

"DIMITRIE CANTEMIR" STATE UNIVERSITY

OF GENERATIONS: CONNECTIONS BETWEEN UNIVERSITIES, ACADEMIA AND BUSINESS COMMUNITY

The National Conference with International Participation

ABSTRACT BOOK

October 21 - 22, 2019 Chisinau, Republic of Moldova CZU: 082:378.4(478-25)=135.1=111=161.1 L 61

Conferința Națională cu Participare Internațională "Științele vieții în dialogul generațiilor: conexiuni dintre mediul academic, universitar și de afaceri". Culegere de teze, Chișinău, 2019.

DESCRIEREA CIP A CAMERE I NATIONALE A CĂRTII

"Life sciences in the dialogue of generations: connections between universities, academia and business community", national conference with international participation (2019; Chisinau).

Life sciences in the dialogue of generations: connections between universities, academia and business community: The National Conference with International Participation, October 21-22, 2019, Chisinau: Abstract book / sci. com.: Maria Duca (president) [et al.]; org. com.: Ilie Boian [et al.]. – Chişinău: Universitate de Stat "Dimitrie Cantemir", 2019 (Tipogr. "Biotehdesign"). – 201 p.: tab. Antetit.: Univ. de Stat "Dimitrie Cantemir". – Texte: lb. rom., engl., rusă. – 100 ex.

Responsabilitatea asupra conținutului materialelor publicate și a secției selectate revine în exclusivitate autorilor.

The abstracts, conference section and contact information are submitted by the main authors.

- © Duca Maria, et al.
- © Universitatea de Stat "Dimitrie Cantemir"

Scientific Committee

Maria DUCA, Acad., Prof., D. Sc. (President)

Center of Functional Genetics, "Dimitrie Cantemir" State University, Republic of Moldova

Vasile BOTNARI, D. Sc. (Co-President)

Institute of Genetics, Physiology and Plant Protection, Republic of Moldova

Yuriy CHESNOCOV, Prof., D. Sc.

Agrophysical Research Institute, Sankt-Petersburg, Russia

Stanislav GROPPA, Acad., Prof., D. Sc.

State University of Medicine and Pharmacy "N. Testemitanu", Republic of Moldova

Maria JOITA-PACUREANU, Prof., Dr.

Agricultural Research and Development Institute Fundulea, Romania

Yalçın KAYA, Dr.

Trakya University, Engineering Faculty, Turkey

Sergio MAPELLI, Dr.

Institute of Agricultural Biology and Biotechnology, Milan, Italy

Maria NEDEALCOV, Prof., Dr. Sc.

Institute of Ecology and Geography, Republic of Moldova

Valeriu RUDIC, Acad., Prof., D. Sc.

Doctoral School of Biological Sciences,,, Dimitrie Cantemir" State University, **Republic of Moldova**

Siddhartha Proteem SAIKIA, Dr.

CSIR-North East Institute of Science & Technology, Assam, India Jun ZHAO, Prof., Dr.

Inner Mongolia Agriculture University, China

Organizing Committee

Ilie BOIAN, Dr., Biological and Geonomic Sciences Department

Steliana CLAPCO, Dr., Center of Functional Genetics

Rodica MARTEA, Dr., Center of Functional Genetics

Angela PORT, Dr., Center of Functional Genetics

SUMMARY

	CURRENT ASPECTS AND PROSPECTS IN PLANT BREEDING	10
1.	ANTON Florin Gabriel, PACUREANU-JOITA Maria, STANCIU Danil,	11
	DAN Mihaela. Aspects regarding downy mildew in sunflower, in Fundulea,	
	Romania, in years 2018 and 2019	
2.	BĂRBIERU Ancuţa. New germplasm realised to winter pea with superior	12
	agronomic traits	
3.	BILYNSKA O. V., DULNYEV P. G. Natural and chemically modified	13
	starches as gelling agents of nutrient media for barley haploid production in	
	anther culture in vitro	
4.	BIVOL Ina, SIROMEATNICOV Iulia, MIHNEA Nadejda. RGA markers	15
	to study of the genetic diversity of some tomato genotypes in Moldova	
5.	BOROZAN Pantelimon, RUSU Ghenadie. Studierea liniilor	17
	consangvinizate de porumb indurata după capacitatea de combinare	
6.	CHAVDAR Nina, RUSHCHUK Alexander, SHAYKHILOV Denis.	19
	Selection of Silybum marianum (L.) Gaertn. in Transnistria	
7.	CIOBANU Renata. Aspectul morfologic al regeneranților de triticale	21
	obținuți in vitro sub acțiunea radiației gama	
8.	CÎRLIG Natalia, ȚÎȚEI Victor, GUŢU Ana, TELEUŢĂ Alexandru. The	23
	biometric study of the species Onobrychis viciifolia scop. under the	
	conditions of the Republic of Moldova	
9.	CÎRLIG Natalia. Studiul fenologic al speciei Reynoutria sachalinensis	25
	(F.Schmidt) Nakai, crescute pe teritoriul Grădinii Botanice Naționale	
	(Institut) "Alexandru Ciubotaru"	
10.	COŞCODAN Mihai. Study of fitostimulator microorganisms under the	27
	aspect of increasing the fertility of the soil	
11.	COŞCODAN Mihai. Usage of rhizospheremicroorganisms diversity for	29
	agricultural development and environment protection	
12.	CUȚITARU Doina, GANEA Anatolie. Estimarea productivității inului de	31
	cultură cultivat în zona centrală a Republicii Moldova	
13.	DIDENKO S. Yu., GOLIK O. V., RELINA L. I., VECHERSKA L. A. First	32
	ukrainian cultivar of spring bread wheat with waxy starch and the prospects	
	of its use	
14.	DUCA Maria, MUTU Ana, TABARA Olesea, MARTEA Rodica.	33
	Expression of some genes implicated in antioxidative defense system in	
	sunflower infected with broomrape	
15.	HRICȚCU Lucian, BRÎNZA Ion. The impact of agatisflavone on memory	34
	processes. Studies on an animal model of dementia	
16.	KAPUSTIAN M.V., CHERNOBAI L.N., KUZMISHINA N.V. Genetic	35
1.7	value of self-pollinated corn lines depending on the pedigree	
17.	LUPAŞCU Galina, GAVZER Svetlana. The role of the components of the	37
10	root rot causal agents in the improvement of wheat resistance	20
18.	MAKLIAK Kateryna. Breeding of sunflower hybrides in the moderately arid	39
	zones of Ukraine	l

 19. MAZĂRE Romina, NEACȘU Mihaela, STEF Ramona, CĂRĂBEŢ Alin. Populational reduction of Ambrosia artemisiifolia species from soybean crop 20. MIHNEA Nadejda, LUPAȘCU Galina. Evaluation of initial tomatoes material based on reaction to some fungy pathogens 	41
20. MIHNEA Nadejda, LUPAȘCU Galina. Evaluation of initial tomatoes material based on reaction to some fungy pathogens	43
20. MIHNEA Nadejda, LUPAŞCU Galina. Evaluation of initial tomatoes material based on reaction to some fungy pathogens	43
material based on reaction to some fungy pathogens	43
21. ROTARI E., ROTARI A., COMAROVA Galina, GUZUN Lucia,	45
BOUNEGRU S., FRATEA Svetlana. Perspectivele producerii materialului	
semincer de porumb pe loturile de hibridare neirigate în Republica Moldova	
22. SASHCO Elena. Interaction of common autumn wheat with the causes	47
agents of the in vitro root rottennesses	
23. SICHKAR V., KRYVENKO A., VOLKOVA N. Results and prospects of	49
leguminous crops breeding in Ukraine	7)
24. SÎROMEATNICOV Iulia, LÂSII Dana, ŞTEFÎNEȚ Petru. Ereditatea	51
unor caractere specifice la hibrizii interspecifici de tomate obținuți in vitro	31
	52
25. STEFAN Gabriela-Alina, ZAMFIRACHE Maria-Magdalena, GORGAN	53
Lucian Dragos. Expression of three genes involved in monoterpene	
biosynthesis in Lavandula angustifolia cultivars	
26. TABĂRĂ Olesea, DUCA Maria, PORT Angela, CLAPCO Steliana,	55
Aspecte ale rezistenței florii-soarelui la acțiunea lupoaiei	
27. VUS N., VASYLENKO A., LYUTENKO V., KOBYZEVA L.,	57
SHEVCHENKO L. Assessment of drought resistance of pea accessions	
from the National Center for Plant Genetic Resources of Ukraine at different	
concentrations of PEG-6000	
28. ЛЕМАНОВА Наталия, ГОРБУНОВА Валентина. Повышение	59
адаптивности растений к стрессовому воздействию	
CURRENT ASPECTS AND PROSPECTS IN FOOD SAFETY	61
1. CEPOI Liliana, TAȘCA Ion. Biochemical and morphological changes in	61
spirulina during selenium nanoparticle biosynthesis	
2. DEMCENCO B., BALAN I., PETCU I., ROŞCA F., OSADCI N.,	63
GRAMOVICI V. Features of avian infectious bronchitis and quality of	
poultry products	
3. PETCU I., BALAN I., DEMCENCO B., ROŞCA F., OSADCI N.,	65
GRAMOVICI V. The influence of dietary protein and amino acids on the	
quality of poultry food products	
4. PLÎNGĂU Ecaterina, RUDI Ludmila. Solubility of natural astaxanthin in	67
vegetable oils in dependence on cell wall destruction technique	, .
5. ROTAR Ion, CHIRIAC Tatiana. The effect of CupegNPs on Spirulina	69
platensis nordst (geitl) cnmn cb-02	0,
6. RUDI Ludmila, CEPOI Liliana, CHIRIAC Tatiana, ROTARI Ion,	71
PLÂNGĂU Ecaterina, VALUTA Ana, CARAUŞ V., RUDIC Valeriu.	/1
Antioxidant activity of spirulina biomass at the action of some pegilated	
nanoparticles	72
7. VOLOȘCIUC Leonid. Perspectivele agriculturii ecologice în soluționarea	73
problemelor siguranței alimentelor	

8.	VOVLAS A., TODERAS I., SASANELLI N., RUSU S., IURCU-	75
0.	STRAISTARU E., BIVOL A., GLIGA O. Influence of Heterodera cruciferae	75
	on growth of cabbage	
9.	БЫЛИЧ Елена. Мониторинг коллекционных образцов кукурузы на	76
	устойчивость к засухе	
	CURRENT ASPECTS AND PROSPECTS IN BIOMEDICINE	78
1	ADTIONOLY I amount of the state	79
1.	ARTIOMOV Laurenția. The impact of artificial sweeteners on the gut microbiome	/9
2.	BACIU Anatolie. Atenuarea dezechilibrului metabolic și îmbunătățirea stării	81
	psihoemoționale prin aplicarea programului de exerciții fizice	01
3.	BALAN I., BORONCIUC G., ROSCA N., BUZAN V., CAZACOV I.,	83
	BUCARCIUC M., BALACCI S., VARMARI G., ZAICENCO N.,	
	MEREUTA I., FIODOROV N., DUBALARI A., BLINDU I., OSIPCIUC	
	G. Changes in the structure of gamete biocomplexes under the influence of	
	cryopreservation factors	
4.	BEREZOVSCAIA Elena, GOLOVATIUC Liudmila. Morpho-physiological	85
	aspects of brain aging	
5.	BOGDAN Victoria. Human and animal digestive tube - specific ecological	87
	niche for streptococci	
6.	BOIANGIU Razvan Stefan, MIHASAN Marius, HRITCU Lucian. Anti-	88
	acetylcholinesterase and pro-cognitive profile of cotinine and 6-hydroxy-L-	
	nicotine in an Aβ25-35-induced rat model of Alzheimer's disease	00
7.	CAPATINA Luminita, BOIANGIU Razvan Stefan, TODIRASCU- CIORNEA Elena, DUMITRU Gabriela, NAPOLI Edoardo, RUBERTO	89
	Giuseppe, HRITCU Lucian. Effects of Rosmarinus officinalis essential oil in	
	memory formation and relieving brain oxidative stress in zebrafish model	
8.	ELENCIUC Daniela, BULIMAGA Valentina, EFREMOVA Nadejda,	90
0.	ZOSIM Liliana, BATIR Ludmila. The application of some coordination	70
	compounds in regulation of the content of SOD in Spirulina platensis biomass	
9.	GOLOSEEV Alexandra. Changes in mental processes in people after 60	92
	years	
10.	LEORDA Ana, GARAEVA Svetlana, POSTOLATI Galina. Indicii care	94
	reflectă procesele de excitație și inhibiție la șobolani în funcție de somatotip	
	și rație alimentară	
11.	MARTEA Rodica, DUCA Maria. NGS: tendințe actuale de diagnostic	96
	molecular de laborator în cancerulul somatic	
12.	NOFIT Victoria. Functional and structural features of the stage of general	97
	biological degradatio	
13.	ORGAN Alexei, MEREUTA Ion, POLEACOVA Lilia, CIOCHINA	99
	Mariana, SANDUTA Stanislav, UNTU Boris. Human constitution and acid	
	formation process	
14.	POLEACOVA Lilia, CIOCHINĂ Mariana. The influence of different rations	101
	in association with testosterone on the change of the free amino acid content	
	in the serum of old rats	

15.	TURCAN Olga. Sinteza orientată a polizaharidelor sulfatate la	103
13.	cianobacteria Spirulina platensis în prezența unor compuși coordinativi ai Cu	103
	(II.)	
16.	ŢURCANU Parascovia. Particularitățile morfo-fiziologice ale creierului în	105
	perioada de stabilitate relativă a activității psihice și de început a diminuării	
	funcțiilor organelor și sistemelor vitale (40-45 de ani – 60 de ani)	
17.	БУЛАТ Ольга. Влияние рациона питания с высоким содержанием	107
	углеводов на гуморальный иммунитет	
18.	ГОЛОВАТЮК Людмила, БЕРЕЗОВСКАЯ Елена. Психическое	109
	здоровье в пожилом возрасте	
	CURRENT ASPECTS AND PROSPECTS IN	111
1	ECOLOGY AND GENOFOND PROTECTION AGAPI Ion. Protection of the black walnut (Juglans nigra) genofond in forest	112
1.	ecosystems	112
2.	BALAN I., ROSCA N., BUZAN V., BALACCI S., ZAICENCO N.,	114
۷.	FIODOROV N., DUBALARI A., BLINDU I., OSIPCIUC G. The relevance	* * *
	of the conservation of genetic resources by the vitrification method	
3.	BATÎR Ludmila, SLANINA Valerina, RUDIC Valeriu. Stabilirea influenței	116
	extractelor bioactive din spirulină asupra indicilor biochimici a culturilor de	
	levuri, după un an de păstrare în stare liofilizată	
4.	BATÎR Ludmila, SLANINA Valerina. Viabilitatea tulpinii Bacillus sp. nr. 2	118
	până și după liofilizare în prezența nanoparticulelor în baza fierului	
5.	BOIAN Ilie. Impactul secetelor din ultimii ani asupra sectorului agricol din	120
	Republica Moldova	
6.	BURLACU Victoria, CATERINCIUC Natalia, NISTREANU Victoria,	122
	LARION Alina. Mamiferele mici (Rodentia, Insectivora) un element de bază	
	în monitorizarea focarelor naturale și antropogene de leptospiroză din Republica Moldova	
7.	CALDARI Vladislav, NISTREANU Victoria, DIBOLSCAIA Natalia,	124
١,٠	LARION Alina. Actual status of bats (Mammalia: Chiroptera) in abandoned	124
	limestone quarries from bycioc village	
8.	CARAMAN Natalia, NISTREANU Victoria, CALDARI Vlad, SÎTNIC	126
	Victor. Speciile de rozătoare din biotopurile puternic antropizate ale	
	localității Bacioi, mun. Chișinău	
9.	CEBOTARI Cristina. Invazia fluturelui Vanessa cardui (L.,1758) în	128
	Republica Moldova în primăvara anului 2019	
10.	CHALIHA Bithika, SAIKIA Siddhartha Proteem. Screening of some lesser	130
	known tree-borne oilseed plants from North-East India for their oil content	
	and fatty acid components	101
11.	CORCIMARU Serghei, TANASE Ana, COZMA Vasile, RASTIMEŞINA	131
	Inna, POSTOLACHI Olga, SÎRBU Tamara, SLĂNINA Valerina, BATÎR Ludmila, CHISELIȚĂ Oleg, GUŢUL Tatiana. Nanobioremediation of soils	
	contaminated by persistent organic pollutants	
12.	CORLATEANU Liudmila, GANEA Anatolie, MIHAILA Victoria.	133
12.	Evaluation of storage potential of maize collection accessions by	133
	morphophysiological parameters of seeds and seedlings under ex situ	
	conservation	

10	CANTILA A A P. A . A . A . A . A . A . A . A .	105
13.	GANEA Anatolie. Amenințările curente privind diversitatea resurselor	135
	genetice vegetale pentru alimentație și agricultură în Republica Moldova	
14.	GHERASIM Elena, ERHAN Dumitru, RUSU Ştefan, ARNAUT Natalia,	137
	GOLOGAN Ion, CEBOTARI Andrei, VATAVU Dmitrii. Structura faunei	
	helmintice a speciei Rana lessonae camerano, 1882 (Amphibia, Ecaudata)	
	din unele biotopuri acvatice naturale din zona de centru a Republicii	
	Moldova	
15.	GHERASIM Elena, ERHAN Dumitru. Infestarea cu nematode a ranidelor	139
	verzi (Amphibia, Ecaudata) din zona de centru a Republicii Moldova	
16.	GHERASIM Elena. Importanța amfibienilor ecaudați (Amphibia: Ranidae)	141
	ca bio-indicatori ai ecosistemlor acvatice în Republica Moldova	
17.	IURCU-STRĂISTARU Elena, BIVOl Alexei, RUSU Ștefan, SASANELLI	143
	Nicola, ANDONI Cristina. Helmintological phytosanitary control in tomato	
	culture (Solanum lycopersicum L.) in green houses	
18.	IURCU-STRĂISTARU Elena, BUŞMACHIU Galina, BIVOL Alexei,	145
	MIHAILOV Irina, CHIRIAC Ion, ANDONI Cristina. Aspects of research	
	of pest insurance associations in potato culture in the conditions of the	
	Republic of Moldova	
19.	IURCU-STRĂISTARU Elena, BUŞMACHIU Galina, MIHAILOV Irina,	147
17.	BIVOL Alexei, CHIRIAC Ion, ANDONI Cristina. Research on insect pests	14/
	of sugar beet culture from northen Moldova	
20	MADELLI C. MALVOLTI M. E. L.	149
20.	MAPELLI S., MALVOLTI M. E. Juglans regia resources, human impact	149
21	and rural area development	151
21.	MOGÎLDA A., GANEA A. Aprecierea rezistenței genotipurilor de sesamum	151
	indicum l. la fusarium oxysporum prin testarea pe filtratul de cultură al	
22	patogenului	1.50
22.	NISTREANU Victoria. Status of shrew species (Insectivora: Soricidae) in	153
	forest ecosystems of the Republic of Moldova	<u> </u>
23.	OLARU Elena-Iren, LOBIUC Andrei, OLARU Ștefan, ZAMFIRACHE	155
	Maria-Magdalena. Anatomical and functional effects of Ocimum basilicum	
	L. cultivated on saline soil	
24.	OLARU Ștefan Mihăiță, LOBIUC Andrei, OLARU Elena-Iren,	157
	ZAMFIRACHE Maria-Magdalena. Toxicity of multiwalled carbon	
	nanotubes present in growth medium on Lemna minor L.	
25.	PALADI Viorica. Observații privind populația cuibăritoare a speciei	159
	Chlidonias hybridus în perimetrul Rezervației "Prutul de Jos"	
26.	PASCARU Alexandru. Corythyca ciliata (say, 1832) – insectă invazivă din	161
	spațiile verzi ale municipiului Chișinău	
27.	PRISACARI S., TODIRAȘ T., GUŢU V., CORCIMARU S. Influența	163
	nanoparticulelor in baza fierului asupra cresterii plantelor de măzăriche in	
	solul poluat cu trifluralină	
28.	ROMANCIUC Gabriela. Identification of key issues related to conservation	165
	of plant genetic resources and biosafety	100
29.	ROTARI Silvia, GORE Andrei, LYATAMBORG Svetlana. Winter durum	167
۷).	wheat in the Republic of Moldova	107
	wneu in те керион ој тошоva	

30.	SANDU M., MOSANU E., TARITA A., LOZAN R., GOREACIOC T., TURCAN S. Index of ammonia ions nitrification in laces water	169
31.	SÎRBU I., TIMUȘ I., MOLDOVAN C. Impactul nanoparticulelor suplimentate în mediul nutritiv asupra activității antifungice a micromicetelor	171
32.	SPÎNU Călin, NISTREANU Victoria, LARION Alina. Fauna de mamifere din ecosistemele urbane ale municipiului Chișinău	173
33.	TABĂRA-GORCEAG Maria, CIORCHINĂ Nina, TROFIM Mariana. Cerințele față de mediu și caracteristicile ecologice ale speciei Lycium barbarum L.	175
34.	ŢÎŢEI Victor, MARUȘCA Teodor, ZEVEDEI Daniela, BLAJ Adrian Vasile, MAZĂRE Romina, ZEVEDEI Paul Maria, GUŢU Ana. Calitatea biomasei de timoftică, Phleum pratense furaj și substrat pentru obținerea biometanului	177
35.	ȚÎȚEI Victor. Evaluarea proprietăților fizico-mecanice a fitomasei biobrichetelor din unele plante din familia Poaceae	179
36.	TODIRAȘ V., ONOFRAȘ L., PRISACARI S., LUNGU A. Influența trifluralinei asupra dezvoltării plantelor de soia și bacteriilor de nodozităti Rhizobium japonicum RD2	181
37.	VALUTA Ana, CODREANU Liviu, CEPOI Liliana, RUDI Ludmila, CODREANU Svetlana. Metal complexes with different ligands in cultivation of cyanobacterium Nostoc linckia	183
38.	VITION P. Influența îngrășămintelor minerale asupra organismelor nevertebrate edafice	185
39.	РЕДКОЗУБОВ О.И. Рептилии среднего сармата Р. Молдова	186
40.	СУМЕНКОВА В.В., БАТКО М.Г. Биологический контроль вредителей в персиковом саду.	188
	CURRENT ASPECTS AND PROSPECTS IN CLIMATIC CHANGE	190
1.	DOMENCO Rodion. Frecvența de manifestare a precipitațiilor maxime pe teritoriul Republicii Moldova în perioada 1960-2017	190
2.	SÎTNIC Veaceslav. Populațiile speciei Microtus arvalis (ord. Rodentia, fam. Cricetidae) în contextul schimbărilor climatice	192
3.	ВИТИОН П. Г. Воздействия антропогеных и засушливых климатических условий на педобионтов	194
4.	LEONOV O., USOVA Z., SUVOROVA K., RELINA L., BURIAK L. Bread wheat grain quality in a breeding program of the plant production Institute of NAAS	196
LIS	T OF AUTHORS	198

CURRENT ASPECTS AND PROSPECTS IN PLANT BREEDING and FOOD SAFETY

ASPECTS REGARDING DOWNY MILDEW IN SUNFLOWER, IN FUNDULEA, ROMANIA, IN YEARS 2018 AND 2019

ANTON Florin Gabriel^{1,2}, Maria¹ PACUREANU-JOITA, Danil¹ STANCIU, Mihaela¹ DAN

¹National Agricultural Research and Development Institute, Fundulea, Calarasi, Romania; ²University of Agronomic Sciences and Veterinary Medicine – Bucharest, Faculty of Biotechnology, Romania Corresponding e-mail: gabi22mai@yahoo.com

Downy mildew in sunflower has a major impact on seed yield, in years when pathogen *Plasmopara hastedii* has developed. Climatic conditions from year 2018, has no influence in development of this pathogen because in months April and May was registered high temperature and no precipitations, but in year 2019 situation is changed. In early sowing, in field condition, in begging of April of year 2019, was no infection on sunflower genotypes. In late sowing, in field condition, in middle of May of year 2019, was a big infection with downy mildew in sunflower. For this reason, we must obtain new genotypes of sunflower with genetic resistance at new races of pathogen *Plasmopara halstedii*.

NEW GERMPLASM REALISED TO WINTER PEA WITH SUPERIOR AGRONOMIC TRAITS

Ancuţa BĂRBIERU

National Agricultural Research and Development Institute Fundulea, Calarasi, Romania

Corresponding author email: cringasuancuta@yahoo.com

The development of the winter pea crop represent a major challenge to expand plant protein production in temperate areas. Breeding winter cultivars requires the combination of freezing tolerance as well as high seed productivity and quality.

Winter peas have some advantages over spring peas like: better establishment and more efficient use of humidity during the winter season, which makes it less vulnerable to drought over the spring, frequently in Romania in the last years; winter peas can be sown in mixture with some cereal (barley, triticale, grasses) for obtaining high nutritive green forage; earlier harvest; has a longer vegetation period and get higher productivity and more stable yield than spring peas type.

In this paper we present data obtained from the first F4 and F5 lines of winter peas obtained in the NARDI-Fundulea program with the germplasm of winter peas from USA and Austria. A number of 170 lines, selected from winter/winter and winter/spring crosses pea genotypes, have been tested in 2019 in the field of NARDI Fundulea.

The conclusion of this preliminary study is that will be possible to realize the genetic progress in breeding in winter peas, to select the new varieties with good enough winter hardiness and being with high yield, different earliness or plant height.

NATURAL AND CHEMICALLY MODIFIED STARCHES AS GELLING AGENTS OF NUTRIENT MEDIA FOR BARLEY HAPLOID PRODUCTION IN ANTHER CULTURE IN VITRO

O. V. BILYNSKA 1, P.G. DULNYEV2

¹Plant Production Institute nd. a. V.Ya. Yuriev of National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine, Corresponding author email: bilynska_genetics@yuriev.com.ua; 2 Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine, Ukraine

Gelling agents are known to be common components of solid and semisolid media for plant tissue and organ culture *in vitro*. Agar, which is a complex polymer produced from some species of red algae, is applied in the most media. Agarose, a product of agar purification and modification, as well as gelrite and phytagel, which are polysaccharides of bacterial origin, are used in some experiments due to their transparency and a capacity to form gel at a lower concentration in comparison to agar. A common feature of these solidifying agents is their biological inertness. An alternative way of media solidifying is application of starches, both natural and modified, which are biological polymers available for utilization by explants and can serve an additional source of their nutrition.

In order to produce an effective gelling agent for agar substitution in nutrient media for spring barley haploid production via anther culture *in vitro*, a series of experiments on application of natural starches produced from seeds of mutant corn lines with a high amylose content (mutations su_2 and ae), pea starches of wild type and with a high amylose content (mutation rugosus), barley starches of wild type and with a high content of amylopectin (waxy) as well as more than 30 preparations of chemically modified starches were carried out.

The results of our investigations showed that media solidified with any starch were more effective for the induction of direct embryoidogenesis and green plant regeneration in barley anther culture *in vitro* than those solidified with agar (Difco, Ferak, USA) or gelrite (PhytoTech Lab, USA).

In addition, substitution of agar with starches was a more beneficial experimental approach than modifications in growth regulator compositions and carbohydrate content.

For the first time, trophic properties of chemically modified and natural starches with various amylose contents were assessed in embryo culture *in vitro*. The effective method for sterilization of seeds for embryo culture was developed (Patent of Ukraine 118385). We also obtained a direct evidence of amylase activity in developing androgenic structures in anther culture *in vitro* staining gels with 0.025 % iodine solution before and after anther cultivation and transfer of callus and embryiods to regenerative medium.

When comparing morphogenetic effect of natural and chemically modified starches the latter are considered to be more promising. Having studied gelling properties and morphogenetic effects of new preparations of chemically modified starches, we selected D5a, D5a-M and Da-1 for further investigations.

The best results were obtained when starch-solidified media were applied in combination with a modified method of spike pretreatment at low positive temperature ensuring long-term storage of plant material (Patent of Ukraine 113261). A technology of barley androgenic haploid production in anther culture *in vitro* was improved due to these two innovative elements. The efficiency of this technology in model genotype DH00-126 exceeded 100 % of green plants-regenerates related to the total amount of cultivated anthers. When it was applied to obtain haploids from breeding hybrid material, the mean plant regeneration frequency was close to 20 %, which was 2.5-fold higher in comparison to that obtained by the basic technology.

RGA MARKERS TO STUDY OF THE GENETIC DIVERSITY OF SOME TOMATO GENOTYPES IN MOLDOVA

Ina BIVOL, Iulia SIROMEATNICOV, Nadejda MIHNEA

Institute of Genetics, Physiology and Plant Protection, Chisinau Republic of Moldova Corresponding author email:bivolinga@yahoo.com

Tomato (Lycopersicon esculentum Mill.) is not only a model plant species for the different scientific investigations, but also it is one of the most important vegetable crops of global importance for human food. Tomato breeding projects are aimed to solve problems with disease resistance, fruit abscission and size, soluble solids, texture, flavor, pigmentation and long-term storage ability. The tomato crop is susceptible to over 200 diseases caused by pathogenic fungi, viruses, bacteria and nematodes. The increased knowledge on the genetic diversity and understanding how plants resist the assaults from potential pathogenic agents by their innate immunity system is decisive for developing a sustainable agriculture. Significant achievements were attained in development of molecular markers linked to disease resistance and an understanding of the molecular mechanisms by which plants recognize the invading pathogenic agents and activate appropriate defense programs. Resistance gene analogs (RGAs) to different pathogens cloned from a variety of plant species are large class of potential R-genes that have conserved domains structural similarity and the encoded proteins with several features in common. These findings suggest that plants may have evolved common signal transduction mechanisms for the expression of resistance to a wide range of unrelated pathogens. Thereby, RGA technique offers some advantages in development of the effective breeding programs for plants disease resistance.

The research objectives were to assess the genetic diversity and examine relationships among the studied Moldavian tomatoes genotypes based on several conserved domains of RGAs.

26 tomato genotypes were obtained from the collection of the Institute of Genetics, Physiology and Plant Protection.

Six pairs of RGA primers based on conserved leucine-rich repeats (NLRR for/rev for N gene conferring resistance to TMV, CLRR for/rev - Cf-9 gene resistance to *Cladosporium fulvum*, XLRR for/rev - Xa21 gene resistance to *Xanthomonas campestris* pv oryzae, RLRR for/rev - RPS2 gene resistance to *Pseudomonas syringae*) and serine/threonine protein kinases domains (Ptokin1/2 and Ptokin3/4 resistance to bacterial pathogen *Pseudomonas syringae pv tomato*) of several resistance genes were used.

According to the results of RGA-markers it was found that the studied genotypes are quite heterogeneous. It was discovered that 5 RGA primers generated 64 specific and 38 polymorphic fragments among tomato accessions. RGA-analysis has revealed in most cases 1-35 amplicons corresponding to candidate resistance genes (except for RLRR for/rev primer, which did not yield any amplicon). The molecular size of RGA amplified fragments ranged from 216 to 2460 bp. The primers CLRR for/rev and XLRR for/rev produced the highest level of polymorphism (100 and 66.66%, respectively), while the level of polymorphism by means of primers Ptokin1/2, NLRR for/rev and XLRR for/rev was 22.86, 33.33 and 44.44%, respectively. Using Euclidean distance following Nearest Neighbor method, the 26 tomato genotypes were grouped into two distinct clusters. Cluster I is formed of hibrid (Prizior x (L. hirsutum Dunal x Prizior) and cultivars Ballada, Prizior, Fakel, Milenium, Caterina, Tomis, Rozovii gigant, moreover, Prizior, Fakel and Milenium showed a high degree of similarity. The largest cluster II contained five separate subclusters: the members of subcluster 1 were cultivars Prestij, Mihaela, Anatolie, Cerry Dani, Jacota; subcluster 2 consisted of genotypes Mary Gratefully, Jubiliar, Iulihirsutian; subcluster 3 - Trapeza, Djina, Missouri, Flacara, Luci, Meridian; subcluster 4 – Mia, Ceri (L. esculentum var. cerasiforme), and those of subcluster 5 were lines L72, L 74.

Summing it up, out of tested 6 pair of primers only 5 pairs were effective to distinguishing tomato genotypes for diversity in R genes and perhaps associated disease resistances. These findings will facilitate the disease resistance identification and speed up the development resistant genotypes of tomato to a wide array of pathogens in breeding programs.

STUDIEREA LINIILOR CONSANGVINIZATE DE PORUMB INDURATA DUPĂ CAPACITATEA DE COMBINARE

Pantelimon BOROZAN, Ghenadie RUSU

Institutul de Fitotehnie "Porumbeni", Republic of Moldova Corresponding author email:pantelimon.borozan@yahoo.com

Dintre multiplele caractere agronomice studiate la liniile consangvinizate, cel mai important este capacitatea de combinare. Capacitatea de combinare este determinată genetic, iar valoarea acesteia depinde de genotipul materialului biologic inițial. Consangvinizarea și selecția ulterioară nu schimbă semnificativ valoarea combinativă, pe măsură ce homozigoția crește. Fixarea genelor responsabile de manifestarea capacității de combinație are loc în primele generații de consangvinizare și îmbunătățirea ulterioară a acesteia prin metode tradiționale este puțin probabilă. Individualitatea liniei se manifestă în primele generații și se păstrează în timpul consangvinizării și selecției ulterioare.

Liniile consangvinizate au fost create, folosind metoda pedigreului, care se deosebește prin aceea că materialul inițial sub formă de populații sintetice și hibrizi a inclus mostre cu genealogie și însușiri agronomice complementare bine cunoscute din complexul de germoplasmă Euroflint. Selecția fenotipică a fost concepută în cadrul populațiilor segregante F_2 și continuată între și în interiorul descendențelor în generațiile S_1 - S_3 , inclusiv pe fundal cu densitate sporită a plantelor. Testarea capacității de combinare a fost efectuată în generațiile S_3 - S_4 , punând accentul pe însușirile agronomice a descendențelor *per se*.

Pentru aprecierea capacității generale de combinare au fost selectate 20 familii, fenotipic omogene cu caractere ameliorative performante. Liniile respective au fost incluse în încrucișări sistemice de tip topcross cu 3-4 testeri din grupele heterotice alternative - Iodent, Lancaster și BSSS-B37. 13 mostre având o perioadă de vegetație mai timpurie au fost încrucișate cu 3 testeri – hibrizi simpli, iar 7 familii, fiind mai tardive au fost încrucișate cu 4 testeri dintre care, două linii și 2 hibrizi simpli cu perioadă de vegetație mai mare. Alăturat liniile consangvinizate au fost verificate și după capacitatea de restaurare a fertilității polenului în testâncrucișări cu sursele androsterile MKP61cmsM x MKP601 și MKP61cmsM x MKP602.

Mostrele respective prezintă încrucișări înrudite din grupa de germoplasmă Reid Iodent.

Experimentarea tectîncrucişărilor a fost efectuată în culturi comparative de orientare, pe parcele cu suprafața de 9,8m² în două repetiții la o densitate de 60mii plante/ha. Pentru comparație, în calitate de martori au servit hibrizi creați în baza liniilor consangvinizate de tip indurata MKP22MRf și AN615/95MRf utilizate în calitate de forme paterne în hibrizii Bemo 203MRf și Porumbeni 176MRf. Analiza rezultatelor obținute a permis să depistăm 8 linii cu capacitate de combinare egală sau superioară martorilor respectivi, apreciate și în timpul vegetației cu note înalte după omogenitatea plantelor și alte caractere ameliorative importante.

Interes deosebit prezintă liniile AN4588/16, AN5000/16, AN5008/16, care în combinații hibride au înregistrat o producție respectiv de 7,32t/ha, 7,33t/ha și 7,38t/ha, depășind martorii aproximativ cu 0,5tone/ha. După umiditatea boabelor mostrele studiate variază în intervalul de 13,5-14,7%, fiind la nivel cu martorii. Dintre liniile mai tardive s-au evidențiat AN3971/16, AN3983/16 și AN3997/16, care în combinație cu același tester au format peste 7,50t/ha producție de boabe. Menționăm că producție de boabe medie obținută de către hibrizii studiați a variat în intervalul 5,70-7,80t/ha. Liniile nominalizate vor fi utilizate ca forme paterne la crearea hibrizilor cu perioadă de vegetație mai tardivă (FAO 300).

Analizând capacitatea de combinare a testerilor observăm că diferențe semnificative între ei nu există. Deosebire neesențială este între testerii din schema a doua, care demonstrează că liniile în combinație cu testerul din grupa Lancaster au manifestat producție mai joasă. Liniile evidențiate cu capacitate de combinare înaltă vor fi transferate în colecția operațională a laboratorului și utilizate în calitate de forme paterne pentru sintetizarea hibrizilor cu formele materne din grupele heterotice Iodent și BSSS-B37. Paralel liniile vor servi și ca donatori de gene favorabile în scopul sintetizării materialului biologic inițial. Hibrizii evidențiați cu liniile respective vor fi transferați pentru testare în culturi comparative de concurs, apoi în testările oficiale pentru omologare.

SELECTION OF SILYBUM MARIANUM (L.) GAERTN. IN TRANSNISTRIA

Nina CHAVDAR^{1,2}, Alexander RUSHCHUK¹, Denis SHAYKHILOV¹

¹Transnistrian State University named after T.G. Shevchenko, Tiraspol; ²State Botanic Garden, Tiraspol Corresponding author email: <u>chavdar1957@mail.ru</u>

Introduction. Silybum marianum (L.) Gaertn. is a valuable, first of all medicinal plant. It is used to treat liver diseases. Silybum marianum (L.) Gaertn. preparations: «Hepabene», «Hepatofalk plant», «Legalon 70», «Legalon 140», «Silymarin Geksal» (German manufacturer); «Heparsil», «Hepatophyte», «Darsil», «Silibor» (Ukrainian manufacturer); «Silymarol» (*Polish manufacturer*); «Simepar» (Switzerland manufacturer); «PM Sirin» (Australian manufacturer); «Levasil» (Indian manufacturer); «Karsil» (Bulgarian manufacturer) and others with hepatoprotective effect. Currently it is increasingly being used in the food industry. With the addition of seeds of Silybum marianum (L.) Gaertn., therapeutic and prophylactic types of bread and bread rolls are baked.

The relevance of the selection work of *Silybum marianum* (L.) Gaertn. for the conditions of Transnistria is due to an spreading of liver diseases.

The purpose of research: the creation of varieties of *Silybum marianum* (L.) Gaertn. suitable for cultivation in Transnistria.

Material and methodology. The starting material for creating the variety was a hybrid population of plants. Selection method - individual selection.

Research results. Among the requirements of the indicators of the variety model for Transnistria in the first place is resistance to viral and phytoplasmic diseases. Research of N.N. Balashova, A.P. Harkova, O.O. Timina showed a high prevalence of viruses: tobacco mosaic virus, cucumber mosaic virus, potato Y-virus, bronze virus of tomatoes, as well as phytoplasmic diseases. Exploratory studies in Transnistria confirmed the susceptibility of *Silybum marianum* (L.) Gaertn. to viruses and phytoplasmic diseases.

When sowing seeds in the early stages in the third decade of March ripening usually begins in early-ripening forms at the end of June, mid-ripening in the first decade of July, later-ripening in the second or third decade of July. It has been figured out that precocious forms go away from the disease and form a high yield of seeds.

In this regard, selection was aimed at creating first of all an early ripening variety.

In 2018, the Transnistrian State University named after T.G. Shevchenko received a patent for the variety of *Silybum marianum* (L.) Gaertn. «Pervenets Pridnestrovya». Authors: Chavdar N.S., Rushchuk A.D., Vishnevskaya O.N., Shaykhilov D.T.

The time of full ripening of the fruit is 70-75 days. The diameter of the plant rosette before stalking is 76-78cm. The height of the plants is 120-138cm. The plants are slightly leafy. When sowing with row spacing 70-90cm the plants branch, forming 5-8 branches of the central stem. The inflorescence horizon is medium. The stem is lanuginous. The flowers are pink, the diameter of the inflorescences is 6-7cm. The seeds are dark brown with small stripes on some of them. The average yield of seeds from the central inflorescence counts 4,1g, from the lateral inflorescence counts 4,3g. The weight of 1000 pieces of seeds is high and counts 29,18g. The yield on the bogara is 13-15centner/hectare.

Keywords: Silybum marianum (L.) Gaertn., plant breeding, characteristics of the variety «Pervenets Pridnestrovya»

ASPECTUL MORFOLOGIC AL REGENERANȚILOR DE TRITICALE OBȚINUȚI *IN VITRO* SUB ACȚIUNEA RADIAȚIEI GAMA

Renata CIOBANU

Institutul de Genetică, Fiziologie și Protecție a Plantelor, Chișinău Republica Moldova Corresponding author email: renataciobanu3@gmail.com

Utilizarea razelor gama drept modificatori genetici tradiționali în calitate de sursă de destabilizare a materialului genetic și sporirea variabilității în complex cu cultura *in vitro*, contribuie la mărirea posibilității de a obține noi caractere valoroase ce se transmit generațiilor ulterioare de plante. În rezultatul studierii formelor mutante, s-a atestat o rată înaltă de inducere a variabilității caracterelor morfologice al somaclonelor de triticale, regenerate de la donorii supuși acțiunii radiației gama.

Pentru inducerea calusogenezei și studierea capacității morfogene au fost utilizați ca sursă de explant embrioni maturi de la 8 genotipuri: Ingen 33, Ingen 35, Ingen 40, Ingen 93, Polonez LT 76872, Rodlen, Colina, 188TR5021, CAD 2/917 supuși iradierii gama cu doza de 150 Gy la instalatia gama RXM-V-20, sursa radiatiilor- 60Co, 0,16 g/sec. Regeneranții au fost obținuți prin morfogeneză pe medii de cultură de inițiere a calusogenezei, menținere și regenerare de plantule. În calitate de substrat a servit mediul de bază Murashige și Skoog (1962) suplimentat cu glicină(2mg/l), tiamină-HCl(1mg/l). asparagină(150mg/l), zaharoză(30g/l), agar(7g/l), pH-ul 5,8. Mediul de inducere a calusogenezei a fost suplimentat cu AgNO₃(10mg/l) și 2,4D(2mg/l). Pentru inducerea morfogenezei calusul a fost transferat mediu regenerare: BAP(1mg/l), IUC(0.5mg/l)AgNO₃(10mg/l). Plantulele obținute au fost transferate în substrat sol pentru aclimatizare.

Analiza valorilor obținute pentru formele mutante în comparație cu martorul, ne permit să evidențiem un spectru larg al variabilității după următoarele caractere: talia plantei (40-125cm), numărul de noduri (4-10), lungimea frunzei (21,5-41cm), lungimea spicului (5-8,2 cm), numărul și forma boabelor, observate spre sfârșitul perioadei de vegetație.

După talia plantelor, formele de triticale se pot clasifica în trei grupe:- forme pitice, cu talia scurtă, având înălţimea medie cuprinsă între 40 și 60 cm, din care fac parte genotipurile Rodlen și 188 TR 5027 - forme mijlociu de înalte, cu lungimea paiului cu valori cuprinse între 85 și 105 cm, corespund genotipurile Ingen 33, Ingen 35 și LT 76872 și forme înalte, cu talia plantelor care depășește 105 cm, ajungând până la 150 cm(Ingen 93, CAD 2/917).

Observațiile efectuate asupra spicului au demonstrat că numărul de boabe în spic poate să depindă fie de un număr mare de flori fertile într-un număr relativ mai mic de spiculețe, fie de un număr mai mic de flori fertile, dar într-un număr mare de spiculețe în spic. În legătură cu aceasta, în procesul de ameliorare, sunt de preferat formele cu spicul mai lung, care să formeze până la patru boabe în spiculeț, față de formele cu spice scurte. Genotipurile CAD 2/917 și Ingen 93 având lungimea spicului de 8,2cm și respectiv 7,9cm la varianta iradiată și 7,7cm și 7,2 la varianta martor sunt considerate genotipuri cu spicul lung.

S-a determinat că spicul lung corelează pozitiv cu numărul de boabe. După alte date, s-a stabilit că la formele hexaploide de triticale există o corelație pozitivă între productivitatea plantei și masa a 1.000 de boabe, precum și între acestea și lățimea frunzei superioare. În medie s-au înregistrat 25-60 boabe în spic la varianta martor, față de 0-14 boabe în spic la genotipurile iradiate, care s-au caracterizat prin zbârcire, precum și prin formarea incompletă a acestora. Cauzele care conduc la formarea boabelor zbârcite sunt condiționate de acțiunea culturii *in vitro* cât și a razelor ionizante, astfel au loc modificări structurale în dezvoltarea bobului la stadii timpurii.

Evaluarea regeneranților obținuți în urma iradierii, a atestat o rată înaltă de inducere a variabilității caracterelor morfologice, care a fost dependent de genotipul plantei și de acțiunea factorilor mutageni aplicați.

THE BIOMETRIC STUDY OF THE SPECIES ONOBRYCHIS VICIFOLIA SCOP. UNDER THE CONDITIONS OF THE REPUBLIC OF MOLDOVA

Natalia CÎRLIG, Victor ȚÎŢEI, Ana GUŢU, Alexandru TELEUȚĂ
"Alexandru Ciubotaru" National Botanical Garden (Institute),
Chisinau, Republic of Moldova
Corresponding author email: anaiuliagutu@mail.ru

Onobrychis viciifolia is a valuable fodder plant in the Legume family (Fabaceae), which is fed to the animals fresh, as hay or as pickled fodder. It is an excellent nectar source, with the flowering stage lasting for 23-27, which makes it possible to obtain up to 300 kg/ha honey [3, 5]. This species is cultivated in Europe, Asia and North America as forage leguminous crop [1]. It is perennial, polycarpic and reproduces exclusively by seeds [4]. Worldwide, there are about 100 species of the genus Onobrychis, but the wild flora of the R. Moldova includes only four species of sainfoin. Common sainfoin – O. viciifolia var. communis (which can be harvested once a year), O. viciifolia var. bifera (bigger plants, which can be harvested twice a year) and O. arenaria (Kit.) DC are more popular due to their value as forage and melliferous plants [2].

The biometric study was based on a set of indices (plant height, number and size of leaves, number and size of inflorescences) of *O. viciifolia* plants from the collection of NBGI, grown on the experimental plots of the Plant Resources Laboratory.

The stems of plants are erect, branched and fistulous. The leaves are imparipinnate, with elliptical to elongated-obovate leaflets. The fruits are monospermic, indehiscent, semicircular pods. The height of plants in May varies from 75 to 112 cm, lateral shoots start developing from the nodes 3, 4 and 5. There are 2-3 small imparipinnate leaves on each ramification. Every plant has about 21-43 shoots. There are 10-13 leaves on a shoot and they are 12-16 cm long. The number of leaflets varies depending on the position of the leaves on the stem. The leaves at the base are smaller than the others and they have fewer leaflets – by 2-3 pairs, on mature leaves there are 10-12 pairs of leaflets. The leaflets are 1.3-2.8 cm long and 0.4-0.6 cm wide. Smaller leaves, bearing 3(4) pairs of leaflets, grow at the axil of the leaves, at the base of the stem.

At the end of May, on a shoot, there are 3-6 inflorescences, 6-9 cm long. At their base, up to 10 flowers are open, the rest are floral buds. The inflorescences are racemes, with pink-lilac flowers.

In June, plant height is about 95-118 cm. The number of shoots increases as new shoots of smaller diameter develop from the base of the stems. Lateral shoots, bearing 2-3 leaves, grow from each node of the stem. Some leaves, at the base, wither and fall off, but the petiole remains attached to the stem. The leaves grow larger (14-16 cm long, 4-6 cm wide), the number of leaflets on the old leaves remains the same. Inflorescences become longer (8-18 cm). At the same time, in the upper part of the inflorescences, there are floral buds, in the middle – flowers and at the base, green-coloured fruits start developing. The research on the biological characteristics of plant growth and development as well as the biometric study allow identifying important biological features of plants, such as the production of green mass, highlighting the value of the studied species as a fodder crop.

- 1. Frame J. Forage legumes for temperate grasslands. USA, Enfield, NH, Science Publishers Isn. 2005, pp. 127-132.
- 2. Negru A. Determinator de plante din flora Republicii Moldova. Universul. Chişinău 2007. 391 p.
- 3. Vîntu V. Cultura pajiştilor şi a plantelor furajere. Iaşi. Ion Ionescu de la Brad, 2004, 197 p.
- 4. Голубев В. Биологическая флора Крыма, 2-е изд. Ялта, 1996. 86 с
- Кормовые растения сенокосов и пастбищ СССР. Т.1. М.- Л., 1950. – 537с

STUDIUL FENOLOGIC AL SPECIEI REYNOUTRIA SACHALINENSIS (F.SCHMIDT) NAKAI, CRESCUTE PE TERITORIUL GRĂDINII BOTANICE NAȚIONALE (INSTITUT) "ALEXANDRU CIUBOTARU"

Natalia CÎRLIG

Gradina Botanică Națională (Institut), "Alexandru Ciubotaru" Chișinău, Republica Moldova Corresponding author email: nataliacirlig86@gmail.com

Fenologia ca știință are scopul de a caracteriza fazele de dezvoltare ale unui grup de plante în decursul perioadelor de vegetație, sub influența diferitor factori cum ar fi: condițiile climatice din timpul actualei perioade de vegetație și al celei anterioare, perioada de dormanță, fotoperioada, agenții patogeni, factorii de sol. Specia *R. sachalinensis*, obiectul acestui studiu, reprezintă plante perene, erbacee, cu tulpini erecte de 5-6 m în condițiile R. Moldova. La începutul perioadei de vegetație tulpinile sunt verzi la culoare, iar spre sfârșitul vegetației, se brunifică și se lignifică. Frunzele simple, pețiolate, înzestrate cu peri pectori. Flori mici, adunate în înflorescență de tip panicul. Fructul achenă trigonică.

Observațiile fenologice au fost efectuate în colecția laboratorului Resurse vegetale, la plante de diferită vârstă (2, 3, 4 ani) ce au permis stabilirea relațiilor dintre fazele fenologice, condițiile climatice și vârsta plantelor. Pe durata unei perioade de vegetație plantele reușesc să se maturizeze și trec tot ciclul fazelor vegetative și generative. Din ciclul fazelor vegetative prin care trec plantele speciei *R. sachalinensis* fac parte: inițierea vegetației, formarea frunzelor, formarea tulpinii. Din ciclul fazelor generative – formarea butonilor (butonizare), înflorirea, formarea fructelor și etapa coacerii semințelor.

În primul an de vegetație plantele trec doar prin fazele vegetative și anume formarea tulpinilor cu frunze. Se formează o cantitate neînsemnată de masă verde, dar se dezvoltă intens sistemul radicular. Din anul doi de dezvoltare, se observă o creștere mai intensă a plantelor, cu formarea unei cantități mai mari de masă vegetală. În anul doi, plantele deja trec prin mai multe faze fenologice: demararea vegetației (ce coincide cu sfârșitul lunii martie – începutul lunii aprilie), formarea primelor frunze, formarea tulpinii. Parțial trec și prin fazele generative: butonizare și înflorire.

Formarea și dezvoltarea fructelor nu a fost înregistrată. La plantele de doi ani fazele vegetative sunt cele mai îndelungate (168 zile), iar fazele generative doar 28 zile din toată perioada de vegetație. Începând cu a 3-a perioadă de dezvoltare, plantele reușesc să treacă prin toate fazele fenologice caracteristice speciei, cu unele variații în dependență de condițiile climatice înregistrate. Perioada de formare a butonilor este eșalonată, de aceea într-o perioadă de timp în inflorescențe pot fi și butoni florali și flori, iar la unele exemplare să se înceapă și formarea semințelor.

Demararea vegetației este în strânsă legătură cu condițiile climatice. Plantele pot fi afectate de temperaturile negative de primăvară (-2..-4°C). Mugurii dorminzi de dimensiuni mai mici, ce au pornit în creștere și frunzele noi formate, se înnegresc apoi se ofilesc. Acest fenomen încetinește procesul de inițiere a vegetației cu câteva zile. În intervalul de 5-6 zile plantele își reîncep vegetația. Încheierea sezonului de vegetație (moartea sezonieră) are loc toamna (sfârșitul lunii octombrie), o dată cu înregistrarea temperaturilor negative nocturne (-2°C..-4°C), iar cele diurne de circa +6..+8°C, indiferent de vârsta plantelor. Plantele pierd capacitatea de a forma lăstari generativi, are loc necrotizarea și caderea frunzelor de pe lăstari, pe tulpini rămân doar semințe complet formate, uscate și brunificate. În acest moment se încheie perioada de vegetație a plantelor.

STUDY OF FITOSTIMULATOR MICROORGANISMS UNDER THE ASPECT OF INCREASING THE FERTILITY OF THE SOIL

Mihai COŞCODAN

Institute of Microbiology and Biotechnology, Chisinau, Republic of Moldova Corresponding author email: mikhail_koshkodan@mail.ru

One of the basic problems of soil microbiology is the regulation of the processes that arise in the soil through the thorough study of their biochemistry, highlighting the role of the groups of microorganisms in carrying out these processes and their action on the process of nutrition in plants.

It is well known that nutrient reserves in the form of plant debris accumulate annually in the soil. These reserves can be quickly mineralized by microorganisms and transformed into accessible form for plants. At the same time, the soil contains large quantities of nutrients in various non-accessible forms, which are concentrated in its mineral composition. This is why the use of microorganisms that as a result of their activity contribute to the transformation of inaccessible substances into substances accessible to plants, is a current problem for agriculture, especially for the biological one. On the other hand, it is known that the life span of microbial cells is very short and after their breakdown, they mineralize, forming compounds of nitrogen, phosphorus and other elements easily accessible to plants.

The research carried out aims to select and test under laboratory conditions microorganisms with high potential for stimulating plant growth. For this purpose, different cultures of bacteria were isolated from the rhizosphere of the bobo agricultural plants, as a result of which several cultures (strains of rhizoplan, soil, rhizosphere bacteria) were highlighted, growing on different soils of the Republic of Moldova.

During the study on the effect of some phytostimulatory microorganisms in the aspect of plant growth and development, the biomass of wheat seedlings increased by 10.5-108.5% on average.

In the process of the researches it has been reported that some strains of bacteria positively influence the solubilization of phosphorus from the mineral content of the soil. It has been found that some strains of bacteria influence the appearance of 3-4 leaves and at the later stages of plant development (maize, wheat, salad). In this case, a particular role belongs to the cell concentration of the bacterial strains used in experiments. The introduction of microorganisms in the soil in the amount of 1: 100 had a considerable contribution to the growth and development of plants.

The respective rhizosphere microorganisms sp. (soil), sp.III (nodose), sp. II (rizoplan) selected by the use of bean cutters have revealed another feature of them: to increase both the number of roots and the area occupied by them on the used cuttings. In experiments, concentrations 1/5, 1/100, 1/1000 were used.

Therefore, research is carried out on the evaluation of the action of the iron nanoparticles, against the phytostimulatory rhizosphere microorganisms and plants, in the aspect of increasing the efficiency and quality of the soil.

The researches carried out under laboratory conditions on some bacteria isolated from the rhizosphere Pseudomonas sp.I, Bacillus sp. II lead to the stimulation of seed germination and plant growth processes, also contributing considerably to the increase of soil quality and fertility.

USAGE OF RHIZOSPHEREMICROORGANISMS DIVERSITY FOR AGRICULTURAL DEVELOPMENT AND ENVIRONMENT PROTECTION

Mihai COŞCODAN

Institute of Microbiology and Biotehnology,
Chisinau, Republic of Moldova
Corresponding author email: mikhail koshkodan@mail.ru

PURPOSE: Development of new methods for the study of new microbial bio- and high-potential actions that promote the growth and development cycle of the plants.

SOLUTION:

- 1) solubilization of mineral phosphorus in the soil
- 2) colonization of soil microorganisms
- 3) rootedness in agricultural plants
- 4) increasing plant productivity

Application prospect microorganisms as microbial bio-agriculture. Area of solubilization. Area of colonization.

ADVANTAGES: Appreciation a bio-product to the first party based on the rhizosphere microorganisms solubilizing properties of organic substances and inorganic phosphorus in the soil, which depends on their effectiveness is increased compared with the control group. Domains of application: *Microbiology, Biotechnology, Agriculture*.

Area of solubilization

Rooting in cuttings of beans

Area of colonization

Plant productivity

ESTIMAREA PRODUCTIVITĂȚII INULUI DE CULTURĂ CULTIVAT ÎN ZONA CENTRALĂ A REPUBLICII MOLDOVA

Doina CUŢITARU, Anatolie GANEA

Institutul de Genetică, Fiziologie și Protecție a Plantelor, Chișinău Republica Moldova Corresponding author email: <u>doina.cutitaru@gmail.com</u>

Inul (*Linum usitatissimum* L.) se enumeră printre cele mai importante culturi tehnice ale industriei textile. Din cele mai vechi timpuri a fost cultivat pentru țesături, ulterior a început a fi prețuit pentru semințele sale bogae în uleiuri, folosite în scop medicinal și alimentar. În prezent, însă, se acordă o atenție sporită atât producției de fibre, cât și de semințe, creându-se soiuri rezistente la factorii biotici și abiotici, cu capacitatea de producție înaltă. Este necesară îmbunătățirea potențialului de productivitate, deoarece, conform mai multor studii, cererea pentru semințele de in crește mai rapid decât producția realizată. Preferințele de ultima oră ale populației globului sunt orientate spre utilizarea produselor naturale, ecologice, fapt ce implică apariția interesului sporit față de fibrele de in.

În actualele cercetări s-a utilizat materialul genetic a 18 genotipuri de in de diferită origine eco-geografică și mod de utilizare. Caracterele distinctive ale productivității la plantele de cultură pot varia în limite largi, atât de la un soi de plantă la altul, cât și în cadrul aceluiași soi. Producția genotipurilor se creează de-a lungul fazelor de vegetație, de la răsărirea culturilor în câmp până la umplerea boabelor, ca rezultat al manifestării diferitelor componente: taliei plantei, numărului de ramificații, flori și capsule per plantă, numărului de semințe viabile în capsulă, cantității de semințe per plantă, masei a 1000 de boabe etc.. Astfel, după parametrul *masa a 1000 de boabe* (MMB) mostra MDI 05608 (Turcia) a înregistrat cele mai înalte valori (6,15 g), diferențiindu-se de restul genotipurilor din colecție prin culoarea seminței galbenă, corola de culoare roz-violet, plantele având cele mai mici dimensiuni în înălțime, de cca. 36,0 cm.

Pentru următoarele genotipuri parametrul MMB (g) este redat în ordine descrescândă: Псковский Л 3-2 – 5,73 g, Dichl 8 – 5,70, MDI 05609 (Ucraina) - 5,69, Blaringhem - 5,67, Höncheberger - 5,49, *Kaufmann* și k-7907 (Argentina) – 5,47, k-7766 (Polonia) – 5,45, Duflavin și P 625 - 5,11 g. Valorile acestui parametru depind de dimensiunile semintelor. Astfel, sapte forme au prezentat valori sub 5,0 g, deoarece, conform Descriptorului internațional (Descriptor List for Flax (Linum usitatissimum L.), 2016) se consideră a fi semințe de dimensiuni mici care au < 4,25 mm lungime și < 2,80 mm lățime. Reiese, că pentru soiul *Батист* și *Торжокский 4* acest indice este egal cu 4,65, Визит – 4,59, Полесский 6 – 4,31, H 225 – 4,07, Белинка – 4.00, iar forma E-36 a semnalat cele mai mici valori de 3,87 g. MMB se află în legătură strânsă cu producția. Dintre formele de in studiate s-a observat că din prima grupă (plante cu seminte de dimensiuni medii) s. Псковский Л 3-2 are nivelul cel mai ridicat de productivitate, obținându-se un spor de producție de 155,4 g/m², urmat în ordine descrescândă de s. Dichl 8 cu 134,8, Duflavin - 109,0, MDI 05608 (Turcia) si k-7907 (Argentina) cu 106,3, Höncheberger – 92,4, Kaufmann - 88,9, k-7766 (Polonia) - 84,3, MDI 05609 (Ucraina) -71,5, P 625 – 65,0, iar producția minimă de semințe acumulată pe suprafata de un m² este de 46,0 g la s. Blaringhem. Pentru grupa a doua valorile maxime ale productivității au fost semnalate la s. Батист си 152,6 g/m², ароі Белинка — 150,7, Визит — 115,8, Tоржокский 4 - 97, 4, E - 36 - 94, 5, Π олесский 6 - 79, 9, H 225 - 61, 6g/m². Astfel, mostrelor din prima grupă îi revin 58,5% din producția seminceră, iar celor din grupa a doua - 41,5%.

Productivitatea culturilor depinde de specificul genotipului în raport cu condițiile pedoclimatice, care au un impact major asupra cantității și calității produsului final. Zona de centru a Republicii Moldova este favorabilă pentru realizarea potențialului de producție seminceră, mai puțin favorabilă este pentru obținerea producției de fibre.

FIRST UKRAINIAN CULTIVAR OF SPRING BREAD WHEAT WITH WAXY STARCH AND THE PROSPECTS OF ITS USE

S.Yu. DIDENKO, O.V. GOLIK, L.I. RELINA, L.A. VECHERSKA Plant Production Institute nd. a. VYa Yuriev NAAS, Kharkiv, Ukraine Corresponding author email: sydidenko1976@gmail.com

Effective doses of gamma irradiation to generate amylose-free wheat genotypes were determined. On this basis, promising lines and the first Ukrainian cultivar of amylose-free wheat for sponge cake production was developed. The following methods were used: biophysical, biochemical. computational, analytical. morphometric. Specific primers for the waxy genes in all three genomes of hexaploid wheat were selected. The optimal temperature for specific amplification was determined for each of the primer pairs. Mutant genotypes of wheat with amylose-free starch were selected using molecular markers. Basing on mutant genotypes and local cultivars, we developed two lines and cultivar Biskvitna with waxy starch and transferred them to the Laboratory of Spring Wheat Breeding. Studies confirmed the effectiveness of induced mutagenesis to generate spring bread wheat genotypes with amylose-free starch. Cultivar Biskvitna is early ripening (the growing period = 90 - 93 days) and resistant to lodging; its average yield is 2.2 - 3 t/ha; the protein content is 13.1 - 14.2%; the amylopectin content in starch is 99.8 - 99.9%. The effect of flour from amylose-free wheat cultivar Biskvitna on the rheological parameters of sweet flour products was evaluated. A rise in the percentage of amylose-free flour led to an increase in the specific volume of muffins, and the best normal/waxy flour ratio was 1:1. The porosity of the products increased linearly with increasing amounts of amylose-free flour and was maximum when the percentage of amylose-free flour reached 75%.

All the pastries manufactured with flour from amylose-free wheat Biskvitna were not stale and retained their softness and marketable condition for 2-3 days longer.

Thus, the use of wheat flour with amylose-free starch improves the physico-chemical and organoleptic characteristics of confectionery flour products and is promising for the development of new products and formulas.

EXPRESSION OF SOME GENES IMPLICATED IN ANTIOXIDATIVE DEFENSE SYSTEM IN SUNFLOWER INFECTED WITH BROOMRAPE

Maria DUCA, Ana MUTU, Olesea TABARA, Rodica MARTEA
"Dimitrie Cantemir" State University, Chisinau, Republic of Moldova
Corresponding author email: teolesea@gmail.com

Orobanche cumana Wallr. (broomrape) is an obligate and non-photosynthetic root parasitic angiosperms that cause severe agricultural problems in many crops of sunflower. It is widespread in Europe and Asia, where it can cause over 80% crop losses. In the host-parasite system, the first defense response of the plant is the rapid production of reactive oxygen species (ROS) that induce the oxidative stress. ROS are the result of the partial reduction of atmospheric O₂ and they can oxidize multiple cellular components like proteins and lipids, DNA and RNA, causing ultimately cell death. In order to cope, the plants keep ROS under control by an efficient enzymatic oxygen scavenging system. Many methods of O. cumana control are available with more or less efficiency but genetic resistance remains of the most efficient method.

Thus, the aim of this study was the evaluation of transcriptional activitiy of 15 genes involved in antioxidant defense against oxidative stress during infection with broomrape in dynamics (2, 6, 12 and 24 hours after infestation). The experimental stage was performed in Petri dishes with perlite substrate. For evaluation of relative expression, RNA samples were obtained from the infected sunflower roots and quantified by real-time PCR.

Three sunflower genotypes, two resistant hybrids (Favorit and PR64LE20) and one susceptible (Performer) to *O. cumana* was used in this study. The transcriptional activity of ROS – scaverging genes was influenced by infection with broomrape, up-regulated (43% cases) or was down-regulated (57% cases).

The analysis of total 15 genes showed different expression profiles between susceptible and resistant genotypes. Comparative to resistant genotypes in the susceptible genotype Performer the majority of genes were down-regulated. For the majority of genes the resistant genotypes were up-regulated (at 12 hours after infestation).

This study are supported by the National Agency for Research and Development of the Republic of Moldova [project for young researchers "19.80012.05.08F].

THE IMPACT OF AGATISFLAVONE ON MEMORY PROCESSES. STUDIES ON AN ANIMAL MODEL OF DEMENTIA

Lucian HRICTCU, Ion BRÎNZA

"Alexandru Ioan Cuza" University, Iasi, Romania Corresponding author email: ionbrinza995@gmail.com

We conducted this study to evaluate the neuropharmacological effects of agatisflavone (1, 3 and 5 μg / l) on neurocognitive performance, as well as the possibility of improving memory and preventive against the onset of Alzheimer's disease pathology. In this study we used an animal model of dementia induced by the administration of scopolamine (100 μm /1).

In the Y-maze test, one-way ANOVA revealed a significant effect of treatment on the percentage of spontaneous alternation. Animals treated with scopolamine (100 $\mu M)$ showed a significant decrease in the percentage of spontaneous alternation compared to the control group (p <0.0001). In contrast, fish treated with scopolamine and subjected to with agatisflavone treatment (3 μg / 1 and 5 μg / 1) showed a significant increase in the percentage of spontaneous alternation (p <0.01 for 3 μg / 1 and p <0.001 for 5 μg / 1) at a level close to the effect of donepezil.

Our findings suggest that administration of agatisflavone can restore memory degradation and induce neuroprotective effects in dementia animals. Therefore, agatisflavone could be used to improve the memory degradation associated with dementia.

GENETIC VALUE OF SELF-POLLINATED CORN LINES DEPENDING ON THE PEDIGREE

M.V. KAPUSTIAN, L.N. CHERNOBAI, N.V. KUZMISHINA

Plant Production Institute named after VYa Yuriev of the National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine Corresponding author email:mv.kakapustyan@gmail.com

The genetic potential of new lines, before everything else, depends on the quality of starting material, which is used in self-pollination, selections and evaluations of offspring for valuable economic characteristics. The efficiency of hybridization can be enhanced by using lines with high combining ability for major valuable economic characteristics as components in crossing.

Our studies were carried out in the fields of the Laboratory of Corn Breeding and Seed Production of the Plant Production Institute named after VYa Yuriev in 2005-2015. One hundred and fifty new self-pollinated lines differing in origin and development methods were taken as the test material. The pedigree of the new lines includes elite lines belonging to different genetic plasms, local varieties, exotic populations from Mexico and Brazil, synthetics with a broad genetic basis and foreign hybrids with closed pedigrees. The field experiments and laboratory analyzes were carried out in accordance with conventional methods.

For the rational use of new starting material, it is necessary to determine its breeding and genetic values. Having studied the new lines, we proved the effectiveness of using exotic populations to develop lines with valuable economic features such as high performance, large kernels and great numbers of kernels in cobs. Basing on the 2005-2012 results, we compiled a collection of self-pollinated corn lines by the cob length and registered it with the National Center for Plant Genetic Resources of Ukraine of the Plant Production Institute named after VYa Yuriev of NAAS.

The determination of the general and specific combining abilities (GCA and SCA) of promising self-pollinated lines for performance and its components was one of the study stages. We used a test cross design to determine the combining ability of the lines. The study showed that the GCA and SCA effects in the lines significantly varied depending on the weather conditions.

Analysis of the combining ability parameters of the lines made it possible to identify valuable accessions with consistently high effects of GCA and SCA for the characteristics under investigation. As a result, the following inbred lines that formed a high GCA group according to several characteristics were identified: UKhS 6, UKhL 401, and PR 8 derived from exotic plasm; KhA 308, KhA 309, and KhA 406 derived from foreign hybrids with closed pedigrees; Kharkivska 625, UKhS 58, UKhL 402 derived from elite lines from the USA (CO 140, MO 17, B 73), France (F 522), and Poland (S 72). In addition, valuable lines UKhL 402 (originating from lines from the USA [MO 17] and Poland [S 72]) and UKhS 57 (originating from exotic plasm Bofo), which had consistently low GCA effects in the study years, were distinguished by the "harvest water content in kernels" trait.

We assessed the contribution of the lines' genotypes, testers and their interaction to the total variability of hybrids' traits. On the whole, the variability of test hybrids is primarily determined by lines' genotypes.

The selected self-pollinated lines with high genetic potential distinguished by their combining ability are recommended for breeding programs to create highly heterotic corn hybrids.

THE ROLE OF THE COMPONENTS OF THE ROOT ROT CAUSAL AGENTS IN THE IMPROVEMENT OF WHEAT RESISTANCE

Galina LUPAŞCU, Svetlana GAVZER

Institute of Genetics, Physiology and Plant Protection, Chisinau Republic of Moldova Corresponding author email:galinalupascu51@gmail.com

Root and stem base rot are among the most widespread and harmful diseases worldwide in various cereal crops, including wheat (Triticum aestivum L.), causing damage to the underground tissue of the plant, the root system, the first internode, the ability to maintain vertical plant, significant loss of fruit (Kiecana et al., 2016).

The disease is complex, caused by different pathogens on different surfaces or different pathogens in the succession of ontogenetic stages of the plants. Root rot caused by Fusarium spp. and common root rot caused by Bipolaris sorokiniana (Sacc.) Shoemaker, sin. Drechslera sorokiniana (Sacc.) Subram, are not endemic diseases, but they greatly depend on environmental conditions and agroecological areas (Moya-Elizondo et al., 2011).

Related with the complexity of the systems of factors on which the aforementioned diseases depend, the purpose of the researches was to determine the composition of the fungi species that produce the rotting root system and the base of the stem to the common wheat in the year 2018 at different stages of development.

Testing the degree of attack of root rot in the 5-step scale (0: 0,1; 1; 2; 3) in some wheat perspectives genotypes has shown that at the baking stage in milk (14.06.2018) the parameter ranged from 0.04 ... 0.21 for forms of Contest tests (F6 Balada x Alunis, L Niconia x Odeschi 267, BT 43-42 x Select, L Cub 101 x Basarabeanca) and 0.70 ... 1,29 - from the Multiplication Sector (Moldova 16, Moldova 66, No. 1 (L 101 x M 7), LL 1/3 x M 30, L M30 / M3, L Basarabeanca / M 30). At the full grain baking stage (28.06.2018), the following attack rate values were recorded: 0.98 ... 1.68 for the genotypes in the Contest tests and $1,28 \dots 2,60 - of$ the Multiplication Sector. So, in the growth and development of wheat plants, there was an increase in the susceptibility to disease.

There were isolated and identified (Barnet, 1998) at the maturity stage in milk 65, and in the wax maturity stage 185 isolates from fungi. It was found that at the maturity stage in milk in the fungus complex, Fusarium species constituted 69,3%, Drechslera spp. -16.9%, and in the wax maturity stage -45,9% and 34,1%, respectively.

Applying the Margalef formula (1968), it was found that at the maturity stage in milk, the fungal diversity index was 1,92 dominance: 0,49, and at the maturity stage in wax: 2,87 and 0,23, respectively. At the second stage of the study, the diversity of micromycetes increased due to the broadening of the spectrum of Fusarium spp. At the first stage, the fungal complex was slightly dominated by F. oxysporum var. orthoceras (0,49), and in stage 2, the significantly diminished dominance was in the case of D. sorokiniana (0,23).

Thus, the ontogenetic stage has largely influenced the indices of diversity and dominance of the fungus, which shows their high adaptability to the biochemical changes of the nutrient substrate and environmental conditions. It should be noted that the pronounced phenotypic polymorphism of isolates of one and the same species reveals the rich source of causative agents, which creates conditions for competitive ability and selection of new virulence. This is to be considered in the wheat resistance improvement programs.

BREEDING OF SUNFLOWER HYBRIDES IN THE MODERATELY ARID ZONES OF UKRAINE

Kateryna MAKLIAK

Plant Production Institute nd. a. V. Ya. Yuriev of National Academy of Agrarian Sciences of Ukraine, Corresponding author email: emaklyak@gmail.com

The climatic conditions of Ukraine are favorable for sunflower cultivation. Sunflower-sown areas reached 6.17 million ha in 2018. The experience inindustrial sunflower cultivation indicates a possibility to obtain marketable seed yields of more than 3.5 t/ha. The weather conditions allow producing raw materials of improved quality, with a high content (over 85%) of oleic acid in oil as well as raw material for confectionery industry.

In Ukraine, sunflower is predominantly sown in two agro-climatic zones: a zone of insufficient precipitation (300 mm of precipitation during the growing period) and a moderately arid zone (280 mm of precipitation during the growing period). Sunflower areas are limited in a very arid zone (240 mm of precipitation during the growing period) and in a zone of sufficient precipitation. Up to 75-80% of the sunflower crops are concentrated in nine administrative regions located in the steppe, a moderately arid agro-climatic zone. The decrease in sunflower productivity in these areas is often caused by drought, the negative effect of which depends mainly on water deficit in the arable layer of soilin the 1sthalf of the growing period as well as on the number and duration of periods with elevated air temperatures.

In the forest-steppe, which is predominantly situated in the agroclimatic zone of insufficient humidification and partly - in the moderately arid zone, the sunflower-sown area is up to 20%. Here, the precipitation is unevenly distributed during the growing period, and their lack can be associated with high temperatures and even dry winds that damage sunflower plants, especially before and during anthesis. The spread of new virulent races of sunflower pathogens (downy mildew and broomrape) is a factor taken into account by breeders in long-term programs to improve sunflower, along with selection programs both for general adaptability to climatic conditions and for specific adaptability to individual stress factors (heat, drought).

The breeding program for improving sunflower for the moderately arid agro-climatic zone of Ukraine performed at the Plant Production Institute named after VYa Yuriev of NAAS covers all promising trends. The weatherinstability during the harvest (September-October) made it necessary to focus on hybrids with a "germination technological ripeness"length of < 125 days. High oil content in seeds of oil hybrids (up to 53% in favorable years) is maintained via breeding. The confectionery trend is accomplished due to a high 1000-seed weight (> 100 g) combined with a high percentage of large seeds (>80%), low huskness (\leq 29-30%) and easy hulling. In the State Register of Plant Varieties Suitable for Dissemination in Ukraine, the Institute's hybrids, developed independently and in cooperation with other breeding organizations, account for 8% (61 hybrids) of the total number of hybrids. Among them, there are hybrids with a high content of oleic acid in oil (Maksimus, Sait, Hektor, Kadet, Oreol), confectionery hybrids (Shumer, Forsazh, Atlet, Hudvin), hybrids resistant to virulent races of broomrape in the zone (Yarylo), and hybrids resistant to virulent races of downy mildew in the zone (Intehral, Zlatson, Ekspert, Dobrodii, Elitson, Klad, Boiarin, Husliar, Charodei).

POPULATIONAL REDUCTION OF AMBROSIA ARTEMISIIFOLIA SPECIES FROM SOYBEAN CROP

Romina MAZĂRE, Mihaela NEACȘU, Ramona STEF, Alin CĂRĂBEŢ

Banat's University of Agricultural Sciences and Veterinary Medicine "Regele Mihai I al României" from Timisoara, Romania

Ambrosia artemisiifolia is an annual herbaceous weed within the Asteraceae family, native to North America.

In recent years, this species is increasingly present in Romanian crops (corn, sunflower, soybean, sugar beet), causing significant damage by decreasing the quantity and quality of production as well as by decreasing harvesting efficiency. A study by Coble et al. (1981) revealed that *Ambrosia artemisiifolia*, at a density of 4 plants per 10 m, reduced production of Glycine up to 8%. Similarly, Shurtleff and Coble (1985) followed by Weaver (2001) reported that at a density of 1.6 plants / m², *Ambrosia artemisiifolia* caused a decrease in soybean production up to 12%. The damage caused by the common ragweed is numerous and continues to grow with along to its spreading into crops. *Ambrosia artemisiifolia* is a very competitive towards to soybean plants.

There are postermergent herbicides which control *Ambrosia* artemisiifolia in soybeans, but the weed's reaction can be altered if they are applied in mixture or with adjuvants that can influence the degree of control. This study aimed to assess the efficacy of herbicides in the population reduction of *Ambrosia* artemisiifolia from soybean culture.

The research was carried out in 2018, near Folea, Timis county. The experience included 9 variants / replicates. The substances used in the control of the species were:480 g/l bentazon + 22,4 g/l imazamox, 40 g/l imazamox, bentazon 480 g/l, wettol 100g/l, 50% tifensulfuron metal, applied in different doses. After application of herbicides, observations were made regarding their efficacy *Ambrosia artemisiifolia* population reduction, the appreciation was made after the EWRS scale, and at the end of the vegetation period the yield was determined. Applied herbicides had an efficacy in population reduction of *Ambrosia artemisiifolia*, ranging between 80-99%.

The population of *Ambrosia artemisiifolia* was significantly reduced in the variants treated with 480 g / l bentazone + 22.4 g / l imazamox. The lowest control of this invasive species was achieved in the variant treated with 50% methyl thifensulfuron. Soybean yield correlated with the degree of control and had values ranging from 917.66 kg / ha to 3003.33 kg / ha.

Keywords: reduction, population, *Ambrosia artemisiifolia*, herbicide

EVALUATION OF INITIAL TOMATOES MATERIAL BASED ON REACTION TO SOME FUNGY PATHOGENS

Nadejda MIHNEA, Galina LUPAȘCU

Institute of Genetics, Physiology and Plant Protection, Chisinau, Republic of Moldova Corresponding author email:mihneanadea@yahoo.com

Tomato growth and development are subject to the strong influence of fungal diseases and low temperatures at early stages of development. Among the biotic factors, unfavorable for the growth and development of tomato plants under the conditions of the Republic of Moldova lately are recorded the *Fusarium* spp. and *Alternaria* spp. fungal pathogens. The aim of the research was to elucidate the perspective forms of tomatoes with complex resistance to *F. oxysporum*, *F. solani* and *A. alternata*.

As a research material, 10 different types of tomatoes were served. Testing the reaction of tomato plants to the treatment of seeds with culture filtrates (CF) of the *F. oxysporum*, *F. solani* and *A. alternata* fungus showed that under the action of pathogen metabolites there was inhibition of seed germination, growth and development of the embryonic root and stem. The reaction of the plants depended on the genotype, the analyzed character and the fungal species, being largely determined by the tested organ. The germination capacity of the seeds of the evaluated forms, following their treatment with CF, showed a differentiated reaction. For example, *F. oxysporum* CF inhibited seed germination by -1.6 ... -30.3%, *F. solani*: -5.8% ... - 46.4%, and *A. alternata*: -10.0... -44.9%.

Significant inhibition was recorded to the Florina (-30.3%), L 66 (-19.4%), L 11 (-16.4%) genotypes under the influence of the *F. oxysporum* CF. In the variant with *F. solani* CF strong character inhibition was observed to the Florina, Pontina, Roma varieties and L 66, L 71 lines – with 46.4, 30.0, 23.3, 26.9, 25.4%, and insignificant inhibition in Flacăra and Mary varieties Gratefully – by 5.8 and 10.2%, respectively. Under the influence of *A. alternata* CF, significant inhibition was found in the Florina (-44.9%), Pontina (-29.1%), Măriuca (-25.0%) varieties and L 66 (-23.2), L 11 (-20.1%) lines. An inhibition of less than 15% in the 3 CFs used was recorded in the Flacăra, Mary Gratefully and L 10B varieties.

In the case of rootles, the genotypes showed quite high sensitivity to CF. They inhibited its growth within the limits 35.0... -82.0%.

The evaluated genotypes were most strongly influenced by F. solani and A. alternata, the average values relative to the control varying within the limits 46.9 ... -80.3% and 47.1 ... 82.0%, respectively. Strong inhibitions were attested at L 71, Florina, L 66, Flacara genotypes with F. oxysporum CF. In 8 of the 30 cases there was an inhibition of root growth within the limits of 35.0... 47.9%. Therefore, no genotypes with low sensitivity were attested. The lowest sensitivity to CF studied was recorded at L 66, which can be used in the improvement process as being the most resistant. In the case of stem length, a greater amplitude of variability was identified in response to the fungi CF. Stem inhibition in relation to the control ranged within the limits -48.3... -71.1% -F. oxysporum, -55.0.2... -84.7% -F. solani, -61.2... -85, 7% -A. alternata.

As with the rootless, genotypes were most strongly influenced by *F. solani* and *A. alternata* CF. For example, in the variant with *F. solani*, inhibition higher than 60.0% was observed in all genotypes except the L 66 line, where the growth of the strain was suppressed by 55.0%. Following our research, it was found that growth organs in all forms were strongly influenced by *F. solani* and *A. alternata* CF. Mean resistance to *F. oxysporum* manifested Rome and Pontina cultivars. The less sensitive genotypes in the CF of the mentioned fungi are of interest for breeding programs as possible donors of resistance to fusariose and alternatiose.

PERSPECTIVELE PRODUCERII MATERIALULUI SEMINCER DE PORUMB PE LOTURILE DE HIBRIDARE NEIRIGATE ÎN REPUBLICA MOLDOVA

E. ROTARI¹, A.ROTARI¹, Galina COMAROVA², Lucia GUZUN¹, S. BOUNEGRU¹, Svetlana FRATEA¹

¹IP IF Porumbeni, ifporumbeni@rambler.ru ²UASM, anticamera@uasm.md

Astăzi producerea semințelor de porumb pe loturi semincere neirigate în Republica Moldova are un șir de probleme semnificative dintre care sunt recoltele mici și nestabile, calitatea scăzută a materialului semincer etc. Ca soluția de rezolvarea problemelor menționate cercetători IF «Porumbeni» în cadrul proiectului instituțional «Elaborarea algoritmului de evaluare a rezistenței la secetă a formelor de porumb prin diagnosticarea fiziologicobiochimică în condițiile Republicii Moldova» au elaborat algoritmului creării hibrizilor de porumb pentru sectoarele de hibridare neirigate.

Algoritmul prezentat se conține din trei blocuri:

- selectarea liniilor de porumb rezistente la secetă cu puritatea biologică înaltă (100%), determinată prin metoda markerilor proteici;
 - crearea combinațiilor hibride;
 - testarea combinațiilor hibride obținute.

În cadrul primului bloc se efectuează selectarea liniilor rezistente la secetă, care în cazul dificitului de apă pot să produce o recoltă a materialului semincer stabil pentru asigurarea securității alimentare a țarii. Cu acest scop se efectuiază un șir treptat de teste pentru selectarea liniilor de porumb rezistente la secetă, ce provoacă scăderea suprafețelor experimentale și creșterea eficacității de muncă. Trebuie de menționat că reproducerea liniilor ameliorate în primul bloc începe imediat după selectare, ceea ce, în consecință, creează o rezervă de semințe, accelerând astfel procesul de introducere a hibridului în producție.

În cadrul blocului al doilea se efectuează crearea combinațiilor hibride. Criteriu de bază este sincronismul începerii fazei de înflorire, care este o condiție foarte importantă pentru producrea materialului semincer pe loturile neirigate. Mai departe crearea combinațiilor hibride se efectuiază prin schema dialelă.

Trebuie de menționat că pentru crearea combinațiilor hibride se folosesc numai liniile care au fost selectate în blocul precedent.

În cadrul blocului al treilea se efectuează testarea combinațiilor hibride conform metodelor acceptate cu următoarea selectare a celor mai perspective hibrizi.

Astfel, aprobarea practică a acestui algoritm permite:

• Selectarea combinației hibride optimale cu scopul obținerii recoltelor stabile a materialului

semincer în condiții neirigate a sectoarelor de hibridare.

- Implementarea tehnologiei raționale cu scopul reducerii suprafețelor sectoarelor experimentale.
 - Accelerarea implementării noilor hibrizi creați în producere.

INTERACTION OF COMMON AUTUMN WHEAT WITH THE CAUSES AGENTS OF THE IN VITRO ROOT ROTTENNESSES

Elena SASHCO

Institute of Genetics, Physiology and Plant Protection, Chisinau, Republic of Moldova Corresponding author email: elenasasco5@gmail.com

Fungal populations of the genus Fusarium, Drechslera/Helminthosporium and Alternaria show increased harm in the agrocoenoses, causing root rot, but also the black embryo in the common autumn wheat. In the expression of the resistance phenotype in the hybrid generations, all types of gene effects are involved, their manifestation being conditioned by the parental genotypes, but also by the environmental factors. The existence of positive correlations between the manifestation of the phenotype of whole plants in vivo and of the in vitro explant to the toxic metabolites the complex methodological approach allows to test the resistance of the autumn wheat to the culture filtrates of the targeted agents.

In the present study we performed the analysis of the calusogenesis characters for two hybrid populations descending from the reciprocal crossing of the common wheat lines M./Odeschi 162 and Moldova 79, using for this purpose the callus derived from the apical meristem of the mature embryos on the Murashige and Skoog (MS) nutrient environment supplemented with 2.0 mg L-1 2,4-D and 0.5 mg L-1 BAP. The variability of the quantitative characters the callus frequency (%), callus surface (mm²) and callus biomass (mg) were investigated under the pressure of the culture filtrate (FC) of Alternaria alternata, Drechslera avenae and Fusarium oxysporum var. orthoceras, supplemented in concentrations of 20%, 30% and 50% in the nutritional environment. The decisive factors affecting the response of the apical meristem in in vitro culture were revealed.

Under the pressure of selective factors *A. alternata*, *D. avenae* and *F. oxysporum* var. *orthoceras callus frequency*, *callus surface* and *callus biomass* varied within the limits of 110.5%...56.4%, 105.7%...65.8% and 126.4%...73.3% in relation to the witness.

The selective pressure of FC determined the unequal contribution of genetic factors in the characterization of the *callus frequency*, in the valorization of the phenotype being attested the effect of the maternal parent Moldova 79. The callus frequency was reduced by *D. avenae* in the maximum concentration FC (43.6%-19.9%). A major weight in the total variance of the index on the background supplemented with the selective factors showed the *wheat genotype* (17.8%, 24.1%, 49.0%), *FC concentration* (22.5%, 42.4%, 11.6%), but also the *isolated* x *genotype* interaction (28.5%, 21.4% and 21.4%).

In the response to *A. alternata* in the FC 50% concentration, the phenotype of the callus surface registered a major reduction (44.3% – 32.9%), being involved the maternal factor Moldova 79 in the valorization of the character in the hybrid. The hybrid force in relation to the parental forms was manifested under the action of *D. avenae* and *F. oxysporum* var. *orthoceras*. The factorial analysis showed the diminution of the weight of the *interaction* of the factors involved (11.6%), but also of the share of the *genetic factor* (5.4%) in the total variance of the character, under the pressure of FC *A. alternata* and FC *D. avenae*. The increase in the *isolated Fusarium* quota (32.4%) was recorded. The rate of favorable transgressions for the target index was registered under the pressure of the agents *D. avenae* and *F. oxysporum* var. *orthoceras* (9.1% and 27.4%) in the hybrid population M./Odeschi 162 x Moldova 79.

Under the pressure of the fungal agents in the parents prevailed the inhibition of the callus biomass, especially in the case of FC A. alternata, but the stimulation of the phenotype in the response of the hybrid populations to FC D. avenae and FC F. oxysporum var. orthoceras. In the total variance of the biomass, the maximum weight for the genotype and isolated factors (31.3% and 40.1%) and low for the genotype (7.4%) in the case of FC A. alternata and FC D. avenae. however balanced factor relationships under the action of FC F. oxysporum var. orthoceras. The parent M./Odeschi 162 has influenced a favorable transgressive morphogenesis in the biomass phenotypes response to D. avenae and A. alternata.

RESULTS AND PROSPECTS OF LEGUMINOUS CROPS BREEDING IN UKRAINE

V. SICHKAR, A. KRYVENKO, N. VOLKOVA

Odesa state agriculture research station NAAS of Ukraine Corresponding author email:natavolki@ukr.net

Introduction legumes play extremely important role in agrarian sector of our planet. In Ukraine, such legumes as soybean and pea have been the most widespread. Several research institutes carry out intensive breeding with **soybean**, well-developed world gene pool of culture, isolated sources and donors of most valuable economic traits, defined genotypes, which are better tolerated by unfavorable environmental conditions (drought, lowered and elevated temperatures, prolonged light period). Most significant parameters of soybean genotypes reaction to water stress are level of moisture loss by plant (mg/h) and amount of free proline in leaves. About 40 varieties were created and cultivated in Ukraine, Russia, Belarus.

In 1980s, Ukraine was one of main **pea** commercial seed producer. Important goal of modern world pea breeding are high-tech varieties that do not lodge and are fully suitable for single-phase harvesting: creation of so-called «leafless» varieties, in which as result of *afila* mutation leaves turn into whiskers, with which individual plants are interconnected with each other and thus supported in vertical position. In 2018, Ukraine recommended 53 pea varieties, 29 of which were created by Ukrainian institutions, with yielding under optimal conditions 5,5-5,6 t/ha. We created four pea varieties.

For steppe zone of Ukraine **chickpea** has special attention because of drought tolerance high level. Our varieties 'Rosanna', 'Antey' *etc* are produced in recent years with high technological and drought tolerance, their yielding - 3,0 t/ha. Next stage of chickpea breeding is creation of varieties with 1000 seeds weight - 450 g and increased tolerance to diseases (fusarium, ascohyta). We are conducting special hybridization cycle with resistant forms from many countries as parental forms. Also research is aimed at studying the biochemical composition of chickpea seed (proteins, carbohydrates, mineral elements, vitamins, β -carotene) for improving it by breeding.

We started molecular-genetic studies of chickpea resistance to imidazolinone herbicides, the first step of which is to select and validate point-mutation markers of gene AHAS, encoded first enzyme of branched chain amino acids synthesis. Purpose of this work is to create chickpea varieties, resistant to imidazolinone herbicides, for molecular markers using by marker-assisted back-crossing for the introgression of resistance genes.

Under conditions of global warming, **lentil** which are characterized by high levels of drought resistance, has special importance. We are starting voluminous breeding program of this culture to produce drought tolerant varieties for steppe zone of Ukraine.

So, molecular markers and traditional breeding technologies combination for food, agricultural products and services can solve the global food supply problem of the growing and increasingly urbanized population of the Earth.

EREDITATEA UNOR CARACTERE SPECIFICE LA HIBRIZII INTERSPECIFICI DE TOMATE OBȚINUȚI IN VITRO

Iulia SÎROMEATNICOV, Dana LÂSII, Petru ŞTEFÎNEŢ

Institute of Genetics, Physiology and Plant Protection, Chisinau, Republic of Moldova Corresponding author email: siromeatnicov@yahoo.com

lucrărilor Eficacitatea de selectare ale investigatiilor descendenților obținuți in vitro de la încrucișarea de saturație, retroîncrucișări permit elucidarea legităților de formare a noilor genotipuri, de segregare si ereditare a caracterelor valoroase transmise de la formele parentale la descendentii diverselor generatii începând cu generatiile F₂. Aceasta se lămureste prin faptul, că mostenirea caracterelor descendenților este de tip intermediar. În ultimii ani au fost selectați și examinați un set de hibrizi, forme recombinante și linii, evidențiindu-se după un complex de caractere valoroase și evaluate ulterior pentru obtinerea si crearea soiurilor noi de tomate. Pentru explicarea mecanismului genetic care condiționează rezistența tomatelor în condiții de secetă s-a studiat peste 1500 genotipuri (hibrizi, linii, soiuri), cu grad avansat de calităti superioare ale caracterelor principale reproductive. Descendenți ai unor combinații hibride care constituie în același timp genotipuri de tip matern, cu înclinație la majoritatea caracterelor spre caracterele plantei-mamă, în același timp o altă serie de genotipuri este alcătuită din descendenți de tip patern, la care majoritatea caracterelor morfologice o predomină de la planta tată, și o sursă de genotipuri care predomină caractere intermediare de moștenire de la ambii genitori. Acest mod de ereditate a caracterelor ocupă o poziție intermediară și joacă rolul principal atât în evoluția plantelor, cât și în ameliorarea unui anumit caracter. Caracterul este definit ca atribut al unui individ dintr-o populație prin care el diferă de alti indivizi din altă populatie sau taxon, orice particularitate morfologică, fiziologică sau biochimică a unui individ sau grup de indivizi, care este determinată de o genă sau un grup de gene în interacțiune cu condițiile de mediu.

Prin observațiile și determinările efectuate aceaste populații de hibrizi, nu numai după modul creării lor, dar și după caracterele fenotipice și genotipice, a fost studiată și apreciată în condiții de câmp neprotejat (cultura prin semințe).

La descendența combinațiilor recombinante au fost depistate tipuri de plante diferite, indeterminant, determinant erect și semierect, cu talia plantelor mici, medii si mari. La aceaste forme descendente ale combinațiilor hibride, s-au depistat și selectat caractere și însușiri necesare pentru realizarea programului de lucru în ameliorarea continuă. Pe parcursul vegetației au fost efectuate selectări individuale a celor mai performante forme după unele caractere specifice ale fructelor. După forma si dimensiunea fructelor la hibrizii din generatia F₂ s-a observat un spectru larg al variabilității somaclonale genetice. Au fost depistate combinatii hibride cu fructe de diferită formă (rotundă, rotund alungit, ovală, ovală alungit, cilindrică, piriforme, pruniforme), de culoare roșu, roșu deschis și aprins, vișinie, galbenă ca lămâia, oranj ca portocala, oranj închis, roz deschis și închis, cu articulații geniculate și negeniculate a pedunculului. Analiza selectivă a celor mai performante genotipuri de tomate ne-a demonstrat, că pe parcursul perioadei de studiu s-au evidențiat combinații recombinante cu greutatea fructului de la 1,5 până la 200-250 grame. Analiza populațiilor hibride F₂ a demonstrat că, hibridarea distantă, într-adevăr este o metodă incomparabilă cu alte metode în ceea ce privește transformarea naturii în ereditatea plantelor de cultură.

EXPRESSION OF THREE GENES INVOLVED IN MONOTERPENE BIOSYNTHESIS IN *LAVANDULA ANGUSTIFOLIA* CULTIVARS

Gabriela-Alina ŞTEFAN*, Maria-Magdalena ZAMFIRACHE, Lucian Dragoş GORGAN

"Alexandru Ioan Cuza" University of Iaşi, Faculty of Biology, Iaşi, Romania

Corresponding author email: stefangabi993@gmail.com

The *Lavandula* species are economically important plants cultivated for their essential oils, used in medicine, phytotherapy, aromatherapy, landscaping, cosmetics and food industries.

These essential oils are mainly constituted of mono- and sesquiterpenoid alcohols including linalool, linalyl acetate, 1,8-cineole, caryophyllene and camphor. The high content of linalool and linalyl acetate and low percentage of camphor, makes the species *L. angustifolia* the finest and most desired producers of volatile oil for various industries. The therapeutic properties of lavender essential oils result from the biological activity of certain oil constituents.

The study aims to characterize the limonene synthase (LIMS), which is directly responsible for the biosynthesis of limonene, the borneol dehydrogenase (BDH) which generates camphor through the oxidation of borneol and linalool synthase (LINS) that produces linalool by expression as genes involved in major monoterpene biosynthesis, in four different lavender cultivars ('Provence Blue', 'Sevtopolis', 'Vera' and 'Codreanca') of the *Lavandula angustifolia* species by quantitative Real-Time PCR.

Total RNA was isolated from leaf tissue using SV Total RNA Isolation System kit (Promega). The transcriptional activity of LIMS, BDH and LINS in leaf tissue was analyzed by absolute quantification, based on"in house" standards previously amplified using GoTaq G2 Green Master Mix (Promega) and specific primers targeting a 120–300 bp fragment size. The quantitative RT-PCR was performed in a Rotor-Gene 6000 5 Plex HRM Real-Time PCR system (Corbett) using a GoTaq 1-Step RT-qPCR kit (Promega).

The results indicate that the gene which generates camphor (BDH) in 'Codreanca' cultivar was two times more expressed compared to 'Vera', whereas 'Sevtopolis' had the lowest expression, but overall was the most powerful gene expressed in all cultivars.

For LINS, the `Provence Blue` cultivar had three times the amount of linalool than `Sevtopolis` and `Codreanca` and seven times more, compared to `Vera`. The gene expression of LIMS showed that the `Provence Blue` cultivar had the highest content of limonene, double the quantity than `Vera` and five times higher than `Codreanca`.

Keywords: Lavandula, RT-PCR, gene expression.

ASSESSMENT OF DROUGHT RESISTANCE OF PEA ACCESSIONS FROM THE NATIONAL CENTER FOR PLANT GENETIC RESOURCES OF UKRAINE AT DIFFERENT CONCENTRATIONS OF PEG-6000

N. VUS, A. VASYLENKO, V. LYUTENKO, L. KOBYZEVA, L. SHEVCHENKO

Plant Production Institute nd. a. VYa Yuriev NAAS, Kharkiv, Ukraine Corresponding author email: vus.nadezhda@gmail.com

Drought resistance of plants is based on a complex of genetic, physiological, coenotic traits - and their interaction. Such complex trait is difficult to manipulate by breeders. Creation of drought resistant varieties requires the drought tolerant starting material. Therefore, careful researches on the drought resistance of plant genetic resources is very important. Screening of the collections of genetic resources requires rapid assessment of a large number of samples. The methodology for determining drought tolerance in the early vegetation phase by germinating in osmotic solutions is the most convenient, cheap and effective.

In articles on the assessment of drought tolerance by the method of germination on osmotic solutions, there is no uniformity and there is no method for selecting the concentration of working solutions. To determine the differentiating ability of various (5%, 10%, 15%, 20% 25%) PEG-6000 solution concentrations, we carried out the germination of four pea varieties from the collection of the National Center for Plant Genetic Resources of Ukraine (NCGRU). The following traits have been researched: Oplot and Camelot are grain semi-dwarf leafless; Kharkivsky Jantarny is grain medium-high leaflet variety, and Adahumsky is vegetable semi-dwarf leaflet variety.

Samples were germinated in solutions of five PEG-6000 concentrations, control is distilled water at the 21° C. Assessment of seedlings was observed on the third day.

The result established that PEG-6000 25 % was lethal for whole accessions, with 20 % and 15 % concentrations only Camelot (35 % and 85 % accordingly, compared with control) was seedling.

With 10 % osmotic concentration two pea varieties has seedling: Kharkivsky jantarny (68 %) and Camelot (100 %); with 5 % concentration Adahumsky and Camelot have seedling similar with control, Oplot -75 % and Kharkivsky jantarny -96 %.

Due to the large differentiation in germination at different concentrations of these pea varieties, it became essential to determe a single solution concentration for further work with a large volume of the collection of pea genetic resources. It was necessary to calculate the LD50, i.e. such a concentration of osmotic, at which the average laboratory germination for 4 varieties is 50% (sprouted seeds), or close to it.

Calculation of LD (50) was carried out in three ways: using unweighted probit analysis, weighted probit analysis, and the equation of the logistic curve (Verhulst curve).

As a result, it was found that the average LD value (% of sprouted seeds) for 4 genotypes corresponds to 50% at a PEG-6000 concentration of 8.359%. At this concentration, the laboratory germination of the studied pea varieties will be: Oplot - 4.21%; Adahumsky - 5.21%; Kharkivsky jantarny - 92.79% and Camelot - 97.78%. Such indicators will be 99.6% of the maximum variance. Thus, a PEG-6000 concentration of 8.359% is the most differentiating one when assessing pea genetic resources for drought tolerance in the early stages of vegetation and can be recommended for further use in screening collection accessions.

This work continues on a larger sample of pea collection samples using a working solution concentration of 8.5% with possible further adjustments.

ASPECTE ALE REZISTENȚEI FLORII-SOARELUI LA ACȚIUNEA LUPOAIEI

Olesea TABĂRĂ, Maria DUCA, PORT Angela, CLAPCO Steliana

Universitatea de Stat"Dimitrie Cantemir", Chișinău, Republica Moldova Corresponding author email: teolesea@gmail.com

Patosistemul *H. annuus – O. cumana* ilustrează un exemplu elocvent pentru evidențierea celor două tipuri de rezistență: verticală (oligogenică) și orizontală (poligenică). Primul tip se manifestă față de anumite rase fiziologice ale unui patogen prin mecanisme specifice. Al doilea tip are un caracter permanent și acționează față de toate rasele patogenului, nemodificându-se în funcție de acestea și este determinat de mecanisme nespecifice. Însă, evoluția rapidă a patogenului și depășirea rezistenței verticale, precum și necesitatea producerii hibrizilor rezistenți impune în permanență dezvoltarea cercetărilor privind mecanismele defensive nespecifice.

Pe parcursul co-evoluției ai sistemului și adaptării gazdei la condițiile de infestare, invazia patogenului poate fi blocată la diferite stadii de dezvoltare. Astfel, în cortex sau în endoderm se activează mecanismele defensive *pre-haustoriale* ce previn atașarea și pătrunderea apresorului în țesuturile gazdei, iar mecanismele *post-haustoriale* se caracterizează prin depozitarea mucilagiilor, dezorganizarea și necroza haustorului.

Scopul cercetării a fost de a estima particularitățile răspunsului defensiv al florii-soarelui la atacul lupoaiei.

Eșantionul utilizat în analize a inclus trei genotipuri de floarea-soarelui, dintre care două rezistente (Favorit, PR64LE20) și unul sensibil (Performer) la acțiunea parazitului, oferite de INCDA Fundulea, România. Pentru crearea fondalului de infestare artificială s-a utilizat semințe de lupoaie a populației colectată din localitatea Sîngera. Monitorizarea experienței de infestare artificială s-a relizat în dinamică temporală în funcție de ciclului vital al patogenului în decursul a 67 de zile. Formarea primelor atașamente, dezvoltarea tuberculilor, formarea lăstarului subteran și aerian au fost etapele cheie de analiză si colectare a probelor de tesut radicular.

Acestea, au fost supuse studiului la nivel: histochimic (conținutul de caloză și lignină); biochimic (activitatea a trei enzime) și molecular (expresia unor gene responsabile de fortificarea pereților celulari și sistemul antioxidant).

Dinamica corelativă a modificărilor histologice, biochimice și moleculare s-a manifestat diferit la genotipurile rezistente cultivate pe fondal de infestare, prin două strategii distincte de răspuns la stres. Prima strategie a fost bazată pe menținerea fluctuațiilor parametrilor interni în limitele normei optime de reacție, ce relevă semnalizarea celulară continuă și intensitate mai mică de acțiune a factorului de stres asupra genotipului Favorit. Modificările tranzitorii în acumularea transcriptilor corelează indirect cu cea a produsilor de expresie, ceea ce demonstrează reglarea proceselor defensive la diferite nivele ale căilor metabolice, astfel încât să corespundă stării fiziologice noi, adaptive, condiționată de semințele de O. cumana din rizosferă. A doua strategie de răspuns s-a manifestat prin perturbații de diminuare a parametrilor studiați la genotipul PR64LE20. Tendința de minimalizare a devierilor de la normă prin capacitatea de reglare stoichiometrică a metaboliților și neafectarea creșterii în contrast cu fluctuații mari în activitatea metabolică sugerează asupra unei strategii a organismului de a directiona si redistribui energia spre obtinerea unei stări fiziologice optime pentru adaptare. Aceste strategii sunt rezultatul activării mecanismelor nespecifice de rezistență doar la nivel de pre-atașament și post-atașament la genotipurile rezistente neinfestate cu lupoaie.

În cazul genotipului sensibil, cu toate că a fost identificată activitatea sporită a enzimelor și a transcripției genelor de la primele etape de dezvoltare a patosistemului, factorii de natură patogenă eliberați în țesutul gazdei a influențat procesarea post-transcripțională și post-translațională, ceea ce determină la acest genotip incapacitatea de a opune rezistență față de invazia patogenului.

ПОВЫШЕНИЕ АДАПТИВНОСТИ РАСТЕНИЙ К СТРЕССОВОМУ ВОЗЛЕЙСТВИЮ

Наталия ЛЕМАНОВА, Валентина ГОРБУНОВА

Institute of Genetics, Physiology and Plant Protection, Chisinau Republic of Moldova Corresponding author email: e-mail: lemanova@list.ru

Современный уровень защиты растений не решает всех проблем растениеводства, поскольку пестициды не способны защитить растения от абиотических стрессов. Между тем потери от стрессовых факторов оцениваются в 51-82% (Монастырский О.Г.,2011), что значительно превосходит потери от болезней и Сельскохозяйственные вредителей. растения находятся условиях экологического стресса, который сопровождается ингибированием роста под воздействием пестицидов и гербицидов, засухи в период вегетации.

Сахарная свекла-источник промышленного производства сахара-поражается патогенными почвообитающими грибами, что недобору урожая и приводит К снижению сахаристости Культура корнеплодов. обладает конкурентоспособностью по отношению к сорнякам, запасы которых многократно превышают число высеянных семян (Никушор В.,2016). Технология послевсходовых обработок посевов свеклы гербицидами предусматривает дробное (комбинация применение «Betanal» 3-x гербицидов разнопланового действия) в фазу семядолей сорняков (Берназ Н.И., 2019), т.е. 3-ды в первые месяцы вегетации, что приводит к снижению содержание хлорофилла в листьях на 6% (Зимина Т.В.,2018), к недобору урожая из-за их фитотоксического действия на 15-20%, сохранению их действующих веществ в верхнем горизонте почвы (Пусенкова Л.И..2010 T.Γ.,2019).

Специалистами по защите растений установлена способность бактериальных штаммов различных родов снижать фитотоксичность за счет состава биологически-активных компонентов их метаболитов, т.е. оказывать антидотное действие на растения после применения инсектицидов, фунгицидов (Асатурова А.М.,2011; Адрианов Ф.Д.,2011).

исследований было установление возможности использования энтомопатогенных штаммов Bacillus thuringiensis ssp kurstaki (Bt) и Bacillus thur.ssp.thuringiensis (BT) в баковой смеси с гербицидом «Betanal» для опрыскивания растений сахарной свеклы. Для этого выяс-няли лействие рекомендованной и половинной концентрации гербицида «Betanal» на колонии

вышеуказанных бактерий in vitro. Бактерии культивировали в жидкой минеральной питатель-ной среде 48 часов при 290С до титра 109 КОЕ\мл. Суспензией засевали поверхность агаризованной КГА питательной среды в чашках Петри. После24 часов роста бактериальных куль-тур на их поверхности размещали стерильные диски (по 5шт.в 3-х ч,Петри),пропитанные вышеуказанными эмульсиями гербицидов. Через термостатирования проводили учеты взаимодействия изучаемых концентраций «Betanal» с культурой бактерий. Зон угнетения роста бактерий установлено не было, что позволяет сделать вывод возможности совмеще-ния рабочих растворов гербицидов суспензиями бактериальных штаммов осуществлять одновременно снижение последействия гербицидов с обработкой растений свеклы против свекловичной моли. О подобных результатах известно при использовании в баковых смесях Bacillus thuringiensis с пестицидами Суми-альфа, Регент, Децис., бактерий рода Pseudomonas sp.c пестицидами Ридомил, Квадрис, Раксил. Колфо-Супер (Адрианов Ф.Д., 2011; Попов Ю.Б., 2008; Войтка Д.В., 2018).

BIOCHEMICAL AND MORPHOLOGICAL CHANGES IN SPIRULINA DURING SELENIUM NANOPARTICLE BIOSYNTHESIS

Liliana CEPOI^{1,2}, Ion TAŞCA²

¹Institute of Microbiology and Biotechnology; ²"Dimitrie Cantemir" State University, Chisinau Republic of Moldova Doctoral School of Biological Sciences, Corresponding author email: cepoililiana67@gmail.com,

liliana.cepoi@imb.asm.md

Selenium is a trace element strictly necessary to ensure normal metabolism in the human body. Selenium deficiency in humans is associated with an increased risk of various diseases such as cancer. cardiovascular disease, type 2 diabetes mellitus, neurodegenerative diseases, and male reproductive disorders. The biological role of selenium is assigned to its antioxidant properties, which determine the protection of cells from oxidative lesions. In living cells, selenium is an essential component of selenoproteins through which it performs its function. There are currently 25 known selenoproteins, all of which are involved in metabolic processes aimed at preventing and fighting various diseases. The average daily recommended amounts of selenium for adults are about 55 µg. Athletes, pregnant women, nursing mothers, and people working in harmful conditions require higher doses of selenium. Selenium is predominantly present as selenomethionine in breadstuffs and grains, garlic, sea kale, olive oil, beer yeasts, legumes, olives, cocoa, pistachios, cashew, oat and buckwheat grain, and also in meat, seafood, milk, and dairy products. Spirulina biomass contains insignificant amount of selenium, 16.1 μg/g. At the same time, the biomass can be enriched with this element by the addition of various selenium compounds to the nutritive medium for cultivation of *Spirulina*. This parameter has increased 5– 173 times and reached 2799 µg/g.

The major transformations of selenium by spirulina can be subdivided into three categories: oxidation-reduction, immobilization-mineralization, and methylation. The microbial reduction of oxidized, inorganic selenium compounds usually results in the incorporation into organic selenium compounds or, in some cases, the formation of well-defined nanoscale particles.

It was also found that the *Spirulina* biomass forms spherical selenium nanoparticles, which are localized extracellularly.

Biochemical analysis was used to assess the changes of spirulina biomass' main components (proteins, lipids, carbohydrates, and phycobilin) during nanoparticle formation. Since the spirulina biomass is rich in surface proteins, which interact with the selenite ions, the protein content was reduced by 32% in the first 24 h of the reaction, followed by a further protein reduction of 64% after 48 h. After 72 h of contact, the protein content in the biomass was 20 % of the original. Besides protein, the decrease of phycobiliprotein content in the spirulina biomass was observed. After 24 h of contact with the selenium ions, the phycobiliprotein content in spirulina biomass decreased from 6.9% to 2.4% for phycocyanin, and from 4.5% to 2% for allophycocyanin. The content of the polysaccharide decreased by 50%, and of lipids - by 23% during first 24 hours of reaction.

Selenium nanoparticles biosynthesis as result of spirulina exposure to inorganic selenium led to ultrastructural changes of the cells. Micrographs of control cells showed an intact cell wall, very thin capsule, compact thilakoids presented by a large number of dense lamellae, a large number of carboxysomes. Under the nanoparticles biosynthesis, the cell wall becomes diffuse. The contact with inorganic selenium and biosynthesis of nanoparticles produce a partial degradation of thilakoids. In spirulina cells with nanoparticles carboxysomes are missing. In normal cells carboxysomes contain the enzyme ribulose 1.5-diphosphate carboxylase/oxidase (RuBisCO), responsible for carbon dioxide fixation in spirulina. The absence of these inclusion bodies indicates on lower efficiency of carbon fixation. The interaction of spirulina cells with inorganic selenium caused a pronounced vacuolization of the cytoplasm. Also, the accumulation of nanoparticles leads to the release of a larger amount of extracellular polymers, which form more pronounced exopolysaccharides, damages of the cytoplasmic membrane and cell wall

FEATURES OF AVIAN INFECTIOUS BRONCHITIS AND QUALITY OF POULTRY PRODUCTS

B. DEMCENCO, I. BALAN, I. PETCU, F. ROŞCA, N. OSADCI, V. GRAMOVICI

Scientific-Practical Institute of Biotechnology in Zootechny and Veterinary Medicine;

Institute of Physiology and Sanocreatology, Republic of Moldova, Corresponding author email: petcuigorr@gmail.com

The avian infectious bronchitis virus (IBV) population is not constant. Prevention of avian infectious bronchitis (IB) is complicated by the presence of a large number of virus serotypes that differ in antigenicity. The high genetic diversity of IBV in Moldova is explained by the high mutability of the genome and the constant use of live vaccines. It should be noted that new strains do not replace the old ones, which continue to stand out often too. And the old strains, in turn, do not disappear, but simply degenerate "mutate". The primary and main site of virus replication is the tracheal epithelium. From this place, the virus spreads to other organs of the lungs, spleen, liver, kidneys, oviducts, ovaries, testes, digestive and intestinal tracts. In the trachea, kidneys, fabric bag, the virus is detected within 24 hours after infection. The virus can be excreted for a long time from the tonsils of the cecum (up to 14 weeks) and from feces (up to 20 weeks). In IB, three clinical syndromes are noted: respiratory, nephros-nephritis and reproductive. The incubation period for IB depends on the infectious dose and the route of infection and lasts from 18 hours (with infection intratracheally) to 36 hours (intraocularly). The manifestation of clinical signs also depends on the age of the bird, the virulence of the strain of the virus and the current level of immunity. More susceptible chickens up to 2-6 weeks of age. Which manifests a respiratory syndrome characterized by cough, shortness of breath (with an open beak), nasal discharge, tracheal wheezing, sometimes conjunctivitis, rhinitis, sinusitis. The lumens of individual bronchi are completely filled with a dense fibrinous mass. In the cavity of the air sacs, foamy exudate with flakes of fibrin. In small chickens - catarrhal rhinitis and sinusitis. General weakness is observed, followed by depression. Food intake and body weight are significantly reduced, feathers are tousled, wings are lowered.

Disease of chickens leads to abnormal development of reproductive organs, and the appearance of "false" laying hens chickens that can not carry eggs. Clinical signs in uncomplicated infections may not last long, usually less than 7 days. Mature follicles have defects, the yolk seeping through the leak, accumulates in the abdominal cavity, as a result of which vitelline peritonitis may develop. In "false" layers, the lumen of the oviduct is overgrown. They ovulate in the body cavity. Often complicated by a secondary infection of E. coli, colibacteriosis and mycoplasmosis, resulting in increased respiratory symptoms. A chronic respiratory disease develops that can last several weeks with a mortality rate of 5-25%. Mycoplasma leads to more acute clinical signs with growth depression. Reproductive syndrome manifests itself in chickens older than 6 months. Their disease is asymptomatic or with minor damage to the respiratory system. The disease is manifested in the form of a prolonged decrease in egg production. After illness, chickens for a long time lay small eggs of irregular shape with a thin shell. The nephro-nephritic form of chicken infectious bronchitis is characterized by weak and short-term respiratory symptoms, followed by inhibition. The bird is ruffled, bored by heat sources, consumes excessive amounts of water, and quickly loses weight. Characteristic is liquid droppings. Mortality is observed 12 days after infection. In young animals affected by jade, mortality reaches 25%. With nephronephritic kidney syndrome, yellow-brown in color, with a mottled pattern, due to the accumulation of urates in the urinary tubules. Flabby consistency. The ureters are stretched with uric acid salts. General carcass cyanosis, dehydration, and uneven skeletal muscle staining are noted.

Thus, avian infectious bronchitis significantly delays the growth and development of a growing number of poultry, leads to direct economic damage and to a decrease in the quality and safety of food eggs and poultry meat.

THE INFLUENCE OF DIETARY PROTEIN AND AMINO ACIDS ON THE QUALITY OF POULTRY FOOD PRODUCTS

I. PETCU, I. BALAN, B. DEMCENCO, F. ROŞCA, N. OSADCI, V. GRAMOVICI

Scientific-Practical Institute of Biotechnology in Zootechny and Veterinary Medicine;

Institute of Physiology and Sanocreatology, Republic of Moldova, Corresponding author email: petcuigorr@gmail.com

Proteins, like carbohydrates and lipids, are also essential nutrients. Without providing energy and complete protein, it is impossible to obtain complete products in the poultry industry. The experimental data of the researchers proved that not only the quantity, but also the ratio of the amount and amount of undetected proteins in the protein determines the biological value of the feed. It was shown that a chronic deficiency or lack of essential amino acids in the body leads to weight loss and ultimately to disorders. These indicators formed the basis for further research and laid the foundation for a more systematic study of the role of protein and amino acid nutrition in bird physiology. The role of individual amino acids in the life of the body was determined. It was found that a deficiency of methionine and cysteine causes a decrease in muscle tone, liver dystrophy, hemorrhage in the kidneys, weakness of the pelvic limbs. With a lack of lysine, deposition of subcutaneous fat decreases, dry skin appears, and hemoglobin synthesis decreases, the level of serum proteins, the absorption of feed nitrogen decreases. Increasing the concentration of lysine in the diet reduced the cysteine content and reduced the level of consumption. Chelated compounds of methionine and lysine have a positive effect on avian embryogenesis. Tryptophan deficiency is accompanied by clouding of the lens of the cornea. There is evidence that an increase in the concentration of linolenic acid and free tryptophan in the blood plasma of chickens depends on the amount of tryptophan in their diet. A lack of arginine or valine contributes to a violation of the functions of the nervous system in the form of a disorder of movement coordination, seizures. Valine, like glycine, affects the regeneration of hemoglobin. Hemoglobin level decreases with a lack of histidine. This is confirmed by the high content of this amino acid in the hemoglobin molecule.

The absence, even temporary, of all amino acids is accompanied not only by loss of body weight, but also by muscle atrophy, hypoproteinemia and anemia; the body becomes more susceptible to infections and non-communicable diseases. A deficiency of amino acids leads to a decrease in hemoglobin, hematocrit, and the activity of certain enzymes. With an excess of a certain amino acid, the balance of the entire amino acid composition is disturbed. It can also cause impaired synthesis of another amino acid. So, antagonism is established between lysine and arginine, leucine and isoleucine, valine and leucine, tryptophan and threonine. Important is not only the number of individual or several amino acids, but also their entry in certain ratios. In the body during normal activity should be a continuous update of proteins. For different proteins, the update rate is different. So, 10% of blood plasma proteins are updated per day, about 50% of liver proteins - per week, and hemoglobin - in 28-30 days. Lack or absence in the diet of essential amino acids, the importance of which has also been established for the body, leads to a decrease in protein synthesis, an increase in the consumption of essential amino acids. The synthesis of essential amino acids in the body is carried out due to the products of the metabolism of carbohydrates, nitrogenous bases, carbolite and ammonium citrate. The ratio of non-essential amino acids also matters. So, nitrogen is used productively and is better absorbed by laying hens, if the ratio of essential amino acids to essential amino acids in feed diets is 1,0:0,8. The lack of proteins and amino acids in the body contributes to metabolic disorders, which affects not only the adult livestock of birds, but also young animals. As a result of metabolic disorders, the digestive system deteriorates. reproductive ability and resistance to infectious diseases decrease. Providing poultry with high-quality protein feed in industrial conditions, in which amino acids are contained in the required proportions, prevents economic damage, improves the quality of meat and egg products.

SOLUBILITY OF NATURAL ASTAXANTHIN IN VEGETABLE OILS IN DEPENDENCE ON CELL WALL DESTRUCTION TECHNIQUE

Ecaterina PLÎNGĂU¹, Ludmila RUDI²

¹Doctoral school Biological Sciences, "Dimitrie Cantemir" State
University, Chisinau, Republic of Moldova

²Institute of Microbiology and Biotechnology, Chisinau, Republic of
Moldova

Corresponding author email: rudiludmila@gmail.com

Astaxanthin, a pigment of the carotenoid group, is one of the most valuable antioxidants currently known. Among the few biological objects that perform the synthesis of astaxanthin, green microalga *Haematococcus pluvialis* is considered one of the most valuable producer of this pigment. The maximum amount of astaxanthin is accumulated in the nonmotile *aplanospore stage of this alga*, when the cellular structure is characterized by the presence of a rigid wall, which creates a serious obstacle to pigment extraction.

The selection of an efficient method of cell wall destruction to facilitate the extraction of astaxanthin constitutes a crucial moment for potential commercial use of pigment. Selected methods should be harmoniously included in the techniques of subsequent food or pharmaceutical processing of astaxanthin.

For this purpose, there have been tested some techniques applied for preliminary treatment of *H. pluvialis* red cysts as raw material with direct extraction of astaxanthin from biomass and its solubilization in vegetable oil. There have been conducted researches to determine the degree of solubilization of astaxanthin in vegetable oil. Two techniques were used in the pretreatment of cysts 1) acid hydrolysis with 0.1N HCl and 2) application of microwaves. It was applied the microwave regime of 540W for 120 sec. By applying this microwave regime on *H. pluvialis* biomass, astaxanthin extractability in alcohol was 84% and 82% in acetone. Sunflower and olive oils were used as solvents. The degree of solubilization of astaxanthin was expressed in % of astaxanthin present in biomass subjected to extraction.

In order to obtain the oily product with astaxanthin, the process of direct extraction, by shaking, of the astaxanthin in oil was applied during 60 min, 3, 24 and 48 hours.

After 60 min contact of the oil with red cysts, pretreated by acid hydrolysis, in sunflower oil passed 71% astaxanthin and 64% in olive oil; after 180 min, both sunflower oil and olive oil already contained 90-91% astaxanthin from the content proposed for solubilization. The extraction time of 24 and 48 hours maintained the solubilization of astaxanthin at the level of 90-95%. Thus, the maximum extraction time of astaxanthin was 24 hours, but in terms of technological reasoning, the extraction time of 3 hours was more convenient, when acid hydrolysis was applied **as** a pretreatment technique.

In the case of pretreatment of cysts with microwaves of 540W power level, after 60 min contact of the oil with red cysts, in sunflower oil passed 88% astaxanthin, and in olive oil – 95%. During 180 min in both types of oil the content of astaxanthin was 91-95%. Therefore, the maximum extraction time of astaxanthin and technologically optimal time was 60 min under the conditions of applying the pretreatment microwave technique of aplanospores.

The introduction of microwave treatment technique of Haematococcus pluvialis biomass, as a stage of pretreatment of aplanospores, in the process of direct extraction of astaxanthin into vegetable oils reduced the solubilization time of pigment by three times.

THE EFFECT OF CUPEGNPS ON SPIRULINA PLATENSIS NORDST (GEITL) CNMN CB-02

Ion ROTARI¹, Tatiana CHIRIAC²

¹Doctoral school Biological Sciences, "Dimitrie Cantemir" State University, Chisinau, Republic of Moldova; ²Institute of Microbiology and Biotechnology, Chisinau, Republic of Moldova

Corresponding author email: chiriac.tv@gmail.com

Cyanobacteria and microalgae are known as possible facilities for the manufacture of bionanoparticles. Copper nanoparticles (CuNPs) have found numerous applications in nanotechnology, and biological properties of Cu have determined the application of CuNPs as antibacterial, imaging, immunomodulatory agents. The biological effect of nanoparticles, especially CuNPs on microalgal and cyanobacterial metabolism is currently poorly elucidated.

The effect of PEGylated Cu (5nm) nanoparticles (Cu_{PEG}NPs) on *Spirulina platensis Nordst (Geitl)* CNMN CB-02 strain was studied. Cu_{PEG}NPs were added into nutrient medium of spirulina in concentrations from 1.0 up to 10.0 μ M/L. Higher concentrations than 3.75 μ M/L were toxic to spirulina strain. On the background of an obvious decrease of produced biomass, Cu_{PEG}NPs (2.25-3.75 μ M/L) caused the protein content in spirulina biomass to decrease by 24-40%.

Under the action of high concentrations of Cu_{PEG}NPs, carbohydrates recorded variations in their content in biomass from an increase of about 90% to a reduction of 13%.

Modification of secondary photosynthetic pigments (phycobilins) towards reducing their content as a result of the effect exerted by high concentrations of $Cu_{PEG}NPs$ was an indication of their toxicity. Thus, concentrations of 1.0 to 3.75 μ M/L $Cu_{PEG}NPs$ reduced phycobilin content in spirulina biomass by 63-87%, their toxicity being evident.

The content of chlorophyll a and β -carotene also fluctuated in relation to the applied concentrations of tested nanoparticles. The chlorophyll content in spirulina biomass, grown by supplementing the medium with Cu_{PEG}NPs in concentrations of 2.5 and 3.75 μ M/L, was reduced by 59-44%.

In the case of β -carotene, the same concentrations of Cu_{PEG}NPs caused the reduction of β -carotene content by 50-70%, similar to chlorophyll content. The oscillations of chlorophyll and carotene contents in spirulina biomass confirm the involvement of nanoparticles in the biosynthetic activity of the strain.

The tested concentrations of Cu_{PEG}NPs resulted in a reduction of lipid content with 13-30%. The content of lipid oxidation end products were increased by 84-147%, which demonstrated the toxic effect of high concentrations of these nanoparticles.

Thus, $Cu_{PEG}NPs$ in high concentrations (from 1.0 to 10.0 $\mu M/L$) altered the biosynthetic activity of cyanobacterial strain *Spirulina platensis* CNMN-CB-02, mainly in the direction of diminishing the levels of this activity. These concentrations determined the toxic effect of $Cu_{PEG}NPs$ on the main qualitative parameters (proteins, phycobilins, chlorophyll a and β -carotene) of spirulina biomass, characterized by their quantitative decrease, in some cases drastically. Except for carbohydrates from spirulina biomass, for which the increase of their content on the background of protein decreasing represented a reorientation of biosynthetic processes towards the formation of carbon reserves in order to stabilize the membrane structural components. The toxic effect of high concentrations of $Cu_{PEG}NPs$ was confirmed by the results of MDA assay, which showed the increased levels of lipid oxidation end products in spirulina biomass subjected to the action of these nanoparticles.

ANTIOXIDANT ACTIVITY OF SPIRULINA BIOMASS AT THE ACTION OF SOME PEGILATED NANOPARTICLES

L. RUDI¹, L. CEPOI¹, T. CHIRIAC¹, I. ROTARI², E. PLÂNGĂU², A. VALUTA¹, V. CARAUŞ², V. RUDIC¹

¹Institute of Microbiology and Biotechnology, Chisinau, Republic of Moldova;

²Doctoral school Biological Sciences, "Dimitrie Cantemir", State University, Chisinau, Republic of Moldova Corresponding author email: rudiludmila@gmail.com

Microalgae are recognized sources of substances with antiradical and antioxidant properties. They are used as raw material for obtaining natural preservatives and pharmaceutical preparations. In recent times, microalgae successfully compete with traditional monocomponent plant sources of antioxidants. Their protection systems are very dynamic, responding promptly to environmental changes and physiological state by modifying the intensity of antioxidant properties. One of the main factors, which essentially modifies the antioxidant status of aquatic organisms, is the presence of metals in the environment. Understanding of the mechanisms involved in eliciting their action on the antioxidant status of microalgae ensures the possibility of obtaining a biomass, which contains a synergistic complex of antioxidant and antiradical substances.

Highlighting the mechanisms for modeling the antioxidant status of spirulina, as well as increasing the quantity of substances with antioxidant and antiradical properties by using different principles of directing the biotechnological processes, offer the possibility to predict the quality of obtained biomass.

Altering the antioxidant activity of spirulina biomass, in the direction of increase or reduction, is the result of toxic action of xenobiotics on spirulina culture. High concentrations of xenobiotics reduce the antioxidant activity of ethanolic extracts obtained from spirulina biomass.

The action of $Ag_{PEG}NPs$ (5nm), $Au_{PEG}NPs$ (5nm), $Cu_{PEG}NPs$ (5nm) and $Cd_{PEG}NPs$ (5nm) has been studied. High concentrations (1.0-10.0 $\mu M/L$) of $Ag_{PEG}NPs$ and $Au_{PEG}NPs$ cause a reduction of the antioxidant activity of ethanolic extracts obtained from spirulina biomass with 40-54% and 35-57%, respectively.

ABTS assay for ethanolic extracts from biomass, grown in the presence of $Cu_{PEG}NPs$, also established a reduction in antioxidant activity for high concentrations of these nanoparticles. Cadmium nanoparticles in low concentrations did not alter the antioxidant activity of extracts, which may be the result of the absence of a toxic effect of nano-scale cadmium.

ABTS test for hydric extracts obtained from biomass, cultivated in the presence of $Ag_{PEG}NPs$, established an increase of antioxidant values by 38% at 10.0 μM concentration of these nanoparticles. In the case of applying $Au_{PEG}NPs$, the antioxidant activity of hydric extracts from spirulina biomass has not changed. ABTS test for hydric extracts from biomass, grown in the presence of $Cu_{PEG}NPs$, established an increase of antioxidant values with 29-53% in the case of their adding in concentrations of 1.25-3.75 $\mu M/L$.

High concentrations of Cd_{PEG}NPs did not alter the antioxidant activity of hydric extracts from spirulina biomass. In the case of applying Cd_{PEG}NPs, no toxic effect has been established.

Therefore, the action of nanoparticles, used as stimulators of biosynthetic activity of spirulina, was not the result of induced stress.

PERSPECTIVELE AGRICULTURII ECOLOGICE ÎN SOLUȚIONAREA PROBLEMELOR SIGURANȚEI ALIMENTELOR

Leonid VOLOŞCIUC

Institutul de Genetică, Fiziologie și Protecția Plantelor, Chișinău, Republica Moldova Corresponding author email: l.volosciuc@gmail.com

Printre factorii principali care cauzează impactul maximal asupra resurselor naturale, transformându-le din resurse regenerabile în resurse neregenerabile, evidențiem poluarea, care afectează nu numai condițiile de viață, mediul înconjurător dar și siguranța alimentelor. Agricultura ecologică, prin promovarea produselor ecologice, a demonstrat că acest gen de activitate poate conviețui cu agricultura convențională, urmărind scopuri diferite, care se manifestă atât în ramura fitotehnică, cât și cea zootehnică.

Pornind de la axioma că siguranța alimentară este deosebit de importantă în asigurarea sănătății consumatorilor și fără ea nu poate fi concepută securitatea alimentară și sustenabilitatea sistemelor alimentare, Organizația Națiunilor Unite a desemnat ziua de 7 iunie ca fiind Ziua Mondială a Siguranței Alimentare. Drept urmare a acestei decizii fundamentale Uniunea Europeană (UE) a fortificat postulatele politicii alimentare, propunându-și:

- garantarea siguranței și nivelului nutriționist al alimentelor și furajelor;
- asigurarea nivelului ridicat de protecție a plantelor, sănătate și bunăstare a animalelor:
- informarea adecvată și transparentă privind originea, conținutul, etichetarea, trasabilitatea și utilizarea alimentelor;
- prevenirea intrării și răspândirii pe teritoriul UE a bolilor care afectează plantele și animalele, precum și transmiterii agenților patogeni ai bolilor de la animale la om;
- garantarea menţinerii normelor comune în materie de protecţie a consumatorilor şi de elaborare a mijloacelor ecologic inofensive de protecţie a plantelor şi animalelor;
- contribuirea la garantarea siguranței alimentelor la nivel global.

Luând în considerare interesul sporit al omenirii în consumul alimentelor de calitate înaltă și în temeiul realizărilor înregistrate în combaterea biologică a organismelor dăunătoare – factor determinant în garantarea siguranței alimentelor, am reușit fundamentarea teoretică și inițiat implementarea practică a agriculturii ecologice. Principiile acestui tip de agricultură sunt orientate spre crearea si implementarea sistemelor tehnologic performante, viabile din punct de vedere al mediului și economic, contribuind la securitatea alimentară prin intermediul conservării biodiversității și a resurselor naturale, având un impact direct asupra securității alimentare și siguranței alimentelor. Aceasta îmbunătățește siguranța alimentelor folosind excluderea fertilizantilor sintetici, evitarea utilizării pesticidelor, asigurarea concentratilor scăzute de reziduuri chimice, ceea ce reduc la minimum deteriorarea mediului înconjurător si incidenta agentilor patogeni asupra omului, precum și transferul genelor de rezistență de la sistemele de producție animală la agenții patogeni ai omului.

Agricultura ecologică se promovează folosind agrotehnice, procedeele tehnologice orientate la îmbinarea fitotehniei si zootehniei, sistemul de mobilizare a nutrienților și aplicare a protectiei biologice a plantelor. Deosebit de importante sunt biopesticidele, care fiind constituite din elemente (microorganisme, macroorganisme vii și produse ale activității acestora, substanțe biologic active naturale) nu se acumulează și nu sunt dăunătoare pentru mediu și alimente. Rezultatele înregistrate demonstrează eficiența economică și ecologică a măsurilor orientate la asigurarea securitătii alimentare si sigurantei alimentelor.

Asigurarea securității alimentare și a siguranței alimentelor necesită extinderea gamei de mijloace biologice de protecție a plantelor și elaborarea procedeelor tehnologice de aplicare a lor în protecția integrată a culturilor legumicole, pomicole și viței-de-vie în sistemele de agricultură convențională și ecologică. În acest scop, aplicând masivul informațional valoros acumulat în rezultatul cercetării relațiilor dintre organismele dăunătoare și utile, și pentru extinderea gamei de mijloace ecologic inofensive de protecție a plantelor se preconizează omologarea și implementarea unui preparat bacterian și a unui mijloc bacteriofagic orientate la sporirea siguranței alimentelor.

INFLUENCE OF HETERODERA CRUCIFERAE ON GROWTH OF CABBAGE

A. VOVLAS¹, I. TODERAS², N. SASANELLI³, S. RUSU², E. IURCU-STRAISTARU², A. BIVOL², O. GLIGA²

¹A.P.S. Polyxena, Via Donizzetti 12, 70014 Conversano (Ba), Italy; ²Institute of Zoology, MECC, Chisinau, R. Moldova; ³Institute of Sustainable Plant Protection (IPSP), C.N.R., Bari, Italy Corresponding author email: nicola.sasanelli@ipsp.cnr.it

A pot trail and field observations were carried out to assess the pathogenicity of the cyst nematode Heterodera crucifere on cabbage plants (Brassica oleoracea). In the pot experiment H. cruciferae cysts were extracted by the Fenwick can from a soil heavily infested (64 eggs and J2/mL soil) collected from a field in which cabbage plants showed stunted growth and yellowing. An appropriate amount of eggs and juveniles of the nematode were throughly mixed with sterilised sandy soil to obtain population density in a geometric scale from 0 to 512 eggs and J2/mL soil (0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512). Then, the soil was used to fill clay pots (V=700 mL). A cabbage seedling (cv. Aviso) was transplanted in each pot and grown for 60 days in a glasshouse at 20 °C. For each nematode population density 6 resplications were considered. During the experiment plants were maintained in the glasshouse randomizing the position of the blocks and at the same time repositioning each plant within a block every week, to avoid a block position effect and at the same time the factor position of the plant within the block. Plants received all the necessary maintenance (irrigation, fertilization, etc.). At the end of the experiment plants were uprooted to assess top plant weight and the soil was dried at room temperature. Cysts were extracted from soil (200 mL dried soil) by the Fenwick can to determine their eggs and J2 content/mL soil (Pf). Data of fresh top weight from the experiment were fitted with the Seinhorst's model $y=m + (1-m) z^{(P-T)}$ with P>T. A tolerance limit T of 1.50 eggs and J2/mL soil and a minimum relative yield (m) of 70% were determined. The highest reproduction factor (Pf/Pi) was 5 at Pi= 8 eggs and J2/mL soil. The anatomic alterations induced by the cyst nematode on root cabbage were also studied. Cross sections of root cabbage collected in an open field showed syncytiums in nematode feeding sites.

МОНИТОРИНГ КОЛЛЕКЦИОННЫХ ОБРАЗЦОВ КУКУРУЗЫ НА УСТОЙЧИВОСТЬ К ЗАСУХЕ

Елена БЫЛИЧ

Institute of Genetics, Physiology and Plant Protection, Chisinau Republic of Moldova Corresponding author email: e-mail:bylici.alena@mail.ru

Изменяющиеся климатические условия требуют наличия надежных доноров устойчивости к такому фактору среды как При изучении генетической организации количественного признака необходим тщательный динамики лимитирующих факторов среды, действующих на компоненты этого параметра по фазам его развития в онтогенезе. Мониторинг линий кукурузы в коллекционном питомнике по засухоустойчивости проводится ежегодно, этому способствует наличие необходимых условий в августе в период созревания початков. Однако, сложившиеся условия в 2018 году (отсутствие осадков в мае и июне) способствовали оценке материала при воздействии лимитирующего фактора на ранних этапах развития растений. Критическим периодом в вегетации считаются 10 дней до цветения. Этот период наиболее значимый для формирования урожая зерна. Закладка мужского соцветия метелки начинается в стадии 4-5 листьев, мейоз проходит в фазе 9-12 листьев, причем независимо от различий в скорости развития растений по генотипам. Высокая температура и низкая влажность воздуха снижают жизнеспособность пыльцы и также отрицательно отражаются на опылении и озерненности початков. При дефиците влаги, продолжительность периода окончанием деления клеток и остановкой клеточного роста пестичных столбиков, значительно увеличивается, что приводит к отставанию в развитии рылец. Задержка между цветением мужских и женских цветков или протандрия у кукурузы в благоприятных условиях не продолжительна. В условиях абиотического стресса разрыв между цветением метелки и початка может увеличиваться на 3-4 дня.

Материалом для исследований служили среднеранние линии кукурузы: МАН2413, МАН2421, МАН2281, МАН2088. В исследованиях использовали визуальную, метрическую и бальную систему оценок растений на естественных фонах.

следующие биологические Были изучены параметры растений: начало и продолжительность фазы цветения; наличие протандрии и протогинии; пыльце образующая способность; жизнеспособность количество сформированных пыльцы; продуктивных початков и др. При оценке по срокам начала цветения линии МАН2421 и МАН2088 оставались в группе среднеранних (вторая декада июля), в то время, как две другие зацвели на декаду раньше положенного срока. Кроме того, было выявлено сокращение периода цветения линий МАН2413 и МАН2481 в связи с воздействием стресса в среднем на 3 дня, при этом протандрия у линии МАН2413 составила 5 дней, что выше нормы в 2,5 раза. Параметр пыльце образующей способности существенно снижался у линии МАН2413 и составил 3 балла (по девятибалльной шкале). Для остальных линий он варьировал от 5 до 7 баллов. Уровень жизнеспособности пыльцы (определяли методом проращивания *in vitro*) был достаточно высок и составил в среднем по генотипам 76,3 %. При этом, менее устойчивой к стрессу по этому показателю была линия МАН2413 (65%). Воздействие лимитирующего фактора повлияло формирование продуктивных початков, наблюдали снижение уровня признака от 1,0 (МАН2421 и МАН2088) до 0,6 и 0,4 у линий МАН2481 и МАН2413, соответственно.

Таким образом, была выявлена генотипическая изменчивость линий кукурузы при воздействии стресса в фазе формирования генеративных органов. Выделенные как перспективные линии МАН2421 и МАН2088 пополнили специализированную коллекцию по устойчивости к засухе.

CURRENT ASPECTS AND PROSPECTS IN BIOMEDICINE

THE IMPACT OF ARTIFICIAL SWEETENERS ON THE GUT MICROBIOME

Laurenția ARTIOMOV

Institute of Physiology and Sanocreatology, Republic of Moldova Corresponding e-mail:lara 09@rambler.ru

The purpose of this paper was the bibliographic study of the impact of some non-caloric artificial sweeteners on the intestinal microbiome and to sensitize and inform the consumers of these sweeteners about their adverse effects on the gut microbiome and health.

Non-caloric artificial sweeteners are dietary supplements consumed by millions of people, to prevent weight gain and diabetes, by preserving the sweet taste of foods without increasing caloric intake. These additives are widely used in modern diets, although researches indicate both beneficial and adverse outcomes.

Currently, much attention is paid to the regulatory effects of the gut microbiota on the health of the host. The intestinal microbiome is deeply involved in host metabolism and plays an essential role in the digestion process and energy homeostasis of the host organism [Nicholson, 2012]. Moreover, colonization of the intestine with commensal microflora is necessary for the development of the immune system and to prevent the development of pathogens (Hooper, 2012). The composition and functions of the intestinal microbiome are modulated by nutrition, including artificial non-caloric sweeteners intentionally or unconsciously consumed as components of different foods. Numerous researches indicate that long-term use of artificial sweeteners disrupts the intestinal microflora and, as a result, metabolic changes are observed. These changes may induce increased body weight and incidence of type 2 diabetes.

Rodriguez-Palacios, A. et al. (2018) provide microbiological and pathological evidence that artificial sweetener Splenda ((E961, sucralose and maltodextrin) promotes bacterial penetration into the intestinal epithelium and dysbiosis by extending the *Proteobacteria phylum* (pathogens *Vibrio*, *Salmonella*, *Yersinia*, *Helicobacter*, *Escherichia spp.*), especially by intestinal overcrowding with *E. coli*. These microbiome changes lead to exacerbation of inflammatory processes in the intestine, doubling the risk for Crohn's disease.

Saccharin (E954) in high concentrations inhibits all Gram-positive strains of *Actinomyces viscosus*, *Lactobacillus acidophilus*, *Bacillus subtilis* and *Corynebacterium diphtheriae* and Gram-positive cocci *Streptococcus spp.*, *Staphylococcus aureus* and Micrococcus lutene (Oldacay, 2000).

Acesulfam - potassium, E950 (Ace-K) is a commonly used artificial sweetener. Bian X. et al. (Bian, 2017) found that Ace-K consumption disrupts the intestinal microbiome of mice after a 4-week treatment and, as a result, increases the body weight of male, but not female, mice. The authors believe that metabolites produced by the disrupted intestinal microbiome may also contribute to the development of chronic inflammation.

A group of researchers from North Carolina State University (Chi L., 2018) found that consuming *Neotam* sweetener (E961) for four weeks caused changes in the gut microbiome and also in the profile of fecal metabolites. Non-caloric sweeteners saccharin, sucralose and acesulfam-potassium have been detected in 65% of breast milk samples, so these additives are frequently ingested by infants and affect their health (Sylvetsky, 2015).

In conclusion, we can say that according to the results of recent scientific investigations, the consumption of artificial non-caloric sweeteners induces metabolic disturbances, inflammatory processes of the intestine, which are mediated by changes in the gut microbiome. Non-caloric artificial sweeteners, consumed for a long time, aggravate glucose intolerance and increase the risk of obesity. The adverse effects of food additives, including artificial sweeteners, from processed foods on the microbiome can no longer be ignored. The best strategy is to reduce the intake of sweeteners, whether the sweeteners are caloric or non-caloric.

ATENUAREA DEZECHILIBRULUI METABOLIC ŞI ÎMBUNĂTĂȚIREA STĂRII PSIHOEMOȚIONALE PRIN APLICAREA PROGRAMULUI DE EXERCIȚII FIZICE

Anatolie BACIU

Institututul de Fiziologie și Sanocreatologie, Chișinău, Republica Moldova Corresponding e-mail: anatolikbacio@gmail.com

Medicina secolului XXI va fi inspirată biologic și bazată pe profilaxie, adica nu numai pe tratarea maladilor, ci pe prevenirea lor prin schimbare esențială a stilului de viată: raportului perioadelor de acitivitate zilnică și de recreare, regimului și rației alimentare, coordonării direcționate a stării psihoemoționale și etc. Stilul de viată a omului în societate contemporană se caracterizează prin dezechilibrul esențial între efort fizic care promovează consumarea energiei și alimenție abundentă pe fondul mobilității reduse. În țarile industriale (SUA, Regatul Unit, Canada, Australia) rata populației umane cu masa corporală excesivă și obezitate depășește 50 %. Diabetul zaharat și distresul psihoemoțional devin o epidemie. Mai mult decât atât, distresul psihosocial, emoțional provoacă patogeneza diabetului zaharat de tipul 2 (diabetes mellitus). Reiesind din aceasta, propunem aplicarea în practică profilaxiei dezechilibrului metabolismului glucidic, lipidic și proteic unei abordări complexe bazate pe combinare a exercițiilor fizice aerobe cu hypoxia și hypotermia în mediul acvatic în condițiile sanocreatoriumului. Sanocreatorium reprezintă un centru de creare a sănătătii sau de recuperare a unei insuficiente morfofunctionale. Acest efort fizic multimodal sporește semnificativ consumarea energiei și rata metabolismului, precum și îmbunătățește stare psihoemoțională a individului. Pentru a aproba această abordare practică și a investiga reactivitatea metabolismului efectuat testările laboratoare indicatorilor biochimici și biofizici pe parcursul îndeplinirii exercițiilor aerobe, înotului (freestyle sau bras) și înotului subacvatic cu retinerea respirației (freediving, la temperatura apei redusă treptat de la 23 până la 18°C). Cercetare a fost realizatăla la indivizi (bărbați, vârstă 19-22 ani, n = 15) practic sănătoși și antrenați sportiv cu aplicarea monitorizării saturației de oxigen a sângelui, consumului maximal de oxigen (VO₂max/kg), concentrației de glucoză plasmatică, lipidogramei, concentrației de uree din sânge și urină.

Stare psihoemoţională am examinat prin intermediul estimării activității mușchilor mimici, adică aspectului dinamic al feței care exteriorizeză divierile reactivității la aplicarea prezentației video cu un conținut specific emoțiogen și sistemului de captare a mișcărilor. Această monitorizare este strict necesară pentru a obține o posibilitate de a personaliza programul individual de profilaxie sau de recuperare. În cazul contrar de un efort fizic în exces poate declansa dezvoltarea stresului oxidativ caracterizat de prezența radicalilor liber și insuficiența sistemelor antioxidant. Am depistat că după o perioadă timp de 5 săptămâni de realizare a programului personalizat pragul anaerob crește semnificativ pe fondul majorării gradului de saturație a oxigenului în sânge. Cea ce manifestă îmbunătătirea capacitătilor aerobe a organismului si indirect metabolismului energetic. Mai mult decât atât, rezultatele obtinute permit presupunere că după un program de profilaxie metabolismul glucidic, lipidic și proteic este mai echilibrat. Scăderea nivelului de glucoză după ultimă sesiune de antrenamet este mai atenuată în comparație cu prima sesiune îndeplinită la începutul programului, cea ce sugerează ideea prevenirii hypoglicemiei după un efort fizic. Lipidograma către sfârșitul programului de profilaxie se caracterizeză prin majorarea ratei lipoproteidelor cu densitate înaltă (de la 30,1±3,4 până la 44,9±5,1 mg/dL, P<0,01) și micșorare lipoproteidelor de densitate joasă (de la 30,4±0,8 până la 19,3±0,2 мг/дл, P<0,01). Această observatie dovedește posibilitate de prevenire a aterosclerozei. Am observat și atenuare veridică a creșterii concentrației de uree în urină imediat după terminarea unei sesiuni de antrenament, cea cea sugerează faptul că raportul dintre degradarea proteinelor și asamblarea lor s-a deviat în direcția activizării proceselor anabolice. Îmbunătățirea psihoemoționale am evidențiat prin depistarea activității mușchilor: zigomaticus major; zigomaticus minor; buccinator; orbicularis oris; levator anguli oris: lateral frontalis care exteriorizează stare emotională positivă pe fondul reducerii miscărilor în zonele muşchilor: corrugator supercilii; procerus; orbicularis oculi; nasalis. Aşadar, programul complex de profilaxie sau de recuperare bazat pe combinarea efortului fizic aerob, hypoxiei și hypotermiei asigură echilibrul metabolismului glucidic, lipidic și proteic pe fondul îmbunătățirii stării psihoemoționale.

CHANGES IN THE STRUCTURE OF GAMETE BIOCOMPLEXES UNDER THE INFLUENCE OF CRYOPRESERVATION FACTORS

I. BALAN, G. BORONCIUC, N. ROSCA, V. BUZAN, I. CAZACOV, M. BUCARCIUC, S. BALACCI, G. VARMARI, N. ZAICENCO, I. MEREUTA, N. FIODOROV, A. DUBALARI, I. BLINDU, G. OSIPCIUC

Institute of Genetics, Physiology and Plant Protection, Chisinau, Republic of Moldova Corresponding e-mail: balanion@rambler.ru

Bioorganic compounds are included in the composition of reproductive cells predominantly in the form of high molecular biocomplexes. Recent years studies show that this sialidase in association with the plasma membrane has important physiological significance for the cell. This enzyme is located on the plasma membrane not randomly, but in certain areas, called domains, which are membrane invaginations enriched in glycosphingolipids and kaviolin, and are resistant to non-ionic detergent X-100 treatment. Microdomains are extremely rich in various kinases and play an important role in cell physiology. And sialidase modulates the activity of the kinases, and hence cell response to certain signals, changing the qualitative and quantitative composition of glycolipids in these domains. The characteristic feature of glycolipids, what they differ from each other by N-neuraminic acid and fucose ratio and molar ratio of each of them to one of the carbohydrates in the main part of glycoprotein molecules. Our experiments showed that the content of sialic acid in bovine sperm ranges from $2,3\pm0,35$ - $4,0\pm0,40$ g/billion. It should be noted that, against expectations, the number of sialic acid in the cryopreservation of bovine sperm decreases. In addition to sialic acid studies, we studied the cryogenic changes of 6-deoxy-hexoses, which are widely represented in the various natural compounds, and therefore is of interest to elucidate their role in specificity and biological activity of cell. The experiments performed in the laboratory show that the number of 6-deoxy-hexoses in bulls' spermatozoa after dilution is within the range of 10,1±0,34 mg/billion gametes.

However, reproductive cells lose their number of 6-deoxy-hexoses already during cooling, when their content is changed by 19%. The further falling of test indicator occurs after freezing and thawing, when their number reaches only 80,5% compared with the refrigerated gametes. If neuraminic acid plays an anti-adhesive role masking special receptor side, the balance between sialo- and asialo-contained structures can determine cell adhesion and recognition. Therefore, specific sialic acid receptor is one of the mechanisms by which the cell modulates its potential of recognition and changes its behavior according to the influences of the environmental factors. Changes in the content of neuraminic acid and 6-deoxy-hexoses do not only alters the receptor side, it disrupts the charge of the molecules which influences the form of its oligosaccharide part, its non-covalent and electrostatic interactions with surrounding molecules, which may also modify the surface of the plasma membrane. The changing of the content of sialic acid and 6-deoxy-hexoses during cryopreservation of genetic resources may cause deformation of the membrane surface of gametes, change its architectonic, accelerate the aggregation of proteins on the surface, because the ability of glycoproteins and glycolipids to form local clusters can be controlled by the amount of inter-repulsive molecules of N-Acetylneuraminic acid which they carry. These changes at the level of 6-deoxy-hexoses and sialic acids sufficiently characterize the state of decay of the glycocalyx system and of the extracellular matrix. Reducing the total number of 6-deoxyhexoses and elevating levels of N-Acetylneuraminic acid indicates the membrano-destruction of its glycosaminoglycan component. This component is responsible for the membrane process of reception and stability, and high content of sialic acids shows the strengthening of the process of membrane separation components. Thus, glycoprotein and glycolipid complexes of bulls' gametes which have as a part the carbohydrate component sialic acid, undergo some changes in the process of cryopreservation. It is interesting that the 6-deoxy-hexoses are subject to change as well. This leads to the need to take in consideration the identified changes during the development of cryoprotective media and identify the optimal conditions of cryopreservation.

MORPHO-PHYSIOLOGICAL ASPECTS OF BRAIN AGING

Elena BEREZOVSCAIA^{1,2}, Liudmila GOLOVATIUC^{1,2}

¹Institute of Physiology and Sanocreatology; ² "Nicolae Testemitanu" State University of Medicine and Pharmacy, Republic of Moldova

All living organisms show a number of age-related morphological, biochemical and physiological changes. The problem of preserving the functional activity of a person to a very old age is one of the most complex and relevant in modern science. The human nervous system is most sensitive to age-related changes.

The purpose of our work was to identify the most common agerelated changes in the nervous system. To achieve this purpose, scientific articles were searched in the Google Scholar Base, search engine for the keywords: nervous system / brain and aging; agerelated changes in the central nervous system / brain, etc. Total of 56 scientific papers were selected and analyzed.

Many researchers indicate that the most characteristic age-related changes are a decrease in the mass of gray and white matter in the brain, a decrease in the number of neurons in combination with an increase in the number of glial cells in the cerebral cortex, and a change in the vascular circulation of the brain. However, Pakkenberg B. et al. (2003) proved that during physiological aging the number of neurons decreases by only 10%, and the number of glia cells increases slightly, however, neuron death increases significantly when neurodegenerative diseases occur. Anisimov V. N. (2008) indicates that an age-related change in lipid composition in brain cells reduces the viscosity of membranes, which contributes to an imbalance of trace elements, electrolytes and a decrease in water content. Keller J.N. (2006), Powell S. R. (2005) and Moreno-Garcia A. (2018) suggest that the characteristic markers of aging are the accumulation of amyloid bodies, neuromelanin, lipofuscin, etc.

However, the role of these substances in aging and age-related changes in brain function remains unclear. Gallagher D. (1980), Roth G. S. (1988) and Rehman H. U. (2001) indicate a change in the concentration and desynchronization of the formation of serotonin, catecholamines and others neurotransmitters in the period of diminution of functions and believe that the reason for these disorders is to reduce the number of receptors. Petersen R. C (2000) and Li S. C. (2001) note a gradual decrease in cognitive function with age. And according to Anisimov V.N. (2008), the functional usefulness of the central nervous system persists until the very advanced years and claims that the most common and significant age-related changes are slowness of behavior, which is determined by a decrease in the speed of the pulse along the peripheral nerves, namely an increase in old age reaction times are mediated by impaired posture, slowness and loss of coordination when walking, writing and other targeted motor acts.

Thus, the aging process triggers a cascade of morphophysiological and neuroendocrine changes in the nervous system, however, the degree of these changes does not always correspond to the severity of human brain functions.

The work was carried out as part of the projects: 15.817.04.01 F "Psychic health, its externalization, tests and estimation technology, development of its classification system"; 15.817.04.38 A "Diffuse chronic diseases of the liver extrahepatic manifestations".

HUMAN AND ANIMAL DIGESTIVE TUBE - SPECIFIC ECOLOGICAL NICHE FOR STREPTOCOCCI

Victoria BOGDAN

Institute of Physiology and Sanocreatology, Republic of Moldova

Is known that in the process of evolution currently existing microorganisms in the environment they colonized various open cavities of the human and animal organism, being considered for each genus and species, until the present as specific ecological niches. Currently, experimentally it is found that the human and animal digestive tract serves as a ecological niche to about 500 species of bacteria. According to accessible bibliographic data in most scientific papers such bacteria have the form of bacilli (for example, the genera Bifidobacterium, Lactobacillus, Bacteroides, Escherichia, Proteus, Clostridium, Eubacterium, Selenomonas et al).

In the works published in the last 15 years it warns about the fact of existence in the composition of gastrointestinal bacteriocenosis and bacteria in the form of cocci, but they are in a limited quantity and mainly refers to Institute of Physiology and Sanocreatology and the Department of Microbiology, Virology and Immunology of the State University of Medicine and Pharmacy «Nicolae Testemitanu» Republic of Moldova.

Therefore the purpose of the present research was to highlight bacteria in the form of cocci what can be found in the intestinal (rectal) human and animal contents, that is which are specific to their digestive tract.

The researches planned to achieve the goal were carried out in several stages. Initially human and animal individuals were chosen with different health status (sanogenic and pathological); from the selected individuals monotulpins of bacteria in the form of cocci were isolated and then subjected the kind identification.

The result was observed that children, piglets and calves with state health sanogenic preponderant stood out microorganisms of the genera: Streptococcus, Lactococcus, Enterococcus, Ruminococcus et al., and with the pathological - Streptococcus, Micrococcus, Diplococcus, Pneumococcus, Staphylococcus etc., being not characteristic of the healthy macroorganism.

The data obtained argued recommendation for inclusion in the pharmaceutical preparations with probiotic action of streptococci monotulpins isolated only from healthy subjects that is, with the sanogenic state of the health of the body.

ANTI-ACETYLCHOLINESTERASE AND PRO-COGNITIVE PROFILE OF COTININE AND 6-HYDROXY-L-NICOTINE IN AN AB₂₅₋₃₅-INDUCED RAT MODEL OF ALZHEIMER'S DISEASE

Razvan Stefan BOIANGIU, Marius MIHASAN, Lucian HRITCU*
"Alexandru Ioan Cuza" University, Faculty of Biology, Iasi, Romania
Corresponding e-mail: hritcu@uaic.ro

Alzheimer's disease (AD) is the most common and severe form of dementia. Worldwide, it is estimated that 46.8 million people suffer from dementia and by 2050, this number is expected to reach approximately 131.5 million people due to increasing numbers of elderly people. One of the neuropathological features of AD is represented by the degeneration of cholinergic neurons in the basal forebrain. At the cognitive level, the main hallmark of AD is memory decline. Nicotinic acetylcholine receptors (nAChRs) modulate the neurobiological processes underlying hippocampal learning and memory. Nicotine stimulates nAChRs thus improving the attention, memory and learning. However, nicotine's cardiovascular and addictive side-effects have limited its therapeutic use in AD but remain a strong scaffold for developing new drugs for AD. Cotinine (COT) and 6-hydroxy-L-nicotine (6HLN), two nicotine derivatives that are structurally similar, were found to possess antioxidant and cognitive-enhancing properties without showing the side-effects of their precursor. In this study, we used *in silico* tools to evaluate and compare the binding potential of COT and 6HLN in two different allosteric binding sites ($\alpha 4$ - $\alpha 4$ and $\alpha 4$ - $\beta 2$) of human $\alpha 4\beta 2$ nAChRs (PDB ID 6CNK). We have also performed a series of *in vivo* tasks to assess the effects of COT and 6HLN on memory impairment in a rat model of AD induced by brain infusion of $A\beta_{25-35}$ peptide. The acetylcholinesterase (AChE) activity was also measured. Our results showed that COT and 6HLN bind preferentially and with higher energy than nicotine to $\alpha 4-\beta 2$ compared to $\alpha 4-\alpha 4$ interface of $\alpha 4\beta 2$ nAChRs. COT and 6HLN administration mitigate the spatial and recognition memory deficits and decreased the specific activity of AChE in the hippocampus of $A\beta_{25-35}$ -treated rats. These results suggest that COT and 6HLN might represent new therapeutic agents in AD by modulating cholinergic activity. This work was supported by a grant of CNCS-UEFISCDI, project number PN-III-P1-1.1-TE-2016-0367, within PNCDI III.

EFFECTS OF ROSMARINUS OFFICINALIS ESSENTIAL OIL IN MEMORY FORMATION AND RELIEVING BRAIN OXIDATIVE STRESS IN ZEBRAFISH MODEL

Luminita CAPATINA¹, Razvan Stefan BOIANGIU, Elena TODIRASCU-CIORNEA ¹, Gabriela DUMITRU¹, Edoardo NAPOLI², Giuseppe RUBERTO², Lucian HRITCU¹

^{1"}Alexandru Ioan Cuza" University of Iasi, Iasi, Romania;

²CNR Instituto di Chimica Biomolecolare, Catania, Italy

Introduction: This study was done to assess the anxiolytic, antiamnesic and antioxidant potential of *Rosmarinus officinalis* essential oil, in three concentrations 25, 150 and 300 ml / L (Teipel *et al.*, 2018)

Methodology: Anxious behavior and memory performance were assessed by NTT (new tank diving test) and Y and T mazes, and scopolamine (100 μ M) was administered by immersion 30 minutes before behavioral testing to induce anxiety and a mild dementia.(Zanandrea *et al.*, 2018)

Results: Our data has shown that essential oil of rosmarin has diminished anxious behavior and amnesia induced by the use of scopolamine in parallel with the decrease in oxidative stress in the zebra fish brain.

Discutions: The essential oil of rosmarin is known for its antiinflammatory effects due to its compounds - α -pinene, camphor, eucalyptol - the chemical composition being identified by GC-MS (Borges *et al.*, 2018). At the same time, literature mention the antiamnesic and anti- acetylcholinesterase effects of rosemary essential oil in a scopolamine - induced Wistar rat animal model (Ozarowski *et al.*, 2013).

Conclusions: The results obtained from the behavior of zebrafish behavior in the three behavioral tests show a significant difference between the activity of scopolamine-treated animals and those exposed to rosmarin oil, especially in the concentration of 25 $\mu l \, / \, L.$ In conclusion, the essential oil studied could be considered a good candidate for improving memory by inhibiting acetylcholinesterase and reducing oxidative stress in the brain.

THE APPLICATION OF SOME COORDINATION COMPOUNDS IN REGULATION OF THE CONTENT OF SOD IN SPIRULINA PLATENSIS BIOMASS

Daniela ELENCIUC¹, Valentina BULIMAGA³, Nadejda EFREMOVA², Liliana ZOSIM³, Ludmila BATIR²
¹ "Dimitrie Cantemir" State University, Chisinau, Republic of Moldova;

²Institute of Microbiology and Biotechnology of Moldova; ³State University of Moldova Corresponding author: e-mail: ciumac@yahoo.com

Investigation of non-traditional sources of bioactive substances is one of the current directions of biotechnology development in many countries worldwide. Cyanobacteria Spirulina platensis is widely explored and used in recent decades as a source of valuable biologically active substances [1, 5.]. An important role in neutralizing the harmful effects of oxidative stress have the superoxiddismutase (SOD), that it is present, also, in the biomass of cyanobacteria Spirulina platensis. The influence of vanadium compounds on photosynthesis in cyanobacteria hasn't been yet studied completely. Pharmacological uses of vanadium include lowering of cholesterol, triglycerides and glucose levels [2]. Vanadium also possesses anti-carcinogenic and anti-diabetic properties [3]. Another trace element - cobalt has important biological significance, ions of which are actively involved in the reactions of oxidation and reduction, have a positive influence on the processes of cell respiration and metabolism, as well as on the biosynthesis of phycobiliproteins and nucleic acids [4].

The aim of this investigation presents a study of possibility of utilization of some coordination compounds of V(IV) and Co(III) as regulators of the content of superoxide dismutase in the biomass of cyanobacteria *Spirulina platensis*.

The high degree of biological activity of the cyanobacteria *Spirulina* platensis is caused mainly by the presence of antioxidants in the composition of its biomass.

It was established a weak inhibitory effect of the two studied compounds: [(VO)₂(2PyTCH)]SO₄•4H₂O in concentrations within 5 to 25 mg/l and Na[Co(DH)₂(NO₂)₂] (10-25mg/l) on the productivity of spirulina. In the case of utilization of the other compounds, productivity values are within the reference sample, except for compounds [Co(L-H)En]·3H₂O and Na[Co(DH)₂(NO₂)₂], which contribute to increase of productivity by 11-18% compared to the reference sample in the concentration of 5 mg/l.

The determination of activity of superoxiddismutase (SOD) in obtained extracts from spirulina biomass allowed to establish a positive effect of coordination compounds of Co (III) on the activity of this enzyme. Maximum increase of superoxiddismutase activity in the biomass of spirulina (by 38% compared to the reference sample) was established in the case of utilization of the compound [Co(L-H)En]·3H₂O in the concentration of 15mg/l. The significant increase of SOD activity (by 32-36% compared to the reference sample) is registered in the case of administration of the compound Na[Co(DH)₂(NO₂)₂] in the concentration range of 15-25mg/l.

The present study reveals that obtained biomass of cyanobacteria *Spirulina platensis* with high content of SOD can be used for the elaboration of medical remedies for prophylaxis and treatment of diseases, caused by the negative effect of oxidative stress on live organisms and, also, for the elaboration of cosmetic preparations for the prevention of premature skin aging, protection against solar radiation and treatment of skin diseases.

References

- 1. Abd El-Baky, H., Farouk, K., El-Baroty, S., (2003): Spirulina species as a source of carotenoids and α -tocopherol and its anticarcinoma factors. Biotechnology, 2(3): 222-240.
- 2. Goc, A., (2006): Biological activity of vanadium compounds. Central European Journal of Biology, 1(3): 314-332.
- 3. Harding, M., Mokdsi, G., (2000): Antitumor metallocenes: structure-activity studies and interactions with biomolecules. Current Medicinal Chemistry, 7(12): 1289–1303.
- 4. Kim, J., Gibb, H., Howe, P., (2006): Cobalt and inorganic cobalt compounds. United Nations Environment Programme, World Health Organization, 89 p.
- 5. Rudic, V., (2007): Ficobiotehnologie cercetări fundamentale și realizări practice. Elena VI Press, Chișinau, 364 p.

CHANGES IN MENTAL PROCESSES IN PEOPLE AFTER 60 YEARS

Alexandra GOLOSEEV

Institute of Physiology and Sanocreatology, Republic of Moldova

It is necessary to consider what processes occur at the initial stage of a decrease in mental functions to meet the needs of older people. Psychosanocreatology considers higher mental processes as a complex reflex activity, adequate reflection of reality occurs thanks to this activity.

With age, despite the fact that their list does not change, all the mental functions of a person (sensation, perception, memory, thinking, imagination, etc.) undergo certain changes. After 60 years, there is a change in leading needs, their social orientation and motivating forces are gradually decreasing (Boltenko, 1980).

It was previously thought that maturity represented the cessation of the development process. In adulthood, there is only continued accumulation and comprehension of life experience that does not affect the internal mechanisms of psychophysiological functions. The periodization of the aging process is based on: the extinction of socially significant activity, a change in the levels of regulation, especially self-esteem and self-awareness in older people as psychological criteria. Currently, more and more people over the age of 60 continue their personal development, travel, study at universities, engage in creativity, sports and other types of active activities.

In order to feel harmonious and happy after 60 years, you need to fully and richly live your youth. It is necessary to lead a healthy lifestyle and try to avoid stress, be able to create and maintain family and friendships. And when adulthood has already arrived, it is worth analyzing your current state and making plans for the future. The main factor in healthy growing up is the attitude towards health and life. It is most difficult to accept old age not in health and with irritation. An annoyed old age is a consequence of dissatisfaction in life, disappointments, most often in oneself, in one's experience, in which a person approached his late period of life. Old age is the time when you need to be what you have become, or you can become what you want.

Reflections and summing up cannot be avoided, but it is important to approach it constructively, to evaluate that after 60 there is more free space, time and you can do what you did not have enough before - to travel, to develop yourself, to master technical innovations and trends, to rest. This is the time to share experience with the young, the time to continue developing in the area of activity that has become the most interesting and successful, the time to relax and to communicate – the latter is very important. In old age communication plays an important role and in order to feel alive, in demand, so as not to fall out of the social environment, you should create a circle of communication for yourself, preferably in advance, although it is never too late to re-form.

In the body and psyche of each person, numerous aging processes develop at different speeds largely independent of each other and each of these processes can be influenced by special methods. Aging is not necessarily associated with degradation and disease. Therefore, there is an acute problem of the awareness of members of society, family, social workers regarding the very phenomenon of old age, its physiological and emotional nature (Krasnova, 2006). Without a rational knowledge of this issue, freed from prejudices and various mythological and stereotypical representations, it is very difficult to create an ecological living environment taking into account their requirements and needs, build correct, careful relations with older people, and influence the social policy of the state.

The work was carried out as part of the project: 15.817.04.01 F "Psychic health, its externalization, tests and estimation technology, development of its classification system".

INDICII CARE REFLECTĂ PROCESELE DE EXCITAȚIE ȘI INHIBIȚIE LA ȘOBOLANI ÎN FUNCȚIE DE SOMATOTIP ȘI RAȚIE ALIMENTARĂ

Ana LEORDA, Svetlana GARAEVA, Galina POSTOLATI

"Dimitrie Cantemir" State University, Institute of Physiology and Sanocreatology, Chisinau, Republic of Moldova

Raportul cantitativ al conținutului de aminoacizi inhibitori și excitatori din serul sangvin oferă informații despre starea proceselor nervoase dominante – excitare sau frânare [4]. Acest raport variază între 3,45-5,35 la indivizii astenici, 1,86-3,70 la cei normostenici și 2,49-4,12 la hiperstenici. Valorile cele mai ridicate ale acestui indice au fost observate la sobolanii de tip astenic, ceea ce denotă predominanța proceselor neurofiziologice inhibitoare. S-a demonstrat, că starea funcțională a glandei tiroide este direct proporțională cu starea nervoasă predominant inhibitoare tirozină/fenilalanină (T / F) reflectă nivelul activitătii functionale a glandei tiroide [3]. Conform rezultatelor noastre, la sobolanii astenici, acest indice este crescut față de alte somatotipuri (1,99 ± 1,25 la astenici, 1.67 ± 0.31 la normostenici si 0.88 ± 0.34 la hiperstenici). ceea ce este în concordanță cu datele literaturii privind activitatea functională crescută a glandei tiroide la astenici si redusă la hiperstinici. În general, pe măsura măririi proporției de proteină din rația alimentară, începând cu 12%, se atestă o creștere semnificativă a acestui indice la astenici de la 1.33 ± 0.10 până la 3.24 ± 0.24 , ceea ce indică la o scădere a activității funcționale a glandei tiroide. În cazul hiperstenicilor, odată cu creșterea proporției de proteină (20%) din rația alimentară, valoarea indicelui T / F, dimpotrivă, scade de la 1,21 ± 0,04 până la 0,54 ± 0,02, iar în condițiile administrării rației, începând cu 30% de proteină - scade de 2,2 ori, ceea ce indică la o crestere a activitătii functionale a glandei tiroide. Mai mult ca atât, transformarea fenilalaninei în tirozină, efectuată sub actiunea fenilalaninei-4-hidroxilază, este necesară nu numai pentru formarea hormonilor stimulatori ai tiroidei, ci și pentru îndepărtarea excesului de fenilalanină dăunătoare creierului [1], care probabil se acumulează în sângele sobolanilor la administrarea rației cu proporția de 30% proteină.

La șobolanii astenici, s-a depistat nivelul crescut atât al indicelui T / F, cât și al raportului aminoacizilor liberi de inhibiție/ excitație, ceea ce denotă, că în sistemul lor nervos central predomină procesele de frânare, caracterizate prin astfel de stări precum frica, depresia etc.[5].

Astfel, valorile cele mai ridicate ale raportului dintre aminoacizii inhibitori și excitatori au fost observate la șobolanii astenici, ceea ce demonstrează predominanța proceselor neurofiziologice inhibitoare. La șobolanii astenici, indicele T / F, care reflectă nivelul activității funcționale a glandei tiroide, a fost crescut, comparativ cu alte somatotipuri. Pe măsură ce proporția proteinei din dietă crește, indicele T / F în serul sangvin se modifică în funcție de somatotip.

- 1. Ellaway C.J., Holme E. a.oth. Outcome of Tyrosinemia Type III. //J.Inherit.Metab. Dis. 2001, N24, 824-832.
- Vudu Lorina Particularitățile metabolismului aminoacizilor la pacienții cu hipotiroidie. Buletinul AŞM. Științele vieții. Nr. 1(322) 2014. 27-32.
- 3. Гараева С.Н., Редкозубова Г.В., Постолати Г.В. Аминокислоты в живом организме. Кишинев: Изд-во АН М, 2009. 552 с.
- 4. Горина А.С., Колесниченко Л.С., Бормотова Н.Н. Содержание аминокислот и нейромедиаторов в сыворотке крови с синдромом дефицита внимания/ гиперактивности //Сибирский медицинский журнал. 2012,№2. 82-84
- 5. Струтинский Ф.А. Физиологически адекватное питание и здоровье. Chişinău 2006. 408p.

Nota: Teza a fost elaborată în cadrul proiectului: Alimentația în raport cu tipurile constituției. Impactul alimentației asupra sanogenității gameților masculini.

NGS. TENDINȚE ACTUALE DE DIAGNOSTIC MOLECULAR DE LABORATOR ÎN CANCERULUI, SOMATIC

Rodica MARTEA, Maria DUCA

"Dimitrie Cantemir" State University, Chisinau, Republic of Moldova Corresponding author email: rodica.martea@gmail.com

La nivel mondial, inclusiv și în Republica Moldova tumorile maligne ocupă poziția a doua în structura deceselor, cu o incidență sporită. În anul 2008, cancerul a cauzat 7,7 milioane de decese în toată lumea. Un raport al Agenției Internaționale pentru Studiul Cancerului (IARC) - agenție a Organizației Mondiale a Sănătății – arată că, în 2030, vor ajunge să fie afectate de cancer circa 13,2 milioane de oameni în fiecare an – aproape de două ori mai multi decât în 2008.

În Republica Moldova, conform datelor Institutului Oncologic, în anul 2016 s-au înregistrat 52 042 persoane aflate în evidența unităților medicale cu diagnosticul de cancer, totodată anual peste 5 600 persoane decedează în urma afecțiunilor oncologice.

Noțiunea de CANCER reprezintă denumirea comună pentru toate bolile care prezintă în celule trăsături distincte caracteristice ciclului celular, metabolismului, statului imunogen și micro mediului în care activiză. Cancerul este o maladie generată la nivel molecular-celular care însumează subtipuri într-o categorie bolile ce își au geneza la nivel molecular și au descrierea generală comună de a provoca dividerea necontrolată a celulelor în cadrul cărora au loc evenimente genetice atipice. Un grupul de celule anormale alcătuiesc o tumoare.

Clasificarea cancerului este una complexă, se cunosc mai mult de 100 de tipuri de cancer care sunt denumite de regulă în funcție de organele sau țesuturile în care acestea se formează. Există peste 300 de gene a căror mutații pot induce formarea cancerului.

În acest context, numărul de gene și mutații este mare, iar preparatele țintă există doar pentru un număr limitat dintre ele. Cu ajutorul tehnologiilor de secvențiere de noua generație sau paralel masivă - *Platformele Next-Generation Sequencing* (NGS) poate fi adusă la realitate crearea tratamentelor personalizate.

Cercetările au fost efectuate în cadrul proiectului 18.80.07.16A/PS - Crearea suportului decisional în rapoartele de secvențiere de următoarea generație pentru variantele somatice a cancerului din cadrul Programului de Stat finanțat pentru anii 2018-2019 "Medicina de precizie în prevenirea, diagnosticul și tratamentul patologiilor".

FUNCTIONAL AND STRUCTURAL FEATURES OF THE STAGE OF GENERAL BIOLOGICAL DEGRADATION

Victoria NOFIT

Institute of Physiology and Sanocreatology, Republica Moldova

Getting older the human body undergoes degenerative, progressive changes, which, as a rule, affect the physical and mental well-being of a person. Aging is a natural, inevitable and irreversible stage of human development, which is the subject of many scientific studies. This process includes changes in the biological, psychological and social sphere due to wear of vital organs and systems and can be associated with various age-related diseases that disrupt the normal functioning of a person. The problem of controlled maintaining of physical and mental health in this age period is relevant in that its solution can enable older people to continue their fruitful activities in society.

The purpose of the paper was to elucidate the functional and structural specifics of the stage of development of general biological degradation by analyzing scientific papers in the field of health sciences.

Materials and methods included a review of the scientific literature using the PubMed - Google Scholar database and other sources of information. The following keywords were used for the search: gerontology, geriatrics, late middle age etc.

Aging is a complex phenomenon that includes various changes in the whole body. Age-related changes in the skeleton occur relatively early, especially in bones that underwent mechanical stress. Thus, according to Lifanova et al. (2007), after 60 years, bones lose 30-50% of their weight due to demineralization and porosity. With age, according to Mitchell et al. (2012), muscle mass decreases by 0.5% -1.0% per year. Age-related changes in the respiratory system, according to Seung Hung et al. (2016) include structural changes in the chest and the lungs parenchyma, decreased lung function, and decrease in respiratory muscle strength. Structural and functional changes in the circulatory system accumulate throughout life, which leads to an increased risk of cardiovascular failure, its prevalence increases after 65 years.

With age, the heart grows in size and its walls thicken, myocardial function changes, the vessels lose their elasticity, etc. Age-related changes in the organs of the digestive system are numerous and diverse. Lifanova et al. (2007), claims that in older people absorption processes in the intestine are disturbed, reflexes affecting intestinal motility are weakened, pancreatic secretory function decreases, evacuation function of the gall bladder worsens, liver detoxification function decreases, etc. Aging causes progressive structural and functional kidney changes, which is manifested by a decrease in glomerular blood flow and glomerular filtration rate. After 60-65 years, regressive changes in the reproductive system occur. According to Alekseev et al. (2016), atrophy of the internal and external female genital organs is observed in women, the secretion of gonadotropin increases, the secretion of estrogen decreases, and the feedback mechanism is disturbed; in men, the functions of the gonads also weaken. In the immune system of the elderly, according to Montecino-Rodriguez et al. (2013), dramatic continuously progressive changes occur, up to immuno-senescence. The nervous system also undergoes significant changes. There are changes in neurohumoral regulation, which lead to metabolic disorders and a decrease in the function of the central nervous system cells and tissues. Frolkis et al. (1991) argue that after 55-60 years, brain mass and volume decrease by 6-7%. Hedden et al. (2004), argues that the aging process affects a number of cognitive functions of the hippocampus and frontal cortex: speed, attention, adequate perception, learning and memory processes.

Thus, the general biological degradation that occurs during aging affects all vital systems of the body. And the determination of functional and structural specificity characterizing this stage is necessary for the development of measures for the prevention of premature biological and mental diminution of functions.

The work was carried out as part of the project: **15.817.04.01** F "Psychic health, its externalization, tests and estimation technology, development of its classification system".

HUMAN CONSTITUTION AND ACID FORMATION PROCESS

Alexei ORGAN¹, Ion MEREUTA¹, Lilia POLEACOVA¹, Mariana CIOCHINA¹, Stanislav SANDUTA², Boris UNTU³

¹Institute of Physiology and Sanocreatology, Republic of Moldova

²The Profilactory of Academy of Sciences of Moldova, Republic of Moldova

³Medical center "Petru-med", Chisinau, Republic of Moldova Corresponding author email: organ-alexei@mail.ru

"There is a world of infinitely small.

There is a world of infinitely large.

And there is a world between them - the world of life.

In the world of life, there is a man - the world infinite complexity and infinite wisdom.

And complexity and wisdom embodied in the constitution of man". Bogomolets A.

The whole diversity of human individualities can and even should be subdivided into groups outside geographic and racial-ethnic affinity. Each of the groups has a special reactivity and integrated bio psychic characteristic.

The first mentions of constitutional types are in the section "History of the Teaching of Reactivity", still in Ayurveda. Husson classified people into three types. Viola, a disciple of De Giovani, also divided people into three types. The most important step in constitutional science was made by U.H. Sheldon, who also linked the middle and two extreme types of constitution and psyche — with a medium-normative, accelerated or slowed-down rate of morphogenesis and individuals.

The relevance of this work lies in the fact that the literature has little studied the question of the relationship of constitutional types of a person with the secretion function of the stomach. 26 healthy people are examined. Fibrogastroscopy was performed for everyone and the acidity of intragastric contents was determined with the use of double-leaf probes and the AGM-10-01 acid gastrometer. Depending on the state of the acid-forming function of the stomach, the patients were divided into three groups.

The first group included patients with hypoacidity (pH of the body of the stomach is basal >2,5 (2,5-5,5). The second group included patients with normoacidity (pH of the body of the stomach is basal 1,5-2,5, atropine is a positive test). The third group included patients with hyperacidity (the pH of the body of the stomach is basal 1,5-2,0, atropine negative test).

Thus, the data obtained on the three types of gastric secretory function are also consistent with other researchers (E.Yu. Linar, A.V. Frolkis, Z. Maratka, U.H. Sheldon, etc.). The acid-forming function of the stomach, depending on the state of the reflex (nervous) and humoral "histamine, gastrin" of regulation links, is divided into three types – hypoacidity, normoacidity and hyperacidity.

Three types of the process of acid formation correspond to the three constitutional types of the human body, described since ancient times in different ways depending on the school and tradition (India, Tibet, etc.). Knowledge of the characteristics of the acid-forming function of the stomach in the three constitutional types of the organism will contribute to the correct and scientifically-based formulation of diets and nutrition.

THE INFLUENCE OF DIFFERENT RATIONS IN ASSOCIATION WITH TESTOSTERONE ON THE CHANGE OF THE FREE AMINO ACID CONTENT IN THE SERUM OF OLD RATS

Lilia POLEACOVA, Mariana CIOCHINĂ

Institute of Physiology and Sanocreatology, Chisinau, Republic of Moldova

Corresponding author email: bostan-lilia@mail.ru

According to the sanocreatological nutrition theory, the role of nutrition consists not only in supplying the organism with the necessary energy and plastic substances but also in the formation and maintenance of the health. The significance of nutrition as a determinant factor in health insurance and disease prevention is enhanced with the development of sanocreatology, as it is the most frequent factor influencing on the organism. So far the present is no unanimously accepted opinion on the structure and content of food ration in the period of degradation of the organism. It is believed that with age, the amount of protein administered should be reduced, but it is well known that catabolic processes predominate during this period, which determines the process of degradation. According to sanocreatology, the prevention of early degradation of the organism is possible by increasing anabolism on the background of intensive catabolism to get the balance of these processes by increasing the amount of protein in the food ration. Because testosterone, being an anabolic hormone, primarily influences the protein metabolism, it has been necessary to study its influence on this metabolism, an indicator of which the content of free amino acids in serum can be used. The purpose of the research was the determination of the particularities of the change of the content of free amino acids in the blood of old rats fed with different rations in association with testosterone.

The investigations were performed on white old laboratory rats (males - 24-30 months), divided into 3 experimental groups: the first group – ration standard (15% - proteins, 60% - cardohydrates, 25% - lipids), group 2 – with high-protein ration (25% - proteins, 55% - cardohydrates, 20% - lipids), group 3 – with ration rich in cardohydrates (70% - cardohydrates, 10% - proteins, 20% - lipids).

The experiments with testosterone (TS) administration were achieved on similar animals distributed in 3 groups: standard ration in association with TS, ration rich-protein in association with TS and ration rich in carbohydrates in association with TS. The TS administration was performed intranuscularly daily (solution of TS propionate), individually, according to body mass (0,1 mg/100 g body weight), the dose is changed weekly with its change. Duration of the experiment – 31 days. The content of free amino acids in the serum was determined by the ion-exchange liquid chromatography method.

Maintenance of old rats with ration with different content of constituent components has resulted in increasing the numerical value of most free amino acids in the serum, so we can admit that catabolic processes are increased and anabolic ones are diminished; while in association with TS, the change in the vector of the concentration of most amino acids has a downward character. That is to say, the ration with both high protein content and carbohydrate-rich content is possibly associated with the reduction of anabolism, and the standard ration in association with TS – with the reduction of both anabolism and catabolism. We will note that the total amino acid content decreased in the serum of old rats in combination with TS in association with different rations in all three groups compared to the animals without TS administration maintained with the same ration.

Therefore, the comparative analysis of the influence of rations with the different structures on the content of free amino acids in the serum of old rats shows the decrease of the anabolic processes, especially in the case of protein-rich ration. The influence of different rations in association with TS on free amino acid content at old rats reveals the diminution of their anabolic processes, and in the case of carbohydrate-rich ration – catabolic processes are clearly expressed.

SINTEZA ORIENTATĂ A POLIZAHARIDELOR SULFATATE LA CIANOBACTERIA SPIRULINA PLATENSIS ÎN PREZENTA UNOR COMPUSI COORDINATIVI AI CU (II)

Olga ŢURCAN

Institute of Microbiology and Biotechnology, Republic of Moldova; Corresponding author email: turcanolga2019@mail.ru

Una dintre cele mai promiţătoare microalge care poate fi utilizată ca sursă naturală de vitamine, proteine, minerale, acizi grași polinesaturați, polizaharide sulfatate etc. este cianobacteria *Spirulina platensis*. În ultimele decenii, o atenție mare a fost concentrată asupra proprietăților biologice ale polizaharidelor și derivatele chimice ale acestora, în special derivați sulfatați. Polizaharide sulfatate au o gamă largă de bioactivități importante cum ar fi antioxidantă, antitumorală, imunomodulatoare, antiiinflamatoare, anticoagulantă, antivirală, antibacteriană, antilipemică. Calciu spirulan (Ca-SP) este un nou polizaharid sulfatat izolat din *Spirulina platensis* ce are proprietăți de a inhiba replicarea mai multor virusuri, incluzând virusul Herpes simplex tip 1, citomegalovirusul uman, virusul rujeolic, virusul oreion, virusul gripal A si HIV-1.

Astfel, devine actuală investigarea posibilităților de majorare a conținutului de polizaharide sulfatate la cultivarea cianobacteriei *Spirulina platensis*. Scopul investigațiilor a fost studiul influenței unor compuși coordinativi ai Cu(II) asupra sintezei exopolizaharidelor (epz) sulfatate la cianobacteria *Spirulina platensis*. În calitate de stimulatori ai sintezei de epz au fost utilizați compușii coordinativi ai Cu(II) cu produșii codensării obținute din 2-amino-2-metil-1,3-propandiol și aldehide salicilice substituite: PK-2-C15H18ClCuNO4; PK-5-C₁₁H₁₂Br₂ClCuNO₃; PK-10- C₁₃H₂₀CuN₂O₉; PK-12-C₁₁H₁₃ClCuN₂O₉ administrați la mediul de cultivare în concentrații de 0,005; 0,01 si 0,015 mmol/L.

În urma cercetărilor efectuate s-a determinat efectul toxic provocat de compușii coordinativi testați, deoarece și concentrațiile minime (0,005 mmol/L) administrate au manifestat un efect negativ, cu mici excepții în cazul compusului PK-12 ce a dus la o sporire neesențială a viabilității cu pînă la 3%. Efectul toxic provocat de compușii coordinativi ai Cu(II) asupra productivității spirulinei demonstrează că în urma stresului suportat, probabilitatea eliminării în mediu a unui conținut sporit de epz este foarte înaltă. Conținutul de epz sulfatate al spirulinei a fost determinat în lichidul cultural conform metodei descrise de Ramus în modificația noastră. În urma cercetărilor efectuate în acest sens, a fost observat că toți compușii coordinativi ai Cu(II) testati, duc la majorarea epz sulfatate, continutul acestora fiind mai mare odată cu creșterea concentrațiilor de compuși utilizați. Astfel, în mediul cultural al spirulinei după 10 zile de cultivare, toti compușii coordinativi ai Cu (II) utilizați au stimulat sinteza de epz sulfatate, înregistrîndu-se valori de 2 - 3 ori mai înalte decît în martor (6,55 mg/l). Un conținut maxim de 22,82 mg/l epz sulfatate s-a înregistrat în cazul administrării compusului PK-5 (0,015mmol/l). Compușii PK-2 și PK-10 de asemenea au arătat valori înalte ale continutului de epz sulfatate de 19,44 și 19,66 mg/l respectiv.

În concluzie, s-a stabilit că toți compușii testați ai Cu(II) au un efect de stimulare a sintezei exopolizaharidelor sulfatate și acest efect este determinat de concentratia si natura compusului utilizat.

Cuvinte cheie: polizaharide, Spirulina platensis, calciu-spirulan (Ca-Sp), compuși coordinativi, activitate antivirală

PARTICULARITĂȚILE MORFO-FIZIOLOGICE ALE CREIERULUI ÎN PERIOADA DE STABILITATE RELATIVĂ A ACTIVITĂȚII PSIHICE ȘI DE ÎNCEPUT A DIMINUĂRII FUNCȚIILOR ORGANELOR ȘI SISTEMELOR VITALE (40-45 DE ANI – 60 DE ANI)

Parascovia ŢURCANU

¹Institute of Physiology and Sanocreatology; Republic of Moldova

Începând cu vârsta de 40 de ani, în organismul uman au loc modificări morfo-funcționale, care progresează odată cu vârsta. Schimbările legate de vârstă afectează activitatea tuturor sistemelor organismului în care multe procese încetinesc și au loc modificări ireversibile.

Dacă până acum bolile mintale degenerative își făceau apariția la persoane trecute de 60 de ani, studii de ultima oră, care examinează cauzele îmbătrânirii cerebrale precoce, au ajuns la concluzia că stresul emoțional și cel de la locul de muncă, alături de alte cauze au făcut ca simptomele acestor tulburări psihice, cum ar fi Alzheimer, Parkinson, depresia, demența și altele, să se manifeste de la o vârstă tot mai scăzută, chiar începând cu 40-45 de ani. După vârsta de 40 de ani, volumul și greutatea creierului scad cu aproximativ 5% pe deceniu, parțial datorită morții progresive sau contracției neuronilor din materia cenușie (Peters, 2006). Tecile de mielină care protejează neuronii încep să se deterioreze începând cu vârsta de 40 de ani, deoarece corpul nu mai poate repara acest strat, ca urmare are loc încetinirea activității creierului, ceea ce înseamnă că și reacția corpului este întârziată.

Modificările morfo-fiziologice ale creierului adesea preced modificările mintale observate odată cu vârsta. Creierul pierde treptat neuronii și susține celulele neurogliale. Între 20 și 60 de ani, creierul pierde aproximativ 0,1% din neuroni pe an, după care procesul se accelerează (Esiri, 2007). Pierderea de celule care apare în hipocamp într-un mod dependent de vârstă este unul dintre motivele pentru care memoria scade. Primele semne de pierdere a memoriei încep să apară între vârsta de 45-49 de ani (Joel, 2017; Manoux, 2012).

Această pierdere a celulelor face parte din îmbătrânirea normală, dar poate duce și la dezvoltarea bolilor neurodegenerative, cum ar fi boala Alzheimer, o afecțiune progresivă, care distruge treptat memoria și alte funcții mintale importante. Totodată, această maladie este cea mai des întâlnită formă de demență. La bolnavii cu Alzheimer, celulele creierului se degradează și mor, cauzând un declin la nivelul memoriei și al funcțiilor mintale. Demența provoacă degenerarea neuronilor și a țesutului cerebral, afectează gândirea, comportamentul și abilitatea de a îndeplini sarcinile de zi cu zi. Prin moartea celulelor din substanța neagră, se creează un deficit de dopamină. În mod normal, controlul mișcărilor este rezultatul unui echilibru dintre cantitatea de dopamină și acetilcolină. Prin pierderea acestui echilibru, rezultă tremorul, rigiditatea și pierderea coordonării mișcărilor și aparitia bolii Parkinson.

În prezent 5% din populația globului, suferă de depresie, o afecțiune psihică care afectează gândirea, emoțiile, percepțiile și comportamentul. La fiecare gând, emoție, creierul secretă neurotransmițătorul corespondent, iar în cazul depresiei, dopamina și serotonina sunt deficitare. În cazul depresiei se observă alterarea neuroplasticității la nivelul zonelor cerebrale: amigdala, talamusul, hipocampul și cortexul cerebral, care sunt implicate în reglarea dispoziției.

Astfel, această perioadă de vârstă, este caracterizată prin modificări morfologice și neuroendocrine ale creierului care afectează viața cotidiană. Menținerea activității mintale, implicarea în activități sociale, sportive și activității stimulatoare mintal, pot încetini declinul activității psihice a creierului.

Lucrarea a fost efectuată în cadrul proiectului de cercetări științifice fundamentale 15.817.04.01F "Sănătatea psihică, exteriorizarea ei, teste și tehnologie de estimare, dezvoltarea sistemului de clasificare a acesteia".

ВЛИЯНИЕ РАЦИОНА ПИТАНИЯ С ВЫСОКИМ СОДЕРЖАНИЕМ УГЛЕВОДОВ НА ГУМОРАЛЬНЫЙ ИММУНИТЕТ

Ольга БУЛАТ

Institute of Phisiology and Sanocreatology Corresponding e-mail: bulatolga@mail.ru

Питание является одной из неотъемлемых составляющих здорового образа жизни и имеет непосредственное влияние на функционирование иммунитета. С развитием санокреатологии остро встал вопрос о возможном использовании рационов питания человека в целях направленного формирования и поддержания его здоровья, в том числе и иммунного статуса. Модулирующее действие пищевых веществ реализуется на субклеточном, клеточном и межклеточном уровнях взаимолействия.

Целью данного исследования явилось изучение гуморального звена иммунной системы, у молодых крыс на фоне использования рациона питания с высоким содержанием углеводов.

Исследование проводилось на 2 группах молодых 3 месячных белых лабораторных крысах-самках. Первая группа животных содержалась на стандартном рационе питание, а во второй группе содержание углеводов в рационе увеличили до 70% при этом, не снижая минимально допустимого порога белков и липидов для нормального функционирования организма. Методом иммуноферментного анализа определяли гуморальный иммунный статус, именно, обшие a иммуноглобулинов A, M и G (IgA, IgM, IgG), в сыворотке крови.

Анализ полученных данных не выявил существенных отличий в показателях концентрации иммуноглобулина А в сыворотке крови в обеих экспериментальных группах молодых крыс. В группе, содержащейся, на стандартном рационе питания, концентрация IgA составила 1,38±0,07 мг/мл, а в группе с рационом с преимущественным содержанием углеводов — 1,24±0,005 мг/мл, что объясняется высокой активностью всех физиологических процессов в молодом организме.

Вместе с тем, было выявлено достоверно выраженное понижение концентрации IgG и IgM у крыс получавших рацион питания с высоким содержанием углеводов, что представляют собой объяснимо. поскольку углеводы неисчерпаемый источник митогенов и иммуномодуляторов. Так концентрация IgM в первой группе составила 0,92±0,015 мг/мл, а во второй снизилась до 0.5 ± 0.005 мг/мл, в свою очередь концентрация IgG составила $2,14\pm0,0,02$ мг/мл и $1,92\pm0,05$ мг/мл соответственно в I и II группах. Снижение содержания иммуноглобулинов M и G может свидетельствовать о дефиците гуморального звена иммунитета, что способствует развитию иммунодефицита.

Таким образом, проведенные исследования показали, что у крыс в молодом возрасте содержание иммуноглобулина A в сыворотке крови, в зависимости от рациона кормления изменяется незначительно, в то время как иммуноглобулинов M и G изменяется достоверно.

ПСИХИЧЕСКОЕ ЗДОРОВЬЕ В ПОЖИЛОМ ВОЗРАСТЕ

Людмила ГОЛОВАТЮК^{1, 2}, Елена БЕРЕЗОВСКАЯ^{1, 2}
¹Институт Физиологии и Санокреатологии; Республика
Молдова

²Государственный Университет Медицины и Фармации им. Николае Тестемицану, лаборатория Гастроэнтерологии, Республика Молдова

Старение населения является одной из важнейших проблем в настоящее время, а одним из актуальных вопросов науки становится проблема сохранения психического здоровья в пожилом возрасте. Старость - это длительный и полноценный этап развития, у которого есть свои возрастные задачи и возможность самоактуализации. Личностные и психические особенности пожилых людей проявляются неуверенностью в себе. снижением самооценки, страхом одиночества, раздражительностью; проявлением повышенного внимания к своему телу, замыканием интересов на себе, которое проявляется эгоцентричностью и эгоизмом (Хилько, 2014, Чурилова, 2004). Наиболее остро переживается чувство неполноценности, т. к. в пожилом возрасте человек чаще испытывает недомогание, уграчивает былую привлекательность и свой привычный статус. По мнению Т. М. Чуриловой (2004) все эти переживания отрицательно влияют на состояние ментального здоровья пожилых людей, в том числе и на их качество жизни.

У лиц пожилого возраста распространенность патологии ментальной сферы выше, чем в среднем по популяции. Наиболее распространенным психическим нарушением у пожилых людей является депрессия, которая на продолжительное время выводит человека из его эмоционального равновесия, значительно ухудшая качество жизни.

Нарушения эмоционального компонента в большинстве случаев проявляется подавленным настроением, непреходящим чувством тоски и тревоги, у человека возникает чувство ненужности, безнадежности, беспомощности, незаслуженной обиды, все кажется неинтересным и малозначащим. М. В. Ермолаева (2002), Н. Ф. Шахматов (1996) и др. утверждают, что наибольшие трудности в восприятии своего нового этапа в жизни испытывают лица, которым прожитая жизнь кажется цепью упущенных моментов и возможностей. Так как по их мнению уже поздно что-то начинать с начала, прошлого не вернуть и ничего не изменить. По мнению Т. М. Чуриловой (2004) положительно воспринимают свой возраст люди, которые ощущают свою самодостаточность, чувствуют удовлетворение от прожитых лет и находят удовлетворение в новых сферах деятельности. Наличие смысла жизни влияет на психическое и соматическое здоровье, и помогает справиться со стрессовыми ситуациями и психическими травмами.

Профилактикой глубоких и болезненных проблем в старости могут стать поддержка людей из близкого круга, освоение новых интересных ролей и сфер деятельности, наличие хобби, новых увлечений и т. п. так как чтобы сохранить ментальное здоровье в любом возрасте человек должен чувствовать себя полноценным членом общества.

Работа была выполнена в рамках проектов: 15.817.04.01 F "Sănătatea psihică, exteriorizarea ei, teste şi tehnologie de estimare, dezvoltarea sistemului de clasificare a acesteia"; 15.817.04.38 A "Bolile cronice difuze ale ficatului – manifestări extrahepatice".

CURRENT ASPECTS AND PROSPECTS IN ECOLOGY, GENOFOND PROTECTION and CLIMATIC CHANGE

PROTECTION OF THE BLACK WALNUT (JUGLANS NIGRA) GENOFOND IN FOREST ECOSYSTEMS

Ion AGAPI

"Alexandru Ciubotaru" National Botanical Garden (Institute), Republic of Moldova Corresponding author email: agapi-ion@mail.ru

Forests and trees enhance and protect landscapes, ecosystems and production systems. They provide goods and services which are essential to the survival and well-being of all humanity. Forest genetic resources are the heritable materials maintained within and among tree and other woody plant species that are of actual or potential economic, environmental, scientific or societal value. Forest genetic resources are essential for the adaptation and evolutionary processes of forests and trees as well as for improving their productivity.

Black walnut is one of the largest hardwood trees found and is valued economically and ecologically for its wood and edible nuts. Black walnut trees (Juglans nigra) produce high-value, hardwood products and distinctively flavored, edible nuts. Both large and small black walnut forest plantations have been established with the intent to harvest huge nut crops from trees that will eventually produce veneerquality logs. However, if experience has taught us anything about black walnut, it is that optimum nut production and optimum wood production are not normally produced by the same tree. Black walnut culture is really the story of two totally different trees all wrapped up into one tree species. The first tree is the walnut timber tree. This tree grows tall and straight in a forest of mixed hardwood trees. Timber type trees in natural stands or man-made plantations are grown closely together with little or no sunlight reaching the forest floor. Black walnut is a large tree and on good sites may attain a height of 30 to 38m and diameter of 76 to 120 cm and can exceed 100 years of. Black walnut is shade intolerant, and control of competing vegetation is especially important in new plantations for the first 3 to 4 years. Black walnut timber trees often grow more than 80 years to produce highquality lumber or veneer. Height and diameter growth are the most studied traits in black walnut, because they are easily measured traits in young trees and because they give an overall impression of a tree's vigor.

Over the long term, these traits also reflect a tree's adaptation to the site on which it is growing. As expected, heritability estimates for these basic growth traits are very high in the early generations of selection.

Black walnut genetic research has been focused on the practical improvement of the species for the production of timber or nuts. Although black walnut has a large native range, black walnut improvement has been largely a preoccupation. The optimal age for selection depends on thinning schedules and site quality, as these factors influence selection intensity, intertree competition, and trait heritability. Black walnut is considered to be a difficult species to vegetatively propagate by rooting. Developing a convenient and reliable micro-propagation technique for black walnut will greatly enhance our ability to evaluate rootstock and permit the development of clonaly propagated rootstocks.

Reliable estimates of genetic parameters require establishing breeding populations of sufficient size and family structure. These estimates are used to predict genetic gain from selection programs, define selection indices, and determine if a program should be infused with new germplasm. Pollen analysis is a useful tool for screening wild germplasm to select the best genotypes for inclusion in a breeding program.

Planting black walnut in forests should be encouraged to using native seedling selections to elite germplasm, it is still necessary to maintain and catalogue species diversity. This is important because it is sometimes necessary to infuse a breeding population with new germplasm to minimize inbreeding.

THE RELEVANCE OF THE CONSERVATION OF GENETIC RESOURCES BY THE VITRIFICATION METHOD

I. BALAN, N. ROSCA, V. BUZAN, S. BALACCI, N. ZAICENCO, N. FIODOROV, A. DUBALARI, I. BLINDU, G. OSIPCIUC

Institute of Physiology and Sanocreatology, Chisinau, Republic of Moldova

Corresponding author email: balanion@rambler.ru

The conservation of biological diversity is receiving great attention. Its reduction threatens humanity with an irreplaceable loss of many resources, degradation and destruction of the biosphere. The depletion of animal genetic resources can cause a variety of negative consequences: firstly, the efficiency of breeding work will decrease significantly; secondly, already existing animal breeds will not be able to successfully resist constantly evolving pathogens of diseases and will become an easy victim of epizootics; thirdly, valuable genetic material for studying the evolution of animals will be lost. To preserve biodiversity genetic resources, a non-alternative method is cryopreservation using the vitrification method.

Vitrification refers to the transition of a liquid into a solid state, caused not by crystallization, but by an extreme increase in viscosity during cooling. Vitrification fluid consists of a mixture of highly concentrated penetrating cryoprotectant (acetamide, propylene glycol, glycerol, ethylene glycol) and non-penetrating cryoprotectant (polyethylene glycol, ficoll, sucrose) in a buffered saline solution. The concentration of the cryoprotectant is so high that with very rapid cooling to -196 °C, the viscosity greatly increases.

This is a modern method of cryopreservation of reproductive cells that provides a higher level of their survival after freezing due to the use of highly concentrated solutions, as well as small volumes and limited time. This avoids the formation of ice crystals inside the cell, which often causes its irreversible destruction.

Embryos can be frozen by vitrification. Before freezing, they are kept in vitrifying solutions containing ethylene glycol, propanediol, sucrose, elglutamine. Cryopreservation is carried out by an open method. For thawing, frozen objects are immersed in a vitrifying solution containing sucrose, glutamine for several minutes, followed by transfer to a washing solution.

The transfer is carried out the next day after thawing, less often it can be allowed day to day. Using this technology, it is possible to obtain more than 90% of human embryos that have retained the normal morphology of all blastomeres and non-detecting signs of negative effects. Vitrification now occupies a dominant position in the field of activity of embryologists and at present there is no particular alternative to replace vitrification yet in this regard. However, transplantation of devitrified embryos recorded about 30% of clinical pregnancies. This indicates that, despite the prospect of vitrification, this method needs substantial improvement, after which it can find wide application in the practice of human and animal reproduction.

Vitrified objects can be used to maintain the number of bioorganisms, for which genetic banks are called upon to play a large role. The creation of such banks will save genetic information for the following groups of animals and plants: 1) endangered and rare species; 2) promising species for domestication, breeding, medical and other needs of the national economy; 3) representatives of native breeds of animals and plant varieties; 4) outstanding individuals.

Thus, at present there are significant successes in solving the problems of reproduction of animals using vitrified material. However, further trends in the development of research in the field of of cryopreservation should be aimed at a deeper study of the mechanisms of cryodamage and cryoprotection of reproductive cells; continuation of research to identify the relationship between the chemical structure, physico-chemical properties and toxicity of cryoprotectants; the creation of new, more effective cryotechnologies.

VIABILITATEA TULPINII *BACILLUS Sp.* NR. 2 PÂNĂ ŞI DUPĂ LIOFILIZARE ÎN PREZENȚA NANOPARTICULELOR ÎN BAZA FIERULUI

Ludmila BATÎR, Valerina SLANINA

Institute of Microbiology and Biotechnology, Republic of Moldova Corresponding author email: batludmila@mail.ru

În RM există problema acută a poluării solurilor cu substanțe nocive, îndeosebi în jurul fostelor depozite de pesticide. Pesticidele periculoase abandonate și depozitele devastate au impact negativ asupra populației și mediului. Tehnologiile de decontaminare care sunt propuse la momentul dat presupun excavarea solului poluat și fitoremedierea. Aceste tehnologii sunt foarte costisitoare și/sau nu țin cont de condițiile pedoclimaterice ale regiunii de decontaminare, ce predetermină eficiența lor scăzută. Abordările microbiologice propuse în cadrul cercetărilor noastre includ aplicarea nanotehnologiilor, care sunt unul dintre cele mai promițătoare domenii ale științei. Proprietățile unicale ale unor nanoparticule (reactivitate, mobilitate în mediile poroase, durabilitate înaltă și toxicitate redusă) deja sunt utilizate în remedierea solurilor și apelor subterane poluate cu POPs.

Astfel, cercetările noastre s-au axat pe studiul influenței nanoparticulelor în baza fierului (nanomagnetita de fier și nanofier zero valent) asupra viabilității tulpinii *Bacillus sp.* Nr. 2, în procesul liofilizării, cu utilizarea ulterioară a acesteia în calitate de nanobioremediator datorită capacității de sporire a gradului de mineralizare a poluantului în sol, care a fost demonstrat anterior în cercetările noastre.

Rezultatele efectuate asupra stabilirii efectului lioprotector a nanoparticulelor în baza fierului asupra viabilității tulpinii $Bacillus\ sp.$ Nr. 2 în procesul de liofilizare au demonstrat că, utilizarea atât a nanomagnetitei cât și a nanofierului, în limita concentrațiilor de $1-10\ mg/L$, nu a dus la modificări esențiale viabilitatea tulpinii până la liofilizare, astfel încât aceasta variază în limita probei martor, cu mici devieri de până la 3%, în cazul utilizării a $10\ mg/L\ NP\ Fe_3O_4$ (Figura 1).

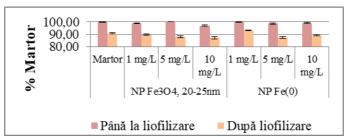


Fig. 1 Viabilitatea tulpinii *Bacillus sp.* Nr. 2 până și după liofilizare în prezența nanoparticulelor în baza fierului

Analiza rezultatelor obținute după liofilizare, au permis de a stabili că, odată cu majorarea concentrației nanomagnetitei are loc scăderea neesențială dar treptată a viabilității față de proba martor, iar în cazul nanofierului concentrațiile mici (de 1 mg/L) sporesc neesențial viabilitatea pe când concentrația de 5 mg/L puțin o inhibă cu tendința de revenire la nivelul probei martor odată cu majorarea concentrației până la 10 mg/L.

În rezultatul liofilizării tulpinii *Bacillus sp.* Nr. 2 în prezența nanoparticulelor în baza fierului putem constata că, nici nanomagnetita nici nanofierul utilizat în studiu nu au influențat negativ viabilitatea tulpinii date, cu mici devieri nesemnificative. Astfel, liofilizarea tulpinii *Bacillus sp.* Nr. 2 în prezența nanoparticulelor în baza fierului, menține viabilitatea la nivelul probei martor, iar NP studiate nu pot fi recomandate în calitate de lioprotectori care ar duce la majorarea viabilității.

STABILIREA INFLUENȚEI EXTRACTELOR BIOACTIVE DIN SPIRULINĂ ASUPRA INDICILOR BIOCHIMICI A CULTURILOR DE LEVURI, DUPĂ UN AN DE PĂSTRARE ÎN STARE LIOFILIZATĂ

Ludmila BATÎR, Valerina SLANINA, Valeriu RUDIC

Institutul de Microbiologie și Biotehnologie, Chișinău, Republica Moldova Corresponding author email:batludmila@mail.ru

Conservarea microorganismelor și păstrarea îndelungată a proprietăților sale morfo-culturale și biochimice sunt sarcina de bază a Colecției Naționale de Microorganisme Nepatogene din cadrul Institutului de Microbiologie și Biotehnologie. Cea mai eficientă metodă de conservare utilizată în CNMN s-a dovedit a fi metoda liofilizării, însă selectarea mediului de protecție optim are cel mai important rol în acest sens. Astfel, cercetările noastre s-au axat pe utilizarea în calitate de conservanți naturali a tulpinilor de levuri depozitate, unele extracte policomponente obținute din biomasa de spirulină, administrate în mediul de protecție în diferite concentrații. După un an de păstrare a tulpinilor de levuri în stare liofilizată în prezența extractelor bioactive a fost determinat conținutul de proteine și carbohidrați după 3 pasaje de cultivare, cînd cultura revine la starea sa fiziologică normală, în urma stresului suportat în procesul liofilizării conform metodelor descrise de Lowry și Filipovici.

Rezultatele obținute asupra conținutului de proteine în biomasa levurii de panificație, după un an de păstrare în stare liofilizată, crește de la limita probei martor pînă la 24,49% în cazul extractului proteic (conc. 10%) și pînă la 28,06% în cazul extractului proteoglucidic (10%).

O altă tulpină studiată a fost cea de bere, valorile conținutului de proteine fiind mai mic față de proba martor doar în prezența extractelor etanolice cu pînă la 25,35%. De asemenea, putem constata că, în prezența celorlalte extracte conținutul proteinelor variază la limita probei martor cu mici devieri.

Analiza rezultatelor obținute asupra conținutului de proteine în biomasa levurilor de vin a permis de a stabili că, conținutul de proteine este mai sporit față de martor în prezența tuturor extractelor policomponente testate.

Astfel, conținutul de proteine este cu 9,98 – 40,48% mai mare în biomasa levurii *Saccharomyces cerevisiae* CNMN-Y-20 și cu 8,97 – 52,86% în biomasa levurii *Saccharomyces cerevisiae* CNMN-Y-21, ceea ce constituie de pînă la 1,1 – 1,5 ori mai mult.

Un alt component biochimic analizat și determinat în biomasa levurilor după un an de conservare în prezența extractelor policomponente obținute din biomasa de spirulină a fost conținutul de carbohidtați. Rezultatele obținute în acest sens au permis de a stabili că, conținutul de carbohidrați, în biomasa levurii de panificație, se modifică pozitiv, astfel încît efectul inhibitor este nesemnificativ și constituie 5,75 – 8,41%, pentru 3 variante testate în rest se obține un spor ce variază de la limita probei martor pînă la 32,03%. Rezultate pozitive asupra conținutului de carbohidrați s-a obținut și în biomasa tulpinii levurii de bere, acesta variind de la limita probei martor pînă la o depășire cu 9,72% (în cazul extractului proteic 5%) și cu 32,91% (extractului glucidic 10%). Valori mai joase cu 16,05% au fost obținute în prezența extractelor etanolice în concentrație de 10%.

Analiza conținutului de carbohidrați în biomasa levurilor de vin a demonstrat că, cel mai bun efect a fost obținut în cazul liofilizării tulpinii de levuri *Saccharomyces cerevisiae* CNMN-Y-21 în prezența extractelor etanolic 50% (cu 11,16 – 18,59%) și proteic (cu 35,65 – 39,58%). În cazul tulpinii *Saccharomyces cerevisiae* CNMN-Y-20 efect pozitiv a avut de asemenea extractul proteic (cu 17,69%) și cel glucidic (cu 10,54%) în concentrații de 5% și extractul etanolic 50% (cu 7,24 – 11,13%) în ambele concentrații. În rezultatul investigațiilor efectuate asupra componentelor biochimice în biomasa levurilor, după un an de păstrare în stare liofilizată în prezența conservanților naturali, obținuți din biomasa spirulină, putem constata că, toate extractele testate influențează pozitiv atît sinteza proteinelor cît și cea a carbohidraților ceea ce duce la sporirea potențialului lor tehnologic.

IMPACTUL SECETELOR DIN ULTIMII ANI ASUPRA SECTORULUI AGRICOL DIN REPUBLICA MOLDOVA

Ilie BOIAN

Universitatea de Stat "Dimitrie Cantemir", Republica Moldova ilieboian@mail.ru

Seceta în Moldova este unul dintre cele mai periculoase fenomene ale naturii, reprezentând trăsătura specifică a climei regionale, condiționate de distribuția neuniformă în timp și spațiu a precipitaților atmosferice pe fondul valorilor ridicate ale temperaturii aerului.

Evaluările arată că deficitul de precipitații atmosferice este specific practic pentru tot teritoriul republicii. Astfel, evaluarea teritoriului Republicii Moldova după gradul de ariditate în conformitate cu indicii utilizați în practica internațională (conform raportului dintre suma de precipitații $\sum R$ și evapotranspirația potențială E_0), arată că cea mai mare parte a teritoriului republicii se atribuie la regiunile subhumide și semiaride cu probabilitate mare de apariție a secetelor și dezvoltare a proceselor de deșertificare.

Secetele tot mai frecvente și mai intensive din ultimii ani, conform constatărilor specialiștilor, sunt un răspuns evident la schimbările climatice regionale, și în primul rând din cauza procesului de încălzire și aridizare a climei regionale.

În ultimele două decenii cele mai puternice secete pe teritoriul republicii (din punct de vedere a intensității și catastrofale după suprafața ocupată) s-au înregistrat în anii 2003, 2007, 2009, 2012 și 2015, având drept consecință scăderea semnificativă a recoltei culturilor agricole.

Ca exemplu, poate servi seceta catastrofală din vara anului 2015, care s-a manifestat prin vreme foarte caldă și lipsa ploilor regionale, precipitațiile având un caracter preponderent local. Temperatura medie a aerului pentru acest sezon a constituit în teritoriu +21,6..+23,8°C, fiind cu 2,2-3,3°C mai ridicată față de normă, ceea ce se semnalează în medie o dată în 15-30 ani pentru toată perioada de observații. Cantitatea de precipitații în decursul verii pe 60% din teritoriul republicii a constituit în fond 80-160 mm (40-70% din normă).

Izolat în raioanele de nord și centrale ale țării au căzut doar 50-70 mm (20-30% din normă), ceea ce în aceste regiuni se semnalează pentru prima dată din toată perioada de observații instrumentale. Ani analogi după regimul termic și cantitatea de precipitații sunt 2007 și 2012.

Conform informației oficiale a Ministerului Agriculturii și Industriei Alimentare, seceta din anul 2015 a redus parțial recolta la cerealele de grupa I-a (cu circa 25% față de roada medie din anul 2014) și a contribuit la scăderea semnificativă a roadei culturilor de grupa a II-a (cu circa 30-40%). Astfel, pierderile directe în sectorul agricol la aceste două grupe de culturi cerealiere au constituit peste 3 miliarde lei.

Seceta din anul 2015, precum și secetele din anii 2018 și 2019 confirmă, o data în plus nivelul insuficient de adaptare a agriculturii Republicii Moldova la condiții de secetă, care tot mai frecvent și cu o intensitate sporită afectează sectorul agrar în ultimii ani.

În acest sens se impune o nouă reorientare în structura culturilor agricole, respectiv varietăți cu o toleranță ridicată față de temperaturile ridicate și stresul hidric generat de lipsa apei.

Totodată, se impun adaptarea tehnologiilor agricole la resursa de apă, conservarea apei din sol prin alegerea unui sistem de lucrări minime reprezentând o nouă tendință de reorientare a cerințelor privind calitatea și conservarea resurselor de sol și apă.

De asemenea, descreșterea resurselor de apă cu 10-30%, în special în zonele deficitare, va accentua consecințele lipsei de apă, efectele fiind amplificate de poluare și tehnologii necorespunzătoare.

Măsurile și oportunitățile pentru reducerea efectelor condițiilor limitative de vegetație determinate de secete sunt:

- extinderea suprafețelor agricole asigurate contra riscurilor naturale, inclusiv a secetei;
- restabilirea si dezvoltarea in continuu a suprafețelor de irigare prin:
 a) revitalizarea sistemelor disponibile de irigație și majorarea suprafețelor irigabile prin picurare, îndeosebi la plantele multianuale;
 b) sporirea numărului de bazine acvatice artificiale pentru colectarea apelor de suprafață.
- gestionarea eficientă a resurselor de apă în agricultură, respectiv o mai bună utilizare a rezervelor de umiditate din sol pe tot parcursul sezonului de vegetație, inclusiv alegerea perioadelor de semănat în funcție de gradul de aprovizionare cu apă a solurilor;
- selectarea de genotipuri rezistente la condițiile limitative de vegetație, cu o toleranță ridicată la "arșiță" și secetă;
- implementarea sistemelor agricole avansate de cultivare a plantelor: agricultură durabilă, agricultură ecologică, agricultură conservativă, inclusiv a tehnologiilor No-till și Mini-till.

MAMIFERELE MICI (RODENTIA, INSECTIVORA) UN ELEMENT DE BAZĂ ÎN MONITORIZAREA FOCARELOR NATURALE ȘI ANTROPOGENE DE LEPTOSPIROZĂ DIN REPUBLICA MOLDOVA

Victoria BURLACU^{1,2}, Natalia CATERINCIUC^{1,2}, Victoria NISTREANU^{1,2}, Alina LARION²

¹Agenția Națională pentru Sănătate Publică; ²Institutul de Zoologie, Chișinău, Republica Moldova Corresponding author email: burlacu.ivictoria@gmail.com

Organizarea activităților de colectare a mamiferelor mici din focarele naturale și antropogene de leptospiroză ne permite acumularea unui număr de date ce ține de circulația agentului patogen, intensitatea epizootiilor depistate, aria de răspândire etc., cu evaluarea tendinței de evoluție, riscurilor și utilizarea rezultatelor obținute pentru argumentarea măsurilor de sănătate publică. Scopul cercetării a fost de a identifica speciile de mamifere mici cu portaj de leptospire în focarele naturale și antropogene de leptospiroză.

Cercetările a au fost efectuate pe parcursul anului 2018 în punctele de evidență anuală și multianuală în zonele de Nord (r-nul Glodeni), centru (r-nele Orhei, Ialoveni) și sud (r-nul Cahul). În r-nul Ialoveni monitorizarea a fost efectuată din indicații epidemiologice în luna noiembrie, în legătură cu înregistrarea cazurilor de leptospiroză. Mamifere mici au fost capturate din păduri, liziera pădurii, terenuri cultivate, pârloagă, livadă părăsită, grădini din localități rurale, precum și ecotonurile acestora și investigate în laboratorul de referință. Pentru colectarea și investigarea mamiferelor mici au fost aplicate metode zoologice, microbiologice și statistice. Indivizii au fost determinați până la specie și investigați la prezența anticorpilor specifici către *Leptospira* spp.

Pe parcursul anului 2018 au fost instalate 2341 capcane zi, capturate 404 mamifere mici și investigate 394 exemplare. Ordinului Rodentia a fost reprezentat de 12 specii (*Clethrionomys glareolus, Microtus subterraneus, Arvicola terrestris, Microtus sp., Apodemus uralensis, A. sylvaticus, A.agrarius, A.flavicollis, Mus spicilegus, M. musculus, Micromys minutus, Rattus norvegicus*) și Insectivora - 2 specii (*Sorex minutus, S.araneus*). În zona de centru s-a înregistrat o diversitate de 12 specii, în zona de nord și sud 11 și 10 respectiv.

Valorile indicelui anual de capturare a mamiferelor mici în zona de nord (18,5%) și centru (18,1%) practic a fost aceleași, în zona de sud a constituit 12,8%. Cele mai abundente specii și prezente practic în toate biotopurile cercetate în zona de nord sunt *A.agrarius* și *A.flavicollis*, în zona de centru - *A.flavicollis* și *A.sylvaticus*, în zona de sud - *A.sylvaticus* și *A.agrarius*.

Prin cercetări de laborator a fost determinată prezenta leptospirelor la 10,7% rozătoare capturate în biotopurile r-nului Ialoveni. Serotipul Leptospira icterohaemorrhagiae a fost evidențiat la speciile A.agrarius, R. norvegicus și M. musculus capturate în biotopurile de pădure, agrocenoză și umed (habitate posibile de molipsire cu leptospire a doi pacienti). Speciei A. agrarius îi revine o pondere de peste 50% din numărul total de mamifere mici determinate cu portaj de leptospire. Prezenta leptospirelor a fost determinată la 4% mamifere mici capturate r-nul Cahul. Serotipul L.icterohaemorrhagiae s-a evidențiat la specia R.norvegicus în biotopul palustru. În acest tip de biotop prin diverse activității cotidiene omul poate contracta leptospire în perioada de vară-toamnă.

În perioada de studiu în zonele de centru și sud sunt active focarele naturale și antropogene de leptospiroză. Circulația agentului patogen în natură este menținută de speciile *A.agrarius*, *R. norvegicus* și *M.musculus*, care reprezintă rezervor și sursă de infecție capabilă să contamineze ecosistemele republicii.

Studiul a fost efectuat în cadrul proiectului fundamental 15.187.0211F realizat la Institutul de Zologie și în cadrul contractului de colaborare între Institute of Zoology și Agenția Națională pentru Sănătate Publică.

ACTUAL STATUS OF BATS (MAMMALIA: CHIROPTERA) IN ABANDONED LIMESTONE QUARRIES FROM BYCIOC VILLAGE

Vladislav CALDARI, Victoria NISTREANU, Natalia DIBOLSCAIA, Alina LARION

Institute of Zoology, Chisinau, Republic of Moldova Corresponding author email: vlad.caldari@mail.ru

The abandoned limestone quarry from Bycioc is located near the village, along the left side of Nistru river and represent the largest complex of mines on the territory of the Republic of Moldova. The mines have more than 30 entrances and stretch over the distance of 3.5 km. The size of entrances varies between 0.5 m and 4 m height and between 3 m and 5.5 m width. The quarries and have been excavated mechanically with special machines, the underground galleries have the height of 2.5-6 m, the width of 3-7 m and the maximum depth of 5 km. The cracks left after the machine saws are elongated, more or less symmetrically disposed with the width of 3-5 cm and 7-15 cm depth, where bat individuals are located. The temperature and humidity near the entrances fluctuate depending on the season, while at 50-m and deeper they are relatively constant: temperature is of +7- 8° C and humidity is of 65%.

The studies were performed the second decade of March 2019, at the end of hibernation period, when the bats start to be active and to hunt insects during night. In general, the hibernation process begins in October – November, depending on the weather and food availability, and ends in March. The weather was very warm for this period: outside the entrances the temperature was of +22.4°C and the humidity was of 35%, it was sunny with southwest wind direction an low intensity.

The bats were studied directly by visual observations, all observed individuals were identified. Hibernation places were recorded, the distance from the entrance, crowding of individuals (single or in groups), the number of individuals of each species were noted. Animals were not removed from the shelters, to not disturb the hibernation process.

In total 69 individuals from 4 species were registered: *Myotis daubentoni* (water bat), *M. dasycneme* (pond bat), *Eptesicus serotinus* (serotine bat) and *Rhinolophus hipposideros* (lesser horseshoe bat). The dominant species was *M. daubentoni* with 83%, followed by *E. serotinus* with 13%, *M. dasycneme* with 3% and *Rh. hipposideros* with only 1%. The closest to the entrance (at 15 m) was an individual of serotine bat, while the lesser horseshoe bat was observed in the deeper places of the mine (about 130 m). From 4 registered species 3 are listed in the Red Book of the Republic of Moldova (2015): *Rh. hipposideros* [EN], *Myotis daubentoni* [VU] and *M. dasycneme* [EN]. All the species are listed in Annex II of Bern Convention, in Appendix II of Bonn Convention on Migratory species, while in the list of Emerald Network two species are listed: *Rh. hipposideros* and *M. dasycneme*.

Unfortunately, at the quarries entrances and several dozen meters inside there was a rubbish dump that was not present in previous years of study. Therefore, the number and diversity of the bats was much lower in comparison to the same period of 2014, when 150 individuals from 5 species have been registered (Nistreanu et al., 2015; 2016). Thus, the waste pollution has a strong negative influence on bat species and populations.

During the last 60 years the abandoned limestone quarry from Bycioc is one of the most significant underground bat roosts in Moldova, where hundreds of individuals from 8 species hibernate (Averin, Lozan, 1965; Dorosenco, 1975; Andreev, Vasiliev, 1997, Nistreanu et al., 2015; 2016). The monitoring of bat communities at Bycioc site will continue. In order to protect bats in artificial underground roosts, it is necessary to raise the ecological consciousness of the local authorities and population, of tourists about the role of bats in nature and in human economy, about the consequences of pollution.

The study was performed within the fundamental project 15.187.02.11F at the Institute of Zoology of the Republic of Moldova.

SPECIILE DE ROZĂTOARE DIN BIOTOPURILE PUTERNIC ANTROPIZATE ALE LOCALITĂȚII BACIOI, MUN. CHIȘINĂU

Natalia CARAMAN, Victoria NISTREANU, Vlad CALDARI, Victor SÎTNIC

Institutul de Zoologie, Chișinău, Republica Moldova Corresponding author email: CNatusea@yahoo.com

Conform COST-ului 341 GLOSSSARY termenul de antropogen este descifrat ca fenomenul general și menținut, sau cel puțin puternic influențat de activitățile umane asupra biodiversității. În ultimele decenii accelerarea antropizării mediului natural a cauzat un declin al biodiversității, în special în zonele intens populate de oameni. Mamiferele mici reprezintă grupurile taxonomice care au o greutate de până la 0,5 kg din ordinele *Rodentia, Insectivora* și *Chiroptera*. Peste 75% dintre mamiferele actuale se încadrează în grupul mamiferelor mici, din cauza că sunt cele mai comune specii conform analizei abundenței de specii în relație cu biomasa și comunitatea mamiferelor.

Cercetările au fost efectuate în 5 biotopuri puternic antropizate ale localității Bâcioi în nemijlocita apropiere a or. Chișinău în anii 2018-2019. Rozătoarele au fost capturate cu ajutorul capcanelor pentru animale amplasate la o distanță de 5 m una față de alta. Din cele 23 de specii de rozătoare semnalate pe teritoriul Republicii Moldova, pe teritoriul cercetat au fost evidențiate 7 specii, 2 specii fiind semnalate vizual (*Sciurus vulgaris, Nannospalax leucodon*). Celelalte 5 specii aparțin la 2 familii: *Cricetidae (Microtus rossiameredionalis*) și Muridae (*Apodemus flavicollis, A. sylvaticus, A. agrarius* și *A. uralensis*).

Scopul lucrării a fost analiză ecologică a faunei de rozătoare din loc. Bacioi, mun. Chișinău, care este o zonă puternic antropizată, cu evidențierea diversității, abundenței și coeficientului de capturare a speciilor de mamifere mici.

Biotopurile cu cea mai bogată faună de mamifere mici s-a dovedit a fi plantația pin și ecotonul agrocenoză-subarboret în care s-au capturat a câte 4 specii de rozătoare aparținând gen. *Apodemus* (*A. flavicollis, A. sylvaticus, A. agrarius* și *A. uralensis*).

Au urmat biotopurile în care au fost capturate câte 3 specii de rozătoare (*A. flavicollis*, *A. sylvaticus* și *A. agrarius*): ecotonul pajiște-subarboret și perdea forestieră – lan de porumb. Biotopul cu cele mai puține specii de rozătoare s-a dovedit a fi livada de măr unde s-au capturat doar 2 specii *M. rossiaemeredionalis* și *A. sylvaticus*.

Biotopul cu cea mai mare abundență a rozătoarelor s-a dovedit a fi plantația de pin cu 37,2% din totalul rozătoarelor, având și un coeficient de capturare de 22,8%, urmat de ecotonul pajiște-subarboret cu abundența de 27,9% și coeficientul de capturare de 20,7%. La ecotonul perdea forestieră – lan de porumb rozătoarele au avut o abundență de 16,3% și coeficientul de capturare de 10,4%. Pe când în agrocenoză cu arbuști abundența a fost de 11,6% și coeficientul de capturare de 21,7%. În livada de măr s-a înregistrat cea mai mică abundență de doar 6,9% cu coeficientul de capturare de 27,3%. Diferențe semnificative ale diversității și abundenței între anii de studiu nu s-au constatat.

Specia A. sylvaticus a avut cea mai mare abundență de 44,2% și un coeficient de capturare de 8,3%, urmată de A. flavicollis cu o abundență de 27,9% și cu coeficientul de capturare de 5,2%. Specia A. agrarius a avut o abundență de 20,9% și coeficient de capturare de 3,9%. Cea mai mică abundență s-a înregistrat la speciile A. uralensis (4,7%), cu coeficientul de capturare de 0,9% și la M. rossiaemeredionalis (2,3%) si coeficientul de capturare de 0,4%.

În concluzie putem menționa faptul că în toate biotopurile cercetate au fost semnalate speciile genului *Apodemus*. Ca specie euritopă și dominantă în toate biotopurile a fost *A. sylvaticus*, având cea mai mare abundență și cel mai mare coeficient de capturare. Cea mai mare diversitate (4 specii) s-a înregistrat în plantația de pin și ecotonul agrocenoză-subarboret.

Studiul a fost realizat în cadrul proiectului de cercetări fundamentale 15.187.02.11F.

INVAZIA FLUTURELUI VANESSA CARDUI (L., 1758) ÎN REPUBLICA MOLDOVA ÎN PRIMĂVARA ANULUI 2019

Cristina CEBOTARI

Institutul de Zoologie, Chişinău, Republica Moldova Corresponding author email: cebotari15251@gmail.com

Vanessa cardui este o specie de fluturi diurni din familia Nymphalidae cu denumirea populară – fluturele scaieților. Fiind o specie migratoare străbate anual peste 4.000 mii de km din Europa până în Africa, traversând Marea Mediterană și Deșertul Sahara. În ciuda aspectului său delicat și fragil, poate rezista la temperaturi extreme și se poate orienta în timp ce zboară la altitudini mari de peste 500 m. Fluturii așteaptă vânturi favorabile, care îi poartă cu o viteză medie de 25-30 km/h, parcurgând până la 500km/zi. Se întâlnește pe întreg teritoriul țării noastre. Este răspândită pe toate continentele, cu excepția Americii de Sud și Antarcticii.

Exemplarele care ajung în Republica Moldova în primăvară depind foarte mult de condițiile meteorologice din Africa, iar o iarnă umedă din Africa de Nord poate provoca o explozie uriașă a populației, declanșând o migrație masivă, în care zeci de mii sau chiar zeci de milioane de fluturi se îndreaptă spre nord peste Marea Mediterană. Anume acest fenomen a avut loc în primăvara anului 2019, în urma căruia, toată Europa a fost invadată de *Vanessa cardui*.

În condițiile climatice ale țării noastre Vanessa *cardui* poate prezenta până la trei generații pe an. Prima generație de fluturi apare în a doua jumătate a lunii iunie, cea de a doua generație în iulie-august, iar cea de a treia generație își poate face apariția în septembrie-octombrie. Incubația este cuprinsă între 3 și 5 zile, perioada de dezvoltare larvară este cuprinsă între 7 și 11 zile, dar poate să fie mai mare în caz de condiții climatice nefavorabile, în timp ce stadiul pupal este cuprins între 7 și 11 zile. Fluturii pot fi vazuți și în luna noiembrie. Un număr mare de indivizi ai speciei *Vanessa cardui* au fost observați în primăvara anului 2019 în toată țara. Conform datelor din litaratură o migrație similară a avut loc în anul 2010, în întreaga Europă.

Vanessa cardui nu a fost considerată până în prezent o specie dăunătoare, dar omizele ei provoacă daune considerabile asgriculturii, ele scheletează și rod frunzele, lăsându-le doar nervurile principale.

În prezent specia utilizează în calitate de plantă-gazdă peste 300 specii. Leguminoasele precum soia si fasolea semănate în câmp, sunt preferatele dăunătorilor.

În anul 2009 a fost publicată informația despre afectarea neânsemnată a culturilor de soia în nordul Moldovei (România) în jur de 7.000 ha de omizile acestui fluture. Deseori fermierii observă omizile acestei specii pe culturile de soia, dar fără a depista perderi mari.

Este important de conștientizat că fiecare specie de plante sau animale are rolul său în natură, inclusiv *Vanessa cardui*, care pe de-o parte consumă plante erbacee din flora spontană, iar pe cealaltă ajută la generarea lor, păstrând astfel echilibru în natură. În ecosistem stabil natura ghidează fiecare specie cum să traiască în adevăratul sens al cuvântului, iar în cazul unui dezechilibru drastic, rezultat în urma interveției umane, natura se protejază prin explozii în masă a dăunătorilor sau hazarduri naturale.

SCREENING OF SOME LESSER KNOWN TREE-BORNE OILSEED PLANTS FROM NORTH-EAST INDIA FOR THEIR OIL CONTENT AND FATTY ACID COMPONENTS

Bithika CHALIHA^{1,2}, Siddhartha Proteem SAIKIA^{2*}

¹Academy of Scientific and Innovative Research, Chennai, India ²Medicinal Aromatic & Economic Plants Group, CSIR-North East Institute of Science & Technology, Jorhat 785006, Assam, India Corresponding author email: spsaikia@gmail.com

Forest of North-East India is rich in a variety of tree borne oilseeds and there were no serious efforts to exploit the less known oilseeds of the forest origin. Considering the vast plant wealth and with an objective to explore these untapped potentialities of oilseed resources of NE India, a research program was undertaken. The present communication is based on the investigation of seeds of 14 lesser known plant species for fats and oils. The screened plant species exhibited oil yield ranging from 4.71% to 48.43% on dry weight basis. Alseodaphne andersonii showed significant amount of tocols while Garcinia xanthochymus showed significant amount of phytosterol. Gas liquid chromatography analysis of methyl ester extracted fatty acid indicated dominant fraction of Oleic acid in 6 numbers of species, followed by Linoleic acid in 3 species, Lauric acid in 3 species, and Palmitic acid in 2 species. The majority of the species (9 species) showed higher amount of unsaturated fatty acid content in the oils which suggested that the species may serve as valuable raw materials for vegetable oil which can be explored as substitute for industrial feasibility while rest showed higher amount of saturated fatty acids which suggested that these species may serve as important industrial by-products.

NANOBIOREMEDIATION OF SOILS CONTAMINATED BY PERSISTENT ORGANIC POLLUTANTS

Serghei CORCIMARU¹, Ana TANASE¹, Vasile COZMA¹, Inna RASTIMEȘINA¹, Olga POSTOLACHI¹, Tamara SÎRBU¹, Valerina SLĂNINA¹, Ludmila BATÎR¹, Oleg CHISELIȚĂ¹, Tatiana GUȚUL²

¹Institute of Microbiology and Biotechnology; ²'D.Ghitu' Institute of Electronic Engineering and Nanotechnologies Corresponding author email: sergheicorcimaru@hotmail.com

Nano- and bioremediation technologies are widely studied and used among the most advanced means of environmental remediation, including in cases of soil contamination by persistent organic pollutants (POPs). However, the limitations known for each technology still prevent their full scale implementation. Relatively high economical costs and potential ecotoxicity of nanoparticles on the one hand, and relatively slow rates of bioremediation (especially in cases of heavy pollution) on the other, are just a few examples among the deficiencies that could be mentioned. The combined use of nanoparticles and bioremediation is currently suggested as a viable practical way to increase the efficiency of soil remediation via reducing its economical costs, increasing the sustainability, and shortening the time needed for decontamination. This new approach is known as Nanobioremediation, and the purpose of this work was to evaluate its potential for the Moldovan soils contaminated with trifluralin.

The polluted soil was sampled from a former pesticide deposit site near the town of Singera, and contained 30 mg/kg of trifluralin and 2 mg/kg of DDTs. The nanomaterials used in the study were nanoscale zero-valent iron (1.5-4 nm) and nanomagnetite (17-25 nm). Nanoscale zero-valent iron was prepared from iron (III) chloride by the chemical reduction method in the presence of poly-N-vinylpyrrolidone as a stabilizer. Nanomagnetite was prepared according to the chemical coprecipitation method using iron (II) sulfate and iron (III) chloride in the presence of poly-N-vinylpyrrolidone as a stabilizer. The resulting nanomaterials were characterized by X-ray powder diffraction analysis. X-rav fluorescence analysis, scanning electron microscopyand FT-IR-spectroscopy.

The combination of nano- and bioremediation techniques permitted to significantly increase the effectiveness of soil decontamination comparing to the controls with nanoremediation only and bioremediation only. The concentration of trifluralin left in the soil of the best variant of nanobioremediation was by many times smaller than in the best variants of nanoremediation and bioremediation. Moreover, comparing to the best case of bioremediation, nanobioremediation permitted to radically decrease the number of remediation manipulations and to considerably shorten the time needed for decontamination.

It was found that the studied nanoparticles were able (a) to decrease the toxicity of trifluralin for many single microbial strains (from bacteria, actinomycetes and micromycetes) grown in liquid or on solid media, (b) to stimulate the active growth of some microorganisms in media with high concentrations of trifluralin (in some cases the growth was comparable to and even surpassing the growth in the standard cultivation media), (c) to increase the ability of different consortia of bacteria and micromycetes to grow in the media with trifluralin as the only source of carbon, nitrogen and energy, (d) to increase the survival and activity of soil microbial biomass in virgin soils artificially contaminated with trifluralin, (e) to stimulatethe survival and activity of exogenous microorganisms introduced into the polluted soil for the purpose of remediation, (f) to stimulate the activity of soil microbial biomass in the polluted soil including after introduction of exogenous microorganisms for the purpose of remediation, (g) to cause no observable toxic effects upon the soil microbial biomass when applied in concentrations below 400 mg/kg.

EVALUATION OF STORAGE POTENTIAL OF MAIZE COLLECTION ACCESSIONS BY MORPHOPHYSIOLOGICAL PARAMETERS OF SEEDS AND SEEDLINGS UNDER EX SITU CONSERVATION

Liudmila CORLATEANU, Anatolie GANEA, Victoria MIHAILA

Institute of Genetics, Physiology and Plant Protection, Chisinau, Republic of Moldova Corresponding author email: lcorlateanu@yahoo.com

Conduction of the accelerated aging (AA) test of seeds of the maize collection accessions allowed determination of their storage potential (SP) which is an important complex characteristic of seed material while being placed for long-term storage in plant gene bank. Based on morphophysiological and biochemical parameters of seeds and seedlings, genotypes from work and active collections were ranked with due consideration of their potential capabilities to maintain viability (V) after the influence of stress factors during the process of accelerated aging of seeds (increased temperature of 42-44°C and increased humidity of 90-100%); aging period: 96 hours. The test allows for: 1. Identification of the accessions not suitable for storage that enables saving funds for conservation; 2. Formulation of recommendations on the terms of reproduction of seed material; 3. Indication of the necessity to restore viability of especially valuable collection accessions.

Purpose of this work was to study various parameters of the maize seeds and seedlings after AA-test of seeds in order to determine their SP and perform randing of genotypes by this trait.

Test objects: maize hybrids from the plant gene bank of Moldova: P 402, P 280, P 310, P 294, P396, P 196, P 397, P 374, P 461, P 262. The following parameters were measured: germinating power (GP) and germinability (G) of seeds, main radicle length (RL), fresh and dry biomass of rootlets of the seedlings, content of peroxidase (PO) enzyme in rootlets of the seedlings. Results were prosessed with the help of software package *Statistica*.

Depending on the decrease of germinating power of seeds after AA-test of seeds, maize genotypes were divided into 3 groups: 1 – decrease of GP was 10-15% (P 402, P 280, P 310); 2 - 18-20% (P 294, P 396, P 196, P 397, P 374); 3 - 25-30% (P 461, P 262). By germinability, seeds were divided into 2 groups: 1 – decrease of G was 19-25% (P 402, P 461, P 294, P 196); 2 - 33-42% (P 396, P 397, P 374, P 280, P 262, P 310). After AA-test of seeds, length of rootlets decreased by 10-37% as compared to control. The highest growth inhibition of rootlets of the seedlings was observed in P 294, P 374 genotypes, the lowest - in P 402 and P 196 genotypes. Analysis of data on fresh and dry biomass of rootlets after AA-test of seeds showed the same trend. Decrease of these parameters depending on genotype was 17.3-55.1% and 10.0-65.5%, respectively, as compared to control. After processing of data using software package *Statistica*, significant positive correlation of germinability of seeds with GP (r = +0.55), RL (r= +0.66), fresh biomass (r= +0.69) and dry biomass (r= +0.53) of seedling rootlets was found in all maize genotypes. RL of rootlets correlated with germinability of seeds (r= +0.66), fresh biomass (r = +0.69) and dry biomass (r = +0.58) of seedling rootlets.

It was revealed that peroxidase content increased in seedling rootlets after AA-test of seeds by 1.67–2.63 times, depending on genotype, as compared to control that is typical under the thermal stress. After AA-test of seeds, genotypes P 294, P 260 and P 310 showed maximal increase of PO enzyme activity in seedling rootlets (by 2.6; 2.0 and 2.0 times, respectively) as compared to control.

Analysis of the experimental data set by different morphophysiological and biochemical parameters of seeds and seedlings of maize collection accessions showed that genotypes P 402, P 294, P 461 had the highest storage potential, and genotypes P374 had the lowest storage potential.

Thus, the use of the accelerated aging test of seeds allowed identification of genotypic features of the maize collection accessions and their grouping by their potential capabilities to maintain seed viability following the influence of stress factors (increased temperature and increased humidity).

AMENINȚĂRILE CURENTE PRIVIND DIVERSITATEA RESURSELOR GENETICE VEGETALE PENTRU ALIMENTAȚIE ȘI AGRICULTURĂ ÎN REPUBLICA MOLDOVA

Anatolie GANEA

Institutul de Genetică, Fiziologie și Protecția Plantelor, Chișinău, Republica Moldova Corresponding author email: anatol.ganea@gmail.com

Resursele genetice vegetale pentru alimentație și agricultură (RGVAA) reprezintă principala garanție a menținerii securității alimentare a oricărui stat. În Republica Moldova acest compartiment important al agrobiodiversității vegetale se află sub pericolul unor provocări serioase, fapt ce se atestă, mai ales, în ultimele decenii și se exprimă prin fenomene de dispariție sau de reducere a numărului de populații naturale ale anumitor specii și de eroziune genetică a soiurilor autohtone vechi de culturi agricole adaptate la condițiile locale.

Schimbările climatice influențează în mod substanțial asupra componentelor ce tin de conservarea agrobiodiversității vegetale in situ si ex situ ca urmare a susceptibilitătii si vulnerabilitătii acestora față de factorii limitativi ai mediului. În ecosistemele naturale populațiile rudelor sălbatice ale culturilor agricole, precum și ale altor specii utile, sunt supuse acțiunii diferitelor fenomene climatice adverse (seceta atmosferică și seceta de sol, arșița, înghețul etc.). Evaluările de teren, efectuate asupra rudelor sălbateice ale unor culturi pomicole în ocoalele silvice din toate zonele pedo-climatice ale republicii, au scos în evidență faptul că în unele din ele ca urmare a calamităților naturale a avut loc degradarea considerabilă a populațiilor. Astfel, de exemplu, în ocoalele silvice Băiuș, Cociulia, Nisporeni, Mihailovca s.a. s-a depistat uscarea masivă a exemplarelor de Prunus avium sub actiunea secetelor repetate, în cadrul altor întreprinderi pentru silvicultură au fost evidentiate multiple cazuri de peire prematură a arborelor de Malus sylvestris.

O amenințare serioasă la adresa RGVAA reprezintă speciile invazive străine sau cele răspândirea rapidă ale cărora a depășit ritmul obișnuit, fapt ce reprezintă o problemă importantă de mediu.

În investigațiile noastre efectuate în unele trupuri de pădure și teritorii adiacente s-au reliefat fiticenoze în care astfel de speciin ca *Robinia pseudoacacia, Cornus sanguinea* ș.a. s-au reprodus într-o asemenea măsură și atât de agresiv, încât au determinat modificarea structurii cantitative a biocenozelor naturale, înlocuind anumite specii indigene utile.

O influență negativă asupra păstrării și valorificării fondului genetic al RGVAA continuă să aibă planificarea teritorială inadecvată a utilizării fondului funciar, în care nu s-a ținut cont de legitățile funcționării ecosistemelor naturale, de distribuirea speciilor rare, vulnerabile și periclicate de plante și animale, dar și de alte cerințe de octotire a mediului. Acest factor, de rând cu alte actiuni de ordin politic si social din ultimele decenii au cauzat, în primul rând, disparitia masivă a formelor autohtone de culturi agricole, mostre create de populația rurală pe parcursul a sute de ani. La momentul actual în gospodăriile țărănești nu mai poate fi găsită marea majoritate a populațiilor de porumb, soiuri vechi de viță de vie, culturi pomicole (mere, pere, prune, gutuie, cireșe), populații autohtone de năut, bob, dovleac, usturoi și alte culturi. Ruinarea unitățilot de producție agricolă, exodul populației rurale agravează mult situația. E necesar de mentionat că la moment numărul exact de soiuri locale cultivate si păstrate în țară nu este cunoscut. Sunt descrise particularitățile specifice doar ale unor forme. Având în vedere faptul că pe parcursul anilor grație selecției artificiale sau altori factori apar populații noi cu caractere deosebite de cele inițiale, este necesară efectuarea identificării lor în scopul stabilirii particularităților distinctive, caracterizării și evaluării. În acest sens, activităti de inventariere, colectare și păstrare a formelor locale se efectuează în Laboratorul Resurse Genetice Vegetale. S-au efectuat poziționări ale gospodăriilor țărănești, au fost colectate probe semincere, materialul se evaluează și se conservează în colectii.

În scopul păstrării garantate a tuturor componentelor RGVAA se cere implicarea urgentă a statului prin aprobarea Programului național în acest domeniu și crearea Băncii naționale de gene.

STRUCTURA FAUNEI HELMINTICE A SPECIEI RANA LESSONAE CAMERANO, 1882 (AMPHIBIA, ECAUDATA) DIN UNELE BIOTOPURI ACVATICE NATURALE DIN ZONA DE CENTRU A REPUBLICII MOLDOVA

Elena GHERASIM, Dumitru ERHAN, Ștefan RUSU, Natalia ARNAUT, Ion GOLOGAN, Andrei CEBOTARI, Dmitrii VATAVU

Institutul de Zoologie, Chișinău, Republica Moldova Corresponding author email: gherasimlenuta@gmail.com

Biotopul este unul din principalii factori, care determină gradul de infestare, cu helminți, a amfibienilor. Totodată, gradul de infestare cu helminți a amfibienilor, în mare măsură, depinde și de factorul uman, care condiționat formează premise nefavorabile pentru dezvoltarea paraziților, din motivul nimicirii gazdelor necesare (definitive, intermediare, complementare, rezervor) în ciclul de dezvoltare a acestora. Prezența micilor deviații atât în regimul hidrologic, cât și în structura diversității faunei, într-un anumit biotop, în care se află amfibienii, pot determina diferențe semnificative în caracterul parazitofaunei (Рыжов М. К. и др. 2004, Зарипова Ф.Ф. и др. 2016).

Camerano, 1882 pe întreg ciclul anual de viață, colectată din 4 bazine acvatice naturale (1 – lacul de la Mănăstirea Hâncu, 2 – lacul nr. 1 din Ciuciuleni (Hâncești), 3 – lacul nr. 11 din Rezervația Naturală "Codrii", 4 – lacul nr. 1 de – la Grădina Botanică (Institut)) au pus în evidență prezența a 12 specii de helminți, dintre care: 7 specii de trematode, 4 - nematode și o specie de acantocefale. Investigațiile helmintologice efectuate denotă că gradul de infestare cu helminți a speciei *Rana lessonae* diferă în dependență de biotop, de structura faunistică (gazdele definitive, intermediare, rezervor etc.), cât și de starea mediului lor.

Astfel, la specimenele de *Rana lessonae* colectată din biotopurile naturale s-a stabilit un grad sporit de infestare, încât, la specimenele colectate din lacul de la Mănăstirea Hâncu, s-au depistat 5 specii de helminți, dintre care 3 specii de trematode (*Cephalogonimus retusus, Candidotrema loossi, Prosotocus confusus*), o specie de nematode (*Cosmocerca ornata*) și o specie de acantocefale (*Acanthocephalus ranae*).

La specimenele colectate din lacul nr. 1 din Ciuciuleni (Hâncești) s-a stabilit prezența a 2 specii de helminți: o specie de trematode (Cephalogonimus retusus) și o specie de nematode (Cosmocerca ornata), din lacul nr. 11 din Rezervația Naturală "Codrii s-au depistat 4 specii de helminți: 1 – de trematode (Diplodiscus subclavatus) și 3 specii de nematode (Oswaldocruzia filiformis, Oswaldocruzia duboisi, Cosmocerca ornata), iar la specimenele colectate din lacul nr. 1 de la Grădina Botanică (Institut) au fost depistate 7 specii de helminți, dintre care: 5 specii de trematode (Opisthioglyphe ranae, Pleurogenes claviger, Pleurogenoides medians, Prosotocus confusus, Diplodiscus subclavatus) și 2 specii de nematode (Cosmocerca ornata, Icosiella neglecta).

Potrivit investigațiilor helmintologice efectuate la specia *Rana lessonae* colectată din biotopuri acvatice naturale, s-a stabilit că numeric predomină speciile de helminți din clasa trematoda – 58,33% din cazuri, nematoda – 33,33% din cazuri și acantocefala – 8,33% din cazuri. Cel mai scăzut grad de infestare cu helminți s-a înregistrat la specimenele colectate din bazinul acvatic nr. 1 din Ciuciuleni (Hâncești), iar cel mai înalt grad de infestare cu helminți s-a înregistrat la specimenele colectate din lacul nr. 1 de la Grădina Botanică (Institut).

Așadar, la evaluarea datelor obținute, prin determinarea diversității faunei helmintice a speciei *Rana lessonae* s-a determinat rolul amfibienilor ca bioindicatori ai biotopurilor populate, prin stabilirea prezenței speciilor de nevertebrate: tricoptere, libelule, gândacii din familia *Dytiscidae*, moluște din familia *Lymnaeidae* și *Plonarbidae*, care, toate împreună alcătuiec structura biodiversității în biotopurile acvatice naturale studiate.

Investigațiile au fost efectuate în cadrul proiectelor 15.817.02.12F și 19.80012.02.12F

INFESTAREA CU NEMATODE A RANIDELOR VERZI (AMPHIBIA, ECAUDATA) DIN ZONA DE CENTRU A REPUBLICII MOLDOVA

Elena GHERASIM, Dumitru ERHAN

Institutul de Zoologie, Chișinău, Republica Moldova Corresponding author email: gherasimlenuta@gmail.com

De cca 250 de ani cercetătorii batracologi au în atenția lor 3 specii de amfibieni din familia *Ranidae*, care formează complexul ranidelor verzi (*Rana ridibunda* Pallas, 1771, *Rana lessonae* Camerano,1882, *Rana esculenta* Linnaeus, 1758) sub aspect sistematic, morfologic și ecologic, iar un studiu prazitologic complex n-a fost efectuat (Plotner, 2005). Amfibienii pot servi în calitate de gazde definitive, intermediare și gazde-rezervor pentru diferite grupe de helminți specifici atât reptilelor, păsărilor, mamiferelor, cât și omului, astfel participând în mod activ la formarea zoonozelor parazitare (Skrjabin et. al., 1962, Euzeby, 1984, Rîjov M. C. et. al., 2004, Cihleaev I. V., 2004, Rezvanțeva M. V., 2008, Matveeva E. A., 2009).

Cercetările helmintologice efectuate la speciile de amfibienii ecaudați Rana ridibunda, Rana lessonae și Rana esculenta efectuate pe perioada activă de viață a acestora (aprilie – noiembrie, 2013-2018), din zona de centru a Republicii Moldova, au pus în evidență prezența a 6 specii de helminți Oswaldocruzia filiformis Goeze, 1782, Oswaldocruzia duboisi Ben Slimane, Durette-Deset & Chabaud, 1993, Cosmocerca ornata Dujardin, 1845, Icosiella neglecta Diesing, 1851, Rhabdias bufonis Schrank, 1788 și Strongyloides sp., care din punct de vedere taxonomic se încadrează în Încrengătura Nematoda, clasa Secernentea, 4 ordine Strongylida, Ascaridida, Spirurida, Rhabditida, 5 familii Molineida, Cosmocercidae, Onchocercidae, Rhabdiasidae, Strongyloidae și 5 genuri Oswaldocruzia, Cosmocerca, Icosiella, Rhabdias și Strongyloides.

În rezultatul investigațiilor helmintologice efectuate la amfibienii ecaudați din complexul ranidelor verzi în funcți de genul gazdei, s-a stabilit un grad diferit de infestare cu helminți.

Astfel, *Oswaldocruzia filiformis* s-a stabilit la ambele genuri ale speciei *Rana ridibunda*, la masculii speciei *Rana lessonae* și *Rana esculenta*, fiind înregistrată absența la femelele acestora.

Specia Oswaldocruzia duboisi s-a stabilit doar la masculii speciilor Rana ridibunda și Rana lessonae, lipsind la specia Rana esculenta și femelele speciilor Rana ridibunda și Rana lessonae. Specia de nematode Cosmocerca ornata se caracterizează printr-un grad mai înalt de infestare la amfibieni, fiind remarcată la ambele genuri ale gezdelor: Rana ridibunda, Rana lessonae și Rana esculenta. Speciile Rhabdias bufonis și Strongyloides sp. în dependență de genul gazdei la fel indică un grad diferit de infestare, fiind înregistrată doar la masculii speciilor Rana esculenta și Rana lessonae, lipsind la specia Rana ridibunda și femelele speciilor Rana lessonae și Rana esculenta, iar specia Icosiella neglecta s-a înregistrat atât la masculi, cât și la femele.

Investigațiile helmintologice, în dependență de vârsta gazdei și perioada sezonieră, la fel indică un grad divergent de infestare. Astfel, speciile *Oswaldocruzia filiformis, Oswaldocruzia duboisi, Icosiella neglecta, Rhabdias bufonis* și *Strongyloides sp.*, s-au depistat la gazde cu vârsta cuprinsă între 3 - 5 ani pe perioada iunie – octombrie. Specia *Cosmocerca ornata* s-a stabilit la gazde cu vârste cuprinse între 1 – 5 ani pe perioada iulie – noiembrie.

Așadar, rezultatele cercetărilor helmintologice efectuate asupra complexului ranidelor verzi (*Rana ridibunda, Rana lessonae, Rana esculenta*) din zona de centru a Republicii Moldova relevă despre infestarea acestora cu 6 specii de nematode (*Oswaldocruzia filiformis, Oswaldocruzia duboisi, Cosmocerca ornata, Icosiella neglecta, Rhabdias bufonis* și *Strongyloides sp.*) ce aparțin la o clasă, 4 ordine, 5 familii și 5 genuri. Gradul de infestare variază în dependență de genul gazdei, vârstă, perioada sezonieră și specie, iar prin efectuarea cercetărilor s-a determinat prezența unei specii noi de nematode *Rhabdias bufonis*, pentru fauna Republicii Moldova.

Investigațiile au fost efectuate în cadrul proiectelor 15.817.02.12F și 19.80012.02.12F

IMPORTANȚA AMFIBIENILOR ECAUDAȚI (AMPHIBIA: RANIDAE) CA BIO-INDICATORI AI ECOSISTEMLOR ACVATICE ÎN REPUBLICA MOLDOVA

Elena GHERASIM

Institutul de Zoologie, Chișinău, Republica Moldova Corresponding author email: gherasimlenuta@gmail.com

Importanța speciilor bioindicatoare ale ecosistemelor atât terestre, cât și acvatice este vehiculată încă din secolul trecut, când a fost observată capacitatea indicatoare a lichenilor în ceea ce privește compoziția, puritatea și umiditatea aerului. În a doua jumătate a secolului XX, cercetările au vizat în general găsirea unor indicatori și punerea la punct de metode care să ofere informații legate de poluanți (ai aerului, solului, apelor). Ulterior, pe măsura apariției preocupărilor legate de alte tipuri de degradare a ecosistemelor, s-a căutat identificarea unor bioindicatori care să ofere informații legate de stabilitatea ecosistemelor, de menținerea biodiversității, de gestionarea durabilă a unumitor tipuri de ecosisteme (efectul anumitor măsuri sau tehnici de gestionare asupra acestor ecosisteme), sau informații legate de răspunsul ecosistemelor la modificarea globală a factorilor climatici.

Grație faptului că amfibienii sunt organisme extrem de sensibile la acțiunea diferitor factori ai mediului ambiant, totodată, sunt aceștea sunt specii care, datorită variabilității lor (biochimice, fiziologice, etologice, ecologice sau helmintologice), permit caracterizarea stării unui ecosistem și pun în evidență, cât mai precoce posibil, modificările naturale sau antropice ale acestuia (Lucău, 1997, Дуйсебаева Т.Н. и др., 2005, Матвеева Е.А., 2009). Amfibienii sunt recunoscuți ca indicatori ai modificărilor globale. Pontele și larvele lor sunt extrem de sensibile la modificările chimismului apei. De aceea, amfibienii sunt printre primele categorii de organisme afectate de poluarea apelor, de acidifiere, în special de impactul factorului antropic, care se manifestă prin distrugerea habitatelor, creșterea utilizării pesticidelor care sporesc poluarea atât a apelor, cât și a solului, introducerea unor specii invazive (pești, păsări etc.), precum și infestarea acestora cu diveși agenți parazitari.

Potrivit cercetărilor helmintologice efectuate asupra amfibienilor din complexul ranidelor verzi (*Rana ridibunda, R. lessonae, R. esculenta*) s-a pus în evidență prezența a 16 specii de helminți, dintre care 10 specii de trematode, 4 specii de nematode și 2 specii de acantocefale. Ranidele verzi, pentru aceste specii de helminți, sunt ca gazde definitive, intermediare, complimentare și gazde-rezervor.

Astfel, s-a stabilit că pentru speciile de trematode *Codonocephalus urniger* și *Strigea sphaerula* ranidele verzi sunt gazde intermediare, gazdele definitive fiind: *Botaurus stellaris* Linnaeus, 175, *Ixobrychus minutus* Linnaeus, 1766, *Ardea purpurea* Linnaeus, 1766, *Egretta garzetta* Linnaeus, 1766, câinii și pisicile. Pentru specia *Sphaerirostris teres*, ranidele verzi sunt gazde-rezervor, iar gazdele definitive sunt: *Pica pica* Linnaeus, 1758, *Corvus monedula* Linnaeus, 1758, *Corvus corax* Linnaeus, 1758 și *Corvus corone cornix* Linnaeus, 1758.

Așadar, prin determinarea infestării amfibienilor cu helminți s-a stabilit și starea ecologică a ecosistemelor acvatice cercetate populate de ranidele verzi

Investigațiile au fost efectuate în conformitate cu Programul de activitate al Institutului de Zoologie în cadrul proiectului instituțional 15.817.02.12F și pentru tinerii cercetători 19.80012.02.12F finanțate de Consiliul Suprem pentru Știință și Dezvoltare Tehnologică

HELMINTOLOGICAL PHYTOSANITARY CONTROL IN TOMATO CULTURE (SOLANUM LYCOPERSICUM L.) IN GREEN HOUSES

Elena IURCU-STRĂISTARU¹, Alexei BIVOL¹, Ștefan RUSU¹, Nicola SASANELLI², Cristina ANDONI¹

¹Institute of Zoology, or. Chisinau, Republic of Moldova; ²Institute of Plant Protection (IPP), Nematology section, Italy Corresponding author email: iurcuelena@mail.ru

One of the major importance in the process of increasing the productivity and quality of tomato fruits grown in protected areas, is the phytosanitary control on the parasitic helminthological fauna, on the main complexes of harmful phytonematodes in dynamics spread cultivation of the tomato crop cycles, in order to apply the necessary protection measures.

Green houses, solariums, nurseries and vegetable crops that are situated near the field are prone to the attack of various associations of harmful parasitic nematodes, that usually attack all seasonal cycle, in the dynamics of vegetation. The scope and the objectives proposed estimate the phytosanitary helmintological control achieved at the tomato growth from protected areas, in elucidating the helmintological phytoparasitic impact with the establishment of the invasive nematofauna, with the determination of the degree of affection, the structure, the frequency and the abundance of the associations, argumentation of ecological protection procedures.

The investigations were carried out in 9 administrative districts of the North-Central areas, 22 localities, 30 tomato sectors from various areas specialized in the cultivation of vegetables in protected lands, where over 400 soil and affected soil samples were collected, for further analysis in the laboratory.

Helminthological phytosanitary control was realized through periodic surveys, collecting soil samples at the depth of 5-35 cm and plants affected by various parasitic symptoms. The finding of visual disorders in phytohelmintotic aspect was visualized at root and plant level, with the use of 5 bales gradation on a varied assortment of hybrids from various production associations, peasant households, private sectors.

Under the laboratory conditions, the extraction of parasitic phytonematodes from the soil was performed using the classical method with some "Baermann funnel" modifications. The extracted nematodes were listed for the purpose of establishing the numerical herd, with subsequent fixation in 4% hot formalin solution at 60°C temperature. The fixed helminthological material was subjected to the microscopic analysis, by mounting temporary preparations with the determination of genres and species with the help of nematological determinants.

As a result of the phytosanitary researches and the laboratory analyzes, the epidemiological diagnosis and the phytohelmintological impact at the tomato growths were established, where the structure of the parasitic phytonematode complexes was established in a number of 32 species included in 8 families and 2 orders distributed according to the investigated areas and classified according to the specialization of the trophic spectrum in 5 groups, with the predominance of species in the sector of the Center area (32 species), compared to the North area (21 species), classified by trophic specialization. It was found the values of variable densities of 280-870 individuals / 100cm3 / soil, with the degree of phytohelmintotic infestation in plants more evident in the period of planting the seedlings in protected land and fruit formation, in values with variations from 8 to 45%, caused mainly by invasive associations, with specific phytoparasitic effects of the genres: Meloidogyne, Pratylenchus, Paratylenchus, Helicotylenchus, Rotylenchus, Ditylenchus, Bitylenchus, Tylencorhynchus. The associations with ecto-semi-endo parasitic trophic specialization predominate in relation to 30-40% compared to the free forms, and from the more abundant harmful species, the species: Meloidogyne incognita, M. halpa were observed more frequently with the onset of specific phytohelmintoses. sandstone, Tylenchus filiformis, Ditylenchus dipsaci, D. Destructor, Helicotylenchus digonicus, Pratylenchus pratensis, P. penetrans, Tylenchorynchus dubius, Nothotylenchus acris.

The results of the phytosanitary monitoring realized, signify the application and the contribution in elucidating the degree of nematological damage for the forecasting and argumentation of the protection measures predestined to the vegetable agrocenoses of tomatoes in protected areas.

The investigations were realized within the main intstitutional project with the cipher 15.817.02.12F and the STCU-6233 project within the Program of the strategic direction and Common Initiative of Research and Developmen, with the cipher 17.80013.5107.12 / 6233, for the year 2019.

ASPECTS OF RESEARCH OF PEST INSURANCE ASSOCIATIONS IN POTATO CULTURE IN THE CONDITIONS OF THE REPUBLIC OF MOLDOVA

Elena IURCU-STRĂISTARU, Galina BUŞMACHIU, Alexei BIVOL, Irina MIHAILOV, Ion CHIRIAC, Cristina ANDONI

Institute of Zoology, Republic of Moldova Corresponding author email: iurcuelena@mail.ru

Potato growth is one of the technical crops of agri-food and with industrial importance for the Republic of Moldova, whose value can increase faster if are stimulated significant activities related to the cultivation and the obtaining of good-quality tubers . An essential objective in the recovery of this crop plant is the influence of the stress biogenic environmental factors, especially the spectrum of harmful organisms, as phytoparasitic agents.

The entomo-phytoparasitic sensitivity of impact at potatoes during the vegetation period is provoked yearly by more than 25 species of insects, with adaptation and specialization ecologo-trophic polyphagous and oligophagous. Some of them trigger specific entomoparasitic invasions that cause a great damage on these crop plants. Thus fact motivates as purpose and objectives the accomplishment of the entomological phytosanitary inspection. Regularly it was done the entomological evidence starting from the planting perioud until the tubers were reaped, with the sampling of soil and symptomatically plants invaded by harmful insects, comparative on different sectors in the North, Center and South-East areas the country.

It was established the degree of affection provoked by the phytoparasitic insects in the field, with the help of the magnifying glass (optical degree, 100 MM). For the finding of the extensification criteria, level of attack it were used the photosanitary indices using the formulas for calculating the frequency values (F,%); the intensity (I,%), which reflects the degree of attack extension (GA,%), related to m2, with the analysis of 10 plants / sample, using the 5-ball gradient.

The disease guard caused by phytoparasitic insects in the field was established with the help of the magnifying glass (optical degree, 100 MM), and to determine the extensibility criteria, level of attack were used photosynthetic indices using the formulas for calculating frequency values (F,%); intensity (I,%), which reflects the degree of attack extension(GA,%), reported to m², with the analysis of 10 probation plants, using the 5-ball gradient. Subsequently, the collected insects, soil samples and collected plants were subjected to laboratory analyzes with the help of the binocular microscope, and the chronological estimation of the field and laboratory records research works were confirmed with the Canon EOS 1000 D camera.

As a result of the entomofitosanitary investigations carried out on potatoes, it was established that the invasive fauna is represented by 22 species of 4 orders. More significant the phytoparasitic species by estimating the values of numerical density were the species of polyphagous insects detected early in the soil, with the planting: coropâșnița - Gryllotalpa gryllotalpa Linnaeus, 1758, fam. Grillotalpidae, ord. Orthoptera, spiny larvae of roach beetles - A. lineatus, L., A. ustulatus, L., A. obscurus L., fam. Elateridae, ord. Coleoptera owl species - Agrotis segetum Schiff., Autographa gamma L., Silver Y., Agriotis exclamationis L., Agrotis ipsilon Hufnagel, Xestia c-nigrum L., Helicoverpa armigera Hübner, fam. Noctuidae, ord. Lepidoptera, May beetles - Melolontha melolontha, L., fam. Scarabaeidae, ord. Coleoptera. Later (May-July), the Colorado beetle - Leptinotarsa decemlineata Say, Hitchner et al., Fam. Cherysomelidae, and the 28-points ladybug of the potato plant - Epilachna vigintioctomaculata, Motsch., Fam, Coccinellidae from the order. Coleoptera. The following harmful species have been widely reported: Aphis fabae Scopaly, Aphis frangulae Kaltenbach, Aphis nasturtii Kaltenbach, Aulacorthum solani Kaltenbach, Brachycardus hel Macrosiphum euphorbiae Tomas, Myzus persicae Sulzer, Phorodon humuli Schrank, Rhopalosiphum padi Linnaeus.

The results of the entomological phytosanitary researches realized at the early potato growth in differnt areas of the Republic of Moldova, means the application and the contribution in elucidating the parasitical impact for the predicting and argumentation of the integrated protection measures on the open ground.

The investigations were realized within the main intstitutional project with the cipher 15.817.02.12F and the STCU-6233 project within the Program of the strategic direction and Common Initiative of Research and Developmen , with the cipher 17.80013.5107.12 / 6233, for the year 2019.

RESEARCH ON INSECT PESTS OF SUGAR BEET CULTURE FROM NORTHEN MOLDOVA

Elena IURCU-STRĂISTARU, Galina BUŞMACHIU, Irina MIHAILOV, Alexei BIVOL, Ion CHIRIAC, Cristina ANDONI

Institute of Zoology, Republic of Moldova Corresponding author email: iurcuelena@mail.ru

Sugar beet (*Beta vulgaris* L., *saccharifera* variation) is an intensive, profitable crop, which efficiently harnesses water and fertilizers. It is used as a raw material in the sugar industry from the processing of sweet rhizocarps to obtain sugar, molasses and other secondary products, strictly necessary for the food, pharmaceutical, chemical and zootechnical industries.

The capitalizing of this crop using intensive agriculture and on large areas in the last decade, significantly aggravated the state of agrocenoses and led to the accumulation of harmful insects, which annually invades the lands planted with sugar beet and causes serious damage to plants frequently and abundantly throughout the vegetation period.

The actuality of the researches imposes the purpose and the objectives of the investigations, which constitutes the accomplishment of the entomological phytosanitary monitoring with the detection of the diversity, the density of the numerical herd, the establishment of the phytoparasitic impact of the associations of parasitic insects to the sugar beet, for argumentation, the use of remedial measures in the application of the integrated protection system.

The entomological samples were collected seasonally from experimental and productive sectors of sugar beet during 2018-2019 years, in the northern regions of the country - districts Balti, Glodeni, Drochia and Sangerei. Estimation of the insects species diversity, their quantitative structure and trophic specialization, were performed in the Entomology Laboratory of the Institute of Zoology. Entomological phytosanitary surveys were conducted at the sugar beet, with the collection of entomofauna and the analysis of over 300 soil and affected plants samples, applying the approved methods and protocol in the laboratory.

Initially from germination to the formation of the leaf rosette, the species of harmful insects with poly-oligophagous specialization appear in a consecutive order, such as: leaf guards-Tanymecus dilaticolis Gyll., Tanymecus palliates Germar., Bothynoderes punctiventris Germar., fam. Curculionidae, sugar beet fleas - Chaetocnema spp. Stephens, 1831, fam. Chrysomelidae, accompanied by wire larvae of beetles of the genus Agriotes lineatus L., A. ustulatus L., A. obscurus L., fam. Elateridae, the beetle - Opatrum sabulosum L., fam. Tenebrionidae, larvae of May bug - Melolontha melolontha L., fam. Scarabaeidae. All cited insect pests belonging to the order Coleoptera.

Among them we can notice the caterpillar of the species Agrotis segetum Schiff., Autographa gamma L. and Agriotis exclamationis L., fam. Noctuidae, ord. Lepidoptera. This is also favorable period for the aphid species such as Aphis fabae Scopoli and Myzodes persicae Sulzer, fam. Aphididae, ord. Homoptera. In the phase of formation and maturation of sweet roots (the second period of vegetation) on sugar beet plants, the other species of pests such as larvae of beetle flies - Pegomya betae Panz & Curtis, fam. Anthomyiidae, ord. Diptera and larvae of the beet moth - Scrobipalpa ocellatella, Boyd., fam. Gelenchiidae, ord. Lepidoptera are associated. These noted pests significantly affected the sugar beet plants with severe parasitic impact, established in average values of 3-25% the frequency of attack and 5-28% the intensity of the diseases caused on both the roots and the aerial organs.

Preliminary results of investigations of harmful entomofauna in sugar beet culture revealed 17 species of insects from 8 families and 4 orders, which form various complexes of harmful insects and with varied trophic specialization that cause serious malformations of the foliar apparatus and rhizocarps. These investigations have major significance in monitoring the ecological status in sugar beet agrocenoses to remedy the phytoparasitic impact and integrated plant protection.

The investigations were carried out within the framework of the fundamental intentional project with the figure 15.817.02.12F and the STCU-6233 project within the Program of the strategic direction Joint Research and Development Initiatives, with the number 17.80013.5107.12 / 6233, for the year 2019.

JUGLANS REGIA RESOURCES, HUMAN IMPACT AND RURAL AREA DEVELOPMENT

S. MAPELLI¹, M. E. MALVOLTI²

¹Institute Agricultural Biology and Biotechnology - CNR, Milan, Italy ²Research Institute of Terrestrial Ecosystems – CNR, Porano, Italy Corresponding author email: mapelli@ibba.cnr.it

In the current climate change scenarios, the choice of seed sources is one of the main factors affecting the establishment and productivity of forest tree plantations. Juglans regia L. (walnut) is one of the more valuable hardwood species since it could provide high quality timber and fruits. To obtain a commercially convenient production, different fruit varieties officially registered can be used; however these are not always suitable for any different climatic conditions. In the Italian country walnut is cultivated since ancient time and ecotypes adapted at various environmental condition still exist. We researched walnut provenances as putative biodiversity sources; this genetic material could be used to establish new seed orchards or hardwood plantations, as well as to recover the cultural tradition, productions and local economy of neglected rural areas. A multidisciplinary approach, integrating molecular markers (ISSR), morphological traits (equatorial and polar diameter, shape, dry weight) and biochemical composition of fruits(total oil, fatty acids, tocopherol) was applied to analyze several hundred samples collected in Central Italy sites (Campania, Abruzzo, Molise and Apulia regions). Particularly, samples of Abruzzo and Molise provenances were collected on centuries old walnut trees along over 200 Km of the Royal Tratturo Candela-Pescasseroli. Tratturi were the old grassy wide fixed routes, formed over centuries by transhumance, used for the seasonal migration of people and animals from the mountains to the coastal plains. In addition, samples of four registered varieties (two from Southern and two from Northern Italy) were also considered for comparison. Selected ISSR primers exhibited a strong ability to discriminate walnut provenances. The Principal Coordinate Analysis, performed on the Φ PT value, clustered the germplasm in distinct groups.

The genotyping results were partially confirmed by the morphological and biochemical analysis of fruits. Two walnut provenances, one from a hilly plateau in Campania region, the other from mountainous zone of Abruzzo, shown different genetic, morphological and biochemical characters; they could be a promising source of seeds for nurseries and hardwood plantations. Cluster analysis (UPGMA dendrogram based on Nei's genetic distances) distinguished the northeastern provenances, and clustered the 75% of the Candela-Pescasseroli provenances. The obtained results showed that the genetic differentiation of Italian walnut could be due to contrasting forces: domestication and selection, but also to intense inter-regional transfer of plant material by human activities like transhumance along the Tratturi. In the past, these paths had an enormous historical, economic, and cultural impact on social regional structure of Europe. In the second half of the twentieth century, the pastoral economy of these regions declined. In 2018 Italy, Austria and Greece proposed candidature of transhumance migratory routes as UNESCO Intangible Cultural Heritage. For Italy, the revaluation of the old grassy roads as Royal Tratturo is tight linked to the new interest for the rural development of internal areas located in the hilly and mountainous areas of Apennine. In this contest, our research on the "Walnut Tratturo", characterizes on the genetic resources, local products, traditions and the economy of rural communities, could be an important tool.

APRECIEREA REZISTENȚEI GENOTIPURILOR DE SESAMUM INDICUM L. LA FUSARIUM OXYSPORUM PRIN TESTAREA PE FILTRATUL DE CULTURĂ AL PATOGENULUI

A. MOGÎLDA, A. GANEA

Institutul de Genetică, Fiziologie și Protecția Plantelor, Chișinău, Republica Moldova Corresponding author email: anatolii.mogilda10@gmail.com

Susanul, ca și alte culturi agricole, este atacat de un șir de organisme fitopatogene care prin afectarea organelor vegetative și generative (rădăcinilor, tulpinilor, frunzelor, florilor) pot provoca daune considerabile recoltei. Unul din agenții micotici periculoși este *Fusarium oxysporum f. sp. sesami* (Zaprom.) Castell. Pentru fuzarioza susanului sunt caracteristice ofilirea parțială sau totală a plantelor la etapa înfloririi și formării capsulelor, apariția benzilor purpurii pe tulpini care se extind de la bază spre vârf și înroșirea sau înnegrirea țesutului, atunci, când tulpina principală sau ramurile primare se despică. Plantele tinere infectate pot să nu prezinte simptome exterioare vizibile, însă se evidențiază prin țesuturi de culoare brună și o înnegrire internă vizibile.

Scopul lucrării a fost determinarea reacției mostrelor din colecția de susan (40 genotipuri) de diferită proveniență ecologo-geografică, în condiții controlate, la filtratul de cultură (FC) al patogenului *Fusarium oxysporum f. sp. sesami*. Rezistența formelor la fuzarioză s-a apreciat după caracterul manifestării unor indici morfo-biologici ai semințelor și plantulelor.

Germinația semințelor. În variantele martor germinația semințelor la genotipurile de susan aflate în studiu a constituit 72-98%, excepție având mostra *Kubaneț 93* cu valoarea indicelui mai joasă. Sub influența FC al patogenului la 27 de genotipuri (67,5%) germinația s-a diminuat cu 2-38%. Cea mai pronunțată scădere (-10...-38%) s-a înregistrat la 13 genotipuri (32,5% din totalul formelor incluse în cercetare). Printre cele mai afectate pot fi menționate *Lider*, *L*2, *Manichzhurskii uluchshennâi*, (-20...-32%), precum și *L*1, *Zaltsadovski* (-38%). O stimulare la nivel de 15% a germinației s-a înregistrat la 6 soiuri— *Biolsadovski*, *Kubaneț 93*, *Donskoi belosemiannâi*, *K-1621*, *Solnecinâi* și *Boiarin*.

Lungimea rădăcioarelor. Sub influența FC la 13 genotipuri (32,5%) valoarea parametrului a diminuat cu 30,0-99,7% comparativ cu martorul. Din sirul mostrelor afectate (30,0-67,2% din lungimea rădăcioarelor formelor martor) pot fi menționate L_1 , Zaltsadovski, L_2 . La 27 de genotipuri (67,5%) (Djerelo, Kubanet 57, Gusar, Biolsadovski, Bliscucii, Natasa, Kubanet 93, Donskoi belosemiannâi, K-1621, Cumhuriyet 99, K-1257, Boiarin, Kubanet 55, Taskentschii Konditerschii 2058. Belosemiannâi 177. 25122. VNIIMK-1. Manjurschii ulucisennii, Margo, Delco, Dulce, Serebristâi, Iubileiinâi, Zaltsadovski, Oro 9/71 ş.a.) s-a constatat stimularea creșterii rădăcinii cu 2-124,4%.

Lungimea tulpiniței. Diminuarea creșterii s-a constatat la 19 genotipuri (47,5% din formele studiate). Printre cele mai afectate soiuri (20-54% din valoarea indicelui martorului) pot fi menționate L₁, Djerelo, Zaltsadovski, Lider, L₂. La un set din 20 mostre (Kubaneț 57, Biolsadovski, K-1265, Bliscucii, Natașa, Donskoi belosemiannâi, K-1621, Solnecinâi, Boiarin, Adaptovanâi 2, Kubaneț 55, N162/0781, Tașkentschii 25112, Konditerschii 2058, Belosemiannâi 177, Manjurschii ulucisennâi, Margo, Delco, Serebristii, Iubileinâi—a răspuns la tratament prin stimularea creșterii (cu 2,0-55,4%).

În rezultatul efectuării experienței s-a constatat că genotipurile de susan se diferențiază după rezistența lor la agentul patogen al fuzariozei pe filtratele de cultură ale ciupercii. Cea mai mare scădere a germinației semințelor a fost evidențiată la soiurile *Manichzhurskii uluchshennâi*, *Lider*, L_2 , L_1 , și *Zaltsadovski*. Ultimele 3 forme, de rând cu altele, au demonstrat și o inhibare a creșterii rădăcioarelor și tulpinițelor. O serie de forme (*Donskoi belosemiannâi*, *Biolsadovski*, *Boiarin*, *Kubanet 55*, *Margo*, *K-1621 ş.a.*) au reacționat în mod pozitiv la acțiunea filtratului de cultură cu patotoxinele *Fusarium* prin stimularea germinației semințelor, creșterii mai intensive a rădăcinitelor embrionare si tulpinitelor.

STATUS OF SHREW SPECIES (INSECTIVORA: SORICIDAE) IN FOREST ECOSYSTEMS OF THE REPUBLIC OF MOLDOVA

Victoria NISTREANU

Institute of Zoology, Republic of Moldova Corresponding author email: vicnistreanu@gmail.com

The shrews are the smallest mammals of the world, but they have an important role in natural environment and in human economy, being important links within the animal trophic chains. The studies were performed in 2010-2018 in various types of forest ecosystems and their ecotones on the territory of the Republic of Moldova. On the whole 172 individuals from 5 shrew species were registered: common shrew (Sorex araneus), pigmy shrew (S. minutus), bicolor white-toothed shrew (Crocidura leucodon), lesser shrew (C. suaveolens) and Mediterranean water shrew (Neomys anomalus). The water shrew (Neomys fodiens) was mentioned for the territory of Moldova by several researchers based on Brauner data (1923), but the detailed studies accomplished in the past century (Averin, 1969; Lozan, 1975, 1979) and in the last 15 years didn't reveal the presence of this species.

The ecological analysis of the shrew communities showed that the dominant species is the common shrew, with the abundance between 30% and 100%. It has a frequency of 69.4% in forest ecosystems and 85.7% in the ecotone area, with a constant ecological significance at the edge and accessory or constant inside the forest. The pygmy shrew was recorded only in the ecotone area with an abundance of 8% - 25% and 60.1% frequency in various types of ecotone, especially in the natural forests and in reserves, having an accidental ecological significance in woods and accessory significance at the ecotone.

The bicolor white-toothed shrew is the second species in abundance, being reported in most forest ecosystems, especially at the ecotone, with an abundance of 8% -50%, except for 2014, when the species had a high abundance and was dominant in forest ecosystems (over 80%), as well as in the ecotone zone (about 50%), with a frequency of 38.4% in forest habitats and 75.2% at ecotone.

The lesser shrew had an abundance of 8% - 35%, with a higher density at the ecotone, while in the forest ecosystems it was registered only in 3 years of study.

It is an anthropophilic species and inhabits mostly open-type biotopes, therefore it was recorded mainly at forest edge and in forest belts, which bordered with cultivated lands, with a frequency of 86.3%. In forests it is an accidental species, with a frequency of 11.5%. The Mediterranean water shrew was recorded in a very small number with an abundance of up to 11%, with a frequency of 4.4% in the preferred habitats. It is an accessorial species in marsh and paludous habitats and accidental in other wet habitats.

We have to mention the rather high abundance of *C. leucodon* in the last decade. Before 2000 it was a very rare species listed in the Red Book of Moldova as critically endangered, while in the third edition of the Red Book it has the status of vulnerable species. *N. anomalus* abundance decreased during the last years, in some years it wasn't recorded at all. Its abundance in the republic ecosystems decreased drastically in the last 20 years and it becomes a very rare and endangered species. This fact is caused by the degradation of wet habitats and of water basins pollution. Therefore, it was included in the third edition of the Red Book of Moldova, as endangered species.

The diversity of shrew communities is the highest at ecotone areas in all years of study and the lowest in forest ecosystems, where 1-2 species were registered. The higher number and diversity of shrew species in forest ecosystems in comparison to other types of ecosystems confirm the fact that the forests are favorable territories for all shrew species and represent key areas for conservation and faunistic diversity protection.

The work was performed within the project 15.187.02.11F at the Institute of Zoology.

ANATOMICAL AND FUNCTIONAL EFFECTS OF OCIMUM BASILICUM L. CULTIVATED ON SALINE SOIL

Elena-Iren OLARU^{1,*}, Andrei LOBIUC^{2,3}, Ștefan OLARU¹, Maria-Magdalena ZAMFIRACHE¹

¹"Alexandru Ioan Cuza" University, Faculty of Biology, Iasi, Romania;

² CERNESIM – Integrated Centre for Environmental Research in the North East Area, L2 Laboratory, Iasi, Romania;

³"Stefan cel Mare" University, Faculty of Food Engineering, Suceava, Romania

Corresponding email: elena.olaru@uaic.ro, elenairenh@gmail.com

Incorrect use of agricultural techniques is determining the apparition of saline soils. From the world total arable land surface, 8% is affected by salinity (1). Excessive amounts of salt may induce alterations of plant functions and structures (2). Assessments must be performed to find species suited for affected soils (3).

The main aim of the present study is the determination of salinity influence on processes involved in development of basil plants and the suitability of cultivating this species, an important crop of culinary and medicinal interest, on saline terrain.

Materials and Methods: Basil seeds were bought from a specialised store and peat based substrate was used for germination. During the testing the plants were potted using a universal soil mixture NaCl was applied in 3 concentrations (4mM, 10mM and 20mM). For plants anatomy, sections were made using a hand microtome and dyed using Iodine-green and Ruthenium-red. Chlorophyll and carotenoid pigments were evaluated as in (4). Total phenolic content was determined using methods described in (5).

Results: Anatomical analysis indicated that on higher NaCl concentration the number of xylem vessels increased, to compensate dehydration, similarly to (4). Chlorophyll fluorescence decreased, with variations during 2 weeks of treatment. Salinity determined a reduction of photosynthesis efficiency, influencing chlorophyll production. Salt presence lead to increased flavonoid and total phenolic contents and reduced chlorophyll contents. Similar results were observed by (4) and (5).

Conclusion: Considering that basil plant grew under salinity stress, basil crops appear suited for cultivation in salinity affected fields, with positive effects on the economic value of the crop.

Keywords: Anatomy, Basil, Salinity, Soil, Stress

References:

- **1.** Ashraf M. and Harris P.J.C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166: 3–16
- **2.** Toth G, Adhikari K, Varallyay Gy, Toth T, Bodis K, Stolbovoy V, (2008). Updated map of salt affected soils in the European Union, in Threats to Soil Quality in Europe, JRC Technical Report, edt. Toth G, Montanarella L, Rusco E.
- 3. Tarchoune I., Degl'Innocenti E., Kaddour R., Guidi L., Lachaâl M., Navari-Izzo F., Ouerghi Z., (2012). "Effects of NaCl or Na2SO4 salinity on plant growth, ion content and photosynthetic activity in Ocimum basilicum L.". Acta Physiologiae Plantarum 34, 607.
- **4.** Bekhradi F., Delshad M., Marín A., Luna M. C., Garrido Y., Kashi A., Babalar M., Gil M. I, (2015). Effects of Salt Stress on Physiological and Postharvest Quality Characteristics of Different Iranian Genotypes of Basil. HEB 56:6, 777-785
- Lim J., Park K., Kim B., Jeong J., Kim H. (2012). Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem. 135:3, 1065-1070

TOXICITY OF MULTIWALLED CARBON NANOTUBES PRESENT IN GROWTH MEDIUM ON LEMNA MINOR L.

Ștefan Mihăiță OLARU¹Andrei LOBIUC²,³, Elena-Iren OLARU¹,*, Maria-Magdalena ZAMFIRACHE¹

¹ "Alexandru Ioan Cuza" University, Faculty of Biology, Iasi, Romania;

² CERNESIM – Integrated Centre for Environmental Research in N-E, Iasi, Romania;

³"Stefan cel Mare" Univ., Faculty of Food Engineering, Suceava, Romania

Corresponding author email: <u>stefan.olaru@student.uaic.ro</u>

During the last decade nanomaterials presented a growing interest. Types of nanomaterials were constantly diversified and the range of applications has increased exponentially (1).

Multi-Walled Carbon Nanotubes (MWCNTs) are described as several graphene layers overlaid and laminated in a tubular shape. They are used as structural composites: in electronics, car components, etc. Their toxicity was tested on multiple organisms, and contradictory results on different plant species may indicate potential polluting effects and further testing is mandatory (2).

The aim of the study is to determine the effects of MWCNTs on processes involved in development and resistance of duckweed plants.

Materials and Methods: *Lemna minor* L., aquatic plant, very common in various areas and known as standard species for toxicity testing (potential bioremediator). MWCNTs: PD15L5-20, produced by NanoLAB Inc., with a 15 ± 5 nm diameter, a length of 5-20 μ m and a 95% purity.

The experiment was established using testing 3 concentrations of MWCNTs (10, 50, 200 mg/l) in SIS growth medium. For plants anatomy, sections were made using a hand microtome and dyed using Ruthenium-red. Chlorophyll and carotenoid pigments were determined using methods described in (3). Total phenolic content was evaluated as in (4). Mitotic indices and chromosomal aberrations were also investigated.

Results: MWCNTs were observed as clusters on the surface of the roots and on the lower epidermis. Also, chlorosis and necrotic formations were observed on the surface of the fronds.

Anatomically, the upper epidermis has been observed to be thicker than normal. Similar effects were observed by (5). A non-enzymatic response can be observed from the increased synthesis of phenolic compounds at higher concentration. Also, chlorophyll contents were influenced. The mitotic index was slightly reduced and the percentage of chromosomal aberrations was increased, indicating some potential mutagenic proprieties of the materials.

Conclusion: MWCNTs presence in cultivation medium induced toxicity on *Lemna* plants, expressed on morphological and physiological level, especially at higher concentrations - 50 and 200 mg/L. To determine the exact mechanisms and the extent of the negative effects, more testing is necessary.

Keywords: MWCNTs, Duckweed, Toxicity, Morphology, Physiology

References:

- 1. Deng, Y., White, J. C. and Xing, B. (2014) 'Interactions between engineered nanomaterials and agricultural crops: implications for food safety, Journal of Zhejiang University SCIENCE A, 15(8).
- Balakrishna, P., Sairam, A. and Surekh, P. (2011) 'Acute Toxicological Effects of Multi-Walled Carbon Nanotubes (MWCNT)', in Carbon Nanotubes - Growth and Applications. InTech. doi: 10.5772/18984.
- 3. Wellburn, A. R., (1994). The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. of Plant Physiology, 144(3), 307-313
- Herald, T. J., Gadgil, P. and Tilley, M., (2012), High-throughput micro plate assays for screening flavonoid content and DPPHscavenging activity in sorghum bran and flour. J. of the Science of Food and Agriculture, 92: 2326–2331.
- Zaytseva, O. (2016) 'PHYTOTOXICITY OF CARBON NANOTUBES IS ASSOCIATED WITH DISTURBANCES OF ZINC HOMEOSTASIS PHYTOTOXICITY OF CARBON NANOTUBES IS ASSOCIATED WITH DISTURBANCES OF ZINC HOMEOSTASIS', (January).

OBSERVAȚII PRIVIND POPULAȚIA CUIBĂRITOARE A SPECIEI CHLIDONIAS HYBRIDUS ÎN PERIMETRUL REZERVAȚIEI "PRUTUL DE JOS"

Viorica PALADI, doctorand

Rezervația "Prutul de Jos" este situată în partea de sud-vest de satul Slobozia Mare, raionul Cahul. S-a format în anul 1991 în baza lacului Beleu. Spațiul cuprinde diferite tipuri de ecosisteme, majoritatea dintre ele cu condiții prielnice pentru numeroase specii de păsări. Printre ele se numără și specia *Chlidonias hybridus (Pallas, 1811)*.

În această lucrare sunt prezentate succint rezultatele investigațiilor referitoare la dinamica și mărimea populațiilor cuibăritoare ale speciei *Chlidonias hybridus* (Pallas, 1811), începând cu luna aprilie 2010 și până în luna august 2018.

Chirighița cu obraz alb *Chlidonias hybridus* este o specie comună, oaspete de vară pentru teritoriul Rezervației "Prutul de Jos". Cuibărește pe apele stagnante cu vegetație plutitoare. Având cartierele de iernare în Africa sosește în bazinul Prutului Inferior mai târziu, în a doua parte a lunii aprilie, uneori la începutul lunii mai. Perioada de reproducere începe din prima decadă a lunii mai și uneori durează chiar și până în luna august. Preferă ochiurile izolate de apă bogate în vegetatie acvatică.

În primii ani de studiu (2010 – 2015) Chirighița cu obraz alb și-a amplasat colonia în ochiurile de apă din zona cu protecție integrală a rezervației. În anul 2010 din cauza viiturilor și ploilor abundente au fost distruse totalmente 52 de cuiburi. Păsările și-au schimbat apoi locul la distante diferite, formând alte 3 colonii mai mici.

În ultimii 3 ani (2016 – 2018) această specie preferă unele porțiuni de pe lacul Beleu.

Tabelul 1. Dinamica multianuală a schimbărilor care au avut loc în coloniile de *Chlidonias hybridus* în ecosistemul Rezervației "Prutul de Jos".

Anul	2010	2011	2012	2013	2014	2015	2016	2017	2018
Nr. de perechi în colonie	52	16	75	61	40	25	23	41	49
	23	27	-	-	-	15	35	-	-
	21	-	-	-	-	-	-	-	-
	15	-	-	-	-	-	1	1	-

Analizând dinamica și mărimea populațiilor cuibăritoare ale speciei *Chlidonias hybridus* din rezervația "Prutul de Jos", se observă unele diferențe privind compoziția numerică a perechilor pe ani, datorate în mare parte condițiilor de mediu diferite. Cu toate acestea putem conchide că existența condițiilor de cuibărit pentru chirighița cu obraz alb argumentează pe deplin valoarea ornitologică a zonei umede din arealul studiat.

CORYTHYCA CILIATA (SAY, 1832) – INSECTĂ INVAZIVĂ DIN SPAȚIILE VERZI ALE MUNICIPIULUI CHIȘINĂU

Alexandru PASCARU

Institutul de Zoologie, Chişinău, Republica Moldova Corresponding author email: apaskari87@gmail.com

Specia *Corythucha ciliata* (Say, 1832), originară din America de Nord. Se dezvoltă în principal pe platanul oriental (*Platanus orientalis* L.). Expansia europeană a început-o în anii 60 ai sec. XX, odată cu importul materialul săditor. În premieră a fost depistată în nordul Italiei (Padova, 1964), apoi a apărut în Croația (1970), Slovenia (1972), Serbia (1973), Franța (1974), Ungaria (1976), Rusia (Krasnodar, 1996), România (2004), Ucraina și Marea Britanie (2005-2006), Polonia (2009), etc. [3].

În Republica Moldova prezența speciei *C. ciliata* a fost constatată în 2005 în spațiile verzi ale mun. Chișinău pe planta gazdă *Platanus orientalis* L [1].

Acestă teză include date referitore la particularitățile biologice, depistarea focarelor și manifestarea dăunătorului în spațiile verzi ale mun. Chișinău pe parcursul perioadei de vegetație din anul 2019.

În țările de origine insecta este bivoltină (2 generații pe an). Adulții de *C. ciliata* au lungimea corpului 3,2-3,7 mm. Aripile sunt transparente-albicioase cu nervuri albe, fiecare au câte o pată maro-închisă. Capul și abdomenul – partea ventrală sunt de culoare neagră. [2, 3]. Adulții se împerechează primăvara. Femelele depun ponta (20-30 ouă) pe partea inferioară a frunzelor de platan. Ouăle au 0,5 mm lungime și 0,17 mm lățime, în formă de butoiaș, culoare neagră. După 3-4 săptămâni de dezvoltare apar larvele, de culoare maro-închis și se dezvoltă până la vârsta a V-a. Dezvoltarea totală a larvei durează 25-30 de zile. Adulții din a doua generație apar în septembrie-octombrie. Dăunătorul din generația septembrie-octombrie iernează în stadiul de adult (de generația a II-a) sub scoarța exfoliată specifică platanului, sub frunze, etc [1, 2, 3].

În a doua jumătate a lunii aprilie și prima jumătate a lunii mai 2019, au fost depistate exemplare mature de *C. ciliata* de la 1 - 7 exemplare pe partea inferioară a frunzelor, fără careva pagube evidente.

Dar spre sfârșitul lui mai și începutul lui iunie au fost depistate primele ouă și primele larve, astfel în luna iunie au fost prezente toate stadiile din ciclul vital al insectei.

Atât larvele cât și adulții sug sucul celular al frunzelor planteigazdă. În aceași perioadă sau făcut bine văzute simptomele specifice. Frunzele atacate au devenit declorozate, iar pe parcurs se uscau total, fiind deteriorat aspectul decorativ al arborilor. În acest an condițiile climaterice au fost prielnice pentru creșterea și dezvoltarea dăunătorului pe parcursul perioadei de vegetație și doar luna august a fost lipsită de precipitații.

Focarele de *C. ciliata* au fost observate în mun. Chişinău (sectoarele Botanica, Centru, Sculeanca, Buiucani, etc.) unde vegetează platanul (*Platanus orientalis*).

Este necesar de menționat că gradul de atac asupra arborilor de platan este neuniform. Totuși spre sfârșitul perioadei de vegetație în luna august, cei mai afectați arbori au fost observați în sectorul Buiucani pe str. Ion Creangă, din cauza densității arborilor, unde gradul de atac a ajuns la 60 %. Iar în alte sectoare ale orașului gradul de atac este de 20-40%.

Bibliografie

- Derjanschi Valeriu. Tigrul platanului Corythucha ciliata Say (Heteroptera, Tingidaie) – specie nouă pentru fauna Republicii Moldova. Buletin Științific. Revista de Etnografie, Științele Naturii și Muzeologie Numărul 6(19) / 2007 / ISSN 1857-0054. p. 46-53.
- 2. Gninenko Yu. I., Golub V. B., Kalinkin V.M., Kotenev E. S., Методические рекомендации по выявлению платанового клопа-кружевницы р. 24. http://docplayer.ru/32078275-Metodicheskie-rekomendacii-po-vyyavleniyu-platanovogo-klopa-kruzhevnicy.html (accesat pe data 08.05.2019).
- Corythucha ciliata Say, 1832 Клоп-кружевница платановый http://www.sevin.ru/Top100 Worst/priortargets/insects/ciliata pr.html (accesat pe 04.05.2019).

INFLUENȚA NANOPARTICULELOR IN BAZA FIERULUI ASUPRA CRESTERII PLANTELOR DE MĂZĂRICHE IN SOLUL POLUAT CU TRIFLURALINĂ

S. PRISACARI¹, V. TODIRAS¹, T. GUTU², S. CORCIMARU¹

¹Institutul de Microbiologie și Biotehnologie; ²Institutul de Inginerie Electronică și Nanotehnologii "D.Ghițu" Corresponding author email: prisacarisvetlana@rambler.ru

In timpul de față in Republica Moldova există problema poluării solurilor cu poluanți organici persistenți (POP) — mai ales in jurul fostelor depozite de pesticide. In tară se numără nu mai puțin de 1604 locuri, ce conțin POP, influențând negativ asupra populației și mediului ambiant. Printre diversele cazuri de POP in zonele poluate se întâlneste si trifluralina.

Prezența teritoriilor poluate ne impune necesitatea elaborării măsurilor pentru remedierea lor. În legătură cu cele expuse recent a fost propusă o nouă metodă (abordare) — nanoremedierea, care presupune utilizarea nanoparticulelor nu numai și nu atât pentru distrugerea POP in soluri, cât pentru stimularea proceselor de remediere biologică a lor. Se presupune, că utilizarea in comun a nano- si biotehnologiilor poate accelera esențialviteza remedierii și astfel de micșorat riscurile ecologice ce țin de folosirea nanoparticulelor. Cercetările în acest domeniu se află încă la faza începătoare și e cunoscut foarte puțin despre posibilitățile reale ale nanoremedierii. Reieșind din cele expuse scopul investigației noastre a fost de a testa posibilitatea utilizării nanoparticulelor în scopul stimulării creșterii plantelor de măzăriche (ca remediant potențial) în condițiile solului poluat cu trifluralină.

Conform rezultatelor obținute, introducerea in sol a 20 mg/kg de trifluralină, după cum se și aștepta, a micșorat esențial ambii indici de creștere a plantelor: în dependență de experiență, lungimea medie a plantelor s-a micșorat de 5,6-9,6 ori, iar lungimea totală a plantelor – de 5,8-9,8 ori. Bacterizarea semințelor cu tulpina *Rhizobium leguminosarum* K2 nu a provocat schimbări statistic veridice in comparație cu martorul.

Utilizarea nanoparticulelor a influențat pozitiv asupra ambilor indici de creștere a plantelor. Expresivitatea efectelor a depins atât de natura nanoparticulelor, cât și de concentrațiile lor.

Nanomagnetita a stimulat la maxim in concentrația de 25 mg/kg (+63,4% și +52,0% față de martor+trifluralină, respectiv, după lungimea medie și totală a plantelor). Nanofierul zerovalent a fost mai efectiv in concentrația de 75 mg/kg (respectiv, cu +51,1% si 58,3%).

Tratarea solului cu sulfat de fier bivalent a arătat efecte pozitive veridice (fată de martorul cu trifluralină) doar in experiența cu nanofier zerovalent si numai în concentrația de 75 mg/kg (respectiv, cu +50.1% si +53.7%).

Rezultatele obținute demonstrează perspectiva viitoarelor cercetări, mai detaliate în ceia ce privește studierea și realizarea potențialuluinanoremedierii în cazurile solurilor cu conținut înalt de POP.

IDENTIFICATION OF KEY ISSUES RELATED TO CONSERVATION OF PLANT GENETIC RESOURCES AND BIOSAFETY

Gabriela ROMANCIUC

Institute of Genetics, Physiology and Plant Protection, Chisinau, Republic of Moldova Corresponding author email: gabriela.romanciuc@gmail.com

One of the main components of the Cartagena Protocol on Biosafety is to ensure "an adequate level of protection in the field for safe transfer, handling, and use of living modified organisms resulting from modern biotechnology that may have adverse effects on the conservation and sustainable use of biological diversity, taking also into account risks to human health, and specifically focusing on transboundary movements."

In a biosafety context, the conservation and sustainable use of biological diversity is important for food security of humanity for future generations. Important part of the biological diversity, plant genetic resources (PGR), in the form of seeds and plant, are important reservoir of genetic diversity, including landraces, primitive cultivars, traditional varieties, wild and weedy relatives of crop plants.

It is widely recognize that PGR are in serious erosion and threatened by climate change, human activities, the substitution of traditional cultivars by high yield cultivars etc. In this point of view, it can be mentioned genetically modified crops (GM), that represent the product of genetic engineering, that offer new potential for higher yields, better quality traits and higher resistance to biotic and abiotic stresses.

Despite these significant advances, there are some problems with the use of GM varieties such as: gene flow between GM and traditional varieties of the same crops; gene flow between GM varieties and crop wild relatives and weedy; spread of GM seed through commercial and local traditional seed system, as well as international exchange. This process will lead to the loss of valuable genes associated with local adaptation, stress tolerance, yield stability etc. A complimentary application of *in situ* and *ex situ* conservation is recommended for effective preservation of PGR.

In the Republic of Moldova there are five holder institutions of ex situ collections: Institute of Genetics, Physiology and Plant Protection, through the Laboratory of RGV; Scientific-Practical Institute of Horticulture and Food Technologies; The Botanical Garden (Institute), Porumbeni Institute of Plant Growing and Selectia Research Institute of Field Crops.

Ex situ collection of the PGR Laboratory, that is the main coordinator of conservation activities at the national level, is stored at medium-term conditions (+4°C) and cover almost crops cultivated in Moldova. The largest part of collection is presented by cereal crops such as wheat, maize, barley and triticale, vegetables such as tomatoes, chickpeas, soy beans, beans, and Vigna. These cultures are presented by varieties, hybrids, lines, mutants, local forms, etc.

In situ conservation of PGRFA in the Republic of Moldova is being implemented especially, in protected natural areas. A special role in *in situ* conservation of PGRFA plays the scientific reserves like Codrii, Iagorlic, Prutul de Jos, Plaiul Fagului, and Pădurea Domnească. Various collecting missions are organized by the staff of scientific institutions.

Plant biotechnology applications must respond to increasing demands in terms of food security, socio-economic development and promote the conservation, diversification and sustainable use of plant genetic resources as basic inputs for the future agriculture.

WINTER DURUM WHEAT IN THE REPUBLIC OF MOLDOVA

Silvia ROTARI, Andrei GORE, Svetlana LYATAMBORG

Institute of Genetics, Physiology and Plant Protection, Chisinau, Republic of Moldova Corresponding author email: rotari.1960@mail.ru

Durum wheat in its importance among all types of wheat is the second crop in the world after common wheat and occupies about 18 million hectares in the world or 10% of all wheat crops. The grain of this crop is indispensable in the production of high-quality pasta. Hard varieties are characterized by high-quality gluten, which is especially appreciated in the production of pasta. It is

used quite widely in the baking, cereal and confectionary industries.

In order to create more productive winter-hardy and non-obstructing forms and varieties of winter durum wheat, which, according to the set of biological characteristics and economic characteristics, were at the level of the best varieties of winter durum wheat, carried out interspecific and intraspecific crosses. Highly productive, low-stem lines, which are distinguished by good winter hardiness, resistance to powdery mildew, rust and fusarium, are isolated from multiple combinations by repeated selection. In subsequent years, these forms were studied in a

control and competitive test.

The study of new lines in the control and competitive nursery allowed us to choose some of them that surpass the best varieties in productivity and resistance to abiotic and biotic environmental factors. As a result of all this work, winter durum wheat varieties were created: Auriu 273, Hordeiforme 333, 335, 340, Hordeiforme 3, Auriu 2, Sofidurum, Leukurum 2,3 and others. A characteristic feature of these varieties is good winter hardiness, mid-season, resistance to diseases and lodging, high technological parameters and others. They have a large amber-yellow grain containing a high percentage of protein (13-15%) and gluten (25-30%). Productivity is the main criterion for the effectiveness of breeding work with any crop, including winter durum wheat.

Breeding a new variety with the highest possible level of productivity is the main task of modern breeding. The spike productivity of each variety depends on the number of spikelets and grains in the spike, as well as the mass of each spike separately. The varieties Sofidurum, Auriu 2, Hordeiforme 340 and others have high productivity. For new intensive forms of winter durum wheat, on average over 4 years, the yield was 3.4-5.7 t/ha, which is 0.8-1.55 t/ha more than the standard. Due to the high productive ability and resistance to abiotic and biotic factors, 4 varieties (Auriu 273, Hordeiforme 333, 335, 340) were zoned in our country in 1998, 2000, 2008 and 2016, respectively, and two varieties Auriu 2 and Sofidurum are studied in the State Commission variety testing of crops.

Thus, by the methods of interspecific and intraspecific hybridization using the original starting material, the varieties Auriu 273, Hordeiforme 333, 335, 340, Hordeiforme 3 Auriu 2, Sofidurum, Leukurum 2.3 and others were created.

INDEX OF AMMONIA IONS NITRIFICATION IN LACES WATER

M. SANDU, E. MOSANU, A. TARITA, R. LOZAN, T. GOREACIOC, S. TURCAN

Institute of Ecology and Geography, Republic of Moldova Corresponding author email: sandu mr@yahoo.com

Unpolluted natural waters contain small amounts of ammonia and ammonia compounds, usually <0,1 mg/L nitrogen. Total ammonia concentration in surface water are typically less than 0,2 mg/L N but may reach 2-3 mg/L N [1]. If in natural waters have been given ammonia and nitrogen concentrations more than 1 mg/L, that is as indicator of organic pollution (livestock, intensive agriculture, industrial effluents and liberation of domestic sewage) in courses of superficial waters. The concentration higher than 2,5 mg/L can be toxic to aquatic species [2].

In the nitrogen cycle the oxidation of ammonia to nitrate by microorganisms is a key process, resulting in nitrogen loss from ecosystems, eutrophication of surface and ground waters.

One Nitrification Index (NI) was proposed for chloraminated drinking water in distribution system [3].

In order to evaluate the nitrification process in surface waters was developed a nitrification index (I_{nitrif}) [4], which characterizes the intensity of ammonium nitrification under natural conditions with the formula (in mg/L N):

$$I_{\text{nitrif}} = (N-NO_3 \cdot 100) : (N-NO_3 + N-NO_2 + N-NH_4)$$

In this study was determinates the ammonia, nitrite and nitrate nitrogen content in laces from State Protected Areas in comparison with Salas lace and Ghidighici basine water for calculation of the Nitrification Index (I_{nitrif} .). It has been found that the I_{nitrif} of laces water from Landscape Reserve, Telita Noua village, has value of 17-31%, in Salas lace 50%, and in Ghidighici basin I_{nitrif} is of 26-42% (table). The index of nitrification correlated positive with O_2 Saturation (y = 3,05x + 88,05, $R^2 = 0,1063$) and Index of Water Pollution (IWPcc) [5], y = 4,3x + 42,3, $R^2 = 0,4856$, and negative with self purification capacity (SPC), y = -0,022x + 0,3; $R^2 = 0,5084$.

Parameters/water	Salas	Telita N	oua village	Basin Ghidighici		
sample	Lace	Pond 1	Pond 2	after reed	at the	
					dam	
Initrif., %	50	17	31	42	26	
Saturation with O2,	97,5	74,07	109	94,5	111	
%						
SPC	0,17	0,24	0,28	0,2	0,28	
IWPcc, %	63	41	49	61	62	

Based on obtained values it is concluded that the index of nitrification is small (till 50%) in all water basins, being dependent of O₂ saturation, level of water pollution and self purification capacity.

Bibliography.

- Water Quality Assessments A Guide to Use of Biota, Sediments and Water in Environmental Monitoring - Second Edition. Chapter
 UNESCO/WHO/UNEP. 1992, 1996, 60 p. ISBN 0 419 21590 5 (HB) 0 419 21600 6 (PB).
- 2. Waseem A Gad. Monitoring of Nitrification Process Occurrence in Aquatic Systems Linked to Water Quality Index. Int J Oceanogr Aquac, 2018, vol. 2(1): 000128.
- 3. Karen A. Schrantz, at all. Simulated distribution nitrification: Nitrification Index evaluation and viable AOB. Journal (American Water Works Association), 2013, vol. 105, no. 5, p. E242-E254.
- 4. Saveliev O. V., at all. Evaluation of permissible anthropogenic load of small watercourses by their self-cleaning ability. Problems of regional ecology, 2011, nr. 1, p. 6-12.
- Sandu M., Tarita A., Mosanu E., Turcan S. Surface water pollution index. Case Study - Surface Waters in Harjauca Forest District (Scientific Practical Guide), Chisinau, 2017, 38 p. ISBN: 978-9975-110-78-5.

IMPACTUL NANOPARTICULELOR SUPLIMENTATE ÎN MEDIUL NUTRITIV ASUPRA ACTIVITĂȚII ANTIFUNGICE A MICROMICETELOR

I. SÎRBU, I. TIMUŞ, C. MOLDOVAN

Institutul de Microbiologie și Biotehnologii, Republic of Moldova Corresponding author email: tfsirbu@gmail.com

Protecția plantelor împotriva bolilor și dăunătorilor este o parte integrantă a producției agricole moderne, iar microorganismele sunt principala sursă de obținere a diverselor biopreparate cu acțiune antimicrobiană, nematicidă și insecticidă. Metoda biologică de combatere a dăunătorilor culturilor agricole este foarte actuală, datorită produselor ecologice pure, care sunt mai sănătoase ca cele crescute pe bază de chimicale. Folosirea biopreparatelor (fungicide, erbicide, secticide) în agricultură urmărește diferite scopuri: stimularea creșterii și dezvoltării plantelor, profilarea și tratarea plantelor afectate de diferiți agenți patogeni ș.a.

Scopul cercetărilor a constat în evaluarea potențialului antifungic a unor tulpini de micromicete cultivate în prezența nanoparticulelor.

Ca obiect de studiu au fost folosite 11 tulpini de micromicete (*Penicillium* - 6 și *Trichoderma* - 5 tulpini) din Colecția Națională de Microorganisme Nepatogene (CNMN). Aceste tulpini sau remarcat prin activitate antifungică sporită față de unii fitopatogeni.

În calitate de culturi test au fost utilizați fitopatogenii: Aspergillus niger, Alternaria alternata, Botrytis cinerea, Fusarium solani și Fusarium oxysporum.

Activitatea antifungică a culturilor a fost determinată conform metodei difuzimetrice, prin utilizarea blocurilor de geloză.

Experiențele au fost efectuate în cutii Petri pe mediul Czapek. Culturile au fost cultivate pe mediul agarizat Czapek (martor) și pe mediul Czapek suplimentat cu nanoparticule (NP) de Cu, ZnO; Fe₂O₃, Fe₂ZnO₄, și Fe₂CuO₄ în concentrație de 0,001; iar Co - 0,0001%, timp de 10 zile la temperatura de 28°C. Nanoparticulele utilizate au avut diverse mărimi și forme: NPCu – 2-3 nm, NPCo-15-20 nm, NPZnO – 20-30 nm, NP Fe₂O₃ - 2-10 nm, Fe₂ZnO₄ - 8-15 nm și Fe₂CuO₄ – 20-35 nm.

Nanoparticulele de Cu, Co, ZnO au fost sintetizate de către cercet. șt. de la Universitatea de Stat Sud-Vest din Kursk, Rusia, iar NP de Fe₂O₃, Fe₂ZnO₄ și Fe₂CuO₄ la Institutul de Chimie din Moldova și puse la dispoziția noastră, cărora le mulţumim.

Datele obținute în experiențele montate au demonstrat că, nanoparticulele suplimentate în mediul de cultivare a micromicetelor din genul Penicillium și Trichoderma pot modifica proprietățile antifungice ale acestora. Astfel, NP de Co au actionat negativ asupra activității antifungice a tulpinilor date, iar NP de Cu și ZnO, în dependență de tulpina studiată, au acționat atât negativ cît și pozitiv. Zonele de inhibitie a fitopatogenilor testați, în majoritatea variantelor, au variat în limitele \pm 10% față de varianta martor, iar diametrul zonei de inhibitie a fitopatogenului A. alternata sub actiunea metabolitilor tulpinii P. funiculosum CNMN FD 01 cultivată în prezenta NP ZnO₄ a constituit 125,5% față de martor. Stimulări mai semnificative a proprietăților antifungice a tulpinilor de micromicete față de fitopatogenii testași s-a obținut la utilizarea NP de Fe₂O₃, Fe₂ZnO₄, Fe₂CuO₄. Zonele de inhibiție a unor patogeni depășesc varianta martor cu 10-30%, iar zonele de inhibiție a fitopatogenului Alternaria alternata sub acțiunea metaboliților tulpinii P. funiculosum CNM FP 01 cultivată în prezenta NP de Fe₂ZnO₄, Fe₂CuO₄ constituie 153% si respectiv 143% față de martor. Cele mai semnificative stimulări a activității antifungice au fost obținute, la majoritatea tulpinilor studiate, în variantele cu NP de Fe₂ZnO4

Conform, datelor obținute în cercetările efectuate putem constata că, nanoparticulele anorganice (NP), pătrunzând în lichidul biologic al celulei, intră în contact cu componentele celulare, determinând accelerarea sau diminuarea proceselor biosintetice. Astfel, nanoparticulele de ${\rm Fe_2ZnO_4}$ suplimentate în mediul de cultivare a micromicetelor, din genul *Penicillium* și *Trichoderma*, pot stimula semnificativ activitatea antifungică a acestora față de fitopatogeni.

FAUNA DE MAMIFERE DIN ECOSISTEMELE URBANE ALE MUNICIPIULUI CHIŞINĂU

Călin SPÎNU, Victoria NISTREANU, Alina LARION

Institutul de Zoologie, Republica Moldova Corresponding author email: spinucalin25@gmail.com

Cercetările faunei de mamifere din Republica Moldova au început intens la mijlocul secolului trecut. Au fost elaborate bazele teoretice ale proceselor de aclimatizare a mamiferelor la noile condiții de viață. În general, studiile mamiferelor pe teritoriul republicii s-au axat pe cercetări fundamentale privind principiile de formare și funcționare a populațiilor de mamifere în ecosistemele antropizate. În ultimele decenii continuă intens procesele de antropizare, urbanizare si degradare a ecosistemelor naturale pe tot teritoriul republicii. Dintre acestea pot fi menționate extinderea localităților urbane, tăierea pădurilor, construcția drumurilor, dezvoltarea turismului care cauzează formarea multor zone recreationale în mediul natural. Se observă o crestere intensă a localităților urbane și, în consecință o creștere a densității populației urbane. Ecosistemele urbane sunt reprezentate de așezările umane unde se creează relații specifice de interactiune între un mediul puternic transformat de om si comunitatea umană.

Mamiferele sunt un component indispensabil în fauna ecosistemelor urbane, care servesc ca indicator ecologic al stabilității ecosistemelor urbane. Există doar câteva studii privind fauna urbană a mamiferelor mici în secolul trecut (Anisimov, 1966, Anisimov, Cojuhari, 1978), unde sunt menționate doar 4 specii de insectivore, 8 specii de rozătoare, 9 specii de chiroptere, 2 specii de carnivore. În ultimii 15 ani studiile faunistice a mamiferelor mici din mun. Chișinău au fost mai intense (Nistreanu, Caraman, 2009; Tikhonov et al., 2010, 2012 etc.).

Cercetările au fost efectuate în 2017-2018 în diverse tipuri de ecosisteme urbane reprezentate de parcurile municipale, Grădina Botanică, grădina Zoologică, împrejurimile aeroportului Chișinău, sectoare recreaționale din suburbii (Vadul-lui-Vodă, Nemureni, Dumbrava etc.).

În total pe teritoriul municipiului au fost înregistrate 36 specii de mamifere care aparțin la 6 ordine: 6 specii de insectivore (Erinaceus concolor, Talpa, europaea, Sorex araneus, S. minutus, Crocidura leucodon, C. suaveolens), 7 specii de lilieci (Myotis bechsteini, M. dasvcneme. daubentonii. Nyctalus noctula. Pipistrellus pipistrellus, Vespertilio murinus, Plecotus austriacus), 12 specii de rozătoare (Sciurus vulgaris, Spalax leucodon, Muscardinus avellanarius, Apodemus sylvaticus, A. agrarius, A. flavicollis, A. uralensis, Mus musculus, M. spicilegus, Microtus sp., Clethrionomys glareolus, Cricetulus migratorius), o specie de lagomorfe (Lepus europaeus), 6 specii de carnivore (Vulpes vulpes, Mustela nivalis, M. putorius, Felis silvestris, Meles mele, Martes foina) si 2 specii de copitate (Capreolus capreolus, Sus scrofa). Cea mai mare diversitate s-a înregistrat în ecosistemele de la limita municipiului, care contin biotopuri forestiere și paluistre (Condrița, Dănceni, Vadul-lui-Vodă). Cele mai răspândite și euritope specii sunt veverița, orbetele, cârtița, șoarecele de pădure, șoarecele gulerat. Dintre speciile de terenuri deschise cele mai frecvente au fost șoarecele de câmp, șobolanul de câmp, soarecele de mișună. Cele mai rare sunt speciile stenotope cum sunt chițcanii, liliecii, copitatele, care preferă ecosisteme naturale, palustre si mai putin afectate de activitatea antropică.

Dintre speciile semnalate multe sunt listate în Cartea Roșie a Republicii Moldova (2015) cu diferite criterii de raritate: *Crocidura leucodon* (VU), *Myotis bechsteini* (CR), *M. dasycneme* (EN), *M. daubentonii* (VU), *Vespertilio murinus*, (CR), *Plecotus austriacus* (VU), Felis silvestris (EN).

Mamiferele constituie verigi importante în lanţurile şi relaţiile trofice ale lumii animale, precum şi în funcţionarea biocenozelor localităților urbane. Mamiferele mici asigură circulația materiei de la un nivel trofic la altul, fără care existenţa mamiferelor carnivore şi a păsărilor răpitoare ar fi imposibilă.

Studiul a fost efectuat în cadrul proiectului fundamental 15.187.02.11F.

CERINȚELE FAȚĂ DE MEDIU ȘI CARACTERISTICILE ECOLOGICE ALE SPECIEI LYCIUM BARBARUM L.

Maria TABĂRA-GORCEAG, Nina CIORCHINĂ, Mariana TROFIM

Gradina Botanică Națională (Institut), "Alexandru Ciubotaru", Chișinău, Republica Moldova Corresponding author email: maricica.gorceag@yahoo.com

Lycium barbarum L. face parte din familia Solanaceae, fiind originar după unele surse, din centrul Chinei. Alte opinii vorbesc că specia a provenit din regiunea care se întinde între sud-estul Europei și sud-vestul Asiei. În prezent, LB poate fi regăsit aproape în toată lumea, cultura fiind introdusă în scopuri ornamentale, comercial-economice (industriei alimentare) în tot mai multe tări.

În unele țări printre care se numără și Republica Moldova, Lycium barbarum L. este considerat o plantă potențial invazivă, astfel, cel care cultivă aceste plante trebuie să dețină informații cu privire la aceste probleme, mai ales din cauza faptului că semințele de goji pot fi usor propagate de către păsări sau alte animale care le consumă. Potențialul invaziv al speciei este explicat de unii cercetători prin faptul că plantele drajonează usor, ocupând repede spatiile deschise din habitat, deasemenea, ea reușește să se adapteze bine diferitelor schimbări sezoniere. Frecvent cultivată în garduri vii, se înmulteste repede prin lăstari, devenind în multe locuri subspontană și formând uneori adevărate mărăcinișuri. De asemena, și unii specialiști americani consideră faptul că lycium-ul, datorită caracteristicilor sale nepretențioase, poate deveni invaziv sau poate fi considerat o buruiană în cazul în care nu este îngrijit corespunzător. Totuși, trebuie evidențiat faptul că aceste afirmații sunt valabile pentru plantele necultivate (flora spontană), aflate pe terenuri neîngrijite, soiurile înalt-calitative neavând tendințe pronunțate de drajonare. Deși nu este recomandată înfiintarea de culturi de goji cu destinatie comercială pe terenuri contaminate cu metale grele sau cantităti mari de pesticide, este bine de stiut că specia este rezistentă la poluare.

De asemenea, plantele tolerează bine solurile cu o salinitate crescută datorită mecanismului lor de modificare a grosimii stratului de glico-proteine din peretele celular al frunzelor, ca răspuns la stresul salin.

Acest arbust este rezistent la condițiile de vânt puternic și la expunerea maritimă, fapt atestat atât pe teritoriul Angliei (Suffolk), cât și pe cel al țării noastre. Chiar dacă planta nu beneficiază de soluri foarte fertile sau bogate în anumite micro-elemente, sau de temperaturi și un grad de insolație crescute, similare cu cele din regiunea Ningxia, totuși, aceasta se poate adapta/aclimatiza. Goji fiind considerat un arbust nepretențios, însă pentru ca producția să fie una calitativă, se impune respectarea anumitor cerinte.

Cerințele speciei Lycium barbarum L. față de mediu sunt relativ nenumeroase, fiind un arbust rezistent la condiții nefavorabile și boli fapt ce îl face uşor de cultivat și de îngrijit. Dar, când vine vorba de obtinerea unei recolte înalte si calitative de fructe de goji, aceste particularităti agropedoclimatice devin foarte însemnate. În ciuda preferintei pentru o climă mai călduroasă, Lycium-ul este rezistent si la iernare, supraviețuind la temperaturi negative sau în condiții de înghet, Lycium barbarum L. fiind un nanofanerofit cu o rezistență la ger destul de bună (-15 °C, -23 °C), dar numai pe perioade relativ scurte de timp. PH-ul optim pentru dezvoltarea arbustului de goji este situat în jurul valorii de 7 (neutru), însă pot fi tolerate și soluri mai acide sau mai alcaline, goji preferând solurile de calitate medie sau bună, dar tolerându-le si pe cele mai putin fertile, ce nu au o cantitate semnificativă de humus. Pentru culturile convenționale, plantele de Lycium pot fi fertilizate pe parcursul perioadei de creștere a plantei pentru a-i crește șansele de supraviețuire.

În China, unele studii au ajuns la concluzia că această plantă este eficientă și în reconversia terenurilor agricole în zone împădurite, mai ales în regiunile montane joase. Similar, *Lycium barbarum* L. este descris și ca având rol de fixare a solului. Mai mult, el poate acționa și ca barieră ecologică (în Anglia este folosit și pe post de gard viu).

Actualmente în laboratorul de *Biotehnologie și Embriologie a Grădinii Botanice* (I) este studiată acesta specie prind metode de cercetare biotehnologice *in vitro/ex vitro*, metode de studii anatomice, biochimice și metode agrotehnice.

CALITATEA BIOMASEI DE TIMOFTICĂ, PHLEUM PRATENSE CA FURAJ ȘI SUBSTRAT PENTRU OBȚINEREA BIOMETANULUI

Victor ŢÎŢEI¹*, Teodor MARUŞCA², Daniela ZEVEDEI², Adrian Vasile BLAJ², Romina MAZĂRE³, Paul Maria ZEVEDEI ², Ana GUŢU¹

¹Gradina Botanică Națională (Institut), "Alexandru Ciubotaru" Chișinău, Republica Moldova

² Institutul de Cercetare –Dezvoltare pentru Pajişti, Braşov, România ³Universitatea de Ştiinţe Agricole şi Medicină Veterinară a Banatului, Timişoara, România

Corresponding author email: vtitei@mail.ru

Genul *Phleum*, familia *Poaceae* cuprinde 17 specii de plante anuale și perene originare din Europa, Asia, Nordul Africii, iar specia Phleum alpinum este nativă din America. În flora spontană a Republicii Moldova sunt atestate 4 specii: Phleum nodosum L., Phleum paniculatum Huds., Phleum phleoides (L.) Karst., Phleum pratense L. (Negru, 2007). Din aceste specii o raspândire mai largă și o valoare furajeră foarte bună o are timoftica, Phleum pretense, plantă perenă, cu tufă rară cu înaltimea de 48-150cm, cu frunze plane lungi de 25-40cm și late de 6-10mm, treptat ascuțite, linguala de 3-7mm, ușor dințată, cu trei dinți mai mari; teci netede, glabre, cu striațiuni transversale; lăstari bulibiformi îngroșați la bază; infloriscența verzue, cilindrică, densă, lungă de 7-15 cm, spiculete uniflore, glume de2-3mm, liniar alungite, trunchiate, cu careana lung si rigid ciliată, terminată cu o aristată de 1-2mm; paleea inferioară cât jumătatea glumelor, incoloră, trunchiată și slab denticulată la vârf. Timoftica manifestă toleranță la frig și la secetă și poate crește și pe solurile nisipoase și sărace, pornește în creștere timpuriu în primavară, revigorarea după cosire este lentă. În Catalogul soiurilor de plante a Republicii Moldova nu sunt înregistrare soiuri de timoftica

Scopul cercetărilor științifice efectuate a constat în evaluarea calității biomasei de timoftica, *Phleum pretense*, ca furaj natural și fân pentru alimentația animalelor, precum și ca substrat pentru obținerea biometanului prin digestie anaerobă si producerea energiei renovabile.

În calitate de obiect de studiu a servit soiul *Tirom* creat la Institutul de Cercetare-Dezvoltare pentru Pajiști Brașov, România și cultivat în cultură pură în sectorul experimental al Grădinii Botanice, Chișinău.

Mostrele de masă proaspătă pentru evaluare au fost prelevate la prima coasă în anul 2 de vegetație la inițiere formării paniculului, au fost mărunțite și supuse dehidratării în etuvă cu ventilație forțată la temperatura de 60°C. Fănul a fost preparat prin dehidratarea direct în câmp a biomasei recoltate. Conținutului de proteina brută (PB), cenușa brută (CenB), conținutul de fibre prin tratare cu detergent neutru (NDF), conținutul de fibre prin tratare cu detergent acid (ADF), conținutul de lignină sulfurică (ADL) s-a evaluat aplicând metoda spectrofotometriei infraroșu apropiat cu utilizarea echipamentului tehnic PERTEN DA 7200 din dotarea Institutului pentru Pajiști Brașov. Valoarea relativă a furajului (RFV), energia digestibilă (ED), energia metabolozantă (ME), energia netă lactației (NEL), conținutul de celuloză (Cel) și hemiceluloză (HC) s-a estimat prin ecuații standardizate, potențialul de producție a biometanului conform Dandikas și col., 2015.

În rezultatul cercetărilor efectuate s-a stabilit că la momentul recoltării soiul *Tirom* de timoftica, conține circa 35.3% substanțe uscate, iar compoziția biochimică a acestora fiind de 11.3 % PB, 7.5% CenB, 33.8% ADF, 55.0% NDF, 3.9% ADL, 29.9% Cel, 21.2% HC. S-a estimat că furajul natural are 62.6% digestibilitatea substanțelor uscate, RFV=106, valoarea energetică a substanțelor uscate 12.33 Mj/kg DE, 10.33 Mj/kg ME și 6.14 Mj/kg NEL. Pe parcursul dehidratării și producerii fânului se constată unile modificări a compoziției biochimice: 9.8 % PB, 7.5% CenB, 37.6% ADF, 61.2% NDF, 4.2% ADL, 33.4% Cel, 23.6% HC, fapt ce s-a răsfrânt asupra diminuării calitățiilor nutritive și energetice: 59.6% digestibilitatea substanțelor uscate, RFV=91, valoarea energetică 11.80 Mj/kg DE, 9.69 Mj/kg ME, 5.71 Mj/kg NEL.

Ca substrat pentru stațiile de producere a biogazului prin digestie anaerobă, masa proaspătă recoltă de timoftică, soiul *Tirom*, prezintă un potențialul de biometan 341 L//kg materie organică, iar substratului de fân-335 L//kg materie organică, respectiv.

EVALUAREA PROPRIETĂȚILOR FIZICO-MECANICE A FITOMASEI ȘI A BIOBRICHETELOR DIN UNILE PLANTE DIN FAMILIA *POACEAE*

Victor ŢÎŢEI

Gradina Botanică Națională (Institut), "Alexandru Ciubotaru" Chișinău, Republica Moldova Corresponding author email: vtitei@mail.ru

Siguranța de achiziționare a surselor de energie fosile, dependente de un șir de factori politici și economici imprevizibili, precum și necesitatea reduceri emisiile de gaze poluante au motivat apariția unui interes sporit pentru sursele de energie regenerabile atât la nivel mondia cât și regional. Energia din biomasă are un rol important în acest scenariu. Materia primă folosită la producerea biocombustibililor solizi densificați este foarte variată și are o influență dominantă asupra proceselor tehnologice de fabricare a unui produs finit calitativ, explotării utilajului de termoficare și eficienții producerii energiei regenerabile. În condițiile Republicii Moldova, dar și la nivel regional, fitomasa din reziduri agriosilvice și plante energetice cultivate, reprezintă o oportunitate de producere a biocombustibililor solizi densificați în formă de brichete și pelete atât pentru uz rezidențial, cât și pentru uz industrial, contribuind esențial și la dezvoltare socio-economică a zonelor rurale.

Scopul cercetărilor științifice efectuate a constat în evaluarea proprietăților fizice și mecanice a fitomasei unor plante din familia *Poaceae* crescute în condițiile Republicii Moldova, precum și a biocombustibilului solid densificat în formă de brichete (biobrichete) obtinut din fitomasa recoltată.

Ca obiect de studiu au servit plantele din familia *Poaceae*: miscant giganteu *Miscanthus giganteus* soiul *Titan*, sorg peren *Sorghum almum* soiul *Argentina*, păiuș înalt *Festuca arundinacea*, stuf comun *Phragmites australis*, grâu de toamnă (paie) *Triticum aestivum*, porumb (tulpini) *Zea mays*. Mostrele pentru cercetari au fost prelevate din colecția de plante energetice și sectorul experimental al Laboratorului Resurse Vegetale, Grădina Botanică, Chișinău. Fitomasa recoltată a fost măcinată la moara cu ciocane cu trecerea prin sita cu dimensiunile ochiurilor de 10 mm.

Conținutul de umiditate a fost determinat prin metoda uscării în etuvă conform SM EN ISO 18134, cenușa - prin calcinarea lentă în în cuptorul electric cu mufă conform SM EN 18122, valoarea calorifică superioară la bomba calorimetrică LAGET MS-10A în conformitate cu SM EN ISO 18125, distribuția dimensională a particulelor la mărunțire și măcinare prin separarea particulelor cu site oscilante în conformitate cu cerințele SM EN ISO 17827, densitatea în vrac a fitomasei macinate, densitatea în vrac și specifică a biobrichetelor produse conform metodelor acceptate. Densificarea fitomasei în formă de brichete s-a produs la presa hidraulică cu piston BrikStar 50-12.

Conținutul de frunze și umiditate influențează momentul optim de recoltare, cheltuielile necesare pentru transportarea, stocarea si condiționarea materiei prime, capacitatea de păstrare și valoarea calorifică a brichetelor, procesul de ardere si formarea zgurii la cuptoarelor de ardere. S-a stabilit că plantele perene de Miscanthus giganteus și Sorghum almum manifestă un ritm mai accelerat de defoliere și dehidratare a țesuturilor la stabilirea temperaturilor negative comparativ cu stuful. Fitomasa de păius înalt, sorg peren, porumb și grâu de toamnă are un conținut mai înalt de cenușă (3.63-4.93%) față de Miscanthus giganteus, fapt ce s-a răsfrânt direct asupra diminuări valorii calorifice. Distribuția dimensională a particulelor la măcinarea fitomasei speciilor de plante studiate diferă esențial, iar densitatea în vrac a fitomasei macinate variază de la 86 kg/m3 (Festuca arundinacea) la 167kg/m³ (Miscanthus giganteus). Densitatea în vrac a biobrichetelor produse variază de la 405 la 501 kg/m³, iar densitatea specifică- de la 740 la 923 kg/m³, valori mai ridicate se atestă la biobrichetele din tulpini de porumb. Valoarea calorifică superioară variază de la 17.4 MJ/kg la paiele de grâu la 18.9 MJ/kg la tulpinele de stuf și 19.3 MJ/kg la Miscanthus giganteus.

Speciile cercetate din familia *Poaceae* pot contribiu la asigurarea ritmică și stabilă cu fitomasă a agenților economici din domeniul procesării fitomasei energetice în formă de brichete simple și mixte pentru produceria energiei renovabile și diminuarea importului de produse petroliere și gaze.

INFLUENȚA TRIFLURALINEI ASUPRA DEZVOLTĂRII PLANTELOR DE SOIA ȘI BACTERIILOR DE NODOZITĂTI RHIZOBIUM JAPONICUM RD2

V. TODIRAȘ, L. ONOFRAȘ, S. PRISACARI, A. LUNGU

Institutul de Microbiologie și Biotehnologie, Republica Moldova Corresponding author email: leonid.onofras@mail.ru

Unele date bibliografice remarcă faptul că acțiunea fitotoxică a erbicidelor poate cauza scăderea în creștere și dezvoltare a plantelor leguminoase cât și a micșorării numărului și volumului nodozităților formate pe rădăcini. Cercetătorii (Paromenscaia L N. et al., 1987), efectuănd experiențe vegetative cu utilizarea erbicidului treflan la cultura de soia în concentrația de 0,25 mg/kg/sol au stabilit că acest erbicid este foarte toxic față de sistemul rizobio-bacterian, iar masa brută și uscată a scăzut esențial.

Cele expuse impun o atitudine precaută în ceea ce privește selectarea cu scopul utilizării în practica agricolă a compușilor mai puțin nocivi și cu un grad înaintat de descompunere. Totodată trebuie să se țină cont de faptul că factorul principal care provoacă transformarea pesticidelor în sol sunt microorganismele, activitatea vitală a căror nu este inhibată semnificativ de către diversele pesticide deseori folosite în practică.

Cercetări de acest gen au fost efectuate și de colaboratorii laboratorului Microbiologia solului al Institutului de Microbiologie și Biotehnologie. Scopul lor a fost de a stabili reacția plantelor de soia și a bacteriei simbiotrofe *Rhizobium japonicum RD2* în cazul trifluralinei folosite în diverse doze (1, 5, 10 și 25 mg/kg/sol). În rezultatul investigațiilor s-a stabilit, că trifluralina folosită în concentrațiile menționate nu au manifestat impact semnificativ asupra capacității germinative a semințelor. În ceea ce privește creșterea și dezvoltarea plantulelor apoi în paralel cu creșterea dozei de erbicid, lungimea rădăcinilor la soia s-a micșorat și deformat considerabil. Astfel, lunimea rădăcinilor în dozele 5, 10 și 25 mg/kg/sol s-a micșorat corespunzător cu 17,8 %, 37,8% și 61,2 %.

De asemenea, în condiții de laborator, s-au făcut investigații în ceea ce privește influența trifluralinei asupra viabilității bacteriilor simbiotrofe *Rhizobium japonicum*.

Analiza datelor obținute a demonstrat, că în paralel cu mărirea dozei de trifluralină titrul bacreriilor scade. Astfel, testarea bacteriilor de nodozități *Rhizobium japonicum RD2* pe fundalul trifluralinei în dozele 50 100 și 200 mg/l mediu nutririv, s-a stabilit viabilitatea bacteriilor ca fiind de respectiv 66,5, 86,7 și 94,8 %.

Reieșind din datele obținute s-au făcut următoarele concluzii:

- 1. Trifluralina utilizată în dozele 5, 10, 20 și 25 mg/kg/sol influențează negativ asupra dezvoltării plantelor de soia. Asupra capacității germinative a semințelor dozele indicate nu influențează semnificativ.
- 2. Influența dozelor de 50, 100 și 200 mg trifluralină la un litru de mediu nutritiv asupra creșterii bacteriilor simbiotrof-fixatoare de azot *Rhizobium japonicum RD2* de asemenea nu a fost vizibilă.

METAL COMPLEXES WITH DIFFERENT LIGANDS IN CULTIVATION OF CYANOBACTERIUM NOSTOC LINCKIA

Ana VALUTA, Liviu CODREANU, Liliana CEPOI, Ludmila RUDI, Svetlana CODREANU

Institute of Microbiology and Biotechnology, Republic of Moldova Corresponding author email: annavaluta@yahoo.com

Metal coordination *complexes with different ligands* attract particular attention by their ability to model biosynthetic processes in living cells, even being applied in very low concentrations. As xenobiotics for living organisms, these compounds can generate oxidative stress of varying intensity, which is most often associated with an initial increase in antioxidant activity of cells. In this way, transition metal *complexes* can serve as modulators for directed synthesis of bioactive compounds with antioxidant properties in the objects of biotechnological interest.

As inductors of the accumulation of bioactive principles with antioxidant effect in *Nostoc linckia* biomass, two different classes of iron coordination compounds were used — iron(III) complex compounds with amino acids and iron(III) complexes with Schiff bases as ligands. The selection of these two classes was based on the attempt to compare the response reactions of nostoc culture to the action of compounds with a different degree of toxicity. Both types of compounds contain iron — a metal with multiple valence states, one of the main metal elements responsible in living systems for triggering oxidation and free radical formation reactions. Ligands presented by amino acids are friendly elements to cellular environments, capable of mitigating the negative effects of metal, while ligands presented by Schiff bases, on the contrary, due to their high toxic potential, can amplify the negative effects of metal.

Thus, iron(III) *complexes* with the *amino acid* ligands (*alanine* and *glycine*) did not generate a state of oxidative stress and, therefore, did not intensify the processes of accumulation of components with antioxidant effects in nostoc biomass. Unlike other phycological cultures, which quickly responded to these actions, nostoc turned out to be rather inert.

Four iron(III) coordination compounds with Schiff base ligands were added to nutrient medium on the first day of cultivation cycle in various concentrations (each compound in five different concentrations from 1 to 20 mg/L), in order to induce an oxidative stress in exposed cyanobacterium *Nostoc linckia*. Cyanobacterial culture responded by modifying the synthesis of protective factors, including phycobiliproteins that act as free-radical scavengers or chain breaking antioxidants.

In the case of [Fe(H₂L²)(H₂O)₂](NO₃)₃·5H₂O, the highest content of phycobiliproteins was registered under the concentration of 20 mg/L (250% C). We can assume that high phycobiliprotein content under the maximum concentration of compound was a reaction of antioxidant protection and an increase of photosynthesis and productivity of *Nostoc linckia*.

In the case of other three compounds, stimulatory effect on phycobiliprotein synthesis depends on the applied dose and concentration of 20 mg/L was determined as one with moderate intensity. The antioxidant activity determined the existence of a dependent correlation between phycobiliprotein content and ABTS assay values shown by the aqueous extracts from experimental biomass of *Nostoc linckia*. Hence, it is possible to alter the antioxidant activity of *Nostoc* biomass by applying low concentrations of chemical stimuli.

In fact, when stress factor becomes critical as the primary response reaction, some strains of cyanobacteria, including *Nostoc linckia*, have developed avoidance as a first line of defense mechanisms. This includes migration in the surface layers of nutrient medium under laboratory conditions or synthesis of extracellular polysaccharides that can act as natural metal chelators. Moreover, the exopolysaccharides can reduce the metal mainly through chemical functional groups and store it in the form of nanoparticles. This provides much insight for understanding the mechanisms responsible for metal ion transport and maintaining homeostatic levels.

INFLUENȚA ÎNGRĂȘĂMINTELOR MINERALE ASUPRA ORGANISMELOR NEVERTEBRATE EDAFICE

P. VITION

Institute of Genetics, Physiology and Plant Protection, Chisinau, Republic of Moldova Corresponding author email: vitionpantelei @yahoo.com

Este cunoscut faptul că nitrații se acumulează în mediul edafic în urma introducerii în sol a cantităților sporite de îngrăsăminte minerale de azot în deosebi a silitrei amoniacale. În condițiile naturale a mediului edafic nitratii se acumulează în sol ca rezultat a descompunerii rămășiților organice de origine vegetală și animală, iar prin intermediul bacteriilor din genul Nitrobacter nitrații se transformă de într-o formă în alta în nitriți. Îngrășămintele neorganice de azot introduse în sol în cantități maximale contribuie la sporirea acumulărilor a diversilor poluanți în mediul edafic: în deosebi a nitratilor, nitritilor si a diferitor impurităti de metale ca fluor si clor, care se conțin în îngrăsămintele chimice. La rândul său nevertebratele pedobionte saprofage, utilizează în nutriție detritusul organic a solului poluat cu ingridenți de nitrați, nitriți și impuritățile de metale ca fluor și clor, care se conțin în îngrășămintele chimice de în sol și ca rezultat se acumulează în organele digestive si tesuturile organismelor edafice. În condiții de laborator și paralel în cîmp s-au efectuat experiențe, în speciale microparcele cu sol, unde s-a studiat influenta îngrăsmintelor minerale asupra speciei de rîme Aporectodia rosea. Pentru evidentierea acumulărilor de nitrați în tesuturile speciei de rîme Aporectodia rosea, experiențele au constituit din următoarele variante: în I.-microparcelă s-a introdus - 5 kg de sol + 10 rîme sp. Aporectodia rosea, iar solul s-a stropit cu soluție de silitră amoniacală dizolvată în apă de ploaie. A -II.- în martor s-a introdus - 5 kg de sol + 10 rîme sp. Aporectodia rosea și solul s-a stropit cu apă de ploaie. În urma analizelor chimice efectuate în I-variantă, diapazonul acumulărilor de nitrati a sp. de râme Aporectodia rosea a constat de la 38 – 129 mg/kg/extrapolate. Surplusul ionilor de nitrați în organismul animalelor de sol provoacă dereglări fiziologiice și se transformă în alţi compuşi chimici ai azotului cu activitate fiziologică nocivă nitriți, iar nitriții în alți metaboliți mai toxici. Nitrații acumulați în organismul rîmelor schimbă continutul biochimic, reduce cantitatea de proteine, lipide, săruri minerale, vitamine.

РЕПТИЛИИ СРЕДНЕГО САРМАТА Р. МОЛДОВА

РЕДКОЗУБОВ О.И.

Институт зоологии АНМ, Республика Молдова Corresponding author email: emys1952@mail.ru

Ископаемые остатки рептилий из **сарматских** отложений известны из местонахождений: Калфа, Исаково, Лэпушна, Малые Милешты, Варница, Бужоры, Хирова, Веверица, Петушка, Покшешть, Атаваска, Кайнары.

В результате исследования выявлены следующие таксоны: *Testudines:*

Chelydropsis marchisoni Mlinarski, 1980. Chelidropsis sp. Trionyx moldaviensis Khosatzky, 1986. Trionix sp. Melanochelys moldavica Ckhikvadze, 1983. Sarmatemys lunguii Ckhikvadze, 1983. Protestudo csakvarensis (Szalai, 1934). Protestudo darewski moldavica Ckhikvadze et Lungu, 1979. Protestudo chisinauensis Redcozubov, 2007. Protestudo sp. Sakya sp.

Sauria: Varanus tyrasiensis. V. lungui. Pseudopus sp. Lacerta sp. Serpentens: Vipera sarmatica. Coluber sp.

Древнейшие остатки наземных позвоночных с территории страны известны с среднего миоцена. В результате подъема Карпатсих гор происходит регрессия сарматского бассейна с образованием суши и опресненных дельт праДнестра и праПрута. Сложившияся условия благоприятствовали экспансии как наземных, так и пресноводных позвоночных на территорию региона. Экспансия шла за счет азиатской и южноевропейской фаун в связи с изменением климата в сторону аридизации.

Для среднего сармата выделены два крупных фаунистических комплекса калфинский и варницкий.

Для калфинского комплекса характерны представители рептилий, в основном пресноводной фауны, черепахи — Chelydropsis marchisoni, Trionyx moldaviensis, Melanochelys moldavica, Sarmatemis lungui. Сухопутные — черепахи — Protestudo csakvarensis. P. chisinauensis. Чешуйчатые — Varanus lungui, Vipera sarmatica.

Большинство представителей фауны рептилий калфинского комплекса обитали во влажных условиях дельтовых заболоченных участков, с чистыми протоками, на что указавает наличие пресноводных черепах *Trionyx*. Суша была занята представителями родов *Protestudo*, *Varanus*, *Vipera*. Сопоставляя с данными по млекопитающим комплекса и палеоботаники с данными по рептилиям можно говорить о наличии в данный период времени на территории региона обширных заболоченных ландшафтов с лесостепной растительностью в междуречье с субтропическим климатом.

Дальнейие развитие фауна рептилий получает в **варницком** комплексе

К данному периоду времени происходит дальнейшее поднятие Карпат и увелечение площади суши с отступлением дельты на территории региона. Из фауны рептилий присутствуют только *Protestudo darewski moldavica*, *Varanus tyrasiensis*. Фауна млекопитающих обнаруживает большие различия в сравнение с калфинским, появляются новые виды гиппарионов, происходит вымирание анхитереевой фауны. Изменения в составе фаун происходит за счет дальнейшей аридизации климата, с расширением открытых пространст степного типа, которые сохранились и в верхнесарматском комплексе в котором обитали *Protestudo* darewski moldavica, *Melanochelys* sp., *Pseudopus* sp., *Lacerta* sp.

БИОЛОГИЧЕСКИЙ КОНТРОЛЬ ВРЕДИТЕЛЕЙ В ПЕРСИКОВОМ САДУ

В.В. СУМЕНКОВА, М.Г.БАТКО

Institute of Genetics, Physiology and Plant Protection, Chisinau, Republic of Moldova Corresponding author email: <u>sumencova@yahoo.com</u>

Сохраняющий биологический контроль вредных насекомых увеличение численности, направлен на выживаемости, продолжительности плодовитости, жизни резидентных популяций энтомоакарифауны и, как следствие, повышения их эффективности в контроле фитофагов [1]. Включение этих приемов в системы защиты различных сельскохозяйственных культур снижает потребность в инсектицидах и способствует производству экологически чистой продукции и снижению загрязнения окружающей среды.

Один из приемов увеличения видового разнообразия и плотности популяций энтомофагов в агроценозе основан на использовании семиохемиков. Смеси летучих органических веществ, выделяемые растениями в ответ на атаки фитофагов, используются энтомофагами для их поиска. Поскольку эти соединения привлекают энтомофагов, их синтетические аналоги рассматриваются как инструмент заманивания в агроценозы и удержания там полезных членистоногих, способных подавить вредителей [2]. Наиболее интенсивно и успешно в этих целях исследуется метилсалицилат (MeSA).

Работы по испытанию MeSA для привлечения энтомофагов в агроценоз проводились нами на участках персикового сада (сорт Collins) площадью около 1 га. Мониторинг видового состава и численности энтомофауны осуществляли с помощью желтых клеевых ловушек.

Нами не было обнаружено привлечения MeSA экономически значимых вредителей персика — восточной плодожорки (*Grapholita molesta* Busck) и фруктовой полосатой моли (*Anarsia lineatella* Zeller.).

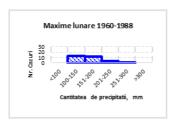
В то же время применение семиохемика оказалось эффективным для привлечения энтомофагов. обеспечивая увеличение их общей численности в среднем в 2 раза по сравнению с контролем, в том числе микро-Hymenoptera – в 2,2 раза, хищных трипсов – в 2,3, афидофагов Scymnus – в 1,6 раза, представителей хищных двукрылых сем. Dolichopodidae – в 2,6 раза. Семиохемик привлекал в агроценоз представителей практически всех обнаруженных нами семейств паразитических перепончатокрылых. Так, по сравнению с контролем было привлечено в среднем в 2 раза больше особей из сем. Encyrtidae, в 2,2 раза — из сем. Scelionidae и Mymaridae, в 3 раза — Trichogrammatidae, в 3,8 раза – из рода Trichogramma.

Эффективность использования MeSA повышалась, если в агроценоз вносили дополнительное питание для энтомофагов опрыскиванием деревьев раствором белково-углеводной смеси. Чередование этих двух приемов обеспечило значительное (в среднем в 3,1 раза) увеличение численности энтомофагов на опытном участке в течение всего сезона. Это сопровождалось снижением повреждений побегов восточной плодожоркой в 4,5 раза весной и в 1,3 раза – к концу полевого сезона, а фруктовой полосатой молью – в 2,4 раза на протяжении всего периода вегетапии.

Таким образом, являясь аттрактантом для многих энтомофагов, MeSA может быть использован в программах сохраняющего биологического контроля с целью увеличения влияния природного комплекса хищных и паразитических насекомых на численность вредителей.

Литература

- 1.Barbosa P. (Ed.). Conservation Biological Control. Academic Press, San Diego, CA., 396 P., 1998
- 2.Pickett J. A., Bruce T. J. A., Chamberlain K., Hassanali A., Khan Z. R., Matthes M. C, Napier J. A., Smart L. E, Wadhams L. J., and Woodcock C. M. Plant volatiles yielding new ways to exploit plant defence. In "Chemical Ecology: From Gene to Ecosystem" (M. Dicke and W. Takken, Eds.) Springer, Netherlands. p. 161-173, 2006


FRECVENȚA DE MANIFESTARE A PRECIPITAȚIILOR MAXIME PE TERITORIUL REPUBLICII MOLDOVA ÎN PERIOADA 1960-2017

Rodion DOMENCO

Universitatea de Stat "Dimitrie Cantemir", Republica Moldova Corresponding author email: rodion.domenco@gmail.com

Cunoașterea frecvenței de producere a cantităților excedentare de precipitații căzute în secvențe temporale diferite (lunare, diurne) își găsește aplicabilitatea în fundamentarea proiectelor de dezvoltare regională. În acest studiu au fost folosite datele de la 13 stații meteorologice situate între Prut și Nistru.

Pentru a înțelege și observa schimbările produse în regimul precipitațiilor, am ales să prezentăm frecvențele de producere a precipitațiilor lunare și diurne comparativ pentru perioadele 1960-1988 (29 ani) și 1989-2017 (29 ani).

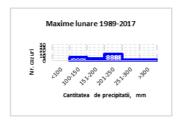


Fig. 1. Frecvența pe clase de valori a precipitațiilor maxime lunare pe teritoriul Republicii Moldova

În aspect lunar, frecvența precipitaților se caracterizează printr-o mare variabilitate (figura 1). În nordul și centrul republicii cea mai mare frecvență o au precipitațiile cu valori cuprinse între 100 mm și 150 mm, dar în cea mai mare parte a sudului, cele mai frecvente sunt cantitățile lunare cu valori sub 100 mm. Dacă însă analizăm distribuțiile de frecvență separat pentru cele două intervale temporale – 1960-1988 și 1989-2017 – o să observăm că în cea dea două perioadă "își fac apariția" cazurile cu precipitații care depășesc 200 mm și chiar 250 mm. Numărul lunilor cu valori de precipitații mai mari de 200 mm este de patru ori mai mare în perioada de după 1989 – 17 cazuri – dintre care două, cu valori de peste 300 mm, față de anii de dinainte – 4 cazuri (nici un caz cu valori de peste 300 mm).

Constatăm, în acest context, o creștere a riscului de producere a precipitațiilor excedentare – deși mai puține, precipitațiile se produc, în exces, mai frecvent. Tocmai distribuția neuniformă, din punct de vedere cantitativ, când lunile cu precipitații deficitare alternează cu cele excedentare pluviometric, reprezintă un risc în creștere pentru teritoriul dintre Prut și Nistru.

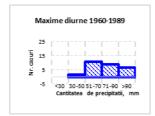


Fig. 2. Frecvența pe clase de valori a precipitațiilor maxime diurne pe teritoriul Republicii Moldova

În ceea ce privește frecvența precipitațiilor maxime diurne cu diferite clase de valori putem constată că în fiecare dintre cei 58 de ani din perioada 1960-2017, la toate cele 13 stații supuse studiului valoarea maximă a precipitațiilor diurne a depășit pragul de 30 mm (figura 2). Totodată, observăm că numărul cazurilor din clasele de valori 30-50 mm și 51-70 mm este mai mare în prima perioada (1960-1988), decât în cea de a doua (1989-2017).

Estimarea numărului de cazuri cu precipitații maxime diurne mai mari de 30 mm și 50 mm, indică că acestea sunt mai frecvente în partea de nord și centrală a țării, constituind până la 50 de cazuri pentru precipitațiile de peste 30 mm; 21-22 de cazuri pentru nordul și centrul țării și 23 de cazuri în sudul extrem se semnalează pentru depășirea valorii de 50 mm. Pentru precipitațiile maxime diurne de peste 100 mm, menționăm că în partea de sud acestea sunt cele mai frecvente. Pragurile de 70 mm și 90 mm a fost depășit de mai multe ori între anii 1989 și 2017, decât între 1960 și 1988.

Acest fapt ne indică creșterea variabilității temporale a precipitațiilor la sfârșitul secolului al XX-lea și începutul secolului XXI, față de perioada de dinainte, variabilitate care aduce cu sine și creșterea riscurilor asociate.

POPULAȚIILE SPECIEI MICROTUS ARVALIS (ORD.RODENTIA, FAM. CRICETIDAE) ÎN CONTEXTUL SCHIMBĂRILOR CLIMATICE

Veaceslav SÎTNIC

Institutul de Zoologie, Chişinău, Republica Moldova Corresponding author email: sitnicv@gmail.com

Schimbările climatice reprezintă un factor primordial în reglarea ecosistemelor. Adaptările populațiilor speciilor de animale la condițiile mediul ambiant și influența factorilor externi determină fluctuația efectivului lor. Specia se caracterizează nu numai printr-o adaptabilitate individuală, însă dispune si de un complex labil de adaptări și mecanisme reglatorii la nivel populațional. Selectarea și analiza factorilor, mai ales a celor climatici, ce determină oscilația efectivului populațiilor de mamifere, în general, și de microtine (Microtus arvalis, ord. Rodentia, fam. Cricetidae), în particular, este destul de complexă. O mare importanță o are realizarea de pronosticuri ale dezvoltării numerice în perspectiva imediată, dar și pentru cea mai îndepărtată. Pentru aceasta evoluția densității populației și curba de supraviețuire sunt corelate în cadrul unui model simplu, tinând cont de totalitatea indivizilor, care se încadrează în același interval de timp și parcurg aceleași etape de dezvoltare nasterea, maturizarea reproductivă, moartea.

Tempourile înalte de reproducere a microtinelor, durata scurtă a vieții și instabilitatea la diferiți factori ai mediului condiționează o alternanță intensă a generațiilor și oscilația efectivului numeric. În populațiile de microtine mai pregnant decât la alte mamifere sunt exprimate mecanismele homeostazei populaționale. Cunoașterea legităților oscilației efectivului populațiilor de microtine constituie fundamentul pronosticării variației efectivului, alcătuit în scopul elaborării măsurilor de combatere a focarelor de maladii infecțioase, vectori ai cărora sunt speciile studiate. La o densitate sporită ele afectează recolta de culturi agricole.

O influență considerabilă asupra fluctuației efectivului speciilor exercită schimbările climatice, mai ales seceta și fenomenele asociate acesteia, respectiv aridizarea și deșertificarea.

Extinderea lor este pusă în evidență de datele climatice care relevă o încălzire progresivă a atmosferei și o reducere a cantităților de precipitații, care conduc la apariția secetei.Permanentizarea acestui fenomen determină reducerea producțiilor culturilor agricole. Pe lângă schimbările climatice globale, accentuarea secetelor și deșertificării este cauzată și de presiunea antropică. În cercetări a fost calculat indicele de ariditate Martonne (Ia), ce exprimă relația dintre vegetație și climă prin prisma resurselor termice și de umiditate: Ia = P/(T+10) sau ia = 12p/(t+10), unde Ia, ia – indicele de ariditate anual, respectiv lunar; P, p – cantitatea medie anuală, respectiv lunară de precipitații; T, t – temperatura medie anuală, respectiv lunară.

Cercetările efectuate în agrocenoze pe parcursul a 35 ani ne-au permis să constatăm că *Microtus arvalis* nu demonstrează o periodicitate strictă a dinamicii populaționale, iar fazele de vârf se înregistrează peste 5-6 ani. *M.arvalis* este o specie larg răspândită, a cărei efectiv crește până la câteva sute de indivizi la hectar în anii cu condiții favorabile. Bazându-ne pe un impunător material informativ, am elaborat ecuația regresiunii multiple liniare, ce reflectă corelația dintre densitatea indivizilor *M. arvalis*, exprimată în colonii la hectar si indicele de ariditate lunară Martonne:

D=-15.67 + 2.88*Ia, unde D reprezintă densitatea indivizilor, iar Ia — indicele de ariditate. Reieșind din pronosticurile oscilației temperaturii și cantității de precipitații, am modelat în perspectivă fluctuația densității indivizilor M.arvalis. S-a stabilit o descreștere a densității indivizilor M. arvalis. Aceasta se explică prin faptul că treptat va scădea conținutul de substanțe din plantele ierboase absolut necesare pentru dezvoltarea și reproducerea speciilor studiate odată cu aridizarea climei. Intensitatea reproducerii în corelație cu fertilitatea sporită la M.arvalis reprezintă o adaptare la condițiile de populare în mediul antropic. Din această cauză populațiile izolate ale acestei specii manifestă adaptabilitate în peisajul antropizat.

Lucrarea a fost realizată în contul proiectului de cercetări fundamentale 15.187.0211F.

ВОЗДЕЙСТВИЯ АНТРОПОГЕНЫХ И ЗАСУШЛИВЫХ КЛИМАТИЧЕСКИХ УСЛОВИЙ НА ПЕДОБИОНТОВ

П.Г.ВИТИОН

Institute of Genetics, Physiology and Plant Protection, Chisinau Republic of Moldova Corresponding author email: vitionpantelei@ yahoo.com

В последние 24 - 27 лет в Республике Молдова все чаще отмечается наступление экстремально высоких температур воздуха в летний период (+39 + 40°C градусов), а иногда и до + 41°C), особенно в июле - августе, что сопровождается засухой почвы. В почвенной или (эдафической) среде структуру комплекса педобионтов формируют 16 таксономических групп почвенных беспозвоночных животных, из них ядро зоокомплекса составляет микрофауна, особенно Nematoda, Tardigrada, микроартроподы, ногохвостки, Collembola и клещи Oribatida. Внутри эдафического комплекса в зависимости от распределения экологических групп педобионтов в состав микрофауны почвенных беспозвоночных животных входят следующие семь таксономических групп, которые составляют 43,7%: Nematoda, Symphyla, Pauropoda, Collembola, Oribatida, Tardigrada, Enchytrieidae, а из макрофауны Lumbricidae, Diplopoda, Chilopoda (всего 3 групп, 19%). Мезофауна имеет (6 групп, 37,5%): Isopoda, Carabidae, Scarabaeidae, Staphylinidae, Elateridae, Tenebrionidae. Сравнительные показатели за периоды 1992 - 2015гг. в годы с засушливыми погодными условиями отмечено сокращение численности, особенно в течение периода 2004-2015гг., основных групп почвенных беспозвоночных животных: Enchytrieidae, Chilopoda, Lumbricidae, Pauropoda и др. В Республики Молдова в г. Кишинев и прилигающие зоны основные источники загрязнители компонентов окружающей среды с тяжелые металлы являются следующие: (ТЭС-1), (ТЭС-2), особенно отмечается в зимний отопительный сезон и в зависимости от направления ветра, а из другие источники являются: очистные сооружений, промышленные предприятий, минеральные удобрений, разные отхолы. пестициды, гербициды автотранспорт, железнодорожный и авиотранспорт, трансграничное загрязнение, строительство и. др. Максимальные биоакумуляции тяжелых металлов зарегистрировалось в подстилке и зависит от видов деревьях и растений. В импактной зоны в г. Кишинев подстилка лиственных видов деревьях в 3 раза больше аккумулируют токсические химические вещества, чем подстилка хвойных деревьев интродуцированых- 2 раза. Среди беспозвоночных групп почвенных животных наибольший прессинг биоаккумуляции тяжелых металлов испытывает группы, обитающие в подстилке и верхнем слое почвы в импактной зоны, в г. Кишинев особенно в вегетационный сезон. В подстилке преобладают организмы- потребители отмирающей и разлагающейся органики как, некоторые группы ногохвостки, клещей сапрофагов, мокрицы и многоножки, лесные тараканы, которые через подстилки аккумулируют тяжелых металлов.

Жизнедеятельность большинства обитателей подстилки в разной степени связанно с почвой. К этой же экологической группе относится муравьи, пауки- скакунчики. На территории зоны с уровнем загрязнения возле (ТЭС-2), - с разных искусственных лесных насаждений лиственных и интродуцированых хвойных видов деревьев урбанического экосистема г. Кишинев биоаккумуляция тяжелых металлов в тыканью некоторых групп животных беспозвоночных педобионтов имеет следующий диапазон колебаний: всего содержание концентрации по каждый отдельной группе металлов в тыканью беспозвоночных (мкг /г. абс. сухой массы): Ni- 0,71, Cd-0,81, Cr- 0,92, Pb- 1,18, V- 3,14, As-8,4, Zn-9,77, Cu-11,34, Mn-78,29. Максимальные концентрации Cu и Zn, связано с использованием разных защитных средств растений против болезней и вредителей в лесопарков и сеть зеленых лесонасаждений урбанический городской экосистем, которые содержит этих элементов, а Pb- с близким расположением автоартерий и V ванадия с зоны прилигающие с (ТЭС-1) (ТЭС-2). Из всех микроелиментов максимальные уровень содержание Мп наблюдаются особенно в лесные почвы Молдавии. Общая содержания магния на глубине слоя почвы 0-50 см. вирируют от 650-950 мг/кг почвы и очевидно через биоценотической трофической связь эдафической среды ионы тяжелых биоаккумулируются в организме беспозвоночных почвенных животных. Если сравнить по уровень содержание тяжелых металлов в тыканью беспозвоночных животных, например максимальные концентрации Си были обнаружены во всех экологических групп педобионтов. Голые слизи составляют группу моллюсков класса брюхоногие Gastropoda которые встречаются под опавшей подстилки во мху, лишайники и водорослями. Известно что лишайники, мхи и водорослями аккумулируют из окружающей средой самые больше токсины и особенно (тяжелых металлов) и вид безвредный моллюсков Arion subfiscus который питается преимущественно лишайниками, мхи и водоросли аккумулируют в пищеварительные органы вместе с пищей тяжелые металлов из бриофит. Другая группа из состав педобионтов некоторые виды Tardigrada из рода Hypsibius обитают на лишайниках, мхах и этих беспозвоночных животных через биоценотической трофической связь аккумулируют ионы тяжелых металлов из бриофит, но Tardigrada не теряет жизнеспособности, потому - что имеют большой резистентность. Аккумуляция ионов тяжелых металлов в тыканью некоторых групп почвенных беспозвоночных животных имеет следующий диапазон: (Pb > Cu >Zn >Mn >As >V>Cr >Cd) а также SO2 и другие ингредиентов. Поэтому не исключено, что именно ингриденты загрязнителей полютантов с максимальных токсических веществ тяжелых металлов нарушают, биохимических, физиологических и морфологических процессов (дыхании, транспирации, проницаемость в клеточных мембран оболочкой) и неиросекреторной системе, потребление кислород и ферментные системы, липоидный и жировой обмен у педобионтов.

BREAD WHEAT GRAIN QUALITY IN A BREEDING PROGRAM OF THE PLANT PRODUCTION INSTITUTE OF NAAS

LEONOV O., USOVA Z., SUVOROVA K., RELINA L., BURIAK L.

Plant Production Institute nd. a. V. Ya. Yuriev of NAAS, Kharkiv, Ukraine, oleleo@i.ua

Wheat breeding programs in the Plant Production Institute nd. a. VYa Yuriev of NAAS (PPI) have been dealing with grain quality parameters since the time Institute was founded. For better work in this area, the Laboratory of Grain Quality was organized in 1934. In the former Soviet Union, bread making was traditionally the main trend in the wheat grain use. Thus, much attention was paid to bread volume, rheological parameters of dough, protein and gluten contents, and sedimentation index. These indicators, as well as electrophoresis of gliadins and glutenins, molecular markers, are still used. Twenty three winter bread wheat varieties developed in the PPI are listed in the State Register of Plant Varieties Suitable for Dissemination in Ukraine in 2019. Twelve of them are so-called "strong wheat" with an excellent breadmaking quality. Among them, there are new varieties Zapashna, Fermerka, Krasa Laniv, and Prynada, which were registered within the last 5 years, and well-known varieties Alians, Doskonala, Doridna, Rozkishna, and Statna.

The common scheme of the breeding process for grain quality of winter wheat in the Plant Production Institute includes:

- Selection of source material based scientific literature data, international wheat databases, own data and results of the National Centre For Plant Genetic Resources of Ukraine;
- Hybridization of high-yielding accessions adapted to Ukrainian conditions bred at the Institute and other institutions with sources and donors of quality parameters;
- Evaluation of the material obtained at breeding stages (express techniques for F₄ generation, protein content and sedimentation index in F₅, rheological properties of dough in F₆ and subsequent generations, the total bread-making score or biscuit characteristics, gliadin and glutenin electrophoretic patterns starting from F₇).

Express techniques are used in early generations for selection of plants with waxy grain, soft grain, forms with high carotenoid content. These are new areas of breeding for wheat grain quality in the PPI. The PPI's varieties were screened for wild type alleles $pin\ a$ and $pin\ b$ using molecular markers. Similar analysis was conducted to identify varieties with recessive alleles of vrn loci among spring wheat with high carotenoids content in grain for crossing with winter ones.

Hardness of a single kernel and water absorption capacity of flour are determined, and test cookies are baked during selection of soft-grain wheat. In this way, new soft winter wheat variety Mazurok was released and submitted for the state variety trials in 2019.

Expression of quality parameters in valuable strong varieties of bread wheat was analyzed. Among parameters of grain quality, there were the most significant positive correlations between the total baking score and flour strength (W) and between the total baking score and dough elasticity index (Ie). The test weight and vitreousness of kernels had no significant effects on the bread-making quality. The most significant negative correlation was found between the total baking score and gluten quality (IDK or gluten deformation index). Polynoms better describe relationships with other indices. Thus, protein and gluten contents in grain should be optimal, and their excessive values led to a decrease in the bread quality.

New varieties Haiok, Pronia and Mavka were released and submitted for the state variety trials in 2017-2019 as "strong wheat" with high protein content, W, P and Ie alveograph indices, a large volume of bread and its high quality.

LIST OF AUTHORS

Agapi I.	112	Cepoi L.	61, 71, 183
Andoni C.	143, 145, 147	Chaliha B.	130
Anton F. G.	11	Chavdar N.	9
Arnaut N.	137	Chernobai L.N.	35
Artiomov L.	79	Chiriac I.	145, 147
Baciu A.	81	Chiriac T.	69, 71
Balacci S.	83,114	Chiseliță O.	71
Balan I.	63, 65, 83, 114	Ciobanu R.	21
Batîr L.	90, 116, 118, 131	Ciochina M.	99, 101
Bărbieru A.	12	Ciorchină N.	175
Berezovscaia E.	85,109	Cîrlig N.	23, 25
Bilynska O.V.	13	Clapco S.	55
Bivol A.	75, 143, 145, 147	Codreanu L.	183
Bivol I.	15	Codreanu S.	183
Blaj A. V.	177	Comarova G.	45
Blindu I.	83,114	Corcimaru S.	131, 163
Bogdan V.	87	Corlateanu L.	133
Boian	120	Coșcodan M.	27, 19
Boiangiu R. St.	88, 89	Cozma V.	131
Boronciuc G.	83	Cuţitaru D.	31
Borozan P.	17	Dan M.	11
Bounegru S.	45	Demcenco B.	63, 65
Brînza I.	34	Dibolscaia N.	124
Bucarciuc M.	83	Didenko S.Yu.	32
Bulimaga V.	90	Domenco R.	190
Buriak L.	196	Dubalari A.	84,114
Burlacu V.	122	Duca M.	33, 55, 96
Busmachiu G.	145, 147	Dulnyev P.G.	13
Buzan V.	84, 114	Dumitru G	89
Caldari V.	124, 126	Efremova N	90
Capatina L.	89	Elenciuc D.	90
Caraman N.	126	Erhan D.	137, 139
Carauş V.	71	Fiodorov N.	84, 114
Caterinciuc N.	122	Fratea S.	45
Cazacov I.	83	Ganea A.	31, 133, 135, 1
Cărăbeț A.	41	Garaeva S.	37, 94
Cebotari A.	137	Gherasim E.	137, 139, 141

Golik O.V.	32	Mosanu E.	169
Gologan I.	137	Mutu A.	33
Goloseev A.	92	Napoli E.	89
Gore A.	167	Neacșu M.	41
Goreacioc T.	169	Nistreanu V.	122, 124, 126,
Gorgan L. D.	53		153, 173
Gramovici V	63, 65	Nofit V.	97
Guţu A.	23, 77	Olaru E. I.	155, 157
Guțul T.	131, 163	Olaru Ş. M.	155, 157
Guzun L.	45	Onofraș L.	181
Hricţcu L.	34	Organ A.	99
Hritcu L.	88,89	Osadci N.	63,65
Iurcu-Străistaru E.	75,143,145,147	Osipciuc G.	84, 114
Kapustian M.V	35	Pacureanu-Joita M.	11
Kobyzeva L.	57	Paladi V.	159
Kryvenko A.	49	Pascaru A.	161
Kuzmishina N.V.	35	Petcu I.	63, 65
Larion A.	122, 124, 173	Plîngău E.	67, 71
Lâsii D.	51	Poleacova L.	99, 101
Leonov O.	196	Port A.	55
Leorda A.	94	Postolachi O.	131
Lobiuc A.	155, 157	Postolati G.	84
Lozan R.	169	Prisacari S.	163, 181
Lungu A.	181	Rastimeșina I.	131
Lupaşcu G.	37, 43	Relina L.	32, 196
Lyatamborg S.	167	Romanciuc G.	165
Lyutenko V.	57	Rosca N.	84, 114
Makliak K.	39	Roșca F.	63, 65
Malvolti M.E.	149	Rotar I.	69, 71
Mapelli S.	149	Rotari A.	45
Martea R.	33,96	Rotari E.	45
Marușca T.	177	Rotari S.	167
Mazăre R.	177, 41	Ruberto G.	89
Mereuta I.	83,99	Rudi L.	67, 71, 183
Mihaila V.	133	Rudic V	71, 116
Mihailov I.	145, 147	Rushchuk A.	19
Mihasan M.	88	Rusu G.	17
Mihnea N.	15, 43	Rusu S.	75
Mogîlda A.	151	Rusu Ş.	137, 143
Moldovan C.	171	Saikia S. P.	130

Sandu M. 169	Trofim M.	175
Sanduta S. 99	Turcan S.	169
Sasanelli N. 75, 143	Ţîţei V.	23, 77, 79
Sashco E. 47	Ţurcan O.	103
Shaykhilov D. 19	Ţurcanu P.	105
Shevchenko L. 57	Untu B.	99
Sichkar V. 49	Usova Z.	196
Sîrbu I. 171	Valuta A.	71,173
Sîrbu T. 131	Varmari G.	83
Sîromeatnicov I. 15,51	Vasylenko A.	57
Sîtnic V. 192	Vatavu D.	137
Sîtnic V. 126	Vecherska L.A.	32
Slanina V. 116, 118, 131	Vition P.	194,185
Spînu C. 173	Volkova N.	49
Stanciu D. 11	Voloșciuc L.	73
Stef R. 41	Vovlas A.	75
Suvorova K. 196	Vus N.	57
Ştefan G. A. 53	Zaicenco N.	83,114
Ştefîneţ P. 51	Zamfirache M.M.	53,155, 157
Tabăra-Gorceag M. 175	Zevedei D.	177
Tabără O. 33, 55	Zevedei P. M.	177
Tanase A. 131	Zosim L.	90
Tarita A. 169	Батко М.Г.	188
Tașca I. 61	Булат О.	107
Teleuță A. 23	Былич Е.	76
Timuş I. 171	Головатюк Л.	85,109
Todirascu-Ciornea E. 89	Горбунова В.	59
Todiraș I. 75	Леманова Н.	59
Todiraș T. 163	Редкозубов О.И.	186
Todiraș V. 181	Суменкова В.В.	188