because modifications to the
internals of the operating system could increase the risk of introducing
design faults, it is preferred to apply techniques that use the software as
is. A wrapper is a piece of software put around another component to
limit what that component can do without modifying the component’s
source code [52]. Wrappers monitor the flow of information into and
out of the component and try to keep undesirable values from being
propagated. In this manner, the wrapper limits the component’s input
and output spaces. Wrappers have been used as middleware located
between the operating system and the application software [55, 56, 57].
The wrappers (called “sentries” in the referenced work) encapsulate
operating system services to provide application-transparent fault tol-
erant functionality and can augment or change the characteristics of
the services as seen by the application layer. In this design the sen-
tries provide the mechanism to implement fault tolerance policies that
can be dynamically assigned to particular applications based on the
individual fault tolerance, cost and performance needs. [53] proposed
the use of wrappers at the microkernel level for off-the-shelf operating

206



Approaches to Software Based Fault Tolerance . . .

systems. The wrappers proposed by these researchers aim at verify-
ing consistency constraints at a semantic level by utilizing information
beyond what is available at the interface of the wrapped component.
Their approach uses abstractions [76] (i.e., models) of the expected
component functionality.

3 Assessment of Fault Tolerance by Fault In-
jection

Software fault injection (SFI) [76] is the process of testing software
under anomalous circumstances involving erroneous external inputs or
internal state information. The main reason for using software fault
injection is to assess the goodness of a design [65]. Basically, SFI tries
to measure the degree of confidence that can be placed on the proper
delivery of services. Since it is very hard to produce correct software,
SFI tries to show what could happen when faults are activated. The
collected information can be used to make code less likely to hide faults
and also less likely to propagate faults to the outputs either by rework-
ing the existing code or by augmenting its capabilities with additional
code as done with wrappers [65]. SFI can be used to target both objec-
tives of the dependability validation process: fault removal and fault
forecasting [62]. In the context of fault removal, SFI can be used as
part of the testing strategy during the software development process
to see if the designed algorithms and mechanisms work as intended. In
fault forecasting, SFI is used to assess the fault tolerance robustness of
a piece of software (e.g., an off-the-shelf operating system). The use of
SFI has two important advantages over the traditional input sequence
test cases [59]. First, by actively injecting faults into the software we
are in effect accelerating the failure rate and this allows a thorough
testing in a controlled environment within a limited time frame. Sec-
ond, by systematically injecting faults to target particular mechanisms
we are able to better understand the behavior of that mechanism in-
cluding error propagation and output response characteristics. There
exist two basic models of software injection: fault injection and error

207



G.K. Saha

injection. Fault injection simulates software design faults by targeting
the code. Here the injection considers the syntax of the software to
modify it in various ways with the goal of replacing existing code with
new code that is semantically different [65]. This “code mutation” can
be performed at the source code level before compilation if the source
code is available. The mutation can also be done by modifying the
text segment of a program’s object code after compilation. Error in-
jection, called “data-state mutation” in [65], targets the state of the
program to simulate fault manifestations. Actual state injection can
be performed by modifying the data of a program using any of various
available mechanisms: high priority processes that modify lower prior-
ity processes with the support of the operating system; debuggers that
directly change the program state; message-based mechanisms where
one component corrupts the messages received by another component;
storage-based mechanisms by using storage (e.g., cache, primary, or
secondary memory) manipulation tools; or command-based approaches
that change the state by means of the system administration and main-
tenance interface commands [59]. An important aspect of both types
of fault injection is the operational profile of the software [65]. Fault in-
jection is a dynamic-type testing because it must be used in the context
of running software following a particular input sequence and internal
state profile. A large amount of work has been done in the area of as-
sessing software robustness by many researchers. Examples of reported
works include [54, 58, 60, 61, 63, 64].

4 Software and Hardware Fault Tolerance

System fault tolerance is a vast area of knowledge well beyond what
can be covered in a single paper. The concepts presented in this sec-
tion are purposely treated at a high level with details considered only
where regarded as appropriate. Readers interested in a more thorough
treatment of the concepts of computer system fault tolerance should
consult additional reference material [15, 66, 67].

• Fault Tolerance in Computer System
Computer fault tolerance is one of the means available to increase de-

208



Approaches to Software Based Fault Tolerance . . .

pendability of delivered computational services. Dependability is a
quality measure encompassing the concepts of reliability, availability,
safety, performability, maintainability and testability [68]. (i) Relia-
bility is the probability that a system continues to operate correctly
during a particular time interval given that it was operational at the
beginning of the interval. (ii) Availability is the probability that a sys-
tem is operating correctly at a given time instant. (iii) Safety is the
probability that the system will perform in a non-hazardous way. A
hazard is defined as “a state or condition of a system that, together
with other conditions in the environment of the system, will lead in-
evitably to an accident” [69]. (iv) Performability is the probability
that the system performance will be equal to or greater than some
particular level at a given instant of time. (v) Maintainability is the
probability that a failed system will be returned to operation within a
particular time period. Maintainability measures the ease with which
a system can be repaired. (vi) Testability is a measure of the ability
to characterize a system through testing. Testability includes the ease
of test development (i.e., controllability) and effect observation (i.e.,
observability).

The primary concern for fault tolerant designs is the ability to con-
tinue delivery of services in the presence of faults in the system. A
fault is an anomalous condition occurring in the system hardware or
software. [66,70] presents a general fault classification which is excel-
lent for understanding the types of faults that fault tolerant designs
are called upon to handle. A latent fault is a fault that is present in
the system but has not caused errors; after errors occur, the fault is
said to be active. Permanent faults are present in the system until
they are removed; transient faults appear and disappear on their own
with no explicit intervention from the system. Symmetric faults are
those perceived identically by all good subsystems; asymmetric faults
are perceived differently by the good subsystems. A random fault is
caused by the environment (e.g., heat, humidity, vibration, etc.) or
by component degradation; generic faults are built-in faults acciden-
tally introduced during design or manufacturing of the system. Benign
faults are detectable by all good subsystems; malicious faults are not

209



G.K. Saha

directly detectable by all good subsystems. The fault count classifica-
tion is relative to the modularity of the system. A single fault is a fault
in a single system module; a group of multiple faults affects more than
one module.

The time classification is relative to the time granularity. Coinci-
dent multiple faults appear during the same time interval; distinct-time
faults appear in different time intervals. Independent faults are faults
originating from different causes or nature. Common mode faults, in
the context of multiple faults, are faults that have the same cause and
are present in multiple components.

The main use of fault tolerance in these systems is to provide added
value and prevent nuisance faults from affecting the perceived depend-
ability from a user perspective. The design of systems with fault tol-
erance capabilities to satisfy particular application requirements is a
complex process loaded with theoretical and experimental analysis in
order to find the most appropriate tradeoffs within the design space.
[66] offers a high-level design paradigm extracted from the more de-
tailed description presented in [70]. System properties to be considered
include dependability (i.e., reliability, availability, maintainability, etc),
performance, failure modes, environmental resilience, weight, cost, vol-
ume, power, design effort, and verification effort.

Every fault tolerant design must deal with one or more of the fol-
lowing aspects [33, 71,76]:

• Detection: A basic element of a fault tolerant design is error
detection. Error detection [96, 97, 98, 99, 100] is a critical pre-
requisite for other fault tolerant mechanisms.

• Containment: In order to be able to deal with the large number
of possible effects of faults in a complex computer system it is
necessary to define confinement boundaries for the propagation of
errors. Containment regions are usually arranged hierarchically
throughout the modular structure of the system. Each boundary
protects the rest of the system from errors occurred within it and
enables the designer to count on a certain number of correctly

210



Approaches to Software Based Fault Tolerance . . .

operating components by means of which the system can continue
to perform its function.

• Masking: For some applications, the timely flow of information is
a critical design issue. In such cases, it is not possible to just stop
the information processing to deal with detected errors. Masking
is the dynamic correction of errors. In general, masking errors is
difficult to perform inline with a complex component. Masking,
however, is much simpler when redundant copies of the data in
question are available.

• Diagnosis: After an error is detected, the system must assess its
health in order to decide how to proceed. If the containment
boundaries are highly secure, diagnosis is reduced to just identi-
fying the enclosed components. If the established boundaries are
not completely secure, then more involved diagnosis is required
to identify which other areas are affected by propagated errors.

• Repair/reconfiguration: In general, systems do not actually try
to repair component-level faults in order to continue operating.
Because faults are either physical or design-related, repair tech-
niques are based on finding ways to work around faults by either
effectively removing from operation the affected components or
by rearranging the activity within the system in order to prevent
the activation of the faults.

• Recovery and Continued Service: After an error is detected, a
system must be returned to proper service by ensuring an error-
free state. This usually involves the restoration to a previous or
predefined state, or rebuilding the state by means of known-good
external information.

Redundancy in computer systems is the use of resources beyond
the minimum needed to deliver the specified services. Fault tolerance
is achieved through the use of redundancy in the hardware, software,
information, or time domain [68,71,73]. In what follows we present
some basic concepts of hardware redundancy to achieve hardware fault

211



G.K. Saha

tolerance. Good examples of information domain redundancy for hard-
ware fault tolerance are error detecting and correcting codes [72]. Time
redundancy is the repetition of computations in ways that allow faults
to be detected [68, 76].

5 Implemented Structures

Here, we present few examples of fault tolerant architectures that are
implemented in various important applications.

Fault-tolerance in Maintainable Real-Time System (MARS) [82,83]
is based on fail-silent components running in dual active redundancy
and on sending each message twice on the two actively redundant real-
time busses. MARS is a fault –tolerant distributed real-time architec-
ture for hard real-time application.

CRAK [84, 85, 86] is a kernel module that implements checkpoint /
restart for Linux. Checkpoint / restart is an operating system feature
that creates a file describing a running process. Checkpoint / restart
is a mechanism for fault tolerance. Applications may be checkpointed
periodically. Once the application state has been committed to stable
storage, the application may be restarted and reconfigured to work
around the fault.

Safety critical fault tolerant architectures are used on the flight
control computers of the fly-by-wire systems of two types of commer-
cial jet transport aircraft. The first computer is used on the Boe-
ing 777 airplane [76]. The second computer is used on the AIRBUS
A320/A330/A340 series aircraft. The fly-by-wire system of the Boeing
777 airplane departs from old-style mechanical systems that directly
connect the pilot’s control instruments to the external control surfaces.
A fly-by-wire system enables the creation of artificial airplane flight
characteristics that allow crew workload alleviation and flight safety
enhancement, as well as simplifying maintenance procedures through
modularization and automatic periodic self-inspection [77,78, 79, 80,
81]. Software diversity was to be achieved through the use of differ-
ent programming languages targeting different lane processors. The
final and current implementation uses only one programming language

212



Approaches to Software Based Fault Tolerance . . .

with the executable code being generated by three different compil-
ers still targeting dissimilar lane processors. The lane processors are
dissimilar because they are the single most complex hardware devices,
and thus there is a perceived risk of design faults associated with their
use. The requirements for the flight control computer on the Airbus
A320/A330/A340 [76] include many of the same considerations as in
the B777 fly-by-wire system [87, 88]. The selected architecture, how-
ever, is much different. The basic building block is the fail-stop control
and monitor module.

Active-stream / Redundancy-stream Simultaneous Multithreading
(AR SMT) [89, 90, 91] exploits several recent microarchitectural trends
(e.g., simultaneous multithreading [94, 95], control flow and data flow
prediction and hierarchical processors) to provide low-overhead, broad
coverage of transient faults and restricted coverage of some permanent
faults. Program-level time redundancy is used here. Time redundancy
[92, 93, 107, 108] is a fault tolerant technique in which a computation
is performed multiple times.

Self-stabilization [115] is an optimistic way of looking at system
fault tolerance, because it provides a built-in safeguard against tran-
sient failures that might corrupt the data in a distributed system. Al-
though the concept was introduced by Dijkstra in 1974 [111], and Lam-
port [112] showed its relevance to fault tolerance in distributed systems
in 1983, serious work only began in the late nineteen-eighties. A good
survey of self-stabilizing algorithms can be found in [113]. Herman’s
bibliography [114] also provides a fairly comprehensive listing of most
papers in this field. Because of the size and nature of many ad hoc and
geographically distributed systems, communication links are unreliable.
The system must therefore be able to adjust when faults occur. But
100% fault tolerance is not warranted. The promise of self-stabilization,
as opposed to fault masking, is to recover from failure in a reasonable
amount of time and without intervention by any external agency. Since
the faults are transient (eventual repair is assumed), it is no longer nec-
essary to assume a bound on the number of failures. A fundamental
idea of self-stabilizing algorithms is that the distributed system may be
started from an arbitrary global state. After a finite amount of time

213



G.K. Saha

the system reaches a correct global state, called a legitimate or stable
state. An algorithm is self-stabilizing if (i) for any initial illegitimate
state it reaches a legitimate state after a finite number of node moves,
and (ii) for any legitimate state and for any move allowed by that state,
the next state is a legitimate state. A self-stabilizing system does not
guarantee that the system is able to operate properly when a node con-
tinuously injects faults in the system (Byzantine fault that generates
wrong and random answer) or when communication errors occur so
frequently that the new legitimate state cannot be reached. While the
system services are unavailable when the self-stabilizing system is in an
illegitimate state, the repair of a self-stabilizing system is simple; once
the offending equipment is removed or repaired the system provides its
service after a reasonable time.

[117] have proposed a transient fault tolerant design that takes good
advantage of the resource for parallel executions found in a superscalar
processor. The design in [117] delivers fault tolerance by carrying out
multiple executions of the same instruction in lower performance.

The approaches in [118-140] are all low-cost but effective soft-
ware fault tolerance tool that do not rely on software design diversity.
These approaches are all based on enhanced single-version program-
ming (ESVP) schemes for fault tolerance against operational faults,
transient and permanent errors etc. Replicated or transformed code
[118,119,125] and data have also been used. [120,121,126,127,129] pro-
pose other important single-version fault tolerance approaches to de-
sign reliable applications using robust data structure for tolerating er-
roneous control flow and program hanging. [122,136] propose various
low-cost software based fault tolerance approaches for designing micro-
processor based commodity applications on inserting NO-Operation
(NOP) instructions and run time consistency checking for those ex-
tra NO-Operation codes. The approaches in [123,124,128] describe
various self-checking and assertion based approaches for designing re-
liable computing by enhancing basic computing logic. The approaches
in [125,130] rely on code and data redundancy for detecting run-time
error detection and recovery thereof. [138] proposes a single version
software implemented transient fault tolerant approach for designing

214



Approaches to Software Based Fault Tolerance . . .

a reliable application using a multiprocessor with lower overhead on
execution time. [131, 132, 133, 134, 135, 137, 139,140] propose various
enhanced single-version software implemented transient fault tolerant
computing schemes using fault masking with an affordable time redun-
dancy (< 3) and program state verification. Specific knowledge of the
application allows the use of a suite of math, logic and heuristic checks
on the data, the data processing flow and the results. These techniques
also provide more efficient error handling, and system recovery.

The approaches in [118-140] are useful specifically for designing
low cost reliable computing applications against operational, transient
and permanent errors that might occur during the execution time of
applications. ESVP does not aim to tolerate software design bugs.
ESVP needs only one reliable machine to execute an application with
an enhanced processing logic. It does not rely on multiple versions
of software and machines. The designers also feel comfortable while
implementing these simple approaches to their applications without
any extra cost and hardware.

6 Conclusion

A review on software fault tolerance is presented in this paper. It
covers fault tolerant computing schemes that rely on the single-design
as well as on the multiple-design. Single version software fault tol-
erance techniques discussed include system structuring and closure,
atomic actions, inline fault detection, exception handling, assertion,
and checkpoint and restart. Process pairs exploit the state dependence
characteristic of most software faults to allow uninterrupted delivery
of services despite the activation of faults. Similarly, data diversity
aims at preventing the activation of design faults by trying multiple
alternate input sequences. Multiple-version techniques are based on
the assumption that software built differently should fail differently
and thus, if one of the redundant versions fails, at least one of the
others should provide an acceptable output. Because of our present
inability to produce error-free software, software fault tolerance is and
will continue to be an important consideration in software systems.

215



G.K. Saha

The root cause of software design errors is the complexity of the sys-
tems. Compounding the problems in building correct software is the
difficulty in assessing the correctness of software for highly complex sys-
tems. Current research in software engineering focuses on establishing
patterns in the software structure and trying to understand the prac-
tice of software engineering aiming at better predicting the software
dependability. Multiple-version schemes are costlier (O(2.67)) than a
single-version software fault tolerance approach because of lower soft-
ware development cost.

References

[1] L. Spainhower and T.A. Gregg, IBM S/390 Parallel Enterprise
Server G5 Fault Tolerance: a Historical Perspective, IBM Journal
of Research & Development, Vol.43, No. 5/6, 1999.

[2] A. Messer, P. Bernadat, G. Fu, D. Chen, Z. Dimitrijevic, D.
Lie, D.D. Mannaru, A. Riska and D. Milojicic, Susceptibility of
Commodity Systems and Software to Memory Soft Errors, IEEE
Transactions on Computers, Vol. 53, No. 12, December 2004, pp.
1557–1568.

[3] H. Kopetz, H. Kantz, G. Grilnsteidl, P. Puschner and J.
Reisinger, Tolerating Transient Faults in MARS, Proc. of the
20th Symposium on Fault Tolerant Computing, June 1990, UK.

[4] Brian Randell, System Structure for Software Fault Tolerance,
IEEE Transactions on Software Engineering, Vol. SE-1, No. 2,
June 1975, pp. 220–232.

[5] Michael R. Lyu, editor, Software Fault Tolerance, John Wiley &
Sons, 1995.

[6] Algirdas Avizienis, The N-Version Approach to Fault-Tolerant
Software, IEEE Transactions on Software Engineering, Vol. SE-
11, No. 12, December 1985, pp. 290–300.

216



Approaches to Software Based Fault Tolerance . . .

[7] Algirdas Avizienis, The Methodology of N-Version Programming,
in R. Lyu, editor, Software Fault Tolerance, John Wiley & Sons,
1995.

[8] Brian Randell and Jie Xu, The Evolution of the Recovery Block
Concept, in Software Fault Tolerance, Michael R. Lyu, editor,
Wiley, 1995, pp. 1–21.

[9] Brian Randell, et al, editors, Predictably Dependable Computing
Systems, Springer, 1995.

[10] J.C. Laprie, et al, Hardware- and Software-Fault Tolerance: Def-
inition and Analysis of Architectural Solutions, Digest of Papers
FTCS-17: The Seventeenth International Symposium on Fault-
Tolerant Computing, July 1987, pp. 116–121.

[11] Jean-Claude Laprie, et al, Definition and Analysis of Hardware-
and Software-Fault- Tolerance Architectures, IEEE Computer,
July 1990, pp. 39–51.

[12] J.C. Laprie, et al, Architectural Issues in Software Fault Toler-
ance, in Software Fault Tolerance, Michael R. Lyu, editor, Wiley,
1995, pp. 47–80.

[13] R. Keith Scott, James W. Gault, and David F. McAllister, Fault-
Tolerant Software Reliability Modeling, IEEE Transactions on
Software Engineering, Vol. SE-13, No. 5, May 1987, pp. 582–592.

[14] Jie Xu and Brian Randell, Software Fault Tolerance: t/(n-1)-
VariantProgramming, IEEE Transactions on Reliability, Vol. 46,
No. 1, March 1997, pp. 60–68.

[15] Dhiraj K. Pradhan, Fault-Tolerant Computer System Design,
Prentice-Hall, Inc., 1996.

[16] Peter Bishop, Software Fault Tolerance by Design Diversity, in
R. Lyu, editor, Software Fault Tolerance, John Wiley & Sons,
1995.

217



G.K. Saha

[17] A. Avizienis, et al, The UCLA DEDIX System: A Distributed
Testbed for Multiple-Version Software, Digest of Papers: The Fif-
teenth Annual International Symposium on Fault-Tolerant Com-
puting (FTCS 15), Ann Arbor, Michigan, June 19–21, 1985, pp.
126–134.

[18] Algirdas Avizienis and Jean-Claude Laprie, Dependable Com-
puting: From Concepts to Design Diversity, Proceedings of the
IEEE, Vol. 74, No. 5, May 1986, pp. 629–638.

[19] Algirdas Avizienis, In Search of Effective Diversity: A Six-
Language Study of Fault-Tolerant Flight Control Software, Digest
of Papers FTCS-18: The Eighteenth International Symposium on
Fault-Tolerant Computing, June 27–30, 1988, pp. 15–22.

[20] Algirdas Avizienis, Software Fault Tolerance, Information Pro-
cessing 89, Proceedings of the IFIP 11 th World Computer
Congress, 1989, pp. 491–98.

[21] Algirdas Avizienis, Dependable Computing Depends on Struc-
tured Fault Tolerance, Proceedings of the 1995 6th Interna-
tional Symposium on Software Reliability Engineering, Toulouse,
France, 1995, pp. 158–168.

[22] Algirdas Avizienis, The Methodology of N-Version Programming,
in R. Lyu, editor, Software Fault Tolerance, John Wiley & Sons,
1995.

[23] Algirdas Avizienis, Toward Systematic Design of Fault-Tolerant
Systems, Computer, April 1997, pp. 51–58.

[24] Thomas C. Bressoud, TFT: A Software System for Application-
Transparent Fault Tolerance, Digest of Papers: Twenty-Eight
Annual International Symposium on Fault-Tolerant Computing,
Munich, Germany, June 23–25, 1998, pp. 128–137.

[25] F. Saglietti, Strategies for the Achievement and Assessment of
Software Fault-Tolerance, IFAC 1990 World Congress, Automatic

218



Approaches to Software Based Fault Tolerance . . .

Control. Vol. IV, IFAC Symposia Series, Number 4, 1991, pp.
303–308.

[26] J. C. Knight, et al, A Large Scale Experiment in N-Version Pro-
gramming, Digest of Papers FTCS-15: The 15th Annual Interna-
tional Conference on Fault Tolerant Computing, June 1985, pp.
135–139.

[27] J. C. Knight and Nancy G. Leveson, An Experimental Evaluation
of the Assumption of Independence in Multiversion Programming,
IEEE Transactions on Software Engineering, Vol. SE-12, No. 1,
January 1986, pp. 96–109.

[28] Dave E. Eckhardt, et al, An Experimental Evaluation of Software
Redundancy as a Strategy for Improving Reliability, IEEE Trans-
actions on Software Engineering, Vol. 17, No. 7, July 1991, pp.
692–702.

[29] Michael R. Lyu, editor, Software Fault Tolerance, John Wiley &
Sons, 1995.

[30] Roger S. Pressman, Software Engineering: A Practitioner’s Ap-
proach, The McGraw-Hill Companies, Inc., 1997

[31] Software Considerations in Airborne Systems and Equipment
Certification, RTCA/DO-178B, RTCA, Inc, 1992.

[32] Peter J. Denning, Fault Tolerant Operating Systems, ACM Com-
puting Surveys, Vol. 8, No. 4, December 1976, pp. 359–389.

[33] T. Anderson and P.A. Lee, Fault Tolerance: Principles and Prac-
tice, Prentice/Hall, 1981.

[34] Russell J. Abbott, Resourceful Systems for Fault Tolerance, Re-
liability, and Safety, ACM Computing Surveys, Vol. 22, No. 1,
March 1990, pp. 35–68.

[35] David J. Taylor, et al, Redundancy in Data Structures: Improving
Software Fault Tolerance, IEEE Transactions on Software Engi-
neering, Vol. SE-6, No. 6, November 1980, pp. 585–594.

219



G.K. Saha

[36] David J. Taylor, et al, Redundancy in Data Structures: Some
Theoretical Results, IEEE Transactions on Software Engineering,
Vol. SE-6, No. 6, November 1980, pp. 595–602.

[37] J. P. Black, et al, Introduction to Robust Data Structures, Digest
of Papers FTCS-10: The Eleventh Annual International Sym-
posium on Fault-Tolerant Computing, October 1–3, 1980, pp.
110–112.

[38] J. P. Black, et al, A Compendium of Robust Data Structures,
Digest of Papers FTCS-11: The Eleventh Annual International
Symposium on Fault-Tolerant Computing, June 24–26, 1981, pp.
129–131.

[39] Herbert Hecht and Myron Hecht, Fault-Tolerance in Software,
in Fault-Tolerant Computer System Design, Dhiraj K. Pradhan,
Prentice Hall, 1996.

[40] Jim Gray, Why Do Computers Stop and What Can Be Done
About It? Proceedings of the Fifth Symposium On Reliability
in Distributed Software and Database Systems, January 13–15,
1986, pp. 3–12.

[41] Paul E. Ammann and John C. Knight, Data Diversity: An Ap-
proach to Software Fault Tolerance, IEEE Transactions on Com-
puters, Vol. 37, No. 4, April 1988, pp. 418–425.

[42] Victor F. Nicola, Checkpointing and the Modeling of Program
Execution Time, in Software Fault Tolerance, Michael R. Lyu,
Ed, Wiley, 1995, pp. 167–188.

[43] Tom Anderson, A Structured Mechanism for Diverse Software,
Proceedings of the Fifth Symposium on Reliability in Distributed
Software and Database Systems, January 1986, pp. 125–129.

[44] Paul R. Lorczack, et al, A Theoretical Investigation of Gener-
alized Voters for Redundant Systems, Digest of Papers FTCS-
19: The Nineteenth International Symposium on Fault-Tolerant
Computing, 1989, pp. 444–451.

220



Approaches to Software Based Fault Tolerance . . .

[45] P. R. Croll, et al, Dependable, Intelligent Voting for Real-Time
Control Software, Engineering Applications of Artificial Intelli-
gence, vol. 8, no. 6, December 1995, pp. 615–623.

[46] Judith Gersting, et al, A Comparison of Voting Algorithms for
N-Version Programming, Proceedings of the 24th Annual Hawaii
International Conference on System Sciences, Volume II, January
1991, pp. 253–262.

[47] J. M. Bass, Voting in Real-Time Distributed Computer Control
Systems, PhD Thesis, University of Sheffield, October 1995.

[48] R. B. Broen, New Voters for Redundant Systems, Transactions
of the ASME, Journal of Dynamic Systems, Measurement, and
Control, March 1975, pp. 41–45.

[49] John P. J. Kelly, et al, Multi-Version Software Development, Pro-
ceeding of the Fifth IFAC Workshop, Safety of Computer Control
Systems, October 1986, pp. 43–49.

[50] Kam Sing Tso and Algirdas Avizienis, Community Error Recov-
ery in N-Version Software: A Design Study with Experimenta-
tion, Digest of Papers FTCS-17: The Seventeenth International
Symposium on Fault-Tolerant Computing, July 6–8, 1987, pp.
127–133.

[51] F. Saglietti, Software Diversity Metrics: Quantifying Dissimilar-
ity in the Input Partition, Software Engineering Journal, January
1990, pp. 59–63.

[52] Jeffrey M. Voas, Certifying Off-the-Shelf Software Components,
IEEE Computer, Vol. 31, June 1998, pp. 53–59.

[53] Frédéric Salles, et al, MetaKernels and Fault Containment Wrap-
pers, Digest of Papers: Twenty-Ninth Annual International Sym-
posium on Fault-Tolerant Computing, Madison, Wisconsin, June
15–18, 1999, pp. 22–29.

221



G.K. Saha

[54] Philip Koopman, et al, Comparing Operating Systems Using Ro-
bustness Benchmarks, Proceedings of the 1997 16th IEEE Sympo-
sium on Reliable Distributed Systems, October 1997, pp. 72–79.

[55] Mark Russinovich, et al, Application Transparent Fault Manage-
ment in Fault Tolerant Mach, Digest of Papers: The Twenty-
Third International Symposium on Fault-Tolerant Computing
(FTCS-23), Toulouse, France, June 22–24, 1993, pp. 10–19.

[56] Mark Russinovich, et al, Application Transparent Fault Man-
agemet in Fault Tolerant Mach, in Foundations of Dependable
Computing System Implementation, Gary M. Koob and Clifford
G. Lau, editors, Kluwer Academic Publishers, 1994, pp. 215–241.

[57] Mark Russinovich and Zary Segall, Fault-Tolerance for Off-The-
Shelf Applications and Hardware, Digest of Papers: The Twenty-
Fifth International Symposium on Fault-Tolerant Computing,
Pasadena, CA, June 27–30, 1995, pp. 67–71.

[58] Jean Arlat, et al, Fault Injection for Dependability Validation:
A Methodology and Some Applications, IEEE Transactions on
Software Engineering, Vol. 16, No. 2, February 1990, pp. 166–
182.

[59] Ming-Yee Lai and Steve Y. Wang, Software Fault Insertion Test-
ing for Fault Tolerance, in Software Fault Tolerance, Michael R.
Lyu, editor, John Wiley & Sons, 1995, pp. 315–333.

[60] Wei-lun Kao, et al, FINE: A Fault Injection and Monitoring En-
vironment for Tracing the UNIX System Behavior Under Faults,
IEEE Transactions on Software Engineering, Vol. 19, No. 11,
November 1993, pp. 1105–1118.

[61] J. C. Fabre, et al, Assessment of COTS Microkernels by Fault
Injection, Proceedings IFIP DCCA-7, 1999, pp. 19–38.

[62] Dimitri Avresky, et al, Fault Injection for the Formal Testing
of Fault Tolerance, Digest of Papers of the Twenty-Second In-

222



Approaches to Software Based Fault Tolerance . . .

ternational Symposium on Fault-Tolerant Computing, Boston,
Massachusetts, July 8–10, 1992, pp. 345–354.

[63] Ravishankar K. Iyer and Dong Tang, Experimental Analysis of
Computer System Dependability, in Fault Tolerant Computer
System Design, Dhiraj K. Pradhan, Prentice Hall, 1996, pp. 282–
392.

[64] Inhwan Lee and Ravishankar K. Iyer, Software Dependability in
the Tandem GUARDIAN System, IEEE Transactions on Soft-
ware Engineering, Vol. 21, No. 5, May 1995, pp. 455–467.

[65] Jeffrey M. Voas and Gary McGraw, Software Fault Injection:
Inoculating Programs Against Errors, John Wiley & Sons, Inc.,
1998.

[66] N. Suri, et al, Advances in Ultra-dependable Distributed Systems,
IEEE Computer Society Press, 1995.

[67] Brian Randell, et al, editors, Predictably Dependable Computing
Systems, Springer, 1995.

[68] Barry W. Johnson, An Introduction to the Design and Analysis
of Fault-Tolerant Systems, in Fault-Tolerant Computer System
Design, Dhiraj K. Pradhan, Prentice Hall, Inc., 1996, pp. 1–87.

[69] Nancy G. Leveson, Safeware: System Safety and Computers,
Addison-Wesley, 1995.

[70] Algirdas Avizienis, A Design Paradigm for Fault Tolerant Sys-
tems, Proceedings of the AIAA/IEEE Digital Avionics Systems
Conference (DASC), Washington, D.C., 1987.

[71] Victor P. Nelson, Fault-Tolerant Computing: Fundamental Con-
cepts, IEEE Computer, July 1990, pp. 19–25.

[72] Stephen B. Wicker, Error Control Systems for Digital Commu-
nication and Storage, Prentice Hall, 1995.

223



G.K. Saha

[73] Jaynarayan H. Lala and Richard E. Harper, Architectural Prin-
ciples for Safety-Critical Real-Time Applications, Proceedings of
the IEEE, Vol. 82, No. 1, January 1994, pp. 25–40.

[74] Timothy C. K. Chou, Beyond Fault Tolerance, IEEE Computer,
April 1997, pp. 47–49.

[75] Charles B. Weinstock and David P. Gluch, A Perspective on the
State of Research in Fault-Tolerant Systems, Software Engineer-
ing Institute, Special Report CMU/SEI-97-SR-008, June 1997.

[76] Wilfredo Torres-Pomales, NASA Report (No. L-18034) on Soft-
ware Fault Tolerance, 2000.

[77] Brian D. Aleska and Joseph P. Carter, Boeing 777 Air-
plane Information Management System Operational Experience,
AIAA/IEEE Digital Avionics Systems Conference, Vol. II, 1997,
pp. 3.1-21 – 3.1-27.

[78] Robert J. Bleeg, Commercial Jet Transport Fly-By-Wire Archi-
tecture Considerations, AIAA/IEEE 8th Digital Avionics Systems
Conference, October 1988, pp. 399–406.

[79] Andy D. Hills and Dr. Nisar A. Mirza, Fault Tolerant Avionics,
AIAA/IEEE 8th Digital Avionics Systems Conference, October
1988, pp. 407–414.

[80] Gordon McKinzie, Summing Up the 777’s First Year: Is This a
Great Airplane, or What?, Airliner, July – September 1996, pp.
22–25.

[81] Y.C. Yeh, Triple-Triple Redundant 777 Primary Flight Com-
puter, Proceedings of the 1996 IEEE Aerospace Applications
Conference, Vol. 1, 1996, pp. 293–307.

[82] A. Damm, J. Reisinger, W. Schwabl, and H. Kopetz, The Real-
Time Operating System of MARS, ACM SIGOPS Operating Sys-
tems Review, Vol. 23, No. 3, July 1989, pp. 141–157.

224



Approaches to Software Based Fault Tolerance . . .

[83] H. Kopetz, A. Damm, Ch. Koza, M. Mulazzani, W. Schwabl,
Ch. Senft and R. Zainlinger, Distributed Fault-Tolerant Real-
Time Systems: The MARS Approach, IEEE Micro, Vol. 9, No.
1, February 1989, pp. 25–40.

[84] Hua Zhong and Jason Nieh, CRAK: Linux Checkpoint / Restart
As a Kernel Module, Technical Report CUCS-014-01, Depart-
ment of Computer Science, Columbia University, November 2002.

[85] E. Roman, A Survey of Checkpoint/ Restart Implementations,
Lawrence Berkeley National Laboratory – Checkpoint Survey Re-
port, July 2002.

[86] J. Duell, P. Hargrove and E. Roman, Requirements for Linux
Checkpoint/ Restart, Report of the Lawrence Berkeley National
Laboratory, 2002.

[87] Dominique Briere and Pascal Traverse, AIRBUS
A320/A330/A340 Electrical Flight Controls: A Family of
Fault-Tolerant Systems, Digest of Papers FTCS-23: The
Twenty-Third International Symposium on Fault-Tolerant
Computing, June 1993, pp. 616–623.

[88] Pascal Traverse, Dependability of Digital Computers on Board
Airplanes, Dependable Computing for Critical Applications, Vol-
ume 4, A. Avizienis, J.C. Laprie, editors, 1991, pp. 134–152.

[89] E. Rotenberg, Ar-smt: Coarse-grain time redundancy for high
performance general purpose processors, Univ. of Wisc. Course
Project (ECE753), May 1998.

[90] E. Rotenberg, Q. Jacobson, Y. Sazeides and J. Smith, Trace Pro-
cessors, Proc. 30th Intl. Symp. On Microarchitecture, December
1997.

[91] E. Rotenberg, AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessors, Technical Report of the Univ. of
Wisconsin – Madison, 1998.

225



G.K. Saha

[92] J.H. Patel and L.Y. Fung, Concurrent error detection in ALU’s
by recomputing with shifted operands, IEEE Transactions on
Computers, Vol. C-31, No. 7, July 1982, pp. 589–595.

[93] B.W. Johnson, Fault-Tolerant Microprocessor–Based Systems,
IEEE Micro, December 1984, pp. 1609–1624.

[94] D. Tullsen, S. Eggers and H. Levy, Simultaneous Multithreading:
Maximizing on-chip parallelism, Proc. of the 22nd Intl. Symp. On
Computer Architecture, June 1995, pp. 392–403.

[95] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo and R. Stamm, Ex-
ploiting Choice: Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor, Proc. of the 23rd Intl.
Symp. On Computer Architecture, May 1996, pp. 191–202.

[96] A. Damm, The Effectiveness of Software Error-Detection Mech-
anisms in Real-Time Operating Systems, Proc of the 16th Intl.
Symp. On Fault Tolerant Computing, Vienna, July 1986, pp.171–
176.

[97] A. Damm, Experimental Evaluation of Error-Detection and Self-
Checking Coverage of Components of a Distributed Real-Time
System, PhD Thesis, Technisch Naturwissenschaftliche Fakultat,
Technische Universitat Wien, Vienna, Austria, 1988.

[98] A. Damm, Self-Checking Coverage of Components of a Dis-
tributed Real-Time System, Proc. of the 4th Intl. Conf. On Fault-
Tolerant Computing Systems, Germany, 1989, pp. 308–319.

[99] T. Sato and I.Arita, Tolerating Transient Faults in Microproces-
sors, Proc. of the 13th Symposium on Parallel Processing, 2001,
Japan.

[100] J. Reisinger, Failure Modes and Failure Characteristics of a
TDMA driven Ethernet, Research Report 8/89, Institut fur Tech-
nische Informatik, Technische Universtat Wien, Vienna, Austria,
1989.

226



Approaches to Software Based Fault Tolerance . . .

[101] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger and L. Alvisi,
Modeling the Effect of Technology Trends on the Soft Error Rate
of Combinational Logic, Proc. of the Intl. Conf. On Dependable
Systems and Networks, Maryland, June 2002, pp. 389–398.

[102] D. Milojicic, A. Messer, J. Shau, G. Fu, P. Alto and A. Munoz,
Increasing Relevance of Memory Hardware Errors: a Case for
recoverable Programming Models, Proc. of the ACM SIGOPS Eu-
ropean Workshop, Denmark, Sept. 2000, pp. 97–102.

[103] M. Rebaudengo, M.S. Reorda, M. Torchiano and M. Violante,
Soft-Error Detection Through Software Fault Tolerance Tech-
niques, Proc. of the IEEE Intl. Symp. On Defect and Fault Tol-
erance in VLSI Systems, New Mexico, Nov. 1999, pp. 210–218.

[104] C. da Lu and D.A. Reed, Assessing Fault Sensitivity in MPI
Applications, In Supercomputing, Pittsburg, Nov. 2004, pp. 37.

[105] M.Z. Rela, H. Madeira and J.G. Silva, Experimental Evaluation
of the Fail Silent Behavior in Programs with Consistency Checks,
Proc. of the Intl. Symp. On Fault Tolerant Computing, Japan,
June 1996, pp. 394–403.

[106] S. Yau and F. Chen, An Approach to Concurrent Control Flow
Checking, IEEE Transactions on Software Engineering, Vol. 6,
No. 2, March 1980, pp. 126–137.

[107] Y. Tamir and E. Gafni, A Sofware-Based Hardware Fault Tol-
erance Scheme for Multicomputers, Proc. of the Intl. Conf. on
Parallel Processing, Illinois, August 1987, pp.117–120.

[108] Hoang Pham (Ed), Fault- Tolerant Software Systems, IEEE Com-
puter Society Press, 1992.

[109] Kuang-Hua Huang and Jacob A. Abraham, Algorithm-Based
Fault Tolerancefor Matrix Operations, IEEE Transactions on
Computers, Vol. C-33, No. 6, June 1986, pp. 518–528.

227



G.K. Saha

[110] Gam D. Nguyen, Error- Detection Codes: Algorithms and Fast
Implementation, IEEE Transanctions on Computers, Vol. 54,
No.1, January 2005, pp. 1–11.

[111] E. W. Dijkstra, Self-stabilizing systems in spite of distributed
control, Communications of the ACM, Vol.17, No.11, November
1974, pp.643–644.

[112] L. Lamport, Solved problems, unsolved problems, and non-
problems in concurrency, In Proceedings of the 3rd Annual ACM
Symposium on Principles of Distributed Computing, 1984, pages
1–11.

[113] M. Schneider, Self-stabilization, ACM Computing Surveys,
Vol.25, No.1, March 1993, pp.45–67.

[114] T. Herman, A comprehensive bibliograph on self-stabilization,
a working paper, Chicago J. Theoretical Comput. Sci.,
http://www.cs.uiowa.edu/ftp/selfstab/bibliography.

[115] W. Goddard, S.T. Hedetmiemi, D.P. Jacobs and P.K. Srimani,
Self-Stabilizing Distributed Algorithm for Strong Matching in a
System Graph, Proc. of the High Performance Computing, Hy-
derabad, 2003.

[116] P. Jalote, Fault Tolerance in Distributed Systems, Prentice Hall,
1994.

[117] J. Ray, J.C. Hoe and B. Faisafi, Dual Use of Superscalar Datapath
for Transient-Fault Detection and Recovery, IEEE Micro, 2001.

[118] Goutam Kumar Saha, Algorithm Based EFT Errors Detection
in Matrix Arrays, Internatinal Journal System Analysis Mod-
elling Simulation, Gordon and Breach, Vol.36, No. 1, USA, 1999,
pp.117–135.

[119] G.K. Saha, Fault Tolerant Computing: A Self-Detection & Re-
covery Technique, Internatinal Journal Computers & Electrical
Engineering, Elsevier Science Pub., UK, Vol.24, No.5, 1998.

228



Approaches to Software Based Fault Tolerance . . .

[120] Goutam K Saha, Transient- Fault Tolerant Processing in a
RF Application, Internatinal Journal System Analysis Modelling
Simulation, Gordon and Breach, USA, Vol.38, 2000, pp.81–93.

[121] Goutam K Saha, EMI Control by Software for a RF Communica-
tion System, in Book: Electromagnetic Environments and Con-
sequences, Part II, Edited by D.J. Serafin, EUROEM, France,
1995, pp.1870–1875.

[122] Goutam Kumar Saha, A Software Tool for Fault Tolerance, ac-
cepted & in press, Internatinal Journal – Information Science &
Engineering, 2005.

[123] Goutam K Saha, Algorithm Based Fault Tolerant Computing for
a Scientific Application, Internatinal Journal System Analysis
Modelling Simulation, Gordon and Breach, USA, Vol.34, No.4,
1999, pp.509–523.

[124] Goutam K Saha, EMP- Fault Tolerant Computing: A New Ap-
proach, Internatinal Journal of Microelectronic Systems Integra-
tion, Plenum Publishing Corporation, USA, Vol.5, No.3, 1997,
pp.183–193.

[125] G.K. Saha, Designing an EMI Immune Software for Microproces-
sor Based Traffic Control System, Proc. 11th IEEE Internatinal
Symposium EMC’95, Zurich, 1995, pp.401–404.

[126] Goutam Kumar Saha, Fault Tolerant Processing Technique for
a Temperature Measurement System, in Desk Book: Industrial
Measurements & Automation, TIMA’96- American Society of In-
strumentation, HCK Publication, Madras, pp.56–58.

[127] G.K. Saha, Virtual N-Versions Programming for Fault Tolerant
Computing, Internatinal Journal Computers & Electrical Engi-
neering, Elsevier Science Pub., UK, Vol.24, No.4, 1999.

[128] G.K. Saha, Using Software to Control ESD/EMP in
Microprocessor-Based System, RF Design (EMC Test &
Design), Argus Inc., USA, November 1995, pp. 8-11.

229



G.K. Saha

[129] G.K. Saha, EMI Protection by Software for a Microcom-
puter Based Process Controller, Proc. IEEE sponsored Symp.
ISEMC’94, SP Brazil, 1994.

[130] Goutam Kumar Saha, Transient Software Fault Tolerance
Through Recovery, ACM Ubiquity, ACM Press, Vol. 4, No. 29,
USA, 2003.

[131] Goutam Kumar Saha, Fault Tolerance in Distributed System, CSI
HardCopy, Vol. 40, December 2003, Kolkata, Computer Society
of India.

[132] Goutam Kumar Saha, Single-Version Software Fault Tolerance
in Process Control System, Proc of the Modelling & Simulation,
MS’2004, AMSE Press, France, 2004.

[133] Goutam Kumar Saha, Beyond the Conventional Techniques of
Software Fault Tolerance, ACM Ubiquity, ACM Press, Vol. 4,
No. 47, USA, 2004.

[134] Goutam Kumar Saha, Fault Management in Mobile Computing,
ACM Ubiquity, ACM Press, Vol. 4, No. 32, USA, 2003.

[135] Goutam Kumar Saha, Software Fault Tolerance in Industrial Au-
tomation, Journal Industrial Automation, IED, Mumbai, April
2004.

[136] Goutam Kumar Saha, A Software Fix Towards Fault Tolerant
Computing, ACM Ubiquity, ACM Press, Vol. 6, No. 16, USA,
May 2005.

[137] Goutam Kumar Saha, A Technique of Designing in Application
System with Fault Tolerance, Journal of the AMSE, France, De-
cember 2004.

[138] Goutam Kumar Saha, Fault Tolerance Application Using a Mul-
tiprocessor, to appear in IEEE Potentials, 2005.

230



Approaches to Software Based Fault Tolerance . . .

[139] Goutam Kumar Saha, Transient Software Fault Tolerance Using
Single Version Algorithm, accepted paper, ACM Ubiquity, ACM
Press, 2005.

[140] Goutam Kumar Saha, Software Implemented Fault Tolerance –
The ESVP Approach, to appear in IEEE Potentials, 2005.

G.K. Saha, Received July 12, 2005

Centre for Development of Advanced Computing,
Kolkata
Mailing Address: CA- 2 / 4B, Baguitai, Deshbandhu Nagar,
Kolkata-700059, INDIA
E–mail: gksaha@rediffmail.com

231


